This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted by
casdiffmvs_mvgpermissive85.99 4386.09 4585.70 6587.65 19267.22 14188.69 11193.04 3879.64 1785.33 4292.54 7373.30 3594.50 10683.49 4991.14 8895.37 1
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
dcpmvs_285.63 5086.15 4384.06 11691.71 7564.94 18786.47 18091.87 9573.63 13086.60 3393.02 6276.57 1591.87 21283.36 5092.15 7495.35 2
casdiffmvspermissive85.11 5885.14 5785.01 7887.20 20765.77 16987.75 14392.83 5577.84 3684.36 6392.38 7572.15 4393.93 12981.27 7190.48 9395.33 3
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
3Dnovator+77.84 485.48 5184.47 6488.51 691.08 8173.49 1593.18 1193.78 1880.79 776.66 18593.37 5260.40 17896.75 2577.20 10793.73 6195.29 4
CS-MVS86.69 3486.95 3085.90 6290.76 9067.57 13292.83 1793.30 3279.67 1684.57 5992.27 7671.47 4995.02 8584.24 4493.46 6295.13 5
TSAR-MVS + MP.88.02 1788.11 1587.72 2993.68 4372.13 4591.41 4692.35 7474.62 11088.90 2093.85 4675.75 2096.00 4887.80 1894.63 4695.04 6
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
baseline84.93 6084.98 5884.80 8887.30 20565.39 17887.30 15592.88 5277.62 3884.04 6992.26 7771.81 4593.96 12381.31 7090.30 9695.03 7
MVS_030488.08 1388.08 1688.08 1389.67 11372.04 4792.26 3289.26 16984.19 185.01 4595.18 1369.93 6497.20 1391.63 195.60 2894.99 8
DVP-MVS++90.23 191.01 187.89 2394.34 2771.25 5695.06 194.23 378.38 3292.78 495.74 682.45 397.49 389.42 596.68 294.95 9
PC_three_145268.21 23192.02 1294.00 4182.09 595.98 5084.58 3896.68 294.95 9
IS-MVSNet83.15 7882.81 7884.18 10989.94 10963.30 22291.59 4288.46 20079.04 2479.49 12392.16 7865.10 11094.28 11167.71 19991.86 8094.95 9
SteuartSystems-ACMMP88.72 1088.86 1088.32 892.14 6972.96 2493.73 593.67 2080.19 1188.10 2594.80 1673.76 3397.11 1487.51 2195.82 2194.90 12
Skip Steuart: Steuart Systems R&D Blog.
SED-MVS90.08 290.85 287.77 2595.30 270.98 6293.57 794.06 1077.24 4993.10 195.72 882.99 197.44 589.07 1096.63 494.88 13
OPU-MVS89.06 394.62 1575.42 493.57 794.02 4082.45 396.87 1983.77 4896.48 894.88 13
SMA-MVScopyleft89.08 789.23 788.61 594.25 3173.73 992.40 2393.63 2174.77 10692.29 795.97 274.28 2997.24 1188.58 1596.91 194.87 15
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
test250677.30 21076.49 20679.74 23690.08 10252.02 34287.86 14263.10 37174.88 10380.16 11792.79 6938.29 34092.35 19468.74 19292.50 7194.86 16
ECVR-MVScopyleft79.61 14879.26 13980.67 21890.08 10254.69 32687.89 14077.44 33374.88 10380.27 11492.79 6948.96 28192.45 18868.55 19392.50 7194.86 16
IU-MVS95.30 271.25 5692.95 5166.81 23992.39 688.94 1296.63 494.85 18
test111179.43 15579.18 14380.15 22889.99 10753.31 33987.33 15477.05 33675.04 10080.23 11692.77 7148.97 28092.33 19668.87 19092.40 7394.81 19
SF-MVS88.46 1188.74 1187.64 3492.78 6171.95 4992.40 2394.74 275.71 8689.16 1995.10 1475.65 2196.19 4287.07 2496.01 1794.79 20
CS-MVS-test86.29 4186.48 3685.71 6491.02 8367.21 14292.36 2893.78 1878.97 2783.51 7891.20 10170.65 5895.15 7681.96 6694.89 4094.77 21
canonicalmvs85.91 4585.87 4786.04 5989.84 11169.44 9390.45 6593.00 4376.70 6888.01 2791.23 9973.28 3693.91 13081.50 6988.80 11494.77 21
test_0728_THIRD78.38 3292.12 995.78 481.46 797.40 789.42 596.57 794.67 23
MSP-MVS89.51 489.91 588.30 994.28 3073.46 1692.90 1694.11 680.27 991.35 1494.16 3578.35 1396.77 2389.59 494.22 5794.67 23
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
alignmvs85.48 5185.32 5485.96 6189.51 11969.47 9089.74 8092.47 6876.17 7987.73 3091.46 9570.32 6093.78 13581.51 6888.95 11194.63 25
MP-MVS-pluss87.67 2087.72 2087.54 3593.64 4472.04 4789.80 7893.50 2575.17 9986.34 3495.29 1270.86 5496.00 4888.78 1396.04 1694.58 26
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
DeepPCF-MVS80.84 188.10 1288.56 1286.73 4992.24 6869.03 9689.57 8493.39 3077.53 4489.79 1894.12 3678.98 1296.58 3485.66 2795.72 2494.58 26
VDD-MVS83.01 8382.36 8484.96 8091.02 8366.40 15388.91 10088.11 20377.57 4084.39 6293.29 5452.19 23693.91 13077.05 10988.70 11694.57 28
VDDNet81.52 10680.67 10984.05 11890.44 9564.13 20489.73 8185.91 24471.11 17183.18 8093.48 4950.54 25993.49 14973.40 14688.25 12294.54 29
APDe-MVS89.15 689.63 687.73 2794.49 1871.69 5193.83 493.96 1375.70 8891.06 1696.03 176.84 1497.03 1689.09 795.65 2794.47 30
MSC_two_6792asdad89.16 194.34 2775.53 292.99 4597.53 189.67 296.44 994.41 31
No_MVS89.16 194.34 2775.53 292.99 4597.53 189.67 296.44 994.41 31
MCST-MVS87.37 2687.25 2587.73 2794.53 1772.46 3789.82 7693.82 1673.07 14384.86 5292.89 6476.22 1796.33 3784.89 3495.13 3594.40 33
CANet86.45 3786.10 4487.51 3690.09 10170.94 6689.70 8292.59 6681.78 381.32 10291.43 9670.34 5997.23 1284.26 4293.36 6394.37 34
PHI-MVS86.43 3886.17 4287.24 4090.88 8770.96 6492.27 3194.07 972.45 14885.22 4491.90 8269.47 6996.42 3683.28 5295.94 1994.35 35
CNVR-MVS88.93 989.13 988.33 794.77 1273.82 890.51 6093.00 4380.90 688.06 2694.06 3976.43 1696.84 2088.48 1795.99 1894.34 36
ZNCC-MVS87.94 1887.85 1988.20 1194.39 2473.33 1893.03 1493.81 1776.81 6285.24 4394.32 3071.76 4696.93 1885.53 2995.79 2294.32 37
HPM-MVScopyleft87.11 2986.98 2987.50 3793.88 3972.16 4492.19 3393.33 3176.07 8183.81 7393.95 4569.77 6796.01 4785.15 3094.66 4594.32 37
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CDPH-MVS85.76 4885.29 5687.17 4293.49 4771.08 6088.58 11592.42 7268.32 23084.61 5793.48 4972.32 4196.15 4479.00 8895.43 3094.28 39
test_241102_TWO94.06 1077.24 4992.78 495.72 881.26 897.44 589.07 1096.58 694.26 40
test_0728_SECOND87.71 3195.34 171.43 5593.49 994.23 397.49 389.08 896.41 1294.21 41
DeepC-MVS_fast79.65 386.91 3286.62 3587.76 2693.52 4672.37 4091.26 4793.04 3876.62 6984.22 6493.36 5371.44 5096.76 2480.82 7595.33 3394.16 42
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
EPP-MVSNet83.40 7583.02 7584.57 9290.13 10064.47 19792.32 2990.73 12774.45 11479.35 12591.10 10469.05 7595.12 7772.78 15387.22 13294.13 43
NCCC88.06 1488.01 1888.24 1094.41 2273.62 1091.22 5192.83 5581.50 485.79 3893.47 5173.02 3997.00 1784.90 3294.94 3894.10 44
ACMMP_NAP88.05 1688.08 1687.94 1893.70 4173.05 2190.86 5593.59 2376.27 7888.14 2495.09 1571.06 5396.67 2887.67 1996.37 1494.09 45
XVS87.18 2886.91 3288.00 1694.42 2073.33 1892.78 1892.99 4579.14 2083.67 7594.17 3467.45 8696.60 3283.06 5394.50 4994.07 46
X-MVStestdata80.37 13577.83 17288.00 1694.42 2073.33 1892.78 1892.99 4579.14 2083.67 7512.47 38167.45 8696.60 3283.06 5394.50 4994.07 46
region2R87.42 2487.20 2788.09 1294.63 1473.55 1293.03 1493.12 3776.73 6784.45 6094.52 2069.09 7396.70 2684.37 4194.83 4394.03 48
ACMMPR87.44 2287.23 2688.08 1394.64 1373.59 1193.04 1293.20 3476.78 6484.66 5694.52 2068.81 7796.65 2984.53 3994.90 3994.00 49
DPE-MVScopyleft89.48 589.98 488.01 1594.80 1172.69 3091.59 4294.10 875.90 8492.29 795.66 1081.67 697.38 987.44 2396.34 1593.95 50
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_fmvsm_n_192085.29 5685.34 5285.13 7586.12 22269.93 8288.65 11390.78 12669.97 19288.27 2393.98 4471.39 5191.54 22088.49 1690.45 9493.91 51
test_prior86.33 5392.61 6569.59 8792.97 5095.48 6193.91 51
GST-MVS87.42 2487.26 2487.89 2394.12 3672.97 2392.39 2593.43 2876.89 6084.68 5393.99 4370.67 5796.82 2184.18 4695.01 3693.90 53
Anonymous20240521178.25 18377.01 19281.99 18491.03 8260.67 25784.77 22083.90 27170.65 18180.00 11891.20 10141.08 33091.43 22565.21 22185.26 15793.85 54
LFMVS81.82 9881.23 9983.57 13491.89 7363.43 22089.84 7581.85 29777.04 5783.21 7993.10 5752.26 23593.43 15471.98 15989.95 10493.85 54
Effi-MVS+83.62 7183.08 7385.24 7188.38 16667.45 13488.89 10189.15 17575.50 9182.27 9088.28 17669.61 6894.45 10877.81 10187.84 12493.84 56
Anonymous2024052980.19 14078.89 14884.10 11190.60 9164.75 19188.95 9990.90 12265.97 25480.59 11291.17 10349.97 26493.73 14169.16 18782.70 19493.81 57
MVS_Test83.15 7883.06 7483.41 13986.86 21163.21 22486.11 19092.00 8774.31 11582.87 8489.44 14670.03 6293.21 15977.39 10688.50 12093.81 57
GeoE81.71 10081.01 10483.80 12989.51 11964.45 19888.97 9888.73 19571.27 16878.63 13889.76 13266.32 9793.20 16269.89 17986.02 15193.74 59
diffmvspermissive82.10 9181.88 9382.76 17283.00 27863.78 21083.68 24489.76 15472.94 14682.02 9389.85 13065.96 10490.79 24282.38 6487.30 13193.71 60
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
HFP-MVS87.58 2187.47 2387.94 1894.58 1673.54 1493.04 1293.24 3376.78 6484.91 4994.44 2770.78 5596.61 3184.53 3994.89 4093.66 61
VNet82.21 9082.41 8281.62 19090.82 8860.93 25284.47 22889.78 15376.36 7684.07 6891.88 8364.71 11490.26 24870.68 17088.89 11293.66 61
PGM-MVS86.68 3586.27 3987.90 2194.22 3373.38 1790.22 6993.04 3875.53 9083.86 7194.42 2867.87 8396.64 3082.70 6294.57 4893.66 61
DELS-MVS85.41 5485.30 5585.77 6388.49 16167.93 12485.52 20993.44 2778.70 2883.63 7789.03 15474.57 2495.71 5580.26 8294.04 5893.66 61
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
SD-MVS88.06 1488.50 1386.71 5092.60 6672.71 2891.81 4193.19 3577.87 3590.32 1794.00 4174.83 2393.78 13587.63 2094.27 5693.65 65
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DeepC-MVS79.81 287.08 3186.88 3387.69 3291.16 8072.32 4290.31 6793.94 1477.12 5482.82 8694.23 3372.13 4497.09 1584.83 3595.37 3193.65 65
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
patch_mono-283.65 6984.54 6380.99 21090.06 10665.83 16584.21 23788.74 19471.60 16385.01 4592.44 7474.51 2583.50 31682.15 6592.15 7493.64 67
EIA-MVS83.31 7782.80 7984.82 8689.59 11565.59 17188.21 12692.68 6074.66 10878.96 12986.42 23169.06 7495.26 7275.54 12890.09 10093.62 68
MP-MVScopyleft87.71 1987.64 2187.93 2094.36 2673.88 692.71 2292.65 6477.57 4083.84 7294.40 2972.24 4296.28 3985.65 2895.30 3493.62 68
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
HPM-MVS_fast85.35 5584.95 6086.57 5293.69 4270.58 7492.15 3591.62 10373.89 12582.67 8994.09 3762.60 13495.54 5980.93 7392.93 6593.57 70
CSCG86.41 4086.19 4187.07 4492.91 5872.48 3690.81 5693.56 2473.95 12283.16 8191.07 10675.94 1895.19 7479.94 8494.38 5393.55 71
test1286.80 4892.63 6470.70 7191.79 9982.71 8871.67 4796.16 4394.50 4993.54 72
APD-MVS_3200maxsize85.97 4485.88 4686.22 5692.69 6369.53 8891.93 3792.99 4573.54 13485.94 3594.51 2365.80 10595.61 5683.04 5592.51 7093.53 73
mvs_anonymous79.42 15679.11 14480.34 22484.45 24757.97 28482.59 26287.62 21767.40 23876.17 20188.56 16968.47 7989.59 25870.65 17186.05 15093.47 74
mPP-MVS86.67 3686.32 3887.72 2994.41 2273.55 1292.74 2092.22 8076.87 6182.81 8794.25 3266.44 9596.24 4082.88 5794.28 5593.38 75
EPNet83.72 6882.92 7786.14 5884.22 25069.48 8991.05 5485.27 25181.30 576.83 18091.65 8766.09 10095.56 5776.00 12293.85 5993.38 75
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Vis-MVSNetpermissive83.46 7382.80 7985.43 6890.25 9868.74 10590.30 6890.13 14576.33 7780.87 11092.89 6461.00 16694.20 11772.45 15890.97 8993.35 77
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
DVP-MVScopyleft89.60 390.35 387.33 3995.27 571.25 5693.49 992.73 5977.33 4792.12 995.78 480.98 997.40 789.08 896.41 1293.33 78
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
UniMVSNet_ETH3D79.10 16578.24 16381.70 18986.85 21260.24 26487.28 15688.79 18974.25 11776.84 17990.53 11949.48 27091.56 21967.98 19782.15 19893.29 79
EI-MVSNet-Vis-set84.19 6383.81 6785.31 6988.18 17167.85 12587.66 14589.73 15680.05 1382.95 8289.59 13870.74 5694.82 9480.66 7984.72 16293.28 80
MTAPA87.23 2787.00 2887.90 2194.18 3574.25 586.58 17792.02 8579.45 1885.88 3694.80 1668.07 8096.21 4186.69 2695.34 3293.23 81
CP-MVS87.11 2986.92 3187.68 3394.20 3473.86 793.98 392.82 5876.62 6983.68 7494.46 2467.93 8195.95 5184.20 4594.39 5293.23 81
ACMMPcopyleft85.89 4685.39 5187.38 3893.59 4572.63 3292.74 2093.18 3676.78 6480.73 11193.82 4764.33 11596.29 3882.67 6390.69 9293.23 81
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
PAPM_NR83.02 8282.41 8284.82 8692.47 6766.37 15487.93 13891.80 9873.82 12677.32 16990.66 11567.90 8294.90 9070.37 17389.48 10893.19 84
OMC-MVS82.69 8581.97 9284.85 8588.75 15367.42 13587.98 13490.87 12474.92 10279.72 12091.65 8762.19 14493.96 12375.26 13086.42 14493.16 85
PAPR81.66 10480.89 10683.99 12390.27 9764.00 20586.76 17391.77 10168.84 22177.13 17889.50 13967.63 8494.88 9267.55 20188.52 11993.09 86
UA-Net85.08 5984.96 5985.45 6792.07 7068.07 12289.78 7990.86 12582.48 284.60 5893.20 5669.35 7095.22 7371.39 16490.88 9193.07 87
HPM-MVS++copyleft89.02 889.15 888.63 495.01 976.03 192.38 2692.85 5480.26 1087.78 2894.27 3175.89 1996.81 2287.45 2296.44 993.05 88
thisisatest053079.40 15777.76 17784.31 10587.69 19165.10 18487.36 15284.26 26770.04 18977.42 16688.26 17849.94 26594.79 9670.20 17484.70 16393.03 89
train_agg86.43 3886.20 4087.13 4393.26 5072.96 2488.75 10791.89 9368.69 22385.00 4793.10 5774.43 2695.41 6684.97 3195.71 2593.02 90
EC-MVSNet86.01 4286.38 3784.91 8489.31 13066.27 15692.32 2993.63 2179.37 1984.17 6691.88 8369.04 7695.43 6483.93 4793.77 6093.01 91
EI-MVSNet-UG-set83.81 6683.38 7085.09 7687.87 18167.53 13387.44 15189.66 15779.74 1582.23 9189.41 14770.24 6194.74 9779.95 8383.92 17292.99 92
tttt051779.40 15777.91 16983.90 12888.10 17463.84 20888.37 12284.05 26971.45 16676.78 18289.12 15149.93 26794.89 9170.18 17583.18 18792.96 93
test9_res84.90 3295.70 2692.87 94
SR-MVS86.73 3386.67 3486.91 4594.11 3772.11 4692.37 2792.56 6774.50 11186.84 3294.65 1967.31 8895.77 5384.80 3692.85 6692.84 95
ETV-MVS84.90 6284.67 6285.59 6689.39 12468.66 11188.74 10992.64 6579.97 1484.10 6785.71 24469.32 7195.38 6880.82 7591.37 8592.72 96
agg_prior282.91 5695.45 2992.70 97
APD-MVScopyleft87.44 2287.52 2287.19 4194.24 3272.39 3891.86 4092.83 5573.01 14588.58 2194.52 2073.36 3496.49 3584.26 4295.01 3692.70 97
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ET-MVSNet_ETH3D78.63 17676.63 20584.64 9186.73 21669.47 9085.01 21584.61 25969.54 20166.51 31786.59 22450.16 26291.75 21476.26 11884.24 17092.69 99
Vis-MVSNet (Re-imp)78.36 18278.45 15678.07 26388.64 15751.78 34686.70 17479.63 31974.14 12075.11 22690.83 11361.29 16089.75 25558.10 28291.60 8192.69 99
TSAR-MVS + GP.85.71 4985.33 5386.84 4691.34 7872.50 3589.07 9687.28 22476.41 7185.80 3790.22 12474.15 3195.37 7181.82 6791.88 7792.65 101
test_fmvsmvis_n_192084.02 6483.87 6684.49 9784.12 25269.37 9488.15 13087.96 20870.01 19083.95 7093.23 5568.80 7891.51 22388.61 1489.96 10392.57 102
FA-MVS(test-final)80.96 11579.91 12384.10 11188.30 16965.01 18584.55 22790.01 14873.25 14079.61 12187.57 19358.35 18794.72 9871.29 16586.25 14792.56 103
test_yl81.17 11180.47 11383.24 14589.13 13863.62 21186.21 18789.95 15072.43 15181.78 9889.61 13657.50 19593.58 14370.75 16886.90 13692.52 104
DCV-MVSNet81.17 11180.47 11383.24 14589.13 13863.62 21186.21 18789.95 15072.43 15181.78 9889.61 13657.50 19593.58 14370.75 16886.90 13692.52 104
SR-MVS-dyc-post85.77 4785.61 4986.23 5593.06 5570.63 7291.88 3892.27 7673.53 13585.69 3994.45 2565.00 11395.56 5782.75 5891.87 7892.50 106
RE-MVS-def85.48 5093.06 5570.63 7291.88 3892.27 7673.53 13585.69 3994.45 2563.87 11982.75 5891.87 7892.50 106
nrg03083.88 6583.53 6884.96 8086.77 21569.28 9590.46 6492.67 6174.79 10582.95 8291.33 9872.70 4093.09 17080.79 7779.28 23492.50 106
MG-MVS83.41 7483.45 6983.28 14292.74 6262.28 23888.17 12889.50 16075.22 9581.49 10192.74 7266.75 9195.11 7972.85 15291.58 8292.45 109
FIs82.07 9382.42 8181.04 20988.80 15058.34 27888.26 12593.49 2676.93 5978.47 14391.04 10769.92 6592.34 19569.87 18084.97 15992.44 110
FC-MVSNet-test81.52 10682.02 9080.03 23088.42 16555.97 31587.95 13693.42 2977.10 5577.38 16790.98 11269.96 6391.79 21368.46 19584.50 16492.33 111
Fast-Effi-MVS+80.81 11979.92 12283.47 13588.85 14564.51 19485.53 20789.39 16370.79 17678.49 14285.06 26267.54 8593.58 14367.03 20986.58 14192.32 112
TranMVSNet+NR-MVSNet80.84 11780.31 11682.42 17787.85 18262.33 23687.74 14491.33 11280.55 877.99 15789.86 12965.23 10992.62 18267.05 20875.24 28892.30 113
ab-mvs79.51 15178.97 14781.14 20688.46 16360.91 25383.84 24289.24 17170.36 18479.03 12888.87 15963.23 12690.21 25065.12 22282.57 19592.28 114
CANet_DTU80.61 12779.87 12482.83 16485.60 22963.17 22787.36 15288.65 19676.37 7575.88 20488.44 17253.51 22693.07 17173.30 14789.74 10692.25 115
UniMVSNet_NR-MVSNet81.88 9681.54 9682.92 16188.46 16363.46 21887.13 15892.37 7380.19 1178.38 14489.14 15071.66 4893.05 17270.05 17676.46 26492.25 115
DU-MVS81.12 11380.52 11282.90 16287.80 18563.46 21887.02 16291.87 9579.01 2578.38 14489.07 15265.02 11193.05 17270.05 17676.46 26492.20 117
NR-MVSNet80.23 13879.38 13482.78 17087.80 18563.34 22186.31 18491.09 11979.01 2572.17 25989.07 15267.20 8992.81 18166.08 21575.65 27592.20 117
TAPA-MVS73.13 979.15 16377.94 16882.79 16989.59 11562.99 23188.16 12991.51 10765.77 25577.14 17791.09 10560.91 16793.21 15950.26 32787.05 13492.17 119
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
3Dnovator76.31 583.38 7682.31 8586.59 5187.94 18072.94 2790.64 5892.14 8477.21 5175.47 21092.83 6658.56 18594.72 9873.24 14992.71 6892.13 120
MVS_111021_HR85.14 5784.75 6186.32 5491.65 7672.70 2985.98 19290.33 13976.11 8082.08 9291.61 9071.36 5294.17 11981.02 7292.58 6992.08 121
MVSFormer82.85 8482.05 8985.24 7187.35 20070.21 7690.50 6190.38 13568.55 22581.32 10289.47 14161.68 14993.46 15278.98 8990.26 9792.05 122
jason81.39 10980.29 11784.70 9086.63 21769.90 8485.95 19386.77 23263.24 28181.07 10889.47 14161.08 16592.15 20178.33 9790.07 10292.05 122
jason: jason.
mvsmamba81.69 10180.74 10784.56 9387.45 19966.72 14991.26 4785.89 24574.66 10878.23 14990.56 11754.33 21794.91 8780.73 7883.54 18292.04 124
HyFIR lowres test77.53 20575.40 22283.94 12689.59 11566.62 15080.36 28788.64 19756.29 33876.45 19085.17 25957.64 19393.28 15761.34 25583.10 18891.91 125
XVG-OURS-SEG-HR80.81 11979.76 12683.96 12585.60 22968.78 10283.54 25090.50 13270.66 18076.71 18491.66 8660.69 17091.26 22976.94 11081.58 20591.83 126
lupinMVS81.39 10980.27 11884.76 8987.35 20070.21 7685.55 20586.41 23662.85 28881.32 10288.61 16661.68 14992.24 19978.41 9690.26 9791.83 126
WR-MVS79.49 15279.22 14180.27 22688.79 15158.35 27785.06 21488.61 19878.56 2977.65 16288.34 17463.81 12190.66 24564.98 22477.22 25391.80 128
h-mvs3383.15 7882.19 8686.02 6090.56 9270.85 6988.15 13089.16 17476.02 8284.67 5491.39 9761.54 15295.50 6082.71 6075.48 27991.72 129
UniMVSNet (Re)81.60 10581.11 10183.09 15288.38 16664.41 19987.60 14693.02 4278.42 3178.56 14088.16 18069.78 6693.26 15869.58 18376.49 26391.60 130
UGNet80.83 11879.59 13084.54 9488.04 17768.09 12189.42 8588.16 20276.95 5876.22 19789.46 14349.30 27493.94 12668.48 19490.31 9591.60 130
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
XVG-OURS80.41 13279.23 14083.97 12485.64 22869.02 9783.03 26090.39 13471.09 17277.63 16391.49 9454.62 21691.35 22775.71 12483.47 18391.54 132
RRT_MVS80.35 13679.22 14183.74 13087.63 19365.46 17591.08 5388.92 18773.82 12676.44 19390.03 12649.05 27994.25 11676.84 11179.20 23691.51 133
LCM-MVSNet-Re77.05 21376.94 19577.36 27387.20 20751.60 34780.06 29080.46 31075.20 9667.69 30186.72 21662.48 13788.98 26963.44 23289.25 11091.51 133
DP-MVS Recon83.11 8182.09 8886.15 5794.44 1970.92 6788.79 10592.20 8170.53 18279.17 12791.03 10964.12 11796.03 4568.39 19690.14 9991.50 135
PS-MVSNAJss82.07 9381.31 9784.34 10486.51 21867.27 13989.27 8891.51 10771.75 15779.37 12490.22 12463.15 12894.27 11277.69 10282.36 19791.49 136
thisisatest051577.33 20975.38 22383.18 14885.27 23363.80 20982.11 26683.27 28165.06 26275.91 20383.84 27949.54 26994.27 11267.24 20586.19 14891.48 137
DPM-MVS84.93 6084.29 6586.84 4690.20 9973.04 2287.12 15993.04 3869.80 19682.85 8591.22 10073.06 3896.02 4676.72 11694.63 4691.46 138
iter_conf0580.00 14478.70 15083.91 12787.84 18365.83 16588.84 10484.92 25671.61 16278.70 13488.94 15543.88 31394.56 10179.28 8784.28 16991.33 139
HQP_MVS83.64 7083.14 7285.14 7390.08 10268.71 10791.25 4992.44 6979.12 2278.92 13191.00 11060.42 17695.38 6878.71 9286.32 14591.33 139
plane_prior592.44 6995.38 6878.71 9286.32 14591.33 139
GA-MVS76.87 21775.17 22781.97 18582.75 28362.58 23381.44 27586.35 23972.16 15574.74 23382.89 29246.20 29792.02 20568.85 19181.09 21091.30 142
VPA-MVSNet80.60 12880.55 11180.76 21688.07 17660.80 25586.86 16791.58 10575.67 8980.24 11589.45 14563.34 12290.25 24970.51 17279.22 23591.23 143
Effi-MVS+-dtu80.03 14278.57 15484.42 10085.13 23868.74 10588.77 10688.10 20474.99 10174.97 23083.49 28557.27 19893.36 15573.53 14380.88 21291.18 144
v2v48280.23 13879.29 13883.05 15583.62 26164.14 20387.04 16189.97 14973.61 13178.18 15287.22 20461.10 16493.82 13376.11 11976.78 26191.18 144
FE-MVS77.78 19875.68 21684.08 11488.09 17566.00 16083.13 25687.79 21468.42 22978.01 15685.23 25745.50 30595.12 7759.11 27185.83 15591.11 146
iter_conf_final80.63 12679.35 13684.46 9889.36 12667.70 12989.85 7484.49 26173.19 14178.30 14788.94 15545.98 29894.56 10179.59 8684.48 16691.11 146
Anonymous2023121178.97 16977.69 18082.81 16690.54 9364.29 20190.11 7191.51 10765.01 26476.16 20288.13 18550.56 25893.03 17569.68 18277.56 25191.11 146
hse-mvs281.72 9980.94 10584.07 11588.72 15467.68 13085.87 19687.26 22576.02 8284.67 5488.22 17961.54 15293.48 15082.71 6073.44 30691.06 149
AUN-MVS79.21 16277.60 18284.05 11888.71 15567.61 13185.84 19887.26 22569.08 21477.23 17288.14 18453.20 22993.47 15175.50 12973.45 30591.06 149
HQP4-MVS77.24 17195.11 7991.03 151
HQP-MVS82.61 8782.02 9084.37 10189.33 12766.98 14589.17 9092.19 8276.41 7177.23 17290.23 12360.17 17995.11 7977.47 10485.99 15291.03 151
RPSCF73.23 25971.46 26078.54 25682.50 28959.85 26782.18 26582.84 28858.96 32071.15 26989.41 14745.48 30684.77 30858.82 27571.83 31791.02 153
test_djsdf80.30 13779.32 13783.27 14383.98 25665.37 17990.50 6190.38 13568.55 22576.19 19888.70 16256.44 20393.46 15278.98 8980.14 22490.97 154
PCF-MVS73.52 780.38 13378.84 14985.01 7887.71 18968.99 9883.65 24591.46 11163.00 28577.77 16190.28 12166.10 9995.09 8361.40 25388.22 12390.94 155
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
VPNet78.69 17578.66 15278.76 25188.31 16855.72 31784.45 23186.63 23476.79 6378.26 14890.55 11859.30 18189.70 25766.63 21077.05 25590.88 156
CPTT-MVS83.73 6783.33 7184.92 8393.28 4970.86 6892.09 3690.38 13568.75 22279.57 12292.83 6660.60 17493.04 17480.92 7491.56 8390.86 157
tt080578.73 17377.83 17281.43 19585.17 23460.30 26389.41 8690.90 12271.21 16977.17 17688.73 16146.38 29393.21 15972.57 15678.96 23790.79 158
CLD-MVS82.31 8981.65 9584.29 10688.47 16267.73 12885.81 20092.35 7475.78 8578.33 14686.58 22664.01 11894.35 10976.05 12187.48 12990.79 158
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
v119279.59 15078.43 15883.07 15483.55 26364.52 19386.93 16590.58 13070.83 17577.78 16085.90 24059.15 18293.94 12673.96 14077.19 25490.76 160
IterMVS-LS80.06 14179.38 13482.11 18185.89 22463.20 22586.79 17089.34 16474.19 11875.45 21386.72 21666.62 9292.39 19172.58 15576.86 25890.75 161
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet80.52 13179.98 12182.12 18084.28 24863.19 22686.41 18188.95 18574.18 11978.69 13587.54 19666.62 9292.43 18972.57 15680.57 21890.74 162
v192192079.22 16178.03 16682.80 16783.30 26863.94 20786.80 16990.33 13969.91 19477.48 16585.53 25058.44 18693.75 13973.60 14276.85 25990.71 163
QAPM80.88 11679.50 13285.03 7788.01 17968.97 9991.59 4292.00 8766.63 24675.15 22592.16 7857.70 19295.45 6263.52 23088.76 11590.66 164
v14419279.47 15378.37 15982.78 17083.35 26663.96 20686.96 16390.36 13869.99 19177.50 16485.67 24760.66 17193.77 13774.27 13776.58 26290.62 165
v124078.99 16877.78 17582.64 17383.21 27063.54 21586.62 17690.30 14169.74 20077.33 16885.68 24657.04 20093.76 13873.13 15076.92 25690.62 165
v114480.03 14279.03 14583.01 15783.78 25964.51 19487.11 16090.57 13171.96 15678.08 15586.20 23661.41 15693.94 12674.93 13177.23 25290.60 167
1112_ss77.40 20876.43 20880.32 22589.11 14260.41 26283.65 24587.72 21662.13 29773.05 24986.72 21662.58 13689.97 25262.11 24780.80 21490.59 168
CP-MVSNet78.22 18478.34 16077.84 26587.83 18454.54 32887.94 13791.17 11677.65 3773.48 24488.49 17062.24 14388.43 27862.19 24474.07 29790.55 169
PS-CasMVS78.01 19378.09 16577.77 26787.71 18954.39 33088.02 13391.22 11377.50 4573.26 24688.64 16560.73 16888.41 27961.88 24873.88 30190.53 170
CDS-MVSNet79.07 16677.70 17983.17 14987.60 19468.23 11984.40 23486.20 24067.49 23776.36 19486.54 22861.54 15290.79 24261.86 24987.33 13090.49 171
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
TAMVS78.89 17177.51 18483.03 15687.80 18567.79 12784.72 22185.05 25467.63 23476.75 18387.70 18962.25 14290.82 24158.53 27887.13 13390.49 171
PEN-MVS77.73 19977.69 18077.84 26587.07 21053.91 33387.91 13991.18 11577.56 4273.14 24888.82 16061.23 16189.17 26559.95 26372.37 31290.43 173
Test_1112_low_res76.40 22575.44 22079.27 24589.28 13258.09 28081.69 27087.07 22859.53 31672.48 25586.67 22161.30 15989.33 26260.81 25980.15 22390.41 174
HY-MVS69.67 1277.95 19477.15 19080.36 22387.57 19860.21 26583.37 25287.78 21566.11 25075.37 21687.06 21163.27 12490.48 24761.38 25482.43 19690.40 175
CHOSEN 1792x268877.63 20475.69 21583.44 13689.98 10868.58 11378.70 30787.50 22056.38 33775.80 20686.84 21258.67 18491.40 22661.58 25285.75 15690.34 176
SDMVSNet80.38 13380.18 11980.99 21089.03 14364.94 18780.45 28689.40 16275.19 9776.61 18889.98 12760.61 17387.69 28776.83 11383.55 18090.33 177
sd_testset77.70 20277.40 18578.60 25489.03 14360.02 26679.00 30385.83 24675.19 9776.61 18889.98 12754.81 20985.46 30262.63 24183.55 18090.33 177
114514_t80.68 12579.51 13184.20 10894.09 3867.27 13989.64 8391.11 11858.75 32374.08 24090.72 11458.10 18895.04 8469.70 18189.42 10990.30 179
eth_miper_zixun_eth77.92 19576.69 20381.61 19283.00 27861.98 24183.15 25589.20 17369.52 20274.86 23284.35 27261.76 14892.56 18571.50 16372.89 31090.28 180
PVSNet_Blended_VisFu82.62 8681.83 9484.96 8090.80 8969.76 8688.74 10991.70 10269.39 20378.96 12988.46 17165.47 10794.87 9374.42 13588.57 11790.24 181
MVS_111021_LR82.61 8782.11 8784.11 11088.82 14871.58 5285.15 21286.16 24174.69 10780.47 11391.04 10762.29 14190.55 24680.33 8190.08 10190.20 182
MSLP-MVS++85.43 5385.76 4884.45 9991.93 7270.24 7590.71 5792.86 5377.46 4684.22 6492.81 6867.16 9092.94 17680.36 8094.35 5490.16 183
mvs_tets79.13 16477.77 17683.22 14784.70 24366.37 15489.17 9090.19 14369.38 20475.40 21589.46 14344.17 31193.15 16676.78 11480.70 21690.14 184
BH-RMVSNet79.61 14878.44 15783.14 15089.38 12565.93 16284.95 21787.15 22773.56 13378.19 15189.79 13156.67 20293.36 15559.53 26786.74 13990.13 185
c3_l78.75 17277.91 16981.26 20182.89 28161.56 24784.09 24089.13 17769.97 19275.56 20884.29 27366.36 9692.09 20373.47 14575.48 27990.12 186
v7n78.97 16977.58 18383.14 15083.45 26565.51 17288.32 12391.21 11473.69 12972.41 25686.32 23457.93 18993.81 13469.18 18675.65 27590.11 187
jajsoiax79.29 16077.96 16783.27 14384.68 24466.57 15289.25 8990.16 14469.20 21075.46 21289.49 14045.75 30393.13 16876.84 11180.80 21490.11 187
v14878.72 17477.80 17481.47 19482.73 28461.96 24286.30 18588.08 20573.26 13976.18 19985.47 25262.46 13892.36 19371.92 16073.82 30290.09 189
GBi-Net78.40 18077.40 18581.40 19787.60 19463.01 22888.39 11989.28 16671.63 15975.34 21787.28 20054.80 21091.11 23262.72 23779.57 22890.09 189
test178.40 18077.40 18581.40 19787.60 19463.01 22888.39 11989.28 16671.63 15975.34 21787.28 20054.80 21091.11 23262.72 23779.57 22890.09 189
FMVSNet177.44 20676.12 21281.40 19786.81 21463.01 22888.39 11989.28 16670.49 18374.39 23787.28 20049.06 27891.11 23260.91 25778.52 24090.09 189
WR-MVS_H78.51 17978.49 15578.56 25588.02 17856.38 31088.43 11792.67 6177.14 5373.89 24187.55 19566.25 9889.24 26458.92 27373.55 30490.06 193
DTE-MVSNet76.99 21476.80 19877.54 27286.24 22053.06 34187.52 14890.66 12877.08 5672.50 25488.67 16460.48 17589.52 25957.33 28970.74 32390.05 194
v879.97 14579.02 14682.80 16784.09 25364.50 19687.96 13590.29 14274.13 12175.24 22386.81 21362.88 13393.89 13274.39 13675.40 28390.00 195
thres600view776.50 22175.44 22079.68 23889.40 12357.16 29685.53 20783.23 28273.79 12876.26 19687.09 20951.89 24491.89 21048.05 34083.72 17890.00 195
thres40076.50 22175.37 22479.86 23389.13 13857.65 29085.17 21083.60 27473.41 13776.45 19086.39 23252.12 23791.95 20748.33 33583.75 17590.00 195
cl2278.07 19077.01 19281.23 20282.37 29361.83 24483.55 24987.98 20768.96 21975.06 22883.87 27761.40 15791.88 21173.53 14376.39 26689.98 198
OPM-MVS83.50 7282.95 7685.14 7388.79 15170.95 6589.13 9591.52 10677.55 4380.96 10991.75 8560.71 16994.50 10679.67 8586.51 14389.97 199
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
baseline275.70 23373.83 24281.30 20083.26 26961.79 24582.57 26380.65 30666.81 23966.88 31083.42 28657.86 19192.19 20063.47 23179.57 22889.91 200
v1079.74 14778.67 15182.97 16084.06 25464.95 18687.88 14190.62 12973.11 14275.11 22686.56 22761.46 15594.05 12273.68 14175.55 27789.90 201
MVSTER79.01 16777.88 17182.38 17883.07 27564.80 19084.08 24188.95 18569.01 21878.69 13587.17 20754.70 21492.43 18974.69 13280.57 21889.89 202
ACMP74.13 681.51 10880.57 11084.36 10289.42 12268.69 11089.97 7391.50 11074.46 11375.04 22990.41 12053.82 22394.54 10377.56 10382.91 18989.86 203
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
LPG-MVS_test82.08 9281.27 9884.50 9589.23 13468.76 10390.22 6991.94 9175.37 9376.64 18691.51 9254.29 21894.91 8778.44 9483.78 17389.83 204
LGP-MVS_train84.50 9589.23 13468.76 10391.94 9175.37 9376.64 18691.51 9254.29 21894.91 8778.44 9483.78 17389.83 204
V4279.38 15978.24 16382.83 16481.10 31165.50 17385.55 20589.82 15271.57 16478.21 15086.12 23860.66 17193.18 16575.64 12575.46 28189.81 206
MAR-MVS81.84 9780.70 10885.27 7091.32 7971.53 5389.82 7690.92 12169.77 19778.50 14186.21 23562.36 14094.52 10565.36 22092.05 7689.77 207
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
DIV-MVS_self_test77.72 20076.76 20080.58 21982.48 29160.48 26083.09 25787.86 21269.22 20874.38 23885.24 25662.10 14591.53 22171.09 16675.40 28389.74 208
cl____77.72 20076.76 20080.58 21982.49 29060.48 26083.09 25787.87 21169.22 20874.38 23885.22 25862.10 14591.53 22171.09 16675.41 28289.73 209
miper_ehance_all_eth78.59 17877.76 17781.08 20882.66 28661.56 24783.65 24589.15 17568.87 22075.55 20983.79 28166.49 9492.03 20473.25 14876.39 26689.64 210
anonymousdsp78.60 17777.15 19082.98 15980.51 31767.08 14387.24 15789.53 15965.66 25775.16 22487.19 20652.52 23092.25 19877.17 10879.34 23389.61 211
FMVSNet278.20 18677.21 18981.20 20487.60 19462.89 23287.47 15089.02 18071.63 15975.29 22287.28 20054.80 21091.10 23562.38 24279.38 23289.61 211
baseline176.98 21576.75 20277.66 26888.13 17255.66 31885.12 21381.89 29573.04 14476.79 18188.90 15762.43 13987.78 28663.30 23471.18 32189.55 213
FMVSNet377.88 19676.85 19780.97 21286.84 21362.36 23586.52 17988.77 19071.13 17075.34 21786.66 22254.07 22191.10 23562.72 23779.57 22889.45 214
miper_enhance_ethall77.87 19776.86 19680.92 21381.65 30061.38 24982.68 26188.98 18265.52 25975.47 21082.30 30065.76 10692.00 20672.95 15176.39 26689.39 215
cascas76.72 21974.64 23082.99 15885.78 22665.88 16482.33 26489.21 17260.85 30572.74 25181.02 31147.28 28893.75 13967.48 20285.02 15889.34 216
bld_raw_dy_0_6477.29 21175.98 21381.22 20385.04 24065.47 17488.14 13277.56 33069.20 21073.77 24289.40 14942.24 32488.85 27476.78 11481.64 20489.33 217
Fast-Effi-MVS+-dtu78.02 19276.49 20682.62 17483.16 27466.96 14786.94 16487.45 22272.45 14871.49 26684.17 27454.79 21391.58 21867.61 20080.31 22189.30 218
IB-MVS68.01 1575.85 23273.36 24683.31 14184.76 24266.03 15883.38 25185.06 25370.21 18869.40 28881.05 31045.76 30294.66 10065.10 22375.49 27889.25 219
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
thres100view90076.50 22175.55 21979.33 24489.52 11856.99 29985.83 19983.23 28273.94 12376.32 19587.12 20851.89 24491.95 20748.33 33583.75 17589.07 220
tfpn200view976.42 22475.37 22479.55 24389.13 13857.65 29085.17 21083.60 27473.41 13776.45 19086.39 23252.12 23791.95 20748.33 33583.75 17589.07 220
xiu_mvs_v1_base_debu80.80 12179.72 12784.03 12087.35 20070.19 7885.56 20288.77 19069.06 21581.83 9488.16 18050.91 25392.85 17878.29 9887.56 12689.06 222
xiu_mvs_v1_base80.80 12179.72 12784.03 12087.35 20070.19 7885.56 20288.77 19069.06 21581.83 9488.16 18050.91 25392.85 17878.29 9887.56 12689.06 222
xiu_mvs_v1_base_debi80.80 12179.72 12784.03 12087.35 20070.19 7885.56 20288.77 19069.06 21581.83 9488.16 18050.91 25392.85 17878.29 9887.56 12689.06 222
EPNet_dtu75.46 23774.86 22877.23 27682.57 28854.60 32786.89 16683.09 28571.64 15866.25 31985.86 24255.99 20488.04 28354.92 30286.55 14289.05 225
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
pm-mvs177.25 21276.68 20478.93 24984.22 25058.62 27686.41 18188.36 20171.37 16773.31 24588.01 18661.22 16289.15 26664.24 22873.01 30989.03 226
PVSNet_Blended80.98 11480.34 11582.90 16288.85 14565.40 17684.43 23292.00 8767.62 23578.11 15385.05 26366.02 10294.27 11271.52 16189.50 10789.01 227
PAPM77.68 20376.40 20981.51 19387.29 20661.85 24383.78 24389.59 15864.74 26671.23 26788.70 16262.59 13593.66 14252.66 31387.03 13589.01 227
WTY-MVS75.65 23475.68 21675.57 28886.40 21956.82 30177.92 31582.40 29165.10 26176.18 19987.72 18863.13 13180.90 32860.31 26181.96 20089.00 229
无先验87.48 14988.98 18260.00 31194.12 12067.28 20488.97 230
GSMVS88.96 231
sam_mvs151.32 25088.96 231
SCA74.22 24772.33 25579.91 23284.05 25562.17 23979.96 29379.29 32266.30 24972.38 25780.13 32051.95 24288.60 27659.25 26977.67 25088.96 231
miper_lstm_enhance74.11 24873.11 24977.13 27780.11 32059.62 27072.23 34086.92 23166.76 24170.40 27382.92 29156.93 20182.92 32069.06 18872.63 31188.87 234
ACMM73.20 880.78 12479.84 12583.58 13389.31 13068.37 11589.99 7291.60 10470.28 18677.25 17089.66 13453.37 22793.53 14874.24 13882.85 19088.85 235
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
pmmvs674.69 24373.39 24578.61 25381.38 30657.48 29386.64 17587.95 20964.99 26570.18 27686.61 22350.43 26089.52 25962.12 24670.18 32588.83 236
原ACMM184.35 10393.01 5768.79 10192.44 6963.96 27981.09 10791.57 9166.06 10195.45 6267.19 20694.82 4488.81 237
CNLPA78.08 18976.79 19981.97 18590.40 9671.07 6187.59 14784.55 26066.03 25372.38 25789.64 13557.56 19486.04 29759.61 26683.35 18488.79 238
K. test v371.19 27268.51 28479.21 24783.04 27757.78 28984.35 23576.91 33772.90 14762.99 33882.86 29339.27 33591.09 23761.65 25152.66 36588.75 239
旧先验191.96 7165.79 16886.37 23893.08 6169.31 7292.74 6788.74 240
PatchmatchNetpermissive73.12 26071.33 26378.49 25883.18 27260.85 25479.63 29578.57 32564.13 27371.73 26379.81 32551.20 25185.97 29857.40 28876.36 26988.66 241
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
SixPastTwentyTwo73.37 25571.26 26579.70 23785.08 23957.89 28685.57 20183.56 27671.03 17365.66 32185.88 24142.10 32592.57 18459.11 27163.34 34788.65 242
PS-MVSNAJ81.69 10181.02 10383.70 13189.51 11968.21 12084.28 23690.09 14670.79 17681.26 10685.62 24963.15 12894.29 11075.62 12688.87 11388.59 243
xiu_mvs_v2_base81.69 10181.05 10283.60 13289.15 13768.03 12384.46 23090.02 14770.67 17981.30 10586.53 22963.17 12794.19 11875.60 12788.54 11888.57 244
CostFormer75.24 24173.90 24079.27 24582.65 28758.27 27980.80 27882.73 28961.57 30075.33 22083.13 29055.52 20591.07 23864.98 22478.34 24588.45 245
lessismore_v078.97 24881.01 31257.15 29765.99 36561.16 34382.82 29439.12 33691.34 22859.67 26546.92 37188.43 246
OpenMVScopyleft72.83 1079.77 14678.33 16184.09 11385.17 23469.91 8390.57 5990.97 12066.70 24272.17 25991.91 8154.70 21493.96 12361.81 25090.95 9088.41 247
OurMVSNet-221017-074.26 24672.42 25479.80 23583.76 26059.59 27185.92 19586.64 23366.39 24866.96 30987.58 19239.46 33491.60 21765.76 21869.27 32888.22 248
LS3D76.95 21674.82 22983.37 14090.45 9467.36 13889.15 9486.94 23061.87 29969.52 28790.61 11651.71 24794.53 10446.38 34786.71 14088.21 249
XVG-ACMP-BASELINE76.11 22974.27 23781.62 19083.20 27164.67 19283.60 24889.75 15569.75 19871.85 26287.09 20932.78 35292.11 20269.99 17880.43 22088.09 250
tpm273.26 25871.46 26078.63 25283.34 26756.71 30480.65 28280.40 31156.63 33673.55 24382.02 30551.80 24691.24 23056.35 29878.42 24387.95 251
MDTV_nov1_ep13_2view37.79 37775.16 33155.10 34166.53 31449.34 27353.98 30687.94 252
Patchmatch-test64.82 31763.24 31869.57 33079.42 33249.82 35763.49 36869.05 36051.98 35059.95 34880.13 32050.91 25370.98 36640.66 36173.57 30387.90 253
PLCcopyleft70.83 1178.05 19176.37 21083.08 15391.88 7467.80 12688.19 12789.46 16164.33 27269.87 28488.38 17353.66 22493.58 14358.86 27482.73 19287.86 254
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
tpm72.37 26771.71 25974.35 30182.19 29452.00 34379.22 30077.29 33464.56 26872.95 25083.68 28451.35 24983.26 31958.33 28075.80 27387.81 255
Patchmatch-RL test70.24 28467.78 29677.61 27077.43 34059.57 27271.16 34370.33 35462.94 28768.65 29472.77 35550.62 25785.49 30169.58 18366.58 33887.77 256
F-COLMAP76.38 22674.33 23682.50 17689.28 13266.95 14888.41 11889.03 17964.05 27666.83 31188.61 16646.78 29192.89 17757.48 28678.55 23987.67 257
Baseline_NR-MVSNet78.15 18878.33 16177.61 27085.79 22556.21 31386.78 17185.76 24773.60 13277.93 15887.57 19365.02 11188.99 26867.14 20775.33 28587.63 258
CL-MVSNet_self_test72.37 26771.46 26075.09 29379.49 33153.53 33580.76 28085.01 25569.12 21370.51 27182.05 30457.92 19084.13 31152.27 31566.00 34187.60 259
ACMH+68.96 1476.01 23074.01 23882.03 18388.60 15865.31 18088.86 10287.55 21870.25 18767.75 30087.47 19841.27 32893.19 16458.37 27975.94 27287.60 259
131476.53 22075.30 22680.21 22783.93 25762.32 23784.66 22288.81 18860.23 30970.16 27884.07 27655.30 20790.73 24467.37 20383.21 18687.59 261
API-MVS81.99 9581.23 9984.26 10790.94 8570.18 8191.10 5289.32 16571.51 16578.66 13788.28 17665.26 10895.10 8264.74 22691.23 8787.51 262
AdaColmapbinary80.58 13079.42 13384.06 11693.09 5468.91 10089.36 8788.97 18469.27 20675.70 20789.69 13357.20 19995.77 5363.06 23588.41 12187.50 263
PVSNet_BlendedMVS80.60 12880.02 12082.36 17988.85 14565.40 17686.16 18992.00 8769.34 20578.11 15386.09 23966.02 10294.27 11271.52 16182.06 19987.39 264
sss73.60 25373.64 24473.51 30782.80 28255.01 32476.12 32281.69 29862.47 29474.68 23485.85 24357.32 19778.11 33960.86 25880.93 21187.39 264
IterMVS-SCA-FT75.43 23873.87 24180.11 22982.69 28564.85 18981.57 27283.47 27869.16 21270.49 27284.15 27551.95 24288.15 28169.23 18572.14 31587.34 266
PVSNet64.34 1872.08 26970.87 26875.69 28686.21 22156.44 30874.37 33680.73 30562.06 29870.17 27782.23 30242.86 31883.31 31854.77 30384.45 16787.32 267
新几何183.42 13793.13 5270.71 7085.48 25057.43 33281.80 9791.98 8063.28 12392.27 19764.60 22792.99 6487.27 268
TR-MVS77.44 20676.18 21181.20 20488.24 17063.24 22384.61 22586.40 23767.55 23677.81 15986.48 23054.10 22093.15 16657.75 28582.72 19387.20 269
TransMVSNet (Re)75.39 24074.56 23277.86 26485.50 23157.10 29886.78 17186.09 24372.17 15471.53 26587.34 19963.01 13289.31 26356.84 29461.83 34987.17 270
ACMH67.68 1675.89 23173.93 23981.77 18888.71 15566.61 15188.62 11489.01 18169.81 19566.78 31286.70 22041.95 32791.51 22355.64 30078.14 24687.17 270
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
KD-MVS_self_test68.81 29467.59 29972.46 31574.29 35345.45 36477.93 31487.00 22963.12 28263.99 33378.99 33142.32 32184.77 30856.55 29764.09 34687.16 272
EPMVS69.02 29368.16 28871.59 31979.61 32949.80 35877.40 31766.93 36362.82 29070.01 27979.05 32745.79 30177.86 34156.58 29675.26 28787.13 273
CR-MVSNet73.37 25571.27 26479.67 23981.32 30965.19 18175.92 32480.30 31259.92 31272.73 25281.19 30852.50 23186.69 29259.84 26477.71 24887.11 274
RPMNet73.51 25470.49 27182.58 17581.32 30965.19 18175.92 32492.27 7657.60 33172.73 25276.45 34552.30 23495.43 6448.14 33977.71 24887.11 274
test_vis1_n_192075.52 23675.78 21474.75 29879.84 32457.44 29483.26 25385.52 24962.83 28979.34 12686.17 23745.10 30779.71 33278.75 9181.21 20987.10 276
XXY-MVS75.41 23975.56 21874.96 29483.59 26257.82 28880.59 28383.87 27266.54 24774.93 23188.31 17563.24 12580.09 33162.16 24576.85 25986.97 277
tpmrst72.39 26572.13 25673.18 31180.54 31649.91 35679.91 29479.08 32363.11 28371.69 26479.95 32255.32 20682.77 32165.66 21973.89 30086.87 278
thres20075.55 23574.47 23478.82 25087.78 18857.85 28783.07 25983.51 27772.44 15075.84 20584.42 26952.08 23991.75 21447.41 34283.64 17986.86 279
ITE_SJBPF78.22 26081.77 29960.57 25883.30 28069.25 20767.54 30287.20 20536.33 34687.28 29054.34 30574.62 29486.80 280
test22291.50 7768.26 11884.16 23883.20 28454.63 34379.74 11991.63 8958.97 18391.42 8486.77 281
MIMVSNet70.69 27969.30 27874.88 29584.52 24556.35 31175.87 32679.42 32064.59 26767.76 29982.41 29841.10 32981.54 32546.64 34681.34 20686.75 282
BH-untuned79.47 15378.60 15382.05 18289.19 13665.91 16386.07 19188.52 19972.18 15375.42 21487.69 19061.15 16393.54 14760.38 26086.83 13886.70 283
LTVRE_ROB69.57 1376.25 22774.54 23381.41 19688.60 15864.38 20079.24 29989.12 17870.76 17869.79 28687.86 18749.09 27793.20 16256.21 29980.16 22286.65 284
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
testdata79.97 23190.90 8664.21 20284.71 25759.27 31885.40 4192.91 6362.02 14789.08 26768.95 18991.37 8586.63 285
MIMVSNet168.58 29766.78 30573.98 30480.07 32151.82 34580.77 27984.37 26264.40 27059.75 34982.16 30336.47 34583.63 31542.73 35770.33 32486.48 286
tfpnnormal74.39 24473.16 24878.08 26286.10 22358.05 28184.65 22487.53 21970.32 18571.22 26885.63 24854.97 20889.86 25343.03 35675.02 29086.32 287
D2MVS74.82 24273.21 24779.64 24079.81 32562.56 23480.34 28887.35 22364.37 27168.86 29282.66 29646.37 29490.10 25167.91 19881.24 20886.25 288
tpm cat170.57 28068.31 28677.35 27482.41 29257.95 28578.08 31280.22 31452.04 34868.54 29677.66 34052.00 24187.84 28551.77 31672.07 31686.25 288
CVMVSNet72.99 26272.58 25274.25 30284.28 24850.85 35286.41 18183.45 27944.56 35973.23 24787.54 19649.38 27285.70 29965.90 21678.44 24286.19 290
AllTest70.96 27568.09 29079.58 24185.15 23663.62 21184.58 22679.83 31662.31 29560.32 34686.73 21432.02 35388.96 27150.28 32571.57 31986.15 291
TestCases79.58 24185.15 23663.62 21179.83 31662.31 29560.32 34686.73 21432.02 35388.96 27150.28 32571.57 31986.15 291
test-LLR72.94 26372.43 25374.48 29981.35 30758.04 28278.38 30877.46 33166.66 24369.95 28279.00 32948.06 28479.24 33366.13 21284.83 16086.15 291
test-mter71.41 27170.39 27474.48 29981.35 30758.04 28278.38 30877.46 33160.32 30869.95 28279.00 32936.08 34779.24 33366.13 21284.83 16086.15 291
IterMVS74.29 24572.94 25078.35 25981.53 30363.49 21781.58 27182.49 29068.06 23269.99 28183.69 28351.66 24885.54 30065.85 21771.64 31886.01 295
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DP-MVS76.78 21874.57 23183.42 13793.29 4869.46 9288.55 11683.70 27363.98 27870.20 27588.89 15854.01 22294.80 9546.66 34481.88 20286.01 295
ppachtmachnet_test70.04 28667.34 30178.14 26179.80 32661.13 25079.19 30180.59 30759.16 31965.27 32479.29 32646.75 29287.29 28949.33 33166.72 33686.00 297
test_fmvs1_n70.86 27770.24 27572.73 31372.51 36355.28 32181.27 27679.71 31851.49 35278.73 13384.87 26427.54 36077.02 34476.06 12079.97 22685.88 298
Patchmtry70.74 27869.16 28175.49 29080.72 31354.07 33274.94 33580.30 31258.34 32470.01 27981.19 30852.50 23186.54 29353.37 31071.09 32285.87 299
test_fmvs268.35 30067.48 30070.98 32669.50 36651.95 34480.05 29176.38 33949.33 35574.65 23584.38 27123.30 36675.40 35774.51 13475.17 28985.60 300
ambc75.24 29273.16 35950.51 35463.05 36987.47 22164.28 33077.81 33917.80 37189.73 25657.88 28460.64 35385.49 301
UnsupCasMVSNet_eth67.33 30465.99 30771.37 32173.48 35751.47 34975.16 33185.19 25265.20 26060.78 34480.93 31542.35 32077.20 34357.12 29053.69 36485.44 302
PatchT68.46 29967.85 29370.29 32880.70 31443.93 37172.47 33974.88 34460.15 31070.55 27076.57 34449.94 26581.59 32450.58 32174.83 29285.34 303
Anonymous2024052168.80 29567.22 30273.55 30674.33 35254.11 33183.18 25485.61 24858.15 32661.68 34180.94 31330.71 35781.27 32757.00 29273.34 30885.28 304
test_cas_vis1_n_192073.76 25273.74 24373.81 30575.90 34559.77 26880.51 28482.40 29158.30 32581.62 10085.69 24544.35 31076.41 35076.29 11778.61 23885.23 305
ADS-MVSNet266.20 31463.33 31774.82 29679.92 32258.75 27567.55 35775.19 34353.37 34565.25 32575.86 34842.32 32180.53 33041.57 35968.91 33085.18 306
ADS-MVSNet64.36 31862.88 32168.78 33579.92 32247.17 36167.55 35771.18 35353.37 34565.25 32575.86 34842.32 32173.99 36241.57 35968.91 33085.18 306
FMVSNet569.50 29067.96 29174.15 30382.97 28055.35 32080.01 29282.12 29462.56 29363.02 33681.53 30736.92 34481.92 32348.42 33474.06 29885.17 308
pmmvs571.55 27070.20 27675.61 28777.83 33856.39 30981.74 26980.89 30257.76 32967.46 30484.49 26849.26 27585.32 30457.08 29175.29 28685.11 309
CMPMVSbinary51.72 2170.19 28568.16 28876.28 28273.15 36057.55 29279.47 29783.92 27048.02 35656.48 35984.81 26543.13 31686.42 29562.67 24081.81 20384.89 310
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
testgi66.67 30866.53 30667.08 34075.62 34841.69 37575.93 32376.50 33866.11 25065.20 32786.59 22435.72 34874.71 35943.71 35473.38 30784.84 311
MSDG73.36 25770.99 26680.49 22184.51 24665.80 16780.71 28186.13 24265.70 25665.46 32283.74 28244.60 30890.91 24051.13 32076.89 25784.74 312
pmmvs474.03 25071.91 25780.39 22281.96 29668.32 11681.45 27482.14 29359.32 31769.87 28485.13 26052.40 23388.13 28260.21 26274.74 29384.73 313
gg-mvs-nofinetune69.95 28767.96 29175.94 28483.07 27554.51 32977.23 31970.29 35563.11 28370.32 27462.33 36443.62 31488.69 27553.88 30787.76 12584.62 314
test_fmvs170.93 27670.52 27072.16 31673.71 35555.05 32380.82 27778.77 32451.21 35378.58 13984.41 27031.20 35676.94 34575.88 12380.12 22584.47 315
BH-w/o78.21 18577.33 18880.84 21488.81 14965.13 18384.87 21887.85 21369.75 19874.52 23684.74 26761.34 15893.11 16958.24 28185.84 15484.27 316
MVS78.19 18776.99 19481.78 18785.66 22766.99 14484.66 22290.47 13355.08 34272.02 26185.27 25563.83 12094.11 12166.10 21489.80 10584.24 317
COLMAP_ROBcopyleft66.92 1773.01 26170.41 27380.81 21587.13 20965.63 17088.30 12484.19 26862.96 28663.80 33587.69 19038.04 34192.56 18546.66 34474.91 29184.24 317
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
new-patchmatchnet61.73 32461.73 32561.70 34672.74 36124.50 38669.16 35378.03 32761.40 30156.72 35875.53 35138.42 33876.48 34945.95 34957.67 35684.13 319
TESTMET0.1,169.89 28869.00 28272.55 31479.27 33456.85 30078.38 30874.71 34757.64 33068.09 29877.19 34237.75 34276.70 34663.92 22984.09 17184.10 320
test_fmvs363.36 32161.82 32467.98 33762.51 37346.96 36377.37 31874.03 34945.24 35867.50 30378.79 33212.16 37772.98 36572.77 15466.02 34083.99 321
our_test_369.14 29267.00 30375.57 28879.80 32658.80 27477.96 31377.81 32859.55 31562.90 33978.25 33647.43 28683.97 31251.71 31767.58 33583.93 322
test_vis1_n69.85 28969.21 28071.77 31872.66 36255.27 32281.48 27376.21 34052.03 34975.30 22183.20 28928.97 35876.22 35274.60 13378.41 24483.81 323
tpmvs71.09 27469.29 27976.49 28182.04 29556.04 31478.92 30581.37 30164.05 27667.18 30878.28 33549.74 26889.77 25449.67 33072.37 31283.67 324
test20.0367.45 30366.95 30468.94 33275.48 34944.84 36977.50 31677.67 32966.66 24363.01 33783.80 28047.02 28978.40 33742.53 35868.86 33283.58 325
test0.0.03 168.00 30167.69 29768.90 33377.55 33947.43 36075.70 32772.95 35266.66 24366.56 31382.29 30148.06 28475.87 35444.97 35374.51 29583.41 326
Anonymous2023120668.60 29667.80 29571.02 32580.23 31950.75 35378.30 31180.47 30956.79 33566.11 32082.63 29746.35 29578.95 33543.62 35575.70 27483.36 327
EU-MVSNet68.53 29867.61 29871.31 32478.51 33747.01 36284.47 22884.27 26642.27 36266.44 31884.79 26640.44 33283.76 31358.76 27668.54 33383.17 328
dp66.80 30665.43 30870.90 32779.74 32848.82 35975.12 33374.77 34559.61 31464.08 33277.23 34142.89 31780.72 32948.86 33366.58 33883.16 329
pmmvs-eth3d70.50 28267.83 29478.52 25777.37 34166.18 15781.82 26781.51 29958.90 32163.90 33480.42 31842.69 31986.28 29658.56 27765.30 34383.11 330
YYNet165.03 31562.91 32071.38 32075.85 34656.60 30669.12 35474.66 34857.28 33354.12 36277.87 33845.85 30074.48 36049.95 32861.52 35183.05 331
MDA-MVSNet-bldmvs66.68 30763.66 31675.75 28579.28 33360.56 25973.92 33778.35 32664.43 26950.13 36679.87 32444.02 31283.67 31446.10 34856.86 35783.03 332
MDA-MVSNet_test_wron65.03 31562.92 31971.37 32175.93 34456.73 30269.09 35574.73 34657.28 33354.03 36377.89 33745.88 29974.39 36149.89 32961.55 35082.99 333
USDC70.33 28368.37 28576.21 28380.60 31556.23 31279.19 30186.49 23560.89 30461.29 34285.47 25231.78 35589.47 26153.37 31076.21 27082.94 334
OpenMVS_ROBcopyleft64.09 1970.56 28168.19 28777.65 26980.26 31859.41 27385.01 21582.96 28758.76 32265.43 32382.33 29937.63 34391.23 23145.34 35276.03 27182.32 335
JIA-IIPM66.32 31162.82 32276.82 27977.09 34261.72 24665.34 36475.38 34258.04 32864.51 32962.32 36542.05 32686.51 29451.45 31969.22 32982.21 336
dmvs_re71.14 27370.58 26972.80 31281.96 29659.68 26975.60 32879.34 32168.55 22569.27 29180.72 31649.42 27176.54 34752.56 31477.79 24782.19 337
EG-PatchMatch MVS74.04 24971.82 25880.71 21784.92 24167.42 13585.86 19788.08 20566.04 25264.22 33183.85 27835.10 34992.56 18557.44 28780.83 21382.16 338
MVP-Stereo76.12 22874.46 23581.13 20785.37 23269.79 8584.42 23387.95 20965.03 26367.46 30485.33 25453.28 22891.73 21658.01 28383.27 18581.85 339
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
TDRefinement67.49 30264.34 31176.92 27873.47 35861.07 25184.86 21982.98 28659.77 31358.30 35385.13 26026.06 36187.89 28447.92 34160.59 35481.81 340
GG-mvs-BLEND75.38 29181.59 30255.80 31679.32 29869.63 35767.19 30773.67 35443.24 31588.90 27350.41 32284.50 16481.45 341
KD-MVS_2432*160066.22 31263.89 31473.21 30875.47 35053.42 33770.76 34684.35 26364.10 27466.52 31578.52 33334.55 35084.98 30550.40 32350.33 36881.23 342
miper_refine_blended66.22 31263.89 31473.21 30875.47 35053.42 33770.76 34684.35 26364.10 27466.52 31578.52 33334.55 35084.98 30550.40 32350.33 36881.23 342
test_040272.79 26470.44 27279.84 23488.13 17265.99 16185.93 19484.29 26565.57 25867.40 30685.49 25146.92 29092.61 18335.88 36574.38 29680.94 344
UnsupCasMVSNet_bld63.70 32061.53 32670.21 32973.69 35651.39 35072.82 33881.89 29555.63 34057.81 35571.80 35738.67 33778.61 33649.26 33252.21 36680.63 345
LCM-MVSNet54.25 33049.68 33967.97 33853.73 38145.28 36766.85 36080.78 30435.96 37039.45 37162.23 3668.70 38178.06 34048.24 33851.20 36780.57 346
N_pmnet52.79 33453.26 33351.40 35878.99 3357.68 38969.52 3503.89 38951.63 35157.01 35774.98 35240.83 33165.96 37337.78 36464.67 34480.56 347
TinyColmap67.30 30564.81 30974.76 29781.92 29856.68 30580.29 28981.49 30060.33 30756.27 36083.22 28724.77 36387.66 28845.52 35069.47 32779.95 348
PM-MVS66.41 31064.14 31273.20 31073.92 35456.45 30778.97 30464.96 36963.88 28064.72 32880.24 31919.84 36983.44 31766.24 21164.52 34579.71 349
ANet_high50.57 33846.10 34263.99 34348.67 38439.13 37670.99 34580.85 30361.39 30231.18 37357.70 37117.02 37273.65 36431.22 36915.89 38179.18 350
LF4IMVS64.02 31962.19 32369.50 33170.90 36453.29 34076.13 32177.18 33552.65 34758.59 35180.98 31223.55 36576.52 34853.06 31266.66 33778.68 351
PatchMatch-RL72.38 26670.90 26776.80 28088.60 15867.38 13779.53 29676.17 34162.75 29169.36 28982.00 30645.51 30484.89 30753.62 30880.58 21778.12 352
MS-PatchMatch73.83 25172.67 25177.30 27583.87 25866.02 15981.82 26784.66 25861.37 30368.61 29582.82 29447.29 28788.21 28059.27 26884.32 16877.68 353
DSMNet-mixed57.77 32956.90 33160.38 34867.70 36835.61 37869.18 35253.97 37832.30 37457.49 35679.88 32340.39 33368.57 37138.78 36372.37 31276.97 354
CHOSEN 280x42066.51 30964.71 31071.90 31781.45 30463.52 21657.98 37168.95 36153.57 34462.59 34076.70 34346.22 29675.29 35855.25 30179.68 22776.88 355
mvsany_test353.99 33151.45 33561.61 34755.51 37744.74 37063.52 36745.41 38443.69 36158.11 35476.45 34517.99 37063.76 37554.77 30347.59 37076.34 356
dmvs_testset62.63 32264.11 31358.19 35078.55 33624.76 38575.28 32965.94 36667.91 23360.34 34576.01 34753.56 22573.94 36331.79 36867.65 33475.88 357
mvsany_test162.30 32361.26 32765.41 34269.52 36554.86 32566.86 35949.78 38046.65 35768.50 29783.21 28849.15 27666.28 37256.93 29360.77 35275.11 358
PMMVS69.34 29168.67 28371.35 32375.67 34762.03 24075.17 33073.46 35050.00 35468.68 29379.05 32752.07 24078.13 33861.16 25682.77 19173.90 359
test_vis1_rt60.28 32658.42 32965.84 34167.25 36955.60 31970.44 34860.94 37344.33 36059.00 35066.64 36224.91 36268.67 37062.80 23669.48 32673.25 360
pmmvs357.79 32854.26 33268.37 33664.02 37256.72 30375.12 33365.17 36740.20 36452.93 36469.86 36120.36 36875.48 35645.45 35155.25 36372.90 361
PVSNet_057.27 2061.67 32559.27 32868.85 33479.61 32957.44 29468.01 35673.44 35155.93 33958.54 35270.41 36044.58 30977.55 34247.01 34335.91 37471.55 362
test_f52.09 33550.82 33655.90 35453.82 38042.31 37459.42 37058.31 37636.45 36956.12 36170.96 35912.18 37657.79 37753.51 30956.57 35967.60 363
PMMVS240.82 34438.86 34746.69 35953.84 37916.45 38748.61 37449.92 37937.49 36731.67 37260.97 3678.14 38356.42 37828.42 37130.72 37667.19 364
new_pmnet50.91 33750.29 33752.78 35768.58 36734.94 38063.71 36656.63 37739.73 36544.95 36765.47 36321.93 36758.48 37634.98 36656.62 35864.92 365
MVS-HIRNet59.14 32757.67 33063.57 34481.65 30043.50 37271.73 34165.06 36839.59 36651.43 36557.73 37038.34 33982.58 32239.53 36273.95 29964.62 366
APD_test153.31 33349.93 33863.42 34565.68 37050.13 35571.59 34266.90 36434.43 37140.58 37071.56 3588.65 38276.27 35134.64 36755.36 36263.86 367
test_method31.52 34629.28 35038.23 36127.03 3886.50 39020.94 37962.21 3724.05 38222.35 38052.50 37413.33 37447.58 38127.04 37334.04 37560.62 368
EGC-MVSNET52.07 33647.05 34067.14 33983.51 26460.71 25680.50 28567.75 3620.07 3840.43 38575.85 35024.26 36481.54 32528.82 37062.25 34859.16 369
test_vis3_rt49.26 33947.02 34156.00 35354.30 37845.27 36866.76 36148.08 38136.83 36844.38 36853.20 3737.17 38464.07 37456.77 29555.66 36058.65 370
FPMVS53.68 33251.64 33459.81 34965.08 37151.03 35169.48 35169.58 35841.46 36340.67 36972.32 35616.46 37370.00 36924.24 37665.42 34258.40 371
testf145.72 34041.96 34357.00 35156.90 37545.32 36566.14 36259.26 37426.19 37530.89 37460.96 3684.14 38570.64 36726.39 37446.73 37255.04 372
APD_test245.72 34041.96 34357.00 35156.90 37545.32 36566.14 36259.26 37426.19 37530.89 37460.96 3684.14 38570.64 36726.39 37446.73 37255.04 372
PMVScopyleft37.38 2244.16 34340.28 34655.82 35540.82 38642.54 37365.12 36563.99 37034.43 37124.48 37757.12 3723.92 38776.17 35317.10 37955.52 36148.75 374
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive26.22 2330.37 34825.89 35243.81 36044.55 38535.46 37928.87 37839.07 38518.20 37918.58 38140.18 3762.68 38847.37 38217.07 38023.78 37848.60 375
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
Gipumacopyleft45.18 34241.86 34555.16 35677.03 34351.52 34832.50 37780.52 30832.46 37327.12 37635.02 3779.52 38075.50 35522.31 37760.21 35538.45 376
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
DeepMVS_CXcopyleft27.40 36440.17 38726.90 38324.59 38817.44 38023.95 37848.61 3759.77 37926.48 38318.06 37824.47 37728.83 377
E-PMN31.77 34530.64 34835.15 36252.87 38227.67 38257.09 37247.86 38224.64 37716.40 38233.05 37811.23 37854.90 37914.46 38118.15 37922.87 378
EMVS30.81 34729.65 34934.27 36350.96 38325.95 38456.58 37346.80 38324.01 37815.53 38330.68 37912.47 37554.43 38012.81 38217.05 38022.43 379
tmp_tt18.61 35021.40 35310.23 3664.82 38910.11 38834.70 37630.74 3871.48 38323.91 37926.07 38028.42 35913.41 38527.12 37215.35 3827.17 380
wuyk23d16.82 35115.94 35419.46 36558.74 37431.45 38139.22 3753.74 3906.84 3816.04 3842.70 3841.27 38924.29 38410.54 38314.40 3832.63 381
test1236.12 3538.11 3560.14 3670.06 3910.09 39171.05 3440.03 3920.04 3860.25 3871.30 3860.05 3900.03 3870.21 3850.01 3850.29 382
testmvs6.04 3548.02 3570.10 3680.08 3900.03 39269.74 3490.04 3910.05 3850.31 3861.68 3850.02 3910.04 3860.24 3840.02 3840.25 383
test_blank0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
uanet_test0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
DCPMVS0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
cdsmvs_eth3d_5k19.96 34926.61 3510.00 3690.00 3920.00 3930.00 38089.26 1690.00 3870.00 38888.61 16661.62 1510.00 3880.00 3860.00 3860.00 384
pcd_1.5k_mvsjas5.26 3557.02 3580.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 38763.15 1280.00 3880.00 3860.00 3860.00 384
sosnet-low-res0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
sosnet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
uncertanet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
Regformer0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
ab-mvs-re7.23 3529.64 3550.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 38886.72 2160.00 3920.00 3880.00 3860.00 3860.00 384
uanet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
FOURS195.00 1072.39 3895.06 193.84 1574.49 11291.30 15
test_one_060195.07 771.46 5494.14 578.27 3492.05 1195.74 680.83 11
eth-test20.00 392
eth-test0.00 392
ZD-MVS94.38 2572.22 4392.67 6170.98 17487.75 2994.07 3874.01 3296.70 2684.66 3794.84 42
test_241102_ONE95.30 270.98 6294.06 1077.17 5293.10 195.39 1182.99 197.27 10
9.1488.26 1492.84 6091.52 4594.75 173.93 12488.57 2294.67 1875.57 2295.79 5286.77 2595.76 23
save fliter93.80 4072.35 4190.47 6391.17 11674.31 115
test072695.27 571.25 5693.60 694.11 677.33 4792.81 395.79 380.98 9
test_part295.06 872.65 3191.80 13
sam_mvs50.01 263
MTGPAbinary92.02 85
test_post178.90 3065.43 38348.81 28385.44 30359.25 269
test_post5.46 38250.36 26184.24 310
patchmatchnet-post74.00 35351.12 25288.60 276
MTMP92.18 3432.83 386
gm-plane-assit81.40 30553.83 33462.72 29280.94 31392.39 19163.40 233
TEST993.26 5072.96 2488.75 10791.89 9368.44 22885.00 4793.10 5774.36 2895.41 66
test_893.13 5272.57 3488.68 11291.84 9768.69 22384.87 5193.10 5774.43 2695.16 75
agg_prior92.85 5971.94 5091.78 10084.41 6194.93 86
test_prior472.60 3389.01 97
test_prior288.85 10375.41 9284.91 4993.54 4874.28 2983.31 5195.86 20
旧先验286.56 17858.10 32787.04 3188.98 26974.07 139
新几何286.29 186
原ACMM286.86 167
testdata291.01 23962.37 243
segment_acmp73.08 37
testdata184.14 23975.71 86
plane_prior790.08 10268.51 114
plane_prior689.84 11168.70 10960.42 176
plane_prior491.00 110
plane_prior368.60 11278.44 3078.92 131
plane_prior291.25 4979.12 22
plane_prior189.90 110
plane_prior68.71 10790.38 6677.62 3886.16 149
n20.00 393
nn0.00 393
door-mid69.98 356
test1192.23 79
door69.44 359
HQP5-MVS66.98 145
HQP-NCC89.33 12789.17 9076.41 7177.23 172
ACMP_Plane89.33 12789.17 9076.41 7177.23 172
BP-MVS77.47 104
HQP3-MVS92.19 8285.99 152
HQP2-MVS60.17 179
NP-MVS89.62 11468.32 11690.24 122
MDTV_nov1_ep1369.97 27783.18 27253.48 33677.10 32080.18 31560.45 30669.33 29080.44 31748.89 28286.90 29151.60 31878.51 241
ACMMP++_ref81.95 201
ACMMP++81.25 207
Test By Simon64.33 115