This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted by
SED-MVS95.88 596.22 494.87 2399.03 1585.03 6799.12 1296.78 5588.72 6797.79 798.91 288.48 1799.82 1898.15 1198.97 1799.74 1
OPU-MVS97.30 299.19 792.31 399.12 1298.54 2092.06 399.84 1299.11 299.37 199.74 1
DVP-MVS++96.05 496.41 394.96 2299.05 985.34 5498.13 5096.77 6188.38 7497.70 998.77 1092.06 399.84 1297.47 2499.37 199.70 3
PC_three_145291.12 3798.33 298.42 3092.51 299.81 2198.96 399.37 199.70 3
DPM-MVS96.21 295.53 1398.26 196.26 10195.09 199.15 896.98 3893.39 1696.45 2598.79 890.17 1099.99 189.33 12699.25 699.70 3
DeepPCF-MVS89.82 194.61 2296.17 589.91 20097.09 9070.21 33398.99 2396.69 7395.57 295.08 4199.23 186.40 2999.87 897.84 2098.66 3299.65 6
MCST-MVS96.17 396.12 696.32 799.42 289.36 1098.94 2497.10 3295.17 392.11 7998.46 2887.33 2499.97 297.21 2899.31 499.63 7
DeepC-MVS_fast89.06 294.48 2494.30 2995.02 2098.86 2185.68 4698.06 5696.64 8193.64 1491.74 8598.54 2080.17 7399.90 592.28 8698.75 2899.49 8
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_241102_TWO96.78 5588.72 6797.70 998.91 287.86 2199.82 1898.15 1199.00 1599.47 9
test_0728_SECOND95.14 1899.04 1486.14 3599.06 1796.77 6199.84 1297.90 1798.85 2199.45 10
MSC_two_6792asdad97.14 399.05 992.19 496.83 5299.81 2198.08 1498.81 2499.43 11
No_MVS97.14 399.05 992.19 496.83 5299.81 2198.08 1498.81 2499.43 11
IU-MVS99.03 1585.34 5496.86 5192.05 2998.74 198.15 1198.97 1799.42 13
test_0728_THIRD88.38 7496.69 1898.76 1289.64 1399.76 3197.47 2498.84 2399.38 14
MSP-MVS95.62 896.54 192.86 9498.31 4880.10 17597.42 10496.78 5592.20 2497.11 1598.29 3593.46 199.10 10196.01 4099.30 599.38 14
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
canonicalmvs92.27 6791.22 8395.41 1695.80 11888.31 1497.09 13394.64 22188.49 7292.99 7097.31 9472.68 19098.57 12793.38 7388.58 18399.36 16
patch_mono-295.14 1396.08 792.33 11798.44 4377.84 24198.43 3797.21 2392.58 2197.68 1197.65 7886.88 2599.83 1698.25 997.60 6899.33 17
DPE-MVScopyleft95.32 1195.55 1294.64 2998.79 2384.87 7297.77 7396.74 6686.11 12196.54 2498.89 688.39 1999.74 3897.67 2299.05 1299.31 18
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
APDe-MVScopyleft94.56 2394.75 2093.96 4898.84 2283.40 9898.04 5896.41 10885.79 12995.00 4398.28 3684.32 4199.18 9497.35 2698.77 2799.28 19
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
MVS90.60 10888.64 13396.50 594.25 16590.53 893.33 28997.21 2377.59 29678.88 24197.31 9471.52 20499.69 4989.60 12198.03 5599.27 20
CSCG92.02 7191.65 7693.12 8398.53 3680.59 15997.47 9797.18 2677.06 30584.64 17597.98 5783.98 4499.52 6990.72 10497.33 7799.23 21
TSAR-MVS + GP.94.35 2594.50 2393.89 4997.38 8483.04 10598.10 5295.29 18891.57 3293.81 5897.45 8786.64 2699.43 7696.28 3894.01 12999.20 22
MG-MVS94.25 2893.72 3495.85 1199.38 389.35 1197.98 6098.09 989.99 5392.34 7596.97 11081.30 6298.99 10788.54 13398.88 2099.20 22
MM95.85 695.74 1096.15 896.34 9689.50 999.18 698.10 895.68 196.64 2197.92 6080.72 6599.80 2599.16 197.96 5799.15 24
iter_conf05_1191.95 7291.17 8794.29 3696.33 9785.50 5299.61 191.84 32094.36 1097.89 698.51 2446.72 34898.24 14596.54 3698.75 2899.13 25
bld_raw_dy_0_6488.31 15886.38 17794.07 4596.33 9784.79 7497.19 11784.75 37694.48 882.36 20098.47 2746.18 35198.30 14396.54 3681.13 24799.13 25
DELS-MVS94.98 1494.49 2496.44 696.42 9590.59 799.21 597.02 3694.40 991.46 8797.08 10683.32 4999.69 4992.83 8198.70 3199.04 27
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
APD-MVScopyleft93.61 3793.59 3893.69 5998.76 2483.26 10197.21 11496.09 13782.41 21694.65 4998.21 3881.96 5998.81 11994.65 5898.36 4699.01 28
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CNVR-MVS96.30 196.54 195.55 1599.31 587.69 2299.06 1797.12 3094.66 596.79 1798.78 986.42 2899.95 397.59 2399.18 799.00 29
NCCC95.63 795.94 894.69 2899.21 685.15 6499.16 796.96 4194.11 1195.59 3398.64 1785.07 3299.91 495.61 4799.10 999.00 29
alignmvs92.97 4792.26 6395.12 1995.54 12387.77 2098.67 3096.38 11388.04 8193.01 6997.45 8779.20 8398.60 12593.25 7688.76 18098.99 31
CANet94.89 1694.64 2295.63 1397.55 7588.12 1699.06 1796.39 11294.07 1295.34 3597.80 6976.83 12299.87 897.08 3097.64 6798.89 32
HY-MVS84.06 691.63 8290.37 10295.39 1796.12 10588.25 1590.22 32797.58 1688.33 7690.50 10491.96 22579.26 8199.06 10490.29 11489.07 17598.88 33
PHI-MVS93.59 3893.63 3793.48 7298.05 5881.76 13198.64 3297.13 2882.60 21294.09 5698.49 2680.35 6899.85 1094.74 5798.62 3398.83 34
SteuartSystems-ACMMP94.13 3194.44 2693.20 8095.41 12681.35 14199.02 2196.59 8889.50 5994.18 5598.36 3283.68 4899.45 7594.77 5598.45 4098.81 35
Skip Steuart: Steuart Systems R&D Blog.
DVP-MVScopyleft95.58 995.91 994.57 3099.05 985.18 5999.06 1796.46 10288.75 6596.69 1898.76 1287.69 2299.76 3197.90 1798.85 2198.77 36
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_yl91.46 8690.53 9694.24 3997.41 8085.18 5998.08 5397.72 1280.94 23589.85 10996.14 13075.61 14298.81 11990.42 11288.56 18498.74 37
DCV-MVSNet91.46 8690.53 9694.24 3997.41 8085.18 5998.08 5397.72 1280.94 23589.85 10996.14 13075.61 14298.81 11990.42 11288.56 18498.74 37
LFMVS89.27 13287.64 15194.16 4497.16 8885.52 5197.18 11994.66 21879.17 27789.63 11596.57 12455.35 31598.22 14689.52 12489.54 17098.74 37
PAPR92.74 5292.17 6694.45 3298.89 2084.87 7297.20 11696.20 12987.73 8988.40 13698.12 4578.71 9199.76 3187.99 14096.28 9898.74 37
WTY-MVS92.65 5991.68 7595.56 1496.00 10888.90 1398.23 4497.65 1488.57 7089.82 11197.22 10079.29 8099.06 10489.57 12288.73 18198.73 41
3Dnovator+82.88 889.63 12687.85 14694.99 2194.49 16086.76 3197.84 6895.74 16186.10 12275.47 28596.02 13365.00 24599.51 7182.91 19197.07 8398.72 42
CS-MVS-test92.98 4693.67 3690.90 17196.52 9476.87 26098.68 2994.73 21390.36 5094.84 4697.89 6477.94 10197.15 20594.28 6397.80 6398.70 43
SD-MVS94.84 1895.02 1994.29 3697.87 6484.61 7697.76 7596.19 13189.59 5896.66 2098.17 4384.33 3899.60 5996.09 3998.50 3798.66 44
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
HPM-MVS++copyleft95.32 1195.48 1494.85 2498.62 3486.04 3697.81 7196.93 4492.45 2295.69 3298.50 2585.38 3099.85 1094.75 5699.18 798.65 45
MSLP-MVS++94.28 2694.39 2793.97 4798.30 4984.06 8598.64 3296.93 4490.71 4293.08 6898.70 1579.98 7599.21 8894.12 6499.07 1198.63 46
lupinMVS93.87 3593.58 3994.75 2793.00 20488.08 1799.15 895.50 17391.03 3994.90 4497.66 7478.84 8897.56 17494.64 5997.46 7198.62 47
agg_prior294.30 6099.00 1598.57 48
PAPM_NR91.46 8690.82 9093.37 7598.50 4081.81 13095.03 25096.13 13484.65 15886.10 15997.65 7879.24 8299.75 3683.20 18796.88 8798.56 49
API-MVS90.18 11688.97 12793.80 5298.66 2882.95 10697.50 9695.63 16775.16 31786.31 15697.69 7272.49 19299.90 581.26 20096.07 10398.56 49
mvs_anonymous88.68 14587.62 15391.86 14094.80 14781.69 13593.53 28594.92 20182.03 22378.87 24290.43 25075.77 14095.34 28985.04 16393.16 14398.55 51
MVS_030495.36 1095.20 1795.85 1194.89 14589.22 1298.83 2697.88 1194.68 495.14 3997.99 5480.80 6499.81 2198.60 697.95 5898.50 52
CS-MVS92.73 5393.48 4190.48 18396.27 10075.93 28098.55 3594.93 20089.32 6094.54 5197.67 7378.91 8797.02 20993.80 6697.32 7898.49 53
SMA-MVScopyleft94.70 2194.68 2194.76 2698.02 5985.94 4097.47 9796.77 6185.32 13897.92 398.70 1583.09 5199.84 1295.79 4499.08 1098.49 53
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
ET-MVSNet_ETH3D90.01 11989.03 12592.95 9094.38 16286.77 3098.14 4796.31 12089.30 6163.33 35696.72 12290.09 1193.63 33590.70 10582.29 24398.46 55
SR-MVS92.16 6892.27 6291.83 14398.37 4578.41 21996.67 16595.76 15982.19 22091.97 8098.07 5176.44 12898.64 12393.71 6897.27 7998.45 56
无先验96.87 15096.78 5577.39 29899.52 6979.95 21198.43 57
VNet92.11 7091.22 8394.79 2596.91 9186.98 2797.91 6497.96 1086.38 11893.65 6095.74 13870.16 21798.95 11193.39 7188.87 17998.43 57
ACMMP_NAP93.46 3993.23 4594.17 4297.16 8884.28 8296.82 15496.65 7886.24 11994.27 5397.99 5477.94 10199.83 1693.39 7198.57 3498.39 59
casdiffmvs_mvgpermissive91.13 9590.45 9993.17 8292.99 20783.58 9497.46 9994.56 22687.69 9087.19 15094.98 17174.50 17097.60 17191.88 9392.79 14698.34 60
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
TSAR-MVS + MP.94.79 2095.17 1893.64 6197.66 6984.10 8495.85 21396.42 10791.26 3597.49 1396.80 11886.50 2798.49 13195.54 4999.03 1398.33 61
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SF-MVS94.17 2994.05 3394.55 3197.56 7485.95 3897.73 7796.43 10684.02 17695.07 4298.74 1482.93 5299.38 7895.42 5198.51 3598.32 62
Effi-MVS+90.70 10689.90 11693.09 8593.61 18383.48 9695.20 24092.79 30883.22 19591.82 8395.70 14071.82 20097.48 18491.25 9693.67 13598.32 62
test9_res96.00 4199.03 1398.31 64
test22296.15 10478.41 21995.87 21196.46 10271.97 34289.66 11497.45 8776.33 13298.24 5098.30 65
test_prior93.09 8598.68 2681.91 12496.40 11099.06 10498.29 66
testdata90.13 19295.92 11374.17 29696.49 10173.49 33194.82 4897.99 5478.80 9097.93 15483.53 18497.52 7098.29 66
dcpmvs_293.10 4493.46 4292.02 13597.77 6579.73 18594.82 25493.86 26686.91 10991.33 9196.76 11985.20 3198.06 15096.90 3297.60 6898.27 68
新几何193.12 8397.44 7881.60 13896.71 7074.54 32291.22 9497.57 8279.13 8499.51 7177.40 23998.46 3998.26 69
EIA-MVS91.73 7892.05 6990.78 17694.52 15576.40 26998.06 5695.34 18689.19 6288.90 12797.28 9877.56 10897.73 16690.77 10396.86 8998.20 70
region2R92.72 5592.70 5392.79 9798.68 2680.53 16497.53 9296.51 9685.22 14191.94 8297.98 5777.26 11299.67 5390.83 10298.37 4598.18 71
Anonymous20240521184.41 22481.93 24691.85 14296.78 9378.41 21997.44 10091.34 33070.29 35084.06 17894.26 18541.09 36898.96 10979.46 21582.65 23998.17 72
train_agg94.28 2694.45 2593.74 5598.64 3183.71 9097.82 6996.65 7884.50 16295.16 3698.09 4784.33 3899.36 8195.91 4398.96 1998.16 73
baseline90.76 10590.10 10992.74 9992.90 21082.56 11094.60 25894.56 22687.69 9089.06 12595.67 14273.76 17997.51 18190.43 11192.23 15598.16 73
CDPH-MVS93.12 4392.91 4993.74 5598.65 3083.88 8697.67 8296.26 12383.00 20293.22 6698.24 3781.31 6199.21 8889.12 12798.74 3098.14 75
DP-MVS Recon91.72 8090.85 8994.34 3499.50 185.00 6998.51 3695.96 14880.57 24488.08 14197.63 8076.84 12099.89 785.67 15894.88 11798.13 76
HFP-MVS92.89 4992.86 5192.98 8998.71 2581.12 14497.58 8796.70 7185.20 14391.75 8497.97 5978.47 9399.71 4590.95 9898.41 4298.12 77
MVS_Test90.29 11589.18 12493.62 6395.23 13184.93 7094.41 26194.66 21884.31 16790.37 10791.02 24075.13 15997.82 16383.11 18994.42 12498.12 77
ZNCC-MVS92.75 5192.60 5693.23 7998.24 5181.82 12997.63 8396.50 9885.00 14991.05 9697.74 7178.38 9499.80 2590.48 10798.34 4798.07 79
EPMVS87.47 17685.90 18292.18 12695.41 12682.26 11887.00 35196.28 12185.88 12884.23 17785.57 32075.07 16196.26 24271.14 29392.50 15098.03 80
XVS92.69 5792.71 5292.63 10598.52 3780.29 16797.37 10896.44 10487.04 10791.38 8897.83 6877.24 11499.59 6090.46 10898.07 5398.02 81
X-MVStestdata86.26 19384.14 21292.63 10598.52 3780.29 16797.37 10896.44 10487.04 10791.38 8820.73 40577.24 11499.59 6090.46 10898.07 5398.02 81
MVSFormer91.36 8990.57 9593.73 5793.00 20488.08 1794.80 25694.48 22980.74 24094.90 4497.13 10378.84 8895.10 30383.77 17697.46 7198.02 81
jason92.73 5392.23 6494.21 4190.50 27487.30 2698.65 3195.09 19490.61 4492.76 7297.13 10375.28 15797.30 19493.32 7496.75 9298.02 81
jason: jason.
MVS_111021_HR93.41 4093.39 4393.47 7497.34 8582.83 10797.56 8998.27 689.16 6389.71 11297.14 10279.77 7799.56 6693.65 6997.94 5998.02 81
GG-mvs-BLEND93.49 7194.94 14286.26 3381.62 37497.00 3788.32 13894.30 18491.23 596.21 24588.49 13597.43 7498.00 86
ACMMPR92.69 5792.67 5492.75 9898.66 2880.57 16097.58 8796.69 7385.20 14391.57 8697.92 6077.01 11799.67 5390.95 9898.41 4298.00 86
test250690.96 10190.39 10092.65 10393.54 18682.46 11496.37 18397.35 1886.78 11487.55 14495.25 15377.83 10597.50 18284.07 17094.80 11897.98 88
ECVR-MVScopyleft88.35 15787.25 16391.65 14793.54 18679.40 19296.56 17090.78 34086.78 11485.57 16295.25 15357.25 30297.56 17484.73 16694.80 11897.98 88
test1294.25 3898.34 4685.55 5096.35 11792.36 7480.84 6399.22 8798.31 4897.98 88
MTAPA92.45 6492.31 6192.86 9497.90 6180.85 15392.88 30096.33 11887.92 8490.20 10898.18 4076.71 12599.76 3192.57 8598.09 5297.96 91
CP-MVS92.54 6292.60 5692.34 11598.50 4079.90 17898.40 3996.40 11084.75 15390.48 10598.09 4777.40 11199.21 8891.15 9798.23 5197.92 92
mPP-MVS91.88 7691.82 7292.07 13198.38 4478.63 21397.29 11296.09 13785.12 14588.45 13597.66 7475.53 14699.68 5189.83 11898.02 5697.88 93
3Dnovator82.32 1089.33 13087.64 15194.42 3393.73 18285.70 4497.73 7796.75 6586.73 11776.21 27395.93 13462.17 25999.68 5181.67 19897.81 6297.88 93
test111188.11 16387.04 16991.35 15593.15 19978.79 21096.57 16890.78 34086.88 11185.04 16695.20 15957.23 30397.39 18983.88 17394.59 12197.87 95
Patchmatch-test78.25 30074.72 31488.83 22091.20 25774.10 29773.91 39188.70 35959.89 38266.82 34085.12 33078.38 9494.54 31848.84 38079.58 26097.86 96
MP-MVScopyleft92.61 6092.67 5492.42 11398.13 5679.73 18597.33 11096.20 12985.63 13190.53 10397.66 7478.14 9999.70 4892.12 8898.30 4997.85 97
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ab-mvs87.08 17884.94 19893.48 7293.34 19583.67 9288.82 33595.70 16381.18 23284.55 17690.14 25662.72 25698.94 11385.49 16082.54 24097.85 97
test_fmvsmconf_n93.99 3394.36 2892.86 9492.82 21181.12 14499.26 496.37 11693.47 1595.16 3698.21 3879.00 8599.64 5598.21 1096.73 9397.83 99
casdiffmvspermissive90.95 10290.39 10092.63 10592.82 21182.53 11196.83 15294.47 23187.69 9088.47 13495.56 14774.04 17697.54 17890.90 10192.74 14797.83 99
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EPNet94.06 3294.15 3193.76 5497.27 8784.35 7998.29 4297.64 1594.57 695.36 3496.88 11379.96 7699.12 10091.30 9596.11 10297.82 101
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
gg-mvs-nofinetune85.48 20782.90 23193.24 7894.51 15885.82 4279.22 37896.97 4061.19 37687.33 14753.01 39490.58 696.07 24886.07 15597.23 8097.81 102
CHOSEN 1792x268891.07 9890.21 10693.64 6195.18 13483.53 9596.26 19096.13 13488.92 6484.90 16993.10 21072.86 18899.62 5888.86 12995.67 11197.79 103
APD-MVS_3200maxsize91.23 9391.35 8090.89 17297.89 6276.35 27096.30 18895.52 17279.82 26391.03 9797.88 6574.70 16598.54 12892.11 8996.89 8697.77 104
SR-MVS-dyc-post91.29 9191.45 7990.80 17497.76 6776.03 27596.20 19595.44 17880.56 24590.72 10197.84 6675.76 14198.61 12491.99 9096.79 9097.75 105
RE-MVS-def91.18 8697.76 6776.03 27596.20 19595.44 17880.56 24590.72 10197.84 6673.36 18591.99 9096.79 9097.75 105
GST-MVS92.43 6592.22 6593.04 8798.17 5481.64 13697.40 10696.38 11384.71 15690.90 9997.40 9277.55 10999.76 3189.75 12097.74 6497.72 107
Patchmatch-RL test76.65 31574.01 32284.55 30777.37 38064.23 35978.49 38282.84 38478.48 28764.63 35173.40 37976.05 13691.70 35676.99 24157.84 36997.72 107
PVSNet82.34 989.02 13587.79 14892.71 10195.49 12481.50 13997.70 7997.29 1987.76 8885.47 16395.12 16556.90 30498.90 11580.33 20594.02 12897.71 109
Vis-MVSNetpermissive88.67 14687.82 14791.24 16092.68 21378.82 20796.95 14593.85 26787.55 9387.07 15295.13 16463.43 25397.21 19977.58 23596.15 10197.70 110
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
PAPM92.87 5092.40 5994.30 3592.25 22987.85 1996.40 18296.38 11391.07 3888.72 13296.90 11182.11 5797.37 19190.05 11797.70 6597.67 111
PGM-MVS91.93 7391.80 7392.32 11998.27 5079.74 18495.28 23497.27 2183.83 18490.89 10097.78 7076.12 13599.56 6688.82 13097.93 6197.66 112
sss90.87 10489.96 11393.60 6494.15 16983.84 8997.14 12698.13 785.93 12789.68 11396.09 13271.67 20199.30 8387.69 14389.16 17497.66 112
PatchmatchNetpermissive86.83 18485.12 19591.95 13794.12 17282.27 11786.55 35595.64 16684.59 16082.98 19584.99 33277.26 11295.96 25668.61 30691.34 16297.64 114
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MAR-MVS90.63 10790.22 10591.86 14098.47 4278.20 22997.18 11996.61 8483.87 18388.18 14098.18 4068.71 22199.75 3683.66 18197.15 8197.63 115
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
旧先验197.39 8279.58 18996.54 9398.08 5084.00 4397.42 7597.62 116
Vis-MVSNet (Re-imp)88.88 14088.87 13288.91 21893.89 17874.43 29496.93 14794.19 24884.39 16583.22 19195.67 14278.24 9694.70 31478.88 22394.40 12597.61 117
MP-MVS-pluss92.58 6192.35 6093.29 7697.30 8682.53 11196.44 17896.04 14284.68 15789.12 12398.37 3177.48 11099.74 3893.31 7598.38 4497.59 118
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ETVMVS90.99 9990.26 10393.19 8195.81 11785.64 4896.97 14297.18 2685.43 13588.77 13194.86 17382.00 5896.37 23882.70 19288.60 18297.57 119
test_fmvsmconf0.1_n93.08 4593.22 4692.65 10388.45 30580.81 15499.00 2295.11 19393.21 1794.00 5797.91 6276.84 12099.59 6097.91 1696.55 9697.54 120
GSMVS97.54 120
sam_mvs177.59 10797.54 120
SCA85.63 20383.64 21891.60 15192.30 22581.86 12792.88 30095.56 16984.85 15182.52 19685.12 33058.04 29195.39 28673.89 27387.58 19697.54 120
HPM-MVScopyleft91.62 8391.53 7891.89 13997.88 6379.22 19796.99 13795.73 16282.07 22289.50 11997.19 10175.59 14498.93 11490.91 10097.94 5997.54 120
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
VDD-MVS88.28 16087.02 17092.06 13295.09 13680.18 17397.55 9194.45 23383.09 19889.10 12495.92 13647.97 34298.49 13193.08 8086.91 20097.52 125
AdaColmapbinary88.81 14287.61 15492.39 11499.33 479.95 17696.70 16495.58 16877.51 29783.05 19496.69 12361.90 26599.72 4384.29 16893.47 13897.50 126
IS-MVSNet88.67 14688.16 14290.20 19193.61 18376.86 26196.77 15993.07 30484.02 17683.62 18795.60 14574.69 16896.24 24478.43 22793.66 13697.49 127
FA-MVS(test-final)87.71 17286.23 17992.17 12794.19 16780.55 16187.16 35096.07 14082.12 22185.98 16088.35 27672.04 19998.49 13180.26 20789.87 16897.48 128
ETV-MVS92.72 5592.87 5092.28 12194.54 15481.89 12597.98 6095.21 19189.77 5793.11 6796.83 11577.23 11697.50 18295.74 4595.38 11497.44 129
CostFormer89.08 13488.39 13891.15 16493.13 20179.15 20088.61 33896.11 13683.14 19789.58 11686.93 29883.83 4796.87 21988.22 13985.92 21197.42 130
testing9191.90 7591.31 8293.66 6095.99 10985.68 4697.39 10796.89 4786.75 11688.85 12895.23 15683.93 4597.90 16088.91 12887.89 19297.41 131
diffmvspermissive91.17 9490.74 9292.44 11293.11 20382.50 11396.25 19193.62 28187.79 8790.40 10695.93 13473.44 18497.42 18693.62 7092.55 14997.41 131
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
1112_ss88.60 14987.47 15992.00 13693.21 19680.97 14996.47 17592.46 31183.64 19080.86 22097.30 9680.24 7197.62 17077.60 23485.49 21697.40 133
131488.94 13787.20 16494.17 4293.21 19685.73 4393.33 28996.64 8182.89 20475.98 27696.36 12666.83 23399.39 7783.52 18596.02 10697.39 134
Test_1112_low_res88.03 16586.73 17391.94 13893.15 19980.88 15296.44 17892.41 31383.59 19280.74 22291.16 23880.18 7297.59 17277.48 23785.40 21797.36 135
testing1192.48 6392.04 7093.78 5395.94 11286.00 3797.56 8997.08 3387.52 9489.32 12095.40 15084.60 3598.02 15191.93 9289.04 17697.32 136
HyFIR lowres test89.36 12988.60 13491.63 15094.91 14480.76 15695.60 22495.53 17082.56 21384.03 17991.24 23778.03 10096.81 22387.07 15088.41 18697.32 136
CVMVSNet84.83 21685.57 18582.63 32991.55 25160.38 37495.13 24495.03 19780.60 24382.10 20794.71 17666.40 23690.19 36874.30 27090.32 16697.31 138
tpmrst88.36 15687.38 16191.31 15694.36 16379.92 17787.32 34895.26 19085.32 13888.34 13786.13 31480.60 6796.70 22783.78 17585.34 21997.30 139
PVSNet_Blended93.13 4292.98 4893.57 6697.47 7683.86 8799.32 296.73 6791.02 4089.53 11796.21 12976.42 12999.57 6494.29 6195.81 11097.29 140
PMMVS89.46 12889.92 11588.06 23794.64 14969.57 33996.22 19294.95 19987.27 10191.37 9096.54 12565.88 23797.39 18988.54 13393.89 13197.23 141
fmvsm_l_conf0.5_n94.89 1695.24 1693.86 5094.42 16184.61 7699.13 1196.15 13392.06 2797.92 398.52 2384.52 3699.74 3898.76 595.67 11197.22 142
DeepC-MVS86.58 391.53 8591.06 8892.94 9194.52 15581.89 12595.95 20595.98 14690.76 4183.76 18696.76 11973.24 18699.71 4591.67 9496.96 8497.22 142
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
testing9991.91 7491.35 8093.60 6495.98 11085.70 4497.31 11196.92 4686.82 11288.91 12695.25 15384.26 4297.89 16188.80 13187.94 19197.21 144
test_fmvsmconf0.01_n91.08 9790.68 9392.29 12082.43 36480.12 17497.94 6393.93 25992.07 2691.97 8097.60 8167.56 22599.53 6897.09 2995.56 11397.21 144
GeoE86.36 19085.20 19189.83 20393.17 19876.13 27297.53 9292.11 31679.58 26880.99 21894.01 19266.60 23596.17 24773.48 27789.30 17297.20 146
FE-MVS86.06 19684.15 21191.78 14494.33 16479.81 17984.58 36696.61 8476.69 30785.00 16787.38 28970.71 21398.37 13970.39 29891.70 16097.17 147
EC-MVSNet91.73 7892.11 6790.58 18093.54 18677.77 24498.07 5594.40 23687.44 9692.99 7097.11 10574.59 16996.87 21993.75 6797.08 8297.11 148
114514_t88.79 14487.57 15592.45 11098.21 5381.74 13296.99 13795.45 17775.16 31782.48 19795.69 14168.59 22298.50 13080.33 20595.18 11597.10 149
fmvsm_l_conf0.5_n_a94.91 1595.30 1593.72 5894.50 15984.30 8199.14 1096.00 14491.94 3097.91 598.60 1884.78 3499.77 2998.84 496.03 10597.08 150
ACMMPcopyleft90.39 11289.97 11291.64 14897.58 7378.21 22896.78 15796.72 6984.73 15584.72 17397.23 9971.22 20699.63 5788.37 13892.41 15297.08 150
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
MDTV_nov1_ep13_2view81.74 13286.80 35280.65 24285.65 16174.26 17276.52 24796.98 152
testing22291.09 9690.49 9892.87 9395.82 11685.04 6696.51 17397.28 2086.05 12489.13 12295.34 15280.16 7496.62 23185.82 15688.31 18796.96 153
HPM-MVS_fast90.38 11490.17 10891.03 16797.61 7077.35 25397.15 12595.48 17479.51 26988.79 12996.90 11171.64 20398.81 11987.01 15197.44 7396.94 154
Fast-Effi-MVS+87.93 16886.94 17290.92 17094.04 17579.16 19998.26 4393.72 27781.29 23183.94 18392.90 21169.83 21896.68 22876.70 24591.74 15996.93 155
IB-MVS85.34 488.67 14687.14 16793.26 7793.12 20284.32 8098.76 2797.27 2187.19 10579.36 23890.45 24983.92 4698.53 12984.41 16769.79 31896.93 155
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
thisisatest051590.95 10290.26 10393.01 8894.03 17784.27 8397.91 6496.67 7583.18 19686.87 15395.51 14888.66 1697.85 16280.46 20489.01 17796.92 157
VDDNet86.44 18984.51 20392.22 12491.56 25081.83 12897.10 13294.64 22169.50 35487.84 14295.19 16048.01 34197.92 15989.82 11986.92 19996.89 158
CNLPA86.96 18085.37 18991.72 14697.59 7279.34 19597.21 11491.05 33574.22 32378.90 24096.75 12167.21 23098.95 11174.68 26590.77 16596.88 159
CDS-MVSNet89.50 12788.96 12891.14 16591.94 24680.93 15197.09 13395.81 15784.26 17284.72 17394.20 18880.31 6995.64 27683.37 18688.96 17896.85 160
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
PS-MVSNAJ94.17 2993.52 4096.10 995.65 12192.35 298.21 4595.79 15892.42 2396.24 2798.18 4071.04 20999.17 9596.77 3397.39 7696.79 161
tpm287.35 17786.26 17890.62 17992.93 20978.67 21288.06 34395.99 14579.33 27287.40 14586.43 30980.28 7096.40 23680.23 20885.73 21596.79 161
TESTMET0.1,189.83 12289.34 12391.31 15692.54 21980.19 17297.11 12996.57 9086.15 12086.85 15491.83 22979.32 7996.95 21381.30 19992.35 15396.77 163
xiu_mvs_v2_base93.92 3493.26 4495.91 1095.07 13892.02 698.19 4695.68 16492.06 2796.01 3198.14 4470.83 21298.96 10996.74 3596.57 9596.76 164
CR-MVSNet83.53 23881.36 25590.06 19390.16 28079.75 18279.02 38091.12 33284.24 17382.27 20580.35 35975.45 14893.67 33463.37 33386.25 20696.75 165
RPMNet79.85 28775.92 30691.64 14890.16 28079.75 18279.02 38095.44 17858.43 38682.27 20572.55 38373.03 18798.41 13846.10 38486.25 20696.75 165
TAMVS88.48 15287.79 14890.56 18191.09 26179.18 19896.45 17795.88 15383.64 19083.12 19293.33 20575.94 13895.74 27182.40 19388.27 18896.75 165
test_fmvsm_n_192094.81 1995.60 1192.45 11095.29 13080.96 15099.29 397.21 2394.50 797.29 1498.44 2982.15 5699.78 2898.56 797.68 6696.61 168
原ACMM191.22 16297.77 6578.10 23196.61 8481.05 23491.28 9397.42 9177.92 10398.98 10879.85 21398.51 3596.59 169
BH-RMVSNet86.84 18385.28 19091.49 15395.35 12880.26 17096.95 14592.21 31582.86 20681.77 21395.46 14959.34 28097.64 16969.79 30193.81 13396.57 170
EPP-MVSNet89.76 12389.72 11989.87 20193.78 17976.02 27797.22 11396.51 9679.35 27185.11 16595.01 16984.82 3397.10 20787.46 14688.21 18996.50 171
dp84.30 22682.31 24090.28 18894.24 16677.97 23486.57 35495.53 17079.94 26280.75 22185.16 32871.49 20596.39 23763.73 33083.36 22996.48 172
MVS_111021_LR91.60 8491.64 7791.47 15495.74 11978.79 21096.15 19796.77 6188.49 7288.64 13397.07 10772.33 19499.19 9393.13 7996.48 9796.43 173
PatchT79.75 28876.85 30088.42 22689.55 29275.49 28477.37 38494.61 22363.07 36782.46 19873.32 38075.52 14793.41 33951.36 37184.43 22296.36 174
LCM-MVSNet-Re83.75 23583.54 22184.39 31293.54 18664.14 36092.51 30384.03 38083.90 18266.14 34586.59 30367.36 22892.68 34284.89 16592.87 14596.35 175
GA-MVS85.79 20184.04 21391.02 16889.47 29480.27 16996.90 14994.84 20785.57 13280.88 21989.08 26456.56 30896.47 23577.72 23185.35 21896.34 176
tpm85.55 20584.47 20688.80 22190.19 27975.39 28588.79 33694.69 21484.83 15283.96 18285.21 32678.22 9794.68 31676.32 25178.02 27696.34 176
CPTT-MVS89.72 12489.87 11789.29 21198.33 4773.30 30297.70 7995.35 18575.68 31387.40 14597.44 9070.43 21498.25 14489.56 12396.90 8596.33 178
PVSNet_Blended_VisFu91.24 9290.77 9192.66 10295.09 13682.40 11597.77 7395.87 15588.26 7786.39 15593.94 19476.77 12399.27 8488.80 13194.00 13096.31 179
QAPM86.88 18284.51 20393.98 4694.04 17585.89 4197.19 11796.05 14173.62 32875.12 28895.62 14462.02 26299.74 3870.88 29496.06 10496.30 180
h-mvs3389.30 13188.95 12990.36 18695.07 13876.04 27496.96 14497.11 3190.39 4892.22 7795.10 16674.70 16598.86 11693.14 7765.89 35096.16 181
thisisatest053089.65 12589.02 12691.53 15293.46 19280.78 15596.52 17196.67 7581.69 22883.79 18594.90 17288.85 1597.68 16777.80 22887.49 19796.14 182
TR-MVS86.30 19284.93 19990.42 18494.63 15077.58 24896.57 16893.82 26880.30 25382.42 19995.16 16258.74 28497.55 17674.88 26387.82 19396.13 183
tpm cat183.63 23781.38 25490.39 18593.53 19178.19 23085.56 36295.09 19470.78 34878.51 24483.28 34574.80 16497.03 20866.77 31384.05 22495.95 184
test-LLR88.48 15287.98 14489.98 19692.26 22777.23 25597.11 12995.96 14883.76 18786.30 15791.38 23372.30 19596.78 22580.82 20191.92 15795.94 185
test-mter88.95 13688.60 13489.98 19692.26 22777.23 25597.11 12995.96 14885.32 13886.30 15791.38 23376.37 13196.78 22580.82 20191.92 15795.94 185
BH-w/o88.24 16187.47 15990.54 18295.03 14178.54 21497.41 10593.82 26884.08 17478.23 24794.51 18169.34 22097.21 19980.21 20994.58 12295.87 187
EI-MVSNet-Vis-set91.84 7791.77 7492.04 13497.60 7181.17 14396.61 16696.87 4988.20 7889.19 12197.55 8678.69 9299.14 9790.29 11490.94 16495.80 188
CANet_DTU90.98 10090.04 11093.83 5194.76 14886.23 3496.32 18793.12 30393.11 1893.71 5996.82 11763.08 25599.48 7384.29 16895.12 11695.77 189
test_fmvsmvis_n_192092.12 6992.10 6892.17 12790.87 26681.04 14698.34 4193.90 26392.71 2087.24 14997.90 6374.83 16399.72 4396.96 3196.20 9995.76 190
TAPA-MVS81.61 1285.02 21383.67 21689.06 21496.79 9273.27 30595.92 20794.79 21174.81 32080.47 22496.83 11571.07 20898.19 14849.82 37792.57 14895.71 191
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
OMC-MVS88.80 14388.16 14290.72 17795.30 12977.92 23894.81 25594.51 22886.80 11384.97 16896.85 11467.53 22698.60 12585.08 16287.62 19495.63 192
UGNet87.73 17186.55 17691.27 15995.16 13579.11 20196.35 18596.23 12688.14 7987.83 14390.48 24850.65 33199.09 10280.13 21094.03 12795.60 193
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
UWE-MVS88.56 15188.91 13187.50 25394.17 16872.19 31395.82 21597.05 3584.96 15084.78 17193.51 20481.33 6094.75 31279.43 21689.17 17395.57 194
tttt051788.57 15088.19 14189.71 20793.00 20475.99 27895.67 21996.67 7580.78 23981.82 21194.40 18288.97 1497.58 17376.05 25386.31 20595.57 194
test_vis1_n_192089.95 12090.59 9488.03 23992.36 22168.98 34299.12 1294.34 23993.86 1393.64 6197.01 10951.54 32899.59 6096.76 3496.71 9495.53 196
CHOSEN 280x42091.71 8191.85 7191.29 15894.94 14282.69 10887.89 34496.17 13285.94 12687.27 14894.31 18390.27 995.65 27594.04 6595.86 10895.53 196
BH-untuned86.95 18185.94 18189.99 19594.52 15577.46 25096.78 15793.37 29381.80 22576.62 26493.81 19866.64 23497.02 20976.06 25293.88 13295.48 198
EPNet_dtu87.65 17387.89 14586.93 26794.57 15171.37 32796.72 16096.50 9888.56 7187.12 15195.02 16875.91 13994.01 32866.62 31590.00 16795.42 199
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
EI-MVSNet-UG-set91.35 9091.22 8391.73 14597.39 8280.68 15796.47 17596.83 5287.92 8488.30 13997.36 9377.84 10499.13 9989.43 12589.45 17195.37 200
UA-Net88.92 13888.48 13790.24 18994.06 17477.18 25793.04 29794.66 21887.39 9891.09 9593.89 19574.92 16298.18 14975.83 25591.43 16195.35 201
Anonymous2024052983.15 24580.60 26590.80 17495.74 11978.27 22396.81 15594.92 20160.10 38181.89 21092.54 21645.82 35298.82 11879.25 21978.32 27495.31 202
mvsany_test187.58 17488.22 13985.67 28889.78 28667.18 34995.25 23787.93 36283.96 17988.79 12997.06 10872.52 19194.53 31992.21 8786.45 20495.30 203
DP-MVS81.47 27178.28 28891.04 16698.14 5578.48 21595.09 24986.97 36661.14 37771.12 31992.78 21559.59 27699.38 7853.11 36886.61 20295.27 204
fmvsm_s_conf0.5_n93.69 3694.13 3292.34 11594.56 15282.01 11999.07 1697.13 2892.09 2596.25 2698.53 2276.47 12799.80 2598.39 894.71 12095.22 205
fmvsm_s_conf0.5_n_a93.34 4193.71 3592.22 12493.38 19481.71 13498.86 2596.98 3891.64 3196.85 1698.55 1975.58 14599.77 2997.88 1993.68 13495.18 206
fmvsm_s_conf0.1_n92.93 4893.16 4792.24 12290.52 27381.92 12398.42 3896.24 12591.17 3696.02 3098.35 3375.34 15699.74 3897.84 2094.58 12295.05 207
baseline188.85 14187.49 15792.93 9295.21 13386.85 2995.47 22894.61 22387.29 10083.11 19394.99 17080.70 6696.89 21782.28 19473.72 29295.05 207
test_cas_vis1_n_192089.90 12190.02 11189.54 20890.14 28274.63 29198.71 2894.43 23493.04 1992.40 7396.35 12753.41 32499.08 10395.59 4896.16 10094.90 209
PVSNet_077.72 1581.70 26878.95 28589.94 19990.77 27076.72 26495.96 20496.95 4285.01 14870.24 32688.53 27452.32 32598.20 14786.68 15444.08 39194.89 210
fmvsm_s_conf0.1_n_a92.38 6692.49 5892.06 13288.08 30981.62 13797.97 6296.01 14390.62 4396.58 2298.33 3474.09 17599.71 4597.23 2793.46 13994.86 211
ADS-MVSNet279.57 29177.53 29485.71 28693.78 17972.13 31479.48 37686.11 37273.09 33480.14 22979.99 36162.15 26090.14 36959.49 34583.52 22694.85 212
ADS-MVSNet81.26 27478.36 28789.96 19893.78 17979.78 18079.48 37693.60 28273.09 33480.14 22979.99 36162.15 26095.24 29559.49 34583.52 22694.85 212
MIMVSNet79.18 29675.99 30588.72 22387.37 31980.66 15879.96 37591.82 32177.38 29974.33 29381.87 35141.78 36490.74 36466.36 32083.10 23194.76 214
xiu_mvs_v1_base_debu90.54 10989.54 12093.55 6792.31 22287.58 2396.99 13794.87 20487.23 10293.27 6397.56 8357.43 29898.32 14092.72 8293.46 13994.74 215
xiu_mvs_v1_base90.54 10989.54 12093.55 6792.31 22287.58 2396.99 13794.87 20487.23 10293.27 6397.56 8357.43 29898.32 14092.72 8293.46 13994.74 215
xiu_mvs_v1_base_debi90.54 10989.54 12093.55 6792.31 22287.58 2396.99 13794.87 20487.23 10293.27 6397.56 8357.43 29898.32 14092.72 8293.46 13994.74 215
AUN-MVS86.25 19485.57 18588.26 23293.57 18573.38 30095.45 22995.88 15383.94 18085.47 16394.21 18773.70 18296.67 22983.54 18364.41 35494.73 218
hse-mvs288.22 16288.21 14088.25 23393.54 18673.41 29995.41 23195.89 15290.39 4892.22 7794.22 18674.70 16596.66 23093.14 7764.37 35594.69 219
thres20088.92 13887.65 15092.73 10096.30 9985.62 4997.85 6798.86 184.38 16684.82 17093.99 19375.12 16098.01 15270.86 29586.67 20194.56 220
baseline290.39 11290.21 10690.93 16990.86 26780.99 14895.20 24097.41 1786.03 12580.07 23294.61 17890.58 697.47 18587.29 14789.86 16994.35 221
thres100view90088.30 15986.95 17192.33 11796.10 10684.90 7197.14 12698.85 282.69 21083.41 18893.66 20075.43 15097.93 15469.04 30386.24 20894.17 222
tfpn200view988.48 15287.15 16592.47 10996.21 10285.30 5797.44 10098.85 283.37 19383.99 18093.82 19675.36 15397.93 15469.04 30386.24 20894.17 222
tpmvs83.04 24880.77 26189.84 20295.43 12577.96 23585.59 36195.32 18775.31 31676.27 27183.70 34273.89 17797.41 18759.53 34481.93 24694.14 224
OpenMVScopyleft79.58 1486.09 19583.62 21993.50 7090.95 26386.71 3297.44 10095.83 15675.35 31472.64 30995.72 13957.42 30199.64 5571.41 28895.85 10994.13 225
test_fmvs187.79 17088.52 13685.62 29092.98 20864.31 35897.88 6692.42 31287.95 8392.24 7695.82 13747.94 34398.44 13795.31 5294.09 12694.09 226
PatchMatch-RL85.00 21483.66 21789.02 21695.86 11474.55 29392.49 30493.60 28279.30 27479.29 23991.47 23158.53 28698.45 13570.22 29992.17 15694.07 227
UniMVSNet_ETH3D80.86 28078.75 28687.22 26286.31 32772.02 31791.95 30993.76 27673.51 32975.06 28990.16 25543.04 36195.66 27376.37 25078.55 27193.98 228
PCF-MVS84.09 586.77 18685.00 19792.08 13092.06 24183.07 10492.14 30894.47 23179.63 26776.90 26094.78 17571.15 20799.20 9272.87 27991.05 16393.98 228
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
LS3D82.22 26279.94 27689.06 21497.43 7974.06 29893.20 29592.05 31761.90 37173.33 30295.21 15859.35 27999.21 8854.54 36492.48 15193.90 230
test_vis1_n85.60 20485.70 18385.33 29484.79 34864.98 35696.83 15291.61 32687.36 9991.00 9894.84 17436.14 37697.18 20195.66 4693.03 14493.82 231
PLCcopyleft83.97 788.00 16687.38 16189.83 20398.02 5976.46 26797.16 12394.43 23479.26 27681.98 20896.28 12869.36 21999.27 8477.71 23292.25 15493.77 232
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
cascas86.50 18884.48 20592.55 10892.64 21785.95 3897.04 13695.07 19675.32 31580.50 22391.02 24054.33 32297.98 15386.79 15387.62 19493.71 233
dmvs_re84.10 22882.90 23187.70 24491.41 25573.28 30390.59 32593.19 29885.02 14777.96 25093.68 19957.92 29696.18 24675.50 25880.87 24993.63 234
JIA-IIPM79.00 29777.20 29684.40 31189.74 28964.06 36175.30 38895.44 17862.15 37081.90 20959.08 39278.92 8695.59 28066.51 31885.78 21493.54 235
XVG-OURS-SEG-HR85.74 20285.16 19487.49 25590.22 27871.45 32691.29 31994.09 25481.37 23083.90 18495.22 15760.30 27397.53 18085.58 15984.42 22393.50 236
XVG-OURS85.18 21084.38 20787.59 24990.42 27671.73 32391.06 32294.07 25582.00 22483.29 19095.08 16756.42 30997.55 17683.70 18083.42 22893.49 237
thres600view788.06 16486.70 17592.15 12996.10 10685.17 6397.14 12698.85 282.70 20983.41 18893.66 20075.43 15097.82 16367.13 31285.88 21293.45 238
thres40088.42 15587.15 16592.23 12396.21 10285.30 5797.44 10098.85 283.37 19383.99 18093.82 19675.36 15397.93 15469.04 30386.24 20893.45 238
test_fmvs1_n86.34 19186.72 17485.17 29787.54 31763.64 36396.91 14892.37 31487.49 9591.33 9195.58 14640.81 37098.46 13495.00 5493.49 13793.41 240
SDMVSNet87.02 17985.61 18491.24 16094.14 17083.30 10093.88 27795.98 14684.30 16979.63 23592.01 22158.23 28897.68 16790.28 11682.02 24492.75 241
sd_testset84.62 21983.11 22889.17 21294.14 17077.78 24391.54 31894.38 23784.30 16979.63 23592.01 22152.28 32696.98 21177.67 23382.02 24492.75 241
DSMNet-mixed73.13 33272.45 32875.19 36277.51 37946.82 39285.09 36482.01 38567.61 36169.27 33181.33 35450.89 33086.28 38254.54 36483.80 22592.46 243
tt080581.20 27679.06 28487.61 24786.50 32472.97 30893.66 28095.48 17474.11 32476.23 27291.99 22341.36 36797.40 18877.44 23874.78 28892.45 244
Effi-MVS+-dtu84.61 22084.90 20083.72 31991.96 24463.14 36694.95 25193.34 29485.57 13279.79 23387.12 29561.99 26395.61 27983.55 18285.83 21392.41 245
F-COLMAP84.50 22383.44 22487.67 24595.22 13272.22 31195.95 20593.78 27375.74 31276.30 27095.18 16159.50 27898.45 13572.67 28186.59 20392.35 246
Fast-Effi-MVS+-dtu83.33 24182.60 23785.50 29289.55 29269.38 34096.09 20191.38 32782.30 21775.96 27791.41 23256.71 30595.58 28175.13 26284.90 22191.54 247
MSDG80.62 28377.77 29389.14 21393.43 19377.24 25491.89 31190.18 34469.86 35368.02 33391.94 22752.21 32798.84 11759.32 34783.12 23091.35 248
HQP4-MVS82.30 20197.32 19291.13 249
HQP-MVS87.91 16987.55 15688.98 21792.08 23878.48 21597.63 8394.80 20990.52 4582.30 20194.56 17965.40 24197.32 19287.67 14483.01 23291.13 249
HQP_MVS87.50 17587.09 16888.74 22291.86 24777.96 23597.18 11994.69 21489.89 5581.33 21594.15 18964.77 24797.30 19487.08 14882.82 23690.96 251
plane_prior594.69 21497.30 19487.08 14882.82 23690.96 251
nrg03086.79 18585.43 18790.87 17388.76 29985.34 5497.06 13594.33 24084.31 16780.45 22591.98 22472.36 19396.36 23988.48 13671.13 30590.93 253
RPSCF77.73 30676.63 30181.06 33888.66 30355.76 38587.77 34587.88 36364.82 36674.14 29492.79 21449.22 33896.81 22367.47 31076.88 27890.62 254
iter_conf0590.14 11789.79 11891.17 16395.85 11586.93 2897.68 8188.67 36089.93 5481.73 21492.80 21390.37 896.03 24990.44 11080.65 25290.56 255
VPNet84.69 21882.92 23090.01 19489.01 29883.45 9796.71 16295.46 17685.71 13079.65 23492.18 22056.66 30796.01 25283.05 19067.84 33890.56 255
CLD-MVS87.97 16787.48 15889.44 20992.16 23480.54 16398.14 4794.92 20191.41 3379.43 23795.40 15062.34 25897.27 19790.60 10682.90 23590.50 257
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
VPA-MVSNet85.32 20883.83 21489.77 20690.25 27782.63 10996.36 18497.07 3483.03 20181.21 21789.02 26661.58 26696.31 24185.02 16470.95 30790.36 258
FIs86.73 18786.10 18088.61 22490.05 28380.21 17196.14 19896.95 4285.56 13478.37 24692.30 21876.73 12495.28 29379.51 21479.27 26290.35 259
DU-MVS84.57 22183.33 22588.28 23188.76 29979.36 19396.43 18095.41 18285.42 13678.11 24890.82 24367.61 22395.14 30079.14 22068.30 33290.33 260
NR-MVSNet83.35 24081.52 25388.84 21988.76 29981.31 14294.45 26095.16 19284.65 15867.81 33490.82 24370.36 21594.87 30974.75 26466.89 34790.33 260
FC-MVSNet-test85.96 19785.39 18887.66 24689.38 29678.02 23295.65 22196.87 4985.12 14577.34 25391.94 22776.28 13394.74 31377.09 24078.82 26690.21 262
XXY-MVS83.84 23382.00 24589.35 21087.13 32081.38 14095.72 21794.26 24380.15 25775.92 27890.63 24661.96 26496.52 23378.98 22273.28 29790.14 263
test0.0.03 182.79 25282.48 23883.74 31886.81 32272.22 31196.52 17195.03 19783.76 18773.00 30593.20 20672.30 19588.88 37164.15 32877.52 27790.12 264
UniMVSNet_NR-MVSNet85.49 20684.59 20188.21 23589.44 29579.36 19396.71 16296.41 10885.22 14178.11 24890.98 24276.97 11995.14 30079.14 22068.30 33290.12 264
mvsmamba85.17 21184.54 20287.05 26587.94 31175.11 28896.22 19287.79 36486.91 10978.55 24391.77 23064.93 24695.91 25986.94 15279.80 25490.12 264
TranMVSNet+NR-MVSNet83.24 24481.71 24987.83 24187.71 31478.81 20996.13 20094.82 20884.52 16176.18 27490.78 24564.07 25094.60 31774.60 26866.59 34990.09 267
MVSTER89.25 13388.92 13090.24 18995.98 11084.66 7596.79 15695.36 18387.19 10580.33 22790.61 24790.02 1295.97 25385.38 16178.64 26890.09 267
PS-MVSNAJss84.91 21584.30 20886.74 26885.89 33674.40 29594.95 25194.16 25083.93 18176.45 26690.11 25771.04 20995.77 26683.16 18879.02 26590.06 269
WR-MVS84.32 22582.96 22988.41 22789.38 29680.32 16696.59 16796.25 12483.97 17876.63 26390.36 25167.53 22694.86 31075.82 25670.09 31690.06 269
FMVSNet384.71 21782.71 23590.70 17894.55 15387.71 2195.92 20794.67 21781.73 22775.82 28088.08 28166.99 23194.47 32071.23 29075.38 28589.91 271
RRT_MVS83.88 23283.27 22685.71 28687.53 31872.12 31595.35 23394.33 24083.81 18575.86 27991.28 23660.55 27195.09 30583.93 17276.76 27989.90 272
FMVSNet282.79 25280.44 26789.83 20392.66 21485.43 5395.42 23094.35 23879.06 28074.46 29287.28 29056.38 31094.31 32369.72 30274.68 28989.76 273
ACMM80.70 1383.72 23682.85 23386.31 27791.19 25872.12 31595.88 21094.29 24280.44 24877.02 25891.96 22555.24 31697.14 20679.30 21880.38 25389.67 274
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
UniMVSNet (Re)85.31 20984.23 20988.55 22589.75 28780.55 16196.72 16096.89 4785.42 13678.40 24588.93 26775.38 15295.52 28378.58 22568.02 33589.57 275
EI-MVSNet85.80 20085.20 19187.59 24991.55 25177.41 25195.13 24495.36 18380.43 25080.33 22794.71 17673.72 18095.97 25376.96 24378.64 26889.39 276
IterMVS-LS83.93 23182.80 23487.31 25991.46 25477.39 25295.66 22093.43 28880.44 24875.51 28487.26 29273.72 18095.16 29976.99 24170.72 30989.39 276
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
GBi-Net82.42 25880.43 26888.39 22892.66 21481.95 12094.30 26693.38 29079.06 28075.82 28085.66 31656.38 31093.84 33071.23 29075.38 28589.38 278
test182.42 25880.43 26888.39 22892.66 21481.95 12094.30 26693.38 29079.06 28075.82 28085.66 31656.38 31093.84 33071.23 29075.38 28589.38 278
FMVSNet179.50 29276.54 30288.39 22888.47 30481.95 12094.30 26693.38 29073.14 33372.04 31485.66 31643.86 35593.84 33065.48 32272.53 29889.38 278
miper_enhance_ethall85.95 19885.20 19188.19 23694.85 14679.76 18196.00 20294.06 25682.98 20377.74 25188.76 26979.42 7895.46 28580.58 20372.42 29989.36 281
dmvs_testset72.00 33973.36 32567.91 36783.83 35931.90 40785.30 36377.12 39282.80 20763.05 35992.46 21761.54 26782.55 39042.22 38971.89 30389.29 282
cl2285.11 21284.17 21087.92 24095.06 14078.82 20795.51 22694.22 24679.74 26576.77 26187.92 28375.96 13795.68 27279.93 21272.42 29989.27 283
eth_miper_zixun_eth83.12 24682.01 24486.47 27391.85 24974.80 28994.33 26493.18 30079.11 27875.74 28387.25 29372.71 18995.32 29176.78 24467.13 34489.27 283
Anonymous2023121179.72 28977.19 29787.33 25795.59 12277.16 25895.18 24394.18 24959.31 38472.57 31086.20 31347.89 34495.66 27374.53 26969.24 32489.18 285
ACMP81.66 1184.00 23083.22 22786.33 27491.53 25372.95 30995.91 20993.79 27283.70 18973.79 29592.22 21954.31 32396.89 21783.98 17179.74 25789.16 286
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
DIV-MVS_self_test83.27 24282.12 24286.74 26892.19 23175.92 28195.11 24693.26 29778.44 28974.81 29187.08 29674.19 17395.19 29774.66 26769.30 32389.11 287
cl____83.27 24282.12 24286.74 26892.20 23075.95 27995.11 24693.27 29678.44 28974.82 29087.02 29774.19 17395.19 29774.67 26669.32 32289.09 288
OPM-MVS85.84 19985.10 19688.06 23788.34 30677.83 24295.72 21794.20 24787.89 8680.45 22594.05 19158.57 28597.26 19883.88 17382.76 23889.09 288
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
v2v48283.46 23981.86 24788.25 23386.19 33079.65 18796.34 18694.02 25781.56 22977.32 25488.23 27865.62 23896.03 24977.77 22969.72 32089.09 288
test_djsdf83.00 25082.45 23984.64 30584.07 35669.78 33694.80 25694.48 22980.74 24075.41 28687.70 28561.32 26995.10 30383.77 17679.76 25589.04 291
jajsoiax82.12 26381.15 25885.03 29984.19 35470.70 32994.22 27093.95 25883.07 19973.48 29789.75 25949.66 33795.37 28882.24 19579.76 25589.02 292
miper_ehance_all_eth84.57 22183.60 22087.50 25392.64 21778.25 22495.40 23293.47 28679.28 27576.41 26787.64 28676.53 12695.24 29578.58 22572.42 29989.01 293
LPG-MVS_test84.20 22783.49 22386.33 27490.88 26473.06 30695.28 23494.13 25182.20 21876.31 26893.20 20654.83 32096.95 21383.72 17880.83 25088.98 294
LGP-MVS_train86.33 27490.88 26473.06 30694.13 25182.20 21876.31 26893.20 20654.83 32096.95 21383.72 17880.83 25088.98 294
AllTest75.92 31873.06 32684.47 30892.18 23267.29 34791.07 32184.43 37867.63 35763.48 35390.18 25338.20 37397.16 20257.04 35573.37 29488.97 296
TestCases84.47 30892.18 23267.29 34784.43 37867.63 35763.48 35390.18 25338.20 37397.16 20257.04 35573.37 29488.97 296
mvs_tets81.74 26780.71 26384.84 30084.22 35370.29 33293.91 27693.78 27382.77 20873.37 30089.46 26247.36 34795.31 29281.99 19679.55 26188.92 298
c3_l83.80 23482.65 23687.25 26192.10 23777.74 24695.25 23793.04 30578.58 28676.01 27587.21 29475.25 15895.11 30277.54 23668.89 32688.91 299
pmmvs581.34 27379.54 27986.73 27185.02 34676.91 25996.22 19291.65 32477.65 29573.55 29688.61 27155.70 31394.43 32174.12 27273.35 29688.86 300
miper_lstm_enhance81.66 27080.66 26484.67 30491.19 25871.97 31991.94 31093.19 29877.86 29372.27 31285.26 32473.46 18393.42 33873.71 27667.05 34588.61 301
CP-MVSNet81.01 27880.08 27283.79 31687.91 31270.51 33094.29 26995.65 16580.83 23772.54 31188.84 26863.71 25192.32 34668.58 30768.36 33188.55 302
Syy-MVS77.97 30478.05 29077.74 35392.13 23556.85 38093.97 27494.23 24482.43 21473.39 29893.57 20257.95 29487.86 37532.40 39382.34 24188.51 303
myMVS_eth3d81.93 26582.18 24181.18 33792.13 23567.18 34993.97 27494.23 24482.43 21473.39 29893.57 20276.98 11887.86 37550.53 37582.34 24188.51 303
v14419282.43 25780.73 26287.54 25285.81 33778.22 22595.98 20393.78 27379.09 27977.11 25786.49 30564.66 24995.91 25974.20 27169.42 32188.49 305
v192192082.02 26480.23 27087.41 25685.62 33877.92 23895.79 21693.69 27878.86 28376.67 26286.44 30762.50 25795.83 26372.69 28069.77 31988.47 306
v119282.31 26180.55 26687.60 24885.94 33478.47 21895.85 21393.80 27179.33 27276.97 25986.51 30463.33 25495.87 26173.11 27870.13 31388.46 307
PS-CasMVS80.27 28579.18 28183.52 32287.56 31669.88 33594.08 27295.29 18880.27 25572.08 31388.51 27559.22 28292.23 34867.49 30968.15 33488.45 308
v14882.41 26080.89 25986.99 26686.18 33176.81 26296.27 18993.82 26880.49 24775.28 28786.11 31567.32 22995.75 26875.48 25967.03 34688.42 309
v124081.70 26879.83 27887.30 26085.50 33977.70 24795.48 22793.44 28778.46 28876.53 26586.44 30760.85 27095.84 26271.59 28770.17 31188.35 310
v114482.90 25181.27 25687.78 24386.29 32879.07 20496.14 19893.93 25980.05 25977.38 25286.80 30065.50 23995.93 25875.21 26170.13 31388.33 311
EU-MVSNet76.92 31476.95 29976.83 35684.10 35554.73 38791.77 31392.71 30972.74 33769.57 32988.69 27058.03 29387.43 37964.91 32570.00 31788.33 311
PEN-MVS79.47 29378.26 28983.08 32586.36 32668.58 34393.85 27894.77 21279.76 26471.37 31588.55 27259.79 27492.46 34464.50 32665.40 35188.19 313
IterMVS80.67 28279.16 28285.20 29689.79 28576.08 27392.97 29991.86 31980.28 25471.20 31885.14 32957.93 29591.34 35872.52 28270.74 30888.18 314
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT80.51 28479.10 28384.73 30289.63 29174.66 29092.98 29891.81 32280.05 25971.06 32085.18 32758.04 29191.40 35772.48 28370.70 31088.12 315
XVG-ACMP-BASELINE79.38 29477.90 29283.81 31584.98 34767.14 35389.03 33493.18 30080.26 25672.87 30788.15 28038.55 37296.26 24276.05 25378.05 27588.02 316
MVS-HIRNet71.36 34167.00 34684.46 31090.58 27269.74 33779.15 37987.74 36546.09 39161.96 36450.50 39545.14 35395.64 27653.74 36688.11 19088.00 317
SixPastTwentyTwo76.04 31774.32 31881.22 33684.54 35061.43 37291.16 32089.30 35277.89 29164.04 35286.31 31148.23 33994.29 32463.54 33263.84 35887.93 318
pmmvs482.54 25680.79 26087.79 24286.11 33280.49 16593.55 28493.18 30077.29 30073.35 30189.40 26365.26 24495.05 30775.32 26073.61 29387.83 319
lessismore_v079.98 34380.59 36958.34 37980.87 38658.49 37483.46 34443.10 36093.89 32963.11 33448.68 38487.72 320
ACMH75.40 1777.99 30274.96 31087.10 26490.67 27176.41 26893.19 29691.64 32572.47 34063.44 35587.61 28743.34 35897.16 20258.34 34973.94 29187.72 320
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Patchmtry77.36 31074.59 31585.67 28889.75 28775.75 28377.85 38391.12 33260.28 37971.23 31780.35 35975.45 14893.56 33657.94 35067.34 34387.68 322
OurMVSNet-221017-077.18 31276.06 30480.55 34183.78 36060.00 37690.35 32691.05 33577.01 30666.62 34387.92 28347.73 34594.03 32771.63 28668.44 33087.62 323
V4283.04 24881.53 25287.57 25186.27 32979.09 20395.87 21194.11 25380.35 25277.22 25686.79 30165.32 24396.02 25177.74 23070.14 31287.61 324
PVSNet_BlendedMVS90.05 11889.96 11390.33 18797.47 7683.86 8798.02 5996.73 6787.98 8289.53 11789.61 26176.42 12999.57 6494.29 6179.59 25987.57 325
testgi74.88 32473.40 32479.32 34780.13 37161.75 36993.21 29486.64 37079.49 27066.56 34491.06 23935.51 37988.67 37256.79 35871.25 30487.56 326
DTE-MVSNet78.37 29977.06 29882.32 33285.22 34567.17 35293.40 28693.66 27978.71 28570.53 32388.29 27759.06 28392.23 34861.38 34063.28 36087.56 326
testing380.74 28181.17 25779.44 34691.15 26063.48 36497.16 12395.76 15980.83 23771.36 31693.15 20978.22 9787.30 38043.19 38779.67 25887.55 328
K. test v373.62 32771.59 33279.69 34482.98 36259.85 37790.85 32488.83 35577.13 30258.90 37282.11 34943.62 35691.72 35565.83 32154.10 37587.50 329
WR-MVS_H81.02 27780.09 27183.79 31688.08 30971.26 32894.46 25996.54 9380.08 25872.81 30886.82 29970.36 21592.65 34364.18 32767.50 34187.46 330
pm-mvs180.05 28678.02 29186.15 27985.42 34075.81 28295.11 24692.69 31077.13 30270.36 32487.43 28858.44 28795.27 29471.36 28964.25 35687.36 331
v7n79.32 29577.34 29585.28 29584.05 35772.89 31093.38 28793.87 26575.02 31970.68 32184.37 33659.58 27795.62 27867.60 30867.50 34187.32 332
v881.88 26680.06 27487.32 25886.63 32379.04 20594.41 26193.65 28078.77 28473.19 30485.57 32066.87 23295.81 26473.84 27567.61 34087.11 333
ACMH+76.62 1677.47 30974.94 31185.05 29891.07 26271.58 32593.26 29390.01 34571.80 34364.76 35088.55 27241.62 36596.48 23462.35 33671.00 30687.09 334
UnsupCasMVSNet_eth73.25 33170.57 33681.30 33577.53 37866.33 35487.24 34993.89 26480.38 25157.90 37781.59 35242.91 36290.56 36565.18 32448.51 38587.01 335
ppachtmachnet_test77.19 31174.22 31986.13 28085.39 34178.22 22593.98 27391.36 32971.74 34467.11 33784.87 33356.67 30693.37 34052.21 36964.59 35386.80 336
v1081.43 27279.53 28087.11 26386.38 32578.87 20694.31 26593.43 28877.88 29273.24 30385.26 32465.44 24095.75 26872.14 28467.71 33986.72 337
test_fmvs279.59 29079.90 27778.67 34982.86 36355.82 38495.20 24089.55 34881.09 23380.12 23189.80 25834.31 38193.51 33787.82 14178.36 27386.69 338
anonymousdsp80.98 27979.97 27584.01 31381.73 36670.44 33192.49 30493.58 28477.10 30472.98 30686.31 31157.58 29794.90 30879.32 21778.63 27086.69 338
our_test_377.90 30575.37 30985.48 29385.39 34176.74 26393.63 28191.67 32373.39 33265.72 34784.65 33558.20 29093.13 34157.82 35167.87 33686.57 340
Anonymous2023120675.29 32273.64 32380.22 34280.75 36763.38 36593.36 28890.71 34273.09 33467.12 33683.70 34250.33 33490.85 36353.63 36770.10 31586.44 341
YYNet173.53 33070.43 33782.85 32784.52 35171.73 32391.69 31591.37 32867.63 35746.79 38681.21 35555.04 31890.43 36655.93 36059.70 36786.38 342
MDA-MVSNet_test_wron73.54 32970.43 33782.86 32684.55 34971.85 32091.74 31491.32 33167.63 35746.73 38781.09 35655.11 31790.42 36755.91 36159.76 36686.31 343
ITE_SJBPF82.38 33087.00 32165.59 35589.55 34879.99 26169.37 33091.30 23541.60 36695.33 29062.86 33574.63 29086.24 344
FMVSNet576.46 31674.16 32083.35 32490.05 28376.17 27189.58 33089.85 34671.39 34665.29 34980.42 35850.61 33287.70 37861.05 34269.24 32486.18 345
MDA-MVSNet-bldmvs71.45 34067.94 34581.98 33485.33 34368.50 34492.35 30788.76 35770.40 34942.99 39081.96 35046.57 34991.31 35948.75 38154.39 37486.11 346
USDC78.65 29876.25 30385.85 28287.58 31574.60 29289.58 33090.58 34384.05 17563.13 35788.23 27840.69 37196.86 22166.57 31775.81 28386.09 347
pmmvs674.65 32571.67 33183.60 32179.13 37469.94 33493.31 29290.88 33961.05 37865.83 34684.15 33943.43 35794.83 31166.62 31560.63 36586.02 348
WB-MVSnew84.08 22983.51 22285.80 28391.34 25676.69 26595.62 22396.27 12281.77 22681.81 21292.81 21258.23 28894.70 31466.66 31487.06 19885.99 349
KD-MVS_2432*160077.63 30774.92 31285.77 28490.86 26779.44 19088.08 34193.92 26176.26 30967.05 33882.78 34772.15 19791.92 35161.53 33741.62 39485.94 350
miper_refine_blended77.63 30774.92 31285.77 28490.86 26779.44 19088.08 34193.92 26176.26 30967.05 33882.78 34772.15 19791.92 35161.53 33741.62 39485.94 350
D2MVS82.67 25481.55 25186.04 28187.77 31376.47 26695.21 23996.58 8982.66 21170.26 32585.46 32360.39 27295.80 26576.40 24979.18 26385.83 352
COLMAP_ROBcopyleft73.24 1975.74 32073.00 32783.94 31492.38 22069.08 34191.85 31286.93 36761.48 37465.32 34890.27 25242.27 36396.93 21650.91 37375.63 28485.80 353
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
CL-MVSNet_self_test75.81 31974.14 32180.83 34078.33 37667.79 34694.22 27093.52 28577.28 30169.82 32781.54 35361.47 26889.22 37057.59 35353.51 37685.48 354
CMPMVSbinary54.94 2175.71 32174.56 31679.17 34879.69 37255.98 38289.59 32993.30 29560.28 37953.85 38389.07 26547.68 34696.33 24076.55 24681.02 24885.22 355
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
LTVRE_ROB73.68 1877.99 30275.74 30784.74 30190.45 27572.02 31786.41 35691.12 33272.57 33966.63 34287.27 29154.95 31996.98 21156.29 35975.98 28085.21 356
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
N_pmnet61.30 35360.20 35664.60 37284.32 35217.00 41391.67 31610.98 41161.77 37258.45 37578.55 36549.89 33691.83 35442.27 38863.94 35784.97 357
MIMVSNet169.44 34466.65 34877.84 35276.48 38362.84 36787.42 34788.97 35466.96 36257.75 37879.72 36332.77 38485.83 38446.32 38363.42 35984.85 358
Baseline_NR-MVSNet81.22 27580.07 27384.68 30385.32 34475.12 28796.48 17488.80 35676.24 31177.28 25586.40 31067.61 22394.39 32275.73 25766.73 34884.54 359
TransMVSNet (Re)76.94 31374.38 31784.62 30685.92 33575.25 28695.28 23489.18 35373.88 32767.22 33586.46 30659.64 27594.10 32659.24 34852.57 38084.50 360
KD-MVS_self_test70.97 34269.31 34275.95 36176.24 38655.39 38687.45 34690.94 33870.20 35162.96 36077.48 36844.01 35488.09 37361.25 34153.26 37784.37 361
MS-PatchMatch83.05 24781.82 24886.72 27289.64 29079.10 20294.88 25394.59 22579.70 26670.67 32289.65 26050.43 33396.82 22270.82 29795.99 10784.25 362
ambc76.02 35968.11 39351.43 38864.97 39689.59 34760.49 36974.49 37617.17 39592.46 34461.50 33952.85 37984.17 363
test_method56.77 35554.53 35963.49 37476.49 38240.70 40075.68 38774.24 39419.47 40248.73 38571.89 38519.31 39365.80 40257.46 35447.51 38883.97 364
tfpnnormal78.14 30175.42 30886.31 27788.33 30779.24 19694.41 26196.22 12773.51 32969.81 32885.52 32255.43 31495.75 26847.65 38267.86 33783.95 365
test20.0372.36 33671.15 33375.98 36077.79 37759.16 37892.40 30689.35 35174.09 32561.50 36584.32 33748.09 34085.54 38550.63 37462.15 36383.24 366
Anonymous2024052172.06 33869.91 33978.50 35177.11 38161.67 37191.62 31790.97 33765.52 36462.37 36179.05 36436.32 37590.96 36257.75 35268.52 32982.87 367
OpenMVS_ROBcopyleft68.52 2073.02 33369.57 34083.37 32380.54 37071.82 32193.60 28388.22 36162.37 36961.98 36383.15 34635.31 38095.47 28445.08 38575.88 28282.82 368
UnsupCasMVSNet_bld68.60 34864.50 35280.92 33974.63 38767.80 34583.97 36892.94 30665.12 36554.63 38268.23 38835.97 37792.17 35060.13 34344.83 38982.78 369
MVP-Stereo82.65 25581.67 25085.59 29186.10 33378.29 22293.33 28992.82 30777.75 29469.17 33287.98 28259.28 28195.76 26771.77 28596.88 8782.73 370
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
pmmvs-eth3d73.59 32870.66 33582.38 33076.40 38473.38 30089.39 33389.43 35072.69 33860.34 37077.79 36746.43 35091.26 36066.42 31957.06 37082.51 371
PM-MVS69.32 34566.93 34776.49 35773.60 38855.84 38385.91 35979.32 39074.72 32161.09 36778.18 36621.76 39291.10 36170.86 29556.90 37182.51 371
TinyColmap72.41 33568.99 34482.68 32888.11 30869.59 33888.41 33985.20 37465.55 36357.91 37684.82 33430.80 38795.94 25751.38 37068.70 32782.49 373
LF4IMVS72.36 33670.82 33476.95 35579.18 37356.33 38186.12 35886.11 37269.30 35563.06 35886.66 30233.03 38392.25 34765.33 32368.64 32882.28 374
TDRefinement69.20 34665.78 35079.48 34566.04 39662.21 36888.21 34086.12 37162.92 36861.03 36885.61 31933.23 38294.16 32555.82 36253.02 37882.08 375
EG-PatchMatch MVS74.92 32372.02 33083.62 32083.76 36173.28 30393.62 28292.04 31868.57 35658.88 37383.80 34131.87 38595.57 28256.97 35778.67 26782.00 376
mvsany_test367.19 34965.34 35172.72 36463.08 39748.57 39083.12 37178.09 39172.07 34161.21 36677.11 37022.94 39187.78 37778.59 22451.88 38181.80 377
test_fmvs369.56 34369.19 34370.67 36569.01 39147.05 39190.87 32386.81 36871.31 34766.79 34177.15 36916.40 39683.17 38881.84 19762.51 36281.79 378
new-patchmatchnet68.85 34765.93 34977.61 35473.57 38963.94 36290.11 32888.73 35871.62 34555.08 38173.60 37840.84 36987.22 38151.35 37248.49 38681.67 379
test_040272.68 33469.54 34182.09 33388.67 30271.81 32292.72 30286.77 36961.52 37362.21 36283.91 34043.22 35993.76 33334.60 39272.23 30280.72 380
test_f64.01 35262.13 35569.65 36663.00 39845.30 39783.66 37080.68 38761.30 37555.70 38072.62 38214.23 39884.64 38669.84 30058.11 36879.00 381
pmmvs365.75 35162.18 35476.45 35867.12 39564.54 35788.68 33785.05 37554.77 39057.54 37973.79 37729.40 38886.21 38355.49 36347.77 38778.62 382
LCM-MVSNet52.52 36048.24 36365.35 37047.63 40741.45 39972.55 39283.62 38231.75 39537.66 39357.92 3939.19 40576.76 39549.26 37844.60 39077.84 383
test_vis1_rt73.96 32672.40 32978.64 35083.91 35861.16 37395.63 22268.18 40076.32 30860.09 37174.77 37429.01 38997.54 17887.74 14275.94 28177.22 384
new_pmnet66.18 35063.18 35375.18 36376.27 38561.74 37083.79 36984.66 37756.64 38851.57 38471.85 38631.29 38687.93 37449.98 37662.55 36175.86 385
PMMVS250.90 36246.31 36564.67 37155.53 40146.67 39377.30 38571.02 39740.89 39234.16 39659.32 3919.83 40476.14 39740.09 39128.63 39971.21 386
ANet_high46.22 36341.28 37061.04 37739.91 40946.25 39570.59 39376.18 39358.87 38523.09 40148.00 39812.58 40166.54 40128.65 39613.62 40270.35 387
DeepMVS_CXcopyleft64.06 37378.53 37543.26 39868.11 40269.94 35238.55 39276.14 37218.53 39479.34 39143.72 38641.62 39469.57 388
FPMVS55.09 35852.93 36161.57 37655.98 40040.51 40183.11 37283.41 38337.61 39434.95 39571.95 38414.40 39776.95 39429.81 39465.16 35267.25 389
APD_test156.56 35653.58 36065.50 36967.93 39446.51 39477.24 38672.95 39538.09 39342.75 39175.17 37313.38 39982.78 38940.19 39054.53 37367.23 390
WB-MVS57.26 35456.22 35760.39 37869.29 39035.91 40586.39 35770.06 39859.84 38346.46 38872.71 38151.18 32978.11 39215.19 40234.89 39767.14 391
SSC-MVS56.01 35754.96 35859.17 37968.42 39234.13 40684.98 36569.23 39958.08 38745.36 38971.67 38750.30 33577.46 39314.28 40332.33 39865.91 392
EGC-MVSNET52.46 36147.56 36467.15 36881.98 36560.11 37582.54 37372.44 3960.11 4080.70 40974.59 37525.11 39083.26 38729.04 39561.51 36458.09 393
testf145.70 36442.41 36655.58 38053.29 40440.02 40268.96 39462.67 40427.45 39729.85 39761.58 3895.98 40773.83 39928.49 39743.46 39252.90 394
APD_test245.70 36442.41 36655.58 38053.29 40440.02 40268.96 39462.67 40427.45 39729.85 39761.58 3895.98 40773.83 39928.49 39743.46 39252.90 394
test_vis3_rt54.10 35951.04 36263.27 37558.16 39946.08 39684.17 36749.32 41056.48 38936.56 39449.48 3978.03 40691.91 35367.29 31149.87 38251.82 396
PMVScopyleft34.80 2339.19 36835.53 37150.18 38329.72 41030.30 40859.60 39866.20 40326.06 39917.91 40349.53 3963.12 40974.09 39818.19 40149.40 38346.14 397
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive35.65 2233.85 36929.49 37446.92 38441.86 40836.28 40450.45 39956.52 40718.75 40318.28 40237.84 3992.41 41058.41 40318.71 40020.62 40046.06 398
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
tmp_tt41.54 36741.93 36940.38 38520.10 41126.84 40961.93 39759.09 40614.81 40428.51 39980.58 35735.53 37848.33 40663.70 33113.11 40345.96 399
Gipumacopyleft45.11 36642.05 36854.30 38280.69 36851.30 38935.80 40083.81 38128.13 39627.94 40034.53 40011.41 40376.70 39621.45 39954.65 37234.90 400
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
E-PMN32.70 37032.39 37233.65 38653.35 40325.70 41074.07 39053.33 40821.08 40017.17 40433.63 40211.85 40254.84 40412.98 40414.04 40120.42 401
EMVS31.70 37131.45 37332.48 38750.72 40623.95 41174.78 38952.30 40920.36 40116.08 40531.48 40312.80 40053.60 40511.39 40513.10 40419.88 402
test1239.07 37511.73 3781.11 3890.50 4130.77 41489.44 3320.20 4140.34 4072.15 40810.72 4070.34 4120.32 4081.79 4080.08 4072.23 403
testmvs9.92 37412.94 3770.84 3900.65 4120.29 41593.78 2790.39 4130.42 4062.85 40715.84 4060.17 4130.30 4092.18 4070.21 4061.91 404
wuyk23d14.10 37313.89 37614.72 38855.23 40222.91 41233.83 4013.56 4124.94 4054.11 4062.28 4082.06 41119.66 40710.23 4068.74 4051.59 405
test_blank0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uanet_test0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
DCPMVS0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
cdsmvs_eth3d_5k21.43 37228.57 3750.00 3910.00 4140.00 4160.00 40295.93 1510.00 4090.00 41097.66 7463.57 2520.00 4100.00 4090.00 4080.00 406
pcd_1.5k_mvsjas5.92 3777.89 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 40971.04 2090.00 4100.00 4090.00 4080.00 406
sosnet-low-res0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
sosnet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uncertanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
Regformer0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
ab-mvs-re8.11 37610.81 3790.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 41097.30 960.00 4140.00 4100.00 4090.00 4080.00 406
uanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
WAC-MVS67.18 34949.00 379
FOURS198.51 3978.01 23398.13 5096.21 12883.04 20094.39 52
test_one_060198.91 1884.56 7896.70 7188.06 8096.57 2398.77 1088.04 20
eth-test20.00 414
eth-test0.00 414
ZD-MVS99.09 883.22 10296.60 8782.88 20593.61 6298.06 5282.93 5299.14 9795.51 5098.49 38
test_241102_ONE99.03 1585.03 6796.78 5588.72 6797.79 798.90 588.48 1799.82 18
9.1494.26 3098.10 5798.14 4796.52 9584.74 15494.83 4798.80 782.80 5499.37 8095.95 4298.42 41
save fliter98.24 5183.34 9998.61 3496.57 9091.32 34
test072699.05 985.18 5999.11 1596.78 5588.75 6597.65 1298.91 287.69 22
test_part298.90 1985.14 6596.07 29
sam_mvs75.35 155
MTGPAbinary96.33 118
test_post185.88 36030.24 40473.77 17895.07 30673.89 273
test_post33.80 40176.17 13495.97 253
patchmatchnet-post77.09 37177.78 10695.39 286
MTMP97.53 9268.16 401
gm-plane-assit92.27 22679.64 18884.47 16495.15 16397.93 15485.81 157
TEST998.64 3183.71 9097.82 6996.65 7884.29 17195.16 3698.09 4784.39 3799.36 81
test_898.63 3383.64 9397.81 7196.63 8384.50 16295.10 4098.11 4684.33 3899.23 86
agg_prior98.59 3583.13 10396.56 9294.19 5499.16 96
test_prior482.34 11697.75 76
test_prior298.37 4086.08 12394.57 5098.02 5383.14 5095.05 5398.79 26
旧先验296.97 14274.06 32696.10 2897.76 16588.38 137
新几何296.42 181
原ACMM296.84 151
testdata299.48 7376.45 248
segment_acmp82.69 55
testdata195.57 22587.44 96
plane_prior791.86 24777.55 249
plane_prior691.98 24377.92 23864.77 247
plane_prior494.15 189
plane_prior377.75 24590.17 5281.33 215
plane_prior297.18 11989.89 55
plane_prior191.95 245
plane_prior77.96 23597.52 9590.36 5082.96 234
n20.00 415
nn0.00 415
door-mid79.75 389
test1196.50 98
door80.13 388
HQP5-MVS78.48 215
HQP-NCC92.08 23897.63 8390.52 4582.30 201
ACMP_Plane92.08 23897.63 8390.52 4582.30 201
BP-MVS87.67 144
HQP3-MVS94.80 20983.01 232
HQP2-MVS65.40 241
NP-MVS92.04 24278.22 22594.56 179
MDTV_nov1_ep1383.69 21594.09 17381.01 14786.78 35396.09 13783.81 18584.75 17284.32 33774.44 17196.54 23263.88 32985.07 220
ACMMP++_ref78.45 272
ACMMP++79.05 264
Test By Simon71.65 202