This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted by
SED-MVS98.18 298.10 498.41 1799.63 2195.24 2499.77 897.72 7694.17 2699.30 699.54 393.32 1999.98 1099.70 399.81 2399.99 1
IU-MVS99.63 2195.38 2197.73 7495.54 1599.54 199.69 599.81 2399.99 1
OPU-MVS99.49 499.64 2098.51 499.77 899.19 3495.12 899.97 2399.90 199.92 399.99 1
test_241102_TWO97.72 7694.17 2699.23 899.54 393.14 2499.98 1099.70 399.82 1999.99 1
DeepPCF-MVS93.56 196.55 4397.84 1092.68 21798.71 9978.11 33699.70 1697.71 8098.18 197.36 5999.76 190.37 5099.94 3799.27 1399.54 6199.99 1
MCST-MVS98.18 297.95 998.86 599.85 396.60 999.70 1697.98 4697.18 295.96 9199.33 2392.62 26100.00 198.99 1999.93 199.98 6
DVP-MVS++98.18 298.09 598.44 1599.61 2795.38 2199.55 3597.68 8593.01 5399.23 899.45 1695.12 899.98 1099.25 1599.92 399.97 7
PC_three_145294.60 2199.41 299.12 4895.50 799.96 3099.84 299.92 399.97 7
MG-MVS97.24 1996.83 3198.47 1499.79 595.71 1799.07 9899.06 994.45 2496.42 8498.70 9888.81 6899.74 7595.35 9699.86 1299.97 7
MSC_two_6792asdad99.51 299.61 2798.60 297.69 8399.98 1099.55 1099.83 1599.96 10
No_MVS99.51 299.61 2798.60 297.69 8399.98 1099.55 1099.83 1599.96 10
test_0728_SECOND98.77 799.66 1596.37 1399.72 1397.68 8599.98 1099.64 699.82 1999.96 10
CNVR-MVS98.46 198.38 198.72 899.80 496.19 1499.80 797.99 4597.05 399.41 299.59 292.89 25100.00 198.99 1999.90 799.96 10
DeepC-MVS_fast93.52 297.16 2496.84 3098.13 2399.61 2794.45 5098.85 12197.64 9496.51 795.88 9499.39 2187.35 9799.99 596.61 6899.69 4199.96 10
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_0728_THIRD93.01 5399.07 1199.46 1194.66 1499.97 2399.25 1599.82 1999.95 15
DPE-MVScopyleft98.11 698.00 698.44 1599.50 4795.39 2099.29 7397.72 7694.50 2298.64 2499.54 393.32 1999.97 2399.58 999.90 799.95 15
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MSP-MVS97.77 998.18 296.53 10199.54 4090.14 14399.41 5997.70 8195.46 1798.60 2599.19 3495.71 499.49 10998.15 4299.85 1399.95 15
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
testtj97.23 2197.05 2297.75 3899.75 793.34 7399.16 8297.74 7091.28 9898.40 3099.29 2489.95 5499.98 1098.20 4199.70 3999.94 18
DPM-MVS97.86 897.25 1999.68 198.25 10999.10 199.76 1197.78 6596.61 498.15 3699.53 793.62 17100.00 191.79 15099.80 2799.94 18
NCCC98.12 598.11 398.13 2399.76 694.46 4999.81 597.88 5196.54 598.84 1899.46 1192.55 2799.98 1098.25 4099.93 199.94 18
APDe-MVS97.53 1297.47 1297.70 3999.58 3393.63 6699.56 3497.52 12393.59 4698.01 4699.12 4890.80 4099.55 9999.26 1499.79 2999.93 21
ETH3 D test640097.67 1197.33 1898.69 999.69 996.43 1199.63 2697.73 7491.05 10198.66 2399.53 790.59 4299.71 7899.32 1299.80 2799.91 22
agg_prior297.84 4799.87 999.91 22
test9_res98.60 2599.87 999.90 24
SteuartSystems-ACMMP97.25 1897.34 1797.01 6597.38 13691.46 11099.75 1297.66 8894.14 3098.13 3799.26 2692.16 2999.66 8597.91 4699.64 4799.90 24
Skip Steuart: Steuart Systems R&D Blog.
PHI-MVS96.65 4096.46 4097.21 5999.34 5891.77 10199.70 1698.05 4186.48 23198.05 4399.20 3389.33 6299.96 3098.38 3499.62 5199.90 24
ACMMP_NAP96.59 4196.18 4997.81 3598.82 9593.55 6898.88 12097.59 10890.66 11197.98 4799.14 4586.59 114100.00 196.47 7299.46 6499.89 27
train_agg97.20 2397.08 2197.57 4599.57 3793.17 7699.38 6297.66 8890.18 12798.39 3199.18 3790.94 3599.66 8598.58 2899.85 1399.88 28
MSLP-MVS++97.50 1597.45 1497.63 4199.65 1993.21 7599.70 1698.13 3894.61 2097.78 5299.46 1189.85 5599.81 6797.97 4499.91 699.88 28
APD-MVScopyleft96.95 3196.72 3497.63 4199.51 4693.58 6799.16 8297.44 14190.08 13298.59 2699.07 5489.06 6499.42 12097.92 4599.66 4399.88 28
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
agg_prior197.12 2597.03 2397.38 5399.54 4092.66 8899.35 6797.64 9490.38 12097.98 4799.17 3990.84 3999.61 9498.57 2999.78 3199.87 31
MVS93.92 11392.28 13998.83 695.69 19496.82 796.22 28998.17 3384.89 25584.34 23298.61 10579.32 20799.83 6293.88 12499.43 6899.86 32
无先验98.52 15997.82 5787.20 21699.90 4587.64 20099.85 33
SMA-MVScopyleft97.24 1996.99 2598.00 3099.30 6594.20 5699.16 8297.65 9389.55 14899.22 1099.52 990.34 5199.99 598.32 3899.83 1599.82 34
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
region2R96.30 5296.17 5296.70 9199.70 890.31 13999.46 5097.66 8890.55 11597.07 6499.07 5486.85 10699.97 2395.43 9499.74 3299.81 35
test22298.32 10891.21 11498.08 20997.58 11083.74 27095.87 9599.02 6186.74 10999.64 4799.81 35
TSAR-MVS + GP.96.95 3196.91 2797.07 6298.88 9291.62 10699.58 3196.54 20495.09 1996.84 7398.63 10391.16 3199.77 7299.04 1896.42 14299.81 35
test_prior397.07 2897.09 2097.01 6599.58 3391.77 10199.57 3297.57 11391.43 9398.12 3998.97 6790.43 4599.49 10998.33 3699.81 2399.79 38
test_prior97.01 6599.58 3391.77 10197.57 11399.49 10999.79 38
新几何197.40 5198.92 9092.51 9597.77 6785.52 24196.69 7999.06 5688.08 8199.89 4884.88 22799.62 5199.79 38
112195.19 8494.45 9097.42 4998.88 9292.58 9396.22 28997.75 6885.50 24396.86 7099.01 6588.59 7299.90 4587.64 20099.60 5699.79 38
patch_mono-297.10 2797.97 894.49 16799.21 7383.73 28399.62 2898.25 2795.28 1899.38 498.91 8092.28 2899.94 3799.61 899.22 8399.78 42
test117295.92 6596.07 5795.46 13599.42 5487.24 21498.51 16297.24 15690.29 12396.56 8399.12 4886.73 11099.36 12697.33 5299.42 7199.78 42
HFP-MVS96.42 4896.26 4796.90 7799.69 990.96 12799.47 4597.81 6090.54 11696.88 6799.05 5787.57 8799.96 3095.65 8799.72 3499.78 42
#test#96.48 4596.34 4496.90 7799.69 990.96 12799.53 4097.81 6090.94 10596.88 6799.05 5787.57 8799.96 3095.87 8499.72 3499.78 42
XVS96.47 4696.37 4296.77 8499.62 2590.66 13599.43 5697.58 11092.41 7296.86 7098.96 7287.37 9399.87 5295.65 8799.43 6899.78 42
X-MVStestdata90.69 18488.66 20596.77 8499.62 2590.66 13599.43 5697.58 11092.41 7296.86 7029.59 38087.37 9399.87 5295.65 8799.43 6899.78 42
testdata95.26 14398.20 11187.28 20997.60 10485.21 24698.48 2999.15 4388.15 7998.72 15690.29 16699.45 6699.78 42
xxxxxxxxxxxxxcwj97.51 1397.42 1597.78 3799.34 5893.85 6399.65 2495.45 27995.69 1198.70 2199.42 1990.42 4799.72 7698.47 3199.65 4499.77 49
SF-MVS97.22 2296.92 2698.12 2599.11 7994.88 3599.44 5397.45 13789.60 14498.70 2199.42 1990.42 4799.72 7698.47 3199.65 4499.77 49
SD-MVS97.51 1397.40 1697.81 3599.01 8593.79 6599.33 7097.38 14893.73 4298.83 1999.02 6190.87 3899.88 4998.69 2399.74 3299.77 49
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
SR-MVS96.13 5696.16 5496.07 11899.42 5489.04 16698.59 15497.33 15290.44 11896.84 7399.12 4886.75 10899.41 12297.47 4999.44 6799.76 52
Regformer-196.97 3096.80 3297.47 4799.46 5293.11 7898.89 11897.94 4792.89 5996.90 6699.02 6189.78 5699.53 10297.06 5599.26 8099.75 53
Regformer-296.94 3396.78 3397.42 4999.46 5292.97 8598.89 11897.93 4892.86 6196.88 6799.02 6189.74 5899.53 10297.03 5699.26 8099.75 53
ACMMPR96.28 5396.14 5696.73 8899.68 1290.47 13799.47 4597.80 6290.54 11696.83 7599.03 6086.51 11899.95 3495.65 8799.72 3499.75 53
mPP-MVS95.90 6695.75 6896.38 10899.58 3389.41 16399.26 7497.41 14590.66 11194.82 11498.95 7486.15 12699.98 1095.24 9999.64 4799.74 56
PAPR96.35 4995.82 6497.94 3299.63 2194.19 5799.42 5897.55 11692.43 6893.82 13399.12 4887.30 9899.91 4394.02 12099.06 8799.74 56
API-MVS94.78 9394.18 9896.59 9699.21 7390.06 15098.80 12697.78 6583.59 27493.85 13199.21 3283.79 15399.97 2392.37 14699.00 9099.74 56
CSCG94.87 9094.71 8595.36 13999.54 4086.49 22499.34 6998.15 3682.71 28990.15 18299.25 2789.48 6199.86 5794.97 10598.82 10099.72 59
zzz-MVS96.21 5595.96 5996.96 7399.29 6691.19 11598.69 13897.45 13792.58 6394.39 12199.24 2986.43 12099.99 596.22 7699.40 7299.71 60
MTAPA96.09 5795.80 6796.96 7399.29 6691.19 11597.23 25397.45 13792.58 6394.39 12199.24 2986.43 12099.99 596.22 7699.40 7299.71 60
ETH3D-3000-0.197.29 1797.01 2498.12 2599.18 7594.97 3299.47 4597.52 12389.85 13698.79 2099.46 1190.41 4999.69 8098.78 2199.67 4299.70 62
APD-MVS_3200maxsize95.64 7695.65 7295.62 13199.24 7087.80 19398.42 17297.22 15988.93 16696.64 8298.98 6685.49 13599.36 12696.68 6599.27 7999.70 62
CP-MVS96.22 5496.15 5596.42 10699.67 1389.62 16099.70 1697.61 10290.07 13396.00 8899.16 4187.43 9199.92 4196.03 8299.72 3499.70 62
DVP-MVScopyleft98.07 798.00 698.29 1899.66 1595.20 2999.72 1397.47 13493.95 3199.07 1199.46 1193.18 2299.97 2399.64 699.82 1999.69 65
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
ZNCC-MVS96.09 5795.81 6696.95 7599.42 5491.19 11599.55 3597.53 12089.72 13995.86 9698.94 7986.59 11499.97 2395.13 10099.56 5999.68 66
HPM-MVS++copyleft97.72 1097.59 1198.14 2299.53 4594.76 4299.19 7797.75 6895.66 1398.21 3599.29 2491.10 3399.99 597.68 4899.87 999.68 66
CDPH-MVS96.56 4296.18 4997.70 3999.59 3193.92 6199.13 9497.44 14189.02 16197.90 5099.22 3188.90 6799.49 10994.63 11399.79 2999.68 66
PAPM_NR95.43 7795.05 8296.57 9999.42 5490.14 14398.58 15697.51 12690.65 11392.44 14798.90 8187.77 8699.90 4590.88 15999.32 7599.68 66
canonicalmvs95.02 8893.96 10698.20 2097.53 13495.92 1698.71 13396.19 22791.78 8595.86 9698.49 11379.53 20599.03 14596.12 7991.42 20499.66 70
PGM-MVS95.85 6795.65 7296.45 10499.50 4789.77 15798.22 19398.90 1289.19 15696.74 7798.95 7485.91 13099.92 4193.94 12299.46 6499.66 70
DELS-MVS97.12 2596.60 3798.68 1098.03 11896.57 1099.84 397.84 5596.36 895.20 10998.24 12388.17 7899.83 6296.11 8099.60 5699.64 72
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
3Dnovator+87.72 893.43 12991.84 15198.17 2195.73 19395.08 3198.92 11597.04 17991.42 9581.48 27797.60 14474.60 23299.79 7090.84 16098.97 9199.64 72
CANet97.00 2996.49 3998.55 1198.86 9496.10 1599.83 497.52 12395.90 997.21 6198.90 8182.66 17699.93 4098.71 2298.80 10199.63 74
114514_t94.06 10993.05 12497.06 6399.08 8292.26 9798.97 11197.01 18382.58 29192.57 14598.22 12480.68 19899.30 13389.34 18099.02 8999.63 74
PAPM96.35 4995.94 6097.58 4394.10 24595.25 2398.93 11398.17 3394.26 2593.94 12998.72 9589.68 5997.88 18996.36 7599.29 7899.62 76
ETH3D cwj APD-0.1696.94 3396.58 3898.01 2998.62 10294.73 4499.13 9497.38 14888.44 18198.53 2899.39 2189.66 6099.69 8098.43 3399.61 5599.61 77
SR-MVS-dyc-post95.75 7395.86 6395.41 13899.22 7187.26 21298.40 17797.21 16089.63 14296.67 8098.97 6786.73 11099.36 12696.62 6699.31 7699.60 78
RE-MVS-def95.70 6999.22 7187.26 21298.40 17797.21 16089.63 14296.67 8098.97 6785.24 14096.62 6699.31 7699.60 78
TSAR-MVS + MP.97.44 1697.46 1397.39 5299.12 7893.49 7198.52 15997.50 12994.46 2398.99 1398.64 10191.58 3099.08 14498.49 3099.83 1599.60 78
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
旧先验198.97 8692.90 8797.74 7099.15 4391.05 3499.33 7499.60 78
test1297.83 3499.33 6494.45 5097.55 11697.56 5388.60 7099.50 10899.71 3899.55 82
HY-MVS88.56 795.29 8194.23 9498.48 1397.72 12496.41 1294.03 32098.74 1492.42 7195.65 10294.76 22186.52 11799.49 10995.29 9892.97 17799.53 83
GST-MVS95.97 6295.66 7096.90 7799.49 5091.22 11399.45 5297.48 13289.69 14095.89 9398.72 9586.37 12299.95 3494.62 11499.22 8399.52 84
MP-MVScopyleft96.00 5995.82 6496.54 10099.47 5190.13 14599.36 6697.41 14590.64 11495.49 10498.95 7485.51 13499.98 1096.00 8399.59 5899.52 84
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
alignmvs95.77 7195.00 8398.06 2897.35 13795.68 1899.71 1597.50 12991.50 9096.16 8798.61 10586.28 12399.00 14696.19 7891.74 19899.51 86
WTY-MVS95.97 6295.11 8198.54 1297.62 12896.65 899.44 5398.74 1492.25 7695.21 10898.46 11786.56 11699.46 11695.00 10492.69 18199.50 87
Regformer-396.50 4496.36 4396.91 7699.34 5891.72 10498.71 13397.90 5092.48 6796.00 8898.95 7488.60 7099.52 10596.44 7398.83 9899.49 88
Regformer-496.45 4796.33 4696.81 8399.34 5891.44 11198.71 13397.88 5192.43 6895.97 9098.95 7488.42 7499.51 10696.40 7498.83 9899.49 88
DP-MVS Recon95.85 6795.15 8097.95 3199.87 294.38 5399.60 2997.48 13286.58 22894.42 12099.13 4787.36 9699.98 1093.64 12998.33 11499.48 90
HPM-MVScopyleft95.41 7995.22 7895.99 12199.29 6689.14 16499.17 8197.09 17687.28 21595.40 10598.48 11484.93 14299.38 12495.64 9199.65 4499.47 91
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
dcpmvs_295.67 7596.18 4994.12 18398.82 9584.22 27697.37 24595.45 27990.70 11095.77 9998.63 10390.47 4498.68 15899.20 1799.22 8399.45 92
test_yl95.27 8294.60 8797.28 5698.53 10592.98 8399.05 10198.70 1786.76 22594.65 11897.74 13787.78 8499.44 11795.57 9292.61 18299.44 93
DCV-MVSNet95.27 8294.60 8797.28 5698.53 10592.98 8399.05 10198.70 1786.76 22594.65 11897.74 13787.78 8499.44 11795.57 9292.61 18299.44 93
MVS_111021_HR96.69 3896.69 3596.72 9098.58 10491.00 12699.14 9199.45 193.86 3795.15 11098.73 9388.48 7399.76 7397.23 5499.56 5999.40 95
CS-MVS95.75 7396.19 4894.40 17197.88 12186.22 23599.66 2396.12 23192.69 6298.07 4298.89 8387.09 10097.59 21296.71 6498.62 10799.39 96
CS-MVS-test95.98 6196.34 4494.90 15398.06 11787.66 19799.69 2296.10 23293.66 4398.35 3499.05 5786.28 12397.66 20696.96 6198.90 9599.37 97
lupinMVS96.32 5195.94 6097.44 4895.05 22394.87 3699.86 296.50 20693.82 4098.04 4498.77 8985.52 13298.09 17796.98 6098.97 9199.37 97
mvs_anonymous92.50 15291.65 15595.06 14896.60 16289.64 15997.06 25996.44 21086.64 22784.14 23493.93 23482.49 17896.17 28591.47 15196.08 15199.35 99
HPM-MVS_fast94.89 8994.62 8695.70 13099.11 7988.44 18399.14 9197.11 17285.82 23895.69 10198.47 11583.46 15899.32 13293.16 13799.63 5099.35 99
131493.44 12891.98 14897.84 3395.24 20794.38 5396.22 28997.92 4990.18 12782.28 26097.71 13977.63 21999.80 6991.94 14998.67 10599.34 101
LFMVS92.23 15890.84 17096.42 10698.24 11091.08 12398.24 19296.22 22383.39 27794.74 11698.31 12061.12 32498.85 14894.45 11792.82 17899.32 102
Effi-MVS+93.87 11693.15 12296.02 11995.79 19090.76 13196.70 27595.78 25986.98 21995.71 10097.17 16479.58 20398.01 18494.57 11596.09 15099.31 103
CHOSEN 1792x268894.35 10693.82 11095.95 12397.40 13588.74 17798.41 17498.27 2692.18 7891.43 15996.40 19078.88 20999.81 6793.59 13097.81 11899.30 104
ACMMPcopyleft94.67 9994.30 9295.79 12799.25 6988.13 18798.41 17498.67 2090.38 12091.43 15998.72 9582.22 18499.95 3493.83 12695.76 15699.29 105
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
MP-MVS-pluss95.80 6995.30 7597.29 5598.95 8992.66 8898.59 15497.14 16888.95 16493.12 14099.25 2785.62 13199.94 3796.56 7099.48 6399.28 106
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
EPMVS92.59 15091.59 15695.59 13397.22 14190.03 15191.78 33898.04 4290.42 11991.66 15490.65 29886.49 11997.46 21981.78 26396.31 14599.28 106
AdaColmapbinary93.82 11793.06 12396.10 11799.88 189.07 16598.33 18597.55 11686.81 22490.39 17998.65 10075.09 22999.98 1093.32 13597.53 12699.26 108
ET-MVSNet_ETH3D92.56 15191.45 15995.88 12496.39 17094.13 5999.46 5096.97 18592.18 7866.94 35698.29 12294.65 1594.28 33494.34 11883.82 25199.24 109
VNet95.08 8794.26 9397.55 4698.07 11693.88 6298.68 14098.73 1690.33 12297.16 6397.43 15179.19 20899.53 10296.91 6391.85 19699.24 109
CNLPA93.64 12492.74 13196.36 10998.96 8890.01 15399.19 7795.89 25386.22 23489.40 19098.85 8580.66 19999.84 6088.57 18896.92 13699.24 109
3Dnovator87.35 1193.17 14091.77 15397.37 5495.41 20493.07 8098.82 12497.85 5491.53 8982.56 25397.58 14671.97 26099.82 6591.01 15799.23 8299.22 112
GG-mvs-BLEND96.98 7196.53 16494.81 4187.20 35197.74 7093.91 13096.40 19096.56 296.94 23895.08 10198.95 9499.20 113
EIA-MVS95.11 8595.27 7794.64 16496.34 17286.51 22399.59 3096.62 19492.51 6594.08 12798.64 10186.05 12798.24 17195.07 10298.50 11199.18 114
Patchmatch-test86.25 26284.06 27792.82 21294.42 23982.88 29582.88 36694.23 32071.58 34879.39 29990.62 30089.00 6696.42 26563.03 35391.37 20599.16 115
gg-mvs-nofinetune90.00 19787.71 22096.89 8296.15 18194.69 4685.15 35797.74 7068.32 35992.97 14360.16 36996.10 396.84 24093.89 12398.87 9699.14 116
MVS_Test93.67 12392.67 13396.69 9296.72 16092.66 8897.22 25496.03 23587.69 20895.12 11194.03 23081.55 19198.28 17089.17 18496.46 14099.14 116
test250694.80 9294.21 9596.58 9796.41 16892.18 9998.01 21498.96 1090.82 10893.46 13697.28 15485.92 12898.45 16389.82 17197.19 13299.12 118
ECVR-MVScopyleft92.29 15591.33 16095.15 14496.41 16887.84 19298.10 20694.84 30390.82 10891.42 16197.28 15465.61 30698.49 16290.33 16597.19 13299.12 118
HyFIR lowres test93.68 12293.29 11894.87 15497.57 13288.04 18998.18 19798.47 2287.57 21091.24 16495.05 21485.49 13597.46 21993.22 13692.82 17899.10 120
Anonymous20240521188.84 21587.03 23294.27 17798.14 11584.18 27798.44 17095.58 27276.79 33589.34 19196.88 17753.42 34899.54 10187.53 20287.12 22599.09 121
baseline93.91 11493.30 11795.72 12995.10 22090.07 14797.48 24195.91 25091.03 10293.54 13597.68 14079.58 20398.02 18394.27 11995.14 16199.08 122
Vis-MVSNet (Re-imp)93.26 13793.00 12894.06 18696.14 18386.71 22298.68 14096.70 19288.30 18689.71 18997.64 14385.43 13896.39 26688.06 19596.32 14499.08 122
test111192.12 15991.19 16394.94 15296.15 18187.36 20698.12 20294.84 30390.85 10790.97 16797.26 15665.60 30798.37 16589.74 17497.14 13599.07 124
PatchmatchNetpermissive92.05 16291.04 16595.06 14896.17 18089.04 16691.26 34297.26 15389.56 14790.64 17390.56 30488.35 7697.11 23079.53 27596.07 15299.03 125
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
EPNet96.82 3696.68 3697.25 5898.65 10093.10 7999.48 4398.76 1396.54 597.84 5198.22 12487.49 9099.66 8595.35 9697.78 12199.00 126
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
sss94.85 9193.94 10797.58 4396.43 16794.09 6098.93 11399.16 889.50 14995.27 10797.85 13081.50 19299.65 8992.79 14494.02 17098.99 127
Patchmatch-RL test81.90 30580.13 30887.23 31780.71 36770.12 36284.07 36388.19 37183.16 28170.57 34482.18 35687.18 9992.59 34882.28 25862.78 35398.98 128
PVSNet87.13 1293.69 12092.83 13096.28 11197.99 11990.22 14299.38 6298.93 1191.42 9593.66 13497.68 14071.29 26899.64 9187.94 19797.20 13198.98 128
MVSFormer94.71 9894.08 10196.61 9595.05 22394.87 3697.77 22996.17 22886.84 22298.04 4498.52 10985.52 13295.99 29289.83 16998.97 9198.96 130
jason95.40 8094.86 8497.03 6492.91 27694.23 5599.70 1696.30 21793.56 4796.73 7898.52 10981.46 19497.91 18696.08 8198.47 11298.96 130
jason: jason.
CostFormer92.89 14392.48 13794.12 18394.99 22585.89 24692.89 32997.00 18486.98 21995.00 11390.78 29190.05 5397.51 21792.92 14191.73 19998.96 130
MAR-MVS94.43 10594.09 10095.45 13699.10 8187.47 20298.39 18197.79 6488.37 18494.02 12899.17 3978.64 21499.91 4392.48 14598.85 9798.96 130
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MDTV_nov1_ep13_2view91.17 11891.38 34087.45 21393.08 14186.67 11287.02 20498.95 134
DROMVSNet95.09 8695.17 7994.84 15695.42 20388.17 18599.48 4395.92 24591.47 9197.34 6098.36 11882.77 17297.41 22397.24 5398.58 10898.94 135
CVMVSNet90.30 18990.91 16888.46 30894.32 24173.58 35097.61 23897.59 10890.16 13088.43 19897.10 16676.83 22392.86 34382.64 25493.54 17398.93 136
ab-mvs91.05 17789.17 19496.69 9295.96 18791.72 10492.62 33397.23 15885.61 24089.74 18793.89 23668.55 28199.42 12091.09 15587.84 22198.92 137
IS-MVSNet93.00 14292.51 13694.49 16796.14 18387.36 20698.31 18895.70 26488.58 17490.17 18197.50 14883.02 16897.22 22787.06 20396.07 15298.90 138
CPTT-MVS94.60 10294.43 9195.09 14699.66 1586.85 21999.44 5397.47 13483.22 27994.34 12398.96 7282.50 17799.55 9994.81 10799.50 6298.88 139
Vis-MVSNetpermissive92.64 14791.85 15095.03 15095.12 21688.23 18498.48 16796.81 18991.61 8792.16 15097.22 16071.58 26698.00 18585.85 22097.81 11898.88 139
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
casdiffmvs93.98 11293.43 11595.61 13295.07 22289.86 15598.80 12695.84 25890.98 10492.74 14497.66 14279.71 20298.10 17694.72 11095.37 16098.87 141
GSMVS98.84 142
sam_mvs188.39 7598.84 142
SCA90.64 18589.25 19394.83 15794.95 22788.83 17396.26 28697.21 16090.06 13490.03 18390.62 30066.61 29896.81 24283.16 24894.36 16798.84 142
PMMVS93.62 12593.90 10992.79 21396.79 15881.40 31098.85 12196.81 18991.25 9996.82 7698.15 12877.02 22298.13 17493.15 13896.30 14698.83 145
ETV-MVS96.00 5996.00 5896.00 12096.56 16391.05 12499.63 2696.61 19593.26 5197.39 5898.30 12186.62 11398.13 17498.07 4397.57 12398.82 146
1112_ss92.71 14591.55 15796.20 11295.56 19891.12 11998.48 16794.69 30988.29 18786.89 21398.50 11187.02 10398.66 15984.75 22889.77 21698.81 147
Test_1112_low_res92.27 15790.97 16696.18 11395.53 20091.10 12198.47 16994.66 31088.28 18886.83 21593.50 24787.00 10498.65 16084.69 22989.74 21798.80 148
PatchT85.44 27583.19 28292.22 22293.13 27383.00 29083.80 36596.37 21370.62 35090.55 17479.63 36284.81 14594.87 32458.18 36391.59 20198.79 149
PVSNet_Blended95.94 6495.66 7096.75 8698.77 9791.61 10799.88 198.04 4293.64 4594.21 12497.76 13583.50 15699.87 5297.41 5097.75 12298.79 149
DeepC-MVS91.02 494.56 10493.92 10896.46 10397.16 14390.76 13198.39 18197.11 17293.92 3388.66 19598.33 11978.14 21699.85 5995.02 10398.57 10998.78 151
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
tpmrst92.78 14492.16 14394.65 16396.27 17487.45 20391.83 33797.10 17589.10 16094.68 11790.69 29588.22 7797.73 20489.78 17291.80 19798.77 152
原ACMM196.18 11399.03 8490.08 14697.63 9988.98 16297.00 6598.97 6788.14 8099.71 7888.23 19299.62 5198.76 153
tpm291.77 16491.09 16493.82 19594.83 23285.56 25592.51 33497.16 16784.00 26693.83 13290.66 29787.54 8997.17 22887.73 19991.55 20298.72 154
TAPA-MVS87.50 990.35 18789.05 19694.25 17998.48 10785.17 26298.42 17296.58 20082.44 29587.24 20798.53 10882.77 17298.84 14959.09 36197.88 11798.72 154
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
EI-MVSNet-Vis-set95.76 7295.63 7496.17 11599.14 7790.33 13898.49 16697.82 5791.92 8294.75 11598.88 8487.06 10299.48 11495.40 9597.17 13498.70 156
GeoE90.60 18689.56 18593.72 19995.10 22085.43 25699.41 5994.94 30183.96 26887.21 20896.83 17974.37 23797.05 23480.50 27393.73 17298.67 157
diffmvs94.59 10394.19 9695.81 12695.54 19990.69 13398.70 13795.68 26691.61 8795.96 9197.81 13280.11 20098.06 18096.52 7195.76 15698.67 157
DP-MVS88.75 22286.56 24095.34 14098.92 9087.45 20397.64 23793.52 33270.55 35181.49 27697.25 15774.43 23699.88 4971.14 32994.09 16998.67 157
abl_694.63 10194.48 8995.09 14698.61 10386.96 21798.06 21296.97 18589.31 15295.86 9698.56 10779.82 20199.64 9194.53 11698.65 10698.66 160
TESTMET0.1,193.82 11793.26 11995.49 13495.21 20990.25 14099.15 8897.54 11989.18 15791.79 15194.87 21789.13 6397.63 20986.21 21396.29 14798.60 161
dp90.16 19488.83 20194.14 18296.38 17186.42 22691.57 33997.06 17884.76 25788.81 19490.19 31684.29 14997.43 22275.05 30791.35 20698.56 162
EPP-MVSNet93.75 11993.67 11294.01 18995.86 18985.70 25198.67 14297.66 8884.46 26091.36 16297.18 16391.16 3197.79 19592.93 14093.75 17198.53 163
Fast-Effi-MVS+91.72 16590.79 17394.49 16795.89 18887.40 20599.54 3995.70 26485.01 25389.28 19295.68 20377.75 21897.57 21683.22 24795.06 16298.51 164
CDS-MVSNet93.47 12793.04 12594.76 15894.75 23489.45 16298.82 12497.03 18187.91 19990.97 16796.48 18889.06 6496.36 26889.50 17592.81 18098.49 165
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
LCM-MVSNet-Re88.59 22488.61 20688.51 30795.53 20072.68 35496.85 26788.43 37088.45 17873.14 33690.63 29975.82 22594.38 33392.95 13995.71 15898.48 166
TAMVS92.62 14892.09 14694.20 18094.10 24587.68 19598.41 17496.97 18587.53 21289.74 18796.04 19984.77 14696.49 26088.97 18692.31 18898.42 167
CR-MVSNet88.83 21787.38 22693.16 20793.47 26486.24 23384.97 35994.20 32188.92 16790.76 17186.88 34284.43 14794.82 32670.64 33092.17 19298.41 168
RPMNet85.07 27881.88 29594.64 16493.47 26486.24 23384.97 35997.21 16064.85 36590.76 17178.80 36380.95 19799.27 13453.76 36692.17 19298.41 168
BH-RMVSNet91.25 17489.99 18195.03 15096.75 15988.55 18098.65 14494.95 30087.74 20587.74 20197.80 13368.27 28498.14 17380.53 27297.49 12798.41 168
UA-Net93.30 13492.62 13495.34 14096.27 17488.53 18295.88 29996.97 18590.90 10695.37 10697.07 16882.38 18299.10 14383.91 24294.86 16498.38 171
tpm89.67 20288.95 19891.82 23292.54 27981.43 30992.95 32895.92 24587.81 20190.50 17689.44 32384.99 14195.65 30783.67 24582.71 26398.38 171
MVS_111021_LR95.78 7095.94 6095.28 14298.19 11387.69 19498.80 12699.26 793.39 4895.04 11298.69 9984.09 15199.76 7396.96 6199.06 8798.38 171
test-LLR93.11 14192.68 13294.40 17194.94 22887.27 21099.15 8897.25 15490.21 12491.57 15594.04 22884.89 14397.58 21385.94 21796.13 14898.36 174
test-mter93.27 13692.89 12994.40 17194.94 22887.27 21099.15 8897.25 15488.95 16491.57 15594.04 22888.03 8297.58 21385.94 21796.13 14898.36 174
IB-MVS89.43 692.12 15990.83 17295.98 12295.40 20590.78 13099.81 598.06 4091.23 10085.63 22293.66 24290.63 4198.78 15091.22 15371.85 33398.36 174
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
VDD-MVS91.24 17590.18 18094.45 17097.08 14985.84 24998.40 17796.10 23286.99 21793.36 13798.16 12754.27 34599.20 13596.59 6990.63 21298.31 177
PVSNet_Blended_VisFu94.67 9994.11 9996.34 11097.14 14591.10 12199.32 7197.43 14392.10 8191.53 15896.38 19383.29 16299.68 8393.42 13496.37 14398.25 178
thisisatest051594.75 9494.19 9696.43 10596.13 18692.64 9299.47 4597.60 10487.55 21193.17 13997.59 14594.71 1398.42 16488.28 19193.20 17498.24 179
EI-MVSNet-UG-set95.43 7795.29 7695.86 12599.07 8389.87 15498.43 17197.80 6291.78 8594.11 12698.77 8986.25 12599.48 11494.95 10696.45 14198.22 180
QAPM91.41 17189.49 18797.17 6195.66 19693.42 7298.60 15297.51 12680.92 31381.39 27897.41 15272.89 25399.87 5282.33 25798.68 10498.21 181
CHOSEN 280x42096.80 3796.85 2996.66 9497.85 12294.42 5294.76 31298.36 2492.50 6695.62 10397.52 14797.92 197.38 22498.31 3998.80 10198.20 182
TR-MVS90.77 18189.44 18894.76 15896.31 17388.02 19097.92 21895.96 23985.52 24188.22 19997.23 15966.80 29798.09 17784.58 23192.38 18698.17 183
GA-MVS90.10 19588.69 20494.33 17592.44 28087.97 19199.08 9796.26 22189.65 14186.92 21293.11 25568.09 28596.96 23682.54 25690.15 21498.05 184
OMC-MVS93.90 11593.62 11394.73 16198.63 10187.00 21698.04 21396.56 20192.19 7792.46 14698.73 9379.49 20699.14 14192.16 14894.34 16898.03 185
xiu_mvs_v2_base96.66 3996.17 5298.11 2797.11 14896.96 699.01 10797.04 17995.51 1698.86 1799.11 5382.19 18599.36 12698.59 2798.14 11598.00 186
PS-MVSNAJ96.87 3596.40 4198.29 1897.35 13797.29 599.03 10497.11 17295.83 1098.97 1499.14 4582.48 17999.60 9698.60 2599.08 8698.00 186
thisisatest053094.00 11193.52 11495.43 13795.76 19290.02 15298.99 10997.60 10486.58 22891.74 15297.36 15394.78 1298.34 16686.37 21292.48 18597.94 188
tpm cat188.89 21387.27 22893.76 19695.79 19085.32 25990.76 34697.09 17676.14 33785.72 22188.59 32982.92 16998.04 18276.96 29391.43 20397.90 189
tttt051793.30 13493.01 12794.17 18195.57 19786.47 22598.51 16297.60 10485.99 23690.55 17497.19 16294.80 1198.31 16785.06 22491.86 19597.74 190
h-mvs3392.47 15391.95 14994.05 18797.13 14685.01 26598.36 18398.08 3993.85 3896.27 8596.73 18283.19 16599.43 11995.81 8568.09 34397.70 191
ADS-MVSNet287.62 24286.88 23489.86 28096.21 17779.14 32787.15 35292.99 33683.01 28289.91 18587.27 33878.87 21092.80 34674.20 31492.27 18997.64 192
ADS-MVSNet88.99 20987.30 22794.07 18596.21 17787.56 20087.15 35296.78 19183.01 28289.91 18587.27 33878.87 21097.01 23574.20 31492.27 18997.64 192
BH-w/o92.32 15491.79 15293.91 19296.85 15586.18 23799.11 9695.74 26288.13 19284.81 22697.00 17177.26 22197.91 18689.16 18598.03 11697.64 192
LS3D90.19 19288.72 20394.59 16698.97 8686.33 23296.90 26596.60 19674.96 34084.06 23698.74 9275.78 22699.83 6274.93 30897.57 12397.62 195
VDDNet90.08 19688.54 21194.69 16294.41 24087.68 19598.21 19596.40 21176.21 33693.33 13897.75 13654.93 34398.77 15194.71 11190.96 20797.61 196
EPNet_dtu92.28 15692.15 14492.70 21697.29 13984.84 26798.64 14697.82 5792.91 5893.02 14297.02 17085.48 13795.70 30672.25 32694.89 16397.55 197
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
BH-untuned91.46 17090.84 17093.33 20496.51 16684.83 26898.84 12395.50 27686.44 23383.50 23896.70 18375.49 22897.77 19786.78 21097.81 11897.40 198
thres20093.69 12092.59 13596.97 7297.76 12394.74 4399.35 6799.36 289.23 15591.21 16596.97 17283.42 15998.77 15185.08 22390.96 20797.39 199
JIA-IIPM85.97 26584.85 26589.33 29593.23 27173.68 34985.05 35897.13 17069.62 35591.56 15768.03 36788.03 8296.96 23677.89 28893.12 17597.34 200
baseline192.61 14991.28 16196.58 9797.05 15194.63 4797.72 23396.20 22589.82 13788.56 19696.85 17886.85 10697.82 19388.42 18980.10 27597.30 201
PVSNet_083.28 1687.31 24585.16 25993.74 19894.78 23384.59 27198.91 11698.69 1989.81 13878.59 30893.23 25161.95 32099.34 13194.75 10855.72 36597.30 201
PLCcopyleft91.07 394.23 10894.01 10294.87 15499.17 7687.49 20199.25 7596.55 20288.43 18291.26 16398.21 12685.92 12899.86 5789.77 17397.57 12397.24 203
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
Anonymous2024052987.66 24185.58 25493.92 19197.59 13185.01 26598.13 20097.13 17066.69 36388.47 19796.01 20055.09 34299.51 10687.00 20584.12 24697.23 204
thres100view90093.34 13392.15 14496.90 7797.62 12894.84 3899.06 10099.36 287.96 19790.47 17796.78 18083.29 16298.75 15384.11 23890.69 20997.12 205
tfpn200view993.43 12992.27 14096.90 7797.68 12694.84 3899.18 7999.36 288.45 17890.79 16996.90 17583.31 16098.75 15384.11 23890.69 20997.12 205
tpmvs89.16 20787.76 21893.35 20397.19 14284.75 26990.58 34897.36 15081.99 30084.56 22989.31 32683.98 15298.17 17274.85 31090.00 21597.12 205
PCF-MVS89.78 591.26 17289.63 18496.16 11695.44 20291.58 10995.29 30896.10 23285.07 25082.75 24997.45 15078.28 21599.78 7180.60 27195.65 15997.12 205
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MIMVSNet84.48 28681.83 29692.42 22091.73 29287.36 20685.52 35594.42 31681.40 30681.91 26987.58 33351.92 35192.81 34573.84 31788.15 22097.08 209
CANet_DTU94.31 10793.35 11697.20 6097.03 15294.71 4598.62 14895.54 27495.61 1497.21 6198.47 11571.88 26199.84 6088.38 19097.46 12897.04 210
PatchMatch-RL91.47 16990.54 17794.26 17898.20 11186.36 23096.94 26397.14 16887.75 20488.98 19395.75 20271.80 26399.40 12380.92 26897.39 12997.02 211
UGNet91.91 16390.85 16995.10 14597.06 15088.69 17898.01 21498.24 2992.41 7292.39 14893.61 24360.52 32599.68 8388.14 19397.25 13096.92 212
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
mvs-test191.57 16792.20 14289.70 28595.15 21474.34 34699.51 4195.40 28491.92 8291.02 16697.25 15774.27 23998.08 17989.45 17695.83 15596.67 213
thres600view793.18 13992.00 14796.75 8697.62 12894.92 3399.07 9899.36 287.96 19790.47 17796.78 18083.29 16298.71 15782.93 25290.47 21396.61 214
thres40093.39 13192.27 14096.73 8897.68 12694.84 3899.18 7999.36 288.45 17890.79 16996.90 17583.31 16098.75 15384.11 23890.69 20996.61 214
xiu_mvs_v1_base_debu94.73 9593.98 10396.99 6895.19 21095.24 2498.62 14896.50 20692.99 5597.52 5498.83 8672.37 25699.15 13897.03 5696.74 13796.58 216
xiu_mvs_v1_base94.73 9593.98 10396.99 6895.19 21095.24 2498.62 14896.50 20692.99 5597.52 5498.83 8672.37 25699.15 13897.03 5696.74 13796.58 216
xiu_mvs_v1_base_debi94.73 9593.98 10396.99 6895.19 21095.24 2498.62 14896.50 20692.99 5597.52 5498.83 8672.37 25699.15 13897.03 5696.74 13796.58 216
F-COLMAP92.07 16191.75 15493.02 20998.16 11482.89 29498.79 13095.97 23786.54 23087.92 20097.80 13378.69 21399.65 8985.97 21595.93 15496.53 219
AUN-MVS90.17 19389.50 18692.19 22496.21 17782.67 29897.76 23197.53 12088.05 19491.67 15396.15 19583.10 16797.47 21888.11 19466.91 34796.43 220
hse-mvs291.67 16691.51 15892.15 22696.22 17682.61 30097.74 23297.53 12093.85 3896.27 8596.15 19583.19 16597.44 22195.81 8566.86 34896.40 221
MSDG88.29 23086.37 24294.04 18896.90 15486.15 23996.52 27894.36 31877.89 33179.22 30196.95 17369.72 27599.59 9773.20 32292.58 18496.37 222
UniMVSNet_ETH3D85.65 27483.79 28091.21 24390.41 30880.75 32195.36 30795.78 25978.76 32581.83 27494.33 22649.86 35696.66 24684.30 23383.52 25696.22 223
OpenMVScopyleft85.28 1490.75 18288.84 20096.48 10293.58 26293.51 7098.80 12697.41 14582.59 29078.62 30697.49 14968.00 28799.82 6584.52 23298.55 11096.11 224
baseline294.04 11093.80 11194.74 16093.07 27490.25 14098.12 20298.16 3589.86 13586.53 21896.95 17395.56 698.05 18191.44 15294.53 16595.93 225
DSMNet-mixed81.60 30681.43 30082.10 34184.36 35760.79 36993.63 32486.74 37279.00 32179.32 30087.15 34063.87 31489.78 36266.89 34391.92 19495.73 226
cascas90.93 17989.33 19295.76 12895.69 19493.03 8298.99 10996.59 19780.49 31586.79 21694.45 22565.23 30998.60 16193.52 13192.18 19195.66 227
XVG-OURS-SEG-HR90.95 17890.66 17691.83 23195.18 21381.14 31795.92 29695.92 24588.40 18390.33 18097.85 13070.66 27299.38 12492.83 14288.83 21894.98 228
XVG-OURS90.83 18090.49 17891.86 23095.23 20881.25 31495.79 30495.92 24588.96 16390.02 18498.03 12971.60 26599.35 13091.06 15687.78 22294.98 228
Effi-MVS+-dtu89.97 19990.68 17587.81 31295.15 21471.98 35697.87 22295.40 28491.92 8287.57 20291.44 27974.27 23996.84 24089.45 17693.10 17694.60 230
Fast-Effi-MVS+-dtu88.84 21588.59 20889.58 28993.44 26778.18 33498.65 14494.62 31188.46 17784.12 23595.37 21168.91 27896.52 25682.06 26091.70 20094.06 231
test0.0.03 188.96 21088.61 20690.03 27791.09 29984.43 27398.97 11197.02 18290.21 12480.29 28796.31 19484.89 14391.93 35772.98 32385.70 23593.73 232
MVS-HIRNet79.01 31675.13 32690.66 25993.82 25881.69 30785.16 35693.75 32754.54 36774.17 33059.15 37157.46 33296.58 25263.74 35094.38 16693.72 233
AllTest84.97 27983.12 28390.52 26296.82 15678.84 32995.89 29792.17 34777.96 32975.94 32095.50 20555.48 33899.18 13671.15 32787.14 22393.55 234
TestCases90.52 26296.82 15678.84 32992.17 34777.96 32975.94 32095.50 20555.48 33899.18 13671.15 32787.14 22393.55 234
RPSCF85.33 27685.55 25584.67 33294.63 23762.28 36893.73 32293.76 32674.38 34385.23 22597.06 16964.09 31298.31 16780.98 26686.08 23293.41 236
HQP4-MVS87.57 20297.77 19792.72 237
HQP-MVS91.50 16891.23 16292.29 22193.95 24986.39 22899.16 8296.37 21393.92 3387.57 20296.67 18473.34 24697.77 19793.82 12786.29 22792.72 237
HQP_MVS91.26 17290.95 16792.16 22593.84 25686.07 24299.02 10596.30 21793.38 4986.99 20996.52 18672.92 25197.75 20293.46 13286.17 23092.67 239
plane_prior596.30 21797.75 20293.46 13286.17 23092.67 239
nrg03090.23 19088.87 19994.32 17691.53 29493.54 6998.79 13095.89 25388.12 19384.55 23094.61 22378.80 21296.88 23992.35 14775.21 29792.53 241
iter_conf_final93.22 13893.04 12593.76 19697.03 15292.22 9899.05 10193.31 33492.11 8086.93 21195.42 20895.01 1096.59 25093.98 12184.48 24292.46 242
iter_conf0593.48 12693.18 12194.39 17497.15 14494.17 5899.30 7292.97 33792.38 7586.70 21795.42 20895.67 596.59 25094.67 11284.32 24592.39 243
CLD-MVS91.06 17690.71 17492.10 22794.05 24886.10 24099.55 3596.29 22094.16 2884.70 22897.17 16469.62 27697.82 19394.74 10986.08 23292.39 243
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
VPNet88.30 22986.57 23993.49 20191.95 28791.35 11298.18 19797.20 16488.61 17284.52 23194.89 21662.21 31996.76 24589.34 18072.26 33092.36 245
DU-MVS88.83 21787.51 22392.79 21391.46 29590.07 14798.71 13397.62 10188.87 16883.21 24293.68 24074.63 23095.93 29686.95 20672.47 32792.36 245
NR-MVSNet87.74 24086.00 24892.96 21091.46 29590.68 13496.65 27697.42 14488.02 19673.42 33493.68 24077.31 22095.83 30284.26 23471.82 33492.36 245
FIs90.70 18389.87 18293.18 20692.29 28191.12 11998.17 19998.25 2789.11 15983.44 23994.82 21982.26 18396.17 28587.76 19882.76 26292.25 248
UniMVSNet_NR-MVSNet89.60 20388.55 21092.75 21592.17 28490.07 14798.74 13298.15 3688.37 18483.21 24293.98 23382.86 17095.93 29686.95 20672.47 32792.25 248
VPA-MVSNet89.10 20887.66 22193.45 20292.56 27891.02 12597.97 21798.32 2586.92 22186.03 22092.01 26868.84 28097.10 23290.92 15875.34 29692.23 250
TranMVSNet+NR-MVSNet87.75 23886.31 24392.07 22890.81 30288.56 17998.33 18597.18 16587.76 20381.87 27193.90 23572.45 25595.43 31283.13 25071.30 33792.23 250
mvsmamba89.99 19889.42 18991.69 23890.64 30586.34 23198.40 17792.27 34591.01 10384.80 22794.93 21576.12 22496.51 25792.81 14383.84 24892.21 252
FC-MVSNet-test90.22 19189.40 19092.67 21891.78 29189.86 15597.89 21998.22 3088.81 16982.96 24794.66 22281.90 18995.96 29485.89 21982.52 26592.20 253
RRT_MVS88.91 21288.56 20989.93 27890.31 30981.61 30898.08 20996.38 21289.30 15382.41 25794.84 21873.15 24996.04 29190.38 16482.23 26792.15 254
PS-MVSNAJss89.54 20589.05 19691.00 25088.77 33184.36 27497.39 24295.97 23788.47 17581.88 27093.80 23882.48 17996.50 25889.34 18083.34 25992.15 254
testgi82.29 30181.00 30486.17 32387.24 34774.84 34597.39 24291.62 35588.63 17175.85 32395.42 20846.07 36291.55 35866.87 34479.94 27692.12 256
WR-MVS88.54 22587.22 23092.52 21991.93 28989.50 16198.56 15797.84 5586.99 21781.87 27193.81 23774.25 24195.92 29885.29 22174.43 30692.12 256
bld_raw_conf00588.44 22687.56 22291.09 24790.18 31084.69 27097.81 22590.17 36390.20 12682.77 24894.81 22067.23 29396.46 26391.13 15483.71 25392.11 258
MVSTER92.71 14592.32 13893.86 19397.29 13992.95 8699.01 10796.59 19790.09 13185.51 22394.00 23294.61 1696.56 25390.77 16283.03 26092.08 259
test_low_dy_conf_00188.79 22088.33 21390.16 27189.83 31682.22 30297.87 22296.22 22388.25 18984.24 23395.09 21371.11 26996.19 28288.63 18783.76 25292.06 260
ACMM86.95 1388.77 22188.22 21690.43 26493.61 26181.34 31298.50 16495.92 24587.88 20083.85 23795.20 21267.20 29497.89 18886.90 20884.90 23892.06 260
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
XXY-MVS87.75 23886.02 24792.95 21190.46 30789.70 15897.71 23595.90 25184.02 26580.95 27994.05 22767.51 29197.10 23285.16 22278.41 28192.04 262
test_part188.43 22786.68 23893.67 20097.56 13392.40 9698.12 20296.55 20282.26 29780.31 28693.16 25474.59 23496.62 24885.00 22672.61 32591.99 263
FMVSNet388.81 21987.08 23193.99 19096.52 16594.59 4898.08 20996.20 22585.85 23782.12 26391.60 27674.05 24295.40 31479.04 27980.24 27291.99 263
FMVSNet286.90 24984.79 26793.24 20595.11 21792.54 9497.67 23695.86 25782.94 28480.55 28391.17 28562.89 31695.29 31677.23 29079.71 27891.90 265
UniMVSNet (Re)89.50 20688.32 21493.03 20892.21 28390.96 12798.90 11798.39 2389.13 15883.22 24192.03 26681.69 19096.34 27486.79 20972.53 32691.81 266
EU-MVSNet84.19 29084.42 27483.52 33788.64 33467.37 36696.04 29595.76 26185.29 24578.44 30993.18 25270.67 27191.48 35975.79 30475.98 29391.70 267
bld_raw_dy_0_6487.82 23486.71 23791.15 24589.54 32285.61 25297.37 24589.16 36889.26 15483.42 24094.50 22465.79 30396.18 28388.00 19683.37 25791.67 268
EI-MVSNet89.87 20089.38 19191.36 24294.32 24185.87 24797.61 23896.59 19785.10 24885.51 22397.10 16681.30 19696.56 25383.85 24483.03 26091.64 269
IterMVS-LS88.34 22887.44 22491.04 24994.10 24585.85 24898.10 20695.48 27785.12 24782.03 26791.21 28481.35 19595.63 30883.86 24375.73 29591.63 270
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
GBi-Net86.67 25484.96 26191.80 23395.11 21788.81 17496.77 26995.25 29182.94 28482.12 26390.25 31162.89 31694.97 32179.04 27980.24 27291.62 271
test186.67 25484.96 26191.80 23395.11 21788.81 17496.77 26995.25 29182.94 28482.12 26390.25 31162.89 31694.97 32179.04 27980.24 27291.62 271
FMVSNet183.94 29481.32 30291.80 23391.94 28888.81 17496.77 26995.25 29177.98 32778.25 31190.25 31150.37 35594.97 32173.27 32177.81 28891.62 271
cl2289.57 20488.79 20291.91 22997.94 12087.62 19897.98 21696.51 20585.03 25182.37 25991.79 27283.65 15496.50 25885.96 21677.89 28491.61 274
eth_miper_zixun_eth87.76 23787.00 23390.06 27494.67 23682.65 29997.02 26295.37 28784.19 26381.86 27391.58 27781.47 19395.90 30083.24 24673.61 31591.61 274
Anonymous2023121184.72 28182.65 29290.91 25297.71 12584.55 27297.28 24996.67 19366.88 36279.18 30290.87 29058.47 32996.60 24982.61 25574.20 31091.59 276
miper_enhance_ethall90.33 18889.70 18392.22 22297.12 14788.93 17198.35 18495.96 23988.60 17383.14 24692.33 26487.38 9296.18 28386.49 21177.89 28491.55 277
jajsoiax87.35 24486.51 24189.87 27987.75 34581.74 30697.03 26095.98 23688.47 17580.15 28993.80 23861.47 32196.36 26889.44 17884.47 24391.50 278
ACMP87.39 1088.71 22388.24 21590.12 27393.91 25481.06 31898.50 16495.67 26789.43 15080.37 28595.55 20465.67 30497.83 19290.55 16384.51 24091.47 279
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
LPG-MVS_test88.86 21488.47 21290.06 27493.35 26980.95 31998.22 19395.94 24287.73 20683.17 24496.11 19766.28 30197.77 19790.19 16785.19 23691.46 280
LGP-MVS_train90.06 27493.35 26980.95 31995.94 24287.73 20683.17 24496.11 19766.28 30197.77 19790.19 16785.19 23691.46 280
mvs_tets87.09 24786.22 24489.71 28487.87 34181.39 31196.73 27495.90 25188.19 19179.99 29193.61 24359.96 32796.31 27689.40 17984.34 24491.43 282
DIV-MVS_self_test87.82 23486.81 23590.87 25594.87 23185.39 25897.81 22595.22 29882.92 28780.76 28191.31 28281.99 18695.81 30381.36 26475.04 29991.42 283
cl____87.82 23486.79 23690.89 25494.88 23085.43 25697.81 22595.24 29482.91 28880.71 28291.22 28381.97 18895.84 30181.34 26575.06 29891.40 284
miper_ehance_all_eth88.94 21188.12 21791.40 24095.32 20686.93 21897.85 22495.55 27384.19 26381.97 26891.50 27884.16 15095.91 29984.69 22977.89 28491.36 285
CP-MVSNet86.54 25785.45 25789.79 28391.02 30182.78 29797.38 24497.56 11585.37 24479.53 29893.03 25671.86 26295.25 31779.92 27473.43 32091.34 286
test_djsdf88.26 23187.73 21989.84 28188.05 34082.21 30397.77 22996.17 22886.84 22282.41 25791.95 27172.07 25995.99 29289.83 16984.50 24191.32 287
v2v48287.27 24685.76 25191.78 23789.59 31987.58 19998.56 15795.54 27484.53 25982.51 25491.78 27373.11 25096.47 26182.07 25974.14 31291.30 288
c3_l88.19 23287.23 22991.06 24894.97 22686.17 23897.72 23395.38 28683.43 27681.68 27591.37 28082.81 17195.72 30584.04 24173.70 31491.29 289
OPM-MVS89.76 20189.15 19591.57 23990.53 30685.58 25498.11 20595.93 24492.88 6086.05 21996.47 18967.06 29697.87 19089.29 18386.08 23291.26 290
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
PS-CasMVS85.81 26984.58 27189.49 29390.77 30382.11 30497.20 25597.36 15084.83 25679.12 30392.84 25967.42 29295.16 31978.39 28673.25 32191.21 291
pmmvs585.87 26684.40 27590.30 26988.53 33584.23 27598.60 15293.71 32881.53 30580.29 28792.02 26764.51 31195.52 31082.04 26178.34 28291.15 292
miper_lstm_enhance86.90 24986.20 24589.00 30194.53 23881.19 31596.74 27395.24 29482.33 29680.15 28990.51 30781.99 18694.68 33080.71 27073.58 31691.12 293
COLMAP_ROBcopyleft82.69 1884.54 28582.82 28589.70 28596.72 16078.85 32895.89 29792.83 34071.55 34977.54 31595.89 20159.40 32899.14 14167.26 34188.26 21991.11 294
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
PEN-MVS85.21 27783.93 27989.07 30089.89 31581.31 31397.09 25897.24 15684.45 26178.66 30592.68 26168.44 28394.87 32475.98 30270.92 33891.04 295
ACMH83.09 1784.60 28382.61 29390.57 26093.18 27282.94 29196.27 28494.92 30281.01 31172.61 34293.61 24356.54 33497.79 19574.31 31381.07 27190.99 296
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
OurMVSNet-221017-084.13 29283.59 28185.77 32687.81 34270.24 36094.89 31193.65 33086.08 23576.53 31693.28 25061.41 32296.14 28780.95 26777.69 28990.93 297
XVG-ACMP-BASELINE85.86 26784.95 26388.57 30589.90 31477.12 33994.30 31695.60 27187.40 21482.12 26392.99 25853.42 34897.66 20685.02 22583.83 24990.92 298
Patchmtry83.61 29781.64 29789.50 29193.36 26882.84 29684.10 36294.20 32169.47 35679.57 29786.88 34284.43 14794.78 32768.48 33874.30 30890.88 299
IterMVS85.81 26984.67 26989.22 29693.51 26383.67 28496.32 28394.80 30585.09 24978.69 30490.17 31766.57 30093.17 34279.48 27777.42 29090.81 300
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v192192086.02 26484.44 27390.77 25789.32 32685.20 26098.10 20695.35 28982.19 29882.25 26190.71 29370.73 27096.30 27976.85 29574.49 30590.80 301
v14419286.40 25984.89 26490.91 25289.48 32485.59 25398.21 19595.43 28382.45 29482.62 25290.58 30372.79 25496.36 26878.45 28574.04 31390.79 302
v119286.32 26184.71 26891.17 24489.53 32386.40 22798.13 20095.44 28282.52 29382.42 25690.62 30071.58 26696.33 27577.23 29074.88 30090.79 302
IterMVS-SCA-FT85.73 27284.64 27089.00 30193.46 26682.90 29396.27 28494.70 30885.02 25278.62 30690.35 30966.61 29893.33 33979.38 27877.36 29190.76 304
SixPastTwentyTwo82.63 30081.58 29885.79 32588.12 33971.01 35995.17 30992.54 34284.33 26272.93 34092.08 26560.41 32695.61 30974.47 31274.15 31190.75 305
MVS_030484.13 29282.66 29188.52 30693.07 27480.15 32295.81 30398.21 3179.27 32086.85 21486.40 34541.33 36794.69 32976.36 29986.69 22690.73 306
v124085.77 27184.11 27690.73 25889.26 32785.15 26397.88 22195.23 29781.89 30382.16 26290.55 30569.60 27796.31 27675.59 30574.87 30190.72 307
v14886.38 26085.06 26090.37 26889.47 32584.10 27898.52 15995.48 27783.80 26980.93 28090.22 31474.60 23296.31 27680.92 26871.55 33590.69 308
K. test v381.04 30779.77 31084.83 33087.41 34670.23 36195.60 30693.93 32583.70 27267.51 35489.35 32555.76 33693.58 33876.67 29768.03 34490.67 309
v114486.83 25185.31 25891.40 24089.75 31787.21 21598.31 18895.45 27983.22 27982.70 25190.78 29173.36 24596.36 26879.49 27674.69 30390.63 310
ACMH+83.78 1584.21 28982.56 29489.15 29893.73 26079.16 32696.43 27994.28 31981.09 31074.00 33194.03 23054.58 34497.67 20576.10 30178.81 28090.63 310
lessismore_v085.08 32885.59 35469.28 36390.56 36167.68 35390.21 31554.21 34695.46 31173.88 31662.64 35490.50 312
pmmvs487.58 24386.17 24691.80 23389.58 32088.92 17297.25 25195.28 29082.54 29280.49 28493.17 25375.62 22796.05 29082.75 25378.90 27990.42 313
WR-MVS_H86.53 25885.49 25689.66 28891.04 30083.31 28897.53 24098.20 3284.95 25479.64 29590.90 28978.01 21795.33 31576.29 30072.81 32290.35 314
V4287.00 24885.68 25390.98 25189.91 31386.08 24198.32 18795.61 27083.67 27382.72 25090.67 29674.00 24396.53 25581.94 26274.28 30990.32 315
DTE-MVSNet84.14 29182.80 28688.14 30988.95 33079.87 32596.81 26896.24 22283.50 27577.60 31492.52 26367.89 28994.24 33572.64 32569.05 34190.32 315
YYNet179.64 31577.04 31987.43 31687.80 34379.98 32496.23 28894.44 31473.83 34551.83 36687.53 33467.96 28892.07 35666.00 34667.75 34690.23 317
MDA-MVSNet_test_wron79.65 31477.05 31887.45 31587.79 34480.13 32396.25 28794.44 31473.87 34451.80 36787.47 33768.04 28692.12 35566.02 34567.79 34590.09 318
MDA-MVSNet-bldmvs77.82 32474.75 32887.03 31888.33 33678.52 33296.34 28292.85 33975.57 33848.87 36987.89 33157.32 33392.49 35160.79 35764.80 35290.08 319
our_test_384.47 28782.80 28689.50 29189.01 32883.90 28197.03 26094.56 31281.33 30775.36 32690.52 30671.69 26494.54 33268.81 33676.84 29290.07 320
v7n84.42 28882.75 28989.43 29488.15 33881.86 30596.75 27295.67 26780.53 31478.38 31089.43 32469.89 27396.35 27373.83 31872.13 33190.07 320
v886.11 26384.45 27291.10 24689.99 31286.85 21997.24 25295.36 28881.99 30079.89 29389.86 31974.53 23596.39 26678.83 28372.32 32990.05 322
PVSNet_BlendedMVS93.36 13293.20 12093.84 19498.77 9791.61 10799.47 4598.04 4291.44 9294.21 12492.63 26283.50 15699.87 5297.41 5083.37 25790.05 322
ITE_SJBPF87.93 31092.26 28276.44 34093.47 33387.67 20979.95 29295.49 20756.50 33597.38 22475.24 30682.33 26689.98 324
pm-mvs184.68 28282.78 28890.40 26589.58 32085.18 26197.31 24794.73 30781.93 30276.05 31992.01 26865.48 30896.11 28878.75 28469.14 34089.91 325
LTVRE_ROB81.71 1984.59 28482.72 29090.18 27092.89 27783.18 28993.15 32794.74 30678.99 32275.14 32792.69 26065.64 30597.63 20969.46 33481.82 26989.74 326
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
anonymousdsp86.69 25385.75 25289.53 29086.46 35182.94 29196.39 28095.71 26383.97 26779.63 29690.70 29468.85 27995.94 29586.01 21484.02 24789.72 327
ppachtmachnet_test83.63 29681.57 29989.80 28289.01 32885.09 26497.13 25794.50 31378.84 32376.14 31891.00 28769.78 27494.61 33163.40 35174.36 30789.71 328
v1085.73 27284.01 27890.87 25590.03 31186.73 22197.20 25595.22 29881.25 30879.85 29489.75 32073.30 24896.28 28076.87 29472.64 32489.61 329
UnsupCasMVSNet_eth78.90 31776.67 32185.58 32782.81 36374.94 34491.98 33696.31 21684.64 25865.84 36087.71 33251.33 35292.23 35372.89 32456.50 36489.56 330
test_method70.10 33368.66 33674.41 34986.30 35355.84 37394.47 31389.82 36535.18 37266.15 35984.75 35130.54 37277.96 37370.40 33360.33 35889.44 331
USDC84.74 28082.93 28490.16 27191.73 29283.54 28595.00 31093.30 33588.77 17073.19 33593.30 24953.62 34797.65 20875.88 30381.54 27089.30 332
FMVSNet582.29 30180.54 30587.52 31493.79 25984.01 27993.73 32292.47 34376.92 33474.27 32986.15 34763.69 31589.24 36369.07 33574.79 30289.29 333
Anonymous2023120680.76 30879.42 31284.79 33184.78 35672.98 35196.53 27792.97 33779.56 31974.33 32888.83 32761.27 32392.15 35460.59 35875.92 29489.24 334
pmmvs679.90 31277.31 31787.67 31384.17 35878.13 33595.86 30193.68 32967.94 36072.67 34189.62 32250.98 35495.75 30474.80 31166.04 34989.14 335
N_pmnet70.19 33269.87 33471.12 35188.24 33730.63 38495.85 30228.70 38470.18 35368.73 34886.55 34464.04 31393.81 33653.12 36773.46 31888.94 336
D2MVS87.96 23387.39 22589.70 28591.84 29083.40 28698.31 18898.49 2188.04 19578.23 31290.26 31073.57 24496.79 24484.21 23583.53 25588.90 337
KD-MVS_2432*160082.98 29880.52 30690.38 26694.32 24188.98 16892.87 33095.87 25580.46 31673.79 33287.49 33582.76 17493.29 34070.56 33146.53 37088.87 338
miper_refine_blended82.98 29880.52 30690.38 26694.32 24188.98 16892.87 33095.87 25580.46 31673.79 33287.49 33582.76 17493.29 34070.56 33146.53 37088.87 338
CL-MVSNet_self_test79.89 31378.34 31384.54 33381.56 36575.01 34396.88 26695.62 26981.10 30975.86 32285.81 34868.49 28290.26 36163.21 35256.51 36388.35 340
MIMVSNet175.92 32773.30 33083.81 33681.29 36675.57 34292.26 33592.05 35073.09 34767.48 35586.18 34640.87 36887.64 36755.78 36470.68 33988.21 341
TransMVSNet (Re)81.97 30379.61 31189.08 29989.70 31884.01 27997.26 25091.85 35378.84 32373.07 33991.62 27567.17 29595.21 31867.50 34059.46 36088.02 342
MS-PatchMatch86.75 25285.92 24989.22 29691.97 28682.47 30196.91 26496.14 23083.74 27077.73 31393.53 24658.19 33097.37 22676.75 29698.35 11387.84 343
Baseline_NR-MVSNet85.83 26884.82 26688.87 30488.73 33283.34 28798.63 14791.66 35480.41 31882.44 25591.35 28174.63 23095.42 31384.13 23771.39 33687.84 343
ambc79.60 34672.76 37356.61 37276.20 36892.01 35168.25 35080.23 36023.34 37494.73 32873.78 31960.81 35787.48 345
KD-MVS_self_test77.47 32575.88 32482.24 33981.59 36468.93 36492.83 33294.02 32477.03 33373.14 33683.39 35355.44 34090.42 36067.95 33957.53 36287.38 346
TinyColmap80.42 31077.94 31487.85 31192.09 28578.58 33193.74 32189.94 36474.99 33969.77 34691.78 27346.09 36197.58 21365.17 34977.89 28487.38 346
TDRefinement78.01 32275.31 32586.10 32470.06 37473.84 34893.59 32591.58 35674.51 34273.08 33891.04 28649.63 35897.12 22974.88 30959.47 35987.33 348
CMPMVSbinary58.40 2180.48 30980.11 30981.59 34485.10 35559.56 37094.14 31995.95 24168.54 35860.71 36493.31 24855.35 34197.87 19083.06 25184.85 23987.33 348
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
LF4IMVS81.94 30481.17 30384.25 33487.23 34868.87 36593.35 32691.93 35283.35 27875.40 32593.00 25749.25 35996.65 24778.88 28278.11 28387.22 350
tfpnnormal83.65 29581.35 30190.56 26191.37 29788.06 18897.29 24897.87 5378.51 32676.20 31790.91 28864.78 31096.47 26161.71 35673.50 31787.13 351
EG-PatchMatch MVS79.92 31177.59 31586.90 31987.06 34977.90 33896.20 29294.06 32374.61 34166.53 35888.76 32840.40 36996.20 28167.02 34283.66 25486.61 352
test20.0378.51 32177.48 31681.62 34383.07 36171.03 35896.11 29392.83 34081.66 30469.31 34789.68 32157.53 33187.29 36858.65 36268.47 34286.53 353
MVP-Stereo86.61 25685.83 25088.93 30388.70 33383.85 28296.07 29494.41 31782.15 29975.64 32491.96 27067.65 29096.45 26477.20 29298.72 10386.51 354
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
OpenMVS_ROBcopyleft73.86 2077.99 32375.06 32786.77 32083.81 36077.94 33796.38 28191.53 35767.54 36168.38 34987.13 34143.94 36396.08 28955.03 36581.83 26886.29 355
Anonymous2024052178.63 32076.90 32083.82 33582.82 36272.86 35295.72 30593.57 33173.55 34672.17 34384.79 35049.69 35792.51 35065.29 34874.50 30486.09 356
UnsupCasMVSNet_bld73.85 33070.14 33384.99 32979.44 36975.73 34188.53 35095.24 29470.12 35461.94 36374.81 36441.41 36693.62 33768.65 33751.13 36985.62 357
pmmvs-eth3d78.71 31976.16 32386.38 32180.25 36881.19 31594.17 31892.13 34977.97 32866.90 35782.31 35555.76 33692.56 34973.63 32062.31 35685.38 358
PM-MVS74.88 32872.85 33180.98 34578.98 37064.75 36790.81 34585.77 37380.95 31268.23 35182.81 35429.08 37392.84 34476.54 29862.46 35585.36 359
test_040278.81 31876.33 32286.26 32291.18 29878.44 33395.88 29991.34 35868.55 35770.51 34589.91 31852.65 35094.99 32047.14 36979.78 27785.34 360
new-patchmatchnet74.80 32972.40 33281.99 34278.36 37172.20 35594.44 31492.36 34477.06 33263.47 36179.98 36151.04 35388.85 36460.53 35954.35 36684.92 361
DeepMVS_CXcopyleft76.08 34890.74 30451.65 37690.84 36086.47 23257.89 36587.98 33035.88 37192.60 34765.77 34765.06 35183.97 362
pmmvs372.86 33169.76 33582.17 34073.86 37274.19 34794.20 31789.01 36964.23 36667.72 35280.91 35941.48 36588.65 36562.40 35454.02 36783.68 363
new_pmnet76.02 32673.71 32982.95 33883.88 35972.85 35391.26 34292.26 34670.44 35262.60 36281.37 35747.64 36092.32 35261.85 35572.10 33283.68 363
LCM-MVSNet60.07 33656.37 33871.18 35054.81 38048.67 37782.17 36789.48 36737.95 37049.13 36869.12 36513.75 38181.76 36959.28 36051.63 36883.10 365
PMMVS258.97 33755.07 34070.69 35262.72 37555.37 37485.97 35480.52 37749.48 36845.94 37068.31 36615.73 37980.78 37149.79 36837.12 37275.91 366
FPMVS61.57 33460.32 33765.34 35360.14 37842.44 37991.02 34489.72 36644.15 36942.63 37180.93 35819.02 37580.59 37242.50 37072.76 32373.00 367
ANet_high50.71 34046.17 34364.33 35444.27 38252.30 37576.13 36978.73 37864.95 36427.37 37555.23 37214.61 38067.74 37536.01 37218.23 37572.95 368
EGC-MVSNET60.70 33555.37 33976.72 34786.35 35271.08 35789.96 34984.44 3760.38 3811.50 38284.09 35237.30 37088.10 36640.85 37173.44 31970.97 369
tmp_tt53.66 33952.86 34156.05 35632.75 38441.97 38073.42 37076.12 38021.91 37739.68 37396.39 19242.59 36465.10 37678.00 28714.92 37761.08 370
PMVScopyleft41.42 2345.67 34142.50 34455.17 35734.28 38332.37 38266.24 37178.71 37930.72 37322.04 37859.59 3704.59 38277.85 37427.49 37458.84 36155.29 371
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive44.00 2241.70 34237.64 34753.90 35849.46 38143.37 37865.09 37266.66 38126.19 37625.77 37748.53 3743.58 38463.35 37726.15 37527.28 37354.97 372
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
Gipumacopyleft54.77 33852.22 34262.40 35586.50 35059.37 37150.20 37390.35 36236.52 37141.20 37249.49 37318.33 37781.29 37032.10 37365.34 35046.54 373
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
E-PMN41.02 34340.93 34541.29 35961.97 37633.83 38184.00 36465.17 38227.17 37427.56 37446.72 37517.63 37860.41 37819.32 37618.82 37429.61 374
EMVS39.96 34439.88 34640.18 36059.57 37932.12 38384.79 36164.57 38326.27 37526.14 37644.18 37818.73 37659.29 37917.03 37717.67 37629.12 375
test12316.58 34819.47 3507.91 3623.59 3865.37 38694.32 3151.39 3872.49 38013.98 38044.60 3772.91 3852.65 38111.35 3800.57 38015.70 376
testmvs18.81 34623.05 3496.10 3634.48 3852.29 38797.78 2283.00 3863.27 37918.60 37962.71 3681.53 3862.49 38214.26 3791.80 37913.50 377
wuyk23d16.71 34716.73 35116.65 36160.15 37725.22 38541.24 3745.17 3856.56 3785.48 3813.61 3813.64 38322.72 38015.20 3789.52 3781.99 378
test_blank0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
uanet_test0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
DCPMVS0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
cdsmvs_eth3d_5k22.52 34530.03 3480.00 3640.00 3870.00 3880.00 37597.17 1660.00 3820.00 38398.77 8974.35 2380.00 3830.00 3810.00 3810.00 379
pcd_1.5k_mvsjas6.87 3509.16 3530.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 38282.48 1790.00 3830.00 3810.00 3810.00 379
sosnet-low-res0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
sosnet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
uncertanet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
Regformer0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
ab-mvs-re8.21 34910.94 3520.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 38398.50 1110.00 3870.00 3830.00 3810.00 3810.00 379
uanet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
FOURS199.50 4788.94 17099.55 3597.47 13491.32 9798.12 39
test_one_060199.59 3194.89 3497.64 9493.14 5298.93 1699.45 1693.45 18
eth-test20.00 387
eth-test0.00 387
ZD-MVS99.67 1393.28 7497.61 10287.78 20297.41 5799.16 4190.15 5299.56 9898.35 3599.70 39
test_241102_ONE99.63 2195.24 2497.72 7694.16 2899.30 699.49 1093.32 1999.98 10
9.1496.87 2899.34 5899.50 4297.49 13189.41 15198.59 2699.43 1889.78 5699.69 8098.69 2399.62 51
save fliter99.34 5893.85 6399.65 2497.63 9995.69 11
test072699.66 1595.20 2999.77 897.70 8193.95 3199.35 599.54 393.18 22
test_part299.54 4095.42 1998.13 37
sam_mvs87.08 101
MTGPAbinary97.45 137
test_post190.74 34741.37 37985.38 13996.36 26883.16 248
test_post46.00 37687.37 9397.11 230
patchmatchnet-post84.86 34988.73 6996.81 242
MTMP99.21 7691.09 359
gm-plane-assit94.69 23588.14 18688.22 19097.20 16198.29 16990.79 161
TEST999.57 3793.17 7699.38 6297.66 8889.57 14698.39 3199.18 3790.88 3799.66 85
test_899.55 3993.07 8099.37 6597.64 9490.18 12798.36 3399.19 3490.94 3599.64 91
agg_prior99.54 4092.66 8897.64 9497.98 4799.61 94
test_prior492.00 10099.41 59
test_prior299.57 3291.43 9398.12 3998.97 6790.43 4598.33 3699.81 23
旧先验298.67 14285.75 23998.96 1598.97 14793.84 125
新几何298.26 191
原ACMM298.69 138
testdata299.88 4984.16 236
segment_acmp90.56 43
testdata197.89 21992.43 68
plane_prior793.84 25685.73 250
plane_prior693.92 25386.02 24472.92 251
plane_prior496.52 186
plane_prior385.91 24593.65 4486.99 209
plane_prior299.02 10593.38 49
plane_prior193.90 255
plane_prior86.07 24299.14 9193.81 4186.26 229
n20.00 388
nn0.00 388
door-mid84.90 375
test1197.68 85
door85.30 374
HQP5-MVS86.39 228
HQP-NCC93.95 24999.16 8293.92 3387.57 202
ACMP_Plane93.95 24999.16 8293.92 3387.57 202
BP-MVS93.82 127
HQP3-MVS96.37 21386.29 227
HQP2-MVS73.34 246
NP-MVS93.94 25286.22 23596.67 184
MDTV_nov1_ep1390.47 17996.14 18388.55 18091.34 34197.51 12689.58 14592.24 14990.50 30886.99 10597.61 21177.64 28992.34 187
ACMMP++_ref82.64 264
ACMMP++83.83 249
Test By Simon83.62 155