This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted by
SED-MVS98.18 298.10 498.41 1899.63 1895.24 2599.77 1597.72 7694.17 4199.30 699.54 393.32 1999.98 999.70 499.81 2399.99 1
IU-MVS99.63 1895.38 2297.73 7595.54 2499.54 199.69 699.81 2399.99 1
OPU-MVS99.49 499.64 1798.51 499.77 1599.19 2895.12 899.97 2199.90 199.92 399.99 1
test_241102_TWO97.72 7694.17 4199.23 899.54 393.14 2499.98 999.70 499.82 1999.99 1
DeepPCF-MVS93.56 196.55 3797.84 1092.68 21898.71 8578.11 33999.70 2497.71 8098.18 197.36 6099.76 190.37 4599.94 3499.27 1499.54 5299.99 1
MCST-MVS98.18 297.95 998.86 599.85 396.60 1099.70 2497.98 5197.18 395.96 9299.33 1992.62 26100.00 198.99 2399.93 199.98 6
DVP-MVS++98.18 298.09 598.44 1699.61 2495.38 2299.55 4297.68 8593.01 6899.23 899.45 1495.12 899.98 999.25 1699.92 399.97 7
PC_three_145294.60 3499.41 299.12 4495.50 799.96 2899.84 299.92 399.97 7
MG-MVS97.24 1796.83 2898.47 1599.79 595.71 1899.07 10799.06 1094.45 3896.42 8698.70 9388.81 5999.74 8695.35 9999.86 1299.97 7
MSC_two_6792asdad99.51 299.61 2498.60 297.69 8399.98 999.55 1199.83 1599.96 10
No_MVS99.51 299.61 2498.60 297.69 8399.98 999.55 1199.83 1599.96 10
test_0728_SECOND98.77 899.66 1296.37 1499.72 2197.68 8599.98 999.64 799.82 1999.96 10
CNVR-MVS98.46 198.38 198.72 999.80 496.19 1599.80 1397.99 5097.05 699.41 299.59 292.89 25100.00 198.99 2399.90 799.96 10
DeepC-MVS_fast93.52 297.16 2196.84 2698.13 2499.61 2494.45 4998.85 12997.64 9596.51 1495.88 9599.39 1887.35 8599.99 596.61 7599.69 3699.96 10
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_0728_THIRD93.01 6899.07 1399.46 1094.66 1499.97 2199.25 1699.82 1999.95 15
DPE-MVScopyleft98.11 698.00 698.44 1699.50 4295.39 2199.29 7997.72 7694.50 3598.64 2699.54 393.32 1999.97 2199.58 1099.90 799.95 15
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MSP-MVS97.77 998.18 296.53 9099.54 3690.14 13499.41 6697.70 8195.46 2698.60 2799.19 2895.71 499.49 11098.15 4699.85 1399.95 15
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DPM-MVS97.86 897.25 1899.68 198.25 9399.10 199.76 1897.78 6896.61 1098.15 3999.53 793.62 17100.00 191.79 15599.80 2699.94 18
NCCC98.12 598.11 398.13 2499.76 694.46 4899.81 997.88 5496.54 1198.84 2299.46 1092.55 2799.98 998.25 4499.93 199.94 18
APDe-MVScopyleft97.53 1197.47 1397.70 3699.58 3093.63 6499.56 4197.52 12393.59 6198.01 4899.12 4490.80 3999.55 10499.26 1599.79 2799.93 20
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
agg_prior297.84 5299.87 999.91 21
test9_res98.60 3199.87 999.90 22
SteuartSystems-ACMMP97.25 1697.34 1797.01 5897.38 12091.46 10099.75 1997.66 8994.14 4598.13 4099.26 2192.16 2999.66 9297.91 5099.64 4099.90 22
Skip Steuart: Steuart Systems R&D Blog.
PHI-MVS96.65 3496.46 3597.21 5299.34 5091.77 9399.70 2498.05 4686.48 23898.05 4599.20 2789.33 5399.96 2898.38 3799.62 4499.90 22
ACMMP_NAP96.59 3596.18 4297.81 3498.82 8193.55 6698.88 12897.59 10890.66 11797.98 4999.14 4086.59 102100.00 196.47 7999.46 5599.89 25
train_agg97.20 2097.08 2097.57 4299.57 3393.17 7399.38 6997.66 8990.18 13298.39 3399.18 3190.94 3599.66 9298.58 3499.85 1399.88 26
MSLP-MVS++97.50 1497.45 1597.63 3899.65 1693.21 7299.70 2498.13 4294.61 3397.78 5399.46 1089.85 4999.81 7797.97 4899.91 699.88 26
APD-MVScopyleft96.95 2696.72 2997.63 3899.51 4193.58 6599.16 9197.44 13990.08 13798.59 2899.07 4989.06 5599.42 12197.92 4999.66 3799.88 26
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MVS93.92 10992.28 13898.83 795.69 18996.82 896.22 29598.17 3784.89 26484.34 23898.61 10179.32 20799.83 7193.88 12899.43 5999.86 29
MM98.86 596.83 799.81 999.13 997.66 298.29 3798.96 6485.84 11999.90 4899.72 398.80 9199.85 30
无先验98.52 16597.82 6087.20 22099.90 4887.64 20399.85 30
SMA-MVScopyleft97.24 1796.99 2198.00 2999.30 5494.20 5599.16 9197.65 9489.55 15299.22 1099.52 890.34 4699.99 598.32 4199.83 1599.82 32
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
region2R96.30 4396.17 4596.70 7999.70 790.31 12899.46 5797.66 8990.55 12297.07 6999.07 4986.85 9599.97 2195.43 9799.74 2999.81 33
test22298.32 9291.21 10398.08 21497.58 11083.74 28095.87 9699.02 5686.74 9899.64 4099.81 33
TSAR-MVS + GP.96.95 2696.91 2397.07 5598.88 7991.62 9699.58 3996.54 20595.09 3096.84 7498.63 9991.16 3199.77 8399.04 2296.42 14299.81 33
test_prior97.01 5899.58 3091.77 9397.57 11399.49 11099.79 36
新几何197.40 4598.92 7792.51 8897.77 7085.52 25196.69 8199.06 5188.08 7099.89 5184.88 23399.62 4499.79 36
patch_mono-297.10 2397.97 894.49 16699.21 6183.73 28299.62 3598.25 3295.28 2899.38 498.91 7392.28 2899.94 3499.61 999.22 7099.78 38
HFP-MVS96.42 3996.26 3996.90 6799.69 890.96 11599.47 5397.81 6390.54 12396.88 7199.05 5287.57 7699.96 2895.65 9099.72 3199.78 38
XVS96.47 3896.37 3796.77 7299.62 2290.66 12399.43 6397.58 11092.41 8396.86 7298.96 6487.37 8199.87 5695.65 9099.43 5999.78 38
X-MVStestdata90.69 18688.66 20996.77 7299.62 2290.66 12399.43 6397.58 11092.41 8396.86 7229.59 39887.37 8199.87 5695.65 9099.43 5999.78 38
testdata95.26 13998.20 9587.28 20997.60 10485.21 25598.48 3199.15 3788.15 6898.72 16090.29 17199.45 5799.78 38
SF-MVS97.22 1996.92 2298.12 2699.11 6694.88 3599.44 6097.45 13689.60 14898.70 2499.42 1790.42 4499.72 8798.47 3699.65 3899.77 43
SD-MVS97.51 1397.40 1697.81 3499.01 7293.79 6399.33 7697.38 14693.73 5798.83 2399.02 5690.87 3899.88 5298.69 2899.74 2999.77 43
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
SR-MVS96.13 4796.16 4796.07 10899.42 4789.04 16298.59 16097.33 15090.44 12696.84 7499.12 4486.75 9799.41 12497.47 5699.44 5899.76 45
ACMMPR96.28 4496.14 4996.73 7699.68 990.47 12699.47 5397.80 6590.54 12396.83 7699.03 5486.51 10699.95 3195.65 9099.72 3199.75 46
mPP-MVS95.90 5895.75 6096.38 9899.58 3089.41 15699.26 8297.41 14390.66 11794.82 11598.95 6786.15 11499.98 995.24 10299.64 4099.74 47
PAPR96.35 4095.82 5597.94 3199.63 1894.19 5699.42 6597.55 11592.43 8093.82 13399.12 4487.30 8699.91 4394.02 12499.06 7599.74 47
API-MVS94.78 8794.18 9296.59 8599.21 6190.06 14198.80 13497.78 6883.59 28493.85 13199.21 2683.79 14699.97 2192.37 15199.00 7999.74 47
CSCG94.87 8494.71 8195.36 13399.54 3686.49 22299.34 7598.15 4082.71 30090.15 18599.25 2289.48 5299.86 6194.97 10998.82 9099.72 50
MTAPA96.09 4895.80 5896.96 6599.29 5591.19 10497.23 25897.45 13692.58 7794.39 12299.24 2486.43 10899.99 596.22 8199.40 6299.71 51
test_fmvsmconf_n96.78 3196.84 2696.61 8395.99 18090.25 12999.90 298.13 4296.68 998.42 3298.92 7285.34 12999.88 5299.12 2099.08 7399.70 52
APD-MVS_3200maxsize95.64 6895.65 6595.62 12699.24 5887.80 19298.42 17897.22 15788.93 16996.64 8498.98 5985.49 12499.36 12896.68 7299.27 6899.70 52
CP-MVS96.22 4596.15 4896.42 9599.67 1089.62 15299.70 2497.61 10290.07 13896.00 9199.16 3487.43 7999.92 3996.03 8699.72 3199.70 52
DVP-MVScopyleft98.07 798.00 698.29 1999.66 1295.20 3099.72 2197.47 13393.95 4699.07 1399.46 1093.18 2299.97 2199.64 799.82 1999.69 55
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
ZNCC-MVS96.09 4895.81 5796.95 6699.42 4791.19 10499.55 4297.53 11989.72 14395.86 9798.94 7086.59 10299.97 2195.13 10399.56 5099.68 56
HPM-MVS++copyleft97.72 1097.59 1198.14 2399.53 4094.76 4299.19 8597.75 7195.66 2298.21 3899.29 2091.10 3399.99 597.68 5399.87 999.68 56
CDPH-MVS96.56 3696.18 4297.70 3699.59 2893.92 6099.13 10297.44 13989.02 16497.90 5199.22 2588.90 5899.49 11094.63 11799.79 2799.68 56
PAPM_NR95.43 7195.05 7896.57 8899.42 4790.14 13498.58 16297.51 12590.65 11992.44 14898.90 7487.77 7599.90 4890.88 16399.32 6499.68 56
canonicalmvs95.02 8293.96 10098.20 2197.53 11895.92 1798.71 14296.19 22791.78 9595.86 9798.49 10879.53 20599.03 14796.12 8391.42 20999.66 60
PGM-MVS95.85 5995.65 6596.45 9399.50 4289.77 14998.22 19998.90 1389.19 15996.74 7998.95 6785.91 11899.92 3993.94 12699.46 5599.66 60
DELS-MVS97.12 2296.60 3298.68 1098.03 10296.57 1199.84 697.84 5796.36 1695.20 11098.24 11988.17 6699.83 7196.11 8499.60 4899.64 62
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
3Dnovator+87.72 893.43 12691.84 14998.17 2295.73 18895.08 3298.92 12597.04 17791.42 10481.48 28497.60 14274.60 23299.79 8090.84 16498.97 8199.64 62
CANet97.00 2596.49 3398.55 1298.86 8096.10 1699.83 797.52 12395.90 1797.21 6498.90 7482.66 17199.93 3798.71 2798.80 9199.63 64
114514_t94.06 10493.05 12297.06 5699.08 6992.26 8998.97 12197.01 18282.58 30292.57 14698.22 12080.68 19799.30 13489.34 18499.02 7899.63 64
PAPM96.35 4095.94 5197.58 4094.10 24695.25 2498.93 12398.17 3794.26 4093.94 12998.72 8989.68 5197.88 19596.36 8099.29 6799.62 66
SR-MVS-dyc-post95.75 6595.86 5495.41 13299.22 5987.26 21298.40 18397.21 15889.63 14696.67 8298.97 6086.73 9999.36 12896.62 7399.31 6599.60 67
RE-MVS-def95.70 6199.22 5987.26 21298.40 18397.21 15889.63 14696.67 8298.97 6085.24 13096.62 7399.31 6599.60 67
TSAR-MVS + MP.97.44 1597.46 1497.39 4699.12 6593.49 6998.52 16597.50 12894.46 3698.99 1598.64 9791.58 3099.08 14698.49 3599.83 1599.60 67
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
旧先验198.97 7392.90 8297.74 7299.15 3791.05 3499.33 6399.60 67
MVS_030497.53 1197.15 1998.67 1197.30 12496.52 1299.60 3698.88 1497.14 497.21 6498.94 7086.89 9499.91 4399.43 1398.91 8699.59 71
test1297.83 3399.33 5394.45 4997.55 11597.56 5488.60 6199.50 10999.71 3499.55 72
HY-MVS88.56 795.29 7594.23 8898.48 1497.72 10996.41 1394.03 32798.74 1692.42 8295.65 10294.76 22886.52 10599.49 11095.29 10192.97 18099.53 73
GST-MVS95.97 5395.66 6396.90 6799.49 4591.22 10299.45 5997.48 13189.69 14495.89 9498.72 8986.37 10999.95 3194.62 11899.22 7099.52 74
MP-MVScopyleft96.00 5095.82 5596.54 8999.47 4690.13 13699.36 7397.41 14390.64 12095.49 10598.95 6785.51 12399.98 996.00 8799.59 4999.52 74
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
alignmvs95.77 6395.00 7998.06 2897.35 12295.68 1999.71 2397.50 12891.50 10096.16 9098.61 10186.28 11099.00 14896.19 8291.74 20199.51 76
WTY-MVS95.97 5395.11 7698.54 1397.62 11396.65 999.44 6098.74 1692.25 8795.21 10998.46 11386.56 10499.46 11695.00 10892.69 18499.50 77
DP-MVS Recon95.85 5995.15 7497.95 3099.87 294.38 5299.60 3697.48 13186.58 23394.42 12199.13 4287.36 8499.98 993.64 13398.33 10599.48 78
HPM-MVScopyleft95.41 7395.22 7295.99 11399.29 5589.14 15999.17 9097.09 17487.28 21995.40 10698.48 11084.93 13399.38 12695.64 9499.65 3899.47 79
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
dcpmvs_295.67 6796.18 4294.12 18398.82 8184.22 27597.37 25095.45 28490.70 11695.77 9998.63 9990.47 4298.68 16299.20 1899.22 7099.45 80
test_yl95.27 7694.60 8397.28 4998.53 8992.98 7999.05 11098.70 1986.76 23094.65 11997.74 13587.78 7399.44 11795.57 9592.61 18599.44 81
DCV-MVSNet95.27 7694.60 8397.28 4998.53 8992.98 7999.05 11098.70 1986.76 23094.65 11997.74 13587.78 7399.44 11795.57 9592.61 18599.44 81
test_fmvsmconf0.1_n95.94 5695.79 5996.40 9792.42 28389.92 14599.79 1496.85 18896.53 1397.22 6398.67 9582.71 17099.84 6798.92 2598.98 8099.43 83
MVS_111021_HR96.69 3296.69 3096.72 7898.58 8891.00 11499.14 9999.45 193.86 5295.15 11198.73 8788.48 6299.76 8497.23 6199.56 5099.40 84
CS-MVS95.75 6596.19 4094.40 17097.88 10686.22 23399.66 3296.12 23292.69 7698.07 4498.89 7687.09 8897.59 21996.71 7098.62 9899.39 85
CS-MVS-test95.98 5296.34 3894.90 15198.06 10187.66 19699.69 3196.10 23393.66 5898.35 3699.05 5286.28 11097.66 21396.96 6798.90 8799.37 86
lupinMVS96.32 4295.94 5197.44 4495.05 22194.87 3699.86 496.50 20793.82 5598.04 4698.77 8385.52 12198.09 18396.98 6698.97 8199.37 86
mvs_anonymous92.50 15091.65 15395.06 14596.60 15189.64 15197.06 26496.44 21186.64 23284.14 23993.93 24182.49 17396.17 29191.47 15696.08 15199.35 88
HPM-MVS_fast94.89 8394.62 8295.70 12299.11 6688.44 18299.14 9997.11 17085.82 24695.69 10198.47 11183.46 15199.32 13393.16 14199.63 4399.35 88
131493.44 12591.98 14697.84 3295.24 20394.38 5296.22 29597.92 5390.18 13282.28 26797.71 13777.63 21999.80 7991.94 15498.67 9799.34 90
LFMVS92.23 15790.84 17096.42 9598.24 9491.08 11198.24 19896.22 22483.39 28794.74 11798.31 11661.12 32898.85 15294.45 12092.82 18199.32 91
Effi-MVS+93.87 11293.15 12096.02 11195.79 18590.76 11996.70 28095.78 26486.98 22495.71 10097.17 16479.58 20398.01 19094.57 11996.09 15099.31 92
CHOSEN 1792x268894.35 10093.82 10495.95 11597.40 11988.74 17698.41 18098.27 3192.18 8991.43 16396.40 19478.88 20999.81 7793.59 13497.81 11399.30 93
ACMMPcopyleft94.67 9394.30 8695.79 11999.25 5788.13 18698.41 18098.67 2290.38 12891.43 16398.72 8982.22 18199.95 3193.83 13095.76 15599.29 94
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
MP-MVS-pluss95.80 6195.30 6997.29 4898.95 7692.66 8398.59 16097.14 16688.95 16793.12 14099.25 2285.62 12099.94 3496.56 7799.48 5499.28 95
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
EPMVS92.59 14891.59 15495.59 12897.22 12790.03 14291.78 34798.04 4790.42 12791.66 15790.65 30786.49 10797.46 22681.78 27096.31 14599.28 95
AdaColmapbinary93.82 11493.06 12196.10 10799.88 189.07 16198.33 19197.55 11586.81 22990.39 18298.65 9675.09 22999.98 993.32 13997.53 12299.26 97
ET-MVSNet_ETH3D92.56 14991.45 15795.88 11696.39 16194.13 5899.46 5796.97 18592.18 8966.94 36798.29 11894.65 1594.28 34094.34 12183.82 26199.24 98
VNet95.08 8194.26 8797.55 4398.07 10093.88 6198.68 14698.73 1890.33 12997.16 6897.43 15179.19 20899.53 10796.91 6991.85 19999.24 98
CNLPA93.64 12192.74 13096.36 9998.96 7590.01 14499.19 8595.89 25886.22 24189.40 19398.85 7980.66 19899.84 6788.57 19196.92 13599.24 98
3Dnovator87.35 1193.17 13791.77 15197.37 4795.41 19993.07 7698.82 13297.85 5691.53 9982.56 25997.58 14471.97 25999.82 7491.01 16199.23 6999.22 101
GG-mvs-BLEND96.98 6396.53 15394.81 4187.20 36797.74 7293.91 13096.40 19496.56 296.94 24595.08 10498.95 8499.20 102
EIA-MVS95.11 7995.27 7194.64 16396.34 16386.51 22199.59 3896.62 19692.51 7894.08 12798.64 9786.05 11598.24 17795.07 10598.50 10299.18 103
Patchmatch-test86.25 26784.06 28492.82 21294.42 23882.88 29482.88 38294.23 32771.58 36079.39 30690.62 30989.00 5796.42 27263.03 36491.37 21099.16 104
test_fmvsmconf0.01_n94.14 10393.51 11096.04 10986.79 35789.19 15799.28 8195.94 24695.70 1995.50 10498.49 10873.27 24799.79 8098.28 4398.32 10799.15 105
gg-mvs-nofinetune90.00 20087.71 22696.89 7196.15 17394.69 4585.15 37397.74 7268.32 37392.97 14360.16 38696.10 396.84 24893.89 12798.87 8899.14 106
MVS_Test93.67 12092.67 13296.69 8096.72 14992.66 8397.22 25996.03 23887.69 21295.12 11294.03 23781.55 18898.28 17489.17 18896.46 14099.14 106
casdiffmvs_mvgpermissive94.00 10693.33 11496.03 11095.22 20590.90 11799.09 10595.99 23990.58 12191.55 16197.37 15379.91 20198.06 18595.01 10795.22 16299.13 108
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test250694.80 8694.21 8996.58 8696.41 15992.18 9198.01 21898.96 1190.82 11493.46 13697.28 15585.92 11698.45 16789.82 17697.19 13099.12 109
ECVR-MVScopyleft92.29 15491.33 15995.15 14296.41 15987.84 19198.10 21194.84 30890.82 11491.42 16597.28 15565.61 30798.49 16690.33 17097.19 13099.12 109
HyFIR lowres test93.68 11993.29 11694.87 15297.57 11788.04 18898.18 20398.47 2587.57 21491.24 16895.05 22285.49 12497.46 22693.22 14092.82 18199.10 111
Anonymous20240521188.84 21987.03 23794.27 17698.14 9984.18 27698.44 17695.58 27776.79 34689.34 19496.88 17853.42 35599.54 10687.53 20487.12 23199.09 112
baseline93.91 11093.30 11595.72 12195.10 21890.07 13897.48 24695.91 25591.03 10993.54 13597.68 13879.58 20398.02 18994.27 12295.14 16399.08 113
Vis-MVSNet (Re-imp)93.26 13493.00 12694.06 18696.14 17586.71 22098.68 14696.70 19288.30 19089.71 19297.64 14185.43 12796.39 27388.06 19896.32 14499.08 113
test111192.12 15991.19 16294.94 15096.15 17387.36 20698.12 20894.84 30890.85 11390.97 17097.26 15765.60 30898.37 16989.74 17997.14 13399.07 115
PatchmatchNetpermissive92.05 16291.04 16595.06 14596.17 17289.04 16291.26 35597.26 15189.56 15190.64 17690.56 31388.35 6497.11 23779.53 28396.07 15299.03 116
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
EPNet96.82 2996.68 3197.25 5198.65 8693.10 7599.48 5198.76 1596.54 1197.84 5298.22 12087.49 7899.66 9295.35 9997.78 11699.00 117
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
sss94.85 8593.94 10197.58 4096.43 15894.09 5998.93 12399.16 889.50 15395.27 10897.85 12781.50 18999.65 9692.79 14894.02 17298.99 118
Patchmatch-RL test81.90 31180.13 31487.23 32180.71 37570.12 36984.07 37988.19 38083.16 29170.57 35282.18 36787.18 8792.59 35582.28 26562.78 36698.98 119
PVSNet87.13 1293.69 11792.83 12996.28 10197.99 10390.22 13299.38 6998.93 1291.42 10493.66 13497.68 13871.29 26799.64 9887.94 20097.20 12998.98 119
MVSFormer94.71 9294.08 9596.61 8395.05 22194.87 3697.77 23296.17 22986.84 22798.04 4698.52 10485.52 12195.99 29889.83 17498.97 8198.96 121
jason95.40 7494.86 8097.03 5792.91 27894.23 5499.70 2496.30 21893.56 6296.73 8098.52 10481.46 19197.91 19296.08 8598.47 10398.96 121
jason: jason.
CostFormer92.89 14192.48 13694.12 18394.99 22385.89 24592.89 33797.00 18386.98 22495.00 11490.78 30090.05 4897.51 22492.92 14591.73 20298.96 121
MAR-MVS94.43 9994.09 9495.45 13099.10 6887.47 20298.39 18797.79 6788.37 18694.02 12899.17 3378.64 21499.91 4392.48 15098.85 8998.96 121
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MDTV_nov1_ep13_2view91.17 10691.38 35387.45 21793.08 14186.67 10087.02 20698.95 125
EC-MVSNet95.09 8095.17 7394.84 15495.42 19888.17 18499.48 5195.92 25091.47 10197.34 6198.36 11482.77 16697.41 23097.24 6098.58 9998.94 126
FA-MVS(test-final)92.22 15891.08 16495.64 12596.05 17988.98 16591.60 35097.25 15286.99 22191.84 15392.12 27283.03 16199.00 14886.91 21093.91 17398.93 127
CVMVSNet90.30 19290.91 16888.46 31194.32 24273.58 35697.61 24397.59 10890.16 13588.43 20197.10 16676.83 22392.86 35082.64 26193.54 17698.93 127
ab-mvs91.05 17989.17 19796.69 8095.96 18191.72 9592.62 34197.23 15685.61 25089.74 19093.89 24368.55 28099.42 12191.09 15987.84 22798.92 129
IS-MVSNet93.00 14092.51 13594.49 16696.14 17587.36 20698.31 19495.70 26988.58 17790.17 18497.50 14783.02 16297.22 23487.06 20596.07 15298.90 130
CPTT-MVS94.60 9594.43 8595.09 14499.66 1286.85 21799.44 6097.47 13383.22 28994.34 12398.96 6482.50 17299.55 10494.81 11199.50 5398.88 131
Vis-MVSNetpermissive92.64 14591.85 14895.03 14895.12 21488.23 18398.48 17396.81 18991.61 9792.16 15297.22 16071.58 26598.00 19185.85 22497.81 11398.88 131
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
casdiffmvspermissive93.98 10893.43 11195.61 12795.07 22089.86 14798.80 13495.84 26390.98 11192.74 14597.66 14079.71 20298.10 18294.72 11495.37 16198.87 133
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
GSMVS98.84 134
sam_mvs188.39 6398.84 134
SCA90.64 18789.25 19694.83 15594.95 22588.83 17296.26 29297.21 15890.06 13990.03 18690.62 30966.61 29896.81 25083.16 25594.36 16998.84 134
PMMVS93.62 12293.90 10392.79 21396.79 14781.40 31098.85 12996.81 18991.25 10796.82 7798.15 12477.02 22298.13 18093.15 14296.30 14698.83 137
ETV-MVS96.00 5096.00 5096.00 11296.56 15291.05 11299.63 3496.61 19793.26 6697.39 5998.30 11786.62 10198.13 18098.07 4797.57 11998.82 138
1112_ss92.71 14391.55 15596.20 10295.56 19391.12 10798.48 17394.69 31588.29 19186.89 21698.50 10687.02 9198.66 16384.75 23489.77 22298.81 139
Test_1112_low_res92.27 15690.97 16696.18 10395.53 19591.10 10998.47 17594.66 31688.28 19286.83 21793.50 25487.00 9298.65 16484.69 23589.74 22398.80 140
PatchT85.44 28083.19 28992.22 22393.13 27683.00 28983.80 38196.37 21470.62 36390.55 17779.63 37684.81 13694.87 33058.18 37591.59 20498.79 141
PVSNet_Blended95.94 5695.66 6396.75 7498.77 8391.61 9799.88 398.04 4793.64 6094.21 12497.76 13383.50 14999.87 5697.41 5797.75 11798.79 141
DeepC-MVS91.02 494.56 9893.92 10296.46 9297.16 13090.76 11998.39 18797.11 17093.92 4888.66 19898.33 11578.14 21699.85 6595.02 10698.57 10098.78 143
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
tpmrst92.78 14292.16 14194.65 16196.27 16687.45 20391.83 34697.10 17389.10 16394.68 11890.69 30488.22 6597.73 21189.78 17791.80 20098.77 144
原ACMM196.18 10399.03 7190.08 13797.63 9988.98 16597.00 7098.97 6088.14 6999.71 8888.23 19599.62 4498.76 145
tpm291.77 16491.09 16393.82 19594.83 23085.56 25492.51 34297.16 16584.00 27593.83 13290.66 30687.54 7797.17 23587.73 20291.55 20598.72 146
TAPA-MVS87.50 990.35 19089.05 20094.25 17898.48 9185.17 26298.42 17896.58 20282.44 30787.24 21098.53 10382.77 16698.84 15359.09 37397.88 11298.72 146
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
EI-MVSNet-Vis-set95.76 6495.63 6796.17 10599.14 6490.33 12798.49 17197.82 6091.92 9394.75 11698.88 7887.06 9099.48 11495.40 9897.17 13298.70 148
FE-MVS91.38 17190.16 18295.05 14796.46 15787.53 20089.69 36497.84 5782.97 29492.18 15192.00 27884.07 14498.93 15180.71 27795.52 15998.68 149
GeoE90.60 18889.56 18893.72 19995.10 21885.43 25599.41 6694.94 30683.96 27787.21 21196.83 18274.37 23697.05 24180.50 28193.73 17598.67 150
diffmvspermissive94.59 9694.19 9095.81 11895.54 19490.69 12198.70 14495.68 27191.61 9795.96 9297.81 12980.11 19998.06 18596.52 7895.76 15598.67 150
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DP-MVS88.75 22586.56 24495.34 13498.92 7787.45 20397.64 24293.52 33970.55 36481.49 28397.25 15874.43 23599.88 5271.14 33894.09 17198.67 150
TESTMET0.1,193.82 11493.26 11795.49 12995.21 20690.25 12999.15 9697.54 11889.18 16091.79 15494.87 22589.13 5497.63 21686.21 21796.29 14798.60 153
dp90.16 19788.83 20594.14 18296.38 16286.42 22491.57 35197.06 17684.76 26688.81 19790.19 32584.29 14197.43 22975.05 31591.35 21198.56 154
EPP-MVSNet93.75 11693.67 10794.01 18995.86 18385.70 25098.67 14897.66 8984.46 26991.36 16697.18 16391.16 3197.79 20192.93 14493.75 17498.53 155
Fast-Effi-MVS+91.72 16590.79 17394.49 16695.89 18287.40 20599.54 4795.70 26985.01 26289.28 19595.68 21077.75 21897.57 22383.22 25495.06 16498.51 156
CDS-MVSNet93.47 12493.04 12394.76 15694.75 23289.45 15598.82 13297.03 17987.91 20390.97 17096.48 19289.06 5596.36 27589.50 18092.81 18398.49 157
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
LCM-MVSNet-Re88.59 22988.61 21088.51 31095.53 19572.68 36096.85 27288.43 37988.45 18173.14 34490.63 30875.82 22594.38 33992.95 14395.71 15798.48 158
TAMVS92.62 14692.09 14494.20 18094.10 24687.68 19498.41 18096.97 18587.53 21689.74 19096.04 20484.77 13896.49 26888.97 19092.31 19198.42 159
CR-MVSNet88.83 22187.38 23193.16 20693.47 26786.24 23184.97 37594.20 32888.92 17090.76 17486.88 35284.43 13994.82 33270.64 33992.17 19598.41 160
RPMNet85.07 28481.88 30194.64 16393.47 26786.24 23184.97 37597.21 15864.85 38090.76 17478.80 37780.95 19699.27 13553.76 37992.17 19598.41 160
BH-RMVSNet91.25 17489.99 18395.03 14896.75 14888.55 17998.65 15094.95 30587.74 20987.74 20497.80 13068.27 28398.14 17980.53 28097.49 12398.41 160
UA-Net93.30 13192.62 13395.34 13496.27 16688.53 18195.88 30596.97 18590.90 11295.37 10797.07 16882.38 17999.10 14583.91 24994.86 16698.38 163
tpm89.67 20588.95 20291.82 23492.54 28181.43 30992.95 33695.92 25087.81 20590.50 17989.44 33284.99 13295.65 31383.67 25282.71 27198.38 163
MVS_111021_LR95.78 6295.94 5195.28 13898.19 9787.69 19398.80 13499.26 793.39 6395.04 11398.69 9484.09 14399.76 8496.96 6799.06 7598.38 163
test-LLR93.11 13892.68 13194.40 17094.94 22687.27 21099.15 9697.25 15290.21 13091.57 15894.04 23584.89 13497.58 22085.94 22196.13 14898.36 166
test-mter93.27 13392.89 12894.40 17094.94 22687.27 21099.15 9697.25 15288.95 16791.57 15894.04 23588.03 7197.58 22085.94 22196.13 14898.36 166
IB-MVS89.43 692.12 15990.83 17295.98 11495.40 20090.78 11899.81 998.06 4591.23 10885.63 22693.66 24990.63 4098.78 15491.22 15871.85 34298.36 166
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
VDD-MVS91.24 17590.18 18194.45 16997.08 13685.84 24898.40 18396.10 23386.99 22193.36 13798.16 12354.27 35299.20 13696.59 7690.63 21798.31 169
PVSNet_Blended_VisFu94.67 9394.11 9396.34 10097.14 13291.10 10999.32 7797.43 14192.10 9291.53 16296.38 19783.29 15599.68 9093.42 13896.37 14398.25 170
thisisatest051594.75 8894.19 9096.43 9496.13 17892.64 8699.47 5397.60 10487.55 21593.17 13997.59 14394.71 1398.42 16888.28 19493.20 17798.24 171
EI-MVSNet-UG-set95.43 7195.29 7095.86 11799.07 7089.87 14698.43 17797.80 6591.78 9594.11 12698.77 8386.25 11299.48 11494.95 11096.45 14198.22 172
QAPM91.41 17089.49 19097.17 5495.66 19193.42 7098.60 15897.51 12580.92 32581.39 28597.41 15272.89 25299.87 5682.33 26498.68 9698.21 173
CHOSEN 280x42096.80 3096.85 2596.66 8297.85 10794.42 5194.76 31998.36 2992.50 7995.62 10397.52 14697.92 197.38 23198.31 4298.80 9198.20 174
TR-MVS90.77 18389.44 19194.76 15696.31 16488.02 18997.92 22295.96 24385.52 25188.22 20297.23 15966.80 29798.09 18384.58 23792.38 18998.17 175
GA-MVS90.10 19888.69 20894.33 17492.44 28287.97 19099.08 10696.26 22289.65 14586.92 21593.11 26268.09 28596.96 24382.54 26390.15 21998.05 176
OMC-MVS93.90 11193.62 10894.73 15998.63 8787.00 21598.04 21796.56 20392.19 8892.46 14798.73 8779.49 20699.14 14392.16 15394.34 17098.03 177
xiu_mvs_v2_base96.66 3396.17 4598.11 2797.11 13596.96 699.01 11697.04 17795.51 2598.86 2199.11 4882.19 18299.36 12898.59 3398.14 10998.00 178
PS-MVSNAJ96.87 2896.40 3698.29 1997.35 12297.29 599.03 11397.11 17095.83 1898.97 1799.14 4082.48 17499.60 10198.60 3199.08 7398.00 178
thisisatest053094.00 10693.52 10995.43 13195.76 18790.02 14398.99 11897.60 10486.58 23391.74 15597.36 15494.78 1298.34 17086.37 21692.48 18897.94 180
tpm cat188.89 21787.27 23393.76 19695.79 18585.32 25990.76 36097.09 17476.14 34885.72 22588.59 33882.92 16398.04 18876.96 30291.43 20897.90 181
tttt051793.30 13193.01 12594.17 18195.57 19286.47 22398.51 16897.60 10485.99 24490.55 17797.19 16294.80 1198.31 17185.06 23091.86 19897.74 182
mvsany_test194.57 9795.09 7792.98 20995.84 18482.07 30398.76 14095.24 29792.87 7596.45 8598.71 9284.81 13699.15 13997.68 5395.49 16097.73 183
h-mvs3392.47 15191.95 14794.05 18797.13 13385.01 26598.36 18998.08 4493.85 5396.27 8896.73 18583.19 15899.43 12095.81 8868.09 35297.70 184
ADS-MVSNet287.62 24686.88 23989.86 28596.21 16979.14 32987.15 36892.99 34383.01 29289.91 18887.27 34878.87 21092.80 35374.20 32392.27 19297.64 185
ADS-MVSNet88.99 21387.30 23294.07 18596.21 16987.56 19987.15 36896.78 19183.01 29289.91 18887.27 34878.87 21097.01 24274.20 32392.27 19297.64 185
BH-w/o92.32 15391.79 15093.91 19296.85 14286.18 23599.11 10495.74 26788.13 19584.81 23197.00 17177.26 22197.91 19289.16 18998.03 11097.64 185
LS3D90.19 19588.72 20794.59 16598.97 7386.33 23096.90 27096.60 19874.96 35284.06 24198.74 8675.78 22699.83 7174.93 31697.57 11997.62 188
VDDNet90.08 19988.54 21594.69 16094.41 23987.68 19498.21 20196.40 21276.21 34793.33 13897.75 13454.93 35098.77 15594.71 11590.96 21297.61 189
EPNet_dtu92.28 15592.15 14292.70 21797.29 12584.84 26798.64 15297.82 6092.91 7393.02 14297.02 17085.48 12695.70 31272.25 33594.89 16597.55 190
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_fmvsm_n_192097.08 2497.55 1295.67 12497.94 10489.61 15399.93 198.48 2497.08 599.08 1299.13 4288.17 6699.93 3799.11 2199.06 7597.47 191
BH-untuned91.46 16990.84 17093.33 20396.51 15584.83 26898.84 13195.50 28186.44 24083.50 24396.70 18675.49 22897.77 20386.78 21397.81 11397.40 192
thres20093.69 11792.59 13496.97 6497.76 10894.74 4399.35 7499.36 289.23 15891.21 16996.97 17283.42 15298.77 15585.08 22990.96 21297.39 193
JIA-IIPM85.97 27084.85 27089.33 29993.23 27473.68 35585.05 37497.13 16869.62 36991.56 16068.03 38488.03 7196.96 24377.89 29793.12 17897.34 194
baseline192.61 14791.28 16096.58 8697.05 13894.63 4697.72 23696.20 22589.82 14188.56 19996.85 17986.85 9597.82 19988.42 19280.10 28497.30 195
PVSNet_083.28 1687.31 24985.16 26493.74 19894.78 23184.59 27098.91 12698.69 2189.81 14278.59 31593.23 25961.95 32499.34 13294.75 11255.72 37997.30 195
PLCcopyleft91.07 394.23 10294.01 9694.87 15299.17 6387.49 20199.25 8396.55 20488.43 18491.26 16798.21 12285.92 11699.86 6189.77 17897.57 11997.24 197
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
Anonymous2024052987.66 24585.58 25893.92 19197.59 11685.01 26598.13 20697.13 16866.69 37888.47 20096.01 20555.09 34999.51 10887.00 20784.12 25697.23 198
thres100view90093.34 13092.15 14296.90 6797.62 11394.84 3899.06 10999.36 287.96 20190.47 18096.78 18383.29 15598.75 15784.11 24590.69 21497.12 199
tfpn200view993.43 12692.27 13996.90 6797.68 11194.84 3899.18 8799.36 288.45 18190.79 17296.90 17683.31 15398.75 15784.11 24590.69 21497.12 199
tpmvs89.16 21187.76 22493.35 20297.19 12884.75 26990.58 36297.36 14881.99 31284.56 23489.31 33583.98 14598.17 17874.85 31890.00 22197.12 199
PCF-MVS89.78 591.26 17289.63 18796.16 10695.44 19791.58 9995.29 31596.10 23385.07 25982.75 25397.45 15078.28 21599.78 8280.60 27995.65 15897.12 199
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MIMVSNet84.48 29281.83 30292.42 22191.73 29787.36 20685.52 37194.42 32381.40 31881.91 27687.58 34251.92 35892.81 35273.84 32688.15 22697.08 203
CANet_DTU94.31 10193.35 11397.20 5397.03 13994.71 4498.62 15495.54 27995.61 2397.21 6498.47 11171.88 26099.84 6788.38 19397.46 12497.04 204
PatchMatch-RL91.47 16890.54 17794.26 17798.20 9586.36 22896.94 26897.14 16687.75 20888.98 19695.75 20971.80 26299.40 12580.92 27597.39 12697.02 205
fmvsm_s_conf0.5_n_a95.97 5396.19 4095.31 13696.51 15589.01 16499.81 998.39 2795.46 2699.19 1199.16 3481.44 19299.91 4398.83 2696.97 13497.01 206
test_fmvsmvis_n_192095.47 7095.40 6895.70 12294.33 24190.22 13299.70 2496.98 18496.80 792.75 14498.89 7682.46 17799.92 3998.36 3898.33 10596.97 207
UGNet91.91 16390.85 16995.10 14397.06 13788.69 17798.01 21898.24 3492.41 8392.39 14993.61 25060.52 33099.68 9088.14 19697.25 12896.92 208
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
test_vis1_n_192093.08 13993.42 11292.04 23096.31 16479.36 32799.83 796.06 23796.72 898.53 3098.10 12558.57 33599.91 4397.86 5198.79 9496.85 209
fmvsm_s_conf0.5_n96.19 4696.49 3395.30 13797.37 12189.16 15899.86 498.47 2595.68 2198.87 2099.15 3782.44 17899.92 3999.14 1997.43 12596.83 210
fmvsm_s_conf0.1_n_a95.16 7895.15 7495.18 14192.06 28988.94 16899.29 7997.53 11994.46 3698.98 1698.99 5879.99 20099.85 6598.24 4596.86 13696.73 211
test_cas_vis1_n_192093.86 11393.74 10694.22 17995.39 20186.08 23999.73 2096.07 23696.38 1597.19 6797.78 13265.46 31099.86 6196.71 7098.92 8596.73 211
fmvsm_s_conf0.1_n95.56 6995.68 6295.20 14094.35 24089.10 16099.50 4997.67 8894.76 3298.68 2599.03 5481.13 19599.86 6198.63 3097.36 12796.63 213
thres600view793.18 13692.00 14596.75 7497.62 11394.92 3399.07 10799.36 287.96 20190.47 18096.78 18383.29 15598.71 16182.93 25990.47 21896.61 214
thres40093.39 12892.27 13996.73 7697.68 11194.84 3899.18 8799.36 288.45 18190.79 17296.90 17683.31 15398.75 15784.11 24590.69 21496.61 214
xiu_mvs_v1_base_debu94.73 8993.98 9796.99 6095.19 20795.24 2598.62 15496.50 20792.99 7097.52 5598.83 8072.37 25599.15 13997.03 6396.74 13796.58 216
xiu_mvs_v1_base94.73 8993.98 9796.99 6095.19 20795.24 2598.62 15496.50 20792.99 7097.52 5598.83 8072.37 25599.15 13997.03 6396.74 13796.58 216
xiu_mvs_v1_base_debi94.73 8993.98 9796.99 6095.19 20795.24 2598.62 15496.50 20792.99 7097.52 5598.83 8072.37 25599.15 13997.03 6396.74 13796.58 216
F-COLMAP92.07 16191.75 15293.02 20898.16 9882.89 29398.79 13895.97 24186.54 23587.92 20397.80 13078.69 21399.65 9685.97 21995.93 15496.53 219
test_vis1_n90.40 18990.27 18090.79 25991.55 29976.48 34499.12 10394.44 32094.31 3997.34 6196.95 17343.60 37499.42 12197.57 5597.60 11896.47 220
test_fmvs192.35 15292.94 12790.57 26497.19 12875.43 34899.55 4294.97 30495.20 2996.82 7797.57 14559.59 33399.84 6797.30 5998.29 10896.46 221
AUN-MVS90.17 19689.50 18992.19 22596.21 16982.67 29797.76 23497.53 11988.05 19791.67 15696.15 20083.10 16097.47 22588.11 19766.91 35896.43 222
hse-mvs291.67 16691.51 15692.15 22796.22 16882.61 29997.74 23597.53 11993.85 5396.27 8896.15 20083.19 15897.44 22895.81 8866.86 35996.40 223
MSDG88.29 23386.37 24694.04 18896.90 14186.15 23796.52 28394.36 32577.89 34279.22 30896.95 17369.72 27399.59 10273.20 33192.58 18796.37 224
UniMVSNet_ETH3D85.65 27983.79 28791.21 24690.41 31580.75 32195.36 31495.78 26478.76 33681.83 28194.33 23349.86 36596.66 25484.30 24083.52 26496.22 225
dmvs_re88.69 22788.06 22290.59 26393.83 26078.68 33395.75 31196.18 22887.99 20084.48 23796.32 19867.52 29196.94 24584.98 23285.49 24496.14 226
OpenMVScopyleft85.28 1490.75 18488.84 20496.48 9193.58 26593.51 6898.80 13497.41 14382.59 30178.62 31397.49 14868.00 28799.82 7484.52 23998.55 10196.11 227
test_fmvs1_n91.07 17791.41 15890.06 27894.10 24674.31 35299.18 8794.84 30894.81 3196.37 8797.46 14950.86 36399.82 7497.14 6297.90 11196.04 228
baseline294.04 10593.80 10594.74 15893.07 27790.25 12998.12 20898.16 3989.86 14086.53 22096.95 17395.56 698.05 18791.44 15794.53 16795.93 229
DSMNet-mixed81.60 31281.43 30682.10 34984.36 36560.79 37893.63 33186.74 38279.00 33279.32 30787.15 35063.87 31689.78 37266.89 35491.92 19795.73 230
cascas90.93 18189.33 19595.76 12095.69 18993.03 7898.99 11896.59 19980.49 32786.79 21894.45 23265.23 31198.60 16593.52 13592.18 19495.66 231
SDMVSNet91.09 17689.91 18494.65 16196.80 14590.54 12597.78 23097.81 6388.34 18885.73 22395.26 21966.44 30198.26 17594.25 12386.75 23295.14 232
sd_testset89.23 21088.05 22392.74 21696.80 14585.33 25895.85 30897.03 17988.34 18885.73 22395.26 21961.12 32897.76 20885.61 22586.75 23295.14 232
tt080586.50 26384.79 27291.63 24191.97 29081.49 30896.49 28497.38 14682.24 30982.44 26195.82 20851.22 36098.25 17684.55 23880.96 28095.13 234
XVG-OURS-SEG-HR90.95 18090.66 17691.83 23395.18 21081.14 31795.92 30295.92 25088.40 18590.33 18397.85 12770.66 27099.38 12692.83 14688.83 22494.98 235
XVG-OURS90.83 18290.49 17891.86 23295.23 20481.25 31495.79 31095.92 25088.96 16690.02 18798.03 12671.60 26499.35 13191.06 16087.78 22894.98 235
Effi-MVS+-dtu89.97 20290.68 17587.81 31595.15 21171.98 36297.87 22695.40 28891.92 9387.57 20591.44 28874.27 23896.84 24889.45 18193.10 17994.60 237
Fast-Effi-MVS+-dtu88.84 21988.59 21289.58 29393.44 27078.18 33798.65 15094.62 31788.46 18084.12 24095.37 21868.91 27796.52 26482.06 26791.70 20394.06 238
test0.0.03 188.96 21488.61 21090.03 28291.09 30684.43 27298.97 12197.02 18190.21 13080.29 29496.31 19984.89 13491.93 36472.98 33285.70 24393.73 239
MVS-HIRNet79.01 32375.13 33590.66 26293.82 26181.69 30685.16 37293.75 33454.54 38274.17 33759.15 38857.46 33996.58 26063.74 36194.38 16893.72 240
AllTest84.97 28583.12 29090.52 26796.82 14378.84 33195.89 30392.17 35577.96 34075.94 32795.50 21255.48 34599.18 13771.15 33687.14 22993.55 241
TestCases90.52 26796.82 14378.84 33192.17 35577.96 34075.94 32795.50 21255.48 34599.18 13771.15 33687.14 22993.55 241
RPSCF85.33 28185.55 25984.67 33894.63 23662.28 37793.73 32993.76 33374.38 35585.23 23097.06 16964.09 31498.31 17180.98 27386.08 24093.41 243
Syy-MVS84.10 29984.53 27882.83 34695.14 21265.71 37497.68 23996.66 19486.52 23682.63 25696.84 18068.15 28489.89 37045.62 38491.54 20692.87 244
myMVS_eth3d88.68 22889.07 19987.50 31895.14 21279.74 32597.68 23996.66 19486.52 23682.63 25696.84 18085.22 13189.89 37069.43 34491.54 20692.87 244
HQP4-MVS87.57 20597.77 20392.72 246
HQP-MVS91.50 16791.23 16192.29 22293.95 25186.39 22699.16 9196.37 21493.92 4887.57 20596.67 18873.34 24497.77 20393.82 13186.29 23592.72 246
HQP_MVS91.26 17290.95 16792.16 22693.84 25886.07 24199.02 11496.30 21893.38 6486.99 21296.52 19072.92 25097.75 20993.46 13686.17 23892.67 248
plane_prior596.30 21897.75 20993.46 13686.17 23892.67 248
nrg03090.23 19388.87 20394.32 17591.53 30093.54 6798.79 13895.89 25888.12 19684.55 23594.61 23078.80 21296.88 24792.35 15275.21 30792.53 250
iter_conf_final93.22 13593.04 12393.76 19697.03 13992.22 9099.05 11093.31 34192.11 9186.93 21495.42 21595.01 1096.59 25793.98 12584.48 25192.46 251
iter_conf0593.48 12393.18 11994.39 17397.15 13194.17 5799.30 7892.97 34492.38 8686.70 21995.42 21595.67 596.59 25794.67 11684.32 25492.39 252
CLD-MVS91.06 17890.71 17492.10 22894.05 25086.10 23899.55 4296.29 22194.16 4384.70 23397.17 16469.62 27597.82 19994.74 11386.08 24092.39 252
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
VPNet88.30 23286.57 24393.49 20091.95 29291.35 10198.18 20397.20 16288.61 17584.52 23694.89 22462.21 32396.76 25389.34 18472.26 33992.36 254
DU-MVS88.83 22187.51 22892.79 21391.46 30190.07 13898.71 14297.62 10188.87 17183.21 24793.68 24774.63 23095.93 30286.95 20872.47 33692.36 254
NR-MVSNet87.74 24486.00 25292.96 21091.46 30190.68 12296.65 28197.42 14288.02 19973.42 34193.68 24777.31 22095.83 30884.26 24171.82 34392.36 254
testing387.75 24188.22 21986.36 32694.66 23577.41 34299.52 4897.95 5286.05 24381.12 28696.69 18786.18 11389.31 37461.65 36890.12 22092.35 257
FIs90.70 18589.87 18593.18 20592.29 28491.12 10798.17 20598.25 3289.11 16283.44 24494.82 22782.26 18096.17 29187.76 20182.76 27092.25 258
UniMVSNet_NR-MVSNet89.60 20688.55 21492.75 21592.17 28790.07 13898.74 14198.15 4088.37 18683.21 24793.98 24082.86 16495.93 30286.95 20872.47 33692.25 258
VPA-MVSNet89.10 21287.66 22793.45 20192.56 28091.02 11397.97 22198.32 3086.92 22686.03 22292.01 27668.84 27997.10 23990.92 16275.34 30692.23 260
TranMVSNet+NR-MVSNet87.75 24186.31 24792.07 22990.81 30988.56 17898.33 19197.18 16387.76 20781.87 27893.90 24272.45 25495.43 31883.13 25771.30 34692.23 260
dmvs_testset77.17 33378.99 32071.71 36287.25 35338.55 39991.44 35281.76 39085.77 24769.49 35695.94 20669.71 27484.37 38252.71 38176.82 30292.21 262
mvsmamba89.99 20189.42 19291.69 24090.64 31286.34 22998.40 18392.27 35391.01 11084.80 23294.93 22376.12 22496.51 26592.81 14783.84 25892.21 262
FC-MVSNet-test90.22 19489.40 19392.67 21991.78 29689.86 14797.89 22398.22 3588.81 17282.96 25294.66 22981.90 18695.96 30085.89 22382.52 27392.20 264
RRT_MVS88.91 21688.56 21389.93 28390.31 31681.61 30798.08 21496.38 21389.30 15682.41 26494.84 22673.15 24896.04 29790.38 16982.23 27592.15 265
PS-MVSNAJss89.54 20889.05 20091.00 25288.77 33784.36 27397.39 24795.97 24188.47 17881.88 27793.80 24582.48 17496.50 26689.34 18483.34 26792.15 265
testgi82.29 30781.00 31086.17 32887.24 35474.84 35197.39 24791.62 36388.63 17475.85 33095.42 21546.07 37191.55 36566.87 35579.94 28592.12 267
WR-MVS88.54 23087.22 23592.52 22091.93 29489.50 15498.56 16397.84 5786.99 22181.87 27893.81 24474.25 23995.92 30485.29 22774.43 31692.12 267
MVSTER92.71 14392.32 13793.86 19397.29 12592.95 8199.01 11696.59 19990.09 13685.51 22794.00 23994.61 1696.56 26190.77 16783.03 26892.08 269
ACMM86.95 1388.77 22488.22 21990.43 26993.61 26481.34 31298.50 16995.92 25087.88 20483.85 24295.20 22167.20 29497.89 19486.90 21184.90 24792.06 270
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
XXY-MVS87.75 24186.02 25192.95 21190.46 31489.70 15097.71 23895.90 25684.02 27480.95 28794.05 23467.51 29297.10 23985.16 22878.41 29092.04 271
FMVSNet388.81 22387.08 23693.99 19096.52 15494.59 4798.08 21496.20 22585.85 24582.12 27091.60 28574.05 24095.40 32079.04 28780.24 28191.99 272
FMVSNet286.90 25384.79 27293.24 20495.11 21592.54 8797.67 24195.86 26282.94 29580.55 29191.17 29462.89 32095.29 32277.23 29979.71 28791.90 273
UniMVSNet (Re)89.50 20988.32 21793.03 20792.21 28690.96 11598.90 12798.39 2789.13 16183.22 24692.03 27481.69 18796.34 28186.79 21272.53 33591.81 274
EU-MVSNet84.19 29684.42 28183.52 34488.64 34067.37 37396.04 30095.76 26685.29 25478.44 31693.18 26070.67 26991.48 36675.79 31275.98 30391.70 275
bld_raw_dy_0_6487.82 23786.71 24291.15 24889.54 32885.61 25197.37 25089.16 37789.26 15783.42 24594.50 23165.79 30496.18 28988.00 19983.37 26591.67 276
EI-MVSNet89.87 20389.38 19491.36 24594.32 24285.87 24697.61 24396.59 19985.10 25785.51 22797.10 16681.30 19496.56 26183.85 25183.03 26891.64 277
IterMVS-LS88.34 23187.44 22991.04 25194.10 24685.85 24798.10 21195.48 28285.12 25682.03 27491.21 29381.35 19395.63 31483.86 25075.73 30591.63 278
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
GBi-Net86.67 25884.96 26691.80 23595.11 21588.81 17396.77 27495.25 29482.94 29582.12 27090.25 32062.89 32094.97 32779.04 28780.24 28191.62 279
test186.67 25884.96 26691.80 23595.11 21588.81 17396.77 27495.25 29482.94 29582.12 27090.25 32062.89 32094.97 32779.04 28780.24 28191.62 279
FMVSNet183.94 30081.32 30891.80 23591.94 29388.81 17396.77 27495.25 29477.98 33878.25 31890.25 32050.37 36494.97 32773.27 33077.81 29791.62 279
cl2289.57 20788.79 20691.91 23197.94 10487.62 19797.98 22096.51 20685.03 26082.37 26691.79 28183.65 14796.50 26685.96 22077.89 29391.61 282
eth_miper_zixun_eth87.76 24087.00 23890.06 27894.67 23482.65 29897.02 26795.37 29084.19 27281.86 28091.58 28681.47 19095.90 30683.24 25373.61 32591.61 282
Anonymous2023121184.72 28782.65 29890.91 25497.71 11084.55 27197.28 25496.67 19366.88 37779.18 30990.87 29958.47 33696.60 25682.61 26274.20 32091.59 284
miper_enhance_ethall90.33 19189.70 18692.22 22397.12 13488.93 17098.35 19095.96 24388.60 17683.14 25192.33 27187.38 8096.18 28986.49 21577.89 29391.55 285
jajsoiax87.35 24886.51 24589.87 28487.75 35181.74 30597.03 26595.98 24088.47 17880.15 29693.80 24561.47 32596.36 27589.44 18284.47 25291.50 286
ACMP87.39 1088.71 22688.24 21890.12 27793.91 25681.06 31898.50 16995.67 27289.43 15480.37 29395.55 21165.67 30597.83 19890.55 16884.51 24991.47 287
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
LPG-MVS_test88.86 21888.47 21690.06 27893.35 27280.95 31998.22 19995.94 24687.73 21083.17 24996.11 20266.28 30297.77 20390.19 17285.19 24591.46 288
LGP-MVS_train90.06 27893.35 27280.95 31995.94 24687.73 21083.17 24996.11 20266.28 30297.77 20390.19 17285.19 24591.46 288
mvs_tets87.09 25186.22 24889.71 28987.87 34781.39 31196.73 27995.90 25688.19 19479.99 29893.61 25059.96 33296.31 28389.40 18384.34 25391.43 290
DIV-MVS_self_test87.82 23786.81 24090.87 25794.87 22985.39 25797.81 22895.22 30282.92 29880.76 28991.31 29181.99 18395.81 30981.36 27175.04 30991.42 291
cl____87.82 23786.79 24190.89 25694.88 22885.43 25597.81 22895.24 29782.91 29980.71 29091.22 29281.97 18595.84 30781.34 27275.06 30891.40 292
miper_ehance_all_eth88.94 21588.12 22191.40 24395.32 20286.93 21697.85 22795.55 27884.19 27281.97 27591.50 28784.16 14295.91 30584.69 23577.89 29391.36 293
CP-MVSNet86.54 26185.45 26189.79 28891.02 30882.78 29697.38 24997.56 11485.37 25379.53 30593.03 26371.86 26195.25 32379.92 28273.43 33091.34 294
test_djsdf88.26 23487.73 22589.84 28688.05 34682.21 30197.77 23296.17 22986.84 22782.41 26491.95 28072.07 25895.99 29889.83 17484.50 25091.32 295
v2v48287.27 25085.76 25591.78 23989.59 32587.58 19898.56 16395.54 27984.53 26882.51 26091.78 28273.11 24996.47 26982.07 26674.14 32291.30 296
c3_l88.19 23587.23 23491.06 25094.97 22486.17 23697.72 23695.38 28983.43 28681.68 28291.37 28982.81 16595.72 31184.04 24873.70 32491.29 297
OPM-MVS89.76 20489.15 19891.57 24290.53 31385.58 25398.11 21095.93 24992.88 7486.05 22196.47 19367.06 29697.87 19689.29 18786.08 24091.26 298
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
PS-CasMVS85.81 27484.58 27789.49 29790.77 31082.11 30297.20 26097.36 14884.83 26579.12 31092.84 26667.42 29395.16 32578.39 29573.25 33191.21 299
pmmvs585.87 27184.40 28290.30 27488.53 34184.23 27498.60 15893.71 33581.53 31780.29 29492.02 27564.51 31395.52 31682.04 26878.34 29191.15 300
miper_lstm_enhance86.90 25386.20 24989.00 30594.53 23781.19 31596.74 27895.24 29782.33 30880.15 29690.51 31681.99 18394.68 33680.71 27773.58 32691.12 301
COLMAP_ROBcopyleft82.69 1884.54 29182.82 29289.70 29096.72 14978.85 33095.89 30392.83 34771.55 36177.54 32295.89 20759.40 33499.14 14367.26 35288.26 22591.11 302
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
PEN-MVS85.21 28283.93 28689.07 30489.89 32181.31 31397.09 26397.24 15584.45 27078.66 31292.68 26868.44 28294.87 33075.98 31070.92 34791.04 303
ACMH83.09 1784.60 28982.61 29990.57 26493.18 27582.94 29096.27 29094.92 30781.01 32372.61 35093.61 25056.54 34197.79 20174.31 32181.07 27990.99 304
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
OurMVSNet-221017-084.13 29883.59 28885.77 33187.81 34870.24 36794.89 31893.65 33786.08 24276.53 32393.28 25861.41 32696.14 29380.95 27477.69 29890.93 305
XVG-ACMP-BASELINE85.86 27284.95 26888.57 30989.90 32077.12 34394.30 32395.60 27687.40 21882.12 27092.99 26553.42 35597.66 21385.02 23183.83 25990.92 306
Patchmtry83.61 30381.64 30389.50 29593.36 27182.84 29584.10 37894.20 32869.47 37079.57 30486.88 35284.43 13994.78 33368.48 34874.30 31890.88 307
IterMVS85.81 27484.67 27589.22 30093.51 26683.67 28396.32 28994.80 31185.09 25878.69 31190.17 32666.57 30093.17 34979.48 28577.42 29990.81 308
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v192192086.02 26984.44 28090.77 26089.32 33285.20 26098.10 21195.35 29282.19 31082.25 26890.71 30270.73 26896.30 28676.85 30474.49 31590.80 309
v14419286.40 26484.89 26990.91 25489.48 33085.59 25298.21 20195.43 28782.45 30682.62 25890.58 31272.79 25396.36 27578.45 29474.04 32390.79 310
v119286.32 26684.71 27491.17 24789.53 32986.40 22598.13 20695.44 28682.52 30482.42 26390.62 30971.58 26596.33 28277.23 29974.88 31090.79 310
IterMVS-SCA-FT85.73 27784.64 27689.00 30593.46 26982.90 29296.27 29094.70 31485.02 26178.62 31390.35 31866.61 29893.33 34679.38 28677.36 30090.76 312
SixPastTwentyTwo82.63 30681.58 30485.79 33088.12 34571.01 36595.17 31692.54 35084.33 27172.93 34892.08 27360.41 33195.61 31574.47 32074.15 32190.75 313
v124085.77 27684.11 28390.73 26189.26 33385.15 26397.88 22595.23 30181.89 31582.16 26990.55 31469.60 27696.31 28375.59 31374.87 31190.72 314
v14886.38 26585.06 26590.37 27389.47 33184.10 27798.52 16595.48 28283.80 27980.93 28890.22 32374.60 23296.31 28380.92 27571.55 34490.69 315
K. test v381.04 31479.77 31784.83 33687.41 35270.23 36895.60 31393.93 33283.70 28267.51 36589.35 33455.76 34393.58 34576.67 30668.03 35390.67 316
v114486.83 25585.31 26391.40 24389.75 32387.21 21498.31 19495.45 28483.22 28982.70 25590.78 30073.36 24396.36 27579.49 28474.69 31390.63 317
ACMH+83.78 1584.21 29582.56 30089.15 30293.73 26379.16 32896.43 28594.28 32681.09 32274.00 33894.03 23754.58 35197.67 21276.10 30978.81 28990.63 317
lessismore_v085.08 33485.59 36269.28 37090.56 37067.68 36490.21 32454.21 35395.46 31773.88 32562.64 36790.50 319
pmmvs487.58 24786.17 25091.80 23589.58 32688.92 17197.25 25695.28 29382.54 30380.49 29293.17 26175.62 22796.05 29682.75 26078.90 28890.42 320
WR-MVS_H86.53 26285.49 26089.66 29291.04 30783.31 28797.53 24598.20 3684.95 26379.64 30290.90 29878.01 21795.33 32176.29 30872.81 33290.35 321
V4287.00 25285.68 25790.98 25389.91 31986.08 23998.32 19395.61 27583.67 28382.72 25490.67 30574.00 24196.53 26381.94 26974.28 31990.32 322
DTE-MVSNet84.14 29782.80 29388.14 31288.95 33679.87 32496.81 27396.24 22383.50 28577.60 32192.52 27067.89 28994.24 34172.64 33469.05 35090.32 322
YYNet179.64 32277.04 32787.43 32087.80 34979.98 32396.23 29494.44 32073.83 35751.83 38187.53 34367.96 28892.07 36366.00 35767.75 35690.23 324
MDA-MVSNet_test_wron79.65 32177.05 32687.45 31987.79 35080.13 32296.25 29394.44 32073.87 35651.80 38287.47 34768.04 28692.12 36266.02 35667.79 35590.09 325
MDA-MVSNet-bldmvs77.82 33174.75 33787.03 32288.33 34278.52 33596.34 28892.85 34675.57 34948.87 38487.89 34057.32 34092.49 35860.79 36964.80 36490.08 326
our_test_384.47 29382.80 29389.50 29589.01 33483.90 28097.03 26594.56 31881.33 31975.36 33390.52 31571.69 26394.54 33868.81 34676.84 30190.07 327
v7n84.42 29482.75 29689.43 29888.15 34481.86 30496.75 27795.67 27280.53 32678.38 31789.43 33369.89 27196.35 28073.83 32772.13 34090.07 327
v886.11 26884.45 27991.10 24989.99 31886.85 21797.24 25795.36 29181.99 31279.89 30089.86 32874.53 23496.39 27378.83 29172.32 33890.05 329
PVSNet_BlendedMVS93.36 12993.20 11893.84 19498.77 8391.61 9799.47 5398.04 4791.44 10294.21 12492.63 26983.50 14999.87 5697.41 5783.37 26590.05 329
ITE_SJBPF87.93 31392.26 28576.44 34593.47 34087.67 21379.95 29995.49 21456.50 34297.38 23175.24 31482.33 27489.98 331
pm-mvs184.68 28882.78 29590.40 27089.58 32685.18 26197.31 25294.73 31381.93 31476.05 32692.01 27665.48 30996.11 29478.75 29269.14 34989.91 332
test_fmvs285.10 28385.45 26184.02 34189.85 32265.63 37598.49 17192.59 34990.45 12585.43 22993.32 25543.94 37296.59 25790.81 16584.19 25589.85 333
LTVRE_ROB81.71 1984.59 29082.72 29790.18 27592.89 27983.18 28893.15 33494.74 31278.99 33375.14 33492.69 26765.64 30697.63 21669.46 34381.82 27789.74 334
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
anonymousdsp86.69 25785.75 25689.53 29486.46 35982.94 29096.39 28695.71 26883.97 27679.63 30390.70 30368.85 27895.94 30186.01 21884.02 25789.72 335
ppachtmachnet_test83.63 30281.57 30589.80 28789.01 33485.09 26497.13 26294.50 31978.84 33476.14 32591.00 29669.78 27294.61 33763.40 36274.36 31789.71 336
v1085.73 27784.01 28590.87 25790.03 31786.73 21997.20 26095.22 30281.25 32079.85 30189.75 32973.30 24696.28 28776.87 30372.64 33489.61 337
UnsupCasMVSNet_eth78.90 32476.67 32985.58 33282.81 37174.94 35091.98 34596.31 21784.64 26765.84 37187.71 34151.33 35992.23 36072.89 33356.50 37889.56 338
test_method70.10 34468.66 34774.41 36186.30 36155.84 38394.47 32089.82 37335.18 39066.15 37084.75 36030.54 38477.96 39170.40 34260.33 37189.44 339
USDC84.74 28682.93 29190.16 27691.73 29783.54 28495.00 31793.30 34288.77 17373.19 34393.30 25753.62 35497.65 21575.88 31181.54 27889.30 340
FMVSNet582.29 30780.54 31187.52 31793.79 26284.01 27893.73 32992.47 35176.92 34574.27 33686.15 35663.69 31889.24 37569.07 34574.79 31289.29 341
Anonymous2023120680.76 31579.42 31984.79 33784.78 36472.98 35796.53 28292.97 34479.56 33174.33 33588.83 33661.27 32792.15 36160.59 37075.92 30489.24 342
pmmvs679.90 31977.31 32587.67 31684.17 36678.13 33895.86 30793.68 33667.94 37472.67 34989.62 33150.98 36295.75 31074.80 31966.04 36089.14 343
N_pmnet70.19 34369.87 34571.12 36488.24 34330.63 40395.85 30828.70 40270.18 36668.73 35986.55 35464.04 31593.81 34253.12 38073.46 32888.94 344
D2MVS87.96 23687.39 23089.70 29091.84 29583.40 28598.31 19498.49 2388.04 19878.23 31990.26 31973.57 24296.79 25284.21 24283.53 26388.90 345
KD-MVS_2432*160082.98 30480.52 31290.38 27194.32 24288.98 16592.87 33895.87 26080.46 32873.79 33987.49 34582.76 16893.29 34770.56 34046.53 38888.87 346
miper_refine_blended82.98 30480.52 31290.38 27194.32 24288.98 16592.87 33895.87 26080.46 32873.79 33987.49 34582.76 16893.29 34770.56 34046.53 38888.87 346
CL-MVSNet_self_test79.89 32078.34 32184.54 33981.56 37375.01 34996.88 27195.62 27481.10 32175.86 32985.81 35768.49 28190.26 36863.21 36356.51 37788.35 348
MIMVSNet175.92 33573.30 34083.81 34381.29 37475.57 34792.26 34392.05 35873.09 35967.48 36686.18 35540.87 37887.64 37955.78 37770.68 34888.21 349
TransMVSNet (Re)81.97 30979.61 31889.08 30389.70 32484.01 27897.26 25591.85 36178.84 33473.07 34791.62 28467.17 29595.21 32467.50 35159.46 37388.02 350
MS-PatchMatch86.75 25685.92 25389.22 30091.97 29082.47 30096.91 26996.14 23183.74 28077.73 32093.53 25358.19 33797.37 23376.75 30598.35 10487.84 351
Baseline_NR-MVSNet85.83 27384.82 27188.87 30888.73 33883.34 28698.63 15391.66 36280.41 33082.44 26191.35 29074.63 23095.42 31984.13 24471.39 34587.84 351
ambc79.60 35572.76 38756.61 38276.20 38692.01 35968.25 36180.23 37423.34 38794.73 33473.78 32860.81 37087.48 353
KD-MVS_self_test77.47 33275.88 33282.24 34781.59 37268.93 37192.83 34094.02 33177.03 34473.14 34483.39 36255.44 34790.42 36767.95 34957.53 37687.38 354
TinyColmap80.42 31777.94 32287.85 31492.09 28878.58 33493.74 32889.94 37274.99 35169.77 35591.78 28246.09 37097.58 22065.17 36077.89 29387.38 354
TDRefinement78.01 32975.31 33386.10 32970.06 38873.84 35493.59 33291.58 36474.51 35473.08 34691.04 29549.63 36797.12 23674.88 31759.47 37287.33 356
CMPMVSbinary58.40 2180.48 31680.11 31581.59 35285.10 36359.56 38094.14 32695.95 24568.54 37260.71 37693.31 25655.35 34897.87 19683.06 25884.85 24887.33 356
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
LF4IMVS81.94 31081.17 30984.25 34087.23 35568.87 37293.35 33391.93 36083.35 28875.40 33293.00 26449.25 36896.65 25578.88 29078.11 29287.22 358
tfpnnormal83.65 30181.35 30790.56 26691.37 30388.06 18797.29 25397.87 5578.51 33776.20 32490.91 29764.78 31296.47 26961.71 36773.50 32787.13 359
EG-PatchMatch MVS79.92 31877.59 32386.90 32387.06 35677.90 34196.20 29794.06 33074.61 35366.53 36988.76 33740.40 37996.20 28867.02 35383.66 26286.61 360
test20.0378.51 32877.48 32481.62 35183.07 36971.03 36496.11 29892.83 34781.66 31669.31 35789.68 33057.53 33887.29 38058.65 37468.47 35186.53 361
MVP-Stereo86.61 26085.83 25488.93 30788.70 33983.85 28196.07 29994.41 32482.15 31175.64 33191.96 27967.65 29096.45 27177.20 30198.72 9586.51 362
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
OpenMVS_ROBcopyleft73.86 2077.99 33075.06 33686.77 32483.81 36877.94 34096.38 28791.53 36567.54 37568.38 36087.13 35143.94 37296.08 29555.03 37881.83 27686.29 363
Anonymous2024052178.63 32776.90 32883.82 34282.82 37072.86 35895.72 31293.57 33873.55 35872.17 35184.79 35949.69 36692.51 35765.29 35974.50 31486.09 364
UnsupCasMVSNet_bld73.85 34070.14 34484.99 33579.44 37875.73 34688.53 36595.24 29770.12 36761.94 37574.81 38141.41 37793.62 34468.65 34751.13 38585.62 365
pmmvs-eth3d78.71 32676.16 33186.38 32580.25 37781.19 31594.17 32592.13 35777.97 33966.90 36882.31 36655.76 34392.56 35673.63 32962.31 36985.38 366
PM-MVS74.88 33872.85 34180.98 35378.98 37964.75 37690.81 35985.77 38380.95 32468.23 36282.81 36329.08 38592.84 35176.54 30762.46 36885.36 367
test_040278.81 32576.33 33086.26 32791.18 30578.44 33695.88 30591.34 36668.55 37170.51 35489.91 32752.65 35794.99 32647.14 38379.78 28685.34 368
test_vis1_rt81.31 31380.05 31685.11 33391.29 30470.66 36698.98 12077.39 39485.76 24868.80 35882.40 36536.56 38199.44 11792.67 14986.55 23485.24 369
mvsany_test375.85 33674.52 33879.83 35473.53 38560.64 37991.73 34887.87 38183.91 27870.55 35382.52 36431.12 38393.66 34386.66 21462.83 36585.19 370
new-patchmatchnet74.80 33972.40 34281.99 35078.36 38072.20 36194.44 32192.36 35277.06 34363.47 37379.98 37551.04 36188.85 37660.53 37154.35 38084.92 371
test_fmvs375.09 33775.19 33474.81 35977.45 38154.08 38595.93 30190.64 36982.51 30573.29 34281.19 37022.29 38886.29 38185.50 22667.89 35484.06 372
DeepMVS_CXcopyleft76.08 35790.74 31151.65 39090.84 36886.47 23957.89 37887.98 33935.88 38292.60 35465.77 35865.06 36383.97 373
pmmvs372.86 34169.76 34682.17 34873.86 38474.19 35394.20 32489.01 37864.23 38167.72 36380.91 37341.48 37688.65 37762.40 36554.02 38183.68 374
new_pmnet76.02 33473.71 33982.95 34583.88 36772.85 35991.26 35592.26 35470.44 36562.60 37481.37 36947.64 36992.32 35961.85 36672.10 34183.68 374
LCM-MVSNet60.07 35156.37 35371.18 36354.81 39748.67 39182.17 38389.48 37637.95 38849.13 38369.12 38213.75 39681.76 38359.28 37251.63 38483.10 376
test_f71.94 34270.82 34375.30 35872.77 38653.28 38691.62 34989.66 37575.44 35064.47 37278.31 37820.48 38989.56 37378.63 29366.02 36183.05 377
APD_test168.93 34566.98 34874.77 36080.62 37653.15 38787.97 36685.01 38553.76 38359.26 37787.52 34425.19 38689.95 36956.20 37667.33 35781.19 378
PMMVS258.97 35255.07 35570.69 36562.72 39255.37 38485.97 37080.52 39149.48 38445.94 38568.31 38315.73 39480.78 38749.79 38237.12 39075.91 379
WB-MVS66.44 34666.29 34966.89 36774.84 38244.93 39493.00 33584.09 38871.15 36255.82 37981.63 36863.79 31780.31 38921.85 39350.47 38675.43 380
SSC-MVS65.42 34765.20 35066.06 36873.96 38343.83 39592.08 34483.54 38969.77 36854.73 38080.92 37263.30 31979.92 39020.48 39448.02 38774.44 381
FPMVS61.57 34860.32 35165.34 36960.14 39542.44 39791.02 35889.72 37444.15 38542.63 38880.93 37119.02 39080.59 38842.50 38572.76 33373.00 382
ANet_high50.71 35746.17 36064.33 37044.27 39952.30 38976.13 38778.73 39264.95 37927.37 39355.23 39014.61 39567.74 39336.01 38918.23 39372.95 383
EGC-MVSNET60.70 35055.37 35476.72 35686.35 36071.08 36389.96 36384.44 3870.38 3991.50 40084.09 36137.30 38088.10 37840.85 38873.44 32970.97 384
testf156.38 35353.73 35664.31 37164.84 39045.11 39280.50 38475.94 39638.87 38642.74 38675.07 37911.26 39881.19 38541.11 38653.27 38266.63 385
APD_test256.38 35353.73 35664.31 37164.84 39045.11 39280.50 38475.94 39638.87 38642.74 38675.07 37911.26 39881.19 38541.11 38653.27 38266.63 385
tmp_tt53.66 35652.86 35856.05 37432.75 40141.97 39873.42 38876.12 39521.91 39539.68 39196.39 19642.59 37565.10 39478.00 29614.92 39561.08 387
test_vis3_rt61.29 34958.75 35268.92 36667.41 38952.84 38891.18 35759.23 40166.96 37641.96 38958.44 38911.37 39794.72 33574.25 32257.97 37559.20 388
PMVScopyleft41.42 2345.67 35842.50 36155.17 37534.28 40032.37 40166.24 38978.71 39330.72 39122.04 39659.59 3874.59 40077.85 39227.49 39158.84 37455.29 389
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive44.00 2241.70 35937.64 36453.90 37649.46 39843.37 39665.09 39066.66 39826.19 39425.77 39548.53 3923.58 40263.35 39526.15 39227.28 39154.97 390
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
Gipumacopyleft54.77 35552.22 35962.40 37386.50 35859.37 38150.20 39190.35 37136.52 38941.20 39049.49 39118.33 39281.29 38432.10 39065.34 36246.54 391
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
E-PMN41.02 36040.93 36241.29 37761.97 39333.83 40084.00 38065.17 39927.17 39227.56 39246.72 39317.63 39360.41 39619.32 39518.82 39229.61 392
EMVS39.96 36139.88 36340.18 37859.57 39632.12 40284.79 37764.57 40026.27 39326.14 39444.18 39618.73 39159.29 39717.03 39617.67 39429.12 393
test12316.58 36519.47 3677.91 3803.59 4035.37 40594.32 3221.39 4052.49 39813.98 39844.60 3952.91 4032.65 39911.35 3990.57 39815.70 394
testmvs18.81 36323.05 3666.10 3814.48 4022.29 40697.78 2303.00 4043.27 39718.60 39762.71 3851.53 4042.49 40014.26 3981.80 39713.50 395
wuyk23d16.71 36416.73 36816.65 37960.15 39425.22 40441.24 3925.17 4036.56 3965.48 3993.61 3993.64 40122.72 39815.20 3979.52 3961.99 396
test_blank0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
uanet_test0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
DCPMVS0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
cdsmvs_eth3d_5k22.52 36230.03 3650.00 3820.00 4040.00 4070.00 39397.17 1640.00 4000.00 40198.77 8374.35 2370.00 4010.00 4000.00 3990.00 397
pcd_1.5k_mvsjas6.87 3679.16 3700.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 40082.48 1740.00 4010.00 4000.00 3990.00 397
sosnet-low-res0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
sosnet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
uncertanet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
Regformer0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
ab-mvs-re8.21 36610.94 3690.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 40198.50 1060.00 4050.00 4010.00 4000.00 3990.00 397
uanet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
WAC-MVS79.74 32567.75 350
FOURS199.50 4288.94 16899.55 4297.47 13391.32 10698.12 42
test_one_060199.59 2894.89 3497.64 9593.14 6798.93 1999.45 1493.45 18
eth-test20.00 404
eth-test0.00 404
ZD-MVS99.67 1093.28 7197.61 10287.78 20697.41 5899.16 3490.15 4799.56 10398.35 3999.70 35
test_241102_ONE99.63 1895.24 2597.72 7694.16 4399.30 699.49 993.32 1999.98 9
9.1496.87 2499.34 5099.50 4997.49 13089.41 15598.59 2899.43 1689.78 5099.69 8998.69 2899.62 44
save fliter99.34 5093.85 6299.65 3397.63 9995.69 20
test072699.66 1295.20 3099.77 1597.70 8193.95 4699.35 599.54 393.18 22
test_part299.54 3695.42 2098.13 40
sam_mvs87.08 89
MTGPAbinary97.45 136
test_post190.74 36141.37 39785.38 12896.36 27583.16 255
test_post46.00 39487.37 8197.11 237
patchmatchnet-post84.86 35888.73 6096.81 250
MTMP99.21 8491.09 367
gm-plane-assit94.69 23388.14 18588.22 19397.20 16198.29 17390.79 166
TEST999.57 3393.17 7399.38 6997.66 8989.57 15098.39 3399.18 3190.88 3799.66 92
test_899.55 3593.07 7699.37 7297.64 9590.18 13298.36 3599.19 2890.94 3599.64 98
agg_prior99.54 3692.66 8397.64 9597.98 4999.61 100
test_prior492.00 9299.41 66
test_prior299.57 4091.43 10398.12 4298.97 6090.43 4398.33 4099.81 23
旧先验298.67 14885.75 24998.96 1898.97 15093.84 129
新几何298.26 197
原ACMM298.69 145
testdata299.88 5284.16 243
segment_acmp90.56 41
testdata197.89 22392.43 80
plane_prior793.84 25885.73 249
plane_prior693.92 25586.02 24372.92 250
plane_prior496.52 190
plane_prior385.91 24493.65 5986.99 212
plane_prior299.02 11493.38 64
plane_prior193.90 257
plane_prior86.07 24199.14 9993.81 5686.26 237
n20.00 406
nn0.00 406
door-mid84.90 386
test1197.68 85
door85.30 384
HQP5-MVS86.39 226
HQP-NCC93.95 25199.16 9193.92 4887.57 205
ACMP_Plane93.95 25199.16 9193.92 4887.57 205
BP-MVS93.82 131
HQP3-MVS96.37 21486.29 235
HQP2-MVS73.34 244
NP-MVS93.94 25486.22 23396.67 188
MDTV_nov1_ep1390.47 17996.14 17588.55 17991.34 35497.51 12589.58 14992.24 15090.50 31786.99 9397.61 21877.64 29892.34 190
ACMMP++_ref82.64 272
ACMMP++83.83 259
Test By Simon83.62 148