This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted by
SED-MVS98.18 298.10 498.41 1499.63 2195.24 2199.77 897.72 7494.17 2499.30 499.54 393.32 1599.98 1099.70 299.81 1999.99 1
IU-MVS99.63 2195.38 1997.73 7295.54 1599.54 199.69 499.81 1999.99 1
OPU-MVS99.49 299.64 2098.51 299.77 899.19 3295.12 699.97 2099.90 199.92 399.99 1
test_241102_TWO97.72 7494.17 2499.23 699.54 393.14 2099.98 1099.70 299.82 1599.99 1
DeepPCF-MVS93.56 196.55 4197.84 892.68 20998.71 9278.11 32199.70 1697.71 7898.18 197.36 5399.76 190.37 4599.94 3399.27 999.54 5799.99 1
MCST-MVS98.18 297.95 798.86 399.85 396.60 799.70 1697.98 4497.18 295.96 8499.33 2192.62 22100.00 198.99 1399.93 199.98 6
MG-MVS97.24 1896.83 2998.47 1299.79 595.71 1599.07 9299.06 994.45 2296.42 7798.70 9288.81 6399.74 7095.35 8899.86 1099.97 7
test_0728_SECOND98.77 599.66 1596.37 1199.72 1397.68 8199.98 1099.64 599.82 1599.96 8
CNVR-MVS98.46 198.38 198.72 699.80 496.19 1299.80 797.99 4397.05 399.41 299.59 292.89 21100.00 198.99 1399.90 599.96 8
DeepC-MVS_fast93.52 297.16 2396.84 2898.13 2099.61 2794.45 4798.85 11597.64 8996.51 795.88 8799.39 1987.35 9399.99 596.61 6099.69 3799.96 8
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_0728_THIRD93.01 4999.07 899.46 1194.66 1099.97 2099.25 1199.82 1599.95 11
DPE-MVScopyleft98.11 598.00 598.44 1399.50 4395.39 1899.29 6797.72 7494.50 2098.64 2099.54 393.32 1599.97 2099.58 799.90 599.95 11
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MSP-MVS97.77 898.18 296.53 9799.54 3690.14 13899.41 5497.70 7995.46 1798.60 2199.19 3295.71 499.49 10498.15 3699.85 1199.95 11
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
testtj97.23 2097.05 2097.75 3599.75 793.34 6999.16 7697.74 6891.28 8998.40 2699.29 2289.95 4999.98 1098.20 3599.70 3599.94 14
DPM-MVS97.86 797.25 1799.68 198.25 10299.10 199.76 1197.78 6396.61 498.15 3199.53 793.62 14100.00 191.79 13999.80 2399.94 14
NCCC98.12 498.11 398.13 2099.76 694.46 4699.81 597.88 4996.54 598.84 1499.46 1192.55 2399.98 1098.25 3499.93 199.94 14
APDe-MVS97.53 1197.47 1097.70 3699.58 2993.63 6299.56 3297.52 11793.59 4398.01 3999.12 4690.80 3599.55 9499.26 1099.79 2599.93 17
ETH3 D test640097.67 1097.33 1698.69 799.69 996.43 999.63 2497.73 7291.05 9298.66 1999.53 790.59 3899.71 7399.32 899.80 2399.91 18
agg_prior297.84 4199.87 799.91 18
test9_res98.60 1999.87 799.90 20
SteuartSystems-ACMMP97.25 1797.34 1597.01 6297.38 12791.46 10499.75 1297.66 8394.14 2898.13 3299.26 2492.16 2499.66 8097.91 4099.64 4399.90 20
Skip Steuart: Steuart Systems R&D Blog.
PHI-MVS96.65 3896.46 3897.21 5699.34 5391.77 9599.70 1698.05 3986.48 21798.05 3699.20 3189.33 5799.96 2798.38 2899.62 4799.90 20
ACMMP_NAP96.59 3996.18 4597.81 3298.82 8993.55 6498.88 11497.59 10290.66 9897.98 4099.14 4386.59 109100.00 196.47 6499.46 6099.89 23
train_agg97.20 2297.08 1997.57 4299.57 3393.17 7299.38 5797.66 8390.18 11398.39 2799.18 3590.94 3099.66 8098.58 2299.85 1199.88 24
MSLP-MVS++97.50 1497.45 1297.63 3899.65 1993.21 7199.70 1698.13 3694.61 1997.78 4599.46 1189.85 5099.81 6297.97 3899.91 499.88 24
APD-MVScopyleft96.95 2996.72 3297.63 3899.51 4293.58 6399.16 7697.44 13490.08 11898.59 2299.07 5189.06 5999.42 11597.92 3999.66 3999.88 24
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
agg_prior197.12 2497.03 2197.38 5099.54 3692.66 8499.35 6297.64 8990.38 10797.98 4099.17 3790.84 3499.61 8998.57 2399.78 2799.87 27
MVS93.92 10892.28 13298.83 495.69 18396.82 596.22 27798.17 3184.89 24184.34 22098.61 9879.32 20099.83 5793.88 11499.43 6499.86 28
无先验98.52 15497.82 5587.20 20299.90 4087.64 18599.85 29
SMA-MVScopyleft97.24 1896.99 2398.00 2799.30 6094.20 5399.16 7697.65 8889.55 13599.22 799.52 990.34 4699.99 598.32 3299.83 1399.82 30
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
region2R96.30 5096.17 4796.70 8899.70 890.31 13499.46 4597.66 8390.55 10297.07 5799.07 5186.85 10199.97 2095.43 8699.74 2899.81 31
test22298.32 10191.21 10898.08 20197.58 10483.74 25695.87 8899.02 5786.74 10499.64 4399.81 31
TSAR-MVS + GP.96.95 2996.91 2597.07 5998.88 8691.62 10099.58 2996.54 19895.09 1896.84 6698.63 9791.16 2699.77 6799.04 1296.42 13199.81 31
test_prior397.07 2697.09 1897.01 6299.58 2991.77 9599.57 3097.57 10791.43 8598.12 3498.97 6390.43 4099.49 10498.33 3099.81 1999.79 34
test_prior97.01 6299.58 2991.77 9597.57 10799.49 10499.79 34
新几何197.40 4898.92 8492.51 9197.77 6585.52 22796.69 7299.06 5388.08 7699.89 4384.88 21399.62 4799.79 34
112195.19 8094.45 8597.42 4698.88 8692.58 8996.22 27797.75 6685.50 22996.86 6399.01 6188.59 6799.90 4087.64 18599.60 5299.79 34
test117295.92 6296.07 5295.46 13299.42 4987.24 20798.51 15797.24 15090.29 11096.56 7699.12 4686.73 10599.36 12197.33 4799.42 6799.78 38
HFP-MVS96.42 4696.26 4496.90 7499.69 990.96 12199.47 4097.81 5890.54 10396.88 6099.05 5487.57 8399.96 2795.65 7999.72 3099.78 38
#test#96.48 4396.34 4296.90 7499.69 990.96 12199.53 3697.81 5890.94 9696.88 6099.05 5487.57 8399.96 2795.87 7699.72 3099.78 38
XVS96.47 4496.37 4096.77 8199.62 2590.66 12999.43 5197.58 10492.41 6696.86 6398.96 6887.37 8999.87 4795.65 7999.43 6499.78 38
X-MVStestdata90.69 17788.66 19796.77 8199.62 2590.66 12999.43 5197.58 10492.41 6696.86 6329.59 36687.37 8999.87 4795.65 7999.43 6499.78 38
testdata95.26 14198.20 10487.28 20297.60 9885.21 23298.48 2599.15 4188.15 7498.72 15190.29 15499.45 6299.78 38
xxxxxxxxxxxxxcwj97.51 1297.42 1397.78 3499.34 5393.85 5999.65 2295.45 27295.69 1198.70 1799.42 1790.42 4299.72 7198.47 2599.65 4099.77 44
SF-MVS97.22 2196.92 2498.12 2299.11 7394.88 3299.44 4897.45 13089.60 13198.70 1799.42 1790.42 4299.72 7198.47 2599.65 4099.77 44
SD-MVS97.51 1297.40 1497.81 3299.01 7993.79 6199.33 6597.38 14193.73 4098.83 1599.02 5790.87 3399.88 4498.69 1799.74 2899.77 44
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
SR-MVS96.13 5496.16 4996.07 11499.42 4989.04 16498.59 14997.33 14690.44 10596.84 6699.12 4686.75 10399.41 11797.47 4399.44 6399.76 47
Regformer-196.97 2896.80 3097.47 4499.46 4793.11 7498.89 11297.94 4592.89 5496.90 5999.02 5789.78 5199.53 9797.06 4999.26 7699.75 48
Regformer-296.94 3196.78 3197.42 4699.46 4792.97 8198.89 11297.93 4692.86 5696.88 6099.02 5789.74 5399.53 9797.03 5099.26 7699.75 48
ACMMPR96.28 5196.14 5196.73 8599.68 1290.47 13299.47 4097.80 6090.54 10396.83 6899.03 5686.51 11399.95 3095.65 7999.72 3099.75 48
mPP-MVS95.90 6395.75 6396.38 10499.58 2989.41 16199.26 6897.41 13890.66 9894.82 10698.95 7086.15 12099.98 1095.24 9199.64 4399.74 51
PAPR96.35 4795.82 5997.94 2999.63 2194.19 5499.42 5397.55 11092.43 6293.82 12599.12 4687.30 9499.91 3894.02 11199.06 8199.74 51
API-MVS94.78 8794.18 9296.59 9399.21 6890.06 14598.80 12097.78 6383.59 26093.85 12399.21 3083.79 14699.97 2092.37 13599.00 8499.74 51
CSCG94.87 8594.71 8095.36 13799.54 3686.49 21799.34 6498.15 3482.71 27590.15 17299.25 2589.48 5699.86 5294.97 9798.82 9399.72 54
zzz-MVS96.21 5395.96 5496.96 7099.29 6191.19 10998.69 13297.45 13092.58 5794.39 11399.24 2786.43 11599.99 596.22 6899.40 6899.71 55
MTAPA96.09 5595.80 6296.96 7099.29 6191.19 10997.23 24097.45 13092.58 5794.39 11399.24 2786.43 11599.99 596.22 6899.40 6899.71 55
ETH3D-3000-0.197.29 1697.01 2298.12 2299.18 6994.97 3099.47 4097.52 11789.85 12298.79 1699.46 1190.41 4499.69 7598.78 1599.67 3899.70 57
APD-MVS_3200maxsize95.64 7195.65 6795.62 12799.24 6587.80 18898.42 16797.22 15388.93 15296.64 7598.98 6285.49 12899.36 12196.68 5799.27 7599.70 57
CP-MVS96.22 5296.15 5096.42 10299.67 1389.62 15799.70 1697.61 9690.07 11996.00 8199.16 3987.43 8799.92 3696.03 7499.72 3099.70 57
DVP-MVS98.07 698.00 598.29 1599.66 1595.20 2699.72 1397.47 12893.95 2999.07 899.46 1193.18 1899.97 2099.64 599.82 1599.69 60
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
ZNCC-MVS96.09 5595.81 6196.95 7299.42 4991.19 10999.55 3397.53 11489.72 12695.86 8998.94 7586.59 10999.97 2095.13 9299.56 5599.68 61
HPM-MVS++copyleft97.72 997.59 998.14 1999.53 4194.76 3999.19 7197.75 6695.66 1398.21 3099.29 2291.10 2899.99 597.68 4299.87 799.68 61
CDPH-MVS96.56 4096.18 4597.70 3699.59 2893.92 5799.13 8897.44 13489.02 14797.90 4399.22 2988.90 6299.49 10494.63 10499.79 2599.68 61
PAPM_NR95.43 7295.05 7796.57 9599.42 4990.14 13898.58 15197.51 12090.65 10092.44 13998.90 7687.77 8199.90 4090.88 14899.32 7199.68 61
canonicalmvs95.02 8393.96 10098.20 1797.53 12595.92 1498.71 12796.19 22191.78 7795.86 8998.49 10679.53 19899.03 14096.12 7191.42 19499.66 65
PGM-MVS95.85 6495.65 6796.45 10099.50 4389.77 15298.22 18798.90 1189.19 14196.74 7098.95 7085.91 12399.92 3693.94 11299.46 6099.66 65
DELS-MVS97.12 2496.60 3598.68 898.03 11096.57 899.84 397.84 5396.36 895.20 10198.24 11688.17 7399.83 5796.11 7299.60 5299.64 67
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
3Dnovator+87.72 893.43 12391.84 14498.17 1895.73 18295.08 2998.92 10997.04 17391.42 8781.48 26397.60 13774.60 22599.79 6590.84 14998.97 8599.64 67
CANet97.00 2796.49 3798.55 998.86 8896.10 1399.83 497.52 11795.90 997.21 5498.90 7682.66 16999.93 3598.71 1698.80 9499.63 69
114514_t94.06 10493.05 11897.06 6099.08 7692.26 9398.97 10497.01 17782.58 27792.57 13798.22 11780.68 19199.30 12889.34 16699.02 8399.63 69
PAPM96.35 4795.94 5597.58 4094.10 23495.25 2098.93 10798.17 3194.26 2393.94 12198.72 8989.68 5497.88 18196.36 6799.29 7499.62 71
ETH3D cwj APD-0.1696.94 3196.58 3698.01 2698.62 9594.73 4199.13 8897.38 14188.44 16898.53 2499.39 1989.66 5599.69 7598.43 2799.61 5199.61 72
SR-MVS-dyc-post95.75 7095.86 5895.41 13599.22 6687.26 20598.40 17297.21 15489.63 12996.67 7398.97 6386.73 10599.36 12196.62 5899.31 7299.60 73
RE-MVS-def95.70 6499.22 6687.26 20598.40 17297.21 15489.63 12996.67 7398.97 6385.24 13396.62 5899.31 7299.60 73
TSAR-MVS + MP.97.44 1597.46 1197.39 4999.12 7293.49 6798.52 15497.50 12394.46 2198.99 1098.64 9591.58 2599.08 13998.49 2499.83 1399.60 73
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
旧先验198.97 8092.90 8397.74 6899.15 4191.05 2999.33 7099.60 73
test1297.83 3199.33 5994.45 4797.55 11097.56 4688.60 6599.50 10399.71 3499.55 77
HY-MVS88.56 795.29 7794.23 8998.48 1197.72 11596.41 1094.03 30898.74 1392.42 6595.65 9494.76 20786.52 11299.49 10495.29 9092.97 16799.53 78
GST-MVS95.97 5995.66 6596.90 7499.49 4591.22 10799.45 4797.48 12689.69 12795.89 8698.72 8986.37 11799.95 3094.62 10599.22 7999.52 79
MP-MVScopyleft96.00 5795.82 5996.54 9699.47 4690.13 14099.36 6197.41 13890.64 10195.49 9698.95 7085.51 12799.98 1096.00 7599.59 5499.52 79
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
alignmvs95.77 6895.00 7898.06 2597.35 12895.68 1699.71 1597.50 12391.50 8396.16 8098.61 9886.28 11899.00 14196.19 7091.74 18899.51 81
WTY-MVS95.97 5995.11 7698.54 1097.62 11996.65 699.44 4898.74 1392.25 6995.21 10098.46 11086.56 11199.46 11195.00 9692.69 17199.50 82
Regformer-396.50 4296.36 4196.91 7399.34 5391.72 9898.71 12797.90 4892.48 6196.00 8198.95 7088.60 6599.52 10096.44 6598.83 9199.49 83
Regformer-496.45 4596.33 4396.81 8099.34 5391.44 10598.71 12797.88 4992.43 6295.97 8398.95 7088.42 6999.51 10196.40 6698.83 9199.49 83
DP-MVS Recon95.85 6495.15 7597.95 2899.87 294.38 5099.60 2797.48 12686.58 21494.42 11299.13 4587.36 9299.98 1093.64 11998.33 10699.48 85
HPM-MVScopyleft95.41 7495.22 7495.99 11799.29 6189.14 16299.17 7597.09 17087.28 20195.40 9798.48 10784.93 13599.38 11995.64 8399.65 4099.47 86
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
test_yl95.27 7894.60 8297.28 5398.53 9892.98 7999.05 9598.70 1686.76 21194.65 11097.74 13087.78 7999.44 11295.57 8492.61 17299.44 87
DCV-MVSNet95.27 7894.60 8297.28 5398.53 9892.98 7999.05 9598.70 1686.76 21194.65 11097.74 13087.78 7999.44 11295.57 8492.61 17299.44 87
MVS_111021_HR96.69 3696.69 3396.72 8798.58 9791.00 12099.14 8599.45 193.86 3595.15 10298.73 8788.48 6899.76 6897.23 4899.56 5599.40 89
lupinMVS96.32 4995.94 5597.44 4595.05 21294.87 3399.86 296.50 20093.82 3898.04 3798.77 8385.52 12598.09 16896.98 5498.97 8599.37 90
mvs_anonymous92.50 14591.65 14895.06 14596.60 15389.64 15697.06 24696.44 20486.64 21384.14 22193.93 21982.49 17196.17 27191.47 14096.08 14099.35 91
HPM-MVS_fast94.89 8494.62 8195.70 12699.11 7388.44 18099.14 8597.11 16685.82 22495.69 9398.47 10883.46 15299.32 12793.16 12799.63 4699.35 91
131493.44 12291.98 14197.84 3095.24 19694.38 5096.22 27797.92 4790.18 11382.28 24597.71 13277.63 21299.80 6491.94 13898.67 9899.34 93
LFMVS92.23 15090.84 16296.42 10298.24 10391.08 11798.24 18696.22 21883.39 26394.74 10898.31 11361.12 31198.85 14394.45 10892.82 16899.32 94
Effi-MVS+93.87 11193.15 11696.02 11595.79 17990.76 12596.70 26295.78 25186.98 20595.71 9297.17 15579.58 19698.01 17694.57 10696.09 13999.31 95
CHOSEN 1792x268894.35 10193.82 10595.95 11997.40 12688.74 17498.41 16998.27 2592.18 7191.43 15196.40 18178.88 20299.81 6293.59 12097.81 11099.30 96
DWT-MVSNet_test94.36 10093.95 10195.62 12796.99 14389.47 15996.62 26497.38 14190.96 9593.07 13397.27 14793.73 1398.09 16885.86 20593.65 16299.29 97
ACMMPcopyleft94.67 9394.30 8795.79 12399.25 6488.13 18398.41 16998.67 1990.38 10791.43 15198.72 8982.22 17799.95 3093.83 11695.76 14599.29 97
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
MP-MVS-pluss95.80 6695.30 7197.29 5298.95 8392.66 8498.59 14997.14 16288.95 15093.12 13199.25 2585.62 12499.94 3396.56 6299.48 5999.28 99
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
EPMVS92.59 14391.59 14995.59 13097.22 13290.03 14691.78 32698.04 4090.42 10691.66 14690.65 28586.49 11497.46 20981.78 24996.31 13499.28 99
AdaColmapbinary93.82 11293.06 11796.10 11399.88 189.07 16398.33 17997.55 11086.81 21090.39 16998.65 9475.09 22199.98 1093.32 12597.53 11899.26 101
ET-MVSNet_ETH3D92.56 14491.45 15295.88 12096.39 15994.13 5599.46 4596.97 17992.18 7166.94 34298.29 11594.65 1194.28 32094.34 10983.82 23899.24 102
VNet95.08 8294.26 8897.55 4398.07 10993.88 5898.68 13498.73 1590.33 10997.16 5697.43 14479.19 20199.53 9796.91 5691.85 18699.24 102
CNLPA93.64 11992.74 12496.36 10598.96 8290.01 14899.19 7195.89 24586.22 22089.40 18098.85 7980.66 19299.84 5588.57 17496.92 12599.24 102
3Dnovator87.35 1193.17 13391.77 14697.37 5195.41 19393.07 7698.82 11897.85 5291.53 8282.56 23997.58 13971.97 25299.82 6091.01 14699.23 7899.22 105
GG-mvs-BLEND96.98 6896.53 15594.81 3887.20 33897.74 6893.91 12296.40 18196.56 296.94 22895.08 9398.95 8899.20 106
EIA-MVS95.11 8195.27 7394.64 15896.34 16186.51 21699.59 2896.62 18892.51 5994.08 11998.64 9586.05 12198.24 16295.07 9498.50 10399.18 107
Patchmatch-test86.25 25184.06 26692.82 20394.42 22882.88 28282.88 35394.23 31071.58 33479.39 28590.62 28789.00 6196.42 25363.03 33991.37 19599.16 108
gg-mvs-nofinetune90.00 19087.71 21196.89 7996.15 17194.69 4385.15 34497.74 6868.32 34592.97 13560.16 35596.10 396.84 23093.89 11398.87 8999.14 109
MVS_Test93.67 11892.67 12696.69 8996.72 15092.66 8497.22 24196.03 22787.69 19495.12 10394.03 21581.55 18498.28 16189.17 17096.46 12999.14 109
HyFIR lowres test93.68 11793.29 11394.87 14997.57 12388.04 18598.18 19198.47 2187.57 19691.24 15595.05 20385.49 12897.46 20993.22 12692.82 16899.10 111
Anonymous20240521188.84 20787.03 22294.27 16998.14 10884.18 26598.44 16595.58 26576.79 32189.34 18196.88 16853.42 33599.54 9687.53 18787.12 21599.09 112
baseline93.91 10993.30 11295.72 12595.10 20990.07 14297.48 22995.91 24291.03 9393.54 12797.68 13379.58 19698.02 17594.27 11095.14 15099.08 113
Vis-MVSNet (Re-imp)93.26 13193.00 12194.06 17796.14 17286.71 21598.68 13496.70 18688.30 17389.71 17997.64 13685.43 13196.39 25488.06 18196.32 13399.08 113
CS-MVS95.39 7695.39 7095.40 13695.54 18889.66 15599.62 2695.98 22891.72 7997.48 5098.41 11183.64 14897.46 20997.46 4498.64 10099.06 115
PatchmatchNetpermissive92.05 15391.04 15795.06 14596.17 17089.04 16491.26 33097.26 14789.56 13490.64 16390.56 29188.35 7197.11 22079.53 26196.07 14199.03 116
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
EPNet96.82 3496.68 3497.25 5598.65 9393.10 7599.48 3998.76 1296.54 597.84 4498.22 11787.49 8699.66 8095.35 8897.78 11399.00 117
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
sss94.85 8693.94 10297.58 4096.43 15894.09 5698.93 10799.16 889.50 13695.27 9997.85 12381.50 18599.65 8492.79 13394.02 15998.99 118
Patchmatch-RL test81.90 29480.13 29787.23 30480.71 35170.12 34684.07 35088.19 35683.16 26770.57 33082.18 34287.18 9592.59 33482.28 24462.78 33898.98 119
PVSNet87.13 1293.69 11592.83 12396.28 10797.99 11190.22 13799.38 5798.93 1091.42 8793.66 12697.68 13371.29 26099.64 8687.94 18297.20 12398.98 119
MVSFormer94.71 9294.08 9596.61 9295.05 21294.87 3397.77 21796.17 22286.84 20898.04 3798.52 10285.52 12595.99 27789.83 15798.97 8598.96 121
jason95.40 7594.86 7997.03 6192.91 26594.23 5299.70 1696.30 21193.56 4496.73 7198.52 10281.46 18797.91 17896.08 7398.47 10498.96 121
jason: jason.
CostFormer92.89 13692.48 13094.12 17594.99 21485.89 23792.89 31797.00 17886.98 20595.00 10590.78 27890.05 4897.51 20792.92 13191.73 18998.96 121
MAR-MVS94.43 9994.09 9495.45 13399.10 7587.47 19698.39 17597.79 6288.37 17194.02 12099.17 3778.64 20799.91 3892.48 13498.85 9098.96 121
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MDTV_nov1_ep13_2view91.17 11291.38 32887.45 19993.08 13286.67 10787.02 18998.95 125
CVMVSNet90.30 18290.91 16088.46 29594.32 23073.58 33597.61 22697.59 10290.16 11688.43 18897.10 15776.83 21692.86 32982.64 24093.54 16398.93 126
ab-mvs91.05 16989.17 18696.69 8995.96 17691.72 9892.62 32197.23 15285.61 22689.74 17793.89 22168.55 27299.42 11591.09 14487.84 21198.92 127
IS-MVSNet93.00 13592.51 12994.49 16296.14 17287.36 20098.31 18295.70 25688.58 16090.17 17197.50 14183.02 16297.22 21787.06 18896.07 14198.90 128
CPTT-MVS94.60 9694.43 8695.09 14399.66 1586.85 21299.44 4897.47 12883.22 26594.34 11598.96 6882.50 17099.55 9494.81 9999.50 5898.88 129
Vis-MVSNetpermissive92.64 14091.85 14395.03 14795.12 20588.23 18198.48 16296.81 18391.61 8092.16 14297.22 15171.58 25898.00 17785.85 20697.81 11098.88 129
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
casdiffmvs93.98 10793.43 11095.61 12995.07 21189.86 15098.80 12095.84 25090.98 9492.74 13697.66 13579.71 19598.10 16794.72 10295.37 14998.87 131
GSMVS98.84 132
sam_mvs188.39 7098.84 132
SCA90.64 17889.25 18594.83 15194.95 21688.83 17096.26 27497.21 15490.06 12090.03 17390.62 28766.61 28896.81 23283.16 23494.36 15698.84 132
PMMVS93.62 12093.90 10492.79 20496.79 14881.40 29598.85 11596.81 18391.25 9096.82 6998.15 12177.02 21598.13 16593.15 12896.30 13598.83 135
ETV-MVS96.00 5796.00 5396.00 11696.56 15491.05 11899.63 2496.61 18993.26 4897.39 5298.30 11486.62 10898.13 16598.07 3797.57 11598.82 136
1112_ss92.71 13891.55 15096.20 10895.56 18791.12 11398.48 16294.69 29988.29 17486.89 20298.50 10487.02 9898.66 15384.75 21489.77 20698.81 137
Test_1112_low_res92.27 14990.97 15896.18 10995.53 19091.10 11598.47 16494.66 30088.28 17586.83 20493.50 23387.00 9998.65 15484.69 21589.74 20798.80 138
PatchT85.44 26483.19 27192.22 21493.13 26283.00 27783.80 35296.37 20770.62 33690.55 16479.63 34884.81 13894.87 31058.18 34991.59 19198.79 139
PVSNet_Blended95.94 6195.66 6596.75 8398.77 9091.61 10199.88 198.04 4093.64 4294.21 11697.76 12883.50 15099.87 4797.41 4597.75 11498.79 139
DeepC-MVS91.02 494.56 9893.92 10396.46 9997.16 13490.76 12598.39 17597.11 16693.92 3188.66 18598.33 11278.14 20999.85 5495.02 9598.57 10198.78 141
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
tpmrst92.78 13792.16 13694.65 15796.27 16387.45 19791.83 32597.10 16989.10 14594.68 10990.69 28288.22 7297.73 19689.78 15991.80 18798.77 142
原ACMM196.18 10999.03 7890.08 14197.63 9388.98 14897.00 5898.97 6388.14 7599.71 7388.23 17899.62 4798.76 143
tpm291.77 15691.09 15593.82 18694.83 22185.56 24592.51 32297.16 16184.00 25293.83 12490.66 28487.54 8597.17 21887.73 18491.55 19298.72 144
TAPA-MVS87.50 990.35 18089.05 18894.25 17198.48 10085.17 25298.42 16796.58 19482.44 28187.24 19798.53 10182.77 16698.84 14459.09 34797.88 10998.72 144
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
EI-MVSNet-Vis-set95.76 6995.63 6996.17 11199.14 7190.33 13398.49 16197.82 5591.92 7494.75 10798.88 7887.06 9799.48 10995.40 8797.17 12498.70 146
GeoE90.60 17989.56 17893.72 18995.10 20985.43 24699.41 5494.94 29383.96 25487.21 19896.83 17074.37 23097.05 22480.50 25993.73 16198.67 147
diffmvs94.59 9794.19 9095.81 12295.54 18890.69 12798.70 13195.68 25891.61 8095.96 8497.81 12580.11 19398.06 17296.52 6395.76 14598.67 147
DP-MVS88.75 21386.56 22995.34 13898.92 8487.45 19797.64 22593.52 32270.55 33781.49 26297.25 14874.43 22999.88 4471.14 31594.09 15898.67 147
abl_694.63 9594.48 8495.09 14398.61 9686.96 21098.06 20396.97 17989.31 13995.86 8998.56 10079.82 19499.64 8694.53 10798.65 9998.66 150
TESTMET0.1,193.82 11293.26 11495.49 13195.21 19890.25 13599.15 8297.54 11389.18 14291.79 14394.87 20589.13 5897.63 20086.21 19896.29 13698.60 151
dp90.16 18788.83 19394.14 17496.38 16086.42 21991.57 32797.06 17284.76 24388.81 18490.19 30384.29 14297.43 21375.05 29391.35 19698.56 152
EPP-MVSNet93.75 11493.67 10794.01 18095.86 17885.70 24298.67 13697.66 8384.46 24691.36 15397.18 15491.16 2697.79 18792.93 13093.75 16098.53 153
Fast-Effi-MVS+91.72 15790.79 16594.49 16295.89 17787.40 19999.54 3595.70 25685.01 23989.28 18295.68 19477.75 21197.57 20683.22 23395.06 15198.51 154
CDS-MVSNet93.47 12193.04 11994.76 15294.75 22389.45 16098.82 11897.03 17587.91 18590.97 15896.48 17989.06 5996.36 25689.50 16192.81 17098.49 155
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
LCM-MVSNet-Re88.59 21588.61 19888.51 29495.53 19072.68 33996.85 25488.43 35588.45 16573.14 32290.63 28675.82 21794.38 31992.95 12995.71 14798.48 156
TAMVS92.62 14192.09 13994.20 17294.10 23487.68 19098.41 16996.97 17987.53 19889.74 17796.04 19084.77 13996.49 24888.97 17392.31 17898.42 157
CR-MVSNet88.83 20987.38 21693.16 19793.47 25386.24 22584.97 34694.20 31188.92 15390.76 16186.88 32984.43 14094.82 31270.64 31692.17 18298.41 158
RPMNet85.07 26781.88 28494.64 15893.47 25386.24 22584.97 34697.21 15464.85 35190.76 16178.80 34980.95 19099.27 12953.76 35292.17 18298.41 158
BH-RMVSNet91.25 16689.99 17495.03 14796.75 14988.55 17798.65 13894.95 29287.74 19187.74 19197.80 12668.27 27598.14 16480.53 25897.49 11998.41 158
UA-Net93.30 12892.62 12795.34 13896.27 16388.53 17995.88 28796.97 17990.90 9795.37 9897.07 15982.38 17599.10 13883.91 22894.86 15398.38 161
tpm89.67 19488.95 19091.82 22492.54 26881.43 29492.95 31695.92 23887.81 18790.50 16689.44 31084.99 13495.65 29383.67 23182.71 24798.38 161
MVS_111021_LR95.78 6795.94 5595.28 14098.19 10687.69 18998.80 12099.26 793.39 4595.04 10498.69 9384.09 14499.76 6896.96 5599.06 8198.38 161
test-LLR93.11 13492.68 12594.40 16594.94 21787.27 20399.15 8297.25 14890.21 11191.57 14794.04 21384.89 13697.58 20385.94 20296.13 13798.36 164
test-mter93.27 13092.89 12294.40 16594.94 21787.27 20399.15 8297.25 14888.95 15091.57 14794.04 21388.03 7797.58 20385.94 20296.13 13798.36 164
IB-MVS89.43 692.12 15190.83 16495.98 11895.40 19490.78 12499.81 598.06 3891.23 9185.63 21093.66 22790.63 3798.78 14591.22 14371.85 31898.36 164
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
VDD-MVS91.24 16790.18 17394.45 16497.08 13985.84 24098.40 17296.10 22586.99 20393.36 12898.16 12054.27 33299.20 13096.59 6190.63 20298.31 167
PVSNet_Blended_VisFu94.67 9394.11 9396.34 10697.14 13591.10 11599.32 6697.43 13692.10 7391.53 15096.38 18483.29 15699.68 7893.42 12496.37 13298.25 168
thisisatest051594.75 8894.19 9096.43 10196.13 17592.64 8899.47 4097.60 9887.55 19793.17 13097.59 13894.71 998.42 15688.28 17793.20 16498.24 169
EI-MVSNet-UG-set95.43 7295.29 7295.86 12199.07 7789.87 14998.43 16697.80 6091.78 7794.11 11898.77 8386.25 11999.48 10994.95 9896.45 13098.22 170
QAPM91.41 16389.49 18097.17 5895.66 18593.42 6898.60 14797.51 12080.92 29981.39 26497.41 14572.89 24599.87 4782.33 24398.68 9798.21 171
CHOSEN 280x42096.80 3596.85 2796.66 9197.85 11394.42 4994.76 30098.36 2392.50 6095.62 9597.52 14097.92 197.38 21498.31 3398.80 9498.20 172
TR-MVS90.77 17489.44 18194.76 15296.31 16288.02 18697.92 20895.96 23285.52 22788.22 18997.23 15066.80 28798.09 16884.58 21792.38 17698.17 173
GA-MVS90.10 18888.69 19694.33 16792.44 26987.97 18799.08 9196.26 21589.65 12886.92 20193.11 24268.09 27696.96 22682.54 24290.15 20498.05 174
OMC-MVS93.90 11093.62 10894.73 15598.63 9487.00 20998.04 20496.56 19592.19 7092.46 13898.73 8779.49 19999.14 13692.16 13794.34 15798.03 175
xiu_mvs_v2_base96.66 3796.17 4798.11 2497.11 13896.96 499.01 10097.04 17395.51 1698.86 1399.11 5082.19 17899.36 12198.59 2198.14 10798.00 176
PS-MVSNAJ96.87 3396.40 3998.29 1597.35 12897.29 399.03 9797.11 16695.83 1098.97 1199.14 4382.48 17299.60 9198.60 1999.08 8098.00 176
thisisatest053094.00 10693.52 10995.43 13495.76 18190.02 14798.99 10297.60 9886.58 21491.74 14497.36 14694.78 898.34 15786.37 19792.48 17597.94 178
tpm cat188.89 20587.27 21893.76 18795.79 17985.32 24990.76 33497.09 17076.14 32385.72 20988.59 31682.92 16398.04 17476.96 27991.43 19397.90 179
tttt051793.30 12893.01 12094.17 17395.57 18686.47 21898.51 15797.60 9885.99 22290.55 16497.19 15394.80 798.31 15885.06 21091.86 18597.74 180
hse-mvs392.47 14691.95 14294.05 17897.13 13685.01 25598.36 17798.08 3793.85 3696.27 7896.73 17383.19 15999.43 11495.81 7768.09 32897.70 181
ADS-MVSNet287.62 23186.88 22489.86 26796.21 16679.14 31287.15 33992.99 32583.01 26889.91 17587.27 32578.87 20392.80 33274.20 30092.27 17997.64 182
ADS-MVSNet88.99 20287.30 21794.07 17696.21 16687.56 19487.15 33996.78 18583.01 26889.91 17587.27 32578.87 20397.01 22574.20 30092.27 17997.64 182
BH-w/o92.32 14791.79 14593.91 18396.85 14586.18 22899.11 9095.74 25488.13 17884.81 21597.00 16277.26 21497.91 17889.16 17198.03 10897.64 182
LS3D90.19 18588.72 19594.59 16098.97 8086.33 22496.90 25296.60 19074.96 32684.06 22398.74 8675.78 21899.83 5774.93 29497.57 11597.62 185
VDDNet90.08 18988.54 20294.69 15694.41 22987.68 19098.21 18996.40 20576.21 32293.33 12997.75 12954.93 33098.77 14694.71 10390.96 19797.61 186
EPNet_dtu92.28 14892.15 13792.70 20897.29 13084.84 25798.64 14097.82 5592.91 5393.02 13497.02 16185.48 13095.70 29272.25 31294.89 15297.55 187
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
BH-untuned91.46 16290.84 16293.33 19496.51 15784.83 25898.84 11795.50 26986.44 21983.50 22696.70 17475.49 22097.77 18986.78 19597.81 11097.40 188
thres20093.69 11592.59 12896.97 6997.76 11494.74 4099.35 6299.36 289.23 14091.21 15696.97 16383.42 15398.77 14685.08 20990.96 19797.39 189
JIA-IIPM85.97 25484.85 25489.33 28293.23 26073.68 33485.05 34597.13 16469.62 34191.56 14968.03 35388.03 7796.96 22677.89 27493.12 16597.34 190
baseline192.61 14291.28 15396.58 9497.05 14194.63 4497.72 22196.20 21989.82 12388.56 18696.85 16986.85 10197.82 18588.42 17580.10 25997.30 191
PVSNet_083.28 1687.31 23485.16 24893.74 18894.78 22284.59 26098.91 11098.69 1889.81 12478.59 29493.23 23761.95 30799.34 12694.75 10055.72 35097.30 191
PLCcopyleft91.07 394.23 10394.01 9694.87 14999.17 7087.49 19599.25 6996.55 19688.43 16991.26 15498.21 11985.92 12299.86 5289.77 16097.57 11597.24 193
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
Anonymous2024052987.66 23085.58 24393.92 18297.59 12285.01 25598.13 19497.13 16466.69 34988.47 18796.01 19155.09 32999.51 10187.00 19084.12 23497.23 194
thres100view90093.34 12792.15 13796.90 7497.62 11994.84 3599.06 9499.36 287.96 18390.47 16796.78 17183.29 15698.75 14884.11 22490.69 19997.12 195
tfpn200view993.43 12392.27 13396.90 7497.68 11794.84 3599.18 7399.36 288.45 16590.79 15996.90 16683.31 15498.75 14884.11 22490.69 19997.12 195
tpmvs89.16 19987.76 20993.35 19397.19 13384.75 25990.58 33697.36 14481.99 28684.56 21789.31 31383.98 14598.17 16374.85 29690.00 20597.12 195
PCF-MVS89.78 591.26 16489.63 17796.16 11295.44 19291.58 10395.29 29696.10 22585.07 23682.75 23597.45 14378.28 20899.78 6680.60 25795.65 14897.12 195
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MIMVSNet84.48 27581.83 28592.42 21291.73 28187.36 20085.52 34294.42 30681.40 29281.91 25587.58 32051.92 33892.81 33173.84 30388.15 21097.08 199
CANet_DTU94.31 10293.35 11197.20 5797.03 14294.71 4298.62 14395.54 26795.61 1497.21 5498.47 10871.88 25399.84 5588.38 17697.46 12097.04 200
PatchMatch-RL91.47 16190.54 16994.26 17098.20 10486.36 22396.94 25097.14 16287.75 19088.98 18395.75 19371.80 25599.40 11880.92 25497.39 12197.02 201
UGNet91.91 15590.85 16195.10 14297.06 14088.69 17598.01 20598.24 2792.41 6692.39 14093.61 22860.52 31299.68 7888.14 17997.25 12296.92 202
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
mvs-test191.57 15992.20 13589.70 27295.15 20374.34 33199.51 3795.40 27691.92 7491.02 15797.25 14874.27 23298.08 17189.45 16295.83 14496.67 203
thres600view793.18 13292.00 14096.75 8397.62 11994.92 3199.07 9299.36 287.96 18390.47 16796.78 17183.29 15698.71 15282.93 23890.47 20396.61 204
thres40093.39 12592.27 13396.73 8597.68 11794.84 3599.18 7399.36 288.45 16590.79 15996.90 16683.31 15498.75 14884.11 22490.69 19996.61 204
xiu_mvs_v1_base_debu94.73 8993.98 9796.99 6595.19 19995.24 2198.62 14396.50 20092.99 5097.52 4798.83 8072.37 24899.15 13397.03 5096.74 12696.58 206
xiu_mvs_v1_base94.73 8993.98 9796.99 6595.19 19995.24 2198.62 14396.50 20092.99 5097.52 4798.83 8072.37 24899.15 13397.03 5096.74 12696.58 206
xiu_mvs_v1_base_debi94.73 8993.98 9796.99 6595.19 19995.24 2198.62 14396.50 20092.99 5097.52 4798.83 8072.37 24899.15 13397.03 5096.74 12696.58 206
F-COLMAP92.07 15291.75 14793.02 19998.16 10782.89 28198.79 12495.97 23086.54 21687.92 19097.80 12678.69 20699.65 8485.97 20095.93 14396.53 209
AUN-MVS90.17 18689.50 17992.19 21696.21 16682.67 28597.76 21997.53 11488.05 18091.67 14596.15 18683.10 16197.47 20888.11 18066.91 33296.43 210
hse-mvs291.67 15891.51 15192.15 21896.22 16582.61 28797.74 22097.53 11493.85 3696.27 7896.15 18683.19 15997.44 21295.81 7766.86 33396.40 211
MSDG88.29 22086.37 23194.04 17996.90 14486.15 23096.52 26694.36 30877.89 31779.22 28796.95 16469.72 26699.59 9273.20 30892.58 17496.37 212
UniMVSNet_ETH3D85.65 26383.79 26991.21 23490.41 29680.75 30695.36 29595.78 25178.76 31181.83 26094.33 21149.86 34396.66 23784.30 21983.52 24196.22 213
OpenMVScopyleft85.28 1490.75 17588.84 19296.48 9893.58 25193.51 6698.80 12097.41 13882.59 27678.62 29297.49 14268.00 27899.82 6084.52 21898.55 10296.11 214
baseline294.04 10593.80 10694.74 15493.07 26390.25 13598.12 19698.16 3389.86 12186.53 20696.95 16495.56 598.05 17391.44 14194.53 15495.93 215
DSMNet-mixed81.60 29581.43 28982.10 32884.36 34160.79 35393.63 31286.74 35779.00 30779.32 28687.15 32763.87 30189.78 34866.89 32991.92 18495.73 216
cascas90.93 17289.33 18495.76 12495.69 18393.03 7898.99 10296.59 19180.49 30186.79 20594.45 21065.23 29698.60 15593.52 12192.18 18195.66 217
XVG-OURS-SEG-HR90.95 17190.66 16891.83 22395.18 20281.14 30295.92 28495.92 23888.40 17090.33 17097.85 12370.66 26399.38 11992.83 13288.83 20894.98 218
XVG-OURS90.83 17390.49 17091.86 22295.23 19781.25 29995.79 29295.92 23888.96 14990.02 17498.03 12271.60 25799.35 12591.06 14587.78 21294.98 218
Effi-MVS+-dtu89.97 19190.68 16787.81 29995.15 20371.98 34197.87 21295.40 27691.92 7487.57 19291.44 26674.27 23296.84 23089.45 16293.10 16694.60 220
Fast-Effi-MVS+-dtu88.84 20788.59 20089.58 27693.44 25678.18 31998.65 13894.62 30188.46 16484.12 22295.37 20068.91 26996.52 24582.06 24691.70 19094.06 221
test0.0.03 188.96 20388.61 19890.03 26591.09 28884.43 26298.97 10497.02 17690.21 11180.29 27396.31 18584.89 13691.93 34372.98 30985.70 22593.73 222
MVS-HIRNet79.01 30575.13 31590.66 24893.82 24781.69 29385.16 34393.75 31754.54 35374.17 31659.15 35757.46 31996.58 24163.74 33694.38 15593.72 223
AllTest84.97 26883.12 27290.52 25196.82 14678.84 31495.89 28592.17 33477.96 31575.94 30695.50 19655.48 32599.18 13171.15 31387.14 21393.55 224
TestCases90.52 25196.82 14678.84 31492.17 33477.96 31575.94 30695.50 19655.48 32599.18 13171.15 31387.14 21393.55 224
RPSCF85.33 26585.55 24484.67 31994.63 22662.28 35293.73 31093.76 31674.38 32985.23 21497.06 16064.09 29998.31 15880.98 25286.08 22293.41 226
HQP4-MVS87.57 19297.77 18992.72 227
HQP-MVS91.50 16091.23 15492.29 21393.95 23886.39 22199.16 7696.37 20793.92 3187.57 19296.67 17573.34 23997.77 18993.82 11786.29 21792.72 227
HQP_MVS91.26 16490.95 15992.16 21793.84 24586.07 23399.02 9896.30 21193.38 4686.99 19996.52 17772.92 24397.75 19493.46 12286.17 22092.67 229
plane_prior596.30 21197.75 19493.46 12286.17 22092.67 229
nrg03090.23 18388.87 19194.32 16891.53 28393.54 6598.79 12495.89 24588.12 17984.55 21894.61 20978.80 20596.88 22992.35 13675.21 28392.53 231
CLD-MVS91.06 16890.71 16692.10 21994.05 23786.10 23199.55 3396.29 21494.16 2684.70 21697.17 15569.62 26797.82 18594.74 10186.08 22292.39 232
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
RRT_test8_iter0591.04 17090.40 17292.95 20196.20 16989.75 15398.97 10496.38 20688.52 16182.00 25393.51 23290.69 3696.73 23690.43 15376.91 27792.38 233
VPNet88.30 21986.57 22893.49 19191.95 27691.35 10698.18 19197.20 15888.61 15884.52 21994.89 20462.21 30696.76 23589.34 16672.26 31592.36 234
DU-MVS88.83 20987.51 21392.79 20491.46 28490.07 14298.71 12797.62 9588.87 15483.21 22993.68 22574.63 22395.93 28186.95 19172.47 31292.36 234
NR-MVSNet87.74 22986.00 23792.96 20091.46 28490.68 12896.65 26397.42 13788.02 18273.42 32093.68 22577.31 21395.83 28884.26 22071.82 31992.36 234
FIs90.70 17689.87 17593.18 19692.29 27091.12 11398.17 19398.25 2689.11 14483.44 22794.82 20682.26 17696.17 27187.76 18382.76 24692.25 237
UniMVSNet_NR-MVSNet89.60 19588.55 20192.75 20792.17 27390.07 14298.74 12698.15 3488.37 17183.21 22993.98 21882.86 16495.93 28186.95 19172.47 31292.25 237
VPA-MVSNet89.10 20087.66 21293.45 19292.56 26791.02 11997.97 20798.32 2486.92 20786.03 20892.01 25568.84 27197.10 22290.92 14775.34 28292.23 239
TranMVSNet+NR-MVSNet87.75 22786.31 23292.07 22090.81 29188.56 17698.33 17997.18 15987.76 18981.87 25793.90 22072.45 24795.43 29883.13 23671.30 32292.23 239
FC-MVSNet-test90.22 18489.40 18292.67 21091.78 28089.86 15097.89 20998.22 2888.81 15582.96 23494.66 20881.90 18295.96 27985.89 20482.52 24992.20 241
PS-MVSNAJss89.54 19789.05 18891.00 23988.77 31584.36 26397.39 23095.97 23088.47 16281.88 25693.80 22382.48 17296.50 24689.34 16683.34 24392.15 242
testgi82.29 29081.00 29386.17 31087.24 33174.84 33097.39 23091.62 34288.63 15775.85 30995.42 19946.07 34991.55 34466.87 33079.94 26092.12 243
WR-MVS88.54 21687.22 22092.52 21191.93 27889.50 15898.56 15297.84 5386.99 20381.87 25793.81 22274.25 23495.92 28385.29 20774.43 29292.12 243
MVSTER92.71 13892.32 13193.86 18497.29 13092.95 8299.01 10096.59 19190.09 11785.51 21194.00 21794.61 1296.56 24290.77 15183.03 24492.08 245
ACMM86.95 1388.77 21288.22 20690.43 25393.61 25081.34 29798.50 15995.92 23887.88 18683.85 22595.20 20167.20 28497.89 18086.90 19384.90 22892.06 246
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
RRT_MVS91.95 15491.09 15594.53 16196.71 15295.12 2898.64 14096.23 21789.04 14685.24 21395.06 20287.71 8296.43 25289.10 17282.06 25192.05 247
XXY-MVS87.75 22786.02 23692.95 20190.46 29589.70 15497.71 22395.90 24384.02 25180.95 26594.05 21267.51 28297.10 22285.16 20878.41 26692.04 248
test_part188.43 21786.68 22793.67 19097.56 12492.40 9298.12 19696.55 19682.26 28380.31 27293.16 24074.59 22796.62 23985.00 21272.61 31091.99 249
FMVSNet388.81 21187.08 22193.99 18196.52 15694.59 4598.08 20196.20 21985.85 22382.12 24891.60 26374.05 23595.40 30079.04 26580.24 25691.99 249
FMVSNet286.90 23884.79 25693.24 19595.11 20692.54 9097.67 22495.86 24982.94 27080.55 26991.17 27262.89 30395.29 30277.23 27679.71 26291.90 251
UniMVSNet (Re)89.50 19888.32 20493.03 19892.21 27290.96 12198.90 11198.39 2289.13 14383.22 22892.03 25381.69 18396.34 26286.79 19472.53 31191.81 252
bset_n11_16_dypcd89.07 20187.85 20892.76 20686.16 33790.66 12997.30 23495.62 26189.78 12583.94 22493.15 24174.85 22295.89 28691.34 14278.48 26591.74 253
EU-MVSNet84.19 27984.42 26383.52 32488.64 31867.37 35096.04 28395.76 25385.29 23178.44 29593.18 23870.67 26291.48 34575.79 29075.98 27991.70 254
EI-MVSNet89.87 19289.38 18391.36 23394.32 23085.87 23897.61 22696.59 19185.10 23485.51 21197.10 15781.30 18996.56 24283.85 23083.03 24491.64 255
IterMVS-LS88.34 21887.44 21491.04 23894.10 23485.85 23998.10 19995.48 27085.12 23382.03 25291.21 27181.35 18895.63 29483.86 22975.73 28191.63 256
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
GBi-Net86.67 24384.96 25091.80 22595.11 20688.81 17196.77 25695.25 28382.94 27082.12 24890.25 29862.89 30394.97 30779.04 26580.24 25691.62 257
test186.67 24384.96 25091.80 22595.11 20688.81 17196.77 25695.25 28382.94 27082.12 24890.25 29862.89 30394.97 30779.04 26580.24 25691.62 257
FMVSNet183.94 28381.32 29191.80 22591.94 27788.81 17196.77 25695.25 28377.98 31378.25 29790.25 29850.37 34294.97 30773.27 30777.81 27391.62 257
cl-mvsnet289.57 19688.79 19491.91 22197.94 11287.62 19297.98 20696.51 19985.03 23782.37 24491.79 25983.65 14796.50 24685.96 20177.89 26991.61 260
eth_miper_zixun_eth87.76 22687.00 22390.06 26294.67 22582.65 28697.02 24995.37 27984.19 24981.86 25991.58 26481.47 18695.90 28583.24 23273.61 30191.61 260
Anonymous2023121184.72 27082.65 28190.91 24197.71 11684.55 26197.28 23696.67 18766.88 34879.18 28890.87 27758.47 31696.60 24082.61 24174.20 29691.59 262
miper_enhance_ethall90.33 18189.70 17692.22 21497.12 13788.93 16898.35 17895.96 23288.60 15983.14 23392.33 25187.38 8896.18 27086.49 19677.89 26991.55 263
jajsoiax87.35 23386.51 23089.87 26687.75 32981.74 29297.03 24795.98 22888.47 16280.15 27593.80 22361.47 30896.36 25689.44 16484.47 23291.50 264
ACMP87.39 1088.71 21488.24 20590.12 26193.91 24381.06 30398.50 15995.67 25989.43 13780.37 27195.55 19565.67 29397.83 18490.55 15284.51 23091.47 265
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
LPG-MVS_test88.86 20688.47 20390.06 26293.35 25880.95 30498.22 18795.94 23587.73 19283.17 23196.11 18866.28 29197.77 18990.19 15585.19 22691.46 266
LGP-MVS_train90.06 26293.35 25880.95 30495.94 23587.73 19283.17 23196.11 18866.28 29197.77 18990.19 15585.19 22691.46 266
mvs_tets87.09 23686.22 23389.71 27187.87 32581.39 29696.73 26195.90 24388.19 17779.99 27793.61 22859.96 31496.31 26489.40 16584.34 23391.43 268
cl-mvsnet187.82 22486.81 22590.87 24494.87 22085.39 24897.81 21495.22 29082.92 27380.76 26791.31 26981.99 17995.81 28981.36 25075.04 28591.42 269
cl-mvsnet____87.82 22486.79 22690.89 24394.88 21985.43 24697.81 21495.24 28682.91 27480.71 26891.22 27081.97 18195.84 28781.34 25175.06 28491.40 270
miper_ehance_all_eth88.94 20488.12 20791.40 23195.32 19586.93 21197.85 21395.55 26684.19 24981.97 25491.50 26584.16 14395.91 28484.69 21577.89 26991.36 271
CP-MVSNet86.54 24685.45 24689.79 27091.02 29082.78 28497.38 23297.56 10985.37 23079.53 28493.03 24371.86 25495.25 30379.92 26073.43 30591.34 272
test_djsdf88.26 22187.73 21089.84 26888.05 32482.21 28997.77 21796.17 22286.84 20882.41 24391.95 25872.07 25195.99 27789.83 15784.50 23191.32 273
v2v48287.27 23585.76 24091.78 22989.59 30487.58 19398.56 15295.54 26784.53 24582.51 24091.78 26073.11 24296.47 24982.07 24574.14 29891.30 274
cl_fuxian88.19 22287.23 21991.06 23794.97 21586.17 22997.72 22195.38 27883.43 26281.68 26191.37 26782.81 16595.72 29184.04 22773.70 30091.29 275
OPM-MVS89.76 19389.15 18791.57 23090.53 29485.58 24498.11 19895.93 23792.88 5586.05 20796.47 18067.06 28697.87 18289.29 16986.08 22291.26 276
PS-CasMVS85.81 25884.58 26089.49 28090.77 29282.11 29097.20 24297.36 14484.83 24279.12 28992.84 24667.42 28395.16 30578.39 27273.25 30691.21 277
pmmvs585.87 25584.40 26490.30 25888.53 31984.23 26498.60 14793.71 31881.53 29180.29 27392.02 25464.51 29895.52 29682.04 24778.34 26791.15 278
miper_lstm_enhance86.90 23886.20 23489.00 28894.53 22781.19 30096.74 26095.24 28682.33 28280.15 27590.51 29481.99 17994.68 31680.71 25673.58 30291.12 279
COLMAP_ROBcopyleft82.69 1884.54 27482.82 27489.70 27296.72 15078.85 31395.89 28592.83 32871.55 33577.54 30195.89 19259.40 31599.14 13667.26 32788.26 20991.11 280
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
PEN-MVS85.21 26683.93 26889.07 28789.89 30181.31 29897.09 24597.24 15084.45 24778.66 29192.68 24868.44 27494.87 31075.98 28870.92 32391.04 281
ACMH83.09 1784.60 27282.61 28290.57 24993.18 26182.94 27896.27 27294.92 29481.01 29772.61 32893.61 22856.54 32197.79 18774.31 29981.07 25590.99 282
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
OurMVSNet-221017-084.13 28183.59 27085.77 31387.81 32670.24 34494.89 29993.65 32086.08 22176.53 30293.28 23661.41 30996.14 27380.95 25377.69 27490.93 283
XVG-ACMP-BASELINE85.86 25684.95 25288.57 29289.90 30077.12 32494.30 30495.60 26487.40 20082.12 24892.99 24553.42 33597.66 19885.02 21183.83 23690.92 284
Patchmtry83.61 28681.64 28689.50 27893.36 25782.84 28384.10 34994.20 31169.47 34279.57 28386.88 32984.43 14094.78 31368.48 32474.30 29490.88 285
IterMVS85.81 25884.67 25889.22 28393.51 25283.67 27196.32 27194.80 29585.09 23578.69 29090.17 30466.57 29093.17 32879.48 26377.42 27590.81 286
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v192192086.02 25384.44 26290.77 24689.32 31085.20 25098.10 19995.35 28182.19 28482.25 24690.71 28070.73 26196.30 26776.85 28174.49 29190.80 287
v14419286.40 24884.89 25390.91 24189.48 30885.59 24398.21 18995.43 27582.45 28082.62 23890.58 29072.79 24696.36 25678.45 27174.04 29990.79 288
v119286.32 25084.71 25791.17 23589.53 30786.40 22098.13 19495.44 27482.52 27982.42 24290.62 28771.58 25896.33 26377.23 27674.88 28690.79 288
IterMVS-SCA-FT85.73 26184.64 25989.00 28893.46 25582.90 28096.27 27294.70 29885.02 23878.62 29290.35 29666.61 28893.33 32579.38 26477.36 27690.76 290
SixPastTwentyTwo82.63 28981.58 28785.79 31288.12 32371.01 34395.17 29792.54 33084.33 24872.93 32692.08 25260.41 31395.61 29574.47 29874.15 29790.75 291
MVS_030484.13 28182.66 28088.52 29393.07 26380.15 30795.81 29198.21 2979.27 30686.85 20386.40 33241.33 35494.69 31576.36 28586.69 21690.73 292
v124085.77 26084.11 26590.73 24789.26 31185.15 25397.88 21195.23 28981.89 28982.16 24790.55 29269.60 26896.31 26475.59 29174.87 28790.72 293
v14886.38 24985.06 24990.37 25789.47 30984.10 26698.52 15495.48 27083.80 25580.93 26690.22 30174.60 22596.31 26480.92 25471.55 32090.69 294
K. test v381.04 29679.77 29984.83 31787.41 33070.23 34595.60 29493.93 31583.70 25867.51 34089.35 31255.76 32393.58 32476.67 28368.03 32990.67 295
v114486.83 24085.31 24791.40 23189.75 30287.21 20898.31 18295.45 27283.22 26582.70 23790.78 27873.36 23896.36 25679.49 26274.69 28990.63 296
ACMH+83.78 1584.21 27882.56 28389.15 28593.73 24979.16 31196.43 26794.28 30981.09 29674.00 31794.03 21554.58 33197.67 19776.10 28778.81 26490.63 296
lessismore_v085.08 31585.59 33869.28 34790.56 34867.68 33990.21 30254.21 33395.46 29773.88 30262.64 33990.50 298
pmmvs487.58 23286.17 23591.80 22589.58 30588.92 16997.25 23895.28 28282.54 27880.49 27093.17 23975.62 21996.05 27682.75 23978.90 26390.42 299
WR-MVS_H86.53 24785.49 24589.66 27591.04 28983.31 27597.53 22898.20 3084.95 24079.64 28190.90 27678.01 21095.33 30176.29 28672.81 30790.35 300
V4287.00 23785.68 24290.98 24089.91 29986.08 23298.32 18195.61 26383.67 25982.72 23690.67 28374.00 23696.53 24481.94 24874.28 29590.32 301
DTE-MVSNet84.14 28082.80 27588.14 29688.95 31479.87 31096.81 25596.24 21683.50 26177.60 30092.52 25067.89 28094.24 32172.64 31169.05 32690.32 301
YYNet179.64 30477.04 30887.43 30387.80 32779.98 30996.23 27694.44 30473.83 33151.83 35287.53 32167.96 27992.07 34266.00 33267.75 33190.23 303
MDA-MVSNet_test_wron79.65 30377.05 30787.45 30287.79 32880.13 30896.25 27594.44 30473.87 33051.80 35387.47 32468.04 27792.12 34166.02 33167.79 33090.09 304
MDA-MVSNet-bldmvs77.82 31374.75 31787.03 30588.33 32078.52 31796.34 27092.85 32775.57 32448.87 35587.89 31857.32 32092.49 33760.79 34364.80 33790.08 305
our_test_384.47 27682.80 27589.50 27889.01 31283.90 26997.03 24794.56 30281.33 29375.36 31290.52 29371.69 25694.54 31868.81 32276.84 27890.07 306
v7n84.42 27782.75 27889.43 28188.15 32281.86 29196.75 25995.67 25980.53 30078.38 29689.43 31169.89 26496.35 26173.83 30472.13 31690.07 306
v886.11 25284.45 26191.10 23689.99 29886.85 21297.24 23995.36 28081.99 28679.89 27989.86 30674.53 22896.39 25478.83 26972.32 31490.05 308
PVSNet_BlendedMVS93.36 12693.20 11593.84 18598.77 9091.61 10199.47 4098.04 4091.44 8494.21 11692.63 24983.50 15099.87 4797.41 4583.37 24290.05 308
ITE_SJBPF87.93 29792.26 27176.44 32593.47 32387.67 19579.95 27895.49 19856.50 32297.38 21475.24 29282.33 25089.98 310
pm-mvs184.68 27182.78 27790.40 25489.58 30585.18 25197.31 23394.73 29781.93 28876.05 30592.01 25565.48 29596.11 27478.75 27069.14 32589.91 311
LTVRE_ROB81.71 1984.59 27382.72 27990.18 25992.89 26683.18 27693.15 31594.74 29678.99 30875.14 31392.69 24765.64 29497.63 20069.46 32081.82 25389.74 312
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
anonymousdsp86.69 24285.75 24189.53 27786.46 33582.94 27896.39 26895.71 25583.97 25379.63 28290.70 28168.85 27095.94 28086.01 19984.02 23589.72 313
ppachtmachnet_test83.63 28581.57 28889.80 26989.01 31285.09 25497.13 24494.50 30378.84 30976.14 30491.00 27469.78 26594.61 31763.40 33774.36 29389.71 314
v1085.73 26184.01 26790.87 24490.03 29786.73 21497.20 24295.22 29081.25 29479.85 28089.75 30773.30 24196.28 26876.87 28072.64 30989.61 315
UnsupCasMVSNet_eth78.90 30676.67 31085.58 31482.81 34774.94 32991.98 32496.31 21084.64 24465.84 34687.71 31951.33 33992.23 33972.89 31056.50 34989.56 316
test_method70.10 32268.66 32574.41 33586.30 33655.84 35794.47 30189.82 35135.18 35866.15 34584.75 33830.54 35877.96 35870.40 31960.33 34389.44 317
USDC84.74 26982.93 27390.16 26091.73 28183.54 27295.00 29893.30 32488.77 15673.19 32193.30 23553.62 33497.65 19975.88 28981.54 25489.30 318
FMVSNet582.29 29080.54 29487.52 30193.79 24884.01 26793.73 31092.47 33176.92 32074.27 31586.15 33463.69 30289.24 34969.07 32174.79 28889.29 319
Anonymous2023120680.76 29779.42 30184.79 31884.78 34072.98 33696.53 26592.97 32679.56 30574.33 31488.83 31461.27 31092.15 34060.59 34475.92 28089.24 320
pmmvs679.90 30177.31 30687.67 30084.17 34278.13 32095.86 28993.68 31967.94 34672.67 32789.62 30950.98 34195.75 29074.80 29766.04 33489.14 321
N_pmnet70.19 32169.87 32371.12 33788.24 32130.63 36895.85 29028.70 36870.18 33968.73 33486.55 33164.04 30093.81 32253.12 35373.46 30488.94 322
D2MVS87.96 22387.39 21589.70 27291.84 27983.40 27398.31 18298.49 2088.04 18178.23 29890.26 29773.57 23796.79 23484.21 22183.53 24088.90 323
KD-MVS_2432*160082.98 28780.52 29590.38 25594.32 23088.98 16692.87 31895.87 24780.46 30273.79 31887.49 32282.76 16793.29 32670.56 31746.53 35588.87 324
miper_refine_blended82.98 28780.52 29590.38 25594.32 23088.98 16692.87 31895.87 24780.46 30273.79 31887.49 32282.76 16793.29 32670.56 31746.53 35588.87 324
CL-MVSNet_2432*160079.89 30278.34 30284.54 32081.56 34975.01 32896.88 25395.62 26181.10 29575.86 30885.81 33568.49 27390.26 34763.21 33856.51 34888.35 326
MIMVSNet175.92 31673.30 31983.81 32381.29 35075.57 32792.26 32392.05 33773.09 33367.48 34186.18 33340.87 35587.64 35255.78 35070.68 32488.21 327
TransMVSNet (Re)81.97 29279.61 30089.08 28689.70 30384.01 26797.26 23791.85 34078.84 30973.07 32591.62 26267.17 28595.21 30467.50 32659.46 34588.02 328
MS-PatchMatch86.75 24185.92 23889.22 28391.97 27582.47 28896.91 25196.14 22483.74 25677.73 29993.53 23158.19 31797.37 21676.75 28298.35 10587.84 329
Baseline_NR-MVSNet85.83 25784.82 25588.87 29188.73 31683.34 27498.63 14291.66 34180.41 30482.44 24191.35 26874.63 22395.42 29984.13 22371.39 32187.84 329
ambc79.60 33372.76 35756.61 35676.20 35592.01 33868.25 33680.23 34623.34 36094.73 31473.78 30560.81 34287.48 331
DIV-MVS_2432*160077.47 31475.88 31382.24 32681.59 34868.93 34892.83 32094.02 31477.03 31973.14 32283.39 33955.44 32790.42 34667.95 32557.53 34787.38 332
TinyColmap80.42 29977.94 30387.85 29892.09 27478.58 31693.74 30989.94 35074.99 32569.77 33291.78 26046.09 34897.58 20365.17 33577.89 26987.38 332
TDRefinement78.01 31175.31 31486.10 31170.06 35873.84 33393.59 31391.58 34374.51 32873.08 32491.04 27349.63 34597.12 21974.88 29559.47 34487.33 334
CMPMVSbinary58.40 2180.48 29880.11 29881.59 33185.10 33959.56 35494.14 30795.95 23468.54 34460.71 35093.31 23455.35 32897.87 18283.06 23784.85 22987.33 334
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
LF4IMVS81.94 29381.17 29284.25 32187.23 33268.87 34993.35 31491.93 33983.35 26475.40 31193.00 24449.25 34696.65 23878.88 26878.11 26887.22 336
tfpnnormal83.65 28481.35 29090.56 25091.37 28688.06 18497.29 23597.87 5178.51 31276.20 30390.91 27564.78 29796.47 24961.71 34273.50 30387.13 337
EG-PatchMatch MVS79.92 30077.59 30486.90 30687.06 33377.90 32396.20 28094.06 31374.61 32766.53 34488.76 31540.40 35696.20 26967.02 32883.66 23986.61 338
test20.0378.51 31077.48 30581.62 33083.07 34571.03 34296.11 28192.83 32881.66 29069.31 33389.68 30857.53 31887.29 35358.65 34868.47 32786.53 339
MVP-Stereo86.61 24585.83 23988.93 29088.70 31783.85 27096.07 28294.41 30782.15 28575.64 31091.96 25767.65 28196.45 25177.20 27898.72 9686.51 340
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
OpenMVS_ROBcopyleft73.86 2077.99 31275.06 31686.77 30783.81 34477.94 32296.38 26991.53 34467.54 34768.38 33587.13 32843.94 35096.08 27555.03 35181.83 25286.29 341
Anonymous2024052178.63 30976.90 30983.82 32282.82 34672.86 33795.72 29393.57 32173.55 33272.17 32984.79 33749.69 34492.51 33665.29 33474.50 29086.09 342
UnsupCasMVSNet_bld73.85 31970.14 32284.99 31679.44 35375.73 32688.53 33795.24 28670.12 34061.94 34974.81 35041.41 35393.62 32368.65 32351.13 35485.62 343
pmmvs-eth3d78.71 30876.16 31286.38 30880.25 35281.19 30094.17 30692.13 33677.97 31466.90 34382.31 34155.76 32392.56 33573.63 30662.31 34185.38 344
PM-MVS74.88 31772.85 32080.98 33278.98 35464.75 35190.81 33385.77 35880.95 29868.23 33782.81 34029.08 35992.84 33076.54 28462.46 34085.36 345
test_040278.81 30776.33 31186.26 30991.18 28778.44 31895.88 28791.34 34568.55 34370.51 33189.91 30552.65 33794.99 30647.14 35579.78 26185.34 346
new-patchmatchnet74.80 31872.40 32181.99 32978.36 35572.20 34094.44 30292.36 33277.06 31863.47 34779.98 34751.04 34088.85 35060.53 34554.35 35184.92 347
DeepMVS_CXcopyleft76.08 33490.74 29351.65 36090.84 34786.47 21857.89 35187.98 31735.88 35792.60 33365.77 33365.06 33683.97 348
pmmvs372.86 32069.76 32482.17 32773.86 35674.19 33294.20 30589.01 35464.23 35267.72 33880.91 34541.48 35288.65 35162.40 34054.02 35283.68 349
new_pmnet76.02 31573.71 31882.95 32583.88 34372.85 33891.26 33092.26 33370.44 33862.60 34881.37 34347.64 34792.32 33861.85 34172.10 31783.68 349
LCM-MVSNet60.07 32456.37 32771.18 33654.81 36448.67 36182.17 35489.48 35337.95 35649.13 35469.12 35113.75 36781.76 35459.28 34651.63 35383.10 351
PMMVS258.97 32555.07 32870.69 33862.72 35955.37 35885.97 34180.52 36149.48 35445.94 35668.31 35215.73 36580.78 35649.79 35437.12 35775.91 352
FPMVS61.57 32360.32 32665.34 33960.14 36242.44 36391.02 33289.72 35244.15 35542.63 35780.93 34419.02 36180.59 35742.50 35672.76 30873.00 353
ANet_high50.71 32846.17 33164.33 34044.27 36652.30 35976.13 35678.73 36264.95 35027.37 36155.23 35814.61 36667.74 36036.01 35718.23 36072.95 354
tmp_tt53.66 32752.86 32956.05 34232.75 36841.97 36473.42 35776.12 36421.91 36339.68 35996.39 18342.59 35165.10 36178.00 27314.92 36261.08 355
PMVScopyleft41.42 2345.67 32942.50 33255.17 34334.28 36732.37 36666.24 35878.71 36330.72 35922.04 36459.59 3564.59 36877.85 35927.49 35958.84 34655.29 356
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive44.00 2241.70 33037.64 33553.90 34449.46 36543.37 36265.09 35966.66 36526.19 36225.77 36348.53 3603.58 37063.35 36226.15 36027.28 35854.97 357
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
Gipumacopyleft54.77 32652.22 33062.40 34186.50 33459.37 35550.20 36090.35 34936.52 35741.20 35849.49 35918.33 36381.29 35532.10 35865.34 33546.54 358
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
E-PMN41.02 33140.93 33341.29 34561.97 36033.83 36584.00 35165.17 36627.17 36027.56 36046.72 36117.63 36460.41 36319.32 36118.82 35929.61 359
EMVS39.96 33239.88 33440.18 34659.57 36332.12 36784.79 34864.57 36726.27 36126.14 36244.18 36418.73 36259.29 36417.03 36217.67 36129.12 360
test12316.58 33619.47 3387.91 3483.59 3705.37 37094.32 3031.39 3712.49 36613.98 36644.60 3632.91 3712.65 36611.35 3650.57 36515.70 361
testmvs18.81 33423.05 3376.10 3494.48 3692.29 37197.78 2163.00 3703.27 36518.60 36562.71 3541.53 3722.49 36714.26 3641.80 36413.50 362
wuyk23d16.71 33516.73 33916.65 34760.15 36125.22 36941.24 3615.17 3696.56 3645.48 3673.61 3673.64 36922.72 36515.20 3639.52 3631.99 363
uanet_test0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
cdsmvs_eth3d_5k22.52 33330.03 3360.00 3500.00 3710.00 3720.00 36297.17 1600.00 3670.00 36898.77 8374.35 2310.00 3680.00 3660.00 3660.00 364
pcd_1.5k_mvsjas6.87 3389.16 3410.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 36882.48 1720.00 3680.00 3660.00 3660.00 364
sosnet-low-res0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
sosnet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
uncertanet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
Regformer0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
ab-mvs-re8.21 33710.94 3400.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 36898.50 1040.00 3730.00 3680.00 3660.00 3660.00 364
uanet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
ZD-MVS99.67 1393.28 7097.61 9687.78 18897.41 5199.16 3990.15 4799.56 9398.35 2999.70 35
test_241102_ONE99.63 2195.24 2197.72 7494.16 2699.30 499.49 1093.32 1599.98 10
9.1496.87 2699.34 5399.50 3897.49 12589.41 13898.59 2299.43 1689.78 5199.69 7598.69 1799.62 47
save fliter99.34 5393.85 5999.65 2297.63 9395.69 11
test072699.66 1595.20 2699.77 897.70 7993.95 2999.35 399.54 393.18 18
test_part299.54 3695.42 1798.13 32
sam_mvs87.08 96
MTGPAbinary97.45 130
test_post190.74 33541.37 36585.38 13296.36 25683.16 234
test_post46.00 36287.37 8997.11 220
patchmatchnet-post84.86 33688.73 6496.81 232
MTMP99.21 7091.09 346
gm-plane-assit94.69 22488.14 18288.22 17697.20 15298.29 16090.79 150
TEST999.57 3393.17 7299.38 5797.66 8389.57 13398.39 2799.18 3590.88 3299.66 80
test_899.55 3593.07 7699.37 6097.64 8990.18 11398.36 2999.19 3290.94 3099.64 86
agg_prior99.54 3692.66 8497.64 8997.98 4099.61 89
test_prior492.00 9499.41 54
test_prior299.57 3091.43 8598.12 3498.97 6390.43 4098.33 3099.81 19
旧先验298.67 13685.75 22598.96 1298.97 14293.84 115
新几何298.26 185
原ACMM298.69 132
testdata299.88 4484.16 222
segment_acmp90.56 39
testdata197.89 20992.43 62
plane_prior793.84 24585.73 241
plane_prior693.92 24286.02 23572.92 243
plane_prior496.52 177
plane_prior385.91 23693.65 4186.99 199
plane_prior299.02 9893.38 46
plane_prior193.90 244
plane_prior86.07 23399.14 8593.81 3986.26 219
n20.00 372
nn0.00 372
door-mid84.90 360
test1197.68 81
door85.30 359
HQP5-MVS86.39 221
HQP-NCC93.95 23899.16 7693.92 3187.57 192
ACMP_Plane93.95 23899.16 7693.92 3187.57 192
BP-MVS93.82 117
HQP3-MVS96.37 20786.29 217
HQP2-MVS73.34 239
NP-MVS93.94 24186.22 22796.67 175
MDTV_nov1_ep1390.47 17196.14 17288.55 17791.34 32997.51 12089.58 13292.24 14190.50 29586.99 10097.61 20277.64 27592.34 177
ACMMP++_ref82.64 248
ACMMP++83.83 236
Test By Simon83.62 149