This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted by
reproduce_model99.76 1899.69 2299.98 2399.96 9699.93 47100.00 199.42 14198.81 59100.00 1100.00 198.98 102100.00 1100.00 1100.00 1100.00 1
reproduce-ours99.76 1899.69 2299.98 2399.96 9699.94 41100.00 199.42 14198.82 55100.00 1100.00 198.99 99100.00 1100.00 1100.00 1100.00 1
our_new_method99.76 1899.69 2299.98 2399.96 9699.94 41100.00 199.42 14198.82 55100.00 1100.00 198.99 99100.00 1100.00 1100.00 1100.00 1
fmvsm_l_conf0.5_n_a99.63 5499.55 5999.86 8799.83 12499.58 118100.00 199.36 21898.98 30100.00 1100.00 197.85 15799.99 98100.00 199.94 124100.00 1
fmvsm_l_conf0.5_n99.63 5499.56 5799.86 8799.81 13199.59 116100.00 199.36 21898.98 30100.00 1100.00 197.92 15399.99 98100.00 199.95 121100.00 1
MM99.63 5499.52 6499.94 6699.99 4999.82 89100.00 199.97 1799.11 8100.00 1100.00 196.65 209100.00 1100.00 199.97 116100.00 1
test_fmvsmconf_n99.56 6799.46 7399.86 8799.68 16599.58 118100.00 199.31 24698.92 3999.88 171100.00 197.35 18599.99 9899.98 7699.99 103100.00 1
test_fmvsmvis_n_192099.46 7999.37 8099.73 12398.88 31199.18 171100.00 199.26 27998.85 4999.79 190100.00 197.70 166100.00 199.98 7699.86 138100.00 1
test_fmvsm_n_192099.55 6899.49 6999.73 12399.85 12099.19 169100.00 199.41 19098.87 47100.00 1100.00 197.34 186100.00 199.98 7699.90 131100.00 1
test_cas_vis1_n_192098.63 17898.25 19799.77 11799.69 16199.32 153100.00 199.31 24698.84 5199.96 126100.00 187.42 33899.99 9899.14 20799.86 138100.00 1
test_vis1_n_192097.77 22797.24 24899.34 18199.79 14698.04 253100.00 199.25 28198.88 44100.00 1100.00 177.52 390100.00 199.88 10699.85 141100.00 1
test_vis1_n96.69 27795.81 30199.32 18699.14 27997.98 25699.97 24998.98 36998.45 81100.00 1100.00 166.44 40899.99 9899.78 12999.57 163100.00 1
test_fmvs1_n97.43 24396.86 25699.15 20199.68 16597.48 28099.99 21798.98 36998.82 55100.00 1100.00 174.85 39799.96 14399.67 15999.70 152100.00 1
mvsany_test199.57 6699.48 7299.85 9099.86 11999.54 123100.00 199.36 21898.94 37100.00 1100.00 197.97 150100.00 199.88 10699.28 167100.00 1
test_fmvs198.37 20398.04 21599.34 18199.84 12198.07 249100.00 199.00 36698.85 49100.00 1100.00 185.11 35999.96 14399.69 15599.88 134100.00 1
DVP-MVS++99.81 1199.75 14100.00 1100.00 199.99 5100.00 199.42 14198.79 63100.00 1100.00 199.54 28100.00 1100.00 1100.00 1100.00 1
MSC_two_6792asdad100.00 1100.00 1100.00 199.42 141100.00 1100.00 1100.00 1100.00 1
PC_three_145298.80 60100.00 1100.00 199.54 28100.00 1100.00 1100.00 1100.00 1
No_MVS100.00 1100.00 1100.00 199.42 141100.00 1100.00 1100.00 1100.00 1
SR-MVS-dyc-post99.63 5499.52 6499.97 3499.99 4999.91 56100.00 199.42 14197.62 150100.00 1100.00 198.65 13099.99 9899.99 64100.00 1100.00 1
RE-MVS-def99.55 5999.99 4999.91 56100.00 199.42 14197.62 150100.00 1100.00 198.94 11099.99 64100.00 1100.00 1
SED-MVS99.83 799.77 9100.00 1100.00 199.99 5100.00 199.42 14199.03 21100.00 1100.00 199.50 39100.00 1100.00 1100.00 1100.00 1
IU-MVS100.00 199.99 599.42 14199.12 7100.00 1100.00 1100.00 1100.00 1
OPU-MVS100.00 1100.00 1100.00 1100.00 1100.00 199.54 28100.00 1100.00 1100.00 1100.00 1
test_241102_TWO99.42 14199.03 21100.00 1100.00 199.56 25100.00 1100.00 1100.00 1100.00 1
SF-MVS99.66 4899.57 5299.95 5499.99 4999.85 85100.00 199.42 14197.67 143100.00 1100.00 199.05 9399.99 98100.00 1100.00 1100.00 1
ZNCC-MVS99.71 3399.62 4499.97 3499.99 4999.90 63100.00 199.79 4597.97 11899.97 122100.00 198.97 104100.00 199.94 96100.00 1100.00 1
DVP-MVScopyleft99.83 799.78 7100.00 1100.00 199.99 5100.00 199.42 14199.04 16100.00 1100.00 199.53 31100.00 1100.00 1100.00 1100.00 1
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD98.79 63100.00 1100.00 199.61 18100.00 1100.00 1100.00 1100.00 1
test_0728_SECOND100.00 199.99 4999.99 5100.00 199.42 141100.00 1100.00 1100.00 1100.00 1
SR-MVS99.68 4399.58 4999.98 23100.00 199.95 32100.00 199.64 6497.59 158100.00 1100.00 198.99 9999.99 98100.00 1100.00 1100.00 1
DPM-MVS99.63 5499.51 66100.00 199.90 112100.00 1100.00 199.43 12499.00 27100.00 1100.00 199.58 24100.00 197.64 277100.00 1100.00 1
GST-MVS99.64 5199.53 6299.95 54100.00 199.86 82100.00 199.79 4597.72 13899.95 153100.00 198.39 141100.00 199.96 8899.99 103100.00 1
Anonymous20240521197.87 22297.53 23398.90 21699.81 13196.70 30899.35 35699.46 9492.98 36098.83 26099.99 18790.63 296100.00 199.70 14897.03 255100.00 1
SMA-MVScopyleft99.69 3999.59 4799.98 2399.99 4999.93 47100.00 199.43 12497.50 169100.00 1100.00 199.43 52100.00 1100.00 1100.00 1100.00 1
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DPE-MVScopyleft99.79 1499.73 1799.99 1299.99 4999.98 17100.00 199.42 14198.91 41100.00 1100.00 199.22 78100.00 1100.00 1100.00 1100.00 1
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
CHOSEN 280x42099.85 399.87 199.80 10799.99 4999.97 2199.97 24999.98 1698.96 32100.00 1100.00 199.96 499.42 268100.00 1100.00 1100.00 1
MVS_030499.72 2999.65 3499.93 7099.99 4999.79 93100.00 199.91 3599.17 6100.00 1100.00 197.84 159100.00 1100.00 199.95 121100.00 1
MSP-MVS99.81 1199.77 999.94 66100.00 199.86 82100.00 199.42 14198.87 47100.00 1100.00 199.65 1799.96 143100.00 1100.00 1100.00 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
TSAR-MVS + MP.99.82 999.77 999.99 12100.00 199.96 24100.00 199.43 12499.05 15100.00 1100.00 199.45 4799.99 98100.00 1100.00 1100.00 1
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
ACMMP_NAP99.67 4699.57 5299.97 3499.98 8699.92 53100.00 199.42 14197.83 129100.00 1100.00 198.89 116100.00 199.98 76100.00 1100.00 1
MTAPA99.68 4399.59 4799.97 3499.99 4999.91 56100.00 199.42 14198.32 9299.94 155100.00 198.65 130100.00 199.96 88100.00 1100.00 1
test9_res100.00 1100.00 1100.00 1
train_agg99.71 3399.63 4199.97 34100.00 199.95 32100.00 199.42 14197.70 140100.00 1100.00 199.51 3599.97 130100.00 1100.00 1100.00 1
agg_prior2100.00 1100.00 1100.00 1
HFP-MVS99.74 2599.67 3099.96 45100.00 199.89 70100.00 199.76 4997.95 122100.00 1100.00 199.31 66100.00 199.99 64100.00 1100.00 1
region2R99.72 2999.64 3799.97 34100.00 199.90 63100.00 199.74 5597.86 128100.00 1100.00 199.19 81100.00 199.99 64100.00 1100.00 1
EI-MVSNet-UG-set99.69 3999.63 4199.87 8499.99 4999.64 11299.95 26199.44 11698.35 90100.00 1100.00 198.98 10299.97 13099.98 76100.00 1100.00 1
EI-MVSNet-Vis-set99.70 3699.64 3799.87 84100.00 199.64 11299.98 24399.44 11698.35 9099.99 111100.00 199.04 9699.96 14399.98 76100.00 1100.00 1
XVS99.79 1499.73 1799.98 23100.00 199.94 41100.00 199.75 5298.67 70100.00 1100.00 199.16 83100.00 1100.00 1100.00 1100.00 1
X-MVStestdata97.04 26196.06 29099.98 23100.00 199.94 41100.00 199.75 5298.67 70100.00 166.97 42299.16 83100.00 1100.00 1100.00 1100.00 1
test_prior99.90 77100.00 199.75 9799.73 5699.97 130100.00 1
新几何199.99 12100.00 199.96 2499.81 4297.89 125100.00 1100.00 199.20 80100.00 197.91 269100.00 1100.00 1
旧先验199.99 4999.88 7799.82 40100.00 199.27 75100.00 1100.00 1
无先验100.00 199.80 4397.98 116100.00 199.33 196100.00 1
原ACMM199.93 70100.00 199.80 9299.66 6398.18 99100.00 1100.00 199.43 52100.00 199.50 187100.00 1100.00 1
test22299.99 4999.90 63100.00 199.69 6297.66 144100.00 1100.00 199.30 71100.00 1100.00 1
testdata99.66 13599.99 4998.97 19399.73 5697.96 121100.00 1100.00 199.42 55100.00 199.28 200100.00 1100.00 1
131499.38 8799.19 10699.96 4598.88 31199.89 7099.24 36699.93 3098.88 4498.79 263100.00 197.02 192100.00 1100.00 1100.00 1100.00 1
MVS99.22 11598.96 13199.98 2399.00 29899.95 3299.24 36699.94 2298.14 10398.88 253100.00 195.63 225100.00 199.85 112100.00 1100.00 1
SD-MVS99.81 1199.75 1499.99 1299.99 4999.96 24100.00 199.42 14199.01 26100.00 1100.00 199.33 61100.00 1100.00 1100.00 1100.00 1
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MSLP-MVS++99.89 199.85 299.99 12100.00 199.96 24100.00 199.95 1999.11 8100.00 1100.00 199.60 19100.00 1100.00 1100.00 1100.00 1
APDe-MVScopyleft99.84 699.78 799.99 12100.00 199.98 17100.00 199.44 11699.06 13100.00 1100.00 199.56 2599.99 98100.00 1100.00 1100.00 1
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
APD-MVS_3200maxsize99.65 4999.55 5999.97 3499.99 4999.91 56100.00 199.48 7897.54 162100.00 1100.00 198.97 10499.99 9899.98 76100.00 1100.00 1
ACMMPR99.74 2599.67 3099.96 45100.00 199.89 70100.00 199.76 4997.95 122100.00 1100.00 199.29 72100.00 199.99 64100.00 1100.00 1
MP-MVScopyleft99.61 6199.49 6999.98 2399.99 4999.94 41100.00 199.42 14197.82 13099.99 111100.00 198.20 144100.00 199.99 64100.00 1100.00 1
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PGM-MVS99.69 3999.61 4599.95 5499.99 4999.85 85100.00 199.58 6797.69 142100.00 1100.00 199.44 48100.00 199.79 123100.00 1100.00 1
MCST-MVS99.85 399.80 4100.00 1100.00 199.99 5100.00 199.73 5699.19 5100.00 1100.00 199.31 66100.00 1100.00 1100.00 1100.00 1
CDPH-MVS99.73 2899.64 3799.99 12100.00 199.97 21100.00 199.42 14198.02 112100.00 1100.00 199.32 6499.99 98100.00 1100.00 1100.00 1
test1299.95 5499.99 4999.89 7099.42 141100.00 199.24 7799.97 130100.00 1100.00 1
TSAR-MVS + GP.99.61 6199.69 2299.35 18099.99 4998.06 251100.00 199.36 21899.83 2100.00 1100.00 198.95 10899.99 98100.00 199.11 171100.00 1
mPP-MVS99.69 3999.60 4699.97 34100.00 199.91 56100.00 199.42 14197.91 124100.00 1100.00 199.04 96100.00 1100.00 1100.00 1100.00 1
HPM-MVS_fast99.60 6499.49 6999.91 7499.99 4999.78 94100.00 199.42 14197.09 199100.00 1100.00 198.95 10899.96 14399.98 76100.00 1100.00 1
HPM-MVScopyleft99.59 6599.50 6799.89 79100.00 199.70 106100.00 199.42 14197.46 173100.00 1100.00 198.60 13399.96 14399.99 64100.00 1100.00 1
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
EPNet_dtu98.53 18998.23 20399.43 16799.92 10899.01 18699.96 25599.47 7998.80 6099.96 12699.96 21698.56 13599.30 27687.78 39199.68 153100.00 1
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CHOSEN 1792x268899.00 14298.91 14099.25 19699.90 11297.79 271100.00 199.99 1398.79 6398.28 294100.00 193.63 25499.95 15699.66 16399.95 121100.00 1
APD-MVScopyleft99.68 4399.58 4999.97 3499.99 4999.96 24100.00 199.42 14197.53 164100.00 1100.00 199.27 7599.97 130100.00 1100.00 1100.00 1
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CNVR-MVS99.85 399.80 4100.00 1100.00 199.99 5100.00 199.77 4899.07 11100.00 1100.00 199.39 59100.00 1100.00 1100.00 1100.00 1
NCCC99.86 299.82 3100.00 1100.00 199.99 5100.00 199.71 6199.07 11100.00 1100.00 199.59 22100.00 1100.00 1100.00 1100.00 1
114514_t99.39 8599.25 9599.81 10299.97 9099.48 138100.00 199.42 14195.53 291100.00 1100.00 198.37 14299.95 15699.97 86100.00 1100.00 1
CP-MVS99.67 4699.58 4999.95 54100.00 199.84 87100.00 199.42 14197.77 135100.00 1100.00 199.07 90100.00 1100.00 1100.00 1100.00 1
SteuartSystems-ACMMP99.78 1699.71 2099.98 2399.76 15299.95 32100.00 199.42 14198.69 68100.00 1100.00 199.52 3499.99 98100.00 1100.00 1100.00 1
Skip Steuart: Steuart Systems R&D Blog.
DELS-MVS99.62 5999.56 5799.82 9799.92 10899.45 140100.00 199.78 4798.92 3999.73 198100.00 197.70 166100.00 199.93 98100.00 1100.00 1
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CPTT-MVS99.49 7599.38 7799.85 90100.00 199.54 123100.00 199.42 14197.58 15999.98 117100.00 197.43 183100.00 199.99 64100.00 1100.00 1
DP-MVS Recon99.76 1899.69 2299.98 23100.00 199.95 32100.00 199.52 7297.99 11499.99 111100.00 199.72 12100.00 199.96 88100.00 1100.00 1
MVS_111021_LR99.70 3699.65 3499.88 8399.96 9699.70 106100.00 199.97 1798.96 32100.00 1100.00 197.93 15299.95 15699.99 64100.00 1100.00 1
DP-MVS98.86 15998.54 17599.81 10299.97 9099.45 14099.52 33999.40 19494.35 32698.36 287100.00 196.13 21799.97 13099.12 210100.00 1100.00 1
QAPM98.99 14598.66 16399.96 4599.01 29499.87 7999.88 28199.93 3097.99 11498.68 267100.00 193.17 262100.00 199.32 197100.00 1100.00 1
HyFIR lowres test99.32 9899.24 9899.58 14999.95 10099.26 160100.00 199.99 1396.72 23299.29 22899.91 23799.49 4199.47 25999.74 13698.08 219100.00 1
PAPM_NR99.74 2599.66 3399.99 12100.00 199.96 24100.00 199.47 7997.87 127100.00 1100.00 199.60 19100.00 1100.00 1100.00 1100.00 1
PAPR99.76 1899.68 2899.99 12100.00 199.96 24100.00 199.47 7998.16 100100.00 1100.00 199.51 35100.00 1100.00 1100.00 1100.00 1
IB-MVS96.24 1297.54 23896.95 25399.33 18499.67 17398.10 247100.00 199.47 7997.42 17799.26 22999.69 27798.83 12199.89 18099.43 18978.77 403100.00 1
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MVS_111021_HR99.71 3399.63 4199.93 7099.95 10099.83 88100.00 1100.00 198.89 43100.00 1100.00 197.85 15799.95 156100.00 1100.00 1100.00 1
CSCG99.28 10499.35 8599.05 20599.99 4997.15 296100.00 199.47 7997.44 17599.42 216100.00 197.83 161100.00 199.99 64100.00 1100.00 1
API-MVS99.72 2999.70 2199.79 11099.97 9099.37 15099.96 25599.94 2298.48 79100.00 1100.00 198.92 113100.00 1100.00 1100.00 1100.00 1
PAPM99.78 1699.76 1299.85 9099.01 29499.95 32100.00 199.75 5299.37 399.99 111100.00 199.76 1199.60 226100.00 1100.00 1100.00 1
ACMMPcopyleft99.65 4999.57 5299.89 7999.99 4999.66 11099.75 30699.73 5698.16 10099.75 196100.00 198.90 115100.00 199.96 8899.88 134100.00 1
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CNLPA99.72 2999.65 3499.91 7499.97 9099.72 101100.00 199.47 7998.43 8299.88 171100.00 199.14 86100.00 199.97 86100.00 1100.00 1
PHI-MVS99.50 7399.39 7699.82 97100.00 199.45 140100.00 199.94 2296.38 258100.00 1100.00 198.18 145100.00 1100.00 1100.00 1100.00 1
PVSNet94.91 1899.30 10299.25 9599.44 164100.00 198.32 232100.00 199.86 3898.04 111100.00 1100.00 196.10 218100.00 199.55 18099.73 150100.00 1
PVSNet_093.57 1996.41 29095.74 30798.41 24599.84 12195.22 329100.00 1100.00 198.08 10997.55 33299.78 26584.40 362100.00 1100.00 181.99 395100.00 1
DeepPCF-MVS98.03 498.54 18899.72 1994.98 36099.99 4984.94 399100.00 199.42 14199.98 1100.00 1100.00 198.11 147100.00 1100.00 1100.00 1100.00 1
DeepC-MVS_fast98.92 199.75 2399.67 3099.99 1299.99 4999.96 2499.73 31299.52 7299.06 13100.00 1100.00 198.80 124100.00 199.95 94100.00 1100.00 1
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MG-MVS99.75 2399.68 2899.97 34100.00 199.91 5699.98 24399.47 7999.09 10100.00 1100.00 198.59 134100.00 199.95 94100.00 1100.00 1
AdaColmapbinary99.44 8199.26 9499.95 54100.00 199.86 8299.70 31799.99 1398.53 7699.90 166100.00 195.34 227100.00 199.92 99100.00 1100.00 1
MAR-MVS99.49 7599.36 8399.89 7999.97 9099.66 11099.74 30799.95 1997.89 125100.00 1100.00 196.71 208100.00 1100.00 1100.00 1100.00 1
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
3Dnovator+95.58 1599.03 13498.71 16099.96 4598.99 30199.89 70100.00 199.51 7698.96 3298.32 291100.00 192.78 268100.00 199.87 109100.00 1100.00 1
3Dnovator95.63 1499.06 12998.76 15399.96 4598.86 31599.90 6399.98 24399.93 3098.95 3598.49 282100.00 192.91 266100.00 199.71 145100.00 1100.00 1
TAPA-MVS96.40 1097.64 23197.37 24098.45 24299.94 10395.70 323100.00 199.40 19497.65 14599.53 207100.00 199.31 6699.66 22380.48 406100.00 1100.00 1
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
MP-MVS-pluss99.61 6199.50 6799.97 3499.98 8699.92 53100.00 199.42 14197.53 16499.77 193100.00 198.77 125100.00 199.99 64100.00 199.99 110
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
HPM-MVS++copyleft99.82 999.76 1299.99 1299.99 4999.98 17100.00 199.83 3998.88 4499.96 126100.00 199.21 79100.00 1100.00 1100.00 199.99 110
fmvsm_s_conf0.5_n_a99.32 9899.15 11199.81 10299.80 14299.47 139100.00 199.35 22998.22 95100.00 1100.00 195.21 23299.99 9899.96 8899.86 13899.98 112
fmvsm_s_conf0.5_n99.21 11699.01 12399.83 9599.84 12199.53 125100.00 199.38 20998.29 94100.00 1100.00 193.62 25599.99 9899.99 6499.93 12799.98 112
thres100view90099.25 11199.01 12399.95 5499.81 13199.87 79100.00 199.94 2297.13 19799.83 17899.96 21697.01 193100.00 199.59 17597.85 23299.98 112
tfpn200view999.26 10799.03 12199.96 4599.81 13199.89 70100.00 199.94 2297.23 19299.83 17899.96 21697.04 189100.00 199.59 17597.85 23299.98 112
thres20099.27 10599.04 12099.96 4599.81 13199.90 63100.00 199.94 2297.31 18799.83 17899.96 21697.04 189100.00 199.62 16997.88 23099.98 112
LCM-MVSNet-Re96.52 28397.21 25094.44 36499.27 27385.80 39799.85 28596.61 41495.98 27592.75 38798.48 37493.97 25197.55 38399.58 17898.43 19299.98 112
JIA-IIPM97.09 25796.34 27999.36 17998.88 31198.59 21399.81 29199.43 12484.81 40199.96 12690.34 41198.55 13699.52 25197.00 29898.28 20799.98 112
fmvsm_s_conf0.1_n_a98.71 16998.36 19399.78 11499.09 28499.42 144100.00 199.26 27997.42 177100.00 1100.00 189.78 30899.96 14399.82 12199.85 14199.97 119
fmvsm_s_conf0.1_n98.77 16498.42 18599.82 9799.47 24799.52 128100.00 199.27 27297.53 164100.00 1100.00 189.73 31099.96 14399.84 11599.93 12799.97 119
test_fmvsmconf0.1_n99.25 11199.05 11999.82 9798.92 30799.55 121100.00 199.23 29098.91 4199.75 19699.97 20194.79 24099.94 16899.94 9699.99 10399.97 119
thres600view799.24 11499.00 12599.95 5499.81 13199.87 79100.00 199.94 2297.13 19799.83 17899.96 21697.01 193100.00 199.54 18397.77 24099.97 119
thres40099.26 10799.03 12199.95 5499.81 13199.89 70100.00 199.94 2297.23 19299.83 17899.96 21697.04 189100.00 199.59 17597.85 23299.97 119
OMC-MVS99.27 10599.38 7798.96 21399.95 10097.06 300100.00 199.40 19498.83 5399.88 171100.00 197.01 19399.86 18799.47 18899.84 14399.97 119
dmvs_re97.54 23897.88 22196.54 34099.55 21890.35 38699.86 28399.46 9497.00 20699.41 221100.00 190.78 29499.30 27699.60 17395.24 28399.96 125
CANet99.40 8499.24 9899.89 7999.99 4999.76 96100.00 199.73 5698.40 8399.78 192100.00 195.28 22899.96 143100.00 199.99 10399.96 125
GG-mvs-BLEND99.59 14599.54 21999.49 13499.17 37999.52 7299.96 12699.68 281100.00 199.33 27599.71 14599.99 10399.96 125
gg-mvs-nofinetune96.95 26696.10 28899.50 15799.41 25799.36 15199.07 39399.52 7283.69 40399.96 12683.60 419100.00 199.20 28199.68 15699.99 10399.96 125
VNet99.04 13298.75 15499.90 7799.81 13199.75 9799.50 34199.47 7998.36 88100.00 199.99 18794.66 242100.00 199.90 10297.09 25499.96 125
BH-w/o98.82 16298.81 14998.88 21899.62 19796.71 307100.00 199.28 26297.09 19998.81 261100.00 194.91 23899.96 14399.54 183100.00 199.96 125
patch_mono-299.04 13299.79 696.81 33599.92 10890.47 385100.00 199.41 19098.95 35100.00 1100.00 199.78 8100.00 1100.00 1100.00 199.95 131
dcpmvs_298.87 15899.53 6296.90 32999.87 11890.88 38499.94 26699.07 34798.20 98100.00 1100.00 198.69 12999.86 187100.00 1100.00 199.95 131
Patchmatch-test97.83 22497.42 23699.06 20399.08 28597.66 27598.66 40199.21 29993.65 34298.25 29899.58 30499.47 4599.57 23390.25 37998.59 18499.95 131
HY-MVS96.53 999.50 7399.35 8599.96 4599.81 13199.93 4799.64 324100.00 197.97 11899.84 17599.85 25098.94 11099.99 9899.86 11098.23 21199.95 131
PatchMatch-RL99.02 13998.78 15199.74 12099.99 4999.29 156100.00 1100.00 198.38 8499.89 16999.81 25993.14 26499.99 9897.85 27199.98 11399.95 131
balanced_conf0399.43 8299.28 8999.85 9099.68 16599.68 10899.97 24999.28 26297.03 20499.96 12699.97 20197.90 15499.93 17299.77 130100.00 199.94 136
test250699.48 7799.38 7799.75 11999.89 11499.51 12999.45 345100.00 198.38 8499.83 178100.00 198.86 11799.81 20399.25 20198.78 17999.94 136
test111198.42 19898.12 20799.29 18999.88 11698.15 24299.46 343100.00 198.36 8899.42 216100.00 187.91 33199.79 20699.31 19898.78 17999.94 136
ECVR-MVScopyleft98.43 19698.14 20699.32 18699.89 11498.21 24099.46 343100.00 198.38 8499.47 214100.00 187.91 33199.80 20599.35 19498.78 17999.94 136
test_yl99.51 7099.37 8099.95 5499.82 12599.90 63100.00 199.47 7997.48 171100.00 1100.00 199.80 5100.00 199.98 7697.75 24199.94 136
DCV-MVSNet99.51 7099.37 8099.95 5499.82 12599.90 63100.00 199.47 7997.48 171100.00 1100.00 199.80 5100.00 199.98 7697.75 24199.94 136
LFMVS97.42 24496.62 26599.81 10299.80 14299.50 13199.16 38099.56 7094.48 322100.00 1100.00 179.35 385100.00 199.89 10497.37 25099.94 136
WTY-MVS99.54 6999.40 7599.95 5499.81 13199.93 47100.00 1100.00 197.98 11699.84 175100.00 198.94 11099.98 12399.86 11098.21 21299.94 136
PMMVS99.12 12498.97 13099.58 14999.57 21498.98 191100.00 199.30 25097.14 19699.96 126100.00 196.53 21499.82 20099.70 14898.49 18899.94 136
F-COLMAP99.64 5199.64 3799.67 13299.99 4999.07 177100.00 199.44 11698.30 9399.90 166100.00 199.18 8299.99 9899.91 101100.00 199.94 136
PLCcopyleft98.56 299.70 3699.74 1699.58 149100.00 198.79 199100.00 199.54 7198.58 7599.96 126100.00 199.59 22100.00 1100.00 1100.00 199.94 136
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
TR-MVS98.14 21497.74 22699.33 18499.59 20598.28 23599.27 36399.21 29996.42 25599.15 23699.94 22988.87 32399.79 20698.88 22198.29 20699.93 147
PatchmatchNetpermissive99.03 13498.96 13199.26 19599.49 24298.33 23099.38 35399.45 10296.64 24199.96 12699.58 30499.49 4199.50 25597.63 27899.00 17599.93 147
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
ET-MVSNet_ETH3D96.41 29095.48 32199.20 19999.81 13199.75 97100.00 199.02 36397.30 18978.33 411100.00 197.73 16497.94 37399.70 14887.41 37699.92 149
LS3D99.31 10099.13 11299.87 8499.99 4999.71 10299.55 33599.46 9497.32 18599.82 186100.00 196.85 20399.97 13099.14 207100.00 199.92 149
MGCFI-Net99.01 14198.70 16299.93 7099.74 15699.94 41100.00 199.29 25697.60 157100.00 1100.00 195.10 23499.96 14399.74 13696.85 26199.91 151
sasdasda99.03 13498.73 15699.94 6699.75 15499.95 32100.00 199.30 25097.64 147100.00 1100.00 195.22 23099.97 13099.76 13296.90 25999.91 151
GSMVS99.91 151
sam_mvs199.29 7299.91 151
SCA98.30 20597.98 21999.23 19799.41 25798.25 23799.99 21799.45 10296.91 21499.76 19599.58 30489.65 31299.54 24598.31 25198.79 17899.91 151
Patchmatch-RL test93.49 34493.63 34193.05 37591.78 40683.41 40198.21 40596.95 41191.58 37291.05 39097.64 39099.40 5895.83 40094.11 34781.95 39699.91 151
canonicalmvs99.03 13498.73 15699.94 6699.75 15499.95 32100.00 199.30 25097.64 147100.00 1100.00 195.22 23099.97 13099.76 13296.90 25999.91 151
test-LLR99.03 13498.91 14099.40 17499.40 26299.28 157100.00 199.45 10296.70 23499.42 21699.12 33699.31 6699.01 28996.82 30499.99 10399.91 151
TESTMET0.1,199.08 12798.96 13199.44 16499.63 19099.38 147100.00 199.45 10295.53 29199.48 211100.00 199.71 1399.02 28896.84 30399.99 10399.91 151
test-mter98.96 14998.82 14799.40 17499.40 26299.28 157100.00 199.45 10295.44 30199.42 21699.12 33699.70 1499.01 28996.82 30499.99 10399.91 151
MSDG98.90 15798.63 16799.70 12899.92 10899.25 162100.00 199.37 21295.71 28599.40 222100.00 196.58 21099.95 15696.80 30699.94 12499.91 151
MVSMamba_PlusPlus99.39 8599.25 9599.80 10799.68 16599.59 11699.99 21799.30 25096.66 23999.96 12699.97 20197.89 15599.92 17599.76 132100.00 199.90 162
test_fmvsmconf0.01_n98.60 18098.24 20099.67 13296.90 38399.21 16799.99 21799.04 36098.80 6099.57 20699.96 21690.12 30299.91 17799.89 10499.89 13299.90 162
alignmvs99.38 8799.21 10299.91 7499.73 15799.92 53100.00 199.51 7697.61 154100.00 1100.00 199.06 9199.93 17299.83 11697.12 25399.90 162
PVSNet_Blended99.48 7799.36 8399.83 9599.98 8699.60 114100.00 1100.00 197.79 133100.00 1100.00 196.57 21199.99 98100.00 199.88 13499.90 162
EPMVS99.25 11199.13 11299.60 14399.60 20199.20 16899.60 330100.00 196.93 21199.92 16199.36 32499.05 9399.71 22098.77 22798.94 17699.90 162
PCF-MVS98.23 398.69 17298.37 19199.62 14099.78 14999.02 18499.23 37199.06 35596.43 25298.08 303100.00 194.72 24199.95 15698.16 25899.91 13099.90 162
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
dongtai98.29 20798.25 19798.42 24499.58 21095.86 320100.00 199.44 11693.46 34999.69 20199.97 20197.53 17599.51 25396.28 31698.27 20999.89 168
kuosan98.55 18598.53 17798.62 23199.66 18096.16 315100.00 199.44 11693.93 33699.81 18999.98 19297.58 17099.81 20398.08 26098.28 20799.89 168
GA-MVS97.72 22997.27 24699.06 20399.24 27697.93 262100.00 199.24 28695.80 28498.99 24899.64 29089.77 30999.36 27195.12 33497.62 24999.89 168
baseline198.91 15598.61 16999.81 10299.71 15899.77 9599.78 29799.44 11697.51 16898.81 26199.99 18798.25 14399.76 21398.60 24095.41 27499.89 168
tpmvs98.59 18198.38 18999.23 19799.69 16197.90 26399.31 36199.47 7994.52 32099.68 20299.28 32897.64 16999.89 18097.71 27598.17 21699.89 168
EPNet99.62 5999.69 2299.42 16999.99 4998.37 226100.00 199.89 3798.83 53100.00 1100.00 198.97 104100.00 199.90 10299.61 16199.89 168
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PVSNet_Blended_VisFu99.33 9699.18 10999.78 11499.82 12599.49 134100.00 199.95 1997.36 18099.63 204100.00 196.45 21599.95 15699.79 12399.65 15799.89 168
dp98.72 16898.61 16999.03 20899.53 22297.39 28399.45 34599.39 20795.62 28899.94 15599.52 31398.83 12199.82 20096.77 30998.42 19399.89 168
sss99.45 8099.34 8799.80 10799.76 15299.50 131100.00 199.91 3597.72 13899.98 11799.94 22998.45 139100.00 199.53 18598.75 18299.89 168
Test_1112_low_res98.83 16198.60 17199.51 15499.69 16198.75 20199.99 21799.14 32396.81 22198.84 25899.06 34097.45 18099.89 18098.66 23297.75 24199.89 168
1112_ss98.91 15598.71 16099.51 15499.69 16198.75 20199.99 21799.15 31896.82 22098.84 258100.00 197.45 18099.89 18098.66 23297.75 24199.89 168
MDTV_nov1_ep13_2view99.24 16499.56 33496.31 26499.96 12698.86 11798.92 21999.89 168
Vis-MVSNet (Re-imp)98.99 14598.89 14499.29 18999.64 18898.89 19599.98 24399.31 24696.74 22999.48 211100.00 198.11 14799.10 28498.39 24798.34 20199.89 168
UBG99.36 9099.27 9099.63 13899.63 19099.01 186100.00 199.43 12496.99 207100.00 199.92 23499.69 1599.99 9899.74 13698.06 22099.88 181
ETVMVS99.16 12198.98 12899.69 12999.67 17399.56 120100.00 199.45 10296.36 26099.98 11799.95 22398.65 13099.64 22499.11 21197.63 24899.88 181
GeoE98.06 21697.65 23199.29 18999.47 24798.41 220100.00 199.19 30394.85 30998.88 253100.00 191.21 28699.59 22897.02 29798.19 21499.88 181
UA-Net99.06 12998.83 14699.74 12099.52 22999.40 14699.08 39199.45 10297.64 14799.83 178100.00 195.80 22199.94 16898.35 24999.80 14899.88 181
ADS-MVSNet298.28 20998.51 18097.62 29999.51 23495.03 33299.24 36699.41 19095.52 29399.96 12699.70 27497.57 17297.94 37397.11 29598.54 18599.88 181
ADS-MVSNet98.70 17198.51 18099.28 19299.51 23498.39 22399.24 36699.44 11695.52 29399.96 12699.70 27497.57 17299.58 23297.11 29598.54 18599.88 181
mvs_anonymous98.80 16398.60 17199.38 17899.57 21499.24 164100.00 199.21 29995.87 27898.92 25099.82 25696.39 21699.03 28799.13 20998.50 18799.88 181
tpm98.24 21198.22 20498.32 25299.13 28095.79 32199.53 33899.12 33395.20 30399.96 12699.36 32497.58 17099.28 27897.41 28796.67 26299.88 181
EC-MVSNet99.19 11799.09 11799.48 16099.42 25599.07 177100.00 199.21 29996.95 20999.96 126100.00 196.88 20299.48 25799.64 16599.79 14999.88 181
IS-MVSNet99.08 12798.91 14099.59 14599.65 18299.38 14799.78 29799.24 28696.70 23499.51 209100.00 198.44 14099.52 25198.47 24598.39 19699.88 181
CS-MVS99.33 9699.27 9099.50 15799.99 4999.00 189100.00 199.13 32797.26 19099.96 126100.00 197.79 16299.64 22499.64 16599.67 15599.87 191
Fast-Effi-MVS+98.40 20198.02 21799.55 15399.63 19099.06 179100.00 199.15 31895.07 30499.42 21699.95 22393.26 26199.73 21897.44 28598.24 21099.87 191
dmvs_testset93.27 34795.48 32186.65 38798.74 32168.42 41699.92 27198.91 37496.19 27193.28 384100.00 191.06 29191.67 41289.64 38391.54 33799.86 193
MVS-HIRNet94.12 34092.73 35498.29 25399.33 26895.95 31699.38 35399.19 30374.54 41198.26 29786.34 41586.07 35199.06 28691.60 36799.87 13799.85 194
mamv498.95 15299.11 11498.46 24099.68 16595.67 32499.14 38499.27 27296.43 25299.94 15599.97 20197.79 16299.88 18599.77 130100.00 199.84 195
CR-MVSNet98.02 21997.71 22998.93 21499.31 26998.86 19699.13 38599.00 36696.53 24799.96 12698.98 35096.94 19998.10 36391.18 36998.40 19499.84 195
RPMNet95.26 32993.82 33899.56 15299.31 26998.86 19699.13 38599.42 14179.82 40899.96 12695.13 40195.69 22499.98 12377.54 41198.40 19499.84 195
ab-mvs98.42 19898.02 21799.61 14199.71 15899.00 18999.10 38899.64 6496.70 23499.04 24699.81 25990.64 29599.98 12399.64 16597.93 22799.84 195
FE-MVS99.16 12198.99 12799.66 13599.65 18299.18 17199.58 33299.43 12495.24 30299.91 16499.59 30299.37 6099.97 13098.31 25199.81 14699.83 199
Anonymous2024052996.93 26796.22 28499.05 20599.79 14697.30 29099.16 38099.47 7988.51 39098.69 266100.00 183.50 370100.00 199.83 11697.02 25699.83 199
CVMVSNet98.56 18498.47 18398.82 22099.11 28197.67 27499.74 30799.47 7997.57 16099.06 244100.00 195.72 22398.97 29598.21 25797.33 25199.83 199
tpm298.64 17598.58 17398.81 22399.42 25597.12 29799.69 31999.37 21293.63 34399.94 15599.67 28298.96 10799.47 25998.62 23997.95 22699.83 199
DeepC-MVS97.84 599.00 14298.80 15099.60 14399.93 10599.03 182100.00 199.40 19498.61 7499.33 226100.00 192.23 27899.95 15699.74 13699.96 11999.83 199
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
testing1199.26 10799.19 10699.46 16199.64 18898.61 211100.00 199.43 12496.94 21099.92 16199.94 22999.43 5299.97 13099.67 15997.79 23999.82 204
Syy-MVS96.17 30796.57 26795.00 35899.50 23887.37 395100.00 199.57 6896.23 26698.07 304100.00 192.41 27797.81 37685.34 39697.96 22499.82 204
myMVS_eth3d98.52 19098.51 18098.53 23699.50 23897.98 256100.00 199.57 6896.23 26698.07 304100.00 199.09 8997.81 37696.17 31797.96 22499.82 204
testing398.44 19598.37 19198.65 22999.51 23498.32 232100.00 199.62 6696.43 25297.93 31399.99 18799.11 8797.81 37694.88 33797.80 23799.82 204
EIA-MVS99.26 10799.19 10699.45 16399.63 19098.75 201100.00 199.27 27296.93 21199.95 153100.00 197.47 17999.79 20699.74 13699.72 15199.82 204
SPE-MVS-test99.31 10099.27 9099.43 16799.99 4998.77 200100.00 199.19 30397.24 19199.96 126100.00 197.56 17499.70 22199.68 15699.81 14699.82 204
MVS_Test98.93 15498.65 16499.77 11799.62 19799.50 13199.99 21799.19 30395.52 29399.96 12699.86 24596.54 21399.98 12398.65 23498.48 18999.82 204
diffmvspermissive98.96 14998.73 15699.63 13899.54 21999.16 173100.00 199.18 31097.33 18499.96 126100.00 194.60 24399.91 17799.66 16398.33 20499.82 204
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
tpmrst98.98 14898.93 13899.14 20299.61 19997.74 27299.52 33999.36 21896.05 27499.98 11799.64 29099.04 9699.86 18798.94 21798.19 21499.82 204
testing9199.18 11899.10 11599.41 17099.60 20198.43 218100.00 199.43 12496.76 22599.82 18699.92 23499.05 9399.98 12399.62 16997.67 24599.81 213
testing9999.18 11899.10 11599.41 17099.60 20198.43 218100.00 199.43 12496.76 22599.84 17599.92 23499.06 9199.98 12399.62 16997.67 24599.81 213
testing22299.14 12398.94 13699.73 12399.67 17399.51 129100.00 199.43 12496.90 21699.99 11199.90 23998.55 13699.86 18798.85 22297.18 25299.81 213
MonoMVSNet98.55 18598.64 16698.26 25698.21 34495.76 32299.94 26699.16 31696.23 26699.47 21499.24 33096.75 20699.22 28099.61 17299.17 16899.81 213
ETV-MVS99.34 9499.24 9899.64 13799.58 21099.33 152100.00 199.25 28197.57 16099.96 126100.00 197.44 18299.79 20699.70 14899.65 15799.81 213
thisisatest051599.42 8399.31 8899.74 12099.59 20599.55 121100.00 199.46 9496.65 24099.92 161100.00 199.44 4899.85 19399.09 21299.63 16099.81 213
Effi-MVS+98.58 18298.24 20099.61 14199.60 20199.26 16097.85 40799.10 33696.22 26999.97 12299.89 24093.75 25299.77 21199.43 18998.34 20199.81 213
RRT-MVS98.75 16798.52 17899.44 16499.65 18298.57 21499.90 27599.08 34296.51 24999.96 12699.95 22392.59 27499.96 14399.60 17399.45 16699.81 213
casdiffmvspermissive98.65 17498.38 18999.46 16199.52 22998.74 204100.00 199.15 31896.91 21499.05 245100.00 192.75 26999.83 19799.70 14898.38 19899.81 213
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
mvsmamba99.05 13198.98 12899.27 19499.57 21498.10 247100.00 199.28 26295.92 27799.96 12699.97 20196.73 20799.89 18099.72 14199.65 15799.81 213
lupinMVS99.29 10399.16 11099.69 12999.45 25199.49 134100.00 199.15 31897.45 17499.97 122100.00 196.76 20499.76 21399.67 159100.00 199.81 213
casdiffmvs_mvgpermissive98.64 17598.39 18899.40 17499.50 23898.60 212100.00 199.22 29396.85 21899.10 239100.00 192.75 26999.78 21099.71 14598.35 20099.81 213
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline98.69 17298.45 18499.41 17099.52 22998.67 208100.00 199.17 31597.03 20499.13 237100.00 193.17 26299.74 21699.70 14898.34 20199.81 213
tpm cat198.05 21797.76 22598.92 21599.50 23897.10 29999.77 30299.30 25090.20 38499.72 19998.71 36597.71 16599.86 18796.75 31098.20 21399.81 213
CostFormer98.84 16098.77 15299.04 20799.41 25797.58 27799.67 32299.35 22994.66 31599.96 12699.36 32499.28 7499.74 21699.41 19197.81 23699.81 213
PatchT95.90 31994.95 33398.75 22699.03 29298.39 22399.08 39199.32 24085.52 39999.96 12694.99 40397.94 15198.05 36980.20 40798.47 19099.81 213
BH-untuned98.64 17598.65 16498.60 23399.59 20596.17 314100.00 199.28 26296.67 23898.41 285100.00 194.52 24499.83 19799.41 191100.00 199.81 213
UWE-MVS99.18 11899.06 11899.51 15499.67 17398.80 198100.00 199.43 12496.80 22299.93 16099.86 24599.79 799.94 16897.78 27398.33 20499.80 230
thisisatest053099.37 8999.27 9099.69 12999.59 20599.41 145100.00 199.46 9496.46 25199.90 166100.00 199.44 4899.85 19398.97 21699.58 16299.80 230
MIMVSNet97.06 26096.73 26198.05 28099.38 26696.64 31098.47 40399.35 22993.41 35099.48 21198.53 37289.66 31197.70 38294.16 34698.11 21899.80 230
SDMVSNet98.49 19398.08 21199.73 12399.82 12599.53 12599.99 21799.45 10297.62 15099.38 22399.86 24590.06 30599.88 18599.92 9996.61 26499.79 233
sd_testset97.81 22597.48 23498.79 22499.82 12596.80 30599.32 35899.45 10297.62 15099.38 22399.86 24585.56 35799.77 21199.72 14196.61 26499.79 233
FA-MVS(test-final)99.00 14298.75 15499.73 12399.63 19099.43 14399.83 28799.43 12495.84 28399.52 20899.37 32397.84 15999.96 14397.63 27899.68 15399.79 233
tttt051799.34 9499.23 10199.67 13299.57 21499.38 147100.00 199.46 9496.33 26399.89 169100.00 199.44 4899.84 19698.93 21899.46 16599.78 236
BH-RMVSNet98.46 19498.08 21199.59 14599.61 19999.19 169100.00 199.28 26297.06 20398.95 249100.00 188.99 32099.82 20098.83 225100.00 199.77 237
CDS-MVSNet98.96 14998.95 13599.01 20999.48 24498.36 22899.93 26999.37 21296.79 22399.31 22799.83 25399.77 1098.91 30098.07 26297.98 22299.77 237
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Vis-MVSNetpermissive98.52 19098.25 19799.34 18199.68 16598.55 21599.68 32199.41 19097.34 18399.94 155100.00 190.38 30199.70 22199.03 21498.84 17799.76 239
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
EPP-MVSNet99.10 12699.00 12599.40 17499.51 23498.68 20799.92 27199.43 12495.47 29799.65 203100.00 199.51 3599.76 21399.53 18598.00 22199.75 240
xiu_mvs_v2_base99.51 7099.41 7499.82 9799.70 16099.73 10099.92 27199.40 19498.15 102100.00 1100.00 198.50 138100.00 199.85 11299.13 17099.74 241
PS-MVSNAJ99.64 5199.57 5299.85 9099.78 14999.81 9099.95 26199.42 14198.38 84100.00 1100.00 198.75 126100.00 199.88 10699.99 10399.74 241
MVSFormer98.94 15398.82 14799.28 19299.45 25199.49 134100.00 199.13 32795.46 29899.97 122100.00 196.76 20498.59 32998.63 237100.00 199.74 241
jason99.11 12598.96 13199.59 14599.17 27899.31 155100.00 199.13 32797.38 17999.83 178100.00 195.54 22699.72 21999.57 17999.97 11699.74 241
jason: jason.
TAMVS98.76 16598.73 15698.86 21999.44 25397.69 27399.57 33399.34 23596.57 24499.12 23899.81 25998.83 12199.16 28297.97 26897.91 22899.73 245
VDD-MVS96.58 28295.99 29398.34 25099.52 22995.33 32799.18 37499.38 20996.64 24199.77 193100.00 172.51 402100.00 1100.00 196.94 25899.70 246
RPSCF97.37 24698.24 20094.76 36399.80 14284.57 40099.99 21799.05 35794.95 30799.82 186100.00 194.03 249100.00 198.15 25998.38 19899.70 246
AllTest98.55 18598.40 18798.99 21099.93 10597.35 286100.00 199.40 19497.08 20199.09 24099.98 19293.37 25899.95 15696.94 29999.84 14399.68 248
TestCases98.99 21099.93 10597.35 28699.40 19497.08 20199.09 24099.98 19293.37 25899.95 15696.94 29999.84 14399.68 248
xiu_mvs_v1_base_debu99.35 9199.21 10299.79 11099.67 17399.71 10299.78 29799.36 21898.13 104100.00 1100.00 197.00 196100.00 199.83 11699.07 17299.66 250
xiu_mvs_v1_base99.35 9199.21 10299.79 11099.67 17399.71 10299.78 29799.36 21898.13 104100.00 1100.00 197.00 196100.00 199.83 11699.07 17299.66 250
xiu_mvs_v1_base_debi99.35 9199.21 10299.79 11099.67 17399.71 10299.78 29799.36 21898.13 104100.00 1100.00 197.00 196100.00 199.83 11699.07 17299.66 250
h-mvs3397.03 26296.53 26898.51 23799.79 14695.90 31999.45 34599.45 10298.21 96100.00 199.78 26597.49 17799.99 9899.72 14174.92 40599.65 253
OpenMVScopyleft95.20 1798.76 16598.41 18699.78 11498.89 31099.81 9099.99 21799.76 4998.02 11298.02 309100.00 191.44 284100.00 199.63 16899.97 11699.55 254
cascas98.43 19698.07 21399.50 15799.65 18299.02 184100.00 199.22 29394.21 32999.72 19999.98 19292.03 28199.93 17299.68 15698.12 21799.54 255
CANet_DTU99.02 13998.90 14399.41 17099.88 11698.71 205100.00 199.29 25698.84 51100.00 1100.00 194.02 250100.00 198.08 26099.96 11999.52 256
DSMNet-mixed95.18 33095.21 32895.08 35596.03 38990.21 38799.65 32393.64 42092.91 36198.34 28997.40 39190.05 30695.51 40291.02 37197.86 23199.51 257
Fast-Effi-MVS+-dtu98.38 20298.56 17497.82 29499.58 21094.44 352100.00 199.16 31696.75 22799.51 20999.63 29495.03 23699.60 22697.71 27599.67 15599.42 258
UGNet98.41 20098.11 20899.31 18899.54 21998.55 21599.18 374100.00 198.64 7399.79 19099.04 34387.61 336100.00 199.30 19999.89 13299.40 259
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
VDDNet96.39 29495.55 31698.90 21699.27 27397.45 28199.15 38299.92 3491.28 37399.98 117100.00 173.55 398100.00 199.85 11296.98 25799.24 260
UniMVSNet_ETH3D95.28 32894.41 33497.89 29298.91 30895.14 33099.13 38599.35 22992.11 36897.17 34199.66 28470.28 40599.36 27197.88 27095.18 28799.16 261
baseline298.99 14598.93 13899.18 20099.26 27599.15 174100.00 199.46 9496.71 23396.79 350100.00 199.42 5599.25 27998.75 22999.94 12499.15 262
hse-mvs296.79 27096.38 27698.04 28299.68 16595.54 32699.81 29199.42 14198.21 96100.00 199.80 26297.49 17799.46 26399.72 14173.27 40899.12 263
AUN-MVS96.26 30195.67 31398.06 27699.68 16595.60 32599.82 29099.42 14196.78 22499.88 17199.80 26294.84 23999.47 25997.48 28473.29 40799.12 263
tt080596.52 28396.23 28397.40 30499.30 27293.55 36099.32 35899.45 10296.75 22797.88 31699.99 18779.99 38399.59 22897.39 28995.98 26799.06 265
test0.0.03 198.12 21598.03 21698.39 24699.11 28198.07 249100.00 199.93 3096.70 23496.91 34699.95 22399.31 6698.19 35391.93 36498.44 19198.91 266
testgi96.18 30595.93 29696.93 32898.98 30294.20 356100.00 199.07 34797.16 19596.06 36399.86 24584.08 36797.79 37990.38 37897.80 23798.81 267
Effi-MVS+-dtu98.51 19298.86 14597.47 30399.77 15194.21 355100.00 198.94 37197.61 15499.91 16498.75 36495.89 21999.51 25399.36 19399.48 16498.68 268
DeepMVS_CXcopyleft89.98 38098.90 30971.46 41199.18 31097.61 15496.92 34499.83 25386.07 35199.83 19796.02 31897.65 24798.65 269
COLMAP_ROBcopyleft97.10 798.29 20798.17 20598.65 22999.94 10397.39 28399.30 36299.40 19495.64 28697.75 323100.00 192.69 27399.95 15698.89 22099.92 12998.62 270
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
XVG-OURS-SEG-HR98.27 21098.31 19598.14 26699.59 20595.92 317100.00 199.36 21898.48 7999.21 231100.00 189.27 31799.94 16899.76 13299.17 16898.56 271
XVG-OURS98.30 20598.36 19398.13 26999.58 21095.91 318100.00 199.36 21898.69 6899.23 230100.00 191.20 28799.92 17599.34 19597.82 23598.56 271
HQP4-MVS99.17 23299.57 23397.77 273
HQP-MVS97.73 22897.85 22297.39 30599.07 28694.82 336100.00 199.40 19499.04 1699.17 23299.97 20188.61 32699.57 23399.79 12395.58 26897.77 273
WBMVS98.19 21398.10 21098.47 23999.63 19099.03 182100.00 199.32 24095.46 29898.39 28699.40 32199.69 1598.61 32498.64 23592.39 32397.76 275
cl2298.23 21298.11 20898.58 23599.82 12599.01 186100.00 199.28 26296.92 21398.33 29099.21 33398.09 14998.97 29598.72 23092.61 31897.76 275
miper_ehance_all_eth97.81 22597.66 23098.23 25899.49 24298.37 22699.99 21799.11 33494.78 31098.25 29899.21 33398.18 14598.57 33297.35 29192.61 31897.76 275
miper_enhance_ethall98.33 20498.27 19698.51 23799.66 18099.04 181100.00 199.22 29397.53 16498.51 28099.38 32299.49 4198.75 31698.02 26492.61 31897.76 275
cl____97.54 23897.32 24298.18 26299.47 24798.14 244100.00 199.10 33694.16 33297.60 33099.63 29497.52 17698.65 32296.47 31191.97 33197.76 275
DIV-MVS_self_test97.52 24197.35 24198.05 28099.46 25098.11 245100.00 199.10 33694.21 32997.62 32899.63 29497.65 16898.29 34896.47 31191.98 33097.76 275
miper_lstm_enhance97.40 24597.28 24497.75 29699.48 24497.52 278100.00 199.07 34794.08 33398.01 31099.61 30097.38 18497.98 37196.44 31491.47 34197.76 275
VPNet96.41 29095.76 30698.33 25198.61 32598.30 23499.48 34299.45 10296.98 20898.87 25599.88 24281.57 37798.93 29899.22 20687.82 37497.76 275
VPA-MVSNet97.03 26296.43 27498.82 22098.64 32499.32 15399.38 35399.47 7996.73 23198.91 25298.94 35587.00 34399.40 26999.23 20489.59 35797.76 275
HQP_MVS97.71 23097.82 22497.37 30699.00 29894.80 339100.00 199.40 19499.00 2799.08 24299.97 20188.58 32899.55 24299.79 12395.57 27297.76 275
plane_prior599.40 19499.55 24299.79 12395.57 27297.76 275
our_test_396.51 28596.35 27896.98 32597.61 36695.05 33199.98 24399.01 36594.68 31496.77 35299.06 34095.87 22098.14 35691.81 36592.37 32497.75 286
ppachtmachnet_test96.17 30795.89 29797.02 32297.61 36695.24 32899.99 21799.24 28693.31 35496.71 35399.62 29894.34 24698.07 36589.87 38092.30 32697.75 286
c3_l97.58 23597.42 23698.06 27699.48 24498.16 24199.96 25599.10 33694.54 31998.13 30299.20 33597.87 15698.25 35197.28 29291.20 34497.75 286
nrg03097.64 23197.27 24698.75 22698.34 33499.53 125100.00 199.22 29396.21 27098.27 29699.95 22394.40 24598.98 29399.23 20489.78 35697.75 286
v14419296.40 29395.81 30198.17 26497.89 35798.11 24599.99 21799.06 35593.39 35198.75 26499.09 33890.43 30098.66 32193.10 35690.55 35197.75 286
v192192096.16 30995.50 31798.14 26697.88 35897.96 25999.99 21799.07 34793.33 35398.60 27299.24 33089.37 31698.71 31891.28 36890.74 34997.75 286
v119296.18 30595.49 31998.26 25698.01 35298.15 24299.99 21799.08 34293.36 35298.54 27698.97 35389.47 31598.89 30391.15 37090.82 34797.75 286
v14896.29 29995.84 30097.63 29797.74 36196.53 312100.00 199.07 34793.52 34698.01 31099.42 32091.22 28598.60 32796.37 31587.22 37897.75 286
v124095.96 31795.25 32698.07 27297.91 35697.87 26799.96 25599.07 34793.24 35698.64 27098.96 35488.98 32198.61 32489.58 38490.92 34697.75 286
v2v48296.70 27696.18 28598.27 25498.04 35198.39 223100.00 199.13 32794.19 33198.58 27399.08 33990.48 29998.67 32095.69 32390.44 35297.75 286
EI-MVSNet97.98 22097.93 22098.16 26599.11 28197.84 26899.74 30799.29 25694.39 32598.65 268100.00 197.21 18798.88 30697.62 28195.31 27897.75 286
MDA-MVSNet-bldmvs91.65 35989.94 36796.79 33696.72 38496.70 30899.42 35098.94 37188.89 38866.97 41998.37 37881.43 37895.91 39989.24 38789.46 36097.75 286
UniMVSNet_NR-MVSNet97.16 25496.80 25898.22 25998.38 33398.41 220100.00 199.45 10296.14 27297.76 32099.64 29095.05 23598.50 33797.98 26586.84 37997.75 286
DU-MVS96.93 26796.49 27198.22 25998.31 33798.41 220100.00 199.37 21296.41 25697.76 32099.65 28692.14 27998.50 33797.98 26586.84 37997.75 286
UniMVSNet (Re)97.29 25096.85 25798.59 23498.49 33099.13 175100.00 199.42 14196.52 24898.24 30098.90 35894.93 23798.89 30397.54 28287.61 37597.75 286
NR-MVSNet96.63 27996.04 29198.38 24798.31 33798.98 19199.22 37399.35 22995.87 27894.43 37899.65 28692.73 27198.40 34496.78 30788.05 37297.75 286
TranMVSNet+NR-MVSNet96.45 28996.01 29297.79 29598.00 35397.62 276100.00 199.35 22995.98 27597.31 33799.64 29090.09 30498.00 37096.89 30286.80 38297.75 286
Patchmtry96.81 26996.37 27798.14 26699.31 26998.55 21598.91 39699.00 36690.45 38097.92 31498.98 35096.94 19998.12 35894.27 34391.53 33897.75 286
N_pmnet91.88 35793.37 34487.40 38697.24 38166.33 41999.90 27591.05 42289.77 38695.65 36798.58 37190.05 30698.11 36085.39 39592.72 31797.75 286
XXY-MVS97.14 25696.63 26498.67 22898.65 32398.92 19499.54 33799.29 25695.57 29097.63 32699.83 25387.79 33599.35 27398.39 24792.95 31497.75 286
IterMVS-LS97.56 23697.44 23597.92 29199.38 26697.90 26399.89 27999.10 33694.41 32498.32 29199.54 31297.21 18798.11 36097.50 28391.62 33697.75 286
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CLD-MVS97.64 23197.74 22697.36 30799.01 29494.76 344100.00 199.34 23599.30 499.00 24799.97 20187.49 33799.57 23399.96 8895.58 26897.75 286
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
reproduce_monomvs98.61 17998.54 17598.82 22099.97 9099.28 157100.00 199.33 23798.51 7897.87 31799.24 33099.98 399.45 26499.02 21592.93 31597.74 308
eth_miper_zixun_eth97.47 24297.28 24498.06 27699.41 25797.94 26199.62 32899.08 34294.46 32398.19 30199.56 30996.91 20198.50 33796.78 30791.49 33997.74 308
FIs97.95 22197.73 22898.62 23198.53 32999.24 164100.00 199.43 12496.74 22997.87 31799.82 25695.27 22998.89 30398.78 22693.07 31297.74 308
v114496.51 28595.97 29598.13 26997.98 35498.04 25399.99 21799.08 34293.51 34798.62 27198.98 35090.98 29398.62 32393.79 35090.79 34897.74 308
YYNet192.44 35390.92 36197.03 32196.20 38797.06 30099.99 21799.14 32388.21 39267.93 41698.43 37788.63 32596.28 39590.64 37289.08 36497.74 308
MDA-MVSNet_test_wron92.61 35291.09 36097.19 31796.71 38597.26 292100.00 199.14 32388.61 38967.90 41798.32 38089.03 31996.57 39190.47 37789.59 35797.74 308
WR-MVS97.09 25796.64 26398.46 24098.43 33199.09 17699.97 24999.33 23795.62 28897.76 32099.67 28291.17 28898.56 33498.49 24489.28 36297.74 308
IterMVS-SCA-FT96.72 27596.42 27597.62 29999.40 26296.83 30499.99 21799.14 32394.65 31697.55 33299.72 26989.65 31298.31 34795.62 32692.05 32897.73 315
Anonymous2023121196.29 29995.70 30998.07 27299.80 14297.49 27999.15 38299.40 19489.11 38797.75 32399.45 31888.93 32298.98 29398.26 25689.47 35997.73 315
FC-MVSNet-test97.84 22397.63 23298.45 24298.30 33999.05 180100.00 199.43 12496.63 24397.61 32999.82 25695.19 23398.57 33298.64 23593.05 31397.73 315
MVSTER98.58 18298.52 17898.77 22599.65 18299.68 108100.00 199.29 25695.63 28798.65 26899.80 26299.78 898.88 30698.59 24195.31 27897.73 315
FMVSNet397.30 24996.95 25398.37 24899.65 18299.25 16299.71 31599.28 26294.23 32798.53 27798.91 35793.30 26098.11 36095.31 33093.60 30697.73 315
FMVSNet296.22 30395.60 31598.06 27699.53 22298.33 23099.45 34599.27 27293.71 33898.03 30798.84 36084.23 36498.10 36393.97 34893.40 30997.73 315
OPM-MVS97.21 25197.18 25197.32 31098.08 35094.66 345100.00 199.28 26298.65 7298.92 25099.98 19286.03 35399.56 23798.28 25595.41 27497.72 321
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
pmmvs595.94 31895.61 31496.95 32697.42 37794.66 345100.00 198.08 39493.60 34497.05 34299.43 31987.02 34298.46 34195.76 32092.12 32797.72 321
pm-mvs195.76 32195.01 33198.00 28498.23 34397.45 28199.24 36699.04 36093.13 35995.93 36599.72 26986.28 34998.84 30895.62 32687.92 37397.72 321
GBi-Net96.07 31395.80 30396.89 33099.53 22294.87 33399.18 37499.27 27293.71 33898.53 27798.81 36184.23 36498.07 36595.31 33093.60 30697.72 321
test196.07 31395.80 30396.89 33099.53 22294.87 33399.18 37499.27 27293.71 33898.53 27798.81 36184.23 36498.07 36595.31 33093.60 30697.72 321
FMVSNet194.45 33493.63 34196.89 33098.87 31494.87 33399.18 37499.27 27290.95 37797.31 33798.81 36172.89 40198.07 36592.61 35892.81 31697.72 321
IterMVS96.76 27296.46 27397.63 29799.41 25796.89 30299.99 21799.13 32794.74 31397.59 33199.66 28489.63 31498.28 34995.71 32292.31 32597.72 321
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
pmmvs497.17 25396.80 25898.27 25497.68 36398.64 210100.00 199.18 31094.22 32898.55 27599.71 27193.67 25398.47 34095.66 32492.57 32197.71 328
v7n96.06 31595.42 32597.99 28697.58 36997.35 28699.86 28399.11 33492.81 36597.91 31599.49 31590.99 29298.92 29992.51 36088.49 37097.70 329
PS-MVSNAJss98.03 21898.06 21497.94 28897.63 36497.33 28999.89 27999.23 29096.27 26598.03 30799.59 30298.75 12698.78 31198.52 24394.61 30197.70 329
LPG-MVS_test97.31 24897.32 24297.28 31398.85 31694.60 348100.00 199.37 21297.35 18198.85 25699.98 19286.66 34599.56 23799.55 18095.26 28097.70 329
LGP-MVS_train97.28 31398.85 31694.60 34899.37 21297.35 18198.85 25699.98 19286.66 34599.56 23799.55 18095.26 28097.70 329
SixPastTwentyTwo95.71 32295.49 31996.38 34397.42 37793.01 36699.84 28698.23 38994.75 31195.98 36499.97 20185.35 35898.43 34294.71 33893.17 31197.69 333
ACMM97.17 697.37 24697.40 23897.29 31299.01 29494.64 347100.00 199.25 28198.07 11098.44 28499.98 19287.38 33999.55 24299.25 20195.19 28697.69 333
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
EU-MVSNet96.63 27996.53 26896.94 32797.59 36896.87 30399.76 30499.47 7996.35 26196.85 34899.78 26592.57 27596.27 39695.33 32991.08 34597.68 335
K. test v395.46 32695.14 32996.40 34297.53 37193.40 36399.99 21799.23 29095.49 29692.70 38899.73 26884.26 36398.12 35893.94 34993.38 31097.68 335
lessismore_v096.05 34997.55 37091.80 37799.22 29391.87 38999.91 23783.50 37098.68 31992.48 36190.42 35397.68 335
XVG-ACMP-BASELINE96.60 28196.52 27096.84 33398.41 33293.29 36599.99 21799.32 24097.76 13798.51 28099.29 32781.95 37699.54 24598.40 24695.03 29397.68 335
ACMP97.00 897.19 25297.16 25297.27 31598.97 30394.58 351100.00 199.32 24097.97 11897.45 33499.98 19285.79 35599.56 23799.70 14895.24 28397.67 339
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
jajsoiax97.07 25996.79 26097.89 29297.28 38097.12 29799.95 26199.19 30396.55 24597.31 33799.69 27787.35 34198.91 30098.70 23195.12 29197.66 340
PS-CasMVS96.34 29795.78 30598.03 28398.18 34798.27 23699.71 31599.32 24094.75 31196.82 34999.65 28686.98 34498.15 35597.74 27488.85 36797.66 340
CP-MVSNet96.73 27396.25 28298.18 26298.21 34498.67 20899.77 30299.32 24095.06 30597.20 34099.65 28690.10 30398.19 35398.06 26388.90 36697.66 340
ACMH96.25 1196.77 27196.62 26597.21 31698.96 30494.43 35399.64 32499.33 23797.43 17696.55 35599.97 20183.52 36999.54 24599.07 21395.13 29097.66 340
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
mvs_tets97.00 26596.69 26297.94 28897.41 37997.27 29199.60 33099.18 31096.51 24997.35 33699.69 27786.53 34798.91 30098.84 22395.09 29297.65 344
PEN-MVS96.01 31695.48 32197.58 30197.74 36197.26 29299.90 27599.29 25694.55 31896.79 35099.55 31087.38 33997.84 37596.92 30187.24 37797.65 344
ACMH+96.20 1396.49 28896.33 28097.00 32399.06 29093.80 35899.81 29199.31 24697.32 18595.89 36699.97 20182.62 37499.54 24598.34 25094.63 30097.65 344
OurMVSNet-221017-096.14 31195.98 29496.62 33897.49 37493.44 36299.92 27198.16 39095.86 28097.65 32599.95 22385.71 35698.78 31194.93 33694.18 30497.64 347
pmmvs693.64 34392.87 35195.94 35197.47 37691.41 38098.92 39599.02 36387.84 39495.01 37199.61 30077.24 39298.77 31494.33 34286.41 38497.63 348
v1096.14 31195.50 31798.07 27298.19 34697.96 25999.83 28799.07 34792.10 36998.07 30498.94 35591.07 29098.61 32492.41 36389.82 35597.63 348
v896.35 29695.73 30898.21 26198.11 34998.23 23899.94 26699.07 34792.66 36698.29 29399.00 34991.46 28398.77 31494.17 34488.83 36897.62 350
DTE-MVSNet95.52 32494.99 33297.08 31997.49 37496.45 313100.00 199.25 28193.82 33796.17 36199.57 30887.81 33497.18 38494.57 33986.26 38597.62 350
test_djsdf97.55 23797.38 23998.07 27297.50 37297.99 255100.00 199.13 32795.46 29898.47 28399.85 25092.01 28298.59 32998.63 23795.36 27697.62 350
MIMVSNet191.96 35491.20 35794.23 36994.94 40091.69 37899.34 35799.22 29388.23 39194.18 37998.45 37575.52 39693.41 40979.37 40891.49 33997.60 353
FMVSNet595.32 32795.43 32494.99 35999.39 26592.99 36899.25 36599.24 28690.45 38097.44 33598.45 37595.78 22294.39 40587.02 39291.88 33297.59 354
LTVRE_ROB95.29 1696.32 29896.10 28896.99 32498.55 32793.88 35799.45 34599.28 26294.50 32196.46 35699.52 31384.86 36099.48 25797.26 29395.03 29397.59 354
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
TransMVSNet (Re)94.78 33293.72 33997.93 29098.34 33497.88 26599.23 37197.98 39991.60 37194.55 37599.71 27187.89 33398.36 34589.30 38684.92 38697.56 356
Baseline_NR-MVSNet96.16 30995.70 30997.56 30298.28 34096.79 306100.00 197.86 40291.93 37097.63 32699.47 31792.14 27998.35 34697.13 29486.83 38197.54 357
KD-MVS_2432*160094.15 33893.08 34797.35 30899.53 22297.83 26999.63 32699.19 30392.88 36296.29 35897.68 38898.84 11996.70 38889.73 38163.92 41297.53 358
miper_refine_blended94.15 33893.08 34797.35 30899.53 22297.83 26999.63 32699.19 30392.88 36296.29 35897.68 38898.84 11996.70 38889.73 38163.92 41297.53 358
USDC95.90 31995.70 30996.50 34198.60 32692.56 373100.00 198.30 38897.77 13596.92 34499.94 22981.25 38099.45 26493.54 35394.96 29797.49 360
ITE_SJBPF96.84 33398.96 30493.49 36198.12 39298.12 10798.35 28899.97 20184.45 36199.56 23795.63 32595.25 28297.49 360
Anonymous2023120693.45 34593.17 34694.30 36795.00 39989.69 38899.98 24398.43 38793.30 35594.50 37798.59 37090.52 29795.73 40177.46 41290.73 35097.48 362
WR-MVS_H96.73 27396.32 28197.95 28798.26 34197.88 26599.72 31499.43 12495.06 30596.99 34398.68 36793.02 26598.53 33597.43 28688.33 37197.43 363
tfpnnormal96.36 29595.69 31298.37 24898.55 32798.71 20599.69 31999.45 10293.16 35896.69 35499.71 27188.44 33098.99 29294.17 34491.38 34297.41 364
TinyColmap95.50 32595.12 33096.64 33798.69 32293.00 36799.40 35197.75 40496.40 25796.14 36299.87 24379.47 38499.50 25593.62 35294.72 29997.40 365
UnsupCasMVSNet_eth94.25 33793.89 33795.34 35497.63 36492.13 37499.73 31299.36 21894.88 30892.78 38598.63 36982.72 37296.53 39294.57 33984.73 38797.36 366
PVSNet_BlendedMVS98.71 16998.62 16898.98 21299.98 8699.60 114100.00 1100.00 197.23 192100.00 199.03 34696.57 21199.99 98100.00 194.75 29897.35 367
anonymousdsp97.16 25496.88 25598.00 28497.08 38298.06 25199.81 29199.15 31894.58 31797.84 31999.62 29890.49 29898.60 32797.98 26595.32 27797.33 368
V4296.65 27896.16 28798.11 27198.17 34898.23 23899.99 21799.09 34193.97 33498.74 26599.05 34291.09 28998.82 30995.46 32889.90 35497.27 369
LF4IMVS96.19 30496.18 28596.23 34798.26 34192.09 375100.00 197.89 40197.82 13097.94 31299.87 24382.71 37399.38 27097.41 28793.71 30597.20 370
new_pmnet94.11 34193.47 34396.04 35096.60 38692.82 36999.97 24998.91 37490.21 38395.26 36898.05 38685.89 35498.14 35684.28 39892.01 32997.16 371
APD_test193.07 35094.14 33689.85 38199.18 27772.49 40999.76 30498.90 37692.86 36496.35 35799.94 22975.56 39599.91 17786.73 39397.98 22297.15 372
D2MVS97.63 23497.83 22397.05 32098.83 31894.60 348100.00 199.82 4096.89 21798.28 29499.03 34694.05 24899.47 25998.58 24294.97 29697.09 373
test20.0393.11 34892.85 35293.88 37295.19 39891.83 376100.00 198.87 37793.68 34192.76 38698.88 35989.20 31892.71 41077.88 41089.19 36397.09 373
KD-MVS_self_test91.16 36090.09 36594.35 36694.44 40191.27 38199.74 30799.08 34290.82 37894.53 37694.91 40486.11 35094.78 40482.67 40168.52 41096.99 375
CL-MVSNet_self_test91.07 36190.35 36493.24 37493.27 40389.16 39099.55 33599.25 28192.34 36795.23 36997.05 39488.86 32493.59 40880.67 40566.95 41196.96 376
test_method91.04 36291.10 35990.85 37898.34 33477.63 405100.00 198.93 37376.69 40996.25 36098.52 37370.44 40497.98 37189.02 38991.74 33496.92 377
pmmvs390.62 36489.36 37094.40 36590.53 41391.49 379100.00 196.73 41284.21 40293.65 38296.65 39682.56 37594.83 40382.28 40277.62 40496.89 378
test_040294.35 33593.70 34096.32 34597.92 35593.60 35999.61 32998.85 37888.19 39394.68 37499.48 31680.01 38298.58 33189.39 38595.15 28996.77 379
EG-PatchMatch MVS92.94 35192.49 35594.29 36895.87 39187.07 39699.07 39398.11 39393.19 35788.98 39798.66 36870.89 40399.08 28592.43 36295.21 28596.72 380
test_fmvs295.17 33195.23 32795.01 35798.95 30688.99 39199.99 21797.77 40397.79 13398.58 27399.70 27473.36 39999.34 27495.88 31995.03 29396.70 381
Anonymous2024052193.29 34692.76 35394.90 36295.64 39591.27 38199.97 24998.82 37987.04 39594.71 37398.19 38183.86 36896.80 38784.04 39992.56 32296.64 382
TDRefinement91.93 35590.48 36396.27 34681.60 41992.65 37299.10 38897.61 40793.96 33593.77 38199.85 25080.03 38199.53 25097.82 27270.59 40996.63 383
mmtdpeth94.58 33394.18 33595.81 35298.82 32091.09 38399.99 21798.61 38596.38 258100.00 197.23 39276.52 39399.85 19399.82 12180.22 39996.48 384
MS-PatchMatch95.66 32395.87 29995.05 35697.80 35989.25 38998.88 39799.30 25096.35 26196.86 34799.01 34881.35 37999.43 26693.30 35599.98 11396.46 385
MVP-Stereo96.51 28596.48 27296.60 33995.65 39494.25 35498.84 39898.16 39095.85 28295.23 36999.04 34392.54 27699.13 28392.98 35799.98 11396.43 386
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
mvs5depth93.81 34293.00 34996.23 34794.25 40293.33 36497.43 40998.07 39593.47 34894.15 38099.58 30477.52 39098.97 29593.64 35188.92 36596.39 387
ttmdpeth96.24 30295.88 29897.32 31097.80 35996.61 31199.95 26198.77 38297.80 13293.42 38399.28 32886.42 34899.01 28997.63 27891.84 33396.33 388
UnsupCasMVSNet_bld89.50 36688.00 37293.99 37195.30 39788.86 39298.52 40299.28 26285.50 40087.80 40194.11 40561.63 40996.96 38690.63 37379.26 40096.15 389
OpenMVS_ROBcopyleft88.34 2091.89 35691.12 35894.19 37095.55 39687.63 39499.26 36498.03 39686.61 39890.65 39596.82 39570.14 40698.78 31186.54 39496.50 26696.15 389
MVStest194.27 33693.30 34597.19 31798.83 31897.18 29599.93 26998.79 38186.80 39684.88 40899.04 34394.32 24798.25 35190.55 37586.57 38396.12 391
ambc88.45 38386.84 41570.76 41297.79 40898.02 39890.91 39295.14 40038.69 41898.51 33694.97 33584.23 38896.09 392
PM-MVS88.39 36887.41 37391.31 37791.73 40782.02 40399.79 29696.62 41391.06 37690.71 39495.73 39848.60 41495.96 39890.56 37481.91 39795.97 393
pmmvs-eth3d91.73 35890.67 36294.92 36191.63 40892.71 37199.90 27598.54 38691.19 37488.08 39995.50 39979.31 38696.13 39790.55 37581.32 39895.91 394
test_vis1_rt93.10 34992.93 35093.58 37399.63 19085.07 39899.99 21793.71 41997.49 17090.96 39197.10 39360.40 41099.95 15699.24 20397.90 22995.72 395
EGC-MVSNET79.46 37874.04 38695.72 35396.00 39092.73 37099.09 39099.04 3605.08 42316.72 42398.71 36573.03 40098.74 31782.05 40396.64 26395.69 396
new-patchmatchnet90.30 36589.46 36992.84 37690.77 41188.55 39399.83 28798.80 38090.07 38587.86 40095.00 40278.77 38794.30 40684.86 39779.15 40195.68 397
mvsany_test389.36 36788.96 37190.56 37991.95 40578.97 40499.74 30796.59 41596.84 21989.25 39696.07 39752.59 41297.11 38595.17 33382.44 39495.58 398
test_f86.87 37286.06 37589.28 38291.45 41076.37 40799.87 28297.11 40991.10 37588.46 39893.05 40838.31 41996.66 39091.77 36683.46 39294.82 399
test_fmvs387.19 37187.02 37487.71 38592.69 40476.64 40699.96 25597.27 40893.55 34590.82 39394.03 40638.00 42092.19 41193.49 35483.35 39394.32 400
test12379.44 37979.23 38180.05 39780.03 42071.72 410100.00 177.93 42862.52 41494.81 37299.69 27778.21 38874.53 42192.57 35927.33 42193.90 401
LCM-MVSNet79.01 38176.93 38485.27 38978.28 42168.01 41796.57 41098.03 39655.10 41782.03 41093.27 40731.99 42393.95 40782.72 40074.37 40693.84 402
CMPMVSbinary66.12 2290.65 36392.04 35686.46 38896.18 38866.87 41898.03 40699.38 20983.38 40485.49 40599.55 31077.59 38998.80 31094.44 34194.31 30393.72 403
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
WB-MVS88.24 36990.09 36582.68 39491.56 40969.51 414100.00 198.73 38390.72 37987.29 40298.12 38292.87 26785.01 41662.19 41789.34 36193.54 404
WB-MVSnew97.02 26497.24 24896.37 34499.44 25397.36 285100.00 199.43 12496.12 27399.35 22599.89 24093.60 25698.42 34388.91 39098.39 19693.33 405
testf184.40 37484.79 37683.23 39295.71 39258.71 42598.79 39997.75 40481.58 40584.94 40698.07 38445.33 41697.73 38077.09 41383.85 38993.24 406
APD_test284.40 37484.79 37683.23 39295.71 39258.71 42598.79 39997.75 40481.58 40584.94 40698.07 38445.33 41697.73 38077.09 41383.85 38993.24 406
SSC-MVS87.61 37089.47 36882.04 39590.63 41268.77 41599.99 21798.66 38490.34 38286.70 40398.08 38392.72 27284.12 41759.41 42088.71 36993.22 408
PMMVS279.15 38077.28 38384.76 39082.34 41872.66 40899.70 31795.11 41871.68 41284.78 40990.87 40932.05 42289.99 41375.53 41563.45 41491.64 409
tmp_tt75.80 38374.26 38580.43 39652.91 42853.67 42787.42 41597.98 39961.80 41567.04 418100.00 176.43 39496.40 39396.47 31128.26 42091.23 410
testmvs80.17 37681.95 37974.80 39958.54 42659.58 424100.00 187.14 42576.09 41099.61 205100.00 167.06 40774.19 42298.84 22350.30 41690.64 411
Gipumacopyleft84.73 37383.50 37888.40 38497.50 37282.21 40288.87 41399.05 35765.81 41385.71 40490.49 41053.70 41196.31 39478.64 40991.74 33486.67 412
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
FPMVS77.92 38279.45 38073.34 40176.87 42246.81 42898.24 40499.05 35759.89 41673.55 41298.34 37936.81 42186.55 41480.96 40491.35 34386.65 413
ANet_high66.05 38763.44 39173.88 40061.14 42563.45 42295.68 41287.18 42479.93 40747.35 42180.68 42122.35 42572.33 42361.24 41835.42 41985.88 414
test_vis3_rt79.61 37778.19 38283.86 39188.68 41469.56 41399.81 29182.19 42786.78 39768.57 41584.51 41825.06 42498.26 35089.18 38878.94 40283.75 415
MVEpermissive68.59 2167.22 38664.68 39074.84 39874.67 42462.32 42395.84 41190.87 42350.98 41858.72 42081.05 42012.20 42878.95 41861.06 41956.75 41583.24 416
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMVScopyleft60.66 2365.98 38865.05 38968.75 40455.06 42738.40 42988.19 41496.98 41048.30 42144.82 42288.52 41312.22 42786.49 41567.58 41683.79 39181.35 417
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
EMVS69.88 38569.09 38872.24 40384.70 41665.82 42099.96 25587.08 42649.82 42071.51 41484.74 41749.30 41375.32 42050.97 42243.71 41875.59 418
E-PMN70.72 38470.06 38772.69 40283.92 41765.48 42199.95 26192.72 42149.88 41972.30 41386.26 41647.17 41577.43 41953.83 42144.49 41775.17 419
wuyk23d28.28 38929.73 39323.92 40575.89 42332.61 43066.50 41612.88 42916.09 42214.59 42416.59 42312.35 42632.36 42439.36 42313.36 4226.79 420
mmdepth0.01 3940.02 3970.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.14 4250.00 4290.00 4250.00 4240.00 4230.00 421
monomultidepth0.01 3940.02 3970.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.14 4250.00 4290.00 4250.00 4240.00 4230.00 421
test_blank0.07 3930.09 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.79 4240.00 4290.00 4250.00 4240.00 4230.00 421
uanet_test0.01 3940.02 3970.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.14 4250.00 4290.00 4250.00 4240.00 4230.00 421
DCPMVS0.01 3940.02 3970.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.14 4250.00 4290.00 4250.00 4240.00 4230.00 421
cdsmvs_eth3d_5k24.41 39032.55 3920.00 4060.00 4290.00 4310.00 41799.39 2070.00 4240.00 425100.00 193.55 2570.00 4250.00 4240.00 4230.00 421
pcd_1.5k_mvsjas8.24 39210.99 3950.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.14 42598.75 1260.00 4250.00 4240.00 4230.00 421
sosnet-low-res0.01 3940.02 3970.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.14 4250.00 4290.00 4250.00 4240.00 4230.00 421
sosnet0.01 3940.02 3970.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.14 4250.00 4290.00 4250.00 4240.00 4230.00 421
uncertanet0.01 3940.02 3970.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.14 4250.00 4290.00 4250.00 4240.00 4230.00 421
Regformer0.01 3940.02 3970.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.14 4250.00 4290.00 4250.00 4240.00 4230.00 421
ab-mvs-re8.33 39111.11 3940.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 425100.00 10.00 4290.00 4250.00 4240.00 4230.00 421
uanet0.01 3940.02 3970.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.14 4250.00 4290.00 4250.00 4240.00 4230.00 421
WAC-MVS97.98 25695.74 321
FOURS1100.00 199.97 21100.00 199.42 14198.52 77100.00 1
test_one_0601100.00 199.99 599.42 14198.72 67100.00 1100.00 199.60 19
eth-test20.00 429
eth-test0.00 429
ZD-MVS100.00 199.98 1799.80 4397.31 187100.00 1100.00 199.32 6499.99 98100.00 1100.00 1
test_241102_ONE100.00 199.99 599.42 14199.03 21100.00 1100.00 199.50 39100.00 1
9.1499.57 5299.99 49100.00 199.42 14197.54 162100.00 1100.00 199.15 8599.99 98100.00 1100.00 1
save fliter99.99 4999.93 47100.00 199.42 14198.93 38
test0726100.00 199.99 5100.00 199.42 14199.04 16100.00 1100.00 199.53 31
test_part2100.00 199.99 5100.00 1
sam_mvs99.33 61
MTGPAbinary99.42 141
test_post199.32 35888.24 41499.33 6199.59 22898.31 251
test_post89.05 41299.49 4199.59 228
patchmatchnet-post97.79 38799.41 5799.54 245
MTMP100.00 199.18 310
gm-plane-assit99.52 22997.26 29295.86 280100.00 199.43 26698.76 228
TEST9100.00 199.95 32100.00 199.42 14197.65 145100.00 1100.00 199.53 3199.97 130
test_8100.00 199.91 56100.00 199.42 14197.70 140100.00 1100.00 199.51 3599.98 123
agg_prior100.00 199.88 7799.42 141100.00 199.97 130
test_prior499.93 47100.00 1
test_prior2100.00 198.82 55100.00 1100.00 199.47 45100.00 1100.00 1
旧先验2100.00 198.11 108100.00 1100.00 199.67 159
新几何2100.00 1
原ACMM2100.00 1
testdata2100.00 197.36 290
segment_acmp99.55 27
testdata1100.00 198.77 66
plane_prior799.00 29894.78 343
plane_prior699.06 29094.80 33988.58 328
plane_prior499.97 201
plane_prior394.79 34299.03 2199.08 242
plane_prior2100.00 199.00 27
plane_prior199.02 293
plane_prior94.80 339100.00 199.03 2195.58 268
n20.00 430
nn0.00 430
door-mid96.32 416
test1199.42 141
door96.13 417
HQP5-MVS94.82 336
HQP-NCC99.07 286100.00 199.04 1699.17 232
ACMP_Plane99.07 286100.00 199.04 1699.17 232
BP-MVS99.79 123
HQP3-MVS99.40 19495.58 268
HQP2-MVS88.61 326
NP-MVS99.07 28694.81 33899.97 201
MDTV_nov1_ep1398.94 13699.53 22298.36 22899.39 35299.46 9496.54 24699.99 11199.63 29498.92 11399.86 18798.30 25498.71 183
ACMMP++_ref94.58 302
ACMMP++95.17 288
Test By Simon99.10 88