This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted by
fmvsm_l_conf0.5_n_a99.63 5199.55 5699.86 8199.83 12099.58 111100.00 199.36 21298.98 30100.00 1100.00 197.85 15199.99 94100.00 199.94 119100.00 1
fmvsm_l_conf0.5_n99.63 5199.56 5499.86 8199.81 12799.59 110100.00 199.36 21298.98 30100.00 1100.00 197.92 14899.99 94100.00 199.95 117100.00 1
MM99.63 5199.52 6199.94 6399.99 4999.82 84100.00 199.97 1799.11 7100.00 1100.00 196.65 197100.00 1100.00 199.97 111100.00 1
test_fmvsmconf_n99.56 6499.46 7099.86 8199.68 15999.58 111100.00 199.31 23898.92 3999.88 160100.00 197.35 17599.99 9499.98 7399.99 98100.00 1
test_fmvsmvis_n_192099.46 7699.37 7799.73 11698.88 29999.18 164100.00 199.26 26698.85 4999.79 178100.00 197.70 158100.00 199.98 7399.86 133100.00 1
test_fmvsm_n_192099.55 6599.49 6699.73 11699.85 11699.19 162100.00 199.41 18498.87 47100.00 1100.00 197.34 176100.00 199.98 7399.90 126100.00 1
test_cas_vis1_n_192098.63 16898.25 18499.77 11099.69 15599.32 146100.00 199.31 23898.84 5199.96 119100.00 187.42 32499.99 9499.14 19899.86 133100.00 1
test_vis1_n_192097.77 21497.24 23699.34 17499.79 14298.04 245100.00 199.25 26898.88 44100.00 1100.00 177.52 377100.00 199.88 10399.85 136100.00 1
test_vis1_n96.69 26695.81 28999.32 17999.14 26797.98 24899.97 24198.98 35698.45 77100.00 1100.00 166.44 39399.99 9499.78 12599.57 157100.00 1
test_fmvs1_n97.43 23296.86 24599.15 19399.68 15997.48 27299.99 21198.98 35698.82 55100.00 1100.00 174.85 38299.96 13799.67 15099.70 147100.00 1
mvsany_test199.57 6399.48 6999.85 8599.86 11599.54 116100.00 199.36 21298.94 37100.00 1100.00 197.97 145100.00 199.88 10399.28 160100.00 1
test_fmvs198.37 19098.04 20199.34 17499.84 11798.07 241100.00 199.00 35398.85 49100.00 1100.00 185.11 34499.96 13799.69 14699.88 129100.00 1
iter_conf05_1198.21 19997.74 21399.65 13099.67 16499.06 172100.00 198.87 36497.84 12699.96 119100.00 183.57 35499.88 17699.72 131100.00 1100.00 1
bld_raw_dy_0_6497.64 21996.98 24199.63 13299.67 16498.94 186100.00 197.98 38397.85 12598.93 237100.00 183.23 35899.96 13799.72 13195.41 261100.00 1
DVP-MVS++99.81 1199.75 14100.00 1100.00 199.99 5100.00 199.42 13898.79 60100.00 1100.00 199.54 26100.00 1100.00 1100.00 1100.00 1
MSC_two_6792asdad100.00 1100.00 1100.00 199.42 138100.00 1100.00 1100.00 1100.00 1
PC_three_145298.80 57100.00 1100.00 199.54 26100.00 1100.00 1100.00 1100.00 1
No_MVS100.00 1100.00 1100.00 199.42 138100.00 1100.00 1100.00 1100.00 1
SR-MVS-dyc-post99.63 5199.52 6199.97 3199.99 4999.91 51100.00 199.42 13897.62 146100.00 1100.00 198.65 12599.99 9499.99 61100.00 1100.00 1
RE-MVS-def99.55 5699.99 4999.91 51100.00 199.42 13897.62 146100.00 1100.00 198.94 10599.99 61100.00 1100.00 1
SED-MVS99.83 799.77 9100.00 1100.00 199.99 5100.00 199.42 13899.03 20100.00 1100.00 199.50 37100.00 1100.00 1100.00 1100.00 1
IU-MVS100.00 199.99 599.42 13899.12 6100.00 1100.00 1100.00 1100.00 1
OPU-MVS100.00 1100.00 1100.00 1100.00 1100.00 199.54 26100.00 1100.00 1100.00 1100.00 1
test_241102_TWO99.42 13899.03 20100.00 1100.00 199.56 23100.00 1100.00 1100.00 1100.00 1
SF-MVS99.66 4599.57 4999.95 5199.99 4999.85 80100.00 199.42 13897.67 140100.00 1100.00 199.05 9199.99 94100.00 1100.00 1100.00 1
ZNCC-MVS99.71 2999.62 4199.97 3199.99 4999.90 58100.00 199.79 4597.97 11499.97 114100.00 198.97 99100.00 199.94 93100.00 1100.00 1
DVP-MVScopyleft99.83 799.78 7100.00 1100.00 199.99 5100.00 199.42 13899.04 15100.00 1100.00 199.53 29100.00 1100.00 1100.00 1100.00 1
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD98.79 60100.00 1100.00 199.61 16100.00 1100.00 1100.00 1100.00 1
test_0728_SECOND100.00 199.99 4999.99 5100.00 199.42 138100.00 1100.00 1100.00 1100.00 1
SR-MVS99.68 4099.58 4699.98 23100.00 199.95 32100.00 199.64 6497.59 153100.00 1100.00 198.99 9799.99 94100.00 1100.00 1100.00 1
DPM-MVS99.63 5199.51 63100.00 199.90 108100.00 1100.00 199.43 12299.00 27100.00 1100.00 199.58 22100.00 197.64 266100.00 1100.00 1
GST-MVS99.64 4899.53 5999.95 51100.00 199.86 77100.00 199.79 4597.72 13599.95 143100.00 198.39 136100.00 199.96 8599.99 98100.00 1
Anonymous20240521197.87 20997.53 22198.90 20899.81 12796.70 30099.35 34399.46 9492.98 34698.83 24999.99 18490.63 282100.00 199.70 13997.03 244100.00 1
SMA-MVScopyleft99.69 3599.59 4499.98 2399.99 4999.93 43100.00 199.43 12297.50 164100.00 1100.00 199.43 50100.00 1100.00 1100.00 1100.00 1
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DPE-MVScopyleft99.79 1499.73 1799.99 1299.99 4999.98 17100.00 199.42 13898.91 41100.00 1100.00 199.22 76100.00 1100.00 1100.00 1100.00 1
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
CHOSEN 280x42099.85 399.87 199.80 10199.99 4999.97 2199.97 24199.98 1698.96 32100.00 1100.00 199.96 499.42 255100.00 1100.00 1100.00 1
MVS_030499.69 3599.63 3799.86 8199.96 9499.63 107100.00 199.92 3499.03 2099.97 114100.00 197.87 14999.96 137100.00 199.96 114100.00 1
MSP-MVS99.81 1199.77 999.94 63100.00 199.86 77100.00 199.42 13898.87 47100.00 1100.00 199.65 1599.96 137100.00 1100.00 1100.00 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
TSAR-MVS + MP.99.82 999.77 999.99 12100.00 199.96 24100.00 199.43 12299.05 14100.00 1100.00 199.45 4599.99 94100.00 1100.00 1100.00 1
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
ACMMP_NAP99.67 4399.57 4999.97 3199.98 8599.92 48100.00 199.42 13897.83 127100.00 1100.00 198.89 111100.00 199.98 73100.00 1100.00 1
MTAPA99.68 4099.59 4499.97 3199.99 4999.91 51100.00 199.42 13898.32 8899.94 145100.00 198.65 125100.00 199.96 85100.00 1100.00 1
test9_res100.00 1100.00 1100.00 1
train_agg99.71 2999.63 3799.97 31100.00 199.95 32100.00 199.42 13897.70 137100.00 1100.00 199.51 3399.97 125100.00 1100.00 1100.00 1
agg_prior2100.00 1100.00 1100.00 1
HFP-MVS99.74 2299.67 2799.96 42100.00 199.89 65100.00 199.76 4997.95 118100.00 1100.00 199.31 64100.00 199.99 61100.00 1100.00 1
region2R99.72 2699.64 3399.97 31100.00 199.90 58100.00 199.74 5597.86 124100.00 1100.00 199.19 79100.00 199.99 61100.00 1100.00 1
EI-MVSNet-UG-set99.69 3599.63 3799.87 7899.99 4999.64 10599.95 25299.44 11698.35 86100.00 1100.00 198.98 9899.97 12599.98 73100.00 1100.00 1
EI-MVSNet-Vis-set99.70 3299.64 3399.87 78100.00 199.64 10599.98 23599.44 11698.35 8699.99 103100.00 199.04 9499.96 13799.98 73100.00 1100.00 1
XVS99.79 1499.73 1799.98 23100.00 199.94 40100.00 199.75 5298.67 67100.00 1100.00 199.16 81100.00 1100.00 1100.00 1100.00 1
X-MVStestdata97.04 25096.06 27999.98 23100.00 199.94 40100.00 199.75 5298.67 67100.00 166.97 40799.16 81100.00 1100.00 1100.00 1100.00 1
test_prior99.90 71100.00 199.75 9199.73 5699.97 125100.00 1
新几何199.99 12100.00 199.96 2499.81 4297.89 121100.00 1100.00 199.20 78100.00 197.91 258100.00 1100.00 1
旧先验199.99 4999.88 7299.82 40100.00 199.27 73100.00 1100.00 1
无先验100.00 199.80 4397.98 112100.00 199.33 185100.00 1
原ACMM199.93 66100.00 199.80 8799.66 6398.18 95100.00 1100.00 199.43 50100.00 199.50 176100.00 1100.00 1
test22299.99 4999.90 58100.00 199.69 6297.66 141100.00 1100.00 199.30 69100.00 1100.00 1
testdata99.66 12899.99 4998.97 18599.73 5697.96 117100.00 1100.00 199.42 53100.00 199.28 190100.00 1100.00 1
131499.38 8299.19 10099.96 4298.88 29999.89 6599.24 35399.93 3098.88 4498.79 252100.00 197.02 182100.00 1100.00 1100.00 1100.00 1
MVS99.22 10998.96 12399.98 2399.00 28699.95 3299.24 35399.94 2298.14 9998.88 242100.00 195.63 215100.00 199.85 109100.00 1100.00 1
SD-MVS99.81 1199.75 1499.99 1299.99 4999.96 24100.00 199.42 13899.01 26100.00 1100.00 199.33 59100.00 1100.00 1100.00 1100.00 1
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MSLP-MVS++99.89 199.85 299.99 12100.00 199.96 24100.00 199.95 1999.11 7100.00 1100.00 199.60 17100.00 1100.00 1100.00 1100.00 1
APDe-MVScopyleft99.84 699.78 799.99 12100.00 199.98 17100.00 199.44 11699.06 12100.00 1100.00 199.56 2399.99 94100.00 1100.00 1100.00 1
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
APD-MVS_3200maxsize99.65 4699.55 5699.97 3199.99 4999.91 51100.00 199.48 7897.54 157100.00 1100.00 198.97 9999.99 9499.98 73100.00 1100.00 1
ACMMPR99.74 2299.67 2799.96 42100.00 199.89 65100.00 199.76 4997.95 118100.00 1100.00 199.29 70100.00 199.99 61100.00 1100.00 1
MP-MVScopyleft99.61 5899.49 6699.98 2399.99 4999.94 40100.00 199.42 13897.82 12899.99 103100.00 198.20 139100.00 199.99 61100.00 1100.00 1
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PGM-MVS99.69 3599.61 4299.95 5199.99 4999.85 80100.00 199.58 6797.69 139100.00 1100.00 199.44 46100.00 199.79 119100.00 1100.00 1
MCST-MVS99.85 399.80 4100.00 1100.00 199.99 5100.00 199.73 5699.19 5100.00 1100.00 199.31 64100.00 1100.00 1100.00 1100.00 1
CDPH-MVS99.73 2599.64 3399.99 12100.00 199.97 21100.00 199.42 13898.02 108100.00 1100.00 199.32 6299.99 94100.00 1100.00 1100.00 1
test1299.95 5199.99 4999.89 6599.42 138100.00 199.24 7599.97 125100.00 1100.00 1
TSAR-MVS + GP.99.61 5899.69 2299.35 17399.99 4998.06 243100.00 199.36 21299.83 2100.00 1100.00 198.95 10399.99 94100.00 199.11 163100.00 1
mPP-MVS99.69 3599.60 4399.97 31100.00 199.91 51100.00 199.42 13897.91 120100.00 1100.00 199.04 94100.00 1100.00 1100.00 1100.00 1
HPM-MVS_fast99.60 6199.49 6699.91 6899.99 4999.78 88100.00 199.42 13897.09 194100.00 1100.00 198.95 10399.96 13799.98 73100.00 1100.00 1
HPM-MVScopyleft99.59 6299.50 6499.89 73100.00 199.70 100100.00 199.42 13897.46 168100.00 1100.00 198.60 12899.96 13799.99 61100.00 1100.00 1
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
EPNet_dtu98.53 17698.23 18999.43 16099.92 10499.01 17999.96 24699.47 7998.80 5799.96 11999.96 20998.56 13099.30 26387.78 37699.68 148100.00 1
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CHOSEN 1792x268899.00 13398.91 13299.25 18899.90 10897.79 263100.00 199.99 1398.79 6098.28 282100.00 193.63 24199.95 15099.66 15499.95 117100.00 1
APD-MVScopyleft99.68 4099.58 4699.97 3199.99 4999.96 24100.00 199.42 13897.53 159100.00 1100.00 199.27 7399.97 125100.00 1100.00 1100.00 1
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CNVR-MVS99.85 399.80 4100.00 1100.00 199.99 5100.00 199.77 4899.07 10100.00 1100.00 199.39 57100.00 1100.00 1100.00 1100.00 1
NCCC99.86 299.82 3100.00 1100.00 199.99 5100.00 199.71 6199.07 10100.00 1100.00 199.59 20100.00 1100.00 1100.00 1100.00 1
114514_t99.39 8199.25 9099.81 9699.97 8999.48 131100.00 199.42 13895.53 281100.00 1100.00 198.37 13799.95 15099.97 83100.00 1100.00 1
CP-MVS99.67 4399.58 4699.95 51100.00 199.84 82100.00 199.42 13897.77 132100.00 1100.00 199.07 88100.00 1100.00 1100.00 1100.00 1
SteuartSystems-ACMMP99.78 1699.71 2099.98 2399.76 14899.95 32100.00 199.42 13898.69 65100.00 1100.00 199.52 3299.99 94100.00 1100.00 1100.00 1
Skip Steuart: Steuart Systems R&D Blog.
DELS-MVS99.62 5699.56 5499.82 9199.92 10499.45 133100.00 199.78 4798.92 3999.73 186100.00 197.70 158100.00 199.93 95100.00 1100.00 1
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CPTT-MVS99.49 7299.38 7499.85 85100.00 199.54 116100.00 199.42 13897.58 15499.98 109100.00 197.43 173100.00 199.99 61100.00 1100.00 1
DP-MVS Recon99.76 1899.69 2299.98 23100.00 199.95 32100.00 199.52 7297.99 11099.99 103100.00 199.72 12100.00 199.96 85100.00 1100.00 1
MVS_111021_LR99.70 3299.65 3199.88 7799.96 9499.70 100100.00 199.97 1798.96 32100.00 1100.00 197.93 14799.95 15099.99 61100.00 1100.00 1
DP-MVS98.86 14998.54 16599.81 9699.97 8999.45 13399.52 32699.40 18894.35 31598.36 275100.00 196.13 20599.97 12599.12 201100.00 1100.00 1
QAPM98.99 13698.66 15499.96 4299.01 28299.87 7499.88 26899.93 3097.99 11098.68 256100.00 193.17 249100.00 199.32 186100.00 1100.00 1
HyFIR lowres test99.32 9299.24 9299.58 14399.95 9699.26 152100.00 199.99 1396.72 22599.29 21499.91 22999.49 3999.47 24799.74 12898.08 209100.00 1
PAPM_NR99.74 2299.66 3099.99 12100.00 199.96 24100.00 199.47 7997.87 123100.00 1100.00 199.60 17100.00 1100.00 1100.00 1100.00 1
PAPR99.76 1899.68 2599.99 12100.00 199.96 24100.00 199.47 7998.16 96100.00 1100.00 199.51 33100.00 1100.00 1100.00 1100.00 1
IB-MVS96.24 1297.54 22796.95 24299.33 17799.67 16498.10 240100.00 199.47 7997.42 17299.26 21599.69 26998.83 11699.89 17299.43 17878.77 388100.00 1
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MVS_111021_HR99.71 2999.63 3799.93 6699.95 9699.83 83100.00 1100.00 198.89 43100.00 1100.00 197.85 15199.95 150100.00 1100.00 1100.00 1
CSCG99.28 9899.35 8299.05 19799.99 4997.15 287100.00 199.47 7997.44 17099.42 202100.00 197.83 154100.00 199.99 61100.00 1100.00 1
API-MVS99.72 2699.70 2199.79 10399.97 8999.37 14399.96 24699.94 2298.48 75100.00 1100.00 198.92 108100.00 1100.00 1100.00 1100.00 1
PAPM99.78 1699.76 1299.85 8599.01 28299.95 32100.00 199.75 5299.37 399.99 103100.00 199.76 1199.60 215100.00 1100.00 1100.00 1
ACMMPcopyleft99.65 4699.57 4999.89 7399.99 4999.66 10399.75 29399.73 5698.16 9699.75 184100.00 198.90 110100.00 199.96 8599.88 129100.00 1
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CNLPA99.72 2699.65 3199.91 6899.97 8999.72 95100.00 199.47 7998.43 7899.88 160100.00 199.14 84100.00 199.97 83100.00 1100.00 1
PHI-MVS99.50 7099.39 7399.82 91100.00 199.45 133100.00 199.94 2296.38 250100.00 1100.00 198.18 140100.00 1100.00 1100.00 1100.00 1
PVSNet94.91 1899.30 9699.25 9099.44 158100.00 198.32 225100.00 199.86 3898.04 107100.00 1100.00 196.10 206100.00 199.55 16999.73 145100.00 1
PVSNet_093.57 1996.41 27995.74 29598.41 23399.84 11795.22 316100.00 1100.00 198.08 10597.55 32099.78 25784.40 347100.00 1100.00 181.99 381100.00 1
DeepPCF-MVS98.03 498.54 17599.72 1994.98 34599.99 4984.94 384100.00 199.42 13899.98 1100.00 1100.00 198.11 142100.00 1100.00 1100.00 1100.00 1
DeepC-MVS_fast98.92 199.75 2099.67 2799.99 1299.99 4999.96 2499.73 29999.52 7299.06 12100.00 1100.00 198.80 119100.00 199.95 91100.00 1100.00 1
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MG-MVS99.75 2099.68 2599.97 31100.00 199.91 5199.98 23599.47 7999.09 9100.00 1100.00 198.59 129100.00 199.95 91100.00 1100.00 1
AdaColmapbinary99.44 7899.26 8999.95 51100.00 199.86 7799.70 30499.99 1398.53 7399.90 155100.00 195.34 217100.00 199.92 96100.00 1100.00 1
MAR-MVS99.49 7299.36 8099.89 7399.97 8999.66 10399.74 29499.95 1997.89 121100.00 1100.00 196.71 196100.00 1100.00 1100.00 1100.00 1
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
3Dnovator+95.58 1599.03 12798.71 15299.96 4298.99 28999.89 65100.00 199.51 7698.96 3298.32 279100.00 192.78 255100.00 199.87 106100.00 1100.00 1
3Dnovator95.63 1499.06 12398.76 14699.96 4298.86 30399.90 5899.98 23599.93 3098.95 3598.49 271100.00 192.91 253100.00 199.71 136100.00 1100.00 1
TAPA-MVS96.40 1097.64 21997.37 22898.45 23199.94 9995.70 311100.00 199.40 18897.65 14299.53 194100.00 199.31 6499.66 21280.48 391100.00 1100.00 1
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
MP-MVS-pluss99.61 5899.50 6499.97 3199.98 8599.92 48100.00 199.42 13897.53 15999.77 181100.00 198.77 120100.00 199.99 61100.00 199.99 109
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
HPM-MVS++copyleft99.82 999.76 1299.99 1299.99 4999.98 17100.00 199.83 3998.88 4499.96 119100.00 199.21 77100.00 1100.00 1100.00 199.99 109
fmvsm_s_conf0.5_n_a99.32 9299.15 10599.81 9699.80 13899.47 132100.00 199.35 22398.22 91100.00 1100.00 195.21 22199.99 9499.96 8599.86 13399.98 111
fmvsm_s_conf0.5_n99.21 11099.01 11699.83 8999.84 11799.53 118100.00 199.38 20398.29 90100.00 1100.00 193.62 24299.99 9499.99 6199.93 12299.98 111
thres100view90099.25 10599.01 11699.95 5199.81 12799.87 74100.00 199.94 2297.13 19299.83 16799.96 20997.01 183100.00 199.59 16497.85 22199.98 111
tfpn200view999.26 10199.03 11499.96 4299.81 12799.89 65100.00 199.94 2297.23 18799.83 16799.96 20997.04 179100.00 199.59 16497.85 22199.98 111
thres20099.27 9999.04 11399.96 4299.81 12799.90 58100.00 199.94 2297.31 18299.83 16799.96 20997.04 179100.00 199.62 16097.88 21999.98 111
LCM-MVSNet-Re96.52 27297.21 23894.44 34999.27 26185.80 38299.85 27296.61 39995.98 26592.75 37398.48 36093.97 23897.55 36899.58 16798.43 18499.98 111
JIA-IIPM97.09 24696.34 26899.36 17298.88 29998.59 20699.81 27899.43 12284.81 38699.96 11990.34 39698.55 13199.52 24097.00 28698.28 19999.98 111
fmvsm_s_conf0.1_n_a98.71 15998.36 18099.78 10799.09 27299.42 137100.00 199.26 26697.42 172100.00 1100.00 189.78 29499.96 13799.82 11899.85 13699.97 118
fmvsm_s_conf0.1_n98.77 15498.42 17299.82 9199.47 23599.52 121100.00 199.27 26097.53 159100.00 1100.00 189.73 29699.96 13799.84 11299.93 12299.97 118
test_fmvsmconf0.1_n99.25 10599.05 11299.82 9198.92 29599.55 114100.00 199.23 27798.91 4199.75 18499.97 19794.79 22899.94 16299.94 9399.99 9899.97 118
thres600view799.24 10899.00 11899.95 5199.81 12799.87 74100.00 199.94 2297.13 19299.83 16799.96 20997.01 183100.00 199.54 17297.77 22999.97 118
thres40099.26 10199.03 11499.95 5199.81 12799.89 65100.00 199.94 2297.23 18799.83 16799.96 20997.04 179100.00 199.59 16497.85 22199.97 118
OMC-MVS99.27 9999.38 7498.96 20599.95 9697.06 291100.00 199.40 18898.83 5399.88 160100.00 197.01 18399.86 17899.47 17799.84 13899.97 118
dmvs_re97.54 22797.88 20796.54 32799.55 20690.35 37199.86 27099.46 9497.00 20099.41 207100.00 190.78 28099.30 26399.60 16395.24 27199.96 124
CANet99.40 8099.24 9299.89 7399.99 4999.76 90100.00 199.73 5698.40 7999.78 180100.00 195.28 21899.96 137100.00 199.99 9899.96 124
GG-mvs-BLEND99.59 13999.54 20799.49 12799.17 36699.52 7299.96 11999.68 273100.00 199.33 26299.71 13699.99 9899.96 124
gg-mvs-nofinetune96.95 25596.10 27799.50 15199.41 24599.36 14499.07 37999.52 7283.69 38899.96 11983.60 404100.00 199.20 26799.68 14799.99 9899.96 124
VNet99.04 12598.75 14799.90 7199.81 12799.75 9199.50 32899.47 7998.36 84100.00 199.99 18494.66 230100.00 199.90 9997.09 24399.96 124
BH-w/o98.82 15298.81 14198.88 21099.62 18796.71 299100.00 199.28 25297.09 19498.81 250100.00 194.91 22699.96 13799.54 172100.00 199.96 124
patch_mono-299.04 12599.79 696.81 32299.92 10490.47 370100.00 199.41 18498.95 35100.00 1100.00 199.78 8100.00 1100.00 1100.00 199.95 130
dcpmvs_298.87 14899.53 5996.90 31699.87 11490.88 36999.94 25699.07 33498.20 94100.00 1100.00 198.69 12499.86 178100.00 1100.00 199.95 130
Patchmatch-test97.83 21197.42 22499.06 19599.08 27397.66 26798.66 38799.21 28893.65 33098.25 28699.58 29699.47 4399.57 22290.25 36498.59 17699.95 130
HY-MVS96.53 999.50 7099.35 8299.96 4299.81 12799.93 4399.64 311100.00 197.97 11499.84 16499.85 24298.94 10599.99 9499.86 10798.23 20199.95 130
PatchMatch-RL99.02 13198.78 14399.74 11399.99 4999.29 149100.00 1100.00 198.38 8099.89 15899.81 25193.14 25199.99 9497.85 26099.98 10899.95 130
test250699.48 7499.38 7499.75 11299.89 11099.51 12299.45 332100.00 198.38 8099.83 167100.00 198.86 11299.81 19399.25 19198.78 17199.94 135
test111198.42 18598.12 19399.29 18299.88 11298.15 23599.46 330100.00 198.36 8499.42 202100.00 187.91 31799.79 19599.31 18798.78 17199.94 135
ECVR-MVScopyleft98.43 18398.14 19299.32 17999.89 11098.21 23399.46 330100.00 198.38 8099.47 201100.00 187.91 31799.80 19499.35 18398.78 17199.94 135
test_yl99.51 6799.37 7799.95 5199.82 12199.90 58100.00 199.47 7997.48 166100.00 1100.00 199.80 5100.00 199.98 7397.75 23099.94 135
DCV-MVSNet99.51 6799.37 7799.95 5199.82 12199.90 58100.00 199.47 7997.48 166100.00 1100.00 199.80 5100.00 199.98 7397.75 23099.94 135
LFMVS97.42 23396.62 25499.81 9699.80 13899.50 12499.16 36799.56 7094.48 311100.00 1100.00 179.35 372100.00 199.89 10197.37 23999.94 135
WTY-MVS99.54 6699.40 7299.95 5199.81 12799.93 43100.00 1100.00 197.98 11299.84 164100.00 198.94 10599.98 11899.86 10798.21 20299.94 135
PMMVS99.12 11898.97 12299.58 14399.57 20398.98 183100.00 199.30 24297.14 19199.96 119100.00 196.53 20299.82 19099.70 13998.49 18099.94 135
F-COLMAP99.64 4899.64 3399.67 12599.99 4999.07 170100.00 199.44 11698.30 8999.90 155100.00 199.18 8099.99 9499.91 98100.00 199.94 135
PLCcopyleft98.56 299.70 3299.74 1699.58 143100.00 198.79 192100.00 199.54 7198.58 7299.96 119100.00 199.59 20100.00 1100.00 1100.00 199.94 135
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
TR-MVS98.14 20097.74 21399.33 17799.59 19598.28 22899.27 35099.21 28896.42 24699.15 22299.94 22288.87 30999.79 19598.88 21198.29 19899.93 145
PatchmatchNetpermissive99.03 12798.96 12399.26 18799.49 23098.33 22399.38 34099.45 10296.64 23499.96 11999.58 29699.49 3999.50 24397.63 26799.00 16799.93 145
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
ET-MVSNet_ETH3D96.41 27995.48 30999.20 19199.81 12799.75 91100.00 199.02 35097.30 18478.33 396100.00 197.73 15697.94 35899.70 13987.41 36399.92 147
LS3D99.31 9499.13 10699.87 7899.99 4999.71 9699.55 32299.46 9497.32 18099.82 175100.00 196.85 19399.97 12599.14 198100.00 199.92 147
GSMVS99.91 149
sam_mvs199.29 7099.91 149
SCA98.30 19297.98 20599.23 18999.41 24598.25 23099.99 21199.45 10296.91 20799.76 18399.58 29689.65 29899.54 23498.31 24198.79 17099.91 149
Patchmatch-RL test93.49 32993.63 32893.05 36091.78 39183.41 38698.21 39196.95 39691.58 35891.05 37697.64 37699.40 5695.83 38594.11 33481.95 38299.91 149
canonicalmvs99.03 12798.73 14999.94 6399.75 15099.95 32100.00 199.30 24297.64 144100.00 1100.00 195.22 22099.97 12599.76 12696.90 24899.91 149
test-LLR99.03 12798.91 13299.40 16799.40 25099.28 150100.00 199.45 10296.70 22799.42 20299.12 32399.31 6499.01 27596.82 29299.99 9899.91 149
TESTMET0.1,199.08 12198.96 12399.44 15899.63 18299.38 140100.00 199.45 10295.53 28199.48 198100.00 199.71 1399.02 27496.84 29199.99 9899.91 149
test-mter98.96 14098.82 13999.40 16799.40 25099.28 150100.00 199.45 10295.44 29099.42 20299.12 32399.70 1499.01 27596.82 29299.99 9899.91 149
MSDG98.90 14798.63 15799.70 12199.92 10499.25 154100.00 199.37 20695.71 27599.40 208100.00 196.58 19899.95 15096.80 29499.94 11999.91 149
test_fmvsmconf0.01_n98.60 16998.24 18699.67 12596.90 36999.21 16099.99 21199.04 34798.80 5799.57 19399.96 20990.12 28899.91 16999.89 10199.89 12799.90 158
alignmvs99.38 8299.21 9699.91 6899.73 15199.92 48100.00 199.51 7697.61 150100.00 1100.00 199.06 8999.93 16699.83 11397.12 24299.90 158
PVSNet_Blended99.48 7499.36 8099.83 8999.98 8599.60 108100.00 1100.00 197.79 130100.00 1100.00 196.57 19999.99 94100.00 199.88 12999.90 158
EPMVS99.25 10599.13 10699.60 13799.60 19199.20 16199.60 317100.00 196.93 20499.92 15099.36 31499.05 9199.71 20998.77 21898.94 16899.90 158
PCF-MVS98.23 398.69 16298.37 17899.62 13499.78 14599.02 17799.23 35899.06 34296.43 24498.08 291100.00 194.72 22999.95 15098.16 24899.91 12599.90 158
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
GA-MVS97.72 21797.27 23499.06 19599.24 26497.93 254100.00 199.24 27395.80 27398.99 23499.64 28289.77 29599.36 25895.12 32197.62 23899.89 163
baseline198.91 14598.61 15999.81 9699.71 15299.77 8999.78 28499.44 11697.51 16398.81 25099.99 18498.25 13899.76 20298.60 23095.41 26199.89 163
tpmvs98.59 17098.38 17699.23 18999.69 15597.90 25599.31 34899.47 7994.52 30999.68 18999.28 31897.64 16199.89 17297.71 26498.17 20699.89 163
EPNet99.62 5699.69 2299.42 16299.99 4998.37 219100.00 199.89 3798.83 53100.00 1100.00 198.97 99100.00 199.90 9999.61 15599.89 163
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PVSNet_Blended_VisFu99.33 9099.18 10399.78 10799.82 12199.49 127100.00 199.95 1997.36 17599.63 191100.00 196.45 20399.95 15099.79 11999.65 15299.89 163
dp98.72 15898.61 15999.03 20099.53 21097.39 27599.45 33299.39 20195.62 27899.94 14599.52 30498.83 11699.82 19096.77 29798.42 18599.89 163
sss99.45 7799.34 8499.80 10199.76 14899.50 124100.00 199.91 3697.72 13599.98 10999.94 22298.45 134100.00 199.53 17498.75 17499.89 163
Test_1112_low_res98.83 15198.60 16199.51 14899.69 15598.75 19499.99 21199.14 31196.81 21498.84 24799.06 32797.45 17099.89 17298.66 22397.75 23099.89 163
1112_ss98.91 14598.71 15299.51 14899.69 15598.75 19499.99 21199.15 30696.82 21398.84 247100.00 197.45 17099.89 17298.66 22397.75 23099.89 163
MDTV_nov1_ep13_2view99.24 15699.56 32196.31 25599.96 11998.86 11298.92 20999.89 163
Vis-MVSNet (Re-imp)98.99 13698.89 13699.29 18299.64 18098.89 18899.98 23599.31 23896.74 22299.48 198100.00 198.11 14299.10 27098.39 23798.34 19399.89 163
ETVMVS99.16 11598.98 12199.69 12299.67 16499.56 113100.00 199.45 10296.36 25199.98 10999.95 21798.65 12599.64 21399.11 20297.63 23799.88 174
GeoE98.06 20397.65 21999.29 18299.47 23598.41 213100.00 199.19 29294.85 29898.88 242100.00 191.21 27299.59 21797.02 28598.19 20499.88 174
UA-Net99.06 12398.83 13899.74 11399.52 21799.40 13999.08 37799.45 10297.64 14499.83 167100.00 195.80 21099.94 16298.35 23999.80 14399.88 174
ADS-MVSNet298.28 19598.51 16797.62 28899.51 22295.03 31999.24 35399.41 18495.52 28399.96 11999.70 26697.57 16397.94 35897.11 28398.54 17799.88 174
ADS-MVSNet98.70 16198.51 16799.28 18599.51 22298.39 21699.24 35399.44 11695.52 28399.96 11999.70 26697.57 16399.58 22197.11 28398.54 17799.88 174
mvs_anonymous98.80 15398.60 16199.38 17199.57 20399.24 156100.00 199.21 28895.87 26798.92 23899.82 24896.39 20499.03 27399.13 20098.50 17999.88 174
tpm98.24 19798.22 19098.32 24099.13 26895.79 31099.53 32599.12 32195.20 29299.96 11999.36 31497.58 16299.28 26597.41 27596.67 24999.88 174
EC-MVSNet99.19 11199.09 11099.48 15499.42 24399.07 170100.00 199.21 28896.95 20299.96 119100.00 196.88 19299.48 24599.64 15699.79 14499.88 174
IS-MVSNet99.08 12198.91 13299.59 13999.65 17499.38 14099.78 28499.24 27396.70 22799.51 196100.00 198.44 13599.52 24098.47 23598.39 18899.88 174
CS-MVS99.33 9099.27 8699.50 15199.99 4999.00 181100.00 199.13 31597.26 18599.96 119100.00 197.79 15599.64 21399.64 15699.67 15099.87 183
Fast-Effi-MVS+98.40 18898.02 20399.55 14799.63 18299.06 172100.00 199.15 30695.07 29399.42 20299.95 21793.26 24899.73 20797.44 27398.24 20099.87 183
dmvs_testset93.27 33295.48 30986.65 37298.74 30768.42 40199.92 25998.91 36196.19 26193.28 370100.00 191.06 27791.67 39789.64 36891.54 32599.86 185
MVS-HIRNet94.12 32692.73 33998.29 24299.33 25695.95 30699.38 34099.19 29274.54 39698.26 28586.34 40086.07 33699.06 27291.60 35399.87 13299.85 186
CR-MVSNet98.02 20697.71 21798.93 20699.31 25798.86 18999.13 37199.00 35396.53 24099.96 11998.98 33696.94 18998.10 34891.18 35598.40 18699.84 187
RPMNet95.26 31793.82 32599.56 14699.31 25798.86 18999.13 37199.42 13879.82 39399.96 11995.13 38695.69 21399.98 11877.54 39698.40 18699.84 187
ab-mvs98.42 18598.02 20399.61 13599.71 15299.00 18199.10 37499.64 6496.70 22799.04 23299.81 25190.64 28199.98 11899.64 15697.93 21699.84 187
FE-MVS99.16 11598.99 12099.66 12899.65 17499.18 16499.58 31999.43 12295.24 29199.91 15399.59 29499.37 5899.97 12598.31 24199.81 14199.83 190
Anonymous2024052996.93 25696.22 27399.05 19799.79 14297.30 28299.16 36799.47 7988.51 37698.69 255100.00 183.50 356100.00 199.83 11397.02 24599.83 190
CVMVSNet98.56 17398.47 17098.82 21299.11 26997.67 26699.74 29499.47 7997.57 15599.06 230100.00 195.72 21298.97 28098.21 24797.33 24099.83 190
tpm298.64 16598.58 16398.81 21499.42 24397.12 28899.69 30699.37 20693.63 33199.94 14599.67 27498.96 10299.47 24798.62 22997.95 21599.83 190
DeepC-MVS97.84 599.00 13398.80 14299.60 13799.93 10199.03 176100.00 199.40 18898.61 7199.33 212100.00 192.23 26499.95 15099.74 12899.96 11499.83 190
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
testing1199.26 10199.19 10099.46 15599.64 18098.61 204100.00 199.43 12296.94 20399.92 15099.94 22299.43 5099.97 12599.67 15097.79 22899.82 195
Syy-MVS96.17 29596.57 25695.00 34399.50 22687.37 380100.00 199.57 6896.23 25798.07 292100.00 192.41 26397.81 36185.34 38197.96 21399.82 195
myMVS_eth3d98.52 17798.51 16798.53 22799.50 22697.98 248100.00 199.57 6896.23 25798.07 292100.00 199.09 8797.81 36196.17 30497.96 21399.82 195
testing398.44 18298.37 17898.65 22099.51 22298.32 225100.00 199.62 6696.43 24497.93 30299.99 18499.11 8597.81 36194.88 32497.80 22699.82 195
EIA-MVS99.26 10199.19 10099.45 15799.63 18298.75 194100.00 199.27 26096.93 20499.95 143100.00 197.47 16999.79 19599.74 12899.72 14699.82 195
CS-MVS-test99.31 9499.27 8699.43 16099.99 4998.77 193100.00 199.19 29297.24 18699.96 119100.00 197.56 16599.70 21099.68 14799.81 14199.82 195
MVS_Test98.93 14498.65 15599.77 11099.62 18799.50 12499.99 21199.19 29295.52 28399.96 11999.86 23796.54 20199.98 11898.65 22598.48 18199.82 195
diffmvspermissive98.96 14098.73 14999.63 13299.54 20799.16 166100.00 199.18 29997.33 17999.96 119100.00 194.60 23199.91 16999.66 15498.33 19699.82 195
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
tpmrst98.98 13998.93 13099.14 19499.61 18997.74 26499.52 32699.36 21296.05 26499.98 10999.64 28299.04 9499.86 17898.94 20798.19 20499.82 195
testing9199.18 11299.10 10899.41 16399.60 19198.43 211100.00 199.43 12296.76 21899.82 17599.92 22799.05 9199.98 11899.62 16097.67 23499.81 204
testing9999.18 11299.10 10899.41 16399.60 19198.43 211100.00 199.43 12296.76 21899.84 16499.92 22799.06 8999.98 11899.62 16097.67 23499.81 204
testing22299.14 11798.94 12899.73 11699.67 16499.51 122100.00 199.43 12296.90 20999.99 10399.90 23198.55 13199.86 17898.85 21397.18 24199.81 204
ETV-MVS99.34 8899.24 9299.64 13199.58 20099.33 145100.00 199.25 26897.57 15599.96 119100.00 197.44 17299.79 19599.70 13999.65 15299.81 204
thisisatest051599.42 7999.31 8599.74 11399.59 19599.55 114100.00 199.46 9496.65 23399.92 150100.00 199.44 4699.85 18499.09 20399.63 15499.81 204
Effi-MVS+98.58 17198.24 18699.61 13599.60 19199.26 15297.85 39399.10 32496.22 25999.97 11499.89 23293.75 23999.77 20099.43 17898.34 19399.81 204
casdiffmvspermissive98.65 16498.38 17699.46 15599.52 21798.74 197100.00 199.15 30696.91 20799.05 231100.00 192.75 25699.83 18799.70 13998.38 19099.81 204
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
lupinMVS99.29 9799.16 10499.69 12299.45 23999.49 127100.00 199.15 30697.45 16999.97 114100.00 196.76 19499.76 20299.67 150100.00 199.81 204
casdiffmvs_mvgpermissive98.64 16598.39 17599.40 16799.50 22698.60 205100.00 199.22 28096.85 21199.10 225100.00 192.75 25699.78 19999.71 13698.35 19299.81 204
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline98.69 16298.45 17199.41 16399.52 21798.67 201100.00 199.17 30497.03 19999.13 223100.00 193.17 24999.74 20599.70 13998.34 19399.81 204
tpm cat198.05 20497.76 21198.92 20799.50 22697.10 29099.77 28999.30 24290.20 37099.72 18798.71 35197.71 15799.86 17896.75 29898.20 20399.81 204
CostFormer98.84 15098.77 14499.04 19999.41 24597.58 26999.67 30999.35 22394.66 30499.96 11999.36 31499.28 7299.74 20599.41 18097.81 22599.81 204
PatchT95.90 30794.95 32198.75 21799.03 28098.39 21699.08 37799.32 23385.52 38499.96 11994.99 38897.94 14698.05 35480.20 39298.47 18299.81 204
BH-untuned98.64 16598.65 15598.60 22399.59 19596.17 305100.00 199.28 25296.67 23298.41 274100.00 194.52 23299.83 18799.41 180100.00 199.81 204
UWE-MVS99.18 11299.06 11199.51 14899.67 16498.80 191100.00 199.43 12296.80 21599.93 14999.86 23799.79 799.94 16297.78 26298.33 19699.80 218
thisisatest053099.37 8499.27 8699.69 12299.59 19599.41 138100.00 199.46 9496.46 24399.90 155100.00 199.44 4699.85 18498.97 20699.58 15699.80 218
MIMVSNet97.06 24996.73 25098.05 26899.38 25496.64 30298.47 38999.35 22393.41 33699.48 19898.53 35889.66 29797.70 36794.16 33398.11 20899.80 218
SDMVSNet98.49 18098.08 19699.73 11699.82 12199.53 11899.99 21199.45 10297.62 14699.38 20999.86 23790.06 29199.88 17699.92 9696.61 25199.79 221
sd_testset97.81 21297.48 22298.79 21599.82 12196.80 29799.32 34599.45 10297.62 14699.38 20999.86 23785.56 34299.77 20099.72 13196.61 25199.79 221
FA-MVS(test-final)99.00 13398.75 14799.73 11699.63 18299.43 13699.83 27499.43 12295.84 27299.52 19599.37 31397.84 15399.96 13797.63 26799.68 14899.79 221
tttt051799.34 8899.23 9599.67 12599.57 20399.38 140100.00 199.46 9496.33 25499.89 158100.00 199.44 4699.84 18698.93 20899.46 15999.78 224
BH-RMVSNet98.46 18198.08 19699.59 13999.61 18999.19 162100.00 199.28 25297.06 19898.95 236100.00 188.99 30699.82 19098.83 216100.00 199.77 225
CDS-MVSNet98.96 14098.95 12799.01 20199.48 23298.36 22199.93 25899.37 20696.79 21699.31 21399.83 24599.77 1098.91 28498.07 25197.98 21199.77 225
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Vis-MVSNetpermissive98.52 17798.25 18499.34 17499.68 15998.55 20799.68 30899.41 18497.34 17899.94 145100.00 190.38 28799.70 21099.03 20598.84 16999.76 227
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
EPP-MVSNet99.10 12099.00 11899.40 16799.51 22298.68 20099.92 25999.43 12295.47 28799.65 190100.00 199.51 3399.76 20299.53 17498.00 21099.75 228
xiu_mvs_v2_base99.51 6799.41 7199.82 9199.70 15499.73 9499.92 25999.40 18898.15 98100.00 1100.00 198.50 133100.00 199.85 10999.13 16299.74 229
PS-MVSNAJ99.64 4899.57 4999.85 8599.78 14599.81 8599.95 25299.42 13898.38 80100.00 1100.00 198.75 121100.00 199.88 10399.99 9899.74 229
MVSFormer98.94 14398.82 13999.28 18599.45 23999.49 127100.00 199.13 31595.46 28899.97 114100.00 196.76 19498.59 31498.63 227100.00 199.74 229
jason99.11 11998.96 12399.59 13999.17 26699.31 148100.00 199.13 31597.38 17499.83 167100.00 195.54 21699.72 20899.57 16899.97 11199.74 229
jason: jason.
TAMVS98.76 15598.73 14998.86 21199.44 24197.69 26599.57 32099.34 22996.57 23799.12 22499.81 25198.83 11699.16 26897.97 25797.91 21799.73 233
VDD-MVS96.58 27195.99 28298.34 23899.52 21795.33 31499.18 36199.38 20396.64 23499.77 181100.00 172.51 387100.00 1100.00 196.94 24799.70 234
RPSCF97.37 23598.24 18694.76 34899.80 13884.57 38599.99 21199.05 34494.95 29699.82 175100.00 194.03 236100.00 198.15 24998.38 19099.70 234
AllTest98.55 17498.40 17498.99 20299.93 10197.35 278100.00 199.40 18897.08 19699.09 22699.98 18993.37 24599.95 15096.94 28799.84 13899.68 236
TestCases98.99 20299.93 10197.35 27899.40 18897.08 19699.09 22699.98 18993.37 24599.95 15096.94 28799.84 13899.68 236
xiu_mvs_v1_base_debu99.35 8599.21 9699.79 10399.67 16499.71 9699.78 28499.36 21298.13 100100.00 1100.00 197.00 186100.00 199.83 11399.07 16499.66 238
xiu_mvs_v1_base99.35 8599.21 9699.79 10399.67 16499.71 9699.78 28499.36 21298.13 100100.00 1100.00 197.00 186100.00 199.83 11399.07 16499.66 238
xiu_mvs_v1_base_debi99.35 8599.21 9699.79 10399.67 16499.71 9699.78 28499.36 21298.13 100100.00 1100.00 197.00 186100.00 199.83 11399.07 16499.66 238
h-mvs3397.03 25196.53 25798.51 22899.79 14295.90 30999.45 33299.45 10298.21 92100.00 199.78 25797.49 16799.99 9499.72 13174.92 39099.65 241
OpenMVScopyleft95.20 1798.76 15598.41 17399.78 10798.89 29899.81 8599.99 21199.76 4998.02 10898.02 297100.00 191.44 270100.00 199.63 15999.97 11199.55 242
cascas98.43 18398.07 19899.50 15199.65 17499.02 177100.00 199.22 28094.21 31899.72 18799.98 18992.03 26799.93 16699.68 14798.12 20799.54 243
CANet_DTU99.02 13198.90 13599.41 16399.88 11298.71 198100.00 199.29 24698.84 51100.00 1100.00 194.02 237100.00 198.08 25099.96 11499.52 244
DSMNet-mixed95.18 31895.21 31695.08 34096.03 37590.21 37299.65 31093.64 40592.91 34798.34 27797.40 37790.05 29295.51 38791.02 35797.86 22099.51 245
Fast-Effi-MVS+-dtu98.38 18998.56 16497.82 28299.58 20094.44 339100.00 199.16 30596.75 22099.51 19699.63 28695.03 22499.60 21597.71 26499.67 15099.42 246
UGNet98.41 18798.11 19499.31 18199.54 20798.55 20799.18 361100.00 198.64 7099.79 17899.04 33087.61 322100.00 199.30 18899.89 12799.40 247
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
VDDNet96.39 28395.55 30498.90 20899.27 26197.45 27399.15 36999.92 3491.28 35999.98 109100.00 173.55 383100.00 199.85 10996.98 24699.24 248
UniMVSNet_ETH3D95.28 31694.41 32297.89 28098.91 29695.14 31799.13 37199.35 22392.11 35497.17 32999.66 27670.28 39099.36 25897.88 25995.18 27599.16 249
baseline298.99 13698.93 13099.18 19299.26 26399.15 167100.00 199.46 9496.71 22696.79 338100.00 199.42 5399.25 26698.75 22099.94 11999.15 250
hse-mvs296.79 25996.38 26598.04 27099.68 15995.54 31399.81 27899.42 13898.21 92100.00 199.80 25497.49 16799.46 25199.72 13173.27 39399.12 251
AUN-MVS96.26 29095.67 30198.06 26499.68 15995.60 31299.82 27799.42 13896.78 21799.88 16099.80 25494.84 22799.47 24797.48 27273.29 39299.12 251
tt080596.52 27296.23 27297.40 29399.30 26093.55 34799.32 34599.45 10296.75 22097.88 30599.99 18479.99 37099.59 21797.39 27795.98 25499.06 253
test0.0.03 198.12 20298.03 20298.39 23499.11 26998.07 241100.00 199.93 3096.70 22796.91 33499.95 21799.31 6498.19 33891.93 35098.44 18398.91 254
testgi96.18 29395.93 28596.93 31598.98 29094.20 343100.00 199.07 33497.16 19096.06 35199.86 23784.08 35297.79 36490.38 36397.80 22698.81 255
Effi-MVS+-dtu98.51 17998.86 13797.47 29299.77 14794.21 342100.00 198.94 35897.61 15099.91 15398.75 35095.89 20899.51 24299.36 18299.48 15898.68 256
DeepMVS_CXcopyleft89.98 36598.90 29771.46 39699.18 29997.61 15096.92 33299.83 24586.07 33699.83 18796.02 30597.65 23698.65 257
COLMAP_ROBcopyleft97.10 798.29 19498.17 19198.65 22099.94 9997.39 27599.30 34999.40 18895.64 27697.75 311100.00 192.69 26099.95 15098.89 21099.92 12498.62 258
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
XVG-OURS-SEG-HR98.27 19698.31 18298.14 25499.59 19595.92 307100.00 199.36 21298.48 7599.21 217100.00 189.27 30399.94 16299.76 12699.17 16198.56 259
XVG-OURS98.30 19298.36 18098.13 25799.58 20095.91 308100.00 199.36 21298.69 6599.23 216100.00 191.20 27399.92 16899.34 18497.82 22498.56 259
HQP4-MVS99.17 21899.57 22297.77 261
HQP-MVS97.73 21697.85 20897.39 29499.07 27494.82 323100.00 199.40 18899.04 1599.17 21899.97 19788.61 31299.57 22299.79 11995.58 25597.77 261
cl2298.23 19898.11 19498.58 22699.82 12199.01 179100.00 199.28 25296.92 20698.33 27899.21 32098.09 14498.97 28098.72 22192.61 30897.76 263
miper_ehance_all_eth97.81 21297.66 21898.23 24699.49 23098.37 21999.99 21199.11 32294.78 29998.25 28699.21 32098.18 14098.57 31797.35 27992.61 30897.76 263
miper_enhance_ethall98.33 19198.27 18398.51 22899.66 17399.04 175100.00 199.22 28097.53 15998.51 26999.38 31299.49 3998.75 30198.02 25392.61 30897.76 263
cl____97.54 22797.32 23098.18 25099.47 23598.14 237100.00 199.10 32494.16 32197.60 31899.63 28697.52 16698.65 30896.47 29991.97 32097.76 263
DIV-MVS_self_test97.52 23097.35 22998.05 26899.46 23898.11 238100.00 199.10 32494.21 31897.62 31699.63 28697.65 16098.29 33496.47 29991.98 31997.76 263
miper_lstm_enhance97.40 23497.28 23297.75 28599.48 23297.52 270100.00 199.07 33494.08 32298.01 29899.61 29297.38 17497.98 35696.44 30291.47 32997.76 263
VPNet96.41 27995.76 29498.33 23998.61 31198.30 22799.48 32999.45 10296.98 20198.87 24499.88 23481.57 36498.93 28299.22 19687.82 36197.76 263
VPA-MVSNet97.03 25196.43 26398.82 21298.64 31099.32 14699.38 34099.47 7996.73 22498.91 24098.94 34187.00 32999.40 25699.23 19489.59 34597.76 263
HQP_MVS97.71 21897.82 21097.37 29599.00 28694.80 326100.00 199.40 18899.00 2799.08 22899.97 19788.58 31499.55 23199.79 11995.57 25997.76 263
plane_prior599.40 18899.55 23199.79 11995.57 25997.76 263
our_test_396.51 27496.35 26796.98 31297.61 35295.05 31899.98 23599.01 35294.68 30396.77 34099.06 32795.87 20998.14 34191.81 35192.37 31397.75 273
ppachtmachnet_test96.17 29595.89 28697.02 30997.61 35295.24 31599.99 21199.24 27393.31 34096.71 34199.62 29094.34 23498.07 35089.87 36592.30 31597.75 273
c3_l97.58 22497.42 22498.06 26499.48 23298.16 23499.96 24699.10 32494.54 30898.13 29099.20 32297.87 14998.25 33797.28 28091.20 33297.75 273
nrg03097.64 21997.27 23498.75 21798.34 32099.53 118100.00 199.22 28096.21 26098.27 28499.95 21794.40 23398.98 27899.23 19489.78 34497.75 273
v14419296.40 28295.81 28998.17 25297.89 34398.11 23899.99 21199.06 34293.39 33798.75 25399.09 32590.43 28698.66 30793.10 34290.55 33997.75 273
v192192096.16 29795.50 30598.14 25497.88 34597.96 25199.99 21199.07 33493.33 33998.60 26199.24 31989.37 30298.71 30491.28 35490.74 33797.75 273
v119296.18 29395.49 30798.26 24598.01 33898.15 23599.99 21199.08 33093.36 33898.54 26598.97 33989.47 30198.89 28791.15 35690.82 33597.75 273
v14896.29 28895.84 28897.63 28697.74 34796.53 303100.00 199.07 33493.52 33498.01 29899.42 31191.22 27198.60 31296.37 30387.22 36597.75 273
iter_conf0598.73 15798.77 14498.60 22399.65 17499.22 159100.00 199.22 28096.68 23198.98 23599.97 19799.99 398.84 29299.29 18995.11 28097.75 273
v124095.96 30595.25 31498.07 26097.91 34297.87 25999.96 24699.07 33493.24 34298.64 25998.96 34088.98 30798.61 31089.58 36990.92 33497.75 273
v2v48296.70 26596.18 27498.27 24398.04 33798.39 216100.00 199.13 31594.19 32098.58 26299.08 32690.48 28598.67 30695.69 31090.44 34097.75 273
EI-MVSNet97.98 20797.93 20698.16 25399.11 26997.84 26099.74 29499.29 24694.39 31498.65 257100.00 197.21 17798.88 29097.62 26995.31 26697.75 273
MDA-MVSNet-bldmvs91.65 34489.94 35296.79 32396.72 37096.70 30099.42 33798.94 35888.89 37466.97 40498.37 36481.43 36595.91 38489.24 37289.46 34897.75 273
UniMVSNet_NR-MVSNet97.16 24396.80 24798.22 24798.38 31998.41 213100.00 199.45 10296.14 26297.76 30899.64 28295.05 22398.50 32397.98 25486.84 36697.75 273
DU-MVS96.93 25696.49 26098.22 24798.31 32398.41 213100.00 199.37 20696.41 24797.76 30899.65 27892.14 26598.50 32397.98 25486.84 36697.75 273
UniMVSNet (Re)97.29 23996.85 24698.59 22598.49 31699.13 168100.00 199.42 13896.52 24198.24 28898.90 34494.93 22598.89 28797.54 27087.61 36297.75 273
NR-MVSNet96.63 26896.04 28098.38 23598.31 32398.98 18399.22 36099.35 22395.87 26794.43 36699.65 27892.73 25898.40 33096.78 29588.05 35997.75 273
TranMVSNet+NR-MVSNet96.45 27896.01 28197.79 28398.00 33997.62 268100.00 199.35 22395.98 26597.31 32599.64 28290.09 29098.00 35596.89 29086.80 36997.75 273
Patchmtry96.81 25896.37 26698.14 25499.31 25798.55 20798.91 38299.00 35390.45 36697.92 30398.98 33696.94 18998.12 34394.27 33091.53 32697.75 273
N_pmnet91.88 34293.37 33187.40 37197.24 36766.33 40499.90 26391.05 40789.77 37295.65 35598.58 35790.05 29298.11 34585.39 38092.72 30797.75 273
XXY-MVS97.14 24596.63 25398.67 21998.65 30998.92 18799.54 32499.29 24695.57 28097.63 31499.83 24587.79 32199.35 26098.39 23792.95 30597.75 273
IterMVS-LS97.56 22597.44 22397.92 27999.38 25497.90 25599.89 26699.10 32494.41 31398.32 27999.54 30397.21 17798.11 34597.50 27191.62 32497.75 273
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CLD-MVS97.64 21997.74 21397.36 29699.01 28294.76 331100.00 199.34 22999.30 499.00 23399.97 19787.49 32399.57 22299.96 8595.58 25597.75 273
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
eth_miper_zixun_eth97.47 23197.28 23298.06 26499.41 24597.94 25399.62 31599.08 33094.46 31298.19 28999.56 30096.91 19198.50 32396.78 29591.49 32797.74 296
FIs97.95 20897.73 21698.62 22298.53 31599.24 156100.00 199.43 12296.74 22297.87 30699.82 24895.27 21998.89 28798.78 21793.07 30397.74 296
v114496.51 27495.97 28498.13 25797.98 34098.04 24599.99 21199.08 33093.51 33598.62 26098.98 33690.98 27998.62 30993.79 33790.79 33697.74 296
YYNet192.44 33890.92 34697.03 30896.20 37397.06 29199.99 21199.14 31188.21 37867.93 40198.43 36388.63 31196.28 38090.64 35889.08 35297.74 296
MDA-MVSNet_test_wron92.61 33791.09 34597.19 30596.71 37197.26 284100.00 199.14 31188.61 37567.90 40298.32 36689.03 30596.57 37690.47 36289.59 34597.74 296
WR-MVS97.09 24696.64 25298.46 23098.43 31799.09 16999.97 24199.33 23195.62 27897.76 30899.67 27491.17 27498.56 31998.49 23489.28 35097.74 296
IterMVS-SCA-FT96.72 26496.42 26497.62 28899.40 25096.83 29699.99 21199.14 31194.65 30597.55 32099.72 26189.65 29898.31 33395.62 31392.05 31797.73 302
Anonymous2023121196.29 28895.70 29798.07 26099.80 13897.49 27199.15 36999.40 18889.11 37397.75 31199.45 30988.93 30898.98 27898.26 24689.47 34797.73 302
FC-MVSNet-test97.84 21097.63 22098.45 23198.30 32599.05 174100.00 199.43 12296.63 23697.61 31799.82 24895.19 22298.57 31798.64 22693.05 30497.73 302
mvsmamba98.13 20198.06 19998.32 24098.22 33098.50 210100.00 199.22 28096.41 24798.91 24099.96 20995.69 21398.73 30399.19 19794.95 28797.73 302
MVSTER98.58 17198.52 16698.77 21699.65 17499.68 102100.00 199.29 24695.63 27798.65 25799.80 25499.78 898.88 29098.59 23195.31 26697.73 302
FMVSNet397.30 23896.95 24298.37 23699.65 17499.25 15499.71 30299.28 25294.23 31698.53 26698.91 34393.30 24798.11 34595.31 31793.60 29797.73 302
FMVSNet296.22 29195.60 30398.06 26499.53 21098.33 22399.45 33299.27 26093.71 32698.03 29598.84 34684.23 34998.10 34893.97 33593.40 30097.73 302
OPM-MVS97.21 24097.18 23997.32 29998.08 33694.66 332100.00 199.28 25298.65 6998.92 23899.98 18986.03 33899.56 22698.28 24595.41 26197.72 309
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
pmmvs595.94 30695.61 30296.95 31397.42 36394.66 332100.00 198.08 37993.60 33297.05 33099.43 31087.02 32898.46 32795.76 30792.12 31697.72 309
RRT_MVS97.77 21497.76 21197.78 28497.89 34397.06 291100.00 199.29 24695.74 27498.00 30099.97 19795.94 20798.55 32098.87 21294.18 29497.72 309
pm-mvs195.76 30995.01 31998.00 27298.23 32997.45 27399.24 35399.04 34793.13 34595.93 35399.72 26186.28 33498.84 29295.62 31387.92 36097.72 309
GBi-Net96.07 30195.80 29196.89 31799.53 21094.87 32099.18 36199.27 26093.71 32698.53 26698.81 34784.23 34998.07 35095.31 31793.60 29797.72 309
test196.07 30195.80 29196.89 31799.53 21094.87 32099.18 36199.27 26093.71 32698.53 26698.81 34784.23 34998.07 35095.31 31793.60 29797.72 309
FMVSNet194.45 32193.63 32896.89 31798.87 30294.87 32099.18 36199.27 26090.95 36397.31 32598.81 34772.89 38698.07 35092.61 34492.81 30697.72 309
IterMVS96.76 26196.46 26297.63 28699.41 24596.89 29499.99 21199.13 31594.74 30297.59 31999.66 27689.63 30098.28 33595.71 30992.31 31497.72 309
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
pmmvs497.17 24296.80 24798.27 24397.68 34998.64 203100.00 199.18 29994.22 31798.55 26499.71 26393.67 24098.47 32695.66 31192.57 31197.71 317
v7n96.06 30395.42 31397.99 27497.58 35597.35 27899.86 27099.11 32292.81 35197.91 30499.49 30690.99 27898.92 28392.51 34688.49 35797.70 318
PS-MVSNAJss98.03 20598.06 19997.94 27697.63 35097.33 28199.89 26699.23 27796.27 25698.03 29599.59 29498.75 12198.78 29698.52 23394.61 29197.70 318
LPG-MVS_test97.31 23797.32 23097.28 30198.85 30494.60 335100.00 199.37 20697.35 17698.85 24599.98 18986.66 33199.56 22699.55 16995.26 26897.70 318
LGP-MVS_train97.28 30198.85 30494.60 33599.37 20697.35 17698.85 24599.98 18986.66 33199.56 22699.55 16995.26 26897.70 318
SixPastTwentyTwo95.71 31095.49 30796.38 33097.42 36393.01 35299.84 27398.23 37494.75 30095.98 35299.97 19785.35 34398.43 32894.71 32593.17 30297.69 322
ACMM97.17 697.37 23597.40 22697.29 30099.01 28294.64 334100.00 199.25 26898.07 10698.44 27399.98 18987.38 32599.55 23199.25 19195.19 27497.69 322
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
EU-MVSNet96.63 26896.53 25796.94 31497.59 35496.87 29599.76 29199.47 7996.35 25296.85 33699.78 25792.57 26196.27 38195.33 31691.08 33397.68 324
K. test v395.46 31495.14 31796.40 32997.53 35793.40 35099.99 21199.23 27795.49 28692.70 37499.73 26084.26 34898.12 34393.94 33693.38 30197.68 324
lessismore_v096.05 33597.55 35691.80 36399.22 28091.87 37599.91 22983.50 35698.68 30592.48 34790.42 34197.68 324
XVG-ACMP-BASELINE96.60 27096.52 25996.84 32098.41 31893.29 35199.99 21199.32 23397.76 13498.51 26999.29 31781.95 36399.54 23498.40 23695.03 28297.68 324
ACMP97.00 897.19 24197.16 24097.27 30398.97 29194.58 338100.00 199.32 23397.97 11497.45 32299.98 18985.79 34099.56 22699.70 13995.24 27197.67 328
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
jajsoiax97.07 24896.79 24997.89 28097.28 36697.12 28899.95 25299.19 29296.55 23897.31 32599.69 26987.35 32798.91 28498.70 22295.12 27997.66 329
PS-CasMVS96.34 28695.78 29398.03 27198.18 33398.27 22999.71 30299.32 23394.75 30096.82 33799.65 27886.98 33098.15 34097.74 26388.85 35497.66 329
CP-MVSNet96.73 26296.25 27198.18 25098.21 33198.67 20199.77 28999.32 23395.06 29497.20 32899.65 27890.10 28998.19 33898.06 25288.90 35397.66 329
ACMH96.25 1196.77 26096.62 25497.21 30498.96 29294.43 34099.64 31199.33 23197.43 17196.55 34399.97 19783.52 35599.54 23499.07 20495.13 27897.66 329
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
mvs_tets97.00 25496.69 25197.94 27697.41 36597.27 28399.60 31799.18 29996.51 24297.35 32499.69 26986.53 33398.91 28498.84 21495.09 28197.65 333
PEN-MVS96.01 30495.48 30997.58 29097.74 34797.26 28499.90 26399.29 24694.55 30796.79 33899.55 30187.38 32597.84 36096.92 28987.24 36497.65 333
ACMH+96.20 1396.49 27796.33 26997.00 31099.06 27893.80 34599.81 27899.31 23897.32 18095.89 35499.97 19782.62 36199.54 23498.34 24094.63 29097.65 333
OurMVSNet-221017-096.14 29995.98 28396.62 32597.49 36093.44 34999.92 25998.16 37595.86 26997.65 31399.95 21785.71 34198.78 29694.93 32394.18 29497.64 336
pmmvs693.64 32892.87 33695.94 33797.47 36291.41 36698.92 38199.02 35087.84 38095.01 35999.61 29277.24 37898.77 29994.33 32986.41 37097.63 337
v1096.14 29995.50 30598.07 26098.19 33297.96 25199.83 27499.07 33492.10 35598.07 29298.94 34191.07 27698.61 31092.41 34989.82 34397.63 337
v896.35 28595.73 29698.21 24998.11 33598.23 23199.94 25699.07 33492.66 35298.29 28199.00 33591.46 26998.77 29994.17 33188.83 35597.62 339
DTE-MVSNet95.52 31294.99 32097.08 30697.49 36096.45 304100.00 199.25 26893.82 32596.17 34999.57 29987.81 32097.18 36994.57 32686.26 37197.62 339
test_djsdf97.55 22697.38 22798.07 26097.50 35897.99 247100.00 199.13 31595.46 28898.47 27299.85 24292.01 26898.59 31498.63 22795.36 26497.62 339
MIMVSNet191.96 33991.20 34294.23 35494.94 38691.69 36499.34 34499.22 28088.23 37794.18 36798.45 36175.52 38193.41 39479.37 39391.49 32797.60 342
FMVSNet595.32 31595.43 31294.99 34499.39 25392.99 35499.25 35299.24 27390.45 36697.44 32398.45 36195.78 21194.39 39087.02 37791.88 32197.59 343
LTVRE_ROB95.29 1696.32 28796.10 27796.99 31198.55 31393.88 34499.45 33299.28 25294.50 31096.46 34499.52 30484.86 34599.48 24597.26 28195.03 28297.59 343
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
TransMVSNet (Re)94.78 32093.72 32697.93 27898.34 32097.88 25799.23 35897.98 38391.60 35794.55 36399.71 26387.89 31998.36 33189.30 37184.92 37297.56 345
Baseline_NR-MVSNet96.16 29795.70 29797.56 29198.28 32696.79 298100.00 197.86 38791.93 35697.63 31499.47 30892.14 26598.35 33297.13 28286.83 36897.54 346
KD-MVS_2432*160094.15 32493.08 33397.35 29799.53 21097.83 26199.63 31399.19 29292.88 34896.29 34697.68 37498.84 11496.70 37389.73 36663.92 39797.53 347
miper_refine_blended94.15 32493.08 33397.35 29799.53 21097.83 26199.63 31399.19 29292.88 34896.29 34697.68 37498.84 11496.70 37389.73 36663.92 39797.53 347
USDC95.90 30795.70 29796.50 32898.60 31292.56 359100.00 198.30 37397.77 13296.92 33299.94 22281.25 36799.45 25293.54 33994.96 28697.49 349
ITE_SJBPF96.84 32098.96 29293.49 34898.12 37798.12 10398.35 27699.97 19784.45 34699.56 22695.63 31295.25 27097.49 349
Anonymous2023120693.45 33093.17 33294.30 35295.00 38589.69 37399.98 23598.43 37293.30 34194.50 36598.59 35690.52 28395.73 38677.46 39790.73 33897.48 351
WR-MVS_H96.73 26296.32 27097.95 27598.26 32797.88 25799.72 30199.43 12295.06 29496.99 33198.68 35393.02 25298.53 32197.43 27488.33 35897.43 352
tfpnnormal96.36 28495.69 30098.37 23698.55 31398.71 19899.69 30699.45 10293.16 34496.69 34299.71 26388.44 31698.99 27794.17 33191.38 33097.41 353
TinyColmap95.50 31395.12 31896.64 32498.69 30893.00 35399.40 33897.75 38996.40 24996.14 35099.87 23579.47 37199.50 24393.62 33894.72 28997.40 354
UnsupCasMVSNet_eth94.25 32393.89 32495.34 33997.63 35092.13 36099.73 29999.36 21294.88 29792.78 37198.63 35582.72 35996.53 37794.57 32684.73 37397.36 355
PVSNet_BlendedMVS98.71 15998.62 15898.98 20499.98 8599.60 108100.00 1100.00 197.23 187100.00 199.03 33296.57 19999.99 94100.00 194.75 28897.35 356
anonymousdsp97.16 24396.88 24498.00 27297.08 36898.06 24399.81 27899.15 30694.58 30697.84 30799.62 29090.49 28498.60 31297.98 25495.32 26597.33 357
V4296.65 26796.16 27698.11 25998.17 33498.23 23199.99 21199.09 32993.97 32398.74 25499.05 32991.09 27598.82 29495.46 31589.90 34297.27 358
LF4IMVS96.19 29296.18 27496.23 33498.26 32792.09 361100.00 197.89 38697.82 12897.94 30199.87 23582.71 36099.38 25797.41 27593.71 29697.20 359
new_pmnet94.11 32793.47 33096.04 33696.60 37292.82 35599.97 24198.91 36190.21 36995.26 35698.05 37285.89 33998.14 34184.28 38392.01 31897.16 360
APD_test193.07 33594.14 32389.85 36699.18 26572.49 39499.76 29198.90 36392.86 35096.35 34599.94 22275.56 38099.91 16986.73 37897.98 21197.15 361
D2MVS97.63 22397.83 20997.05 30798.83 30694.60 335100.00 199.82 4096.89 21098.28 28299.03 33294.05 23599.47 24798.58 23294.97 28597.09 362
test20.0393.11 33392.85 33793.88 35795.19 38491.83 362100.00 198.87 36493.68 32992.76 37298.88 34589.20 30492.71 39577.88 39589.19 35197.09 362
KD-MVS_self_test91.16 34590.09 35094.35 35194.44 38791.27 36799.74 29499.08 33090.82 36494.53 36494.91 38986.11 33594.78 38982.67 38668.52 39596.99 364
CL-MVSNet_self_test91.07 34690.35 34993.24 35993.27 38889.16 37599.55 32299.25 26892.34 35395.23 35797.05 37988.86 31093.59 39380.67 39066.95 39696.96 365
test_method91.04 34791.10 34490.85 36398.34 32077.63 390100.00 198.93 36076.69 39496.25 34898.52 35970.44 38997.98 35689.02 37491.74 32296.92 366
pmmvs390.62 34989.36 35594.40 35090.53 39891.49 365100.00 196.73 39784.21 38793.65 36996.65 38182.56 36294.83 38882.28 38777.62 38996.89 367
test_040294.35 32293.70 32796.32 33297.92 34193.60 34699.61 31698.85 36688.19 37994.68 36299.48 30780.01 36998.58 31689.39 37095.15 27796.77 368
EG-PatchMatch MVS92.94 33692.49 34094.29 35395.87 37787.07 38199.07 37998.11 37893.19 34388.98 38398.66 35470.89 38899.08 27192.43 34895.21 27396.72 369
test_fmvs295.17 31995.23 31595.01 34298.95 29488.99 37699.99 21197.77 38897.79 13098.58 26299.70 26673.36 38499.34 26195.88 30695.03 28296.70 370
Anonymous2024052193.29 33192.76 33894.90 34795.64 38191.27 36799.97 24198.82 36787.04 38194.71 36198.19 36783.86 35396.80 37284.04 38492.56 31296.64 371
TDRefinement91.93 34090.48 34896.27 33381.60 40492.65 35899.10 37497.61 39293.96 32493.77 36899.85 24280.03 36899.53 23997.82 26170.59 39496.63 372
MS-PatchMatch95.66 31195.87 28795.05 34197.80 34689.25 37498.88 38399.30 24296.35 25296.86 33599.01 33481.35 36699.43 25393.30 34199.98 10896.46 373
MVP-Stereo96.51 27496.48 26196.60 32695.65 38094.25 34198.84 38498.16 37595.85 27195.23 35799.04 33092.54 26299.13 26992.98 34399.98 10896.43 374
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
UnsupCasMVSNet_bld89.50 35188.00 35793.99 35695.30 38388.86 37798.52 38899.28 25285.50 38587.80 38794.11 39061.63 39496.96 37190.63 35979.26 38596.15 375
OpenMVS_ROBcopyleft88.34 2091.89 34191.12 34394.19 35595.55 38287.63 37999.26 35198.03 38086.61 38390.65 38196.82 38070.14 39198.78 29686.54 37996.50 25396.15 375
ambc88.45 36886.84 40070.76 39797.79 39498.02 38290.91 37895.14 38538.69 40398.51 32294.97 32284.23 37496.09 377
PM-MVS88.39 35387.41 35891.31 36291.73 39282.02 38899.79 28396.62 39891.06 36290.71 38095.73 38348.60 39995.96 38390.56 36081.91 38395.97 378
pmmvs-eth3d91.73 34390.67 34794.92 34691.63 39392.71 35799.90 26398.54 37191.19 36088.08 38595.50 38479.31 37396.13 38290.55 36181.32 38495.91 379
test_vis1_rt93.10 33492.93 33593.58 35899.63 18285.07 38399.99 21193.71 40497.49 16590.96 37797.10 37860.40 39599.95 15099.24 19397.90 21895.72 380
EGC-MVSNET79.46 36374.04 37195.72 33896.00 37692.73 35699.09 37699.04 3475.08 40816.72 40898.71 35173.03 38598.74 30282.05 38896.64 25095.69 381
new-patchmatchnet90.30 35089.46 35492.84 36190.77 39688.55 37899.83 27498.80 36890.07 37187.86 38695.00 38778.77 37494.30 39184.86 38279.15 38695.68 382
mvsany_test389.36 35288.96 35690.56 36491.95 39078.97 38999.74 29496.59 40096.84 21289.25 38296.07 38252.59 39797.11 37095.17 32082.44 38095.58 383
test_f86.87 35786.06 36089.28 36791.45 39576.37 39299.87 26997.11 39491.10 36188.46 38493.05 39338.31 40496.66 37591.77 35283.46 37894.82 384
test_fmvs387.19 35687.02 35987.71 37092.69 38976.64 39199.96 24697.27 39393.55 33390.82 37994.03 39138.00 40592.19 39693.49 34083.35 37994.32 385
test12379.44 36479.23 36680.05 38280.03 40571.72 395100.00 177.93 41362.52 39994.81 36099.69 26978.21 37574.53 40692.57 34527.33 40693.90 386
LCM-MVSNet79.01 36676.93 36985.27 37478.28 40668.01 40296.57 39598.03 38055.10 40282.03 39593.27 39231.99 40893.95 39282.72 38574.37 39193.84 387
CMPMVSbinary66.12 2290.65 34892.04 34186.46 37396.18 37466.87 40398.03 39299.38 20383.38 38985.49 39199.55 30177.59 37698.80 29594.44 32894.31 29393.72 388
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
WB-MVS88.24 35490.09 35082.68 37991.56 39469.51 399100.00 198.73 36990.72 36587.29 38898.12 36892.87 25485.01 40162.19 40289.34 34993.54 389
WB-MVSnew97.02 25397.24 23696.37 33199.44 24197.36 277100.00 199.43 12296.12 26399.35 21199.89 23293.60 24398.42 32988.91 37598.39 18893.33 390
testf184.40 35984.79 36183.23 37795.71 37858.71 41098.79 38597.75 38981.58 39084.94 39298.07 37045.33 40197.73 36577.09 39883.85 37593.24 391
APD_test284.40 35984.79 36183.23 37795.71 37858.71 41098.79 38597.75 38981.58 39084.94 39298.07 37045.33 40197.73 36577.09 39883.85 37593.24 391
SSC-MVS87.61 35589.47 35382.04 38090.63 39768.77 40099.99 21198.66 37090.34 36886.70 38998.08 36992.72 25984.12 40259.41 40588.71 35693.22 393
PMMVS279.15 36577.28 36884.76 37582.34 40372.66 39399.70 30495.11 40371.68 39784.78 39490.87 39432.05 40789.99 39875.53 40063.45 39991.64 394
tmp_tt75.80 36874.26 37080.43 38152.91 41353.67 41287.42 40097.98 38361.80 40067.04 403100.00 176.43 37996.40 37896.47 29928.26 40591.23 395
testmvs80.17 36181.95 36474.80 38458.54 41159.58 409100.00 187.14 41076.09 39599.61 192100.00 167.06 39274.19 40798.84 21450.30 40190.64 396
Gipumacopyleft84.73 35883.50 36388.40 36997.50 35882.21 38788.87 39899.05 34465.81 39885.71 39090.49 39553.70 39696.31 37978.64 39491.74 32286.67 397
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
FPMVS77.92 36779.45 36573.34 38676.87 40746.81 41398.24 39099.05 34459.89 40173.55 39798.34 36536.81 40686.55 39980.96 38991.35 33186.65 398
ANet_high66.05 37263.44 37673.88 38561.14 41063.45 40795.68 39787.18 40979.93 39247.35 40680.68 40622.35 41072.33 40861.24 40335.42 40485.88 399
test_vis3_rt79.61 36278.19 36783.86 37688.68 39969.56 39899.81 27882.19 41286.78 38268.57 40084.51 40325.06 40998.26 33689.18 37378.94 38783.75 400
MVEpermissive68.59 2167.22 37164.68 37574.84 38374.67 40962.32 40895.84 39690.87 40850.98 40358.72 40581.05 40512.20 41378.95 40361.06 40456.75 40083.24 401
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMVScopyleft60.66 2365.98 37365.05 37468.75 38955.06 41238.40 41488.19 39996.98 39548.30 40644.82 40788.52 39812.22 41286.49 40067.58 40183.79 37781.35 402
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
EMVS69.88 37069.09 37372.24 38884.70 40165.82 40599.96 24687.08 41149.82 40571.51 39984.74 40249.30 39875.32 40550.97 40743.71 40375.59 403
E-PMN70.72 36970.06 37272.69 38783.92 40265.48 40699.95 25292.72 40649.88 40472.30 39886.26 40147.17 40077.43 40453.83 40644.49 40275.17 404
wuyk23d28.28 37429.73 37823.92 39075.89 40832.61 41566.50 40112.88 41416.09 40714.59 40916.59 40812.35 41132.36 40939.36 40813.36 4076.79 405
test_blank0.07 3780.09 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.79 4090.00 4140.00 4100.00 4090.00 4080.00 406
uanet_test0.01 3790.02 3820.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.14 4100.00 4140.00 4100.00 4090.00 4080.00 406
DCPMVS0.01 3790.02 3820.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.14 4100.00 4140.00 4100.00 4090.00 4080.00 406
cdsmvs_eth3d_5k24.41 37532.55 3770.00 3910.00 4140.00 4160.00 40299.39 2010.00 4090.00 410100.00 193.55 2440.00 4100.00 4090.00 4080.00 406
pcd_1.5k_mvsjas8.24 37710.99 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.14 41098.75 1210.00 4100.00 4090.00 4080.00 406
sosnet-low-res0.01 3790.02 3820.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.14 4100.00 4140.00 4100.00 4090.00 4080.00 406
sosnet0.01 3790.02 3820.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.14 4100.00 4140.00 4100.00 4090.00 4080.00 406
uncertanet0.01 3790.02 3820.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.14 4100.00 4140.00 4100.00 4090.00 4080.00 406
Regformer0.01 3790.02 3820.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.14 4100.00 4140.00 4100.00 4090.00 4080.00 406
ab-mvs-re8.33 37611.11 3790.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 410100.00 10.00 4140.00 4100.00 4090.00 4080.00 406
uanet0.01 3790.02 3820.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.14 4100.00 4140.00 4100.00 4090.00 4080.00 406
WAC-MVS97.98 24895.74 308
FOURS1100.00 199.97 21100.00 199.42 13898.52 74100.00 1
test_one_0601100.00 199.99 599.42 13898.72 64100.00 1100.00 199.60 17
eth-test20.00 414
eth-test0.00 414
ZD-MVS100.00 199.98 1799.80 4397.31 182100.00 1100.00 199.32 6299.99 94100.00 1100.00 1
test_241102_ONE100.00 199.99 599.42 13899.03 20100.00 1100.00 199.50 37100.00 1
9.1499.57 4999.99 49100.00 199.42 13897.54 157100.00 1100.00 199.15 8399.99 94100.00 1100.00 1
save fliter99.99 4999.93 43100.00 199.42 13898.93 38
test0726100.00 199.99 5100.00 199.42 13899.04 15100.00 1100.00 199.53 29
test_part2100.00 199.99 5100.00 1
sam_mvs99.33 59
MTGPAbinary99.42 138
test_post199.32 34588.24 39999.33 5999.59 21798.31 241
test_post89.05 39799.49 3999.59 217
patchmatchnet-post97.79 37399.41 5599.54 234
MTMP100.00 199.18 299
gm-plane-assit99.52 21797.26 28495.86 269100.00 199.43 25398.76 219
TEST9100.00 199.95 32100.00 199.42 13897.65 142100.00 1100.00 199.53 2999.97 125
test_8100.00 199.91 51100.00 199.42 13897.70 137100.00 1100.00 199.51 3399.98 118
agg_prior100.00 199.88 7299.42 138100.00 199.97 125
test_prior499.93 43100.00 1
test_prior2100.00 198.82 55100.00 1100.00 199.47 43100.00 1100.00 1
旧先验2100.00 198.11 104100.00 1100.00 199.67 150
新几何2100.00 1
原ACMM2100.00 1
testdata2100.00 197.36 278
segment_acmp99.55 25
testdata1100.00 198.77 63
plane_prior799.00 28694.78 330
plane_prior699.06 27894.80 32688.58 314
plane_prior499.97 197
plane_prior394.79 32999.03 2099.08 228
plane_prior2100.00 199.00 27
plane_prior199.02 281
plane_prior94.80 326100.00 199.03 2095.58 255
n20.00 415
nn0.00 415
door-mid96.32 401
test1199.42 138
door96.13 402
HQP5-MVS94.82 323
HQP-NCC99.07 274100.00 199.04 1599.17 218
ACMP_Plane99.07 274100.00 199.04 1599.17 218
BP-MVS99.79 119
HQP3-MVS99.40 18895.58 255
HQP2-MVS88.61 312
NP-MVS99.07 27494.81 32599.97 197
MDTV_nov1_ep1398.94 12899.53 21098.36 22199.39 33999.46 9496.54 23999.99 10399.63 28698.92 10899.86 17898.30 24498.71 175
ACMMP++_ref94.58 292
ACMMP++95.17 276
Test By Simon99.10 86