This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted by
DVP-MVS++99.26 699.09 999.77 899.91 4499.31 999.95 4398.43 12096.48 4399.80 1799.93 1197.44 14100.00 199.92 1399.98 35100.00 1
MSC_two_6792asdad99.93 299.91 4499.80 298.41 136100.00 199.96 9100.00 1100.00 1
PC_three_145296.96 3099.80 1799.79 6497.49 10100.00 199.99 599.98 35100.00 1
No_MVS99.93 299.91 4499.80 298.41 136100.00 199.96 9100.00 1100.00 1
SED-MVS99.28 599.11 799.77 899.93 2799.30 1199.96 2598.43 12097.27 2199.80 1799.94 496.71 24100.00 1100.00 1100.00 1100.00 1
IU-MVS99.93 2799.31 998.41 13697.71 899.84 9100.00 1100.00 1100.00 1
OPU-MVS99.93 299.89 5099.80 299.96 2599.80 6097.44 14100.00 1100.00 199.98 35100.00 1
test_241102_TWO98.43 12097.27 2199.80 1799.94 497.18 21100.00 1100.00 1100.00 1100.00 1
ETH3 D test640098.81 2398.54 2899.59 2199.93 2798.93 2699.93 6798.46 10794.56 10599.84 999.92 1394.32 8499.86 9599.96 999.98 35100.00 1
test_0728_THIRD96.48 4399.83 1199.91 1597.87 6100.00 199.92 13100.00 1100.00 1
test_0728_SECOND99.82 799.94 1499.47 799.95 4398.43 120100.00 199.99 5100.00 1100.00 1
SMA-MVScopyleft98.76 2798.48 3199.62 1899.87 5798.87 3199.86 10598.38 14793.19 16399.77 2699.94 495.54 44100.00 199.74 3099.99 22100.00 1
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MSP-MVS99.09 999.12 598.98 8399.93 2797.24 10999.95 4398.42 13297.50 1599.52 5499.88 2497.43 1699.71 13499.50 4199.98 35100.00 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
test9_res99.71 3599.99 22100.00 1
agg_prior299.48 42100.00 1100.00 1
testdata98.42 12399.47 10795.33 17698.56 7993.78 14699.79 2499.85 3593.64 10599.94 7394.97 17299.94 61100.00 1
MSLP-MVS++99.13 899.01 1199.49 3499.94 1498.46 6399.98 998.86 4797.10 2699.80 1799.94 495.92 37100.00 199.51 40100.00 1100.00 1
MCST-MVS99.32 399.14 499.86 599.97 399.59 599.97 1898.64 6598.47 299.13 8399.92 1396.38 30100.00 199.74 30100.00 1100.00 1
NCCC99.37 299.25 299.71 1399.96 899.15 2099.97 1898.62 6998.02 699.90 299.95 397.33 17100.00 199.54 39100.00 1100.00 1
API-MVS97.86 7797.66 7898.47 11899.52 10395.41 17499.47 19598.87 4691.68 21898.84 9599.85 3592.34 14099.99 4098.44 9499.96 52100.00 1
DeepPCF-MVS95.94 297.71 8798.98 1293.92 27799.63 9481.76 35599.96 2598.56 7999.47 199.19 8199.99 194.16 91100.00 199.92 1399.93 67100.00 1
DeepC-MVS_fast96.59 198.81 2398.54 2899.62 1899.90 4798.85 3399.24 22498.47 10598.14 499.08 8499.91 1593.09 120100.00 199.04 6099.99 22100.00 1
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MG-MVS98.91 1898.65 2299.68 1499.94 1499.07 2299.64 16899.44 1997.33 1899.00 9099.72 9194.03 9499.98 4698.73 81100.00 1100.00 1
testtj98.89 1998.69 2099.52 2999.94 1498.56 5799.90 8098.55 8595.14 8499.72 3399.84 4895.46 47100.00 199.65 3899.99 2299.99 24
DPE-MVScopyleft99.26 699.10 899.74 1099.89 5099.24 1899.87 9398.44 11297.48 1699.64 3999.94 496.68 2699.99 4099.99 5100.00 199.99 24
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
ACMMP_NAP98.49 4498.14 5699.54 2699.66 9398.62 5499.85 10898.37 15094.68 10099.53 5199.83 5192.87 125100.00 198.66 8799.84 8499.99 24
zzz-MVS98.33 5698.00 6599.30 5099.85 6097.93 8199.80 12598.28 16795.76 6697.18 14799.88 2492.74 129100.00 198.67 8499.88 8099.99 24
MTAPA98.29 5997.96 7099.30 5099.85 6097.93 8199.39 20598.28 16795.76 6697.18 14799.88 2492.74 129100.00 198.67 8499.88 8099.99 24
train_agg98.88 2098.65 2299.59 2199.92 3698.92 2799.96 2598.43 12094.35 11599.71 3499.86 3195.94 3599.85 9999.69 3799.98 3599.99 24
agg_prior198.88 2098.66 2199.54 2699.93 2798.77 4099.96 2598.43 12094.63 10399.63 4099.85 3595.79 4199.85 9999.72 3499.99 2299.99 24
Regformer-198.79 2598.60 2599.36 4899.85 6098.34 6699.87 9398.52 9296.05 5799.41 6299.79 6494.93 6399.76 12399.07 5599.90 7699.99 24
XVS98.70 2998.55 2799.15 6499.94 1497.50 9999.94 6198.42 13296.22 5399.41 6299.78 7094.34 8099.96 5898.92 6699.95 5599.99 24
test_prior398.99 1498.84 1699.43 3899.94 1498.49 6199.95 4398.65 6295.78 6499.73 3099.76 7696.00 3399.80 11199.78 26100.00 199.99 24
X-MVStestdata93.83 19792.06 22899.15 6499.94 1497.50 9999.94 6198.42 13296.22 5399.41 6241.37 38094.34 8099.96 5898.92 6699.95 5599.99 24
test_prior99.43 3899.94 1498.49 6198.65 6299.80 11199.99 24
新几何199.42 4199.75 8198.27 6898.63 6892.69 18199.55 4999.82 5594.40 74100.00 191.21 23799.94 6199.99 24
旧先验199.76 7997.52 9598.64 6599.85 3595.63 4399.94 6199.99 24
无先验99.49 19298.71 5593.46 155100.00 194.36 19099.99 24
test22299.55 10197.41 10799.34 21198.55 8591.86 21299.27 7699.83 5193.84 10099.95 5599.99 24
112198.03 7197.57 8399.40 4499.74 8298.21 6998.31 30198.62 6992.78 17699.53 5199.83 5195.08 54100.00 194.36 19099.92 7199.99 24
MVS96.60 12895.56 14999.72 1296.85 24299.22 1998.31 30198.94 3791.57 22090.90 23499.61 10886.66 21199.96 5897.36 13299.88 8099.99 24
APDe-MVS99.06 1198.91 1499.51 3199.94 1498.76 4499.91 7598.39 14397.20 2599.46 5799.85 3595.53 4699.79 11499.86 18100.00 199.99 24
test1299.43 3899.74 8298.56 5798.40 14099.65 3894.76 6699.75 12699.98 3599.99 24
TSAR-MVS + GP.98.60 3498.51 3098.86 9099.73 8696.63 13099.97 1897.92 20798.07 598.76 10199.55 11295.00 6099.94 7399.91 1697.68 15999.99 24
HPM-MVS_fast97.80 8297.50 8498.68 9899.79 7596.42 13799.88 9098.16 18591.75 21798.94 9299.54 11491.82 15299.65 14397.62 12899.99 2299.99 24
HPM-MVScopyleft97.96 7297.72 7798.68 9899.84 6596.39 14099.90 8098.17 18292.61 18698.62 10899.57 11191.87 15099.67 14198.87 7199.99 2299.99 24
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
APD-MVScopyleft98.62 3398.35 4599.41 4299.90 4798.51 6099.87 9398.36 15294.08 12899.74 2999.73 8994.08 9299.74 13099.42 4599.99 2299.99 24
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CNVR-MVS99.40 199.26 199.84 699.98 299.51 699.98 998.69 5798.20 399.93 199.98 296.82 23100.00 199.75 28100.00 199.99 24
CP-MVS98.45 4798.32 4698.87 8999.96 896.62 13199.97 1898.39 14394.43 11098.90 9499.87 2894.30 85100.00 199.04 6099.99 2299.99 24
SteuartSystems-ACMMP99.02 1298.97 1399.18 5798.72 14797.71 8699.98 998.44 11296.85 3199.80 1799.91 1597.57 899.85 9999.44 4499.99 2299.99 24
Skip Steuart: Steuart Systems R&D Blog.
CPTT-MVS97.64 8997.32 9298.58 10899.97 395.77 16299.96 2598.35 15589.90 25498.36 11999.79 6491.18 16099.99 4098.37 9799.99 2299.99 24
PAPM_NR98.12 6897.93 7298.70 9799.94 1496.13 15299.82 11998.43 12094.56 10597.52 14099.70 9594.40 7499.98 4697.00 14399.98 3599.99 24
PAPR98.52 4298.16 5599.58 2399.97 398.77 4099.95 4398.43 12095.35 7998.03 12999.75 8294.03 9499.98 4698.11 10699.83 8599.99 24
PHI-MVS98.41 5098.21 5199.03 7899.86 5997.10 11699.98 998.80 5290.78 24199.62 4399.78 7095.30 50100.00 199.80 2499.93 6799.99 24
test117298.38 5498.25 4998.77 9399.88 5496.56 13499.80 12598.36 15294.68 10099.20 7899.80 6093.28 11499.78 11699.34 4899.92 7199.98 55
DPM-MVS98.83 2298.46 3299.97 199.33 11399.92 199.96 2598.44 11297.96 799.55 4999.94 497.18 21100.00 193.81 20399.94 6199.98 55
HFP-MVS98.56 3898.37 4299.14 6699.96 897.43 10499.95 4398.61 7194.77 9699.31 7199.85 3594.22 87100.00 198.70 8299.98 3599.98 55
region2R98.54 4098.37 4299.05 7699.96 897.18 11299.96 2598.55 8594.87 9499.45 5899.85 3594.07 93100.00 198.67 84100.00 199.98 55
#test#98.59 3698.41 3599.14 6699.96 897.43 10499.95 4398.61 7195.00 8799.31 7199.85 3594.22 87100.00 198.78 7799.98 3599.98 55
Regformer-398.58 3798.41 3599.10 7299.84 6597.57 9299.66 16098.52 9295.79 6399.01 8899.77 7294.40 7499.75 12698.82 7399.83 8599.98 55
Regformer-498.56 3898.39 3999.08 7499.84 6597.52 9599.66 16098.52 9295.76 6699.01 8899.77 7294.33 8399.75 12698.80 7699.83 8599.98 55
Regformer-298.78 2698.59 2699.36 4899.85 6098.32 6799.87 9398.52 9296.04 5899.41 6299.79 6494.92 6499.76 12399.05 5699.90 7699.98 55
ACMMPR98.50 4398.32 4699.05 7699.96 897.18 11299.95 4398.60 7394.77 9699.31 7199.84 4893.73 102100.00 198.70 8299.98 3599.98 55
PGM-MVS98.34 5598.13 5798.99 8299.92 3697.00 11999.75 14099.50 1793.90 14199.37 6899.76 7693.24 117100.00 197.75 12699.96 5299.98 55
CDPH-MVS98.65 3298.36 4499.49 3499.94 1498.73 4599.87 9398.33 15893.97 13699.76 2799.87 2894.99 6199.75 12698.55 91100.00 199.98 55
mPP-MVS98.39 5398.20 5298.97 8499.97 396.92 12399.95 4398.38 14795.04 8698.61 10999.80 6093.39 108100.00 198.64 88100.00 199.98 55
SR-MVS-dyc-post98.31 5798.17 5498.71 9699.79 7596.37 14199.76 13798.31 16294.43 11099.40 6699.75 8293.28 11499.78 11698.90 6999.92 7199.97 67
RE-MVS-def98.13 5799.79 7596.37 14199.76 13798.31 16294.43 11099.40 6699.75 8292.95 12398.90 6999.92 7199.97 67
ETH3D-3000-0.198.68 3098.42 3399.47 3799.83 6898.57 5599.90 8098.37 15093.81 14499.81 1399.90 1994.34 8099.86 9599.84 1999.98 3599.97 67
TSAR-MVS + MP.98.93 1698.77 1899.41 4299.74 8298.67 4899.77 13298.38 14796.73 3799.88 499.74 8794.89 6599.59 14599.80 2499.98 3599.97 67
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SD-MVS98.92 1798.70 1999.56 2499.70 9098.73 4599.94 6198.34 15796.38 4899.81 1399.76 7694.59 7099.98 4699.84 1999.96 5299.97 67
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
APD-MVS_3200maxsize98.25 6398.08 6198.78 9299.81 7396.60 13299.82 11998.30 16593.95 13899.37 6899.77 7292.84 12699.76 12398.95 6399.92 7199.97 67
DP-MVS Recon98.41 5098.02 6499.56 2499.97 398.70 4799.92 7198.44 11292.06 20898.40 11899.84 4895.68 42100.00 198.19 10199.71 9999.97 67
xxxxxxxxxxxxxcwj98.98 1598.79 1799.54 2699.82 7098.79 3799.96 2597.52 24497.66 1099.81 1399.89 2194.70 6899.86 9599.84 1999.93 6799.96 74
SF-MVS98.67 3198.40 3799.50 3299.77 7898.67 4899.90 8098.21 17793.53 15399.81 1399.89 2194.70 6899.86 9599.84 1999.93 6799.96 74
SR-MVS98.46 4698.30 4898.93 8799.88 5497.04 11799.84 11298.35 15594.92 9199.32 7099.80 6093.35 10999.78 11699.30 5099.95 5599.96 74
131496.84 11695.96 13599.48 3696.74 24998.52 5998.31 30198.86 4795.82 6289.91 24698.98 15687.49 20299.96 5897.80 11999.73 9799.96 74
114514_t97.41 9896.83 10699.14 6699.51 10597.83 8399.89 8898.27 17088.48 27899.06 8599.66 10490.30 17299.64 14496.32 15499.97 4899.96 74
MVS_111021_HR98.72 2898.62 2499.01 8199.36 11297.18 11299.93 6799.90 196.81 3598.67 10599.77 7293.92 9699.89 8499.27 5199.94 6199.96 74
PAPM98.60 3498.42 3399.14 6696.05 25998.96 2499.90 8099.35 2496.68 3998.35 12099.66 10496.45 2998.51 19399.45 4399.89 7899.96 74
3Dnovator+91.53 1196.31 13895.24 15699.52 2996.88 24198.64 5399.72 15198.24 17395.27 8288.42 28598.98 15682.76 24299.94 7397.10 14099.83 8599.96 74
EI-MVSNet-Vis-set98.27 6098.11 5998.75 9599.83 6896.59 13399.40 20198.51 9995.29 8198.51 11299.76 7693.60 10699.71 13498.53 9299.52 11299.95 82
CHOSEN 1792x268896.81 11796.53 11697.64 15398.91 13693.07 22899.65 16499.80 395.64 7195.39 18698.86 17484.35 23399.90 8096.98 14499.16 12699.95 82
AdaColmapbinary97.23 10496.80 10898.51 11699.99 195.60 17099.09 23598.84 4993.32 15996.74 15899.72 9186.04 217100.00 198.01 11199.43 11899.94 84
ETH3D cwj APD-0.1698.40 5298.07 6299.40 4499.59 9698.41 6499.86 10598.24 17392.18 20399.73 3099.87 2893.47 10799.85 9999.74 3099.95 5599.93 85
ZNCC-MVS98.31 5798.03 6399.17 6099.88 5497.59 9199.94 6198.44 11294.31 11898.50 11399.82 5593.06 12199.99 4098.30 10099.99 2299.93 85
GST-MVS98.27 6097.97 6799.17 6099.92 3697.57 9299.93 6798.39 14394.04 13498.80 9799.74 8792.98 122100.00 198.16 10399.76 9599.93 85
MP-MVScopyleft98.23 6597.97 6799.03 7899.94 1497.17 11599.95 4398.39 14394.70 9998.26 12599.81 5991.84 151100.00 198.85 7299.97 4899.93 85
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
HyFIR lowres test96.66 12796.43 11997.36 16899.05 12293.91 21099.70 15399.80 390.54 24396.26 17298.08 20592.15 14498.23 22496.84 14995.46 20299.93 85
CNLPA97.76 8597.38 8798.92 8899.53 10296.84 12599.87 9398.14 18893.78 14696.55 16499.69 9892.28 14199.98 4697.13 13899.44 11799.93 85
原ACMM198.96 8599.73 8696.99 12098.51 9994.06 13199.62 4399.85 3594.97 6299.96 5895.11 16899.95 5599.92 91
DELS-MVS98.54 4098.22 5099.50 3299.15 11998.65 52100.00 198.58 7597.70 998.21 12799.24 13992.58 13399.94 7398.63 8999.94 6199.92 91
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CSCG97.10 10797.04 10197.27 17199.89 5091.92 25799.90 8099.07 3288.67 27495.26 18999.82 5593.17 11999.98 4698.15 10499.47 11599.90 93
DVP-MVScopyleft99.30 499.16 399.73 1199.93 2799.29 1499.95 4398.32 16097.28 1999.83 1199.91 1597.22 19100.00 199.99 5100.00 199.89 94
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
abl_697.67 8897.34 9098.66 10099.68 9196.11 15599.68 15698.14 18893.80 14599.27 7699.70 9588.65 19599.98 4697.46 13099.72 9899.89 94
patch_mono-298.24 6499.12 595.59 21399.67 9286.91 32999.95 4398.89 4397.60 1299.90 299.76 7696.54 2899.98 4699.94 1299.82 9199.88 96
MVS_111021_LR98.42 4998.38 4098.53 11599.39 11095.79 16199.87 9399.86 296.70 3898.78 9899.79 6492.03 14799.90 8099.17 5299.86 8399.88 96
HPM-MVS++copyleft99.07 1098.88 1599.63 1599.90 4799.02 2399.95 4398.56 7997.56 1499.44 5999.85 3595.38 49100.00 199.31 4999.99 2299.87 98
ACMMPcopyleft97.74 8697.44 8698.66 10099.92 3696.13 15299.18 22999.45 1894.84 9596.41 16999.71 9391.40 15499.99 4097.99 11398.03 15599.87 98
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
dcpmvs_297.42 9798.09 6095.42 21899.58 10087.24 32699.23 22596.95 30094.28 12098.93 9399.73 8994.39 7899.16 16499.89 1799.82 9199.86 100
3Dnovator91.47 1296.28 14195.34 15499.08 7496.82 24497.47 10299.45 19898.81 5095.52 7689.39 26099.00 15381.97 24799.95 6597.27 13499.83 8599.84 101
CANet98.27 6097.82 7599.63 1599.72 8899.10 2199.98 998.51 9997.00 2998.52 11199.71 9387.80 19999.95 6599.75 2899.38 11999.83 102
Patchmatch-test92.65 23091.50 24096.10 20596.85 24290.49 28791.50 36397.19 27182.76 33990.23 24095.59 28195.02 5898.00 23577.41 34496.98 17599.82 103
EI-MVSNet-UG-set98.14 6797.99 6698.60 10599.80 7496.27 14399.36 21098.50 10395.21 8398.30 12299.75 8293.29 11399.73 13398.37 9799.30 12199.81 104
HY-MVS92.50 797.79 8397.17 9799.63 1598.98 12799.32 897.49 32299.52 1495.69 7098.32 12197.41 22693.32 11199.77 12098.08 10995.75 19899.81 104
test_yl97.83 7997.37 8899.21 5499.18 11697.98 7899.64 16899.27 2691.43 22697.88 13498.99 15495.84 3999.84 10898.82 7395.32 20599.79 106
DCV-MVSNet97.83 7997.37 8899.21 5499.18 11697.98 7899.64 16899.27 2691.43 22697.88 13498.99 15495.84 3999.84 10898.82 7395.32 20599.79 106
Patchmatch-RL test86.90 30885.98 31089.67 33084.45 36875.59 36689.71 36692.43 37086.89 30077.83 35290.94 35394.22 8793.63 35687.75 28369.61 35499.79 106
WTY-MVS98.10 6997.60 8199.60 2098.92 13499.28 1699.89 8899.52 1495.58 7398.24 12699.39 12693.33 11099.74 13097.98 11595.58 20199.78 109
CHOSEN 280x42099.01 1399.03 1098.95 8699.38 11198.87 3198.46 29499.42 2197.03 2899.02 8799.09 14599.35 198.21 22599.73 3399.78 9499.77 110
MP-MVS-pluss98.07 7097.64 7999.38 4799.74 8298.41 6499.74 14398.18 18193.35 15796.45 16699.85 3592.64 13299.97 5698.91 6899.89 7899.77 110
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
EPMVS96.53 13096.01 12798.09 13698.43 16096.12 15496.36 33899.43 2093.53 15397.64 13895.04 30794.41 7398.38 20991.13 23998.11 15099.75 112
Vis-MVSNet (Re-imp)96.32 13795.98 13097.35 16997.93 18694.82 19199.47 19598.15 18791.83 21395.09 19099.11 14491.37 15597.47 25593.47 21297.43 16399.74 113
DP-MVS94.54 18293.42 19897.91 14399.46 10994.04 20598.93 25997.48 24981.15 34490.04 24399.55 11287.02 20899.95 6588.97 26998.11 15099.73 114
TAPA-MVS92.12 894.42 18693.60 19196.90 17999.33 11391.78 26199.78 12998.00 19789.89 25594.52 19599.47 11891.97 14899.18 16269.90 35899.52 11299.73 114
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
canonicalmvs97.09 10996.32 12199.39 4698.93 13298.95 2599.72 15197.35 26094.45 10897.88 13499.42 12286.71 21099.52 14798.48 9393.97 21899.72 116
TESTMET0.1,196.74 12296.26 12298.16 13297.36 21896.48 13599.96 2598.29 16691.93 21095.77 18198.07 20695.54 4498.29 21790.55 25298.89 13099.70 117
PatchmatchNetpermissive95.94 14995.45 15097.39 16597.83 19294.41 19996.05 34498.40 14092.86 16997.09 14995.28 30294.21 9098.07 23289.26 26798.11 15099.70 117
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
VNet97.21 10596.57 11599.13 7198.97 12897.82 8499.03 24899.21 2894.31 11899.18 8298.88 17086.26 21699.89 8498.93 6594.32 21399.69 119
Anonymous20240521193.10 21791.99 23096.40 19699.10 12089.65 30398.88 26497.93 20583.71 33394.00 20398.75 17968.79 33399.88 9095.08 17091.71 22899.68 120
mvs_anonymous95.65 15895.03 16397.53 15698.19 17395.74 16499.33 21297.49 24890.87 23890.47 23897.10 23588.23 19797.16 27395.92 15997.66 16099.68 120
GG-mvs-BLEND98.54 11398.21 17298.01 7693.87 35498.52 9297.92 13297.92 21499.02 297.94 24198.17 10299.58 10999.67 122
gg-mvs-nofinetune93.51 20791.86 23498.47 11897.72 20397.96 8092.62 35898.51 9974.70 36197.33 14469.59 37298.91 397.79 24497.77 12499.56 11099.67 122
alignmvs97.81 8197.33 9199.25 5298.77 14698.66 5099.99 398.44 11294.40 11498.41 11699.47 11893.65 10499.42 15698.57 9094.26 21499.67 122
LFMVS94.75 17693.56 19498.30 12899.03 12395.70 16798.74 27897.98 20087.81 28798.47 11499.39 12667.43 34199.53 14698.01 11195.20 20799.67 122
MDTV_nov1_ep13_2view96.26 14496.11 34391.89 21198.06 12894.40 7494.30 19399.67 122
MAR-MVS97.43 9397.19 9598.15 13599.47 10794.79 19399.05 24698.76 5392.65 18498.66 10699.82 5588.52 19699.98 4698.12 10599.63 10399.67 122
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
test250697.53 9197.19 9598.58 10898.66 15096.90 12498.81 27399.77 594.93 8997.95 13198.96 16092.51 13599.20 16094.93 17398.15 14799.64 128
test111195.57 15994.98 16497.37 16698.56 15293.37 22598.86 26898.45 10994.95 8896.63 16098.95 16475.21 30999.11 16595.02 17198.14 14999.64 128
ECVR-MVScopyleft95.66 15795.05 16297.51 15898.66 15093.71 21498.85 27098.45 10994.93 8996.86 15498.96 16075.22 30899.20 16095.34 16598.15 14799.64 128
test-LLR96.47 13196.04 12697.78 14697.02 23395.44 17299.96 2598.21 17794.07 12995.55 18396.38 25893.90 9898.27 22190.42 25598.83 13299.64 128
test-mter96.39 13595.93 13897.78 14697.02 23395.44 17299.96 2598.21 17791.81 21595.55 18396.38 25895.17 5198.27 22190.42 25598.83 13299.64 128
DROMVSNet97.38 10097.24 9397.80 14497.41 21595.64 16999.99 397.06 28794.59 10499.63 4099.32 13089.20 18898.14 22798.76 7999.23 12499.62 133
sss97.57 9097.03 10299.18 5798.37 16398.04 7599.73 14899.38 2293.46 15598.76 10199.06 14791.21 15699.89 8496.33 15397.01 17499.62 133
QAPM95.40 16394.17 17899.10 7296.92 23697.71 8699.40 20198.68 5889.31 25988.94 27398.89 16982.48 24399.96 5893.12 22099.83 8599.62 133
MVS_Test96.46 13295.74 14598.61 10498.18 17497.23 11099.31 21597.15 27791.07 23498.84 9597.05 23988.17 19898.97 17094.39 18997.50 16299.61 136
EPNet98.49 4498.40 3798.77 9399.62 9596.80 12799.90 8099.51 1697.60 1299.20 7899.36 12993.71 10399.91 7997.99 11398.71 13599.61 136
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
IB-MVS92.85 694.99 17093.94 18398.16 13297.72 20395.69 16899.99 398.81 5094.28 12092.70 21996.90 24395.08 5499.17 16396.07 15673.88 35099.60 138
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
ET-MVSNet_ETH3D94.37 18893.28 20497.64 15398.30 16597.99 7799.99 397.61 23294.35 11571.57 36399.45 12196.23 3195.34 33896.91 14885.14 28299.59 139
EIA-MVS97.53 9197.46 8597.76 14998.04 18194.84 19099.98 997.61 23294.41 11397.90 13399.59 10992.40 13898.87 17298.04 11099.13 12899.59 139
GSMVS99.59 139
sam_mvs194.72 6799.59 139
Fast-Effi-MVS+95.02 16994.19 17797.52 15797.88 18894.55 19599.97 1897.08 28588.85 27194.47 19797.96 21384.59 22998.41 20189.84 26397.10 17199.59 139
SCA94.69 17793.81 18797.33 17097.10 22894.44 19698.86 26898.32 16093.30 16096.17 17495.59 28176.48 29697.95 23991.06 24197.43 16399.59 139
PVSNet91.05 1397.13 10696.69 11198.45 12099.52 10395.81 16099.95 4399.65 1194.73 9899.04 8699.21 14184.48 23099.95 6594.92 17498.74 13499.58 145
PVSNet_Blended97.94 7397.64 7998.83 9199.59 9696.99 120100.00 199.10 2995.38 7898.27 12399.08 14689.00 19099.95 6599.12 5399.25 12399.57 146
ab-mvs94.69 17793.42 19898.51 11698.07 17996.26 14496.49 33798.68 5890.31 24894.54 19497.00 24176.30 29899.71 13495.98 15893.38 22399.56 147
Test_1112_low_res95.72 15394.83 16798.42 12397.79 19596.41 13899.65 16496.65 32492.70 18092.86 21896.13 26792.15 14499.30 15791.88 23193.64 22099.55 148
1112_ss96.01 14795.20 15898.42 12397.80 19496.41 13899.65 16496.66 32392.71 17992.88 21799.40 12492.16 14399.30 15791.92 23093.66 21999.55 148
DeepC-MVS94.51 496.92 11496.40 12098.45 12099.16 11895.90 15899.66 16098.06 19496.37 5194.37 19899.49 11783.29 24099.90 8097.63 12799.61 10799.55 148
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CS-MVS97.79 8397.91 7397.43 16299.10 12094.42 19899.99 397.10 28295.07 8599.68 3799.75 8292.95 12398.34 21398.38 9699.14 12799.54 151
LCM-MVSNet-Re92.31 23692.60 21591.43 31697.53 21079.27 36599.02 24991.83 37292.07 20680.31 34494.38 32883.50 23895.48 33597.22 13797.58 16199.54 151
casdiffmvs96.42 13495.97 13397.77 14897.30 22394.98 18699.84 11297.09 28493.75 14896.58 16299.26 13785.07 22698.78 17797.77 12497.04 17399.54 151
dp95.05 16894.43 17396.91 17897.99 18392.73 23796.29 34097.98 20089.70 25795.93 17794.67 32093.83 10198.45 19886.91 29796.53 18199.54 151
CS-MVS-test97.88 7697.94 7197.70 15299.28 11595.20 18399.98 997.15 27795.53 7599.62 4399.79 6492.08 14698.38 20998.75 8099.28 12299.52 155
Effi-MVS+96.30 13995.69 14698.16 13297.85 19196.26 14497.41 32397.21 27090.37 24698.65 10798.58 18986.61 21298.70 18497.11 13997.37 16799.52 155
PatchT90.38 27588.75 28995.25 22495.99 26190.16 29391.22 36597.54 24076.80 35497.26 14586.01 36491.88 14996.07 32866.16 36595.91 19399.51 157
tpm93.70 20593.41 20094.58 24895.36 28287.41 32597.01 33196.90 30790.85 23996.72 15994.14 33090.40 17196.84 29890.75 25188.54 24999.51 157
CostFormer96.10 14395.88 14296.78 18297.03 23292.55 24397.08 33097.83 21690.04 25398.72 10394.89 31495.01 5998.29 21796.54 15295.77 19699.50 159
tpmrst96.27 14295.98 13097.13 17397.96 18493.15 22796.34 33998.17 18292.07 20698.71 10495.12 30593.91 9798.73 18194.91 17696.62 17999.50 159
IS-MVSNet96.29 14095.90 14197.45 16098.13 17894.80 19299.08 23797.61 23292.02 20995.54 18598.96 16090.64 16998.08 23093.73 20897.41 16699.47 161
ETV-MVS97.92 7597.80 7698.25 13098.14 17796.48 13599.98 997.63 22795.61 7299.29 7599.46 12092.55 13498.82 17499.02 6298.54 13799.46 162
baseline96.43 13395.98 13097.76 14997.34 21995.17 18499.51 18897.17 27493.92 14096.90 15399.28 13185.37 22498.64 18797.50 12996.86 17899.46 162
lupinMVS97.85 7897.60 8198.62 10397.28 22597.70 8899.99 397.55 23895.50 7799.43 6099.67 10290.92 16498.71 18398.40 9599.62 10499.45 164
PMMVS96.76 12096.76 10996.76 18398.28 16892.10 25299.91 7597.98 20094.12 12699.53 5199.39 12686.93 20998.73 18196.95 14697.73 15799.45 164
UA-Net96.54 12995.96 13598.27 12998.23 17195.71 16698.00 31598.45 10993.72 14998.41 11699.27 13488.71 19499.66 14291.19 23897.69 15899.44 166
CVMVSNet94.68 17994.94 16593.89 27996.80 24586.92 32899.06 24298.98 3594.45 10894.23 20199.02 14985.60 22095.31 33990.91 24795.39 20499.43 167
PVSNet_Blended_VisFu97.27 10296.81 10798.66 10098.81 14396.67 12999.92 7198.64 6594.51 10796.38 17098.49 19389.05 18999.88 9097.10 14098.34 14199.43 167
PLCcopyleft95.54 397.93 7497.89 7498.05 13899.82 7094.77 19499.92 7198.46 10793.93 13997.20 14699.27 13495.44 4899.97 5697.41 13199.51 11499.41 169
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
PCF-MVS94.20 595.18 16594.10 17998.43 12298.55 15495.99 15697.91 31797.31 26590.35 24789.48 25999.22 14085.19 22599.89 8490.40 25798.47 13999.41 169
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
tpm295.47 16295.18 15996.35 19996.91 23791.70 26696.96 33397.93 20588.04 28498.44 11595.40 29193.32 11197.97 23694.00 19795.61 20099.38 171
OMC-MVS97.28 10197.23 9497.41 16399.76 7993.36 22699.65 16497.95 20396.03 5997.41 14399.70 9589.61 17999.51 14896.73 15098.25 14699.38 171
GeoE94.36 19093.48 19696.99 17697.29 22493.54 21899.96 2596.72 32188.35 28193.43 20898.94 16682.05 24698.05 23388.12 28096.48 18399.37 173
ADS-MVSNet293.80 20093.88 18593.55 29097.87 18985.94 33394.24 35096.84 31290.07 25196.43 16794.48 32590.29 17395.37 33787.44 28597.23 16899.36 174
ADS-MVSNet94.79 17394.02 18197.11 17597.87 18993.79 21194.24 35098.16 18590.07 25196.43 16794.48 32590.29 17398.19 22687.44 28597.23 16899.36 174
BH-RMVSNet95.18 16594.31 17697.80 14498.17 17595.23 18199.76 13797.53 24292.52 19394.27 20099.25 13876.84 29298.80 17590.89 24899.54 11199.35 176
TR-MVS94.54 18293.56 19497.49 15997.96 18494.34 20098.71 28197.51 24690.30 24994.51 19698.69 18175.56 30398.77 17892.82 22295.99 19099.35 176
diffmvs97.00 11096.64 11298.09 13697.64 20696.17 15199.81 12197.19 27194.67 10298.95 9199.28 13186.43 21398.76 17998.37 9797.42 16599.33 178
JIA-IIPM91.76 25190.70 25194.94 23396.11 25787.51 32493.16 35798.13 19075.79 35897.58 13977.68 36992.84 12697.97 23688.47 27596.54 18099.33 178
thres20096.96 11196.21 12399.22 5398.97 12898.84 3499.85 10899.71 693.17 16496.26 17298.88 17089.87 17799.51 14894.26 19494.91 20899.31 180
CDS-MVSNet96.34 13696.07 12597.13 17397.37 21794.96 18799.53 18597.91 20891.55 22195.37 18798.32 20195.05 5797.13 27693.80 20495.75 19899.30 181
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Vis-MVSNetpermissive95.72 15395.15 16097.45 16097.62 20794.28 20199.28 22198.24 17394.27 12296.84 15598.94 16679.39 27498.76 17993.25 21498.49 13899.30 181
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
thres100view90096.74 12295.92 14099.18 5798.90 13798.77 4099.74 14399.71 692.59 18895.84 17898.86 17489.25 18599.50 15093.84 20094.57 20999.27 183
tfpn200view996.79 11895.99 12899.19 5698.94 13098.82 3599.78 12999.71 692.86 16996.02 17598.87 17289.33 18399.50 15093.84 20094.57 20999.27 183
MVSFormer96.94 11296.60 11397.95 14097.28 22597.70 8899.55 18297.27 26791.17 23099.43 6099.54 11490.92 16496.89 29594.67 18599.62 10499.25 185
jason97.24 10396.86 10598.38 12695.73 27197.32 10899.97 1897.40 25795.34 8098.60 11099.54 11487.70 20098.56 19097.94 11699.47 11599.25 185
jason: jason.
EPP-MVSNet96.69 12596.60 11396.96 17797.74 19993.05 23099.37 20898.56 7988.75 27295.83 18099.01 15196.01 3298.56 19096.92 14797.20 17099.25 185
EPNet_dtu95.71 15595.39 15296.66 18798.92 13493.41 22399.57 17898.90 4296.19 5597.52 14098.56 19192.65 13197.36 25777.89 34298.33 14299.20 188
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
GA-MVS93.83 19792.84 21096.80 18195.73 27193.57 21699.88 9097.24 26992.57 19092.92 21596.66 25178.73 28097.67 24887.75 28394.06 21799.17 189
thisisatest051597.41 9897.02 10398.59 10797.71 20597.52 9599.97 1898.54 8991.83 21397.45 14299.04 14897.50 999.10 16694.75 18296.37 18599.16 190
thres600view796.69 12595.87 14399.14 6698.90 13798.78 3999.74 14399.71 692.59 18895.84 17898.86 17489.25 18599.50 15093.44 21394.50 21299.16 190
thres40096.78 11995.99 12899.16 6298.94 13098.82 3599.78 12999.71 692.86 16996.02 17598.87 17289.33 18399.50 15093.84 20094.57 20999.16 190
TAMVS95.85 15095.58 14896.65 18897.07 22993.50 21999.17 23097.82 21791.39 22995.02 19198.01 20792.20 14297.30 26493.75 20795.83 19599.14 193
CR-MVSNet93.45 21092.62 21495.94 20796.29 25492.66 23992.01 36196.23 33392.62 18596.94 15193.31 33891.04 16196.03 32979.23 33595.96 19199.13 194
RPMNet89.76 28987.28 30497.19 17296.29 25492.66 23992.01 36198.31 16270.19 36696.94 15185.87 36587.25 20599.78 11662.69 36895.96 19199.13 194
tpm cat193.51 20792.52 22096.47 19097.77 19691.47 27296.13 34298.06 19480.98 34592.91 21693.78 33389.66 17898.87 17287.03 29396.39 18499.09 196
BH-w/o95.71 15595.38 15396.68 18698.49 15892.28 24799.84 11297.50 24792.12 20592.06 22498.79 17884.69 22898.67 18695.29 16799.66 10299.09 196
LS3D95.84 15195.11 16198.02 13999.85 6095.10 18598.74 27898.50 10387.22 29493.66 20799.86 3187.45 20399.95 6590.94 24699.81 9399.02 198
MIMVSNet90.30 27888.67 29095.17 22796.45 25391.64 26892.39 35997.15 27785.99 30990.50 23793.19 34066.95 34294.86 34582.01 32593.43 22199.01 199
thisisatest053097.10 10796.72 11098.22 13197.60 20896.70 12899.92 7198.54 8991.11 23397.07 15098.97 15897.47 1299.03 16793.73 20896.09 18898.92 200
BH-untuned95.18 16594.83 16796.22 20298.36 16491.22 27499.80 12597.32 26490.91 23791.08 23298.67 18283.51 23798.54 19294.23 19599.61 10798.92 200
F-COLMAP96.93 11396.95 10496.87 18099.71 8991.74 26299.85 10897.95 20393.11 16695.72 18299.16 14392.35 13999.94 7395.32 16699.35 12098.92 200
Anonymous2024052992.10 24190.65 25296.47 19098.82 14290.61 28498.72 28098.67 6175.54 35993.90 20598.58 18966.23 34499.90 8094.70 18490.67 22998.90 203
tttt051796.85 11596.49 11797.92 14297.48 21495.89 15999.85 10898.54 8990.72 24296.63 16098.93 16897.47 1299.02 16893.03 22195.76 19798.85 204
baseline195.78 15294.86 16698.54 11398.47 15998.07 7399.06 24297.99 19892.68 18294.13 20298.62 18693.28 11498.69 18593.79 20585.76 27598.84 205
VDD-MVS93.77 20192.94 20796.27 20198.55 15490.22 29298.77 27797.79 21890.85 23996.82 15699.42 12261.18 35999.77 12098.95 6394.13 21598.82 206
PatchMatch-RL96.04 14695.40 15197.95 14099.59 9695.22 18299.52 18699.07 3293.96 13796.49 16598.35 20082.28 24599.82 11090.15 26099.22 12598.81 207
PVSNet_088.03 1991.80 24890.27 26096.38 19898.27 16990.46 28899.94 6199.61 1293.99 13586.26 31597.39 22871.13 32899.89 8498.77 7867.05 36298.79 208
tpmvs94.28 19293.57 19396.40 19698.55 15491.50 27195.70 34998.55 8587.47 28992.15 22394.26 32991.42 15398.95 17188.15 27895.85 19498.76 209
h-mvs3394.92 17194.36 17496.59 18998.85 14191.29 27398.93 25998.94 3795.90 6098.77 9998.42 19990.89 16699.77 12097.80 11970.76 35298.72 210
xiu_mvs_v2_base98.23 6597.97 6799.02 8098.69 14898.66 5099.52 18698.08 19397.05 2799.86 599.86 3190.65 16899.71 13499.39 4798.63 13698.69 211
PS-MVSNAJ98.44 4898.20 5299.16 6298.80 14498.92 2799.54 18498.17 18297.34 1799.85 799.85 3591.20 15799.89 8499.41 4699.67 10198.69 211
MSDG94.37 18893.36 20297.40 16498.88 13993.95 20999.37 20897.38 25885.75 31590.80 23599.17 14284.11 23599.88 9086.35 29898.43 14098.36 213
CANet_DTU96.76 12096.15 12498.60 10598.78 14597.53 9499.84 11297.63 22797.25 2499.20 7899.64 10681.36 25599.98 4692.77 22398.89 13098.28 214
mvs-test195.53 16095.97 13394.20 26497.77 19685.44 33799.95 4397.06 28794.92 9196.58 16298.72 18085.81 21898.98 16994.80 17998.11 15098.18 215
VDDNet93.12 21691.91 23296.76 18396.67 25292.65 24198.69 28398.21 17782.81 33897.75 13799.28 13161.57 35799.48 15498.09 10894.09 21698.15 216
MVS-HIRNet86.22 31083.19 32295.31 22296.71 25190.29 29192.12 36097.33 26362.85 36786.82 30370.37 37169.37 33297.49 25375.12 35197.99 15698.15 216
UGNet95.33 16494.57 17197.62 15598.55 15494.85 18998.67 28599.32 2595.75 6996.80 15796.27 26372.18 32299.96 5894.58 18799.05 12998.04 218
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
DSMNet-mixed88.28 30288.24 29788.42 33989.64 35875.38 36798.06 31389.86 37585.59 31788.20 28792.14 34976.15 30191.95 36378.46 34096.05 18997.92 219
xiu_mvs_v1_base_debu97.43 9397.06 9898.55 11097.74 19998.14 7099.31 21597.86 21396.43 4599.62 4399.69 9885.56 22199.68 13899.05 5698.31 14397.83 220
xiu_mvs_v1_base97.43 9397.06 9898.55 11097.74 19998.14 7099.31 21597.86 21396.43 4599.62 4399.69 9885.56 22199.68 13899.05 5698.31 14397.83 220
xiu_mvs_v1_base_debi97.43 9397.06 9898.55 11097.74 19998.14 7099.31 21597.86 21396.43 4599.62 4399.69 9885.56 22199.68 13899.05 5698.31 14397.83 220
UniMVSNet_ETH3D90.06 28588.58 29194.49 25494.67 29288.09 32197.81 31997.57 23783.91 33288.44 28197.41 22657.44 36397.62 25091.41 23588.59 24897.77 223
cascas94.64 18093.61 18997.74 15197.82 19396.26 14499.96 2597.78 21985.76 31394.00 20397.54 22276.95 29199.21 15997.23 13695.43 20397.76 224
hse-mvs294.38 18794.08 18095.31 22298.27 16990.02 29799.29 22098.56 7995.90 6098.77 9998.00 20890.89 16698.26 22397.80 11969.20 35897.64 225
AUN-MVS93.28 21192.60 21595.34 22098.29 16690.09 29599.31 21598.56 7991.80 21696.35 17198.00 20889.38 18298.28 21992.46 22469.22 35797.64 225
OpenMVScopyleft90.15 1594.77 17593.59 19298.33 12796.07 25897.48 10199.56 18098.57 7790.46 24486.51 30898.95 16478.57 28199.94 7393.86 19999.74 9697.57 227
baseline296.71 12496.49 11797.37 16695.63 27895.96 15799.74 14398.88 4592.94 16891.61 22698.97 15897.72 798.62 18894.83 17898.08 15497.53 228
RPSCF91.80 24892.79 21288.83 33598.15 17669.87 36998.11 31196.60 32583.93 33194.33 19999.27 13479.60 27399.46 15591.99 22893.16 22597.18 229
test0.0.03 193.86 19693.61 18994.64 24495.02 28792.18 25199.93 6798.58 7594.07 12987.96 28998.50 19293.90 9894.96 34381.33 32893.17 22496.78 230
AllTest92.48 23291.64 23595.00 23199.01 12488.43 31698.94 25896.82 31586.50 30388.71 27698.47 19774.73 31299.88 9085.39 30496.18 18696.71 231
TestCases95.00 23199.01 12488.43 31696.82 31586.50 30388.71 27698.47 19774.73 31299.88 9085.39 30496.18 18696.71 231
XVG-OURS-SEG-HR94.79 17394.70 17095.08 22898.05 18089.19 30699.08 23797.54 24093.66 15094.87 19299.58 11078.78 27999.79 11497.31 13393.40 22296.25 233
XVG-OURS94.82 17294.74 16995.06 22998.00 18289.19 30699.08 23797.55 23894.10 12794.71 19399.62 10780.51 26699.74 13096.04 15793.06 22696.25 233
Effi-MVS+-dtu94.53 18495.30 15592.22 30897.77 19682.54 34899.59 17497.06 28794.92 9195.29 18895.37 29585.81 21897.89 24294.80 17997.07 17296.23 235
testgi89.01 29888.04 29991.90 31393.49 31184.89 34099.73 14895.66 34593.89 14385.14 32298.17 20359.68 36094.66 34777.73 34388.88 24096.16 236
Fast-Effi-MVS+-dtu93.72 20493.86 18693.29 29397.06 23086.16 33199.80 12596.83 31392.66 18392.58 22197.83 21581.39 25497.67 24889.75 26496.87 17796.05 237
COLMAP_ROBcopyleft90.47 1492.18 23991.49 24194.25 26399.00 12688.04 32298.42 29996.70 32282.30 34188.43 28399.01 15176.97 29099.85 9986.11 30196.50 18294.86 238
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
HQP4-MVS93.37 20998.39 20594.53 239
HQP-MVS94.61 18194.50 17294.92 23495.78 26591.85 25899.87 9397.89 20996.82 3293.37 20998.65 18380.65 26498.39 20597.92 11789.60 23094.53 239
HQP_MVS94.49 18594.36 17494.87 23595.71 27491.74 26299.84 11297.87 21196.38 4893.01 21398.59 18780.47 26898.37 21197.79 12289.55 23394.52 241
plane_prior597.87 21198.37 21197.79 12289.55 23394.52 241
CLD-MVS94.06 19593.90 18494.55 25096.02 26090.69 28099.98 997.72 22096.62 4291.05 23398.85 17777.21 28898.47 19498.11 10689.51 23594.48 243
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
iter_conf_final96.01 14795.93 13896.28 20098.38 16297.03 11899.87 9397.03 29194.05 13392.61 22097.98 21198.01 597.34 25997.02 14288.39 25294.47 244
nrg03093.51 20792.53 21996.45 19294.36 29597.20 11199.81 12197.16 27691.60 21989.86 24897.46 22486.37 21497.68 24795.88 16080.31 31994.46 245
VPNet91.81 24590.46 25495.85 21094.74 29095.54 17198.98 25398.59 7492.14 20490.77 23697.44 22568.73 33597.54 25294.89 17777.89 33394.46 245
UniMVSNet_NR-MVSNet92.95 22092.11 22695.49 21494.61 29395.28 17899.83 11899.08 3191.49 22289.21 26796.86 24687.14 20696.73 30393.20 21577.52 33694.46 245
DU-MVS92.46 23391.45 24295.49 21494.05 30095.28 17899.81 12198.74 5492.25 20189.21 26796.64 25381.66 25196.73 30393.20 21577.52 33694.46 245
NR-MVSNet91.56 25390.22 26195.60 21294.05 30095.76 16398.25 30498.70 5691.16 23280.78 34396.64 25383.23 24196.57 30991.41 23577.73 33594.46 245
iter_conf0596.07 14495.95 13796.44 19498.43 16097.52 9599.91 7596.85 31194.16 12492.49 22297.98 21198.20 497.34 25997.26 13588.29 25394.45 250
TranMVSNet+NR-MVSNet91.68 25290.61 25394.87 23593.69 30793.98 20899.69 15498.65 6291.03 23588.44 28196.83 25080.05 27196.18 32390.26 25976.89 34494.45 250
FIs94.10 19393.43 19796.11 20494.70 29196.82 12699.58 17598.93 4192.54 19189.34 26297.31 22987.62 20197.10 27994.22 19686.58 27194.40 252
mvsmamba94.10 19393.72 18895.25 22493.57 30894.13 20399.67 15996.45 33093.63 15291.34 23097.77 21786.29 21597.22 27096.65 15188.10 25694.40 252
ACMM91.95 1092.88 22192.52 22093.98 27695.75 27089.08 30999.77 13297.52 24493.00 16789.95 24597.99 21076.17 30098.46 19793.63 21188.87 24194.39 254
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test_part192.15 24090.72 25096.44 19498.87 14097.46 10398.99 25198.26 17185.89 31086.34 31396.34 26181.71 24997.48 25491.06 24178.99 32594.37 255
RRT_MVS93.14 21592.92 20893.78 28193.31 31690.04 29699.66 16097.69 22292.53 19288.91 27497.76 21884.36 23196.93 29395.10 16986.99 26994.37 255
FC-MVSNet-test93.81 19993.15 20695.80 21194.30 29796.20 14999.42 20098.89 4392.33 19989.03 27297.27 23187.39 20496.83 29993.20 21586.48 27294.36 257
PS-MVSNAJss93.64 20693.31 20394.61 24592.11 33792.19 25099.12 23297.38 25892.51 19488.45 28096.99 24291.20 15797.29 26794.36 19087.71 26394.36 257
WR-MVS92.31 23691.25 24495.48 21794.45 29495.29 17799.60 17398.68 5890.10 25088.07 28896.89 24480.68 26396.80 30193.14 21879.67 32394.36 257
bld_raw_conf00592.79 22392.18 22494.61 24593.38 31592.27 24898.99 25195.20 35693.34 15889.25 26497.67 22078.03 28697.21 27195.81 16387.99 25994.35 260
XXY-MVS91.82 24490.46 25495.88 20893.91 30395.40 17598.87 26797.69 22288.63 27687.87 29097.08 23674.38 31597.89 24291.66 23384.07 29194.35 260
MVSTER95.53 16095.22 15796.45 19298.56 15297.72 8599.91 7597.67 22492.38 19791.39 22897.14 23397.24 1897.30 26494.80 17987.85 26094.34 262
test_low_dy_conf_00193.16 21392.88 20994.01 27293.16 31890.65 28399.58 17597.66 22692.21 20291.34 23097.80 21682.45 24497.05 28293.64 21088.05 25794.32 263
VPA-MVSNet92.70 22791.55 23996.16 20395.09 28496.20 14998.88 26499.00 3491.02 23691.82 22595.29 30176.05 30297.96 23895.62 16481.19 30794.30 264
FMVSNet392.69 22891.58 23795.99 20698.29 16697.42 10699.26 22397.62 22989.80 25689.68 25295.32 29781.62 25396.27 32087.01 29485.65 27694.29 265
EU-MVSNet90.14 28490.34 25889.54 33192.55 33381.06 35998.69 28398.04 19691.41 22886.59 30796.84 24980.83 26193.31 35986.20 29981.91 30294.26 266
UniMVSNet (Re)93.07 21892.13 22595.88 20894.84 28896.24 14899.88 9098.98 3592.49 19589.25 26495.40 29187.09 20797.14 27593.13 21978.16 33194.26 266
FMVSNet291.02 26089.56 27295.41 21997.53 21095.74 16498.98 25397.41 25687.05 29588.43 28395.00 31071.34 32596.24 32285.12 30685.21 28194.25 268
EI-MVSNet93.73 20393.40 20194.74 24096.80 24592.69 23899.06 24297.67 22488.96 26791.39 22899.02 14988.75 19397.30 26491.07 24087.85 26094.22 269
IterMVS-LS92.69 22892.11 22694.43 25996.80 24592.74 23599.45 19896.89 30888.98 26589.65 25595.38 29488.77 19296.34 31790.98 24582.04 30194.22 269
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
cl2293.77 20193.25 20595.33 22199.49 10694.43 19799.61 17298.09 19190.38 24589.16 27095.61 27990.56 17097.34 25991.93 22984.45 28794.21 271
miper_enhance_ethall94.36 19093.98 18295.49 21498.68 14995.24 18099.73 14897.29 26693.28 16189.86 24895.97 27094.37 7997.05 28292.20 22784.45 28794.19 272
miper_ehance_all_eth93.16 21392.60 21594.82 23997.57 20993.56 21799.50 19097.07 28688.75 27288.85 27595.52 28590.97 16396.74 30290.77 25084.45 28794.17 273
DIV-MVS_self_test92.32 23591.60 23694.47 25597.31 22292.74 23599.58 17596.75 31986.99 29887.64 29295.54 28389.55 18096.50 31188.58 27282.44 29894.17 273
GBi-Net90.88 26389.82 26894.08 26897.53 21091.97 25398.43 29696.95 30087.05 29589.68 25294.72 31671.34 32596.11 32487.01 29485.65 27694.17 273
test190.88 26389.82 26894.08 26897.53 21091.97 25398.43 29696.95 30087.05 29589.68 25294.72 31671.34 32596.11 32487.01 29485.65 27694.17 273
FMVSNet188.50 30086.64 30694.08 26895.62 27991.97 25398.43 29696.95 30083.00 33686.08 31794.72 31659.09 36196.11 32481.82 32784.07 29194.17 273
cl____92.31 23691.58 23794.52 25197.33 22192.77 23399.57 17896.78 31886.97 29987.56 29495.51 28689.43 18196.62 30788.60 27182.44 29894.16 278
eth_miper_zixun_eth92.41 23491.93 23193.84 28097.28 22590.68 28198.83 27196.97 29988.57 27789.19 26995.73 27689.24 18796.69 30589.97 26281.55 30494.15 279
miper_lstm_enhance91.81 24591.39 24393.06 30097.34 21989.18 30899.38 20696.79 31786.70 30287.47 29695.22 30390.00 17595.86 33388.26 27681.37 30694.15 279
Anonymous2023121189.86 28788.44 29394.13 26798.93 13290.68 28198.54 29198.26 17176.28 35586.73 30495.54 28370.60 32997.56 25190.82 24980.27 32094.15 279
c3_l92.53 23191.87 23394.52 25197.40 21692.99 23199.40 20196.93 30587.86 28588.69 27895.44 28989.95 17696.44 31390.45 25480.69 31694.14 282
jajsoiax91.92 24391.18 24594.15 26591.35 34690.95 27799.00 25097.42 25492.61 18687.38 29897.08 23672.46 32197.36 25794.53 18888.77 24394.13 283
bld_raw_dy_0_6492.74 22592.03 22994.87 23593.09 32393.46 22099.12 23295.41 35092.84 17290.44 23997.54 22278.08 28597.04 28593.94 19887.77 26294.11 284
mvs_tets91.81 24591.08 24694.00 27491.63 34490.58 28598.67 28597.43 25292.43 19687.37 29997.05 23971.76 32397.32 26394.75 18288.68 24594.11 284
v2v48291.30 25490.07 26695.01 23093.13 31993.79 21199.77 13297.02 29288.05 28389.25 26495.37 29580.73 26297.15 27487.28 28980.04 32294.09 286
LPG-MVS_test92.96 21992.71 21393.71 28495.43 28088.67 31299.75 14097.62 22992.81 17390.05 24198.49 19375.24 30698.40 20395.84 16189.12 23794.07 287
LGP-MVS_train93.71 28495.43 28088.67 31297.62 22992.81 17390.05 24198.49 19375.24 30698.40 20395.84 16189.12 23794.07 287
test_djsdf92.83 22292.29 22394.47 25591.90 34092.46 24499.55 18297.27 26791.17 23089.96 24496.07 26981.10 25796.89 29594.67 18588.91 23994.05 289
CP-MVSNet91.23 25790.22 26194.26 26293.96 30292.39 24699.09 23598.57 7788.95 26886.42 31196.57 25579.19 27696.37 31590.29 25878.95 32694.02 290
Patchmtry89.70 29088.49 29293.33 29296.24 25689.94 30191.37 36496.23 33378.22 35287.69 29193.31 33891.04 16196.03 32980.18 33482.10 30094.02 290
v192192090.46 27389.12 28194.50 25392.96 32792.46 24499.49 19296.98 29786.10 30889.61 25795.30 29878.55 28297.03 28882.17 32480.89 31594.01 292
v119290.62 27189.25 27994.72 24293.13 31993.07 22899.50 19097.02 29286.33 30689.56 25895.01 30879.22 27597.09 28182.34 32381.16 30894.01 292
v124090.20 28188.79 28894.44 25793.05 32592.27 24899.38 20696.92 30685.89 31089.36 26194.87 31577.89 28797.03 28880.66 33181.08 31194.01 292
OPM-MVS93.21 21292.80 21194.44 25793.12 32190.85 27999.77 13297.61 23296.19 5591.56 22798.65 18375.16 31098.47 19493.78 20689.39 23693.99 295
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ACMP92.05 992.74 22592.42 22293.73 28295.91 26488.72 31199.81 12197.53 24294.13 12587.00 30298.23 20274.07 31698.47 19496.22 15588.86 24293.99 295
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
OurMVSNet-221017-089.81 28889.48 27790.83 32191.64 34381.21 35798.17 30995.38 35291.48 22385.65 32097.31 22972.66 32097.29 26788.15 27884.83 28493.97 297
pmmvs590.17 28389.09 28293.40 29192.10 33889.77 30299.74 14395.58 34785.88 31287.24 30195.74 27473.41 31996.48 31288.54 27383.56 29493.95 298
PS-CasMVS90.63 27089.51 27593.99 27593.83 30491.70 26698.98 25398.52 9288.48 27886.15 31696.53 25775.46 30496.31 31888.83 27078.86 32893.95 298
IterMVS90.91 26290.17 26393.12 29796.78 24890.42 29098.89 26297.05 29089.03 26386.49 30995.42 29076.59 29595.02 34187.22 29084.09 29093.93 300
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
ACMH89.72 1790.64 26989.63 27093.66 28895.64 27788.64 31498.55 28997.45 25089.03 26381.62 33897.61 22169.75 33198.41 20189.37 26587.62 26593.92 301
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
v14419290.79 26689.52 27494.59 24793.11 32292.77 23399.56 18096.99 29586.38 30589.82 25194.95 31380.50 26797.10 27983.98 31380.41 31793.90 302
PEN-MVS90.19 28289.06 28393.57 28993.06 32490.90 27899.06 24298.47 10588.11 28285.91 31896.30 26276.67 29395.94 33287.07 29176.91 34393.89 303
XVG-ACMP-BASELINE91.22 25890.75 24992.63 30593.73 30685.61 33498.52 29397.44 25192.77 17789.90 24796.85 24766.64 34398.39 20592.29 22688.61 24693.89 303
v114491.09 25989.83 26794.87 23593.25 31793.69 21599.62 17196.98 29786.83 30189.64 25694.99 31180.94 25997.05 28285.08 30781.16 30893.87 305
MDA-MVSNet_test_wron85.51 31483.32 32192.10 31090.96 34988.58 31599.20 22796.52 32779.70 34957.12 37192.69 34379.11 27793.86 35477.10 34677.46 33893.86 306
IterMVS-SCA-FT90.85 26590.16 26492.93 30196.72 25089.96 29898.89 26296.99 29588.95 26886.63 30695.67 27776.48 29695.00 34287.04 29284.04 29393.84 307
YYNet185.50 31583.33 32092.00 31190.89 35088.38 31999.22 22696.55 32679.60 35057.26 37092.72 34179.09 27893.78 35577.25 34577.37 33993.84 307
MDA-MVSNet-bldmvs84.09 32381.52 32991.81 31491.32 34788.00 32398.67 28595.92 34080.22 34755.60 37293.32 33768.29 33893.60 35773.76 35276.61 34593.82 309
MVS_030489.28 29688.31 29592.21 30997.05 23186.53 33097.76 32099.57 1385.58 31893.86 20692.71 34251.04 37096.30 31984.49 31092.72 22793.79 310
ACMH+89.98 1690.35 27689.54 27392.78 30495.99 26186.12 33298.81 27397.18 27389.38 25883.14 33197.76 21868.42 33798.43 19989.11 26886.05 27493.78 311
v14890.70 26789.63 27093.92 27792.97 32690.97 27699.75 14096.89 30887.51 28888.27 28695.01 30881.67 25097.04 28587.40 28777.17 34193.75 312
pmmvs492.10 24191.07 24795.18 22692.82 33094.96 18799.48 19496.83 31387.45 29088.66 27996.56 25683.78 23696.83 29989.29 26684.77 28593.75 312
K. test v388.05 30387.24 30590.47 32491.82 34282.23 35198.96 25697.42 25489.05 26276.93 35495.60 28068.49 33695.42 33685.87 30381.01 31393.75 312
lessismore_v090.53 32290.58 35280.90 36095.80 34177.01 35395.84 27166.15 34596.95 29183.03 31975.05 34993.74 315
SixPastTwentyTwo88.73 29988.01 30090.88 31991.85 34182.24 35098.22 30795.18 35888.97 26682.26 33496.89 24471.75 32496.67 30684.00 31282.98 29593.72 316
our_test_390.39 27489.48 27793.12 29792.40 33489.57 30499.33 21296.35 33287.84 28685.30 32194.99 31184.14 23496.09 32780.38 33284.56 28693.71 317
LTVRE_ROB88.28 1890.29 27989.05 28494.02 27195.08 28590.15 29497.19 32797.43 25284.91 32683.99 32797.06 23874.00 31798.28 21984.08 31187.71 26393.62 318
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
ITE_SJBPF92.38 30695.69 27685.14 33895.71 34392.81 17389.33 26398.11 20470.23 33098.42 20085.91 30288.16 25593.59 319
v7n89.65 29188.29 29693.72 28392.22 33690.56 28699.07 24197.10 28285.42 32186.73 30494.72 31680.06 27097.13 27681.14 32978.12 33293.49 320
DTE-MVSNet89.40 29388.24 29792.88 30292.66 33289.95 29999.10 23498.22 17687.29 29285.12 32396.22 26476.27 29995.30 34083.56 31775.74 34793.41 321
V4291.28 25690.12 26594.74 24093.42 31393.46 22099.68 15697.02 29287.36 29189.85 25095.05 30681.31 25697.34 25987.34 28880.07 32193.40 322
anonymousdsp91.79 25090.92 24894.41 26090.76 35192.93 23298.93 25997.17 27489.08 26187.46 29795.30 29878.43 28496.92 29492.38 22588.73 24493.39 323
v890.54 27289.17 28094.66 24393.43 31293.40 22499.20 22796.94 30485.76 31387.56 29494.51 32381.96 24897.19 27284.94 30878.25 33093.38 324
ppachtmachnet_test89.58 29288.35 29493.25 29592.40 33490.44 28999.33 21296.73 32085.49 31985.90 31995.77 27381.09 25896.00 33176.00 35082.49 29793.30 325
v1090.25 28088.82 28794.57 24993.53 31093.43 22299.08 23796.87 31085.00 32387.34 30094.51 32380.93 26097.02 29082.85 32079.23 32493.26 326
PVSNet_BlendedMVS96.05 14595.82 14496.72 18599.59 9696.99 12099.95 4399.10 2994.06 13198.27 12395.80 27289.00 19099.95 6599.12 5387.53 26693.24 327
WR-MVS_H91.30 25490.35 25794.15 26594.17 29992.62 24299.17 23098.94 3788.87 27086.48 31094.46 32784.36 23196.61 30888.19 27778.51 32993.21 328
FMVSNet588.32 30187.47 30390.88 31996.90 24088.39 31897.28 32595.68 34482.60 34084.67 32492.40 34779.83 27291.16 36576.39 34981.51 30593.09 329
Anonymous2023120686.32 30985.42 31189.02 33489.11 36080.53 36399.05 24695.28 35385.43 32082.82 33293.92 33174.40 31493.44 35866.99 36381.83 30393.08 330
pm-mvs189.36 29487.81 30194.01 27293.40 31491.93 25698.62 28896.48 32986.25 30783.86 32896.14 26673.68 31897.04 28586.16 30075.73 34893.04 331
test_method80.79 32979.70 33284.08 34692.83 32967.06 37199.51 18895.42 34954.34 36981.07 34293.53 33544.48 37292.22 36278.90 33977.23 34092.94 332
UnsupCasMVSNet_eth85.52 31383.99 31490.10 32789.36 35983.51 34496.65 33597.99 19889.14 26075.89 35893.83 33263.25 35493.92 35281.92 32667.90 36192.88 333
USDC90.00 28688.96 28593.10 29994.81 28988.16 32098.71 28195.54 34893.66 15083.75 32997.20 23265.58 34698.31 21683.96 31487.49 26792.85 334
N_pmnet80.06 33280.78 33077.89 35091.94 33945.28 38198.80 27556.82 38478.10 35380.08 34693.33 33677.03 28995.76 33468.14 36282.81 29692.64 335
KD-MVS_2432*160088.00 30486.10 30893.70 28696.91 23794.04 20597.17 32897.12 28084.93 32481.96 33592.41 34592.48 13694.51 34879.23 33552.68 37092.56 336
miper_refine_blended88.00 30486.10 30893.70 28696.91 23794.04 20597.17 32897.12 28084.93 32481.96 33592.41 34592.48 13694.51 34879.23 33552.68 37092.56 336
pmmvs685.69 31183.84 31791.26 31890.00 35784.41 34297.82 31896.15 33675.86 35781.29 34095.39 29361.21 35896.87 29783.52 31873.29 35192.50 338
D2MVS92.76 22492.59 21893.27 29495.13 28389.54 30599.69 15499.38 2292.26 20087.59 29394.61 32285.05 22797.79 24491.59 23488.01 25892.47 339
CL-MVSNet_self_test84.50 32183.15 32388.53 33886.00 36681.79 35498.82 27297.35 26085.12 32283.62 33090.91 35476.66 29491.40 36469.53 35960.36 36792.40 340
MIMVSNet182.58 32780.51 33188.78 33686.68 36584.20 34396.65 33595.41 35078.75 35178.59 35092.44 34451.88 36889.76 36865.26 36778.95 32692.38 341
LF4IMVS89.25 29788.85 28690.45 32592.81 33181.19 35898.12 31094.79 36091.44 22586.29 31497.11 23465.30 34998.11 22988.53 27485.25 28092.07 342
TransMVSNet (Re)87.25 30785.28 31293.16 29693.56 30991.03 27598.54 29194.05 36683.69 33481.09 34196.16 26575.32 30596.40 31476.69 34868.41 35992.06 343
DeepMVS_CXcopyleft82.92 34995.98 26358.66 37596.01 33892.72 17878.34 35195.51 28658.29 36298.08 23082.57 32185.29 27992.03 344
Baseline_NR-MVSNet90.33 27789.51 27592.81 30392.84 32889.95 29999.77 13293.94 36784.69 32889.04 27195.66 27881.66 25196.52 31090.99 24476.98 34291.97 345
TinyColmap87.87 30686.51 30791.94 31295.05 28685.57 33597.65 32194.08 36584.40 32981.82 33796.85 24762.14 35698.33 21480.25 33386.37 27391.91 346
MS-PatchMatch90.65 26890.30 25991.71 31594.22 29885.50 33698.24 30597.70 22188.67 27486.42 31196.37 26067.82 33998.03 23483.62 31699.62 10491.60 347
KD-MVS_self_test83.59 32682.06 32688.20 34086.93 36480.70 36197.21 32696.38 33182.87 33782.49 33388.97 35767.63 34092.32 36173.75 35362.30 36691.58 348
tfpnnormal89.29 29587.61 30294.34 26194.35 29694.13 20398.95 25798.94 3783.94 33084.47 32595.51 28674.84 31197.39 25677.05 34780.41 31791.48 349
MVP-Stereo90.93 26190.45 25692.37 30791.25 34888.76 31098.05 31496.17 33587.27 29384.04 32695.30 29878.46 28397.27 26983.78 31599.70 10091.09 350
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
test20.0384.72 32083.99 31486.91 34288.19 36380.62 36298.88 26495.94 33988.36 28078.87 34894.62 32168.75 33489.11 36966.52 36475.82 34691.00 351
EG-PatchMatch MVS85.35 31683.81 31889.99 32990.39 35381.89 35398.21 30896.09 33781.78 34374.73 36093.72 33451.56 36997.12 27879.16 33888.61 24690.96 352
TDRefinement84.76 31882.56 32591.38 31774.58 37484.80 34197.36 32494.56 36384.73 32780.21 34596.12 26863.56 35398.39 20587.92 28163.97 36390.95 353
ambc83.23 34877.17 37362.61 37287.38 36894.55 36476.72 35586.65 36330.16 37496.36 31684.85 30969.86 35390.73 354
Anonymous2024052185.15 31783.81 31889.16 33388.32 36182.69 34698.80 27595.74 34279.72 34881.53 33990.99 35265.38 34894.16 35072.69 35481.11 31090.63 355
OpenMVS_ROBcopyleft79.82 2083.77 32581.68 32890.03 32888.30 36282.82 34598.46 29495.22 35573.92 36376.00 35791.29 35155.00 36596.94 29268.40 36188.51 25090.34 356
new_pmnet84.49 32282.92 32489.21 33290.03 35682.60 34796.89 33495.62 34680.59 34675.77 35989.17 35665.04 35094.79 34672.12 35581.02 31290.23 357
test_040285.58 31283.94 31690.50 32393.81 30585.04 33998.55 28995.20 35676.01 35679.72 34795.13 30464.15 35296.26 32166.04 36686.88 27090.21 358
pmmvs380.27 33177.77 33587.76 34180.32 37282.43 34998.23 30691.97 37172.74 36478.75 34987.97 35957.30 36490.99 36670.31 35762.37 36589.87 359
CMPMVSbinary61.59 2184.75 31985.14 31383.57 34790.32 35462.54 37396.98 33297.59 23674.33 36269.95 36596.66 25164.17 35198.32 21587.88 28288.41 25189.84 360
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
PM-MVS80.47 33078.88 33485.26 34583.79 37072.22 36895.89 34791.08 37385.71 31676.56 35688.30 35836.64 37393.90 35382.39 32269.57 35589.66 361
pmmvs-eth3d84.03 32481.97 32790.20 32684.15 36987.09 32798.10 31294.73 36283.05 33574.10 36187.77 36065.56 34794.01 35181.08 33069.24 35689.49 362
UnsupCasMVSNet_bld79.97 33377.03 33688.78 33685.62 36781.98 35293.66 35597.35 26075.51 36070.79 36483.05 36648.70 37194.91 34478.31 34160.29 36889.46 363
new-patchmatchnet81.19 32879.34 33386.76 34382.86 37180.36 36497.92 31695.27 35482.09 34272.02 36286.87 36262.81 35590.74 36771.10 35663.08 36489.19 364
LCM-MVSNet67.77 33664.73 33976.87 35162.95 38056.25 37789.37 36793.74 36944.53 37261.99 36780.74 36720.42 38086.53 37169.37 36059.50 36987.84 365
tmp_tt65.23 33962.94 34272.13 35444.90 38350.03 37981.05 37089.42 37838.45 37348.51 37599.90 1954.09 36678.70 37591.84 23218.26 37787.64 366
EGC-MVSNET69.38 33463.76 34186.26 34490.32 35481.66 35696.24 34193.85 3680.99 3813.22 38292.33 34852.44 36792.92 36059.53 37184.90 28384.21 367
PMMVS267.15 33764.15 34076.14 35270.56 37762.07 37493.89 35387.52 37958.09 36860.02 36878.32 36822.38 37984.54 37259.56 37047.03 37281.80 368
FPMVS68.72 33568.72 33768.71 35565.95 37844.27 38395.97 34694.74 36151.13 37053.26 37390.50 35525.11 37883.00 37360.80 36980.97 31478.87 369
ANet_high56.10 34052.24 34367.66 35649.27 38256.82 37683.94 36982.02 38070.47 36533.28 37964.54 37417.23 38269.16 37745.59 37523.85 37677.02 370
MVEpermissive53.74 2251.54 34347.86 34762.60 35759.56 38150.93 37879.41 37177.69 38135.69 37636.27 37861.76 3775.79 38669.63 37637.97 37736.61 37367.24 371
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMVScopyleft49.05 2353.75 34151.34 34560.97 35840.80 38434.68 38474.82 37289.62 37737.55 37428.67 38072.12 3707.09 38481.63 37443.17 37668.21 36066.59 372
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
Gipumacopyleft66.95 33865.00 33872.79 35391.52 34567.96 37066.16 37395.15 35947.89 37158.54 36967.99 37329.74 37587.54 37050.20 37377.83 33462.87 373
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test12337.68 34639.14 34933.31 36119.94 38524.83 38698.36 3009.75 38615.53 37951.31 37487.14 36119.62 38117.74 38147.10 3743.47 38057.36 374
testmvs40.60 34544.45 34829.05 36219.49 38614.11 38799.68 15618.47 38520.74 37864.59 36698.48 19610.95 38317.09 38256.66 37211.01 37855.94 375
EMVS51.44 34451.22 34652.11 36070.71 37644.97 38294.04 35275.66 38335.34 37742.40 37761.56 37828.93 37665.87 37927.64 37924.73 37545.49 376
E-PMN52.30 34252.18 34452.67 35971.51 37545.40 38093.62 35676.60 38236.01 37543.50 37664.13 37527.11 37767.31 37831.06 37826.06 37445.30 377
wuyk23d20.37 34820.84 35118.99 36365.34 37927.73 38550.43 3747.67 3879.50 3808.01 3816.34 3816.13 38526.24 38023.40 38010.69 3792.99 378
test_blank0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.02 3820.00 3870.00 3830.00 3810.00 3810.00 379
uanet_test0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3830.00 3870.00 3830.00 3810.00 3810.00 379
DCPMVS0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3830.00 3870.00 3830.00 3810.00 3810.00 379
cdsmvs_eth3d_5k23.43 34731.24 3500.00 3640.00 3870.00 3880.00 37598.09 1910.00 3820.00 38399.67 10283.37 2390.00 3830.00 3810.00 3810.00 379
pcd_1.5k_mvsjas7.60 35010.13 3530.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 38391.20 1570.00 3830.00 3810.00 3810.00 379
sosnet-low-res0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3830.00 3870.00 3830.00 3810.00 3810.00 379
sosnet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3830.00 3870.00 3830.00 3810.00 3810.00 379
uncertanet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3830.00 3870.00 3830.00 3810.00 3810.00 379
Regformer0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3830.00 3870.00 3830.00 3810.00 3810.00 379
ab-mvs-re8.28 34911.04 3520.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 38399.40 1240.00 3870.00 3830.00 3810.00 3810.00 379
uanet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3830.00 3870.00 3830.00 3810.00 3810.00 379
FOURS199.92 3697.66 9099.95 4398.36 15295.58 7399.52 54
test_one_060199.94 1499.30 1198.41 13696.63 4099.75 2899.93 1197.49 10
eth-test20.00 387
eth-test0.00 387
ZD-MVS99.92 3698.57 5598.52 9292.34 19899.31 7199.83 5195.06 5699.80 11199.70 3699.97 48
test_241102_ONE99.93 2799.30 1198.43 12097.26 2399.80 1799.88 2496.71 24100.00 1
9.1498.38 4099.87 5799.91 7598.33 15893.22 16299.78 2599.89 2194.57 7199.85 9999.84 1999.97 48
save fliter99.82 7098.79 3799.96 2598.40 14097.66 10
test072699.93 2799.29 1499.96 2598.42 13297.28 1999.86 599.94 497.22 19
test_part299.89 5099.25 1799.49 56
sam_mvs94.25 86
MTGPAbinary98.28 167
test_post195.78 34859.23 37993.20 11897.74 24691.06 241
test_post63.35 37694.43 7298.13 228
patchmatchnet-post91.70 35095.12 5297.95 239
MTMP99.87 9396.49 328
gm-plane-assit96.97 23593.76 21391.47 22498.96 16098.79 17694.92 174
TEST999.92 3698.92 2799.96 2598.43 12093.90 14199.71 3499.86 3195.88 3899.85 99
test_899.92 3698.88 3099.96 2598.43 12094.35 11599.69 3699.85 3595.94 3599.85 99
agg_prior99.93 2798.77 4098.43 12099.63 4099.85 99
test_prior498.05 7499.94 61
test_prior299.95 4395.78 6499.73 3099.76 7696.00 3399.78 26100.00 1
旧先验299.46 19794.21 12399.85 799.95 6596.96 145
新几何299.40 201
原ACMM299.90 80
testdata299.99 4090.54 253
segment_acmp96.68 26
testdata199.28 22196.35 52
plane_prior795.71 27491.59 270
plane_prior695.76 26991.72 26580.47 268
plane_prior498.59 187
plane_prior391.64 26896.63 4093.01 213
plane_prior299.84 11296.38 48
plane_prior195.73 271
plane_prior91.74 26299.86 10596.76 3689.59 232
n20.00 388
nn0.00 388
door-mid89.69 376
test1198.44 112
door90.31 374
HQP5-MVS91.85 258
HQP-NCC95.78 26599.87 9396.82 3293.37 209
ACMP_Plane95.78 26599.87 9396.82 3293.37 209
BP-MVS97.92 117
HQP3-MVS97.89 20989.60 230
HQP2-MVS80.65 264
NP-MVS95.77 26891.79 26098.65 183
MDTV_nov1_ep1395.69 14697.90 18794.15 20295.98 34598.44 11293.12 16597.98 13095.74 27495.10 5398.58 18990.02 26196.92 176
ACMMP++_ref87.04 268
ACMMP++88.23 254
Test By Simon92.82 128