This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted by
DVP-MVS++99.26 699.09 999.77 899.91 3999.31 1099.95 5398.43 13596.48 6399.80 1799.93 1197.44 13100.00 199.92 1399.98 32100.00 1
MSC_two_6792asdad99.93 299.91 3999.80 298.41 152100.00 199.96 9100.00 1100.00 1
PC_three_145296.96 4799.80 1799.79 5897.49 9100.00 199.99 599.98 32100.00 1
No_MVS99.93 299.91 3999.80 298.41 152100.00 199.96 9100.00 1100.00 1
SED-MVS99.28 599.11 799.77 899.93 2499.30 1299.96 3598.43 13597.27 3499.80 1799.94 496.71 25100.00 1100.00 1100.00 1100.00 1
IU-MVS99.93 2499.31 1098.41 15297.71 1999.84 12100.00 1100.00 1100.00 1
OPU-MVS99.93 299.89 4599.80 299.96 3599.80 5497.44 13100.00 1100.00 199.98 32100.00 1
test_241102_TWO98.43 13597.27 3499.80 1799.94 497.18 20100.00 1100.00 1100.00 1100.00 1
test_0728_THIRD96.48 6399.83 1399.91 1497.87 5100.00 199.92 13100.00 1100.00 1
test_0728_SECOND99.82 799.94 1399.47 799.95 5398.43 135100.00 199.99 5100.00 1100.00 1
SMA-MVScopyleft98.76 2698.48 3299.62 2099.87 5198.87 3399.86 11798.38 16393.19 17499.77 2799.94 495.54 44100.00 199.74 3399.99 21100.00 1
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MSP-MVS99.09 999.12 598.98 8099.93 2497.24 10399.95 5398.42 14797.50 2699.52 6099.88 2497.43 1599.71 14199.50 4499.98 32100.00 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
test9_res99.71 3699.99 21100.00 1
agg_prior299.48 46100.00 1100.00 1
testdata98.42 12099.47 9695.33 18398.56 9393.78 15799.79 2599.85 3393.64 10799.94 8194.97 19399.94 55100.00 1
MSLP-MVS++99.13 899.01 1199.49 3299.94 1398.46 6199.98 1598.86 5397.10 4099.80 1799.94 495.92 38100.00 199.51 43100.00 1100.00 1
MCST-MVS99.32 399.14 499.86 599.97 399.59 599.97 2898.64 7798.47 399.13 8999.92 1396.38 32100.00 199.74 33100.00 1100.00 1
NCCC99.37 299.25 299.71 1599.96 899.15 2299.97 2898.62 8298.02 1399.90 399.95 397.33 16100.00 199.54 42100.00 1100.00 1
API-MVS97.86 7297.66 7898.47 11599.52 9295.41 18099.47 21798.87 5291.68 23498.84 10299.85 3392.34 14599.99 3698.44 10799.96 46100.00 1
DeepPCF-MVS95.94 297.71 8898.98 1293.92 29799.63 8381.76 38499.96 3598.56 9399.47 199.19 8699.99 194.16 92100.00 199.92 1399.93 61100.00 1
DeepC-MVS_fast96.59 198.81 2398.54 2999.62 2099.90 4298.85 3599.24 24998.47 11998.14 1099.08 9299.91 1493.09 122100.00 199.04 6799.99 21100.00 1
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MG-MVS98.91 1998.65 2499.68 1699.94 1399.07 2499.64 18899.44 1997.33 3199.00 9699.72 8494.03 9599.98 4798.73 90100.00 1100.00 1
reproduce_model98.75 2798.66 2399.03 7399.71 7697.10 11199.73 16698.23 19197.02 4599.18 8799.90 1894.54 7499.99 3699.77 2899.90 6999.99 23
reproduce-ours98.78 2498.67 2199.09 6899.70 7897.30 10199.74 15998.25 18797.10 4099.10 9099.90 1894.59 7099.99 3699.77 2899.91 6799.99 23
our_new_method98.78 2498.67 2199.09 6899.70 7897.30 10199.74 15998.25 18797.10 4099.10 9099.90 1894.59 7099.99 3699.77 2899.91 6799.99 23
DPE-MVScopyleft99.26 699.10 899.74 1199.89 4599.24 1999.87 10698.44 12797.48 2799.64 4399.94 496.68 2799.99 3699.99 5100.00 199.99 23
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
ACMMP_NAP98.49 4098.14 5399.54 2799.66 8298.62 5599.85 12098.37 16694.68 11499.53 5899.83 4692.87 128100.00 198.66 9599.84 7699.99 23
MTAPA98.29 5497.96 6699.30 4499.85 5497.93 7799.39 22998.28 18395.76 8497.18 16799.88 2492.74 132100.00 198.67 9399.88 7399.99 23
train_agg98.88 2098.65 2499.59 2399.92 3198.92 2999.96 3598.43 13594.35 12899.71 3599.86 2995.94 3699.85 11199.69 3899.98 3299.99 23
XVS98.70 2998.55 2899.15 5999.94 1397.50 9399.94 6998.42 14796.22 7599.41 7099.78 6294.34 8299.96 6598.92 7699.95 5099.99 23
X-MVStestdata93.83 22192.06 25499.15 5999.94 1397.50 9399.94 6998.42 14796.22 7599.41 7041.37 42294.34 8299.96 6598.92 7699.95 5099.99 23
test_prior99.43 3599.94 1398.49 6098.65 7599.80 12499.99 23
新几何199.42 3799.75 6998.27 6498.63 8192.69 19699.55 5599.82 4994.40 77100.00 191.21 26099.94 5599.99 23
旧先验199.76 6697.52 9198.64 7799.85 3395.63 4399.94 5599.99 23
无先验99.49 21498.71 6793.46 165100.00 194.36 21099.99 23
test22299.55 9097.41 9999.34 23598.55 9991.86 22899.27 8299.83 4693.84 10299.95 5099.99 23
MVS96.60 14095.56 16499.72 1396.85 26699.22 2098.31 33198.94 4191.57 23690.90 26199.61 10686.66 22899.96 6597.36 15299.88 7399.99 23
APDe-MVScopyleft99.06 1198.91 1499.51 2999.94 1398.76 4599.91 8598.39 15997.20 3899.46 6499.85 3395.53 4699.79 12699.86 21100.00 199.99 23
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
test1299.43 3599.74 7098.56 5798.40 15699.65 4194.76 6599.75 13599.98 3299.99 23
TSAR-MVS + GP.98.60 3398.51 3198.86 8799.73 7396.63 12799.97 2897.92 22698.07 1198.76 10999.55 11195.00 5999.94 8199.91 1697.68 17099.99 23
HPM-MVS_fast97.80 8097.50 8498.68 9599.79 6296.42 13599.88 10398.16 20291.75 23398.94 9899.54 11391.82 15799.65 15097.62 14999.99 2199.99 23
HPM-MVScopyleft97.96 6797.72 7598.68 9599.84 5696.39 13999.90 9198.17 19892.61 20198.62 11699.57 11091.87 15599.67 14898.87 8199.99 2199.99 23
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
APD-MVScopyleft98.62 3298.35 4299.41 3899.90 4298.51 5999.87 10698.36 16794.08 14199.74 3199.73 8194.08 9399.74 13799.42 5099.99 2199.99 23
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CNVR-MVS99.40 199.26 199.84 699.98 299.51 699.98 1598.69 6998.20 899.93 199.98 296.82 22100.00 199.75 31100.00 199.99 23
CP-MVS98.45 4398.32 4398.87 8699.96 896.62 12899.97 2898.39 15994.43 12398.90 10099.87 2794.30 85100.00 199.04 6799.99 2199.99 23
SteuartSystems-ACMMP99.02 1398.97 1399.18 5298.72 14697.71 8399.98 1598.44 12796.85 4999.80 1799.91 1497.57 799.85 11199.44 4999.99 2199.99 23
Skip Steuart: Steuart Systems R&D Blog.
CPTT-MVS97.64 9097.32 9398.58 10599.97 395.77 16299.96 3598.35 16989.90 28198.36 12999.79 5891.18 16599.99 3698.37 11199.99 2199.99 23
PAPM_NR98.12 6497.93 6898.70 9499.94 1396.13 15299.82 13598.43 13594.56 11797.52 15599.70 8894.40 7799.98 4797.00 16199.98 3299.99 23
PAPR98.52 3898.16 5299.58 2499.97 398.77 4299.95 5398.43 13595.35 9598.03 14199.75 7294.03 9599.98 4798.11 12299.83 7799.99 23
PHI-MVS98.41 4898.21 4899.03 7399.86 5397.10 11199.98 1598.80 6390.78 26499.62 4799.78 6295.30 50100.00 199.80 2599.93 6199.99 23
fmvsm_l_conf0.5_n98.94 1698.84 1799.25 4699.17 11097.81 8199.98 1598.86 5398.25 599.90 399.76 6694.21 9099.97 5799.87 1999.52 10599.98 51
MM98.83 2198.53 3099.76 1099.59 8599.33 899.99 499.76 698.39 499.39 7499.80 5490.49 18099.96 6599.89 1799.43 11599.98 51
test_fmvsmconf_n98.43 4698.32 4398.78 8998.12 19396.41 13699.99 498.83 6098.22 799.67 3999.64 10291.11 16699.94 8199.67 3999.62 9599.98 51
DPM-MVS98.83 2198.46 3399.97 199.33 10299.92 199.96 3598.44 12797.96 1499.55 5599.94 497.18 20100.00 193.81 22499.94 5599.98 51
HFP-MVS98.56 3598.37 3999.14 6199.96 897.43 9799.95 5398.61 8394.77 10999.31 7899.85 3394.22 88100.00 198.70 9199.98 3299.98 51
region2R98.54 3698.37 3999.05 7199.96 897.18 10699.96 3598.55 9994.87 10799.45 6599.85 3394.07 94100.00 198.67 93100.00 199.98 51
ACMMPR98.50 3998.32 4399.05 7199.96 897.18 10699.95 5398.60 8594.77 10999.31 7899.84 4493.73 104100.00 198.70 9199.98 3299.98 51
PGM-MVS98.34 5198.13 5498.99 7899.92 3197.00 11499.75 15699.50 1793.90 15499.37 7599.76 6693.24 118100.00 197.75 14699.96 4699.98 51
CDPH-MVS98.65 3198.36 4199.49 3299.94 1398.73 4699.87 10698.33 17493.97 14899.76 2899.87 2794.99 6099.75 13598.55 100100.00 199.98 51
mPP-MVS98.39 5098.20 4998.97 8199.97 396.92 11899.95 5398.38 16395.04 10198.61 11799.80 5493.39 109100.00 198.64 96100.00 199.98 51
SR-MVS-dyc-post98.31 5298.17 5198.71 9399.79 6296.37 14099.76 15298.31 17894.43 12399.40 7299.75 7293.28 11699.78 12898.90 7999.92 6499.97 61
RE-MVS-def98.13 5499.79 6296.37 14099.76 15298.31 17894.43 12399.40 7299.75 7292.95 12698.90 7999.92 6499.97 61
TSAR-MVS + MP.98.93 1798.77 1999.41 3899.74 7098.67 4999.77 14798.38 16396.73 5699.88 699.74 7994.89 6299.59 15299.80 2599.98 3299.97 61
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SD-MVS98.92 1898.70 2099.56 2599.70 7898.73 4699.94 6998.34 17396.38 6999.81 1599.76 6694.59 7099.98 4799.84 2299.96 4699.97 61
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
APD-MVS_3200maxsize98.25 5998.08 5898.78 8999.81 6096.60 12999.82 13598.30 18193.95 15099.37 7599.77 6492.84 12999.76 13498.95 7399.92 6499.97 61
DP-MVS Recon98.41 4898.02 6099.56 2599.97 398.70 4899.92 7998.44 12792.06 22398.40 12899.84 4495.68 42100.00 198.19 11799.71 8899.97 61
SF-MVS98.67 3098.40 3599.50 3099.77 6598.67 4999.90 9198.21 19393.53 16399.81 1599.89 2294.70 6999.86 11099.84 2299.93 6199.96 67
SR-MVS98.46 4298.30 4698.93 8499.88 4997.04 11399.84 12598.35 16994.92 10599.32 7799.80 5493.35 11199.78 12899.30 5599.95 5099.96 67
131496.84 12795.96 14899.48 3496.74 27398.52 5898.31 33198.86 5395.82 8289.91 27298.98 16287.49 21699.96 6597.80 13999.73 8799.96 67
114514_t97.41 10096.83 11399.14 6199.51 9497.83 7999.89 10098.27 18588.48 30999.06 9399.66 9990.30 18399.64 15196.32 17499.97 4299.96 67
MVS_111021_HR98.72 2898.62 2699.01 7799.36 10197.18 10699.93 7699.90 196.81 5498.67 11399.77 6493.92 9799.89 9999.27 5699.94 5599.96 67
PAPM98.60 3398.42 3499.14 6196.05 28698.96 2699.90 9199.35 2496.68 5898.35 13099.66 9996.45 3198.51 21899.45 4899.89 7099.96 67
3Dnovator+91.53 1196.31 15395.24 17299.52 2896.88 26598.64 5499.72 17098.24 18995.27 9888.42 31298.98 16282.76 26199.94 8197.10 15999.83 7799.96 67
fmvsm_l_conf0.5_n_a99.00 1598.91 1499.28 4599.21 10797.91 7899.98 1598.85 5698.25 599.92 299.75 7294.72 6799.97 5799.87 1999.64 9299.95 74
MVS_030499.06 1198.84 1799.72 1399.76 6699.21 2199.99 499.34 2598.70 299.44 6699.75 7293.24 11899.99 3699.94 1199.41 11799.95 74
EI-MVSNet-Vis-set98.27 5598.11 5698.75 9299.83 5796.59 13199.40 22598.51 11095.29 9798.51 12199.76 6693.60 10899.71 14198.53 10399.52 10599.95 74
CHOSEN 1792x268896.81 12896.53 12797.64 16698.91 13493.07 24499.65 18499.80 395.64 8795.39 20998.86 18284.35 25199.90 9496.98 16399.16 12899.95 74
AdaColmapbinary97.23 10796.80 11598.51 11399.99 195.60 17399.09 25998.84 5993.32 17096.74 17999.72 8486.04 234100.00 198.01 12799.43 11599.94 78
ZNCC-MVS98.31 5298.03 5999.17 5599.88 4997.59 8899.94 6998.44 12794.31 13198.50 12299.82 4993.06 12399.99 3698.30 11599.99 2199.93 79
GST-MVS98.27 5597.97 6399.17 5599.92 3197.57 8999.93 7698.39 15994.04 14698.80 10599.74 7992.98 125100.00 198.16 11999.76 8599.93 79
MP-MVScopyleft98.23 6197.97 6399.03 7399.94 1397.17 10999.95 5398.39 15994.70 11398.26 13599.81 5391.84 156100.00 198.85 8299.97 4299.93 79
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
HyFIR lowres test96.66 13996.43 13097.36 18599.05 11693.91 22599.70 17799.80 390.54 26896.26 19298.08 23092.15 14998.23 25096.84 16995.46 21999.93 79
CNLPA97.76 8497.38 8998.92 8599.53 9196.84 12099.87 10698.14 20693.78 15796.55 18499.69 9092.28 14699.98 4797.13 15799.44 11499.93 79
原ACMM198.96 8299.73 7396.99 11598.51 11094.06 14499.62 4799.85 3394.97 6199.96 6595.11 19099.95 5099.92 84
DELS-MVS98.54 3698.22 4799.50 3099.15 11298.65 53100.00 198.58 8897.70 2098.21 13799.24 14292.58 13799.94 8198.63 9899.94 5599.92 84
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CSCG97.10 11297.04 10497.27 18999.89 4591.92 27399.90 9199.07 3488.67 30595.26 21299.82 4993.17 12199.98 4798.15 12099.47 11099.90 86
DVP-MVScopyleft99.30 499.16 399.73 1299.93 2499.29 1599.95 5398.32 17697.28 3299.83 1399.91 1497.22 18100.00 199.99 5100.00 199.89 87
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
patch_mono-298.24 6099.12 595.59 23499.67 8186.91 35499.95 5398.89 4997.60 2299.90 399.76 6696.54 3099.98 4799.94 1199.82 8199.88 88
MVS_111021_LR98.42 4798.38 3798.53 11299.39 9995.79 16199.87 10699.86 296.70 5798.78 10699.79 5892.03 15299.90 9499.17 6099.86 7599.88 88
HPM-MVS++copyleft99.07 1098.88 1699.63 1799.90 4299.02 2599.95 5398.56 9397.56 2599.44 6699.85 3395.38 49100.00 199.31 5499.99 2199.87 90
ACMMPcopyleft97.74 8597.44 8798.66 9799.92 3196.13 15299.18 25499.45 1894.84 10896.41 18999.71 8691.40 15999.99 3697.99 12998.03 16599.87 90
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
dcpmvs_297.42 9998.09 5795.42 23999.58 8987.24 35099.23 25096.95 32794.28 13498.93 9999.73 8194.39 8099.16 18299.89 1799.82 8199.86 92
3Dnovator91.47 1296.28 15695.34 16999.08 7096.82 26897.47 9699.45 22298.81 6195.52 9289.39 28799.00 15981.97 26599.95 7397.27 15499.83 7799.84 93
CANet98.27 5597.82 7399.63 1799.72 7599.10 2399.98 1598.51 11097.00 4698.52 11999.71 8687.80 21299.95 7399.75 3199.38 11899.83 94
test_fmvsmconf0.1_n97.74 8597.44 8798.64 9995.76 29796.20 14899.94 6998.05 21398.17 998.89 10199.42 12187.65 21499.90 9499.50 4499.60 10199.82 95
Patchmatch-test92.65 25591.50 26596.10 22296.85 26690.49 30691.50 40297.19 29882.76 37490.23 26695.59 31095.02 5798.00 26377.41 37896.98 18899.82 95
EI-MVSNet-UG-set98.14 6397.99 6198.60 10299.80 6196.27 14299.36 23498.50 11695.21 9998.30 13299.75 7293.29 11599.73 14098.37 11199.30 12299.81 97
HY-MVS92.50 797.79 8297.17 10099.63 1798.98 12299.32 997.49 35399.52 1495.69 8698.32 13197.41 25093.32 11399.77 13198.08 12595.75 21599.81 97
mvsany_test197.82 7897.90 7097.55 17198.77 14493.04 24799.80 14197.93 22396.95 4899.61 5399.68 9690.92 17099.83 12199.18 5998.29 15699.80 99
test_yl97.83 7597.37 9099.21 4999.18 10897.98 7499.64 18899.27 2791.43 24397.88 14798.99 16095.84 4099.84 11998.82 8395.32 22499.79 100
DCV-MVSNet97.83 7597.37 9099.21 4999.18 10897.98 7499.64 18899.27 2791.43 24397.88 14798.99 16095.84 4099.84 11998.82 8395.32 22499.79 100
Patchmatch-RL test86.90 33785.98 34189.67 35984.45 40275.59 39789.71 40892.43 40686.89 33377.83 38690.94 38594.22 8893.63 38887.75 30969.61 38999.79 100
WTY-MVS98.10 6597.60 8199.60 2298.92 13099.28 1799.89 10099.52 1495.58 8998.24 13699.39 12893.33 11299.74 13797.98 13195.58 21899.78 103
CHOSEN 280x42099.01 1499.03 1098.95 8399.38 10098.87 3398.46 32299.42 2197.03 4499.02 9599.09 15099.35 298.21 25199.73 3599.78 8499.77 104
MP-MVS-pluss98.07 6697.64 7999.38 4299.74 7098.41 6399.74 15998.18 19793.35 16896.45 18699.85 3392.64 13499.97 5798.91 7899.89 7099.77 104
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
EPMVS96.53 14396.01 14198.09 13898.43 16796.12 15496.36 37499.43 2093.53 16397.64 15395.04 33994.41 7698.38 23491.13 26298.11 16199.75 106
Vis-MVSNet (Re-imp)96.32 15295.98 14497.35 18697.93 20294.82 20099.47 21798.15 20591.83 22995.09 21399.11 14991.37 16097.47 28593.47 23297.43 17499.74 107
DP-MVS94.54 20393.42 22297.91 15099.46 9894.04 22098.93 28497.48 27081.15 38090.04 26999.55 11187.02 22399.95 7388.97 29498.11 16199.73 108
TAPA-MVS92.12 894.42 20993.60 21596.90 19899.33 10291.78 27799.78 14498.00 21589.89 28294.52 21899.47 11791.97 15399.18 17969.90 39599.52 10599.73 108
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
MGCFI-Net97.00 11996.22 13699.34 4398.86 13898.80 3999.67 18297.30 28894.31 13197.77 15199.41 12586.36 23299.50 15898.38 10993.90 24499.72 110
sasdasda97.09 11496.32 13299.39 4098.93 12798.95 2799.72 17097.35 28194.45 12097.88 14799.42 12186.71 22699.52 15498.48 10493.97 24299.72 110
canonicalmvs97.09 11496.32 13299.39 4098.93 12798.95 2799.72 17097.35 28194.45 12097.88 14799.42 12186.71 22699.52 15498.48 10493.97 24299.72 110
TESTMET0.1,196.74 13496.26 13498.16 13297.36 24196.48 13399.96 3598.29 18291.93 22695.77 20498.07 23195.54 4498.29 24390.55 27698.89 13799.70 113
PatchmatchNetpermissive95.94 16395.45 16597.39 18297.83 20894.41 20996.05 38198.40 15692.86 18597.09 16895.28 33294.21 9098.07 26089.26 29298.11 16199.70 113
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
VNet97.21 10896.57 12699.13 6598.97 12397.82 8099.03 27399.21 2994.31 13199.18 8798.88 17786.26 23399.89 9998.93 7594.32 23699.69 115
Anonymous20240521193.10 24391.99 25596.40 21399.10 11389.65 32298.88 29097.93 22383.71 36594.00 22798.75 18968.79 36099.88 10595.08 19191.71 25699.68 116
mvs_anonymous95.65 17495.03 18197.53 17398.19 18695.74 16499.33 23697.49 26990.87 25990.47 26597.10 25988.23 20997.16 30095.92 18097.66 17199.68 116
GG-mvs-BLEND98.54 11098.21 18498.01 7293.87 39398.52 10797.92 14497.92 23899.02 397.94 26998.17 11899.58 10299.67 118
gg-mvs-nofinetune93.51 23391.86 25998.47 11597.72 21997.96 7692.62 39798.51 11074.70 39997.33 16269.59 41398.91 497.79 27397.77 14499.56 10399.67 118
alignmvs97.81 7997.33 9299.25 4698.77 14498.66 5199.99 498.44 12794.40 12798.41 12699.47 11793.65 10699.42 16798.57 9994.26 23899.67 118
LFMVS94.75 19793.56 21898.30 12699.03 11795.70 16798.74 30497.98 21887.81 32098.47 12399.39 12867.43 36999.53 15398.01 12795.20 22799.67 118
MDTV_nov1_ep13_2view96.26 14396.11 38091.89 22798.06 14094.40 7794.30 21399.67 118
MAR-MVS97.43 9597.19 9898.15 13599.47 9694.79 20299.05 27098.76 6492.65 19998.66 11499.82 4988.52 20799.98 4798.12 12199.63 9499.67 118
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
balanced_conf0398.27 5597.99 6199.11 6698.64 15398.43 6299.47 21797.79 23794.56 11799.74 3198.35 22094.33 8499.25 17199.12 6199.96 4699.64 124
test250697.53 9297.19 9898.58 10598.66 15096.90 11998.81 29999.77 594.93 10397.95 14398.96 16692.51 13999.20 17794.93 19498.15 15899.64 124
test111195.57 17594.98 18397.37 18398.56 15693.37 24198.86 29498.45 12294.95 10296.63 18198.95 17175.21 33499.11 18395.02 19298.14 16099.64 124
ECVR-MVScopyleft95.66 17395.05 18097.51 17598.66 15093.71 22998.85 29698.45 12294.93 10396.86 17598.96 16675.22 33399.20 17795.34 18798.15 15899.64 124
test-LLR96.47 14496.04 14097.78 15697.02 25595.44 17799.96 3598.21 19394.07 14295.55 20696.38 28493.90 9998.27 24790.42 27998.83 14199.64 124
test-mter96.39 14995.93 15197.78 15697.02 25595.44 17799.96 3598.21 19391.81 23195.55 20696.38 28495.17 5198.27 24790.42 27998.83 14199.64 124
MonoMVSNet94.82 19194.43 19395.98 22494.54 32590.73 29999.03 27397.06 31593.16 17693.15 23695.47 31888.29 20897.57 28197.85 13791.33 25999.62 130
EC-MVSNet97.38 10297.24 9597.80 15397.41 23795.64 17199.99 497.06 31594.59 11699.63 4499.32 13389.20 20098.14 25498.76 8899.23 12699.62 130
sss97.57 9197.03 10599.18 5298.37 17198.04 7199.73 16699.38 2293.46 16598.76 10999.06 15391.21 16199.89 9996.33 17397.01 18799.62 130
QAPM95.40 17994.17 20199.10 6796.92 26097.71 8399.40 22598.68 7189.31 28788.94 30098.89 17682.48 26299.96 6593.12 24099.83 7799.62 130
MVS_Test96.46 14595.74 15798.61 10198.18 18797.23 10499.31 23997.15 30491.07 25598.84 10297.05 26388.17 21098.97 18894.39 20997.50 17399.61 134
EPNet98.49 4098.40 3598.77 9199.62 8496.80 12399.90 9199.51 1697.60 2299.20 8499.36 13193.71 10599.91 9297.99 12998.71 14499.61 134
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
IB-MVS92.85 694.99 18993.94 20898.16 13297.72 21995.69 16999.99 498.81 6194.28 13492.70 24396.90 26795.08 5499.17 18096.07 17773.88 38199.60 136
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
ET-MVSNet_ETH3D94.37 21193.28 22897.64 16698.30 17697.99 7399.99 497.61 25494.35 12871.57 39999.45 12096.23 3395.34 36996.91 16885.14 30999.59 137
EIA-MVS97.53 9297.46 8597.76 16098.04 19694.84 19999.98 1597.61 25494.41 12697.90 14599.59 10792.40 14398.87 19398.04 12699.13 13099.59 137
GSMVS99.59 137
sam_mvs194.72 6799.59 137
Fast-Effi-MVS+95.02 18894.19 20097.52 17497.88 20494.55 20599.97 2897.08 31388.85 30194.47 22097.96 23784.59 24898.41 22689.84 28897.10 18299.59 137
SCA94.69 19893.81 21297.33 18797.10 25194.44 20698.86 29498.32 17693.30 17196.17 19595.59 31076.48 32097.95 26791.06 26497.43 17499.59 137
MVSMamba_PlusPlus97.83 7597.45 8698.99 7898.60 15598.15 6599.58 19797.74 24090.34 27399.26 8398.32 22394.29 8699.23 17299.03 7099.89 7099.58 143
PVSNet91.05 1397.13 11196.69 12198.45 11799.52 9295.81 16099.95 5399.65 1294.73 11199.04 9499.21 14484.48 24999.95 7394.92 19598.74 14399.58 143
PVSNet_Blended97.94 6897.64 7998.83 8899.59 8596.99 115100.00 199.10 3195.38 9498.27 13399.08 15189.00 20299.95 7399.12 6199.25 12499.57 145
ab-mvs94.69 19893.42 22298.51 11398.07 19496.26 14396.49 37298.68 7190.31 27494.54 21797.00 26576.30 32299.71 14195.98 17993.38 25099.56 146
test_fmvsmconf0.01_n96.39 14995.74 15798.32 12591.47 37795.56 17499.84 12597.30 28897.74 1897.89 14699.35 13279.62 29299.85 11199.25 5799.24 12599.55 147
Test_1112_low_res95.72 16894.83 18698.42 12097.79 21196.41 13699.65 18496.65 35092.70 19592.86 24296.13 29492.15 14999.30 16991.88 25493.64 24699.55 147
1112_ss96.01 16295.20 17498.42 12097.80 21096.41 13699.65 18496.66 34992.71 19492.88 24199.40 12692.16 14899.30 16991.92 25393.66 24599.55 147
DeepC-MVS94.51 496.92 12596.40 13198.45 11799.16 11195.90 15899.66 18398.06 21196.37 7294.37 22199.49 11683.29 25899.90 9497.63 14899.61 9999.55 147
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CS-MVS97.79 8297.91 6997.43 17999.10 11394.42 20899.99 497.10 30995.07 10099.68 3899.75 7292.95 12698.34 23898.38 10999.14 12999.54 151
LCM-MVSNet-Re92.31 26192.60 24191.43 34297.53 23179.27 39499.02 27591.83 40992.07 22180.31 37494.38 36083.50 25695.48 36697.22 15697.58 17299.54 151
casdiffmvspermissive96.42 14895.97 14797.77 15897.30 24694.98 19499.84 12597.09 31293.75 15996.58 18399.26 14085.07 24398.78 19997.77 14497.04 18599.54 151
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
dp95.05 18794.43 19396.91 19797.99 19892.73 25496.29 37797.98 21889.70 28495.93 19994.67 35293.83 10398.45 22386.91 32496.53 19499.54 151
RRT-MVS96.24 15895.68 16197.94 14797.65 22594.92 19799.27 24797.10 30992.79 19197.43 15997.99 23581.85 26799.37 16898.46 10698.57 14699.53 155
mamv495.24 18396.90 10990.25 35498.65 15272.11 40198.28 33397.64 24789.99 28095.93 19998.25 22594.74 6699.11 18399.01 7299.64 9299.53 155
SPE-MVS-test97.88 7197.94 6797.70 16399.28 10595.20 19099.98 1597.15 30495.53 9199.62 4799.79 5892.08 15198.38 23498.75 8999.28 12399.52 157
Effi-MVS+96.30 15495.69 15998.16 13297.85 20796.26 14397.41 35597.21 29790.37 27198.65 11598.58 20586.61 22998.70 20897.11 15897.37 17899.52 157
mvsmamba96.94 12296.73 11897.55 17197.99 19894.37 21299.62 19197.70 24293.13 17798.42 12597.92 23888.02 21198.75 20398.78 8699.01 13599.52 157
PatchT90.38 30188.75 31795.25 24695.99 28890.16 31391.22 40497.54 26276.80 39197.26 16486.01 40491.88 15496.07 35766.16 40395.91 21099.51 160
tpm93.70 22993.41 22494.58 26995.36 31387.41 34897.01 36496.90 33490.85 26096.72 18094.14 36390.40 18196.84 32490.75 27388.54 28199.51 160
CostFormer96.10 15995.88 15496.78 20197.03 25492.55 26097.08 36397.83 23590.04 27998.72 11194.89 34695.01 5898.29 24396.54 17295.77 21399.50 162
tpmrst96.27 15795.98 14497.13 19197.96 20093.15 24396.34 37598.17 19892.07 22198.71 11295.12 33693.91 9898.73 20494.91 19796.62 19299.50 162
casdiffmvs_mvgpermissive96.43 14695.94 15097.89 15297.44 23695.47 17699.86 11797.29 29193.35 16896.03 19699.19 14585.39 24098.72 20697.89 13697.04 18599.49 164
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
IS-MVSNet96.29 15595.90 15397.45 17798.13 19294.80 20199.08 26197.61 25492.02 22595.54 20898.96 16690.64 17698.08 25893.73 22997.41 17799.47 165
ETV-MVS97.92 7097.80 7498.25 12998.14 19196.48 13399.98 1597.63 24895.61 8899.29 8199.46 11992.55 13898.82 19699.02 7198.54 14799.46 166
baseline96.43 14695.98 14497.76 16097.34 24295.17 19299.51 21097.17 30193.92 15296.90 17499.28 13485.37 24198.64 21297.50 15096.86 19199.46 166
lupinMVS97.85 7397.60 8198.62 10097.28 24897.70 8599.99 497.55 26095.50 9399.43 6899.67 9790.92 17098.71 20798.40 10899.62 9599.45 168
PMMVS96.76 13296.76 11696.76 20298.28 17992.10 26899.91 8597.98 21894.12 13999.53 5899.39 12886.93 22598.73 20496.95 16697.73 16899.45 168
UA-Net96.54 14295.96 14898.27 12898.23 18295.71 16698.00 34698.45 12293.72 16098.41 12699.27 13788.71 20699.66 14991.19 26197.69 16999.44 170
CVMVSNet94.68 20094.94 18493.89 30096.80 26986.92 35399.06 26698.98 3894.45 12094.23 22599.02 15585.60 23695.31 37090.91 26995.39 22299.43 171
PVSNet_Blended_VisFu97.27 10596.81 11498.66 9798.81 14196.67 12699.92 7998.64 7794.51 11996.38 19098.49 21189.05 20199.88 10597.10 15998.34 15199.43 171
PLCcopyleft95.54 397.93 6997.89 7198.05 14199.82 5894.77 20399.92 7998.46 12193.93 15197.20 16599.27 13795.44 4899.97 5797.41 15199.51 10899.41 173
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
PCF-MVS94.20 595.18 18494.10 20298.43 11998.55 15995.99 15697.91 34897.31 28790.35 27289.48 28699.22 14385.19 24299.89 9990.40 28198.47 14999.41 173
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
tpm295.47 17795.18 17596.35 21696.91 26191.70 28296.96 36697.93 22388.04 31698.44 12495.40 32193.32 11397.97 26494.00 21795.61 21799.38 175
OMC-MVS97.28 10497.23 9697.41 18099.76 6693.36 24299.65 18497.95 22196.03 7997.41 16099.70 8889.61 19199.51 15696.73 17098.25 15799.38 175
GeoE94.36 21393.48 22096.99 19597.29 24793.54 23599.96 3596.72 34788.35 31293.43 23198.94 17382.05 26498.05 26188.12 30696.48 19799.37 177
ADS-MVSNet293.80 22493.88 21093.55 31097.87 20585.94 35894.24 38996.84 33890.07 27796.43 18794.48 35790.29 18495.37 36887.44 31197.23 17999.36 178
ADS-MVSNet94.79 19494.02 20597.11 19397.87 20593.79 22694.24 38998.16 20290.07 27796.43 18794.48 35790.29 18498.19 25287.44 31197.23 17999.36 178
FA-MVS(test-final)95.86 16495.09 17898.15 13597.74 21495.62 17296.31 37698.17 19891.42 24596.26 19296.13 29490.56 17899.47 16592.18 24997.07 18399.35 180
BH-RMVSNet95.18 18494.31 19897.80 15398.17 18895.23 18899.76 15297.53 26492.52 20894.27 22499.25 14176.84 31598.80 19790.89 27099.54 10499.35 180
TR-MVS94.54 20393.56 21897.49 17697.96 20094.34 21398.71 30797.51 26790.30 27594.51 21998.69 19375.56 32898.77 20092.82 24395.99 20599.35 180
diffmvspermissive97.00 11996.64 12298.09 13897.64 22696.17 15199.81 13797.19 29894.67 11598.95 9799.28 13486.43 23098.76 20198.37 11197.42 17699.33 183
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
JIA-IIPM91.76 27590.70 27694.94 25496.11 28487.51 34793.16 39698.13 20775.79 39597.58 15477.68 41092.84 12997.97 26488.47 30196.54 19399.33 183
FE-MVS95.70 17295.01 18297.79 15598.21 18494.57 20495.03 38898.69 6988.90 29997.50 15796.19 29192.60 13699.49 16389.99 28697.94 16799.31 185
thres20096.96 12196.21 13799.22 4898.97 12398.84 3699.85 12099.71 793.17 17596.26 19298.88 17789.87 18899.51 15694.26 21494.91 22999.31 185
CDS-MVSNet96.34 15196.07 13997.13 19197.37 24094.96 19599.53 20797.91 22791.55 23795.37 21098.32 22395.05 5697.13 30393.80 22595.75 21599.30 187
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Vis-MVSNetpermissive95.72 16895.15 17697.45 17797.62 22794.28 21499.28 24598.24 18994.27 13696.84 17698.94 17379.39 29498.76 20193.25 23498.49 14899.30 187
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test_vis1_n93.61 23193.03 23295.35 24195.86 29286.94 35299.87 10696.36 35996.85 4999.54 5798.79 18752.41 40299.83 12198.64 9698.97 13699.29 189
ETVMVS97.03 11896.64 12298.20 13198.67 14997.12 11099.89 10098.57 9091.10 25498.17 13898.59 20293.86 10198.19 25295.64 18595.24 22699.28 190
thres100view90096.74 13495.92 15299.18 5298.90 13598.77 4299.74 15999.71 792.59 20395.84 20198.86 18289.25 19799.50 15893.84 22194.57 23299.27 191
tfpn200view996.79 12995.99 14299.19 5198.94 12598.82 3799.78 14499.71 792.86 18596.02 19798.87 18089.33 19599.50 15893.84 22194.57 23299.27 191
MVSFormer96.94 12296.60 12497.95 14497.28 24897.70 8599.55 20497.27 29391.17 25099.43 6899.54 11390.92 17096.89 32194.67 20599.62 9599.25 193
jason97.24 10696.86 11298.38 12395.73 30097.32 10099.97 2897.40 27895.34 9698.60 11899.54 11387.70 21398.56 21597.94 13299.47 11099.25 193
jason: jason.
EPP-MVSNet96.69 13796.60 12496.96 19697.74 21493.05 24699.37 23298.56 9388.75 30395.83 20399.01 15796.01 3498.56 21596.92 16797.20 18199.25 193
EPNet_dtu95.71 17095.39 16796.66 20698.92 13093.41 23999.57 20098.90 4796.19 7797.52 15598.56 20792.65 13397.36 28777.89 37698.33 15299.20 196
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
GA-MVS93.83 22192.84 23496.80 20095.73 30093.57 23399.88 10397.24 29692.57 20592.92 23996.66 27678.73 30297.67 27887.75 30994.06 24199.17 197
thisisatest051597.41 10097.02 10698.59 10497.71 22197.52 9199.97 2898.54 10291.83 22997.45 15899.04 15497.50 899.10 18594.75 20296.37 19999.16 198
thres600view796.69 13795.87 15599.14 6198.90 13598.78 4199.74 15999.71 792.59 20395.84 20198.86 18289.25 19799.50 15893.44 23394.50 23599.16 198
thres40096.78 13195.99 14299.16 5798.94 12598.82 3799.78 14499.71 792.86 18596.02 19798.87 18089.33 19599.50 15893.84 22194.57 23299.16 198
TAMVS95.85 16595.58 16396.65 20797.07 25293.50 23699.17 25597.82 23691.39 24795.02 21498.01 23292.20 14797.30 29393.75 22895.83 21299.14 201
CR-MVSNet93.45 23692.62 24095.94 22696.29 27992.66 25692.01 40096.23 36192.62 20096.94 17293.31 37191.04 16796.03 35879.23 36895.96 20699.13 202
RPMNet89.76 31687.28 33297.19 19096.29 27992.66 25692.01 40098.31 17870.19 40696.94 17285.87 40587.25 22099.78 12862.69 40795.96 20699.13 202
UBG97.84 7497.69 7798.29 12798.38 16996.59 13199.90 9198.53 10593.91 15398.52 11998.42 21896.77 2399.17 18098.54 10196.20 20099.11 204
tpm cat193.51 23392.52 24796.47 20997.77 21291.47 28896.13 37998.06 21180.98 38192.91 24093.78 36689.66 18998.87 19387.03 32096.39 19899.09 205
BH-w/o95.71 17095.38 16896.68 20598.49 16592.28 26499.84 12597.50 26892.12 22092.06 25198.79 18784.69 24798.67 21195.29 18999.66 9199.09 205
fmvsm_s_conf0.5_n_a97.73 8797.72 7597.77 15898.63 15494.26 21599.96 3598.92 4697.18 3999.75 2999.69 9087.00 22499.97 5799.46 4798.89 13799.08 207
testing1197.48 9497.27 9498.10 13798.36 17296.02 15599.92 7998.45 12293.45 16798.15 13998.70 19295.48 4799.22 17397.85 13795.05 22899.07 208
testing22297.08 11796.75 11798.06 14098.56 15696.82 12199.85 12098.61 8392.53 20798.84 10298.84 18693.36 11098.30 24295.84 18294.30 23799.05 209
testing9197.16 11096.90 10997.97 14398.35 17495.67 17099.91 8598.42 14792.91 18497.33 16298.72 19094.81 6499.21 17496.98 16394.63 23199.03 210
LS3D95.84 16695.11 17798.02 14299.85 5495.10 19398.74 30498.50 11687.22 32793.66 23099.86 2987.45 21799.95 7390.94 26899.81 8399.02 211
MIMVSNet90.30 30488.67 31895.17 24896.45 27891.64 28492.39 39897.15 30485.99 34290.50 26493.19 37366.95 37094.86 37782.01 35693.43 24899.01 212
testing9997.17 10996.91 10897.95 14498.35 17495.70 16799.91 8598.43 13592.94 18297.36 16198.72 19094.83 6399.21 17497.00 16194.64 23098.95 213
thisisatest053097.10 11296.72 11998.22 13097.60 22896.70 12499.92 7998.54 10291.11 25397.07 17098.97 16497.47 1199.03 18693.73 22996.09 20398.92 214
BH-untuned95.18 18494.83 18696.22 21998.36 17291.22 29099.80 14197.32 28690.91 25891.08 25898.67 19483.51 25598.54 21794.23 21599.61 9998.92 214
F-COLMAP96.93 12496.95 10796.87 19999.71 7691.74 27899.85 12097.95 22193.11 17995.72 20599.16 14892.35 14499.94 8195.32 18899.35 12098.92 214
Anonymous2024052992.10 26590.65 27796.47 20998.82 14090.61 30398.72 30698.67 7475.54 39693.90 22998.58 20566.23 37399.90 9494.70 20490.67 26098.90 217
tttt051796.85 12696.49 12897.92 14897.48 23595.89 15999.85 12098.54 10290.72 26696.63 18198.93 17597.47 1199.02 18793.03 24195.76 21498.85 218
baseline195.78 16794.86 18598.54 11098.47 16698.07 6999.06 26697.99 21692.68 19794.13 22698.62 20193.28 11698.69 20993.79 22685.76 30298.84 219
VDD-MVS93.77 22592.94 23396.27 21898.55 15990.22 31298.77 30397.79 23790.85 26096.82 17799.42 12161.18 39299.77 13198.95 7394.13 23998.82 220
PatchMatch-RL96.04 16195.40 16697.95 14499.59 8595.22 18999.52 20899.07 3493.96 14996.49 18598.35 22082.28 26399.82 12390.15 28499.22 12798.81 221
PVSNet_088.03 1991.80 27290.27 28696.38 21598.27 18090.46 30799.94 6999.61 1393.99 14786.26 34297.39 25271.13 35499.89 9998.77 8767.05 39898.79 222
test_vis1_n_192095.44 17895.31 17095.82 23098.50 16488.74 33299.98 1597.30 28897.84 1699.85 999.19 14566.82 37199.97 5798.82 8399.46 11298.76 223
tpmvs94.28 21593.57 21796.40 21398.55 15991.50 28795.70 38798.55 9987.47 32292.15 24894.26 36291.42 15898.95 19188.15 30495.85 21198.76 223
fmvsm_s_conf0.1_n_a97.09 11496.90 10997.63 16895.65 30794.21 21799.83 13298.50 11696.27 7499.65 4199.64 10284.72 24699.93 8899.04 6798.84 14098.74 225
test_cas_vis1_n_192096.59 14196.23 13597.65 16598.22 18394.23 21699.99 497.25 29597.77 1799.58 5499.08 15177.10 31099.97 5797.64 14799.45 11398.74 225
h-mvs3394.92 19094.36 19596.59 20898.85 13991.29 28998.93 28498.94 4195.90 8098.77 10798.42 21890.89 17399.77 13197.80 13970.76 38798.72 227
xiu_mvs_v2_base98.23 6197.97 6399.02 7698.69 14798.66 5199.52 20898.08 21097.05 4399.86 799.86 2990.65 17599.71 14199.39 5398.63 14598.69 228
PS-MVSNAJ98.44 4498.20 4999.16 5798.80 14298.92 2999.54 20698.17 19897.34 2999.85 999.85 3391.20 16299.89 9999.41 5199.67 9098.69 228
fmvsm_s_conf0.5_n97.80 8097.85 7297.67 16499.06 11594.41 20999.98 1598.97 4097.34 2999.63 4499.69 9087.27 21999.97 5799.62 4099.06 13398.62 230
test_fmvsm_n_192098.44 4498.61 2797.92 14899.27 10695.18 191100.00 198.90 4798.05 1299.80 1799.73 8192.64 13499.99 3699.58 4199.51 10898.59 231
fmvsm_s_conf0.1_n97.30 10397.21 9797.60 17097.38 23994.40 21199.90 9198.64 7796.47 6599.51 6299.65 10184.99 24599.93 8899.22 5899.09 13298.46 232
UWE-MVS96.79 12996.72 11997.00 19498.51 16393.70 23099.71 17398.60 8592.96 18197.09 16898.34 22296.67 2998.85 19592.11 25096.50 19598.44 233
test_fmvsmvis_n_192097.67 8997.59 8397.91 15097.02 25595.34 18299.95 5398.45 12297.87 1597.02 17199.59 10789.64 19099.98 4799.41 5199.34 12198.42 234
dmvs_re93.20 23993.15 23093.34 31396.54 27783.81 37098.71 30798.51 11091.39 24792.37 24798.56 20778.66 30397.83 27293.89 21989.74 26198.38 235
MSDG94.37 21193.36 22697.40 18198.88 13793.95 22499.37 23297.38 27985.75 34790.80 26299.17 14784.11 25399.88 10586.35 32598.43 15098.36 236
CANet_DTU96.76 13296.15 13898.60 10298.78 14397.53 9099.84 12597.63 24897.25 3799.20 8499.64 10281.36 27399.98 4792.77 24498.89 13798.28 237
test_fmvs195.35 18195.68 16194.36 28298.99 12184.98 36499.96 3596.65 35097.60 2299.73 3398.96 16671.58 35099.93 8898.31 11499.37 11998.17 238
VDDNet93.12 24291.91 25796.76 20296.67 27692.65 25898.69 31098.21 19382.81 37397.75 15299.28 13461.57 39099.48 16498.09 12494.09 24098.15 239
MVS-HIRNet86.22 34083.19 35395.31 24496.71 27590.29 31092.12 39997.33 28562.85 40786.82 33170.37 41269.37 35997.49 28475.12 38697.99 16698.15 239
test_fmvs1_n94.25 21694.36 19593.92 29797.68 22283.70 37199.90 9196.57 35397.40 2899.67 3998.88 17761.82 38999.92 9198.23 11699.13 13098.14 241
UGNet95.33 18294.57 19197.62 16998.55 15994.85 19898.67 31299.32 2695.75 8596.80 17896.27 28972.18 34799.96 6594.58 20799.05 13498.04 242
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
kuosan93.17 24092.60 24194.86 25998.40 16889.54 32498.44 32498.53 10584.46 36088.49 30697.92 23890.57 17797.05 30983.10 34893.49 24797.99 243
DSMNet-mixed88.28 33088.24 32488.42 37089.64 39175.38 39898.06 34489.86 41385.59 34988.20 31492.14 38176.15 32591.95 39978.46 37496.05 20497.92 244
xiu_mvs_v1_base_debu97.43 9597.06 10198.55 10797.74 21498.14 6699.31 23997.86 23296.43 6699.62 4799.69 9085.56 23799.68 14599.05 6498.31 15397.83 245
xiu_mvs_v1_base97.43 9597.06 10198.55 10797.74 21498.14 6699.31 23997.86 23296.43 6699.62 4799.69 9085.56 23799.68 14599.05 6498.31 15397.83 245
xiu_mvs_v1_base_debi97.43 9597.06 10198.55 10797.74 21498.14 6699.31 23997.86 23296.43 6699.62 4799.69 9085.56 23799.68 14599.05 6498.31 15397.83 245
UniMVSNet_ETH3D90.06 31188.58 31994.49 27594.67 32388.09 34397.81 35197.57 25983.91 36488.44 30897.41 25057.44 39697.62 28091.41 25888.59 28097.77 248
cascas94.64 20193.61 21397.74 16297.82 20996.26 14399.96 3597.78 23985.76 34594.00 22797.54 24776.95 31499.21 17497.23 15595.43 22197.76 249
SDMVSNet94.80 19393.96 20797.33 18798.92 13095.42 17999.59 19598.99 3792.41 21292.55 24597.85 24175.81 32798.93 19297.90 13591.62 25797.64 250
sd_testset93.55 23292.83 23595.74 23298.92 13090.89 29798.24 33598.85 5692.41 21292.55 24597.85 24171.07 35598.68 21093.93 21891.62 25797.64 250
hse-mvs294.38 21094.08 20395.31 24498.27 18090.02 31699.29 24498.56 9395.90 8098.77 10798.00 23390.89 17398.26 24997.80 13969.20 39397.64 250
AUN-MVS93.28 23792.60 24195.34 24298.29 17790.09 31599.31 23998.56 9391.80 23296.35 19198.00 23389.38 19498.28 24592.46 24569.22 39297.64 250
OpenMVScopyleft90.15 1594.77 19693.59 21698.33 12496.07 28597.48 9599.56 20298.57 9090.46 26986.51 33698.95 17178.57 30499.94 8193.86 22099.74 8697.57 254
baseline296.71 13696.49 12897.37 18395.63 30995.96 15799.74 15998.88 5192.94 18291.61 25398.97 16497.72 698.62 21394.83 19998.08 16497.53 255
tt080591.28 28190.18 28994.60 26796.26 28187.55 34698.39 32998.72 6689.00 29389.22 29398.47 21562.98 38598.96 19090.57 27588.00 28897.28 256
dongtai91.55 27891.13 27192.82 32798.16 18986.35 35599.47 21798.51 11083.24 36885.07 35197.56 24690.33 18294.94 37576.09 38491.73 25597.18 257
RPSCF91.80 27292.79 23788.83 36598.15 19069.87 40398.11 34296.60 35283.93 36394.33 22299.27 13779.60 29399.46 16691.99 25193.16 25297.18 257
test0.0.03 193.86 22093.61 21394.64 26595.02 31892.18 26799.93 7698.58 8894.07 14287.96 31698.50 21093.90 9994.96 37481.33 35993.17 25196.78 259
AllTest92.48 25791.64 26095.00 25299.01 11888.43 33898.94 28296.82 34186.50 33688.71 30298.47 21574.73 33799.88 10585.39 33396.18 20196.71 260
TestCases95.00 25299.01 11888.43 33896.82 34186.50 33688.71 30298.47 21574.73 33799.88 10585.39 33396.18 20196.71 260
Syy-MVS90.00 31290.63 27888.11 37297.68 22274.66 39999.71 17398.35 16990.79 26292.10 24998.67 19479.10 29993.09 39263.35 40695.95 20896.59 262
myMVS_eth3d94.46 20894.76 18893.55 31097.68 22290.97 29299.71 17398.35 16990.79 26292.10 24998.67 19492.46 14293.09 39287.13 31795.95 20896.59 262
XVG-OURS-SEG-HR94.79 19494.70 19095.08 24998.05 19589.19 32699.08 26197.54 26293.66 16194.87 21599.58 10978.78 30199.79 12697.31 15393.40 24996.25 264
XVG-OURS94.82 19194.74 18995.06 25098.00 19789.19 32699.08 26197.55 26094.10 14094.71 21699.62 10580.51 28599.74 13796.04 17893.06 25496.25 264
Effi-MVS+-dtu94.53 20595.30 17192.22 33397.77 21282.54 37799.59 19597.06 31594.92 10595.29 21195.37 32585.81 23597.89 27094.80 20097.07 18396.23 266
testing393.92 21994.23 19992.99 32497.54 23090.23 31199.99 499.16 3090.57 26791.33 25798.63 20092.99 12492.52 39682.46 35295.39 22296.22 267
testgi89.01 32588.04 32691.90 33793.49 34384.89 36599.73 16695.66 37493.89 15685.14 34998.17 22759.68 39394.66 37977.73 37788.88 27296.16 268
Fast-Effi-MVS+-dtu93.72 22893.86 21193.29 31597.06 25386.16 35699.80 14196.83 33992.66 19892.58 24497.83 24381.39 27297.67 27889.75 28996.87 19096.05 269
dmvs_testset83.79 35786.07 33976.94 38792.14 36748.60 42296.75 36990.27 41289.48 28578.65 38198.55 20979.25 29586.65 41066.85 40182.69 32595.57 270
COLMAP_ROBcopyleft90.47 1492.18 26491.49 26694.25 28599.00 12088.04 34498.42 32896.70 34882.30 37688.43 31099.01 15776.97 31399.85 11186.11 32996.50 19594.86 271
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
HQP4-MVS93.37 23298.39 23094.53 272
HQP-MVS94.61 20294.50 19294.92 25595.78 29391.85 27499.87 10697.89 22896.82 5193.37 23298.65 19780.65 28398.39 23097.92 13389.60 26294.53 272
HQP_MVS94.49 20794.36 19594.87 25695.71 30391.74 27899.84 12597.87 23096.38 6993.01 23798.59 20280.47 28798.37 23697.79 14289.55 26594.52 274
plane_prior597.87 23098.37 23697.79 14289.55 26594.52 274
CLD-MVS94.06 21893.90 20994.55 27196.02 28790.69 30099.98 1597.72 24196.62 6291.05 26098.85 18577.21 30998.47 21998.11 12289.51 26794.48 276
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
nrg03093.51 23392.53 24696.45 21194.36 32897.20 10599.81 13797.16 30391.60 23589.86 27497.46 24886.37 23197.68 27795.88 18180.31 35094.46 277
VPNet91.81 26990.46 28095.85 22994.74 32195.54 17598.98 27798.59 8792.14 21990.77 26397.44 24968.73 36297.54 28394.89 19877.89 36394.46 277
UniMVSNet_NR-MVSNet92.95 24692.11 25295.49 23594.61 32495.28 18599.83 13299.08 3391.49 23889.21 29496.86 27087.14 22196.73 33093.20 23577.52 36694.46 277
DU-MVS92.46 25891.45 26795.49 23594.05 33395.28 18599.81 13798.74 6592.25 21889.21 29496.64 27881.66 26996.73 33093.20 23577.52 36694.46 277
NR-MVSNet91.56 27790.22 28795.60 23394.05 33395.76 16398.25 33498.70 6891.16 25280.78 37396.64 27883.23 25996.57 33691.41 25877.73 36594.46 277
TranMVSNet+NR-MVSNet91.68 27690.61 27994.87 25693.69 34093.98 22399.69 17898.65 7591.03 25688.44 30896.83 27480.05 29096.18 35190.26 28376.89 37494.45 282
FIs94.10 21793.43 22196.11 22194.70 32296.82 12199.58 19798.93 4592.54 20689.34 28997.31 25387.62 21597.10 30694.22 21686.58 29894.40 283
ACMM91.95 1092.88 24892.52 24793.98 29695.75 29989.08 33099.77 14797.52 26693.00 18089.95 27197.99 23576.17 32498.46 22293.63 23188.87 27394.39 284
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
FC-MVSNet-test93.81 22393.15 23095.80 23194.30 33096.20 14899.42 22498.89 4992.33 21689.03 29997.27 25587.39 21896.83 32693.20 23586.48 29994.36 285
PS-MVSNAJss93.64 23093.31 22794.61 26692.11 36892.19 26699.12 25797.38 27992.51 20988.45 30796.99 26691.20 16297.29 29694.36 21087.71 29194.36 285
WR-MVS92.31 26191.25 26995.48 23894.45 32795.29 18499.60 19498.68 7190.10 27688.07 31596.89 26880.68 28296.80 32893.14 23879.67 35494.36 285
WBMVS94.52 20694.03 20495.98 22498.38 16996.68 12599.92 7997.63 24890.75 26589.64 28295.25 33396.77 2396.90 32094.35 21283.57 32194.35 288
XXY-MVS91.82 26890.46 28095.88 22793.91 33695.40 18198.87 29397.69 24488.63 30787.87 31797.08 26074.38 34097.89 27091.66 25684.07 31894.35 288
MVSTER95.53 17695.22 17396.45 21198.56 15697.72 8299.91 8597.67 24592.38 21491.39 25597.14 25797.24 1797.30 29394.80 20087.85 28994.34 290
VPA-MVSNet92.70 25291.55 26496.16 22095.09 31596.20 14898.88 29099.00 3691.02 25791.82 25295.29 33176.05 32697.96 26695.62 18681.19 33794.30 291
FMVSNet392.69 25391.58 26295.99 22398.29 17797.42 9899.26 24897.62 25189.80 28389.68 27895.32 32781.62 27196.27 34887.01 32185.65 30394.29 292
EU-MVSNet90.14 31090.34 28489.54 36092.55 36281.06 38898.69 31098.04 21491.41 24686.59 33596.84 27380.83 28093.31 39186.20 32781.91 33294.26 293
UniMVSNet (Re)93.07 24492.13 25195.88 22794.84 31996.24 14799.88 10398.98 3892.49 21089.25 29195.40 32187.09 22297.14 30293.13 23978.16 36194.26 293
reproduce_monomvs95.38 18095.07 17996.32 21799.32 10496.60 12999.76 15298.85 5696.65 5987.83 31896.05 29899.52 198.11 25696.58 17181.07 34294.25 295
FMVSNet291.02 28689.56 30095.41 24097.53 23195.74 16498.98 27797.41 27787.05 32888.43 31095.00 34271.34 35196.24 35085.12 33585.21 30894.25 295
EI-MVSNet93.73 22793.40 22594.74 26196.80 26992.69 25599.06 26697.67 24588.96 29691.39 25599.02 15588.75 20597.30 29391.07 26387.85 28994.22 297
IterMVS-LS92.69 25392.11 25294.43 28096.80 26992.74 25299.45 22296.89 33588.98 29489.65 28195.38 32488.77 20496.34 34590.98 26782.04 33194.22 297
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
cl2293.77 22593.25 22995.33 24399.49 9594.43 20799.61 19398.09 20890.38 27089.16 29795.61 30890.56 17897.34 28991.93 25284.45 31494.21 299
miper_enhance_ethall94.36 21393.98 20695.49 23598.68 14895.24 18799.73 16697.29 29193.28 17289.86 27495.97 29994.37 8197.05 30992.20 24884.45 31494.19 300
miper_ehance_all_eth93.16 24192.60 24194.82 26097.57 22993.56 23499.50 21297.07 31488.75 30388.85 30195.52 31490.97 16996.74 32990.77 27284.45 31494.17 301
DIV-MVS_self_test92.32 26091.60 26194.47 27697.31 24592.74 25299.58 19796.75 34586.99 33187.64 32095.54 31289.55 19296.50 33888.58 29882.44 32894.17 301
GBi-Net90.88 28989.82 29594.08 28997.53 23191.97 26998.43 32596.95 32787.05 32889.68 27894.72 34871.34 35196.11 35387.01 32185.65 30394.17 301
test190.88 28989.82 29594.08 28997.53 23191.97 26998.43 32596.95 32787.05 32889.68 27894.72 34871.34 35196.11 35387.01 32185.65 30394.17 301
FMVSNet188.50 32886.64 33594.08 28995.62 31091.97 26998.43 32596.95 32783.00 37186.08 34494.72 34859.09 39496.11 35381.82 35884.07 31894.17 301
cl____92.31 26191.58 26294.52 27297.33 24492.77 25099.57 20096.78 34486.97 33287.56 32295.51 31589.43 19396.62 33488.60 29782.44 32894.16 306
eth_miper_zixun_eth92.41 25991.93 25693.84 30197.28 24890.68 30198.83 29796.97 32688.57 30889.19 29695.73 30589.24 19996.69 33289.97 28781.55 33494.15 307
miper_lstm_enhance91.81 26991.39 26893.06 32397.34 24289.18 32899.38 23096.79 34386.70 33587.47 32495.22 33490.00 18695.86 36288.26 30281.37 33694.15 307
Anonymous2023121189.86 31488.44 32194.13 28898.93 12790.68 30198.54 31998.26 18676.28 39286.73 33295.54 31270.60 35697.56 28290.82 27180.27 35194.15 307
c3_l92.53 25691.87 25894.52 27297.40 23892.99 24899.40 22596.93 33287.86 31888.69 30495.44 31989.95 18796.44 34190.45 27880.69 34794.14 310
jajsoiax91.92 26791.18 27094.15 28691.35 37890.95 29599.00 27697.42 27592.61 20187.38 32697.08 26072.46 34697.36 28794.53 20888.77 27594.13 311
mvs_tets91.81 26991.08 27294.00 29491.63 37590.58 30498.67 31297.43 27392.43 21187.37 32797.05 26371.76 34897.32 29194.75 20288.68 27794.11 312
v2v48291.30 27990.07 29395.01 25193.13 34893.79 22699.77 14797.02 31988.05 31589.25 29195.37 32580.73 28197.15 30187.28 31580.04 35394.09 313
LPG-MVS_test92.96 24592.71 23993.71 30495.43 31188.67 33499.75 15697.62 25192.81 18890.05 26798.49 21175.24 33198.40 22895.84 18289.12 26994.07 314
LGP-MVS_train93.71 30495.43 31188.67 33497.62 25192.81 18890.05 26798.49 21175.24 33198.40 22895.84 18289.12 26994.07 314
test_djsdf92.83 24992.29 25094.47 27691.90 37192.46 26199.55 20497.27 29391.17 25089.96 27096.07 29781.10 27696.89 32194.67 20588.91 27194.05 316
CP-MVSNet91.23 28390.22 28794.26 28493.96 33592.39 26399.09 25998.57 9088.95 29786.42 33996.57 28179.19 29796.37 34390.29 28278.95 35694.02 317
Patchmtry89.70 31788.49 32093.33 31496.24 28289.94 32091.37 40396.23 36178.22 38987.69 31993.31 37191.04 16796.03 35880.18 36682.10 33094.02 317
v192192090.46 29989.12 30994.50 27492.96 35592.46 26199.49 21496.98 32486.10 34189.61 28495.30 32878.55 30597.03 31482.17 35580.89 34694.01 319
v119290.62 29789.25 30794.72 26393.13 34893.07 24499.50 21297.02 31986.33 33989.56 28595.01 34079.22 29697.09 30882.34 35481.16 33894.01 319
v124090.20 30788.79 31694.44 27893.05 35392.27 26599.38 23096.92 33385.89 34389.36 28894.87 34777.89 30897.03 31480.66 36281.08 34194.01 319
OPM-MVS93.21 23892.80 23694.44 27893.12 35090.85 29899.77 14797.61 25496.19 7791.56 25498.65 19775.16 33598.47 21993.78 22789.39 26893.99 322
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ACMP92.05 992.74 25192.42 24993.73 30295.91 29188.72 33399.81 13797.53 26494.13 13887.00 33098.23 22674.07 34198.47 21996.22 17688.86 27493.99 322
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
OurMVSNet-221017-089.81 31589.48 30590.83 34891.64 37481.21 38698.17 34095.38 38091.48 24085.65 34797.31 25372.66 34597.29 29688.15 30484.83 31193.97 324
pmmvs590.17 30989.09 31093.40 31292.10 36989.77 32199.74 15995.58 37685.88 34487.24 32995.74 30373.41 34496.48 33988.54 29983.56 32293.95 325
PS-CasMVS90.63 29689.51 30393.99 29593.83 33791.70 28298.98 27798.52 10788.48 30986.15 34396.53 28375.46 32996.31 34788.83 29578.86 35893.95 325
IterMVS90.91 28890.17 29093.12 32096.78 27290.42 30998.89 28897.05 31889.03 29186.49 33795.42 32076.59 31895.02 37287.22 31684.09 31793.93 327
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
ACMH89.72 1790.64 29589.63 29893.66 30895.64 30888.64 33698.55 31797.45 27189.03 29181.62 36897.61 24569.75 35898.41 22689.37 29087.62 29393.92 328
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
v14419290.79 29289.52 30294.59 26893.11 35192.77 25099.56 20296.99 32286.38 33889.82 27794.95 34580.50 28697.10 30683.98 34280.41 34893.90 329
PEN-MVS90.19 30889.06 31193.57 30993.06 35290.90 29699.06 26698.47 11988.11 31485.91 34596.30 28876.67 31695.94 36187.07 31876.91 37393.89 330
XVG-ACMP-BASELINE91.22 28490.75 27592.63 33093.73 33985.61 35998.52 32197.44 27292.77 19289.90 27396.85 27166.64 37298.39 23092.29 24788.61 27893.89 330
v114491.09 28589.83 29494.87 25693.25 34793.69 23199.62 19196.98 32486.83 33489.64 28294.99 34380.94 27897.05 30985.08 33681.16 33893.87 332
MDA-MVSNet_test_wron85.51 34483.32 35292.10 33490.96 38188.58 33799.20 25296.52 35579.70 38657.12 41292.69 37579.11 29893.86 38677.10 38077.46 36893.86 333
IterMVS-SCA-FT90.85 29190.16 29192.93 32596.72 27489.96 31798.89 28896.99 32288.95 29786.63 33495.67 30676.48 32095.00 37387.04 31984.04 32093.84 334
YYNet185.50 34583.33 35192.00 33590.89 38288.38 34199.22 25196.55 35479.60 38757.26 41192.72 37479.09 30093.78 38777.25 37977.37 36993.84 334
MDA-MVSNet-bldmvs84.09 35581.52 36291.81 33991.32 37988.00 34598.67 31295.92 36880.22 38455.60 41393.32 37068.29 36593.60 38973.76 38876.61 37593.82 336
ACMH+89.98 1690.35 30289.54 30192.78 32995.99 28886.12 35798.81 29997.18 30089.38 28683.14 36197.76 24468.42 36498.43 22489.11 29386.05 30193.78 337
v14890.70 29389.63 29893.92 29792.97 35490.97 29299.75 15696.89 33587.51 32188.27 31395.01 34081.67 26897.04 31287.40 31377.17 37193.75 338
pmmvs492.10 26591.07 27395.18 24792.82 35994.96 19599.48 21696.83 33987.45 32388.66 30596.56 28283.78 25496.83 32689.29 29184.77 31293.75 338
K. test v388.05 33287.24 33390.47 35291.82 37382.23 38098.96 28097.42 27589.05 29076.93 38995.60 30968.49 36395.42 36785.87 33281.01 34493.75 338
lessismore_v090.53 35090.58 38480.90 38995.80 36977.01 38895.84 30066.15 37496.95 31783.03 34975.05 38093.74 341
SixPastTwentyTwo88.73 32688.01 32790.88 34591.85 37282.24 37998.22 33895.18 38588.97 29582.26 36496.89 26871.75 34996.67 33384.00 34182.98 32393.72 342
our_test_390.39 30089.48 30593.12 32092.40 36489.57 32399.33 23696.35 36087.84 31985.30 34894.99 34384.14 25296.09 35680.38 36384.56 31393.71 343
LTVRE_ROB88.28 1890.29 30589.05 31294.02 29295.08 31690.15 31497.19 35997.43 27384.91 35783.99 35797.06 26274.00 34298.28 24584.08 34087.71 29193.62 344
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
ITE_SJBPF92.38 33195.69 30685.14 36295.71 37292.81 18889.33 29098.11 22970.23 35798.42 22585.91 33188.16 28693.59 345
v7n89.65 31888.29 32393.72 30392.22 36690.56 30599.07 26597.10 30985.42 35286.73 33294.72 34880.06 28997.13 30381.14 36078.12 36293.49 346
DTE-MVSNet89.40 32188.24 32492.88 32692.66 36189.95 31899.10 25898.22 19287.29 32585.12 35096.22 29076.27 32395.30 37183.56 34675.74 37893.41 347
V4291.28 28190.12 29294.74 26193.42 34593.46 23799.68 18097.02 31987.36 32489.85 27695.05 33881.31 27597.34 28987.34 31480.07 35293.40 348
anonymousdsp91.79 27490.92 27494.41 28190.76 38392.93 24998.93 28497.17 30189.08 28987.46 32595.30 32878.43 30796.92 31992.38 24688.73 27693.39 349
v890.54 29889.17 30894.66 26493.43 34493.40 24099.20 25296.94 33185.76 34587.56 32294.51 35581.96 26697.19 29984.94 33778.25 36093.38 350
ppachtmachnet_test89.58 31988.35 32293.25 31892.40 36490.44 30899.33 23696.73 34685.49 35085.90 34695.77 30281.09 27796.00 36076.00 38582.49 32793.30 351
v1090.25 30688.82 31594.57 27093.53 34293.43 23899.08 26196.87 33785.00 35487.34 32894.51 35580.93 27997.02 31682.85 35079.23 35593.26 352
PVSNet_BlendedMVS96.05 16095.82 15696.72 20499.59 8596.99 11599.95 5399.10 3194.06 14498.27 13395.80 30189.00 20299.95 7399.12 6187.53 29493.24 353
WR-MVS_H91.30 27990.35 28394.15 28694.17 33292.62 25999.17 25598.94 4188.87 30086.48 33894.46 35984.36 25096.61 33588.19 30378.51 35993.21 354
FMVSNet588.32 32987.47 33190.88 34596.90 26488.39 34097.28 35795.68 37382.60 37584.67 35392.40 37979.83 29191.16 40176.39 38381.51 33593.09 355
Anonymous2023120686.32 33985.42 34289.02 36489.11 39380.53 39299.05 27095.28 38185.43 35182.82 36293.92 36474.40 33993.44 39066.99 40081.83 33393.08 356
pm-mvs189.36 32287.81 32894.01 29393.40 34691.93 27298.62 31596.48 35786.25 34083.86 35896.14 29373.68 34397.04 31286.16 32875.73 37993.04 357
test_method80.79 36479.70 36884.08 37992.83 35867.06 40599.51 21095.42 37854.34 41181.07 37293.53 36844.48 40792.22 39878.90 37277.23 37092.94 358
UnsupCasMVSNet_eth85.52 34383.99 34590.10 35689.36 39283.51 37296.65 37097.99 21689.14 28875.89 39393.83 36563.25 38493.92 38481.92 35767.90 39792.88 359
USDC90.00 31288.96 31393.10 32294.81 32088.16 34298.71 30795.54 37793.66 16183.75 35997.20 25665.58 37598.31 24183.96 34387.49 29592.85 360
test_fmvs289.47 32089.70 29788.77 36894.54 32575.74 39699.83 13294.70 39294.71 11291.08 25896.82 27554.46 39997.78 27592.87 24288.27 28492.80 361
N_pmnet80.06 36780.78 36577.89 38691.94 37045.28 42498.80 30156.82 42678.10 39080.08 37693.33 36977.03 31195.76 36368.14 39982.81 32492.64 362
KD-MVS_2432*160088.00 33386.10 33793.70 30696.91 26194.04 22097.17 36097.12 30784.93 35581.96 36592.41 37792.48 14094.51 38079.23 36852.68 41292.56 363
miper_refine_blended88.00 33386.10 33793.70 30696.91 26194.04 22097.17 36097.12 30784.93 35581.96 36592.41 37792.48 14094.51 38079.23 36852.68 41292.56 363
pmmvs685.69 34183.84 34891.26 34490.00 38984.41 36897.82 35096.15 36475.86 39481.29 37095.39 32361.21 39196.87 32383.52 34773.29 38292.50 365
D2MVS92.76 25092.59 24593.27 31695.13 31489.54 32499.69 17899.38 2292.26 21787.59 32194.61 35485.05 24497.79 27391.59 25788.01 28792.47 366
CL-MVSNet_self_test84.50 35383.15 35488.53 36986.00 39981.79 38398.82 29897.35 28185.12 35383.62 36090.91 38676.66 31791.40 40069.53 39660.36 40992.40 367
MIMVSNet182.58 36080.51 36688.78 36686.68 39884.20 36996.65 37095.41 37978.75 38878.59 38292.44 37651.88 40389.76 40465.26 40578.95 35692.38 368
LF4IMVS89.25 32488.85 31490.45 35392.81 36081.19 38798.12 34194.79 38991.44 24286.29 34197.11 25865.30 37898.11 25688.53 30085.25 30792.07 369
TransMVSNet (Re)87.25 33685.28 34393.16 31993.56 34191.03 29198.54 31994.05 39883.69 36681.09 37196.16 29275.32 33096.40 34276.69 38268.41 39492.06 370
DeepMVS_CXcopyleft82.92 38295.98 29058.66 41396.01 36692.72 19378.34 38395.51 31558.29 39598.08 25882.57 35185.29 30692.03 371
Baseline_NR-MVSNet90.33 30389.51 30392.81 32892.84 35789.95 31899.77 14793.94 39984.69 35989.04 29895.66 30781.66 26996.52 33790.99 26676.98 37291.97 372
TinyColmap87.87 33586.51 33691.94 33695.05 31785.57 36097.65 35294.08 39684.40 36181.82 36796.85 27162.14 38898.33 23980.25 36586.37 30091.91 373
MS-PatchMatch90.65 29490.30 28591.71 34194.22 33185.50 36198.24 33597.70 24288.67 30586.42 33996.37 28667.82 36798.03 26283.62 34599.62 9591.60 374
KD-MVS_self_test83.59 35982.06 35988.20 37186.93 39780.70 39097.21 35896.38 35882.87 37282.49 36388.97 39367.63 36892.32 39773.75 38962.30 40891.58 375
tfpnnormal89.29 32387.61 33094.34 28394.35 32994.13 21998.95 28198.94 4183.94 36284.47 35495.51 31574.84 33697.39 28677.05 38180.41 34891.48 376
MVP-Stereo90.93 28790.45 28292.37 33291.25 38088.76 33198.05 34596.17 36387.27 32684.04 35595.30 32878.46 30697.27 29883.78 34499.70 8991.09 377
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
ttmdpeth88.23 33187.06 33491.75 34089.91 39087.35 34998.92 28795.73 37187.92 31784.02 35696.31 28768.23 36696.84 32486.33 32676.12 37691.06 378
test20.0384.72 35283.99 34586.91 37488.19 39680.62 39198.88 29095.94 36788.36 31178.87 37994.62 35368.75 36189.11 40566.52 40275.82 37791.00 379
EG-PatchMatch MVS85.35 34683.81 34989.99 35890.39 38581.89 38298.21 33996.09 36581.78 37874.73 39593.72 36751.56 40497.12 30579.16 37188.61 27890.96 380
TDRefinement84.76 35082.56 35891.38 34374.58 41684.80 36797.36 35694.56 39384.73 35880.21 37596.12 29663.56 38298.39 23087.92 30763.97 40490.95 381
ambc83.23 38177.17 41462.61 40787.38 41094.55 39476.72 39086.65 40230.16 41196.36 34484.85 33869.86 38890.73 382
MVStest185.03 34882.76 35791.83 33892.95 35689.16 32998.57 31694.82 38871.68 40468.54 40495.11 33783.17 26095.66 36474.69 38765.32 40190.65 383
Anonymous2024052185.15 34783.81 34989.16 36388.32 39482.69 37598.80 30195.74 37079.72 38581.53 36990.99 38465.38 37794.16 38272.69 39081.11 34090.63 384
OpenMVS_ROBcopyleft79.82 2083.77 35881.68 36190.03 35788.30 39582.82 37498.46 32295.22 38373.92 40176.00 39291.29 38355.00 39896.94 31868.40 39888.51 28290.34 385
new_pmnet84.49 35482.92 35589.21 36290.03 38882.60 37696.89 36895.62 37580.59 38275.77 39489.17 39265.04 37994.79 37872.12 39281.02 34390.23 386
test_040285.58 34283.94 34790.50 35193.81 33885.04 36398.55 31795.20 38476.01 39379.72 37895.13 33564.15 38196.26 34966.04 40486.88 29790.21 387
mvs5depth84.87 34982.90 35690.77 34985.59 40184.84 36691.10 40593.29 40483.14 36985.07 35194.33 36162.17 38797.32 29178.83 37372.59 38590.14 388
mmtdpeth88.52 32787.75 32990.85 34795.71 30383.47 37398.94 28294.85 38788.78 30297.19 16689.58 39063.29 38398.97 18898.54 10162.86 40690.10 389
test_vis1_rt86.87 33886.05 34089.34 36196.12 28378.07 39599.87 10683.54 42092.03 22478.21 38489.51 39145.80 40699.91 9296.25 17593.11 25390.03 390
pmmvs380.27 36677.77 37187.76 37380.32 41182.43 37898.23 33791.97 40872.74 40378.75 38087.97 39857.30 39790.99 40270.31 39462.37 40789.87 391
CMPMVSbinary61.59 2184.75 35185.14 34483.57 38090.32 38662.54 40896.98 36597.59 25874.33 40069.95 40196.66 27664.17 38098.32 24087.88 30888.41 28389.84 392
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
WB-MVSnew92.90 24792.77 23893.26 31796.95 25993.63 23299.71 17398.16 20291.49 23894.28 22398.14 22881.33 27496.48 33979.47 36795.46 21989.68 393
APD_test181.15 36380.92 36481.86 38392.45 36359.76 41296.04 38293.61 40273.29 40277.06 38796.64 27844.28 40896.16 35272.35 39182.52 32689.67 394
PM-MVS80.47 36578.88 37085.26 37783.79 40572.22 40095.89 38591.08 41085.71 34876.56 39188.30 39536.64 41093.90 38582.39 35369.57 39089.66 395
pmmvs-eth3d84.03 35681.97 36090.20 35584.15 40387.09 35198.10 34394.73 39183.05 37074.10 39787.77 39965.56 37694.01 38381.08 36169.24 39189.49 396
UnsupCasMVSNet_bld79.97 36977.03 37488.78 36685.62 40081.98 38193.66 39497.35 28175.51 39770.79 40083.05 40748.70 40594.91 37678.31 37560.29 41089.46 397
mvsany_test382.12 36181.14 36385.06 37881.87 40770.41 40297.09 36292.14 40791.27 24977.84 38588.73 39439.31 40995.49 36590.75 27371.24 38689.29 398
new-patchmatchnet81.19 36279.34 36986.76 37582.86 40680.36 39397.92 34795.27 38282.09 37772.02 39886.87 40162.81 38690.74 40371.10 39363.08 40589.19 399
LCM-MVSNet67.77 37864.73 38176.87 38862.95 42256.25 41589.37 40993.74 40144.53 41461.99 40680.74 40820.42 42186.53 41169.37 39759.50 41187.84 400
tmp_tt65.23 38162.94 38472.13 39644.90 42550.03 42181.05 41289.42 41638.45 41548.51 41799.90 1854.09 40078.70 41791.84 25518.26 41987.64 401
test_fmvs379.99 36880.17 36779.45 38584.02 40462.83 40699.05 27093.49 40388.29 31380.06 37786.65 40228.09 41488.00 40688.63 29673.27 38387.54 402
test_f78.40 37077.59 37280.81 38480.82 40962.48 40996.96 36693.08 40583.44 36774.57 39684.57 40627.95 41592.63 39584.15 33972.79 38487.32 403
EGC-MVSNET69.38 37363.76 38386.26 37690.32 38681.66 38596.24 37893.85 4000.99 4233.22 42492.33 38052.44 40192.92 39459.53 41084.90 31084.21 404
WB-MVS76.28 37177.28 37373.29 39181.18 40854.68 41697.87 34994.19 39581.30 37969.43 40290.70 38777.02 31282.06 41435.71 41968.11 39683.13 405
SSC-MVS75.42 37276.40 37572.49 39580.68 41053.62 41797.42 35494.06 39780.42 38368.75 40390.14 38976.54 31981.66 41533.25 42066.34 40082.19 406
PMMVS267.15 37964.15 38276.14 38970.56 41962.07 41093.89 39287.52 41758.09 40860.02 40778.32 40922.38 41884.54 41259.56 40947.03 41481.80 407
testf168.38 37666.92 37772.78 39378.80 41250.36 41990.95 40687.35 41855.47 40958.95 40888.14 39620.64 41987.60 40757.28 41164.69 40280.39 408
APD_test268.38 37666.92 37772.78 39378.80 41250.36 41990.95 40687.35 41855.47 40958.95 40888.14 39620.64 41987.60 40757.28 41164.69 40280.39 408
FPMVS68.72 37568.72 37668.71 39765.95 42044.27 42695.97 38494.74 39051.13 41253.26 41490.50 38825.11 41783.00 41360.80 40880.97 34578.87 410
ANet_high56.10 38252.24 38567.66 39849.27 42456.82 41483.94 41182.02 42170.47 40533.28 42164.54 41617.23 42369.16 41945.59 41623.85 41877.02 411
test_vis3_rt68.82 37466.69 37975.21 39076.24 41560.41 41196.44 37368.71 42575.13 39850.54 41669.52 41416.42 42496.32 34680.27 36466.92 39968.89 412
MVEpermissive53.74 2251.54 38547.86 38962.60 39959.56 42350.93 41879.41 41377.69 42235.69 41836.27 42061.76 4195.79 42869.63 41837.97 41836.61 41567.24 413
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMVScopyleft49.05 2353.75 38351.34 38760.97 40040.80 42634.68 42774.82 41489.62 41537.55 41628.67 42272.12 4117.09 42681.63 41643.17 41768.21 39566.59 414
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
Gipumacopyleft66.95 38065.00 38072.79 39291.52 37667.96 40466.16 41595.15 38647.89 41358.54 41067.99 41529.74 41287.54 40950.20 41477.83 36462.87 415
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test12337.68 38839.14 39133.31 40319.94 42724.83 42998.36 3309.75 42815.53 42151.31 41587.14 40019.62 42217.74 42347.10 4153.47 42257.36 416
testmvs40.60 38744.45 39029.05 40419.49 42814.11 43099.68 18018.47 42720.74 42064.59 40598.48 21410.95 42517.09 42456.66 41311.01 42055.94 417
EMVS51.44 38651.22 38852.11 40270.71 41844.97 42594.04 39175.66 42435.34 41942.40 41961.56 42028.93 41365.87 42127.64 42224.73 41745.49 418
E-PMN52.30 38452.18 38652.67 40171.51 41745.40 42393.62 39576.60 42336.01 41743.50 41864.13 41727.11 41667.31 42031.06 42126.06 41645.30 419
wuyk23d20.37 39020.84 39318.99 40565.34 42127.73 42850.43 4167.67 4299.50 4228.01 4236.34 4236.13 42726.24 42223.40 42310.69 4212.99 420
mmdepth0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4250.00 4290.00 4250.00 4240.00 4230.00 421
monomultidepth0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4250.00 4290.00 4250.00 4240.00 4230.00 421
test_blank0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.02 4240.00 4290.00 4250.00 4240.00 4230.00 421
uanet_test0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4250.00 4290.00 4250.00 4240.00 4230.00 421
DCPMVS0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4250.00 4290.00 4250.00 4240.00 4230.00 421
cdsmvs_eth3d_5k23.43 38931.24 3920.00 4060.00 4290.00 4310.00 41798.09 2080.00 4240.00 42599.67 9783.37 2570.00 4250.00 4240.00 4230.00 421
pcd_1.5k_mvsjas7.60 39210.13 3950.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 42591.20 1620.00 4250.00 4240.00 4230.00 421
sosnet-low-res0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4250.00 4290.00 4250.00 4240.00 4230.00 421
sosnet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4250.00 4290.00 4250.00 4240.00 4230.00 421
uncertanet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4250.00 4290.00 4250.00 4240.00 4230.00 421
Regformer0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4250.00 4290.00 4250.00 4240.00 4230.00 421
ab-mvs-re8.28 39111.04 3940.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 42599.40 1260.00 4290.00 4250.00 4240.00 4230.00 421
uanet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4250.00 4290.00 4250.00 4240.00 4230.00 421
WAC-MVS90.97 29286.10 330
FOURS199.92 3197.66 8799.95 5398.36 16795.58 8999.52 60
test_one_060199.94 1399.30 1298.41 15296.63 6099.75 2999.93 1197.49 9
eth-test20.00 429
eth-test0.00 429
ZD-MVS99.92 3198.57 5698.52 10792.34 21599.31 7899.83 4695.06 5599.80 12499.70 3799.97 42
test_241102_ONE99.93 2499.30 1298.43 13597.26 3699.80 1799.88 2496.71 25100.00 1
9.1498.38 3799.87 5199.91 8598.33 17493.22 17399.78 2699.89 2294.57 7399.85 11199.84 2299.97 42
save fliter99.82 5898.79 4099.96 3598.40 15697.66 21
test072699.93 2499.29 1599.96 3598.42 14797.28 3299.86 799.94 497.22 18
test_part299.89 4599.25 1899.49 63
sam_mvs94.25 87
MTGPAbinary98.28 183
test_post195.78 38659.23 42193.20 12097.74 27691.06 264
test_post63.35 41894.43 7598.13 255
patchmatchnet-post91.70 38295.12 5297.95 267
MTMP99.87 10696.49 356
gm-plane-assit96.97 25893.76 22891.47 24198.96 16698.79 19894.92 195
TEST999.92 3198.92 2999.96 3598.43 13593.90 15499.71 3599.86 2995.88 3999.85 111
test_899.92 3198.88 3299.96 3598.43 13594.35 12899.69 3799.85 3395.94 3699.85 111
agg_prior99.93 2498.77 4298.43 13599.63 4499.85 111
test_prior498.05 7099.94 69
test_prior299.95 5395.78 8399.73 3399.76 6696.00 3599.78 27100.00 1
旧先验299.46 22194.21 13799.85 999.95 7396.96 165
新几何299.40 225
原ACMM299.90 91
testdata299.99 3690.54 277
segment_acmp96.68 27
testdata199.28 24596.35 73
plane_prior795.71 30391.59 286
plane_prior695.76 29791.72 28180.47 287
plane_prior498.59 202
plane_prior391.64 28496.63 6093.01 237
plane_prior299.84 12596.38 69
plane_prior195.73 300
plane_prior91.74 27899.86 11796.76 5589.59 264
n20.00 430
nn0.00 430
door-mid89.69 414
test1198.44 127
door90.31 411
HQP5-MVS91.85 274
HQP-NCC95.78 29399.87 10696.82 5193.37 232
ACMP_Plane95.78 29399.87 10696.82 5193.37 232
BP-MVS97.92 133
HQP3-MVS97.89 22889.60 262
HQP2-MVS80.65 283
NP-MVS95.77 29691.79 27698.65 197
MDTV_nov1_ep1395.69 15997.90 20394.15 21895.98 38398.44 12793.12 17897.98 14295.74 30395.10 5398.58 21490.02 28596.92 189
ACMMP++_ref87.04 296
ACMMP++88.23 285
Test By Simon92.82 131