This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted by
SED-MVS99.28 599.11 699.77 699.93 2699.30 899.96 2398.43 11697.27 2099.80 1699.94 496.71 20100.00 1100.00 1100.00 1100.00 1
IU-MVS99.93 2699.31 798.41 13197.71 899.84 8100.00 1100.00 1100.00 1
OPU-MVS99.93 299.89 4599.80 299.96 2399.80 5897.44 11100.00 1100.00 199.98 33100.00 1
test_241102_TWO98.43 11697.27 2099.80 1699.94 497.18 17100.00 1100.00 1100.00 1100.00 1
ETH3 D test640098.81 2298.54 2699.59 1899.93 2698.93 2299.93 6298.46 10594.56 9599.84 899.92 1194.32 8099.86 9099.96 899.98 33100.00 1
test_0728_THIRD96.48 4099.83 1099.91 1397.87 4100.00 199.92 9100.00 1100.00 1
test_0728_SECOND99.82 599.94 1499.47 599.95 4198.43 116100.00 199.99 5100.00 1100.00 1
SMA-MVScopyleft98.76 2698.48 2999.62 1599.87 5298.87 2799.86 9998.38 13993.19 14999.77 2399.94 495.54 40100.00 199.74 2499.99 20100.00 1
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MSP-MVS99.09 899.12 598.98 8099.93 2697.24 10499.95 4198.42 12797.50 1499.52 4899.88 2297.43 1299.71 12999.50 3599.98 33100.00 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
test9_res99.71 2999.99 20100.00 1
agg_prior299.48 36100.00 1100.00 1
testdata98.42 11999.47 10095.33 17098.56 7793.78 13399.79 2199.85 3393.64 10199.94 6894.97 15799.94 57100.00 1
MSLP-MVS++99.13 799.01 999.49 3199.94 1498.46 5999.98 898.86 4597.10 2599.80 1699.94 495.92 33100.00 199.51 34100.00 1100.00 1
MCST-MVS99.32 399.14 499.86 399.97 399.59 399.97 1698.64 6398.47 299.13 7699.92 1196.38 26100.00 199.74 24100.00 1100.00 1
NCCC99.37 299.25 299.71 1099.96 899.15 1699.97 1698.62 6798.02 699.90 299.95 397.33 13100.00 199.54 33100.00 1100.00 1
API-MVS97.86 7497.66 7398.47 11499.52 9695.41 16899.47 18798.87 4491.68 20398.84 8799.85 3392.34 13499.99 3698.44 8799.96 48100.00 1
DeepPCF-MVS95.94 297.71 8398.98 1093.92 26599.63 8881.76 34099.96 2398.56 7799.47 199.19 7499.99 194.16 87100.00 199.92 999.93 63100.00 1
DeepC-MVS_fast96.59 198.81 2298.54 2699.62 1599.90 4298.85 2999.24 21798.47 10398.14 499.08 7799.91 1393.09 116100.00 199.04 5499.99 20100.00 1
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MG-MVS98.91 1798.65 2099.68 1199.94 1499.07 1899.64 16199.44 1897.33 1799.00 8399.72 8494.03 9099.98 4298.73 74100.00 1100.00 1
testtj98.89 1898.69 1899.52 2699.94 1498.56 5399.90 7498.55 8395.14 7899.72 2999.84 4695.46 43100.00 199.65 3299.99 2099.99 20
DPE-MVScopyleft99.26 699.10 799.74 799.89 4599.24 1499.87 8898.44 10897.48 1599.64 3599.94 496.68 2299.99 3699.99 5100.00 199.99 20
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
ACMMP_NAP98.49 4398.14 5499.54 2399.66 8798.62 5099.85 10298.37 14294.68 9199.53 4599.83 4992.87 120100.00 198.66 8099.84 8099.99 20
zzz-MVS98.33 5598.00 6299.30 4799.85 5597.93 7899.80 12098.28 15895.76 6297.18 13999.88 2292.74 124100.00 198.67 7799.88 7699.99 20
MTAPA98.29 5897.96 6799.30 4799.85 5597.93 7899.39 19898.28 15895.76 6297.18 13999.88 2292.74 124100.00 198.67 7799.88 7699.99 20
train_agg98.88 1998.65 2099.59 1899.92 3598.92 2399.96 2398.43 11694.35 10599.71 3099.86 2995.94 3199.85 9499.69 3199.98 3399.99 20
agg_prior198.88 1998.66 1999.54 2399.93 2698.77 3699.96 2398.43 11694.63 9499.63 3699.85 3395.79 3799.85 9499.72 2899.99 2099.99 20
Regformer-198.79 2498.60 2399.36 4599.85 5598.34 6299.87 8898.52 9096.05 5399.41 5599.79 6294.93 6099.76 11899.07 4999.90 7299.99 20
XVS98.70 2898.55 2599.15 6199.94 1497.50 9499.94 5698.42 12796.22 4999.41 5599.78 6694.34 7699.96 5398.92 6099.95 5199.99 20
test_prior398.99 1398.84 1499.43 3599.94 1498.49 5799.95 4198.65 6095.78 6099.73 2699.76 7296.00 2999.80 10699.78 20100.00 199.99 20
X-MVStestdata93.83 18992.06 21899.15 6199.94 1497.50 9499.94 5698.42 12796.22 4999.41 5541.37 36694.34 7699.96 5398.92 6099.95 5199.99 20
test_prior99.43 3599.94 1498.49 5798.65 6099.80 10699.99 20
新几何199.42 3899.75 7698.27 6598.63 6692.69 16699.55 4399.82 5394.40 71100.00 191.21 22399.94 5799.99 20
旧先验199.76 7497.52 9198.64 6399.85 3395.63 3999.94 5799.99 20
无先验99.49 18498.71 5393.46 142100.00 194.36 17699.99 20
test22299.55 9497.41 10299.34 20498.55 8391.86 19799.27 6999.83 4993.84 9699.95 5199.99 20
112198.03 6997.57 7899.40 4199.74 7798.21 6698.31 28998.62 6792.78 16199.53 4599.83 4995.08 50100.00 194.36 17699.92 6799.99 20
MVS96.60 12395.56 14299.72 996.85 23199.22 1598.31 28998.94 3691.57 20690.90 22199.61 10186.66 20499.96 5397.36 12499.88 7699.99 20
APDe-MVS99.06 1098.91 1299.51 2899.94 1498.76 4099.91 7098.39 13597.20 2499.46 5099.85 3395.53 4299.79 10999.86 12100.00 199.99 20
test1299.43 3599.74 7798.56 5398.40 13299.65 3394.76 6399.75 12199.98 3399.99 20
TSAR-MVS + GP.98.60 3398.51 2898.86 8799.73 8196.63 12399.97 1697.92 19998.07 598.76 9399.55 10595.00 5799.94 6899.91 1197.68 14899.99 20
HPM-MVS_fast97.80 7997.50 7998.68 9599.79 7096.42 13099.88 8598.16 17791.75 20298.94 8599.54 10791.82 14599.65 13897.62 12099.99 2099.99 20
HPM-MVScopyleft97.96 7097.72 7298.68 9599.84 6096.39 13399.90 7498.17 17492.61 17198.62 10099.57 10491.87 14399.67 13698.87 6599.99 2099.99 20
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
APD-MVScopyleft98.62 3298.35 4399.41 3999.90 4298.51 5699.87 8898.36 14494.08 11699.74 2599.73 8394.08 8899.74 12599.42 3999.99 2099.99 20
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CNVR-MVS99.40 199.26 199.84 499.98 299.51 499.98 898.69 5598.20 399.93 199.98 296.82 19100.00 199.75 22100.00 199.99 20
CP-MVS98.45 4698.32 4498.87 8699.96 896.62 12499.97 1698.39 13594.43 10098.90 8699.87 2694.30 81100.00 199.04 5499.99 2099.99 20
SteuartSystems-ACMMP99.02 1198.97 1199.18 5498.72 13897.71 8399.98 898.44 10896.85 2999.80 1699.91 1397.57 699.85 9499.44 3899.99 2099.99 20
Skip Steuart: Steuart Systems R&D Blog.
CPTT-MVS97.64 8597.32 8898.58 10599.97 395.77 15799.96 2398.35 14689.90 24098.36 11199.79 6291.18 15399.99 3698.37 8999.99 2099.99 20
PAPM_NR98.12 6697.93 6898.70 9499.94 1496.13 14599.82 11398.43 11694.56 9597.52 13299.70 8894.40 7199.98 4297.00 13399.98 3399.99 20
PAPR98.52 4198.16 5399.58 2099.97 398.77 3699.95 4198.43 11695.35 7398.03 12299.75 7794.03 9099.98 4298.11 9899.83 8199.99 20
PHI-MVS98.41 4998.21 4999.03 7599.86 5497.10 11199.98 898.80 5090.78 22799.62 3899.78 6695.30 46100.00 199.80 1899.93 6399.99 20
test117298.38 5398.25 4798.77 9099.88 4996.56 12799.80 12098.36 14494.68 9199.20 7199.80 5893.28 11099.78 11199.34 4299.92 6799.98 51
DPM-MVS98.83 2198.46 3099.97 199.33 10699.92 199.96 2398.44 10897.96 799.55 4399.94 497.18 17100.00 193.81 18999.94 5799.98 51
HFP-MVS98.56 3798.37 4099.14 6399.96 897.43 9999.95 4198.61 6994.77 8699.31 6499.85 3394.22 83100.00 198.70 7599.98 3399.98 51
region2R98.54 3998.37 4099.05 7399.96 897.18 10799.96 2398.55 8394.87 8499.45 5199.85 3394.07 89100.00 198.67 77100.00 199.98 51
#test#98.59 3598.41 3399.14 6399.96 897.43 9999.95 4198.61 6995.00 8099.31 6499.85 3394.22 83100.00 198.78 7299.98 3399.98 51
Regformer-398.58 3698.41 3399.10 6999.84 6097.57 8899.66 15498.52 9095.79 5999.01 8199.77 6894.40 7199.75 12198.82 6799.83 8199.98 51
Regformer-498.56 3798.39 3799.08 7199.84 6097.52 9199.66 15498.52 9095.76 6299.01 8199.77 6894.33 7999.75 12198.80 7099.83 8199.98 51
Regformer-298.78 2598.59 2499.36 4599.85 5598.32 6399.87 8898.52 9096.04 5499.41 5599.79 6294.92 6199.76 11899.05 5099.90 7299.98 51
ACMMPR98.50 4298.32 4499.05 7399.96 897.18 10799.95 4198.60 7194.77 8699.31 6499.84 4693.73 98100.00 198.70 7599.98 3399.98 51
PGM-MVS98.34 5498.13 5598.99 7999.92 3597.00 11399.75 13599.50 1693.90 12899.37 6199.76 7293.24 113100.00 197.75 11899.96 4899.98 51
CDPH-MVS98.65 3198.36 4299.49 3199.94 1498.73 4199.87 8898.33 14993.97 12399.76 2499.87 2694.99 5899.75 12198.55 84100.00 199.98 51
mPP-MVS98.39 5298.20 5098.97 8199.97 396.92 11799.95 4198.38 13995.04 7998.61 10199.80 5893.39 104100.00 198.64 81100.00 199.98 51
SR-MVS-dyc-post98.31 5698.17 5298.71 9399.79 7096.37 13499.76 13298.31 15394.43 10099.40 5999.75 7793.28 11099.78 11198.90 6399.92 6799.97 63
RE-MVS-def98.13 5599.79 7096.37 13499.76 13298.31 15394.43 10099.40 5999.75 7792.95 11998.90 6399.92 6799.97 63
ETH3D-3000-0.198.68 2998.42 3199.47 3499.83 6398.57 5199.90 7498.37 14293.81 13199.81 1299.90 1794.34 7699.86 9099.84 1399.98 3399.97 63
TSAR-MVS + MP.98.93 1598.77 1699.41 3999.74 7798.67 4499.77 12798.38 13996.73 3599.88 399.74 8194.89 6299.59 14099.80 1899.98 3399.97 63
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SD-MVS98.92 1698.70 1799.56 2199.70 8598.73 4199.94 5698.34 14896.38 4499.81 1299.76 7294.59 6799.98 4299.84 1399.96 4899.97 63
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
APD-MVS_3200maxsize98.25 6298.08 5898.78 8999.81 6896.60 12599.82 11398.30 15693.95 12599.37 6199.77 6892.84 12199.76 11898.95 5799.92 6799.97 63
DP-MVS Recon98.41 4998.02 6199.56 2199.97 398.70 4399.92 6698.44 10892.06 19398.40 11099.84 4695.68 38100.00 198.19 9399.71 9399.97 63
xxxxxxxxxxxxxcwj98.98 1498.79 1599.54 2399.82 6598.79 3399.96 2397.52 23497.66 1099.81 1299.89 1994.70 6599.86 9099.84 1399.93 6399.96 70
SF-MVS98.67 3098.40 3599.50 2999.77 7398.67 4499.90 7498.21 16893.53 14099.81 1299.89 1994.70 6599.86 9099.84 1399.93 6399.96 70
SR-MVS98.46 4598.30 4698.93 8499.88 4997.04 11299.84 10698.35 14694.92 8199.32 6399.80 5893.35 10599.78 11199.30 4499.95 5199.96 70
131496.84 11195.96 13099.48 3396.74 23898.52 5598.31 28998.86 4595.82 5889.91 23398.98 14987.49 19599.96 5397.80 11199.73 9199.96 70
114514_t97.41 9396.83 10199.14 6399.51 9897.83 8099.89 8298.27 16188.48 26499.06 7899.66 9790.30 16599.64 13996.32 14399.97 4499.96 70
MVS_111021_HR98.72 2798.62 2299.01 7899.36 10597.18 10799.93 6299.90 196.81 3398.67 9799.77 6893.92 9299.89 7999.27 4599.94 5799.96 70
PAPM98.60 3398.42 3199.14 6396.05 24898.96 2099.90 7499.35 2396.68 3798.35 11299.66 9796.45 2598.51 18599.45 3799.89 7499.96 70
3Dnovator+91.53 1196.31 13395.24 14999.52 2696.88 23098.64 4999.72 14698.24 16495.27 7688.42 27098.98 14982.76 23499.94 6897.10 13199.83 8199.96 70
EI-MVSNet-Vis-set98.27 5998.11 5798.75 9299.83 6396.59 12699.40 19498.51 9795.29 7598.51 10499.76 7293.60 10299.71 12998.53 8599.52 10699.95 78
CHOSEN 1792x268896.81 11296.53 11197.64 14998.91 12793.07 21899.65 15799.80 395.64 6795.39 17698.86 16584.35 22599.90 7596.98 13499.16 11999.95 78
AdaColmapbinary97.23 9996.80 10398.51 11299.99 195.60 16499.09 22698.84 4793.32 14596.74 14999.72 8486.04 209100.00 198.01 10399.43 11299.94 80
ETH3D cwj APD-0.1698.40 5198.07 5999.40 4199.59 9098.41 6099.86 9998.24 16492.18 18899.73 2699.87 2693.47 10399.85 9499.74 2499.95 5199.93 81
ZNCC-MVS98.31 5698.03 6099.17 5799.88 4997.59 8799.94 5698.44 10894.31 10898.50 10599.82 5393.06 11799.99 3698.30 9299.99 2099.93 81
GST-MVS98.27 5997.97 6499.17 5799.92 3597.57 8899.93 6298.39 13594.04 12198.80 8999.74 8192.98 118100.00 198.16 9599.76 8999.93 81
MP-MVScopyleft98.23 6397.97 6499.03 7599.94 1497.17 11099.95 4198.39 13594.70 9098.26 11799.81 5791.84 144100.00 198.85 6699.97 4499.93 81
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
HyFIR lowres test96.66 12296.43 11497.36 16199.05 11393.91 20399.70 14899.80 390.54 22996.26 16298.08 19692.15 13898.23 21496.84 13995.46 19299.93 81
CNLPA97.76 8197.38 8298.92 8599.53 9596.84 11899.87 8898.14 18093.78 13396.55 15499.69 9192.28 13599.98 4297.13 12999.44 11199.93 81
原ACMM198.96 8299.73 8196.99 11498.51 9794.06 11999.62 3899.85 3394.97 5999.96 5395.11 15599.95 5199.92 87
DELS-MVS98.54 3998.22 4899.50 2999.15 11198.65 48100.00 198.58 7397.70 998.21 11999.24 13292.58 12899.94 6898.63 8299.94 5799.92 87
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CSCG97.10 10297.04 9697.27 16499.89 4591.92 24699.90 7499.07 3188.67 26095.26 17999.82 5393.17 11599.98 4298.15 9699.47 10999.90 89
DVP-MVS99.30 499.16 399.73 899.93 2699.29 1099.95 4198.32 15197.28 1899.83 1099.91 1397.22 15100.00 199.99 5100.00 199.89 90
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
abl_697.67 8497.34 8698.66 9799.68 8696.11 14899.68 15198.14 18093.80 13299.27 6999.70 8888.65 18899.98 4297.46 12299.72 9299.89 90
MVS_111021_LR98.42 4898.38 3898.53 11199.39 10395.79 15699.87 8899.86 296.70 3698.78 9099.79 6292.03 14099.90 7599.17 4699.86 7999.88 92
HPM-MVS++copyleft99.07 998.88 1399.63 1299.90 4299.02 1999.95 4198.56 7797.56 1399.44 5299.85 3395.38 45100.00 199.31 4399.99 2099.87 93
ACMMPcopyleft97.74 8297.44 8198.66 9799.92 3596.13 14599.18 22199.45 1794.84 8596.41 15999.71 8691.40 14799.99 3697.99 10598.03 14499.87 93
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
3Dnovator91.47 1296.28 13695.34 14799.08 7196.82 23397.47 9799.45 19098.81 4895.52 7089.39 24799.00 14681.97 23899.95 6097.27 12699.83 8199.84 95
CANet98.27 5997.82 7099.63 1299.72 8399.10 1799.98 898.51 9797.00 2898.52 10399.71 8687.80 19299.95 6099.75 2299.38 11399.83 96
Patchmatch-test92.65 21991.50 22996.10 19796.85 23190.49 27591.50 35097.19 26482.76 32590.23 22795.59 26895.02 5498.00 22577.41 33096.98 16599.82 97
EI-MVSNet-UG-set98.14 6597.99 6398.60 10299.80 6996.27 13699.36 20398.50 10195.21 7798.30 11499.75 7793.29 10999.73 12898.37 8999.30 11599.81 98
HY-MVS92.50 797.79 8097.17 9299.63 1298.98 11899.32 697.49 31099.52 1395.69 6698.32 11397.41 21193.32 10799.77 11598.08 10195.75 18899.81 98
test_yl97.83 7697.37 8399.21 5199.18 10897.98 7599.64 16199.27 2591.43 21297.88 12698.99 14795.84 3599.84 10398.82 6795.32 19599.79 100
DCV-MVSNet97.83 7697.37 8399.21 5199.18 10897.98 7599.64 16199.27 2591.43 21297.88 12698.99 14795.84 3599.84 10398.82 6795.32 19599.79 100
Patchmatch-RL test86.90 29785.98 29989.67 31784.45 35275.59 35089.71 35392.43 35486.89 28677.83 33890.94 33994.22 8393.63 34287.75 26969.61 33999.79 100
WTY-MVS98.10 6797.60 7699.60 1798.92 12599.28 1299.89 8299.52 1395.58 6998.24 11899.39 11993.33 10699.74 12597.98 10795.58 19199.78 103
CHOSEN 280x42099.01 1299.03 898.95 8399.38 10498.87 2798.46 28299.42 2097.03 2799.02 8099.09 13899.35 198.21 21699.73 2799.78 8899.77 104
MP-MVS-pluss98.07 6897.64 7499.38 4499.74 7798.41 6099.74 13898.18 17393.35 14496.45 15699.85 3392.64 12799.97 5198.91 6299.89 7499.77 104
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
EPMVS96.53 12596.01 12298.09 13298.43 14896.12 14796.36 32699.43 1993.53 14097.64 13095.04 29494.41 7098.38 20191.13 22598.11 13999.75 106
Vis-MVSNet (Re-imp)96.32 13295.98 12597.35 16297.93 17494.82 18599.47 18798.15 17991.83 19895.09 18099.11 13791.37 14897.47 24593.47 19897.43 15299.74 107
DP-MVS94.54 17593.42 19097.91 14099.46 10294.04 19898.93 24997.48 23981.15 33090.04 23099.55 10587.02 20199.95 6088.97 25598.11 13999.73 108
TAPA-MVS92.12 894.42 17993.60 18396.90 17299.33 10691.78 25099.78 12498.00 18989.89 24194.52 18599.47 11191.97 14199.18 15569.90 34499.52 10699.73 108
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
canonicalmvs97.09 10496.32 11699.39 4398.93 12398.95 2199.72 14697.35 25294.45 9897.88 12699.42 11586.71 20399.52 14298.48 8693.97 20899.72 110
TESTMET0.1,196.74 11796.26 11798.16 12897.36 20796.48 12899.96 2398.29 15791.93 19595.77 17198.07 19795.54 4098.29 20790.55 23898.89 12299.70 111
PatchmatchNetpermissive95.94 14295.45 14397.39 15997.83 18194.41 19396.05 33198.40 13292.86 15597.09 14195.28 28994.21 8698.07 22289.26 25398.11 13999.70 111
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
VNet97.21 10096.57 11099.13 6898.97 11997.82 8199.03 23999.21 2794.31 10899.18 7598.88 16186.26 20899.89 7998.93 5994.32 20399.69 113
CS-MVS97.52 8897.36 8598.00 13697.47 20496.11 148100.00 197.08 27694.74 8899.65 3399.33 12389.89 17098.22 21598.79 7199.25 11699.68 114
Anonymous20240521193.10 20791.99 21996.40 18999.10 11289.65 29098.88 25497.93 19783.71 31994.00 19398.75 17068.79 32099.88 8595.08 15691.71 21899.68 114
mvs_anonymous95.65 15095.03 15597.53 15298.19 16195.74 15999.33 20597.49 23890.87 22490.47 22697.10 22088.23 19097.16 26195.92 14897.66 14999.68 114
GG-mvs-BLEND98.54 10998.21 16098.01 7393.87 34198.52 9097.92 12497.92 20399.02 297.94 23198.17 9499.58 10399.67 117
gg-mvs-nofinetune93.51 19991.86 22398.47 11497.72 19297.96 7792.62 34598.51 9774.70 34797.33 13669.59 35898.91 397.79 23497.77 11699.56 10499.67 117
alignmvs97.81 7897.33 8799.25 4998.77 13798.66 4699.99 498.44 10894.40 10498.41 10899.47 11193.65 10099.42 15198.57 8394.26 20499.67 117
LFMVS94.75 16893.56 18698.30 12499.03 11495.70 16298.74 26697.98 19287.81 27398.47 10699.39 11967.43 32899.53 14198.01 10395.20 19799.67 117
MDTV_nov1_ep13_2view96.26 13796.11 33091.89 19698.06 12194.40 7194.30 17999.67 117
MAR-MVS97.43 8997.19 9098.15 13199.47 10094.79 18799.05 23798.76 5192.65 16998.66 9899.82 5388.52 18999.98 4298.12 9799.63 9799.67 117
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
test-LLR96.47 12696.04 12197.78 14297.02 22295.44 16699.96 2398.21 16894.07 11795.55 17396.38 24593.90 9498.27 21190.42 24198.83 12499.64 123
test-mter96.39 13095.93 13297.78 14297.02 22295.44 16699.96 2398.21 16891.81 20095.55 17396.38 24595.17 4798.27 21190.42 24198.83 12499.64 123
sss97.57 8697.03 9799.18 5498.37 14998.04 7299.73 14399.38 2193.46 14298.76 9399.06 14091.21 14999.89 7996.33 14297.01 16499.62 125
QAPM95.40 15494.17 17099.10 6996.92 22597.71 8399.40 19498.68 5689.31 24588.94 25998.89 15982.48 23599.96 5393.12 20699.83 8199.62 125
MVS_Test96.46 12795.74 13898.61 10198.18 16297.23 10599.31 20897.15 27091.07 22098.84 8797.05 22488.17 19198.97 16194.39 17597.50 15199.61 127
EPNet98.49 4398.40 3598.77 9099.62 8996.80 12099.90 7499.51 1597.60 1299.20 7199.36 12293.71 9999.91 7497.99 10598.71 12799.61 127
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
IB-MVS92.85 694.99 16293.94 17698.16 12897.72 19295.69 16399.99 498.81 4894.28 11092.70 20996.90 22895.08 5099.17 15696.07 14573.88 33599.60 129
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
ET-MVSNet_ETH3D94.37 18193.28 19697.64 14998.30 15197.99 7499.99 497.61 22294.35 10571.57 34999.45 11496.23 2795.34 32496.91 13885.14 26699.59 130
EIA-MVS97.53 8797.46 8097.76 14598.04 16994.84 18499.98 897.61 22294.41 10397.90 12599.59 10292.40 13298.87 16398.04 10299.13 12099.59 130
GSMVS99.59 130
sam_mvs194.72 6499.59 130
Fast-Effi-MVS+95.02 16194.19 16997.52 15397.88 17694.55 19099.97 1697.08 27688.85 25794.47 18797.96 20284.59 22298.41 19389.84 24997.10 16199.59 130
SCA94.69 16993.81 18097.33 16397.10 21794.44 19198.86 25898.32 15193.30 14696.17 16495.59 26876.48 28597.95 22991.06 22797.43 15299.59 130
PVSNet91.05 1397.13 10196.69 10698.45 11699.52 9695.81 15599.95 4199.65 1094.73 8999.04 7999.21 13484.48 22399.95 6094.92 15898.74 12699.58 136
PVSNet_Blended97.94 7197.64 7498.83 8899.59 9096.99 114100.00 199.10 2895.38 7298.27 11599.08 13989.00 18399.95 6099.12 4799.25 11699.57 137
ab-mvs94.69 16993.42 19098.51 11298.07 16796.26 13796.49 32598.68 5690.31 23494.54 18497.00 22676.30 28799.71 12995.98 14793.38 21399.56 138
DWT-MVSNet_test97.31 9597.19 9097.66 14898.24 15894.67 18998.86 25898.20 17293.60 13998.09 12098.89 15997.51 798.78 16894.04 18397.28 15799.55 139
Test_1112_low_res95.72 14694.83 15898.42 11997.79 18496.41 13199.65 15796.65 31292.70 16592.86 20896.13 25492.15 13899.30 15291.88 21793.64 21099.55 139
1112_ss96.01 14195.20 15198.42 11997.80 18396.41 13199.65 15796.66 31192.71 16492.88 20799.40 11792.16 13799.30 15291.92 21693.66 20999.55 139
DeepC-MVS94.51 496.92 10996.40 11598.45 11699.16 11095.90 15399.66 15498.06 18696.37 4794.37 18899.49 11083.29 23299.90 7597.63 11999.61 10199.55 139
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
LCM-MVSNet-Re92.31 22592.60 20591.43 30397.53 19979.27 34999.02 24091.83 35692.07 19180.31 33094.38 31583.50 23095.48 32197.22 12897.58 15099.54 143
casdiffmvs96.42 12995.97 12897.77 14497.30 21294.98 18099.84 10697.09 27593.75 13596.58 15299.26 13085.07 21998.78 16897.77 11697.04 16399.54 143
dp95.05 16094.43 16596.91 17197.99 17192.73 22796.29 32897.98 19289.70 24395.93 16794.67 30793.83 9798.45 19086.91 28396.53 17199.54 143
Effi-MVS+96.30 13495.69 13998.16 12897.85 18096.26 13797.41 31197.21 26390.37 23298.65 9998.58 18086.61 20598.70 17697.11 13097.37 15699.52 146
PatchT90.38 26488.75 27895.25 21695.99 25090.16 28191.22 35297.54 23076.80 34097.26 13786.01 35091.88 14296.07 31466.16 35195.91 18399.51 147
tpm93.70 19793.41 19294.58 23795.36 27187.41 31297.01 31996.90 29690.85 22596.72 15094.14 31790.40 16496.84 28390.75 23788.54 23999.51 147
CostFormer96.10 13895.88 13596.78 17597.03 22192.55 23397.08 31897.83 20890.04 23998.72 9594.89 30195.01 5698.29 20796.54 14195.77 18699.50 149
tpmrst96.27 13795.98 12597.13 16697.96 17293.15 21796.34 32798.17 17492.07 19198.71 9695.12 29293.91 9398.73 17394.91 16096.62 16999.50 149
IS-MVSNet96.29 13595.90 13497.45 15598.13 16694.80 18699.08 22897.61 22292.02 19495.54 17598.96 15390.64 16298.08 22093.73 19497.41 15599.47 151
ETV-MVS97.92 7397.80 7198.25 12698.14 16596.48 12899.98 897.63 21795.61 6899.29 6899.46 11392.55 12998.82 16599.02 5698.54 12999.46 152
baseline96.43 12895.98 12597.76 14597.34 20895.17 17799.51 18097.17 26793.92 12796.90 14599.28 12485.37 21698.64 17997.50 12196.86 16899.46 152
lupinMVS97.85 7597.60 7698.62 10097.28 21497.70 8599.99 497.55 22895.50 7199.43 5399.67 9590.92 15798.71 17598.40 8899.62 9899.45 154
PMMVS96.76 11596.76 10496.76 17698.28 15492.10 24199.91 7097.98 19294.12 11499.53 4599.39 11986.93 20298.73 17396.95 13697.73 14699.45 154
UA-Net96.54 12495.96 13098.27 12598.23 15995.71 16198.00 30398.45 10793.72 13698.41 10899.27 12788.71 18799.66 13791.19 22497.69 14799.44 156
CVMVSNet94.68 17194.94 15693.89 26796.80 23486.92 31499.06 23398.98 3494.45 9894.23 19199.02 14285.60 21295.31 32590.91 23395.39 19499.43 157
PVSNet_Blended_VisFu97.27 9796.81 10298.66 9798.81 13496.67 12299.92 6698.64 6394.51 9796.38 16098.49 18489.05 18299.88 8597.10 13198.34 13399.43 157
PLCcopyleft95.54 397.93 7297.89 6998.05 13499.82 6594.77 18899.92 6698.46 10593.93 12697.20 13899.27 12795.44 4499.97 5197.41 12399.51 10899.41 159
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
PCF-MVS94.20 595.18 15794.10 17298.43 11898.55 14295.99 15197.91 30597.31 25790.35 23389.48 24699.22 13385.19 21899.89 7990.40 24398.47 13199.41 159
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
tpm295.47 15395.18 15296.35 19296.91 22691.70 25596.96 32197.93 19788.04 27098.44 10795.40 27893.32 10797.97 22694.00 18495.61 19099.38 161
OMC-MVS97.28 9697.23 8997.41 15799.76 7493.36 21699.65 15797.95 19596.03 5597.41 13599.70 8889.61 17399.51 14396.73 14098.25 13899.38 161
GeoE94.36 18393.48 18896.99 16997.29 21393.54 21099.96 2396.72 30988.35 26793.43 19898.94 15682.05 23798.05 22388.12 26696.48 17399.37 163
ADS-MVSNet293.80 19293.88 17893.55 27797.87 17885.94 31894.24 33796.84 30090.07 23796.43 15794.48 31290.29 16695.37 32387.44 27197.23 15899.36 164
ADS-MVSNet94.79 16594.02 17497.11 16897.87 17893.79 20494.24 33798.16 17790.07 23796.43 15794.48 31290.29 16698.19 21787.44 27197.23 15899.36 164
BH-RMVSNet95.18 15794.31 16897.80 14198.17 16395.23 17599.76 13297.53 23292.52 17894.27 19099.25 13176.84 28198.80 16690.89 23499.54 10599.35 166
TR-MVS94.54 17593.56 18697.49 15497.96 17294.34 19498.71 26997.51 23690.30 23594.51 18698.69 17275.56 29298.77 17092.82 20895.99 18099.35 166
diffmvs97.00 10596.64 10798.09 13297.64 19596.17 14499.81 11597.19 26494.67 9398.95 8499.28 12486.43 20698.76 17198.37 8997.42 15499.33 168
JIA-IIPM91.76 24090.70 24094.94 22496.11 24687.51 31193.16 34498.13 18275.79 34497.58 13177.68 35592.84 12197.97 22688.47 26196.54 17099.33 168
thres20096.96 10696.21 11899.22 5098.97 11998.84 3099.85 10299.71 593.17 15096.26 16298.88 16189.87 17199.51 14394.26 18094.91 19899.31 170
CDS-MVSNet96.34 13196.07 12097.13 16697.37 20694.96 18199.53 17797.91 20091.55 20795.37 17798.32 19295.05 5397.13 26493.80 19095.75 18899.30 171
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Vis-MVSNetpermissive95.72 14695.15 15397.45 15597.62 19694.28 19599.28 21498.24 16494.27 11196.84 14698.94 15679.39 26598.76 17193.25 20098.49 13099.30 171
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
thres100view90096.74 11795.92 13399.18 5498.90 12898.77 3699.74 13899.71 592.59 17395.84 16898.86 16589.25 17999.50 14593.84 18694.57 19999.27 173
tfpn200view996.79 11395.99 12399.19 5398.94 12198.82 3199.78 12499.71 592.86 15596.02 16598.87 16389.33 17799.50 14593.84 18694.57 19999.27 173
MVSFormer96.94 10796.60 10897.95 13797.28 21497.70 8599.55 17497.27 26091.17 21699.43 5399.54 10790.92 15796.89 28094.67 17099.62 9899.25 175
jason97.24 9896.86 10098.38 12295.73 26097.32 10399.97 1697.40 24995.34 7498.60 10299.54 10787.70 19398.56 18297.94 10899.47 10999.25 175
jason: jason.
EPP-MVSNet96.69 12096.60 10896.96 17097.74 18893.05 22099.37 20198.56 7788.75 25895.83 17099.01 14496.01 2898.56 18296.92 13797.20 16099.25 175
EPNet_dtu95.71 14895.39 14596.66 18098.92 12593.41 21499.57 17098.90 4196.19 5197.52 13298.56 18292.65 12697.36 24877.89 32898.33 13499.20 178
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
GA-MVS93.83 18992.84 20096.80 17495.73 26093.57 20899.88 8597.24 26292.57 17692.92 20596.66 23878.73 27197.67 23887.75 26994.06 20799.17 179
thisisatest051597.41 9397.02 9898.59 10497.71 19497.52 9199.97 1698.54 8791.83 19897.45 13499.04 14197.50 899.10 15794.75 16696.37 17599.16 180
thres600view796.69 12095.87 13699.14 6398.90 12898.78 3599.74 13899.71 592.59 17395.84 16898.86 16589.25 17999.50 14593.44 19994.50 20299.16 180
thres40096.78 11495.99 12399.16 5998.94 12198.82 3199.78 12499.71 592.86 15596.02 16598.87 16389.33 17799.50 14593.84 18694.57 19999.16 180
TAMVS95.85 14395.58 14196.65 18197.07 21893.50 21199.17 22297.82 20991.39 21595.02 18198.01 19892.20 13697.30 25393.75 19395.83 18599.14 183
CR-MVSNet93.45 20292.62 20495.94 20096.29 24392.66 22992.01 34896.23 32092.62 17096.94 14393.31 32591.04 15496.03 31579.23 32195.96 18199.13 184
RPMNet89.76 27887.28 29397.19 16596.29 24392.66 22992.01 34898.31 15370.19 35296.94 14385.87 35187.25 19899.78 11162.69 35495.96 18199.13 184
tpm cat193.51 19992.52 21096.47 18497.77 18591.47 26196.13 32998.06 18680.98 33192.91 20693.78 32089.66 17298.87 16387.03 27996.39 17499.09 186
BH-w/o95.71 14895.38 14696.68 17998.49 14692.28 23799.84 10697.50 23792.12 19092.06 21298.79 16984.69 22198.67 17895.29 15499.66 9699.09 186
LS3D95.84 14495.11 15498.02 13599.85 5595.10 17898.74 26698.50 10187.22 28093.66 19799.86 2987.45 19699.95 6090.94 23299.81 8799.02 188
MIMVSNet90.30 26788.67 27995.17 21896.45 24291.64 25792.39 34697.15 27085.99 29590.50 22593.19 32766.95 32994.86 33182.01 31193.43 21199.01 189
thisisatest053097.10 10296.72 10598.22 12797.60 19796.70 12199.92 6698.54 8791.11 21997.07 14298.97 15197.47 999.03 15893.73 19496.09 17898.92 190
BH-untuned95.18 15794.83 15896.22 19498.36 15091.22 26399.80 12097.32 25690.91 22391.08 21998.67 17383.51 22998.54 18494.23 18199.61 10198.92 190
F-COLMAP96.93 10896.95 9996.87 17399.71 8491.74 25199.85 10297.95 19593.11 15295.72 17299.16 13692.35 13399.94 6895.32 15399.35 11498.92 190
Anonymous2024052992.10 23090.65 24196.47 18498.82 13390.61 27298.72 26898.67 5975.54 34593.90 19598.58 18066.23 33199.90 7594.70 16990.67 21998.90 193
tttt051796.85 11096.49 11297.92 13997.48 20395.89 15499.85 10298.54 8790.72 22896.63 15198.93 15897.47 999.02 15993.03 20795.76 18798.85 194
baseline195.78 14594.86 15798.54 10998.47 14798.07 7099.06 23397.99 19092.68 16794.13 19298.62 17793.28 11098.69 17793.79 19185.76 25998.84 195
VDD-MVS93.77 19392.94 19996.27 19398.55 14290.22 28098.77 26597.79 21090.85 22596.82 14799.42 11561.18 34699.77 11598.95 5794.13 20598.82 196
PatchMatch-RL96.04 14095.40 14497.95 13799.59 9095.22 17699.52 17899.07 3193.96 12496.49 15598.35 19182.28 23699.82 10590.15 24699.22 11898.81 197
PVSNet_088.03 1991.80 23790.27 24996.38 19198.27 15690.46 27699.94 5699.61 1193.99 12286.26 30197.39 21371.13 31599.89 7998.77 7367.05 34798.79 198
tpmvs94.28 18593.57 18596.40 18998.55 14291.50 26095.70 33698.55 8387.47 27592.15 21194.26 31691.42 14698.95 16288.15 26495.85 18498.76 199
hse-mvs394.92 16394.36 16696.59 18398.85 13291.29 26298.93 24998.94 3695.90 5698.77 9198.42 19090.89 15999.77 11597.80 11170.76 33798.72 200
xiu_mvs_v2_base98.23 6397.97 6499.02 7798.69 13998.66 4699.52 17898.08 18597.05 2699.86 499.86 2990.65 16199.71 12999.39 4198.63 12898.69 201
PS-MVSNAJ98.44 4798.20 5099.16 5998.80 13598.92 2399.54 17698.17 17497.34 1699.85 699.85 3391.20 15099.89 7999.41 4099.67 9598.69 201
MSDG94.37 18193.36 19497.40 15898.88 13093.95 20299.37 20197.38 25085.75 30190.80 22299.17 13584.11 22799.88 8586.35 28498.43 13298.36 203
CANet_DTU96.76 11596.15 11998.60 10298.78 13697.53 9099.84 10697.63 21797.25 2399.20 7199.64 9981.36 24699.98 4292.77 20998.89 12298.28 204
mvs-test195.53 15195.97 12894.20 25397.77 18585.44 32299.95 4197.06 27994.92 8196.58 15298.72 17185.81 21098.98 16094.80 16398.11 13998.18 205
VDDNet93.12 20691.91 22196.76 17696.67 24192.65 23198.69 27198.21 16882.81 32497.75 12999.28 12461.57 34499.48 14998.09 10094.09 20698.15 206
MVS-HIRNet86.22 29983.19 31195.31 21396.71 24090.29 27992.12 34797.33 25562.85 35386.82 28970.37 35769.37 31997.49 24375.12 33797.99 14598.15 206
UGNet95.33 15594.57 16397.62 15198.55 14294.85 18398.67 27399.32 2495.75 6596.80 14896.27 25072.18 30999.96 5394.58 17299.05 12198.04 208
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
DSMNet-mixed88.28 29188.24 28688.42 32689.64 34275.38 35198.06 30189.86 35985.59 30388.20 27392.14 33576.15 29091.95 34878.46 32696.05 17997.92 209
xiu_mvs_v1_base_debu97.43 8997.06 9398.55 10697.74 18898.14 6799.31 20897.86 20596.43 4199.62 3899.69 9185.56 21399.68 13399.05 5098.31 13597.83 210
xiu_mvs_v1_base97.43 8997.06 9398.55 10697.74 18898.14 6799.31 20897.86 20596.43 4199.62 3899.69 9185.56 21399.68 13399.05 5098.31 13597.83 210
xiu_mvs_v1_base_debi97.43 8997.06 9398.55 10697.74 18898.14 6799.31 20897.86 20596.43 4199.62 3899.69 9185.56 21399.68 13399.05 5098.31 13597.83 210
UniMVSNet_ETH3D90.06 27488.58 28094.49 24394.67 28188.09 30897.81 30797.57 22783.91 31888.44 26697.41 21157.44 35097.62 24091.41 22188.59 23897.77 213
cascas94.64 17293.61 18197.74 14797.82 18296.26 13799.96 2397.78 21185.76 29994.00 19397.54 20876.95 28099.21 15497.23 12795.43 19397.76 214
hse-mvs294.38 18094.08 17395.31 21398.27 15690.02 28499.29 21398.56 7795.90 5698.77 9198.00 19990.89 15998.26 21397.80 11169.20 34397.64 215
AUN-MVS93.28 20392.60 20595.34 21198.29 15290.09 28399.31 20898.56 7791.80 20196.35 16198.00 19989.38 17698.28 20992.46 21069.22 34297.64 215
OpenMVScopyleft90.15 1594.77 16793.59 18498.33 12396.07 24797.48 9699.56 17298.57 7590.46 23086.51 29498.95 15578.57 27299.94 6893.86 18599.74 9097.57 217
baseline296.71 11996.49 11297.37 16095.63 26795.96 15299.74 13898.88 4392.94 15491.61 21498.97 15197.72 598.62 18094.83 16298.08 14397.53 218
RPSCF91.80 23792.79 20288.83 32298.15 16469.87 35398.11 29996.60 31383.93 31794.33 18999.27 12779.60 26499.46 15091.99 21493.16 21597.18 219
test0.0.03 193.86 18893.61 18194.64 23495.02 27692.18 24099.93 6298.58 7394.07 11787.96 27598.50 18393.90 9494.96 32981.33 31493.17 21496.78 220
AllTest92.48 22191.64 22495.00 22299.01 11588.43 30398.94 24896.82 30386.50 28988.71 26198.47 18874.73 29999.88 8585.39 29096.18 17696.71 221
TestCases95.00 22299.01 11588.43 30396.82 30386.50 28988.71 26198.47 18874.73 29999.88 8585.39 29096.18 17696.71 221
XVG-OURS-SEG-HR94.79 16594.70 16295.08 21998.05 16889.19 29399.08 22897.54 23093.66 13794.87 18299.58 10378.78 27099.79 10997.31 12593.40 21296.25 223
XVG-OURS94.82 16494.74 16195.06 22098.00 17089.19 29399.08 22897.55 22894.10 11594.71 18399.62 10080.51 25799.74 12596.04 14693.06 21696.25 223
Effi-MVS+-dtu94.53 17795.30 14892.22 29597.77 18582.54 33399.59 16797.06 27994.92 8195.29 17895.37 28285.81 21097.89 23294.80 16397.07 16296.23 225
testgi89.01 28788.04 28891.90 30093.49 29984.89 32599.73 14395.66 33293.89 13085.14 30898.17 19459.68 34794.66 33377.73 32988.88 23096.16 226
Fast-Effi-MVS+-dtu93.72 19693.86 17993.29 28097.06 21986.16 31699.80 12096.83 30192.66 16892.58 21097.83 20481.39 24597.67 23889.75 25096.87 16796.05 227
COLMAP_ROBcopyleft90.47 1492.18 22891.49 23094.25 25299.00 11788.04 30998.42 28796.70 31082.30 32788.43 26899.01 14476.97 27999.85 9486.11 28796.50 17294.86 228
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
HQP4-MVS93.37 19998.39 19794.53 229
HQP-MVS94.61 17394.50 16494.92 22595.78 25491.85 24799.87 8897.89 20196.82 3093.37 19998.65 17480.65 25598.39 19797.92 10989.60 22094.53 229
HQP_MVS94.49 17894.36 16694.87 22695.71 26391.74 25199.84 10697.87 20396.38 4493.01 20398.59 17880.47 25998.37 20297.79 11489.55 22394.52 231
plane_prior597.87 20398.37 20297.79 11489.55 22394.52 231
CLD-MVS94.06 18793.90 17794.55 23996.02 24990.69 26999.98 897.72 21296.62 3991.05 22098.85 16877.21 27798.47 18698.11 9889.51 22594.48 233
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
nrg03093.51 19992.53 20996.45 18694.36 28497.20 10699.81 11597.16 26991.60 20589.86 23597.46 20986.37 20797.68 23795.88 14980.31 30494.46 234
VPNet91.81 23490.46 24395.85 20394.74 27995.54 16598.98 24398.59 7292.14 18990.77 22397.44 21068.73 32297.54 24294.89 16177.89 31894.46 234
UniMVSNet_NR-MVSNet92.95 21192.11 21695.49 20694.61 28295.28 17299.83 11299.08 3091.49 20889.21 25396.86 23187.14 19996.73 28893.20 20177.52 32194.46 234
DU-MVS92.46 22291.45 23195.49 20694.05 28995.28 17299.81 11598.74 5292.25 18789.21 25396.64 24081.66 24296.73 28893.20 20177.52 32194.46 234
NR-MVSNet91.56 24290.22 25095.60 20594.05 28995.76 15898.25 29298.70 5491.16 21880.78 32996.64 24083.23 23396.57 29591.41 22177.73 32094.46 234
TranMVSNet+NR-MVSNet91.68 24190.61 24294.87 22693.69 29693.98 20199.69 14998.65 6091.03 22188.44 26696.83 23580.05 26296.18 30990.26 24576.89 32994.45 239
RRT_test8_iter0594.58 17494.11 17195.98 19997.88 17696.11 14899.89 8297.45 24091.66 20488.28 27196.71 23696.53 2497.40 24694.73 16883.85 27894.45 239
FIs94.10 18693.43 18996.11 19694.70 28096.82 11999.58 16898.93 4092.54 17789.34 24997.31 21487.62 19497.10 26794.22 18286.58 25594.40 241
ACMM91.95 1092.88 21292.52 21093.98 26495.75 25989.08 29699.77 12797.52 23493.00 15389.95 23297.99 20176.17 28998.46 18993.63 19788.87 23194.39 242
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test_part192.15 22990.72 23996.44 18898.87 13197.46 9898.99 24298.26 16285.89 29686.34 29996.34 24881.71 24097.48 24491.06 22778.99 31094.37 243
FC-MVSNet-test93.81 19193.15 19895.80 20494.30 28696.20 14299.42 19398.89 4292.33 18589.03 25897.27 21687.39 19796.83 28493.20 20186.48 25694.36 244
PS-MVSNAJss93.64 19893.31 19594.61 23592.11 32192.19 23999.12 22497.38 25092.51 17988.45 26596.99 22791.20 15097.29 25694.36 17687.71 24794.36 244
WR-MVS92.31 22591.25 23395.48 20994.45 28395.29 17199.60 16698.68 5690.10 23688.07 27496.89 22980.68 25496.80 28693.14 20479.67 30894.36 244
XXY-MVS91.82 23390.46 24395.88 20193.91 29295.40 16998.87 25797.69 21488.63 26287.87 27697.08 22174.38 30297.89 23291.66 21984.07 27594.35 247
MVSTER95.53 15195.22 15096.45 18698.56 14197.72 8299.91 7097.67 21592.38 18391.39 21697.14 21897.24 1497.30 25394.80 16387.85 24594.34 248
VPA-MVSNet92.70 21691.55 22896.16 19595.09 27396.20 14298.88 25499.00 3391.02 22291.82 21395.29 28876.05 29197.96 22895.62 15281.19 29294.30 249
FMVSNet392.69 21791.58 22695.99 19898.29 15297.42 10199.26 21697.62 21989.80 24289.68 23995.32 28481.62 24496.27 30687.01 28085.65 26094.29 250
RRT_MVS95.23 15694.77 16096.61 18298.28 15498.32 6399.81 11597.41 24792.59 17391.28 21897.76 20595.02 5497.23 25993.65 19687.14 25294.28 251
EU-MVSNet90.14 27390.34 24789.54 31892.55 31781.06 34398.69 27198.04 18891.41 21486.59 29396.84 23480.83 25293.31 34586.20 28581.91 28794.26 252
UniMVSNet (Re)93.07 20892.13 21595.88 20194.84 27796.24 14199.88 8598.98 3492.49 18189.25 25195.40 27887.09 20097.14 26393.13 20578.16 31694.26 252
FMVSNet291.02 24989.56 26195.41 21097.53 19995.74 15998.98 24397.41 24787.05 28188.43 26895.00 29771.34 31296.24 30885.12 29285.21 26594.25 254
EI-MVSNet93.73 19593.40 19394.74 23096.80 23492.69 22899.06 23397.67 21588.96 25391.39 21699.02 14288.75 18697.30 25391.07 22687.85 24594.22 255
IterMVS-LS92.69 21792.11 21694.43 24896.80 23492.74 22599.45 19096.89 29788.98 25189.65 24295.38 28188.77 18596.34 30390.98 23182.04 28694.22 255
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
cl-mvsnet293.77 19393.25 19795.33 21299.49 9994.43 19299.61 16598.09 18390.38 23189.16 25695.61 26690.56 16397.34 25091.93 21584.45 27094.21 257
miper_enhance_ethall94.36 18393.98 17595.49 20698.68 14095.24 17499.73 14397.29 25893.28 14789.86 23595.97 25794.37 7597.05 27092.20 21384.45 27094.19 258
miper_ehance_all_eth93.16 20592.60 20594.82 22997.57 19893.56 20999.50 18297.07 27888.75 25888.85 26095.52 27290.97 15696.74 28790.77 23684.45 27094.17 259
cl-mvsnet192.32 22491.60 22594.47 24497.31 21192.74 22599.58 16896.75 30786.99 28487.64 27895.54 27089.55 17496.50 29788.58 25882.44 28394.17 259
GBi-Net90.88 25289.82 25794.08 25797.53 19991.97 24298.43 28496.95 29087.05 28189.68 23994.72 30371.34 31296.11 31087.01 28085.65 26094.17 259
test190.88 25289.82 25794.08 25797.53 19991.97 24298.43 28496.95 29087.05 28189.68 23994.72 30371.34 31296.11 31087.01 28085.65 26094.17 259
FMVSNet188.50 28986.64 29594.08 25795.62 26891.97 24298.43 28496.95 29083.00 32286.08 30394.72 30359.09 34896.11 31081.82 31384.07 27594.17 259
cl-mvsnet____92.31 22591.58 22694.52 24097.33 21092.77 22399.57 17096.78 30686.97 28587.56 28095.51 27389.43 17596.62 29388.60 25782.44 28394.16 264
bset_n11_16_dypcd93.05 20992.30 21395.31 21390.23 33995.05 17999.44 19297.28 25992.51 17990.65 22496.68 23785.30 21796.71 29094.49 17484.14 27394.16 264
eth_miper_zixun_eth92.41 22391.93 22093.84 26897.28 21490.68 27098.83 26096.97 28988.57 26389.19 25595.73 26389.24 18196.69 29189.97 24881.55 28994.15 266
miper_lstm_enhance91.81 23491.39 23293.06 28797.34 20889.18 29599.38 19996.79 30586.70 28887.47 28295.22 29090.00 16895.86 31988.26 26281.37 29194.15 266
Anonymous2023121189.86 27688.44 28294.13 25698.93 12390.68 27098.54 27998.26 16276.28 34186.73 29095.54 27070.60 31697.56 24190.82 23580.27 30594.15 266
cl_fuxian92.53 22091.87 22294.52 24097.40 20592.99 22199.40 19496.93 29487.86 27188.69 26395.44 27689.95 16996.44 29990.45 24080.69 30194.14 269
jajsoiax91.92 23291.18 23494.15 25491.35 33090.95 26699.00 24197.42 24592.61 17187.38 28497.08 22172.46 30897.36 24894.53 17388.77 23394.13 270
mvs_tets91.81 23491.08 23594.00 26291.63 32890.58 27398.67 27397.43 24392.43 18287.37 28597.05 22471.76 31097.32 25294.75 16688.68 23594.11 271
v2v48291.30 24390.07 25595.01 22193.13 30493.79 20499.77 12797.02 28288.05 26989.25 25195.37 28280.73 25397.15 26287.28 27580.04 30794.09 272
LPG-MVS_test92.96 21092.71 20393.71 27195.43 26988.67 29999.75 13597.62 21992.81 15890.05 22898.49 18475.24 29598.40 19595.84 15089.12 22794.07 273
LGP-MVS_train93.71 27195.43 26988.67 29997.62 21992.81 15890.05 22898.49 18475.24 29598.40 19595.84 15089.12 22794.07 273
test_djsdf92.83 21392.29 21494.47 24491.90 32492.46 23499.55 17497.27 26091.17 21689.96 23196.07 25681.10 24896.89 28094.67 17088.91 22994.05 275
CP-MVSNet91.23 24690.22 25094.26 25193.96 29192.39 23699.09 22698.57 7588.95 25486.42 29796.57 24279.19 26796.37 30190.29 24478.95 31194.02 276
Patchmtry89.70 27988.49 28193.33 27996.24 24589.94 28891.37 35196.23 32078.22 33887.69 27793.31 32591.04 15496.03 31580.18 32082.10 28594.02 276
v192192090.46 26289.12 27094.50 24292.96 31192.46 23499.49 18496.98 28786.10 29489.61 24495.30 28578.55 27397.03 27482.17 31080.89 30094.01 278
v119290.62 26089.25 26894.72 23293.13 30493.07 21899.50 18297.02 28286.33 29289.56 24595.01 29579.22 26697.09 26982.34 30981.16 29394.01 278
v124090.20 27088.79 27794.44 24693.05 30992.27 23899.38 19996.92 29585.89 29689.36 24894.87 30277.89 27697.03 27480.66 31781.08 29694.01 278
OPM-MVS93.21 20492.80 20194.44 24693.12 30690.85 26899.77 12797.61 22296.19 5191.56 21598.65 17475.16 29798.47 18693.78 19289.39 22693.99 281
ACMP92.05 992.74 21592.42 21293.73 26995.91 25388.72 29899.81 11597.53 23294.13 11387.00 28898.23 19374.07 30398.47 18696.22 14488.86 23293.99 281
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
OurMVSNet-221017-089.81 27789.48 26690.83 30891.64 32781.21 34198.17 29795.38 33891.48 20985.65 30697.31 21472.66 30797.29 25688.15 26484.83 26793.97 283
pmmvs590.17 27289.09 27193.40 27892.10 32289.77 28999.74 13895.58 33485.88 29887.24 28795.74 26173.41 30696.48 29888.54 25983.56 27993.95 284
PS-CasMVS90.63 25989.51 26493.99 26393.83 29391.70 25598.98 24398.52 9088.48 26486.15 30296.53 24475.46 29396.31 30488.83 25678.86 31393.95 284
IterMVS90.91 25190.17 25293.12 28496.78 23790.42 27898.89 25297.05 28189.03 24986.49 29595.42 27776.59 28495.02 32787.22 27684.09 27493.93 286
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
ACMH89.72 1790.64 25889.63 25993.66 27595.64 26688.64 30198.55 27797.45 24089.03 24981.62 32497.61 20769.75 31898.41 19389.37 25187.62 24993.92 287
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
v14419290.79 25589.52 26394.59 23693.11 30792.77 22399.56 17296.99 28586.38 29189.82 23894.95 30080.50 25897.10 26783.98 29980.41 30293.90 288
PEN-MVS90.19 27189.06 27293.57 27693.06 30890.90 26799.06 23398.47 10388.11 26885.91 30496.30 24976.67 28295.94 31887.07 27776.91 32893.89 289
XVG-ACMP-BASELINE91.22 24790.75 23892.63 29293.73 29585.61 31998.52 28197.44 24292.77 16289.90 23496.85 23266.64 33098.39 19792.29 21288.61 23693.89 289
v114491.09 24889.83 25694.87 22693.25 30393.69 20799.62 16496.98 28786.83 28789.64 24394.99 29880.94 25097.05 27085.08 29381.16 29393.87 291
MDA-MVSNet_test_wron85.51 30383.32 31092.10 29790.96 33388.58 30299.20 21996.52 31579.70 33557.12 35792.69 33079.11 26893.86 34077.10 33277.46 32393.86 292
IterMVS-SCA-FT90.85 25490.16 25392.93 28896.72 23989.96 28598.89 25296.99 28588.95 25486.63 29295.67 26476.48 28595.00 32887.04 27884.04 27793.84 293
YYNet185.50 30483.33 30992.00 29890.89 33488.38 30699.22 21896.55 31479.60 33657.26 35692.72 32879.09 26993.78 34177.25 33177.37 32493.84 293
MDA-MVSNet-bldmvs84.09 31281.52 31891.81 30191.32 33188.00 31098.67 27395.92 32780.22 33355.60 35893.32 32468.29 32593.60 34373.76 33876.61 33093.82 295
MVS_030489.28 28588.31 28492.21 29697.05 22086.53 31597.76 30899.57 1285.58 30493.86 19692.71 32951.04 35696.30 30584.49 29692.72 21793.79 296
ACMH+89.98 1690.35 26589.54 26292.78 29195.99 25086.12 31798.81 26297.18 26689.38 24483.14 31797.76 20568.42 32498.43 19189.11 25486.05 25893.78 297
v14890.70 25689.63 25993.92 26592.97 31090.97 26599.75 13596.89 29787.51 27488.27 27295.01 29581.67 24197.04 27287.40 27377.17 32693.75 298
pmmvs492.10 23091.07 23695.18 21792.82 31494.96 18199.48 18696.83 30187.45 27688.66 26496.56 24383.78 22896.83 28489.29 25284.77 26893.75 298
K. test v388.05 29287.24 29490.47 31191.82 32682.23 33698.96 24697.42 24589.05 24876.93 34095.60 26768.49 32395.42 32285.87 28981.01 29893.75 298
lessismore_v090.53 30990.58 33680.90 34495.80 32877.01 33995.84 25866.15 33296.95 27783.03 30575.05 33493.74 301
SixPastTwentyTwo88.73 28888.01 28990.88 30691.85 32582.24 33598.22 29595.18 34388.97 25282.26 32096.89 22971.75 31196.67 29284.00 29882.98 28093.72 302
our_test_390.39 26389.48 26693.12 28492.40 31889.57 29199.33 20596.35 31987.84 27285.30 30794.99 29884.14 22696.09 31380.38 31884.56 26993.71 303
LTVRE_ROB88.28 1890.29 26889.05 27394.02 26095.08 27490.15 28297.19 31597.43 24384.91 31283.99 31397.06 22374.00 30498.28 20984.08 29787.71 24793.62 304
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
ITE_SJBPF92.38 29395.69 26585.14 32395.71 33092.81 15889.33 25098.11 19570.23 31798.42 19285.91 28888.16 24393.59 305
v7n89.65 28088.29 28593.72 27092.22 32090.56 27499.07 23297.10 27485.42 30786.73 29094.72 30380.06 26197.13 26481.14 31578.12 31793.49 306
DTE-MVSNet89.40 28288.24 28692.88 28992.66 31689.95 28699.10 22598.22 16787.29 27885.12 30996.22 25176.27 28895.30 32683.56 30375.74 33293.41 307
V4291.28 24590.12 25494.74 23093.42 30193.46 21299.68 15197.02 28287.36 27789.85 23795.05 29381.31 24797.34 25087.34 27480.07 30693.40 308
anonymousdsp91.79 23990.92 23794.41 24990.76 33592.93 22298.93 24997.17 26789.08 24787.46 28395.30 28578.43 27596.92 27992.38 21188.73 23493.39 309
v890.54 26189.17 26994.66 23393.43 30093.40 21599.20 21996.94 29385.76 29987.56 28094.51 31081.96 23997.19 26084.94 29478.25 31593.38 310
ppachtmachnet_test89.58 28188.35 28393.25 28292.40 31890.44 27799.33 20596.73 30885.49 30585.90 30595.77 26081.09 24996.00 31776.00 33682.49 28293.30 311
v1090.25 26988.82 27694.57 23893.53 29893.43 21399.08 22896.87 29985.00 30987.34 28694.51 31080.93 25197.02 27682.85 30679.23 30993.26 312
PVSNet_BlendedMVS96.05 13995.82 13796.72 17899.59 9096.99 11499.95 4199.10 2894.06 11998.27 11595.80 25989.00 18399.95 6099.12 4787.53 25093.24 313
WR-MVS_H91.30 24390.35 24694.15 25494.17 28892.62 23299.17 22298.94 3688.87 25686.48 29694.46 31484.36 22496.61 29488.19 26378.51 31493.21 314
FMVSNet588.32 29087.47 29290.88 30696.90 22988.39 30597.28 31395.68 33182.60 32684.67 31092.40 33479.83 26391.16 35076.39 33581.51 29093.09 315
Anonymous2023120686.32 29885.42 30089.02 32189.11 34480.53 34799.05 23795.28 33985.43 30682.82 31893.92 31874.40 30193.44 34466.99 34981.83 28893.08 316
pm-mvs189.36 28387.81 29094.01 26193.40 30291.93 24598.62 27696.48 31786.25 29383.86 31496.14 25373.68 30597.04 27286.16 28675.73 33393.04 317
test_method80.79 31879.70 32184.08 33292.83 31367.06 35599.51 18095.42 33654.34 35581.07 32893.53 32244.48 35892.22 34778.90 32577.23 32592.94 318
UnsupCasMVSNet_eth85.52 30283.99 30390.10 31489.36 34383.51 32996.65 32397.99 19089.14 24675.89 34493.83 31963.25 34193.92 33881.92 31267.90 34692.88 319
USDC90.00 27588.96 27493.10 28694.81 27888.16 30798.71 26995.54 33593.66 13783.75 31597.20 21765.58 33398.31 20683.96 30087.49 25192.85 320
N_pmnet80.06 32180.78 31977.89 33691.94 32345.28 36598.80 26356.82 36878.10 33980.08 33293.33 32377.03 27895.76 32068.14 34882.81 28192.64 321
KD-MVS_2432*160088.00 29386.10 29793.70 27396.91 22694.04 19897.17 31697.12 27284.93 31081.96 32192.41 33292.48 13094.51 33479.23 32152.68 35592.56 322
miper_refine_blended88.00 29386.10 29793.70 27396.91 22694.04 19897.17 31697.12 27284.93 31081.96 32192.41 33292.48 13094.51 33479.23 32152.68 35592.56 322
pmmvs685.69 30083.84 30691.26 30590.00 34184.41 32797.82 30696.15 32375.86 34381.29 32695.39 28061.21 34596.87 28283.52 30473.29 33692.50 324
D2MVS92.76 21492.59 20893.27 28195.13 27289.54 29299.69 14999.38 2192.26 18687.59 27994.61 30985.05 22097.79 23491.59 22088.01 24492.47 325
CL-MVSNet_2432*160084.50 31083.15 31288.53 32586.00 35081.79 33998.82 26197.35 25285.12 30883.62 31690.91 34076.66 28391.40 34969.53 34560.36 35292.40 326
MIMVSNet182.58 31680.51 32088.78 32386.68 34984.20 32896.65 32395.41 33778.75 33778.59 33692.44 33151.88 35489.76 35365.26 35378.95 31192.38 327
LF4IMVS89.25 28688.85 27590.45 31292.81 31581.19 34298.12 29894.79 34591.44 21186.29 30097.11 21965.30 33698.11 21988.53 26085.25 26492.07 328
TransMVSNet (Re)87.25 29685.28 30193.16 28393.56 29791.03 26498.54 27994.05 35183.69 32081.09 32796.16 25275.32 29496.40 30076.69 33468.41 34492.06 329
DeepMVS_CXcopyleft82.92 33595.98 25258.66 35996.01 32592.72 16378.34 33795.51 27358.29 34998.08 22082.57 30785.29 26392.03 330
Baseline_NR-MVSNet90.33 26689.51 26492.81 29092.84 31289.95 28699.77 12793.94 35284.69 31489.04 25795.66 26581.66 24296.52 29690.99 23076.98 32791.97 331
TinyColmap87.87 29586.51 29691.94 29995.05 27585.57 32097.65 30994.08 35084.40 31581.82 32396.85 23262.14 34398.33 20480.25 31986.37 25791.91 332
MS-PatchMatch90.65 25790.30 24891.71 30294.22 28785.50 32198.24 29397.70 21388.67 26086.42 29796.37 24767.82 32698.03 22483.62 30299.62 9891.60 333
DIV-MVS_2432*160083.59 31582.06 31588.20 32786.93 34880.70 34597.21 31496.38 31882.87 32382.49 31988.97 34367.63 32792.32 34673.75 33962.30 35191.58 334
tfpnnormal89.29 28487.61 29194.34 25094.35 28594.13 19798.95 24798.94 3683.94 31684.47 31195.51 27374.84 29897.39 24777.05 33380.41 30291.48 335
MVP-Stereo90.93 25090.45 24592.37 29491.25 33288.76 29798.05 30296.17 32287.27 27984.04 31295.30 28578.46 27497.27 25883.78 30199.70 9491.09 336
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
test20.0384.72 30983.99 30386.91 32988.19 34780.62 34698.88 25495.94 32688.36 26678.87 33494.62 30868.75 32189.11 35466.52 35075.82 33191.00 337
EG-PatchMatch MVS85.35 30583.81 30789.99 31690.39 33781.89 33898.21 29696.09 32481.78 32974.73 34693.72 32151.56 35597.12 26679.16 32488.61 23690.96 338
TDRefinement84.76 30782.56 31491.38 30474.58 35884.80 32697.36 31294.56 34884.73 31380.21 33196.12 25563.56 34098.39 19787.92 26763.97 34890.95 339
ambc83.23 33477.17 35762.61 35687.38 35594.55 34976.72 34186.65 34930.16 36096.36 30284.85 29569.86 33890.73 340
Anonymous2024052185.15 30683.81 30789.16 32088.32 34582.69 33198.80 26395.74 32979.72 33481.53 32590.99 33865.38 33594.16 33672.69 34081.11 29590.63 341
OpenMVS_ROBcopyleft79.82 2083.77 31481.68 31790.03 31588.30 34682.82 33098.46 28295.22 34173.92 34976.00 34391.29 33755.00 35296.94 27868.40 34788.51 24090.34 342
new_pmnet84.49 31182.92 31389.21 31990.03 34082.60 33296.89 32295.62 33380.59 33275.77 34589.17 34265.04 33794.79 33272.12 34181.02 29790.23 343
test_040285.58 30183.94 30590.50 31093.81 29485.04 32498.55 27795.20 34276.01 34279.72 33395.13 29164.15 33996.26 30766.04 35286.88 25490.21 344
pmmvs380.27 32077.77 32487.76 32880.32 35682.43 33498.23 29491.97 35572.74 35078.75 33587.97 34557.30 35190.99 35170.31 34362.37 35089.87 345
CMPMVSbinary61.59 2184.75 30885.14 30283.57 33390.32 33862.54 35796.98 32097.59 22674.33 34869.95 35196.66 23864.17 33898.32 20587.88 26888.41 24189.84 346
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
PM-MVS80.47 31978.88 32385.26 33183.79 35472.22 35295.89 33491.08 35785.71 30276.56 34288.30 34436.64 35993.90 33982.39 30869.57 34089.66 347
pmmvs-eth3d84.03 31381.97 31690.20 31384.15 35387.09 31398.10 30094.73 34783.05 32174.10 34787.77 34665.56 33494.01 33781.08 31669.24 34189.49 348
UnsupCasMVSNet_bld79.97 32277.03 32588.78 32385.62 35181.98 33793.66 34297.35 25275.51 34670.79 35083.05 35248.70 35794.91 33078.31 32760.29 35389.46 349
new-patchmatchnet81.19 31779.34 32286.76 33082.86 35580.36 34897.92 30495.27 34082.09 32872.02 34886.87 34862.81 34290.74 35271.10 34263.08 34989.19 350
LCM-MVSNet67.77 32464.73 32876.87 33762.95 36456.25 36189.37 35493.74 35344.53 35861.99 35380.74 35320.42 36686.53 35669.37 34659.50 35487.84 351
tmp_tt65.23 32762.94 33072.13 34044.90 36750.03 36381.05 35789.42 36238.45 35948.51 36199.90 1754.09 35378.70 36091.84 21818.26 36287.64 352
PMMVS267.15 32564.15 32976.14 33870.56 36162.07 35893.89 34087.52 36358.09 35460.02 35478.32 35422.38 36584.54 35759.56 35647.03 35781.80 353
FPMVS68.72 32368.72 32668.71 34165.95 36244.27 36795.97 33394.74 34651.13 35653.26 35990.50 34125.11 36483.00 35860.80 35580.97 29978.87 354
ANet_high56.10 32852.24 33167.66 34249.27 36656.82 36083.94 35682.02 36470.47 35133.28 36564.54 36017.23 36869.16 36245.59 36023.85 36177.02 355
MVEpermissive53.74 2251.54 33147.86 33562.60 34359.56 36550.93 36279.41 35877.69 36535.69 36236.27 36461.76 3635.79 37269.63 36137.97 36236.61 35867.24 356
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMVScopyleft49.05 2353.75 32951.34 33360.97 34440.80 36834.68 36874.82 35989.62 36137.55 36028.67 36672.12 3567.09 37081.63 35943.17 36168.21 34566.59 357
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
Gipumacopyleft66.95 32665.00 32772.79 33991.52 32967.96 35466.16 36095.15 34447.89 35758.54 35567.99 35929.74 36187.54 35550.20 35877.83 31962.87 358
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test12337.68 33439.14 33733.31 34719.94 36924.83 37098.36 2889.75 37015.53 36551.31 36087.14 34719.62 36717.74 36647.10 3593.47 36557.36 359
testmvs40.60 33344.45 33629.05 34819.49 37014.11 37199.68 15118.47 36920.74 36464.59 35298.48 18710.95 36917.09 36756.66 35711.01 36355.94 360
EMVS51.44 33251.22 33452.11 34670.71 36044.97 36694.04 33975.66 36735.34 36342.40 36361.56 36428.93 36265.87 36427.64 36424.73 36045.49 361
E-PMN52.30 33052.18 33252.67 34571.51 35945.40 36493.62 34376.60 36636.01 36143.50 36264.13 36127.11 36367.31 36331.06 36326.06 35945.30 362
wuyk23d20.37 33620.84 33918.99 34965.34 36327.73 36950.43 3617.67 3719.50 3668.01 3676.34 3676.13 37126.24 36523.40 36510.69 3642.99 363
uanet_test0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
cdsmvs_eth3d_5k23.43 33531.24 3380.00 3500.00 3710.00 3720.00 36298.09 1830.00 3670.00 36899.67 9583.37 2310.00 3680.00 3660.00 3660.00 364
pcd_1.5k_mvsjas7.60 33810.13 3410.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 36891.20 1500.00 3680.00 3660.00 3660.00 364
sosnet-low-res0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
sosnet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
uncertanet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
Regformer0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
ab-mvs-re8.28 33711.04 3400.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 36899.40 1170.00 3730.00 3680.00 3660.00 3660.00 364
uanet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
ZD-MVS99.92 3598.57 5198.52 9092.34 18499.31 6499.83 4995.06 5299.80 10699.70 3099.97 44
test_241102_ONE99.93 2699.30 898.43 11697.26 2299.80 1699.88 2296.71 20100.00 1
9.1498.38 3899.87 5299.91 7098.33 14993.22 14899.78 2299.89 1994.57 6899.85 9499.84 1399.97 44
save fliter99.82 6598.79 3399.96 2398.40 13297.66 10
test072699.93 2699.29 1099.96 2398.42 12797.28 1899.86 499.94 497.22 15
test_part299.89 4599.25 1399.49 49
sam_mvs94.25 82
MTGPAbinary98.28 158
test_post195.78 33559.23 36593.20 11497.74 23691.06 227
test_post63.35 36294.43 6998.13 218
patchmatchnet-post91.70 33695.12 4897.95 229
MTMP99.87 8896.49 316
gm-plane-assit96.97 22493.76 20691.47 21098.96 15398.79 16794.92 158
TEST999.92 3598.92 2399.96 2398.43 11693.90 12899.71 3099.86 2995.88 3499.85 94
test_899.92 3598.88 2699.96 2398.43 11694.35 10599.69 3299.85 3395.94 3199.85 94
agg_prior99.93 2698.77 3698.43 11699.63 3699.85 94
test_prior498.05 7199.94 56
test_prior299.95 4195.78 6099.73 2699.76 7296.00 2999.78 20100.00 1
旧先验299.46 18994.21 11299.85 699.95 6096.96 135
新几何299.40 194
原ACMM299.90 74
testdata299.99 3690.54 239
segment_acmp96.68 22
testdata199.28 21496.35 48
plane_prior795.71 26391.59 259
plane_prior695.76 25891.72 25480.47 259
plane_prior498.59 178
plane_prior391.64 25796.63 3893.01 203
plane_prior299.84 10696.38 44
plane_prior195.73 260
plane_prior91.74 25199.86 9996.76 3489.59 222
n20.00 372
nn0.00 372
door-mid89.69 360
test1198.44 108
door90.31 358
HQP5-MVS91.85 247
HQP-NCC95.78 25499.87 8896.82 3093.37 199
ACMP_Plane95.78 25499.87 8896.82 3093.37 199
BP-MVS97.92 109
HQP3-MVS97.89 20189.60 220
HQP2-MVS80.65 255
NP-MVS95.77 25791.79 24998.65 174
MDTV_nov1_ep1395.69 13997.90 17594.15 19695.98 33298.44 10893.12 15197.98 12395.74 26195.10 4998.58 18190.02 24796.92 166
ACMMP++_ref87.04 253
ACMMP++88.23 242
Test By Simon92.82 123