This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted by
DVP-MVS++99.26 699.09 999.77 899.91 3999.31 1099.95 5098.43 12596.48 5799.80 1599.93 1197.44 14100.00 199.92 1299.98 32100.00 1
MSC_two_6792asdad99.93 299.91 3999.80 298.41 140100.00 199.96 9100.00 1100.00 1
PC_three_145296.96 4299.80 1599.79 5597.49 10100.00 199.99 599.98 32100.00 1
No_MVS99.93 299.91 3999.80 298.41 140100.00 199.96 9100.00 1100.00 1
SED-MVS99.28 599.11 799.77 899.93 2499.30 1299.96 3298.43 12597.27 3299.80 1599.94 496.71 24100.00 1100.00 1100.00 1100.00 1
IU-MVS99.93 2499.31 1098.41 14097.71 1799.84 10100.00 1100.00 1100.00 1
OPU-MVS99.93 299.89 4599.80 299.96 3299.80 5197.44 14100.00 1100.00 199.98 32100.00 1
test_241102_TWO98.43 12597.27 3299.80 1599.94 497.18 21100.00 1100.00 1100.00 1100.00 1
test_0728_THIRD96.48 5799.83 1199.91 1497.87 6100.00 199.92 12100.00 1100.00 1
test_0728_SECOND99.82 799.94 1399.47 799.95 5098.43 125100.00 199.99 5100.00 1100.00 1
SMA-MVScopyleft98.76 2198.48 2699.62 2099.87 5198.87 3299.86 11198.38 15193.19 16699.77 2599.94 495.54 42100.00 199.74 2899.99 21100.00 1
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MSP-MVS99.09 999.12 598.98 7199.93 2497.24 9699.95 5098.42 13697.50 2499.52 5799.88 2197.43 1699.71 13699.50 3999.98 32100.00 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
test9_res99.71 3199.99 21100.00 1
agg_prior299.48 41100.00 1100.00 1
testdata98.42 11199.47 9195.33 16898.56 8793.78 14999.79 2399.85 3093.64 9399.94 7594.97 17699.94 54100.00 1
MSLP-MVS++99.13 899.01 1199.49 3299.94 1398.46 5999.98 1498.86 5397.10 3899.80 1599.94 495.92 36100.00 199.51 38100.00 1100.00 1
MCST-MVS99.32 399.14 499.86 599.97 399.59 599.97 2598.64 7498.47 299.13 8399.92 1396.38 30100.00 199.74 28100.00 1100.00 1
NCCC99.37 299.25 299.71 1499.96 899.15 2199.97 2598.62 7998.02 1199.90 299.95 397.33 17100.00 199.54 37100.00 1100.00 1
API-MVS97.86 6597.66 7098.47 10699.52 8795.41 16599.47 20298.87 5291.68 22198.84 9499.85 3092.34 13099.99 3698.44 9499.96 46100.00 1
DeepPCF-MVS95.94 297.71 7998.98 1293.92 27999.63 7981.76 36199.96 3298.56 8799.47 199.19 8199.99 194.16 79100.00 199.92 1299.93 60100.00 1
DeepC-MVS_fast96.59 198.81 2098.54 2499.62 2099.90 4298.85 3499.24 23198.47 11098.14 899.08 8499.91 1493.09 106100.00 199.04 6199.99 21100.00 1
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MG-MVS98.91 1698.65 1899.68 1599.94 1399.07 2499.64 17599.44 2097.33 2999.00 8899.72 7994.03 8299.98 4398.73 81100.00 1100.00 1
DPE-MVScopyleft99.26 699.10 899.74 1199.89 4599.24 1999.87 9898.44 11797.48 2599.64 4099.94 496.68 2699.99 3699.99 5100.00 199.99 23
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
ACMMP_NAP98.49 3498.14 4799.54 2799.66 7898.62 5399.85 11498.37 15494.68 10899.53 5599.83 4392.87 112100.00 198.66 8699.84 7199.99 23
MTAPA98.29 4897.96 5999.30 4299.85 5497.93 7399.39 21298.28 17195.76 7897.18 14999.88 2192.74 117100.00 198.67 8499.88 6899.99 23
train_agg98.88 1798.65 1899.59 2399.92 3198.92 2899.96 3298.43 12594.35 12099.71 3299.86 2695.94 3499.85 10699.69 3399.98 3299.99 23
XVS98.70 2398.55 2399.15 5599.94 1397.50 8899.94 6698.42 13696.22 6999.41 6699.78 5994.34 7299.96 5998.92 6899.95 4999.99 23
X-MVStestdata93.83 20192.06 23399.15 5599.94 1397.50 8899.94 6698.42 13696.22 6999.41 6641.37 39894.34 7299.96 5998.92 6899.95 4999.99 23
test_prior99.43 3599.94 1398.49 5898.65 7299.80 11999.99 23
新几何199.42 3799.75 6898.27 6198.63 7892.69 18399.55 5299.82 4694.40 67100.00 191.21 24299.94 5499.99 23
旧先验199.76 6697.52 8598.64 7499.85 3095.63 4199.94 5499.99 23
无先验99.49 19998.71 6493.46 158100.00 194.36 19399.99 23
test22299.55 8597.41 9499.34 21898.55 9391.86 21599.27 7899.83 4393.84 8899.95 4999.99 23
MVS96.60 12295.56 14699.72 1396.85 24399.22 2098.31 30998.94 4191.57 22390.90 24299.61 10186.66 20899.96 5997.36 13699.88 6899.99 23
APDe-MVScopyleft99.06 1198.91 1499.51 2999.94 1398.76 4399.91 8098.39 14797.20 3699.46 6199.85 3095.53 4499.79 12199.86 19100.00 199.99 23
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
test1299.43 3599.74 6998.56 5598.40 14499.65 3894.76 6099.75 13099.98 3299.99 23
TSAR-MVS + GP.98.60 2798.51 2598.86 7899.73 7296.63 11799.97 2597.92 21098.07 998.76 10099.55 10695.00 5699.94 7599.91 1597.68 16099.99 23
HPM-MVS_fast97.80 7197.50 7698.68 8699.79 6296.42 12399.88 9598.16 18791.75 22098.94 9099.54 10891.82 14299.65 14597.62 13399.99 2199.99 23
HPM-MVScopyleft97.96 6097.72 6898.68 8699.84 5696.39 12799.90 8598.17 18392.61 18898.62 10899.57 10591.87 14099.67 14398.87 7399.99 2199.99 23
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
APD-MVScopyleft98.62 2698.35 3699.41 3899.90 4298.51 5799.87 9898.36 15594.08 13399.74 2999.73 7694.08 8099.74 13299.42 4599.99 2199.99 23
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CNVR-MVS99.40 199.26 199.84 699.98 299.51 699.98 1498.69 6698.20 599.93 199.98 296.82 23100.00 199.75 26100.00 199.99 23
CP-MVS98.45 3798.32 3798.87 7799.96 896.62 11899.97 2598.39 14794.43 11598.90 9299.87 2494.30 74100.00 199.04 6199.99 2199.99 23
SteuartSystems-ACMMP99.02 1298.97 1399.18 4898.72 13797.71 7799.98 1498.44 11796.85 4499.80 1599.91 1497.57 899.85 10699.44 4499.99 2199.99 23
Skip Steuart: Steuart Systems R&D Blog.
CPTT-MVS97.64 8197.32 8498.58 9699.97 395.77 14999.96 3298.35 15789.90 26398.36 11999.79 5591.18 15099.99 3698.37 9799.99 2199.99 23
PAPM_NR98.12 5797.93 6198.70 8599.94 1396.13 14099.82 12898.43 12594.56 11197.52 14199.70 8394.40 6799.98 4397.00 14799.98 3299.99 23
PAPR98.52 3298.16 4699.58 2499.97 398.77 4099.95 5098.43 12595.35 8998.03 12999.75 6894.03 8299.98 4398.11 10899.83 7299.99 23
PHI-MVS98.41 4298.21 4299.03 6699.86 5397.10 10399.98 1498.80 6090.78 24999.62 4499.78 5995.30 47100.00 199.80 2399.93 6099.99 23
MM99.76 1099.33 899.99 499.76 698.39 399.39 7099.80 5190.49 16499.96 5999.89 1699.43 10899.98 48
test_fmvsmconf_n98.43 4098.32 3798.78 8098.12 17396.41 12499.99 498.83 5798.22 499.67 3699.64 9791.11 15199.94 7599.67 3499.62 8899.98 48
DPM-MVS98.83 1998.46 2799.97 199.33 9799.92 199.96 3298.44 11797.96 1299.55 5299.94 497.18 21100.00 193.81 20799.94 5499.98 48
HFP-MVS98.56 2998.37 3399.14 5799.96 897.43 9299.95 5098.61 8094.77 10399.31 7499.85 3094.22 76100.00 198.70 8299.98 3299.98 48
region2R98.54 3098.37 3399.05 6499.96 897.18 9999.96 3298.55 9394.87 10199.45 6299.85 3094.07 81100.00 198.67 84100.00 199.98 48
ACMMPR98.50 3398.32 3799.05 6499.96 897.18 9999.95 5098.60 8194.77 10399.31 7499.84 4193.73 90100.00 198.70 8299.98 3299.98 48
PGM-MVS98.34 4598.13 4898.99 7099.92 3197.00 10699.75 14899.50 1893.90 14699.37 7199.76 6393.24 103100.00 197.75 13099.96 4699.98 48
CDPH-MVS98.65 2598.36 3599.49 3299.94 1398.73 4499.87 9898.33 16293.97 14199.76 2699.87 2494.99 5799.75 13098.55 91100.00 199.98 48
mPP-MVS98.39 4498.20 4398.97 7299.97 396.92 11099.95 5098.38 15195.04 9598.61 10999.80 5193.39 95100.00 198.64 87100.00 199.98 48
SR-MVS-dyc-post98.31 4698.17 4598.71 8499.79 6296.37 12899.76 14598.31 16694.43 11599.40 6899.75 6893.28 10199.78 12398.90 7199.92 6399.97 57
RE-MVS-def98.13 4899.79 6296.37 12899.76 14598.31 16694.43 11599.40 6899.75 6892.95 11098.90 7199.92 6399.97 57
TSAR-MVS + MP.98.93 1498.77 1699.41 3899.74 6998.67 4799.77 14098.38 15196.73 5199.88 499.74 7494.89 5999.59 14799.80 2399.98 3299.97 57
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SD-MVS98.92 1598.70 1799.56 2599.70 7698.73 4499.94 6698.34 16196.38 6399.81 1399.76 6394.59 6399.98 4399.84 2099.96 4699.97 57
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
APD-MVS_3200maxsize98.25 5298.08 5298.78 8099.81 6096.60 11999.82 12898.30 16993.95 14399.37 7199.77 6192.84 11399.76 12998.95 6599.92 6399.97 57
DP-MVS Recon98.41 4298.02 5499.56 2599.97 398.70 4699.92 7698.44 11792.06 21098.40 11899.84 4195.68 40100.00 198.19 10399.71 8399.97 57
SF-MVS98.67 2498.40 2999.50 3099.77 6598.67 4799.90 8598.21 17893.53 15699.81 1399.89 1994.70 6299.86 10599.84 2099.93 6099.96 63
SR-MVS98.46 3698.30 4098.93 7599.88 4997.04 10499.84 11898.35 15794.92 9999.32 7399.80 5193.35 9699.78 12399.30 5099.95 4999.96 63
131496.84 11095.96 12999.48 3496.74 25098.52 5698.31 30998.86 5395.82 7689.91 25498.98 15587.49 19799.96 5997.80 12399.73 8299.96 63
114514_t97.41 9096.83 10099.14 5799.51 8997.83 7499.89 9398.27 17388.48 29099.06 8599.66 9490.30 16699.64 14696.32 15899.97 4299.96 63
MVS_111021_HR98.72 2298.62 2099.01 6999.36 9697.18 9999.93 7399.90 196.81 4998.67 10599.77 6193.92 8499.89 9499.27 5199.94 5499.96 63
PAPM98.60 2798.42 2899.14 5796.05 26398.96 2699.90 8599.35 2596.68 5398.35 12099.66 9496.45 2998.51 20099.45 4399.89 6699.96 63
3Dnovator+91.53 1196.31 13595.24 15499.52 2896.88 24298.64 5299.72 15998.24 17595.27 9288.42 29398.98 15582.76 24199.94 7597.10 14499.83 7299.96 63
EI-MVSNet-Vis-set98.27 4998.11 5098.75 8399.83 5796.59 12099.40 20898.51 10295.29 9198.51 11299.76 6393.60 9499.71 13698.53 9299.52 9899.95 70
CHOSEN 1792x268896.81 11196.53 11097.64 15098.91 12693.07 22799.65 17199.80 395.64 8195.39 18998.86 17584.35 23299.90 8996.98 14899.16 12099.95 70
MVS_030498.87 1898.61 2199.67 1699.18 10199.13 2299.87 9899.65 1298.17 698.75 10299.75 6892.76 11699.94 7599.88 1899.44 10699.94 72
AdaColmapbinary97.23 9796.80 10298.51 10499.99 195.60 15899.09 24298.84 5693.32 16296.74 16099.72 7986.04 214100.00 198.01 11399.43 10899.94 72
ZNCC-MVS98.31 4698.03 5399.17 5199.88 4997.59 8299.94 6698.44 11794.31 12398.50 11399.82 4693.06 10799.99 3698.30 10199.99 2199.93 74
GST-MVS98.27 4997.97 5699.17 5199.92 3197.57 8399.93 7398.39 14794.04 13998.80 9699.74 7492.98 109100.00 198.16 10599.76 8099.93 74
MP-MVScopyleft98.23 5497.97 5699.03 6699.94 1397.17 10299.95 5098.39 14794.70 10798.26 12599.81 5091.84 141100.00 198.85 7499.97 4299.93 74
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
HyFIR lowres test96.66 12196.43 11397.36 16899.05 10993.91 20999.70 16399.80 390.54 25296.26 17398.08 21292.15 13498.23 23196.84 15395.46 20799.93 74
CNLPA97.76 7597.38 8098.92 7699.53 8696.84 11299.87 9898.14 19093.78 14996.55 16599.69 8592.28 13199.98 4397.13 14299.44 10699.93 74
原ACMM198.96 7399.73 7296.99 10798.51 10294.06 13699.62 4499.85 3094.97 5899.96 5995.11 17299.95 4999.92 79
DELS-MVS98.54 3098.22 4199.50 3099.15 10598.65 51100.00 198.58 8397.70 1898.21 12799.24 13592.58 12299.94 7598.63 8999.94 5499.92 79
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CSCG97.10 10097.04 9497.27 17299.89 4591.92 25699.90 8599.07 3488.67 28695.26 19299.82 4693.17 10599.98 4398.15 10699.47 10299.90 81
DVP-MVScopyleft99.30 499.16 399.73 1299.93 2499.29 1599.95 5098.32 16497.28 3099.83 1199.91 1497.22 19100.00 199.99 5100.00 199.89 82
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
patch_mono-298.24 5399.12 595.59 21599.67 7786.91 33499.95 5098.89 4997.60 2099.90 299.76 6396.54 2899.98 4399.94 1199.82 7699.88 83
MVS_111021_LR98.42 4198.38 3198.53 10399.39 9495.79 14899.87 9899.86 296.70 5298.78 9799.79 5592.03 13799.90 8999.17 5599.86 7099.88 83
HPM-MVS++copyleft99.07 1098.88 1599.63 1799.90 4299.02 2599.95 5098.56 8797.56 2399.44 6399.85 3095.38 46100.00 199.31 4999.99 2199.87 85
ACMMPcopyleft97.74 7697.44 7898.66 8899.92 3196.13 14099.18 23699.45 1994.84 10296.41 17099.71 8191.40 14499.99 3697.99 11598.03 15599.87 85
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
dcpmvs_297.42 8998.09 5195.42 22099.58 8487.24 33099.23 23296.95 30494.28 12598.93 9199.73 7694.39 7099.16 16899.89 1699.82 7699.86 87
3Dnovator91.47 1296.28 13895.34 15199.08 6396.82 24597.47 9199.45 20598.81 5895.52 8689.39 26899.00 15281.97 24599.95 6797.27 13899.83 7299.84 88
CANet98.27 4997.82 6699.63 1799.72 7499.10 2399.98 1498.51 10297.00 4198.52 11199.71 8187.80 19399.95 6799.75 2699.38 11099.83 89
test_fmvsmconf0.1_n97.74 7697.44 7898.64 9095.76 27496.20 13699.94 6698.05 19798.17 698.89 9399.42 11687.65 19599.90 8999.50 3999.60 9499.82 90
Patchmatch-test92.65 23591.50 24596.10 20596.85 24390.49 28891.50 37997.19 27682.76 35190.23 24895.59 29195.02 5498.00 24277.41 35696.98 17899.82 90
EI-MVSNet-UG-set98.14 5697.99 5598.60 9399.80 6196.27 13099.36 21798.50 10795.21 9398.30 12299.75 6893.29 10099.73 13598.37 9799.30 11499.81 92
HY-MVS92.50 797.79 7397.17 9099.63 1798.98 11599.32 997.49 33099.52 1595.69 8098.32 12197.41 23393.32 9899.77 12698.08 11195.75 20399.81 92
mvsany_test197.82 6997.90 6397.55 15598.77 13593.04 23099.80 13497.93 20796.95 4399.61 5099.68 9190.92 15599.83 11699.18 5498.29 14699.80 94
test_yl97.83 6797.37 8199.21 4599.18 10197.98 7099.64 17599.27 2791.43 22997.88 13598.99 15395.84 3899.84 11498.82 7595.32 21199.79 95
DCV-MVSNet97.83 6797.37 8199.21 4599.18 10197.98 7099.64 17599.27 2791.43 22997.88 13598.99 15395.84 3899.84 11498.82 7595.32 21199.79 95
Patchmatch-RL test86.90 31485.98 31889.67 33584.45 37775.59 37489.71 38492.43 38286.89 31377.83 36390.94 36294.22 7693.63 36487.75 29169.61 36799.79 95
WTY-MVS98.10 5897.60 7399.60 2298.92 12299.28 1799.89 9399.52 1595.58 8398.24 12699.39 12193.33 9799.74 13297.98 11795.58 20699.78 98
CHOSEN 280x42099.01 1399.03 1098.95 7499.38 9598.87 3298.46 30199.42 2297.03 4099.02 8799.09 14399.35 198.21 23299.73 3099.78 7999.77 99
MP-MVS-pluss98.07 5997.64 7199.38 4199.74 6998.41 6099.74 15198.18 18293.35 16096.45 16799.85 3092.64 11999.97 5398.91 7099.89 6699.77 99
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
EPMVS96.53 12596.01 12298.09 12698.43 15296.12 14296.36 35199.43 2193.53 15697.64 13995.04 31794.41 6698.38 21691.13 24498.11 15199.75 101
Vis-MVSNet (Re-imp)96.32 13495.98 12597.35 16997.93 18194.82 18499.47 20298.15 18991.83 21695.09 19399.11 14291.37 14597.47 26393.47 21597.43 16499.74 102
DP-MVS94.54 18393.42 20297.91 13499.46 9394.04 20498.93 26597.48 25081.15 35790.04 25199.55 10687.02 20499.95 6788.97 27698.11 15199.73 103
TAPA-MVS92.12 894.42 18893.60 19596.90 18099.33 9791.78 26099.78 13798.00 19989.89 26494.52 19899.47 11291.97 13899.18 16669.90 37199.52 9899.73 103
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
canonicalmvs97.09 10296.32 11599.39 4098.93 12098.95 2799.72 15997.35 26194.45 11397.88 13599.42 11686.71 20799.52 14998.48 9393.97 22499.72 105
TESTMET0.1,196.74 11696.26 11698.16 12197.36 21996.48 12199.96 3298.29 17091.93 21395.77 18498.07 21395.54 4298.29 22490.55 25898.89 12899.70 106
PatchmatchNetpermissive95.94 14695.45 14797.39 16597.83 18794.41 19396.05 35898.40 14492.86 17297.09 15095.28 31294.21 7898.07 23989.26 27498.11 15199.70 106
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
VNet97.21 9896.57 10999.13 6198.97 11697.82 7599.03 25699.21 2994.31 12399.18 8298.88 17086.26 21399.89 9498.93 6794.32 21999.69 108
Anonymous20240521193.10 22391.99 23596.40 19699.10 10689.65 30598.88 27097.93 20783.71 34494.00 20698.75 18168.79 33999.88 10095.08 17491.71 23499.68 109
mvs_anonymous95.65 15795.03 16297.53 15698.19 16795.74 15199.33 21997.49 24990.87 24490.47 24697.10 24288.23 19197.16 28095.92 16497.66 16199.68 109
GG-mvs-BLEND98.54 10198.21 16598.01 6893.87 37098.52 9997.92 13297.92 22199.02 297.94 24898.17 10499.58 9599.67 111
gg-mvs-nofinetune93.51 21391.86 23998.47 10697.72 19897.96 7292.62 37498.51 10274.70 37697.33 14669.59 38998.91 397.79 25297.77 12899.56 9699.67 111
alignmvs97.81 7097.33 8399.25 4398.77 13598.66 4999.99 498.44 11794.40 11998.41 11699.47 11293.65 9299.42 16098.57 9094.26 22099.67 111
LFMVS94.75 17793.56 19898.30 11799.03 11095.70 15498.74 28497.98 20287.81 30098.47 11499.39 12167.43 34799.53 14898.01 11395.20 21399.67 111
MDTV_nov1_ep13_2view96.26 13196.11 35791.89 21498.06 12894.40 6794.30 19599.67 111
MAR-MVS97.43 8597.19 8898.15 12499.47 9194.79 18699.05 25398.76 6192.65 18698.66 10699.82 4688.52 19099.98 4398.12 10799.63 8799.67 111
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
test250697.53 8397.19 8898.58 9698.66 14096.90 11198.81 27999.77 594.93 9797.95 13198.96 15992.51 12499.20 16494.93 17798.15 14899.64 117
test111195.57 15894.98 16497.37 16698.56 14393.37 22498.86 27498.45 11394.95 9696.63 16298.95 16475.21 31399.11 16995.02 17598.14 15099.64 117
ECVR-MVScopyleft95.66 15695.05 16197.51 15898.66 14093.71 21398.85 27698.45 11394.93 9796.86 15698.96 15975.22 31299.20 16495.34 16998.15 14899.64 117
test-LLR96.47 12696.04 12197.78 14097.02 23395.44 16299.96 3298.21 17894.07 13495.55 18696.38 26793.90 8698.27 22890.42 26198.83 13299.64 117
test-mter96.39 13195.93 13397.78 14097.02 23395.44 16299.96 3298.21 17891.81 21895.55 18696.38 26795.17 4898.27 22890.42 26198.83 13299.64 117
EC-MVSNet97.38 9297.24 8597.80 13797.41 21595.64 15699.99 497.06 29294.59 11099.63 4199.32 12689.20 18398.14 23498.76 7999.23 11899.62 122
sss97.57 8297.03 9599.18 4898.37 15598.04 6799.73 15699.38 2393.46 15898.76 10099.06 14691.21 14699.89 9496.33 15797.01 17799.62 122
QAPM95.40 16294.17 18199.10 6296.92 23797.71 7799.40 20898.68 6889.31 26988.94 28198.89 16982.48 24299.96 5993.12 22399.83 7299.62 122
MVS_Test96.46 12795.74 14098.61 9298.18 16897.23 9799.31 22297.15 28291.07 24098.84 9497.05 24688.17 19298.97 17394.39 19297.50 16399.61 125
EPNet98.49 3498.40 2998.77 8299.62 8096.80 11499.90 8599.51 1797.60 2099.20 7999.36 12493.71 9199.91 8797.99 11598.71 13599.61 125
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
IB-MVS92.85 694.99 17093.94 18798.16 12197.72 19895.69 15599.99 498.81 5894.28 12592.70 22196.90 25095.08 5199.17 16796.07 16173.88 36099.60 127
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
ET-MVSNet_ETH3D94.37 19093.28 20897.64 15098.30 15797.99 6999.99 497.61 23494.35 12071.57 37699.45 11596.23 3195.34 34696.91 15285.14 29199.59 128
EIA-MVS97.53 8397.46 7797.76 14498.04 17694.84 18399.98 1497.61 23494.41 11897.90 13399.59 10292.40 12898.87 17798.04 11299.13 12299.59 128
GSMVS99.59 128
sam_mvs194.72 6199.59 128
Fast-Effi-MVS+95.02 16994.19 18097.52 15797.88 18394.55 18999.97 2597.08 29088.85 28394.47 20097.96 22084.59 22898.41 20889.84 27097.10 17299.59 128
SCA94.69 17893.81 19197.33 17097.10 22994.44 19098.86 27498.32 16493.30 16396.17 17695.59 29176.48 29997.95 24691.06 24697.43 16499.59 128
PVSNet91.05 1397.13 9996.69 10598.45 10899.52 8795.81 14799.95 5099.65 1294.73 10599.04 8699.21 13784.48 22999.95 6794.92 17898.74 13499.58 134
PVSNet_Blended97.94 6197.64 7198.83 7999.59 8196.99 107100.00 199.10 3195.38 8898.27 12399.08 14489.00 18599.95 6799.12 5699.25 11699.57 135
ab-mvs94.69 17893.42 20298.51 10498.07 17496.26 13196.49 34998.68 6890.31 25794.54 19797.00 24876.30 30199.71 13695.98 16393.38 22999.56 136
test_fmvsmconf0.01_n96.39 13195.74 14098.32 11691.47 35495.56 15999.84 11897.30 26797.74 1697.89 13499.35 12579.62 27099.85 10699.25 5299.24 11799.55 137
Test_1112_low_res95.72 15194.83 16798.42 11197.79 19096.41 12499.65 17196.65 32892.70 18292.86 22096.13 27692.15 13499.30 16191.88 23693.64 22699.55 137
1112_ss96.01 14495.20 15698.42 11197.80 18996.41 12499.65 17196.66 32792.71 18192.88 21999.40 11992.16 13399.30 16191.92 23593.66 22599.55 137
DeepC-MVS94.51 496.92 10896.40 11498.45 10899.16 10495.90 14599.66 16998.06 19596.37 6694.37 20199.49 11183.29 23999.90 8997.63 13299.61 9299.55 137
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CS-MVS97.79 7397.91 6297.43 16299.10 10694.42 19299.99 497.10 28795.07 9499.68 3599.75 6892.95 11098.34 22098.38 9699.14 12199.54 141
LCM-MVSNet-Re92.31 24192.60 22191.43 32197.53 20979.27 37199.02 25791.83 38592.07 20880.31 35194.38 33883.50 23795.48 34397.22 14197.58 16299.54 141
casdiffmvspermissive96.42 13095.97 12897.77 14297.30 22494.98 17999.84 11897.09 28993.75 15196.58 16499.26 13385.07 22398.78 18297.77 12897.04 17599.54 141
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
dp95.05 16894.43 17496.91 17997.99 17892.73 23796.29 35497.98 20289.70 26695.93 18094.67 33093.83 8998.45 20586.91 30696.53 18499.54 141
CS-MVS-test97.88 6497.94 6097.70 14799.28 9995.20 17599.98 1497.15 28295.53 8599.62 4499.79 5592.08 13698.38 21698.75 8099.28 11599.52 145
Effi-MVS+96.30 13695.69 14298.16 12197.85 18696.26 13197.41 33297.21 27590.37 25598.65 10798.58 19386.61 20998.70 19097.11 14397.37 16899.52 145
PatchT90.38 28088.75 29695.25 22795.99 26590.16 29591.22 38197.54 24276.80 36897.26 14786.01 38091.88 13996.07 33566.16 37995.91 19899.51 147
tpm93.70 20993.41 20494.58 25195.36 28987.41 32997.01 34196.90 31190.85 24596.72 16194.14 34090.40 16596.84 30490.75 25588.54 25899.51 147
CostFormer96.10 14095.88 13796.78 18397.03 23292.55 24397.08 34097.83 21990.04 26298.72 10394.89 32495.01 5598.29 22496.54 15695.77 20199.50 149
tpmrst96.27 13995.98 12597.13 17497.96 17993.15 22696.34 35298.17 18392.07 20898.71 10495.12 31593.91 8598.73 18694.91 18096.62 18299.50 149
casdiffmvs_mvgpermissive96.43 12895.94 13297.89 13697.44 21495.47 16199.86 11197.29 26993.35 16096.03 17799.19 13885.39 22098.72 18897.89 12297.04 17599.49 151
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
IS-MVSNet96.29 13795.90 13697.45 16098.13 17294.80 18599.08 24497.61 23492.02 21295.54 18898.96 15990.64 16198.08 23793.73 21297.41 16799.47 152
ETV-MVS97.92 6397.80 6798.25 11998.14 17196.48 12199.98 1497.63 22995.61 8299.29 7799.46 11492.55 12398.82 17999.02 6498.54 13799.46 153
baseline96.43 12895.98 12597.76 14497.34 22095.17 17799.51 19597.17 27993.92 14596.90 15599.28 12785.37 22198.64 19497.50 13496.86 18199.46 153
lupinMVS97.85 6697.60 7398.62 9197.28 22697.70 7999.99 497.55 24095.50 8799.43 6499.67 9290.92 15598.71 18998.40 9599.62 8899.45 155
PMMVS96.76 11496.76 10396.76 18498.28 16092.10 25199.91 8097.98 20294.12 13199.53 5599.39 12186.93 20698.73 18696.95 15097.73 15899.45 155
UA-Net96.54 12495.96 12998.27 11898.23 16395.71 15398.00 32398.45 11393.72 15298.41 11699.27 13088.71 18999.66 14491.19 24397.69 15999.44 157
CVMVSNet94.68 18094.94 16593.89 28296.80 24686.92 33399.06 24998.98 3894.45 11394.23 20499.02 14885.60 21695.31 34790.91 25195.39 20999.43 158
PVSNet_Blended_VisFu97.27 9596.81 10198.66 8898.81 13296.67 11699.92 7698.64 7494.51 11296.38 17198.49 19989.05 18499.88 10097.10 14498.34 14199.43 158
PLCcopyleft95.54 397.93 6297.89 6498.05 12899.82 5894.77 18799.92 7698.46 11293.93 14497.20 14899.27 13095.44 4599.97 5397.41 13599.51 10099.41 160
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
PCF-MVS94.20 595.18 16594.10 18298.43 11098.55 14595.99 14397.91 32597.31 26690.35 25689.48 26799.22 13685.19 22299.89 9490.40 26398.47 13999.41 160
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
tpm295.47 16095.18 15796.35 19996.91 23891.70 26596.96 34397.93 20788.04 29798.44 11595.40 30193.32 9897.97 24394.00 19995.61 20599.38 162
OMC-MVS97.28 9497.23 8697.41 16399.76 6693.36 22599.65 17197.95 20596.03 7397.41 14599.70 8389.61 17499.51 15096.73 15498.25 14799.38 162
GeoE94.36 19293.48 20096.99 17797.29 22593.54 21799.96 3296.72 32588.35 29393.43 21098.94 16682.05 24498.05 24088.12 28896.48 18699.37 164
ADS-MVSNet293.80 20493.88 18993.55 29397.87 18485.94 33794.24 36696.84 31690.07 26096.43 16894.48 33590.29 16795.37 34587.44 29397.23 16999.36 165
ADS-MVSNet94.79 17494.02 18497.11 17697.87 18493.79 21094.24 36698.16 18790.07 26096.43 16894.48 33590.29 16798.19 23387.44 29397.23 16999.36 165
FA-MVS(test-final)95.86 14795.09 16098.15 12497.74 19395.62 15796.31 35398.17 18391.42 23196.26 17396.13 27690.56 16299.47 15892.18 23297.07 17399.35 167
BH-RMVSNet95.18 16594.31 17897.80 13798.17 16995.23 17399.76 14597.53 24492.52 19594.27 20399.25 13476.84 29498.80 18090.89 25299.54 9799.35 167
TR-MVS94.54 18393.56 19897.49 15997.96 17994.34 19698.71 28797.51 24790.30 25894.51 19998.69 18275.56 30798.77 18392.82 22695.99 19399.35 167
diffmvspermissive97.00 10496.64 10698.09 12697.64 20496.17 13999.81 13097.19 27694.67 10998.95 8999.28 12786.43 21098.76 18498.37 9797.42 16699.33 170
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
JIA-IIPM91.76 25590.70 25594.94 23696.11 26187.51 32893.16 37398.13 19175.79 37297.58 14077.68 38692.84 11397.97 24388.47 28396.54 18399.33 170
FE-MVS95.70 15595.01 16397.79 13998.21 16594.57 18895.03 36598.69 6688.90 28197.50 14396.19 27392.60 12199.49 15689.99 26897.94 15799.31 172
thres20096.96 10596.21 11899.22 4498.97 11698.84 3599.85 11499.71 793.17 16796.26 17398.88 17089.87 17199.51 15094.26 19694.91 21499.31 172
CDS-MVSNet96.34 13396.07 12097.13 17497.37 21894.96 18099.53 19297.91 21191.55 22495.37 19098.32 20895.05 5397.13 28393.80 20895.75 20399.30 174
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Vis-MVSNetpermissive95.72 15195.15 15897.45 16097.62 20594.28 19799.28 22898.24 17594.27 12796.84 15798.94 16679.39 27298.76 18493.25 21798.49 13899.30 174
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test_vis1_n93.61 21193.03 21295.35 22295.86 26986.94 33299.87 9896.36 33896.85 4499.54 5498.79 17952.41 37899.83 11698.64 8798.97 12799.29 176
thres100view90096.74 11695.92 13599.18 4898.90 12798.77 4099.74 15199.71 792.59 19095.84 18198.86 17589.25 18099.50 15293.84 20494.57 21599.27 177
tfpn200view996.79 11295.99 12399.19 4798.94 11898.82 3699.78 13799.71 792.86 17296.02 17898.87 17389.33 17899.50 15293.84 20494.57 21599.27 177
MVSFormer96.94 10696.60 10797.95 13097.28 22697.70 7999.55 18997.27 27191.17 23699.43 6499.54 10890.92 15596.89 30194.67 18899.62 8899.25 179
jason97.24 9696.86 9998.38 11495.73 27797.32 9599.97 2597.40 25895.34 9098.60 11099.54 10887.70 19498.56 19797.94 11899.47 10299.25 179
jason: jason.
EPP-MVSNet96.69 11996.60 10796.96 17897.74 19393.05 22999.37 21598.56 8788.75 28495.83 18399.01 15096.01 3298.56 19796.92 15197.20 17199.25 179
EPNet_dtu95.71 15395.39 14996.66 18898.92 12293.41 22299.57 18598.90 4796.19 7197.52 14198.56 19592.65 11897.36 26577.89 35498.33 14299.20 182
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
GA-MVS93.83 20192.84 21596.80 18295.73 27793.57 21599.88 9597.24 27492.57 19292.92 21796.66 25978.73 28097.67 25787.75 29194.06 22399.17 183
thisisatest051597.41 9097.02 9698.59 9597.71 20097.52 8599.97 2598.54 9691.83 21697.45 14499.04 14797.50 999.10 17094.75 18596.37 18899.16 184
thres600view796.69 11995.87 13899.14 5798.90 12798.78 3999.74 15199.71 792.59 19095.84 18198.86 17589.25 18099.50 15293.44 21694.50 21899.16 184
thres40096.78 11395.99 12399.16 5398.94 11898.82 3699.78 13799.71 792.86 17296.02 17898.87 17389.33 17899.50 15293.84 20494.57 21599.16 184
TAMVS95.85 14895.58 14596.65 18997.07 23093.50 21899.17 23797.82 22091.39 23395.02 19498.01 21492.20 13297.30 27293.75 21195.83 20099.14 187
CR-MVSNet93.45 21692.62 22095.94 20796.29 25692.66 23992.01 37796.23 34092.62 18796.94 15393.31 34891.04 15296.03 33679.23 34795.96 19499.13 188
RPMNet89.76 29587.28 31097.19 17396.29 25692.66 23992.01 37798.31 16670.19 38296.94 15385.87 38187.25 20199.78 12362.69 38395.96 19499.13 188
tpm cat193.51 21392.52 22696.47 19197.77 19191.47 27196.13 35698.06 19580.98 35892.91 21893.78 34389.66 17298.87 17787.03 30296.39 18799.09 190
BH-w/o95.71 15395.38 15096.68 18798.49 15092.28 24799.84 11897.50 24892.12 20792.06 23198.79 17984.69 22798.67 19395.29 17199.66 8699.09 190
fmvsm_s_conf0.5_n_a97.73 7897.72 6897.77 14298.63 14294.26 19899.96 3298.92 4697.18 3799.75 2799.69 8587.00 20599.97 5399.46 4298.89 12899.08 192
LS3D95.84 14995.11 15998.02 12999.85 5495.10 17898.74 28498.50 10787.22 30793.66 20999.86 2687.45 19899.95 6790.94 25099.81 7899.02 193
MIMVSNet90.30 28388.67 29795.17 23096.45 25591.64 26792.39 37597.15 28285.99 32290.50 24593.19 35066.95 34894.86 35382.01 33693.43 22799.01 194
thisisatest053097.10 10096.72 10498.22 12097.60 20696.70 11599.92 7698.54 9691.11 23997.07 15198.97 15797.47 1299.03 17193.73 21296.09 19198.92 195
BH-untuned95.18 16594.83 16796.22 20298.36 15691.22 27399.80 13497.32 26590.91 24391.08 23998.67 18383.51 23698.54 19994.23 19799.61 9298.92 195
F-COLMAP96.93 10796.95 9796.87 18199.71 7591.74 26199.85 11497.95 20593.11 16995.72 18599.16 14192.35 12999.94 7595.32 17099.35 11298.92 195
Anonymous2024052992.10 24590.65 25696.47 19198.82 13190.61 28598.72 28698.67 7175.54 37393.90 20898.58 19366.23 35199.90 8994.70 18790.67 23798.90 198
tttt051796.85 10996.49 11197.92 13297.48 21395.89 14699.85 11498.54 9690.72 25096.63 16298.93 16897.47 1299.02 17293.03 22495.76 20298.85 199
baseline195.78 15094.86 16698.54 10198.47 15198.07 6599.06 24997.99 20092.68 18494.13 20598.62 19093.28 10198.69 19193.79 20985.76 28498.84 200
VDD-MVS93.77 20592.94 21396.27 20198.55 14590.22 29498.77 28397.79 22190.85 24596.82 15899.42 11661.18 36899.77 12698.95 6594.13 22198.82 201
PatchMatch-RL96.04 14395.40 14897.95 13099.59 8195.22 17499.52 19399.07 3493.96 14296.49 16698.35 20782.28 24399.82 11890.15 26699.22 11998.81 202
PVSNet_088.03 1991.80 25290.27 26596.38 19898.27 16190.46 28999.94 6699.61 1493.99 14086.26 32297.39 23571.13 33399.89 9498.77 7867.05 37698.79 203
test_vis1_n_192095.44 16195.31 15295.82 21198.50 14988.74 31399.98 1497.30 26797.84 1499.85 799.19 13866.82 34999.97 5398.82 7599.46 10498.76 204
tpmvs94.28 19493.57 19796.40 19698.55 14591.50 27095.70 36498.55 9387.47 30292.15 22894.26 33991.42 14398.95 17588.15 28695.85 19998.76 204
fmvsm_s_conf0.1_n_a97.09 10296.90 9897.63 15295.65 28394.21 20099.83 12598.50 10796.27 6899.65 3899.64 9784.72 22699.93 8399.04 6198.84 13198.74 206
test_cas_vis1_n_192096.59 12396.23 11797.65 14998.22 16494.23 19999.99 497.25 27397.77 1599.58 5199.08 14477.10 28999.97 5397.64 13199.45 10598.74 206
h-mvs3394.92 17194.36 17596.59 19098.85 13091.29 27298.93 26598.94 4195.90 7498.77 9898.42 20690.89 15899.77 12697.80 12370.76 36598.72 208
xiu_mvs_v2_base98.23 5497.97 5699.02 6898.69 13898.66 4999.52 19398.08 19497.05 3999.86 599.86 2690.65 16099.71 13699.39 4898.63 13698.69 209
PS-MVSNAJ98.44 3898.20 4399.16 5398.80 13398.92 2899.54 19198.17 18397.34 2799.85 799.85 3091.20 14799.89 9499.41 4699.67 8598.69 209
fmvsm_s_conf0.5_n97.80 7197.85 6597.67 14899.06 10894.41 19399.98 1498.97 4097.34 2799.63 4199.69 8587.27 20099.97 5399.62 3599.06 12598.62 211
test_fmvsm_n_192098.44 3898.61 2197.92 13299.27 10095.18 176100.00 198.90 4798.05 1099.80 1599.73 7692.64 11999.99 3699.58 3699.51 10098.59 212
fmvsm_s_conf0.1_n97.30 9397.21 8797.60 15497.38 21794.40 19599.90 8598.64 7496.47 5999.51 5999.65 9684.99 22599.93 8399.22 5399.09 12498.46 213
test_fmvsmvis_n_192097.67 8097.59 7597.91 13497.02 23395.34 16799.95 5098.45 11397.87 1397.02 15299.59 10289.64 17399.98 4399.41 4699.34 11398.42 214
dmvs_re93.20 21993.15 21093.34 29696.54 25483.81 34898.71 28798.51 10291.39 23392.37 22798.56 19578.66 28197.83 25193.89 20289.74 23898.38 215
MSDG94.37 19093.36 20697.40 16498.88 12993.95 20899.37 21597.38 25985.75 32790.80 24399.17 14084.11 23499.88 10086.35 30798.43 14098.36 216
CANet_DTU96.76 11496.15 11998.60 9398.78 13497.53 8499.84 11897.63 22997.25 3599.20 7999.64 9781.36 25299.98 4392.77 22798.89 12898.28 217
test_fmvs195.35 16395.68 14494.36 26498.99 11484.98 34399.96 3296.65 32897.60 2099.73 3098.96 15971.58 32999.93 8398.31 10099.37 11198.17 218
VDDNet93.12 22291.91 23796.76 18496.67 25392.65 24198.69 29098.21 17882.81 35097.75 13899.28 12761.57 36699.48 15798.09 11094.09 22298.15 219
MVS-HIRNet86.22 31783.19 33095.31 22596.71 25290.29 29292.12 37697.33 26462.85 38386.82 31170.37 38869.37 33897.49 26275.12 36397.99 15698.15 219
test_fmvs1_n94.25 19594.36 17593.92 27997.68 20183.70 34999.90 8596.57 33197.40 2699.67 3698.88 17061.82 36599.92 8698.23 10299.13 12298.14 221
UGNet95.33 16494.57 17297.62 15398.55 14594.85 18298.67 29299.32 2695.75 7996.80 15996.27 27172.18 32699.96 5994.58 19099.05 12698.04 222
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
DSMNet-mixed88.28 30888.24 30388.42 34689.64 36775.38 37598.06 32189.86 38985.59 32988.20 29592.14 35876.15 30491.95 37578.46 35296.05 19297.92 223
xiu_mvs_v1_base_debu97.43 8597.06 9198.55 9897.74 19398.14 6299.31 22297.86 21696.43 6099.62 4499.69 8585.56 21799.68 14099.05 5898.31 14397.83 224
xiu_mvs_v1_base97.43 8597.06 9198.55 9897.74 19398.14 6299.31 22297.86 21696.43 6099.62 4499.69 8585.56 21799.68 14099.05 5898.31 14397.83 224
xiu_mvs_v1_base_debi97.43 8597.06 9198.55 9897.74 19398.14 6299.31 22297.86 21696.43 6099.62 4499.69 8585.56 21799.68 14099.05 5898.31 14397.83 224
UniMVSNet_ETH3D90.06 29088.58 29894.49 25794.67 29988.09 32497.81 32897.57 23983.91 34388.44 28997.41 23357.44 37297.62 25991.41 24088.59 25797.77 227
cascas94.64 18193.61 19397.74 14697.82 18896.26 13199.96 3297.78 22285.76 32594.00 20697.54 22976.95 29399.21 16397.23 14095.43 20897.76 228
SDMVSNet94.80 17393.96 18697.33 17098.92 12295.42 16499.59 18198.99 3792.41 19992.55 22497.85 22275.81 30698.93 17697.90 12191.62 23597.64 229
sd_testset93.55 21292.83 21695.74 21398.92 12290.89 28098.24 31298.85 5592.41 19992.55 22497.85 22271.07 33498.68 19293.93 20191.62 23597.64 229
hse-mvs294.38 18994.08 18395.31 22598.27 16190.02 29999.29 22798.56 8795.90 7498.77 9898.00 21590.89 15898.26 23097.80 12369.20 37197.64 229
AUN-MVS93.28 21792.60 22195.34 22398.29 15890.09 29799.31 22298.56 8791.80 21996.35 17298.00 21589.38 17798.28 22692.46 22869.22 37097.64 229
OpenMVScopyleft90.15 1594.77 17693.59 19698.33 11596.07 26297.48 9099.56 18798.57 8590.46 25386.51 31698.95 16478.57 28299.94 7593.86 20399.74 8197.57 233
baseline296.71 11896.49 11197.37 16695.63 28595.96 14499.74 15198.88 5192.94 17191.61 23398.97 15797.72 798.62 19594.83 18298.08 15497.53 234
tt080591.28 26090.18 26894.60 24996.26 25887.55 32798.39 30798.72 6389.00 27589.22 27498.47 20362.98 36298.96 17490.57 25788.00 26897.28 235
RPSCF91.80 25292.79 21888.83 34198.15 17069.87 37998.11 31996.60 33083.93 34294.33 20299.27 13079.60 27199.46 15991.99 23393.16 23197.18 236
test0.0.03 193.86 20093.61 19394.64 24795.02 29492.18 25099.93 7398.58 8394.07 13487.96 29798.50 19893.90 8694.96 35181.33 33993.17 23096.78 237
AllTest92.48 23791.64 24095.00 23499.01 11188.43 31998.94 26496.82 31986.50 31688.71 28498.47 20374.73 31699.88 10085.39 31496.18 18996.71 238
TestCases95.00 23499.01 11188.43 31996.82 31986.50 31688.71 28498.47 20374.73 31699.88 10085.39 31496.18 18996.71 238
Syy-MVS90.00 29190.63 25788.11 34897.68 20174.66 37699.71 16198.35 15790.79 24792.10 22998.67 18379.10 27793.09 36863.35 38295.95 19696.59 240
myMVS_eth3d94.46 18794.76 16993.55 29397.68 20190.97 27599.71 16198.35 15790.79 24792.10 22998.67 18392.46 12793.09 36887.13 29995.95 19696.59 240
XVG-OURS-SEG-HR94.79 17494.70 17195.08 23198.05 17589.19 30899.08 24497.54 24293.66 15394.87 19599.58 10478.78 27999.79 12197.31 13793.40 22896.25 242
XVG-OURS94.82 17294.74 17095.06 23298.00 17789.19 30899.08 24497.55 24094.10 13294.71 19699.62 10080.51 26399.74 13296.04 16293.06 23396.25 242
Effi-MVS+-dtu94.53 18595.30 15392.22 31497.77 19182.54 35499.59 18197.06 29294.92 9995.29 19195.37 30585.81 21597.89 24994.80 18397.07 17396.23 244
testing393.92 19994.23 17992.99 30697.54 20890.23 29399.99 499.16 3090.57 25191.33 23898.63 18992.99 10892.52 37282.46 33295.39 20996.22 245
testgi89.01 30488.04 30591.90 31893.49 31984.89 34499.73 15695.66 35293.89 14885.14 32998.17 21059.68 36994.66 35577.73 35588.88 24996.16 246
Fast-Effi-MVS+-dtu93.72 20893.86 19093.29 29897.06 23186.16 33599.80 13496.83 31792.66 18592.58 22397.83 22481.39 25197.67 25789.75 27196.87 18096.05 247
dmvs_testset83.79 33286.07 31676.94 36392.14 34448.60 39896.75 34690.27 38889.48 26778.65 35898.55 19779.25 27386.65 38666.85 37782.69 30695.57 248
COLMAP_ROBcopyleft90.47 1492.18 24491.49 24694.25 26799.00 11388.04 32598.42 30696.70 32682.30 35388.43 29199.01 15076.97 29299.85 10686.11 31096.50 18594.86 249
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
HQP4-MVS93.37 21198.39 21294.53 250
HQP-MVS94.61 18294.50 17394.92 23795.78 27091.85 25799.87 9897.89 21296.82 4693.37 21198.65 18680.65 26198.39 21297.92 11989.60 23994.53 250
HQP_MVS94.49 18694.36 17594.87 23895.71 28091.74 26199.84 11897.87 21496.38 6393.01 21598.59 19180.47 26598.37 21897.79 12689.55 24294.52 252
plane_prior597.87 21498.37 21897.79 12689.55 24294.52 252
CLD-MVS94.06 19893.90 18894.55 25396.02 26490.69 28299.98 1497.72 22396.62 5691.05 24198.85 17877.21 28898.47 20198.11 10889.51 24494.48 254
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
iter_conf_final96.01 14495.93 13396.28 20098.38 15497.03 10599.87 9897.03 29594.05 13892.61 22297.98 21898.01 597.34 26797.02 14688.39 26194.47 255
nrg03093.51 21392.53 22596.45 19394.36 30397.20 9899.81 13097.16 28191.60 22289.86 25697.46 23186.37 21197.68 25695.88 16580.31 33094.46 256
VPNet91.81 24990.46 25995.85 21094.74 29795.54 16098.98 25998.59 8292.14 20690.77 24497.44 23268.73 34197.54 26194.89 18177.89 34394.46 256
UniMVSNet_NR-MVSNet92.95 22692.11 23195.49 21694.61 30095.28 17099.83 12599.08 3391.49 22589.21 27596.86 25387.14 20296.73 30993.20 21877.52 34694.46 256
DU-MVS92.46 23891.45 24795.49 21694.05 30895.28 17099.81 13098.74 6292.25 20589.21 27596.64 26181.66 24896.73 30993.20 21877.52 34694.46 256
NR-MVSNet91.56 25790.22 26695.60 21494.05 30895.76 15098.25 31198.70 6591.16 23880.78 35096.64 26183.23 24096.57 31591.41 24077.73 34594.46 256
iter_conf0596.07 14195.95 13196.44 19598.43 15297.52 8599.91 8096.85 31594.16 12992.49 22697.98 21898.20 497.34 26797.26 13988.29 26294.45 261
TranMVSNet+NR-MVSNet91.68 25690.61 25894.87 23893.69 31593.98 20799.69 16498.65 7291.03 24188.44 28996.83 25780.05 26896.18 32990.26 26576.89 35494.45 261
FIs94.10 19693.43 20196.11 20494.70 29896.82 11399.58 18398.93 4592.54 19389.34 27097.31 23687.62 19697.10 28694.22 19886.58 28094.40 263
mvsmamba94.10 19693.72 19295.25 22793.57 31694.13 20299.67 16896.45 33693.63 15591.34 23797.77 22586.29 21297.22 27896.65 15588.10 26694.40 263
ACMM91.95 1092.88 22792.52 22693.98 27895.75 27689.08 31199.77 14097.52 24693.00 17089.95 25397.99 21776.17 30398.46 20493.63 21488.87 25094.39 265
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
RRT_MVS93.14 22192.92 21493.78 28493.31 32390.04 29899.66 16997.69 22592.53 19488.91 28297.76 22684.36 23096.93 29995.10 17386.99 27894.37 266
FC-MVSNet-test93.81 20393.15 21095.80 21294.30 30596.20 13699.42 20798.89 4992.33 20389.03 28097.27 23887.39 19996.83 30593.20 21886.48 28194.36 267
PS-MVSNAJss93.64 21093.31 20794.61 24892.11 34592.19 24999.12 23997.38 25992.51 19688.45 28896.99 24991.20 14797.29 27594.36 19387.71 27294.36 267
WR-MVS92.31 24191.25 24995.48 21994.45 30295.29 16999.60 18098.68 6890.10 25988.07 29696.89 25180.68 26096.80 30793.14 22179.67 33494.36 267
XXY-MVS91.82 24890.46 25995.88 20893.91 31195.40 16698.87 27397.69 22588.63 28887.87 29897.08 24374.38 31997.89 24991.66 23884.07 30094.35 270
MVSTER95.53 15995.22 15596.45 19398.56 14397.72 7699.91 8097.67 22792.38 20191.39 23597.14 24097.24 1897.30 27294.80 18387.85 26994.34 271
VPA-MVSNet92.70 23291.55 24496.16 20395.09 29196.20 13698.88 27099.00 3691.02 24291.82 23295.29 31176.05 30597.96 24595.62 16881.19 31894.30 272
FMVSNet392.69 23391.58 24295.99 20698.29 15897.42 9399.26 23097.62 23189.80 26589.68 26095.32 30781.62 25096.27 32687.01 30385.65 28594.29 273
EU-MVSNet90.14 28990.34 26389.54 33692.55 33981.06 36598.69 29098.04 19891.41 23286.59 31596.84 25680.83 25893.31 36786.20 30881.91 31394.26 274
UniMVSNet (Re)93.07 22492.13 23095.88 20894.84 29596.24 13599.88 9598.98 3892.49 19789.25 27295.40 30187.09 20397.14 28293.13 22278.16 34194.26 274
FMVSNet291.02 26589.56 27995.41 22197.53 20995.74 15198.98 25997.41 25787.05 30888.43 29195.00 32071.34 33096.24 32885.12 31685.21 29094.25 276
EI-MVSNet93.73 20793.40 20594.74 24396.80 24692.69 23899.06 24997.67 22788.96 27891.39 23599.02 14888.75 18897.30 27291.07 24587.85 26994.22 277
IterMVS-LS92.69 23392.11 23194.43 26296.80 24692.74 23599.45 20596.89 31288.98 27689.65 26395.38 30488.77 18796.34 32390.98 24982.04 31294.22 277
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
cl2293.77 20593.25 20995.33 22499.49 9094.43 19199.61 17998.09 19290.38 25489.16 27895.61 28990.56 16297.34 26791.93 23484.45 29694.21 279
miper_enhance_ethall94.36 19293.98 18595.49 21698.68 13995.24 17299.73 15697.29 26993.28 16489.86 25695.97 28094.37 7197.05 28992.20 23184.45 29694.19 280
miper_ehance_all_eth93.16 22092.60 22194.82 24297.57 20793.56 21699.50 19797.07 29188.75 28488.85 28395.52 29590.97 15496.74 30890.77 25484.45 29694.17 281
DIV-MVS_self_test92.32 24091.60 24194.47 25897.31 22392.74 23599.58 18396.75 32386.99 31187.64 30095.54 29389.55 17596.50 31788.58 28082.44 30994.17 281
GBi-Net90.88 26889.82 27494.08 27197.53 20991.97 25298.43 30396.95 30487.05 30889.68 26094.72 32671.34 33096.11 33187.01 30385.65 28594.17 281
test190.88 26889.82 27494.08 27197.53 20991.97 25298.43 30396.95 30487.05 30889.68 26094.72 32671.34 33096.11 33187.01 30385.65 28594.17 281
FMVSNet188.50 30686.64 31294.08 27195.62 28691.97 25298.43 30396.95 30483.00 34886.08 32494.72 32659.09 37096.11 33181.82 33884.07 30094.17 281
cl____92.31 24191.58 24294.52 25497.33 22292.77 23399.57 18596.78 32286.97 31287.56 30295.51 29689.43 17696.62 31388.60 27982.44 30994.16 286
eth_miper_zixun_eth92.41 23991.93 23693.84 28397.28 22690.68 28398.83 27796.97 30388.57 28989.19 27795.73 28689.24 18296.69 31189.97 26981.55 31594.15 287
miper_lstm_enhance91.81 24991.39 24893.06 30597.34 22089.18 31099.38 21396.79 32186.70 31587.47 30495.22 31390.00 16995.86 34088.26 28481.37 31794.15 287
Anonymous2023121189.86 29388.44 30094.13 27098.93 12090.68 28398.54 29898.26 17476.28 36986.73 31295.54 29370.60 33597.56 26090.82 25380.27 33194.15 287
c3_l92.53 23691.87 23894.52 25497.40 21692.99 23199.40 20896.93 30987.86 29888.69 28695.44 29989.95 17096.44 31990.45 26080.69 32794.14 290
jajsoiax91.92 24791.18 25094.15 26891.35 35590.95 27899.00 25897.42 25592.61 18887.38 30697.08 24372.46 32597.36 26594.53 19188.77 25294.13 291
bld_raw_dy_0_6492.74 23092.03 23494.87 23893.09 32993.46 21999.12 23995.41 35792.84 17590.44 24797.54 22978.08 28697.04 29193.94 20087.77 27194.11 292
mvs_tets91.81 24991.08 25194.00 27691.63 35290.58 28698.67 29297.43 25392.43 19887.37 30797.05 24671.76 32797.32 27194.75 18588.68 25494.11 292
v2v48291.30 25890.07 27295.01 23393.13 32593.79 21099.77 14097.02 29688.05 29689.25 27295.37 30580.73 25997.15 28187.28 29780.04 33394.09 294
LPG-MVS_test92.96 22592.71 21993.71 28795.43 28788.67 31599.75 14897.62 23192.81 17690.05 24998.49 19975.24 31098.40 21095.84 16689.12 24694.07 295
LGP-MVS_train93.71 28795.43 28788.67 31597.62 23192.81 17690.05 24998.49 19975.24 31098.40 21095.84 16689.12 24694.07 295
test_djsdf92.83 22892.29 22994.47 25891.90 34892.46 24499.55 18997.27 27191.17 23689.96 25296.07 27981.10 25496.89 30194.67 18888.91 24894.05 297
CP-MVSNet91.23 26290.22 26694.26 26693.96 31092.39 24699.09 24298.57 8588.95 27986.42 31996.57 26479.19 27596.37 32190.29 26478.95 33694.02 298
Patchmtry89.70 29688.49 29993.33 29796.24 25989.94 30391.37 38096.23 34078.22 36687.69 29993.31 34891.04 15296.03 33680.18 34682.10 31194.02 298
v192192090.46 27889.12 28894.50 25692.96 33392.46 24499.49 19996.98 30186.10 32189.61 26595.30 30878.55 28397.03 29482.17 33580.89 32694.01 300
v119290.62 27689.25 28694.72 24593.13 32593.07 22799.50 19797.02 29686.33 31989.56 26695.01 31879.22 27497.09 28882.34 33481.16 31994.01 300
v124090.20 28688.79 29594.44 26093.05 33192.27 24899.38 21396.92 31085.89 32389.36 26994.87 32577.89 28797.03 29480.66 34281.08 32294.01 300
OPM-MVS93.21 21892.80 21794.44 26093.12 32790.85 28199.77 14097.61 23496.19 7191.56 23498.65 18675.16 31498.47 20193.78 21089.39 24593.99 303
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ACMP92.05 992.74 23092.42 22893.73 28595.91 26888.72 31499.81 13097.53 24494.13 13087.00 31098.23 20974.07 32098.47 20196.22 16088.86 25193.99 303
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
OurMVSNet-221017-089.81 29489.48 28490.83 32691.64 35181.21 36398.17 31795.38 35991.48 22685.65 32797.31 23672.66 32497.29 27588.15 28684.83 29393.97 305
pmmvs590.17 28889.09 28993.40 29592.10 34689.77 30499.74 15195.58 35485.88 32487.24 30995.74 28473.41 32396.48 31888.54 28183.56 30393.95 306
PS-CasMVS90.63 27589.51 28293.99 27793.83 31291.70 26598.98 25998.52 9988.48 29086.15 32396.53 26675.46 30896.31 32588.83 27778.86 33893.95 306
IterMVS90.91 26790.17 26993.12 30296.78 24990.42 29198.89 26897.05 29489.03 27386.49 31795.42 30076.59 29795.02 34987.22 29884.09 29993.93 308
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
ACMH89.72 1790.64 27489.63 27793.66 29195.64 28488.64 31798.55 29697.45 25189.03 27381.62 34597.61 22869.75 33798.41 20889.37 27287.62 27493.92 309
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
v14419290.79 27189.52 28194.59 25093.11 32892.77 23399.56 18796.99 29986.38 31889.82 25994.95 32380.50 26497.10 28683.98 32380.41 32893.90 310
PEN-MVS90.19 28789.06 29093.57 29293.06 33090.90 27999.06 24998.47 11088.11 29585.91 32596.30 27076.67 29595.94 33987.07 30076.91 35393.89 311
XVG-ACMP-BASELINE91.22 26390.75 25492.63 31193.73 31485.61 33898.52 30097.44 25292.77 17989.90 25596.85 25466.64 35098.39 21292.29 23088.61 25593.89 311
v114491.09 26489.83 27394.87 23893.25 32493.69 21499.62 17896.98 30186.83 31489.64 26494.99 32180.94 25697.05 28985.08 31781.16 31993.87 313
MDA-MVSNet_test_wron85.51 32183.32 32992.10 31590.96 35888.58 31899.20 23496.52 33379.70 36357.12 38892.69 35279.11 27693.86 36277.10 35877.46 34893.86 314
IterMVS-SCA-FT90.85 27090.16 27092.93 30796.72 25189.96 30098.89 26896.99 29988.95 27986.63 31495.67 28776.48 29995.00 35087.04 30184.04 30293.84 315
YYNet185.50 32283.33 32892.00 31690.89 35988.38 32299.22 23396.55 33279.60 36457.26 38792.72 35179.09 27893.78 36377.25 35777.37 34993.84 315
MDA-MVSNet-bldmvs84.09 33081.52 33791.81 31991.32 35688.00 32698.67 29295.92 34780.22 36155.60 38993.32 34768.29 34493.60 36573.76 36476.61 35593.82 317
ACMH+89.98 1690.35 28189.54 28092.78 31095.99 26586.12 33698.81 27997.18 27889.38 26883.14 33897.76 22668.42 34398.43 20689.11 27586.05 28393.78 318
v14890.70 27289.63 27793.92 27992.97 33290.97 27599.75 14896.89 31287.51 30188.27 29495.01 31881.67 24797.04 29187.40 29577.17 35193.75 319
pmmvs492.10 24591.07 25295.18 22992.82 33694.96 18099.48 20196.83 31787.45 30388.66 28796.56 26583.78 23596.83 30589.29 27384.77 29493.75 319
K. test v388.05 30987.24 31190.47 32991.82 35082.23 35798.96 26297.42 25589.05 27276.93 36695.60 29068.49 34295.42 34485.87 31381.01 32493.75 319
lessismore_v090.53 32790.58 36180.90 36695.80 34877.01 36595.84 28166.15 35296.95 29783.03 32975.05 35993.74 322
SixPastTwentyTwo88.73 30588.01 30690.88 32491.85 34982.24 35698.22 31595.18 36488.97 27782.26 34196.89 25171.75 32896.67 31284.00 32282.98 30493.72 323
our_test_390.39 27989.48 28493.12 30292.40 34189.57 30699.33 21996.35 33987.84 29985.30 32894.99 32184.14 23396.09 33480.38 34384.56 29593.71 324
LTVRE_ROB88.28 1890.29 28489.05 29194.02 27495.08 29290.15 29697.19 33697.43 25384.91 33783.99 33497.06 24574.00 32198.28 22684.08 32187.71 27293.62 325
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
ITE_SJBPF92.38 31295.69 28285.14 34195.71 35092.81 17689.33 27198.11 21170.23 33698.42 20785.91 31288.16 26593.59 326
v7n89.65 29788.29 30293.72 28692.22 34390.56 28799.07 24897.10 28785.42 33286.73 31294.72 32680.06 26797.13 28381.14 34078.12 34293.49 327
DTE-MVSNet89.40 30088.24 30392.88 30892.66 33889.95 30199.10 24198.22 17787.29 30585.12 33096.22 27276.27 30295.30 34883.56 32775.74 35793.41 328
V4291.28 26090.12 27194.74 24393.42 32193.46 21999.68 16697.02 29687.36 30489.85 25895.05 31681.31 25397.34 26787.34 29680.07 33293.40 329
anonymousdsp91.79 25490.92 25394.41 26390.76 36092.93 23298.93 26597.17 27989.08 27187.46 30595.30 30878.43 28596.92 30092.38 22988.73 25393.39 330
v890.54 27789.17 28794.66 24693.43 32093.40 22399.20 23496.94 30885.76 32587.56 30294.51 33381.96 24697.19 27984.94 31878.25 34093.38 331
ppachtmachnet_test89.58 29888.35 30193.25 30092.40 34190.44 29099.33 21996.73 32485.49 33085.90 32695.77 28381.09 25596.00 33876.00 36282.49 30893.30 332
v1090.25 28588.82 29494.57 25293.53 31893.43 22199.08 24496.87 31485.00 33487.34 30894.51 33380.93 25797.02 29682.85 33079.23 33593.26 333
PVSNet_BlendedMVS96.05 14295.82 13996.72 18699.59 8196.99 10799.95 5099.10 3194.06 13698.27 12395.80 28289.00 18599.95 6799.12 5687.53 27593.24 334
WR-MVS_H91.30 25890.35 26294.15 26894.17 30792.62 24299.17 23798.94 4188.87 28286.48 31894.46 33784.36 23096.61 31488.19 28578.51 33993.21 335
FMVSNet588.32 30787.47 30990.88 32496.90 24188.39 32197.28 33495.68 35182.60 35284.67 33192.40 35679.83 26991.16 37776.39 36181.51 31693.09 336
Anonymous2023120686.32 31685.42 31989.02 34089.11 36980.53 36999.05 25395.28 36085.43 33182.82 33993.92 34174.40 31893.44 36666.99 37681.83 31493.08 337
pm-mvs189.36 30187.81 30794.01 27593.40 32291.93 25598.62 29596.48 33586.25 32083.86 33596.14 27573.68 32297.04 29186.16 30975.73 35893.04 338
test_method80.79 33979.70 34384.08 35592.83 33567.06 38199.51 19595.42 35654.34 38781.07 34993.53 34544.48 38392.22 37478.90 35177.23 35092.94 339
UnsupCasMVSNet_eth85.52 32083.99 32290.10 33289.36 36883.51 35096.65 34797.99 20089.14 27075.89 37093.83 34263.25 36193.92 36081.92 33767.90 37592.88 340
USDC90.00 29188.96 29293.10 30494.81 29688.16 32398.71 28795.54 35593.66 15383.75 33697.20 23965.58 35398.31 22383.96 32487.49 27692.85 341
test_fmvs289.47 29989.70 27688.77 34494.54 30175.74 37399.83 12594.70 36994.71 10691.08 23996.82 25854.46 37597.78 25492.87 22588.27 26392.80 342
N_pmnet80.06 34280.78 34077.89 36291.94 34745.28 40098.80 28156.82 40278.10 36780.08 35393.33 34677.03 29095.76 34168.14 37582.81 30592.64 343
KD-MVS_2432*160088.00 31086.10 31493.70 28996.91 23894.04 20497.17 33797.12 28584.93 33581.96 34292.41 35492.48 12594.51 35679.23 34752.68 38892.56 344
miper_refine_blended88.00 31086.10 31493.70 28996.91 23894.04 20497.17 33797.12 28584.93 33581.96 34292.41 35492.48 12594.51 35679.23 34752.68 38892.56 344
pmmvs685.69 31883.84 32591.26 32390.00 36684.41 34697.82 32796.15 34375.86 37181.29 34795.39 30361.21 36796.87 30383.52 32873.29 36192.50 346
D2MVS92.76 22992.59 22493.27 29995.13 29089.54 30799.69 16499.38 2392.26 20487.59 30194.61 33285.05 22497.79 25291.59 23988.01 26792.47 347
CL-MVSNet_self_test84.50 32883.15 33188.53 34586.00 37581.79 36098.82 27897.35 26185.12 33383.62 33790.91 36376.66 29691.40 37669.53 37260.36 38592.40 348
MIMVSNet182.58 33580.51 34188.78 34286.68 37484.20 34796.65 34795.41 35778.75 36578.59 35992.44 35351.88 37989.76 38065.26 38178.95 33692.38 349
LF4IMVS89.25 30388.85 29390.45 33092.81 33781.19 36498.12 31894.79 36691.44 22886.29 32197.11 24165.30 35698.11 23688.53 28285.25 28992.07 350
TransMVSNet (Re)87.25 31385.28 32093.16 30193.56 31791.03 27498.54 29894.05 37583.69 34581.09 34896.16 27475.32 30996.40 32076.69 36068.41 37292.06 351
DeepMVS_CXcopyleft82.92 35895.98 26758.66 38996.01 34592.72 18078.34 36095.51 29658.29 37198.08 23782.57 33185.29 28892.03 352
Baseline_NR-MVSNet90.33 28289.51 28292.81 30992.84 33489.95 30199.77 14093.94 37684.69 33989.04 27995.66 28881.66 24896.52 31690.99 24876.98 35291.97 353
TinyColmap87.87 31286.51 31391.94 31795.05 29385.57 33997.65 32994.08 37384.40 34081.82 34496.85 25462.14 36498.33 22180.25 34586.37 28291.91 354
MS-PatchMatch90.65 27390.30 26491.71 32094.22 30685.50 34098.24 31297.70 22488.67 28686.42 31996.37 26967.82 34598.03 24183.62 32699.62 8891.60 355
KD-MVS_self_test83.59 33482.06 33488.20 34786.93 37380.70 36797.21 33596.38 33782.87 34982.49 34088.97 36967.63 34692.32 37373.75 36562.30 38491.58 356
tfpnnormal89.29 30287.61 30894.34 26594.35 30494.13 20298.95 26398.94 4183.94 34184.47 33295.51 29674.84 31597.39 26477.05 35980.41 32891.48 357
MVP-Stereo90.93 26690.45 26192.37 31391.25 35788.76 31298.05 32296.17 34287.27 30684.04 33395.30 30878.46 28497.27 27783.78 32599.70 8491.09 358
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
test20.0384.72 32783.99 32286.91 35088.19 37280.62 36898.88 27095.94 34688.36 29278.87 35694.62 33168.75 34089.11 38166.52 37875.82 35691.00 359
EG-PatchMatch MVS85.35 32383.81 32689.99 33490.39 36281.89 35998.21 31696.09 34481.78 35574.73 37293.72 34451.56 38097.12 28579.16 35088.61 25590.96 360
TDRefinement84.76 32582.56 33391.38 32274.58 39184.80 34597.36 33394.56 37084.73 33880.21 35296.12 27863.56 36098.39 21287.92 28963.97 38190.95 361
ambc83.23 35777.17 38962.61 38387.38 38694.55 37176.72 36786.65 37830.16 38796.36 32284.85 31969.86 36690.73 362
Anonymous2024052185.15 32483.81 32689.16 33988.32 37082.69 35298.80 28195.74 34979.72 36281.53 34690.99 36165.38 35594.16 35872.69 36681.11 32190.63 363
OpenMVS_ROBcopyleft79.82 2083.77 33381.68 33690.03 33388.30 37182.82 35198.46 30195.22 36273.92 37876.00 36991.29 36055.00 37496.94 29868.40 37488.51 25990.34 364
new_pmnet84.49 32982.92 33289.21 33890.03 36582.60 35396.89 34595.62 35380.59 35975.77 37189.17 36865.04 35794.79 35472.12 36881.02 32390.23 365
test_040285.58 31983.94 32490.50 32893.81 31385.04 34298.55 29695.20 36376.01 37079.72 35595.13 31464.15 35996.26 32766.04 38086.88 27990.21 366
test_vis1_rt86.87 31586.05 31789.34 33796.12 26078.07 37299.87 9883.54 39692.03 21178.21 36189.51 36745.80 38299.91 8796.25 15993.11 23290.03 367
pmmvs380.27 34177.77 34687.76 34980.32 38682.43 35598.23 31491.97 38472.74 38078.75 35787.97 37457.30 37390.99 37870.31 37062.37 38389.87 368
CMPMVSbinary61.59 2184.75 32685.14 32183.57 35690.32 36362.54 38496.98 34297.59 23874.33 37769.95 37896.66 25964.17 35898.32 22287.88 29088.41 26089.84 369
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
APD_test181.15 33880.92 33981.86 35992.45 34059.76 38896.04 35993.61 37973.29 37977.06 36496.64 26144.28 38496.16 33072.35 36782.52 30789.67 370
PM-MVS80.47 34078.88 34585.26 35383.79 38072.22 37795.89 36291.08 38685.71 32876.56 36888.30 37136.64 38693.90 36182.39 33369.57 36889.66 371
pmmvs-eth3d84.03 33181.97 33590.20 33184.15 37887.09 33198.10 32094.73 36883.05 34774.10 37487.77 37565.56 35494.01 35981.08 34169.24 36989.49 372
UnsupCasMVSNet_bld79.97 34477.03 34988.78 34285.62 37681.98 35893.66 37197.35 26175.51 37470.79 37783.05 38348.70 38194.91 35278.31 35360.29 38689.46 373
mvsany_test382.12 33681.14 33885.06 35481.87 38270.41 37897.09 33992.14 38391.27 23577.84 36288.73 37039.31 38595.49 34290.75 25571.24 36489.29 374
new-patchmatchnet81.19 33779.34 34486.76 35182.86 38180.36 37097.92 32495.27 36182.09 35472.02 37586.87 37762.81 36390.74 37971.10 36963.08 38289.19 375
LCM-MVSNet67.77 35364.73 35676.87 36462.95 39756.25 39189.37 38593.74 37844.53 39061.99 38280.74 38420.42 39786.53 38769.37 37359.50 38787.84 376
tmp_tt65.23 35662.94 35972.13 37244.90 40050.03 39781.05 38889.42 39238.45 39148.51 39399.90 1854.09 37678.70 39391.84 23718.26 39587.64 377
test_fmvs379.99 34380.17 34279.45 36184.02 37962.83 38299.05 25393.49 38088.29 29480.06 35486.65 37828.09 39088.00 38288.63 27873.27 36287.54 378
test_f78.40 34577.59 34780.81 36080.82 38462.48 38596.96 34393.08 38183.44 34674.57 37384.57 38227.95 39192.63 37184.15 32072.79 36387.32 379
EGC-MVSNET69.38 34863.76 35886.26 35290.32 36381.66 36296.24 35593.85 3770.99 3993.22 40092.33 35752.44 37792.92 37059.53 38684.90 29284.21 380
WB-MVS76.28 34677.28 34873.29 36781.18 38354.68 39297.87 32694.19 37281.30 35669.43 37990.70 36477.02 29182.06 39035.71 39568.11 37483.13 381
SSC-MVS75.42 34776.40 35072.49 37180.68 38553.62 39397.42 33194.06 37480.42 36068.75 38090.14 36676.54 29881.66 39133.25 39666.34 37882.19 382
PMMVS267.15 35464.15 35776.14 36570.56 39462.07 38693.89 36987.52 39358.09 38460.02 38378.32 38522.38 39484.54 38859.56 38547.03 39081.80 383
testf168.38 35166.92 35272.78 36978.80 38750.36 39590.95 38287.35 39455.47 38558.95 38488.14 37220.64 39587.60 38357.28 38764.69 37980.39 384
APD_test268.38 35166.92 35272.78 36978.80 38750.36 39590.95 38287.35 39455.47 38558.95 38488.14 37220.64 39587.60 38357.28 38764.69 37980.39 384
FPMVS68.72 35068.72 35168.71 37365.95 39544.27 40295.97 36194.74 36751.13 38853.26 39090.50 36525.11 39383.00 38960.80 38480.97 32578.87 386
ANet_high56.10 35752.24 36067.66 37449.27 39956.82 39083.94 38782.02 39770.47 38133.28 39764.54 39217.23 39969.16 39545.59 39223.85 39477.02 387
test_vis3_rt68.82 34966.69 35475.21 36676.24 39060.41 38796.44 35068.71 40175.13 37550.54 39269.52 39016.42 40096.32 32480.27 34466.92 37768.89 388
MVEpermissive53.74 2251.54 36047.86 36462.60 37559.56 39850.93 39479.41 38977.69 39835.69 39436.27 39661.76 3955.79 40469.63 39437.97 39436.61 39167.24 389
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMVScopyleft49.05 2353.75 35851.34 36260.97 37640.80 40134.68 40374.82 39089.62 39137.55 39228.67 39872.12 3877.09 40281.63 39243.17 39368.21 37366.59 390
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
Gipumacopyleft66.95 35565.00 35572.79 36891.52 35367.96 38066.16 39195.15 36547.89 38958.54 38667.99 39129.74 38887.54 38550.20 39077.83 34462.87 391
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test12337.68 36339.14 36633.31 37919.94 40224.83 40598.36 3089.75 40415.53 39751.31 39187.14 37619.62 39817.74 39947.10 3913.47 39857.36 392
testmvs40.60 36244.45 36529.05 38019.49 40314.11 40699.68 16618.47 40320.74 39664.59 38198.48 20210.95 40117.09 40056.66 38911.01 39655.94 393
EMVS51.44 36151.22 36352.11 37870.71 39344.97 40194.04 36875.66 40035.34 39542.40 39561.56 39628.93 38965.87 39727.64 39824.73 39345.49 394
E-PMN52.30 35952.18 36152.67 37771.51 39245.40 39993.62 37276.60 39936.01 39343.50 39464.13 39327.11 39267.31 39631.06 39726.06 39245.30 395
wuyk23d20.37 36520.84 36818.99 38165.34 39627.73 40450.43 3927.67 4059.50 3988.01 3996.34 3996.13 40326.24 39823.40 39910.69 3972.99 396
test_blank0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.02 4000.00 4050.00 4010.00 4000.00 3990.00 397
uanet_test0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4010.00 4050.00 4010.00 4000.00 3990.00 397
DCPMVS0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4010.00 4050.00 4010.00 4000.00 3990.00 397
cdsmvs_eth3d_5k23.43 36431.24 3670.00 3820.00 4040.00 4070.00 39398.09 1920.00 4000.00 40199.67 9283.37 2380.00 4010.00 4000.00 3990.00 397
pcd_1.5k_mvsjas7.60 36710.13 3700.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 40191.20 1470.00 4010.00 4000.00 3990.00 397
sosnet-low-res0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4010.00 4050.00 4010.00 4000.00 3990.00 397
sosnet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4010.00 4050.00 4010.00 4000.00 3990.00 397
uncertanet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4010.00 4050.00 4010.00 4000.00 3990.00 397
Regformer0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4010.00 4050.00 4010.00 4000.00 3990.00 397
ab-mvs-re8.28 36611.04 3690.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 40199.40 1190.00 4050.00 4010.00 4000.00 3990.00 397
uanet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4010.00 4050.00 4010.00 4000.00 3990.00 397
WAC-MVS90.97 27586.10 311
FOURS199.92 3197.66 8199.95 5098.36 15595.58 8399.52 57
test_one_060199.94 1399.30 1298.41 14096.63 5499.75 2799.93 1197.49 10
eth-test20.00 404
eth-test0.00 404
ZD-MVS99.92 3198.57 5498.52 9992.34 20299.31 7499.83 4395.06 5299.80 11999.70 3299.97 42
test_241102_ONE99.93 2499.30 1298.43 12597.26 3499.80 1599.88 2196.71 24100.00 1
9.1498.38 3199.87 5199.91 8098.33 16293.22 16599.78 2499.89 1994.57 6499.85 10699.84 2099.97 42
save fliter99.82 5898.79 3899.96 3298.40 14497.66 19
test072699.93 2499.29 1599.96 3298.42 13697.28 3099.86 599.94 497.22 19
test_part299.89 4599.25 1899.49 60
sam_mvs94.25 75
MTGPAbinary98.28 171
test_post195.78 36359.23 39793.20 10497.74 25591.06 246
test_post63.35 39494.43 6598.13 235
patchmatchnet-post91.70 35995.12 4997.95 246
MTMP99.87 9896.49 334
gm-plane-assit96.97 23693.76 21291.47 22798.96 15998.79 18194.92 178
TEST999.92 3198.92 2899.96 3298.43 12593.90 14699.71 3299.86 2695.88 3799.85 106
test_899.92 3198.88 3199.96 3298.43 12594.35 12099.69 3499.85 3095.94 3499.85 106
agg_prior99.93 2498.77 4098.43 12599.63 4199.85 106
test_prior498.05 6699.94 66
test_prior299.95 5095.78 7799.73 3099.76 6396.00 3399.78 25100.00 1
旧先验299.46 20494.21 12899.85 799.95 6796.96 149
新几何299.40 208
原ACMM299.90 85
testdata299.99 3690.54 259
segment_acmp96.68 26
testdata199.28 22896.35 67
plane_prior795.71 28091.59 269
plane_prior695.76 27491.72 26480.47 265
plane_prior498.59 191
plane_prior391.64 26796.63 5493.01 215
plane_prior299.84 11896.38 63
plane_prior195.73 277
plane_prior91.74 26199.86 11196.76 5089.59 241
n20.00 406
nn0.00 406
door-mid89.69 390
test1198.44 117
door90.31 387
HQP5-MVS91.85 257
HQP-NCC95.78 27099.87 9896.82 4693.37 211
ACMP_Plane95.78 27099.87 9896.82 4693.37 211
BP-MVS97.92 119
HQP3-MVS97.89 21289.60 239
HQP2-MVS80.65 261
NP-MVS95.77 27391.79 25998.65 186
MDTV_nov1_ep1395.69 14297.90 18294.15 20195.98 36098.44 11793.12 16897.98 13095.74 28495.10 5098.58 19690.02 26796.92 179
ACMMP++_ref87.04 277
ACMMP++88.23 264
Test By Simon92.82 115