This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted by
DVP-MVS++99.26 699.09 999.77 899.91 3999.31 999.95 4398.43 11396.48 4799.80 1599.93 1197.44 14100.00 199.92 1299.98 32100.00 1
MSC_two_6792asdad99.93 299.91 3999.80 298.41 128100.00 199.96 9100.00 1100.00 1
PC_three_145296.96 3299.80 1599.79 5497.49 10100.00 199.99 599.98 32100.00 1
No_MVS99.93 299.91 3999.80 298.41 128100.00 199.96 9100.00 1100.00 1
SED-MVS99.28 599.11 799.77 899.93 2499.30 1199.96 2698.43 11397.27 2399.80 1599.94 496.71 24100.00 1100.00 1100.00 1100.00 1
IU-MVS99.93 2499.31 998.41 12897.71 999.84 10100.00 1100.00 1100.00 1
OPU-MVS99.93 299.89 4599.80 299.96 2699.80 5197.44 14100.00 1100.00 199.98 32100.00 1
test_241102_TWO98.43 11397.27 2399.80 1599.94 497.18 21100.00 1100.00 1100.00 1100.00 1
test_0728_THIRD96.48 4799.83 1199.91 1497.87 6100.00 199.92 12100.00 1100.00 1
test_0728_SECOND99.82 799.94 1399.47 799.95 4398.43 113100.00 199.99 5100.00 1100.00 1
SMA-MVScopyleft98.76 2098.48 2499.62 1899.87 5198.87 3099.86 10098.38 13993.19 15499.77 2499.94 495.54 42100.00 199.74 2699.99 21100.00 1
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MSP-MVS99.09 999.12 598.98 6999.93 2497.24 9499.95 4398.42 12497.50 1699.52 5199.88 2197.43 1699.71 12499.50 3499.98 32100.00 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
test9_res99.71 2999.99 21100.00 1
agg_prior299.48 35100.00 1100.00 1
testdata98.42 10799.47 9195.33 16198.56 7893.78 13799.79 2299.85 3093.64 9399.94 6994.97 16399.94 54100.00 1
MSLP-MVS++99.13 899.01 1199.49 3099.94 1398.46 5799.98 998.86 4797.10 2899.80 1599.94 495.92 36100.00 199.51 33100.00 1100.00 1
MCST-MVS99.32 399.14 499.86 599.97 399.59 599.97 1998.64 6698.47 299.13 7599.92 1396.38 30100.00 199.74 26100.00 1100.00 1
NCCC99.37 299.25 299.71 1399.96 899.15 2099.97 1998.62 7098.02 699.90 299.95 397.33 17100.00 199.54 32100.00 1100.00 1
API-MVS97.86 6297.66 6598.47 10299.52 8795.41 15999.47 18698.87 4691.68 20798.84 8599.85 3092.34 12699.99 3698.44 8399.96 46100.00 1
DeepPCF-MVS95.94 297.71 7398.98 1293.92 26599.63 7981.76 34499.96 2698.56 7899.47 199.19 7399.99 194.16 79100.00 199.92 1299.93 60100.00 1
DeepC-MVS_fast96.59 198.81 1998.54 2299.62 1899.90 4298.85 3299.24 21598.47 9998.14 499.08 7699.91 1493.09 106100.00 199.04 5199.99 21100.00 1
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MG-MVS98.91 1698.65 1899.68 1499.94 1399.07 2299.64 16099.44 1997.33 2099.00 8099.72 7694.03 8299.98 4298.73 70100.00 1100.00 1
DPE-MVScopyleft99.26 699.10 899.74 1099.89 4599.24 1899.87 8898.44 10597.48 1799.64 3699.94 496.68 2699.99 3699.99 5100.00 199.99 23
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
ACMMP_NAP98.49 3398.14 4499.54 2599.66 7898.62 5199.85 10398.37 14294.68 9699.53 4999.83 4392.87 111100.00 198.66 7599.84 7199.99 23
MTAPA98.29 4597.96 5699.30 4099.85 5497.93 7199.39 19698.28 15795.76 6697.18 13899.88 2192.74 115100.00 198.67 7399.88 6899.99 23
train_agg98.88 1798.65 1899.59 2199.92 3198.92 2699.96 2698.43 11394.35 10899.71 3099.86 2695.94 3499.85 9599.69 3199.98 3299.99 23
XVS98.70 2298.55 2199.15 5399.94 1397.50 8699.94 5898.42 12496.22 5799.41 5999.78 5894.34 7299.96 5498.92 5799.95 4999.99 23
X-MVStestdata93.83 18792.06 21799.15 5399.94 1397.50 8699.94 5898.42 12496.22 5799.41 5941.37 37894.34 7299.96 5498.92 5799.95 4999.99 23
test_prior99.43 3399.94 1398.49 5698.65 6499.80 10799.99 23
新几何199.42 3599.75 6898.27 5998.63 6992.69 17199.55 4699.82 4694.40 67100.00 191.21 22799.94 5499.99 23
旧先验199.76 6697.52 8398.64 6699.85 3095.63 4199.94 5499.99 23
无先验99.49 18398.71 5693.46 146100.00 194.36 18099.99 23
test22299.55 8597.41 9299.34 20298.55 8491.86 20199.27 7099.83 4393.84 8899.95 4999.99 23
MVS96.60 11395.56 13599.72 1296.85 23199.22 1998.31 29298.94 3791.57 20990.90 22599.61 9386.66 19899.96 5497.36 12399.88 6899.99 23
APDe-MVS99.06 1198.91 1499.51 2799.94 1398.76 4199.91 7198.39 13597.20 2799.46 5499.85 3095.53 4499.79 10999.86 17100.00 199.99 23
test1299.43 3399.74 6998.56 5398.40 13299.65 3594.76 6099.75 11899.98 3299.99 23
TSAR-MVS + GP.98.60 2698.51 2398.86 7699.73 7296.63 11599.97 1997.92 19598.07 598.76 9199.55 9795.00 5699.94 6999.91 1597.68 14899.99 23
HPM-MVS_fast97.80 6897.50 7098.68 8399.79 6296.42 12199.88 8598.16 17391.75 20698.94 8299.54 9991.82 13899.65 13397.62 12099.99 2199.99 23
HPM-MVScopyleft97.96 5797.72 6498.68 8399.84 5696.39 12499.90 7698.17 16992.61 17698.62 9899.57 9691.87 13699.67 13198.87 6299.99 2199.99 23
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
APD-MVScopyleft98.62 2598.35 3499.41 3699.90 4298.51 5599.87 8898.36 14394.08 12199.74 2799.73 7494.08 8099.74 12099.42 3899.99 2199.99 23
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CNVR-MVS99.40 199.26 199.84 699.98 299.51 699.98 998.69 5898.20 399.93 199.98 296.82 23100.00 199.75 24100.00 199.99 23
CP-MVS98.45 3698.32 3598.87 7599.96 896.62 11699.97 1998.39 13594.43 10398.90 8499.87 2494.30 74100.00 199.04 5199.99 2199.99 23
SteuartSystems-ACMMP99.02 1298.97 1399.18 4698.72 13297.71 7599.98 998.44 10596.85 3499.80 1599.91 1497.57 899.85 9599.44 3799.99 2199.99 23
Skip Steuart: Steuart Systems R&D Blog.
CPTT-MVS97.64 7497.32 7798.58 9299.97 395.77 14599.96 2698.35 14589.90 24598.36 10999.79 5491.18 14699.99 3698.37 8699.99 2199.99 23
PAPM_NR98.12 5497.93 5898.70 8299.94 1396.13 13699.82 11598.43 11394.56 9997.52 13099.70 8094.40 6799.98 4297.00 13499.98 3299.99 23
PAPR98.52 3198.16 4399.58 2299.97 398.77 3899.95 4398.43 11395.35 7798.03 11999.75 6794.03 8299.98 4298.11 9799.83 7299.99 23
PHI-MVS98.41 3998.21 3999.03 6499.86 5397.10 10199.98 998.80 5290.78 23299.62 3999.78 5895.30 47100.00 199.80 2199.93 6099.99 23
DPM-MVS98.83 1898.46 2599.97 199.33 9799.92 199.96 2698.44 10597.96 799.55 4699.94 497.18 21100.00 193.81 19299.94 5499.98 48
HFP-MVS98.56 2898.37 3199.14 5599.96 897.43 9099.95 4398.61 7194.77 9199.31 6699.85 3094.22 76100.00 198.70 7199.98 3299.98 48
region2R98.54 2998.37 3199.05 6299.96 897.18 9799.96 2698.55 8494.87 8999.45 5599.85 3094.07 81100.00 198.67 73100.00 199.98 48
ACMMPR98.50 3298.32 3599.05 6299.96 897.18 9799.95 4398.60 7294.77 9199.31 6699.84 4193.73 90100.00 198.70 7199.98 3299.98 48
PGM-MVS98.34 4298.13 4598.99 6899.92 3197.00 10499.75 13599.50 1793.90 13499.37 6399.76 6293.24 103100.00 197.75 11899.96 4699.98 48
CDPH-MVS98.65 2498.36 3399.49 3099.94 1398.73 4299.87 8898.33 14893.97 12999.76 2599.87 2494.99 5799.75 11898.55 80100.00 199.98 48
mPP-MVS98.39 4198.20 4098.97 7099.97 396.92 10899.95 4398.38 13995.04 8398.61 9999.80 5193.39 95100.00 198.64 76100.00 199.98 48
SR-MVS-dyc-post98.31 4398.17 4298.71 8199.79 6296.37 12599.76 13298.31 15294.43 10399.40 6199.75 6793.28 10199.78 11198.90 6099.92 6399.97 55
RE-MVS-def98.13 4599.79 6296.37 12599.76 13298.31 15294.43 10399.40 6199.75 6792.95 10998.90 6099.92 6399.97 55
TSAR-MVS + MP.98.93 1498.77 1699.41 3699.74 6998.67 4599.77 12798.38 13996.73 4199.88 499.74 7294.89 5999.59 13599.80 2199.98 3299.97 55
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SD-MVS98.92 1598.70 1799.56 2399.70 7698.73 4299.94 5898.34 14796.38 5299.81 1399.76 6294.59 6399.98 4299.84 1899.96 4699.97 55
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
APD-MVS_3200maxsize98.25 4998.08 4998.78 7899.81 6096.60 11799.82 11598.30 15593.95 13199.37 6399.77 6092.84 11299.76 11798.95 5499.92 6399.97 55
DP-MVS Recon98.41 3998.02 5199.56 2399.97 398.70 4499.92 6798.44 10592.06 19698.40 10899.84 4195.68 40100.00 198.19 9299.71 8399.97 55
SF-MVS98.67 2398.40 2799.50 2899.77 6598.67 4599.90 7698.21 16493.53 14499.81 1399.89 1994.70 6299.86 9499.84 1899.93 6099.96 61
SR-MVS98.46 3598.30 3798.93 7399.88 4997.04 10299.84 10798.35 14594.92 8799.32 6599.80 5193.35 9699.78 11199.30 4299.95 4999.96 61
131496.84 10195.96 11999.48 3296.74 23898.52 5498.31 29298.86 4795.82 6489.91 23798.98 14387.49 18999.96 5497.80 11199.73 8299.96 61
114514_t97.41 8396.83 9199.14 5599.51 8997.83 7299.89 8398.27 15988.48 27199.06 7799.66 8990.30 16099.64 13496.32 14599.97 4299.96 61
MVS_111021_HR98.72 2198.62 2099.01 6799.36 9697.18 9799.93 6499.90 196.81 3998.67 9599.77 6093.92 8499.89 8399.27 4399.94 5499.96 61
PAPM98.60 2698.42 2699.14 5596.05 25098.96 2499.90 7699.35 2496.68 4398.35 11099.66 8996.45 2998.51 18699.45 3699.89 6699.96 61
3Dnovator+91.53 1196.31 12495.24 14399.52 2696.88 23098.64 5099.72 14698.24 16195.27 8088.42 27698.98 14382.76 22999.94 6997.10 13199.83 7299.96 61
EI-MVSNet-Vis-set98.27 4698.11 4798.75 8099.83 5796.59 11899.40 19298.51 9395.29 7998.51 10299.76 6293.60 9499.71 12498.53 8199.52 9699.95 68
CHOSEN 1792x268896.81 10296.53 10197.64 14098.91 12193.07 21499.65 15699.80 395.64 6995.39 17798.86 16384.35 22099.90 7996.98 13599.16 11299.95 68
AdaColmapbinary97.23 8996.80 9398.51 10099.99 195.60 15499.09 22698.84 4993.32 15096.74 14899.72 7686.04 204100.00 198.01 10299.43 10399.94 70
ZNCC-MVS98.31 4398.03 5099.17 4999.88 4997.59 8099.94 5898.44 10594.31 11198.50 10399.82 4693.06 10799.99 3698.30 9099.99 2199.93 71
GST-MVS98.27 4697.97 5399.17 4999.92 3197.57 8199.93 6498.39 13594.04 12798.80 8799.74 7292.98 108100.00 198.16 9499.76 8099.93 71
MP-MVScopyleft98.23 5197.97 5399.03 6499.94 1397.17 10099.95 4398.39 13594.70 9598.26 11599.81 5091.84 137100.00 198.85 6399.97 4299.93 71
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
HyFIR lowres test96.66 11296.43 10497.36 15699.05 10693.91 19699.70 14899.80 390.54 23496.26 16198.08 19592.15 13098.23 21796.84 14095.46 19399.93 71
CNLPA97.76 7197.38 7398.92 7499.53 8696.84 11099.87 8898.14 17693.78 13796.55 15399.69 8292.28 12799.98 4297.13 12999.44 10299.93 71
原ACMM198.96 7199.73 7296.99 10598.51 9394.06 12499.62 3999.85 3094.97 5899.96 5495.11 15999.95 4999.92 76
DELS-MVS98.54 2998.22 3899.50 2899.15 10398.65 49100.00 198.58 7497.70 1098.21 11799.24 12492.58 11999.94 6998.63 7899.94 5499.92 76
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CSCG97.10 9297.04 8697.27 15999.89 4591.92 24399.90 7699.07 3288.67 26795.26 18099.82 4693.17 10599.98 4298.15 9599.47 9999.90 78
DVP-MVScopyleft99.30 499.16 399.73 1199.93 2499.29 1499.95 4398.32 15097.28 2199.83 1199.91 1497.22 19100.00 199.99 5100.00 199.89 79
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
patch_mono-298.24 5099.12 595.59 20199.67 7786.91 31799.95 4398.89 4397.60 1299.90 299.76 6296.54 2899.98 4299.94 1199.82 7699.88 80
MVS_111021_LR98.42 3898.38 2998.53 9999.39 9495.79 14499.87 8899.86 296.70 4298.78 8899.79 5492.03 13399.90 7999.17 4599.86 7099.88 80
HPM-MVS++copyleft99.07 1098.88 1599.63 1599.90 4299.02 2399.95 4398.56 7897.56 1599.44 5699.85 3095.38 46100.00 199.31 4199.99 2199.87 82
ACMMPcopyleft97.74 7297.44 7298.66 8599.92 3196.13 13699.18 22099.45 1894.84 9096.41 15899.71 7891.40 14099.99 3697.99 10498.03 14399.87 82
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
dcpmvs_297.42 8298.09 4895.42 20699.58 8487.24 31399.23 21696.95 28794.28 11398.93 8399.73 7494.39 7099.16 15699.89 1699.82 7699.86 84
3Dnovator91.47 1296.28 12795.34 14099.08 6196.82 23397.47 8999.45 18998.81 5095.52 7489.39 25199.00 14081.97 23399.95 6197.27 12599.83 7299.84 85
CANet98.27 4697.82 6299.63 1599.72 7499.10 2199.98 998.51 9397.00 3198.52 10199.71 7887.80 18699.95 6199.75 2499.38 10499.83 86
Patchmatch-test92.65 21991.50 22996.10 19296.85 23190.49 27291.50 35997.19 25982.76 33390.23 23195.59 27295.02 5498.00 22877.41 33996.98 16699.82 87
EI-MVSNet-UG-set98.14 5397.99 5298.60 8999.80 6196.27 12799.36 20198.50 9795.21 8198.30 11299.75 6793.29 10099.73 12398.37 8699.30 10799.81 88
HY-MVS92.50 797.79 6997.17 8299.63 1598.98 11299.32 897.49 31299.52 1495.69 6898.32 11197.41 21493.32 9899.77 11498.08 10095.75 18999.81 88
mvsany_test197.82 6697.90 6097.55 14398.77 13093.04 21799.80 12197.93 19296.95 3399.61 4599.68 8690.92 15099.83 10499.18 4498.29 13499.80 90
test_yl97.83 6497.37 7499.21 4399.18 10097.98 6899.64 16099.27 2691.43 21597.88 12498.99 14195.84 3899.84 10298.82 6495.32 19699.79 91
DCV-MVSNet97.83 6497.37 7499.21 4399.18 10097.98 6899.64 16099.27 2691.43 21597.88 12498.99 14195.84 3899.84 10298.82 6495.32 19699.79 91
Patchmatch-RL test86.90 29885.98 30189.67 31984.45 36075.59 35789.71 36492.43 36386.89 29477.83 34590.94 34494.22 7693.63 35087.75 27669.61 34999.79 91
WTY-MVS98.10 5597.60 6899.60 2098.92 11999.28 1699.89 8399.52 1495.58 7198.24 11699.39 11193.33 9799.74 12097.98 10695.58 19299.78 94
CHOSEN 280x42099.01 1399.03 1098.95 7299.38 9598.87 3098.46 28499.42 2197.03 3099.02 7999.09 13299.35 198.21 21899.73 2899.78 7999.77 95
MP-MVS-pluss98.07 5697.64 6699.38 3999.74 6998.41 5899.74 13898.18 16893.35 14896.45 15599.85 3092.64 11799.97 5198.91 5999.89 6699.77 95
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
EPMVS96.53 11596.01 11298.09 12198.43 14696.12 13896.36 33199.43 2093.53 14497.64 12895.04 29894.41 6698.38 20291.13 22998.11 13999.75 97
Vis-MVSNet (Re-imp)96.32 12395.98 11597.35 15797.93 17394.82 17699.47 18698.15 17591.83 20295.09 18199.11 13191.37 14197.47 24893.47 20097.43 15299.74 98
DP-MVS94.54 17193.42 18897.91 12899.46 9394.04 19198.93 24997.48 23581.15 33890.04 23499.55 9787.02 19599.95 6188.97 26198.11 13999.73 99
TAPA-MVS92.12 894.42 17593.60 18196.90 16799.33 9791.78 24799.78 12498.00 18489.89 24694.52 18699.47 10391.97 13499.18 15469.90 35499.52 9699.73 99
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
canonicalmvs97.09 9496.32 10699.39 3898.93 11798.95 2599.72 14697.35 24694.45 10197.88 12499.42 10786.71 19799.52 13798.48 8293.97 20999.72 101
TESTMET0.1,196.74 10796.26 10798.16 11697.36 20796.48 11999.96 2698.29 15691.93 19995.77 17298.07 19695.54 4298.29 21090.55 24398.89 11899.70 102
PatchmatchNetpermissive95.94 13595.45 13697.39 15397.83 17994.41 18596.05 33898.40 13292.86 16097.09 13995.28 29394.21 7898.07 22589.26 25998.11 13999.70 102
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
VNet97.21 9096.57 10099.13 5998.97 11397.82 7399.03 24099.21 2894.31 11199.18 7498.88 15886.26 20399.89 8398.93 5694.32 20499.69 104
Anonymous20240521193.10 20791.99 21996.40 18399.10 10489.65 28898.88 25497.93 19283.71 32694.00 19498.75 16968.79 31899.88 8995.08 16191.71 22099.68 105
mvs_anonymous95.65 14695.03 15197.53 14498.19 16095.74 14799.33 20397.49 23490.87 22990.47 22997.10 22388.23 18497.16 26595.92 15197.66 14999.68 105
GG-mvs-BLEND98.54 9798.21 15898.01 6693.87 35098.52 9097.92 12297.92 20499.02 297.94 23498.17 9399.58 9399.67 107
gg-mvs-nofinetune93.51 19891.86 22398.47 10297.72 19097.96 7092.62 35498.51 9374.70 35697.33 13569.59 36998.91 397.79 23797.77 11699.56 9499.67 107
alignmvs97.81 6797.33 7699.25 4198.77 13098.66 4799.99 398.44 10594.40 10798.41 10699.47 10393.65 9299.42 14898.57 7994.26 20599.67 107
LFMVS94.75 16593.56 18498.30 11299.03 10795.70 15098.74 26897.98 18787.81 28198.47 10499.39 11167.43 32699.53 13698.01 10295.20 19899.67 107
MDTV_nov1_ep13_2view96.26 12896.11 33791.89 20098.06 11894.40 6794.30 18299.67 107
MAR-MVS97.43 7897.19 8098.15 11999.47 9194.79 17899.05 23798.76 5392.65 17498.66 9699.82 4688.52 18399.98 4298.12 9699.63 8799.67 107
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
test250697.53 7697.19 8098.58 9298.66 13596.90 10998.81 26399.77 594.93 8597.95 12198.96 14792.51 12199.20 15294.93 16498.15 13699.64 113
test111195.57 14794.98 15397.37 15498.56 13793.37 21198.86 25898.45 10294.95 8496.63 15098.95 15275.21 29399.11 15795.02 16298.14 13899.64 113
ECVR-MVScopyleft95.66 14595.05 15097.51 14698.66 13593.71 20098.85 26098.45 10294.93 8596.86 14498.96 14775.22 29299.20 15295.34 15698.15 13699.64 113
test-LLR96.47 11696.04 11197.78 13397.02 22295.44 15799.96 2698.21 16494.07 12295.55 17496.38 24893.90 8698.27 21490.42 24698.83 12099.64 113
test-mter96.39 12195.93 12397.78 13397.02 22295.44 15799.96 2698.21 16491.81 20495.55 17496.38 24895.17 4898.27 21490.42 24698.83 12099.64 113
DROMVSNet97.38 8597.24 7897.80 13097.41 20495.64 15299.99 397.06 27594.59 9899.63 3799.32 11589.20 17698.14 22098.76 6899.23 11099.62 118
sss97.57 7597.03 8799.18 4698.37 14998.04 6599.73 14399.38 2293.46 14698.76 9199.06 13491.21 14299.89 8396.33 14497.01 16599.62 118
QAPM95.40 15194.17 16899.10 6096.92 22597.71 7599.40 19298.68 6089.31 25088.94 26498.89 15782.48 23099.96 5493.12 20899.83 7299.62 118
MVS_Test96.46 11795.74 13098.61 8898.18 16197.23 9599.31 20697.15 26591.07 22598.84 8597.05 22788.17 18598.97 16194.39 17997.50 15199.61 121
EPNet98.49 3398.40 2798.77 7999.62 8096.80 11299.90 7699.51 1697.60 1299.20 7199.36 11493.71 9199.91 7797.99 10498.71 12399.61 121
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
IB-MVS92.85 694.99 15993.94 17398.16 11697.72 19095.69 15199.99 398.81 5094.28 11392.70 21096.90 23195.08 5199.17 15596.07 14873.88 34299.60 123
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
ET-MVSNet_ETH3D94.37 17793.28 19497.64 14098.30 15197.99 6799.99 397.61 21994.35 10871.57 35899.45 10696.23 3195.34 33296.91 13985.14 27499.59 124
EIA-MVS97.53 7697.46 7197.76 13698.04 16894.84 17599.98 997.61 21994.41 10697.90 12399.59 9492.40 12498.87 16498.04 10199.13 11499.59 124
GSMVS99.59 124
sam_mvs194.72 6199.59 124
Fast-Effi-MVS+95.02 15894.19 16797.52 14597.88 17594.55 18199.97 1997.08 27388.85 26494.47 18897.96 20384.59 21698.41 19489.84 25597.10 16099.59 124
SCA94.69 16693.81 17797.33 15897.10 21794.44 18298.86 25898.32 15093.30 15196.17 16495.59 27276.48 28097.95 23291.06 23197.43 15299.59 124
PVSNet91.05 1397.13 9196.69 9698.45 10499.52 8795.81 14399.95 4399.65 1194.73 9399.04 7899.21 12684.48 21799.95 6194.92 16598.74 12299.58 130
PVSNet_Blended97.94 5897.64 6698.83 7799.59 8196.99 105100.00 199.10 2995.38 7698.27 11399.08 13389.00 17899.95 6199.12 4699.25 10999.57 131
ab-mvs94.69 16693.42 18898.51 10098.07 16696.26 12896.49 32998.68 6090.31 23994.54 18597.00 22976.30 28299.71 12495.98 15093.38 21499.56 132
Test_1112_low_res95.72 14094.83 15698.42 10797.79 18296.41 12299.65 15696.65 31192.70 17092.86 20996.13 25792.15 13099.30 14991.88 22193.64 21199.55 133
1112_ss96.01 13395.20 14598.42 10797.80 18196.41 12299.65 15696.66 31092.71 16992.88 20899.40 10992.16 12999.30 14991.92 22093.66 21099.55 133
DeepC-MVS94.51 496.92 9996.40 10598.45 10499.16 10295.90 14199.66 15498.06 18196.37 5594.37 18999.49 10283.29 22799.90 7997.63 11999.61 9199.55 133
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CS-MVS97.79 6997.91 5997.43 15099.10 10494.42 18499.99 397.10 27095.07 8299.68 3399.75 6792.95 10998.34 20698.38 8599.14 11399.54 136
LCM-MVSNet-Re92.31 22592.60 20591.43 30597.53 19879.27 35499.02 24191.83 36692.07 19480.31 33494.38 31983.50 22595.48 32997.22 12897.58 15099.54 136
casdiffmvspermissive96.42 12095.97 11897.77 13597.30 21294.98 17199.84 10797.09 27293.75 13996.58 15299.26 12285.07 21398.78 16997.77 11697.04 16399.54 136
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
dp95.05 15794.43 16296.91 16697.99 17092.73 22496.29 33497.98 18789.70 24895.93 16894.67 31193.83 8998.45 19186.91 29096.53 17299.54 136
CS-MVS-test97.88 6197.94 5797.70 13999.28 9995.20 16899.98 997.15 26595.53 7399.62 3999.79 5492.08 13298.38 20298.75 6999.28 10899.52 140
Effi-MVS+96.30 12595.69 13198.16 11697.85 17896.26 12897.41 31397.21 25890.37 23798.65 9798.58 17886.61 19998.70 17797.11 13097.37 15699.52 140
PatchT90.38 26488.75 27995.25 21395.99 25290.16 27891.22 36197.54 22776.80 34897.26 13686.01 36091.88 13596.07 32166.16 36195.91 18499.51 142
tpm93.70 19593.41 19094.58 23795.36 27487.41 31297.01 32296.90 29490.85 23096.72 14994.14 32190.40 15996.84 28990.75 24088.54 24199.51 142
CostFormer96.10 12995.88 12796.78 17097.03 22192.55 23097.08 32197.83 20490.04 24498.72 9394.89 30595.01 5598.29 21096.54 14395.77 18799.50 144
tpmrst96.27 12895.98 11597.13 16197.96 17193.15 21396.34 33298.17 16992.07 19498.71 9495.12 29693.91 8598.73 17394.91 16796.62 17099.50 144
casdiffmvs_mvgpermissive96.43 11895.94 12297.89 12997.44 20395.47 15699.86 10097.29 25393.35 14896.03 16599.19 12785.39 21098.72 17597.89 11097.04 16399.49 146
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
IS-MVSNet96.29 12695.90 12697.45 14898.13 16594.80 17799.08 22897.61 21992.02 19895.54 17698.96 14790.64 15698.08 22393.73 19797.41 15599.47 147
ETV-MVS97.92 6097.80 6398.25 11498.14 16496.48 11999.98 997.63 21495.61 7099.29 6999.46 10592.55 12098.82 16699.02 5398.54 12599.46 148
baseline96.43 11895.98 11597.76 13697.34 20895.17 16999.51 17997.17 26293.92 13396.90 14399.28 11685.37 21198.64 18097.50 12196.86 16999.46 148
lupinMVS97.85 6397.60 6898.62 8797.28 21497.70 7799.99 397.55 22595.50 7599.43 5799.67 8790.92 15098.71 17698.40 8499.62 8899.45 150
PMMVS96.76 10596.76 9496.76 17198.28 15492.10 23899.91 7197.98 18794.12 11999.53 4999.39 11186.93 19698.73 17396.95 13797.73 14699.45 150
UA-Net96.54 11495.96 11998.27 11398.23 15795.71 14998.00 30598.45 10293.72 14098.41 10699.27 11988.71 18299.66 13291.19 22897.69 14799.44 152
CVMVSNet94.68 16894.94 15493.89 26896.80 23486.92 31699.06 23398.98 3594.45 10194.23 19299.02 13685.60 20695.31 33390.91 23695.39 19599.43 153
PVSNet_Blended_VisFu97.27 8796.81 9298.66 8598.81 12796.67 11499.92 6798.64 6694.51 10096.38 15998.49 18289.05 17799.88 8997.10 13198.34 12999.43 153
PLCcopyleft95.54 397.93 5997.89 6198.05 12399.82 5894.77 17999.92 6798.46 10193.93 13297.20 13799.27 11995.44 4599.97 5197.41 12299.51 9899.41 155
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
PCF-MVS94.20 595.18 15494.10 16998.43 10698.55 13995.99 13997.91 30797.31 25190.35 23889.48 25099.22 12585.19 21299.89 8390.40 24898.47 12799.41 155
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
tpm295.47 14995.18 14696.35 18696.91 22691.70 25296.96 32497.93 19288.04 27898.44 10595.40 28293.32 9897.97 22994.00 18695.61 19199.38 157
OMC-MVS97.28 8697.23 7997.41 15199.76 6693.36 21299.65 15697.95 19096.03 6197.41 13499.70 8089.61 16799.51 13896.73 14198.25 13599.38 157
GeoE94.36 17993.48 18696.99 16497.29 21393.54 20499.96 2696.72 30888.35 27493.43 19998.94 15482.05 23298.05 22688.12 27396.48 17499.37 159
ADS-MVSNet293.80 19093.88 17593.55 27997.87 17685.94 32194.24 34696.84 29990.07 24296.43 15694.48 31690.29 16195.37 33187.44 27897.23 15799.36 160
ADS-MVSNet94.79 16294.02 17197.11 16397.87 17693.79 19794.24 34698.16 17390.07 24296.43 15694.48 31690.29 16198.19 21987.44 27897.23 15799.36 160
FA-MVS(test-final)95.86 13695.09 14998.15 11997.74 18595.62 15396.31 33398.17 16991.42 21796.26 16196.13 25790.56 15799.47 14692.18 21797.07 16199.35 162
BH-RMVSNet95.18 15494.31 16697.80 13098.17 16295.23 16699.76 13297.53 22992.52 18394.27 19199.25 12376.84 27698.80 16790.89 23799.54 9599.35 162
TR-MVS94.54 17193.56 18497.49 14797.96 17194.34 18698.71 27197.51 23290.30 24094.51 18798.69 17075.56 28798.77 17092.82 21195.99 18199.35 162
diffmvspermissive97.00 9596.64 9798.09 12197.64 19496.17 13599.81 11797.19 25994.67 9798.95 8199.28 11686.43 20098.76 17198.37 8697.42 15499.33 165
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
JIA-IIPM91.76 23990.70 23994.94 22296.11 24887.51 31193.16 35398.13 17775.79 35297.58 12977.68 36692.84 11297.97 22988.47 26896.54 17199.33 165
FE-MVS95.70 14495.01 15297.79 13298.21 15894.57 18095.03 34598.69 5888.90 26297.50 13296.19 25492.60 11899.49 14489.99 25397.94 14599.31 167
thres20096.96 9696.21 10899.22 4298.97 11398.84 3399.85 10399.71 693.17 15596.26 16198.88 15889.87 16599.51 13894.26 18394.91 19999.31 167
CDS-MVSNet96.34 12296.07 11097.13 16197.37 20694.96 17299.53 17697.91 19691.55 21095.37 17898.32 19195.05 5397.13 26893.80 19395.75 18999.30 169
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Vis-MVSNetpermissive95.72 14095.15 14797.45 14897.62 19594.28 18799.28 21298.24 16194.27 11596.84 14598.94 15479.39 25998.76 17193.25 20298.49 12699.30 169
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test_vis1_n93.61 19793.03 19795.35 20895.86 25686.94 31599.87 8896.36 32196.85 3499.54 4898.79 16752.41 35799.83 10498.64 7698.97 11799.29 171
thres100view90096.74 10795.92 12599.18 4698.90 12298.77 3899.74 13899.71 692.59 17895.84 16998.86 16389.25 17399.50 14093.84 18994.57 20099.27 172
tfpn200view996.79 10395.99 11399.19 4598.94 11598.82 3499.78 12499.71 692.86 16096.02 16698.87 16189.33 17199.50 14093.84 18994.57 20099.27 172
MVSFormer96.94 9796.60 9897.95 12597.28 21497.70 7799.55 17397.27 25591.17 22199.43 5799.54 9990.92 15096.89 28694.67 17599.62 8899.25 174
jason97.24 8896.86 9098.38 11095.73 26397.32 9399.97 1997.40 24395.34 7898.60 10099.54 9987.70 18798.56 18397.94 10799.47 9999.25 174
jason: jason.
EPP-MVSNet96.69 11096.60 9896.96 16597.74 18593.05 21699.37 19998.56 7888.75 26595.83 17199.01 13896.01 3298.56 18396.92 13897.20 15999.25 174
EPNet_dtu95.71 14295.39 13896.66 17598.92 11993.41 20999.57 16998.90 4296.19 5997.52 13098.56 18092.65 11697.36 25077.89 33798.33 13099.20 177
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
GA-MVS93.83 18792.84 20096.80 16995.73 26393.57 20299.88 8597.24 25792.57 18092.92 20696.66 24078.73 26597.67 24287.75 27694.06 20899.17 178
thisisatest051597.41 8397.02 8898.59 9197.71 19297.52 8399.97 1998.54 8791.83 20297.45 13399.04 13597.50 999.10 15894.75 17296.37 17699.16 179
thres600view796.69 11095.87 12899.14 5598.90 12298.78 3799.74 13899.71 692.59 17895.84 16998.86 16389.25 17399.50 14093.44 20194.50 20399.16 179
thres40096.78 10495.99 11399.16 5198.94 11598.82 3499.78 12499.71 692.86 16096.02 16698.87 16189.33 17199.50 14093.84 18994.57 20099.16 179
TAMVS95.85 13795.58 13496.65 17697.07 21893.50 20599.17 22197.82 20591.39 21995.02 18298.01 19792.20 12897.30 25793.75 19695.83 18699.14 182
CR-MVSNet93.45 20192.62 20495.94 19496.29 24392.66 22692.01 35796.23 32392.62 17596.94 14193.31 32991.04 14796.03 32279.23 33095.96 18299.13 183
RPMNet89.76 27887.28 29497.19 16096.29 24392.66 22692.01 35798.31 15270.19 36296.94 14185.87 36187.25 19299.78 11162.69 36495.96 18299.13 183
tpm cat193.51 19892.52 21096.47 17897.77 18391.47 25896.13 33698.06 18180.98 33992.91 20793.78 32489.66 16698.87 16487.03 28696.39 17599.09 185
BH-w/o95.71 14295.38 13996.68 17498.49 14492.28 23499.84 10797.50 23392.12 19392.06 21598.79 16784.69 21598.67 17995.29 15899.66 8699.09 185
LS3D95.84 13895.11 14898.02 12499.85 5495.10 17098.74 26898.50 9787.22 28893.66 19899.86 2687.45 19099.95 6190.94 23599.81 7899.02 187
MIMVSNet90.30 26788.67 28095.17 21696.45 24291.64 25492.39 35597.15 26585.99 30390.50 22893.19 33166.95 32794.86 33982.01 31993.43 21299.01 188
thisisatest053097.10 9296.72 9598.22 11597.60 19696.70 11399.92 6798.54 8791.11 22497.07 14098.97 14597.47 1299.03 15993.73 19796.09 17998.92 189
BH-untuned95.18 15494.83 15696.22 18998.36 15091.22 26099.80 12197.32 25090.91 22891.08 22298.67 17183.51 22498.54 18594.23 18499.61 9198.92 189
F-COLMAP96.93 9896.95 8996.87 16899.71 7591.74 24899.85 10397.95 19093.11 15795.72 17399.16 13092.35 12599.94 6995.32 15799.35 10698.92 189
Anonymous2024052992.10 22990.65 24096.47 17898.82 12690.61 26998.72 27098.67 6375.54 35393.90 19698.58 17866.23 33099.90 7994.70 17490.67 22198.90 192
tttt051796.85 10096.49 10297.92 12797.48 20295.89 14299.85 10398.54 8790.72 23396.63 15098.93 15697.47 1299.02 16093.03 20995.76 18898.85 193
baseline195.78 13994.86 15598.54 9798.47 14598.07 6399.06 23397.99 18592.68 17294.13 19398.62 17593.28 10198.69 17893.79 19485.76 26798.84 194
VDD-MVS93.77 19192.94 19896.27 18898.55 13990.22 27798.77 26797.79 20690.85 23096.82 14699.42 10761.18 34799.77 11498.95 5494.13 20698.82 195
PatchMatch-RL96.04 13295.40 13797.95 12599.59 8195.22 16799.52 17799.07 3293.96 13096.49 15498.35 19082.28 23199.82 10690.15 25199.22 11198.81 196
PVSNet_088.03 1991.80 23690.27 24896.38 18598.27 15590.46 27399.94 5899.61 1293.99 12886.26 30597.39 21671.13 31399.89 8398.77 6767.05 35798.79 197
test_vis1_n_192095.44 15095.31 14195.82 19898.50 14388.74 29699.98 997.30 25297.84 899.85 799.19 12766.82 32899.97 5198.82 6499.46 10198.76 198
tpmvs94.28 18193.57 18396.40 18398.55 13991.50 25795.70 34498.55 8487.47 28392.15 21494.26 32091.42 13998.95 16388.15 27195.85 18598.76 198
h-mvs3394.92 16094.36 16396.59 17798.85 12591.29 25998.93 24998.94 3795.90 6298.77 8998.42 18990.89 15399.77 11497.80 11170.76 34798.72 200
xiu_mvs_v2_base98.23 5197.97 5399.02 6698.69 13398.66 4799.52 17798.08 18097.05 2999.86 599.86 2690.65 15599.71 12499.39 4098.63 12498.69 201
PS-MVSNAJ98.44 3798.20 4099.16 5198.80 12898.92 2699.54 17598.17 16997.34 1999.85 799.85 3091.20 14399.89 8399.41 3999.67 8598.69 201
MSDG94.37 17793.36 19297.40 15298.88 12493.95 19599.37 19997.38 24485.75 30890.80 22699.17 12984.11 22299.88 8986.35 29198.43 12898.36 203
CANet_DTU96.76 10596.15 10998.60 8998.78 12997.53 8299.84 10797.63 21497.25 2699.20 7199.64 9181.36 24099.98 4292.77 21298.89 11898.28 204
test_fmvs195.35 15295.68 13394.36 25098.99 11184.98 32799.96 2696.65 31197.60 1299.73 2898.96 14771.58 30999.93 7598.31 8999.37 10598.17 205
VDDNet93.12 20691.91 22196.76 17196.67 24192.65 22898.69 27398.21 16482.81 33297.75 12799.28 11661.57 34599.48 14598.09 9994.09 20798.15 206
MVS-HIRNet86.22 30183.19 31395.31 21196.71 24090.29 27692.12 35697.33 24962.85 36386.82 29470.37 36869.37 31797.49 24775.12 34697.99 14498.15 206
test_fmvs1_n94.25 18294.36 16393.92 26597.68 19383.70 33299.90 7696.57 31497.40 1899.67 3498.88 15861.82 34499.92 7698.23 9199.13 11498.14 208
UGNet95.33 15394.57 16097.62 14298.55 13994.85 17498.67 27599.32 2595.75 6796.80 14796.27 25272.18 30699.96 5494.58 17799.05 11698.04 209
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
DSMNet-mixed88.28 29288.24 28788.42 33089.64 35075.38 35898.06 30389.86 36985.59 31088.20 27892.14 34076.15 28591.95 35878.46 33596.05 18097.92 210
xiu_mvs_v1_base_debu97.43 7897.06 8398.55 9497.74 18598.14 6099.31 20697.86 20196.43 4999.62 3999.69 8285.56 20799.68 12899.05 4898.31 13197.83 211
xiu_mvs_v1_base97.43 7897.06 8398.55 9497.74 18598.14 6099.31 20697.86 20196.43 4999.62 3999.69 8285.56 20799.68 12899.05 4898.31 13197.83 211
xiu_mvs_v1_base_debi97.43 7897.06 8398.55 9497.74 18598.14 6099.31 20697.86 20196.43 4999.62 3999.69 8285.56 20799.68 12899.05 4898.31 13197.83 211
UniMVSNet_ETH3D90.06 27488.58 28194.49 24394.67 28488.09 30797.81 30997.57 22483.91 32588.44 27297.41 21457.44 35197.62 24491.41 22588.59 24097.77 214
cascas94.64 16993.61 17997.74 13897.82 18096.26 12899.96 2697.78 20785.76 30694.00 19497.54 21076.95 27599.21 15197.23 12795.43 19497.76 215
hse-mvs294.38 17694.08 17095.31 21198.27 15590.02 28299.29 21198.56 7895.90 6298.77 8998.00 19890.89 15398.26 21697.80 11169.20 35397.64 216
AUN-MVS93.28 20292.60 20595.34 20998.29 15290.09 28099.31 20698.56 7891.80 20596.35 16098.00 19889.38 17098.28 21292.46 21369.22 35297.64 216
OpenMVScopyleft90.15 1594.77 16493.59 18298.33 11196.07 24997.48 8899.56 17198.57 7690.46 23586.51 29998.95 15278.57 26699.94 6993.86 18899.74 8197.57 218
baseline296.71 10996.49 10297.37 15495.63 27095.96 14099.74 13898.88 4592.94 15991.61 21798.97 14597.72 798.62 18194.83 16998.08 14297.53 219
tt080591.28 24490.18 25194.60 23596.26 24587.55 31098.39 29098.72 5589.00 25689.22 25798.47 18662.98 34198.96 16290.57 24288.00 25197.28 220
RPSCF91.80 23692.79 20288.83 32598.15 16369.87 36198.11 30196.60 31383.93 32494.33 19099.27 11979.60 25899.46 14791.99 21893.16 21697.18 221
test0.0.03 193.86 18693.61 17994.64 23395.02 27992.18 23799.93 6498.58 7494.07 12287.96 28098.50 18193.90 8694.96 33781.33 32293.17 21596.78 222
AllTest92.48 22191.64 22495.00 22099.01 10888.43 30298.94 24896.82 30286.50 29788.71 26798.47 18674.73 29699.88 8985.39 29796.18 17796.71 223
TestCases95.00 22099.01 10888.43 30296.82 30286.50 29788.71 26798.47 18674.73 29699.88 8985.39 29796.18 17796.71 223
XVG-OURS-SEG-HR94.79 16294.70 15995.08 21798.05 16789.19 29199.08 22897.54 22793.66 14194.87 18399.58 9578.78 26499.79 10997.31 12493.40 21396.25 225
XVG-OURS94.82 16194.74 15895.06 21898.00 16989.19 29199.08 22897.55 22594.10 12094.71 18499.62 9280.51 25199.74 12096.04 14993.06 21896.25 225
Effi-MVS+-dtu94.53 17395.30 14292.22 29797.77 18382.54 33799.59 16697.06 27594.92 8795.29 17995.37 28685.81 20597.89 23594.80 17097.07 16196.23 227
testgi89.01 28888.04 28991.90 30293.49 30484.89 32899.73 14395.66 33593.89 13685.14 31298.17 19359.68 34894.66 34177.73 33888.88 23296.16 228
Fast-Effi-MVS+-dtu93.72 19493.86 17693.29 28297.06 21986.16 31999.80 12196.83 30092.66 17392.58 21297.83 20581.39 23997.67 24289.75 25696.87 16896.05 229
COLMAP_ROBcopyleft90.47 1492.18 22891.49 23094.25 25399.00 11088.04 30898.42 28996.70 30982.30 33588.43 27499.01 13876.97 27499.85 9586.11 29496.50 17394.86 230
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
HQP4-MVS93.37 20098.39 19894.53 231
HQP-MVS94.61 17094.50 16194.92 22395.78 25791.85 24499.87 8897.89 19796.82 3693.37 20098.65 17280.65 24998.39 19897.92 10889.60 22294.53 231
HQP_MVS94.49 17494.36 16394.87 22495.71 26691.74 24899.84 10797.87 19996.38 5293.01 20498.59 17680.47 25398.37 20497.79 11489.55 22594.52 233
plane_prior597.87 19998.37 20497.79 11489.55 22594.52 233
CLD-MVS94.06 18593.90 17494.55 23996.02 25190.69 26699.98 997.72 20896.62 4691.05 22498.85 16677.21 27298.47 18798.11 9789.51 22794.48 235
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
iter_conf_final96.01 13395.93 12396.28 18798.38 14897.03 10399.87 8897.03 27894.05 12692.61 21197.98 20198.01 597.34 25297.02 13388.39 24494.47 236
nrg03093.51 19892.53 20996.45 18094.36 28897.20 9699.81 11797.16 26491.60 20889.86 23997.46 21286.37 20197.68 24195.88 15280.31 31294.46 237
VPNet91.81 23390.46 24295.85 19794.74 28295.54 15598.98 24398.59 7392.14 19290.77 22797.44 21368.73 32097.54 24694.89 16877.89 32594.46 237
UniMVSNet_NR-MVSNet92.95 21092.11 21595.49 20294.61 28595.28 16399.83 11399.08 3191.49 21189.21 25896.86 23487.14 19396.73 29493.20 20377.52 32894.46 237
DU-MVS92.46 22291.45 23195.49 20294.05 29395.28 16399.81 11798.74 5492.25 19189.21 25896.64 24281.66 23696.73 29493.20 20377.52 32894.46 237
NR-MVSNet91.56 24190.22 24995.60 20094.05 29395.76 14698.25 29498.70 5791.16 22380.78 33396.64 24283.23 22896.57 30091.41 22577.73 32794.46 237
iter_conf0596.07 13095.95 12196.44 18298.43 14697.52 8399.91 7196.85 29894.16 11792.49 21397.98 20198.20 497.34 25297.26 12688.29 24594.45 242
TranMVSNet+NR-MVSNet91.68 24090.61 24194.87 22493.69 30093.98 19499.69 14998.65 6491.03 22688.44 27296.83 23880.05 25696.18 31590.26 25076.89 33694.45 242
FIs94.10 18393.43 18796.11 19194.70 28396.82 11199.58 16798.93 4192.54 18189.34 25397.31 21787.62 18897.10 27194.22 18586.58 26394.40 244
mvsmamba94.10 18393.72 17895.25 21393.57 30194.13 18999.67 15396.45 31993.63 14391.34 22197.77 20686.29 20297.22 26396.65 14288.10 24994.40 244
ACMM91.95 1092.88 21192.52 21093.98 26495.75 26289.08 29499.77 12797.52 23193.00 15889.95 23697.99 20076.17 28498.46 19093.63 19988.87 23394.39 246
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
RRT_MVS93.14 20592.92 19993.78 27093.31 30890.04 28199.66 15497.69 21092.53 18288.91 26597.76 20784.36 21896.93 28495.10 16086.99 26194.37 247
FC-MVSNet-test93.81 18993.15 19695.80 19994.30 29096.20 13399.42 19198.89 4392.33 18989.03 26397.27 21987.39 19196.83 29093.20 20386.48 26494.36 248
PS-MVSNAJss93.64 19693.31 19394.61 23492.11 32992.19 23699.12 22397.38 24492.51 18488.45 27196.99 23091.20 14397.29 26094.36 18087.71 25594.36 248
WR-MVS92.31 22591.25 23395.48 20594.45 28795.29 16299.60 16598.68 6090.10 24188.07 27996.89 23280.68 24896.80 29293.14 20679.67 31694.36 248
XXY-MVS91.82 23290.46 24295.88 19593.91 29695.40 16098.87 25797.69 21088.63 26987.87 28197.08 22474.38 29997.89 23591.66 22384.07 28394.35 251
MVSTER95.53 14895.22 14496.45 18098.56 13797.72 7499.91 7197.67 21292.38 18791.39 21997.14 22197.24 1897.30 25794.80 17087.85 25294.34 252
VPA-MVSNet92.70 21691.55 22896.16 19095.09 27696.20 13398.88 25499.00 3491.02 22791.82 21695.29 29276.05 28697.96 23195.62 15581.19 30094.30 253
FMVSNet392.69 21791.58 22695.99 19398.29 15297.42 9199.26 21497.62 21689.80 24789.68 24395.32 28881.62 23896.27 31287.01 28785.65 26894.29 254
EU-MVSNet90.14 27390.34 24689.54 32092.55 32481.06 34898.69 27398.04 18391.41 21886.59 29896.84 23780.83 24693.31 35386.20 29281.91 29594.26 255
UniMVSNet (Re)93.07 20892.13 21495.88 19594.84 28096.24 13299.88 8598.98 3592.49 18589.25 25595.40 28287.09 19497.14 26793.13 20778.16 32394.26 255
FMVSNet291.02 24989.56 26295.41 20797.53 19895.74 14798.98 24397.41 24287.05 28988.43 27495.00 30171.34 31096.24 31485.12 29985.21 27394.25 257
EI-MVSNet93.73 19393.40 19194.74 22996.80 23492.69 22599.06 23397.67 21288.96 25991.39 21999.02 13688.75 18197.30 25791.07 23087.85 25294.22 258
IterMVS-LS92.69 21792.11 21594.43 24896.80 23492.74 22299.45 18996.89 29588.98 25789.65 24695.38 28588.77 18096.34 30890.98 23482.04 29494.22 258
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
cl2293.77 19193.25 19595.33 21099.49 9094.43 18399.61 16498.09 17890.38 23689.16 26195.61 27090.56 15797.34 25291.93 21984.45 27994.21 260
miper_enhance_ethall94.36 17993.98 17295.49 20298.68 13495.24 16599.73 14397.29 25393.28 15289.86 23995.97 26194.37 7197.05 27492.20 21684.45 27994.19 261
miper_ehance_all_eth93.16 20492.60 20594.82 22897.57 19793.56 20399.50 18197.07 27488.75 26588.85 26695.52 27690.97 14996.74 29390.77 23984.45 27994.17 262
DIV-MVS_self_test92.32 22491.60 22594.47 24497.31 21192.74 22299.58 16796.75 30686.99 29287.64 28395.54 27489.55 16896.50 30288.58 26582.44 29194.17 262
GBi-Net90.88 25289.82 25794.08 25797.53 19891.97 23998.43 28696.95 28787.05 28989.68 24394.72 30771.34 31096.11 31787.01 28785.65 26894.17 262
test190.88 25289.82 25794.08 25797.53 19891.97 23998.43 28696.95 28787.05 28989.68 24394.72 30771.34 31096.11 31787.01 28785.65 26894.17 262
FMVSNet188.50 29086.64 29694.08 25795.62 27191.97 23998.43 28696.95 28783.00 33086.08 30794.72 30759.09 34996.11 31781.82 32184.07 28394.17 262
cl____92.31 22591.58 22694.52 24097.33 21092.77 22099.57 16996.78 30586.97 29387.56 28595.51 27789.43 16996.62 29888.60 26482.44 29194.16 267
eth_miper_zixun_eth92.41 22391.93 22093.84 26997.28 21490.68 26798.83 26196.97 28688.57 27089.19 26095.73 26789.24 17596.69 29689.97 25481.55 29794.15 268
miper_lstm_enhance91.81 23391.39 23293.06 28997.34 20889.18 29399.38 19796.79 30486.70 29687.47 28795.22 29490.00 16395.86 32688.26 26981.37 29994.15 268
Anonymous2023121189.86 27688.44 28394.13 25698.93 11790.68 26798.54 28198.26 16076.28 34986.73 29595.54 27470.60 31497.56 24590.82 23880.27 31394.15 268
c3_l92.53 22091.87 22294.52 24097.40 20592.99 21899.40 19296.93 29287.86 27988.69 26995.44 28089.95 16496.44 30490.45 24580.69 30994.14 271
jajsoiax91.92 23191.18 23494.15 25491.35 33890.95 26399.00 24297.42 24092.61 17687.38 28997.08 22472.46 30597.36 25094.53 17888.77 23594.13 272
bld_raw_dy_0_6492.74 21492.03 21894.87 22493.09 31493.46 20699.12 22395.41 34092.84 16390.44 23097.54 21078.08 27097.04 27693.94 18787.77 25494.11 273
mvs_tets91.81 23391.08 23594.00 26291.63 33690.58 27098.67 27597.43 23892.43 18687.37 29097.05 22771.76 30797.32 25694.75 17288.68 23794.11 273
v2v48291.30 24290.07 25595.01 21993.13 31093.79 19799.77 12797.02 27988.05 27789.25 25595.37 28680.73 24797.15 26687.28 28280.04 31594.09 275
LPG-MVS_test92.96 20992.71 20393.71 27395.43 27288.67 29899.75 13597.62 21692.81 16490.05 23298.49 18275.24 29098.40 19695.84 15389.12 22994.07 276
LGP-MVS_train93.71 27395.43 27288.67 29897.62 21692.81 16490.05 23298.49 18275.24 29098.40 19695.84 15389.12 22994.07 276
test_djsdf92.83 21292.29 21394.47 24491.90 33292.46 23199.55 17397.27 25591.17 22189.96 23596.07 26081.10 24296.89 28694.67 17588.91 23194.05 278
CP-MVSNet91.23 24690.22 24994.26 25293.96 29592.39 23399.09 22698.57 7688.95 26086.42 30296.57 24579.19 26196.37 30690.29 24978.95 31894.02 279
Patchmtry89.70 27988.49 28293.33 28196.24 24689.94 28691.37 36096.23 32378.22 34687.69 28293.31 32991.04 14796.03 32280.18 32982.10 29394.02 279
v192192090.46 26289.12 27194.50 24292.96 31892.46 23199.49 18396.98 28486.10 30289.61 24895.30 28978.55 26797.03 27982.17 31880.89 30894.01 281
v119290.62 26089.25 26994.72 23193.13 31093.07 21499.50 18197.02 27986.33 30089.56 24995.01 29979.22 26097.09 27382.34 31781.16 30194.01 281
v124090.20 27088.79 27894.44 24693.05 31692.27 23599.38 19796.92 29385.89 30489.36 25294.87 30677.89 27197.03 27980.66 32581.08 30494.01 281
OPM-MVS93.21 20392.80 20194.44 24693.12 31290.85 26599.77 12797.61 21996.19 5991.56 21898.65 17275.16 29498.47 18793.78 19589.39 22893.99 284
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ACMP92.05 992.74 21492.42 21293.73 27195.91 25588.72 29799.81 11797.53 22994.13 11887.00 29398.23 19274.07 30098.47 18796.22 14788.86 23493.99 284
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
OurMVSNet-221017-089.81 27789.48 26790.83 31091.64 33581.21 34698.17 29995.38 34291.48 21285.65 31097.31 21772.66 30497.29 26088.15 27184.83 27693.97 286
pmmvs590.17 27289.09 27293.40 28092.10 33089.77 28799.74 13895.58 33785.88 30587.24 29295.74 26573.41 30396.48 30388.54 26683.56 28693.95 287
PS-CasMVS90.63 25989.51 26593.99 26393.83 29791.70 25298.98 24398.52 9088.48 27186.15 30696.53 24775.46 28896.31 31088.83 26278.86 32093.95 287
IterMVS90.91 25190.17 25293.12 28696.78 23790.42 27598.89 25297.05 27789.03 25486.49 30095.42 28176.59 27995.02 33587.22 28384.09 28293.93 289
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
ACMH89.72 1790.64 25889.63 26093.66 27795.64 26988.64 30098.55 27997.45 23689.03 25481.62 32897.61 20969.75 31698.41 19489.37 25787.62 25793.92 290
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
v14419290.79 25589.52 26494.59 23693.11 31392.77 22099.56 17196.99 28286.38 29989.82 24294.95 30480.50 25297.10 27183.98 30780.41 31093.90 291
PEN-MVS90.19 27189.06 27393.57 27893.06 31590.90 26499.06 23398.47 9988.11 27685.91 30896.30 25176.67 27795.94 32587.07 28476.91 33593.89 292
XVG-ACMP-BASELINE91.22 24790.75 23892.63 29493.73 29985.61 32298.52 28397.44 23792.77 16789.90 23896.85 23566.64 32998.39 19892.29 21588.61 23893.89 292
v114491.09 24889.83 25694.87 22493.25 30993.69 20199.62 16396.98 28486.83 29589.64 24794.99 30280.94 24497.05 27485.08 30081.16 30193.87 294
MDA-MVSNet_test_wron85.51 30583.32 31292.10 29990.96 34188.58 30199.20 21896.52 31679.70 34357.12 36892.69 33479.11 26293.86 34877.10 34177.46 33093.86 295
IterMVS-SCA-FT90.85 25490.16 25392.93 29096.72 23989.96 28398.89 25296.99 28288.95 26086.63 29795.67 26876.48 28095.00 33687.04 28584.04 28593.84 296
YYNet185.50 30683.33 31192.00 30090.89 34288.38 30599.22 21796.55 31579.60 34457.26 36792.72 33279.09 26393.78 34977.25 34077.37 33193.84 296
MDA-MVSNet-bldmvs84.09 31481.52 32091.81 30391.32 33988.00 30998.67 27595.92 33080.22 34155.60 36993.32 32868.29 32393.60 35173.76 34776.61 33793.82 298
MVS_030489.28 28688.31 28592.21 29897.05 22086.53 31897.76 31099.57 1385.58 31193.86 19792.71 33351.04 36096.30 31184.49 30392.72 21993.79 299
ACMH+89.98 1690.35 26589.54 26392.78 29395.99 25286.12 32098.81 26397.18 26189.38 24983.14 32197.76 20768.42 32298.43 19289.11 26086.05 26693.78 300
v14890.70 25689.63 26093.92 26592.97 31790.97 26299.75 13596.89 29587.51 28288.27 27795.01 29981.67 23597.04 27687.40 28077.17 33393.75 301
pmmvs492.10 22991.07 23695.18 21592.82 32194.96 17299.48 18596.83 30087.45 28488.66 27096.56 24683.78 22396.83 29089.29 25884.77 27793.75 301
K. test v388.05 29387.24 29590.47 31391.82 33482.23 34098.96 24697.42 24089.05 25376.93 34895.60 27168.49 32195.42 33085.87 29681.01 30693.75 301
lessismore_v090.53 31190.58 34480.90 34995.80 33177.01 34795.84 26266.15 33196.95 28283.03 31375.05 34193.74 304
SixPastTwentyTwo88.73 28988.01 29090.88 30891.85 33382.24 33998.22 29795.18 34788.97 25882.26 32496.89 23271.75 30896.67 29784.00 30682.98 28793.72 305
our_test_390.39 26389.48 26793.12 28692.40 32689.57 28999.33 20396.35 32287.84 28085.30 31194.99 30284.14 22196.09 32080.38 32684.56 27893.71 306
LTVRE_ROB88.28 1890.29 26889.05 27494.02 26095.08 27790.15 27997.19 31797.43 23884.91 31983.99 31797.06 22674.00 30198.28 21284.08 30587.71 25593.62 307
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
ITE_SJBPF92.38 29595.69 26885.14 32595.71 33392.81 16489.33 25498.11 19470.23 31598.42 19385.91 29588.16 24893.59 308
v7n89.65 28088.29 28693.72 27292.22 32890.56 27199.07 23297.10 27085.42 31486.73 29594.72 30780.06 25597.13 26881.14 32378.12 32493.49 309
DTE-MVSNet89.40 28388.24 28792.88 29192.66 32389.95 28499.10 22598.22 16387.29 28685.12 31396.22 25376.27 28395.30 33483.56 31175.74 33993.41 310
V4291.28 24490.12 25494.74 22993.42 30693.46 20699.68 15197.02 27987.36 28589.85 24195.05 29781.31 24197.34 25287.34 28180.07 31493.40 311
anonymousdsp91.79 23890.92 23794.41 24990.76 34392.93 21998.93 24997.17 26289.08 25287.46 28895.30 28978.43 26996.92 28592.38 21488.73 23693.39 312
v890.54 26189.17 27094.66 23293.43 30593.40 21099.20 21896.94 29185.76 30687.56 28594.51 31481.96 23497.19 26484.94 30178.25 32293.38 313
ppachtmachnet_test89.58 28188.35 28493.25 28492.40 32690.44 27499.33 20396.73 30785.49 31285.90 30995.77 26481.09 24396.00 32476.00 34582.49 29093.30 314
v1090.25 26988.82 27794.57 23893.53 30393.43 20899.08 22896.87 29785.00 31687.34 29194.51 31480.93 24597.02 28182.85 31479.23 31793.26 315
PVSNet_BlendedMVS96.05 13195.82 12996.72 17399.59 8196.99 10599.95 4399.10 2994.06 12498.27 11395.80 26389.00 17899.95 6199.12 4687.53 25893.24 316
WR-MVS_H91.30 24290.35 24594.15 25494.17 29292.62 22999.17 22198.94 3788.87 26386.48 30194.46 31884.36 21896.61 29988.19 27078.51 32193.21 317
FMVSNet588.32 29187.47 29390.88 30896.90 22988.39 30497.28 31595.68 33482.60 33484.67 31492.40 33879.83 25791.16 36076.39 34481.51 29893.09 318
Anonymous2023120686.32 30085.42 30289.02 32489.11 35280.53 35299.05 23795.28 34385.43 31382.82 32293.92 32274.40 29893.44 35266.99 35981.83 29693.08 319
pm-mvs189.36 28487.81 29194.01 26193.40 30791.93 24298.62 27896.48 31886.25 30183.86 31896.14 25673.68 30297.04 27686.16 29375.73 34093.04 320
test_method80.79 32279.70 32684.08 33892.83 32067.06 36399.51 17995.42 33954.34 36781.07 33293.53 32644.48 36392.22 35778.90 33477.23 33292.94 321
UnsupCasMVSNet_eth85.52 30483.99 30590.10 31689.36 35183.51 33396.65 32797.99 18589.14 25175.89 35293.83 32363.25 34093.92 34681.92 32067.90 35692.88 322
USDC90.00 27588.96 27593.10 28894.81 28188.16 30698.71 27195.54 33893.66 14183.75 31997.20 22065.58 33298.31 20983.96 30887.49 25992.85 323
test_fmvs289.47 28289.70 25988.77 32894.54 28675.74 35699.83 11394.70 35294.71 9491.08 22296.82 23954.46 35497.78 23992.87 21088.27 24692.80 324
N_pmnet80.06 32580.78 32377.89 34591.94 33145.28 37998.80 26556.82 38278.10 34780.08 33693.33 32777.03 27395.76 32768.14 35882.81 28892.64 325
KD-MVS_2432*160088.00 29486.10 29893.70 27596.91 22694.04 19197.17 31897.12 26884.93 31781.96 32592.41 33692.48 12294.51 34279.23 33052.68 36892.56 326
miper_refine_blended88.00 29486.10 29893.70 27596.91 22694.04 19197.17 31897.12 26884.93 31781.96 32592.41 33692.48 12294.51 34279.23 33052.68 36892.56 326
pmmvs685.69 30283.84 30891.26 30790.00 34984.41 33097.82 30896.15 32675.86 35181.29 33095.39 28461.21 34696.87 28883.52 31273.29 34392.50 328
D2MVS92.76 21392.59 20893.27 28395.13 27589.54 29099.69 14999.38 2292.26 19087.59 28494.61 31385.05 21497.79 23791.59 22488.01 25092.47 329
CL-MVSNet_self_test84.50 31283.15 31488.53 32986.00 35881.79 34398.82 26297.35 24685.12 31583.62 32090.91 34576.66 27891.40 35969.53 35560.36 36592.40 330
MIMVSNet182.58 31880.51 32488.78 32686.68 35784.20 33196.65 32795.41 34078.75 34578.59 34192.44 33551.88 35889.76 36365.26 36378.95 31892.38 331
LF4IMVS89.25 28788.85 27690.45 31492.81 32281.19 34798.12 30094.79 34991.44 21486.29 30497.11 22265.30 33598.11 22288.53 26785.25 27292.07 332
TransMVSNet (Re)87.25 29785.28 30393.16 28593.56 30291.03 26198.54 28194.05 35683.69 32781.09 33196.16 25575.32 28996.40 30576.69 34368.41 35492.06 333
DeepMVS_CXcopyleft82.92 34195.98 25458.66 37196.01 32892.72 16878.34 34295.51 27758.29 35098.08 22382.57 31585.29 27192.03 334
Baseline_NR-MVSNet90.33 26689.51 26592.81 29292.84 31989.95 28499.77 12793.94 35784.69 32189.04 26295.66 26981.66 23696.52 30190.99 23376.98 33491.97 335
TinyColmap87.87 29686.51 29791.94 30195.05 27885.57 32397.65 31194.08 35584.40 32281.82 32796.85 23562.14 34398.33 20780.25 32886.37 26591.91 336
MS-PatchMatch90.65 25790.30 24791.71 30494.22 29185.50 32498.24 29597.70 20988.67 26786.42 30296.37 25067.82 32498.03 22783.62 31099.62 8891.60 337
KD-MVS_self_test83.59 31782.06 31788.20 33186.93 35680.70 35097.21 31696.38 32082.87 33182.49 32388.97 34967.63 32592.32 35673.75 34862.30 36491.58 338
tfpnnormal89.29 28587.61 29294.34 25194.35 28994.13 18998.95 24798.94 3783.94 32384.47 31595.51 27774.84 29597.39 24977.05 34280.41 31091.48 339
MVP-Stereo90.93 25090.45 24492.37 29691.25 34088.76 29598.05 30496.17 32587.27 28784.04 31695.30 28978.46 26897.27 26283.78 30999.70 8491.09 340
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
test20.0384.72 31183.99 30586.91 33388.19 35580.62 35198.88 25495.94 32988.36 27378.87 33994.62 31268.75 31989.11 36466.52 36075.82 33891.00 341
EG-PatchMatch MVS85.35 30783.81 30989.99 31890.39 34581.89 34298.21 29896.09 32781.78 33774.73 35493.72 32551.56 35997.12 27079.16 33388.61 23890.96 342
TDRefinement84.76 30982.56 31691.38 30674.58 37284.80 32997.36 31494.56 35384.73 32080.21 33596.12 25963.56 33998.39 19887.92 27463.97 36190.95 343
ambc83.23 34077.17 37062.61 36587.38 36694.55 35476.72 34986.65 35830.16 36796.36 30784.85 30269.86 34890.73 344
Anonymous2024052185.15 30883.81 30989.16 32388.32 35382.69 33598.80 26595.74 33279.72 34281.53 32990.99 34365.38 33494.16 34472.69 34981.11 30390.63 345
OpenMVS_ROBcopyleft79.82 2083.77 31681.68 31990.03 31788.30 35482.82 33498.46 28495.22 34573.92 35876.00 35191.29 34255.00 35396.94 28368.40 35788.51 24290.34 346
new_pmnet84.49 31382.92 31589.21 32290.03 34882.60 33696.89 32695.62 33680.59 34075.77 35389.17 34865.04 33694.79 34072.12 35181.02 30590.23 347
test_040285.58 30383.94 30790.50 31293.81 29885.04 32698.55 27995.20 34676.01 35079.72 33895.13 29564.15 33896.26 31366.04 36286.88 26290.21 348
test_vis1_rt86.87 29986.05 30089.34 32196.12 24778.07 35599.87 8883.54 37692.03 19778.21 34389.51 34745.80 36299.91 7796.25 14693.11 21790.03 349
pmmvs380.27 32477.77 32987.76 33280.32 36782.43 33898.23 29691.97 36572.74 36078.75 34087.97 35457.30 35290.99 36170.31 35362.37 36389.87 350
CMPMVSbinary61.59 2184.75 31085.14 30483.57 33990.32 34662.54 36696.98 32397.59 22374.33 35769.95 36096.66 24064.17 33798.32 20887.88 27588.41 24389.84 351
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
APD_test181.15 32180.92 32281.86 34292.45 32559.76 37096.04 33993.61 36073.29 35977.06 34696.64 24244.28 36496.16 31672.35 35082.52 28989.67 352
PM-MVS80.47 32378.88 32885.26 33683.79 36372.22 35995.89 34291.08 36785.71 30976.56 35088.30 35136.64 36693.90 34782.39 31669.57 35089.66 353
pmmvs-eth3d84.03 31581.97 31890.20 31584.15 36187.09 31498.10 30294.73 35183.05 32974.10 35687.77 35565.56 33394.01 34581.08 32469.24 35189.49 354
UnsupCasMVSNet_bld79.97 32777.03 33188.78 32685.62 35981.98 34193.66 35197.35 24675.51 35470.79 35983.05 36348.70 36194.91 33878.31 33660.29 36689.46 355
mvsany_test382.12 31981.14 32185.06 33781.87 36570.41 36097.09 32092.14 36491.27 22077.84 34488.73 35039.31 36595.49 32890.75 24071.24 34689.29 356
new-patchmatchnet81.19 32079.34 32786.76 33482.86 36480.36 35397.92 30695.27 34482.09 33672.02 35786.87 35762.81 34290.74 36271.10 35263.08 36289.19 357
LCM-MVSNet67.77 33464.73 33776.87 34662.95 37856.25 37389.37 36593.74 35944.53 37061.99 36280.74 36420.42 37786.53 36969.37 35659.50 36787.84 358
tmp_tt65.23 33762.94 34072.13 35244.90 38150.03 37781.05 36889.42 37238.45 37148.51 37399.90 1854.09 35578.70 37391.84 22218.26 37587.64 359
test_fmvs379.99 32680.17 32579.45 34484.02 36262.83 36499.05 23793.49 36188.29 27580.06 33786.65 35828.09 37088.00 36588.63 26373.27 34487.54 360
test_f78.40 32877.59 33080.81 34380.82 36662.48 36796.96 32493.08 36283.44 32874.57 35584.57 36227.95 37192.63 35584.15 30472.79 34587.32 361
EGC-MVSNET69.38 32963.76 33986.26 33590.32 34681.66 34596.24 33593.85 3580.99 3793.22 38092.33 33952.44 35692.92 35459.53 36784.90 27584.21 362
PMMVS267.15 33564.15 33876.14 34770.56 37562.07 36893.89 34987.52 37358.09 36460.02 36378.32 36522.38 37484.54 37059.56 36647.03 37081.80 363
testf168.38 33266.92 33372.78 35078.80 36850.36 37590.95 36287.35 37455.47 36558.95 36488.14 35220.64 37587.60 36657.28 36864.69 35980.39 364
APD_test268.38 33266.92 33372.78 35078.80 36850.36 37590.95 36287.35 37455.47 36558.95 36488.14 35220.64 37587.60 36657.28 36864.69 35980.39 364
FPMVS68.72 33168.72 33268.71 35365.95 37644.27 38195.97 34194.74 35051.13 36853.26 37090.50 34625.11 37383.00 37160.80 36580.97 30778.87 366
ANet_high56.10 33852.24 34167.66 35449.27 38056.82 37283.94 36782.02 37770.47 36133.28 37764.54 37217.23 37969.16 37545.59 37323.85 37477.02 367
test_vis3_rt68.82 33066.69 33575.21 34876.24 37160.41 36996.44 33068.71 38175.13 35550.54 37269.52 37016.42 38096.32 30980.27 32766.92 35868.89 368
MVEpermissive53.74 2251.54 34147.86 34562.60 35559.56 37950.93 37479.41 36977.69 37835.69 37436.27 37661.76 3755.79 38469.63 37437.97 37536.61 37167.24 369
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMVScopyleft49.05 2353.75 33951.34 34360.97 35640.80 38234.68 38274.82 37089.62 37137.55 37228.67 37872.12 3677.09 38281.63 37243.17 37468.21 35566.59 370
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
Gipumacopyleft66.95 33665.00 33672.79 34991.52 33767.96 36266.16 37195.15 34847.89 36958.54 36667.99 37129.74 36887.54 36850.20 37177.83 32662.87 371
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test12337.68 34439.14 34733.31 35919.94 38324.83 38498.36 2919.75 38415.53 37751.31 37187.14 35619.62 37817.74 37947.10 3723.47 37857.36 372
testmvs40.60 34344.45 34629.05 36019.49 38414.11 38599.68 15118.47 38320.74 37664.59 36198.48 18510.95 38117.09 38056.66 37011.01 37655.94 373
EMVS51.44 34251.22 34452.11 35870.71 37444.97 38094.04 34875.66 38035.34 37542.40 37561.56 37628.93 36965.87 37727.64 37724.73 37345.49 374
E-PMN52.30 34052.18 34252.67 35771.51 37345.40 37893.62 35276.60 37936.01 37343.50 37464.13 37327.11 37267.31 37631.06 37626.06 37245.30 375
wuyk23d20.37 34620.84 34918.99 36165.34 37727.73 38350.43 3727.67 3859.50 3788.01 3796.34 3796.13 38326.24 37823.40 37810.69 3772.99 376
test_blank0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.02 3800.00 3850.00 3810.00 3790.00 3790.00 377
uanet_test0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3810.00 3850.00 3810.00 3790.00 3790.00 377
DCPMVS0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3810.00 3850.00 3810.00 3790.00 3790.00 377
cdsmvs_eth3d_5k23.43 34531.24 3480.00 3620.00 3850.00 3860.00 37398.09 1780.00 3800.00 38199.67 8783.37 2260.00 3810.00 3790.00 3790.00 377
pcd_1.5k_mvsjas7.60 34810.13 3510.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 38191.20 1430.00 3810.00 3790.00 3790.00 377
sosnet-low-res0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3810.00 3850.00 3810.00 3790.00 3790.00 377
sosnet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3810.00 3850.00 3810.00 3790.00 3790.00 377
uncertanet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3810.00 3850.00 3810.00 3790.00 3790.00 377
Regformer0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3810.00 3850.00 3810.00 3790.00 3790.00 377
ab-mvs-re8.28 34711.04 3500.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 38199.40 1090.00 3850.00 3810.00 3790.00 3790.00 377
uanet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3810.00 3850.00 3810.00 3790.00 3790.00 377
FOURS199.92 3197.66 7999.95 4398.36 14395.58 7199.52 51
test_one_060199.94 1399.30 1198.41 12896.63 4499.75 2699.93 1197.49 10
eth-test20.00 385
eth-test0.00 385
ZD-MVS99.92 3198.57 5298.52 9092.34 18899.31 6699.83 4395.06 5299.80 10799.70 3099.97 42
test_241102_ONE99.93 2499.30 1198.43 11397.26 2599.80 1599.88 2196.71 24100.00 1
9.1498.38 2999.87 5199.91 7198.33 14893.22 15399.78 2399.89 1994.57 6499.85 9599.84 1899.97 42
save fliter99.82 5898.79 3699.96 2698.40 13297.66 11
test072699.93 2499.29 1499.96 2698.42 12497.28 2199.86 599.94 497.22 19
test_part299.89 4599.25 1799.49 53
sam_mvs94.25 75
MTGPAbinary98.28 157
test_post195.78 34359.23 37793.20 10497.74 24091.06 231
test_post63.35 37494.43 6598.13 221
patchmatchnet-post91.70 34195.12 4997.95 232
MTMP99.87 8896.49 317
gm-plane-assit96.97 22493.76 19991.47 21398.96 14798.79 16894.92 165
TEST999.92 3198.92 2699.96 2698.43 11393.90 13499.71 3099.86 2695.88 3799.85 95
test_899.92 3198.88 2999.96 2698.43 11394.35 10899.69 3299.85 3095.94 3499.85 95
agg_prior99.93 2498.77 3898.43 11399.63 3799.85 95
test_prior498.05 6499.94 58
test_prior299.95 4395.78 6599.73 2899.76 6296.00 3399.78 23100.00 1
旧先验299.46 18894.21 11699.85 799.95 6196.96 136
新几何299.40 192
原ACMM299.90 76
testdata299.99 3690.54 244
segment_acmp96.68 26
testdata199.28 21296.35 56
plane_prior795.71 26691.59 256
plane_prior695.76 26191.72 25180.47 253
plane_prior498.59 176
plane_prior391.64 25496.63 4493.01 204
plane_prior299.84 10796.38 52
plane_prior195.73 263
plane_prior91.74 24899.86 10096.76 4089.59 224
n20.00 386
nn0.00 386
door-mid89.69 370
test1198.44 105
door90.31 368
HQP5-MVS91.85 244
HQP-NCC95.78 25799.87 8896.82 3693.37 200
ACMP_Plane95.78 25799.87 8896.82 3693.37 200
BP-MVS97.92 108
HQP3-MVS97.89 19789.60 222
HQP2-MVS80.65 249
NP-MVS95.77 26091.79 24698.65 172
MDTV_nov1_ep1395.69 13197.90 17494.15 18895.98 34098.44 10593.12 15697.98 12095.74 26595.10 5098.58 18290.02 25296.92 167
ACMMP++_ref87.04 260
ACMMP++88.23 247
Test By Simon92.82 114