This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted by
DPM-MVS82.39 482.36 782.49 580.12 19859.50 592.24 890.72 1569.37 3383.22 894.47 263.81 593.18 3274.02 8493.25 294.80 1
LFMVS78.52 2577.14 4382.67 389.58 1358.90 891.27 1988.05 5563.22 12274.63 4890.83 7541.38 16994.40 2075.42 7279.90 9194.72 2
SED-MVS81.92 881.75 982.44 789.48 1756.89 2992.48 388.94 3157.50 23384.61 494.09 358.81 1296.37 682.28 2687.60 1894.06 3
OPU-MVS81.71 1392.05 355.97 4892.48 394.01 567.21 295.10 1589.82 392.55 394.06 3
DVP-MVS++82.44 382.38 682.62 491.77 457.49 1784.98 13788.88 3358.00 21983.60 693.39 1867.21 296.39 481.64 3191.98 493.98 5
PC_three_145266.58 6187.27 293.70 1066.82 494.95 1789.74 491.98 493.98 5
CSCG80.41 1579.72 1682.49 589.12 2557.67 1589.29 4191.54 559.19 19571.82 8290.05 9559.72 1096.04 1078.37 5088.40 1493.75 7
DELS-MVS82.32 582.50 581.79 1286.80 4756.89 2992.77 286.30 8977.83 177.88 3392.13 4160.24 794.78 1978.97 4489.61 893.69 8
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MVS76.91 4975.48 6281.23 1984.56 8255.21 6580.23 26491.64 458.65 20965.37 14491.48 6245.72 10495.05 1672.11 9889.52 1093.44 9
VNet77.99 3777.92 3178.19 7887.43 4250.12 19190.93 2291.41 867.48 5275.12 4390.15 9346.77 9191.00 8273.52 8978.46 10393.44 9
MCST-MVS83.01 183.30 282.15 1092.84 257.58 1693.77 191.10 1175.95 377.10 3793.09 2754.15 3795.57 1285.80 1085.87 3893.31 11
MM82.69 283.29 380.89 2284.38 8655.40 5992.16 1089.85 2175.28 482.41 1193.86 854.30 3493.98 2390.29 187.13 2193.30 12
WTY-MVS77.47 4377.52 3877.30 9588.33 3046.25 28588.46 5090.32 1771.40 1872.32 7791.72 5453.44 3992.37 4966.28 13175.42 13793.28 13
DeepPCF-MVS69.37 180.65 1381.56 1177.94 8485.46 6649.56 20390.99 2186.66 8170.58 2380.07 2495.30 156.18 2490.97 8582.57 2586.22 3693.28 13
sasdasda78.17 3377.86 3279.12 5084.30 8754.22 9487.71 6284.57 13767.70 4977.70 3492.11 4450.90 5589.95 11178.18 5477.54 11193.20 15
canonicalmvs78.17 3377.86 3279.12 5084.30 8754.22 9487.71 6284.57 13767.70 4977.70 3492.11 4450.90 5589.95 11178.18 5477.54 11193.20 15
MSLP-MVS++74.21 8972.25 10680.11 3681.45 16956.47 3886.32 9679.65 23458.19 21566.36 13292.29 4036.11 24290.66 9167.39 12282.49 6393.18 17
balanced_conf0380.28 1679.73 1581.90 1186.47 5159.34 680.45 25889.51 2369.76 2971.05 9486.66 16258.68 1593.24 3184.64 1490.40 693.14 18
CANet80.90 1181.17 1280.09 3787.62 4154.21 9691.60 1486.47 8573.13 879.89 2593.10 2549.88 6892.98 3384.09 1784.75 5093.08 19
TSAR-MVS + GP.77.82 3877.59 3678.49 6985.25 7150.27 19090.02 2690.57 1656.58 25274.26 5391.60 5954.26 3592.16 5575.87 6679.91 9093.05 20
MVS_030482.10 782.64 480.47 2786.63 4954.69 8492.20 986.66 8174.48 582.63 1093.80 950.83 5993.70 2890.11 286.44 3393.01 21
SD-MVS76.18 6074.85 7380.18 3285.39 6756.90 2885.75 10982.45 18056.79 24774.48 5191.81 5243.72 13590.75 8974.61 7878.65 10192.91 22
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
alignmvs78.08 3577.98 3078.39 7483.53 10353.22 12289.77 3285.45 10466.11 7176.59 4191.99 4854.07 3889.05 13777.34 6077.00 11692.89 23
MGCFI-Net74.07 9174.64 7772.34 22882.90 12643.33 31980.04 26779.96 22565.61 7974.93 4591.85 5148.01 7880.86 30371.41 9977.10 11492.84 24
dcpmvs_279.33 2178.94 2180.49 2589.75 1256.54 3684.83 14483.68 15667.85 4569.36 10590.24 8760.20 892.10 5884.14 1680.40 8292.82 25
ET-MVSNet_ETH3D75.23 7874.08 8278.67 6484.52 8355.59 5188.92 4489.21 2768.06 4253.13 30390.22 8949.71 6987.62 19972.12 9770.82 18292.82 25
VDDNet74.37 8772.13 11081.09 2079.58 20456.52 3790.02 2686.70 8052.61 29071.23 9087.20 15331.75 28993.96 2574.30 8275.77 13492.79 27
DVP-MVScopyleft81.30 1081.00 1382.20 889.40 2057.45 1992.34 589.99 1957.71 22781.91 1493.64 1255.17 2996.44 281.68 2987.13 2192.72 28
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
HPM-MVS++copyleft80.50 1480.71 1479.88 3987.34 4355.20 6789.93 2987.55 6766.04 7679.46 2693.00 3053.10 4191.76 6380.40 3789.56 992.68 29
test_241102_TWO88.76 4057.50 23383.60 694.09 356.14 2596.37 682.28 2687.43 2092.55 30
test_0728_SECOND82.20 889.50 1557.73 1392.34 588.88 3396.39 481.68 2987.13 2192.47 31
IU-MVS89.48 1757.49 1791.38 966.22 6988.26 182.83 2287.60 1892.44 32
CNVR-MVS81.76 981.90 881.33 1890.04 1057.70 1491.71 1188.87 3570.31 2577.64 3693.87 752.58 4493.91 2684.17 1587.92 1692.39 33
PHI-MVS77.49 4277.00 4478.95 5385.33 6950.69 17388.57 4988.59 4758.14 21673.60 5793.31 2143.14 14593.79 2773.81 8788.53 1392.37 34
MSC_two_6792asdad81.53 1591.77 456.03 4691.10 1196.22 881.46 3386.80 2892.34 35
No_MVS81.53 1591.77 456.03 4691.10 1196.22 881.46 3386.80 2892.34 35
test_0728_THIRD58.00 21981.91 1493.64 1256.54 2196.44 281.64 3186.86 2692.23 37
MSP-MVS82.30 683.47 178.80 5982.99 12252.71 13485.04 13488.63 4466.08 7386.77 392.75 3272.05 191.46 6983.35 2093.53 192.23 37
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
VDD-MVS76.08 6274.97 7179.44 4184.27 9053.33 11991.13 2085.88 9665.33 8772.37 7689.34 10832.52 27992.76 4077.90 5775.96 13192.22 39
CHOSEN 1792x268876.24 5974.03 8482.88 183.09 11762.84 285.73 11185.39 10669.79 2864.87 15283.49 19941.52 16893.69 2970.55 10381.82 6992.12 40
UBG78.86 2478.86 2278.86 5787.80 4055.43 5587.67 6491.21 1072.83 972.10 7988.40 12658.53 1689.08 13573.21 9477.98 10792.08 41
SMA-MVScopyleft79.10 2378.76 2480.12 3584.42 8455.87 4987.58 6986.76 7861.48 15280.26 2393.10 2546.53 9492.41 4879.97 3888.77 1192.08 41
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
lupinMVS78.38 2978.11 2979.19 4583.02 12055.24 6391.57 1584.82 12869.12 3476.67 3992.02 4644.82 12190.23 10580.83 3680.09 8692.08 41
testing9178.30 3277.54 3780.61 2388.16 3557.12 2587.94 6091.07 1471.43 1770.75 9788.04 13955.82 2692.65 4269.61 10875.00 14792.05 44
GG-mvs-BLEND77.77 8586.68 4850.61 17468.67 34588.45 5068.73 11287.45 14959.15 1190.67 9054.83 23187.67 1792.03 45
test_yl75.85 6774.83 7478.91 5488.08 3751.94 14991.30 1789.28 2557.91 22171.19 9189.20 11142.03 16092.77 3869.41 10975.07 14592.01 46
DCV-MVSNet75.85 6774.83 7478.91 5488.08 3751.94 14991.30 1789.28 2557.91 22171.19 9189.20 11142.03 16092.77 3869.41 10975.07 14592.01 46
patch_mono-280.84 1281.59 1078.62 6690.34 953.77 10488.08 5488.36 5176.17 279.40 2791.09 6455.43 2790.09 10885.01 1280.40 8291.99 48
testing9978.45 2677.78 3480.45 2888.28 3356.81 3287.95 5991.49 671.72 1470.84 9688.09 13557.29 1992.63 4469.24 11175.13 14391.91 49
DeepC-MVS_fast67.50 378.00 3677.63 3579.13 4988.52 2755.12 6989.95 2885.98 9568.31 3671.33 8992.75 3245.52 10790.37 9871.15 10185.14 4691.91 49
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
HY-MVS67.03 573.90 9573.14 9376.18 12584.70 7947.36 26875.56 29786.36 8866.27 6870.66 10083.91 19151.05 5389.31 12867.10 12572.61 16691.88 51
3Dnovator64.70 674.46 8572.48 10080.41 2982.84 13055.40 5983.08 19788.61 4667.61 5159.85 21188.66 12134.57 26093.97 2458.42 19788.70 1291.85 52
casdiffmvs_mvgpermissive77.75 3977.28 4079.16 4780.42 19454.44 9187.76 6185.46 10371.67 1571.38 8888.35 12951.58 4891.22 7579.02 4379.89 9291.83 53
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVSMamba_PlusPlus75.28 7673.39 8780.96 2180.85 18358.25 1074.47 30787.61 6650.53 30465.24 14583.41 20157.38 1892.83 3673.92 8687.13 2191.80 54
EPNet78.36 3078.49 2577.97 8285.49 6552.04 14789.36 3984.07 14973.22 777.03 3891.72 5449.32 7290.17 10773.46 9082.77 6091.69 55
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MVS_Test75.85 6774.93 7278.62 6684.08 9255.20 6783.99 16885.17 11868.07 4173.38 6182.76 21050.44 6189.00 14065.90 13580.61 7891.64 56
casdiffmvspermissive77.36 4476.85 4678.88 5680.40 19554.66 8787.06 8285.88 9672.11 1371.57 8588.63 12550.89 5890.35 9976.00 6579.11 9891.63 57
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Anonymous20240521170.11 16167.88 17876.79 11487.20 4447.24 27189.49 3577.38 28154.88 27266.14 13386.84 15820.93 35891.54 6756.45 22471.62 17491.59 58
gg-mvs-nofinetune67.43 21964.53 24476.13 12685.95 5547.79 26364.38 35988.28 5239.34 36466.62 12741.27 40158.69 1489.00 14049.64 26786.62 3191.59 58
xiu_mvs_v2_base79.86 1879.31 1981.53 1585.03 7560.73 491.65 1386.86 7670.30 2680.77 2093.07 2937.63 20992.28 5282.73 2485.71 3991.57 60
PS-MVSNAJ80.06 1779.52 1881.68 1485.58 6360.97 391.69 1287.02 7370.62 2280.75 2193.22 2437.77 20492.50 4682.75 2386.25 3591.57 60
MG-MVS78.42 2876.99 4582.73 293.17 164.46 189.93 2988.51 4964.83 9273.52 5988.09 13548.07 7692.19 5462.24 16284.53 5291.53 62
DPE-MVScopyleft79.82 1979.66 1780.29 3089.27 2455.08 7288.70 4787.92 5755.55 26381.21 1993.69 1156.51 2294.27 2278.36 5185.70 4091.51 63
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
NCCC79.57 2079.23 2080.59 2489.50 1556.99 2691.38 1688.17 5367.71 4873.81 5692.75 3246.88 8993.28 3078.79 4784.07 5591.50 64
Effi-MVS+75.24 7773.61 8680.16 3381.92 14857.42 2185.21 12676.71 29460.68 17073.32 6289.34 10847.30 8491.63 6568.28 11879.72 9391.42 65
test9_res78.72 4885.44 4391.39 66
baseline76.86 5276.24 5478.71 6280.47 19354.20 9883.90 17184.88 12771.38 1971.51 8689.15 11350.51 6090.55 9575.71 6778.65 10191.39 66
MVSFormer73.53 10472.19 10877.57 8983.02 12055.24 6381.63 23581.44 19750.28 30576.67 3990.91 7244.82 12186.11 24160.83 17480.09 8691.36 68
jason77.01 4876.45 5078.69 6379.69 20354.74 8090.56 2483.99 15268.26 3774.10 5490.91 7242.14 15789.99 11079.30 4179.12 9791.36 68
jason: jason.
train_agg76.91 4976.40 5178.45 7285.68 5955.42 5687.59 6784.00 15057.84 22472.99 6590.98 6744.99 11588.58 15878.19 5285.32 4491.34 70
testing22277.70 4077.22 4279.14 4886.95 4554.89 7887.18 7991.96 272.29 1271.17 9388.70 12055.19 2891.24 7465.18 14676.32 12791.29 71
CS-MVS76.77 5376.70 4876.99 10683.55 10248.75 22888.60 4885.18 11766.38 6672.47 7591.62 5845.53 10690.99 8474.48 7982.51 6291.23 72
testing1179.18 2278.85 2380.16 3388.33 3056.99 2688.31 5292.06 172.82 1070.62 10188.37 12757.69 1792.30 5075.25 7476.24 12891.20 73
EIA-MVS75.92 6575.18 6878.13 7985.14 7251.60 15887.17 8085.32 11064.69 9368.56 11390.53 8045.79 10391.58 6667.21 12482.18 6691.20 73
SF-MVS77.64 4177.42 3978.32 7683.75 10052.47 13986.63 9287.80 5858.78 20774.63 4892.38 3847.75 8191.35 7178.18 5486.85 2791.15 75
TSAR-MVS + MP.78.31 3178.26 2678.48 7081.33 17256.31 4281.59 23886.41 8669.61 3181.72 1688.16 13455.09 3188.04 18174.12 8386.31 3491.09 76
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
ETVMVS75.80 7175.44 6376.89 11086.23 5450.38 18385.55 11891.42 771.30 2068.80 11187.94 14156.42 2389.24 13056.54 22074.75 15091.07 77
agg_prior275.65 6885.11 4791.01 78
MAR-MVS76.76 5475.60 6080.21 3190.87 754.68 8589.14 4289.11 2862.95 12670.54 10292.33 3941.05 17094.95 1757.90 20886.55 3291.00 79
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
ab-mvs70.65 15569.11 16175.29 15580.87 18246.23 28673.48 31485.24 11659.99 17766.65 12680.94 24243.13 14688.69 15363.58 15468.07 20190.95 80
PMMVS72.98 11072.05 11375.78 13483.57 10148.60 23184.08 16482.85 17561.62 14868.24 11690.33 8628.35 30687.78 19172.71 9576.69 12190.95 80
SPE-MVS-test77.20 4577.25 4177.05 10184.60 8149.04 21889.42 3685.83 9865.90 7772.85 6891.98 5045.10 11291.27 7275.02 7684.56 5190.84 82
RRT-MVS73.29 10771.37 12379.07 5284.63 8054.16 9978.16 28386.64 8361.67 14760.17 20882.35 22640.63 17892.26 5370.19 10677.87 10890.81 83
mvs_anonymous72.29 12470.74 13076.94 10982.85 12954.72 8278.43 28281.54 19563.77 10861.69 19579.32 25651.11 5285.31 25962.15 16475.79 13390.79 84
PAPR75.20 7974.13 8078.41 7388.31 3255.10 7184.31 15885.66 10063.76 10967.55 12090.73 7743.48 14089.40 12566.36 13077.03 11590.73 85
Patchmatch-RL test58.72 30154.32 31471.92 24363.91 37244.25 30761.73 37055.19 38257.38 23549.31 32654.24 39237.60 21180.89 30162.19 16347.28 35390.63 86
Patchmatch-test53.33 33348.17 34368.81 28773.31 30042.38 33142.98 39858.23 37832.53 38238.79 37570.77 34539.66 18973.51 36125.18 37852.06 33790.55 87
test_prior78.39 7486.35 5354.91 7785.45 10489.70 11990.55 87
test1279.24 4486.89 4656.08 4585.16 11972.27 7847.15 8691.10 8085.93 3790.54 89
ACMMP_NAP76.43 5775.66 5978.73 6181.92 14854.67 8684.06 16685.35 10861.10 15972.99 6591.50 6140.25 18091.00 8276.84 6286.98 2590.51 90
APDe-MVScopyleft78.44 2778.20 2779.19 4588.56 2654.55 8989.76 3387.77 6155.91 25878.56 3092.49 3748.20 7592.65 4279.49 3983.04 5990.39 91
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
3Dnovator+62.71 772.29 12470.50 13477.65 8883.40 10851.29 16787.32 7386.40 8759.01 20258.49 24188.32 13132.40 28091.27 7257.04 21782.15 6790.38 92
CostFormer73.89 9672.30 10578.66 6582.36 14156.58 3375.56 29785.30 11166.06 7470.50 10376.88 28757.02 2089.06 13668.27 11968.74 19890.33 93
fmvsm_l_conf0.5_n75.95 6476.16 5575.31 15276.01 27048.44 23984.98 13771.08 34263.50 11681.70 1793.52 1550.00 6487.18 20987.80 576.87 11990.32 94
test_fmvsmconf_n74.41 8674.05 8375.49 14674.16 29448.38 24082.66 20572.57 32967.05 5775.11 4492.88 3146.35 9587.81 18683.93 1871.71 17390.28 95
CDPH-MVS76.05 6375.19 6778.62 6686.51 5054.98 7587.32 7384.59 13658.62 21070.75 9790.85 7443.10 14790.63 9370.50 10484.51 5390.24 96
ETV-MVS77.17 4676.74 4778.48 7081.80 15154.55 8986.13 10085.33 10968.20 3873.10 6490.52 8145.23 11190.66 9179.37 4080.95 7490.22 97
CANet_DTU73.71 10073.14 9375.40 14882.61 13750.05 19284.67 15079.36 24269.72 3075.39 4290.03 9629.41 30285.93 25267.99 12079.11 9890.22 97
fmvsm_l_conf0.5_n_a75.88 6676.07 5675.31 15276.08 26648.34 24285.24 12570.62 34563.13 12481.45 1893.62 1449.98 6687.40 20587.76 676.77 12090.20 99
sss70.49 15770.13 14671.58 24981.59 16239.02 34880.78 25584.71 13359.34 19066.61 12888.09 13537.17 22385.52 25561.82 16771.02 18090.20 99
SteuartSystems-ACMMP77.08 4776.33 5279.34 4380.98 17655.31 6189.76 3386.91 7562.94 12771.65 8391.56 6042.33 15392.56 4577.14 6183.69 5790.15 101
Skip Steuart: Steuart Systems R&D Blog.
PAPM76.76 5476.07 5678.81 5880.20 19659.11 786.86 8886.23 9068.60 3570.18 10488.84 11851.57 4987.16 21065.48 13986.68 3090.15 101
test250672.91 11272.43 10274.32 17880.12 19844.18 30983.19 19484.77 13164.02 10265.97 13687.43 15047.67 8288.72 15259.08 18879.66 9490.08 103
ECVR-MVScopyleft71.81 13371.00 12874.26 18080.12 19843.49 31484.69 14782.16 18164.02 10264.64 15487.43 15035.04 25589.21 13361.24 17179.66 9490.08 103
IB-MVS68.87 274.01 9272.03 11579.94 3883.04 11955.50 5390.24 2588.65 4267.14 5561.38 19881.74 23553.21 4094.28 2160.45 18262.41 25590.03 105
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
test_fmvsmconf0.1_n73.69 10173.15 9175.34 15070.71 33248.26 24582.15 21971.83 33466.75 6074.47 5292.59 3644.89 11887.78 19183.59 1971.35 17789.97 106
diffmvspermissive75.11 8174.65 7676.46 11778.52 22853.35 11783.28 19279.94 22670.51 2471.64 8488.72 11946.02 10086.08 24677.52 5875.75 13589.96 107
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DeepC-MVS67.15 476.90 5176.27 5378.80 5980.70 18755.02 7386.39 9486.71 7966.96 5867.91 11889.97 9748.03 7791.41 7075.60 6984.14 5489.96 107
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
h-mvs3373.95 9372.89 9677.15 10080.17 19750.37 18484.68 14883.33 16268.08 3971.97 8088.65 12442.50 15191.15 7878.82 4557.78 29589.91 109
ZNCC-MVS75.82 7075.02 7078.23 7783.88 9853.80 10386.91 8786.05 9459.71 18167.85 11990.55 7942.23 15591.02 8172.66 9685.29 4589.87 110
HFP-MVS74.37 8773.13 9578.10 8084.30 8753.68 10685.58 11584.36 14156.82 24565.78 14090.56 7840.70 17790.90 8669.18 11280.88 7589.71 111
1112_ss70.05 16469.37 15672.10 23280.77 18642.78 32585.12 13276.75 29159.69 18261.19 20092.12 4247.48 8383.84 27853.04 24468.21 20089.66 112
MVS_111021_HR76.39 5875.38 6579.42 4285.33 6956.47 3888.15 5384.97 12465.15 9066.06 13589.88 9843.79 13292.16 5575.03 7580.03 8989.64 113
test_fmvsmconf0.01_n71.97 13070.95 12975.04 16266.21 35747.87 26080.35 26170.08 34965.85 7872.69 7091.68 5639.99 18687.67 19582.03 2869.66 19289.58 114
fmvsm_s_conf0.5_n74.48 8474.12 8175.56 14176.96 25447.85 26185.32 12369.80 35264.16 10078.74 2893.48 1645.51 10889.29 12986.48 866.62 21389.55 115
PVSNet_Blended76.53 5676.54 4976.50 11685.91 5651.83 15388.89 4584.24 14667.82 4669.09 10989.33 11046.70 9288.13 17775.43 7081.48 7389.55 115
test111171.06 14770.42 13872.97 21279.48 20541.49 33784.82 14582.74 17664.20 9962.98 18187.43 15035.20 25287.92 18358.54 19478.42 10489.49 117
MP-MVS-pluss75.54 7475.03 6977.04 10281.37 17152.65 13684.34 15784.46 13961.16 15669.14 10891.76 5339.98 18788.99 14278.19 5284.89 4989.48 118
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
tpm270.82 15268.44 16877.98 8180.78 18556.11 4474.21 30981.28 20160.24 17568.04 11775.27 30552.26 4688.50 16355.82 22868.03 20289.33 119
fmvsm_s_conf0.1_n73.80 9773.26 9075.43 14773.28 30247.80 26284.57 15369.43 35463.34 11978.40 3193.29 2244.73 12489.22 13285.99 966.28 22089.26 120
PatchmatchNetpermissive67.07 23163.63 25177.40 9383.10 11558.03 1172.11 32977.77 27358.85 20559.37 22170.83 34437.84 20384.93 26842.96 30869.83 19189.26 120
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MTAPA72.73 11571.22 12577.27 9781.54 16553.57 10867.06 35281.31 19959.41 18868.39 11490.96 6936.07 24489.01 13973.80 8882.45 6489.23 122
tpm68.36 19867.48 19070.97 25979.93 20151.34 16576.58 29378.75 25567.73 4763.54 17774.86 30748.33 7472.36 36753.93 23863.71 23789.21 123
PAPM_NR71.80 13469.98 14877.26 9881.54 16553.34 11878.60 28185.25 11553.46 28360.53 20688.66 12145.69 10589.24 13056.49 22179.62 9689.19 124
EPMVS68.45 19765.44 23377.47 9284.91 7656.17 4371.89 33181.91 18961.72 14660.85 20272.49 33136.21 24187.06 21347.32 28371.62 17489.17 125
tpmrst71.04 14869.77 15074.86 16783.19 11455.86 5075.64 29678.73 25667.88 4464.99 15173.73 31749.96 6779.56 32365.92 13467.85 20589.14 126
GST-MVS74.87 8373.90 8577.77 8583.30 11053.45 11285.75 10985.29 11259.22 19466.50 13189.85 9940.94 17290.76 8870.94 10283.35 5889.10 127
TESTMET0.1,172.86 11372.33 10374.46 17281.98 14550.77 17185.13 12985.47 10266.09 7267.30 12183.69 19637.27 21983.57 28365.06 14878.97 10089.05 128
MP-MVScopyleft74.99 8274.33 7976.95 10882.89 12753.05 12885.63 11483.50 16157.86 22367.25 12290.24 8743.38 14288.85 15176.03 6482.23 6588.96 129
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
QAPM71.88 13269.33 15879.52 4082.20 14354.30 9386.30 9788.77 3956.61 25159.72 21387.48 14833.90 26795.36 1347.48 28281.49 7288.90 130
fmvsm_s_conf0.5_n_a73.68 10273.15 9175.29 15575.45 27748.05 25483.88 17268.84 35763.43 11878.60 2993.37 2045.32 10988.92 14785.39 1164.04 23388.89 131
APD-MVScopyleft76.15 6175.68 5877.54 9088.52 2753.44 11387.26 7885.03 12353.79 28074.91 4691.68 5643.80 13190.31 10174.36 8081.82 6988.87 132
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
GeoE69.96 16867.88 17876.22 12181.11 17551.71 15684.15 16276.74 29359.83 17960.91 20184.38 18541.56 16788.10 17951.67 25570.57 18588.84 133
Vis-MVSNetpermissive70.61 15669.34 15774.42 17480.95 18148.49 23686.03 10377.51 27858.74 20865.55 14387.78 14334.37 26285.95 25152.53 25280.61 7888.80 134
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
CDS-MVSNet70.48 15869.43 15473.64 20077.56 24348.83 22583.51 18277.45 27963.27 12162.33 18885.54 17543.85 12983.29 28857.38 21674.00 15388.79 135
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
region2R73.75 9972.55 9977.33 9483.90 9752.98 13085.54 11984.09 14856.83 24465.10 14790.45 8237.34 21890.24 10468.89 11480.83 7788.77 136
旧先验181.57 16447.48 26571.83 33488.66 12136.94 22978.34 10588.67 137
Fast-Effi-MVS+72.73 11571.15 12777.48 9182.75 13254.76 7986.77 9080.64 21263.05 12565.93 13784.01 18944.42 12689.03 13856.45 22476.36 12688.64 138
PVSNet62.49 869.27 18267.81 18273.64 20084.41 8551.85 15284.63 15177.80 27266.42 6559.80 21284.95 18222.14 35380.44 31155.03 23075.11 14488.62 139
ACMMPR73.76 9872.61 9777.24 9983.92 9652.96 13185.58 11584.29 14256.82 24565.12 14690.45 8237.24 22190.18 10669.18 11280.84 7688.58 140
131471.11 14569.41 15576.22 12179.32 20850.49 17880.23 26485.14 12159.44 18758.93 23088.89 11733.83 26989.60 12261.49 16977.42 11388.57 141
fmvsm_s_conf0.1_n_a72.82 11472.05 11375.12 16170.95 33147.97 25782.72 20468.43 35962.52 13478.17 3293.08 2844.21 12788.86 14884.82 1363.54 23988.54 142
Anonymous2024052969.71 17267.28 19377.00 10583.78 9950.36 18588.87 4685.10 12247.22 32764.03 16683.37 20227.93 31092.10 5857.78 21167.44 20788.53 143
mvsmamba69.38 18067.52 18974.95 16682.86 12852.22 14567.36 35076.75 29161.14 15749.43 32482.04 23237.26 22084.14 27573.93 8576.91 11788.50 144
TAMVS69.51 17968.16 17473.56 20376.30 26248.71 23082.57 20877.17 28462.10 13961.32 19984.23 18741.90 16283.46 28554.80 23373.09 16288.50 144
reproduce_model71.07 14669.67 15275.28 15781.51 16848.82 22681.73 23280.57 21547.81 32368.26 11590.78 7636.49 23988.60 15765.12 14774.76 14988.42 146
reproduce-ours71.77 13670.43 13675.78 13481.96 14649.54 20682.54 21181.01 20648.77 31769.21 10690.96 6937.13 22489.40 12566.28 13176.01 12988.39 147
our_new_method71.77 13670.43 13675.78 13481.96 14649.54 20682.54 21181.01 20648.77 31769.21 10690.96 6937.13 22489.40 12566.28 13176.01 12988.39 147
thisisatest051573.64 10372.20 10777.97 8281.63 15953.01 12986.69 9188.81 3862.53 13364.06 16585.65 17252.15 4792.50 4658.43 19569.84 19088.39 147
XVS72.92 11171.62 11776.81 11183.41 10552.48 13784.88 14283.20 16858.03 21763.91 16889.63 10335.50 24989.78 11565.50 13780.50 8088.16 150
X-MVStestdata65.85 24962.20 25776.81 11183.41 10552.48 13784.88 14283.20 16858.03 21763.91 1684.82 42035.50 24989.78 11565.50 13780.50 8088.16 150
Test_1112_low_res67.18 22666.23 21270.02 27578.75 22141.02 34183.43 18573.69 32157.29 23658.45 24382.39 22245.30 11080.88 30250.50 26166.26 22188.16 150
GSMVS88.13 153
sam_mvs138.86 19688.13 153
SCA63.84 25860.01 27975.32 15178.58 22757.92 1261.61 37177.53 27756.71 24857.75 25370.77 34531.97 28579.91 31948.80 27356.36 30188.13 153
EPNet_dtu66.25 24466.71 20164.87 32378.66 22534.12 36782.80 20375.51 30461.75 14564.47 16286.90 15737.06 22672.46 36643.65 30569.63 19488.02 156
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
UWE-MVS72.17 12772.15 10972.21 23082.26 14244.29 30686.83 8989.58 2265.58 8065.82 13985.06 17945.02 11484.35 27454.07 23675.18 14087.99 157
HPM-MVScopyleft72.60 11771.50 11975.89 13282.02 14451.42 16380.70 25683.05 17056.12 25764.03 16689.53 10437.55 21288.37 16670.48 10580.04 8887.88 158
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
PGM-MVS72.60 11771.20 12676.80 11382.95 12352.82 13383.07 19882.14 18256.51 25363.18 17889.81 10035.68 24889.76 11767.30 12380.19 8587.83 159
UGNet68.71 19367.11 19673.50 20480.55 19247.61 26484.08 16478.51 26159.45 18665.68 14282.73 21323.78 34085.08 26652.80 24776.40 12287.80 160
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
mPP-MVS71.79 13570.38 13976.04 12982.65 13652.06 14684.45 15481.78 19255.59 26262.05 19389.68 10233.48 27188.28 17465.45 14278.24 10687.77 161
FA-MVS(test-final)69.00 18666.60 20576.19 12483.48 10447.96 25974.73 30482.07 18457.27 23762.18 19078.47 26536.09 24392.89 3453.76 24071.32 17887.73 162
dp64.41 25361.58 26172.90 21382.40 13954.09 10072.53 32176.59 29760.39 17355.68 28070.39 34835.18 25376.90 34539.34 31861.71 25987.73 162
TR-MVS69.71 17267.85 18175.27 15882.94 12448.48 23787.40 7280.86 20957.15 24064.61 15687.08 15532.67 27889.64 12146.38 29171.55 17687.68 164
test_fmvsm_n_192075.56 7375.54 6175.61 13974.60 28849.51 20881.82 22974.08 31666.52 6480.40 2293.46 1746.95 8889.72 11886.69 775.30 13887.61 165
MIMVSNet63.12 26660.29 27671.61 24675.92 27246.65 27665.15 35581.94 18659.14 19954.65 28969.47 35125.74 32680.63 30741.03 31469.56 19587.55 166
baseline275.15 8074.54 7876.98 10781.67 15851.74 15583.84 17391.94 369.97 2758.98 22886.02 16859.73 991.73 6468.37 11770.40 18787.48 167
GA-MVS69.04 18466.70 20276.06 12875.11 27952.36 14183.12 19680.23 22063.32 12060.65 20579.22 25830.98 29488.37 16661.25 17066.41 21687.46 168
MonoMVSNet66.80 23764.41 24573.96 18876.21 26448.07 25376.56 29478.26 26664.34 9654.32 29374.02 31437.21 22286.36 23664.85 14953.96 32587.45 169
无先验85.19 12778.00 27049.08 31385.13 26552.78 24887.45 169
EPP-MVSNet71.14 14370.07 14774.33 17779.18 21246.52 27883.81 17486.49 8456.32 25657.95 24784.90 18354.23 3689.14 13458.14 20269.65 19387.33 171
MDTV_nov1_ep13_2view43.62 31371.13 33454.95 27159.29 22536.76 23246.33 29287.32 172
BH-RMVSNet70.08 16368.01 17576.27 11984.21 9151.22 16987.29 7679.33 24558.96 20463.63 17486.77 15933.29 27390.30 10344.63 30073.96 15487.30 173
CP-MVS72.59 11971.46 12076.00 13182.93 12552.32 14386.93 8682.48 17955.15 26763.65 17390.44 8535.03 25688.53 16268.69 11577.83 10987.15 174
baseline172.51 12072.12 11173.69 19985.05 7344.46 30283.51 18286.13 9371.61 1664.64 15487.97 14055.00 3289.48 12359.07 18956.05 30887.13 175
API-MVS74.17 9072.07 11280.49 2590.02 1158.55 987.30 7584.27 14357.51 23265.77 14187.77 14441.61 16695.97 1151.71 25482.63 6186.94 176
AUN-MVS68.20 20466.35 20873.76 19676.37 25847.45 26679.52 27379.52 23660.98 16262.34 18786.02 16836.59 23886.94 21762.32 16153.47 33186.89 177
LCM-MVSNet-Re58.82 30056.54 29965.68 31579.31 20929.09 39161.39 37345.79 39160.73 16937.65 37872.47 33231.42 29181.08 30049.66 26670.41 18686.87 178
HyFIR lowres test69.94 16967.58 18577.04 10277.11 25357.29 2281.49 24379.11 24858.27 21458.86 23380.41 24642.33 15386.96 21661.91 16568.68 19986.87 178
xiu_mvs_v1_base_debu71.60 13870.29 14275.55 14277.26 24853.15 12385.34 12079.37 23955.83 25972.54 7190.19 9022.38 34986.66 22573.28 9176.39 12386.85 180
xiu_mvs_v1_base71.60 13870.29 14275.55 14277.26 24853.15 12385.34 12079.37 23955.83 25972.54 7190.19 9022.38 34986.66 22573.28 9176.39 12386.85 180
xiu_mvs_v1_base_debi71.60 13870.29 14275.55 14277.26 24853.15 12385.34 12079.37 23955.83 25972.54 7190.19 9022.38 34986.66 22573.28 9176.39 12386.85 180
hse-mvs271.44 14170.68 13173.73 19876.34 25947.44 26779.45 27479.47 23868.08 3971.97 8086.01 17042.50 15186.93 21878.82 4553.46 33286.83 183
PVSNet_Blended_VisFu73.40 10672.44 10176.30 11881.32 17354.70 8385.81 10578.82 25263.70 11064.53 15885.38 17647.11 8787.38 20667.75 12177.55 11086.81 184
EC-MVSNet75.30 7575.20 6675.62 13880.98 17649.00 21987.43 7084.68 13463.49 11770.97 9590.15 9342.86 15091.14 7974.33 8181.90 6886.71 185
VPNet72.07 12871.42 12274.04 18578.64 22647.17 27289.91 3187.97 5672.56 1164.66 15385.04 18041.83 16488.33 17061.17 17260.97 26286.62 186
MVS_111021_LR69.07 18367.91 17672.54 22177.27 24749.56 20379.77 26973.96 31959.33 19260.73 20487.82 14230.19 29981.53 29669.94 10772.19 17086.53 187
IS-MVSNet68.80 19167.55 18772.54 22178.50 22943.43 31681.03 24879.35 24359.12 20057.27 26486.71 16046.05 9987.70 19444.32 30275.60 13686.49 188
tpm cat166.28 24362.78 25376.77 11581.40 17057.14 2470.03 33877.19 28353.00 28758.76 23670.73 34746.17 9686.73 22343.27 30664.46 23186.44 189
PCF-MVS61.03 1070.10 16268.40 16975.22 16077.15 25251.99 14879.30 27682.12 18356.47 25461.88 19486.48 16643.98 12887.24 20855.37 22972.79 16586.43 190
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
test-LLR69.65 17669.01 16271.60 24778.67 22348.17 24885.13 12979.72 23159.18 19763.13 17982.58 21736.91 23080.24 31360.56 17875.17 14186.39 191
test-mter68.36 19867.29 19271.60 24778.67 22348.17 24885.13 12979.72 23153.38 28463.13 17982.58 21727.23 31680.24 31360.56 17875.17 14186.39 191
test_vis1_n_192068.59 19668.31 17069.44 28069.16 34341.51 33684.63 15168.58 35858.80 20673.26 6388.37 12725.30 32980.60 30879.10 4267.55 20686.23 193
dmvs_re67.61 21366.00 21772.42 22581.86 15043.45 31564.67 35880.00 22369.56 3260.07 20985.00 18134.71 25887.63 19751.48 25666.68 21186.17 194
SDMVSNet71.89 13170.62 13375.70 13781.70 15551.61 15773.89 31088.72 4166.58 6161.64 19682.38 22337.63 20989.48 12377.44 5965.60 22386.01 195
sd_testset67.79 21065.95 21973.32 20581.70 15546.33 28368.99 34380.30 21966.58 6161.64 19682.38 22330.45 29787.63 19755.86 22665.60 22386.01 195
nrg03072.27 12671.56 11874.42 17475.93 27150.60 17586.97 8483.21 16762.75 12967.15 12384.38 18550.07 6386.66 22571.19 10062.37 25685.99 197
BH-w/o70.02 16568.51 16774.56 17082.77 13150.39 18286.60 9378.14 26859.77 18059.65 21485.57 17439.27 19287.30 20749.86 26574.94 14885.99 197
XXY-MVS70.18 16069.28 16072.89 21577.64 24042.88 32485.06 13387.50 6862.58 13262.66 18682.34 22743.64 13789.83 11458.42 19763.70 23885.96 199
SR-MVS70.92 15169.73 15174.50 17183.38 10950.48 17984.27 15979.35 24348.96 31566.57 13090.45 8233.65 27087.11 21166.42 12874.56 15185.91 200
test_cas_vis1_n_192067.10 22866.60 20568.59 29365.17 36543.23 32083.23 19369.84 35155.34 26670.67 9987.71 14524.70 33676.66 34778.57 4964.20 23285.89 201
新几何173.30 20783.10 11553.48 10971.43 34045.55 33966.14 13387.17 15433.88 26880.54 30948.50 27680.33 8485.88 202
CLD-MVS75.60 7275.39 6476.24 12080.69 18852.40 14090.69 2386.20 9174.40 665.01 15088.93 11542.05 15990.58 9476.57 6373.96 15485.73 203
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
ACMMPcopyleft70.81 15369.29 15975.39 14981.52 16751.92 15183.43 18583.03 17156.67 25058.80 23588.91 11631.92 28788.58 15865.89 13673.39 15885.67 204
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
OMC-MVS65.97 24865.06 23968.71 29072.97 30742.58 32978.61 28075.35 30754.72 27359.31 22386.25 16733.30 27277.88 33657.99 20367.05 20985.66 205
APD-MVS_3200maxsize69.62 17768.23 17373.80 19581.58 16348.22 24681.91 22579.50 23748.21 32164.24 16489.75 10131.91 28887.55 20163.08 15673.85 15685.64 206
VPA-MVSNet71.12 14470.66 13272.49 22378.75 22144.43 30487.64 6590.02 1863.97 10565.02 14981.58 23842.14 15787.42 20463.42 15563.38 24385.63 207
thisisatest053070.47 15968.56 16576.20 12379.78 20251.52 16183.49 18488.58 4857.62 23058.60 23782.79 20951.03 5491.48 6852.84 24662.36 25785.59 208
cascas69.01 18566.13 21477.66 8779.36 20655.41 5886.99 8383.75 15556.69 24958.92 23181.35 23924.31 33892.10 5853.23 24170.61 18485.46 209
DP-MVS Recon71.99 12970.31 14177.01 10490.65 853.44 11389.37 3782.97 17356.33 25563.56 17689.47 10534.02 26592.15 5754.05 23772.41 16785.43 210
test22279.36 20650.97 17077.99 28567.84 36042.54 35862.84 18386.53 16430.26 29876.91 11785.23 211
TAPA-MVS56.12 1461.82 27960.18 27866.71 30978.48 23037.97 35575.19 30276.41 29946.82 33057.04 26586.52 16527.67 31477.03 34226.50 37667.02 21085.14 212
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
testdata67.08 30577.59 24245.46 29469.20 35544.47 34771.50 8788.34 13031.21 29270.76 37252.20 25375.88 13285.03 213
OpenMVScopyleft61.00 1169.99 16767.55 18777.30 9578.37 23254.07 10184.36 15685.76 9957.22 23856.71 27087.67 14630.79 29592.83 3643.04 30784.06 5685.01 214
WBMVS73.93 9473.39 8775.55 14287.82 3955.21 6589.37 3787.29 6967.27 5363.70 17280.30 24760.32 686.47 23161.58 16862.85 25284.97 215
PVSNet_057.04 1361.19 28257.24 29573.02 21077.45 24550.31 18879.43 27577.36 28263.96 10647.51 33972.45 33325.03 33283.78 28052.76 25019.22 40884.96 216
HQP4-MVS64.47 16288.61 15684.91 217
HQP-MVS72.34 12271.44 12175.03 16379.02 21551.56 15988.00 5583.68 15665.45 8164.48 15985.13 17737.35 21688.62 15566.70 12673.12 16084.91 217
test_fmvsmvis_n_192071.29 14270.38 13974.00 18771.04 33048.79 22779.19 27764.62 36862.75 12966.73 12491.99 4840.94 17288.35 16883.00 2173.18 15984.85 219
BH-untuned68.28 20166.40 20773.91 19081.62 16050.01 19385.56 11777.39 28057.63 22957.47 26183.69 19636.36 24087.08 21244.81 29873.08 16384.65 220
HQP_MVS70.96 15069.91 14974.12 18377.95 23649.57 20185.76 10782.59 17763.60 11362.15 19183.28 20436.04 24588.30 17265.46 14072.34 16884.49 221
plane_prior582.59 17788.30 17265.46 14072.34 16884.49 221
XVG-OURS-SEG-HR62.02 27759.54 28169.46 27965.30 36345.88 28865.06 35673.57 32346.45 33357.42 26283.35 20326.95 31878.09 33053.77 23964.03 23484.42 223
Vis-MVSNet (Re-imp)65.52 25065.63 22765.17 32177.49 24430.54 37975.49 30077.73 27459.34 19052.26 31086.69 16149.38 7180.53 31037.07 32675.28 13984.42 223
FMVSNet368.84 18867.40 19173.19 20985.05 7348.53 23485.71 11385.36 10760.90 16657.58 25679.15 25942.16 15686.77 22147.25 28463.40 24084.27 225
FE-MVS64.15 25560.43 27575.30 15480.85 18349.86 19768.28 34778.37 26450.26 30859.31 22373.79 31626.19 32391.92 6140.19 31566.67 21284.12 226
原ACMM176.13 12684.89 7754.59 8885.26 11451.98 29466.70 12587.07 15640.15 18389.70 11951.23 25885.06 4884.10 227
FMVSNet267.57 21565.79 22372.90 21382.71 13347.97 25785.15 12884.93 12558.55 21156.71 27078.26 26636.72 23586.67 22446.15 29362.94 25184.07 228
FIs70.00 16670.24 14569.30 28177.93 23838.55 35183.99 16887.72 6366.86 5957.66 25484.17 18852.28 4585.31 25952.72 25168.80 19784.02 229
XVG-OURS61.88 27859.34 28369.49 27865.37 36246.27 28464.80 35773.49 32447.04 32957.41 26382.85 20825.15 33178.18 32853.00 24564.98 22584.01 230
tttt051768.33 20066.29 21074.46 17278.08 23449.06 21580.88 25389.08 2954.40 27854.75 28880.77 24451.31 5190.33 10049.35 26958.01 28983.99 231
114514_t69.87 17067.88 17875.85 13388.38 2952.35 14286.94 8583.68 15653.70 28155.68 28085.60 17330.07 30091.20 7655.84 22771.02 18083.99 231
UA-Net67.32 22366.23 21270.59 26378.85 21941.23 34073.60 31275.45 30661.54 15066.61 12884.53 18438.73 19786.57 23042.48 31274.24 15283.98 233
thres20068.71 19367.27 19473.02 21084.73 7846.76 27585.03 13587.73 6262.34 13759.87 21083.45 20043.15 14488.32 17131.25 35667.91 20483.98 233
UniMVSNet_NR-MVSNet68.82 18968.29 17170.40 26775.71 27442.59 32784.23 16086.78 7766.31 6758.51 23882.45 22051.57 4984.64 27253.11 24255.96 30983.96 235
CVMVSNet60.85 28460.44 27462.07 33675.00 28232.73 37479.54 27173.49 32436.98 37256.28 27683.74 19429.28 30469.53 37546.48 29063.23 24583.94 236
TranMVSNet+NR-MVSNet66.94 23465.61 22870.93 26073.45 29943.38 31783.02 20084.25 14465.31 8858.33 24581.90 23439.92 18885.52 25549.43 26854.89 31883.89 237
MVSTER73.25 10872.33 10376.01 13085.54 6453.76 10583.52 17887.16 7167.06 5663.88 17081.66 23652.77 4290.44 9664.66 15064.69 22983.84 238
UniMVSNet_ETH3D62.51 27260.49 27368.57 29468.30 35140.88 34373.89 31079.93 22751.81 29854.77 28779.61 25324.80 33481.10 29949.93 26461.35 26083.73 239
tt080563.39 26361.31 26669.64 27769.36 34138.87 34978.00 28485.48 10148.82 31655.66 28281.66 23624.38 33786.37 23549.04 27259.36 27383.68 240
PS-MVSNAJss68.78 19267.17 19573.62 20273.01 30648.33 24484.95 14084.81 12959.30 19358.91 23279.84 25237.77 20488.86 14862.83 15863.12 24983.67 241
HPM-MVS_fast67.86 20766.28 21172.61 21980.67 18948.34 24281.18 24675.95 30250.81 30359.55 21888.05 13827.86 31185.98 24858.83 19173.58 15783.51 242
Fast-Effi-MVS+-dtu66.53 24064.10 24973.84 19372.41 31452.30 14484.73 14675.66 30359.51 18556.34 27579.11 26028.11 30885.85 25357.74 21263.29 24483.35 243
GBi-Net67.09 22965.47 23171.96 23882.71 13346.36 28083.52 17883.31 16358.55 21157.58 25676.23 29636.72 23586.20 23747.25 28463.40 24083.32 244
test167.09 22965.47 23171.96 23882.71 13346.36 28083.52 17883.31 16358.55 21157.58 25676.23 29636.72 23586.20 23747.25 28463.40 24083.32 244
FMVSNet164.57 25262.11 25871.96 23877.32 24646.36 28083.52 17883.31 16352.43 29254.42 29176.23 29627.80 31286.20 23742.59 31161.34 26183.32 244
DU-MVS66.84 23665.74 22570.16 27073.27 30342.59 32781.50 24182.92 17463.53 11558.51 23882.11 23040.75 17484.64 27253.11 24255.96 30983.24 247
NR-MVSNet67.25 22465.99 21871.04 25873.27 30343.91 31085.32 12384.75 13266.05 7553.65 30182.11 23045.05 11385.97 25047.55 28156.18 30683.24 247
SR-MVS-dyc-post68.27 20266.87 19772.48 22480.96 17848.14 25081.54 23976.98 28746.42 33462.75 18489.42 10631.17 29386.09 24560.52 18072.06 17183.19 249
RE-MVS-def66.66 20380.96 17848.14 25081.54 23976.98 28746.42 33462.75 18489.42 10629.28 30460.52 18072.06 17183.19 249
UniMVSNet (Re)67.71 21166.80 19970.45 26574.44 28942.93 32382.42 21684.90 12663.69 11159.63 21580.99 24147.18 8585.23 26251.17 25956.75 30083.19 249
WR-MVS67.58 21466.76 20070.04 27475.92 27245.06 30086.23 9885.28 11364.31 9758.50 24081.00 24044.80 12382.00 29549.21 27155.57 31483.06 252
OPM-MVS70.75 15469.58 15374.26 18075.55 27651.34 16586.05 10283.29 16661.94 14362.95 18285.77 17134.15 26488.44 16465.44 14371.07 17982.99 253
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
FC-MVSNet-test67.49 21767.91 17666.21 31376.06 26733.06 37280.82 25487.18 7064.44 9554.81 28682.87 20750.40 6282.60 29048.05 27966.55 21582.98 254
v2v48269.55 17867.64 18475.26 15972.32 31653.83 10284.93 14181.94 18665.37 8660.80 20379.25 25741.62 16588.98 14363.03 15759.51 27082.98 254
EI-MVSNet-Vis-set73.19 10972.60 9874.99 16582.56 13849.80 19982.55 21089.00 3066.17 7065.89 13888.98 11443.83 13092.29 5165.38 14569.01 19682.87 256
reproduce_monomvs69.71 17268.52 16673.29 20886.43 5248.21 24783.91 17086.17 9268.02 4354.91 28577.46 27542.96 14888.86 14868.44 11648.38 34582.80 257
thres100view90066.87 23565.42 23471.24 25383.29 11143.15 32181.67 23487.78 5959.04 20155.92 27882.18 22943.73 13387.80 18828.80 36366.36 21782.78 258
tfpn200view967.57 21566.13 21471.89 24584.05 9345.07 29783.40 18787.71 6460.79 16757.79 25182.76 21043.53 13887.80 18828.80 36366.36 21782.78 258
v14868.24 20366.35 20873.88 19171.76 32051.47 16284.23 16081.90 19063.69 11158.94 22976.44 29243.72 13587.78 19160.63 17655.86 31182.39 260
Anonymous2023121166.08 24763.67 25073.31 20683.07 11848.75 22886.01 10484.67 13545.27 34156.54 27276.67 29028.06 30988.95 14452.78 24859.95 26582.23 261
miper_enhance_ethall69.77 17168.90 16372.38 22678.93 21849.91 19583.29 19178.85 25064.90 9159.37 22179.46 25452.77 4285.16 26463.78 15258.72 27782.08 262
v114468.81 19066.82 19874.80 16872.34 31553.46 11084.68 14881.77 19364.25 9860.28 20777.91 26840.23 18188.95 14460.37 18359.52 26981.97 263
dmvs_testset57.65 30958.21 29055.97 36174.62 2879.82 42263.75 36163.34 37267.23 5448.89 32883.68 19839.12 19376.14 34823.43 38459.80 26881.96 264
cl2268.85 18767.69 18372.35 22778.07 23549.98 19482.45 21578.48 26262.50 13558.46 24277.95 26749.99 6585.17 26362.55 15958.72 27781.90 265
v119267.96 20665.74 22574.63 16971.79 31953.43 11584.06 16680.99 20863.19 12359.56 21777.46 27537.50 21588.65 15458.20 20158.93 27681.79 266
miper_ehance_all_eth68.70 19567.58 18572.08 23376.91 25549.48 20982.47 21478.45 26362.68 13158.28 24677.88 26950.90 5585.01 26761.91 16558.72 27781.75 267
EI-MVSNet-UG-set72.37 12171.73 11674.29 17981.60 16149.29 21381.85 22788.64 4365.29 8965.05 14888.29 13243.18 14391.83 6263.74 15367.97 20381.75 267
test0.0.03 162.54 27162.44 25562.86 33572.28 31829.51 38882.93 20178.78 25359.18 19753.07 30482.41 22136.91 23077.39 34037.45 32258.96 27581.66 269
CPTT-MVS67.15 22765.84 22271.07 25780.96 17850.32 18781.94 22474.10 31546.18 33757.91 24887.64 14729.57 30181.31 29864.10 15170.18 18981.56 270
c3_l67.97 20566.66 20371.91 24476.20 26549.31 21282.13 22178.00 27061.99 14157.64 25576.94 28449.41 7084.93 26860.62 17757.01 29981.49 271
v192192067.45 21865.23 23774.10 18471.51 32452.90 13283.75 17680.44 21662.48 13659.12 22777.13 28036.98 22887.90 18457.53 21358.14 28781.49 271
miper_lstm_enhance63.91 25762.30 25668.75 28975.06 28146.78 27469.02 34281.14 20259.68 18352.76 30572.39 33440.71 17677.99 33456.81 21953.09 33381.48 273
CR-MVSNet62.47 27459.04 28672.77 21673.97 29756.57 3460.52 37471.72 33660.04 17657.49 25965.86 36338.94 19480.31 31242.86 30959.93 26681.42 274
RPMNet59.29 29154.25 31574.42 17473.97 29756.57 3460.52 37476.98 28735.72 37657.49 25958.87 38637.73 20785.26 26127.01 37459.93 26681.42 274
v14419267.86 20765.76 22474.16 18271.68 32153.09 12684.14 16380.83 21062.85 12859.21 22677.28 27939.30 19188.00 18258.67 19357.88 29381.40 276
DIV-MVS_self_test67.43 21965.93 22071.94 24276.33 26048.01 25682.57 20879.11 24861.31 15456.73 26876.92 28546.09 9886.43 23457.98 20456.31 30381.39 277
cl____67.43 21965.93 22071.95 24176.33 26048.02 25582.58 20779.12 24761.30 15556.72 26976.92 28546.12 9786.44 23357.98 20456.31 30381.38 278
v124066.99 23264.68 24273.93 18971.38 32752.66 13583.39 18979.98 22461.97 14258.44 24477.11 28135.25 25187.81 18656.46 22358.15 28581.33 279
PVSNet_BlendedMVS73.42 10573.30 8973.76 19685.91 5651.83 15386.18 9984.24 14665.40 8469.09 10980.86 24346.70 9288.13 17775.43 7065.92 22281.33 279
UnsupCasMVSNet_eth57.56 31055.15 30964.79 32464.57 37033.12 37173.17 31783.87 15458.98 20341.75 36170.03 34922.54 34879.92 31746.12 29435.31 38181.32 281
test_djsdf63.84 25861.56 26270.70 26268.78 34544.69 30181.63 23581.44 19750.28 30552.27 30976.26 29526.72 31986.11 24160.83 17455.84 31281.29 282
WB-MVSnew69.36 18168.24 17272.72 21779.26 21049.40 21085.72 11288.85 3661.33 15364.59 15782.38 22334.57 26087.53 20246.82 28870.63 18381.22 283
AdaColmapbinary67.86 20765.48 23075.00 16488.15 3654.99 7486.10 10176.63 29649.30 31257.80 25086.65 16329.39 30388.94 14645.10 29770.21 18881.06 284
jajsoiax63.21 26560.84 27070.32 26868.33 35044.45 30381.23 24581.05 20353.37 28550.96 31877.81 27117.49 37285.49 25759.31 18758.05 28881.02 285
mvs_tets62.96 26860.55 27270.19 26968.22 35344.24 30880.90 25280.74 21152.99 28850.82 32077.56 27216.74 37685.44 25859.04 19057.94 29080.89 286
ACMP61.11 966.24 24564.33 24672.00 23774.89 28449.12 21483.18 19579.83 22955.41 26552.29 30882.68 21425.83 32586.10 24360.89 17363.94 23680.78 287
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
pm-mvs164.12 25662.56 25468.78 28871.68 32138.87 34982.89 20281.57 19455.54 26453.89 29877.82 27037.73 20786.74 22248.46 27753.49 33080.72 288
thres600view766.46 24165.12 23870.47 26483.41 10543.80 31282.15 21987.78 5959.37 18956.02 27782.21 22843.73 13386.90 21926.51 37564.94 22680.71 289
thres40067.40 22266.13 21471.19 25584.05 9345.07 29783.40 18787.71 6460.79 16757.79 25182.76 21043.53 13887.80 18828.80 36366.36 21780.71 289
LPG-MVS_test66.44 24264.58 24372.02 23574.42 29048.60 23183.07 19880.64 21254.69 27453.75 29983.83 19225.73 32786.98 21460.33 18464.71 22780.48 291
LGP-MVS_train72.02 23574.42 29048.60 23180.64 21254.69 27453.75 29983.83 19225.73 32786.98 21460.33 18464.71 22780.48 291
v867.25 22464.99 24074.04 18572.89 30953.31 12082.37 21780.11 22261.54 15054.29 29476.02 30142.89 14988.41 16558.43 19556.36 30180.39 293
V4267.66 21265.60 22973.86 19270.69 33453.63 10781.50 24178.61 25963.85 10759.49 22077.49 27437.98 20187.65 19662.33 16058.43 28080.29 294
eth_miper_zixun_eth66.98 23365.28 23672.06 23475.61 27550.40 18181.00 24976.97 29062.00 14056.99 26676.97 28344.84 12085.58 25458.75 19254.42 32280.21 295
Anonymous2023120659.08 29657.59 29363.55 32868.77 34632.14 37780.26 26379.78 23050.00 30949.39 32572.39 33426.64 32078.36 32733.12 34957.94 29080.14 296
IterMVS63.77 26061.67 26070.08 27272.68 31151.24 16880.44 25975.51 30460.51 17251.41 31373.70 32032.08 28478.91 32454.30 23554.35 32380.08 297
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
pmmvs562.80 27061.18 26767.66 29969.53 34042.37 33282.65 20675.19 30854.30 27952.03 31178.51 26431.64 29080.67 30648.60 27558.15 28579.95 298
v1066.61 23964.20 24873.83 19472.59 31253.37 11681.88 22679.91 22861.11 15854.09 29675.60 30340.06 18588.26 17556.47 22256.10 30779.86 299
ACMM58.35 1264.35 25462.01 25971.38 25174.21 29348.51 23582.25 21879.66 23347.61 32554.54 29080.11 24825.26 33086.00 24751.26 25763.16 24779.64 300
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test_fmvs153.60 33252.54 32756.78 35758.07 38530.26 38168.95 34442.19 39732.46 38363.59 17582.56 21911.55 38660.81 38458.25 20055.27 31579.28 301
test_vis1_n51.19 34149.66 33955.76 36251.26 39829.85 38667.20 35138.86 40232.12 38559.50 21979.86 2518.78 39658.23 39156.95 21852.46 33579.19 302
test_fmvs1_n52.55 33651.19 33156.65 35851.90 39630.14 38267.66 34842.84 39632.27 38462.30 18982.02 2339.12 39560.84 38357.82 20954.75 32178.99 303
K. test v354.04 32849.42 34067.92 29868.55 34742.57 33075.51 29963.07 37352.07 29339.21 37264.59 36919.34 36382.21 29137.11 32525.31 39978.97 304
v7n62.50 27359.27 28472.20 23167.25 35649.83 19877.87 28680.12 22152.50 29148.80 32973.07 32532.10 28387.90 18446.83 28754.92 31778.86 305
CL-MVSNet_self_test62.98 26761.14 26868.50 29565.86 36042.96 32284.37 15582.98 17260.98 16253.95 29772.70 33040.43 17983.71 28141.10 31347.93 34878.83 306
EI-MVSNet69.70 17568.70 16472.68 21875.00 28248.90 22379.54 27187.16 7161.05 16063.88 17083.74 19445.87 10190.44 9657.42 21564.68 23078.70 307
IterMVS-LS66.63 23865.36 23570.42 26675.10 28048.90 22381.45 24476.69 29561.05 16055.71 27977.10 28245.86 10283.65 28257.44 21457.88 29378.70 307
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
FMVSNet558.61 30256.45 30065.10 32277.20 25139.74 34574.77 30377.12 28550.27 30743.28 35567.71 35826.15 32476.90 34536.78 32954.78 31978.65 309
lessismore_v067.98 29764.76 36941.25 33945.75 39236.03 38265.63 36619.29 36484.11 27635.67 33321.24 40578.59 310
anonymousdsp60.46 28657.65 29268.88 28463.63 37445.09 29672.93 31878.63 25846.52 33251.12 31572.80 32921.46 35683.07 28957.79 21053.97 32478.47 311
CNLPA60.59 28558.44 28967.05 30679.21 21147.26 27079.75 27064.34 37042.46 35951.90 31283.94 19027.79 31375.41 35237.12 32459.49 27178.47 311
IterMVS-SCA-FT59.12 29458.81 28860.08 34870.68 33545.07 29780.42 26074.25 31443.54 35450.02 32273.73 31731.97 28556.74 39451.06 26053.60 32978.42 313
MS-PatchMatch72.34 12271.26 12475.61 13982.38 14055.55 5288.00 5589.95 2065.38 8556.51 27480.74 24532.28 28292.89 3457.95 20688.10 1578.39 314
pmmvs659.64 28957.15 29667.09 30466.01 35836.86 35980.50 25778.64 25745.05 34349.05 32773.94 31527.28 31586.10 24343.96 30449.94 34278.31 315
testgi54.25 32752.57 32659.29 35162.76 37721.65 40672.21 32670.47 34653.25 28641.94 35977.33 27814.28 38277.95 33529.18 36251.72 33878.28 316
Baseline_NR-MVSNet65.49 25164.27 24769.13 28274.37 29241.65 33483.39 18978.85 25059.56 18459.62 21676.88 28740.75 17487.44 20349.99 26355.05 31678.28 316
PatchT56.60 31452.97 32167.48 30072.94 30846.16 28757.30 38273.78 32038.77 36654.37 29257.26 38937.52 21378.06 33132.02 35152.79 33478.23 318
our_test_359.11 29555.08 31171.18 25671.42 32553.29 12181.96 22374.52 31248.32 31942.08 35869.28 35428.14 30782.15 29234.35 34345.68 36278.11 319
pmmvs463.34 26461.07 26970.16 27070.14 33650.53 17779.97 26871.41 34155.08 26854.12 29578.58 26332.79 27782.09 29450.33 26257.22 29877.86 320
TransMVSNet (Re)62.82 26960.76 27169.02 28373.98 29641.61 33586.36 9579.30 24656.90 24252.53 30676.44 29241.85 16387.60 20038.83 31940.61 37277.86 320
PEN-MVS58.35 30657.15 29661.94 33967.55 35534.39 36377.01 28978.35 26551.87 29647.72 33576.73 28933.91 26673.75 35934.03 34447.17 35477.68 322
XVG-ACMP-BASELINE56.03 31952.85 32365.58 31661.91 37940.95 34263.36 36272.43 33045.20 34246.02 34674.09 3129.20 39478.12 32945.13 29658.27 28377.66 323
CP-MVSNet58.54 30557.57 29461.46 34368.50 34833.96 36876.90 29178.60 26051.67 29947.83 33476.60 29134.99 25772.79 36435.45 33447.58 35077.64 324
PS-CasMVS58.12 30757.03 29861.37 34468.24 35233.80 37076.73 29278.01 26951.20 30147.54 33876.20 29932.85 27572.76 36535.17 33947.37 35277.55 325
tfpnnormal61.47 28159.09 28568.62 29276.29 26341.69 33381.14 24785.16 11954.48 27651.32 31473.63 32132.32 28186.89 22021.78 38955.71 31377.29 326
DTE-MVSNet57.03 31255.73 30760.95 34765.94 35932.57 37575.71 29577.09 28651.16 30246.65 34476.34 29432.84 27673.22 36330.94 35744.87 36377.06 327
D2MVS63.49 26261.39 26469.77 27669.29 34248.93 22278.89 27977.71 27560.64 17149.70 32372.10 33927.08 31783.48 28454.48 23462.65 25376.90 328
Effi-MVS+-dtu66.24 24564.96 24170.08 27275.17 27849.64 20082.01 22274.48 31362.15 13857.83 24976.08 30030.59 29683.79 27965.40 14460.93 26376.81 329
KD-MVS_2432*160059.04 29756.44 30166.86 30779.07 21345.87 28972.13 32780.42 21755.03 26948.15 33171.01 34236.73 23378.05 33235.21 33730.18 39476.67 330
miper_refine_blended59.04 29756.44 30166.86 30779.07 21345.87 28972.13 32780.42 21755.03 26948.15 33171.01 34236.73 23378.05 33235.21 33730.18 39476.67 330
RPSCF45.77 35344.13 35550.68 36757.67 38829.66 38754.92 38845.25 39326.69 39345.92 34775.92 30217.43 37345.70 40527.44 37245.95 36176.67 330
WR-MVS_H58.91 29958.04 29161.54 34269.07 34433.83 36976.91 29081.99 18551.40 30048.17 33074.67 30840.23 18174.15 35531.78 35348.10 34676.64 333
UnsupCasMVSNet_bld53.86 32950.53 33363.84 32663.52 37534.75 36271.38 33281.92 18846.53 33138.95 37457.93 38720.55 35980.20 31539.91 31734.09 38876.57 334
PLCcopyleft52.38 1860.89 28358.97 28766.68 31181.77 15245.70 29278.96 27874.04 31843.66 35347.63 33683.19 20623.52 34377.78 33937.47 32160.46 26476.55 335
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
MVP-Stereo70.97 14970.44 13572.59 22076.03 26951.36 16485.02 13686.99 7460.31 17456.53 27378.92 26140.11 18490.00 10960.00 18690.01 776.41 336
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
test20.0355.22 32354.07 31658.68 35363.14 37625.00 39777.69 28774.78 31152.64 28943.43 35372.39 33426.21 32274.76 35429.31 36147.05 35676.28 337
EU-MVSNet52.63 33550.72 33258.37 35462.69 37828.13 39472.60 32075.97 30130.94 38740.76 36872.11 33820.16 36070.80 37135.11 34046.11 36076.19 338
ppachtmachnet_test58.56 30354.34 31371.24 25371.42 32554.74 8081.84 22872.27 33149.02 31445.86 34868.99 35526.27 32183.30 28730.12 35843.23 36775.69 339
CHOSEN 280x42057.53 31156.38 30360.97 34674.01 29548.10 25246.30 39454.31 38448.18 32250.88 31977.43 27738.37 20059.16 39054.83 23163.14 24875.66 340
SixPastTwentyTwo54.37 32550.10 33467.21 30370.70 33341.46 33874.73 30464.69 36747.56 32639.12 37369.49 35018.49 36984.69 27131.87 35234.20 38775.48 341
MSDG59.44 29055.14 31072.32 22974.69 28550.71 17274.39 30873.58 32244.44 34843.40 35477.52 27319.45 36290.87 8731.31 35557.49 29775.38 342
mmtdpeth57.93 30854.78 31267.39 30272.32 31643.38 31772.72 31968.93 35654.45 27756.85 26762.43 37417.02 37483.46 28557.95 20630.31 39375.31 343
KD-MVS_self_test49.24 34646.85 34956.44 35954.32 39122.87 40057.39 38173.36 32844.36 34937.98 37759.30 38518.97 36571.17 37033.48 34542.44 36875.26 344
ACMH53.70 1659.78 28855.94 30671.28 25276.59 25748.35 24180.15 26676.11 30049.74 31041.91 36073.45 32416.50 37890.31 10131.42 35457.63 29675.17 345
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
USDC54.36 32651.23 33063.76 32764.29 37137.71 35662.84 36773.48 32656.85 24335.47 38371.94 3409.23 39378.43 32638.43 32048.57 34475.13 346
Syy-MVS61.51 28061.35 26562.00 33881.73 15330.09 38380.97 25081.02 20460.93 16455.06 28382.64 21535.09 25480.81 30416.40 40258.32 28175.10 347
myMVS_eth3d63.52 26163.56 25263.40 33081.73 15334.28 36480.97 25081.02 20460.93 16455.06 28382.64 21548.00 8080.81 30423.42 38558.32 28175.10 347
MIMVSNet150.35 34447.81 34557.96 35561.53 38027.80 39567.40 34974.06 31743.25 35533.31 39265.38 36816.03 37971.34 36921.80 38847.55 35174.75 349
mvs5depth50.97 34246.98 34862.95 33356.63 38934.23 36662.73 36867.35 36345.03 34448.00 33365.41 36710.40 39079.88 32136.00 33131.27 39274.73 350
ambc62.06 33753.98 39329.38 38935.08 40679.65 23441.37 36259.96 3826.27 40582.15 29235.34 33638.22 37674.65 351
ADS-MVSNet255.21 32451.44 32966.51 31280.60 19049.56 20355.03 38665.44 36544.72 34551.00 31661.19 37822.83 34575.41 35228.54 36653.63 32774.57 352
ADS-MVSNet56.17 31851.95 32868.84 28580.60 19053.07 12755.03 38670.02 35044.72 34551.00 31661.19 37822.83 34578.88 32528.54 36653.63 32774.57 352
DSMNet-mixed38.35 36235.36 36747.33 37448.11 40514.91 41837.87 40436.60 40619.18 40134.37 38559.56 38415.53 38053.01 39820.14 39446.89 35774.07 354
OpenMVS_ROBcopyleft53.19 1759.20 29356.00 30568.83 28671.13 32944.30 30583.64 17775.02 30946.42 33446.48 34573.03 32618.69 36688.14 17627.74 37161.80 25874.05 355
PatchMatch-RL56.66 31353.75 31865.37 32077.91 23945.28 29569.78 34060.38 37641.35 36047.57 33773.73 31716.83 37576.91 34336.99 32759.21 27473.92 356
ACMH+54.58 1558.55 30455.24 30868.50 29574.68 28645.80 29180.27 26270.21 34847.15 32842.77 35775.48 30416.73 37785.98 24835.10 34154.78 31973.72 357
tpmvs62.45 27559.42 28271.53 25083.93 9554.32 9270.03 33877.61 27651.91 29553.48 30268.29 35737.91 20286.66 22533.36 34658.27 28373.62 358
EG-PatchMatch MVS62.40 27659.59 28070.81 26173.29 30149.05 21685.81 10584.78 13051.85 29744.19 34973.48 32315.52 38189.85 11340.16 31667.24 20873.54 359
YYNet153.82 33049.96 33665.41 31970.09 33848.95 22072.30 32471.66 33844.25 35031.89 39363.07 37323.73 34173.95 35733.26 34739.40 37473.34 360
JIA-IIPM52.33 33847.77 34666.03 31471.20 32846.92 27340.00 40376.48 29837.10 37146.73 34237.02 40332.96 27477.88 33635.97 33252.45 33673.29 361
MDA-MVSNet_test_wron53.82 33049.95 33765.43 31870.13 33749.05 21672.30 32471.65 33944.23 35131.85 39463.13 37223.68 34274.01 35633.25 34839.35 37573.23 362
pmmvs-eth3d55.97 32052.78 32465.54 31761.02 38146.44 27975.36 30167.72 36149.61 31143.65 35267.58 35921.63 35577.04 34144.11 30344.33 36473.15 363
test_fmvs245.89 35244.32 35450.62 36845.85 40724.70 39858.87 38037.84 40525.22 39452.46 30774.56 3107.07 39954.69 39549.28 27047.70 34972.48 364
F-COLMAP55.96 32153.65 31962.87 33472.76 31042.77 32674.70 30670.37 34740.03 36241.11 36679.36 25517.77 37173.70 36032.80 35053.96 32572.15 365
Anonymous2024052151.65 33948.42 34261.34 34556.43 39039.65 34773.57 31373.47 32736.64 37436.59 37963.98 37010.75 38972.25 36835.35 33549.01 34372.11 366
ITE_SJBPF51.84 36658.03 38631.94 37853.57 38736.67 37341.32 36475.23 30611.17 38851.57 39925.81 37748.04 34772.02 367
OurMVSNet-221017-052.39 33748.73 34163.35 33165.21 36438.42 35268.54 34664.95 36638.19 36739.57 37171.43 34113.23 38479.92 31737.16 32340.32 37371.72 368
Patchmtry56.56 31552.95 32267.42 30172.53 31350.59 17659.05 37871.72 33637.86 37046.92 34165.86 36338.94 19480.06 31636.94 32846.72 35871.60 369
PM-MVS46.92 35143.76 35856.41 36052.18 39532.26 37663.21 36538.18 40337.99 36940.78 36766.20 3625.09 40865.42 37948.19 27841.99 36971.54 370
new-patchmatchnet48.21 34846.55 35053.18 36557.73 38718.19 41470.24 33671.02 34445.70 33833.70 38760.23 38118.00 37069.86 37427.97 37034.35 38571.49 371
CMPMVSbinary40.41 2155.34 32252.64 32563.46 32960.88 38243.84 31161.58 37271.06 34330.43 38836.33 38074.63 30924.14 33975.44 35148.05 27966.62 21371.12 372
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
testing359.97 28760.19 27759.32 35077.60 24130.01 38581.75 23181.79 19153.54 28250.34 32179.94 24948.99 7376.91 34317.19 40050.59 34071.03 373
AllTest47.32 35044.66 35255.32 36365.08 36637.50 35762.96 36654.25 38535.45 37833.42 38972.82 3279.98 39159.33 38724.13 38143.84 36569.13 374
TestCases55.32 36365.08 36637.50 35754.25 38535.45 37833.42 38972.82 3279.98 39159.33 38724.13 38143.84 36569.13 374
LTVRE_ROB45.45 1952.73 33449.74 33861.69 34169.78 33934.99 36144.52 39567.60 36243.11 35643.79 35174.03 31318.54 36881.45 29728.39 36857.94 29068.62 376
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
N_pmnet41.25 35839.77 36145.66 37668.50 3480.82 42872.51 3220.38 42735.61 37735.26 38461.51 37720.07 36167.74 37623.51 38340.63 37168.42 377
LS3D56.40 31753.82 31764.12 32581.12 17445.69 29373.42 31566.14 36435.30 38043.24 35679.88 25022.18 35279.62 32219.10 39664.00 23567.05 378
DP-MVS59.24 29256.12 30468.63 29188.24 3450.35 18682.51 21364.43 36941.10 36146.70 34378.77 26224.75 33588.57 16122.26 38756.29 30566.96 379
test_fmvs337.95 36435.75 36644.55 37835.50 41318.92 41048.32 39134.00 41018.36 40341.31 36561.58 3762.29 41548.06 40442.72 31037.71 37766.66 380
mvsany_test143.38 35642.57 35945.82 37550.96 39926.10 39655.80 38427.74 41527.15 39247.41 34074.39 31118.67 36744.95 40644.66 29936.31 37966.40 381
TinyColmap48.15 34944.49 35359.13 35265.73 36138.04 35363.34 36362.86 37438.78 36529.48 39667.23 3616.46 40473.30 36224.59 38041.90 37066.04 382
pmmvs345.53 35441.55 36057.44 35648.97 40339.68 34670.06 33757.66 37928.32 39134.06 38657.29 3888.50 39766.85 37834.86 34234.26 38665.80 383
MDA-MVSNet-bldmvs51.56 34047.75 34763.00 33271.60 32347.32 26969.70 34172.12 33243.81 35227.65 40163.38 37121.97 35475.96 34927.30 37332.19 38965.70 384
ttmdpeth40.58 36037.50 36449.85 37049.40 40122.71 40156.65 38346.78 38928.35 39040.29 37069.42 3525.35 40761.86 38220.16 39321.06 40664.96 385
ANet_high34.39 36829.59 37448.78 37230.34 41722.28 40255.53 38563.79 37138.11 36815.47 40936.56 4066.94 40059.98 38613.93 4055.64 42064.08 386
COLMAP_ROBcopyleft43.60 2050.90 34348.05 34459.47 34967.81 35440.57 34471.25 33362.72 37536.49 37536.19 38173.51 32213.48 38373.92 35820.71 39150.26 34163.92 387
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test_040256.45 31653.03 32066.69 31076.78 25650.31 18881.76 23069.61 35342.79 35743.88 35072.13 33722.82 34786.46 23216.57 40150.94 33963.31 388
MVS-HIRNet49.01 34744.71 35161.92 34076.06 26746.61 27763.23 36454.90 38324.77 39633.56 38836.60 40521.28 35775.88 35029.49 36062.54 25463.26 389
MVStest138.35 36234.53 36849.82 37151.43 39730.41 38050.39 39055.25 38117.56 40426.45 40265.85 36511.72 38557.00 39314.79 40317.31 41062.05 390
TDRefinement40.91 35938.37 36348.55 37350.45 40033.03 37358.98 37950.97 38828.50 38929.89 39567.39 3606.21 40654.51 39617.67 39935.25 38258.11 391
test_vis1_rt40.29 36138.64 36245.25 37748.91 40430.09 38359.44 37727.07 41624.52 39738.48 37651.67 3976.71 40249.44 40044.33 30146.59 35956.23 392
test_method24.09 38021.07 38433.16 39227.67 4218.35 42626.63 41235.11 4093.40 41814.35 41036.98 4043.46 41235.31 41319.08 39722.95 40255.81 393
kuosan50.20 34550.09 33550.52 36973.09 30529.09 39165.25 35474.89 31048.27 32041.34 36360.85 38043.45 14167.48 37718.59 39825.07 40055.01 394
LCM-MVSNet28.07 37223.85 38040.71 38127.46 42218.93 40930.82 41046.19 39012.76 40916.40 40734.70 4081.90 41848.69 40320.25 39224.22 40154.51 395
mvsany_test328.00 37325.98 37534.05 39028.97 41815.31 41634.54 40718.17 42116.24 40529.30 39753.37 3952.79 41333.38 41730.01 35920.41 40753.45 396
mamv442.60 35744.05 35738.26 38559.21 38438.00 35444.14 39739.03 40125.03 39540.61 36968.39 35637.01 22724.28 41946.62 28936.43 37852.50 397
test_f27.12 37524.85 37633.93 39126.17 42315.25 41730.24 41122.38 42012.53 41028.23 39849.43 3982.59 41434.34 41625.12 37926.99 39752.20 398
PMMVS226.71 37622.98 38137.87 38736.89 4118.51 42542.51 39929.32 41419.09 40213.01 41137.54 4022.23 41653.11 39714.54 40411.71 41351.99 399
LF4IMVS33.04 37132.55 37134.52 38940.96 40822.03 40344.45 39635.62 40720.42 39928.12 39962.35 3755.03 40931.88 41821.61 39034.42 38449.63 400
FPMVS35.40 36633.67 37040.57 38246.34 40628.74 39341.05 40057.05 38020.37 40022.27 40553.38 3946.87 40144.94 4078.62 41047.11 35548.01 401
WB-MVS37.41 36536.37 36540.54 38354.23 39210.43 42165.29 35343.75 39434.86 38127.81 40054.63 39024.94 33363.21 3806.81 41615.00 41147.98 402
dongtai43.51 35544.07 35641.82 38063.75 37321.90 40463.80 36072.05 33339.59 36333.35 39154.54 39141.04 17157.30 39210.75 40917.77 40946.26 403
new_pmnet33.56 37031.89 37238.59 38449.01 40220.42 40751.01 38937.92 40420.58 39823.45 40446.79 3996.66 40349.28 40220.00 39531.57 39146.09 404
SSC-MVS35.20 36734.30 36937.90 38652.58 3948.65 42461.86 36941.64 39831.81 38625.54 40352.94 39623.39 34459.28 3896.10 41712.86 41245.78 405
test_vis3_rt24.79 37922.95 38230.31 39528.59 41918.92 41037.43 40517.27 42312.90 40821.28 40629.92 4121.02 42236.35 41128.28 36929.82 39635.65 406
EGC-MVSNET33.75 36930.42 37343.75 37964.94 36836.21 36060.47 37640.70 4000.02 4210.10 42253.79 3937.39 39860.26 38511.09 40835.23 38334.79 407
APD_test126.46 37724.41 37832.62 39437.58 41021.74 40540.50 40230.39 41211.45 41116.33 40843.76 4001.63 42041.62 40811.24 40726.82 39834.51 408
MVEpermissive16.60 2317.34 38613.39 38929.16 39628.43 42019.72 40813.73 41423.63 4197.23 4177.96 41721.41 4130.80 42336.08 4126.97 41410.39 41431.69 409
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
testf121.11 38119.08 38527.18 39730.56 41518.28 41233.43 40824.48 4178.02 41512.02 41333.50 4090.75 42435.09 4147.68 41221.32 40328.17 410
APD_test221.11 38119.08 38527.18 39730.56 41518.28 41233.43 40824.48 4178.02 41512.02 41333.50 4090.75 42435.09 4147.68 41221.32 40328.17 410
PMVScopyleft19.57 2225.07 37822.43 38332.99 39323.12 42422.98 39940.98 40135.19 40815.99 40611.95 41535.87 4071.47 42149.29 4015.41 41931.90 39026.70 412
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
Gipumacopyleft27.47 37424.26 37937.12 38860.55 38329.17 39011.68 41560.00 37714.18 40710.52 41615.12 4172.20 41763.01 3818.39 41135.65 38019.18 413
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
DeepMVS_CXcopyleft13.10 40121.34 4258.99 42310.02 42510.59 4137.53 41830.55 4111.82 41914.55 4206.83 4157.52 41615.75 414
E-PMN19.16 38318.40 38721.44 39936.19 41213.63 41947.59 39230.89 41110.73 4125.91 41916.59 4153.66 41139.77 4095.95 4188.14 41510.92 415
EMVS18.42 38417.66 38820.71 40034.13 41412.64 42046.94 39329.94 41310.46 4145.58 42014.93 4184.23 41038.83 4105.24 4207.51 41710.67 416
tmp_tt9.44 38710.68 3905.73 4032.49 4264.21 42710.48 41618.04 4220.34 42012.59 41220.49 41411.39 3877.03 42213.84 4066.46 4195.95 417
wuyk23d9.11 3888.77 39210.15 40240.18 40916.76 41520.28 4131.01 4262.58 4192.66 4210.98 4210.23 42612.49 4214.08 4216.90 4181.19 418
testmvs6.14 3908.18 3930.01 4040.01 4270.00 43073.40 3160.00 4280.00 4220.02 4230.15 4220.00 4270.00 4230.02 4220.00 4210.02 419
test1236.01 3918.01 3940.01 4040.00 4280.01 42971.93 3300.00 4280.00 4220.02 4230.11 4230.00 4270.00 4230.02 4220.00 4210.02 419
mmdepth0.00 3930.00 3960.00 4060.00 4280.00 4300.00 4170.00 4280.00 4220.00 4250.00 4240.00 4270.00 4230.00 4240.00 4210.00 421
monomultidepth0.00 3930.00 3960.00 4060.00 4280.00 4300.00 4170.00 4280.00 4220.00 4250.00 4240.00 4270.00 4230.00 4240.00 4210.00 421
test_blank0.00 3930.00 3960.00 4060.00 4280.00 4300.00 4170.00 4280.00 4220.00 4250.00 4240.00 4270.00 4230.00 4240.00 4210.00 421
uanet_test0.00 3930.00 3960.00 4060.00 4280.00 4300.00 4170.00 4280.00 4220.00 4250.00 4240.00 4270.00 4230.00 4240.00 4210.00 421
DCPMVS0.00 3930.00 3960.00 4060.00 4280.00 4300.00 4170.00 4280.00 4220.00 4250.00 4240.00 4270.00 4230.00 4240.00 4210.00 421
cdsmvs_eth3d_5k18.33 38524.44 3770.00 4060.00 4280.00 4300.00 41789.40 240.00 4220.00 42592.02 4638.55 1980.00 4230.00 4240.00 4210.00 421
pcd_1.5k_mvsjas3.15 3924.20 3950.00 4060.00 4280.00 4300.00 4170.00 4280.00 4220.00 4250.00 42437.77 2040.00 4230.00 4240.00 4210.00 421
sosnet-low-res0.00 3930.00 3960.00 4060.00 4280.00 4300.00 4170.00 4280.00 4220.00 4250.00 4240.00 4270.00 4230.00 4240.00 4210.00 421
sosnet0.00 3930.00 3960.00 4060.00 4280.00 4300.00 4170.00 4280.00 4220.00 4250.00 4240.00 4270.00 4230.00 4240.00 4210.00 421
uncertanet0.00 3930.00 3960.00 4060.00 4280.00 4300.00 4170.00 4280.00 4220.00 4250.00 4240.00 4270.00 4230.00 4240.00 4210.00 421
Regformer0.00 3930.00 3960.00 4060.00 4280.00 4300.00 4170.00 4280.00 4220.00 4250.00 4240.00 4270.00 4230.00 4240.00 4210.00 421
ab-mvs-re7.68 38910.24 3910.00 4060.00 4280.00 4300.00 4170.00 4280.00 4220.00 42592.12 420.00 4270.00 4230.00 4240.00 4210.00 421
uanet0.00 3930.00 3960.00 4060.00 4280.00 4300.00 4170.00 4280.00 4220.00 4250.00 4240.00 4270.00 4230.00 4240.00 4210.00 421
WAC-MVS34.28 36422.56 386
FOURS183.24 11249.90 19684.98 13778.76 25447.71 32473.42 60
test_one_060189.39 2257.29 2288.09 5457.21 23982.06 1393.39 1854.94 33
eth-test20.00 428
eth-test0.00 428
ZD-MVS89.55 1453.46 11084.38 14057.02 24173.97 5591.03 6544.57 12591.17 7775.41 7381.78 71
test_241102_ONE89.48 1756.89 2988.94 3157.53 23184.61 493.29 2258.81 1296.45 1
9.1478.19 2885.67 6188.32 5188.84 3759.89 17874.58 5092.62 3546.80 9092.66 4181.40 3585.62 41
save fliter85.35 6856.34 4189.31 4081.46 19661.55 149
test072689.40 2057.45 1992.32 788.63 4457.71 22783.14 993.96 655.17 29
test_part289.33 2355.48 5482.27 12
sam_mvs35.99 247
MTGPAbinary81.31 199
test_post170.84 33514.72 41934.33 26383.86 27748.80 273
test_post16.22 41637.52 21384.72 270
patchmatchnet-post59.74 38338.41 19979.91 319
MTMP87.27 7715.34 424
gm-plane-assit83.24 11254.21 9670.91 2188.23 13395.25 1466.37 129
TEST985.68 5955.42 5687.59 6784.00 15057.72 22672.99 6590.98 6744.87 11988.58 158
test_885.72 5855.31 6187.60 6683.88 15357.84 22472.84 6990.99 6644.99 11588.34 169
agg_prior85.64 6254.92 7683.61 16072.53 7488.10 179
test_prior456.39 4087.15 81
test_prior289.04 4361.88 14473.55 5891.46 6348.01 7874.73 7785.46 42
旧先验281.73 23245.53 34074.66 4770.48 37358.31 199
新几何281.61 237
原ACMM283.77 175
testdata277.81 33845.64 295
segment_acmp44.97 117
testdata177.55 28864.14 101
plane_prior777.95 23648.46 238
plane_prior678.42 23149.39 21136.04 245
plane_prior483.28 204
plane_prior348.95 22064.01 10462.15 191
plane_prior285.76 10763.60 113
plane_prior178.31 233
plane_prior49.57 20187.43 7064.57 9472.84 164
n20.00 428
nn0.00 428
door-mid41.31 399
test1184.25 144
door43.27 395
HQP5-MVS51.56 159
HQP-NCC79.02 21588.00 5565.45 8164.48 159
ACMP_Plane79.02 21588.00 5565.45 8164.48 159
BP-MVS66.70 126
HQP3-MVS83.68 15673.12 160
HQP2-MVS37.35 216
NP-MVS78.76 22050.43 18085.12 178
MDTV_nov1_ep1361.56 26281.68 15755.12 6972.41 32378.18 26759.19 19558.85 23469.29 35334.69 25986.16 24036.76 33062.96 250
ACMMP++_ref63.20 246
ACMMP++59.38 272
Test By Simon39.38 190