This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted by
DPM-MVS82.39 482.36 682.49 580.12 18959.50 592.24 990.72 1469.37 3383.22 994.47 263.81 593.18 3374.02 8493.25 294.80 1
LFMVS78.52 2477.14 4182.67 389.58 1358.90 791.27 1988.05 5463.22 11874.63 4790.83 7341.38 16294.40 2275.42 7279.90 9094.72 2
SED-MVS81.92 781.75 982.44 789.48 1756.89 2992.48 488.94 3057.50 22884.61 494.09 358.81 1196.37 682.28 2787.60 1894.06 3
OPU-MVS81.71 1492.05 355.97 4892.48 494.01 567.21 295.10 1589.82 292.55 394.06 3
DVP-MVS++82.44 382.38 582.62 491.77 457.49 1584.98 13788.88 3258.00 21483.60 693.39 2067.21 296.39 481.64 3291.98 493.98 5
PC_three_145266.58 5987.27 293.70 1166.82 494.95 1789.74 391.98 493.98 5
iter_conf05_1179.47 2078.68 2381.84 1287.91 4057.01 2493.27 279.49 22774.74 683.40 894.00 621.51 34494.70 2184.07 1789.68 793.82 7
bld_raw_dy_0_6475.36 7373.18 8681.89 1187.91 4057.01 2486.77 8967.69 35078.56 165.01 14393.99 722.18 33994.84 1984.07 1772.45 15893.82 7
CSCG80.41 1579.72 1582.49 589.12 2557.67 1389.29 4191.54 559.19 19071.82 8090.05 9259.72 996.04 1078.37 5188.40 1493.75 9
DELS-MVS82.32 582.50 481.79 1386.80 4856.89 2992.77 386.30 8477.83 277.88 3492.13 4360.24 694.78 2078.97 4589.61 893.69 10
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MVS76.91 4775.48 6081.23 2084.56 7955.21 6580.23 26191.64 458.65 20465.37 13891.48 6245.72 9995.05 1672.11 9589.52 1093.44 11
VNet77.99 3577.92 3078.19 7587.43 4350.12 18790.93 2391.41 867.48 5175.12 4390.15 9046.77 8691.00 8173.52 8778.46 10293.44 11
MCST-MVS83.01 183.30 282.15 1092.84 257.58 1493.77 191.10 1075.95 477.10 3793.09 2954.15 3395.57 1285.80 1085.87 3793.31 13
MM82.69 283.29 380.89 2284.38 8355.40 5992.16 1089.85 2075.28 582.41 1193.86 1054.30 3093.98 2590.29 187.13 2193.30 14
WTY-MVS77.47 4177.52 3677.30 9388.33 3046.25 27788.46 5090.32 1671.40 1972.32 7691.72 5453.44 3592.37 4966.28 12675.42 12993.28 15
DeepPCF-MVS69.37 180.65 1381.56 1177.94 8185.46 6449.56 19990.99 2286.66 7870.58 2480.07 2495.30 156.18 2090.97 8482.57 2686.22 3593.28 15
canonicalmvs78.17 3277.86 3179.12 5084.30 8454.22 9387.71 6384.57 13167.70 4977.70 3592.11 4650.90 5289.95 11178.18 5577.54 10893.20 17
MSLP-MVS++74.21 8772.25 10280.11 3681.45 16156.47 3886.32 9679.65 22358.19 21066.36 12692.29 4236.11 22790.66 9167.39 11782.49 6293.18 18
CANet80.90 1181.17 1280.09 3787.62 4254.21 9491.60 1486.47 8073.13 1079.89 2693.10 2749.88 6392.98 3484.09 1684.75 4993.08 19
TSAR-MVS + GP.77.82 3677.59 3478.49 6685.25 6950.27 18690.02 2790.57 1556.58 24774.26 5291.60 5954.26 3192.16 5475.87 6679.91 8993.05 20
SD-MVS76.18 5874.85 7180.18 3285.39 6556.90 2885.75 10982.45 17356.79 24274.48 5091.81 5243.72 13090.75 8974.61 7878.65 10092.91 21
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
alignmvs78.08 3377.98 2978.39 7183.53 9953.22 11989.77 3385.45 9866.11 6976.59 4191.99 4954.07 3489.05 13477.34 6077.00 11192.89 22
dcpmvs_279.33 2178.94 2080.49 2589.75 1256.54 3684.83 14483.68 14967.85 4569.36 10290.24 8460.20 792.10 5784.14 1580.40 8192.82 23
ET-MVSNet_ETH3D75.23 7674.08 7978.67 6184.52 8055.59 5288.92 4489.21 2568.06 4353.13 29490.22 8649.71 6487.62 19572.12 9470.82 17492.82 23
VDDNet74.37 8572.13 10781.09 2179.58 19556.52 3790.02 2786.70 7752.61 28571.23 8887.20 14931.75 27493.96 2774.30 8275.77 12692.79 25
DVP-MVScopyleft81.30 1081.00 1382.20 889.40 2057.45 1792.34 689.99 1857.71 22281.91 1493.64 1355.17 2596.44 281.68 3087.13 2192.72 26
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
HPM-MVS++copyleft80.50 1480.71 1479.88 3987.34 4455.20 6689.93 3087.55 6566.04 7479.46 2793.00 3253.10 3791.76 6280.40 3889.56 992.68 27
MVS_030481.58 982.05 780.20 3182.36 13554.70 8291.13 2088.95 2974.49 780.04 2593.64 1352.40 4193.27 3288.85 486.56 3192.61 28
test_241102_TWO88.76 3957.50 22883.60 694.09 356.14 2196.37 682.28 2787.43 2092.55 29
test_0728_SECOND82.20 889.50 1557.73 1192.34 688.88 3296.39 481.68 3087.13 2192.47 30
IU-MVS89.48 1757.49 1591.38 966.22 6788.26 182.83 2387.60 1892.44 31
CNVR-MVS81.76 881.90 881.33 1990.04 1057.70 1291.71 1188.87 3470.31 2677.64 3693.87 952.58 4093.91 2884.17 1487.92 1692.39 32
PHI-MVS77.49 4077.00 4278.95 5185.33 6750.69 16988.57 4988.59 4658.14 21173.60 5693.31 2343.14 13993.79 2973.81 8588.53 1392.37 33
MSC_two_6792asdad81.53 1691.77 456.03 4691.10 1096.22 881.46 3486.80 2792.34 34
No_MVS81.53 1691.77 456.03 4691.10 1096.22 881.46 3486.80 2792.34 34
test_0728_THIRD58.00 21481.91 1493.64 1356.54 1796.44 281.64 3286.86 2592.23 36
MSP-MVS82.30 683.47 178.80 5682.99 11852.71 13185.04 13488.63 4366.08 7186.77 392.75 3472.05 191.46 6883.35 2193.53 192.23 36
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
VDD-MVS76.08 6074.97 6979.44 4184.27 8653.33 11691.13 2085.88 9065.33 8472.37 7589.34 10532.52 26492.76 4077.90 5775.96 12392.22 38
CHOSEN 1792x268876.24 5774.03 8182.88 183.09 11362.84 285.73 11185.39 10069.79 2964.87 14683.49 19541.52 16193.69 3070.55 10081.82 6892.12 39
SMA-MVScopyleft79.10 2378.76 2280.12 3584.42 8155.87 5087.58 6886.76 7561.48 14880.26 2393.10 2746.53 8992.41 4879.97 3988.77 1192.08 40
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
lupinMVS78.38 2878.11 2879.19 4583.02 11655.24 6391.57 1584.82 12269.12 3476.67 3992.02 4744.82 11690.23 10580.83 3780.09 8592.08 40
testing9178.30 3177.54 3580.61 2388.16 3557.12 2387.94 6091.07 1371.43 1870.75 9488.04 13555.82 2292.65 4269.61 10475.00 13992.05 42
GG-mvs-BLEND77.77 8286.68 4950.61 17068.67 33788.45 4968.73 10787.45 14559.15 1090.67 9054.83 22187.67 1792.03 43
test_yl75.85 6574.83 7278.91 5288.08 3751.94 14591.30 1789.28 2357.91 21671.19 8989.20 10842.03 15392.77 3869.41 10575.07 13792.01 44
DCV-MVSNet75.85 6574.83 7278.91 5288.08 3751.94 14591.30 1789.28 2357.91 21671.19 8989.20 10842.03 15392.77 3869.41 10575.07 13792.01 44
patch_mono-280.84 1281.59 1078.62 6390.34 953.77 10188.08 5488.36 5076.17 379.40 2891.09 6455.43 2390.09 10885.01 1280.40 8191.99 46
testing9978.45 2577.78 3280.45 2788.28 3356.81 3287.95 5991.49 671.72 1570.84 9388.09 13157.29 1592.63 4469.24 10775.13 13591.91 47
DeepC-MVS_fast67.50 378.00 3477.63 3379.13 4988.52 2755.12 6889.95 2985.98 8968.31 3771.33 8792.75 3445.52 10290.37 9871.15 9785.14 4591.91 47
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
HY-MVS67.03 573.90 9173.14 8976.18 12384.70 7747.36 25975.56 29186.36 8366.27 6670.66 9783.91 18751.05 5089.31 12567.10 12072.61 15791.88 49
3Dnovator64.70 674.46 8372.48 9680.41 2882.84 12455.40 5983.08 19788.61 4567.61 5059.85 20488.66 11834.57 24593.97 2658.42 18888.70 1291.85 50
casdiffmvs_mvgpermissive77.75 3777.28 3879.16 4780.42 18554.44 9087.76 6285.46 9771.67 1671.38 8688.35 12551.58 4591.22 7479.02 4479.89 9191.83 51
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EPNet78.36 2978.49 2477.97 7985.49 6352.04 14389.36 3984.07 14273.22 977.03 3891.72 5449.32 6790.17 10773.46 8882.77 5991.69 52
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MVS_Test75.85 6574.93 7078.62 6384.08 8855.20 6683.99 16885.17 11268.07 4273.38 6082.76 20550.44 5689.00 13765.90 12880.61 7791.64 53
casdiffmvspermissive77.36 4276.85 4478.88 5480.40 18654.66 8687.06 8185.88 9072.11 1471.57 8388.63 12250.89 5490.35 9976.00 6579.11 9791.63 54
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Anonymous20240521170.11 15467.88 17076.79 11287.20 4547.24 26389.49 3677.38 27054.88 26766.14 12786.84 15420.93 34791.54 6656.45 21471.62 16691.59 55
gg-mvs-nofinetune67.43 21064.53 23676.13 12485.95 5347.79 25464.38 34988.28 5139.34 35266.62 12141.27 38658.69 1389.00 13749.64 25886.62 3091.59 55
xiu_mvs_v2_base79.86 1779.31 1881.53 1685.03 7360.73 491.65 1386.86 7370.30 2780.77 2093.07 3137.63 20092.28 5282.73 2585.71 3891.57 57
PS-MVSNAJ80.06 1679.52 1781.68 1585.58 6160.97 391.69 1287.02 7070.62 2380.75 2193.22 2637.77 19592.50 4682.75 2486.25 3491.57 57
MG-MVS78.42 2776.99 4382.73 293.17 164.46 189.93 3088.51 4864.83 8973.52 5888.09 13148.07 7192.19 5362.24 15484.53 5191.53 59
DPE-MVScopyleft79.82 1879.66 1680.29 2989.27 2455.08 7188.70 4787.92 5655.55 25881.21 1993.69 1256.51 1894.27 2478.36 5285.70 3991.51 60
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
NCCC79.57 1979.23 1980.59 2489.50 1556.99 2691.38 1688.17 5267.71 4873.81 5592.75 3446.88 8493.28 3178.79 4884.07 5491.50 61
Effi-MVS+75.24 7573.61 8380.16 3381.92 14157.42 1985.21 12676.71 28260.68 16573.32 6189.34 10547.30 7991.63 6468.28 11379.72 9291.42 62
test9_res78.72 4985.44 4291.39 63
baseline76.86 5076.24 5278.71 5980.47 18454.20 9683.90 17084.88 12171.38 2071.51 8489.15 11050.51 5590.55 9575.71 6778.65 10091.39 63
MVSFormer73.53 10072.19 10577.57 8683.02 11655.24 6381.63 23281.44 19050.28 29976.67 3990.91 7044.82 11686.11 23560.83 16580.09 8591.36 65
jason77.01 4676.45 4878.69 6079.69 19454.74 7990.56 2583.99 14568.26 3874.10 5390.91 7042.14 15089.99 11079.30 4279.12 9691.36 65
jason: jason.
train_agg76.91 4776.40 4978.45 6985.68 5755.42 5687.59 6684.00 14357.84 21972.99 6490.98 6744.99 11088.58 15378.19 5385.32 4391.34 67
testing22277.70 3877.22 4079.14 4886.95 4654.89 7787.18 7891.96 272.29 1371.17 9188.70 11755.19 2491.24 7365.18 13976.32 12191.29 68
CS-MVS76.77 5176.70 4676.99 10483.55 9848.75 22188.60 4885.18 11166.38 6472.47 7491.62 5845.53 10190.99 8374.48 7982.51 6191.23 69
testing1179.18 2278.85 2180.16 3388.33 3056.99 2688.31 5292.06 172.82 1170.62 9888.37 12357.69 1492.30 5075.25 7476.24 12291.20 70
EIA-MVS75.92 6375.18 6678.13 7685.14 7051.60 15487.17 7985.32 10464.69 9068.56 10890.53 7745.79 9891.58 6567.21 11982.18 6591.20 70
SF-MVS77.64 3977.42 3778.32 7383.75 9652.47 13686.63 9287.80 5758.78 20274.63 4792.38 4047.75 7591.35 7078.18 5586.85 2691.15 72
TSAR-MVS + MP.78.31 3078.26 2578.48 6781.33 16456.31 4281.59 23586.41 8169.61 3181.72 1688.16 13055.09 2788.04 17674.12 8386.31 3391.09 73
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
ETVMVS75.80 6975.44 6176.89 10886.23 5250.38 17985.55 11891.42 771.30 2168.80 10687.94 13756.42 1989.24 12756.54 21074.75 14191.07 74
agg_prior275.65 6885.11 4691.01 75
MAR-MVS76.76 5275.60 5880.21 3090.87 754.68 8489.14 4289.11 2662.95 12270.54 9992.33 4141.05 16394.95 1757.90 19886.55 3291.00 76
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
ab-mvs70.65 14869.11 15475.29 15080.87 17446.23 27873.48 30785.24 11059.99 17266.65 12080.94 23643.13 14088.69 14963.58 14568.07 19390.95 77
PMMVS72.98 10672.05 11075.78 13283.57 9748.60 22484.08 16482.85 16861.62 14468.24 11090.33 8328.35 29287.78 18672.71 9276.69 11590.95 77
CS-MVS-test77.20 4377.25 3977.05 9984.60 7849.04 21289.42 3785.83 9265.90 7572.85 6791.98 5145.10 10791.27 7175.02 7684.56 5090.84 79
mvs_anonymous72.29 12070.74 12676.94 10782.85 12354.72 8178.43 27881.54 18863.77 10461.69 18979.32 24951.11 4985.31 25362.15 15675.79 12590.79 80
PAPR75.20 7774.13 7778.41 7088.31 3255.10 7084.31 15885.66 9463.76 10567.55 11490.73 7443.48 13589.40 12466.36 12577.03 11090.73 81
Patchmatch-RL test58.72 29354.32 30571.92 23463.91 36244.25 30061.73 35855.19 36957.38 23049.31 31754.24 37737.60 20280.89 29362.19 15547.28 34590.63 82
Patchmatch-test53.33 32448.17 33368.81 27973.31 29242.38 32242.98 38358.23 36632.53 37038.79 36270.77 33739.66 18073.51 35125.18 36752.06 33090.55 83
test_prior78.39 7186.35 5154.91 7685.45 9889.70 11890.55 83
test1279.24 4486.89 4756.08 4585.16 11372.27 7747.15 8191.10 7985.93 3690.54 85
ACMMP_NAP76.43 5575.66 5778.73 5881.92 14154.67 8584.06 16685.35 10261.10 15472.99 6491.50 6140.25 17191.00 8176.84 6286.98 2490.51 86
APDe-MVScopyleft78.44 2678.20 2679.19 4588.56 2654.55 8889.76 3487.77 6055.91 25378.56 3192.49 3948.20 7092.65 4279.49 4083.04 5890.39 87
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
3Dnovator+62.71 772.29 12070.50 13077.65 8583.40 10451.29 16387.32 7286.40 8259.01 19758.49 23488.32 12732.40 26591.27 7157.04 20782.15 6690.38 88
CostFormer73.89 9272.30 10178.66 6282.36 13556.58 3375.56 29185.30 10566.06 7270.50 10076.88 28057.02 1689.06 13368.27 11468.74 19090.33 89
fmvsm_l_conf0.5_n75.95 6276.16 5375.31 14776.01 26048.44 23284.98 13771.08 32963.50 11281.70 1793.52 1750.00 5987.18 20587.80 576.87 11390.32 90
test_fmvsmconf_n74.41 8474.05 8075.49 14174.16 28548.38 23382.66 20572.57 31767.05 5575.11 4492.88 3346.35 9087.81 18183.93 1971.71 16590.28 91
CDPH-MVS76.05 6175.19 6578.62 6386.51 5054.98 7487.32 7284.59 13058.62 20570.75 9490.85 7243.10 14190.63 9370.50 10184.51 5290.24 92
ETV-MVS77.17 4476.74 4578.48 6781.80 14454.55 8886.13 10085.33 10368.20 3973.10 6390.52 7845.23 10690.66 9179.37 4180.95 7390.22 93
CANet_DTU73.71 9673.14 8975.40 14382.61 13150.05 18884.67 15079.36 23269.72 3075.39 4290.03 9329.41 28885.93 24667.99 11579.11 9790.22 93
fmvsm_l_conf0.5_n_a75.88 6476.07 5475.31 14776.08 25648.34 23585.24 12570.62 33363.13 12081.45 1893.62 1649.98 6187.40 20187.76 676.77 11490.20 95
sss70.49 15070.13 14071.58 24181.59 15539.02 33980.78 25384.71 12759.34 18566.61 12288.09 13137.17 21285.52 24961.82 15971.02 17290.20 95
SteuartSystems-ACMMP77.08 4576.33 5079.34 4380.98 16855.31 6189.76 3486.91 7262.94 12371.65 8191.56 6042.33 14692.56 4577.14 6183.69 5690.15 97
Skip Steuart: Steuart Systems R&D Blog.
PAPM76.76 5276.07 5478.81 5580.20 18759.11 686.86 8786.23 8568.60 3670.18 10188.84 11551.57 4687.16 20665.48 13286.68 2990.15 97
test250672.91 10872.43 9874.32 17180.12 18944.18 30283.19 19484.77 12564.02 9865.97 13087.43 14647.67 7688.72 14859.08 17979.66 9390.08 99
ECVR-MVScopyleft71.81 12971.00 12474.26 17380.12 18943.49 30784.69 14782.16 17464.02 9864.64 14887.43 14635.04 24089.21 13061.24 16279.66 9390.08 99
IB-MVS68.87 274.01 8972.03 11279.94 3883.04 11555.50 5490.24 2688.65 4167.14 5361.38 19281.74 22853.21 3694.28 2360.45 17362.41 24890.03 101
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
test_fmvsmconf0.1_n73.69 9773.15 8775.34 14570.71 32248.26 23882.15 21771.83 32166.75 5874.47 5192.59 3844.89 11387.78 18683.59 2071.35 16989.97 102
diffmvspermissive75.11 7974.65 7476.46 11578.52 21953.35 11483.28 19279.94 21570.51 2571.64 8288.72 11646.02 9586.08 24077.52 5875.75 12789.96 103
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DeepC-MVS67.15 476.90 4976.27 5178.80 5680.70 17855.02 7286.39 9486.71 7666.96 5667.91 11289.97 9448.03 7291.41 6975.60 6984.14 5389.96 103
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
h-mvs3373.95 9072.89 9277.15 9880.17 18850.37 18084.68 14883.33 15568.08 4071.97 7888.65 12142.50 14491.15 7778.82 4657.78 28889.91 105
ZNCC-MVS75.82 6875.02 6878.23 7483.88 9453.80 10086.91 8686.05 8859.71 17667.85 11390.55 7642.23 14891.02 8072.66 9385.29 4489.87 106
HFP-MVS74.37 8573.13 9178.10 7784.30 8453.68 10385.58 11584.36 13456.82 24065.78 13490.56 7540.70 16990.90 8569.18 10880.88 7489.71 107
1112_ss70.05 15769.37 14972.10 22380.77 17742.78 31685.12 13276.75 28059.69 17761.19 19492.12 4447.48 7883.84 27153.04 23568.21 19289.66 108
MVS_111021_HR76.39 5675.38 6379.42 4285.33 6756.47 3888.15 5384.97 11865.15 8766.06 12989.88 9543.79 12792.16 5475.03 7580.03 8889.64 109
test_fmvsmconf0.01_n71.97 12670.95 12575.04 15666.21 34747.87 25180.35 25870.08 33765.85 7672.69 6991.68 5639.99 17787.67 19082.03 2969.66 18489.58 110
fmvsm_s_conf0.5_n74.48 8274.12 7875.56 13776.96 24547.85 25285.32 12369.80 34064.16 9678.74 2993.48 1845.51 10389.29 12686.48 866.62 20689.55 111
PVSNet_Blended76.53 5476.54 4776.50 11485.91 5451.83 14988.89 4584.24 13967.82 4669.09 10489.33 10746.70 8788.13 17275.43 7081.48 7289.55 111
test111171.06 14070.42 13272.97 20479.48 19641.49 32884.82 14582.74 16964.20 9562.98 17587.43 14635.20 23787.92 17858.54 18578.42 10389.49 113
MP-MVS-pluss75.54 7275.03 6777.04 10081.37 16352.65 13384.34 15784.46 13261.16 15269.14 10391.76 5339.98 17888.99 13978.19 5384.89 4889.48 114
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
tpm270.82 14568.44 16077.98 7880.78 17656.11 4474.21 30281.28 19460.24 17068.04 11175.27 29852.26 4388.50 15855.82 21868.03 19489.33 115
fmvsm_s_conf0.1_n73.80 9373.26 8575.43 14273.28 29447.80 25384.57 15369.43 34263.34 11578.40 3293.29 2444.73 11989.22 12985.99 966.28 21389.26 116
PatchmatchNetpermissive67.07 22263.63 24277.40 9083.10 11158.03 972.11 32177.77 26258.85 20059.37 21470.83 33637.84 19484.93 26242.96 29869.83 18389.26 116
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MTAPA72.73 11171.22 12177.27 9581.54 15853.57 10567.06 34381.31 19259.41 18368.39 10990.96 6936.07 22989.01 13673.80 8682.45 6389.23 118
tpm68.36 18967.48 18170.97 25179.93 19251.34 16176.58 28878.75 24567.73 4763.54 17174.86 30048.33 6972.36 35753.93 22963.71 23089.21 119
PAPM_NR71.80 13069.98 14277.26 9681.54 15853.34 11578.60 27785.25 10953.46 27860.53 20088.66 11845.69 10089.24 12756.49 21179.62 9589.19 120
EPMVS68.45 18865.44 22477.47 8984.91 7456.17 4371.89 32381.91 18261.72 14360.85 19672.49 32336.21 22687.06 20947.32 27471.62 16689.17 121
tpmrst71.04 14169.77 14474.86 16083.19 11055.86 5175.64 29078.73 24667.88 4464.99 14573.73 30949.96 6279.56 31365.92 12767.85 19789.14 122
GST-MVS74.87 8173.90 8277.77 8283.30 10653.45 10985.75 10985.29 10659.22 18966.50 12589.85 9640.94 16490.76 8870.94 9983.35 5789.10 123
TESTMET0.1,172.86 10972.33 9974.46 16581.98 14050.77 16785.13 12985.47 9666.09 7067.30 11583.69 19237.27 21083.57 27665.06 14078.97 9989.05 124
MP-MVScopyleft74.99 8074.33 7676.95 10682.89 12253.05 12585.63 11483.50 15457.86 21867.25 11690.24 8443.38 13688.85 14776.03 6482.23 6488.96 125
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
QAPM71.88 12869.33 15179.52 4082.20 13854.30 9286.30 9788.77 3856.61 24659.72 20687.48 14433.90 25295.36 1347.48 27381.49 7188.90 126
fmvsm_s_conf0.5_n_a73.68 9873.15 8775.29 15075.45 26748.05 24583.88 17168.84 34563.43 11478.60 3093.37 2245.32 10488.92 14485.39 1164.04 22688.89 127
APD-MVScopyleft76.15 5975.68 5677.54 8788.52 2753.44 11087.26 7785.03 11753.79 27574.91 4591.68 5643.80 12690.31 10174.36 8081.82 6888.87 128
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
GeoE69.96 16167.88 17076.22 11981.11 16751.71 15284.15 16276.74 28159.83 17460.91 19584.38 18041.56 16088.10 17451.67 24670.57 17788.84 129
Vis-MVSNetpermissive70.61 14969.34 15074.42 16780.95 17348.49 22986.03 10377.51 26758.74 20365.55 13787.78 13934.37 24785.95 24552.53 24380.61 7788.80 130
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
CDS-MVSNet70.48 15169.43 14773.64 19277.56 23448.83 21983.51 18177.45 26863.27 11762.33 18285.54 17043.85 12483.29 28057.38 20674.00 14488.79 131
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
region2R73.75 9572.55 9577.33 9183.90 9352.98 12785.54 11984.09 14156.83 23965.10 14090.45 7937.34 20990.24 10468.89 11080.83 7688.77 132
旧先验181.57 15747.48 25671.83 32188.66 11836.94 21578.34 10488.67 133
Fast-Effi-MVS+72.73 11171.15 12377.48 8882.75 12654.76 7886.77 8980.64 20363.05 12165.93 13184.01 18544.42 12189.03 13556.45 21476.36 12088.64 134
PVSNet62.49 869.27 17367.81 17473.64 19284.41 8251.85 14884.63 15177.80 26166.42 6359.80 20584.95 17722.14 34180.44 30255.03 22075.11 13688.62 135
ACMMPR73.76 9472.61 9377.24 9783.92 9252.96 12885.58 11584.29 13556.82 24065.12 13990.45 7937.24 21190.18 10669.18 10880.84 7588.58 136
131471.11 13969.41 14876.22 11979.32 19950.49 17480.23 26185.14 11559.44 18258.93 22388.89 11433.83 25489.60 12161.49 16077.42 10988.57 137
fmvsm_s_conf0.1_n_a72.82 11072.05 11075.12 15570.95 32147.97 24882.72 20468.43 34762.52 13178.17 3393.08 3044.21 12288.86 14584.82 1363.54 23288.54 138
Anonymous2024052969.71 16567.28 18477.00 10383.78 9550.36 18188.87 4685.10 11647.22 31764.03 16183.37 19727.93 29692.10 5757.78 20167.44 20088.53 139
TAMVS69.51 17168.16 16673.56 19576.30 25348.71 22382.57 20877.17 27362.10 13661.32 19384.23 18341.90 15583.46 27854.80 22373.09 15388.50 140
thisisatest051573.64 9972.20 10477.97 7981.63 15253.01 12686.69 9188.81 3762.53 13064.06 15985.65 16752.15 4492.50 4658.43 18669.84 18288.39 141
XVS72.92 10771.62 11476.81 10983.41 10152.48 13484.88 14283.20 16158.03 21263.91 16389.63 10035.50 23489.78 11465.50 13080.50 7988.16 142
X-MVStestdata65.85 24062.20 24876.81 10983.41 10152.48 13484.88 14283.20 16158.03 21263.91 1634.82 40535.50 23489.78 11465.50 13080.50 7988.16 142
Test_1112_low_res67.18 21766.23 20370.02 26778.75 21241.02 33283.43 18473.69 30957.29 23158.45 23682.39 21745.30 10580.88 29450.50 25266.26 21488.16 142
GSMVS88.13 145
sam_mvs138.86 18788.13 145
SCA63.84 24960.01 27175.32 14678.58 21857.92 1061.61 35977.53 26656.71 24357.75 24670.77 33731.97 27079.91 31048.80 26456.36 29488.13 145
EPNet_dtu66.25 23566.71 19264.87 31478.66 21634.12 35682.80 20375.51 29361.75 14264.47 15686.90 15337.06 21372.46 35643.65 29569.63 18688.02 148
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
UWE-MVS72.17 12372.15 10672.21 22182.26 13744.29 29986.83 8889.58 2165.58 7765.82 13385.06 17445.02 10984.35 26854.07 22775.18 13287.99 149
HPM-MVScopyleft72.60 11371.50 11675.89 13082.02 13951.42 15980.70 25483.05 16356.12 25264.03 16189.53 10137.55 20388.37 16170.48 10280.04 8787.88 150
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
PGM-MVS72.60 11371.20 12276.80 11182.95 11952.82 13083.07 19882.14 17556.51 24863.18 17289.81 9735.68 23389.76 11667.30 11880.19 8487.83 151
UGNet68.71 18467.11 18773.50 19680.55 18347.61 25584.08 16478.51 25159.45 18165.68 13682.73 20823.78 32685.08 26052.80 23876.40 11687.80 152
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
mPP-MVS71.79 13170.38 13376.04 12782.65 13052.06 14284.45 15481.78 18555.59 25762.05 18789.68 9933.48 25688.28 16965.45 13578.24 10587.77 153
FA-MVS(test-final)69.00 17766.60 19676.19 12283.48 10047.96 25074.73 29882.07 17757.27 23262.18 18478.47 25936.09 22892.89 3553.76 23171.32 17087.73 154
dp64.41 24461.58 25272.90 20582.40 13354.09 9772.53 31376.59 28560.39 16855.68 27270.39 34035.18 23876.90 33539.34 30861.71 25287.73 154
TR-MVS69.71 16567.85 17375.27 15282.94 12048.48 23087.40 7180.86 20057.15 23564.61 15087.08 15132.67 26389.64 12046.38 28171.55 16887.68 156
test_fmvsm_n_192075.56 7175.54 5975.61 13574.60 27949.51 20281.82 22774.08 30466.52 6280.40 2293.46 1946.95 8389.72 11786.69 775.30 13087.61 157
MIMVSNet63.12 25860.29 26871.61 23875.92 26246.65 26865.15 34581.94 17959.14 19454.65 28169.47 34325.74 31280.63 29841.03 30469.56 18787.55 158
baseline275.15 7874.54 7576.98 10581.67 15151.74 15183.84 17291.94 369.97 2858.98 22186.02 16359.73 891.73 6368.37 11270.40 17987.48 159
GA-MVS69.04 17566.70 19376.06 12675.11 26952.36 13883.12 19680.23 21063.32 11660.65 19979.22 25230.98 27988.37 16161.25 16166.41 20987.46 160
无先验85.19 12778.00 25949.08 30785.13 25952.78 23987.45 161
EPP-MVSNet71.14 13770.07 14174.33 17079.18 20346.52 27083.81 17386.49 7956.32 25157.95 24084.90 17854.23 3289.14 13258.14 19369.65 18587.33 162
MDTV_nov1_ep13_2view43.62 30671.13 32654.95 26659.29 21836.76 21846.33 28287.32 163
BH-RMVSNet70.08 15668.01 16776.27 11784.21 8751.22 16587.29 7579.33 23558.96 19963.63 16886.77 15533.29 25890.30 10344.63 29073.96 14587.30 164
CP-MVS72.59 11571.46 11776.00 12982.93 12152.32 14086.93 8582.48 17255.15 26263.65 16790.44 8235.03 24188.53 15768.69 11177.83 10687.15 165
baseline172.51 11672.12 10873.69 19185.05 7144.46 29583.51 18186.13 8771.61 1764.64 14887.97 13655.00 2889.48 12259.07 18056.05 30187.13 166
API-MVS74.17 8872.07 10980.49 2590.02 1158.55 887.30 7484.27 13657.51 22765.77 13587.77 14041.61 15995.97 1151.71 24582.63 6086.94 167
AUN-MVS68.20 19566.35 19973.76 18876.37 24947.45 25779.52 26979.52 22560.98 15762.34 18186.02 16336.59 22486.94 21362.32 15353.47 32486.89 168
LCM-MVSNet-Re58.82 29256.54 29165.68 30679.31 20029.09 37961.39 36145.79 37760.73 16437.65 36572.47 32431.42 27681.08 29249.66 25770.41 17886.87 169
HyFIR lowres test69.94 16267.58 17777.04 10077.11 24457.29 2081.49 24079.11 23858.27 20958.86 22680.41 24042.33 14686.96 21261.91 15768.68 19186.87 169
xiu_mvs_v1_base_debu71.60 13270.29 13675.55 13877.26 23953.15 12085.34 12079.37 22955.83 25472.54 7090.19 8722.38 33586.66 22173.28 8976.39 11786.85 171
xiu_mvs_v1_base71.60 13270.29 13675.55 13877.26 23953.15 12085.34 12079.37 22955.83 25472.54 7090.19 8722.38 33586.66 22173.28 8976.39 11786.85 171
xiu_mvs_v1_base_debi71.60 13270.29 13675.55 13877.26 23953.15 12085.34 12079.37 22955.83 25472.54 7090.19 8722.38 33586.66 22173.28 8976.39 11786.85 171
hse-mvs271.44 13570.68 12773.73 19076.34 25047.44 25879.45 27079.47 22868.08 4071.97 7886.01 16542.50 14486.93 21478.82 4653.46 32586.83 174
PVSNet_Blended_VisFu73.40 10372.44 9776.30 11681.32 16554.70 8285.81 10578.82 24263.70 10664.53 15285.38 17147.11 8287.38 20267.75 11677.55 10786.81 175
EC-MVSNet75.30 7475.20 6475.62 13480.98 16849.00 21387.43 6984.68 12863.49 11370.97 9290.15 9042.86 14391.14 7874.33 8181.90 6786.71 176
VPNet72.07 12471.42 11974.04 17878.64 21747.17 26489.91 3287.97 5572.56 1264.66 14785.04 17541.83 15788.33 16561.17 16360.97 25586.62 177
MVS_111021_LR69.07 17467.91 16872.54 21377.27 23849.56 19979.77 26573.96 30759.33 18760.73 19887.82 13830.19 28481.53 28869.94 10372.19 16286.53 178
IS-MVSNet68.80 18267.55 17972.54 21378.50 22043.43 30981.03 24679.35 23359.12 19557.27 25786.71 15646.05 9487.70 18944.32 29275.60 12886.49 179
tpm cat166.28 23462.78 24476.77 11381.40 16257.14 2270.03 33077.19 27253.00 28258.76 22970.73 33946.17 9186.73 21943.27 29664.46 22486.44 180
PCF-MVS61.03 1070.10 15568.40 16175.22 15477.15 24351.99 14479.30 27282.12 17656.47 24961.88 18886.48 16143.98 12387.24 20455.37 21972.79 15686.43 181
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
test-LLR69.65 16869.01 15571.60 23978.67 21448.17 24085.13 12979.72 22059.18 19263.13 17382.58 21236.91 21680.24 30460.56 16975.17 13386.39 182
test-mter68.36 18967.29 18371.60 23978.67 21448.17 24085.13 12979.72 22053.38 27963.13 17382.58 21227.23 30280.24 30460.56 16975.17 13386.39 182
test_vis1_n_192068.59 18768.31 16269.44 27269.16 33341.51 32784.63 15168.58 34658.80 20173.26 6288.37 12325.30 31580.60 29979.10 4367.55 19986.23 184
dmvs_re67.61 20466.00 20872.42 21781.86 14343.45 30864.67 34880.00 21369.56 3260.07 20285.00 17634.71 24387.63 19351.48 24766.68 20486.17 185
SDMVSNet71.89 12770.62 12975.70 13381.70 14851.61 15373.89 30388.72 4066.58 5961.64 19082.38 21837.63 20089.48 12277.44 5965.60 21686.01 186
sd_testset67.79 20165.95 21073.32 19781.70 14846.33 27568.99 33580.30 20966.58 5961.64 19082.38 21830.45 28287.63 19355.86 21665.60 21686.01 186
nrg03072.27 12271.56 11574.42 16775.93 26150.60 17186.97 8383.21 16062.75 12567.15 11784.38 18050.07 5886.66 22171.19 9662.37 24985.99 188
BH-w/o70.02 15868.51 15974.56 16382.77 12550.39 17886.60 9378.14 25759.77 17559.65 20785.57 16939.27 18387.30 20349.86 25674.94 14085.99 188
XXY-MVS70.18 15369.28 15372.89 20777.64 23142.88 31585.06 13387.50 6662.58 12962.66 18082.34 22143.64 13289.83 11358.42 18863.70 23185.96 190
SR-MVS70.92 14469.73 14574.50 16483.38 10550.48 17584.27 15979.35 23348.96 30966.57 12490.45 7933.65 25587.11 20766.42 12374.56 14285.91 191
test_cas_vis1_n_192067.10 21966.60 19668.59 28565.17 35543.23 31183.23 19369.84 33955.34 26170.67 9687.71 14124.70 32276.66 33778.57 5064.20 22585.89 192
新几何173.30 19983.10 11153.48 10671.43 32745.55 32966.14 12787.17 15033.88 25380.54 30048.50 26780.33 8385.88 193
CLD-MVS75.60 7075.39 6276.24 11880.69 17952.40 13790.69 2486.20 8674.40 865.01 14388.93 11242.05 15290.58 9476.57 6373.96 14585.73 194
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
ACMMPcopyleft70.81 14669.29 15275.39 14481.52 16051.92 14783.43 18483.03 16456.67 24558.80 22888.91 11331.92 27288.58 15365.89 12973.39 14985.67 195
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
OMC-MVS65.97 23965.06 23068.71 28272.97 29842.58 32078.61 27675.35 29654.72 26859.31 21686.25 16233.30 25777.88 32657.99 19467.05 20285.66 196
APD-MVS_3200maxsize69.62 16968.23 16573.80 18781.58 15648.22 23981.91 22379.50 22648.21 31264.24 15889.75 9831.91 27387.55 19763.08 14873.85 14785.64 197
VPA-MVSNet71.12 13870.66 12872.49 21578.75 21244.43 29787.64 6490.02 1763.97 10165.02 14281.58 23142.14 15087.42 20063.42 14663.38 23785.63 198
thisisatest053070.47 15268.56 15876.20 12179.78 19351.52 15783.49 18388.58 4757.62 22558.60 23082.79 20451.03 5191.48 6752.84 23762.36 25085.59 199
cascas69.01 17666.13 20577.66 8479.36 19755.41 5886.99 8283.75 14856.69 24458.92 22481.35 23324.31 32492.10 5753.23 23270.61 17685.46 200
DP-MVS Recon71.99 12570.31 13577.01 10290.65 853.44 11089.37 3882.97 16656.33 25063.56 17089.47 10234.02 25092.15 5654.05 22872.41 15985.43 201
test22279.36 19750.97 16677.99 28067.84 34842.54 34762.84 17786.53 15930.26 28376.91 11285.23 202
TAPA-MVS56.12 1461.82 27160.18 27066.71 30078.48 22137.97 34575.19 29676.41 28746.82 32057.04 25886.52 16027.67 30077.03 33226.50 36567.02 20385.14 203
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
iter_conf0573.51 10172.24 10377.33 9187.93 3955.97 4887.90 6170.81 33268.72 3564.04 16084.36 18247.54 7790.87 8671.11 9867.75 19885.13 204
testdata67.08 29677.59 23345.46 28769.20 34444.47 33671.50 8588.34 12631.21 27770.76 36252.20 24475.88 12485.03 205
OpenMVScopyleft61.00 1169.99 16067.55 17977.30 9378.37 22354.07 9884.36 15685.76 9357.22 23356.71 26287.67 14230.79 28092.83 3743.04 29784.06 5585.01 206
PVSNet_057.04 1361.19 27457.24 28773.02 20277.45 23650.31 18479.43 27177.36 27163.96 10247.51 32972.45 32525.03 31883.78 27352.76 24119.22 39584.96 207
HQP4-MVS64.47 15688.61 15284.91 208
HQP-MVS72.34 11871.44 11875.03 15779.02 20651.56 15588.00 5583.68 14965.45 7864.48 15385.13 17237.35 20788.62 15166.70 12173.12 15184.91 208
test_fmvsmvis_n_192071.29 13670.38 13374.00 18071.04 32048.79 22079.19 27364.62 35662.75 12566.73 11891.99 4940.94 16488.35 16383.00 2273.18 15084.85 210
BH-untuned68.28 19266.40 19873.91 18281.62 15350.01 18985.56 11777.39 26957.63 22457.47 25483.69 19236.36 22587.08 20844.81 28873.08 15484.65 211
HQP_MVS70.96 14369.91 14374.12 17677.95 22749.57 19785.76 10782.59 17063.60 10962.15 18583.28 19936.04 23088.30 16765.46 13372.34 16084.49 212
plane_prior582.59 17088.30 16765.46 13372.34 16084.49 212
XVG-OURS-SEG-HR62.02 26959.54 27369.46 27165.30 35345.88 28165.06 34673.57 31146.45 32357.42 25583.35 19826.95 30478.09 32053.77 23064.03 22784.42 214
Vis-MVSNet (Re-imp)65.52 24165.63 21865.17 31277.49 23530.54 36875.49 29477.73 26359.34 18552.26 30286.69 15749.38 6680.53 30137.07 31675.28 13184.42 214
FMVSNet368.84 17967.40 18273.19 20085.05 7148.53 22785.71 11385.36 10160.90 16157.58 24979.15 25342.16 14986.77 21747.25 27563.40 23484.27 216
FE-MVS64.15 24660.43 26775.30 14980.85 17549.86 19368.28 33978.37 25450.26 30259.31 21673.79 30826.19 30991.92 6040.19 30566.67 20584.12 217
原ACMM176.13 12484.89 7554.59 8785.26 10851.98 28966.70 11987.07 15240.15 17489.70 11851.23 24985.06 4784.10 218
FMVSNet267.57 20665.79 21472.90 20582.71 12747.97 24885.15 12884.93 11958.55 20656.71 26278.26 26036.72 22186.67 22046.15 28362.94 24584.07 219
FIs70.00 15970.24 13969.30 27377.93 22938.55 34283.99 16887.72 6266.86 5757.66 24784.17 18452.28 4285.31 25352.72 24268.80 18984.02 220
XVG-OURS61.88 27059.34 27569.49 27065.37 35246.27 27664.80 34773.49 31247.04 31957.41 25682.85 20325.15 31778.18 31853.00 23664.98 21884.01 221
tttt051768.33 19166.29 20174.46 16578.08 22549.06 20980.88 25189.08 2754.40 27254.75 28080.77 23851.31 4890.33 10049.35 26058.01 28283.99 222
114514_t69.87 16367.88 17075.85 13188.38 2952.35 13986.94 8483.68 14953.70 27655.68 27285.60 16830.07 28591.20 7555.84 21771.02 17283.99 222
UA-Net67.32 21466.23 20370.59 25578.85 21041.23 33173.60 30575.45 29561.54 14666.61 12284.53 17938.73 18886.57 22642.48 30274.24 14383.98 224
thres20068.71 18467.27 18573.02 20284.73 7646.76 26785.03 13587.73 6162.34 13459.87 20383.45 19643.15 13888.32 16631.25 34567.91 19683.98 224
UniMVSNet_NR-MVSNet68.82 18068.29 16370.40 25975.71 26442.59 31884.23 16086.78 7466.31 6558.51 23182.45 21551.57 4684.64 26653.11 23355.96 30283.96 226
CVMVSNet60.85 27660.44 26662.07 32675.00 27332.73 36379.54 26773.49 31236.98 36056.28 26883.74 19029.28 29069.53 36546.48 28063.23 23983.94 227
TranMVSNet+NR-MVSNet66.94 22565.61 21970.93 25273.45 29143.38 31083.02 20084.25 13765.31 8558.33 23881.90 22739.92 17985.52 24949.43 25954.89 31283.89 228
MVSTER73.25 10472.33 9976.01 12885.54 6253.76 10283.52 17787.16 6867.06 5463.88 16581.66 22952.77 3890.44 9664.66 14164.69 22283.84 229
UniMVSNet_ETH3D62.51 26460.49 26568.57 28668.30 34140.88 33473.89 30379.93 21651.81 29354.77 27979.61 24624.80 32081.10 29149.93 25561.35 25383.73 230
tt080563.39 25561.31 25769.64 26969.36 33138.87 34078.00 27985.48 9548.82 31055.66 27581.66 22924.38 32386.37 23049.04 26359.36 26683.68 231
PS-MVSNAJss68.78 18367.17 18673.62 19473.01 29748.33 23784.95 14084.81 12359.30 18858.91 22579.84 24537.77 19588.86 14562.83 15063.12 24383.67 232
HPM-MVS_fast67.86 19866.28 20272.61 21180.67 18048.34 23581.18 24475.95 29150.81 29859.55 21188.05 13427.86 29785.98 24258.83 18273.58 14883.51 233
Fast-Effi-MVS+-dtu66.53 23164.10 24073.84 18572.41 30552.30 14184.73 14675.66 29259.51 18056.34 26779.11 25428.11 29485.85 24757.74 20263.29 23883.35 234
GBi-Net67.09 22065.47 22271.96 22982.71 12746.36 27283.52 17783.31 15658.55 20657.58 24976.23 28936.72 22186.20 23147.25 27563.40 23483.32 235
test167.09 22065.47 22271.96 22982.71 12746.36 27283.52 17783.31 15658.55 20657.58 24976.23 28936.72 22186.20 23147.25 27563.40 23483.32 235
FMVSNet164.57 24362.11 24971.96 22977.32 23746.36 27283.52 17783.31 15652.43 28754.42 28376.23 28927.80 29886.20 23142.59 30161.34 25483.32 235
DU-MVS66.84 22865.74 21670.16 26273.27 29542.59 31881.50 23882.92 16763.53 11158.51 23182.11 22440.75 16684.64 26653.11 23355.96 30283.24 238
NR-MVSNet67.25 21565.99 20971.04 25073.27 29543.91 30385.32 12384.75 12666.05 7353.65 29282.11 22445.05 10885.97 24447.55 27256.18 29983.24 238
SR-MVS-dyc-post68.27 19366.87 18872.48 21680.96 17048.14 24281.54 23676.98 27646.42 32462.75 17889.42 10331.17 27886.09 23960.52 17172.06 16383.19 240
RE-MVS-def66.66 19480.96 17048.14 24281.54 23676.98 27646.42 32462.75 17889.42 10329.28 29060.52 17172.06 16383.19 240
UniMVSNet (Re)67.71 20266.80 19070.45 25774.44 28042.93 31482.42 21484.90 12063.69 10759.63 20880.99 23547.18 8085.23 25651.17 25056.75 29383.19 240
WR-MVS67.58 20566.76 19170.04 26675.92 26245.06 29386.23 9885.28 10764.31 9358.50 23381.00 23444.80 11882.00 28749.21 26255.57 30783.06 243
OPM-MVS70.75 14769.58 14674.26 17375.55 26651.34 16186.05 10283.29 15961.94 14062.95 17685.77 16634.15 24988.44 15965.44 13671.07 17182.99 244
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
FC-MVSNet-test67.49 20867.91 16866.21 30476.06 25733.06 36180.82 25287.18 6764.44 9254.81 27882.87 20250.40 5782.60 28248.05 27066.55 20882.98 245
v2v48269.55 17067.64 17675.26 15372.32 30753.83 9984.93 14181.94 17965.37 8360.80 19779.25 25141.62 15888.98 14063.03 14959.51 26382.98 245
EI-MVSNet-Vis-set73.19 10572.60 9474.99 15982.56 13249.80 19582.55 21089.00 2866.17 6865.89 13288.98 11143.83 12592.29 5165.38 13869.01 18882.87 247
mvsmamba66.93 22664.88 23373.09 20175.06 27147.26 26183.36 19069.21 34362.64 12855.68 27281.43 23229.72 28689.20 13163.35 14763.50 23382.79 248
thres100view90066.87 22765.42 22571.24 24583.29 10743.15 31281.67 23187.78 5859.04 19655.92 27082.18 22343.73 12887.80 18328.80 35266.36 21082.78 249
tfpn200view967.57 20666.13 20571.89 23684.05 8945.07 29083.40 18687.71 6360.79 16257.79 24482.76 20543.53 13387.80 18328.80 35266.36 21082.78 249
v14868.24 19466.35 19973.88 18371.76 31051.47 15884.23 16081.90 18363.69 10758.94 22276.44 28543.72 13087.78 18660.63 16755.86 30482.39 251
Anonymous2023121166.08 23863.67 24173.31 19883.07 11448.75 22186.01 10484.67 12945.27 33156.54 26476.67 28328.06 29588.95 14152.78 23959.95 25882.23 252
miper_enhance_ethall69.77 16468.90 15672.38 21878.93 20949.91 19183.29 19178.85 24064.90 8859.37 21479.46 24752.77 3885.16 25863.78 14358.72 27082.08 253
v114468.81 18166.82 18974.80 16172.34 30653.46 10784.68 14881.77 18664.25 9460.28 20177.91 26240.23 17288.95 14160.37 17459.52 26281.97 254
dmvs_testset57.65 30058.21 28255.97 35174.62 2789.82 40763.75 35063.34 36067.23 5248.89 31983.68 19439.12 18476.14 33823.43 37359.80 26181.96 255
cl2268.85 17867.69 17572.35 21978.07 22649.98 19082.45 21378.48 25262.50 13258.46 23577.95 26149.99 6085.17 25762.55 15158.72 27081.90 256
v119267.96 19765.74 21674.63 16271.79 30953.43 11284.06 16680.99 19963.19 11959.56 21077.46 26937.50 20688.65 15058.20 19258.93 26981.79 257
miper_ehance_all_eth68.70 18667.58 17772.08 22476.91 24649.48 20382.47 21278.45 25362.68 12758.28 23977.88 26350.90 5285.01 26161.91 15758.72 27081.75 258
EI-MVSNet-UG-set72.37 11771.73 11374.29 17281.60 15449.29 20781.85 22588.64 4265.29 8665.05 14188.29 12843.18 13791.83 6163.74 14467.97 19581.75 258
test0.0.03 162.54 26362.44 24662.86 32572.28 30829.51 37682.93 20178.78 24359.18 19253.07 29582.41 21636.91 21677.39 33037.45 31258.96 26881.66 260
CPTT-MVS67.15 21865.84 21371.07 24980.96 17050.32 18381.94 22274.10 30346.18 32757.91 24187.64 14329.57 28781.31 29064.10 14270.18 18181.56 261
c3_l67.97 19666.66 19471.91 23576.20 25549.31 20682.13 21978.00 25961.99 13857.64 24876.94 27749.41 6584.93 26260.62 16857.01 29281.49 262
v192192067.45 20965.23 22874.10 17771.51 31452.90 12983.75 17580.44 20662.48 13359.12 22077.13 27336.98 21487.90 17957.53 20358.14 28081.49 262
miper_lstm_enhance63.91 24862.30 24768.75 28175.06 27146.78 26669.02 33481.14 19559.68 17852.76 29772.39 32640.71 16877.99 32456.81 20953.09 32681.48 264
RRT_MVS63.68 25261.01 26171.70 23773.48 29045.98 28081.19 24376.08 28954.33 27352.84 29679.27 25022.21 33887.65 19154.13 22655.54 30881.46 265
CR-MVSNet62.47 26659.04 27872.77 20873.97 28856.57 3460.52 36271.72 32360.04 17157.49 25265.86 35338.94 18580.31 30342.86 29959.93 25981.42 266
RPMNet59.29 28354.25 30674.42 16773.97 28856.57 3460.52 36276.98 27635.72 36457.49 25258.87 37237.73 19885.26 25527.01 36359.93 25981.42 266
v14419267.86 19865.76 21574.16 17571.68 31153.09 12384.14 16380.83 20162.85 12459.21 21977.28 27239.30 18288.00 17758.67 18457.88 28681.40 268
DIV-MVS_self_test67.43 21065.93 21171.94 23376.33 25148.01 24782.57 20879.11 23861.31 15056.73 26076.92 27846.09 9386.43 22957.98 19556.31 29681.39 269
cl____67.43 21065.93 21171.95 23276.33 25148.02 24682.58 20779.12 23761.30 15156.72 26176.92 27846.12 9286.44 22857.98 19556.31 29681.38 270
v124066.99 22364.68 23473.93 18171.38 31752.66 13283.39 18879.98 21461.97 13958.44 23777.11 27435.25 23687.81 18156.46 21358.15 27881.33 271
PVSNet_BlendedMVS73.42 10273.30 8473.76 18885.91 5451.83 14986.18 9984.24 13965.40 8169.09 10480.86 23746.70 8788.13 17275.43 7065.92 21581.33 271
UnsupCasMVSNet_eth57.56 30155.15 30164.79 31564.57 36033.12 36073.17 31083.87 14758.98 19841.75 35170.03 34122.54 33479.92 30846.12 28435.31 37281.32 273
test_djsdf63.84 24961.56 25370.70 25468.78 33544.69 29481.63 23281.44 19050.28 29952.27 30176.26 28826.72 30586.11 23560.83 16555.84 30581.29 274
WB-MVSnew69.36 17268.24 16472.72 20979.26 20149.40 20485.72 11288.85 3561.33 14964.59 15182.38 21834.57 24587.53 19846.82 27970.63 17581.22 275
AdaColmapbinary67.86 19865.48 22175.00 15888.15 3654.99 7386.10 10176.63 28449.30 30657.80 24386.65 15829.39 28988.94 14345.10 28770.21 18081.06 276
jajsoiax63.21 25760.84 26270.32 26068.33 34044.45 29681.23 24281.05 19653.37 28050.96 31077.81 26517.49 36185.49 25159.31 17858.05 28181.02 277
mvs_tets62.96 26060.55 26470.19 26168.22 34344.24 30180.90 25080.74 20252.99 28350.82 31277.56 26616.74 36485.44 25259.04 18157.94 28380.89 278
ACMP61.11 966.24 23664.33 23772.00 22874.89 27549.12 20883.18 19579.83 21855.41 26052.29 30082.68 20925.83 31186.10 23760.89 16463.94 22980.78 279
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
pm-mvs164.12 24762.56 24568.78 28071.68 31138.87 34082.89 20281.57 18755.54 25953.89 28977.82 26437.73 19886.74 21848.46 26853.49 32380.72 280
thres600view766.46 23265.12 22970.47 25683.41 10143.80 30582.15 21787.78 5859.37 18456.02 26982.21 22243.73 12886.90 21526.51 36464.94 21980.71 281
thres40067.40 21366.13 20571.19 24784.05 8945.07 29083.40 18687.71 6360.79 16257.79 24482.76 20543.53 13387.80 18328.80 35266.36 21080.71 281
LPG-MVS_test66.44 23364.58 23572.02 22674.42 28148.60 22483.07 19880.64 20354.69 26953.75 29083.83 18825.73 31386.98 21060.33 17564.71 22080.48 283
LGP-MVS_train72.02 22674.42 28148.60 22480.64 20354.69 26953.75 29083.83 18825.73 31386.98 21060.33 17564.71 22080.48 283
v867.25 21564.99 23174.04 17872.89 30053.31 11782.37 21580.11 21261.54 14654.29 28576.02 29442.89 14288.41 16058.43 18656.36 29480.39 285
V4267.66 20365.60 22073.86 18470.69 32453.63 10481.50 23878.61 24963.85 10359.49 21377.49 26837.98 19287.65 19162.33 15258.43 27380.29 286
eth_miper_zixun_eth66.98 22465.28 22772.06 22575.61 26550.40 17781.00 24776.97 27962.00 13756.99 25976.97 27644.84 11585.58 24858.75 18354.42 31680.21 287
Anonymous2023120659.08 28857.59 28563.55 31968.77 33632.14 36680.26 26079.78 21950.00 30349.39 31672.39 32626.64 30678.36 31733.12 33857.94 28380.14 288
IterMVS63.77 25161.67 25170.08 26472.68 30251.24 16480.44 25675.51 29360.51 16751.41 30573.70 31232.08 26978.91 31454.30 22554.35 31780.08 289
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
pmmvs562.80 26261.18 25867.66 29169.53 33042.37 32382.65 20675.19 29754.30 27452.03 30378.51 25831.64 27580.67 29748.60 26658.15 27879.95 290
v1066.61 23064.20 23973.83 18672.59 30353.37 11381.88 22479.91 21761.11 15354.09 28775.60 29640.06 17688.26 17056.47 21256.10 30079.86 291
ACMM58.35 1264.35 24562.01 25071.38 24374.21 28448.51 22882.25 21679.66 22247.61 31554.54 28280.11 24125.26 31686.00 24151.26 24863.16 24179.64 292
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test_fmvs153.60 32352.54 31856.78 34758.07 37330.26 36968.95 33642.19 38332.46 37163.59 16982.56 21411.55 37360.81 37258.25 19155.27 30979.28 293
test_vis1_n51.19 33249.66 32955.76 35251.26 38429.85 37467.20 34238.86 38732.12 37359.50 21279.86 2448.78 38258.23 37956.95 20852.46 32879.19 294
test_fmvs1_n52.55 32751.19 32256.65 34851.90 38330.14 37067.66 34042.84 38232.27 37262.30 18382.02 2269.12 38160.84 37157.82 19954.75 31578.99 295
K. test v354.04 31949.42 33067.92 29068.55 33742.57 32175.51 29363.07 36152.07 28839.21 35964.59 35719.34 35282.21 28337.11 31525.31 38878.97 296
v7n62.50 26559.27 27672.20 22267.25 34649.83 19477.87 28180.12 21152.50 28648.80 32073.07 31732.10 26887.90 17946.83 27854.92 31178.86 297
CL-MVSNet_self_test62.98 25961.14 25968.50 28765.86 35042.96 31384.37 15582.98 16560.98 15753.95 28872.70 32240.43 17083.71 27441.10 30347.93 34078.83 298
EI-MVSNet69.70 16768.70 15772.68 21075.00 27348.90 21779.54 26787.16 6861.05 15563.88 16583.74 19045.87 9690.44 9657.42 20564.68 22378.70 299
IterMVS-LS66.63 22965.36 22670.42 25875.10 27048.90 21781.45 24176.69 28361.05 15555.71 27177.10 27545.86 9783.65 27557.44 20457.88 28678.70 299
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
FMVSNet558.61 29456.45 29265.10 31377.20 24239.74 33674.77 29777.12 27450.27 30143.28 34567.71 34826.15 31076.90 33536.78 31954.78 31378.65 301
lessismore_v067.98 28964.76 35941.25 33045.75 37836.03 36965.63 35519.29 35384.11 26935.67 32221.24 39378.59 302
anonymousdsp60.46 27857.65 28468.88 27663.63 36345.09 28972.93 31178.63 24846.52 32251.12 30772.80 32121.46 34583.07 28157.79 20053.97 31878.47 303
CNLPA60.59 27758.44 28167.05 29779.21 20247.26 26179.75 26664.34 35842.46 34851.90 30483.94 18627.79 29975.41 34237.12 31459.49 26478.47 303
IterMVS-SCA-FT59.12 28658.81 28060.08 33870.68 32545.07 29080.42 25774.25 30243.54 34350.02 31473.73 30931.97 27056.74 38051.06 25153.60 32278.42 305
MS-PatchMatch72.34 11871.26 12075.61 13582.38 13455.55 5388.00 5589.95 1965.38 8256.51 26680.74 23932.28 26792.89 3557.95 19788.10 1578.39 306
pmmvs659.64 28157.15 28867.09 29566.01 34836.86 34980.50 25578.64 24745.05 33349.05 31873.94 30727.28 30186.10 23743.96 29449.94 33578.31 307
testgi54.25 31852.57 31759.29 34162.76 36621.65 39172.21 31870.47 33453.25 28141.94 34977.33 27114.28 37077.95 32529.18 35151.72 33178.28 308
Baseline_NR-MVSNet65.49 24264.27 23869.13 27474.37 28341.65 32583.39 18878.85 24059.56 17959.62 20976.88 28040.75 16687.44 19949.99 25455.05 31078.28 308
PatchT56.60 30552.97 31267.48 29272.94 29946.16 27957.30 37073.78 30838.77 35454.37 28457.26 37537.52 20478.06 32132.02 34052.79 32778.23 310
our_test_359.11 28755.08 30371.18 24871.42 31553.29 11881.96 22174.52 30048.32 31142.08 34869.28 34528.14 29382.15 28434.35 33245.68 35478.11 311
pmmvs463.34 25661.07 26070.16 26270.14 32650.53 17379.97 26471.41 32855.08 26354.12 28678.58 25732.79 26282.09 28650.33 25357.22 29177.86 312
TransMVSNet (Re)62.82 26160.76 26369.02 27573.98 28741.61 32686.36 9579.30 23656.90 23752.53 29876.44 28541.85 15687.60 19638.83 30940.61 36477.86 312
PEN-MVS58.35 29857.15 28861.94 32967.55 34534.39 35377.01 28478.35 25551.87 29147.72 32576.73 28233.91 25173.75 34934.03 33347.17 34677.68 314
XVG-ACMP-BASELINE56.03 31052.85 31465.58 30761.91 36840.95 33363.36 35172.43 31845.20 33246.02 33674.09 3059.20 38078.12 31945.13 28658.27 27677.66 315
CP-MVSNet58.54 29757.57 28661.46 33368.50 33833.96 35776.90 28678.60 25051.67 29447.83 32476.60 28434.99 24272.79 35435.45 32347.58 34277.64 316
PS-CasMVS58.12 29957.03 29061.37 33468.24 34233.80 35976.73 28778.01 25851.20 29647.54 32876.20 29232.85 26072.76 35535.17 32847.37 34477.55 317
tfpnnormal61.47 27359.09 27768.62 28476.29 25441.69 32481.14 24585.16 11354.48 27151.32 30673.63 31332.32 26686.89 21621.78 37855.71 30677.29 318
DTE-MVSNet57.03 30355.73 29960.95 33765.94 34932.57 36475.71 28977.09 27551.16 29746.65 33476.34 28732.84 26173.22 35330.94 34644.87 35577.06 319
D2MVS63.49 25461.39 25569.77 26869.29 33248.93 21678.89 27577.71 26460.64 16649.70 31572.10 33127.08 30383.48 27754.48 22462.65 24676.90 320
Effi-MVS+-dtu66.24 23664.96 23270.08 26475.17 26849.64 19682.01 22074.48 30162.15 13557.83 24276.08 29330.59 28183.79 27265.40 13760.93 25676.81 321
KD-MVS_2432*160059.04 28956.44 29366.86 29879.07 20445.87 28272.13 31980.42 20755.03 26448.15 32271.01 33436.73 21978.05 32235.21 32630.18 38376.67 322
miper_refine_blended59.04 28956.44 29366.86 29879.07 20445.87 28272.13 31980.42 20755.03 26448.15 32271.01 33436.73 21978.05 32235.21 32630.18 38376.67 322
RPSCF45.77 34244.13 34450.68 35757.67 37629.66 37554.92 37545.25 37926.69 38045.92 33775.92 29517.43 36245.70 39127.44 36145.95 35376.67 322
WR-MVS_H58.91 29158.04 28361.54 33269.07 33433.83 35876.91 28581.99 17851.40 29548.17 32174.67 30140.23 17274.15 34531.78 34248.10 33876.64 325
UnsupCasMVSNet_bld53.86 32050.53 32463.84 31763.52 36434.75 35271.38 32481.92 18146.53 32138.95 36157.93 37320.55 34880.20 30639.91 30734.09 37976.57 326
PLCcopyleft52.38 1860.89 27558.97 27966.68 30281.77 14545.70 28578.96 27474.04 30643.66 34247.63 32683.19 20123.52 32977.78 32937.47 31160.46 25776.55 327
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
MVP-Stereo70.97 14270.44 13172.59 21276.03 25951.36 16085.02 13686.99 7160.31 16956.53 26578.92 25540.11 17590.00 10960.00 17790.01 676.41 328
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
test20.0355.22 31454.07 30758.68 34363.14 36525.00 38477.69 28274.78 29952.64 28443.43 34372.39 32626.21 30874.76 34429.31 35047.05 34876.28 329
EU-MVSNet52.63 32650.72 32358.37 34462.69 36728.13 38172.60 31275.97 29030.94 37540.76 35772.11 33020.16 34970.80 36135.11 32946.11 35276.19 330
ppachtmachnet_test58.56 29554.34 30471.24 24571.42 31554.74 7981.84 22672.27 31949.02 30845.86 33868.99 34626.27 30783.30 27930.12 34743.23 35975.69 331
CHOSEN 280x42057.53 30256.38 29560.97 33674.01 28648.10 24446.30 38054.31 37148.18 31350.88 31177.43 27038.37 19159.16 37854.83 22163.14 24275.66 332
SixPastTwentyTwo54.37 31650.10 32567.21 29470.70 32341.46 32974.73 29864.69 35547.56 31639.12 36069.49 34218.49 35884.69 26531.87 34134.20 37875.48 333
MSDG59.44 28255.14 30272.32 22074.69 27650.71 16874.39 30173.58 31044.44 33743.40 34477.52 26719.45 35190.87 8631.31 34457.49 29075.38 334
KD-MVS_self_test49.24 33546.85 33856.44 34954.32 37822.87 38757.39 36973.36 31644.36 33837.98 36459.30 37118.97 35471.17 36033.48 33442.44 36075.26 335
ACMH53.70 1659.78 28055.94 29871.28 24476.59 24848.35 23480.15 26376.11 28849.74 30441.91 35073.45 31616.50 36690.31 10131.42 34357.63 28975.17 336
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
USDC54.36 31751.23 32163.76 31864.29 36137.71 34662.84 35673.48 31456.85 23835.47 37071.94 3329.23 37978.43 31638.43 31048.57 33775.13 337
Syy-MVS61.51 27261.35 25662.00 32881.73 14630.09 37180.97 24881.02 19760.93 15955.06 27682.64 21035.09 23980.81 29516.40 38958.32 27475.10 338
myMVS_eth3d63.52 25363.56 24363.40 32181.73 14634.28 35480.97 24881.02 19760.93 15955.06 27682.64 21048.00 7480.81 29523.42 37458.32 27475.10 338
MIMVSNet150.35 33447.81 33557.96 34561.53 36927.80 38267.40 34174.06 30543.25 34433.31 37865.38 35616.03 36771.34 35921.80 37747.55 34374.75 340
ambc62.06 32753.98 38029.38 37735.08 39179.65 22341.37 35259.96 3686.27 39182.15 28435.34 32538.22 36874.65 341
ADS-MVSNet255.21 31551.44 32066.51 30380.60 18149.56 19955.03 37365.44 35344.72 33451.00 30861.19 36522.83 33175.41 34228.54 35553.63 32074.57 342
ADS-MVSNet56.17 30951.95 31968.84 27780.60 18153.07 12455.03 37370.02 33844.72 33451.00 30861.19 36522.83 33178.88 31528.54 35553.63 32074.57 342
DSMNet-mixed38.35 34835.36 35347.33 36148.11 39014.91 40337.87 38936.60 39119.18 38734.37 37259.56 37015.53 36853.01 38420.14 38246.89 34974.07 344
OpenMVS_ROBcopyleft53.19 1759.20 28556.00 29768.83 27871.13 31944.30 29883.64 17675.02 29846.42 32446.48 33573.03 31818.69 35588.14 17127.74 36061.80 25174.05 345
PatchMatch-RL56.66 30453.75 30965.37 31177.91 23045.28 28869.78 33260.38 36441.35 34947.57 32773.73 30916.83 36376.91 33336.99 31759.21 26773.92 346
ACMH+54.58 1558.55 29655.24 30068.50 28774.68 27745.80 28480.27 25970.21 33647.15 31842.77 34775.48 29716.73 36585.98 24235.10 33054.78 31373.72 347
tpmvs62.45 26759.42 27471.53 24283.93 9154.32 9170.03 33077.61 26551.91 29053.48 29368.29 34737.91 19386.66 22133.36 33558.27 27673.62 348
EG-PatchMatch MVS62.40 26859.59 27270.81 25373.29 29349.05 21085.81 10584.78 12451.85 29244.19 33973.48 31515.52 36989.85 11240.16 30667.24 20173.54 349
YYNet153.82 32149.96 32665.41 31070.09 32848.95 21472.30 31671.66 32544.25 33931.89 37963.07 36123.73 32773.95 34733.26 33639.40 36673.34 350
JIA-IIPM52.33 32947.77 33666.03 30571.20 31846.92 26540.00 38876.48 28637.10 35946.73 33237.02 38832.96 25977.88 32635.97 32152.45 32973.29 351
MDA-MVSNet_test_wron53.82 32149.95 32765.43 30970.13 32749.05 21072.30 31671.65 32644.23 34031.85 38063.13 36023.68 32874.01 34633.25 33739.35 36773.23 352
pmmvs-eth3d55.97 31152.78 31565.54 30861.02 37046.44 27175.36 29567.72 34949.61 30543.65 34267.58 34921.63 34377.04 33144.11 29344.33 35673.15 353
test_fmvs245.89 34144.32 34350.62 35845.85 39224.70 38558.87 36837.84 39025.22 38152.46 29974.56 3037.07 38554.69 38149.28 26147.70 34172.48 354
F-COLMAP55.96 31253.65 31062.87 32472.76 30142.77 31774.70 30070.37 33540.03 35141.11 35579.36 24817.77 36073.70 35032.80 33953.96 31972.15 355
Anonymous2024052151.65 33048.42 33261.34 33556.43 37739.65 33873.57 30673.47 31536.64 36236.59 36663.98 35810.75 37672.25 35835.35 32449.01 33672.11 356
ITE_SJBPF51.84 35658.03 37431.94 36753.57 37436.67 36141.32 35375.23 29911.17 37551.57 38525.81 36648.04 33972.02 357
OurMVSNet-221017-052.39 32848.73 33163.35 32265.21 35438.42 34368.54 33864.95 35438.19 35539.57 35871.43 33313.23 37279.92 30837.16 31340.32 36571.72 358
Patchmtry56.56 30652.95 31367.42 29372.53 30450.59 17259.05 36671.72 32337.86 35846.92 33165.86 35338.94 18580.06 30736.94 31846.72 35071.60 359
PM-MVS46.92 34043.76 34556.41 35052.18 38232.26 36563.21 35438.18 38837.99 35740.78 35666.20 3525.09 39365.42 36848.19 26941.99 36171.54 360
new-patchmatchnet48.21 33746.55 33953.18 35557.73 37518.19 39970.24 32871.02 33145.70 32833.70 37460.23 36718.00 35969.86 36427.97 35934.35 37671.49 361
CMPMVSbinary40.41 2155.34 31352.64 31663.46 32060.88 37143.84 30461.58 36071.06 33030.43 37636.33 36774.63 30224.14 32575.44 34148.05 27066.62 20671.12 362
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
testing359.97 27960.19 26959.32 34077.60 23230.01 37381.75 22981.79 18453.54 27750.34 31379.94 24248.99 6876.91 33317.19 38750.59 33371.03 363
AllTest47.32 33944.66 34155.32 35365.08 35637.50 34762.96 35554.25 37235.45 36633.42 37672.82 3199.98 37759.33 37524.13 37043.84 35769.13 364
TestCases55.32 35365.08 35637.50 34754.25 37235.45 36633.42 37672.82 3199.98 37759.33 37524.13 37043.84 35769.13 364
LTVRE_ROB45.45 1952.73 32549.74 32861.69 33169.78 32934.99 35144.52 38167.60 35143.11 34543.79 34174.03 30618.54 35781.45 28928.39 35757.94 28368.62 366
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
N_pmnet41.25 34539.77 34845.66 36368.50 3380.82 41372.51 3140.38 41235.61 36535.26 37161.51 36420.07 35067.74 36623.51 37240.63 36368.42 367
LS3D56.40 30853.82 30864.12 31681.12 16645.69 28673.42 30866.14 35235.30 36843.24 34679.88 24322.18 33979.62 31219.10 38464.00 22867.05 368
DP-MVS59.24 28456.12 29668.63 28388.24 3450.35 18282.51 21164.43 35741.10 35046.70 33378.77 25624.75 32188.57 15622.26 37656.29 29866.96 369
test_fmvs337.95 34935.75 35244.55 36535.50 39818.92 39548.32 37734.00 39518.36 38941.31 35461.58 3632.29 40048.06 39042.72 30037.71 36966.66 370
mvsany_test143.38 34442.57 34645.82 36250.96 38526.10 38355.80 37127.74 40027.15 37947.41 33074.39 30418.67 35644.95 39244.66 28936.31 37066.40 371
TinyColmap48.15 33844.49 34259.13 34265.73 35138.04 34463.34 35262.86 36238.78 35329.48 38267.23 3516.46 39073.30 35224.59 36941.90 36266.04 372
pmmvs345.53 34341.55 34757.44 34648.97 38839.68 33770.06 32957.66 36728.32 37834.06 37357.29 3748.50 38366.85 36734.86 33134.26 37765.80 373
MDA-MVSNet-bldmvs51.56 33147.75 33763.00 32371.60 31347.32 26069.70 33372.12 32043.81 34127.65 38763.38 35921.97 34275.96 33927.30 36232.19 38065.70 374
ANet_high34.39 35329.59 35948.78 35930.34 40222.28 38855.53 37263.79 35938.11 35615.47 39436.56 3916.94 38659.98 37413.93 3915.64 40564.08 375
COLMAP_ROBcopyleft43.60 2050.90 33348.05 33459.47 33967.81 34440.57 33571.25 32562.72 36336.49 36336.19 36873.51 31413.48 37173.92 34820.71 38050.26 33463.92 376
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test_040256.45 30753.03 31166.69 30176.78 24750.31 18481.76 22869.61 34142.79 34643.88 34072.13 32922.82 33386.46 22716.57 38850.94 33263.31 377
MVS-HIRNet49.01 33644.71 34061.92 33076.06 25746.61 26963.23 35354.90 37024.77 38233.56 37536.60 39021.28 34675.88 34029.49 34962.54 24763.26 378
TDRefinement40.91 34638.37 35048.55 36050.45 38633.03 36258.98 36750.97 37528.50 37729.89 38167.39 3506.21 39254.51 38217.67 38635.25 37358.11 379
test_vis1_rt40.29 34738.64 34945.25 36448.91 38930.09 37159.44 36527.07 40124.52 38338.48 36351.67 3826.71 38849.44 38644.33 29146.59 35156.23 380
test_method24.09 36521.07 36933.16 37727.67 4068.35 41126.63 39735.11 3943.40 40314.35 39536.98 3893.46 39735.31 39919.08 38522.95 39055.81 381
LCM-MVSNet28.07 35723.85 36540.71 36727.46 40718.93 39430.82 39546.19 37612.76 39416.40 39234.70 3931.90 40348.69 38920.25 38124.22 38954.51 382
mvsany_test328.00 35825.98 36034.05 37528.97 40315.31 40134.54 39218.17 40616.24 39029.30 38353.37 3802.79 39833.38 40330.01 34820.41 39453.45 383
test_f27.12 36024.85 36133.93 37626.17 40815.25 40230.24 39622.38 40512.53 39528.23 38449.43 3832.59 39934.34 40225.12 36826.99 38652.20 384
PMMVS226.71 36122.98 36637.87 37236.89 3968.51 41042.51 38429.32 39919.09 38813.01 39637.54 3872.23 40153.11 38314.54 39011.71 39851.99 385
LF4IMVS33.04 35632.55 35634.52 37440.96 39322.03 38944.45 38235.62 39220.42 38528.12 38562.35 3625.03 39431.88 40421.61 37934.42 37549.63 386
FPMVS35.40 35133.67 35540.57 36846.34 39128.74 38041.05 38557.05 36820.37 38622.27 39053.38 3796.87 38744.94 3938.62 39547.11 34748.01 387
WB-MVS37.41 35036.37 35140.54 36954.23 37910.43 40665.29 34443.75 38034.86 36927.81 38654.63 37624.94 31963.21 3696.81 40115.00 39647.98 388
new_pmnet33.56 35531.89 35738.59 37049.01 38720.42 39251.01 37637.92 38920.58 38423.45 38946.79 3846.66 38949.28 38820.00 38331.57 38246.09 389
SSC-MVS35.20 35234.30 35437.90 37152.58 3818.65 40961.86 35741.64 38431.81 37425.54 38852.94 38123.39 33059.28 3776.10 40212.86 39745.78 390
test_vis3_rt24.79 36422.95 36730.31 38028.59 40418.92 39537.43 39017.27 40812.90 39321.28 39129.92 3971.02 40736.35 39728.28 35829.82 38535.65 391
EGC-MVSNET33.75 35430.42 35843.75 36664.94 35836.21 35060.47 36440.70 3860.02 4060.10 40753.79 3787.39 38460.26 37311.09 39435.23 37434.79 392
APD_test126.46 36224.41 36332.62 37937.58 39521.74 39040.50 38730.39 39711.45 39616.33 39343.76 3851.63 40541.62 39411.24 39326.82 38734.51 393
MVEpermissive16.60 2317.34 37113.39 37429.16 38128.43 40519.72 39313.73 39923.63 4047.23 4027.96 40221.41 3980.80 40836.08 3986.97 39910.39 39931.69 394
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
testf121.11 36619.08 37027.18 38230.56 40018.28 39733.43 39324.48 4028.02 40012.02 39833.50 3940.75 40935.09 4007.68 39721.32 39128.17 395
APD_test221.11 36619.08 37027.18 38230.56 40018.28 39733.43 39324.48 4028.02 40012.02 39833.50 3940.75 40935.09 4007.68 39721.32 39128.17 395
PMVScopyleft19.57 2225.07 36322.43 36832.99 37823.12 40922.98 38640.98 38635.19 39315.99 39111.95 40035.87 3921.47 40649.29 3875.41 40431.90 38126.70 397
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
Gipumacopyleft27.47 35924.26 36437.12 37360.55 37229.17 37811.68 40060.00 36514.18 39210.52 40115.12 4022.20 40263.01 3708.39 39635.65 37119.18 398
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
DeepMVS_CXcopyleft13.10 38621.34 4108.99 40810.02 41010.59 3987.53 40330.55 3961.82 40414.55 4056.83 4007.52 40115.75 399
E-PMN19.16 36818.40 37221.44 38436.19 39713.63 40447.59 37830.89 39610.73 3975.91 40416.59 4003.66 39639.77 3955.95 4038.14 40010.92 400
EMVS18.42 36917.66 37320.71 38534.13 39912.64 40546.94 37929.94 39810.46 3995.58 40514.93 4034.23 39538.83 3965.24 4057.51 40210.67 401
tmp_tt9.44 37210.68 3755.73 3882.49 4114.21 41210.48 40118.04 4070.34 40512.59 39720.49 39911.39 3747.03 40713.84 3926.46 4045.95 402
wuyk23d9.11 3738.77 37710.15 38740.18 39416.76 40020.28 3981.01 4112.58 4042.66 4060.98 4060.23 41112.49 4064.08 4066.90 4031.19 403
testmvs6.14 3758.18 3780.01 3890.01 4120.00 41573.40 3090.00 4130.00 4070.02 4080.15 4070.00 4120.00 4080.02 4070.00 4060.02 404
test1236.01 3768.01 3790.01 3890.00 4130.01 41471.93 3220.00 4130.00 4070.02 4080.11 4080.00 4120.00 4080.02 4070.00 4060.02 404
test_blank0.00 3780.00 3810.00 3910.00 4130.00 4150.00 4020.00 4130.00 4070.00 4100.00 4090.00 4120.00 4080.00 4090.00 4060.00 406
uanet_test0.00 3780.00 3810.00 3910.00 4130.00 4150.00 4020.00 4130.00 4070.00 4100.00 4090.00 4120.00 4080.00 4090.00 4060.00 406
DCPMVS0.00 3780.00 3810.00 3910.00 4130.00 4150.00 4020.00 4130.00 4070.00 4100.00 4090.00 4120.00 4080.00 4090.00 4060.00 406
cdsmvs_eth3d_5k18.33 37024.44 3620.00 3910.00 4130.00 4150.00 40289.40 220.00 4070.00 41092.02 4738.55 1890.00 4080.00 4090.00 4060.00 406
pcd_1.5k_mvsjas3.15 3774.20 3800.00 3910.00 4130.00 4150.00 4020.00 4130.00 4070.00 4100.00 40937.77 1950.00 4080.00 4090.00 4060.00 406
sosnet-low-res0.00 3780.00 3810.00 3910.00 4130.00 4150.00 4020.00 4130.00 4070.00 4100.00 4090.00 4120.00 4080.00 4090.00 4060.00 406
sosnet0.00 3780.00 3810.00 3910.00 4130.00 4150.00 4020.00 4130.00 4070.00 4100.00 4090.00 4120.00 4080.00 4090.00 4060.00 406
uncertanet0.00 3780.00 3810.00 3910.00 4130.00 4150.00 4020.00 4130.00 4070.00 4100.00 4090.00 4120.00 4080.00 4090.00 4060.00 406
Regformer0.00 3780.00 3810.00 3910.00 4130.00 4150.00 4020.00 4130.00 4070.00 4100.00 4090.00 4120.00 4080.00 4090.00 4060.00 406
ab-mvs-re7.68 37410.24 3760.00 3910.00 4130.00 4150.00 4020.00 4130.00 4070.00 41092.12 440.00 4120.00 4080.00 4090.00 4060.00 406
uanet0.00 3780.00 3810.00 3910.00 4130.00 4150.00 4020.00 4130.00 4070.00 4100.00 4090.00 4120.00 4080.00 4090.00 4060.00 406
WAC-MVS34.28 35422.56 375
FOURS183.24 10849.90 19284.98 13778.76 24447.71 31473.42 59
test_one_060189.39 2257.29 2088.09 5357.21 23482.06 1393.39 2054.94 29
eth-test20.00 413
eth-test0.00 413
ZD-MVS89.55 1453.46 10784.38 13357.02 23673.97 5491.03 6544.57 12091.17 7675.41 7381.78 70
test_241102_ONE89.48 1756.89 2988.94 3057.53 22684.61 493.29 2458.81 1196.45 1
9.1478.19 2785.67 5988.32 5188.84 3659.89 17374.58 4992.62 3746.80 8592.66 4181.40 3685.62 40
save fliter85.35 6656.34 4189.31 4081.46 18961.55 145
test072689.40 2057.45 1792.32 888.63 4357.71 22283.14 1093.96 855.17 25
test_part289.33 2355.48 5582.27 12
sam_mvs35.99 232
MTGPAbinary81.31 192
test_post170.84 32714.72 40434.33 24883.86 27048.80 264
test_post16.22 40137.52 20484.72 264
patchmatchnet-post59.74 36938.41 19079.91 310
MTMP87.27 7615.34 409
gm-plane-assit83.24 10854.21 9470.91 2288.23 12995.25 1466.37 124
TEST985.68 5755.42 5687.59 6684.00 14357.72 22172.99 6490.98 6744.87 11488.58 153
test_885.72 5655.31 6187.60 6583.88 14657.84 21972.84 6890.99 6644.99 11088.34 164
agg_prior85.64 6054.92 7583.61 15372.53 7388.10 174
test_prior456.39 4087.15 80
test_prior289.04 4361.88 14173.55 5791.46 6348.01 7374.73 7785.46 41
旧先验281.73 23045.53 33074.66 4670.48 36358.31 190
新几何281.61 234
原ACMM283.77 174
testdata277.81 32845.64 285
segment_acmp44.97 112
testdata177.55 28364.14 97
plane_prior777.95 22748.46 231
plane_prior678.42 22249.39 20536.04 230
plane_prior483.28 199
plane_prior348.95 21464.01 10062.15 185
plane_prior285.76 10763.60 109
plane_prior178.31 224
plane_prior49.57 19787.43 6964.57 9172.84 155
n20.00 413
nn0.00 413
door-mid41.31 385
test1184.25 137
door43.27 381
HQP5-MVS51.56 155
HQP-NCC79.02 20688.00 5565.45 7864.48 153
ACMP_Plane79.02 20688.00 5565.45 7864.48 153
BP-MVS66.70 121
HQP3-MVS83.68 14973.12 151
HQP2-MVS37.35 207
NP-MVS78.76 21150.43 17685.12 173
MDTV_nov1_ep1361.56 25381.68 15055.12 6872.41 31578.18 25659.19 19058.85 22769.29 34434.69 24486.16 23436.76 32062.96 244
ACMMP++_ref63.20 240
ACMMP++59.38 265
Test By Simon39.38 181