This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet95.70 196.40 193.61 398.67 185.39 3495.54 597.36 196.97 199.04 199.05 196.61 195.92 1685.07 5499.27 199.54 1
mamv495.37 294.51 297.96 196.31 1098.41 191.05 4397.23 295.32 299.01 297.26 680.16 13098.99 195.15 199.14 296.47 30
TDRefinement93.52 393.39 493.88 295.94 1590.26 495.70 496.46 390.58 992.86 4796.29 1888.16 3394.17 9286.07 4598.48 1897.22 17
LTVRE_ROB86.10 193.04 493.44 391.82 2193.73 6185.72 3196.79 195.51 988.86 1395.63 996.99 1084.81 6993.16 13291.10 297.53 6996.58 28
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
HPM-MVS_fast92.50 592.54 692.37 695.93 1685.81 3092.99 1294.23 2485.21 3792.51 5595.13 4490.65 995.34 5288.06 998.15 3495.95 40
SR-MVS-dyc-post92.41 692.41 792.39 594.13 5288.95 692.87 1394.16 2988.75 1593.79 2994.43 6888.83 2495.51 4487.16 2997.60 6392.73 157
SR-MVS92.23 792.34 891.91 1694.89 3887.85 992.51 2393.87 4888.20 2093.24 3994.02 9090.15 1695.67 3586.82 3397.34 7392.19 188
HPM-MVScopyleft92.13 892.20 1091.91 1695.58 2684.67 4393.51 894.85 1582.88 6191.77 6793.94 9890.55 1295.73 3388.50 798.23 2895.33 53
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
APD-MVS_3200maxsize92.05 992.24 991.48 2293.02 7785.17 3692.47 2595.05 1487.65 2493.21 4094.39 7390.09 1795.08 6386.67 3597.60 6394.18 94
COLMAP_ROBcopyleft83.01 391.97 1091.95 1192.04 1193.68 6286.15 2193.37 1095.10 1390.28 1092.11 6095.03 4689.75 2094.93 6779.95 11098.27 2695.04 63
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
ACMMPcopyleft91.91 1191.87 1692.03 1295.53 2785.91 2593.35 1194.16 2982.52 6492.39 5894.14 8589.15 2395.62 3687.35 2498.24 2794.56 75
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
mPP-MVS91.69 1291.47 2392.37 696.04 1388.48 892.72 1792.60 9783.09 5891.54 6994.25 7987.67 4195.51 4487.21 2898.11 3593.12 145
CP-MVS91.67 1391.58 2091.96 1395.29 3187.62 1093.38 993.36 6283.16 5791.06 7994.00 9188.26 3095.71 3487.28 2798.39 2192.55 167
XVS91.54 1491.36 2592.08 995.64 2486.25 1992.64 1893.33 6485.07 3889.99 9794.03 8986.57 5295.80 2687.35 2497.62 6194.20 91
MTAPA91.52 1591.60 1991.29 2796.59 486.29 1892.02 3091.81 12284.07 4692.00 6394.40 7286.63 5195.28 5588.59 698.31 2492.30 181
UA-Net91.49 1691.53 2191.39 2494.98 3582.95 5593.52 792.79 9188.22 1988.53 13097.64 383.45 8394.55 8086.02 4898.60 1396.67 25
ACMMPR91.49 1691.35 2791.92 1595.74 2085.88 2792.58 2193.25 7081.99 6791.40 7194.17 8487.51 4295.87 2087.74 1397.76 5493.99 101
LPG-MVS_test91.47 1891.68 1790.82 3494.75 4181.69 6090.00 5994.27 2182.35 6593.67 3494.82 5291.18 495.52 4285.36 5298.73 795.23 58
region2R91.44 1991.30 3191.87 1895.75 1985.90 2692.63 2093.30 6881.91 6990.88 8594.21 8087.75 3995.87 2087.60 1897.71 5793.83 110
HFP-MVS91.30 2091.39 2491.02 3095.43 2984.66 4492.58 2193.29 6981.99 6791.47 7093.96 9588.35 2995.56 3987.74 1397.74 5692.85 154
ZNCC-MVS91.26 2191.34 2891.01 3195.73 2183.05 5392.18 2894.22 2680.14 8991.29 7593.97 9287.93 3895.87 2088.65 597.96 4594.12 98
APDe-MVScopyleft91.22 2291.92 1289.14 6392.97 7978.04 9092.84 1594.14 3383.33 5593.90 2595.73 2988.77 2596.41 387.60 1897.98 4292.98 151
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
PGM-MVS91.20 2390.95 4091.93 1495.67 2385.85 2890.00 5993.90 4580.32 8691.74 6894.41 7188.17 3295.98 1386.37 3897.99 4093.96 103
SteuartSystems-ACMMP91.16 2491.36 2590.55 3893.91 5780.97 6791.49 3793.48 6082.82 6292.60 5493.97 9288.19 3196.29 687.61 1798.20 3194.39 86
Skip Steuart: Steuart Systems R&D Blog.
MP-MVScopyleft91.14 2590.91 4191.83 1996.18 1186.88 1492.20 2793.03 8382.59 6388.52 13194.37 7486.74 5095.41 5086.32 3998.21 2993.19 141
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
GST-MVS90.96 2691.01 3790.82 3495.45 2882.73 5691.75 3593.74 5180.98 8091.38 7293.80 10287.20 4695.80 2687.10 3197.69 5893.93 104
MP-MVS-pluss90.81 2791.08 3489.99 4795.97 1479.88 7288.13 9994.51 1875.79 14392.94 4494.96 4788.36 2895.01 6590.70 398.40 2095.09 62
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ACMH+77.89 1190.73 2891.50 2288.44 7593.00 7876.26 11689.65 7295.55 887.72 2393.89 2794.94 4891.62 393.44 12378.35 12798.76 495.61 47
ACMMP_NAP90.65 2991.07 3689.42 5895.93 1679.54 7789.95 6393.68 5577.65 12291.97 6494.89 4988.38 2795.45 4889.27 497.87 5093.27 137
ACMM79.39 990.65 2990.99 3889.63 5495.03 3483.53 4889.62 7393.35 6379.20 10293.83 2893.60 11290.81 792.96 13985.02 5698.45 1992.41 174
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LS3D90.60 3190.34 4891.38 2589.03 18284.23 4693.58 694.68 1790.65 890.33 9193.95 9784.50 7195.37 5180.87 10095.50 14194.53 78
ACMP79.16 1090.54 3290.60 4690.35 4294.36 4480.98 6689.16 8394.05 3879.03 10592.87 4693.74 10790.60 1195.21 5882.87 7898.76 494.87 66
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
DPE-MVScopyleft90.53 3391.08 3488.88 6693.38 6878.65 8489.15 8494.05 3884.68 4293.90 2594.11 8788.13 3496.30 584.51 6297.81 5291.70 204
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SED-MVS90.46 3491.64 1886.93 9694.18 4772.65 14190.47 5293.69 5383.77 4994.11 2394.27 7590.28 1495.84 2486.03 4697.92 4692.29 182
SMA-MVScopyleft90.31 3590.48 4789.83 5195.31 3079.52 7890.98 4493.24 7175.37 15092.84 4895.28 4085.58 6496.09 887.92 1197.76 5493.88 107
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
SF-MVS90.27 3690.80 4388.68 7392.86 8377.09 10591.19 4195.74 681.38 7592.28 5993.80 10286.89 4994.64 7585.52 5197.51 7094.30 90
v7n90.13 3790.96 3987.65 8891.95 10971.06 16989.99 6193.05 8086.53 2894.29 1996.27 1982.69 9094.08 9586.25 4297.63 6097.82 8
PMVScopyleft80.48 690.08 3890.66 4588.34 7896.71 392.97 290.31 5689.57 18788.51 1890.11 9395.12 4590.98 688.92 24977.55 14197.07 8083.13 346
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
DVP-MVS++90.07 3991.09 3387.00 9491.55 12672.64 14396.19 294.10 3685.33 3593.49 3694.64 6081.12 11995.88 1887.41 2295.94 12492.48 170
DVP-MVScopyleft90.06 4091.32 2986.29 10894.16 5072.56 14790.54 4991.01 14383.61 5293.75 3194.65 5789.76 1895.78 3086.42 3697.97 4390.55 235
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
PS-CasMVS90.06 4091.92 1284.47 14696.56 658.83 30589.04 8592.74 9391.40 696.12 596.06 2587.23 4595.57 3879.42 11898.74 699.00 2
PEN-MVS90.03 4291.88 1584.48 14596.57 558.88 30288.95 8693.19 7291.62 596.01 796.16 2387.02 4795.60 3778.69 12498.72 998.97 3
OurMVSNet-221017-090.01 4389.74 5390.83 3393.16 7580.37 6991.91 3393.11 7681.10 7895.32 1197.24 772.94 21094.85 6985.07 5497.78 5397.26 15
DTE-MVSNet89.98 4491.91 1484.21 15596.51 757.84 31388.93 8792.84 9091.92 496.16 496.23 2086.95 4895.99 1279.05 12198.57 1598.80 6
XVG-ACMP-BASELINE89.98 4489.84 5190.41 4094.91 3784.50 4589.49 7893.98 4079.68 9492.09 6193.89 10083.80 7893.10 13582.67 8298.04 3693.64 122
3Dnovator+83.92 289.97 4689.66 5490.92 3291.27 13581.66 6391.25 3994.13 3488.89 1288.83 12394.26 7877.55 15295.86 2384.88 5795.87 12895.24 57
WR-MVS_H89.91 4791.31 3085.71 12396.32 962.39 25889.54 7693.31 6790.21 1195.57 1095.66 3181.42 11695.90 1780.94 9998.80 398.84 5
OPM-MVS89.80 4889.97 4989.27 6094.76 4079.86 7386.76 12492.78 9278.78 10892.51 5593.64 11188.13 3493.84 10484.83 5997.55 6694.10 99
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
mvs_tets89.78 4989.27 6091.30 2693.51 6484.79 4189.89 6590.63 15370.00 22394.55 1696.67 1387.94 3793.59 11584.27 6495.97 12095.52 48
anonymousdsp89.73 5088.88 6792.27 889.82 16886.67 1590.51 5190.20 17169.87 22495.06 1296.14 2484.28 7493.07 13687.68 1596.34 10397.09 19
test_djsdf89.62 5189.01 6491.45 2392.36 9482.98 5491.98 3190.08 17471.54 20394.28 2196.54 1581.57 11494.27 8486.26 4096.49 9797.09 19
XVG-OURS-SEG-HR89.59 5289.37 5890.28 4394.47 4385.95 2486.84 12093.91 4480.07 9086.75 16993.26 11793.64 290.93 19584.60 6190.75 26593.97 102
APD-MVScopyleft89.54 5389.63 5589.26 6192.57 8881.34 6590.19 5893.08 7980.87 8291.13 7793.19 11886.22 5995.97 1482.23 8897.18 7890.45 237
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
jajsoiax89.41 5488.81 7091.19 2993.38 6884.72 4289.70 6890.29 16869.27 22794.39 1796.38 1786.02 6293.52 11983.96 6695.92 12695.34 52
CPTT-MVS89.39 5588.98 6690.63 3795.09 3386.95 1392.09 2992.30 10579.74 9387.50 15492.38 14881.42 11693.28 12883.07 7497.24 7691.67 205
ACMH76.49 1489.34 5691.14 3283.96 16092.50 9170.36 17589.55 7493.84 4981.89 7094.70 1495.44 3690.69 888.31 25983.33 7098.30 2593.20 140
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
testf189.30 5789.12 6189.84 4988.67 19285.64 3290.61 4793.17 7386.02 3193.12 4195.30 3884.94 6689.44 24174.12 18096.10 11594.45 81
APD_test289.30 5789.12 6189.84 4988.67 19285.64 3290.61 4793.17 7386.02 3193.12 4195.30 3884.94 6689.44 24174.12 18096.10 11594.45 81
CP-MVSNet89.27 5990.91 4184.37 14796.34 858.61 30888.66 9492.06 11190.78 795.67 895.17 4381.80 11295.54 4179.00 12298.69 1098.95 4
XVG-OURS89.18 6088.83 6990.23 4494.28 4586.11 2385.91 13793.60 5880.16 8889.13 12093.44 11483.82 7790.98 19383.86 6895.30 14993.60 125
DeepC-MVS82.31 489.15 6189.08 6389.37 5993.64 6379.07 8088.54 9594.20 2773.53 16989.71 10494.82 5285.09 6595.77 3284.17 6598.03 3893.26 138
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
UniMVSNet_ETH3D89.12 6290.72 4484.31 15397.00 264.33 23389.67 7188.38 20188.84 1494.29 1997.57 490.48 1391.26 18472.57 20597.65 5997.34 14
MSP-MVS89.08 6388.16 7591.83 1995.76 1886.14 2292.75 1693.90 4578.43 11389.16 11892.25 15572.03 22496.36 488.21 890.93 25892.98 151
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SD-MVS88.96 6489.88 5086.22 11191.63 12077.07 10689.82 6693.77 5078.90 10692.88 4592.29 15386.11 6090.22 21786.24 4397.24 7691.36 212
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
HPM-MVS++copyleft88.93 6588.45 7390.38 4194.92 3685.85 2889.70 6891.27 13678.20 11586.69 17292.28 15480.36 12895.06 6486.17 4496.49 9790.22 241
test_040288.65 6689.58 5785.88 11992.55 8972.22 15584.01 17289.44 18988.63 1794.38 1895.77 2886.38 5893.59 11579.84 11195.21 15091.82 200
DP-MVS88.60 6789.01 6487.36 9091.30 13377.50 9887.55 10692.97 8687.95 2289.62 10892.87 13384.56 7093.89 10177.65 13996.62 9290.70 229
APD_test188.40 6887.91 7789.88 4889.50 17286.65 1789.98 6291.91 11784.26 4490.87 8693.92 9982.18 10389.29 24573.75 18894.81 16993.70 118
Anonymous2023121188.40 6889.62 5684.73 13990.46 15465.27 22388.86 8893.02 8487.15 2593.05 4397.10 882.28 10292.02 16576.70 15197.99 4096.88 23
PS-MVSNAJss88.31 7087.90 7889.56 5693.31 7077.96 9387.94 10291.97 11470.73 21494.19 2296.67 1376.94 16294.57 7883.07 7496.28 10596.15 32
OMC-MVS88.19 7187.52 8290.19 4591.94 11181.68 6287.49 10993.17 7376.02 13788.64 12791.22 18184.24 7593.37 12677.97 13797.03 8195.52 48
CS-MVS88.14 7287.67 8189.54 5789.56 17079.18 7990.47 5294.77 1679.37 10084.32 22289.33 23283.87 7694.53 8182.45 8494.89 16594.90 64
TSAR-MVS + MP.88.14 7287.82 7989.09 6495.72 2276.74 10992.49 2491.19 13967.85 24786.63 17394.84 5179.58 13595.96 1587.62 1694.50 17794.56 75
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
tt080588.09 7489.79 5282.98 18993.26 7263.94 23791.10 4289.64 18485.07 3890.91 8391.09 18689.16 2291.87 17082.03 8995.87 12893.13 143
EC-MVSNet88.01 7588.32 7487.09 9289.28 17772.03 15790.31 5696.31 480.88 8185.12 20389.67 22884.47 7295.46 4782.56 8396.26 10893.77 116
RPSCF88.00 7686.93 9491.22 2890.08 16189.30 589.68 7091.11 14079.26 10189.68 10594.81 5582.44 9487.74 26376.54 15388.74 29296.61 27
AllTest87.97 7787.40 8689.68 5291.59 12183.40 4989.50 7795.44 1079.47 9688.00 14593.03 12582.66 9191.47 17770.81 21496.14 11294.16 95
TranMVSNet+NR-MVSNet87.86 7888.76 7185.18 13194.02 5564.13 23484.38 16691.29 13584.88 4192.06 6293.84 10186.45 5593.73 10673.22 19698.66 1197.69 9
nrg03087.85 7988.49 7285.91 11790.07 16369.73 17987.86 10394.20 2774.04 16192.70 5394.66 5685.88 6391.50 17679.72 11397.32 7496.50 29
CNVR-MVS87.81 8087.68 8088.21 8092.87 8177.30 10485.25 14991.23 13777.31 12787.07 16391.47 17582.94 8894.71 7284.67 6096.27 10792.62 164
HQP_MVS87.75 8187.43 8588.70 7293.45 6576.42 11389.45 7993.61 5679.44 9886.55 17492.95 13074.84 18395.22 5680.78 10295.83 13094.46 79
MM87.64 8287.15 8789.09 6489.51 17176.39 11588.68 9386.76 22984.54 4383.58 23893.78 10473.36 20696.48 287.98 1096.21 10994.41 85
MVSMamba_PlusPlus87.53 8388.86 6883.54 17692.03 10762.26 26291.49 3792.62 9688.07 2188.07 14296.17 2272.24 21995.79 2984.85 5894.16 18892.58 165
NCCC87.36 8486.87 9588.83 6792.32 9778.84 8386.58 12891.09 14178.77 10984.85 21190.89 19580.85 12295.29 5381.14 9795.32 14692.34 179
DeepPCF-MVS81.24 587.28 8586.21 10590.49 3991.48 13084.90 3983.41 19092.38 10270.25 22089.35 11690.68 20482.85 8994.57 7879.55 11595.95 12392.00 195
SixPastTwentyTwo87.20 8687.45 8486.45 10592.52 9069.19 18887.84 10488.05 20881.66 7294.64 1596.53 1665.94 25494.75 7183.02 7696.83 8695.41 50
CS-MVS-test87.00 8786.43 10188.71 7189.46 17377.46 9989.42 8195.73 777.87 12081.64 27387.25 26982.43 9594.53 8177.65 13996.46 9994.14 97
UniMVSNet (Re)86.87 8886.98 9386.55 10393.11 7668.48 19383.80 18192.87 8880.37 8489.61 11091.81 16677.72 14994.18 9075.00 17398.53 1696.99 22
Vis-MVSNetpermissive86.86 8986.58 9887.72 8692.09 10477.43 10187.35 11092.09 11078.87 10784.27 22794.05 8878.35 14393.65 10880.54 10691.58 24692.08 192
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
UniMVSNet_NR-MVSNet86.84 9087.06 9086.17 11492.86 8367.02 20782.55 21691.56 12583.08 5990.92 8191.82 16578.25 14493.99 9774.16 17898.35 2297.49 13
DU-MVS86.80 9186.99 9286.21 11293.24 7367.02 20783.16 19992.21 10681.73 7190.92 8191.97 15977.20 15693.99 9774.16 17898.35 2297.61 10
casdiffmvs_mvgpermissive86.72 9287.51 8384.36 14987.09 23365.22 22484.16 16894.23 2477.89 11891.28 7693.66 11084.35 7392.71 14580.07 10794.87 16895.16 60
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_fmvsmconf0.01_n86.68 9386.52 9987.18 9185.94 26078.30 8686.93 11792.20 10765.94 25989.16 11893.16 12083.10 8689.89 23087.81 1294.43 18093.35 132
IS-MVSNet86.66 9486.82 9786.17 11492.05 10666.87 21091.21 4088.64 19886.30 3089.60 11192.59 14169.22 23894.91 6873.89 18597.89 4996.72 24
v1086.54 9587.10 8984.84 13588.16 20663.28 24486.64 12792.20 10775.42 14992.81 5094.50 6474.05 19494.06 9683.88 6796.28 10597.17 18
pmmvs686.52 9688.06 7681.90 21092.22 10062.28 26184.66 15989.15 19283.54 5489.85 10197.32 588.08 3686.80 27870.43 22297.30 7596.62 26
PHI-MVS86.38 9785.81 11488.08 8188.44 20077.34 10289.35 8293.05 8073.15 18284.76 21287.70 25978.87 13994.18 9080.67 10496.29 10492.73 157
CSCG86.26 9886.47 10085.60 12590.87 14674.26 12787.98 10191.85 11880.35 8589.54 11488.01 25179.09 13792.13 16175.51 16695.06 15790.41 238
DeepC-MVS_fast80.27 886.23 9985.65 11887.96 8491.30 13376.92 10787.19 11291.99 11370.56 21584.96 20790.69 20380.01 13295.14 6178.37 12695.78 13491.82 200
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
v886.22 10086.83 9684.36 14987.82 21262.35 26086.42 13191.33 13476.78 13192.73 5294.48 6673.41 20393.72 10783.10 7395.41 14297.01 21
Anonymous2024052986.20 10187.13 8883.42 17890.19 15964.55 23184.55 16190.71 15085.85 3389.94 10095.24 4282.13 10490.40 21369.19 23496.40 10295.31 54
test_fmvsmconf0.1_n86.18 10285.88 11287.08 9385.26 26978.25 8785.82 14091.82 12065.33 27288.55 12992.35 15282.62 9389.80 23286.87 3294.32 18393.18 142
CDPH-MVS86.17 10385.54 11988.05 8392.25 9875.45 12183.85 17892.01 11265.91 26186.19 18391.75 16983.77 7994.98 6677.43 14496.71 9093.73 117
NR-MVSNet86.00 10486.22 10485.34 12993.24 7364.56 23082.21 22890.46 15780.99 7988.42 13491.97 15977.56 15193.85 10272.46 20698.65 1297.61 10
train_agg85.98 10585.28 12588.07 8292.34 9579.70 7583.94 17490.32 16365.79 26284.49 21690.97 19081.93 10893.63 11081.21 9696.54 9590.88 223
FC-MVSNet-test85.93 10687.05 9182.58 20092.25 9856.44 32485.75 14193.09 7877.33 12691.94 6594.65 5774.78 18593.41 12575.11 17298.58 1497.88 7
test_fmvsmconf_n85.88 10785.51 12086.99 9584.77 27778.21 8885.40 14891.39 13265.32 27387.72 15091.81 16682.33 9889.78 23386.68 3494.20 18692.99 150
Effi-MVS+-dtu85.82 10883.38 15993.14 487.13 22991.15 387.70 10588.42 20074.57 15783.56 23985.65 29278.49 14294.21 8872.04 20892.88 21994.05 100
TAPA-MVS77.73 1285.71 10984.83 13188.37 7788.78 19179.72 7487.15 11493.50 5969.17 22885.80 19289.56 22980.76 12392.13 16173.21 20195.51 14093.25 139
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
sasdasda85.50 11086.14 10683.58 17287.97 20867.13 20487.55 10694.32 1973.44 17288.47 13287.54 26286.45 5591.06 19175.76 16493.76 19792.54 168
canonicalmvs85.50 11086.14 10683.58 17287.97 20867.13 20487.55 10694.32 1973.44 17288.47 13287.54 26286.45 5591.06 19175.76 16493.76 19792.54 168
EPP-MVSNet85.47 11285.04 12886.77 10091.52 12969.37 18391.63 3687.98 21081.51 7487.05 16491.83 16466.18 25395.29 5370.75 21796.89 8395.64 45
GeoE85.45 11385.81 11484.37 14790.08 16167.07 20685.86 13991.39 13272.33 19687.59 15290.25 21684.85 6892.37 15578.00 13591.94 23993.66 119
MVS_030485.37 11484.58 13887.75 8585.28 26873.36 13286.54 13085.71 24477.56 12581.78 27192.47 14670.29 23296.02 1185.59 5095.96 12193.87 108
FIs85.35 11586.27 10382.60 19991.86 11357.31 31785.10 15393.05 8075.83 14291.02 8093.97 9273.57 19992.91 14373.97 18498.02 3997.58 12
test_fmvsmvis_n_192085.22 11685.36 12484.81 13685.80 26276.13 11985.15 15292.32 10461.40 30291.33 7390.85 19883.76 8086.16 29184.31 6393.28 20992.15 190
casdiffmvspermissive85.21 11785.85 11383.31 18186.17 25562.77 25183.03 20193.93 4374.69 15688.21 13992.68 14082.29 10191.89 16977.87 13893.75 20095.27 56
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline85.20 11885.93 11083.02 18786.30 25062.37 25984.55 16193.96 4174.48 15887.12 15892.03 15882.30 10091.94 16678.39 12594.21 18594.74 72
K. test v385.14 11984.73 13286.37 10691.13 14069.63 18185.45 14676.68 32284.06 4792.44 5796.99 1062.03 27694.65 7480.58 10593.24 21094.83 71
EI-MVSNet-Vis-set85.12 12084.53 14186.88 9784.01 29072.76 14083.91 17785.18 25380.44 8388.75 12485.49 29580.08 13191.92 16782.02 9090.85 26395.97 38
MGCFI-Net85.04 12185.95 10982.31 20687.52 22163.59 24086.23 13593.96 4173.46 17088.07 14287.83 25786.46 5490.87 20076.17 15993.89 19592.47 172
EI-MVSNet-UG-set85.04 12184.44 14386.85 9883.87 29472.52 14983.82 17985.15 25480.27 8788.75 12485.45 29779.95 13391.90 16881.92 9390.80 26496.13 33
X-MVStestdata85.04 12182.70 17292.08 995.64 2486.25 1992.64 1893.33 6485.07 3889.99 9716.05 41486.57 5295.80 2687.35 2497.62 6194.20 91
MSLP-MVS++85.00 12486.03 10881.90 21091.84 11671.56 16686.75 12593.02 8475.95 14087.12 15889.39 23077.98 14589.40 24477.46 14294.78 17084.75 318
F-COLMAP84.97 12583.42 15889.63 5492.39 9383.40 4988.83 8991.92 11673.19 18180.18 29589.15 23677.04 16093.28 12865.82 26692.28 23092.21 187
balanced_conf0384.80 12685.40 12283.00 18888.95 18561.44 26990.42 5592.37 10371.48 20588.72 12693.13 12170.16 23495.15 6079.26 12094.11 18992.41 174
3Dnovator80.37 784.80 12684.71 13585.06 13386.36 24874.71 12488.77 9190.00 17675.65 14584.96 20793.17 11974.06 19391.19 18678.28 12991.09 25289.29 260
IterMVS-LS84.73 12884.98 12983.96 16087.35 22463.66 23883.25 19589.88 17976.06 13589.62 10892.37 15173.40 20592.52 15078.16 13294.77 17295.69 43
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MVS_111021_HR84.63 12984.34 14785.49 12890.18 16075.86 12079.23 26987.13 22073.35 17485.56 19789.34 23183.60 8290.50 21176.64 15294.05 19290.09 247
HQP-MVS84.61 13084.06 15086.27 10991.19 13670.66 17184.77 15492.68 9473.30 17780.55 28790.17 22072.10 22094.61 7677.30 14694.47 17893.56 128
v119284.57 13184.69 13684.21 15587.75 21462.88 24883.02 20291.43 12969.08 23089.98 9990.89 19572.70 21493.62 11382.41 8594.97 16296.13 33
FMVSNet184.55 13285.45 12181.85 21290.27 15861.05 27686.83 12188.27 20578.57 11289.66 10795.64 3275.43 17690.68 20669.09 23595.33 14593.82 111
v114484.54 13384.72 13484.00 15887.67 21762.55 25582.97 20490.93 14670.32 21989.80 10290.99 18973.50 20093.48 12181.69 9594.65 17595.97 38
Gipumacopyleft84.44 13486.33 10278.78 25884.20 28873.57 13189.55 7490.44 15884.24 4584.38 21994.89 4976.35 17380.40 34176.14 16096.80 8882.36 356
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
MCST-MVS84.36 13583.93 15385.63 12491.59 12171.58 16483.52 18792.13 10961.82 29583.96 23289.75 22779.93 13493.46 12278.33 12894.34 18291.87 199
VDDNet84.35 13685.39 12381.25 22395.13 3259.32 29585.42 14781.11 29386.41 2987.41 15596.21 2173.61 19890.61 20966.33 25996.85 8493.81 114
ETV-MVS84.31 13783.91 15485.52 12688.58 19670.40 17484.50 16593.37 6178.76 11084.07 23078.72 36980.39 12795.13 6273.82 18792.98 21791.04 218
v124084.30 13884.51 14283.65 16987.65 21861.26 27382.85 20891.54 12667.94 24590.68 8890.65 20771.71 22693.64 10982.84 7994.78 17096.07 35
MVS_111021_LR84.28 13983.76 15585.83 12189.23 17983.07 5280.99 24483.56 27472.71 18986.07 18689.07 23781.75 11386.19 29077.11 14893.36 20588.24 274
h-mvs3384.25 14082.76 17188.72 7091.82 11882.60 5784.00 17384.98 26071.27 20686.70 17090.55 20963.04 27393.92 10078.26 13094.20 18689.63 252
v14419284.24 14184.41 14483.71 16887.59 22061.57 26882.95 20591.03 14267.82 24889.80 10290.49 21073.28 20793.51 12081.88 9494.89 16596.04 37
dcpmvs_284.23 14285.14 12681.50 22088.61 19561.98 26682.90 20793.11 7668.66 23692.77 5192.39 14778.50 14187.63 26576.99 15092.30 22794.90 64
v192192084.23 14284.37 14683.79 16487.64 21961.71 26782.91 20691.20 13867.94 24590.06 9490.34 21372.04 22393.59 11582.32 8694.91 16396.07 35
VDD-MVS84.23 14284.58 13883.20 18491.17 13965.16 22683.25 19584.97 26179.79 9287.18 15794.27 7574.77 18690.89 19869.24 23196.54 9593.55 130
v2v48284.09 14584.24 14883.62 17087.13 22961.40 27082.71 21189.71 18272.19 19989.55 11291.41 17670.70 23193.20 13081.02 9893.76 19796.25 31
EG-PatchMatch MVS84.08 14684.11 14983.98 15992.22 10072.61 14682.20 23087.02 22572.63 19088.86 12191.02 18878.52 14091.11 18973.41 19391.09 25288.21 275
DP-MVS Recon84.05 14783.22 16186.52 10491.73 11975.27 12283.23 19792.40 10072.04 20082.04 26288.33 24777.91 14793.95 9966.17 26095.12 15590.34 240
TransMVSNet (Re)84.02 14885.74 11678.85 25791.00 14355.20 33682.29 22487.26 21679.65 9588.38 13695.52 3583.00 8786.88 27667.97 24996.60 9394.45 81
Baseline_NR-MVSNet84.00 14985.90 11178.29 26991.47 13153.44 34682.29 22487.00 22879.06 10489.55 11295.72 3077.20 15686.14 29272.30 20798.51 1795.28 55
TSAR-MVS + GP.83.95 15082.69 17387.72 8689.27 17881.45 6483.72 18381.58 29274.73 15585.66 19386.06 28772.56 21692.69 14775.44 16895.21 15089.01 268
alignmvs83.94 15183.98 15283.80 16387.80 21367.88 20084.54 16391.42 13173.27 18088.41 13587.96 25272.33 21790.83 20176.02 16294.11 18992.69 161
Effi-MVS+83.90 15284.01 15183.57 17487.22 22765.61 22286.55 12992.40 10078.64 11181.34 27884.18 31683.65 8192.93 14174.22 17787.87 30692.17 189
mvs5depth83.82 15384.54 14081.68 21782.23 31568.65 19286.89 11889.90 17880.02 9187.74 14997.86 264.19 26382.02 32976.37 15595.63 13994.35 87
CANet83.79 15482.85 17086.63 10186.17 25572.21 15683.76 18291.43 12977.24 12874.39 34687.45 26575.36 17795.42 4977.03 14992.83 22092.25 186
pm-mvs183.69 15584.95 13079.91 24490.04 16559.66 29282.43 22087.44 21375.52 14787.85 14795.26 4181.25 11885.65 30268.74 24196.04 11794.42 84
AdaColmapbinary83.66 15683.69 15683.57 17490.05 16472.26 15486.29 13390.00 17678.19 11681.65 27287.16 27183.40 8494.24 8761.69 30194.76 17384.21 328
MIMVSNet183.63 15784.59 13780.74 23294.06 5462.77 25182.72 21084.53 26777.57 12490.34 9095.92 2776.88 16885.83 30061.88 29997.42 7193.62 123
test_fmvsm_n_192083.60 15882.89 16985.74 12285.22 27077.74 9684.12 17090.48 15659.87 32186.45 18291.12 18575.65 17485.89 29882.28 8790.87 26193.58 126
WR-MVS83.56 15984.40 14581.06 22893.43 6754.88 33778.67 27785.02 25881.24 7690.74 8791.56 17372.85 21191.08 19068.00 24898.04 3697.23 16
CNLPA83.55 16083.10 16684.90 13489.34 17683.87 4784.54 16388.77 19579.09 10383.54 24088.66 24474.87 18281.73 33166.84 25492.29 22989.11 262
LCM-MVSNet-Re83.48 16185.06 12778.75 25985.94 26055.75 33080.05 25394.27 2176.47 13296.09 694.54 6383.31 8589.75 23659.95 31294.89 16590.75 226
hse-mvs283.47 16281.81 18688.47 7491.03 14282.27 5882.61 21283.69 27271.27 20686.70 17086.05 28863.04 27392.41 15378.26 13093.62 20490.71 228
V4283.47 16283.37 16083.75 16683.16 30963.33 24381.31 23890.23 17069.51 22690.91 8390.81 20074.16 19292.29 15980.06 10890.22 27295.62 46
VPA-MVSNet83.47 16284.73 13279.69 24890.29 15757.52 31681.30 24088.69 19776.29 13387.58 15394.44 6780.60 12687.20 27066.60 25796.82 8794.34 88
PAPM_NR83.23 16583.19 16383.33 18090.90 14565.98 21888.19 9890.78 14978.13 11780.87 28387.92 25573.49 20292.42 15270.07 22488.40 29591.60 207
CLD-MVS83.18 16682.64 17484.79 13789.05 18167.82 20177.93 28592.52 9868.33 23885.07 20481.54 34582.06 10592.96 13969.35 23097.91 4893.57 127
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
ANet_high83.17 16785.68 11775.65 30381.24 32745.26 38979.94 25592.91 8783.83 4891.33 7396.88 1280.25 12985.92 29568.89 23895.89 12795.76 42
FA-MVS(test-final)83.13 16883.02 16783.43 17786.16 25766.08 21788.00 10088.36 20275.55 14685.02 20592.75 13865.12 25892.50 15174.94 17491.30 25091.72 202
114514_t83.10 16982.54 17784.77 13892.90 8069.10 19086.65 12690.62 15454.66 35381.46 27590.81 20076.98 16194.38 8372.62 20496.18 11090.82 225
RRT-MVS82.97 17083.44 15781.57 21985.06 27258.04 31187.20 11190.37 16177.88 11988.59 12893.70 10963.17 27093.05 13776.49 15488.47 29493.62 123
UGNet82.78 17181.64 18886.21 11286.20 25476.24 11786.86 11985.68 24577.07 12973.76 35092.82 13469.64 23591.82 17269.04 23793.69 20190.56 234
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
LF4IMVS82.75 17281.93 18485.19 13082.08 31680.15 7185.53 14488.76 19668.01 24285.58 19687.75 25871.80 22586.85 27774.02 18393.87 19688.58 271
EI-MVSNet82.61 17382.42 17983.20 18483.25 30663.66 23883.50 18885.07 25576.06 13586.55 17485.10 30373.41 20390.25 21478.15 13490.67 26795.68 44
QAPM82.59 17482.59 17682.58 20086.44 24366.69 21189.94 6490.36 16267.97 24484.94 20992.58 14372.71 21392.18 16070.63 22087.73 30888.85 269
fmvsm_s_conf0.1_n_a82.58 17581.93 18484.50 14487.68 21673.35 13386.14 13677.70 31161.64 30085.02 20591.62 17177.75 14886.24 28782.79 8087.07 31593.91 106
Fast-Effi-MVS+-dtu82.54 17681.41 19685.90 11885.60 26376.53 11283.07 20089.62 18673.02 18479.11 30583.51 32180.74 12490.24 21668.76 24089.29 28390.94 221
MVS_Test82.47 17783.22 16180.22 24182.62 31457.75 31582.54 21791.96 11571.16 21082.89 25092.52 14577.41 15390.50 21180.04 10987.84 30792.40 176
v14882.31 17882.48 17881.81 21585.59 26459.66 29281.47 23786.02 24072.85 18588.05 14490.65 20770.73 23090.91 19775.15 17191.79 24094.87 66
API-MVS82.28 17982.61 17581.30 22286.29 25169.79 17788.71 9287.67 21278.42 11482.15 26184.15 31777.98 14591.59 17565.39 26992.75 22182.51 355
MVSFormer82.23 18081.57 19384.19 15785.54 26569.26 18591.98 3190.08 17471.54 20376.23 32785.07 30658.69 29894.27 8486.26 4088.77 29089.03 266
fmvsm_s_conf0.5_n_a82.21 18181.51 19584.32 15286.56 24173.35 13385.46 14577.30 31561.81 29684.51 21590.88 19777.36 15486.21 28982.72 8186.97 32093.38 131
EIA-MVS82.19 18281.23 20185.10 13287.95 21069.17 18983.22 19893.33 6470.42 21678.58 30979.77 36177.29 15594.20 8971.51 21088.96 28891.93 198
fmvsm_s_conf0.1_n82.17 18381.59 19183.94 16286.87 23971.57 16585.19 15177.42 31462.27 29484.47 21891.33 17876.43 17085.91 29683.14 7187.14 31394.33 89
PCF-MVS74.62 1582.15 18480.92 20585.84 12089.43 17472.30 15380.53 24891.82 12057.36 33787.81 14889.92 22477.67 15093.63 11058.69 31795.08 15691.58 208
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
PLCcopyleft73.85 1682.09 18580.31 21287.45 8990.86 14780.29 7085.88 13890.65 15268.17 24176.32 32686.33 28273.12 20992.61 14961.40 30490.02 27589.44 255
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
fmvsm_l_conf0.5_n82.06 18681.54 19483.60 17183.94 29173.90 12983.35 19286.10 23658.97 32383.80 23490.36 21274.23 19186.94 27582.90 7790.22 27289.94 249
GBi-Net82.02 18782.07 18181.85 21286.38 24561.05 27686.83 12188.27 20572.43 19186.00 18795.64 3263.78 26690.68 20665.95 26293.34 20693.82 111
test182.02 18782.07 18181.85 21286.38 24561.05 27686.83 12188.27 20572.43 19186.00 18795.64 3263.78 26690.68 20665.95 26293.34 20693.82 111
OpenMVScopyleft76.72 1381.98 18982.00 18381.93 20984.42 28368.22 19588.50 9689.48 18866.92 25481.80 26991.86 16172.59 21590.16 21971.19 21391.25 25187.40 290
KD-MVS_self_test81.93 19083.14 16578.30 26884.75 27852.75 35080.37 25089.42 19070.24 22190.26 9293.39 11574.55 19086.77 27968.61 24396.64 9195.38 51
fmvsm_s_conf0.5_n81.91 19181.30 19883.75 16686.02 25971.56 16684.73 15777.11 31862.44 29184.00 23190.68 20476.42 17185.89 29883.14 7187.11 31493.81 114
SDMVSNet81.90 19283.17 16478.10 27288.81 18962.45 25776.08 31786.05 23973.67 16683.41 24193.04 12382.35 9780.65 33870.06 22595.03 15891.21 214
tfpnnormal81.79 19382.95 16878.31 26788.93 18655.40 33280.83 24782.85 28076.81 13085.90 19194.14 8574.58 18986.51 28366.82 25595.68 13893.01 149
c3_l81.64 19481.59 19181.79 21680.86 33359.15 29978.61 27890.18 17268.36 23787.20 15687.11 27369.39 23691.62 17478.16 13294.43 18094.60 74
PVSNet_Blended_VisFu81.55 19580.49 21084.70 14191.58 12473.24 13784.21 16791.67 12462.86 28580.94 28187.16 27167.27 24792.87 14469.82 22788.94 28987.99 281
fmvsm_l_conf0.5_n_a81.46 19680.87 20683.25 18283.73 29673.21 13883.00 20385.59 24758.22 32982.96 24990.09 22272.30 21886.65 28181.97 9289.95 27689.88 250
DELS-MVS81.44 19781.25 19982.03 20884.27 28762.87 24976.47 31192.49 9970.97 21281.64 27383.83 31875.03 18092.70 14674.29 17692.22 23390.51 236
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
FMVSNet281.31 19881.61 19080.41 23886.38 24558.75 30683.93 17686.58 23172.43 19187.65 15192.98 12763.78 26690.22 21766.86 25293.92 19492.27 184
TinyColmap81.25 19982.34 18077.99 27585.33 26760.68 28382.32 22388.33 20371.26 20886.97 16592.22 15777.10 15986.98 27462.37 29395.17 15286.31 301
AUN-MVS81.18 20078.78 23388.39 7690.93 14482.14 5982.51 21883.67 27364.69 27780.29 29185.91 29151.07 33792.38 15476.29 15893.63 20390.65 232
tttt051781.07 20179.58 22485.52 12688.99 18466.45 21487.03 11675.51 33073.76 16588.32 13890.20 21737.96 39294.16 9479.36 11995.13 15395.93 41
Fast-Effi-MVS+81.04 20280.57 20782.46 20487.50 22263.22 24578.37 28189.63 18568.01 24281.87 26582.08 33982.31 9992.65 14867.10 25188.30 30191.51 210
BH-untuned80.96 20380.99 20380.84 23188.55 19768.23 19480.33 25188.46 19972.79 18886.55 17486.76 27774.72 18791.77 17361.79 30088.99 28782.52 354
eth_miper_zixun_eth80.84 20480.22 21682.71 19781.41 32560.98 27977.81 28790.14 17367.31 25286.95 16687.24 27064.26 26192.31 15775.23 17091.61 24494.85 70
xiu_mvs_v1_base_debu80.84 20480.14 21882.93 19288.31 20171.73 16079.53 26087.17 21765.43 26879.59 29782.73 33376.94 16290.14 22273.22 19688.33 29786.90 295
xiu_mvs_v1_base80.84 20480.14 21882.93 19288.31 20171.73 16079.53 26087.17 21765.43 26879.59 29782.73 33376.94 16290.14 22273.22 19688.33 29786.90 295
xiu_mvs_v1_base_debi80.84 20480.14 21882.93 19288.31 20171.73 16079.53 26087.17 21765.43 26879.59 29782.73 33376.94 16290.14 22273.22 19688.33 29786.90 295
IterMVS-SCA-FT80.64 20879.41 22584.34 15183.93 29269.66 18076.28 31381.09 29472.43 19186.47 18090.19 21860.46 28393.15 13377.45 14386.39 32690.22 241
BH-RMVSNet80.53 20980.22 21681.49 22187.19 22866.21 21677.79 28886.23 23474.21 16083.69 23588.50 24573.25 20890.75 20363.18 29087.90 30587.52 288
Anonymous20240521180.51 21081.19 20278.49 26488.48 19857.26 31876.63 30682.49 28381.21 7784.30 22592.24 15667.99 24486.24 28762.22 29495.13 15391.98 197
DIV-MVS_self_test80.43 21180.23 21481.02 22979.99 34159.25 29677.07 29987.02 22567.38 24986.19 18389.22 23363.09 27190.16 21976.32 15695.80 13293.66 119
cl____80.42 21280.23 21481.02 22979.99 34159.25 29677.07 29987.02 22567.37 25086.18 18589.21 23463.08 27290.16 21976.31 15795.80 13293.65 121
diffmvspermissive80.40 21380.48 21180.17 24279.02 35460.04 28777.54 29290.28 16966.65 25782.40 25687.33 26873.50 20087.35 26877.98 13689.62 28093.13 143
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EPNet80.37 21478.41 24086.23 11076.75 36873.28 13587.18 11377.45 31376.24 13468.14 37888.93 23965.41 25793.85 10269.47 22996.12 11491.55 209
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
miper_ehance_all_eth80.34 21580.04 22181.24 22579.82 34458.95 30177.66 28989.66 18365.75 26585.99 19085.11 30268.29 24391.42 18176.03 16192.03 23593.33 133
MG-MVS80.32 21680.94 20478.47 26588.18 20452.62 35382.29 22485.01 25972.01 20179.24 30492.54 14469.36 23793.36 12770.65 21989.19 28689.45 254
mvsmamba80.30 21778.87 23084.58 14388.12 20767.55 20292.35 2684.88 26263.15 28385.33 20090.91 19450.71 33995.20 5966.36 25887.98 30490.99 219
VPNet80.25 21881.68 18775.94 30192.46 9247.98 37676.70 30481.67 29073.45 17184.87 21092.82 13474.66 18886.51 28361.66 30296.85 8493.33 133
MAR-MVS80.24 21978.74 23584.73 13986.87 23978.18 8985.75 14187.81 21165.67 26777.84 31478.50 37073.79 19790.53 21061.59 30390.87 26185.49 311
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PM-MVS80.20 22079.00 22983.78 16588.17 20586.66 1681.31 23866.81 38469.64 22588.33 13790.19 21864.58 25983.63 32171.99 20990.03 27481.06 373
Anonymous2024052180.18 22181.25 19976.95 28883.15 31060.84 28182.46 21985.99 24168.76 23486.78 16793.73 10859.13 29577.44 35473.71 18997.55 6692.56 166
LFMVS80.15 22280.56 20878.89 25689.19 18055.93 32685.22 15073.78 34282.96 6084.28 22692.72 13957.38 30790.07 22663.80 28495.75 13590.68 230
DPM-MVS80.10 22379.18 22882.88 19590.71 15069.74 17878.87 27490.84 14760.29 31775.64 33685.92 29067.28 24693.11 13471.24 21291.79 24085.77 307
MSDG80.06 22479.99 22380.25 24083.91 29368.04 19977.51 29389.19 19177.65 12281.94 26383.45 32376.37 17286.31 28663.31 28986.59 32386.41 299
FE-MVS79.98 22578.86 23183.36 17986.47 24266.45 21489.73 6784.74 26672.80 18784.22 22991.38 17744.95 37293.60 11463.93 28291.50 24790.04 248
sd_testset79.95 22681.39 19775.64 30488.81 18958.07 31076.16 31682.81 28173.67 16683.41 24193.04 12380.96 12177.65 35358.62 31895.03 15891.21 214
ab-mvs79.67 22780.56 20876.99 28788.48 19856.93 32084.70 15886.06 23868.95 23280.78 28493.08 12275.30 17884.62 31056.78 32790.90 25989.43 256
VNet79.31 22880.27 21376.44 29587.92 21153.95 34275.58 32384.35 26874.39 15982.23 25990.72 20272.84 21284.39 31360.38 31093.98 19390.97 220
thisisatest053079.07 22977.33 24984.26 15487.13 22964.58 22983.66 18575.95 32568.86 23385.22 20287.36 26738.10 38993.57 11875.47 16794.28 18494.62 73
cl2278.97 23078.21 24281.24 22577.74 35859.01 30077.46 29587.13 22065.79 26284.32 22285.10 30358.96 29790.88 19975.36 16992.03 23593.84 109
patch_mono-278.89 23179.39 22677.41 28484.78 27668.11 19775.60 32183.11 27760.96 31079.36 30189.89 22575.18 17972.97 36673.32 19592.30 22791.15 216
RPMNet78.88 23278.28 24180.68 23579.58 34562.64 25382.58 21494.16 2974.80 15475.72 33492.59 14148.69 34695.56 3973.48 19282.91 36283.85 333
PAPR78.84 23378.10 24381.07 22785.17 27160.22 28682.21 22890.57 15562.51 28775.32 34084.61 31174.99 18192.30 15859.48 31588.04 30390.68 230
PVSNet_BlendedMVS78.80 23477.84 24481.65 21884.43 28163.41 24179.49 26390.44 15861.70 29975.43 33787.07 27469.11 23991.44 17960.68 30892.24 23190.11 246
FMVSNet378.80 23478.55 23779.57 25082.89 31356.89 32281.76 23285.77 24369.04 23186.00 18790.44 21151.75 33590.09 22565.95 26293.34 20691.72 202
test_yl78.71 23678.51 23879.32 25384.32 28558.84 30378.38 27985.33 25075.99 13882.49 25486.57 27858.01 30190.02 22862.74 29192.73 22289.10 263
DCV-MVSNet78.71 23678.51 23879.32 25384.32 28558.84 30378.38 27985.33 25075.99 13882.49 25486.57 27858.01 30190.02 22862.74 29192.73 22289.10 263
test111178.53 23878.85 23277.56 28192.22 10047.49 37882.61 21269.24 37372.43 19185.28 20194.20 8151.91 33390.07 22665.36 27096.45 10095.11 61
ECVR-MVScopyleft78.44 23978.63 23677.88 27791.85 11448.95 37283.68 18469.91 36972.30 19784.26 22894.20 8151.89 33489.82 23163.58 28596.02 11894.87 66
pmmvs-eth3d78.42 24077.04 25282.57 20287.44 22374.41 12680.86 24679.67 30255.68 34684.69 21390.31 21560.91 28185.42 30362.20 29591.59 24587.88 284
mvs_anonymous78.13 24178.76 23476.23 30079.24 35150.31 36978.69 27684.82 26461.60 30183.09 24892.82 13473.89 19687.01 27168.33 24786.41 32591.37 211
TAMVS78.08 24276.36 25883.23 18390.62 15172.87 13979.08 27080.01 30161.72 29881.35 27786.92 27663.96 26588.78 25350.61 36593.01 21688.04 280
miper_enhance_ethall77.83 24376.93 25380.51 23676.15 37458.01 31275.47 32588.82 19458.05 33183.59 23780.69 34964.41 26091.20 18573.16 20292.03 23592.33 180
Vis-MVSNet (Re-imp)77.82 24477.79 24577.92 27688.82 18851.29 36383.28 19371.97 35774.04 16182.23 25989.78 22657.38 30789.41 24357.22 32695.41 14293.05 147
CANet_DTU77.81 24577.05 25180.09 24381.37 32659.90 29083.26 19488.29 20469.16 22967.83 38183.72 31960.93 28089.47 23869.22 23389.70 27990.88 223
OpenMVS_ROBcopyleft70.19 1777.77 24677.46 24678.71 26084.39 28461.15 27481.18 24282.52 28262.45 29083.34 24387.37 26666.20 25288.66 25564.69 27785.02 34286.32 300
SSC-MVS77.55 24781.64 18865.29 37290.46 15420.33 41873.56 34168.28 37585.44 3488.18 14194.64 6070.93 22981.33 33371.25 21192.03 23594.20 91
MDA-MVSNet-bldmvs77.47 24876.90 25479.16 25579.03 35364.59 22866.58 38275.67 32873.15 18288.86 12188.99 23866.94 24881.23 33464.71 27688.22 30291.64 206
jason77.42 24975.75 26482.43 20587.10 23269.27 18477.99 28481.94 28851.47 37277.84 31485.07 30660.32 28589.00 24770.74 21889.27 28589.03 266
jason: jason.
CDS-MVSNet77.32 25075.40 26783.06 18689.00 18372.48 15077.90 28682.17 28660.81 31178.94 30683.49 32259.30 29388.76 25454.64 34592.37 22687.93 283
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
xiu_mvs_v2_base77.19 25176.75 25578.52 26387.01 23561.30 27275.55 32487.12 22361.24 30774.45 34578.79 36877.20 15690.93 19564.62 27984.80 34983.32 342
MVSTER77.09 25275.70 26581.25 22375.27 38261.08 27577.49 29485.07 25560.78 31286.55 17488.68 24243.14 38190.25 21473.69 19090.67 26792.42 173
PS-MVSNAJ77.04 25376.53 25778.56 26287.09 23361.40 27075.26 32687.13 22061.25 30674.38 34777.22 38176.94 16290.94 19464.63 27884.83 34883.35 341
IterMVS76.91 25476.34 25978.64 26180.91 33164.03 23576.30 31279.03 30564.88 27683.11 24689.16 23559.90 28984.46 31168.61 24385.15 34087.42 289
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
D2MVS76.84 25575.67 26680.34 23980.48 33962.16 26573.50 34284.80 26557.61 33582.24 25887.54 26251.31 33687.65 26470.40 22393.19 21291.23 213
CL-MVSNet_self_test76.81 25677.38 24875.12 30786.90 23751.34 36173.20 34580.63 29868.30 23981.80 26988.40 24666.92 24980.90 33555.35 33994.90 16493.12 145
TR-MVS76.77 25775.79 26379.72 24786.10 25865.79 22077.14 29783.02 27865.20 27481.40 27682.10 33766.30 25190.73 20555.57 33685.27 33682.65 349
MonoMVSNet76.66 25877.26 25074.86 30979.86 34354.34 33986.26 13486.08 23771.08 21185.59 19588.68 24253.95 32585.93 29463.86 28380.02 37784.32 324
USDC76.63 25976.73 25676.34 29783.46 29957.20 31980.02 25488.04 20952.14 36883.65 23691.25 18063.24 26986.65 28154.66 34494.11 18985.17 313
BH-w/o76.57 26076.07 26278.10 27286.88 23865.92 21977.63 29086.33 23265.69 26680.89 28279.95 35868.97 24190.74 20453.01 35585.25 33777.62 384
Patchmtry76.56 26177.46 24673.83 31579.37 35046.60 38282.41 22176.90 31973.81 16485.56 19792.38 14848.07 34983.98 31863.36 28895.31 14890.92 222
PVSNet_Blended76.49 26275.40 26779.76 24684.43 28163.41 24175.14 32790.44 15857.36 33775.43 33778.30 37169.11 23991.44 17960.68 30887.70 30984.42 323
miper_lstm_enhance76.45 26376.10 26177.51 28276.72 36960.97 28064.69 38685.04 25763.98 28083.20 24588.22 24856.67 31178.79 35073.22 19693.12 21392.78 156
lupinMVS76.37 26474.46 27682.09 20785.54 26569.26 18576.79 30280.77 29750.68 37976.23 32782.82 33158.69 29888.94 24869.85 22688.77 29088.07 277
cascas76.29 26574.81 27280.72 23484.47 28062.94 24773.89 33987.34 21455.94 34475.16 34276.53 38663.97 26491.16 18765.00 27390.97 25788.06 279
WB-MVS76.06 26680.01 22264.19 37589.96 16720.58 41772.18 35068.19 37683.21 5686.46 18193.49 11370.19 23378.97 34865.96 26190.46 27193.02 148
thres600view775.97 26775.35 26977.85 27987.01 23551.84 35980.45 24973.26 34775.20 15183.10 24786.31 28445.54 36389.05 24655.03 34292.24 23192.66 162
GA-MVS75.83 26874.61 27379.48 25281.87 31859.25 29673.42 34382.88 27968.68 23579.75 29681.80 34250.62 34089.46 23966.85 25385.64 33389.72 251
MVP-Stereo75.81 26973.51 28582.71 19789.35 17573.62 13080.06 25285.20 25260.30 31673.96 34887.94 25357.89 30589.45 24052.02 35974.87 39585.06 315
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
test_fmvs375.72 27075.20 27077.27 28575.01 38569.47 18278.93 27184.88 26246.67 38687.08 16287.84 25650.44 34271.62 37177.42 14588.53 29390.72 227
thres100view90075.45 27175.05 27176.66 29487.27 22551.88 35881.07 24373.26 34775.68 14483.25 24486.37 28145.54 36388.80 25051.98 36090.99 25489.31 258
ET-MVSNet_ETH3D75.28 27272.77 29382.81 19683.03 31268.11 19777.09 29876.51 32360.67 31477.60 31980.52 35338.04 39091.15 18870.78 21690.68 26689.17 261
thres40075.14 27374.23 27877.86 27886.24 25252.12 35579.24 26773.87 34073.34 17581.82 26784.60 31246.02 35788.80 25051.98 36090.99 25492.66 162
wuyk23d75.13 27479.30 22762.63 37875.56 37875.18 12380.89 24573.10 34975.06 15394.76 1395.32 3787.73 4052.85 40934.16 40897.11 7959.85 405
EU-MVSNet75.12 27574.43 27777.18 28683.11 31159.48 29485.71 14382.43 28439.76 40685.64 19488.76 24044.71 37487.88 26273.86 18685.88 33284.16 329
HyFIR lowres test75.12 27572.66 29582.50 20391.44 13265.19 22572.47 34887.31 21546.79 38580.29 29184.30 31452.70 33092.10 16451.88 36486.73 32190.22 241
CMPMVSbinary59.41 2075.12 27573.57 28379.77 24575.84 37767.22 20381.21 24182.18 28550.78 37776.50 32387.66 26055.20 32182.99 32462.17 29790.64 27089.09 265
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
pmmvs474.92 27872.98 29180.73 23384.95 27371.71 16376.23 31477.59 31252.83 36277.73 31886.38 28056.35 31484.97 30757.72 32587.05 31685.51 310
tfpn200view974.86 27974.23 27876.74 29386.24 25252.12 35579.24 26773.87 34073.34 17581.82 26784.60 31246.02 35788.80 25051.98 36090.99 25489.31 258
1112_ss74.82 28073.74 28178.04 27489.57 16960.04 28776.49 31087.09 22454.31 35473.66 35179.80 35960.25 28686.76 28058.37 31984.15 35387.32 291
EGC-MVSNET74.79 28169.99 32289.19 6294.89 3887.00 1291.89 3486.28 2331.09 4152.23 41795.98 2681.87 11189.48 23779.76 11295.96 12191.10 217
ppachtmachnet_test74.73 28274.00 28076.90 29080.71 33656.89 32271.53 35678.42 30758.24 32879.32 30382.92 33057.91 30484.26 31565.60 26891.36 24989.56 253
Patchmatch-RL test74.48 28373.68 28276.89 29184.83 27566.54 21272.29 34969.16 37457.70 33386.76 16886.33 28245.79 36282.59 32569.63 22890.65 26981.54 364
PatchMatch-RL74.48 28373.22 28878.27 27087.70 21585.26 3575.92 31970.09 36764.34 27876.09 33081.25 34765.87 25578.07 35253.86 34783.82 35571.48 393
XXY-MVS74.44 28576.19 26069.21 34984.61 27952.43 35471.70 35377.18 31760.73 31380.60 28590.96 19275.44 17569.35 37856.13 33288.33 29785.86 306
test250674.12 28673.39 28676.28 29891.85 11444.20 39284.06 17148.20 41372.30 19781.90 26494.20 8127.22 41389.77 23464.81 27596.02 11894.87 66
CR-MVSNet74.00 28773.04 29076.85 29279.58 34562.64 25382.58 21476.90 31950.50 38075.72 33492.38 14848.07 34984.07 31768.72 24282.91 36283.85 333
Test_1112_low_res73.90 28873.08 28976.35 29690.35 15655.95 32573.40 34486.17 23550.70 37873.14 35285.94 28958.31 30085.90 29756.51 32983.22 35987.20 292
test20.0373.75 28974.59 27571.22 33681.11 32951.12 36570.15 36672.10 35670.42 21680.28 29391.50 17464.21 26274.72 36546.96 38494.58 17687.82 286
test_fmvs273.57 29072.80 29275.90 30272.74 39868.84 19177.07 29984.32 26945.14 39282.89 25084.22 31548.37 34770.36 37573.40 19487.03 31788.52 272
SCA73.32 29172.57 29775.58 30581.62 32255.86 32878.89 27371.37 36261.73 29774.93 34383.42 32460.46 28387.01 27158.11 32382.63 36783.88 330
baseline173.26 29273.54 28472.43 32984.92 27447.79 37779.89 25674.00 33865.93 26078.81 30786.28 28556.36 31381.63 33256.63 32879.04 38487.87 285
131473.22 29372.56 29875.20 30680.41 34057.84 31381.64 23585.36 24951.68 37173.10 35376.65 38561.45 27885.19 30563.54 28679.21 38282.59 350
MVS73.21 29472.59 29675.06 30880.97 33060.81 28281.64 23585.92 24246.03 39071.68 36077.54 37668.47 24289.77 23455.70 33585.39 33474.60 390
HY-MVS64.64 1873.03 29572.47 29974.71 31183.36 30354.19 34082.14 23181.96 28756.76 34369.57 37386.21 28660.03 28784.83 30949.58 37182.65 36585.11 314
thisisatest051573.00 29670.52 31480.46 23781.45 32459.90 29073.16 34674.31 33757.86 33276.08 33177.78 37437.60 39392.12 16365.00 27391.45 24889.35 257
EPNet_dtu72.87 29771.33 30977.49 28377.72 35960.55 28482.35 22275.79 32666.49 25858.39 40881.06 34853.68 32685.98 29353.55 35092.97 21885.95 304
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CVMVSNet72.62 29871.41 30876.28 29883.25 30660.34 28583.50 18879.02 30637.77 41076.33 32585.10 30349.60 34587.41 26770.54 22177.54 39081.08 371
CHOSEN 1792x268872.45 29970.56 31378.13 27190.02 16663.08 24668.72 37183.16 27642.99 40075.92 33285.46 29657.22 30985.18 30649.87 36981.67 36986.14 302
testgi72.36 30074.61 27365.59 36980.56 33842.82 39768.29 37273.35 34666.87 25581.84 26689.93 22372.08 22266.92 39146.05 38792.54 22487.01 294
thres20072.34 30171.55 30774.70 31283.48 29851.60 36075.02 32873.71 34370.14 22278.56 31080.57 35246.20 35588.20 26046.99 38389.29 28384.32 324
FPMVS72.29 30272.00 30173.14 32088.63 19485.00 3774.65 33267.39 37871.94 20277.80 31687.66 26050.48 34175.83 36049.95 36779.51 37858.58 407
FMVSNet572.10 30371.69 30373.32 31881.57 32353.02 34976.77 30378.37 30863.31 28176.37 32491.85 16236.68 39478.98 34747.87 38092.45 22587.95 282
our_test_371.85 30471.59 30472.62 32680.71 33653.78 34369.72 36871.71 36158.80 32578.03 31180.51 35456.61 31278.84 34962.20 29586.04 33185.23 312
PAPM71.77 30570.06 32076.92 28986.39 24453.97 34176.62 30786.62 23053.44 35863.97 39884.73 31057.79 30692.34 15639.65 39981.33 37384.45 322
m2depth71.72 30670.67 31174.86 30973.08 39555.88 32777.41 29669.27 37255.86 34578.66 30893.77 10638.01 39175.39 36260.12 31189.87 27793.31 135
IB-MVS62.13 1971.64 30768.97 33279.66 24980.80 33562.26 26273.94 33876.90 31963.27 28268.63 37776.79 38333.83 39891.84 17159.28 31687.26 31184.88 316
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
UnsupCasMVSNet_eth71.63 30872.30 30069.62 34676.47 37152.70 35270.03 36780.97 29559.18 32279.36 30188.21 24960.50 28269.12 37958.33 32177.62 38987.04 293
testing371.53 30970.79 31073.77 31688.89 18741.86 39976.60 30959.12 40372.83 18680.97 27982.08 33919.80 41987.33 26965.12 27291.68 24392.13 191
test_vis3_rt71.42 31070.67 31173.64 31769.66 40570.46 17366.97 38189.73 18042.68 40288.20 14083.04 32643.77 37660.07 40365.35 27186.66 32290.39 239
Anonymous2023120671.38 31171.88 30269.88 34386.31 24954.37 33870.39 36474.62 33352.57 36476.73 32288.76 24059.94 28872.06 36844.35 39193.23 21183.23 344
test_vis1_n_192071.30 31271.58 30670.47 33977.58 36159.99 28974.25 33384.22 27051.06 37474.85 34479.10 36555.10 32268.83 38168.86 23979.20 38382.58 351
MIMVSNet71.09 31371.59 30469.57 34787.23 22650.07 37078.91 27271.83 35860.20 31971.26 36191.76 16855.08 32376.09 35841.06 39687.02 31882.54 353
test_fmvs1_n70.94 31470.41 31772.53 32873.92 38766.93 20975.99 31884.21 27143.31 39979.40 30079.39 36343.47 37768.55 38369.05 23684.91 34582.10 358
MS-PatchMatch70.93 31570.22 31873.06 32181.85 31962.50 25673.82 34077.90 30952.44 36575.92 33281.27 34655.67 31881.75 33055.37 33877.70 38874.94 389
pmmvs570.73 31670.07 31972.72 32477.03 36652.73 35174.14 33475.65 32950.36 38172.17 35885.37 30055.42 32080.67 33752.86 35687.59 31084.77 317
PatchT70.52 31772.76 29463.79 37779.38 34933.53 41177.63 29065.37 38873.61 16871.77 35992.79 13744.38 37575.65 36164.53 28085.37 33582.18 357
test_vis1_n70.29 31869.99 32271.20 33775.97 37666.50 21376.69 30580.81 29644.22 39575.43 33777.23 38050.00 34368.59 38266.71 25682.85 36478.52 383
N_pmnet70.20 31968.80 33474.38 31380.91 33184.81 4059.12 39876.45 32455.06 34975.31 34182.36 33655.74 31754.82 40847.02 38287.24 31283.52 337
tpmvs70.16 32069.56 32571.96 33274.71 38648.13 37479.63 25875.45 33165.02 27570.26 36981.88 34145.34 36885.68 30158.34 32075.39 39482.08 359
new-patchmatchnet70.10 32173.37 28760.29 38581.23 32816.95 42059.54 39674.62 33362.93 28480.97 27987.93 25462.83 27571.90 36955.24 34095.01 16192.00 195
YYNet170.06 32270.44 31568.90 35173.76 38953.42 34758.99 39967.20 38058.42 32787.10 16085.39 29959.82 29067.32 38859.79 31383.50 35885.96 303
MVStest170.05 32369.26 32672.41 33058.62 41755.59 33176.61 30865.58 38653.44 35889.28 11793.32 11622.91 41771.44 37374.08 18289.52 28190.21 245
MDA-MVSNet_test_wron70.05 32370.44 31568.88 35273.84 38853.47 34558.93 40067.28 37958.43 32687.09 16185.40 29859.80 29167.25 38959.66 31483.54 35785.92 305
CostFormer69.98 32568.68 33573.87 31477.14 36450.72 36779.26 26674.51 33551.94 37070.97 36484.75 30945.16 37187.49 26655.16 34179.23 38183.40 340
testing9169.94 32668.99 33172.80 32383.81 29545.89 38571.57 35573.64 34568.24 24070.77 36777.82 37334.37 39784.44 31253.64 34987.00 31988.07 277
baseline269.77 32766.89 34478.41 26679.51 34758.09 30976.23 31469.57 37057.50 33664.82 39677.45 37846.02 35788.44 25653.08 35277.83 38688.70 270
PatchmatchNetpermissive69.71 32868.83 33372.33 33177.66 36053.60 34479.29 26569.99 36857.66 33472.53 35682.93 32946.45 35480.08 34360.91 30772.09 39883.31 343
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
test_fmvs169.57 32969.05 32971.14 33869.15 40665.77 22173.98 33783.32 27542.83 40177.77 31778.27 37243.39 38068.50 38468.39 24684.38 35279.15 381
JIA-IIPM69.41 33066.64 34877.70 28073.19 39271.24 16875.67 32065.56 38770.42 21665.18 39292.97 12933.64 40083.06 32253.52 35169.61 40478.79 382
Syy-MVS69.40 33170.03 32167.49 36181.72 32038.94 40471.00 35861.99 39461.38 30370.81 36572.36 39761.37 27979.30 34564.50 28185.18 33884.22 326
testing9969.27 33268.15 33972.63 32583.29 30445.45 38771.15 35771.08 36367.34 25170.43 36877.77 37532.24 40284.35 31453.72 34886.33 32788.10 276
UnsupCasMVSNet_bld69.21 33369.68 32467.82 35979.42 34851.15 36467.82 37675.79 32654.15 35577.47 32085.36 30159.26 29470.64 37448.46 37779.35 38081.66 362
test_cas_vis1_n_192069.20 33469.12 32769.43 34873.68 39062.82 25070.38 36577.21 31646.18 38980.46 29078.95 36752.03 33265.53 39665.77 26777.45 39179.95 379
gg-mvs-nofinetune68.96 33569.11 32868.52 35776.12 37545.32 38883.59 18655.88 40886.68 2664.62 39797.01 930.36 40583.97 31944.78 39082.94 36176.26 386
WBMVS68.76 33668.43 33669.75 34583.29 30440.30 40267.36 37872.21 35557.09 34077.05 32185.53 29433.68 39980.51 33948.79 37590.90 25988.45 273
WB-MVSnew68.72 33769.01 33067.85 35883.22 30843.98 39374.93 32965.98 38555.09 34873.83 34979.11 36465.63 25671.89 37038.21 40485.04 34187.69 287
tpm268.45 33866.83 34573.30 31978.93 35548.50 37379.76 25771.76 35947.50 38469.92 37183.60 32042.07 38388.40 25748.44 37879.51 37883.01 347
tpm67.95 33968.08 34067.55 36078.74 35643.53 39575.60 32167.10 38354.92 35072.23 35788.10 25042.87 38275.97 35952.21 35880.95 37683.15 345
WTY-MVS67.91 34068.35 33766.58 36680.82 33448.12 37565.96 38372.60 35053.67 35771.20 36281.68 34458.97 29669.06 38048.57 37681.67 36982.55 352
testing1167.38 34165.93 34971.73 33483.37 30246.60 38270.95 36069.40 37162.47 28966.14 38576.66 38431.22 40384.10 31649.10 37384.10 35484.49 320
test-LLR67.21 34266.74 34668.63 35576.45 37255.21 33467.89 37367.14 38162.43 29265.08 39372.39 39543.41 37869.37 37661.00 30584.89 34681.31 366
testing22266.93 34365.30 35571.81 33383.38 30145.83 38672.06 35167.50 37764.12 27969.68 37276.37 38727.34 41283.00 32338.88 40088.38 29686.62 298
sss66.92 34467.26 34265.90 36877.23 36351.10 36664.79 38571.72 36052.12 36970.13 37080.18 35657.96 30365.36 39750.21 36681.01 37581.25 368
KD-MVS_2432*160066.87 34565.81 35170.04 34167.50 40747.49 37862.56 39079.16 30361.21 30877.98 31280.61 35025.29 41582.48 32653.02 35384.92 34380.16 377
miper_refine_blended66.87 34565.81 35170.04 34167.50 40747.49 37862.56 39079.16 30361.21 30877.98 31280.61 35025.29 41582.48 32653.02 35384.92 34380.16 377
dmvs_re66.81 34766.98 34366.28 36776.87 36758.68 30771.66 35472.24 35360.29 31769.52 37473.53 39452.38 33164.40 39944.90 38981.44 37275.76 387
tpm cat166.76 34865.21 35671.42 33577.09 36550.62 36878.01 28373.68 34444.89 39368.64 37679.00 36645.51 36582.42 32849.91 36870.15 40181.23 370
UWE-MVS66.43 34965.56 35469.05 35084.15 28940.98 40073.06 34764.71 39054.84 35176.18 32979.62 36229.21 40780.50 34038.54 40389.75 27885.66 308
PVSNet58.17 2166.41 35065.63 35368.75 35381.96 31749.88 37162.19 39272.51 35251.03 37568.04 37975.34 39150.84 33874.77 36345.82 38882.96 36081.60 363
tpmrst66.28 35166.69 34765.05 37372.82 39739.33 40378.20 28270.69 36653.16 36167.88 38080.36 35548.18 34874.75 36458.13 32270.79 40081.08 371
Patchmatch-test65.91 35267.38 34161.48 38375.51 37943.21 39668.84 37063.79 39262.48 28872.80 35583.42 32444.89 37359.52 40548.27 37986.45 32481.70 361
ADS-MVSNet265.87 35363.64 36172.55 32773.16 39356.92 32167.10 37974.81 33249.74 38266.04 38782.97 32746.71 35277.26 35542.29 39369.96 40283.46 338
test_vis1_rt65.64 35464.09 35870.31 34066.09 41170.20 17661.16 39381.60 29138.65 40772.87 35469.66 40052.84 32860.04 40456.16 33177.77 38780.68 375
mvsany_test365.48 35562.97 36473.03 32269.99 40476.17 11864.83 38443.71 41543.68 39780.25 29487.05 27552.83 32963.09 40251.92 36372.44 39779.84 380
test-mter65.00 35663.79 36068.63 35576.45 37255.21 33467.89 37367.14 38150.98 37665.08 39372.39 39528.27 41069.37 37661.00 30584.89 34681.31 366
ETVMVS64.67 35763.34 36368.64 35483.44 30041.89 39869.56 36961.70 39961.33 30568.74 37575.76 38928.76 40879.35 34434.65 40786.16 33084.67 319
myMVS_eth3d64.66 35863.89 35966.97 36481.72 32037.39 40771.00 35861.99 39461.38 30370.81 36572.36 39720.96 41879.30 34549.59 37085.18 33884.22 326
test0.0.03 164.66 35864.36 35765.57 37075.03 38446.89 38164.69 38661.58 40062.43 29271.18 36377.54 37643.41 37868.47 38540.75 39882.65 36581.35 365
UBG64.34 36063.35 36267.30 36283.50 29740.53 40167.46 37765.02 38954.77 35267.54 38374.47 39332.99 40178.50 35140.82 39783.58 35682.88 348
test_f64.31 36165.85 35059.67 38666.54 41062.24 26457.76 40270.96 36440.13 40484.36 22082.09 33846.93 35151.67 41061.99 29881.89 36865.12 401
pmmvs362.47 36260.02 37569.80 34471.58 40164.00 23670.52 36358.44 40639.77 40566.05 38675.84 38827.10 41472.28 36746.15 38684.77 35073.11 391
EPMVS62.47 36262.63 36662.01 37970.63 40338.74 40574.76 33052.86 41053.91 35667.71 38280.01 35739.40 38766.60 39255.54 33768.81 40680.68 375
ADS-MVSNet61.90 36462.19 36861.03 38473.16 39336.42 40967.10 37961.75 39749.74 38266.04 38782.97 32746.71 35263.21 40042.29 39369.96 40283.46 338
PMMVS61.65 36560.38 37265.47 37165.40 41469.26 18563.97 38861.73 39836.80 41160.11 40368.43 40259.42 29266.35 39348.97 37478.57 38560.81 404
E-PMN61.59 36661.62 36961.49 38266.81 40955.40 33253.77 40560.34 40266.80 25658.90 40665.50 40540.48 38666.12 39455.72 33486.25 32862.95 403
TESTMET0.1,161.29 36760.32 37364.19 37572.06 39951.30 36267.89 37362.09 39345.27 39160.65 40269.01 40127.93 41164.74 39856.31 33081.65 37176.53 385
MVS-HIRNet61.16 36862.92 36555.87 38979.09 35235.34 41071.83 35257.98 40746.56 38759.05 40591.14 18449.95 34476.43 35738.74 40171.92 39955.84 408
EMVS61.10 36960.81 37161.99 38065.96 41255.86 32853.10 40658.97 40567.06 25356.89 41063.33 40640.98 38467.03 39054.79 34386.18 32963.08 402
DSMNet-mixed60.98 37061.61 37059.09 38872.88 39645.05 39074.70 33146.61 41426.20 41265.34 39190.32 21455.46 31963.12 40141.72 39581.30 37469.09 397
dp60.70 37160.29 37461.92 38172.04 40038.67 40670.83 36164.08 39151.28 37360.75 40177.28 37936.59 39571.58 37247.41 38162.34 40875.52 388
dmvs_testset60.59 37262.54 36754.72 39177.26 36227.74 41474.05 33661.00 40160.48 31565.62 39067.03 40455.93 31668.23 38632.07 41169.46 40568.17 398
CHOSEN 280x42059.08 37356.52 37866.76 36576.51 37064.39 23249.62 40759.00 40443.86 39655.66 41168.41 40335.55 39668.21 38743.25 39276.78 39367.69 399
mvsany_test158.48 37456.47 37964.50 37465.90 41368.21 19656.95 40342.11 41638.30 40865.69 38977.19 38256.96 31059.35 40646.16 38558.96 40965.93 400
PVSNet_051.08 2256.10 37554.97 38059.48 38775.12 38353.28 34855.16 40461.89 39644.30 39459.16 40462.48 40754.22 32465.91 39535.40 40647.01 41059.25 406
new_pmnet55.69 37657.66 37749.76 39275.47 38030.59 41259.56 39551.45 41143.62 39862.49 39975.48 39040.96 38549.15 41237.39 40572.52 39669.55 396
PMMVS255.64 37759.27 37644.74 39364.30 41512.32 42140.60 40849.79 41253.19 36065.06 39584.81 30853.60 32749.76 41132.68 41089.41 28272.15 392
MVEpermissive40.22 2351.82 37850.47 38155.87 38962.66 41651.91 35731.61 41039.28 41740.65 40350.76 41274.98 39256.24 31544.67 41333.94 40964.11 40771.04 395
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
dongtai41.90 37942.65 38239.67 39470.86 40221.11 41661.01 39421.42 42157.36 33757.97 40950.06 41016.40 42058.73 40721.03 41427.69 41439.17 410
kuosan30.83 38032.17 38326.83 39653.36 41819.02 41957.90 40120.44 42238.29 40938.01 41337.82 41215.18 42133.45 4157.74 41620.76 41528.03 411
test_method30.46 38129.60 38433.06 39517.99 4203.84 42313.62 41173.92 3392.79 41418.29 41653.41 40928.53 40943.25 41422.56 41235.27 41252.11 409
cdsmvs_eth3d_5k20.81 38227.75 3850.00 4010.00 4240.00 4260.00 41285.44 2480.00 4190.00 42082.82 33181.46 1150.00 4200.00 4190.00 4180.00 416
tmp_tt20.25 38324.50 3867.49 3984.47 4218.70 42234.17 40925.16 4191.00 41632.43 41518.49 41339.37 3889.21 41721.64 41343.75 4114.57 413
ab-mvs-re6.65 3848.87 3870.00 4010.00 4240.00 4260.00 4120.00 4250.00 4190.00 42079.80 3590.00 4240.00 4200.00 4190.00 4180.00 416
pcd_1.5k_mvsjas6.41 3858.55 3880.00 4010.00 4240.00 4260.00 4120.00 4250.00 4190.00 4200.00 41976.94 1620.00 4200.00 4190.00 4180.00 416
test1236.27 3868.08 3890.84 3991.11 4230.57 42462.90 3890.82 4230.54 4171.07 4192.75 4181.26 4220.30 4181.04 4171.26 4171.66 414
testmvs5.91 3877.65 3900.72 4001.20 4220.37 42559.14 3970.67 4240.49 4181.11 4182.76 4170.94 4230.24 4191.02 4181.47 4161.55 415
test_blank0.00 3880.00 3910.00 4010.00 4240.00 4260.00 4120.00 4250.00 4190.00 4200.00 4190.00 4240.00 4200.00 4190.00 4180.00 416
uanet_test0.00 3880.00 3910.00 4010.00 4240.00 4260.00 4120.00 4250.00 4190.00 4200.00 4190.00 4240.00 4200.00 4190.00 4180.00 416
DCPMVS0.00 3880.00 3910.00 4010.00 4240.00 4260.00 4120.00 4250.00 4190.00 4200.00 4190.00 4240.00 4200.00 4190.00 4180.00 416
sosnet-low-res0.00 3880.00 3910.00 4010.00 4240.00 4260.00 4120.00 4250.00 4190.00 4200.00 4190.00 4240.00 4200.00 4190.00 4180.00 416
sosnet0.00 3880.00 3910.00 4010.00 4240.00 4260.00 4120.00 4250.00 4190.00 4200.00 4190.00 4240.00 4200.00 4190.00 4180.00 416
uncertanet0.00 3880.00 3910.00 4010.00 4240.00 4260.00 4120.00 4250.00 4190.00 4200.00 4190.00 4240.00 4200.00 4190.00 4180.00 416
Regformer0.00 3880.00 3910.00 4010.00 4240.00 4260.00 4120.00 4250.00 4190.00 4200.00 4190.00 4240.00 4200.00 4190.00 4180.00 416
uanet0.00 3880.00 3910.00 4010.00 4240.00 4260.00 4120.00 4250.00 4190.00 4200.00 4190.00 4240.00 4200.00 4190.00 4180.00 416
WAC-MVS37.39 40752.61 357
FOURS196.08 1287.41 1196.19 295.83 592.95 396.57 3
MSC_two_6792asdad88.81 6891.55 12677.99 9191.01 14396.05 987.45 2098.17 3292.40 176
PC_three_145258.96 32490.06 9491.33 17880.66 12593.03 13875.78 16395.94 12492.48 170
No_MVS88.81 6891.55 12677.99 9191.01 14396.05 987.45 2098.17 3292.40 176
test_one_060193.85 5973.27 13694.11 3586.57 2793.47 3894.64 6088.42 26
eth-test20.00 424
eth-test0.00 424
ZD-MVS92.22 10080.48 6891.85 11871.22 20990.38 8992.98 12786.06 6196.11 781.99 9196.75 89
RE-MVS-def92.61 594.13 5288.95 692.87 1394.16 2988.75 1593.79 2994.43 6890.64 1087.16 2997.60 6392.73 157
IU-MVS94.18 4772.64 14390.82 14856.98 34189.67 10685.78 4997.92 4693.28 136
OPU-MVS88.27 7991.89 11277.83 9490.47 5291.22 18181.12 11994.68 7374.48 17595.35 14492.29 182
test_241102_TWO93.71 5283.77 4993.49 3694.27 7589.27 2195.84 2486.03 4697.82 5192.04 193
test_241102_ONE94.18 4772.65 14193.69 5383.62 5194.11 2393.78 10490.28 1495.50 46
9.1489.29 5991.84 11688.80 9095.32 1275.14 15291.07 7892.89 13287.27 4493.78 10583.69 6997.55 66
save fliter93.75 6077.44 10086.31 13289.72 18170.80 213
test_0728_THIRD85.33 3593.75 3194.65 5787.44 4395.78 3087.41 2298.21 2992.98 151
test_0728_SECOND86.79 9994.25 4672.45 15190.54 4994.10 3695.88 1886.42 3697.97 4392.02 194
test072694.16 5072.56 14790.63 4693.90 4583.61 5293.75 3194.49 6589.76 18
GSMVS83.88 330
test_part293.86 5877.77 9592.84 48
sam_mvs146.11 35683.88 330
sam_mvs45.92 361
ambc82.98 18990.55 15364.86 22788.20 9789.15 19289.40 11593.96 9571.67 22791.38 18378.83 12396.55 9492.71 160
MTGPAbinary91.81 122
test_post178.85 2753.13 41545.19 37080.13 34258.11 323
test_post3.10 41645.43 36677.22 356
patchmatchnet-post81.71 34345.93 36087.01 271
GG-mvs-BLEND67.16 36373.36 39146.54 38484.15 16955.04 40958.64 40761.95 40829.93 40683.87 32038.71 40276.92 39271.07 394
MTMP90.66 4533.14 418
gm-plane-assit75.42 38144.97 39152.17 36672.36 39787.90 26154.10 346
test9_res80.83 10196.45 10090.57 233
TEST992.34 9579.70 7583.94 17490.32 16365.41 27184.49 21690.97 19082.03 10693.63 110
test_892.09 10478.87 8283.82 17990.31 16565.79 26284.36 22090.96 19281.93 10893.44 123
agg_prior279.68 11496.16 11190.22 241
agg_prior91.58 12477.69 9790.30 16684.32 22293.18 131
TestCases89.68 5291.59 12183.40 4995.44 1079.47 9688.00 14593.03 12582.66 9191.47 17770.81 21496.14 11294.16 95
test_prior478.97 8184.59 160
test_prior283.37 19175.43 14884.58 21491.57 17281.92 11079.54 11696.97 82
test_prior86.32 10790.59 15271.99 15892.85 8994.17 9292.80 155
旧先验281.73 23356.88 34286.54 17984.90 30872.81 203
新几何281.72 234
新几何182.95 19193.96 5678.56 8580.24 29955.45 34783.93 23391.08 18771.19 22888.33 25865.84 26593.07 21481.95 360
旧先验191.97 10871.77 15981.78 28991.84 16373.92 19593.65 20283.61 336
无先验82.81 20985.62 24658.09 33091.41 18267.95 25084.48 321
原ACMM282.26 227
原ACMM184.60 14292.81 8674.01 12891.50 12762.59 28682.73 25390.67 20676.53 16994.25 8669.24 23195.69 13785.55 309
test22293.31 7076.54 11079.38 26477.79 31052.59 36382.36 25790.84 19966.83 25091.69 24281.25 368
testdata286.43 28563.52 287
segment_acmp81.94 107
testdata79.54 25192.87 8172.34 15280.14 30059.91 32085.47 19991.75 16967.96 24585.24 30468.57 24592.18 23481.06 373
testdata179.62 25973.95 163
test1286.57 10290.74 14872.63 14590.69 15182.76 25279.20 13694.80 7095.32 14692.27 184
plane_prior793.45 6577.31 103
plane_prior692.61 8776.54 11074.84 183
plane_prior593.61 5695.22 5680.78 10295.83 13094.46 79
plane_prior492.95 130
plane_prior376.85 10877.79 12186.55 174
plane_prior289.45 7979.44 98
plane_prior192.83 85
plane_prior76.42 11387.15 11475.94 14195.03 158
n20.00 425
nn0.00 425
door-mid74.45 336
lessismore_v085.95 11691.10 14170.99 17070.91 36591.79 6694.42 7061.76 27792.93 14179.52 11793.03 21593.93 104
LGP-MVS_train90.82 3494.75 4181.69 6094.27 2182.35 6593.67 3494.82 5291.18 495.52 4285.36 5298.73 795.23 58
test1191.46 128
door72.57 351
HQP5-MVS70.66 171
HQP-NCC91.19 13684.77 15473.30 17780.55 287
ACMP_Plane91.19 13684.77 15473.30 17780.55 287
BP-MVS77.30 146
HQP4-MVS80.56 28694.61 7693.56 128
HQP3-MVS92.68 9494.47 178
HQP2-MVS72.10 220
NP-MVS91.95 10974.55 12590.17 220
MDTV_nov1_ep13_2view27.60 41570.76 36246.47 38861.27 40045.20 36949.18 37283.75 335
MDTV_nov1_ep1368.29 33878.03 35743.87 39474.12 33572.22 35452.17 36667.02 38485.54 29345.36 36780.85 33655.73 33384.42 351
ACMMP++_ref95.74 136
ACMMP++97.35 72
Test By Simon79.09 137
ITE_SJBPF90.11 4690.72 14984.97 3890.30 16681.56 7390.02 9691.20 18382.40 9690.81 20273.58 19194.66 17494.56 75
DeepMVS_CXcopyleft24.13 39732.95 41929.49 41321.63 42012.07 41337.95 41445.07 41130.84 40419.21 41617.94 41533.06 41323.69 412