This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet95.70 196.40 193.61 398.67 185.39 3795.54 597.36 196.97 199.04 199.05 196.61 195.92 1685.07 6099.27 199.54 1
mamv495.37 294.51 297.96 196.31 1098.41 191.05 4697.23 295.32 299.01 297.26 680.16 13398.99 195.15 199.14 296.47 30
TDRefinement93.52 393.39 493.88 295.94 1590.26 495.70 496.46 390.58 992.86 5096.29 1988.16 3594.17 9786.07 4898.48 1897.22 17
LTVRE_ROB86.10 193.04 493.44 391.82 2293.73 6485.72 3496.79 195.51 988.86 1695.63 1096.99 1084.81 7293.16 13791.10 297.53 7296.58 28
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
reproduce_model92.89 593.18 792.01 1394.20 4988.23 992.87 1394.32 2190.25 1195.65 995.74 3087.75 4195.72 3689.60 498.27 2692.08 197
reproduce-ours92.86 693.22 591.76 2394.39 4487.71 1192.40 2794.38 1989.82 1395.51 1295.49 3889.64 2195.82 2689.13 698.26 2891.76 208
our_new_method92.86 693.22 591.76 2394.39 4487.71 1192.40 2794.38 1989.82 1395.51 1295.49 3889.64 2195.82 2689.13 698.26 2891.76 208
HPM-MVS_fast92.50 892.54 992.37 695.93 1685.81 3392.99 1294.23 2785.21 4092.51 5895.13 4890.65 995.34 5588.06 1298.15 3795.95 41
SR-MVS-dyc-post92.41 992.41 1092.39 594.13 5588.95 692.87 1394.16 3288.75 1893.79 3294.43 7288.83 2695.51 4787.16 3297.60 6692.73 162
SR-MVS92.23 1092.34 1191.91 1794.89 3887.85 1092.51 2493.87 5188.20 2393.24 4294.02 9490.15 1695.67 3886.82 3697.34 7692.19 193
HPM-MVScopyleft92.13 1192.20 1391.91 1795.58 2684.67 4693.51 894.85 1582.88 6491.77 7093.94 10290.55 1295.73 3588.50 1098.23 3195.33 56
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
APD-MVS_3200maxsize92.05 1292.24 1291.48 2593.02 8085.17 3992.47 2695.05 1487.65 2793.21 4394.39 7790.09 1795.08 6686.67 3897.60 6694.18 99
COLMAP_ROBcopyleft83.01 391.97 1391.95 1492.04 1193.68 6586.15 2493.37 1095.10 1390.28 1092.11 6395.03 5089.75 2094.93 7079.95 11698.27 2695.04 67
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
ACMMPcopyleft91.91 1491.87 1992.03 1295.53 2785.91 2893.35 1194.16 3282.52 6792.39 6194.14 8989.15 2595.62 3987.35 2798.24 3094.56 80
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
mPP-MVS91.69 1591.47 2692.37 696.04 1388.48 892.72 1892.60 10183.09 6191.54 7294.25 8387.67 4495.51 4787.21 3198.11 3893.12 150
CP-MVS91.67 1691.58 2391.96 1495.29 3187.62 1393.38 993.36 6583.16 6091.06 8294.00 9588.26 3295.71 3787.28 3098.39 2192.55 172
XVS91.54 1791.36 2892.08 995.64 2486.25 2292.64 1993.33 6785.07 4189.99 10094.03 9386.57 5595.80 2887.35 2797.62 6494.20 96
MTAPA91.52 1891.60 2291.29 3096.59 486.29 2192.02 3391.81 12684.07 4992.00 6694.40 7686.63 5495.28 5888.59 998.31 2492.30 186
UA-Net91.49 1991.53 2491.39 2794.98 3582.95 5893.52 792.79 9588.22 2288.53 13397.64 383.45 8694.55 8386.02 5298.60 1396.67 25
ACMMPR91.49 1991.35 3091.92 1695.74 2085.88 3092.58 2293.25 7381.99 7091.40 7494.17 8887.51 4595.87 2087.74 1697.76 5793.99 106
LPG-MVS_test91.47 2191.68 2090.82 3794.75 4181.69 6390.00 6294.27 2482.35 6893.67 3794.82 5691.18 495.52 4585.36 5798.73 795.23 61
region2R91.44 2291.30 3491.87 1995.75 1985.90 2992.63 2193.30 7181.91 7290.88 8894.21 8487.75 4195.87 2087.60 2197.71 6093.83 115
HFP-MVS91.30 2391.39 2791.02 3395.43 2984.66 4792.58 2293.29 7281.99 7091.47 7393.96 9988.35 3195.56 4287.74 1697.74 5992.85 159
ZNCC-MVS91.26 2491.34 3191.01 3495.73 2183.05 5692.18 3194.22 2980.14 9291.29 7893.97 9687.93 4095.87 2088.65 897.96 4894.12 103
APDe-MVScopyleft91.22 2591.92 1589.14 6692.97 8278.04 9392.84 1694.14 3683.33 5893.90 2895.73 3188.77 2796.41 387.60 2197.98 4592.98 156
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
PGM-MVS91.20 2690.95 4391.93 1595.67 2385.85 3190.00 6293.90 4880.32 8991.74 7194.41 7588.17 3495.98 1386.37 4197.99 4393.96 108
SteuartSystems-ACMMP91.16 2791.36 2890.55 4193.91 6080.97 7091.49 4093.48 6382.82 6592.60 5793.97 9688.19 3396.29 687.61 2098.20 3494.39 91
Skip Steuart: Steuart Systems R&D Blog.
MP-MVScopyleft91.14 2890.91 4491.83 2096.18 1186.88 1792.20 3093.03 8682.59 6688.52 13494.37 7886.74 5395.41 5386.32 4298.21 3293.19 146
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
GST-MVS90.96 2991.01 4090.82 3795.45 2882.73 5991.75 3893.74 5480.98 8391.38 7593.80 10687.20 4995.80 2887.10 3497.69 6193.93 109
MP-MVS-pluss90.81 3091.08 3789.99 5095.97 1479.88 7588.13 10294.51 1875.79 14792.94 4794.96 5188.36 3095.01 6890.70 398.40 2095.09 66
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ACMH+77.89 1190.73 3191.50 2588.44 7893.00 8176.26 11989.65 7595.55 887.72 2693.89 3094.94 5291.62 393.44 12878.35 13598.76 495.61 50
ACMMP_NAP90.65 3291.07 3989.42 6195.93 1679.54 8089.95 6693.68 5877.65 12691.97 6794.89 5388.38 2995.45 5189.27 597.87 5393.27 142
ACMM79.39 990.65 3290.99 4189.63 5795.03 3483.53 5189.62 7693.35 6679.20 10593.83 3193.60 11690.81 792.96 14485.02 6298.45 1992.41 179
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LS3D90.60 3490.34 5191.38 2889.03 18584.23 4993.58 694.68 1790.65 890.33 9493.95 10184.50 7495.37 5480.87 10695.50 14594.53 83
ACMP79.16 1090.54 3590.60 4990.35 4594.36 4680.98 6989.16 8694.05 4179.03 10892.87 4993.74 11190.60 1195.21 6182.87 8498.76 494.87 70
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
DPE-MVScopyleft90.53 3691.08 3788.88 6993.38 7178.65 8789.15 8794.05 4184.68 4593.90 2894.11 9188.13 3696.30 584.51 6897.81 5591.70 212
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SED-MVS90.46 3791.64 2186.93 9994.18 5072.65 14590.47 5593.69 5683.77 5294.11 2694.27 7990.28 1495.84 2486.03 4997.92 4992.29 187
SMA-MVScopyleft90.31 3890.48 5089.83 5495.31 3079.52 8190.98 4793.24 7475.37 15592.84 5195.28 4485.58 6796.09 887.92 1497.76 5793.88 112
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
SF-MVS90.27 3990.80 4688.68 7692.86 8677.09 10891.19 4495.74 681.38 7892.28 6293.80 10686.89 5294.64 7885.52 5697.51 7394.30 95
v7n90.13 4090.96 4287.65 9191.95 11271.06 17389.99 6493.05 8386.53 3194.29 2296.27 2082.69 9394.08 10086.25 4597.63 6397.82 8
PMVScopyleft80.48 690.08 4190.66 4888.34 8196.71 392.97 290.31 5989.57 19288.51 2190.11 9695.12 4990.98 688.92 25477.55 14997.07 8383.13 355
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
DVP-MVS++90.07 4291.09 3687.00 9791.55 12972.64 14796.19 294.10 3985.33 3893.49 3994.64 6481.12 12295.88 1887.41 2595.94 12892.48 175
DVP-MVScopyleft90.06 4391.32 3286.29 11194.16 5372.56 15190.54 5291.01 14783.61 5593.75 3494.65 6189.76 1895.78 3286.42 3997.97 4690.55 244
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
PS-CasMVS90.06 4391.92 1584.47 15396.56 658.83 31389.04 8892.74 9791.40 696.12 596.06 2687.23 4895.57 4179.42 12598.74 699.00 2
PEN-MVS90.03 4591.88 1884.48 15296.57 558.88 31088.95 8993.19 7591.62 596.01 796.16 2487.02 5095.60 4078.69 13198.72 998.97 3
OurMVSNet-221017-090.01 4689.74 5690.83 3693.16 7880.37 7291.91 3693.11 7981.10 8195.32 1497.24 772.94 21494.85 7285.07 6097.78 5697.26 15
DTE-MVSNet89.98 4791.91 1784.21 16296.51 757.84 32188.93 9092.84 9491.92 496.16 496.23 2186.95 5195.99 1279.05 12898.57 1598.80 6
XVG-ACMP-BASELINE89.98 4789.84 5490.41 4394.91 3784.50 4889.49 8193.98 4379.68 9792.09 6493.89 10483.80 8193.10 14082.67 8898.04 3993.64 127
3Dnovator+83.92 289.97 4989.66 5790.92 3591.27 13881.66 6691.25 4294.13 3788.89 1588.83 12694.26 8277.55 15695.86 2384.88 6395.87 13295.24 60
WR-MVS_H89.91 5091.31 3385.71 12896.32 962.39 26689.54 7993.31 7090.21 1295.57 1195.66 3381.42 11995.90 1780.94 10598.80 398.84 5
OPM-MVS89.80 5189.97 5289.27 6394.76 4079.86 7686.76 12792.78 9678.78 11192.51 5893.64 11588.13 3693.84 10984.83 6597.55 6994.10 104
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
mvs_tets89.78 5289.27 6391.30 2993.51 6784.79 4489.89 6890.63 15770.00 22894.55 1996.67 1487.94 3993.59 12084.27 7095.97 12495.52 51
anonymousdsp89.73 5388.88 7092.27 889.82 17186.67 1890.51 5490.20 17669.87 22995.06 1596.14 2584.28 7793.07 14187.68 1896.34 10697.09 19
test_djsdf89.62 5489.01 6791.45 2692.36 9782.98 5791.98 3490.08 17971.54 20894.28 2496.54 1681.57 11794.27 8986.26 4396.49 10097.09 19
XVG-OURS-SEG-HR89.59 5589.37 6190.28 4694.47 4385.95 2786.84 12393.91 4780.07 9386.75 17493.26 12193.64 290.93 20084.60 6790.75 27393.97 107
APD-MVScopyleft89.54 5689.63 5889.26 6492.57 9181.34 6890.19 6193.08 8280.87 8591.13 8093.19 12286.22 6295.97 1482.23 9497.18 8190.45 246
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
jajsoiax89.41 5788.81 7391.19 3293.38 7184.72 4589.70 7190.29 17369.27 23294.39 2096.38 1886.02 6593.52 12483.96 7295.92 13095.34 55
CPTT-MVS89.39 5888.98 6990.63 4095.09 3386.95 1692.09 3292.30 10979.74 9687.50 15992.38 15281.42 11993.28 13383.07 8097.24 7991.67 213
ACMH76.49 1489.34 5991.14 3583.96 16792.50 9470.36 17989.55 7793.84 5281.89 7394.70 1795.44 4090.69 888.31 26483.33 7698.30 2593.20 145
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
testf189.30 6089.12 6489.84 5288.67 19585.64 3590.61 5093.17 7686.02 3493.12 4495.30 4284.94 6989.44 24674.12 18896.10 11994.45 86
APD_test289.30 6089.12 6489.84 5288.67 19585.64 3590.61 5093.17 7686.02 3493.12 4495.30 4284.94 6989.44 24674.12 18896.10 11994.45 86
CP-MVSNet89.27 6290.91 4484.37 15496.34 858.61 31688.66 9792.06 11590.78 795.67 895.17 4781.80 11595.54 4479.00 12998.69 1098.95 4
XVG-OURS89.18 6388.83 7290.23 4794.28 4786.11 2685.91 14193.60 6180.16 9189.13 12393.44 11883.82 8090.98 19883.86 7495.30 15393.60 130
DeepC-MVS82.31 489.15 6489.08 6689.37 6293.64 6679.07 8388.54 9894.20 3073.53 17489.71 10794.82 5685.09 6895.77 3484.17 7198.03 4193.26 143
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
UniMVSNet_ETH3D89.12 6590.72 4784.31 16097.00 264.33 24189.67 7488.38 20688.84 1794.29 2297.57 490.48 1391.26 18972.57 21397.65 6297.34 14
MSP-MVS89.08 6688.16 7891.83 2095.76 1886.14 2592.75 1793.90 4878.43 11689.16 12192.25 16072.03 22896.36 488.21 1190.93 26692.98 156
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SD-MVS88.96 6789.88 5386.22 11591.63 12377.07 10989.82 6993.77 5378.90 10992.88 4892.29 15886.11 6390.22 22286.24 4697.24 7991.36 220
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
HPM-MVS++copyleft88.93 6888.45 7690.38 4494.92 3685.85 3189.70 7191.27 14078.20 11886.69 17792.28 15980.36 13195.06 6786.17 4796.49 10090.22 250
test_040288.65 6989.58 6085.88 12492.55 9272.22 15984.01 17889.44 19488.63 2094.38 2195.77 2986.38 6193.59 12079.84 11795.21 15491.82 206
DP-MVS88.60 7089.01 6787.36 9391.30 13677.50 10187.55 10992.97 9087.95 2589.62 11192.87 13784.56 7393.89 10677.65 14796.62 9590.70 238
APD_test188.40 7187.91 8089.88 5189.50 17586.65 2089.98 6591.91 12184.26 4790.87 8993.92 10382.18 10689.29 25073.75 19694.81 17393.70 123
Anonymous2023121188.40 7189.62 5984.73 14590.46 15765.27 23188.86 9193.02 8787.15 2893.05 4697.10 882.28 10592.02 17076.70 15997.99 4396.88 23
PS-MVSNAJss88.31 7387.90 8189.56 5993.31 7377.96 9687.94 10591.97 11870.73 21994.19 2596.67 1476.94 16694.57 8183.07 8096.28 10896.15 33
OMC-MVS88.19 7487.52 8590.19 4891.94 11481.68 6587.49 11293.17 7676.02 14188.64 13091.22 18784.24 7893.37 13177.97 14597.03 8495.52 51
CS-MVS88.14 7587.67 8489.54 6089.56 17379.18 8290.47 5594.77 1679.37 10384.32 22889.33 24083.87 7994.53 8482.45 9094.89 16994.90 68
TSAR-MVS + MP.88.14 7587.82 8289.09 6795.72 2276.74 11292.49 2591.19 14367.85 25386.63 17894.84 5579.58 13895.96 1587.62 1994.50 18294.56 80
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
tt080588.09 7789.79 5582.98 19793.26 7563.94 24591.10 4589.64 18985.07 4190.91 8691.09 19289.16 2491.87 17582.03 9595.87 13293.13 148
EC-MVSNet88.01 7888.32 7787.09 9589.28 18072.03 16190.31 5996.31 480.88 8485.12 20989.67 23584.47 7595.46 5082.56 8996.26 11193.77 121
RPSCF88.00 7986.93 9791.22 3190.08 16489.30 589.68 7391.11 14479.26 10489.68 10894.81 5982.44 9787.74 27076.54 16188.74 30196.61 27
AllTest87.97 8087.40 8989.68 5591.59 12483.40 5289.50 8095.44 1079.47 9988.00 14893.03 12982.66 9491.47 18270.81 22296.14 11694.16 100
TranMVSNet+NR-MVSNet87.86 8188.76 7485.18 13694.02 5864.13 24284.38 17291.29 13984.88 4492.06 6593.84 10586.45 5893.73 11173.22 20498.66 1197.69 9
nrg03087.85 8288.49 7585.91 12290.07 16669.73 18587.86 10694.20 3074.04 16692.70 5694.66 6085.88 6691.50 18179.72 11997.32 7796.50 29
CNVR-MVS87.81 8387.68 8388.21 8392.87 8477.30 10785.25 15591.23 14177.31 13187.07 16891.47 18182.94 9194.71 7584.67 6696.27 11092.62 169
HQP_MVS87.75 8487.43 8888.70 7593.45 6876.42 11689.45 8293.61 5979.44 10186.55 17992.95 13474.84 18795.22 5980.78 10895.83 13494.46 84
MM87.64 8587.15 9089.09 6789.51 17476.39 11888.68 9686.76 23684.54 4683.58 24693.78 10873.36 21096.48 287.98 1396.21 11294.41 90
MVSMamba_PlusPlus87.53 8688.86 7183.54 18392.03 11062.26 27091.49 4092.62 10088.07 2488.07 14596.17 2372.24 22395.79 3184.85 6494.16 19392.58 170
NCCC87.36 8786.87 9888.83 7092.32 10078.84 8686.58 13191.09 14578.77 11284.85 21790.89 20180.85 12595.29 5681.14 10395.32 15092.34 184
DeepPCF-MVS81.24 587.28 8886.21 10890.49 4291.48 13384.90 4283.41 19692.38 10670.25 22589.35 11990.68 21082.85 9294.57 8179.55 12295.95 12792.00 201
SixPastTwentyTwo87.20 8987.45 8786.45 10892.52 9369.19 19487.84 10788.05 21381.66 7594.64 1896.53 1765.94 26094.75 7483.02 8296.83 8995.41 53
SPE-MVS-test87.00 9086.43 10488.71 7489.46 17677.46 10289.42 8495.73 777.87 12481.64 28287.25 27782.43 9894.53 8477.65 14796.46 10294.14 102
UniMVSNet (Re)86.87 9186.98 9686.55 10693.11 7968.48 20183.80 18792.87 9280.37 8789.61 11391.81 17277.72 15394.18 9575.00 18198.53 1696.99 22
Vis-MVSNetpermissive86.86 9286.58 10187.72 8992.09 10777.43 10487.35 11392.09 11478.87 11084.27 23394.05 9278.35 14693.65 11380.54 11291.58 25492.08 197
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
UniMVSNet_NR-MVSNet86.84 9387.06 9386.17 11892.86 8667.02 21582.55 22291.56 12983.08 6290.92 8491.82 17178.25 14793.99 10274.16 18698.35 2297.49 13
DU-MVS86.80 9486.99 9586.21 11693.24 7667.02 21583.16 20592.21 11081.73 7490.92 8491.97 16477.20 16093.99 10274.16 18698.35 2297.61 10
casdiffmvs_mvgpermissive86.72 9587.51 8684.36 15687.09 23865.22 23284.16 17494.23 2777.89 12291.28 7993.66 11484.35 7692.71 15080.07 11394.87 17295.16 64
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_fmvsmconf0.01_n86.68 9686.52 10287.18 9485.94 26678.30 8986.93 12092.20 11165.94 26789.16 12193.16 12483.10 8989.89 23587.81 1594.43 18593.35 137
IS-MVSNet86.66 9786.82 10086.17 11892.05 10966.87 21891.21 4388.64 20386.30 3389.60 11492.59 14569.22 24494.91 7173.89 19397.89 5296.72 24
v1086.54 9887.10 9284.84 14088.16 21063.28 25286.64 13092.20 11175.42 15492.81 5394.50 6874.05 19894.06 10183.88 7396.28 10897.17 18
pmmvs686.52 9988.06 7981.90 21892.22 10362.28 26984.66 16589.15 19783.54 5789.85 10497.32 588.08 3886.80 28570.43 23097.30 7896.62 26
PHI-MVS86.38 10085.81 11788.08 8488.44 20477.34 10589.35 8593.05 8373.15 18784.76 21887.70 26778.87 14294.18 9580.67 11096.29 10792.73 162
CSCG86.26 10186.47 10385.60 13090.87 14974.26 13187.98 10491.85 12280.35 8889.54 11788.01 25979.09 14092.13 16675.51 17495.06 16190.41 247
DeepC-MVS_fast80.27 886.23 10285.65 12287.96 8791.30 13676.92 11087.19 11591.99 11770.56 22084.96 21390.69 20980.01 13595.14 6478.37 13495.78 13891.82 206
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
v886.22 10386.83 9984.36 15687.82 21762.35 26886.42 13491.33 13876.78 13592.73 5594.48 7073.41 20793.72 11283.10 7995.41 14697.01 21
Anonymous2024052986.20 10487.13 9183.42 18590.19 16264.55 23984.55 16790.71 15485.85 3689.94 10395.24 4682.13 10790.40 21869.19 24396.40 10595.31 57
test_fmvsmconf0.1_n86.18 10585.88 11587.08 9685.26 27678.25 9085.82 14591.82 12465.33 28188.55 13292.35 15782.62 9689.80 23786.87 3594.32 18893.18 147
CDPH-MVS86.17 10685.54 12388.05 8692.25 10175.45 12483.85 18492.01 11665.91 26986.19 18891.75 17583.77 8294.98 6977.43 15296.71 9393.73 122
NR-MVSNet86.00 10786.22 10785.34 13493.24 7664.56 23882.21 23490.46 16180.99 8288.42 13791.97 16477.56 15593.85 10772.46 21498.65 1297.61 10
train_agg85.98 10885.28 12988.07 8592.34 9879.70 7883.94 18090.32 16865.79 27184.49 22290.97 19681.93 11193.63 11581.21 10296.54 9890.88 232
FC-MVSNet-test85.93 10987.05 9482.58 20892.25 10156.44 33285.75 14693.09 8177.33 13091.94 6894.65 6174.78 18993.41 13075.11 18098.58 1497.88 7
test_fmvsmconf_n85.88 11085.51 12486.99 9884.77 28478.21 9185.40 15491.39 13665.32 28287.72 15591.81 17282.33 10189.78 23886.68 3794.20 19192.99 155
Effi-MVS+-dtu85.82 11183.38 16493.14 487.13 23491.15 387.70 10888.42 20574.57 16283.56 24785.65 30178.49 14594.21 9372.04 21692.88 22594.05 105
TAPA-MVS77.73 1285.71 11284.83 13588.37 8088.78 19479.72 7787.15 11793.50 6269.17 23385.80 19789.56 23680.76 12692.13 16673.21 20995.51 14493.25 144
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
sasdasda85.50 11386.14 10983.58 17987.97 21267.13 21287.55 10994.32 2173.44 17788.47 13587.54 27086.45 5891.06 19675.76 17293.76 20392.54 173
canonicalmvs85.50 11386.14 10983.58 17987.97 21267.13 21287.55 10994.32 2173.44 17788.47 13587.54 27086.45 5891.06 19675.76 17293.76 20392.54 173
EPP-MVSNet85.47 11585.04 13286.77 10391.52 13269.37 18991.63 3987.98 21581.51 7787.05 16991.83 17066.18 25995.29 5670.75 22596.89 8695.64 48
GeoE85.45 11685.81 11784.37 15490.08 16467.07 21485.86 14491.39 13672.33 20187.59 15790.25 22284.85 7192.37 16078.00 14391.94 24593.66 124
MVS_030485.37 11784.58 14287.75 8885.28 27573.36 13686.54 13385.71 25177.56 12981.78 28092.47 15070.29 23896.02 1185.59 5595.96 12593.87 113
FIs85.35 11886.27 10682.60 20791.86 11657.31 32585.10 15993.05 8375.83 14691.02 8393.97 9673.57 20392.91 14873.97 19298.02 4297.58 12
test_fmvsmvis_n_192085.22 11985.36 12884.81 14285.80 26876.13 12285.15 15892.32 10861.40 31191.33 7690.85 20483.76 8386.16 29884.31 6993.28 21592.15 195
casdiffmvspermissive85.21 12085.85 11683.31 18886.17 26062.77 25983.03 20793.93 4674.69 16188.21 14292.68 14482.29 10491.89 17477.87 14693.75 20695.27 59
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline85.20 12185.93 11383.02 19586.30 25562.37 26784.55 16793.96 4474.48 16387.12 16392.03 16382.30 10391.94 17178.39 13394.21 19094.74 77
K. test v385.14 12284.73 13686.37 10991.13 14369.63 18785.45 15276.68 33184.06 5092.44 6096.99 1062.03 28294.65 7780.58 11193.24 21694.83 75
mmtdpeth85.13 12385.78 11983.17 19384.65 28674.71 12785.87 14390.35 16777.94 12183.82 24096.96 1277.75 15180.03 35278.44 13296.21 11294.79 76
EI-MVSNet-Vis-set85.12 12484.53 14586.88 10084.01 29872.76 14483.91 18385.18 26080.44 8688.75 12785.49 30480.08 13491.92 17282.02 9690.85 27195.97 39
MGCFI-Net85.04 12585.95 11282.31 21487.52 22663.59 24886.23 13893.96 4473.46 17588.07 14587.83 26586.46 5790.87 20576.17 16793.89 20092.47 177
EI-MVSNet-UG-set85.04 12584.44 14786.85 10183.87 30272.52 15383.82 18585.15 26180.27 9088.75 12785.45 30679.95 13691.90 17381.92 9990.80 27296.13 34
X-MVStestdata85.04 12582.70 17892.08 995.64 2486.25 2292.64 1993.33 6785.07 4189.99 10016.05 42386.57 5595.80 2887.35 2797.62 6494.20 96
MSLP-MVS++85.00 12886.03 11181.90 21891.84 11971.56 17086.75 12893.02 8775.95 14487.12 16389.39 23877.98 14889.40 24977.46 15094.78 17484.75 327
F-COLMAP84.97 12983.42 16389.63 5792.39 9683.40 5288.83 9291.92 12073.19 18680.18 30489.15 24477.04 16493.28 13365.82 27592.28 23692.21 192
balanced_conf0384.80 13085.40 12683.00 19688.95 18861.44 27790.42 5892.37 10771.48 21088.72 12993.13 12570.16 24095.15 6379.26 12794.11 19492.41 179
3Dnovator80.37 784.80 13084.71 13985.06 13886.36 25374.71 12788.77 9490.00 18175.65 14984.96 21393.17 12374.06 19791.19 19178.28 13791.09 26089.29 269
IterMVS-LS84.73 13284.98 13383.96 16787.35 22963.66 24683.25 20189.88 18476.06 13989.62 11192.37 15573.40 20992.52 15578.16 14094.77 17695.69 46
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MVS_111021_HR84.63 13384.34 15185.49 13390.18 16375.86 12379.23 27787.13 22773.35 17985.56 20289.34 23983.60 8590.50 21676.64 16094.05 19790.09 256
HQP-MVS84.61 13484.06 15486.27 11291.19 13970.66 17584.77 16092.68 9873.30 18280.55 29690.17 22772.10 22494.61 7977.30 15494.47 18393.56 133
v119284.57 13584.69 14084.21 16287.75 21962.88 25683.02 20891.43 13369.08 23589.98 10290.89 20172.70 21893.62 11882.41 9194.97 16696.13 34
FMVSNet184.55 13685.45 12581.85 22090.27 16161.05 28486.83 12488.27 21078.57 11589.66 11095.64 3475.43 18090.68 21169.09 24495.33 14993.82 116
v114484.54 13784.72 13884.00 16587.67 22262.55 26382.97 21090.93 15070.32 22489.80 10590.99 19573.50 20493.48 12681.69 10194.65 18095.97 39
Gipumacopyleft84.44 13886.33 10578.78 26684.20 29673.57 13589.55 7790.44 16284.24 4884.38 22594.89 5376.35 17780.40 34976.14 16896.80 9182.36 365
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
MCST-MVS84.36 13983.93 15785.63 12991.59 12471.58 16883.52 19392.13 11361.82 30483.96 23889.75 23479.93 13793.46 12778.33 13694.34 18791.87 205
VDDNet84.35 14085.39 12781.25 23195.13 3259.32 30385.42 15381.11 30286.41 3287.41 16096.21 2273.61 20290.61 21466.33 26896.85 8793.81 119
ETV-MVS84.31 14183.91 15885.52 13188.58 20070.40 17884.50 17193.37 6478.76 11384.07 23678.72 37880.39 13095.13 6573.82 19592.98 22391.04 226
v124084.30 14284.51 14683.65 17687.65 22361.26 28182.85 21491.54 13067.94 25190.68 9190.65 21371.71 23193.64 11482.84 8594.78 17496.07 36
MVS_111021_LR84.28 14383.76 15985.83 12689.23 18283.07 5580.99 25083.56 28272.71 19486.07 19189.07 24581.75 11686.19 29777.11 15693.36 21188.24 283
h-mvs3384.25 14482.76 17788.72 7391.82 12182.60 6084.00 17984.98 26771.27 21186.70 17590.55 21563.04 27993.92 10578.26 13894.20 19189.63 261
v14419284.24 14584.41 14883.71 17587.59 22561.57 27682.95 21191.03 14667.82 25489.80 10590.49 21673.28 21193.51 12581.88 10094.89 16996.04 38
dcpmvs_284.23 14685.14 13081.50 22888.61 19961.98 27482.90 21393.11 7968.66 24192.77 5492.39 15178.50 14487.63 27276.99 15892.30 23394.90 68
v192192084.23 14684.37 15083.79 17187.64 22461.71 27582.91 21291.20 14267.94 25190.06 9790.34 21972.04 22793.59 12082.32 9294.91 16796.07 36
VDD-MVS84.23 14684.58 14283.20 19191.17 14265.16 23483.25 20184.97 26879.79 9587.18 16294.27 7974.77 19090.89 20369.24 24096.54 9893.55 135
v2v48284.09 14984.24 15283.62 17787.13 23461.40 27882.71 21789.71 18772.19 20489.55 11591.41 18270.70 23793.20 13581.02 10493.76 20396.25 32
EG-PatchMatch MVS84.08 15084.11 15383.98 16692.22 10372.61 15082.20 23687.02 23272.63 19588.86 12491.02 19478.52 14391.11 19473.41 20191.09 26088.21 284
DP-MVS Recon84.05 15183.22 16786.52 10791.73 12275.27 12583.23 20392.40 10472.04 20582.04 27188.33 25577.91 15093.95 10466.17 26995.12 15990.34 249
TransMVSNet (Re)84.02 15285.74 12078.85 26591.00 14655.20 34482.29 23087.26 22279.65 9888.38 13995.52 3783.00 9086.88 28367.97 25896.60 9694.45 86
Baseline_NR-MVSNet84.00 15385.90 11478.29 27791.47 13453.44 35582.29 23087.00 23579.06 10789.55 11595.72 3277.20 16086.14 29972.30 21598.51 1795.28 58
TSAR-MVS + GP.83.95 15482.69 17987.72 8989.27 18181.45 6783.72 18981.58 30074.73 16085.66 19886.06 29672.56 22092.69 15275.44 17695.21 15489.01 277
alignmvs83.94 15583.98 15683.80 17087.80 21867.88 20884.54 16991.42 13573.27 18588.41 13887.96 26072.33 22190.83 20676.02 17094.11 19492.69 166
Effi-MVS+83.90 15684.01 15583.57 18187.22 23265.61 23086.55 13292.40 10478.64 11481.34 28784.18 32583.65 8492.93 14674.22 18587.87 31592.17 194
fmvsm_s_conf0.1_n_283.82 15783.49 16184.84 14085.99 26570.19 18180.93 25187.58 21867.26 25987.94 15092.37 15571.40 23388.01 26686.03 4991.87 24696.31 31
mvs5depth83.82 15784.54 14481.68 22582.23 32368.65 19986.89 12189.90 18380.02 9487.74 15497.86 264.19 26982.02 33776.37 16395.63 14394.35 92
CANet83.79 15982.85 17686.63 10486.17 26072.21 16083.76 18891.43 13377.24 13274.39 35587.45 27375.36 18195.42 5277.03 15792.83 22692.25 191
pm-mvs183.69 16084.95 13479.91 25290.04 16859.66 30082.43 22687.44 21975.52 15287.85 15195.26 4581.25 12185.65 30968.74 25096.04 12194.42 89
AdaColmapbinary83.66 16183.69 16083.57 18190.05 16772.26 15886.29 13690.00 18178.19 11981.65 28187.16 27983.40 8794.24 9261.69 31094.76 17784.21 337
MIMVSNet183.63 16284.59 14180.74 24094.06 5762.77 25982.72 21684.53 27477.57 12890.34 9395.92 2876.88 17285.83 30761.88 30897.42 7493.62 128
fmvsm_s_conf0.5_n_283.62 16383.29 16684.62 14885.43 27370.18 18280.61 25587.24 22367.14 26087.79 15391.87 16671.79 23087.98 26786.00 5391.77 24995.71 45
test_fmvsm_n_192083.60 16482.89 17585.74 12785.22 27777.74 9984.12 17690.48 16059.87 33086.45 18791.12 19175.65 17885.89 30582.28 9390.87 26993.58 131
WR-MVS83.56 16584.40 14981.06 23693.43 7054.88 34578.67 28585.02 26581.24 7990.74 9091.56 17972.85 21591.08 19568.00 25798.04 3997.23 16
CNLPA83.55 16683.10 17284.90 13989.34 17983.87 5084.54 16988.77 20079.09 10683.54 24888.66 25274.87 18681.73 33966.84 26392.29 23589.11 271
LCM-MVSNet-Re83.48 16785.06 13178.75 26785.94 26655.75 33880.05 26194.27 2476.47 13696.09 694.54 6783.31 8889.75 24159.95 32194.89 16990.75 235
hse-mvs283.47 16881.81 19288.47 7791.03 14582.27 6182.61 21883.69 28071.27 21186.70 17586.05 29763.04 27992.41 15878.26 13893.62 21090.71 237
V4283.47 16883.37 16583.75 17383.16 31763.33 25181.31 24490.23 17569.51 23190.91 8690.81 20674.16 19692.29 16480.06 11490.22 28195.62 49
VPA-MVSNet83.47 16884.73 13679.69 25690.29 16057.52 32481.30 24688.69 20276.29 13787.58 15894.44 7180.60 12987.20 27766.60 26696.82 9094.34 93
PAPM_NR83.23 17183.19 16983.33 18790.90 14865.98 22688.19 10190.78 15378.13 12080.87 29287.92 26373.49 20692.42 15770.07 23388.40 30491.60 215
CLD-MVS83.18 17282.64 18084.79 14389.05 18467.82 20977.93 29392.52 10268.33 24485.07 21081.54 35482.06 10892.96 14469.35 23997.91 5193.57 132
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
ANet_high83.17 17385.68 12175.65 31281.24 33545.26 39879.94 26392.91 9183.83 5191.33 7696.88 1380.25 13285.92 30268.89 24795.89 13195.76 43
FA-MVS(test-final)83.13 17483.02 17383.43 18486.16 26266.08 22588.00 10388.36 20775.55 15185.02 21192.75 14265.12 26492.50 15674.94 18291.30 25891.72 210
114514_t83.10 17582.54 18384.77 14492.90 8369.10 19686.65 12990.62 15854.66 36281.46 28490.81 20676.98 16594.38 8772.62 21296.18 11490.82 234
RRT-MVS82.97 17683.44 16281.57 22785.06 27958.04 31987.20 11490.37 16577.88 12388.59 13193.70 11363.17 27693.05 14276.49 16288.47 30393.62 128
BP-MVS182.81 17781.67 19486.23 11387.88 21668.53 20086.06 14084.36 27575.65 14985.14 20890.19 22445.84 36894.42 8685.18 5994.72 17895.75 44
UGNet82.78 17881.64 19586.21 11686.20 25976.24 12086.86 12285.68 25277.07 13373.76 35992.82 13869.64 24191.82 17769.04 24693.69 20790.56 243
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
LF4IMVS82.75 17981.93 19085.19 13582.08 32480.15 7485.53 15088.76 20168.01 24885.58 20187.75 26671.80 22986.85 28474.02 19193.87 20188.58 280
EI-MVSNet82.61 18082.42 18583.20 19183.25 31463.66 24683.50 19485.07 26276.06 13986.55 17985.10 31273.41 20790.25 21978.15 14290.67 27595.68 47
QAPM82.59 18182.59 18282.58 20886.44 24866.69 21989.94 6790.36 16667.97 25084.94 21592.58 14772.71 21792.18 16570.63 22887.73 31788.85 278
fmvsm_s_conf0.1_n_a82.58 18281.93 19084.50 15187.68 22173.35 13786.14 13977.70 32061.64 30985.02 21191.62 17777.75 15186.24 29482.79 8687.07 32493.91 111
Fast-Effi-MVS+-dtu82.54 18381.41 20385.90 12385.60 26976.53 11583.07 20689.62 19173.02 18979.11 31483.51 33080.74 12790.24 22168.76 24989.29 29290.94 229
MVS_Test82.47 18483.22 16780.22 24982.62 32257.75 32382.54 22391.96 11971.16 21582.89 25892.52 14977.41 15790.50 21680.04 11587.84 31692.40 181
v14882.31 18582.48 18481.81 22385.59 27059.66 30081.47 24386.02 24772.85 19088.05 14790.65 21370.73 23690.91 20275.15 17991.79 24794.87 70
API-MVS82.28 18682.61 18181.30 23086.29 25669.79 18388.71 9587.67 21778.42 11782.15 27084.15 32677.98 14891.59 18065.39 27892.75 22782.51 364
MVSFormer82.23 18781.57 20084.19 16485.54 27169.26 19191.98 3490.08 17971.54 20876.23 33685.07 31558.69 30494.27 8986.26 4388.77 29989.03 275
fmvsm_s_conf0.5_n_a82.21 18881.51 20284.32 15986.56 24673.35 13785.46 15177.30 32461.81 30584.51 22190.88 20377.36 15886.21 29682.72 8786.97 32993.38 136
EIA-MVS82.19 18981.23 20885.10 13787.95 21469.17 19583.22 20493.33 6770.42 22178.58 31879.77 37077.29 15994.20 9471.51 21888.96 29791.93 204
GDP-MVS82.17 19080.85 21486.15 12088.65 19768.95 19785.65 14993.02 8768.42 24283.73 24289.54 23745.07 37994.31 8879.66 12193.87 20195.19 63
fmvsm_s_conf0.1_n82.17 19081.59 19883.94 16986.87 24471.57 16985.19 15777.42 32362.27 30384.47 22491.33 18476.43 17485.91 30383.14 7787.14 32294.33 94
PCF-MVS74.62 1582.15 19280.92 21285.84 12589.43 17772.30 15780.53 25691.82 12457.36 34687.81 15289.92 23177.67 15493.63 11558.69 32695.08 16091.58 216
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
PLCcopyleft73.85 1682.09 19380.31 22087.45 9290.86 15080.29 7385.88 14290.65 15668.17 24776.32 33586.33 29173.12 21392.61 15461.40 31390.02 28489.44 264
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
fmvsm_l_conf0.5_n82.06 19481.54 20183.60 17883.94 29973.90 13383.35 19886.10 24358.97 33283.80 24190.36 21874.23 19586.94 28282.90 8390.22 28189.94 258
GBi-Net82.02 19582.07 18781.85 22086.38 25061.05 28486.83 12488.27 21072.43 19686.00 19295.64 3463.78 27290.68 21165.95 27193.34 21293.82 116
test182.02 19582.07 18781.85 22086.38 25061.05 28486.83 12488.27 21072.43 19686.00 19295.64 3463.78 27290.68 21165.95 27193.34 21293.82 116
OpenMVScopyleft76.72 1381.98 19782.00 18981.93 21784.42 29168.22 20388.50 9989.48 19366.92 26281.80 27891.86 16772.59 21990.16 22471.19 22191.25 25987.40 299
KD-MVS_self_test81.93 19883.14 17178.30 27684.75 28552.75 35980.37 25889.42 19570.24 22690.26 9593.39 11974.55 19486.77 28668.61 25296.64 9495.38 54
fmvsm_s_conf0.5_n81.91 19981.30 20583.75 17386.02 26471.56 17084.73 16377.11 32762.44 30084.00 23790.68 21076.42 17585.89 30583.14 7787.11 32393.81 119
SDMVSNet81.90 20083.17 17078.10 28088.81 19262.45 26576.08 32686.05 24673.67 17183.41 24993.04 12782.35 10080.65 34670.06 23495.03 16291.21 222
tfpnnormal81.79 20182.95 17478.31 27588.93 18955.40 34080.83 25482.85 28876.81 13485.90 19694.14 8974.58 19386.51 29066.82 26495.68 14293.01 154
c3_l81.64 20281.59 19881.79 22480.86 34159.15 30778.61 28690.18 17768.36 24387.20 16187.11 28169.39 24291.62 17978.16 14094.43 18594.60 79
PVSNet_Blended_VisFu81.55 20380.49 21884.70 14791.58 12773.24 14184.21 17391.67 12862.86 29480.94 29087.16 27967.27 25392.87 14969.82 23688.94 29887.99 290
fmvsm_l_conf0.5_n_a81.46 20480.87 21383.25 18983.73 30473.21 14283.00 20985.59 25458.22 33882.96 25790.09 22972.30 22286.65 28881.97 9889.95 28589.88 259
DELS-MVS81.44 20581.25 20682.03 21684.27 29562.87 25776.47 32092.49 10370.97 21781.64 28283.83 32775.03 18492.70 15174.29 18492.22 23990.51 245
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
FMVSNet281.31 20681.61 19780.41 24686.38 25058.75 31483.93 18286.58 23872.43 19687.65 15692.98 13163.78 27290.22 22266.86 26193.92 19992.27 189
TinyColmap81.25 20782.34 18677.99 28385.33 27460.68 29182.32 22988.33 20871.26 21386.97 17092.22 16277.10 16386.98 28162.37 30295.17 15686.31 310
AUN-MVS81.18 20878.78 24188.39 7990.93 14782.14 6282.51 22483.67 28164.69 28680.29 30085.91 30051.07 34392.38 15976.29 16693.63 20990.65 241
tttt051781.07 20979.58 23285.52 13188.99 18766.45 22287.03 11975.51 33973.76 17088.32 14190.20 22337.96 40094.16 9979.36 12695.13 15795.93 42
Fast-Effi-MVS+81.04 21080.57 21582.46 21287.50 22763.22 25378.37 28989.63 19068.01 24881.87 27482.08 34882.31 10292.65 15367.10 26088.30 31091.51 218
BH-untuned80.96 21180.99 21080.84 23988.55 20168.23 20280.33 25988.46 20472.79 19386.55 17986.76 28574.72 19191.77 17861.79 30988.99 29682.52 363
eth_miper_zixun_eth80.84 21280.22 22482.71 20581.41 33360.98 28777.81 29590.14 17867.31 25886.95 17187.24 27864.26 26792.31 16275.23 17891.61 25294.85 74
xiu_mvs_v1_base_debu80.84 21280.14 22682.93 20088.31 20571.73 16479.53 26887.17 22465.43 27779.59 30682.73 34276.94 16690.14 22773.22 20488.33 30686.90 304
xiu_mvs_v1_base80.84 21280.14 22682.93 20088.31 20571.73 16479.53 26887.17 22465.43 27779.59 30682.73 34276.94 16690.14 22773.22 20488.33 30686.90 304
xiu_mvs_v1_base_debi80.84 21280.14 22682.93 20088.31 20571.73 16479.53 26887.17 22465.43 27779.59 30682.73 34276.94 16690.14 22773.22 20488.33 30686.90 304
IterMVS-SCA-FT80.64 21679.41 23384.34 15883.93 30069.66 18676.28 32281.09 30372.43 19686.47 18590.19 22460.46 28993.15 13877.45 15186.39 33590.22 250
BH-RMVSNet80.53 21780.22 22481.49 22987.19 23366.21 22477.79 29686.23 24174.21 16583.69 24388.50 25373.25 21290.75 20863.18 29987.90 31487.52 297
Anonymous20240521180.51 21881.19 20978.49 27288.48 20257.26 32676.63 31582.49 29181.21 8084.30 23192.24 16167.99 25086.24 29462.22 30395.13 15791.98 203
DIV-MVS_self_test80.43 21980.23 22281.02 23779.99 34959.25 30477.07 30887.02 23267.38 25586.19 18889.22 24163.09 27790.16 22476.32 16495.80 13693.66 124
cl____80.42 22080.23 22281.02 23779.99 34959.25 30477.07 30887.02 23267.37 25686.18 19089.21 24263.08 27890.16 22476.31 16595.80 13693.65 126
diffmvspermissive80.40 22180.48 21980.17 25079.02 36260.04 29577.54 30090.28 17466.65 26582.40 26587.33 27673.50 20487.35 27577.98 14489.62 28993.13 148
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EPNet80.37 22278.41 24886.23 11376.75 37673.28 13987.18 11677.45 32276.24 13868.14 38788.93 24765.41 26393.85 10769.47 23896.12 11891.55 217
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
miper_ehance_all_eth80.34 22380.04 22981.24 23379.82 35258.95 30977.66 29789.66 18865.75 27485.99 19585.11 31168.29 24991.42 18676.03 16992.03 24193.33 138
MG-MVS80.32 22480.94 21178.47 27388.18 20852.62 36282.29 23085.01 26672.01 20679.24 31392.54 14869.36 24393.36 13270.65 22789.19 29589.45 263
mvsmamba80.30 22578.87 23884.58 15088.12 21167.55 21092.35 2984.88 26963.15 29285.33 20590.91 20050.71 34595.20 6266.36 26787.98 31390.99 227
VPNet80.25 22681.68 19375.94 31092.46 9547.98 38576.70 31381.67 29873.45 17684.87 21692.82 13874.66 19286.51 29061.66 31196.85 8793.33 138
MAR-MVS80.24 22778.74 24384.73 14586.87 24478.18 9285.75 14687.81 21665.67 27677.84 32378.50 37973.79 20190.53 21561.59 31290.87 26985.49 320
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PM-MVS80.20 22879.00 23783.78 17288.17 20986.66 1981.31 24466.81 39369.64 23088.33 14090.19 22464.58 26583.63 32971.99 21790.03 28381.06 382
Anonymous2024052180.18 22981.25 20676.95 29683.15 31860.84 28982.46 22585.99 24868.76 23986.78 17293.73 11259.13 30177.44 36373.71 19797.55 6992.56 171
LFMVS80.15 23080.56 21678.89 26489.19 18355.93 33485.22 15673.78 35182.96 6384.28 23292.72 14357.38 31390.07 23163.80 29395.75 13990.68 239
DPM-MVS80.10 23179.18 23682.88 20390.71 15369.74 18478.87 28290.84 15160.29 32675.64 34585.92 29967.28 25293.11 13971.24 22091.79 24785.77 316
MSDG80.06 23279.99 23180.25 24883.91 30168.04 20777.51 30189.19 19677.65 12681.94 27283.45 33276.37 17686.31 29363.31 29886.59 33286.41 308
FE-MVS79.98 23378.86 23983.36 18686.47 24766.45 22289.73 7084.74 27372.80 19284.22 23591.38 18344.95 38093.60 11963.93 29191.50 25590.04 257
sd_testset79.95 23481.39 20475.64 31388.81 19258.07 31876.16 32582.81 28973.67 17183.41 24993.04 12780.96 12477.65 36258.62 32795.03 16291.21 222
ab-mvs79.67 23580.56 21676.99 29588.48 20256.93 32884.70 16486.06 24568.95 23780.78 29393.08 12675.30 18284.62 31756.78 33690.90 26789.43 265
VNet79.31 23680.27 22176.44 30487.92 21553.95 35175.58 33284.35 27674.39 16482.23 26890.72 20872.84 21684.39 32160.38 31993.98 19890.97 228
thisisatest053079.07 23777.33 25784.26 16187.13 23464.58 23783.66 19175.95 33468.86 23885.22 20787.36 27538.10 39793.57 12375.47 17594.28 18994.62 78
cl2278.97 23878.21 25081.24 23377.74 36659.01 30877.46 30487.13 22765.79 27184.32 22885.10 31258.96 30390.88 20475.36 17792.03 24193.84 114
patch_mono-278.89 23979.39 23477.41 29284.78 28368.11 20575.60 33083.11 28560.96 31979.36 31089.89 23275.18 18372.97 37573.32 20392.30 23391.15 224
RPMNet78.88 24078.28 24980.68 24379.58 35362.64 26182.58 22094.16 3274.80 15975.72 34392.59 14548.69 35295.56 4273.48 20082.91 37183.85 342
PAPR78.84 24178.10 25181.07 23585.17 27860.22 29482.21 23490.57 15962.51 29675.32 34984.61 32074.99 18592.30 16359.48 32488.04 31290.68 239
PVSNet_BlendedMVS78.80 24277.84 25281.65 22684.43 28963.41 24979.49 27190.44 16261.70 30875.43 34687.07 28269.11 24591.44 18460.68 31792.24 23790.11 255
FMVSNet378.80 24278.55 24579.57 25882.89 32156.89 33081.76 23885.77 25069.04 23686.00 19290.44 21751.75 34190.09 23065.95 27193.34 21291.72 210
test_yl78.71 24478.51 24679.32 26184.32 29358.84 31178.38 28785.33 25775.99 14282.49 26386.57 28758.01 30790.02 23362.74 30092.73 22889.10 272
DCV-MVSNet78.71 24478.51 24679.32 26184.32 29358.84 31178.38 28785.33 25775.99 14282.49 26386.57 28758.01 30790.02 23362.74 30092.73 22889.10 272
test111178.53 24678.85 24077.56 28992.22 10347.49 38782.61 21869.24 38272.43 19685.28 20694.20 8551.91 33990.07 23165.36 27996.45 10395.11 65
ECVR-MVScopyleft78.44 24778.63 24477.88 28591.85 11748.95 38183.68 19069.91 37872.30 20284.26 23494.20 8551.89 34089.82 23663.58 29496.02 12294.87 70
pmmvs-eth3d78.42 24877.04 26082.57 21087.44 22874.41 13080.86 25379.67 31155.68 35584.69 21990.31 22160.91 28785.42 31062.20 30491.59 25387.88 293
mvs_anonymous78.13 24978.76 24276.23 30979.24 35950.31 37878.69 28484.82 27161.60 31083.09 25692.82 13873.89 20087.01 27868.33 25686.41 33491.37 219
TAMVS78.08 25076.36 26683.23 19090.62 15472.87 14379.08 27880.01 31061.72 30781.35 28686.92 28463.96 27188.78 25850.61 37493.01 22288.04 289
miper_enhance_ethall77.83 25176.93 26180.51 24476.15 38358.01 32075.47 33488.82 19958.05 34083.59 24580.69 35864.41 26691.20 19073.16 21092.03 24192.33 185
Vis-MVSNet (Re-imp)77.82 25277.79 25377.92 28488.82 19151.29 37283.28 19971.97 36674.04 16682.23 26889.78 23357.38 31389.41 24857.22 33595.41 14693.05 152
CANet_DTU77.81 25377.05 25980.09 25181.37 33459.90 29883.26 20088.29 20969.16 23467.83 39083.72 32860.93 28689.47 24369.22 24289.70 28890.88 232
OpenMVS_ROBcopyleft70.19 1777.77 25477.46 25478.71 26884.39 29261.15 28281.18 24882.52 29062.45 29983.34 25187.37 27466.20 25888.66 26064.69 28685.02 35186.32 309
SSC-MVS77.55 25581.64 19565.29 38190.46 15720.33 42773.56 35068.28 38485.44 3788.18 14494.64 6470.93 23581.33 34171.25 21992.03 24194.20 96
MDA-MVSNet-bldmvs77.47 25676.90 26279.16 26379.03 36164.59 23666.58 39175.67 33773.15 18788.86 12488.99 24666.94 25481.23 34264.71 28588.22 31191.64 214
jason77.42 25775.75 27282.43 21387.10 23769.27 19077.99 29281.94 29651.47 38177.84 32385.07 31560.32 29189.00 25270.74 22689.27 29489.03 275
jason: jason.
CDS-MVSNet77.32 25875.40 27583.06 19489.00 18672.48 15477.90 29482.17 29460.81 32078.94 31583.49 33159.30 29988.76 25954.64 35492.37 23287.93 292
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
xiu_mvs_v2_base77.19 25976.75 26378.52 27187.01 24061.30 28075.55 33387.12 23061.24 31674.45 35478.79 37777.20 16090.93 20064.62 28884.80 35883.32 351
MVSTER77.09 26075.70 27381.25 23175.27 39161.08 28377.49 30385.07 26260.78 32186.55 17988.68 25043.14 38990.25 21973.69 19890.67 27592.42 178
PS-MVSNAJ77.04 26176.53 26578.56 27087.09 23861.40 27875.26 33587.13 22761.25 31574.38 35677.22 39076.94 16690.94 19964.63 28784.83 35783.35 350
IterMVS76.91 26276.34 26778.64 26980.91 33964.03 24376.30 32179.03 31464.88 28583.11 25489.16 24359.90 29584.46 31968.61 25285.15 34987.42 298
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
D2MVS76.84 26375.67 27480.34 24780.48 34762.16 27373.50 35184.80 27257.61 34482.24 26787.54 27051.31 34287.65 27170.40 23193.19 21891.23 221
CL-MVSNet_self_test76.81 26477.38 25675.12 31686.90 24251.34 37073.20 35480.63 30768.30 24581.80 27888.40 25466.92 25580.90 34355.35 34894.90 16893.12 150
TR-MVS76.77 26575.79 27179.72 25586.10 26365.79 22877.14 30683.02 28665.20 28381.40 28582.10 34666.30 25790.73 21055.57 34585.27 34582.65 358
MonoMVSNet76.66 26677.26 25874.86 31879.86 35154.34 34886.26 13786.08 24471.08 21685.59 20088.68 25053.95 33185.93 30163.86 29280.02 38684.32 333
USDC76.63 26776.73 26476.34 30683.46 30757.20 32780.02 26288.04 21452.14 37783.65 24491.25 18663.24 27586.65 28854.66 35394.11 19485.17 322
BH-w/o76.57 26876.07 27078.10 28086.88 24365.92 22777.63 29886.33 23965.69 27580.89 29179.95 36768.97 24790.74 20953.01 36485.25 34677.62 393
Patchmtry76.56 26977.46 25473.83 32479.37 35846.60 39182.41 22776.90 32873.81 16985.56 20292.38 15248.07 35583.98 32663.36 29795.31 15290.92 230
PVSNet_Blended76.49 27075.40 27579.76 25484.43 28963.41 24975.14 33690.44 16257.36 34675.43 34678.30 38069.11 24591.44 18460.68 31787.70 31884.42 332
miper_lstm_enhance76.45 27176.10 26977.51 29076.72 37760.97 28864.69 39585.04 26463.98 28983.20 25388.22 25656.67 31778.79 35973.22 20493.12 21992.78 161
lupinMVS76.37 27274.46 28482.09 21585.54 27169.26 19176.79 31180.77 30650.68 38876.23 33682.82 34058.69 30488.94 25369.85 23588.77 29988.07 286
cascas76.29 27374.81 28080.72 24284.47 28862.94 25573.89 34887.34 22055.94 35375.16 35176.53 39563.97 27091.16 19265.00 28290.97 26588.06 288
WB-MVS76.06 27480.01 23064.19 38489.96 17020.58 42672.18 35968.19 38583.21 5986.46 18693.49 11770.19 23978.97 35765.96 27090.46 28093.02 153
thres600view775.97 27575.35 27777.85 28787.01 24051.84 36880.45 25773.26 35675.20 15683.10 25586.31 29345.54 37089.05 25155.03 35192.24 23792.66 167
GA-MVS75.83 27674.61 28179.48 26081.87 32659.25 30473.42 35282.88 28768.68 24079.75 30581.80 35150.62 34689.46 24466.85 26285.64 34289.72 260
MVP-Stereo75.81 27773.51 29382.71 20589.35 17873.62 13480.06 26085.20 25960.30 32573.96 35787.94 26157.89 31189.45 24552.02 36874.87 40485.06 324
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
test_fmvs375.72 27875.20 27877.27 29375.01 39469.47 18878.93 27984.88 26946.67 39587.08 16787.84 26450.44 34871.62 38077.42 15388.53 30290.72 236
thres100view90075.45 27975.05 27976.66 30287.27 23051.88 36781.07 24973.26 35675.68 14883.25 25286.37 29045.54 37088.80 25551.98 36990.99 26289.31 267
ET-MVSNet_ETH3D75.28 28072.77 30282.81 20483.03 32068.11 20577.09 30776.51 33260.67 32377.60 32880.52 36238.04 39891.15 19370.78 22490.68 27489.17 270
thres40075.14 28174.23 28677.86 28686.24 25752.12 36479.24 27573.87 34973.34 18081.82 27684.60 32146.02 36388.80 25551.98 36990.99 26292.66 167
wuyk23d75.13 28279.30 23562.63 38775.56 38775.18 12680.89 25273.10 35875.06 15894.76 1695.32 4187.73 4352.85 41834.16 41797.11 8259.85 414
EU-MVSNet75.12 28374.43 28577.18 29483.11 31959.48 30285.71 14882.43 29239.76 41585.64 19988.76 24844.71 38287.88 26973.86 19485.88 34184.16 338
HyFIR lowres test75.12 28372.66 30482.50 21191.44 13565.19 23372.47 35787.31 22146.79 39480.29 30084.30 32352.70 33692.10 16951.88 37386.73 33090.22 250
CMPMVSbinary59.41 2075.12 28373.57 29179.77 25375.84 38667.22 21181.21 24782.18 29350.78 38676.50 33287.66 26855.20 32782.99 33262.17 30690.64 27989.09 274
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
pmmvs474.92 28672.98 30080.73 24184.95 28071.71 16776.23 32377.59 32152.83 37177.73 32786.38 28956.35 32084.97 31457.72 33487.05 32585.51 319
tfpn200view974.86 28774.23 28676.74 30186.24 25752.12 36479.24 27573.87 34973.34 18081.82 27684.60 32146.02 36388.80 25551.98 36990.99 26289.31 267
1112_ss74.82 28873.74 28978.04 28289.57 17260.04 29576.49 31987.09 23154.31 36373.66 36079.80 36860.25 29286.76 28758.37 32884.15 36287.32 300
EGC-MVSNET74.79 28969.99 33189.19 6594.89 3887.00 1591.89 3786.28 2401.09 4242.23 42695.98 2781.87 11489.48 24279.76 11895.96 12591.10 225
ppachtmachnet_test74.73 29074.00 28876.90 29880.71 34456.89 33071.53 36578.42 31658.24 33779.32 31282.92 33957.91 31084.26 32365.60 27791.36 25789.56 262
Patchmatch-RL test74.48 29173.68 29076.89 29984.83 28266.54 22072.29 35869.16 38357.70 34286.76 17386.33 29145.79 36982.59 33369.63 23790.65 27881.54 373
PatchMatch-RL74.48 29173.22 29778.27 27887.70 22085.26 3875.92 32870.09 37664.34 28776.09 33981.25 35665.87 26178.07 36153.86 35683.82 36471.48 402
XXY-MVS74.44 29376.19 26869.21 35884.61 28752.43 36371.70 36277.18 32660.73 32280.60 29490.96 19875.44 17969.35 38756.13 34188.33 30685.86 315
test250674.12 29473.39 29476.28 30791.85 11744.20 40184.06 17748.20 42272.30 20281.90 27394.20 8527.22 42289.77 23964.81 28496.02 12294.87 70
reproduce_monomvs74.09 29573.23 29676.65 30376.52 37854.54 34677.50 30281.40 30165.85 27082.86 26086.67 28627.38 42084.53 31870.24 23290.66 27790.89 231
CR-MVSNet74.00 29673.04 29976.85 30079.58 35362.64 26182.58 22076.90 32850.50 38975.72 34392.38 15248.07 35584.07 32568.72 25182.91 37183.85 342
Test_1112_low_res73.90 29773.08 29876.35 30590.35 15955.95 33373.40 35386.17 24250.70 38773.14 36185.94 29858.31 30685.90 30456.51 33883.22 36887.20 301
test20.0373.75 29874.59 28371.22 34581.11 33751.12 37470.15 37572.10 36570.42 22180.28 30291.50 18064.21 26874.72 37446.96 39394.58 18187.82 295
test_fmvs273.57 29972.80 30175.90 31172.74 40768.84 19877.07 30884.32 27745.14 40182.89 25884.22 32448.37 35370.36 38473.40 20287.03 32688.52 281
SCA73.32 30072.57 30675.58 31481.62 33055.86 33678.89 28171.37 37161.73 30674.93 35283.42 33360.46 28987.01 27858.11 33282.63 37683.88 339
baseline173.26 30173.54 29272.43 33884.92 28147.79 38679.89 26474.00 34765.93 26878.81 31686.28 29456.36 31981.63 34056.63 33779.04 39387.87 294
131473.22 30272.56 30775.20 31580.41 34857.84 32181.64 24185.36 25651.68 38073.10 36276.65 39461.45 28485.19 31263.54 29579.21 39182.59 359
MVS73.21 30372.59 30575.06 31780.97 33860.81 29081.64 24185.92 24946.03 39971.68 36977.54 38568.47 24889.77 23955.70 34485.39 34374.60 399
HY-MVS64.64 1873.03 30472.47 30874.71 32083.36 31154.19 34982.14 23781.96 29556.76 35269.57 38286.21 29560.03 29384.83 31649.58 38082.65 37485.11 323
thisisatest051573.00 30570.52 32380.46 24581.45 33259.90 29873.16 35574.31 34657.86 34176.08 34077.78 38337.60 40192.12 16865.00 28291.45 25689.35 266
EPNet_dtu72.87 30671.33 31877.49 29177.72 36760.55 29282.35 22875.79 33566.49 26658.39 41781.06 35753.68 33285.98 30053.55 35992.97 22485.95 313
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CVMVSNet72.62 30771.41 31776.28 30783.25 31460.34 29383.50 19479.02 31537.77 41976.33 33485.10 31249.60 35187.41 27470.54 22977.54 39981.08 380
CHOSEN 1792x268872.45 30870.56 32278.13 27990.02 16963.08 25468.72 38083.16 28442.99 40975.92 34185.46 30557.22 31585.18 31349.87 37881.67 37886.14 311
testgi72.36 30974.61 28165.59 37880.56 34642.82 40668.29 38173.35 35566.87 26381.84 27589.93 23072.08 22666.92 40046.05 39692.54 23087.01 303
thres20072.34 31071.55 31674.70 32183.48 30651.60 36975.02 33773.71 35270.14 22778.56 31980.57 36146.20 36188.20 26546.99 39289.29 29284.32 333
FPMVS72.29 31172.00 31073.14 32988.63 19885.00 4074.65 34167.39 38771.94 20777.80 32587.66 26850.48 34775.83 36949.95 37679.51 38758.58 416
FMVSNet572.10 31271.69 31273.32 32781.57 33153.02 35876.77 31278.37 31763.31 29076.37 33391.85 16836.68 40278.98 35647.87 38992.45 23187.95 291
our_test_371.85 31371.59 31372.62 33580.71 34453.78 35269.72 37771.71 37058.80 33478.03 32080.51 36356.61 31878.84 35862.20 30486.04 34085.23 321
PAPM71.77 31470.06 32976.92 29786.39 24953.97 35076.62 31686.62 23753.44 36763.97 40784.73 31957.79 31292.34 16139.65 40881.33 38284.45 331
ttmdpeth71.72 31570.67 32074.86 31873.08 40455.88 33577.41 30569.27 38155.86 35478.66 31793.77 11038.01 39975.39 37160.12 32089.87 28693.31 140
IB-MVS62.13 1971.64 31668.97 34179.66 25780.80 34362.26 27073.94 34776.90 32863.27 29168.63 38676.79 39233.83 40691.84 17659.28 32587.26 32084.88 325
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
UnsupCasMVSNet_eth71.63 31772.30 30969.62 35576.47 38052.70 36170.03 37680.97 30459.18 33179.36 31088.21 25760.50 28869.12 38858.33 33077.62 39887.04 302
testing371.53 31870.79 31973.77 32588.89 19041.86 40876.60 31859.12 41272.83 19180.97 28882.08 34819.80 42887.33 27665.12 28191.68 25192.13 196
test_vis3_rt71.42 31970.67 32073.64 32669.66 41470.46 17766.97 39089.73 18542.68 41188.20 14383.04 33543.77 38460.07 41265.35 28086.66 33190.39 248
Anonymous2023120671.38 32071.88 31169.88 35286.31 25454.37 34770.39 37374.62 34252.57 37376.73 33188.76 24859.94 29472.06 37744.35 40093.23 21783.23 353
test_vis1_n_192071.30 32171.58 31570.47 34877.58 36959.99 29774.25 34284.22 27851.06 38374.85 35379.10 37455.10 32868.83 39068.86 24879.20 39282.58 360
MIMVSNet71.09 32271.59 31369.57 35687.23 23150.07 37978.91 28071.83 36760.20 32871.26 37091.76 17455.08 32976.09 36741.06 40587.02 32782.54 362
test_fmvs1_n70.94 32370.41 32672.53 33773.92 39666.93 21775.99 32784.21 27943.31 40879.40 30979.39 37243.47 38568.55 39269.05 24584.91 35482.10 367
MS-PatchMatch70.93 32470.22 32773.06 33081.85 32762.50 26473.82 34977.90 31852.44 37475.92 34181.27 35555.67 32481.75 33855.37 34777.70 39774.94 398
pmmvs570.73 32570.07 32872.72 33377.03 37452.73 36074.14 34375.65 33850.36 39072.17 36785.37 30955.42 32680.67 34552.86 36587.59 31984.77 326
PatchT70.52 32672.76 30363.79 38679.38 35733.53 42077.63 29865.37 39773.61 17371.77 36892.79 14144.38 38375.65 37064.53 28985.37 34482.18 366
test_vis1_n70.29 32769.99 33171.20 34675.97 38566.50 22176.69 31480.81 30544.22 40475.43 34677.23 38950.00 34968.59 39166.71 26582.85 37378.52 392
N_pmnet70.20 32868.80 34374.38 32280.91 33984.81 4359.12 40776.45 33355.06 35875.31 35082.36 34555.74 32354.82 41747.02 39187.24 32183.52 346
tpmvs70.16 32969.56 33471.96 34174.71 39548.13 38379.63 26675.45 34065.02 28470.26 37881.88 35045.34 37585.68 30858.34 32975.39 40382.08 368
new-patchmatchnet70.10 33073.37 29560.29 39481.23 33616.95 42959.54 40574.62 34262.93 29380.97 28887.93 26262.83 28171.90 37855.24 34995.01 16592.00 201
YYNet170.06 33170.44 32468.90 36073.76 39853.42 35658.99 40867.20 38958.42 33687.10 16585.39 30859.82 29667.32 39759.79 32283.50 36785.96 312
MVStest170.05 33269.26 33572.41 33958.62 42655.59 33976.61 31765.58 39553.44 36789.28 12093.32 12022.91 42671.44 38274.08 19089.52 29090.21 254
MDA-MVSNet_test_wron70.05 33270.44 32468.88 36173.84 39753.47 35458.93 40967.28 38858.43 33587.09 16685.40 30759.80 29767.25 39859.66 32383.54 36685.92 314
CostFormer69.98 33468.68 34473.87 32377.14 37250.72 37679.26 27474.51 34451.94 37970.97 37384.75 31845.16 37887.49 27355.16 35079.23 39083.40 349
testing9169.94 33568.99 34072.80 33283.81 30345.89 39471.57 36473.64 35468.24 24670.77 37677.82 38234.37 40584.44 32053.64 35887.00 32888.07 286
baseline269.77 33666.89 35378.41 27479.51 35558.09 31776.23 32369.57 37957.50 34564.82 40577.45 38746.02 36388.44 26153.08 36177.83 39588.70 279
PatchmatchNetpermissive69.71 33768.83 34272.33 34077.66 36853.60 35379.29 27369.99 37757.66 34372.53 36582.93 33846.45 36080.08 35160.91 31672.09 40783.31 352
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
test_fmvs169.57 33869.05 33871.14 34769.15 41565.77 22973.98 34683.32 28342.83 41077.77 32678.27 38143.39 38868.50 39368.39 25584.38 36179.15 390
JIA-IIPM69.41 33966.64 35777.70 28873.19 40171.24 17275.67 32965.56 39670.42 22165.18 40192.97 13333.64 40883.06 33053.52 36069.61 41378.79 391
Syy-MVS69.40 34070.03 33067.49 37081.72 32838.94 41371.00 36761.99 40361.38 31270.81 37472.36 40661.37 28579.30 35464.50 29085.18 34784.22 335
testing9969.27 34168.15 34872.63 33483.29 31245.45 39671.15 36671.08 37267.34 25770.43 37777.77 38432.24 41084.35 32253.72 35786.33 33688.10 285
UnsupCasMVSNet_bld69.21 34269.68 33367.82 36879.42 35651.15 37367.82 38575.79 33554.15 36477.47 32985.36 31059.26 30070.64 38348.46 38679.35 38981.66 371
test_cas_vis1_n_192069.20 34369.12 33669.43 35773.68 39962.82 25870.38 37477.21 32546.18 39880.46 29978.95 37652.03 33865.53 40565.77 27677.45 40079.95 388
gg-mvs-nofinetune68.96 34469.11 33768.52 36676.12 38445.32 39783.59 19255.88 41786.68 2964.62 40697.01 930.36 41383.97 32744.78 39982.94 37076.26 395
WBMVS68.76 34568.43 34569.75 35483.29 31240.30 41167.36 38772.21 36457.09 34977.05 33085.53 30333.68 40780.51 34748.79 38490.90 26788.45 282
WB-MVSnew68.72 34669.01 33967.85 36783.22 31643.98 40274.93 33865.98 39455.09 35773.83 35879.11 37365.63 26271.89 37938.21 41385.04 35087.69 296
tpm268.45 34766.83 35473.30 32878.93 36348.50 38279.76 26571.76 36847.50 39369.92 38083.60 32942.07 39188.40 26248.44 38779.51 38783.01 356
tpm67.95 34868.08 34967.55 36978.74 36443.53 40475.60 33067.10 39254.92 35972.23 36688.10 25842.87 39075.97 36852.21 36780.95 38583.15 354
WTY-MVS67.91 34968.35 34666.58 37580.82 34248.12 38465.96 39272.60 35953.67 36671.20 37181.68 35358.97 30269.06 38948.57 38581.67 37882.55 361
testing1167.38 35065.93 35871.73 34383.37 31046.60 39170.95 36969.40 38062.47 29866.14 39476.66 39331.22 41184.10 32449.10 38284.10 36384.49 329
test-LLR67.21 35166.74 35568.63 36476.45 38155.21 34267.89 38267.14 39062.43 30165.08 40272.39 40443.41 38669.37 38561.00 31484.89 35581.31 375
testing22266.93 35265.30 36471.81 34283.38 30945.83 39572.06 36067.50 38664.12 28869.68 38176.37 39627.34 42183.00 33138.88 40988.38 30586.62 307
sss66.92 35367.26 35165.90 37777.23 37151.10 37564.79 39471.72 36952.12 37870.13 37980.18 36557.96 30965.36 40650.21 37581.01 38481.25 377
KD-MVS_2432*160066.87 35465.81 36070.04 35067.50 41647.49 38762.56 39979.16 31261.21 31777.98 32180.61 35925.29 42482.48 33453.02 36284.92 35280.16 386
miper_refine_blended66.87 35465.81 36070.04 35067.50 41647.49 38762.56 39979.16 31261.21 31777.98 32180.61 35925.29 42482.48 33453.02 36284.92 35280.16 386
dmvs_re66.81 35666.98 35266.28 37676.87 37558.68 31571.66 36372.24 36260.29 32669.52 38373.53 40352.38 33764.40 40844.90 39881.44 38175.76 396
tpm cat166.76 35765.21 36571.42 34477.09 37350.62 37778.01 29173.68 35344.89 40268.64 38579.00 37545.51 37282.42 33649.91 37770.15 41081.23 379
UWE-MVS66.43 35865.56 36369.05 35984.15 29740.98 40973.06 35664.71 39954.84 36076.18 33879.62 37129.21 41580.50 34838.54 41289.75 28785.66 317
PVSNet58.17 2166.41 35965.63 36268.75 36281.96 32549.88 38062.19 40172.51 36151.03 38468.04 38875.34 40050.84 34474.77 37245.82 39782.96 36981.60 372
tpmrst66.28 36066.69 35665.05 38272.82 40639.33 41278.20 29070.69 37553.16 37067.88 38980.36 36448.18 35474.75 37358.13 33170.79 40981.08 380
Patchmatch-test65.91 36167.38 35061.48 39275.51 38843.21 40568.84 37963.79 40162.48 29772.80 36483.42 33344.89 38159.52 41448.27 38886.45 33381.70 370
ADS-MVSNet265.87 36263.64 37072.55 33673.16 40256.92 32967.10 38874.81 34149.74 39166.04 39682.97 33646.71 35877.26 36442.29 40269.96 41183.46 347
test_vis1_rt65.64 36364.09 36770.31 34966.09 42070.20 18061.16 40281.60 29938.65 41672.87 36369.66 40952.84 33460.04 41356.16 34077.77 39680.68 384
mvsany_test365.48 36462.97 37373.03 33169.99 41376.17 12164.83 39343.71 42443.68 40680.25 30387.05 28352.83 33563.09 41151.92 37272.44 40679.84 389
test-mter65.00 36563.79 36968.63 36476.45 38155.21 34267.89 38267.14 39050.98 38565.08 40272.39 40428.27 41869.37 38561.00 31484.89 35581.31 375
ETVMVS64.67 36663.34 37268.64 36383.44 30841.89 40769.56 37861.70 40861.33 31468.74 38475.76 39828.76 41679.35 35334.65 41686.16 33984.67 328
myMVS_eth3d64.66 36763.89 36866.97 37381.72 32837.39 41671.00 36761.99 40361.38 31270.81 37472.36 40620.96 42779.30 35449.59 37985.18 34784.22 335
test0.0.03 164.66 36764.36 36665.57 37975.03 39346.89 39064.69 39561.58 40962.43 30171.18 37277.54 38543.41 38668.47 39440.75 40782.65 37481.35 374
UBG64.34 36963.35 37167.30 37183.50 30540.53 41067.46 38665.02 39854.77 36167.54 39274.47 40232.99 40978.50 36040.82 40683.58 36582.88 357
test_f64.31 37065.85 35959.67 39566.54 41962.24 27257.76 41170.96 37340.13 41384.36 22682.09 34746.93 35751.67 41961.99 30781.89 37765.12 410
pmmvs362.47 37160.02 38469.80 35371.58 41064.00 24470.52 37258.44 41539.77 41466.05 39575.84 39727.10 42372.28 37646.15 39584.77 35973.11 400
EPMVS62.47 37162.63 37562.01 38870.63 41238.74 41474.76 33952.86 41953.91 36567.71 39180.01 36639.40 39566.60 40155.54 34668.81 41580.68 384
ADS-MVSNet61.90 37362.19 37761.03 39373.16 40236.42 41867.10 38861.75 40649.74 39166.04 39682.97 33646.71 35863.21 40942.29 40269.96 41183.46 347
PMMVS61.65 37460.38 38165.47 38065.40 42369.26 19163.97 39761.73 40736.80 42060.11 41268.43 41159.42 29866.35 40248.97 38378.57 39460.81 413
E-PMN61.59 37561.62 37861.49 39166.81 41855.40 34053.77 41460.34 41166.80 26458.90 41565.50 41440.48 39466.12 40355.72 34386.25 33762.95 412
TESTMET0.1,161.29 37660.32 38264.19 38472.06 40851.30 37167.89 38262.09 40245.27 40060.65 41169.01 41027.93 41964.74 40756.31 33981.65 38076.53 394
MVS-HIRNet61.16 37762.92 37455.87 39879.09 36035.34 41971.83 36157.98 41646.56 39659.05 41491.14 19049.95 35076.43 36638.74 41071.92 40855.84 417
EMVS61.10 37860.81 38061.99 38965.96 42155.86 33653.10 41558.97 41467.06 26156.89 41963.33 41540.98 39267.03 39954.79 35286.18 33863.08 411
DSMNet-mixed60.98 37961.61 37959.09 39772.88 40545.05 39974.70 34046.61 42326.20 42165.34 40090.32 22055.46 32563.12 41041.72 40481.30 38369.09 406
dp60.70 38060.29 38361.92 39072.04 40938.67 41570.83 37064.08 40051.28 38260.75 41077.28 38836.59 40371.58 38147.41 39062.34 41775.52 397
dmvs_testset60.59 38162.54 37654.72 40077.26 37027.74 42374.05 34561.00 41060.48 32465.62 39967.03 41355.93 32268.23 39532.07 42069.46 41468.17 407
CHOSEN 280x42059.08 38256.52 38766.76 37476.51 37964.39 24049.62 41659.00 41343.86 40555.66 42068.41 41235.55 40468.21 39643.25 40176.78 40267.69 408
mvsany_test158.48 38356.47 38864.50 38365.90 42268.21 20456.95 41242.11 42538.30 41765.69 39877.19 39156.96 31659.35 41546.16 39458.96 41865.93 409
PVSNet_051.08 2256.10 38454.97 38959.48 39675.12 39253.28 35755.16 41361.89 40544.30 40359.16 41362.48 41654.22 33065.91 40435.40 41547.01 41959.25 415
new_pmnet55.69 38557.66 38649.76 40175.47 38930.59 42159.56 40451.45 42043.62 40762.49 40875.48 39940.96 39349.15 42137.39 41472.52 40569.55 405
PMMVS255.64 38659.27 38544.74 40264.30 42412.32 43040.60 41749.79 42153.19 36965.06 40484.81 31753.60 33349.76 42032.68 41989.41 29172.15 401
MVEpermissive40.22 2351.82 38750.47 39055.87 39862.66 42551.91 36631.61 41939.28 42640.65 41250.76 42174.98 40156.24 32144.67 42233.94 41864.11 41671.04 404
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
dongtai41.90 38842.65 39139.67 40370.86 41121.11 42561.01 40321.42 43057.36 34657.97 41850.06 41916.40 42958.73 41621.03 42327.69 42339.17 419
kuosan30.83 38932.17 39226.83 40553.36 42719.02 42857.90 41020.44 43138.29 41838.01 42237.82 42115.18 43033.45 4247.74 42520.76 42428.03 420
test_method30.46 39029.60 39333.06 40417.99 4293.84 43213.62 42073.92 3482.79 42318.29 42553.41 41828.53 41743.25 42322.56 42135.27 42152.11 418
cdsmvs_eth3d_5k20.81 39127.75 3940.00 4100.00 4330.00 4350.00 42185.44 2550.00 4280.00 42982.82 34081.46 1180.00 4290.00 4280.00 4270.00 425
tmp_tt20.25 39224.50 3957.49 4074.47 4308.70 43134.17 41825.16 4281.00 42532.43 42418.49 42239.37 3969.21 42621.64 42243.75 4204.57 422
ab-mvs-re6.65 3938.87 3960.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 42979.80 3680.00 4330.00 4290.00 4280.00 4270.00 425
pcd_1.5k_mvsjas6.41 3948.55 3970.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 42876.94 1660.00 4290.00 4280.00 4270.00 425
test1236.27 3958.08 3980.84 4081.11 4320.57 43362.90 3980.82 4320.54 4261.07 4282.75 4271.26 4310.30 4271.04 4261.26 4261.66 423
testmvs5.91 3967.65 3990.72 4091.20 4310.37 43459.14 4060.67 4330.49 4271.11 4272.76 4260.94 4320.24 4281.02 4271.47 4251.55 424
mmdepth0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
monomultidepth0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
test_blank0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
uanet_test0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
DCPMVS0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
sosnet-low-res0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
sosnet0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
uncertanet0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
Regformer0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
uanet0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
WAC-MVS37.39 41652.61 366
FOURS196.08 1287.41 1496.19 295.83 592.95 396.57 3
MSC_two_6792asdad88.81 7191.55 12977.99 9491.01 14796.05 987.45 2398.17 3592.40 181
PC_three_145258.96 33390.06 9791.33 18480.66 12893.03 14375.78 17195.94 12892.48 175
No_MVS88.81 7191.55 12977.99 9491.01 14796.05 987.45 2398.17 3592.40 181
test_one_060193.85 6273.27 14094.11 3886.57 3093.47 4194.64 6488.42 28
eth-test20.00 433
eth-test0.00 433
ZD-MVS92.22 10380.48 7191.85 12271.22 21490.38 9292.98 13186.06 6496.11 781.99 9796.75 92
RE-MVS-def92.61 894.13 5588.95 692.87 1394.16 3288.75 1893.79 3294.43 7290.64 1087.16 3297.60 6692.73 162
IU-MVS94.18 5072.64 14790.82 15256.98 35089.67 10985.78 5497.92 4993.28 141
OPU-MVS88.27 8291.89 11577.83 9790.47 5591.22 18781.12 12294.68 7674.48 18395.35 14892.29 187
test_241102_TWO93.71 5583.77 5293.49 3994.27 7989.27 2395.84 2486.03 4997.82 5492.04 199
test_241102_ONE94.18 5072.65 14593.69 5683.62 5494.11 2693.78 10890.28 1495.50 49
9.1489.29 6291.84 11988.80 9395.32 1275.14 15791.07 8192.89 13687.27 4793.78 11083.69 7597.55 69
save fliter93.75 6377.44 10386.31 13589.72 18670.80 218
test_0728_THIRD85.33 3893.75 3494.65 6187.44 4695.78 3287.41 2598.21 3292.98 156
test_0728_SECOND86.79 10294.25 4872.45 15590.54 5294.10 3995.88 1886.42 3997.97 4692.02 200
test072694.16 5372.56 15190.63 4993.90 4883.61 5593.75 3494.49 6989.76 18
GSMVS83.88 339
test_part293.86 6177.77 9892.84 51
sam_mvs146.11 36283.88 339
sam_mvs45.92 367
ambc82.98 19790.55 15664.86 23588.20 10089.15 19789.40 11893.96 9971.67 23291.38 18878.83 13096.55 9792.71 165
MTGPAbinary91.81 126
test_post178.85 2833.13 42445.19 37780.13 35058.11 332
test_post3.10 42545.43 37377.22 365
patchmatchnet-post81.71 35245.93 36687.01 278
GG-mvs-BLEND67.16 37273.36 40046.54 39384.15 17555.04 41858.64 41661.95 41729.93 41483.87 32838.71 41176.92 40171.07 403
MTMP90.66 4833.14 427
gm-plane-assit75.42 39044.97 40052.17 37572.36 40687.90 26854.10 355
test9_res80.83 10796.45 10390.57 242
TEST992.34 9879.70 7883.94 18090.32 16865.41 28084.49 22290.97 19682.03 10993.63 115
test_892.09 10778.87 8583.82 18590.31 17065.79 27184.36 22690.96 19881.93 11193.44 128
agg_prior279.68 12096.16 11590.22 250
agg_prior91.58 12777.69 10090.30 17184.32 22893.18 136
TestCases89.68 5591.59 12483.40 5295.44 1079.47 9988.00 14893.03 12982.66 9491.47 18270.81 22296.14 11694.16 100
test_prior478.97 8484.59 166
test_prior283.37 19775.43 15384.58 22091.57 17881.92 11379.54 12396.97 85
test_prior86.32 11090.59 15571.99 16292.85 9394.17 9792.80 160
旧先验281.73 23956.88 35186.54 18484.90 31572.81 211
新几何281.72 240
新几何182.95 19993.96 5978.56 8880.24 30855.45 35683.93 23991.08 19371.19 23488.33 26365.84 27493.07 22081.95 369
旧先验191.97 11171.77 16381.78 29791.84 16973.92 19993.65 20883.61 345
无先验82.81 21585.62 25358.09 33991.41 18767.95 25984.48 330
原ACMM282.26 233
原ACMM184.60 14992.81 8974.01 13291.50 13162.59 29582.73 26290.67 21276.53 17394.25 9169.24 24095.69 14185.55 318
test22293.31 7376.54 11379.38 27277.79 31952.59 37282.36 26690.84 20566.83 25691.69 25081.25 377
testdata286.43 29263.52 296
segment_acmp81.94 110
testdata79.54 25992.87 8472.34 15680.14 30959.91 32985.47 20491.75 17567.96 25185.24 31168.57 25492.18 24081.06 382
testdata179.62 26773.95 168
test1286.57 10590.74 15172.63 14990.69 15582.76 26179.20 13994.80 7395.32 15092.27 189
plane_prior793.45 6877.31 106
plane_prior692.61 9076.54 11374.84 187
plane_prior593.61 5995.22 5980.78 10895.83 13494.46 84
plane_prior492.95 134
plane_prior376.85 11177.79 12586.55 179
plane_prior289.45 8279.44 101
plane_prior192.83 88
plane_prior76.42 11687.15 11775.94 14595.03 162
n20.00 434
nn0.00 434
door-mid74.45 345
lessismore_v085.95 12191.10 14470.99 17470.91 37491.79 6994.42 7461.76 28392.93 14679.52 12493.03 22193.93 109
LGP-MVS_train90.82 3794.75 4181.69 6394.27 2482.35 6893.67 3794.82 5691.18 495.52 4585.36 5798.73 795.23 61
test1191.46 132
door72.57 360
HQP5-MVS70.66 175
HQP-NCC91.19 13984.77 16073.30 18280.55 296
ACMP_Plane91.19 13984.77 16073.30 18280.55 296
BP-MVS77.30 154
HQP4-MVS80.56 29594.61 7993.56 133
HQP3-MVS92.68 9894.47 183
HQP2-MVS72.10 224
NP-MVS91.95 11274.55 12990.17 227
MDTV_nov1_ep13_2view27.60 42470.76 37146.47 39761.27 40945.20 37649.18 38183.75 344
MDTV_nov1_ep1368.29 34778.03 36543.87 40374.12 34472.22 36352.17 37567.02 39385.54 30245.36 37480.85 34455.73 34284.42 360
ACMMP++_ref95.74 140
ACMMP++97.35 75
Test By Simon79.09 140
ITE_SJBPF90.11 4990.72 15284.97 4190.30 17181.56 7690.02 9991.20 18982.40 9990.81 20773.58 19994.66 17994.56 80
DeepMVS_CXcopyleft24.13 40632.95 42829.49 42221.63 42912.07 42237.95 42345.07 42030.84 41219.21 42517.94 42433.06 42223.69 421