| LCM-MVSNet | | | 95.70 1 | 96.40 1 | 93.61 3 | 98.67 1 | 85.39 37 | 95.54 5 | 97.36 1 | 96.97 1 | 99.04 1 | 99.05 1 | 96.61 1 | 95.92 16 | 85.07 60 | 99.27 1 | 99.54 1 |
|
| mamv4 | | | 95.37 2 | 94.51 2 | 97.96 1 | 96.31 10 | 98.41 1 | 91.05 46 | 97.23 2 | 95.32 2 | 99.01 2 | 97.26 6 | 80.16 133 | 98.99 1 | 95.15 1 | 99.14 2 | 96.47 30 |
|
| TDRefinement | | | 93.52 3 | 93.39 4 | 93.88 2 | 95.94 15 | 90.26 4 | 95.70 4 | 96.46 3 | 90.58 9 | 92.86 50 | 96.29 19 | 88.16 35 | 94.17 97 | 86.07 48 | 98.48 18 | 97.22 17 |
|
| LTVRE_ROB | | 86.10 1 | 93.04 4 | 93.44 3 | 91.82 22 | 93.73 64 | 85.72 34 | 96.79 1 | 95.51 9 | 88.86 16 | 95.63 10 | 96.99 10 | 84.81 72 | 93.16 137 | 91.10 2 | 97.53 72 | 96.58 28 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| reproduce_model | | | 92.89 5 | 93.18 7 | 92.01 13 | 94.20 49 | 88.23 9 | 92.87 13 | 94.32 21 | 90.25 11 | 95.65 9 | 95.74 30 | 87.75 41 | 95.72 36 | 89.60 4 | 98.27 26 | 92.08 197 |
|
| reproduce-ours | | | 92.86 6 | 93.22 5 | 91.76 23 | 94.39 44 | 87.71 11 | 92.40 27 | 94.38 19 | 89.82 13 | 95.51 12 | 95.49 38 | 89.64 21 | 95.82 26 | 89.13 6 | 98.26 28 | 91.76 208 |
|
| our_new_method | | | 92.86 6 | 93.22 5 | 91.76 23 | 94.39 44 | 87.71 11 | 92.40 27 | 94.38 19 | 89.82 13 | 95.51 12 | 95.49 38 | 89.64 21 | 95.82 26 | 89.13 6 | 98.26 28 | 91.76 208 |
|
| HPM-MVS_fast | | | 92.50 8 | 92.54 9 | 92.37 6 | 95.93 16 | 85.81 33 | 92.99 12 | 94.23 27 | 85.21 40 | 92.51 58 | 95.13 48 | 90.65 9 | 95.34 55 | 88.06 12 | 98.15 37 | 95.95 41 |
|
| SR-MVS-dyc-post | | | 92.41 9 | 92.41 10 | 92.39 5 | 94.13 55 | 88.95 6 | 92.87 13 | 94.16 32 | 88.75 18 | 93.79 32 | 94.43 72 | 88.83 26 | 95.51 47 | 87.16 32 | 97.60 66 | 92.73 162 |
|
| SR-MVS | | | 92.23 10 | 92.34 11 | 91.91 17 | 94.89 38 | 87.85 10 | 92.51 24 | 93.87 51 | 88.20 23 | 93.24 42 | 94.02 94 | 90.15 16 | 95.67 38 | 86.82 36 | 97.34 76 | 92.19 193 |
|
| HPM-MVS |  | | 92.13 11 | 92.20 13 | 91.91 17 | 95.58 26 | 84.67 46 | 93.51 8 | 94.85 15 | 82.88 64 | 91.77 70 | 93.94 102 | 90.55 12 | 95.73 35 | 88.50 10 | 98.23 31 | 95.33 56 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| APD-MVS_3200maxsize | | | 92.05 12 | 92.24 12 | 91.48 25 | 93.02 80 | 85.17 39 | 92.47 26 | 95.05 14 | 87.65 27 | 93.21 43 | 94.39 77 | 90.09 17 | 95.08 66 | 86.67 38 | 97.60 66 | 94.18 99 |
|
| COLMAP_ROB |  | 83.01 3 | 91.97 13 | 91.95 14 | 92.04 11 | 93.68 65 | 86.15 24 | 93.37 10 | 95.10 13 | 90.28 10 | 92.11 63 | 95.03 50 | 89.75 20 | 94.93 70 | 79.95 116 | 98.27 26 | 95.04 67 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| ACMMP |  | | 91.91 14 | 91.87 19 | 92.03 12 | 95.53 27 | 85.91 28 | 93.35 11 | 94.16 32 | 82.52 67 | 92.39 61 | 94.14 89 | 89.15 25 | 95.62 39 | 87.35 27 | 98.24 30 | 94.56 80 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| mPP-MVS | | | 91.69 15 | 91.47 26 | 92.37 6 | 96.04 13 | 88.48 8 | 92.72 18 | 92.60 101 | 83.09 61 | 91.54 72 | 94.25 83 | 87.67 44 | 95.51 47 | 87.21 31 | 98.11 38 | 93.12 150 |
|
| CP-MVS | | | 91.67 16 | 91.58 23 | 91.96 14 | 95.29 31 | 87.62 13 | 93.38 9 | 93.36 65 | 83.16 60 | 91.06 82 | 94.00 95 | 88.26 32 | 95.71 37 | 87.28 30 | 98.39 21 | 92.55 172 |
|
| XVS | | | 91.54 17 | 91.36 28 | 92.08 9 | 95.64 24 | 86.25 22 | 92.64 19 | 93.33 67 | 85.07 41 | 89.99 100 | 94.03 93 | 86.57 55 | 95.80 28 | 87.35 27 | 97.62 64 | 94.20 96 |
|
| MTAPA | | | 91.52 18 | 91.60 22 | 91.29 30 | 96.59 4 | 86.29 21 | 92.02 33 | 91.81 126 | 84.07 49 | 92.00 66 | 94.40 76 | 86.63 54 | 95.28 58 | 88.59 9 | 98.31 24 | 92.30 186 |
|
| UA-Net | | | 91.49 19 | 91.53 24 | 91.39 27 | 94.98 35 | 82.95 58 | 93.52 7 | 92.79 95 | 88.22 22 | 88.53 133 | 97.64 3 | 83.45 86 | 94.55 83 | 86.02 52 | 98.60 13 | 96.67 25 |
|
| ACMMPR | | | 91.49 19 | 91.35 30 | 91.92 16 | 95.74 20 | 85.88 30 | 92.58 22 | 93.25 73 | 81.99 70 | 91.40 74 | 94.17 88 | 87.51 45 | 95.87 20 | 87.74 16 | 97.76 57 | 93.99 106 |
|
| LPG-MVS_test | | | 91.47 21 | 91.68 20 | 90.82 37 | 94.75 41 | 81.69 63 | 90.00 62 | 94.27 24 | 82.35 68 | 93.67 37 | 94.82 56 | 91.18 4 | 95.52 45 | 85.36 57 | 98.73 7 | 95.23 61 |
|
| region2R | | | 91.44 22 | 91.30 34 | 91.87 19 | 95.75 19 | 85.90 29 | 92.63 21 | 93.30 71 | 81.91 72 | 90.88 88 | 94.21 84 | 87.75 41 | 95.87 20 | 87.60 21 | 97.71 60 | 93.83 115 |
|
| HFP-MVS | | | 91.30 23 | 91.39 27 | 91.02 33 | 95.43 29 | 84.66 47 | 92.58 22 | 93.29 72 | 81.99 70 | 91.47 73 | 93.96 99 | 88.35 31 | 95.56 42 | 87.74 16 | 97.74 59 | 92.85 159 |
|
| ZNCC-MVS | | | 91.26 24 | 91.34 31 | 91.01 34 | 95.73 21 | 83.05 56 | 92.18 31 | 94.22 29 | 80.14 92 | 91.29 78 | 93.97 96 | 87.93 40 | 95.87 20 | 88.65 8 | 97.96 48 | 94.12 103 |
|
| APDe-MVS |  | | 91.22 25 | 91.92 15 | 89.14 66 | 92.97 82 | 78.04 93 | 92.84 16 | 94.14 36 | 83.33 58 | 93.90 28 | 95.73 31 | 88.77 27 | 96.41 3 | 87.60 21 | 97.98 45 | 92.98 156 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| PGM-MVS | | | 91.20 26 | 90.95 43 | 91.93 15 | 95.67 23 | 85.85 31 | 90.00 62 | 93.90 48 | 80.32 89 | 91.74 71 | 94.41 75 | 88.17 34 | 95.98 13 | 86.37 41 | 97.99 43 | 93.96 108 |
|
| SteuartSystems-ACMMP | | | 91.16 27 | 91.36 28 | 90.55 41 | 93.91 60 | 80.97 70 | 91.49 40 | 93.48 63 | 82.82 65 | 92.60 57 | 93.97 96 | 88.19 33 | 96.29 6 | 87.61 20 | 98.20 34 | 94.39 91 |
| Skip Steuart: Steuart Systems R&D Blog. |
| MP-MVS |  | | 91.14 28 | 90.91 44 | 91.83 20 | 96.18 11 | 86.88 17 | 92.20 30 | 93.03 86 | 82.59 66 | 88.52 134 | 94.37 78 | 86.74 53 | 95.41 53 | 86.32 42 | 98.21 32 | 93.19 146 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| GST-MVS | | | 90.96 29 | 91.01 40 | 90.82 37 | 95.45 28 | 82.73 59 | 91.75 38 | 93.74 54 | 80.98 83 | 91.38 75 | 93.80 106 | 87.20 49 | 95.80 28 | 87.10 34 | 97.69 61 | 93.93 109 |
|
| MP-MVS-pluss | | | 90.81 30 | 91.08 37 | 89.99 50 | 95.97 14 | 79.88 75 | 88.13 102 | 94.51 18 | 75.79 147 | 92.94 47 | 94.96 51 | 88.36 30 | 95.01 68 | 90.70 3 | 98.40 20 | 95.09 66 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| ACMH+ | | 77.89 11 | 90.73 31 | 91.50 25 | 88.44 78 | 93.00 81 | 76.26 119 | 89.65 75 | 95.55 8 | 87.72 26 | 93.89 30 | 94.94 52 | 91.62 3 | 93.44 128 | 78.35 135 | 98.76 4 | 95.61 50 |
|
| ACMMP_NAP | | | 90.65 32 | 91.07 39 | 89.42 61 | 95.93 16 | 79.54 80 | 89.95 66 | 93.68 58 | 77.65 126 | 91.97 67 | 94.89 53 | 88.38 29 | 95.45 51 | 89.27 5 | 97.87 53 | 93.27 142 |
|
| ACMM | | 79.39 9 | 90.65 32 | 90.99 41 | 89.63 57 | 95.03 34 | 83.53 51 | 89.62 76 | 93.35 66 | 79.20 105 | 93.83 31 | 93.60 116 | 90.81 7 | 92.96 144 | 85.02 62 | 98.45 19 | 92.41 179 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| LS3D | | | 90.60 34 | 90.34 51 | 91.38 28 | 89.03 185 | 84.23 49 | 93.58 6 | 94.68 17 | 90.65 8 | 90.33 94 | 93.95 101 | 84.50 74 | 95.37 54 | 80.87 106 | 95.50 145 | 94.53 83 |
|
| ACMP | | 79.16 10 | 90.54 35 | 90.60 49 | 90.35 45 | 94.36 46 | 80.98 69 | 89.16 86 | 94.05 41 | 79.03 108 | 92.87 49 | 93.74 111 | 90.60 11 | 95.21 61 | 82.87 84 | 98.76 4 | 94.87 70 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| DPE-MVS |  | | 90.53 36 | 91.08 37 | 88.88 69 | 93.38 71 | 78.65 87 | 89.15 87 | 94.05 41 | 84.68 45 | 93.90 28 | 94.11 91 | 88.13 36 | 96.30 5 | 84.51 68 | 97.81 55 | 91.70 212 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| SED-MVS | | | 90.46 37 | 91.64 21 | 86.93 99 | 94.18 50 | 72.65 145 | 90.47 55 | 93.69 56 | 83.77 52 | 94.11 26 | 94.27 79 | 90.28 14 | 95.84 24 | 86.03 49 | 97.92 49 | 92.29 187 |
|
| SMA-MVS |  | | 90.31 38 | 90.48 50 | 89.83 54 | 95.31 30 | 79.52 81 | 90.98 47 | 93.24 74 | 75.37 155 | 92.84 51 | 95.28 44 | 85.58 67 | 96.09 8 | 87.92 14 | 97.76 57 | 93.88 112 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| SF-MVS | | | 90.27 39 | 90.80 46 | 88.68 76 | 92.86 86 | 77.09 108 | 91.19 44 | 95.74 6 | 81.38 78 | 92.28 62 | 93.80 106 | 86.89 52 | 94.64 78 | 85.52 56 | 97.51 73 | 94.30 95 |
|
| v7n | | | 90.13 40 | 90.96 42 | 87.65 91 | 91.95 112 | 71.06 173 | 89.99 64 | 93.05 83 | 86.53 31 | 94.29 22 | 96.27 20 | 82.69 93 | 94.08 100 | 86.25 45 | 97.63 63 | 97.82 8 |
|
| PMVS |  | 80.48 6 | 90.08 41 | 90.66 48 | 88.34 81 | 96.71 3 | 92.97 2 | 90.31 59 | 89.57 192 | 88.51 21 | 90.11 96 | 95.12 49 | 90.98 6 | 88.92 254 | 77.55 149 | 97.07 83 | 83.13 355 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| DVP-MVS++ | | | 90.07 42 | 91.09 36 | 87.00 97 | 91.55 129 | 72.64 147 | 96.19 2 | 94.10 39 | 85.33 38 | 93.49 39 | 94.64 64 | 81.12 122 | 95.88 18 | 87.41 25 | 95.94 128 | 92.48 175 |
|
| DVP-MVS |  | | 90.06 43 | 91.32 32 | 86.29 111 | 94.16 53 | 72.56 151 | 90.54 52 | 91.01 147 | 83.61 55 | 93.75 34 | 94.65 61 | 89.76 18 | 95.78 32 | 86.42 39 | 97.97 46 | 90.55 244 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| PS-CasMVS | | | 90.06 43 | 91.92 15 | 84.47 153 | 96.56 6 | 58.83 313 | 89.04 88 | 92.74 97 | 91.40 6 | 96.12 5 | 96.06 26 | 87.23 48 | 95.57 41 | 79.42 125 | 98.74 6 | 99.00 2 |
|
| PEN-MVS | | | 90.03 45 | 91.88 18 | 84.48 152 | 96.57 5 | 58.88 310 | 88.95 89 | 93.19 75 | 91.62 5 | 96.01 7 | 96.16 24 | 87.02 50 | 95.60 40 | 78.69 131 | 98.72 9 | 98.97 3 |
|
| OurMVSNet-221017-0 | | | 90.01 46 | 89.74 56 | 90.83 36 | 93.16 78 | 80.37 72 | 91.91 36 | 93.11 79 | 81.10 81 | 95.32 14 | 97.24 7 | 72.94 214 | 94.85 72 | 85.07 60 | 97.78 56 | 97.26 15 |
|
| DTE-MVSNet | | | 89.98 47 | 91.91 17 | 84.21 162 | 96.51 7 | 57.84 321 | 88.93 90 | 92.84 94 | 91.92 4 | 96.16 4 | 96.23 21 | 86.95 51 | 95.99 12 | 79.05 128 | 98.57 15 | 98.80 6 |
|
| XVG-ACMP-BASELINE | | | 89.98 47 | 89.84 54 | 90.41 43 | 94.91 37 | 84.50 48 | 89.49 81 | 93.98 43 | 79.68 97 | 92.09 64 | 93.89 104 | 83.80 81 | 93.10 140 | 82.67 88 | 98.04 39 | 93.64 127 |
|
| 3Dnovator+ | | 83.92 2 | 89.97 49 | 89.66 57 | 90.92 35 | 91.27 138 | 81.66 66 | 91.25 42 | 94.13 37 | 88.89 15 | 88.83 126 | 94.26 82 | 77.55 156 | 95.86 23 | 84.88 63 | 95.87 132 | 95.24 60 |
|
| WR-MVS_H | | | 89.91 50 | 91.31 33 | 85.71 128 | 96.32 9 | 62.39 266 | 89.54 79 | 93.31 70 | 90.21 12 | 95.57 11 | 95.66 33 | 81.42 119 | 95.90 17 | 80.94 105 | 98.80 3 | 98.84 5 |
|
| OPM-MVS | | | 89.80 51 | 89.97 52 | 89.27 63 | 94.76 40 | 79.86 76 | 86.76 127 | 92.78 96 | 78.78 111 | 92.51 58 | 93.64 115 | 88.13 36 | 93.84 109 | 84.83 65 | 97.55 69 | 94.10 104 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| mvs_tets | | | 89.78 52 | 89.27 63 | 91.30 29 | 93.51 67 | 84.79 44 | 89.89 68 | 90.63 157 | 70.00 228 | 94.55 19 | 96.67 14 | 87.94 39 | 93.59 120 | 84.27 70 | 95.97 124 | 95.52 51 |
|
| anonymousdsp | | | 89.73 53 | 88.88 70 | 92.27 8 | 89.82 171 | 86.67 18 | 90.51 54 | 90.20 176 | 69.87 229 | 95.06 15 | 96.14 25 | 84.28 77 | 93.07 141 | 87.68 18 | 96.34 106 | 97.09 19 |
|
| test_djsdf | | | 89.62 54 | 89.01 67 | 91.45 26 | 92.36 97 | 82.98 57 | 91.98 34 | 90.08 179 | 71.54 208 | 94.28 24 | 96.54 16 | 81.57 117 | 94.27 89 | 86.26 43 | 96.49 100 | 97.09 19 |
|
| XVG-OURS-SEG-HR | | | 89.59 55 | 89.37 61 | 90.28 46 | 94.47 43 | 85.95 27 | 86.84 123 | 93.91 47 | 80.07 93 | 86.75 174 | 93.26 121 | 93.64 2 | 90.93 200 | 84.60 67 | 90.75 273 | 93.97 107 |
|
| APD-MVS |  | | 89.54 56 | 89.63 58 | 89.26 64 | 92.57 91 | 81.34 68 | 90.19 61 | 93.08 82 | 80.87 85 | 91.13 80 | 93.19 122 | 86.22 62 | 95.97 14 | 82.23 94 | 97.18 81 | 90.45 246 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| jajsoiax | | | 89.41 57 | 88.81 73 | 91.19 32 | 93.38 71 | 84.72 45 | 89.70 71 | 90.29 173 | 69.27 232 | 94.39 20 | 96.38 18 | 86.02 65 | 93.52 124 | 83.96 72 | 95.92 130 | 95.34 55 |
|
| CPTT-MVS | | | 89.39 58 | 88.98 69 | 90.63 40 | 95.09 33 | 86.95 16 | 92.09 32 | 92.30 109 | 79.74 96 | 87.50 159 | 92.38 152 | 81.42 119 | 93.28 133 | 83.07 80 | 97.24 79 | 91.67 213 |
|
| ACMH | | 76.49 14 | 89.34 59 | 91.14 35 | 83.96 167 | 92.50 94 | 70.36 179 | 89.55 77 | 93.84 52 | 81.89 73 | 94.70 17 | 95.44 40 | 90.69 8 | 88.31 264 | 83.33 76 | 98.30 25 | 93.20 145 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| testf1 | | | 89.30 60 | 89.12 64 | 89.84 52 | 88.67 195 | 85.64 35 | 90.61 50 | 93.17 76 | 86.02 34 | 93.12 44 | 95.30 42 | 84.94 69 | 89.44 246 | 74.12 188 | 96.10 119 | 94.45 86 |
|
| APD_test2 | | | 89.30 60 | 89.12 64 | 89.84 52 | 88.67 195 | 85.64 35 | 90.61 50 | 93.17 76 | 86.02 34 | 93.12 44 | 95.30 42 | 84.94 69 | 89.44 246 | 74.12 188 | 96.10 119 | 94.45 86 |
|
| CP-MVSNet | | | 89.27 62 | 90.91 44 | 84.37 154 | 96.34 8 | 58.61 316 | 88.66 97 | 92.06 115 | 90.78 7 | 95.67 8 | 95.17 47 | 81.80 115 | 95.54 44 | 79.00 129 | 98.69 10 | 98.95 4 |
|
| XVG-OURS | | | 89.18 63 | 88.83 72 | 90.23 47 | 94.28 47 | 86.11 26 | 85.91 141 | 93.60 61 | 80.16 91 | 89.13 123 | 93.44 118 | 83.82 80 | 90.98 198 | 83.86 74 | 95.30 153 | 93.60 130 |
|
| DeepC-MVS | | 82.31 4 | 89.15 64 | 89.08 66 | 89.37 62 | 93.64 66 | 79.07 83 | 88.54 98 | 94.20 30 | 73.53 174 | 89.71 107 | 94.82 56 | 85.09 68 | 95.77 34 | 84.17 71 | 98.03 41 | 93.26 143 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| UniMVSNet_ETH3D | | | 89.12 65 | 90.72 47 | 84.31 160 | 97.00 2 | 64.33 241 | 89.67 74 | 88.38 206 | 88.84 17 | 94.29 22 | 97.57 4 | 90.48 13 | 91.26 189 | 72.57 213 | 97.65 62 | 97.34 14 |
|
| MSP-MVS | | | 89.08 66 | 88.16 78 | 91.83 20 | 95.76 18 | 86.14 25 | 92.75 17 | 93.90 48 | 78.43 116 | 89.16 121 | 92.25 160 | 72.03 228 | 96.36 4 | 88.21 11 | 90.93 266 | 92.98 156 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| SD-MVS | | | 88.96 67 | 89.88 53 | 86.22 115 | 91.63 123 | 77.07 109 | 89.82 69 | 93.77 53 | 78.90 109 | 92.88 48 | 92.29 158 | 86.11 63 | 90.22 222 | 86.24 46 | 97.24 79 | 91.36 220 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| HPM-MVS++ |  | | 88.93 68 | 88.45 76 | 90.38 44 | 94.92 36 | 85.85 31 | 89.70 71 | 91.27 140 | 78.20 118 | 86.69 177 | 92.28 159 | 80.36 131 | 95.06 67 | 86.17 47 | 96.49 100 | 90.22 250 |
|
| test_0402 | | | 88.65 69 | 89.58 60 | 85.88 124 | 92.55 92 | 72.22 159 | 84.01 178 | 89.44 194 | 88.63 20 | 94.38 21 | 95.77 29 | 86.38 61 | 93.59 120 | 79.84 117 | 95.21 154 | 91.82 206 |
|
| DP-MVS | | | 88.60 70 | 89.01 67 | 87.36 93 | 91.30 136 | 77.50 101 | 87.55 109 | 92.97 90 | 87.95 25 | 89.62 111 | 92.87 137 | 84.56 73 | 93.89 106 | 77.65 147 | 96.62 95 | 90.70 238 |
|
| APD_test1 | | | 88.40 71 | 87.91 80 | 89.88 51 | 89.50 175 | 86.65 20 | 89.98 65 | 91.91 121 | 84.26 47 | 90.87 89 | 93.92 103 | 82.18 106 | 89.29 250 | 73.75 196 | 94.81 173 | 93.70 123 |
|
| Anonymous20231211 | | | 88.40 71 | 89.62 59 | 84.73 145 | 90.46 157 | 65.27 231 | 88.86 91 | 93.02 87 | 87.15 28 | 93.05 46 | 97.10 8 | 82.28 105 | 92.02 170 | 76.70 159 | 97.99 43 | 96.88 23 |
|
| PS-MVSNAJss | | | 88.31 73 | 87.90 81 | 89.56 59 | 93.31 73 | 77.96 96 | 87.94 105 | 91.97 118 | 70.73 219 | 94.19 25 | 96.67 14 | 76.94 166 | 94.57 81 | 83.07 80 | 96.28 108 | 96.15 33 |
|
| OMC-MVS | | | 88.19 74 | 87.52 85 | 90.19 48 | 91.94 114 | 81.68 65 | 87.49 112 | 93.17 76 | 76.02 141 | 88.64 130 | 91.22 187 | 84.24 78 | 93.37 131 | 77.97 145 | 97.03 84 | 95.52 51 |
|
| CS-MVS | | | 88.14 75 | 87.67 84 | 89.54 60 | 89.56 173 | 79.18 82 | 90.47 55 | 94.77 16 | 79.37 103 | 84.32 228 | 89.33 240 | 83.87 79 | 94.53 84 | 82.45 90 | 94.89 169 | 94.90 68 |
|
| TSAR-MVS + MP. | | | 88.14 75 | 87.82 82 | 89.09 67 | 95.72 22 | 76.74 112 | 92.49 25 | 91.19 143 | 67.85 253 | 86.63 178 | 94.84 55 | 79.58 138 | 95.96 15 | 87.62 19 | 94.50 182 | 94.56 80 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| tt0805 | | | 88.09 77 | 89.79 55 | 82.98 197 | 93.26 75 | 63.94 245 | 91.10 45 | 89.64 189 | 85.07 41 | 90.91 86 | 91.09 192 | 89.16 24 | 91.87 175 | 82.03 95 | 95.87 132 | 93.13 148 |
|
| EC-MVSNet | | | 88.01 78 | 88.32 77 | 87.09 95 | 89.28 180 | 72.03 161 | 90.31 59 | 96.31 4 | 80.88 84 | 85.12 209 | 89.67 235 | 84.47 75 | 95.46 50 | 82.56 89 | 96.26 111 | 93.77 121 |
|
| RPSCF | | | 88.00 79 | 86.93 97 | 91.22 31 | 90.08 164 | 89.30 5 | 89.68 73 | 91.11 144 | 79.26 104 | 89.68 108 | 94.81 59 | 82.44 97 | 87.74 270 | 76.54 161 | 88.74 301 | 96.61 27 |
|
| AllTest | | | 87.97 80 | 87.40 89 | 89.68 55 | 91.59 124 | 83.40 52 | 89.50 80 | 95.44 10 | 79.47 99 | 88.00 148 | 93.03 129 | 82.66 94 | 91.47 182 | 70.81 222 | 96.14 116 | 94.16 100 |
|
| TranMVSNet+NR-MVSNet | | | 87.86 81 | 88.76 74 | 85.18 136 | 94.02 58 | 64.13 242 | 84.38 172 | 91.29 139 | 84.88 44 | 92.06 65 | 93.84 105 | 86.45 58 | 93.73 111 | 73.22 204 | 98.66 11 | 97.69 9 |
|
| nrg030 | | | 87.85 82 | 88.49 75 | 85.91 122 | 90.07 166 | 69.73 185 | 87.86 106 | 94.20 30 | 74.04 166 | 92.70 56 | 94.66 60 | 85.88 66 | 91.50 181 | 79.72 119 | 97.32 77 | 96.50 29 |
|
| CNVR-MVS | | | 87.81 83 | 87.68 83 | 88.21 83 | 92.87 84 | 77.30 107 | 85.25 155 | 91.23 141 | 77.31 131 | 87.07 168 | 91.47 181 | 82.94 91 | 94.71 75 | 84.67 66 | 96.27 110 | 92.62 169 |
|
| HQP_MVS | | | 87.75 84 | 87.43 88 | 88.70 75 | 93.45 68 | 76.42 116 | 89.45 82 | 93.61 59 | 79.44 101 | 86.55 179 | 92.95 134 | 74.84 187 | 95.22 59 | 80.78 108 | 95.83 134 | 94.46 84 |
|
| MM | | | 87.64 85 | 87.15 90 | 89.09 67 | 89.51 174 | 76.39 118 | 88.68 96 | 86.76 236 | 84.54 46 | 83.58 246 | 93.78 108 | 73.36 210 | 96.48 2 | 87.98 13 | 96.21 112 | 94.41 90 |
|
| MVSMamba_PlusPlus | | | 87.53 86 | 88.86 71 | 83.54 183 | 92.03 110 | 62.26 270 | 91.49 40 | 92.62 100 | 88.07 24 | 88.07 145 | 96.17 23 | 72.24 223 | 95.79 31 | 84.85 64 | 94.16 193 | 92.58 170 |
|
| NCCC | | | 87.36 87 | 86.87 98 | 88.83 70 | 92.32 100 | 78.84 86 | 86.58 131 | 91.09 145 | 78.77 112 | 84.85 217 | 90.89 201 | 80.85 125 | 95.29 56 | 81.14 103 | 95.32 150 | 92.34 184 |
|
| DeepPCF-MVS | | 81.24 5 | 87.28 88 | 86.21 108 | 90.49 42 | 91.48 133 | 84.90 42 | 83.41 196 | 92.38 106 | 70.25 225 | 89.35 119 | 90.68 210 | 82.85 92 | 94.57 81 | 79.55 122 | 95.95 127 | 92.00 201 |
|
| SixPastTwentyTwo | | | 87.20 89 | 87.45 87 | 86.45 108 | 92.52 93 | 69.19 194 | 87.84 107 | 88.05 213 | 81.66 75 | 94.64 18 | 96.53 17 | 65.94 260 | 94.75 74 | 83.02 82 | 96.83 89 | 95.41 53 |
|
| SPE-MVS-test | | | 87.00 90 | 86.43 104 | 88.71 74 | 89.46 176 | 77.46 102 | 89.42 84 | 95.73 7 | 77.87 124 | 81.64 282 | 87.25 277 | 82.43 98 | 94.53 84 | 77.65 147 | 96.46 102 | 94.14 102 |
|
| UniMVSNet (Re) | | | 86.87 91 | 86.98 96 | 86.55 106 | 93.11 79 | 68.48 201 | 83.80 187 | 92.87 92 | 80.37 87 | 89.61 113 | 91.81 172 | 77.72 153 | 94.18 95 | 75.00 181 | 98.53 16 | 96.99 22 |
|
| Vis-MVSNet |  | | 86.86 92 | 86.58 101 | 87.72 89 | 92.09 107 | 77.43 104 | 87.35 113 | 92.09 114 | 78.87 110 | 84.27 233 | 94.05 92 | 78.35 146 | 93.65 113 | 80.54 112 | 91.58 254 | 92.08 197 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| UniMVSNet_NR-MVSNet | | | 86.84 93 | 87.06 93 | 86.17 118 | 92.86 86 | 67.02 215 | 82.55 222 | 91.56 129 | 83.08 62 | 90.92 84 | 91.82 171 | 78.25 147 | 93.99 102 | 74.16 186 | 98.35 22 | 97.49 13 |
|
| DU-MVS | | | 86.80 94 | 86.99 95 | 86.21 116 | 93.24 76 | 67.02 215 | 83.16 205 | 92.21 110 | 81.73 74 | 90.92 84 | 91.97 164 | 77.20 160 | 93.99 102 | 74.16 186 | 98.35 22 | 97.61 10 |
|
| casdiffmvs_mvg |  | | 86.72 95 | 87.51 86 | 84.36 156 | 87.09 238 | 65.22 232 | 84.16 174 | 94.23 27 | 77.89 122 | 91.28 79 | 93.66 114 | 84.35 76 | 92.71 150 | 80.07 113 | 94.87 172 | 95.16 64 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| test_fmvsmconf0.01_n | | | 86.68 96 | 86.52 102 | 87.18 94 | 85.94 266 | 78.30 89 | 86.93 120 | 92.20 111 | 65.94 267 | 89.16 121 | 93.16 124 | 83.10 89 | 89.89 235 | 87.81 15 | 94.43 185 | 93.35 137 |
|
| IS-MVSNet | | | 86.66 97 | 86.82 100 | 86.17 118 | 92.05 109 | 66.87 218 | 91.21 43 | 88.64 203 | 86.30 33 | 89.60 114 | 92.59 145 | 69.22 244 | 94.91 71 | 73.89 193 | 97.89 52 | 96.72 24 |
|
| v10 | | | 86.54 98 | 87.10 92 | 84.84 140 | 88.16 210 | 63.28 252 | 86.64 130 | 92.20 111 | 75.42 154 | 92.81 53 | 94.50 68 | 74.05 198 | 94.06 101 | 83.88 73 | 96.28 108 | 97.17 18 |
|
| pmmvs6 | | | 86.52 99 | 88.06 79 | 81.90 218 | 92.22 103 | 62.28 269 | 84.66 165 | 89.15 197 | 83.54 57 | 89.85 104 | 97.32 5 | 88.08 38 | 86.80 285 | 70.43 230 | 97.30 78 | 96.62 26 |
|
| PHI-MVS | | | 86.38 100 | 85.81 117 | 88.08 84 | 88.44 204 | 77.34 105 | 89.35 85 | 93.05 83 | 73.15 187 | 84.76 218 | 87.70 267 | 78.87 142 | 94.18 95 | 80.67 110 | 96.29 107 | 92.73 162 |
|
| CSCG | | | 86.26 101 | 86.47 103 | 85.60 130 | 90.87 149 | 74.26 131 | 87.98 104 | 91.85 122 | 80.35 88 | 89.54 117 | 88.01 259 | 79.09 140 | 92.13 166 | 75.51 174 | 95.06 161 | 90.41 247 |
|
| DeepC-MVS_fast | | 80.27 8 | 86.23 102 | 85.65 122 | 87.96 87 | 91.30 136 | 76.92 110 | 87.19 115 | 91.99 117 | 70.56 220 | 84.96 213 | 90.69 209 | 80.01 135 | 95.14 64 | 78.37 134 | 95.78 138 | 91.82 206 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| v8 | | | 86.22 103 | 86.83 99 | 84.36 156 | 87.82 217 | 62.35 268 | 86.42 134 | 91.33 138 | 76.78 135 | 92.73 55 | 94.48 70 | 73.41 207 | 93.72 112 | 83.10 79 | 95.41 146 | 97.01 21 |
|
| Anonymous20240529 | | | 86.20 104 | 87.13 91 | 83.42 185 | 90.19 162 | 64.55 239 | 84.55 167 | 90.71 154 | 85.85 36 | 89.94 103 | 95.24 46 | 82.13 107 | 90.40 218 | 69.19 243 | 96.40 105 | 95.31 57 |
|
| test_fmvsmconf0.1_n | | | 86.18 105 | 85.88 115 | 87.08 96 | 85.26 276 | 78.25 90 | 85.82 145 | 91.82 124 | 65.33 281 | 88.55 132 | 92.35 157 | 82.62 96 | 89.80 237 | 86.87 35 | 94.32 188 | 93.18 147 |
|
| CDPH-MVS | | | 86.17 106 | 85.54 123 | 88.05 86 | 92.25 101 | 75.45 124 | 83.85 184 | 92.01 116 | 65.91 269 | 86.19 188 | 91.75 175 | 83.77 82 | 94.98 69 | 77.43 152 | 96.71 93 | 93.73 122 |
|
| NR-MVSNet | | | 86.00 107 | 86.22 107 | 85.34 134 | 93.24 76 | 64.56 238 | 82.21 234 | 90.46 161 | 80.99 82 | 88.42 137 | 91.97 164 | 77.56 155 | 93.85 107 | 72.46 214 | 98.65 12 | 97.61 10 |
|
| train_agg | | | 85.98 108 | 85.28 129 | 88.07 85 | 92.34 98 | 79.70 78 | 83.94 180 | 90.32 168 | 65.79 271 | 84.49 222 | 90.97 196 | 81.93 111 | 93.63 115 | 81.21 102 | 96.54 98 | 90.88 232 |
|
| FC-MVSNet-test | | | 85.93 109 | 87.05 94 | 82.58 208 | 92.25 101 | 56.44 332 | 85.75 146 | 93.09 81 | 77.33 130 | 91.94 68 | 94.65 61 | 74.78 189 | 93.41 130 | 75.11 180 | 98.58 14 | 97.88 7 |
|
| test_fmvsmconf_n | | | 85.88 110 | 85.51 124 | 86.99 98 | 84.77 284 | 78.21 91 | 85.40 154 | 91.39 136 | 65.32 282 | 87.72 155 | 91.81 172 | 82.33 101 | 89.78 238 | 86.68 37 | 94.20 191 | 92.99 155 |
|
| Effi-MVS+-dtu | | | 85.82 111 | 83.38 164 | 93.14 4 | 87.13 234 | 91.15 3 | 87.70 108 | 88.42 205 | 74.57 162 | 83.56 247 | 85.65 301 | 78.49 145 | 94.21 93 | 72.04 216 | 92.88 225 | 94.05 105 |
|
| TAPA-MVS | | 77.73 12 | 85.71 112 | 84.83 135 | 88.37 80 | 88.78 194 | 79.72 77 | 87.15 117 | 93.50 62 | 69.17 233 | 85.80 197 | 89.56 236 | 80.76 126 | 92.13 166 | 73.21 209 | 95.51 144 | 93.25 144 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| sasdasda | | | 85.50 113 | 86.14 109 | 83.58 179 | 87.97 212 | 67.13 212 | 87.55 109 | 94.32 21 | 73.44 177 | 88.47 135 | 87.54 270 | 86.45 58 | 91.06 196 | 75.76 172 | 93.76 203 | 92.54 173 |
|
| canonicalmvs | | | 85.50 113 | 86.14 109 | 83.58 179 | 87.97 212 | 67.13 212 | 87.55 109 | 94.32 21 | 73.44 177 | 88.47 135 | 87.54 270 | 86.45 58 | 91.06 196 | 75.76 172 | 93.76 203 | 92.54 173 |
|
| EPP-MVSNet | | | 85.47 115 | 85.04 132 | 86.77 103 | 91.52 132 | 69.37 189 | 91.63 39 | 87.98 215 | 81.51 77 | 87.05 169 | 91.83 170 | 66.18 259 | 95.29 56 | 70.75 225 | 96.89 86 | 95.64 48 |
|
| GeoE | | | 85.45 116 | 85.81 117 | 84.37 154 | 90.08 164 | 67.07 214 | 85.86 144 | 91.39 136 | 72.33 201 | 87.59 157 | 90.25 222 | 84.85 71 | 92.37 160 | 78.00 143 | 91.94 245 | 93.66 124 |
|
| MVS_0304 | | | 85.37 117 | 84.58 142 | 87.75 88 | 85.28 275 | 73.36 136 | 86.54 133 | 85.71 251 | 77.56 129 | 81.78 280 | 92.47 150 | 70.29 238 | 96.02 11 | 85.59 55 | 95.96 125 | 93.87 113 |
|
| FIs | | | 85.35 118 | 86.27 106 | 82.60 207 | 91.86 116 | 57.31 325 | 85.10 159 | 93.05 83 | 75.83 146 | 91.02 83 | 93.97 96 | 73.57 203 | 92.91 148 | 73.97 192 | 98.02 42 | 97.58 12 |
|
| test_fmvsmvis_n_1920 | | | 85.22 119 | 85.36 128 | 84.81 142 | 85.80 268 | 76.13 122 | 85.15 158 | 92.32 108 | 61.40 311 | 91.33 76 | 90.85 204 | 83.76 83 | 86.16 298 | 84.31 69 | 93.28 215 | 92.15 195 |
|
| casdiffmvs |  | | 85.21 120 | 85.85 116 | 83.31 188 | 86.17 260 | 62.77 259 | 83.03 207 | 93.93 46 | 74.69 161 | 88.21 142 | 92.68 144 | 82.29 104 | 91.89 174 | 77.87 146 | 93.75 206 | 95.27 59 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| baseline | | | 85.20 121 | 85.93 113 | 83.02 195 | 86.30 255 | 62.37 267 | 84.55 167 | 93.96 44 | 74.48 163 | 87.12 163 | 92.03 163 | 82.30 103 | 91.94 171 | 78.39 133 | 94.21 190 | 94.74 77 |
|
| K. test v3 | | | 85.14 122 | 84.73 136 | 86.37 109 | 91.13 143 | 69.63 187 | 85.45 152 | 76.68 331 | 84.06 50 | 92.44 60 | 96.99 10 | 62.03 282 | 94.65 77 | 80.58 111 | 93.24 216 | 94.83 75 |
|
| mmtdpeth | | | 85.13 123 | 85.78 119 | 83.17 193 | 84.65 286 | 74.71 127 | 85.87 143 | 90.35 167 | 77.94 121 | 83.82 240 | 96.96 12 | 77.75 151 | 80.03 352 | 78.44 132 | 96.21 112 | 94.79 76 |
|
| EI-MVSNet-Vis-set | | | 85.12 124 | 84.53 145 | 86.88 100 | 84.01 298 | 72.76 144 | 83.91 183 | 85.18 260 | 80.44 86 | 88.75 127 | 85.49 304 | 80.08 134 | 91.92 172 | 82.02 96 | 90.85 271 | 95.97 39 |
|
| MGCFI-Net | | | 85.04 125 | 85.95 112 | 82.31 214 | 87.52 226 | 63.59 248 | 86.23 138 | 93.96 44 | 73.46 175 | 88.07 145 | 87.83 265 | 86.46 57 | 90.87 205 | 76.17 167 | 93.89 200 | 92.47 177 |
|
| EI-MVSNet-UG-set | | | 85.04 125 | 84.44 147 | 86.85 101 | 83.87 302 | 72.52 153 | 83.82 185 | 85.15 261 | 80.27 90 | 88.75 127 | 85.45 306 | 79.95 136 | 91.90 173 | 81.92 99 | 90.80 272 | 96.13 34 |
|
| X-MVStestdata | | | 85.04 125 | 82.70 178 | 92.08 9 | 95.64 24 | 86.25 22 | 92.64 19 | 93.33 67 | 85.07 41 | 89.99 100 | 16.05 423 | 86.57 55 | 95.80 28 | 87.35 27 | 97.62 64 | 94.20 96 |
|
| MSLP-MVS++ | | | 85.00 128 | 86.03 111 | 81.90 218 | 91.84 119 | 71.56 170 | 86.75 128 | 93.02 87 | 75.95 144 | 87.12 163 | 89.39 238 | 77.98 148 | 89.40 249 | 77.46 150 | 94.78 174 | 84.75 327 |
|
| F-COLMAP | | | 84.97 129 | 83.42 163 | 89.63 57 | 92.39 96 | 83.40 52 | 88.83 92 | 91.92 120 | 73.19 186 | 80.18 304 | 89.15 244 | 77.04 164 | 93.28 133 | 65.82 275 | 92.28 236 | 92.21 192 |
|
| balanced_conf03 | | | 84.80 130 | 85.40 126 | 83.00 196 | 88.95 188 | 61.44 277 | 90.42 58 | 92.37 107 | 71.48 210 | 88.72 129 | 93.13 125 | 70.16 240 | 95.15 63 | 79.26 127 | 94.11 194 | 92.41 179 |
|
| 3Dnovator | | 80.37 7 | 84.80 130 | 84.71 139 | 85.06 138 | 86.36 253 | 74.71 127 | 88.77 94 | 90.00 181 | 75.65 149 | 84.96 213 | 93.17 123 | 74.06 197 | 91.19 191 | 78.28 137 | 91.09 260 | 89.29 269 |
|
| IterMVS-LS | | | 84.73 132 | 84.98 133 | 83.96 167 | 87.35 229 | 63.66 246 | 83.25 201 | 89.88 184 | 76.06 139 | 89.62 111 | 92.37 155 | 73.40 209 | 92.52 155 | 78.16 140 | 94.77 176 | 95.69 46 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| MVS_111021_HR | | | 84.63 133 | 84.34 151 | 85.49 133 | 90.18 163 | 75.86 123 | 79.23 277 | 87.13 227 | 73.35 179 | 85.56 202 | 89.34 239 | 83.60 85 | 90.50 216 | 76.64 160 | 94.05 197 | 90.09 256 |
|
| HQP-MVS | | | 84.61 134 | 84.06 154 | 86.27 112 | 91.19 139 | 70.66 175 | 84.77 160 | 92.68 98 | 73.30 182 | 80.55 296 | 90.17 227 | 72.10 224 | 94.61 79 | 77.30 154 | 94.47 183 | 93.56 133 |
|
| v1192 | | | 84.57 135 | 84.69 140 | 84.21 162 | 87.75 219 | 62.88 256 | 83.02 208 | 91.43 133 | 69.08 235 | 89.98 102 | 90.89 201 | 72.70 218 | 93.62 118 | 82.41 91 | 94.97 166 | 96.13 34 |
|
| FMVSNet1 | | | 84.55 136 | 85.45 125 | 81.85 220 | 90.27 161 | 61.05 284 | 86.83 124 | 88.27 210 | 78.57 115 | 89.66 110 | 95.64 34 | 75.43 180 | 90.68 211 | 69.09 244 | 95.33 149 | 93.82 116 |
|
| v1144 | | | 84.54 137 | 84.72 138 | 84.00 165 | 87.67 222 | 62.55 263 | 82.97 210 | 90.93 150 | 70.32 224 | 89.80 105 | 90.99 195 | 73.50 204 | 93.48 126 | 81.69 101 | 94.65 180 | 95.97 39 |
|
| Gipuma |  | | 84.44 138 | 86.33 105 | 78.78 266 | 84.20 296 | 73.57 135 | 89.55 77 | 90.44 162 | 84.24 48 | 84.38 225 | 94.89 53 | 76.35 177 | 80.40 349 | 76.14 168 | 96.80 91 | 82.36 365 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| MCST-MVS | | | 84.36 139 | 83.93 157 | 85.63 129 | 91.59 124 | 71.58 168 | 83.52 193 | 92.13 113 | 61.82 304 | 83.96 238 | 89.75 234 | 79.93 137 | 93.46 127 | 78.33 136 | 94.34 187 | 91.87 205 |
|
| VDDNet | | | 84.35 140 | 85.39 127 | 81.25 231 | 95.13 32 | 59.32 303 | 85.42 153 | 81.11 302 | 86.41 32 | 87.41 160 | 96.21 22 | 73.61 202 | 90.61 214 | 66.33 268 | 96.85 87 | 93.81 119 |
|
| ETV-MVS | | | 84.31 141 | 83.91 158 | 85.52 131 | 88.58 200 | 70.40 178 | 84.50 171 | 93.37 64 | 78.76 113 | 84.07 236 | 78.72 378 | 80.39 130 | 95.13 65 | 73.82 195 | 92.98 223 | 91.04 226 |
|
| v1240 | | | 84.30 142 | 84.51 146 | 83.65 176 | 87.65 223 | 61.26 281 | 82.85 214 | 91.54 130 | 67.94 251 | 90.68 91 | 90.65 213 | 71.71 231 | 93.64 114 | 82.84 85 | 94.78 174 | 96.07 36 |
|
| MVS_111021_LR | | | 84.28 143 | 83.76 159 | 85.83 126 | 89.23 182 | 83.07 55 | 80.99 250 | 83.56 282 | 72.71 194 | 86.07 191 | 89.07 245 | 81.75 116 | 86.19 297 | 77.11 156 | 93.36 211 | 88.24 283 |
|
| h-mvs33 | | | 84.25 144 | 82.76 177 | 88.72 73 | 91.82 121 | 82.60 60 | 84.00 179 | 84.98 267 | 71.27 211 | 86.70 175 | 90.55 215 | 63.04 279 | 93.92 105 | 78.26 138 | 94.20 191 | 89.63 261 |
|
| v144192 | | | 84.24 145 | 84.41 148 | 83.71 175 | 87.59 225 | 61.57 276 | 82.95 211 | 91.03 146 | 67.82 254 | 89.80 105 | 90.49 216 | 73.28 211 | 93.51 125 | 81.88 100 | 94.89 169 | 96.04 38 |
|
| dcpmvs_2 | | | 84.23 146 | 85.14 130 | 81.50 228 | 88.61 199 | 61.98 274 | 82.90 213 | 93.11 79 | 68.66 241 | 92.77 54 | 92.39 151 | 78.50 144 | 87.63 272 | 76.99 158 | 92.30 233 | 94.90 68 |
|
| v1921920 | | | 84.23 146 | 84.37 150 | 83.79 171 | 87.64 224 | 61.71 275 | 82.91 212 | 91.20 142 | 67.94 251 | 90.06 97 | 90.34 219 | 72.04 227 | 93.59 120 | 82.32 92 | 94.91 167 | 96.07 36 |
|
| VDD-MVS | | | 84.23 146 | 84.58 142 | 83.20 191 | 91.17 142 | 65.16 234 | 83.25 201 | 84.97 268 | 79.79 95 | 87.18 162 | 94.27 79 | 74.77 190 | 90.89 203 | 69.24 240 | 96.54 98 | 93.55 135 |
|
| v2v482 | | | 84.09 149 | 84.24 152 | 83.62 177 | 87.13 234 | 61.40 278 | 82.71 217 | 89.71 187 | 72.19 204 | 89.55 115 | 91.41 182 | 70.70 237 | 93.20 135 | 81.02 104 | 93.76 203 | 96.25 32 |
|
| EG-PatchMatch MVS | | | 84.08 150 | 84.11 153 | 83.98 166 | 92.22 103 | 72.61 150 | 82.20 236 | 87.02 232 | 72.63 195 | 88.86 124 | 91.02 194 | 78.52 143 | 91.11 194 | 73.41 201 | 91.09 260 | 88.21 284 |
|
| DP-MVS Recon | | | 84.05 151 | 83.22 167 | 86.52 107 | 91.73 122 | 75.27 125 | 83.23 203 | 92.40 104 | 72.04 205 | 82.04 271 | 88.33 255 | 77.91 150 | 93.95 104 | 66.17 269 | 95.12 159 | 90.34 249 |
|
| TransMVSNet (Re) | | | 84.02 152 | 85.74 120 | 78.85 265 | 91.00 146 | 55.20 344 | 82.29 230 | 87.26 222 | 79.65 98 | 88.38 139 | 95.52 37 | 83.00 90 | 86.88 283 | 67.97 258 | 96.60 96 | 94.45 86 |
|
| Baseline_NR-MVSNet | | | 84.00 153 | 85.90 114 | 78.29 277 | 91.47 134 | 53.44 355 | 82.29 230 | 87.00 235 | 79.06 107 | 89.55 115 | 95.72 32 | 77.20 160 | 86.14 299 | 72.30 215 | 98.51 17 | 95.28 58 |
|
| TSAR-MVS + GP. | | | 83.95 154 | 82.69 179 | 87.72 89 | 89.27 181 | 81.45 67 | 83.72 189 | 81.58 300 | 74.73 160 | 85.66 198 | 86.06 296 | 72.56 220 | 92.69 152 | 75.44 176 | 95.21 154 | 89.01 277 |
|
| alignmvs | | | 83.94 155 | 83.98 156 | 83.80 170 | 87.80 218 | 67.88 208 | 84.54 169 | 91.42 135 | 73.27 185 | 88.41 138 | 87.96 260 | 72.33 221 | 90.83 206 | 76.02 170 | 94.11 194 | 92.69 166 |
|
| Effi-MVS+ | | | 83.90 156 | 84.01 155 | 83.57 181 | 87.22 232 | 65.61 230 | 86.55 132 | 92.40 104 | 78.64 114 | 81.34 287 | 84.18 325 | 83.65 84 | 92.93 146 | 74.22 185 | 87.87 315 | 92.17 194 |
|
| fmvsm_s_conf0.1_n_2 | | | 83.82 157 | 83.49 161 | 84.84 140 | 85.99 265 | 70.19 181 | 80.93 251 | 87.58 218 | 67.26 259 | 87.94 150 | 92.37 155 | 71.40 233 | 88.01 266 | 86.03 49 | 91.87 246 | 96.31 31 |
|
| mvs5depth | | | 83.82 157 | 84.54 144 | 81.68 225 | 82.23 323 | 68.65 199 | 86.89 121 | 89.90 183 | 80.02 94 | 87.74 154 | 97.86 2 | 64.19 269 | 82.02 337 | 76.37 163 | 95.63 143 | 94.35 92 |
|
| CANet | | | 83.79 159 | 82.85 176 | 86.63 104 | 86.17 260 | 72.21 160 | 83.76 188 | 91.43 133 | 77.24 132 | 74.39 355 | 87.45 273 | 75.36 181 | 95.42 52 | 77.03 157 | 92.83 226 | 92.25 191 |
|
| pm-mvs1 | | | 83.69 160 | 84.95 134 | 79.91 252 | 90.04 168 | 59.66 300 | 82.43 226 | 87.44 219 | 75.52 152 | 87.85 151 | 95.26 45 | 81.25 121 | 85.65 309 | 68.74 250 | 96.04 121 | 94.42 89 |
|
| AdaColmap |  | | 83.66 161 | 83.69 160 | 83.57 181 | 90.05 167 | 72.26 158 | 86.29 136 | 90.00 181 | 78.19 119 | 81.65 281 | 87.16 279 | 83.40 87 | 94.24 92 | 61.69 310 | 94.76 177 | 84.21 337 |
|
| MIMVSNet1 | | | 83.63 162 | 84.59 141 | 80.74 240 | 94.06 57 | 62.77 259 | 82.72 216 | 84.53 274 | 77.57 128 | 90.34 93 | 95.92 28 | 76.88 172 | 85.83 307 | 61.88 308 | 97.42 74 | 93.62 128 |
|
| fmvsm_s_conf0.5_n_2 | | | 83.62 163 | 83.29 166 | 84.62 148 | 85.43 273 | 70.18 182 | 80.61 255 | 87.24 223 | 67.14 260 | 87.79 153 | 91.87 166 | 71.79 230 | 87.98 267 | 86.00 53 | 91.77 249 | 95.71 45 |
|
| test_fmvsm_n_1920 | | | 83.60 164 | 82.89 175 | 85.74 127 | 85.22 277 | 77.74 99 | 84.12 176 | 90.48 160 | 59.87 330 | 86.45 187 | 91.12 191 | 75.65 178 | 85.89 305 | 82.28 93 | 90.87 269 | 93.58 131 |
|
| WR-MVS | | | 83.56 165 | 84.40 149 | 81.06 236 | 93.43 70 | 54.88 345 | 78.67 285 | 85.02 265 | 81.24 79 | 90.74 90 | 91.56 179 | 72.85 215 | 91.08 195 | 68.00 257 | 98.04 39 | 97.23 16 |
|
| CNLPA | | | 83.55 166 | 83.10 172 | 84.90 139 | 89.34 179 | 83.87 50 | 84.54 169 | 88.77 200 | 79.09 106 | 83.54 248 | 88.66 252 | 74.87 186 | 81.73 339 | 66.84 263 | 92.29 235 | 89.11 271 |
|
| LCM-MVSNet-Re | | | 83.48 167 | 85.06 131 | 78.75 267 | 85.94 266 | 55.75 338 | 80.05 261 | 94.27 24 | 76.47 136 | 96.09 6 | 94.54 67 | 83.31 88 | 89.75 241 | 59.95 321 | 94.89 169 | 90.75 235 |
|
| hse-mvs2 | | | 83.47 168 | 81.81 192 | 88.47 77 | 91.03 145 | 82.27 61 | 82.61 218 | 83.69 280 | 71.27 211 | 86.70 175 | 86.05 297 | 63.04 279 | 92.41 158 | 78.26 138 | 93.62 210 | 90.71 237 |
|
| V42 | | | 83.47 168 | 83.37 165 | 83.75 173 | 83.16 317 | 63.33 251 | 81.31 244 | 90.23 175 | 69.51 231 | 90.91 86 | 90.81 206 | 74.16 196 | 92.29 164 | 80.06 114 | 90.22 281 | 95.62 49 |
|
| VPA-MVSNet | | | 83.47 168 | 84.73 136 | 79.69 256 | 90.29 160 | 57.52 324 | 81.30 246 | 88.69 202 | 76.29 137 | 87.58 158 | 94.44 71 | 80.60 129 | 87.20 277 | 66.60 266 | 96.82 90 | 94.34 93 |
|
| PAPM_NR | | | 83.23 171 | 83.19 169 | 83.33 187 | 90.90 148 | 65.98 226 | 88.19 101 | 90.78 153 | 78.13 120 | 80.87 292 | 87.92 263 | 73.49 206 | 92.42 157 | 70.07 233 | 88.40 304 | 91.60 215 |
|
| CLD-MVS | | | 83.18 172 | 82.64 180 | 84.79 143 | 89.05 184 | 67.82 209 | 77.93 293 | 92.52 102 | 68.33 244 | 85.07 210 | 81.54 354 | 82.06 108 | 92.96 144 | 69.35 239 | 97.91 51 | 93.57 132 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| ANet_high | | | 83.17 173 | 85.68 121 | 75.65 312 | 81.24 335 | 45.26 398 | 79.94 263 | 92.91 91 | 83.83 51 | 91.33 76 | 96.88 13 | 80.25 132 | 85.92 302 | 68.89 247 | 95.89 131 | 95.76 43 |
|
| FA-MVS(test-final) | | | 83.13 174 | 83.02 173 | 83.43 184 | 86.16 262 | 66.08 225 | 88.00 103 | 88.36 207 | 75.55 151 | 85.02 211 | 92.75 142 | 65.12 264 | 92.50 156 | 74.94 182 | 91.30 258 | 91.72 210 |
|
| 114514_t | | | 83.10 175 | 82.54 183 | 84.77 144 | 92.90 83 | 69.10 196 | 86.65 129 | 90.62 158 | 54.66 362 | 81.46 284 | 90.81 206 | 76.98 165 | 94.38 87 | 72.62 212 | 96.18 114 | 90.82 234 |
|
| RRT-MVS | | | 82.97 176 | 83.44 162 | 81.57 227 | 85.06 279 | 58.04 319 | 87.20 114 | 90.37 165 | 77.88 123 | 88.59 131 | 93.70 113 | 63.17 276 | 93.05 142 | 76.49 162 | 88.47 303 | 93.62 128 |
|
| BP-MVS1 | | | 82.81 177 | 81.67 194 | 86.23 113 | 87.88 216 | 68.53 200 | 86.06 140 | 84.36 275 | 75.65 149 | 85.14 208 | 90.19 224 | 45.84 368 | 94.42 86 | 85.18 59 | 94.72 178 | 95.75 44 |
|
| UGNet | | | 82.78 178 | 81.64 195 | 86.21 116 | 86.20 259 | 76.24 120 | 86.86 122 | 85.68 252 | 77.07 133 | 73.76 359 | 92.82 138 | 69.64 241 | 91.82 177 | 69.04 246 | 93.69 207 | 90.56 243 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| LF4IMVS | | | 82.75 179 | 81.93 190 | 85.19 135 | 82.08 324 | 80.15 74 | 85.53 150 | 88.76 201 | 68.01 248 | 85.58 201 | 87.75 266 | 71.80 229 | 86.85 284 | 74.02 191 | 93.87 201 | 88.58 280 |
|
| EI-MVSNet | | | 82.61 180 | 82.42 185 | 83.20 191 | 83.25 314 | 63.66 246 | 83.50 194 | 85.07 262 | 76.06 139 | 86.55 179 | 85.10 312 | 73.41 207 | 90.25 219 | 78.15 142 | 90.67 275 | 95.68 47 |
|
| QAPM | | | 82.59 181 | 82.59 182 | 82.58 208 | 86.44 248 | 66.69 219 | 89.94 67 | 90.36 166 | 67.97 250 | 84.94 215 | 92.58 147 | 72.71 217 | 92.18 165 | 70.63 228 | 87.73 317 | 88.85 278 |
|
| fmvsm_s_conf0.1_n_a | | | 82.58 182 | 81.93 190 | 84.50 151 | 87.68 221 | 73.35 137 | 86.14 139 | 77.70 320 | 61.64 309 | 85.02 211 | 91.62 177 | 77.75 151 | 86.24 294 | 82.79 86 | 87.07 324 | 93.91 111 |
|
| Fast-Effi-MVS+-dtu | | | 82.54 183 | 81.41 203 | 85.90 123 | 85.60 269 | 76.53 115 | 83.07 206 | 89.62 191 | 73.02 189 | 79.11 314 | 83.51 330 | 80.74 127 | 90.24 221 | 68.76 249 | 89.29 292 | 90.94 229 |
|
| MVS_Test | | | 82.47 184 | 83.22 167 | 80.22 249 | 82.62 322 | 57.75 323 | 82.54 223 | 91.96 119 | 71.16 215 | 82.89 258 | 92.52 149 | 77.41 157 | 90.50 216 | 80.04 115 | 87.84 316 | 92.40 181 |
|
| v148 | | | 82.31 185 | 82.48 184 | 81.81 223 | 85.59 270 | 59.66 300 | 81.47 243 | 86.02 247 | 72.85 190 | 88.05 147 | 90.65 213 | 70.73 236 | 90.91 202 | 75.15 179 | 91.79 247 | 94.87 70 |
|
| API-MVS | | | 82.28 186 | 82.61 181 | 81.30 230 | 86.29 256 | 69.79 183 | 88.71 95 | 87.67 217 | 78.42 117 | 82.15 270 | 84.15 326 | 77.98 148 | 91.59 180 | 65.39 278 | 92.75 227 | 82.51 364 |
|
| MVSFormer | | | 82.23 187 | 81.57 200 | 84.19 164 | 85.54 271 | 69.26 191 | 91.98 34 | 90.08 179 | 71.54 208 | 76.23 336 | 85.07 315 | 58.69 304 | 94.27 89 | 86.26 43 | 88.77 299 | 89.03 275 |
|
| fmvsm_s_conf0.5_n_a | | | 82.21 188 | 81.51 202 | 84.32 159 | 86.56 246 | 73.35 137 | 85.46 151 | 77.30 324 | 61.81 305 | 84.51 221 | 90.88 203 | 77.36 158 | 86.21 296 | 82.72 87 | 86.97 329 | 93.38 136 |
|
| EIA-MVS | | | 82.19 189 | 81.23 208 | 85.10 137 | 87.95 214 | 69.17 195 | 83.22 204 | 93.33 67 | 70.42 221 | 78.58 318 | 79.77 370 | 77.29 159 | 94.20 94 | 71.51 218 | 88.96 297 | 91.93 204 |
|
| GDP-MVS | | | 82.17 190 | 80.85 214 | 86.15 120 | 88.65 197 | 68.95 197 | 85.65 149 | 93.02 87 | 68.42 242 | 83.73 242 | 89.54 237 | 45.07 379 | 94.31 88 | 79.66 121 | 93.87 201 | 95.19 63 |
|
| fmvsm_s_conf0.1_n | | | 82.17 190 | 81.59 198 | 83.94 169 | 86.87 244 | 71.57 169 | 85.19 157 | 77.42 323 | 62.27 303 | 84.47 224 | 91.33 184 | 76.43 174 | 85.91 303 | 83.14 77 | 87.14 322 | 94.33 94 |
|
| PCF-MVS | | 74.62 15 | 82.15 192 | 80.92 212 | 85.84 125 | 89.43 177 | 72.30 157 | 80.53 256 | 91.82 124 | 57.36 346 | 87.81 152 | 89.92 231 | 77.67 154 | 93.63 115 | 58.69 326 | 95.08 160 | 91.58 216 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| PLC |  | 73.85 16 | 82.09 193 | 80.31 220 | 87.45 92 | 90.86 150 | 80.29 73 | 85.88 142 | 90.65 156 | 68.17 247 | 76.32 335 | 86.33 291 | 73.12 213 | 92.61 154 | 61.40 313 | 90.02 284 | 89.44 264 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| fmvsm_l_conf0.5_n | | | 82.06 194 | 81.54 201 | 83.60 178 | 83.94 299 | 73.90 133 | 83.35 198 | 86.10 243 | 58.97 332 | 83.80 241 | 90.36 218 | 74.23 195 | 86.94 282 | 82.90 83 | 90.22 281 | 89.94 258 |
|
| GBi-Net | | | 82.02 195 | 82.07 187 | 81.85 220 | 86.38 250 | 61.05 284 | 86.83 124 | 88.27 210 | 72.43 196 | 86.00 192 | 95.64 34 | 63.78 272 | 90.68 211 | 65.95 271 | 93.34 212 | 93.82 116 |
|
| test1 | | | 82.02 195 | 82.07 187 | 81.85 220 | 86.38 250 | 61.05 284 | 86.83 124 | 88.27 210 | 72.43 196 | 86.00 192 | 95.64 34 | 63.78 272 | 90.68 211 | 65.95 271 | 93.34 212 | 93.82 116 |
|
| OpenMVS |  | 76.72 13 | 81.98 197 | 82.00 189 | 81.93 217 | 84.42 291 | 68.22 203 | 88.50 99 | 89.48 193 | 66.92 262 | 81.80 278 | 91.86 167 | 72.59 219 | 90.16 224 | 71.19 221 | 91.25 259 | 87.40 299 |
|
| KD-MVS_self_test | | | 81.93 198 | 83.14 171 | 78.30 276 | 84.75 285 | 52.75 359 | 80.37 258 | 89.42 195 | 70.24 226 | 90.26 95 | 93.39 119 | 74.55 194 | 86.77 286 | 68.61 252 | 96.64 94 | 95.38 54 |
|
| fmvsm_s_conf0.5_n | | | 81.91 199 | 81.30 205 | 83.75 173 | 86.02 264 | 71.56 170 | 84.73 163 | 77.11 327 | 62.44 300 | 84.00 237 | 90.68 210 | 76.42 175 | 85.89 305 | 83.14 77 | 87.11 323 | 93.81 119 |
|
| SDMVSNet | | | 81.90 200 | 83.17 170 | 78.10 280 | 88.81 192 | 62.45 265 | 76.08 326 | 86.05 246 | 73.67 171 | 83.41 249 | 93.04 127 | 82.35 100 | 80.65 346 | 70.06 234 | 95.03 162 | 91.21 222 |
|
| tfpnnormal | | | 81.79 201 | 82.95 174 | 78.31 275 | 88.93 189 | 55.40 340 | 80.83 254 | 82.85 288 | 76.81 134 | 85.90 196 | 94.14 89 | 74.58 193 | 86.51 290 | 66.82 264 | 95.68 142 | 93.01 154 |
|
| c3_l | | | 81.64 202 | 81.59 198 | 81.79 224 | 80.86 341 | 59.15 307 | 78.61 286 | 90.18 177 | 68.36 243 | 87.20 161 | 87.11 281 | 69.39 242 | 91.62 179 | 78.16 140 | 94.43 185 | 94.60 79 |
|
| PVSNet_Blended_VisFu | | | 81.55 203 | 80.49 218 | 84.70 147 | 91.58 127 | 73.24 141 | 84.21 173 | 91.67 128 | 62.86 294 | 80.94 290 | 87.16 279 | 67.27 253 | 92.87 149 | 69.82 236 | 88.94 298 | 87.99 290 |
|
| fmvsm_l_conf0.5_n_a | | | 81.46 204 | 80.87 213 | 83.25 189 | 83.73 304 | 73.21 142 | 83.00 209 | 85.59 254 | 58.22 338 | 82.96 257 | 90.09 229 | 72.30 222 | 86.65 288 | 81.97 98 | 89.95 285 | 89.88 259 |
|
| DELS-MVS | | | 81.44 205 | 81.25 206 | 82.03 216 | 84.27 295 | 62.87 257 | 76.47 320 | 92.49 103 | 70.97 217 | 81.64 282 | 83.83 327 | 75.03 184 | 92.70 151 | 74.29 184 | 92.22 239 | 90.51 245 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| FMVSNet2 | | | 81.31 206 | 81.61 197 | 80.41 246 | 86.38 250 | 58.75 314 | 83.93 182 | 86.58 238 | 72.43 196 | 87.65 156 | 92.98 131 | 63.78 272 | 90.22 222 | 66.86 261 | 93.92 199 | 92.27 189 |
|
| TinyColmap | | | 81.25 207 | 82.34 186 | 77.99 283 | 85.33 274 | 60.68 291 | 82.32 229 | 88.33 208 | 71.26 213 | 86.97 170 | 92.22 162 | 77.10 163 | 86.98 281 | 62.37 302 | 95.17 156 | 86.31 310 |
|
| AUN-MVS | | | 81.18 208 | 78.78 241 | 88.39 79 | 90.93 147 | 82.14 62 | 82.51 224 | 83.67 281 | 64.69 286 | 80.29 300 | 85.91 300 | 51.07 343 | 92.38 159 | 76.29 166 | 93.63 209 | 90.65 241 |
|
| tttt0517 | | | 81.07 209 | 79.58 232 | 85.52 131 | 88.99 187 | 66.45 222 | 87.03 119 | 75.51 339 | 73.76 170 | 88.32 141 | 90.20 223 | 37.96 400 | 94.16 99 | 79.36 126 | 95.13 157 | 95.93 42 |
|
| Fast-Effi-MVS+ | | | 81.04 210 | 80.57 215 | 82.46 212 | 87.50 227 | 63.22 253 | 78.37 289 | 89.63 190 | 68.01 248 | 81.87 274 | 82.08 348 | 82.31 102 | 92.65 153 | 67.10 260 | 88.30 310 | 91.51 218 |
|
| BH-untuned | | | 80.96 211 | 80.99 210 | 80.84 239 | 88.55 201 | 68.23 202 | 80.33 259 | 88.46 204 | 72.79 193 | 86.55 179 | 86.76 285 | 74.72 191 | 91.77 178 | 61.79 309 | 88.99 296 | 82.52 363 |
|
| eth_miper_zixun_eth | | | 80.84 212 | 80.22 224 | 82.71 205 | 81.41 333 | 60.98 287 | 77.81 295 | 90.14 178 | 67.31 258 | 86.95 171 | 87.24 278 | 64.26 267 | 92.31 162 | 75.23 178 | 91.61 252 | 94.85 74 |
|
| xiu_mvs_v1_base_debu | | | 80.84 212 | 80.14 226 | 82.93 200 | 88.31 205 | 71.73 164 | 79.53 268 | 87.17 224 | 65.43 277 | 79.59 306 | 82.73 342 | 76.94 166 | 90.14 227 | 73.22 204 | 88.33 306 | 86.90 304 |
|
| xiu_mvs_v1_base | | | 80.84 212 | 80.14 226 | 82.93 200 | 88.31 205 | 71.73 164 | 79.53 268 | 87.17 224 | 65.43 277 | 79.59 306 | 82.73 342 | 76.94 166 | 90.14 227 | 73.22 204 | 88.33 306 | 86.90 304 |
|
| xiu_mvs_v1_base_debi | | | 80.84 212 | 80.14 226 | 82.93 200 | 88.31 205 | 71.73 164 | 79.53 268 | 87.17 224 | 65.43 277 | 79.59 306 | 82.73 342 | 76.94 166 | 90.14 227 | 73.22 204 | 88.33 306 | 86.90 304 |
|
| IterMVS-SCA-FT | | | 80.64 216 | 79.41 233 | 84.34 158 | 83.93 300 | 69.66 186 | 76.28 322 | 81.09 303 | 72.43 196 | 86.47 185 | 90.19 224 | 60.46 289 | 93.15 138 | 77.45 151 | 86.39 335 | 90.22 250 |
|
| BH-RMVSNet | | | 80.53 217 | 80.22 224 | 81.49 229 | 87.19 233 | 66.21 224 | 77.79 296 | 86.23 241 | 74.21 165 | 83.69 243 | 88.50 253 | 73.25 212 | 90.75 208 | 63.18 299 | 87.90 314 | 87.52 297 |
|
| Anonymous202405211 | | | 80.51 218 | 81.19 209 | 78.49 272 | 88.48 202 | 57.26 326 | 76.63 315 | 82.49 291 | 81.21 80 | 84.30 231 | 92.24 161 | 67.99 250 | 86.24 294 | 62.22 303 | 95.13 157 | 91.98 203 |
|
| DIV-MVS_self_test | | | 80.43 219 | 80.23 222 | 81.02 237 | 79.99 349 | 59.25 304 | 77.07 308 | 87.02 232 | 67.38 255 | 86.19 188 | 89.22 241 | 63.09 277 | 90.16 224 | 76.32 164 | 95.80 136 | 93.66 124 |
|
| cl____ | | | 80.42 220 | 80.23 222 | 81.02 237 | 79.99 349 | 59.25 304 | 77.07 308 | 87.02 232 | 67.37 256 | 86.18 190 | 89.21 242 | 63.08 278 | 90.16 224 | 76.31 165 | 95.80 136 | 93.65 126 |
|
| diffmvs |  | | 80.40 221 | 80.48 219 | 80.17 250 | 79.02 362 | 60.04 295 | 77.54 300 | 90.28 174 | 66.65 265 | 82.40 265 | 87.33 276 | 73.50 204 | 87.35 275 | 77.98 144 | 89.62 289 | 93.13 148 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| EPNet | | | 80.37 222 | 78.41 248 | 86.23 113 | 76.75 376 | 73.28 139 | 87.18 116 | 77.45 322 | 76.24 138 | 68.14 387 | 88.93 247 | 65.41 263 | 93.85 107 | 69.47 238 | 96.12 118 | 91.55 217 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| miper_ehance_all_eth | | | 80.34 223 | 80.04 229 | 81.24 233 | 79.82 352 | 58.95 309 | 77.66 297 | 89.66 188 | 65.75 274 | 85.99 195 | 85.11 311 | 68.29 249 | 91.42 186 | 76.03 169 | 92.03 241 | 93.33 138 |
|
| MG-MVS | | | 80.32 224 | 80.94 211 | 78.47 273 | 88.18 208 | 52.62 362 | 82.29 230 | 85.01 266 | 72.01 206 | 79.24 313 | 92.54 148 | 69.36 243 | 93.36 132 | 70.65 227 | 89.19 295 | 89.45 263 |
|
| mvsmamba | | | 80.30 225 | 78.87 238 | 84.58 150 | 88.12 211 | 67.55 210 | 92.35 29 | 84.88 269 | 63.15 292 | 85.33 205 | 90.91 200 | 50.71 345 | 95.20 62 | 66.36 267 | 87.98 313 | 90.99 227 |
|
| VPNet | | | 80.25 226 | 81.68 193 | 75.94 310 | 92.46 95 | 47.98 385 | 76.70 313 | 81.67 298 | 73.45 176 | 84.87 216 | 92.82 138 | 74.66 192 | 86.51 290 | 61.66 311 | 96.85 87 | 93.33 138 |
|
| MAR-MVS | | | 80.24 227 | 78.74 243 | 84.73 145 | 86.87 244 | 78.18 92 | 85.75 146 | 87.81 216 | 65.67 276 | 77.84 323 | 78.50 379 | 73.79 201 | 90.53 215 | 61.59 312 | 90.87 269 | 85.49 320 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| PM-MVS | | | 80.20 228 | 79.00 237 | 83.78 172 | 88.17 209 | 86.66 19 | 81.31 244 | 66.81 393 | 69.64 230 | 88.33 140 | 90.19 224 | 64.58 265 | 83.63 329 | 71.99 217 | 90.03 283 | 81.06 382 |
|
| Anonymous20240521 | | | 80.18 229 | 81.25 206 | 76.95 296 | 83.15 318 | 60.84 289 | 82.46 225 | 85.99 248 | 68.76 239 | 86.78 172 | 93.73 112 | 59.13 301 | 77.44 363 | 73.71 197 | 97.55 69 | 92.56 171 |
|
| LFMVS | | | 80.15 230 | 80.56 216 | 78.89 264 | 89.19 183 | 55.93 334 | 85.22 156 | 73.78 351 | 82.96 63 | 84.28 232 | 92.72 143 | 57.38 313 | 90.07 231 | 63.80 293 | 95.75 139 | 90.68 239 |
|
| DPM-MVS | | | 80.10 231 | 79.18 236 | 82.88 203 | 90.71 153 | 69.74 184 | 78.87 282 | 90.84 151 | 60.29 326 | 75.64 345 | 85.92 299 | 67.28 252 | 93.11 139 | 71.24 220 | 91.79 247 | 85.77 316 |
|
| MSDG | | | 80.06 232 | 79.99 231 | 80.25 248 | 83.91 301 | 68.04 207 | 77.51 301 | 89.19 196 | 77.65 126 | 81.94 272 | 83.45 332 | 76.37 176 | 86.31 293 | 63.31 298 | 86.59 332 | 86.41 308 |
|
| FE-MVS | | | 79.98 233 | 78.86 239 | 83.36 186 | 86.47 247 | 66.45 222 | 89.73 70 | 84.74 273 | 72.80 192 | 84.22 235 | 91.38 183 | 44.95 380 | 93.60 119 | 63.93 291 | 91.50 255 | 90.04 257 |
|
| sd_testset | | | 79.95 234 | 81.39 204 | 75.64 313 | 88.81 192 | 58.07 318 | 76.16 325 | 82.81 289 | 73.67 171 | 83.41 249 | 93.04 127 | 80.96 124 | 77.65 362 | 58.62 327 | 95.03 162 | 91.21 222 |
|
| ab-mvs | | | 79.67 235 | 80.56 216 | 76.99 295 | 88.48 202 | 56.93 328 | 84.70 164 | 86.06 245 | 68.95 237 | 80.78 293 | 93.08 126 | 75.30 182 | 84.62 317 | 56.78 336 | 90.90 267 | 89.43 265 |
|
| VNet | | | 79.31 236 | 80.27 221 | 76.44 304 | 87.92 215 | 53.95 351 | 75.58 332 | 84.35 276 | 74.39 164 | 82.23 268 | 90.72 208 | 72.84 216 | 84.39 321 | 60.38 319 | 93.98 198 | 90.97 228 |
|
| thisisatest0530 | | | 79.07 237 | 77.33 257 | 84.26 161 | 87.13 234 | 64.58 237 | 83.66 191 | 75.95 334 | 68.86 238 | 85.22 207 | 87.36 275 | 38.10 397 | 93.57 123 | 75.47 175 | 94.28 189 | 94.62 78 |
|
| cl22 | | | 78.97 238 | 78.21 250 | 81.24 233 | 77.74 366 | 59.01 308 | 77.46 304 | 87.13 227 | 65.79 271 | 84.32 228 | 85.10 312 | 58.96 303 | 90.88 204 | 75.36 177 | 92.03 241 | 93.84 114 |
|
| patch_mono-2 | | | 78.89 239 | 79.39 234 | 77.41 292 | 84.78 283 | 68.11 205 | 75.60 330 | 83.11 285 | 60.96 319 | 79.36 310 | 89.89 232 | 75.18 183 | 72.97 375 | 73.32 203 | 92.30 233 | 91.15 224 |
|
| RPMNet | | | 78.88 240 | 78.28 249 | 80.68 243 | 79.58 353 | 62.64 261 | 82.58 220 | 94.16 32 | 74.80 159 | 75.72 343 | 92.59 145 | 48.69 352 | 95.56 42 | 73.48 200 | 82.91 371 | 83.85 342 |
|
| PAPR | | | 78.84 241 | 78.10 251 | 81.07 235 | 85.17 278 | 60.22 294 | 82.21 234 | 90.57 159 | 62.51 296 | 75.32 349 | 84.61 320 | 74.99 185 | 92.30 163 | 59.48 324 | 88.04 312 | 90.68 239 |
|
| PVSNet_BlendedMVS | | | 78.80 242 | 77.84 252 | 81.65 226 | 84.43 289 | 63.41 249 | 79.49 271 | 90.44 162 | 61.70 308 | 75.43 346 | 87.07 282 | 69.11 245 | 91.44 184 | 60.68 317 | 92.24 237 | 90.11 255 |
|
| FMVSNet3 | | | 78.80 242 | 78.55 245 | 79.57 258 | 82.89 321 | 56.89 330 | 81.76 238 | 85.77 250 | 69.04 236 | 86.00 192 | 90.44 217 | 51.75 341 | 90.09 230 | 65.95 271 | 93.34 212 | 91.72 210 |
|
| test_yl | | | 78.71 244 | 78.51 246 | 79.32 261 | 84.32 293 | 58.84 311 | 78.38 287 | 85.33 257 | 75.99 142 | 82.49 263 | 86.57 287 | 58.01 307 | 90.02 233 | 62.74 300 | 92.73 228 | 89.10 272 |
|
| DCV-MVSNet | | | 78.71 244 | 78.51 246 | 79.32 261 | 84.32 293 | 58.84 311 | 78.38 287 | 85.33 257 | 75.99 142 | 82.49 263 | 86.57 287 | 58.01 307 | 90.02 233 | 62.74 300 | 92.73 228 | 89.10 272 |
|
| test1111 | | | 78.53 246 | 78.85 240 | 77.56 289 | 92.22 103 | 47.49 387 | 82.61 218 | 69.24 382 | 72.43 196 | 85.28 206 | 94.20 85 | 51.91 339 | 90.07 231 | 65.36 279 | 96.45 103 | 95.11 65 |
|
| ECVR-MVS |  | | 78.44 247 | 78.63 244 | 77.88 285 | 91.85 117 | 48.95 381 | 83.68 190 | 69.91 378 | 72.30 202 | 84.26 234 | 94.20 85 | 51.89 340 | 89.82 236 | 63.58 294 | 96.02 122 | 94.87 70 |
|
| pmmvs-eth3d | | | 78.42 248 | 77.04 260 | 82.57 210 | 87.44 228 | 74.41 130 | 80.86 253 | 79.67 311 | 55.68 355 | 84.69 219 | 90.31 221 | 60.91 287 | 85.42 310 | 62.20 304 | 91.59 253 | 87.88 293 |
|
| mvs_anonymous | | | 78.13 249 | 78.76 242 | 76.23 309 | 79.24 359 | 50.31 378 | 78.69 284 | 84.82 271 | 61.60 310 | 83.09 256 | 92.82 138 | 73.89 200 | 87.01 278 | 68.33 256 | 86.41 334 | 91.37 219 |
|
| TAMVS | | | 78.08 250 | 76.36 266 | 83.23 190 | 90.62 154 | 72.87 143 | 79.08 278 | 80.01 310 | 61.72 307 | 81.35 286 | 86.92 284 | 63.96 271 | 88.78 258 | 50.61 374 | 93.01 222 | 88.04 289 |
|
| miper_enhance_ethall | | | 77.83 251 | 76.93 261 | 80.51 244 | 76.15 383 | 58.01 320 | 75.47 334 | 88.82 199 | 58.05 340 | 83.59 245 | 80.69 358 | 64.41 266 | 91.20 190 | 73.16 210 | 92.03 241 | 92.33 185 |
|
| Vis-MVSNet (Re-imp) | | | 77.82 252 | 77.79 253 | 77.92 284 | 88.82 191 | 51.29 372 | 83.28 199 | 71.97 366 | 74.04 166 | 82.23 268 | 89.78 233 | 57.38 313 | 89.41 248 | 57.22 335 | 95.41 146 | 93.05 152 |
|
| CANet_DTU | | | 77.81 253 | 77.05 259 | 80.09 251 | 81.37 334 | 59.90 298 | 83.26 200 | 88.29 209 | 69.16 234 | 67.83 390 | 83.72 328 | 60.93 286 | 89.47 243 | 69.22 242 | 89.70 288 | 90.88 232 |
|
| OpenMVS_ROB |  | 70.19 17 | 77.77 254 | 77.46 254 | 78.71 268 | 84.39 292 | 61.15 282 | 81.18 248 | 82.52 290 | 62.45 299 | 83.34 251 | 87.37 274 | 66.20 258 | 88.66 260 | 64.69 286 | 85.02 351 | 86.32 309 |
|
| SSC-MVS | | | 77.55 255 | 81.64 195 | 65.29 381 | 90.46 157 | 20.33 427 | 73.56 350 | 68.28 384 | 85.44 37 | 88.18 144 | 94.64 64 | 70.93 235 | 81.33 341 | 71.25 219 | 92.03 241 | 94.20 96 |
|
| MDA-MVSNet-bldmvs | | | 77.47 256 | 76.90 262 | 79.16 263 | 79.03 361 | 64.59 236 | 66.58 391 | 75.67 337 | 73.15 187 | 88.86 124 | 88.99 246 | 66.94 254 | 81.23 342 | 64.71 285 | 88.22 311 | 91.64 214 |
|
| jason | | | 77.42 257 | 75.75 272 | 82.43 213 | 87.10 237 | 69.27 190 | 77.99 292 | 81.94 296 | 51.47 381 | 77.84 323 | 85.07 315 | 60.32 291 | 89.00 252 | 70.74 226 | 89.27 294 | 89.03 275 |
| jason: jason. |
| CDS-MVSNet | | | 77.32 258 | 75.40 275 | 83.06 194 | 89.00 186 | 72.48 154 | 77.90 294 | 82.17 294 | 60.81 320 | 78.94 315 | 83.49 331 | 59.30 299 | 88.76 259 | 54.64 354 | 92.37 232 | 87.93 292 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| xiu_mvs_v2_base | | | 77.19 259 | 76.75 263 | 78.52 271 | 87.01 240 | 61.30 280 | 75.55 333 | 87.12 230 | 61.24 316 | 74.45 354 | 78.79 377 | 77.20 160 | 90.93 200 | 64.62 288 | 84.80 358 | 83.32 351 |
|
| MVSTER | | | 77.09 260 | 75.70 273 | 81.25 231 | 75.27 391 | 61.08 283 | 77.49 303 | 85.07 262 | 60.78 321 | 86.55 179 | 88.68 250 | 43.14 389 | 90.25 219 | 73.69 198 | 90.67 275 | 92.42 178 |
|
| PS-MVSNAJ | | | 77.04 261 | 76.53 265 | 78.56 270 | 87.09 238 | 61.40 278 | 75.26 335 | 87.13 227 | 61.25 315 | 74.38 356 | 77.22 390 | 76.94 166 | 90.94 199 | 64.63 287 | 84.83 357 | 83.35 350 |
|
| IterMVS | | | 76.91 262 | 76.34 267 | 78.64 269 | 80.91 339 | 64.03 243 | 76.30 321 | 79.03 314 | 64.88 285 | 83.11 254 | 89.16 243 | 59.90 295 | 84.46 319 | 68.61 252 | 85.15 349 | 87.42 298 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| D2MVS | | | 76.84 263 | 75.67 274 | 80.34 247 | 80.48 347 | 62.16 273 | 73.50 351 | 84.80 272 | 57.61 344 | 82.24 267 | 87.54 270 | 51.31 342 | 87.65 271 | 70.40 231 | 93.19 218 | 91.23 221 |
|
| CL-MVSNet_self_test | | | 76.81 264 | 77.38 256 | 75.12 316 | 86.90 242 | 51.34 370 | 73.20 354 | 80.63 307 | 68.30 245 | 81.80 278 | 88.40 254 | 66.92 255 | 80.90 343 | 55.35 348 | 94.90 168 | 93.12 150 |
|
| TR-MVS | | | 76.77 265 | 75.79 271 | 79.72 255 | 86.10 263 | 65.79 228 | 77.14 306 | 83.02 286 | 65.20 283 | 81.40 285 | 82.10 346 | 66.30 257 | 90.73 210 | 55.57 345 | 85.27 345 | 82.65 358 |
|
| MonoMVSNet | | | 76.66 266 | 77.26 258 | 74.86 318 | 79.86 351 | 54.34 348 | 86.26 137 | 86.08 244 | 71.08 216 | 85.59 200 | 88.68 250 | 53.95 331 | 85.93 301 | 63.86 292 | 80.02 386 | 84.32 333 |
|
| USDC | | | 76.63 267 | 76.73 264 | 76.34 306 | 83.46 307 | 57.20 327 | 80.02 262 | 88.04 214 | 52.14 377 | 83.65 244 | 91.25 186 | 63.24 275 | 86.65 288 | 54.66 353 | 94.11 194 | 85.17 322 |
|
| BH-w/o | | | 76.57 268 | 76.07 270 | 78.10 280 | 86.88 243 | 65.92 227 | 77.63 298 | 86.33 239 | 65.69 275 | 80.89 291 | 79.95 367 | 68.97 247 | 90.74 209 | 53.01 364 | 85.25 346 | 77.62 393 |
|
| Patchmtry | | | 76.56 269 | 77.46 254 | 73.83 324 | 79.37 358 | 46.60 391 | 82.41 227 | 76.90 328 | 73.81 169 | 85.56 202 | 92.38 152 | 48.07 355 | 83.98 326 | 63.36 297 | 95.31 152 | 90.92 230 |
|
| PVSNet_Blended | | | 76.49 270 | 75.40 275 | 79.76 254 | 84.43 289 | 63.41 249 | 75.14 336 | 90.44 162 | 57.36 346 | 75.43 346 | 78.30 380 | 69.11 245 | 91.44 184 | 60.68 317 | 87.70 318 | 84.42 332 |
|
| miper_lstm_enhance | | | 76.45 271 | 76.10 269 | 77.51 290 | 76.72 377 | 60.97 288 | 64.69 395 | 85.04 264 | 63.98 289 | 83.20 253 | 88.22 256 | 56.67 317 | 78.79 359 | 73.22 204 | 93.12 219 | 92.78 161 |
|
| lupinMVS | | | 76.37 272 | 74.46 284 | 82.09 215 | 85.54 271 | 69.26 191 | 76.79 311 | 80.77 306 | 50.68 388 | 76.23 336 | 82.82 340 | 58.69 304 | 88.94 253 | 69.85 235 | 88.77 299 | 88.07 286 |
|
| cascas | | | 76.29 273 | 74.81 280 | 80.72 242 | 84.47 288 | 62.94 255 | 73.89 348 | 87.34 220 | 55.94 353 | 75.16 351 | 76.53 395 | 63.97 270 | 91.16 192 | 65.00 282 | 90.97 265 | 88.06 288 |
|
| WB-MVS | | | 76.06 274 | 80.01 230 | 64.19 384 | 89.96 170 | 20.58 426 | 72.18 359 | 68.19 385 | 83.21 59 | 86.46 186 | 93.49 117 | 70.19 239 | 78.97 357 | 65.96 270 | 90.46 280 | 93.02 153 |
|
| thres600view7 | | | 75.97 275 | 75.35 277 | 77.85 287 | 87.01 240 | 51.84 368 | 80.45 257 | 73.26 356 | 75.20 156 | 83.10 255 | 86.31 293 | 45.54 370 | 89.05 251 | 55.03 351 | 92.24 237 | 92.66 167 |
|
| GA-MVS | | | 75.83 276 | 74.61 281 | 79.48 260 | 81.87 326 | 59.25 304 | 73.42 352 | 82.88 287 | 68.68 240 | 79.75 305 | 81.80 351 | 50.62 346 | 89.46 244 | 66.85 262 | 85.64 342 | 89.72 260 |
|
| MVP-Stereo | | | 75.81 277 | 73.51 293 | 82.71 205 | 89.35 178 | 73.62 134 | 80.06 260 | 85.20 259 | 60.30 325 | 73.96 357 | 87.94 261 | 57.89 311 | 89.45 245 | 52.02 368 | 74.87 404 | 85.06 324 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| test_fmvs3 | | | 75.72 278 | 75.20 278 | 77.27 293 | 75.01 394 | 69.47 188 | 78.93 279 | 84.88 269 | 46.67 395 | 87.08 167 | 87.84 264 | 50.44 348 | 71.62 380 | 77.42 153 | 88.53 302 | 90.72 236 |
|
| thres100view900 | | | 75.45 279 | 75.05 279 | 76.66 302 | 87.27 230 | 51.88 367 | 81.07 249 | 73.26 356 | 75.68 148 | 83.25 252 | 86.37 290 | 45.54 370 | 88.80 255 | 51.98 369 | 90.99 262 | 89.31 267 |
|
| ET-MVSNet_ETH3D | | | 75.28 280 | 72.77 302 | 82.81 204 | 83.03 320 | 68.11 205 | 77.09 307 | 76.51 332 | 60.67 323 | 77.60 328 | 80.52 362 | 38.04 398 | 91.15 193 | 70.78 224 | 90.68 274 | 89.17 270 |
|
| thres400 | | | 75.14 281 | 74.23 286 | 77.86 286 | 86.24 257 | 52.12 364 | 79.24 275 | 73.87 349 | 73.34 180 | 81.82 276 | 84.60 321 | 46.02 363 | 88.80 255 | 51.98 369 | 90.99 262 | 92.66 167 |
|
| wuyk23d | | | 75.13 282 | 79.30 235 | 62.63 387 | 75.56 387 | 75.18 126 | 80.89 252 | 73.10 358 | 75.06 158 | 94.76 16 | 95.32 41 | 87.73 43 | 52.85 418 | 34.16 417 | 97.11 82 | 59.85 414 |
|
| EU-MVSNet | | | 75.12 283 | 74.43 285 | 77.18 294 | 83.11 319 | 59.48 302 | 85.71 148 | 82.43 292 | 39.76 415 | 85.64 199 | 88.76 248 | 44.71 382 | 87.88 269 | 73.86 194 | 85.88 341 | 84.16 338 |
|
| HyFIR lowres test | | | 75.12 283 | 72.66 304 | 82.50 211 | 91.44 135 | 65.19 233 | 72.47 357 | 87.31 221 | 46.79 394 | 80.29 300 | 84.30 323 | 52.70 336 | 92.10 169 | 51.88 373 | 86.73 330 | 90.22 250 |
|
| CMPMVS |  | 59.41 20 | 75.12 283 | 73.57 291 | 79.77 253 | 75.84 386 | 67.22 211 | 81.21 247 | 82.18 293 | 50.78 386 | 76.50 332 | 87.66 268 | 55.20 327 | 82.99 332 | 62.17 306 | 90.64 279 | 89.09 274 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| pmmvs4 | | | 74.92 286 | 72.98 300 | 80.73 241 | 84.95 280 | 71.71 167 | 76.23 323 | 77.59 321 | 52.83 371 | 77.73 327 | 86.38 289 | 56.35 320 | 84.97 314 | 57.72 334 | 87.05 325 | 85.51 319 |
|
| tfpn200view9 | | | 74.86 287 | 74.23 286 | 76.74 301 | 86.24 257 | 52.12 364 | 79.24 275 | 73.87 349 | 73.34 180 | 81.82 276 | 84.60 321 | 46.02 363 | 88.80 255 | 51.98 369 | 90.99 262 | 89.31 267 |
|
| 1112_ss | | | 74.82 288 | 73.74 289 | 78.04 282 | 89.57 172 | 60.04 295 | 76.49 319 | 87.09 231 | 54.31 363 | 73.66 360 | 79.80 368 | 60.25 292 | 86.76 287 | 58.37 328 | 84.15 362 | 87.32 300 |
|
| EGC-MVSNET | | | 74.79 289 | 69.99 331 | 89.19 65 | 94.89 38 | 87.00 15 | 91.89 37 | 86.28 240 | 1.09 424 | 2.23 426 | 95.98 27 | 81.87 114 | 89.48 242 | 79.76 118 | 95.96 125 | 91.10 225 |
|
| ppachtmachnet_test | | | 74.73 290 | 74.00 288 | 76.90 298 | 80.71 344 | 56.89 330 | 71.53 365 | 78.42 316 | 58.24 337 | 79.32 312 | 82.92 339 | 57.91 310 | 84.26 323 | 65.60 277 | 91.36 257 | 89.56 262 |
|
| Patchmatch-RL test | | | 74.48 291 | 73.68 290 | 76.89 299 | 84.83 282 | 66.54 220 | 72.29 358 | 69.16 383 | 57.70 342 | 86.76 173 | 86.33 291 | 45.79 369 | 82.59 333 | 69.63 237 | 90.65 278 | 81.54 373 |
|
| PatchMatch-RL | | | 74.48 291 | 73.22 297 | 78.27 278 | 87.70 220 | 85.26 38 | 75.92 328 | 70.09 376 | 64.34 287 | 76.09 339 | 81.25 356 | 65.87 261 | 78.07 361 | 53.86 356 | 83.82 364 | 71.48 402 |
|
| XXY-MVS | | | 74.44 293 | 76.19 268 | 69.21 358 | 84.61 287 | 52.43 363 | 71.70 362 | 77.18 326 | 60.73 322 | 80.60 294 | 90.96 198 | 75.44 179 | 69.35 387 | 56.13 341 | 88.33 306 | 85.86 315 |
|
| test2506 | | | 74.12 294 | 73.39 294 | 76.28 307 | 91.85 117 | 44.20 401 | 84.06 177 | 48.20 422 | 72.30 202 | 81.90 273 | 94.20 85 | 27.22 422 | 89.77 239 | 64.81 284 | 96.02 122 | 94.87 70 |
|
| reproduce_monomvs | | | 74.09 295 | 73.23 296 | 76.65 303 | 76.52 378 | 54.54 346 | 77.50 302 | 81.40 301 | 65.85 270 | 82.86 260 | 86.67 286 | 27.38 420 | 84.53 318 | 70.24 232 | 90.66 277 | 90.89 231 |
|
| CR-MVSNet | | | 74.00 296 | 73.04 299 | 76.85 300 | 79.58 353 | 62.64 261 | 82.58 220 | 76.90 328 | 50.50 389 | 75.72 343 | 92.38 152 | 48.07 355 | 84.07 325 | 68.72 251 | 82.91 371 | 83.85 342 |
|
| Test_1112_low_res | | | 73.90 297 | 73.08 298 | 76.35 305 | 90.35 159 | 55.95 333 | 73.40 353 | 86.17 242 | 50.70 387 | 73.14 361 | 85.94 298 | 58.31 306 | 85.90 304 | 56.51 338 | 83.22 368 | 87.20 301 |
|
| test20.03 | | | 73.75 298 | 74.59 283 | 71.22 345 | 81.11 337 | 51.12 374 | 70.15 375 | 72.10 365 | 70.42 221 | 80.28 302 | 91.50 180 | 64.21 268 | 74.72 374 | 46.96 393 | 94.58 181 | 87.82 295 |
|
| test_fmvs2 | | | 73.57 299 | 72.80 301 | 75.90 311 | 72.74 407 | 68.84 198 | 77.07 308 | 84.32 277 | 45.14 401 | 82.89 258 | 84.22 324 | 48.37 353 | 70.36 384 | 73.40 202 | 87.03 326 | 88.52 281 |
|
| SCA | | | 73.32 300 | 72.57 306 | 75.58 314 | 81.62 330 | 55.86 336 | 78.89 281 | 71.37 371 | 61.73 306 | 74.93 352 | 83.42 333 | 60.46 289 | 87.01 278 | 58.11 332 | 82.63 376 | 83.88 339 |
|
| baseline1 | | | 73.26 301 | 73.54 292 | 72.43 338 | 84.92 281 | 47.79 386 | 79.89 264 | 74.00 347 | 65.93 268 | 78.81 316 | 86.28 294 | 56.36 319 | 81.63 340 | 56.63 337 | 79.04 393 | 87.87 294 |
|
| 1314 | | | 73.22 302 | 72.56 307 | 75.20 315 | 80.41 348 | 57.84 321 | 81.64 241 | 85.36 256 | 51.68 380 | 73.10 362 | 76.65 394 | 61.45 284 | 85.19 312 | 63.54 295 | 79.21 391 | 82.59 359 |
|
| MVS | | | 73.21 303 | 72.59 305 | 75.06 317 | 80.97 338 | 60.81 290 | 81.64 241 | 85.92 249 | 46.03 399 | 71.68 369 | 77.54 385 | 68.47 248 | 89.77 239 | 55.70 344 | 85.39 343 | 74.60 399 |
|
| HY-MVS | | 64.64 18 | 73.03 304 | 72.47 308 | 74.71 320 | 83.36 311 | 54.19 349 | 82.14 237 | 81.96 295 | 56.76 352 | 69.57 382 | 86.21 295 | 60.03 293 | 84.83 316 | 49.58 380 | 82.65 374 | 85.11 323 |
|
| thisisatest0515 | | | 73.00 305 | 70.52 323 | 80.46 245 | 81.45 332 | 59.90 298 | 73.16 355 | 74.31 346 | 57.86 341 | 76.08 340 | 77.78 383 | 37.60 401 | 92.12 168 | 65.00 282 | 91.45 256 | 89.35 266 |
|
| EPNet_dtu | | | 72.87 306 | 71.33 318 | 77.49 291 | 77.72 367 | 60.55 292 | 82.35 228 | 75.79 335 | 66.49 266 | 58.39 417 | 81.06 357 | 53.68 332 | 85.98 300 | 53.55 359 | 92.97 224 | 85.95 313 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| CVMVSNet | | | 72.62 307 | 71.41 317 | 76.28 307 | 83.25 314 | 60.34 293 | 83.50 194 | 79.02 315 | 37.77 419 | 76.33 334 | 85.10 312 | 49.60 351 | 87.41 274 | 70.54 229 | 77.54 399 | 81.08 380 |
|
| CHOSEN 1792x2688 | | | 72.45 308 | 70.56 322 | 78.13 279 | 90.02 169 | 63.08 254 | 68.72 380 | 83.16 284 | 42.99 409 | 75.92 341 | 85.46 305 | 57.22 315 | 85.18 313 | 49.87 378 | 81.67 378 | 86.14 311 |
|
| testgi | | | 72.36 309 | 74.61 281 | 65.59 378 | 80.56 346 | 42.82 406 | 68.29 381 | 73.35 355 | 66.87 263 | 81.84 275 | 89.93 230 | 72.08 226 | 66.92 400 | 46.05 396 | 92.54 230 | 87.01 303 |
|
| thres200 | | | 72.34 310 | 71.55 316 | 74.70 321 | 83.48 306 | 51.60 369 | 75.02 337 | 73.71 352 | 70.14 227 | 78.56 319 | 80.57 361 | 46.20 361 | 88.20 265 | 46.99 392 | 89.29 292 | 84.32 333 |
|
| FPMVS | | | 72.29 311 | 72.00 310 | 73.14 329 | 88.63 198 | 85.00 40 | 74.65 341 | 67.39 387 | 71.94 207 | 77.80 325 | 87.66 268 | 50.48 347 | 75.83 369 | 49.95 376 | 79.51 387 | 58.58 416 |
|
| FMVSNet5 | | | 72.10 312 | 71.69 312 | 73.32 327 | 81.57 331 | 53.02 358 | 76.77 312 | 78.37 317 | 63.31 290 | 76.37 333 | 91.85 168 | 36.68 402 | 78.98 356 | 47.87 389 | 92.45 231 | 87.95 291 |
|
| our_test_3 | | | 71.85 313 | 71.59 313 | 72.62 335 | 80.71 344 | 53.78 352 | 69.72 377 | 71.71 370 | 58.80 334 | 78.03 320 | 80.51 363 | 56.61 318 | 78.84 358 | 62.20 304 | 86.04 340 | 85.23 321 |
|
| PAPM | | | 71.77 314 | 70.06 329 | 76.92 297 | 86.39 249 | 53.97 350 | 76.62 316 | 86.62 237 | 53.44 367 | 63.97 407 | 84.73 319 | 57.79 312 | 92.34 161 | 39.65 408 | 81.33 382 | 84.45 331 |
|
| ttmdpeth | | | 71.72 315 | 70.67 320 | 74.86 318 | 73.08 404 | 55.88 335 | 77.41 305 | 69.27 381 | 55.86 354 | 78.66 317 | 93.77 110 | 38.01 399 | 75.39 371 | 60.12 320 | 89.87 286 | 93.31 140 |
|
| IB-MVS | | 62.13 19 | 71.64 316 | 68.97 341 | 79.66 257 | 80.80 343 | 62.26 270 | 73.94 347 | 76.90 328 | 63.27 291 | 68.63 386 | 76.79 392 | 33.83 406 | 91.84 176 | 59.28 325 | 87.26 320 | 84.88 325 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| UnsupCasMVSNet_eth | | | 71.63 317 | 72.30 309 | 69.62 355 | 76.47 380 | 52.70 361 | 70.03 376 | 80.97 304 | 59.18 331 | 79.36 310 | 88.21 257 | 60.50 288 | 69.12 388 | 58.33 330 | 77.62 398 | 87.04 302 |
|
| testing3 | | | 71.53 318 | 70.79 319 | 73.77 325 | 88.89 190 | 41.86 408 | 76.60 318 | 59.12 412 | 72.83 191 | 80.97 288 | 82.08 348 | 19.80 428 | 87.33 276 | 65.12 281 | 91.68 251 | 92.13 196 |
|
| test_vis3_rt | | | 71.42 319 | 70.67 320 | 73.64 326 | 69.66 414 | 70.46 177 | 66.97 390 | 89.73 185 | 42.68 411 | 88.20 143 | 83.04 335 | 43.77 384 | 60.07 412 | 65.35 280 | 86.66 331 | 90.39 248 |
|
| Anonymous20231206 | | | 71.38 320 | 71.88 311 | 69.88 352 | 86.31 254 | 54.37 347 | 70.39 373 | 74.62 342 | 52.57 373 | 76.73 331 | 88.76 248 | 59.94 294 | 72.06 377 | 44.35 400 | 93.23 217 | 83.23 353 |
|
| test_vis1_n_1920 | | | 71.30 321 | 71.58 315 | 70.47 348 | 77.58 369 | 59.99 297 | 74.25 342 | 84.22 278 | 51.06 383 | 74.85 353 | 79.10 374 | 55.10 328 | 68.83 390 | 68.86 248 | 79.20 392 | 82.58 360 |
|
| MIMVSNet | | | 71.09 322 | 71.59 313 | 69.57 356 | 87.23 231 | 50.07 379 | 78.91 280 | 71.83 367 | 60.20 328 | 71.26 370 | 91.76 174 | 55.08 329 | 76.09 367 | 41.06 405 | 87.02 327 | 82.54 362 |
|
| test_fmvs1_n | | | 70.94 323 | 70.41 326 | 72.53 337 | 73.92 396 | 66.93 217 | 75.99 327 | 84.21 279 | 43.31 408 | 79.40 309 | 79.39 372 | 43.47 385 | 68.55 392 | 69.05 245 | 84.91 354 | 82.10 367 |
|
| MS-PatchMatch | | | 70.93 324 | 70.22 327 | 73.06 330 | 81.85 327 | 62.50 264 | 73.82 349 | 77.90 318 | 52.44 374 | 75.92 341 | 81.27 355 | 55.67 324 | 81.75 338 | 55.37 347 | 77.70 397 | 74.94 398 |
|
| pmmvs5 | | | 70.73 325 | 70.07 328 | 72.72 333 | 77.03 374 | 52.73 360 | 74.14 343 | 75.65 338 | 50.36 390 | 72.17 367 | 85.37 309 | 55.42 326 | 80.67 345 | 52.86 365 | 87.59 319 | 84.77 326 |
|
| PatchT | | | 70.52 326 | 72.76 303 | 63.79 386 | 79.38 357 | 33.53 420 | 77.63 298 | 65.37 397 | 73.61 173 | 71.77 368 | 92.79 141 | 44.38 383 | 75.65 370 | 64.53 289 | 85.37 344 | 82.18 366 |
|
| test_vis1_n | | | 70.29 327 | 69.99 331 | 71.20 346 | 75.97 385 | 66.50 221 | 76.69 314 | 80.81 305 | 44.22 404 | 75.43 346 | 77.23 389 | 50.00 349 | 68.59 391 | 66.71 265 | 82.85 373 | 78.52 392 |
|
| N_pmnet | | | 70.20 328 | 68.80 343 | 74.38 322 | 80.91 339 | 84.81 43 | 59.12 407 | 76.45 333 | 55.06 358 | 75.31 350 | 82.36 345 | 55.74 323 | 54.82 417 | 47.02 391 | 87.24 321 | 83.52 346 |
|
| tpmvs | | | 70.16 329 | 69.56 334 | 71.96 341 | 74.71 395 | 48.13 383 | 79.63 266 | 75.45 340 | 65.02 284 | 70.26 378 | 81.88 350 | 45.34 375 | 85.68 308 | 58.34 329 | 75.39 403 | 82.08 368 |
|
| new-patchmatchnet | | | 70.10 330 | 73.37 295 | 60.29 394 | 81.23 336 | 16.95 429 | 59.54 405 | 74.62 342 | 62.93 293 | 80.97 288 | 87.93 262 | 62.83 281 | 71.90 378 | 55.24 349 | 95.01 165 | 92.00 201 |
|
| YYNet1 | | | 70.06 331 | 70.44 324 | 68.90 360 | 73.76 398 | 53.42 356 | 58.99 408 | 67.20 389 | 58.42 336 | 87.10 165 | 85.39 308 | 59.82 296 | 67.32 397 | 59.79 322 | 83.50 367 | 85.96 312 |
|
| MVStest1 | | | 70.05 332 | 69.26 335 | 72.41 339 | 58.62 426 | 55.59 339 | 76.61 317 | 65.58 395 | 53.44 367 | 89.28 120 | 93.32 120 | 22.91 426 | 71.44 382 | 74.08 190 | 89.52 290 | 90.21 254 |
|
| MDA-MVSNet_test_wron | | | 70.05 332 | 70.44 324 | 68.88 361 | 73.84 397 | 53.47 354 | 58.93 409 | 67.28 388 | 58.43 335 | 87.09 166 | 85.40 307 | 59.80 297 | 67.25 398 | 59.66 323 | 83.54 366 | 85.92 314 |
|
| CostFormer | | | 69.98 334 | 68.68 344 | 73.87 323 | 77.14 372 | 50.72 376 | 79.26 274 | 74.51 344 | 51.94 379 | 70.97 373 | 84.75 318 | 45.16 378 | 87.49 273 | 55.16 350 | 79.23 390 | 83.40 349 |
|
| testing91 | | | 69.94 335 | 68.99 340 | 72.80 332 | 83.81 303 | 45.89 394 | 71.57 364 | 73.64 354 | 68.24 246 | 70.77 376 | 77.82 382 | 34.37 405 | 84.44 320 | 53.64 358 | 87.00 328 | 88.07 286 |
|
| baseline2 | | | 69.77 336 | 66.89 353 | 78.41 274 | 79.51 355 | 58.09 317 | 76.23 323 | 69.57 379 | 57.50 345 | 64.82 405 | 77.45 387 | 46.02 363 | 88.44 261 | 53.08 361 | 77.83 395 | 88.70 279 |
|
| PatchmatchNet |  | | 69.71 337 | 68.83 342 | 72.33 340 | 77.66 368 | 53.60 353 | 79.29 273 | 69.99 377 | 57.66 343 | 72.53 365 | 82.93 338 | 46.45 360 | 80.08 351 | 60.91 316 | 72.09 407 | 83.31 352 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| test_fmvs1 | | | 69.57 338 | 69.05 338 | 71.14 347 | 69.15 415 | 65.77 229 | 73.98 346 | 83.32 283 | 42.83 410 | 77.77 326 | 78.27 381 | 43.39 388 | 68.50 393 | 68.39 255 | 84.38 361 | 79.15 390 |
|
| JIA-IIPM | | | 69.41 339 | 66.64 357 | 77.70 288 | 73.19 401 | 71.24 172 | 75.67 329 | 65.56 396 | 70.42 221 | 65.18 401 | 92.97 133 | 33.64 408 | 83.06 330 | 53.52 360 | 69.61 413 | 78.79 391 |
|
| Syy-MVS | | | 69.40 340 | 70.03 330 | 67.49 370 | 81.72 328 | 38.94 413 | 71.00 367 | 61.99 403 | 61.38 312 | 70.81 374 | 72.36 406 | 61.37 285 | 79.30 354 | 64.50 290 | 85.18 347 | 84.22 335 |
|
| testing99 | | | 69.27 341 | 68.15 348 | 72.63 334 | 83.29 312 | 45.45 396 | 71.15 366 | 71.08 372 | 67.34 257 | 70.43 377 | 77.77 384 | 32.24 410 | 84.35 322 | 53.72 357 | 86.33 336 | 88.10 285 |
|
| UnsupCasMVSNet_bld | | | 69.21 342 | 69.68 333 | 67.82 368 | 79.42 356 | 51.15 373 | 67.82 385 | 75.79 335 | 54.15 364 | 77.47 329 | 85.36 310 | 59.26 300 | 70.64 383 | 48.46 386 | 79.35 389 | 81.66 371 |
|
| test_cas_vis1_n_1920 | | | 69.20 343 | 69.12 336 | 69.43 357 | 73.68 399 | 62.82 258 | 70.38 374 | 77.21 325 | 46.18 398 | 80.46 299 | 78.95 376 | 52.03 338 | 65.53 405 | 65.77 276 | 77.45 400 | 79.95 388 |
|
| gg-mvs-nofinetune | | | 68.96 344 | 69.11 337 | 68.52 366 | 76.12 384 | 45.32 397 | 83.59 192 | 55.88 417 | 86.68 29 | 64.62 406 | 97.01 9 | 30.36 413 | 83.97 327 | 44.78 399 | 82.94 370 | 76.26 395 |
|
| WBMVS | | | 68.76 345 | 68.43 345 | 69.75 354 | 83.29 312 | 40.30 411 | 67.36 387 | 72.21 364 | 57.09 349 | 77.05 330 | 85.53 303 | 33.68 407 | 80.51 347 | 48.79 384 | 90.90 267 | 88.45 282 |
|
| WB-MVSnew | | | 68.72 346 | 69.01 339 | 67.85 367 | 83.22 316 | 43.98 402 | 74.93 338 | 65.98 394 | 55.09 357 | 73.83 358 | 79.11 373 | 65.63 262 | 71.89 379 | 38.21 413 | 85.04 350 | 87.69 296 |
|
| tpm2 | | | 68.45 347 | 66.83 354 | 73.30 328 | 78.93 363 | 48.50 382 | 79.76 265 | 71.76 368 | 47.50 393 | 69.92 380 | 83.60 329 | 42.07 391 | 88.40 262 | 48.44 387 | 79.51 387 | 83.01 356 |
|
| tpm | | | 67.95 348 | 68.08 349 | 67.55 369 | 78.74 364 | 43.53 404 | 75.60 330 | 67.10 392 | 54.92 359 | 72.23 366 | 88.10 258 | 42.87 390 | 75.97 368 | 52.21 367 | 80.95 385 | 83.15 354 |
|
| WTY-MVS | | | 67.91 349 | 68.35 346 | 66.58 375 | 80.82 342 | 48.12 384 | 65.96 392 | 72.60 359 | 53.67 366 | 71.20 371 | 81.68 353 | 58.97 302 | 69.06 389 | 48.57 385 | 81.67 378 | 82.55 361 |
|
| testing11 | | | 67.38 350 | 65.93 358 | 71.73 343 | 83.37 310 | 46.60 391 | 70.95 369 | 69.40 380 | 62.47 298 | 66.14 394 | 76.66 393 | 31.22 411 | 84.10 324 | 49.10 382 | 84.10 363 | 84.49 329 |
|
| test-LLR | | | 67.21 351 | 66.74 355 | 68.63 364 | 76.45 381 | 55.21 342 | 67.89 382 | 67.14 390 | 62.43 301 | 65.08 402 | 72.39 404 | 43.41 386 | 69.37 385 | 61.00 314 | 84.89 355 | 81.31 375 |
|
| testing222 | | | 66.93 352 | 65.30 364 | 71.81 342 | 83.38 309 | 45.83 395 | 72.06 360 | 67.50 386 | 64.12 288 | 69.68 381 | 76.37 396 | 27.34 421 | 83.00 331 | 38.88 409 | 88.38 305 | 86.62 307 |
|
| sss | | | 66.92 353 | 67.26 351 | 65.90 377 | 77.23 371 | 51.10 375 | 64.79 394 | 71.72 369 | 52.12 378 | 70.13 379 | 80.18 365 | 57.96 309 | 65.36 406 | 50.21 375 | 81.01 384 | 81.25 377 |
|
| KD-MVS_2432*1600 | | | 66.87 354 | 65.81 360 | 70.04 350 | 67.50 416 | 47.49 387 | 62.56 399 | 79.16 312 | 61.21 317 | 77.98 321 | 80.61 359 | 25.29 424 | 82.48 334 | 53.02 362 | 84.92 352 | 80.16 386 |
|
| miper_refine_blended | | | 66.87 354 | 65.81 360 | 70.04 350 | 67.50 416 | 47.49 387 | 62.56 399 | 79.16 312 | 61.21 317 | 77.98 321 | 80.61 359 | 25.29 424 | 82.48 334 | 53.02 362 | 84.92 352 | 80.16 386 |
|
| dmvs_re | | | 66.81 356 | 66.98 352 | 66.28 376 | 76.87 375 | 58.68 315 | 71.66 363 | 72.24 362 | 60.29 326 | 69.52 383 | 73.53 403 | 52.38 337 | 64.40 408 | 44.90 398 | 81.44 381 | 75.76 396 |
|
| tpm cat1 | | | 66.76 357 | 65.21 365 | 71.42 344 | 77.09 373 | 50.62 377 | 78.01 291 | 73.68 353 | 44.89 402 | 68.64 385 | 79.00 375 | 45.51 372 | 82.42 336 | 49.91 377 | 70.15 410 | 81.23 379 |
|
| UWE-MVS | | | 66.43 358 | 65.56 363 | 69.05 359 | 84.15 297 | 40.98 409 | 73.06 356 | 64.71 399 | 54.84 360 | 76.18 338 | 79.62 371 | 29.21 415 | 80.50 348 | 38.54 412 | 89.75 287 | 85.66 317 |
|
| PVSNet | | 58.17 21 | 66.41 359 | 65.63 362 | 68.75 362 | 81.96 325 | 49.88 380 | 62.19 401 | 72.51 361 | 51.03 384 | 68.04 388 | 75.34 400 | 50.84 344 | 74.77 372 | 45.82 397 | 82.96 369 | 81.60 372 |
|
| tpmrst | | | 66.28 360 | 66.69 356 | 65.05 382 | 72.82 406 | 39.33 412 | 78.20 290 | 70.69 375 | 53.16 370 | 67.88 389 | 80.36 364 | 48.18 354 | 74.75 373 | 58.13 331 | 70.79 409 | 81.08 380 |
|
| Patchmatch-test | | | 65.91 361 | 67.38 350 | 61.48 392 | 75.51 388 | 43.21 405 | 68.84 379 | 63.79 401 | 62.48 297 | 72.80 364 | 83.42 333 | 44.89 381 | 59.52 414 | 48.27 388 | 86.45 333 | 81.70 370 |
|
| ADS-MVSNet2 | | | 65.87 362 | 63.64 370 | 72.55 336 | 73.16 402 | 56.92 329 | 67.10 388 | 74.81 341 | 49.74 391 | 66.04 396 | 82.97 336 | 46.71 358 | 77.26 364 | 42.29 402 | 69.96 411 | 83.46 347 |
|
| test_vis1_rt | | | 65.64 363 | 64.09 367 | 70.31 349 | 66.09 420 | 70.20 180 | 61.16 402 | 81.60 299 | 38.65 416 | 72.87 363 | 69.66 409 | 52.84 334 | 60.04 413 | 56.16 340 | 77.77 396 | 80.68 384 |
|
| mvsany_test3 | | | 65.48 364 | 62.97 373 | 73.03 331 | 69.99 413 | 76.17 121 | 64.83 393 | 43.71 424 | 43.68 406 | 80.25 303 | 87.05 283 | 52.83 335 | 63.09 411 | 51.92 372 | 72.44 406 | 79.84 389 |
|
| test-mter | | | 65.00 365 | 63.79 369 | 68.63 364 | 76.45 381 | 55.21 342 | 67.89 382 | 67.14 390 | 50.98 385 | 65.08 402 | 72.39 404 | 28.27 418 | 69.37 385 | 61.00 314 | 84.89 355 | 81.31 375 |
|
| ETVMVS | | | 64.67 366 | 63.34 372 | 68.64 363 | 83.44 308 | 41.89 407 | 69.56 378 | 61.70 408 | 61.33 314 | 68.74 384 | 75.76 398 | 28.76 416 | 79.35 353 | 34.65 416 | 86.16 339 | 84.67 328 |
|
| myMVS_eth3d | | | 64.66 367 | 63.89 368 | 66.97 373 | 81.72 328 | 37.39 416 | 71.00 367 | 61.99 403 | 61.38 312 | 70.81 374 | 72.36 406 | 20.96 427 | 79.30 354 | 49.59 379 | 85.18 347 | 84.22 335 |
|
| test0.0.03 1 | | | 64.66 367 | 64.36 366 | 65.57 379 | 75.03 393 | 46.89 390 | 64.69 395 | 61.58 409 | 62.43 301 | 71.18 372 | 77.54 385 | 43.41 386 | 68.47 394 | 40.75 407 | 82.65 374 | 81.35 374 |
|
| UBG | | | 64.34 369 | 63.35 371 | 67.30 371 | 83.50 305 | 40.53 410 | 67.46 386 | 65.02 398 | 54.77 361 | 67.54 392 | 74.47 402 | 32.99 409 | 78.50 360 | 40.82 406 | 83.58 365 | 82.88 357 |
|
| test_f | | | 64.31 370 | 65.85 359 | 59.67 395 | 66.54 419 | 62.24 272 | 57.76 411 | 70.96 373 | 40.13 413 | 84.36 226 | 82.09 347 | 46.93 357 | 51.67 419 | 61.99 307 | 81.89 377 | 65.12 410 |
|
| pmmvs3 | | | 62.47 371 | 60.02 384 | 69.80 353 | 71.58 410 | 64.00 244 | 70.52 372 | 58.44 415 | 39.77 414 | 66.05 395 | 75.84 397 | 27.10 423 | 72.28 376 | 46.15 395 | 84.77 359 | 73.11 400 |
|
| EPMVS | | | 62.47 371 | 62.63 375 | 62.01 388 | 70.63 412 | 38.74 414 | 74.76 339 | 52.86 419 | 53.91 365 | 67.71 391 | 80.01 366 | 39.40 395 | 66.60 401 | 55.54 346 | 68.81 415 | 80.68 384 |
|
| ADS-MVSNet | | | 61.90 373 | 62.19 377 | 61.03 393 | 73.16 402 | 36.42 418 | 67.10 388 | 61.75 406 | 49.74 391 | 66.04 396 | 82.97 336 | 46.71 358 | 63.21 409 | 42.29 402 | 69.96 411 | 83.46 347 |
|
| PMMVS | | | 61.65 374 | 60.38 381 | 65.47 380 | 65.40 423 | 69.26 191 | 63.97 397 | 61.73 407 | 36.80 420 | 60.11 412 | 68.43 411 | 59.42 298 | 66.35 402 | 48.97 383 | 78.57 394 | 60.81 413 |
|
| E-PMN | | | 61.59 375 | 61.62 378 | 61.49 391 | 66.81 418 | 55.40 340 | 53.77 414 | 60.34 411 | 66.80 264 | 58.90 415 | 65.50 414 | 40.48 394 | 66.12 403 | 55.72 343 | 86.25 337 | 62.95 412 |
|
| TESTMET0.1,1 | | | 61.29 376 | 60.32 382 | 64.19 384 | 72.06 408 | 51.30 371 | 67.89 382 | 62.09 402 | 45.27 400 | 60.65 411 | 69.01 410 | 27.93 419 | 64.74 407 | 56.31 339 | 81.65 380 | 76.53 394 |
|
| MVS-HIRNet | | | 61.16 377 | 62.92 374 | 55.87 398 | 79.09 360 | 35.34 419 | 71.83 361 | 57.98 416 | 46.56 396 | 59.05 414 | 91.14 190 | 49.95 350 | 76.43 366 | 38.74 410 | 71.92 408 | 55.84 417 |
|
| EMVS | | | 61.10 378 | 60.81 380 | 61.99 389 | 65.96 421 | 55.86 336 | 53.10 415 | 58.97 414 | 67.06 261 | 56.89 419 | 63.33 415 | 40.98 392 | 67.03 399 | 54.79 352 | 86.18 338 | 63.08 411 |
|
| DSMNet-mixed | | | 60.98 379 | 61.61 379 | 59.09 397 | 72.88 405 | 45.05 399 | 74.70 340 | 46.61 423 | 26.20 421 | 65.34 400 | 90.32 220 | 55.46 325 | 63.12 410 | 41.72 404 | 81.30 383 | 69.09 406 |
|
| dp | | | 60.70 380 | 60.29 383 | 61.92 390 | 72.04 409 | 38.67 415 | 70.83 370 | 64.08 400 | 51.28 382 | 60.75 410 | 77.28 388 | 36.59 403 | 71.58 381 | 47.41 390 | 62.34 417 | 75.52 397 |
|
| dmvs_testset | | | 60.59 381 | 62.54 376 | 54.72 400 | 77.26 370 | 27.74 423 | 74.05 345 | 61.00 410 | 60.48 324 | 65.62 399 | 67.03 413 | 55.93 322 | 68.23 395 | 32.07 420 | 69.46 414 | 68.17 407 |
|
| CHOSEN 280x420 | | | 59.08 382 | 56.52 387 | 66.76 374 | 76.51 379 | 64.39 240 | 49.62 416 | 59.00 413 | 43.86 405 | 55.66 420 | 68.41 412 | 35.55 404 | 68.21 396 | 43.25 401 | 76.78 402 | 67.69 408 |
|
| mvsany_test1 | | | 58.48 383 | 56.47 388 | 64.50 383 | 65.90 422 | 68.21 204 | 56.95 412 | 42.11 425 | 38.30 417 | 65.69 398 | 77.19 391 | 56.96 316 | 59.35 415 | 46.16 394 | 58.96 418 | 65.93 409 |
|
| PVSNet_0 | | 51.08 22 | 56.10 384 | 54.97 389 | 59.48 396 | 75.12 392 | 53.28 357 | 55.16 413 | 61.89 405 | 44.30 403 | 59.16 413 | 62.48 416 | 54.22 330 | 65.91 404 | 35.40 415 | 47.01 419 | 59.25 415 |
|
| new_pmnet | | | 55.69 385 | 57.66 386 | 49.76 401 | 75.47 389 | 30.59 421 | 59.56 404 | 51.45 420 | 43.62 407 | 62.49 408 | 75.48 399 | 40.96 393 | 49.15 421 | 37.39 414 | 72.52 405 | 69.55 405 |
|
| PMMVS2 | | | 55.64 386 | 59.27 385 | 44.74 402 | 64.30 424 | 12.32 430 | 40.60 417 | 49.79 421 | 53.19 369 | 65.06 404 | 84.81 317 | 53.60 333 | 49.76 420 | 32.68 419 | 89.41 291 | 72.15 401 |
|
| MVE |  | 40.22 23 | 51.82 387 | 50.47 390 | 55.87 398 | 62.66 425 | 51.91 366 | 31.61 419 | 39.28 426 | 40.65 412 | 50.76 421 | 74.98 401 | 56.24 321 | 44.67 422 | 33.94 418 | 64.11 416 | 71.04 404 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| dongtai | | | 41.90 388 | 42.65 391 | 39.67 403 | 70.86 411 | 21.11 425 | 61.01 403 | 21.42 430 | 57.36 346 | 57.97 418 | 50.06 419 | 16.40 429 | 58.73 416 | 21.03 423 | 27.69 423 | 39.17 419 |
|
| kuosan | | | 30.83 389 | 32.17 392 | 26.83 405 | 53.36 427 | 19.02 428 | 57.90 410 | 20.44 431 | 38.29 418 | 38.01 422 | 37.82 421 | 15.18 430 | 33.45 424 | 7.74 425 | 20.76 424 | 28.03 420 |
|
| test_method | | | 30.46 390 | 29.60 393 | 33.06 404 | 17.99 429 | 3.84 432 | 13.62 420 | 73.92 348 | 2.79 423 | 18.29 425 | 53.41 418 | 28.53 417 | 43.25 423 | 22.56 421 | 35.27 421 | 52.11 418 |
|
| cdsmvs_eth3d_5k | | | 20.81 391 | 27.75 394 | 0.00 410 | 0.00 433 | 0.00 435 | 0.00 421 | 85.44 255 | 0.00 428 | 0.00 429 | 82.82 340 | 81.46 118 | 0.00 429 | 0.00 428 | 0.00 427 | 0.00 425 |
|
| tmp_tt | | | 20.25 392 | 24.50 395 | 7.49 407 | 4.47 430 | 8.70 431 | 34.17 418 | 25.16 428 | 1.00 425 | 32.43 424 | 18.49 422 | 39.37 396 | 9.21 426 | 21.64 422 | 43.75 420 | 4.57 422 |
|
| ab-mvs-re | | | 6.65 393 | 8.87 396 | 0.00 410 | 0.00 433 | 0.00 435 | 0.00 421 | 0.00 434 | 0.00 428 | 0.00 429 | 79.80 368 | 0.00 433 | 0.00 429 | 0.00 428 | 0.00 427 | 0.00 425 |
|
| pcd_1.5k_mvsjas | | | 6.41 394 | 8.55 397 | 0.00 410 | 0.00 433 | 0.00 435 | 0.00 421 | 0.00 434 | 0.00 428 | 0.00 429 | 0.00 428 | 76.94 166 | 0.00 429 | 0.00 428 | 0.00 427 | 0.00 425 |
|
| test123 | | | 6.27 395 | 8.08 398 | 0.84 408 | 1.11 432 | 0.57 433 | 62.90 398 | 0.82 432 | 0.54 426 | 1.07 428 | 2.75 427 | 1.26 431 | 0.30 427 | 1.04 426 | 1.26 426 | 1.66 423 |
|
| testmvs | | | 5.91 396 | 7.65 399 | 0.72 409 | 1.20 431 | 0.37 434 | 59.14 406 | 0.67 433 | 0.49 427 | 1.11 427 | 2.76 426 | 0.94 432 | 0.24 428 | 1.02 427 | 1.47 425 | 1.55 424 |
|
| mmdepth | | | 0.00 397 | 0.00 400 | 0.00 410 | 0.00 433 | 0.00 435 | 0.00 421 | 0.00 434 | 0.00 428 | 0.00 429 | 0.00 428 | 0.00 433 | 0.00 429 | 0.00 428 | 0.00 427 | 0.00 425 |
|
| monomultidepth | | | 0.00 397 | 0.00 400 | 0.00 410 | 0.00 433 | 0.00 435 | 0.00 421 | 0.00 434 | 0.00 428 | 0.00 429 | 0.00 428 | 0.00 433 | 0.00 429 | 0.00 428 | 0.00 427 | 0.00 425 |
|
| test_blank | | | 0.00 397 | 0.00 400 | 0.00 410 | 0.00 433 | 0.00 435 | 0.00 421 | 0.00 434 | 0.00 428 | 0.00 429 | 0.00 428 | 0.00 433 | 0.00 429 | 0.00 428 | 0.00 427 | 0.00 425 |
|
| uanet_test | | | 0.00 397 | 0.00 400 | 0.00 410 | 0.00 433 | 0.00 435 | 0.00 421 | 0.00 434 | 0.00 428 | 0.00 429 | 0.00 428 | 0.00 433 | 0.00 429 | 0.00 428 | 0.00 427 | 0.00 425 |
|
| DCPMVS | | | 0.00 397 | 0.00 400 | 0.00 410 | 0.00 433 | 0.00 435 | 0.00 421 | 0.00 434 | 0.00 428 | 0.00 429 | 0.00 428 | 0.00 433 | 0.00 429 | 0.00 428 | 0.00 427 | 0.00 425 |
|
| sosnet-low-res | | | 0.00 397 | 0.00 400 | 0.00 410 | 0.00 433 | 0.00 435 | 0.00 421 | 0.00 434 | 0.00 428 | 0.00 429 | 0.00 428 | 0.00 433 | 0.00 429 | 0.00 428 | 0.00 427 | 0.00 425 |
|
| sosnet | | | 0.00 397 | 0.00 400 | 0.00 410 | 0.00 433 | 0.00 435 | 0.00 421 | 0.00 434 | 0.00 428 | 0.00 429 | 0.00 428 | 0.00 433 | 0.00 429 | 0.00 428 | 0.00 427 | 0.00 425 |
|
| uncertanet | | | 0.00 397 | 0.00 400 | 0.00 410 | 0.00 433 | 0.00 435 | 0.00 421 | 0.00 434 | 0.00 428 | 0.00 429 | 0.00 428 | 0.00 433 | 0.00 429 | 0.00 428 | 0.00 427 | 0.00 425 |
|
| Regformer | | | 0.00 397 | 0.00 400 | 0.00 410 | 0.00 433 | 0.00 435 | 0.00 421 | 0.00 434 | 0.00 428 | 0.00 429 | 0.00 428 | 0.00 433 | 0.00 429 | 0.00 428 | 0.00 427 | 0.00 425 |
|
| uanet | | | 0.00 397 | 0.00 400 | 0.00 410 | 0.00 433 | 0.00 435 | 0.00 421 | 0.00 434 | 0.00 428 | 0.00 429 | 0.00 428 | 0.00 433 | 0.00 429 | 0.00 428 | 0.00 427 | 0.00 425 |
|
| WAC-MVS | | | | | | | 37.39 416 | | | | | | | | 52.61 366 | | |
|
| FOURS1 | | | | | | 96.08 12 | 87.41 14 | 96.19 2 | 95.83 5 | 92.95 3 | 96.57 3 | | | | | | |
|
| MSC_two_6792asdad | | | | | 88.81 71 | 91.55 129 | 77.99 94 | | 91.01 147 | | | | | 96.05 9 | 87.45 23 | 98.17 35 | 92.40 181 |
|
| PC_three_1452 | | | | | | | | | | 58.96 333 | 90.06 97 | 91.33 184 | 80.66 128 | 93.03 143 | 75.78 171 | 95.94 128 | 92.48 175 |
|
| No_MVS | | | | | 88.81 71 | 91.55 129 | 77.99 94 | | 91.01 147 | | | | | 96.05 9 | 87.45 23 | 98.17 35 | 92.40 181 |
|
| test_one_0601 | | | | | | 93.85 62 | 73.27 140 | | 94.11 38 | 86.57 30 | 93.47 41 | 94.64 64 | 88.42 28 | | | | |
|
| eth-test2 | | | | | | 0.00 433 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 433 | | | | | | | | | | | |
|
| ZD-MVS | | | | | | 92.22 103 | 80.48 71 | | 91.85 122 | 71.22 214 | 90.38 92 | 92.98 131 | 86.06 64 | 96.11 7 | 81.99 97 | 96.75 92 | |
|
| RE-MVS-def | | | | 92.61 8 | | 94.13 55 | 88.95 6 | 92.87 13 | 94.16 32 | 88.75 18 | 93.79 32 | 94.43 72 | 90.64 10 | | 87.16 32 | 97.60 66 | 92.73 162 |
|
| IU-MVS | | | | | | 94.18 50 | 72.64 147 | | 90.82 152 | 56.98 350 | 89.67 109 | | | | 85.78 54 | 97.92 49 | 93.28 141 |
|
| OPU-MVS | | | | | 88.27 82 | 91.89 115 | 77.83 97 | 90.47 55 | | | | 91.22 187 | 81.12 122 | 94.68 76 | 74.48 183 | 95.35 148 | 92.29 187 |
|
| test_241102_TWO | | | | | | | | | 93.71 55 | 83.77 52 | 93.49 39 | 94.27 79 | 89.27 23 | 95.84 24 | 86.03 49 | 97.82 54 | 92.04 199 |
|
| test_241102_ONE | | | | | | 94.18 50 | 72.65 145 | | 93.69 56 | 83.62 54 | 94.11 26 | 93.78 108 | 90.28 14 | 95.50 49 | | | |
|
| 9.14 | | | | 89.29 62 | | 91.84 119 | | 88.80 93 | 95.32 12 | 75.14 157 | 91.07 81 | 92.89 136 | 87.27 47 | 93.78 110 | 83.69 75 | 97.55 69 | |
|
| save fliter | | | | | | 93.75 63 | 77.44 103 | 86.31 135 | 89.72 186 | 70.80 218 | | | | | | | |
|
| test_0728_THIRD | | | | | | | | | | 85.33 38 | 93.75 34 | 94.65 61 | 87.44 46 | 95.78 32 | 87.41 25 | 98.21 32 | 92.98 156 |
|
| test_0728_SECOND | | | | | 86.79 102 | 94.25 48 | 72.45 155 | 90.54 52 | 94.10 39 | | | | | 95.88 18 | 86.42 39 | 97.97 46 | 92.02 200 |
|
| test0726 | | | | | | 94.16 53 | 72.56 151 | 90.63 49 | 93.90 48 | 83.61 55 | 93.75 34 | 94.49 69 | 89.76 18 | | | | |
|
| GSMVS | | | | | | | | | | | | | | | | | 83.88 339 |
|
| test_part2 | | | | | | 93.86 61 | 77.77 98 | | | | 92.84 51 | | | | | | |
|
| sam_mvs1 | | | | | | | | | | | | | 46.11 362 | | | | 83.88 339 |
|
| sam_mvs | | | | | | | | | | | | | 45.92 367 | | | | |
|
| ambc | | | | | 82.98 197 | 90.55 156 | 64.86 235 | 88.20 100 | 89.15 197 | | 89.40 118 | 93.96 99 | 71.67 232 | 91.38 188 | 78.83 130 | 96.55 97 | 92.71 165 |
|
| MTGPA |  | | | | | | | | 91.81 126 | | | | | | | | |
|
| test_post1 | | | | | | | | 78.85 283 | | | | 3.13 424 | 45.19 377 | 80.13 350 | 58.11 332 | | |
|
| test_post | | | | | | | | | | | | 3.10 425 | 45.43 373 | 77.22 365 | | | |
|
| patchmatchnet-post | | | | | | | | | | | | 81.71 352 | 45.93 366 | 87.01 278 | | | |
|
| GG-mvs-BLEND | | | | | 67.16 372 | 73.36 400 | 46.54 393 | 84.15 175 | 55.04 418 | | 58.64 416 | 61.95 417 | 29.93 414 | 83.87 328 | 38.71 411 | 76.92 401 | 71.07 403 |
|
| MTMP | | | | | | | | 90.66 48 | 33.14 427 | | | | | | | | |
|
| gm-plane-assit | | | | | | 75.42 390 | 44.97 400 | | | 52.17 375 | | 72.36 406 | | 87.90 268 | 54.10 355 | | |
|
| test9_res | | | | | | | | | | | | | | | 80.83 107 | 96.45 103 | 90.57 242 |
|
| TEST9 | | | | | | 92.34 98 | 79.70 78 | 83.94 180 | 90.32 168 | 65.41 280 | 84.49 222 | 90.97 196 | 82.03 109 | 93.63 115 | | | |
|
| test_8 | | | | | | 92.09 107 | 78.87 85 | 83.82 185 | 90.31 170 | 65.79 271 | 84.36 226 | 90.96 198 | 81.93 111 | 93.44 128 | | | |
|
| agg_prior2 | | | | | | | | | | | | | | | 79.68 120 | 96.16 115 | 90.22 250 |
|
| agg_prior | | | | | | 91.58 127 | 77.69 100 | | 90.30 171 | | 84.32 228 | | | 93.18 136 | | | |
|
| TestCases | | | | | 89.68 55 | 91.59 124 | 83.40 52 | | 95.44 10 | 79.47 99 | 88.00 148 | 93.03 129 | 82.66 94 | 91.47 182 | 70.81 222 | 96.14 116 | 94.16 100 |
|
| test_prior4 | | | | | | | 78.97 84 | 84.59 166 | | | | | | | | | |
|
| test_prior2 | | | | | | | | 83.37 197 | | 75.43 153 | 84.58 220 | 91.57 178 | 81.92 113 | | 79.54 123 | 96.97 85 | |
|
| test_prior | | | | | 86.32 110 | 90.59 155 | 71.99 162 | | 92.85 93 | | | | | 94.17 97 | | | 92.80 160 |
|
| 旧先验2 | | | | | | | | 81.73 239 | | 56.88 351 | 86.54 184 | | | 84.90 315 | 72.81 211 | | |
|
| 新几何2 | | | | | | | | 81.72 240 | | | | | | | | | |
|
| 新几何1 | | | | | 82.95 199 | 93.96 59 | 78.56 88 | | 80.24 308 | 55.45 356 | 83.93 239 | 91.08 193 | 71.19 234 | 88.33 263 | 65.84 274 | 93.07 220 | 81.95 369 |
|
| 旧先验1 | | | | | | 91.97 111 | 71.77 163 | | 81.78 297 | | | 91.84 169 | 73.92 199 | | | 93.65 208 | 83.61 345 |
|
| 无先验 | | | | | | | | 82.81 215 | 85.62 253 | 58.09 339 | | | | 91.41 187 | 67.95 259 | | 84.48 330 |
|
| 原ACMM2 | | | | | | | | 82.26 233 | | | | | | | | | |
|
| 原ACMM1 | | | | | 84.60 149 | 92.81 89 | 74.01 132 | | 91.50 131 | 62.59 295 | 82.73 262 | 90.67 212 | 76.53 173 | 94.25 91 | 69.24 240 | 95.69 141 | 85.55 318 |
|
| test222 | | | | | | 93.31 73 | 76.54 113 | 79.38 272 | 77.79 319 | 52.59 372 | 82.36 266 | 90.84 205 | 66.83 256 | | | 91.69 250 | 81.25 377 |
|
| testdata2 | | | | | | | | | | | | | | 86.43 292 | 63.52 296 | | |
|
| segment_acmp | | | | | | | | | | | | | 81.94 110 | | | | |
|
| testdata | | | | | 79.54 259 | 92.87 84 | 72.34 156 | | 80.14 309 | 59.91 329 | 85.47 204 | 91.75 175 | 67.96 251 | 85.24 311 | 68.57 254 | 92.18 240 | 81.06 382 |
|
| testdata1 | | | | | | | | 79.62 267 | | 73.95 168 | | | | | | | |
|
| test12 | | | | | 86.57 105 | 90.74 151 | 72.63 149 | | 90.69 155 | | 82.76 261 | | 79.20 139 | 94.80 73 | | 95.32 150 | 92.27 189 |
|
| plane_prior7 | | | | | | 93.45 68 | 77.31 106 | | | | | | | | | | |
|
| plane_prior6 | | | | | | 92.61 90 | 76.54 113 | | | | | | 74.84 187 | | | | |
|
| plane_prior5 | | | | | | | | | 93.61 59 | | | | | 95.22 59 | 80.78 108 | 95.83 134 | 94.46 84 |
|
| plane_prior4 | | | | | | | | | | | | 92.95 134 | | | | | |
|
| plane_prior3 | | | | | | | 76.85 111 | | | 77.79 125 | 86.55 179 | | | | | | |
|
| plane_prior2 | | | | | | | | 89.45 82 | | 79.44 101 | | | | | | | |
|
| plane_prior1 | | | | | | 92.83 88 | | | | | | | | | | | |
|
| plane_prior | | | | | | | 76.42 116 | 87.15 117 | | 75.94 145 | | | | | | 95.03 162 | |
|
| n2 | | | | | | | | | 0.00 434 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 434 | | | | | | | | |
|
| door-mid | | | | | | | | | 74.45 345 | | | | | | | | |
|
| lessismore_v0 | | | | | 85.95 121 | 91.10 144 | 70.99 174 | | 70.91 374 | | 91.79 69 | 94.42 74 | 61.76 283 | 92.93 146 | 79.52 124 | 93.03 221 | 93.93 109 |
|
| LGP-MVS_train | | | | | 90.82 37 | 94.75 41 | 81.69 63 | | 94.27 24 | 82.35 68 | 93.67 37 | 94.82 56 | 91.18 4 | 95.52 45 | 85.36 57 | 98.73 7 | 95.23 61 |
|
| test11 | | | | | | | | | 91.46 132 | | | | | | | | |
|
| door | | | | | | | | | 72.57 360 | | | | | | | | |
|
| HQP5-MVS | | | | | | | 70.66 175 | | | | | | | | | | |
|
| HQP-NCC | | | | | | 91.19 139 | | 84.77 160 | | 73.30 182 | 80.55 296 | | | | | | |
|
| ACMP_Plane | | | | | | 91.19 139 | | 84.77 160 | | 73.30 182 | 80.55 296 | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 77.30 154 | | |
|
| HQP4-MVS | | | | | | | | | | | 80.56 295 | | | 94.61 79 | | | 93.56 133 |
|
| HQP3-MVS | | | | | | | | | 92.68 98 | | | | | | | 94.47 183 | |
|
| HQP2-MVS | | | | | | | | | | | | | 72.10 224 | | | | |
|
| NP-MVS | | | | | | 91.95 112 | 74.55 129 | | | | | 90.17 227 | | | | | |
|
| MDTV_nov1_ep13_2view | | | | | | | 27.60 424 | 70.76 371 | | 46.47 397 | 61.27 409 | | 45.20 376 | | 49.18 381 | | 83.75 344 |
|
| MDTV_nov1_ep13 | | | | 68.29 347 | | 78.03 365 | 43.87 403 | 74.12 344 | 72.22 363 | 52.17 375 | 67.02 393 | 85.54 302 | 45.36 374 | 80.85 344 | 55.73 342 | 84.42 360 | |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 95.74 140 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 97.35 75 | |
|
| Test By Simon | | | | | | | | | | | | | 79.09 140 | | | | |
|
| ITE_SJBPF | | | | | 90.11 49 | 90.72 152 | 84.97 41 | | 90.30 171 | 81.56 76 | 90.02 99 | 91.20 189 | 82.40 99 | 90.81 207 | 73.58 199 | 94.66 179 | 94.56 80 |
|
| DeepMVS_CX |  | | | | 24.13 406 | 32.95 428 | 29.49 422 | | 21.63 429 | 12.07 422 | 37.95 423 | 45.07 420 | 30.84 412 | 19.21 425 | 17.94 424 | 33.06 422 | 23.69 421 |
|