This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet95.70 196.40 193.61 398.67 185.39 3795.54 597.36 196.97 199.04 199.05 196.61 195.92 1685.07 6199.27 199.54 1
mamv495.37 294.51 297.96 196.31 1098.41 191.05 4697.23 295.32 299.01 297.26 680.16 13498.99 195.15 199.14 296.47 30
TDRefinement93.52 393.39 493.88 295.94 1590.26 495.70 496.46 390.58 992.86 5096.29 1988.16 3594.17 9786.07 4998.48 1897.22 17
LTVRE_ROB86.10 193.04 493.44 391.82 2293.73 6485.72 3496.79 195.51 988.86 1695.63 1096.99 1084.81 7293.16 13791.10 297.53 7296.58 28
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
reproduce_model92.89 593.18 792.01 1394.20 4988.23 992.87 1394.32 2190.25 1195.65 995.74 3087.75 4195.72 3689.60 498.27 2692.08 197
reproduce-ours92.86 693.22 591.76 2394.39 4487.71 1192.40 2794.38 1989.82 1395.51 1295.49 3889.64 2195.82 2689.13 698.26 2891.76 208
our_new_method92.86 693.22 591.76 2394.39 4487.71 1192.40 2794.38 1989.82 1395.51 1295.49 3889.64 2195.82 2689.13 698.26 2891.76 208
HPM-MVS_fast92.50 892.54 992.37 695.93 1685.81 3392.99 1294.23 2785.21 4092.51 5895.13 4890.65 995.34 5588.06 1398.15 3795.95 41
SR-MVS-dyc-post92.41 992.41 1092.39 594.13 5588.95 692.87 1394.16 3288.75 1893.79 3294.43 7288.83 2695.51 4787.16 3397.60 6692.73 162
SR-MVS92.23 1092.34 1191.91 1794.89 3887.85 1092.51 2493.87 5188.20 2393.24 4294.02 9490.15 1695.67 3886.82 3797.34 7692.19 193
HPM-MVScopyleft92.13 1192.20 1391.91 1795.58 2684.67 4693.51 894.85 1582.88 6491.77 7093.94 10290.55 1295.73 3588.50 1198.23 3195.33 56
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
APD-MVS_3200maxsize92.05 1292.24 1291.48 2593.02 8085.17 3992.47 2695.05 1487.65 2793.21 4394.39 7790.09 1795.08 6686.67 3997.60 6694.18 99
COLMAP_ROBcopyleft83.01 391.97 1391.95 1492.04 1193.68 6586.15 2493.37 1095.10 1390.28 1092.11 6395.03 5089.75 2094.93 7079.95 11798.27 2695.04 67
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
ACMMPcopyleft91.91 1491.87 1992.03 1295.53 2785.91 2893.35 1194.16 3282.52 6792.39 6194.14 8989.15 2595.62 3987.35 2898.24 3094.56 80
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
mPP-MVS91.69 1591.47 2692.37 696.04 1388.48 892.72 1892.60 10283.09 6191.54 7294.25 8387.67 4495.51 4787.21 3298.11 3893.12 150
CP-MVS91.67 1691.58 2391.96 1495.29 3187.62 1393.38 993.36 6583.16 6091.06 8294.00 9588.26 3295.71 3787.28 3198.39 2192.55 172
XVS91.54 1791.36 2892.08 995.64 2486.25 2292.64 1993.33 6785.07 4189.99 10094.03 9386.57 5595.80 2887.35 2897.62 6494.20 96
MTAPA91.52 1891.60 2291.29 3096.59 486.29 2192.02 3391.81 12784.07 4992.00 6694.40 7686.63 5495.28 5888.59 1098.31 2492.30 186
UA-Net91.49 1991.53 2491.39 2794.98 3582.95 5893.52 792.79 9588.22 2288.53 13397.64 383.45 8694.55 8386.02 5398.60 1396.67 25
ACMMPR91.49 1991.35 3091.92 1695.74 2085.88 3092.58 2293.25 7381.99 7091.40 7494.17 8887.51 4595.87 2087.74 1797.76 5793.99 106
LPG-MVS_test91.47 2191.68 2090.82 3794.75 4181.69 6390.00 6294.27 2482.35 6893.67 3794.82 5691.18 495.52 4585.36 5898.73 795.23 61
region2R91.44 2291.30 3491.87 1995.75 1985.90 2992.63 2193.30 7181.91 7290.88 8894.21 8487.75 4195.87 2087.60 2297.71 6093.83 115
HFP-MVS91.30 2391.39 2791.02 3395.43 2984.66 4792.58 2293.29 7281.99 7091.47 7393.96 9988.35 3195.56 4287.74 1797.74 5992.85 159
ZNCC-MVS91.26 2491.34 3191.01 3495.73 2183.05 5692.18 3194.22 2980.14 9291.29 7893.97 9687.93 4095.87 2088.65 997.96 4894.12 103
APDe-MVScopyleft91.22 2591.92 1589.14 6692.97 8278.04 9392.84 1694.14 3683.33 5893.90 2895.73 3188.77 2796.41 387.60 2297.98 4592.98 156
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
PGM-MVS91.20 2690.95 4391.93 1595.67 2385.85 3190.00 6293.90 4880.32 8991.74 7194.41 7588.17 3495.98 1386.37 4297.99 4393.96 108
SteuartSystems-ACMMP91.16 2791.36 2890.55 4193.91 6080.97 7091.49 4093.48 6382.82 6592.60 5793.97 9688.19 3396.29 687.61 2198.20 3494.39 91
Skip Steuart: Steuart Systems R&D Blog.
MP-MVScopyleft91.14 2890.91 4491.83 2096.18 1186.88 1792.20 3093.03 8682.59 6688.52 13494.37 7886.74 5395.41 5386.32 4398.21 3293.19 146
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
GST-MVS90.96 2991.01 4090.82 3795.45 2882.73 5991.75 3893.74 5480.98 8391.38 7593.80 10687.20 4995.80 2887.10 3597.69 6193.93 109
MP-MVS-pluss90.81 3091.08 3789.99 5095.97 1479.88 7588.13 10294.51 1875.79 14792.94 4794.96 5188.36 3095.01 6890.70 398.40 2095.09 66
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ACMH+77.89 1190.73 3191.50 2588.44 7893.00 8176.26 11989.65 7595.55 887.72 2693.89 3094.94 5291.62 393.44 12878.35 13698.76 495.61 50
ACMMP_NAP90.65 3291.07 3989.42 6195.93 1679.54 8089.95 6693.68 5877.65 12691.97 6794.89 5388.38 2995.45 5189.27 597.87 5393.27 142
ACMM79.39 990.65 3290.99 4189.63 5795.03 3483.53 5189.62 7693.35 6679.20 10593.83 3193.60 11690.81 792.96 14485.02 6398.45 1992.41 179
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LS3D90.60 3490.34 5191.38 2889.03 18584.23 4993.58 694.68 1790.65 890.33 9493.95 10184.50 7495.37 5480.87 10795.50 14594.53 83
ACMP79.16 1090.54 3590.60 4990.35 4594.36 4680.98 6989.16 8694.05 4179.03 10892.87 4993.74 11190.60 1195.21 6182.87 8598.76 494.87 70
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
DPE-MVScopyleft90.53 3691.08 3788.88 6993.38 7178.65 8789.15 8794.05 4184.68 4593.90 2894.11 9188.13 3696.30 584.51 6997.81 5591.70 212
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SED-MVS90.46 3791.64 2186.93 9994.18 5072.65 14590.47 5593.69 5683.77 5294.11 2694.27 7990.28 1495.84 2486.03 5097.92 4992.29 187
SMA-MVScopyleft90.31 3890.48 5089.83 5495.31 3079.52 8190.98 4793.24 7475.37 15692.84 5195.28 4485.58 6796.09 887.92 1597.76 5793.88 112
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
SF-MVS90.27 3990.80 4688.68 7692.86 8677.09 10891.19 4495.74 681.38 7892.28 6293.80 10686.89 5294.64 7885.52 5797.51 7394.30 95
v7n90.13 4090.96 4287.65 9191.95 11271.06 17389.99 6493.05 8386.53 3194.29 2296.27 2082.69 9394.08 10086.25 4697.63 6397.82 8
PMVScopyleft80.48 690.08 4190.66 4888.34 8196.71 392.97 290.31 5989.57 19388.51 2190.11 9695.12 4990.98 688.92 25477.55 15097.07 8383.13 356
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
DVP-MVS++90.07 4291.09 3687.00 9791.55 12972.64 14796.19 294.10 3985.33 3893.49 3994.64 6481.12 12395.88 1887.41 2695.94 12892.48 175
DVP-MVScopyleft90.06 4391.32 3286.29 11194.16 5372.56 15190.54 5291.01 14883.61 5593.75 3494.65 6189.76 1895.78 3286.42 4097.97 4690.55 244
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
PS-CasMVS90.06 4391.92 1584.47 15396.56 658.83 31489.04 8892.74 9791.40 696.12 596.06 2687.23 4895.57 4179.42 12698.74 699.00 2
PEN-MVS90.03 4591.88 1884.48 15296.57 558.88 31188.95 8993.19 7591.62 596.01 796.16 2487.02 5095.60 4078.69 13298.72 998.97 3
OurMVSNet-221017-090.01 4689.74 5690.83 3693.16 7880.37 7291.91 3693.11 7981.10 8195.32 1497.24 772.94 21594.85 7285.07 6197.78 5697.26 15
DTE-MVSNet89.98 4791.91 1784.21 16296.51 757.84 32288.93 9092.84 9491.92 496.16 496.23 2186.95 5195.99 1279.05 12998.57 1598.80 6
XVG-ACMP-BASELINE89.98 4789.84 5490.41 4394.91 3784.50 4889.49 8193.98 4379.68 9792.09 6493.89 10483.80 8193.10 14082.67 8998.04 3993.64 127
3Dnovator+83.92 289.97 4989.66 5790.92 3591.27 13881.66 6691.25 4294.13 3788.89 1588.83 12694.26 8277.55 15795.86 2384.88 6495.87 13295.24 60
WR-MVS_H89.91 5091.31 3385.71 12896.32 962.39 26789.54 7993.31 7090.21 1295.57 1195.66 3381.42 12095.90 1780.94 10698.80 398.84 5
OPM-MVS89.80 5189.97 5289.27 6394.76 4079.86 7686.76 12792.78 9678.78 11192.51 5893.64 11588.13 3693.84 10984.83 6697.55 6994.10 104
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
mvs_tets89.78 5289.27 6391.30 2993.51 6784.79 4489.89 6890.63 15870.00 22994.55 1996.67 1487.94 3993.59 12084.27 7195.97 12495.52 51
anonymousdsp89.73 5388.88 7092.27 889.82 17186.67 1890.51 5490.20 17769.87 23095.06 1596.14 2584.28 7793.07 14187.68 1996.34 10697.09 19
test_djsdf89.62 5489.01 6791.45 2692.36 9782.98 5791.98 3490.08 18071.54 20994.28 2496.54 1681.57 11894.27 8986.26 4496.49 10097.09 19
XVG-OURS-SEG-HR89.59 5589.37 6190.28 4694.47 4385.95 2786.84 12393.91 4780.07 9386.75 17593.26 12193.64 290.93 20084.60 6890.75 27493.97 107
APD-MVScopyleft89.54 5689.63 5889.26 6492.57 9181.34 6890.19 6193.08 8280.87 8591.13 8093.19 12286.22 6295.97 1482.23 9597.18 8190.45 246
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
jajsoiax89.41 5788.81 7391.19 3293.38 7184.72 4589.70 7190.29 17469.27 23394.39 2096.38 1886.02 6593.52 12483.96 7395.92 13095.34 55
CPTT-MVS89.39 5888.98 6990.63 4095.09 3386.95 1692.09 3292.30 11079.74 9687.50 16092.38 15381.42 12093.28 13383.07 8197.24 7991.67 213
ACMH76.49 1489.34 5991.14 3583.96 16792.50 9470.36 18089.55 7793.84 5281.89 7394.70 1795.44 4090.69 888.31 26583.33 7798.30 2593.20 145
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
testf189.30 6089.12 6489.84 5288.67 19585.64 3590.61 5093.17 7686.02 3493.12 4495.30 4284.94 6989.44 24674.12 18996.10 11994.45 86
APD_test289.30 6089.12 6489.84 5288.67 19585.64 3590.61 5093.17 7686.02 3493.12 4495.30 4284.94 6989.44 24674.12 18996.10 11994.45 86
CP-MVSNet89.27 6290.91 4484.37 15496.34 858.61 31788.66 9792.06 11690.78 795.67 895.17 4781.80 11695.54 4479.00 13098.69 1098.95 4
XVG-OURS89.18 6388.83 7290.23 4794.28 4786.11 2685.91 14193.60 6180.16 9189.13 12393.44 11883.82 8090.98 19883.86 7595.30 15393.60 130
DeepC-MVS82.31 489.15 6489.08 6689.37 6293.64 6679.07 8388.54 9894.20 3073.53 17589.71 10794.82 5685.09 6895.77 3484.17 7298.03 4193.26 143
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
UniMVSNet_ETH3D89.12 6590.72 4784.31 16097.00 264.33 24289.67 7488.38 20788.84 1794.29 2297.57 490.48 1391.26 18972.57 21497.65 6297.34 14
MSP-MVS89.08 6688.16 7891.83 2095.76 1886.14 2592.75 1793.90 4878.43 11689.16 12192.25 16172.03 22996.36 488.21 1290.93 26792.98 156
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SD-MVS88.96 6789.88 5386.22 11591.63 12377.07 10989.82 6993.77 5378.90 10992.88 4892.29 15986.11 6390.22 22286.24 4797.24 7991.36 220
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
HPM-MVS++copyleft88.93 6888.45 7690.38 4494.92 3685.85 3189.70 7191.27 14178.20 11886.69 17892.28 16080.36 13295.06 6786.17 4896.49 10090.22 250
test_040288.65 6989.58 6085.88 12492.55 9272.22 15984.01 17989.44 19588.63 2094.38 2195.77 2986.38 6193.59 12079.84 11895.21 15491.82 206
DP-MVS88.60 7089.01 6787.36 9391.30 13677.50 10187.55 10992.97 9087.95 2589.62 11192.87 13784.56 7393.89 10677.65 14896.62 9590.70 238
APD_test188.40 7187.91 8089.88 5189.50 17586.65 2089.98 6591.91 12284.26 4790.87 8993.92 10382.18 10789.29 25073.75 19794.81 17393.70 123
Anonymous2023121188.40 7189.62 5984.73 14590.46 15765.27 23288.86 9193.02 8787.15 2893.05 4697.10 882.28 10592.02 17076.70 16097.99 4396.88 23
PS-MVSNAJss88.31 7387.90 8189.56 5993.31 7377.96 9687.94 10591.97 11970.73 22094.19 2596.67 1476.94 16794.57 8183.07 8196.28 10896.15 33
OMC-MVS88.19 7487.52 8590.19 4891.94 11481.68 6587.49 11293.17 7676.02 14188.64 13091.22 18884.24 7893.37 13177.97 14697.03 8495.52 51
CS-MVS88.14 7587.67 8489.54 6089.56 17379.18 8290.47 5594.77 1679.37 10384.32 22989.33 24183.87 7994.53 8482.45 9194.89 16994.90 68
TSAR-MVS + MP.88.14 7587.82 8289.09 6795.72 2276.74 11292.49 2591.19 14467.85 25486.63 17994.84 5579.58 13995.96 1587.62 2094.50 18294.56 80
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
tt080588.09 7789.79 5582.98 19793.26 7563.94 24691.10 4589.64 19085.07 4190.91 8691.09 19389.16 2491.87 17582.03 9695.87 13293.13 148
EC-MVSNet88.01 7888.32 7787.09 9589.28 18072.03 16190.31 5996.31 480.88 8485.12 21089.67 23684.47 7595.46 5082.56 9096.26 11193.77 121
RPSCF88.00 7986.93 9891.22 3190.08 16489.30 589.68 7391.11 14579.26 10489.68 10894.81 5982.44 9787.74 27176.54 16288.74 30296.61 27
AllTest87.97 8087.40 8989.68 5591.59 12483.40 5289.50 8095.44 1079.47 9988.00 14993.03 12982.66 9491.47 18270.81 22396.14 11694.16 100
TranMVSNet+NR-MVSNet87.86 8188.76 7485.18 13694.02 5864.13 24384.38 17391.29 14084.88 4492.06 6593.84 10586.45 5893.73 11173.22 20598.66 1197.69 9
nrg03087.85 8288.49 7585.91 12290.07 16669.73 18687.86 10694.20 3074.04 16792.70 5694.66 6085.88 6691.50 18179.72 12097.32 7796.50 29
CNVR-MVS87.81 8387.68 8388.21 8392.87 8477.30 10785.25 15691.23 14277.31 13187.07 16991.47 18282.94 9194.71 7584.67 6796.27 11092.62 169
HQP_MVS87.75 8487.43 8888.70 7593.45 6876.42 11689.45 8293.61 5979.44 10186.55 18092.95 13474.84 18895.22 5980.78 10995.83 13494.46 84
MM87.64 8587.15 9189.09 6789.51 17476.39 11888.68 9686.76 23784.54 4683.58 24793.78 10873.36 21196.48 287.98 1496.21 11294.41 90
MVSMamba_PlusPlus87.53 8688.86 7183.54 18392.03 11062.26 27191.49 4092.62 10088.07 2488.07 14696.17 2372.24 22495.79 3184.85 6594.16 19392.58 170
NCCC87.36 8786.87 9988.83 7092.32 10078.84 8686.58 13191.09 14678.77 11284.85 21890.89 20280.85 12695.29 5681.14 10495.32 15092.34 184
DeepPCF-MVS81.24 587.28 8886.21 10990.49 4291.48 13384.90 4283.41 19792.38 10770.25 22689.35 11990.68 21182.85 9294.57 8179.55 12395.95 12792.00 201
SixPastTwentyTwo87.20 8987.45 8786.45 10892.52 9369.19 19587.84 10788.05 21481.66 7594.64 1896.53 1765.94 26194.75 7483.02 8396.83 8995.41 53
SPE-MVS-test87.00 9086.43 10588.71 7489.46 17677.46 10289.42 8495.73 777.87 12481.64 28387.25 27882.43 9894.53 8477.65 14896.46 10294.14 102
UniMVSNet (Re)86.87 9186.98 9786.55 10693.11 7968.48 20283.80 18892.87 9280.37 8789.61 11391.81 17377.72 15494.18 9575.00 18298.53 1696.99 22
Vis-MVSNetpermissive86.86 9286.58 10287.72 8992.09 10777.43 10487.35 11392.09 11578.87 11084.27 23494.05 9278.35 14793.65 11380.54 11391.58 25592.08 197
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
UniMVSNet_NR-MVSNet86.84 9387.06 9486.17 11892.86 8667.02 21682.55 22391.56 13083.08 6290.92 8491.82 17278.25 14893.99 10274.16 18798.35 2297.49 13
DU-MVS86.80 9486.99 9686.21 11693.24 7667.02 21683.16 20692.21 11181.73 7490.92 8491.97 16577.20 16193.99 10274.16 18798.35 2297.61 10
casdiffmvs_mvgpermissive86.72 9587.51 8684.36 15687.09 23865.22 23384.16 17594.23 2777.89 12291.28 7993.66 11484.35 7692.71 15080.07 11494.87 17295.16 64
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_fmvsmconf0.01_n86.68 9686.52 10387.18 9485.94 26778.30 8986.93 12092.20 11265.94 26889.16 12193.16 12483.10 8989.89 23587.81 1694.43 18593.35 137
IS-MVSNet86.66 9786.82 10186.17 11892.05 10966.87 21991.21 4388.64 20486.30 3389.60 11492.59 14669.22 24594.91 7173.89 19497.89 5296.72 24
v1086.54 9887.10 9384.84 14088.16 21063.28 25386.64 13092.20 11275.42 15592.81 5394.50 6874.05 19994.06 10183.88 7496.28 10897.17 18
pmmvs686.52 9988.06 7981.90 21992.22 10362.28 27084.66 16689.15 19883.54 5789.85 10497.32 588.08 3886.80 28670.43 23197.30 7896.62 26
PHI-MVS86.38 10085.81 11888.08 8488.44 20477.34 10589.35 8593.05 8373.15 18884.76 21987.70 26878.87 14394.18 9580.67 11196.29 10792.73 162
CSCG86.26 10186.47 10485.60 13090.87 14974.26 13187.98 10491.85 12380.35 8889.54 11788.01 26079.09 14192.13 16675.51 17595.06 16190.41 247
DeepC-MVS_fast80.27 886.23 10285.65 12387.96 8791.30 13676.92 11087.19 11591.99 11870.56 22184.96 21490.69 21080.01 13695.14 6478.37 13595.78 13891.82 206
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
v886.22 10386.83 10084.36 15687.82 21762.35 26986.42 13491.33 13976.78 13592.73 5594.48 7073.41 20893.72 11283.10 8095.41 14697.01 21
Anonymous2024052986.20 10487.13 9283.42 18590.19 16264.55 24084.55 16890.71 15585.85 3689.94 10395.24 4682.13 10890.40 21869.19 24496.40 10595.31 57
fmvsm_s_conf0.5_n_386.19 10587.27 9082.95 19986.91 24270.38 17985.31 15592.61 10175.59 15188.32 14192.87 13782.22 10688.63 26188.80 892.82 22789.83 260
test_fmvsmconf0.1_n86.18 10685.88 11687.08 9685.26 27778.25 9085.82 14591.82 12565.33 28288.55 13292.35 15882.62 9689.80 23786.87 3694.32 18893.18 147
CDPH-MVS86.17 10785.54 12488.05 8692.25 10175.45 12483.85 18592.01 11765.91 27086.19 18991.75 17683.77 8294.98 6977.43 15396.71 9393.73 122
NR-MVSNet86.00 10886.22 10885.34 13493.24 7664.56 23982.21 23590.46 16280.99 8288.42 13791.97 16577.56 15693.85 10772.46 21598.65 1297.61 10
train_agg85.98 10985.28 13088.07 8592.34 9879.70 7883.94 18190.32 16965.79 27284.49 22390.97 19781.93 11293.63 11581.21 10396.54 9890.88 232
FC-MVSNet-test85.93 11087.05 9582.58 20992.25 10156.44 33385.75 14693.09 8177.33 13091.94 6894.65 6174.78 19093.41 13075.11 18198.58 1497.88 7
test_fmvsmconf_n85.88 11185.51 12586.99 9884.77 28578.21 9185.40 15491.39 13765.32 28387.72 15691.81 17382.33 10189.78 23886.68 3894.20 19192.99 155
Effi-MVS+-dtu85.82 11283.38 16593.14 487.13 23491.15 387.70 10888.42 20674.57 16383.56 24885.65 30278.49 14694.21 9372.04 21792.88 22594.05 105
TAPA-MVS77.73 1285.71 11384.83 13688.37 8088.78 19479.72 7787.15 11793.50 6269.17 23485.80 19889.56 23780.76 12792.13 16673.21 21095.51 14493.25 144
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
sasdasda85.50 11486.14 11083.58 17987.97 21267.13 21387.55 10994.32 2173.44 17888.47 13587.54 27186.45 5891.06 19675.76 17393.76 20392.54 173
canonicalmvs85.50 11486.14 11083.58 17987.97 21267.13 21387.55 10994.32 2173.44 17888.47 13587.54 27186.45 5891.06 19675.76 17393.76 20392.54 173
EPP-MVSNet85.47 11685.04 13386.77 10391.52 13269.37 19091.63 3987.98 21681.51 7787.05 17091.83 17166.18 26095.29 5670.75 22696.89 8695.64 48
GeoE85.45 11785.81 11884.37 15490.08 16467.07 21585.86 14491.39 13772.33 20287.59 15890.25 22384.85 7192.37 16078.00 14491.94 24693.66 124
MVS_030485.37 11884.58 14387.75 8885.28 27673.36 13686.54 13385.71 25277.56 12981.78 28192.47 15170.29 23996.02 1185.59 5695.96 12593.87 113
FIs85.35 11986.27 10782.60 20891.86 11657.31 32685.10 16093.05 8375.83 14691.02 8393.97 9673.57 20492.91 14873.97 19398.02 4297.58 12
test_fmvsmvis_n_192085.22 12085.36 12984.81 14285.80 26976.13 12285.15 15992.32 10961.40 31291.33 7690.85 20583.76 8386.16 29984.31 7093.28 21592.15 195
casdiffmvspermissive85.21 12185.85 11783.31 18886.17 26162.77 26083.03 20893.93 4674.69 16288.21 14392.68 14582.29 10491.89 17477.87 14793.75 20695.27 59
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline85.20 12285.93 11483.02 19586.30 25662.37 26884.55 16893.96 4474.48 16487.12 16492.03 16482.30 10391.94 17178.39 13494.21 19094.74 77
K. test v385.14 12384.73 13786.37 10991.13 14369.63 18885.45 15276.68 33284.06 5092.44 6096.99 1062.03 28394.65 7780.58 11293.24 21694.83 75
mmtdpeth85.13 12485.78 12083.17 19384.65 28774.71 12785.87 14390.35 16877.94 12183.82 24196.96 1277.75 15280.03 35378.44 13396.21 11294.79 76
EI-MVSNet-Vis-set85.12 12584.53 14686.88 10084.01 29972.76 14483.91 18485.18 26180.44 8688.75 12785.49 30580.08 13591.92 17282.02 9790.85 27295.97 39
MGCFI-Net85.04 12685.95 11382.31 21587.52 22663.59 24986.23 13893.96 4473.46 17688.07 14687.83 26686.46 5790.87 20576.17 16893.89 20092.47 177
EI-MVSNet-UG-set85.04 12684.44 14886.85 10183.87 30372.52 15383.82 18685.15 26280.27 9088.75 12785.45 30779.95 13791.90 17381.92 10090.80 27396.13 34
X-MVStestdata85.04 12682.70 17992.08 995.64 2486.25 2292.64 1993.33 6785.07 4189.99 10016.05 42486.57 5595.80 2887.35 2897.62 6494.20 96
MSLP-MVS++85.00 12986.03 11281.90 21991.84 11971.56 17086.75 12893.02 8775.95 14487.12 16489.39 23977.98 14989.40 24977.46 15194.78 17484.75 328
F-COLMAP84.97 13083.42 16489.63 5792.39 9683.40 5288.83 9291.92 12173.19 18780.18 30589.15 24577.04 16593.28 13365.82 27692.28 23792.21 192
balanced_conf0384.80 13185.40 12783.00 19688.95 18861.44 27890.42 5892.37 10871.48 21188.72 12993.13 12570.16 24195.15 6379.26 12894.11 19492.41 179
3Dnovator80.37 784.80 13184.71 14085.06 13886.36 25474.71 12788.77 9490.00 18275.65 14984.96 21493.17 12374.06 19891.19 19178.28 13891.09 26189.29 270
IterMVS-LS84.73 13384.98 13483.96 16787.35 22963.66 24783.25 20289.88 18576.06 13989.62 11192.37 15673.40 21092.52 15578.16 14194.77 17695.69 46
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MVS_111021_HR84.63 13484.34 15285.49 13390.18 16375.86 12379.23 27887.13 22873.35 18085.56 20389.34 24083.60 8590.50 21676.64 16194.05 19790.09 256
HQP-MVS84.61 13584.06 15586.27 11291.19 13970.66 17584.77 16192.68 9873.30 18380.55 29790.17 22872.10 22594.61 7977.30 15594.47 18393.56 133
v119284.57 13684.69 14184.21 16287.75 21962.88 25783.02 20991.43 13469.08 23689.98 10290.89 20272.70 21993.62 11882.41 9294.97 16696.13 34
FMVSNet184.55 13785.45 12681.85 22190.27 16161.05 28586.83 12488.27 21178.57 11589.66 11095.64 3475.43 18190.68 21169.09 24595.33 14993.82 116
v114484.54 13884.72 13984.00 16587.67 22262.55 26482.97 21190.93 15170.32 22589.80 10590.99 19673.50 20593.48 12681.69 10294.65 18095.97 39
Gipumacopyleft84.44 13986.33 10678.78 26784.20 29773.57 13589.55 7790.44 16384.24 4884.38 22694.89 5376.35 17880.40 35076.14 16996.80 9182.36 366
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
MCST-MVS84.36 14083.93 15885.63 12991.59 12471.58 16883.52 19492.13 11461.82 30583.96 23989.75 23579.93 13893.46 12778.33 13794.34 18791.87 205
VDDNet84.35 14185.39 12881.25 23295.13 3259.32 30485.42 15381.11 30386.41 3287.41 16196.21 2273.61 20390.61 21466.33 26996.85 8793.81 119
ETV-MVS84.31 14283.91 15985.52 13188.58 20070.40 17884.50 17293.37 6478.76 11384.07 23778.72 37980.39 13195.13 6573.82 19692.98 22391.04 226
v124084.30 14384.51 14783.65 17687.65 22361.26 28282.85 21591.54 13167.94 25290.68 9190.65 21471.71 23293.64 11482.84 8694.78 17496.07 36
MVS_111021_LR84.28 14483.76 16085.83 12689.23 18283.07 5580.99 25183.56 28372.71 19586.07 19289.07 24681.75 11786.19 29877.11 15793.36 21188.24 284
h-mvs3384.25 14582.76 17888.72 7391.82 12182.60 6084.00 18084.98 26871.27 21286.70 17690.55 21663.04 28093.92 10578.26 13994.20 19189.63 262
v14419284.24 14684.41 14983.71 17587.59 22561.57 27782.95 21291.03 14767.82 25589.80 10590.49 21773.28 21293.51 12581.88 10194.89 16996.04 38
dcpmvs_284.23 14785.14 13181.50 22988.61 19961.98 27582.90 21493.11 7968.66 24292.77 5492.39 15278.50 14587.63 27376.99 15992.30 23494.90 68
v192192084.23 14784.37 15183.79 17187.64 22461.71 27682.91 21391.20 14367.94 25290.06 9790.34 22072.04 22893.59 12082.32 9394.91 16796.07 36
VDD-MVS84.23 14784.58 14383.20 19191.17 14265.16 23583.25 20284.97 26979.79 9587.18 16394.27 7974.77 19190.89 20369.24 24196.54 9893.55 135
v2v48284.09 15084.24 15383.62 17787.13 23461.40 27982.71 21889.71 18872.19 20589.55 11591.41 18370.70 23893.20 13581.02 10593.76 20396.25 32
EG-PatchMatch MVS84.08 15184.11 15483.98 16692.22 10372.61 15082.20 23787.02 23372.63 19688.86 12491.02 19578.52 14491.11 19473.41 20291.09 26188.21 285
DP-MVS Recon84.05 15283.22 16886.52 10791.73 12275.27 12583.23 20492.40 10572.04 20682.04 27288.33 25677.91 15193.95 10466.17 27095.12 15990.34 249
TransMVSNet (Re)84.02 15385.74 12178.85 26691.00 14655.20 34582.29 23187.26 22379.65 9888.38 13995.52 3783.00 9086.88 28467.97 25996.60 9694.45 86
Baseline_NR-MVSNet84.00 15485.90 11578.29 27891.47 13453.44 35682.29 23187.00 23679.06 10789.55 11595.72 3277.20 16186.14 30072.30 21698.51 1795.28 58
TSAR-MVS + GP.83.95 15582.69 18087.72 8989.27 18181.45 6783.72 19081.58 30174.73 16185.66 19986.06 29772.56 22192.69 15275.44 17795.21 15489.01 278
alignmvs83.94 15683.98 15783.80 17087.80 21867.88 20984.54 17091.42 13673.27 18688.41 13887.96 26172.33 22290.83 20676.02 17194.11 19492.69 166
Effi-MVS+83.90 15784.01 15683.57 18187.22 23265.61 23186.55 13292.40 10578.64 11481.34 28884.18 32683.65 8492.93 14674.22 18687.87 31692.17 194
fmvsm_s_conf0.1_n_283.82 15883.49 16284.84 14085.99 26670.19 18280.93 25287.58 21967.26 26087.94 15192.37 15671.40 23488.01 26786.03 5091.87 24796.31 31
mvs5depth83.82 15884.54 14581.68 22682.23 32468.65 20086.89 12189.90 18480.02 9487.74 15597.86 264.19 27082.02 33876.37 16495.63 14394.35 92
CANet83.79 16082.85 17786.63 10486.17 26172.21 16083.76 18991.43 13477.24 13274.39 35687.45 27475.36 18295.42 5277.03 15892.83 22692.25 191
pm-mvs183.69 16184.95 13579.91 25390.04 16859.66 30182.43 22787.44 22075.52 15387.85 15295.26 4581.25 12285.65 31068.74 25196.04 12194.42 89
AdaColmapbinary83.66 16283.69 16183.57 18190.05 16772.26 15886.29 13690.00 18278.19 11981.65 28287.16 28083.40 8794.24 9261.69 31194.76 17784.21 338
MIMVSNet183.63 16384.59 14280.74 24194.06 5762.77 26082.72 21784.53 27577.57 12890.34 9395.92 2876.88 17385.83 30861.88 30997.42 7493.62 128
fmvsm_s_conf0.5_n_283.62 16483.29 16784.62 14885.43 27470.18 18380.61 25687.24 22467.14 26187.79 15491.87 16771.79 23187.98 26886.00 5491.77 25095.71 45
test_fmvsm_n_192083.60 16582.89 17685.74 12785.22 27877.74 9984.12 17790.48 16159.87 33186.45 18891.12 19275.65 17985.89 30682.28 9490.87 27093.58 131
WR-MVS83.56 16684.40 15081.06 23793.43 7054.88 34678.67 28685.02 26681.24 7990.74 9091.56 18072.85 21691.08 19568.00 25898.04 3997.23 16
CNLPA83.55 16783.10 17384.90 13989.34 17983.87 5084.54 17088.77 20179.09 10683.54 24988.66 25374.87 18781.73 34066.84 26492.29 23689.11 272
LCM-MVSNet-Re83.48 16885.06 13278.75 26885.94 26755.75 33980.05 26294.27 2476.47 13696.09 694.54 6783.31 8889.75 24159.95 32294.89 16990.75 235
hse-mvs283.47 16981.81 19388.47 7791.03 14582.27 6182.61 21983.69 28171.27 21286.70 17686.05 29863.04 28092.41 15878.26 13993.62 21090.71 237
V4283.47 16983.37 16683.75 17383.16 31863.33 25281.31 24590.23 17669.51 23290.91 8690.81 20774.16 19792.29 16480.06 11590.22 28295.62 49
VPA-MVSNet83.47 16984.73 13779.69 25790.29 16057.52 32581.30 24788.69 20376.29 13787.58 15994.44 7180.60 13087.20 27866.60 26796.82 9094.34 93
PAPM_NR83.23 17283.19 17083.33 18790.90 14865.98 22788.19 10190.78 15478.13 12080.87 29387.92 26473.49 20792.42 15770.07 23488.40 30591.60 215
CLD-MVS83.18 17382.64 18184.79 14389.05 18467.82 21077.93 29492.52 10368.33 24585.07 21181.54 35582.06 10992.96 14469.35 24097.91 5193.57 132
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
ANet_high83.17 17485.68 12275.65 31381.24 33645.26 39979.94 26492.91 9183.83 5191.33 7696.88 1380.25 13385.92 30368.89 24895.89 13195.76 43
FA-MVS(test-final)83.13 17583.02 17483.43 18486.16 26366.08 22688.00 10388.36 20875.55 15285.02 21292.75 14365.12 26592.50 15674.94 18391.30 25991.72 210
114514_t83.10 17682.54 18484.77 14492.90 8369.10 19786.65 12990.62 15954.66 36381.46 28590.81 20776.98 16694.38 8772.62 21396.18 11490.82 234
RRT-MVS82.97 17783.44 16381.57 22885.06 28058.04 32087.20 11490.37 16677.88 12388.59 13193.70 11363.17 27793.05 14276.49 16388.47 30493.62 128
BP-MVS182.81 17881.67 19586.23 11387.88 21668.53 20186.06 14084.36 27675.65 14985.14 20990.19 22545.84 36994.42 8685.18 6094.72 17895.75 44
UGNet82.78 17981.64 19686.21 11686.20 26076.24 12086.86 12285.68 25377.07 13373.76 36092.82 13969.64 24291.82 17769.04 24793.69 20790.56 243
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
LF4IMVS82.75 18081.93 19185.19 13582.08 32580.15 7485.53 15088.76 20268.01 24985.58 20287.75 26771.80 23086.85 28574.02 19293.87 20188.58 281
EI-MVSNet82.61 18182.42 18683.20 19183.25 31563.66 24783.50 19585.07 26376.06 13986.55 18085.10 31373.41 20890.25 21978.15 14390.67 27695.68 47
QAPM82.59 18282.59 18382.58 20986.44 24966.69 22089.94 6790.36 16767.97 25184.94 21692.58 14872.71 21892.18 16570.63 22987.73 31888.85 279
fmvsm_s_conf0.1_n_a82.58 18381.93 19184.50 15187.68 22173.35 13786.14 13977.70 32161.64 31085.02 21291.62 17877.75 15286.24 29582.79 8787.07 32593.91 111
Fast-Effi-MVS+-dtu82.54 18481.41 20485.90 12385.60 27076.53 11583.07 20789.62 19273.02 19079.11 31583.51 33180.74 12890.24 22168.76 25089.29 29390.94 229
MVS_Test82.47 18583.22 16880.22 25082.62 32357.75 32482.54 22491.96 12071.16 21682.89 25992.52 15077.41 15890.50 21680.04 11687.84 31792.40 181
v14882.31 18682.48 18581.81 22485.59 27159.66 30181.47 24486.02 24872.85 19188.05 14890.65 21470.73 23790.91 20275.15 18091.79 24894.87 70
API-MVS82.28 18782.61 18281.30 23186.29 25769.79 18488.71 9587.67 21878.42 11782.15 27184.15 32777.98 14991.59 18065.39 27992.75 22882.51 365
MVSFormer82.23 18881.57 20184.19 16485.54 27269.26 19291.98 3490.08 18071.54 20976.23 33785.07 31658.69 30594.27 8986.26 4488.77 30089.03 276
fmvsm_s_conf0.5_n_a82.21 18981.51 20384.32 15986.56 24773.35 13785.46 15177.30 32561.81 30684.51 22290.88 20477.36 15986.21 29782.72 8886.97 33093.38 136
EIA-MVS82.19 19081.23 20985.10 13787.95 21469.17 19683.22 20593.33 6770.42 22278.58 31979.77 37177.29 16094.20 9471.51 21988.96 29891.93 204
GDP-MVS82.17 19180.85 21586.15 12088.65 19768.95 19885.65 14993.02 8768.42 24383.73 24389.54 23845.07 38094.31 8879.66 12293.87 20195.19 63
fmvsm_s_conf0.1_n82.17 19181.59 19983.94 16986.87 24571.57 16985.19 15877.42 32462.27 30484.47 22591.33 18576.43 17585.91 30483.14 7887.14 32394.33 94
PCF-MVS74.62 1582.15 19380.92 21385.84 12589.43 17772.30 15780.53 25791.82 12557.36 34787.81 15389.92 23277.67 15593.63 11558.69 32795.08 16091.58 216
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
PLCcopyleft73.85 1682.09 19480.31 22187.45 9290.86 15080.29 7385.88 14290.65 15768.17 24876.32 33686.33 29273.12 21492.61 15461.40 31490.02 28589.44 265
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
fmvsm_l_conf0.5_n82.06 19581.54 20283.60 17883.94 30073.90 13383.35 19986.10 24458.97 33383.80 24290.36 21974.23 19686.94 28382.90 8490.22 28289.94 258
GBi-Net82.02 19682.07 18881.85 22186.38 25161.05 28586.83 12488.27 21172.43 19786.00 19395.64 3463.78 27390.68 21165.95 27293.34 21293.82 116
test182.02 19682.07 18881.85 22186.38 25161.05 28586.83 12488.27 21172.43 19786.00 19395.64 3463.78 27390.68 21165.95 27293.34 21293.82 116
OpenMVScopyleft76.72 1381.98 19882.00 19081.93 21884.42 29268.22 20488.50 9989.48 19466.92 26381.80 27991.86 16872.59 22090.16 22471.19 22291.25 26087.40 300
KD-MVS_self_test81.93 19983.14 17278.30 27784.75 28652.75 36080.37 25989.42 19670.24 22790.26 9593.39 11974.55 19586.77 28768.61 25396.64 9495.38 54
fmvsm_s_conf0.5_n81.91 20081.30 20683.75 17386.02 26571.56 17084.73 16477.11 32862.44 30184.00 23890.68 21176.42 17685.89 30683.14 7887.11 32493.81 119
SDMVSNet81.90 20183.17 17178.10 28188.81 19262.45 26676.08 32786.05 24773.67 17283.41 25093.04 12782.35 10080.65 34770.06 23595.03 16291.21 222
tfpnnormal81.79 20282.95 17578.31 27688.93 18955.40 34180.83 25582.85 28976.81 13485.90 19794.14 8974.58 19486.51 29166.82 26595.68 14293.01 154
c3_l81.64 20381.59 19981.79 22580.86 34259.15 30878.61 28790.18 17868.36 24487.20 16287.11 28269.39 24391.62 17978.16 14194.43 18594.60 79
PVSNet_Blended_VisFu81.55 20480.49 21984.70 14791.58 12773.24 14184.21 17491.67 12962.86 29580.94 29187.16 28067.27 25492.87 14969.82 23788.94 29987.99 291
fmvsm_l_conf0.5_n_a81.46 20580.87 21483.25 18983.73 30573.21 14283.00 21085.59 25558.22 33982.96 25890.09 23072.30 22386.65 28981.97 9989.95 28689.88 259
DELS-MVS81.44 20681.25 20782.03 21784.27 29662.87 25876.47 32192.49 10470.97 21881.64 28383.83 32875.03 18592.70 15174.29 18592.22 24090.51 245
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
FMVSNet281.31 20781.61 19880.41 24786.38 25158.75 31583.93 18386.58 23972.43 19787.65 15792.98 13163.78 27390.22 22266.86 26293.92 19992.27 189
TinyColmap81.25 20882.34 18777.99 28485.33 27560.68 29282.32 23088.33 20971.26 21486.97 17192.22 16377.10 16486.98 28262.37 30395.17 15686.31 311
AUN-MVS81.18 20978.78 24288.39 7990.93 14782.14 6282.51 22583.67 28264.69 28780.29 30185.91 30151.07 34492.38 15976.29 16793.63 20990.65 241
tttt051781.07 21079.58 23385.52 13188.99 18766.45 22387.03 11975.51 34073.76 17188.32 14190.20 22437.96 40194.16 9979.36 12795.13 15795.93 42
Fast-Effi-MVS+81.04 21180.57 21682.46 21387.50 22763.22 25478.37 29089.63 19168.01 24981.87 27582.08 34982.31 10292.65 15367.10 26188.30 31191.51 218
BH-untuned80.96 21280.99 21180.84 24088.55 20168.23 20380.33 26088.46 20572.79 19486.55 18086.76 28674.72 19291.77 17861.79 31088.99 29782.52 364
eth_miper_zixun_eth80.84 21380.22 22582.71 20681.41 33460.98 28877.81 29690.14 17967.31 25986.95 17287.24 27964.26 26892.31 16275.23 17991.61 25394.85 74
xiu_mvs_v1_base_debu80.84 21380.14 22782.93 20188.31 20571.73 16479.53 26987.17 22565.43 27879.59 30782.73 34376.94 16790.14 22773.22 20588.33 30786.90 305
xiu_mvs_v1_base80.84 21380.14 22782.93 20188.31 20571.73 16479.53 26987.17 22565.43 27879.59 30782.73 34376.94 16790.14 22773.22 20588.33 30786.90 305
xiu_mvs_v1_base_debi80.84 21380.14 22782.93 20188.31 20571.73 16479.53 26987.17 22565.43 27879.59 30782.73 34376.94 16790.14 22773.22 20588.33 30786.90 305
IterMVS-SCA-FT80.64 21779.41 23484.34 15883.93 30169.66 18776.28 32381.09 30472.43 19786.47 18690.19 22560.46 29093.15 13877.45 15286.39 33690.22 250
BH-RMVSNet80.53 21880.22 22581.49 23087.19 23366.21 22577.79 29786.23 24274.21 16683.69 24488.50 25473.25 21390.75 20863.18 30087.90 31587.52 298
Anonymous20240521180.51 21981.19 21078.49 27388.48 20257.26 32776.63 31682.49 29281.21 8084.30 23292.24 16267.99 25186.24 29562.22 30495.13 15791.98 203
DIV-MVS_self_test80.43 22080.23 22381.02 23879.99 35059.25 30577.07 30987.02 23367.38 25686.19 18989.22 24263.09 27890.16 22476.32 16595.80 13693.66 124
cl____80.42 22180.23 22381.02 23879.99 35059.25 30577.07 30987.02 23367.37 25786.18 19189.21 24363.08 27990.16 22476.31 16695.80 13693.65 126
diffmvspermissive80.40 22280.48 22080.17 25179.02 36360.04 29677.54 30190.28 17566.65 26682.40 26687.33 27773.50 20587.35 27677.98 14589.62 29093.13 148
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EPNet80.37 22378.41 24986.23 11376.75 37773.28 13987.18 11677.45 32376.24 13868.14 38888.93 24865.41 26493.85 10769.47 23996.12 11891.55 217
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
miper_ehance_all_eth80.34 22480.04 23081.24 23479.82 35358.95 31077.66 29889.66 18965.75 27585.99 19685.11 31268.29 25091.42 18676.03 17092.03 24293.33 138
MG-MVS80.32 22580.94 21278.47 27488.18 20852.62 36382.29 23185.01 26772.01 20779.24 31492.54 14969.36 24493.36 13270.65 22889.19 29689.45 264
mvsmamba80.30 22678.87 23984.58 15088.12 21167.55 21192.35 2984.88 27063.15 29385.33 20690.91 20150.71 34695.20 6266.36 26887.98 31490.99 227
VPNet80.25 22781.68 19475.94 31192.46 9547.98 38676.70 31481.67 29973.45 17784.87 21792.82 13974.66 19386.51 29161.66 31296.85 8793.33 138
MAR-MVS80.24 22878.74 24484.73 14586.87 24578.18 9285.75 14687.81 21765.67 27777.84 32478.50 38073.79 20290.53 21561.59 31390.87 27085.49 321
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PM-MVS80.20 22979.00 23883.78 17288.17 20986.66 1981.31 24566.81 39469.64 23188.33 14090.19 22564.58 26683.63 33071.99 21890.03 28481.06 383
Anonymous2024052180.18 23081.25 20776.95 29783.15 31960.84 29082.46 22685.99 24968.76 24086.78 17393.73 11259.13 30277.44 36473.71 19897.55 6992.56 171
LFMVS80.15 23180.56 21778.89 26589.19 18355.93 33585.22 15773.78 35282.96 6384.28 23392.72 14457.38 31490.07 23163.80 29495.75 13990.68 239
DPM-MVS80.10 23279.18 23782.88 20490.71 15369.74 18578.87 28390.84 15260.29 32775.64 34685.92 30067.28 25393.11 13971.24 22191.79 24885.77 317
MSDG80.06 23379.99 23280.25 24983.91 30268.04 20877.51 30289.19 19777.65 12681.94 27383.45 33376.37 17786.31 29463.31 29986.59 33386.41 309
FE-MVS79.98 23478.86 24083.36 18686.47 24866.45 22389.73 7084.74 27472.80 19384.22 23691.38 18444.95 38193.60 11963.93 29291.50 25690.04 257
sd_testset79.95 23581.39 20575.64 31488.81 19258.07 31976.16 32682.81 29073.67 17283.41 25093.04 12780.96 12577.65 36358.62 32895.03 16291.21 222
ab-mvs79.67 23680.56 21776.99 29688.48 20256.93 32984.70 16586.06 24668.95 23880.78 29493.08 12675.30 18384.62 31856.78 33790.90 26889.43 266
VNet79.31 23780.27 22276.44 30587.92 21553.95 35275.58 33384.35 27774.39 16582.23 26990.72 20972.84 21784.39 32260.38 32093.98 19890.97 228
thisisatest053079.07 23877.33 25884.26 16187.13 23464.58 23883.66 19275.95 33568.86 23985.22 20887.36 27638.10 39893.57 12375.47 17694.28 18994.62 78
cl2278.97 23978.21 25181.24 23477.74 36759.01 30977.46 30587.13 22865.79 27284.32 22985.10 31358.96 30490.88 20475.36 17892.03 24293.84 114
patch_mono-278.89 24079.39 23577.41 29384.78 28468.11 20675.60 33183.11 28660.96 32079.36 31189.89 23375.18 18472.97 37673.32 20492.30 23491.15 224
RPMNet78.88 24178.28 25080.68 24479.58 35462.64 26282.58 22194.16 3274.80 16075.72 34492.59 14648.69 35395.56 4273.48 20182.91 37283.85 343
PAPR78.84 24278.10 25281.07 23685.17 27960.22 29582.21 23590.57 16062.51 29775.32 35084.61 32174.99 18692.30 16359.48 32588.04 31390.68 239
PVSNet_BlendedMVS78.80 24377.84 25381.65 22784.43 29063.41 25079.49 27290.44 16361.70 30975.43 34787.07 28369.11 24691.44 18460.68 31892.24 23890.11 255
FMVSNet378.80 24378.55 24679.57 25982.89 32256.89 33181.76 23985.77 25169.04 23786.00 19390.44 21851.75 34290.09 23065.95 27293.34 21291.72 210
test_yl78.71 24578.51 24779.32 26284.32 29458.84 31278.38 28885.33 25875.99 14282.49 26486.57 28858.01 30890.02 23362.74 30192.73 22989.10 273
DCV-MVSNet78.71 24578.51 24779.32 26284.32 29458.84 31278.38 28885.33 25875.99 14282.49 26486.57 28858.01 30890.02 23362.74 30192.73 22989.10 273
test111178.53 24778.85 24177.56 29092.22 10347.49 38882.61 21969.24 38372.43 19785.28 20794.20 8551.91 34090.07 23165.36 28096.45 10395.11 65
ECVR-MVScopyleft78.44 24878.63 24577.88 28691.85 11748.95 38283.68 19169.91 37972.30 20384.26 23594.20 8551.89 34189.82 23663.58 29596.02 12294.87 70
pmmvs-eth3d78.42 24977.04 26182.57 21187.44 22874.41 13080.86 25479.67 31255.68 35684.69 22090.31 22260.91 28885.42 31162.20 30591.59 25487.88 294
mvs_anonymous78.13 25078.76 24376.23 31079.24 36050.31 37978.69 28584.82 27261.60 31183.09 25792.82 13973.89 20187.01 27968.33 25786.41 33591.37 219
TAMVS78.08 25176.36 26783.23 19090.62 15472.87 14379.08 27980.01 31161.72 30881.35 28786.92 28563.96 27288.78 25850.61 37593.01 22288.04 290
miper_enhance_ethall77.83 25276.93 26280.51 24576.15 38458.01 32175.47 33588.82 20058.05 34183.59 24680.69 35964.41 26791.20 19073.16 21192.03 24292.33 185
Vis-MVSNet (Re-imp)77.82 25377.79 25477.92 28588.82 19151.29 37383.28 20071.97 36774.04 16782.23 26989.78 23457.38 31489.41 24857.22 33695.41 14693.05 152
CANet_DTU77.81 25477.05 26080.09 25281.37 33559.90 29983.26 20188.29 21069.16 23567.83 39183.72 32960.93 28789.47 24369.22 24389.70 28990.88 232
OpenMVS_ROBcopyleft70.19 1777.77 25577.46 25578.71 26984.39 29361.15 28381.18 24982.52 29162.45 30083.34 25287.37 27566.20 25988.66 26064.69 28785.02 35286.32 310
SSC-MVS77.55 25681.64 19665.29 38290.46 15720.33 42873.56 35168.28 38585.44 3788.18 14594.64 6470.93 23681.33 34271.25 22092.03 24294.20 96
MDA-MVSNet-bldmvs77.47 25776.90 26379.16 26479.03 36264.59 23766.58 39275.67 33873.15 18888.86 12488.99 24766.94 25581.23 34364.71 28688.22 31291.64 214
jason77.42 25875.75 27382.43 21487.10 23769.27 19177.99 29381.94 29751.47 38277.84 32485.07 31660.32 29289.00 25270.74 22789.27 29589.03 276
jason: jason.
CDS-MVSNet77.32 25975.40 27683.06 19489.00 18672.48 15477.90 29582.17 29560.81 32178.94 31683.49 33259.30 30088.76 25954.64 35592.37 23387.93 293
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
xiu_mvs_v2_base77.19 26076.75 26478.52 27287.01 24061.30 28175.55 33487.12 23161.24 31774.45 35578.79 37877.20 16190.93 20064.62 28984.80 35983.32 352
MVSTER77.09 26175.70 27481.25 23275.27 39261.08 28477.49 30485.07 26360.78 32286.55 18088.68 25143.14 39090.25 21973.69 19990.67 27692.42 178
PS-MVSNAJ77.04 26276.53 26678.56 27187.09 23861.40 27975.26 33687.13 22861.25 31674.38 35777.22 39176.94 16790.94 19964.63 28884.83 35883.35 351
IterMVS76.91 26376.34 26878.64 27080.91 34064.03 24476.30 32279.03 31564.88 28683.11 25589.16 24459.90 29684.46 32068.61 25385.15 35087.42 299
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
D2MVS76.84 26475.67 27580.34 24880.48 34862.16 27473.50 35284.80 27357.61 34582.24 26887.54 27151.31 34387.65 27270.40 23293.19 21891.23 221
CL-MVSNet_self_test76.81 26577.38 25775.12 31786.90 24351.34 37173.20 35580.63 30868.30 24681.80 27988.40 25566.92 25680.90 34455.35 34994.90 16893.12 150
TR-MVS76.77 26675.79 27279.72 25686.10 26465.79 22977.14 30783.02 28765.20 28481.40 28682.10 34766.30 25890.73 21055.57 34685.27 34682.65 359
MonoMVSNet76.66 26777.26 25974.86 31979.86 35254.34 34986.26 13786.08 24571.08 21785.59 20188.68 25153.95 33285.93 30263.86 29380.02 38784.32 334
USDC76.63 26876.73 26576.34 30783.46 30857.20 32880.02 26388.04 21552.14 37883.65 24591.25 18763.24 27686.65 28954.66 35494.11 19485.17 323
BH-w/o76.57 26976.07 27178.10 28186.88 24465.92 22877.63 29986.33 24065.69 27680.89 29279.95 36868.97 24890.74 20953.01 36585.25 34777.62 394
Patchmtry76.56 27077.46 25573.83 32579.37 35946.60 39282.41 22876.90 32973.81 17085.56 20392.38 15348.07 35683.98 32763.36 29895.31 15290.92 230
PVSNet_Blended76.49 27175.40 27679.76 25584.43 29063.41 25075.14 33790.44 16357.36 34775.43 34778.30 38169.11 24691.44 18460.68 31887.70 31984.42 333
miper_lstm_enhance76.45 27276.10 27077.51 29176.72 37860.97 28964.69 39685.04 26563.98 29083.20 25488.22 25756.67 31878.79 36073.22 20593.12 21992.78 161
lupinMVS76.37 27374.46 28582.09 21685.54 27269.26 19276.79 31280.77 30750.68 38976.23 33782.82 34158.69 30588.94 25369.85 23688.77 30088.07 287
cascas76.29 27474.81 28180.72 24384.47 28962.94 25673.89 34987.34 22155.94 35475.16 35276.53 39663.97 27191.16 19265.00 28390.97 26688.06 289
WB-MVS76.06 27580.01 23164.19 38589.96 17020.58 42772.18 36068.19 38683.21 5986.46 18793.49 11770.19 24078.97 35865.96 27190.46 28193.02 153
thres600view775.97 27675.35 27877.85 28887.01 24051.84 36980.45 25873.26 35775.20 15783.10 25686.31 29445.54 37189.05 25155.03 35292.24 23892.66 167
GA-MVS75.83 27774.61 28279.48 26181.87 32759.25 30573.42 35382.88 28868.68 24179.75 30681.80 35250.62 34789.46 24466.85 26385.64 34389.72 261
MVP-Stereo75.81 27873.51 29482.71 20689.35 17873.62 13480.06 26185.20 26060.30 32673.96 35887.94 26257.89 31289.45 24552.02 36974.87 40585.06 325
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
test_fmvs375.72 27975.20 27977.27 29475.01 39569.47 18978.93 28084.88 27046.67 39687.08 16887.84 26550.44 34971.62 38177.42 15488.53 30390.72 236
thres100view90075.45 28075.05 28076.66 30387.27 23051.88 36881.07 25073.26 35775.68 14883.25 25386.37 29145.54 37188.80 25551.98 37090.99 26389.31 268
ET-MVSNet_ETH3D75.28 28172.77 30382.81 20583.03 32168.11 20677.09 30876.51 33360.67 32477.60 32980.52 36338.04 39991.15 19370.78 22590.68 27589.17 271
thres40075.14 28274.23 28777.86 28786.24 25852.12 36579.24 27673.87 35073.34 18181.82 27784.60 32246.02 36488.80 25551.98 37090.99 26392.66 167
wuyk23d75.13 28379.30 23662.63 38875.56 38875.18 12680.89 25373.10 35975.06 15994.76 1695.32 4187.73 4352.85 41934.16 41897.11 8259.85 415
EU-MVSNet75.12 28474.43 28677.18 29583.11 32059.48 30385.71 14882.43 29339.76 41685.64 20088.76 24944.71 38387.88 27073.86 19585.88 34284.16 339
HyFIR lowres test75.12 28472.66 30582.50 21291.44 13565.19 23472.47 35887.31 22246.79 39580.29 30184.30 32452.70 33792.10 16951.88 37486.73 33190.22 250
CMPMVSbinary59.41 2075.12 28473.57 29279.77 25475.84 38767.22 21281.21 24882.18 29450.78 38776.50 33387.66 26955.20 32882.99 33362.17 30790.64 28089.09 275
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
pmmvs474.92 28772.98 30180.73 24284.95 28171.71 16776.23 32477.59 32252.83 37277.73 32886.38 29056.35 32184.97 31557.72 33587.05 32685.51 320
tfpn200view974.86 28874.23 28776.74 30286.24 25852.12 36579.24 27673.87 35073.34 18181.82 27784.60 32246.02 36488.80 25551.98 37090.99 26389.31 268
1112_ss74.82 28973.74 29078.04 28389.57 17260.04 29676.49 32087.09 23254.31 36473.66 36179.80 36960.25 29386.76 28858.37 32984.15 36387.32 301
EGC-MVSNET74.79 29069.99 33289.19 6594.89 3887.00 1591.89 3786.28 2411.09 4252.23 42795.98 2781.87 11589.48 24279.76 11995.96 12591.10 225
ppachtmachnet_test74.73 29174.00 28976.90 29980.71 34556.89 33171.53 36678.42 31758.24 33879.32 31382.92 34057.91 31184.26 32465.60 27891.36 25889.56 263
Patchmatch-RL test74.48 29273.68 29176.89 30084.83 28366.54 22172.29 35969.16 38457.70 34386.76 17486.33 29245.79 37082.59 33469.63 23890.65 27981.54 374
PatchMatch-RL74.48 29273.22 29878.27 27987.70 22085.26 3875.92 32970.09 37764.34 28876.09 34081.25 35765.87 26278.07 36253.86 35783.82 36571.48 403
XXY-MVS74.44 29476.19 26969.21 35984.61 28852.43 36471.70 36377.18 32760.73 32380.60 29590.96 19975.44 18069.35 38856.13 34288.33 30785.86 316
test250674.12 29573.39 29576.28 30891.85 11744.20 40284.06 17848.20 42372.30 20381.90 27494.20 8527.22 42389.77 23964.81 28596.02 12294.87 70
reproduce_monomvs74.09 29673.23 29776.65 30476.52 37954.54 34777.50 30381.40 30265.85 27182.86 26186.67 28727.38 42184.53 31970.24 23390.66 27890.89 231
CR-MVSNet74.00 29773.04 30076.85 30179.58 35462.64 26282.58 22176.90 32950.50 39075.72 34492.38 15348.07 35684.07 32668.72 25282.91 37283.85 343
Test_1112_low_res73.90 29873.08 29976.35 30690.35 15955.95 33473.40 35486.17 24350.70 38873.14 36285.94 29958.31 30785.90 30556.51 33983.22 36987.20 302
test20.0373.75 29974.59 28471.22 34681.11 33851.12 37570.15 37672.10 36670.42 22280.28 30391.50 18164.21 26974.72 37546.96 39494.58 18187.82 296
test_fmvs273.57 30072.80 30275.90 31272.74 40868.84 19977.07 30984.32 27845.14 40282.89 25984.22 32548.37 35470.36 38573.40 20387.03 32788.52 282
SCA73.32 30172.57 30775.58 31581.62 33155.86 33778.89 28271.37 37261.73 30774.93 35383.42 33460.46 29087.01 27958.11 33382.63 37783.88 340
baseline173.26 30273.54 29372.43 33984.92 28247.79 38779.89 26574.00 34865.93 26978.81 31786.28 29556.36 32081.63 34156.63 33879.04 39487.87 295
131473.22 30372.56 30875.20 31680.41 34957.84 32281.64 24285.36 25751.68 38173.10 36376.65 39561.45 28585.19 31363.54 29679.21 39282.59 360
MVS73.21 30472.59 30675.06 31880.97 33960.81 29181.64 24285.92 25046.03 40071.68 37077.54 38668.47 24989.77 23955.70 34585.39 34474.60 400
HY-MVS64.64 1873.03 30572.47 30974.71 32183.36 31254.19 35082.14 23881.96 29656.76 35369.57 38386.21 29660.03 29484.83 31749.58 38182.65 37585.11 324
thisisatest051573.00 30670.52 32480.46 24681.45 33359.90 29973.16 35674.31 34757.86 34276.08 34177.78 38437.60 40292.12 16865.00 28391.45 25789.35 267
EPNet_dtu72.87 30771.33 31977.49 29277.72 36860.55 29382.35 22975.79 33666.49 26758.39 41881.06 35853.68 33385.98 30153.55 36092.97 22485.95 314
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CVMVSNet72.62 30871.41 31876.28 30883.25 31560.34 29483.50 19579.02 31637.77 42076.33 33585.10 31349.60 35287.41 27570.54 23077.54 40081.08 381
CHOSEN 1792x268872.45 30970.56 32378.13 28090.02 16963.08 25568.72 38183.16 28542.99 41075.92 34285.46 30657.22 31685.18 31449.87 37981.67 37986.14 312
testgi72.36 31074.61 28265.59 37980.56 34742.82 40768.29 38273.35 35666.87 26481.84 27689.93 23172.08 22766.92 40146.05 39792.54 23187.01 304
thres20072.34 31171.55 31774.70 32283.48 30751.60 37075.02 33873.71 35370.14 22878.56 32080.57 36246.20 36288.20 26646.99 39389.29 29384.32 334
FPMVS72.29 31272.00 31173.14 33088.63 19885.00 4074.65 34267.39 38871.94 20877.80 32687.66 26950.48 34875.83 37049.95 37779.51 38858.58 417
FMVSNet572.10 31371.69 31373.32 32881.57 33253.02 35976.77 31378.37 31863.31 29176.37 33491.85 16936.68 40378.98 35747.87 39092.45 23287.95 292
our_test_371.85 31471.59 31472.62 33680.71 34553.78 35369.72 37871.71 37158.80 33578.03 32180.51 36456.61 31978.84 35962.20 30586.04 34185.23 322
PAPM71.77 31570.06 33076.92 29886.39 25053.97 35176.62 31786.62 23853.44 36863.97 40884.73 32057.79 31392.34 16139.65 40981.33 38384.45 332
ttmdpeth71.72 31670.67 32174.86 31973.08 40555.88 33677.41 30669.27 38255.86 35578.66 31893.77 11038.01 40075.39 37260.12 32189.87 28793.31 140
IB-MVS62.13 1971.64 31768.97 34279.66 25880.80 34462.26 27173.94 34876.90 32963.27 29268.63 38776.79 39333.83 40791.84 17659.28 32687.26 32184.88 326
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
UnsupCasMVSNet_eth71.63 31872.30 31069.62 35676.47 38152.70 36270.03 37780.97 30559.18 33279.36 31188.21 25860.50 28969.12 38958.33 33177.62 39987.04 303
testing371.53 31970.79 32073.77 32688.89 19041.86 40976.60 31959.12 41372.83 19280.97 28982.08 34919.80 42987.33 27765.12 28291.68 25292.13 196
test_vis3_rt71.42 32070.67 32173.64 32769.66 41570.46 17766.97 39189.73 18642.68 41288.20 14483.04 33643.77 38560.07 41365.35 28186.66 33290.39 248
Anonymous2023120671.38 32171.88 31269.88 35386.31 25554.37 34870.39 37474.62 34352.57 37476.73 33288.76 24959.94 29572.06 37844.35 40193.23 21783.23 354
test_vis1_n_192071.30 32271.58 31670.47 34977.58 37059.99 29874.25 34384.22 27951.06 38474.85 35479.10 37555.10 32968.83 39168.86 24979.20 39382.58 361
MIMVSNet71.09 32371.59 31469.57 35787.23 23150.07 38078.91 28171.83 36860.20 32971.26 37191.76 17555.08 33076.09 36841.06 40687.02 32882.54 363
test_fmvs1_n70.94 32470.41 32772.53 33873.92 39766.93 21875.99 32884.21 28043.31 40979.40 31079.39 37343.47 38668.55 39369.05 24684.91 35582.10 368
MS-PatchMatch70.93 32570.22 32873.06 33181.85 32862.50 26573.82 35077.90 31952.44 37575.92 34281.27 35655.67 32581.75 33955.37 34877.70 39874.94 399
pmmvs570.73 32670.07 32972.72 33477.03 37552.73 36174.14 34475.65 33950.36 39172.17 36885.37 31055.42 32780.67 34652.86 36687.59 32084.77 327
PatchT70.52 32772.76 30463.79 38779.38 35833.53 42177.63 29965.37 39873.61 17471.77 36992.79 14244.38 38475.65 37164.53 29085.37 34582.18 367
test_vis1_n70.29 32869.99 33271.20 34775.97 38666.50 22276.69 31580.81 30644.22 40575.43 34777.23 39050.00 35068.59 39266.71 26682.85 37478.52 393
N_pmnet70.20 32968.80 34474.38 32380.91 34084.81 4359.12 40876.45 33455.06 35975.31 35182.36 34655.74 32454.82 41847.02 39287.24 32283.52 347
tpmvs70.16 33069.56 33571.96 34274.71 39648.13 38479.63 26775.45 34165.02 28570.26 37981.88 35145.34 37685.68 30958.34 33075.39 40482.08 369
new-patchmatchnet70.10 33173.37 29660.29 39581.23 33716.95 43059.54 40674.62 34362.93 29480.97 28987.93 26362.83 28271.90 37955.24 35095.01 16592.00 201
YYNet170.06 33270.44 32568.90 36173.76 39953.42 35758.99 40967.20 39058.42 33787.10 16685.39 30959.82 29767.32 39859.79 32383.50 36885.96 313
MVStest170.05 33369.26 33672.41 34058.62 42755.59 34076.61 31865.58 39653.44 36889.28 12093.32 12022.91 42771.44 38374.08 19189.52 29190.21 254
MDA-MVSNet_test_wron70.05 33370.44 32568.88 36273.84 39853.47 35558.93 41067.28 38958.43 33687.09 16785.40 30859.80 29867.25 39959.66 32483.54 36785.92 315
CostFormer69.98 33568.68 34573.87 32477.14 37350.72 37779.26 27574.51 34551.94 38070.97 37484.75 31945.16 37987.49 27455.16 35179.23 39183.40 350
testing9169.94 33668.99 34172.80 33383.81 30445.89 39571.57 36573.64 35568.24 24770.77 37777.82 38334.37 40684.44 32153.64 35987.00 32988.07 287
baseline269.77 33766.89 35478.41 27579.51 35658.09 31876.23 32469.57 38057.50 34664.82 40677.45 38846.02 36488.44 26253.08 36277.83 39688.70 280
PatchmatchNetpermissive69.71 33868.83 34372.33 34177.66 36953.60 35479.29 27469.99 37857.66 34472.53 36682.93 33946.45 36180.08 35260.91 31772.09 40883.31 353
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
test_fmvs169.57 33969.05 33971.14 34869.15 41665.77 23073.98 34783.32 28442.83 41177.77 32778.27 38243.39 38968.50 39468.39 25684.38 36279.15 391
JIA-IIPM69.41 34066.64 35877.70 28973.19 40271.24 17275.67 33065.56 39770.42 22265.18 40292.97 13333.64 40983.06 33153.52 36169.61 41478.79 392
Syy-MVS69.40 34170.03 33167.49 37181.72 32938.94 41471.00 36861.99 40461.38 31370.81 37572.36 40761.37 28679.30 35564.50 29185.18 34884.22 336
testing9969.27 34268.15 34972.63 33583.29 31345.45 39771.15 36771.08 37367.34 25870.43 37877.77 38532.24 41184.35 32353.72 35886.33 33788.10 286
UnsupCasMVSNet_bld69.21 34369.68 33467.82 36979.42 35751.15 37467.82 38675.79 33654.15 36577.47 33085.36 31159.26 30170.64 38448.46 38779.35 39081.66 372
test_cas_vis1_n_192069.20 34469.12 33769.43 35873.68 40062.82 25970.38 37577.21 32646.18 39980.46 30078.95 37752.03 33965.53 40665.77 27777.45 40179.95 389
gg-mvs-nofinetune68.96 34569.11 33868.52 36776.12 38545.32 39883.59 19355.88 41886.68 2964.62 40797.01 930.36 41483.97 32844.78 40082.94 37176.26 396
WBMVS68.76 34668.43 34669.75 35583.29 31340.30 41267.36 38872.21 36557.09 35077.05 33185.53 30433.68 40880.51 34848.79 38590.90 26888.45 283
WB-MVSnew68.72 34769.01 34067.85 36883.22 31743.98 40374.93 33965.98 39555.09 35873.83 35979.11 37465.63 26371.89 38038.21 41485.04 35187.69 297
tpm268.45 34866.83 35573.30 32978.93 36448.50 38379.76 26671.76 36947.50 39469.92 38183.60 33042.07 39288.40 26348.44 38879.51 38883.01 357
tpm67.95 34968.08 35067.55 37078.74 36543.53 40575.60 33167.10 39354.92 36072.23 36788.10 25942.87 39175.97 36952.21 36880.95 38683.15 355
WTY-MVS67.91 35068.35 34766.58 37680.82 34348.12 38565.96 39372.60 36053.67 36771.20 37281.68 35458.97 30369.06 39048.57 38681.67 37982.55 362
testing1167.38 35165.93 35971.73 34483.37 31146.60 39270.95 37069.40 38162.47 29966.14 39576.66 39431.22 41284.10 32549.10 38384.10 36484.49 330
test-LLR67.21 35266.74 35668.63 36576.45 38255.21 34367.89 38367.14 39162.43 30265.08 40372.39 40543.41 38769.37 38661.00 31584.89 35681.31 376
testing22266.93 35365.30 36571.81 34383.38 31045.83 39672.06 36167.50 38764.12 28969.68 38276.37 39727.34 42283.00 33238.88 41088.38 30686.62 308
sss66.92 35467.26 35265.90 37877.23 37251.10 37664.79 39571.72 37052.12 37970.13 38080.18 36657.96 31065.36 40750.21 37681.01 38581.25 378
KD-MVS_2432*160066.87 35565.81 36170.04 35167.50 41747.49 38862.56 40079.16 31361.21 31877.98 32280.61 36025.29 42582.48 33553.02 36384.92 35380.16 387
miper_refine_blended66.87 35565.81 36170.04 35167.50 41747.49 38862.56 40079.16 31361.21 31877.98 32280.61 36025.29 42582.48 33553.02 36384.92 35380.16 387
dmvs_re66.81 35766.98 35366.28 37776.87 37658.68 31671.66 36472.24 36360.29 32769.52 38473.53 40452.38 33864.40 40944.90 39981.44 38275.76 397
tpm cat166.76 35865.21 36671.42 34577.09 37450.62 37878.01 29273.68 35444.89 40368.64 38679.00 37645.51 37382.42 33749.91 37870.15 41181.23 380
UWE-MVS66.43 35965.56 36469.05 36084.15 29840.98 41073.06 35764.71 40054.84 36176.18 33979.62 37229.21 41680.50 34938.54 41389.75 28885.66 318
PVSNet58.17 2166.41 36065.63 36368.75 36381.96 32649.88 38162.19 40272.51 36251.03 38568.04 38975.34 40150.84 34574.77 37345.82 39882.96 37081.60 373
tpmrst66.28 36166.69 35765.05 38372.82 40739.33 41378.20 29170.69 37653.16 37167.88 39080.36 36548.18 35574.75 37458.13 33270.79 41081.08 381
Patchmatch-test65.91 36267.38 35161.48 39375.51 38943.21 40668.84 38063.79 40262.48 29872.80 36583.42 33444.89 38259.52 41548.27 38986.45 33481.70 371
ADS-MVSNet265.87 36363.64 37172.55 33773.16 40356.92 33067.10 38974.81 34249.74 39266.04 39782.97 33746.71 35977.26 36542.29 40369.96 41283.46 348
test_vis1_rt65.64 36464.09 36870.31 35066.09 42170.20 18161.16 40381.60 30038.65 41772.87 36469.66 41052.84 33560.04 41456.16 34177.77 39780.68 385
mvsany_test365.48 36562.97 37473.03 33269.99 41476.17 12164.83 39443.71 42543.68 40780.25 30487.05 28452.83 33663.09 41251.92 37372.44 40779.84 390
test-mter65.00 36663.79 37068.63 36576.45 38255.21 34367.89 38367.14 39150.98 38665.08 40372.39 40528.27 41969.37 38661.00 31584.89 35681.31 376
ETVMVS64.67 36763.34 37368.64 36483.44 30941.89 40869.56 37961.70 40961.33 31568.74 38575.76 39928.76 41779.35 35434.65 41786.16 34084.67 329
myMVS_eth3d64.66 36863.89 36966.97 37481.72 32937.39 41771.00 36861.99 40461.38 31370.81 37572.36 40720.96 42879.30 35549.59 38085.18 34884.22 336
test0.0.03 164.66 36864.36 36765.57 38075.03 39446.89 39164.69 39661.58 41062.43 30271.18 37377.54 38643.41 38768.47 39540.75 40882.65 37581.35 375
UBG64.34 37063.35 37267.30 37283.50 30640.53 41167.46 38765.02 39954.77 36267.54 39374.47 40332.99 41078.50 36140.82 40783.58 36682.88 358
test_f64.31 37165.85 36059.67 39666.54 42062.24 27357.76 41270.96 37440.13 41484.36 22782.09 34846.93 35851.67 42061.99 30881.89 37865.12 411
pmmvs362.47 37260.02 38569.80 35471.58 41164.00 24570.52 37358.44 41639.77 41566.05 39675.84 39827.10 42472.28 37746.15 39684.77 36073.11 401
EPMVS62.47 37262.63 37662.01 38970.63 41338.74 41574.76 34052.86 42053.91 36667.71 39280.01 36739.40 39666.60 40255.54 34768.81 41680.68 385
ADS-MVSNet61.90 37462.19 37861.03 39473.16 40336.42 41967.10 38961.75 40749.74 39266.04 39782.97 33746.71 35963.21 41042.29 40369.96 41283.46 348
PMMVS61.65 37560.38 38265.47 38165.40 42469.26 19263.97 39861.73 40836.80 42160.11 41368.43 41259.42 29966.35 40348.97 38478.57 39560.81 414
E-PMN61.59 37661.62 37961.49 39266.81 41955.40 34153.77 41560.34 41266.80 26558.90 41665.50 41540.48 39566.12 40455.72 34486.25 33862.95 413
TESTMET0.1,161.29 37760.32 38364.19 38572.06 40951.30 37267.89 38362.09 40345.27 40160.65 41269.01 41127.93 42064.74 40856.31 34081.65 38176.53 395
MVS-HIRNet61.16 37862.92 37555.87 39979.09 36135.34 42071.83 36257.98 41746.56 39759.05 41591.14 19149.95 35176.43 36738.74 41171.92 40955.84 418
EMVS61.10 37960.81 38161.99 39065.96 42255.86 33753.10 41658.97 41567.06 26256.89 42063.33 41640.98 39367.03 40054.79 35386.18 33963.08 412
DSMNet-mixed60.98 38061.61 38059.09 39872.88 40645.05 40074.70 34146.61 42426.20 42265.34 40190.32 22155.46 32663.12 41141.72 40581.30 38469.09 407
dp60.70 38160.29 38461.92 39172.04 41038.67 41670.83 37164.08 40151.28 38360.75 41177.28 38936.59 40471.58 38247.41 39162.34 41875.52 398
dmvs_testset60.59 38262.54 37754.72 40177.26 37127.74 42474.05 34661.00 41160.48 32565.62 40067.03 41455.93 32368.23 39632.07 42169.46 41568.17 408
CHOSEN 280x42059.08 38356.52 38866.76 37576.51 38064.39 24149.62 41759.00 41443.86 40655.66 42168.41 41335.55 40568.21 39743.25 40276.78 40367.69 409
mvsany_test158.48 38456.47 38964.50 38465.90 42368.21 20556.95 41342.11 42638.30 41865.69 39977.19 39256.96 31759.35 41646.16 39558.96 41965.93 410
PVSNet_051.08 2256.10 38554.97 39059.48 39775.12 39353.28 35855.16 41461.89 40644.30 40459.16 41462.48 41754.22 33165.91 40535.40 41647.01 42059.25 416
new_pmnet55.69 38657.66 38749.76 40275.47 39030.59 42259.56 40551.45 42143.62 40862.49 40975.48 40040.96 39449.15 42237.39 41572.52 40669.55 406
PMMVS255.64 38759.27 38644.74 40364.30 42512.32 43140.60 41849.79 42253.19 37065.06 40584.81 31853.60 33449.76 42132.68 42089.41 29272.15 402
MVEpermissive40.22 2351.82 38850.47 39155.87 39962.66 42651.91 36731.61 42039.28 42740.65 41350.76 42274.98 40256.24 32244.67 42333.94 41964.11 41771.04 405
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
dongtai41.90 38942.65 39239.67 40470.86 41221.11 42661.01 40421.42 43157.36 34757.97 41950.06 42016.40 43058.73 41721.03 42427.69 42439.17 420
kuosan30.83 39032.17 39326.83 40653.36 42819.02 42957.90 41120.44 43238.29 41938.01 42337.82 42215.18 43133.45 4257.74 42620.76 42528.03 421
test_method30.46 39129.60 39433.06 40517.99 4303.84 43313.62 42173.92 3492.79 42418.29 42653.41 41928.53 41843.25 42422.56 42235.27 42252.11 419
cdsmvs_eth3d_5k20.81 39227.75 3950.00 4110.00 4340.00 4360.00 42285.44 2560.00 4290.00 43082.82 34181.46 1190.00 4300.00 4290.00 4280.00 426
tmp_tt20.25 39324.50 3967.49 4084.47 4318.70 43234.17 41925.16 4291.00 42632.43 42518.49 42339.37 3979.21 42721.64 42343.75 4214.57 423
ab-mvs-re6.65 3948.87 3970.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 43079.80 3690.00 4340.00 4300.00 4290.00 4280.00 426
pcd_1.5k_mvsjas6.41 3958.55 3980.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 42976.94 1670.00 4300.00 4290.00 4280.00 426
test1236.27 3968.08 3990.84 4091.11 4330.57 43462.90 3990.82 4330.54 4271.07 4292.75 4281.26 4320.30 4281.04 4271.26 4271.66 424
testmvs5.91 3977.65 4000.72 4101.20 4320.37 43559.14 4070.67 4340.49 4281.11 4282.76 4270.94 4330.24 4291.02 4281.47 4261.55 425
mmdepth0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
monomultidepth0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
test_blank0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
uanet_test0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
DCPMVS0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
sosnet-low-res0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
sosnet0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
uncertanet0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
Regformer0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
uanet0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
WAC-MVS37.39 41752.61 367
FOURS196.08 1287.41 1496.19 295.83 592.95 396.57 3
MSC_two_6792asdad88.81 7191.55 12977.99 9491.01 14896.05 987.45 2498.17 3592.40 181
PC_three_145258.96 33490.06 9791.33 18580.66 12993.03 14375.78 17295.94 12892.48 175
No_MVS88.81 7191.55 12977.99 9491.01 14896.05 987.45 2498.17 3592.40 181
test_one_060193.85 6273.27 14094.11 3886.57 3093.47 4194.64 6488.42 28
eth-test20.00 434
eth-test0.00 434
ZD-MVS92.22 10380.48 7191.85 12371.22 21590.38 9292.98 13186.06 6496.11 781.99 9896.75 92
RE-MVS-def92.61 894.13 5588.95 692.87 1394.16 3288.75 1893.79 3294.43 7290.64 1087.16 3397.60 6692.73 162
IU-MVS94.18 5072.64 14790.82 15356.98 35189.67 10985.78 5597.92 4993.28 141
OPU-MVS88.27 8291.89 11577.83 9790.47 5591.22 18881.12 12394.68 7674.48 18495.35 14892.29 187
test_241102_TWO93.71 5583.77 5293.49 3994.27 7989.27 2395.84 2486.03 5097.82 5492.04 199
test_241102_ONE94.18 5072.65 14593.69 5683.62 5494.11 2693.78 10890.28 1495.50 49
9.1489.29 6291.84 11988.80 9395.32 1275.14 15891.07 8192.89 13687.27 4793.78 11083.69 7697.55 69
save fliter93.75 6377.44 10386.31 13589.72 18770.80 219
test_0728_THIRD85.33 3893.75 3494.65 6187.44 4695.78 3287.41 2698.21 3292.98 156
test_0728_SECOND86.79 10294.25 4872.45 15590.54 5294.10 3995.88 1886.42 4097.97 4692.02 200
test072694.16 5372.56 15190.63 4993.90 4883.61 5593.75 3494.49 6989.76 18
GSMVS83.88 340
test_part293.86 6177.77 9892.84 51
sam_mvs146.11 36383.88 340
sam_mvs45.92 368
ambc82.98 19790.55 15664.86 23688.20 10089.15 19889.40 11893.96 9971.67 23391.38 18878.83 13196.55 9792.71 165
MTGPAbinary91.81 127
test_post178.85 2843.13 42545.19 37880.13 35158.11 333
test_post3.10 42645.43 37477.22 366
patchmatchnet-post81.71 35345.93 36787.01 279
GG-mvs-BLEND67.16 37373.36 40146.54 39484.15 17655.04 41958.64 41761.95 41829.93 41583.87 32938.71 41276.92 40271.07 404
MTMP90.66 4833.14 428
gm-plane-assit75.42 39144.97 40152.17 37672.36 40787.90 26954.10 356
test9_res80.83 10896.45 10390.57 242
TEST992.34 9879.70 7883.94 18190.32 16965.41 28184.49 22390.97 19782.03 11093.63 115
test_892.09 10778.87 8583.82 18690.31 17165.79 27284.36 22790.96 19981.93 11293.44 128
agg_prior279.68 12196.16 11590.22 250
agg_prior91.58 12777.69 10090.30 17284.32 22993.18 136
TestCases89.68 5591.59 12483.40 5295.44 1079.47 9988.00 14993.03 12982.66 9491.47 18270.81 22396.14 11694.16 100
test_prior478.97 8484.59 167
test_prior283.37 19875.43 15484.58 22191.57 17981.92 11479.54 12496.97 85
test_prior86.32 11090.59 15571.99 16292.85 9394.17 9792.80 160
旧先验281.73 24056.88 35286.54 18584.90 31672.81 212
新几何281.72 241
新几何182.95 19993.96 5978.56 8880.24 30955.45 35783.93 24091.08 19471.19 23588.33 26465.84 27593.07 22081.95 370
旧先验191.97 11171.77 16381.78 29891.84 17073.92 20093.65 20883.61 346
无先验82.81 21685.62 25458.09 34091.41 18767.95 26084.48 331
原ACMM282.26 234
原ACMM184.60 14992.81 8974.01 13291.50 13262.59 29682.73 26390.67 21376.53 17494.25 9169.24 24195.69 14185.55 319
test22293.31 7376.54 11379.38 27377.79 32052.59 37382.36 26790.84 20666.83 25791.69 25181.25 378
testdata286.43 29363.52 297
segment_acmp81.94 111
testdata79.54 26092.87 8472.34 15680.14 31059.91 33085.47 20591.75 17667.96 25285.24 31268.57 25592.18 24181.06 383
testdata179.62 26873.95 169
test1286.57 10590.74 15172.63 14990.69 15682.76 26279.20 14094.80 7395.32 15092.27 189
plane_prior793.45 6877.31 106
plane_prior692.61 9076.54 11374.84 188
plane_prior593.61 5995.22 5980.78 10995.83 13494.46 84
plane_prior492.95 134
plane_prior376.85 11177.79 12586.55 180
plane_prior289.45 8279.44 101
plane_prior192.83 88
plane_prior76.42 11687.15 11775.94 14595.03 162
n20.00 435
nn0.00 435
door-mid74.45 346
lessismore_v085.95 12191.10 14470.99 17470.91 37591.79 6994.42 7461.76 28492.93 14679.52 12593.03 22193.93 109
LGP-MVS_train90.82 3794.75 4181.69 6394.27 2482.35 6893.67 3794.82 5691.18 495.52 4585.36 5898.73 795.23 61
test1191.46 133
door72.57 361
HQP5-MVS70.66 175
HQP-NCC91.19 13984.77 16173.30 18380.55 297
ACMP_Plane91.19 13984.77 16173.30 18380.55 297
BP-MVS77.30 155
HQP4-MVS80.56 29694.61 7993.56 133
HQP3-MVS92.68 9894.47 183
HQP2-MVS72.10 225
NP-MVS91.95 11274.55 12990.17 228
MDTV_nov1_ep13_2view27.60 42570.76 37246.47 39861.27 41045.20 37749.18 38283.75 345
MDTV_nov1_ep1368.29 34878.03 36643.87 40474.12 34572.22 36452.17 37667.02 39485.54 30345.36 37580.85 34555.73 34384.42 361
ACMMP++_ref95.74 140
ACMMP++97.35 75
Test By Simon79.09 141
ITE_SJBPF90.11 4990.72 15284.97 4190.30 17281.56 7690.02 9991.20 19082.40 9990.81 20773.58 20094.66 17994.56 80
DeepMVS_CXcopyleft24.13 40732.95 42929.49 42321.63 43012.07 42337.95 42445.07 42130.84 41319.21 42617.94 42533.06 42323.69 422