| LCM-MVSNet | | | 95.70 1 | 96.40 1 | 93.61 3 | 98.67 1 | 85.39 34 | 95.54 5 | 97.36 1 | 96.97 1 | 99.04 1 | 99.05 1 | 96.61 1 | 95.92 16 | 85.07 54 | 99.27 1 | 99.54 1 |
|
| mamv4 | | | 95.37 2 | 94.51 2 | 97.96 1 | 96.31 10 | 98.41 1 | 91.05 43 | 97.23 2 | 95.32 2 | 99.01 2 | 97.26 6 | 80.16 130 | 98.99 1 | 95.15 1 | 99.14 2 | 96.47 30 |
|
| TDRefinement | | | 93.52 3 | 93.39 4 | 93.88 2 | 95.94 15 | 90.26 4 | 95.70 4 | 96.46 3 | 90.58 9 | 92.86 47 | 96.29 18 | 88.16 33 | 94.17 92 | 86.07 45 | 98.48 18 | 97.22 17 |
|
| LTVRE_ROB | | 86.10 1 | 93.04 4 | 93.44 3 | 91.82 21 | 93.73 61 | 85.72 31 | 96.79 1 | 95.51 9 | 88.86 13 | 95.63 9 | 96.99 10 | 84.81 69 | 93.16 132 | 91.10 2 | 97.53 69 | 96.58 28 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| HPM-MVS_fast | | | 92.50 5 | 92.54 6 | 92.37 6 | 95.93 16 | 85.81 30 | 92.99 12 | 94.23 24 | 85.21 37 | 92.51 55 | 95.13 44 | 90.65 9 | 95.34 52 | 88.06 9 | 98.15 34 | 95.95 40 |
|
| SR-MVS-dyc-post | | | 92.41 6 | 92.41 7 | 92.39 5 | 94.13 52 | 88.95 6 | 92.87 13 | 94.16 29 | 88.75 15 | 93.79 29 | 94.43 68 | 88.83 24 | 95.51 44 | 87.16 29 | 97.60 63 | 92.73 157 |
|
| SR-MVS | | | 92.23 7 | 92.34 8 | 91.91 16 | 94.89 38 | 87.85 9 | 92.51 23 | 93.87 48 | 88.20 20 | 93.24 39 | 94.02 90 | 90.15 16 | 95.67 35 | 86.82 33 | 97.34 73 | 92.19 188 |
|
| HPM-MVS |  | | 92.13 8 | 92.20 10 | 91.91 16 | 95.58 26 | 84.67 43 | 93.51 8 | 94.85 15 | 82.88 61 | 91.77 67 | 93.94 98 | 90.55 12 | 95.73 33 | 88.50 7 | 98.23 28 | 95.33 53 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| APD-MVS_3200maxsize | | | 92.05 9 | 92.24 9 | 91.48 22 | 93.02 77 | 85.17 36 | 92.47 25 | 95.05 14 | 87.65 24 | 93.21 40 | 94.39 73 | 90.09 17 | 95.08 63 | 86.67 35 | 97.60 63 | 94.18 94 |
|
| COLMAP_ROB |  | 83.01 3 | 91.97 10 | 91.95 11 | 92.04 11 | 93.68 62 | 86.15 21 | 93.37 10 | 95.10 13 | 90.28 10 | 92.11 60 | 95.03 46 | 89.75 20 | 94.93 67 | 79.95 110 | 98.27 26 | 95.04 63 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| ACMMP |  | | 91.91 11 | 91.87 16 | 92.03 12 | 95.53 27 | 85.91 25 | 93.35 11 | 94.16 29 | 82.52 64 | 92.39 58 | 94.14 85 | 89.15 23 | 95.62 36 | 87.35 24 | 98.24 27 | 94.56 75 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| mPP-MVS | | | 91.69 12 | 91.47 23 | 92.37 6 | 96.04 13 | 88.48 8 | 92.72 17 | 92.60 97 | 83.09 58 | 91.54 69 | 94.25 79 | 87.67 41 | 95.51 44 | 87.21 28 | 98.11 35 | 93.12 145 |
|
| CP-MVS | | | 91.67 13 | 91.58 20 | 91.96 13 | 95.29 31 | 87.62 10 | 93.38 9 | 93.36 62 | 83.16 57 | 91.06 79 | 94.00 91 | 88.26 30 | 95.71 34 | 87.28 27 | 98.39 21 | 92.55 167 |
|
| XVS | | | 91.54 14 | 91.36 25 | 92.08 9 | 95.64 24 | 86.25 19 | 92.64 18 | 93.33 64 | 85.07 38 | 89.99 97 | 94.03 89 | 86.57 52 | 95.80 26 | 87.35 24 | 97.62 61 | 94.20 91 |
|
| MTAPA | | | 91.52 15 | 91.60 19 | 91.29 27 | 96.59 4 | 86.29 18 | 92.02 30 | 91.81 122 | 84.07 46 | 92.00 63 | 94.40 72 | 86.63 51 | 95.28 55 | 88.59 6 | 98.31 24 | 92.30 181 |
|
| UA-Net | | | 91.49 16 | 91.53 21 | 91.39 24 | 94.98 35 | 82.95 55 | 93.52 7 | 92.79 91 | 88.22 19 | 88.53 130 | 97.64 3 | 83.45 83 | 94.55 80 | 86.02 48 | 98.60 13 | 96.67 25 |
|
| ACMMPR | | | 91.49 16 | 91.35 27 | 91.92 15 | 95.74 20 | 85.88 27 | 92.58 21 | 93.25 70 | 81.99 67 | 91.40 71 | 94.17 84 | 87.51 42 | 95.87 20 | 87.74 13 | 97.76 54 | 93.99 101 |
|
| LPG-MVS_test | | | 91.47 18 | 91.68 17 | 90.82 34 | 94.75 41 | 81.69 60 | 90.00 59 | 94.27 21 | 82.35 65 | 93.67 34 | 94.82 52 | 91.18 4 | 95.52 42 | 85.36 52 | 98.73 7 | 95.23 58 |
|
| region2R | | | 91.44 19 | 91.30 31 | 91.87 18 | 95.75 19 | 85.90 26 | 92.63 20 | 93.30 68 | 81.91 69 | 90.88 85 | 94.21 80 | 87.75 39 | 95.87 20 | 87.60 18 | 97.71 57 | 93.83 110 |
|
| HFP-MVS | | | 91.30 20 | 91.39 24 | 91.02 30 | 95.43 29 | 84.66 44 | 92.58 21 | 93.29 69 | 81.99 67 | 91.47 70 | 93.96 95 | 88.35 29 | 95.56 39 | 87.74 13 | 97.74 56 | 92.85 154 |
|
| ZNCC-MVS | | | 91.26 21 | 91.34 28 | 91.01 31 | 95.73 21 | 83.05 53 | 92.18 28 | 94.22 26 | 80.14 89 | 91.29 75 | 93.97 92 | 87.93 38 | 95.87 20 | 88.65 5 | 97.96 45 | 94.12 98 |
|
| APDe-MVS |  | | 91.22 22 | 91.92 12 | 89.14 63 | 92.97 79 | 78.04 90 | 92.84 15 | 94.14 33 | 83.33 55 | 93.90 25 | 95.73 29 | 88.77 25 | 96.41 3 | 87.60 18 | 97.98 42 | 92.98 151 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| PGM-MVS | | | 91.20 23 | 90.95 40 | 91.93 14 | 95.67 23 | 85.85 28 | 90.00 59 | 93.90 45 | 80.32 86 | 91.74 68 | 94.41 71 | 88.17 32 | 95.98 13 | 86.37 38 | 97.99 40 | 93.96 103 |
|
| SteuartSystems-ACMMP | | | 91.16 24 | 91.36 25 | 90.55 38 | 93.91 57 | 80.97 67 | 91.49 37 | 93.48 60 | 82.82 62 | 92.60 54 | 93.97 92 | 88.19 31 | 96.29 6 | 87.61 17 | 98.20 31 | 94.39 86 |
| Skip Steuart: Steuart Systems R&D Blog. |
| MP-MVS |  | | 91.14 25 | 90.91 41 | 91.83 19 | 96.18 11 | 86.88 14 | 92.20 27 | 93.03 83 | 82.59 63 | 88.52 131 | 94.37 74 | 86.74 50 | 95.41 50 | 86.32 39 | 98.21 29 | 93.19 141 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| GST-MVS | | | 90.96 26 | 91.01 37 | 90.82 34 | 95.45 28 | 82.73 56 | 91.75 35 | 93.74 51 | 80.98 80 | 91.38 72 | 93.80 102 | 87.20 46 | 95.80 26 | 87.10 31 | 97.69 58 | 93.93 104 |
|
| MP-MVS-pluss | | | 90.81 27 | 91.08 34 | 89.99 47 | 95.97 14 | 79.88 72 | 88.13 99 | 94.51 18 | 75.79 143 | 92.94 44 | 94.96 47 | 88.36 28 | 95.01 65 | 90.70 3 | 98.40 20 | 95.09 62 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| ACMH+ | | 77.89 11 | 90.73 28 | 91.50 22 | 88.44 75 | 93.00 78 | 76.26 116 | 89.65 72 | 95.55 8 | 87.72 23 | 93.89 27 | 94.94 48 | 91.62 3 | 93.44 123 | 78.35 127 | 98.76 4 | 95.61 47 |
|
| ACMMP_NAP | | | 90.65 29 | 91.07 36 | 89.42 58 | 95.93 16 | 79.54 77 | 89.95 63 | 93.68 55 | 77.65 122 | 91.97 64 | 94.89 49 | 88.38 27 | 95.45 48 | 89.27 4 | 97.87 50 | 93.27 137 |
|
| ACMM | | 79.39 9 | 90.65 29 | 90.99 38 | 89.63 54 | 95.03 34 | 83.53 48 | 89.62 73 | 93.35 63 | 79.20 102 | 93.83 28 | 93.60 112 | 90.81 7 | 92.96 139 | 85.02 56 | 98.45 19 | 92.41 174 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| LS3D | | | 90.60 31 | 90.34 48 | 91.38 25 | 89.03 182 | 84.23 46 | 93.58 6 | 94.68 17 | 90.65 8 | 90.33 91 | 93.95 97 | 84.50 71 | 95.37 51 | 80.87 100 | 95.50 141 | 94.53 78 |
|
| ACMP | | 79.16 10 | 90.54 32 | 90.60 46 | 90.35 42 | 94.36 44 | 80.98 66 | 89.16 83 | 94.05 38 | 79.03 105 | 92.87 46 | 93.74 107 | 90.60 11 | 95.21 58 | 82.87 78 | 98.76 4 | 94.87 66 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| DPE-MVS |  | | 90.53 33 | 91.08 34 | 88.88 66 | 93.38 68 | 78.65 84 | 89.15 84 | 94.05 38 | 84.68 42 | 93.90 25 | 94.11 87 | 88.13 34 | 96.30 5 | 84.51 62 | 97.81 52 | 91.70 204 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| SED-MVS | | | 90.46 34 | 91.64 18 | 86.93 96 | 94.18 47 | 72.65 141 | 90.47 52 | 93.69 53 | 83.77 49 | 94.11 23 | 94.27 75 | 90.28 14 | 95.84 24 | 86.03 46 | 97.92 46 | 92.29 182 |
|
| SMA-MVS |  | | 90.31 35 | 90.48 47 | 89.83 51 | 95.31 30 | 79.52 78 | 90.98 44 | 93.24 71 | 75.37 150 | 92.84 48 | 95.28 40 | 85.58 64 | 96.09 8 | 87.92 11 | 97.76 54 | 93.88 107 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| SF-MVS | | | 90.27 36 | 90.80 43 | 88.68 73 | 92.86 83 | 77.09 105 | 91.19 41 | 95.74 6 | 81.38 75 | 92.28 59 | 93.80 102 | 86.89 49 | 94.64 75 | 85.52 51 | 97.51 70 | 94.30 90 |
|
| v7n | | | 90.13 37 | 90.96 39 | 87.65 88 | 91.95 109 | 71.06 169 | 89.99 61 | 93.05 80 | 86.53 28 | 94.29 19 | 96.27 19 | 82.69 90 | 94.08 95 | 86.25 42 | 97.63 60 | 97.82 8 |
|
| PMVS |  | 80.48 6 | 90.08 38 | 90.66 45 | 88.34 78 | 96.71 3 | 92.97 2 | 90.31 56 | 89.57 187 | 88.51 18 | 90.11 93 | 95.12 45 | 90.98 6 | 88.92 249 | 77.55 141 | 97.07 80 | 83.13 346 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| DVP-MVS++ | | | 90.07 39 | 91.09 33 | 87.00 94 | 91.55 126 | 72.64 143 | 96.19 2 | 94.10 36 | 85.33 35 | 93.49 36 | 94.64 60 | 81.12 119 | 95.88 18 | 87.41 22 | 95.94 124 | 92.48 170 |
|
| DVP-MVS |  | | 90.06 40 | 91.32 29 | 86.29 108 | 94.16 50 | 72.56 147 | 90.54 49 | 91.01 143 | 83.61 52 | 93.75 31 | 94.65 57 | 89.76 18 | 95.78 30 | 86.42 36 | 97.97 43 | 90.55 235 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| PS-CasMVS | | | 90.06 40 | 91.92 12 | 84.47 146 | 96.56 6 | 58.83 305 | 89.04 85 | 92.74 93 | 91.40 6 | 96.12 5 | 96.06 25 | 87.23 45 | 95.57 38 | 79.42 118 | 98.74 6 | 99.00 2 |
|
| PEN-MVS | | | 90.03 42 | 91.88 15 | 84.48 145 | 96.57 5 | 58.88 302 | 88.95 86 | 93.19 72 | 91.62 5 | 96.01 7 | 96.16 23 | 87.02 47 | 95.60 37 | 78.69 124 | 98.72 9 | 98.97 3 |
|
| OurMVSNet-221017-0 | | | 90.01 43 | 89.74 53 | 90.83 33 | 93.16 75 | 80.37 69 | 91.91 33 | 93.11 76 | 81.10 78 | 95.32 11 | 97.24 7 | 72.94 210 | 94.85 69 | 85.07 54 | 97.78 53 | 97.26 15 |
|
| DTE-MVSNet | | | 89.98 44 | 91.91 14 | 84.21 155 | 96.51 7 | 57.84 313 | 88.93 87 | 92.84 90 | 91.92 4 | 96.16 4 | 96.23 20 | 86.95 48 | 95.99 12 | 79.05 121 | 98.57 15 | 98.80 6 |
|
| XVG-ACMP-BASELINE | | | 89.98 44 | 89.84 51 | 90.41 40 | 94.91 37 | 84.50 45 | 89.49 78 | 93.98 40 | 79.68 94 | 92.09 61 | 93.89 100 | 83.80 78 | 93.10 135 | 82.67 82 | 98.04 36 | 93.64 122 |
|
| 3Dnovator+ | | 83.92 2 | 89.97 46 | 89.66 54 | 90.92 32 | 91.27 135 | 81.66 63 | 91.25 39 | 94.13 34 | 88.89 12 | 88.83 123 | 94.26 78 | 77.55 152 | 95.86 23 | 84.88 57 | 95.87 128 | 95.24 57 |
|
| WR-MVS_H | | | 89.91 47 | 91.31 30 | 85.71 123 | 96.32 9 | 62.39 258 | 89.54 76 | 93.31 67 | 90.21 11 | 95.57 10 | 95.66 31 | 81.42 116 | 95.90 17 | 80.94 99 | 98.80 3 | 98.84 5 |
|
| OPM-MVS | | | 89.80 48 | 89.97 49 | 89.27 60 | 94.76 40 | 79.86 73 | 86.76 124 | 92.78 92 | 78.78 108 | 92.51 55 | 93.64 111 | 88.13 34 | 93.84 104 | 84.83 59 | 97.55 66 | 94.10 99 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| mvs_tets | | | 89.78 49 | 89.27 60 | 91.30 26 | 93.51 64 | 84.79 41 | 89.89 65 | 90.63 153 | 70.00 223 | 94.55 16 | 96.67 13 | 87.94 37 | 93.59 115 | 84.27 64 | 95.97 120 | 95.52 48 |
|
| anonymousdsp | | | 89.73 50 | 88.88 67 | 92.27 8 | 89.82 168 | 86.67 15 | 90.51 51 | 90.20 171 | 69.87 224 | 95.06 12 | 96.14 24 | 84.28 74 | 93.07 136 | 87.68 15 | 96.34 103 | 97.09 19 |
|
| test_djsdf | | | 89.62 51 | 89.01 64 | 91.45 23 | 92.36 94 | 82.98 54 | 91.98 31 | 90.08 174 | 71.54 203 | 94.28 21 | 96.54 15 | 81.57 114 | 94.27 84 | 86.26 40 | 96.49 97 | 97.09 19 |
|
| XVG-OURS-SEG-HR | | | 89.59 52 | 89.37 58 | 90.28 43 | 94.47 43 | 85.95 24 | 86.84 120 | 93.91 44 | 80.07 90 | 86.75 169 | 93.26 117 | 93.64 2 | 90.93 195 | 84.60 61 | 90.75 265 | 93.97 102 |
|
| APD-MVS |  | | 89.54 53 | 89.63 55 | 89.26 61 | 92.57 88 | 81.34 65 | 90.19 58 | 93.08 79 | 80.87 82 | 91.13 77 | 93.19 118 | 86.22 59 | 95.97 14 | 82.23 88 | 97.18 78 | 90.45 237 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| jajsoiax | | | 89.41 54 | 88.81 70 | 91.19 29 | 93.38 68 | 84.72 42 | 89.70 68 | 90.29 168 | 69.27 227 | 94.39 17 | 96.38 17 | 86.02 62 | 93.52 119 | 83.96 66 | 95.92 126 | 95.34 52 |
|
| CPTT-MVS | | | 89.39 55 | 88.98 66 | 90.63 37 | 95.09 33 | 86.95 13 | 92.09 29 | 92.30 105 | 79.74 93 | 87.50 154 | 92.38 148 | 81.42 116 | 93.28 128 | 83.07 74 | 97.24 76 | 91.67 205 |
|
| ACMH | | 76.49 14 | 89.34 56 | 91.14 32 | 83.96 160 | 92.50 91 | 70.36 175 | 89.55 74 | 93.84 49 | 81.89 70 | 94.70 14 | 95.44 36 | 90.69 8 | 88.31 259 | 83.33 70 | 98.30 25 | 93.20 140 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| testf1 | | | 89.30 57 | 89.12 61 | 89.84 49 | 88.67 192 | 85.64 32 | 90.61 47 | 93.17 73 | 86.02 31 | 93.12 41 | 95.30 38 | 84.94 66 | 89.44 241 | 74.12 180 | 96.10 115 | 94.45 81 |
|
| APD_test2 | | | 89.30 57 | 89.12 61 | 89.84 49 | 88.67 192 | 85.64 32 | 90.61 47 | 93.17 73 | 86.02 31 | 93.12 41 | 95.30 38 | 84.94 66 | 89.44 241 | 74.12 180 | 96.10 115 | 94.45 81 |
|
| CP-MVSNet | | | 89.27 59 | 90.91 41 | 84.37 147 | 96.34 8 | 58.61 308 | 88.66 94 | 92.06 111 | 90.78 7 | 95.67 8 | 95.17 43 | 81.80 112 | 95.54 41 | 79.00 122 | 98.69 10 | 98.95 4 |
|
| XVG-OURS | | | 89.18 60 | 88.83 69 | 90.23 44 | 94.28 45 | 86.11 23 | 85.91 137 | 93.60 58 | 80.16 88 | 89.13 120 | 93.44 114 | 83.82 77 | 90.98 193 | 83.86 68 | 95.30 149 | 93.60 125 |
|
| DeepC-MVS | | 82.31 4 | 89.15 61 | 89.08 63 | 89.37 59 | 93.64 63 | 79.07 80 | 88.54 95 | 94.20 27 | 73.53 169 | 89.71 104 | 94.82 52 | 85.09 65 | 95.77 32 | 84.17 65 | 98.03 38 | 93.26 138 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| UniMVSNet_ETH3D | | | 89.12 62 | 90.72 44 | 84.31 153 | 97.00 2 | 64.33 233 | 89.67 71 | 88.38 201 | 88.84 14 | 94.29 19 | 97.57 4 | 90.48 13 | 91.26 184 | 72.57 205 | 97.65 59 | 97.34 14 |
|
| MSP-MVS | | | 89.08 63 | 88.16 75 | 91.83 19 | 95.76 18 | 86.14 22 | 92.75 16 | 93.90 45 | 78.43 113 | 89.16 118 | 92.25 155 | 72.03 224 | 96.36 4 | 88.21 8 | 90.93 258 | 92.98 151 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| SD-MVS | | | 88.96 64 | 89.88 50 | 86.22 111 | 91.63 120 | 77.07 106 | 89.82 66 | 93.77 50 | 78.90 106 | 92.88 45 | 92.29 153 | 86.11 60 | 90.22 217 | 86.24 43 | 97.24 76 | 91.36 212 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| HPM-MVS++ |  | | 88.93 65 | 88.45 73 | 90.38 41 | 94.92 36 | 85.85 28 | 89.70 68 | 91.27 136 | 78.20 115 | 86.69 172 | 92.28 154 | 80.36 128 | 95.06 64 | 86.17 44 | 96.49 97 | 90.22 241 |
|
| test_0402 | | | 88.65 66 | 89.58 57 | 85.88 119 | 92.55 89 | 72.22 155 | 84.01 172 | 89.44 189 | 88.63 17 | 94.38 18 | 95.77 28 | 86.38 58 | 93.59 115 | 79.84 111 | 95.21 150 | 91.82 200 |
|
| DP-MVS | | | 88.60 67 | 89.01 64 | 87.36 90 | 91.30 133 | 77.50 98 | 87.55 106 | 92.97 86 | 87.95 22 | 89.62 108 | 92.87 133 | 84.56 70 | 93.89 101 | 77.65 139 | 96.62 92 | 90.70 229 |
|
| APD_test1 | | | 88.40 68 | 87.91 77 | 89.88 48 | 89.50 172 | 86.65 17 | 89.98 62 | 91.91 117 | 84.26 44 | 90.87 86 | 93.92 99 | 82.18 103 | 89.29 245 | 73.75 188 | 94.81 169 | 93.70 118 |
|
| Anonymous20231211 | | | 88.40 68 | 89.62 56 | 84.73 139 | 90.46 154 | 65.27 223 | 88.86 88 | 93.02 84 | 87.15 25 | 93.05 43 | 97.10 8 | 82.28 102 | 92.02 165 | 76.70 151 | 97.99 40 | 96.88 23 |
|
| PS-MVSNAJss | | | 88.31 70 | 87.90 78 | 89.56 56 | 93.31 70 | 77.96 93 | 87.94 102 | 91.97 114 | 70.73 214 | 94.19 22 | 96.67 13 | 76.94 162 | 94.57 78 | 83.07 74 | 96.28 105 | 96.15 32 |
|
| OMC-MVS | | | 88.19 71 | 87.52 82 | 90.19 45 | 91.94 111 | 81.68 62 | 87.49 109 | 93.17 73 | 76.02 137 | 88.64 127 | 91.22 181 | 84.24 75 | 93.37 126 | 77.97 137 | 97.03 81 | 95.52 48 |
|
| CS-MVS | | | 88.14 72 | 87.67 81 | 89.54 57 | 89.56 170 | 79.18 79 | 90.47 52 | 94.77 16 | 79.37 100 | 84.32 222 | 89.33 232 | 83.87 76 | 94.53 81 | 82.45 84 | 94.89 165 | 94.90 64 |
|
| TSAR-MVS + MP. | | | 88.14 72 | 87.82 79 | 89.09 64 | 95.72 22 | 76.74 109 | 92.49 24 | 91.19 139 | 67.85 247 | 86.63 173 | 94.84 51 | 79.58 135 | 95.96 15 | 87.62 16 | 94.50 177 | 94.56 75 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| tt0805 | | | 88.09 74 | 89.79 52 | 82.98 189 | 93.26 72 | 63.94 237 | 91.10 42 | 89.64 184 | 85.07 38 | 90.91 83 | 91.09 186 | 89.16 22 | 91.87 170 | 82.03 89 | 95.87 128 | 93.13 143 |
|
| EC-MVSNet | | | 88.01 75 | 88.32 74 | 87.09 92 | 89.28 177 | 72.03 157 | 90.31 56 | 96.31 4 | 80.88 81 | 85.12 203 | 89.67 228 | 84.47 72 | 95.46 47 | 82.56 83 | 96.26 108 | 93.77 116 |
|
| RPSCF | | | 88.00 76 | 86.93 94 | 91.22 28 | 90.08 161 | 89.30 5 | 89.68 70 | 91.11 140 | 79.26 101 | 89.68 105 | 94.81 55 | 82.44 94 | 87.74 263 | 76.54 153 | 88.74 292 | 96.61 27 |
|
| AllTest | | | 87.97 77 | 87.40 86 | 89.68 52 | 91.59 121 | 83.40 49 | 89.50 77 | 95.44 10 | 79.47 96 | 88.00 145 | 93.03 125 | 82.66 91 | 91.47 177 | 70.81 214 | 96.14 112 | 94.16 95 |
|
| TranMVSNet+NR-MVSNet | | | 87.86 78 | 88.76 71 | 85.18 131 | 94.02 55 | 64.13 234 | 84.38 166 | 91.29 135 | 84.88 41 | 92.06 62 | 93.84 101 | 86.45 55 | 93.73 106 | 73.22 196 | 98.66 11 | 97.69 9 |
|
| nrg030 | | | 87.85 79 | 88.49 72 | 85.91 117 | 90.07 163 | 69.73 179 | 87.86 103 | 94.20 27 | 74.04 161 | 92.70 53 | 94.66 56 | 85.88 63 | 91.50 176 | 79.72 113 | 97.32 74 | 96.50 29 |
|
| CNVR-MVS | | | 87.81 80 | 87.68 80 | 88.21 80 | 92.87 81 | 77.30 104 | 85.25 149 | 91.23 137 | 77.31 127 | 87.07 163 | 91.47 175 | 82.94 88 | 94.71 72 | 84.67 60 | 96.27 107 | 92.62 164 |
|
| HQP_MVS | | | 87.75 81 | 87.43 85 | 88.70 72 | 93.45 65 | 76.42 113 | 89.45 79 | 93.61 56 | 79.44 98 | 86.55 174 | 92.95 130 | 74.84 183 | 95.22 56 | 80.78 102 | 95.83 130 | 94.46 79 |
|
| MM | | | 87.64 82 | 87.15 87 | 89.09 64 | 89.51 171 | 76.39 115 | 88.68 93 | 86.76 229 | 84.54 43 | 83.58 238 | 93.78 104 | 73.36 206 | 96.48 2 | 87.98 10 | 96.21 109 | 94.41 85 |
|
| MVSMamba_PlusPlus | | | 87.53 83 | 88.86 68 | 83.54 176 | 92.03 107 | 62.26 262 | 91.49 37 | 92.62 96 | 88.07 21 | 88.07 142 | 96.17 22 | 72.24 219 | 95.79 29 | 84.85 58 | 94.16 188 | 92.58 165 |
|
| NCCC | | | 87.36 84 | 86.87 95 | 88.83 67 | 92.32 97 | 78.84 83 | 86.58 128 | 91.09 141 | 78.77 109 | 84.85 211 | 90.89 195 | 80.85 122 | 95.29 53 | 81.14 97 | 95.32 146 | 92.34 179 |
|
| DeepPCF-MVS | | 81.24 5 | 87.28 85 | 86.21 105 | 90.49 39 | 91.48 130 | 84.90 39 | 83.41 190 | 92.38 102 | 70.25 220 | 89.35 116 | 90.68 204 | 82.85 89 | 94.57 78 | 79.55 115 | 95.95 123 | 92.00 195 |
|
| SixPastTwentyTwo | | | 87.20 86 | 87.45 84 | 86.45 105 | 92.52 90 | 69.19 188 | 87.84 104 | 88.05 208 | 81.66 72 | 94.64 15 | 96.53 16 | 65.94 254 | 94.75 71 | 83.02 76 | 96.83 86 | 95.41 50 |
|
| CS-MVS-test | | | 87.00 87 | 86.43 101 | 88.71 71 | 89.46 173 | 77.46 99 | 89.42 81 | 95.73 7 | 77.87 120 | 81.64 273 | 87.25 269 | 82.43 95 | 94.53 81 | 77.65 139 | 96.46 99 | 94.14 97 |
|
| UniMVSNet (Re) | | | 86.87 88 | 86.98 93 | 86.55 103 | 93.11 76 | 68.48 193 | 83.80 181 | 92.87 88 | 80.37 84 | 89.61 110 | 91.81 166 | 77.72 149 | 94.18 90 | 75.00 173 | 98.53 16 | 96.99 22 |
|
| Vis-MVSNet |  | | 86.86 89 | 86.58 98 | 87.72 86 | 92.09 104 | 77.43 101 | 87.35 110 | 92.09 110 | 78.87 107 | 84.27 227 | 94.05 88 | 78.35 143 | 93.65 108 | 80.54 106 | 91.58 246 | 92.08 192 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| UniMVSNet_NR-MVSNet | | | 86.84 90 | 87.06 90 | 86.17 114 | 92.86 83 | 67.02 207 | 82.55 216 | 91.56 125 | 83.08 59 | 90.92 81 | 91.82 165 | 78.25 144 | 93.99 97 | 74.16 178 | 98.35 22 | 97.49 13 |
|
| DU-MVS | | | 86.80 91 | 86.99 92 | 86.21 112 | 93.24 73 | 67.02 207 | 83.16 199 | 92.21 106 | 81.73 71 | 90.92 81 | 91.97 159 | 77.20 156 | 93.99 97 | 74.16 178 | 98.35 22 | 97.61 10 |
|
| casdiffmvs_mvg |  | | 86.72 92 | 87.51 83 | 84.36 149 | 87.09 233 | 65.22 224 | 84.16 168 | 94.23 24 | 77.89 118 | 91.28 76 | 93.66 110 | 84.35 73 | 92.71 145 | 80.07 107 | 94.87 168 | 95.16 60 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| test_fmvsmconf0.01_n | | | 86.68 93 | 86.52 99 | 87.18 91 | 85.94 260 | 78.30 86 | 86.93 117 | 92.20 107 | 65.94 259 | 89.16 118 | 93.16 120 | 83.10 86 | 89.89 230 | 87.81 12 | 94.43 180 | 93.35 132 |
|
| IS-MVSNet | | | 86.66 94 | 86.82 97 | 86.17 114 | 92.05 106 | 66.87 210 | 91.21 40 | 88.64 198 | 86.30 30 | 89.60 111 | 92.59 141 | 69.22 238 | 94.91 68 | 73.89 185 | 97.89 49 | 96.72 24 |
|
| v10 | | | 86.54 95 | 87.10 89 | 84.84 135 | 88.16 206 | 63.28 244 | 86.64 127 | 92.20 107 | 75.42 149 | 92.81 50 | 94.50 64 | 74.05 194 | 94.06 96 | 83.88 67 | 96.28 105 | 97.17 18 |
|
| pmmvs6 | | | 86.52 96 | 88.06 76 | 81.90 210 | 92.22 100 | 62.28 261 | 84.66 159 | 89.15 192 | 83.54 54 | 89.85 101 | 97.32 5 | 88.08 36 | 86.80 278 | 70.43 222 | 97.30 75 | 96.62 26 |
|
| PHI-MVS | | | 86.38 97 | 85.81 114 | 88.08 81 | 88.44 200 | 77.34 102 | 89.35 82 | 93.05 80 | 73.15 182 | 84.76 212 | 87.70 259 | 78.87 139 | 94.18 90 | 80.67 104 | 96.29 104 | 92.73 157 |
|
| CSCG | | | 86.26 98 | 86.47 100 | 85.60 125 | 90.87 146 | 74.26 127 | 87.98 101 | 91.85 118 | 80.35 85 | 89.54 114 | 88.01 251 | 79.09 137 | 92.13 161 | 75.51 166 | 95.06 157 | 90.41 238 |
|
| DeepC-MVS_fast | | 80.27 8 | 86.23 99 | 85.65 118 | 87.96 84 | 91.30 133 | 76.92 107 | 87.19 112 | 91.99 113 | 70.56 215 | 84.96 207 | 90.69 203 | 80.01 132 | 95.14 61 | 78.37 126 | 95.78 134 | 91.82 200 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| v8 | | | 86.22 100 | 86.83 96 | 84.36 149 | 87.82 212 | 62.35 260 | 86.42 131 | 91.33 134 | 76.78 131 | 92.73 52 | 94.48 66 | 73.41 203 | 93.72 107 | 83.10 73 | 95.41 142 | 97.01 21 |
|
| Anonymous20240529 | | | 86.20 101 | 87.13 88 | 83.42 178 | 90.19 159 | 64.55 231 | 84.55 161 | 90.71 150 | 85.85 33 | 89.94 100 | 95.24 42 | 82.13 104 | 90.40 213 | 69.19 234 | 96.40 102 | 95.31 54 |
|
| test_fmvsmconf0.1_n | | | 86.18 102 | 85.88 112 | 87.08 93 | 85.26 269 | 78.25 87 | 85.82 140 | 91.82 120 | 65.33 272 | 88.55 129 | 92.35 152 | 82.62 93 | 89.80 232 | 86.87 32 | 94.32 183 | 93.18 142 |
|
| CDPH-MVS | | | 86.17 103 | 85.54 119 | 88.05 83 | 92.25 98 | 75.45 121 | 83.85 178 | 92.01 112 | 65.91 261 | 86.19 183 | 91.75 169 | 83.77 79 | 94.98 66 | 77.43 144 | 96.71 90 | 93.73 117 |
|
| NR-MVSNet | | | 86.00 104 | 86.22 104 | 85.34 129 | 93.24 73 | 64.56 230 | 82.21 228 | 90.46 157 | 80.99 79 | 88.42 134 | 91.97 159 | 77.56 151 | 93.85 102 | 72.46 206 | 98.65 12 | 97.61 10 |
|
| train_agg | | | 85.98 105 | 85.28 125 | 88.07 82 | 92.34 95 | 79.70 75 | 83.94 174 | 90.32 163 | 65.79 262 | 84.49 216 | 90.97 190 | 81.93 108 | 93.63 110 | 81.21 96 | 96.54 95 | 90.88 223 |
|
| FC-MVSNet-test | | | 85.93 106 | 87.05 91 | 82.58 200 | 92.25 98 | 56.44 324 | 85.75 141 | 93.09 78 | 77.33 126 | 91.94 65 | 94.65 57 | 74.78 185 | 93.41 125 | 75.11 172 | 98.58 14 | 97.88 7 |
|
| test_fmvsmconf_n | | | 85.88 107 | 85.51 120 | 86.99 95 | 84.77 277 | 78.21 88 | 85.40 148 | 91.39 132 | 65.32 273 | 87.72 150 | 91.81 166 | 82.33 98 | 89.78 233 | 86.68 34 | 94.20 186 | 92.99 150 |
|
| Effi-MVS+-dtu | | | 85.82 108 | 83.38 159 | 93.14 4 | 87.13 229 | 91.15 3 | 87.70 105 | 88.42 200 | 74.57 157 | 83.56 239 | 85.65 292 | 78.49 142 | 94.21 88 | 72.04 208 | 92.88 219 | 94.05 100 |
|
| TAPA-MVS | | 77.73 12 | 85.71 109 | 84.83 131 | 88.37 77 | 88.78 191 | 79.72 74 | 87.15 114 | 93.50 59 | 69.17 228 | 85.80 192 | 89.56 229 | 80.76 123 | 92.13 161 | 73.21 201 | 95.51 140 | 93.25 139 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| sasdasda | | | 85.50 110 | 86.14 106 | 83.58 172 | 87.97 208 | 67.13 204 | 87.55 106 | 94.32 19 | 73.44 172 | 88.47 132 | 87.54 262 | 86.45 55 | 91.06 191 | 75.76 164 | 93.76 197 | 92.54 168 |
|
| canonicalmvs | | | 85.50 110 | 86.14 106 | 83.58 172 | 87.97 208 | 67.13 204 | 87.55 106 | 94.32 19 | 73.44 172 | 88.47 132 | 87.54 262 | 86.45 55 | 91.06 191 | 75.76 164 | 93.76 197 | 92.54 168 |
|
| EPP-MVSNet | | | 85.47 112 | 85.04 128 | 86.77 100 | 91.52 129 | 69.37 183 | 91.63 36 | 87.98 210 | 81.51 74 | 87.05 164 | 91.83 164 | 66.18 253 | 95.29 53 | 70.75 217 | 96.89 83 | 95.64 45 |
|
| GeoE | | | 85.45 113 | 85.81 114 | 84.37 147 | 90.08 161 | 67.07 206 | 85.86 139 | 91.39 132 | 72.33 196 | 87.59 152 | 90.25 216 | 84.85 68 | 92.37 155 | 78.00 135 | 91.94 239 | 93.66 119 |
|
| MVS_0304 | | | 85.37 114 | 84.58 138 | 87.75 85 | 85.28 268 | 73.36 132 | 86.54 130 | 85.71 244 | 77.56 125 | 81.78 271 | 92.47 146 | 70.29 232 | 96.02 11 | 85.59 50 | 95.96 121 | 93.87 108 |
|
| FIs | | | 85.35 115 | 86.27 103 | 82.60 199 | 91.86 113 | 57.31 317 | 85.10 153 | 93.05 80 | 75.83 142 | 91.02 80 | 93.97 92 | 73.57 199 | 92.91 143 | 73.97 184 | 98.02 39 | 97.58 12 |
|
| test_fmvsmvis_n_1920 | | | 85.22 116 | 85.36 124 | 84.81 136 | 85.80 262 | 76.13 119 | 85.15 152 | 92.32 104 | 61.40 302 | 91.33 73 | 90.85 198 | 83.76 80 | 86.16 291 | 84.31 63 | 93.28 209 | 92.15 190 |
|
| casdiffmvs |  | | 85.21 117 | 85.85 113 | 83.31 181 | 86.17 255 | 62.77 251 | 83.03 201 | 93.93 43 | 74.69 156 | 88.21 139 | 92.68 140 | 82.29 101 | 91.89 169 | 77.87 138 | 93.75 200 | 95.27 56 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| baseline | | | 85.20 118 | 85.93 110 | 83.02 187 | 86.30 250 | 62.37 259 | 84.55 161 | 93.96 41 | 74.48 158 | 87.12 158 | 92.03 158 | 82.30 100 | 91.94 166 | 78.39 125 | 94.21 185 | 94.74 72 |
|
| K. test v3 | | | 85.14 119 | 84.73 132 | 86.37 106 | 91.13 140 | 69.63 181 | 85.45 146 | 76.68 322 | 84.06 47 | 92.44 57 | 96.99 10 | 62.03 276 | 94.65 74 | 80.58 105 | 93.24 210 | 94.83 71 |
|
| EI-MVSNet-Vis-set | | | 85.12 120 | 84.53 141 | 86.88 97 | 84.01 290 | 72.76 140 | 83.91 177 | 85.18 253 | 80.44 83 | 88.75 124 | 85.49 295 | 80.08 131 | 91.92 167 | 82.02 90 | 90.85 263 | 95.97 38 |
|
| MGCFI-Net | | | 85.04 121 | 85.95 109 | 82.31 206 | 87.52 221 | 63.59 240 | 86.23 135 | 93.96 41 | 73.46 170 | 88.07 142 | 87.83 257 | 86.46 54 | 90.87 200 | 76.17 159 | 93.89 195 | 92.47 172 |
|
| EI-MVSNet-UG-set | | | 85.04 121 | 84.44 143 | 86.85 98 | 83.87 294 | 72.52 149 | 83.82 179 | 85.15 254 | 80.27 87 | 88.75 124 | 85.45 297 | 79.95 133 | 91.90 168 | 81.92 93 | 90.80 264 | 96.13 33 |
|
| X-MVStestdata | | | 85.04 121 | 82.70 172 | 92.08 9 | 95.64 24 | 86.25 19 | 92.64 18 | 93.33 64 | 85.07 38 | 89.99 97 | 16.05 414 | 86.57 52 | 95.80 26 | 87.35 24 | 97.62 61 | 94.20 91 |
|
| MSLP-MVS++ | | | 85.00 124 | 86.03 108 | 81.90 210 | 91.84 116 | 71.56 166 | 86.75 125 | 93.02 84 | 75.95 140 | 87.12 158 | 89.39 230 | 77.98 145 | 89.40 244 | 77.46 142 | 94.78 170 | 84.75 318 |
|
| F-COLMAP | | | 84.97 125 | 83.42 158 | 89.63 54 | 92.39 93 | 83.40 49 | 88.83 89 | 91.92 116 | 73.19 181 | 80.18 295 | 89.15 236 | 77.04 160 | 93.28 128 | 65.82 266 | 92.28 230 | 92.21 187 |
|
| balanced_conf03 | | | 84.80 126 | 85.40 122 | 83.00 188 | 88.95 185 | 61.44 269 | 90.42 55 | 92.37 103 | 71.48 205 | 88.72 126 | 93.13 121 | 70.16 234 | 95.15 60 | 79.26 120 | 94.11 189 | 92.41 174 |
|
| 3Dnovator | | 80.37 7 | 84.80 126 | 84.71 135 | 85.06 133 | 86.36 248 | 74.71 124 | 88.77 91 | 90.00 176 | 75.65 145 | 84.96 207 | 93.17 119 | 74.06 193 | 91.19 186 | 78.28 129 | 91.09 252 | 89.29 260 |
|
| IterMVS-LS | | | 84.73 128 | 84.98 129 | 83.96 160 | 87.35 224 | 63.66 238 | 83.25 195 | 89.88 179 | 76.06 135 | 89.62 108 | 92.37 151 | 73.40 205 | 92.52 150 | 78.16 132 | 94.77 172 | 95.69 43 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| MVS_111021_HR | | | 84.63 129 | 84.34 147 | 85.49 128 | 90.18 160 | 75.86 120 | 79.23 269 | 87.13 220 | 73.35 174 | 85.56 197 | 89.34 231 | 83.60 82 | 90.50 211 | 76.64 152 | 94.05 192 | 90.09 247 |
|
| HQP-MVS | | | 84.61 130 | 84.06 150 | 86.27 109 | 91.19 136 | 70.66 171 | 84.77 154 | 92.68 94 | 73.30 177 | 80.55 287 | 90.17 220 | 72.10 220 | 94.61 76 | 77.30 146 | 94.47 178 | 93.56 128 |
|
| v1192 | | | 84.57 131 | 84.69 136 | 84.21 155 | 87.75 214 | 62.88 248 | 83.02 202 | 91.43 129 | 69.08 230 | 89.98 99 | 90.89 195 | 72.70 214 | 93.62 113 | 82.41 85 | 94.97 162 | 96.13 33 |
|
| FMVSNet1 | | | 84.55 132 | 85.45 121 | 81.85 212 | 90.27 158 | 61.05 276 | 86.83 121 | 88.27 205 | 78.57 112 | 89.66 107 | 95.64 32 | 75.43 176 | 90.68 206 | 69.09 235 | 95.33 145 | 93.82 111 |
|
| v1144 | | | 84.54 133 | 84.72 134 | 84.00 158 | 87.67 217 | 62.55 255 | 82.97 204 | 90.93 146 | 70.32 219 | 89.80 102 | 90.99 189 | 73.50 200 | 93.48 121 | 81.69 95 | 94.65 175 | 95.97 38 |
|
| Gipuma |  | | 84.44 134 | 86.33 102 | 78.78 258 | 84.20 288 | 73.57 131 | 89.55 74 | 90.44 158 | 84.24 45 | 84.38 219 | 94.89 49 | 76.35 173 | 80.40 341 | 76.14 160 | 96.80 88 | 82.36 356 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| MCST-MVS | | | 84.36 135 | 83.93 153 | 85.63 124 | 91.59 121 | 71.58 164 | 83.52 187 | 92.13 109 | 61.82 295 | 83.96 232 | 89.75 227 | 79.93 134 | 93.46 122 | 78.33 128 | 94.34 182 | 91.87 199 |
|
| VDDNet | | | 84.35 136 | 85.39 123 | 81.25 223 | 95.13 32 | 59.32 295 | 85.42 147 | 81.11 293 | 86.41 29 | 87.41 155 | 96.21 21 | 73.61 198 | 90.61 209 | 66.33 259 | 96.85 84 | 93.81 114 |
|
| ETV-MVS | | | 84.31 137 | 83.91 154 | 85.52 126 | 88.58 196 | 70.40 174 | 84.50 165 | 93.37 61 | 78.76 110 | 84.07 230 | 78.72 369 | 80.39 127 | 95.13 62 | 73.82 187 | 92.98 217 | 91.04 218 |
|
| v1240 | | | 84.30 138 | 84.51 142 | 83.65 169 | 87.65 218 | 61.26 273 | 82.85 208 | 91.54 126 | 67.94 245 | 90.68 88 | 90.65 207 | 71.71 226 | 93.64 109 | 82.84 79 | 94.78 170 | 96.07 35 |
|
| MVS_111021_LR | | | 84.28 139 | 83.76 155 | 85.83 121 | 89.23 179 | 83.07 52 | 80.99 244 | 83.56 274 | 72.71 189 | 86.07 186 | 89.07 237 | 81.75 113 | 86.19 290 | 77.11 148 | 93.36 205 | 88.24 274 |
|
| h-mvs33 | | | 84.25 140 | 82.76 171 | 88.72 70 | 91.82 118 | 82.60 57 | 84.00 173 | 84.98 260 | 71.27 206 | 86.70 170 | 90.55 209 | 63.04 273 | 93.92 100 | 78.26 130 | 94.20 186 | 89.63 252 |
|
| v144192 | | | 84.24 141 | 84.41 144 | 83.71 168 | 87.59 220 | 61.57 268 | 82.95 205 | 91.03 142 | 67.82 248 | 89.80 102 | 90.49 210 | 73.28 207 | 93.51 120 | 81.88 94 | 94.89 165 | 96.04 37 |
|
| dcpmvs_2 | | | 84.23 142 | 85.14 126 | 81.50 220 | 88.61 195 | 61.98 266 | 82.90 207 | 93.11 76 | 68.66 236 | 92.77 51 | 92.39 147 | 78.50 141 | 87.63 265 | 76.99 150 | 92.30 227 | 94.90 64 |
|
| v1921920 | | | 84.23 142 | 84.37 146 | 83.79 164 | 87.64 219 | 61.71 267 | 82.91 206 | 91.20 138 | 67.94 245 | 90.06 94 | 90.34 213 | 72.04 223 | 93.59 115 | 82.32 86 | 94.91 163 | 96.07 35 |
|
| VDD-MVS | | | 84.23 142 | 84.58 138 | 83.20 184 | 91.17 139 | 65.16 226 | 83.25 195 | 84.97 261 | 79.79 92 | 87.18 157 | 94.27 75 | 74.77 186 | 90.89 198 | 69.24 231 | 96.54 95 | 93.55 130 |
|
| v2v482 | | | 84.09 145 | 84.24 148 | 83.62 170 | 87.13 229 | 61.40 270 | 82.71 211 | 89.71 182 | 72.19 199 | 89.55 112 | 91.41 176 | 70.70 231 | 93.20 130 | 81.02 98 | 93.76 197 | 96.25 31 |
|
| EG-PatchMatch MVS | | | 84.08 146 | 84.11 149 | 83.98 159 | 92.22 100 | 72.61 146 | 82.20 230 | 87.02 225 | 72.63 190 | 88.86 121 | 91.02 188 | 78.52 140 | 91.11 189 | 73.41 193 | 91.09 252 | 88.21 275 |
|
| DP-MVS Recon | | | 84.05 147 | 83.22 161 | 86.52 104 | 91.73 119 | 75.27 122 | 83.23 197 | 92.40 100 | 72.04 200 | 82.04 262 | 88.33 247 | 77.91 147 | 93.95 99 | 66.17 260 | 95.12 155 | 90.34 240 |
|
| TransMVSNet (Re) | | | 84.02 148 | 85.74 116 | 78.85 257 | 91.00 143 | 55.20 336 | 82.29 224 | 87.26 216 | 79.65 95 | 88.38 136 | 95.52 35 | 83.00 87 | 86.88 276 | 67.97 249 | 96.60 93 | 94.45 81 |
|
| Baseline_NR-MVSNet | | | 84.00 149 | 85.90 111 | 78.29 269 | 91.47 131 | 53.44 346 | 82.29 224 | 87.00 228 | 79.06 104 | 89.55 112 | 95.72 30 | 77.20 156 | 86.14 292 | 72.30 207 | 98.51 17 | 95.28 55 |
|
| TSAR-MVS + GP. | | | 83.95 150 | 82.69 173 | 87.72 86 | 89.27 178 | 81.45 64 | 83.72 183 | 81.58 292 | 74.73 155 | 85.66 193 | 86.06 287 | 72.56 216 | 92.69 147 | 75.44 168 | 95.21 150 | 89.01 268 |
|
| alignmvs | | | 83.94 151 | 83.98 152 | 83.80 163 | 87.80 213 | 67.88 200 | 84.54 163 | 91.42 131 | 73.27 180 | 88.41 135 | 87.96 252 | 72.33 217 | 90.83 201 | 76.02 162 | 94.11 189 | 92.69 161 |
|
| Effi-MVS+ | | | 83.90 152 | 84.01 151 | 83.57 174 | 87.22 227 | 65.61 222 | 86.55 129 | 92.40 100 | 78.64 111 | 81.34 278 | 84.18 316 | 83.65 81 | 92.93 141 | 74.22 177 | 87.87 306 | 92.17 189 |
|
| mvs5depth | | | 83.82 153 | 84.54 140 | 81.68 217 | 82.23 315 | 68.65 192 | 86.89 118 | 89.90 178 | 80.02 91 | 87.74 149 | 97.86 2 | 64.19 263 | 82.02 329 | 76.37 155 | 95.63 139 | 94.35 87 |
|
| CANet | | | 83.79 154 | 82.85 170 | 86.63 101 | 86.17 255 | 72.21 156 | 83.76 182 | 91.43 129 | 77.24 128 | 74.39 346 | 87.45 265 | 75.36 177 | 95.42 49 | 77.03 149 | 92.83 220 | 92.25 186 |
|
| pm-mvs1 | | | 83.69 155 | 84.95 130 | 79.91 244 | 90.04 165 | 59.66 292 | 82.43 220 | 87.44 213 | 75.52 147 | 87.85 147 | 95.26 41 | 81.25 118 | 85.65 302 | 68.74 241 | 96.04 117 | 94.42 84 |
|
| AdaColmap |  | | 83.66 156 | 83.69 156 | 83.57 174 | 90.05 164 | 72.26 154 | 86.29 133 | 90.00 176 | 78.19 116 | 81.65 272 | 87.16 271 | 83.40 84 | 94.24 87 | 61.69 301 | 94.76 173 | 84.21 328 |
|
| MIMVSNet1 | | | 83.63 157 | 84.59 137 | 80.74 232 | 94.06 54 | 62.77 251 | 82.72 210 | 84.53 267 | 77.57 124 | 90.34 90 | 95.92 27 | 76.88 168 | 85.83 300 | 61.88 299 | 97.42 71 | 93.62 123 |
|
| test_fmvsm_n_1920 | | | 83.60 158 | 82.89 169 | 85.74 122 | 85.22 270 | 77.74 96 | 84.12 170 | 90.48 156 | 59.87 321 | 86.45 182 | 91.12 185 | 75.65 174 | 85.89 298 | 82.28 87 | 90.87 261 | 93.58 126 |
|
| WR-MVS | | | 83.56 159 | 84.40 145 | 81.06 228 | 93.43 67 | 54.88 337 | 78.67 277 | 85.02 258 | 81.24 76 | 90.74 87 | 91.56 173 | 72.85 211 | 91.08 190 | 68.00 248 | 98.04 36 | 97.23 16 |
|
| CNLPA | | | 83.55 160 | 83.10 166 | 84.90 134 | 89.34 176 | 83.87 47 | 84.54 163 | 88.77 195 | 79.09 103 | 83.54 240 | 88.66 244 | 74.87 182 | 81.73 331 | 66.84 254 | 92.29 229 | 89.11 262 |
|
| LCM-MVSNet-Re | | | 83.48 161 | 85.06 127 | 78.75 259 | 85.94 260 | 55.75 330 | 80.05 253 | 94.27 21 | 76.47 132 | 96.09 6 | 94.54 63 | 83.31 85 | 89.75 236 | 59.95 312 | 94.89 165 | 90.75 226 |
|
| hse-mvs2 | | | 83.47 162 | 81.81 186 | 88.47 74 | 91.03 142 | 82.27 58 | 82.61 212 | 83.69 272 | 71.27 206 | 86.70 170 | 86.05 288 | 63.04 273 | 92.41 153 | 78.26 130 | 93.62 204 | 90.71 228 |
|
| V42 | | | 83.47 162 | 83.37 160 | 83.75 166 | 83.16 309 | 63.33 243 | 81.31 238 | 90.23 170 | 69.51 226 | 90.91 83 | 90.81 200 | 74.16 192 | 92.29 159 | 80.06 108 | 90.22 272 | 95.62 46 |
|
| VPA-MVSNet | | | 83.47 162 | 84.73 132 | 79.69 248 | 90.29 157 | 57.52 316 | 81.30 240 | 88.69 197 | 76.29 133 | 87.58 153 | 94.44 67 | 80.60 126 | 87.20 270 | 66.60 257 | 96.82 87 | 94.34 88 |
|
| PAPM_NR | | | 83.23 165 | 83.19 163 | 83.33 180 | 90.90 145 | 65.98 218 | 88.19 98 | 90.78 149 | 78.13 117 | 80.87 283 | 87.92 255 | 73.49 202 | 92.42 152 | 70.07 224 | 88.40 295 | 91.60 207 |
|
| CLD-MVS | | | 83.18 166 | 82.64 174 | 84.79 137 | 89.05 181 | 67.82 201 | 77.93 285 | 92.52 98 | 68.33 238 | 85.07 204 | 81.54 345 | 82.06 105 | 92.96 139 | 69.35 230 | 97.91 48 | 93.57 127 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| ANet_high | | | 83.17 167 | 85.68 117 | 75.65 303 | 81.24 327 | 45.26 389 | 79.94 255 | 92.91 87 | 83.83 48 | 91.33 73 | 96.88 12 | 80.25 129 | 85.92 295 | 68.89 238 | 95.89 127 | 95.76 42 |
|
| FA-MVS(test-final) | | | 83.13 168 | 83.02 167 | 83.43 177 | 86.16 257 | 66.08 217 | 88.00 100 | 88.36 202 | 75.55 146 | 85.02 205 | 92.75 138 | 65.12 258 | 92.50 151 | 74.94 174 | 91.30 250 | 91.72 202 |
|
| 114514_t | | | 83.10 169 | 82.54 177 | 84.77 138 | 92.90 80 | 69.10 190 | 86.65 126 | 90.62 154 | 54.66 353 | 81.46 275 | 90.81 200 | 76.98 161 | 94.38 83 | 72.62 204 | 96.18 110 | 90.82 225 |
|
| RRT-MVS | | | 82.97 170 | 83.44 157 | 81.57 219 | 85.06 272 | 58.04 311 | 87.20 111 | 90.37 161 | 77.88 119 | 88.59 128 | 93.70 109 | 63.17 270 | 93.05 137 | 76.49 154 | 88.47 294 | 93.62 123 |
|
| UGNet | | | 82.78 171 | 81.64 188 | 86.21 112 | 86.20 254 | 76.24 117 | 86.86 119 | 85.68 245 | 77.07 129 | 73.76 350 | 92.82 134 | 69.64 235 | 91.82 172 | 69.04 237 | 93.69 201 | 90.56 234 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| LF4IMVS | | | 82.75 172 | 81.93 184 | 85.19 130 | 82.08 316 | 80.15 71 | 85.53 144 | 88.76 196 | 68.01 242 | 85.58 196 | 87.75 258 | 71.80 225 | 86.85 277 | 74.02 183 | 93.87 196 | 88.58 271 |
|
| EI-MVSNet | | | 82.61 173 | 82.42 179 | 83.20 184 | 83.25 306 | 63.66 238 | 83.50 188 | 85.07 255 | 76.06 135 | 86.55 174 | 85.10 303 | 73.41 203 | 90.25 214 | 78.15 134 | 90.67 267 | 95.68 44 |
|
| QAPM | | | 82.59 174 | 82.59 176 | 82.58 200 | 86.44 243 | 66.69 211 | 89.94 64 | 90.36 162 | 67.97 244 | 84.94 209 | 92.58 143 | 72.71 213 | 92.18 160 | 70.63 220 | 87.73 308 | 88.85 269 |
|
| fmvsm_s_conf0.1_n_a | | | 82.58 175 | 81.93 184 | 84.50 144 | 87.68 216 | 73.35 133 | 86.14 136 | 77.70 311 | 61.64 300 | 85.02 205 | 91.62 171 | 77.75 148 | 86.24 287 | 82.79 80 | 87.07 315 | 93.91 106 |
|
| Fast-Effi-MVS+-dtu | | | 82.54 176 | 81.41 196 | 85.90 118 | 85.60 263 | 76.53 112 | 83.07 200 | 89.62 186 | 73.02 184 | 79.11 305 | 83.51 321 | 80.74 124 | 90.24 216 | 68.76 240 | 89.29 283 | 90.94 221 |
|
| MVS_Test | | | 82.47 177 | 83.22 161 | 80.22 241 | 82.62 314 | 57.75 315 | 82.54 217 | 91.96 115 | 71.16 210 | 82.89 250 | 92.52 145 | 77.41 153 | 90.50 211 | 80.04 109 | 87.84 307 | 92.40 176 |
|
| v148 | | | 82.31 178 | 82.48 178 | 81.81 215 | 85.59 264 | 59.66 292 | 81.47 237 | 86.02 240 | 72.85 185 | 88.05 144 | 90.65 207 | 70.73 230 | 90.91 197 | 75.15 171 | 91.79 240 | 94.87 66 |
|
| API-MVS | | | 82.28 179 | 82.61 175 | 81.30 222 | 86.29 251 | 69.79 177 | 88.71 92 | 87.67 212 | 78.42 114 | 82.15 261 | 84.15 317 | 77.98 145 | 91.59 175 | 65.39 269 | 92.75 221 | 82.51 355 |
|
| MVSFormer | | | 82.23 180 | 81.57 193 | 84.19 157 | 85.54 265 | 69.26 185 | 91.98 31 | 90.08 174 | 71.54 203 | 76.23 327 | 85.07 306 | 58.69 298 | 94.27 84 | 86.26 40 | 88.77 290 | 89.03 266 |
|
| fmvsm_s_conf0.5_n_a | | | 82.21 181 | 81.51 195 | 84.32 152 | 86.56 241 | 73.35 133 | 85.46 145 | 77.30 315 | 61.81 296 | 84.51 215 | 90.88 197 | 77.36 154 | 86.21 289 | 82.72 81 | 86.97 320 | 93.38 131 |
|
| EIA-MVS | | | 82.19 182 | 81.23 201 | 85.10 132 | 87.95 210 | 69.17 189 | 83.22 198 | 93.33 64 | 70.42 216 | 78.58 309 | 79.77 361 | 77.29 155 | 94.20 89 | 71.51 210 | 88.96 288 | 91.93 198 |
|
| fmvsm_s_conf0.1_n | | | 82.17 183 | 81.59 191 | 83.94 162 | 86.87 239 | 71.57 165 | 85.19 151 | 77.42 314 | 62.27 294 | 84.47 218 | 91.33 178 | 76.43 170 | 85.91 296 | 83.14 71 | 87.14 313 | 94.33 89 |
|
| PCF-MVS | | 74.62 15 | 82.15 184 | 80.92 205 | 85.84 120 | 89.43 174 | 72.30 153 | 80.53 248 | 91.82 120 | 57.36 337 | 87.81 148 | 89.92 224 | 77.67 150 | 93.63 110 | 58.69 317 | 95.08 156 | 91.58 208 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| PLC |  | 73.85 16 | 82.09 185 | 80.31 212 | 87.45 89 | 90.86 147 | 80.29 70 | 85.88 138 | 90.65 152 | 68.17 241 | 76.32 326 | 86.33 282 | 73.12 209 | 92.61 149 | 61.40 304 | 90.02 275 | 89.44 255 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| fmvsm_l_conf0.5_n | | | 82.06 186 | 81.54 194 | 83.60 171 | 83.94 291 | 73.90 129 | 83.35 192 | 86.10 236 | 58.97 323 | 83.80 234 | 90.36 212 | 74.23 191 | 86.94 275 | 82.90 77 | 90.22 272 | 89.94 249 |
|
| GBi-Net | | | 82.02 187 | 82.07 181 | 81.85 212 | 86.38 245 | 61.05 276 | 86.83 121 | 88.27 205 | 72.43 191 | 86.00 187 | 95.64 32 | 63.78 266 | 90.68 206 | 65.95 262 | 93.34 206 | 93.82 111 |
|
| test1 | | | 82.02 187 | 82.07 181 | 81.85 212 | 86.38 245 | 61.05 276 | 86.83 121 | 88.27 205 | 72.43 191 | 86.00 187 | 95.64 32 | 63.78 266 | 90.68 206 | 65.95 262 | 93.34 206 | 93.82 111 |
|
| OpenMVS |  | 76.72 13 | 81.98 189 | 82.00 183 | 81.93 209 | 84.42 283 | 68.22 195 | 88.50 96 | 89.48 188 | 66.92 254 | 81.80 269 | 91.86 161 | 72.59 215 | 90.16 219 | 71.19 213 | 91.25 251 | 87.40 290 |
|
| KD-MVS_self_test | | | 81.93 190 | 83.14 165 | 78.30 268 | 84.75 278 | 52.75 350 | 80.37 250 | 89.42 190 | 70.24 221 | 90.26 92 | 93.39 115 | 74.55 190 | 86.77 279 | 68.61 243 | 96.64 91 | 95.38 51 |
|
| fmvsm_s_conf0.5_n | | | 81.91 191 | 81.30 198 | 83.75 166 | 86.02 259 | 71.56 166 | 84.73 157 | 77.11 318 | 62.44 291 | 84.00 231 | 90.68 204 | 76.42 171 | 85.89 298 | 83.14 71 | 87.11 314 | 93.81 114 |
|
| SDMVSNet | | | 81.90 192 | 83.17 164 | 78.10 272 | 88.81 189 | 62.45 257 | 76.08 317 | 86.05 239 | 73.67 166 | 83.41 241 | 93.04 123 | 82.35 97 | 80.65 338 | 70.06 225 | 95.03 158 | 91.21 214 |
|
| tfpnnormal | | | 81.79 193 | 82.95 168 | 78.31 267 | 88.93 186 | 55.40 332 | 80.83 247 | 82.85 280 | 76.81 130 | 85.90 191 | 94.14 85 | 74.58 189 | 86.51 283 | 66.82 255 | 95.68 138 | 93.01 149 |
|
| c3_l | | | 81.64 194 | 81.59 191 | 81.79 216 | 80.86 333 | 59.15 299 | 78.61 278 | 90.18 172 | 68.36 237 | 87.20 156 | 87.11 273 | 69.39 236 | 91.62 174 | 78.16 132 | 94.43 180 | 94.60 74 |
|
| PVSNet_Blended_VisFu | | | 81.55 195 | 80.49 210 | 84.70 141 | 91.58 124 | 73.24 137 | 84.21 167 | 91.67 124 | 62.86 285 | 80.94 281 | 87.16 271 | 67.27 247 | 92.87 144 | 69.82 227 | 88.94 289 | 87.99 281 |
|
| fmvsm_l_conf0.5_n_a | | | 81.46 196 | 80.87 206 | 83.25 182 | 83.73 296 | 73.21 138 | 83.00 203 | 85.59 247 | 58.22 329 | 82.96 249 | 90.09 222 | 72.30 218 | 86.65 281 | 81.97 92 | 89.95 276 | 89.88 250 |
|
| DELS-MVS | | | 81.44 197 | 81.25 199 | 82.03 208 | 84.27 287 | 62.87 249 | 76.47 311 | 92.49 99 | 70.97 212 | 81.64 273 | 83.83 318 | 75.03 180 | 92.70 146 | 74.29 176 | 92.22 233 | 90.51 236 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| FMVSNet2 | | | 81.31 198 | 81.61 190 | 80.41 238 | 86.38 245 | 58.75 306 | 83.93 176 | 86.58 231 | 72.43 191 | 87.65 151 | 92.98 127 | 63.78 266 | 90.22 217 | 66.86 252 | 93.92 194 | 92.27 184 |
|
| TinyColmap | | | 81.25 199 | 82.34 180 | 77.99 275 | 85.33 267 | 60.68 283 | 82.32 223 | 88.33 203 | 71.26 208 | 86.97 165 | 92.22 157 | 77.10 159 | 86.98 274 | 62.37 293 | 95.17 152 | 86.31 301 |
|
| AUN-MVS | | | 81.18 200 | 78.78 233 | 88.39 76 | 90.93 144 | 82.14 59 | 82.51 218 | 83.67 273 | 64.69 277 | 80.29 291 | 85.91 291 | 51.07 337 | 92.38 154 | 76.29 158 | 93.63 203 | 90.65 232 |
|
| tttt0517 | | | 81.07 201 | 79.58 224 | 85.52 126 | 88.99 184 | 66.45 214 | 87.03 116 | 75.51 330 | 73.76 165 | 88.32 138 | 90.20 217 | 37.96 392 | 94.16 94 | 79.36 119 | 95.13 153 | 95.93 41 |
|
| Fast-Effi-MVS+ | | | 81.04 202 | 80.57 207 | 82.46 204 | 87.50 222 | 63.22 245 | 78.37 281 | 89.63 185 | 68.01 242 | 81.87 265 | 82.08 339 | 82.31 99 | 92.65 148 | 67.10 251 | 88.30 301 | 91.51 210 |
|
| BH-untuned | | | 80.96 203 | 80.99 203 | 80.84 231 | 88.55 197 | 68.23 194 | 80.33 251 | 88.46 199 | 72.79 188 | 86.55 174 | 86.76 277 | 74.72 187 | 91.77 173 | 61.79 300 | 88.99 287 | 82.52 354 |
|
| eth_miper_zixun_eth | | | 80.84 204 | 80.22 216 | 82.71 197 | 81.41 325 | 60.98 279 | 77.81 287 | 90.14 173 | 67.31 252 | 86.95 166 | 87.24 270 | 64.26 261 | 92.31 157 | 75.23 170 | 91.61 244 | 94.85 70 |
|
| xiu_mvs_v1_base_debu | | | 80.84 204 | 80.14 218 | 82.93 192 | 88.31 201 | 71.73 160 | 79.53 260 | 87.17 217 | 65.43 268 | 79.59 297 | 82.73 333 | 76.94 162 | 90.14 222 | 73.22 196 | 88.33 297 | 86.90 295 |
|
| xiu_mvs_v1_base | | | 80.84 204 | 80.14 218 | 82.93 192 | 88.31 201 | 71.73 160 | 79.53 260 | 87.17 217 | 65.43 268 | 79.59 297 | 82.73 333 | 76.94 162 | 90.14 222 | 73.22 196 | 88.33 297 | 86.90 295 |
|
| xiu_mvs_v1_base_debi | | | 80.84 204 | 80.14 218 | 82.93 192 | 88.31 201 | 71.73 160 | 79.53 260 | 87.17 217 | 65.43 268 | 79.59 297 | 82.73 333 | 76.94 162 | 90.14 222 | 73.22 196 | 88.33 297 | 86.90 295 |
|
| IterMVS-SCA-FT | | | 80.64 208 | 79.41 225 | 84.34 151 | 83.93 292 | 69.66 180 | 76.28 313 | 81.09 294 | 72.43 191 | 86.47 180 | 90.19 218 | 60.46 283 | 93.15 133 | 77.45 143 | 86.39 326 | 90.22 241 |
|
| BH-RMVSNet | | | 80.53 209 | 80.22 216 | 81.49 221 | 87.19 228 | 66.21 216 | 77.79 288 | 86.23 234 | 74.21 160 | 83.69 235 | 88.50 245 | 73.25 208 | 90.75 203 | 63.18 290 | 87.90 305 | 87.52 288 |
|
| Anonymous202405211 | | | 80.51 210 | 81.19 202 | 78.49 264 | 88.48 198 | 57.26 318 | 76.63 306 | 82.49 283 | 81.21 77 | 84.30 225 | 92.24 156 | 67.99 244 | 86.24 287 | 62.22 294 | 95.13 153 | 91.98 197 |
|
| DIV-MVS_self_test | | | 80.43 211 | 80.23 214 | 81.02 229 | 79.99 341 | 59.25 296 | 77.07 299 | 87.02 225 | 67.38 249 | 86.19 183 | 89.22 233 | 63.09 271 | 90.16 219 | 76.32 156 | 95.80 132 | 93.66 119 |
|
| cl____ | | | 80.42 212 | 80.23 214 | 81.02 229 | 79.99 341 | 59.25 296 | 77.07 299 | 87.02 225 | 67.37 250 | 86.18 185 | 89.21 234 | 63.08 272 | 90.16 219 | 76.31 157 | 95.80 132 | 93.65 121 |
|
| diffmvs |  | | 80.40 213 | 80.48 211 | 80.17 242 | 79.02 354 | 60.04 287 | 77.54 292 | 90.28 169 | 66.65 257 | 82.40 256 | 87.33 268 | 73.50 200 | 87.35 268 | 77.98 136 | 89.62 280 | 93.13 143 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| EPNet | | | 80.37 214 | 78.41 240 | 86.23 110 | 76.75 368 | 73.28 135 | 87.18 113 | 77.45 313 | 76.24 134 | 68.14 378 | 88.93 239 | 65.41 257 | 93.85 102 | 69.47 229 | 96.12 114 | 91.55 209 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| miper_ehance_all_eth | | | 80.34 215 | 80.04 221 | 81.24 225 | 79.82 344 | 58.95 301 | 77.66 289 | 89.66 183 | 65.75 265 | 85.99 190 | 85.11 302 | 68.29 243 | 91.42 181 | 76.03 161 | 92.03 235 | 93.33 133 |
|
| MG-MVS | | | 80.32 216 | 80.94 204 | 78.47 265 | 88.18 204 | 52.62 353 | 82.29 224 | 85.01 259 | 72.01 201 | 79.24 304 | 92.54 144 | 69.36 237 | 93.36 127 | 70.65 219 | 89.19 286 | 89.45 254 |
|
| mvsmamba | | | 80.30 217 | 78.87 230 | 84.58 143 | 88.12 207 | 67.55 202 | 92.35 26 | 84.88 262 | 63.15 283 | 85.33 200 | 90.91 194 | 50.71 339 | 95.20 59 | 66.36 258 | 87.98 304 | 90.99 219 |
|
| VPNet | | | 80.25 218 | 81.68 187 | 75.94 301 | 92.46 92 | 47.98 376 | 76.70 304 | 81.67 290 | 73.45 171 | 84.87 210 | 92.82 134 | 74.66 188 | 86.51 283 | 61.66 302 | 96.85 84 | 93.33 133 |
|
| MAR-MVS | | | 80.24 219 | 78.74 235 | 84.73 139 | 86.87 239 | 78.18 89 | 85.75 141 | 87.81 211 | 65.67 267 | 77.84 314 | 78.50 370 | 73.79 197 | 90.53 210 | 61.59 303 | 90.87 261 | 85.49 311 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| PM-MVS | | | 80.20 220 | 79.00 229 | 83.78 165 | 88.17 205 | 86.66 16 | 81.31 238 | 66.81 384 | 69.64 225 | 88.33 137 | 90.19 218 | 64.58 259 | 83.63 321 | 71.99 209 | 90.03 274 | 81.06 373 |
|
| Anonymous20240521 | | | 80.18 221 | 81.25 199 | 76.95 288 | 83.15 310 | 60.84 281 | 82.46 219 | 85.99 241 | 68.76 234 | 86.78 167 | 93.73 108 | 59.13 295 | 77.44 354 | 73.71 189 | 97.55 66 | 92.56 166 |
|
| LFMVS | | | 80.15 222 | 80.56 208 | 78.89 256 | 89.19 180 | 55.93 326 | 85.22 150 | 73.78 342 | 82.96 60 | 84.28 226 | 92.72 139 | 57.38 307 | 90.07 226 | 63.80 284 | 95.75 135 | 90.68 230 |
|
| DPM-MVS | | | 80.10 223 | 79.18 228 | 82.88 195 | 90.71 150 | 69.74 178 | 78.87 274 | 90.84 147 | 60.29 317 | 75.64 336 | 85.92 290 | 67.28 246 | 93.11 134 | 71.24 212 | 91.79 240 | 85.77 307 |
|
| MSDG | | | 80.06 224 | 79.99 223 | 80.25 240 | 83.91 293 | 68.04 199 | 77.51 293 | 89.19 191 | 77.65 122 | 81.94 263 | 83.45 323 | 76.37 172 | 86.31 286 | 63.31 289 | 86.59 323 | 86.41 299 |
|
| FE-MVS | | | 79.98 225 | 78.86 231 | 83.36 179 | 86.47 242 | 66.45 214 | 89.73 67 | 84.74 266 | 72.80 187 | 84.22 229 | 91.38 177 | 44.95 372 | 93.60 114 | 63.93 282 | 91.50 247 | 90.04 248 |
|
| sd_testset | | | 79.95 226 | 81.39 197 | 75.64 304 | 88.81 189 | 58.07 310 | 76.16 316 | 82.81 281 | 73.67 166 | 83.41 241 | 93.04 123 | 80.96 121 | 77.65 353 | 58.62 318 | 95.03 158 | 91.21 214 |
|
| ab-mvs | | | 79.67 227 | 80.56 208 | 76.99 287 | 88.48 198 | 56.93 320 | 84.70 158 | 86.06 238 | 68.95 232 | 80.78 284 | 93.08 122 | 75.30 178 | 84.62 310 | 56.78 327 | 90.90 259 | 89.43 256 |
|
| VNet | | | 79.31 228 | 80.27 213 | 76.44 295 | 87.92 211 | 53.95 342 | 75.58 323 | 84.35 268 | 74.39 159 | 82.23 259 | 90.72 202 | 72.84 212 | 84.39 313 | 60.38 310 | 93.98 193 | 90.97 220 |
|
| thisisatest0530 | | | 79.07 229 | 77.33 249 | 84.26 154 | 87.13 229 | 64.58 229 | 83.66 185 | 75.95 325 | 68.86 233 | 85.22 202 | 87.36 267 | 38.10 389 | 93.57 118 | 75.47 167 | 94.28 184 | 94.62 73 |
|
| cl22 | | | 78.97 230 | 78.21 242 | 81.24 225 | 77.74 358 | 59.01 300 | 77.46 295 | 87.13 220 | 65.79 262 | 84.32 222 | 85.10 303 | 58.96 297 | 90.88 199 | 75.36 169 | 92.03 235 | 93.84 109 |
|
| patch_mono-2 | | | 78.89 231 | 79.39 226 | 77.41 284 | 84.78 276 | 68.11 197 | 75.60 321 | 83.11 277 | 60.96 310 | 79.36 301 | 89.89 225 | 75.18 179 | 72.97 366 | 73.32 195 | 92.30 227 | 91.15 216 |
|
| RPMNet | | | 78.88 232 | 78.28 241 | 80.68 235 | 79.58 345 | 62.64 253 | 82.58 214 | 94.16 29 | 74.80 154 | 75.72 334 | 92.59 141 | 48.69 346 | 95.56 39 | 73.48 192 | 82.91 362 | 83.85 333 |
|
| PAPR | | | 78.84 233 | 78.10 243 | 81.07 227 | 85.17 271 | 60.22 286 | 82.21 228 | 90.57 155 | 62.51 287 | 75.32 340 | 84.61 311 | 74.99 181 | 92.30 158 | 59.48 315 | 88.04 303 | 90.68 230 |
|
| PVSNet_BlendedMVS | | | 78.80 234 | 77.84 244 | 81.65 218 | 84.43 281 | 63.41 241 | 79.49 263 | 90.44 158 | 61.70 299 | 75.43 337 | 87.07 274 | 69.11 239 | 91.44 179 | 60.68 308 | 92.24 231 | 90.11 246 |
|
| FMVSNet3 | | | 78.80 234 | 78.55 237 | 79.57 250 | 82.89 313 | 56.89 322 | 81.76 232 | 85.77 243 | 69.04 231 | 86.00 187 | 90.44 211 | 51.75 335 | 90.09 225 | 65.95 262 | 93.34 206 | 91.72 202 |
|
| test_yl | | | 78.71 236 | 78.51 238 | 79.32 253 | 84.32 285 | 58.84 303 | 78.38 279 | 85.33 250 | 75.99 138 | 82.49 254 | 86.57 278 | 58.01 301 | 90.02 228 | 62.74 291 | 92.73 222 | 89.10 263 |
|
| DCV-MVSNet | | | 78.71 236 | 78.51 238 | 79.32 253 | 84.32 285 | 58.84 303 | 78.38 279 | 85.33 250 | 75.99 138 | 82.49 254 | 86.57 278 | 58.01 301 | 90.02 228 | 62.74 291 | 92.73 222 | 89.10 263 |
|
| test1111 | | | 78.53 238 | 78.85 232 | 77.56 281 | 92.22 100 | 47.49 378 | 82.61 212 | 69.24 373 | 72.43 191 | 85.28 201 | 94.20 81 | 51.91 333 | 90.07 226 | 65.36 270 | 96.45 100 | 95.11 61 |
|
| ECVR-MVS |  | | 78.44 239 | 78.63 236 | 77.88 277 | 91.85 114 | 48.95 372 | 83.68 184 | 69.91 369 | 72.30 197 | 84.26 228 | 94.20 81 | 51.89 334 | 89.82 231 | 63.58 285 | 96.02 118 | 94.87 66 |
|
| pmmvs-eth3d | | | 78.42 240 | 77.04 252 | 82.57 202 | 87.44 223 | 74.41 126 | 80.86 246 | 79.67 302 | 55.68 346 | 84.69 213 | 90.31 215 | 60.91 281 | 85.42 303 | 62.20 295 | 91.59 245 | 87.88 284 |
|
| mvs_anonymous | | | 78.13 241 | 78.76 234 | 76.23 300 | 79.24 351 | 50.31 369 | 78.69 276 | 84.82 264 | 61.60 301 | 83.09 248 | 92.82 134 | 73.89 196 | 87.01 271 | 68.33 247 | 86.41 325 | 91.37 211 |
|
| TAMVS | | | 78.08 242 | 76.36 258 | 83.23 183 | 90.62 151 | 72.87 139 | 79.08 270 | 80.01 301 | 61.72 298 | 81.35 277 | 86.92 276 | 63.96 265 | 88.78 253 | 50.61 365 | 93.01 216 | 88.04 280 |
|
| miper_enhance_ethall | | | 77.83 243 | 76.93 253 | 80.51 236 | 76.15 374 | 58.01 312 | 75.47 325 | 88.82 194 | 58.05 331 | 83.59 237 | 80.69 349 | 64.41 260 | 91.20 185 | 73.16 202 | 92.03 235 | 92.33 180 |
|
| Vis-MVSNet (Re-imp) | | | 77.82 244 | 77.79 245 | 77.92 276 | 88.82 188 | 51.29 363 | 83.28 193 | 71.97 357 | 74.04 161 | 82.23 259 | 89.78 226 | 57.38 307 | 89.41 243 | 57.22 326 | 95.41 142 | 93.05 147 |
|
| CANet_DTU | | | 77.81 245 | 77.05 251 | 80.09 243 | 81.37 326 | 59.90 290 | 83.26 194 | 88.29 204 | 69.16 229 | 67.83 381 | 83.72 319 | 60.93 280 | 89.47 238 | 69.22 233 | 89.70 279 | 90.88 223 |
|
| OpenMVS_ROB |  | 70.19 17 | 77.77 246 | 77.46 246 | 78.71 260 | 84.39 284 | 61.15 274 | 81.18 242 | 82.52 282 | 62.45 290 | 83.34 243 | 87.37 266 | 66.20 252 | 88.66 255 | 64.69 277 | 85.02 342 | 86.32 300 |
|
| SSC-MVS | | | 77.55 247 | 81.64 188 | 65.29 372 | 90.46 154 | 20.33 418 | 73.56 341 | 68.28 375 | 85.44 34 | 88.18 141 | 94.64 60 | 70.93 229 | 81.33 333 | 71.25 211 | 92.03 235 | 94.20 91 |
|
| MDA-MVSNet-bldmvs | | | 77.47 248 | 76.90 254 | 79.16 255 | 79.03 353 | 64.59 228 | 66.58 382 | 75.67 328 | 73.15 182 | 88.86 121 | 88.99 238 | 66.94 248 | 81.23 334 | 64.71 276 | 88.22 302 | 91.64 206 |
|
| jason | | | 77.42 249 | 75.75 264 | 82.43 205 | 87.10 232 | 69.27 184 | 77.99 284 | 81.94 288 | 51.47 372 | 77.84 314 | 85.07 306 | 60.32 285 | 89.00 247 | 70.74 218 | 89.27 285 | 89.03 266 |
| jason: jason. |
| CDS-MVSNet | | | 77.32 250 | 75.40 267 | 83.06 186 | 89.00 183 | 72.48 150 | 77.90 286 | 82.17 286 | 60.81 311 | 78.94 306 | 83.49 322 | 59.30 293 | 88.76 254 | 54.64 345 | 92.37 226 | 87.93 283 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| xiu_mvs_v2_base | | | 77.19 251 | 76.75 255 | 78.52 263 | 87.01 235 | 61.30 272 | 75.55 324 | 87.12 223 | 61.24 307 | 74.45 345 | 78.79 368 | 77.20 156 | 90.93 195 | 64.62 279 | 84.80 349 | 83.32 342 |
|
| MVSTER | | | 77.09 252 | 75.70 265 | 81.25 223 | 75.27 382 | 61.08 275 | 77.49 294 | 85.07 255 | 60.78 312 | 86.55 174 | 88.68 242 | 43.14 381 | 90.25 214 | 73.69 190 | 90.67 267 | 92.42 173 |
|
| PS-MVSNAJ | | | 77.04 253 | 76.53 257 | 78.56 262 | 87.09 233 | 61.40 270 | 75.26 326 | 87.13 220 | 61.25 306 | 74.38 347 | 77.22 381 | 76.94 162 | 90.94 194 | 64.63 278 | 84.83 348 | 83.35 341 |
|
| IterMVS | | | 76.91 254 | 76.34 259 | 78.64 261 | 80.91 331 | 64.03 235 | 76.30 312 | 79.03 305 | 64.88 276 | 83.11 246 | 89.16 235 | 59.90 289 | 84.46 311 | 68.61 243 | 85.15 340 | 87.42 289 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| D2MVS | | | 76.84 255 | 75.67 266 | 80.34 239 | 80.48 339 | 62.16 265 | 73.50 342 | 84.80 265 | 57.61 335 | 82.24 258 | 87.54 262 | 51.31 336 | 87.65 264 | 70.40 223 | 93.19 212 | 91.23 213 |
|
| CL-MVSNet_self_test | | | 76.81 256 | 77.38 248 | 75.12 307 | 86.90 237 | 51.34 361 | 73.20 345 | 80.63 298 | 68.30 239 | 81.80 269 | 88.40 246 | 66.92 249 | 80.90 335 | 55.35 339 | 94.90 164 | 93.12 145 |
|
| TR-MVS | | | 76.77 257 | 75.79 263 | 79.72 247 | 86.10 258 | 65.79 220 | 77.14 297 | 83.02 278 | 65.20 274 | 81.40 276 | 82.10 337 | 66.30 251 | 90.73 205 | 55.57 336 | 85.27 336 | 82.65 349 |
|
| MonoMVSNet | | | 76.66 258 | 77.26 250 | 74.86 309 | 79.86 343 | 54.34 339 | 86.26 134 | 86.08 237 | 71.08 211 | 85.59 195 | 88.68 242 | 53.95 325 | 85.93 294 | 63.86 283 | 80.02 377 | 84.32 324 |
|
| USDC | | | 76.63 259 | 76.73 256 | 76.34 297 | 83.46 299 | 57.20 319 | 80.02 254 | 88.04 209 | 52.14 368 | 83.65 236 | 91.25 180 | 63.24 269 | 86.65 281 | 54.66 344 | 94.11 189 | 85.17 313 |
|
| BH-w/o | | | 76.57 260 | 76.07 262 | 78.10 272 | 86.88 238 | 65.92 219 | 77.63 290 | 86.33 232 | 65.69 266 | 80.89 282 | 79.95 358 | 68.97 241 | 90.74 204 | 53.01 355 | 85.25 337 | 77.62 384 |
|
| Patchmtry | | | 76.56 261 | 77.46 246 | 73.83 315 | 79.37 350 | 46.60 382 | 82.41 221 | 76.90 319 | 73.81 164 | 85.56 197 | 92.38 148 | 48.07 349 | 83.98 318 | 63.36 288 | 95.31 148 | 90.92 222 |
|
| PVSNet_Blended | | | 76.49 262 | 75.40 267 | 79.76 246 | 84.43 281 | 63.41 241 | 75.14 327 | 90.44 158 | 57.36 337 | 75.43 337 | 78.30 371 | 69.11 239 | 91.44 179 | 60.68 308 | 87.70 309 | 84.42 323 |
|
| miper_lstm_enhance | | | 76.45 263 | 76.10 261 | 77.51 282 | 76.72 369 | 60.97 280 | 64.69 386 | 85.04 257 | 63.98 280 | 83.20 245 | 88.22 248 | 56.67 311 | 78.79 350 | 73.22 196 | 93.12 213 | 92.78 156 |
|
| lupinMVS | | | 76.37 264 | 74.46 276 | 82.09 207 | 85.54 265 | 69.26 185 | 76.79 302 | 80.77 297 | 50.68 379 | 76.23 327 | 82.82 331 | 58.69 298 | 88.94 248 | 69.85 226 | 88.77 290 | 88.07 277 |
|
| cascas | | | 76.29 265 | 74.81 272 | 80.72 234 | 84.47 280 | 62.94 247 | 73.89 339 | 87.34 214 | 55.94 344 | 75.16 342 | 76.53 386 | 63.97 264 | 91.16 187 | 65.00 273 | 90.97 257 | 88.06 279 |
|
| WB-MVS | | | 76.06 266 | 80.01 222 | 64.19 375 | 89.96 167 | 20.58 417 | 72.18 350 | 68.19 376 | 83.21 56 | 86.46 181 | 93.49 113 | 70.19 233 | 78.97 348 | 65.96 261 | 90.46 271 | 93.02 148 |
|
| thres600view7 | | | 75.97 267 | 75.35 269 | 77.85 279 | 87.01 235 | 51.84 359 | 80.45 249 | 73.26 347 | 75.20 151 | 83.10 247 | 86.31 284 | 45.54 363 | 89.05 246 | 55.03 342 | 92.24 231 | 92.66 162 |
|
| GA-MVS | | | 75.83 268 | 74.61 273 | 79.48 252 | 81.87 318 | 59.25 296 | 73.42 343 | 82.88 279 | 68.68 235 | 79.75 296 | 81.80 342 | 50.62 340 | 89.46 239 | 66.85 253 | 85.64 333 | 89.72 251 |
|
| MVP-Stereo | | | 75.81 269 | 73.51 285 | 82.71 197 | 89.35 175 | 73.62 130 | 80.06 252 | 85.20 252 | 60.30 316 | 73.96 348 | 87.94 253 | 57.89 305 | 89.45 240 | 52.02 359 | 74.87 395 | 85.06 315 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| test_fmvs3 | | | 75.72 270 | 75.20 270 | 77.27 285 | 75.01 385 | 69.47 182 | 78.93 271 | 84.88 262 | 46.67 386 | 87.08 162 | 87.84 256 | 50.44 342 | 71.62 371 | 77.42 145 | 88.53 293 | 90.72 227 |
|
| thres100view900 | | | 75.45 271 | 75.05 271 | 76.66 294 | 87.27 225 | 51.88 358 | 81.07 243 | 73.26 347 | 75.68 144 | 83.25 244 | 86.37 281 | 45.54 363 | 88.80 250 | 51.98 360 | 90.99 254 | 89.31 258 |
|
| ET-MVSNet_ETH3D | | | 75.28 272 | 72.77 293 | 82.81 196 | 83.03 312 | 68.11 197 | 77.09 298 | 76.51 323 | 60.67 314 | 77.60 319 | 80.52 353 | 38.04 390 | 91.15 188 | 70.78 216 | 90.68 266 | 89.17 261 |
|
| thres400 | | | 75.14 273 | 74.23 278 | 77.86 278 | 86.24 252 | 52.12 355 | 79.24 267 | 73.87 340 | 73.34 175 | 81.82 267 | 84.60 312 | 46.02 357 | 88.80 250 | 51.98 360 | 90.99 254 | 92.66 162 |
|
| wuyk23d | | | 75.13 274 | 79.30 227 | 62.63 378 | 75.56 378 | 75.18 123 | 80.89 245 | 73.10 349 | 75.06 153 | 94.76 13 | 95.32 37 | 87.73 40 | 52.85 409 | 34.16 408 | 97.11 79 | 59.85 405 |
|
| EU-MVSNet | | | 75.12 275 | 74.43 277 | 77.18 286 | 83.11 311 | 59.48 294 | 85.71 143 | 82.43 284 | 39.76 406 | 85.64 194 | 88.76 240 | 44.71 374 | 87.88 262 | 73.86 186 | 85.88 332 | 84.16 329 |
|
| HyFIR lowres test | | | 75.12 275 | 72.66 295 | 82.50 203 | 91.44 132 | 65.19 225 | 72.47 348 | 87.31 215 | 46.79 385 | 80.29 291 | 84.30 314 | 52.70 330 | 92.10 164 | 51.88 364 | 86.73 321 | 90.22 241 |
|
| CMPMVS |  | 59.41 20 | 75.12 275 | 73.57 283 | 79.77 245 | 75.84 377 | 67.22 203 | 81.21 241 | 82.18 285 | 50.78 377 | 76.50 323 | 87.66 260 | 55.20 321 | 82.99 324 | 62.17 297 | 90.64 270 | 89.09 265 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| pmmvs4 | | | 74.92 278 | 72.98 291 | 80.73 233 | 84.95 273 | 71.71 163 | 76.23 314 | 77.59 312 | 52.83 362 | 77.73 318 | 86.38 280 | 56.35 314 | 84.97 307 | 57.72 325 | 87.05 316 | 85.51 310 |
|
| tfpn200view9 | | | 74.86 279 | 74.23 278 | 76.74 293 | 86.24 252 | 52.12 355 | 79.24 267 | 73.87 340 | 73.34 175 | 81.82 267 | 84.60 312 | 46.02 357 | 88.80 250 | 51.98 360 | 90.99 254 | 89.31 258 |
|
| 1112_ss | | | 74.82 280 | 73.74 281 | 78.04 274 | 89.57 169 | 60.04 287 | 76.49 310 | 87.09 224 | 54.31 354 | 73.66 351 | 79.80 359 | 60.25 286 | 86.76 280 | 58.37 319 | 84.15 353 | 87.32 291 |
|
| EGC-MVSNET | | | 74.79 281 | 69.99 322 | 89.19 62 | 94.89 38 | 87.00 12 | 91.89 34 | 86.28 233 | 1.09 415 | 2.23 417 | 95.98 26 | 81.87 111 | 89.48 237 | 79.76 112 | 95.96 121 | 91.10 217 |
|
| ppachtmachnet_test | | | 74.73 282 | 74.00 280 | 76.90 290 | 80.71 336 | 56.89 322 | 71.53 356 | 78.42 307 | 58.24 328 | 79.32 303 | 82.92 330 | 57.91 304 | 84.26 315 | 65.60 268 | 91.36 249 | 89.56 253 |
|
| Patchmatch-RL test | | | 74.48 283 | 73.68 282 | 76.89 291 | 84.83 275 | 66.54 212 | 72.29 349 | 69.16 374 | 57.70 333 | 86.76 168 | 86.33 282 | 45.79 362 | 82.59 325 | 69.63 228 | 90.65 269 | 81.54 364 |
|
| PatchMatch-RL | | | 74.48 283 | 73.22 288 | 78.27 270 | 87.70 215 | 85.26 35 | 75.92 319 | 70.09 367 | 64.34 278 | 76.09 330 | 81.25 347 | 65.87 255 | 78.07 352 | 53.86 347 | 83.82 355 | 71.48 393 |
|
| XXY-MVS | | | 74.44 285 | 76.19 260 | 69.21 349 | 84.61 279 | 52.43 354 | 71.70 353 | 77.18 317 | 60.73 313 | 80.60 285 | 90.96 192 | 75.44 175 | 69.35 378 | 56.13 332 | 88.33 297 | 85.86 306 |
|
| test2506 | | | 74.12 286 | 73.39 286 | 76.28 298 | 91.85 114 | 44.20 392 | 84.06 171 | 48.20 413 | 72.30 197 | 81.90 264 | 94.20 81 | 27.22 413 | 89.77 234 | 64.81 275 | 96.02 118 | 94.87 66 |
|
| CR-MVSNet | | | 74.00 287 | 73.04 290 | 76.85 292 | 79.58 345 | 62.64 253 | 82.58 214 | 76.90 319 | 50.50 380 | 75.72 334 | 92.38 148 | 48.07 349 | 84.07 317 | 68.72 242 | 82.91 362 | 83.85 333 |
|
| Test_1112_low_res | | | 73.90 288 | 73.08 289 | 76.35 296 | 90.35 156 | 55.95 325 | 73.40 344 | 86.17 235 | 50.70 378 | 73.14 352 | 85.94 289 | 58.31 300 | 85.90 297 | 56.51 329 | 83.22 359 | 87.20 292 |
|
| test20.03 | | | 73.75 289 | 74.59 275 | 71.22 336 | 81.11 329 | 51.12 365 | 70.15 366 | 72.10 356 | 70.42 216 | 80.28 293 | 91.50 174 | 64.21 262 | 74.72 365 | 46.96 384 | 94.58 176 | 87.82 286 |
|
| test_fmvs2 | | | 73.57 290 | 72.80 292 | 75.90 302 | 72.74 398 | 68.84 191 | 77.07 299 | 84.32 269 | 45.14 392 | 82.89 250 | 84.22 315 | 48.37 347 | 70.36 375 | 73.40 194 | 87.03 317 | 88.52 272 |
|
| SCA | | | 73.32 291 | 72.57 297 | 75.58 305 | 81.62 322 | 55.86 328 | 78.89 273 | 71.37 362 | 61.73 297 | 74.93 343 | 83.42 324 | 60.46 283 | 87.01 271 | 58.11 323 | 82.63 367 | 83.88 330 |
|
| baseline1 | | | 73.26 292 | 73.54 284 | 72.43 329 | 84.92 274 | 47.79 377 | 79.89 256 | 74.00 338 | 65.93 260 | 78.81 307 | 86.28 285 | 56.36 313 | 81.63 332 | 56.63 328 | 79.04 384 | 87.87 285 |
|
| 1314 | | | 73.22 293 | 72.56 298 | 75.20 306 | 80.41 340 | 57.84 313 | 81.64 235 | 85.36 249 | 51.68 371 | 73.10 353 | 76.65 385 | 61.45 278 | 85.19 305 | 63.54 286 | 79.21 382 | 82.59 350 |
|
| MVS | | | 73.21 294 | 72.59 296 | 75.06 308 | 80.97 330 | 60.81 282 | 81.64 235 | 85.92 242 | 46.03 390 | 71.68 360 | 77.54 376 | 68.47 242 | 89.77 234 | 55.70 335 | 85.39 334 | 74.60 390 |
|
| HY-MVS | | 64.64 18 | 73.03 295 | 72.47 299 | 74.71 311 | 83.36 303 | 54.19 340 | 82.14 231 | 81.96 287 | 56.76 343 | 69.57 373 | 86.21 286 | 60.03 287 | 84.83 309 | 49.58 371 | 82.65 365 | 85.11 314 |
|
| thisisatest0515 | | | 73.00 296 | 70.52 314 | 80.46 237 | 81.45 324 | 59.90 290 | 73.16 346 | 74.31 337 | 57.86 332 | 76.08 331 | 77.78 374 | 37.60 393 | 92.12 163 | 65.00 273 | 91.45 248 | 89.35 257 |
|
| EPNet_dtu | | | 72.87 297 | 71.33 309 | 77.49 283 | 77.72 359 | 60.55 284 | 82.35 222 | 75.79 326 | 66.49 258 | 58.39 408 | 81.06 348 | 53.68 326 | 85.98 293 | 53.55 350 | 92.97 218 | 85.95 304 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| CVMVSNet | | | 72.62 298 | 71.41 308 | 76.28 298 | 83.25 306 | 60.34 285 | 83.50 188 | 79.02 306 | 37.77 410 | 76.33 325 | 85.10 303 | 49.60 345 | 87.41 267 | 70.54 221 | 77.54 390 | 81.08 371 |
|
| CHOSEN 1792x2688 | | | 72.45 299 | 70.56 313 | 78.13 271 | 90.02 166 | 63.08 246 | 68.72 371 | 83.16 276 | 42.99 400 | 75.92 332 | 85.46 296 | 57.22 309 | 85.18 306 | 49.87 369 | 81.67 369 | 86.14 302 |
|
| testgi | | | 72.36 300 | 74.61 273 | 65.59 369 | 80.56 338 | 42.82 397 | 68.29 372 | 73.35 346 | 66.87 255 | 81.84 266 | 89.93 223 | 72.08 222 | 66.92 391 | 46.05 387 | 92.54 224 | 87.01 294 |
|
| thres200 | | | 72.34 301 | 71.55 307 | 74.70 312 | 83.48 298 | 51.60 360 | 75.02 328 | 73.71 343 | 70.14 222 | 78.56 310 | 80.57 352 | 46.20 355 | 88.20 260 | 46.99 383 | 89.29 283 | 84.32 324 |
|
| FPMVS | | | 72.29 302 | 72.00 301 | 73.14 320 | 88.63 194 | 85.00 37 | 74.65 332 | 67.39 378 | 71.94 202 | 77.80 316 | 87.66 260 | 50.48 341 | 75.83 360 | 49.95 367 | 79.51 378 | 58.58 407 |
|
| FMVSNet5 | | | 72.10 303 | 71.69 303 | 73.32 318 | 81.57 323 | 53.02 349 | 76.77 303 | 78.37 308 | 63.31 281 | 76.37 324 | 91.85 162 | 36.68 394 | 78.98 347 | 47.87 380 | 92.45 225 | 87.95 282 |
|
| our_test_3 | | | 71.85 304 | 71.59 304 | 72.62 326 | 80.71 336 | 53.78 343 | 69.72 368 | 71.71 361 | 58.80 325 | 78.03 311 | 80.51 354 | 56.61 312 | 78.84 349 | 62.20 295 | 86.04 331 | 85.23 312 |
|
| PAPM | | | 71.77 305 | 70.06 320 | 76.92 289 | 86.39 244 | 53.97 341 | 76.62 307 | 86.62 230 | 53.44 358 | 63.97 398 | 84.73 310 | 57.79 306 | 92.34 156 | 39.65 399 | 81.33 373 | 84.45 322 |
|
| m2depth | | | 71.72 306 | 70.67 311 | 74.86 309 | 73.08 395 | 55.88 327 | 77.41 296 | 69.27 372 | 55.86 345 | 78.66 308 | 93.77 106 | 38.01 391 | 75.39 362 | 60.12 311 | 89.87 277 | 93.31 135 |
|
| IB-MVS | | 62.13 19 | 71.64 307 | 68.97 332 | 79.66 249 | 80.80 335 | 62.26 262 | 73.94 338 | 76.90 319 | 63.27 282 | 68.63 377 | 76.79 383 | 33.83 398 | 91.84 171 | 59.28 316 | 87.26 311 | 84.88 316 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| UnsupCasMVSNet_eth | | | 71.63 308 | 72.30 300 | 69.62 346 | 76.47 371 | 52.70 352 | 70.03 367 | 80.97 295 | 59.18 322 | 79.36 301 | 88.21 249 | 60.50 282 | 69.12 379 | 58.33 321 | 77.62 389 | 87.04 293 |
|
| testing3 | | | 71.53 309 | 70.79 310 | 73.77 316 | 88.89 187 | 41.86 399 | 76.60 309 | 59.12 403 | 72.83 186 | 80.97 279 | 82.08 339 | 19.80 419 | 87.33 269 | 65.12 272 | 91.68 243 | 92.13 191 |
|
| test_vis3_rt | | | 71.42 310 | 70.67 311 | 73.64 317 | 69.66 405 | 70.46 173 | 66.97 381 | 89.73 180 | 42.68 402 | 88.20 140 | 83.04 326 | 43.77 376 | 60.07 403 | 65.35 271 | 86.66 322 | 90.39 239 |
|
| Anonymous20231206 | | | 71.38 311 | 71.88 302 | 69.88 343 | 86.31 249 | 54.37 338 | 70.39 364 | 74.62 333 | 52.57 364 | 76.73 322 | 88.76 240 | 59.94 288 | 72.06 368 | 44.35 391 | 93.23 211 | 83.23 344 |
|
| test_vis1_n_1920 | | | 71.30 312 | 71.58 306 | 70.47 339 | 77.58 361 | 59.99 289 | 74.25 333 | 84.22 270 | 51.06 374 | 74.85 344 | 79.10 365 | 55.10 322 | 68.83 381 | 68.86 239 | 79.20 383 | 82.58 351 |
|
| MIMVSNet | | | 71.09 313 | 71.59 304 | 69.57 347 | 87.23 226 | 50.07 370 | 78.91 272 | 71.83 358 | 60.20 319 | 71.26 361 | 91.76 168 | 55.08 323 | 76.09 358 | 41.06 396 | 87.02 318 | 82.54 353 |
|
| test_fmvs1_n | | | 70.94 314 | 70.41 317 | 72.53 328 | 73.92 387 | 66.93 209 | 75.99 318 | 84.21 271 | 43.31 399 | 79.40 300 | 79.39 363 | 43.47 377 | 68.55 383 | 69.05 236 | 84.91 345 | 82.10 358 |
|
| MS-PatchMatch | | | 70.93 315 | 70.22 318 | 73.06 321 | 81.85 319 | 62.50 256 | 73.82 340 | 77.90 309 | 52.44 365 | 75.92 332 | 81.27 346 | 55.67 318 | 81.75 330 | 55.37 338 | 77.70 388 | 74.94 389 |
|
| pmmvs5 | | | 70.73 316 | 70.07 319 | 72.72 324 | 77.03 366 | 52.73 351 | 74.14 334 | 75.65 329 | 50.36 381 | 72.17 358 | 85.37 300 | 55.42 320 | 80.67 337 | 52.86 356 | 87.59 310 | 84.77 317 |
|
| PatchT | | | 70.52 317 | 72.76 294 | 63.79 377 | 79.38 349 | 33.53 411 | 77.63 290 | 65.37 388 | 73.61 168 | 71.77 359 | 92.79 137 | 44.38 375 | 75.65 361 | 64.53 280 | 85.37 335 | 82.18 357 |
|
| test_vis1_n | | | 70.29 318 | 69.99 322 | 71.20 337 | 75.97 376 | 66.50 213 | 76.69 305 | 80.81 296 | 44.22 395 | 75.43 337 | 77.23 380 | 50.00 343 | 68.59 382 | 66.71 256 | 82.85 364 | 78.52 383 |
|
| N_pmnet | | | 70.20 319 | 68.80 334 | 74.38 313 | 80.91 331 | 84.81 40 | 59.12 398 | 76.45 324 | 55.06 349 | 75.31 341 | 82.36 336 | 55.74 317 | 54.82 408 | 47.02 382 | 87.24 312 | 83.52 337 |
|
| tpmvs | | | 70.16 320 | 69.56 325 | 71.96 332 | 74.71 386 | 48.13 374 | 79.63 258 | 75.45 331 | 65.02 275 | 70.26 369 | 81.88 341 | 45.34 368 | 85.68 301 | 58.34 320 | 75.39 394 | 82.08 359 |
|
| new-patchmatchnet | | | 70.10 321 | 73.37 287 | 60.29 385 | 81.23 328 | 16.95 420 | 59.54 396 | 74.62 333 | 62.93 284 | 80.97 279 | 87.93 254 | 62.83 275 | 71.90 369 | 55.24 340 | 95.01 161 | 92.00 195 |
|
| YYNet1 | | | 70.06 322 | 70.44 315 | 68.90 351 | 73.76 389 | 53.42 347 | 58.99 399 | 67.20 380 | 58.42 327 | 87.10 160 | 85.39 299 | 59.82 290 | 67.32 388 | 59.79 313 | 83.50 358 | 85.96 303 |
|
| MVStest1 | | | 70.05 323 | 69.26 326 | 72.41 330 | 58.62 417 | 55.59 331 | 76.61 308 | 65.58 386 | 53.44 358 | 89.28 117 | 93.32 116 | 22.91 417 | 71.44 373 | 74.08 182 | 89.52 281 | 90.21 245 |
|
| MDA-MVSNet_test_wron | | | 70.05 323 | 70.44 315 | 68.88 352 | 73.84 388 | 53.47 345 | 58.93 400 | 67.28 379 | 58.43 326 | 87.09 161 | 85.40 298 | 59.80 291 | 67.25 389 | 59.66 314 | 83.54 357 | 85.92 305 |
|
| CostFormer | | | 69.98 325 | 68.68 335 | 73.87 314 | 77.14 364 | 50.72 367 | 79.26 266 | 74.51 335 | 51.94 370 | 70.97 364 | 84.75 309 | 45.16 371 | 87.49 266 | 55.16 341 | 79.23 381 | 83.40 340 |
|
| testing91 | | | 69.94 326 | 68.99 331 | 72.80 323 | 83.81 295 | 45.89 385 | 71.57 355 | 73.64 345 | 68.24 240 | 70.77 367 | 77.82 373 | 34.37 397 | 84.44 312 | 53.64 349 | 87.00 319 | 88.07 277 |
|
| baseline2 | | | 69.77 327 | 66.89 344 | 78.41 266 | 79.51 347 | 58.09 309 | 76.23 314 | 69.57 370 | 57.50 336 | 64.82 396 | 77.45 378 | 46.02 357 | 88.44 256 | 53.08 352 | 77.83 386 | 88.70 270 |
|
| PatchmatchNet |  | | 69.71 328 | 68.83 333 | 72.33 331 | 77.66 360 | 53.60 344 | 79.29 265 | 69.99 368 | 57.66 334 | 72.53 356 | 82.93 329 | 46.45 354 | 80.08 343 | 60.91 307 | 72.09 398 | 83.31 343 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| test_fmvs1 | | | 69.57 329 | 69.05 329 | 71.14 338 | 69.15 406 | 65.77 221 | 73.98 337 | 83.32 275 | 42.83 401 | 77.77 317 | 78.27 372 | 43.39 380 | 68.50 384 | 68.39 246 | 84.38 352 | 79.15 381 |
|
| JIA-IIPM | | | 69.41 330 | 66.64 348 | 77.70 280 | 73.19 392 | 71.24 168 | 75.67 320 | 65.56 387 | 70.42 216 | 65.18 392 | 92.97 129 | 33.64 400 | 83.06 322 | 53.52 351 | 69.61 404 | 78.79 382 |
|
| Syy-MVS | | | 69.40 331 | 70.03 321 | 67.49 361 | 81.72 320 | 38.94 404 | 71.00 358 | 61.99 394 | 61.38 303 | 70.81 365 | 72.36 397 | 61.37 279 | 79.30 345 | 64.50 281 | 85.18 338 | 84.22 326 |
|
| testing99 | | | 69.27 332 | 68.15 339 | 72.63 325 | 83.29 304 | 45.45 387 | 71.15 357 | 71.08 363 | 67.34 251 | 70.43 368 | 77.77 375 | 32.24 402 | 84.35 314 | 53.72 348 | 86.33 327 | 88.10 276 |
|
| UnsupCasMVSNet_bld | | | 69.21 333 | 69.68 324 | 67.82 359 | 79.42 348 | 51.15 364 | 67.82 376 | 75.79 326 | 54.15 355 | 77.47 320 | 85.36 301 | 59.26 294 | 70.64 374 | 48.46 377 | 79.35 380 | 81.66 362 |
|
| test_cas_vis1_n_1920 | | | 69.20 334 | 69.12 327 | 69.43 348 | 73.68 390 | 62.82 250 | 70.38 365 | 77.21 316 | 46.18 389 | 80.46 290 | 78.95 367 | 52.03 332 | 65.53 396 | 65.77 267 | 77.45 391 | 79.95 379 |
|
| gg-mvs-nofinetune | | | 68.96 335 | 69.11 328 | 68.52 357 | 76.12 375 | 45.32 388 | 83.59 186 | 55.88 408 | 86.68 26 | 64.62 397 | 97.01 9 | 30.36 405 | 83.97 319 | 44.78 390 | 82.94 361 | 76.26 386 |
|
| WBMVS | | | 68.76 336 | 68.43 336 | 69.75 345 | 83.29 304 | 40.30 402 | 67.36 378 | 72.21 355 | 57.09 340 | 77.05 321 | 85.53 294 | 33.68 399 | 80.51 339 | 48.79 375 | 90.90 259 | 88.45 273 |
|
| WB-MVSnew | | | 68.72 337 | 69.01 330 | 67.85 358 | 83.22 308 | 43.98 393 | 74.93 329 | 65.98 385 | 55.09 348 | 73.83 349 | 79.11 364 | 65.63 256 | 71.89 370 | 38.21 404 | 85.04 341 | 87.69 287 |
|
| tpm2 | | | 68.45 338 | 66.83 345 | 73.30 319 | 78.93 355 | 48.50 373 | 79.76 257 | 71.76 359 | 47.50 384 | 69.92 371 | 83.60 320 | 42.07 383 | 88.40 257 | 48.44 378 | 79.51 378 | 83.01 347 |
|
| tpm | | | 67.95 339 | 68.08 340 | 67.55 360 | 78.74 356 | 43.53 395 | 75.60 321 | 67.10 383 | 54.92 350 | 72.23 357 | 88.10 250 | 42.87 382 | 75.97 359 | 52.21 358 | 80.95 376 | 83.15 345 |
|
| WTY-MVS | | | 67.91 340 | 68.35 337 | 66.58 366 | 80.82 334 | 48.12 375 | 65.96 383 | 72.60 350 | 53.67 357 | 71.20 362 | 81.68 344 | 58.97 296 | 69.06 380 | 48.57 376 | 81.67 369 | 82.55 352 |
|
| testing11 | | | 67.38 341 | 65.93 349 | 71.73 334 | 83.37 302 | 46.60 382 | 70.95 360 | 69.40 371 | 62.47 289 | 66.14 385 | 76.66 384 | 31.22 403 | 84.10 316 | 49.10 373 | 84.10 354 | 84.49 320 |
|
| test-LLR | | | 67.21 342 | 66.74 346 | 68.63 355 | 76.45 372 | 55.21 334 | 67.89 373 | 67.14 381 | 62.43 292 | 65.08 393 | 72.39 395 | 43.41 378 | 69.37 376 | 61.00 305 | 84.89 346 | 81.31 366 |
|
| testing222 | | | 66.93 343 | 65.30 355 | 71.81 333 | 83.38 301 | 45.83 386 | 72.06 351 | 67.50 377 | 64.12 279 | 69.68 372 | 76.37 387 | 27.34 412 | 83.00 323 | 38.88 400 | 88.38 296 | 86.62 298 |
|
| sss | | | 66.92 344 | 67.26 342 | 65.90 368 | 77.23 363 | 51.10 366 | 64.79 385 | 71.72 360 | 52.12 369 | 70.13 370 | 80.18 356 | 57.96 303 | 65.36 397 | 50.21 366 | 81.01 375 | 81.25 368 |
|
| KD-MVS_2432*1600 | | | 66.87 345 | 65.81 351 | 70.04 341 | 67.50 407 | 47.49 378 | 62.56 390 | 79.16 303 | 61.21 308 | 77.98 312 | 80.61 350 | 25.29 415 | 82.48 326 | 53.02 353 | 84.92 343 | 80.16 377 |
|
| miper_refine_blended | | | 66.87 345 | 65.81 351 | 70.04 341 | 67.50 407 | 47.49 378 | 62.56 390 | 79.16 303 | 61.21 308 | 77.98 312 | 80.61 350 | 25.29 415 | 82.48 326 | 53.02 353 | 84.92 343 | 80.16 377 |
|
| dmvs_re | | | 66.81 347 | 66.98 343 | 66.28 367 | 76.87 367 | 58.68 307 | 71.66 354 | 72.24 353 | 60.29 317 | 69.52 374 | 73.53 394 | 52.38 331 | 64.40 399 | 44.90 389 | 81.44 372 | 75.76 387 |
|
| tpm cat1 | | | 66.76 348 | 65.21 356 | 71.42 335 | 77.09 365 | 50.62 368 | 78.01 283 | 73.68 344 | 44.89 393 | 68.64 376 | 79.00 366 | 45.51 365 | 82.42 328 | 49.91 368 | 70.15 401 | 81.23 370 |
|
| UWE-MVS | | | 66.43 349 | 65.56 354 | 69.05 350 | 84.15 289 | 40.98 400 | 73.06 347 | 64.71 390 | 54.84 351 | 76.18 329 | 79.62 362 | 29.21 407 | 80.50 340 | 38.54 403 | 89.75 278 | 85.66 308 |
|
| PVSNet | | 58.17 21 | 66.41 350 | 65.63 353 | 68.75 353 | 81.96 317 | 49.88 371 | 62.19 392 | 72.51 352 | 51.03 375 | 68.04 379 | 75.34 391 | 50.84 338 | 74.77 363 | 45.82 388 | 82.96 360 | 81.60 363 |
|
| tpmrst | | | 66.28 351 | 66.69 347 | 65.05 373 | 72.82 397 | 39.33 403 | 78.20 282 | 70.69 366 | 53.16 361 | 67.88 380 | 80.36 355 | 48.18 348 | 74.75 364 | 58.13 322 | 70.79 400 | 81.08 371 |
|
| Patchmatch-test | | | 65.91 352 | 67.38 341 | 61.48 383 | 75.51 379 | 43.21 396 | 68.84 370 | 63.79 392 | 62.48 288 | 72.80 355 | 83.42 324 | 44.89 373 | 59.52 405 | 48.27 379 | 86.45 324 | 81.70 361 |
|
| ADS-MVSNet2 | | | 65.87 353 | 63.64 361 | 72.55 327 | 73.16 393 | 56.92 321 | 67.10 379 | 74.81 332 | 49.74 382 | 66.04 387 | 82.97 327 | 46.71 352 | 77.26 355 | 42.29 393 | 69.96 402 | 83.46 338 |
|
| test_vis1_rt | | | 65.64 354 | 64.09 358 | 70.31 340 | 66.09 411 | 70.20 176 | 61.16 393 | 81.60 291 | 38.65 407 | 72.87 354 | 69.66 400 | 52.84 328 | 60.04 404 | 56.16 331 | 77.77 387 | 80.68 375 |
|
| mvsany_test3 | | | 65.48 355 | 62.97 364 | 73.03 322 | 69.99 404 | 76.17 118 | 64.83 384 | 43.71 415 | 43.68 397 | 80.25 294 | 87.05 275 | 52.83 329 | 63.09 402 | 51.92 363 | 72.44 397 | 79.84 380 |
|
| test-mter | | | 65.00 356 | 63.79 360 | 68.63 355 | 76.45 372 | 55.21 334 | 67.89 373 | 67.14 381 | 50.98 376 | 65.08 393 | 72.39 395 | 28.27 410 | 69.37 376 | 61.00 305 | 84.89 346 | 81.31 366 |
|
| ETVMVS | | | 64.67 357 | 63.34 363 | 68.64 354 | 83.44 300 | 41.89 398 | 69.56 369 | 61.70 399 | 61.33 305 | 68.74 375 | 75.76 389 | 28.76 408 | 79.35 344 | 34.65 407 | 86.16 330 | 84.67 319 |
|
| myMVS_eth3d | | | 64.66 358 | 63.89 359 | 66.97 364 | 81.72 320 | 37.39 407 | 71.00 358 | 61.99 394 | 61.38 303 | 70.81 365 | 72.36 397 | 20.96 418 | 79.30 345 | 49.59 370 | 85.18 338 | 84.22 326 |
|
| test0.0.03 1 | | | 64.66 358 | 64.36 357 | 65.57 370 | 75.03 384 | 46.89 381 | 64.69 386 | 61.58 400 | 62.43 292 | 71.18 363 | 77.54 376 | 43.41 378 | 68.47 385 | 40.75 398 | 82.65 365 | 81.35 365 |
|
| UBG | | | 64.34 360 | 63.35 362 | 67.30 362 | 83.50 297 | 40.53 401 | 67.46 377 | 65.02 389 | 54.77 352 | 67.54 383 | 74.47 393 | 32.99 401 | 78.50 351 | 40.82 397 | 83.58 356 | 82.88 348 |
|
| test_f | | | 64.31 361 | 65.85 350 | 59.67 386 | 66.54 410 | 62.24 264 | 57.76 402 | 70.96 364 | 40.13 404 | 84.36 220 | 82.09 338 | 46.93 351 | 51.67 410 | 61.99 298 | 81.89 368 | 65.12 401 |
|
| pmmvs3 | | | 62.47 362 | 60.02 375 | 69.80 344 | 71.58 401 | 64.00 236 | 70.52 363 | 58.44 406 | 39.77 405 | 66.05 386 | 75.84 388 | 27.10 414 | 72.28 367 | 46.15 386 | 84.77 350 | 73.11 391 |
|
| EPMVS | | | 62.47 362 | 62.63 366 | 62.01 379 | 70.63 403 | 38.74 405 | 74.76 330 | 52.86 410 | 53.91 356 | 67.71 382 | 80.01 357 | 39.40 387 | 66.60 392 | 55.54 337 | 68.81 406 | 80.68 375 |
|
| ADS-MVSNet | | | 61.90 364 | 62.19 368 | 61.03 384 | 73.16 393 | 36.42 409 | 67.10 379 | 61.75 397 | 49.74 382 | 66.04 387 | 82.97 327 | 46.71 352 | 63.21 400 | 42.29 393 | 69.96 402 | 83.46 338 |
|
| PMMVS | | | 61.65 365 | 60.38 372 | 65.47 371 | 65.40 414 | 69.26 185 | 63.97 388 | 61.73 398 | 36.80 411 | 60.11 403 | 68.43 402 | 59.42 292 | 66.35 393 | 48.97 374 | 78.57 385 | 60.81 404 |
|
| E-PMN | | | 61.59 366 | 61.62 369 | 61.49 382 | 66.81 409 | 55.40 332 | 53.77 405 | 60.34 402 | 66.80 256 | 58.90 406 | 65.50 405 | 40.48 386 | 66.12 394 | 55.72 334 | 86.25 328 | 62.95 403 |
|
| TESTMET0.1,1 | | | 61.29 367 | 60.32 373 | 64.19 375 | 72.06 399 | 51.30 362 | 67.89 373 | 62.09 393 | 45.27 391 | 60.65 402 | 69.01 401 | 27.93 411 | 64.74 398 | 56.31 330 | 81.65 371 | 76.53 385 |
|
| MVS-HIRNet | | | 61.16 368 | 62.92 365 | 55.87 389 | 79.09 352 | 35.34 410 | 71.83 352 | 57.98 407 | 46.56 387 | 59.05 405 | 91.14 184 | 49.95 344 | 76.43 357 | 38.74 401 | 71.92 399 | 55.84 408 |
|
| EMVS | | | 61.10 369 | 60.81 371 | 61.99 380 | 65.96 412 | 55.86 328 | 53.10 406 | 58.97 405 | 67.06 253 | 56.89 410 | 63.33 406 | 40.98 384 | 67.03 390 | 54.79 343 | 86.18 329 | 63.08 402 |
|
| DSMNet-mixed | | | 60.98 370 | 61.61 370 | 59.09 388 | 72.88 396 | 45.05 390 | 74.70 331 | 46.61 414 | 26.20 412 | 65.34 391 | 90.32 214 | 55.46 319 | 63.12 401 | 41.72 395 | 81.30 374 | 69.09 397 |
|
| dp | | | 60.70 371 | 60.29 374 | 61.92 381 | 72.04 400 | 38.67 406 | 70.83 361 | 64.08 391 | 51.28 373 | 60.75 401 | 77.28 379 | 36.59 395 | 71.58 372 | 47.41 381 | 62.34 408 | 75.52 388 |
|
| dmvs_testset | | | 60.59 372 | 62.54 367 | 54.72 391 | 77.26 362 | 27.74 414 | 74.05 336 | 61.00 401 | 60.48 315 | 65.62 390 | 67.03 404 | 55.93 316 | 68.23 386 | 32.07 411 | 69.46 405 | 68.17 398 |
|
| CHOSEN 280x420 | | | 59.08 373 | 56.52 378 | 66.76 365 | 76.51 370 | 64.39 232 | 49.62 407 | 59.00 404 | 43.86 396 | 55.66 411 | 68.41 403 | 35.55 396 | 68.21 387 | 43.25 392 | 76.78 393 | 67.69 399 |
|
| mvsany_test1 | | | 58.48 374 | 56.47 379 | 64.50 374 | 65.90 413 | 68.21 196 | 56.95 403 | 42.11 416 | 38.30 408 | 65.69 389 | 77.19 382 | 56.96 310 | 59.35 406 | 46.16 385 | 58.96 409 | 65.93 400 |
|
| PVSNet_0 | | 51.08 22 | 56.10 375 | 54.97 380 | 59.48 387 | 75.12 383 | 53.28 348 | 55.16 404 | 61.89 396 | 44.30 394 | 59.16 404 | 62.48 407 | 54.22 324 | 65.91 395 | 35.40 406 | 47.01 410 | 59.25 406 |
|
| new_pmnet | | | 55.69 376 | 57.66 377 | 49.76 392 | 75.47 380 | 30.59 412 | 59.56 395 | 51.45 411 | 43.62 398 | 62.49 399 | 75.48 390 | 40.96 385 | 49.15 412 | 37.39 405 | 72.52 396 | 69.55 396 |
|
| PMMVS2 | | | 55.64 377 | 59.27 376 | 44.74 393 | 64.30 415 | 12.32 421 | 40.60 408 | 49.79 412 | 53.19 360 | 65.06 395 | 84.81 308 | 53.60 327 | 49.76 411 | 32.68 410 | 89.41 282 | 72.15 392 |
|
| MVE |  | 40.22 23 | 51.82 378 | 50.47 381 | 55.87 389 | 62.66 416 | 51.91 357 | 31.61 410 | 39.28 417 | 40.65 403 | 50.76 412 | 74.98 392 | 56.24 315 | 44.67 413 | 33.94 409 | 64.11 407 | 71.04 395 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| dongtai | | | 41.90 379 | 42.65 382 | 39.67 394 | 70.86 402 | 21.11 416 | 61.01 394 | 21.42 421 | 57.36 337 | 57.97 409 | 50.06 410 | 16.40 420 | 58.73 407 | 21.03 414 | 27.69 414 | 39.17 410 |
|
| kuosan | | | 30.83 380 | 32.17 383 | 26.83 396 | 53.36 418 | 19.02 419 | 57.90 401 | 20.44 422 | 38.29 409 | 38.01 413 | 37.82 412 | 15.18 421 | 33.45 415 | 7.74 416 | 20.76 415 | 28.03 411 |
|
| test_method | | | 30.46 381 | 29.60 384 | 33.06 395 | 17.99 420 | 3.84 423 | 13.62 411 | 73.92 339 | 2.79 414 | 18.29 416 | 53.41 409 | 28.53 409 | 43.25 414 | 22.56 412 | 35.27 412 | 52.11 409 |
|
| cdsmvs_eth3d_5k | | | 20.81 382 | 27.75 385 | 0.00 401 | 0.00 424 | 0.00 426 | 0.00 412 | 85.44 248 | 0.00 419 | 0.00 420 | 82.82 331 | 81.46 115 | 0.00 420 | 0.00 419 | 0.00 418 | 0.00 416 |
|
| tmp_tt | | | 20.25 383 | 24.50 386 | 7.49 398 | 4.47 421 | 8.70 422 | 34.17 409 | 25.16 419 | 1.00 416 | 32.43 415 | 18.49 413 | 39.37 388 | 9.21 417 | 21.64 413 | 43.75 411 | 4.57 413 |
|
| ab-mvs-re | | | 6.65 384 | 8.87 387 | 0.00 401 | 0.00 424 | 0.00 426 | 0.00 412 | 0.00 425 | 0.00 419 | 0.00 420 | 79.80 359 | 0.00 424 | 0.00 420 | 0.00 419 | 0.00 418 | 0.00 416 |
|
| pcd_1.5k_mvsjas | | | 6.41 385 | 8.55 388 | 0.00 401 | 0.00 424 | 0.00 426 | 0.00 412 | 0.00 425 | 0.00 419 | 0.00 420 | 0.00 419 | 76.94 162 | 0.00 420 | 0.00 419 | 0.00 418 | 0.00 416 |
|
| test123 | | | 6.27 386 | 8.08 389 | 0.84 399 | 1.11 423 | 0.57 424 | 62.90 389 | 0.82 423 | 0.54 417 | 1.07 419 | 2.75 418 | 1.26 422 | 0.30 418 | 1.04 417 | 1.26 417 | 1.66 414 |
|
| testmvs | | | 5.91 387 | 7.65 390 | 0.72 400 | 1.20 422 | 0.37 425 | 59.14 397 | 0.67 424 | 0.49 418 | 1.11 418 | 2.76 417 | 0.94 423 | 0.24 419 | 1.02 418 | 1.47 416 | 1.55 415 |
|
| test_blank | | | 0.00 388 | 0.00 391 | 0.00 401 | 0.00 424 | 0.00 426 | 0.00 412 | 0.00 425 | 0.00 419 | 0.00 420 | 0.00 419 | 0.00 424 | 0.00 420 | 0.00 419 | 0.00 418 | 0.00 416 |
|
| uanet_test | | | 0.00 388 | 0.00 391 | 0.00 401 | 0.00 424 | 0.00 426 | 0.00 412 | 0.00 425 | 0.00 419 | 0.00 420 | 0.00 419 | 0.00 424 | 0.00 420 | 0.00 419 | 0.00 418 | 0.00 416 |
|
| DCPMVS | | | 0.00 388 | 0.00 391 | 0.00 401 | 0.00 424 | 0.00 426 | 0.00 412 | 0.00 425 | 0.00 419 | 0.00 420 | 0.00 419 | 0.00 424 | 0.00 420 | 0.00 419 | 0.00 418 | 0.00 416 |
|
| sosnet-low-res | | | 0.00 388 | 0.00 391 | 0.00 401 | 0.00 424 | 0.00 426 | 0.00 412 | 0.00 425 | 0.00 419 | 0.00 420 | 0.00 419 | 0.00 424 | 0.00 420 | 0.00 419 | 0.00 418 | 0.00 416 |
|
| sosnet | | | 0.00 388 | 0.00 391 | 0.00 401 | 0.00 424 | 0.00 426 | 0.00 412 | 0.00 425 | 0.00 419 | 0.00 420 | 0.00 419 | 0.00 424 | 0.00 420 | 0.00 419 | 0.00 418 | 0.00 416 |
|
| uncertanet | | | 0.00 388 | 0.00 391 | 0.00 401 | 0.00 424 | 0.00 426 | 0.00 412 | 0.00 425 | 0.00 419 | 0.00 420 | 0.00 419 | 0.00 424 | 0.00 420 | 0.00 419 | 0.00 418 | 0.00 416 |
|
| Regformer | | | 0.00 388 | 0.00 391 | 0.00 401 | 0.00 424 | 0.00 426 | 0.00 412 | 0.00 425 | 0.00 419 | 0.00 420 | 0.00 419 | 0.00 424 | 0.00 420 | 0.00 419 | 0.00 418 | 0.00 416 |
|
| uanet | | | 0.00 388 | 0.00 391 | 0.00 401 | 0.00 424 | 0.00 426 | 0.00 412 | 0.00 425 | 0.00 419 | 0.00 420 | 0.00 419 | 0.00 424 | 0.00 420 | 0.00 419 | 0.00 418 | 0.00 416 |
|
| WAC-MVS | | | | | | | 37.39 407 | | | | | | | | 52.61 357 | | |
|
| FOURS1 | | | | | | 96.08 12 | 87.41 11 | 96.19 2 | 95.83 5 | 92.95 3 | 96.57 3 | | | | | | |
|
| MSC_two_6792asdad | | | | | 88.81 68 | 91.55 126 | 77.99 91 | | 91.01 143 | | | | | 96.05 9 | 87.45 20 | 98.17 32 | 92.40 176 |
|
| PC_three_1452 | | | | | | | | | | 58.96 324 | 90.06 94 | 91.33 178 | 80.66 125 | 93.03 138 | 75.78 163 | 95.94 124 | 92.48 170 |
|
| No_MVS | | | | | 88.81 68 | 91.55 126 | 77.99 91 | | 91.01 143 | | | | | 96.05 9 | 87.45 20 | 98.17 32 | 92.40 176 |
|
| test_one_0601 | | | | | | 93.85 59 | 73.27 136 | | 94.11 35 | 86.57 27 | 93.47 38 | 94.64 60 | 88.42 26 | | | | |
|
| eth-test2 | | | | | | 0.00 424 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 424 | | | | | | | | | | | |
|
| ZD-MVS | | | | | | 92.22 100 | 80.48 68 | | 91.85 118 | 71.22 209 | 90.38 89 | 92.98 127 | 86.06 61 | 96.11 7 | 81.99 91 | 96.75 89 | |
|
| RE-MVS-def | | | | 92.61 5 | | 94.13 52 | 88.95 6 | 92.87 13 | 94.16 29 | 88.75 15 | 93.79 29 | 94.43 68 | 90.64 10 | | 87.16 29 | 97.60 63 | 92.73 157 |
|
| IU-MVS | | | | | | 94.18 47 | 72.64 143 | | 90.82 148 | 56.98 341 | 89.67 106 | | | | 85.78 49 | 97.92 46 | 93.28 136 |
|
| OPU-MVS | | | | | 88.27 79 | 91.89 112 | 77.83 94 | 90.47 52 | | | | 91.22 181 | 81.12 119 | 94.68 73 | 74.48 175 | 95.35 144 | 92.29 182 |
|
| test_241102_TWO | | | | | | | | | 93.71 52 | 83.77 49 | 93.49 36 | 94.27 75 | 89.27 21 | 95.84 24 | 86.03 46 | 97.82 51 | 92.04 193 |
|
| test_241102_ONE | | | | | | 94.18 47 | 72.65 141 | | 93.69 53 | 83.62 51 | 94.11 23 | 93.78 104 | 90.28 14 | 95.50 46 | | | |
|
| 9.14 | | | | 89.29 59 | | 91.84 116 | | 88.80 90 | 95.32 12 | 75.14 152 | 91.07 78 | 92.89 132 | 87.27 44 | 93.78 105 | 83.69 69 | 97.55 66 | |
|
| save fliter | | | | | | 93.75 60 | 77.44 100 | 86.31 132 | 89.72 181 | 70.80 213 | | | | | | | |
|
| test_0728_THIRD | | | | | | | | | | 85.33 35 | 93.75 31 | 94.65 57 | 87.44 43 | 95.78 30 | 87.41 22 | 98.21 29 | 92.98 151 |
|
| test_0728_SECOND | | | | | 86.79 99 | 94.25 46 | 72.45 151 | 90.54 49 | 94.10 36 | | | | | 95.88 18 | 86.42 36 | 97.97 43 | 92.02 194 |
|
| test0726 | | | | | | 94.16 50 | 72.56 147 | 90.63 46 | 93.90 45 | 83.61 52 | 93.75 31 | 94.49 65 | 89.76 18 | | | | |
|
| GSMVS | | | | | | | | | | | | | | | | | 83.88 330 |
|
| test_part2 | | | | | | 93.86 58 | 77.77 95 | | | | 92.84 48 | | | | | | |
|
| sam_mvs1 | | | | | | | | | | | | | 46.11 356 | | | | 83.88 330 |
|
| sam_mvs | | | | | | | | | | | | | 45.92 361 | | | | |
|
| ambc | | | | | 82.98 189 | 90.55 153 | 64.86 227 | 88.20 97 | 89.15 192 | | 89.40 115 | 93.96 95 | 71.67 227 | 91.38 183 | 78.83 123 | 96.55 94 | 92.71 160 |
|
| MTGPA |  | | | | | | | | 91.81 122 | | | | | | | | |
|
| test_post1 | | | | | | | | 78.85 275 | | | | 3.13 415 | 45.19 370 | 80.13 342 | 58.11 323 | | |
|
| test_post | | | | | | | | | | | | 3.10 416 | 45.43 366 | 77.22 356 | | | |
|
| patchmatchnet-post | | | | | | | | | | | | 81.71 343 | 45.93 360 | 87.01 271 | | | |
|
| GG-mvs-BLEND | | | | | 67.16 363 | 73.36 391 | 46.54 384 | 84.15 169 | 55.04 409 | | 58.64 407 | 61.95 408 | 29.93 406 | 83.87 320 | 38.71 402 | 76.92 392 | 71.07 394 |
|
| MTMP | | | | | | | | 90.66 45 | 33.14 418 | | | | | | | | |
|
| gm-plane-assit | | | | | | 75.42 381 | 44.97 391 | | | 52.17 366 | | 72.36 397 | | 87.90 261 | 54.10 346 | | |
|
| test9_res | | | | | | | | | | | | | | | 80.83 101 | 96.45 100 | 90.57 233 |
|
| TEST9 | | | | | | 92.34 95 | 79.70 75 | 83.94 174 | 90.32 163 | 65.41 271 | 84.49 216 | 90.97 190 | 82.03 106 | 93.63 110 | | | |
|
| test_8 | | | | | | 92.09 104 | 78.87 82 | 83.82 179 | 90.31 165 | 65.79 262 | 84.36 220 | 90.96 192 | 81.93 108 | 93.44 123 | | | |
|
| agg_prior2 | | | | | | | | | | | | | | | 79.68 114 | 96.16 111 | 90.22 241 |
|
| agg_prior | | | | | | 91.58 124 | 77.69 97 | | 90.30 166 | | 84.32 222 | | | 93.18 131 | | | |
|
| TestCases | | | | | 89.68 52 | 91.59 121 | 83.40 49 | | 95.44 10 | 79.47 96 | 88.00 145 | 93.03 125 | 82.66 91 | 91.47 177 | 70.81 214 | 96.14 112 | 94.16 95 |
|
| test_prior4 | | | | | | | 78.97 81 | 84.59 160 | | | | | | | | | |
|
| test_prior2 | | | | | | | | 83.37 191 | | 75.43 148 | 84.58 214 | 91.57 172 | 81.92 110 | | 79.54 116 | 96.97 82 | |
|
| test_prior | | | | | 86.32 107 | 90.59 152 | 71.99 158 | | 92.85 89 | | | | | 94.17 92 | | | 92.80 155 |
|
| 旧先验2 | | | | | | | | 81.73 233 | | 56.88 342 | 86.54 179 | | | 84.90 308 | 72.81 203 | | |
|
| 新几何2 | | | | | | | | 81.72 234 | | | | | | | | | |
|
| 新几何1 | | | | | 82.95 191 | 93.96 56 | 78.56 85 | | 80.24 299 | 55.45 347 | 83.93 233 | 91.08 187 | 71.19 228 | 88.33 258 | 65.84 265 | 93.07 214 | 81.95 360 |
|
| 旧先验1 | | | | | | 91.97 108 | 71.77 159 | | 81.78 289 | | | 91.84 163 | 73.92 195 | | | 93.65 202 | 83.61 336 |
|
| 无先验 | | | | | | | | 82.81 209 | 85.62 246 | 58.09 330 | | | | 91.41 182 | 67.95 250 | | 84.48 321 |
|
| 原ACMM2 | | | | | | | | 82.26 227 | | | | | | | | | |
|
| 原ACMM1 | | | | | 84.60 142 | 92.81 86 | 74.01 128 | | 91.50 127 | 62.59 286 | 82.73 253 | 90.67 206 | 76.53 169 | 94.25 86 | 69.24 231 | 95.69 137 | 85.55 309 |
|
| test222 | | | | | | 93.31 70 | 76.54 110 | 79.38 264 | 77.79 310 | 52.59 363 | 82.36 257 | 90.84 199 | 66.83 250 | | | 91.69 242 | 81.25 368 |
|
| testdata2 | | | | | | | | | | | | | | 86.43 285 | 63.52 287 | | |
|
| segment_acmp | | | | | | | | | | | | | 81.94 107 | | | | |
|
| testdata | | | | | 79.54 251 | 92.87 81 | 72.34 152 | | 80.14 300 | 59.91 320 | 85.47 199 | 91.75 169 | 67.96 245 | 85.24 304 | 68.57 245 | 92.18 234 | 81.06 373 |
|
| testdata1 | | | | | | | | 79.62 259 | | 73.95 163 | | | | | | | |
|
| test12 | | | | | 86.57 102 | 90.74 148 | 72.63 145 | | 90.69 151 | | 82.76 252 | | 79.20 136 | 94.80 70 | | 95.32 146 | 92.27 184 |
|
| plane_prior7 | | | | | | 93.45 65 | 77.31 103 | | | | | | | | | | |
|
| plane_prior6 | | | | | | 92.61 87 | 76.54 110 | | | | | | 74.84 183 | | | | |
|
| plane_prior5 | | | | | | | | | 93.61 56 | | | | | 95.22 56 | 80.78 102 | 95.83 130 | 94.46 79 |
|
| plane_prior4 | | | | | | | | | | | | 92.95 130 | | | | | |
|
| plane_prior3 | | | | | | | 76.85 108 | | | 77.79 121 | 86.55 174 | | | | | | |
|
| plane_prior2 | | | | | | | | 89.45 79 | | 79.44 98 | | | | | | | |
|
| plane_prior1 | | | | | | 92.83 85 | | | | | | | | | | | |
|
| plane_prior | | | | | | | 76.42 113 | 87.15 114 | | 75.94 141 | | | | | | 95.03 158 | |
|
| n2 | | | | | | | | | 0.00 425 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 425 | | | | | | | | |
|
| door-mid | | | | | | | | | 74.45 336 | | | | | | | | |
|
| lessismore_v0 | | | | | 85.95 116 | 91.10 141 | 70.99 170 | | 70.91 365 | | 91.79 66 | 94.42 70 | 61.76 277 | 92.93 141 | 79.52 117 | 93.03 215 | 93.93 104 |
|
| LGP-MVS_train | | | | | 90.82 34 | 94.75 41 | 81.69 60 | | 94.27 21 | 82.35 65 | 93.67 34 | 94.82 52 | 91.18 4 | 95.52 42 | 85.36 52 | 98.73 7 | 95.23 58 |
|
| test11 | | | | | | | | | 91.46 128 | | | | | | | | |
|
| door | | | | | | | | | 72.57 351 | | | | | | | | |
|
| HQP5-MVS | | | | | | | 70.66 171 | | | | | | | | | | |
|
| HQP-NCC | | | | | | 91.19 136 | | 84.77 154 | | 73.30 177 | 80.55 287 | | | | | | |
|
| ACMP_Plane | | | | | | 91.19 136 | | 84.77 154 | | 73.30 177 | 80.55 287 | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 77.30 146 | | |
|
| HQP4-MVS | | | | | | | | | | | 80.56 286 | | | 94.61 76 | | | 93.56 128 |
|
| HQP3-MVS | | | | | | | | | 92.68 94 | | | | | | | 94.47 178 | |
|
| HQP2-MVS | | | | | | | | | | | | | 72.10 220 | | | | |
|
| NP-MVS | | | | | | 91.95 109 | 74.55 125 | | | | | 90.17 220 | | | | | |
|
| MDTV_nov1_ep13_2view | | | | | | | 27.60 415 | 70.76 362 | | 46.47 388 | 61.27 400 | | 45.20 369 | | 49.18 372 | | 83.75 335 |
|
| MDTV_nov1_ep13 | | | | 68.29 338 | | 78.03 357 | 43.87 394 | 74.12 335 | 72.22 354 | 52.17 366 | 67.02 384 | 85.54 293 | 45.36 367 | 80.85 336 | 55.73 333 | 84.42 351 | |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 95.74 136 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 97.35 72 | |
|
| Test By Simon | | | | | | | | | | | | | 79.09 137 | | | | |
|
| ITE_SJBPF | | | | | 90.11 46 | 90.72 149 | 84.97 38 | | 90.30 166 | 81.56 73 | 90.02 96 | 91.20 183 | 82.40 96 | 90.81 202 | 73.58 191 | 94.66 174 | 94.56 75 |
|
| DeepMVS_CX |  | | | | 24.13 397 | 32.95 419 | 29.49 413 | | 21.63 420 | 12.07 413 | 37.95 414 | 45.07 411 | 30.84 404 | 19.21 416 | 17.94 415 | 33.06 413 | 23.69 412 |
|