This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.93 199.92 199.94 199.99 199.97 199.90 199.89 799.98 199.99 199.96 199.77 1100.00 199.81 5100.00 199.85 12
UniMVSNet_ETH3D99.69 299.69 499.69 399.84 1899.34 1599.69 499.58 4199.90 299.86 999.78 899.58 399.95 1799.00 4699.95 1999.78 19
pmmvs699.67 399.70 399.60 1199.90 499.27 2299.53 799.76 1799.64 1199.84 1099.83 399.50 599.87 8899.36 2399.92 4199.64 49
LTVRE_ROB98.40 199.67 399.71 299.56 2199.85 1699.11 5999.90 199.78 1599.63 1399.78 1499.67 2099.48 699.81 16299.30 2899.97 1299.77 21
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
mvs_tets99.63 599.67 599.49 4899.88 998.61 9299.34 1999.71 2099.27 4999.90 699.74 1299.68 299.97 499.55 1599.99 599.88 7
jajsoiax99.58 699.61 799.48 5199.87 1298.61 9299.28 3699.66 3199.09 7199.89 899.68 1899.53 499.97 499.50 1799.99 599.87 9
ANet_high99.57 799.67 599.28 8399.89 698.09 13399.14 5399.93 399.82 399.93 399.81 599.17 1299.94 2699.31 26100.00 199.82 14
v7n99.53 899.57 899.41 6099.88 998.54 10099.45 1099.61 3799.66 1099.68 2699.66 2298.44 4699.95 1799.73 999.96 1599.75 28
test_djsdf99.52 999.51 999.53 3499.86 1498.74 8299.39 1699.56 5599.11 6199.70 2299.73 1499.00 1599.97 499.26 2999.98 999.89 6
anonymousdsp99.51 1099.47 1299.62 699.88 999.08 6399.34 1999.69 2398.93 8699.65 3199.72 1598.93 1999.95 1799.11 38100.00 199.82 14
UA-Net99.47 1199.40 1599.70 299.49 9999.29 1999.80 399.72 1999.82 399.04 12699.81 598.05 7699.96 1198.85 5499.99 599.86 11
PS-MVSNAJss99.46 1299.49 1099.35 6999.90 498.15 12999.20 4499.65 3299.48 2699.92 499.71 1698.07 7399.96 1199.53 16100.00 199.93 4
pm-mvs199.44 1399.48 1199.33 7699.80 2298.63 8999.29 3299.63 3399.30 4799.65 3199.60 3299.16 1499.82 14999.07 4099.83 7699.56 81
TransMVSNet (Re)99.44 1399.47 1299.36 6499.80 2298.58 9599.27 3899.57 4899.39 3699.75 1799.62 2899.17 1299.83 13999.06 4199.62 17199.66 44
DTE-MVSNet99.43 1599.35 1899.66 499.71 4399.30 1799.31 2699.51 7199.64 1199.56 3799.46 5498.23 5899.97 498.78 5799.93 3199.72 31
TDRefinement99.42 1699.38 1699.55 2399.76 3099.33 1699.68 599.71 2099.38 3799.53 4499.61 3098.64 3399.80 16998.24 9099.84 6999.52 102
PEN-MVS99.41 1799.34 2099.62 699.73 3599.14 5299.29 3299.54 6499.62 1699.56 3799.42 6298.16 6999.96 1198.78 5799.93 3199.77 21
nrg03099.40 1899.35 1899.54 2799.58 6499.13 5598.98 7199.48 8299.68 899.46 5499.26 8898.62 3699.73 22099.17 3799.92 4199.76 25
PS-CasMVS99.40 1899.33 2199.62 699.71 4399.10 6099.29 3299.53 6799.53 2399.46 5499.41 6598.23 5899.95 1798.89 5399.95 1999.81 16
MIMVSNet199.38 2099.32 2299.55 2399.86 1499.19 3799.41 1399.59 3999.59 1999.71 2099.57 3597.12 14299.90 5299.21 3499.87 6299.54 92
OurMVSNet-221017-099.37 2199.31 2399.53 3499.91 398.98 6599.63 699.58 4199.44 3199.78 1499.76 1096.39 18299.92 3999.44 2199.92 4199.68 40
Vis-MVSNetpermissive99.34 2299.36 1799.27 8699.73 3598.26 11899.17 4999.78 1599.11 6199.27 9199.48 5298.82 2499.95 1798.94 4999.93 3199.59 66
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
WR-MVS_H99.33 2399.22 2899.65 599.71 4399.24 2599.32 2299.55 5999.46 2999.50 5099.34 7697.30 13199.93 3198.90 5199.93 3199.77 21
VPA-MVSNet99.30 2499.30 2499.28 8399.49 9998.36 11499.00 6899.45 9399.63 1399.52 4699.44 5998.25 5699.88 7199.09 3999.84 6999.62 53
Anonymous2023121199.27 2599.27 2599.26 8899.29 14298.18 12699.49 899.51 7199.70 799.80 1299.68 1896.84 15799.83 13999.21 3499.91 4799.77 21
FC-MVSNet-test99.27 2599.25 2699.34 7299.77 2798.37 11199.30 3199.57 4899.61 1899.40 6699.50 4897.12 14299.85 10999.02 4599.94 2799.80 17
testf199.25 2799.16 3299.51 4399.89 699.63 398.71 8999.69 2398.90 8899.43 5999.35 7298.86 2199.67 24797.81 11699.81 8399.24 206
APD_test299.25 2799.16 3299.51 4399.89 699.63 398.71 8999.69 2398.90 8899.43 5999.35 7298.86 2199.67 24797.81 11699.81 8399.24 206
KD-MVS_self_test99.25 2799.18 2999.44 5799.63 6199.06 6498.69 9199.54 6499.31 4599.62 3599.53 4497.36 12999.86 9799.24 3399.71 13899.39 160
ACMH96.65 799.25 2799.24 2799.26 8899.72 4198.38 10999.07 6199.55 5998.30 11799.65 3199.45 5899.22 999.76 20498.44 8199.77 10899.64 49
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
mvsmamba99.24 3199.15 3799.49 4899.83 1998.85 7499.41 1399.55 5999.54 2299.40 6699.52 4695.86 20899.91 4799.32 2599.95 1999.70 37
CP-MVSNet99.21 3299.09 4299.56 2199.65 5698.96 7099.13 5499.34 13399.42 3499.33 8099.26 8897.01 15099.94 2698.74 6199.93 3199.79 18
TranMVSNet+NR-MVSNet99.17 3399.07 4599.46 5699.37 13098.87 7398.39 12899.42 10699.42 3499.36 7599.06 12398.38 4999.95 1798.34 8699.90 5499.57 77
FMVSNet199.17 3399.17 3099.17 9999.55 7998.24 12099.20 4499.44 9799.21 5299.43 5999.55 4097.82 9299.86 9798.42 8399.89 5899.41 148
test_vis3_rt99.14 3599.17 3099.07 11799.78 2598.38 10998.92 7599.94 197.80 15599.91 599.67 2097.15 14198.91 36099.76 899.56 19499.92 5
FIs99.14 3599.09 4299.29 8199.70 4998.28 11799.13 5499.52 7099.48 2699.24 10099.41 6596.79 16399.82 14998.69 6699.88 5999.76 25
XXY-MVS99.14 3599.15 3799.10 11199.76 3097.74 17298.85 8199.62 3498.48 11099.37 7399.49 5198.75 2799.86 9798.20 9399.80 9499.71 32
CS-MVS99.13 3899.10 4199.24 9399.06 19699.15 4799.36 1899.88 899.36 4198.21 22798.46 24698.68 3299.93 3199.03 4499.85 6598.64 298
CS-MVS-test99.13 3899.09 4299.26 8899.13 18198.97 6699.31 2699.88 899.44 3198.16 23098.51 23898.64 3399.93 3198.91 5099.85 6598.88 267
test_fmvs399.12 4099.41 1498.25 21599.76 3095.07 26599.05 6499.94 197.78 15799.82 1199.84 298.56 4099.71 22899.96 199.96 1599.97 1
casdiffmvs_mvgpermissive99.12 4099.16 3298.99 13199.43 11897.73 17498.00 16799.62 3499.22 5199.55 3999.22 9698.93 1999.75 21198.66 6899.81 8399.50 107
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
RRT_MVS99.09 4298.94 5499.55 2399.87 1298.82 7899.48 998.16 30099.49 2599.59 3699.65 2494.79 24199.95 1799.45 2099.96 1599.88 7
DROMVSNet99.09 4299.05 4699.20 9799.28 14398.93 7199.24 4099.84 1199.08 7398.12 23598.37 25498.72 2999.90 5299.05 4299.77 10898.77 284
ACMH+96.62 999.08 4499.00 4999.33 7699.71 4398.83 7698.60 9999.58 4199.11 6199.53 4499.18 10398.81 2599.67 24796.71 19299.77 10899.50 107
bld_raw_dy_0_6499.07 4599.00 4999.29 8199.85 1698.18 12699.11 5799.40 10999.33 4399.38 7099.44 5995.21 22599.97 499.31 2699.98 999.73 30
GeoE99.05 4698.99 5299.25 9199.44 11398.35 11598.73 8699.56 5598.42 11198.91 14998.81 19298.94 1899.91 4798.35 8599.73 12699.49 111
Gipumacopyleft99.03 4799.16 3298.64 17099.94 298.51 10299.32 2299.75 1899.58 2198.60 19499.62 2898.22 6199.51 30797.70 12499.73 12697.89 329
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
v899.01 4899.16 3298.57 18199.47 10896.31 22898.90 7699.47 8899.03 7799.52 4699.57 3596.93 15399.81 16299.60 1199.98 999.60 60
HPM-MVS_fast99.01 4898.82 6499.57 1699.71 4399.35 1299.00 6899.50 7397.33 19898.94 14698.86 18098.75 2799.82 14997.53 13199.71 13899.56 81
APDe-MVS98.99 5098.79 6799.60 1199.21 15799.15 4798.87 7899.48 8297.57 17299.35 7799.24 9397.83 8999.89 6297.88 11399.70 14399.75 28
EG-PatchMatch MVS98.99 5099.01 4898.94 13699.50 9297.47 18598.04 16199.59 3998.15 13599.40 6699.36 7198.58 3999.76 20498.78 5799.68 15199.59 66
COLMAP_ROBcopyleft96.50 1098.99 5098.85 6299.41 6099.58 6499.10 6098.74 8499.56 5599.09 7199.33 8099.19 10098.40 4899.72 22795.98 23899.76 11999.42 145
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
Baseline_NR-MVSNet98.98 5398.86 6199.36 6499.82 2198.55 9797.47 22299.57 4899.37 3899.21 10399.61 3096.76 16699.83 13998.06 10199.83 7699.71 32
v1098.97 5499.11 3998.55 18699.44 11396.21 23098.90 7699.55 5998.73 9699.48 5199.60 3296.63 17399.83 13999.70 1099.99 599.61 59
DeepC-MVS97.60 498.97 5498.93 5599.10 11199.35 13597.98 14898.01 16699.46 9097.56 17499.54 4099.50 4898.97 1699.84 12598.06 10199.92 4199.49 111
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
baseline98.96 5699.02 4798.76 16099.38 12497.26 19598.49 11699.50 7398.86 9199.19 10599.06 12398.23 5899.69 23598.71 6499.76 11999.33 186
casdiffmvspermissive98.95 5799.00 4998.81 15099.38 12497.33 19197.82 18499.57 4899.17 5999.35 7799.17 10798.35 5399.69 23598.46 8099.73 12699.41 148
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
NR-MVSNet98.95 5798.82 6499.36 6499.16 17498.72 8799.22 4199.20 18399.10 6899.72 1898.76 20096.38 18499.86 9798.00 10699.82 7999.50 107
Anonymous2024052998.93 5998.87 5899.12 10799.19 16498.22 12599.01 6698.99 23299.25 5099.54 4099.37 6897.04 14699.80 16997.89 11099.52 20699.35 179
DP-MVS98.93 5998.81 6699.28 8399.21 15798.45 10698.46 12199.33 13899.63 1399.48 5199.15 11397.23 13799.75 21197.17 14699.66 16299.63 52
SED-MVS98.91 6198.72 7399.49 4899.49 9999.17 3998.10 15399.31 14598.03 13999.66 2899.02 13598.36 5099.88 7196.91 16899.62 17199.41 148
ACMM96.08 1298.91 6198.73 7199.48 5199.55 7999.14 5298.07 15699.37 11897.62 16799.04 12698.96 15698.84 2399.79 18297.43 13599.65 16399.49 111
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
DVP-MVS++98.90 6398.70 7899.51 4398.43 29799.15 4799.43 1199.32 14098.17 13199.26 9599.02 13598.18 6599.88 7197.07 15699.45 22099.49 111
tfpnnormal98.90 6398.90 5798.91 14099.67 5497.82 16599.00 6899.44 9799.45 3099.51 4999.24 9398.20 6499.86 9795.92 24099.69 14699.04 238
MTAPA98.88 6598.64 8699.61 999.67 5499.36 1198.43 12499.20 18398.83 9598.89 15298.90 17096.98 15299.92 3997.16 14799.70 14399.56 81
mvsany_test398.87 6698.92 5698.74 16699.38 12496.94 21298.58 10299.10 21096.49 24599.96 299.81 598.18 6599.45 31898.97 4899.79 9999.83 13
VPNet98.87 6698.83 6399.01 12999.70 4997.62 18098.43 12499.35 12799.47 2899.28 8999.05 13096.72 16999.82 14998.09 9999.36 23199.59 66
UniMVSNet (Re)98.87 6698.71 7599.35 6999.24 15098.73 8597.73 19399.38 11498.93 8699.12 11198.73 20396.77 16499.86 9798.63 7099.80 9499.46 130
UniMVSNet_NR-MVSNet98.86 6998.68 8199.40 6299.17 17298.74 8297.68 19799.40 10999.14 6099.06 11998.59 23096.71 17099.93 3198.57 7399.77 10899.53 99
APD-MVS_3200maxsize98.84 7098.61 9399.53 3499.19 16499.27 2298.49 11699.33 13898.64 9899.03 12998.98 15197.89 8699.85 10996.54 20899.42 22499.46 130
APD_test198.83 7198.66 8399.34 7299.78 2599.47 698.42 12699.45 9398.28 12298.98 13399.19 10097.76 9599.58 28696.57 20099.55 19798.97 251
PM-MVS98.82 7298.72 7399.12 10799.64 5998.54 10097.98 16999.68 2897.62 16799.34 7999.18 10397.54 11499.77 19997.79 11899.74 12399.04 238
DU-MVS98.82 7298.63 8799.39 6399.16 17498.74 8297.54 21499.25 17298.84 9499.06 11998.76 20096.76 16699.93 3198.57 7399.77 10899.50 107
SR-MVS-dyc-post98.81 7498.55 9899.57 1699.20 16199.38 898.48 11999.30 15398.64 9898.95 14098.96 15697.49 12399.86 9796.56 20499.39 22799.45 134
3Dnovator98.27 298.81 7498.73 7199.05 12498.76 24797.81 16799.25 3999.30 15398.57 10798.55 20399.33 7897.95 8499.90 5297.16 14799.67 15799.44 138
HPM-MVScopyleft98.79 7698.53 10099.59 1599.65 5699.29 1999.16 5099.43 10396.74 23698.61 19298.38 25398.62 3699.87 8896.47 21299.67 15799.59 66
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
SteuartSystems-ACMMP98.79 7698.54 9999.54 2799.73 3599.16 4398.23 13999.31 14597.92 14698.90 15098.90 17098.00 7999.88 7196.15 23199.72 13399.58 72
Skip Steuart: Steuart Systems R&D Blog.
dcpmvs_298.78 7899.11 3997.78 24799.56 7593.67 30899.06 6299.86 1099.50 2499.66 2899.26 8897.21 13999.99 298.00 10699.91 4799.68 40
V4298.78 7898.78 6898.76 16099.44 11397.04 20798.27 13699.19 18797.87 15099.25 9999.16 10996.84 15799.78 19399.21 3499.84 6999.46 130
test20.0398.78 7898.77 6998.78 15799.46 10997.20 20097.78 18699.24 17799.04 7699.41 6398.90 17097.65 10299.76 20497.70 12499.79 9999.39 160
DVP-MVScopyleft98.77 8198.52 10199.52 3999.50 9299.21 2898.02 16398.84 25697.97 14299.08 11799.02 13597.61 10899.88 7196.99 16299.63 16899.48 121
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_040298.76 8298.71 7598.93 13799.56 7598.14 13198.45 12399.34 13399.28 4898.95 14098.91 16798.34 5499.79 18295.63 25599.91 4798.86 269
ACMMP_NAP98.75 8398.48 10999.57 1699.58 6499.29 1997.82 18499.25 17296.94 22798.78 17199.12 11798.02 7799.84 12597.13 15299.67 15799.59 66
SixPastTwentyTwo98.75 8398.62 8999.16 10299.83 1997.96 15299.28 3698.20 29799.37 3899.70 2299.65 2492.65 27999.93 3199.04 4399.84 6999.60 60
ACMMPcopyleft98.75 8398.50 10499.52 3999.56 7599.16 4398.87 7899.37 11897.16 21898.82 16899.01 14497.71 9899.87 8896.29 22399.69 14699.54 92
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
XVS98.72 8698.45 11499.53 3499.46 10999.21 2898.65 9399.34 13398.62 10297.54 27598.63 22497.50 12099.83 13996.79 18199.53 20399.56 81
SR-MVS98.71 8798.43 11799.57 1699.18 17199.35 1298.36 13099.29 16098.29 12098.88 15698.85 18397.53 11699.87 8896.14 23299.31 23999.48 121
HFP-MVS98.71 8798.44 11699.51 4399.49 9999.16 4398.52 10999.31 14597.47 18198.58 19898.50 24297.97 8399.85 10996.57 20099.59 18299.53 99
LPG-MVS_test98.71 8798.46 11399.47 5499.57 6898.97 6698.23 13999.48 8296.60 24199.10 11599.06 12398.71 3099.83 13995.58 25899.78 10499.62 53
test_fmvs298.70 9098.97 5397.89 24099.54 8294.05 29098.55 10599.92 596.78 23499.72 1899.78 896.60 17499.67 24799.91 299.90 5499.94 3
ACMMPR98.70 9098.42 11999.54 2799.52 8799.14 5298.52 10999.31 14597.47 18198.56 20198.54 23497.75 9699.88 7196.57 20099.59 18299.58 72
CP-MVS98.70 9098.42 11999.52 3999.36 13199.12 5798.72 8799.36 12297.54 17698.30 22298.40 25097.86 8899.89 6296.53 20999.72 13399.56 81
tt080598.69 9398.62 8998.90 14299.75 3499.30 1799.15 5296.97 33198.86 9198.87 16097.62 30798.63 3598.96 35799.41 2298.29 31598.45 306
Anonymous2024052198.69 9398.87 5898.16 22399.77 2795.11 26499.08 5899.44 9799.34 4299.33 8099.55 4094.10 25799.94 2699.25 3199.96 1599.42 145
region2R98.69 9398.40 12199.54 2799.53 8599.17 3998.52 10999.31 14597.46 18698.44 21398.51 23897.83 8999.88 7196.46 21399.58 18799.58 72
EI-MVSNet-UG-set98.69 9398.71 7598.62 17499.10 18596.37 22597.23 23798.87 24799.20 5499.19 10598.99 14797.30 13199.85 10998.77 6099.79 9999.65 48
3Dnovator+97.89 398.69 9398.51 10299.24 9398.81 24298.40 10799.02 6599.19 18798.99 8098.07 23999.28 8497.11 14499.84 12596.84 17999.32 23799.47 128
ZNCC-MVS98.68 9898.40 12199.54 2799.57 6899.21 2898.46 12199.29 16097.28 20498.11 23698.39 25198.00 7999.87 8896.86 17899.64 16599.55 88
EI-MVSNet-Vis-set98.68 9898.70 7898.63 17399.09 18896.40 22497.23 23798.86 25299.20 5499.18 10998.97 15397.29 13399.85 10998.72 6399.78 10499.64 49
CSCG98.68 9898.50 10499.20 9799.45 11298.63 8998.56 10499.57 4897.87 15098.85 16198.04 28297.66 10199.84 12596.72 19099.81 8399.13 228
test_f98.67 10198.87 5898.05 23299.72 4195.59 24498.51 11399.81 1396.30 25499.78 1499.82 496.14 19198.63 36599.82 399.93 3199.95 2
PGM-MVS98.66 10298.37 12799.55 2399.53 8599.18 3898.23 13999.49 8097.01 22598.69 18198.88 17798.00 7999.89 6295.87 24499.59 18299.58 72
GBi-Net98.65 10398.47 11199.17 9998.90 22498.24 12099.20 4499.44 9798.59 10498.95 14099.55 4094.14 25399.86 9797.77 11999.69 14699.41 148
test198.65 10398.47 11199.17 9998.90 22498.24 12099.20 4499.44 9798.59 10498.95 14099.55 4094.14 25399.86 9797.77 11999.69 14699.41 148
LCM-MVSNet-Re98.64 10598.48 10999.11 10998.85 23498.51 10298.49 11699.83 1298.37 11299.69 2499.46 5498.21 6399.92 3994.13 29499.30 24298.91 263
mPP-MVS98.64 10598.34 13199.54 2799.54 8299.17 3998.63 9599.24 17797.47 18198.09 23898.68 21297.62 10799.89 6296.22 22699.62 17199.57 77
TSAR-MVS + MP.98.63 10798.49 10899.06 12399.64 5997.90 15698.51 11398.94 23496.96 22699.24 10098.89 17697.83 8999.81 16296.88 17599.49 21699.48 121
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
LS3D98.63 10798.38 12699.36 6497.25 35499.38 899.12 5699.32 14099.21 5298.44 21398.88 17797.31 13099.80 16996.58 19899.34 23598.92 260
RPSCF98.62 10998.36 12899.42 5899.65 5699.42 798.55 10599.57 4897.72 16198.90 15099.26 8896.12 19399.52 30395.72 25199.71 13899.32 188
GST-MVS98.61 11098.30 13699.52 3999.51 8999.20 3498.26 13799.25 17297.44 18998.67 18398.39 25197.68 9999.85 10996.00 23699.51 20899.52 102
v119298.60 11198.66 8398.41 20299.27 14595.88 23897.52 21699.36 12297.41 19199.33 8099.20 9996.37 18599.82 14999.57 1399.92 4199.55 88
v114498.60 11198.66 8398.41 20299.36 13195.90 23797.58 21099.34 13397.51 17799.27 9199.15 11396.34 18799.80 16999.47 1999.93 3199.51 104
DPE-MVScopyleft98.59 11398.26 14199.57 1699.27 14599.15 4797.01 24999.39 11297.67 16399.44 5898.99 14797.53 11699.89 6295.40 26299.68 15199.66 44
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MP-MVS-pluss98.57 11498.23 14499.60 1199.69 5199.35 1297.16 24499.38 11494.87 29198.97 13798.99 14798.01 7899.88 7197.29 14199.70 14399.58 72
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
OPM-MVS98.56 11598.32 13599.25 9199.41 12198.73 8597.13 24699.18 19197.10 22198.75 17798.92 16698.18 6599.65 26396.68 19499.56 19499.37 169
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
VDD-MVS98.56 11598.39 12499.07 11799.13 18198.07 13998.59 10097.01 32999.59 1999.11 11299.27 8694.82 23699.79 18298.34 8699.63 16899.34 181
v2v48298.56 11598.62 8998.37 20699.42 11995.81 24197.58 21099.16 19897.90 14899.28 8999.01 14495.98 20299.79 18299.33 2499.90 5499.51 104
XVG-ACMP-BASELINE98.56 11598.34 13199.22 9699.54 8298.59 9497.71 19499.46 9097.25 20798.98 13398.99 14797.54 11499.84 12595.88 24199.74 12399.23 208
v124098.55 11998.62 8998.32 20999.22 15595.58 24597.51 21899.45 9397.16 21899.45 5799.24 9396.12 19399.85 10999.60 1199.88 5999.55 88
IterMVS-LS98.55 11998.70 7898.09 22599.48 10694.73 27397.22 24099.39 11298.97 8299.38 7099.31 8296.00 19899.93 3198.58 7199.97 1299.60 60
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v14419298.54 12198.57 9798.45 19899.21 15795.98 23597.63 20399.36 12297.15 22099.32 8699.18 10395.84 20999.84 12599.50 1799.91 4799.54 92
v192192098.54 12198.60 9498.38 20599.20 16195.76 24397.56 21299.36 12297.23 21399.38 7099.17 10796.02 19699.84 12599.57 1399.90 5499.54 92
SF-MVS98.53 12398.27 14099.32 7899.31 13898.75 8198.19 14399.41 10796.77 23598.83 16598.90 17097.80 9399.82 14995.68 25499.52 20699.38 167
XVG-OURS98.53 12398.34 13199.11 10999.50 9298.82 7895.97 29799.50 7397.30 20299.05 12498.98 15199.35 799.32 33595.72 25199.68 15199.18 220
UGNet98.53 12398.45 11498.79 15497.94 32596.96 21099.08 5898.54 28299.10 6896.82 31299.47 5396.55 17699.84 12598.56 7699.94 2799.55 88
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
patch_mono-298.51 12698.63 8798.17 22199.38 12494.78 27097.36 22899.69 2398.16 13498.49 20999.29 8397.06 14599.97 498.29 8999.91 4799.76 25
XVG-OURS-SEG-HR98.49 12798.28 13899.14 10599.49 9998.83 7696.54 27399.48 8297.32 20099.11 11298.61 22899.33 899.30 33896.23 22598.38 31299.28 198
FMVSNet298.49 12798.40 12198.75 16298.90 22497.14 20698.61 9899.13 20598.59 10499.19 10599.28 8494.14 25399.82 14997.97 10899.80 9499.29 197
pmmvs-eth3d98.47 12998.34 13198.86 14499.30 14197.76 17097.16 24499.28 16395.54 27399.42 6299.19 10097.27 13499.63 26997.89 11099.97 1299.20 213
MP-MVScopyleft98.46 13098.09 15999.54 2799.57 6899.22 2798.50 11599.19 18797.61 16997.58 27198.66 21797.40 12799.88 7194.72 27599.60 17899.54 92
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
v14898.45 13198.60 9498.00 23599.44 11394.98 26697.44 22499.06 21598.30 11799.32 8698.97 15396.65 17299.62 27198.37 8499.85 6599.39 160
AllTest98.44 13298.20 14699.16 10299.50 9298.55 9798.25 13899.58 4196.80 23298.88 15699.06 12397.65 10299.57 28894.45 28299.61 17699.37 169
VNet98.42 13398.30 13698.79 15498.79 24697.29 19398.23 13998.66 27699.31 4598.85 16198.80 19394.80 23999.78 19398.13 9599.13 26799.31 192
ab-mvs98.41 13498.36 12898.59 17899.19 16497.23 19699.32 2298.81 26197.66 16498.62 19099.40 6796.82 16099.80 16995.88 24199.51 20898.75 287
ACMP95.32 1598.41 13498.09 15999.36 6499.51 8998.79 8097.68 19799.38 11495.76 27098.81 17098.82 19098.36 5099.82 14994.75 27299.77 10899.48 121
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
SMA-MVScopyleft98.40 13698.03 16699.51 4399.16 17499.21 2898.05 15999.22 18094.16 30798.98 13399.10 12097.52 11899.79 18296.45 21499.64 16599.53 99
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MSP-MVS98.40 13698.00 16899.61 999.57 6899.25 2498.57 10399.35 12797.55 17599.31 8897.71 30094.61 24499.88 7196.14 23299.19 25999.70 37
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SD-MVS98.40 13698.68 8197.54 26998.96 21297.99 14597.88 17799.36 12298.20 12899.63 3499.04 13298.76 2695.33 37596.56 20499.74 12399.31 192
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
EI-MVSNet98.40 13698.51 10298.04 23399.10 18594.73 27397.20 24198.87 24798.97 8299.06 11999.02 13596.00 19899.80 16998.58 7199.82 7999.60 60
WR-MVS98.40 13698.19 14899.03 12799.00 20597.65 17796.85 25998.94 23498.57 10798.89 15298.50 24295.60 21499.85 10997.54 13099.85 6599.59 66
new-patchmatchnet98.35 14198.74 7097.18 28699.24 15092.23 33296.42 28099.48 8298.30 11799.69 2499.53 4497.44 12599.82 14998.84 5599.77 10899.49 111
canonicalmvs98.34 14298.26 14198.58 17998.46 29497.82 16598.96 7299.46 9099.19 5897.46 28295.46 35698.59 3899.46 31798.08 10098.71 30098.46 304
testgi98.32 14398.39 12498.13 22499.57 6895.54 24697.78 18699.49 8097.37 19599.19 10597.65 30498.96 1799.49 30996.50 21198.99 28399.34 181
DeepPCF-MVS96.93 598.32 14398.01 16799.23 9598.39 30298.97 6695.03 33199.18 19196.88 23099.33 8098.78 19698.16 6999.28 34296.74 18799.62 17199.44 138
test_vis1_n98.31 14598.50 10497.73 25499.76 3094.17 28898.68 9299.91 696.31 25299.79 1399.57 3592.85 27699.42 32399.79 699.84 6999.60 60
MVS_111021_LR98.30 14698.12 15798.83 14799.16 17498.03 14396.09 29499.30 15397.58 17198.10 23798.24 26598.25 5699.34 33296.69 19399.65 16399.12 229
EPP-MVSNet98.30 14698.04 16599.07 11799.56 7597.83 16299.29 3298.07 30499.03 7798.59 19699.13 11692.16 28399.90 5296.87 17699.68 15199.49 111
DeepC-MVS_fast96.85 698.30 14698.15 15498.75 16298.61 27697.23 19697.76 19099.09 21297.31 20198.75 17798.66 21797.56 11299.64 26696.10 23599.55 19799.39 160
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PHI-MVS98.29 14997.95 17199.34 7298.44 29699.16 4398.12 15099.38 11496.01 26398.06 24098.43 24897.80 9399.67 24795.69 25399.58 18799.20 213
Fast-Effi-MVS+-dtu98.27 15098.09 15998.81 15098.43 29798.11 13297.61 20699.50 7398.64 9897.39 28797.52 31298.12 7299.95 1796.90 17398.71 30098.38 311
DELS-MVS98.27 15098.20 14698.48 19598.86 23296.70 22095.60 31499.20 18397.73 15998.45 21298.71 20697.50 12099.82 14998.21 9299.59 18298.93 259
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
Effi-MVS+-dtu98.26 15297.90 17799.35 6998.02 32299.49 598.02 16399.16 19898.29 12097.64 26697.99 28496.44 18199.95 1796.66 19598.93 28998.60 299
MVSFormer98.26 15298.43 11797.77 24898.88 23093.89 30299.39 1699.56 5599.11 6198.16 23098.13 27293.81 26099.97 499.26 2999.57 19199.43 142
MVS_111021_HR98.25 15498.08 16298.75 16299.09 18897.46 18695.97 29799.27 16697.60 17097.99 24598.25 26498.15 7199.38 32996.87 17699.57 19199.42 145
TAMVS98.24 15598.05 16498.80 15299.07 19297.18 20297.88 17798.81 26196.66 24099.17 11099.21 9794.81 23899.77 19996.96 16699.88 5999.44 138
diffmvspermissive98.22 15698.24 14398.17 22199.00 20595.44 25196.38 28299.58 4197.79 15698.53 20698.50 24296.76 16699.74 21697.95 10999.64 16599.34 181
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Anonymous2023120698.21 15798.21 14598.20 21999.51 8995.43 25298.13 14899.32 14096.16 25798.93 14798.82 19096.00 19899.83 13997.32 14099.73 12699.36 175
VDDNet98.21 15797.95 17199.01 12999.58 6497.74 17299.01 6697.29 32499.67 998.97 13799.50 4890.45 29499.80 16997.88 11399.20 25699.48 121
IS-MVSNet98.19 15997.90 17799.08 11599.57 6897.97 14999.31 2698.32 29299.01 7998.98 13399.03 13491.59 28899.79 18295.49 26099.80 9499.48 121
MVS_Test98.18 16098.36 12897.67 25698.48 29294.73 27398.18 14499.02 22697.69 16298.04 24399.11 11897.22 13899.56 29198.57 7398.90 29198.71 290
TSAR-MVS + GP.98.18 16097.98 16998.77 15998.71 25697.88 15796.32 28598.66 27696.33 25099.23 10298.51 23897.48 12499.40 32597.16 14799.46 21899.02 241
CNVR-MVS98.17 16297.87 17999.07 11798.67 26898.24 12097.01 24998.93 23697.25 20797.62 26798.34 25897.27 13499.57 28896.42 21599.33 23699.39 160
PVSNet_Blended_VisFu98.17 16298.15 15498.22 21899.73 3595.15 26197.36 22899.68 2894.45 30198.99 13299.27 8696.87 15699.94 2697.13 15299.91 4799.57 77
HPM-MVS++copyleft98.10 16497.64 19699.48 5199.09 18899.13 5597.52 21698.75 27097.46 18696.90 30797.83 29596.01 19799.84 12595.82 24899.35 23399.46 130
APD-MVScopyleft98.10 16497.67 19199.42 5899.11 18398.93 7197.76 19099.28 16394.97 28898.72 18098.77 19897.04 14699.85 10993.79 30499.54 19999.49 111
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
test_fmvs1_n98.09 16698.28 13897.52 27199.68 5293.47 31198.63 9599.93 395.41 28099.68 2699.64 2691.88 28799.48 31299.82 399.87 6299.62 53
MVP-Stereo98.08 16797.92 17598.57 18198.96 21296.79 21697.90 17699.18 19196.41 24898.46 21198.95 16095.93 20599.60 27896.51 21098.98 28599.31 192
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
PMMVS298.07 16898.08 16298.04 23399.41 12194.59 27994.59 34599.40 10997.50 17898.82 16898.83 18796.83 15999.84 12597.50 13399.81 8399.71 32
ETV-MVS98.03 16997.86 18098.56 18598.69 26598.07 13997.51 21899.50 7398.10 13697.50 27995.51 35498.41 4799.88 7196.27 22499.24 25197.71 341
Effi-MVS+98.02 17097.82 18298.62 17498.53 28897.19 20197.33 23099.68 2897.30 20296.68 31597.46 31698.56 4099.80 16996.63 19698.20 31898.86 269
MSLP-MVS++98.02 17098.14 15697.64 26098.58 28195.19 26097.48 22099.23 17997.47 18197.90 24998.62 22697.04 14698.81 36397.55 12899.41 22598.94 258
EIA-MVS98.00 17297.74 18698.80 15298.72 25398.09 13398.05 15999.60 3897.39 19396.63 31795.55 35397.68 9999.80 16996.73 18999.27 24698.52 302
MCST-MVS98.00 17297.63 19799.10 11199.24 15098.17 12896.89 25898.73 27395.66 27197.92 24797.70 30297.17 14099.66 25896.18 23099.23 25299.47 128
K. test v398.00 17297.66 19499.03 12799.79 2497.56 18199.19 4892.47 36499.62 1699.52 4699.66 2289.61 29999.96 1199.25 3199.81 8399.56 81
HQP_MVS97.99 17597.67 19198.93 13799.19 16497.65 17797.77 18899.27 16698.20 12897.79 25897.98 28594.90 23299.70 23194.42 28499.51 20899.45 134
MDA-MVSNet-bldmvs97.94 17697.91 17698.06 23099.44 11394.96 26796.63 27199.15 20398.35 11398.83 16599.11 11894.31 25099.85 10996.60 19798.72 29899.37 169
Anonymous20240521197.90 17797.50 20499.08 11598.90 22498.25 11998.53 10896.16 34398.87 9099.11 11298.86 18090.40 29599.78 19397.36 13899.31 23999.19 218
LF4IMVS97.90 17797.69 19098.52 19099.17 17297.66 17697.19 24399.47 8896.31 25297.85 25498.20 26996.71 17099.52 30394.62 27699.72 13398.38 311
UnsupCasMVSNet_eth97.89 17997.60 19998.75 16299.31 13897.17 20397.62 20499.35 12798.72 9798.76 17698.68 21292.57 28099.74 21697.76 12395.60 36299.34 181
TinyColmap97.89 17997.98 16997.60 26298.86 23294.35 28396.21 29099.44 9797.45 18899.06 11998.88 17797.99 8299.28 34294.38 28899.58 18799.18 220
OMC-MVS97.88 18197.49 20599.04 12698.89 22998.63 8996.94 25399.25 17295.02 28698.53 20698.51 23897.27 13499.47 31593.50 31199.51 20899.01 242
CANet97.87 18297.76 18498.19 22097.75 33495.51 24896.76 26499.05 21897.74 15896.93 30198.21 26895.59 21599.89 6297.86 11599.93 3199.19 218
xiu_mvs_v1_base_debu97.86 18398.17 15096.92 29898.98 20993.91 29996.45 27799.17 19597.85 15298.41 21697.14 32898.47 4399.92 3998.02 10399.05 27396.92 352
xiu_mvs_v1_base97.86 18398.17 15096.92 29898.98 20993.91 29996.45 27799.17 19597.85 15298.41 21697.14 32898.47 4399.92 3998.02 10399.05 27396.92 352
xiu_mvs_v1_base_debi97.86 18398.17 15096.92 29898.98 20993.91 29996.45 27799.17 19597.85 15298.41 21697.14 32898.47 4399.92 3998.02 10399.05 27396.92 352
NCCC97.86 18397.47 20899.05 12498.61 27698.07 13996.98 25198.90 24297.63 16697.04 29897.93 29095.99 20199.66 25895.31 26398.82 29499.43 142
PMVScopyleft91.26 2097.86 18397.94 17397.65 25899.71 4397.94 15498.52 10998.68 27598.99 8097.52 27799.35 7297.41 12698.18 36991.59 33899.67 15796.82 355
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
IterMVS-SCA-FT97.85 18898.18 14996.87 30199.27 14591.16 34795.53 31699.25 17299.10 6899.41 6399.35 7293.10 26999.96 1198.65 6999.94 2799.49 111
D2MVS97.84 18997.84 18197.83 24399.14 17994.74 27296.94 25398.88 24595.84 26898.89 15298.96 15694.40 24899.69 23597.55 12899.95 1999.05 234
CPTT-MVS97.84 18997.36 21399.27 8699.31 13898.46 10598.29 13499.27 16694.90 29097.83 25598.37 25494.90 23299.84 12593.85 30399.54 19999.51 104
mvs_anonymous97.83 19198.16 15396.87 30198.18 31491.89 33497.31 23198.90 24297.37 19598.83 16599.46 5496.28 18899.79 18298.90 5198.16 32298.95 254
h-mvs3397.77 19297.33 21799.10 11199.21 15797.84 16198.35 13198.57 28199.11 6198.58 19899.02 13588.65 30899.96 1198.11 9696.34 35599.49 111
test_vis1_rt97.75 19397.72 18997.83 24398.81 24296.35 22697.30 23299.69 2394.61 29597.87 25198.05 28196.26 18998.32 36898.74 6198.18 31998.82 272
IterMVS97.73 19498.11 15896.57 30899.24 15090.28 34895.52 31899.21 18198.86 9199.33 8099.33 7893.11 26899.94 2698.49 7999.94 2799.48 121
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
test_fmvs197.72 19597.94 17397.07 29298.66 27392.39 32897.68 19799.81 1395.20 28499.54 4099.44 5991.56 28999.41 32499.78 799.77 10899.40 157
MSDG97.71 19697.52 20398.28 21498.91 22396.82 21594.42 34899.37 11897.65 16598.37 22198.29 26397.40 12799.33 33494.09 29599.22 25398.68 296
CDS-MVSNet97.69 19797.35 21498.69 16798.73 25197.02 20996.92 25798.75 27095.89 26798.59 19698.67 21492.08 28599.74 21696.72 19099.81 8399.32 188
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MS-PatchMatch97.68 19897.75 18597.45 27698.23 31293.78 30597.29 23398.84 25696.10 25998.64 18798.65 21996.04 19599.36 33096.84 17999.14 26599.20 213
Fast-Effi-MVS+97.67 19997.38 21198.57 18198.71 25697.43 18897.23 23799.45 9394.82 29296.13 32996.51 33698.52 4299.91 4796.19 22898.83 29398.37 313
EU-MVSNet97.66 20098.50 10495.13 33699.63 6185.84 36498.35 13198.21 29698.23 12499.54 4099.46 5495.02 23099.68 24498.24 9099.87 6299.87 9
MVS_030497.64 20197.35 21498.52 19097.87 33096.69 22198.59 10098.05 30697.44 18993.74 36498.85 18393.69 26499.88 7198.11 9699.81 8398.98 247
pmmvs597.64 20197.49 20598.08 22899.14 17995.12 26396.70 26899.05 21893.77 31498.62 19098.83 18793.23 26599.75 21198.33 8899.76 11999.36 175
N_pmnet97.63 20397.17 22398.99 13199.27 14597.86 15995.98 29693.41 36195.25 28299.47 5398.90 17095.63 21399.85 10996.91 16899.73 12699.27 199
mvsany_test197.60 20497.54 20197.77 24897.72 33595.35 25495.36 32397.13 32794.13 30899.71 2099.33 7897.93 8599.30 33897.60 12798.94 28898.67 297
YYNet197.60 20497.67 19197.39 28099.04 20093.04 31895.27 32498.38 29197.25 20798.92 14898.95 16095.48 22099.73 22096.99 16298.74 29699.41 148
MDA-MVSNet_test_wron97.60 20497.66 19497.41 27999.04 20093.09 31495.27 32498.42 28897.26 20698.88 15698.95 16095.43 22199.73 22097.02 15998.72 29899.41 148
pmmvs497.58 20797.28 21898.51 19298.84 23596.93 21395.40 32298.52 28493.60 31698.61 19298.65 21995.10 22999.60 27896.97 16599.79 9998.99 246
PVSNet_BlendedMVS97.55 20897.53 20297.60 26298.92 22093.77 30696.64 27099.43 10394.49 29797.62 26799.18 10396.82 16099.67 24794.73 27399.93 3199.36 175
ppachtmachnet_test97.50 20997.74 18696.78 30698.70 26091.23 34694.55 34699.05 21896.36 24999.21 10398.79 19596.39 18299.78 19396.74 18799.82 7999.34 181
FMVSNet397.50 20997.24 22098.29 21398.08 32095.83 24097.86 18198.91 24197.89 14998.95 14098.95 16087.06 31499.81 16297.77 11999.69 14699.23 208
CHOSEN 1792x268897.49 21197.14 22798.54 18999.68 5296.09 23396.50 27599.62 3491.58 33998.84 16498.97 15392.36 28199.88 7196.76 18599.95 1999.67 43
CLD-MVS97.49 21197.16 22498.48 19599.07 19297.03 20894.71 33899.21 18194.46 29998.06 24097.16 32697.57 11199.48 31294.46 28199.78 10498.95 254
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
hse-mvs297.46 21397.07 22898.64 17098.73 25197.33 19197.45 22397.64 31799.11 6198.58 19897.98 28588.65 30899.79 18298.11 9697.39 33998.81 276
Vis-MVSNet (Re-imp)97.46 21397.16 22498.34 20899.55 7996.10 23198.94 7398.44 28798.32 11698.16 23098.62 22688.76 30499.73 22093.88 30199.79 9999.18 220
jason97.45 21597.35 21497.76 25199.24 15093.93 29895.86 30598.42 28894.24 30598.50 20898.13 27294.82 23699.91 4797.22 14499.73 12699.43 142
jason: jason.
CL-MVSNet_self_test97.44 21697.22 22198.08 22898.57 28395.78 24294.30 35198.79 26496.58 24398.60 19498.19 27094.74 24399.64 26696.41 21698.84 29298.82 272
DSMNet-mixed97.42 21797.60 19996.87 30199.15 17891.46 33898.54 10799.12 20692.87 32797.58 27199.63 2796.21 19099.90 5295.74 25099.54 19999.27 199
USDC97.41 21897.40 20997.44 27798.94 21493.67 30895.17 32799.53 6794.03 31198.97 13799.10 12095.29 22399.34 33295.84 24799.73 12699.30 195
our_test_397.39 21997.73 18896.34 31298.70 26089.78 35094.61 34498.97 23396.50 24499.04 12698.85 18395.98 20299.84 12597.26 14399.67 15799.41 148
c3_l97.36 22097.37 21297.31 28198.09 31993.25 31395.01 33299.16 19897.05 22298.77 17498.72 20592.88 27499.64 26696.93 16799.76 11999.05 234
alignmvs97.35 22196.88 23898.78 15798.54 28698.09 13397.71 19497.69 31499.20 5497.59 27095.90 34888.12 31399.55 29498.18 9498.96 28698.70 292
Patchmtry97.35 22196.97 23298.50 19497.31 35396.47 22398.18 14498.92 23998.95 8598.78 17199.37 6885.44 32999.85 10995.96 23999.83 7699.17 224
DP-MVS Recon97.33 22396.92 23598.57 18199.09 18897.99 14596.79 26199.35 12793.18 32197.71 26298.07 28095.00 23199.31 33693.97 29799.13 26798.42 310
QAPM97.31 22496.81 24598.82 14898.80 24597.49 18499.06 6299.19 18790.22 35197.69 26499.16 10996.91 15499.90 5290.89 34999.41 22599.07 232
UnsupCasMVSNet_bld97.30 22596.92 23598.45 19899.28 14396.78 21996.20 29199.27 16695.42 27798.28 22498.30 26293.16 26799.71 22894.99 26797.37 34098.87 268
F-COLMAP97.30 22596.68 25299.14 10599.19 16498.39 10897.27 23699.30 15392.93 32596.62 31898.00 28395.73 21199.68 24492.62 32798.46 31199.35 179
1112_ss97.29 22796.86 23998.58 17999.34 13796.32 22796.75 26599.58 4193.14 32296.89 30897.48 31492.11 28499.86 9796.91 16899.54 19999.57 77
CANet_DTU97.26 22897.06 22997.84 24297.57 34294.65 27796.19 29298.79 26497.23 21395.14 35098.24 26593.22 26699.84 12597.34 13999.84 6999.04 238
Patchmatch-RL test97.26 22897.02 23197.99 23699.52 8795.53 24796.13 29399.71 2097.47 18199.27 9199.16 10984.30 33899.62 27197.89 11099.77 10898.81 276
CDPH-MVS97.26 22896.66 25599.07 11799.00 20598.15 12996.03 29599.01 22991.21 34597.79 25897.85 29496.89 15599.69 23592.75 32499.38 23099.39 160
PatchMatch-RL97.24 23196.78 24698.61 17699.03 20397.83 16296.36 28399.06 21593.49 31997.36 28997.78 29695.75 21099.49 30993.44 31298.77 29598.52 302
eth_miper_zixun_eth97.23 23297.25 21997.17 28798.00 32392.77 32294.71 33899.18 19197.27 20598.56 20198.74 20291.89 28699.69 23597.06 15899.81 8399.05 234
sss97.21 23396.93 23398.06 23098.83 23795.22 25996.75 26598.48 28694.49 29797.27 29097.90 29192.77 27799.80 16996.57 20099.32 23799.16 227
LFMVS97.20 23496.72 24998.64 17098.72 25396.95 21198.93 7494.14 35999.74 698.78 17199.01 14484.45 33599.73 22097.44 13499.27 24699.25 203
HyFIR lowres test97.19 23596.60 26098.96 13499.62 6397.28 19495.17 32799.50 7394.21 30699.01 13098.32 26186.61 31799.99 297.10 15499.84 6999.60 60
miper_lstm_enhance97.18 23697.16 22497.25 28598.16 31592.85 32095.15 32999.31 14597.25 20798.74 17998.78 19690.07 29699.78 19397.19 14599.80 9499.11 230
CNLPA97.17 23796.71 25098.55 18698.56 28498.05 14296.33 28498.93 23696.91 22997.06 29797.39 31994.38 24999.45 31891.66 33599.18 26198.14 320
xiu_mvs_v2_base97.16 23897.49 20596.17 31798.54 28692.46 32695.45 32098.84 25697.25 20797.48 28196.49 33798.31 5599.90 5296.34 22098.68 30396.15 363
AdaColmapbinary97.14 23996.71 25098.46 19798.34 30497.80 16896.95 25298.93 23695.58 27296.92 30297.66 30395.87 20799.53 29990.97 34699.14 26598.04 324
iter_conf_final97.10 24096.65 25798.45 19898.53 28896.08 23498.30 13399.11 20898.10 13698.85 16198.95 16079.38 35999.87 8898.68 6799.91 4799.40 157
train_agg97.10 24096.45 26599.07 11798.71 25698.08 13795.96 29999.03 22391.64 33795.85 33597.53 31096.47 17999.76 20493.67 30599.16 26299.36 175
OpenMVScopyleft96.65 797.09 24296.68 25298.32 20998.32 30597.16 20498.86 8099.37 11889.48 35596.29 32899.15 11396.56 17599.90 5292.90 31899.20 25697.89 329
PS-MVSNAJ97.08 24397.39 21096.16 31998.56 28492.46 32695.24 32698.85 25597.25 20797.49 28095.99 34698.07 7399.90 5296.37 21798.67 30496.12 364
miper_ehance_all_eth97.06 24497.03 23097.16 28997.83 33193.06 31594.66 34199.09 21295.99 26498.69 18198.45 24792.73 27899.61 27796.79 18199.03 27798.82 272
lupinMVS97.06 24496.86 23997.65 25898.88 23093.89 30295.48 31997.97 30793.53 31798.16 23097.58 30893.81 26099.91 4796.77 18499.57 19199.17 224
API-MVS97.04 24696.91 23797.42 27897.88 32998.23 12498.18 14498.50 28597.57 17297.39 28796.75 33396.77 16499.15 35190.16 35299.02 28094.88 369
cl____97.02 24796.83 24297.58 26497.82 33294.04 29294.66 34199.16 19897.04 22398.63 18898.71 20688.68 30799.69 23597.00 16099.81 8399.00 245
DIV-MVS_self_test97.02 24796.84 24197.58 26497.82 33294.03 29394.66 34199.16 19897.04 22398.63 18898.71 20688.69 30599.69 23597.00 16099.81 8399.01 242
RPMNet97.02 24796.93 23397.30 28297.71 33794.22 28498.11 15199.30 15399.37 3896.91 30499.34 7686.72 31699.87 8897.53 13197.36 34297.81 334
HQP-MVS97.00 25096.49 26498.55 18698.67 26896.79 21696.29 28699.04 22196.05 26095.55 34196.84 33193.84 25899.54 29792.82 32199.26 24999.32 188
FA-MVS(test-final)96.99 25196.82 24397.50 27398.70 26094.78 27099.34 1996.99 33095.07 28598.48 21099.33 7888.41 31199.65 26396.13 23498.92 29098.07 323
new_pmnet96.99 25196.76 24797.67 25698.72 25394.89 26895.95 30198.20 29792.62 33098.55 20398.54 23494.88 23599.52 30393.96 29899.44 22398.59 301
Test_1112_low_res96.99 25196.55 26298.31 21199.35 13595.47 25095.84 30899.53 6791.51 34196.80 31398.48 24591.36 29099.83 13996.58 19899.53 20399.62 53
PVSNet_Blended96.88 25496.68 25297.47 27598.92 22093.77 30694.71 33899.43 10390.98 34797.62 26797.36 32296.82 16099.67 24794.73 27399.56 19498.98 247
MVSTER96.86 25596.55 26297.79 24697.91 32794.21 28697.56 21298.87 24797.49 18099.06 11999.05 13080.72 35199.80 16998.44 8199.82 7999.37 169
BH-untuned96.83 25696.75 24897.08 29098.74 25093.33 31296.71 26798.26 29496.72 23798.44 21397.37 32195.20 22699.47 31591.89 33397.43 33898.44 308
BH-RMVSNet96.83 25696.58 26197.58 26498.47 29394.05 29096.67 26997.36 32096.70 23997.87 25197.98 28595.14 22899.44 32090.47 35198.58 30999.25 203
PAPM_NR96.82 25896.32 26898.30 21299.07 19296.69 22197.48 22098.76 26795.81 26996.61 31996.47 33994.12 25699.17 34990.82 35097.78 33299.06 233
MG-MVS96.77 25996.61 25897.26 28498.31 30693.06 31595.93 30298.12 30396.45 24797.92 24798.73 20393.77 26299.39 32791.19 34599.04 27699.33 186
test_yl96.69 26096.29 26997.90 23898.28 30795.24 25797.29 23397.36 32098.21 12598.17 22897.86 29286.27 31999.55 29494.87 27098.32 31398.89 264
DCV-MVSNet96.69 26096.29 26997.90 23898.28 30795.24 25797.29 23397.36 32098.21 12598.17 22897.86 29286.27 31999.55 29494.87 27098.32 31398.89 264
WTY-MVS96.67 26296.27 27197.87 24198.81 24294.61 27896.77 26397.92 30994.94 28997.12 29397.74 29991.11 29199.82 14993.89 30098.15 32399.18 220
PatchT96.65 26396.35 26697.54 26997.40 35095.32 25597.98 16996.64 33999.33 4396.89 30899.42 6284.32 33799.81 16297.69 12697.49 33597.48 347
TAPA-MVS96.21 1196.63 26495.95 27598.65 16998.93 21698.09 13396.93 25599.28 16383.58 36898.13 23497.78 29696.13 19299.40 32593.52 30999.29 24498.45 306
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
MIMVSNet96.62 26596.25 27297.71 25599.04 20094.66 27699.16 5096.92 33597.23 21397.87 25199.10 12086.11 32399.65 26391.65 33699.21 25598.82 272
Patchmatch-test96.55 26696.34 26797.17 28798.35 30393.06 31598.40 12797.79 31097.33 19898.41 21698.67 21483.68 34299.69 23595.16 26599.31 23998.77 284
iter_conf0596.54 26796.07 27397.92 23797.90 32894.50 28097.87 18099.14 20497.73 15998.89 15298.95 16075.75 36999.87 8898.50 7899.92 4199.40 157
PMMVS96.51 26895.98 27498.09 22597.53 34595.84 23994.92 33498.84 25691.58 33996.05 33395.58 35295.68 21299.66 25895.59 25798.09 32698.76 286
PLCcopyleft94.65 1696.51 26895.73 27998.85 14598.75 24997.91 15596.42 28099.06 21590.94 34895.59 33897.38 32094.41 24799.59 28290.93 34798.04 33099.05 234
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
114514_t96.50 27095.77 27798.69 16799.48 10697.43 18897.84 18399.55 5981.42 37096.51 32298.58 23195.53 21699.67 24793.41 31399.58 18798.98 247
test111196.49 27196.82 24395.52 33099.42 11987.08 36199.22 4187.14 37499.11 6199.46 5499.58 3488.69 30599.86 9798.80 5699.95 1999.62 53
MAR-MVS96.47 27295.70 28098.79 15497.92 32699.12 5798.28 13598.60 28092.16 33595.54 34496.17 34494.77 24299.52 30389.62 35498.23 31697.72 340
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
ECVR-MVScopyleft96.42 27396.61 25895.85 32299.38 12488.18 35799.22 4186.00 37699.08 7399.36 7599.57 3588.47 31099.82 14998.52 7799.95 1999.54 92
SCA96.41 27496.66 25595.67 32698.24 31088.35 35595.85 30796.88 33696.11 25897.67 26598.67 21493.10 26999.85 10994.16 29099.22 25398.81 276
DPM-MVS96.32 27595.59 28598.51 19298.76 24797.21 19994.54 34798.26 29491.94 33696.37 32697.25 32493.06 27199.43 32191.42 34198.74 29698.89 264
CMPMVSbinary75.91 2396.29 27695.44 28998.84 14696.25 36998.69 8897.02 24899.12 20688.90 35897.83 25598.86 18089.51 30098.90 36191.92 33299.51 20898.92 260
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
CR-MVSNet96.28 27795.95 27597.28 28397.71 33794.22 28498.11 15198.92 23992.31 33396.91 30499.37 6885.44 32999.81 16297.39 13797.36 34297.81 334
CVMVSNet96.25 27897.21 22293.38 35299.10 18580.56 37897.20 24198.19 29996.94 22799.00 13199.02 13589.50 30199.80 16996.36 21999.59 18299.78 19
AUN-MVS96.24 27995.45 28898.60 17798.70 26097.22 19897.38 22697.65 31595.95 26595.53 34597.96 28982.11 35099.79 18296.31 22197.44 33798.80 281
EPNet96.14 28095.44 28998.25 21590.76 37995.50 24997.92 17394.65 35298.97 8292.98 36598.85 18389.12 30399.87 8895.99 23799.68 15199.39 160
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
wuyk23d96.06 28197.62 19891.38 35598.65 27598.57 9698.85 8196.95 33396.86 23199.90 699.16 10999.18 1198.40 36789.23 35599.77 10877.18 373
miper_enhance_ethall96.01 28295.74 27896.81 30596.41 36792.27 33193.69 36098.89 24491.14 34698.30 22297.35 32390.58 29399.58 28696.31 22199.03 27798.60 299
FMVSNet596.01 28295.20 29798.41 20297.53 34596.10 23198.74 8499.50 7397.22 21698.03 24499.04 13269.80 37399.88 7197.27 14299.71 13899.25 203
baseline195.96 28495.44 28997.52 27198.51 29193.99 29698.39 12896.09 34598.21 12598.40 22097.76 29886.88 31599.63 26995.42 26189.27 37398.95 254
HY-MVS95.94 1395.90 28595.35 29397.55 26897.95 32494.79 26998.81 8396.94 33492.28 33495.17 34998.57 23289.90 29899.75 21191.20 34497.33 34498.10 321
GA-MVS95.86 28695.32 29497.49 27498.60 27894.15 28993.83 35897.93 30895.49 27596.68 31597.42 31883.21 34399.30 33896.22 22698.55 31099.01 242
OpenMVS_ROBcopyleft95.38 1495.84 28795.18 29897.81 24598.41 30197.15 20597.37 22798.62 27983.86 36798.65 18698.37 25494.29 25199.68 24488.41 35698.62 30796.60 358
cl2295.79 28895.39 29296.98 29596.77 36292.79 32194.40 34998.53 28394.59 29697.89 25098.17 27182.82 34799.24 34496.37 21799.03 27798.92 260
131495.74 28995.60 28496.17 31797.53 34592.75 32398.07 15698.31 29391.22 34494.25 35696.68 33495.53 21699.03 35391.64 33797.18 34596.74 356
PVSNet93.40 1795.67 29095.70 28095.57 32998.83 23788.57 35392.50 36597.72 31292.69 32996.49 32596.44 34093.72 26399.43 32193.61 30699.28 24598.71 290
FE-MVS95.66 29194.95 30397.77 24898.53 28895.28 25699.40 1596.09 34593.11 32397.96 24699.26 8879.10 36199.77 19992.40 33098.71 30098.27 315
tttt051795.64 29294.98 30197.64 26099.36 13193.81 30498.72 8790.47 37098.08 13898.67 18398.34 25873.88 37199.92 3997.77 11999.51 20899.20 213
PatchmatchNetpermissive95.58 29395.67 28295.30 33597.34 35287.32 36097.65 20296.65 33895.30 28197.07 29698.69 21084.77 33299.75 21194.97 26898.64 30598.83 271
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
TR-MVS95.55 29495.12 29996.86 30497.54 34493.94 29796.49 27696.53 34094.36 30497.03 29996.61 33594.26 25299.16 35086.91 36096.31 35697.47 348
JIA-IIPM95.52 29595.03 30097.00 29396.85 36094.03 29396.93 25595.82 34899.20 5494.63 35499.71 1683.09 34499.60 27894.42 28494.64 36697.36 349
CHOSEN 280x42095.51 29695.47 28695.65 32898.25 30988.27 35693.25 36298.88 24593.53 31794.65 35397.15 32786.17 32199.93 3197.41 13699.93 3198.73 289
ADS-MVSNet295.43 29794.98 30196.76 30798.14 31691.74 33597.92 17397.76 31190.23 34996.51 32298.91 16785.61 32699.85 10992.88 31996.90 34898.69 293
PAPR95.29 29894.47 30797.75 25297.50 34995.14 26294.89 33598.71 27491.39 34395.35 34895.48 35594.57 24599.14 35284.95 36397.37 34098.97 251
thisisatest053095.27 29994.45 30897.74 25399.19 16494.37 28297.86 18190.20 37197.17 21798.22 22697.65 30473.53 37299.90 5296.90 17399.35 23398.95 254
ADS-MVSNet95.24 30094.93 30496.18 31698.14 31690.10 34997.92 17397.32 32390.23 34996.51 32298.91 16785.61 32699.74 21692.88 31996.90 34898.69 293
BH-w/o95.13 30194.89 30595.86 32198.20 31391.31 34295.65 31297.37 31993.64 31596.52 32195.70 35193.04 27299.02 35488.10 35795.82 36197.24 350
tpmrst95.07 30295.46 28793.91 34597.11 35684.36 37197.62 20496.96 33294.98 28796.35 32798.80 19385.46 32899.59 28295.60 25696.23 35797.79 337
pmmvs395.03 30394.40 30996.93 29797.70 33992.53 32595.08 33097.71 31388.57 35997.71 26298.08 27979.39 35899.82 14996.19 22899.11 27198.43 309
tpmvs95.02 30495.25 29594.33 34196.39 36885.87 36398.08 15596.83 33795.46 27695.51 34698.69 21085.91 32499.53 29994.16 29096.23 35797.58 345
EPNet_dtu94.93 30594.78 30695.38 33493.58 37687.68 35996.78 26295.69 35097.35 19789.14 37298.09 27888.15 31299.49 30994.95 26999.30 24298.98 247
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
cascas94.79 30694.33 31296.15 32096.02 37292.36 33092.34 36799.26 17185.34 36695.08 35194.96 36392.96 27398.53 36694.41 28798.59 30897.56 346
tpm94.67 30794.34 31195.66 32797.68 34188.42 35497.88 17794.90 35194.46 29996.03 33498.56 23378.66 36299.79 18295.88 24195.01 36598.78 283
test0.0.03 194.51 30893.69 31796.99 29496.05 37093.61 31094.97 33393.49 36096.17 25597.57 27394.88 36482.30 34899.01 35693.60 30794.17 36998.37 313
thres600view794.45 30993.83 31596.29 31399.06 19691.53 33797.99 16894.24 35798.34 11497.44 28495.01 36079.84 35499.67 24784.33 36498.23 31697.66 342
PCF-MVS92.86 1894.36 31093.00 32798.42 20198.70 26097.56 18193.16 36399.11 20879.59 37197.55 27497.43 31792.19 28299.73 22079.85 37299.45 22097.97 328
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
X-MVStestdata94.32 31192.59 32999.53 3499.46 10999.21 2898.65 9399.34 13398.62 10297.54 27545.85 37497.50 12099.83 13996.79 18199.53 20399.56 81
MVS-HIRNet94.32 31195.62 28390.42 35698.46 29475.36 37996.29 28689.13 37395.25 28295.38 34799.75 1192.88 27499.19 34894.07 29699.39 22796.72 357
ET-MVSNet_ETH3D94.30 31393.21 32397.58 26498.14 31694.47 28194.78 33793.24 36394.72 29389.56 37195.87 34978.57 36499.81 16296.91 16897.11 34798.46 304
thres100view90094.19 31493.67 31895.75 32599.06 19691.35 34198.03 16294.24 35798.33 11597.40 28694.98 36279.84 35499.62 27183.05 36698.08 32796.29 359
E-PMN94.17 31594.37 31093.58 34996.86 35985.71 36690.11 36997.07 32898.17 13197.82 25797.19 32584.62 33498.94 35889.77 35397.68 33496.09 365
thres40094.14 31693.44 32096.24 31598.93 21691.44 33997.60 20794.29 35597.94 14497.10 29494.31 36879.67 35699.62 27183.05 36698.08 32797.66 342
thisisatest051594.12 31793.16 32496.97 29698.60 27892.90 31993.77 35990.61 36994.10 30996.91 30495.87 34974.99 37099.80 16994.52 27999.12 27098.20 317
tfpn200view994.03 31893.44 32095.78 32498.93 21691.44 33997.60 20794.29 35597.94 14497.10 29494.31 36879.67 35699.62 27183.05 36698.08 32796.29 359
CostFormer93.97 31993.78 31694.51 34097.53 34585.83 36597.98 16995.96 34789.29 35794.99 35298.63 22478.63 36399.62 27194.54 27896.50 35398.09 322
test-LLR93.90 32093.85 31494.04 34396.53 36484.62 36994.05 35592.39 36596.17 25594.12 35895.07 35882.30 34899.67 24795.87 24498.18 31997.82 332
EMVS93.83 32194.02 31393.23 35396.83 36184.96 36789.77 37096.32 34297.92 14697.43 28596.36 34386.17 32198.93 35987.68 35897.73 33395.81 366
baseline293.73 32292.83 32896.42 31197.70 33991.28 34496.84 26089.77 37293.96 31392.44 36695.93 34779.14 36099.77 19992.94 31796.76 35298.21 316
thres20093.72 32393.14 32595.46 33398.66 27391.29 34396.61 27294.63 35397.39 19396.83 31193.71 37079.88 35399.56 29182.40 36998.13 32495.54 368
EPMVS93.72 32393.27 32295.09 33796.04 37187.76 35898.13 14885.01 37794.69 29496.92 30298.64 22278.47 36699.31 33695.04 26696.46 35498.20 317
dp93.47 32593.59 31993.13 35496.64 36381.62 37797.66 20096.42 34192.80 32896.11 33098.64 22278.55 36599.59 28293.31 31492.18 37298.16 319
FPMVS93.44 32692.23 33197.08 29099.25 14997.86 15995.61 31397.16 32692.90 32693.76 36398.65 21975.94 36895.66 37379.30 37397.49 33597.73 339
tpm cat193.29 32793.13 32693.75 34797.39 35184.74 36897.39 22597.65 31583.39 36994.16 35798.41 24982.86 34699.39 32791.56 33995.35 36497.14 351
MVS93.19 32892.09 33296.50 31096.91 35894.03 29398.07 15698.06 30568.01 37294.56 35596.48 33895.96 20499.30 33883.84 36596.89 35096.17 361
tpm293.09 32992.58 33094.62 33997.56 34386.53 36297.66 20095.79 34986.15 36494.07 36098.23 26775.95 36799.53 29990.91 34896.86 35197.81 334
KD-MVS_2432*160092.87 33091.99 33395.51 33191.37 37789.27 35194.07 35398.14 30195.42 27797.25 29196.44 34067.86 37599.24 34491.28 34296.08 35998.02 325
miper_refine_blended92.87 33091.99 33395.51 33191.37 37789.27 35194.07 35398.14 30195.42 27797.25 29196.44 34067.86 37599.24 34491.28 34296.08 35998.02 325
MVEpermissive83.40 2292.50 33291.92 33594.25 34298.83 23791.64 33692.71 36483.52 37895.92 26686.46 37595.46 35695.20 22695.40 37480.51 37198.64 30595.73 367
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test250692.39 33391.89 33693.89 34699.38 12482.28 37599.32 2266.03 38299.08 7398.77 17499.57 3566.26 37999.84 12598.71 6499.95 1999.54 92
gg-mvs-nofinetune92.37 33491.20 33995.85 32295.80 37392.38 32999.31 2681.84 37999.75 591.83 36899.74 1268.29 37499.02 35487.15 35997.12 34696.16 362
test-mter92.33 33591.76 33894.04 34396.53 36484.62 36994.05 35592.39 36594.00 31294.12 35895.07 35865.63 38199.67 24795.87 24498.18 31997.82 332
IB-MVS91.63 1992.24 33690.90 34096.27 31497.22 35591.24 34594.36 35093.33 36292.37 33292.24 36794.58 36766.20 38099.89 6293.16 31694.63 36797.66 342
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
TESTMET0.1,192.19 33791.77 33793.46 35096.48 36682.80 37494.05 35591.52 36894.45 30194.00 36194.88 36466.65 37899.56 29195.78 24998.11 32598.02 325
PAPM91.88 33890.34 34196.51 30998.06 32192.56 32492.44 36697.17 32586.35 36390.38 37096.01 34586.61 31799.21 34770.65 37595.43 36397.75 338
PVSNet_089.98 2191.15 33990.30 34293.70 34897.72 33584.34 37290.24 36897.42 31890.20 35293.79 36293.09 37190.90 29298.89 36286.57 36172.76 37597.87 331
EGC-MVSNET85.24 34080.54 34399.34 7299.77 2799.20 3499.08 5899.29 16012.08 37620.84 37799.42 6297.55 11399.85 10997.08 15599.72 13398.96 253
test_method79.78 34179.50 34480.62 35780.21 38045.76 38270.82 37198.41 29031.08 37580.89 37697.71 30084.85 33197.37 37191.51 34080.03 37498.75 287
tmp_tt78.77 34278.73 34578.90 35858.45 38174.76 38194.20 35278.26 38139.16 37486.71 37492.82 37280.50 35275.19 37786.16 36292.29 37186.74 372
cdsmvs_eth3d_5k24.66 34332.88 3460.00 3610.00 3840.00 3850.00 37299.10 2100.00 3790.00 38097.58 30899.21 100.00 3800.00 3780.00 3780.00 376
testmvs17.12 34420.53 3476.87 36012.05 3824.20 38493.62 3616.73 3834.62 37810.41 37824.33 3758.28 3833.56 3799.69 37715.07 37612.86 375
test12317.04 34520.11 3487.82 35910.25 3834.91 38394.80 3364.47 3844.93 37710.00 37924.28 3769.69 3823.64 37810.14 37612.43 37714.92 374
pcd_1.5k_mvsjas8.17 34610.90 3490.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 37998.07 730.00 3800.00 3780.00 3780.00 376
ab-mvs-re8.12 34710.83 3500.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 38097.48 3140.00 3840.00 3800.00 3780.00 3780.00 376
test_blank0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
uanet_test0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
DCPMVS0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
sosnet-low-res0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
sosnet0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
uncertanet0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
Regformer0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
uanet0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
FOURS199.73 3599.67 299.43 1199.54 6499.43 3399.26 95
MSC_two_6792asdad99.32 7898.43 29798.37 11198.86 25299.89 6297.14 15099.60 17899.71 32
PC_three_145293.27 32099.40 6698.54 23498.22 6197.00 37295.17 26499.45 22099.49 111
No_MVS99.32 7898.43 29798.37 11198.86 25299.89 6297.14 15099.60 17899.71 32
test_one_060199.39 12399.20 3499.31 14598.49 10998.66 18599.02 13597.64 105
eth-test20.00 384
eth-test0.00 384
ZD-MVS99.01 20498.84 7599.07 21494.10 30998.05 24298.12 27496.36 18699.86 9792.70 32699.19 259
RE-MVS-def98.58 9699.20 16199.38 898.48 11999.30 15398.64 9898.95 14098.96 15697.75 9696.56 20499.39 22799.45 134
IU-MVS99.49 9999.15 4798.87 24792.97 32499.41 6396.76 18599.62 17199.66 44
OPU-MVS98.82 14898.59 28098.30 11698.10 15398.52 23798.18 6598.75 36494.62 27699.48 21799.41 148
test_241102_TWO99.30 15398.03 13999.26 9599.02 13597.51 11999.88 7196.91 16899.60 17899.66 44
test_241102_ONE99.49 9999.17 3999.31 14597.98 14199.66 2898.90 17098.36 5099.48 312
9.1497.78 18399.07 19297.53 21599.32 14095.53 27498.54 20598.70 20997.58 11099.76 20494.32 28999.46 218
save fliter99.11 18397.97 14996.53 27499.02 22698.24 123
test_0728_THIRD98.17 13199.08 11799.02 13597.89 8699.88 7197.07 15699.71 13899.70 37
test_0728_SECOND99.60 1199.50 9299.23 2698.02 16399.32 14099.88 7196.99 16299.63 16899.68 40
test072699.50 9299.21 2898.17 14799.35 12797.97 14299.26 9599.06 12397.61 108
GSMVS98.81 276
test_part299.36 13199.10 6099.05 124
sam_mvs184.74 33398.81 276
sam_mvs84.29 339
ambc98.24 21798.82 24095.97 23698.62 9799.00 23199.27 9199.21 9796.99 15199.50 30896.55 20799.50 21599.26 202
MTGPAbinary99.20 183
test_post197.59 20920.48 37883.07 34599.66 25894.16 290
test_post21.25 37783.86 34199.70 231
patchmatchnet-post98.77 19884.37 33699.85 109
GG-mvs-BLEND94.76 33894.54 37592.13 33399.31 2680.47 38088.73 37391.01 37367.59 37798.16 37082.30 37094.53 36893.98 370
MTMP97.93 17291.91 367
gm-plane-assit94.83 37481.97 37688.07 36194.99 36199.60 27891.76 334
test9_res93.28 31599.15 26499.38 167
TEST998.71 25698.08 13795.96 29999.03 22391.40 34295.85 33597.53 31096.52 17799.76 204
test_898.67 26898.01 14495.91 30499.02 22691.64 33795.79 33797.50 31396.47 17999.76 204
agg_prior292.50 32999.16 26299.37 169
agg_prior98.68 26797.99 14599.01 22995.59 33899.77 199
TestCases99.16 10299.50 9298.55 9799.58 4196.80 23298.88 15699.06 12397.65 10299.57 28894.45 28299.61 17699.37 169
test_prior497.97 14995.86 305
test_prior295.74 31096.48 24696.11 33097.63 30695.92 20694.16 29099.20 256
test_prior98.95 13598.69 26597.95 15399.03 22399.59 28299.30 195
旧先验295.76 30988.56 36097.52 27799.66 25894.48 280
新几何295.93 302
新几何198.91 14098.94 21497.76 17098.76 26787.58 36296.75 31498.10 27694.80 23999.78 19392.73 32599.00 28299.20 213
旧先验198.82 24097.45 18798.76 26798.34 25895.50 21999.01 28199.23 208
无先验95.74 31098.74 27289.38 35699.73 22092.38 33199.22 212
原ACMM295.53 316
原ACMM198.35 20798.90 22496.25 22998.83 26092.48 33196.07 33298.10 27695.39 22299.71 22892.61 32898.99 28399.08 231
test22298.92 22096.93 21395.54 31598.78 26685.72 36596.86 31098.11 27594.43 24699.10 27299.23 208
testdata299.79 18292.80 323
segment_acmp97.02 149
testdata98.09 22598.93 21695.40 25398.80 26390.08 35397.45 28398.37 25495.26 22499.70 23193.58 30898.95 28799.17 224
testdata195.44 32196.32 251
test1298.93 13798.58 28197.83 16298.66 27696.53 32095.51 21899.69 23599.13 26799.27 199
plane_prior799.19 16497.87 158
plane_prior698.99 20897.70 17594.90 232
plane_prior599.27 16699.70 23194.42 28499.51 20899.45 134
plane_prior497.98 285
plane_prior397.78 16997.41 19197.79 258
plane_prior297.77 18898.20 128
plane_prior199.05 199
plane_prior97.65 17797.07 24796.72 23799.36 231
n20.00 385
nn0.00 385
door-mid99.57 48
lessismore_v098.97 13399.73 3597.53 18386.71 37599.37 7399.52 4689.93 29799.92 3998.99 4799.72 13399.44 138
LGP-MVS_train99.47 5499.57 6898.97 6699.48 8296.60 24199.10 11599.06 12398.71 3099.83 13995.58 25899.78 10499.62 53
test1198.87 247
door99.41 107
HQP5-MVS96.79 216
HQP-NCC98.67 26896.29 28696.05 26095.55 341
ACMP_Plane98.67 26896.29 28696.05 26095.55 341
BP-MVS92.82 321
HQP4-MVS95.56 34099.54 29799.32 188
HQP3-MVS99.04 22199.26 249
HQP2-MVS93.84 258
NP-MVS98.84 23597.39 19096.84 331
MDTV_nov1_ep13_2view74.92 38097.69 19690.06 35497.75 26185.78 32593.52 30998.69 293
MDTV_nov1_ep1395.22 29697.06 35783.20 37397.74 19296.16 34394.37 30396.99 30098.83 18783.95 34099.53 29993.90 29997.95 331
ACMMP++_ref99.77 108
ACMMP++99.68 151
Test By Simon96.52 177
ITE_SJBPF98.87 14399.22 15598.48 10499.35 12797.50 17898.28 22498.60 22997.64 10599.35 33193.86 30299.27 24698.79 282
DeepMVS_CXcopyleft93.44 35198.24 31094.21 28694.34 35464.28 37391.34 36994.87 36689.45 30292.77 37677.54 37493.14 37093.35 371