LCM-MVSNet | | | 99.93 1 | 99.92 1 | 99.94 1 | 99.99 1 | 99.97 1 | 99.90 1 | 99.89 2 | 99.98 1 | 99.99 1 | 99.96 1 | 99.77 1 | 100.00 1 | 99.81 1 | 100.00 1 | 99.85 7 |
|
UniMVSNet_ETH3D | | | 99.69 2 | 99.69 4 | 99.69 3 | 99.84 14 | 99.34 14 | 99.69 4 | 99.58 28 | 99.90 2 | 99.86 7 | 99.78 5 | 99.58 3 | 99.95 15 | 99.00 33 | 99.95 16 | 99.78 14 |
|
pmmvs6 | | | 99.67 3 | 99.70 3 | 99.60 13 | 99.90 4 | 99.27 20 | 99.53 7 | 99.76 7 | 99.64 12 | 99.84 8 | 99.83 2 | 99.50 5 | 99.87 84 | 99.36 14 | 99.92 34 | 99.64 39 |
|
LTVRE_ROB | | 98.40 1 | 99.67 3 | 99.71 2 | 99.56 24 | 99.85 13 | 99.11 55 | 99.90 1 | 99.78 5 | 99.63 14 | 99.78 10 | 99.67 16 | 99.48 6 | 99.81 159 | 99.30 17 | 99.97 11 | 99.77 16 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
mvs_tets | | | 99.63 5 | 99.67 5 | 99.49 48 | 99.88 7 | 98.61 87 | 99.34 13 | 99.71 10 | 99.27 43 | 99.90 4 | 99.74 8 | 99.68 2 | 99.97 3 | 99.55 8 | 99.99 5 | 99.88 3 |
|
jajsoiax | | | 99.58 6 | 99.61 7 | 99.48 50 | 99.87 10 | 98.61 87 | 99.28 27 | 99.66 18 | 99.09 65 | 99.89 6 | 99.68 14 | 99.53 4 | 99.97 3 | 99.50 10 | 99.99 5 | 99.87 4 |
|
ANet_high | | | 99.57 7 | 99.67 5 | 99.28 79 | 99.89 6 | 98.09 127 | 99.14 40 | 99.93 1 | 99.82 3 | 99.93 2 | 99.81 3 | 99.17 12 | 99.94 23 | 99.31 16 | 100.00 1 | 99.82 9 |
|
v7n | | | 99.53 8 | 99.57 8 | 99.41 60 | 99.88 7 | 98.54 96 | 99.45 9 | 99.61 24 | 99.66 11 | 99.68 19 | 99.66 17 | 98.44 40 | 99.95 15 | 99.73 2 | 99.96 14 | 99.75 22 |
|
test_djsdf | | | 99.52 9 | 99.51 9 | 99.53 36 | 99.86 11 | 98.74 76 | 99.39 11 | 99.56 42 | 99.11 56 | 99.70 15 | 99.73 10 | 99.00 15 | 99.97 3 | 99.26 18 | 99.98 9 | 99.89 2 |
|
anonymousdsp | | | 99.51 10 | 99.47 12 | 99.62 6 | 99.88 7 | 99.08 59 | 99.34 13 | 99.69 14 | 98.93 79 | 99.65 22 | 99.72 11 | 98.93 19 | 99.95 15 | 99.11 27 | 100.00 1 | 99.82 9 |
|
UA-Net | | | 99.47 11 | 99.40 14 | 99.70 2 | 99.49 84 | 99.29 17 | 99.80 3 | 99.72 9 | 99.82 3 | 99.04 111 | 99.81 3 | 98.05 67 | 99.96 8 | 98.85 41 | 99.99 5 | 99.86 6 |
|
PS-MVSNAJss | | | 99.46 12 | 99.49 10 | 99.35 69 | 99.90 4 | 98.15 123 | 99.20 32 | 99.65 19 | 99.48 24 | 99.92 3 | 99.71 12 | 98.07 64 | 99.96 8 | 99.53 9 | 100.00 1 | 99.93 1 |
|
pm-mvs1 | | | 99.44 13 | 99.48 11 | 99.33 74 | 99.80 17 | 98.63 84 | 99.29 23 | 99.63 21 | 99.30 41 | 99.65 22 | 99.60 25 | 99.16 14 | 99.82 146 | 99.07 29 | 99.83 62 | 99.56 71 |
|
TransMVSNet (Re) | | | 99.44 13 | 99.47 12 | 99.36 64 | 99.80 17 | 98.58 91 | 99.27 29 | 99.57 35 | 99.39 32 | 99.75 12 | 99.62 21 | 99.17 12 | 99.83 136 | 99.06 30 | 99.62 154 | 99.66 34 |
|
DTE-MVSNet | | | 99.43 15 | 99.35 17 | 99.66 4 | 99.71 30 | 99.30 16 | 99.31 18 | 99.51 57 | 99.64 12 | 99.56 28 | 99.46 43 | 98.23 52 | 99.97 3 | 98.78 45 | 99.93 25 | 99.72 25 |
|
TDRefinement | | | 99.42 16 | 99.38 15 | 99.55 26 | 99.76 22 | 99.33 15 | 99.68 5 | 99.71 10 | 99.38 33 | 99.53 33 | 99.61 23 | 98.64 28 | 99.80 168 | 98.24 75 | 99.84 56 | 99.52 93 |
|
PEN-MVS | | | 99.41 17 | 99.34 19 | 99.62 6 | 99.73 24 | 99.14 48 | 99.29 23 | 99.54 50 | 99.62 17 | 99.56 28 | 99.42 49 | 98.16 60 | 99.96 8 | 98.78 45 | 99.93 25 | 99.77 16 |
|
nrg030 | | | 99.40 18 | 99.35 17 | 99.54 29 | 99.58 51 | 99.13 51 | 98.98 56 | 99.48 69 | 99.68 9 | 99.46 43 | 99.26 69 | 98.62 29 | 99.73 223 | 99.17 26 | 99.92 34 | 99.76 20 |
|
PS-CasMVS | | | 99.40 18 | 99.33 20 | 99.62 6 | 99.71 30 | 99.10 56 | 99.29 23 | 99.53 53 | 99.53 23 | 99.46 43 | 99.41 51 | 98.23 52 | 99.95 15 | 98.89 39 | 99.95 16 | 99.81 11 |
|
MIMVSNet1 | | | 99.38 20 | 99.32 21 | 99.55 26 | 99.86 11 | 99.19 34 | 99.41 10 | 99.59 26 | 99.59 20 | 99.71 14 | 99.57 27 | 97.12 135 | 99.90 49 | 99.21 23 | 99.87 52 | 99.54 83 |
|
OurMVSNet-221017-0 | | | 99.37 21 | 99.31 22 | 99.53 36 | 99.91 3 | 98.98 61 | 99.63 6 | 99.58 28 | 99.44 29 | 99.78 10 | 99.76 6 | 96.39 178 | 99.92 35 | 99.44 13 | 99.92 34 | 99.68 31 |
|
Vis-MVSNet |  | | 99.34 22 | 99.36 16 | 99.27 82 | 99.73 24 | 98.26 111 | 99.17 37 | 99.78 5 | 99.11 56 | 99.27 73 | 99.48 41 | 98.82 21 | 99.95 15 | 98.94 35 | 99.93 25 | 99.59 55 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
WR-MVS_H | | | 99.33 23 | 99.22 27 | 99.65 5 | 99.71 30 | 99.24 23 | 99.32 15 | 99.55 46 | 99.46 27 | 99.50 39 | 99.34 60 | 97.30 124 | 99.93 28 | 98.90 37 | 99.93 25 | 99.77 16 |
|
VPA-MVSNet | | | 99.30 24 | 99.30 23 | 99.28 79 | 99.49 84 | 98.36 107 | 99.00 52 | 99.45 80 | 99.63 14 | 99.52 35 | 99.44 48 | 98.25 50 | 99.88 67 | 99.09 28 | 99.84 56 | 99.62 44 |
|
Anonymous20231211 | | | 99.27 25 | 99.27 24 | 99.26 85 | 99.29 122 | 98.18 120 | 99.49 8 | 99.51 57 | 99.70 8 | 99.80 9 | 99.68 14 | 96.84 151 | 99.83 136 | 99.21 23 | 99.91 40 | 99.77 16 |
|
FC-MVSNet-test | | | 99.27 25 | 99.25 25 | 99.34 72 | 99.77 20 | 98.37 106 | 99.30 22 | 99.57 35 | 99.61 19 | 99.40 52 | 99.50 36 | 97.12 135 | 99.85 105 | 99.02 32 | 99.94 21 | 99.80 12 |
|
DIV-MVS_2432*1600 | | | 99.25 27 | 99.18 28 | 99.44 56 | 99.63 48 | 99.06 60 | 98.69 73 | 99.54 50 | 99.31 39 | 99.62 27 | 99.53 33 | 97.36 122 | 99.86 91 | 99.24 22 | 99.71 118 | 99.39 150 |
|
ACMH | | 96.65 7 | 99.25 27 | 99.24 26 | 99.26 85 | 99.72 29 | 98.38 105 | 99.07 46 | 99.55 46 | 98.30 111 | 99.65 22 | 99.45 47 | 99.22 9 | 99.76 208 | 98.44 65 | 99.77 90 | 99.64 39 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
CP-MVSNet | | | 99.21 29 | 99.09 34 | 99.56 24 | 99.65 43 | 98.96 65 | 99.13 41 | 99.34 120 | 99.42 30 | 99.33 62 | 99.26 69 | 97.01 142 | 99.94 23 | 98.74 50 | 99.93 25 | 99.79 13 |
|
TranMVSNet+NR-MVSNet | | | 99.17 30 | 99.07 36 | 99.46 55 | 99.37 110 | 98.87 67 | 98.39 105 | 99.42 92 | 99.42 30 | 99.36 58 | 99.06 101 | 98.38 43 | 99.95 15 | 98.34 72 | 99.90 44 | 99.57 66 |
|
FMVSNet1 | | | 99.17 30 | 99.17 29 | 99.17 94 | 99.55 65 | 98.24 113 | 99.20 32 | 99.44 83 | 99.21 45 | 99.43 47 | 99.55 29 | 97.82 83 | 99.86 91 | 98.42 67 | 99.89 48 | 99.41 141 |
|
FIs | | | 99.14 32 | 99.09 34 | 99.29 77 | 99.70 36 | 98.28 110 | 99.13 41 | 99.52 56 | 99.48 24 | 99.24 80 | 99.41 51 | 96.79 157 | 99.82 146 | 98.69 53 | 99.88 49 | 99.76 20 |
|
XXY-MVS | | | 99.14 32 | 99.15 32 | 99.10 106 | 99.76 22 | 97.74 170 | 98.85 65 | 99.62 22 | 98.48 103 | 99.37 56 | 99.49 39 | 98.75 24 | 99.86 91 | 98.20 78 | 99.80 77 | 99.71 26 |
|
ACMH+ | | 96.62 9 | 99.08 34 | 99.00 39 | 99.33 74 | 99.71 30 | 98.83 70 | 98.60 79 | 99.58 28 | 99.11 56 | 99.53 33 | 99.18 80 | 98.81 22 | 99.67 250 | 96.71 173 | 99.77 90 | 99.50 100 |
|
GeoE | | | 99.05 35 | 98.99 41 | 99.25 87 | 99.44 100 | 98.35 108 | 98.73 70 | 99.56 42 | 98.42 105 | 98.91 136 | 98.81 173 | 98.94 18 | 99.91 45 | 98.35 71 | 99.73 106 | 99.49 104 |
|
Gipuma |  | | 99.03 36 | 99.16 30 | 98.64 171 | 99.94 2 | 98.51 98 | 99.32 15 | 99.75 8 | 99.58 22 | 98.60 179 | 99.62 21 | 98.22 55 | 99.51 306 | 97.70 108 | 99.73 106 | 97.89 315 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
v8 | | | 99.01 37 | 99.16 30 | 98.57 184 | 99.47 94 | 96.31 230 | 98.90 60 | 99.47 75 | 99.03 68 | 99.52 35 | 99.57 27 | 96.93 147 | 99.81 159 | 99.60 4 | 99.98 9 | 99.60 49 |
|
HPM-MVS_fast | | | 99.01 37 | 98.82 49 | 99.57 18 | 99.71 30 | 99.35 11 | 99.00 52 | 99.50 59 | 97.33 190 | 98.94 133 | 98.86 159 | 98.75 24 | 99.82 146 | 97.53 115 | 99.71 118 | 99.56 71 |
|
APDe-MVS | | | 98.99 39 | 98.79 53 | 99.60 13 | 99.21 136 | 99.15 45 | 98.87 62 | 99.48 69 | 97.57 163 | 99.35 59 | 99.24 72 | 97.83 80 | 99.89 58 | 97.88 97 | 99.70 123 | 99.75 22 |
|
abl_6 | | | 98.99 39 | 98.78 54 | 99.61 9 | 99.45 98 | 99.46 3 | 98.60 79 | 99.50 59 | 98.59 96 | 99.24 80 | 99.04 111 | 98.54 34 | 99.89 58 | 96.45 195 | 99.62 154 | 99.50 100 |
|
EG-PatchMatch MVS | | | 98.99 39 | 99.01 38 | 98.94 135 | 99.50 77 | 97.47 184 | 98.04 140 | 99.59 26 | 98.15 128 | 99.40 52 | 99.36 57 | 98.58 32 | 99.76 208 | 98.78 45 | 99.68 134 | 99.59 55 |
|
COLMAP_ROB |  | 96.50 10 | 98.99 39 | 98.85 47 | 99.41 60 | 99.58 51 | 99.10 56 | 98.74 68 | 99.56 42 | 99.09 65 | 99.33 62 | 99.19 78 | 98.40 42 | 99.72 231 | 95.98 220 | 99.76 99 | 99.42 138 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
Baseline_NR-MVSNet | | | 98.98 43 | 98.86 46 | 99.36 64 | 99.82 16 | 98.55 93 | 97.47 203 | 99.57 35 | 99.37 34 | 99.21 84 | 99.61 23 | 96.76 160 | 99.83 136 | 98.06 86 | 99.83 62 | 99.71 26 |
|
v10 | | | 98.97 44 | 99.11 33 | 98.55 189 | 99.44 100 | 96.21 232 | 98.90 60 | 99.55 46 | 98.73 88 | 99.48 40 | 99.60 25 | 96.63 167 | 99.83 136 | 99.70 3 | 99.99 5 | 99.61 48 |
|
DeepC-MVS | | 97.60 4 | 98.97 44 | 98.93 42 | 99.10 106 | 99.35 115 | 97.98 143 | 98.01 146 | 99.46 77 | 97.56 165 | 99.54 30 | 99.50 36 | 98.97 16 | 99.84 122 | 98.06 86 | 99.92 34 | 99.49 104 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
baseline | | | 98.96 46 | 99.02 37 | 98.76 162 | 99.38 108 | 97.26 195 | 98.49 94 | 99.50 59 | 98.86 82 | 99.19 86 | 99.06 101 | 98.23 52 | 99.69 238 | 98.71 52 | 99.76 99 | 99.33 178 |
|
casdiffmvs | | | 98.95 47 | 99.00 39 | 98.81 152 | 99.38 108 | 97.33 190 | 97.82 165 | 99.57 35 | 99.17 53 | 99.35 59 | 99.17 84 | 98.35 47 | 99.69 238 | 98.46 64 | 99.73 106 | 99.41 141 |
|
NR-MVSNet | | | 98.95 47 | 98.82 49 | 99.36 64 | 99.16 154 | 98.72 81 | 99.22 31 | 99.20 170 | 99.10 62 | 99.72 13 | 98.76 181 | 96.38 180 | 99.86 91 | 98.00 91 | 99.82 65 | 99.50 100 |
|
Anonymous20240529 | | | 98.93 49 | 98.87 44 | 99.12 102 | 99.19 143 | 98.22 118 | 99.01 50 | 98.99 225 | 99.25 44 | 99.54 30 | 99.37 54 | 97.04 138 | 99.80 168 | 97.89 94 | 99.52 190 | 99.35 170 |
|
DP-MVS | | | 98.93 49 | 98.81 51 | 99.28 79 | 99.21 136 | 98.45 102 | 98.46 99 | 99.33 125 | 99.63 14 | 99.48 40 | 99.15 90 | 97.23 132 | 99.75 215 | 97.17 130 | 99.66 145 | 99.63 43 |
|
SED-MVS | | | 98.91 51 | 98.72 60 | 99.49 48 | 99.49 84 | 99.17 36 | 98.10 130 | 99.31 132 | 98.03 132 | 99.66 20 | 99.02 115 | 98.36 44 | 99.88 67 | 96.91 149 | 99.62 154 | 99.41 141 |
|
ACMM | | 96.08 12 | 98.91 51 | 98.73 58 | 99.48 50 | 99.55 65 | 99.14 48 | 98.07 134 | 99.37 104 | 97.62 158 | 99.04 111 | 98.96 134 | 98.84 20 | 99.79 183 | 97.43 119 | 99.65 146 | 99.49 104 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
tfpnnormal | | | 98.90 53 | 98.90 43 | 98.91 139 | 99.67 40 | 97.82 162 | 99.00 52 | 99.44 83 | 99.45 28 | 99.51 38 | 99.24 72 | 98.20 57 | 99.86 91 | 95.92 222 | 99.69 129 | 99.04 233 |
|
MTAPA | | | 98.88 54 | 98.64 72 | 99.61 9 | 99.67 40 | 99.36 9 | 98.43 102 | 99.20 170 | 98.83 85 | 98.89 140 | 98.90 146 | 96.98 145 | 99.92 35 | 97.16 131 | 99.70 123 | 99.56 71 |
|
VPNet | | | 98.87 55 | 98.83 48 | 99.01 127 | 99.70 36 | 97.62 179 | 98.43 102 | 99.35 114 | 99.47 26 | 99.28 71 | 99.05 108 | 96.72 163 | 99.82 146 | 98.09 84 | 99.36 218 | 99.59 55 |
|
UniMVSNet (Re) | | | 98.87 55 | 98.71 62 | 99.35 69 | 99.24 129 | 98.73 79 | 97.73 175 | 99.38 100 | 98.93 79 | 99.12 93 | 98.73 184 | 96.77 158 | 99.86 91 | 98.63 55 | 99.80 77 | 99.46 122 |
|
UniMVSNet_NR-MVSNet | | | 98.86 57 | 98.68 67 | 99.40 62 | 99.17 152 | 98.74 76 | 97.68 179 | 99.40 96 | 99.14 54 | 99.06 104 | 98.59 214 | 96.71 164 | 99.93 28 | 98.57 58 | 99.77 90 | 99.53 89 |
|
DROMVSNet | | | 98.85 58 | 98.81 51 | 98.97 130 | 99.08 173 | 98.61 87 | 98.99 55 | 99.81 4 | 98.54 102 | 97.73 243 | 98.07 265 | 98.50 36 | 99.88 67 | 98.81 44 | 99.72 113 | 98.42 297 |
|
APD-MVS_3200maxsize | | | 98.84 59 | 98.61 77 | 99.53 36 | 99.19 143 | 99.27 20 | 98.49 94 | 99.33 125 | 98.64 90 | 99.03 114 | 98.98 129 | 97.89 77 | 99.85 105 | 96.54 189 | 99.42 209 | 99.46 122 |
|
PM-MVS | | | 98.82 60 | 98.72 60 | 99.12 102 | 99.64 46 | 98.54 96 | 97.98 149 | 99.68 15 | 97.62 158 | 99.34 61 | 99.18 80 | 97.54 104 | 99.77 201 | 97.79 100 | 99.74 103 | 99.04 233 |
|
DU-MVS | | | 98.82 60 | 98.63 73 | 99.39 63 | 99.16 154 | 98.74 76 | 97.54 195 | 99.25 159 | 98.84 84 | 99.06 104 | 98.76 181 | 96.76 160 | 99.93 28 | 98.57 58 | 99.77 90 | 99.50 100 |
|
SR-MVS-dyc-post | | | 98.81 62 | 98.55 83 | 99.57 18 | 99.20 140 | 99.38 5 | 98.48 97 | 99.30 141 | 98.64 90 | 98.95 127 | 98.96 134 | 97.49 113 | 99.86 91 | 96.56 185 | 99.39 213 | 99.45 126 |
|
3Dnovator | | 98.27 2 | 98.81 62 | 98.73 58 | 99.05 120 | 98.76 236 | 97.81 164 | 99.25 30 | 99.30 141 | 98.57 100 | 98.55 189 | 99.33 62 | 97.95 76 | 99.90 49 | 97.16 131 | 99.67 140 | 99.44 131 |
|
zzz-MVS | | | 98.79 64 | 98.52 86 | 99.61 9 | 99.67 40 | 99.36 9 | 97.33 212 | 99.20 170 | 98.83 85 | 98.89 140 | 98.90 146 | 96.98 145 | 99.92 35 | 97.16 131 | 99.70 123 | 99.56 71 |
|
HPM-MVS |  | | 98.79 64 | 98.53 85 | 99.59 17 | 99.65 43 | 99.29 17 | 99.16 38 | 99.43 89 | 96.74 228 | 98.61 177 | 98.38 237 | 98.62 29 | 99.87 84 | 96.47 193 | 99.67 140 | 99.59 55 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
SteuartSystems-ACMMP | | | 98.79 64 | 98.54 84 | 99.54 29 | 99.73 24 | 99.16 40 | 98.23 116 | 99.31 132 | 97.92 139 | 98.90 137 | 98.90 146 | 98.00 70 | 99.88 67 | 96.15 214 | 99.72 113 | 99.58 61 |
Skip Steuart: Steuart Systems R&D Blog. |
V42 | | | 98.78 67 | 98.78 54 | 98.76 162 | 99.44 100 | 97.04 208 | 98.27 113 | 99.19 175 | 97.87 143 | 99.25 79 | 99.16 86 | 96.84 151 | 99.78 195 | 99.21 23 | 99.84 56 | 99.46 122 |
|
test20.03 | | | 98.78 67 | 98.77 56 | 98.78 159 | 99.46 95 | 97.20 201 | 97.78 167 | 99.24 164 | 99.04 67 | 99.41 49 | 98.90 146 | 97.65 94 | 99.76 208 | 97.70 108 | 99.79 82 | 99.39 150 |
|
DVP-MVS | | | 98.77 69 | 98.52 86 | 99.52 41 | 99.50 77 | 99.21 26 | 98.02 143 | 98.84 248 | 97.97 135 | 99.08 101 | 99.02 115 | 97.61 99 | 99.88 67 | 96.99 143 | 99.63 151 | 99.48 112 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
test1172 | | | 98.76 70 | 98.49 93 | 99.57 18 | 99.18 150 | 99.37 8 | 98.39 105 | 99.31 132 | 98.43 104 | 98.90 137 | 98.88 155 | 97.49 113 | 99.86 91 | 96.43 197 | 99.37 217 | 99.48 112 |
|
test_0402 | | | 98.76 70 | 98.71 62 | 98.93 136 | 99.56 62 | 98.14 125 | 98.45 101 | 99.34 120 | 99.28 42 | 98.95 127 | 98.91 143 | 98.34 48 | 99.79 183 | 95.63 239 | 99.91 40 | 98.86 261 |
|
ACMMP_NAP | | | 98.75 72 | 98.48 95 | 99.57 18 | 99.58 51 | 99.29 17 | 97.82 165 | 99.25 159 | 96.94 219 | 98.78 158 | 99.12 94 | 98.02 68 | 99.84 122 | 97.13 135 | 99.67 140 | 99.59 55 |
|
SixPastTwentyTwo | | | 98.75 72 | 98.62 74 | 99.16 97 | 99.83 15 | 97.96 148 | 99.28 27 | 98.20 292 | 99.37 34 | 99.70 15 | 99.65 19 | 92.65 274 | 99.93 28 | 99.04 31 | 99.84 56 | 99.60 49 |
|
ACMMP |  | | 98.75 72 | 98.50 90 | 99.52 41 | 99.56 62 | 99.16 40 | 98.87 62 | 99.37 104 | 97.16 210 | 98.82 155 | 99.01 122 | 97.71 90 | 99.87 84 | 96.29 206 | 99.69 129 | 99.54 83 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
Regformer-4 | | | 98.73 75 | 98.68 67 | 98.89 142 | 99.02 186 | 97.22 198 | 97.17 227 | 99.06 205 | 99.21 45 | 99.17 91 | 98.85 162 | 97.45 116 | 99.86 91 | 98.48 63 | 99.70 123 | 99.60 49 |
|
XVS | | | 98.72 76 | 98.45 101 | 99.53 36 | 99.46 95 | 99.21 26 | 98.65 74 | 99.34 120 | 98.62 94 | 97.54 258 | 98.63 207 | 97.50 110 | 99.83 136 | 96.79 162 | 99.53 187 | 99.56 71 |
|
SR-MVS | | | 98.71 77 | 98.43 105 | 99.57 18 | 99.18 150 | 99.35 11 | 98.36 108 | 99.29 148 | 98.29 114 | 98.88 144 | 98.85 162 | 97.53 106 | 99.87 84 | 96.14 215 | 99.31 226 | 99.48 112 |
|
HFP-MVS | | | 98.71 77 | 98.44 103 | 99.51 45 | 99.49 84 | 99.16 40 | 98.52 88 | 99.31 132 | 97.47 172 | 98.58 183 | 98.50 224 | 97.97 74 | 99.85 105 | 96.57 182 | 99.59 165 | 99.53 89 |
|
LPG-MVS_test | | | 98.71 77 | 98.46 99 | 99.47 53 | 99.57 55 | 98.97 62 | 98.23 116 | 99.48 69 | 96.60 233 | 99.10 98 | 99.06 101 | 98.71 26 | 99.83 136 | 95.58 242 | 99.78 86 | 99.62 44 |
|
ACMMPR | | | 98.70 80 | 98.42 107 | 99.54 29 | 99.52 72 | 99.14 48 | 98.52 88 | 99.31 132 | 97.47 172 | 98.56 187 | 98.54 218 | 97.75 87 | 99.88 67 | 96.57 182 | 99.59 165 | 99.58 61 |
|
CP-MVS | | | 98.70 80 | 98.42 107 | 99.52 41 | 99.36 111 | 99.12 53 | 98.72 71 | 99.36 108 | 97.54 167 | 98.30 207 | 98.40 233 | 97.86 79 | 99.89 58 | 96.53 190 | 99.72 113 | 99.56 71 |
|
Anonymous20240521 | | | 98.69 82 | 98.87 44 | 98.16 224 | 99.77 20 | 95.11 263 | 99.08 44 | 99.44 83 | 99.34 37 | 99.33 62 | 99.55 29 | 94.10 252 | 99.94 23 | 99.25 20 | 99.96 14 | 99.42 138 |
|
region2R | | | 98.69 82 | 98.40 109 | 99.54 29 | 99.53 70 | 99.17 36 | 98.52 88 | 99.31 132 | 97.46 177 | 98.44 197 | 98.51 221 | 97.83 80 | 99.88 67 | 96.46 194 | 99.58 171 | 99.58 61 |
|
EI-MVSNet-UG-set | | | 98.69 82 | 98.71 62 | 98.62 176 | 99.10 166 | 96.37 227 | 97.23 219 | 98.87 241 | 99.20 48 | 99.19 86 | 98.99 125 | 97.30 124 | 99.85 105 | 98.77 48 | 99.79 82 | 99.65 38 |
|
3Dnovator+ | | 97.89 3 | 98.69 82 | 98.51 88 | 99.24 89 | 98.81 231 | 98.40 103 | 99.02 49 | 99.19 175 | 98.99 71 | 98.07 222 | 99.28 65 | 97.11 137 | 99.84 122 | 96.84 160 | 99.32 224 | 99.47 120 |
|
ZNCC-MVS | | | 98.68 86 | 98.40 109 | 99.54 29 | 99.57 55 | 99.21 26 | 98.46 99 | 99.29 148 | 97.28 196 | 98.11 219 | 98.39 235 | 98.00 70 | 99.87 84 | 96.86 159 | 99.64 148 | 99.55 79 |
|
EI-MVSNet-Vis-set | | | 98.68 86 | 98.70 65 | 98.63 174 | 99.09 169 | 96.40 226 | 97.23 219 | 98.86 246 | 99.20 48 | 99.18 90 | 98.97 131 | 97.29 126 | 99.85 105 | 98.72 51 | 99.78 86 | 99.64 39 |
|
CSCG | | | 98.68 86 | 98.50 90 | 99.20 92 | 99.45 98 | 98.63 84 | 98.56 84 | 99.57 35 | 97.87 143 | 98.85 148 | 98.04 267 | 97.66 93 | 99.84 122 | 96.72 171 | 99.81 69 | 99.13 222 |
|
PGM-MVS | | | 98.66 89 | 98.37 115 | 99.55 26 | 99.53 70 | 99.18 35 | 98.23 116 | 99.49 67 | 97.01 217 | 98.69 167 | 98.88 155 | 98.00 70 | 99.89 58 | 95.87 226 | 99.59 165 | 99.58 61 |
|
GBi-Net | | | 98.65 90 | 98.47 97 | 99.17 94 | 98.90 210 | 98.24 113 | 99.20 32 | 99.44 83 | 98.59 96 | 98.95 127 | 99.55 29 | 94.14 248 | 99.86 91 | 97.77 102 | 99.69 129 | 99.41 141 |
|
test1 | | | 98.65 90 | 98.47 97 | 99.17 94 | 98.90 210 | 98.24 113 | 99.20 32 | 99.44 83 | 98.59 96 | 98.95 127 | 99.55 29 | 94.14 248 | 99.86 91 | 97.77 102 | 99.69 129 | 99.41 141 |
|
LCM-MVSNet-Re | | | 98.64 92 | 98.48 95 | 99.11 104 | 98.85 221 | 98.51 98 | 98.49 94 | 99.83 3 | 98.37 106 | 99.69 17 | 99.46 43 | 98.21 56 | 99.92 35 | 94.13 279 | 99.30 229 | 98.91 256 |
|
mPP-MVS | | | 98.64 92 | 98.34 119 | 99.54 29 | 99.54 68 | 99.17 36 | 98.63 76 | 99.24 164 | 97.47 172 | 98.09 221 | 98.68 193 | 97.62 98 | 99.89 58 | 96.22 209 | 99.62 154 | 99.57 66 |
|
TSAR-MVS + MP. | | | 98.63 94 | 98.49 93 | 99.06 118 | 99.64 46 | 97.90 153 | 98.51 92 | 98.94 228 | 96.96 218 | 99.24 80 | 98.89 154 | 97.83 80 | 99.81 159 | 96.88 156 | 99.49 201 | 99.48 112 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
LS3D | | | 98.63 94 | 98.38 114 | 99.36 64 | 97.25 341 | 99.38 5 | 99.12 43 | 99.32 127 | 99.21 45 | 98.44 197 | 98.88 155 | 97.31 123 | 99.80 168 | 96.58 180 | 99.34 222 | 98.92 253 |
|
RPSCF | | | 98.62 96 | 98.36 116 | 99.42 57 | 99.65 43 | 99.42 4 | 98.55 85 | 99.57 35 | 97.72 152 | 98.90 137 | 99.26 69 | 96.12 187 | 99.52 302 | 95.72 233 | 99.71 118 | 99.32 180 |
|
GST-MVS | | | 98.61 97 | 98.30 124 | 99.52 41 | 99.51 74 | 99.20 32 | 98.26 114 | 99.25 159 | 97.44 181 | 98.67 169 | 98.39 235 | 97.68 91 | 99.85 105 | 96.00 218 | 99.51 193 | 99.52 93 |
|
Regformer-3 | | | 98.61 97 | 98.61 77 | 98.63 174 | 99.02 186 | 96.53 224 | 97.17 227 | 98.84 248 | 99.13 55 | 99.10 98 | 98.85 162 | 97.24 131 | 99.79 183 | 98.41 68 | 99.70 123 | 99.57 66 |
|
v1192 | | | 98.60 99 | 98.66 70 | 98.41 204 | 99.27 124 | 95.88 239 | 97.52 197 | 99.36 108 | 97.41 183 | 99.33 62 | 99.20 77 | 96.37 181 | 99.82 146 | 99.57 6 | 99.92 34 | 99.55 79 |
|
v1144 | | | 98.60 99 | 98.66 70 | 98.41 204 | 99.36 111 | 95.90 238 | 97.58 191 | 99.34 120 | 97.51 168 | 99.27 73 | 99.15 90 | 96.34 183 | 99.80 168 | 99.47 12 | 99.93 25 | 99.51 96 |
|
Regformer-2 | | | 98.60 99 | 98.46 99 | 99.02 126 | 98.85 221 | 97.71 172 | 96.91 243 | 99.09 201 | 98.98 73 | 99.01 115 | 98.64 203 | 97.37 121 | 99.84 122 | 97.75 107 | 99.57 175 | 99.52 93 |
|
DPE-MVS |  | | 98.59 102 | 98.26 128 | 99.57 18 | 99.27 124 | 99.15 45 | 97.01 234 | 99.39 98 | 97.67 154 | 99.44 46 | 98.99 125 | 97.53 106 | 99.89 58 | 95.40 246 | 99.68 134 | 99.66 34 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
MP-MVS-pluss | | | 98.57 103 | 98.23 132 | 99.60 13 | 99.69 38 | 99.35 11 | 97.16 229 | 99.38 100 | 94.87 281 | 98.97 124 | 98.99 125 | 98.01 69 | 99.88 67 | 97.29 125 | 99.70 123 | 99.58 61 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
OPM-MVS | | | 98.56 104 | 98.32 123 | 99.25 87 | 99.41 106 | 98.73 79 | 97.13 231 | 99.18 179 | 97.10 213 | 98.75 163 | 98.92 142 | 98.18 58 | 99.65 263 | 96.68 175 | 99.56 180 | 99.37 160 |
|
VDD-MVS | | | 98.56 104 | 98.39 112 | 99.07 113 | 99.13 161 | 98.07 133 | 98.59 81 | 97.01 322 | 99.59 20 | 99.11 95 | 99.27 67 | 94.82 231 | 99.79 183 | 98.34 72 | 99.63 151 | 99.34 172 |
|
v2v482 | | | 98.56 104 | 98.62 74 | 98.37 208 | 99.42 105 | 95.81 242 | 97.58 191 | 99.16 188 | 97.90 141 | 99.28 71 | 99.01 122 | 95.98 196 | 99.79 183 | 99.33 15 | 99.90 44 | 99.51 96 |
|
XVG-ACMP-BASELINE | | | 98.56 104 | 98.34 119 | 99.22 91 | 99.54 68 | 98.59 90 | 97.71 176 | 99.46 77 | 97.25 199 | 98.98 121 | 98.99 125 | 97.54 104 | 99.84 122 | 95.88 223 | 99.74 103 | 99.23 202 |
|
Regformer-1 | | | 98.55 108 | 98.44 103 | 98.87 144 | 98.85 221 | 97.29 192 | 96.91 243 | 98.99 225 | 98.97 74 | 98.99 119 | 98.64 203 | 97.26 130 | 99.81 159 | 97.79 100 | 99.57 175 | 99.51 96 |
|
v1240 | | | 98.55 108 | 98.62 74 | 98.32 211 | 99.22 134 | 95.58 245 | 97.51 199 | 99.45 80 | 97.16 210 | 99.45 45 | 99.24 72 | 96.12 187 | 99.85 105 | 99.60 4 | 99.88 49 | 99.55 79 |
|
IterMVS-LS | | | 98.55 108 | 98.70 65 | 98.09 226 | 99.48 92 | 94.73 269 | 97.22 222 | 99.39 98 | 98.97 74 | 99.38 54 | 99.31 64 | 96.00 192 | 99.93 28 | 98.58 56 | 99.97 11 | 99.60 49 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
v144192 | | | 98.54 111 | 98.57 82 | 98.45 201 | 99.21 136 | 95.98 236 | 97.63 184 | 99.36 108 | 97.15 212 | 99.32 68 | 99.18 80 | 95.84 203 | 99.84 122 | 99.50 10 | 99.91 40 | 99.54 83 |
|
v1921920 | | | 98.54 111 | 98.60 79 | 98.38 207 | 99.20 140 | 95.76 244 | 97.56 193 | 99.36 108 | 97.23 205 | 99.38 54 | 99.17 84 | 96.02 190 | 99.84 122 | 99.57 6 | 99.90 44 | 99.54 83 |
|
SF-MVS | | | 98.53 113 | 98.27 127 | 99.32 76 | 99.31 118 | 98.75 75 | 98.19 120 | 99.41 93 | 96.77 227 | 98.83 151 | 98.90 146 | 97.80 84 | 99.82 146 | 95.68 236 | 99.52 190 | 99.38 157 |
|
XVG-OURS | | | 98.53 113 | 98.34 119 | 99.11 104 | 99.50 77 | 98.82 72 | 95.97 287 | 99.50 59 | 97.30 194 | 99.05 109 | 98.98 129 | 99.35 7 | 99.32 331 | 95.72 233 | 99.68 134 | 99.18 214 |
|
UGNet | | | 98.53 113 | 98.45 101 | 98.79 156 | 97.94 313 | 96.96 212 | 99.08 44 | 98.54 277 | 99.10 62 | 96.82 297 | 99.47 42 | 96.55 170 | 99.84 122 | 98.56 61 | 99.94 21 | 99.55 79 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
#test# | | | 98.50 116 | 98.16 142 | 99.51 45 | 99.49 84 | 99.16 40 | 98.03 141 | 99.31 132 | 96.30 245 | 98.58 183 | 98.50 224 | 97.97 74 | 99.85 105 | 95.68 236 | 99.59 165 | 99.53 89 |
|
XVG-OURS-SEG-HR | | | 98.49 117 | 98.28 126 | 99.14 100 | 99.49 84 | 98.83 70 | 96.54 261 | 99.48 69 | 97.32 192 | 99.11 95 | 98.61 212 | 99.33 8 | 99.30 334 | 96.23 208 | 98.38 302 | 99.28 192 |
|
FMVSNet2 | | | 98.49 117 | 98.40 109 | 98.75 164 | 98.90 210 | 97.14 207 | 98.61 78 | 99.13 195 | 98.59 96 | 99.19 86 | 99.28 65 | 94.14 248 | 99.82 146 | 97.97 92 | 99.80 77 | 99.29 191 |
|
pmmvs-eth3d | | | 98.47 119 | 98.34 119 | 98.86 146 | 99.30 121 | 97.76 167 | 97.16 229 | 99.28 150 | 95.54 265 | 99.42 48 | 99.19 78 | 97.27 127 | 99.63 268 | 97.89 94 | 99.97 11 | 99.20 207 |
|
MP-MVS |  | | 98.46 120 | 98.09 149 | 99.54 29 | 99.57 55 | 99.22 25 | 98.50 93 | 99.19 175 | 97.61 160 | 97.58 254 | 98.66 198 | 97.40 119 | 99.88 67 | 94.72 259 | 99.60 163 | 99.54 83 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
v148 | | | 98.45 121 | 98.60 79 | 98.00 235 | 99.44 100 | 94.98 264 | 97.44 206 | 99.06 205 | 98.30 111 | 99.32 68 | 98.97 131 | 96.65 166 | 99.62 270 | 98.37 69 | 99.85 54 | 99.39 150 |
|
xxxxxxxxxxxxxcwj | | | 98.44 122 | 98.24 130 | 99.06 118 | 99.11 162 | 97.97 144 | 96.53 262 | 99.54 50 | 98.24 117 | 98.83 151 | 98.90 146 | 97.80 84 | 99.82 146 | 95.68 236 | 99.52 190 | 99.38 157 |
|
AllTest | | | 98.44 122 | 98.20 135 | 99.16 97 | 99.50 77 | 98.55 93 | 98.25 115 | 99.58 28 | 96.80 225 | 98.88 144 | 99.06 101 | 97.65 94 | 99.57 287 | 94.45 266 | 99.61 161 | 99.37 160 |
|
VNet | | | 98.42 124 | 98.30 124 | 98.79 156 | 98.79 235 | 97.29 192 | 98.23 116 | 98.66 271 | 99.31 39 | 98.85 148 | 98.80 174 | 94.80 234 | 99.78 195 | 98.13 80 | 99.13 258 | 99.31 184 |
|
ab-mvs | | | 98.41 125 | 98.36 116 | 98.59 180 | 99.19 143 | 97.23 196 | 99.32 15 | 98.81 254 | 97.66 155 | 98.62 175 | 99.40 53 | 96.82 154 | 99.80 168 | 95.88 223 | 99.51 193 | 98.75 277 |
|
ACMP | | 95.32 15 | 98.41 125 | 98.09 149 | 99.36 64 | 99.51 74 | 98.79 74 | 97.68 179 | 99.38 100 | 95.76 262 | 98.81 157 | 98.82 171 | 98.36 44 | 99.82 146 | 94.75 256 | 99.77 90 | 99.48 112 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
SMA-MVS |  | | 98.40 127 | 98.03 156 | 99.51 45 | 99.16 154 | 99.21 26 | 98.05 138 | 99.22 167 | 94.16 297 | 98.98 121 | 99.10 98 | 97.52 108 | 99.79 183 | 96.45 195 | 99.64 148 | 99.53 89 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
MSP-MVS | | | 98.40 127 | 98.00 158 | 99.61 9 | 99.57 55 | 99.25 22 | 98.57 83 | 99.35 114 | 97.55 166 | 99.31 70 | 97.71 286 | 94.61 238 | 99.88 67 | 96.14 215 | 99.19 248 | 99.70 29 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
SD-MVS | | | 98.40 127 | 98.68 67 | 97.54 264 | 98.96 197 | 97.99 139 | 97.88 158 | 99.36 108 | 98.20 123 | 99.63 25 | 99.04 111 | 98.76 23 | 95.33 365 | 96.56 185 | 99.74 103 | 99.31 184 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
EI-MVSNet | | | 98.40 127 | 98.51 88 | 98.04 233 | 99.10 166 | 94.73 269 | 97.20 223 | 98.87 241 | 98.97 74 | 99.06 104 | 99.02 115 | 96.00 192 | 99.80 168 | 98.58 56 | 99.82 65 | 99.60 49 |
|
WR-MVS | | | 98.40 127 | 98.19 137 | 99.03 123 | 99.00 189 | 97.65 176 | 96.85 246 | 98.94 228 | 98.57 100 | 98.89 140 | 98.50 224 | 95.60 209 | 99.85 105 | 97.54 114 | 99.85 54 | 99.59 55 |
|
new-patchmatchnet | | | 98.35 132 | 98.74 57 | 97.18 279 | 99.24 129 | 92.23 322 | 96.42 270 | 99.48 69 | 98.30 111 | 99.69 17 | 99.53 33 | 97.44 117 | 99.82 146 | 98.84 42 | 99.77 90 | 99.49 104 |
|
canonicalmvs | | | 98.34 133 | 98.26 128 | 98.58 181 | 98.46 283 | 97.82 162 | 98.96 57 | 99.46 77 | 99.19 52 | 97.46 265 | 95.46 346 | 98.59 31 | 99.46 315 | 98.08 85 | 98.71 291 | 98.46 292 |
|
testgi | | | 98.32 134 | 98.39 112 | 98.13 225 | 99.57 55 | 95.54 246 | 97.78 167 | 99.49 67 | 97.37 187 | 99.19 86 | 97.65 290 | 98.96 17 | 99.49 308 | 96.50 192 | 98.99 276 | 99.34 172 |
|
DeepPCF-MVS | | 96.93 5 | 98.32 134 | 98.01 157 | 99.23 90 | 98.39 288 | 98.97 62 | 95.03 322 | 99.18 179 | 96.88 223 | 99.33 62 | 98.78 177 | 98.16 60 | 99.28 337 | 96.74 168 | 99.62 154 | 99.44 131 |
|
MVS_111021_LR | | | 98.30 136 | 98.12 147 | 98.83 149 | 99.16 154 | 98.03 137 | 96.09 284 | 99.30 141 | 97.58 162 | 98.10 220 | 98.24 249 | 98.25 50 | 99.34 328 | 96.69 174 | 99.65 146 | 99.12 223 |
|
EPP-MVSNet | | | 98.30 136 | 98.04 155 | 99.07 113 | 99.56 62 | 97.83 159 | 99.29 23 | 98.07 298 | 99.03 68 | 98.59 181 | 99.13 93 | 92.16 278 | 99.90 49 | 96.87 157 | 99.68 134 | 99.49 104 |
|
DeepC-MVS_fast | | 96.85 6 | 98.30 136 | 98.15 144 | 98.75 164 | 98.61 265 | 97.23 196 | 97.76 172 | 99.09 201 | 97.31 193 | 98.75 163 | 98.66 198 | 97.56 103 | 99.64 265 | 96.10 217 | 99.55 182 | 99.39 150 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
PHI-MVS | | | 98.29 139 | 97.95 161 | 99.34 72 | 98.44 285 | 99.16 40 | 98.12 127 | 99.38 100 | 96.01 254 | 98.06 223 | 98.43 231 | 97.80 84 | 99.67 250 | 95.69 235 | 99.58 171 | 99.20 207 |
|
Fast-Effi-MVS+-dtu | | | 98.27 140 | 98.09 149 | 98.81 152 | 98.43 286 | 98.11 126 | 97.61 187 | 99.50 59 | 98.64 90 | 97.39 270 | 97.52 298 | 98.12 63 | 99.95 15 | 96.90 154 | 98.71 291 | 98.38 299 |
|
DELS-MVS | | | 98.27 140 | 98.20 135 | 98.48 198 | 98.86 219 | 96.70 221 | 95.60 306 | 99.20 170 | 97.73 151 | 98.45 196 | 98.71 187 | 97.50 110 | 99.82 146 | 98.21 77 | 99.59 165 | 98.93 252 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
Effi-MVS+-dtu | | | 98.26 142 | 97.90 166 | 99.35 69 | 98.02 309 | 99.49 2 | 98.02 143 | 99.16 188 | 98.29 114 | 97.64 249 | 97.99 269 | 96.44 176 | 99.95 15 | 96.66 176 | 98.93 281 | 98.60 287 |
|
MVSFormer | | | 98.26 142 | 98.43 105 | 97.77 246 | 98.88 216 | 93.89 295 | 99.39 11 | 99.56 42 | 99.11 56 | 98.16 214 | 98.13 256 | 93.81 255 | 99.97 3 | 99.26 18 | 99.57 175 | 99.43 135 |
|
MVS_111021_HR | | | 98.25 144 | 98.08 152 | 98.75 164 | 99.09 169 | 97.46 185 | 95.97 287 | 99.27 153 | 97.60 161 | 97.99 228 | 98.25 248 | 98.15 62 | 99.38 325 | 96.87 157 | 99.57 175 | 99.42 138 |
|
TAMVS | | | 98.24 145 | 98.05 154 | 98.80 154 | 99.07 174 | 97.18 203 | 97.88 158 | 98.81 254 | 96.66 232 | 99.17 91 | 99.21 75 | 94.81 233 | 99.77 201 | 96.96 147 | 99.88 49 | 99.44 131 |
|
diffmvs | | | 98.22 146 | 98.24 130 | 98.17 223 | 99.00 189 | 95.44 251 | 96.38 272 | 99.58 28 | 97.79 149 | 98.53 192 | 98.50 224 | 96.76 160 | 99.74 219 | 97.95 93 | 99.64 148 | 99.34 172 |
|
Anonymous20231206 | | | 98.21 147 | 98.21 134 | 98.20 221 | 99.51 74 | 95.43 252 | 98.13 125 | 99.32 127 | 96.16 248 | 98.93 134 | 98.82 171 | 96.00 192 | 99.83 136 | 97.32 124 | 99.73 106 | 99.36 166 |
|
VDDNet | | | 98.21 147 | 97.95 161 | 99.01 127 | 99.58 51 | 97.74 170 | 99.01 50 | 97.29 318 | 99.67 10 | 98.97 124 | 99.50 36 | 90.45 287 | 99.80 168 | 97.88 97 | 99.20 244 | 99.48 112 |
|
IS-MVSNet | | | 98.19 149 | 97.90 166 | 99.08 110 | 99.57 55 | 97.97 144 | 99.31 18 | 98.32 287 | 99.01 70 | 98.98 121 | 99.03 114 | 91.59 282 | 99.79 183 | 95.49 244 | 99.80 77 | 99.48 112 |
|
MVS_Test | | | 98.18 150 | 98.36 116 | 97.67 251 | 98.48 281 | 94.73 269 | 98.18 121 | 99.02 218 | 97.69 153 | 98.04 226 | 99.11 96 | 97.22 133 | 99.56 290 | 98.57 58 | 98.90 282 | 98.71 280 |
|
TSAR-MVS + GP. | | | 98.18 150 | 97.98 159 | 98.77 161 | 98.71 245 | 97.88 154 | 96.32 275 | 98.66 271 | 96.33 242 | 99.23 83 | 98.51 221 | 97.48 115 | 99.40 321 | 97.16 131 | 99.46 205 | 99.02 236 |
|
CNVR-MVS | | | 98.17 152 | 97.87 168 | 99.07 113 | 98.67 258 | 98.24 113 | 97.01 234 | 98.93 230 | 97.25 199 | 97.62 250 | 98.34 242 | 97.27 127 | 99.57 287 | 96.42 198 | 99.33 223 | 99.39 150 |
|
PVSNet_Blended_VisFu | | | 98.17 152 | 98.15 144 | 98.22 220 | 99.73 24 | 95.15 260 | 97.36 210 | 99.68 15 | 94.45 290 | 98.99 119 | 99.27 67 | 96.87 150 | 99.94 23 | 97.13 135 | 99.91 40 | 99.57 66 |
|
CS-MVS | | | 98.16 154 | 98.22 133 | 97.97 237 | 98.56 273 | 97.01 211 | 98.10 130 | 99.70 13 | 97.45 179 | 97.29 273 | 97.19 312 | 97.72 89 | 99.80 168 | 98.37 69 | 99.62 154 | 97.11 340 |
|
HPM-MVS++ |  | | 98.10 155 | 97.64 185 | 99.48 50 | 99.09 169 | 99.13 51 | 97.52 197 | 98.75 264 | 97.46 177 | 96.90 292 | 97.83 280 | 96.01 191 | 99.84 122 | 95.82 230 | 99.35 220 | 99.46 122 |
|
APD-MVS |  | | 98.10 155 | 97.67 180 | 99.42 57 | 99.11 162 | 98.93 66 | 97.76 172 | 99.28 150 | 94.97 278 | 98.72 166 | 98.77 179 | 97.04 138 | 99.85 105 | 93.79 290 | 99.54 183 | 99.49 104 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
MVP-Stereo | | | 98.08 157 | 97.92 164 | 98.57 184 | 98.96 197 | 96.79 217 | 97.90 157 | 99.18 179 | 96.41 240 | 98.46 195 | 98.95 138 | 95.93 199 | 99.60 277 | 96.51 191 | 98.98 278 | 99.31 184 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
PMMVS2 | | | 98.07 158 | 98.08 152 | 98.04 233 | 99.41 106 | 94.59 275 | 94.59 336 | 99.40 96 | 97.50 169 | 98.82 155 | 98.83 168 | 96.83 153 | 99.84 122 | 97.50 117 | 99.81 69 | 99.71 26 |
|
ETH3D-3000-0.1 | | | 98.03 159 | 97.62 187 | 99.29 77 | 99.11 162 | 98.80 73 | 97.47 203 | 99.32 127 | 95.54 265 | 98.43 200 | 98.62 209 | 96.61 168 | 99.77 201 | 93.95 284 | 99.49 201 | 99.30 187 |
|
ETV-MVS | | | 98.03 159 | 97.86 169 | 98.56 188 | 98.69 253 | 98.07 133 | 97.51 199 | 99.50 59 | 98.10 129 | 97.50 262 | 95.51 344 | 98.41 41 | 99.88 67 | 96.27 207 | 99.24 239 | 97.71 328 |
|
Effi-MVS+ | | | 98.02 161 | 97.82 171 | 98.62 176 | 98.53 278 | 97.19 202 | 97.33 212 | 99.68 15 | 97.30 194 | 96.68 300 | 97.46 303 | 98.56 33 | 99.80 168 | 96.63 178 | 98.20 307 | 98.86 261 |
|
MSLP-MVS++ | | | 98.02 161 | 98.14 146 | 97.64 255 | 98.58 270 | 95.19 259 | 97.48 201 | 99.23 166 | 97.47 172 | 97.90 231 | 98.62 209 | 97.04 138 | 98.81 356 | 97.55 112 | 99.41 210 | 98.94 251 |
|
EIA-MVS | | | 98.00 163 | 97.74 175 | 98.80 154 | 98.72 242 | 98.09 127 | 98.05 138 | 99.60 25 | 97.39 185 | 96.63 302 | 95.55 343 | 97.68 91 | 99.80 168 | 96.73 170 | 99.27 234 | 98.52 290 |
|
MCST-MVS | | | 98.00 163 | 97.63 186 | 99.10 106 | 99.24 129 | 98.17 122 | 96.89 245 | 98.73 267 | 95.66 263 | 97.92 229 | 97.70 288 | 97.17 134 | 99.66 258 | 96.18 213 | 99.23 240 | 99.47 120 |
|
K. test v3 | | | 98.00 163 | 97.66 183 | 99.03 123 | 99.79 19 | 97.56 180 | 99.19 36 | 92.47 356 | 99.62 17 | 99.52 35 | 99.66 17 | 89.61 292 | 99.96 8 | 99.25 20 | 99.81 69 | 99.56 71 |
|
HQP_MVS | | | 97.99 166 | 97.67 180 | 98.93 136 | 99.19 143 | 97.65 176 | 97.77 170 | 99.27 153 | 98.20 123 | 97.79 239 | 97.98 270 | 94.90 227 | 99.70 234 | 94.42 268 | 99.51 193 | 99.45 126 |
|
MDA-MVSNet-bldmvs | | | 97.94 167 | 97.91 165 | 98.06 231 | 99.44 100 | 94.96 265 | 96.63 259 | 99.15 194 | 98.35 107 | 98.83 151 | 99.11 96 | 94.31 245 | 99.85 105 | 96.60 179 | 98.72 289 | 99.37 160 |
|
test_part1 | | | 97.91 168 | 97.46 199 | 99.27 82 | 98.80 233 | 98.18 120 | 99.07 46 | 99.36 108 | 99.75 5 | 99.63 25 | 99.49 39 | 82.20 342 | 99.89 58 | 98.87 40 | 99.95 16 | 99.74 24 |
|
Anonymous202405211 | | | 97.90 169 | 97.50 193 | 99.08 110 | 98.90 210 | 98.25 112 | 98.53 87 | 96.16 334 | 98.87 81 | 99.11 95 | 98.86 159 | 90.40 288 | 99.78 195 | 97.36 122 | 99.31 226 | 99.19 212 |
|
LF4IMVS | | | 97.90 169 | 97.69 179 | 98.52 193 | 99.17 152 | 97.66 174 | 97.19 226 | 99.47 75 | 96.31 244 | 97.85 235 | 98.20 253 | 96.71 164 | 99.52 302 | 94.62 260 | 99.72 113 | 98.38 299 |
|
UnsupCasMVSNet_eth | | | 97.89 171 | 97.60 189 | 98.75 164 | 99.31 118 | 97.17 204 | 97.62 185 | 99.35 114 | 98.72 89 | 98.76 162 | 98.68 193 | 92.57 275 | 99.74 219 | 97.76 106 | 95.60 351 | 99.34 172 |
|
TinyColmap | | | 97.89 171 | 97.98 159 | 97.60 257 | 98.86 219 | 94.35 278 | 96.21 280 | 99.44 83 | 97.45 179 | 99.06 104 | 98.88 155 | 97.99 73 | 99.28 337 | 94.38 272 | 99.58 171 | 99.18 214 |
|
OMC-MVS | | | 97.88 173 | 97.49 194 | 99.04 122 | 98.89 215 | 98.63 84 | 96.94 238 | 99.25 159 | 95.02 276 | 98.53 192 | 98.51 221 | 97.27 127 | 99.47 313 | 93.50 298 | 99.51 193 | 99.01 237 |
|
CANet | | | 97.87 174 | 97.76 173 | 98.19 222 | 97.75 321 | 95.51 248 | 96.76 252 | 99.05 209 | 97.74 150 | 96.93 286 | 98.21 252 | 95.59 210 | 99.89 58 | 97.86 99 | 99.93 25 | 99.19 212 |
|
xiu_mvs_v1_base_debu | | | 97.86 175 | 98.17 139 | 96.92 290 | 98.98 194 | 93.91 292 | 96.45 267 | 99.17 185 | 97.85 145 | 98.41 201 | 97.14 317 | 98.47 37 | 99.92 35 | 98.02 88 | 99.05 265 | 96.92 341 |
|
xiu_mvs_v1_base | | | 97.86 175 | 98.17 139 | 96.92 290 | 98.98 194 | 93.91 292 | 96.45 267 | 99.17 185 | 97.85 145 | 98.41 201 | 97.14 317 | 98.47 37 | 99.92 35 | 98.02 88 | 99.05 265 | 96.92 341 |
|
xiu_mvs_v1_base_debi | | | 97.86 175 | 98.17 139 | 96.92 290 | 98.98 194 | 93.91 292 | 96.45 267 | 99.17 185 | 97.85 145 | 98.41 201 | 97.14 317 | 98.47 37 | 99.92 35 | 98.02 88 | 99.05 265 | 96.92 341 |
|
NCCC | | | 97.86 175 | 97.47 198 | 99.05 120 | 98.61 265 | 98.07 133 | 96.98 236 | 98.90 236 | 97.63 157 | 97.04 283 | 97.93 275 | 95.99 195 | 99.66 258 | 95.31 247 | 98.82 285 | 99.43 135 |
|
PMVS |  | 91.26 20 | 97.86 175 | 97.94 163 | 97.65 253 | 99.71 30 | 97.94 151 | 98.52 88 | 98.68 270 | 98.99 71 | 97.52 260 | 99.35 58 | 97.41 118 | 98.18 360 | 91.59 327 | 99.67 140 | 96.82 344 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
IterMVS-SCA-FT | | | 97.85 180 | 98.18 138 | 96.87 293 | 99.27 124 | 91.16 337 | 95.53 308 | 99.25 159 | 99.10 62 | 99.41 49 | 99.35 58 | 93.10 265 | 99.96 8 | 98.65 54 | 99.94 21 | 99.49 104 |
|
D2MVS | | | 97.84 181 | 97.84 170 | 97.83 243 | 99.14 159 | 94.74 268 | 96.94 238 | 98.88 239 | 95.84 259 | 98.89 140 | 98.96 134 | 94.40 243 | 99.69 238 | 97.55 112 | 99.95 16 | 99.05 229 |
|
CPTT-MVS | | | 97.84 181 | 97.36 204 | 99.27 82 | 99.31 118 | 98.46 101 | 98.29 111 | 99.27 153 | 94.90 280 | 97.83 236 | 98.37 239 | 94.90 227 | 99.84 122 | 93.85 289 | 99.54 183 | 99.51 96 |
|
mvs-test1 | | | 97.83 183 | 97.48 197 | 98.89 142 | 98.02 309 | 99.20 32 | 97.20 223 | 99.16 188 | 98.29 114 | 96.46 312 | 97.17 314 | 96.44 176 | 99.92 35 | 96.66 176 | 97.90 320 | 97.54 334 |
|
mvs_anonymous | | | 97.83 183 | 98.16 142 | 96.87 293 | 98.18 301 | 91.89 324 | 97.31 214 | 98.90 236 | 97.37 187 | 98.83 151 | 99.46 43 | 96.28 184 | 99.79 183 | 98.90 37 | 98.16 310 | 98.95 247 |
|
testtj | | | 97.79 185 | 97.25 210 | 99.42 57 | 99.03 184 | 98.85 68 | 97.78 167 | 99.18 179 | 95.83 260 | 98.12 218 | 98.50 224 | 95.50 214 | 99.86 91 | 92.23 320 | 99.07 264 | 99.54 83 |
|
hse-mvs3 | | | 97.77 186 | 97.33 208 | 99.10 106 | 99.21 136 | 97.84 158 | 98.35 109 | 98.57 276 | 99.11 56 | 98.58 183 | 99.02 115 | 88.65 301 | 99.96 8 | 98.11 81 | 96.34 344 | 99.49 104 |
|
CS-MVS-test | | | 97.75 187 | 97.70 178 | 97.90 238 | 98.30 293 | 97.66 174 | 97.93 152 | 99.65 19 | 96.91 221 | 96.27 316 | 96.28 333 | 97.00 143 | 99.80 168 | 97.64 111 | 99.28 232 | 96.24 350 |
|
IterMVS | | | 97.73 188 | 98.11 148 | 96.57 300 | 99.24 129 | 90.28 338 | 95.52 310 | 99.21 168 | 98.86 82 | 99.33 62 | 99.33 62 | 93.11 264 | 99.94 23 | 98.49 62 | 99.94 21 | 99.48 112 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
MSDG | | | 97.71 189 | 97.52 192 | 98.28 216 | 98.91 209 | 96.82 216 | 94.42 339 | 99.37 104 | 97.65 156 | 98.37 206 | 98.29 247 | 97.40 119 | 99.33 330 | 94.09 280 | 99.22 241 | 98.68 286 |
|
CDS-MVSNet | | | 97.69 190 | 97.35 205 | 98.69 168 | 98.73 240 | 97.02 210 | 96.92 242 | 98.75 264 | 95.89 258 | 98.59 181 | 98.67 195 | 92.08 280 | 99.74 219 | 96.72 171 | 99.81 69 | 99.32 180 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
MS-PatchMatch | | | 97.68 191 | 97.75 174 | 97.45 269 | 98.23 299 | 93.78 298 | 97.29 215 | 98.84 248 | 96.10 250 | 98.64 172 | 98.65 200 | 96.04 189 | 99.36 326 | 96.84 160 | 99.14 255 | 99.20 207 |
|
Fast-Effi-MVS+ | | | 97.67 192 | 97.38 202 | 98.57 184 | 98.71 245 | 97.43 187 | 97.23 219 | 99.45 80 | 94.82 282 | 96.13 317 | 96.51 325 | 98.52 35 | 99.91 45 | 96.19 211 | 98.83 284 | 98.37 301 |
|
EU-MVSNet | | | 97.66 193 | 98.50 90 | 95.13 327 | 99.63 48 | 85.84 354 | 98.35 109 | 98.21 291 | 98.23 119 | 99.54 30 | 99.46 43 | 95.02 225 | 99.68 247 | 98.24 75 | 99.87 52 | 99.87 4 |
|
MVS_0304 | | | 97.64 194 | 97.35 205 | 98.52 193 | 97.87 317 | 96.69 222 | 98.59 81 | 98.05 300 | 97.44 181 | 93.74 354 | 98.85 162 | 93.69 259 | 99.88 67 | 98.11 81 | 99.81 69 | 98.98 242 |
|
pmmvs5 | | | 97.64 194 | 97.49 194 | 98.08 229 | 99.14 159 | 95.12 262 | 96.70 256 | 99.05 209 | 93.77 303 | 98.62 175 | 98.83 168 | 93.23 261 | 99.75 215 | 98.33 74 | 99.76 99 | 99.36 166 |
|
N_pmnet | | | 97.63 196 | 97.17 215 | 98.99 129 | 99.27 124 | 97.86 156 | 95.98 286 | 93.41 353 | 95.25 274 | 99.47 42 | 98.90 146 | 95.63 208 | 99.85 105 | 96.91 149 | 99.73 106 | 99.27 194 |
|
YYNet1 | | | 97.60 197 | 97.67 180 | 97.39 273 | 99.04 181 | 93.04 309 | 95.27 315 | 98.38 286 | 97.25 199 | 98.92 135 | 98.95 138 | 95.48 216 | 99.73 223 | 96.99 143 | 98.74 287 | 99.41 141 |
|
MDA-MVSNet_test_wron | | | 97.60 197 | 97.66 183 | 97.41 272 | 99.04 181 | 93.09 305 | 95.27 315 | 98.42 283 | 97.26 198 | 98.88 144 | 98.95 138 | 95.43 217 | 99.73 223 | 97.02 140 | 98.72 289 | 99.41 141 |
|
pmmvs4 | | | 97.58 199 | 97.28 209 | 98.51 195 | 98.84 224 | 96.93 214 | 95.40 314 | 98.52 279 | 93.60 305 | 98.61 177 | 98.65 200 | 95.10 224 | 99.60 277 | 96.97 146 | 99.79 82 | 98.99 241 |
|
ETH3D cwj APD-0.16 | | | 97.55 200 | 97.00 224 | 99.19 93 | 98.51 279 | 98.64 83 | 96.85 246 | 99.13 195 | 94.19 296 | 97.65 248 | 98.40 233 | 95.78 204 | 99.81 159 | 93.37 301 | 99.16 251 | 99.12 223 |
|
PVSNet_BlendedMVS | | | 97.55 200 | 97.53 191 | 97.60 257 | 98.92 206 | 93.77 299 | 96.64 258 | 99.43 89 | 94.49 286 | 97.62 250 | 99.18 80 | 96.82 154 | 99.67 250 | 94.73 257 | 99.93 25 | 99.36 166 |
|
ppachtmachnet_test | | | 97.50 202 | 97.74 175 | 96.78 298 | 98.70 249 | 91.23 336 | 94.55 337 | 99.05 209 | 96.36 241 | 99.21 84 | 98.79 176 | 96.39 178 | 99.78 195 | 96.74 168 | 99.82 65 | 99.34 172 |
|
FMVSNet3 | | | 97.50 202 | 97.24 212 | 98.29 215 | 98.08 307 | 95.83 241 | 97.86 161 | 98.91 235 | 97.89 142 | 98.95 127 | 98.95 138 | 87.06 305 | 99.81 159 | 97.77 102 | 99.69 129 | 99.23 202 |
|
CHOSEN 1792x2688 | | | 97.49 204 | 97.14 219 | 98.54 192 | 99.68 39 | 96.09 235 | 96.50 265 | 99.62 22 | 91.58 328 | 98.84 150 | 98.97 131 | 92.36 276 | 99.88 67 | 96.76 166 | 99.95 16 | 99.67 33 |
|
CLD-MVS | | | 97.49 204 | 97.16 216 | 98.48 198 | 99.07 174 | 97.03 209 | 94.71 329 | 99.21 168 | 94.46 288 | 98.06 223 | 97.16 315 | 97.57 102 | 99.48 311 | 94.46 265 | 99.78 86 | 98.95 247 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
test_prior3 | | | 97.48 206 | 97.00 224 | 98.95 133 | 98.69 253 | 97.95 149 | 95.74 301 | 99.03 214 | 96.48 237 | 96.11 318 | 97.63 292 | 95.92 200 | 99.59 281 | 94.16 274 | 99.20 244 | 99.30 187 |
|
hse-mvs2 | | | 97.46 207 | 97.07 220 | 98.64 171 | 98.73 240 | 97.33 190 | 97.45 205 | 97.64 311 | 99.11 56 | 98.58 183 | 97.98 270 | 88.65 301 | 99.79 183 | 98.11 81 | 97.39 328 | 98.81 267 |
|
Vis-MVSNet (Re-imp) | | | 97.46 207 | 97.16 216 | 98.34 210 | 99.55 65 | 96.10 233 | 98.94 58 | 98.44 282 | 98.32 110 | 98.16 214 | 98.62 209 | 88.76 298 | 99.73 223 | 93.88 287 | 99.79 82 | 99.18 214 |
|
jason | | | 97.45 209 | 97.35 205 | 97.76 247 | 99.24 129 | 93.93 291 | 95.86 295 | 98.42 283 | 94.24 294 | 98.50 194 | 98.13 256 | 94.82 231 | 99.91 45 | 97.22 128 | 99.73 106 | 99.43 135 |
jason: jason. |
CL-MVSNet_2432*1600 | | | 97.44 210 | 97.22 213 | 98.08 229 | 98.57 272 | 95.78 243 | 94.30 342 | 98.79 257 | 96.58 235 | 98.60 179 | 98.19 254 | 94.74 237 | 99.64 265 | 96.41 199 | 98.84 283 | 98.82 264 |
|
DSMNet-mixed | | | 97.42 211 | 97.60 189 | 96.87 293 | 99.15 158 | 91.46 328 | 98.54 86 | 99.12 197 | 92.87 314 | 97.58 254 | 99.63 20 | 96.21 185 | 99.90 49 | 95.74 232 | 99.54 183 | 99.27 194 |
|
USDC | | | 97.41 212 | 97.40 200 | 97.44 270 | 98.94 200 | 93.67 301 | 95.17 318 | 99.53 53 | 94.03 300 | 98.97 124 | 99.10 98 | 95.29 219 | 99.34 328 | 95.84 229 | 99.73 106 | 99.30 187 |
|
our_test_3 | | | 97.39 213 | 97.73 177 | 96.34 304 | 98.70 249 | 89.78 340 | 94.61 335 | 98.97 227 | 96.50 236 | 99.04 111 | 98.85 162 | 95.98 196 | 99.84 122 | 97.26 127 | 99.67 140 | 99.41 141 |
|
cl_fuxian | | | 97.36 214 | 97.37 203 | 97.31 274 | 98.09 306 | 93.25 304 | 95.01 323 | 99.16 188 | 97.05 214 | 98.77 161 | 98.72 186 | 92.88 270 | 99.64 265 | 96.93 148 | 99.76 99 | 99.05 229 |
|
alignmvs | | | 97.35 215 | 96.88 232 | 98.78 159 | 98.54 276 | 98.09 127 | 97.71 176 | 97.69 308 | 99.20 48 | 97.59 253 | 95.90 338 | 88.12 304 | 99.55 293 | 98.18 79 | 98.96 279 | 98.70 282 |
|
Patchmtry | | | 97.35 215 | 96.97 226 | 98.50 197 | 97.31 340 | 96.47 225 | 98.18 121 | 98.92 233 | 98.95 78 | 98.78 158 | 99.37 54 | 85.44 320 | 99.85 105 | 95.96 221 | 99.83 62 | 99.17 218 |
|
DP-MVS Recon | | | 97.33 217 | 96.92 229 | 98.57 184 | 99.09 169 | 97.99 139 | 96.79 249 | 99.35 114 | 93.18 309 | 97.71 244 | 98.07 265 | 95.00 226 | 99.31 332 | 93.97 282 | 99.13 258 | 98.42 297 |
|
QAPM | | | 97.31 218 | 96.81 237 | 98.82 150 | 98.80 233 | 97.49 183 | 99.06 48 | 99.19 175 | 90.22 340 | 97.69 246 | 99.16 86 | 96.91 148 | 99.90 49 | 90.89 338 | 99.41 210 | 99.07 227 |
|
UnsupCasMVSNet_bld | | | 97.30 219 | 96.92 229 | 98.45 201 | 99.28 123 | 96.78 220 | 96.20 281 | 99.27 153 | 95.42 270 | 98.28 209 | 98.30 246 | 93.16 263 | 99.71 232 | 94.99 251 | 97.37 329 | 98.87 260 |
|
F-COLMAP | | | 97.30 219 | 96.68 244 | 99.14 100 | 99.19 143 | 98.39 104 | 97.27 218 | 99.30 141 | 92.93 312 | 96.62 303 | 98.00 268 | 95.73 206 | 99.68 247 | 92.62 315 | 98.46 301 | 99.35 170 |
|
1112_ss | | | 97.29 221 | 96.86 233 | 98.58 181 | 99.34 117 | 96.32 229 | 96.75 253 | 99.58 28 | 93.14 310 | 96.89 293 | 97.48 301 | 92.11 279 | 99.86 91 | 96.91 149 | 99.54 183 | 99.57 66 |
|
CANet_DTU | | | 97.26 222 | 97.06 221 | 97.84 242 | 97.57 328 | 94.65 273 | 96.19 282 | 98.79 257 | 97.23 205 | 95.14 340 | 98.24 249 | 93.22 262 | 99.84 122 | 97.34 123 | 99.84 56 | 99.04 233 |
|
Patchmatch-RL test | | | 97.26 222 | 97.02 223 | 97.99 236 | 99.52 72 | 95.53 247 | 96.13 283 | 99.71 10 | 97.47 172 | 99.27 73 | 99.16 86 | 84.30 329 | 99.62 270 | 97.89 94 | 99.77 90 | 98.81 267 |
|
CDPH-MVS | | | 97.26 222 | 96.66 247 | 99.07 113 | 99.00 189 | 98.15 123 | 96.03 285 | 99.01 221 | 91.21 334 | 97.79 239 | 97.85 279 | 96.89 149 | 99.69 238 | 92.75 312 | 99.38 216 | 99.39 150 |
|
PatchMatch-RL | | | 97.24 225 | 96.78 238 | 98.61 178 | 99.03 184 | 97.83 159 | 96.36 273 | 99.06 205 | 93.49 308 | 97.36 272 | 97.78 282 | 95.75 205 | 99.49 308 | 93.44 299 | 98.77 286 | 98.52 290 |
|
eth_miper_zixun_eth | | | 97.23 226 | 97.25 210 | 97.17 280 | 98.00 311 | 92.77 313 | 94.71 329 | 99.18 179 | 97.27 197 | 98.56 187 | 98.74 183 | 91.89 281 | 99.69 238 | 97.06 139 | 99.81 69 | 99.05 229 |
|
sss | | | 97.21 227 | 96.93 227 | 98.06 231 | 98.83 226 | 95.22 258 | 96.75 253 | 98.48 281 | 94.49 286 | 97.27 274 | 97.90 276 | 92.77 272 | 99.80 168 | 96.57 182 | 99.32 224 | 99.16 221 |
|
LFMVS | | | 97.20 228 | 96.72 241 | 98.64 171 | 98.72 242 | 96.95 213 | 98.93 59 | 94.14 350 | 99.74 7 | 98.78 158 | 99.01 122 | 84.45 326 | 99.73 223 | 97.44 118 | 99.27 234 | 99.25 198 |
|
HyFIR lowres test | | | 97.19 229 | 96.60 250 | 98.96 132 | 99.62 50 | 97.28 194 | 95.17 318 | 99.50 59 | 94.21 295 | 99.01 115 | 98.32 245 | 86.61 308 | 99.99 2 | 97.10 137 | 99.84 56 | 99.60 49 |
|
miper_lstm_enhance | | | 97.18 230 | 97.16 216 | 97.25 278 | 98.16 302 | 92.85 311 | 95.15 320 | 99.31 132 | 97.25 199 | 98.74 165 | 98.78 177 | 90.07 289 | 99.78 195 | 97.19 129 | 99.80 77 | 99.11 225 |
|
CNLPA | | | 97.17 231 | 96.71 242 | 98.55 189 | 98.56 273 | 98.05 136 | 96.33 274 | 98.93 230 | 96.91 221 | 97.06 282 | 97.39 306 | 94.38 244 | 99.45 317 | 91.66 324 | 99.18 250 | 98.14 307 |
|
xiu_mvs_v2_base | | | 97.16 232 | 97.49 194 | 96.17 309 | 98.54 276 | 92.46 317 | 95.45 312 | 98.84 248 | 97.25 199 | 97.48 264 | 96.49 326 | 98.31 49 | 99.90 49 | 96.34 203 | 98.68 293 | 96.15 353 |
|
AdaColmap |  | | 97.14 233 | 96.71 242 | 98.46 200 | 98.34 290 | 97.80 165 | 96.95 237 | 98.93 230 | 95.58 264 | 96.92 287 | 97.66 289 | 95.87 202 | 99.53 298 | 90.97 335 | 99.14 255 | 98.04 310 |
|
train_agg | | | 97.10 234 | 96.45 257 | 99.07 113 | 98.71 245 | 98.08 131 | 95.96 289 | 99.03 214 | 91.64 326 | 95.85 324 | 97.53 296 | 96.47 174 | 99.76 208 | 93.67 292 | 99.16 251 | 99.36 166 |
|
OpenMVS |  | 96.65 7 | 97.09 235 | 96.68 244 | 98.32 211 | 98.32 291 | 97.16 205 | 98.86 64 | 99.37 104 | 89.48 344 | 96.29 315 | 99.15 90 | 96.56 169 | 99.90 49 | 92.90 306 | 99.20 244 | 97.89 315 |
|
PS-MVSNAJ | | | 97.08 236 | 97.39 201 | 96.16 311 | 98.56 273 | 92.46 317 | 95.24 317 | 98.85 247 | 97.25 199 | 97.49 263 | 95.99 336 | 98.07 64 | 99.90 49 | 96.37 200 | 98.67 294 | 96.12 354 |
|
RRT_MVS | | | 97.07 237 | 96.57 252 | 98.58 181 | 95.89 361 | 96.33 228 | 97.36 210 | 98.77 260 | 97.85 145 | 99.08 101 | 99.12 94 | 82.30 339 | 99.96 8 | 98.82 43 | 99.90 44 | 99.45 126 |
|
miper_ehance_all_eth | | | 97.06 238 | 97.03 222 | 97.16 282 | 97.83 318 | 93.06 306 | 94.66 332 | 99.09 201 | 95.99 255 | 98.69 167 | 98.45 230 | 92.73 273 | 99.61 276 | 96.79 162 | 99.03 269 | 98.82 264 |
|
agg_prior1 | | | 97.06 238 | 96.40 258 | 99.03 123 | 98.68 256 | 97.99 139 | 95.76 299 | 99.01 221 | 91.73 325 | 95.59 327 | 97.50 299 | 96.49 173 | 99.77 201 | 93.71 291 | 99.14 255 | 99.34 172 |
|
lupinMVS | | | 97.06 238 | 96.86 233 | 97.65 253 | 98.88 216 | 93.89 295 | 95.48 311 | 97.97 301 | 93.53 306 | 98.16 214 | 97.58 294 | 93.81 255 | 99.91 45 | 96.77 165 | 99.57 175 | 99.17 218 |
|
API-MVS | | | 97.04 241 | 96.91 231 | 97.42 271 | 97.88 316 | 98.23 117 | 98.18 121 | 98.50 280 | 97.57 163 | 97.39 270 | 96.75 322 | 96.77 158 | 99.15 346 | 90.16 341 | 99.02 272 | 94.88 359 |
|
cl-mvsnet____ | | | 97.02 242 | 96.83 236 | 97.58 259 | 97.82 319 | 94.04 285 | 94.66 332 | 99.16 188 | 97.04 215 | 98.63 173 | 98.71 187 | 88.68 300 | 99.69 238 | 97.00 141 | 99.81 69 | 99.00 240 |
|
cl-mvsnet1 | | | 97.02 242 | 96.84 235 | 97.58 259 | 97.82 319 | 94.03 286 | 94.66 332 | 99.16 188 | 97.04 215 | 98.63 173 | 98.71 187 | 88.69 299 | 99.69 238 | 97.00 141 | 99.81 69 | 99.01 237 |
|
RPMNet | | | 97.02 242 | 96.93 227 | 97.30 275 | 97.71 323 | 94.22 279 | 98.11 128 | 99.30 141 | 99.37 34 | 96.91 289 | 99.34 60 | 86.72 307 | 99.87 84 | 97.53 115 | 97.36 331 | 97.81 321 |
|
HQP-MVS | | | 97.00 245 | 96.49 256 | 98.55 189 | 98.67 258 | 96.79 217 | 96.29 276 | 99.04 212 | 96.05 251 | 95.55 331 | 96.84 320 | 93.84 253 | 99.54 296 | 92.82 309 | 99.26 237 | 99.32 180 |
|
bset_n11_16_dypcd | | | 96.99 246 | 96.56 253 | 98.27 217 | 99.00 189 | 95.25 255 | 92.18 359 | 94.05 351 | 98.75 87 | 99.01 115 | 98.38 237 | 88.98 297 | 99.93 28 | 98.77 48 | 99.92 34 | 99.64 39 |
|
new_pmnet | | | 96.99 246 | 96.76 239 | 97.67 251 | 98.72 242 | 94.89 266 | 95.95 291 | 98.20 292 | 92.62 317 | 98.55 189 | 98.54 218 | 94.88 230 | 99.52 302 | 93.96 283 | 99.44 208 | 98.59 289 |
|
Test_1112_low_res | | | 96.99 246 | 96.55 254 | 98.31 213 | 99.35 115 | 95.47 250 | 95.84 298 | 99.53 53 | 91.51 330 | 96.80 298 | 98.48 229 | 91.36 283 | 99.83 136 | 96.58 180 | 99.53 187 | 99.62 44 |
|
PVSNet_Blended | | | 96.88 249 | 96.68 244 | 97.47 268 | 98.92 206 | 93.77 299 | 94.71 329 | 99.43 89 | 90.98 336 | 97.62 250 | 97.36 309 | 96.82 154 | 99.67 250 | 94.73 257 | 99.56 180 | 98.98 242 |
|
MVSTER | | | 96.86 250 | 96.55 254 | 97.79 245 | 97.91 315 | 94.21 281 | 97.56 193 | 98.87 241 | 97.49 171 | 99.06 104 | 99.05 108 | 80.72 344 | 99.80 168 | 98.44 65 | 99.82 65 | 99.37 160 |
|
BH-untuned | | | 96.83 251 | 96.75 240 | 97.08 283 | 98.74 239 | 93.33 303 | 96.71 255 | 98.26 289 | 96.72 229 | 98.44 197 | 97.37 308 | 95.20 221 | 99.47 313 | 91.89 322 | 97.43 327 | 98.44 295 |
|
BH-RMVSNet | | | 96.83 251 | 96.58 251 | 97.58 259 | 98.47 282 | 94.05 284 | 96.67 257 | 97.36 314 | 96.70 231 | 97.87 233 | 97.98 270 | 95.14 223 | 99.44 318 | 90.47 340 | 98.58 299 | 99.25 198 |
|
PAPM_NR | | | 96.82 253 | 96.32 261 | 98.30 214 | 99.07 174 | 96.69 222 | 97.48 201 | 98.76 261 | 95.81 261 | 96.61 304 | 96.47 328 | 94.12 251 | 99.17 344 | 90.82 339 | 97.78 321 | 99.06 228 |
|
MG-MVS | | | 96.77 254 | 96.61 249 | 97.26 277 | 98.31 292 | 93.06 306 | 95.93 292 | 98.12 297 | 96.45 239 | 97.92 229 | 98.73 184 | 93.77 257 | 99.39 323 | 91.19 334 | 99.04 268 | 99.33 178 |
|
1121 | | | 96.73 255 | 96.00 266 | 98.91 139 | 98.95 199 | 97.76 167 | 98.07 134 | 98.73 267 | 87.65 352 | 96.54 305 | 98.13 256 | 94.52 240 | 99.73 223 | 92.38 318 | 99.02 272 | 99.24 201 |
|
test_yl | | | 96.69 256 | 96.29 262 | 97.90 238 | 98.28 294 | 95.24 256 | 97.29 215 | 97.36 314 | 98.21 120 | 98.17 212 | 97.86 277 | 86.27 310 | 99.55 293 | 94.87 254 | 98.32 303 | 98.89 257 |
|
DCV-MVSNet | | | 96.69 256 | 96.29 262 | 97.90 238 | 98.28 294 | 95.24 256 | 97.29 215 | 97.36 314 | 98.21 120 | 98.17 212 | 97.86 277 | 86.27 310 | 99.55 293 | 94.87 254 | 98.32 303 | 98.89 257 |
|
WTY-MVS | | | 96.67 258 | 96.27 264 | 97.87 241 | 98.81 231 | 94.61 274 | 96.77 251 | 97.92 303 | 94.94 279 | 97.12 277 | 97.74 285 | 91.11 284 | 99.82 146 | 93.89 286 | 98.15 311 | 99.18 214 |
|
PatchT | | | 96.65 259 | 96.35 259 | 97.54 264 | 97.40 336 | 95.32 254 | 97.98 149 | 96.64 330 | 99.33 38 | 96.89 293 | 99.42 49 | 84.32 328 | 99.81 159 | 97.69 110 | 97.49 324 | 97.48 335 |
|
TAPA-MVS | | 96.21 11 | 96.63 260 | 95.95 268 | 98.65 170 | 98.93 202 | 98.09 127 | 96.93 240 | 99.28 150 | 83.58 359 | 98.13 217 | 97.78 282 | 96.13 186 | 99.40 321 | 93.52 296 | 99.29 231 | 98.45 294 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
MIMVSNet | | | 96.62 261 | 96.25 265 | 97.71 250 | 99.04 181 | 94.66 272 | 99.16 38 | 96.92 326 | 97.23 205 | 97.87 233 | 99.10 98 | 86.11 314 | 99.65 263 | 91.65 325 | 99.21 243 | 98.82 264 |
|
Patchmatch-test | | | 96.55 262 | 96.34 260 | 97.17 280 | 98.35 289 | 93.06 306 | 98.40 104 | 97.79 304 | 97.33 190 | 98.41 201 | 98.67 195 | 83.68 333 | 99.69 238 | 95.16 248 | 99.31 226 | 98.77 275 |
|
PMMVS | | | 96.51 263 | 95.98 267 | 98.09 226 | 97.53 331 | 95.84 240 | 94.92 325 | 98.84 248 | 91.58 328 | 96.05 322 | 95.58 342 | 95.68 207 | 99.66 258 | 95.59 241 | 98.09 314 | 98.76 276 |
|
PLC |  | 94.65 16 | 96.51 263 | 95.73 272 | 98.85 147 | 98.75 238 | 97.91 152 | 96.42 270 | 99.06 205 | 90.94 337 | 95.59 327 | 97.38 307 | 94.41 242 | 99.59 281 | 90.93 336 | 98.04 318 | 99.05 229 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
114514_t | | | 96.50 265 | 95.77 270 | 98.69 168 | 99.48 92 | 97.43 187 | 97.84 163 | 99.55 46 | 81.42 361 | 96.51 308 | 98.58 215 | 95.53 211 | 99.67 250 | 93.41 300 | 99.58 171 | 98.98 242 |
|
MAR-MVS | | | 96.47 266 | 95.70 273 | 98.79 156 | 97.92 314 | 99.12 53 | 98.28 112 | 98.60 275 | 92.16 323 | 95.54 334 | 96.17 334 | 94.77 236 | 99.52 302 | 89.62 343 | 98.23 305 | 97.72 327 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
ETH3 D test6400 | | | 96.46 267 | 95.59 278 | 99.08 110 | 98.88 216 | 98.21 119 | 96.53 262 | 99.18 179 | 88.87 348 | 97.08 280 | 97.79 281 | 93.64 260 | 99.77 201 | 88.92 345 | 99.40 212 | 99.28 192 |
|
SCA | | | 96.41 268 | 96.66 247 | 95.67 317 | 98.24 297 | 88.35 345 | 95.85 297 | 96.88 327 | 96.11 249 | 97.67 247 | 98.67 195 | 93.10 265 | 99.85 105 | 94.16 274 | 99.22 241 | 98.81 267 |
|
DPM-MVS | | | 96.32 269 | 95.59 278 | 98.51 195 | 98.76 236 | 97.21 200 | 94.54 338 | 98.26 289 | 91.94 324 | 96.37 313 | 97.25 311 | 93.06 267 | 99.43 319 | 91.42 330 | 98.74 287 | 98.89 257 |
|
CMPMVS |  | 75.91 23 | 96.29 270 | 95.44 283 | 98.84 148 | 96.25 357 | 98.69 82 | 97.02 233 | 99.12 197 | 88.90 347 | 97.83 236 | 98.86 159 | 89.51 293 | 98.90 354 | 91.92 321 | 99.51 193 | 98.92 253 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
CR-MVSNet | | | 96.28 271 | 95.95 268 | 97.28 276 | 97.71 323 | 94.22 279 | 98.11 128 | 98.92 233 | 92.31 320 | 96.91 289 | 99.37 54 | 85.44 320 | 99.81 159 | 97.39 121 | 97.36 331 | 97.81 321 |
|
CVMVSNet | | | 96.25 272 | 97.21 214 | 93.38 343 | 99.10 166 | 80.56 367 | 97.20 223 | 98.19 294 | 96.94 219 | 99.00 118 | 99.02 115 | 89.50 294 | 99.80 168 | 96.36 202 | 99.59 165 | 99.78 14 |
|
AUN-MVS | | | 96.24 273 | 95.45 282 | 98.60 179 | 98.70 249 | 97.22 198 | 97.38 208 | 97.65 309 | 95.95 256 | 95.53 335 | 97.96 274 | 82.11 343 | 99.79 183 | 96.31 204 | 97.44 326 | 98.80 272 |
|
EPNet | | | 96.14 274 | 95.44 283 | 98.25 218 | 90.76 368 | 95.50 249 | 97.92 154 | 94.65 343 | 98.97 74 | 92.98 355 | 98.85 162 | 89.12 296 | 99.87 84 | 95.99 219 | 99.68 134 | 99.39 150 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
wuyk23d | | | 96.06 275 | 97.62 187 | 91.38 346 | 98.65 264 | 98.57 92 | 98.85 65 | 96.95 324 | 96.86 224 | 99.90 4 | 99.16 86 | 99.18 11 | 98.40 359 | 89.23 344 | 99.77 90 | 77.18 363 |
|
miper_enhance_ethall | | | 96.01 276 | 95.74 271 | 96.81 297 | 96.41 355 | 92.27 321 | 93.69 351 | 98.89 238 | 91.14 335 | 98.30 207 | 97.35 310 | 90.58 286 | 99.58 286 | 96.31 204 | 99.03 269 | 98.60 287 |
|
FMVSNet5 | | | 96.01 276 | 95.20 291 | 98.41 204 | 97.53 331 | 96.10 233 | 98.74 68 | 99.50 59 | 97.22 208 | 98.03 227 | 99.04 111 | 69.80 364 | 99.88 67 | 97.27 126 | 99.71 118 | 99.25 198 |
|
baseline1 | | | 95.96 278 | 95.44 283 | 97.52 266 | 98.51 279 | 93.99 289 | 98.39 105 | 96.09 336 | 98.21 120 | 98.40 205 | 97.76 284 | 86.88 306 | 99.63 268 | 95.42 245 | 89.27 363 | 98.95 247 |
|
HY-MVS | | 95.94 13 | 95.90 279 | 95.35 287 | 97.55 263 | 97.95 312 | 94.79 267 | 98.81 67 | 96.94 325 | 92.28 321 | 95.17 339 | 98.57 216 | 89.90 291 | 99.75 215 | 91.20 333 | 97.33 333 | 98.10 308 |
|
GA-MVS | | | 95.86 280 | 95.32 288 | 97.49 267 | 98.60 267 | 94.15 283 | 93.83 349 | 97.93 302 | 95.49 268 | 96.68 300 | 97.42 305 | 83.21 334 | 99.30 334 | 96.22 209 | 98.55 300 | 99.01 237 |
|
OpenMVS_ROB |  | 95.38 14 | 95.84 281 | 95.18 292 | 97.81 244 | 98.41 287 | 97.15 206 | 97.37 209 | 98.62 274 | 83.86 358 | 98.65 171 | 98.37 239 | 94.29 246 | 99.68 247 | 88.41 346 | 98.62 297 | 96.60 347 |
|
cl-mvsnet2 | | | 95.79 282 | 95.39 286 | 96.98 287 | 96.77 349 | 92.79 312 | 94.40 340 | 98.53 278 | 94.59 285 | 97.89 232 | 98.17 255 | 82.82 338 | 99.24 339 | 96.37 200 | 99.03 269 | 98.92 253 |
|
1314 | | | 95.74 283 | 95.60 277 | 96.17 309 | 97.53 331 | 92.75 314 | 98.07 134 | 98.31 288 | 91.22 333 | 94.25 346 | 96.68 323 | 95.53 211 | 99.03 348 | 91.64 326 | 97.18 334 | 96.74 345 |
|
PVSNet | | 93.40 17 | 95.67 284 | 95.70 273 | 95.57 320 | 98.83 226 | 88.57 343 | 92.50 356 | 97.72 306 | 92.69 316 | 96.49 311 | 96.44 329 | 93.72 258 | 99.43 319 | 93.61 293 | 99.28 232 | 98.71 280 |
|
tttt0517 | | | 95.64 285 | 94.98 296 | 97.64 255 | 99.36 111 | 93.81 297 | 98.72 71 | 90.47 362 | 98.08 130 | 98.67 169 | 98.34 242 | 73.88 361 | 99.92 35 | 97.77 102 | 99.51 193 | 99.20 207 |
|
PatchmatchNet |  | | 95.58 286 | 95.67 275 | 95.30 326 | 97.34 338 | 87.32 349 | 97.65 183 | 96.65 329 | 95.30 273 | 97.07 281 | 98.69 191 | 84.77 323 | 99.75 215 | 94.97 252 | 98.64 295 | 98.83 263 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
TR-MVS | | | 95.55 287 | 95.12 294 | 96.86 296 | 97.54 330 | 93.94 290 | 96.49 266 | 96.53 331 | 94.36 293 | 97.03 284 | 96.61 324 | 94.26 247 | 99.16 345 | 86.91 350 | 96.31 345 | 97.47 336 |
|
JIA-IIPM | | | 95.52 288 | 95.03 295 | 97.00 285 | 96.85 347 | 94.03 286 | 96.93 240 | 95.82 338 | 99.20 48 | 94.63 344 | 99.71 12 | 83.09 335 | 99.60 277 | 94.42 268 | 94.64 355 | 97.36 337 |
|
CHOSEN 280x420 | | | 95.51 289 | 95.47 280 | 95.65 319 | 98.25 296 | 88.27 346 | 93.25 353 | 98.88 239 | 93.53 306 | 94.65 343 | 97.15 316 | 86.17 312 | 99.93 28 | 97.41 120 | 99.93 25 | 98.73 279 |
|
ADS-MVSNet2 | | | 95.43 290 | 94.98 296 | 96.76 299 | 98.14 303 | 91.74 325 | 97.92 154 | 97.76 305 | 90.23 338 | 96.51 308 | 98.91 143 | 85.61 317 | 99.85 105 | 92.88 307 | 96.90 337 | 98.69 283 |
|
PAPR | | | 95.29 291 | 94.47 301 | 97.75 248 | 97.50 335 | 95.14 261 | 94.89 326 | 98.71 269 | 91.39 332 | 95.35 338 | 95.48 345 | 94.57 239 | 99.14 347 | 84.95 353 | 97.37 329 | 98.97 246 |
|
thisisatest0530 | | | 95.27 292 | 94.45 302 | 97.74 249 | 99.19 143 | 94.37 277 | 97.86 161 | 90.20 363 | 97.17 209 | 98.22 211 | 97.65 290 | 73.53 362 | 99.90 49 | 96.90 154 | 99.35 220 | 98.95 247 |
|
ADS-MVSNet | | | 95.24 293 | 94.93 298 | 96.18 308 | 98.14 303 | 90.10 339 | 97.92 154 | 97.32 317 | 90.23 338 | 96.51 308 | 98.91 143 | 85.61 317 | 99.74 219 | 92.88 307 | 96.90 337 | 98.69 283 |
|
RRT_test8_iter05 | | | 95.24 293 | 95.13 293 | 95.57 320 | 97.32 339 | 87.02 351 | 97.99 147 | 99.41 93 | 98.06 131 | 99.12 93 | 99.05 108 | 66.85 369 | 99.85 105 | 98.93 36 | 99.47 204 | 99.84 8 |
|
BH-w/o | | | 95.13 295 | 94.89 299 | 95.86 313 | 98.20 300 | 91.31 332 | 95.65 304 | 97.37 313 | 93.64 304 | 96.52 307 | 95.70 341 | 93.04 268 | 99.02 349 | 88.10 347 | 95.82 350 | 97.24 338 |
|
tpmrst | | | 95.07 296 | 95.46 281 | 93.91 337 | 97.11 343 | 84.36 361 | 97.62 185 | 96.96 323 | 94.98 277 | 96.35 314 | 98.80 174 | 85.46 319 | 99.59 281 | 95.60 240 | 96.23 346 | 97.79 324 |
|
pmmvs3 | | | 95.03 297 | 94.40 303 | 96.93 289 | 97.70 325 | 92.53 316 | 95.08 321 | 97.71 307 | 88.57 349 | 97.71 244 | 98.08 264 | 79.39 351 | 99.82 146 | 96.19 211 | 99.11 262 | 98.43 296 |
|
tpmvs | | | 95.02 298 | 95.25 289 | 94.33 333 | 96.39 356 | 85.87 353 | 98.08 133 | 96.83 328 | 95.46 269 | 95.51 336 | 98.69 191 | 85.91 315 | 99.53 298 | 94.16 274 | 96.23 346 | 97.58 332 |
|
EPNet_dtu | | | 94.93 299 | 94.78 300 | 95.38 325 | 93.58 365 | 87.68 348 | 96.78 250 | 95.69 340 | 97.35 189 | 89.14 363 | 98.09 263 | 88.15 303 | 99.49 308 | 94.95 253 | 99.30 229 | 98.98 242 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
cascas | | | 94.79 300 | 94.33 306 | 96.15 312 | 96.02 360 | 92.36 320 | 92.34 358 | 99.26 158 | 85.34 357 | 95.08 341 | 94.96 353 | 92.96 269 | 98.53 358 | 94.41 271 | 98.59 298 | 97.56 333 |
|
tpm | | | 94.67 301 | 94.34 305 | 95.66 318 | 97.68 327 | 88.42 344 | 97.88 158 | 94.90 342 | 94.46 288 | 96.03 323 | 98.56 217 | 78.66 353 | 99.79 183 | 95.88 223 | 95.01 354 | 98.78 274 |
|
test0.0.03 1 | | | 94.51 302 | 93.69 311 | 96.99 286 | 96.05 358 | 93.61 302 | 94.97 324 | 93.49 352 | 96.17 246 | 97.57 256 | 94.88 354 | 82.30 339 | 99.01 351 | 93.60 294 | 94.17 359 | 98.37 301 |
|
thres600view7 | | | 94.45 303 | 93.83 309 | 96.29 305 | 99.06 178 | 91.53 327 | 97.99 147 | 94.24 348 | 98.34 108 | 97.44 267 | 95.01 350 | 79.84 347 | 99.67 250 | 84.33 354 | 98.23 305 | 97.66 329 |
|
PCF-MVS | | 92.86 18 | 94.36 304 | 93.00 321 | 98.42 203 | 98.70 249 | 97.56 180 | 93.16 354 | 99.11 199 | 79.59 362 | 97.55 257 | 97.43 304 | 92.19 277 | 99.73 223 | 79.85 362 | 99.45 207 | 97.97 314 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
X-MVStestdata | | | 94.32 305 | 92.59 323 | 99.53 36 | 99.46 95 | 99.21 26 | 98.65 74 | 99.34 120 | 98.62 94 | 97.54 258 | 45.85 365 | 97.50 110 | 99.83 136 | 96.79 162 | 99.53 187 | 99.56 71 |
|
MVS-HIRNet | | | 94.32 305 | 95.62 276 | 90.42 347 | 98.46 283 | 75.36 368 | 96.29 276 | 89.13 365 | 95.25 274 | 95.38 337 | 99.75 7 | 92.88 270 | 99.19 343 | 94.07 281 | 99.39 213 | 96.72 346 |
|
ET-MVSNet_ETH3D | | | 94.30 307 | 93.21 317 | 97.58 259 | 98.14 303 | 94.47 276 | 94.78 328 | 93.24 355 | 94.72 283 | 89.56 362 | 95.87 339 | 78.57 355 | 99.81 159 | 96.91 149 | 97.11 336 | 98.46 292 |
|
thres100view900 | | | 94.19 308 | 93.67 312 | 95.75 316 | 99.06 178 | 91.35 331 | 98.03 141 | 94.24 348 | 98.33 109 | 97.40 269 | 94.98 352 | 79.84 347 | 99.62 270 | 83.05 356 | 98.08 315 | 96.29 348 |
|
E-PMN | | | 94.17 309 | 94.37 304 | 93.58 340 | 96.86 346 | 85.71 356 | 90.11 361 | 97.07 321 | 98.17 126 | 97.82 238 | 97.19 312 | 84.62 325 | 98.94 352 | 89.77 342 | 97.68 323 | 96.09 355 |
|
thres400 | | | 94.14 310 | 93.44 314 | 96.24 307 | 98.93 202 | 91.44 329 | 97.60 188 | 94.29 346 | 97.94 137 | 97.10 278 | 94.31 358 | 79.67 349 | 99.62 270 | 83.05 356 | 98.08 315 | 97.66 329 |
|
thisisatest0515 | | | 94.12 311 | 93.16 318 | 96.97 288 | 98.60 267 | 92.90 310 | 93.77 350 | 90.61 361 | 94.10 298 | 96.91 289 | 95.87 339 | 74.99 360 | 99.80 168 | 94.52 263 | 99.12 261 | 98.20 304 |
|
tfpn200view9 | | | 94.03 312 | 93.44 314 | 95.78 315 | 98.93 202 | 91.44 329 | 97.60 188 | 94.29 346 | 97.94 137 | 97.10 278 | 94.31 358 | 79.67 349 | 99.62 270 | 83.05 356 | 98.08 315 | 96.29 348 |
|
CostFormer | | | 93.97 313 | 93.78 310 | 94.51 332 | 97.53 331 | 85.83 355 | 97.98 149 | 95.96 337 | 89.29 346 | 94.99 342 | 98.63 207 | 78.63 354 | 99.62 270 | 94.54 262 | 96.50 342 | 98.09 309 |
|
test-LLR | | | 93.90 314 | 93.85 308 | 94.04 335 | 96.53 351 | 84.62 359 | 94.05 346 | 92.39 357 | 96.17 246 | 94.12 348 | 95.07 348 | 82.30 339 | 99.67 250 | 95.87 226 | 98.18 308 | 97.82 319 |
|
EMVS | | | 93.83 315 | 94.02 307 | 93.23 344 | 96.83 348 | 84.96 357 | 89.77 362 | 96.32 333 | 97.92 139 | 97.43 268 | 96.36 332 | 86.17 312 | 98.93 353 | 87.68 348 | 97.73 322 | 95.81 356 |
|
baseline2 | | | 93.73 316 | 92.83 322 | 96.42 303 | 97.70 325 | 91.28 334 | 96.84 248 | 89.77 364 | 93.96 302 | 92.44 357 | 95.93 337 | 79.14 352 | 99.77 201 | 92.94 305 | 96.76 341 | 98.21 303 |
|
thres200 | | | 93.72 317 | 93.14 319 | 95.46 324 | 98.66 263 | 91.29 333 | 96.61 260 | 94.63 344 | 97.39 185 | 96.83 296 | 93.71 361 | 79.88 346 | 99.56 290 | 82.40 359 | 98.13 312 | 95.54 358 |
|
EPMVS | | | 93.72 317 | 93.27 316 | 95.09 328 | 96.04 359 | 87.76 347 | 98.13 125 | 85.01 367 | 94.69 284 | 96.92 287 | 98.64 203 | 78.47 357 | 99.31 332 | 95.04 249 | 96.46 343 | 98.20 304 |
|
dp | | | 93.47 319 | 93.59 313 | 93.13 345 | 96.64 350 | 81.62 366 | 97.66 181 | 96.42 332 | 92.80 315 | 96.11 318 | 98.64 203 | 78.55 356 | 99.59 281 | 93.31 302 | 92.18 362 | 98.16 306 |
|
FPMVS | | | 93.44 320 | 92.23 325 | 97.08 283 | 99.25 128 | 97.86 156 | 95.61 305 | 97.16 320 | 92.90 313 | 93.76 353 | 98.65 200 | 75.94 359 | 95.66 363 | 79.30 363 | 97.49 324 | 97.73 326 |
|
tpm cat1 | | | 93.29 321 | 93.13 320 | 93.75 338 | 97.39 337 | 84.74 358 | 97.39 207 | 97.65 309 | 83.39 360 | 94.16 347 | 98.41 232 | 82.86 337 | 99.39 323 | 91.56 328 | 95.35 353 | 97.14 339 |
|
MVS | | | 93.19 322 | 92.09 326 | 96.50 302 | 96.91 345 | 94.03 286 | 98.07 134 | 98.06 299 | 68.01 363 | 94.56 345 | 96.48 327 | 95.96 198 | 99.30 334 | 83.84 355 | 96.89 339 | 96.17 351 |
|
tpm2 | | | 93.09 323 | 92.58 324 | 94.62 331 | 97.56 329 | 86.53 352 | 97.66 181 | 95.79 339 | 86.15 355 | 94.07 350 | 98.23 251 | 75.95 358 | 99.53 298 | 90.91 337 | 96.86 340 | 97.81 321 |
|
KD-MVS_2432*1600 | | | 92.87 324 | 91.99 328 | 95.51 322 | 91.37 366 | 89.27 341 | 94.07 344 | 98.14 295 | 95.42 270 | 97.25 275 | 96.44 329 | 67.86 366 | 99.24 339 | 91.28 331 | 96.08 348 | 98.02 311 |
|
miper_refine_blended | | | 92.87 324 | 91.99 328 | 95.51 322 | 91.37 366 | 89.27 341 | 94.07 344 | 98.14 295 | 95.42 270 | 97.25 275 | 96.44 329 | 67.86 366 | 99.24 339 | 91.28 331 | 96.08 348 | 98.02 311 |
|
DWT-MVSNet_test | | | 92.75 326 | 92.05 327 | 94.85 329 | 96.48 353 | 87.21 350 | 97.83 164 | 94.99 341 | 92.22 322 | 92.72 356 | 94.11 360 | 70.75 363 | 99.46 315 | 95.01 250 | 94.33 358 | 97.87 317 |
|
MVE |  | 83.40 22 | 92.50 327 | 91.92 330 | 94.25 334 | 98.83 226 | 91.64 326 | 92.71 355 | 83.52 368 | 95.92 257 | 86.46 366 | 95.46 346 | 95.20 221 | 95.40 364 | 80.51 361 | 98.64 295 | 95.73 357 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
gg-mvs-nofinetune | | | 92.37 328 | 91.20 333 | 95.85 314 | 95.80 362 | 92.38 319 | 99.31 18 | 81.84 369 | 99.75 5 | 91.83 359 | 99.74 8 | 68.29 365 | 99.02 349 | 87.15 349 | 97.12 335 | 96.16 352 |
|
test-mter | | | 92.33 329 | 91.76 332 | 94.04 335 | 96.53 351 | 84.62 359 | 94.05 346 | 92.39 357 | 94.00 301 | 94.12 348 | 95.07 348 | 65.63 372 | 99.67 250 | 95.87 226 | 98.18 308 | 97.82 319 |
|
IB-MVS | | 91.63 19 | 92.24 330 | 90.90 334 | 96.27 306 | 97.22 342 | 91.24 335 | 94.36 341 | 93.33 354 | 92.37 319 | 92.24 358 | 94.58 357 | 66.20 371 | 99.89 58 | 93.16 304 | 94.63 356 | 97.66 329 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
TESTMET0.1,1 | | | 92.19 331 | 91.77 331 | 93.46 341 | 96.48 353 | 82.80 364 | 94.05 346 | 91.52 360 | 94.45 290 | 94.00 351 | 94.88 354 | 66.65 370 | 99.56 290 | 95.78 231 | 98.11 313 | 98.02 311 |
|
PAPM | | | 91.88 332 | 90.34 335 | 96.51 301 | 98.06 308 | 92.56 315 | 92.44 357 | 97.17 319 | 86.35 354 | 90.38 361 | 96.01 335 | 86.61 308 | 99.21 342 | 70.65 365 | 95.43 352 | 97.75 325 |
|
PVSNet_0 | | 89.98 21 | 91.15 333 | 90.30 336 | 93.70 339 | 97.72 322 | 84.34 362 | 90.24 360 | 97.42 312 | 90.20 341 | 93.79 352 | 93.09 362 | 90.90 285 | 98.89 355 | 86.57 351 | 72.76 365 | 97.87 317 |
|
test_method | | | 79.78 334 | 79.50 337 | 80.62 348 | 80.21 369 | 45.76 371 | 70.82 363 | 98.41 285 | 31.08 366 | 80.89 367 | 97.71 286 | 84.85 322 | 97.37 362 | 91.51 329 | 80.03 364 | 98.75 277 |
|
tmp_tt | | | 78.77 335 | 78.73 338 | 78.90 349 | 58.45 370 | 74.76 370 | 94.20 343 | 78.26 371 | 39.16 365 | 86.71 365 | 92.82 363 | 80.50 345 | 75.19 367 | 86.16 352 | 92.29 361 | 86.74 362 |
|
cdsmvs_eth3d_5k | | | 24.66 336 | 32.88 339 | 0.00 352 | 0.00 373 | 0.00 374 | 0.00 364 | 99.10 200 | 0.00 369 | 0.00 370 | 97.58 294 | 99.21 10 | 0.00 370 | 0.00 368 | 0.00 368 | 0.00 366 |
|
testmvs | | | 17.12 337 | 20.53 340 | 6.87 351 | 12.05 371 | 4.20 373 | 93.62 352 | 6.73 372 | 4.62 368 | 10.41 368 | 24.33 366 | 8.28 374 | 3.56 369 | 9.69 367 | 15.07 366 | 12.86 365 |
|
test123 | | | 17.04 338 | 20.11 341 | 7.82 350 | 10.25 372 | 4.91 372 | 94.80 327 | 4.47 373 | 4.93 367 | 10.00 369 | 24.28 367 | 9.69 373 | 3.64 368 | 10.14 366 | 12.43 367 | 14.92 364 |
|
pcd_1.5k_mvsjas | | | 8.17 339 | 10.90 342 | 0.00 352 | 0.00 373 | 0.00 374 | 0.00 364 | 0.00 374 | 0.00 369 | 0.00 370 | 0.00 370 | 98.07 64 | 0.00 370 | 0.00 368 | 0.00 368 | 0.00 366 |
|
ab-mvs-re | | | 8.12 340 | 10.83 343 | 0.00 352 | 0.00 373 | 0.00 374 | 0.00 364 | 0.00 374 | 0.00 369 | 0.00 370 | 97.48 301 | 0.00 375 | 0.00 370 | 0.00 368 | 0.00 368 | 0.00 366 |
|
uanet_test | | | 0.00 341 | 0.00 344 | 0.00 352 | 0.00 373 | 0.00 374 | 0.00 364 | 0.00 374 | 0.00 369 | 0.00 370 | 0.00 370 | 0.00 375 | 0.00 370 | 0.00 368 | 0.00 368 | 0.00 366 |
|
sosnet-low-res | | | 0.00 341 | 0.00 344 | 0.00 352 | 0.00 373 | 0.00 374 | 0.00 364 | 0.00 374 | 0.00 369 | 0.00 370 | 0.00 370 | 0.00 375 | 0.00 370 | 0.00 368 | 0.00 368 | 0.00 366 |
|
sosnet | | | 0.00 341 | 0.00 344 | 0.00 352 | 0.00 373 | 0.00 374 | 0.00 364 | 0.00 374 | 0.00 369 | 0.00 370 | 0.00 370 | 0.00 375 | 0.00 370 | 0.00 368 | 0.00 368 | 0.00 366 |
|
uncertanet | | | 0.00 341 | 0.00 344 | 0.00 352 | 0.00 373 | 0.00 374 | 0.00 364 | 0.00 374 | 0.00 369 | 0.00 370 | 0.00 370 | 0.00 375 | 0.00 370 | 0.00 368 | 0.00 368 | 0.00 366 |
|
Regformer | | | 0.00 341 | 0.00 344 | 0.00 352 | 0.00 373 | 0.00 374 | 0.00 364 | 0.00 374 | 0.00 369 | 0.00 370 | 0.00 370 | 0.00 375 | 0.00 370 | 0.00 368 | 0.00 368 | 0.00 366 |
|
uanet | | | 0.00 341 | 0.00 344 | 0.00 352 | 0.00 373 | 0.00 374 | 0.00 364 | 0.00 374 | 0.00 369 | 0.00 370 | 0.00 370 | 0.00 375 | 0.00 370 | 0.00 368 | 0.00 368 | 0.00 366 |
|
eth-test2 | | | | | | 0.00 373 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 373 | | | | | | | | | | | |
|
ZD-MVS | | | | | | 99.01 188 | 98.84 69 | | 99.07 204 | 94.10 298 | 98.05 225 | 98.12 259 | 96.36 182 | 99.86 91 | 92.70 314 | 99.19 248 | |
|
RE-MVS-def | | | | 98.58 81 | | 99.20 140 | 99.38 5 | 98.48 97 | 99.30 141 | 98.64 90 | 98.95 127 | 98.96 134 | 97.75 87 | | 96.56 185 | 99.39 213 | 99.45 126 |
|
IU-MVS | | | | | | 99.49 84 | 99.15 45 | | 98.87 241 | 92.97 311 | 99.41 49 | | | | 96.76 166 | 99.62 154 | 99.66 34 |
|
OPU-MVS | | | | | 98.82 150 | 98.59 269 | 98.30 109 | 98.10 130 | | | | 98.52 220 | 98.18 58 | 98.75 357 | 94.62 260 | 99.48 203 | 99.41 141 |
|
test_241102_TWO | | | | | | | | | 99.30 141 | 98.03 132 | 99.26 77 | 99.02 115 | 97.51 109 | 99.88 67 | 96.91 149 | 99.60 163 | 99.66 34 |
|
test_241102_ONE | | | | | | 99.49 84 | 99.17 36 | | 99.31 132 | 97.98 134 | 99.66 20 | 98.90 146 | 98.36 44 | 99.48 311 | | | |
|
9.14 | | | | 97.78 172 | | 99.07 174 | | 97.53 196 | 99.32 127 | 95.53 267 | 98.54 191 | 98.70 190 | 97.58 101 | 99.76 208 | 94.32 273 | 99.46 205 | |
|
save fliter | | | | | | 99.11 162 | 97.97 144 | 96.53 262 | 99.02 218 | 98.24 117 | | | | | | | |
|
test_0728_THIRD | | | | | | | | | | 98.17 126 | 99.08 101 | 99.02 115 | 97.89 77 | 99.88 67 | 97.07 138 | 99.71 118 | 99.70 29 |
|
test_0728_SECOND | | | | | 99.60 13 | 99.50 77 | 99.23 24 | 98.02 143 | 99.32 127 | | | | | 99.88 67 | 96.99 143 | 99.63 151 | 99.68 31 |
|
test0726 | | | | | | 99.50 77 | 99.21 26 | 98.17 124 | 99.35 114 | 97.97 135 | 99.26 77 | 99.06 101 | 97.61 99 | | | | |
|
GSMVS | | | | | | | | | | | | | | | | | 98.81 267 |
|
test_part2 | | | | | | 99.36 111 | 99.10 56 | | | | 99.05 109 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 84.74 324 | | | | 98.81 267 |
|
sam_mvs | | | | | | | | | | | | | 84.29 330 | | | | |
|
ambc | | | | | 98.24 219 | 98.82 229 | 95.97 237 | 98.62 77 | 99.00 224 | | 99.27 73 | 99.21 75 | 96.99 144 | 99.50 307 | 96.55 188 | 99.50 200 | 99.26 197 |
|
MTGPA |  | | | | | | | | 99.20 170 | | | | | | | | |
|
test_post1 | | | | | | | | 97.59 190 | | | | 20.48 369 | 83.07 336 | 99.66 258 | 94.16 274 | | |
|
test_post | | | | | | | | | | | | 21.25 368 | 83.86 332 | 99.70 234 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 98.77 179 | 84.37 327 | 99.85 105 | | | |
|
GG-mvs-BLEND | | | | | 94.76 330 | 94.54 364 | 92.13 323 | 99.31 18 | 80.47 370 | | 88.73 364 | 91.01 364 | 67.59 368 | 98.16 361 | 82.30 360 | 94.53 357 | 93.98 360 |
|
MTMP | | | | | | | | 97.93 152 | 91.91 359 | | | | | | | | |
|
gm-plane-assit | | | | | | 94.83 363 | 81.97 365 | | | 88.07 351 | | 94.99 351 | | 99.60 277 | 91.76 323 | | |
|
test9_res | | | | | | | | | | | | | | | 93.28 303 | 99.15 254 | 99.38 157 |
|
TEST9 | | | | | | 98.71 245 | 98.08 131 | 95.96 289 | 99.03 214 | 91.40 331 | 95.85 324 | 97.53 296 | 96.52 171 | 99.76 208 | | | |
|
test_8 | | | | | | 98.67 258 | 98.01 138 | 95.91 294 | 99.02 218 | 91.64 326 | 95.79 326 | 97.50 299 | 96.47 174 | 99.76 208 | | | |
|
agg_prior2 | | | | | | | | | | | | | | | 92.50 317 | 99.16 251 | 99.37 160 |
|
agg_prior | | | | | | 98.68 256 | 97.99 139 | | 99.01 221 | | 95.59 327 | | | 99.77 201 | | | |
|
TestCases | | | | | 99.16 97 | 99.50 77 | 98.55 93 | | 99.58 28 | 96.80 225 | 98.88 144 | 99.06 101 | 97.65 94 | 99.57 287 | 94.45 266 | 99.61 161 | 99.37 160 |
|
test_prior4 | | | | | | | 97.97 144 | 95.86 295 | | | | | | | | | |
|
test_prior2 | | | | | | | | 95.74 301 | | 96.48 237 | 96.11 318 | 97.63 292 | 95.92 200 | | 94.16 274 | 99.20 244 | |
|
test_prior | | | | | 98.95 133 | 98.69 253 | 97.95 149 | | 99.03 214 | | | | | 99.59 281 | | | 99.30 187 |
|
旧先验2 | | | | | | | | 95.76 299 | | 88.56 350 | 97.52 260 | | | 99.66 258 | 94.48 264 | | |
|
新几何2 | | | | | | | | 95.93 292 | | | | | | | | | |
|
新几何1 | | | | | 98.91 139 | 98.94 200 | 97.76 167 | | 98.76 261 | 87.58 353 | 96.75 299 | 98.10 261 | 94.80 234 | 99.78 195 | 92.73 313 | 99.00 275 | 99.20 207 |
|
旧先验1 | | | | | | 98.82 229 | 97.45 186 | | 98.76 261 | | | 98.34 242 | 95.50 214 | | | 99.01 274 | 99.23 202 |
|
无先验 | | | | | | | | 95.74 301 | 98.74 266 | 89.38 345 | | | | 99.73 223 | 92.38 318 | | 99.22 206 |
|
原ACMM2 | | | | | | | | 95.53 308 | | | | | | | | | |
|
原ACMM1 | | | | | 98.35 209 | 98.90 210 | 96.25 231 | | 98.83 253 | 92.48 318 | 96.07 321 | 98.10 261 | 95.39 218 | 99.71 232 | 92.61 316 | 98.99 276 | 99.08 226 |
|
test222 | | | | | | 98.92 206 | 96.93 214 | 95.54 307 | 98.78 259 | 85.72 356 | 96.86 295 | 98.11 260 | 94.43 241 | | | 99.10 263 | 99.23 202 |
|
testdata2 | | | | | | | | | | | | | | 99.79 183 | 92.80 311 | | |
|
segment_acmp | | | | | | | | | | | | | 97.02 141 | | | | |
|
testdata | | | | | 98.09 226 | 98.93 202 | 95.40 253 | | 98.80 256 | 90.08 342 | 97.45 266 | 98.37 239 | 95.26 220 | 99.70 234 | 93.58 295 | 98.95 280 | 99.17 218 |
|
testdata1 | | | | | | | | 95.44 313 | | 96.32 243 | | | | | | | |
|
test12 | | | | | 98.93 136 | 98.58 270 | 97.83 159 | | 98.66 271 | | 96.53 306 | | 95.51 213 | 99.69 238 | | 99.13 258 | 99.27 194 |
|
plane_prior7 | | | | | | 99.19 143 | 97.87 155 | | | | | | | | | | |
|
plane_prior6 | | | | | | 98.99 193 | 97.70 173 | | | | | | 94.90 227 | | | | |
|
plane_prior5 | | | | | | | | | 99.27 153 | | | | | 99.70 234 | 94.42 268 | 99.51 193 | 99.45 126 |
|
plane_prior4 | | | | | | | | | | | | 97.98 270 | | | | | |
|
plane_prior3 | | | | | | | 97.78 166 | | | 97.41 183 | 97.79 239 | | | | | | |
|
plane_prior2 | | | | | | | | 97.77 170 | | 98.20 123 | | | | | | | |
|
plane_prior1 | | | | | | 99.05 180 | | | | | | | | | | | |
|
plane_prior | | | | | | | 97.65 176 | 97.07 232 | | 96.72 229 | | | | | | 99.36 218 | |
|
n2 | | | | | | | | | 0.00 374 | | | | | | | | |
|
nn | | | | | | | | | 0.00 374 | | | | | | | | |
|
door-mid | | | | | | | | | 99.57 35 | | | | | | | | |
|
lessismore_v0 | | | | | 98.97 130 | 99.73 24 | 97.53 182 | | 86.71 366 | | 99.37 56 | 99.52 35 | 89.93 290 | 99.92 35 | 98.99 34 | 99.72 113 | 99.44 131 |
|
LGP-MVS_train | | | | | 99.47 53 | 99.57 55 | 98.97 62 | | 99.48 69 | 96.60 233 | 99.10 98 | 99.06 101 | 98.71 26 | 99.83 136 | 95.58 242 | 99.78 86 | 99.62 44 |
|
test11 | | | | | | | | | 98.87 241 | | | | | | | | |
|
door | | | | | | | | | 99.41 93 | | | | | | | | |
|
HQP5-MVS | | | | | | | 96.79 217 | | | | | | | | | | |
|
HQP-NCC | | | | | | 98.67 258 | | 96.29 276 | | 96.05 251 | 95.55 331 | | | | | | |
|
ACMP_Plane | | | | | | 98.67 258 | | 96.29 276 | | 96.05 251 | 95.55 331 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 92.82 309 | | |
|
HQP4-MVS | | | | | | | | | | | 95.56 330 | | | 99.54 296 | | | 99.32 180 |
|
HQP3-MVS | | | | | | | | | 99.04 212 | | | | | | | 99.26 237 | |
|
HQP2-MVS | | | | | | | | | | | | | 93.84 253 | | | | |
|
NP-MVS | | | | | | 98.84 224 | 97.39 189 | | | | | 96.84 320 | | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 74.92 369 | 97.69 178 | | 90.06 343 | 97.75 242 | | 85.78 316 | | 93.52 296 | | 98.69 283 |
|
MDTV_nov1_ep13 | | | | 95.22 290 | | 97.06 344 | 83.20 363 | 97.74 174 | 96.16 334 | 94.37 292 | 96.99 285 | 98.83 168 | 83.95 331 | 99.53 298 | 93.90 285 | 97.95 319 | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 99.77 90 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 99.68 134 | |
|
Test By Simon | | | | | | | | | | | | | 96.52 171 | | | | |
|
ITE_SJBPF | | | | | 98.87 144 | 99.22 134 | 98.48 100 | | 99.35 114 | 97.50 169 | 98.28 209 | 98.60 213 | 97.64 97 | 99.35 327 | 93.86 288 | 99.27 234 | 98.79 273 |
|
DeepMVS_CX |  | | | | 93.44 342 | 98.24 297 | 94.21 281 | | 94.34 345 | 64.28 364 | 91.34 360 | 94.87 356 | 89.45 295 | 92.77 366 | 77.54 364 | 93.14 360 | 93.35 361 |
|