This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.93 199.92 199.94 199.99 199.97 199.90 199.89 1399.98 199.99 199.96 199.77 2100.00 199.81 12100.00 199.85 24
UniMVSNet_ETH3D99.69 299.69 499.69 399.84 1799.34 1999.69 599.58 6199.90 399.86 1999.78 1099.58 699.95 2499.00 6699.95 3299.78 37
pmmvs699.67 399.70 399.60 1499.90 499.27 2699.53 899.76 3399.64 1999.84 2199.83 499.50 899.87 11099.36 4199.92 5699.64 68
LTVRE_ROB98.40 199.67 399.71 299.56 2599.85 1699.11 6399.90 199.78 3199.63 2199.78 2999.67 2799.48 999.81 18999.30 4599.97 2099.77 39
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
mvs_tets99.63 599.67 599.49 5199.88 998.61 9499.34 2099.71 3899.27 6099.90 1299.74 1599.68 499.97 599.55 3299.99 599.88 19
jajsoiax99.58 699.61 899.48 5399.87 1298.61 9499.28 3799.66 5099.09 8899.89 1599.68 2299.53 799.97 599.50 3699.99 599.87 20
test_fmvsmconf0.01_n99.57 799.63 799.36 6699.87 1298.13 13398.08 17099.95 199.45 3999.98 299.75 1399.80 199.97 599.82 899.99 599.99 2
ANet_high99.57 799.67 599.28 8799.89 698.09 13799.14 5499.93 599.82 599.93 699.81 699.17 1899.94 3799.31 44100.00 199.82 29
v7n99.53 999.57 1099.41 6299.88 998.54 10299.45 1199.61 5799.66 1799.68 4299.66 2998.44 6399.95 2499.73 2099.96 2599.75 48
test_djsdf99.52 1099.51 1299.53 3799.86 1498.74 8499.39 1799.56 7599.11 7899.70 3899.73 1799.00 2299.97 599.26 4899.98 1299.89 16
anonymousdsp99.51 1199.47 1799.62 999.88 999.08 6799.34 2099.69 4298.93 10699.65 4899.72 1898.93 2699.95 2499.11 57100.00 199.82 29
test_fmvsmconf0.1_n99.49 1299.54 1199.34 7599.78 2398.11 13497.77 21699.90 1199.33 5399.97 399.66 2999.71 399.96 1299.79 1499.99 599.96 8
UA-Net99.47 1399.40 2299.70 299.49 11699.29 2399.80 499.72 3799.82 599.04 14999.81 698.05 9899.96 1298.85 7699.99 599.86 23
PS-MVSNAJss99.46 1499.49 1399.35 7299.90 498.15 13099.20 4599.65 5199.48 3499.92 899.71 1998.07 9599.96 1299.53 33100.00 199.93 11
test_fmvsmconf_n99.44 1599.48 1599.31 8599.64 7098.10 13697.68 22799.84 2199.29 5899.92 899.57 4699.60 599.96 1299.74 1999.98 1299.89 16
mamv499.44 1599.39 2399.58 1999.30 16199.74 299.04 6599.81 2699.77 799.82 2399.57 4697.82 11499.98 499.53 3399.89 7399.01 270
pm-mvs199.44 1599.48 1599.33 8099.80 2098.63 9199.29 3399.63 5399.30 5799.65 4899.60 4299.16 2099.82 17599.07 6099.83 9499.56 104
TransMVSNet (Re)99.44 1599.47 1799.36 6699.80 2098.58 9799.27 3999.57 6899.39 4699.75 3399.62 3799.17 1899.83 16599.06 6199.62 19599.66 62
DTE-MVSNet99.43 1999.35 2799.66 799.71 4599.30 2199.31 2799.51 9099.64 1999.56 5599.46 7298.23 7999.97 598.78 8099.93 4599.72 50
TDRefinement99.42 2099.38 2499.55 2799.76 2999.33 2099.68 699.71 3899.38 4799.53 6399.61 4098.64 4499.80 19698.24 11399.84 8799.52 126
PEN-MVS99.41 2199.34 2999.62 999.73 3699.14 5699.29 3399.54 8399.62 2499.56 5599.42 7998.16 9099.96 1298.78 8099.93 4599.77 39
nrg03099.40 2299.35 2799.54 3099.58 7799.13 5998.98 7299.48 10199.68 1599.46 7799.26 11298.62 4799.73 24999.17 5699.92 5699.76 44
PS-CasMVS99.40 2299.33 3099.62 999.71 4599.10 6499.29 3399.53 8699.53 3199.46 7799.41 8398.23 7999.95 2498.89 7499.95 3299.81 32
MIMVSNet199.38 2499.32 3299.55 2799.86 1499.19 4199.41 1499.59 5999.59 2799.71 3699.57 4697.12 16599.90 6899.21 5399.87 7899.54 115
OurMVSNet-221017-099.37 2599.31 3499.53 3799.91 398.98 6999.63 799.58 6199.44 4199.78 2999.76 1296.39 20599.92 5399.44 3999.92 5699.68 58
Vis-MVSNetpermissive99.34 2699.36 2699.27 9099.73 3698.26 12099.17 5099.78 3199.11 7899.27 11499.48 7098.82 3199.95 2498.94 7099.93 4599.59 87
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test_fmvsm_n_192099.33 2799.45 1998.99 13799.57 8297.73 18097.93 19399.83 2399.22 6399.93 699.30 10399.42 1099.96 1299.85 599.99 599.29 221
WR-MVS_H99.33 2799.22 4599.65 899.71 4599.24 2999.32 2399.55 7999.46 3899.50 7199.34 9597.30 15499.93 4498.90 7299.93 4599.77 39
mmtdpeth99.30 2999.42 2098.92 14999.58 7796.89 22999.48 1099.92 799.92 298.26 25499.80 998.33 7299.91 6299.56 3199.95 3299.97 4
mvs5depth99.30 2999.59 998.44 22499.65 6495.35 28199.82 399.94 299.83 499.42 8599.94 298.13 9399.96 1299.63 2699.96 25100.00 1
VPA-MVSNet99.30 2999.30 3799.28 8799.49 11698.36 11699.00 6999.45 11699.63 2199.52 6599.44 7798.25 7799.88 9399.09 5999.84 8799.62 72
sd_testset99.28 3299.31 3499.19 10399.68 5798.06 14699.41 1499.30 17999.69 1399.63 5199.68 2299.25 1499.96 1297.25 17499.92 5699.57 98
Anonymous2023121199.27 3399.27 4099.26 9299.29 16398.18 12899.49 999.51 9099.70 1299.80 2799.68 2296.84 18099.83 16599.21 5399.91 6399.77 39
FC-MVSNet-test99.27 3399.25 4399.34 7599.77 2698.37 11399.30 3299.57 6899.61 2699.40 9099.50 6497.12 16599.85 13099.02 6599.94 4099.80 33
test_fmvsmvis_n_192099.26 3599.49 1398.54 21199.66 6396.97 22298.00 18499.85 1899.24 6299.92 899.50 6499.39 1199.95 2499.89 399.98 1298.71 319
testf199.25 3699.16 5099.51 4699.89 699.63 498.71 9999.69 4298.90 10899.43 8299.35 9198.86 2899.67 27797.81 14299.81 10199.24 231
APD_test299.25 3699.16 5099.51 4699.89 699.63 498.71 9999.69 4298.90 10899.43 8299.35 9198.86 2899.67 27797.81 14299.81 10199.24 231
KD-MVS_self_test99.25 3699.18 4799.44 5999.63 7499.06 6898.69 10199.54 8399.31 5599.62 5499.53 6097.36 15299.86 11899.24 5299.71 16099.39 183
ACMH96.65 799.25 3699.24 4499.26 9299.72 4298.38 11199.07 6199.55 7998.30 14799.65 4899.45 7699.22 1599.76 23298.44 10499.77 12899.64 68
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
SDMVSNet99.23 4099.32 3298.96 14199.68 5797.35 20098.84 8999.48 10199.69 1399.63 5199.68 2299.03 2199.96 1297.97 13399.92 5699.57 98
fmvsm_l_conf0.5_n99.21 4199.28 3999.02 13499.64 7097.28 20497.82 20999.76 3398.73 11699.82 2399.09 15298.81 3299.95 2499.86 499.96 2599.83 26
CP-MVSNet99.21 4199.09 5999.56 2599.65 6498.96 7499.13 5599.34 15999.42 4499.33 10299.26 11297.01 17399.94 3798.74 8599.93 4599.79 34
fmvsm_s_conf0.1_n_299.20 4399.38 2498.65 18599.69 5496.08 25897.49 25299.90 1199.53 3199.88 1799.64 3498.51 5799.90 6899.83 799.98 1299.97 4
fmvsm_l_conf0.5_n_a99.19 4499.27 4098.94 14499.65 6497.05 21897.80 21299.76 3398.70 11999.78 2999.11 14698.79 3499.95 2499.85 599.96 2599.83 26
fmvsm_s_conf0.1_n_a99.17 4599.30 3798.80 16399.75 3396.59 24297.97 19299.86 1698.22 15599.88 1799.71 1998.59 5099.84 14899.73 2099.98 1299.98 3
TranMVSNet+NR-MVSNet99.17 4599.07 6299.46 5899.37 14898.87 7798.39 13899.42 12999.42 4499.36 9799.06 15398.38 6699.95 2498.34 10999.90 6999.57 98
FMVSNet199.17 4599.17 4899.17 10499.55 9498.24 12299.20 4599.44 12099.21 6599.43 8299.55 5497.82 11499.86 11898.42 10699.89 7399.41 173
fmvsm_s_conf0.1_n99.16 4899.33 3098.64 18799.71 4596.10 25397.87 20499.85 1898.56 13399.90 1299.68 2298.69 4199.85 13099.72 2299.98 1299.97 4
reproduce_model99.15 4998.97 7099.67 499.33 15699.44 1098.15 16099.47 10999.12 7799.52 6599.32 10198.31 7399.90 6897.78 14599.73 14799.66 62
fmvsm_s_conf0.5_n_299.14 5099.31 3498.63 19199.49 11696.08 25897.38 25999.81 2699.48 3499.84 2199.57 4698.46 6199.89 8099.82 899.97 2099.91 13
test_vis3_rt99.14 5099.17 4899.07 12299.78 2398.38 11198.92 7999.94 297.80 18999.91 1199.67 2797.15 16498.91 40299.76 1799.56 21899.92 12
FIs99.14 5099.09 5999.29 8699.70 5298.28 11999.13 5599.52 8999.48 3499.24 12399.41 8396.79 18699.82 17598.69 9099.88 7599.76 44
XXY-MVS99.14 5099.15 5599.10 11699.76 2997.74 17898.85 8799.62 5498.48 13799.37 9599.49 6998.75 3699.86 11898.20 11699.80 11299.71 51
CS-MVS99.13 5499.10 5899.24 9799.06 22099.15 5199.36 1999.88 1499.36 5198.21 25698.46 27798.68 4299.93 4499.03 6499.85 8398.64 328
SPE-MVS-test99.13 5499.09 5999.26 9299.13 20498.97 7099.31 2799.88 1499.44 4198.16 26098.51 26998.64 4499.93 4498.91 7199.85 8398.88 296
test_fmvs399.12 5699.41 2198.25 24299.76 2995.07 29399.05 6499.94 297.78 19199.82 2399.84 398.56 5499.71 25799.96 199.96 2599.97 4
casdiffmvs_mvgpermissive99.12 5699.16 5098.99 13799.43 13697.73 18098.00 18499.62 5499.22 6399.55 5899.22 12298.93 2699.75 23998.66 9199.81 10199.50 132
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
fmvsm_s_conf0.5_n_a99.10 5899.20 4698.78 16999.55 9496.59 24297.79 21399.82 2598.21 15699.81 2699.53 6098.46 6199.84 14899.70 2399.97 2099.90 15
reproduce-ours99.09 5998.90 7599.67 499.27 16699.49 698.00 18499.42 12999.05 9399.48 7299.27 10898.29 7599.89 8097.61 15599.71 16099.62 72
our_new_method99.09 5998.90 7599.67 499.27 16699.49 698.00 18499.42 12999.05 9399.48 7299.27 10898.29 7599.89 8097.61 15599.71 16099.62 72
fmvsm_s_conf0.5_n99.09 5999.26 4298.61 19699.55 9496.09 25697.74 22199.81 2698.55 13499.85 2099.55 5498.60 4999.84 14899.69 2599.98 1299.89 16
EC-MVSNet99.09 5999.05 6399.20 10199.28 16498.93 7599.24 4199.84 2199.08 9098.12 26598.37 28698.72 3899.90 6899.05 6299.77 12898.77 313
ACMH+96.62 999.08 6399.00 6699.33 8099.71 4598.83 7998.60 10999.58 6199.11 7899.53 6399.18 13098.81 3299.67 27796.71 22399.77 12899.50 132
GeoE99.05 6498.99 6899.25 9599.44 13198.35 11798.73 9699.56 7598.42 13998.91 17498.81 22098.94 2599.91 6298.35 10899.73 14799.49 136
Gipumacopyleft99.03 6599.16 5098.64 18799.94 298.51 10499.32 2399.75 3699.58 2998.60 21999.62 3798.22 8299.51 34497.70 15199.73 14797.89 374
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
v899.01 6699.16 5098.57 20399.47 12696.31 25098.90 8099.47 10999.03 9699.52 6599.57 4696.93 17699.81 18999.60 2799.98 1299.60 81
HPM-MVS_fast99.01 6698.82 8499.57 2099.71 4599.35 1699.00 6999.50 9297.33 23398.94 17198.86 20998.75 3699.82 17597.53 16199.71 16099.56 104
APDe-MVScopyleft98.99 6898.79 8799.60 1499.21 18099.15 5198.87 8499.48 10197.57 20699.35 9999.24 11797.83 11199.89 8097.88 13999.70 16799.75 48
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
EG-PatchMatch MVS98.99 6899.01 6598.94 14499.50 10997.47 19398.04 17799.59 5998.15 16799.40 9099.36 9098.58 5399.76 23298.78 8099.68 17599.59 87
COLMAP_ROBcopyleft96.50 1098.99 6898.85 8299.41 6299.58 7799.10 6498.74 9299.56 7599.09 8899.33 10299.19 12698.40 6599.72 25695.98 27299.76 14099.42 170
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
Baseline_NR-MVSNet98.98 7198.86 8199.36 6699.82 1998.55 9997.47 25599.57 6899.37 4899.21 12699.61 4096.76 18999.83 16598.06 12699.83 9499.71 51
v1098.97 7299.11 5698.55 20899.44 13196.21 25298.90 8099.55 7998.73 11699.48 7299.60 4296.63 19699.83 16599.70 2399.99 599.61 80
DeepC-MVS97.60 498.97 7298.93 7299.10 11699.35 15397.98 15398.01 18399.46 11297.56 20899.54 5999.50 6498.97 2399.84 14898.06 12699.92 5699.49 136
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
baseline98.96 7499.02 6498.76 17399.38 14297.26 20698.49 12699.50 9298.86 11199.19 12899.06 15398.23 7999.69 26598.71 8899.76 14099.33 210
casdiffmvspermissive98.95 7599.00 6698.81 16199.38 14297.33 20197.82 20999.57 6899.17 7499.35 9999.17 13498.35 7099.69 26598.46 10399.73 14799.41 173
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
NR-MVSNet98.95 7598.82 8499.36 6699.16 19798.72 8999.22 4299.20 21099.10 8599.72 3498.76 22996.38 20799.86 11898.00 13199.82 9799.50 132
Anonymous2024052998.93 7798.87 7899.12 11299.19 18798.22 12799.01 6798.99 25799.25 6199.54 5999.37 8697.04 16999.80 19697.89 13699.52 23199.35 203
DP-MVS98.93 7798.81 8699.28 8799.21 18098.45 10898.46 13199.33 16499.63 2199.48 7299.15 14097.23 16099.75 23997.17 17799.66 18699.63 71
SED-MVS98.91 7998.72 9499.49 5199.49 11699.17 4398.10 16899.31 17198.03 17099.66 4599.02 16598.36 6799.88 9396.91 19999.62 19599.41 173
ACMM96.08 1298.91 7998.73 9299.48 5399.55 9499.14 5698.07 17299.37 14497.62 20099.04 14998.96 18798.84 3099.79 20997.43 16599.65 18799.49 136
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
DVP-MVS++98.90 8198.70 10099.51 4698.43 33099.15 5199.43 1299.32 16698.17 16399.26 11899.02 16598.18 8699.88 9397.07 18799.45 24599.49 136
tfpnnormal98.90 8198.90 7598.91 15099.67 6197.82 17099.00 6999.44 12099.45 3999.51 7099.24 11798.20 8599.86 11895.92 27499.69 17099.04 266
MTAPA98.88 8398.64 10999.61 1299.67 6199.36 1598.43 13499.20 21098.83 11598.89 17798.90 19996.98 17599.92 5397.16 17899.70 16799.56 104
mvsany_test398.87 8498.92 7398.74 17999.38 14296.94 22698.58 11199.10 23596.49 28699.96 499.81 698.18 8699.45 35898.97 6899.79 11799.83 26
VPNet98.87 8498.83 8399.01 13599.70 5297.62 18798.43 13499.35 15399.47 3799.28 11299.05 16096.72 19299.82 17598.09 12399.36 25699.59 87
UniMVSNet (Re)98.87 8498.71 9799.35 7299.24 17398.73 8797.73 22399.38 14098.93 10699.12 13498.73 23296.77 18799.86 11898.63 9499.80 11299.46 155
UniMVSNet_NR-MVSNet98.86 8798.68 10399.40 6499.17 19598.74 8497.68 22799.40 13699.14 7699.06 14298.59 26096.71 19399.93 4498.57 9799.77 12899.53 123
APD-MVS_3200maxsize98.84 8898.61 11699.53 3799.19 18799.27 2698.49 12699.33 16498.64 12099.03 15298.98 18297.89 10899.85 13096.54 24199.42 24999.46 155
MVSMamba_PlusPlus98.83 8998.98 6998.36 23399.32 15796.58 24498.90 8099.41 13399.75 898.72 20399.50 6496.17 21499.94 3799.27 4799.78 12298.57 335
APD_test198.83 8998.66 10699.34 7599.78 2399.47 998.42 13699.45 11698.28 15298.98 15699.19 12697.76 11899.58 31996.57 23399.55 22298.97 279
PM-MVS98.82 9198.72 9499.12 11299.64 7098.54 10297.98 18999.68 4797.62 20099.34 10199.18 13097.54 13799.77 22697.79 14499.74 14499.04 266
DU-MVS98.82 9198.63 11099.39 6599.16 19798.74 8497.54 24699.25 19998.84 11499.06 14298.76 22996.76 18999.93 4498.57 9799.77 12899.50 132
SR-MVS-dyc-post98.81 9398.55 12199.57 2099.20 18499.38 1298.48 12999.30 17998.64 12098.95 16498.96 18797.49 14699.86 11896.56 23799.39 25299.45 159
3Dnovator98.27 298.81 9398.73 9299.05 12998.76 27397.81 17399.25 4099.30 17998.57 13098.55 22899.33 9797.95 10699.90 6897.16 17899.67 18199.44 163
HPM-MVScopyleft98.79 9598.53 12499.59 1899.65 6499.29 2399.16 5199.43 12696.74 27698.61 21798.38 28598.62 4799.87 11096.47 24599.67 18199.59 87
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
SteuartSystems-ACMMP98.79 9598.54 12399.54 3099.73 3699.16 4798.23 15099.31 17197.92 18098.90 17598.90 19998.00 10199.88 9396.15 26599.72 15599.58 93
Skip Steuart: Steuart Systems R&D Blog.
dcpmvs_298.78 9799.11 5697.78 27399.56 9093.67 33999.06 6299.86 1699.50 3399.66 4599.26 11297.21 16299.99 298.00 13199.91 6399.68 58
V4298.78 9798.78 8898.76 17399.44 13197.04 21998.27 14799.19 21497.87 18499.25 12299.16 13696.84 18099.78 22099.21 5399.84 8799.46 155
test20.0398.78 9798.77 8998.78 16999.46 12797.20 21197.78 21499.24 20499.04 9599.41 8798.90 19997.65 12599.76 23297.70 15199.79 11799.39 183
DVP-MVScopyleft98.77 10098.52 12599.52 4299.50 10999.21 3298.02 18098.84 28397.97 17499.08 14099.02 16597.61 13199.88 9396.99 19399.63 19299.48 146
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_040298.76 10198.71 9798.93 14699.56 9098.14 13298.45 13399.34 15999.28 5998.95 16498.91 19698.34 7199.79 20995.63 28999.91 6398.86 298
ACMMP_NAP98.75 10298.48 13399.57 2099.58 7799.29 2397.82 20999.25 19996.94 26598.78 19499.12 14598.02 9999.84 14897.13 18399.67 18199.59 87
SixPastTwentyTwo98.75 10298.62 11299.16 10799.83 1897.96 15799.28 3798.20 32899.37 4899.70 3899.65 3392.65 30899.93 4499.04 6399.84 8799.60 81
ACMMPcopyleft98.75 10298.50 12899.52 4299.56 9099.16 4798.87 8499.37 14497.16 25498.82 19199.01 17497.71 12199.87 11096.29 25799.69 17099.54 115
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
XVS98.72 10598.45 13899.53 3799.46 12799.21 3298.65 10399.34 15998.62 12497.54 30798.63 25397.50 14399.83 16596.79 21299.53 22899.56 104
SSC-MVS98.71 10698.74 9098.62 19399.72 4296.08 25898.74 9298.64 30899.74 1099.67 4499.24 11794.57 27099.95 2499.11 5799.24 27699.82 29
SR-MVS98.71 10698.43 14199.57 2099.18 19499.35 1698.36 14199.29 18798.29 15098.88 18098.85 21297.53 13999.87 11096.14 26699.31 26499.48 146
HFP-MVS98.71 10698.44 14099.51 4699.49 11699.16 4798.52 11899.31 17197.47 21798.58 22398.50 27397.97 10599.85 13096.57 23399.59 20699.53 123
LPG-MVS_test98.71 10698.46 13799.47 5699.57 8298.97 7098.23 15099.48 10196.60 28199.10 13899.06 15398.71 3999.83 16595.58 29299.78 12299.62 72
test_fmvs298.70 11098.97 7097.89 26699.54 9994.05 32098.55 11499.92 796.78 27499.72 3499.78 1096.60 19799.67 27799.91 299.90 6999.94 10
ACMMPR98.70 11098.42 14399.54 3099.52 10499.14 5698.52 11899.31 17197.47 21798.56 22698.54 26497.75 11999.88 9396.57 23399.59 20699.58 93
CP-MVS98.70 11098.42 14399.52 4299.36 14999.12 6198.72 9799.36 14897.54 21198.30 24898.40 28297.86 11099.89 8096.53 24299.72 15599.56 104
tt080598.69 11398.62 11298.90 15399.75 3399.30 2199.15 5396.97 36398.86 11198.87 18497.62 33998.63 4698.96 39999.41 4098.29 35198.45 342
Anonymous2024052198.69 11398.87 7898.16 25099.77 2695.11 29299.08 5899.44 12099.34 5299.33 10299.55 5494.10 28499.94 3799.25 5099.96 2599.42 170
region2R98.69 11398.40 14599.54 3099.53 10299.17 4398.52 11899.31 17197.46 22298.44 23998.51 26997.83 11199.88 9396.46 24699.58 21199.58 93
EI-MVSNet-UG-set98.69 11398.71 9798.62 19399.10 20896.37 24797.23 27298.87 27499.20 6799.19 12898.99 17897.30 15499.85 13098.77 8399.79 11799.65 67
3Dnovator+97.89 398.69 11398.51 12699.24 9798.81 26898.40 10999.02 6699.19 21498.99 9998.07 26999.28 10697.11 16799.84 14896.84 21099.32 26299.47 153
ZNCC-MVS98.68 11898.40 14599.54 3099.57 8299.21 3298.46 13199.29 18797.28 23998.11 26698.39 28398.00 10199.87 11096.86 20999.64 18999.55 111
EI-MVSNet-Vis-set98.68 11898.70 10098.63 19199.09 21196.40 24697.23 27298.86 27999.20 6799.18 13298.97 18497.29 15699.85 13098.72 8799.78 12299.64 68
CSCG98.68 11898.50 12899.20 10199.45 13098.63 9198.56 11399.57 6897.87 18498.85 18598.04 31497.66 12499.84 14896.72 22199.81 10199.13 255
test_f98.67 12198.87 7898.05 25999.72 4295.59 27098.51 12399.81 2696.30 29699.78 2999.82 596.14 21598.63 40899.82 899.93 4599.95 9
PGM-MVS98.66 12298.37 15199.55 2799.53 10299.18 4298.23 15099.49 9997.01 26298.69 20598.88 20698.00 10199.89 8095.87 27899.59 20699.58 93
GBi-Net98.65 12398.47 13599.17 10498.90 24998.24 12299.20 4599.44 12098.59 12698.95 16499.55 5494.14 28099.86 11897.77 14699.69 17099.41 173
test198.65 12398.47 13599.17 10498.90 24998.24 12299.20 4599.44 12098.59 12698.95 16499.55 5494.14 28099.86 11897.77 14699.69 17099.41 173
LCM-MVSNet-Re98.64 12598.48 13399.11 11498.85 26098.51 10498.49 12699.83 2398.37 14099.69 4099.46 7298.21 8499.92 5394.13 33099.30 26798.91 291
mPP-MVS98.64 12598.34 15599.54 3099.54 9999.17 4398.63 10599.24 20497.47 21798.09 26898.68 24197.62 13099.89 8096.22 26099.62 19599.57 98
balanced_conf0398.63 12798.72 9498.38 23098.66 30196.68 24198.90 8099.42 12998.99 9998.97 16099.19 12695.81 23599.85 13098.77 8399.77 12898.60 331
TSAR-MVS + MP.98.63 12798.49 13299.06 12899.64 7097.90 16198.51 12398.94 25996.96 26399.24 12398.89 20597.83 11199.81 18996.88 20699.49 24199.48 146
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
LS3D98.63 12798.38 15099.36 6697.25 39499.38 1299.12 5799.32 16699.21 6598.44 23998.88 20697.31 15399.80 19696.58 23199.34 26098.92 288
RPSCF98.62 13098.36 15299.42 6099.65 6499.42 1198.55 11499.57 6897.72 19498.90 17599.26 11296.12 21799.52 33995.72 28599.71 16099.32 212
GST-MVS98.61 13198.30 16099.52 4299.51 10699.20 3898.26 14899.25 19997.44 22598.67 20898.39 28397.68 12299.85 13096.00 27099.51 23399.52 126
v119298.60 13298.66 10698.41 22799.27 16695.88 26497.52 24899.36 14897.41 22699.33 10299.20 12596.37 20899.82 17599.57 2999.92 5699.55 111
v114498.60 13298.66 10698.41 22799.36 14995.90 26397.58 24299.34 15997.51 21399.27 11499.15 14096.34 21099.80 19699.47 3899.93 4599.51 129
DPE-MVScopyleft98.59 13498.26 16699.57 2099.27 16699.15 5197.01 28599.39 13897.67 19699.44 8198.99 17897.53 13999.89 8095.40 29699.68 17599.66 62
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MP-MVS-pluss98.57 13598.23 17099.60 1499.69 5499.35 1697.16 28099.38 14094.87 33898.97 16098.99 17898.01 10099.88 9397.29 17199.70 16799.58 93
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
OPM-MVS98.56 13698.32 15999.25 9599.41 13998.73 8797.13 28299.18 21897.10 25798.75 20098.92 19598.18 8699.65 29396.68 22599.56 21899.37 192
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
VDD-MVS98.56 13698.39 14899.07 12299.13 20498.07 14398.59 11097.01 36199.59 2799.11 13599.27 10894.82 26299.79 20998.34 10999.63 19299.34 205
v2v48298.56 13698.62 11298.37 23299.42 13795.81 26797.58 24299.16 22597.90 18299.28 11299.01 17495.98 22799.79 20999.33 4399.90 6999.51 129
XVG-ACMP-BASELINE98.56 13698.34 15599.22 10099.54 9998.59 9697.71 22499.46 11297.25 24298.98 15698.99 17897.54 13799.84 14895.88 27599.74 14499.23 233
v124098.55 14098.62 11298.32 23699.22 17895.58 27297.51 25099.45 11697.16 25499.45 8099.24 11796.12 21799.85 13099.60 2799.88 7599.55 111
IterMVS-LS98.55 14098.70 10098.09 25299.48 12494.73 30197.22 27599.39 13898.97 10299.38 9399.31 10296.00 22299.93 4498.58 9599.97 2099.60 81
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v14419298.54 14298.57 12098.45 22299.21 18095.98 26197.63 23599.36 14897.15 25699.32 10899.18 13095.84 23499.84 14899.50 3699.91 6399.54 115
v192192098.54 14298.60 11798.38 23099.20 18495.76 26997.56 24499.36 14897.23 24899.38 9399.17 13496.02 22099.84 14899.57 2999.90 6999.54 115
SF-MVS98.53 14498.27 16599.32 8299.31 15898.75 8398.19 15499.41 13396.77 27598.83 18898.90 19997.80 11699.82 17595.68 28899.52 23199.38 190
XVG-OURS98.53 14498.34 15599.11 11499.50 10998.82 8195.97 34199.50 9297.30 23799.05 14798.98 18299.35 1299.32 37795.72 28599.68 17599.18 246
UGNet98.53 14498.45 13898.79 16697.94 35996.96 22499.08 5898.54 31299.10 8596.82 34899.47 7196.55 19999.84 14898.56 10099.94 4099.55 111
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
WB-MVS98.52 14798.55 12198.43 22599.65 6495.59 27098.52 11898.77 29499.65 1899.52 6599.00 17794.34 27699.93 4498.65 9298.83 32399.76 44
patch_mono-298.51 14898.63 11098.17 24899.38 14294.78 29897.36 26299.69 4298.16 16698.49 23599.29 10597.06 16899.97 598.29 11299.91 6399.76 44
XVG-OURS-SEG-HR98.49 14998.28 16299.14 11099.49 11698.83 7996.54 30999.48 10197.32 23599.11 13598.61 25799.33 1399.30 38096.23 25998.38 34799.28 223
FMVSNet298.49 14998.40 14598.75 17598.90 24997.14 21798.61 10899.13 23198.59 12699.19 12899.28 10694.14 28099.82 17597.97 13399.80 11299.29 221
pmmvs-eth3d98.47 15198.34 15598.86 15599.30 16197.76 17697.16 28099.28 19095.54 32099.42 8599.19 12697.27 15799.63 29997.89 13699.97 2099.20 238
MP-MVScopyleft98.46 15298.09 18599.54 3099.57 8299.22 3198.50 12599.19 21497.61 20397.58 30398.66 24697.40 15099.88 9394.72 31199.60 20299.54 115
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
v14898.45 15398.60 11798.00 26299.44 13194.98 29497.44 25799.06 24098.30 14799.32 10898.97 18496.65 19599.62 30298.37 10799.85 8399.39 183
AllTest98.44 15498.20 17299.16 10799.50 10998.55 9998.25 14999.58 6196.80 27298.88 18099.06 15397.65 12599.57 32194.45 31899.61 20099.37 192
VNet98.42 15598.30 16098.79 16698.79 27297.29 20398.23 15098.66 30599.31 5598.85 18598.80 22194.80 26599.78 22098.13 12099.13 29599.31 216
ab-mvs98.41 15698.36 15298.59 19999.19 18797.23 20799.32 2398.81 28897.66 19798.62 21599.40 8596.82 18399.80 19695.88 27599.51 23398.75 316
ACMP95.32 1598.41 15698.09 18599.36 6699.51 10698.79 8297.68 22799.38 14095.76 31498.81 19398.82 21898.36 6799.82 17594.75 30899.77 12899.48 146
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
test_vis1_n_192098.40 15898.92 7396.81 33899.74 3590.76 38998.15 16099.91 998.33 14399.89 1599.55 5495.07 25599.88 9399.76 1799.93 4599.79 34
SMA-MVScopyleft98.40 15898.03 19299.51 4699.16 19799.21 3298.05 17599.22 20794.16 35498.98 15699.10 14997.52 14199.79 20996.45 24799.64 18999.53 123
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MSP-MVS98.40 15898.00 19599.61 1299.57 8299.25 2898.57 11299.35 15397.55 21099.31 11097.71 33294.61 26999.88 9396.14 26699.19 28799.70 56
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SD-MVS98.40 15898.68 10397.54 29998.96 23797.99 15097.88 20199.36 14898.20 16099.63 5199.04 16298.76 3595.33 42296.56 23799.74 14499.31 216
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
EI-MVSNet98.40 15898.51 12698.04 26099.10 20894.73 30197.20 27698.87 27498.97 10299.06 14299.02 16596.00 22299.80 19698.58 9599.82 9799.60 81
WR-MVS98.40 15898.19 17499.03 13299.00 23097.65 18496.85 29598.94 25998.57 13098.89 17798.50 27395.60 24099.85 13097.54 16099.85 8399.59 87
new-patchmatchnet98.35 16498.74 9097.18 31899.24 17392.23 36696.42 31799.48 10198.30 14799.69 4099.53 6097.44 14899.82 17598.84 7799.77 12899.49 136
MGCFI-Net98.34 16598.28 16298.51 21498.47 32497.59 18898.96 7499.48 10199.18 7397.40 31995.50 38998.66 4399.50 34598.18 11798.71 33198.44 345
sasdasda98.34 16598.26 16698.58 20098.46 32697.82 17098.96 7499.46 11299.19 7197.46 31495.46 39298.59 5099.46 35698.08 12498.71 33198.46 339
canonicalmvs98.34 16598.26 16698.58 20098.46 32697.82 17098.96 7499.46 11299.19 7197.46 31495.46 39298.59 5099.46 35698.08 12498.71 33198.46 339
test_cas_vis1_n_192098.33 16898.68 10397.27 31599.69 5492.29 36498.03 17899.85 1897.62 20099.96 499.62 3793.98 28599.74 24499.52 3599.86 8299.79 34
testgi98.32 16998.39 14898.13 25199.57 8295.54 27397.78 21499.49 9997.37 23099.19 12897.65 33698.96 2499.49 34896.50 24498.99 31299.34 205
DeepPCF-MVS96.93 598.32 16998.01 19499.23 9998.39 33598.97 7095.03 37899.18 21896.88 26899.33 10298.78 22598.16 9099.28 38496.74 21899.62 19599.44 163
test_vis1_n98.31 17198.50 12897.73 28299.76 2994.17 31798.68 10299.91 996.31 29499.79 2899.57 4692.85 30499.42 36399.79 1499.84 8799.60 81
MVS_111021_LR98.30 17298.12 18398.83 15899.16 19798.03 14896.09 33799.30 17997.58 20598.10 26798.24 29798.25 7799.34 37496.69 22499.65 18799.12 256
EPP-MVSNet98.30 17298.04 19199.07 12299.56 9097.83 16799.29 3398.07 33499.03 9698.59 22199.13 14492.16 31399.90 6896.87 20799.68 17599.49 136
DeepC-MVS_fast96.85 698.30 17298.15 18098.75 17598.61 30697.23 20797.76 21999.09 23797.31 23698.75 20098.66 24697.56 13599.64 29696.10 26999.55 22299.39 183
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PHI-MVS98.29 17597.95 20099.34 7598.44 32999.16 4798.12 16599.38 14096.01 30698.06 27098.43 28097.80 11699.67 27795.69 28799.58 21199.20 238
Fast-Effi-MVS+-dtu98.27 17698.09 18598.81 16198.43 33098.11 13497.61 23899.50 9298.64 12097.39 32197.52 34498.12 9499.95 2496.90 20498.71 33198.38 352
DELS-MVS98.27 17698.20 17298.48 21998.86 25796.70 23995.60 36099.20 21097.73 19398.45 23898.71 23597.50 14399.82 17598.21 11599.59 20698.93 287
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
Effi-MVS+-dtu98.26 17897.90 20699.35 7298.02 35699.49 698.02 18099.16 22598.29 15097.64 29897.99 31696.44 20499.95 2496.66 22698.93 31998.60 331
MVSFormer98.26 17898.43 14197.77 27498.88 25593.89 33299.39 1799.56 7599.11 7898.16 26098.13 30493.81 28899.97 599.26 4899.57 21599.43 167
MVS_111021_HR98.25 18098.08 18898.75 17599.09 21197.46 19495.97 34199.27 19397.60 20497.99 27698.25 29698.15 9299.38 36996.87 20799.57 21599.42 170
TAMVS98.24 18198.05 19098.80 16399.07 21597.18 21397.88 20198.81 28896.66 28099.17 13399.21 12394.81 26499.77 22696.96 19799.88 7599.44 163
MM98.22 18297.99 19698.91 15098.66 30196.97 22297.89 20094.44 39699.54 3098.95 16499.14 14393.50 29299.92 5399.80 1399.96 2599.85 24
diffmvspermissive98.22 18298.24 16998.17 24899.00 23095.44 27896.38 31999.58 6197.79 19098.53 23198.50 27396.76 18999.74 24497.95 13599.64 18999.34 205
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Anonymous2023120698.21 18498.21 17198.20 24699.51 10695.43 27998.13 16299.32 16696.16 29998.93 17298.82 21896.00 22299.83 16597.32 17099.73 14799.36 199
VDDNet98.21 18497.95 20099.01 13599.58 7797.74 17899.01 6797.29 35499.67 1698.97 16099.50 6490.45 32999.80 19697.88 13999.20 28499.48 146
IS-MVSNet98.19 18697.90 20699.08 12099.57 8297.97 15499.31 2798.32 32399.01 9898.98 15699.03 16491.59 31999.79 20995.49 29499.80 11299.48 146
MVS_Test98.18 18798.36 15297.67 28498.48 32394.73 30198.18 15599.02 25197.69 19598.04 27399.11 14697.22 16199.56 32498.57 9798.90 32198.71 319
TSAR-MVS + GP.98.18 18797.98 19798.77 17298.71 28297.88 16296.32 32398.66 30596.33 29299.23 12598.51 26997.48 14799.40 36597.16 17899.46 24399.02 269
CNVR-MVS98.17 18997.87 20899.07 12298.67 29698.24 12297.01 28598.93 26297.25 24297.62 29998.34 29097.27 15799.57 32196.42 24899.33 26199.39 183
PVSNet_Blended_VisFu98.17 18998.15 18098.22 24599.73 3695.15 28997.36 26299.68 4794.45 34898.99 15599.27 10896.87 17999.94 3797.13 18399.91 6399.57 98
HPM-MVS++copyleft98.10 19197.64 22599.48 5399.09 21199.13 5997.52 24898.75 29897.46 22296.90 34397.83 32796.01 22199.84 14895.82 28299.35 25899.46 155
APD-MVScopyleft98.10 19197.67 22099.42 6099.11 20698.93 7597.76 21999.28 19094.97 33598.72 20398.77 22797.04 16999.85 13093.79 34099.54 22499.49 136
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
test_fmvs1_n98.09 19398.28 16297.52 30199.68 5793.47 34398.63 10599.93 595.41 32799.68 4299.64 3491.88 31799.48 35199.82 899.87 7899.62 72
MVP-Stereo98.08 19497.92 20498.57 20398.96 23796.79 23397.90 19999.18 21896.41 29098.46 23798.95 19195.93 23199.60 30996.51 24398.98 31499.31 216
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
PMMVS298.07 19598.08 18898.04 26099.41 13994.59 30794.59 39299.40 13697.50 21498.82 19198.83 21596.83 18299.84 14897.50 16399.81 10199.71 51
ETV-MVS98.03 19697.86 20998.56 20798.69 29198.07 14397.51 25099.50 9298.10 16897.50 31195.51 38898.41 6499.88 9396.27 25899.24 27697.71 386
Effi-MVS+98.02 19797.82 21198.62 19398.53 32097.19 21297.33 26499.68 4797.30 23796.68 35297.46 34898.56 5499.80 19696.63 22798.20 35498.86 298
MSLP-MVS++98.02 19798.14 18297.64 28898.58 31395.19 28897.48 25399.23 20697.47 21797.90 28098.62 25597.04 16998.81 40597.55 15899.41 25098.94 286
EIA-MVS98.00 19997.74 21598.80 16398.72 27998.09 13798.05 17599.60 5897.39 22896.63 35495.55 38797.68 12299.80 19696.73 22099.27 27198.52 337
MCST-MVS98.00 19997.63 22699.10 11699.24 17398.17 12996.89 29498.73 30195.66 31597.92 27897.70 33497.17 16399.66 28896.18 26499.23 27999.47 153
K. test v398.00 19997.66 22399.03 13299.79 2297.56 18999.19 4992.47 40899.62 2499.52 6599.66 2989.61 33499.96 1299.25 5099.81 10199.56 104
HQP_MVS97.99 20297.67 22098.93 14699.19 18797.65 18497.77 21699.27 19398.20 16097.79 29097.98 31794.90 25899.70 26194.42 32099.51 23399.45 159
MDA-MVSNet-bldmvs97.94 20397.91 20598.06 25799.44 13194.96 29596.63 30799.15 23098.35 14198.83 18899.11 14694.31 27799.85 13096.60 23098.72 32999.37 192
ttmdpeth97.91 20498.02 19397.58 29398.69 29194.10 31998.13 16298.90 26897.95 17697.32 32499.58 4495.95 23098.75 40696.41 24999.22 28099.87 20
Anonymous20240521197.90 20597.50 23399.08 12098.90 24998.25 12198.53 11796.16 37898.87 11099.11 13598.86 20990.40 33099.78 22097.36 16899.31 26499.19 243
LF4IMVS97.90 20597.69 21998.52 21399.17 19597.66 18397.19 27999.47 10996.31 29497.85 28698.20 30196.71 19399.52 33994.62 31299.72 15598.38 352
UnsupCasMVSNet_eth97.89 20797.60 22898.75 17599.31 15897.17 21497.62 23699.35 15398.72 11898.76 19998.68 24192.57 30999.74 24497.76 15095.60 40799.34 205
TinyColmap97.89 20797.98 19797.60 29198.86 25794.35 31296.21 32999.44 12097.45 22499.06 14298.88 20697.99 10499.28 38494.38 32499.58 21199.18 246
RRT-MVS97.88 20997.98 19797.61 29098.15 34993.77 33698.97 7399.64 5299.16 7598.69 20599.42 7991.60 31899.89 8097.63 15498.52 34599.16 253
OMC-MVS97.88 20997.49 23499.04 13198.89 25498.63 9196.94 28999.25 19995.02 33398.53 23198.51 26997.27 15799.47 35493.50 34899.51 23399.01 270
CANet97.87 21197.76 21398.19 24797.75 36695.51 27596.76 30099.05 24397.74 19296.93 33798.21 30095.59 24199.89 8097.86 14199.93 4599.19 243
xiu_mvs_v1_base_debu97.86 21298.17 17696.92 33198.98 23493.91 32996.45 31499.17 22297.85 18698.41 24297.14 36098.47 5899.92 5398.02 12899.05 30196.92 399
xiu_mvs_v1_base97.86 21298.17 17696.92 33198.98 23493.91 32996.45 31499.17 22297.85 18698.41 24297.14 36098.47 5899.92 5398.02 12899.05 30196.92 399
xiu_mvs_v1_base_debi97.86 21298.17 17696.92 33198.98 23493.91 32996.45 31499.17 22297.85 18698.41 24297.14 36098.47 5899.92 5398.02 12899.05 30196.92 399
NCCC97.86 21297.47 23799.05 12998.61 30698.07 14396.98 28798.90 26897.63 19997.04 33397.93 32295.99 22699.66 28895.31 29798.82 32599.43 167
PMVScopyleft91.26 2097.86 21297.94 20297.65 28699.71 4597.94 15998.52 11898.68 30498.99 9997.52 30999.35 9197.41 14998.18 41391.59 37899.67 18196.82 402
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
IterMVS-SCA-FT97.85 21798.18 17596.87 33499.27 16691.16 38395.53 36299.25 19999.10 8599.41 8799.35 9193.10 29799.96 1298.65 9299.94 4099.49 136
D2MVS97.84 21897.84 21097.83 26999.14 20294.74 30096.94 28998.88 27295.84 31298.89 17798.96 18794.40 27499.69 26597.55 15899.95 3299.05 262
CPTT-MVS97.84 21897.36 24299.27 9099.31 15898.46 10798.29 14599.27 19394.90 33797.83 28798.37 28694.90 25899.84 14893.85 33999.54 22499.51 129
mvs_anonymous97.83 22098.16 17996.87 33498.18 34791.89 36897.31 26698.90 26897.37 23098.83 18899.46 7296.28 21199.79 20998.90 7298.16 35898.95 282
h-mvs3397.77 22197.33 24599.10 11699.21 18097.84 16698.35 14298.57 31199.11 7898.58 22399.02 16588.65 34399.96 1298.11 12196.34 39999.49 136
test_vis1_rt97.75 22297.72 21897.83 26998.81 26896.35 24897.30 26799.69 4294.61 34297.87 28398.05 31396.26 21298.32 41198.74 8598.18 35598.82 301
IterMVS97.73 22398.11 18496.57 34499.24 17390.28 39295.52 36499.21 20898.86 11199.33 10299.33 9793.11 29699.94 3798.49 10299.94 4099.48 146
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
test_fmvs197.72 22497.94 20297.07 32598.66 30192.39 36197.68 22799.81 2695.20 33199.54 5999.44 7791.56 32099.41 36499.78 1699.77 12899.40 182
MSDG97.71 22597.52 23298.28 24198.91 24896.82 23194.42 39599.37 14497.65 19898.37 24798.29 29597.40 15099.33 37694.09 33199.22 28098.68 326
CDS-MVSNet97.69 22697.35 24398.69 18298.73 27797.02 22196.92 29398.75 29895.89 31198.59 22198.67 24392.08 31599.74 24496.72 22199.81 10199.32 212
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MS-PatchMatch97.68 22797.75 21497.45 30798.23 34593.78 33597.29 26898.84 28396.10 30198.64 21298.65 24896.04 21999.36 37096.84 21099.14 29399.20 238
Fast-Effi-MVS+97.67 22897.38 24098.57 20398.71 28297.43 19797.23 27299.45 11694.82 33996.13 36896.51 36898.52 5699.91 6296.19 26298.83 32398.37 354
EU-MVSNet97.66 22998.50 12895.13 38099.63 7485.84 41098.35 14298.21 32798.23 15499.54 5999.46 7295.02 25699.68 27498.24 11399.87 7899.87 20
pmmvs597.64 23097.49 23498.08 25599.14 20295.12 29196.70 30499.05 24393.77 36198.62 21598.83 21593.23 29399.75 23998.33 11199.76 14099.36 199
N_pmnet97.63 23197.17 25298.99 13799.27 16697.86 16495.98 34093.41 40595.25 32999.47 7698.90 19995.63 23999.85 13096.91 19999.73 14799.27 224
mvsany_test197.60 23297.54 23097.77 27497.72 36795.35 28195.36 37097.13 35994.13 35599.71 3699.33 9797.93 10799.30 38097.60 15798.94 31898.67 327
YYNet197.60 23297.67 22097.39 31199.04 22493.04 35095.27 37198.38 32297.25 24298.92 17398.95 19195.48 24699.73 24996.99 19398.74 32799.41 173
MDA-MVSNet_test_wron97.60 23297.66 22397.41 31099.04 22493.09 34695.27 37198.42 31997.26 24198.88 18098.95 19195.43 24799.73 24997.02 19098.72 32999.41 173
pmmvs497.58 23597.28 24698.51 21498.84 26196.93 22795.40 36998.52 31493.60 36398.61 21798.65 24895.10 25499.60 30996.97 19699.79 11798.99 275
mvsmamba97.57 23697.26 24798.51 21498.69 29196.73 23898.74 9297.25 35597.03 26197.88 28299.23 12190.95 32499.87 11096.61 22999.00 31098.91 291
PVSNet_BlendedMVS97.55 23797.53 23197.60 29198.92 24593.77 33696.64 30699.43 12694.49 34497.62 29999.18 13096.82 18399.67 27794.73 30999.93 4599.36 199
GDP-MVS97.50 23897.11 25798.67 18499.02 22896.85 23098.16 15999.71 3898.32 14598.52 23398.54 26483.39 37999.95 2498.79 7999.56 21899.19 243
ppachtmachnet_test97.50 23897.74 21596.78 34098.70 28691.23 38294.55 39399.05 24396.36 29199.21 12698.79 22396.39 20599.78 22096.74 21899.82 9799.34 205
FMVSNet397.50 23897.24 24998.29 24098.08 35495.83 26697.86 20598.91 26797.89 18398.95 16498.95 19187.06 34999.81 18997.77 14699.69 17099.23 233
CHOSEN 1792x268897.49 24197.14 25698.54 21199.68 5796.09 25696.50 31299.62 5491.58 38698.84 18798.97 18492.36 31099.88 9396.76 21699.95 3299.67 61
CLD-MVS97.49 24197.16 25398.48 21999.07 21597.03 22094.71 38599.21 20894.46 34698.06 27097.16 35897.57 13499.48 35194.46 31799.78 12298.95 282
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
hse-mvs297.46 24397.07 25898.64 18798.73 27797.33 20197.45 25697.64 34799.11 7898.58 22397.98 31788.65 34399.79 20998.11 12197.39 38298.81 305
Vis-MVSNet (Re-imp)97.46 24397.16 25398.34 23599.55 9496.10 25398.94 7798.44 31798.32 14598.16 26098.62 25588.76 33999.73 24993.88 33799.79 11799.18 246
jason97.45 24597.35 24397.76 27799.24 17393.93 32895.86 35098.42 31994.24 35298.50 23498.13 30494.82 26299.91 6297.22 17599.73 14799.43 167
jason: jason.
CL-MVSNet_self_test97.44 24697.22 25098.08 25598.57 31595.78 26894.30 39898.79 29196.58 28398.60 21998.19 30294.74 26899.64 29696.41 24998.84 32298.82 301
MVS_030497.44 24697.01 26298.72 18096.42 41296.74 23797.20 27691.97 41298.46 13898.30 24898.79 22392.74 30699.91 6299.30 4599.94 4099.52 126
DSMNet-mixed97.42 24897.60 22896.87 33499.15 20191.46 37398.54 11699.12 23292.87 37497.58 30399.63 3696.21 21399.90 6895.74 28499.54 22499.27 224
USDC97.41 24997.40 23897.44 30898.94 23993.67 33995.17 37499.53 8694.03 35898.97 16099.10 14995.29 24999.34 37495.84 28199.73 14799.30 219
BP-MVS197.40 25096.97 26398.71 18199.07 21596.81 23298.34 14497.18 35698.58 12998.17 25798.61 25784.01 37599.94 3798.97 6899.78 12299.37 192
our_test_397.39 25197.73 21796.34 35098.70 28689.78 39594.61 39198.97 25896.50 28599.04 14998.85 21295.98 22799.84 14897.26 17399.67 18199.41 173
c3_l97.36 25297.37 24197.31 31298.09 35393.25 34595.01 37999.16 22597.05 25898.77 19798.72 23492.88 30299.64 29696.93 19899.76 14099.05 262
alignmvs97.35 25396.88 27098.78 16998.54 31898.09 13797.71 22497.69 34399.20 6797.59 30295.90 38188.12 34899.55 32898.18 11798.96 31698.70 322
Patchmtry97.35 25396.97 26398.50 21897.31 39396.47 24598.18 15598.92 26598.95 10598.78 19499.37 8685.44 36499.85 13095.96 27399.83 9499.17 250
DP-MVS Recon97.33 25596.92 26798.57 20399.09 21197.99 15096.79 29799.35 15393.18 36897.71 29498.07 31295.00 25799.31 37893.97 33399.13 29598.42 349
QAPM97.31 25696.81 27798.82 15998.80 27197.49 19299.06 6299.19 21490.22 39897.69 29699.16 13696.91 17799.90 6890.89 39199.41 25099.07 260
UnsupCasMVSNet_bld97.30 25796.92 26798.45 22299.28 16496.78 23696.20 33099.27 19395.42 32498.28 25298.30 29493.16 29599.71 25794.99 30297.37 38398.87 297
F-COLMAP97.30 25796.68 28499.14 11099.19 18798.39 11097.27 27199.30 17992.93 37296.62 35598.00 31595.73 23799.68 27492.62 36698.46 34699.35 203
1112_ss97.29 25996.86 27198.58 20099.34 15596.32 24996.75 30199.58 6193.14 36996.89 34497.48 34692.11 31499.86 11896.91 19999.54 22499.57 98
CANet_DTU97.26 26097.06 25997.84 26897.57 37794.65 30596.19 33198.79 29197.23 24895.14 38998.24 29793.22 29499.84 14897.34 16999.84 8799.04 266
Patchmatch-RL test97.26 26097.02 26197.99 26399.52 10495.53 27496.13 33599.71 3897.47 21799.27 11499.16 13684.30 37399.62 30297.89 13699.77 12898.81 305
CDPH-MVS97.26 26096.66 28799.07 12299.00 23098.15 13096.03 33999.01 25491.21 39297.79 29097.85 32696.89 17899.69 26592.75 36399.38 25599.39 183
PatchMatch-RL97.24 26396.78 27898.61 19699.03 22797.83 16796.36 32099.06 24093.49 36697.36 32397.78 32895.75 23699.49 34893.44 34998.77 32698.52 337
eth_miper_zixun_eth97.23 26497.25 24897.17 32098.00 35792.77 35494.71 38599.18 21897.27 24098.56 22698.74 23191.89 31699.69 26597.06 18999.81 10199.05 262
sss97.21 26596.93 26598.06 25798.83 26395.22 28796.75 30198.48 31694.49 34497.27 32597.90 32392.77 30599.80 19696.57 23399.32 26299.16 253
LFMVS97.20 26696.72 28198.64 18798.72 27996.95 22598.93 7894.14 40299.74 1098.78 19499.01 17484.45 37099.73 24997.44 16499.27 27199.25 228
HyFIR lowres test97.19 26796.60 29198.96 14199.62 7697.28 20495.17 37499.50 9294.21 35399.01 15398.32 29386.61 35299.99 297.10 18599.84 8799.60 81
miper_lstm_enhance97.18 26897.16 25397.25 31798.16 34892.85 35295.15 37699.31 17197.25 24298.74 20298.78 22590.07 33199.78 22097.19 17699.80 11299.11 257
CNLPA97.17 26996.71 28298.55 20898.56 31698.05 14796.33 32298.93 26296.91 26797.06 33297.39 35194.38 27599.45 35891.66 37599.18 28998.14 363
xiu_mvs_v2_base97.16 27097.49 23496.17 35998.54 31892.46 35995.45 36698.84 28397.25 24297.48 31396.49 36998.31 7399.90 6896.34 25498.68 33696.15 410
AdaColmapbinary97.14 27196.71 28298.46 22198.34 33797.80 17496.95 28898.93 26295.58 31996.92 33897.66 33595.87 23399.53 33590.97 38899.14 29398.04 368
train_agg97.10 27296.45 29799.07 12298.71 28298.08 14195.96 34399.03 24891.64 38495.85 37497.53 34296.47 20299.76 23293.67 34299.16 29099.36 199
OpenMVScopyleft96.65 797.09 27396.68 28498.32 23698.32 33897.16 21598.86 8699.37 14489.48 40296.29 36699.15 14096.56 19899.90 6892.90 35799.20 28497.89 374
PS-MVSNAJ97.08 27497.39 23996.16 36198.56 31692.46 35995.24 37398.85 28297.25 24297.49 31295.99 37898.07 9599.90 6896.37 25198.67 33796.12 411
miper_ehance_all_eth97.06 27597.03 26097.16 32297.83 36393.06 34794.66 38899.09 23795.99 30798.69 20598.45 27892.73 30799.61 30896.79 21299.03 30598.82 301
lupinMVS97.06 27596.86 27197.65 28698.88 25593.89 33295.48 36597.97 33693.53 36498.16 26097.58 34093.81 28899.91 6296.77 21599.57 21599.17 250
API-MVS97.04 27796.91 26997.42 30997.88 36298.23 12698.18 15598.50 31597.57 20697.39 32196.75 36596.77 18799.15 39390.16 39599.02 30894.88 416
cl____97.02 27896.83 27497.58 29397.82 36494.04 32294.66 38899.16 22597.04 25998.63 21398.71 23588.68 34299.69 26597.00 19199.81 10199.00 274
DIV-MVS_self_test97.02 27896.84 27397.58 29397.82 36494.03 32394.66 38899.16 22597.04 25998.63 21398.71 23588.69 34099.69 26597.00 19199.81 10199.01 270
RPMNet97.02 27896.93 26597.30 31397.71 37094.22 31398.11 16699.30 17999.37 4896.91 34099.34 9586.72 35199.87 11097.53 16197.36 38597.81 379
HQP-MVS97.00 28196.49 29698.55 20898.67 29696.79 23396.29 32599.04 24696.05 30295.55 38096.84 36393.84 28699.54 33392.82 36099.26 27499.32 212
FA-MVS(test-final)96.99 28296.82 27597.50 30398.70 28694.78 29899.34 2096.99 36295.07 33298.48 23699.33 9788.41 34699.65 29396.13 26898.92 32098.07 367
new_pmnet96.99 28296.76 27997.67 28498.72 27994.89 29695.95 34598.20 32892.62 37798.55 22898.54 26494.88 26199.52 33993.96 33499.44 24898.59 334
Test_1112_low_res96.99 28296.55 29398.31 23899.35 15395.47 27795.84 35399.53 8691.51 38896.80 34998.48 27691.36 32199.83 16596.58 23199.53 22899.62 72
PVSNet_Blended96.88 28596.68 28497.47 30698.92 24593.77 33694.71 38599.43 12690.98 39497.62 29997.36 35496.82 18399.67 27794.73 30999.56 21898.98 276
MVSTER96.86 28696.55 29397.79 27297.91 36194.21 31597.56 24498.87 27497.49 21699.06 14299.05 16080.72 38899.80 19698.44 10499.82 9799.37 192
BH-untuned96.83 28796.75 28097.08 32398.74 27693.33 34496.71 30398.26 32596.72 27798.44 23997.37 35395.20 25199.47 35491.89 37297.43 38098.44 345
BH-RMVSNet96.83 28796.58 29297.58 29398.47 32494.05 32096.67 30597.36 35096.70 27997.87 28397.98 31795.14 25399.44 36090.47 39498.58 34399.25 228
PAPM_NR96.82 28996.32 30098.30 23999.07 21596.69 24097.48 25398.76 29595.81 31396.61 35696.47 37194.12 28399.17 39190.82 39297.78 37199.06 261
MG-MVS96.77 29096.61 28997.26 31698.31 33993.06 34795.93 34698.12 33396.45 28997.92 27898.73 23293.77 29099.39 36791.19 38699.04 30499.33 210
test_yl96.69 29196.29 30197.90 26498.28 34095.24 28597.29 26897.36 35098.21 15698.17 25797.86 32486.27 35499.55 32894.87 30698.32 34898.89 293
DCV-MVSNet96.69 29196.29 30197.90 26498.28 34095.24 28597.29 26897.36 35098.21 15698.17 25797.86 32486.27 35499.55 32894.87 30698.32 34898.89 293
WTY-MVS96.67 29396.27 30397.87 26798.81 26894.61 30696.77 29997.92 33894.94 33697.12 32897.74 33191.11 32399.82 17593.89 33698.15 35999.18 246
PatchT96.65 29496.35 29897.54 29997.40 39095.32 28397.98 18996.64 37299.33 5396.89 34499.42 7984.32 37299.81 18997.69 15397.49 37697.48 392
TAPA-MVS96.21 1196.63 29595.95 30698.65 18598.93 24198.09 13796.93 29199.28 19083.58 41598.13 26497.78 32896.13 21699.40 36593.52 34699.29 26998.45 342
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
MIMVSNet96.62 29696.25 30497.71 28399.04 22494.66 30499.16 5196.92 36797.23 24897.87 28399.10 14986.11 35899.65 29391.65 37699.21 28398.82 301
Patchmatch-test96.55 29796.34 29997.17 32098.35 33693.06 34798.40 13797.79 33997.33 23398.41 24298.67 24383.68 37899.69 26595.16 30099.31 26498.77 313
PMMVS96.51 29895.98 30598.09 25297.53 38295.84 26594.92 38198.84 28391.58 38696.05 37295.58 38695.68 23899.66 28895.59 29198.09 36298.76 315
PLCcopyleft94.65 1696.51 29895.73 31098.85 15698.75 27597.91 16096.42 31799.06 24090.94 39595.59 37797.38 35294.41 27399.59 31390.93 38998.04 36899.05 262
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
114514_t96.50 30095.77 30898.69 18299.48 12497.43 19797.84 20899.55 7981.42 41896.51 36098.58 26195.53 24299.67 27793.41 35099.58 21198.98 276
test111196.49 30196.82 27595.52 37399.42 13787.08 40799.22 4287.14 42199.11 7899.46 7799.58 4488.69 34099.86 11898.80 7899.95 3299.62 72
MAR-MVS96.47 30295.70 31198.79 16697.92 36099.12 6198.28 14698.60 31092.16 38295.54 38396.17 37694.77 26799.52 33989.62 39798.23 35297.72 385
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
ECVR-MVScopyleft96.42 30396.61 28995.85 36599.38 14288.18 40399.22 4286.00 42399.08 9099.36 9799.57 4688.47 34599.82 17598.52 10199.95 3299.54 115
SCA96.41 30496.66 28795.67 36998.24 34388.35 40195.85 35296.88 36896.11 30097.67 29798.67 24393.10 29799.85 13094.16 32699.22 28098.81 305
DPM-MVS96.32 30595.59 31798.51 21498.76 27397.21 21094.54 39498.26 32591.94 38396.37 36497.25 35693.06 29999.43 36191.42 38198.74 32798.89 293
CMPMVSbinary75.91 2396.29 30695.44 32398.84 15796.25 41598.69 9097.02 28499.12 23288.90 40597.83 28798.86 20989.51 33598.90 40391.92 37199.51 23398.92 288
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
CR-MVSNet96.28 30795.95 30697.28 31497.71 37094.22 31398.11 16698.92 26592.31 38096.91 34099.37 8685.44 36499.81 18997.39 16797.36 38597.81 379
MonoMVSNet96.25 30896.53 29595.39 37796.57 40891.01 38498.82 9097.68 34498.57 13098.03 27499.37 8690.92 32597.78 41594.99 30293.88 41597.38 395
CVMVSNet96.25 30897.21 25193.38 39999.10 20880.56 42697.20 27698.19 33096.94 26599.00 15499.02 16589.50 33699.80 19696.36 25399.59 20699.78 37
AUN-MVS96.24 31095.45 32298.60 19898.70 28697.22 20997.38 25997.65 34595.95 30995.53 38497.96 32182.11 38799.79 20996.31 25597.44 37998.80 310
EPNet96.14 31195.44 32398.25 24290.76 42795.50 27697.92 19694.65 39498.97 10292.98 41098.85 21289.12 33899.87 11095.99 27199.68 17599.39 183
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
wuyk23d96.06 31297.62 22791.38 40298.65 30598.57 9898.85 8796.95 36596.86 27099.90 1299.16 13699.18 1798.40 41089.23 39999.77 12877.18 422
Syy-MVS96.04 31395.56 31997.49 30497.10 39894.48 30896.18 33296.58 37395.65 31694.77 39292.29 41991.27 32299.36 37098.17 11998.05 36698.63 329
miper_enhance_ethall96.01 31495.74 30996.81 33896.41 41392.27 36593.69 40798.89 27191.14 39398.30 24897.35 35590.58 32899.58 31996.31 25599.03 30598.60 331
FMVSNet596.01 31495.20 33398.41 22797.53 38296.10 25398.74 9299.50 9297.22 25198.03 27499.04 16269.80 41099.88 9397.27 17299.71 16099.25 228
dmvs_re95.98 31695.39 32697.74 28098.86 25797.45 19598.37 14095.69 38997.95 17696.56 35795.95 37990.70 32797.68 41688.32 40196.13 40398.11 364
baseline195.96 31795.44 32397.52 30198.51 32293.99 32698.39 13896.09 38098.21 15698.40 24697.76 33086.88 35099.63 29995.42 29589.27 42098.95 282
HY-MVS95.94 1395.90 31895.35 32897.55 29897.95 35894.79 29798.81 9196.94 36692.28 38195.17 38898.57 26289.90 33399.75 23991.20 38597.33 38798.10 365
MVStest195.86 31995.60 31596.63 34395.87 41991.70 37097.93 19398.94 25998.03 17099.56 5599.66 2971.83 40898.26 41299.35 4299.24 27699.91 13
GA-MVS95.86 31995.32 32997.49 30498.60 30894.15 31893.83 40597.93 33795.49 32296.68 35297.42 35083.21 38099.30 38096.22 26098.55 34499.01 270
OpenMVS_ROBcopyleft95.38 1495.84 32195.18 33497.81 27198.41 33497.15 21697.37 26198.62 30983.86 41498.65 21198.37 28694.29 27899.68 27488.41 40098.62 34196.60 405
cl2295.79 32295.39 32696.98 32896.77 40592.79 35394.40 39698.53 31394.59 34397.89 28198.17 30382.82 38499.24 38696.37 25199.03 30598.92 288
131495.74 32395.60 31596.17 35997.53 38292.75 35598.07 17298.31 32491.22 39194.25 39896.68 36695.53 24299.03 39591.64 37797.18 38996.74 403
WB-MVSnew95.73 32495.57 31896.23 35696.70 40690.70 39096.07 33893.86 40395.60 31897.04 33395.45 39596.00 22299.55 32891.04 38798.31 35098.43 347
PVSNet93.40 1795.67 32595.70 31195.57 37298.83 26388.57 39992.50 41297.72 34192.69 37696.49 36396.44 37293.72 29199.43 36193.61 34399.28 27098.71 319
FE-MVS95.66 32694.95 33997.77 27498.53 32095.28 28499.40 1696.09 38093.11 37097.96 27799.26 11279.10 39799.77 22692.40 36998.71 33198.27 358
tttt051795.64 32794.98 33797.64 28899.36 14993.81 33498.72 9790.47 41698.08 16998.67 20898.34 29073.88 40699.92 5397.77 14699.51 23399.20 238
PatchmatchNetpermissive95.58 32895.67 31395.30 37997.34 39287.32 40697.65 23396.65 37195.30 32897.07 33198.69 23984.77 36799.75 23994.97 30498.64 33898.83 300
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
TR-MVS95.55 32995.12 33596.86 33797.54 38093.94 32796.49 31396.53 37594.36 35197.03 33596.61 36794.26 27999.16 39286.91 40796.31 40097.47 393
JIA-IIPM95.52 33095.03 33697.00 32696.85 40394.03 32396.93 29195.82 38599.20 6794.63 39699.71 1983.09 38199.60 30994.42 32094.64 41197.36 396
CHOSEN 280x42095.51 33195.47 32095.65 37198.25 34288.27 40293.25 40998.88 27293.53 36494.65 39597.15 35986.17 35699.93 4497.41 16699.93 4598.73 318
ADS-MVSNet295.43 33294.98 33796.76 34198.14 35091.74 36997.92 19697.76 34090.23 39696.51 36098.91 19685.61 36199.85 13092.88 35896.90 39298.69 323
PAPR95.29 33394.47 34497.75 27897.50 38895.14 29094.89 38298.71 30391.39 39095.35 38795.48 39194.57 27099.14 39484.95 41097.37 38398.97 279
thisisatest053095.27 33494.45 34597.74 28099.19 18794.37 31197.86 20590.20 41797.17 25398.22 25597.65 33673.53 40799.90 6896.90 20499.35 25898.95 282
ADS-MVSNet95.24 33594.93 34096.18 35898.14 35090.10 39497.92 19697.32 35390.23 39696.51 36098.91 19685.61 36199.74 24492.88 35896.90 39298.69 323
WBMVS95.18 33694.78 34296.37 34997.68 37589.74 39695.80 35498.73 30197.54 21198.30 24898.44 27970.06 40999.82 17596.62 22899.87 7899.54 115
BH-w/o95.13 33794.89 34195.86 36498.20 34691.31 37795.65 35897.37 34993.64 36296.52 35995.70 38593.04 30099.02 39688.10 40295.82 40697.24 397
tpmrst95.07 33895.46 32193.91 39297.11 39784.36 41897.62 23696.96 36494.98 33496.35 36598.80 22185.46 36399.59 31395.60 29096.23 40197.79 382
pmmvs395.03 33994.40 34696.93 33097.70 37292.53 35895.08 37797.71 34288.57 40697.71 29498.08 31179.39 39599.82 17596.19 26299.11 29998.43 347
tpmvs95.02 34095.25 33094.33 38696.39 41485.87 40998.08 17096.83 36995.46 32395.51 38598.69 23985.91 35999.53 33594.16 32696.23 40197.58 390
reproduce_monomvs95.00 34195.25 33094.22 38897.51 38783.34 42097.86 20598.44 31798.51 13599.29 11199.30 10367.68 41599.56 32498.89 7499.81 10199.77 39
EPNet_dtu94.93 34294.78 34295.38 37893.58 42387.68 40596.78 29895.69 38997.35 23289.14 42098.09 31088.15 34799.49 34894.95 30599.30 26798.98 276
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
cascas94.79 34394.33 34996.15 36296.02 41892.36 36392.34 41499.26 19885.34 41395.08 39094.96 40192.96 30198.53 40994.41 32398.59 34297.56 391
tpm94.67 34494.34 34895.66 37097.68 37588.42 40097.88 20194.90 39294.46 34696.03 37398.56 26378.66 39899.79 20995.88 27595.01 41098.78 312
test0.0.03 194.51 34593.69 35496.99 32796.05 41693.61 34294.97 38093.49 40496.17 29797.57 30594.88 40282.30 38599.01 39893.60 34494.17 41498.37 354
thres600view794.45 34693.83 35296.29 35299.06 22091.53 37297.99 18894.24 40098.34 14297.44 31795.01 39879.84 39199.67 27784.33 41198.23 35297.66 387
PCF-MVS92.86 1894.36 34793.00 36498.42 22698.70 28697.56 18993.16 41099.11 23479.59 41997.55 30697.43 34992.19 31299.73 24979.85 41999.45 24597.97 373
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
X-MVStestdata94.32 34892.59 36699.53 3799.46 12799.21 3298.65 10399.34 15998.62 12497.54 30745.85 42397.50 14399.83 16596.79 21299.53 22899.56 104
MVS-HIRNet94.32 34895.62 31490.42 40398.46 32675.36 42796.29 32589.13 41995.25 32995.38 38699.75 1392.88 30299.19 39094.07 33299.39 25296.72 404
ET-MVSNet_ETH3D94.30 35093.21 36097.58 29398.14 35094.47 30994.78 38493.24 40794.72 34089.56 41895.87 38278.57 40099.81 18996.91 19997.11 39198.46 339
thres100view90094.19 35193.67 35595.75 36899.06 22091.35 37698.03 17894.24 40098.33 14397.40 31994.98 40079.84 39199.62 30283.05 41398.08 36396.29 406
E-PMN94.17 35294.37 34793.58 39696.86 40285.71 41290.11 41897.07 36098.17 16397.82 28997.19 35784.62 36998.94 40089.77 39697.68 37396.09 412
thres40094.14 35393.44 35796.24 35598.93 24191.44 37497.60 23994.29 39897.94 17897.10 32994.31 40779.67 39399.62 30283.05 41398.08 36397.66 387
thisisatest051594.12 35493.16 36196.97 32998.60 30892.90 35193.77 40690.61 41594.10 35696.91 34095.87 38274.99 40599.80 19694.52 31599.12 29898.20 360
tfpn200view994.03 35593.44 35795.78 36798.93 24191.44 37497.60 23994.29 39897.94 17897.10 32994.31 40779.67 39399.62 30283.05 41398.08 36396.29 406
CostFormer93.97 35693.78 35394.51 38597.53 38285.83 41197.98 18995.96 38289.29 40494.99 39198.63 25378.63 39999.62 30294.54 31496.50 39798.09 366
test-LLR93.90 35793.85 35194.04 39096.53 40984.62 41694.05 40292.39 40996.17 29794.12 40095.07 39682.30 38599.67 27795.87 27898.18 35597.82 377
EMVS93.83 35894.02 35093.23 40096.83 40484.96 41389.77 41996.32 37797.92 18097.43 31896.36 37586.17 35698.93 40187.68 40397.73 37295.81 413
baseline293.73 35992.83 36596.42 34897.70 37291.28 37996.84 29689.77 41893.96 36092.44 41395.93 38079.14 39699.77 22692.94 35696.76 39698.21 359
thres20093.72 36093.14 36295.46 37698.66 30191.29 37896.61 30894.63 39597.39 22896.83 34793.71 41079.88 39099.56 32482.40 41698.13 36095.54 415
EPMVS93.72 36093.27 35995.09 38296.04 41787.76 40498.13 16285.01 42494.69 34196.92 33898.64 25178.47 40299.31 37895.04 30196.46 39898.20 360
testing393.51 36292.09 37297.75 27898.60 30894.40 31097.32 26595.26 39197.56 20896.79 35095.50 38953.57 42899.77 22695.26 29898.97 31599.08 258
dp93.47 36393.59 35693.13 40196.64 40781.62 42597.66 23196.42 37692.80 37596.11 36998.64 25178.55 40199.59 31393.31 35192.18 41998.16 362
FPMVS93.44 36492.23 37097.08 32399.25 17297.86 16495.61 35997.16 35892.90 37393.76 40798.65 24875.94 40495.66 42079.30 42097.49 37697.73 384
testing9193.32 36592.27 36996.47 34797.54 38091.25 38096.17 33496.76 37097.18 25293.65 40893.50 41265.11 42299.63 29993.04 35597.45 37898.53 336
tpm cat193.29 36693.13 36393.75 39497.39 39184.74 41497.39 25897.65 34583.39 41694.16 39998.41 28182.86 38399.39 36791.56 37995.35 40997.14 398
UBG93.25 36792.32 36896.04 36397.72 36790.16 39395.92 34895.91 38496.03 30593.95 40593.04 41569.60 41199.52 33990.72 39397.98 36998.45 342
MVS93.19 36892.09 37296.50 34696.91 40194.03 32398.07 17298.06 33568.01 42194.56 39796.48 37095.96 22999.30 38083.84 41296.89 39496.17 408
tpm293.09 36992.58 36794.62 38497.56 37886.53 40897.66 23195.79 38686.15 41194.07 40298.23 29975.95 40399.53 33590.91 39096.86 39597.81 379
testing1193.08 37092.02 37496.26 35497.56 37890.83 38896.32 32395.70 38796.47 28892.66 41293.73 40964.36 42399.59 31393.77 34197.57 37498.37 354
testing9993.04 37191.98 37796.23 35697.53 38290.70 39096.35 32195.94 38396.87 26993.41 40993.43 41363.84 42499.59 31393.24 35397.19 38898.40 350
dmvs_testset92.94 37292.21 37195.13 38098.59 31190.99 38597.65 23392.09 41196.95 26494.00 40393.55 41192.34 31196.97 41972.20 42292.52 41797.43 394
KD-MVS_2432*160092.87 37391.99 37595.51 37491.37 42589.27 39794.07 40098.14 33195.42 32497.25 32696.44 37267.86 41399.24 38691.28 38396.08 40498.02 369
miper_refine_blended92.87 37391.99 37595.51 37491.37 42589.27 39794.07 40098.14 33195.42 32497.25 32696.44 37267.86 41399.24 38691.28 38396.08 40498.02 369
ETVMVS92.60 37591.08 38497.18 31897.70 37293.65 34196.54 30995.70 38796.51 28494.68 39492.39 41861.80 42599.50 34586.97 40597.41 38198.40 350
MVEpermissive83.40 2292.50 37691.92 37894.25 38798.83 26391.64 37192.71 41183.52 42595.92 31086.46 42395.46 39295.20 25195.40 42180.51 41898.64 33895.73 414
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test250692.39 37791.89 37993.89 39399.38 14282.28 42399.32 2366.03 42999.08 9098.77 19799.57 4666.26 41999.84 14898.71 8899.95 3299.54 115
UWE-MVS92.38 37891.76 38194.21 38997.16 39684.65 41595.42 36888.45 42095.96 30896.17 36795.84 38466.36 41899.71 25791.87 37398.64 33898.28 357
gg-mvs-nofinetune92.37 37991.20 38395.85 36595.80 42092.38 36299.31 2781.84 42699.75 891.83 41599.74 1568.29 41299.02 39687.15 40497.12 39096.16 409
test-mter92.33 38091.76 38194.04 39096.53 40984.62 41694.05 40292.39 40994.00 35994.12 40095.07 39665.63 42199.67 27795.87 27898.18 35597.82 377
IB-MVS91.63 1992.24 38190.90 38596.27 35397.22 39591.24 38194.36 39793.33 40692.37 37992.24 41494.58 40666.20 42099.89 8093.16 35494.63 41297.66 387
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
TESTMET0.1,192.19 38291.77 38093.46 39796.48 41182.80 42294.05 40291.52 41494.45 34894.00 40394.88 40266.65 41799.56 32495.78 28398.11 36198.02 369
testing22291.96 38390.37 38796.72 34297.47 38992.59 35696.11 33694.76 39396.83 27192.90 41192.87 41657.92 42699.55 32886.93 40697.52 37598.00 372
myMVS_eth3d91.92 38490.45 38696.30 35197.10 39890.90 38696.18 33296.58 37395.65 31694.77 39292.29 41953.88 42799.36 37089.59 39898.05 36698.63 329
PAPM91.88 38590.34 38896.51 34598.06 35592.56 35792.44 41397.17 35786.35 41090.38 41796.01 37786.61 35299.21 38970.65 42395.43 40897.75 383
PVSNet_089.98 2191.15 38690.30 38993.70 39597.72 36784.34 41990.24 41697.42 34890.20 39993.79 40693.09 41490.90 32698.89 40486.57 40872.76 42397.87 376
EGC-MVSNET85.24 38780.54 39099.34 7599.77 2699.20 3899.08 5899.29 18712.08 42520.84 42699.42 7997.55 13699.85 13097.08 18699.72 15598.96 281
test_method79.78 38879.50 39180.62 40480.21 42945.76 43270.82 42098.41 32131.08 42480.89 42497.71 33284.85 36697.37 41791.51 38080.03 42198.75 316
tmp_tt78.77 38978.73 39278.90 40558.45 43074.76 42994.20 39978.26 42839.16 42386.71 42292.82 41780.50 38975.19 42586.16 40992.29 41886.74 419
dongtai76.24 39075.95 39377.12 40692.39 42467.91 43090.16 41759.44 43182.04 41789.42 41994.67 40549.68 42981.74 42448.06 42477.66 42281.72 420
kuosan69.30 39168.95 39470.34 40787.68 42865.00 43191.11 41559.90 43069.02 42074.46 42588.89 42248.58 43068.03 42628.61 42572.33 42477.99 421
cdsmvs_eth3d_5k24.66 39232.88 3950.00 4100.00 4330.00 4350.00 42199.10 2350.00 4280.00 42997.58 34099.21 160.00 4290.00 4280.00 4270.00 425
testmvs17.12 39320.53 3966.87 40912.05 4314.20 43493.62 4086.73 4324.62 42710.41 42724.33 4248.28 4323.56 4289.69 42715.07 42512.86 424
test12317.04 39420.11 3977.82 40810.25 4324.91 43394.80 3834.47 4334.93 42610.00 42824.28 4259.69 4313.64 42710.14 42612.43 42614.92 423
pcd_1.5k_mvsjas8.17 39510.90 3980.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 42898.07 950.00 4290.00 4280.00 4270.00 425
ab-mvs-re8.12 39610.83 3990.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 42997.48 3460.00 4330.00 4290.00 4280.00 4270.00 425
mmdepth0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
monomultidepth0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
test_blank0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
uanet_test0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
DCPMVS0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
sosnet-low-res0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
sosnet0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
uncertanet0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
Regformer0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
uanet0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
WAC-MVS90.90 38691.37 382
FOURS199.73 3699.67 399.43 1299.54 8399.43 4399.26 118
MSC_two_6792asdad99.32 8298.43 33098.37 11398.86 27999.89 8097.14 18199.60 20299.71 51
PC_three_145293.27 36799.40 9098.54 26498.22 8297.00 41895.17 29999.45 24599.49 136
No_MVS99.32 8298.43 33098.37 11398.86 27999.89 8097.14 18199.60 20299.71 51
test_one_060199.39 14199.20 3899.31 17198.49 13698.66 21099.02 16597.64 128
eth-test20.00 433
eth-test0.00 433
ZD-MVS99.01 22998.84 7899.07 23994.10 35698.05 27298.12 30696.36 20999.86 11892.70 36599.19 287
RE-MVS-def98.58 11999.20 18499.38 1298.48 12999.30 17998.64 12098.95 16498.96 18797.75 11996.56 23799.39 25299.45 159
IU-MVS99.49 11699.15 5198.87 27492.97 37199.41 8796.76 21699.62 19599.66 62
OPU-MVS98.82 15998.59 31198.30 11898.10 16898.52 26898.18 8698.75 40694.62 31299.48 24299.41 173
test_241102_TWO99.30 17998.03 17099.26 11899.02 16597.51 14299.88 9396.91 19999.60 20299.66 62
test_241102_ONE99.49 11699.17 4399.31 17197.98 17399.66 4598.90 19998.36 6799.48 351
9.1497.78 21299.07 21597.53 24799.32 16695.53 32198.54 23098.70 23897.58 13399.76 23294.32 32599.46 243
save fliter99.11 20697.97 15496.53 31199.02 25198.24 153
test_0728_THIRD98.17 16399.08 14099.02 16597.89 10899.88 9397.07 18799.71 16099.70 56
test_0728_SECOND99.60 1499.50 10999.23 3098.02 18099.32 16699.88 9396.99 19399.63 19299.68 58
test072699.50 10999.21 3298.17 15899.35 15397.97 17499.26 11899.06 15397.61 131
GSMVS98.81 305
test_part299.36 14999.10 6499.05 147
sam_mvs184.74 36898.81 305
sam_mvs84.29 374
ambc98.24 24498.82 26695.97 26298.62 10799.00 25699.27 11499.21 12396.99 17499.50 34596.55 24099.50 24099.26 227
MTGPAbinary99.20 210
test_post197.59 24120.48 42783.07 38299.66 28894.16 326
test_post21.25 42683.86 37799.70 261
patchmatchnet-post98.77 22784.37 37199.85 130
GG-mvs-BLEND94.76 38394.54 42292.13 36799.31 2780.47 42788.73 42191.01 42167.59 41698.16 41482.30 41794.53 41393.98 417
MTMP97.93 19391.91 413
gm-plane-assit94.83 42181.97 42488.07 40894.99 39999.60 30991.76 374
test9_res93.28 35299.15 29299.38 190
TEST998.71 28298.08 14195.96 34399.03 24891.40 38995.85 37497.53 34296.52 20099.76 232
test_898.67 29698.01 14995.91 34999.02 25191.64 38495.79 37697.50 34596.47 20299.76 232
agg_prior292.50 36899.16 29099.37 192
agg_prior98.68 29597.99 15099.01 25495.59 37799.77 226
TestCases99.16 10799.50 10998.55 9999.58 6196.80 27298.88 18099.06 15397.65 12599.57 32194.45 31899.61 20099.37 192
test_prior497.97 15495.86 350
test_prior295.74 35696.48 28796.11 36997.63 33895.92 23294.16 32699.20 284
test_prior98.95 14398.69 29197.95 15899.03 24899.59 31399.30 219
旧先验295.76 35588.56 40797.52 30999.66 28894.48 316
新几何295.93 346
新几何198.91 15098.94 23997.76 17698.76 29587.58 40996.75 35198.10 30894.80 26599.78 22092.73 36499.00 31099.20 238
旧先验198.82 26697.45 19598.76 29598.34 29095.50 24599.01 30999.23 233
无先验95.74 35698.74 30089.38 40399.73 24992.38 37099.22 237
原ACMM295.53 362
原ACMM198.35 23498.90 24996.25 25198.83 28792.48 37896.07 37198.10 30895.39 24899.71 25792.61 36798.99 31299.08 258
test22298.92 24596.93 22795.54 36198.78 29385.72 41296.86 34698.11 30794.43 27299.10 30099.23 233
testdata299.79 20992.80 362
segment_acmp97.02 172
testdata98.09 25298.93 24195.40 28098.80 29090.08 40097.45 31698.37 28695.26 25099.70 26193.58 34598.95 31799.17 250
testdata195.44 36796.32 293
test1298.93 14698.58 31397.83 16798.66 30596.53 35895.51 24499.69 26599.13 29599.27 224
plane_prior799.19 18797.87 163
plane_prior698.99 23397.70 18294.90 258
plane_prior599.27 19399.70 26194.42 32099.51 23399.45 159
plane_prior497.98 317
plane_prior397.78 17597.41 22697.79 290
plane_prior297.77 21698.20 160
plane_prior199.05 223
plane_prior97.65 18497.07 28396.72 27799.36 256
n20.00 434
nn0.00 434
door-mid99.57 68
lessismore_v098.97 14099.73 3697.53 19186.71 42299.37 9599.52 6389.93 33299.92 5398.99 6799.72 15599.44 163
LGP-MVS_train99.47 5699.57 8298.97 7099.48 10196.60 28199.10 13899.06 15398.71 3999.83 16595.58 29299.78 12299.62 72
test1198.87 274
door99.41 133
HQP5-MVS96.79 233
HQP-NCC98.67 29696.29 32596.05 30295.55 380
ACMP_Plane98.67 29696.29 32596.05 30295.55 380
BP-MVS92.82 360
HQP4-MVS95.56 37999.54 33399.32 212
HQP3-MVS99.04 24699.26 274
HQP2-MVS93.84 286
NP-MVS98.84 26197.39 19996.84 363
MDTV_nov1_ep13_2view74.92 42897.69 22690.06 40197.75 29385.78 36093.52 34698.69 323
MDTV_nov1_ep1395.22 33297.06 40083.20 42197.74 22196.16 37894.37 35096.99 33698.83 21583.95 37699.53 33593.90 33597.95 370
ACMMP++_ref99.77 128
ACMMP++99.68 175
Test By Simon96.52 200
ITE_SJBPF98.87 15499.22 17898.48 10699.35 15397.50 21498.28 25298.60 25997.64 12899.35 37393.86 33899.27 27198.79 311
DeepMVS_CXcopyleft93.44 39898.24 34394.21 31594.34 39764.28 42291.34 41694.87 40489.45 33792.77 42377.54 42193.14 41693.35 418