LCM-MVSNet | | | 99.93 1 | 99.92 1 | 99.94 1 | 99.99 1 | 99.97 1 | 99.90 1 | 99.89 7 | 99.98 1 | 99.99 1 | 99.96 1 | 99.77 1 | 100.00 1 | 99.81 5 | 100.00 1 | 99.85 12 |
|
UniMVSNet_ETH3D | | | 99.69 2 | 99.69 4 | 99.69 3 | 99.84 18 | 99.34 15 | 99.69 4 | 99.58 41 | 99.90 2 | 99.86 9 | 99.78 8 | 99.58 3 | 99.95 17 | 99.00 46 | 99.95 19 | 99.78 19 |
|
pmmvs6 | | | 99.67 3 | 99.70 3 | 99.60 11 | 99.90 4 | 99.27 22 | 99.53 7 | 99.76 17 | 99.64 11 | 99.84 10 | 99.83 3 | 99.50 5 | 99.87 88 | 99.36 23 | 99.92 41 | 99.64 49 |
|
LTVRE_ROB | | 98.40 1 | 99.67 3 | 99.71 2 | 99.56 21 | 99.85 16 | 99.11 59 | 99.90 1 | 99.78 15 | 99.63 13 | 99.78 14 | 99.67 20 | 99.48 6 | 99.81 162 | 99.30 28 | 99.97 12 | 99.77 21 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
mvs_tets | | | 99.63 5 | 99.67 5 | 99.49 48 | 99.88 9 | 98.61 92 | 99.34 19 | 99.71 20 | 99.27 49 | 99.90 6 | 99.74 12 | 99.68 2 | 99.97 4 | 99.55 15 | 99.99 5 | 99.88 7 |
|
jajsoiax | | | 99.58 6 | 99.61 7 | 99.48 51 | 99.87 12 | 98.61 92 | 99.28 36 | 99.66 31 | 99.09 71 | 99.89 8 | 99.68 18 | 99.53 4 | 99.97 4 | 99.50 17 | 99.99 5 | 99.87 9 |
|
ANet_high | | | 99.57 7 | 99.67 5 | 99.28 83 | 99.89 6 | 98.09 133 | 99.14 53 | 99.93 3 | 99.82 3 | 99.93 3 | 99.81 5 | 99.17 12 | 99.94 26 | 99.31 26 | 100.00 1 | 99.82 14 |
|
v7n | | | 99.53 8 | 99.57 8 | 99.41 60 | 99.88 9 | 98.54 100 | 99.45 10 | 99.61 37 | 99.66 10 | 99.68 26 | 99.66 22 | 98.44 46 | 99.95 17 | 99.73 9 | 99.96 15 | 99.75 28 |
|
test_djsdf | | | 99.52 9 | 99.51 9 | 99.53 34 | 99.86 14 | 98.74 82 | 99.39 16 | 99.56 55 | 99.11 61 | 99.70 22 | 99.73 14 | 99.00 15 | 99.97 4 | 99.26 29 | 99.98 9 | 99.89 6 |
|
anonymousdsp | | | 99.51 10 | 99.47 12 | 99.62 6 | 99.88 9 | 99.08 63 | 99.34 19 | 99.69 23 | 98.93 86 | 99.65 31 | 99.72 15 | 98.93 19 | 99.95 17 | 99.11 38 | 100.00 1 | 99.82 14 |
|
UA-Net | | | 99.47 11 | 99.40 15 | 99.70 2 | 99.49 99 | 99.29 19 | 99.80 3 | 99.72 19 | 99.82 3 | 99.04 126 | 99.81 5 | 98.05 76 | 99.96 11 | 98.85 54 | 99.99 5 | 99.86 11 |
|
PS-MVSNAJss | | | 99.46 12 | 99.49 10 | 99.35 69 | 99.90 4 | 98.15 129 | 99.20 44 | 99.65 32 | 99.48 26 | 99.92 4 | 99.71 16 | 98.07 73 | 99.96 11 | 99.53 16 | 100.00 1 | 99.93 4 |
|
pm-mvs1 | | | 99.44 13 | 99.48 11 | 99.33 76 | 99.80 22 | 98.63 89 | 99.29 32 | 99.63 33 | 99.30 47 | 99.65 31 | 99.60 32 | 99.16 14 | 99.82 149 | 99.07 40 | 99.83 76 | 99.56 81 |
|
TransMVSNet (Re) | | | 99.44 13 | 99.47 12 | 99.36 64 | 99.80 22 | 98.58 95 | 99.27 38 | 99.57 48 | 99.39 36 | 99.75 17 | 99.62 28 | 99.17 12 | 99.83 139 | 99.06 41 | 99.62 171 | 99.66 44 |
|
DTE-MVSNet | | | 99.43 15 | 99.35 18 | 99.66 4 | 99.71 43 | 99.30 17 | 99.31 26 | 99.51 71 | 99.64 11 | 99.56 37 | 99.46 54 | 98.23 58 | 99.97 4 | 98.78 57 | 99.93 31 | 99.72 31 |
|
TDRefinement | | | 99.42 16 | 99.38 16 | 99.55 23 | 99.76 30 | 99.33 16 | 99.68 5 | 99.71 20 | 99.38 37 | 99.53 44 | 99.61 30 | 98.64 33 | 99.80 169 | 98.24 90 | 99.84 69 | 99.52 102 |
|
PEN-MVS | | | 99.41 17 | 99.34 20 | 99.62 6 | 99.73 35 | 99.14 52 | 99.29 32 | 99.54 64 | 99.62 16 | 99.56 37 | 99.42 62 | 98.16 69 | 99.96 11 | 98.78 57 | 99.93 31 | 99.77 21 |
|
nrg030 | | | 99.40 18 | 99.35 18 | 99.54 27 | 99.58 64 | 99.13 55 | 98.98 71 | 99.48 82 | 99.68 8 | 99.46 54 | 99.26 88 | 98.62 36 | 99.73 220 | 99.17 37 | 99.92 41 | 99.76 25 |
|
PS-CasMVS | | | 99.40 18 | 99.33 21 | 99.62 6 | 99.71 43 | 99.10 60 | 99.29 32 | 99.53 67 | 99.53 23 | 99.46 54 | 99.41 65 | 98.23 58 | 99.95 17 | 98.89 53 | 99.95 19 | 99.81 16 |
|
MIMVSNet1 | | | 99.38 20 | 99.32 22 | 99.55 23 | 99.86 14 | 99.19 37 | 99.41 13 | 99.59 39 | 99.59 19 | 99.71 20 | 99.57 35 | 97.12 142 | 99.90 52 | 99.21 34 | 99.87 62 | 99.54 92 |
|
OurMVSNet-221017-0 | | | 99.37 21 | 99.31 23 | 99.53 34 | 99.91 3 | 98.98 65 | 99.63 6 | 99.58 41 | 99.44 31 | 99.78 14 | 99.76 10 | 96.39 182 | 99.92 39 | 99.44 21 | 99.92 41 | 99.68 40 |
|
Vis-MVSNet |  | | 99.34 22 | 99.36 17 | 99.27 86 | 99.73 35 | 98.26 118 | 99.17 49 | 99.78 15 | 99.11 61 | 99.27 91 | 99.48 52 | 98.82 24 | 99.95 17 | 98.94 49 | 99.93 31 | 99.59 66 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
WR-MVS_H | | | 99.33 23 | 99.22 28 | 99.65 5 | 99.71 43 | 99.24 25 | 99.32 22 | 99.55 59 | 99.46 29 | 99.50 50 | 99.34 76 | 97.30 131 | 99.93 31 | 98.90 51 | 99.93 31 | 99.77 21 |
|
VPA-MVSNet | | | 99.30 24 | 99.30 24 | 99.28 83 | 99.49 99 | 98.36 114 | 99.00 68 | 99.45 93 | 99.63 13 | 99.52 46 | 99.44 59 | 98.25 56 | 99.88 71 | 99.09 39 | 99.84 69 | 99.62 53 |
|
Anonymous20231211 | | | 99.27 25 | 99.27 25 | 99.26 88 | 99.29 142 | 98.18 126 | 99.49 8 | 99.51 71 | 99.70 7 | 99.80 12 | 99.68 18 | 96.84 157 | 99.83 139 | 99.21 34 | 99.91 47 | 99.77 21 |
|
FC-MVSNet-test | | | 99.27 25 | 99.25 26 | 99.34 72 | 99.77 27 | 98.37 111 | 99.30 31 | 99.57 48 | 99.61 18 | 99.40 66 | 99.50 48 | 97.12 142 | 99.85 109 | 99.02 45 | 99.94 27 | 99.80 17 |
|
testf1 | | | 99.25 27 | 99.16 32 | 99.51 43 | 99.89 6 | 99.63 3 | 98.71 89 | 99.69 23 | 98.90 88 | 99.43 59 | 99.35 72 | 98.86 21 | 99.67 247 | 97.81 116 | 99.81 83 | 99.24 206 |
|
APD_test2 | | | 99.25 27 | 99.16 32 | 99.51 43 | 99.89 6 | 99.63 3 | 98.71 89 | 99.69 23 | 98.90 88 | 99.43 59 | 99.35 72 | 98.86 21 | 99.67 247 | 97.81 116 | 99.81 83 | 99.24 206 |
|
KD-MVS_self_test | | | 99.25 27 | 99.18 29 | 99.44 57 | 99.63 61 | 99.06 64 | 98.69 91 | 99.54 64 | 99.31 45 | 99.62 35 | 99.53 44 | 97.36 129 | 99.86 97 | 99.24 33 | 99.71 138 | 99.39 160 |
|
ACMH | | 96.65 7 | 99.25 27 | 99.24 27 | 99.26 88 | 99.72 41 | 98.38 109 | 99.07 61 | 99.55 59 | 98.30 117 | 99.65 31 | 99.45 58 | 99.22 9 | 99.76 204 | 98.44 81 | 99.77 108 | 99.64 49 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
mvsmamba | | | 99.24 31 | 99.15 37 | 99.49 48 | 99.83 19 | 98.85 74 | 99.41 13 | 99.55 59 | 99.54 22 | 99.40 66 | 99.52 46 | 95.86 208 | 99.91 47 | 99.32 25 | 99.95 19 | 99.70 37 |
|
CP-MVSNet | | | 99.21 32 | 99.09 42 | 99.56 21 | 99.65 56 | 98.96 70 | 99.13 54 | 99.34 133 | 99.42 34 | 99.33 80 | 99.26 88 | 97.01 150 | 99.94 26 | 98.74 61 | 99.93 31 | 99.79 18 |
|
TranMVSNet+NR-MVSNet | | | 99.17 33 | 99.07 45 | 99.46 56 | 99.37 130 | 98.87 73 | 98.39 128 | 99.42 106 | 99.42 34 | 99.36 75 | 99.06 123 | 98.38 49 | 99.95 17 | 98.34 86 | 99.90 54 | 99.57 77 |
|
FMVSNet1 | | | 99.17 33 | 99.17 30 | 99.17 99 | 99.55 79 | 98.24 120 | 99.20 44 | 99.44 97 | 99.21 52 | 99.43 59 | 99.55 40 | 97.82 92 | 99.86 97 | 98.42 83 | 99.89 58 | 99.41 148 |
|
test_vis3_rt | | | 99.14 35 | 99.17 30 | 99.07 117 | 99.78 25 | 98.38 109 | 98.92 75 | 99.94 1 | 97.80 155 | 99.91 5 | 99.67 20 | 97.15 141 | 98.91 360 | 99.76 8 | 99.56 194 | 99.92 5 |
|
FIs | | | 99.14 35 | 99.09 42 | 99.29 81 | 99.70 49 | 98.28 117 | 99.13 54 | 99.52 70 | 99.48 26 | 99.24 100 | 99.41 65 | 96.79 163 | 99.82 149 | 98.69 66 | 99.88 59 | 99.76 25 |
|
XXY-MVS | | | 99.14 35 | 99.15 37 | 99.10 111 | 99.76 30 | 97.74 172 | 98.85 81 | 99.62 34 | 98.48 110 | 99.37 73 | 99.49 51 | 98.75 27 | 99.86 97 | 98.20 93 | 99.80 94 | 99.71 32 |
|
CS-MVS | | | 99.13 38 | 99.10 41 | 99.24 93 | 99.06 196 | 99.15 47 | 99.36 18 | 99.88 8 | 99.36 41 | 98.21 227 | 98.46 246 | 98.68 32 | 99.93 31 | 99.03 44 | 99.85 65 | 98.64 298 |
|
CS-MVS-test | | | 99.13 38 | 99.09 42 | 99.26 88 | 99.13 181 | 98.97 66 | 99.31 26 | 99.88 8 | 99.44 31 | 98.16 230 | 98.51 238 | 98.64 33 | 99.93 31 | 98.91 50 | 99.85 65 | 98.88 267 |
|
test_fmvs3 | | | 99.12 40 | 99.41 14 | 98.25 215 | 99.76 30 | 95.07 265 | 99.05 64 | 99.94 1 | 97.78 157 | 99.82 11 | 99.84 2 | 98.56 40 | 99.71 228 | 99.96 1 | 99.96 15 | 99.97 1 |
|
casdiffmvs_mvg |  | | 99.12 40 | 99.16 32 | 98.99 131 | 99.43 118 | 97.73 174 | 98.00 167 | 99.62 34 | 99.22 51 | 99.55 39 | 99.22 96 | 98.93 19 | 99.75 211 | 98.66 68 | 99.81 83 | 99.50 107 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
RRT_MVS | | | 99.09 42 | 98.94 54 | 99.55 23 | 99.87 12 | 98.82 78 | 99.48 9 | 98.16 300 | 99.49 25 | 99.59 36 | 99.65 24 | 94.79 241 | 99.95 17 | 99.45 20 | 99.96 15 | 99.88 7 |
|
DROMVSNet | | | 99.09 42 | 99.05 46 | 99.20 97 | 99.28 143 | 98.93 71 | 99.24 40 | 99.84 11 | 99.08 73 | 98.12 235 | 98.37 254 | 98.72 29 | 99.90 52 | 99.05 42 | 99.77 108 | 98.77 284 |
|
ACMH+ | | 96.62 9 | 99.08 44 | 99.00 49 | 99.33 76 | 99.71 43 | 98.83 76 | 98.60 99 | 99.58 41 | 99.11 61 | 99.53 44 | 99.18 103 | 98.81 25 | 99.67 247 | 96.71 192 | 99.77 108 | 99.50 107 |
|
bld_raw_dy_0_64 | | | 99.07 45 | 99.00 49 | 99.29 81 | 99.85 16 | 98.18 126 | 99.11 57 | 99.40 109 | 99.33 43 | 99.38 70 | 99.44 59 | 95.21 225 | 99.97 4 | 99.31 26 | 99.98 9 | 99.73 30 |
|
GeoE | | | 99.05 46 | 98.99 52 | 99.25 91 | 99.44 113 | 98.35 115 | 98.73 86 | 99.56 55 | 98.42 111 | 98.91 149 | 98.81 192 | 98.94 18 | 99.91 47 | 98.35 85 | 99.73 126 | 99.49 111 |
|
Gipuma |  | | 99.03 47 | 99.16 32 | 98.64 170 | 99.94 2 | 98.51 102 | 99.32 22 | 99.75 18 | 99.58 21 | 98.60 194 | 99.62 28 | 98.22 61 | 99.51 307 | 97.70 124 | 99.73 126 | 97.89 329 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
v8 | | | 99.01 48 | 99.16 32 | 98.57 181 | 99.47 108 | 96.31 228 | 98.90 76 | 99.47 88 | 99.03 77 | 99.52 46 | 99.57 35 | 96.93 153 | 99.81 162 | 99.60 11 | 99.98 9 | 99.60 60 |
|
HPM-MVS_fast | | | 99.01 48 | 98.82 64 | 99.57 16 | 99.71 43 | 99.35 12 | 99.00 68 | 99.50 73 | 97.33 198 | 98.94 146 | 98.86 180 | 98.75 27 | 99.82 149 | 97.53 131 | 99.71 138 | 99.56 81 |
|
APDe-MVS | | | 98.99 50 | 98.79 67 | 99.60 11 | 99.21 157 | 99.15 47 | 98.87 78 | 99.48 82 | 97.57 172 | 99.35 77 | 99.24 93 | 97.83 89 | 99.89 62 | 97.88 113 | 99.70 143 | 99.75 28 |
|
EG-PatchMatch MVS | | | 98.99 50 | 99.01 48 | 98.94 136 | 99.50 92 | 97.47 185 | 98.04 161 | 99.59 39 | 98.15 135 | 99.40 66 | 99.36 71 | 98.58 39 | 99.76 204 | 98.78 57 | 99.68 151 | 99.59 66 |
|
COLMAP_ROB |  | 96.50 10 | 98.99 50 | 98.85 62 | 99.41 60 | 99.58 64 | 99.10 60 | 98.74 84 | 99.56 55 | 99.09 71 | 99.33 80 | 99.19 100 | 98.40 48 | 99.72 227 | 95.98 238 | 99.76 119 | 99.42 145 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
Baseline_NR-MVSNet | | | 98.98 53 | 98.86 61 | 99.36 64 | 99.82 21 | 98.55 97 | 97.47 222 | 99.57 48 | 99.37 38 | 99.21 103 | 99.61 30 | 96.76 166 | 99.83 139 | 98.06 101 | 99.83 76 | 99.71 32 |
|
v10 | | | 98.97 54 | 99.11 39 | 98.55 186 | 99.44 113 | 96.21 230 | 98.90 76 | 99.55 59 | 98.73 96 | 99.48 51 | 99.60 32 | 96.63 173 | 99.83 139 | 99.70 10 | 99.99 5 | 99.61 59 |
|
DeepC-MVS | | 97.60 4 | 98.97 54 | 98.93 55 | 99.10 111 | 99.35 135 | 97.98 148 | 98.01 166 | 99.46 90 | 97.56 174 | 99.54 40 | 99.50 48 | 98.97 16 | 99.84 125 | 98.06 101 | 99.92 41 | 99.49 111 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
baseline | | | 98.96 56 | 99.02 47 | 98.76 160 | 99.38 124 | 97.26 195 | 98.49 116 | 99.50 73 | 98.86 91 | 99.19 105 | 99.06 123 | 98.23 58 | 99.69 235 | 98.71 64 | 99.76 119 | 99.33 186 |
|
casdiffmvs |  | | 98.95 57 | 99.00 49 | 98.81 150 | 99.38 124 | 97.33 191 | 97.82 184 | 99.57 48 | 99.17 59 | 99.35 77 | 99.17 107 | 98.35 53 | 99.69 235 | 98.46 80 | 99.73 126 | 99.41 148 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
NR-MVSNet | | | 98.95 57 | 98.82 64 | 99.36 64 | 99.16 174 | 98.72 87 | 99.22 41 | 99.20 183 | 99.10 68 | 99.72 18 | 98.76 200 | 96.38 184 | 99.86 97 | 98.00 106 | 99.82 79 | 99.50 107 |
|
Anonymous20240529 | | | 98.93 59 | 98.87 58 | 99.12 107 | 99.19 164 | 98.22 125 | 99.01 66 | 98.99 232 | 99.25 50 | 99.54 40 | 99.37 68 | 97.04 146 | 99.80 169 | 97.89 110 | 99.52 206 | 99.35 179 |
|
DP-MVS | | | 98.93 59 | 98.81 66 | 99.28 83 | 99.21 157 | 98.45 106 | 98.46 121 | 99.33 138 | 99.63 13 | 99.48 51 | 99.15 113 | 97.23 137 | 99.75 211 | 97.17 146 | 99.66 162 | 99.63 52 |
|
SED-MVS | | | 98.91 61 | 98.72 73 | 99.49 48 | 99.49 99 | 99.17 39 | 98.10 153 | 99.31 145 | 98.03 139 | 99.66 28 | 99.02 135 | 98.36 50 | 99.88 71 | 96.91 168 | 99.62 171 | 99.41 148 |
|
ACMM | | 96.08 12 | 98.91 61 | 98.73 71 | 99.48 51 | 99.55 79 | 99.14 52 | 98.07 156 | 99.37 118 | 97.62 167 | 99.04 126 | 98.96 156 | 98.84 23 | 99.79 182 | 97.43 135 | 99.65 163 | 99.49 111 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
DVP-MVS++ | | | 98.90 63 | 98.70 78 | 99.51 43 | 98.43 297 | 99.15 47 | 99.43 11 | 99.32 140 | 98.17 131 | 99.26 95 | 99.02 135 | 98.18 65 | 99.88 71 | 97.07 156 | 99.45 220 | 99.49 111 |
|
tfpnnormal | | | 98.90 63 | 98.90 57 | 98.91 140 | 99.67 54 | 97.82 165 | 99.00 68 | 99.44 97 | 99.45 30 | 99.51 49 | 99.24 93 | 98.20 64 | 99.86 97 | 95.92 240 | 99.69 146 | 99.04 238 |
|
MTAPA | | | 98.88 65 | 98.64 86 | 99.61 9 | 99.67 54 | 99.36 11 | 98.43 124 | 99.20 183 | 98.83 95 | 98.89 152 | 98.90 170 | 96.98 152 | 99.92 39 | 97.16 147 | 99.70 143 | 99.56 81 |
|
mvsany_test3 | | | 98.87 66 | 98.92 56 | 98.74 166 | 99.38 124 | 96.94 212 | 98.58 102 | 99.10 210 | 96.49 245 | 99.96 2 | 99.81 5 | 98.18 65 | 99.45 318 | 98.97 48 | 99.79 99 | 99.83 13 |
|
VPNet | | | 98.87 66 | 98.83 63 | 99.01 129 | 99.70 49 | 97.62 180 | 98.43 124 | 99.35 127 | 99.47 28 | 99.28 89 | 99.05 130 | 96.72 169 | 99.82 149 | 98.09 99 | 99.36 231 | 99.59 66 |
|
UniMVSNet (Re) | | | 98.87 66 | 98.71 75 | 99.35 69 | 99.24 150 | 98.73 85 | 97.73 193 | 99.38 114 | 98.93 86 | 99.12 111 | 98.73 203 | 96.77 164 | 99.86 97 | 98.63 70 | 99.80 94 | 99.46 130 |
|
UniMVSNet_NR-MVSNet | | | 98.86 69 | 98.68 81 | 99.40 62 | 99.17 172 | 98.74 82 | 97.68 197 | 99.40 109 | 99.14 60 | 99.06 119 | 98.59 230 | 96.71 170 | 99.93 31 | 98.57 73 | 99.77 108 | 99.53 99 |
|
APD-MVS_3200maxsize | | | 98.84 70 | 98.61 93 | 99.53 34 | 99.19 164 | 99.27 22 | 98.49 116 | 99.33 138 | 98.64 98 | 99.03 129 | 98.98 151 | 97.89 86 | 99.85 109 | 96.54 208 | 99.42 224 | 99.46 130 |
|
APD_test1 | | | 98.83 71 | 98.66 83 | 99.34 72 | 99.78 25 | 99.47 6 | 98.42 126 | 99.45 93 | 98.28 122 | 98.98 133 | 99.19 100 | 97.76 95 | 99.58 286 | 96.57 200 | 99.55 197 | 98.97 251 |
|
PM-MVS | | | 98.82 72 | 98.72 73 | 99.12 107 | 99.64 59 | 98.54 100 | 97.98 169 | 99.68 28 | 97.62 167 | 99.34 79 | 99.18 103 | 97.54 114 | 99.77 199 | 97.79 118 | 99.74 123 | 99.04 238 |
|
DU-MVS | | | 98.82 72 | 98.63 87 | 99.39 63 | 99.16 174 | 98.74 82 | 97.54 214 | 99.25 172 | 98.84 94 | 99.06 119 | 98.76 200 | 96.76 166 | 99.93 31 | 98.57 73 | 99.77 108 | 99.50 107 |
|
SR-MVS-dyc-post | | | 98.81 74 | 98.55 98 | 99.57 16 | 99.20 161 | 99.38 8 | 98.48 119 | 99.30 153 | 98.64 98 | 98.95 140 | 98.96 156 | 97.49 123 | 99.86 97 | 96.56 204 | 99.39 227 | 99.45 134 |
|
3Dnovator | | 98.27 2 | 98.81 74 | 98.73 71 | 99.05 124 | 98.76 247 | 97.81 167 | 99.25 39 | 99.30 153 | 98.57 107 | 98.55 203 | 99.33 78 | 97.95 84 | 99.90 52 | 97.16 147 | 99.67 157 | 99.44 138 |
|
HPM-MVS |  | | 98.79 76 | 98.53 100 | 99.59 15 | 99.65 56 | 99.29 19 | 99.16 50 | 99.43 103 | 96.74 236 | 98.61 192 | 98.38 253 | 98.62 36 | 99.87 88 | 96.47 212 | 99.67 157 | 99.59 66 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
SteuartSystems-ACMMP | | | 98.79 76 | 98.54 99 | 99.54 27 | 99.73 35 | 99.16 43 | 98.23 139 | 99.31 145 | 97.92 146 | 98.90 150 | 98.90 170 | 98.00 79 | 99.88 71 | 96.15 231 | 99.72 133 | 99.58 72 |
Skip Steuart: Steuart Systems R&D Blog. |
dcpmvs_2 | | | 98.78 78 | 99.11 39 | 97.78 247 | 99.56 75 | 93.67 308 | 99.06 62 | 99.86 10 | 99.50 24 | 99.66 28 | 99.26 88 | 97.21 139 | 99.99 2 | 98.00 106 | 99.91 47 | 99.68 40 |
|
V42 | | | 98.78 78 | 98.78 68 | 98.76 160 | 99.44 113 | 97.04 207 | 98.27 136 | 99.19 187 | 97.87 150 | 99.25 99 | 99.16 109 | 96.84 157 | 99.78 193 | 99.21 34 | 99.84 69 | 99.46 130 |
|
test20.03 | | | 98.78 78 | 98.77 69 | 98.78 157 | 99.46 109 | 97.20 200 | 97.78 186 | 99.24 177 | 99.04 76 | 99.41 63 | 98.90 170 | 97.65 102 | 99.76 204 | 97.70 124 | 99.79 99 | 99.39 160 |
|
DVP-MVS |  | | 98.77 81 | 98.52 101 | 99.52 39 | 99.50 92 | 99.21 28 | 98.02 163 | 98.84 256 | 97.97 142 | 99.08 117 | 99.02 135 | 97.61 108 | 99.88 71 | 96.99 162 | 99.63 168 | 99.48 121 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
test_0402 | | | 98.76 82 | 98.71 75 | 98.93 137 | 99.56 75 | 98.14 131 | 98.45 123 | 99.34 133 | 99.28 48 | 98.95 140 | 98.91 167 | 98.34 54 | 99.79 182 | 95.63 255 | 99.91 47 | 98.86 269 |
|
ACMMP_NAP | | | 98.75 83 | 98.48 109 | 99.57 16 | 99.58 64 | 99.29 19 | 97.82 184 | 99.25 172 | 96.94 227 | 98.78 171 | 99.12 117 | 98.02 77 | 99.84 125 | 97.13 152 | 99.67 157 | 99.59 66 |
|
SixPastTwentyTwo | | | 98.75 83 | 98.62 89 | 99.16 102 | 99.83 19 | 97.96 152 | 99.28 36 | 98.20 297 | 99.37 38 | 99.70 22 | 99.65 24 | 92.65 279 | 99.93 31 | 99.04 43 | 99.84 69 | 99.60 60 |
|
ACMMP |  | | 98.75 83 | 98.50 104 | 99.52 39 | 99.56 75 | 99.16 43 | 98.87 78 | 99.37 118 | 97.16 218 | 98.82 168 | 99.01 144 | 97.71 98 | 99.87 88 | 96.29 223 | 99.69 146 | 99.54 92 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
XVS | | | 98.72 86 | 98.45 114 | 99.53 34 | 99.46 109 | 99.21 28 | 98.65 93 | 99.34 133 | 98.62 102 | 97.54 275 | 98.63 224 | 97.50 120 | 99.83 139 | 96.79 181 | 99.53 203 | 99.56 81 |
|
SR-MVS | | | 98.71 87 | 98.43 117 | 99.57 16 | 99.18 171 | 99.35 12 | 98.36 130 | 99.29 160 | 98.29 120 | 98.88 156 | 98.85 183 | 97.53 116 | 99.87 88 | 96.14 232 | 99.31 239 | 99.48 121 |
|
HFP-MVS | | | 98.71 87 | 98.44 116 | 99.51 43 | 99.49 99 | 99.16 43 | 98.52 109 | 99.31 145 | 97.47 181 | 98.58 198 | 98.50 242 | 97.97 83 | 99.85 109 | 96.57 200 | 99.59 182 | 99.53 99 |
|
LPG-MVS_test | | | 98.71 87 | 98.46 113 | 99.47 54 | 99.57 68 | 98.97 66 | 98.23 139 | 99.48 82 | 96.60 241 | 99.10 115 | 99.06 123 | 98.71 30 | 99.83 139 | 95.58 258 | 99.78 104 | 99.62 53 |
|
test_fmvs2 | | | 98.70 90 | 98.97 53 | 97.89 240 | 99.54 82 | 94.05 290 | 98.55 105 | 99.92 5 | 96.78 234 | 99.72 18 | 99.78 8 | 96.60 174 | 99.67 247 | 99.91 2 | 99.90 54 | 99.94 3 |
|
ACMMPR | | | 98.70 90 | 98.42 119 | 99.54 27 | 99.52 87 | 99.14 52 | 98.52 109 | 99.31 145 | 97.47 181 | 98.56 201 | 98.54 234 | 97.75 96 | 99.88 71 | 96.57 200 | 99.59 182 | 99.58 72 |
|
CP-MVS | | | 98.70 90 | 98.42 119 | 99.52 39 | 99.36 131 | 99.12 57 | 98.72 87 | 99.36 122 | 97.54 176 | 98.30 222 | 98.40 250 | 97.86 88 | 99.89 62 | 96.53 209 | 99.72 133 | 99.56 81 |
|
tt0805 | | | 98.69 93 | 98.62 89 | 98.90 142 | 99.75 34 | 99.30 17 | 99.15 52 | 96.97 331 | 98.86 91 | 98.87 160 | 97.62 307 | 98.63 35 | 98.96 357 | 99.41 22 | 98.29 315 | 98.45 306 |
|
Anonymous20240521 | | | 98.69 93 | 98.87 58 | 98.16 223 | 99.77 27 | 95.11 264 | 99.08 58 | 99.44 97 | 99.34 42 | 99.33 80 | 99.55 40 | 94.10 257 | 99.94 26 | 99.25 31 | 99.96 15 | 99.42 145 |
|
region2R | | | 98.69 93 | 98.40 121 | 99.54 27 | 99.53 85 | 99.17 39 | 98.52 109 | 99.31 145 | 97.46 186 | 98.44 213 | 98.51 238 | 97.83 89 | 99.88 71 | 96.46 213 | 99.58 187 | 99.58 72 |
|
EI-MVSNet-UG-set | | | 98.69 93 | 98.71 75 | 98.62 174 | 99.10 185 | 96.37 225 | 97.23 237 | 98.87 247 | 99.20 54 | 99.19 105 | 98.99 147 | 97.30 131 | 99.85 109 | 98.77 60 | 99.79 99 | 99.65 48 |
|
3Dnovator+ | | 97.89 3 | 98.69 93 | 98.51 102 | 99.24 93 | 98.81 242 | 98.40 107 | 99.02 65 | 99.19 187 | 98.99 80 | 98.07 239 | 99.28 84 | 97.11 144 | 99.84 125 | 96.84 179 | 99.32 237 | 99.47 128 |
|
ZNCC-MVS | | | 98.68 98 | 98.40 121 | 99.54 27 | 99.57 68 | 99.21 28 | 98.46 121 | 99.29 160 | 97.28 204 | 98.11 236 | 98.39 251 | 98.00 79 | 99.87 88 | 96.86 178 | 99.64 165 | 99.55 88 |
|
EI-MVSNet-Vis-set | | | 98.68 98 | 98.70 78 | 98.63 173 | 99.09 188 | 96.40 224 | 97.23 237 | 98.86 252 | 99.20 54 | 99.18 109 | 98.97 153 | 97.29 133 | 99.85 109 | 98.72 63 | 99.78 104 | 99.64 49 |
|
CSCG | | | 98.68 98 | 98.50 104 | 99.20 97 | 99.45 112 | 98.63 89 | 98.56 104 | 99.57 48 | 97.87 150 | 98.85 161 | 98.04 282 | 97.66 101 | 99.84 125 | 96.72 190 | 99.81 83 | 99.13 228 |
|
test_f | | | 98.67 101 | 98.87 58 | 98.05 232 | 99.72 41 | 95.59 244 | 98.51 113 | 99.81 13 | 96.30 254 | 99.78 14 | 99.82 4 | 96.14 191 | 98.63 365 | 99.82 3 | 99.93 31 | 99.95 2 |
|
PGM-MVS | | | 98.66 102 | 98.37 127 | 99.55 23 | 99.53 85 | 99.18 38 | 98.23 139 | 99.49 80 | 97.01 225 | 98.69 181 | 98.88 177 | 98.00 79 | 99.89 62 | 95.87 244 | 99.59 182 | 99.58 72 |
|
GBi-Net | | | 98.65 103 | 98.47 111 | 99.17 99 | 98.90 224 | 98.24 120 | 99.20 44 | 99.44 97 | 98.59 104 | 98.95 140 | 99.55 40 | 94.14 253 | 99.86 97 | 97.77 119 | 99.69 146 | 99.41 148 |
|
test1 | | | 98.65 103 | 98.47 111 | 99.17 99 | 98.90 224 | 98.24 120 | 99.20 44 | 99.44 97 | 98.59 104 | 98.95 140 | 99.55 40 | 94.14 253 | 99.86 97 | 97.77 119 | 99.69 146 | 99.41 148 |
|
LCM-MVSNet-Re | | | 98.64 105 | 98.48 109 | 99.11 109 | 98.85 234 | 98.51 102 | 98.49 116 | 99.83 12 | 98.37 112 | 99.69 24 | 99.46 54 | 98.21 63 | 99.92 39 | 94.13 294 | 99.30 242 | 98.91 263 |
|
mPP-MVS | | | 98.64 105 | 98.34 131 | 99.54 27 | 99.54 82 | 99.17 39 | 98.63 95 | 99.24 177 | 97.47 181 | 98.09 238 | 98.68 212 | 97.62 107 | 99.89 62 | 96.22 226 | 99.62 171 | 99.57 77 |
|
TSAR-MVS + MP. | | | 98.63 107 | 98.49 108 | 99.06 123 | 99.64 59 | 97.90 156 | 98.51 113 | 98.94 234 | 96.96 226 | 99.24 100 | 98.89 176 | 97.83 89 | 99.81 162 | 96.88 175 | 99.49 216 | 99.48 121 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
LS3D | | | 98.63 107 | 98.38 126 | 99.36 64 | 97.25 354 | 99.38 8 | 99.12 56 | 99.32 140 | 99.21 52 | 98.44 213 | 98.88 177 | 97.31 130 | 99.80 169 | 96.58 198 | 99.34 235 | 98.92 260 |
|
RPSCF | | | 98.62 109 | 98.36 128 | 99.42 58 | 99.65 56 | 99.42 7 | 98.55 105 | 99.57 48 | 97.72 161 | 98.90 150 | 99.26 88 | 96.12 193 | 99.52 303 | 95.72 251 | 99.71 138 | 99.32 188 |
|
GST-MVS | | | 98.61 110 | 98.30 136 | 99.52 39 | 99.51 89 | 99.20 34 | 98.26 137 | 99.25 172 | 97.44 189 | 98.67 183 | 98.39 251 | 97.68 99 | 99.85 109 | 96.00 236 | 99.51 208 | 99.52 102 |
|
v1192 | | | 98.60 111 | 98.66 83 | 98.41 202 | 99.27 145 | 95.88 238 | 97.52 216 | 99.36 122 | 97.41 191 | 99.33 80 | 99.20 99 | 96.37 185 | 99.82 149 | 99.57 13 | 99.92 41 | 99.55 88 |
|
v1144 | | | 98.60 111 | 98.66 83 | 98.41 202 | 99.36 131 | 95.90 237 | 97.58 210 | 99.34 133 | 97.51 177 | 99.27 91 | 99.15 113 | 96.34 187 | 99.80 169 | 99.47 19 | 99.93 31 | 99.51 104 |
|
DPE-MVS |  | | 98.59 113 | 98.26 141 | 99.57 16 | 99.27 145 | 99.15 47 | 97.01 249 | 99.39 112 | 97.67 163 | 99.44 58 | 98.99 147 | 97.53 116 | 99.89 62 | 95.40 262 | 99.68 151 | 99.66 44 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
MP-MVS-pluss | | | 98.57 114 | 98.23 144 | 99.60 11 | 99.69 51 | 99.35 12 | 97.16 244 | 99.38 114 | 94.87 291 | 98.97 137 | 98.99 147 | 98.01 78 | 99.88 71 | 97.29 141 | 99.70 143 | 99.58 72 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
OPM-MVS | | | 98.56 115 | 98.32 135 | 99.25 91 | 99.41 121 | 98.73 85 | 97.13 246 | 99.18 191 | 97.10 221 | 98.75 177 | 98.92 166 | 98.18 65 | 99.65 263 | 96.68 194 | 99.56 194 | 99.37 169 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
VDD-MVS | | | 98.56 115 | 98.39 124 | 99.07 117 | 99.13 181 | 98.07 139 | 98.59 100 | 97.01 329 | 99.59 19 | 99.11 112 | 99.27 86 | 94.82 236 | 99.79 182 | 98.34 86 | 99.63 168 | 99.34 181 |
|
v2v482 | | | 98.56 115 | 98.62 89 | 98.37 206 | 99.42 119 | 95.81 241 | 97.58 210 | 99.16 198 | 97.90 148 | 99.28 89 | 99.01 144 | 95.98 202 | 99.79 182 | 99.33 24 | 99.90 54 | 99.51 104 |
|
XVG-ACMP-BASELINE | | | 98.56 115 | 98.34 131 | 99.22 96 | 99.54 82 | 98.59 94 | 97.71 194 | 99.46 90 | 97.25 207 | 98.98 133 | 98.99 147 | 97.54 114 | 99.84 125 | 95.88 241 | 99.74 123 | 99.23 208 |
|
v1240 | | | 98.55 119 | 98.62 89 | 98.32 209 | 99.22 155 | 95.58 245 | 97.51 218 | 99.45 93 | 97.16 218 | 99.45 57 | 99.24 93 | 96.12 193 | 99.85 109 | 99.60 11 | 99.88 59 | 99.55 88 |
|
IterMVS-LS | | | 98.55 119 | 98.70 78 | 98.09 225 | 99.48 106 | 94.73 273 | 97.22 240 | 99.39 112 | 98.97 82 | 99.38 70 | 99.31 82 | 96.00 198 | 99.93 31 | 98.58 71 | 99.97 12 | 99.60 60 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
v144192 | | | 98.54 121 | 98.57 97 | 98.45 198 | 99.21 157 | 95.98 235 | 97.63 203 | 99.36 122 | 97.15 220 | 99.32 86 | 99.18 103 | 95.84 209 | 99.84 125 | 99.50 17 | 99.91 47 | 99.54 92 |
|
v1921920 | | | 98.54 121 | 98.60 94 | 98.38 205 | 99.20 161 | 95.76 243 | 97.56 212 | 99.36 122 | 97.23 213 | 99.38 70 | 99.17 107 | 96.02 196 | 99.84 125 | 99.57 13 | 99.90 54 | 99.54 92 |
|
SF-MVS | | | 98.53 123 | 98.27 140 | 99.32 78 | 99.31 138 | 98.75 81 | 98.19 143 | 99.41 107 | 96.77 235 | 98.83 165 | 98.90 170 | 97.80 93 | 99.82 149 | 95.68 254 | 99.52 206 | 99.38 167 |
|
XVG-OURS | | | 98.53 123 | 98.34 131 | 99.11 109 | 99.50 92 | 98.82 78 | 95.97 297 | 99.50 73 | 97.30 202 | 99.05 124 | 98.98 151 | 99.35 7 | 99.32 335 | 95.72 251 | 99.68 151 | 99.18 220 |
|
UGNet | | | 98.53 123 | 98.45 114 | 98.79 154 | 97.94 325 | 96.96 210 | 99.08 58 | 98.54 282 | 99.10 68 | 96.82 312 | 99.47 53 | 96.55 176 | 99.84 125 | 98.56 76 | 99.94 27 | 99.55 88 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
patch_mono-2 | | | 98.51 126 | 98.63 87 | 98.17 221 | 99.38 124 | 94.78 270 | 97.36 228 | 99.69 23 | 98.16 134 | 98.49 209 | 99.29 83 | 97.06 145 | 99.97 4 | 98.29 89 | 99.91 47 | 99.76 25 |
|
XVG-OURS-SEG-HR | | | 98.49 127 | 98.28 138 | 99.14 105 | 99.49 99 | 98.83 76 | 96.54 273 | 99.48 82 | 97.32 200 | 99.11 112 | 98.61 228 | 99.33 8 | 99.30 338 | 96.23 225 | 98.38 312 | 99.28 198 |
|
FMVSNet2 | | | 98.49 127 | 98.40 121 | 98.75 162 | 98.90 224 | 97.14 206 | 98.61 98 | 99.13 205 | 98.59 104 | 99.19 105 | 99.28 84 | 94.14 253 | 99.82 149 | 97.97 108 | 99.80 94 | 99.29 197 |
|
pmmvs-eth3d | | | 98.47 129 | 98.34 131 | 98.86 144 | 99.30 141 | 97.76 170 | 97.16 244 | 99.28 163 | 95.54 273 | 99.42 62 | 99.19 100 | 97.27 134 | 99.63 269 | 97.89 110 | 99.97 12 | 99.20 213 |
|
MP-MVS |  | | 98.46 130 | 98.09 159 | 99.54 27 | 99.57 68 | 99.22 27 | 98.50 115 | 99.19 187 | 97.61 169 | 97.58 271 | 98.66 217 | 97.40 127 | 99.88 71 | 94.72 275 | 99.60 178 | 99.54 92 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
v148 | | | 98.45 131 | 98.60 94 | 98.00 235 | 99.44 113 | 94.98 266 | 97.44 224 | 99.06 215 | 98.30 117 | 99.32 86 | 98.97 153 | 96.65 172 | 99.62 271 | 98.37 84 | 99.85 65 | 99.39 160 |
|
AllTest | | | 98.44 132 | 98.20 146 | 99.16 102 | 99.50 92 | 98.55 97 | 98.25 138 | 99.58 41 | 96.80 232 | 98.88 156 | 99.06 123 | 97.65 102 | 99.57 288 | 94.45 282 | 99.61 176 | 99.37 169 |
|
VNet | | | 98.42 133 | 98.30 136 | 98.79 154 | 98.79 246 | 97.29 193 | 98.23 139 | 98.66 276 | 99.31 45 | 98.85 161 | 98.80 193 | 94.80 239 | 99.78 193 | 98.13 95 | 99.13 267 | 99.31 192 |
|
ab-mvs | | | 98.41 134 | 98.36 128 | 98.59 178 | 99.19 164 | 97.23 196 | 99.32 22 | 98.81 261 | 97.66 164 | 98.62 190 | 99.40 67 | 96.82 160 | 99.80 169 | 95.88 241 | 99.51 208 | 98.75 287 |
|
ACMP | | 95.32 15 | 98.41 134 | 98.09 159 | 99.36 64 | 99.51 89 | 98.79 80 | 97.68 197 | 99.38 114 | 95.76 270 | 98.81 170 | 98.82 190 | 98.36 50 | 99.82 149 | 94.75 272 | 99.77 108 | 99.48 121 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
SMA-MVS |  | | 98.40 136 | 98.03 166 | 99.51 43 | 99.16 174 | 99.21 28 | 98.05 159 | 99.22 180 | 94.16 307 | 98.98 133 | 99.10 120 | 97.52 118 | 99.79 182 | 96.45 214 | 99.64 165 | 99.53 99 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
MSP-MVS | | | 98.40 136 | 98.00 168 | 99.61 9 | 99.57 68 | 99.25 24 | 98.57 103 | 99.35 127 | 97.55 175 | 99.31 88 | 97.71 300 | 94.61 244 | 99.88 71 | 96.14 232 | 99.19 259 | 99.70 37 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
SD-MVS | | | 98.40 136 | 98.68 81 | 97.54 269 | 98.96 212 | 97.99 145 | 97.88 177 | 99.36 122 | 98.20 128 | 99.63 34 | 99.04 132 | 98.76 26 | 95.33 375 | 96.56 204 | 99.74 123 | 99.31 192 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
EI-MVSNet | | | 98.40 136 | 98.51 102 | 98.04 233 | 99.10 185 | 94.73 273 | 97.20 241 | 98.87 247 | 98.97 82 | 99.06 119 | 99.02 135 | 96.00 198 | 99.80 169 | 98.58 71 | 99.82 79 | 99.60 60 |
|
WR-MVS | | | 98.40 136 | 98.19 148 | 99.03 127 | 99.00 205 | 97.65 177 | 96.85 259 | 98.94 234 | 98.57 107 | 98.89 152 | 98.50 242 | 95.60 214 | 99.85 109 | 97.54 130 | 99.85 65 | 99.59 66 |
|
new-patchmatchnet | | | 98.35 141 | 98.74 70 | 97.18 286 | 99.24 150 | 92.23 332 | 96.42 280 | 99.48 82 | 98.30 117 | 99.69 24 | 99.53 44 | 97.44 125 | 99.82 149 | 98.84 55 | 99.77 108 | 99.49 111 |
|
canonicalmvs | | | 98.34 142 | 98.26 141 | 98.58 179 | 98.46 294 | 97.82 165 | 98.96 72 | 99.46 90 | 99.19 58 | 97.46 282 | 95.46 356 | 98.59 38 | 99.46 317 | 98.08 100 | 98.71 300 | 98.46 304 |
|
testgi | | | 98.32 143 | 98.39 124 | 98.13 224 | 99.57 68 | 95.54 246 | 97.78 186 | 99.49 80 | 97.37 195 | 99.19 105 | 97.65 304 | 98.96 17 | 99.49 309 | 96.50 211 | 98.99 283 | 99.34 181 |
|
DeepPCF-MVS | | 96.93 5 | 98.32 143 | 98.01 167 | 99.23 95 | 98.39 302 | 98.97 66 | 95.03 331 | 99.18 191 | 96.88 230 | 99.33 80 | 98.78 196 | 98.16 69 | 99.28 342 | 96.74 187 | 99.62 171 | 99.44 138 |
|
test_vis1_n | | | 98.31 145 | 98.50 104 | 97.73 254 | 99.76 30 | 94.17 288 | 98.68 92 | 99.91 6 | 96.31 252 | 99.79 13 | 99.57 35 | 92.85 276 | 99.42 323 | 99.79 6 | 99.84 69 | 99.60 60 |
|
MVS_111021_LR | | | 98.30 146 | 98.12 157 | 98.83 147 | 99.16 174 | 98.03 143 | 96.09 294 | 99.30 153 | 97.58 171 | 98.10 237 | 98.24 265 | 98.25 56 | 99.34 332 | 96.69 193 | 99.65 163 | 99.12 229 |
|
EPP-MVSNet | | | 98.30 146 | 98.04 165 | 99.07 117 | 99.56 75 | 97.83 162 | 99.29 32 | 98.07 304 | 99.03 77 | 98.59 196 | 99.13 116 | 92.16 283 | 99.90 52 | 96.87 176 | 99.68 151 | 99.49 111 |
|
DeepC-MVS_fast | | 96.85 6 | 98.30 146 | 98.15 154 | 98.75 162 | 98.61 276 | 97.23 196 | 97.76 190 | 99.09 212 | 97.31 201 | 98.75 177 | 98.66 217 | 97.56 112 | 99.64 266 | 96.10 235 | 99.55 197 | 99.39 160 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
PHI-MVS | | | 98.29 149 | 97.95 171 | 99.34 72 | 98.44 296 | 99.16 43 | 98.12 150 | 99.38 114 | 96.01 263 | 98.06 240 | 98.43 248 | 97.80 93 | 99.67 247 | 95.69 253 | 99.58 187 | 99.20 213 |
|
Fast-Effi-MVS+-dtu | | | 98.27 150 | 98.09 159 | 98.81 150 | 98.43 297 | 98.11 132 | 97.61 206 | 99.50 73 | 98.64 98 | 97.39 287 | 97.52 312 | 98.12 72 | 99.95 17 | 96.90 173 | 98.71 300 | 98.38 311 |
|
DELS-MVS | | | 98.27 150 | 98.20 146 | 98.48 195 | 98.86 232 | 96.70 220 | 95.60 314 | 99.20 183 | 97.73 159 | 98.45 212 | 98.71 206 | 97.50 120 | 99.82 149 | 98.21 92 | 99.59 182 | 98.93 259 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
Effi-MVS+-dtu | | | 98.26 152 | 97.90 177 | 99.35 69 | 98.02 322 | 99.49 5 | 98.02 163 | 99.16 198 | 98.29 120 | 97.64 266 | 97.99 284 | 96.44 181 | 99.95 17 | 96.66 195 | 98.93 289 | 98.60 299 |
|
MVSFormer | | | 98.26 152 | 98.43 117 | 97.77 248 | 98.88 230 | 93.89 302 | 99.39 16 | 99.56 55 | 99.11 61 | 98.16 230 | 98.13 272 | 93.81 260 | 99.97 4 | 99.26 29 | 99.57 191 | 99.43 142 |
|
MVS_111021_HR | | | 98.25 154 | 98.08 162 | 98.75 162 | 99.09 188 | 97.46 186 | 95.97 297 | 99.27 166 | 97.60 170 | 97.99 245 | 98.25 264 | 98.15 71 | 99.38 329 | 96.87 176 | 99.57 191 | 99.42 145 |
|
TAMVS | | | 98.24 155 | 98.05 164 | 98.80 152 | 99.07 192 | 97.18 202 | 97.88 177 | 98.81 261 | 96.66 240 | 99.17 110 | 99.21 97 | 94.81 238 | 99.77 199 | 96.96 166 | 99.88 59 | 99.44 138 |
|
diffmvs |  | | 98.22 156 | 98.24 143 | 98.17 221 | 99.00 205 | 95.44 251 | 96.38 282 | 99.58 41 | 97.79 156 | 98.53 206 | 98.50 242 | 96.76 166 | 99.74 216 | 97.95 109 | 99.64 165 | 99.34 181 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
Anonymous20231206 | | | 98.21 157 | 98.21 145 | 98.20 219 | 99.51 89 | 95.43 252 | 98.13 148 | 99.32 140 | 96.16 257 | 98.93 147 | 98.82 190 | 96.00 198 | 99.83 139 | 97.32 140 | 99.73 126 | 99.36 175 |
|
VDDNet | | | 98.21 157 | 97.95 171 | 99.01 129 | 99.58 64 | 97.74 172 | 99.01 66 | 97.29 324 | 99.67 9 | 98.97 137 | 99.50 48 | 90.45 294 | 99.80 169 | 97.88 113 | 99.20 256 | 99.48 121 |
|
IS-MVSNet | | | 98.19 159 | 97.90 177 | 99.08 115 | 99.57 68 | 97.97 149 | 99.31 26 | 98.32 292 | 99.01 79 | 98.98 133 | 99.03 134 | 91.59 288 | 99.79 182 | 95.49 260 | 99.80 94 | 99.48 121 |
|
MVS_Test | | | 98.18 160 | 98.36 128 | 97.67 256 | 98.48 292 | 94.73 273 | 98.18 144 | 99.02 226 | 97.69 162 | 98.04 243 | 99.11 118 | 97.22 138 | 99.56 291 | 98.57 73 | 98.90 291 | 98.71 290 |
|
TSAR-MVS + GP. | | | 98.18 160 | 97.98 169 | 98.77 159 | 98.71 256 | 97.88 157 | 96.32 285 | 98.66 276 | 96.33 250 | 99.23 102 | 98.51 238 | 97.48 124 | 99.40 325 | 97.16 147 | 99.46 218 | 99.02 241 |
|
CNVR-MVS | | | 98.17 162 | 97.87 179 | 99.07 117 | 98.67 268 | 98.24 120 | 97.01 249 | 98.93 236 | 97.25 207 | 97.62 267 | 98.34 258 | 97.27 134 | 99.57 288 | 96.42 215 | 99.33 236 | 99.39 160 |
|
PVSNet_Blended_VisFu | | | 98.17 162 | 98.15 154 | 98.22 218 | 99.73 35 | 95.15 261 | 97.36 228 | 99.68 28 | 94.45 301 | 98.99 132 | 99.27 86 | 96.87 156 | 99.94 26 | 97.13 152 | 99.91 47 | 99.57 77 |
|
HPM-MVS++ |  | | 98.10 164 | 97.64 196 | 99.48 51 | 99.09 188 | 99.13 55 | 97.52 216 | 98.75 270 | 97.46 186 | 96.90 307 | 97.83 295 | 96.01 197 | 99.84 125 | 95.82 248 | 99.35 233 | 99.46 130 |
|
APD-MVS |  | | 98.10 164 | 97.67 191 | 99.42 58 | 99.11 183 | 98.93 71 | 97.76 190 | 99.28 163 | 94.97 288 | 98.72 180 | 98.77 198 | 97.04 146 | 99.85 109 | 93.79 304 | 99.54 199 | 99.49 111 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
test_fmvs1_n | | | 98.09 166 | 98.28 138 | 97.52 271 | 99.68 52 | 93.47 311 | 98.63 95 | 99.93 3 | 95.41 280 | 99.68 26 | 99.64 26 | 91.88 287 | 99.48 312 | 99.82 3 | 99.87 62 | 99.62 53 |
|
MVP-Stereo | | | 98.08 167 | 97.92 175 | 98.57 181 | 98.96 212 | 96.79 216 | 97.90 176 | 99.18 191 | 96.41 248 | 98.46 211 | 98.95 160 | 95.93 205 | 99.60 278 | 96.51 210 | 98.98 285 | 99.31 192 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
PMMVS2 | | | 98.07 168 | 98.08 162 | 98.04 233 | 99.41 121 | 94.59 279 | 94.59 345 | 99.40 109 | 97.50 178 | 98.82 168 | 98.83 187 | 96.83 159 | 99.84 125 | 97.50 133 | 99.81 83 | 99.71 32 |
|
ETV-MVS | | | 98.03 169 | 97.86 180 | 98.56 185 | 98.69 265 | 98.07 139 | 97.51 218 | 99.50 73 | 98.10 136 | 97.50 279 | 95.51 354 | 98.41 47 | 99.88 71 | 96.27 224 | 99.24 251 | 97.71 341 |
|
Effi-MVS+ | | | 98.02 170 | 97.82 182 | 98.62 174 | 98.53 288 | 97.19 201 | 97.33 230 | 99.68 28 | 97.30 202 | 96.68 315 | 97.46 316 | 98.56 40 | 99.80 169 | 96.63 196 | 98.20 318 | 98.86 269 |
|
MSLP-MVS++ | | | 98.02 170 | 98.14 156 | 97.64 260 | 98.58 281 | 95.19 260 | 97.48 220 | 99.23 179 | 97.47 181 | 97.90 249 | 98.62 226 | 97.04 146 | 98.81 363 | 97.55 128 | 99.41 225 | 98.94 258 |
|
EIA-MVS | | | 98.00 172 | 97.74 186 | 98.80 152 | 98.72 253 | 98.09 133 | 98.05 159 | 99.60 38 | 97.39 193 | 96.63 317 | 95.55 353 | 97.68 99 | 99.80 169 | 96.73 189 | 99.27 246 | 98.52 302 |
|
MCST-MVS | | | 98.00 172 | 97.63 197 | 99.10 111 | 99.24 150 | 98.17 128 | 96.89 258 | 98.73 273 | 95.66 271 | 97.92 247 | 97.70 302 | 97.17 140 | 99.66 258 | 96.18 230 | 99.23 252 | 99.47 128 |
|
K. test v3 | | | 98.00 172 | 97.66 194 | 99.03 127 | 99.79 24 | 97.56 181 | 99.19 48 | 92.47 364 | 99.62 16 | 99.52 46 | 99.66 22 | 89.61 299 | 99.96 11 | 99.25 31 | 99.81 83 | 99.56 81 |
|
HQP_MVS | | | 97.99 175 | 97.67 191 | 98.93 137 | 99.19 164 | 97.65 177 | 97.77 188 | 99.27 166 | 98.20 128 | 97.79 258 | 97.98 285 | 94.90 232 | 99.70 231 | 94.42 284 | 99.51 208 | 99.45 134 |
|
MDA-MVSNet-bldmvs | | | 97.94 176 | 97.91 176 | 98.06 230 | 99.44 113 | 94.96 267 | 96.63 271 | 99.15 203 | 98.35 113 | 98.83 165 | 99.11 118 | 94.31 250 | 99.85 109 | 96.60 197 | 98.72 298 | 99.37 169 |
|
Anonymous202405211 | | | 97.90 177 | 97.50 204 | 99.08 115 | 98.90 224 | 98.25 119 | 98.53 108 | 96.16 343 | 98.87 90 | 99.11 112 | 98.86 180 | 90.40 295 | 99.78 193 | 97.36 138 | 99.31 239 | 99.19 218 |
|
LF4IMVS | | | 97.90 177 | 97.69 190 | 98.52 190 | 99.17 172 | 97.66 176 | 97.19 243 | 99.47 88 | 96.31 252 | 97.85 254 | 98.20 269 | 96.71 170 | 99.52 303 | 94.62 276 | 99.72 133 | 98.38 311 |
|
UnsupCasMVSNet_eth | | | 97.89 179 | 97.60 199 | 98.75 162 | 99.31 138 | 97.17 203 | 97.62 204 | 99.35 127 | 98.72 97 | 98.76 176 | 98.68 212 | 92.57 280 | 99.74 216 | 97.76 123 | 95.60 362 | 99.34 181 |
|
TinyColmap | | | 97.89 179 | 97.98 169 | 97.60 262 | 98.86 232 | 94.35 283 | 96.21 290 | 99.44 97 | 97.45 188 | 99.06 119 | 98.88 177 | 97.99 82 | 99.28 342 | 94.38 288 | 99.58 187 | 99.18 220 |
|
OMC-MVS | | | 97.88 181 | 97.49 205 | 99.04 126 | 98.89 229 | 98.63 89 | 96.94 253 | 99.25 172 | 95.02 286 | 98.53 206 | 98.51 238 | 97.27 134 | 99.47 315 | 93.50 311 | 99.51 208 | 99.01 242 |
|
CANet | | | 97.87 182 | 97.76 184 | 98.19 220 | 97.75 334 | 95.51 248 | 96.76 264 | 99.05 218 | 97.74 158 | 96.93 301 | 98.21 268 | 95.59 215 | 99.89 62 | 97.86 115 | 99.93 31 | 99.19 218 |
|
xiu_mvs_v1_base_debu | | | 97.86 183 | 98.17 150 | 96.92 298 | 98.98 209 | 93.91 299 | 96.45 277 | 99.17 195 | 97.85 152 | 98.41 216 | 97.14 328 | 98.47 43 | 99.92 39 | 98.02 103 | 99.05 273 | 96.92 352 |
|
xiu_mvs_v1_base | | | 97.86 183 | 98.17 150 | 96.92 298 | 98.98 209 | 93.91 299 | 96.45 277 | 99.17 195 | 97.85 152 | 98.41 216 | 97.14 328 | 98.47 43 | 99.92 39 | 98.02 103 | 99.05 273 | 96.92 352 |
|
xiu_mvs_v1_base_debi | | | 97.86 183 | 98.17 150 | 96.92 298 | 98.98 209 | 93.91 299 | 96.45 277 | 99.17 195 | 97.85 152 | 98.41 216 | 97.14 328 | 98.47 43 | 99.92 39 | 98.02 103 | 99.05 273 | 96.92 352 |
|
NCCC | | | 97.86 183 | 97.47 208 | 99.05 124 | 98.61 276 | 98.07 139 | 96.98 251 | 98.90 242 | 97.63 166 | 97.04 298 | 97.93 290 | 95.99 201 | 99.66 258 | 95.31 263 | 98.82 294 | 99.43 142 |
|
PMVS |  | 91.26 20 | 97.86 183 | 97.94 173 | 97.65 258 | 99.71 43 | 97.94 154 | 98.52 109 | 98.68 275 | 98.99 80 | 97.52 277 | 99.35 72 | 97.41 126 | 98.18 369 | 91.59 338 | 99.67 157 | 96.82 355 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
IterMVS-SCA-FT | | | 97.85 188 | 98.18 149 | 96.87 301 | 99.27 145 | 91.16 347 | 95.53 316 | 99.25 172 | 99.10 68 | 99.41 63 | 99.35 72 | 93.10 269 | 99.96 11 | 98.65 69 | 99.94 27 | 99.49 111 |
|
D2MVS | | | 97.84 189 | 97.84 181 | 97.83 243 | 99.14 179 | 94.74 272 | 96.94 253 | 98.88 245 | 95.84 268 | 98.89 152 | 98.96 156 | 94.40 248 | 99.69 235 | 97.55 128 | 99.95 19 | 99.05 234 |
|
CPTT-MVS | | | 97.84 189 | 97.36 213 | 99.27 86 | 99.31 138 | 98.46 105 | 98.29 134 | 99.27 166 | 94.90 290 | 97.83 255 | 98.37 254 | 94.90 232 | 99.84 125 | 93.85 303 | 99.54 199 | 99.51 104 |
|
mvs_anonymous | | | 97.83 191 | 98.16 153 | 96.87 301 | 98.18 314 | 91.89 334 | 97.31 231 | 98.90 242 | 97.37 195 | 98.83 165 | 99.46 54 | 96.28 188 | 99.79 182 | 98.90 51 | 98.16 322 | 98.95 254 |
|
h-mvs33 | | | 97.77 192 | 97.33 217 | 99.10 111 | 99.21 157 | 97.84 161 | 98.35 131 | 98.57 281 | 99.11 61 | 98.58 198 | 99.02 135 | 88.65 308 | 99.96 11 | 98.11 96 | 96.34 355 | 99.49 111 |
|
test_vis1_rt | | | 97.75 193 | 97.72 189 | 97.83 243 | 98.81 242 | 96.35 226 | 97.30 232 | 99.69 23 | 94.61 295 | 97.87 251 | 98.05 281 | 96.26 189 | 98.32 368 | 98.74 61 | 98.18 319 | 98.82 272 |
|
IterMVS | | | 97.73 194 | 98.11 158 | 96.57 308 | 99.24 150 | 90.28 348 | 95.52 318 | 99.21 181 | 98.86 91 | 99.33 80 | 99.33 78 | 93.11 268 | 99.94 26 | 98.49 79 | 99.94 27 | 99.48 121 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
test_fmvs1 | | | 97.72 195 | 97.94 173 | 97.07 292 | 98.66 273 | 92.39 328 | 97.68 197 | 99.81 13 | 95.20 284 | 99.54 40 | 99.44 59 | 91.56 289 | 99.41 324 | 99.78 7 | 99.77 108 | 99.40 157 |
|
MSDG | | | 97.71 196 | 97.52 203 | 98.28 214 | 98.91 223 | 96.82 215 | 94.42 348 | 99.37 118 | 97.65 165 | 98.37 221 | 98.29 263 | 97.40 127 | 99.33 334 | 94.09 295 | 99.22 253 | 98.68 296 |
|
CDS-MVSNet | | | 97.69 197 | 97.35 214 | 98.69 167 | 98.73 251 | 97.02 209 | 96.92 257 | 98.75 270 | 95.89 267 | 98.59 196 | 98.67 214 | 92.08 285 | 99.74 216 | 96.72 190 | 99.81 83 | 99.32 188 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
MS-PatchMatch | | | 97.68 198 | 97.75 185 | 97.45 276 | 98.23 312 | 93.78 305 | 97.29 233 | 98.84 256 | 96.10 259 | 98.64 187 | 98.65 219 | 96.04 195 | 99.36 330 | 96.84 179 | 99.14 265 | 99.20 213 |
|
Fast-Effi-MVS+ | | | 97.67 199 | 97.38 211 | 98.57 181 | 98.71 256 | 97.43 188 | 97.23 237 | 99.45 93 | 94.82 292 | 96.13 329 | 96.51 336 | 98.52 42 | 99.91 47 | 96.19 228 | 98.83 293 | 98.37 313 |
|
EU-MVSNet | | | 97.66 200 | 98.50 104 | 95.13 336 | 99.63 61 | 85.84 364 | 98.35 131 | 98.21 296 | 98.23 124 | 99.54 40 | 99.46 54 | 95.02 230 | 99.68 244 | 98.24 90 | 99.87 62 | 99.87 9 |
|
MVS_0304 | | | 97.64 201 | 97.35 214 | 98.52 190 | 97.87 330 | 96.69 221 | 98.59 100 | 98.05 306 | 97.44 189 | 93.74 364 | 98.85 183 | 93.69 264 | 99.88 71 | 98.11 96 | 99.81 83 | 98.98 247 |
|
pmmvs5 | | | 97.64 201 | 97.49 205 | 98.08 228 | 99.14 179 | 95.12 263 | 96.70 268 | 99.05 218 | 93.77 314 | 98.62 190 | 98.83 187 | 93.23 265 | 99.75 211 | 98.33 88 | 99.76 119 | 99.36 175 |
|
N_pmnet | | | 97.63 203 | 97.17 223 | 98.99 131 | 99.27 145 | 97.86 159 | 95.98 296 | 93.41 361 | 95.25 282 | 99.47 53 | 98.90 170 | 95.63 213 | 99.85 109 | 96.91 168 | 99.73 126 | 99.27 199 |
|
mvsany_test1 | | | 97.60 204 | 97.54 201 | 97.77 248 | 97.72 335 | 95.35 254 | 95.36 323 | 97.13 327 | 94.13 308 | 99.71 20 | 99.33 78 | 97.93 85 | 99.30 338 | 97.60 127 | 98.94 288 | 98.67 297 |
|
YYNet1 | | | 97.60 204 | 97.67 191 | 97.39 280 | 99.04 200 | 93.04 318 | 95.27 324 | 98.38 291 | 97.25 207 | 98.92 148 | 98.95 160 | 95.48 220 | 99.73 220 | 96.99 162 | 98.74 296 | 99.41 148 |
|
MDA-MVSNet_test_wron | | | 97.60 204 | 97.66 194 | 97.41 279 | 99.04 200 | 93.09 314 | 95.27 324 | 98.42 288 | 97.26 206 | 98.88 156 | 98.95 160 | 95.43 221 | 99.73 220 | 97.02 159 | 98.72 298 | 99.41 148 |
|
pmmvs4 | | | 97.58 207 | 97.28 218 | 98.51 192 | 98.84 235 | 96.93 213 | 95.40 322 | 98.52 284 | 93.60 316 | 98.61 192 | 98.65 219 | 95.10 229 | 99.60 278 | 96.97 165 | 99.79 99 | 98.99 246 |
|
PVSNet_BlendedMVS | | | 97.55 208 | 97.53 202 | 97.60 262 | 98.92 220 | 93.77 306 | 96.64 270 | 99.43 103 | 94.49 297 | 97.62 267 | 99.18 103 | 96.82 160 | 99.67 247 | 94.73 273 | 99.93 31 | 99.36 175 |
|
ppachtmachnet_test | | | 97.50 209 | 97.74 186 | 96.78 306 | 98.70 260 | 91.23 346 | 94.55 346 | 99.05 218 | 96.36 249 | 99.21 103 | 98.79 195 | 96.39 182 | 99.78 193 | 96.74 187 | 99.82 79 | 99.34 181 |
|
FMVSNet3 | | | 97.50 209 | 97.24 220 | 98.29 213 | 98.08 320 | 95.83 240 | 97.86 181 | 98.91 241 | 97.89 149 | 98.95 140 | 98.95 160 | 87.06 314 | 99.81 162 | 97.77 119 | 99.69 146 | 99.23 208 |
|
CHOSEN 1792x2688 | | | 97.49 211 | 97.14 227 | 98.54 189 | 99.68 52 | 96.09 233 | 96.50 275 | 99.62 34 | 91.58 339 | 98.84 164 | 98.97 153 | 92.36 281 | 99.88 71 | 96.76 185 | 99.95 19 | 99.67 43 |
|
CLD-MVS | | | 97.49 211 | 97.16 224 | 98.48 195 | 99.07 192 | 97.03 208 | 94.71 338 | 99.21 181 | 94.46 299 | 98.06 240 | 97.16 326 | 97.57 111 | 99.48 312 | 94.46 281 | 99.78 104 | 98.95 254 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
hse-mvs2 | | | 97.46 213 | 97.07 228 | 98.64 170 | 98.73 251 | 97.33 191 | 97.45 223 | 97.64 317 | 99.11 61 | 98.58 198 | 97.98 285 | 88.65 308 | 99.79 182 | 98.11 96 | 97.39 339 | 98.81 276 |
|
Vis-MVSNet (Re-imp) | | | 97.46 213 | 97.16 224 | 98.34 208 | 99.55 79 | 96.10 231 | 98.94 73 | 98.44 287 | 98.32 116 | 98.16 230 | 98.62 226 | 88.76 304 | 99.73 220 | 93.88 301 | 99.79 99 | 99.18 220 |
|
jason | | | 97.45 215 | 97.35 214 | 97.76 251 | 99.24 150 | 93.93 298 | 95.86 305 | 98.42 288 | 94.24 305 | 98.50 208 | 98.13 272 | 94.82 236 | 99.91 47 | 97.22 144 | 99.73 126 | 99.43 142 |
jason: jason. |
CL-MVSNet_self_test | | | 97.44 216 | 97.22 221 | 98.08 228 | 98.57 283 | 95.78 242 | 94.30 351 | 98.79 264 | 96.58 243 | 98.60 194 | 98.19 270 | 94.74 243 | 99.64 266 | 96.41 216 | 98.84 292 | 98.82 272 |
|
DSMNet-mixed | | | 97.42 217 | 97.60 199 | 96.87 301 | 99.15 178 | 91.46 338 | 98.54 107 | 99.12 206 | 92.87 327 | 97.58 271 | 99.63 27 | 96.21 190 | 99.90 52 | 95.74 250 | 99.54 199 | 99.27 199 |
|
USDC | | | 97.41 218 | 97.40 209 | 97.44 277 | 98.94 214 | 93.67 308 | 95.17 327 | 99.53 67 | 94.03 311 | 98.97 137 | 99.10 120 | 95.29 223 | 99.34 332 | 95.84 247 | 99.73 126 | 99.30 195 |
|
our_test_3 | | | 97.39 219 | 97.73 188 | 96.34 312 | 98.70 260 | 89.78 350 | 94.61 344 | 98.97 233 | 96.50 244 | 99.04 126 | 98.85 183 | 95.98 202 | 99.84 125 | 97.26 143 | 99.67 157 | 99.41 148 |
|
c3_l | | | 97.36 220 | 97.37 212 | 97.31 281 | 98.09 319 | 93.25 313 | 95.01 332 | 99.16 198 | 97.05 222 | 98.77 174 | 98.72 205 | 92.88 274 | 99.64 266 | 96.93 167 | 99.76 119 | 99.05 234 |
|
alignmvs | | | 97.35 221 | 96.88 238 | 98.78 157 | 98.54 286 | 98.09 133 | 97.71 194 | 97.69 314 | 99.20 54 | 97.59 270 | 95.90 348 | 88.12 313 | 99.55 294 | 98.18 94 | 98.96 286 | 98.70 292 |
|
Patchmtry | | | 97.35 221 | 96.97 232 | 98.50 194 | 97.31 353 | 96.47 223 | 98.18 144 | 98.92 239 | 98.95 85 | 98.78 171 | 99.37 68 | 85.44 329 | 99.85 109 | 95.96 239 | 99.83 76 | 99.17 224 |
|
DP-MVS Recon | | | 97.33 223 | 96.92 235 | 98.57 181 | 99.09 188 | 97.99 145 | 96.79 261 | 99.35 127 | 93.18 321 | 97.71 262 | 98.07 280 | 95.00 231 | 99.31 336 | 93.97 297 | 99.13 267 | 98.42 310 |
|
QAPM | | | 97.31 224 | 96.81 245 | 98.82 148 | 98.80 245 | 97.49 184 | 99.06 62 | 99.19 187 | 90.22 351 | 97.69 264 | 99.16 109 | 96.91 154 | 99.90 52 | 90.89 349 | 99.41 225 | 99.07 232 |
|
UnsupCasMVSNet_bld | | | 97.30 225 | 96.92 235 | 98.45 198 | 99.28 143 | 96.78 219 | 96.20 291 | 99.27 166 | 95.42 277 | 98.28 224 | 98.30 262 | 93.16 267 | 99.71 228 | 94.99 267 | 97.37 340 | 98.87 268 |
|
F-COLMAP | | | 97.30 225 | 96.68 252 | 99.14 105 | 99.19 164 | 98.39 108 | 97.27 236 | 99.30 153 | 92.93 325 | 96.62 318 | 98.00 283 | 95.73 211 | 99.68 244 | 92.62 327 | 98.46 311 | 99.35 179 |
|
1112_ss | | | 97.29 227 | 96.86 239 | 98.58 179 | 99.34 137 | 96.32 227 | 96.75 265 | 99.58 41 | 93.14 322 | 96.89 308 | 97.48 314 | 92.11 284 | 99.86 97 | 96.91 168 | 99.54 199 | 99.57 77 |
|
CANet_DTU | | | 97.26 228 | 97.06 229 | 97.84 242 | 97.57 342 | 94.65 277 | 96.19 292 | 98.79 264 | 97.23 213 | 95.14 350 | 98.24 265 | 93.22 266 | 99.84 125 | 97.34 139 | 99.84 69 | 99.04 238 |
|
Patchmatch-RL test | | | 97.26 228 | 97.02 231 | 97.99 236 | 99.52 87 | 95.53 247 | 96.13 293 | 99.71 20 | 97.47 181 | 99.27 91 | 99.16 109 | 84.30 338 | 99.62 271 | 97.89 110 | 99.77 108 | 98.81 276 |
|
CDPH-MVS | | | 97.26 228 | 96.66 255 | 99.07 117 | 99.00 205 | 98.15 129 | 96.03 295 | 99.01 229 | 91.21 345 | 97.79 258 | 97.85 294 | 96.89 155 | 99.69 235 | 92.75 324 | 99.38 230 | 99.39 160 |
|
PatchMatch-RL | | | 97.24 231 | 96.78 246 | 98.61 176 | 99.03 203 | 97.83 162 | 96.36 283 | 99.06 215 | 93.49 319 | 97.36 289 | 97.78 296 | 95.75 210 | 99.49 309 | 93.44 312 | 98.77 295 | 98.52 302 |
|
eth_miper_zixun_eth | | | 97.23 232 | 97.25 219 | 97.17 287 | 98.00 323 | 92.77 322 | 94.71 338 | 99.18 191 | 97.27 205 | 98.56 201 | 98.74 202 | 91.89 286 | 99.69 235 | 97.06 158 | 99.81 83 | 99.05 234 |
|
sss | | | 97.21 233 | 96.93 233 | 98.06 230 | 98.83 237 | 95.22 259 | 96.75 265 | 98.48 286 | 94.49 297 | 97.27 290 | 97.90 291 | 92.77 277 | 99.80 169 | 96.57 200 | 99.32 237 | 99.16 227 |
|
LFMVS | | | 97.20 234 | 96.72 249 | 98.64 170 | 98.72 253 | 96.95 211 | 98.93 74 | 94.14 359 | 99.74 6 | 98.78 171 | 99.01 144 | 84.45 335 | 99.73 220 | 97.44 134 | 99.27 246 | 99.25 203 |
|
HyFIR lowres test | | | 97.19 235 | 96.60 260 | 98.96 134 | 99.62 63 | 97.28 194 | 95.17 327 | 99.50 73 | 94.21 306 | 99.01 130 | 98.32 261 | 86.61 317 | 99.99 2 | 97.10 154 | 99.84 69 | 99.60 60 |
|
miper_lstm_enhance | | | 97.18 236 | 97.16 224 | 97.25 285 | 98.16 315 | 92.85 320 | 95.15 329 | 99.31 145 | 97.25 207 | 98.74 179 | 98.78 196 | 90.07 296 | 99.78 193 | 97.19 145 | 99.80 94 | 99.11 230 |
|
CNLPA | | | 97.17 237 | 96.71 250 | 98.55 186 | 98.56 284 | 98.05 142 | 96.33 284 | 98.93 236 | 96.91 229 | 97.06 297 | 97.39 319 | 94.38 249 | 99.45 318 | 91.66 335 | 99.18 261 | 98.14 320 |
|
xiu_mvs_v2_base | | | 97.16 238 | 97.49 205 | 96.17 317 | 98.54 286 | 92.46 326 | 95.45 320 | 98.84 256 | 97.25 207 | 97.48 281 | 96.49 337 | 98.31 55 | 99.90 52 | 96.34 220 | 98.68 303 | 96.15 363 |
|
AdaColmap |  | | 97.14 239 | 96.71 250 | 98.46 197 | 98.34 304 | 97.80 168 | 96.95 252 | 98.93 236 | 95.58 272 | 96.92 302 | 97.66 303 | 95.87 207 | 99.53 299 | 90.97 346 | 99.14 265 | 98.04 324 |
|
iter_conf_final | | | 97.10 240 | 96.65 257 | 98.45 198 | 98.53 288 | 96.08 234 | 98.30 133 | 99.11 208 | 98.10 136 | 98.85 161 | 98.95 160 | 79.38 359 | 99.87 88 | 98.68 67 | 99.91 47 | 99.40 157 |
|
train_agg | | | 97.10 240 | 96.45 265 | 99.07 117 | 98.71 256 | 98.08 137 | 95.96 299 | 99.03 223 | 91.64 337 | 95.85 335 | 97.53 310 | 96.47 179 | 99.76 204 | 93.67 305 | 99.16 262 | 99.36 175 |
|
OpenMVS |  | 96.65 7 | 97.09 242 | 96.68 252 | 98.32 209 | 98.32 305 | 97.16 204 | 98.86 80 | 99.37 118 | 89.48 355 | 96.29 328 | 99.15 113 | 96.56 175 | 99.90 52 | 92.90 318 | 99.20 256 | 97.89 329 |
|
PS-MVSNAJ | | | 97.08 243 | 97.39 210 | 96.16 319 | 98.56 284 | 92.46 326 | 95.24 326 | 98.85 255 | 97.25 207 | 97.49 280 | 95.99 346 | 98.07 73 | 99.90 52 | 96.37 217 | 98.67 304 | 96.12 364 |
|
miper_ehance_all_eth | | | 97.06 244 | 97.03 230 | 97.16 289 | 97.83 331 | 93.06 315 | 94.66 341 | 99.09 212 | 95.99 264 | 98.69 181 | 98.45 247 | 92.73 278 | 99.61 277 | 96.79 181 | 99.03 277 | 98.82 272 |
|
lupinMVS | | | 97.06 244 | 96.86 239 | 97.65 258 | 98.88 230 | 93.89 302 | 95.48 319 | 97.97 307 | 93.53 317 | 98.16 230 | 97.58 308 | 93.81 260 | 99.91 47 | 96.77 184 | 99.57 191 | 99.17 224 |
|
API-MVS | | | 97.04 246 | 96.91 237 | 97.42 278 | 97.88 329 | 98.23 124 | 98.18 144 | 98.50 285 | 97.57 172 | 97.39 287 | 96.75 333 | 96.77 164 | 99.15 351 | 90.16 352 | 99.02 280 | 94.88 369 |
|
cl____ | | | 97.02 247 | 96.83 242 | 97.58 264 | 97.82 332 | 94.04 292 | 94.66 341 | 99.16 198 | 97.04 223 | 98.63 188 | 98.71 206 | 88.68 307 | 99.69 235 | 97.00 160 | 99.81 83 | 99.00 245 |
|
DIV-MVS_self_test | | | 97.02 247 | 96.84 241 | 97.58 264 | 97.82 332 | 94.03 293 | 94.66 341 | 99.16 198 | 97.04 223 | 98.63 188 | 98.71 206 | 88.69 305 | 99.69 235 | 97.00 160 | 99.81 83 | 99.01 242 |
|
RPMNet | | | 97.02 247 | 96.93 233 | 97.30 282 | 97.71 337 | 94.22 284 | 98.11 151 | 99.30 153 | 99.37 38 | 96.91 304 | 99.34 76 | 86.72 316 | 99.87 88 | 97.53 131 | 97.36 342 | 97.81 334 |
|
HQP-MVS | | | 97.00 250 | 96.49 264 | 98.55 186 | 98.67 268 | 96.79 216 | 96.29 286 | 99.04 221 | 96.05 260 | 95.55 341 | 96.84 331 | 93.84 258 | 99.54 297 | 92.82 321 | 99.26 249 | 99.32 188 |
|
FA-MVS(test-final) | | | 96.99 251 | 96.82 243 | 97.50 273 | 98.70 260 | 94.78 270 | 99.34 19 | 96.99 330 | 95.07 285 | 98.48 210 | 99.33 78 | 88.41 311 | 99.65 263 | 96.13 234 | 98.92 290 | 98.07 323 |
|
new_pmnet | | | 96.99 251 | 96.76 247 | 97.67 256 | 98.72 253 | 94.89 268 | 95.95 301 | 98.20 297 | 92.62 330 | 98.55 203 | 98.54 234 | 94.88 235 | 99.52 303 | 93.96 298 | 99.44 223 | 98.59 301 |
|
Test_1112_low_res | | | 96.99 251 | 96.55 262 | 98.31 211 | 99.35 135 | 95.47 250 | 95.84 308 | 99.53 67 | 91.51 341 | 96.80 313 | 98.48 245 | 91.36 290 | 99.83 139 | 96.58 198 | 99.53 203 | 99.62 53 |
|
PVSNet_Blended | | | 96.88 254 | 96.68 252 | 97.47 275 | 98.92 220 | 93.77 306 | 94.71 338 | 99.43 103 | 90.98 347 | 97.62 267 | 97.36 322 | 96.82 160 | 99.67 247 | 94.73 273 | 99.56 194 | 98.98 247 |
|
MVSTER | | | 96.86 255 | 96.55 262 | 97.79 246 | 97.91 327 | 94.21 286 | 97.56 212 | 98.87 247 | 97.49 180 | 99.06 119 | 99.05 130 | 80.72 351 | 99.80 169 | 98.44 81 | 99.82 79 | 99.37 169 |
|
BH-untuned | | | 96.83 256 | 96.75 248 | 97.08 290 | 98.74 250 | 93.33 312 | 96.71 267 | 98.26 294 | 96.72 237 | 98.44 213 | 97.37 321 | 95.20 226 | 99.47 315 | 91.89 333 | 97.43 338 | 98.44 308 |
|
BH-RMVSNet | | | 96.83 256 | 96.58 261 | 97.58 264 | 98.47 293 | 94.05 290 | 96.67 269 | 97.36 320 | 96.70 239 | 97.87 251 | 97.98 285 | 95.14 228 | 99.44 320 | 90.47 351 | 98.58 309 | 99.25 203 |
|
PAPM_NR | | | 96.82 258 | 96.32 268 | 98.30 212 | 99.07 192 | 96.69 221 | 97.48 220 | 98.76 267 | 95.81 269 | 96.61 319 | 96.47 339 | 94.12 256 | 99.17 349 | 90.82 350 | 97.78 332 | 99.06 233 |
|
MG-MVS | | | 96.77 259 | 96.61 258 | 97.26 284 | 98.31 306 | 93.06 315 | 95.93 302 | 98.12 303 | 96.45 247 | 97.92 247 | 98.73 203 | 93.77 262 | 99.39 327 | 91.19 345 | 99.04 276 | 99.33 186 |
|
test_yl | | | 96.69 260 | 96.29 269 | 97.90 238 | 98.28 307 | 95.24 257 | 97.29 233 | 97.36 320 | 98.21 125 | 98.17 228 | 97.86 292 | 86.27 319 | 99.55 294 | 94.87 270 | 98.32 313 | 98.89 264 |
|
DCV-MVSNet | | | 96.69 260 | 96.29 269 | 97.90 238 | 98.28 307 | 95.24 257 | 97.29 233 | 97.36 320 | 98.21 125 | 98.17 228 | 97.86 292 | 86.27 319 | 99.55 294 | 94.87 270 | 98.32 313 | 98.89 264 |
|
WTY-MVS | | | 96.67 262 | 96.27 271 | 97.87 241 | 98.81 242 | 94.61 278 | 96.77 263 | 97.92 309 | 94.94 289 | 97.12 293 | 97.74 299 | 91.11 291 | 99.82 149 | 93.89 300 | 98.15 323 | 99.18 220 |
|
PatchT | | | 96.65 263 | 96.35 266 | 97.54 269 | 97.40 350 | 95.32 255 | 97.98 169 | 96.64 339 | 99.33 43 | 96.89 308 | 99.42 62 | 84.32 337 | 99.81 162 | 97.69 126 | 97.49 335 | 97.48 347 |
|
TAPA-MVS | | 96.21 11 | 96.63 264 | 95.95 275 | 98.65 169 | 98.93 216 | 98.09 133 | 96.93 255 | 99.28 163 | 83.58 368 | 98.13 234 | 97.78 296 | 96.13 192 | 99.40 325 | 93.52 309 | 99.29 244 | 98.45 306 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
MIMVSNet | | | 96.62 265 | 96.25 272 | 97.71 255 | 99.04 200 | 94.66 276 | 99.16 50 | 96.92 335 | 97.23 213 | 97.87 251 | 99.10 120 | 86.11 323 | 99.65 263 | 91.65 336 | 99.21 255 | 98.82 272 |
|
Patchmatch-test | | | 96.55 266 | 96.34 267 | 97.17 287 | 98.35 303 | 93.06 315 | 98.40 127 | 97.79 310 | 97.33 198 | 98.41 216 | 98.67 214 | 83.68 342 | 99.69 235 | 95.16 265 | 99.31 239 | 98.77 284 |
|
iter_conf05 | | | 96.54 267 | 96.07 273 | 97.92 237 | 97.90 328 | 94.50 280 | 97.87 180 | 99.14 204 | 97.73 159 | 98.89 152 | 98.95 160 | 75.75 369 | 99.87 88 | 98.50 78 | 99.92 41 | 99.40 157 |
|
PMMVS | | | 96.51 268 | 95.98 274 | 98.09 225 | 97.53 345 | 95.84 239 | 94.92 334 | 98.84 256 | 91.58 339 | 96.05 333 | 95.58 352 | 95.68 212 | 99.66 258 | 95.59 257 | 98.09 326 | 98.76 286 |
|
PLC |  | 94.65 16 | 96.51 268 | 95.73 279 | 98.85 145 | 98.75 249 | 97.91 155 | 96.42 280 | 99.06 215 | 90.94 348 | 95.59 338 | 97.38 320 | 94.41 247 | 99.59 282 | 90.93 347 | 98.04 330 | 99.05 234 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
114514_t | | | 96.50 270 | 95.77 277 | 98.69 167 | 99.48 106 | 97.43 188 | 97.84 183 | 99.55 59 | 81.42 370 | 96.51 322 | 98.58 231 | 95.53 216 | 99.67 247 | 93.41 313 | 99.58 187 | 98.98 247 |
|
test1111 | | | 96.49 271 | 96.82 243 | 95.52 330 | 99.42 119 | 87.08 361 | 99.22 41 | 87.14 374 | 99.11 61 | 99.46 54 | 99.58 34 | 88.69 305 | 99.86 97 | 98.80 56 | 99.95 19 | 99.62 53 |
|
MAR-MVS | | | 96.47 272 | 95.70 280 | 98.79 154 | 97.92 326 | 99.12 57 | 98.28 135 | 98.60 280 | 92.16 335 | 95.54 344 | 96.17 344 | 94.77 242 | 99.52 303 | 89.62 354 | 98.23 316 | 97.72 340 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
ECVR-MVS |  | | 96.42 273 | 96.61 258 | 95.85 322 | 99.38 124 | 88.18 357 | 99.22 41 | 86.00 376 | 99.08 73 | 99.36 75 | 99.57 35 | 88.47 310 | 99.82 149 | 98.52 77 | 99.95 19 | 99.54 92 |
|
SCA | | | 96.41 274 | 96.66 255 | 95.67 326 | 98.24 310 | 88.35 355 | 95.85 307 | 96.88 336 | 96.11 258 | 97.67 265 | 98.67 214 | 93.10 269 | 99.85 109 | 94.16 290 | 99.22 253 | 98.81 276 |
|
DPM-MVS | | | 96.32 275 | 95.59 285 | 98.51 192 | 98.76 247 | 97.21 199 | 94.54 347 | 98.26 294 | 91.94 336 | 96.37 326 | 97.25 324 | 93.06 271 | 99.43 321 | 91.42 341 | 98.74 296 | 98.89 264 |
|
CMPMVS |  | 75.91 23 | 96.29 276 | 95.44 289 | 98.84 146 | 96.25 369 | 98.69 88 | 97.02 248 | 99.12 206 | 88.90 358 | 97.83 255 | 98.86 180 | 89.51 300 | 98.90 361 | 91.92 332 | 99.51 208 | 98.92 260 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
CR-MVSNet | | | 96.28 277 | 95.95 275 | 97.28 283 | 97.71 337 | 94.22 284 | 98.11 151 | 98.92 239 | 92.31 333 | 96.91 304 | 99.37 68 | 85.44 329 | 99.81 162 | 97.39 137 | 97.36 342 | 97.81 334 |
|
CVMVSNet | | | 96.25 278 | 97.21 222 | 93.38 352 | 99.10 185 | 80.56 378 | 97.20 241 | 98.19 299 | 96.94 227 | 99.00 131 | 99.02 135 | 89.50 301 | 99.80 169 | 96.36 219 | 99.59 182 | 99.78 19 |
|
AUN-MVS | | | 96.24 279 | 95.45 288 | 98.60 177 | 98.70 260 | 97.22 198 | 97.38 226 | 97.65 315 | 95.95 265 | 95.53 345 | 97.96 289 | 82.11 350 | 99.79 182 | 96.31 221 | 97.44 337 | 98.80 281 |
|
EPNet | | | 96.14 280 | 95.44 289 | 98.25 215 | 90.76 379 | 95.50 249 | 97.92 173 | 94.65 352 | 98.97 82 | 92.98 365 | 98.85 183 | 89.12 303 | 99.87 88 | 95.99 237 | 99.68 151 | 99.39 160 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
wuyk23d | | | 96.06 281 | 97.62 198 | 91.38 355 | 98.65 275 | 98.57 96 | 98.85 81 | 96.95 333 | 96.86 231 | 99.90 6 | 99.16 109 | 99.18 11 | 98.40 367 | 89.23 355 | 99.77 108 | 77.18 373 |
|
miper_enhance_ethall | | | 96.01 282 | 95.74 278 | 96.81 305 | 96.41 367 | 92.27 331 | 93.69 360 | 98.89 244 | 91.14 346 | 98.30 222 | 97.35 323 | 90.58 293 | 99.58 286 | 96.31 221 | 99.03 277 | 98.60 299 |
|
FMVSNet5 | | | 96.01 282 | 95.20 297 | 98.41 202 | 97.53 345 | 96.10 231 | 98.74 84 | 99.50 73 | 97.22 216 | 98.03 244 | 99.04 132 | 69.80 373 | 99.88 71 | 97.27 142 | 99.71 138 | 99.25 203 |
|
baseline1 | | | 95.96 284 | 95.44 289 | 97.52 271 | 98.51 291 | 93.99 296 | 98.39 128 | 96.09 345 | 98.21 125 | 98.40 220 | 97.76 298 | 86.88 315 | 99.63 269 | 95.42 261 | 89.27 373 | 98.95 254 |
|
HY-MVS | | 95.94 13 | 95.90 285 | 95.35 293 | 97.55 268 | 97.95 324 | 94.79 269 | 98.81 83 | 96.94 334 | 92.28 334 | 95.17 349 | 98.57 232 | 89.90 298 | 99.75 211 | 91.20 344 | 97.33 344 | 98.10 321 |
|
GA-MVS | | | 95.86 286 | 95.32 294 | 97.49 274 | 98.60 278 | 94.15 289 | 93.83 358 | 97.93 308 | 95.49 275 | 96.68 315 | 97.42 318 | 83.21 343 | 99.30 338 | 96.22 226 | 98.55 310 | 99.01 242 |
|
OpenMVS_ROB |  | 95.38 14 | 95.84 287 | 95.18 298 | 97.81 245 | 98.41 301 | 97.15 205 | 97.37 227 | 98.62 279 | 83.86 367 | 98.65 186 | 98.37 254 | 94.29 251 | 99.68 244 | 88.41 356 | 98.62 307 | 96.60 358 |
|
cl22 | | | 95.79 288 | 95.39 292 | 96.98 295 | 96.77 362 | 92.79 321 | 94.40 349 | 98.53 283 | 94.59 296 | 97.89 250 | 98.17 271 | 82.82 347 | 99.24 344 | 96.37 217 | 99.03 277 | 98.92 260 |
|
1314 | | | 95.74 289 | 95.60 284 | 96.17 317 | 97.53 345 | 92.75 323 | 98.07 156 | 98.31 293 | 91.22 344 | 94.25 356 | 96.68 334 | 95.53 216 | 99.03 353 | 91.64 337 | 97.18 345 | 96.74 356 |
|
PVSNet | | 93.40 17 | 95.67 290 | 95.70 280 | 95.57 329 | 98.83 237 | 88.57 353 | 92.50 365 | 97.72 312 | 92.69 329 | 96.49 325 | 96.44 340 | 93.72 263 | 99.43 321 | 93.61 306 | 99.28 245 | 98.71 290 |
|
FE-MVS | | | 95.66 291 | 94.95 303 | 97.77 248 | 98.53 288 | 95.28 256 | 99.40 15 | 96.09 345 | 93.11 323 | 97.96 246 | 99.26 88 | 79.10 361 | 99.77 199 | 92.40 330 | 98.71 300 | 98.27 315 |
|
tttt0517 | | | 95.64 292 | 94.98 301 | 97.64 260 | 99.36 131 | 93.81 304 | 98.72 87 | 90.47 370 | 98.08 138 | 98.67 183 | 98.34 258 | 73.88 371 | 99.92 39 | 97.77 119 | 99.51 208 | 99.20 213 |
|
PatchmatchNet |  | | 95.58 293 | 95.67 282 | 95.30 335 | 97.34 352 | 87.32 360 | 97.65 202 | 96.65 338 | 95.30 281 | 97.07 296 | 98.69 210 | 84.77 332 | 99.75 211 | 94.97 268 | 98.64 305 | 98.83 271 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
TR-MVS | | | 95.55 294 | 95.12 299 | 96.86 304 | 97.54 344 | 93.94 297 | 96.49 276 | 96.53 340 | 94.36 304 | 97.03 299 | 96.61 335 | 94.26 252 | 99.16 350 | 86.91 360 | 96.31 356 | 97.47 348 |
|
JIA-IIPM | | | 95.52 295 | 95.03 300 | 97.00 293 | 96.85 360 | 94.03 293 | 96.93 255 | 95.82 348 | 99.20 54 | 94.63 354 | 99.71 16 | 83.09 344 | 99.60 278 | 94.42 284 | 94.64 366 | 97.36 349 |
|
CHOSEN 280x420 | | | 95.51 296 | 95.47 286 | 95.65 328 | 98.25 309 | 88.27 356 | 93.25 362 | 98.88 245 | 93.53 317 | 94.65 353 | 97.15 327 | 86.17 321 | 99.93 31 | 97.41 136 | 99.93 31 | 98.73 289 |
|
ADS-MVSNet2 | | | 95.43 297 | 94.98 301 | 96.76 307 | 98.14 316 | 91.74 335 | 97.92 173 | 97.76 311 | 90.23 349 | 96.51 322 | 98.91 167 | 85.61 326 | 99.85 109 | 92.88 319 | 96.90 348 | 98.69 293 |
|
PAPR | | | 95.29 298 | 94.47 307 | 97.75 252 | 97.50 349 | 95.14 262 | 94.89 335 | 98.71 274 | 91.39 343 | 95.35 348 | 95.48 355 | 94.57 245 | 99.14 352 | 84.95 363 | 97.37 340 | 98.97 251 |
|
thisisatest0530 | | | 95.27 299 | 94.45 308 | 97.74 253 | 99.19 164 | 94.37 282 | 97.86 181 | 90.20 371 | 97.17 217 | 98.22 226 | 97.65 304 | 73.53 372 | 99.90 52 | 96.90 173 | 99.35 233 | 98.95 254 |
|
ADS-MVSNet | | | 95.24 300 | 94.93 304 | 96.18 316 | 98.14 316 | 90.10 349 | 97.92 173 | 97.32 323 | 90.23 349 | 96.51 322 | 98.91 167 | 85.61 326 | 99.74 216 | 92.88 319 | 96.90 348 | 98.69 293 |
|
BH-w/o | | | 95.13 301 | 94.89 305 | 95.86 321 | 98.20 313 | 91.31 342 | 95.65 312 | 97.37 319 | 93.64 315 | 96.52 321 | 95.70 351 | 93.04 272 | 99.02 354 | 88.10 357 | 95.82 361 | 97.24 350 |
|
tpmrst | | | 95.07 302 | 95.46 287 | 93.91 345 | 97.11 356 | 84.36 371 | 97.62 204 | 96.96 332 | 94.98 287 | 96.35 327 | 98.80 193 | 85.46 328 | 99.59 282 | 95.60 256 | 96.23 357 | 97.79 337 |
|
pmmvs3 | | | 95.03 303 | 94.40 309 | 96.93 297 | 97.70 339 | 92.53 325 | 95.08 330 | 97.71 313 | 88.57 359 | 97.71 262 | 98.08 279 | 79.39 358 | 99.82 149 | 96.19 228 | 99.11 271 | 98.43 309 |
|
tpmvs | | | 95.02 304 | 95.25 295 | 94.33 341 | 96.39 368 | 85.87 363 | 98.08 155 | 96.83 337 | 95.46 276 | 95.51 346 | 98.69 210 | 85.91 324 | 99.53 299 | 94.16 290 | 96.23 357 | 97.58 345 |
|
EPNet_dtu | | | 94.93 305 | 94.78 306 | 95.38 334 | 93.58 376 | 87.68 359 | 96.78 262 | 95.69 350 | 97.35 197 | 89.14 372 | 98.09 278 | 88.15 312 | 99.49 309 | 94.95 269 | 99.30 242 | 98.98 247 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
cascas | | | 94.79 306 | 94.33 312 | 96.15 320 | 96.02 372 | 92.36 330 | 92.34 367 | 99.26 171 | 85.34 366 | 95.08 351 | 94.96 363 | 92.96 273 | 98.53 366 | 94.41 287 | 98.59 308 | 97.56 346 |
|
tpm | | | 94.67 307 | 94.34 311 | 95.66 327 | 97.68 341 | 88.42 354 | 97.88 177 | 94.90 351 | 94.46 299 | 96.03 334 | 98.56 233 | 78.66 362 | 99.79 182 | 95.88 241 | 95.01 365 | 98.78 283 |
|
test0.0.03 1 | | | 94.51 308 | 93.69 317 | 96.99 294 | 96.05 370 | 93.61 310 | 94.97 333 | 93.49 360 | 96.17 255 | 97.57 273 | 94.88 364 | 82.30 348 | 99.01 356 | 93.60 307 | 94.17 369 | 98.37 313 |
|
thres600view7 | | | 94.45 309 | 93.83 315 | 96.29 313 | 99.06 196 | 91.53 337 | 97.99 168 | 94.24 357 | 98.34 114 | 97.44 284 | 95.01 360 | 79.84 354 | 99.67 247 | 84.33 364 | 98.23 316 | 97.66 342 |
|
PCF-MVS | | 92.86 18 | 94.36 310 | 93.00 327 | 98.42 201 | 98.70 260 | 97.56 181 | 93.16 363 | 99.11 208 | 79.59 371 | 97.55 274 | 97.43 317 | 92.19 282 | 99.73 220 | 79.85 372 | 99.45 220 | 97.97 328 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
X-MVStestdata | | | 94.32 311 | 92.59 329 | 99.53 34 | 99.46 109 | 99.21 28 | 98.65 93 | 99.34 133 | 98.62 102 | 97.54 275 | 45.85 374 | 97.50 120 | 99.83 139 | 96.79 181 | 99.53 203 | 99.56 81 |
|
MVS-HIRNet | | | 94.32 311 | 95.62 283 | 90.42 356 | 98.46 294 | 75.36 379 | 96.29 286 | 89.13 373 | 95.25 282 | 95.38 347 | 99.75 11 | 92.88 274 | 99.19 348 | 94.07 296 | 99.39 227 | 96.72 357 |
|
ET-MVSNet_ETH3D | | | 94.30 313 | 93.21 323 | 97.58 264 | 98.14 316 | 94.47 281 | 94.78 337 | 93.24 363 | 94.72 293 | 89.56 371 | 95.87 349 | 78.57 364 | 99.81 162 | 96.91 168 | 97.11 347 | 98.46 304 |
|
thres100view900 | | | 94.19 314 | 93.67 318 | 95.75 325 | 99.06 196 | 91.35 341 | 98.03 162 | 94.24 357 | 98.33 115 | 97.40 286 | 94.98 362 | 79.84 354 | 99.62 271 | 83.05 366 | 98.08 327 | 96.29 359 |
|
E-PMN | | | 94.17 315 | 94.37 310 | 93.58 349 | 96.86 359 | 85.71 366 | 90.11 369 | 97.07 328 | 98.17 131 | 97.82 257 | 97.19 325 | 84.62 334 | 98.94 358 | 89.77 353 | 97.68 334 | 96.09 365 |
|
thres400 | | | 94.14 316 | 93.44 320 | 96.24 315 | 98.93 216 | 91.44 339 | 97.60 207 | 94.29 355 | 97.94 144 | 97.10 294 | 94.31 368 | 79.67 356 | 99.62 271 | 83.05 366 | 98.08 327 | 97.66 342 |
|
thisisatest0515 | | | 94.12 317 | 93.16 324 | 96.97 296 | 98.60 278 | 92.90 319 | 93.77 359 | 90.61 369 | 94.10 309 | 96.91 304 | 95.87 349 | 74.99 370 | 99.80 169 | 94.52 279 | 99.12 270 | 98.20 317 |
|
tfpn200view9 | | | 94.03 318 | 93.44 320 | 95.78 324 | 98.93 216 | 91.44 339 | 97.60 207 | 94.29 355 | 97.94 144 | 97.10 294 | 94.31 368 | 79.67 356 | 99.62 271 | 83.05 366 | 98.08 327 | 96.29 359 |
|
CostFormer | | | 93.97 319 | 93.78 316 | 94.51 340 | 97.53 345 | 85.83 365 | 97.98 169 | 95.96 347 | 89.29 357 | 94.99 352 | 98.63 224 | 78.63 363 | 99.62 271 | 94.54 278 | 96.50 353 | 98.09 322 |
|
test-LLR | | | 93.90 320 | 93.85 314 | 94.04 343 | 96.53 364 | 84.62 369 | 94.05 355 | 92.39 365 | 96.17 255 | 94.12 358 | 95.07 358 | 82.30 348 | 99.67 247 | 95.87 244 | 98.18 319 | 97.82 332 |
|
EMVS | | | 93.83 321 | 94.02 313 | 93.23 353 | 96.83 361 | 84.96 367 | 89.77 370 | 96.32 342 | 97.92 146 | 97.43 285 | 96.36 343 | 86.17 321 | 98.93 359 | 87.68 358 | 97.73 333 | 95.81 366 |
|
baseline2 | | | 93.73 322 | 92.83 328 | 96.42 311 | 97.70 339 | 91.28 344 | 96.84 260 | 89.77 372 | 93.96 313 | 92.44 366 | 95.93 347 | 79.14 360 | 99.77 199 | 92.94 317 | 96.76 352 | 98.21 316 |
|
thres200 | | | 93.72 323 | 93.14 325 | 95.46 333 | 98.66 273 | 91.29 343 | 96.61 272 | 94.63 353 | 97.39 193 | 96.83 311 | 93.71 370 | 79.88 353 | 99.56 291 | 82.40 369 | 98.13 324 | 95.54 368 |
|
EPMVS | | | 93.72 323 | 93.27 322 | 95.09 337 | 96.04 371 | 87.76 358 | 98.13 148 | 85.01 377 | 94.69 294 | 96.92 302 | 98.64 222 | 78.47 366 | 99.31 336 | 95.04 266 | 96.46 354 | 98.20 317 |
|
dp | | | 93.47 325 | 93.59 319 | 93.13 354 | 96.64 363 | 81.62 377 | 97.66 200 | 96.42 341 | 92.80 328 | 96.11 330 | 98.64 222 | 78.55 365 | 99.59 282 | 93.31 314 | 92.18 372 | 98.16 319 |
|
FPMVS | | | 93.44 326 | 92.23 331 | 97.08 290 | 99.25 149 | 97.86 159 | 95.61 313 | 97.16 326 | 92.90 326 | 93.76 363 | 98.65 219 | 75.94 368 | 95.66 373 | 79.30 373 | 97.49 335 | 97.73 339 |
|
tpm cat1 | | | 93.29 327 | 93.13 326 | 93.75 347 | 97.39 351 | 84.74 368 | 97.39 225 | 97.65 315 | 83.39 369 | 94.16 357 | 98.41 249 | 82.86 346 | 99.39 327 | 91.56 339 | 95.35 364 | 97.14 351 |
|
MVS | | | 93.19 328 | 92.09 332 | 96.50 310 | 96.91 358 | 94.03 293 | 98.07 156 | 98.06 305 | 68.01 372 | 94.56 355 | 96.48 338 | 95.96 204 | 99.30 338 | 83.84 365 | 96.89 350 | 96.17 361 |
|
tpm2 | | | 93.09 329 | 92.58 330 | 94.62 339 | 97.56 343 | 86.53 362 | 97.66 200 | 95.79 349 | 86.15 364 | 94.07 360 | 98.23 267 | 75.95 367 | 99.53 299 | 90.91 348 | 96.86 351 | 97.81 334 |
|
KD-MVS_2432*1600 | | | 92.87 330 | 91.99 333 | 95.51 331 | 91.37 377 | 89.27 351 | 94.07 353 | 98.14 301 | 95.42 277 | 97.25 291 | 96.44 340 | 67.86 375 | 99.24 344 | 91.28 342 | 96.08 359 | 98.02 325 |
|
miper_refine_blended | | | 92.87 330 | 91.99 333 | 95.51 331 | 91.37 377 | 89.27 351 | 94.07 353 | 98.14 301 | 95.42 277 | 97.25 291 | 96.44 340 | 67.86 375 | 99.24 344 | 91.28 342 | 96.08 359 | 98.02 325 |
|
MVE |  | 83.40 22 | 92.50 332 | 91.92 335 | 94.25 342 | 98.83 237 | 91.64 336 | 92.71 364 | 83.52 378 | 95.92 266 | 86.46 375 | 95.46 356 | 95.20 226 | 95.40 374 | 80.51 371 | 98.64 305 | 95.73 367 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
test2506 | | | 92.39 333 | 91.89 336 | 93.89 346 | 99.38 124 | 82.28 375 | 99.32 22 | 66.03 382 | 99.08 73 | 98.77 174 | 99.57 35 | 66.26 379 | 99.84 125 | 98.71 64 | 99.95 19 | 99.54 92 |
|
gg-mvs-nofinetune | | | 92.37 334 | 91.20 339 | 95.85 322 | 95.80 373 | 92.38 329 | 99.31 26 | 81.84 379 | 99.75 5 | 91.83 368 | 99.74 12 | 68.29 374 | 99.02 354 | 87.15 359 | 97.12 346 | 96.16 362 |
|
test-mter | | | 92.33 335 | 91.76 338 | 94.04 343 | 96.53 364 | 84.62 369 | 94.05 355 | 92.39 365 | 94.00 312 | 94.12 358 | 95.07 358 | 65.63 381 | 99.67 247 | 95.87 244 | 98.18 319 | 97.82 332 |
|
IB-MVS | | 91.63 19 | 92.24 336 | 90.90 340 | 96.27 314 | 97.22 355 | 91.24 345 | 94.36 350 | 93.33 362 | 92.37 332 | 92.24 367 | 94.58 367 | 66.20 380 | 99.89 62 | 93.16 316 | 94.63 367 | 97.66 342 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
TESTMET0.1,1 | | | 92.19 337 | 91.77 337 | 93.46 350 | 96.48 366 | 82.80 374 | 94.05 355 | 91.52 368 | 94.45 301 | 94.00 361 | 94.88 364 | 66.65 378 | 99.56 291 | 95.78 249 | 98.11 325 | 98.02 325 |
|
PAPM | | | 91.88 338 | 90.34 341 | 96.51 309 | 98.06 321 | 92.56 324 | 92.44 366 | 97.17 325 | 86.35 363 | 90.38 370 | 96.01 345 | 86.61 317 | 99.21 347 | 70.65 375 | 95.43 363 | 97.75 338 |
|
PVSNet_0 | | 89.98 21 | 91.15 339 | 90.30 342 | 93.70 348 | 97.72 335 | 84.34 372 | 90.24 368 | 97.42 318 | 90.20 352 | 93.79 362 | 93.09 371 | 90.90 292 | 98.89 362 | 86.57 361 | 72.76 375 | 97.87 331 |
|
EGC-MVSNET | | | 85.24 340 | 80.54 343 | 99.34 72 | 99.77 27 | 99.20 34 | 99.08 58 | 99.29 160 | 12.08 376 | 20.84 377 | 99.42 62 | 97.55 113 | 99.85 109 | 97.08 155 | 99.72 133 | 98.96 253 |
|
test_method | | | 79.78 341 | 79.50 344 | 80.62 357 | 80.21 380 | 45.76 382 | 70.82 371 | 98.41 290 | 31.08 375 | 80.89 376 | 97.71 300 | 84.85 331 | 97.37 371 | 91.51 340 | 80.03 374 | 98.75 287 |
|
tmp_tt | | | 78.77 342 | 78.73 345 | 78.90 358 | 58.45 381 | 74.76 381 | 94.20 352 | 78.26 381 | 39.16 374 | 86.71 374 | 92.82 372 | 80.50 352 | 75.19 377 | 86.16 362 | 92.29 371 | 86.74 372 |
|
cdsmvs_eth3d_5k | | | 24.66 343 | 32.88 346 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 99.10 210 | 0.00 379 | 0.00 380 | 97.58 308 | 99.21 10 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
testmvs | | | 17.12 344 | 20.53 347 | 6.87 360 | 12.05 382 | 4.20 384 | 93.62 361 | 6.73 383 | 4.62 378 | 10.41 378 | 24.33 375 | 8.28 383 | 3.56 379 | 9.69 377 | 15.07 376 | 12.86 375 |
|
test123 | | | 17.04 345 | 20.11 348 | 7.82 359 | 10.25 383 | 4.91 383 | 94.80 336 | 4.47 384 | 4.93 377 | 10.00 379 | 24.28 376 | 9.69 382 | 3.64 378 | 10.14 376 | 12.43 377 | 14.92 374 |
|
pcd_1.5k_mvsjas | | | 8.17 346 | 10.90 349 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 379 | 98.07 73 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
ab-mvs-re | | | 8.12 347 | 10.83 350 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 97.48 314 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
test_blank | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 379 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
uanet_test | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 379 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
DCPMVS | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 379 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
sosnet-low-res | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 379 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
sosnet | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 379 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
uncertanet | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 379 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
Regformer | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 379 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
uanet | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 379 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
FOURS1 | | | | | | 99.73 35 | 99.67 2 | 99.43 11 | 99.54 64 | 99.43 33 | 99.26 95 | | | | | | |
|
MSC_two_6792asdad | | | | | 99.32 78 | 98.43 297 | 98.37 111 | | 98.86 252 | | | | | 99.89 62 | 97.14 150 | 99.60 178 | 99.71 32 |
|
PC_three_1452 | | | | | | | | | | 93.27 320 | 99.40 66 | 98.54 234 | 98.22 61 | 97.00 372 | 95.17 264 | 99.45 220 | 99.49 111 |
|
No_MVS | | | | | 99.32 78 | 98.43 297 | 98.37 111 | | 98.86 252 | | | | | 99.89 62 | 97.14 150 | 99.60 178 | 99.71 32 |
|
test_one_0601 | | | | | | 99.39 123 | 99.20 34 | | 99.31 145 | 98.49 109 | 98.66 185 | 99.02 135 | 97.64 105 | | | | |
|
eth-test2 | | | | | | 0.00 384 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 384 | | | | | | | | | | | |
|
ZD-MVS | | | | | | 99.01 204 | 98.84 75 | | 99.07 214 | 94.10 309 | 98.05 242 | 98.12 274 | 96.36 186 | 99.86 97 | 92.70 326 | 99.19 259 | |
|
RE-MVS-def | | | | 98.58 96 | | 99.20 161 | 99.38 8 | 98.48 119 | 99.30 153 | 98.64 98 | 98.95 140 | 98.96 156 | 97.75 96 | | 96.56 204 | 99.39 227 | 99.45 134 |
|
IU-MVS | | | | | | 99.49 99 | 99.15 47 | | 98.87 247 | 92.97 324 | 99.41 63 | | | | 96.76 185 | 99.62 171 | 99.66 44 |
|
OPU-MVS | | | | | 98.82 148 | 98.59 280 | 98.30 116 | 98.10 153 | | | | 98.52 237 | 98.18 65 | 98.75 364 | 94.62 276 | 99.48 217 | 99.41 148 |
|
test_241102_TWO | | | | | | | | | 99.30 153 | 98.03 139 | 99.26 95 | 99.02 135 | 97.51 119 | 99.88 71 | 96.91 168 | 99.60 178 | 99.66 44 |
|
test_241102_ONE | | | | | | 99.49 99 | 99.17 39 | | 99.31 145 | 97.98 141 | 99.66 28 | 98.90 170 | 98.36 50 | 99.48 312 | | | |
|
9.14 | | | | 97.78 183 | | 99.07 192 | | 97.53 215 | 99.32 140 | 95.53 274 | 98.54 205 | 98.70 209 | 97.58 110 | 99.76 204 | 94.32 289 | 99.46 218 | |
|
save fliter | | | | | | 99.11 183 | 97.97 149 | 96.53 274 | 99.02 226 | 98.24 123 | | | | | | | |
|
test_0728_THIRD | | | | | | | | | | 98.17 131 | 99.08 117 | 99.02 135 | 97.89 86 | 99.88 71 | 97.07 156 | 99.71 138 | 99.70 37 |
|
test_0728_SECOND | | | | | 99.60 11 | 99.50 92 | 99.23 26 | 98.02 163 | 99.32 140 | | | | | 99.88 71 | 96.99 162 | 99.63 168 | 99.68 40 |
|
test0726 | | | | | | 99.50 92 | 99.21 28 | 98.17 147 | 99.35 127 | 97.97 142 | 99.26 95 | 99.06 123 | 97.61 108 | | | | |
|
GSMVS | | | | | | | | | | | | | | | | | 98.81 276 |
|
test_part2 | | | | | | 99.36 131 | 99.10 60 | | | | 99.05 124 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 84.74 333 | | | | 98.81 276 |
|
sam_mvs | | | | | | | | | | | | | 84.29 339 | | | | |
|
ambc | | | | | 98.24 217 | 98.82 240 | 95.97 236 | 98.62 97 | 99.00 231 | | 99.27 91 | 99.21 97 | 96.99 151 | 99.50 308 | 96.55 207 | 99.50 215 | 99.26 202 |
|
MTGPA |  | | | | | | | | 99.20 183 | | | | | | | | |
|
test_post1 | | | | | | | | 97.59 209 | | | | 20.48 378 | 83.07 345 | 99.66 258 | 94.16 290 | | |
|
test_post | | | | | | | | | | | | 21.25 377 | 83.86 341 | 99.70 231 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 98.77 198 | 84.37 336 | 99.85 109 | | | |
|
GG-mvs-BLEND | | | | | 94.76 338 | 94.54 375 | 92.13 333 | 99.31 26 | 80.47 380 | | 88.73 373 | 91.01 373 | 67.59 377 | 98.16 370 | 82.30 370 | 94.53 368 | 93.98 370 |
|
MTMP | | | | | | | | 97.93 172 | 91.91 367 | | | | | | | | |
|
gm-plane-assit | | | | | | 94.83 374 | 81.97 376 | | | 88.07 361 | | 94.99 361 | | 99.60 278 | 91.76 334 | | |
|
test9_res | | | | | | | | | | | | | | | 93.28 315 | 99.15 264 | 99.38 167 |
|
TEST9 | | | | | | 98.71 256 | 98.08 137 | 95.96 299 | 99.03 223 | 91.40 342 | 95.85 335 | 97.53 310 | 96.52 177 | 99.76 204 | | | |
|
test_8 | | | | | | 98.67 268 | 98.01 144 | 95.91 304 | 99.02 226 | 91.64 337 | 95.79 337 | 97.50 313 | 96.47 179 | 99.76 204 | | | |
|
agg_prior2 | | | | | | | | | | | | | | | 92.50 329 | 99.16 262 | 99.37 169 |
|
agg_prior | | | | | | 98.68 267 | 97.99 145 | | 99.01 229 | | 95.59 338 | | | 99.77 199 | | | |
|
TestCases | | | | | 99.16 102 | 99.50 92 | 98.55 97 | | 99.58 41 | 96.80 232 | 98.88 156 | 99.06 123 | 97.65 102 | 99.57 288 | 94.45 282 | 99.61 176 | 99.37 169 |
|
test_prior4 | | | | | | | 97.97 149 | 95.86 305 | | | | | | | | | |
|
test_prior2 | | | | | | | | 95.74 310 | | 96.48 246 | 96.11 330 | 97.63 306 | 95.92 206 | | 94.16 290 | 99.20 256 | |
|
test_prior | | | | | 98.95 135 | 98.69 265 | 97.95 153 | | 99.03 223 | | | | | 99.59 282 | | | 99.30 195 |
|
旧先验2 | | | | | | | | 95.76 309 | | 88.56 360 | 97.52 277 | | | 99.66 258 | 94.48 280 | | |
|
新几何2 | | | | | | | | 95.93 302 | | | | | | | | | |
|
新几何1 | | | | | 98.91 140 | 98.94 214 | 97.76 170 | | 98.76 267 | 87.58 362 | 96.75 314 | 98.10 276 | 94.80 239 | 99.78 193 | 92.73 325 | 99.00 282 | 99.20 213 |
|
旧先验1 | | | | | | 98.82 240 | 97.45 187 | | 98.76 267 | | | 98.34 258 | 95.50 219 | | | 99.01 281 | 99.23 208 |
|
无先验 | | | | | | | | 95.74 310 | 98.74 272 | 89.38 356 | | | | 99.73 220 | 92.38 331 | | 99.22 212 |
|
原ACMM2 | | | | | | | | 95.53 316 | | | | | | | | | |
|
原ACMM1 | | | | | 98.35 207 | 98.90 224 | 96.25 229 | | 98.83 260 | 92.48 331 | 96.07 332 | 98.10 276 | 95.39 222 | 99.71 228 | 92.61 328 | 98.99 283 | 99.08 231 |
|
test222 | | | | | | 98.92 220 | 96.93 213 | 95.54 315 | 98.78 266 | 85.72 365 | 96.86 310 | 98.11 275 | 94.43 246 | | | 99.10 272 | 99.23 208 |
|
testdata2 | | | | | | | | | | | | | | 99.79 182 | 92.80 323 | | |
|
segment_acmp | | | | | | | | | | | | | 97.02 149 | | | | |
|
testdata | | | | | 98.09 225 | 98.93 216 | 95.40 253 | | 98.80 263 | 90.08 353 | 97.45 283 | 98.37 254 | 95.26 224 | 99.70 231 | 93.58 308 | 98.95 287 | 99.17 224 |
|
testdata1 | | | | | | | | 95.44 321 | | 96.32 251 | | | | | | | |
|
test12 | | | | | 98.93 137 | 98.58 281 | 97.83 162 | | 98.66 276 | | 96.53 320 | | 95.51 218 | 99.69 235 | | 99.13 267 | 99.27 199 |
|
plane_prior7 | | | | | | 99.19 164 | 97.87 158 | | | | | | | | | | |
|
plane_prior6 | | | | | | 98.99 208 | 97.70 175 | | | | | | 94.90 232 | | | | |
|
plane_prior5 | | | | | | | | | 99.27 166 | | | | | 99.70 231 | 94.42 284 | 99.51 208 | 99.45 134 |
|
plane_prior4 | | | | | | | | | | | | 97.98 285 | | | | | |
|
plane_prior3 | | | | | | | 97.78 169 | | | 97.41 191 | 97.79 258 | | | | | | |
|
plane_prior2 | | | | | | | | 97.77 188 | | 98.20 128 | | | | | | | |
|
plane_prior1 | | | | | | 99.05 199 | | | | | | | | | | | |
|
plane_prior | | | | | | | 97.65 177 | 97.07 247 | | 96.72 237 | | | | | | 99.36 231 | |
|
n2 | | | | | | | | | 0.00 385 | | | | | | | | |
|
nn | | | | | | | | | 0.00 385 | | | | | | | | |
|
door-mid | | | | | | | | | 99.57 48 | | | | | | | | |
|
lessismore_v0 | | | | | 98.97 133 | 99.73 35 | 97.53 183 | | 86.71 375 | | 99.37 73 | 99.52 46 | 89.93 297 | 99.92 39 | 98.99 47 | 99.72 133 | 99.44 138 |
|
LGP-MVS_train | | | | | 99.47 54 | 99.57 68 | 98.97 66 | | 99.48 82 | 96.60 241 | 99.10 115 | 99.06 123 | 98.71 30 | 99.83 139 | 95.58 258 | 99.78 104 | 99.62 53 |
|
test11 | | | | | | | | | 98.87 247 | | | | | | | | |
|
door | | | | | | | | | 99.41 107 | | | | | | | | |
|
HQP5-MVS | | | | | | | 96.79 216 | | | | | | | | | | |
|
HQP-NCC | | | | | | 98.67 268 | | 96.29 286 | | 96.05 260 | 95.55 341 | | | | | | |
|
ACMP_Plane | | | | | | 98.67 268 | | 96.29 286 | | 96.05 260 | 95.55 341 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 92.82 321 | | |
|
HQP4-MVS | | | | | | | | | | | 95.56 340 | | | 99.54 297 | | | 99.32 188 |
|
HQP3-MVS | | | | | | | | | 99.04 221 | | | | | | | 99.26 249 | |
|
HQP2-MVS | | | | | | | | | | | | | 93.84 258 | | | | |
|
NP-MVS | | | | | | 98.84 235 | 97.39 190 | | | | | 96.84 331 | | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 74.92 380 | 97.69 196 | | 90.06 354 | 97.75 261 | | 85.78 325 | | 93.52 309 | | 98.69 293 |
|
MDTV_nov1_ep13 | | | | 95.22 296 | | 97.06 357 | 83.20 373 | 97.74 192 | 96.16 343 | 94.37 303 | 96.99 300 | 98.83 187 | 83.95 340 | 99.53 299 | 93.90 299 | 97.95 331 | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 99.77 108 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 99.68 151 | |
|
Test By Simon | | | | | | | | | | | | | 96.52 177 | | | | |
|
ITE_SJBPF | | | | | 98.87 143 | 99.22 155 | 98.48 104 | | 99.35 127 | 97.50 178 | 98.28 224 | 98.60 229 | 97.64 105 | 99.35 331 | 93.86 302 | 99.27 246 | 98.79 282 |
|
DeepMVS_CX |  | | | | 93.44 351 | 98.24 310 | 94.21 286 | | 94.34 354 | 64.28 373 | 91.34 369 | 94.87 366 | 89.45 302 | 92.77 376 | 77.54 374 | 93.14 370 | 93.35 371 |
|