| LCM-MVSNet | | | 99.93 1 | 99.92 1 | 99.94 1 | 99.99 1 | 99.97 1 | 99.90 1 | 99.89 13 | 99.98 1 | 99.99 1 | 99.96 1 | 99.77 2 | 100.00 1 | 99.81 12 | 100.00 1 | 99.85 24 |
|
| UniMVSNet_ETH3D | | | 99.69 2 | 99.69 4 | 99.69 3 | 99.84 17 | 99.34 19 | 99.69 5 | 99.58 61 | 99.90 3 | 99.86 19 | 99.78 10 | 99.58 6 | 99.95 24 | 99.00 66 | 99.95 32 | 99.78 37 |
|
| pmmvs6 | | | 99.67 3 | 99.70 3 | 99.60 14 | 99.90 4 | 99.27 26 | 99.53 8 | 99.76 33 | 99.64 19 | 99.84 21 | 99.83 4 | 99.50 8 | 99.87 110 | 99.36 41 | 99.92 56 | 99.64 68 |
|
| LTVRE_ROB | | 98.40 1 | 99.67 3 | 99.71 2 | 99.56 25 | 99.85 16 | 99.11 63 | 99.90 1 | 99.78 31 | 99.63 21 | 99.78 29 | 99.67 27 | 99.48 9 | 99.81 189 | 99.30 45 | 99.97 20 | 99.77 39 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| mvs_tets | | | 99.63 5 | 99.67 5 | 99.49 51 | 99.88 9 | 98.61 94 | 99.34 20 | 99.71 38 | 99.27 60 | 99.90 12 | 99.74 15 | 99.68 4 | 99.97 5 | 99.55 32 | 99.99 5 | 99.88 19 |
|
| jajsoiax | | | 99.58 6 | 99.61 8 | 99.48 53 | 99.87 12 | 98.61 94 | 99.28 37 | 99.66 50 | 99.09 88 | 99.89 15 | 99.68 22 | 99.53 7 | 99.97 5 | 99.50 36 | 99.99 5 | 99.87 20 |
|
| test_fmvsmconf0.01_n | | | 99.57 7 | 99.63 7 | 99.36 66 | 99.87 12 | 98.13 133 | 98.08 170 | 99.95 1 | 99.45 39 | 99.98 2 | 99.75 13 | 99.80 1 | 99.97 5 | 99.82 8 | 99.99 5 | 99.99 2 |
|
| ANet_high | | | 99.57 7 | 99.67 5 | 99.28 87 | 99.89 6 | 98.09 137 | 99.14 54 | 99.93 5 | 99.82 5 | 99.93 6 | 99.81 6 | 99.17 18 | 99.94 37 | 99.31 44 | 100.00 1 | 99.82 29 |
|
| v7n | | | 99.53 9 | 99.57 10 | 99.41 62 | 99.88 9 | 98.54 102 | 99.45 11 | 99.61 57 | 99.66 17 | 99.68 42 | 99.66 29 | 98.44 63 | 99.95 24 | 99.73 20 | 99.96 25 | 99.75 48 |
|
| test_djsdf | | | 99.52 10 | 99.51 12 | 99.53 37 | 99.86 14 | 98.74 84 | 99.39 17 | 99.56 75 | 99.11 78 | 99.70 38 | 99.73 17 | 99.00 22 | 99.97 5 | 99.26 48 | 99.98 12 | 99.89 16 |
|
| anonymousdsp | | | 99.51 11 | 99.47 17 | 99.62 9 | 99.88 9 | 99.08 67 | 99.34 20 | 99.69 42 | 98.93 106 | 99.65 48 | 99.72 18 | 98.93 26 | 99.95 24 | 99.11 57 | 100.00 1 | 99.82 29 |
|
| test_fmvsmconf0.1_n | | | 99.49 12 | 99.54 11 | 99.34 75 | 99.78 23 | 98.11 134 | 97.77 216 | 99.90 11 | 99.33 53 | 99.97 3 | 99.66 29 | 99.71 3 | 99.96 12 | 99.79 14 | 99.99 5 | 99.96 8 |
|
| UA-Net | | | 99.47 13 | 99.40 22 | 99.70 2 | 99.49 116 | 99.29 23 | 99.80 4 | 99.72 37 | 99.82 5 | 99.04 149 | 99.81 6 | 98.05 98 | 99.96 12 | 98.85 76 | 99.99 5 | 99.86 23 |
|
| PS-MVSNAJss | | | 99.46 14 | 99.49 13 | 99.35 72 | 99.90 4 | 98.15 130 | 99.20 45 | 99.65 51 | 99.48 34 | 99.92 8 | 99.71 19 | 98.07 95 | 99.96 12 | 99.53 33 | 100.00 1 | 99.93 11 |
|
| test_fmvsmconf_n | | | 99.44 15 | 99.48 15 | 99.31 85 | 99.64 70 | 98.10 136 | 97.68 227 | 99.84 21 | 99.29 58 | 99.92 8 | 99.57 46 | 99.60 5 | 99.96 12 | 99.74 19 | 99.98 12 | 99.89 16 |
|
| mamv4 | | | 99.44 15 | 99.39 23 | 99.58 19 | 99.30 161 | 99.74 2 | 99.04 65 | 99.81 26 | 99.77 7 | 99.82 23 | 99.57 46 | 97.82 114 | 99.98 4 | 99.53 33 | 99.89 73 | 99.01 270 |
|
| pm-mvs1 | | | 99.44 15 | 99.48 15 | 99.33 80 | 99.80 20 | 98.63 91 | 99.29 33 | 99.63 53 | 99.30 57 | 99.65 48 | 99.60 42 | 99.16 20 | 99.82 175 | 99.07 60 | 99.83 94 | 99.56 104 |
|
| TransMVSNet (Re) | | | 99.44 15 | 99.47 17 | 99.36 66 | 99.80 20 | 98.58 97 | 99.27 39 | 99.57 68 | 99.39 46 | 99.75 33 | 99.62 37 | 99.17 18 | 99.83 165 | 99.06 61 | 99.62 195 | 99.66 62 |
|
| DTE-MVSNet | | | 99.43 19 | 99.35 27 | 99.66 7 | 99.71 45 | 99.30 21 | 99.31 27 | 99.51 90 | 99.64 19 | 99.56 55 | 99.46 72 | 98.23 79 | 99.97 5 | 98.78 80 | 99.93 45 | 99.72 50 |
|
| TDRefinement | | | 99.42 20 | 99.38 24 | 99.55 27 | 99.76 29 | 99.33 20 | 99.68 6 | 99.71 38 | 99.38 47 | 99.53 63 | 99.61 40 | 98.64 44 | 99.80 196 | 98.24 113 | 99.84 87 | 99.52 126 |
|
| PEN-MVS | | | 99.41 21 | 99.34 29 | 99.62 9 | 99.73 36 | 99.14 56 | 99.29 33 | 99.54 83 | 99.62 24 | 99.56 55 | 99.42 79 | 98.16 90 | 99.96 12 | 98.78 80 | 99.93 45 | 99.77 39 |
|
| nrg030 | | | 99.40 22 | 99.35 27 | 99.54 30 | 99.58 77 | 99.13 59 | 98.98 72 | 99.48 101 | 99.68 15 | 99.46 77 | 99.26 112 | 98.62 47 | 99.73 249 | 99.17 56 | 99.92 56 | 99.76 44 |
|
| PS-CasMVS | | | 99.40 22 | 99.33 30 | 99.62 9 | 99.71 45 | 99.10 64 | 99.29 33 | 99.53 86 | 99.53 31 | 99.46 77 | 99.41 83 | 98.23 79 | 99.95 24 | 98.89 74 | 99.95 32 | 99.81 32 |
|
| MIMVSNet1 | | | 99.38 24 | 99.32 32 | 99.55 27 | 99.86 14 | 99.19 41 | 99.41 14 | 99.59 59 | 99.59 27 | 99.71 36 | 99.57 46 | 97.12 165 | 99.90 68 | 99.21 53 | 99.87 78 | 99.54 115 |
|
| OurMVSNet-221017-0 | | | 99.37 25 | 99.31 34 | 99.53 37 | 99.91 3 | 98.98 69 | 99.63 7 | 99.58 61 | 99.44 41 | 99.78 29 | 99.76 12 | 96.39 205 | 99.92 53 | 99.44 39 | 99.92 56 | 99.68 58 |
|
| Vis-MVSNet |  | | 99.34 26 | 99.36 26 | 99.27 90 | 99.73 36 | 98.26 120 | 99.17 50 | 99.78 31 | 99.11 78 | 99.27 114 | 99.48 70 | 98.82 31 | 99.95 24 | 98.94 70 | 99.93 45 | 99.59 87 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| test_fmvsm_n_1920 | | | 99.33 27 | 99.45 19 | 98.99 137 | 99.57 82 | 97.73 180 | 97.93 193 | 99.83 23 | 99.22 63 | 99.93 6 | 99.30 103 | 99.42 10 | 99.96 12 | 99.85 5 | 99.99 5 | 99.29 221 |
|
| WR-MVS_H | | | 99.33 27 | 99.22 45 | 99.65 8 | 99.71 45 | 99.24 29 | 99.32 23 | 99.55 79 | 99.46 38 | 99.50 71 | 99.34 95 | 97.30 154 | 99.93 44 | 98.90 72 | 99.93 45 | 99.77 39 |
|
| mmtdpeth | | | 99.30 29 | 99.42 20 | 98.92 149 | 99.58 77 | 96.89 229 | 99.48 10 | 99.92 7 | 99.92 2 | 98.26 254 | 99.80 9 | 98.33 72 | 99.91 62 | 99.56 31 | 99.95 32 | 99.97 4 |
|
| mvs5depth | | | 99.30 29 | 99.59 9 | 98.44 224 | 99.65 64 | 95.35 281 | 99.82 3 | 99.94 2 | 99.83 4 | 99.42 85 | 99.94 2 | 98.13 93 | 99.96 12 | 99.63 26 | 99.96 25 | 100.00 1 |
|
| VPA-MVSNet | | | 99.30 29 | 99.30 37 | 99.28 87 | 99.49 116 | 98.36 116 | 99.00 69 | 99.45 116 | 99.63 21 | 99.52 65 | 99.44 77 | 98.25 77 | 99.88 93 | 99.09 59 | 99.84 87 | 99.62 72 |
|
| sd_testset | | | 99.28 32 | 99.31 34 | 99.19 103 | 99.68 57 | 98.06 146 | 99.41 14 | 99.30 179 | 99.69 13 | 99.63 51 | 99.68 22 | 99.25 14 | 99.96 12 | 97.25 174 | 99.92 56 | 99.57 98 |
|
| Anonymous20231211 | | | 99.27 33 | 99.27 40 | 99.26 92 | 99.29 163 | 98.18 128 | 99.49 9 | 99.51 90 | 99.70 12 | 99.80 27 | 99.68 22 | 96.84 180 | 99.83 165 | 99.21 53 | 99.91 63 | 99.77 39 |
|
| FC-MVSNet-test | | | 99.27 33 | 99.25 43 | 99.34 75 | 99.77 26 | 98.37 113 | 99.30 32 | 99.57 68 | 99.61 26 | 99.40 90 | 99.50 64 | 97.12 165 | 99.85 130 | 99.02 65 | 99.94 40 | 99.80 33 |
|
| test_fmvsmvis_n_1920 | | | 99.26 35 | 99.49 13 | 98.54 211 | 99.66 63 | 96.97 222 | 98.00 184 | 99.85 18 | 99.24 62 | 99.92 8 | 99.50 64 | 99.39 11 | 99.95 24 | 99.89 3 | 99.98 12 | 98.71 319 |
|
| testf1 | | | 99.25 36 | 99.16 50 | 99.51 46 | 99.89 6 | 99.63 4 | 98.71 99 | 99.69 42 | 98.90 108 | 99.43 82 | 99.35 91 | 98.86 28 | 99.67 277 | 97.81 142 | 99.81 101 | 99.24 231 |
|
| APD_test2 | | | 99.25 36 | 99.16 50 | 99.51 46 | 99.89 6 | 99.63 4 | 98.71 99 | 99.69 42 | 98.90 108 | 99.43 82 | 99.35 91 | 98.86 28 | 99.67 277 | 97.81 142 | 99.81 101 | 99.24 231 |
|
| KD-MVS_self_test | | | 99.25 36 | 99.18 47 | 99.44 59 | 99.63 74 | 99.06 68 | 98.69 101 | 99.54 83 | 99.31 55 | 99.62 54 | 99.53 60 | 97.36 152 | 99.86 118 | 99.24 52 | 99.71 160 | 99.39 183 |
|
| ACMH | | 96.65 7 | 99.25 36 | 99.24 44 | 99.26 92 | 99.72 42 | 98.38 111 | 99.07 61 | 99.55 79 | 98.30 147 | 99.65 48 | 99.45 76 | 99.22 15 | 99.76 232 | 98.44 104 | 99.77 128 | 99.64 68 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| SDMVSNet | | | 99.23 40 | 99.32 32 | 98.96 141 | 99.68 57 | 97.35 200 | 98.84 89 | 99.48 101 | 99.69 13 | 99.63 51 | 99.68 22 | 99.03 21 | 99.96 12 | 97.97 133 | 99.92 56 | 99.57 98 |
|
| fmvsm_l_conf0.5_n | | | 99.21 41 | 99.28 39 | 99.02 134 | 99.64 70 | 97.28 204 | 97.82 209 | 99.76 33 | 98.73 116 | 99.82 23 | 99.09 152 | 98.81 32 | 99.95 24 | 99.86 4 | 99.96 25 | 99.83 26 |
|
| CP-MVSNet | | | 99.21 41 | 99.09 59 | 99.56 25 | 99.65 64 | 98.96 74 | 99.13 55 | 99.34 159 | 99.42 44 | 99.33 102 | 99.26 112 | 97.01 173 | 99.94 37 | 98.74 85 | 99.93 45 | 99.79 34 |
|
| fmvsm_s_conf0.1_n_2 | | | 99.20 43 | 99.38 24 | 98.65 185 | 99.69 54 | 96.08 258 | 97.49 252 | 99.90 11 | 99.53 31 | 99.88 17 | 99.64 34 | 98.51 57 | 99.90 68 | 99.83 7 | 99.98 12 | 99.97 4 |
|
| fmvsm_l_conf0.5_n_a | | | 99.19 44 | 99.27 40 | 98.94 144 | 99.65 64 | 97.05 218 | 97.80 212 | 99.76 33 | 98.70 119 | 99.78 29 | 99.11 146 | 98.79 34 | 99.95 24 | 99.85 5 | 99.96 25 | 99.83 26 |
|
| fmvsm_s_conf0.1_n_a | | | 99.17 45 | 99.30 37 | 98.80 163 | 99.75 33 | 96.59 242 | 97.97 192 | 99.86 16 | 98.22 155 | 99.88 17 | 99.71 19 | 98.59 50 | 99.84 148 | 99.73 20 | 99.98 12 | 99.98 3 |
|
| TranMVSNet+NR-MVSNet | | | 99.17 45 | 99.07 62 | 99.46 58 | 99.37 148 | 98.87 77 | 98.39 138 | 99.42 129 | 99.42 44 | 99.36 97 | 99.06 153 | 98.38 66 | 99.95 24 | 98.34 109 | 99.90 69 | 99.57 98 |
|
| FMVSNet1 | | | 99.17 45 | 99.17 48 | 99.17 104 | 99.55 94 | 98.24 122 | 99.20 45 | 99.44 120 | 99.21 65 | 99.43 82 | 99.55 54 | 97.82 114 | 99.86 118 | 98.42 106 | 99.89 73 | 99.41 173 |
|
| fmvsm_s_conf0.1_n | | | 99.16 48 | 99.33 30 | 98.64 187 | 99.71 45 | 96.10 253 | 97.87 204 | 99.85 18 | 98.56 133 | 99.90 12 | 99.68 22 | 98.69 41 | 99.85 130 | 99.72 22 | 99.98 12 | 99.97 4 |
|
| reproduce_model | | | 99.15 49 | 98.97 70 | 99.67 4 | 99.33 156 | 99.44 10 | 98.15 160 | 99.47 109 | 99.12 77 | 99.52 65 | 99.32 101 | 98.31 73 | 99.90 68 | 97.78 145 | 99.73 147 | 99.66 62 |
|
| fmvsm_s_conf0.5_n_2 | | | 99.14 50 | 99.31 34 | 98.63 191 | 99.49 116 | 96.08 258 | 97.38 259 | 99.81 26 | 99.48 34 | 99.84 21 | 99.57 46 | 98.46 61 | 99.89 80 | 99.82 8 | 99.97 20 | 99.91 13 |
|
| test_vis3_rt | | | 99.14 50 | 99.17 48 | 99.07 122 | 99.78 23 | 98.38 111 | 98.92 79 | 99.94 2 | 97.80 189 | 99.91 11 | 99.67 27 | 97.15 164 | 98.91 402 | 99.76 17 | 99.56 218 | 99.92 12 |
|
| FIs | | | 99.14 50 | 99.09 59 | 99.29 86 | 99.70 52 | 98.28 119 | 99.13 55 | 99.52 89 | 99.48 34 | 99.24 123 | 99.41 83 | 96.79 186 | 99.82 175 | 98.69 90 | 99.88 75 | 99.76 44 |
|
| XXY-MVS | | | 99.14 50 | 99.15 55 | 99.10 116 | 99.76 29 | 97.74 178 | 98.85 87 | 99.62 54 | 98.48 137 | 99.37 95 | 99.49 69 | 98.75 36 | 99.86 118 | 98.20 116 | 99.80 112 | 99.71 51 |
|
| CS-MVS | | | 99.13 54 | 99.10 58 | 99.24 97 | 99.06 220 | 99.15 51 | 99.36 19 | 99.88 14 | 99.36 51 | 98.21 256 | 98.46 277 | 98.68 42 | 99.93 44 | 99.03 64 | 99.85 83 | 98.64 328 |
|
| SPE-MVS-test | | | 99.13 54 | 99.09 59 | 99.26 92 | 99.13 204 | 98.97 70 | 99.31 27 | 99.88 14 | 99.44 41 | 98.16 260 | 98.51 269 | 98.64 44 | 99.93 44 | 98.91 71 | 99.85 83 | 98.88 296 |
|
| test_fmvs3 | | | 99.12 56 | 99.41 21 | 98.25 242 | 99.76 29 | 95.07 293 | 99.05 64 | 99.94 2 | 97.78 191 | 99.82 23 | 99.84 3 | 98.56 54 | 99.71 257 | 99.96 1 | 99.96 25 | 99.97 4 |
|
| casdiffmvs_mvg |  | | 99.12 56 | 99.16 50 | 98.99 137 | 99.43 136 | 97.73 180 | 98.00 184 | 99.62 54 | 99.22 63 | 99.55 58 | 99.22 122 | 98.93 26 | 99.75 239 | 98.66 91 | 99.81 101 | 99.50 132 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| fmvsm_s_conf0.5_n_a | | | 99.10 58 | 99.20 46 | 98.78 169 | 99.55 94 | 96.59 242 | 97.79 213 | 99.82 25 | 98.21 156 | 99.81 26 | 99.53 60 | 98.46 61 | 99.84 148 | 99.70 23 | 99.97 20 | 99.90 15 |
|
| reproduce-ours | | | 99.09 59 | 98.90 75 | 99.67 4 | 99.27 166 | 99.49 6 | 98.00 184 | 99.42 129 | 99.05 93 | 99.48 72 | 99.27 108 | 98.29 75 | 99.89 80 | 97.61 155 | 99.71 160 | 99.62 72 |
|
| our_new_method | | | 99.09 59 | 98.90 75 | 99.67 4 | 99.27 166 | 99.49 6 | 98.00 184 | 99.42 129 | 99.05 93 | 99.48 72 | 99.27 108 | 98.29 75 | 99.89 80 | 97.61 155 | 99.71 160 | 99.62 72 |
|
| fmvsm_s_conf0.5_n | | | 99.09 59 | 99.26 42 | 98.61 196 | 99.55 94 | 96.09 256 | 97.74 221 | 99.81 26 | 98.55 134 | 99.85 20 | 99.55 54 | 98.60 49 | 99.84 148 | 99.69 25 | 99.98 12 | 99.89 16 |
|
| EC-MVSNet | | | 99.09 59 | 99.05 63 | 99.20 101 | 99.28 164 | 98.93 75 | 99.24 41 | 99.84 21 | 99.08 90 | 98.12 265 | 98.37 286 | 98.72 38 | 99.90 68 | 99.05 62 | 99.77 128 | 98.77 313 |
|
| ACMH+ | | 96.62 9 | 99.08 63 | 99.00 66 | 99.33 80 | 99.71 45 | 98.83 79 | 98.60 109 | 99.58 61 | 99.11 78 | 99.53 63 | 99.18 130 | 98.81 32 | 99.67 277 | 96.71 223 | 99.77 128 | 99.50 132 |
|
| GeoE | | | 99.05 64 | 98.99 68 | 99.25 95 | 99.44 131 | 98.35 117 | 98.73 96 | 99.56 75 | 98.42 139 | 98.91 174 | 98.81 220 | 98.94 25 | 99.91 62 | 98.35 108 | 99.73 147 | 99.49 136 |
|
| Gipuma |  | | 99.03 65 | 99.16 50 | 98.64 187 | 99.94 2 | 98.51 104 | 99.32 23 | 99.75 36 | 99.58 29 | 98.60 219 | 99.62 37 | 98.22 82 | 99.51 344 | 97.70 151 | 99.73 147 | 97.89 374 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| v8 | | | 99.01 66 | 99.16 50 | 98.57 203 | 99.47 126 | 96.31 250 | 98.90 80 | 99.47 109 | 99.03 96 | 99.52 65 | 99.57 46 | 96.93 176 | 99.81 189 | 99.60 27 | 99.98 12 | 99.60 81 |
|
| HPM-MVS_fast | | | 99.01 66 | 98.82 84 | 99.57 20 | 99.71 45 | 99.35 16 | 99.00 69 | 99.50 92 | 97.33 233 | 98.94 171 | 98.86 209 | 98.75 36 | 99.82 175 | 97.53 161 | 99.71 160 | 99.56 104 |
|
| APDe-MVS |  | | 98.99 68 | 98.79 87 | 99.60 14 | 99.21 180 | 99.15 51 | 98.87 84 | 99.48 101 | 97.57 206 | 99.35 99 | 99.24 117 | 97.83 111 | 99.89 80 | 97.88 139 | 99.70 167 | 99.75 48 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| EG-PatchMatch MVS | | | 98.99 68 | 99.01 65 | 98.94 144 | 99.50 109 | 97.47 193 | 98.04 177 | 99.59 59 | 98.15 167 | 99.40 90 | 99.36 90 | 98.58 53 | 99.76 232 | 98.78 80 | 99.68 175 | 99.59 87 |
|
| COLMAP_ROB |  | 96.50 10 | 98.99 68 | 98.85 82 | 99.41 62 | 99.58 77 | 99.10 64 | 98.74 92 | 99.56 75 | 99.09 88 | 99.33 102 | 99.19 126 | 98.40 65 | 99.72 256 | 95.98 272 | 99.76 140 | 99.42 170 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| Baseline_NR-MVSNet | | | 98.98 71 | 98.86 81 | 99.36 66 | 99.82 19 | 98.55 99 | 97.47 255 | 99.57 68 | 99.37 48 | 99.21 126 | 99.61 40 | 96.76 189 | 99.83 165 | 98.06 126 | 99.83 94 | 99.71 51 |
|
| v10 | | | 98.97 72 | 99.11 56 | 98.55 208 | 99.44 131 | 96.21 252 | 98.90 80 | 99.55 79 | 98.73 116 | 99.48 72 | 99.60 42 | 96.63 196 | 99.83 165 | 99.70 23 | 99.99 5 | 99.61 80 |
|
| DeepC-MVS | | 97.60 4 | 98.97 72 | 98.93 72 | 99.10 116 | 99.35 153 | 97.98 153 | 98.01 183 | 99.46 112 | 97.56 208 | 99.54 59 | 99.50 64 | 98.97 23 | 99.84 148 | 98.06 126 | 99.92 56 | 99.49 136 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| baseline | | | 98.96 74 | 99.02 64 | 98.76 173 | 99.38 142 | 97.26 206 | 98.49 126 | 99.50 92 | 98.86 111 | 99.19 128 | 99.06 153 | 98.23 79 | 99.69 265 | 98.71 88 | 99.76 140 | 99.33 210 |
|
| casdiffmvs |  | | 98.95 75 | 99.00 66 | 98.81 161 | 99.38 142 | 97.33 201 | 97.82 209 | 99.57 68 | 99.17 74 | 99.35 99 | 99.17 134 | 98.35 70 | 99.69 265 | 98.46 103 | 99.73 147 | 99.41 173 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| NR-MVSNet | | | 98.95 75 | 98.82 84 | 99.36 66 | 99.16 197 | 98.72 89 | 99.22 42 | 99.20 210 | 99.10 85 | 99.72 34 | 98.76 229 | 96.38 207 | 99.86 118 | 98.00 131 | 99.82 97 | 99.50 132 |
|
| Anonymous20240529 | | | 98.93 77 | 98.87 78 | 99.12 112 | 99.19 187 | 98.22 127 | 99.01 67 | 98.99 257 | 99.25 61 | 99.54 59 | 99.37 86 | 97.04 169 | 99.80 196 | 97.89 136 | 99.52 231 | 99.35 203 |
|
| DP-MVS | | | 98.93 77 | 98.81 86 | 99.28 87 | 99.21 180 | 98.45 108 | 98.46 131 | 99.33 164 | 99.63 21 | 99.48 72 | 99.15 140 | 97.23 160 | 99.75 239 | 97.17 177 | 99.66 186 | 99.63 71 |
|
| SED-MVS | | | 98.91 79 | 98.72 94 | 99.49 51 | 99.49 116 | 99.17 43 | 98.10 168 | 99.31 171 | 98.03 170 | 99.66 45 | 99.02 165 | 98.36 67 | 99.88 93 | 96.91 199 | 99.62 195 | 99.41 173 |
|
| ACMM | | 96.08 12 | 98.91 79 | 98.73 92 | 99.48 53 | 99.55 94 | 99.14 56 | 98.07 172 | 99.37 144 | 97.62 200 | 99.04 149 | 98.96 187 | 98.84 30 | 99.79 209 | 97.43 165 | 99.65 187 | 99.49 136 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| DVP-MVS++ | | | 98.90 81 | 98.70 100 | 99.51 46 | 98.43 330 | 99.15 51 | 99.43 12 | 99.32 166 | 98.17 163 | 99.26 118 | 99.02 165 | 98.18 86 | 99.88 93 | 97.07 187 | 99.45 245 | 99.49 136 |
|
| tfpnnormal | | | 98.90 81 | 98.90 75 | 98.91 150 | 99.67 61 | 97.82 170 | 99.00 69 | 99.44 120 | 99.45 39 | 99.51 70 | 99.24 117 | 98.20 85 | 99.86 118 | 95.92 274 | 99.69 170 | 99.04 266 |
|
| MTAPA | | | 98.88 83 | 98.64 109 | 99.61 12 | 99.67 61 | 99.36 15 | 98.43 134 | 99.20 210 | 98.83 115 | 98.89 177 | 98.90 199 | 96.98 175 | 99.92 53 | 97.16 178 | 99.70 167 | 99.56 104 |
|
| mvsany_test3 | | | 98.87 84 | 98.92 73 | 98.74 179 | 99.38 142 | 96.94 226 | 98.58 111 | 99.10 235 | 96.49 286 | 99.96 4 | 99.81 6 | 98.18 86 | 99.45 358 | 98.97 68 | 99.79 117 | 99.83 26 |
|
| VPNet | | | 98.87 84 | 98.83 83 | 99.01 135 | 99.70 52 | 97.62 187 | 98.43 134 | 99.35 153 | 99.47 37 | 99.28 112 | 99.05 160 | 96.72 192 | 99.82 175 | 98.09 123 | 99.36 256 | 99.59 87 |
|
| UniMVSNet (Re) | | | 98.87 84 | 98.71 97 | 99.35 72 | 99.24 173 | 98.73 87 | 97.73 223 | 99.38 140 | 98.93 106 | 99.12 134 | 98.73 232 | 96.77 187 | 99.86 118 | 98.63 94 | 99.80 112 | 99.46 155 |
|
| UniMVSNet_NR-MVSNet | | | 98.86 87 | 98.68 103 | 99.40 64 | 99.17 195 | 98.74 84 | 97.68 227 | 99.40 136 | 99.14 76 | 99.06 142 | 98.59 260 | 96.71 193 | 99.93 44 | 98.57 97 | 99.77 128 | 99.53 123 |
|
| APD-MVS_3200maxsize | | | 98.84 88 | 98.61 116 | 99.53 37 | 99.19 187 | 99.27 26 | 98.49 126 | 99.33 164 | 98.64 120 | 99.03 152 | 98.98 182 | 97.89 108 | 99.85 130 | 96.54 241 | 99.42 249 | 99.46 155 |
|
| MVSMamba_PlusPlus | | | 98.83 89 | 98.98 69 | 98.36 233 | 99.32 157 | 96.58 244 | 98.90 80 | 99.41 133 | 99.75 8 | 98.72 203 | 99.50 64 | 96.17 214 | 99.94 37 | 99.27 47 | 99.78 122 | 98.57 335 |
|
| APD_test1 | | | 98.83 89 | 98.66 106 | 99.34 75 | 99.78 23 | 99.47 9 | 98.42 136 | 99.45 116 | 98.28 152 | 98.98 156 | 99.19 126 | 97.76 118 | 99.58 319 | 96.57 233 | 99.55 222 | 98.97 279 |
|
| PM-MVS | | | 98.82 91 | 98.72 94 | 99.12 112 | 99.64 70 | 98.54 102 | 97.98 189 | 99.68 47 | 97.62 200 | 99.34 101 | 99.18 130 | 97.54 137 | 99.77 226 | 97.79 144 | 99.74 144 | 99.04 266 |
|
| DU-MVS | | | 98.82 91 | 98.63 110 | 99.39 65 | 99.16 197 | 98.74 84 | 97.54 246 | 99.25 199 | 98.84 114 | 99.06 142 | 98.76 229 | 96.76 189 | 99.93 44 | 98.57 97 | 99.77 128 | 99.50 132 |
|
| SR-MVS-dyc-post | | | 98.81 93 | 98.55 121 | 99.57 20 | 99.20 184 | 99.38 12 | 98.48 129 | 99.30 179 | 98.64 120 | 98.95 164 | 98.96 187 | 97.49 146 | 99.86 118 | 96.56 237 | 99.39 252 | 99.45 159 |
|
| 3Dnovator | | 98.27 2 | 98.81 93 | 98.73 92 | 99.05 129 | 98.76 273 | 97.81 173 | 99.25 40 | 99.30 179 | 98.57 130 | 98.55 228 | 99.33 97 | 97.95 106 | 99.90 68 | 97.16 178 | 99.67 181 | 99.44 163 |
|
| HPM-MVS |  | | 98.79 95 | 98.53 124 | 99.59 18 | 99.65 64 | 99.29 23 | 99.16 51 | 99.43 126 | 96.74 276 | 98.61 217 | 98.38 285 | 98.62 47 | 99.87 110 | 96.47 245 | 99.67 181 | 99.59 87 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| SteuartSystems-ACMMP | | | 98.79 95 | 98.54 123 | 99.54 30 | 99.73 36 | 99.16 47 | 98.23 150 | 99.31 171 | 97.92 180 | 98.90 175 | 98.90 199 | 98.00 101 | 99.88 93 | 96.15 265 | 99.72 155 | 99.58 93 |
| Skip Steuart: Steuart Systems R&D Blog. |
| dcpmvs_2 | | | 98.78 97 | 99.11 56 | 97.78 273 | 99.56 90 | 93.67 339 | 99.06 62 | 99.86 16 | 99.50 33 | 99.66 45 | 99.26 112 | 97.21 162 | 99.99 2 | 98.00 131 | 99.91 63 | 99.68 58 |
|
| V42 | | | 98.78 97 | 98.78 88 | 98.76 173 | 99.44 131 | 97.04 219 | 98.27 147 | 99.19 214 | 97.87 184 | 99.25 122 | 99.16 136 | 96.84 180 | 99.78 220 | 99.21 53 | 99.84 87 | 99.46 155 |
|
| test20.03 | | | 98.78 97 | 98.77 89 | 98.78 169 | 99.46 127 | 97.20 211 | 97.78 214 | 99.24 204 | 99.04 95 | 99.41 87 | 98.90 199 | 97.65 125 | 99.76 232 | 97.70 151 | 99.79 117 | 99.39 183 |
|
| DVP-MVS |  | | 98.77 100 | 98.52 125 | 99.52 42 | 99.50 109 | 99.21 32 | 98.02 180 | 98.84 283 | 97.97 174 | 99.08 140 | 99.02 165 | 97.61 131 | 99.88 93 | 96.99 193 | 99.63 192 | 99.48 146 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| test_0402 | | | 98.76 101 | 98.71 97 | 98.93 146 | 99.56 90 | 98.14 132 | 98.45 133 | 99.34 159 | 99.28 59 | 98.95 164 | 98.91 196 | 98.34 71 | 99.79 209 | 95.63 289 | 99.91 63 | 98.86 298 |
|
| ACMMP_NAP | | | 98.75 102 | 98.48 133 | 99.57 20 | 99.58 77 | 99.29 23 | 97.82 209 | 99.25 199 | 96.94 265 | 98.78 194 | 99.12 145 | 98.02 99 | 99.84 148 | 97.13 183 | 99.67 181 | 99.59 87 |
|
| SixPastTwentyTwo | | | 98.75 102 | 98.62 112 | 99.16 107 | 99.83 18 | 97.96 157 | 99.28 37 | 98.20 328 | 99.37 48 | 99.70 38 | 99.65 33 | 92.65 308 | 99.93 44 | 99.04 63 | 99.84 87 | 99.60 81 |
|
| ACMMP |  | | 98.75 102 | 98.50 128 | 99.52 42 | 99.56 90 | 99.16 47 | 98.87 84 | 99.37 144 | 97.16 254 | 98.82 191 | 99.01 174 | 97.71 121 | 99.87 110 | 96.29 257 | 99.69 170 | 99.54 115 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| XVS | | | 98.72 105 | 98.45 138 | 99.53 37 | 99.46 127 | 99.21 32 | 98.65 103 | 99.34 159 | 98.62 124 | 97.54 307 | 98.63 253 | 97.50 143 | 99.83 165 | 96.79 212 | 99.53 228 | 99.56 104 |
|
| SSC-MVS | | | 98.71 106 | 98.74 90 | 98.62 193 | 99.72 42 | 96.08 258 | 98.74 92 | 98.64 308 | 99.74 10 | 99.67 44 | 99.24 117 | 94.57 270 | 99.95 24 | 99.11 57 | 99.24 276 | 99.82 29 |
|
| SR-MVS | | | 98.71 106 | 98.43 141 | 99.57 20 | 99.18 194 | 99.35 16 | 98.36 141 | 99.29 187 | 98.29 150 | 98.88 180 | 98.85 212 | 97.53 139 | 99.87 110 | 96.14 266 | 99.31 264 | 99.48 146 |
|
| HFP-MVS | | | 98.71 106 | 98.44 140 | 99.51 46 | 99.49 116 | 99.16 47 | 98.52 118 | 99.31 171 | 97.47 217 | 98.58 223 | 98.50 273 | 97.97 105 | 99.85 130 | 96.57 233 | 99.59 206 | 99.53 123 |
|
| LPG-MVS_test | | | 98.71 106 | 98.46 137 | 99.47 56 | 99.57 82 | 98.97 70 | 98.23 150 | 99.48 101 | 96.60 281 | 99.10 138 | 99.06 153 | 98.71 39 | 99.83 165 | 95.58 292 | 99.78 122 | 99.62 72 |
|
| test_fmvs2 | | | 98.70 110 | 98.97 70 | 97.89 266 | 99.54 99 | 94.05 320 | 98.55 114 | 99.92 7 | 96.78 274 | 99.72 34 | 99.78 10 | 96.60 197 | 99.67 277 | 99.91 2 | 99.90 69 | 99.94 10 |
|
| ACMMPR | | | 98.70 110 | 98.42 143 | 99.54 30 | 99.52 104 | 99.14 56 | 98.52 118 | 99.31 171 | 97.47 217 | 98.56 226 | 98.54 264 | 97.75 119 | 99.88 93 | 96.57 233 | 99.59 206 | 99.58 93 |
|
| CP-MVS | | | 98.70 110 | 98.42 143 | 99.52 42 | 99.36 149 | 99.12 61 | 98.72 97 | 99.36 148 | 97.54 211 | 98.30 248 | 98.40 282 | 97.86 110 | 99.89 80 | 96.53 242 | 99.72 155 | 99.56 104 |
|
| tt0805 | | | 98.69 113 | 98.62 112 | 98.90 153 | 99.75 33 | 99.30 21 | 99.15 53 | 96.97 363 | 98.86 111 | 98.87 184 | 97.62 339 | 98.63 46 | 98.96 399 | 99.41 40 | 98.29 351 | 98.45 342 |
|
| Anonymous20240521 | | | 98.69 113 | 98.87 78 | 98.16 250 | 99.77 26 | 95.11 292 | 99.08 58 | 99.44 120 | 99.34 52 | 99.33 102 | 99.55 54 | 94.10 284 | 99.94 37 | 99.25 50 | 99.96 25 | 99.42 170 |
|
| region2R | | | 98.69 113 | 98.40 145 | 99.54 30 | 99.53 102 | 99.17 43 | 98.52 118 | 99.31 171 | 97.46 222 | 98.44 239 | 98.51 269 | 97.83 111 | 99.88 93 | 96.46 246 | 99.58 211 | 99.58 93 |
|
| EI-MVSNet-UG-set | | | 98.69 113 | 98.71 97 | 98.62 193 | 99.10 208 | 96.37 247 | 97.23 272 | 98.87 274 | 99.20 67 | 99.19 128 | 98.99 178 | 97.30 154 | 99.85 130 | 98.77 83 | 99.79 117 | 99.65 67 |
|
| 3Dnovator+ | | 97.89 3 | 98.69 113 | 98.51 126 | 99.24 97 | 98.81 268 | 98.40 109 | 99.02 66 | 99.19 214 | 98.99 99 | 98.07 269 | 99.28 106 | 97.11 167 | 99.84 148 | 96.84 210 | 99.32 262 | 99.47 153 |
|
| ZNCC-MVS | | | 98.68 118 | 98.40 145 | 99.54 30 | 99.57 82 | 99.21 32 | 98.46 131 | 99.29 187 | 97.28 239 | 98.11 266 | 98.39 283 | 98.00 101 | 99.87 110 | 96.86 209 | 99.64 189 | 99.55 111 |
|
| EI-MVSNet-Vis-set | | | 98.68 118 | 98.70 100 | 98.63 191 | 99.09 211 | 96.40 246 | 97.23 272 | 98.86 279 | 99.20 67 | 99.18 132 | 98.97 184 | 97.29 156 | 99.85 130 | 98.72 87 | 99.78 122 | 99.64 68 |
|
| CSCG | | | 98.68 118 | 98.50 128 | 99.20 101 | 99.45 130 | 98.63 91 | 98.56 113 | 99.57 68 | 97.87 184 | 98.85 185 | 98.04 314 | 97.66 124 | 99.84 148 | 96.72 221 | 99.81 101 | 99.13 255 |
|
| test_f | | | 98.67 121 | 98.87 78 | 98.05 259 | 99.72 42 | 95.59 270 | 98.51 123 | 99.81 26 | 96.30 296 | 99.78 29 | 99.82 5 | 96.14 215 | 98.63 408 | 99.82 8 | 99.93 45 | 99.95 9 |
|
| PGM-MVS | | | 98.66 122 | 98.37 151 | 99.55 27 | 99.53 102 | 99.18 42 | 98.23 150 | 99.49 99 | 97.01 262 | 98.69 205 | 98.88 206 | 98.00 101 | 99.89 80 | 95.87 278 | 99.59 206 | 99.58 93 |
|
| GBi-Net | | | 98.65 123 | 98.47 135 | 99.17 104 | 98.90 249 | 98.24 122 | 99.20 45 | 99.44 120 | 98.59 126 | 98.95 164 | 99.55 54 | 94.14 280 | 99.86 118 | 97.77 146 | 99.69 170 | 99.41 173 |
|
| test1 | | | 98.65 123 | 98.47 135 | 99.17 104 | 98.90 249 | 98.24 122 | 99.20 45 | 99.44 120 | 98.59 126 | 98.95 164 | 99.55 54 | 94.14 280 | 99.86 118 | 97.77 146 | 99.69 170 | 99.41 173 |
|
| LCM-MVSNet-Re | | | 98.64 125 | 98.48 133 | 99.11 114 | 98.85 260 | 98.51 104 | 98.49 126 | 99.83 23 | 98.37 140 | 99.69 40 | 99.46 72 | 98.21 84 | 99.92 53 | 94.13 330 | 99.30 267 | 98.91 291 |
|
| mPP-MVS | | | 98.64 125 | 98.34 155 | 99.54 30 | 99.54 99 | 99.17 43 | 98.63 105 | 99.24 204 | 97.47 217 | 98.09 268 | 98.68 241 | 97.62 130 | 99.89 80 | 96.22 260 | 99.62 195 | 99.57 98 |
|
| balanced_conf03 | | | 98.63 127 | 98.72 94 | 98.38 230 | 98.66 301 | 96.68 241 | 98.90 80 | 99.42 129 | 98.99 99 | 98.97 160 | 99.19 126 | 95.81 235 | 99.85 130 | 98.77 83 | 99.77 128 | 98.60 331 |
|
| TSAR-MVS + MP. | | | 98.63 127 | 98.49 132 | 99.06 128 | 99.64 70 | 97.90 161 | 98.51 123 | 98.94 259 | 96.96 263 | 99.24 123 | 98.89 205 | 97.83 111 | 99.81 189 | 96.88 206 | 99.49 241 | 99.48 146 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| LS3D | | | 98.63 127 | 98.38 150 | 99.36 66 | 97.25 394 | 99.38 12 | 99.12 57 | 99.32 166 | 99.21 65 | 98.44 239 | 98.88 206 | 97.31 153 | 99.80 196 | 96.58 231 | 99.34 260 | 98.92 288 |
|
| RPSCF | | | 98.62 130 | 98.36 152 | 99.42 60 | 99.65 64 | 99.42 11 | 98.55 114 | 99.57 68 | 97.72 194 | 98.90 175 | 99.26 112 | 96.12 217 | 99.52 339 | 95.72 285 | 99.71 160 | 99.32 212 |
|
| GST-MVS | | | 98.61 131 | 98.30 160 | 99.52 42 | 99.51 106 | 99.20 38 | 98.26 148 | 99.25 199 | 97.44 225 | 98.67 208 | 98.39 283 | 97.68 122 | 99.85 130 | 96.00 270 | 99.51 233 | 99.52 126 |
|
| v1192 | | | 98.60 132 | 98.66 106 | 98.41 227 | 99.27 166 | 95.88 264 | 97.52 248 | 99.36 148 | 97.41 226 | 99.33 102 | 99.20 125 | 96.37 208 | 99.82 175 | 99.57 29 | 99.92 56 | 99.55 111 |
|
| v1144 | | | 98.60 132 | 98.66 106 | 98.41 227 | 99.36 149 | 95.90 263 | 97.58 242 | 99.34 159 | 97.51 213 | 99.27 114 | 99.15 140 | 96.34 210 | 99.80 196 | 99.47 38 | 99.93 45 | 99.51 129 |
|
| DPE-MVS |  | | 98.59 134 | 98.26 166 | 99.57 20 | 99.27 166 | 99.15 51 | 97.01 285 | 99.39 138 | 97.67 196 | 99.44 81 | 98.99 178 | 97.53 139 | 99.89 80 | 95.40 296 | 99.68 175 | 99.66 62 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| MP-MVS-pluss | | | 98.57 135 | 98.23 170 | 99.60 14 | 99.69 54 | 99.35 16 | 97.16 280 | 99.38 140 | 94.87 338 | 98.97 160 | 98.99 178 | 98.01 100 | 99.88 93 | 97.29 171 | 99.70 167 | 99.58 93 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| OPM-MVS | | | 98.56 136 | 98.32 159 | 99.25 95 | 99.41 139 | 98.73 87 | 97.13 282 | 99.18 218 | 97.10 257 | 98.75 200 | 98.92 195 | 98.18 86 | 99.65 293 | 96.68 225 | 99.56 218 | 99.37 192 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| VDD-MVS | | | 98.56 136 | 98.39 148 | 99.07 122 | 99.13 204 | 98.07 143 | 98.59 110 | 97.01 361 | 99.59 27 | 99.11 135 | 99.27 108 | 94.82 262 | 99.79 209 | 98.34 109 | 99.63 192 | 99.34 205 |
|
| v2v482 | | | 98.56 136 | 98.62 112 | 98.37 232 | 99.42 137 | 95.81 267 | 97.58 242 | 99.16 225 | 97.90 182 | 99.28 112 | 99.01 174 | 95.98 227 | 99.79 209 | 99.33 43 | 99.90 69 | 99.51 129 |
|
| XVG-ACMP-BASELINE | | | 98.56 136 | 98.34 155 | 99.22 100 | 99.54 99 | 98.59 96 | 97.71 224 | 99.46 112 | 97.25 242 | 98.98 156 | 98.99 178 | 97.54 137 | 99.84 148 | 95.88 275 | 99.74 144 | 99.23 233 |
|
| v1240 | | | 98.55 140 | 98.62 112 | 98.32 236 | 99.22 178 | 95.58 272 | 97.51 250 | 99.45 116 | 97.16 254 | 99.45 80 | 99.24 117 | 96.12 217 | 99.85 130 | 99.60 27 | 99.88 75 | 99.55 111 |
|
| IterMVS-LS | | | 98.55 140 | 98.70 100 | 98.09 252 | 99.48 124 | 94.73 301 | 97.22 275 | 99.39 138 | 98.97 102 | 99.38 93 | 99.31 102 | 96.00 222 | 99.93 44 | 98.58 95 | 99.97 20 | 99.60 81 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| v144192 | | | 98.54 142 | 98.57 120 | 98.45 222 | 99.21 180 | 95.98 261 | 97.63 235 | 99.36 148 | 97.15 256 | 99.32 108 | 99.18 130 | 95.84 234 | 99.84 148 | 99.50 36 | 99.91 63 | 99.54 115 |
|
| v1921920 | | | 98.54 142 | 98.60 117 | 98.38 230 | 99.20 184 | 95.76 269 | 97.56 244 | 99.36 148 | 97.23 248 | 99.38 93 | 99.17 134 | 96.02 220 | 99.84 148 | 99.57 29 | 99.90 69 | 99.54 115 |
|
| SF-MVS | | | 98.53 144 | 98.27 165 | 99.32 82 | 99.31 158 | 98.75 83 | 98.19 154 | 99.41 133 | 96.77 275 | 98.83 188 | 98.90 199 | 97.80 116 | 99.82 175 | 95.68 288 | 99.52 231 | 99.38 190 |
|
| XVG-OURS | | | 98.53 144 | 98.34 155 | 99.11 114 | 99.50 109 | 98.82 81 | 95.97 341 | 99.50 92 | 97.30 237 | 99.05 147 | 98.98 182 | 99.35 12 | 99.32 377 | 95.72 285 | 99.68 175 | 99.18 246 |
|
| UGNet | | | 98.53 144 | 98.45 138 | 98.79 166 | 97.94 359 | 96.96 224 | 99.08 58 | 98.54 312 | 99.10 85 | 96.82 348 | 99.47 71 | 96.55 199 | 99.84 148 | 98.56 100 | 99.94 40 | 99.55 111 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| WB-MVS | | | 98.52 147 | 98.55 121 | 98.43 225 | 99.65 64 | 95.59 270 | 98.52 118 | 98.77 294 | 99.65 18 | 99.52 65 | 99.00 177 | 94.34 276 | 99.93 44 | 98.65 92 | 98.83 323 | 99.76 44 |
|
| patch_mono-2 | | | 98.51 148 | 98.63 110 | 98.17 248 | 99.38 142 | 94.78 298 | 97.36 262 | 99.69 42 | 98.16 166 | 98.49 235 | 99.29 105 | 97.06 168 | 99.97 5 | 98.29 112 | 99.91 63 | 99.76 44 |
|
| XVG-OURS-SEG-HR | | | 98.49 149 | 98.28 162 | 99.14 110 | 99.49 116 | 98.83 79 | 96.54 309 | 99.48 101 | 97.32 235 | 99.11 135 | 98.61 257 | 99.33 13 | 99.30 380 | 96.23 259 | 98.38 347 | 99.28 223 |
|
| FMVSNet2 | | | 98.49 149 | 98.40 145 | 98.75 175 | 98.90 249 | 97.14 217 | 98.61 108 | 99.13 231 | 98.59 126 | 99.19 128 | 99.28 106 | 94.14 280 | 99.82 175 | 97.97 133 | 99.80 112 | 99.29 221 |
|
| pmmvs-eth3d | | | 98.47 151 | 98.34 155 | 98.86 155 | 99.30 161 | 97.76 176 | 97.16 280 | 99.28 190 | 95.54 320 | 99.42 85 | 99.19 126 | 97.27 157 | 99.63 299 | 97.89 136 | 99.97 20 | 99.20 238 |
|
| MP-MVS |  | | 98.46 152 | 98.09 185 | 99.54 30 | 99.57 82 | 99.22 31 | 98.50 125 | 99.19 214 | 97.61 203 | 97.58 303 | 98.66 246 | 97.40 150 | 99.88 93 | 94.72 311 | 99.60 202 | 99.54 115 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| v148 | | | 98.45 153 | 98.60 117 | 98.00 262 | 99.44 131 | 94.98 294 | 97.44 257 | 99.06 240 | 98.30 147 | 99.32 108 | 98.97 184 | 96.65 195 | 99.62 302 | 98.37 107 | 99.85 83 | 99.39 183 |
|
| AllTest | | | 98.44 154 | 98.20 172 | 99.16 107 | 99.50 109 | 98.55 99 | 98.25 149 | 99.58 61 | 96.80 272 | 98.88 180 | 99.06 153 | 97.65 125 | 99.57 321 | 94.45 318 | 99.61 200 | 99.37 192 |
|
| VNet | | | 98.42 155 | 98.30 160 | 98.79 166 | 98.79 272 | 97.29 203 | 98.23 150 | 98.66 305 | 99.31 55 | 98.85 185 | 98.80 221 | 94.80 265 | 99.78 220 | 98.13 120 | 99.13 295 | 99.31 216 |
|
| ab-mvs | | | 98.41 156 | 98.36 152 | 98.59 199 | 99.19 187 | 97.23 207 | 99.32 23 | 98.81 288 | 97.66 197 | 98.62 215 | 99.40 85 | 96.82 183 | 99.80 196 | 95.88 275 | 99.51 233 | 98.75 316 |
|
| ACMP | | 95.32 15 | 98.41 156 | 98.09 185 | 99.36 66 | 99.51 106 | 98.79 82 | 97.68 227 | 99.38 140 | 95.76 314 | 98.81 193 | 98.82 218 | 98.36 67 | 99.82 175 | 94.75 308 | 99.77 128 | 99.48 146 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| test_vis1_n_1920 | | | 98.40 158 | 98.92 73 | 96.81 338 | 99.74 35 | 90.76 389 | 98.15 160 | 99.91 9 | 98.33 143 | 99.89 15 | 99.55 54 | 95.07 255 | 99.88 93 | 99.76 17 | 99.93 45 | 99.79 34 |
|
| SMA-MVS |  | | 98.40 158 | 98.03 192 | 99.51 46 | 99.16 197 | 99.21 32 | 98.05 175 | 99.22 207 | 94.16 354 | 98.98 156 | 99.10 149 | 97.52 141 | 99.79 209 | 96.45 247 | 99.64 189 | 99.53 123 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| MSP-MVS | | | 98.40 158 | 98.00 195 | 99.61 12 | 99.57 82 | 99.25 28 | 98.57 112 | 99.35 153 | 97.55 210 | 99.31 110 | 97.71 332 | 94.61 269 | 99.88 93 | 96.14 266 | 99.19 287 | 99.70 56 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| SD-MVS | | | 98.40 158 | 98.68 103 | 97.54 299 | 98.96 237 | 97.99 150 | 97.88 201 | 99.36 148 | 98.20 160 | 99.63 51 | 99.04 162 | 98.76 35 | 95.33 422 | 96.56 237 | 99.74 144 | 99.31 216 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| EI-MVSNet | | | 98.40 158 | 98.51 126 | 98.04 260 | 99.10 208 | 94.73 301 | 97.20 276 | 98.87 274 | 98.97 102 | 99.06 142 | 99.02 165 | 96.00 222 | 99.80 196 | 98.58 95 | 99.82 97 | 99.60 81 |
|
| WR-MVS | | | 98.40 158 | 98.19 174 | 99.03 132 | 99.00 230 | 97.65 184 | 96.85 295 | 98.94 259 | 98.57 130 | 98.89 177 | 98.50 273 | 95.60 240 | 99.85 130 | 97.54 160 | 99.85 83 | 99.59 87 |
|
| new-patchmatchnet | | | 98.35 164 | 98.74 90 | 97.18 318 | 99.24 173 | 92.23 366 | 96.42 317 | 99.48 101 | 98.30 147 | 99.69 40 | 99.53 60 | 97.44 148 | 99.82 175 | 98.84 77 | 99.77 128 | 99.49 136 |
|
| MGCFI-Net | | | 98.34 165 | 98.28 162 | 98.51 214 | 98.47 324 | 97.59 188 | 98.96 74 | 99.48 101 | 99.18 73 | 97.40 319 | 95.50 389 | 98.66 43 | 99.50 345 | 98.18 117 | 98.71 331 | 98.44 345 |
|
| sasdasda | | | 98.34 165 | 98.26 166 | 98.58 200 | 98.46 326 | 97.82 170 | 98.96 74 | 99.46 112 | 99.19 71 | 97.46 314 | 95.46 392 | 98.59 50 | 99.46 356 | 98.08 124 | 98.71 331 | 98.46 339 |
|
| canonicalmvs | | | 98.34 165 | 98.26 166 | 98.58 200 | 98.46 326 | 97.82 170 | 98.96 74 | 99.46 112 | 99.19 71 | 97.46 314 | 95.46 392 | 98.59 50 | 99.46 356 | 98.08 124 | 98.71 331 | 98.46 339 |
|
| test_cas_vis1_n_1920 | | | 98.33 168 | 98.68 103 | 97.27 315 | 99.69 54 | 92.29 364 | 98.03 178 | 99.85 18 | 97.62 200 | 99.96 4 | 99.62 37 | 93.98 285 | 99.74 244 | 99.52 35 | 99.86 82 | 99.79 34 |
|
| testgi | | | 98.32 169 | 98.39 148 | 98.13 251 | 99.57 82 | 95.54 273 | 97.78 214 | 99.49 99 | 97.37 230 | 99.19 128 | 97.65 336 | 98.96 24 | 99.49 348 | 96.50 244 | 98.99 312 | 99.34 205 |
|
| DeepPCF-MVS | | 96.93 5 | 98.32 169 | 98.01 194 | 99.23 99 | 98.39 335 | 98.97 70 | 95.03 378 | 99.18 218 | 96.88 268 | 99.33 102 | 98.78 225 | 98.16 90 | 99.28 384 | 96.74 218 | 99.62 195 | 99.44 163 |
|
| test_vis1_n | | | 98.31 171 | 98.50 128 | 97.73 282 | 99.76 29 | 94.17 317 | 98.68 102 | 99.91 9 | 96.31 294 | 99.79 28 | 99.57 46 | 92.85 304 | 99.42 363 | 99.79 14 | 99.84 87 | 99.60 81 |
|
| MVS_111021_LR | | | 98.30 172 | 98.12 183 | 98.83 158 | 99.16 197 | 98.03 148 | 96.09 337 | 99.30 179 | 97.58 205 | 98.10 267 | 98.24 297 | 98.25 77 | 99.34 374 | 96.69 224 | 99.65 187 | 99.12 256 |
|
| EPP-MVSNet | | | 98.30 172 | 98.04 191 | 99.07 122 | 99.56 90 | 97.83 167 | 99.29 33 | 98.07 334 | 99.03 96 | 98.59 221 | 99.13 144 | 92.16 313 | 99.90 68 | 96.87 207 | 99.68 175 | 99.49 136 |
|
| DeepC-MVS_fast | | 96.85 6 | 98.30 172 | 98.15 180 | 98.75 175 | 98.61 306 | 97.23 207 | 97.76 219 | 99.09 237 | 97.31 236 | 98.75 200 | 98.66 246 | 97.56 135 | 99.64 296 | 96.10 269 | 99.55 222 | 99.39 183 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| PHI-MVS | | | 98.29 175 | 97.95 200 | 99.34 75 | 98.44 329 | 99.16 47 | 98.12 165 | 99.38 140 | 96.01 306 | 98.06 270 | 98.43 280 | 97.80 116 | 99.67 277 | 95.69 287 | 99.58 211 | 99.20 238 |
|
| Fast-Effi-MVS+-dtu | | | 98.27 176 | 98.09 185 | 98.81 161 | 98.43 330 | 98.11 134 | 97.61 238 | 99.50 92 | 98.64 120 | 97.39 321 | 97.52 344 | 98.12 94 | 99.95 24 | 96.90 204 | 98.71 331 | 98.38 352 |
|
| DELS-MVS | | | 98.27 176 | 98.20 172 | 98.48 219 | 98.86 257 | 96.70 239 | 95.60 360 | 99.20 210 | 97.73 193 | 98.45 238 | 98.71 235 | 97.50 143 | 99.82 175 | 98.21 115 | 99.59 206 | 98.93 287 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| Effi-MVS+-dtu | | | 98.26 178 | 97.90 206 | 99.35 72 | 98.02 356 | 99.49 6 | 98.02 180 | 99.16 225 | 98.29 150 | 97.64 298 | 97.99 316 | 96.44 204 | 99.95 24 | 96.66 226 | 98.93 319 | 98.60 331 |
|
| MVSFormer | | | 98.26 178 | 98.43 141 | 97.77 274 | 98.88 255 | 93.89 332 | 99.39 17 | 99.56 75 | 99.11 78 | 98.16 260 | 98.13 304 | 93.81 288 | 99.97 5 | 99.26 48 | 99.57 215 | 99.43 167 |
|
| MVS_111021_HR | | | 98.25 180 | 98.08 188 | 98.75 175 | 99.09 211 | 97.46 194 | 95.97 341 | 99.27 193 | 97.60 204 | 97.99 276 | 98.25 296 | 98.15 92 | 99.38 369 | 96.87 207 | 99.57 215 | 99.42 170 |
|
| TAMVS | | | 98.24 181 | 98.05 190 | 98.80 163 | 99.07 215 | 97.18 213 | 97.88 201 | 98.81 288 | 96.66 280 | 99.17 133 | 99.21 123 | 94.81 264 | 99.77 226 | 96.96 197 | 99.88 75 | 99.44 163 |
|
| MM | | | 98.22 182 | 97.99 196 | 98.91 150 | 98.66 301 | 96.97 222 | 97.89 200 | 94.44 396 | 99.54 30 | 98.95 164 | 99.14 143 | 93.50 292 | 99.92 53 | 99.80 13 | 99.96 25 | 99.85 24 |
|
| diffmvs |  | | 98.22 182 | 98.24 169 | 98.17 248 | 99.00 230 | 95.44 278 | 96.38 319 | 99.58 61 | 97.79 190 | 98.53 231 | 98.50 273 | 96.76 189 | 99.74 244 | 97.95 135 | 99.64 189 | 99.34 205 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| Anonymous20231206 | | | 98.21 184 | 98.21 171 | 98.20 246 | 99.51 106 | 95.43 279 | 98.13 162 | 99.32 166 | 96.16 299 | 98.93 172 | 98.82 218 | 96.00 222 | 99.83 165 | 97.32 170 | 99.73 147 | 99.36 199 |
|
| VDDNet | | | 98.21 184 | 97.95 200 | 99.01 135 | 99.58 77 | 97.74 178 | 99.01 67 | 97.29 354 | 99.67 16 | 98.97 160 | 99.50 64 | 90.45 329 | 99.80 196 | 97.88 139 | 99.20 284 | 99.48 146 |
|
| IS-MVSNet | | | 98.19 186 | 97.90 206 | 99.08 120 | 99.57 82 | 97.97 154 | 99.31 27 | 98.32 323 | 99.01 98 | 98.98 156 | 99.03 164 | 91.59 319 | 99.79 209 | 95.49 294 | 99.80 112 | 99.48 146 |
|
| MVS_Test | | | 98.18 187 | 98.36 152 | 97.67 284 | 98.48 323 | 94.73 301 | 98.18 155 | 99.02 251 | 97.69 195 | 98.04 273 | 99.11 146 | 97.22 161 | 99.56 324 | 98.57 97 | 98.90 321 | 98.71 319 |
|
| TSAR-MVS + GP. | | | 98.18 187 | 97.98 197 | 98.77 172 | 98.71 282 | 97.88 162 | 96.32 323 | 98.66 305 | 96.33 292 | 99.23 125 | 98.51 269 | 97.48 147 | 99.40 365 | 97.16 178 | 99.46 243 | 99.02 269 |
|
| CNVR-MVS | | | 98.17 189 | 97.87 208 | 99.07 122 | 98.67 296 | 98.24 122 | 97.01 285 | 98.93 262 | 97.25 242 | 97.62 299 | 98.34 290 | 97.27 157 | 99.57 321 | 96.42 248 | 99.33 261 | 99.39 183 |
|
| PVSNet_Blended_VisFu | | | 98.17 189 | 98.15 180 | 98.22 245 | 99.73 36 | 95.15 289 | 97.36 262 | 99.68 47 | 94.45 348 | 98.99 155 | 99.27 108 | 96.87 179 | 99.94 37 | 97.13 183 | 99.91 63 | 99.57 98 |
|
| HPM-MVS++ |  | | 98.10 191 | 97.64 225 | 99.48 53 | 99.09 211 | 99.13 59 | 97.52 248 | 98.75 298 | 97.46 222 | 96.90 343 | 97.83 327 | 96.01 221 | 99.84 148 | 95.82 282 | 99.35 258 | 99.46 155 |
|
| APD-MVS |  | | 98.10 191 | 97.67 220 | 99.42 60 | 99.11 206 | 98.93 75 | 97.76 219 | 99.28 190 | 94.97 335 | 98.72 203 | 98.77 227 | 97.04 169 | 99.85 130 | 93.79 340 | 99.54 224 | 99.49 136 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| test_fmvs1_n | | | 98.09 193 | 98.28 162 | 97.52 301 | 99.68 57 | 93.47 343 | 98.63 105 | 99.93 5 | 95.41 327 | 99.68 42 | 99.64 34 | 91.88 317 | 99.48 351 | 99.82 8 | 99.87 78 | 99.62 72 |
|
| MVP-Stereo | | | 98.08 194 | 97.92 204 | 98.57 203 | 98.96 237 | 96.79 233 | 97.90 199 | 99.18 218 | 96.41 290 | 98.46 237 | 98.95 191 | 95.93 231 | 99.60 309 | 96.51 243 | 98.98 314 | 99.31 216 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| PMMVS2 | | | 98.07 195 | 98.08 188 | 98.04 260 | 99.41 139 | 94.59 307 | 94.59 392 | 99.40 136 | 97.50 214 | 98.82 191 | 98.83 215 | 96.83 182 | 99.84 148 | 97.50 163 | 99.81 101 | 99.71 51 |
|
| ETV-MVS | | | 98.03 196 | 97.86 209 | 98.56 207 | 98.69 291 | 98.07 143 | 97.51 250 | 99.50 92 | 98.10 168 | 97.50 311 | 95.51 388 | 98.41 64 | 99.88 93 | 96.27 258 | 99.24 276 | 97.71 386 |
|
| Effi-MVS+ | | | 98.02 197 | 97.82 211 | 98.62 193 | 98.53 320 | 97.19 212 | 97.33 264 | 99.68 47 | 97.30 237 | 96.68 352 | 97.46 348 | 98.56 54 | 99.80 196 | 96.63 227 | 98.20 354 | 98.86 298 |
|
| MSLP-MVS++ | | | 98.02 197 | 98.14 182 | 97.64 288 | 98.58 313 | 95.19 288 | 97.48 253 | 99.23 206 | 97.47 217 | 97.90 280 | 98.62 255 | 97.04 169 | 98.81 405 | 97.55 158 | 99.41 250 | 98.94 286 |
|
| EIA-MVS | | | 98.00 199 | 97.74 215 | 98.80 163 | 98.72 279 | 98.09 137 | 98.05 175 | 99.60 58 | 97.39 228 | 96.63 354 | 95.55 387 | 97.68 122 | 99.80 196 | 96.73 220 | 99.27 271 | 98.52 337 |
|
| MCST-MVS | | | 98.00 199 | 97.63 226 | 99.10 116 | 99.24 173 | 98.17 129 | 96.89 294 | 98.73 301 | 95.66 315 | 97.92 278 | 97.70 334 | 97.17 163 | 99.66 288 | 96.18 264 | 99.23 279 | 99.47 153 |
|
| K. test v3 | | | 98.00 199 | 97.66 223 | 99.03 132 | 99.79 22 | 97.56 189 | 99.19 49 | 92.47 408 | 99.62 24 | 99.52 65 | 99.66 29 | 89.61 334 | 99.96 12 | 99.25 50 | 99.81 101 | 99.56 104 |
|
| HQP_MVS | | | 97.99 202 | 97.67 220 | 98.93 146 | 99.19 187 | 97.65 184 | 97.77 216 | 99.27 193 | 98.20 160 | 97.79 290 | 97.98 317 | 94.90 258 | 99.70 261 | 94.42 320 | 99.51 233 | 99.45 159 |
|
| MDA-MVSNet-bldmvs | | | 97.94 203 | 97.91 205 | 98.06 257 | 99.44 131 | 94.96 295 | 96.63 307 | 99.15 230 | 98.35 141 | 98.83 188 | 99.11 146 | 94.31 277 | 99.85 130 | 96.60 230 | 98.72 329 | 99.37 192 |
|
| ttmdpeth | | | 97.91 204 | 98.02 193 | 97.58 293 | 98.69 291 | 94.10 319 | 98.13 162 | 98.90 268 | 97.95 176 | 97.32 324 | 99.58 44 | 95.95 230 | 98.75 406 | 96.41 249 | 99.22 280 | 99.87 20 |
|
| Anonymous202405211 | | | 97.90 205 | 97.50 233 | 99.08 120 | 98.90 249 | 98.25 121 | 98.53 117 | 96.16 378 | 98.87 110 | 99.11 135 | 98.86 209 | 90.40 330 | 99.78 220 | 97.36 168 | 99.31 264 | 99.19 243 |
|
| LF4IMVS | | | 97.90 205 | 97.69 219 | 98.52 213 | 99.17 195 | 97.66 183 | 97.19 279 | 99.47 109 | 96.31 294 | 97.85 286 | 98.20 301 | 96.71 193 | 99.52 339 | 94.62 312 | 99.72 155 | 98.38 352 |
|
| UnsupCasMVSNet_eth | | | 97.89 207 | 97.60 228 | 98.75 175 | 99.31 158 | 97.17 214 | 97.62 236 | 99.35 153 | 98.72 118 | 98.76 199 | 98.68 241 | 92.57 309 | 99.74 244 | 97.76 150 | 95.60 407 | 99.34 205 |
|
| TinyColmap | | | 97.89 207 | 97.98 197 | 97.60 291 | 98.86 257 | 94.35 312 | 96.21 329 | 99.44 120 | 97.45 224 | 99.06 142 | 98.88 206 | 97.99 104 | 99.28 384 | 94.38 324 | 99.58 211 | 99.18 246 |
|
| RRT-MVS | | | 97.88 209 | 97.98 197 | 97.61 290 | 98.15 349 | 93.77 336 | 98.97 73 | 99.64 52 | 99.16 75 | 98.69 205 | 99.42 79 | 91.60 318 | 99.89 80 | 97.63 154 | 98.52 345 | 99.16 253 |
|
| OMC-MVS | | | 97.88 209 | 97.49 234 | 99.04 131 | 98.89 254 | 98.63 91 | 96.94 289 | 99.25 199 | 95.02 333 | 98.53 231 | 98.51 269 | 97.27 157 | 99.47 354 | 93.50 348 | 99.51 233 | 99.01 270 |
|
| CANet | | | 97.87 211 | 97.76 213 | 98.19 247 | 97.75 366 | 95.51 275 | 96.76 300 | 99.05 243 | 97.74 192 | 96.93 337 | 98.21 300 | 95.59 241 | 99.89 80 | 97.86 141 | 99.93 45 | 99.19 243 |
|
| xiu_mvs_v1_base_debu | | | 97.86 212 | 98.17 176 | 96.92 331 | 98.98 234 | 93.91 329 | 96.45 314 | 99.17 222 | 97.85 186 | 98.41 242 | 97.14 360 | 98.47 58 | 99.92 53 | 98.02 128 | 99.05 301 | 96.92 399 |
|
| xiu_mvs_v1_base | | | 97.86 212 | 98.17 176 | 96.92 331 | 98.98 234 | 93.91 329 | 96.45 314 | 99.17 222 | 97.85 186 | 98.41 242 | 97.14 360 | 98.47 58 | 99.92 53 | 98.02 128 | 99.05 301 | 96.92 399 |
|
| xiu_mvs_v1_base_debi | | | 97.86 212 | 98.17 176 | 96.92 331 | 98.98 234 | 93.91 329 | 96.45 314 | 99.17 222 | 97.85 186 | 98.41 242 | 97.14 360 | 98.47 58 | 99.92 53 | 98.02 128 | 99.05 301 | 96.92 399 |
|
| NCCC | | | 97.86 212 | 97.47 237 | 99.05 129 | 98.61 306 | 98.07 143 | 96.98 287 | 98.90 268 | 97.63 199 | 97.04 333 | 97.93 322 | 95.99 226 | 99.66 288 | 95.31 297 | 98.82 325 | 99.43 167 |
|
| PMVS |  | 91.26 20 | 97.86 212 | 97.94 202 | 97.65 286 | 99.71 45 | 97.94 159 | 98.52 118 | 98.68 304 | 98.99 99 | 97.52 309 | 99.35 91 | 97.41 149 | 98.18 413 | 91.59 378 | 99.67 181 | 96.82 402 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| IterMVS-SCA-FT | | | 97.85 217 | 98.18 175 | 96.87 334 | 99.27 166 | 91.16 383 | 95.53 362 | 99.25 199 | 99.10 85 | 99.41 87 | 99.35 91 | 93.10 297 | 99.96 12 | 98.65 92 | 99.94 40 | 99.49 136 |
|
| D2MVS | | | 97.84 218 | 97.84 210 | 97.83 269 | 99.14 202 | 94.74 300 | 96.94 289 | 98.88 272 | 95.84 312 | 98.89 177 | 98.96 187 | 94.40 274 | 99.69 265 | 97.55 158 | 99.95 32 | 99.05 262 |
|
| CPTT-MVS | | | 97.84 218 | 97.36 242 | 99.27 90 | 99.31 158 | 98.46 107 | 98.29 145 | 99.27 193 | 94.90 337 | 97.83 287 | 98.37 286 | 94.90 258 | 99.84 148 | 93.85 339 | 99.54 224 | 99.51 129 |
|
| mvs_anonymous | | | 97.83 220 | 98.16 179 | 96.87 334 | 98.18 347 | 91.89 368 | 97.31 266 | 98.90 268 | 97.37 230 | 98.83 188 | 99.46 72 | 96.28 211 | 99.79 209 | 98.90 72 | 98.16 358 | 98.95 282 |
|
| h-mvs33 | | | 97.77 221 | 97.33 245 | 99.10 116 | 99.21 180 | 97.84 166 | 98.35 142 | 98.57 311 | 99.11 78 | 98.58 223 | 99.02 165 | 88.65 343 | 99.96 12 | 98.11 121 | 96.34 399 | 99.49 136 |
|
| test_vis1_rt | | | 97.75 222 | 97.72 218 | 97.83 269 | 98.81 268 | 96.35 248 | 97.30 267 | 99.69 42 | 94.61 342 | 97.87 283 | 98.05 313 | 96.26 212 | 98.32 411 | 98.74 85 | 98.18 355 | 98.82 301 |
|
| IterMVS | | | 97.73 223 | 98.11 184 | 96.57 344 | 99.24 173 | 90.28 392 | 95.52 364 | 99.21 208 | 98.86 111 | 99.33 102 | 99.33 97 | 93.11 296 | 99.94 37 | 98.49 102 | 99.94 40 | 99.48 146 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| test_fmvs1 | | | 97.72 224 | 97.94 202 | 97.07 325 | 98.66 301 | 92.39 361 | 97.68 227 | 99.81 26 | 95.20 331 | 99.54 59 | 99.44 77 | 91.56 320 | 99.41 364 | 99.78 16 | 99.77 128 | 99.40 182 |
|
| MSDG | | | 97.71 225 | 97.52 232 | 98.28 241 | 98.91 248 | 96.82 231 | 94.42 395 | 99.37 144 | 97.65 198 | 98.37 247 | 98.29 295 | 97.40 150 | 99.33 376 | 94.09 331 | 99.22 280 | 98.68 326 |
|
| CDS-MVSNet | | | 97.69 226 | 97.35 243 | 98.69 182 | 98.73 277 | 97.02 221 | 96.92 293 | 98.75 298 | 95.89 311 | 98.59 221 | 98.67 243 | 92.08 315 | 99.74 244 | 96.72 221 | 99.81 101 | 99.32 212 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| MS-PatchMatch | | | 97.68 227 | 97.75 214 | 97.45 307 | 98.23 345 | 93.78 335 | 97.29 268 | 98.84 283 | 96.10 301 | 98.64 212 | 98.65 248 | 96.04 219 | 99.36 370 | 96.84 210 | 99.14 293 | 99.20 238 |
|
| Fast-Effi-MVS+ | | | 97.67 228 | 97.38 240 | 98.57 203 | 98.71 282 | 97.43 197 | 97.23 272 | 99.45 116 | 94.82 339 | 96.13 368 | 96.51 368 | 98.52 56 | 99.91 62 | 96.19 262 | 98.83 323 | 98.37 354 |
|
| EU-MVSNet | | | 97.66 229 | 98.50 128 | 95.13 380 | 99.63 74 | 85.84 410 | 98.35 142 | 98.21 327 | 98.23 154 | 99.54 59 | 99.46 72 | 95.02 256 | 99.68 274 | 98.24 113 | 99.87 78 | 99.87 20 |
|
| pmmvs5 | | | 97.64 230 | 97.49 234 | 98.08 255 | 99.14 202 | 95.12 291 | 96.70 304 | 99.05 243 | 93.77 361 | 98.62 215 | 98.83 215 | 93.23 293 | 99.75 239 | 98.33 111 | 99.76 140 | 99.36 199 |
|
| N_pmnet | | | 97.63 231 | 97.17 252 | 98.99 137 | 99.27 166 | 97.86 164 | 95.98 340 | 93.41 405 | 95.25 329 | 99.47 76 | 98.90 199 | 95.63 239 | 99.85 130 | 96.91 199 | 99.73 147 | 99.27 224 |
|
| mvsany_test1 | | | 97.60 232 | 97.54 230 | 97.77 274 | 97.72 367 | 95.35 281 | 95.36 370 | 97.13 359 | 94.13 355 | 99.71 36 | 99.33 97 | 97.93 107 | 99.30 380 | 97.60 157 | 98.94 318 | 98.67 327 |
|
| YYNet1 | | | 97.60 232 | 97.67 220 | 97.39 311 | 99.04 224 | 93.04 350 | 95.27 371 | 98.38 322 | 97.25 242 | 98.92 173 | 98.95 191 | 95.48 246 | 99.73 249 | 96.99 193 | 98.74 327 | 99.41 173 |
|
| MDA-MVSNet_test_wron | | | 97.60 232 | 97.66 223 | 97.41 310 | 99.04 224 | 93.09 346 | 95.27 371 | 98.42 319 | 97.26 241 | 98.88 180 | 98.95 191 | 95.43 247 | 99.73 249 | 97.02 190 | 98.72 329 | 99.41 173 |
|
| pmmvs4 | | | 97.58 235 | 97.28 246 | 98.51 214 | 98.84 261 | 96.93 227 | 95.40 369 | 98.52 314 | 93.60 363 | 98.61 217 | 98.65 248 | 95.10 254 | 99.60 309 | 96.97 196 | 99.79 117 | 98.99 275 |
|
| mvsmamba | | | 97.57 236 | 97.26 247 | 98.51 214 | 98.69 291 | 96.73 238 | 98.74 92 | 97.25 355 | 97.03 261 | 97.88 282 | 99.23 121 | 90.95 324 | 99.87 110 | 96.61 229 | 99.00 310 | 98.91 291 |
|
| PVSNet_BlendedMVS | | | 97.55 237 | 97.53 231 | 97.60 291 | 98.92 245 | 93.77 336 | 96.64 306 | 99.43 126 | 94.49 344 | 97.62 299 | 99.18 130 | 96.82 183 | 99.67 277 | 94.73 309 | 99.93 45 | 99.36 199 |
|
| GDP-MVS | | | 97.50 238 | 97.11 257 | 98.67 184 | 99.02 228 | 96.85 230 | 98.16 159 | 99.71 38 | 98.32 145 | 98.52 233 | 98.54 264 | 83.39 379 | 99.95 24 | 98.79 79 | 99.56 218 | 99.19 243 |
|
| ppachtmachnet_test | | | 97.50 238 | 97.74 215 | 96.78 340 | 98.70 286 | 91.23 382 | 94.55 393 | 99.05 243 | 96.36 291 | 99.21 126 | 98.79 223 | 96.39 205 | 99.78 220 | 96.74 218 | 99.82 97 | 99.34 205 |
|
| FMVSNet3 | | | 97.50 238 | 97.24 249 | 98.29 240 | 98.08 354 | 95.83 266 | 97.86 205 | 98.91 267 | 97.89 183 | 98.95 164 | 98.95 191 | 87.06 349 | 99.81 189 | 97.77 146 | 99.69 170 | 99.23 233 |
|
| CHOSEN 1792x2688 | | | 97.49 241 | 97.14 256 | 98.54 211 | 99.68 57 | 96.09 256 | 96.50 312 | 99.62 54 | 91.58 386 | 98.84 187 | 98.97 184 | 92.36 310 | 99.88 93 | 96.76 216 | 99.95 32 | 99.67 61 |
|
| CLD-MVS | | | 97.49 241 | 97.16 253 | 98.48 219 | 99.07 215 | 97.03 220 | 94.71 385 | 99.21 208 | 94.46 346 | 98.06 270 | 97.16 358 | 97.57 134 | 99.48 351 | 94.46 317 | 99.78 122 | 98.95 282 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| hse-mvs2 | | | 97.46 243 | 97.07 258 | 98.64 187 | 98.73 277 | 97.33 201 | 97.45 256 | 97.64 347 | 99.11 78 | 98.58 223 | 97.98 317 | 88.65 343 | 99.79 209 | 98.11 121 | 97.39 382 | 98.81 305 |
|
| Vis-MVSNet (Re-imp) | | | 97.46 243 | 97.16 253 | 98.34 235 | 99.55 94 | 96.10 253 | 98.94 77 | 98.44 317 | 98.32 145 | 98.16 260 | 98.62 255 | 88.76 339 | 99.73 249 | 93.88 337 | 99.79 117 | 99.18 246 |
|
| jason | | | 97.45 245 | 97.35 243 | 97.76 277 | 99.24 173 | 93.93 328 | 95.86 350 | 98.42 319 | 94.24 352 | 98.50 234 | 98.13 304 | 94.82 262 | 99.91 62 | 97.22 175 | 99.73 147 | 99.43 167 |
| jason: jason. |
| CL-MVSNet_self_test | | | 97.44 246 | 97.22 250 | 98.08 255 | 98.57 315 | 95.78 268 | 94.30 398 | 98.79 291 | 96.58 283 | 98.60 219 | 98.19 302 | 94.74 268 | 99.64 296 | 96.41 249 | 98.84 322 | 98.82 301 |
|
| MVS_0304 | | | 97.44 246 | 97.01 262 | 98.72 180 | 96.42 412 | 96.74 237 | 97.20 276 | 91.97 412 | 98.46 138 | 98.30 248 | 98.79 223 | 92.74 306 | 99.91 62 | 99.30 45 | 99.94 40 | 99.52 126 |
|
| DSMNet-mixed | | | 97.42 248 | 97.60 228 | 96.87 334 | 99.15 201 | 91.46 373 | 98.54 116 | 99.12 232 | 92.87 374 | 97.58 303 | 99.63 36 | 96.21 213 | 99.90 68 | 95.74 284 | 99.54 224 | 99.27 224 |
|
| USDC | | | 97.41 249 | 97.40 238 | 97.44 308 | 98.94 239 | 93.67 339 | 95.17 374 | 99.53 86 | 94.03 358 | 98.97 160 | 99.10 149 | 95.29 249 | 99.34 374 | 95.84 281 | 99.73 147 | 99.30 219 |
|
| BP-MVS1 | | | 97.40 250 | 96.97 263 | 98.71 181 | 99.07 215 | 96.81 232 | 98.34 144 | 97.18 356 | 98.58 129 | 98.17 257 | 98.61 257 | 84.01 375 | 99.94 37 | 98.97 68 | 99.78 122 | 99.37 192 |
|
| our_test_3 | | | 97.39 251 | 97.73 217 | 96.34 350 | 98.70 286 | 89.78 395 | 94.61 391 | 98.97 258 | 96.50 285 | 99.04 149 | 98.85 212 | 95.98 227 | 99.84 148 | 97.26 173 | 99.67 181 | 99.41 173 |
|
| c3_l | | | 97.36 252 | 97.37 241 | 97.31 312 | 98.09 353 | 93.25 345 | 95.01 379 | 99.16 225 | 97.05 258 | 98.77 197 | 98.72 234 | 92.88 302 | 99.64 296 | 96.93 198 | 99.76 140 | 99.05 262 |
|
| alignmvs | | | 97.35 253 | 96.88 270 | 98.78 169 | 98.54 318 | 98.09 137 | 97.71 224 | 97.69 343 | 99.20 67 | 97.59 302 | 95.90 381 | 88.12 348 | 99.55 328 | 98.18 117 | 98.96 316 | 98.70 322 |
|
| Patchmtry | | | 97.35 253 | 96.97 263 | 98.50 218 | 97.31 393 | 96.47 245 | 98.18 155 | 98.92 265 | 98.95 105 | 98.78 194 | 99.37 86 | 85.44 364 | 99.85 130 | 95.96 273 | 99.83 94 | 99.17 250 |
|
| DP-MVS Recon | | | 97.33 255 | 96.92 267 | 98.57 203 | 99.09 211 | 97.99 150 | 96.79 297 | 99.35 153 | 93.18 368 | 97.71 294 | 98.07 312 | 95.00 257 | 99.31 378 | 93.97 333 | 99.13 295 | 98.42 349 |
|
| QAPM | | | 97.31 256 | 96.81 277 | 98.82 159 | 98.80 271 | 97.49 192 | 99.06 62 | 99.19 214 | 90.22 398 | 97.69 296 | 99.16 136 | 96.91 177 | 99.90 68 | 90.89 391 | 99.41 250 | 99.07 260 |
|
| UnsupCasMVSNet_bld | | | 97.30 257 | 96.92 267 | 98.45 222 | 99.28 164 | 96.78 236 | 96.20 330 | 99.27 193 | 95.42 324 | 98.28 252 | 98.30 294 | 93.16 295 | 99.71 257 | 94.99 302 | 97.37 383 | 98.87 297 |
|
| F-COLMAP | | | 97.30 257 | 96.68 284 | 99.14 110 | 99.19 187 | 98.39 110 | 97.27 271 | 99.30 179 | 92.93 372 | 96.62 355 | 98.00 315 | 95.73 237 | 99.68 274 | 92.62 366 | 98.46 346 | 99.35 203 |
|
| 1112_ss | | | 97.29 259 | 96.86 271 | 98.58 200 | 99.34 155 | 96.32 249 | 96.75 301 | 99.58 61 | 93.14 369 | 96.89 344 | 97.48 346 | 92.11 314 | 99.86 118 | 96.91 199 | 99.54 224 | 99.57 98 |
|
| CANet_DTU | | | 97.26 260 | 97.06 259 | 97.84 268 | 97.57 377 | 94.65 305 | 96.19 331 | 98.79 291 | 97.23 248 | 95.14 389 | 98.24 297 | 93.22 294 | 99.84 148 | 97.34 169 | 99.84 87 | 99.04 266 |
|
| Patchmatch-RL test | | | 97.26 260 | 97.02 261 | 97.99 263 | 99.52 104 | 95.53 274 | 96.13 335 | 99.71 38 | 97.47 217 | 99.27 114 | 99.16 136 | 84.30 373 | 99.62 302 | 97.89 136 | 99.77 128 | 98.81 305 |
|
| CDPH-MVS | | | 97.26 260 | 96.66 287 | 99.07 122 | 99.00 230 | 98.15 130 | 96.03 339 | 99.01 254 | 91.21 392 | 97.79 290 | 97.85 326 | 96.89 178 | 99.69 265 | 92.75 363 | 99.38 255 | 99.39 183 |
|
| PatchMatch-RL | | | 97.24 263 | 96.78 278 | 98.61 196 | 99.03 227 | 97.83 167 | 96.36 320 | 99.06 240 | 93.49 366 | 97.36 323 | 97.78 328 | 95.75 236 | 99.49 348 | 93.44 349 | 98.77 326 | 98.52 337 |
|
| eth_miper_zixun_eth | | | 97.23 264 | 97.25 248 | 97.17 320 | 98.00 357 | 92.77 354 | 94.71 385 | 99.18 218 | 97.27 240 | 98.56 226 | 98.74 231 | 91.89 316 | 99.69 265 | 97.06 189 | 99.81 101 | 99.05 262 |
|
| sss | | | 97.21 265 | 96.93 265 | 98.06 257 | 98.83 263 | 95.22 287 | 96.75 301 | 98.48 316 | 94.49 344 | 97.27 325 | 97.90 323 | 92.77 305 | 99.80 196 | 96.57 233 | 99.32 262 | 99.16 253 |
|
| LFMVS | | | 97.20 266 | 96.72 281 | 98.64 187 | 98.72 279 | 96.95 225 | 98.93 78 | 94.14 402 | 99.74 10 | 98.78 194 | 99.01 174 | 84.45 370 | 99.73 249 | 97.44 164 | 99.27 271 | 99.25 228 |
|
| HyFIR lowres test | | | 97.19 267 | 96.60 291 | 98.96 141 | 99.62 76 | 97.28 204 | 95.17 374 | 99.50 92 | 94.21 353 | 99.01 153 | 98.32 293 | 86.61 352 | 99.99 2 | 97.10 185 | 99.84 87 | 99.60 81 |
|
| miper_lstm_enhance | | | 97.18 268 | 97.16 253 | 97.25 317 | 98.16 348 | 92.85 352 | 95.15 376 | 99.31 171 | 97.25 242 | 98.74 202 | 98.78 225 | 90.07 331 | 99.78 220 | 97.19 176 | 99.80 112 | 99.11 257 |
|
| CNLPA | | | 97.17 269 | 96.71 282 | 98.55 208 | 98.56 316 | 98.05 147 | 96.33 322 | 98.93 262 | 96.91 267 | 97.06 332 | 97.39 351 | 94.38 275 | 99.45 358 | 91.66 375 | 99.18 289 | 98.14 363 |
|
| xiu_mvs_v2_base | | | 97.16 270 | 97.49 234 | 96.17 359 | 98.54 318 | 92.46 359 | 95.45 366 | 98.84 283 | 97.25 242 | 97.48 313 | 96.49 369 | 98.31 73 | 99.90 68 | 96.34 254 | 98.68 336 | 96.15 410 |
|
| AdaColmap |  | | 97.14 271 | 96.71 282 | 98.46 221 | 98.34 337 | 97.80 174 | 96.95 288 | 98.93 262 | 95.58 319 | 96.92 338 | 97.66 335 | 95.87 233 | 99.53 335 | 90.97 388 | 99.14 293 | 98.04 368 |
|
| train_agg | | | 97.10 272 | 96.45 297 | 99.07 122 | 98.71 282 | 98.08 141 | 95.96 343 | 99.03 248 | 91.64 384 | 95.85 374 | 97.53 342 | 96.47 202 | 99.76 232 | 93.67 342 | 99.16 290 | 99.36 199 |
|
| OpenMVS |  | 96.65 7 | 97.09 273 | 96.68 284 | 98.32 236 | 98.32 338 | 97.16 215 | 98.86 86 | 99.37 144 | 89.48 402 | 96.29 366 | 99.15 140 | 96.56 198 | 99.90 68 | 92.90 357 | 99.20 284 | 97.89 374 |
|
| PS-MVSNAJ | | | 97.08 274 | 97.39 239 | 96.16 361 | 98.56 316 | 92.46 359 | 95.24 373 | 98.85 282 | 97.25 242 | 97.49 312 | 95.99 378 | 98.07 95 | 99.90 68 | 96.37 251 | 98.67 337 | 96.12 411 |
|
| miper_ehance_all_eth | | | 97.06 275 | 97.03 260 | 97.16 322 | 97.83 363 | 93.06 347 | 94.66 388 | 99.09 237 | 95.99 307 | 98.69 205 | 98.45 278 | 92.73 307 | 99.61 308 | 96.79 212 | 99.03 305 | 98.82 301 |
|
| lupinMVS | | | 97.06 275 | 96.86 271 | 97.65 286 | 98.88 255 | 93.89 332 | 95.48 365 | 97.97 336 | 93.53 364 | 98.16 260 | 97.58 340 | 93.81 288 | 99.91 62 | 96.77 215 | 99.57 215 | 99.17 250 |
|
| API-MVS | | | 97.04 277 | 96.91 269 | 97.42 309 | 97.88 362 | 98.23 126 | 98.18 155 | 98.50 315 | 97.57 206 | 97.39 321 | 96.75 365 | 96.77 187 | 99.15 393 | 90.16 395 | 99.02 308 | 94.88 416 |
|
| cl____ | | | 97.02 278 | 96.83 274 | 97.58 293 | 97.82 364 | 94.04 322 | 94.66 388 | 99.16 225 | 97.04 259 | 98.63 213 | 98.71 235 | 88.68 342 | 99.69 265 | 97.00 191 | 99.81 101 | 99.00 274 |
|
| DIV-MVS_self_test | | | 97.02 278 | 96.84 273 | 97.58 293 | 97.82 364 | 94.03 323 | 94.66 388 | 99.16 225 | 97.04 259 | 98.63 213 | 98.71 235 | 88.69 340 | 99.69 265 | 97.00 191 | 99.81 101 | 99.01 270 |
|
| RPMNet | | | 97.02 278 | 96.93 265 | 97.30 313 | 97.71 370 | 94.22 313 | 98.11 166 | 99.30 179 | 99.37 48 | 96.91 340 | 99.34 95 | 86.72 351 | 99.87 110 | 97.53 161 | 97.36 385 | 97.81 379 |
|
| HQP-MVS | | | 97.00 281 | 96.49 296 | 98.55 208 | 98.67 296 | 96.79 233 | 96.29 325 | 99.04 246 | 96.05 302 | 95.55 380 | 96.84 363 | 93.84 286 | 99.54 333 | 92.82 360 | 99.26 274 | 99.32 212 |
|
| FA-MVS(test-final) | | | 96.99 282 | 96.82 275 | 97.50 303 | 98.70 286 | 94.78 298 | 99.34 20 | 96.99 362 | 95.07 332 | 98.48 236 | 99.33 97 | 88.41 346 | 99.65 293 | 96.13 268 | 98.92 320 | 98.07 367 |
|
| new_pmnet | | | 96.99 282 | 96.76 279 | 97.67 284 | 98.72 279 | 94.89 296 | 95.95 345 | 98.20 328 | 92.62 377 | 98.55 228 | 98.54 264 | 94.88 261 | 99.52 339 | 93.96 334 | 99.44 248 | 98.59 334 |
|
| Test_1112_low_res | | | 96.99 282 | 96.55 293 | 98.31 238 | 99.35 153 | 95.47 277 | 95.84 353 | 99.53 86 | 91.51 388 | 96.80 349 | 98.48 276 | 91.36 321 | 99.83 165 | 96.58 231 | 99.53 228 | 99.62 72 |
|
| PVSNet_Blended | | | 96.88 285 | 96.68 284 | 97.47 306 | 98.92 245 | 93.77 336 | 94.71 385 | 99.43 126 | 90.98 394 | 97.62 299 | 97.36 354 | 96.82 183 | 99.67 277 | 94.73 309 | 99.56 218 | 98.98 276 |
|
| MVSTER | | | 96.86 286 | 96.55 293 | 97.79 272 | 97.91 361 | 94.21 315 | 97.56 244 | 98.87 274 | 97.49 216 | 99.06 142 | 99.05 160 | 80.72 388 | 99.80 196 | 98.44 104 | 99.82 97 | 99.37 192 |
|
| BH-untuned | | | 96.83 287 | 96.75 280 | 97.08 323 | 98.74 276 | 93.33 344 | 96.71 303 | 98.26 325 | 96.72 277 | 98.44 239 | 97.37 353 | 95.20 251 | 99.47 354 | 91.89 372 | 97.43 380 | 98.44 345 |
|
| BH-RMVSNet | | | 96.83 287 | 96.58 292 | 97.58 293 | 98.47 324 | 94.05 320 | 96.67 305 | 97.36 350 | 96.70 279 | 97.87 283 | 97.98 317 | 95.14 253 | 99.44 360 | 90.47 394 | 98.58 343 | 99.25 228 |
|
| PAPM_NR | | | 96.82 289 | 96.32 300 | 98.30 239 | 99.07 215 | 96.69 240 | 97.48 253 | 98.76 295 | 95.81 313 | 96.61 356 | 96.47 371 | 94.12 283 | 99.17 391 | 90.82 392 | 97.78 371 | 99.06 261 |
|
| MG-MVS | | | 96.77 290 | 96.61 289 | 97.26 316 | 98.31 339 | 93.06 347 | 95.93 346 | 98.12 333 | 96.45 289 | 97.92 278 | 98.73 232 | 93.77 290 | 99.39 367 | 91.19 386 | 99.04 304 | 99.33 210 |
|
| test_yl | | | 96.69 291 | 96.29 301 | 97.90 264 | 98.28 340 | 95.24 285 | 97.29 268 | 97.36 350 | 98.21 156 | 98.17 257 | 97.86 324 | 86.27 354 | 99.55 328 | 94.87 306 | 98.32 348 | 98.89 293 |
|
| DCV-MVSNet | | | 96.69 291 | 96.29 301 | 97.90 264 | 98.28 340 | 95.24 285 | 97.29 268 | 97.36 350 | 98.21 156 | 98.17 257 | 97.86 324 | 86.27 354 | 99.55 328 | 94.87 306 | 98.32 348 | 98.89 293 |
|
| WTY-MVS | | | 96.67 293 | 96.27 303 | 97.87 267 | 98.81 268 | 94.61 306 | 96.77 299 | 97.92 338 | 94.94 336 | 97.12 328 | 97.74 331 | 91.11 323 | 99.82 175 | 93.89 336 | 98.15 359 | 99.18 246 |
|
| PatchT | | | 96.65 294 | 96.35 298 | 97.54 299 | 97.40 390 | 95.32 283 | 97.98 189 | 96.64 372 | 99.33 53 | 96.89 344 | 99.42 79 | 84.32 372 | 99.81 189 | 97.69 153 | 97.49 376 | 97.48 392 |
|
| TAPA-MVS | | 96.21 11 | 96.63 295 | 95.95 306 | 98.65 185 | 98.93 241 | 98.09 137 | 96.93 291 | 99.28 190 | 83.58 415 | 98.13 264 | 97.78 328 | 96.13 216 | 99.40 365 | 93.52 346 | 99.29 269 | 98.45 342 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| MIMVSNet | | | 96.62 296 | 96.25 304 | 97.71 283 | 99.04 224 | 94.66 304 | 99.16 51 | 96.92 367 | 97.23 248 | 97.87 283 | 99.10 149 | 86.11 358 | 99.65 293 | 91.65 376 | 99.21 283 | 98.82 301 |
|
| Patchmatch-test | | | 96.55 297 | 96.34 299 | 97.17 320 | 98.35 336 | 93.06 347 | 98.40 137 | 97.79 339 | 97.33 233 | 98.41 242 | 98.67 243 | 83.68 378 | 99.69 265 | 95.16 300 | 99.31 264 | 98.77 313 |
|
| PMMVS | | | 96.51 298 | 95.98 305 | 98.09 252 | 97.53 382 | 95.84 265 | 94.92 381 | 98.84 283 | 91.58 386 | 96.05 372 | 95.58 386 | 95.68 238 | 99.66 288 | 95.59 291 | 98.09 362 | 98.76 315 |
|
| PLC |  | 94.65 16 | 96.51 298 | 95.73 310 | 98.85 156 | 98.75 275 | 97.91 160 | 96.42 317 | 99.06 240 | 90.94 395 | 95.59 377 | 97.38 352 | 94.41 273 | 99.59 313 | 90.93 389 | 98.04 368 | 99.05 262 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| 114514_t | | | 96.50 300 | 95.77 308 | 98.69 182 | 99.48 124 | 97.43 197 | 97.84 208 | 99.55 79 | 81.42 418 | 96.51 360 | 98.58 261 | 95.53 242 | 99.67 277 | 93.41 350 | 99.58 211 | 98.98 276 |
|
| test1111 | | | 96.49 301 | 96.82 275 | 95.52 373 | 99.42 137 | 87.08 407 | 99.22 42 | 87.14 421 | 99.11 78 | 99.46 77 | 99.58 44 | 88.69 340 | 99.86 118 | 98.80 78 | 99.95 32 | 99.62 72 |
|
| MAR-MVS | | | 96.47 302 | 95.70 311 | 98.79 166 | 97.92 360 | 99.12 61 | 98.28 146 | 98.60 310 | 92.16 382 | 95.54 383 | 96.17 376 | 94.77 267 | 99.52 339 | 89.62 397 | 98.23 352 | 97.72 385 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| ECVR-MVS |  | | 96.42 303 | 96.61 289 | 95.85 365 | 99.38 142 | 88.18 403 | 99.22 42 | 86.00 423 | 99.08 90 | 99.36 97 | 99.57 46 | 88.47 345 | 99.82 175 | 98.52 101 | 99.95 32 | 99.54 115 |
|
| SCA | | | 96.41 304 | 96.66 287 | 95.67 369 | 98.24 343 | 88.35 401 | 95.85 352 | 96.88 368 | 96.11 300 | 97.67 297 | 98.67 243 | 93.10 297 | 99.85 130 | 94.16 326 | 99.22 280 | 98.81 305 |
|
| DPM-MVS | | | 96.32 305 | 95.59 317 | 98.51 214 | 98.76 273 | 97.21 210 | 94.54 394 | 98.26 325 | 91.94 383 | 96.37 364 | 97.25 356 | 93.06 299 | 99.43 361 | 91.42 381 | 98.74 327 | 98.89 293 |
|
| CMPMVS |  | 75.91 23 | 96.29 306 | 95.44 323 | 98.84 157 | 96.25 415 | 98.69 90 | 97.02 284 | 99.12 232 | 88.90 405 | 97.83 287 | 98.86 209 | 89.51 335 | 98.90 403 | 91.92 371 | 99.51 233 | 98.92 288 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| CR-MVSNet | | | 96.28 307 | 95.95 306 | 97.28 314 | 97.71 370 | 94.22 313 | 98.11 166 | 98.92 265 | 92.31 380 | 96.91 340 | 99.37 86 | 85.44 364 | 99.81 189 | 97.39 167 | 97.36 385 | 97.81 379 |
|
| MonoMVSNet | | | 96.25 308 | 96.53 295 | 95.39 377 | 96.57 408 | 91.01 384 | 98.82 90 | 97.68 344 | 98.57 130 | 98.03 274 | 99.37 86 | 90.92 325 | 97.78 415 | 94.99 302 | 93.88 415 | 97.38 395 |
|
| CVMVSNet | | | 96.25 308 | 97.21 251 | 93.38 399 | 99.10 208 | 80.56 426 | 97.20 276 | 98.19 330 | 96.94 265 | 99.00 154 | 99.02 165 | 89.50 336 | 99.80 196 | 96.36 253 | 99.59 206 | 99.78 37 |
|
| AUN-MVS | | | 96.24 310 | 95.45 322 | 98.60 198 | 98.70 286 | 97.22 209 | 97.38 259 | 97.65 345 | 95.95 309 | 95.53 384 | 97.96 321 | 82.11 387 | 99.79 209 | 96.31 255 | 97.44 379 | 98.80 310 |
|
| EPNet | | | 96.14 311 | 95.44 323 | 98.25 242 | 90.76 427 | 95.50 276 | 97.92 196 | 94.65 394 | 98.97 102 | 92.98 410 | 98.85 212 | 89.12 338 | 99.87 110 | 95.99 271 | 99.68 175 | 99.39 183 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| wuyk23d | | | 96.06 312 | 97.62 227 | 91.38 402 | 98.65 305 | 98.57 98 | 98.85 87 | 96.95 365 | 96.86 270 | 99.90 12 | 99.16 136 | 99.18 17 | 98.40 410 | 89.23 399 | 99.77 128 | 77.18 422 |
|
| Syy-MVS | | | 96.04 313 | 95.56 319 | 97.49 304 | 97.10 398 | 94.48 308 | 96.18 332 | 96.58 373 | 95.65 316 | 94.77 392 | 92.29 419 | 91.27 322 | 99.36 370 | 98.17 119 | 98.05 366 | 98.63 329 |
|
| miper_enhance_ethall | | | 96.01 314 | 95.74 309 | 96.81 338 | 96.41 413 | 92.27 365 | 93.69 407 | 98.89 271 | 91.14 393 | 98.30 248 | 97.35 355 | 90.58 328 | 99.58 319 | 96.31 255 | 99.03 305 | 98.60 331 |
|
| FMVSNet5 | | | 96.01 314 | 95.20 333 | 98.41 227 | 97.53 382 | 96.10 253 | 98.74 92 | 99.50 92 | 97.22 251 | 98.03 274 | 99.04 162 | 69.80 410 | 99.88 93 | 97.27 172 | 99.71 160 | 99.25 228 |
|
| dmvs_re | | | 95.98 316 | 95.39 326 | 97.74 280 | 98.86 257 | 97.45 195 | 98.37 140 | 95.69 389 | 97.95 176 | 96.56 357 | 95.95 379 | 90.70 327 | 97.68 416 | 88.32 401 | 96.13 403 | 98.11 364 |
|
| baseline1 | | | 95.96 317 | 95.44 323 | 97.52 301 | 98.51 322 | 93.99 326 | 98.39 138 | 96.09 380 | 98.21 156 | 98.40 246 | 97.76 330 | 86.88 350 | 99.63 299 | 95.42 295 | 89.27 420 | 98.95 282 |
|
| HY-MVS | | 95.94 13 | 95.90 318 | 95.35 328 | 97.55 298 | 97.95 358 | 94.79 297 | 98.81 91 | 96.94 366 | 92.28 381 | 95.17 388 | 98.57 262 | 89.90 333 | 99.75 239 | 91.20 385 | 97.33 387 | 98.10 365 |
|
| MVStest1 | | | 95.86 319 | 95.60 315 | 96.63 343 | 95.87 419 | 91.70 370 | 97.93 193 | 98.94 259 | 98.03 170 | 99.56 55 | 99.66 29 | 71.83 408 | 98.26 412 | 99.35 42 | 99.24 276 | 99.91 13 |
|
| GA-MVS | | | 95.86 319 | 95.32 329 | 97.49 304 | 98.60 308 | 94.15 318 | 93.83 405 | 97.93 337 | 95.49 322 | 96.68 352 | 97.42 350 | 83.21 380 | 99.30 380 | 96.22 260 | 98.55 344 | 99.01 270 |
|
| OpenMVS_ROB |  | 95.38 14 | 95.84 321 | 95.18 334 | 97.81 271 | 98.41 334 | 97.15 216 | 97.37 261 | 98.62 309 | 83.86 414 | 98.65 211 | 98.37 286 | 94.29 278 | 99.68 274 | 88.41 400 | 98.62 341 | 96.60 405 |
|
| cl22 | | | 95.79 322 | 95.39 326 | 96.98 328 | 96.77 405 | 92.79 353 | 94.40 396 | 98.53 313 | 94.59 343 | 97.89 281 | 98.17 303 | 82.82 384 | 99.24 386 | 96.37 251 | 99.03 305 | 98.92 288 |
|
| 1314 | | | 95.74 323 | 95.60 315 | 96.17 359 | 97.53 382 | 92.75 355 | 98.07 172 | 98.31 324 | 91.22 391 | 94.25 398 | 96.68 366 | 95.53 242 | 99.03 395 | 91.64 377 | 97.18 389 | 96.74 403 |
|
| WB-MVSnew | | | 95.73 324 | 95.57 318 | 96.23 356 | 96.70 406 | 90.70 390 | 96.07 338 | 93.86 403 | 95.60 318 | 97.04 333 | 95.45 395 | 96.00 222 | 99.55 328 | 91.04 387 | 98.31 350 | 98.43 347 |
|
| PVSNet | | 93.40 17 | 95.67 325 | 95.70 311 | 95.57 372 | 98.83 263 | 88.57 399 | 92.50 412 | 97.72 341 | 92.69 376 | 96.49 363 | 96.44 372 | 93.72 291 | 99.43 361 | 93.61 343 | 99.28 270 | 98.71 319 |
|
| FE-MVS | | | 95.66 326 | 94.95 339 | 97.77 274 | 98.53 320 | 95.28 284 | 99.40 16 | 96.09 380 | 93.11 370 | 97.96 277 | 99.26 112 | 79.10 397 | 99.77 226 | 92.40 369 | 98.71 331 | 98.27 358 |
|
| tttt0517 | | | 95.64 327 | 94.98 337 | 97.64 288 | 99.36 149 | 93.81 334 | 98.72 97 | 90.47 416 | 98.08 169 | 98.67 208 | 98.34 290 | 73.88 406 | 99.92 53 | 97.77 146 | 99.51 233 | 99.20 238 |
|
| PatchmatchNet |  | | 95.58 328 | 95.67 313 | 95.30 379 | 97.34 392 | 87.32 406 | 97.65 233 | 96.65 371 | 95.30 328 | 97.07 331 | 98.69 239 | 84.77 367 | 99.75 239 | 94.97 304 | 98.64 338 | 98.83 300 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| TR-MVS | | | 95.55 329 | 95.12 335 | 96.86 337 | 97.54 380 | 93.94 327 | 96.49 313 | 96.53 375 | 94.36 351 | 97.03 335 | 96.61 367 | 94.26 279 | 99.16 392 | 86.91 407 | 96.31 400 | 97.47 393 |
|
| JIA-IIPM | | | 95.52 330 | 95.03 336 | 97.00 326 | 96.85 403 | 94.03 323 | 96.93 291 | 95.82 385 | 99.20 67 | 94.63 396 | 99.71 19 | 83.09 381 | 99.60 309 | 94.42 320 | 94.64 411 | 97.36 396 |
|
| CHOSEN 280x420 | | | 95.51 331 | 95.47 320 | 95.65 371 | 98.25 342 | 88.27 402 | 93.25 409 | 98.88 272 | 93.53 364 | 94.65 395 | 97.15 359 | 86.17 356 | 99.93 44 | 97.41 166 | 99.93 45 | 98.73 318 |
|
| ADS-MVSNet2 | | | 95.43 332 | 94.98 337 | 96.76 341 | 98.14 350 | 91.74 369 | 97.92 196 | 97.76 340 | 90.23 396 | 96.51 360 | 98.91 196 | 85.61 361 | 99.85 130 | 92.88 358 | 96.90 392 | 98.69 323 |
|
| PAPR | | | 95.29 333 | 94.47 344 | 97.75 278 | 97.50 388 | 95.14 290 | 94.89 382 | 98.71 303 | 91.39 390 | 95.35 387 | 95.48 391 | 94.57 270 | 99.14 394 | 84.95 410 | 97.37 383 | 98.97 279 |
|
| thisisatest0530 | | | 95.27 334 | 94.45 345 | 97.74 280 | 99.19 187 | 94.37 311 | 97.86 205 | 90.20 417 | 97.17 253 | 98.22 255 | 97.65 336 | 73.53 407 | 99.90 68 | 96.90 204 | 99.35 258 | 98.95 282 |
|
| ADS-MVSNet | | | 95.24 335 | 94.93 340 | 96.18 358 | 98.14 350 | 90.10 394 | 97.92 196 | 97.32 353 | 90.23 396 | 96.51 360 | 98.91 196 | 85.61 361 | 99.74 244 | 92.88 358 | 96.90 392 | 98.69 323 |
|
| WBMVS | | | 95.18 336 | 94.78 342 | 96.37 349 | 97.68 375 | 89.74 396 | 95.80 354 | 98.73 301 | 97.54 211 | 98.30 248 | 98.44 279 | 70.06 409 | 99.82 175 | 96.62 228 | 99.87 78 | 99.54 115 |
|
| BH-w/o | | | 95.13 337 | 94.89 341 | 95.86 364 | 98.20 346 | 91.31 377 | 95.65 358 | 97.37 349 | 93.64 362 | 96.52 359 | 95.70 385 | 93.04 300 | 99.02 396 | 88.10 402 | 95.82 406 | 97.24 397 |
|
| tpmrst | | | 95.07 338 | 95.46 321 | 93.91 392 | 97.11 397 | 84.36 418 | 97.62 236 | 96.96 364 | 94.98 334 | 96.35 365 | 98.80 221 | 85.46 363 | 99.59 313 | 95.60 290 | 96.23 401 | 97.79 382 |
|
| pmmvs3 | | | 95.03 339 | 94.40 346 | 96.93 330 | 97.70 372 | 92.53 358 | 95.08 377 | 97.71 342 | 88.57 406 | 97.71 294 | 98.08 311 | 79.39 395 | 99.82 175 | 96.19 262 | 99.11 299 | 98.43 347 |
|
| tpmvs | | | 95.02 340 | 95.25 330 | 94.33 386 | 96.39 414 | 85.87 409 | 98.08 170 | 96.83 369 | 95.46 323 | 95.51 385 | 98.69 239 | 85.91 359 | 99.53 335 | 94.16 326 | 96.23 401 | 97.58 390 |
|
| reproduce_monomvs | | | 95.00 341 | 95.25 330 | 94.22 388 | 97.51 387 | 83.34 420 | 97.86 205 | 98.44 317 | 98.51 135 | 99.29 111 | 99.30 103 | 67.68 415 | 99.56 324 | 98.89 74 | 99.81 101 | 99.77 39 |
|
| EPNet_dtu | | | 94.93 342 | 94.78 342 | 95.38 378 | 93.58 423 | 87.68 405 | 96.78 298 | 95.69 389 | 97.35 232 | 89.14 420 | 98.09 310 | 88.15 347 | 99.49 348 | 94.95 305 | 99.30 267 | 98.98 276 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| cascas | | | 94.79 343 | 94.33 349 | 96.15 362 | 96.02 418 | 92.36 363 | 92.34 414 | 99.26 198 | 85.34 413 | 95.08 390 | 94.96 401 | 92.96 301 | 98.53 409 | 94.41 323 | 98.59 342 | 97.56 391 |
|
| tpm | | | 94.67 344 | 94.34 348 | 95.66 370 | 97.68 375 | 88.42 400 | 97.88 201 | 94.90 392 | 94.46 346 | 96.03 373 | 98.56 263 | 78.66 398 | 99.79 209 | 95.88 275 | 95.01 410 | 98.78 312 |
|
| test0.0.03 1 | | | 94.51 345 | 93.69 354 | 96.99 327 | 96.05 416 | 93.61 342 | 94.97 380 | 93.49 404 | 96.17 297 | 97.57 305 | 94.88 402 | 82.30 385 | 99.01 398 | 93.60 344 | 94.17 414 | 98.37 354 |
|
| thres600view7 | | | 94.45 346 | 93.83 352 | 96.29 352 | 99.06 220 | 91.53 372 | 97.99 188 | 94.24 400 | 98.34 142 | 97.44 317 | 95.01 398 | 79.84 391 | 99.67 277 | 84.33 411 | 98.23 352 | 97.66 387 |
|
| PCF-MVS | | 92.86 18 | 94.36 347 | 93.00 364 | 98.42 226 | 98.70 286 | 97.56 189 | 93.16 410 | 99.11 234 | 79.59 419 | 97.55 306 | 97.43 349 | 92.19 312 | 99.73 249 | 79.85 419 | 99.45 245 | 97.97 373 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| X-MVStestdata | | | 94.32 348 | 92.59 366 | 99.53 37 | 99.46 127 | 99.21 32 | 98.65 103 | 99.34 159 | 98.62 124 | 97.54 307 | 45.85 423 | 97.50 143 | 99.83 165 | 96.79 212 | 99.53 228 | 99.56 104 |
|
| MVS-HIRNet | | | 94.32 348 | 95.62 314 | 90.42 403 | 98.46 326 | 75.36 427 | 96.29 325 | 89.13 419 | 95.25 329 | 95.38 386 | 99.75 13 | 92.88 302 | 99.19 390 | 94.07 332 | 99.39 252 | 96.72 404 |
|
| ET-MVSNet_ETH3D | | | 94.30 350 | 93.21 360 | 97.58 293 | 98.14 350 | 94.47 309 | 94.78 384 | 93.24 407 | 94.72 340 | 89.56 418 | 95.87 382 | 78.57 400 | 99.81 189 | 96.91 199 | 97.11 391 | 98.46 339 |
|
| thres100view900 | | | 94.19 351 | 93.67 355 | 95.75 368 | 99.06 220 | 91.35 376 | 98.03 178 | 94.24 400 | 98.33 143 | 97.40 319 | 94.98 400 | 79.84 391 | 99.62 302 | 83.05 413 | 98.08 363 | 96.29 406 |
|
| E-PMN | | | 94.17 352 | 94.37 347 | 93.58 396 | 96.86 402 | 85.71 412 | 90.11 418 | 97.07 360 | 98.17 163 | 97.82 289 | 97.19 357 | 84.62 369 | 98.94 400 | 89.77 396 | 97.68 373 | 96.09 412 |
|
| thres400 | | | 94.14 353 | 93.44 357 | 96.24 355 | 98.93 241 | 91.44 374 | 97.60 239 | 94.29 398 | 97.94 178 | 97.10 329 | 94.31 407 | 79.67 393 | 99.62 302 | 83.05 413 | 98.08 363 | 97.66 387 |
|
| thisisatest0515 | | | 94.12 354 | 93.16 361 | 96.97 329 | 98.60 308 | 92.90 351 | 93.77 406 | 90.61 415 | 94.10 356 | 96.91 340 | 95.87 382 | 74.99 405 | 99.80 196 | 94.52 315 | 99.12 298 | 98.20 360 |
|
| tfpn200view9 | | | 94.03 355 | 93.44 357 | 95.78 367 | 98.93 241 | 91.44 374 | 97.60 239 | 94.29 398 | 97.94 178 | 97.10 329 | 94.31 407 | 79.67 393 | 99.62 302 | 83.05 413 | 98.08 363 | 96.29 406 |
|
| CostFormer | | | 93.97 356 | 93.78 353 | 94.51 385 | 97.53 382 | 85.83 411 | 97.98 189 | 95.96 382 | 89.29 404 | 94.99 391 | 98.63 253 | 78.63 399 | 99.62 302 | 94.54 314 | 96.50 397 | 98.09 366 |
|
| test-LLR | | | 93.90 357 | 93.85 351 | 94.04 390 | 96.53 409 | 84.62 416 | 94.05 402 | 92.39 409 | 96.17 297 | 94.12 400 | 95.07 396 | 82.30 385 | 99.67 277 | 95.87 278 | 98.18 355 | 97.82 377 |
|
| EMVS | | | 93.83 358 | 94.02 350 | 93.23 400 | 96.83 404 | 84.96 413 | 89.77 419 | 96.32 377 | 97.92 180 | 97.43 318 | 96.36 375 | 86.17 356 | 98.93 401 | 87.68 403 | 97.73 372 | 95.81 413 |
|
| baseline2 | | | 93.73 359 | 92.83 365 | 96.42 348 | 97.70 372 | 91.28 379 | 96.84 296 | 89.77 418 | 93.96 360 | 92.44 413 | 95.93 380 | 79.14 396 | 99.77 226 | 92.94 356 | 96.76 396 | 98.21 359 |
|
| thres200 | | | 93.72 360 | 93.14 362 | 95.46 376 | 98.66 301 | 91.29 378 | 96.61 308 | 94.63 395 | 97.39 228 | 96.83 347 | 93.71 410 | 79.88 390 | 99.56 324 | 82.40 416 | 98.13 360 | 95.54 415 |
|
| EPMVS | | | 93.72 360 | 93.27 359 | 95.09 382 | 96.04 417 | 87.76 404 | 98.13 162 | 85.01 424 | 94.69 341 | 96.92 338 | 98.64 251 | 78.47 402 | 99.31 378 | 95.04 301 | 96.46 398 | 98.20 360 |
|
| testing3 | | | 93.51 362 | 92.09 372 | 97.75 278 | 98.60 308 | 94.40 310 | 97.32 265 | 95.26 391 | 97.56 208 | 96.79 350 | 95.50 389 | 53.57 428 | 99.77 226 | 95.26 298 | 98.97 315 | 99.08 258 |
|
| dp | | | 93.47 363 | 93.59 356 | 93.13 401 | 96.64 407 | 81.62 425 | 97.66 231 | 96.42 376 | 92.80 375 | 96.11 369 | 98.64 251 | 78.55 401 | 99.59 313 | 93.31 351 | 92.18 419 | 98.16 362 |
|
| FPMVS | | | 93.44 364 | 92.23 370 | 97.08 323 | 99.25 172 | 97.86 164 | 95.61 359 | 97.16 358 | 92.90 373 | 93.76 407 | 98.65 248 | 75.94 404 | 95.66 420 | 79.30 420 | 97.49 376 | 97.73 384 |
|
| testing91 | | | 93.32 365 | 92.27 369 | 96.47 347 | 97.54 380 | 91.25 380 | 96.17 334 | 96.76 370 | 97.18 252 | 93.65 408 | 93.50 412 | 65.11 422 | 99.63 299 | 93.04 355 | 97.45 378 | 98.53 336 |
|
| tpm cat1 | | | 93.29 366 | 93.13 363 | 93.75 394 | 97.39 391 | 84.74 414 | 97.39 258 | 97.65 345 | 83.39 416 | 94.16 399 | 98.41 281 | 82.86 383 | 99.39 367 | 91.56 379 | 95.35 409 | 97.14 398 |
|
| UBG | | | 93.25 367 | 92.32 368 | 96.04 363 | 97.72 367 | 90.16 393 | 95.92 348 | 95.91 384 | 96.03 305 | 93.95 405 | 93.04 415 | 69.60 411 | 99.52 339 | 90.72 393 | 97.98 369 | 98.45 342 |
|
| MVS | | | 93.19 368 | 92.09 372 | 96.50 346 | 96.91 401 | 94.03 323 | 98.07 172 | 98.06 335 | 68.01 421 | 94.56 397 | 96.48 370 | 95.96 229 | 99.30 380 | 83.84 412 | 96.89 394 | 96.17 408 |
|
| tpm2 | | | 93.09 369 | 92.58 367 | 94.62 384 | 97.56 378 | 86.53 408 | 97.66 231 | 95.79 386 | 86.15 411 | 94.07 402 | 98.23 299 | 75.95 403 | 99.53 335 | 90.91 390 | 96.86 395 | 97.81 379 |
|
| testing11 | | | 93.08 370 | 92.02 374 | 96.26 354 | 97.56 378 | 90.83 388 | 96.32 323 | 95.70 387 | 96.47 288 | 92.66 412 | 93.73 409 | 64.36 423 | 99.59 313 | 93.77 341 | 97.57 374 | 98.37 354 |
|
| testing99 | | | 93.04 371 | 91.98 377 | 96.23 356 | 97.53 382 | 90.70 390 | 96.35 321 | 95.94 383 | 96.87 269 | 93.41 409 | 93.43 413 | 63.84 424 | 99.59 313 | 93.24 353 | 97.19 388 | 98.40 350 |
|
| dmvs_testset | | | 92.94 372 | 92.21 371 | 95.13 380 | 98.59 311 | 90.99 385 | 97.65 233 | 92.09 411 | 96.95 264 | 94.00 403 | 93.55 411 | 92.34 311 | 96.97 419 | 72.20 422 | 92.52 417 | 97.43 394 |
|
| KD-MVS_2432*1600 | | | 92.87 373 | 91.99 375 | 95.51 374 | 91.37 425 | 89.27 397 | 94.07 400 | 98.14 331 | 95.42 324 | 97.25 326 | 96.44 372 | 67.86 413 | 99.24 386 | 91.28 383 | 96.08 404 | 98.02 369 |
|
| miper_refine_blended | | | 92.87 373 | 91.99 375 | 95.51 374 | 91.37 425 | 89.27 397 | 94.07 400 | 98.14 331 | 95.42 324 | 97.25 326 | 96.44 372 | 67.86 413 | 99.24 386 | 91.28 383 | 96.08 404 | 98.02 369 |
|
| ETVMVS | | | 92.60 375 | 91.08 384 | 97.18 318 | 97.70 372 | 93.65 341 | 96.54 309 | 95.70 387 | 96.51 284 | 94.68 394 | 92.39 418 | 61.80 425 | 99.50 345 | 86.97 405 | 97.41 381 | 98.40 350 |
|
| MVE |  | 83.40 22 | 92.50 376 | 91.92 378 | 94.25 387 | 98.83 263 | 91.64 371 | 92.71 411 | 83.52 425 | 95.92 310 | 86.46 423 | 95.46 392 | 95.20 251 | 95.40 421 | 80.51 418 | 98.64 338 | 95.73 414 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| test2506 | | | 92.39 377 | 91.89 379 | 93.89 393 | 99.38 142 | 82.28 423 | 99.32 23 | 66.03 429 | 99.08 90 | 98.77 197 | 99.57 46 | 66.26 419 | 99.84 148 | 98.71 88 | 99.95 32 | 99.54 115 |
|
| UWE-MVS | | | 92.38 378 | 91.76 381 | 94.21 389 | 97.16 396 | 84.65 415 | 95.42 368 | 88.45 420 | 95.96 308 | 96.17 367 | 95.84 384 | 66.36 418 | 99.71 257 | 91.87 373 | 98.64 338 | 98.28 357 |
|
| gg-mvs-nofinetune | | | 92.37 379 | 91.20 383 | 95.85 365 | 95.80 420 | 92.38 362 | 99.31 27 | 81.84 426 | 99.75 8 | 91.83 415 | 99.74 15 | 68.29 412 | 99.02 396 | 87.15 404 | 97.12 390 | 96.16 409 |
|
| test-mter | | | 92.33 380 | 91.76 381 | 94.04 390 | 96.53 409 | 84.62 416 | 94.05 402 | 92.39 409 | 94.00 359 | 94.12 400 | 95.07 396 | 65.63 421 | 99.67 277 | 95.87 278 | 98.18 355 | 97.82 377 |
|
| IB-MVS | | 91.63 19 | 92.24 381 | 90.90 385 | 96.27 353 | 97.22 395 | 91.24 381 | 94.36 397 | 93.33 406 | 92.37 379 | 92.24 414 | 94.58 406 | 66.20 420 | 99.89 80 | 93.16 354 | 94.63 412 | 97.66 387 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| TESTMET0.1,1 | | | 92.19 382 | 91.77 380 | 93.46 397 | 96.48 411 | 82.80 422 | 94.05 402 | 91.52 414 | 94.45 348 | 94.00 403 | 94.88 402 | 66.65 417 | 99.56 324 | 95.78 283 | 98.11 361 | 98.02 369 |
|
| testing222 | | | 91.96 383 | 90.37 387 | 96.72 342 | 97.47 389 | 92.59 356 | 96.11 336 | 94.76 393 | 96.83 271 | 92.90 411 | 92.87 416 | 57.92 426 | 99.55 328 | 86.93 406 | 97.52 375 | 98.00 372 |
|
| myMVS_eth3d | | | 91.92 384 | 90.45 386 | 96.30 351 | 97.10 398 | 90.90 386 | 96.18 332 | 96.58 373 | 95.65 316 | 94.77 392 | 92.29 419 | 53.88 427 | 99.36 370 | 89.59 398 | 98.05 366 | 98.63 329 |
|
| PAPM | | | 91.88 385 | 90.34 388 | 96.51 345 | 98.06 355 | 92.56 357 | 92.44 413 | 97.17 357 | 86.35 410 | 90.38 417 | 96.01 377 | 86.61 352 | 99.21 389 | 70.65 423 | 95.43 408 | 97.75 383 |
|
| PVSNet_0 | | 89.98 21 | 91.15 386 | 90.30 389 | 93.70 395 | 97.72 367 | 84.34 419 | 90.24 416 | 97.42 348 | 90.20 399 | 93.79 406 | 93.09 414 | 90.90 326 | 98.89 404 | 86.57 408 | 72.76 423 | 97.87 376 |
|
| EGC-MVSNET | | | 85.24 387 | 80.54 390 | 99.34 75 | 99.77 26 | 99.20 38 | 99.08 58 | 99.29 187 | 12.08 425 | 20.84 426 | 99.42 79 | 97.55 136 | 99.85 130 | 97.08 186 | 99.72 155 | 98.96 281 |
|
| test_method | | | 79.78 388 | 79.50 391 | 80.62 404 | 80.21 429 | 45.76 432 | 70.82 420 | 98.41 321 | 31.08 424 | 80.89 424 | 97.71 332 | 84.85 366 | 97.37 417 | 91.51 380 | 80.03 421 | 98.75 316 |
|
| tmp_tt | | | 78.77 389 | 78.73 392 | 78.90 405 | 58.45 430 | 74.76 429 | 94.20 399 | 78.26 428 | 39.16 423 | 86.71 422 | 92.82 417 | 80.50 389 | 75.19 425 | 86.16 409 | 92.29 418 | 86.74 419 |
|
| dongtai | | | 76.24 390 | 75.95 393 | 77.12 406 | 92.39 424 | 67.91 430 | 90.16 417 | 59.44 431 | 82.04 417 | 89.42 419 | 94.67 405 | 49.68 429 | 81.74 424 | 48.06 424 | 77.66 422 | 81.72 420 |
|
| kuosan | | | 69.30 391 | 68.95 394 | 70.34 407 | 87.68 428 | 65.00 431 | 91.11 415 | 59.90 430 | 69.02 420 | 74.46 425 | 88.89 422 | 48.58 430 | 68.03 426 | 28.61 425 | 72.33 424 | 77.99 421 |
|
| cdsmvs_eth3d_5k | | | 24.66 392 | 32.88 395 | 0.00 410 | 0.00 433 | 0.00 435 | 0.00 421 | 99.10 235 | 0.00 428 | 0.00 429 | 97.58 340 | 99.21 16 | 0.00 429 | 0.00 428 | 0.00 427 | 0.00 425 |
|
| testmvs | | | 17.12 393 | 20.53 396 | 6.87 409 | 12.05 431 | 4.20 434 | 93.62 408 | 6.73 432 | 4.62 427 | 10.41 427 | 24.33 424 | 8.28 432 | 3.56 428 | 9.69 427 | 15.07 425 | 12.86 424 |
|
| test123 | | | 17.04 394 | 20.11 397 | 7.82 408 | 10.25 432 | 4.91 433 | 94.80 383 | 4.47 433 | 4.93 426 | 10.00 428 | 24.28 425 | 9.69 431 | 3.64 427 | 10.14 426 | 12.43 426 | 14.92 423 |
|
| pcd_1.5k_mvsjas | | | 8.17 395 | 10.90 398 | 0.00 410 | 0.00 433 | 0.00 435 | 0.00 421 | 0.00 434 | 0.00 428 | 0.00 429 | 0.00 428 | 98.07 95 | 0.00 429 | 0.00 428 | 0.00 427 | 0.00 425 |
|
| ab-mvs-re | | | 8.12 396 | 10.83 399 | 0.00 410 | 0.00 433 | 0.00 435 | 0.00 421 | 0.00 434 | 0.00 428 | 0.00 429 | 97.48 346 | 0.00 433 | 0.00 429 | 0.00 428 | 0.00 427 | 0.00 425 |
|
| mmdepth | | | 0.00 397 | 0.00 400 | 0.00 410 | 0.00 433 | 0.00 435 | 0.00 421 | 0.00 434 | 0.00 428 | 0.00 429 | 0.00 428 | 0.00 433 | 0.00 429 | 0.00 428 | 0.00 427 | 0.00 425 |
|
| monomultidepth | | | 0.00 397 | 0.00 400 | 0.00 410 | 0.00 433 | 0.00 435 | 0.00 421 | 0.00 434 | 0.00 428 | 0.00 429 | 0.00 428 | 0.00 433 | 0.00 429 | 0.00 428 | 0.00 427 | 0.00 425 |
|
| test_blank | | | 0.00 397 | 0.00 400 | 0.00 410 | 0.00 433 | 0.00 435 | 0.00 421 | 0.00 434 | 0.00 428 | 0.00 429 | 0.00 428 | 0.00 433 | 0.00 429 | 0.00 428 | 0.00 427 | 0.00 425 |
|
| uanet_test | | | 0.00 397 | 0.00 400 | 0.00 410 | 0.00 433 | 0.00 435 | 0.00 421 | 0.00 434 | 0.00 428 | 0.00 429 | 0.00 428 | 0.00 433 | 0.00 429 | 0.00 428 | 0.00 427 | 0.00 425 |
|
| DCPMVS | | | 0.00 397 | 0.00 400 | 0.00 410 | 0.00 433 | 0.00 435 | 0.00 421 | 0.00 434 | 0.00 428 | 0.00 429 | 0.00 428 | 0.00 433 | 0.00 429 | 0.00 428 | 0.00 427 | 0.00 425 |
|
| sosnet-low-res | | | 0.00 397 | 0.00 400 | 0.00 410 | 0.00 433 | 0.00 435 | 0.00 421 | 0.00 434 | 0.00 428 | 0.00 429 | 0.00 428 | 0.00 433 | 0.00 429 | 0.00 428 | 0.00 427 | 0.00 425 |
|
| sosnet | | | 0.00 397 | 0.00 400 | 0.00 410 | 0.00 433 | 0.00 435 | 0.00 421 | 0.00 434 | 0.00 428 | 0.00 429 | 0.00 428 | 0.00 433 | 0.00 429 | 0.00 428 | 0.00 427 | 0.00 425 |
|
| uncertanet | | | 0.00 397 | 0.00 400 | 0.00 410 | 0.00 433 | 0.00 435 | 0.00 421 | 0.00 434 | 0.00 428 | 0.00 429 | 0.00 428 | 0.00 433 | 0.00 429 | 0.00 428 | 0.00 427 | 0.00 425 |
|
| Regformer | | | 0.00 397 | 0.00 400 | 0.00 410 | 0.00 433 | 0.00 435 | 0.00 421 | 0.00 434 | 0.00 428 | 0.00 429 | 0.00 428 | 0.00 433 | 0.00 429 | 0.00 428 | 0.00 427 | 0.00 425 |
|
| uanet | | | 0.00 397 | 0.00 400 | 0.00 410 | 0.00 433 | 0.00 435 | 0.00 421 | 0.00 434 | 0.00 428 | 0.00 429 | 0.00 428 | 0.00 433 | 0.00 429 | 0.00 428 | 0.00 427 | 0.00 425 |
|
| WAC-MVS | | | | | | | 90.90 386 | | | | | | | | 91.37 382 | | |
|
| FOURS1 | | | | | | 99.73 36 | 99.67 3 | 99.43 12 | 99.54 83 | 99.43 43 | 99.26 118 | | | | | | |
|
| MSC_two_6792asdad | | | | | 99.32 82 | 98.43 330 | 98.37 113 | | 98.86 279 | | | | | 99.89 80 | 97.14 181 | 99.60 202 | 99.71 51 |
|
| PC_three_1452 | | | | | | | | | | 93.27 367 | 99.40 90 | 98.54 264 | 98.22 82 | 97.00 418 | 95.17 299 | 99.45 245 | 99.49 136 |
|
| No_MVS | | | | | 99.32 82 | 98.43 330 | 98.37 113 | | 98.86 279 | | | | | 99.89 80 | 97.14 181 | 99.60 202 | 99.71 51 |
|
| test_one_0601 | | | | | | 99.39 141 | 99.20 38 | | 99.31 171 | 98.49 136 | 98.66 210 | 99.02 165 | 97.64 128 | | | | |
|
| eth-test2 | | | | | | 0.00 433 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 433 | | | | | | | | | | | |
|
| ZD-MVS | | | | | | 99.01 229 | 98.84 78 | | 99.07 239 | 94.10 356 | 98.05 272 | 98.12 306 | 96.36 209 | 99.86 118 | 92.70 365 | 99.19 287 | |
|
| RE-MVS-def | | | | 98.58 119 | | 99.20 184 | 99.38 12 | 98.48 129 | 99.30 179 | 98.64 120 | 98.95 164 | 98.96 187 | 97.75 119 | | 96.56 237 | 99.39 252 | 99.45 159 |
|
| IU-MVS | | | | | | 99.49 116 | 99.15 51 | | 98.87 274 | 92.97 371 | 99.41 87 | | | | 96.76 216 | 99.62 195 | 99.66 62 |
|
| OPU-MVS | | | | | 98.82 159 | 98.59 311 | 98.30 118 | 98.10 168 | | | | 98.52 268 | 98.18 86 | 98.75 406 | 94.62 312 | 99.48 242 | 99.41 173 |
|
| test_241102_TWO | | | | | | | | | 99.30 179 | 98.03 170 | 99.26 118 | 99.02 165 | 97.51 142 | 99.88 93 | 96.91 199 | 99.60 202 | 99.66 62 |
|
| test_241102_ONE | | | | | | 99.49 116 | 99.17 43 | | 99.31 171 | 97.98 173 | 99.66 45 | 98.90 199 | 98.36 67 | 99.48 351 | | | |
|
| 9.14 | | | | 97.78 212 | | 99.07 215 | | 97.53 247 | 99.32 166 | 95.53 321 | 98.54 230 | 98.70 238 | 97.58 133 | 99.76 232 | 94.32 325 | 99.46 243 | |
|
| save fliter | | | | | | 99.11 206 | 97.97 154 | 96.53 311 | 99.02 251 | 98.24 153 | | | | | | | |
|
| test_0728_THIRD | | | | | | | | | | 98.17 163 | 99.08 140 | 99.02 165 | 97.89 108 | 99.88 93 | 97.07 187 | 99.71 160 | 99.70 56 |
|
| test_0728_SECOND | | | | | 99.60 14 | 99.50 109 | 99.23 30 | 98.02 180 | 99.32 166 | | | | | 99.88 93 | 96.99 193 | 99.63 192 | 99.68 58 |
|
| test0726 | | | | | | 99.50 109 | 99.21 32 | 98.17 158 | 99.35 153 | 97.97 174 | 99.26 118 | 99.06 153 | 97.61 131 | | | | |
|
| GSMVS | | | | | | | | | | | | | | | | | 98.81 305 |
|
| test_part2 | | | | | | 99.36 149 | 99.10 64 | | | | 99.05 147 | | | | | | |
|
| sam_mvs1 | | | | | | | | | | | | | 84.74 368 | | | | 98.81 305 |
|
| sam_mvs | | | | | | | | | | | | | 84.29 374 | | | | |
|
| ambc | | | | | 98.24 244 | 98.82 266 | 95.97 262 | 98.62 107 | 99.00 256 | | 99.27 114 | 99.21 123 | 96.99 174 | 99.50 345 | 96.55 240 | 99.50 240 | 99.26 227 |
|
| MTGPA |  | | | | | | | | 99.20 210 | | | | | | | | |
|
| test_post1 | | | | | | | | 97.59 241 | | | | 20.48 427 | 83.07 382 | 99.66 288 | 94.16 326 | | |
|
| test_post | | | | | | | | | | | | 21.25 426 | 83.86 377 | 99.70 261 | | | |
|
| patchmatchnet-post | | | | | | | | | | | | 98.77 227 | 84.37 371 | 99.85 130 | | | |
|
| GG-mvs-BLEND | | | | | 94.76 383 | 94.54 422 | 92.13 367 | 99.31 27 | 80.47 427 | | 88.73 421 | 91.01 421 | 67.59 416 | 98.16 414 | 82.30 417 | 94.53 413 | 93.98 417 |
|
| MTMP | | | | | | | | 97.93 193 | 91.91 413 | | | | | | | | |
|
| gm-plane-assit | | | | | | 94.83 421 | 81.97 424 | | | 88.07 408 | | 94.99 399 | | 99.60 309 | 91.76 374 | | |
|
| test9_res | | | | | | | | | | | | | | | 93.28 352 | 99.15 292 | 99.38 190 |
|
| TEST9 | | | | | | 98.71 282 | 98.08 141 | 95.96 343 | 99.03 248 | 91.40 389 | 95.85 374 | 97.53 342 | 96.52 200 | 99.76 232 | | | |
|
| test_8 | | | | | | 98.67 296 | 98.01 149 | 95.91 349 | 99.02 251 | 91.64 384 | 95.79 376 | 97.50 345 | 96.47 202 | 99.76 232 | | | |
|
| agg_prior2 | | | | | | | | | | | | | | | 92.50 368 | 99.16 290 | 99.37 192 |
|
| agg_prior | | | | | | 98.68 295 | 97.99 150 | | 99.01 254 | | 95.59 377 | | | 99.77 226 | | | |
|
| TestCases | | | | | 99.16 107 | 99.50 109 | 98.55 99 | | 99.58 61 | 96.80 272 | 98.88 180 | 99.06 153 | 97.65 125 | 99.57 321 | 94.45 318 | 99.61 200 | 99.37 192 |
|
| test_prior4 | | | | | | | 97.97 154 | 95.86 350 | | | | | | | | | |
|
| test_prior2 | | | | | | | | 95.74 356 | | 96.48 287 | 96.11 369 | 97.63 338 | 95.92 232 | | 94.16 326 | 99.20 284 | |
|
| test_prior | | | | | 98.95 143 | 98.69 291 | 97.95 158 | | 99.03 248 | | | | | 99.59 313 | | | 99.30 219 |
|
| 旧先验2 | | | | | | | | 95.76 355 | | 88.56 407 | 97.52 309 | | | 99.66 288 | 94.48 316 | | |
|
| 新几何2 | | | | | | | | 95.93 346 | | | | | | | | | |
|
| 新几何1 | | | | | 98.91 150 | 98.94 239 | 97.76 176 | | 98.76 295 | 87.58 409 | 96.75 351 | 98.10 308 | 94.80 265 | 99.78 220 | 92.73 364 | 99.00 310 | 99.20 238 |
|
| 旧先验1 | | | | | | 98.82 266 | 97.45 195 | | 98.76 295 | | | 98.34 290 | 95.50 245 | | | 99.01 309 | 99.23 233 |
|
| 无先验 | | | | | | | | 95.74 356 | 98.74 300 | 89.38 403 | | | | 99.73 249 | 92.38 370 | | 99.22 237 |
|
| 原ACMM2 | | | | | | | | 95.53 362 | | | | | | | | | |
|
| 原ACMM1 | | | | | 98.35 234 | 98.90 249 | 96.25 251 | | 98.83 287 | 92.48 378 | 96.07 371 | 98.10 308 | 95.39 248 | 99.71 257 | 92.61 367 | 98.99 312 | 99.08 258 |
|
| test222 | | | | | | 98.92 245 | 96.93 227 | 95.54 361 | 98.78 293 | 85.72 412 | 96.86 346 | 98.11 307 | 94.43 272 | | | 99.10 300 | 99.23 233 |
|
| testdata2 | | | | | | | | | | | | | | 99.79 209 | 92.80 362 | | |
|
| segment_acmp | | | | | | | | | | | | | 97.02 172 | | | | |
|
| testdata | | | | | 98.09 252 | 98.93 241 | 95.40 280 | | 98.80 290 | 90.08 400 | 97.45 316 | 98.37 286 | 95.26 250 | 99.70 261 | 93.58 345 | 98.95 317 | 99.17 250 |
|
| testdata1 | | | | | | | | 95.44 367 | | 96.32 293 | | | | | | | |
|
| test12 | | | | | 98.93 146 | 98.58 313 | 97.83 167 | | 98.66 305 | | 96.53 358 | | 95.51 244 | 99.69 265 | | 99.13 295 | 99.27 224 |
|
| plane_prior7 | | | | | | 99.19 187 | 97.87 163 | | | | | | | | | | |
|
| plane_prior6 | | | | | | 98.99 233 | 97.70 182 | | | | | | 94.90 258 | | | | |
|
| plane_prior5 | | | | | | | | | 99.27 193 | | | | | 99.70 261 | 94.42 320 | 99.51 233 | 99.45 159 |
|
| plane_prior4 | | | | | | | | | | | | 97.98 317 | | | | | |
|
| plane_prior3 | | | | | | | 97.78 175 | | | 97.41 226 | 97.79 290 | | | | | | |
|
| plane_prior2 | | | | | | | | 97.77 216 | | 98.20 160 | | | | | | | |
|
| plane_prior1 | | | | | | 99.05 223 | | | | | | | | | | | |
|
| plane_prior | | | | | | | 97.65 184 | 97.07 283 | | 96.72 277 | | | | | | 99.36 256 | |
|
| n2 | | | | | | | | | 0.00 434 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 434 | | | | | | | | |
|
| door-mid | | | | | | | | | 99.57 68 | | | | | | | | |
|
| lessismore_v0 | | | | | 98.97 140 | 99.73 36 | 97.53 191 | | 86.71 422 | | 99.37 95 | 99.52 63 | 89.93 332 | 99.92 53 | 98.99 67 | 99.72 155 | 99.44 163 |
|
| LGP-MVS_train | | | | | 99.47 56 | 99.57 82 | 98.97 70 | | 99.48 101 | 96.60 281 | 99.10 138 | 99.06 153 | 98.71 39 | 99.83 165 | 95.58 292 | 99.78 122 | 99.62 72 |
|
| test11 | | | | | | | | | 98.87 274 | | | | | | | | |
|
| door | | | | | | | | | 99.41 133 | | | | | | | | |
|
| HQP5-MVS | | | | | | | 96.79 233 | | | | | | | | | | |
|
| HQP-NCC | | | | | | 98.67 296 | | 96.29 325 | | 96.05 302 | 95.55 380 | | | | | | |
|
| ACMP_Plane | | | | | | 98.67 296 | | 96.29 325 | | 96.05 302 | 95.55 380 | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 92.82 360 | | |
|
| HQP4-MVS | | | | | | | | | | | 95.56 379 | | | 99.54 333 | | | 99.32 212 |
|
| HQP3-MVS | | | | | | | | | 99.04 246 | | | | | | | 99.26 274 | |
|
| HQP2-MVS | | | | | | | | | | | | | 93.84 286 | | | | |
|
| NP-MVS | | | | | | 98.84 261 | 97.39 199 | | | | | 96.84 363 | | | | | |
|
| MDTV_nov1_ep13_2view | | | | | | | 74.92 428 | 97.69 226 | | 90.06 401 | 97.75 293 | | 85.78 360 | | 93.52 346 | | 98.69 323 |
|
| MDTV_nov1_ep13 | | | | 95.22 332 | | 97.06 400 | 83.20 421 | 97.74 221 | 96.16 378 | 94.37 350 | 96.99 336 | 98.83 215 | 83.95 376 | 99.53 335 | 93.90 335 | 97.95 370 | |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 99.77 128 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 99.68 175 | |
|
| Test By Simon | | | | | | | | | | | | | 96.52 200 | | | | |
|
| ITE_SJBPF | | | | | 98.87 154 | 99.22 178 | 98.48 106 | | 99.35 153 | 97.50 214 | 98.28 252 | 98.60 259 | 97.64 128 | 99.35 373 | 93.86 338 | 99.27 271 | 98.79 311 |
|
| DeepMVS_CX |  | | | | 93.44 398 | 98.24 343 | 94.21 315 | | 94.34 397 | 64.28 422 | 91.34 416 | 94.87 404 | 89.45 337 | 92.77 423 | 77.54 421 | 93.14 416 | 93.35 418 |
|