This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.93 199.92 199.94 199.99 199.97 199.90 199.89 299.98 199.99 199.96 199.77 1100.00 199.81 1100.00 199.85 9
UniMVSNet_ETH3D99.69 299.69 499.69 399.84 1899.34 1599.69 499.58 3199.90 299.86 799.78 599.58 399.95 1799.00 4099.95 1899.78 15
pmmvs699.67 399.70 399.60 1399.90 499.27 2199.53 799.76 1099.64 1399.84 899.83 299.50 599.87 9499.36 1799.92 4299.64 47
LTVRE_ROB98.40 199.67 399.71 299.56 2499.85 1599.11 6099.90 199.78 899.63 1599.78 1099.67 1799.48 699.81 17499.30 2299.97 1299.77 17
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
mvs_tets99.63 599.67 599.49 5299.88 798.61 9899.34 2099.71 1499.27 5299.90 499.74 899.68 299.97 499.55 899.99 599.88 3
jajsoiax99.58 699.61 799.48 5599.87 1098.61 9899.28 3699.66 2299.09 7599.89 699.68 1499.53 499.97 499.50 1099.99 599.87 5
ANet_high99.57 799.67 599.28 8899.89 698.09 14099.14 5299.93 199.82 399.93 299.81 399.17 1299.94 2699.31 20100.00 199.82 10
v7n99.53 899.57 899.41 6599.88 798.54 10699.45 1099.61 2799.66 1299.68 1999.66 1898.44 4299.95 1799.73 299.96 1599.75 24
test_djsdf99.52 999.51 999.53 3899.86 1298.74 8799.39 1699.56 4599.11 6599.70 1599.73 1099.00 1599.97 499.26 2399.98 999.89 2
anonymousdsp99.51 1099.47 1299.62 699.88 799.08 6499.34 2099.69 1798.93 9299.65 2399.72 1198.93 1999.95 1799.11 32100.00 199.82 10
UA-Net99.47 1199.40 1499.70 299.49 9299.29 1899.80 399.72 1399.82 399.04 12099.81 398.05 7199.96 1198.85 4899.99 599.86 8
PS-MVSNAJss99.46 1299.49 1099.35 7499.90 498.15 13699.20 4499.65 2399.48 2899.92 399.71 1298.07 6899.96 1199.53 9100.00 199.93 1
pm-mvs199.44 1399.48 1199.33 8099.80 2298.63 9599.29 3299.63 2499.30 5099.65 2399.60 2899.16 1499.82 16099.07 3499.83 7499.56 79
TransMVSNet (Re)99.44 1399.47 1299.36 6999.80 2298.58 10199.27 3899.57 3899.39 3999.75 1299.62 2399.17 1299.83 15099.06 3599.62 16799.66 42
DTE-MVSNet99.43 1599.35 1899.66 499.71 3799.30 1799.31 2699.51 6299.64 1399.56 3099.46 5098.23 5499.97 498.78 5199.93 3399.72 28
TDRefinement99.42 1699.38 1599.55 2699.76 2899.33 1699.68 599.71 1499.38 4099.53 3599.61 2598.64 3099.80 18398.24 8499.84 6899.52 103
PEN-MVS99.41 1799.34 2099.62 699.73 3099.14 5399.29 3299.54 5499.62 1899.56 3099.42 5798.16 6499.96 1198.78 5199.93 3399.77 17
bld_raw_conf00599.41 1799.38 1599.51 4799.85 1598.88 7499.44 1199.74 1299.68 999.51 4099.61 2597.25 13699.91 5099.37 1699.95 1899.72 28
nrg03099.40 1999.35 1899.54 3199.58 5899.13 5698.98 7099.48 7499.68 999.46 4699.26 7998.62 3299.73 23699.17 3199.92 4299.76 21
PS-CasMVS99.40 1999.33 2199.62 699.71 3799.10 6199.29 3299.53 5899.53 2599.46 4699.41 6098.23 5499.95 1798.89 4699.95 1899.81 12
MIMVSNet199.38 2199.32 2299.55 2699.86 1299.19 3799.41 1499.59 2999.59 2199.71 1499.57 3197.12 14299.90 5699.21 2899.87 6299.54 91
OurMVSNet-221017-099.37 2299.31 2399.53 3899.91 398.98 6699.63 699.58 3199.44 3399.78 1099.76 696.39 18699.92 4099.44 1499.92 4299.68 38
Vis-MVSNetpermissive99.34 2399.36 1799.27 9199.73 3098.26 12399.17 4999.78 899.11 6599.27 8299.48 4898.82 2199.95 1798.94 4299.93 3399.59 63
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
WR-MVS_H99.33 2499.22 2899.65 599.71 3799.24 2499.32 2299.55 4999.46 3199.50 4299.34 6997.30 12999.93 3198.90 4499.93 3399.77 17
VPA-MVSNet99.30 2599.30 2499.28 8899.49 9298.36 11999.00 6799.45 8599.63 1599.52 3799.44 5598.25 5299.88 7799.09 3399.84 6899.62 51
Anonymous2023121199.27 2699.27 2599.26 9499.29 13598.18 13299.49 899.51 6299.70 899.80 999.68 1496.84 15899.83 15099.21 2899.91 4899.77 17
FC-MVSNet-test99.27 2699.25 2699.34 7799.77 2598.37 11699.30 3199.57 3899.61 2099.40 5799.50 4397.12 14299.85 11899.02 3999.94 2899.80 13
test_low_dy_conf_00199.26 2899.16 3199.55 2699.86 1298.86 7699.37 1898.87 25199.42 3699.46 4699.68 1496.44 18399.93 3199.39 1599.94 2899.87 5
KD-MVS_self_test99.25 2999.18 2999.44 6199.63 5599.06 6598.69 8799.54 5499.31 4899.62 2899.53 3997.36 12799.86 10399.24 2799.71 13199.39 163
ACMH96.65 799.25 2999.24 2799.26 9499.72 3698.38 11599.07 6099.55 4998.30 12399.65 2399.45 5499.22 999.76 22198.44 7499.77 10299.64 47
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
mvsmamba99.24 3199.15 3499.49 5299.83 1998.85 7799.41 1499.55 4999.54 2499.40 5799.52 4195.86 21199.91 5099.32 1999.95 1899.70 35
CP-MVSNet99.21 3299.09 3999.56 2499.65 5098.96 7199.13 5399.34 12599.42 3699.33 7199.26 7997.01 15099.94 2698.74 5599.93 3399.79 14
TranMVSNet+NR-MVSNet99.17 3399.07 4299.46 6099.37 12398.87 7598.39 11999.42 9799.42 3699.36 6699.06 11198.38 4599.95 1798.34 8099.90 5599.57 74
FMVSNet199.17 3399.17 3099.17 10699.55 7398.24 12599.20 4499.44 8899.21 5499.43 5299.55 3597.82 8799.86 10398.42 7699.89 5899.41 152
FIs99.14 3599.09 3999.29 8599.70 4398.28 12299.13 5399.52 6199.48 2899.24 9199.41 6096.79 16499.82 16098.69 5999.88 5999.76 21
XXY-MVS99.14 3599.15 3499.10 11899.76 2897.74 18398.85 7999.62 2598.48 11599.37 6499.49 4698.75 2499.86 10398.20 8799.80 8999.71 30
CS-MVS99.13 3799.10 3899.24 9999.06 19299.15 4899.36 1999.88 399.36 4498.21 22598.46 24598.68 2999.93 3199.03 3899.85 6498.64 303
CS-MVS-test99.13 3799.09 3999.26 9499.13 17598.97 6799.31 2699.88 399.44 3398.16 22898.51 23598.64 3099.93 3198.91 4399.85 6498.88 274
RRT_MVS99.09 3998.94 5099.55 2699.87 1098.82 8299.48 998.16 30799.49 2799.59 2999.65 2094.79 24699.95 1799.45 1399.96 1599.88 3
DROMVSNet99.09 3999.05 4399.20 10399.28 13698.93 7299.24 4099.84 699.08 7798.12 23398.37 25498.72 2699.90 5699.05 3699.77 10298.77 290
ACMH+96.62 999.08 4199.00 4699.33 8099.71 3798.83 8098.60 9399.58 3199.11 6599.53 3599.18 9198.81 2299.67 26396.71 18699.77 10299.50 110
bld_raw_dy_0_6499.07 4299.00 4699.29 8599.85 1598.18 13299.11 5699.40 10099.33 4699.38 6199.44 5595.21 23099.97 499.31 2099.98 999.73 27
GeoE99.05 4398.99 4999.25 9799.44 10898.35 12098.73 8499.56 4598.42 11798.91 14498.81 18698.94 1899.91 5098.35 7999.73 11999.49 114
Gipumacopyleft99.03 4499.16 3198.64 18299.94 298.51 10899.32 2299.75 1199.58 2398.60 19199.62 2398.22 5799.51 31997.70 11899.73 11997.89 331
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
v899.01 4599.16 3198.57 19499.47 10296.31 24098.90 7499.47 8099.03 8199.52 3799.57 3196.93 15499.81 17499.60 499.98 999.60 57
HPM-MVS_fast99.01 4598.82 5899.57 1899.71 3799.35 1299.00 6799.50 6497.33 20398.94 14198.86 17298.75 2499.82 16097.53 12499.71 13199.56 79
APDe-MVS98.99 4798.79 6199.60 1399.21 15099.15 4898.87 7699.48 7497.57 17799.35 6899.24 8397.83 8499.89 6697.88 10799.70 13699.75 24
abl_698.99 4798.78 6299.61 999.45 10699.46 498.60 9399.50 6498.59 10899.24 9199.04 12098.54 3799.89 6696.45 20899.62 16799.50 110
EG-PatchMatch MVS98.99 4799.01 4598.94 14699.50 8597.47 19698.04 15499.59 2998.15 14299.40 5799.36 6698.58 3599.76 22198.78 5199.68 14799.59 63
COLMAP_ROBcopyleft96.50 1098.99 4798.85 5699.41 6599.58 5899.10 6198.74 8299.56 4599.09 7599.33 7199.19 8998.40 4499.72 24495.98 23399.76 11299.42 149
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
Baseline_NR-MVSNet98.98 5198.86 5599.36 6999.82 2198.55 10397.47 21599.57 3899.37 4199.21 9599.61 2596.76 16799.83 15098.06 9599.83 7499.71 30
v1098.97 5299.11 3698.55 19999.44 10896.21 24298.90 7499.55 4998.73 10099.48 4399.60 2896.63 17499.83 15099.70 399.99 599.61 56
DeepC-MVS97.60 498.97 5298.93 5199.10 11899.35 12897.98 15698.01 16099.46 8297.56 17999.54 3299.50 4398.97 1699.84 13598.06 9599.92 4299.49 114
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
baseline98.96 5499.02 4498.76 17399.38 11897.26 20798.49 10899.50 6498.86 9599.19 9799.06 11198.23 5499.69 25198.71 5799.76 11299.33 191
casdiffmvs98.95 5599.00 4698.81 16399.38 11897.33 20297.82 17799.57 3899.17 6299.35 6899.17 9598.35 4999.69 25198.46 7399.73 11999.41 152
NR-MVSNet98.95 5598.82 5899.36 6999.16 16898.72 9299.22 4199.20 17899.10 7299.72 1398.76 19496.38 18899.86 10398.00 10099.82 7799.50 110
Anonymous2024052998.93 5798.87 5399.12 11499.19 15798.22 13099.01 6598.99 23599.25 5399.54 3299.37 6397.04 14699.80 18397.89 10499.52 20499.35 183
DP-MVS98.93 5798.81 6099.28 8899.21 15098.45 11298.46 11399.33 13099.63 1599.48 4399.15 10197.23 13899.75 22897.17 13999.66 15899.63 50
SED-MVS98.91 5998.72 6899.49 5299.49 9299.17 3998.10 14599.31 13898.03 14699.66 2099.02 12498.36 4699.88 7796.91 16299.62 16799.41 152
ACMM96.08 1298.91 5998.73 6699.48 5599.55 7399.14 5398.07 14899.37 10997.62 17299.04 12098.96 14598.84 2099.79 19697.43 12899.65 15999.49 114
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
DVP-MVS++98.90 6198.70 7399.51 4798.43 30099.15 4899.43 1299.32 13298.17 13899.26 8699.02 12498.18 6199.88 7797.07 15099.45 22099.49 114
tfpnnormal98.90 6198.90 5298.91 15099.67 4797.82 17599.00 6799.44 8899.45 3299.51 4099.24 8398.20 6099.86 10395.92 23599.69 14299.04 246
MTAPA98.88 6398.64 8199.61 999.67 4799.36 1098.43 11699.20 17898.83 9898.89 14898.90 15996.98 15299.92 4097.16 14099.70 13699.56 79
VPNet98.87 6498.83 5799.01 13999.70 4397.62 19198.43 11699.35 11999.47 3099.28 8099.05 11896.72 17099.82 16098.09 9399.36 23399.59 63
UniMVSNet (Re)98.87 6498.71 7099.35 7499.24 14398.73 9097.73 18799.38 10598.93 9299.12 10498.73 19796.77 16599.86 10398.63 6299.80 8999.46 134
UniMVSNet_NR-MVSNet98.86 6698.68 7699.40 6799.17 16698.74 8797.68 19199.40 10099.14 6399.06 11398.59 22796.71 17199.93 3198.57 6599.77 10299.53 99
APD-MVS_3200maxsize98.84 6798.61 8799.53 3899.19 15799.27 2198.49 10899.33 13098.64 10299.03 12398.98 14097.89 8199.85 11896.54 20299.42 22499.46 134
PM-MVS98.82 6898.72 6899.12 11499.64 5398.54 10697.98 16299.68 1997.62 17299.34 7099.18 9197.54 10999.77 21497.79 11099.74 11699.04 246
DU-MVS98.82 6898.63 8299.39 6899.16 16898.74 8797.54 20799.25 16798.84 9799.06 11398.76 19496.76 16799.93 3198.57 6599.77 10299.50 110
SR-MVS-dyc-post98.81 7098.55 9399.57 1899.20 15499.38 698.48 11199.30 14898.64 10298.95 13598.96 14597.49 11899.86 10396.56 19899.39 22899.45 138
3Dnovator98.27 298.81 7098.73 6699.05 13298.76 25097.81 17799.25 3999.30 14898.57 11298.55 20199.33 7197.95 8099.90 5697.16 14099.67 15399.44 142
zzz-MVS98.79 7298.52 9699.61 999.67 4799.36 1097.33 22499.20 17898.83 9898.89 14898.90 15996.98 15299.92 4097.16 14099.70 13699.56 79
HPM-MVScopyleft98.79 7298.53 9599.59 1799.65 5099.29 1899.16 5099.43 9496.74 24098.61 18998.38 25398.62 3299.87 9496.47 20699.67 15399.59 63
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
SteuartSystems-ACMMP98.79 7298.54 9499.54 3199.73 3099.16 4398.23 13199.31 13897.92 15398.90 14598.90 15998.00 7499.88 7796.15 22799.72 12699.58 69
Skip Steuart: Steuart Systems R&D Blog.
dcpmvs_298.78 7599.11 3697.78 25699.56 6993.67 31399.06 6299.86 599.50 2699.66 2099.26 7997.21 14099.99 298.00 10099.91 4899.68 38
V4298.78 7598.78 6298.76 17399.44 10897.04 22098.27 12899.19 18397.87 15799.25 9099.16 9796.84 15899.78 20899.21 2899.84 6899.46 134
test20.0398.78 7598.77 6498.78 17099.46 10397.20 21397.78 17999.24 17299.04 8099.41 5498.90 15997.65 9799.76 22197.70 11899.79 9499.39 163
DVP-MVScopyleft98.77 7898.52 9699.52 4399.50 8599.21 2798.02 15798.84 26197.97 14999.08 11199.02 12497.61 10399.88 7796.99 15699.63 16499.48 124
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test117298.76 7998.49 10399.57 1899.18 16499.37 998.39 11999.31 13898.43 11698.90 14598.88 16897.49 11899.86 10396.43 21099.37 23299.48 124
test_040298.76 7998.71 7098.93 14799.56 6998.14 13898.45 11599.34 12599.28 5198.95 13598.91 15698.34 5099.79 19695.63 25299.91 4898.86 276
ACMMP_NAP98.75 8198.48 10599.57 1899.58 5899.29 1897.82 17799.25 16796.94 23298.78 16899.12 10598.02 7299.84 13597.13 14699.67 15399.59 63
SixPastTwentyTwo98.75 8198.62 8499.16 10999.83 1997.96 16199.28 3698.20 30499.37 4199.70 1599.65 2092.65 28599.93 3199.04 3799.84 6899.60 57
ACMMPcopyleft98.75 8198.50 10099.52 4399.56 6999.16 4398.87 7699.37 10997.16 22398.82 16599.01 13397.71 9399.87 9496.29 21999.69 14299.54 91
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
Regformer-498.73 8498.68 7698.89 15399.02 20197.22 21097.17 23999.06 21599.21 5499.17 10298.85 17597.45 12199.86 10398.48 7299.70 13699.60 57
XVS98.72 8598.45 11199.53 3899.46 10399.21 2798.65 8899.34 12598.62 10697.54 27398.63 22097.50 11599.83 15096.79 17599.53 20199.56 79
SR-MVS98.71 8698.43 11599.57 1899.18 16499.35 1298.36 12299.29 15598.29 12698.88 15398.85 17597.53 11199.87 9496.14 22899.31 24199.48 124
HFP-MVS98.71 8698.44 11399.51 4799.49 9299.16 4398.52 10299.31 13897.47 18698.58 19598.50 23997.97 7899.85 11896.57 19599.59 17999.53 99
LPG-MVS_test98.71 8698.46 10999.47 5899.57 6298.97 6798.23 13199.48 7496.60 24599.10 10899.06 11198.71 2799.83 15095.58 25599.78 9899.62 51
ACMMPR98.70 8998.42 11799.54 3199.52 8099.14 5398.52 10299.31 13897.47 18698.56 19998.54 23197.75 9199.88 7796.57 19599.59 17999.58 69
CP-MVS98.70 8998.42 11799.52 4399.36 12499.12 5898.72 8599.36 11397.54 18198.30 22098.40 24997.86 8399.89 6696.53 20399.72 12699.56 79
Anonymous2024052198.69 9198.87 5398.16 23599.77 2595.11 27399.08 5799.44 8899.34 4599.33 7199.55 3594.10 26399.94 2699.25 2599.96 1599.42 149
region2R98.69 9198.40 11999.54 3199.53 7899.17 3998.52 10299.31 13897.46 19198.44 21098.51 23597.83 8499.88 7796.46 20799.58 18599.58 69
EI-MVSNet-UG-set98.69 9198.71 7098.62 18799.10 18196.37 23897.23 23198.87 25199.20 5799.19 9798.99 13697.30 12999.85 11898.77 5499.79 9499.65 46
3Dnovator+97.89 398.69 9198.51 9899.24 9998.81 24598.40 11399.02 6499.19 18398.99 8498.07 23899.28 7597.11 14499.84 13596.84 17399.32 23999.47 132
ZNCC-MVS98.68 9598.40 11999.54 3199.57 6299.21 2798.46 11399.29 15597.28 20998.11 23598.39 25198.00 7499.87 9496.86 17299.64 16199.55 87
EI-MVSNet-Vis-set98.68 9598.70 7398.63 18599.09 18496.40 23797.23 23198.86 25799.20 5799.18 10198.97 14297.29 13199.85 11898.72 5699.78 9899.64 47
CSCG98.68 9598.50 10099.20 10399.45 10698.63 9598.56 9899.57 3897.87 15798.85 15798.04 28297.66 9699.84 13596.72 18499.81 8199.13 235
PGM-MVS98.66 9898.37 12599.55 2699.53 7899.18 3898.23 13199.49 7297.01 23098.69 17898.88 16898.00 7499.89 6695.87 23999.59 17999.58 69
GBi-Net98.65 9998.47 10799.17 10698.90 22498.24 12599.20 4499.44 8898.59 10898.95 13599.55 3594.14 25999.86 10397.77 11299.69 14299.41 152
test198.65 9998.47 10799.17 10698.90 22498.24 12599.20 4499.44 8898.59 10898.95 13599.55 3594.14 25999.86 10397.77 11299.69 14299.41 152
LCM-MVSNet-Re98.64 10198.48 10599.11 11698.85 23598.51 10898.49 10899.83 798.37 11899.69 1799.46 5098.21 5999.92 4094.13 29299.30 24498.91 270
mPP-MVS98.64 10198.34 12999.54 3199.54 7699.17 3998.63 9099.24 17297.47 18698.09 23798.68 20697.62 10299.89 6696.22 22299.62 16799.57 74
TSAR-MVS + MP.98.63 10398.49 10399.06 13099.64 5397.90 16698.51 10698.94 23896.96 23199.24 9198.89 16797.83 8499.81 17496.88 16999.49 21599.48 124
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
LS3D98.63 10398.38 12499.36 6997.25 35799.38 699.12 5599.32 13299.21 5498.44 21098.88 16897.31 12899.80 18396.58 19399.34 23798.92 267
RPSCF98.62 10598.36 12699.42 6299.65 5099.42 598.55 9999.57 3897.72 16698.90 14599.26 7996.12 19599.52 31595.72 24699.71 13199.32 193
GST-MVS98.61 10698.30 13499.52 4399.51 8299.20 3398.26 12999.25 16797.44 19498.67 18098.39 25197.68 9499.85 11896.00 23199.51 20799.52 103
Regformer-398.61 10698.61 8798.63 18599.02 20196.53 23597.17 23998.84 26199.13 6499.10 10898.85 17597.24 13799.79 19698.41 7799.70 13699.57 74
v119298.60 10898.66 7998.41 21599.27 13895.88 25097.52 20999.36 11397.41 19699.33 7199.20 8896.37 18999.82 16099.57 699.92 4299.55 87
v114498.60 10898.66 7998.41 21599.36 12495.90 24997.58 20399.34 12597.51 18299.27 8299.15 10196.34 19199.80 18399.47 1299.93 3399.51 106
Regformer-298.60 10898.46 10999.02 13898.85 23597.71 18596.91 25599.09 21198.98 8699.01 12498.64 21697.37 12699.84 13597.75 11799.57 18999.52 103
DPE-MVScopyleft98.59 11198.26 13899.57 1899.27 13899.15 4897.01 24699.39 10397.67 16899.44 5198.99 13697.53 11199.89 6695.40 25999.68 14799.66 42
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MP-MVS-pluss98.57 11298.23 14299.60 1399.69 4599.35 1297.16 24199.38 10594.87 29398.97 13298.99 13698.01 7399.88 7797.29 13499.70 13699.58 69
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
OPM-MVS98.56 11398.32 13399.25 9799.41 11598.73 9097.13 24399.18 18797.10 22698.75 17498.92 15598.18 6199.65 27696.68 18899.56 19499.37 173
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
VDD-MVS98.56 11398.39 12299.07 12599.13 17598.07 14698.59 9597.01 33599.59 2199.11 10599.27 7794.82 24199.79 19698.34 8099.63 16499.34 185
v2v48298.56 11398.62 8498.37 21999.42 11395.81 25397.58 20399.16 19697.90 15599.28 8099.01 13395.98 20499.79 19699.33 1899.90 5599.51 106
XVG-ACMP-BASELINE98.56 11398.34 12999.22 10299.54 7698.59 10097.71 18899.46 8297.25 21298.98 12998.99 13697.54 10999.84 13595.88 23699.74 11699.23 215
Regformer-198.55 11798.44 11398.87 15598.85 23597.29 20496.91 25598.99 23598.97 8798.99 12798.64 21697.26 13599.81 17497.79 11099.57 18999.51 106
v124098.55 11798.62 8498.32 22299.22 14895.58 25697.51 21199.45 8597.16 22399.45 5099.24 8396.12 19599.85 11899.60 499.88 5999.55 87
IterMVS-LS98.55 11798.70 7398.09 23799.48 10094.73 28097.22 23499.39 10398.97 8799.38 6199.31 7396.00 20099.93 3198.58 6399.97 1299.60 57
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v14419298.54 12098.57 9298.45 21199.21 15095.98 24797.63 19699.36 11397.15 22599.32 7799.18 9195.84 21299.84 13599.50 1099.91 4899.54 91
v192192098.54 12098.60 8998.38 21899.20 15495.76 25597.56 20599.36 11397.23 21899.38 6199.17 9596.02 19899.84 13599.57 699.90 5599.54 91
SF-MVS98.53 12298.27 13799.32 8299.31 13198.75 8698.19 13599.41 9896.77 23998.83 16198.90 15997.80 8899.82 16095.68 24999.52 20499.38 170
XVG-OURS98.53 12298.34 12999.11 11699.50 8598.82 8295.97 29999.50 6497.30 20799.05 11898.98 14099.35 799.32 34395.72 24699.68 14799.18 227
UGNet98.53 12298.45 11198.79 16797.94 32996.96 22399.08 5798.54 28999.10 7296.82 31199.47 4996.55 17799.84 13598.56 6899.94 2899.55 87
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
patch_mono-298.51 12598.63 8298.17 23399.38 11894.78 27897.36 22299.69 1798.16 14198.49 20799.29 7497.06 14599.97 498.29 8399.91 4899.76 21
#test#98.50 12698.16 15199.51 4799.49 9299.16 4398.03 15599.31 13896.30 25798.58 19598.50 23997.97 7899.85 11895.68 24999.59 17999.53 99
XVG-OURS-SEG-HR98.49 12798.28 13699.14 11299.49 9298.83 8096.54 27399.48 7497.32 20599.11 10598.61 22599.33 899.30 34696.23 22198.38 31699.28 205
FMVSNet298.49 12798.40 11998.75 17598.90 22497.14 21998.61 9299.13 20498.59 10899.19 9799.28 7594.14 25999.82 16097.97 10299.80 8999.29 204
pmmvs-eth3d98.47 12998.34 12998.86 15799.30 13497.76 18097.16 24199.28 15895.54 27799.42 5399.19 8997.27 13299.63 28197.89 10499.97 1299.20 220
MP-MVScopyleft98.46 13098.09 15899.54 3199.57 6299.22 2698.50 10799.19 18397.61 17497.58 26998.66 21197.40 12499.88 7794.72 27299.60 17599.54 91
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
v14898.45 13198.60 8998.00 24699.44 10894.98 27497.44 21899.06 21598.30 12399.32 7798.97 14296.65 17399.62 28398.37 7899.85 6499.39 163
xxxxxxxxxxxxxcwj98.44 13298.24 14099.06 13099.11 17797.97 15796.53 27499.54 5498.24 12998.83 16198.90 15997.80 8899.82 16095.68 24999.52 20499.38 170
AllTest98.44 13298.20 14499.16 10999.50 8598.55 10398.25 13099.58 3196.80 23798.88 15399.06 11197.65 9799.57 30094.45 27999.61 17399.37 173
VNet98.42 13498.30 13498.79 16798.79 24997.29 20498.23 13198.66 28399.31 4898.85 15798.80 18794.80 24499.78 20898.13 8999.13 27299.31 197
ab-mvs98.41 13598.36 12698.59 19199.19 15797.23 20899.32 2298.81 26797.66 16998.62 18799.40 6296.82 16199.80 18395.88 23699.51 20798.75 293
ACMP95.32 1598.41 13598.09 15899.36 6999.51 8298.79 8597.68 19199.38 10595.76 27498.81 16798.82 18498.36 4699.82 16094.75 26999.77 10299.48 124
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
SMA-MVScopyleft98.40 13798.03 16599.51 4799.16 16899.21 2798.05 15299.22 17594.16 30998.98 12999.10 10897.52 11399.79 19696.45 20899.64 16199.53 99
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MSP-MVS98.40 13798.00 16799.61 999.57 6299.25 2398.57 9799.35 11997.55 18099.31 7997.71 30194.61 24999.88 7796.14 22899.19 26299.70 35
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SD-MVS98.40 13798.68 7697.54 27598.96 21197.99 15297.88 17099.36 11398.20 13599.63 2699.04 12098.76 2395.33 37896.56 19899.74 11699.31 197
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
EI-MVSNet98.40 13798.51 9898.04 24499.10 18194.73 28097.20 23598.87 25198.97 8799.06 11399.02 12496.00 20099.80 18398.58 6399.82 7799.60 57
WR-MVS98.40 13798.19 14699.03 13599.00 20497.65 18896.85 25898.94 23898.57 11298.89 14898.50 23995.60 21899.85 11897.54 12399.85 6499.59 63
new-patchmatchnet98.35 14298.74 6597.18 29099.24 14392.23 33596.42 28299.48 7498.30 12399.69 1799.53 3997.44 12299.82 16098.84 4999.77 10299.49 114
canonicalmvs98.34 14398.26 13898.58 19298.46 29797.82 17598.96 7199.46 8299.19 6197.46 28095.46 35998.59 3499.46 32898.08 9498.71 30598.46 309
testgi98.32 14498.39 12298.13 23699.57 6295.54 25797.78 17999.49 7297.37 20099.19 9797.65 30598.96 1799.49 32196.50 20598.99 29099.34 185
DeepPCF-MVS96.93 598.32 14498.01 16699.23 10198.39 30598.97 6795.03 33499.18 18796.88 23599.33 7198.78 19098.16 6499.28 34996.74 18199.62 16799.44 142
MVS_111021_LR98.30 14698.12 15698.83 16099.16 16898.03 15096.09 29699.30 14897.58 17698.10 23698.24 26598.25 5299.34 34096.69 18799.65 15999.12 236
EPP-MVSNet98.30 14698.04 16499.07 12599.56 6997.83 17299.29 3298.07 31199.03 8198.59 19399.13 10492.16 28999.90 5696.87 17099.68 14799.49 114
DeepC-MVS_fast96.85 698.30 14698.15 15398.75 17598.61 27997.23 20897.76 18499.09 21197.31 20698.75 17498.66 21197.56 10799.64 27896.10 23099.55 19699.39 163
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PHI-MVS98.29 14997.95 17099.34 7798.44 29999.16 4398.12 14299.38 10596.01 26698.06 23998.43 24797.80 8899.67 26395.69 24899.58 18599.20 220
Fast-Effi-MVS+-dtu98.27 15098.09 15898.81 16398.43 30098.11 13997.61 19999.50 6498.64 10297.39 28597.52 31398.12 6799.95 1796.90 16798.71 30598.38 315
DELS-MVS98.27 15098.20 14498.48 20898.86 23396.70 23295.60 31899.20 17897.73 16498.45 20998.71 20097.50 11599.82 16098.21 8699.59 17998.93 266
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
Effi-MVS+-dtu98.26 15297.90 17599.35 7498.02 32599.49 398.02 15799.16 19698.29 12697.64 26497.99 28496.44 18399.95 1796.66 18998.93 29598.60 304
MVSFormer98.26 15298.43 11597.77 25798.88 23093.89 30799.39 1699.56 4599.11 6598.16 22898.13 27293.81 26699.97 499.26 2399.57 18999.43 146
MVS_111021_HR98.25 15498.08 16198.75 17599.09 18497.46 19795.97 29999.27 16197.60 17597.99 24498.25 26498.15 6699.38 33796.87 17099.57 18999.42 149
TAMVS98.24 15598.05 16398.80 16599.07 18897.18 21597.88 17098.81 26796.66 24499.17 10299.21 8694.81 24399.77 21496.96 16099.88 5999.44 142
diffmvs98.22 15698.24 14098.17 23399.00 20495.44 26296.38 28499.58 3197.79 16298.53 20498.50 23996.76 16799.74 23297.95 10399.64 16199.34 185
Anonymous2023120698.21 15798.21 14398.20 23199.51 8295.43 26398.13 14099.32 13296.16 26098.93 14298.82 18496.00 20099.83 15097.32 13399.73 11999.36 179
VDDNet98.21 15797.95 17099.01 13999.58 5897.74 18399.01 6597.29 33199.67 1198.97 13299.50 4390.45 29899.80 18397.88 10799.20 25899.48 124
IS-MVSNet98.19 15997.90 17599.08 12299.57 6297.97 15799.31 2698.32 29999.01 8398.98 12999.03 12391.59 29399.79 19695.49 25799.80 8999.48 124
MVS_Test98.18 16098.36 12697.67 26298.48 29594.73 28098.18 13699.02 22897.69 16798.04 24299.11 10697.22 13999.56 30398.57 6598.90 29698.71 296
TSAR-MVS + GP.98.18 16097.98 16898.77 17298.71 25997.88 16796.32 28798.66 28396.33 25499.23 9498.51 23597.48 12099.40 33397.16 14099.46 21899.02 249
CNVR-MVS98.17 16297.87 17799.07 12598.67 27298.24 12597.01 24698.93 24097.25 21297.62 26598.34 25897.27 13299.57 30096.42 21199.33 23899.39 163
PVSNet_Blended_VisFu98.17 16298.15 15398.22 23099.73 3095.15 27097.36 22299.68 1994.45 30298.99 12799.27 7796.87 15799.94 2697.13 14699.91 4899.57 74
HPM-MVS++copyleft98.10 16497.64 19399.48 5599.09 18499.13 5697.52 20998.75 27697.46 19196.90 30697.83 29596.01 19999.84 13595.82 24399.35 23599.46 134
APD-MVScopyleft98.10 16497.67 18899.42 6299.11 17798.93 7297.76 18499.28 15894.97 29098.72 17798.77 19297.04 14699.85 11893.79 30399.54 19799.49 114
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MVP-Stereo98.08 16697.92 17398.57 19498.96 21196.79 22897.90 16999.18 18796.41 25298.46 20898.95 14995.93 20799.60 29096.51 20498.98 29299.31 197
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
PMMVS298.07 16798.08 16198.04 24499.41 11594.59 28694.59 34899.40 10097.50 18398.82 16598.83 18196.83 16099.84 13597.50 12699.81 8199.71 30
ETH3D-3000-0.198.03 16897.62 19599.29 8599.11 17798.80 8497.47 21599.32 13295.54 27798.43 21398.62 22296.61 17599.77 21493.95 29799.49 21599.30 200
ETV-MVS98.03 16897.86 17898.56 19898.69 26798.07 14697.51 21199.50 6498.10 14397.50 27795.51 35798.41 4399.88 7796.27 22099.24 25397.71 343
Effi-MVS+98.02 17097.82 18098.62 18798.53 29197.19 21497.33 22499.68 1997.30 20796.68 31497.46 31898.56 3699.80 18396.63 19198.20 32198.86 276
MSLP-MVS++98.02 17098.14 15597.64 26698.58 28495.19 26997.48 21399.23 17497.47 18697.90 24798.62 22297.04 14698.81 36897.55 12199.41 22598.94 265
EIA-MVS98.00 17297.74 18498.80 16598.72 25698.09 14098.05 15299.60 2897.39 19896.63 31695.55 35697.68 9499.80 18396.73 18399.27 24898.52 307
MCST-MVS98.00 17297.63 19499.10 11899.24 14398.17 13596.89 25798.73 27995.66 27597.92 24597.70 30397.17 14199.66 27196.18 22699.23 25499.47 132
K. test v398.00 17297.66 19199.03 13599.79 2497.56 19299.19 4892.47 36799.62 1899.52 3799.66 1889.61 30399.96 1199.25 2599.81 8199.56 79
HQP_MVS97.99 17597.67 18898.93 14799.19 15797.65 18897.77 18299.27 16198.20 13597.79 25597.98 28594.90 23799.70 24794.42 28199.51 20799.45 138
MDA-MVSNet-bldmvs97.94 17697.91 17498.06 24299.44 10894.96 27596.63 27199.15 20298.35 11998.83 16199.11 10694.31 25699.85 11896.60 19298.72 30399.37 173
test_part197.91 17797.46 20799.27 9198.80 24798.18 13299.07 6099.36 11399.75 599.63 2699.49 4682.20 35399.89 6698.87 4799.95 1899.74 26
Anonymous20240521197.90 17897.50 20199.08 12298.90 22498.25 12498.53 10196.16 34798.87 9499.11 10598.86 17290.40 29999.78 20897.36 13199.31 24199.19 225
LF4IMVS97.90 17897.69 18798.52 20399.17 16697.66 18797.19 23899.47 8096.31 25697.85 25198.20 26996.71 17199.52 31594.62 27399.72 12698.38 315
UnsupCasMVSNet_eth97.89 18097.60 19798.75 17599.31 13197.17 21697.62 19799.35 11998.72 10198.76 17398.68 20692.57 28699.74 23297.76 11695.60 36599.34 185
TinyColmap97.89 18097.98 16897.60 26898.86 23394.35 29096.21 29299.44 8897.45 19399.06 11398.88 16897.99 7799.28 34994.38 28599.58 18599.18 227
OMC-MVS97.88 18297.49 20299.04 13498.89 22998.63 9596.94 25099.25 16795.02 28898.53 20498.51 23597.27 13299.47 32693.50 31199.51 20799.01 250
CANet97.87 18397.76 18298.19 23297.75 33895.51 25996.76 26499.05 21997.74 16396.93 30098.21 26895.59 21999.89 6697.86 10999.93 3399.19 225
xiu_mvs_v1_base_debu97.86 18498.17 14896.92 30198.98 20893.91 30496.45 27999.17 19397.85 15998.41 21497.14 33198.47 3999.92 4098.02 9799.05 27996.92 355
xiu_mvs_v1_base97.86 18498.17 14896.92 30198.98 20893.91 30496.45 27999.17 19397.85 15998.41 21497.14 33198.47 3999.92 4098.02 9799.05 27996.92 355
xiu_mvs_v1_base_debi97.86 18498.17 14896.92 30198.98 20893.91 30496.45 27999.17 19397.85 15998.41 21497.14 33198.47 3999.92 4098.02 9799.05 27996.92 355
NCCC97.86 18497.47 20699.05 13298.61 27998.07 14696.98 24898.90 24697.63 17197.04 29797.93 29095.99 20399.66 27195.31 26098.82 29999.43 146
PMVScopyleft91.26 2097.86 18497.94 17297.65 26499.71 3797.94 16498.52 10298.68 28298.99 8497.52 27599.35 6797.41 12398.18 37291.59 34099.67 15396.82 358
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
IterMVS-SCA-FT97.85 18998.18 14796.87 30499.27 13891.16 35095.53 32099.25 16799.10 7299.41 5499.35 6793.10 27699.96 1198.65 6199.94 2899.49 114
D2MVS97.84 19097.84 17997.83 25399.14 17394.74 27996.94 25098.88 24995.84 27198.89 14898.96 14594.40 25499.69 25197.55 12199.95 1899.05 242
CPTT-MVS97.84 19097.36 21299.27 9199.31 13198.46 11198.29 12699.27 16194.90 29297.83 25298.37 25494.90 23799.84 13593.85 30299.54 19799.51 106
mvs-test197.83 19297.48 20598.89 15398.02 32599.20 3397.20 23599.16 19698.29 12696.46 32697.17 32896.44 18399.92 4096.66 18997.90 33497.54 349
mvs_anonymous97.83 19298.16 15196.87 30498.18 31791.89 33797.31 22698.90 24697.37 20098.83 16199.46 5096.28 19299.79 19698.90 4498.16 32498.95 261
testtj97.79 19497.25 21899.42 6299.03 19998.85 7797.78 17999.18 18795.83 27298.12 23398.50 23995.50 22399.86 10392.23 33399.07 27899.54 91
h-mvs3397.77 19597.33 21699.10 11899.21 15097.84 17198.35 12398.57 28899.11 6598.58 19599.02 12488.65 31299.96 1198.11 9096.34 35899.49 114
IterMVS97.73 19698.11 15796.57 31199.24 14390.28 35195.52 32299.21 17698.86 9599.33 7199.33 7193.11 27599.94 2698.49 7199.94 2899.48 124
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MSDG97.71 19797.52 20098.28 22798.91 22396.82 22794.42 35199.37 10997.65 17098.37 21998.29 26397.40 12499.33 34294.09 29399.22 25598.68 302
CDS-MVSNet97.69 19897.35 21398.69 17998.73 25497.02 22296.92 25498.75 27695.89 27098.59 19398.67 20892.08 29199.74 23296.72 18499.81 8199.32 193
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MS-PatchMatch97.68 19997.75 18397.45 28098.23 31593.78 31097.29 22798.84 26196.10 26298.64 18498.65 21396.04 19799.36 33896.84 17399.14 26999.20 220
Fast-Effi-MVS+97.67 20097.38 21098.57 19498.71 25997.43 19997.23 23199.45 8594.82 29496.13 33096.51 33998.52 3899.91 5096.19 22498.83 29898.37 317
EU-MVSNet97.66 20198.50 10095.13 33999.63 5585.84 36798.35 12398.21 30398.23 13199.54 3299.46 5095.02 23599.68 26098.24 8499.87 6299.87 5
MVS_030497.64 20297.35 21398.52 20397.87 33496.69 23398.59 9598.05 31397.44 19493.74 36798.85 17593.69 27099.88 7798.11 9099.81 8198.98 255
pmmvs597.64 20297.49 20298.08 24099.14 17395.12 27296.70 26899.05 21993.77 31598.62 18798.83 18193.23 27299.75 22898.33 8299.76 11299.36 179
N_pmnet97.63 20497.17 22398.99 14199.27 13897.86 16995.98 29893.41 36495.25 28699.47 4598.90 15995.63 21799.85 11896.91 16299.73 11999.27 207
YYNet197.60 20597.67 18897.39 28499.04 19693.04 32295.27 32798.38 29897.25 21298.92 14398.95 14995.48 22599.73 23696.99 15698.74 30199.41 152
MDA-MVSNet_test_wron97.60 20597.66 19197.41 28399.04 19693.09 31895.27 32798.42 29597.26 21198.88 15398.95 14995.43 22699.73 23697.02 15398.72 30399.41 152
pmmvs497.58 20797.28 21798.51 20598.84 23896.93 22595.40 32698.52 29193.60 31798.61 18998.65 21395.10 23499.60 29096.97 15999.79 9498.99 254
ETH3D cwj APD-0.1697.55 20897.00 23299.19 10598.51 29398.64 9496.85 25899.13 20494.19 30897.65 26398.40 24995.78 21399.81 17493.37 31499.16 26599.12 236
PVSNet_BlendedMVS97.55 20897.53 19997.60 26898.92 22093.77 31196.64 27099.43 9494.49 29897.62 26599.18 9196.82 16199.67 26394.73 27099.93 3399.36 179
ppachtmachnet_test97.50 21097.74 18496.78 30998.70 26391.23 34994.55 34999.05 21996.36 25399.21 9598.79 18996.39 18699.78 20896.74 18199.82 7799.34 185
FMVSNet397.50 21097.24 22098.29 22698.08 32395.83 25297.86 17498.91 24597.89 15698.95 13598.95 14987.06 31799.81 17497.77 11299.69 14299.23 215
CHOSEN 1792x268897.49 21297.14 22798.54 20299.68 4696.09 24596.50 27799.62 2591.58 34098.84 16098.97 14292.36 28799.88 7796.76 17999.95 1899.67 41
CLD-MVS97.49 21297.16 22498.48 20899.07 18897.03 22194.71 34199.21 17694.46 30098.06 23997.16 32997.57 10699.48 32494.46 27899.78 9898.95 261
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
test_prior397.48 21497.00 23298.95 14498.69 26797.95 16295.74 31399.03 22496.48 24996.11 33197.63 30795.92 20899.59 29494.16 28799.20 25899.30 200
hse-mvs297.46 21597.07 22898.64 18298.73 25497.33 20297.45 21797.64 32499.11 6598.58 19597.98 28588.65 31299.79 19698.11 9097.39 34298.81 282
Vis-MVSNet (Re-imp)97.46 21597.16 22498.34 22199.55 7396.10 24398.94 7298.44 29498.32 12298.16 22898.62 22288.76 30899.73 23693.88 30099.79 9499.18 227
jason97.45 21797.35 21397.76 25899.24 14393.93 30395.86 30798.42 29594.24 30698.50 20698.13 27294.82 24199.91 5097.22 13799.73 11999.43 146
jason: jason.
CL-MVSNet_self_test97.44 21897.22 22198.08 24098.57 28695.78 25494.30 35498.79 27096.58 24798.60 19198.19 27094.74 24899.64 27896.41 21298.84 29798.82 279
DSMNet-mixed97.42 21997.60 19796.87 30499.15 17291.46 34198.54 10099.12 20692.87 32797.58 26999.63 2296.21 19399.90 5695.74 24599.54 19799.27 207
USDC97.41 22097.40 20897.44 28198.94 21493.67 31395.17 33099.53 5894.03 31298.97 13299.10 10895.29 22899.34 34095.84 24299.73 11999.30 200
our_test_397.39 22197.73 18696.34 31598.70 26389.78 35394.61 34798.97 23796.50 24899.04 12098.85 17595.98 20499.84 13597.26 13699.67 15399.41 152
c3_l97.36 22297.37 21197.31 28598.09 32293.25 31795.01 33599.16 19697.05 22798.77 17198.72 19992.88 28199.64 27896.93 16199.76 11299.05 242
alignmvs97.35 22396.88 24098.78 17098.54 28998.09 14097.71 18897.69 32199.20 5797.59 26895.90 35188.12 31699.55 30698.18 8898.96 29398.70 298
Patchmtry97.35 22396.97 23498.50 20797.31 35696.47 23698.18 13698.92 24398.95 9198.78 16899.37 6385.44 33299.85 11895.96 23499.83 7499.17 231
DP-MVS Recon97.33 22596.92 23798.57 19499.09 18497.99 15296.79 26199.35 11993.18 32297.71 25998.07 28195.00 23699.31 34493.97 29599.13 27298.42 314
QAPM97.31 22696.81 24698.82 16198.80 24797.49 19599.06 6299.19 18390.22 35297.69 26199.16 9796.91 15599.90 5690.89 35199.41 22599.07 240
UnsupCasMVSNet_bld97.30 22796.92 23798.45 21199.28 13696.78 23196.20 29399.27 16195.42 28298.28 22298.30 26293.16 27499.71 24594.99 26497.37 34398.87 275
F-COLMAP97.30 22796.68 25399.14 11299.19 15798.39 11497.27 23099.30 14892.93 32596.62 31798.00 28395.73 21599.68 26092.62 32898.46 31599.35 183
1112_ss97.29 22996.86 24198.58 19299.34 13096.32 23996.75 26599.58 3193.14 32396.89 30797.48 31692.11 29099.86 10396.91 16299.54 19799.57 74
CANet_DTU97.26 23097.06 22997.84 25297.57 34594.65 28496.19 29498.79 27097.23 21895.14 35398.24 26593.22 27399.84 13597.34 13299.84 6899.04 246
Patchmatch-RL test97.26 23097.02 23197.99 24799.52 8095.53 25896.13 29599.71 1497.47 18699.27 8299.16 9784.30 34199.62 28397.89 10499.77 10298.81 282
CDPH-MVS97.26 23096.66 25699.07 12599.00 20498.15 13696.03 29799.01 23191.21 34697.79 25597.85 29496.89 15699.69 25192.75 32599.38 23199.39 163
PatchMatch-RL97.24 23396.78 24798.61 18999.03 19997.83 17296.36 28599.06 21593.49 32097.36 28797.78 29795.75 21499.49 32193.44 31298.77 30098.52 307
eth_miper_zixun_eth97.23 23497.25 21897.17 29198.00 32792.77 32694.71 34199.18 18797.27 21098.56 19998.74 19691.89 29299.69 25197.06 15299.81 8199.05 242
sss97.21 23596.93 23598.06 24298.83 24095.22 26896.75 26598.48 29394.49 29897.27 28897.90 29192.77 28399.80 18396.57 19599.32 23999.16 234
LFMVS97.20 23696.72 25098.64 18298.72 25696.95 22498.93 7394.14 36299.74 798.78 16899.01 13384.45 33899.73 23697.44 12799.27 24899.25 211
HyFIR lowres test97.19 23796.60 26198.96 14399.62 5797.28 20695.17 33099.50 6494.21 30799.01 12498.32 26186.61 32099.99 297.10 14899.84 6899.60 57
miper_lstm_enhance97.18 23897.16 22497.25 28998.16 31892.85 32495.15 33299.31 13897.25 21298.74 17698.78 19090.07 30099.78 20897.19 13899.80 8999.11 238
CNLPA97.17 23996.71 25198.55 19998.56 28798.05 14996.33 28698.93 24096.91 23497.06 29697.39 32194.38 25599.45 32991.66 33799.18 26498.14 323
xiu_mvs_v2_base97.16 24097.49 20296.17 32098.54 28992.46 33095.45 32498.84 26197.25 21297.48 27996.49 34098.31 5199.90 5696.34 21698.68 30796.15 366
AdaColmapbinary97.14 24196.71 25198.46 21098.34 30797.80 17896.95 24998.93 24095.58 27696.92 30197.66 30495.87 21099.53 31190.97 34899.14 26998.04 326
iter_conf_final97.10 24296.65 25898.45 21198.53 29196.08 24698.30 12599.11 20898.10 14398.85 15798.95 14979.38 36399.87 9498.68 6099.91 4899.40 161
train_agg97.10 24296.45 26699.07 12598.71 25998.08 14495.96 30199.03 22491.64 33895.85 33797.53 31196.47 18199.76 22193.67 30599.16 26599.36 179
OpenMVScopyleft96.65 797.09 24496.68 25398.32 22298.32 30897.16 21798.86 7899.37 10989.48 35696.29 32999.15 10196.56 17699.90 5692.90 31999.20 25897.89 331
PS-MVSNAJ97.08 24597.39 20996.16 32298.56 28792.46 33095.24 32998.85 26097.25 21297.49 27895.99 34998.07 6899.90 5696.37 21398.67 30896.12 367
miper_ehance_all_eth97.06 24697.03 23097.16 29397.83 33593.06 31994.66 34499.09 21195.99 26798.69 17898.45 24692.73 28499.61 28996.79 17599.03 28398.82 279
agg_prior197.06 24696.40 26799.03 13598.68 27097.99 15295.76 31199.01 23191.73 33795.59 34097.50 31496.49 18099.77 21493.71 30499.14 26999.34 185
lupinMVS97.06 24696.86 24197.65 26498.88 23093.89 30795.48 32397.97 31493.53 31898.16 22897.58 30993.81 26699.91 5096.77 17899.57 18999.17 231
API-MVS97.04 24996.91 23997.42 28297.88 33398.23 12998.18 13698.50 29297.57 17797.39 28596.75 33696.77 16599.15 35890.16 35499.02 28694.88 372
cl____97.02 25096.83 24497.58 27097.82 33694.04 29794.66 34499.16 19697.04 22898.63 18598.71 20088.68 31199.69 25197.00 15499.81 8199.00 253
DIV-MVS_self_test97.02 25096.84 24397.58 27097.82 33694.03 29894.66 34499.16 19697.04 22898.63 18598.71 20088.69 30999.69 25197.00 15499.81 8199.01 250
RPMNet97.02 25096.93 23597.30 28697.71 34094.22 29198.11 14399.30 14899.37 4196.91 30399.34 6986.72 31999.87 9497.53 12497.36 34597.81 336
HQP-MVS97.00 25396.49 26598.55 19998.67 27296.79 22896.29 28899.04 22296.05 26395.55 34496.84 33493.84 26499.54 30992.82 32299.26 25199.32 193
new_pmnet96.99 25496.76 24897.67 26298.72 25694.89 27695.95 30398.20 30492.62 33098.55 20198.54 23194.88 24099.52 31593.96 29699.44 22398.59 306
Test_1112_low_res96.99 25496.55 26398.31 22499.35 12895.47 26195.84 31099.53 5891.51 34296.80 31298.48 24491.36 29499.83 15096.58 19399.53 20199.62 51
PVSNet_Blended96.88 25696.68 25397.47 27998.92 22093.77 31194.71 34199.43 9490.98 34897.62 26597.36 32496.82 16199.67 26394.73 27099.56 19498.98 255
MVSTER96.86 25796.55 26397.79 25597.91 33194.21 29397.56 20598.87 25197.49 18599.06 11399.05 11880.72 35599.80 18398.44 7499.82 7799.37 173
BH-untuned96.83 25896.75 24997.08 29498.74 25393.33 31696.71 26798.26 30196.72 24198.44 21097.37 32395.20 23199.47 32691.89 33597.43 34198.44 312
BH-RMVSNet96.83 25896.58 26297.58 27098.47 29694.05 29696.67 26997.36 32796.70 24397.87 24997.98 28595.14 23399.44 33090.47 35398.58 31399.25 211
PAPM_NR96.82 26096.32 27098.30 22599.07 18896.69 23397.48 21398.76 27395.81 27396.61 31896.47 34294.12 26299.17 35690.82 35297.78 33599.06 241
MG-MVS96.77 26196.61 25997.26 28898.31 30993.06 31995.93 30498.12 31096.45 25197.92 24598.73 19793.77 26899.39 33591.19 34799.04 28299.33 191
112196.73 26296.00 27698.91 15098.95 21397.76 18098.07 14898.73 27987.65 36496.54 31998.13 27294.52 25199.73 23692.38 33199.02 28699.24 214
test_yl96.69 26396.29 27197.90 24998.28 31095.24 26697.29 22797.36 32798.21 13298.17 22697.86 29286.27 32299.55 30694.87 26798.32 31798.89 271
DCV-MVSNet96.69 26396.29 27197.90 24998.28 31095.24 26697.29 22797.36 32798.21 13298.17 22697.86 29286.27 32299.55 30694.87 26798.32 31798.89 271
WTY-MVS96.67 26596.27 27397.87 25198.81 24594.61 28596.77 26397.92 31694.94 29197.12 29197.74 30091.11 29599.82 16093.89 29998.15 32599.18 227
PatchT96.65 26696.35 26897.54 27597.40 35395.32 26597.98 16296.64 34399.33 4696.89 30799.42 5784.32 34099.81 17497.69 12097.49 33897.48 350
TAPA-MVS96.21 1196.63 26795.95 27898.65 18198.93 21698.09 14096.93 25299.28 15883.58 37198.13 23297.78 29796.13 19499.40 33393.52 30999.29 24698.45 311
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
MIMVSNet96.62 26896.25 27497.71 26199.04 19694.66 28399.16 5096.92 33997.23 21897.87 24999.10 10886.11 32699.65 27691.65 33899.21 25798.82 279
Patchmatch-test96.55 26996.34 26997.17 29198.35 30693.06 31998.40 11897.79 31797.33 20398.41 21498.67 20883.68 34599.69 25195.16 26299.31 24198.77 290
iter_conf0596.54 27096.07 27597.92 24897.90 33294.50 28797.87 17399.14 20397.73 16498.89 14898.95 14975.75 37299.87 9498.50 7099.92 4299.40 161
PMMVS96.51 27195.98 27798.09 23797.53 34895.84 25194.92 33798.84 26191.58 34096.05 33595.58 35595.68 21699.66 27195.59 25498.09 32898.76 292
PLCcopyleft94.65 1696.51 27195.73 28298.85 15898.75 25297.91 16596.42 28299.06 21590.94 34995.59 34097.38 32294.41 25399.59 29490.93 34998.04 33299.05 242
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
114514_t96.50 27395.77 28098.69 17999.48 10097.43 19997.84 17699.55 4981.42 37396.51 32298.58 22895.53 22099.67 26393.41 31399.58 18598.98 255
test111196.49 27496.82 24595.52 33399.42 11387.08 36499.22 4187.14 37799.11 6599.46 4699.58 3088.69 30999.86 10398.80 5099.95 1899.62 51
MAR-MVS96.47 27595.70 28398.79 16797.92 33099.12 5898.28 12798.60 28792.16 33595.54 34796.17 34794.77 24799.52 31589.62 35698.23 31997.72 342
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
ETH3 D test640096.46 27695.59 28899.08 12298.88 23098.21 13196.53 27499.18 18788.87 36097.08 29497.79 29693.64 27199.77 21488.92 35899.40 22799.28 205
ECVR-MVScopyleft96.42 27796.61 25995.85 32599.38 11888.18 36099.22 4186.00 37999.08 7799.36 6699.57 3188.47 31499.82 16098.52 6999.95 1899.54 91
SCA96.41 27896.66 25695.67 32998.24 31388.35 35895.85 30996.88 34096.11 26197.67 26298.67 20893.10 27699.85 11894.16 28799.22 25598.81 282
DPM-MVS96.32 27995.59 28898.51 20598.76 25097.21 21294.54 35098.26 30191.94 33696.37 32797.25 32693.06 27899.43 33191.42 34398.74 30198.89 271
CMPMVSbinary75.91 2396.29 28095.44 29398.84 15996.25 37298.69 9397.02 24599.12 20688.90 35997.83 25298.86 17289.51 30498.90 36691.92 33499.51 20798.92 267
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
CR-MVSNet96.28 28195.95 27897.28 28797.71 34094.22 29198.11 14398.92 24392.31 33396.91 30399.37 6385.44 33299.81 17497.39 13097.36 34597.81 336
CVMVSNet96.25 28297.21 22293.38 35599.10 18180.56 38197.20 23598.19 30696.94 23299.00 12699.02 12489.50 30599.80 18396.36 21599.59 17999.78 15
AUN-MVS96.24 28395.45 29298.60 19098.70 26397.22 21097.38 22097.65 32295.95 26895.53 34897.96 28982.11 35499.79 19696.31 21797.44 34098.80 287
EPNet96.14 28495.44 29398.25 22890.76 38295.50 26097.92 16694.65 35598.97 8792.98 36898.85 17589.12 30799.87 9495.99 23299.68 14799.39 163
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
wuyk23d96.06 28597.62 19591.38 35898.65 27898.57 10298.85 7996.95 33796.86 23699.90 499.16 9799.18 1198.40 37189.23 35799.77 10277.18 376
miper_enhance_ethall96.01 28695.74 28196.81 30896.41 37092.27 33493.69 36398.89 24891.14 34798.30 22097.35 32590.58 29799.58 29996.31 21799.03 28398.60 304
FMVSNet596.01 28695.20 30198.41 21597.53 34896.10 24398.74 8299.50 6497.22 22198.03 24399.04 12069.80 37699.88 7797.27 13599.71 13199.25 211
baseline195.96 28895.44 29397.52 27798.51 29393.99 30198.39 11996.09 34998.21 13298.40 21897.76 29986.88 31899.63 28195.42 25889.27 37698.95 261
HY-MVS95.94 1395.90 28995.35 29797.55 27497.95 32894.79 27798.81 8196.94 33892.28 33495.17 35298.57 22989.90 30299.75 22891.20 34697.33 34798.10 324
GA-MVS95.86 29095.32 29897.49 27898.60 28194.15 29593.83 36197.93 31595.49 28096.68 31497.42 32083.21 34699.30 34696.22 22298.55 31499.01 250
OpenMVS_ROBcopyleft95.38 1495.84 29195.18 30297.81 25498.41 30497.15 21897.37 22198.62 28683.86 37098.65 18398.37 25494.29 25799.68 26088.41 35998.62 31196.60 361
cl2295.79 29295.39 29696.98 29896.77 36592.79 32594.40 35298.53 29094.59 29797.89 24898.17 27182.82 35099.24 35196.37 21399.03 28398.92 267
131495.74 29395.60 28796.17 32097.53 34892.75 32798.07 14898.31 30091.22 34594.25 35996.68 33795.53 22099.03 36091.64 33997.18 34896.74 359
PVSNet93.40 1795.67 29495.70 28395.57 33298.83 24088.57 35692.50 36897.72 31992.69 32996.49 32596.44 34393.72 26999.43 33193.61 30699.28 24798.71 296
tttt051795.64 29594.98 30597.64 26699.36 12493.81 30998.72 8590.47 37398.08 14598.67 18098.34 25873.88 37499.92 4097.77 11299.51 20799.20 220
PatchmatchNetpermissive95.58 29695.67 28595.30 33897.34 35587.32 36397.65 19596.65 34295.30 28597.07 29598.69 20484.77 33599.75 22894.97 26598.64 30998.83 278
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
TR-MVS95.55 29795.12 30396.86 30797.54 34793.94 30296.49 27896.53 34494.36 30597.03 29896.61 33894.26 25899.16 35786.91 36396.31 35997.47 351
JIA-IIPM95.52 29895.03 30497.00 29696.85 36394.03 29896.93 25295.82 35199.20 5794.63 35799.71 1283.09 34799.60 29094.42 28194.64 36997.36 352
CHOSEN 280x42095.51 29995.47 29095.65 33198.25 31288.27 35993.25 36598.88 24993.53 31894.65 35697.15 33086.17 32499.93 3197.41 12999.93 3398.73 295
ADS-MVSNet295.43 30094.98 30596.76 31098.14 31991.74 33897.92 16697.76 31890.23 35096.51 32298.91 15685.61 32999.85 11892.88 32096.90 35198.69 299
PAPR95.29 30194.47 31097.75 25997.50 35295.14 27194.89 33898.71 28191.39 34495.35 35195.48 35894.57 25099.14 35984.95 36697.37 34398.97 259
thisisatest053095.27 30294.45 31197.74 26099.19 15794.37 28997.86 17490.20 37497.17 22298.22 22497.65 30573.53 37599.90 5696.90 16799.35 23598.95 261
ADS-MVSNet95.24 30394.93 30796.18 31998.14 31990.10 35297.92 16697.32 33090.23 35096.51 32298.91 15685.61 32999.74 23292.88 32096.90 35198.69 299
BH-w/o95.13 30494.89 30895.86 32498.20 31691.31 34595.65 31697.37 32693.64 31696.52 32195.70 35493.04 27999.02 36188.10 36095.82 36497.24 353
tpmrst95.07 30595.46 29193.91 34897.11 35984.36 37497.62 19796.96 33694.98 28996.35 32898.80 18785.46 33199.59 29495.60 25396.23 36097.79 339
pmmvs395.03 30694.40 31296.93 30097.70 34292.53 32995.08 33397.71 32088.57 36197.71 25998.08 28079.39 36299.82 16096.19 22499.11 27698.43 313
tpmvs95.02 30795.25 29994.33 34496.39 37185.87 36698.08 14796.83 34195.46 28195.51 34998.69 20485.91 32799.53 31194.16 28796.23 36097.58 347
EPNet_dtu94.93 30894.78 30995.38 33793.58 37987.68 36296.78 26295.69 35397.35 20289.14 37598.09 27988.15 31599.49 32194.95 26699.30 24498.98 255
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
cascas94.79 30994.33 31596.15 32396.02 37592.36 33392.34 37099.26 16685.34 36995.08 35494.96 36692.96 28098.53 37094.41 28498.59 31297.56 348
tpm94.67 31094.34 31495.66 33097.68 34488.42 35797.88 17094.90 35494.46 30096.03 33698.56 23078.66 36599.79 19695.88 23695.01 36898.78 289
test0.0.03 194.51 31193.69 32096.99 29796.05 37393.61 31594.97 33693.49 36396.17 25897.57 27194.88 36782.30 35199.01 36393.60 30794.17 37298.37 317
thres600view794.45 31293.83 31896.29 31699.06 19291.53 34097.99 16194.24 36098.34 12097.44 28295.01 36379.84 35899.67 26384.33 36798.23 31997.66 344
PCF-MVS92.86 1894.36 31393.00 33098.42 21498.70 26397.56 19293.16 36699.11 20879.59 37497.55 27297.43 31992.19 28899.73 23679.85 37599.45 22097.97 330
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
X-MVStestdata94.32 31492.59 33299.53 3899.46 10399.21 2798.65 8899.34 12598.62 10697.54 27345.85 37797.50 11599.83 15096.79 17599.53 20199.56 79
MVS-HIRNet94.32 31495.62 28690.42 35998.46 29775.36 38296.29 28889.13 37695.25 28695.38 35099.75 792.88 28199.19 35594.07 29499.39 22896.72 360
ET-MVSNet_ETH3D94.30 31693.21 32697.58 27098.14 31994.47 28894.78 34093.24 36694.72 29589.56 37495.87 35278.57 36799.81 17496.91 16297.11 35098.46 309
thres100view90094.19 31793.67 32195.75 32899.06 19291.35 34498.03 15594.24 36098.33 12197.40 28494.98 36579.84 35899.62 28383.05 36998.08 32996.29 362
E-PMN94.17 31894.37 31393.58 35296.86 36285.71 36990.11 37297.07 33498.17 13897.82 25497.19 32784.62 33798.94 36489.77 35597.68 33796.09 368
thres40094.14 31993.44 32396.24 31898.93 21691.44 34297.60 20094.29 35897.94 15197.10 29294.31 37179.67 36099.62 28383.05 36998.08 32997.66 344
thisisatest051594.12 32093.16 32796.97 29998.60 28192.90 32393.77 36290.61 37294.10 31096.91 30395.87 35274.99 37399.80 18394.52 27699.12 27598.20 320
tfpn200view994.03 32193.44 32395.78 32798.93 21691.44 34297.60 20094.29 35897.94 15197.10 29294.31 37179.67 36099.62 28383.05 36998.08 32996.29 362
CostFormer93.97 32293.78 31994.51 34397.53 34885.83 36897.98 16295.96 35089.29 35894.99 35598.63 22078.63 36699.62 28394.54 27596.50 35698.09 325
test-LLR93.90 32393.85 31794.04 34696.53 36784.62 37294.05 35892.39 36896.17 25894.12 36195.07 36182.30 35199.67 26395.87 23998.18 32297.82 334
EMVS93.83 32494.02 31693.23 35696.83 36484.96 37089.77 37396.32 34697.92 15397.43 28396.36 34686.17 32498.93 36587.68 36197.73 33695.81 369
baseline293.73 32592.83 33196.42 31497.70 34291.28 34796.84 26089.77 37593.96 31492.44 36995.93 35079.14 36499.77 21492.94 31896.76 35598.21 319
thres20093.72 32693.14 32895.46 33698.66 27791.29 34696.61 27294.63 35697.39 19896.83 31093.71 37379.88 35799.56 30382.40 37298.13 32695.54 371
EPMVS93.72 32693.27 32595.09 34096.04 37487.76 36198.13 14085.01 38094.69 29696.92 30198.64 21678.47 36999.31 34495.04 26396.46 35798.20 320
dp93.47 32893.59 32293.13 35796.64 36681.62 38097.66 19396.42 34592.80 32896.11 33198.64 21678.55 36899.59 29493.31 31592.18 37598.16 322
FPMVS93.44 32992.23 33497.08 29499.25 14297.86 16995.61 31797.16 33392.90 32693.76 36698.65 21375.94 37195.66 37679.30 37697.49 33897.73 341
tpm cat193.29 33093.13 32993.75 35097.39 35484.74 37197.39 21997.65 32283.39 37294.16 36098.41 24882.86 34999.39 33591.56 34195.35 36797.14 354
MVS93.19 33192.09 33596.50 31396.91 36194.03 29898.07 14898.06 31268.01 37594.56 35896.48 34195.96 20699.30 34683.84 36896.89 35396.17 364
tpm293.09 33292.58 33394.62 34297.56 34686.53 36597.66 19395.79 35286.15 36794.07 36398.23 26775.95 37099.53 31190.91 35096.86 35497.81 336
KD-MVS_2432*160092.87 33391.99 33695.51 33491.37 38089.27 35494.07 35698.14 30895.42 28297.25 28996.44 34367.86 37899.24 35191.28 34496.08 36298.02 327
miper_refine_blended92.87 33391.99 33695.51 33491.37 38089.27 35494.07 35698.14 30895.42 28297.25 28996.44 34367.86 37899.24 35191.28 34496.08 36298.02 327
MVEpermissive83.40 2292.50 33591.92 33894.25 34598.83 24091.64 33992.71 36783.52 38195.92 26986.46 37895.46 35995.20 23195.40 37780.51 37498.64 30995.73 370
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test250692.39 33691.89 33993.89 34999.38 11882.28 37899.32 2266.03 38599.08 7798.77 17199.57 3166.26 38299.84 13598.71 5799.95 1899.54 91
gg-mvs-nofinetune92.37 33791.20 34295.85 32595.80 37692.38 33299.31 2681.84 38299.75 591.83 37199.74 868.29 37799.02 36187.15 36297.12 34996.16 365
test-mter92.33 33891.76 34194.04 34696.53 36784.62 37294.05 35892.39 36894.00 31394.12 36195.07 36165.63 38499.67 26395.87 23998.18 32297.82 334
IB-MVS91.63 1992.24 33990.90 34396.27 31797.22 35891.24 34894.36 35393.33 36592.37 33292.24 37094.58 37066.20 38399.89 6693.16 31794.63 37097.66 344
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
TESTMET0.1,192.19 34091.77 34093.46 35396.48 36982.80 37794.05 35891.52 37194.45 30294.00 36494.88 36766.65 38199.56 30395.78 24498.11 32798.02 327
PAPM91.88 34190.34 34496.51 31298.06 32492.56 32892.44 36997.17 33286.35 36690.38 37396.01 34886.61 32099.21 35470.65 37895.43 36697.75 340
PVSNet_089.98 2191.15 34290.30 34593.70 35197.72 33984.34 37590.24 37197.42 32590.20 35393.79 36593.09 37490.90 29698.89 36786.57 36472.76 37897.87 333
EGC-MVSNET85.24 34380.54 34699.34 7799.77 2599.20 3399.08 5799.29 15512.08 37920.84 38099.42 5797.55 10899.85 11897.08 14999.72 12698.96 260
test_method79.78 34479.50 34780.62 36080.21 38345.76 38570.82 37498.41 29731.08 37880.89 37997.71 30184.85 33497.37 37491.51 34280.03 37798.75 293
tmp_tt78.77 34578.73 34878.90 36158.45 38474.76 38494.20 35578.26 38439.16 37786.71 37792.82 37580.50 35675.19 38086.16 36592.29 37486.74 375
cdsmvs_eth3d_5k24.66 34632.88 3490.00 3640.00 3870.00 3880.00 37599.10 2100.00 3820.00 38397.58 30999.21 100.00 3830.00 3810.00 3810.00 379
testmvs17.12 34720.53 3506.87 36312.05 3854.20 38793.62 3646.73 3864.62 38110.41 38124.33 3788.28 3863.56 3829.69 38015.07 37912.86 378
test12317.04 34820.11 3517.82 36210.25 3864.91 38694.80 3394.47 3874.93 38010.00 38224.28 3799.69 3853.64 38110.14 37912.43 38014.92 377
pcd_1.5k_mvsjas8.17 34910.90 3520.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 38298.07 680.00 3830.00 3810.00 3810.00 379
ab-mvs-re8.12 35010.83 3530.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 38397.48 3160.00 3870.00 3830.00 3810.00 3810.00 379
test_blank0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
uanet_test0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
DCPMVS0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
sosnet-low-res0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
sosnet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
uncertanet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
Regformer0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
uanet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
FOURS199.73 3099.67 299.43 1299.54 5499.43 3599.26 86
MSC_two_6792asdad99.32 8298.43 30098.37 11698.86 25799.89 6697.14 14499.60 17599.71 30
PC_three_145293.27 32199.40 5798.54 23198.22 5797.00 37595.17 26199.45 22099.49 114
No_MVS99.32 8298.43 30098.37 11698.86 25799.89 6697.14 14499.60 17599.71 30
test_one_060199.39 11799.20 3399.31 13898.49 11498.66 18299.02 12497.64 100
eth-test20.00 387
eth-test0.00 387
ZD-MVS99.01 20398.84 7999.07 21494.10 31098.05 24198.12 27596.36 19099.86 10392.70 32799.19 262
RE-MVS-def98.58 9199.20 15499.38 698.48 11199.30 14898.64 10298.95 13598.96 14597.75 9196.56 19899.39 22899.45 138
IU-MVS99.49 9299.15 4898.87 25192.97 32499.41 5496.76 17999.62 16799.66 42
OPU-MVS98.82 16198.59 28398.30 12198.10 14598.52 23498.18 6198.75 36994.62 27399.48 21799.41 152
test_241102_TWO99.30 14898.03 14699.26 8699.02 12497.51 11499.88 7796.91 16299.60 17599.66 42
test_241102_ONE99.49 9299.17 3999.31 13897.98 14899.66 2098.90 15998.36 4699.48 324
9.1497.78 18199.07 18897.53 20899.32 13295.53 27998.54 20398.70 20397.58 10599.76 22194.32 28699.46 218
save fliter99.11 17797.97 15796.53 27499.02 22898.24 129
test_0728_THIRD98.17 13899.08 11199.02 12497.89 8199.88 7797.07 15099.71 13199.70 35
test_0728_SECOND99.60 1399.50 8599.23 2598.02 15799.32 13299.88 7796.99 15699.63 16499.68 38
test072699.50 8599.21 2798.17 13999.35 11997.97 14999.26 8699.06 11197.61 103
GSMVS98.81 282
test_part299.36 12499.10 6199.05 118
sam_mvs184.74 33698.81 282
sam_mvs84.29 342
ambc98.24 22998.82 24395.97 24898.62 9199.00 23499.27 8299.21 8696.99 15199.50 32096.55 20199.50 21499.26 210
MTGPAbinary99.20 178
test_post197.59 20220.48 38183.07 34899.66 27194.16 287
test_post21.25 38083.86 34499.70 247
patchmatchnet-post98.77 19284.37 33999.85 118
GG-mvs-BLEND94.76 34194.54 37892.13 33699.31 2680.47 38388.73 37691.01 37667.59 38098.16 37382.30 37394.53 37193.98 373
MTMP97.93 16591.91 370
gm-plane-assit94.83 37781.97 37988.07 36394.99 36499.60 29091.76 336
test9_res93.28 31699.15 26899.38 170
TEST998.71 25998.08 14495.96 30199.03 22491.40 34395.85 33797.53 31196.52 17899.76 221
test_898.67 27298.01 15195.91 30699.02 22891.64 33895.79 33997.50 31496.47 18199.76 221
agg_prior292.50 33099.16 26599.37 173
agg_prior98.68 27097.99 15299.01 23195.59 34099.77 214
TestCases99.16 10999.50 8598.55 10399.58 3196.80 23798.88 15399.06 11197.65 9799.57 30094.45 27999.61 17399.37 173
test_prior497.97 15795.86 307
test_prior295.74 31396.48 24996.11 33197.63 30795.92 20894.16 28799.20 258
test_prior98.95 14498.69 26797.95 16299.03 22499.59 29499.30 200
旧先验295.76 31188.56 36297.52 27599.66 27194.48 277
新几何295.93 304
新几何198.91 15098.94 21497.76 18098.76 27387.58 36596.75 31398.10 27794.80 24499.78 20892.73 32699.00 28999.20 220
旧先验198.82 24397.45 19898.76 27398.34 25895.50 22399.01 28899.23 215
无先验95.74 31398.74 27889.38 35799.73 23692.38 33199.22 219
原ACMM295.53 320
原ACMM198.35 22098.90 22496.25 24198.83 26692.48 33196.07 33498.10 27795.39 22799.71 24592.61 32998.99 29099.08 239
test22298.92 22096.93 22595.54 31998.78 27285.72 36896.86 30998.11 27694.43 25299.10 27799.23 215
testdata299.79 19692.80 324
segment_acmp97.02 149
testdata98.09 23798.93 21695.40 26498.80 26990.08 35497.45 28198.37 25495.26 22999.70 24793.58 30898.95 29499.17 231
testdata195.44 32596.32 255
test1298.93 14798.58 28497.83 17298.66 28396.53 32095.51 22299.69 25199.13 27299.27 207
plane_prior799.19 15797.87 168
plane_prior698.99 20797.70 18694.90 237
plane_prior599.27 16199.70 24794.42 28199.51 20799.45 138
plane_prior497.98 285
plane_prior397.78 17997.41 19697.79 255
plane_prior297.77 18298.20 135
plane_prior199.05 195
plane_prior97.65 18897.07 24496.72 24199.36 233
n20.00 388
nn0.00 388
door-mid99.57 38
lessismore_v098.97 14299.73 3097.53 19486.71 37899.37 6499.52 4189.93 30199.92 4098.99 4199.72 12699.44 142
LGP-MVS_train99.47 5899.57 6298.97 6799.48 7496.60 24599.10 10899.06 11198.71 2799.83 15095.58 25599.78 9899.62 51
test1198.87 251
door99.41 98
HQP5-MVS96.79 228
HQP-NCC98.67 27296.29 28896.05 26395.55 344
ACMP_Plane98.67 27296.29 28896.05 26395.55 344
BP-MVS92.82 322
HQP4-MVS95.56 34399.54 30999.32 193
HQP3-MVS99.04 22299.26 251
HQP2-MVS93.84 264
NP-MVS98.84 23897.39 20196.84 334
MDTV_nov1_ep13_2view74.92 38397.69 19090.06 35597.75 25885.78 32893.52 30998.69 299
MDTV_nov1_ep1395.22 30097.06 36083.20 37697.74 18696.16 34794.37 30496.99 29998.83 18183.95 34399.53 31193.90 29897.95 333
ACMMP++_ref99.77 102
ACMMP++99.68 147
Test By Simon96.52 178
ITE_SJBPF98.87 15599.22 14898.48 11099.35 11997.50 18398.28 22298.60 22697.64 10099.35 33993.86 30199.27 24898.79 288
DeepMVS_CXcopyleft93.44 35498.24 31394.21 29394.34 35764.28 37691.34 37294.87 36989.45 30692.77 37977.54 37793.14 37393.35 374