LCM-MVSNet | | | 99.93 1 | 99.92 1 | 99.94 1 | 99.99 1 | 99.97 1 | 99.90 1 | 99.89 2 | 99.98 1 | 99.99 1 | 99.96 1 | 99.77 1 | 100.00 1 | 99.81 1 | 100.00 1 | 99.85 9 |
|
UniMVSNet_ETH3D | | | 99.69 2 | 99.69 4 | 99.69 3 | 99.84 18 | 99.34 15 | 99.69 4 | 99.58 31 | 99.90 2 | 99.86 7 | 99.78 5 | 99.58 3 | 99.95 17 | 99.00 40 | 99.95 18 | 99.78 15 |
|
pmmvs6 | | | 99.67 3 | 99.70 3 | 99.60 13 | 99.90 4 | 99.27 21 | 99.53 7 | 99.76 10 | 99.64 13 | 99.84 8 | 99.83 2 | 99.50 5 | 99.87 94 | 99.36 17 | 99.92 42 | 99.64 47 |
|
LTVRE_ROB | | 98.40 1 | 99.67 3 | 99.71 2 | 99.56 24 | 99.85 15 | 99.11 60 | 99.90 1 | 99.78 8 | 99.63 15 | 99.78 10 | 99.67 17 | 99.48 6 | 99.81 174 | 99.30 22 | 99.97 12 | 99.77 17 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
mvs_tets | | | 99.63 5 | 99.67 5 | 99.49 52 | 99.88 7 | 98.61 98 | 99.34 20 | 99.71 14 | 99.27 52 | 99.90 4 | 99.74 8 | 99.68 2 | 99.97 4 | 99.55 8 | 99.99 5 | 99.88 3 |
|
jajsoiax | | | 99.58 6 | 99.61 7 | 99.48 55 | 99.87 10 | 98.61 98 | 99.28 36 | 99.66 22 | 99.09 75 | 99.89 6 | 99.68 14 | 99.53 4 | 99.97 4 | 99.50 10 | 99.99 5 | 99.87 5 |
|
ANet_high | | | 99.57 7 | 99.67 5 | 99.28 88 | 99.89 6 | 98.09 140 | 99.14 52 | 99.93 1 | 99.82 3 | 99.93 2 | 99.81 3 | 99.17 12 | 99.94 26 | 99.31 20 | 100.00 1 | 99.82 10 |
|
v7n | | | 99.53 8 | 99.57 8 | 99.41 65 | 99.88 7 | 98.54 106 | 99.45 10 | 99.61 27 | 99.66 12 | 99.68 19 | 99.66 18 | 98.44 42 | 99.95 17 | 99.73 2 | 99.96 15 | 99.75 24 |
|
test_djsdf | | | 99.52 9 | 99.51 9 | 99.53 38 | 99.86 12 | 98.74 87 | 99.39 16 | 99.56 45 | 99.11 65 | 99.70 15 | 99.73 10 | 99.00 15 | 99.97 4 | 99.26 23 | 99.98 9 | 99.89 2 |
|
anonymousdsp | | | 99.51 10 | 99.47 12 | 99.62 6 | 99.88 7 | 99.08 64 | 99.34 20 | 99.69 17 | 98.93 92 | 99.65 23 | 99.72 11 | 98.93 19 | 99.95 17 | 99.11 32 | 100.00 1 | 99.82 10 |
|
UA-Net | | | 99.47 11 | 99.40 14 | 99.70 2 | 99.49 92 | 99.29 18 | 99.80 3 | 99.72 13 | 99.82 3 | 99.04 120 | 99.81 3 | 98.05 71 | 99.96 11 | 98.85 48 | 99.99 5 | 99.86 8 |
|
PS-MVSNAJss | | | 99.46 12 | 99.49 10 | 99.35 74 | 99.90 4 | 98.15 136 | 99.20 44 | 99.65 23 | 99.48 28 | 99.92 3 | 99.71 12 | 98.07 68 | 99.96 11 | 99.53 9 | 100.00 1 | 99.93 1 |
|
pm-mvs1 | | | 99.44 13 | 99.48 11 | 99.33 80 | 99.80 22 | 98.63 95 | 99.29 32 | 99.63 24 | 99.30 50 | 99.65 23 | 99.60 28 | 99.16 14 | 99.82 160 | 99.07 34 | 99.83 74 | 99.56 79 |
|
TransMVSNet (Re) | | | 99.44 13 | 99.47 12 | 99.36 69 | 99.80 22 | 98.58 101 | 99.27 38 | 99.57 38 | 99.39 39 | 99.75 12 | 99.62 23 | 99.17 12 | 99.83 150 | 99.06 35 | 99.62 167 | 99.66 42 |
|
DTE-MVSNet | | | 99.43 15 | 99.35 18 | 99.66 4 | 99.71 37 | 99.30 17 | 99.31 26 | 99.51 62 | 99.64 13 | 99.56 30 | 99.46 50 | 98.23 54 | 99.97 4 | 98.78 51 | 99.93 33 | 99.72 28 |
|
TDRefinement | | | 99.42 16 | 99.38 15 | 99.55 26 | 99.76 28 | 99.33 16 | 99.68 5 | 99.71 14 | 99.38 40 | 99.53 35 | 99.61 25 | 98.64 30 | 99.80 183 | 98.24 84 | 99.84 68 | 99.52 103 |
|
PEN-MVS | | | 99.41 17 | 99.34 20 | 99.62 6 | 99.73 30 | 99.14 53 | 99.29 32 | 99.54 54 | 99.62 18 | 99.56 30 | 99.42 57 | 98.16 64 | 99.96 11 | 98.78 51 | 99.93 33 | 99.77 17 |
|
bld_raw_conf005 | | | 99.41 17 | 99.38 15 | 99.51 47 | 99.85 15 | 98.88 74 | 99.44 11 | 99.74 12 | 99.68 9 | 99.51 40 | 99.61 25 | 97.25 136 | 99.91 50 | 99.37 16 | 99.95 18 | 99.72 28 |
|
nrg030 | | | 99.40 19 | 99.35 18 | 99.54 31 | 99.58 58 | 99.13 56 | 98.98 70 | 99.48 74 | 99.68 9 | 99.46 46 | 99.26 79 | 98.62 32 | 99.73 236 | 99.17 31 | 99.92 42 | 99.76 21 |
|
PS-CasMVS | | | 99.40 19 | 99.33 21 | 99.62 6 | 99.71 37 | 99.10 61 | 99.29 32 | 99.53 58 | 99.53 25 | 99.46 46 | 99.41 60 | 98.23 54 | 99.95 17 | 98.89 46 | 99.95 18 | 99.81 12 |
|
MIMVSNet1 | | | 99.38 21 | 99.32 22 | 99.55 26 | 99.86 12 | 99.19 37 | 99.41 14 | 99.59 29 | 99.59 21 | 99.71 14 | 99.57 31 | 97.12 142 | 99.90 56 | 99.21 28 | 99.87 62 | 99.54 91 |
|
OurMVSNet-221017-0 | | | 99.37 22 | 99.31 23 | 99.53 38 | 99.91 3 | 98.98 66 | 99.63 6 | 99.58 31 | 99.44 33 | 99.78 10 | 99.76 6 | 96.39 186 | 99.92 40 | 99.44 14 | 99.92 42 | 99.68 38 |
|
Vis-MVSNet |  | | 99.34 23 | 99.36 17 | 99.27 91 | 99.73 30 | 98.26 123 | 99.17 49 | 99.78 8 | 99.11 65 | 99.27 82 | 99.48 48 | 98.82 21 | 99.95 17 | 98.94 42 | 99.93 33 | 99.59 63 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
WR-MVS_H | | | 99.33 24 | 99.22 28 | 99.65 5 | 99.71 37 | 99.24 24 | 99.32 22 | 99.55 49 | 99.46 31 | 99.50 42 | 99.34 69 | 97.30 129 | 99.93 31 | 98.90 44 | 99.93 33 | 99.77 17 |
|
VPA-MVSNet | | | 99.30 25 | 99.30 24 | 99.28 88 | 99.49 92 | 98.36 119 | 99.00 67 | 99.45 85 | 99.63 15 | 99.52 37 | 99.44 55 | 98.25 52 | 99.88 77 | 99.09 33 | 99.84 68 | 99.62 51 |
|
Anonymous20231211 | | | 99.27 26 | 99.27 25 | 99.26 94 | 99.29 135 | 98.18 132 | 99.49 8 | 99.51 62 | 99.70 8 | 99.80 9 | 99.68 14 | 96.84 158 | 99.83 150 | 99.21 28 | 99.91 48 | 99.77 17 |
|
FC-MVSNet-test | | | 99.27 26 | 99.25 26 | 99.34 77 | 99.77 25 | 98.37 116 | 99.30 31 | 99.57 38 | 99.61 20 | 99.40 57 | 99.50 43 | 97.12 142 | 99.85 118 | 99.02 39 | 99.94 28 | 99.80 13 |
|
test_low_dy_conf_001 | | | 99.26 28 | 99.16 31 | 99.55 26 | 99.86 12 | 98.86 76 | 99.37 18 | 98.87 251 | 99.42 36 | 99.46 46 | 99.68 14 | 96.44 183 | 99.93 31 | 99.39 15 | 99.94 28 | 99.87 5 |
|
KD-MVS_self_test | | | 99.25 29 | 99.18 29 | 99.44 61 | 99.63 55 | 99.06 65 | 98.69 87 | 99.54 54 | 99.31 48 | 99.62 28 | 99.53 39 | 97.36 127 | 99.86 103 | 99.24 27 | 99.71 131 | 99.39 163 |
|
ACMH | | 96.65 7 | 99.25 29 | 99.24 27 | 99.26 94 | 99.72 36 | 98.38 115 | 99.07 60 | 99.55 49 | 98.30 123 | 99.65 23 | 99.45 54 | 99.22 9 | 99.76 221 | 98.44 74 | 99.77 102 | 99.64 47 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
mvsmamba | | | 99.24 31 | 99.15 34 | 99.49 52 | 99.83 19 | 98.85 77 | 99.41 14 | 99.55 49 | 99.54 24 | 99.40 57 | 99.52 41 | 95.86 211 | 99.91 50 | 99.32 19 | 99.95 18 | 99.70 35 |
|
CP-MVSNet | | | 99.21 32 | 99.09 39 | 99.56 24 | 99.65 50 | 98.96 71 | 99.13 53 | 99.34 125 | 99.42 36 | 99.33 71 | 99.26 79 | 97.01 150 | 99.94 26 | 98.74 55 | 99.93 33 | 99.79 14 |
|
TranMVSNet+NR-MVSNet | | | 99.17 33 | 99.07 42 | 99.46 60 | 99.37 123 | 98.87 75 | 98.39 119 | 99.42 97 | 99.42 36 | 99.36 66 | 99.06 111 | 98.38 45 | 99.95 17 | 98.34 80 | 99.90 55 | 99.57 74 |
|
FMVSNet1 | | | 99.17 33 | 99.17 30 | 99.17 106 | 99.55 73 | 98.24 125 | 99.20 44 | 99.44 88 | 99.21 54 | 99.43 52 | 99.55 35 | 97.82 87 | 99.86 103 | 98.42 76 | 99.89 58 | 99.41 152 |
|
FIs | | | 99.14 35 | 99.09 39 | 99.29 85 | 99.70 43 | 98.28 122 | 99.13 53 | 99.52 61 | 99.48 28 | 99.24 91 | 99.41 60 | 96.79 164 | 99.82 160 | 98.69 59 | 99.88 59 | 99.76 21 |
|
XXY-MVS | | | 99.14 35 | 99.15 34 | 99.10 118 | 99.76 28 | 97.74 183 | 98.85 79 | 99.62 25 | 98.48 115 | 99.37 64 | 99.49 46 | 98.75 24 | 99.86 103 | 98.20 87 | 99.80 89 | 99.71 30 |
|
CS-MVS | | | 99.13 37 | 99.10 38 | 99.24 99 | 99.06 192 | 99.15 48 | 99.36 19 | 99.88 3 | 99.36 44 | 98.21 225 | 98.46 245 | 98.68 29 | 99.93 31 | 99.03 38 | 99.85 64 | 98.64 303 |
|
CS-MVS-test | | | 99.13 37 | 99.09 39 | 99.26 94 | 99.13 175 | 98.97 67 | 99.31 26 | 99.88 3 | 99.44 33 | 98.16 228 | 98.51 235 | 98.64 30 | 99.93 31 | 98.91 43 | 99.85 64 | 98.88 274 |
|
RRT_MVS | | | 99.09 39 | 98.94 50 | 99.55 26 | 99.87 10 | 98.82 82 | 99.48 9 | 98.16 307 | 99.49 27 | 99.59 29 | 99.65 20 | 94.79 246 | 99.95 17 | 99.45 13 | 99.96 15 | 99.88 3 |
|
DROMVSNet | | | 99.09 39 | 99.05 43 | 99.20 103 | 99.28 136 | 98.93 72 | 99.24 40 | 99.84 6 | 99.08 77 | 98.12 233 | 98.37 254 | 98.72 26 | 99.90 56 | 99.05 36 | 99.77 102 | 98.77 290 |
|
ACMH+ | | 96.62 9 | 99.08 41 | 99.00 46 | 99.33 80 | 99.71 37 | 98.83 80 | 98.60 93 | 99.58 31 | 99.11 65 | 99.53 35 | 99.18 91 | 98.81 22 | 99.67 263 | 96.71 186 | 99.77 102 | 99.50 110 |
|
bld_raw_dy_0_64 | | | 99.07 42 | 99.00 46 | 99.29 85 | 99.85 15 | 98.18 132 | 99.11 56 | 99.40 100 | 99.33 46 | 99.38 61 | 99.44 55 | 95.21 230 | 99.97 4 | 99.31 20 | 99.98 9 | 99.73 27 |
|
GeoE | | | 99.05 43 | 98.99 49 | 99.25 97 | 99.44 108 | 98.35 120 | 98.73 84 | 99.56 45 | 98.42 117 | 98.91 144 | 98.81 186 | 98.94 18 | 99.91 50 | 98.35 79 | 99.73 119 | 99.49 114 |
|
Gipuma |  | | 99.03 44 | 99.16 31 | 98.64 182 | 99.94 2 | 98.51 108 | 99.32 22 | 99.75 11 | 99.58 23 | 98.60 191 | 99.62 23 | 98.22 57 | 99.51 319 | 97.70 118 | 99.73 119 | 97.89 331 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
v8 | | | 99.01 45 | 99.16 31 | 98.57 194 | 99.47 102 | 96.31 240 | 98.90 74 | 99.47 80 | 99.03 81 | 99.52 37 | 99.57 31 | 96.93 154 | 99.81 174 | 99.60 4 | 99.98 9 | 99.60 57 |
|
HPM-MVS_fast | | | 99.01 45 | 98.82 58 | 99.57 18 | 99.71 37 | 99.35 12 | 99.00 67 | 99.50 64 | 97.33 203 | 98.94 141 | 98.86 172 | 98.75 24 | 99.82 160 | 97.53 124 | 99.71 131 | 99.56 79 |
|
APDe-MVS | | | 98.99 47 | 98.79 61 | 99.60 13 | 99.21 150 | 99.15 48 | 98.87 76 | 99.48 74 | 97.57 177 | 99.35 68 | 99.24 83 | 97.83 84 | 99.89 66 | 97.88 107 | 99.70 136 | 99.75 24 |
|
abl_6 | | | 98.99 47 | 98.78 62 | 99.61 9 | 99.45 106 | 99.46 4 | 98.60 93 | 99.50 64 | 98.59 108 | 99.24 91 | 99.04 120 | 98.54 37 | 99.89 66 | 96.45 208 | 99.62 167 | 99.50 110 |
|
EG-PatchMatch MVS | | | 98.99 47 | 99.01 45 | 98.94 146 | 99.50 85 | 97.47 196 | 98.04 154 | 99.59 29 | 98.15 142 | 99.40 57 | 99.36 66 | 98.58 35 | 99.76 221 | 98.78 51 | 99.68 147 | 99.59 63 |
|
COLMAP_ROB |  | 96.50 10 | 98.99 47 | 98.85 56 | 99.41 65 | 99.58 58 | 99.10 61 | 98.74 82 | 99.56 45 | 99.09 75 | 99.33 71 | 99.19 89 | 98.40 44 | 99.72 244 | 95.98 233 | 99.76 112 | 99.42 149 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
Baseline_NR-MVSNet | | | 98.98 51 | 98.86 55 | 99.36 69 | 99.82 21 | 98.55 103 | 97.47 215 | 99.57 38 | 99.37 41 | 99.21 95 | 99.61 25 | 96.76 167 | 99.83 150 | 98.06 95 | 99.83 74 | 99.71 30 |
|
v10 | | | 98.97 52 | 99.11 36 | 98.55 199 | 99.44 108 | 96.21 242 | 98.90 74 | 99.55 49 | 98.73 100 | 99.48 43 | 99.60 28 | 96.63 174 | 99.83 150 | 99.70 3 | 99.99 5 | 99.61 56 |
|
DeepC-MVS | | 97.60 4 | 98.97 52 | 98.93 51 | 99.10 118 | 99.35 128 | 97.98 156 | 98.01 160 | 99.46 82 | 97.56 179 | 99.54 32 | 99.50 43 | 98.97 16 | 99.84 135 | 98.06 95 | 99.92 42 | 99.49 114 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
baseline | | | 98.96 54 | 99.02 44 | 98.76 173 | 99.38 118 | 97.26 207 | 98.49 108 | 99.50 64 | 98.86 95 | 99.19 97 | 99.06 111 | 98.23 54 | 99.69 251 | 98.71 57 | 99.76 112 | 99.33 191 |
|
casdiffmvs | | | 98.95 55 | 99.00 46 | 98.81 163 | 99.38 118 | 97.33 202 | 97.82 177 | 99.57 38 | 99.17 62 | 99.35 68 | 99.17 95 | 98.35 49 | 99.69 251 | 98.46 73 | 99.73 119 | 99.41 152 |
|
NR-MVSNet | | | 98.95 55 | 98.82 58 | 99.36 69 | 99.16 168 | 98.72 92 | 99.22 41 | 99.20 178 | 99.10 72 | 99.72 13 | 98.76 194 | 96.38 188 | 99.86 103 | 98.00 100 | 99.82 77 | 99.50 110 |
|
Anonymous20240529 | | | 98.93 57 | 98.87 53 | 99.12 114 | 99.19 157 | 98.22 130 | 99.01 65 | 98.99 235 | 99.25 53 | 99.54 32 | 99.37 63 | 97.04 146 | 99.80 183 | 97.89 104 | 99.52 204 | 99.35 183 |
|
DP-MVS | | | 98.93 57 | 98.81 60 | 99.28 88 | 99.21 150 | 98.45 112 | 98.46 113 | 99.33 130 | 99.63 15 | 99.48 43 | 99.15 101 | 97.23 138 | 99.75 228 | 97.17 139 | 99.66 158 | 99.63 50 |
|
SED-MVS | | | 98.91 59 | 98.72 68 | 99.49 52 | 99.49 92 | 99.17 39 | 98.10 145 | 99.31 138 | 98.03 146 | 99.66 20 | 99.02 124 | 98.36 46 | 99.88 77 | 96.91 162 | 99.62 167 | 99.41 152 |
|
ACMM | | 96.08 12 | 98.91 59 | 98.73 66 | 99.48 55 | 99.55 73 | 99.14 53 | 98.07 148 | 99.37 109 | 97.62 172 | 99.04 120 | 98.96 145 | 98.84 20 | 99.79 196 | 97.43 128 | 99.65 159 | 99.49 114 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
DVP-MVS++ | | | 98.90 61 | 98.70 73 | 99.51 47 | 98.43 300 | 99.15 48 | 99.43 12 | 99.32 132 | 98.17 138 | 99.26 86 | 99.02 124 | 98.18 61 | 99.88 77 | 97.07 150 | 99.45 220 | 99.49 114 |
|
tfpnnormal | | | 98.90 61 | 98.90 52 | 98.91 150 | 99.67 47 | 97.82 175 | 99.00 67 | 99.44 88 | 99.45 32 | 99.51 40 | 99.24 83 | 98.20 60 | 99.86 103 | 95.92 235 | 99.69 142 | 99.04 246 |
|
MTAPA | | | 98.88 63 | 98.64 81 | 99.61 9 | 99.67 47 | 99.36 10 | 98.43 116 | 99.20 178 | 98.83 98 | 98.89 148 | 98.90 159 | 96.98 152 | 99.92 40 | 97.16 140 | 99.70 136 | 99.56 79 |
|
VPNet | | | 98.87 64 | 98.83 57 | 99.01 139 | 99.70 43 | 97.62 191 | 98.43 116 | 99.35 119 | 99.47 30 | 99.28 80 | 99.05 118 | 96.72 170 | 99.82 160 | 98.09 93 | 99.36 233 | 99.59 63 |
|
UniMVSNet (Re) | | | 98.87 64 | 98.71 70 | 99.35 74 | 99.24 143 | 98.73 90 | 97.73 187 | 99.38 105 | 98.93 92 | 99.12 104 | 98.73 197 | 96.77 165 | 99.86 103 | 98.63 62 | 99.80 89 | 99.46 134 |
|
UniMVSNet_NR-MVSNet | | | 98.86 66 | 98.68 76 | 99.40 67 | 99.17 166 | 98.74 87 | 97.68 191 | 99.40 100 | 99.14 63 | 99.06 113 | 98.59 227 | 96.71 171 | 99.93 31 | 98.57 65 | 99.77 102 | 99.53 99 |
|
APD-MVS_3200maxsize | | | 98.84 67 | 98.61 87 | 99.53 38 | 99.19 157 | 99.27 21 | 98.49 108 | 99.33 130 | 98.64 102 | 99.03 123 | 98.98 140 | 97.89 81 | 99.85 118 | 96.54 202 | 99.42 224 | 99.46 134 |
|
PM-MVS | | | 98.82 68 | 98.72 68 | 99.12 114 | 99.64 53 | 98.54 106 | 97.98 162 | 99.68 19 | 97.62 172 | 99.34 70 | 99.18 91 | 97.54 109 | 99.77 214 | 97.79 110 | 99.74 116 | 99.04 246 |
|
DU-MVS | | | 98.82 68 | 98.63 82 | 99.39 68 | 99.16 168 | 98.74 87 | 97.54 207 | 99.25 167 | 98.84 97 | 99.06 113 | 98.76 194 | 96.76 167 | 99.93 31 | 98.57 65 | 99.77 102 | 99.50 110 |
|
SR-MVS-dyc-post | | | 98.81 70 | 98.55 93 | 99.57 18 | 99.20 154 | 99.38 6 | 98.48 111 | 99.30 148 | 98.64 102 | 98.95 135 | 98.96 145 | 97.49 118 | 99.86 103 | 96.56 198 | 99.39 228 | 99.45 138 |
|
3Dnovator | | 98.27 2 | 98.81 70 | 98.73 66 | 99.05 132 | 98.76 250 | 97.81 177 | 99.25 39 | 99.30 148 | 98.57 112 | 98.55 201 | 99.33 71 | 97.95 80 | 99.90 56 | 97.16 140 | 99.67 153 | 99.44 142 |
|
zzz-MVS | | | 98.79 72 | 98.52 96 | 99.61 9 | 99.67 47 | 99.36 10 | 97.33 224 | 99.20 178 | 98.83 98 | 98.89 148 | 98.90 159 | 96.98 152 | 99.92 40 | 97.16 140 | 99.70 136 | 99.56 79 |
|
HPM-MVS |  | | 98.79 72 | 98.53 95 | 99.59 17 | 99.65 50 | 99.29 18 | 99.16 50 | 99.43 94 | 96.74 240 | 98.61 189 | 98.38 253 | 98.62 32 | 99.87 94 | 96.47 206 | 99.67 153 | 99.59 63 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
SteuartSystems-ACMMP | | | 98.79 72 | 98.54 94 | 99.54 31 | 99.73 30 | 99.16 43 | 98.23 131 | 99.31 138 | 97.92 153 | 98.90 145 | 98.90 159 | 98.00 74 | 99.88 77 | 96.15 227 | 99.72 126 | 99.58 69 |
Skip Steuart: Steuart Systems R&D Blog. |
dcpmvs_2 | | | 98.78 75 | 99.11 36 | 97.78 256 | 99.56 69 | 93.67 313 | 99.06 62 | 99.86 5 | 99.50 26 | 99.66 20 | 99.26 79 | 97.21 140 | 99.99 2 | 98.00 100 | 99.91 48 | 99.68 38 |
|
V42 | | | 98.78 75 | 98.78 62 | 98.76 173 | 99.44 108 | 97.04 220 | 98.27 128 | 99.19 183 | 97.87 157 | 99.25 90 | 99.16 97 | 96.84 158 | 99.78 208 | 99.21 28 | 99.84 68 | 99.46 134 |
|
test20.03 | | | 98.78 75 | 98.77 64 | 98.78 170 | 99.46 103 | 97.20 213 | 97.78 179 | 99.24 172 | 99.04 80 | 99.41 54 | 98.90 159 | 97.65 97 | 99.76 221 | 97.70 118 | 99.79 94 | 99.39 163 |
|
DVP-MVS |  | | 98.77 78 | 98.52 96 | 99.52 43 | 99.50 85 | 99.21 27 | 98.02 157 | 98.84 261 | 97.97 149 | 99.08 111 | 99.02 124 | 97.61 103 | 99.88 77 | 96.99 156 | 99.63 164 | 99.48 124 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
test1172 | | | 98.76 79 | 98.49 103 | 99.57 18 | 99.18 164 | 99.37 9 | 98.39 119 | 99.31 138 | 98.43 116 | 98.90 145 | 98.88 168 | 97.49 118 | 99.86 103 | 96.43 210 | 99.37 232 | 99.48 124 |
|
test_0402 | | | 98.76 79 | 98.71 70 | 98.93 147 | 99.56 69 | 98.14 138 | 98.45 115 | 99.34 125 | 99.28 51 | 98.95 135 | 98.91 156 | 98.34 50 | 99.79 196 | 95.63 252 | 99.91 48 | 98.86 276 |
|
ACMMP_NAP | | | 98.75 81 | 98.48 105 | 99.57 18 | 99.58 58 | 99.29 18 | 97.82 177 | 99.25 167 | 96.94 232 | 98.78 168 | 99.12 105 | 98.02 72 | 99.84 135 | 97.13 146 | 99.67 153 | 99.59 63 |
|
SixPastTwentyTwo | | | 98.75 81 | 98.62 84 | 99.16 109 | 99.83 19 | 97.96 161 | 99.28 36 | 98.20 304 | 99.37 41 | 99.70 15 | 99.65 20 | 92.65 285 | 99.93 31 | 99.04 37 | 99.84 68 | 99.60 57 |
|
ACMMP |  | | 98.75 81 | 98.50 100 | 99.52 43 | 99.56 69 | 99.16 43 | 98.87 76 | 99.37 109 | 97.16 223 | 98.82 165 | 99.01 133 | 97.71 93 | 99.87 94 | 96.29 219 | 99.69 142 | 99.54 91 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
Regformer-4 | | | 98.73 84 | 98.68 76 | 98.89 153 | 99.02 201 | 97.22 210 | 97.17 239 | 99.06 215 | 99.21 54 | 99.17 102 | 98.85 175 | 97.45 121 | 99.86 103 | 98.48 72 | 99.70 136 | 99.60 57 |
|
XVS | | | 98.72 85 | 98.45 111 | 99.53 38 | 99.46 103 | 99.21 27 | 98.65 88 | 99.34 125 | 98.62 106 | 97.54 273 | 98.63 220 | 97.50 115 | 99.83 150 | 96.79 175 | 99.53 201 | 99.56 79 |
|
SR-MVS | | | 98.71 86 | 98.43 115 | 99.57 18 | 99.18 164 | 99.35 12 | 98.36 122 | 99.29 155 | 98.29 126 | 98.88 153 | 98.85 175 | 97.53 111 | 99.87 94 | 96.14 228 | 99.31 241 | 99.48 124 |
|
HFP-MVS | | | 98.71 86 | 98.44 113 | 99.51 47 | 99.49 92 | 99.16 43 | 98.52 102 | 99.31 138 | 97.47 186 | 98.58 195 | 98.50 239 | 97.97 78 | 99.85 118 | 96.57 195 | 99.59 179 | 99.53 99 |
|
LPG-MVS_test | | | 98.71 86 | 98.46 109 | 99.47 58 | 99.57 62 | 98.97 67 | 98.23 131 | 99.48 74 | 96.60 245 | 99.10 108 | 99.06 111 | 98.71 27 | 99.83 150 | 95.58 255 | 99.78 98 | 99.62 51 |
|
ACMMPR | | | 98.70 89 | 98.42 117 | 99.54 31 | 99.52 80 | 99.14 53 | 98.52 102 | 99.31 138 | 97.47 186 | 98.56 199 | 98.54 231 | 97.75 91 | 99.88 77 | 96.57 195 | 99.59 179 | 99.58 69 |
|
CP-MVS | | | 98.70 89 | 98.42 117 | 99.52 43 | 99.36 124 | 99.12 58 | 98.72 85 | 99.36 113 | 97.54 181 | 98.30 220 | 98.40 249 | 97.86 83 | 99.89 66 | 96.53 203 | 99.72 126 | 99.56 79 |
|
Anonymous20240521 | | | 98.69 91 | 98.87 53 | 98.16 235 | 99.77 25 | 95.11 273 | 99.08 57 | 99.44 88 | 99.34 45 | 99.33 71 | 99.55 35 | 94.10 263 | 99.94 26 | 99.25 25 | 99.96 15 | 99.42 149 |
|
region2R | | | 98.69 91 | 98.40 119 | 99.54 31 | 99.53 78 | 99.17 39 | 98.52 102 | 99.31 138 | 97.46 191 | 98.44 210 | 98.51 235 | 97.83 84 | 99.88 77 | 96.46 207 | 99.58 185 | 99.58 69 |
|
EI-MVSNet-UG-set | | | 98.69 91 | 98.71 70 | 98.62 187 | 99.10 181 | 96.37 238 | 97.23 231 | 98.87 251 | 99.20 57 | 99.19 97 | 98.99 136 | 97.30 129 | 99.85 118 | 98.77 54 | 99.79 94 | 99.65 46 |
|
3Dnovator+ | | 97.89 3 | 98.69 91 | 98.51 98 | 99.24 99 | 98.81 245 | 98.40 113 | 99.02 64 | 99.19 183 | 98.99 84 | 98.07 238 | 99.28 75 | 97.11 144 | 99.84 135 | 96.84 173 | 99.32 239 | 99.47 132 |
|
ZNCC-MVS | | | 98.68 95 | 98.40 119 | 99.54 31 | 99.57 62 | 99.21 27 | 98.46 113 | 99.29 155 | 97.28 209 | 98.11 235 | 98.39 251 | 98.00 74 | 99.87 94 | 96.86 172 | 99.64 161 | 99.55 87 |
|
EI-MVSNet-Vis-set | | | 98.68 95 | 98.70 73 | 98.63 185 | 99.09 184 | 96.40 237 | 97.23 231 | 98.86 257 | 99.20 57 | 99.18 101 | 98.97 142 | 97.29 131 | 99.85 118 | 98.72 56 | 99.78 98 | 99.64 47 |
|
CSCG | | | 98.68 95 | 98.50 100 | 99.20 103 | 99.45 106 | 98.63 95 | 98.56 98 | 99.57 38 | 97.87 157 | 98.85 157 | 98.04 282 | 97.66 96 | 99.84 135 | 96.72 184 | 99.81 81 | 99.13 235 |
|
PGM-MVS | | | 98.66 98 | 98.37 125 | 99.55 26 | 99.53 78 | 99.18 38 | 98.23 131 | 99.49 72 | 97.01 230 | 98.69 178 | 98.88 168 | 98.00 74 | 99.89 66 | 95.87 239 | 99.59 179 | 99.58 69 |
|
GBi-Net | | | 98.65 99 | 98.47 107 | 99.17 106 | 98.90 224 | 98.24 125 | 99.20 44 | 99.44 88 | 98.59 108 | 98.95 135 | 99.55 35 | 94.14 259 | 99.86 103 | 97.77 112 | 99.69 142 | 99.41 152 |
|
test1 | | | 98.65 99 | 98.47 107 | 99.17 106 | 98.90 224 | 98.24 125 | 99.20 44 | 99.44 88 | 98.59 108 | 98.95 135 | 99.55 35 | 94.14 259 | 99.86 103 | 97.77 112 | 99.69 142 | 99.41 152 |
|
LCM-MVSNet-Re | | | 98.64 101 | 98.48 105 | 99.11 116 | 98.85 235 | 98.51 108 | 98.49 108 | 99.83 7 | 98.37 118 | 99.69 17 | 99.46 50 | 98.21 59 | 99.92 40 | 94.13 292 | 99.30 244 | 98.91 270 |
|
mPP-MVS | | | 98.64 101 | 98.34 129 | 99.54 31 | 99.54 76 | 99.17 39 | 98.63 90 | 99.24 172 | 97.47 186 | 98.09 237 | 98.68 206 | 97.62 102 | 99.89 66 | 96.22 222 | 99.62 167 | 99.57 74 |
|
TSAR-MVS + MP. | | | 98.63 103 | 98.49 103 | 99.06 130 | 99.64 53 | 97.90 166 | 98.51 106 | 98.94 238 | 96.96 231 | 99.24 91 | 98.89 167 | 97.83 84 | 99.81 174 | 96.88 169 | 99.49 215 | 99.48 124 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
LS3D | | | 98.63 103 | 98.38 124 | 99.36 69 | 97.25 357 | 99.38 6 | 99.12 55 | 99.32 132 | 99.21 54 | 98.44 210 | 98.88 168 | 97.31 128 | 99.80 183 | 96.58 193 | 99.34 237 | 98.92 267 |
|
RPSCF | | | 98.62 105 | 98.36 126 | 99.42 62 | 99.65 50 | 99.42 5 | 98.55 99 | 99.57 38 | 97.72 166 | 98.90 145 | 99.26 79 | 96.12 195 | 99.52 315 | 95.72 246 | 99.71 131 | 99.32 193 |
|
GST-MVS | | | 98.61 106 | 98.30 134 | 99.52 43 | 99.51 82 | 99.20 33 | 98.26 129 | 99.25 167 | 97.44 194 | 98.67 180 | 98.39 251 | 97.68 94 | 99.85 118 | 96.00 231 | 99.51 207 | 99.52 103 |
|
Regformer-3 | | | 98.61 106 | 98.61 87 | 98.63 185 | 99.02 201 | 96.53 235 | 97.17 239 | 98.84 261 | 99.13 64 | 99.10 108 | 98.85 175 | 97.24 137 | 99.79 196 | 98.41 77 | 99.70 136 | 99.57 74 |
|
v1192 | | | 98.60 108 | 98.66 79 | 98.41 215 | 99.27 138 | 95.88 250 | 97.52 209 | 99.36 113 | 97.41 196 | 99.33 71 | 99.20 88 | 96.37 189 | 99.82 160 | 99.57 6 | 99.92 42 | 99.55 87 |
|
v1144 | | | 98.60 108 | 98.66 79 | 98.41 215 | 99.36 124 | 95.90 249 | 97.58 203 | 99.34 125 | 97.51 182 | 99.27 82 | 99.15 101 | 96.34 191 | 99.80 183 | 99.47 12 | 99.93 33 | 99.51 106 |
|
Regformer-2 | | | 98.60 108 | 98.46 109 | 99.02 138 | 98.85 235 | 97.71 185 | 96.91 255 | 99.09 211 | 98.98 86 | 99.01 124 | 98.64 216 | 97.37 126 | 99.84 135 | 97.75 117 | 99.57 189 | 99.52 103 |
|
DPE-MVS |  | | 98.59 111 | 98.26 138 | 99.57 18 | 99.27 138 | 99.15 48 | 97.01 246 | 99.39 103 | 97.67 168 | 99.44 51 | 98.99 136 | 97.53 111 | 99.89 66 | 95.40 259 | 99.68 147 | 99.66 42 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
MP-MVS-pluss | | | 98.57 112 | 98.23 142 | 99.60 13 | 99.69 45 | 99.35 12 | 97.16 241 | 99.38 105 | 94.87 293 | 98.97 132 | 98.99 136 | 98.01 73 | 99.88 77 | 97.29 134 | 99.70 136 | 99.58 69 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
OPM-MVS | | | 98.56 113 | 98.32 133 | 99.25 97 | 99.41 115 | 98.73 90 | 97.13 243 | 99.18 187 | 97.10 226 | 98.75 174 | 98.92 155 | 98.18 61 | 99.65 276 | 96.68 188 | 99.56 194 | 99.37 173 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
VDD-MVS | | | 98.56 113 | 98.39 122 | 99.07 125 | 99.13 175 | 98.07 146 | 98.59 95 | 97.01 335 | 99.59 21 | 99.11 105 | 99.27 77 | 94.82 241 | 99.79 196 | 98.34 80 | 99.63 164 | 99.34 185 |
|
v2v482 | | | 98.56 113 | 98.62 84 | 98.37 219 | 99.42 113 | 95.81 253 | 97.58 203 | 99.16 196 | 97.90 155 | 99.28 80 | 99.01 133 | 95.98 204 | 99.79 196 | 99.33 18 | 99.90 55 | 99.51 106 |
|
XVG-ACMP-BASELINE | | | 98.56 113 | 98.34 129 | 99.22 102 | 99.54 76 | 98.59 100 | 97.71 188 | 99.46 82 | 97.25 212 | 98.98 129 | 98.99 136 | 97.54 109 | 99.84 135 | 95.88 236 | 99.74 116 | 99.23 215 |
|
Regformer-1 | | | 98.55 117 | 98.44 113 | 98.87 155 | 98.85 235 | 97.29 204 | 96.91 255 | 98.99 235 | 98.97 87 | 98.99 127 | 98.64 216 | 97.26 135 | 99.81 174 | 97.79 110 | 99.57 189 | 99.51 106 |
|
v1240 | | | 98.55 117 | 98.62 84 | 98.32 222 | 99.22 148 | 95.58 256 | 97.51 211 | 99.45 85 | 97.16 223 | 99.45 50 | 99.24 83 | 96.12 195 | 99.85 118 | 99.60 4 | 99.88 59 | 99.55 87 |
|
IterMVS-LS | | | 98.55 117 | 98.70 73 | 98.09 237 | 99.48 100 | 94.73 280 | 97.22 234 | 99.39 103 | 98.97 87 | 99.38 61 | 99.31 73 | 96.00 200 | 99.93 31 | 98.58 63 | 99.97 12 | 99.60 57 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
v144192 | | | 98.54 120 | 98.57 92 | 98.45 211 | 99.21 150 | 95.98 247 | 97.63 196 | 99.36 113 | 97.15 225 | 99.32 77 | 99.18 91 | 95.84 212 | 99.84 135 | 99.50 10 | 99.91 48 | 99.54 91 |
|
v1921920 | | | 98.54 120 | 98.60 89 | 98.38 218 | 99.20 154 | 95.76 255 | 97.56 205 | 99.36 113 | 97.23 218 | 99.38 61 | 99.17 95 | 96.02 198 | 99.84 135 | 99.57 6 | 99.90 55 | 99.54 91 |
|
SF-MVS | | | 98.53 122 | 98.27 137 | 99.32 82 | 99.31 131 | 98.75 86 | 98.19 135 | 99.41 98 | 96.77 239 | 98.83 161 | 98.90 159 | 97.80 88 | 99.82 160 | 95.68 249 | 99.52 204 | 99.38 170 |
|
XVG-OURS | | | 98.53 122 | 98.34 129 | 99.11 116 | 99.50 85 | 98.82 82 | 95.97 299 | 99.50 64 | 97.30 207 | 99.05 118 | 98.98 140 | 99.35 7 | 99.32 343 | 95.72 246 | 99.68 147 | 99.18 227 |
|
UGNet | | | 98.53 122 | 98.45 111 | 98.79 167 | 97.94 329 | 96.96 223 | 99.08 57 | 98.54 289 | 99.10 72 | 96.82 311 | 99.47 49 | 96.55 177 | 99.84 135 | 98.56 68 | 99.94 28 | 99.55 87 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
patch_mono-2 | | | 98.51 125 | 98.63 82 | 98.17 233 | 99.38 118 | 94.78 278 | 97.36 222 | 99.69 17 | 98.16 141 | 98.49 207 | 99.29 74 | 97.06 145 | 99.97 4 | 98.29 83 | 99.91 48 | 99.76 21 |
|
#test# | | | 98.50 126 | 98.16 151 | 99.51 47 | 99.49 92 | 99.16 43 | 98.03 155 | 99.31 138 | 96.30 257 | 98.58 195 | 98.50 239 | 97.97 78 | 99.85 118 | 95.68 249 | 99.59 179 | 99.53 99 |
|
XVG-OURS-SEG-HR | | | 98.49 127 | 98.28 136 | 99.14 112 | 99.49 92 | 98.83 80 | 96.54 273 | 99.48 74 | 97.32 205 | 99.11 105 | 98.61 225 | 99.33 8 | 99.30 346 | 96.23 221 | 98.38 316 | 99.28 205 |
|
FMVSNet2 | | | 98.49 127 | 98.40 119 | 98.75 175 | 98.90 224 | 97.14 219 | 98.61 92 | 99.13 204 | 98.59 108 | 99.19 97 | 99.28 75 | 94.14 259 | 99.82 160 | 97.97 102 | 99.80 89 | 99.29 204 |
|
pmmvs-eth3d | | | 98.47 129 | 98.34 129 | 98.86 157 | 99.30 134 | 97.76 180 | 97.16 241 | 99.28 158 | 95.54 277 | 99.42 53 | 99.19 89 | 97.27 132 | 99.63 281 | 97.89 104 | 99.97 12 | 99.20 220 |
|
MP-MVS |  | | 98.46 130 | 98.09 158 | 99.54 31 | 99.57 62 | 99.22 26 | 98.50 107 | 99.19 183 | 97.61 174 | 97.58 269 | 98.66 211 | 97.40 124 | 99.88 77 | 94.72 272 | 99.60 175 | 99.54 91 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
v148 | | | 98.45 131 | 98.60 89 | 98.00 246 | 99.44 108 | 94.98 274 | 97.44 218 | 99.06 215 | 98.30 123 | 99.32 77 | 98.97 142 | 96.65 173 | 99.62 283 | 98.37 78 | 99.85 64 | 99.39 163 |
|
xxxxxxxxxxxxxcwj | | | 98.44 132 | 98.24 140 | 99.06 130 | 99.11 177 | 97.97 157 | 96.53 274 | 99.54 54 | 98.24 129 | 98.83 161 | 98.90 159 | 97.80 88 | 99.82 160 | 95.68 249 | 99.52 204 | 99.38 170 |
|
AllTest | | | 98.44 132 | 98.20 144 | 99.16 109 | 99.50 85 | 98.55 103 | 98.25 130 | 99.58 31 | 96.80 237 | 98.88 153 | 99.06 111 | 97.65 97 | 99.57 300 | 94.45 279 | 99.61 173 | 99.37 173 |
|
VNet | | | 98.42 134 | 98.30 134 | 98.79 167 | 98.79 249 | 97.29 204 | 98.23 131 | 98.66 283 | 99.31 48 | 98.85 157 | 98.80 187 | 94.80 244 | 99.78 208 | 98.13 89 | 99.13 272 | 99.31 197 |
|
ab-mvs | | | 98.41 135 | 98.36 126 | 98.59 191 | 99.19 157 | 97.23 208 | 99.32 22 | 98.81 267 | 97.66 169 | 98.62 187 | 99.40 62 | 96.82 161 | 99.80 183 | 95.88 236 | 99.51 207 | 98.75 293 |
|
ACMP | | 95.32 15 | 98.41 135 | 98.09 158 | 99.36 69 | 99.51 82 | 98.79 85 | 97.68 191 | 99.38 105 | 95.76 274 | 98.81 167 | 98.82 184 | 98.36 46 | 99.82 160 | 94.75 269 | 99.77 102 | 99.48 124 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
SMA-MVS |  | | 98.40 137 | 98.03 165 | 99.51 47 | 99.16 168 | 99.21 27 | 98.05 152 | 99.22 175 | 94.16 309 | 98.98 129 | 99.10 108 | 97.52 113 | 99.79 196 | 96.45 208 | 99.64 161 | 99.53 99 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
MSP-MVS | | | 98.40 137 | 98.00 167 | 99.61 9 | 99.57 62 | 99.25 23 | 98.57 97 | 99.35 119 | 97.55 180 | 99.31 79 | 97.71 301 | 94.61 249 | 99.88 77 | 96.14 228 | 99.19 262 | 99.70 35 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
SD-MVS | | | 98.40 137 | 98.68 76 | 97.54 275 | 98.96 211 | 97.99 152 | 97.88 170 | 99.36 113 | 98.20 135 | 99.63 26 | 99.04 120 | 98.76 23 | 95.33 378 | 96.56 198 | 99.74 116 | 99.31 197 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
EI-MVSNet | | | 98.40 137 | 98.51 98 | 98.04 244 | 99.10 181 | 94.73 280 | 97.20 235 | 98.87 251 | 98.97 87 | 99.06 113 | 99.02 124 | 96.00 200 | 99.80 183 | 98.58 63 | 99.82 77 | 99.60 57 |
|
WR-MVS | | | 98.40 137 | 98.19 146 | 99.03 135 | 99.00 204 | 97.65 188 | 96.85 258 | 98.94 238 | 98.57 112 | 98.89 148 | 98.50 239 | 95.60 218 | 99.85 118 | 97.54 123 | 99.85 64 | 99.59 63 |
|
new-patchmatchnet | | | 98.35 142 | 98.74 65 | 97.18 290 | 99.24 143 | 92.23 335 | 96.42 282 | 99.48 74 | 98.30 123 | 99.69 17 | 99.53 39 | 97.44 122 | 99.82 160 | 98.84 49 | 99.77 102 | 99.49 114 |
|
canonicalmvs | | | 98.34 143 | 98.26 138 | 98.58 192 | 98.46 297 | 97.82 175 | 98.96 71 | 99.46 82 | 99.19 61 | 97.46 280 | 95.46 359 | 98.59 34 | 99.46 328 | 98.08 94 | 98.71 305 | 98.46 309 |
|
testgi | | | 98.32 144 | 98.39 122 | 98.13 236 | 99.57 62 | 95.54 257 | 97.78 179 | 99.49 72 | 97.37 200 | 99.19 97 | 97.65 305 | 98.96 17 | 99.49 321 | 96.50 205 | 98.99 290 | 99.34 185 |
|
DeepPCF-MVS | | 96.93 5 | 98.32 144 | 98.01 166 | 99.23 101 | 98.39 305 | 98.97 67 | 95.03 334 | 99.18 187 | 96.88 235 | 99.33 71 | 98.78 190 | 98.16 64 | 99.28 349 | 96.74 181 | 99.62 167 | 99.44 142 |
|
MVS_111021_LR | | | 98.30 146 | 98.12 156 | 98.83 160 | 99.16 168 | 98.03 150 | 96.09 296 | 99.30 148 | 97.58 176 | 98.10 236 | 98.24 265 | 98.25 52 | 99.34 340 | 96.69 187 | 99.65 159 | 99.12 236 |
|
EPP-MVSNet | | | 98.30 146 | 98.04 164 | 99.07 125 | 99.56 69 | 97.83 172 | 99.29 32 | 98.07 311 | 99.03 81 | 98.59 193 | 99.13 104 | 92.16 289 | 99.90 56 | 96.87 170 | 99.68 147 | 99.49 114 |
|
DeepC-MVS_fast | | 96.85 6 | 98.30 146 | 98.15 153 | 98.75 175 | 98.61 279 | 97.23 208 | 97.76 184 | 99.09 211 | 97.31 206 | 98.75 174 | 98.66 211 | 97.56 107 | 99.64 278 | 96.10 230 | 99.55 196 | 99.39 163 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
PHI-MVS | | | 98.29 149 | 97.95 170 | 99.34 77 | 98.44 299 | 99.16 43 | 98.12 142 | 99.38 105 | 96.01 266 | 98.06 239 | 98.43 247 | 97.80 88 | 99.67 263 | 95.69 248 | 99.58 185 | 99.20 220 |
|
Fast-Effi-MVS+-dtu | | | 98.27 150 | 98.09 158 | 98.81 163 | 98.43 300 | 98.11 139 | 97.61 199 | 99.50 64 | 98.64 102 | 97.39 285 | 97.52 313 | 98.12 67 | 99.95 17 | 96.90 167 | 98.71 305 | 98.38 315 |
|
DELS-MVS | | | 98.27 150 | 98.20 144 | 98.48 208 | 98.86 233 | 96.70 232 | 95.60 318 | 99.20 178 | 97.73 164 | 98.45 209 | 98.71 200 | 97.50 115 | 99.82 160 | 98.21 86 | 99.59 179 | 98.93 266 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
Effi-MVS+-dtu | | | 98.26 152 | 97.90 175 | 99.35 74 | 98.02 325 | 99.49 3 | 98.02 157 | 99.16 196 | 98.29 126 | 97.64 264 | 97.99 284 | 96.44 183 | 99.95 17 | 96.66 189 | 98.93 295 | 98.60 304 |
|
MVSFormer | | | 98.26 152 | 98.43 115 | 97.77 257 | 98.88 230 | 93.89 307 | 99.39 16 | 99.56 45 | 99.11 65 | 98.16 228 | 98.13 272 | 93.81 266 | 99.97 4 | 99.26 23 | 99.57 189 | 99.43 146 |
|
MVS_111021_HR | | | 98.25 154 | 98.08 161 | 98.75 175 | 99.09 184 | 97.46 197 | 95.97 299 | 99.27 161 | 97.60 175 | 97.99 244 | 98.25 264 | 98.15 66 | 99.38 337 | 96.87 170 | 99.57 189 | 99.42 149 |
|
TAMVS | | | 98.24 155 | 98.05 163 | 98.80 165 | 99.07 188 | 97.18 215 | 97.88 170 | 98.81 267 | 96.66 244 | 99.17 102 | 99.21 86 | 94.81 243 | 99.77 214 | 96.96 160 | 99.88 59 | 99.44 142 |
|
diffmvs | | | 98.22 156 | 98.24 140 | 98.17 233 | 99.00 204 | 95.44 262 | 96.38 284 | 99.58 31 | 97.79 162 | 98.53 204 | 98.50 239 | 96.76 167 | 99.74 232 | 97.95 103 | 99.64 161 | 99.34 185 |
|
Anonymous20231206 | | | 98.21 157 | 98.21 143 | 98.20 231 | 99.51 82 | 95.43 263 | 98.13 140 | 99.32 132 | 96.16 260 | 98.93 142 | 98.82 184 | 96.00 200 | 99.83 150 | 97.32 133 | 99.73 119 | 99.36 179 |
|
VDDNet | | | 98.21 157 | 97.95 170 | 99.01 139 | 99.58 58 | 97.74 183 | 99.01 65 | 97.29 331 | 99.67 11 | 98.97 132 | 99.50 43 | 90.45 298 | 99.80 183 | 97.88 107 | 99.20 258 | 99.48 124 |
|
IS-MVSNet | | | 98.19 159 | 97.90 175 | 99.08 122 | 99.57 62 | 97.97 157 | 99.31 26 | 98.32 299 | 99.01 83 | 98.98 129 | 99.03 123 | 91.59 293 | 99.79 196 | 95.49 257 | 99.80 89 | 99.48 124 |
|
MVS_Test | | | 98.18 160 | 98.36 126 | 97.67 262 | 98.48 295 | 94.73 280 | 98.18 136 | 99.02 228 | 97.69 167 | 98.04 242 | 99.11 106 | 97.22 139 | 99.56 303 | 98.57 65 | 98.90 296 | 98.71 296 |
|
TSAR-MVS + GP. | | | 98.18 160 | 97.98 168 | 98.77 172 | 98.71 259 | 97.88 167 | 96.32 287 | 98.66 283 | 96.33 254 | 99.23 94 | 98.51 235 | 97.48 120 | 99.40 333 | 97.16 140 | 99.46 218 | 99.02 249 |
|
CNVR-MVS | | | 98.17 162 | 97.87 177 | 99.07 125 | 98.67 272 | 98.24 125 | 97.01 246 | 98.93 240 | 97.25 212 | 97.62 265 | 98.34 258 | 97.27 132 | 99.57 300 | 96.42 211 | 99.33 238 | 99.39 163 |
|
PVSNet_Blended_VisFu | | | 98.17 162 | 98.15 153 | 98.22 230 | 99.73 30 | 95.15 270 | 97.36 222 | 99.68 19 | 94.45 302 | 98.99 127 | 99.27 77 | 96.87 157 | 99.94 26 | 97.13 146 | 99.91 48 | 99.57 74 |
|
HPM-MVS++ |  | | 98.10 164 | 97.64 193 | 99.48 55 | 99.09 184 | 99.13 56 | 97.52 209 | 98.75 276 | 97.46 191 | 96.90 306 | 97.83 295 | 96.01 199 | 99.84 135 | 95.82 243 | 99.35 235 | 99.46 134 |
|
APD-MVS |  | | 98.10 164 | 97.67 188 | 99.42 62 | 99.11 177 | 98.93 72 | 97.76 184 | 99.28 158 | 94.97 290 | 98.72 177 | 98.77 192 | 97.04 146 | 99.85 118 | 93.79 303 | 99.54 197 | 99.49 114 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
MVP-Stereo | | | 98.08 166 | 97.92 173 | 98.57 194 | 98.96 211 | 96.79 228 | 97.90 169 | 99.18 187 | 96.41 252 | 98.46 208 | 98.95 149 | 95.93 207 | 99.60 290 | 96.51 204 | 98.98 292 | 99.31 197 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
PMMVS2 | | | 98.07 167 | 98.08 161 | 98.04 244 | 99.41 115 | 94.59 286 | 94.59 348 | 99.40 100 | 97.50 183 | 98.82 165 | 98.83 181 | 96.83 160 | 99.84 135 | 97.50 126 | 99.81 81 | 99.71 30 |
|
ETH3D-3000-0.1 | | | 98.03 168 | 97.62 195 | 99.29 85 | 99.11 177 | 98.80 84 | 97.47 215 | 99.32 132 | 95.54 277 | 98.43 213 | 98.62 222 | 96.61 175 | 99.77 214 | 93.95 297 | 99.49 215 | 99.30 200 |
|
ETV-MVS | | | 98.03 168 | 97.86 178 | 98.56 198 | 98.69 267 | 98.07 146 | 97.51 211 | 99.50 64 | 98.10 143 | 97.50 277 | 95.51 357 | 98.41 43 | 99.88 77 | 96.27 220 | 99.24 253 | 97.71 343 |
|
Effi-MVS+ | | | 98.02 170 | 97.82 180 | 98.62 187 | 98.53 291 | 97.19 214 | 97.33 224 | 99.68 19 | 97.30 207 | 96.68 314 | 97.46 318 | 98.56 36 | 99.80 183 | 96.63 191 | 98.20 321 | 98.86 276 |
|
MSLP-MVS++ | | | 98.02 170 | 98.14 155 | 97.64 266 | 98.58 284 | 95.19 269 | 97.48 213 | 99.23 174 | 97.47 186 | 97.90 247 | 98.62 222 | 97.04 146 | 98.81 368 | 97.55 121 | 99.41 225 | 98.94 265 |
|
EIA-MVS | | | 98.00 172 | 97.74 184 | 98.80 165 | 98.72 256 | 98.09 140 | 98.05 152 | 99.60 28 | 97.39 198 | 96.63 316 | 95.55 356 | 97.68 94 | 99.80 183 | 96.73 183 | 99.27 248 | 98.52 307 |
|
MCST-MVS | | | 98.00 172 | 97.63 194 | 99.10 118 | 99.24 143 | 98.17 135 | 96.89 257 | 98.73 279 | 95.66 275 | 97.92 245 | 97.70 303 | 97.17 141 | 99.66 271 | 96.18 226 | 99.23 254 | 99.47 132 |
|
K. test v3 | | | 98.00 172 | 97.66 191 | 99.03 135 | 99.79 24 | 97.56 192 | 99.19 48 | 92.47 367 | 99.62 18 | 99.52 37 | 99.66 18 | 89.61 303 | 99.96 11 | 99.25 25 | 99.81 81 | 99.56 79 |
|
HQP_MVS | | | 97.99 175 | 97.67 188 | 98.93 147 | 99.19 157 | 97.65 188 | 97.77 182 | 99.27 161 | 98.20 135 | 97.79 255 | 97.98 285 | 94.90 237 | 99.70 247 | 94.42 281 | 99.51 207 | 99.45 138 |
|
MDA-MVSNet-bldmvs | | | 97.94 176 | 97.91 174 | 98.06 242 | 99.44 108 | 94.96 275 | 96.63 271 | 99.15 202 | 98.35 119 | 98.83 161 | 99.11 106 | 94.31 256 | 99.85 118 | 96.60 192 | 98.72 303 | 99.37 173 |
|
test_part1 | | | 97.91 177 | 97.46 207 | 99.27 91 | 98.80 247 | 98.18 132 | 99.07 60 | 99.36 113 | 99.75 5 | 99.63 26 | 99.49 46 | 82.20 353 | 99.89 66 | 98.87 47 | 99.95 18 | 99.74 26 |
|
Anonymous202405211 | | | 97.90 178 | 97.50 201 | 99.08 122 | 98.90 224 | 98.25 124 | 98.53 101 | 96.16 347 | 98.87 94 | 99.11 105 | 98.86 172 | 90.40 299 | 99.78 208 | 97.36 131 | 99.31 241 | 99.19 225 |
|
LF4IMVS | | | 97.90 178 | 97.69 187 | 98.52 203 | 99.17 166 | 97.66 187 | 97.19 238 | 99.47 80 | 96.31 256 | 97.85 251 | 98.20 269 | 96.71 171 | 99.52 315 | 94.62 273 | 99.72 126 | 98.38 315 |
|
UnsupCasMVSNet_eth | | | 97.89 180 | 97.60 197 | 98.75 175 | 99.31 131 | 97.17 216 | 97.62 197 | 99.35 119 | 98.72 101 | 98.76 173 | 98.68 206 | 92.57 286 | 99.74 232 | 97.76 116 | 95.60 365 | 99.34 185 |
|
TinyColmap | | | 97.89 180 | 97.98 168 | 97.60 268 | 98.86 233 | 94.35 290 | 96.21 292 | 99.44 88 | 97.45 193 | 99.06 113 | 98.88 168 | 97.99 77 | 99.28 349 | 94.38 285 | 99.58 185 | 99.18 227 |
|
OMC-MVS | | | 97.88 182 | 97.49 202 | 99.04 134 | 98.89 229 | 98.63 95 | 96.94 250 | 99.25 167 | 95.02 288 | 98.53 204 | 98.51 235 | 97.27 132 | 99.47 326 | 93.50 311 | 99.51 207 | 99.01 250 |
|
CANet | | | 97.87 183 | 97.76 182 | 98.19 232 | 97.75 338 | 95.51 259 | 96.76 264 | 99.05 219 | 97.74 163 | 96.93 300 | 98.21 268 | 95.59 219 | 99.89 66 | 97.86 109 | 99.93 33 | 99.19 225 |
|
xiu_mvs_v1_base_debu | | | 97.86 184 | 98.17 148 | 96.92 301 | 98.98 208 | 93.91 304 | 96.45 279 | 99.17 193 | 97.85 159 | 98.41 214 | 97.14 331 | 98.47 39 | 99.92 40 | 98.02 97 | 99.05 279 | 96.92 355 |
|
xiu_mvs_v1_base | | | 97.86 184 | 98.17 148 | 96.92 301 | 98.98 208 | 93.91 304 | 96.45 279 | 99.17 193 | 97.85 159 | 98.41 214 | 97.14 331 | 98.47 39 | 99.92 40 | 98.02 97 | 99.05 279 | 96.92 355 |
|
xiu_mvs_v1_base_debi | | | 97.86 184 | 98.17 148 | 96.92 301 | 98.98 208 | 93.91 304 | 96.45 279 | 99.17 193 | 97.85 159 | 98.41 214 | 97.14 331 | 98.47 39 | 99.92 40 | 98.02 97 | 99.05 279 | 96.92 355 |
|
NCCC | | | 97.86 184 | 97.47 206 | 99.05 132 | 98.61 279 | 98.07 146 | 96.98 248 | 98.90 246 | 97.63 171 | 97.04 297 | 97.93 290 | 95.99 203 | 99.66 271 | 95.31 260 | 98.82 299 | 99.43 146 |
|
PMVS |  | 91.26 20 | 97.86 184 | 97.94 172 | 97.65 264 | 99.71 37 | 97.94 164 | 98.52 102 | 98.68 282 | 98.99 84 | 97.52 275 | 99.35 67 | 97.41 123 | 98.18 372 | 91.59 340 | 99.67 153 | 96.82 358 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
IterMVS-SCA-FT | | | 97.85 189 | 98.18 147 | 96.87 304 | 99.27 138 | 91.16 350 | 95.53 320 | 99.25 167 | 99.10 72 | 99.41 54 | 99.35 67 | 93.10 276 | 99.96 11 | 98.65 61 | 99.94 28 | 99.49 114 |
|
D2MVS | | | 97.84 190 | 97.84 179 | 97.83 253 | 99.14 173 | 94.74 279 | 96.94 250 | 98.88 249 | 95.84 271 | 98.89 148 | 98.96 145 | 94.40 254 | 99.69 251 | 97.55 121 | 99.95 18 | 99.05 242 |
|
CPTT-MVS | | | 97.84 190 | 97.36 212 | 99.27 91 | 99.31 131 | 98.46 111 | 98.29 126 | 99.27 161 | 94.90 292 | 97.83 252 | 98.37 254 | 94.90 237 | 99.84 135 | 93.85 302 | 99.54 197 | 99.51 106 |
|
mvs-test1 | | | 97.83 192 | 97.48 205 | 98.89 153 | 98.02 325 | 99.20 33 | 97.20 235 | 99.16 196 | 98.29 126 | 96.46 326 | 97.17 328 | 96.44 183 | 99.92 40 | 96.66 189 | 97.90 334 | 97.54 349 |
|
mvs_anonymous | | | 97.83 192 | 98.16 151 | 96.87 304 | 98.18 317 | 91.89 337 | 97.31 226 | 98.90 246 | 97.37 200 | 98.83 161 | 99.46 50 | 96.28 192 | 99.79 196 | 98.90 44 | 98.16 324 | 98.95 261 |
|
testtj | | | 97.79 194 | 97.25 218 | 99.42 62 | 99.03 199 | 98.85 77 | 97.78 179 | 99.18 187 | 95.83 272 | 98.12 233 | 98.50 239 | 95.50 223 | 99.86 103 | 92.23 333 | 99.07 278 | 99.54 91 |
|
h-mvs33 | | | 97.77 195 | 97.33 216 | 99.10 118 | 99.21 150 | 97.84 171 | 98.35 123 | 98.57 288 | 99.11 65 | 98.58 195 | 99.02 124 | 88.65 312 | 99.96 11 | 98.11 90 | 96.34 358 | 99.49 114 |
|
IterMVS | | | 97.73 196 | 98.11 157 | 96.57 311 | 99.24 143 | 90.28 351 | 95.52 322 | 99.21 176 | 98.86 95 | 99.33 71 | 99.33 71 | 93.11 275 | 99.94 26 | 98.49 71 | 99.94 28 | 99.48 124 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
MSDG | | | 97.71 197 | 97.52 200 | 98.28 227 | 98.91 223 | 96.82 227 | 94.42 351 | 99.37 109 | 97.65 170 | 98.37 219 | 98.29 263 | 97.40 124 | 99.33 342 | 94.09 293 | 99.22 255 | 98.68 302 |
|
CDS-MVSNet | | | 97.69 198 | 97.35 213 | 98.69 179 | 98.73 254 | 97.02 222 | 96.92 254 | 98.75 276 | 95.89 270 | 98.59 193 | 98.67 208 | 92.08 291 | 99.74 232 | 96.72 184 | 99.81 81 | 99.32 193 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
MS-PatchMatch | | | 97.68 199 | 97.75 183 | 97.45 280 | 98.23 315 | 93.78 310 | 97.29 227 | 98.84 261 | 96.10 262 | 98.64 184 | 98.65 213 | 96.04 197 | 99.36 338 | 96.84 173 | 99.14 269 | 99.20 220 |
|
Fast-Effi-MVS+ | | | 97.67 200 | 97.38 210 | 98.57 194 | 98.71 259 | 97.43 199 | 97.23 231 | 99.45 85 | 94.82 294 | 96.13 330 | 96.51 339 | 98.52 38 | 99.91 50 | 96.19 224 | 98.83 298 | 98.37 317 |
|
EU-MVSNet | | | 97.66 201 | 98.50 100 | 95.13 339 | 99.63 55 | 85.84 367 | 98.35 123 | 98.21 303 | 98.23 131 | 99.54 32 | 99.46 50 | 95.02 235 | 99.68 260 | 98.24 84 | 99.87 62 | 99.87 5 |
|
MVS_0304 | | | 97.64 202 | 97.35 213 | 98.52 203 | 97.87 334 | 96.69 233 | 98.59 95 | 98.05 313 | 97.44 194 | 93.74 367 | 98.85 175 | 93.69 270 | 99.88 77 | 98.11 90 | 99.81 81 | 98.98 255 |
|
pmmvs5 | | | 97.64 202 | 97.49 202 | 98.08 240 | 99.14 173 | 95.12 272 | 96.70 268 | 99.05 219 | 93.77 315 | 98.62 187 | 98.83 181 | 93.23 272 | 99.75 228 | 98.33 82 | 99.76 112 | 99.36 179 |
|
N_pmnet | | | 97.63 204 | 97.17 223 | 98.99 141 | 99.27 138 | 97.86 169 | 95.98 298 | 93.41 364 | 95.25 286 | 99.47 45 | 98.90 159 | 95.63 217 | 99.85 118 | 96.91 162 | 99.73 119 | 99.27 207 |
|
YYNet1 | | | 97.60 205 | 97.67 188 | 97.39 284 | 99.04 196 | 93.04 322 | 95.27 327 | 98.38 298 | 97.25 212 | 98.92 143 | 98.95 149 | 95.48 225 | 99.73 236 | 96.99 156 | 98.74 301 | 99.41 152 |
|
MDA-MVSNet_test_wron | | | 97.60 205 | 97.66 191 | 97.41 283 | 99.04 196 | 93.09 318 | 95.27 327 | 98.42 295 | 97.26 211 | 98.88 153 | 98.95 149 | 95.43 226 | 99.73 236 | 97.02 153 | 98.72 303 | 99.41 152 |
|
pmmvs4 | | | 97.58 207 | 97.28 217 | 98.51 205 | 98.84 238 | 96.93 225 | 95.40 326 | 98.52 291 | 93.60 317 | 98.61 189 | 98.65 213 | 95.10 234 | 99.60 290 | 96.97 159 | 99.79 94 | 98.99 254 |
|
ETH3D cwj APD-0.16 | | | 97.55 208 | 97.00 232 | 99.19 105 | 98.51 293 | 98.64 94 | 96.85 258 | 99.13 204 | 94.19 308 | 97.65 263 | 98.40 249 | 95.78 213 | 99.81 174 | 93.37 314 | 99.16 265 | 99.12 236 |
|
PVSNet_BlendedMVS | | | 97.55 208 | 97.53 199 | 97.60 268 | 98.92 220 | 93.77 311 | 96.64 270 | 99.43 94 | 94.49 298 | 97.62 265 | 99.18 91 | 96.82 161 | 99.67 263 | 94.73 270 | 99.93 33 | 99.36 179 |
|
ppachtmachnet_test | | | 97.50 210 | 97.74 184 | 96.78 309 | 98.70 263 | 91.23 349 | 94.55 349 | 99.05 219 | 96.36 253 | 99.21 95 | 98.79 189 | 96.39 186 | 99.78 208 | 96.74 181 | 99.82 77 | 99.34 185 |
|
FMVSNet3 | | | 97.50 210 | 97.24 220 | 98.29 226 | 98.08 323 | 95.83 252 | 97.86 174 | 98.91 245 | 97.89 156 | 98.95 135 | 98.95 149 | 87.06 317 | 99.81 174 | 97.77 112 | 99.69 142 | 99.23 215 |
|
CHOSEN 1792x2688 | | | 97.49 212 | 97.14 227 | 98.54 202 | 99.68 46 | 96.09 245 | 96.50 277 | 99.62 25 | 91.58 340 | 98.84 160 | 98.97 142 | 92.36 287 | 99.88 77 | 96.76 179 | 99.95 18 | 99.67 41 |
|
CLD-MVS | | | 97.49 212 | 97.16 224 | 98.48 208 | 99.07 188 | 97.03 221 | 94.71 341 | 99.21 176 | 94.46 300 | 98.06 239 | 97.16 329 | 97.57 106 | 99.48 324 | 94.46 278 | 99.78 98 | 98.95 261 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
test_prior3 | | | 97.48 214 | 97.00 232 | 98.95 144 | 98.69 267 | 97.95 162 | 95.74 313 | 99.03 224 | 96.48 249 | 96.11 331 | 97.63 307 | 95.92 208 | 99.59 294 | 94.16 287 | 99.20 258 | 99.30 200 |
|
hse-mvs2 | | | 97.46 215 | 97.07 228 | 98.64 182 | 98.73 254 | 97.33 202 | 97.45 217 | 97.64 324 | 99.11 65 | 98.58 195 | 97.98 285 | 88.65 312 | 99.79 196 | 98.11 90 | 97.39 342 | 98.81 282 |
|
Vis-MVSNet (Re-imp) | | | 97.46 215 | 97.16 224 | 98.34 221 | 99.55 73 | 96.10 243 | 98.94 72 | 98.44 294 | 98.32 122 | 98.16 228 | 98.62 222 | 88.76 308 | 99.73 236 | 93.88 300 | 99.79 94 | 99.18 227 |
|
jason | | | 97.45 217 | 97.35 213 | 97.76 258 | 99.24 143 | 93.93 303 | 95.86 307 | 98.42 295 | 94.24 306 | 98.50 206 | 98.13 272 | 94.82 241 | 99.91 50 | 97.22 137 | 99.73 119 | 99.43 146 |
jason: jason. |
CL-MVSNet_self_test | | | 97.44 218 | 97.22 221 | 98.08 240 | 98.57 286 | 95.78 254 | 94.30 354 | 98.79 270 | 96.58 247 | 98.60 191 | 98.19 270 | 94.74 248 | 99.64 278 | 96.41 212 | 98.84 297 | 98.82 279 |
|
DSMNet-mixed | | | 97.42 219 | 97.60 197 | 96.87 304 | 99.15 172 | 91.46 341 | 98.54 100 | 99.12 206 | 92.87 327 | 97.58 269 | 99.63 22 | 96.21 193 | 99.90 56 | 95.74 245 | 99.54 197 | 99.27 207 |
|
USDC | | | 97.41 220 | 97.40 208 | 97.44 281 | 98.94 214 | 93.67 313 | 95.17 330 | 99.53 58 | 94.03 312 | 98.97 132 | 99.10 108 | 95.29 228 | 99.34 340 | 95.84 242 | 99.73 119 | 99.30 200 |
|
our_test_3 | | | 97.39 221 | 97.73 186 | 96.34 315 | 98.70 263 | 89.78 353 | 94.61 347 | 98.97 237 | 96.50 248 | 99.04 120 | 98.85 175 | 95.98 204 | 99.84 135 | 97.26 136 | 99.67 153 | 99.41 152 |
|
c3_l | | | 97.36 222 | 97.37 211 | 97.31 285 | 98.09 322 | 93.25 317 | 95.01 335 | 99.16 196 | 97.05 227 | 98.77 171 | 98.72 199 | 92.88 281 | 99.64 278 | 96.93 161 | 99.76 112 | 99.05 242 |
|
alignmvs | | | 97.35 223 | 96.88 240 | 98.78 170 | 98.54 289 | 98.09 140 | 97.71 188 | 97.69 321 | 99.20 57 | 97.59 268 | 95.90 351 | 88.12 316 | 99.55 306 | 98.18 88 | 98.96 293 | 98.70 298 |
|
Patchmtry | | | 97.35 223 | 96.97 234 | 98.50 207 | 97.31 356 | 96.47 236 | 98.18 136 | 98.92 243 | 98.95 91 | 98.78 168 | 99.37 63 | 85.44 332 | 99.85 118 | 95.96 234 | 99.83 74 | 99.17 231 |
|
DP-MVS Recon | | | 97.33 225 | 96.92 237 | 98.57 194 | 99.09 184 | 97.99 152 | 96.79 261 | 99.35 119 | 93.18 322 | 97.71 259 | 98.07 281 | 95.00 236 | 99.31 344 | 93.97 295 | 99.13 272 | 98.42 314 |
|
QAPM | | | 97.31 226 | 96.81 246 | 98.82 161 | 98.80 247 | 97.49 195 | 99.06 62 | 99.19 183 | 90.22 352 | 97.69 261 | 99.16 97 | 96.91 155 | 99.90 56 | 90.89 351 | 99.41 225 | 99.07 240 |
|
UnsupCasMVSNet_bld | | | 97.30 227 | 96.92 237 | 98.45 211 | 99.28 136 | 96.78 231 | 96.20 293 | 99.27 161 | 95.42 282 | 98.28 222 | 98.30 262 | 93.16 274 | 99.71 245 | 94.99 264 | 97.37 343 | 98.87 275 |
|
F-COLMAP | | | 97.30 227 | 96.68 253 | 99.14 112 | 99.19 157 | 98.39 114 | 97.27 230 | 99.30 148 | 92.93 325 | 96.62 317 | 98.00 283 | 95.73 215 | 99.68 260 | 92.62 328 | 98.46 315 | 99.35 183 |
|
1112_ss | | | 97.29 229 | 96.86 241 | 98.58 192 | 99.34 130 | 96.32 239 | 96.75 265 | 99.58 31 | 93.14 323 | 96.89 307 | 97.48 316 | 92.11 290 | 99.86 103 | 96.91 162 | 99.54 197 | 99.57 74 |
|
CANet_DTU | | | 97.26 230 | 97.06 229 | 97.84 252 | 97.57 345 | 94.65 284 | 96.19 294 | 98.79 270 | 97.23 218 | 95.14 353 | 98.24 265 | 93.22 273 | 99.84 135 | 97.34 132 | 99.84 68 | 99.04 246 |
|
Patchmatch-RL test | | | 97.26 230 | 97.02 231 | 97.99 247 | 99.52 80 | 95.53 258 | 96.13 295 | 99.71 14 | 97.47 186 | 99.27 82 | 99.16 97 | 84.30 341 | 99.62 283 | 97.89 104 | 99.77 102 | 98.81 282 |
|
CDPH-MVS | | | 97.26 230 | 96.66 256 | 99.07 125 | 99.00 204 | 98.15 136 | 96.03 297 | 99.01 231 | 91.21 346 | 97.79 255 | 97.85 294 | 96.89 156 | 99.69 251 | 92.75 325 | 99.38 231 | 99.39 163 |
|
PatchMatch-RL | | | 97.24 233 | 96.78 247 | 98.61 189 | 99.03 199 | 97.83 172 | 96.36 285 | 99.06 215 | 93.49 320 | 97.36 287 | 97.78 297 | 95.75 214 | 99.49 321 | 93.44 312 | 98.77 300 | 98.52 307 |
|
eth_miper_zixun_eth | | | 97.23 234 | 97.25 218 | 97.17 291 | 98.00 327 | 92.77 326 | 94.71 341 | 99.18 187 | 97.27 210 | 98.56 199 | 98.74 196 | 91.89 292 | 99.69 251 | 97.06 152 | 99.81 81 | 99.05 242 |
|
sss | | | 97.21 235 | 96.93 235 | 98.06 242 | 98.83 240 | 95.22 268 | 96.75 265 | 98.48 293 | 94.49 298 | 97.27 288 | 97.90 291 | 92.77 283 | 99.80 183 | 96.57 195 | 99.32 239 | 99.16 234 |
|
LFMVS | | | 97.20 236 | 96.72 250 | 98.64 182 | 98.72 256 | 96.95 224 | 98.93 73 | 94.14 362 | 99.74 7 | 98.78 168 | 99.01 133 | 84.45 338 | 99.73 236 | 97.44 127 | 99.27 248 | 99.25 211 |
|
HyFIR lowres test | | | 97.19 237 | 96.60 261 | 98.96 143 | 99.62 57 | 97.28 206 | 95.17 330 | 99.50 64 | 94.21 307 | 99.01 124 | 98.32 261 | 86.61 320 | 99.99 2 | 97.10 148 | 99.84 68 | 99.60 57 |
|
miper_lstm_enhance | | | 97.18 238 | 97.16 224 | 97.25 289 | 98.16 318 | 92.85 324 | 95.15 332 | 99.31 138 | 97.25 212 | 98.74 176 | 98.78 190 | 90.07 300 | 99.78 208 | 97.19 138 | 99.80 89 | 99.11 238 |
|
CNLPA | | | 97.17 239 | 96.71 251 | 98.55 199 | 98.56 287 | 98.05 149 | 96.33 286 | 98.93 240 | 96.91 234 | 97.06 296 | 97.39 321 | 94.38 255 | 99.45 329 | 91.66 337 | 99.18 264 | 98.14 323 |
|
xiu_mvs_v2_base | | | 97.16 240 | 97.49 202 | 96.17 320 | 98.54 289 | 92.46 330 | 95.45 324 | 98.84 261 | 97.25 212 | 97.48 279 | 96.49 340 | 98.31 51 | 99.90 56 | 96.34 216 | 98.68 307 | 96.15 366 |
|
AdaColmap |  | | 97.14 241 | 96.71 251 | 98.46 210 | 98.34 307 | 97.80 178 | 96.95 249 | 98.93 240 | 95.58 276 | 96.92 301 | 97.66 304 | 95.87 210 | 99.53 311 | 90.97 348 | 99.14 269 | 98.04 326 |
|
iter_conf_final | | | 97.10 242 | 96.65 258 | 98.45 211 | 98.53 291 | 96.08 246 | 98.30 125 | 99.11 208 | 98.10 143 | 98.85 157 | 98.95 149 | 79.38 363 | 99.87 94 | 98.68 60 | 99.91 48 | 99.40 161 |
|
train_agg | | | 97.10 242 | 96.45 266 | 99.07 125 | 98.71 259 | 98.08 144 | 95.96 301 | 99.03 224 | 91.64 338 | 95.85 337 | 97.53 311 | 96.47 181 | 99.76 221 | 93.67 305 | 99.16 265 | 99.36 179 |
|
OpenMVS |  | 96.65 7 | 97.09 244 | 96.68 253 | 98.32 222 | 98.32 308 | 97.16 217 | 98.86 78 | 99.37 109 | 89.48 356 | 96.29 329 | 99.15 101 | 96.56 176 | 99.90 56 | 92.90 319 | 99.20 258 | 97.89 331 |
|
PS-MVSNAJ | | | 97.08 245 | 97.39 209 | 96.16 322 | 98.56 287 | 92.46 330 | 95.24 329 | 98.85 260 | 97.25 212 | 97.49 278 | 95.99 349 | 98.07 68 | 99.90 56 | 96.37 213 | 98.67 308 | 96.12 367 |
|
miper_ehance_all_eth | | | 97.06 246 | 97.03 230 | 97.16 293 | 97.83 335 | 93.06 319 | 94.66 344 | 99.09 211 | 95.99 267 | 98.69 178 | 98.45 246 | 92.73 284 | 99.61 289 | 96.79 175 | 99.03 283 | 98.82 279 |
|
agg_prior1 | | | 97.06 246 | 96.40 267 | 99.03 135 | 98.68 270 | 97.99 152 | 95.76 311 | 99.01 231 | 91.73 337 | 95.59 340 | 97.50 314 | 96.49 180 | 99.77 214 | 93.71 304 | 99.14 269 | 99.34 185 |
|
lupinMVS | | | 97.06 246 | 96.86 241 | 97.65 264 | 98.88 230 | 93.89 307 | 95.48 323 | 97.97 314 | 93.53 318 | 98.16 228 | 97.58 309 | 93.81 266 | 99.91 50 | 96.77 178 | 99.57 189 | 99.17 231 |
|
API-MVS | | | 97.04 249 | 96.91 239 | 97.42 282 | 97.88 333 | 98.23 129 | 98.18 136 | 98.50 292 | 97.57 177 | 97.39 285 | 96.75 336 | 96.77 165 | 99.15 358 | 90.16 354 | 99.02 286 | 94.88 372 |
|
cl____ | | | 97.02 250 | 96.83 244 | 97.58 270 | 97.82 336 | 94.04 297 | 94.66 344 | 99.16 196 | 97.04 228 | 98.63 185 | 98.71 200 | 88.68 311 | 99.69 251 | 97.00 154 | 99.81 81 | 99.00 253 |
|
DIV-MVS_self_test | | | 97.02 250 | 96.84 243 | 97.58 270 | 97.82 336 | 94.03 298 | 94.66 344 | 99.16 196 | 97.04 228 | 98.63 185 | 98.71 200 | 88.69 309 | 99.69 251 | 97.00 154 | 99.81 81 | 99.01 250 |
|
RPMNet | | | 97.02 250 | 96.93 235 | 97.30 286 | 97.71 340 | 94.22 291 | 98.11 143 | 99.30 148 | 99.37 41 | 96.91 303 | 99.34 69 | 86.72 319 | 99.87 94 | 97.53 124 | 97.36 345 | 97.81 336 |
|
HQP-MVS | | | 97.00 253 | 96.49 265 | 98.55 199 | 98.67 272 | 96.79 228 | 96.29 288 | 99.04 222 | 96.05 263 | 95.55 344 | 96.84 334 | 93.84 264 | 99.54 309 | 92.82 322 | 99.26 251 | 99.32 193 |
|
new_pmnet | | | 96.99 254 | 96.76 248 | 97.67 262 | 98.72 256 | 94.89 276 | 95.95 303 | 98.20 304 | 92.62 330 | 98.55 201 | 98.54 231 | 94.88 240 | 99.52 315 | 93.96 296 | 99.44 223 | 98.59 306 |
|
Test_1112_low_res | | | 96.99 254 | 96.55 263 | 98.31 224 | 99.35 128 | 95.47 261 | 95.84 310 | 99.53 58 | 91.51 342 | 96.80 312 | 98.48 244 | 91.36 294 | 99.83 150 | 96.58 193 | 99.53 201 | 99.62 51 |
|
PVSNet_Blended | | | 96.88 256 | 96.68 253 | 97.47 279 | 98.92 220 | 93.77 311 | 94.71 341 | 99.43 94 | 90.98 348 | 97.62 265 | 97.36 324 | 96.82 161 | 99.67 263 | 94.73 270 | 99.56 194 | 98.98 255 |
|
MVSTER | | | 96.86 257 | 96.55 263 | 97.79 255 | 97.91 331 | 94.21 293 | 97.56 205 | 98.87 251 | 97.49 185 | 99.06 113 | 99.05 118 | 80.72 355 | 99.80 183 | 98.44 74 | 99.82 77 | 99.37 173 |
|
BH-untuned | | | 96.83 258 | 96.75 249 | 97.08 294 | 98.74 253 | 93.33 316 | 96.71 267 | 98.26 301 | 96.72 241 | 98.44 210 | 97.37 323 | 95.20 231 | 99.47 326 | 91.89 335 | 97.43 341 | 98.44 312 |
|
BH-RMVSNet | | | 96.83 258 | 96.58 262 | 97.58 270 | 98.47 296 | 94.05 296 | 96.67 269 | 97.36 327 | 96.70 243 | 97.87 249 | 97.98 285 | 95.14 233 | 99.44 330 | 90.47 353 | 98.58 313 | 99.25 211 |
|
PAPM_NR | | | 96.82 260 | 96.32 270 | 98.30 225 | 99.07 188 | 96.69 233 | 97.48 213 | 98.76 273 | 95.81 273 | 96.61 318 | 96.47 342 | 94.12 262 | 99.17 356 | 90.82 352 | 97.78 335 | 99.06 241 |
|
MG-MVS | | | 96.77 261 | 96.61 259 | 97.26 288 | 98.31 309 | 93.06 319 | 95.93 304 | 98.12 310 | 96.45 251 | 97.92 245 | 98.73 197 | 93.77 268 | 99.39 335 | 91.19 347 | 99.04 282 | 99.33 191 |
|
1121 | | | 96.73 262 | 96.00 276 | 98.91 150 | 98.95 213 | 97.76 180 | 98.07 148 | 98.73 279 | 87.65 364 | 96.54 319 | 98.13 272 | 94.52 251 | 99.73 236 | 92.38 331 | 99.02 286 | 99.24 214 |
|
test_yl | | | 96.69 263 | 96.29 271 | 97.90 249 | 98.28 310 | 95.24 266 | 97.29 227 | 97.36 327 | 98.21 132 | 98.17 226 | 97.86 292 | 86.27 322 | 99.55 306 | 94.87 267 | 98.32 317 | 98.89 271 |
|
DCV-MVSNet | | | 96.69 263 | 96.29 271 | 97.90 249 | 98.28 310 | 95.24 266 | 97.29 227 | 97.36 327 | 98.21 132 | 98.17 226 | 97.86 292 | 86.27 322 | 99.55 306 | 94.87 267 | 98.32 317 | 98.89 271 |
|
WTY-MVS | | | 96.67 265 | 96.27 273 | 97.87 251 | 98.81 245 | 94.61 285 | 96.77 263 | 97.92 316 | 94.94 291 | 97.12 291 | 97.74 300 | 91.11 295 | 99.82 160 | 93.89 299 | 98.15 325 | 99.18 227 |
|
PatchT | | | 96.65 266 | 96.35 268 | 97.54 275 | 97.40 353 | 95.32 265 | 97.98 162 | 96.64 343 | 99.33 46 | 96.89 307 | 99.42 57 | 84.32 340 | 99.81 174 | 97.69 120 | 97.49 338 | 97.48 350 |
|
TAPA-MVS | | 96.21 11 | 96.63 267 | 95.95 278 | 98.65 181 | 98.93 216 | 98.09 140 | 96.93 252 | 99.28 158 | 83.58 371 | 98.13 232 | 97.78 297 | 96.13 194 | 99.40 333 | 93.52 309 | 99.29 246 | 98.45 311 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
MIMVSNet | | | 96.62 268 | 96.25 274 | 97.71 261 | 99.04 196 | 94.66 283 | 99.16 50 | 96.92 339 | 97.23 218 | 97.87 249 | 99.10 108 | 86.11 326 | 99.65 276 | 91.65 338 | 99.21 257 | 98.82 279 |
|
Patchmatch-test | | | 96.55 269 | 96.34 269 | 97.17 291 | 98.35 306 | 93.06 319 | 98.40 118 | 97.79 317 | 97.33 203 | 98.41 214 | 98.67 208 | 83.68 345 | 99.69 251 | 95.16 262 | 99.31 241 | 98.77 290 |
|
iter_conf05 | | | 96.54 270 | 96.07 275 | 97.92 248 | 97.90 332 | 94.50 287 | 97.87 173 | 99.14 203 | 97.73 164 | 98.89 148 | 98.95 149 | 75.75 372 | 99.87 94 | 98.50 70 | 99.92 42 | 99.40 161 |
|
PMMVS | | | 96.51 271 | 95.98 277 | 98.09 237 | 97.53 348 | 95.84 251 | 94.92 337 | 98.84 261 | 91.58 340 | 96.05 335 | 95.58 355 | 95.68 216 | 99.66 271 | 95.59 254 | 98.09 328 | 98.76 292 |
|
PLC |  | 94.65 16 | 96.51 271 | 95.73 282 | 98.85 158 | 98.75 252 | 97.91 165 | 96.42 282 | 99.06 215 | 90.94 349 | 95.59 340 | 97.38 322 | 94.41 253 | 99.59 294 | 90.93 349 | 98.04 332 | 99.05 242 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
114514_t | | | 96.50 273 | 95.77 280 | 98.69 179 | 99.48 100 | 97.43 199 | 97.84 176 | 99.55 49 | 81.42 373 | 96.51 322 | 98.58 228 | 95.53 220 | 99.67 263 | 93.41 313 | 99.58 185 | 98.98 255 |
|
test1111 | | | 96.49 274 | 96.82 245 | 95.52 333 | 99.42 113 | 87.08 364 | 99.22 41 | 87.14 377 | 99.11 65 | 99.46 46 | 99.58 30 | 88.69 309 | 99.86 103 | 98.80 50 | 99.95 18 | 99.62 51 |
|
MAR-MVS | | | 96.47 275 | 95.70 283 | 98.79 167 | 97.92 330 | 99.12 58 | 98.28 127 | 98.60 287 | 92.16 335 | 95.54 347 | 96.17 347 | 94.77 247 | 99.52 315 | 89.62 356 | 98.23 319 | 97.72 342 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
ETH3 D test6400 | | | 96.46 276 | 95.59 288 | 99.08 122 | 98.88 230 | 98.21 131 | 96.53 274 | 99.18 187 | 88.87 360 | 97.08 294 | 97.79 296 | 93.64 271 | 99.77 214 | 88.92 358 | 99.40 227 | 99.28 205 |
|
ECVR-MVS |  | | 96.42 277 | 96.61 259 | 95.85 325 | 99.38 118 | 88.18 360 | 99.22 41 | 86.00 379 | 99.08 77 | 99.36 66 | 99.57 31 | 88.47 314 | 99.82 160 | 98.52 69 | 99.95 18 | 99.54 91 |
|
SCA | | | 96.41 278 | 96.66 256 | 95.67 329 | 98.24 313 | 88.35 358 | 95.85 309 | 96.88 340 | 96.11 261 | 97.67 262 | 98.67 208 | 93.10 276 | 99.85 118 | 94.16 287 | 99.22 255 | 98.81 282 |
|
DPM-MVS | | | 96.32 279 | 95.59 288 | 98.51 205 | 98.76 250 | 97.21 212 | 94.54 350 | 98.26 301 | 91.94 336 | 96.37 327 | 97.25 326 | 93.06 278 | 99.43 331 | 91.42 343 | 98.74 301 | 98.89 271 |
|
CMPMVS |  | 75.91 23 | 96.29 280 | 95.44 293 | 98.84 159 | 96.25 372 | 98.69 93 | 97.02 245 | 99.12 206 | 88.90 359 | 97.83 252 | 98.86 172 | 89.51 304 | 98.90 366 | 91.92 334 | 99.51 207 | 98.92 267 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
CR-MVSNet | | | 96.28 281 | 95.95 278 | 97.28 287 | 97.71 340 | 94.22 291 | 98.11 143 | 98.92 243 | 92.31 333 | 96.91 303 | 99.37 63 | 85.44 332 | 99.81 174 | 97.39 130 | 97.36 345 | 97.81 336 |
|
CVMVSNet | | | 96.25 282 | 97.21 222 | 93.38 355 | 99.10 181 | 80.56 381 | 97.20 235 | 98.19 306 | 96.94 232 | 99.00 126 | 99.02 124 | 89.50 305 | 99.80 183 | 96.36 215 | 99.59 179 | 99.78 15 |
|
AUN-MVS | | | 96.24 283 | 95.45 292 | 98.60 190 | 98.70 263 | 97.22 210 | 97.38 220 | 97.65 322 | 95.95 268 | 95.53 348 | 97.96 289 | 82.11 354 | 99.79 196 | 96.31 217 | 97.44 340 | 98.80 287 |
|
EPNet | | | 96.14 284 | 95.44 293 | 98.25 228 | 90.76 382 | 95.50 260 | 97.92 166 | 94.65 355 | 98.97 87 | 92.98 368 | 98.85 175 | 89.12 307 | 99.87 94 | 95.99 232 | 99.68 147 | 99.39 163 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
wuyk23d | | | 96.06 285 | 97.62 195 | 91.38 358 | 98.65 278 | 98.57 102 | 98.85 79 | 96.95 337 | 96.86 236 | 99.90 4 | 99.16 97 | 99.18 11 | 98.40 371 | 89.23 357 | 99.77 102 | 77.18 376 |
|
miper_enhance_ethall | | | 96.01 286 | 95.74 281 | 96.81 308 | 96.41 370 | 92.27 334 | 93.69 363 | 98.89 248 | 91.14 347 | 98.30 220 | 97.35 325 | 90.58 297 | 99.58 299 | 96.31 217 | 99.03 283 | 98.60 304 |
|
FMVSNet5 | | | 96.01 286 | 95.20 301 | 98.41 215 | 97.53 348 | 96.10 243 | 98.74 82 | 99.50 64 | 97.22 221 | 98.03 243 | 99.04 120 | 69.80 376 | 99.88 77 | 97.27 135 | 99.71 131 | 99.25 211 |
|
baseline1 | | | 95.96 288 | 95.44 293 | 97.52 277 | 98.51 293 | 93.99 301 | 98.39 119 | 96.09 349 | 98.21 132 | 98.40 218 | 97.76 299 | 86.88 318 | 99.63 281 | 95.42 258 | 89.27 376 | 98.95 261 |
|
HY-MVS | | 95.94 13 | 95.90 289 | 95.35 297 | 97.55 274 | 97.95 328 | 94.79 277 | 98.81 81 | 96.94 338 | 92.28 334 | 95.17 352 | 98.57 229 | 89.90 302 | 99.75 228 | 91.20 346 | 97.33 347 | 98.10 324 |
|
GA-MVS | | | 95.86 290 | 95.32 298 | 97.49 278 | 98.60 281 | 94.15 295 | 93.83 361 | 97.93 315 | 95.49 280 | 96.68 314 | 97.42 320 | 83.21 346 | 99.30 346 | 96.22 222 | 98.55 314 | 99.01 250 |
|
OpenMVS_ROB |  | 95.38 14 | 95.84 291 | 95.18 302 | 97.81 254 | 98.41 304 | 97.15 218 | 97.37 221 | 98.62 286 | 83.86 370 | 98.65 183 | 98.37 254 | 94.29 257 | 99.68 260 | 88.41 359 | 98.62 311 | 96.60 361 |
|
cl22 | | | 95.79 292 | 95.39 296 | 96.98 298 | 96.77 365 | 92.79 325 | 94.40 352 | 98.53 290 | 94.59 297 | 97.89 248 | 98.17 271 | 82.82 350 | 99.24 351 | 96.37 213 | 99.03 283 | 98.92 267 |
|
1314 | | | 95.74 293 | 95.60 287 | 96.17 320 | 97.53 348 | 92.75 327 | 98.07 148 | 98.31 300 | 91.22 345 | 94.25 359 | 96.68 337 | 95.53 220 | 99.03 360 | 91.64 339 | 97.18 348 | 96.74 359 |
|
PVSNet | | 93.40 17 | 95.67 294 | 95.70 283 | 95.57 332 | 98.83 240 | 88.57 356 | 92.50 368 | 97.72 319 | 92.69 329 | 96.49 325 | 96.44 343 | 93.72 269 | 99.43 331 | 93.61 306 | 99.28 247 | 98.71 296 |
|
tttt0517 | | | 95.64 295 | 94.98 305 | 97.64 266 | 99.36 124 | 93.81 309 | 98.72 85 | 90.47 373 | 98.08 145 | 98.67 180 | 98.34 258 | 73.88 374 | 99.92 40 | 97.77 112 | 99.51 207 | 99.20 220 |
|
PatchmatchNet |  | | 95.58 296 | 95.67 285 | 95.30 338 | 97.34 355 | 87.32 363 | 97.65 195 | 96.65 342 | 95.30 285 | 97.07 295 | 98.69 204 | 84.77 335 | 99.75 228 | 94.97 265 | 98.64 309 | 98.83 278 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
TR-MVS | | | 95.55 297 | 95.12 303 | 96.86 307 | 97.54 347 | 93.94 302 | 96.49 278 | 96.53 344 | 94.36 305 | 97.03 298 | 96.61 338 | 94.26 258 | 99.16 357 | 86.91 363 | 96.31 359 | 97.47 351 |
|
JIA-IIPM | | | 95.52 298 | 95.03 304 | 97.00 296 | 96.85 363 | 94.03 298 | 96.93 252 | 95.82 351 | 99.20 57 | 94.63 357 | 99.71 12 | 83.09 347 | 99.60 290 | 94.42 281 | 94.64 369 | 97.36 352 |
|
CHOSEN 280x420 | | | 95.51 299 | 95.47 290 | 95.65 331 | 98.25 312 | 88.27 359 | 93.25 365 | 98.88 249 | 93.53 318 | 94.65 356 | 97.15 330 | 86.17 324 | 99.93 31 | 97.41 129 | 99.93 33 | 98.73 295 |
|
ADS-MVSNet2 | | | 95.43 300 | 94.98 305 | 96.76 310 | 98.14 319 | 91.74 338 | 97.92 166 | 97.76 318 | 90.23 350 | 96.51 322 | 98.91 156 | 85.61 329 | 99.85 118 | 92.88 320 | 96.90 351 | 98.69 299 |
|
PAPR | | | 95.29 301 | 94.47 310 | 97.75 259 | 97.50 352 | 95.14 271 | 94.89 338 | 98.71 281 | 91.39 344 | 95.35 351 | 95.48 358 | 94.57 250 | 99.14 359 | 84.95 366 | 97.37 343 | 98.97 259 |
|
thisisatest0530 | | | 95.27 302 | 94.45 311 | 97.74 260 | 99.19 157 | 94.37 289 | 97.86 174 | 90.20 374 | 97.17 222 | 98.22 224 | 97.65 305 | 73.53 375 | 99.90 56 | 96.90 167 | 99.35 235 | 98.95 261 |
|
ADS-MVSNet | | | 95.24 303 | 94.93 307 | 96.18 319 | 98.14 319 | 90.10 352 | 97.92 166 | 97.32 330 | 90.23 350 | 96.51 322 | 98.91 156 | 85.61 329 | 99.74 232 | 92.88 320 | 96.90 351 | 98.69 299 |
|
BH-w/o | | | 95.13 304 | 94.89 308 | 95.86 324 | 98.20 316 | 91.31 345 | 95.65 316 | 97.37 326 | 93.64 316 | 96.52 321 | 95.70 354 | 93.04 279 | 99.02 361 | 88.10 360 | 95.82 364 | 97.24 353 |
|
tpmrst | | | 95.07 305 | 95.46 291 | 93.91 348 | 97.11 359 | 84.36 374 | 97.62 197 | 96.96 336 | 94.98 289 | 96.35 328 | 98.80 187 | 85.46 331 | 99.59 294 | 95.60 253 | 96.23 360 | 97.79 339 |
|
pmmvs3 | | | 95.03 306 | 94.40 312 | 96.93 300 | 97.70 342 | 92.53 329 | 95.08 333 | 97.71 320 | 88.57 361 | 97.71 259 | 98.08 280 | 79.39 362 | 99.82 160 | 96.19 224 | 99.11 276 | 98.43 313 |
|
tpmvs | | | 95.02 307 | 95.25 299 | 94.33 344 | 96.39 371 | 85.87 366 | 98.08 147 | 96.83 341 | 95.46 281 | 95.51 349 | 98.69 204 | 85.91 327 | 99.53 311 | 94.16 287 | 96.23 360 | 97.58 347 |
|
EPNet_dtu | | | 94.93 308 | 94.78 309 | 95.38 337 | 93.58 379 | 87.68 362 | 96.78 262 | 95.69 353 | 97.35 202 | 89.14 375 | 98.09 279 | 88.15 315 | 99.49 321 | 94.95 266 | 99.30 244 | 98.98 255 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
cascas | | | 94.79 309 | 94.33 315 | 96.15 323 | 96.02 375 | 92.36 333 | 92.34 370 | 99.26 166 | 85.34 369 | 95.08 354 | 94.96 366 | 92.96 280 | 98.53 370 | 94.41 284 | 98.59 312 | 97.56 348 |
|
tpm | | | 94.67 310 | 94.34 314 | 95.66 330 | 97.68 344 | 88.42 357 | 97.88 170 | 94.90 354 | 94.46 300 | 96.03 336 | 98.56 230 | 78.66 365 | 99.79 196 | 95.88 236 | 95.01 368 | 98.78 289 |
|
test0.0.03 1 | | | 94.51 311 | 93.69 320 | 96.99 297 | 96.05 373 | 93.61 315 | 94.97 336 | 93.49 363 | 96.17 258 | 97.57 271 | 94.88 367 | 82.30 351 | 99.01 363 | 93.60 307 | 94.17 372 | 98.37 317 |
|
thres600view7 | | | 94.45 312 | 93.83 318 | 96.29 316 | 99.06 192 | 91.53 340 | 97.99 161 | 94.24 360 | 98.34 120 | 97.44 282 | 95.01 363 | 79.84 358 | 99.67 263 | 84.33 367 | 98.23 319 | 97.66 344 |
|
PCF-MVS | | 92.86 18 | 94.36 313 | 93.00 330 | 98.42 214 | 98.70 263 | 97.56 192 | 93.16 366 | 99.11 208 | 79.59 374 | 97.55 272 | 97.43 319 | 92.19 288 | 99.73 236 | 79.85 375 | 99.45 220 | 97.97 330 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
X-MVStestdata | | | 94.32 314 | 92.59 332 | 99.53 38 | 99.46 103 | 99.21 27 | 98.65 88 | 99.34 125 | 98.62 106 | 97.54 273 | 45.85 377 | 97.50 115 | 99.83 150 | 96.79 175 | 99.53 201 | 99.56 79 |
|
MVS-HIRNet | | | 94.32 314 | 95.62 286 | 90.42 359 | 98.46 297 | 75.36 382 | 96.29 288 | 89.13 376 | 95.25 286 | 95.38 350 | 99.75 7 | 92.88 281 | 99.19 355 | 94.07 294 | 99.39 228 | 96.72 360 |
|
ET-MVSNet_ETH3D | | | 94.30 316 | 93.21 326 | 97.58 270 | 98.14 319 | 94.47 288 | 94.78 340 | 93.24 366 | 94.72 295 | 89.56 374 | 95.87 352 | 78.57 367 | 99.81 174 | 96.91 162 | 97.11 350 | 98.46 309 |
|
thres100view900 | | | 94.19 317 | 93.67 321 | 95.75 328 | 99.06 192 | 91.35 344 | 98.03 155 | 94.24 360 | 98.33 121 | 97.40 284 | 94.98 365 | 79.84 358 | 99.62 283 | 83.05 369 | 98.08 329 | 96.29 362 |
|
E-PMN | | | 94.17 318 | 94.37 313 | 93.58 352 | 96.86 362 | 85.71 369 | 90.11 372 | 97.07 334 | 98.17 138 | 97.82 254 | 97.19 327 | 84.62 337 | 98.94 364 | 89.77 355 | 97.68 337 | 96.09 368 |
|
thres400 | | | 94.14 319 | 93.44 323 | 96.24 318 | 98.93 216 | 91.44 342 | 97.60 200 | 94.29 358 | 97.94 151 | 97.10 292 | 94.31 371 | 79.67 360 | 99.62 283 | 83.05 369 | 98.08 329 | 97.66 344 |
|
thisisatest0515 | | | 94.12 320 | 93.16 327 | 96.97 299 | 98.60 281 | 92.90 323 | 93.77 362 | 90.61 372 | 94.10 310 | 96.91 303 | 95.87 352 | 74.99 373 | 99.80 183 | 94.52 276 | 99.12 275 | 98.20 320 |
|
tfpn200view9 | | | 94.03 321 | 93.44 323 | 95.78 327 | 98.93 216 | 91.44 342 | 97.60 200 | 94.29 358 | 97.94 151 | 97.10 292 | 94.31 371 | 79.67 360 | 99.62 283 | 83.05 369 | 98.08 329 | 96.29 362 |
|
CostFormer | | | 93.97 322 | 93.78 319 | 94.51 343 | 97.53 348 | 85.83 368 | 97.98 162 | 95.96 350 | 89.29 358 | 94.99 355 | 98.63 220 | 78.63 366 | 99.62 283 | 94.54 275 | 96.50 356 | 98.09 325 |
|
test-LLR | | | 93.90 323 | 93.85 317 | 94.04 346 | 96.53 367 | 84.62 372 | 94.05 358 | 92.39 368 | 96.17 258 | 94.12 361 | 95.07 361 | 82.30 351 | 99.67 263 | 95.87 239 | 98.18 322 | 97.82 334 |
|
EMVS | | | 93.83 324 | 94.02 316 | 93.23 356 | 96.83 364 | 84.96 370 | 89.77 373 | 96.32 346 | 97.92 153 | 97.43 283 | 96.36 346 | 86.17 324 | 98.93 365 | 87.68 361 | 97.73 336 | 95.81 369 |
|
baseline2 | | | 93.73 325 | 92.83 331 | 96.42 314 | 97.70 342 | 91.28 347 | 96.84 260 | 89.77 375 | 93.96 314 | 92.44 369 | 95.93 350 | 79.14 364 | 99.77 214 | 92.94 318 | 96.76 355 | 98.21 319 |
|
thres200 | | | 93.72 326 | 93.14 328 | 95.46 336 | 98.66 277 | 91.29 346 | 96.61 272 | 94.63 356 | 97.39 198 | 96.83 310 | 93.71 373 | 79.88 357 | 99.56 303 | 82.40 372 | 98.13 326 | 95.54 371 |
|
EPMVS | | | 93.72 326 | 93.27 325 | 95.09 340 | 96.04 374 | 87.76 361 | 98.13 140 | 85.01 380 | 94.69 296 | 96.92 301 | 98.64 216 | 78.47 369 | 99.31 344 | 95.04 263 | 96.46 357 | 98.20 320 |
|
dp | | | 93.47 328 | 93.59 322 | 93.13 357 | 96.64 366 | 81.62 380 | 97.66 193 | 96.42 345 | 92.80 328 | 96.11 331 | 98.64 216 | 78.55 368 | 99.59 294 | 93.31 315 | 92.18 375 | 98.16 322 |
|
FPMVS | | | 93.44 329 | 92.23 334 | 97.08 294 | 99.25 142 | 97.86 169 | 95.61 317 | 97.16 333 | 92.90 326 | 93.76 366 | 98.65 213 | 75.94 371 | 95.66 376 | 79.30 376 | 97.49 338 | 97.73 341 |
|
tpm cat1 | | | 93.29 330 | 93.13 329 | 93.75 350 | 97.39 354 | 84.74 371 | 97.39 219 | 97.65 322 | 83.39 372 | 94.16 360 | 98.41 248 | 82.86 349 | 99.39 335 | 91.56 341 | 95.35 367 | 97.14 354 |
|
MVS | | | 93.19 331 | 92.09 335 | 96.50 313 | 96.91 361 | 94.03 298 | 98.07 148 | 98.06 312 | 68.01 375 | 94.56 358 | 96.48 341 | 95.96 206 | 99.30 346 | 83.84 368 | 96.89 353 | 96.17 364 |
|
tpm2 | | | 93.09 332 | 92.58 333 | 94.62 342 | 97.56 346 | 86.53 365 | 97.66 193 | 95.79 352 | 86.15 367 | 94.07 363 | 98.23 267 | 75.95 370 | 99.53 311 | 90.91 350 | 96.86 354 | 97.81 336 |
|
KD-MVS_2432*1600 | | | 92.87 333 | 91.99 336 | 95.51 334 | 91.37 380 | 89.27 354 | 94.07 356 | 98.14 308 | 95.42 282 | 97.25 289 | 96.44 343 | 67.86 378 | 99.24 351 | 91.28 344 | 96.08 362 | 98.02 327 |
|
miper_refine_blended | | | 92.87 333 | 91.99 336 | 95.51 334 | 91.37 380 | 89.27 354 | 94.07 356 | 98.14 308 | 95.42 282 | 97.25 289 | 96.44 343 | 67.86 378 | 99.24 351 | 91.28 344 | 96.08 362 | 98.02 327 |
|
MVE |  | 83.40 22 | 92.50 335 | 91.92 338 | 94.25 345 | 98.83 240 | 91.64 339 | 92.71 367 | 83.52 381 | 95.92 269 | 86.46 378 | 95.46 359 | 95.20 231 | 95.40 377 | 80.51 374 | 98.64 309 | 95.73 370 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
test2506 | | | 92.39 336 | 91.89 339 | 93.89 349 | 99.38 118 | 82.28 378 | 99.32 22 | 66.03 385 | 99.08 77 | 98.77 171 | 99.57 31 | 66.26 382 | 99.84 135 | 98.71 57 | 99.95 18 | 99.54 91 |
|
gg-mvs-nofinetune | | | 92.37 337 | 91.20 342 | 95.85 325 | 95.80 376 | 92.38 332 | 99.31 26 | 81.84 382 | 99.75 5 | 91.83 371 | 99.74 8 | 68.29 377 | 99.02 361 | 87.15 362 | 97.12 349 | 96.16 365 |
|
test-mter | | | 92.33 338 | 91.76 341 | 94.04 346 | 96.53 367 | 84.62 372 | 94.05 358 | 92.39 368 | 94.00 313 | 94.12 361 | 95.07 361 | 65.63 384 | 99.67 263 | 95.87 239 | 98.18 322 | 97.82 334 |
|
IB-MVS | | 91.63 19 | 92.24 339 | 90.90 343 | 96.27 317 | 97.22 358 | 91.24 348 | 94.36 353 | 93.33 365 | 92.37 332 | 92.24 370 | 94.58 370 | 66.20 383 | 99.89 66 | 93.16 317 | 94.63 370 | 97.66 344 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
TESTMET0.1,1 | | | 92.19 340 | 91.77 340 | 93.46 353 | 96.48 369 | 82.80 377 | 94.05 358 | 91.52 371 | 94.45 302 | 94.00 364 | 94.88 367 | 66.65 381 | 99.56 303 | 95.78 244 | 98.11 327 | 98.02 327 |
|
PAPM | | | 91.88 341 | 90.34 344 | 96.51 312 | 98.06 324 | 92.56 328 | 92.44 369 | 97.17 332 | 86.35 366 | 90.38 373 | 96.01 348 | 86.61 320 | 99.21 354 | 70.65 378 | 95.43 366 | 97.75 340 |
|
PVSNet_0 | | 89.98 21 | 91.15 342 | 90.30 345 | 93.70 351 | 97.72 339 | 84.34 375 | 90.24 371 | 97.42 325 | 90.20 353 | 93.79 365 | 93.09 374 | 90.90 296 | 98.89 367 | 86.57 364 | 72.76 378 | 97.87 333 |
|
EGC-MVSNET | | | 85.24 343 | 80.54 346 | 99.34 77 | 99.77 25 | 99.20 33 | 99.08 57 | 99.29 155 | 12.08 379 | 20.84 380 | 99.42 57 | 97.55 108 | 99.85 118 | 97.08 149 | 99.72 126 | 98.96 260 |
|
test_method | | | 79.78 344 | 79.50 347 | 80.62 360 | 80.21 383 | 45.76 385 | 70.82 374 | 98.41 297 | 31.08 378 | 80.89 379 | 97.71 301 | 84.85 334 | 97.37 374 | 91.51 342 | 80.03 377 | 98.75 293 |
|
tmp_tt | | | 78.77 345 | 78.73 348 | 78.90 361 | 58.45 384 | 74.76 384 | 94.20 355 | 78.26 384 | 39.16 377 | 86.71 377 | 92.82 375 | 80.50 356 | 75.19 380 | 86.16 365 | 92.29 374 | 86.74 375 |
|
cdsmvs_eth3d_5k | | | 24.66 346 | 32.88 349 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 99.10 210 | 0.00 382 | 0.00 383 | 97.58 309 | 99.21 10 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
testmvs | | | 17.12 347 | 20.53 350 | 6.87 363 | 12.05 385 | 4.20 387 | 93.62 364 | 6.73 386 | 4.62 381 | 10.41 381 | 24.33 378 | 8.28 386 | 3.56 382 | 9.69 380 | 15.07 379 | 12.86 378 |
|
test123 | | | 17.04 348 | 20.11 351 | 7.82 362 | 10.25 386 | 4.91 386 | 94.80 339 | 4.47 387 | 4.93 380 | 10.00 382 | 24.28 379 | 9.69 385 | 3.64 381 | 10.14 379 | 12.43 380 | 14.92 377 |
|
pcd_1.5k_mvsjas | | | 8.17 349 | 10.90 352 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.00 382 | 98.07 68 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
ab-mvs-re | | | 8.12 350 | 10.83 353 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 97.48 316 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
test_blank | | | 0.00 351 | 0.00 354 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.00 382 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
uanet_test | | | 0.00 351 | 0.00 354 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.00 382 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
DCPMVS | | | 0.00 351 | 0.00 354 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.00 382 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
sosnet-low-res | | | 0.00 351 | 0.00 354 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.00 382 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
sosnet | | | 0.00 351 | 0.00 354 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.00 382 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
uncertanet | | | 0.00 351 | 0.00 354 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.00 382 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
Regformer | | | 0.00 351 | 0.00 354 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.00 382 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
uanet | | | 0.00 351 | 0.00 354 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.00 382 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
FOURS1 | | | | | | 99.73 30 | 99.67 2 | 99.43 12 | 99.54 54 | 99.43 35 | 99.26 86 | | | | | | |
|
MSC_two_6792asdad | | | | | 99.32 82 | 98.43 300 | 98.37 116 | | 98.86 257 | | | | | 99.89 66 | 97.14 144 | 99.60 175 | 99.71 30 |
|
PC_three_1452 | | | | | | | | | | 93.27 321 | 99.40 57 | 98.54 231 | 98.22 57 | 97.00 375 | 95.17 261 | 99.45 220 | 99.49 114 |
|
No_MVS | | | | | 99.32 82 | 98.43 300 | 98.37 116 | | 98.86 257 | | | | | 99.89 66 | 97.14 144 | 99.60 175 | 99.71 30 |
|
test_one_0601 | | | | | | 99.39 117 | 99.20 33 | | 99.31 138 | 98.49 114 | 98.66 182 | 99.02 124 | 97.64 100 | | | | |
|
eth-test2 | | | | | | 0.00 387 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 387 | | | | | | | | | | | |
|
ZD-MVS | | | | | | 99.01 203 | 98.84 79 | | 99.07 214 | 94.10 310 | 98.05 241 | 98.12 275 | 96.36 190 | 99.86 103 | 92.70 327 | 99.19 262 | |
|
RE-MVS-def | | | | 98.58 91 | | 99.20 154 | 99.38 6 | 98.48 111 | 99.30 148 | 98.64 102 | 98.95 135 | 98.96 145 | 97.75 91 | | 96.56 198 | 99.39 228 | 99.45 138 |
|
IU-MVS | | | | | | 99.49 92 | 99.15 48 | | 98.87 251 | 92.97 324 | 99.41 54 | | | | 96.76 179 | 99.62 167 | 99.66 42 |
|
OPU-MVS | | | | | 98.82 161 | 98.59 283 | 98.30 121 | 98.10 145 | | | | 98.52 234 | 98.18 61 | 98.75 369 | 94.62 273 | 99.48 217 | 99.41 152 |
|
test_241102_TWO | | | | | | | | | 99.30 148 | 98.03 146 | 99.26 86 | 99.02 124 | 97.51 114 | 99.88 77 | 96.91 162 | 99.60 175 | 99.66 42 |
|
test_241102_ONE | | | | | | 99.49 92 | 99.17 39 | | 99.31 138 | 97.98 148 | 99.66 20 | 98.90 159 | 98.36 46 | 99.48 324 | | | |
|
9.14 | | | | 97.78 181 | | 99.07 188 | | 97.53 208 | 99.32 132 | 95.53 279 | 98.54 203 | 98.70 203 | 97.58 105 | 99.76 221 | 94.32 286 | 99.46 218 | |
|
save fliter | | | | | | 99.11 177 | 97.97 157 | 96.53 274 | 99.02 228 | 98.24 129 | | | | | | | |
|
test_0728_THIRD | | | | | | | | | | 98.17 138 | 99.08 111 | 99.02 124 | 97.89 81 | 99.88 77 | 97.07 150 | 99.71 131 | 99.70 35 |
|
test_0728_SECOND | | | | | 99.60 13 | 99.50 85 | 99.23 25 | 98.02 157 | 99.32 132 | | | | | 99.88 77 | 96.99 156 | 99.63 164 | 99.68 38 |
|
test0726 | | | | | | 99.50 85 | 99.21 27 | 98.17 139 | 99.35 119 | 97.97 149 | 99.26 86 | 99.06 111 | 97.61 103 | | | | |
|
GSMVS | | | | | | | | | | | | | | | | | 98.81 282 |
|
test_part2 | | | | | | 99.36 124 | 99.10 61 | | | | 99.05 118 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 84.74 336 | | | | 98.81 282 |
|
sam_mvs | | | | | | | | | | | | | 84.29 342 | | | | |
|
ambc | | | | | 98.24 229 | 98.82 243 | 95.97 248 | 98.62 91 | 99.00 234 | | 99.27 82 | 99.21 86 | 96.99 151 | 99.50 320 | 96.55 201 | 99.50 214 | 99.26 210 |
|
MTGPA |  | | | | | | | | 99.20 178 | | | | | | | | |
|
test_post1 | | | | | | | | 97.59 202 | | | | 20.48 381 | 83.07 348 | 99.66 271 | 94.16 287 | | |
|
test_post | | | | | | | | | | | | 21.25 380 | 83.86 344 | 99.70 247 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 98.77 192 | 84.37 339 | 99.85 118 | | | |
|
GG-mvs-BLEND | | | | | 94.76 341 | 94.54 378 | 92.13 336 | 99.31 26 | 80.47 383 | | 88.73 376 | 91.01 376 | 67.59 380 | 98.16 373 | 82.30 373 | 94.53 371 | 93.98 373 |
|
MTMP | | | | | | | | 97.93 165 | 91.91 370 | | | | | | | | |
|
gm-plane-assit | | | | | | 94.83 377 | 81.97 379 | | | 88.07 363 | | 94.99 364 | | 99.60 290 | 91.76 336 | | |
|
test9_res | | | | | | | | | | | | | | | 93.28 316 | 99.15 268 | 99.38 170 |
|
TEST9 | | | | | | 98.71 259 | 98.08 144 | 95.96 301 | 99.03 224 | 91.40 343 | 95.85 337 | 97.53 311 | 96.52 178 | 99.76 221 | | | |
|
test_8 | | | | | | 98.67 272 | 98.01 151 | 95.91 306 | 99.02 228 | 91.64 338 | 95.79 339 | 97.50 314 | 96.47 181 | 99.76 221 | | | |
|
agg_prior2 | | | | | | | | | | | | | | | 92.50 330 | 99.16 265 | 99.37 173 |
|
agg_prior | | | | | | 98.68 270 | 97.99 152 | | 99.01 231 | | 95.59 340 | | | 99.77 214 | | | |
|
TestCases | | | | | 99.16 109 | 99.50 85 | 98.55 103 | | 99.58 31 | 96.80 237 | 98.88 153 | 99.06 111 | 97.65 97 | 99.57 300 | 94.45 279 | 99.61 173 | 99.37 173 |
|
test_prior4 | | | | | | | 97.97 157 | 95.86 307 | | | | | | | | | |
|
test_prior2 | | | | | | | | 95.74 313 | | 96.48 249 | 96.11 331 | 97.63 307 | 95.92 208 | | 94.16 287 | 99.20 258 | |
|
test_prior | | | | | 98.95 144 | 98.69 267 | 97.95 162 | | 99.03 224 | | | | | 99.59 294 | | | 99.30 200 |
|
旧先验2 | | | | | | | | 95.76 311 | | 88.56 362 | 97.52 275 | | | 99.66 271 | 94.48 277 | | |
|
新几何2 | | | | | | | | 95.93 304 | | | | | | | | | |
|
新几何1 | | | | | 98.91 150 | 98.94 214 | 97.76 180 | | 98.76 273 | 87.58 365 | 96.75 313 | 98.10 277 | 94.80 244 | 99.78 208 | 92.73 326 | 99.00 289 | 99.20 220 |
|
旧先验1 | | | | | | 98.82 243 | 97.45 198 | | 98.76 273 | | | 98.34 258 | 95.50 223 | | | 99.01 288 | 99.23 215 |
|
无先验 | | | | | | | | 95.74 313 | 98.74 278 | 89.38 357 | | | | 99.73 236 | 92.38 331 | | 99.22 219 |
|
原ACMM2 | | | | | | | | 95.53 320 | | | | | | | | | |
|
原ACMM1 | | | | | 98.35 220 | 98.90 224 | 96.25 241 | | 98.83 266 | 92.48 331 | 96.07 334 | 98.10 277 | 95.39 227 | 99.71 245 | 92.61 329 | 98.99 290 | 99.08 239 |
|
test222 | | | | | | 98.92 220 | 96.93 225 | 95.54 319 | 98.78 272 | 85.72 368 | 96.86 309 | 98.11 276 | 94.43 252 | | | 99.10 277 | 99.23 215 |
|
testdata2 | | | | | | | | | | | | | | 99.79 196 | 92.80 324 | | |
|
segment_acmp | | | | | | | | | | | | | 97.02 149 | | | | |
|
testdata | | | | | 98.09 237 | 98.93 216 | 95.40 264 | | 98.80 269 | 90.08 354 | 97.45 281 | 98.37 254 | 95.26 229 | 99.70 247 | 93.58 308 | 98.95 294 | 99.17 231 |
|
testdata1 | | | | | | | | 95.44 325 | | 96.32 255 | | | | | | | |
|
test12 | | | | | 98.93 147 | 98.58 284 | 97.83 172 | | 98.66 283 | | 96.53 320 | | 95.51 222 | 99.69 251 | | 99.13 272 | 99.27 207 |
|
plane_prior7 | | | | | | 99.19 157 | 97.87 168 | | | | | | | | | | |
|
plane_prior6 | | | | | | 98.99 207 | 97.70 186 | | | | | | 94.90 237 | | | | |
|
plane_prior5 | | | | | | | | | 99.27 161 | | | | | 99.70 247 | 94.42 281 | 99.51 207 | 99.45 138 |
|
plane_prior4 | | | | | | | | | | | | 97.98 285 | | | | | |
|
plane_prior3 | | | | | | | 97.78 179 | | | 97.41 196 | 97.79 255 | | | | | | |
|
plane_prior2 | | | | | | | | 97.77 182 | | 98.20 135 | | | | | | | |
|
plane_prior1 | | | | | | 99.05 195 | | | | | | | | | | | |
|
plane_prior | | | | | | | 97.65 188 | 97.07 244 | | 96.72 241 | | | | | | 99.36 233 | |
|
n2 | | | | | | | | | 0.00 388 | | | | | | | | |
|
nn | | | | | | | | | 0.00 388 | | | | | | | | |
|
door-mid | | | | | | | | | 99.57 38 | | | | | | | | |
|
lessismore_v0 | | | | | 98.97 142 | 99.73 30 | 97.53 194 | | 86.71 378 | | 99.37 64 | 99.52 41 | 89.93 301 | 99.92 40 | 98.99 41 | 99.72 126 | 99.44 142 |
|
LGP-MVS_train | | | | | 99.47 58 | 99.57 62 | 98.97 67 | | 99.48 74 | 96.60 245 | 99.10 108 | 99.06 111 | 98.71 27 | 99.83 150 | 95.58 255 | 99.78 98 | 99.62 51 |
|
test11 | | | | | | | | | 98.87 251 | | | | | | | | |
|
door | | | | | | | | | 99.41 98 | | | | | | | | |
|
HQP5-MVS | | | | | | | 96.79 228 | | | | | | | | | | |
|
HQP-NCC | | | | | | 98.67 272 | | 96.29 288 | | 96.05 263 | 95.55 344 | | | | | | |
|
ACMP_Plane | | | | | | 98.67 272 | | 96.29 288 | | 96.05 263 | 95.55 344 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 92.82 322 | | |
|
HQP4-MVS | | | | | | | | | | | 95.56 343 | | | 99.54 309 | | | 99.32 193 |
|
HQP3-MVS | | | | | | | | | 99.04 222 | | | | | | | 99.26 251 | |
|
HQP2-MVS | | | | | | | | | | | | | 93.84 264 | | | | |
|
NP-MVS | | | | | | 98.84 238 | 97.39 201 | | | | | 96.84 334 | | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 74.92 383 | 97.69 190 | | 90.06 355 | 97.75 258 | | 85.78 328 | | 93.52 309 | | 98.69 299 |
|
MDTV_nov1_ep13 | | | | 95.22 300 | | 97.06 360 | 83.20 376 | 97.74 186 | 96.16 347 | 94.37 304 | 96.99 299 | 98.83 181 | 83.95 343 | 99.53 311 | 93.90 298 | 97.95 333 | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 99.77 102 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 99.68 147 | |
|
Test By Simon | | | | | | | | | | | | | 96.52 178 | | | | |
|
ITE_SJBPF | | | | | 98.87 155 | 99.22 148 | 98.48 110 | | 99.35 119 | 97.50 183 | 98.28 222 | 98.60 226 | 97.64 100 | 99.35 339 | 93.86 301 | 99.27 248 | 98.79 288 |
|
DeepMVS_CX |  | | | | 93.44 354 | 98.24 313 | 94.21 293 | | 94.34 357 | 64.28 376 | 91.34 372 | 94.87 369 | 89.45 306 | 92.77 379 | 77.54 377 | 93.14 373 | 93.35 374 |
|