This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.43 199.49 199.24 199.95 198.13 199.37 199.57 199.82 199.86 199.85 199.52 199.73 197.58 199.94 199.85 1
LTVRE_ROB93.87 197.93 298.16 297.26 2698.81 2893.86 3199.07 298.98 697.01 1398.92 498.78 1495.22 3798.61 16996.85 299.77 999.31 28
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
TDRefinement97.68 397.60 497.93 299.02 1295.95 898.61 398.81 897.41 1097.28 5498.46 2994.62 5998.84 12894.64 2499.53 3798.99 55
UA-Net97.35 497.24 1197.69 498.22 7493.87 3098.42 698.19 3696.95 1495.46 13599.23 493.45 7999.57 1495.34 2099.89 299.63 9
UniMVSNet_ETH3D97.13 597.72 395.35 8499.51 287.38 13197.70 897.54 10998.16 298.94 299.33 297.84 499.08 9390.73 13199.73 1399.59 13
HPM-MVS_fast97.01 696.89 1497.39 2199.12 893.92 2897.16 1498.17 4293.11 7196.48 8697.36 8596.92 699.34 6294.31 3099.38 5898.92 68
SR-MVS-dyc-post96.84 796.60 2497.56 1098.07 8395.27 996.37 4498.12 4895.66 3297.00 6697.03 11294.85 5399.42 3293.49 5298.84 12998.00 151
mvs_tets96.83 896.71 1897.17 2798.83 2592.51 4896.58 3397.61 10487.57 20398.80 798.90 996.50 999.59 1396.15 999.47 4299.40 21
v7n96.82 997.31 1095.33 8698.54 4886.81 14496.83 2398.07 5796.59 2098.46 1798.43 3192.91 9999.52 1996.25 899.76 1099.65 8
APD-MVS_3200maxsize96.82 996.65 2097.32 2597.95 9593.82 3396.31 5098.25 2895.51 3496.99 6897.05 11195.63 2299.39 4893.31 6498.88 12498.75 87
HPM-MVScopyleft96.81 1196.62 2297.36 2398.89 2093.53 3897.51 1098.44 1492.35 8595.95 11196.41 15096.71 899.42 3293.99 3799.36 5999.13 41
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
pmmvs696.80 1297.36 995.15 9399.12 887.82 12696.68 3097.86 8296.10 2798.14 2499.28 397.94 398.21 20591.38 11999.69 1499.42 19
OurMVSNet-221017-096.80 1296.75 1796.96 3599.03 1191.85 5797.98 798.01 6994.15 4898.93 399.07 588.07 17999.57 1495.86 1199.69 1499.46 18
testf196.77 1496.49 2697.60 899.01 1496.70 396.31 5098.33 1994.96 3697.30 5297.93 5096.05 1697.90 23089.32 17099.23 8598.19 136
APD_test296.77 1496.49 2697.60 899.01 1496.70 396.31 5098.33 1994.96 3697.30 5297.93 5096.05 1697.90 23089.32 17099.23 8598.19 136
COLMAP_ROBcopyleft91.06 596.75 1696.62 2297.13 2898.38 6394.31 1796.79 2698.32 2196.69 1796.86 7297.56 7095.48 2698.77 14590.11 15499.44 4998.31 128
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
anonymousdsp96.74 1796.42 2997.68 698.00 9194.03 2596.97 2097.61 10487.68 20198.45 1898.77 1594.20 6999.50 2196.70 399.40 5699.53 15
DTE-MVSNet96.74 1797.43 594.67 10999.13 684.68 18696.51 3597.94 8098.14 398.67 1298.32 3395.04 4599.69 293.27 6799.82 799.62 10
SR-MVS96.70 1996.42 2997.54 1198.05 8594.69 1196.13 5998.07 5795.17 3596.82 7496.73 13495.09 4499.43 3192.99 7898.71 14798.50 115
PS-CasMVS96.69 2097.43 594.49 12499.13 684.09 19596.61 3297.97 7497.91 598.64 1398.13 3995.24 3699.65 393.39 6299.84 399.72 2
PEN-MVS96.69 2097.39 894.61 11499.16 484.50 18796.54 3498.05 6198.06 498.64 1398.25 3595.01 4899.65 392.95 7999.83 599.68 4
MTAPA96.65 2296.38 3397.47 1598.95 1894.05 2395.88 7097.62 10294.46 4496.29 9596.94 11793.56 7699.37 5694.29 3199.42 5198.99 55
test_djsdf96.62 2396.49 2697.01 3298.55 4591.77 5997.15 1597.37 12088.98 17198.26 2298.86 1093.35 8499.60 996.41 599.45 4699.66 6
ACMMPcopyleft96.61 2496.34 3497.43 1898.61 3893.88 2996.95 2198.18 3892.26 8896.33 9196.84 12595.10 4399.40 4593.47 5599.33 6599.02 52
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
Anonymous2023121196.60 2597.13 1295.00 9697.46 12886.35 16097.11 1998.24 3197.58 898.72 898.97 793.15 9199.15 8393.18 7099.74 1299.50 17
WR-MVS_H96.60 2597.05 1395.24 9099.02 1286.44 15696.78 2798.08 5497.42 998.48 1697.86 5791.76 12199.63 694.23 3299.84 399.66 6
jajsoiax96.59 2796.42 2997.12 2998.76 3192.49 4996.44 4197.42 11886.96 21298.71 1098.72 1795.36 3199.56 1795.92 1099.45 4699.32 27
ACMH88.36 1296.59 2797.43 594.07 13798.56 4285.33 18096.33 4798.30 2494.66 4098.72 898.30 3497.51 598.00 22394.87 2199.59 2898.86 74
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
XVS96.49 2996.18 4297.44 1698.56 4293.99 2696.50 3697.95 7794.58 4194.38 17896.49 14594.56 6199.39 4893.57 4899.05 10598.93 64
ACMH+88.43 1196.48 3096.82 1595.47 8198.54 4889.06 9895.65 7998.61 1196.10 2798.16 2397.52 7396.90 798.62 16890.30 14599.60 2698.72 92
APDe-MVS96.46 3196.64 2195.93 6297.68 11489.38 9596.90 2298.41 1792.52 8097.43 4797.92 5395.11 4299.50 2194.45 2699.30 7098.92 68
ACMMPR96.46 3196.14 4597.41 2098.60 3993.82 3396.30 5497.96 7592.35 8595.57 12996.61 14194.93 5199.41 3893.78 4299.15 9799.00 53
mPP-MVS96.46 3196.05 5097.69 498.62 3694.65 1396.45 3997.74 9592.59 7995.47 13396.68 13794.50 6399.42 3293.10 7399.26 8198.99 55
CP-MVS96.44 3496.08 4897.54 1198.29 6894.62 1496.80 2598.08 5492.67 7895.08 15696.39 15594.77 5599.42 3293.17 7199.44 4998.58 112
ZNCC-MVS96.42 3596.20 4197.07 3098.80 3092.79 4696.08 6198.16 4591.74 11295.34 14196.36 15895.68 2099.44 2894.41 2899.28 7898.97 60
region2R96.41 3696.09 4797.38 2298.62 3693.81 3596.32 4997.96 7592.26 8895.28 14596.57 14395.02 4799.41 3893.63 4699.11 10098.94 63
SteuartSystems-ACMMP96.40 3796.30 3696.71 4098.63 3591.96 5595.70 7698.01 6993.34 6796.64 8196.57 14394.99 4999.36 5793.48 5499.34 6398.82 78
Skip Steuart: Steuart Systems R&D Blog.
HFP-MVS96.39 3896.17 4497.04 3198.51 5193.37 3996.30 5497.98 7292.35 8595.63 12796.47 14695.37 2999.27 7393.78 4299.14 9898.48 118
LPG-MVS_test96.38 3996.23 3996.84 3898.36 6692.13 5295.33 9098.25 2891.78 10897.07 6197.22 9996.38 1299.28 7192.07 9899.59 2899.11 44
nrg03096.32 4096.55 2595.62 7697.83 10188.55 11295.77 7498.29 2792.68 7698.03 2697.91 5495.13 4098.95 11393.85 4099.49 4199.36 24
PGM-MVS96.32 4095.94 5497.43 1898.59 4193.84 3295.33 9098.30 2491.40 12195.76 12096.87 12295.26 3599.45 2692.77 8199.21 8999.00 53
ACMM88.83 996.30 4296.07 4996.97 3498.39 6292.95 4494.74 11198.03 6690.82 13497.15 5796.85 12396.25 1499.00 10593.10 7399.33 6598.95 62
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
GST-MVS96.24 4395.99 5397.00 3398.65 3492.71 4795.69 7898.01 6992.08 9395.74 12296.28 16495.22 3799.42 3293.17 7199.06 10298.88 73
ACMMP_NAP96.21 4496.12 4696.49 4898.90 1991.42 6394.57 11998.03 6690.42 14596.37 8997.35 8895.68 2099.25 7494.44 2799.34 6398.80 82
CP-MVSNet96.19 4596.80 1694.38 12998.99 1683.82 19896.31 5097.53 11197.60 798.34 1997.52 7391.98 11799.63 693.08 7599.81 899.70 3
MP-MVScopyleft96.14 4695.68 6797.51 1398.81 2894.06 2196.10 6097.78 9392.73 7593.48 20396.72 13594.23 6899.42 3291.99 10099.29 7399.05 50
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
LS3D96.11 4795.83 6296.95 3694.75 26494.20 1997.34 1397.98 7297.31 1195.32 14296.77 12793.08 9499.20 7991.79 10798.16 20197.44 204
MP-MVS-pluss96.08 4895.92 5796.57 4499.06 1091.21 6593.25 15898.32 2187.89 19496.86 7297.38 8195.55 2599.39 4895.47 1699.47 4299.11 44
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
TranMVSNet+NR-MVSNet96.07 4996.26 3895.50 8098.26 7187.69 12893.75 14797.86 8295.96 3197.48 4597.14 10595.33 3299.44 2890.79 12999.76 1099.38 22
PS-MVSNAJss96.01 5096.04 5195.89 6798.82 2688.51 11395.57 8497.88 8188.72 17798.81 698.86 1090.77 14399.60 995.43 1899.53 3799.57 14
SED-MVS96.00 5196.41 3294.76 10598.51 5186.97 14095.21 9498.10 5191.95 9597.63 3597.25 9596.48 1099.35 5993.29 6599.29 7397.95 159
DVP-MVS++95.93 5296.34 3494.70 10896.54 17186.66 15098.45 498.22 3393.26 6897.54 3997.36 8593.12 9299.38 5493.88 3898.68 15198.04 146
APD_test195.91 5395.42 7797.36 2398.82 2696.62 695.64 8097.64 10093.38 6695.89 11697.23 9793.35 8497.66 25588.20 19698.66 15597.79 178
DPE-MVScopyleft95.89 5495.88 5895.92 6497.93 9689.83 8593.46 15398.30 2492.37 8397.75 3296.95 11695.14 3999.51 2091.74 10899.28 7898.41 122
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SF-MVS95.88 5595.88 5895.87 6898.12 7989.65 8795.58 8398.56 1291.84 10496.36 9096.68 13794.37 6799.32 6892.41 9199.05 10598.64 106
3Dnovator+92.74 295.86 5695.77 6596.13 5396.81 15790.79 7396.30 5497.82 8796.13 2694.74 16997.23 9791.33 12899.16 8293.25 6898.30 18798.46 119
DVP-MVScopyleft95.82 5796.18 4294.72 10798.51 5186.69 14895.20 9697.00 15291.85 10197.40 5097.35 8895.58 2399.34 6293.44 5899.31 6898.13 141
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
CS-MVS95.77 5895.58 7196.37 5096.84 15491.72 6196.73 2999.06 594.23 4692.48 24094.79 23393.56 7699.49 2493.47 5599.05 10597.89 166
SMA-MVScopyleft95.77 5895.54 7296.47 4998.27 7091.19 6695.09 9997.79 9286.48 21597.42 4997.51 7594.47 6699.29 6993.55 5099.29 7398.93 64
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
test_040295.73 6096.22 4094.26 13198.19 7685.77 17493.24 15997.24 13696.88 1697.69 3397.77 6094.12 7099.13 8791.54 11699.29 7397.88 167
ACMP88.15 1395.71 6195.43 7696.54 4598.17 7791.73 6094.24 13198.08 5489.46 16096.61 8396.47 14695.85 1899.12 9090.45 13799.56 3598.77 86
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
XVG-ACMP-BASELINE95.68 6295.34 8196.69 4198.40 6193.04 4194.54 12398.05 6190.45 14496.31 9396.76 12992.91 9998.72 15191.19 12099.42 5198.32 126
DP-MVS95.62 6395.84 6194.97 9797.16 13988.62 10894.54 12397.64 10096.94 1596.58 8497.32 9293.07 9598.72 15190.45 13798.84 12997.57 194
OPM-MVS95.61 6495.45 7496.08 5498.49 5891.00 6892.65 17897.33 12890.05 15096.77 7796.85 12395.04 4598.56 17692.77 8199.06 10298.70 96
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
mvsmamba95.61 6495.40 7896.22 5198.44 6089.86 8497.14 1797.45 11791.25 12597.49 4398.14 3783.49 22999.45 2695.52 1499.66 2199.36 24
RPSCF95.58 6694.89 9997.62 797.58 12096.30 795.97 6697.53 11192.42 8193.41 20497.78 5891.21 13397.77 24691.06 12297.06 24898.80 82
MIMVSNet195.52 6795.45 7495.72 7399.14 589.02 9996.23 5796.87 16493.73 5797.87 2898.49 2890.73 14799.05 9886.43 23399.60 2699.10 47
Anonymous2024052995.50 6895.83 6294.50 12297.33 13385.93 16995.19 9896.77 17296.64 1997.61 3898.05 4493.23 8898.79 13988.60 19399.04 11098.78 84
Vis-MVSNetpermissive95.50 6895.48 7395.56 7998.11 8089.40 9495.35 8898.22 3392.36 8494.11 18198.07 4392.02 11599.44 2893.38 6397.67 22997.85 171
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
EC-MVSNet95.44 7095.62 6994.89 9996.93 14987.69 12896.48 3899.14 493.93 5392.77 23194.52 24393.95 7399.49 2493.62 4799.22 8897.51 199
pm-mvs195.43 7195.94 5493.93 14398.38 6385.08 18395.46 8797.12 14591.84 10497.28 5498.46 2995.30 3497.71 25290.17 15299.42 5198.99 55
DeepC-MVS91.39 495.43 7195.33 8295.71 7497.67 11590.17 8093.86 14498.02 6887.35 20596.22 10197.99 4894.48 6599.05 9892.73 8499.68 1897.93 161
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
tt080595.42 7395.93 5693.86 14798.75 3288.47 11497.68 994.29 26196.48 2195.38 13793.63 27194.89 5297.94 22995.38 1996.92 25695.17 289
RRT_MVS95.41 7495.20 8996.05 5598.86 2288.92 10197.49 1194.48 25793.12 7097.94 2798.54 2481.19 25999.63 695.48 1599.69 1499.60 12
XVG-OURS-SEG-HR95.38 7595.00 9796.51 4698.10 8194.07 2092.46 18698.13 4790.69 13793.75 19596.25 16798.03 297.02 28392.08 9795.55 28798.45 120
UniMVSNet_NR-MVSNet95.35 7695.21 8795.76 7197.69 11388.59 11092.26 19897.84 8594.91 3896.80 7595.78 19090.42 15299.41 3891.60 11399.58 3399.29 29
MSP-MVS95.34 7794.63 11297.48 1498.67 3394.05 2396.41 4398.18 3891.26 12395.12 15295.15 21686.60 20899.50 2193.43 6196.81 26098.89 71
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
CS-MVS-test95.32 7895.10 9395.96 5896.86 15390.75 7496.33 4799.20 293.99 5091.03 27393.73 26993.52 7899.55 1891.81 10699.45 4697.58 193
FC-MVSNet-test95.32 7895.88 5893.62 15298.49 5881.77 22495.90 6998.32 2193.93 5397.53 4197.56 7088.48 17299.40 4592.91 8099.83 599.68 4
UniMVSNet (Re)95.32 7895.15 9095.80 7097.79 10488.91 10292.91 16898.07 5793.46 6496.31 9395.97 18090.14 15699.34 6292.11 9599.64 2499.16 38
Gipumacopyleft95.31 8195.80 6493.81 14997.99 9490.91 7096.42 4297.95 7796.69 1791.78 26098.85 1291.77 12095.49 32391.72 10999.08 10195.02 295
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
DU-MVS95.28 8295.12 9295.75 7297.75 10688.59 11092.58 18097.81 8893.99 5096.80 7595.90 18190.10 15999.41 3891.60 11399.58 3399.26 30
NR-MVSNet95.28 8295.28 8595.26 8997.75 10687.21 13595.08 10097.37 12093.92 5597.65 3495.90 18190.10 15999.33 6790.11 15499.66 2199.26 30
TransMVSNet (Re)95.27 8496.04 5192.97 17198.37 6581.92 22395.07 10196.76 17393.97 5297.77 3198.57 2295.72 1997.90 23088.89 18799.23 8599.08 48
SD-MVS95.19 8595.73 6693.55 15596.62 16688.88 10494.67 11398.05 6191.26 12397.25 5696.40 15195.42 2794.36 34092.72 8599.19 9197.40 208
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
VPA-MVSNet95.14 8695.67 6893.58 15497.76 10583.15 20894.58 11897.58 10693.39 6597.05 6498.04 4593.25 8798.51 18189.75 16499.59 2899.08 48
casdiffmvs_mvgpermissive95.10 8795.62 6993.53 15896.25 19683.23 20592.66 17798.19 3693.06 7297.49 4397.15 10494.78 5498.71 15792.27 9398.72 14598.65 101
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_fmvsmvis_n_192095.08 8895.40 7894.13 13596.66 16187.75 12793.44 15598.49 1385.57 23398.27 2097.11 10794.11 7197.75 24996.26 798.72 14596.89 228
HPM-MVS++copyleft95.02 8994.39 11596.91 3797.88 9993.58 3794.09 13796.99 15491.05 12992.40 24595.22 21591.03 14099.25 7492.11 9598.69 15097.90 164
APD-MVScopyleft95.00 9094.69 10895.93 6297.38 13090.88 7194.59 11697.81 8889.22 16795.46 13596.17 17293.42 8299.34 6289.30 17298.87 12797.56 196
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
PMVScopyleft87.21 1494.97 9195.33 8293.91 14498.97 1797.16 295.54 8595.85 21596.47 2293.40 20697.46 7895.31 3395.47 32486.18 23798.78 14089.11 362
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
TSAR-MVS + MP.94.96 9294.75 10495.57 7898.86 2288.69 10596.37 4496.81 16885.23 23794.75 16897.12 10691.85 11999.40 4593.45 5798.33 18498.62 109
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SixPastTwentyTwo94.91 9395.21 8793.98 13998.52 5083.19 20795.93 6794.84 24794.86 3998.49 1598.74 1681.45 25399.60 994.69 2399.39 5799.15 39
FIs94.90 9495.35 8093.55 15598.28 6981.76 22595.33 9098.14 4693.05 7397.07 6197.18 10287.65 18699.29 6991.72 10999.69 1499.61 11
AllTest94.88 9594.51 11496.00 5698.02 8992.17 5095.26 9398.43 1590.48 14295.04 15796.74 13292.54 10897.86 23885.11 24898.98 11297.98 155
FMVSNet194.84 9695.13 9193.97 14097.60 11884.29 18895.99 6396.56 18392.38 8297.03 6598.53 2590.12 15798.98 10688.78 18999.16 9698.65 101
ANet_high94.83 9796.28 3790.47 26396.65 16273.16 34094.33 12898.74 1096.39 2498.09 2598.93 893.37 8398.70 15890.38 14099.68 1899.53 15
3Dnovator92.54 394.80 9894.90 9894.47 12595.47 24287.06 13896.63 3197.28 13491.82 10794.34 18097.41 7990.60 15098.65 16692.47 9098.11 20597.70 186
CPTT-MVS94.74 9994.12 12596.60 4398.15 7893.01 4295.84 7197.66 9989.21 16893.28 21095.46 20388.89 17098.98 10689.80 16198.82 13597.80 177
test_fmvsm_n_192094.72 10094.74 10694.67 10996.30 19188.62 10893.19 16098.07 5785.63 23197.08 6097.35 8890.86 14197.66 25595.70 1298.48 17197.74 184
XVG-OURS94.72 10094.12 12596.50 4798.00 9194.23 1891.48 22598.17 4290.72 13695.30 14396.47 14687.94 18396.98 28491.41 11897.61 23298.30 129
CSCG94.69 10294.75 10494.52 12197.55 12287.87 12495.01 10497.57 10792.68 7696.20 10393.44 27791.92 11898.78 14289.11 18199.24 8496.92 226
v1094.68 10395.27 8692.90 17796.57 16880.15 24494.65 11597.57 10790.68 13897.43 4798.00 4788.18 17699.15 8394.84 2299.55 3699.41 20
v894.65 10495.29 8492.74 18296.65 16279.77 25994.59 11697.17 14091.86 10097.47 4697.93 5088.16 17799.08 9394.32 2999.47 4299.38 22
canonicalmvs94.59 10594.69 10894.30 13095.60 23987.03 13995.59 8198.24 3191.56 11895.21 15192.04 30994.95 5098.66 16491.45 11797.57 23397.20 217
CNVR-MVS94.58 10694.29 11995.46 8296.94 14789.35 9691.81 21996.80 16989.66 15793.90 19395.44 20592.80 10398.72 15192.74 8398.52 16698.32 126
GeoE94.55 10794.68 11094.15 13397.23 13585.11 18294.14 13597.34 12788.71 17895.26 14695.50 20294.65 5899.12 9090.94 12698.40 17498.23 132
EG-PatchMatch MVS94.54 10894.67 11194.14 13497.87 10086.50 15292.00 20696.74 17488.16 19096.93 7097.61 6793.04 9697.90 23091.60 11398.12 20498.03 149
IS-MVSNet94.49 10994.35 11894.92 9898.25 7386.46 15597.13 1894.31 26096.24 2596.28 9796.36 15882.88 23799.35 5988.19 19799.52 4098.96 61
Baseline_NR-MVSNet94.47 11095.09 9492.60 19198.50 5780.82 24092.08 20296.68 17693.82 5696.29 9598.56 2390.10 15997.75 24990.10 15699.66 2199.24 32
SDMVSNet94.43 11195.02 9592.69 18497.93 9682.88 21391.92 21195.99 21193.65 6295.51 13198.63 1994.60 6096.48 29987.57 21199.35 6098.70 96
VDD-MVS94.37 11294.37 11794.40 12897.49 12586.07 16793.97 14193.28 28094.49 4396.24 9997.78 5887.99 18298.79 13988.92 18599.14 9898.34 125
EI-MVSNet-Vis-set94.36 11394.28 12094.61 11492.55 31085.98 16892.44 18794.69 25393.70 5896.12 10795.81 18691.24 13198.86 12593.76 4598.22 19698.98 59
EI-MVSNet-UG-set94.35 11494.27 12294.59 11892.46 31185.87 17192.42 18994.69 25393.67 6196.13 10695.84 18591.20 13498.86 12593.78 4298.23 19499.03 51
PHI-MVS94.34 11593.80 13095.95 5995.65 23591.67 6294.82 10997.86 8287.86 19593.04 22294.16 25491.58 12398.78 14290.27 14798.96 11897.41 205
casdiffmvspermissive94.32 11694.80 10292.85 17996.05 21081.44 23192.35 19298.05 6191.53 11995.75 12196.80 12693.35 8498.49 18291.01 12598.32 18698.64 106
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
bld_raw_dy_0_6494.27 11794.15 12494.65 11298.55 4586.28 16295.80 7395.55 22888.41 18597.09 5998.08 4278.69 27398.87 12495.63 1399.53 3798.81 80
tfpnnormal94.27 11794.87 10092.48 19597.71 11080.88 23994.55 12295.41 23493.70 5896.67 8097.72 6191.40 12798.18 20987.45 21399.18 9398.36 124
HQP_MVS94.26 11993.93 12795.23 9197.71 11088.12 11994.56 12097.81 8891.74 11293.31 20795.59 19786.93 20098.95 11389.26 17698.51 16898.60 110
baseline94.26 11994.80 10292.64 18696.08 20880.99 23793.69 14998.04 6590.80 13594.89 16396.32 16093.19 8998.48 18691.68 11198.51 16898.43 121
OMC-MVS94.22 12193.69 13595.81 6997.25 13491.27 6492.27 19797.40 11987.10 21194.56 17395.42 20693.74 7498.11 21486.62 22798.85 12898.06 143
LCM-MVSNet-Re94.20 12294.58 11393.04 16895.91 22183.13 20993.79 14699.19 392.00 9498.84 598.04 4593.64 7599.02 10381.28 28498.54 16496.96 225
DeepPCF-MVS90.46 694.20 12293.56 14296.14 5295.96 21792.96 4389.48 28097.46 11585.14 24096.23 10095.42 20693.19 8998.08 21590.37 14198.76 14297.38 211
KD-MVS_self_test94.10 12494.73 10792.19 20297.66 11679.49 26594.86 10897.12 14589.59 15996.87 7197.65 6590.40 15498.34 19589.08 18299.35 6098.75 87
NCCC94.08 12593.54 14395.70 7596.49 17689.90 8392.39 19196.91 16190.64 13992.33 25194.60 24090.58 15198.96 11190.21 15197.70 22798.23 132
VDDNet94.03 12694.27 12293.31 16398.87 2182.36 21995.51 8691.78 30997.19 1296.32 9298.60 2184.24 22598.75 14687.09 22098.83 13498.81 80
dcpmvs_293.96 12795.01 9690.82 25597.60 11874.04 33593.68 15098.85 789.80 15597.82 2997.01 11591.14 13899.21 7790.56 13598.59 15999.19 36
sd_testset93.94 12894.39 11592.61 19097.93 9683.24 20493.17 16195.04 24193.65 6295.51 13198.63 1994.49 6495.89 31681.72 28099.35 6098.70 96
MVS_030493.92 12993.68 13694.64 11395.94 22085.83 17394.34 12788.14 33392.98 7491.09 27297.68 6286.73 20599.36 5796.64 499.59 2898.72 92
EPP-MVSNet93.91 13093.68 13694.59 11898.08 8285.55 17797.44 1294.03 26694.22 4794.94 16096.19 16982.07 24899.57 1487.28 21798.89 12298.65 101
Effi-MVS+-dtu93.90 13192.60 16597.77 394.74 26596.67 594.00 13995.41 23489.94 15191.93 25992.13 30790.12 15798.97 11087.68 21097.48 23697.67 189
IterMVS-LS93.78 13294.28 12092.27 19996.27 19379.21 27291.87 21596.78 17091.77 11096.57 8597.07 10987.15 19598.74 14991.99 10099.03 11198.86 74
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DeepC-MVS_fast89.96 793.73 13393.44 14594.60 11796.14 20487.90 12393.36 15797.14 14285.53 23493.90 19395.45 20491.30 13098.59 17389.51 16798.62 15697.31 214
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MVS_111021_LR93.66 13493.28 14994.80 10396.25 19690.95 6990.21 25995.43 23387.91 19293.74 19794.40 24592.88 10196.38 30490.39 13998.28 18897.07 219
MVS_111021_HR93.63 13593.42 14694.26 13196.65 16286.96 14289.30 28796.23 19988.36 18793.57 20194.60 24093.45 7997.77 24690.23 15098.38 17898.03 149
v114493.50 13693.81 12992.57 19296.28 19279.61 26291.86 21796.96 15586.95 21395.91 11496.32 16087.65 18698.96 11193.51 5198.88 12499.13 41
v119293.49 13793.78 13192.62 18996.16 20279.62 26191.83 21897.22 13886.07 22296.10 10896.38 15687.22 19399.02 10394.14 3498.88 12499.22 33
WR-MVS93.49 13793.72 13392.80 18197.57 12180.03 25090.14 26295.68 21993.70 5896.62 8295.39 21087.21 19499.04 10187.50 21299.64 2499.33 26
V4293.43 13993.58 14092.97 17195.34 24881.22 23492.67 17696.49 18887.25 20796.20 10396.37 15787.32 19298.85 12792.39 9298.21 19798.85 77
K. test v393.37 14093.27 15093.66 15198.05 8582.62 21594.35 12686.62 34396.05 2997.51 4298.85 1276.59 29899.65 393.21 6998.20 19998.73 91
PM-MVS93.33 14192.67 16395.33 8696.58 16794.06 2192.26 19892.18 30085.92 22596.22 10196.61 14185.64 21995.99 31590.35 14298.23 19495.93 266
v124093.29 14293.71 13492.06 20996.01 21577.89 29191.81 21997.37 12085.12 24196.69 7996.40 15186.67 20699.07 9794.51 2598.76 14299.22 33
v2v48293.29 14293.63 13892.29 19896.35 18578.82 27991.77 22196.28 19588.45 18395.70 12696.26 16686.02 21498.90 11793.02 7698.81 13799.14 40
alignmvs93.26 14492.85 15694.50 12295.70 23187.45 13093.45 15495.76 21691.58 11795.25 14892.42 30381.96 25098.72 15191.61 11297.87 22197.33 213
v192192093.26 14493.61 13992.19 20296.04 21478.31 28591.88 21497.24 13685.17 23996.19 10596.19 16986.76 20499.05 9894.18 3398.84 12999.22 33
MSLP-MVS++93.25 14693.88 12891.37 23196.34 18682.81 21493.11 16297.74 9589.37 16394.08 18395.29 21490.40 15496.35 30690.35 14298.25 19294.96 296
GBi-Net93.21 14792.96 15393.97 14095.40 24484.29 18895.99 6396.56 18388.63 17995.10 15398.53 2581.31 25598.98 10686.74 22398.38 17898.65 101
test193.21 14792.96 15393.97 14095.40 24484.29 18895.99 6396.56 18388.63 17995.10 15398.53 2581.31 25598.98 10686.74 22398.38 17898.65 101
v14419293.20 14993.54 14392.16 20696.05 21078.26 28691.95 20797.14 14284.98 24595.96 11096.11 17387.08 19799.04 10193.79 4198.84 12999.17 37
VPNet93.08 15093.76 13291.03 24598.60 3975.83 32191.51 22495.62 22091.84 10495.74 12297.10 10889.31 16798.32 19685.07 25099.06 10298.93 64
UGNet93.08 15092.50 16794.79 10493.87 28987.99 12295.07 10194.26 26390.64 13987.33 33397.67 6486.89 20298.49 18288.10 20098.71 14797.91 163
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
TSAR-MVS + GP.93.07 15292.41 16995.06 9595.82 22490.87 7290.97 23692.61 29588.04 19194.61 17293.79 26888.08 17897.81 24189.41 16998.39 17796.50 244
ETV-MVS92.99 15392.74 15993.72 15095.86 22386.30 16192.33 19397.84 8591.70 11592.81 22986.17 36592.22 11299.19 8088.03 20497.73 22495.66 280
EI-MVSNet92.99 15393.26 15192.19 20292.12 32079.21 27292.32 19494.67 25591.77 11095.24 14995.85 18387.14 19698.49 18291.99 10098.26 19098.86 74
MCST-MVS92.91 15592.51 16694.10 13697.52 12385.72 17591.36 22997.13 14480.33 28692.91 22794.24 25091.23 13298.72 15189.99 15897.93 21897.86 169
h-mvs3392.89 15691.99 17795.58 7796.97 14590.55 7693.94 14294.01 26989.23 16593.95 19096.19 16976.88 29499.14 8591.02 12395.71 28497.04 222
QAPM92.88 15792.77 15793.22 16695.82 22483.31 20296.45 3997.35 12683.91 25593.75 19596.77 12789.25 16898.88 12084.56 25697.02 25097.49 200
v14892.87 15893.29 14791.62 22396.25 19677.72 29491.28 23095.05 24089.69 15695.93 11396.04 17687.34 19198.38 19190.05 15797.99 21598.78 84
Anonymous2024052192.86 15993.57 14190.74 25796.57 16875.50 32394.15 13495.60 22189.38 16295.90 11597.90 5680.39 26397.96 22792.60 8899.68 1898.75 87
Effi-MVS+92.79 16092.74 15992.94 17595.10 25283.30 20394.00 13997.53 11191.36 12289.35 30290.65 33194.01 7298.66 16487.40 21595.30 29696.88 230
FMVSNet292.78 16192.73 16192.95 17395.40 24481.98 22294.18 13395.53 23088.63 17996.05 10997.37 8281.31 25598.81 13587.38 21698.67 15398.06 143
Fast-Effi-MVS+-dtu92.77 16292.16 17294.58 12094.66 27088.25 11792.05 20396.65 17889.62 15890.08 28891.23 31992.56 10798.60 17186.30 23596.27 27396.90 227
LF4IMVS92.72 16392.02 17694.84 10295.65 23591.99 5492.92 16796.60 18085.08 24392.44 24393.62 27286.80 20396.35 30686.81 22298.25 19296.18 257
train_agg92.71 16491.83 18295.35 8496.45 17889.46 9090.60 24696.92 15979.37 29590.49 27994.39 24691.20 13498.88 12088.66 19298.43 17397.72 185
VNet92.67 16592.96 15391.79 21596.27 19380.15 24491.95 20794.98 24392.19 9194.52 17596.07 17587.43 19097.39 27184.83 25298.38 17897.83 173
CDPH-MVS92.67 16591.83 18295.18 9296.94 14788.46 11590.70 24397.07 14877.38 31092.34 25095.08 22192.67 10698.88 12085.74 23998.57 16198.20 135
Anonymous20240521192.58 16792.50 16792.83 18096.55 17083.22 20692.43 18891.64 31194.10 4995.59 12896.64 13981.88 25297.50 26285.12 24798.52 16697.77 180
XXY-MVS92.58 16793.16 15290.84 25497.75 10679.84 25591.87 21596.22 20185.94 22495.53 13097.68 6292.69 10594.48 33683.21 26497.51 23498.21 134
MVS_Test92.57 16993.29 14790.40 26693.53 29575.85 31992.52 18296.96 15588.73 17692.35 24896.70 13690.77 14398.37 19492.53 8995.49 28996.99 224
TAPA-MVS88.58 1092.49 17091.75 18494.73 10696.50 17589.69 8692.91 16897.68 9878.02 30892.79 23094.10 25590.85 14297.96 22784.76 25498.16 20196.54 239
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
patch_mono-292.46 17192.72 16291.71 21996.65 16278.91 27788.85 29797.17 14083.89 25692.45 24296.76 12989.86 16397.09 28090.24 14998.59 15999.12 43
test_fmvs392.42 17292.40 17092.46 19793.80 29287.28 13393.86 14497.05 14976.86 31596.25 9898.66 1882.87 23891.26 35895.44 1796.83 25998.82 78
ab-mvs92.40 17392.62 16491.74 21797.02 14381.65 22695.84 7195.50 23186.95 21392.95 22697.56 7090.70 14897.50 26279.63 30397.43 23896.06 261
CANet92.38 17491.99 17793.52 16093.82 29183.46 20191.14 23297.00 15289.81 15486.47 33794.04 25787.90 18499.21 7789.50 16898.27 18997.90 164
EIA-MVS92.35 17592.03 17593.30 16495.81 22683.97 19692.80 17198.17 4287.71 19989.79 29687.56 35591.17 13799.18 8187.97 20597.27 24296.77 234
DP-MVS Recon92.31 17691.88 18093.60 15397.18 13886.87 14391.10 23497.37 12084.92 24692.08 25694.08 25688.59 17198.20 20683.50 26198.14 20395.73 275
F-COLMAP92.28 17791.06 20095.95 5997.52 12391.90 5693.53 15197.18 13983.98 25488.70 31494.04 25788.41 17498.55 17880.17 29695.99 27897.39 209
OpenMVScopyleft89.45 892.27 17892.13 17492.68 18594.53 27484.10 19495.70 7697.03 15082.44 27491.14 27196.42 14988.47 17398.38 19185.95 23897.47 23795.55 284
hse-mvs292.24 17991.20 19695.38 8396.16 20290.65 7592.52 18292.01 30789.23 16593.95 19092.99 28776.88 29498.69 16091.02 12396.03 27696.81 232
MVSFormer92.18 18092.23 17192.04 21094.74 26580.06 24897.15 1597.37 12088.98 17188.83 30692.79 29277.02 29199.60 996.41 596.75 26396.46 246
HQP-MVS92.09 18191.49 19093.88 14596.36 18284.89 18491.37 22697.31 12987.16 20888.81 30893.40 27884.76 22298.60 17186.55 23097.73 22498.14 140
DELS-MVS92.05 18292.16 17291.72 21894.44 27580.13 24687.62 31197.25 13587.34 20692.22 25393.18 28489.54 16698.73 15089.67 16598.20 19996.30 252
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
TinyColmap92.00 18392.76 15889.71 28395.62 23877.02 30290.72 24296.17 20487.70 20095.26 14696.29 16292.54 10896.45 30181.77 27898.77 14195.66 280
CLD-MVS91.82 18491.41 19293.04 16896.37 18083.65 20086.82 33097.29 13284.65 25092.27 25289.67 34092.20 11397.85 24083.95 25999.47 4297.62 191
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
FA-MVS(test-final)91.81 18591.85 18191.68 22194.95 25579.99 25296.00 6293.44 27887.80 19694.02 18897.29 9377.60 28398.45 18888.04 20397.49 23596.61 238
diffmvspermissive91.74 18691.93 17991.15 24393.06 30278.17 28788.77 30097.51 11486.28 21892.42 24493.96 26288.04 18097.46 26590.69 13396.67 26597.82 175
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CNLPA91.72 18791.20 19693.26 16596.17 20191.02 6791.14 23295.55 22890.16 14990.87 27493.56 27586.31 21094.40 33979.92 30297.12 24694.37 312
IterMVS-SCA-FT91.65 18891.55 18691.94 21193.89 28879.22 27187.56 31493.51 27691.53 11995.37 13996.62 14078.65 27498.90 11791.89 10494.95 30397.70 186
PVSNet_Blended_VisFu91.63 18991.20 19692.94 17597.73 10983.95 19792.14 20197.46 11578.85 30492.35 24894.98 22484.16 22699.08 9386.36 23496.77 26295.79 273
AdaColmapbinary91.63 18991.36 19392.47 19695.56 24086.36 15992.24 20096.27 19688.88 17589.90 29392.69 29591.65 12298.32 19677.38 32297.64 23092.72 344
pmmvs-eth3d91.54 19190.73 20893.99 13895.76 22987.86 12590.83 23993.98 27078.23 30794.02 18896.22 16882.62 24496.83 29086.57 22898.33 18497.29 215
API-MVS91.52 19291.61 18591.26 23794.16 28086.26 16394.66 11494.82 24891.17 12792.13 25591.08 32290.03 16297.06 28279.09 31097.35 24190.45 360
xiu_mvs_v1_base_debu91.47 19391.52 18791.33 23395.69 23281.56 22789.92 26996.05 20883.22 26091.26 26790.74 32691.55 12498.82 13089.29 17395.91 27993.62 331
xiu_mvs_v1_base91.47 19391.52 18791.33 23395.69 23281.56 22789.92 26996.05 20883.22 26091.26 26790.74 32691.55 12498.82 13089.29 17395.91 27993.62 331
xiu_mvs_v1_base_debi91.47 19391.52 18791.33 23395.69 23281.56 22789.92 26996.05 20883.22 26091.26 26790.74 32691.55 12498.82 13089.29 17395.91 27993.62 331
LFMVS91.33 19691.16 19991.82 21496.27 19379.36 26795.01 10485.61 35396.04 3094.82 16597.06 11072.03 31698.46 18784.96 25198.70 14997.65 190
c3_l91.32 19791.42 19191.00 24892.29 31376.79 30987.52 31796.42 19185.76 22894.72 17193.89 26582.73 24198.16 21190.93 12798.55 16298.04 146
Fast-Effi-MVS+91.28 19890.86 20392.53 19495.45 24382.53 21689.25 29096.52 18785.00 24489.91 29288.55 35192.94 9798.84 12884.72 25595.44 29196.22 255
MDA-MVSNet-bldmvs91.04 19990.88 20291.55 22594.68 26980.16 24385.49 34392.14 30390.41 14694.93 16195.79 18785.10 22096.93 28785.15 24594.19 32397.57 194
PAPM_NR91.03 20090.81 20591.68 22196.73 15981.10 23693.72 14896.35 19488.19 18988.77 31292.12 30885.09 22197.25 27582.40 27393.90 32496.68 237
MSDG90.82 20190.67 20991.26 23794.16 28083.08 21086.63 33596.19 20290.60 14191.94 25891.89 31089.16 16995.75 31880.96 28994.51 31494.95 297
test20.0390.80 20290.85 20490.63 26095.63 23779.24 27089.81 27392.87 28689.90 15294.39 17796.40 15185.77 21595.27 33173.86 34199.05 10597.39 209
FMVSNet390.78 20390.32 21892.16 20693.03 30479.92 25492.54 18194.95 24486.17 22195.10 15396.01 17869.97 32398.75 14686.74 22398.38 17897.82 175
eth_miper_zixun_eth90.72 20490.61 21091.05 24492.04 32376.84 30886.91 32696.67 17785.21 23894.41 17693.92 26379.53 26798.26 20289.76 16397.02 25098.06 143
X-MVStestdata90.70 20588.45 25097.44 1698.56 4293.99 2696.50 3697.95 7794.58 4194.38 17826.89 38294.56 6199.39 4893.57 4899.05 10598.93 64
BH-untuned90.68 20690.90 20190.05 27795.98 21679.57 26390.04 26594.94 24587.91 19294.07 18493.00 28687.76 18597.78 24579.19 30995.17 29992.80 343
cl____90.65 20790.56 21290.91 25291.85 32776.98 30586.75 33195.36 23785.53 23494.06 18594.89 22777.36 28897.98 22690.27 14798.98 11297.76 181
DIV-MVS_self_test90.65 20790.56 21290.91 25291.85 32776.99 30486.75 33195.36 23785.52 23694.06 18594.89 22777.37 28797.99 22590.28 14698.97 11697.76 181
test_fmvs290.62 20990.40 21691.29 23691.93 32685.46 17892.70 17596.48 18974.44 32894.91 16297.59 6875.52 30290.57 36093.44 5896.56 26797.84 172
114514_t90.51 21089.80 22892.63 18898.00 9182.24 22093.40 15697.29 13265.84 36989.40 30194.80 23286.99 19898.75 14683.88 26098.61 15796.89 228
miper_ehance_all_eth90.48 21190.42 21590.69 25891.62 33276.57 31286.83 32996.18 20383.38 25894.06 18592.66 29782.20 24698.04 21789.79 16297.02 25097.45 202
BH-RMVSNet90.47 21290.44 21490.56 26295.21 25178.65 28389.15 29193.94 27188.21 18892.74 23294.22 25186.38 20997.88 23478.67 31295.39 29395.14 292
Vis-MVSNet (Re-imp)90.42 21390.16 21991.20 24197.66 11677.32 29994.33 12887.66 33691.20 12692.99 22395.13 21875.40 30398.28 19877.86 31599.19 9197.99 154
test_vis3_rt90.40 21490.03 22391.52 22792.58 30888.95 10090.38 25497.72 9773.30 33597.79 3097.51 7577.05 29087.10 37389.03 18394.89 30498.50 115
PLCcopyleft85.34 1590.40 21488.92 24294.85 10196.53 17490.02 8191.58 22396.48 18980.16 28786.14 33992.18 30585.73 21698.25 20376.87 32594.61 31396.30 252
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
test111190.39 21690.61 21089.74 28298.04 8871.50 35195.59 8179.72 37689.41 16195.94 11298.14 3770.79 32098.81 13588.52 19499.32 6798.90 70
testgi90.38 21791.34 19487.50 32197.49 12571.54 35089.43 28295.16 23988.38 18694.54 17494.68 23792.88 10193.09 35071.60 35497.85 22297.88 167
mvs_anonymous90.37 21891.30 19587.58 32092.17 31968.00 36489.84 27294.73 25283.82 25793.22 21697.40 8087.54 18897.40 27087.94 20695.05 30197.34 212
PVSNet_BlendedMVS90.35 21989.96 22491.54 22694.81 26078.80 28190.14 26296.93 15779.43 29488.68 31595.06 22286.27 21198.15 21280.27 29298.04 21197.68 188
UnsupCasMVSNet_eth90.33 22090.34 21790.28 26894.64 27280.24 24289.69 27595.88 21385.77 22793.94 19295.69 19481.99 24992.98 35184.21 25891.30 35397.62 191
MAR-MVS90.32 22188.87 24594.66 11194.82 25991.85 5794.22 13294.75 25180.91 28187.52 33188.07 35486.63 20797.87 23776.67 32696.21 27494.25 315
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
RPMNet90.31 22290.14 22290.81 25691.01 33978.93 27492.52 18298.12 4891.91 9889.10 30396.89 12168.84 32599.41 3890.17 15292.70 34294.08 316
iter_conf_final90.23 22389.32 23492.95 17394.65 27181.46 23094.32 13095.40 23685.61 23292.84 22895.37 21254.58 37499.13 8792.16 9498.94 12098.25 131
IterMVS90.18 22490.16 21990.21 27293.15 30075.98 31887.56 31492.97 28586.43 21794.09 18296.40 15178.32 27897.43 26787.87 20794.69 31197.23 216
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
TAMVS90.16 22589.05 23893.49 16196.49 17686.37 15890.34 25692.55 29680.84 28492.99 22394.57 24281.94 25198.20 20673.51 34298.21 19795.90 269
ECVR-MVScopyleft90.12 22690.16 21990.00 27897.81 10272.68 34595.76 7578.54 37989.04 16995.36 14098.10 4070.51 32198.64 16787.10 21999.18 9398.67 99
test_yl90.11 22789.73 23191.26 23794.09 28379.82 25690.44 25092.65 29290.90 13093.19 21793.30 28073.90 30798.03 21882.23 27496.87 25795.93 266
DCV-MVSNet90.11 22789.73 23191.26 23794.09 28379.82 25690.44 25092.65 29290.90 13093.19 21793.30 28073.90 30798.03 21882.23 27496.87 25795.93 266
Patchmtry90.11 22789.92 22590.66 25990.35 34877.00 30392.96 16692.81 28790.25 14894.74 16996.93 11867.11 33297.52 26185.17 24398.98 11297.46 201
MVP-Stereo90.07 23088.92 24293.54 15796.31 18986.49 15390.93 23795.59 22579.80 28891.48 26395.59 19780.79 26097.39 27178.57 31391.19 35496.76 235
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
AUN-MVS90.05 23188.30 25495.32 8896.09 20790.52 7792.42 18992.05 30682.08 27788.45 31892.86 28965.76 34298.69 16088.91 18696.07 27596.75 236
CL-MVSNet_self_test90.04 23289.90 22690.47 26395.24 25077.81 29286.60 33792.62 29485.64 23093.25 21493.92 26383.84 22796.06 31379.93 30098.03 21297.53 198
D2MVS89.93 23389.60 23390.92 25094.03 28578.40 28488.69 30294.85 24678.96 30293.08 21995.09 22074.57 30596.94 28588.19 19798.96 11897.41 205
miper_lstm_enhance89.90 23489.80 22890.19 27491.37 33577.50 29683.82 35995.00 24284.84 24893.05 22194.96 22576.53 29995.20 33289.96 15998.67 15397.86 169
CANet_DTU89.85 23589.17 23691.87 21292.20 31780.02 25190.79 24095.87 21486.02 22382.53 36291.77 31280.01 26498.57 17585.66 24097.70 22797.01 223
tttt051789.81 23688.90 24492.55 19397.00 14479.73 26095.03 10383.65 36589.88 15395.30 14394.79 23353.64 37799.39 4891.99 10098.79 13998.54 113
EPNet89.80 23788.25 25894.45 12683.91 38386.18 16493.87 14387.07 34191.16 12880.64 37194.72 23578.83 27198.89 11985.17 24398.89 12298.28 130
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CDS-MVSNet89.55 23888.22 26193.53 15895.37 24786.49 15389.26 28893.59 27379.76 29091.15 27092.31 30477.12 28998.38 19177.51 32097.92 21995.71 276
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MG-MVS89.54 23989.80 22888.76 29994.88 25672.47 34789.60 27692.44 29885.82 22689.48 30095.98 17982.85 23997.74 25181.87 27795.27 29796.08 260
OpenMVS_ROBcopyleft85.12 1689.52 24089.05 23890.92 25094.58 27381.21 23591.10 23493.41 27977.03 31493.41 20493.99 26183.23 23397.80 24279.93 30094.80 30893.74 327
test_vis1_n_192089.45 24189.85 22788.28 31093.59 29476.71 31090.67 24497.78 9379.67 29290.30 28596.11 17376.62 29792.17 35490.31 14493.57 32995.96 264
DPM-MVS89.35 24288.40 25192.18 20596.13 20684.20 19286.96 32596.15 20575.40 32387.36 33291.55 31783.30 23298.01 22282.17 27696.62 26694.32 314
MVSTER89.32 24388.75 24691.03 24590.10 35176.62 31190.85 23894.67 25582.27 27595.24 14995.79 18761.09 36398.49 18290.49 13698.26 19097.97 158
PatchMatch-RL89.18 24488.02 26792.64 18695.90 22292.87 4588.67 30491.06 31480.34 28590.03 29091.67 31483.34 23194.42 33876.35 32994.84 30790.64 359
jason89.17 24588.32 25391.70 22095.73 23080.07 24788.10 30793.22 28171.98 34390.09 28792.79 29278.53 27798.56 17687.43 21497.06 24896.46 246
jason: jason.
PCF-MVS84.52 1789.12 24687.71 27093.34 16296.06 20985.84 17286.58 33897.31 12968.46 36293.61 20093.89 26587.51 18998.52 18067.85 36698.11 20595.66 280
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
mvsany_test389.11 24788.21 26291.83 21391.30 33690.25 7988.09 30878.76 37776.37 31896.43 8798.39 3283.79 22890.43 36386.57 22894.20 32194.80 301
FE-MVS89.06 24888.29 25591.36 23294.78 26279.57 26396.77 2890.99 31584.87 24792.96 22596.29 16260.69 36598.80 13880.18 29597.11 24795.71 276
cl2289.02 24988.50 24990.59 26189.76 35376.45 31386.62 33694.03 26682.98 26692.65 23492.49 29872.05 31597.53 26088.93 18497.02 25097.78 179
USDC89.02 24989.08 23788.84 29895.07 25374.50 33088.97 29396.39 19273.21 33693.27 21196.28 16482.16 24796.39 30377.55 31998.80 13895.62 283
test_vis1_n89.01 25189.01 24089.03 29492.57 30982.46 21892.62 17996.06 20673.02 33890.40 28295.77 19174.86 30489.68 36690.78 13094.98 30294.95 297
xiu_mvs_v2_base89.00 25289.19 23588.46 30894.86 25874.63 32786.97 32495.60 22180.88 28287.83 32688.62 35091.04 13998.81 13582.51 27294.38 31691.93 350
new-patchmatchnet88.97 25390.79 20683.50 35094.28 27955.83 38485.34 34593.56 27586.18 22095.47 13395.73 19383.10 23496.51 29885.40 24298.06 20998.16 138
pmmvs488.95 25487.70 27192.70 18394.30 27885.60 17687.22 32092.16 30274.62 32789.75 29894.19 25277.97 28196.41 30282.71 26896.36 27296.09 259
iter_conf0588.94 25588.09 26591.50 22892.74 30776.97 30692.80 17195.92 21282.82 26893.65 19995.37 21249.41 38199.13 8790.82 12899.28 7898.40 123
N_pmnet88.90 25687.25 27893.83 14894.40 27793.81 3584.73 34987.09 34079.36 29793.26 21292.43 30279.29 26991.68 35677.50 32197.22 24496.00 263
PS-MVSNAJ88.86 25788.99 24188.48 30794.88 25674.71 32586.69 33395.60 22180.88 28287.83 32687.37 35890.77 14398.82 13082.52 27194.37 31791.93 350
Patchmatch-RL test88.81 25888.52 24889.69 28495.33 24979.94 25386.22 34092.71 29178.46 30595.80 11994.18 25366.25 34095.33 32989.22 17898.53 16593.78 325
Anonymous2023120688.77 25988.29 25590.20 27396.31 18978.81 28089.56 27893.49 27774.26 33092.38 24695.58 20082.21 24595.43 32672.07 35098.75 14496.34 250
PVSNet_Blended88.74 26088.16 26490.46 26594.81 26078.80 28186.64 33496.93 15774.67 32688.68 31589.18 34786.27 21198.15 21280.27 29296.00 27794.44 311
test_fmvs1_n88.73 26188.38 25289.76 28192.06 32282.53 21692.30 19696.59 18271.14 34792.58 23795.41 20968.55 32689.57 36891.12 12195.66 28597.18 218
thisisatest053088.69 26287.52 27392.20 20196.33 18779.36 26792.81 17084.01 36486.44 21693.67 19892.68 29653.62 37899.25 7489.65 16698.45 17298.00 151
ppachtmachnet_test88.61 26388.64 24788.50 30691.76 32970.99 35484.59 35292.98 28479.30 29992.38 24693.53 27679.57 26697.45 26686.50 23297.17 24597.07 219
UnsupCasMVSNet_bld88.50 26488.03 26689.90 27995.52 24178.88 27887.39 31894.02 26879.32 29893.06 22094.02 25980.72 26194.27 34175.16 33593.08 33896.54 239
miper_enhance_ethall88.42 26587.87 26890.07 27588.67 36575.52 32285.10 34695.59 22575.68 31992.49 23989.45 34378.96 27097.88 23487.86 20897.02 25096.81 232
1112_ss88.42 26587.41 27491.45 22996.69 16080.99 23789.72 27496.72 17573.37 33487.00 33590.69 32977.38 28698.20 20681.38 28393.72 32795.15 291
lupinMVS88.34 26787.31 27591.45 22994.74 26580.06 24887.23 31992.27 29971.10 34888.83 30691.15 32077.02 29198.53 17986.67 22696.75 26395.76 274
test_cas_vis1_n_192088.25 26888.27 25788.20 31292.19 31878.92 27689.45 28195.44 23275.29 32593.23 21595.65 19671.58 31790.23 36488.05 20293.55 33095.44 286
YYNet188.17 26988.24 25987.93 31692.21 31673.62 33780.75 36888.77 32582.51 27394.99 15995.11 21982.70 24293.70 34583.33 26293.83 32596.48 245
MDA-MVSNet_test_wron88.16 27088.23 26087.93 31692.22 31573.71 33680.71 36988.84 32482.52 27294.88 16495.14 21782.70 24293.61 34683.28 26393.80 32696.46 246
MS-PatchMatch88.05 27187.75 26988.95 29593.28 29777.93 28987.88 31092.49 29775.42 32292.57 23893.59 27480.44 26294.24 34381.28 28492.75 34194.69 307
CR-MVSNet87.89 27287.12 28390.22 27191.01 33978.93 27492.52 18292.81 28773.08 33789.10 30396.93 11867.11 33297.64 25788.80 18892.70 34294.08 316
pmmvs587.87 27387.14 28190.07 27593.26 29976.97 30688.89 29592.18 30073.71 33388.36 31993.89 26576.86 29696.73 29380.32 29196.81 26096.51 241
wuyk23d87.83 27490.79 20678.96 35990.46 34788.63 10792.72 17390.67 31991.65 11698.68 1197.64 6696.06 1577.53 38159.84 37599.41 5570.73 379
FMVSNet587.82 27586.56 29291.62 22392.31 31279.81 25893.49 15294.81 25083.26 25991.36 26596.93 11852.77 37997.49 26476.07 33098.03 21297.55 197
GA-MVS87.70 27686.82 28790.31 26793.27 29877.22 30184.72 35192.79 28985.11 24289.82 29490.07 33266.80 33597.76 24884.56 25694.27 32095.96 264
TR-MVS87.70 27687.17 28089.27 29194.11 28279.26 26988.69 30291.86 30881.94 27890.69 27789.79 33782.82 24097.42 26872.65 34891.98 35091.14 356
thres600view787.66 27887.10 28489.36 28996.05 21073.17 33992.72 17385.31 35691.89 9993.29 20990.97 32363.42 35498.39 18973.23 34496.99 25596.51 241
PAPR87.65 27986.77 28990.27 26992.85 30677.38 29888.56 30596.23 19976.82 31784.98 34689.75 33986.08 21397.16 27872.33 34993.35 33296.26 254
baseline187.62 28087.31 27588.54 30494.71 26874.27 33393.10 16388.20 33186.20 21992.18 25493.04 28573.21 31095.52 32179.32 30785.82 36995.83 271
test_fmvs187.59 28187.27 27788.54 30488.32 36681.26 23390.43 25395.72 21870.55 35391.70 26194.63 23868.13 32789.42 36990.59 13495.34 29594.94 299
our_test_387.55 28287.59 27287.44 32291.76 32970.48 35583.83 35890.55 32079.79 28992.06 25792.17 30678.63 27695.63 31984.77 25394.73 30996.22 255
PatchT87.51 28388.17 26385.55 33690.64 34266.91 36692.02 20586.09 34792.20 9089.05 30597.16 10364.15 35096.37 30589.21 17992.98 34093.37 335
Test_1112_low_res87.50 28486.58 29190.25 27096.80 15877.75 29387.53 31696.25 19769.73 35886.47 33793.61 27375.67 30197.88 23479.95 29893.20 33495.11 293
SCA87.43 28587.21 27988.10 31492.01 32471.98 34989.43 28288.11 33482.26 27688.71 31392.83 29078.65 27497.59 25879.61 30493.30 33394.75 304
EU-MVSNet87.39 28686.71 29089.44 28693.40 29676.11 31694.93 10790.00 32257.17 37895.71 12597.37 8264.77 34897.68 25492.67 8694.37 31794.52 309
thres100view90087.35 28786.89 28688.72 30096.14 20473.09 34193.00 16585.31 35692.13 9293.26 21290.96 32463.42 35498.28 19871.27 35696.54 26894.79 302
CMPMVSbinary68.83 2287.28 28885.67 30292.09 20888.77 36485.42 17990.31 25794.38 25970.02 35688.00 32493.30 28073.78 30994.03 34475.96 33296.54 26896.83 231
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
sss87.23 28986.82 28788.46 30893.96 28677.94 28886.84 32892.78 29077.59 30987.61 33091.83 31178.75 27291.92 35577.84 31694.20 32195.52 285
BH-w/o87.21 29087.02 28587.79 31994.77 26377.27 30087.90 30993.21 28381.74 27989.99 29188.39 35383.47 23096.93 28771.29 35592.43 34689.15 361
thres40087.20 29186.52 29489.24 29395.77 22772.94 34291.89 21286.00 34890.84 13292.61 23589.80 33563.93 35198.28 19871.27 35696.54 26896.51 241
CHOSEN 1792x268887.19 29285.92 30191.00 24897.13 14179.41 26684.51 35395.60 22164.14 37290.07 28994.81 23078.26 27997.14 27973.34 34395.38 29496.46 246
HyFIR lowres test87.19 29285.51 30392.24 20097.12 14280.51 24185.03 34796.06 20666.11 36891.66 26292.98 28870.12 32299.14 8575.29 33495.23 29897.07 219
MIMVSNet87.13 29486.54 29388.89 29796.05 21076.11 31694.39 12588.51 32781.37 28088.27 32196.75 13172.38 31395.52 32165.71 37195.47 29095.03 294
tfpn200view987.05 29586.52 29488.67 30195.77 22772.94 34291.89 21286.00 34890.84 13292.61 23589.80 33563.93 35198.28 19871.27 35696.54 26894.79 302
cascas87.02 29686.28 29889.25 29291.56 33376.45 31384.33 35596.78 17071.01 34986.89 33685.91 36681.35 25496.94 28583.09 26595.60 28694.35 313
WTY-MVS86.93 29786.50 29688.24 31194.96 25474.64 32687.19 32192.07 30578.29 30688.32 32091.59 31678.06 28094.27 34174.88 33693.15 33695.80 272
HY-MVS82.50 1886.81 29885.93 30089.47 28593.63 29377.93 28994.02 13891.58 31275.68 31983.64 35593.64 27077.40 28597.42 26871.70 35392.07 34993.05 340
test_f86.65 29987.13 28285.19 34090.28 34986.11 16686.52 33991.66 31069.76 35795.73 12497.21 10169.51 32481.28 38089.15 18094.40 31588.17 366
131486.46 30086.33 29786.87 32791.65 33174.54 32891.94 20994.10 26574.28 32984.78 34887.33 35983.03 23695.00 33378.72 31191.16 35591.06 357
ET-MVSNet_ETH3D86.15 30184.27 31191.79 21593.04 30381.28 23287.17 32286.14 34679.57 29383.65 35488.66 34957.10 36998.18 20987.74 20995.40 29295.90 269
Patchmatch-test86.10 30286.01 29986.38 33390.63 34374.22 33489.57 27786.69 34285.73 22989.81 29592.83 29065.24 34691.04 35977.82 31895.78 28393.88 324
thres20085.85 30385.18 30487.88 31894.44 27572.52 34689.08 29286.21 34588.57 18291.44 26488.40 35264.22 34998.00 22368.35 36495.88 28293.12 337
EPNet_dtu85.63 30484.37 30989.40 28886.30 37674.33 33291.64 22288.26 32984.84 24872.96 38089.85 33371.27 31997.69 25376.60 32797.62 23196.18 257
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_vis1_rt85.58 30584.58 30788.60 30387.97 36786.76 14585.45 34493.59 27366.43 36687.64 32889.20 34679.33 26885.38 37781.59 28189.98 36193.66 329
test250685.42 30684.57 30887.96 31597.81 10266.53 36996.14 5856.35 38789.04 16993.55 20298.10 4042.88 38998.68 16288.09 20199.18 9398.67 99
PatchmatchNetpermissive85.22 30784.64 30686.98 32589.51 35869.83 36190.52 24887.34 33978.87 30387.22 33492.74 29466.91 33496.53 29681.77 27886.88 36794.58 308
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
CVMVSNet85.16 30884.72 30586.48 32992.12 32070.19 35692.32 19488.17 33256.15 37990.64 27895.85 18367.97 33096.69 29488.78 18990.52 35892.56 345
JIA-IIPM85.08 30983.04 31991.19 24287.56 36986.14 16589.40 28484.44 36388.98 17182.20 36397.95 4956.82 37196.15 30976.55 32883.45 37391.30 355
MVS84.98 31084.30 31087.01 32491.03 33877.69 29591.94 20994.16 26459.36 37784.23 35287.50 35785.66 21796.80 29171.79 35193.05 33986.54 370
thisisatest051584.72 31182.99 32089.90 27992.96 30575.33 32484.36 35483.42 36677.37 31188.27 32186.65 36053.94 37698.72 15182.56 27097.40 23995.67 279
dmvs_re84.69 31283.94 31486.95 32692.24 31482.93 21289.51 27987.37 33884.38 25285.37 34285.08 36972.44 31286.59 37468.05 36591.03 35791.33 354
FPMVS84.50 31383.28 31788.16 31396.32 18894.49 1685.76 34185.47 35483.09 26385.20 34494.26 24963.79 35386.58 37563.72 37391.88 35283.40 373
tpm84.38 31484.08 31285.30 33990.47 34663.43 37989.34 28585.63 35277.24 31387.62 32995.03 22361.00 36497.30 27479.26 30891.09 35695.16 290
tpmvs84.22 31583.97 31384.94 34187.09 37365.18 37291.21 23188.35 32882.87 26785.21 34390.96 32465.24 34696.75 29279.60 30685.25 37092.90 342
ADS-MVSNet284.01 31682.20 32589.41 28789.04 36176.37 31587.57 31290.98 31672.71 34184.46 34992.45 29968.08 32896.48 29970.58 36083.97 37195.38 287
mvsany_test183.91 31782.93 32186.84 32886.18 37785.93 16981.11 36775.03 38270.80 35288.57 31794.63 23883.08 23587.38 37280.39 29086.57 36887.21 368
test-LLR83.58 31883.17 31884.79 34389.68 35566.86 36783.08 36084.52 36183.07 26482.85 36084.78 37062.86 35793.49 34782.85 26694.86 30594.03 319
baseline283.38 31981.54 32888.90 29691.38 33472.84 34488.78 29981.22 37178.97 30179.82 37387.56 35561.73 36197.80 24274.30 33990.05 36096.05 262
IB-MVS77.21 1983.11 32081.05 33189.29 29091.15 33775.85 31985.66 34286.00 34879.70 29182.02 36686.61 36148.26 38298.39 18977.84 31692.22 34793.63 330
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
CostFormer83.09 32182.21 32485.73 33589.27 36067.01 36590.35 25586.47 34470.42 35483.52 35793.23 28361.18 36296.85 28977.21 32388.26 36593.34 336
PMMVS83.00 32281.11 33088.66 30283.81 38486.44 15682.24 36485.65 35161.75 37682.07 36485.64 36779.75 26591.59 35775.99 33193.09 33787.94 367
PVSNet76.22 2082.89 32382.37 32384.48 34593.96 28664.38 37778.60 37188.61 32671.50 34584.43 35186.36 36474.27 30694.60 33569.87 36293.69 32894.46 310
tpmrst82.85 32482.93 32182.64 35287.65 36858.99 38290.14 26287.90 33575.54 32183.93 35391.63 31566.79 33795.36 32781.21 28681.54 37793.57 334
test0.0.03 182.48 32581.47 32985.48 33789.70 35473.57 33884.73 34981.64 37083.07 26488.13 32386.61 36162.86 35789.10 37166.24 37090.29 35993.77 326
ADS-MVSNet82.25 32681.55 32784.34 34689.04 36165.30 37187.57 31285.13 36072.71 34184.46 34992.45 29968.08 32892.33 35370.58 36083.97 37195.38 287
DSMNet-mixed82.21 32781.56 32684.16 34789.57 35770.00 36090.65 24577.66 38154.99 38083.30 35897.57 6977.89 28290.50 36266.86 36995.54 28891.97 349
KD-MVS_2432*160082.17 32880.75 33586.42 33182.04 38570.09 35881.75 36590.80 31782.56 27090.37 28389.30 34442.90 38796.11 31174.47 33792.55 34493.06 338
miper_refine_blended82.17 32880.75 33586.42 33182.04 38570.09 35881.75 36590.80 31782.56 27090.37 28389.30 34442.90 38796.11 31174.47 33792.55 34493.06 338
gg-mvs-nofinetune82.10 33081.02 33285.34 33887.46 37171.04 35294.74 11167.56 38496.44 2379.43 37498.99 645.24 38396.15 30967.18 36892.17 34888.85 363
PAPM81.91 33180.11 34187.31 32393.87 28972.32 34884.02 35793.22 28169.47 35976.13 37889.84 33472.15 31497.23 27653.27 37989.02 36292.37 347
tpm281.46 33280.35 33984.80 34289.90 35265.14 37390.44 25085.36 35565.82 37082.05 36592.44 30157.94 36896.69 29470.71 35988.49 36492.56 345
PMMVS281.31 33383.44 31674.92 36290.52 34546.49 38769.19 37685.23 35984.30 25387.95 32594.71 23676.95 29384.36 37964.07 37298.09 20793.89 323
new_pmnet81.22 33481.01 33381.86 35490.92 34170.15 35784.03 35680.25 37570.83 35085.97 34089.78 33867.93 33184.65 37867.44 36791.90 35190.78 358
test-mter81.21 33580.01 34284.79 34389.68 35566.86 36783.08 36084.52 36173.85 33282.85 36084.78 37043.66 38693.49 34782.85 26694.86 30594.03 319
EPMVS81.17 33680.37 33883.58 34985.58 37965.08 37490.31 25771.34 38377.31 31285.80 34191.30 31859.38 36692.70 35279.99 29782.34 37692.96 341
EGC-MVSNET80.97 33775.73 34996.67 4298.85 2494.55 1596.83 2396.60 1802.44 3845.32 38598.25 3592.24 11198.02 22191.85 10599.21 8997.45 202
pmmvs380.83 33878.96 34586.45 33087.23 37277.48 29784.87 34882.31 36863.83 37385.03 34589.50 34249.66 38093.10 34973.12 34695.10 30088.78 365
E-PMN80.72 33980.86 33480.29 35785.11 38068.77 36372.96 37381.97 36987.76 19883.25 35983.01 37462.22 36089.17 37077.15 32494.31 31982.93 374
tpm cat180.61 34079.46 34384.07 34888.78 36365.06 37589.26 28888.23 33062.27 37581.90 36789.66 34162.70 35995.29 33071.72 35280.60 37891.86 352
EMVS80.35 34180.28 34080.54 35684.73 38269.07 36272.54 37580.73 37287.80 19681.66 36881.73 37562.89 35689.84 36575.79 33394.65 31282.71 375
CHOSEN 280x42080.04 34277.97 34886.23 33490.13 35074.53 32972.87 37489.59 32366.38 36776.29 37785.32 36856.96 37095.36 32769.49 36394.72 31088.79 364
dp79.28 34378.62 34681.24 35585.97 37856.45 38386.91 32685.26 35872.97 33981.45 37089.17 34856.01 37395.45 32573.19 34576.68 37991.82 353
TESTMET0.1,179.09 34478.04 34782.25 35387.52 37064.03 37883.08 36080.62 37370.28 35580.16 37283.22 37344.13 38590.56 36179.95 29893.36 33192.15 348
MVS-HIRNet78.83 34580.60 33773.51 36393.07 30147.37 38687.10 32378.00 38068.94 36077.53 37697.26 9471.45 31894.62 33463.28 37488.74 36378.55 378
dmvs_testset78.23 34678.99 34475.94 36191.99 32555.34 38588.86 29678.70 37882.69 26981.64 36979.46 37675.93 30085.74 37648.78 38182.85 37586.76 369
PVSNet_070.34 2174.58 34772.96 35079.47 35890.63 34366.24 37073.26 37283.40 36763.67 37478.02 37578.35 37872.53 31189.59 36756.68 37760.05 38282.57 376
MVEpermissive59.87 2373.86 34872.65 35177.47 36087.00 37574.35 33161.37 37860.93 38667.27 36469.69 38186.49 36381.24 25872.33 38256.45 37883.45 37385.74 371
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method50.44 34948.94 35254.93 36439.68 38812.38 39028.59 37990.09 3216.82 38241.10 38478.41 37754.41 37570.69 38350.12 38051.26 38381.72 377
tmp_tt37.97 35044.33 35318.88 36611.80 38921.54 38963.51 37745.66 3904.23 38351.34 38350.48 38159.08 36722.11 38544.50 38268.35 38113.00 381
cdsmvs_eth3d_5k23.35 35131.13 3540.00 3690.00 3920.00 3930.00 38095.58 2270.00 3870.00 38891.15 32093.43 810.00 3880.00 3860.00 3860.00 384
test1239.49 35212.01 3551.91 3672.87 3901.30 39182.38 3631.34 3921.36 3852.84 3866.56 3842.45 3900.97 3862.73 3845.56 3843.47 382
testmvs9.02 35311.42 3561.81 3682.77 3911.13 39279.44 3701.90 3911.18 3862.65 3876.80 3831.95 3910.87 3872.62 3853.45 3853.44 383
pcd_1.5k_mvsjas7.56 35410.09 3570.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 38790.77 1430.00 3880.00 3860.00 3860.00 384
ab-mvs-re7.56 35410.08 3580.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 38890.69 3290.00 3920.00 3880.00 3860.00 3860.00 384
test_blank0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
uanet_test0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
DCPMVS0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
sosnet-low-res0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
sosnet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
uncertanet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
Regformer0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
uanet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
FOURS199.21 394.68 1298.45 498.81 897.73 698.27 20
MSC_two_6792asdad95.90 6596.54 17189.57 8896.87 16499.41 3894.06 3599.30 7098.72 92
PC_three_145275.31 32495.87 11795.75 19292.93 9896.34 30887.18 21898.68 15198.04 146
No_MVS95.90 6596.54 17189.57 8896.87 16499.41 3894.06 3599.30 7098.72 92
test_one_060198.26 7187.14 13698.18 3894.25 4596.99 6897.36 8595.13 40
eth-test20.00 392
eth-test0.00 392
ZD-MVS97.23 13590.32 7897.54 10984.40 25194.78 16795.79 18792.76 10499.39 4888.72 19198.40 174
RE-MVS-def96.66 1998.07 8395.27 996.37 4498.12 4895.66 3297.00 6697.03 11295.40 2893.49 5298.84 12998.00 151
IU-MVS98.51 5186.66 15096.83 16772.74 34095.83 11893.00 7799.29 7398.64 106
OPU-MVS95.15 9396.84 15489.43 9295.21 9495.66 19593.12 9298.06 21686.28 23698.61 15797.95 159
test_241102_TWO98.10 5191.95 9597.54 3997.25 9595.37 2999.35 5993.29 6599.25 8298.49 117
test_241102_ONE98.51 5186.97 14098.10 5191.85 10197.63 3597.03 11296.48 1098.95 113
9.1494.81 10197.49 12594.11 13698.37 1887.56 20495.38 13796.03 17794.66 5799.08 9390.70 13298.97 116
save fliter97.46 12888.05 12192.04 20497.08 14787.63 202
test_0728_THIRD93.26 6897.40 5097.35 8894.69 5699.34 6293.88 3899.42 5198.89 71
test_0728_SECOND94.88 10098.55 4586.72 14795.20 9698.22 3399.38 5493.44 5899.31 6898.53 114
test072698.51 5186.69 14895.34 8998.18 3891.85 10197.63 3597.37 8295.58 23
GSMVS94.75 304
test_part298.21 7589.41 9396.72 78
sam_mvs166.64 33894.75 304
sam_mvs66.41 339
ambc92.98 17096.88 15183.01 21195.92 6896.38 19396.41 8897.48 7788.26 17597.80 24289.96 15998.93 12198.12 142
MTGPAbinary97.62 102
test_post190.21 2595.85 38665.36 34496.00 31479.61 304
test_post6.07 38565.74 34395.84 317
patchmatchnet-post91.71 31366.22 34197.59 258
GG-mvs-BLEND83.24 35185.06 38171.03 35394.99 10665.55 38574.09 37975.51 37944.57 38494.46 33759.57 37687.54 36684.24 372
MTMP94.82 10954.62 388
gm-plane-assit87.08 37459.33 38171.22 34683.58 37297.20 27773.95 340
test9_res88.16 19998.40 17497.83 173
TEST996.45 17889.46 9090.60 24696.92 15979.09 30090.49 27994.39 24691.31 12998.88 120
test_896.37 18089.14 9790.51 24996.89 16279.37 29590.42 28194.36 24891.20 13498.82 130
agg_prior287.06 22198.36 18397.98 155
agg_prior96.20 19988.89 10396.88 16390.21 28698.78 142
TestCases96.00 5698.02 8992.17 5098.43 1590.48 14295.04 15796.74 13292.54 10897.86 23885.11 24898.98 11297.98 155
test_prior489.91 8290.74 241
test_prior290.21 25989.33 16490.77 27594.81 23090.41 15388.21 19598.55 162
test_prior94.61 11495.95 21887.23 13497.36 12598.68 16297.93 161
旧先验290.00 26768.65 36192.71 23396.52 29785.15 245
新几何290.02 266
新几何193.17 16797.16 13987.29 13294.43 25867.95 36391.29 26694.94 22686.97 19998.23 20481.06 28897.75 22393.98 321
旧先验196.20 19984.17 19394.82 24895.57 20189.57 16597.89 22096.32 251
无先验89.94 26895.75 21770.81 35198.59 17381.17 28794.81 300
原ACMM289.34 285
原ACMM192.87 17896.91 15084.22 19197.01 15176.84 31689.64 29994.46 24488.00 18198.70 15881.53 28298.01 21495.70 278
test22296.95 14685.27 18188.83 29893.61 27265.09 37190.74 27694.85 22984.62 22497.36 24093.91 322
testdata298.03 21880.24 294
segment_acmp92.14 114
testdata91.03 24596.87 15282.01 22194.28 26271.55 34492.46 24195.42 20685.65 21897.38 27382.64 26997.27 24293.70 328
testdata188.96 29488.44 184
test1294.43 12795.95 21886.75 14696.24 19889.76 29789.79 16498.79 13997.95 21797.75 183
plane_prior797.71 11088.68 106
plane_prior697.21 13788.23 11886.93 200
plane_prior597.81 8898.95 11389.26 17698.51 16898.60 110
plane_prior495.59 197
plane_prior388.43 11690.35 14793.31 207
plane_prior294.56 12091.74 112
plane_prior197.38 130
plane_prior88.12 11993.01 16488.98 17198.06 209
n20.00 393
nn0.00 393
door-mid92.13 304
lessismore_v093.87 14698.05 8583.77 19980.32 37497.13 5897.91 5477.49 28499.11 9292.62 8798.08 20898.74 90
LGP-MVS_train96.84 3898.36 6692.13 5298.25 2891.78 10897.07 6197.22 9996.38 1299.28 7192.07 9899.59 2899.11 44
test1196.65 178
door91.26 313
HQP5-MVS84.89 184
HQP-NCC96.36 18291.37 22687.16 20888.81 308
ACMP_Plane96.36 18291.37 22687.16 20888.81 308
BP-MVS86.55 230
HQP4-MVS88.81 30898.61 16998.15 139
HQP3-MVS97.31 12997.73 224
HQP2-MVS84.76 222
NP-MVS96.82 15687.10 13793.40 278
MDTV_nov1_ep13_2view42.48 38888.45 30667.22 36583.56 35666.80 33572.86 34794.06 318
MDTV_nov1_ep1383.88 31589.42 35961.52 38088.74 30187.41 33773.99 33184.96 34794.01 26065.25 34595.53 32078.02 31493.16 335
ACMMP++_ref98.82 135
ACMMP++99.25 82
Test By Simon90.61 149
ITE_SJBPF95.95 5997.34 13293.36 4096.55 18691.93 9794.82 16595.39 21091.99 11697.08 28185.53 24197.96 21697.41 205
DeepMVS_CXcopyleft53.83 36570.38 38764.56 37648.52 38933.01 38165.50 38274.21 38056.19 37246.64 38438.45 38370.07 38050.30 380