This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.43 199.49 199.24 299.95 198.13 299.37 199.57 199.82 199.86 199.85 199.52 199.73 297.58 299.94 199.85 1
mamv498.21 297.86 399.26 198.24 7399.36 196.10 6399.32 298.75 299.58 298.70 1991.78 12899.88 198.60 199.67 2098.54 119
LTVRE_ROB93.87 197.93 398.16 297.26 2798.81 2793.86 3299.07 298.98 797.01 1798.92 798.78 1595.22 4098.61 17296.85 499.77 999.31 28
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
TDRefinement97.68 497.60 597.93 399.02 1295.95 998.61 398.81 1097.41 1197.28 5898.46 3394.62 6498.84 13094.64 3699.53 3998.99 56
UA-Net97.35 597.24 1297.69 598.22 7493.87 3198.42 698.19 4496.95 1895.46 14599.23 493.45 8499.57 1795.34 3199.89 299.63 9
UniMVSNet_ETH3D97.13 697.72 495.35 8499.51 287.38 13497.70 997.54 11998.16 398.94 599.33 297.84 499.08 9690.73 14499.73 1399.59 12
HPM-MVS_fast97.01 796.89 1597.39 2299.12 893.92 2997.16 1598.17 5093.11 7796.48 9197.36 9696.92 699.34 6694.31 4299.38 5998.92 72
SR-MVS-dyc-post96.84 896.60 2797.56 1198.07 8395.27 1096.37 4798.12 5695.66 3797.00 6997.03 12594.85 5899.42 3693.49 6498.84 13398.00 160
mvs_tets96.83 996.71 2197.17 2898.83 2492.51 4996.58 3497.61 11387.57 21198.80 1098.90 996.50 999.59 1696.15 1499.47 4399.40 21
v7n96.82 1097.31 1195.33 8698.54 4786.81 14996.83 2498.07 6596.59 2498.46 2098.43 3592.91 10499.52 2296.25 1399.76 1099.65 8
APD-MVS_3200maxsize96.82 1096.65 2397.32 2697.95 9593.82 3496.31 5398.25 3495.51 3996.99 7197.05 12495.63 2399.39 5293.31 7698.88 12898.75 91
HPM-MVScopyleft96.81 1296.62 2597.36 2498.89 2093.53 3997.51 1198.44 1992.35 9195.95 11796.41 16596.71 899.42 3693.99 4999.36 6199.13 41
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
pmmvs696.80 1397.36 1095.15 9799.12 887.82 12996.68 3197.86 9196.10 3198.14 2799.28 397.94 398.21 21291.38 13399.69 1499.42 19
OurMVSNet-221017-096.80 1396.75 1996.96 3699.03 1191.85 5897.98 898.01 7794.15 5598.93 699.07 588.07 19199.57 1795.86 1699.69 1499.46 18
testf196.77 1596.49 2997.60 999.01 1496.70 496.31 5398.33 2594.96 4297.30 5697.93 5796.05 1697.90 23889.32 18399.23 8698.19 143
APD_test296.77 1596.49 2997.60 999.01 1496.70 496.31 5398.33 2594.96 4297.30 5697.93 5796.05 1697.90 23889.32 18399.23 8698.19 143
COLMAP_ROBcopyleft91.06 596.75 1796.62 2597.13 2998.38 6294.31 1896.79 2798.32 2796.69 2196.86 7697.56 7895.48 2798.77 14790.11 16799.44 5098.31 134
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
anonymousdsp96.74 1896.42 3297.68 798.00 9194.03 2696.97 2197.61 11387.68 20998.45 2198.77 1694.20 7499.50 2496.70 699.40 5799.53 15
DTE-MVSNet96.74 1897.43 694.67 11399.13 684.68 19596.51 3897.94 8998.14 498.67 1598.32 3795.04 4899.69 693.27 7999.82 799.62 10
SR-MVS96.70 2096.42 3297.54 1298.05 8594.69 1296.13 6298.07 6595.17 4196.82 7896.73 14995.09 4799.43 3592.99 9098.71 15298.50 122
PS-CasMVS96.69 2197.43 694.49 12799.13 684.09 20696.61 3397.97 8397.91 698.64 1698.13 4495.24 3899.65 793.39 7499.84 399.72 2
PEN-MVS96.69 2197.39 994.61 11799.16 484.50 19696.54 3598.05 6998.06 598.64 1698.25 4095.01 5199.65 792.95 9199.83 599.68 4
MTAPA96.65 2396.38 3697.47 1698.95 1894.05 2495.88 7497.62 11194.46 5196.29 10096.94 13193.56 8199.37 6094.29 4399.42 5298.99 56
test_djsdf96.62 2496.49 2997.01 3398.55 4591.77 6097.15 1697.37 13088.98 17998.26 2598.86 1093.35 8999.60 1296.41 1099.45 4799.66 6
ACMMPcopyleft96.61 2596.34 3797.43 1998.61 3793.88 3096.95 2298.18 4692.26 9496.33 9696.84 13995.10 4699.40 4993.47 6799.33 6799.02 53
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
Anonymous2023121196.60 2697.13 1395.00 10097.46 13286.35 16597.11 2098.24 3797.58 998.72 1198.97 793.15 9699.15 8793.18 8299.74 1299.50 17
WR-MVS_H96.60 2697.05 1495.24 9299.02 1286.44 16196.78 2898.08 6297.42 1098.48 1997.86 6491.76 13199.63 1094.23 4499.84 399.66 6
jajsoiax96.59 2896.42 3297.12 3098.76 3092.49 5096.44 4497.42 12886.96 22098.71 1398.72 1895.36 3299.56 2095.92 1599.45 4799.32 27
ACMH88.36 1296.59 2897.43 694.07 14198.56 4285.33 18996.33 5098.30 3094.66 4698.72 1198.30 3897.51 598.00 23194.87 3399.59 2998.86 78
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
XVS96.49 3096.18 4597.44 1798.56 4293.99 2796.50 3997.95 8694.58 4794.38 19296.49 16094.56 6699.39 5293.57 6099.05 10698.93 68
ACMH+88.43 1196.48 3196.82 1695.47 8198.54 4789.06 10295.65 8298.61 1496.10 3198.16 2697.52 8396.90 798.62 17190.30 15899.60 2798.72 96
APDe-MVScopyleft96.46 3296.64 2495.93 6297.68 11889.38 9696.90 2398.41 2292.52 8697.43 5097.92 6095.11 4599.50 2494.45 3899.30 7298.92 72
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
ACMMPR96.46 3296.14 4897.41 2198.60 3893.82 3496.30 5797.96 8492.35 9195.57 13896.61 15694.93 5699.41 4293.78 5499.15 9899.00 54
mPP-MVS96.46 3296.05 5497.69 598.62 3594.65 1496.45 4297.74 10492.59 8595.47 14396.68 15294.50 6899.42 3693.10 8599.26 8298.99 56
CP-MVS96.44 3596.08 5297.54 1298.29 6794.62 1596.80 2698.08 6292.67 8495.08 16996.39 17094.77 6099.42 3693.17 8399.44 5098.58 118
ZNCC-MVS96.42 3696.20 4497.07 3198.80 2992.79 4796.08 6598.16 5391.74 11895.34 15296.36 17395.68 2199.44 3294.41 4099.28 8098.97 62
region2R96.41 3796.09 5097.38 2398.62 3593.81 3696.32 5297.96 8492.26 9495.28 15696.57 15895.02 5099.41 4293.63 5899.11 10198.94 66
SteuartSystems-ACMMP96.40 3896.30 3996.71 4198.63 3491.96 5695.70 7998.01 7793.34 7496.64 8696.57 15894.99 5299.36 6193.48 6699.34 6598.82 82
Skip Steuart: Steuart Systems R&D Blog.
HFP-MVS96.39 3996.17 4797.04 3298.51 5093.37 4096.30 5797.98 8092.35 9195.63 13596.47 16195.37 3099.27 7793.78 5499.14 9998.48 125
LPG-MVS_test96.38 4096.23 4296.84 3998.36 6592.13 5395.33 9498.25 3491.78 11497.07 6497.22 11096.38 1299.28 7592.07 11099.59 2999.11 44
nrg03096.32 4196.55 2895.62 7697.83 10288.55 11595.77 7798.29 3392.68 8298.03 2997.91 6195.13 4398.95 11693.85 5299.49 4299.36 24
PGM-MVS96.32 4195.94 5897.43 1998.59 4093.84 3395.33 9498.30 3091.40 12995.76 12796.87 13695.26 3799.45 3092.77 9399.21 9099.00 54
ACMM88.83 996.30 4396.07 5396.97 3598.39 6192.95 4594.74 11698.03 7490.82 14297.15 6196.85 13796.25 1499.00 10893.10 8599.33 6798.95 65
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
GST-MVS96.24 4495.99 5797.00 3498.65 3392.71 4895.69 8198.01 7792.08 9995.74 13096.28 17995.22 4099.42 3693.17 8399.06 10398.88 77
ACMMP_NAP96.21 4596.12 4996.49 4998.90 1991.42 6494.57 12498.03 7490.42 15396.37 9497.35 9995.68 2199.25 7894.44 3999.34 6598.80 85
CP-MVSNet96.19 4696.80 1894.38 13298.99 1683.82 20996.31 5397.53 12197.60 898.34 2297.52 8391.98 12499.63 1093.08 8799.81 899.70 3
MP-MVScopyleft96.14 4795.68 7397.51 1498.81 2794.06 2296.10 6397.78 10292.73 8193.48 21896.72 15094.23 7399.42 3691.99 11299.29 7599.05 51
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
LS3D96.11 4895.83 6796.95 3794.75 28294.20 2097.34 1397.98 8097.31 1295.32 15396.77 14193.08 9999.20 8391.79 11998.16 20797.44 213
MP-MVS-pluss96.08 4995.92 6196.57 4599.06 1091.21 6693.25 16998.32 2787.89 20296.86 7697.38 9295.55 2699.39 5295.47 2499.47 4399.11 44
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
TranMVSNet+NR-MVSNet96.07 5096.26 4195.50 8098.26 7087.69 13193.75 15497.86 9195.96 3697.48 4897.14 11695.33 3499.44 3290.79 14299.76 1099.38 22
PS-MVSNAJss96.01 5196.04 5595.89 6798.82 2588.51 11695.57 8897.88 9088.72 18598.81 998.86 1090.77 15499.60 1295.43 2699.53 3999.57 13
SED-MVS96.00 5296.41 3594.76 10998.51 5086.97 14595.21 9998.10 5991.95 10197.63 3797.25 10696.48 1099.35 6393.29 7799.29 7597.95 168
DVP-MVS++95.93 5396.34 3794.70 11296.54 18186.66 15598.45 498.22 4193.26 7597.54 4297.36 9693.12 9799.38 5893.88 5098.68 15698.04 155
APD_test195.91 5495.42 8497.36 2498.82 2596.62 795.64 8397.64 10993.38 7395.89 12297.23 10893.35 8997.66 26688.20 20998.66 16097.79 187
test_fmvsmconf0.01_n95.90 5596.09 5095.31 8997.30 13989.21 9894.24 13698.76 1286.25 22897.56 4198.66 2095.73 1998.44 19397.35 398.99 11498.27 137
DPE-MVScopyleft95.89 5695.88 6395.92 6497.93 9689.83 8693.46 16398.30 3092.37 8997.75 3496.95 13095.14 4299.51 2391.74 12099.28 8098.41 129
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SF-MVS95.88 5795.88 6395.87 6898.12 7989.65 8895.58 8798.56 1691.84 11096.36 9596.68 15294.37 7299.32 7292.41 10399.05 10698.64 111
3Dnovator+92.74 295.86 5895.77 7096.13 5496.81 16590.79 7496.30 5797.82 9696.13 3094.74 18397.23 10891.33 13899.16 8693.25 8098.30 19398.46 126
DVP-MVScopyleft95.82 5996.18 4594.72 11198.51 5086.69 15395.20 10197.00 16291.85 10797.40 5497.35 9995.58 2499.34 6693.44 7099.31 7098.13 149
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
bld_raw_dy_0_6495.78 6096.81 1792.68 19698.57 4178.77 29598.00 798.53 1797.16 1499.19 498.85 1286.45 22399.72 394.96 3299.61 2699.56 14
CS-MVS95.77 6195.58 7796.37 5196.84 16291.72 6296.73 3099.06 694.23 5392.48 25594.79 24693.56 8199.49 2793.47 6799.05 10697.89 175
SMA-MVScopyleft95.77 6195.54 7896.47 5098.27 6991.19 6795.09 10497.79 10186.48 22497.42 5297.51 8694.47 7199.29 7393.55 6299.29 7598.93 68
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
test_040295.73 6396.22 4394.26 13598.19 7685.77 17993.24 17097.24 14696.88 2097.69 3597.77 6794.12 7599.13 9291.54 12999.29 7597.88 176
ACMP88.15 1395.71 6495.43 8396.54 4698.17 7791.73 6194.24 13698.08 6289.46 16896.61 8896.47 16195.85 1899.12 9390.45 15099.56 3798.77 90
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
XVG-ACMP-BASELINE95.68 6595.34 8896.69 4298.40 6093.04 4294.54 12898.05 6990.45 15296.31 9896.76 14392.91 10498.72 15391.19 13499.42 5298.32 132
DP-MVS95.62 6695.84 6694.97 10197.16 14688.62 11194.54 12897.64 10996.94 1996.58 8997.32 10393.07 10098.72 15390.45 15098.84 13397.57 203
test_fmvsmconf0.1_n95.61 6795.72 7295.26 9096.85 16189.20 9993.51 16198.60 1585.68 24197.42 5298.30 3895.34 3398.39 19496.85 498.98 11598.19 143
OPM-MVS95.61 6795.45 8196.08 5598.49 5791.00 6992.65 18997.33 13890.05 15896.77 8196.85 13795.04 4898.56 17992.77 9399.06 10398.70 100
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
mvsmamba95.61 6795.40 8596.22 5298.44 5989.86 8597.14 1897.45 12791.25 13397.49 4698.14 4283.49 24999.45 3095.52 2299.66 2199.36 24
RPSCF95.58 7094.89 10597.62 897.58 12496.30 895.97 7097.53 12192.42 8793.41 21997.78 6591.21 14397.77 25691.06 13697.06 26498.80 85
iter_conf0595.52 7196.74 2091.88 22497.82 10377.68 30997.26 1498.91 897.14 1599.22 398.48 3187.01 21099.71 495.43 2699.38 5998.25 138
MIMVSNet195.52 7195.45 8195.72 7399.14 589.02 10396.23 6096.87 17493.73 6497.87 3098.49 3090.73 15899.05 10186.43 24699.60 2799.10 47
Anonymous2024052995.50 7395.83 6794.50 12597.33 13885.93 17495.19 10396.77 18296.64 2397.61 4098.05 4893.23 9398.79 14188.60 20699.04 11198.78 87
Vis-MVSNetpermissive95.50 7395.48 8095.56 7998.11 8089.40 9595.35 9298.22 4192.36 9094.11 19798.07 4792.02 12299.44 3293.38 7597.67 24097.85 180
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
EC-MVSNet95.44 7595.62 7594.89 10396.93 15687.69 13196.48 4199.14 593.93 6092.77 24694.52 25693.95 7899.49 2793.62 5999.22 8997.51 208
test_fmvsmconf_n95.43 7695.50 7995.22 9496.48 18889.19 10093.23 17198.36 2485.61 24496.92 7498.02 5295.23 3998.38 19796.69 798.95 12498.09 151
pm-mvs195.43 7695.94 5893.93 14898.38 6285.08 19295.46 9197.12 15591.84 11097.28 5898.46 3395.30 3697.71 26390.17 16599.42 5298.99 56
DeepC-MVS91.39 495.43 7695.33 8995.71 7497.67 11990.17 8193.86 15198.02 7687.35 21396.22 10697.99 5594.48 7099.05 10192.73 9699.68 1797.93 170
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
tt080595.42 7995.93 6093.86 15298.75 3188.47 11797.68 1094.29 27396.48 2595.38 14893.63 28494.89 5797.94 23795.38 2996.92 27295.17 310
XVG-OURS-SEG-HR95.38 8095.00 10396.51 4798.10 8194.07 2192.46 19798.13 5590.69 14593.75 21196.25 18298.03 297.02 30092.08 10995.55 30498.45 127
UniMVSNet_NR-MVSNet95.35 8195.21 9495.76 7197.69 11788.59 11392.26 21197.84 9494.91 4496.80 7995.78 20590.42 16399.41 4291.60 12599.58 3499.29 29
MSP-MVS95.34 8294.63 12097.48 1598.67 3294.05 2496.41 4698.18 4691.26 13195.12 16595.15 22986.60 22299.50 2493.43 7396.81 27698.89 75
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
CS-MVS-test95.32 8395.10 9995.96 5896.86 16090.75 7596.33 5099.20 393.99 5791.03 28893.73 28293.52 8399.55 2191.81 11899.45 4797.58 202
FC-MVSNet-test95.32 8395.88 6393.62 16098.49 5781.77 23695.90 7398.32 2793.93 6097.53 4497.56 7888.48 18499.40 4992.91 9299.83 599.68 4
UniMVSNet (Re)95.32 8395.15 9695.80 7097.79 10788.91 10592.91 18098.07 6593.46 7196.31 9895.97 19590.14 16899.34 6692.11 10799.64 2499.16 38
Gipumacopyleft95.31 8695.80 6993.81 15597.99 9490.91 7196.42 4597.95 8696.69 2191.78 27598.85 1291.77 12995.49 34491.72 12199.08 10295.02 318
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
DU-MVS95.28 8795.12 9895.75 7297.75 10988.59 11392.58 19197.81 9793.99 5796.80 7995.90 19690.10 17199.41 4291.60 12599.58 3499.26 30
NR-MVSNet95.28 8795.28 9295.26 9097.75 10987.21 13895.08 10597.37 13093.92 6297.65 3695.90 19690.10 17199.33 7190.11 16799.66 2199.26 30
TransMVSNet (Re)95.27 8996.04 5592.97 18398.37 6481.92 23595.07 10696.76 18393.97 5997.77 3398.57 2595.72 2097.90 23888.89 20099.23 8699.08 48
SD-MVS95.19 9095.73 7193.55 16396.62 17688.88 10794.67 11898.05 6991.26 13197.25 6096.40 16695.42 2894.36 36492.72 9799.19 9297.40 217
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
VPA-MVSNet95.14 9195.67 7493.58 16297.76 10883.15 22094.58 12397.58 11693.39 7297.05 6798.04 5093.25 9298.51 18589.75 17799.59 2999.08 48
casdiffmvs_mvgpermissive95.10 9295.62 7593.53 16696.25 20783.23 21692.66 18898.19 4493.06 7897.49 4697.15 11594.78 5998.71 15992.27 10698.72 15098.65 106
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_fmvsmvis_n_192095.08 9395.40 8594.13 13996.66 17187.75 13093.44 16598.49 1885.57 24598.27 2397.11 11994.11 7697.75 25996.26 1298.72 15096.89 243
HPM-MVS++copyleft95.02 9494.39 12496.91 3897.88 9993.58 3894.09 14496.99 16491.05 13792.40 26095.22 22891.03 15099.25 7892.11 10798.69 15597.90 173
APD-MVScopyleft95.00 9594.69 11495.93 6297.38 13490.88 7294.59 12197.81 9789.22 17595.46 14596.17 18793.42 8799.34 6689.30 18598.87 13197.56 205
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
PMVScopyleft87.21 1494.97 9695.33 8993.91 14998.97 1797.16 395.54 8995.85 22696.47 2693.40 22197.46 8995.31 3595.47 34586.18 25098.78 14589.11 387
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
TSAR-MVS + MP.94.96 9794.75 11095.57 7898.86 2288.69 10896.37 4796.81 17885.23 25094.75 18297.12 11891.85 12699.40 4993.45 6998.33 19098.62 115
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SixPastTwentyTwo94.91 9895.21 9493.98 14398.52 4983.19 21895.93 7194.84 26094.86 4598.49 1898.74 1781.45 27399.60 1294.69 3599.39 5899.15 39
FIs94.90 9995.35 8793.55 16398.28 6881.76 23795.33 9498.14 5493.05 7997.07 6497.18 11387.65 19899.29 7391.72 12199.69 1499.61 11
AllTest94.88 10094.51 12296.00 5698.02 8992.17 5195.26 9798.43 2090.48 15095.04 17096.74 14792.54 11397.86 24685.11 26398.98 11597.98 164
FMVSNet194.84 10195.13 9793.97 14497.60 12284.29 19995.99 6796.56 19592.38 8897.03 6898.53 2790.12 16998.98 10988.78 20299.16 9798.65 106
ANet_high94.83 10296.28 4090.47 27696.65 17273.16 35394.33 13398.74 1396.39 2898.09 2898.93 893.37 8898.70 16090.38 15399.68 1799.53 15
MVSMamba_PlusPlus94.82 10395.89 6291.62 23697.82 10378.88 28996.52 3697.60 11597.14 1594.23 19598.48 3187.01 21099.71 495.43 2698.80 14296.28 269
3Dnovator92.54 394.80 10494.90 10494.47 12895.47 26087.06 14296.63 3297.28 14491.82 11394.34 19497.41 9090.60 16198.65 16992.47 10298.11 21197.70 195
CPTT-MVS94.74 10594.12 13696.60 4498.15 7893.01 4395.84 7597.66 10889.21 17693.28 22595.46 21888.89 18298.98 10989.80 17498.82 13997.80 186
test_fmvsm_n_192094.72 10694.74 11294.67 11396.30 20288.62 11193.19 17298.07 6585.63 24397.08 6397.35 9990.86 15197.66 26695.70 1798.48 17797.74 193
XVG-OURS94.72 10694.12 13696.50 4898.00 9194.23 1991.48 23898.17 5090.72 14495.30 15496.47 16187.94 19596.98 30191.41 13297.61 24498.30 135
CSCG94.69 10894.75 11094.52 12497.55 12687.87 12795.01 10997.57 11792.68 8296.20 10893.44 29091.92 12598.78 14489.11 19499.24 8596.92 241
v1094.68 10995.27 9392.90 18896.57 17880.15 25594.65 12097.57 11790.68 14697.43 5098.00 5388.18 18899.15 8794.84 3499.55 3899.41 20
v894.65 11095.29 9192.74 19396.65 17279.77 27094.59 12197.17 15091.86 10697.47 4997.93 5788.16 18999.08 9694.32 4199.47 4399.38 22
sasdasda94.59 11194.69 11494.30 13395.60 25587.03 14395.59 8498.24 3791.56 12495.21 16292.04 32394.95 5398.66 16691.45 13097.57 24597.20 228
canonicalmvs94.59 11194.69 11494.30 13395.60 25587.03 14395.59 8498.24 3791.56 12495.21 16292.04 32394.95 5398.66 16691.45 13097.57 24597.20 228
CNVR-MVS94.58 11394.29 12995.46 8296.94 15489.35 9791.81 23296.80 17989.66 16593.90 20995.44 22092.80 10898.72 15392.74 9598.52 17298.32 132
GeoE94.55 11494.68 11794.15 13797.23 14185.11 19194.14 14297.34 13788.71 18695.26 15795.50 21794.65 6399.12 9390.94 14098.40 18098.23 139
EG-PatchMatch MVS94.54 11594.67 11894.14 13897.87 10186.50 15792.00 21996.74 18488.16 19896.93 7397.61 7593.04 10197.90 23891.60 12598.12 21098.03 158
IS-MVSNet94.49 11694.35 12894.92 10298.25 7286.46 16097.13 1994.31 27296.24 2996.28 10296.36 17382.88 25799.35 6388.19 21099.52 4198.96 64
Baseline_NR-MVSNet94.47 11795.09 10092.60 20398.50 5680.82 25192.08 21596.68 18793.82 6396.29 10098.56 2690.10 17197.75 25990.10 16999.66 2199.24 32
MGCFI-Net94.44 11894.67 11893.75 15695.56 25785.47 18695.25 9898.24 3791.53 12695.04 17092.21 31894.94 5598.54 18291.56 12897.66 24197.24 226
SDMVSNet94.43 11995.02 10192.69 19597.93 9682.88 22591.92 22495.99 22393.65 6995.51 14098.63 2294.60 6596.48 31987.57 22499.35 6298.70 100
MM94.41 12094.14 13595.22 9495.84 23887.21 13894.31 13590.92 32994.48 5092.80 24497.52 8385.27 23699.49 2796.58 999.57 3698.97 62
VDD-MVS94.37 12194.37 12694.40 13197.49 12986.07 17293.97 14893.28 29294.49 4996.24 10497.78 6587.99 19498.79 14188.92 19899.14 9998.34 131
EI-MVSNet-Vis-set94.36 12294.28 13094.61 11792.55 32985.98 17392.44 19994.69 26693.70 6596.12 11295.81 20191.24 14198.86 12793.76 5798.22 20298.98 60
EI-MVSNet-UG-set94.35 12394.27 13294.59 12192.46 33285.87 17692.42 20194.69 26693.67 6896.13 11195.84 20091.20 14498.86 12793.78 5498.23 20099.03 52
PHI-MVS94.34 12493.80 14395.95 5995.65 25191.67 6394.82 11497.86 9187.86 20393.04 23794.16 26791.58 13398.78 14490.27 16098.96 12297.41 214
casdiffmvspermissive94.32 12594.80 10892.85 19096.05 22381.44 24292.35 20498.05 6991.53 12695.75 12996.80 14093.35 8998.49 18691.01 13998.32 19298.64 111
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
tfpnnormal94.27 12694.87 10692.48 20797.71 11480.88 25094.55 12795.41 24593.70 6596.67 8597.72 6891.40 13798.18 21687.45 22699.18 9498.36 130
fmvsm_s_conf0.1_n_a94.26 12794.37 12693.95 14797.36 13685.72 18194.15 14095.44 24283.25 27795.51 14098.05 4892.54 11397.19 29195.55 2197.46 25198.94 66
HQP_MVS94.26 12793.93 13995.23 9397.71 11488.12 12294.56 12597.81 9791.74 11893.31 22295.59 21286.93 21498.95 11689.26 18998.51 17498.60 116
baseline94.26 12794.80 10892.64 19896.08 22180.99 24893.69 15798.04 7390.80 14394.89 17796.32 17593.19 9498.48 19091.68 12398.51 17498.43 128
OMC-MVS94.22 13093.69 14995.81 6997.25 14091.27 6592.27 21097.40 12987.10 21994.56 18795.42 22193.74 7998.11 22186.62 24098.85 13298.06 152
LCM-MVSNet-Re94.20 13194.58 12193.04 18095.91 23483.13 22193.79 15399.19 492.00 10098.84 898.04 5093.64 8099.02 10681.28 30198.54 17096.96 240
DeepPCF-MVS90.46 694.20 13193.56 15796.14 5395.96 23092.96 4489.48 29697.46 12585.14 25396.23 10595.42 22193.19 9498.08 22390.37 15498.76 14797.38 220
fmvsm_s_conf0.1_n94.19 13394.41 12393.52 16897.22 14384.37 19793.73 15595.26 24984.45 26595.76 12798.00 5391.85 12697.21 28895.62 1897.82 23298.98 60
KD-MVS_self_test94.10 13494.73 11392.19 21497.66 12079.49 27694.86 11397.12 15589.59 16796.87 7597.65 7290.40 16598.34 20289.08 19599.35 6298.75 91
NCCC94.08 13593.54 15895.70 7596.49 18689.90 8492.39 20396.91 17190.64 14792.33 26694.60 25390.58 16298.96 11490.21 16497.70 23898.23 139
VDDNet94.03 13694.27 13293.31 17498.87 2182.36 23195.51 9091.78 32197.19 1396.32 9798.60 2484.24 24598.75 14887.09 23398.83 13898.81 84
fmvsm_s_conf0.5_n_a94.02 13794.08 13893.84 15396.72 16885.73 18093.65 15995.23 25083.30 27595.13 16497.56 7892.22 11897.17 29295.51 2397.41 25398.64 111
fmvsm_s_conf0.5_n94.00 13894.20 13493.42 17296.69 16984.37 19793.38 16795.13 25284.50 26495.40 14797.55 8291.77 12997.20 28995.59 1997.79 23398.69 103
dcpmvs_293.96 13995.01 10290.82 26897.60 12274.04 34893.68 15898.85 989.80 16397.82 3197.01 12891.14 14899.21 8190.56 14898.59 16599.19 36
sd_testset93.94 14094.39 12492.61 20297.93 9683.24 21593.17 17395.04 25493.65 6995.51 14098.63 2294.49 6995.89 33781.72 29799.35 6298.70 100
MVS_030493.92 14193.68 15094.64 11695.94 23385.83 17894.34 13288.14 34692.98 8091.09 28797.68 6986.73 21999.36 6196.64 899.59 2998.72 96
EPP-MVSNet93.91 14293.68 15094.59 12198.08 8285.55 18597.44 1294.03 27894.22 5494.94 17496.19 18482.07 26899.57 1787.28 23098.89 12698.65 106
Effi-MVS+-dtu93.90 14392.60 18197.77 494.74 28396.67 694.00 14695.41 24589.94 15991.93 27492.13 32190.12 16998.97 11387.68 22397.48 24997.67 198
fmvsm_l_conf0.5_n93.79 14493.81 14193.73 15796.16 21386.26 16792.46 19796.72 18581.69 29895.77 12697.11 11990.83 15397.82 24995.58 2097.99 22297.11 231
IterMVS-LS93.78 14594.28 13092.27 21196.27 20479.21 28391.87 22896.78 18091.77 11696.57 9097.07 12287.15 20798.74 15191.99 11299.03 11298.86 78
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DeepC-MVS_fast89.96 793.73 14693.44 16094.60 12096.14 21687.90 12693.36 16897.14 15285.53 24693.90 20995.45 21991.30 14098.59 17689.51 18098.62 16197.31 223
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MVS_111021_LR93.66 14793.28 16494.80 10796.25 20790.95 7090.21 27395.43 24487.91 20093.74 21394.40 25892.88 10696.38 32490.39 15298.28 19497.07 233
iter_conf05_1193.64 14893.80 14393.13 17995.85 23783.17 21996.52 3697.98 8086.92 22394.23 19596.75 14584.59 24499.15 8792.39 10499.02 11397.08 232
MVS_111021_HR93.63 14993.42 16194.26 13596.65 17286.96 14789.30 30396.23 21188.36 19493.57 21694.60 25393.45 8497.77 25690.23 16398.38 18498.03 158
fmvsm_l_conf0.5_n_a93.59 15093.63 15293.49 17096.10 21985.66 18392.32 20696.57 19481.32 30195.63 13597.14 11690.19 16797.73 26295.37 3098.03 21897.07 233
v114493.50 15193.81 14192.57 20496.28 20379.61 27391.86 23096.96 16586.95 22195.91 12096.32 17587.65 19898.96 11493.51 6398.88 12899.13 41
v119293.49 15293.78 14592.62 20196.16 21379.62 27291.83 23197.22 14886.07 23396.10 11396.38 17187.22 20599.02 10694.14 4698.88 12899.22 33
WR-MVS93.49 15293.72 14792.80 19297.57 12580.03 26190.14 27695.68 23093.70 6596.62 8795.39 22587.21 20699.04 10487.50 22599.64 2499.33 26
V4293.43 15493.58 15592.97 18395.34 26681.22 24592.67 18796.49 20087.25 21596.20 10896.37 17287.32 20498.85 12992.39 10498.21 20398.85 81
K. test v393.37 15593.27 16593.66 15998.05 8582.62 22794.35 13186.62 35996.05 3397.51 4598.85 1276.59 31799.65 793.21 8198.20 20598.73 95
PM-MVS93.33 15692.67 17995.33 8696.58 17794.06 2292.26 21192.18 31285.92 23696.22 10696.61 15685.64 23495.99 33590.35 15598.23 20095.93 285
v124093.29 15793.71 14892.06 22196.01 22877.89 30491.81 23297.37 13085.12 25496.69 8496.40 16686.67 22099.07 10094.51 3798.76 14799.22 33
v2v48293.29 15793.63 15292.29 21096.35 19678.82 29191.77 23496.28 20788.45 19195.70 13496.26 18186.02 22998.90 12093.02 8898.81 14199.14 40
alignmvs93.26 15992.85 17294.50 12595.70 24787.45 13393.45 16495.76 22791.58 12395.25 15992.42 31681.96 27098.72 15391.61 12497.87 23097.33 222
v192192093.26 15993.61 15492.19 21496.04 22778.31 29891.88 22797.24 14685.17 25296.19 11096.19 18486.76 21899.05 10194.18 4598.84 13399.22 33
MSLP-MVS++93.25 16193.88 14091.37 24496.34 19782.81 22693.11 17497.74 10489.37 17194.08 19995.29 22790.40 16596.35 32690.35 15598.25 19894.96 319
GBi-Net93.21 16292.96 16893.97 14495.40 26284.29 19995.99 6796.56 19588.63 18795.10 16698.53 2781.31 27598.98 10986.74 23698.38 18498.65 106
test193.21 16292.96 16893.97 14495.40 26284.29 19995.99 6796.56 19588.63 18795.10 16698.53 2781.31 27598.98 10986.74 23698.38 18498.65 106
v14419293.20 16493.54 15892.16 21896.05 22378.26 29991.95 22097.14 15284.98 25895.96 11696.11 18887.08 20999.04 10493.79 5398.84 13399.17 37
VPNet93.08 16593.76 14691.03 25898.60 3875.83 33491.51 23795.62 23191.84 11095.74 13097.10 12189.31 17998.32 20385.07 26599.06 10398.93 68
UGNet93.08 16592.50 18394.79 10893.87 30687.99 12595.07 10694.26 27590.64 14787.33 35197.67 7186.89 21698.49 18688.10 21398.71 15297.91 172
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
TSAR-MVS + GP.93.07 16792.41 18595.06 9995.82 24090.87 7390.97 24992.61 30788.04 19994.61 18693.79 28188.08 19097.81 25089.41 18298.39 18396.50 259
ETV-MVS92.99 16892.74 17593.72 15895.86 23686.30 16692.33 20597.84 9491.70 12192.81 24386.17 38392.22 11899.19 8488.03 21797.73 23595.66 299
EI-MVSNet92.99 16893.26 16692.19 21492.12 34179.21 28392.32 20694.67 26891.77 11695.24 16095.85 19887.14 20898.49 18691.99 11298.26 19698.86 78
MCST-MVS92.91 17092.51 18294.10 14097.52 12785.72 18191.36 24297.13 15480.33 30992.91 24294.24 26391.23 14298.72 15389.99 17197.93 22797.86 178
h-mvs3392.89 17191.99 19495.58 7796.97 15290.55 7793.94 14994.01 28189.23 17393.95 20696.19 18476.88 31399.14 9091.02 13795.71 30197.04 237
QAPM92.88 17292.77 17393.22 17795.82 24083.31 21396.45 4297.35 13683.91 27093.75 21196.77 14189.25 18098.88 12384.56 27197.02 26697.49 209
v14892.87 17393.29 16291.62 23696.25 20777.72 30791.28 24395.05 25389.69 16495.93 11996.04 19187.34 20398.38 19790.05 17097.99 22298.78 87
Anonymous2024052192.86 17493.57 15690.74 27096.57 17875.50 33694.15 14095.60 23289.38 17095.90 12197.90 6380.39 28297.96 23592.60 10099.68 1798.75 91
Effi-MVS+92.79 17592.74 17592.94 18695.10 27083.30 21494.00 14697.53 12191.36 13089.35 31890.65 34694.01 7798.66 16687.40 22895.30 31396.88 245
FMVSNet292.78 17692.73 17792.95 18595.40 26281.98 23494.18 13995.53 24088.63 18796.05 11497.37 9381.31 27598.81 13787.38 22998.67 15898.06 152
Fast-Effi-MVS+-dtu92.77 17792.16 18894.58 12394.66 28888.25 12092.05 21696.65 18989.62 16690.08 30491.23 33492.56 11298.60 17486.30 24896.27 29096.90 242
LF4IMVS92.72 17892.02 19394.84 10695.65 25191.99 5592.92 17996.60 19185.08 25692.44 25893.62 28586.80 21796.35 32686.81 23598.25 19896.18 274
train_agg92.71 17991.83 19995.35 8496.45 18989.46 9190.60 26096.92 16979.37 31890.49 29594.39 25991.20 14498.88 12388.66 20598.43 17997.72 194
VNet92.67 18092.96 16891.79 22896.27 20480.15 25591.95 22094.98 25692.19 9794.52 18996.07 19087.43 20297.39 28284.83 26798.38 18497.83 182
CDPH-MVS92.67 18091.83 19995.18 9696.94 15488.46 11890.70 25797.07 15877.38 33392.34 26595.08 23492.67 11198.88 12385.74 25398.57 16798.20 142
Anonymous20240521192.58 18292.50 18392.83 19196.55 18083.22 21792.43 20091.64 32394.10 5695.59 13796.64 15481.88 27297.50 27385.12 26298.52 17297.77 189
XXY-MVS92.58 18293.16 16790.84 26797.75 10979.84 26691.87 22896.22 21385.94 23595.53 13997.68 6992.69 11094.48 36083.21 28097.51 24798.21 141
MVS_Test92.57 18493.29 16290.40 27993.53 31275.85 33292.52 19396.96 16588.73 18492.35 26396.70 15190.77 15498.37 20192.53 10195.49 30696.99 239
TAPA-MVS88.58 1092.49 18591.75 20194.73 11096.50 18589.69 8792.91 18097.68 10778.02 33192.79 24594.10 26890.85 15297.96 23584.76 26998.16 20796.54 254
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
patch_mono-292.46 18692.72 17891.71 23296.65 17278.91 28888.85 31397.17 15083.89 27192.45 25796.76 14389.86 17597.09 29690.24 16298.59 16599.12 43
test_fmvs392.42 18792.40 18692.46 20993.80 30987.28 13693.86 15197.05 15976.86 33896.25 10398.66 2082.87 25891.26 38395.44 2596.83 27598.82 82
ab-mvs92.40 18892.62 18091.74 23097.02 15081.65 23895.84 7595.50 24186.95 22192.95 24197.56 7890.70 15997.50 27379.63 32097.43 25296.06 279
CANet92.38 18991.99 19493.52 16893.82 30883.46 21291.14 24597.00 16289.81 16286.47 35594.04 27087.90 19699.21 8189.50 18198.27 19597.90 173
EIA-MVS92.35 19092.03 19293.30 17595.81 24283.97 20792.80 18398.17 5087.71 20789.79 31287.56 37391.17 14799.18 8587.97 21897.27 25796.77 249
DP-MVS Recon92.31 19191.88 19793.60 16197.18 14586.87 14891.10 24797.37 13084.92 25992.08 27194.08 26988.59 18398.20 21383.50 27798.14 20995.73 294
F-COLMAP92.28 19291.06 21795.95 5997.52 12791.90 5793.53 16097.18 14983.98 26988.70 33094.04 27088.41 18698.55 18180.17 31395.99 29597.39 218
OpenMVScopyleft89.45 892.27 19392.13 19192.68 19694.53 29184.10 20595.70 7997.03 16082.44 29191.14 28696.42 16488.47 18598.38 19785.95 25197.47 25095.55 304
hse-mvs292.24 19491.20 21395.38 8396.16 21390.65 7692.52 19392.01 31989.23 17393.95 20692.99 30076.88 31398.69 16291.02 13796.03 29396.81 247
MVSFormer92.18 19592.23 18792.04 22294.74 28380.06 25997.15 1697.37 13088.98 17988.83 32292.79 30577.02 31099.60 1296.41 1096.75 27996.46 261
HQP-MVS92.09 19691.49 20793.88 15096.36 19384.89 19391.37 23997.31 13987.16 21688.81 32493.40 29184.76 24198.60 17486.55 24397.73 23598.14 148
DELS-MVS92.05 19792.16 18891.72 23194.44 29280.13 25787.62 32897.25 14587.34 21492.22 26893.18 29789.54 17898.73 15289.67 17898.20 20596.30 267
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
TinyColmap92.00 19892.76 17489.71 29695.62 25477.02 31690.72 25696.17 21687.70 20895.26 15796.29 17792.54 11396.45 32181.77 29598.77 14695.66 299
CLD-MVS91.82 19991.41 20993.04 18096.37 19183.65 21186.82 34797.29 14284.65 26392.27 26789.67 35592.20 12097.85 24883.95 27599.47 4397.62 200
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
FA-MVS(test-final)91.81 20091.85 19891.68 23494.95 27379.99 26396.00 6693.44 29087.80 20494.02 20497.29 10477.60 30198.45 19288.04 21697.49 24896.61 253
diffmvspermissive91.74 20191.93 19691.15 25693.06 31978.17 30088.77 31697.51 12486.28 22792.42 25993.96 27588.04 19297.46 27690.69 14696.67 28197.82 184
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CNLPA91.72 20291.20 21393.26 17696.17 21291.02 6891.14 24595.55 23990.16 15790.87 28993.56 28886.31 22594.40 36379.92 31997.12 26294.37 337
IterMVS-SCA-FT91.65 20391.55 20391.94 22393.89 30579.22 28287.56 33193.51 28891.53 12695.37 15096.62 15578.65 29298.90 12091.89 11694.95 32197.70 195
PVSNet_Blended_VisFu91.63 20491.20 21392.94 18697.73 11283.95 20892.14 21497.46 12578.85 32792.35 26394.98 23784.16 24699.08 9686.36 24796.77 27895.79 292
AdaColmapbinary91.63 20491.36 21092.47 20895.56 25786.36 16492.24 21396.27 20888.88 18389.90 30992.69 30891.65 13298.32 20377.38 33997.64 24292.72 369
pmmvs-eth3d91.54 20690.73 22593.99 14295.76 24587.86 12890.83 25293.98 28278.23 33094.02 20496.22 18382.62 26496.83 31086.57 24198.33 19097.29 224
API-MVS91.52 20791.61 20291.26 25094.16 29786.26 16794.66 11994.82 26191.17 13592.13 27091.08 33790.03 17497.06 29979.09 32797.35 25690.45 385
xiu_mvs_v1_base_debu91.47 20891.52 20491.33 24695.69 24881.56 23989.92 28396.05 22083.22 27891.26 28290.74 34191.55 13498.82 13289.29 18695.91 29693.62 356
xiu_mvs_v1_base91.47 20891.52 20491.33 24695.69 24881.56 23989.92 28396.05 22083.22 27891.26 28290.74 34191.55 13498.82 13289.29 18695.91 29693.62 356
xiu_mvs_v1_base_debi91.47 20891.52 20491.33 24695.69 24881.56 23989.92 28396.05 22083.22 27891.26 28290.74 34191.55 13498.82 13289.29 18695.91 29693.62 356
LFMVS91.33 21191.16 21691.82 22796.27 20479.36 27895.01 10985.61 37096.04 3494.82 17997.06 12372.03 33598.46 19184.96 26698.70 15497.65 199
c3_l91.32 21291.42 20891.00 26192.29 33476.79 32287.52 33496.42 20385.76 23994.72 18593.89 27882.73 26198.16 21890.93 14198.55 16898.04 155
Fast-Effi-MVS+91.28 21390.86 22092.53 20695.45 26182.53 22889.25 30696.52 19985.00 25789.91 30888.55 36792.94 10298.84 13084.72 27095.44 30896.22 272
MDA-MVSNet-bldmvs91.04 21490.88 21991.55 23994.68 28780.16 25485.49 36892.14 31590.41 15494.93 17595.79 20285.10 23896.93 30585.15 26094.19 34297.57 203
PAPM_NR91.03 21590.81 22291.68 23496.73 16781.10 24793.72 15696.35 20688.19 19688.77 32892.12 32285.09 23997.25 28682.40 29093.90 34796.68 252
MSDG90.82 21690.67 22691.26 25094.16 29783.08 22286.63 35296.19 21490.60 14991.94 27391.89 32589.16 18195.75 33980.96 30694.51 33294.95 320
test20.0390.80 21790.85 22190.63 27395.63 25379.24 28189.81 28792.87 29889.90 16094.39 19196.40 16685.77 23095.27 35273.86 36299.05 10697.39 218
FMVSNet390.78 21890.32 23592.16 21893.03 32179.92 26592.54 19294.95 25786.17 23295.10 16696.01 19369.97 34298.75 14886.74 23698.38 18497.82 184
eth_miper_zixun_eth90.72 21990.61 22791.05 25792.04 34476.84 32186.91 34396.67 18885.21 25194.41 19093.92 27679.53 28698.26 20989.76 17697.02 26698.06 152
X-MVStestdata90.70 22088.45 26697.44 1798.56 4293.99 2796.50 3997.95 8694.58 4794.38 19226.89 40994.56 6699.39 5293.57 6099.05 10698.93 68
BH-untuned90.68 22190.90 21890.05 29095.98 22979.57 27490.04 27994.94 25887.91 20094.07 20093.00 29987.76 19797.78 25579.19 32695.17 31692.80 368
cl____90.65 22290.56 22990.91 26591.85 34976.98 31986.75 34895.36 24785.53 24694.06 20194.89 24077.36 30797.98 23490.27 16098.98 11597.76 190
DIV-MVS_self_test90.65 22290.56 22990.91 26591.85 34976.99 31886.75 34895.36 24785.52 24894.06 20194.89 24077.37 30697.99 23390.28 15998.97 12097.76 190
test_fmvs290.62 22490.40 23391.29 24991.93 34885.46 18792.70 18696.48 20174.44 35394.91 17697.59 7675.52 32190.57 38593.44 7096.56 28397.84 181
114514_t90.51 22589.80 24592.63 20098.00 9182.24 23293.40 16697.29 14265.84 39589.40 31794.80 24586.99 21298.75 14883.88 27698.61 16296.89 243
miper_ehance_all_eth90.48 22690.42 23290.69 27191.62 35676.57 32586.83 34696.18 21583.38 27494.06 20192.66 31082.20 26698.04 22589.79 17597.02 26697.45 211
BH-RMVSNet90.47 22790.44 23190.56 27595.21 26978.65 29689.15 30793.94 28388.21 19592.74 24794.22 26486.38 22497.88 24278.67 32995.39 31095.14 313
Vis-MVSNet (Re-imp)90.42 22890.16 23691.20 25497.66 12077.32 31394.33 13387.66 35291.20 13492.99 23895.13 23175.40 32298.28 20577.86 33299.19 9297.99 163
test_vis3_rt90.40 22990.03 24091.52 24192.58 32788.95 10490.38 26897.72 10673.30 36097.79 3297.51 8677.05 30987.10 39889.03 19694.89 32298.50 122
PLCcopyleft85.34 1590.40 22988.92 25894.85 10596.53 18490.02 8291.58 23696.48 20180.16 31086.14 35792.18 31985.73 23198.25 21076.87 34294.61 33196.30 267
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
test111190.39 23190.61 22789.74 29598.04 8871.50 36495.59 8479.72 39989.41 16995.94 11898.14 4270.79 33998.81 13788.52 20799.32 6998.90 74
testgi90.38 23291.34 21187.50 33497.49 12971.54 36389.43 29895.16 25188.38 19394.54 18894.68 25092.88 10693.09 37571.60 37597.85 23197.88 176
mvs_anonymous90.37 23391.30 21287.58 33392.17 34068.00 37889.84 28694.73 26583.82 27293.22 23197.40 9187.54 20097.40 28187.94 21995.05 31997.34 221
PVSNet_BlendedMVS90.35 23489.96 24191.54 24094.81 27878.80 29390.14 27696.93 16779.43 31788.68 33195.06 23586.27 22698.15 21980.27 30998.04 21797.68 197
UnsupCasMVSNet_eth90.33 23590.34 23490.28 28194.64 28980.24 25389.69 29195.88 22485.77 23893.94 20895.69 20981.99 26992.98 37684.21 27391.30 37897.62 200
MAR-MVS90.32 23688.87 26194.66 11594.82 27791.85 5894.22 13894.75 26480.91 30487.52 34988.07 37186.63 22197.87 24576.67 34396.21 29194.25 340
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
RPMNet90.31 23790.14 23990.81 26991.01 36478.93 28592.52 19398.12 5691.91 10489.10 31996.89 13568.84 34499.41 4290.17 16592.70 36794.08 341
IterMVS90.18 23890.16 23690.21 28593.15 31775.98 33187.56 33192.97 29786.43 22694.09 19896.40 16678.32 29697.43 27887.87 22094.69 32997.23 227
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
SSC-MVS90.16 23992.96 16881.78 37897.88 9948.48 41090.75 25487.69 35196.02 3596.70 8397.63 7485.60 23597.80 25185.73 25498.60 16499.06 50
TAMVS90.16 23989.05 25493.49 17096.49 18686.37 16390.34 27092.55 30880.84 30792.99 23894.57 25581.94 27198.20 21373.51 36398.21 20395.90 288
ECVR-MVScopyleft90.12 24190.16 23690.00 29197.81 10572.68 35895.76 7878.54 40289.04 17795.36 15198.10 4570.51 34098.64 17087.10 23299.18 9498.67 104
test_yl90.11 24289.73 24891.26 25094.09 30079.82 26790.44 26492.65 30490.90 13893.19 23293.30 29373.90 32698.03 22682.23 29196.87 27395.93 285
DCV-MVSNet90.11 24289.73 24891.26 25094.09 30079.82 26790.44 26492.65 30490.90 13893.19 23293.30 29373.90 32698.03 22682.23 29196.87 27395.93 285
Patchmtry90.11 24289.92 24290.66 27290.35 37377.00 31792.96 17892.81 29990.25 15694.74 18396.93 13267.11 35197.52 27285.17 25898.98 11597.46 210
MVP-Stereo90.07 24588.92 25893.54 16596.31 20086.49 15890.93 25095.59 23679.80 31191.48 27895.59 21280.79 27997.39 28278.57 33091.19 37996.76 250
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
AUN-MVS90.05 24688.30 27095.32 8896.09 22090.52 7892.42 20192.05 31882.08 29588.45 33492.86 30265.76 36198.69 16288.91 19996.07 29296.75 251
CL-MVSNet_self_test90.04 24789.90 24390.47 27695.24 26877.81 30586.60 35492.62 30685.64 24293.25 22993.92 27683.84 24796.06 33379.93 31798.03 21897.53 207
D2MVS89.93 24889.60 25090.92 26394.03 30278.40 29788.69 31894.85 25978.96 32593.08 23495.09 23374.57 32496.94 30388.19 21098.96 12297.41 214
miper_lstm_enhance89.90 24989.80 24590.19 28791.37 36077.50 31083.82 38495.00 25584.84 26193.05 23694.96 23876.53 31895.20 35389.96 17298.67 15897.86 178
CANet_DTU89.85 25089.17 25291.87 22592.20 33880.02 26290.79 25395.87 22586.02 23482.53 38691.77 32780.01 28398.57 17885.66 25597.70 23897.01 238
tttt051789.81 25188.90 26092.55 20597.00 15179.73 27195.03 10883.65 38389.88 16195.30 15494.79 24653.64 39599.39 5291.99 11298.79 14498.54 119
EPNet89.80 25288.25 27494.45 12983.91 40886.18 16993.87 15087.07 35791.16 13680.64 39694.72 24878.83 29098.89 12285.17 25898.89 12698.28 136
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CDS-MVSNet89.55 25388.22 27793.53 16695.37 26586.49 15889.26 30493.59 28579.76 31391.15 28592.31 31777.12 30898.38 19777.51 33797.92 22895.71 295
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MG-MVS89.54 25489.80 24588.76 31294.88 27472.47 36089.60 29292.44 31085.82 23789.48 31695.98 19482.85 25997.74 26181.87 29495.27 31496.08 278
OpenMVS_ROBcopyleft85.12 1689.52 25589.05 25490.92 26394.58 29081.21 24691.10 24793.41 29177.03 33793.41 21993.99 27483.23 25397.80 25179.93 31794.80 32693.74 352
test_vis1_n_192089.45 25689.85 24488.28 32393.59 31176.71 32390.67 25897.78 10279.67 31590.30 30196.11 18876.62 31692.17 37990.31 15793.57 35295.96 283
WB-MVS89.44 25792.15 19081.32 37997.73 11248.22 41189.73 28987.98 34995.24 4096.05 11496.99 12985.18 23796.95 30282.45 28997.97 22498.78 87
DPM-MVS89.35 25888.40 26792.18 21796.13 21884.20 20386.96 34296.15 21775.40 34787.36 35091.55 33283.30 25298.01 23082.17 29396.62 28294.32 339
MVSTER89.32 25988.75 26291.03 25890.10 37676.62 32490.85 25194.67 26882.27 29295.24 16095.79 20261.09 38298.49 18690.49 14998.26 19697.97 167
PatchMatch-RL89.18 26088.02 28292.64 19895.90 23592.87 4688.67 32091.06 32680.34 30890.03 30691.67 32983.34 25194.42 36276.35 34794.84 32590.64 384
jason89.17 26188.32 26991.70 23395.73 24680.07 25888.10 32493.22 29371.98 36890.09 30392.79 30578.53 29598.56 17987.43 22797.06 26496.46 261
jason: jason.
PCF-MVS84.52 1789.12 26287.71 28593.34 17396.06 22285.84 17786.58 35597.31 13968.46 38893.61 21593.89 27887.51 20198.52 18467.85 38898.11 21195.66 299
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
mvsany_test389.11 26388.21 27891.83 22691.30 36190.25 8088.09 32578.76 40076.37 34196.43 9298.39 3683.79 24890.43 38886.57 24194.20 34094.80 326
FE-MVS89.06 26488.29 27191.36 24594.78 28079.57 27496.77 2990.99 32784.87 26092.96 24096.29 17760.69 38498.80 14080.18 31297.11 26395.71 295
cl2289.02 26588.50 26590.59 27489.76 37876.45 32686.62 35394.03 27882.98 28492.65 24992.49 31172.05 33497.53 27188.93 19797.02 26697.78 188
USDC89.02 26589.08 25388.84 31195.07 27174.50 34388.97 30996.39 20473.21 36193.27 22696.28 17982.16 26796.39 32377.55 33698.80 14295.62 302
test_vis1_n89.01 26789.01 25689.03 30792.57 32882.46 23092.62 19096.06 21873.02 36390.40 29895.77 20674.86 32389.68 39190.78 14394.98 32094.95 320
xiu_mvs_v2_base89.00 26889.19 25188.46 32194.86 27674.63 34086.97 34195.60 23280.88 30587.83 34388.62 36691.04 14998.81 13782.51 28894.38 33491.93 375
new-patchmatchnet88.97 26990.79 22383.50 37394.28 29655.83 40885.34 37093.56 28786.18 23195.47 14395.73 20883.10 25496.51 31885.40 25798.06 21598.16 146
pmmvs488.95 27087.70 28692.70 19494.30 29585.60 18487.22 33792.16 31474.62 35289.75 31494.19 26577.97 29996.41 32282.71 28496.36 28896.09 277
N_pmnet88.90 27187.25 29393.83 15494.40 29493.81 3684.73 37487.09 35679.36 32093.26 22792.43 31579.29 28891.68 38177.50 33897.22 25996.00 281
PS-MVSNAJ88.86 27288.99 25788.48 32094.88 27474.71 33886.69 35095.60 23280.88 30587.83 34387.37 37690.77 15498.82 13282.52 28794.37 33591.93 375
Patchmatch-RL test88.81 27388.52 26489.69 29795.33 26779.94 26486.22 36092.71 30378.46 32895.80 12594.18 26666.25 35995.33 35089.22 19198.53 17193.78 350
Anonymous2023120688.77 27488.29 27190.20 28696.31 20078.81 29289.56 29493.49 28974.26 35592.38 26195.58 21582.21 26595.43 34772.07 37198.75 14996.34 265
PVSNet_Blended88.74 27588.16 28090.46 27894.81 27878.80 29386.64 35196.93 16774.67 35188.68 33189.18 36286.27 22698.15 21980.27 30996.00 29494.44 336
test_fmvs1_n88.73 27688.38 26889.76 29492.06 34382.53 22892.30 20996.59 19371.14 37392.58 25295.41 22468.55 34589.57 39391.12 13595.66 30297.18 230
thisisatest053088.69 27787.52 28892.20 21396.33 19879.36 27892.81 18284.01 38286.44 22593.67 21492.68 30953.62 39699.25 7889.65 17998.45 17898.00 160
ppachtmachnet_test88.61 27888.64 26388.50 31991.76 35170.99 36784.59 37792.98 29679.30 32292.38 26193.53 28979.57 28597.45 27786.50 24597.17 26197.07 233
UnsupCasMVSNet_bld88.50 27988.03 28189.90 29295.52 25978.88 28987.39 33594.02 28079.32 32193.06 23594.02 27280.72 28094.27 36575.16 35493.08 36396.54 254
miper_enhance_ethall88.42 28087.87 28390.07 28888.67 39075.52 33585.10 37195.59 23675.68 34392.49 25489.45 35878.96 28997.88 24287.86 22197.02 26696.81 247
1112_ss88.42 28087.41 28991.45 24296.69 16980.99 24889.72 29096.72 18573.37 35987.00 35390.69 34477.38 30598.20 21381.38 30093.72 35095.15 312
lupinMVS88.34 28287.31 29091.45 24294.74 28380.06 25987.23 33692.27 31171.10 37488.83 32291.15 33577.02 31098.53 18386.67 23996.75 27995.76 293
test_cas_vis1_n_192088.25 28388.27 27388.20 32592.19 33978.92 28789.45 29795.44 24275.29 35093.23 23095.65 21171.58 33690.23 38988.05 21593.55 35495.44 306
YYNet188.17 28488.24 27587.93 32992.21 33773.62 35080.75 39388.77 33882.51 29094.99 17395.11 23282.70 26293.70 36983.33 27893.83 34896.48 260
MDA-MVSNet_test_wron88.16 28588.23 27687.93 32992.22 33673.71 34980.71 39488.84 33782.52 28994.88 17895.14 23082.70 26293.61 37083.28 27993.80 34996.46 261
MS-PatchMatch88.05 28687.75 28488.95 30893.28 31477.93 30287.88 32792.49 30975.42 34692.57 25393.59 28780.44 28194.24 36781.28 30192.75 36694.69 332
CR-MVSNet87.89 28787.12 29890.22 28491.01 36478.93 28592.52 19392.81 29973.08 36289.10 31996.93 13267.11 35197.64 26888.80 20192.70 36794.08 341
pmmvs587.87 28887.14 29690.07 28893.26 31676.97 32088.89 31192.18 31273.71 35888.36 33593.89 27876.86 31596.73 31380.32 30896.81 27696.51 256
wuyk23d87.83 28990.79 22378.96 38490.46 37288.63 11092.72 18490.67 33291.65 12298.68 1497.64 7396.06 1577.53 40659.84 40099.41 5670.73 404
FMVSNet587.82 29086.56 30791.62 23692.31 33379.81 26993.49 16294.81 26383.26 27691.36 28096.93 13252.77 39797.49 27576.07 34998.03 21897.55 206
GA-MVS87.70 29186.82 30290.31 28093.27 31577.22 31584.72 37692.79 30185.11 25589.82 31090.07 34766.80 35497.76 25884.56 27194.27 33895.96 283
TR-MVS87.70 29187.17 29589.27 30494.11 29979.26 28088.69 31891.86 32081.94 29690.69 29389.79 35282.82 26097.42 27972.65 36991.98 37591.14 381
thres600view787.66 29387.10 29989.36 30296.05 22373.17 35292.72 18485.31 37391.89 10593.29 22490.97 33863.42 37398.39 19473.23 36596.99 27196.51 256
PAPR87.65 29486.77 30490.27 28292.85 32577.38 31288.56 32196.23 21176.82 34084.98 36689.75 35486.08 22897.16 29472.33 37093.35 35696.26 271
baseline187.62 29587.31 29088.54 31794.71 28674.27 34693.10 17588.20 34486.20 23092.18 26993.04 29873.21 32995.52 34279.32 32485.82 39495.83 290
test_fmvs187.59 29687.27 29288.54 31788.32 39181.26 24490.43 26795.72 22970.55 37991.70 27694.63 25168.13 34689.42 39490.59 14795.34 31294.94 322
our_test_387.55 29787.59 28787.44 33591.76 35170.48 36883.83 38390.55 33379.79 31292.06 27292.17 32078.63 29495.63 34084.77 26894.73 32796.22 272
PatchT87.51 29888.17 27985.55 35590.64 36766.91 38292.02 21886.09 36392.20 9689.05 32197.16 11464.15 36996.37 32589.21 19292.98 36593.37 360
Test_1112_low_res87.50 29986.58 30690.25 28396.80 16677.75 30687.53 33396.25 20969.73 38486.47 35593.61 28675.67 32097.88 24279.95 31593.20 35995.11 316
SCA87.43 30087.21 29488.10 32792.01 34571.98 36289.43 29888.11 34782.26 29388.71 32992.83 30378.65 29297.59 26979.61 32193.30 35794.75 329
EU-MVSNet87.39 30186.71 30589.44 29993.40 31376.11 32994.93 11290.00 33557.17 40495.71 13397.37 9364.77 36797.68 26592.67 9894.37 33594.52 334
thres100view90087.35 30286.89 30188.72 31396.14 21673.09 35493.00 17785.31 37392.13 9893.26 22790.96 33963.42 37398.28 20571.27 37796.54 28494.79 327
CMPMVSbinary68.83 2287.28 30385.67 31792.09 22088.77 38985.42 18890.31 27194.38 27170.02 38288.00 34093.30 29373.78 32894.03 36875.96 35196.54 28496.83 246
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
sss87.23 30486.82 30288.46 32193.96 30377.94 30186.84 34592.78 30277.59 33287.61 34891.83 32678.75 29191.92 38077.84 33394.20 34095.52 305
BH-w/o87.21 30587.02 30087.79 33294.77 28177.27 31487.90 32693.21 29581.74 29789.99 30788.39 36983.47 25096.93 30571.29 37692.43 37189.15 386
thres40087.20 30686.52 30989.24 30695.77 24372.94 35591.89 22586.00 36490.84 14092.61 25089.80 35063.93 37098.28 20571.27 37796.54 28496.51 256
CHOSEN 1792x268887.19 30785.92 31691.00 26197.13 14879.41 27784.51 37895.60 23264.14 39890.07 30594.81 24378.26 29797.14 29573.34 36495.38 31196.46 261
HyFIR lowres test87.19 30785.51 31892.24 21297.12 14980.51 25285.03 37296.06 21866.11 39491.66 27792.98 30170.12 34199.14 9075.29 35395.23 31597.07 233
MIMVSNet87.13 30986.54 30888.89 31096.05 22376.11 32994.39 13088.51 34081.37 30088.27 33796.75 14572.38 33295.52 34265.71 39395.47 30795.03 317
tfpn200view987.05 31086.52 30988.67 31495.77 24372.94 35591.89 22586.00 36490.84 14092.61 25089.80 35063.93 37098.28 20571.27 37796.54 28494.79 327
cascas87.02 31186.28 31389.25 30591.56 35876.45 32684.33 38096.78 18071.01 37586.89 35485.91 38481.35 27496.94 30383.09 28195.60 30394.35 338
WTY-MVS86.93 31286.50 31188.24 32494.96 27274.64 33987.19 33892.07 31778.29 32988.32 33691.59 33178.06 29894.27 36574.88 35593.15 36195.80 291
HY-MVS82.50 1886.81 31385.93 31589.47 29893.63 31077.93 30294.02 14591.58 32475.68 34383.64 37793.64 28377.40 30497.42 27971.70 37492.07 37493.05 365
test_f86.65 31487.13 29785.19 35990.28 37486.11 17186.52 35691.66 32269.76 38395.73 13297.21 11269.51 34381.28 40589.15 19394.40 33388.17 391
131486.46 31586.33 31286.87 34291.65 35574.54 34191.94 22294.10 27774.28 35484.78 36887.33 37783.03 25695.00 35478.72 32891.16 38091.06 382
ET-MVSNet_ETH3D86.15 31684.27 32791.79 22893.04 32081.28 24387.17 33986.14 36279.57 31683.65 37688.66 36457.10 38898.18 21687.74 22295.40 30995.90 288
Patchmatch-test86.10 31786.01 31486.38 35090.63 36874.22 34789.57 29386.69 35885.73 24089.81 31192.83 30365.24 36591.04 38477.82 33595.78 30093.88 349
thres20085.85 31885.18 31987.88 33194.44 29272.52 35989.08 30886.21 36188.57 19091.44 27988.40 36864.22 36898.00 23168.35 38695.88 29993.12 362
EPNet_dtu85.63 31984.37 32589.40 30186.30 40174.33 34591.64 23588.26 34284.84 26172.96 40589.85 34871.27 33897.69 26476.60 34497.62 24396.18 274
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_vis1_rt85.58 32084.58 32388.60 31687.97 39286.76 15085.45 36993.59 28566.43 39287.64 34689.20 36179.33 28785.38 40281.59 29889.98 38693.66 354
test250685.42 32184.57 32487.96 32897.81 10566.53 38596.14 6156.35 41289.04 17793.55 21798.10 4542.88 41098.68 16488.09 21499.18 9498.67 104
PatchmatchNetpermissive85.22 32284.64 32286.98 33989.51 38369.83 37490.52 26287.34 35578.87 32687.22 35292.74 30766.91 35396.53 31681.77 29586.88 39294.58 333
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
CVMVSNet85.16 32384.72 32186.48 34692.12 34170.19 36992.32 20688.17 34556.15 40590.64 29495.85 19867.97 34996.69 31488.78 20290.52 38392.56 370
JIA-IIPM85.08 32483.04 33691.19 25587.56 39486.14 17089.40 30084.44 38188.98 17982.20 38797.95 5656.82 39096.15 32976.55 34683.45 39891.30 380
MVS84.98 32584.30 32687.01 33891.03 36377.69 30891.94 22294.16 27659.36 40384.23 37387.50 37585.66 23296.80 31171.79 37293.05 36486.54 395
Syy-MVS84.81 32684.93 32084.42 36691.71 35363.36 40085.89 36381.49 39081.03 30285.13 36381.64 39977.44 30395.00 35485.94 25294.12 34394.91 323
thisisatest051584.72 32782.99 33789.90 29292.96 32375.33 33784.36 37983.42 38477.37 33488.27 33786.65 37853.94 39498.72 15382.56 28697.40 25495.67 298
dmvs_re84.69 32883.94 33086.95 34092.24 33582.93 22489.51 29587.37 35484.38 26785.37 36085.08 39072.44 33186.59 39968.05 38791.03 38291.33 379
FPMVS84.50 32983.28 33488.16 32696.32 19994.49 1785.76 36685.47 37183.09 28185.20 36294.26 26263.79 37286.58 40063.72 39691.88 37783.40 398
tpm84.38 33084.08 32885.30 35890.47 37163.43 39989.34 30185.63 36977.24 33687.62 34795.03 23661.00 38397.30 28579.26 32591.09 38195.16 311
tpmvs84.22 33183.97 32984.94 36187.09 39865.18 39291.21 24488.35 34182.87 28585.21 36190.96 33965.24 36596.75 31279.60 32385.25 39592.90 367
WB-MVSnew84.20 33283.89 33185.16 36091.62 35666.15 38988.44 32381.00 39376.23 34287.98 34187.77 37284.98 24093.35 37362.85 39894.10 34595.98 282
ADS-MVSNet284.01 33382.20 34489.41 30089.04 38676.37 32887.57 32990.98 32872.71 36684.46 36992.45 31268.08 34796.48 31970.58 38283.97 39695.38 307
mvsany_test183.91 33482.93 33886.84 34386.18 40285.93 17481.11 39275.03 40770.80 37888.57 33394.63 25183.08 25587.38 39780.39 30786.57 39387.21 393
testing383.66 33582.52 34087.08 33795.84 23865.84 39089.80 28877.17 40688.17 19790.84 29088.63 36530.95 41498.11 22184.05 27497.19 26097.28 225
test-LLR83.58 33683.17 33584.79 36389.68 38066.86 38383.08 38584.52 37983.07 28282.85 38384.78 39162.86 37693.49 37182.85 28294.86 32394.03 344
testing9183.56 33782.45 34186.91 34192.92 32467.29 37986.33 35888.07 34886.22 22984.26 37285.76 38548.15 40097.17 29276.27 34894.08 34696.27 270
baseline283.38 33881.54 34888.90 30991.38 35972.84 35788.78 31581.22 39278.97 32479.82 39887.56 37361.73 38097.80 25174.30 35990.05 38596.05 280
IB-MVS77.21 1983.11 33981.05 35189.29 30391.15 36275.85 33285.66 36786.00 36479.70 31482.02 39086.61 37948.26 39998.39 19477.84 33392.22 37293.63 355
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
CostFormer83.09 34082.21 34385.73 35389.27 38567.01 38190.35 26986.47 36070.42 38083.52 37993.23 29661.18 38196.85 30977.21 34088.26 39093.34 361
PMMVS83.00 34181.11 35088.66 31583.81 40986.44 16182.24 38985.65 36861.75 40282.07 38885.64 38779.75 28491.59 38275.99 35093.09 36287.94 392
testing9982.94 34281.72 34586.59 34492.55 32966.53 38586.08 36285.70 36785.47 24983.95 37485.70 38645.87 40197.07 29876.58 34593.56 35396.17 276
PVSNet76.22 2082.89 34382.37 34284.48 36593.96 30364.38 39778.60 39688.61 33971.50 37184.43 37186.36 38274.27 32594.60 35969.87 38493.69 35194.46 335
tpmrst82.85 34482.93 33882.64 37587.65 39358.99 40690.14 27687.90 35075.54 34583.93 37591.63 33066.79 35695.36 34881.21 30381.54 40293.57 359
test0.0.03 182.48 34581.47 34985.48 35689.70 37973.57 35184.73 37481.64 38983.07 28288.13 33986.61 37962.86 37689.10 39666.24 39290.29 38493.77 351
ADS-MVSNet82.25 34681.55 34784.34 36789.04 38665.30 39187.57 32985.13 37772.71 36684.46 36992.45 31268.08 34792.33 37870.58 38283.97 39695.38 307
DSMNet-mixed82.21 34781.56 34684.16 36889.57 38270.00 37390.65 25977.66 40454.99 40683.30 38197.57 7777.89 30090.50 38766.86 39195.54 30591.97 374
KD-MVS_2432*160082.17 34880.75 35586.42 34882.04 41070.09 37181.75 39090.80 33082.56 28790.37 29989.30 35942.90 40896.11 33174.47 35792.55 36993.06 363
miper_refine_blended82.17 34880.75 35586.42 34882.04 41070.09 37181.75 39090.80 33082.56 28790.37 29989.30 35942.90 40896.11 33174.47 35792.55 36993.06 363
gg-mvs-nofinetune82.10 35081.02 35285.34 35787.46 39671.04 36594.74 11667.56 40996.44 2779.43 39998.99 645.24 40296.15 32967.18 39092.17 37388.85 388
testing1181.98 35180.52 35886.38 35092.69 32667.13 38085.79 36584.80 37882.16 29481.19 39585.41 38845.24 40296.88 30874.14 36093.24 35895.14 313
PAPM81.91 35280.11 36287.31 33693.87 30672.32 36184.02 38293.22 29369.47 38576.13 40389.84 34972.15 33397.23 28753.27 40589.02 38792.37 372
tpm281.46 35380.35 36084.80 36289.90 37765.14 39390.44 26485.36 37265.82 39682.05 38992.44 31457.94 38796.69 31470.71 38188.49 38992.56 370
PMMVS281.31 35483.44 33374.92 38790.52 37046.49 41369.19 40385.23 37684.30 26887.95 34294.71 24976.95 31284.36 40464.07 39598.09 21393.89 348
new_pmnet81.22 35581.01 35381.86 37790.92 36670.15 37084.03 38180.25 39870.83 37685.97 35889.78 35367.93 35084.65 40367.44 38991.90 37690.78 383
test-mter81.21 35680.01 36384.79 36389.68 38066.86 38383.08 38584.52 37973.85 35782.85 38384.78 39143.66 40793.49 37182.85 28294.86 32394.03 344
EPMVS81.17 35780.37 35983.58 37285.58 40465.08 39490.31 27171.34 40877.31 33585.80 35991.30 33359.38 38592.70 37779.99 31482.34 40192.96 366
EGC-MVSNET80.97 35875.73 37496.67 4398.85 2394.55 1696.83 2496.60 1912.44 4115.32 41298.25 4092.24 11798.02 22991.85 11799.21 9097.45 211
pmmvs380.83 35978.96 36786.45 34787.23 39777.48 31184.87 37382.31 38763.83 39985.03 36589.50 35749.66 39893.10 37473.12 36795.10 31788.78 390
E-PMN80.72 36080.86 35480.29 38285.11 40568.77 37672.96 40081.97 38887.76 20683.25 38283.01 39762.22 37989.17 39577.15 34194.31 33782.93 399
tpm cat180.61 36179.46 36484.07 36988.78 38865.06 39589.26 30488.23 34362.27 40181.90 39189.66 35662.70 37895.29 35171.72 37380.60 40391.86 377
testing22280.54 36278.53 36986.58 34592.54 33168.60 37786.24 35982.72 38683.78 27382.68 38584.24 39339.25 41295.94 33660.25 39995.09 31895.20 309
EMVS80.35 36380.28 36180.54 38184.73 40769.07 37572.54 40280.73 39587.80 20481.66 39281.73 39862.89 37589.84 39075.79 35294.65 33082.71 400
UWE-MVS80.29 36479.10 36583.87 37091.97 34759.56 40486.50 35777.43 40575.40 34787.79 34588.10 37044.08 40696.90 30764.23 39496.36 28895.14 313
CHOSEN 280x42080.04 36577.97 37286.23 35290.13 37574.53 34272.87 40189.59 33666.38 39376.29 40285.32 38956.96 38995.36 34869.49 38594.72 32888.79 389
ETVMVS79.85 36677.94 37385.59 35492.97 32266.20 38886.13 36180.99 39481.41 29983.52 37983.89 39441.81 41194.98 35756.47 40394.25 33995.61 303
myMVS_eth3d79.62 36778.26 37083.72 37191.71 35361.25 40285.89 36381.49 39081.03 30285.13 36381.64 39932.12 41395.00 35471.17 38094.12 34394.91 323
dp79.28 36878.62 36881.24 38085.97 40356.45 40786.91 34385.26 37572.97 36481.45 39489.17 36356.01 39295.45 34673.19 36676.68 40491.82 378
TESTMET0.1,179.09 36978.04 37182.25 37687.52 39564.03 39883.08 38580.62 39670.28 38180.16 39783.22 39644.13 40590.56 38679.95 31593.36 35592.15 373
MVS-HIRNet78.83 37080.60 35773.51 38893.07 31847.37 41287.10 34078.00 40368.94 38677.53 40197.26 10571.45 33794.62 35863.28 39788.74 38878.55 403
dmvs_testset78.23 37178.99 36675.94 38691.99 34655.34 40988.86 31278.70 40182.69 28681.64 39379.46 40175.93 31985.74 40148.78 40782.85 40086.76 394
PVSNet_070.34 2174.58 37272.96 37579.47 38390.63 36866.24 38773.26 39983.40 38563.67 40078.02 40078.35 40372.53 33089.59 39256.68 40260.05 40782.57 401
MVEpermissive59.87 2373.86 37372.65 37677.47 38587.00 40074.35 34461.37 40560.93 41167.27 39069.69 40686.49 38181.24 27872.33 40856.45 40483.45 39885.74 396
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
dongtai53.72 37453.79 37753.51 39179.69 41236.70 41577.18 39732.53 41771.69 36968.63 40760.79 40626.65 41573.11 40730.67 41036.29 40950.73 405
test_method50.44 37548.94 37854.93 38939.68 41512.38 41828.59 40690.09 3346.82 40941.10 41178.41 40254.41 39370.69 40950.12 40651.26 40881.72 402
kuosan43.63 37644.25 38041.78 39266.04 41434.37 41675.56 39832.62 41653.25 40750.46 41051.18 40725.28 41649.13 41013.44 41130.41 41041.84 407
tmp_tt37.97 37744.33 37918.88 39311.80 41621.54 41763.51 40445.66 4154.23 41051.34 40950.48 40859.08 38622.11 41244.50 40868.35 40613.00 408
cdsmvs_eth3d_5k23.35 37831.13 3810.00 3960.00 4190.00 4210.00 40795.58 2380.00 4140.00 41591.15 33593.43 860.00 4150.00 4140.00 4130.00 411
test1239.49 37912.01 3821.91 3942.87 4171.30 41982.38 3881.34 4191.36 4122.84 4136.56 4112.45 4170.97 4132.73 4125.56 4113.47 409
testmvs9.02 38011.42 3831.81 3952.77 4181.13 42079.44 3951.90 4181.18 4132.65 4146.80 4101.95 4180.87 4142.62 4133.45 4123.44 410
pcd_1.5k_mvsjas7.56 38110.09 3840.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 41490.77 1540.00 4150.00 4140.00 4130.00 411
ab-mvs-re7.56 38110.08 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 41590.69 3440.00 4190.00 4150.00 4140.00 4130.00 411
test_blank0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uanet_test0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
DCPMVS0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
sosnet-low-res0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
sosnet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uncertanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
Regformer0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
WAC-MVS61.25 40274.55 356
FOURS199.21 394.68 1398.45 498.81 1097.73 798.27 23
MSC_two_6792asdad95.90 6596.54 18189.57 8996.87 17499.41 4294.06 4799.30 7298.72 96
PC_three_145275.31 34995.87 12395.75 20792.93 10396.34 32887.18 23198.68 15698.04 155
No_MVS95.90 6596.54 18189.57 8996.87 17499.41 4294.06 4799.30 7298.72 96
test_one_060198.26 7087.14 14098.18 4694.25 5296.99 7197.36 9695.13 43
eth-test20.00 419
eth-test0.00 419
ZD-MVS97.23 14190.32 7997.54 11984.40 26694.78 18195.79 20292.76 10999.39 5288.72 20498.40 180
RE-MVS-def96.66 2298.07 8395.27 1096.37 4798.12 5695.66 3797.00 6997.03 12595.40 2993.49 6498.84 13398.00 160
IU-MVS98.51 5086.66 15596.83 17772.74 36595.83 12493.00 8999.29 7598.64 111
OPU-MVS95.15 9796.84 16289.43 9395.21 9995.66 21093.12 9798.06 22486.28 24998.61 16297.95 168
test_241102_TWO98.10 5991.95 10197.54 4297.25 10695.37 3099.35 6393.29 7799.25 8398.49 124
test_241102_ONE98.51 5086.97 14598.10 5991.85 10797.63 3797.03 12596.48 1098.95 116
9.1494.81 10797.49 12994.11 14398.37 2387.56 21295.38 14896.03 19294.66 6299.08 9690.70 14598.97 120
save fliter97.46 13288.05 12492.04 21797.08 15787.63 210
test_0728_THIRD93.26 7597.40 5497.35 9994.69 6199.34 6693.88 5099.42 5298.89 75
test_0728_SECOND94.88 10498.55 4586.72 15295.20 10198.22 4199.38 5893.44 7099.31 7098.53 121
test072698.51 5086.69 15395.34 9398.18 4691.85 10797.63 3797.37 9395.58 24
GSMVS94.75 329
test_part298.21 7589.41 9496.72 82
sam_mvs166.64 35794.75 329
sam_mvs66.41 358
ambc92.98 18296.88 15883.01 22395.92 7296.38 20596.41 9397.48 8888.26 18797.80 25189.96 17298.93 12598.12 150
MTGPAbinary97.62 111
test_post190.21 2735.85 41365.36 36396.00 33479.61 321
test_post6.07 41265.74 36295.84 338
patchmatchnet-post91.71 32866.22 36097.59 269
GG-mvs-BLEND83.24 37485.06 40671.03 36694.99 11165.55 41074.09 40475.51 40444.57 40494.46 36159.57 40187.54 39184.24 397
MTMP94.82 11454.62 413
gm-plane-assit87.08 39959.33 40571.22 37283.58 39597.20 28973.95 361
test9_res88.16 21298.40 18097.83 182
TEST996.45 18989.46 9190.60 26096.92 16979.09 32390.49 29594.39 25991.31 13998.88 123
test_896.37 19189.14 10190.51 26396.89 17279.37 31890.42 29794.36 26191.20 14498.82 132
agg_prior287.06 23498.36 18997.98 164
agg_prior96.20 21088.89 10696.88 17390.21 30298.78 144
TestCases96.00 5698.02 8992.17 5198.43 2090.48 15095.04 17096.74 14792.54 11397.86 24685.11 26398.98 11597.98 164
test_prior489.91 8390.74 255
test_prior290.21 27389.33 17290.77 29194.81 24390.41 16488.21 20898.55 168
test_prior94.61 11795.95 23187.23 13797.36 13598.68 16497.93 170
旧先验290.00 28168.65 38792.71 24896.52 31785.15 260
新几何290.02 280
新几何193.17 17897.16 14687.29 13594.43 27067.95 38991.29 28194.94 23986.97 21398.23 21181.06 30597.75 23493.98 346
旧先验196.20 21084.17 20494.82 26195.57 21689.57 17797.89 22996.32 266
无先验89.94 28295.75 22870.81 37798.59 17681.17 30494.81 325
原ACMM289.34 301
原ACMM192.87 18996.91 15784.22 20297.01 16176.84 33989.64 31594.46 25788.00 19398.70 16081.53 29998.01 22195.70 297
test22296.95 15385.27 19088.83 31493.61 28465.09 39790.74 29294.85 24284.62 24397.36 25593.91 347
testdata298.03 22680.24 311
segment_acmp92.14 121
testdata91.03 25896.87 15982.01 23394.28 27471.55 37092.46 25695.42 22185.65 23397.38 28482.64 28597.27 25793.70 353
testdata188.96 31088.44 192
test1294.43 13095.95 23186.75 15196.24 21089.76 31389.79 17698.79 14197.95 22697.75 192
plane_prior797.71 11488.68 109
plane_prior697.21 14488.23 12186.93 214
plane_prior597.81 9798.95 11689.26 18998.51 17498.60 116
plane_prior495.59 212
plane_prior388.43 11990.35 15593.31 222
plane_prior294.56 12591.74 118
plane_prior197.38 134
plane_prior88.12 12293.01 17688.98 17998.06 215
n20.00 420
nn0.00 420
door-mid92.13 316
lessismore_v093.87 15198.05 8583.77 21080.32 39797.13 6297.91 6177.49 30299.11 9592.62 9998.08 21498.74 94
LGP-MVS_train96.84 3998.36 6592.13 5398.25 3491.78 11497.07 6497.22 11096.38 1299.28 7592.07 11099.59 2999.11 44
test1196.65 189
door91.26 325
HQP5-MVS84.89 193
HQP-NCC96.36 19391.37 23987.16 21688.81 324
ACMP_Plane96.36 19391.37 23987.16 21688.81 324
BP-MVS86.55 243
HQP4-MVS88.81 32498.61 17298.15 147
HQP3-MVS97.31 13997.73 235
HQP2-MVS84.76 241
NP-MVS96.82 16487.10 14193.40 291
MDTV_nov1_ep13_2view42.48 41488.45 32267.22 39183.56 37866.80 35472.86 36894.06 343
MDTV_nov1_ep1383.88 33289.42 38461.52 40188.74 31787.41 35373.99 35684.96 36794.01 27365.25 36495.53 34178.02 33193.16 360
ACMMP++_ref98.82 139
ACMMP++99.25 83
Test By Simon90.61 160
ITE_SJBPF95.95 5997.34 13793.36 4196.55 19891.93 10394.82 17995.39 22591.99 12397.08 29785.53 25697.96 22597.41 214
DeepMVS_CXcopyleft53.83 39070.38 41364.56 39648.52 41433.01 40865.50 40874.21 40556.19 39146.64 41138.45 40970.07 40550.30 406