LCM-MVSNet | | | 99.43 1 | 99.49 1 | 99.24 1 | 99.95 1 | 98.13 1 | 99.37 1 | 99.57 1 | 99.82 1 | 99.86 1 | 99.85 1 | 99.52 1 | 99.73 1 | 97.58 1 | 99.94 1 | 99.85 1 |
|
LTVRE_ROB | | 93.87 1 | 97.93 2 | 98.16 2 | 97.26 26 | 98.81 28 | 93.86 31 | 99.07 2 | 98.98 6 | 97.01 13 | 98.92 4 | 98.78 14 | 95.22 37 | 98.61 169 | 96.85 2 | 99.77 9 | 99.31 28 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
TDRefinement | | | 97.68 3 | 97.60 4 | 97.93 2 | 99.02 12 | 95.95 8 | 98.61 3 | 98.81 8 | 97.41 10 | 97.28 54 | 98.46 29 | 94.62 59 | 98.84 128 | 94.64 24 | 99.53 37 | 98.99 55 |
|
UA-Net | | | 97.35 4 | 97.24 11 | 97.69 4 | 98.22 74 | 93.87 30 | 98.42 6 | 98.19 36 | 96.95 14 | 95.46 135 | 99.23 4 | 93.45 79 | 99.57 14 | 95.34 20 | 99.89 2 | 99.63 9 |
|
UniMVSNet_ETH3D | | | 97.13 5 | 97.72 3 | 95.35 84 | 99.51 2 | 87.38 131 | 97.70 8 | 97.54 109 | 98.16 2 | 98.94 2 | 99.33 2 | 97.84 4 | 99.08 93 | 90.73 131 | 99.73 13 | 99.59 13 |
|
HPM-MVS_fast | | | 97.01 6 | 96.89 14 | 97.39 21 | 99.12 8 | 93.92 28 | 97.16 14 | 98.17 42 | 93.11 71 | 96.48 86 | 97.36 85 | 96.92 6 | 99.34 62 | 94.31 30 | 99.38 58 | 98.92 68 |
|
SR-MVS-dyc-post | | | 96.84 7 | 96.60 24 | 97.56 10 | 98.07 83 | 95.27 9 | 96.37 44 | 98.12 48 | 95.66 32 | 97.00 66 | 97.03 112 | 94.85 53 | 99.42 32 | 93.49 52 | 98.84 129 | 98.00 151 |
|
mvs_tets | | | 96.83 8 | 96.71 18 | 97.17 27 | 98.83 25 | 92.51 48 | 96.58 33 | 97.61 104 | 87.57 203 | 98.80 7 | 98.90 9 | 96.50 9 | 99.59 13 | 96.15 9 | 99.47 42 | 99.40 21 |
|
v7n | | | 96.82 9 | 97.31 10 | 95.33 86 | 98.54 48 | 86.81 144 | 96.83 23 | 98.07 57 | 96.59 20 | 98.46 17 | 98.43 31 | 92.91 99 | 99.52 19 | 96.25 8 | 99.76 10 | 99.65 8 |
|
APD-MVS_3200maxsize | | | 96.82 9 | 96.65 20 | 97.32 25 | 97.95 95 | 93.82 33 | 96.31 50 | 98.25 28 | 95.51 34 | 96.99 68 | 97.05 111 | 95.63 22 | 99.39 48 | 93.31 64 | 98.88 124 | 98.75 87 |
|
HPM-MVS |  | | 96.81 11 | 96.62 22 | 97.36 23 | 98.89 20 | 93.53 38 | 97.51 10 | 98.44 14 | 92.35 85 | 95.95 111 | 96.41 150 | 96.71 8 | 99.42 32 | 93.99 37 | 99.36 59 | 99.13 41 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
pmmvs6 | | | 96.80 12 | 97.36 9 | 95.15 93 | 99.12 8 | 87.82 126 | 96.68 30 | 97.86 82 | 96.10 27 | 98.14 24 | 99.28 3 | 97.94 3 | 98.21 205 | 91.38 119 | 99.69 14 | 99.42 19 |
|
OurMVSNet-221017-0 | | | 96.80 12 | 96.75 17 | 96.96 35 | 99.03 11 | 91.85 57 | 97.98 7 | 98.01 69 | 94.15 48 | 98.93 3 | 99.07 5 | 88.07 179 | 99.57 14 | 95.86 11 | 99.69 14 | 99.46 18 |
|
testf1 | | | 96.77 14 | 96.49 26 | 97.60 8 | 99.01 14 | 96.70 3 | 96.31 50 | 98.33 19 | 94.96 36 | 97.30 52 | 97.93 50 | 96.05 16 | 97.90 230 | 89.32 170 | 99.23 85 | 98.19 136 |
|
APD_test2 | | | 96.77 14 | 96.49 26 | 97.60 8 | 99.01 14 | 96.70 3 | 96.31 50 | 98.33 19 | 94.96 36 | 97.30 52 | 97.93 50 | 96.05 16 | 97.90 230 | 89.32 170 | 99.23 85 | 98.19 136 |
|
COLMAP_ROB |  | 91.06 5 | 96.75 16 | 96.62 22 | 97.13 28 | 98.38 63 | 94.31 17 | 96.79 26 | 98.32 21 | 96.69 17 | 96.86 72 | 97.56 70 | 95.48 26 | 98.77 145 | 90.11 154 | 99.44 49 | 98.31 128 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
anonymousdsp | | | 96.74 17 | 96.42 29 | 97.68 6 | 98.00 91 | 94.03 25 | 96.97 20 | 97.61 104 | 87.68 201 | 98.45 18 | 98.77 15 | 94.20 69 | 99.50 21 | 96.70 3 | 99.40 56 | 99.53 15 |
|
DTE-MVSNet | | | 96.74 17 | 97.43 5 | 94.67 109 | 99.13 6 | 84.68 186 | 96.51 35 | 97.94 80 | 98.14 3 | 98.67 12 | 98.32 33 | 95.04 45 | 99.69 2 | 93.27 67 | 99.82 7 | 99.62 10 |
|
SR-MVS | | | 96.70 19 | 96.42 29 | 97.54 11 | 98.05 85 | 94.69 11 | 96.13 59 | 98.07 57 | 95.17 35 | 96.82 74 | 96.73 134 | 95.09 44 | 99.43 31 | 92.99 78 | 98.71 147 | 98.50 115 |
|
PS-CasMVS | | | 96.69 20 | 97.43 5 | 94.49 124 | 99.13 6 | 84.09 195 | 96.61 32 | 97.97 74 | 97.91 5 | 98.64 13 | 98.13 39 | 95.24 36 | 99.65 3 | 93.39 62 | 99.84 3 | 99.72 2 |
|
PEN-MVS | | | 96.69 20 | 97.39 8 | 94.61 114 | 99.16 4 | 84.50 187 | 96.54 34 | 98.05 61 | 98.06 4 | 98.64 13 | 98.25 35 | 95.01 48 | 99.65 3 | 92.95 79 | 99.83 5 | 99.68 4 |
|
MTAPA | | | 96.65 22 | 96.38 33 | 97.47 15 | 98.95 18 | 94.05 23 | 95.88 70 | 97.62 102 | 94.46 44 | 96.29 95 | 96.94 117 | 93.56 76 | 99.37 56 | 94.29 31 | 99.42 51 | 98.99 55 |
|
test_djsdf | | | 96.62 23 | 96.49 26 | 97.01 32 | 98.55 45 | 91.77 59 | 97.15 15 | 97.37 120 | 88.98 171 | 98.26 22 | 98.86 10 | 93.35 84 | 99.60 9 | 96.41 5 | 99.45 46 | 99.66 6 |
|
ACMMP |  | | 96.61 24 | 96.34 34 | 97.43 18 | 98.61 38 | 93.88 29 | 96.95 21 | 98.18 38 | 92.26 88 | 96.33 91 | 96.84 125 | 95.10 43 | 99.40 45 | 93.47 55 | 99.33 65 | 99.02 52 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
Anonymous20231211 | | | 96.60 25 | 97.13 12 | 95.00 96 | 97.46 128 | 86.35 160 | 97.11 19 | 98.24 31 | 97.58 8 | 98.72 8 | 98.97 7 | 93.15 91 | 99.15 83 | 93.18 70 | 99.74 12 | 99.50 17 |
|
WR-MVS_H | | | 96.60 25 | 97.05 13 | 95.24 90 | 99.02 12 | 86.44 156 | 96.78 27 | 98.08 54 | 97.42 9 | 98.48 16 | 97.86 57 | 91.76 121 | 99.63 6 | 94.23 32 | 99.84 3 | 99.66 6 |
|
jajsoiax | | | 96.59 27 | 96.42 29 | 97.12 29 | 98.76 31 | 92.49 49 | 96.44 41 | 97.42 118 | 86.96 212 | 98.71 10 | 98.72 17 | 95.36 31 | 99.56 17 | 95.92 10 | 99.45 46 | 99.32 27 |
|
ACMH | | 88.36 12 | 96.59 27 | 97.43 5 | 94.07 137 | 98.56 42 | 85.33 180 | 96.33 47 | 98.30 24 | 94.66 40 | 98.72 8 | 98.30 34 | 97.51 5 | 98.00 223 | 94.87 21 | 99.59 28 | 98.86 74 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
XVS | | | 96.49 29 | 96.18 42 | 97.44 16 | 98.56 42 | 93.99 26 | 96.50 36 | 97.95 77 | 94.58 41 | 94.38 178 | 96.49 145 | 94.56 61 | 99.39 48 | 93.57 48 | 99.05 105 | 98.93 64 |
|
ACMH+ | | 88.43 11 | 96.48 30 | 96.82 15 | 95.47 81 | 98.54 48 | 89.06 98 | 95.65 79 | 98.61 11 | 96.10 27 | 98.16 23 | 97.52 73 | 96.90 7 | 98.62 168 | 90.30 145 | 99.60 26 | 98.72 92 |
|
APDe-MVS | | | 96.46 31 | 96.64 21 | 95.93 62 | 97.68 114 | 89.38 95 | 96.90 22 | 98.41 17 | 92.52 80 | 97.43 47 | 97.92 53 | 95.11 42 | 99.50 21 | 94.45 26 | 99.30 70 | 98.92 68 |
|
ACMMPR | | | 96.46 31 | 96.14 45 | 97.41 20 | 98.60 39 | 93.82 33 | 96.30 54 | 97.96 75 | 92.35 85 | 95.57 129 | 96.61 141 | 94.93 51 | 99.41 38 | 93.78 42 | 99.15 97 | 99.00 53 |
|
mPP-MVS | | | 96.46 31 | 96.05 50 | 97.69 4 | 98.62 36 | 94.65 13 | 96.45 39 | 97.74 95 | 92.59 79 | 95.47 133 | 96.68 137 | 94.50 63 | 99.42 32 | 93.10 73 | 99.26 81 | 98.99 55 |
|
CP-MVS | | | 96.44 34 | 96.08 48 | 97.54 11 | 98.29 68 | 94.62 14 | 96.80 25 | 98.08 54 | 92.67 78 | 95.08 156 | 96.39 155 | 94.77 55 | 99.42 32 | 93.17 71 | 99.44 49 | 98.58 112 |
|
ZNCC-MVS | | | 96.42 35 | 96.20 41 | 97.07 30 | 98.80 30 | 92.79 46 | 96.08 61 | 98.16 45 | 91.74 112 | 95.34 141 | 96.36 158 | 95.68 20 | 99.44 28 | 94.41 28 | 99.28 78 | 98.97 60 |
|
region2R | | | 96.41 36 | 96.09 47 | 97.38 22 | 98.62 36 | 93.81 35 | 96.32 49 | 97.96 75 | 92.26 88 | 95.28 145 | 96.57 143 | 95.02 47 | 99.41 38 | 93.63 46 | 99.11 100 | 98.94 63 |
|
SteuartSystems-ACMMP | | | 96.40 37 | 96.30 36 | 96.71 40 | 98.63 35 | 91.96 55 | 95.70 76 | 98.01 69 | 93.34 67 | 96.64 81 | 96.57 143 | 94.99 49 | 99.36 57 | 93.48 54 | 99.34 63 | 98.82 78 |
Skip Steuart: Steuart Systems R&D Blog. |
HFP-MVS | | | 96.39 38 | 96.17 44 | 97.04 31 | 98.51 51 | 93.37 39 | 96.30 54 | 97.98 72 | 92.35 85 | 95.63 127 | 96.47 146 | 95.37 29 | 99.27 73 | 93.78 42 | 99.14 98 | 98.48 118 |
|
LPG-MVS_test | | | 96.38 39 | 96.23 39 | 96.84 38 | 98.36 66 | 92.13 52 | 95.33 90 | 98.25 28 | 91.78 108 | 97.07 61 | 97.22 99 | 96.38 12 | 99.28 71 | 92.07 98 | 99.59 28 | 99.11 44 |
|
nrg030 | | | 96.32 40 | 96.55 25 | 95.62 76 | 97.83 101 | 88.55 112 | 95.77 74 | 98.29 27 | 92.68 76 | 98.03 26 | 97.91 54 | 95.13 40 | 98.95 113 | 93.85 40 | 99.49 41 | 99.36 24 |
|
PGM-MVS | | | 96.32 40 | 95.94 54 | 97.43 18 | 98.59 41 | 93.84 32 | 95.33 90 | 98.30 24 | 91.40 121 | 95.76 120 | 96.87 122 | 95.26 35 | 99.45 26 | 92.77 81 | 99.21 89 | 99.00 53 |
|
ACMM | | 88.83 9 | 96.30 42 | 96.07 49 | 96.97 34 | 98.39 62 | 92.95 44 | 94.74 111 | 98.03 66 | 90.82 134 | 97.15 57 | 96.85 123 | 96.25 14 | 99.00 105 | 93.10 73 | 99.33 65 | 98.95 62 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
GST-MVS | | | 96.24 43 | 95.99 53 | 97.00 33 | 98.65 34 | 92.71 47 | 95.69 78 | 98.01 69 | 92.08 93 | 95.74 122 | 96.28 164 | 95.22 37 | 99.42 32 | 93.17 71 | 99.06 102 | 98.88 73 |
|
ACMMP_NAP | | | 96.21 44 | 96.12 46 | 96.49 48 | 98.90 19 | 91.42 63 | 94.57 119 | 98.03 66 | 90.42 145 | 96.37 89 | 97.35 88 | 95.68 20 | 99.25 74 | 94.44 27 | 99.34 63 | 98.80 82 |
|
CP-MVSNet | | | 96.19 45 | 96.80 16 | 94.38 129 | 98.99 16 | 83.82 198 | 96.31 50 | 97.53 111 | 97.60 7 | 98.34 19 | 97.52 73 | 91.98 117 | 99.63 6 | 93.08 75 | 99.81 8 | 99.70 3 |
|
MP-MVS |  | | 96.14 46 | 95.68 67 | 97.51 13 | 98.81 28 | 94.06 21 | 96.10 60 | 97.78 93 | 92.73 75 | 93.48 203 | 96.72 135 | 94.23 68 | 99.42 32 | 91.99 100 | 99.29 73 | 99.05 50 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
LS3D | | | 96.11 47 | 95.83 62 | 96.95 36 | 94.75 264 | 94.20 19 | 97.34 13 | 97.98 72 | 97.31 11 | 95.32 142 | 96.77 127 | 93.08 94 | 99.20 79 | 91.79 107 | 98.16 201 | 97.44 204 |
|
MP-MVS-pluss | | | 96.08 48 | 95.92 57 | 96.57 44 | 99.06 10 | 91.21 65 | 93.25 158 | 98.32 21 | 87.89 194 | 96.86 72 | 97.38 81 | 95.55 25 | 99.39 48 | 95.47 16 | 99.47 42 | 99.11 44 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
TranMVSNet+NR-MVSNet | | | 96.07 49 | 96.26 38 | 95.50 80 | 98.26 71 | 87.69 128 | 93.75 147 | 97.86 82 | 95.96 31 | 97.48 45 | 97.14 105 | 95.33 32 | 99.44 28 | 90.79 129 | 99.76 10 | 99.38 22 |
|
PS-MVSNAJss | | | 96.01 50 | 96.04 51 | 95.89 67 | 98.82 26 | 88.51 113 | 95.57 84 | 97.88 81 | 88.72 177 | 98.81 6 | 98.86 10 | 90.77 143 | 99.60 9 | 95.43 18 | 99.53 37 | 99.57 14 |
|
SED-MVS | | | 96.00 51 | 96.41 32 | 94.76 105 | 98.51 51 | 86.97 140 | 95.21 94 | 98.10 51 | 91.95 95 | 97.63 35 | 97.25 95 | 96.48 10 | 99.35 59 | 93.29 65 | 99.29 73 | 97.95 159 |
|
DVP-MVS++ | | | 95.93 52 | 96.34 34 | 94.70 108 | 96.54 171 | 86.66 150 | 98.45 4 | 98.22 33 | 93.26 68 | 97.54 39 | 97.36 85 | 93.12 92 | 99.38 54 | 93.88 38 | 98.68 151 | 98.04 146 |
|
APD_test1 | | | 95.91 53 | 95.42 77 | 97.36 23 | 98.82 26 | 96.62 6 | 95.64 80 | 97.64 100 | 93.38 66 | 95.89 116 | 97.23 97 | 93.35 84 | 97.66 255 | 88.20 196 | 98.66 155 | 97.79 178 |
|
DPE-MVS |  | | 95.89 54 | 95.88 58 | 95.92 64 | 97.93 96 | 89.83 85 | 93.46 153 | 98.30 24 | 92.37 83 | 97.75 32 | 96.95 116 | 95.14 39 | 99.51 20 | 91.74 108 | 99.28 78 | 98.41 122 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
SF-MVS | | | 95.88 55 | 95.88 58 | 95.87 68 | 98.12 79 | 89.65 87 | 95.58 83 | 98.56 12 | 91.84 104 | 96.36 90 | 96.68 137 | 94.37 67 | 99.32 68 | 92.41 91 | 99.05 105 | 98.64 106 |
|
3Dnovator+ | | 92.74 2 | 95.86 56 | 95.77 65 | 96.13 53 | 96.81 157 | 90.79 73 | 96.30 54 | 97.82 87 | 96.13 26 | 94.74 169 | 97.23 97 | 91.33 128 | 99.16 82 | 93.25 68 | 98.30 187 | 98.46 119 |
|
DVP-MVS |  | | 95.82 57 | 96.18 42 | 94.72 107 | 98.51 51 | 86.69 148 | 95.20 96 | 97.00 152 | 91.85 101 | 97.40 50 | 97.35 88 | 95.58 23 | 99.34 62 | 93.44 58 | 99.31 68 | 98.13 141 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
CS-MVS | | | 95.77 58 | 95.58 71 | 96.37 50 | 96.84 154 | 91.72 61 | 96.73 29 | 99.06 5 | 94.23 46 | 92.48 240 | 94.79 233 | 93.56 76 | 99.49 24 | 93.47 55 | 99.05 105 | 97.89 166 |
|
SMA-MVS |  | | 95.77 58 | 95.54 72 | 96.47 49 | 98.27 70 | 91.19 66 | 95.09 99 | 97.79 92 | 86.48 215 | 97.42 49 | 97.51 75 | 94.47 66 | 99.29 69 | 93.55 50 | 99.29 73 | 98.93 64 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
test_0402 | | | 95.73 60 | 96.22 40 | 94.26 131 | 98.19 76 | 85.77 174 | 93.24 159 | 97.24 136 | 96.88 16 | 97.69 33 | 97.77 60 | 94.12 70 | 99.13 87 | 91.54 116 | 99.29 73 | 97.88 167 |
|
ACMP | | 88.15 13 | 95.71 61 | 95.43 76 | 96.54 45 | 98.17 77 | 91.73 60 | 94.24 131 | 98.08 54 | 89.46 160 | 96.61 83 | 96.47 146 | 95.85 18 | 99.12 90 | 90.45 137 | 99.56 35 | 98.77 86 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
XVG-ACMP-BASELINE | | | 95.68 62 | 95.34 81 | 96.69 41 | 98.40 61 | 93.04 41 | 94.54 123 | 98.05 61 | 90.45 144 | 96.31 93 | 96.76 129 | 92.91 99 | 98.72 151 | 91.19 120 | 99.42 51 | 98.32 126 |
|
DP-MVS | | | 95.62 63 | 95.84 61 | 94.97 97 | 97.16 139 | 88.62 108 | 94.54 123 | 97.64 100 | 96.94 15 | 96.58 84 | 97.32 92 | 93.07 95 | 98.72 151 | 90.45 137 | 98.84 129 | 97.57 194 |
|
OPM-MVS | | | 95.61 64 | 95.45 74 | 96.08 54 | 98.49 58 | 91.00 68 | 92.65 178 | 97.33 128 | 90.05 150 | 96.77 77 | 96.85 123 | 95.04 45 | 98.56 176 | 92.77 81 | 99.06 102 | 98.70 96 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
mvsmamba | | | 95.61 64 | 95.40 78 | 96.22 51 | 98.44 60 | 89.86 84 | 97.14 17 | 97.45 117 | 91.25 125 | 97.49 43 | 98.14 37 | 83.49 229 | 99.45 26 | 95.52 14 | 99.66 21 | 99.36 24 |
|
RPSCF | | | 95.58 66 | 94.89 99 | 97.62 7 | 97.58 120 | 96.30 7 | 95.97 66 | 97.53 111 | 92.42 81 | 93.41 204 | 97.78 58 | 91.21 133 | 97.77 246 | 91.06 122 | 97.06 248 | 98.80 82 |
|
MIMVSNet1 | | | 95.52 67 | 95.45 74 | 95.72 73 | 99.14 5 | 89.02 99 | 96.23 57 | 96.87 164 | 93.73 57 | 97.87 28 | 98.49 28 | 90.73 147 | 99.05 98 | 86.43 233 | 99.60 26 | 99.10 47 |
|
Anonymous20240529 | | | 95.50 68 | 95.83 62 | 94.50 122 | 97.33 133 | 85.93 169 | 95.19 98 | 96.77 172 | 96.64 19 | 97.61 38 | 98.05 44 | 93.23 88 | 98.79 139 | 88.60 193 | 99.04 110 | 98.78 84 |
|
Vis-MVSNet |  | | 95.50 68 | 95.48 73 | 95.56 79 | 98.11 80 | 89.40 94 | 95.35 88 | 98.22 33 | 92.36 84 | 94.11 181 | 98.07 43 | 92.02 115 | 99.44 28 | 93.38 63 | 97.67 229 | 97.85 171 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
EC-MVSNet | | | 95.44 70 | 95.62 69 | 94.89 99 | 96.93 149 | 87.69 128 | 96.48 38 | 99.14 4 | 93.93 53 | 92.77 231 | 94.52 243 | 93.95 73 | 99.49 24 | 93.62 47 | 99.22 88 | 97.51 199 |
|
pm-mvs1 | | | 95.43 71 | 95.94 54 | 93.93 143 | 98.38 63 | 85.08 183 | 95.46 87 | 97.12 145 | 91.84 104 | 97.28 54 | 98.46 29 | 95.30 34 | 97.71 252 | 90.17 152 | 99.42 51 | 98.99 55 |
|
DeepC-MVS | | 91.39 4 | 95.43 71 | 95.33 82 | 95.71 74 | 97.67 115 | 90.17 80 | 93.86 144 | 98.02 68 | 87.35 205 | 96.22 101 | 97.99 48 | 94.48 65 | 99.05 98 | 92.73 84 | 99.68 18 | 97.93 161 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
tt0805 | | | 95.42 73 | 95.93 56 | 93.86 147 | 98.75 32 | 88.47 114 | 97.68 9 | 94.29 261 | 96.48 21 | 95.38 137 | 93.63 271 | 94.89 52 | 97.94 229 | 95.38 19 | 96.92 256 | 95.17 289 |
|
RRT_MVS | | | 95.41 74 | 95.20 89 | 96.05 55 | 98.86 22 | 88.92 101 | 97.49 11 | 94.48 257 | 93.12 70 | 97.94 27 | 98.54 24 | 81.19 259 | 99.63 6 | 95.48 15 | 99.69 14 | 99.60 12 |
|
XVG-OURS-SEG-HR | | | 95.38 75 | 95.00 97 | 96.51 46 | 98.10 81 | 94.07 20 | 92.46 186 | 98.13 47 | 90.69 137 | 93.75 195 | 96.25 167 | 98.03 2 | 97.02 283 | 92.08 97 | 95.55 287 | 98.45 120 |
|
UniMVSNet_NR-MVSNet | | | 95.35 76 | 95.21 87 | 95.76 71 | 97.69 113 | 88.59 110 | 92.26 198 | 97.84 85 | 94.91 38 | 96.80 75 | 95.78 190 | 90.42 152 | 99.41 38 | 91.60 113 | 99.58 33 | 99.29 29 |
|
MSP-MVS | | | 95.34 77 | 94.63 112 | 97.48 14 | 98.67 33 | 94.05 23 | 96.41 43 | 98.18 38 | 91.26 123 | 95.12 152 | 95.15 216 | 86.60 208 | 99.50 21 | 93.43 61 | 96.81 260 | 98.89 71 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
CS-MVS-test | | | 95.32 78 | 95.10 93 | 95.96 58 | 96.86 153 | 90.75 74 | 96.33 47 | 99.20 2 | 93.99 50 | 91.03 273 | 93.73 269 | 93.52 78 | 99.55 18 | 91.81 106 | 99.45 46 | 97.58 193 |
|
FC-MVSNet-test | | | 95.32 78 | 95.88 58 | 93.62 152 | 98.49 58 | 81.77 224 | 95.90 69 | 98.32 21 | 93.93 53 | 97.53 41 | 97.56 70 | 88.48 172 | 99.40 45 | 92.91 80 | 99.83 5 | 99.68 4 |
|
UniMVSNet (Re) | | | 95.32 78 | 95.15 90 | 95.80 70 | 97.79 104 | 88.91 102 | 92.91 168 | 98.07 57 | 93.46 64 | 96.31 93 | 95.97 180 | 90.14 156 | 99.34 62 | 92.11 95 | 99.64 24 | 99.16 38 |
|
Gipuma |  | | 95.31 81 | 95.80 64 | 93.81 149 | 97.99 94 | 90.91 70 | 96.42 42 | 97.95 77 | 96.69 17 | 91.78 260 | 98.85 12 | 91.77 120 | 95.49 323 | 91.72 109 | 99.08 101 | 95.02 295 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
DU-MVS | | | 95.28 82 | 95.12 92 | 95.75 72 | 97.75 106 | 88.59 110 | 92.58 180 | 97.81 88 | 93.99 50 | 96.80 75 | 95.90 181 | 90.10 159 | 99.41 38 | 91.60 113 | 99.58 33 | 99.26 30 |
|
NR-MVSNet | | | 95.28 82 | 95.28 85 | 95.26 89 | 97.75 106 | 87.21 135 | 95.08 100 | 97.37 120 | 93.92 55 | 97.65 34 | 95.90 181 | 90.10 159 | 99.33 67 | 90.11 154 | 99.66 21 | 99.26 30 |
|
TransMVSNet (Re) | | | 95.27 84 | 96.04 51 | 92.97 171 | 98.37 65 | 81.92 223 | 95.07 101 | 96.76 173 | 93.97 52 | 97.77 31 | 98.57 22 | 95.72 19 | 97.90 230 | 88.89 187 | 99.23 85 | 99.08 48 |
|
SD-MVS | | | 95.19 85 | 95.73 66 | 93.55 155 | 96.62 166 | 88.88 104 | 94.67 113 | 98.05 61 | 91.26 123 | 97.25 56 | 96.40 151 | 95.42 27 | 94.36 340 | 92.72 85 | 99.19 91 | 97.40 208 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
VPA-MVSNet | | | 95.14 86 | 95.67 68 | 93.58 154 | 97.76 105 | 83.15 208 | 94.58 118 | 97.58 106 | 93.39 65 | 97.05 64 | 98.04 45 | 93.25 87 | 98.51 181 | 89.75 164 | 99.59 28 | 99.08 48 |
|
casdiffmvs_mvg |  | | 95.10 87 | 95.62 69 | 93.53 158 | 96.25 196 | 83.23 205 | 92.66 177 | 98.19 36 | 93.06 72 | 97.49 43 | 97.15 104 | 94.78 54 | 98.71 157 | 92.27 93 | 98.72 145 | 98.65 101 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
test_fmvsmvis_n_1920 | | | 95.08 88 | 95.40 78 | 94.13 135 | 96.66 161 | 87.75 127 | 93.44 155 | 98.49 13 | 85.57 233 | 98.27 20 | 97.11 107 | 94.11 71 | 97.75 249 | 96.26 7 | 98.72 145 | 96.89 228 |
|
HPM-MVS++ |  | | 95.02 89 | 94.39 115 | 96.91 37 | 97.88 99 | 93.58 37 | 94.09 137 | 96.99 154 | 91.05 129 | 92.40 245 | 95.22 215 | 91.03 140 | 99.25 74 | 92.11 95 | 98.69 150 | 97.90 164 |
|
APD-MVS |  | | 95.00 90 | 94.69 108 | 95.93 62 | 97.38 130 | 90.88 71 | 94.59 116 | 97.81 88 | 89.22 167 | 95.46 135 | 96.17 172 | 93.42 82 | 99.34 62 | 89.30 172 | 98.87 127 | 97.56 196 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
PMVS |  | 87.21 14 | 94.97 91 | 95.33 82 | 93.91 144 | 98.97 17 | 97.16 2 | 95.54 85 | 95.85 215 | 96.47 22 | 93.40 206 | 97.46 78 | 95.31 33 | 95.47 324 | 86.18 237 | 98.78 140 | 89.11 362 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
TSAR-MVS + MP. | | | 94.96 92 | 94.75 104 | 95.57 78 | 98.86 22 | 88.69 105 | 96.37 44 | 96.81 168 | 85.23 237 | 94.75 168 | 97.12 106 | 91.85 119 | 99.40 45 | 93.45 57 | 98.33 184 | 98.62 109 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
SixPastTwentyTwo | | | 94.91 93 | 95.21 87 | 93.98 139 | 98.52 50 | 83.19 207 | 95.93 67 | 94.84 247 | 94.86 39 | 98.49 15 | 98.74 16 | 81.45 253 | 99.60 9 | 94.69 23 | 99.39 57 | 99.15 39 |
|
FIs | | | 94.90 94 | 95.35 80 | 93.55 155 | 98.28 69 | 81.76 225 | 95.33 90 | 98.14 46 | 93.05 73 | 97.07 61 | 97.18 102 | 87.65 186 | 99.29 69 | 91.72 109 | 99.69 14 | 99.61 11 |
|
AllTest | | | 94.88 95 | 94.51 114 | 96.00 56 | 98.02 89 | 92.17 50 | 95.26 93 | 98.43 15 | 90.48 142 | 95.04 157 | 96.74 132 | 92.54 108 | 97.86 238 | 85.11 248 | 98.98 112 | 97.98 155 |
|
FMVSNet1 | | | 94.84 96 | 95.13 91 | 93.97 140 | 97.60 118 | 84.29 188 | 95.99 63 | 96.56 183 | 92.38 82 | 97.03 65 | 98.53 25 | 90.12 157 | 98.98 106 | 88.78 189 | 99.16 96 | 98.65 101 |
|
ANet_high | | | 94.83 97 | 96.28 37 | 90.47 263 | 96.65 162 | 73.16 340 | 94.33 128 | 98.74 10 | 96.39 24 | 98.09 25 | 98.93 8 | 93.37 83 | 98.70 158 | 90.38 140 | 99.68 18 | 99.53 15 |
|
3Dnovator | | 92.54 3 | 94.80 98 | 94.90 98 | 94.47 125 | 95.47 242 | 87.06 138 | 96.63 31 | 97.28 134 | 91.82 107 | 94.34 180 | 97.41 79 | 90.60 150 | 98.65 166 | 92.47 90 | 98.11 205 | 97.70 186 |
|
CPTT-MVS | | | 94.74 99 | 94.12 125 | 96.60 43 | 98.15 78 | 93.01 42 | 95.84 71 | 97.66 99 | 89.21 168 | 93.28 210 | 95.46 203 | 88.89 170 | 98.98 106 | 89.80 161 | 98.82 135 | 97.80 177 |
|
test_fmvsm_n_1920 | | | 94.72 100 | 94.74 106 | 94.67 109 | 96.30 191 | 88.62 108 | 93.19 160 | 98.07 57 | 85.63 231 | 97.08 60 | 97.35 88 | 90.86 141 | 97.66 255 | 95.70 12 | 98.48 171 | 97.74 184 |
|
XVG-OURS | | | 94.72 100 | 94.12 125 | 96.50 47 | 98.00 91 | 94.23 18 | 91.48 225 | 98.17 42 | 90.72 136 | 95.30 143 | 96.47 146 | 87.94 183 | 96.98 284 | 91.41 118 | 97.61 232 | 98.30 129 |
|
CSCG | | | 94.69 102 | 94.75 104 | 94.52 121 | 97.55 122 | 87.87 124 | 95.01 104 | 97.57 107 | 92.68 76 | 96.20 103 | 93.44 277 | 91.92 118 | 98.78 142 | 89.11 181 | 99.24 84 | 96.92 226 |
|
v10 | | | 94.68 103 | 95.27 86 | 92.90 177 | 96.57 168 | 80.15 244 | 94.65 115 | 97.57 107 | 90.68 138 | 97.43 47 | 98.00 47 | 88.18 176 | 99.15 83 | 94.84 22 | 99.55 36 | 99.41 20 |
|
v8 | | | 94.65 104 | 95.29 84 | 92.74 182 | 96.65 162 | 79.77 259 | 94.59 116 | 97.17 140 | 91.86 100 | 97.47 46 | 97.93 50 | 88.16 177 | 99.08 93 | 94.32 29 | 99.47 42 | 99.38 22 |
|
canonicalmvs | | | 94.59 105 | 94.69 108 | 94.30 130 | 95.60 239 | 87.03 139 | 95.59 81 | 98.24 31 | 91.56 118 | 95.21 151 | 92.04 309 | 94.95 50 | 98.66 164 | 91.45 117 | 97.57 233 | 97.20 217 |
|
CNVR-MVS | | | 94.58 106 | 94.29 119 | 95.46 82 | 96.94 147 | 89.35 96 | 91.81 219 | 96.80 169 | 89.66 157 | 93.90 193 | 95.44 205 | 92.80 103 | 98.72 151 | 92.74 83 | 98.52 166 | 98.32 126 |
|
GeoE | | | 94.55 107 | 94.68 110 | 94.15 133 | 97.23 135 | 85.11 182 | 94.14 135 | 97.34 127 | 88.71 178 | 95.26 146 | 95.50 202 | 94.65 58 | 99.12 90 | 90.94 126 | 98.40 174 | 98.23 132 |
|
EG-PatchMatch MVS | | | 94.54 108 | 94.67 111 | 94.14 134 | 97.87 100 | 86.50 152 | 92.00 206 | 96.74 174 | 88.16 190 | 96.93 70 | 97.61 67 | 93.04 96 | 97.90 230 | 91.60 113 | 98.12 204 | 98.03 149 |
|
IS-MVSNet | | | 94.49 109 | 94.35 118 | 94.92 98 | 98.25 73 | 86.46 155 | 97.13 18 | 94.31 260 | 96.24 25 | 96.28 97 | 96.36 158 | 82.88 237 | 99.35 59 | 88.19 197 | 99.52 40 | 98.96 61 |
|
Baseline_NR-MVSNet | | | 94.47 110 | 95.09 94 | 92.60 191 | 98.50 57 | 80.82 240 | 92.08 202 | 96.68 176 | 93.82 56 | 96.29 95 | 98.56 23 | 90.10 159 | 97.75 249 | 90.10 156 | 99.66 21 | 99.24 32 |
|
SDMVSNet | | | 94.43 111 | 95.02 95 | 92.69 184 | 97.93 96 | 82.88 213 | 91.92 211 | 95.99 211 | 93.65 62 | 95.51 131 | 98.63 19 | 94.60 60 | 96.48 299 | 87.57 211 | 99.35 60 | 98.70 96 |
|
VDD-MVS | | | 94.37 112 | 94.37 117 | 94.40 128 | 97.49 125 | 86.07 167 | 93.97 141 | 93.28 280 | 94.49 43 | 96.24 99 | 97.78 58 | 87.99 182 | 98.79 139 | 88.92 185 | 99.14 98 | 98.34 125 |
|
EI-MVSNet-Vis-set | | | 94.36 113 | 94.28 120 | 94.61 114 | 92.55 310 | 85.98 168 | 92.44 187 | 94.69 253 | 93.70 58 | 96.12 107 | 95.81 186 | 91.24 131 | 98.86 125 | 93.76 45 | 98.22 196 | 98.98 59 |
|
EI-MVSNet-UG-set | | | 94.35 114 | 94.27 122 | 94.59 118 | 92.46 311 | 85.87 171 | 92.42 189 | 94.69 253 | 93.67 61 | 96.13 106 | 95.84 185 | 91.20 134 | 98.86 125 | 93.78 42 | 98.23 194 | 99.03 51 |
|
PHI-MVS | | | 94.34 115 | 93.80 130 | 95.95 59 | 95.65 235 | 91.67 62 | 94.82 109 | 97.86 82 | 87.86 195 | 93.04 222 | 94.16 254 | 91.58 123 | 98.78 142 | 90.27 147 | 98.96 118 | 97.41 205 |
|
casdiffmvs |  | | 94.32 116 | 94.80 102 | 92.85 179 | 96.05 210 | 81.44 231 | 92.35 192 | 98.05 61 | 91.53 119 | 95.75 121 | 96.80 126 | 93.35 84 | 98.49 182 | 91.01 125 | 98.32 186 | 98.64 106 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
bld_raw_dy_0_64 | | | 94.27 117 | 94.15 124 | 94.65 112 | 98.55 45 | 86.28 162 | 95.80 73 | 95.55 228 | 88.41 185 | 97.09 59 | 98.08 42 | 78.69 273 | 98.87 124 | 95.63 13 | 99.53 37 | 98.81 80 |
|
tfpnnormal | | | 94.27 117 | 94.87 100 | 92.48 195 | 97.71 110 | 80.88 239 | 94.55 122 | 95.41 234 | 93.70 58 | 96.67 80 | 97.72 61 | 91.40 127 | 98.18 209 | 87.45 213 | 99.18 93 | 98.36 124 |
|
HQP_MVS | | | 94.26 119 | 93.93 127 | 95.23 91 | 97.71 110 | 88.12 119 | 94.56 120 | 97.81 88 | 91.74 112 | 93.31 207 | 95.59 197 | 86.93 200 | 98.95 113 | 89.26 176 | 98.51 168 | 98.60 110 |
|
baseline | | | 94.26 119 | 94.80 102 | 92.64 186 | 96.08 208 | 80.99 237 | 93.69 149 | 98.04 65 | 90.80 135 | 94.89 163 | 96.32 160 | 93.19 89 | 98.48 186 | 91.68 111 | 98.51 168 | 98.43 121 |
|
OMC-MVS | | | 94.22 121 | 93.69 135 | 95.81 69 | 97.25 134 | 91.27 64 | 92.27 197 | 97.40 119 | 87.10 211 | 94.56 173 | 95.42 206 | 93.74 74 | 98.11 214 | 86.62 227 | 98.85 128 | 98.06 143 |
|
LCM-MVSNet-Re | | | 94.20 122 | 94.58 113 | 93.04 168 | 95.91 221 | 83.13 209 | 93.79 146 | 99.19 3 | 92.00 94 | 98.84 5 | 98.04 45 | 93.64 75 | 99.02 103 | 81.28 284 | 98.54 164 | 96.96 225 |
|
DeepPCF-MVS | | 90.46 6 | 94.20 122 | 93.56 142 | 96.14 52 | 95.96 217 | 92.96 43 | 89.48 280 | 97.46 115 | 85.14 240 | 96.23 100 | 95.42 206 | 93.19 89 | 98.08 215 | 90.37 141 | 98.76 142 | 97.38 211 |
|
KD-MVS_self_test | | | 94.10 124 | 94.73 107 | 92.19 202 | 97.66 116 | 79.49 265 | 94.86 108 | 97.12 145 | 89.59 159 | 96.87 71 | 97.65 65 | 90.40 154 | 98.34 195 | 89.08 182 | 99.35 60 | 98.75 87 |
|
NCCC | | | 94.08 125 | 93.54 143 | 95.70 75 | 96.49 176 | 89.90 83 | 92.39 191 | 96.91 161 | 90.64 139 | 92.33 251 | 94.60 240 | 90.58 151 | 98.96 111 | 90.21 151 | 97.70 227 | 98.23 132 |
|
VDDNet | | | 94.03 126 | 94.27 122 | 93.31 163 | 98.87 21 | 82.36 219 | 95.51 86 | 91.78 309 | 97.19 12 | 96.32 92 | 98.60 21 | 84.24 225 | 98.75 146 | 87.09 220 | 98.83 134 | 98.81 80 |
|
dcpmvs_2 | | | 93.96 127 | 95.01 96 | 90.82 255 | 97.60 118 | 74.04 335 | 93.68 150 | 98.85 7 | 89.80 155 | 97.82 29 | 97.01 115 | 91.14 138 | 99.21 77 | 90.56 135 | 98.59 159 | 99.19 36 |
|
sd_testset | | | 93.94 128 | 94.39 115 | 92.61 190 | 97.93 96 | 83.24 204 | 93.17 161 | 95.04 241 | 93.65 62 | 95.51 131 | 98.63 19 | 94.49 64 | 95.89 316 | 81.72 280 | 99.35 60 | 98.70 96 |
|
MVS_0304 | | | 93.92 129 | 93.68 136 | 94.64 113 | 95.94 220 | 85.83 173 | 94.34 127 | 88.14 333 | 92.98 74 | 91.09 272 | 97.68 62 | 86.73 205 | 99.36 57 | 96.64 4 | 99.59 28 | 98.72 92 |
|
EPP-MVSNet | | | 93.91 130 | 93.68 136 | 94.59 118 | 98.08 82 | 85.55 177 | 97.44 12 | 94.03 266 | 94.22 47 | 94.94 160 | 96.19 169 | 82.07 248 | 99.57 14 | 87.28 217 | 98.89 122 | 98.65 101 |
|
Effi-MVS+-dtu | | | 93.90 131 | 92.60 165 | 97.77 3 | 94.74 265 | 96.67 5 | 94.00 139 | 95.41 234 | 89.94 151 | 91.93 259 | 92.13 307 | 90.12 157 | 98.97 110 | 87.68 210 | 97.48 236 | 97.67 189 |
|
IterMVS-LS | | | 93.78 132 | 94.28 120 | 92.27 199 | 96.27 193 | 79.21 272 | 91.87 215 | 96.78 170 | 91.77 110 | 96.57 85 | 97.07 109 | 87.15 195 | 98.74 149 | 91.99 100 | 99.03 111 | 98.86 74 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
DeepC-MVS_fast | | 89.96 7 | 93.73 133 | 93.44 145 | 94.60 117 | 96.14 204 | 87.90 123 | 93.36 157 | 97.14 142 | 85.53 234 | 93.90 193 | 95.45 204 | 91.30 130 | 98.59 173 | 89.51 167 | 98.62 156 | 97.31 214 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
MVS_111021_LR | | | 93.66 134 | 93.28 149 | 94.80 103 | 96.25 196 | 90.95 69 | 90.21 259 | 95.43 233 | 87.91 192 | 93.74 197 | 94.40 245 | 92.88 101 | 96.38 304 | 90.39 139 | 98.28 188 | 97.07 219 |
|
MVS_111021_HR | | | 93.63 135 | 93.42 146 | 94.26 131 | 96.65 162 | 86.96 142 | 89.30 287 | 96.23 199 | 88.36 187 | 93.57 201 | 94.60 240 | 93.45 79 | 97.77 246 | 90.23 150 | 98.38 178 | 98.03 149 |
|
v1144 | | | 93.50 136 | 93.81 129 | 92.57 192 | 96.28 192 | 79.61 262 | 91.86 217 | 96.96 155 | 86.95 213 | 95.91 114 | 96.32 160 | 87.65 186 | 98.96 111 | 93.51 51 | 98.88 124 | 99.13 41 |
|
v1192 | | | 93.49 137 | 93.78 131 | 92.62 189 | 96.16 202 | 79.62 261 | 91.83 218 | 97.22 138 | 86.07 222 | 96.10 108 | 96.38 156 | 87.22 193 | 99.02 103 | 94.14 34 | 98.88 124 | 99.22 33 |
|
WR-MVS | | | 93.49 137 | 93.72 133 | 92.80 181 | 97.57 121 | 80.03 250 | 90.14 262 | 95.68 219 | 93.70 58 | 96.62 82 | 95.39 210 | 87.21 194 | 99.04 101 | 87.50 212 | 99.64 24 | 99.33 26 |
|
V42 | | | 93.43 139 | 93.58 140 | 92.97 171 | 95.34 248 | 81.22 234 | 92.67 176 | 96.49 188 | 87.25 207 | 96.20 103 | 96.37 157 | 87.32 192 | 98.85 127 | 92.39 92 | 98.21 197 | 98.85 77 |
|
K. test v3 | | | 93.37 140 | 93.27 150 | 93.66 151 | 98.05 85 | 82.62 215 | 94.35 126 | 86.62 343 | 96.05 29 | 97.51 42 | 98.85 12 | 76.59 298 | 99.65 3 | 93.21 69 | 98.20 199 | 98.73 91 |
|
PM-MVS | | | 93.33 141 | 92.67 163 | 95.33 86 | 96.58 167 | 94.06 21 | 92.26 198 | 92.18 300 | 85.92 225 | 96.22 101 | 96.61 141 | 85.64 219 | 95.99 315 | 90.35 142 | 98.23 194 | 95.93 266 |
|
v1240 | | | 93.29 142 | 93.71 134 | 92.06 209 | 96.01 215 | 77.89 291 | 91.81 219 | 97.37 120 | 85.12 241 | 96.69 79 | 96.40 151 | 86.67 206 | 99.07 97 | 94.51 25 | 98.76 142 | 99.22 33 |
|
v2v482 | | | 93.29 142 | 93.63 138 | 92.29 198 | 96.35 185 | 78.82 279 | 91.77 221 | 96.28 195 | 88.45 183 | 95.70 126 | 96.26 166 | 86.02 214 | 98.90 117 | 93.02 76 | 98.81 137 | 99.14 40 |
|
alignmvs | | | 93.26 144 | 92.85 156 | 94.50 122 | 95.70 231 | 87.45 130 | 93.45 154 | 95.76 216 | 91.58 117 | 95.25 148 | 92.42 303 | 81.96 250 | 98.72 151 | 91.61 112 | 97.87 221 | 97.33 213 |
|
v1921920 | | | 93.26 144 | 93.61 139 | 92.19 202 | 96.04 214 | 78.31 285 | 91.88 214 | 97.24 136 | 85.17 239 | 96.19 105 | 96.19 169 | 86.76 204 | 99.05 98 | 94.18 33 | 98.84 129 | 99.22 33 |
|
MSLP-MVS++ | | | 93.25 146 | 93.88 128 | 91.37 231 | 96.34 186 | 82.81 214 | 93.11 162 | 97.74 95 | 89.37 163 | 94.08 183 | 95.29 214 | 90.40 154 | 96.35 306 | 90.35 142 | 98.25 192 | 94.96 296 |
|
GBi-Net | | | 93.21 147 | 92.96 153 | 93.97 140 | 95.40 244 | 84.29 188 | 95.99 63 | 96.56 183 | 88.63 179 | 95.10 153 | 98.53 25 | 81.31 255 | 98.98 106 | 86.74 223 | 98.38 178 | 98.65 101 |
|
test1 | | | 93.21 147 | 92.96 153 | 93.97 140 | 95.40 244 | 84.29 188 | 95.99 63 | 96.56 183 | 88.63 179 | 95.10 153 | 98.53 25 | 81.31 255 | 98.98 106 | 86.74 223 | 98.38 178 | 98.65 101 |
|
v144192 | | | 93.20 149 | 93.54 143 | 92.16 206 | 96.05 210 | 78.26 286 | 91.95 207 | 97.14 142 | 84.98 245 | 95.96 110 | 96.11 173 | 87.08 197 | 99.04 101 | 93.79 41 | 98.84 129 | 99.17 37 |
|
VPNet | | | 93.08 150 | 93.76 132 | 91.03 245 | 98.60 39 | 75.83 321 | 91.51 224 | 95.62 220 | 91.84 104 | 95.74 122 | 97.10 108 | 89.31 167 | 98.32 196 | 85.07 250 | 99.06 102 | 98.93 64 |
|
UGNet | | | 93.08 150 | 92.50 167 | 94.79 104 | 93.87 289 | 87.99 122 | 95.07 101 | 94.26 263 | 90.64 139 | 87.33 333 | 97.67 64 | 86.89 202 | 98.49 182 | 88.10 200 | 98.71 147 | 97.91 163 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
TSAR-MVS + GP. | | | 93.07 152 | 92.41 169 | 95.06 95 | 95.82 224 | 90.87 72 | 90.97 236 | 92.61 295 | 88.04 191 | 94.61 172 | 93.79 268 | 88.08 178 | 97.81 241 | 89.41 169 | 98.39 177 | 96.50 244 |
|
ETV-MVS | | | 92.99 153 | 92.74 159 | 93.72 150 | 95.86 223 | 86.30 161 | 92.33 193 | 97.84 85 | 91.70 115 | 92.81 229 | 86.17 365 | 92.22 112 | 99.19 80 | 88.03 204 | 97.73 224 | 95.66 280 |
|
EI-MVSNet | | | 92.99 153 | 93.26 151 | 92.19 202 | 92.12 320 | 79.21 272 | 92.32 194 | 94.67 255 | 91.77 110 | 95.24 149 | 95.85 183 | 87.14 196 | 98.49 182 | 91.99 100 | 98.26 190 | 98.86 74 |
|
MCST-MVS | | | 92.91 155 | 92.51 166 | 94.10 136 | 97.52 123 | 85.72 175 | 91.36 229 | 97.13 144 | 80.33 286 | 92.91 227 | 94.24 250 | 91.23 132 | 98.72 151 | 89.99 158 | 97.93 218 | 97.86 169 |
|
h-mvs33 | | | 92.89 156 | 91.99 177 | 95.58 77 | 96.97 145 | 90.55 76 | 93.94 142 | 94.01 269 | 89.23 165 | 93.95 190 | 96.19 169 | 76.88 294 | 99.14 85 | 91.02 123 | 95.71 284 | 97.04 222 |
|
QAPM | | | 92.88 157 | 92.77 157 | 93.22 166 | 95.82 224 | 83.31 202 | 96.45 39 | 97.35 126 | 83.91 255 | 93.75 195 | 96.77 127 | 89.25 168 | 98.88 120 | 84.56 256 | 97.02 250 | 97.49 200 |
|
v148 | | | 92.87 158 | 93.29 147 | 91.62 223 | 96.25 196 | 77.72 294 | 91.28 230 | 95.05 240 | 89.69 156 | 95.93 113 | 96.04 176 | 87.34 191 | 98.38 191 | 90.05 157 | 97.99 215 | 98.78 84 |
|
Anonymous20240521 | | | 92.86 159 | 93.57 141 | 90.74 257 | 96.57 168 | 75.50 323 | 94.15 134 | 95.60 221 | 89.38 162 | 95.90 115 | 97.90 56 | 80.39 263 | 97.96 227 | 92.60 88 | 99.68 18 | 98.75 87 |
|
Effi-MVS+ | | | 92.79 160 | 92.74 159 | 92.94 175 | 95.10 252 | 83.30 203 | 94.00 139 | 97.53 111 | 91.36 122 | 89.35 302 | 90.65 331 | 94.01 72 | 98.66 164 | 87.40 215 | 95.30 296 | 96.88 230 |
|
FMVSNet2 | | | 92.78 161 | 92.73 161 | 92.95 173 | 95.40 244 | 81.98 222 | 94.18 133 | 95.53 230 | 88.63 179 | 96.05 109 | 97.37 82 | 81.31 255 | 98.81 135 | 87.38 216 | 98.67 153 | 98.06 143 |
|
Fast-Effi-MVS+-dtu | | | 92.77 162 | 92.16 172 | 94.58 120 | 94.66 270 | 88.25 117 | 92.05 203 | 96.65 178 | 89.62 158 | 90.08 288 | 91.23 319 | 92.56 107 | 98.60 171 | 86.30 235 | 96.27 273 | 96.90 227 |
|
LF4IMVS | | | 92.72 163 | 92.02 176 | 94.84 102 | 95.65 235 | 91.99 54 | 92.92 167 | 96.60 180 | 85.08 243 | 92.44 243 | 93.62 272 | 86.80 203 | 96.35 306 | 86.81 222 | 98.25 192 | 96.18 257 |
|
train_agg | | | 92.71 164 | 91.83 182 | 95.35 84 | 96.45 178 | 89.46 90 | 90.60 246 | 96.92 159 | 79.37 295 | 90.49 279 | 94.39 246 | 91.20 134 | 98.88 120 | 88.66 192 | 98.43 173 | 97.72 185 |
|
VNet | | | 92.67 165 | 92.96 153 | 91.79 215 | 96.27 193 | 80.15 244 | 91.95 207 | 94.98 243 | 92.19 91 | 94.52 175 | 96.07 175 | 87.43 190 | 97.39 271 | 84.83 252 | 98.38 178 | 97.83 173 |
|
CDPH-MVS | | | 92.67 165 | 91.83 182 | 95.18 92 | 96.94 147 | 88.46 115 | 90.70 243 | 97.07 148 | 77.38 310 | 92.34 250 | 95.08 221 | 92.67 106 | 98.88 120 | 85.74 239 | 98.57 161 | 98.20 135 |
|
Anonymous202405211 | | | 92.58 167 | 92.50 167 | 92.83 180 | 96.55 170 | 83.22 206 | 92.43 188 | 91.64 311 | 94.10 49 | 95.59 128 | 96.64 139 | 81.88 252 | 97.50 262 | 85.12 247 | 98.52 166 | 97.77 180 |
|
XXY-MVS | | | 92.58 167 | 93.16 152 | 90.84 254 | 97.75 106 | 79.84 255 | 91.87 215 | 96.22 201 | 85.94 224 | 95.53 130 | 97.68 62 | 92.69 105 | 94.48 336 | 83.21 264 | 97.51 234 | 98.21 134 |
|
MVS_Test | | | 92.57 169 | 93.29 147 | 90.40 266 | 93.53 295 | 75.85 319 | 92.52 182 | 96.96 155 | 88.73 176 | 92.35 248 | 96.70 136 | 90.77 143 | 98.37 194 | 92.53 89 | 95.49 289 | 96.99 224 |
|
TAPA-MVS | | 88.58 10 | 92.49 170 | 91.75 184 | 94.73 106 | 96.50 175 | 89.69 86 | 92.91 168 | 97.68 98 | 78.02 308 | 92.79 230 | 94.10 255 | 90.85 142 | 97.96 227 | 84.76 254 | 98.16 201 | 96.54 239 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
patch_mono-2 | | | 92.46 171 | 92.72 162 | 91.71 219 | 96.65 162 | 78.91 277 | 88.85 297 | 97.17 140 | 83.89 256 | 92.45 242 | 96.76 129 | 89.86 163 | 97.09 280 | 90.24 149 | 98.59 159 | 99.12 43 |
|
test_fmvs3 | | | 92.42 172 | 92.40 170 | 92.46 197 | 93.80 292 | 87.28 133 | 93.86 144 | 97.05 149 | 76.86 315 | 96.25 98 | 98.66 18 | 82.87 238 | 91.26 358 | 95.44 17 | 96.83 259 | 98.82 78 |
|
ab-mvs | | | 92.40 173 | 92.62 164 | 91.74 217 | 97.02 143 | 81.65 226 | 95.84 71 | 95.50 231 | 86.95 213 | 92.95 226 | 97.56 70 | 90.70 148 | 97.50 262 | 79.63 303 | 97.43 238 | 96.06 261 |
|
CANet | | | 92.38 174 | 91.99 177 | 93.52 160 | 93.82 291 | 83.46 201 | 91.14 232 | 97.00 152 | 89.81 154 | 86.47 337 | 94.04 257 | 87.90 184 | 99.21 77 | 89.50 168 | 98.27 189 | 97.90 164 |
|
EIA-MVS | | | 92.35 175 | 92.03 175 | 93.30 164 | 95.81 226 | 83.97 196 | 92.80 171 | 98.17 42 | 87.71 199 | 89.79 296 | 87.56 355 | 91.17 137 | 99.18 81 | 87.97 205 | 97.27 242 | 96.77 234 |
|
DP-MVS Recon | | | 92.31 176 | 91.88 180 | 93.60 153 | 97.18 138 | 86.87 143 | 91.10 234 | 97.37 120 | 84.92 246 | 92.08 256 | 94.08 256 | 88.59 171 | 98.20 206 | 83.50 261 | 98.14 203 | 95.73 275 |
|
F-COLMAP | | | 92.28 177 | 91.06 200 | 95.95 59 | 97.52 123 | 91.90 56 | 93.53 151 | 97.18 139 | 83.98 254 | 88.70 314 | 94.04 257 | 88.41 174 | 98.55 178 | 80.17 296 | 95.99 278 | 97.39 209 |
|
OpenMVS |  | 89.45 8 | 92.27 178 | 92.13 174 | 92.68 185 | 94.53 274 | 84.10 194 | 95.70 76 | 97.03 150 | 82.44 274 | 91.14 271 | 96.42 149 | 88.47 173 | 98.38 191 | 85.95 238 | 97.47 237 | 95.55 284 |
|
hse-mvs2 | | | 92.24 179 | 91.20 196 | 95.38 83 | 96.16 202 | 90.65 75 | 92.52 182 | 92.01 307 | 89.23 165 | 93.95 190 | 92.99 287 | 76.88 294 | 98.69 160 | 91.02 123 | 96.03 276 | 96.81 232 |
|
MVSFormer | | | 92.18 180 | 92.23 171 | 92.04 210 | 94.74 265 | 80.06 248 | 97.15 15 | 97.37 120 | 88.98 171 | 88.83 306 | 92.79 292 | 77.02 291 | 99.60 9 | 96.41 5 | 96.75 263 | 96.46 246 |
|
HQP-MVS | | | 92.09 181 | 91.49 190 | 93.88 145 | 96.36 182 | 84.89 184 | 91.37 226 | 97.31 129 | 87.16 208 | 88.81 308 | 93.40 278 | 84.76 222 | 98.60 171 | 86.55 230 | 97.73 224 | 98.14 140 |
|
DELS-MVS | | | 92.05 182 | 92.16 172 | 91.72 218 | 94.44 275 | 80.13 246 | 87.62 311 | 97.25 135 | 87.34 206 | 92.22 253 | 93.18 284 | 89.54 166 | 98.73 150 | 89.67 165 | 98.20 199 | 96.30 252 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
TinyColmap | | | 92.00 183 | 92.76 158 | 89.71 283 | 95.62 238 | 77.02 302 | 90.72 242 | 96.17 204 | 87.70 200 | 95.26 146 | 96.29 162 | 92.54 108 | 96.45 301 | 81.77 278 | 98.77 141 | 95.66 280 |
|
CLD-MVS | | | 91.82 184 | 91.41 192 | 93.04 168 | 96.37 180 | 83.65 200 | 86.82 330 | 97.29 132 | 84.65 250 | 92.27 252 | 89.67 340 | 92.20 113 | 97.85 240 | 83.95 259 | 99.47 42 | 97.62 191 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
FA-MVS(test-final) | | | 91.81 185 | 91.85 181 | 91.68 221 | 94.95 255 | 79.99 252 | 96.00 62 | 93.44 278 | 87.80 196 | 94.02 188 | 97.29 93 | 77.60 283 | 98.45 188 | 88.04 203 | 97.49 235 | 96.61 238 |
|
diffmvs |  | | 91.74 186 | 91.93 179 | 91.15 243 | 93.06 302 | 78.17 287 | 88.77 300 | 97.51 114 | 86.28 218 | 92.42 244 | 93.96 262 | 88.04 180 | 97.46 265 | 90.69 133 | 96.67 265 | 97.82 175 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
CNLPA | | | 91.72 187 | 91.20 196 | 93.26 165 | 96.17 201 | 91.02 67 | 91.14 232 | 95.55 228 | 90.16 149 | 90.87 274 | 93.56 275 | 86.31 210 | 94.40 339 | 79.92 302 | 97.12 246 | 94.37 312 |
|
IterMVS-SCA-FT | | | 91.65 188 | 91.55 186 | 91.94 211 | 93.89 288 | 79.22 271 | 87.56 314 | 93.51 276 | 91.53 119 | 95.37 139 | 96.62 140 | 78.65 274 | 98.90 117 | 91.89 104 | 94.95 303 | 97.70 186 |
|
PVSNet_Blended_VisFu | | | 91.63 189 | 91.20 196 | 92.94 175 | 97.73 109 | 83.95 197 | 92.14 201 | 97.46 115 | 78.85 304 | 92.35 248 | 94.98 224 | 84.16 226 | 99.08 93 | 86.36 234 | 96.77 262 | 95.79 273 |
|
AdaColmap |  | | 91.63 189 | 91.36 193 | 92.47 196 | 95.56 240 | 86.36 159 | 92.24 200 | 96.27 196 | 88.88 175 | 89.90 293 | 92.69 295 | 91.65 122 | 98.32 196 | 77.38 322 | 97.64 230 | 92.72 344 |
|
pmmvs-eth3d | | | 91.54 191 | 90.73 208 | 93.99 138 | 95.76 229 | 87.86 125 | 90.83 239 | 93.98 270 | 78.23 307 | 94.02 188 | 96.22 168 | 82.62 244 | 96.83 290 | 86.57 228 | 98.33 184 | 97.29 215 |
|
API-MVS | | | 91.52 192 | 91.61 185 | 91.26 237 | 94.16 280 | 86.26 163 | 94.66 114 | 94.82 248 | 91.17 127 | 92.13 255 | 91.08 322 | 90.03 162 | 97.06 282 | 79.09 310 | 97.35 241 | 90.45 360 |
|
xiu_mvs_v1_base_debu | | | 91.47 193 | 91.52 187 | 91.33 233 | 95.69 232 | 81.56 227 | 89.92 269 | 96.05 208 | 83.22 260 | 91.26 267 | 90.74 326 | 91.55 124 | 98.82 130 | 89.29 173 | 95.91 279 | 93.62 331 |
|
xiu_mvs_v1_base | | | 91.47 193 | 91.52 187 | 91.33 233 | 95.69 232 | 81.56 227 | 89.92 269 | 96.05 208 | 83.22 260 | 91.26 267 | 90.74 326 | 91.55 124 | 98.82 130 | 89.29 173 | 95.91 279 | 93.62 331 |
|
xiu_mvs_v1_base_debi | | | 91.47 193 | 91.52 187 | 91.33 233 | 95.69 232 | 81.56 227 | 89.92 269 | 96.05 208 | 83.22 260 | 91.26 267 | 90.74 326 | 91.55 124 | 98.82 130 | 89.29 173 | 95.91 279 | 93.62 331 |
|
LFMVS | | | 91.33 196 | 91.16 199 | 91.82 214 | 96.27 193 | 79.36 267 | 95.01 104 | 85.61 353 | 96.04 30 | 94.82 165 | 97.06 110 | 72.03 316 | 98.46 187 | 84.96 251 | 98.70 149 | 97.65 190 |
|
c3_l | | | 91.32 197 | 91.42 191 | 91.00 248 | 92.29 313 | 76.79 309 | 87.52 317 | 96.42 191 | 85.76 228 | 94.72 171 | 93.89 265 | 82.73 241 | 98.16 211 | 90.93 127 | 98.55 162 | 98.04 146 |
|
Fast-Effi-MVS+ | | | 91.28 198 | 90.86 203 | 92.53 194 | 95.45 243 | 82.53 216 | 89.25 290 | 96.52 187 | 85.00 244 | 89.91 292 | 88.55 351 | 92.94 97 | 98.84 128 | 84.72 255 | 95.44 291 | 96.22 255 |
|
MDA-MVSNet-bldmvs | | | 91.04 199 | 90.88 202 | 91.55 225 | 94.68 269 | 80.16 243 | 85.49 343 | 92.14 303 | 90.41 146 | 94.93 161 | 95.79 187 | 85.10 220 | 96.93 287 | 85.15 245 | 94.19 323 | 97.57 194 |
|
PAPM_NR | | | 91.03 200 | 90.81 205 | 91.68 221 | 96.73 159 | 81.10 236 | 93.72 148 | 96.35 194 | 88.19 189 | 88.77 312 | 92.12 308 | 85.09 221 | 97.25 275 | 82.40 273 | 93.90 324 | 96.68 237 |
|
MSDG | | | 90.82 201 | 90.67 209 | 91.26 237 | 94.16 280 | 83.08 210 | 86.63 335 | 96.19 202 | 90.60 141 | 91.94 258 | 91.89 310 | 89.16 169 | 95.75 318 | 80.96 289 | 94.51 314 | 94.95 297 |
|
test20.03 | | | 90.80 202 | 90.85 204 | 90.63 260 | 95.63 237 | 79.24 270 | 89.81 273 | 92.87 286 | 89.90 152 | 94.39 177 | 96.40 151 | 85.77 215 | 95.27 331 | 73.86 341 | 99.05 105 | 97.39 209 |
|
FMVSNet3 | | | 90.78 203 | 90.32 218 | 92.16 206 | 93.03 304 | 79.92 254 | 92.54 181 | 94.95 244 | 86.17 221 | 95.10 153 | 96.01 178 | 69.97 323 | 98.75 146 | 86.74 223 | 98.38 178 | 97.82 175 |
|
eth_miper_zixun_eth | | | 90.72 204 | 90.61 210 | 91.05 244 | 92.04 323 | 76.84 308 | 86.91 326 | 96.67 177 | 85.21 238 | 94.41 176 | 93.92 263 | 79.53 267 | 98.26 202 | 89.76 163 | 97.02 250 | 98.06 143 |
|
X-MVStestdata | | | 90.70 205 | 88.45 250 | 97.44 16 | 98.56 42 | 93.99 26 | 96.50 36 | 97.95 77 | 94.58 41 | 94.38 178 | 26.89 382 | 94.56 61 | 99.39 48 | 93.57 48 | 99.05 105 | 98.93 64 |
|
BH-untuned | | | 90.68 206 | 90.90 201 | 90.05 277 | 95.98 216 | 79.57 263 | 90.04 265 | 94.94 245 | 87.91 192 | 94.07 184 | 93.00 286 | 87.76 185 | 97.78 245 | 79.19 309 | 95.17 299 | 92.80 343 |
|
cl____ | | | 90.65 207 | 90.56 212 | 90.91 252 | 91.85 327 | 76.98 305 | 86.75 331 | 95.36 237 | 85.53 234 | 94.06 185 | 94.89 227 | 77.36 288 | 97.98 226 | 90.27 147 | 98.98 112 | 97.76 181 |
|
DIV-MVS_self_test | | | 90.65 207 | 90.56 212 | 90.91 252 | 91.85 327 | 76.99 304 | 86.75 331 | 95.36 237 | 85.52 236 | 94.06 185 | 94.89 227 | 77.37 287 | 97.99 225 | 90.28 146 | 98.97 116 | 97.76 181 |
|
test_fmvs2 | | | 90.62 209 | 90.40 216 | 91.29 236 | 91.93 326 | 85.46 178 | 92.70 175 | 96.48 189 | 74.44 328 | 94.91 162 | 97.59 68 | 75.52 302 | 90.57 360 | 93.44 58 | 96.56 267 | 97.84 172 |
|
114514_t | | | 90.51 210 | 89.80 228 | 92.63 188 | 98.00 91 | 82.24 220 | 93.40 156 | 97.29 132 | 65.84 369 | 89.40 301 | 94.80 232 | 86.99 198 | 98.75 146 | 83.88 260 | 98.61 157 | 96.89 228 |
|
miper_ehance_all_eth | | | 90.48 211 | 90.42 215 | 90.69 258 | 91.62 332 | 76.57 312 | 86.83 329 | 96.18 203 | 83.38 258 | 94.06 185 | 92.66 297 | 82.20 246 | 98.04 217 | 89.79 162 | 97.02 250 | 97.45 202 |
|
BH-RMVSNet | | | 90.47 212 | 90.44 214 | 90.56 262 | 95.21 251 | 78.65 283 | 89.15 291 | 93.94 271 | 88.21 188 | 92.74 232 | 94.22 251 | 86.38 209 | 97.88 234 | 78.67 312 | 95.39 293 | 95.14 292 |
|
Vis-MVSNet (Re-imp) | | | 90.42 213 | 90.16 219 | 91.20 241 | 97.66 116 | 77.32 299 | 94.33 128 | 87.66 336 | 91.20 126 | 92.99 223 | 95.13 218 | 75.40 303 | 98.28 198 | 77.86 315 | 99.19 91 | 97.99 154 |
|
test_vis3_rt | | | 90.40 214 | 90.03 223 | 91.52 227 | 92.58 308 | 88.95 100 | 90.38 254 | 97.72 97 | 73.30 335 | 97.79 30 | 97.51 75 | 77.05 290 | 87.10 373 | 89.03 183 | 94.89 304 | 98.50 115 |
|
PLC |  | 85.34 15 | 90.40 214 | 88.92 242 | 94.85 101 | 96.53 174 | 90.02 81 | 91.58 223 | 96.48 189 | 80.16 287 | 86.14 339 | 92.18 305 | 85.73 216 | 98.25 203 | 76.87 325 | 94.61 313 | 96.30 252 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
test1111 | | | 90.39 216 | 90.61 210 | 89.74 282 | 98.04 88 | 71.50 351 | 95.59 81 | 79.72 376 | 89.41 161 | 95.94 112 | 98.14 37 | 70.79 320 | 98.81 135 | 88.52 194 | 99.32 67 | 98.90 70 |
|
testgi | | | 90.38 217 | 91.34 194 | 87.50 321 | 97.49 125 | 71.54 350 | 89.43 282 | 95.16 239 | 88.38 186 | 94.54 174 | 94.68 237 | 92.88 101 | 93.09 350 | 71.60 354 | 97.85 222 | 97.88 167 |
|
mvs_anonymous | | | 90.37 218 | 91.30 195 | 87.58 320 | 92.17 319 | 68.00 364 | 89.84 272 | 94.73 252 | 83.82 257 | 93.22 216 | 97.40 80 | 87.54 188 | 97.40 270 | 87.94 206 | 95.05 301 | 97.34 212 |
|
PVSNet_BlendedMVS | | | 90.35 219 | 89.96 224 | 91.54 226 | 94.81 260 | 78.80 281 | 90.14 262 | 96.93 157 | 79.43 294 | 88.68 315 | 95.06 222 | 86.27 211 | 98.15 212 | 80.27 292 | 98.04 211 | 97.68 188 |
|
UnsupCasMVSNet_eth | | | 90.33 220 | 90.34 217 | 90.28 268 | 94.64 272 | 80.24 242 | 89.69 275 | 95.88 213 | 85.77 227 | 93.94 192 | 95.69 194 | 81.99 249 | 92.98 351 | 84.21 258 | 91.30 353 | 97.62 191 |
|
MAR-MVS | | | 90.32 221 | 88.87 245 | 94.66 111 | 94.82 259 | 91.85 57 | 94.22 132 | 94.75 251 | 80.91 281 | 87.52 331 | 88.07 354 | 86.63 207 | 97.87 237 | 76.67 326 | 96.21 274 | 94.25 315 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
RPMNet | | | 90.31 222 | 90.14 222 | 90.81 256 | 91.01 339 | 78.93 274 | 92.52 182 | 98.12 48 | 91.91 98 | 89.10 303 | 96.89 121 | 68.84 325 | 99.41 38 | 90.17 152 | 92.70 342 | 94.08 316 |
|
iter_conf_final | | | 90.23 223 | 89.32 234 | 92.95 173 | 94.65 271 | 81.46 230 | 94.32 130 | 95.40 236 | 85.61 232 | 92.84 228 | 95.37 212 | 54.58 374 | 99.13 87 | 92.16 94 | 98.94 120 | 98.25 131 |
|
IterMVS | | | 90.18 224 | 90.16 219 | 90.21 272 | 93.15 300 | 75.98 318 | 87.56 314 | 92.97 285 | 86.43 217 | 94.09 182 | 96.40 151 | 78.32 278 | 97.43 267 | 87.87 207 | 94.69 311 | 97.23 216 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
TAMVS | | | 90.16 225 | 89.05 238 | 93.49 161 | 96.49 176 | 86.37 158 | 90.34 256 | 92.55 296 | 80.84 284 | 92.99 223 | 94.57 242 | 81.94 251 | 98.20 206 | 73.51 342 | 98.21 197 | 95.90 269 |
|
ECVR-MVS |  | | 90.12 226 | 90.16 219 | 90.00 278 | 97.81 102 | 72.68 345 | 95.76 75 | 78.54 379 | 89.04 169 | 95.36 140 | 98.10 40 | 70.51 321 | 98.64 167 | 87.10 219 | 99.18 93 | 98.67 99 |
|
test_yl | | | 90.11 227 | 89.73 231 | 91.26 237 | 94.09 283 | 79.82 256 | 90.44 250 | 92.65 292 | 90.90 130 | 93.19 217 | 93.30 280 | 73.90 307 | 98.03 218 | 82.23 274 | 96.87 257 | 95.93 266 |
|
DCV-MVSNet | | | 90.11 227 | 89.73 231 | 91.26 237 | 94.09 283 | 79.82 256 | 90.44 250 | 92.65 292 | 90.90 130 | 93.19 217 | 93.30 280 | 73.90 307 | 98.03 218 | 82.23 274 | 96.87 257 | 95.93 266 |
|
Patchmtry | | | 90.11 227 | 89.92 225 | 90.66 259 | 90.35 348 | 77.00 303 | 92.96 166 | 92.81 287 | 90.25 148 | 94.74 169 | 96.93 118 | 67.11 332 | 97.52 261 | 85.17 243 | 98.98 112 | 97.46 201 |
|
MVP-Stereo | | | 90.07 230 | 88.92 242 | 93.54 157 | 96.31 189 | 86.49 153 | 90.93 237 | 95.59 225 | 79.80 288 | 91.48 263 | 95.59 197 | 80.79 260 | 97.39 271 | 78.57 313 | 91.19 354 | 96.76 235 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
AUN-MVS | | | 90.05 231 | 88.30 254 | 95.32 88 | 96.09 207 | 90.52 77 | 92.42 189 | 92.05 306 | 82.08 277 | 88.45 318 | 92.86 289 | 65.76 342 | 98.69 160 | 88.91 186 | 96.07 275 | 96.75 236 |
|
CL-MVSNet_self_test | | | 90.04 232 | 89.90 226 | 90.47 263 | 95.24 250 | 77.81 292 | 86.60 337 | 92.62 294 | 85.64 230 | 93.25 214 | 93.92 263 | 83.84 227 | 96.06 313 | 79.93 300 | 98.03 212 | 97.53 198 |
|
D2MVS | | | 89.93 233 | 89.60 233 | 90.92 250 | 94.03 285 | 78.40 284 | 88.69 302 | 94.85 246 | 78.96 302 | 93.08 219 | 95.09 220 | 74.57 305 | 96.94 285 | 88.19 197 | 98.96 118 | 97.41 205 |
|
miper_lstm_enhance | | | 89.90 234 | 89.80 228 | 90.19 274 | 91.37 335 | 77.50 296 | 83.82 359 | 95.00 242 | 84.84 248 | 93.05 221 | 94.96 225 | 76.53 299 | 95.20 332 | 89.96 159 | 98.67 153 | 97.86 169 |
|
CANet_DTU | | | 89.85 235 | 89.17 236 | 91.87 212 | 92.20 317 | 80.02 251 | 90.79 240 | 95.87 214 | 86.02 223 | 82.53 362 | 91.77 312 | 80.01 264 | 98.57 175 | 85.66 240 | 97.70 227 | 97.01 223 |
|
tttt0517 | | | 89.81 236 | 88.90 244 | 92.55 193 | 97.00 144 | 79.73 260 | 95.03 103 | 83.65 365 | 89.88 153 | 95.30 143 | 94.79 233 | 53.64 377 | 99.39 48 | 91.99 100 | 98.79 139 | 98.54 113 |
|
EPNet | | | 89.80 237 | 88.25 258 | 94.45 126 | 83.91 383 | 86.18 164 | 93.87 143 | 87.07 341 | 91.16 128 | 80.64 371 | 94.72 235 | 78.83 271 | 98.89 119 | 85.17 243 | 98.89 122 | 98.28 130 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
CDS-MVSNet | | | 89.55 238 | 88.22 261 | 93.53 158 | 95.37 247 | 86.49 153 | 89.26 288 | 93.59 273 | 79.76 290 | 91.15 270 | 92.31 304 | 77.12 289 | 98.38 191 | 77.51 320 | 97.92 219 | 95.71 276 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
MG-MVS | | | 89.54 239 | 89.80 228 | 88.76 299 | 94.88 256 | 72.47 347 | 89.60 276 | 92.44 298 | 85.82 226 | 89.48 300 | 95.98 179 | 82.85 239 | 97.74 251 | 81.87 277 | 95.27 297 | 96.08 260 |
|
OpenMVS_ROB |  | 85.12 16 | 89.52 240 | 89.05 238 | 90.92 250 | 94.58 273 | 81.21 235 | 91.10 234 | 93.41 279 | 77.03 314 | 93.41 204 | 93.99 261 | 83.23 233 | 97.80 242 | 79.93 300 | 94.80 308 | 93.74 327 |
|
test_vis1_n_1920 | | | 89.45 241 | 89.85 227 | 88.28 310 | 93.59 294 | 76.71 310 | 90.67 244 | 97.78 93 | 79.67 292 | 90.30 285 | 96.11 173 | 76.62 297 | 92.17 354 | 90.31 144 | 93.57 329 | 95.96 264 |
|
DPM-MVS | | | 89.35 242 | 88.40 251 | 92.18 205 | 96.13 206 | 84.20 192 | 86.96 325 | 96.15 205 | 75.40 323 | 87.36 332 | 91.55 317 | 83.30 232 | 98.01 222 | 82.17 276 | 96.62 266 | 94.32 314 |
|
MVSTER | | | 89.32 243 | 88.75 246 | 91.03 245 | 90.10 351 | 76.62 311 | 90.85 238 | 94.67 255 | 82.27 275 | 95.24 149 | 95.79 187 | 61.09 363 | 98.49 182 | 90.49 136 | 98.26 190 | 97.97 158 |
|
PatchMatch-RL | | | 89.18 244 | 88.02 267 | 92.64 186 | 95.90 222 | 92.87 45 | 88.67 304 | 91.06 314 | 80.34 285 | 90.03 290 | 91.67 314 | 83.34 231 | 94.42 338 | 76.35 329 | 94.84 307 | 90.64 359 |
|
jason | | | 89.17 245 | 88.32 253 | 91.70 220 | 95.73 230 | 80.07 247 | 88.10 307 | 93.22 281 | 71.98 343 | 90.09 287 | 92.79 292 | 78.53 277 | 98.56 176 | 87.43 214 | 97.06 248 | 96.46 246 |
jason: jason. |
PCF-MVS | | 84.52 17 | 89.12 246 | 87.71 270 | 93.34 162 | 96.06 209 | 85.84 172 | 86.58 338 | 97.31 129 | 68.46 362 | 93.61 200 | 93.89 265 | 87.51 189 | 98.52 180 | 67.85 366 | 98.11 205 | 95.66 280 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
mvsany_test3 | | | 89.11 247 | 88.21 262 | 91.83 213 | 91.30 336 | 90.25 79 | 88.09 308 | 78.76 377 | 76.37 318 | 96.43 87 | 98.39 32 | 83.79 228 | 90.43 363 | 86.57 228 | 94.20 321 | 94.80 301 |
|
FE-MVS | | | 89.06 248 | 88.29 255 | 91.36 232 | 94.78 262 | 79.57 263 | 96.77 28 | 90.99 315 | 84.87 247 | 92.96 225 | 96.29 162 | 60.69 365 | 98.80 138 | 80.18 295 | 97.11 247 | 95.71 276 |
|
cl22 | | | 89.02 249 | 88.50 249 | 90.59 261 | 89.76 353 | 76.45 313 | 86.62 336 | 94.03 266 | 82.98 266 | 92.65 234 | 92.49 298 | 72.05 315 | 97.53 260 | 88.93 184 | 97.02 250 | 97.78 179 |
|
USDC | | | 89.02 249 | 89.08 237 | 88.84 298 | 95.07 253 | 74.50 330 | 88.97 293 | 96.39 192 | 73.21 336 | 93.27 211 | 96.28 164 | 82.16 247 | 96.39 303 | 77.55 319 | 98.80 138 | 95.62 283 |
|
test_vis1_n | | | 89.01 251 | 89.01 240 | 89.03 294 | 92.57 309 | 82.46 218 | 92.62 179 | 96.06 206 | 73.02 338 | 90.40 282 | 95.77 191 | 74.86 304 | 89.68 366 | 90.78 130 | 94.98 302 | 94.95 297 |
|
xiu_mvs_v2_base | | | 89.00 252 | 89.19 235 | 88.46 308 | 94.86 258 | 74.63 327 | 86.97 324 | 95.60 221 | 80.88 282 | 87.83 326 | 88.62 350 | 91.04 139 | 98.81 135 | 82.51 272 | 94.38 316 | 91.93 350 |
|
new-patchmatchnet | | | 88.97 253 | 90.79 206 | 83.50 350 | 94.28 279 | 55.83 384 | 85.34 345 | 93.56 275 | 86.18 220 | 95.47 133 | 95.73 193 | 83.10 234 | 96.51 298 | 85.40 242 | 98.06 209 | 98.16 138 |
|
pmmvs4 | | | 88.95 254 | 87.70 271 | 92.70 183 | 94.30 278 | 85.60 176 | 87.22 320 | 92.16 302 | 74.62 327 | 89.75 298 | 94.19 252 | 77.97 281 | 96.41 302 | 82.71 268 | 96.36 272 | 96.09 259 |
|
iter_conf05 | | | 88.94 255 | 88.09 265 | 91.50 228 | 92.74 307 | 76.97 306 | 92.80 171 | 95.92 212 | 82.82 268 | 93.65 199 | 95.37 212 | 49.41 381 | 99.13 87 | 90.82 128 | 99.28 78 | 98.40 123 |
|
N_pmnet | | | 88.90 256 | 87.25 278 | 93.83 148 | 94.40 277 | 93.81 35 | 84.73 349 | 87.09 340 | 79.36 297 | 93.26 212 | 92.43 302 | 79.29 269 | 91.68 356 | 77.50 321 | 97.22 244 | 96.00 263 |
|
PS-MVSNAJ | | | 88.86 257 | 88.99 241 | 88.48 307 | 94.88 256 | 74.71 325 | 86.69 333 | 95.60 221 | 80.88 282 | 87.83 326 | 87.37 358 | 90.77 143 | 98.82 130 | 82.52 271 | 94.37 317 | 91.93 350 |
|
Patchmatch-RL test | | | 88.81 258 | 88.52 248 | 89.69 284 | 95.33 249 | 79.94 253 | 86.22 340 | 92.71 291 | 78.46 305 | 95.80 119 | 94.18 253 | 66.25 340 | 95.33 329 | 89.22 178 | 98.53 165 | 93.78 325 |
|
Anonymous20231206 | | | 88.77 259 | 88.29 255 | 90.20 273 | 96.31 189 | 78.81 280 | 89.56 278 | 93.49 277 | 74.26 330 | 92.38 246 | 95.58 200 | 82.21 245 | 95.43 326 | 72.07 350 | 98.75 144 | 96.34 250 |
|
PVSNet_Blended | | | 88.74 260 | 88.16 264 | 90.46 265 | 94.81 260 | 78.80 281 | 86.64 334 | 96.93 157 | 74.67 326 | 88.68 315 | 89.18 347 | 86.27 211 | 98.15 212 | 80.27 292 | 96.00 277 | 94.44 311 |
|
test_fmvs1_n | | | 88.73 261 | 88.38 252 | 89.76 281 | 92.06 322 | 82.53 216 | 92.30 196 | 96.59 182 | 71.14 347 | 92.58 237 | 95.41 209 | 68.55 326 | 89.57 368 | 91.12 121 | 95.66 285 | 97.18 218 |
|
thisisatest0530 | | | 88.69 262 | 87.52 273 | 92.20 201 | 96.33 187 | 79.36 267 | 92.81 170 | 84.01 364 | 86.44 216 | 93.67 198 | 92.68 296 | 53.62 378 | 99.25 74 | 89.65 166 | 98.45 172 | 98.00 151 |
|
ppachtmachnet_test | | | 88.61 263 | 88.64 247 | 88.50 306 | 91.76 329 | 70.99 354 | 84.59 352 | 92.98 284 | 79.30 299 | 92.38 246 | 93.53 276 | 79.57 266 | 97.45 266 | 86.50 232 | 97.17 245 | 97.07 219 |
|
UnsupCasMVSNet_bld | | | 88.50 264 | 88.03 266 | 89.90 279 | 95.52 241 | 78.88 278 | 87.39 318 | 94.02 268 | 79.32 298 | 93.06 220 | 94.02 259 | 80.72 261 | 94.27 341 | 75.16 335 | 93.08 338 | 96.54 239 |
|
miper_enhance_ethall | | | 88.42 265 | 87.87 268 | 90.07 275 | 88.67 365 | 75.52 322 | 85.10 346 | 95.59 225 | 75.68 319 | 92.49 239 | 89.45 343 | 78.96 270 | 97.88 234 | 87.86 208 | 97.02 250 | 96.81 232 |
|
1112_ss | | | 88.42 265 | 87.41 274 | 91.45 229 | 96.69 160 | 80.99 237 | 89.72 274 | 96.72 175 | 73.37 334 | 87.00 335 | 90.69 329 | 77.38 286 | 98.20 206 | 81.38 283 | 93.72 327 | 95.15 291 |
|
lupinMVS | | | 88.34 267 | 87.31 275 | 91.45 229 | 94.74 265 | 80.06 248 | 87.23 319 | 92.27 299 | 71.10 348 | 88.83 306 | 91.15 320 | 77.02 291 | 98.53 179 | 86.67 226 | 96.75 263 | 95.76 274 |
|
test_cas_vis1_n_1920 | | | 88.25 268 | 88.27 257 | 88.20 312 | 92.19 318 | 78.92 276 | 89.45 281 | 95.44 232 | 75.29 325 | 93.23 215 | 95.65 196 | 71.58 317 | 90.23 364 | 88.05 202 | 93.55 330 | 95.44 286 |
|
YYNet1 | | | 88.17 269 | 88.24 259 | 87.93 316 | 92.21 316 | 73.62 337 | 80.75 368 | 88.77 325 | 82.51 273 | 94.99 159 | 95.11 219 | 82.70 242 | 93.70 345 | 83.33 262 | 93.83 325 | 96.48 245 |
|
MDA-MVSNet_test_wron | | | 88.16 270 | 88.23 260 | 87.93 316 | 92.22 315 | 73.71 336 | 80.71 369 | 88.84 324 | 82.52 272 | 94.88 164 | 95.14 217 | 82.70 242 | 93.61 346 | 83.28 263 | 93.80 326 | 96.46 246 |
|
MS-PatchMatch | | | 88.05 271 | 87.75 269 | 88.95 295 | 93.28 297 | 77.93 289 | 87.88 310 | 92.49 297 | 75.42 322 | 92.57 238 | 93.59 274 | 80.44 262 | 94.24 343 | 81.28 284 | 92.75 341 | 94.69 307 |
|
CR-MVSNet | | | 87.89 272 | 87.12 283 | 90.22 271 | 91.01 339 | 78.93 274 | 92.52 182 | 92.81 287 | 73.08 337 | 89.10 303 | 96.93 118 | 67.11 332 | 97.64 257 | 88.80 188 | 92.70 342 | 94.08 316 |
|
pmmvs5 | | | 87.87 273 | 87.14 281 | 90.07 275 | 93.26 299 | 76.97 306 | 88.89 295 | 92.18 300 | 73.71 333 | 88.36 319 | 93.89 265 | 76.86 296 | 96.73 293 | 80.32 291 | 96.81 260 | 96.51 241 |
|
wuyk23d | | | 87.83 274 | 90.79 206 | 78.96 359 | 90.46 347 | 88.63 107 | 92.72 173 | 90.67 319 | 91.65 116 | 98.68 11 | 97.64 66 | 96.06 15 | 77.53 381 | 59.84 375 | 99.41 55 | 70.73 379 |
|
FMVSNet5 | | | 87.82 275 | 86.56 292 | 91.62 223 | 92.31 312 | 79.81 258 | 93.49 152 | 94.81 250 | 83.26 259 | 91.36 265 | 96.93 118 | 52.77 379 | 97.49 264 | 76.07 330 | 98.03 212 | 97.55 197 |
|
GA-MVS | | | 87.70 276 | 86.82 287 | 90.31 267 | 93.27 298 | 77.22 301 | 84.72 351 | 92.79 289 | 85.11 242 | 89.82 294 | 90.07 332 | 66.80 335 | 97.76 248 | 84.56 256 | 94.27 320 | 95.96 264 |
|
TR-MVS | | | 87.70 276 | 87.17 280 | 89.27 291 | 94.11 282 | 79.26 269 | 88.69 302 | 91.86 308 | 81.94 278 | 90.69 277 | 89.79 337 | 82.82 240 | 97.42 268 | 72.65 348 | 91.98 350 | 91.14 356 |
|
thres600view7 | | | 87.66 278 | 87.10 284 | 89.36 289 | 96.05 210 | 73.17 339 | 92.72 173 | 85.31 356 | 91.89 99 | 93.29 209 | 90.97 323 | 63.42 354 | 98.39 189 | 73.23 344 | 96.99 255 | 96.51 241 |
|
PAPR | | | 87.65 279 | 86.77 289 | 90.27 269 | 92.85 306 | 77.38 298 | 88.56 305 | 96.23 199 | 76.82 317 | 84.98 346 | 89.75 339 | 86.08 213 | 97.16 278 | 72.33 349 | 93.35 332 | 96.26 254 |
|
baseline1 | | | 87.62 280 | 87.31 275 | 88.54 304 | 94.71 268 | 74.27 333 | 93.10 163 | 88.20 331 | 86.20 219 | 92.18 254 | 93.04 285 | 73.21 310 | 95.52 321 | 79.32 307 | 85.82 369 | 95.83 271 |
|
test_fmvs1 | | | 87.59 281 | 87.27 277 | 88.54 304 | 88.32 366 | 81.26 233 | 90.43 253 | 95.72 218 | 70.55 353 | 91.70 261 | 94.63 238 | 68.13 327 | 89.42 369 | 90.59 134 | 95.34 295 | 94.94 299 |
|
our_test_3 | | | 87.55 282 | 87.59 272 | 87.44 322 | 91.76 329 | 70.48 355 | 83.83 358 | 90.55 320 | 79.79 289 | 92.06 257 | 92.17 306 | 78.63 276 | 95.63 319 | 84.77 253 | 94.73 309 | 96.22 255 |
|
PatchT | | | 87.51 283 | 88.17 263 | 85.55 336 | 90.64 342 | 66.91 366 | 92.02 205 | 86.09 347 | 92.20 90 | 89.05 305 | 97.16 103 | 64.15 350 | 96.37 305 | 89.21 179 | 92.98 340 | 93.37 335 |
|
Test_1112_low_res | | | 87.50 284 | 86.58 291 | 90.25 270 | 96.80 158 | 77.75 293 | 87.53 316 | 96.25 197 | 69.73 358 | 86.47 337 | 93.61 273 | 75.67 301 | 97.88 234 | 79.95 298 | 93.20 334 | 95.11 293 |
|
SCA | | | 87.43 285 | 87.21 279 | 88.10 314 | 92.01 324 | 71.98 349 | 89.43 282 | 88.11 334 | 82.26 276 | 88.71 313 | 92.83 290 | 78.65 274 | 97.59 258 | 79.61 304 | 93.30 333 | 94.75 304 |
|
EU-MVSNet | | | 87.39 286 | 86.71 290 | 89.44 286 | 93.40 296 | 76.11 316 | 94.93 107 | 90.00 322 | 57.17 378 | 95.71 125 | 97.37 82 | 64.77 348 | 97.68 254 | 92.67 86 | 94.37 317 | 94.52 309 |
|
thres100view900 | | | 87.35 287 | 86.89 286 | 88.72 300 | 96.14 204 | 73.09 341 | 93.00 165 | 85.31 356 | 92.13 92 | 93.26 212 | 90.96 324 | 63.42 354 | 98.28 198 | 71.27 356 | 96.54 268 | 94.79 302 |
|
CMPMVS |  | 68.83 22 | 87.28 288 | 85.67 302 | 92.09 208 | 88.77 364 | 85.42 179 | 90.31 257 | 94.38 259 | 70.02 356 | 88.00 324 | 93.30 280 | 73.78 309 | 94.03 344 | 75.96 332 | 96.54 268 | 96.83 231 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
sss | | | 87.23 289 | 86.82 287 | 88.46 308 | 93.96 286 | 77.94 288 | 86.84 328 | 92.78 290 | 77.59 309 | 87.61 330 | 91.83 311 | 78.75 272 | 91.92 355 | 77.84 316 | 94.20 321 | 95.52 285 |
|
BH-w/o | | | 87.21 290 | 87.02 285 | 87.79 319 | 94.77 263 | 77.27 300 | 87.90 309 | 93.21 283 | 81.74 279 | 89.99 291 | 88.39 353 | 83.47 230 | 96.93 287 | 71.29 355 | 92.43 346 | 89.15 361 |
|
thres400 | | | 87.20 291 | 86.52 294 | 89.24 293 | 95.77 227 | 72.94 342 | 91.89 212 | 86.00 348 | 90.84 132 | 92.61 235 | 89.80 335 | 63.93 351 | 98.28 198 | 71.27 356 | 96.54 268 | 96.51 241 |
|
CHOSEN 1792x2688 | | | 87.19 292 | 85.92 301 | 91.00 248 | 97.13 141 | 79.41 266 | 84.51 353 | 95.60 221 | 64.14 372 | 90.07 289 | 94.81 230 | 78.26 279 | 97.14 279 | 73.34 343 | 95.38 294 | 96.46 246 |
|
HyFIR lowres test | | | 87.19 292 | 85.51 303 | 92.24 200 | 97.12 142 | 80.51 241 | 85.03 347 | 96.06 206 | 66.11 368 | 91.66 262 | 92.98 288 | 70.12 322 | 99.14 85 | 75.29 334 | 95.23 298 | 97.07 219 |
|
MIMVSNet | | | 87.13 294 | 86.54 293 | 88.89 297 | 96.05 210 | 76.11 316 | 94.39 125 | 88.51 327 | 81.37 280 | 88.27 321 | 96.75 131 | 72.38 313 | 95.52 321 | 65.71 371 | 95.47 290 | 95.03 294 |
|
tfpn200view9 | | | 87.05 295 | 86.52 294 | 88.67 301 | 95.77 227 | 72.94 342 | 91.89 212 | 86.00 348 | 90.84 132 | 92.61 235 | 89.80 335 | 63.93 351 | 98.28 198 | 71.27 356 | 96.54 268 | 94.79 302 |
|
cascas | | | 87.02 296 | 86.28 298 | 89.25 292 | 91.56 333 | 76.45 313 | 84.33 355 | 96.78 170 | 71.01 349 | 86.89 336 | 85.91 366 | 81.35 254 | 96.94 285 | 83.09 265 | 95.60 286 | 94.35 313 |
|
WTY-MVS | | | 86.93 297 | 86.50 296 | 88.24 311 | 94.96 254 | 74.64 326 | 87.19 321 | 92.07 305 | 78.29 306 | 88.32 320 | 91.59 316 | 78.06 280 | 94.27 341 | 74.88 336 | 93.15 336 | 95.80 272 |
|
HY-MVS | | 82.50 18 | 86.81 298 | 85.93 300 | 89.47 285 | 93.63 293 | 77.93 289 | 94.02 138 | 91.58 312 | 75.68 319 | 83.64 355 | 93.64 270 | 77.40 285 | 97.42 268 | 71.70 353 | 92.07 349 | 93.05 340 |
|
test_f | | | 86.65 299 | 87.13 282 | 85.19 340 | 90.28 349 | 86.11 166 | 86.52 339 | 91.66 310 | 69.76 357 | 95.73 124 | 97.21 101 | 69.51 324 | 81.28 380 | 89.15 180 | 94.40 315 | 88.17 366 |
|
1314 | | | 86.46 300 | 86.33 297 | 86.87 327 | 91.65 331 | 74.54 328 | 91.94 209 | 94.10 265 | 74.28 329 | 84.78 348 | 87.33 359 | 83.03 236 | 95.00 333 | 78.72 311 | 91.16 355 | 91.06 357 |
|
ET-MVSNet_ETH3D | | | 86.15 301 | 84.27 311 | 91.79 215 | 93.04 303 | 81.28 232 | 87.17 322 | 86.14 346 | 79.57 293 | 83.65 354 | 88.66 349 | 57.10 369 | 98.18 209 | 87.74 209 | 95.40 292 | 95.90 269 |
|
Patchmatch-test | | | 86.10 302 | 86.01 299 | 86.38 333 | 90.63 343 | 74.22 334 | 89.57 277 | 86.69 342 | 85.73 229 | 89.81 295 | 92.83 290 | 65.24 346 | 91.04 359 | 77.82 318 | 95.78 283 | 93.88 324 |
|
thres200 | | | 85.85 303 | 85.18 304 | 87.88 318 | 94.44 275 | 72.52 346 | 89.08 292 | 86.21 345 | 88.57 182 | 91.44 264 | 88.40 352 | 64.22 349 | 98.00 223 | 68.35 364 | 95.88 282 | 93.12 337 |
|
EPNet_dtu | | | 85.63 304 | 84.37 309 | 89.40 288 | 86.30 376 | 74.33 332 | 91.64 222 | 88.26 329 | 84.84 248 | 72.96 380 | 89.85 333 | 71.27 319 | 97.69 253 | 76.60 327 | 97.62 231 | 96.18 257 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
test_vis1_rt | | | 85.58 305 | 84.58 307 | 88.60 303 | 87.97 367 | 86.76 145 | 85.45 344 | 93.59 273 | 66.43 366 | 87.64 328 | 89.20 346 | 79.33 268 | 85.38 377 | 81.59 281 | 89.98 361 | 93.66 329 |
|
test2506 | | | 85.42 306 | 84.57 308 | 87.96 315 | 97.81 102 | 66.53 369 | 96.14 58 | 56.35 387 | 89.04 169 | 93.55 202 | 98.10 40 | 42.88 389 | 98.68 162 | 88.09 201 | 99.18 93 | 98.67 99 |
|
PatchmatchNet |  | | 85.22 307 | 84.64 306 | 86.98 325 | 89.51 358 | 69.83 361 | 90.52 248 | 87.34 339 | 78.87 303 | 87.22 334 | 92.74 294 | 66.91 334 | 96.53 296 | 81.77 278 | 86.88 367 | 94.58 308 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
CVMVSNet | | | 85.16 308 | 84.72 305 | 86.48 329 | 92.12 320 | 70.19 356 | 92.32 194 | 88.17 332 | 56.15 379 | 90.64 278 | 95.85 183 | 67.97 330 | 96.69 294 | 88.78 189 | 90.52 358 | 92.56 345 |
|
JIA-IIPM | | | 85.08 309 | 83.04 319 | 91.19 242 | 87.56 369 | 86.14 165 | 89.40 284 | 84.44 363 | 88.98 171 | 82.20 363 | 97.95 49 | 56.82 371 | 96.15 309 | 76.55 328 | 83.45 373 | 91.30 355 |
|
MVS | | | 84.98 310 | 84.30 310 | 87.01 324 | 91.03 338 | 77.69 295 | 91.94 209 | 94.16 264 | 59.36 377 | 84.23 352 | 87.50 357 | 85.66 217 | 96.80 291 | 71.79 351 | 93.05 339 | 86.54 370 |
|
thisisatest0515 | | | 84.72 311 | 82.99 320 | 89.90 279 | 92.96 305 | 75.33 324 | 84.36 354 | 83.42 366 | 77.37 311 | 88.27 321 | 86.65 360 | 53.94 376 | 98.72 151 | 82.56 270 | 97.40 239 | 95.67 279 |
|
dmvs_re | | | 84.69 312 | 83.94 314 | 86.95 326 | 92.24 314 | 82.93 212 | 89.51 279 | 87.37 338 | 84.38 252 | 85.37 342 | 85.08 369 | 72.44 312 | 86.59 374 | 68.05 365 | 91.03 357 | 91.33 354 |
|
FPMVS | | | 84.50 313 | 83.28 317 | 88.16 313 | 96.32 188 | 94.49 16 | 85.76 341 | 85.47 354 | 83.09 263 | 85.20 344 | 94.26 249 | 63.79 353 | 86.58 375 | 63.72 373 | 91.88 352 | 83.40 373 |
|
tpm | | | 84.38 314 | 84.08 312 | 85.30 339 | 90.47 346 | 63.43 379 | 89.34 285 | 85.63 352 | 77.24 313 | 87.62 329 | 95.03 223 | 61.00 364 | 97.30 274 | 79.26 308 | 91.09 356 | 95.16 290 |
|
tpmvs | | | 84.22 315 | 83.97 313 | 84.94 341 | 87.09 373 | 65.18 372 | 91.21 231 | 88.35 328 | 82.87 267 | 85.21 343 | 90.96 324 | 65.24 346 | 96.75 292 | 79.60 306 | 85.25 370 | 92.90 342 |
|
ADS-MVSNet2 | | | 84.01 316 | 82.20 325 | 89.41 287 | 89.04 361 | 76.37 315 | 87.57 312 | 90.98 316 | 72.71 341 | 84.46 349 | 92.45 299 | 68.08 328 | 96.48 299 | 70.58 360 | 83.97 371 | 95.38 287 |
|
mvsany_test1 | | | 83.91 317 | 82.93 321 | 86.84 328 | 86.18 377 | 85.93 169 | 81.11 367 | 75.03 382 | 70.80 352 | 88.57 317 | 94.63 238 | 83.08 235 | 87.38 372 | 80.39 290 | 86.57 368 | 87.21 368 |
|
test-LLR | | | 83.58 318 | 83.17 318 | 84.79 343 | 89.68 355 | 66.86 367 | 83.08 360 | 84.52 361 | 83.07 264 | 82.85 360 | 84.78 370 | 62.86 357 | 93.49 347 | 82.85 266 | 94.86 305 | 94.03 319 |
|
baseline2 | | | 83.38 319 | 81.54 328 | 88.90 296 | 91.38 334 | 72.84 344 | 88.78 299 | 81.22 371 | 78.97 301 | 79.82 373 | 87.56 355 | 61.73 361 | 97.80 242 | 74.30 339 | 90.05 360 | 96.05 262 |
|
IB-MVS | | 77.21 19 | 83.11 320 | 81.05 331 | 89.29 290 | 91.15 337 | 75.85 319 | 85.66 342 | 86.00 348 | 79.70 291 | 82.02 366 | 86.61 361 | 48.26 382 | 98.39 189 | 77.84 316 | 92.22 347 | 93.63 330 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
CostFormer | | | 83.09 321 | 82.21 324 | 85.73 335 | 89.27 360 | 67.01 365 | 90.35 255 | 86.47 344 | 70.42 354 | 83.52 357 | 93.23 283 | 61.18 362 | 96.85 289 | 77.21 323 | 88.26 365 | 93.34 336 |
|
PMMVS | | | 83.00 322 | 81.11 330 | 88.66 302 | 83.81 384 | 86.44 156 | 82.24 364 | 85.65 351 | 61.75 376 | 82.07 364 | 85.64 367 | 79.75 265 | 91.59 357 | 75.99 331 | 93.09 337 | 87.94 367 |
|
PVSNet | | 76.22 20 | 82.89 323 | 82.37 323 | 84.48 345 | 93.96 286 | 64.38 377 | 78.60 371 | 88.61 326 | 71.50 345 | 84.43 351 | 86.36 364 | 74.27 306 | 94.60 335 | 69.87 362 | 93.69 328 | 94.46 310 |
|
tpmrst | | | 82.85 324 | 82.93 321 | 82.64 352 | 87.65 368 | 58.99 382 | 90.14 262 | 87.90 335 | 75.54 321 | 83.93 353 | 91.63 315 | 66.79 337 | 95.36 327 | 81.21 286 | 81.54 377 | 93.57 334 |
|
test0.0.03 1 | | | 82.48 325 | 81.47 329 | 85.48 337 | 89.70 354 | 73.57 338 | 84.73 349 | 81.64 370 | 83.07 264 | 88.13 323 | 86.61 361 | 62.86 357 | 89.10 371 | 66.24 370 | 90.29 359 | 93.77 326 |
|
ADS-MVSNet | | | 82.25 326 | 81.55 327 | 84.34 346 | 89.04 361 | 65.30 371 | 87.57 312 | 85.13 360 | 72.71 341 | 84.46 349 | 92.45 299 | 68.08 328 | 92.33 353 | 70.58 360 | 83.97 371 | 95.38 287 |
|
DSMNet-mixed | | | 82.21 327 | 81.56 326 | 84.16 347 | 89.57 357 | 70.00 360 | 90.65 245 | 77.66 381 | 54.99 380 | 83.30 358 | 97.57 69 | 77.89 282 | 90.50 362 | 66.86 369 | 95.54 288 | 91.97 349 |
|
KD-MVS_2432*1600 | | | 82.17 328 | 80.75 335 | 86.42 331 | 82.04 385 | 70.09 358 | 81.75 365 | 90.80 317 | 82.56 270 | 90.37 283 | 89.30 344 | 42.90 387 | 96.11 311 | 74.47 337 | 92.55 344 | 93.06 338 |
|
miper_refine_blended | | | 82.17 328 | 80.75 335 | 86.42 331 | 82.04 385 | 70.09 358 | 81.75 365 | 90.80 317 | 82.56 270 | 90.37 283 | 89.30 344 | 42.90 387 | 96.11 311 | 74.47 337 | 92.55 344 | 93.06 338 |
|
gg-mvs-nofinetune | | | 82.10 330 | 81.02 332 | 85.34 338 | 87.46 371 | 71.04 352 | 94.74 111 | 67.56 384 | 96.44 23 | 79.43 374 | 98.99 6 | 45.24 383 | 96.15 309 | 67.18 368 | 92.17 348 | 88.85 363 |
|
PAPM | | | 81.91 331 | 80.11 341 | 87.31 323 | 93.87 289 | 72.32 348 | 84.02 357 | 93.22 281 | 69.47 359 | 76.13 378 | 89.84 334 | 72.15 314 | 97.23 276 | 53.27 379 | 89.02 362 | 92.37 347 |
|
tpm2 | | | 81.46 332 | 80.35 339 | 84.80 342 | 89.90 352 | 65.14 373 | 90.44 250 | 85.36 355 | 65.82 370 | 82.05 365 | 92.44 301 | 57.94 368 | 96.69 294 | 70.71 359 | 88.49 364 | 92.56 345 |
|
PMMVS2 | | | 81.31 333 | 83.44 316 | 74.92 362 | 90.52 345 | 46.49 387 | 69.19 376 | 85.23 359 | 84.30 253 | 87.95 325 | 94.71 236 | 76.95 293 | 84.36 379 | 64.07 372 | 98.09 207 | 93.89 323 |
|
new_pmnet | | | 81.22 334 | 81.01 333 | 81.86 354 | 90.92 341 | 70.15 357 | 84.03 356 | 80.25 375 | 70.83 350 | 85.97 340 | 89.78 338 | 67.93 331 | 84.65 378 | 67.44 367 | 91.90 351 | 90.78 358 |
|
test-mter | | | 81.21 335 | 80.01 342 | 84.79 343 | 89.68 355 | 66.86 367 | 83.08 360 | 84.52 361 | 73.85 332 | 82.85 360 | 84.78 370 | 43.66 386 | 93.49 347 | 82.85 266 | 94.86 305 | 94.03 319 |
|
EPMVS | | | 81.17 336 | 80.37 338 | 83.58 349 | 85.58 379 | 65.08 374 | 90.31 257 | 71.34 383 | 77.31 312 | 85.80 341 | 91.30 318 | 59.38 366 | 92.70 352 | 79.99 297 | 82.34 376 | 92.96 341 |
|
EGC-MVSNET | | | 80.97 337 | 75.73 349 | 96.67 42 | 98.85 24 | 94.55 15 | 96.83 23 | 96.60 180 | 2.44 384 | 5.32 385 | 98.25 35 | 92.24 111 | 98.02 221 | 91.85 105 | 99.21 89 | 97.45 202 |
|
pmmvs3 | | | 80.83 338 | 78.96 345 | 86.45 330 | 87.23 372 | 77.48 297 | 84.87 348 | 82.31 368 | 63.83 373 | 85.03 345 | 89.50 342 | 49.66 380 | 93.10 349 | 73.12 346 | 95.10 300 | 88.78 365 |
|
E-PMN | | | 80.72 339 | 80.86 334 | 80.29 357 | 85.11 380 | 68.77 363 | 72.96 373 | 81.97 369 | 87.76 198 | 83.25 359 | 83.01 374 | 62.22 360 | 89.17 370 | 77.15 324 | 94.31 319 | 82.93 374 |
|
tpm cat1 | | | 80.61 340 | 79.46 343 | 84.07 348 | 88.78 363 | 65.06 375 | 89.26 288 | 88.23 330 | 62.27 375 | 81.90 367 | 89.66 341 | 62.70 359 | 95.29 330 | 71.72 352 | 80.60 378 | 91.86 352 |
|
EMVS | | | 80.35 341 | 80.28 340 | 80.54 356 | 84.73 382 | 69.07 362 | 72.54 375 | 80.73 372 | 87.80 196 | 81.66 368 | 81.73 375 | 62.89 356 | 89.84 365 | 75.79 333 | 94.65 312 | 82.71 375 |
|
CHOSEN 280x420 | | | 80.04 342 | 77.97 348 | 86.23 334 | 90.13 350 | 74.53 329 | 72.87 374 | 89.59 323 | 66.38 367 | 76.29 377 | 85.32 368 | 56.96 370 | 95.36 327 | 69.49 363 | 94.72 310 | 88.79 364 |
|
dp | | | 79.28 343 | 78.62 346 | 81.24 355 | 85.97 378 | 56.45 383 | 86.91 326 | 85.26 358 | 72.97 339 | 81.45 370 | 89.17 348 | 56.01 373 | 95.45 325 | 73.19 345 | 76.68 379 | 91.82 353 |
|
TESTMET0.1,1 | | | 79.09 344 | 78.04 347 | 82.25 353 | 87.52 370 | 64.03 378 | 83.08 360 | 80.62 373 | 70.28 355 | 80.16 372 | 83.22 373 | 44.13 385 | 90.56 361 | 79.95 298 | 93.36 331 | 92.15 348 |
|
MVS-HIRNet | | | 78.83 345 | 80.60 337 | 73.51 363 | 93.07 301 | 47.37 386 | 87.10 323 | 78.00 380 | 68.94 360 | 77.53 376 | 97.26 94 | 71.45 318 | 94.62 334 | 63.28 374 | 88.74 363 | 78.55 378 |
|
dmvs_testset | | | 78.23 346 | 78.99 344 | 75.94 361 | 91.99 325 | 55.34 385 | 88.86 296 | 78.70 378 | 82.69 269 | 81.64 369 | 79.46 376 | 75.93 300 | 85.74 376 | 48.78 381 | 82.85 375 | 86.76 369 |
|
PVSNet_0 | | 70.34 21 | 74.58 347 | 72.96 350 | 79.47 358 | 90.63 343 | 66.24 370 | 73.26 372 | 83.40 367 | 63.67 374 | 78.02 375 | 78.35 378 | 72.53 311 | 89.59 367 | 56.68 377 | 60.05 382 | 82.57 376 |
|
MVE |  | 59.87 23 | 73.86 348 | 72.65 351 | 77.47 360 | 87.00 375 | 74.35 331 | 61.37 378 | 60.93 386 | 67.27 364 | 69.69 381 | 86.49 363 | 81.24 258 | 72.33 382 | 56.45 378 | 83.45 373 | 85.74 371 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
test_method | | | 50.44 349 | 48.94 352 | 54.93 364 | 39.68 388 | 12.38 390 | 28.59 379 | 90.09 321 | 6.82 382 | 41.10 384 | 78.41 377 | 54.41 375 | 70.69 383 | 50.12 380 | 51.26 383 | 81.72 377 |
|
tmp_tt | | | 37.97 350 | 44.33 353 | 18.88 366 | 11.80 389 | 21.54 389 | 63.51 377 | 45.66 390 | 4.23 383 | 51.34 383 | 50.48 381 | 59.08 367 | 22.11 385 | 44.50 382 | 68.35 381 | 13.00 381 |
|
cdsmvs_eth3d_5k | | | 23.35 351 | 31.13 354 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 95.58 227 | 0.00 387 | 0.00 388 | 91.15 320 | 93.43 81 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
test123 | | | 9.49 352 | 12.01 355 | 1.91 367 | 2.87 390 | 1.30 391 | 82.38 363 | 1.34 392 | 1.36 385 | 2.84 386 | 6.56 384 | 2.45 390 | 0.97 386 | 2.73 384 | 5.56 384 | 3.47 382 |
|
testmvs | | | 9.02 353 | 11.42 356 | 1.81 368 | 2.77 391 | 1.13 392 | 79.44 370 | 1.90 391 | 1.18 386 | 2.65 387 | 6.80 383 | 1.95 391 | 0.87 387 | 2.62 385 | 3.45 385 | 3.44 383 |
|
pcd_1.5k_mvsjas | | | 7.56 354 | 10.09 357 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 90.77 143 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
ab-mvs-re | | | 7.56 354 | 10.08 358 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 90.69 329 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
test_blank | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
uanet_test | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
DCPMVS | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
sosnet-low-res | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
sosnet | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
uncertanet | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
Regformer | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
uanet | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
FOURS1 | | | | | | 99.21 3 | 94.68 12 | 98.45 4 | 98.81 8 | 97.73 6 | 98.27 20 | | | | | | |
|
MSC_two_6792asdad | | | | | 95.90 65 | 96.54 171 | 89.57 88 | | 96.87 164 | | | | | 99.41 38 | 94.06 35 | 99.30 70 | 98.72 92 |
|
PC_three_1452 | | | | | | | | | | 75.31 324 | 95.87 117 | 95.75 192 | 92.93 98 | 96.34 308 | 87.18 218 | 98.68 151 | 98.04 146 |
|
No_MVS | | | | | 95.90 65 | 96.54 171 | 89.57 88 | | 96.87 164 | | | | | 99.41 38 | 94.06 35 | 99.30 70 | 98.72 92 |
|
test_one_0601 | | | | | | 98.26 71 | 87.14 136 | | 98.18 38 | 94.25 45 | 96.99 68 | 97.36 85 | 95.13 40 | | | | |
|
eth-test2 | | | | | | 0.00 392 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 392 | | | | | | | | | | | |
|
ZD-MVS | | | | | | 97.23 135 | 90.32 78 | | 97.54 109 | 84.40 251 | 94.78 167 | 95.79 187 | 92.76 104 | 99.39 48 | 88.72 191 | 98.40 174 | |
|
RE-MVS-def | | | | 96.66 19 | | 98.07 83 | 95.27 9 | 96.37 44 | 98.12 48 | 95.66 32 | 97.00 66 | 97.03 112 | 95.40 28 | | 93.49 52 | 98.84 129 | 98.00 151 |
|
IU-MVS | | | | | | 98.51 51 | 86.66 150 | | 96.83 167 | 72.74 340 | 95.83 118 | | | | 93.00 77 | 99.29 73 | 98.64 106 |
|
OPU-MVS | | | | | 95.15 93 | 96.84 154 | 89.43 92 | 95.21 94 | | | | 95.66 195 | 93.12 92 | 98.06 216 | 86.28 236 | 98.61 157 | 97.95 159 |
|
test_241102_TWO | | | | | | | | | 98.10 51 | 91.95 95 | 97.54 39 | 97.25 95 | 95.37 29 | 99.35 59 | 93.29 65 | 99.25 82 | 98.49 117 |
|
test_241102_ONE | | | | | | 98.51 51 | 86.97 140 | | 98.10 51 | 91.85 101 | 97.63 35 | 97.03 112 | 96.48 10 | 98.95 113 | | | |
|
9.14 | | | | 94.81 101 | | 97.49 125 | | 94.11 136 | 98.37 18 | 87.56 204 | 95.38 137 | 96.03 177 | 94.66 57 | 99.08 93 | 90.70 132 | 98.97 116 | |
|
save fliter | | | | | | 97.46 128 | 88.05 121 | 92.04 204 | 97.08 147 | 87.63 202 | | | | | | | |
|
test_0728_THIRD | | | | | | | | | | 93.26 68 | 97.40 50 | 97.35 88 | 94.69 56 | 99.34 62 | 93.88 38 | 99.42 51 | 98.89 71 |
|
test_0728_SECOND | | | | | 94.88 100 | 98.55 45 | 86.72 147 | 95.20 96 | 98.22 33 | | | | | 99.38 54 | 93.44 58 | 99.31 68 | 98.53 114 |
|
test0726 | | | | | | 98.51 51 | 86.69 148 | 95.34 89 | 98.18 38 | 91.85 101 | 97.63 35 | 97.37 82 | 95.58 23 | | | | |
|
GSMVS | | | | | | | | | | | | | | | | | 94.75 304 |
|
test_part2 | | | | | | 98.21 75 | 89.41 93 | | | | 96.72 78 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 66.64 338 | | | | 94.75 304 |
|
sam_mvs | | | | | | | | | | | | | 66.41 339 | | | | |
|
ambc | | | | | 92.98 170 | 96.88 151 | 83.01 211 | 95.92 68 | 96.38 193 | | 96.41 88 | 97.48 77 | 88.26 175 | 97.80 242 | 89.96 159 | 98.93 121 | 98.12 142 |
|
MTGPA |  | | | | | | | | 97.62 102 | | | | | | | | |
|
test_post1 | | | | | | | | 90.21 259 | | | | 5.85 386 | 65.36 344 | 96.00 314 | 79.61 304 | | |
|
test_post | | | | | | | | | | | | 6.07 385 | 65.74 343 | 95.84 317 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 91.71 313 | 66.22 341 | 97.59 258 | | | |
|
GG-mvs-BLEND | | | | | 83.24 351 | 85.06 381 | 71.03 353 | 94.99 106 | 65.55 385 | | 74.09 379 | 75.51 379 | 44.57 384 | 94.46 337 | 59.57 376 | 87.54 366 | 84.24 372 |
|
MTMP | | | | | | | | 94.82 109 | 54.62 388 | | | | | | | | |
|
gm-plane-assit | | | | | | 87.08 374 | 59.33 381 | | | 71.22 346 | | 83.58 372 | | 97.20 277 | 73.95 340 | | |
|
test9_res | | | | | | | | | | | | | | | 88.16 199 | 98.40 174 | 97.83 173 |
|
TEST9 | | | | | | 96.45 178 | 89.46 90 | 90.60 246 | 96.92 159 | 79.09 300 | 90.49 279 | 94.39 246 | 91.31 129 | 98.88 120 | | | |
|
test_8 | | | | | | 96.37 180 | 89.14 97 | 90.51 249 | 96.89 162 | 79.37 295 | 90.42 281 | 94.36 248 | 91.20 134 | 98.82 130 | | | |
|
agg_prior2 | | | | | | | | | | | | | | | 87.06 221 | 98.36 183 | 97.98 155 |
|
agg_prior | | | | | | 96.20 199 | 88.89 103 | | 96.88 163 | | 90.21 286 | | | 98.78 142 | | | |
|
TestCases | | | | | 96.00 56 | 98.02 89 | 92.17 50 | | 98.43 15 | 90.48 142 | 95.04 157 | 96.74 132 | 92.54 108 | 97.86 238 | 85.11 248 | 98.98 112 | 97.98 155 |
|
test_prior4 | | | | | | | 89.91 82 | 90.74 241 | | | | | | | | | |
|
test_prior2 | | | | | | | | 90.21 259 | | 89.33 164 | 90.77 275 | 94.81 230 | 90.41 153 | | 88.21 195 | 98.55 162 | |
|
test_prior | | | | | 94.61 114 | 95.95 218 | 87.23 134 | | 97.36 125 | | | | | 98.68 162 | | | 97.93 161 |
|
旧先验2 | | | | | | | | 90.00 267 | | 68.65 361 | 92.71 233 | | | 96.52 297 | 85.15 245 | | |
|
新几何2 | | | | | | | | 90.02 266 | | | | | | | | | |
|
新几何1 | | | | | 93.17 167 | 97.16 139 | 87.29 132 | | 94.43 258 | 67.95 363 | 91.29 266 | 94.94 226 | 86.97 199 | 98.23 204 | 81.06 288 | 97.75 223 | 93.98 321 |
|
旧先验1 | | | | | | 96.20 199 | 84.17 193 | | 94.82 248 | | | 95.57 201 | 89.57 165 | | | 97.89 220 | 96.32 251 |
|
无先验 | | | | | | | | 89.94 268 | 95.75 217 | 70.81 351 | | | | 98.59 173 | 81.17 287 | | 94.81 300 |
|
原ACMM2 | | | | | | | | 89.34 285 | | | | | | | | | |
|
原ACMM1 | | | | | 92.87 178 | 96.91 150 | 84.22 191 | | 97.01 151 | 76.84 316 | 89.64 299 | 94.46 244 | 88.00 181 | 98.70 158 | 81.53 282 | 98.01 214 | 95.70 278 |
|
test222 | | | | | | 96.95 146 | 85.27 181 | 88.83 298 | 93.61 272 | 65.09 371 | 90.74 276 | 94.85 229 | 84.62 224 | | | 97.36 240 | 93.91 322 |
|
testdata2 | | | | | | | | | | | | | | 98.03 218 | 80.24 294 | | |
|
segment_acmp | | | | | | | | | | | | | 92.14 114 | | | | |
|
testdata | | | | | 91.03 245 | 96.87 152 | 82.01 221 | | 94.28 262 | 71.55 344 | 92.46 241 | 95.42 206 | 85.65 218 | 97.38 273 | 82.64 269 | 97.27 242 | 93.70 328 |
|
testdata1 | | | | | | | | 88.96 294 | | 88.44 184 | | | | | | | |
|
test12 | | | | | 94.43 127 | 95.95 218 | 86.75 146 | | 96.24 198 | | 89.76 297 | | 89.79 164 | 98.79 139 | | 97.95 217 | 97.75 183 |
|
plane_prior7 | | | | | | 97.71 110 | 88.68 106 | | | | | | | | | | |
|
plane_prior6 | | | | | | 97.21 137 | 88.23 118 | | | | | | 86.93 200 | | | | |
|
plane_prior5 | | | | | | | | | 97.81 88 | | | | | 98.95 113 | 89.26 176 | 98.51 168 | 98.60 110 |
|
plane_prior4 | | | | | | | | | | | | 95.59 197 | | | | | |
|
plane_prior3 | | | | | | | 88.43 116 | | | 90.35 147 | 93.31 207 | | | | | | |
|
plane_prior2 | | | | | | | | 94.56 120 | | 91.74 112 | | | | | | | |
|
plane_prior1 | | | | | | 97.38 130 | | | | | | | | | | | |
|
plane_prior | | | | | | | 88.12 119 | 93.01 164 | | 88.98 171 | | | | | | 98.06 209 | |
|
n2 | | | | | | | | | 0.00 393 | | | | | | | | |
|
nn | | | | | | | | | 0.00 393 | | | | | | | | |
|
door-mid | | | | | | | | | 92.13 304 | | | | | | | | |
|
lessismore_v0 | | | | | 93.87 146 | 98.05 85 | 83.77 199 | | 80.32 374 | | 97.13 58 | 97.91 54 | 77.49 284 | 99.11 92 | 92.62 87 | 98.08 208 | 98.74 90 |
|
LGP-MVS_train | | | | | 96.84 38 | 98.36 66 | 92.13 52 | | 98.25 28 | 91.78 108 | 97.07 61 | 97.22 99 | 96.38 12 | 99.28 71 | 92.07 98 | 99.59 28 | 99.11 44 |
|
test11 | | | | | | | | | 96.65 178 | | | | | | | | |
|
door | | | | | | | | | 91.26 313 | | | | | | | | |
|
HQP5-MVS | | | | | | | 84.89 184 | | | | | | | | | | |
|
HQP-NCC | | | | | | 96.36 182 | | 91.37 226 | | 87.16 208 | 88.81 308 | | | | | | |
|
ACMP_Plane | | | | | | 96.36 182 | | 91.37 226 | | 87.16 208 | 88.81 308 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 86.55 230 | | |
|
HQP4-MVS | | | | | | | | | | | 88.81 308 | | | 98.61 169 | | | 98.15 139 |
|
HQP3-MVS | | | | | | | | | 97.31 129 | | | | | | | 97.73 224 | |
|
HQP2-MVS | | | | | | | | | | | | | 84.76 222 | | | | |
|
NP-MVS | | | | | | 96.82 156 | 87.10 137 | | | | | 93.40 278 | | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 42.48 388 | 88.45 306 | | 67.22 365 | 83.56 356 | | 66.80 335 | | 72.86 347 | | 94.06 318 |
|
MDTV_nov1_ep13 | | | | 83.88 315 | | 89.42 359 | 61.52 380 | 88.74 301 | 87.41 337 | 73.99 331 | 84.96 347 | 94.01 260 | 65.25 345 | 95.53 320 | 78.02 314 | 93.16 335 | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 98.82 135 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 99.25 82 | |
|
Test By Simon | | | | | | | | | | | | | 90.61 149 | | | | |
|
ITE_SJBPF | | | | | 95.95 59 | 97.34 132 | 93.36 40 | | 96.55 186 | 91.93 97 | 94.82 165 | 95.39 210 | 91.99 116 | 97.08 281 | 85.53 241 | 97.96 216 | 97.41 205 |
|
DeepMVS_CX |  | | | | 53.83 365 | 70.38 387 | 64.56 376 | | 48.52 389 | 33.01 381 | 65.50 382 | 74.21 380 | 56.19 372 | 46.64 384 | 38.45 383 | 70.07 380 | 50.30 380 |
|