LCM-MVSNet | | | 99.43 1 | 99.49 1 | 99.24 1 | 99.95 1 | 98.13 1 | 99.37 1 | 99.57 1 | 99.82 1 | 99.86 1 | 99.85 1 | 99.52 1 | 99.73 1 | 97.58 1 | 99.94 1 | 99.85 1 |
|
LTVRE_ROB | | 93.87 1 | 97.93 2 | 98.16 2 | 97.26 26 | 98.81 26 | 93.86 32 | 99.07 2 | 98.98 6 | 97.01 13 | 98.92 4 | 98.78 14 | 95.22 37 | 98.61 183 | 96.85 2 | 99.77 10 | 99.31 29 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
TDRefinement | | | 97.68 3 | 97.60 4 | 97.93 2 | 99.02 12 | 95.95 5 | 98.61 3 | 98.81 8 | 97.41 10 | 97.28 51 | 98.46 26 | 94.62 58 | 98.84 140 | 94.64 19 | 99.53 37 | 98.99 56 |
|
UA-Net | | | 97.35 4 | 97.24 11 | 97.69 5 | 98.22 73 | 93.87 31 | 98.42 6 | 98.19 36 | 96.95 14 | 95.46 133 | 99.23 4 | 93.45 77 | 99.57 14 | 95.34 15 | 99.89 2 | 99.63 9 |
|
abl_6 | | | 97.31 5 | 97.12 13 | 97.86 3 | 98.54 45 | 95.32 7 | 96.61 31 | 98.35 20 | 95.81 31 | 97.55 38 | 97.44 71 | 96.51 9 | 99.40 47 | 94.06 32 | 99.23 84 | 98.85 79 |
|
UniMVSNet_ETH3D | | | 97.13 6 | 97.72 3 | 95.35 91 | 99.51 2 | 87.38 137 | 97.70 8 | 97.54 111 | 98.16 2 | 98.94 2 | 99.33 2 | 97.84 4 | 99.08 102 | 90.73 132 | 99.73 14 | 99.59 13 |
|
HPM-MVS_fast | | | 97.01 7 | 96.89 15 | 97.39 22 | 99.12 8 | 93.92 29 | 97.16 13 | 98.17 41 | 93.11 73 | 96.48 83 | 97.36 78 | 96.92 6 | 99.34 66 | 94.31 25 | 99.38 59 | 98.92 70 |
|
SR-MVS-dyc-post | | | 96.84 8 | 96.60 25 | 97.56 10 | 98.07 82 | 95.27 8 | 96.37 44 | 98.12 47 | 95.66 33 | 97.00 62 | 97.03 100 | 94.85 52 | 99.42 33 | 93.49 50 | 98.84 130 | 98.00 157 |
|
mvs_tets | | | 96.83 9 | 96.71 19 | 97.17 27 | 98.83 24 | 92.51 50 | 96.58 33 | 97.61 106 | 87.57 210 | 98.80 7 | 98.90 9 | 96.50 10 | 99.59 13 | 96.15 7 | 99.47 42 | 99.40 22 |
|
v7n | | | 96.82 10 | 97.31 10 | 95.33 93 | 98.54 45 | 86.81 151 | 96.83 22 | 98.07 57 | 96.59 20 | 98.46 17 | 98.43 28 | 92.91 96 | 99.52 19 | 96.25 6 | 99.76 11 | 99.65 8 |
|
APD-MVS_3200maxsize | | | 96.82 10 | 96.65 21 | 97.32 25 | 97.95 95 | 93.82 34 | 96.31 50 | 98.25 28 | 95.51 35 | 96.99 64 | 97.05 99 | 95.63 21 | 99.39 52 | 93.31 65 | 98.88 125 | 98.75 89 |
|
HPM-MVS |  | | 96.81 12 | 96.62 23 | 97.36 24 | 98.89 19 | 93.53 39 | 97.51 9 | 98.44 13 | 92.35 85 | 95.95 111 | 96.41 142 | 96.71 8 | 99.42 33 | 93.99 35 | 99.36 60 | 99.13 42 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
pmmvs6 | | | 96.80 13 | 97.36 9 | 95.15 102 | 99.12 8 | 87.82 132 | 96.68 29 | 97.86 84 | 96.10 26 | 98.14 24 | 99.28 3 | 97.94 3 | 98.21 221 | 91.38 122 | 99.69 15 | 99.42 20 |
|
OurMVSNet-221017-0 | | | 96.80 13 | 96.75 18 | 96.96 36 | 99.03 11 | 91.85 59 | 97.98 7 | 98.01 70 | 94.15 51 | 98.93 3 | 99.07 5 | 88.07 186 | 99.57 14 | 95.86 9 | 99.69 15 | 99.46 19 |
|
test1172 | | | 96.79 15 | 96.52 27 | 97.60 9 | 98.03 88 | 94.87 10 | 96.07 60 | 98.06 60 | 95.76 32 | 96.89 67 | 96.85 112 | 94.85 52 | 99.42 33 | 93.35 64 | 98.81 138 | 98.53 116 |
|
COLMAP_ROB |  | 91.06 5 | 96.75 16 | 96.62 23 | 97.13 28 | 98.38 62 | 94.31 17 | 96.79 25 | 98.32 21 | 96.69 17 | 96.86 69 | 97.56 63 | 95.48 25 | 98.77 159 | 90.11 154 | 99.44 49 | 98.31 131 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
anonymousdsp | | | 96.74 17 | 96.42 29 | 97.68 7 | 98.00 91 | 94.03 26 | 96.97 19 | 97.61 106 | 87.68 207 | 98.45 18 | 98.77 15 | 94.20 67 | 99.50 21 | 96.70 3 | 99.40 57 | 99.53 15 |
|
DTE-MVSNet | | | 96.74 17 | 97.43 5 | 94.67 119 | 99.13 6 | 84.68 189 | 96.51 35 | 97.94 82 | 98.14 3 | 98.67 12 | 98.32 30 | 95.04 45 | 99.69 2 | 93.27 68 | 99.82 8 | 99.62 10 |
|
SR-MVS | | | 96.70 19 | 96.42 29 | 97.54 11 | 98.05 84 | 94.69 11 | 96.13 57 | 98.07 57 | 95.17 37 | 96.82 71 | 96.73 124 | 95.09 44 | 99.43 32 | 92.99 80 | 98.71 147 | 98.50 118 |
|
PS-CasMVS | | | 96.69 20 | 97.43 5 | 94.49 133 | 99.13 6 | 84.09 199 | 96.61 31 | 97.97 76 | 97.91 5 | 98.64 13 | 98.13 36 | 95.24 36 | 99.65 3 | 93.39 62 | 99.84 3 | 99.72 2 |
|
PEN-MVS | | | 96.69 20 | 97.39 8 | 94.61 122 | 99.16 4 | 84.50 190 | 96.54 34 | 98.05 61 | 98.06 4 | 98.64 13 | 98.25 32 | 95.01 48 | 99.65 3 | 92.95 81 | 99.83 6 | 99.68 4 |
|
MTAPA | | | 96.65 22 | 96.38 33 | 97.47 15 | 98.95 16 | 94.05 23 | 95.88 69 | 97.62 103 | 94.46 45 | 96.29 93 | 96.94 105 | 93.56 73 | 99.37 60 | 94.29 26 | 99.42 51 | 98.99 56 |
|
test_djsdf | | | 96.62 23 | 96.49 28 | 97.01 33 | 98.55 42 | 91.77 61 | 97.15 14 | 97.37 122 | 88.98 176 | 98.26 22 | 98.86 10 | 93.35 82 | 99.60 9 | 96.41 4 | 99.45 46 | 99.66 6 |
|
ACMMP |  | | 96.61 24 | 96.34 34 | 97.43 19 | 98.61 35 | 93.88 30 | 96.95 20 | 98.18 37 | 92.26 88 | 96.33 89 | 96.84 115 | 95.10 43 | 99.40 47 | 93.47 54 | 99.33 64 | 99.02 53 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
Anonymous20231211 | | | 96.60 25 | 97.13 12 | 95.00 106 | 97.46 127 | 86.35 166 | 97.11 18 | 98.24 31 | 97.58 8 | 98.72 8 | 98.97 7 | 93.15 88 | 99.15 90 | 93.18 71 | 99.74 13 | 99.50 17 |
|
WR-MVS_H | | | 96.60 25 | 97.05 14 | 95.24 98 | 99.02 12 | 86.44 162 | 96.78 26 | 98.08 54 | 97.42 9 | 98.48 16 | 97.86 52 | 91.76 122 | 99.63 6 | 94.23 28 | 99.84 3 | 99.66 6 |
|
jajsoiax | | | 96.59 27 | 96.42 29 | 97.12 29 | 98.76 29 | 92.49 51 | 96.44 41 | 97.42 120 | 86.96 219 | 98.71 10 | 98.72 17 | 95.36 31 | 99.56 17 | 95.92 8 | 99.45 46 | 99.32 28 |
|
ACMH | | 88.36 12 | 96.59 27 | 97.43 5 | 94.07 146 | 98.56 39 | 85.33 183 | 96.33 47 | 98.30 24 | 94.66 40 | 98.72 8 | 98.30 31 | 97.51 5 | 98.00 239 | 94.87 16 | 99.59 29 | 98.86 76 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
XVS | | | 96.49 29 | 96.18 42 | 97.44 17 | 98.56 39 | 93.99 27 | 96.50 36 | 97.95 79 | 94.58 41 | 94.38 176 | 96.49 136 | 94.56 59 | 99.39 52 | 93.57 46 | 99.05 104 | 98.93 66 |
|
ACMH+ | | 88.43 11 | 96.48 30 | 96.82 16 | 95.47 88 | 98.54 45 | 89.06 103 | 95.65 78 | 98.61 11 | 96.10 26 | 98.16 23 | 97.52 66 | 96.90 7 | 98.62 182 | 90.30 145 | 99.60 27 | 98.72 95 |
|
zzz-MVS | | | 96.47 31 | 96.14 45 | 97.47 15 | 98.95 16 | 94.05 23 | 93.69 149 | 97.62 103 | 94.46 45 | 96.29 93 | 96.94 105 | 93.56 73 | 99.37 60 | 94.29 26 | 99.42 51 | 98.99 56 |
|
APDe-MVS | | | 96.46 32 | 96.64 22 | 95.93 65 | 97.68 112 | 89.38 100 | 96.90 21 | 98.41 17 | 92.52 80 | 97.43 46 | 97.92 48 | 95.11 42 | 99.50 21 | 94.45 21 | 99.30 69 | 98.92 70 |
|
ACMMPR | | | 96.46 32 | 96.14 45 | 97.41 21 | 98.60 36 | 93.82 34 | 96.30 52 | 97.96 77 | 92.35 85 | 95.57 129 | 96.61 132 | 94.93 51 | 99.41 40 | 93.78 40 | 99.15 95 | 99.00 54 |
|
mPP-MVS | | | 96.46 32 | 96.05 51 | 97.69 5 | 98.62 33 | 94.65 13 | 96.45 39 | 97.74 97 | 92.59 79 | 95.47 131 | 96.68 127 | 94.50 61 | 99.42 33 | 93.10 75 | 99.26 80 | 98.99 56 |
|
CP-MVS | | | 96.44 35 | 96.08 49 | 97.54 11 | 98.29 67 | 94.62 14 | 96.80 24 | 98.08 54 | 92.67 78 | 95.08 153 | 96.39 147 | 94.77 54 | 99.42 33 | 93.17 72 | 99.44 49 | 98.58 114 |
|
ZNCC-MVS | | | 96.42 36 | 96.20 41 | 97.07 30 | 98.80 28 | 92.79 48 | 96.08 59 | 98.16 44 | 91.74 112 | 95.34 138 | 96.36 150 | 95.68 19 | 99.44 28 | 94.41 23 | 99.28 77 | 98.97 62 |
|
region2R | | | 96.41 37 | 96.09 48 | 97.38 23 | 98.62 33 | 93.81 36 | 96.32 49 | 97.96 77 | 92.26 88 | 95.28 142 | 96.57 134 | 95.02 47 | 99.41 40 | 93.63 44 | 99.11 99 | 98.94 65 |
|
SteuartSystems-ACMMP | | | 96.40 38 | 96.30 36 | 96.71 42 | 98.63 32 | 91.96 57 | 95.70 75 | 98.01 70 | 93.34 69 | 96.64 78 | 96.57 134 | 94.99 49 | 99.36 62 | 93.48 53 | 99.34 62 | 98.82 81 |
Skip Steuart: Steuart Systems R&D Blog. |
HFP-MVS | | | 96.39 39 | 96.17 44 | 97.04 31 | 98.51 49 | 93.37 40 | 96.30 52 | 97.98 73 | 92.35 85 | 95.63 126 | 96.47 137 | 95.37 28 | 99.27 78 | 93.78 40 | 99.14 96 | 98.48 120 |
|
LPG-MVS_test | | | 96.38 40 | 96.23 39 | 96.84 40 | 98.36 65 | 92.13 54 | 95.33 89 | 98.25 28 | 91.78 108 | 97.07 57 | 97.22 90 | 96.38 13 | 99.28 76 | 92.07 100 | 99.59 29 | 99.11 45 |
|
nrg030 | | | 96.32 41 | 96.55 26 | 95.62 82 | 97.83 99 | 88.55 117 | 95.77 73 | 98.29 27 | 92.68 76 | 98.03 26 | 97.91 49 | 95.13 40 | 98.95 124 | 93.85 38 | 99.49 41 | 99.36 25 |
|
PGM-MVS | | | 96.32 41 | 95.94 55 | 97.43 19 | 98.59 38 | 93.84 33 | 95.33 89 | 98.30 24 | 91.40 121 | 95.76 120 | 96.87 111 | 95.26 35 | 99.45 26 | 92.77 83 | 99.21 87 | 99.00 54 |
|
ACMM | | 88.83 9 | 96.30 43 | 96.07 50 | 96.97 35 | 98.39 61 | 92.95 46 | 94.74 112 | 98.03 66 | 90.82 135 | 97.15 54 | 96.85 112 | 96.25 15 | 99.00 116 | 93.10 75 | 99.33 64 | 98.95 64 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
GST-MVS | | | 96.24 44 | 95.99 54 | 97.00 34 | 98.65 31 | 92.71 49 | 95.69 77 | 98.01 70 | 92.08 93 | 95.74 122 | 96.28 156 | 95.22 37 | 99.42 33 | 93.17 72 | 99.06 101 | 98.88 75 |
|
ACMMP_NAP | | | 96.21 45 | 96.12 47 | 96.49 50 | 98.90 18 | 91.42 65 | 94.57 120 | 98.03 66 | 90.42 146 | 96.37 86 | 97.35 81 | 95.68 19 | 99.25 80 | 94.44 22 | 99.34 62 | 98.80 84 |
|
CP-MVSNet | | | 96.19 46 | 96.80 17 | 94.38 139 | 98.99 14 | 83.82 202 | 96.31 50 | 97.53 113 | 97.60 7 | 98.34 19 | 97.52 66 | 91.98 118 | 99.63 6 | 93.08 77 | 99.81 9 | 99.70 3 |
|
MP-MVS |  | | 96.14 47 | 95.68 67 | 97.51 13 | 98.81 26 | 94.06 21 | 96.10 58 | 97.78 96 | 92.73 75 | 93.48 202 | 96.72 125 | 94.23 66 | 99.42 33 | 91.99 102 | 99.29 72 | 99.05 51 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
LS3D | | | 96.11 48 | 95.83 62 | 96.95 37 | 94.75 267 | 94.20 19 | 97.34 12 | 97.98 73 | 97.31 11 | 95.32 139 | 96.77 117 | 93.08 91 | 99.20 86 | 91.79 110 | 98.16 206 | 97.44 209 |
|
MP-MVS-pluss | | | 96.08 49 | 95.92 57 | 96.57 46 | 99.06 10 | 91.21 67 | 93.25 159 | 98.32 21 | 87.89 200 | 96.86 69 | 97.38 74 | 95.55 24 | 99.39 52 | 95.47 13 | 99.47 42 | 99.11 45 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
TranMVSNet+NR-MVSNet | | | 96.07 50 | 96.26 38 | 95.50 87 | 98.26 70 | 87.69 133 | 93.75 147 | 97.86 84 | 95.96 30 | 97.48 44 | 97.14 94 | 95.33 32 | 99.44 28 | 90.79 131 | 99.76 11 | 99.38 23 |
|
PS-MVSNAJss | | | 96.01 51 | 96.04 52 | 95.89 70 | 98.82 25 | 88.51 119 | 95.57 82 | 97.88 83 | 88.72 182 | 98.81 6 | 98.86 10 | 90.77 147 | 99.60 9 | 95.43 14 | 99.53 37 | 99.57 14 |
|
SED-MVS | | | 96.00 52 | 96.41 32 | 94.76 115 | 98.51 49 | 86.97 147 | 95.21 93 | 98.10 50 | 91.95 95 | 97.63 34 | 97.25 87 | 96.48 11 | 99.35 63 | 93.29 66 | 99.29 72 | 97.95 165 |
|
DVP-MVS++ | | | 95.93 53 | 96.34 34 | 94.70 118 | 96.54 174 | 86.66 156 | 98.45 4 | 98.22 33 | 93.26 70 | 97.54 39 | 97.36 78 | 93.12 89 | 99.38 58 | 93.88 36 | 98.68 151 | 98.04 152 |
|
DPE-MVS |  | | 95.89 54 | 95.88 58 | 95.92 67 | 97.93 96 | 89.83 89 | 93.46 155 | 98.30 24 | 92.37 83 | 97.75 31 | 96.95 104 | 95.14 39 | 99.51 20 | 91.74 111 | 99.28 77 | 98.41 125 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
#test# | | | 95.89 54 | 95.51 72 | 97.04 31 | 98.51 49 | 93.37 40 | 95.14 98 | 97.98 73 | 89.34 167 | 95.63 126 | 96.47 137 | 95.37 28 | 99.27 78 | 91.99 102 | 99.14 96 | 98.48 120 |
|
SF-MVS | | | 95.88 56 | 95.88 58 | 95.87 71 | 98.12 78 | 89.65 92 | 95.58 81 | 98.56 12 | 91.84 104 | 96.36 87 | 96.68 127 | 94.37 64 | 99.32 72 | 92.41 93 | 99.05 104 | 98.64 105 |
|
3Dnovator+ | | 92.74 2 | 95.86 57 | 95.77 65 | 96.13 55 | 96.81 160 | 90.79 75 | 96.30 52 | 97.82 90 | 96.13 25 | 94.74 167 | 97.23 89 | 91.33 132 | 99.16 89 | 93.25 69 | 98.30 191 | 98.46 122 |
|
DVP-MVS |  | | 95.82 58 | 96.18 42 | 94.72 117 | 98.51 49 | 86.69 154 | 95.20 95 | 97.00 154 | 91.85 101 | 97.40 49 | 97.35 81 | 95.58 22 | 99.34 66 | 93.44 58 | 99.31 67 | 98.13 146 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
CS-MVS | | | 95.77 59 | 95.58 70 | 96.37 52 | 96.84 156 | 91.72 63 | 96.73 28 | 99.06 5 | 94.23 49 | 92.48 237 | 94.79 231 | 93.56 73 | 99.49 24 | 93.47 54 | 99.05 104 | 97.89 173 |
|
SMA-MVS |  | | 95.77 59 | 95.54 71 | 96.47 51 | 98.27 69 | 91.19 68 | 95.09 99 | 97.79 95 | 86.48 222 | 97.42 48 | 97.51 68 | 94.47 63 | 99.29 74 | 93.55 48 | 99.29 72 | 98.93 66 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
test_0402 | | | 95.73 61 | 96.22 40 | 94.26 141 | 98.19 75 | 85.77 178 | 93.24 160 | 97.24 139 | 96.88 16 | 97.69 32 | 97.77 55 | 94.12 68 | 99.13 94 | 91.54 119 | 99.29 72 | 97.88 174 |
|
ACMP | | 88.15 13 | 95.71 62 | 95.43 76 | 96.54 47 | 98.17 76 | 91.73 62 | 94.24 131 | 98.08 54 | 89.46 163 | 96.61 80 | 96.47 137 | 95.85 17 | 99.12 98 | 90.45 137 | 99.56 35 | 98.77 88 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
XVG-ACMP-BASELINE | | | 95.68 63 | 95.34 79 | 96.69 43 | 98.40 60 | 93.04 43 | 94.54 124 | 98.05 61 | 90.45 145 | 96.31 91 | 96.76 119 | 92.91 96 | 98.72 165 | 91.19 123 | 99.42 51 | 98.32 129 |
|
DP-MVS | | | 95.62 64 | 95.84 61 | 94.97 107 | 97.16 140 | 88.62 114 | 94.54 124 | 97.64 102 | 96.94 15 | 96.58 81 | 97.32 84 | 93.07 92 | 98.72 165 | 90.45 137 | 98.84 130 | 97.57 199 |
|
OPM-MVS | | | 95.61 65 | 95.45 74 | 96.08 56 | 98.49 57 | 91.00 70 | 92.65 176 | 97.33 131 | 90.05 151 | 96.77 74 | 96.85 112 | 95.04 45 | 98.56 191 | 92.77 83 | 99.06 101 | 98.70 98 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
mvsmamba | | | 95.61 65 | 95.40 77 | 96.22 53 | 98.44 59 | 89.86 88 | 97.14 16 | 97.45 119 | 91.25 126 | 97.49 43 | 98.14 34 | 83.49 235 | 99.45 26 | 95.52 11 | 99.66 22 | 99.36 25 |
|
RPSCF | | | 95.58 67 | 94.89 97 | 97.62 8 | 97.58 119 | 96.30 4 | 95.97 65 | 97.53 113 | 92.42 81 | 93.41 203 | 97.78 53 | 91.21 138 | 97.77 260 | 91.06 124 | 97.06 257 | 98.80 84 |
|
MIMVSNet1 | | | 95.52 68 | 95.45 74 | 95.72 79 | 99.14 5 | 89.02 104 | 96.23 55 | 96.87 167 | 93.73 61 | 97.87 28 | 98.49 25 | 90.73 151 | 99.05 107 | 86.43 230 | 99.60 27 | 99.10 48 |
|
Anonymous20240529 | | | 95.50 69 | 95.83 62 | 94.50 131 | 97.33 133 | 85.93 175 | 95.19 97 | 96.77 175 | 96.64 19 | 97.61 37 | 98.05 41 | 93.23 85 | 98.79 151 | 88.60 190 | 99.04 110 | 98.78 86 |
|
Vis-MVSNet |  | | 95.50 69 | 95.48 73 | 95.56 86 | 98.11 79 | 89.40 99 | 95.35 87 | 98.22 33 | 92.36 84 | 94.11 179 | 98.07 40 | 92.02 115 | 99.44 28 | 93.38 63 | 97.67 238 | 97.85 178 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
DROMVSNet | | | 95.44 71 | 95.62 69 | 94.89 109 | 96.93 151 | 87.69 133 | 96.48 38 | 99.14 4 | 93.93 57 | 92.77 229 | 94.52 239 | 93.95 70 | 99.49 24 | 93.62 45 | 99.22 86 | 97.51 204 |
|
pm-mvs1 | | | 95.43 72 | 95.94 55 | 93.93 152 | 98.38 62 | 85.08 186 | 95.46 86 | 97.12 148 | 91.84 104 | 97.28 51 | 98.46 26 | 95.30 34 | 97.71 265 | 90.17 152 | 99.42 51 | 98.99 56 |
|
DeepC-MVS | | 91.39 4 | 95.43 72 | 95.33 80 | 95.71 80 | 97.67 113 | 90.17 82 | 93.86 145 | 98.02 68 | 87.35 212 | 96.22 99 | 97.99 45 | 94.48 62 | 99.05 107 | 92.73 86 | 99.68 19 | 97.93 167 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
RRT_MVS | | | 95.41 74 | 95.20 87 | 96.05 57 | 98.86 21 | 88.92 106 | 97.49 10 | 94.48 258 | 93.12 72 | 97.94 27 | 98.54 21 | 81.19 264 | 99.63 6 | 95.48 12 | 99.69 15 | 99.60 12 |
|
XVG-OURS-SEG-HR | | | 95.38 75 | 95.00 94 | 96.51 48 | 98.10 80 | 94.07 20 | 92.46 183 | 98.13 46 | 90.69 138 | 93.75 193 | 96.25 159 | 98.03 2 | 97.02 294 | 92.08 99 | 95.55 293 | 98.45 123 |
|
UniMVSNet_NR-MVSNet | | | 95.35 76 | 95.21 85 | 95.76 77 | 97.69 111 | 88.59 115 | 92.26 196 | 97.84 88 | 94.91 38 | 96.80 72 | 95.78 182 | 90.42 156 | 99.41 40 | 91.60 116 | 99.58 33 | 99.29 30 |
|
MSP-MVS | | | 95.34 77 | 94.63 110 | 97.48 14 | 98.67 30 | 94.05 23 | 96.41 43 | 98.18 37 | 91.26 124 | 95.12 149 | 95.15 210 | 86.60 215 | 99.50 21 | 93.43 60 | 96.81 267 | 98.89 73 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
CS-MVS-test | | | 95.32 78 | 95.10 91 | 95.96 61 | 96.86 155 | 90.75 76 | 96.33 47 | 99.20 2 | 93.99 53 | 91.03 269 | 93.73 267 | 93.52 76 | 99.55 18 | 91.81 109 | 99.45 46 | 97.58 198 |
|
FC-MVSNet-test | | | 95.32 78 | 95.88 58 | 93.62 162 | 98.49 57 | 81.77 223 | 95.90 68 | 98.32 21 | 93.93 57 | 97.53 41 | 97.56 63 | 88.48 179 | 99.40 47 | 92.91 82 | 99.83 6 | 99.68 4 |
|
UniMVSNet (Re) | | | 95.32 78 | 95.15 88 | 95.80 74 | 97.79 102 | 88.91 107 | 92.91 167 | 98.07 57 | 93.46 67 | 96.31 91 | 95.97 171 | 90.14 161 | 99.34 66 | 92.11 97 | 99.64 25 | 99.16 39 |
|
Gipuma |  | | 95.31 81 | 95.80 64 | 93.81 159 | 97.99 94 | 90.91 72 | 96.42 42 | 97.95 79 | 96.69 17 | 91.78 258 | 98.85 12 | 91.77 121 | 95.49 332 | 91.72 112 | 99.08 100 | 95.02 297 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
DU-MVS | | | 95.28 82 | 95.12 90 | 95.75 78 | 97.75 104 | 88.59 115 | 92.58 177 | 97.81 91 | 93.99 53 | 96.80 72 | 95.90 172 | 90.10 165 | 99.41 40 | 91.60 116 | 99.58 33 | 99.26 31 |
|
NR-MVSNet | | | 95.28 82 | 95.28 83 | 95.26 97 | 97.75 104 | 87.21 141 | 95.08 100 | 97.37 122 | 93.92 59 | 97.65 33 | 95.90 172 | 90.10 165 | 99.33 71 | 90.11 154 | 99.66 22 | 99.26 31 |
|
TransMVSNet (Re) | | | 95.27 84 | 96.04 52 | 92.97 182 | 98.37 64 | 81.92 222 | 95.07 101 | 96.76 176 | 93.97 56 | 97.77 30 | 98.57 19 | 95.72 18 | 97.90 245 | 88.89 183 | 99.23 84 | 99.08 49 |
|
SD-MVS | | | 95.19 85 | 95.73 66 | 93.55 165 | 96.62 168 | 88.88 110 | 94.67 114 | 98.05 61 | 91.26 124 | 97.25 53 | 96.40 143 | 95.42 26 | 94.36 349 | 92.72 87 | 99.19 89 | 97.40 213 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
VPA-MVSNet | | | 95.14 86 | 95.67 68 | 93.58 164 | 97.76 103 | 83.15 210 | 94.58 119 | 97.58 108 | 93.39 68 | 97.05 60 | 98.04 42 | 93.25 84 | 98.51 196 | 89.75 164 | 99.59 29 | 99.08 49 |
|
xxxxxxxxxxxxxcwj | | | 95.03 87 | 94.93 95 | 95.33 93 | 97.46 127 | 88.05 126 | 92.04 204 | 98.42 16 | 87.63 208 | 96.36 87 | 96.68 127 | 94.37 64 | 99.32 72 | 92.41 93 | 99.05 104 | 98.64 105 |
|
HPM-MVS++ |  | | 95.02 88 | 94.39 117 | 96.91 38 | 97.88 97 | 93.58 38 | 94.09 137 | 96.99 156 | 91.05 130 | 92.40 242 | 95.22 209 | 91.03 145 | 99.25 80 | 92.11 97 | 98.69 150 | 97.90 171 |
|
APD-MVS |  | | 95.00 89 | 94.69 105 | 95.93 65 | 97.38 130 | 90.88 73 | 94.59 117 | 97.81 91 | 89.22 172 | 95.46 133 | 96.17 164 | 93.42 80 | 99.34 66 | 89.30 170 | 98.87 128 | 97.56 201 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
PMVS |  | 87.21 14 | 94.97 90 | 95.33 80 | 93.91 154 | 98.97 15 | 97.16 2 | 95.54 83 | 95.85 216 | 96.47 21 | 93.40 205 | 97.46 70 | 95.31 33 | 95.47 333 | 86.18 234 | 98.78 142 | 89.11 360 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
TSAR-MVS + MP. | | | 94.96 91 | 94.75 102 | 95.57 85 | 98.86 21 | 88.69 111 | 96.37 44 | 96.81 171 | 85.23 242 | 94.75 166 | 97.12 95 | 91.85 120 | 99.40 47 | 93.45 56 | 98.33 186 | 98.62 109 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
SixPastTwentyTwo | | | 94.91 92 | 95.21 85 | 93.98 148 | 98.52 48 | 83.19 209 | 95.93 66 | 94.84 247 | 94.86 39 | 98.49 15 | 98.74 16 | 81.45 258 | 99.60 9 | 94.69 18 | 99.39 58 | 99.15 40 |
|
FIs | | | 94.90 93 | 95.35 78 | 93.55 165 | 98.28 68 | 81.76 224 | 95.33 89 | 98.14 45 | 93.05 74 | 97.07 57 | 97.18 92 | 87.65 193 | 99.29 74 | 91.72 112 | 99.69 15 | 99.61 11 |
|
Regformer-4 | | | 94.90 93 | 94.67 108 | 95.59 83 | 92.78 312 | 89.02 104 | 92.39 188 | 95.91 213 | 94.50 43 | 96.41 84 | 95.56 193 | 92.10 114 | 99.01 115 | 94.23 28 | 98.14 208 | 98.74 92 |
|
AllTest | | | 94.88 95 | 94.51 115 | 96.00 59 | 98.02 89 | 92.17 52 | 95.26 92 | 98.43 14 | 90.48 143 | 95.04 155 | 96.74 122 | 92.54 106 | 97.86 251 | 85.11 245 | 98.98 113 | 97.98 161 |
|
ETH3D-3000-0.1 | | | 94.86 96 | 94.55 112 | 95.81 72 | 97.61 116 | 89.72 90 | 94.05 138 | 98.37 18 | 88.09 196 | 95.06 154 | 95.85 174 | 92.58 104 | 99.10 101 | 90.33 144 | 98.99 112 | 98.62 109 |
|
Regformer-2 | | | 94.86 96 | 94.55 112 | 95.77 76 | 92.83 310 | 89.98 84 | 91.87 216 | 96.40 193 | 94.38 47 | 96.19 103 | 95.04 217 | 92.47 109 | 99.04 110 | 93.49 50 | 98.31 189 | 98.28 133 |
|
FMVSNet1 | | | 94.84 98 | 95.13 89 | 93.97 149 | 97.60 117 | 84.29 192 | 95.99 62 | 96.56 185 | 92.38 82 | 97.03 61 | 98.53 22 | 90.12 162 | 98.98 117 | 88.78 185 | 99.16 94 | 98.65 101 |
|
ANet_high | | | 94.83 99 | 96.28 37 | 90.47 268 | 96.65 164 | 73.16 336 | 94.33 128 | 98.74 10 | 96.39 23 | 98.09 25 | 98.93 8 | 93.37 81 | 98.70 171 | 90.38 140 | 99.68 19 | 99.53 15 |
|
testtj | | | 94.81 100 | 94.42 116 | 96.01 58 | 97.23 135 | 90.51 80 | 94.77 111 | 97.85 87 | 91.29 123 | 94.92 160 | 95.66 186 | 91.71 123 | 99.40 47 | 88.07 200 | 98.25 196 | 98.11 148 |
|
3Dnovator | | 92.54 3 | 94.80 101 | 94.90 96 | 94.47 134 | 95.47 245 | 87.06 144 | 96.63 30 | 97.28 137 | 91.82 107 | 94.34 178 | 97.41 72 | 90.60 154 | 98.65 180 | 92.47 92 | 98.11 212 | 97.70 190 |
|
CPTT-MVS | | | 94.74 102 | 94.12 128 | 96.60 45 | 98.15 77 | 93.01 44 | 95.84 70 | 97.66 101 | 89.21 173 | 93.28 209 | 95.46 198 | 88.89 176 | 98.98 117 | 89.80 161 | 98.82 136 | 97.80 183 |
|
XVG-OURS | | | 94.72 103 | 94.12 128 | 96.50 49 | 98.00 91 | 94.23 18 | 91.48 228 | 98.17 41 | 90.72 137 | 95.30 140 | 96.47 137 | 87.94 190 | 96.98 295 | 91.41 121 | 97.61 241 | 98.30 132 |
|
CSCG | | | 94.69 104 | 94.75 102 | 94.52 130 | 97.55 121 | 87.87 130 | 95.01 104 | 97.57 109 | 92.68 76 | 96.20 101 | 93.44 274 | 91.92 119 | 98.78 155 | 89.11 178 | 99.24 83 | 96.92 230 |
|
v10 | | | 94.68 105 | 95.27 84 | 92.90 188 | 96.57 171 | 80.15 242 | 94.65 116 | 97.57 109 | 90.68 139 | 97.43 46 | 98.00 44 | 88.18 183 | 99.15 90 | 94.84 17 | 99.55 36 | 99.41 21 |
|
v8 | | | 94.65 106 | 95.29 82 | 92.74 193 | 96.65 164 | 79.77 257 | 94.59 117 | 97.17 143 | 91.86 100 | 97.47 45 | 97.93 47 | 88.16 184 | 99.08 102 | 94.32 24 | 99.47 42 | 99.38 23 |
|
canonicalmvs | | | 94.59 107 | 94.69 105 | 94.30 140 | 95.60 242 | 87.03 146 | 95.59 79 | 98.24 31 | 91.56 118 | 95.21 148 | 92.04 306 | 94.95 50 | 98.66 178 | 91.45 120 | 97.57 242 | 97.20 222 |
|
CNVR-MVS | | | 94.58 108 | 94.29 121 | 95.46 89 | 96.94 149 | 89.35 101 | 91.81 222 | 96.80 172 | 89.66 159 | 93.90 191 | 95.44 200 | 92.80 100 | 98.72 165 | 92.74 85 | 98.52 166 | 98.32 129 |
|
GeoE | | | 94.55 109 | 94.68 107 | 94.15 143 | 97.23 135 | 85.11 185 | 94.14 135 | 97.34 130 | 88.71 183 | 95.26 143 | 95.50 196 | 94.65 57 | 99.12 98 | 90.94 128 | 98.40 174 | 98.23 137 |
|
Regformer-1 | | | 94.55 109 | 94.33 120 | 95.19 100 | 92.83 310 | 88.54 118 | 91.87 216 | 95.84 217 | 93.99 53 | 95.95 111 | 95.04 217 | 92.00 116 | 98.79 151 | 93.14 74 | 98.31 189 | 98.23 137 |
|
EG-PatchMatch MVS | | | 94.54 111 | 94.67 108 | 94.14 144 | 97.87 98 | 86.50 158 | 92.00 207 | 96.74 177 | 88.16 195 | 96.93 66 | 97.61 61 | 93.04 93 | 97.90 245 | 91.60 116 | 98.12 211 | 98.03 155 |
|
IS-MVSNet | | | 94.49 112 | 94.35 119 | 94.92 108 | 98.25 72 | 86.46 161 | 97.13 17 | 94.31 262 | 96.24 24 | 96.28 96 | 96.36 150 | 82.88 242 | 99.35 63 | 88.19 195 | 99.52 40 | 98.96 63 |
|
Baseline_NR-MVSNet | | | 94.47 113 | 95.09 92 | 92.60 200 | 98.50 56 | 80.82 238 | 92.08 202 | 96.68 179 | 93.82 60 | 96.29 93 | 98.56 20 | 90.10 165 | 97.75 263 | 90.10 156 | 99.66 22 | 99.24 33 |
|
test_part1 | | | 94.39 114 | 94.55 112 | 93.92 153 | 96.14 206 | 82.86 214 | 95.54 83 | 98.09 53 | 95.36 36 | 98.27 20 | 98.36 29 | 75.91 302 | 99.44 28 | 93.41 61 | 99.84 3 | 99.47 18 |
|
VDD-MVS | | | 94.37 115 | 94.37 118 | 94.40 138 | 97.49 124 | 86.07 173 | 93.97 142 | 93.28 280 | 94.49 44 | 96.24 97 | 97.78 53 | 87.99 189 | 98.79 151 | 88.92 181 | 99.14 96 | 98.34 128 |
|
EI-MVSNet-Vis-set | | | 94.36 116 | 94.28 122 | 94.61 122 | 92.55 315 | 85.98 174 | 92.44 184 | 94.69 254 | 93.70 62 | 96.12 106 | 95.81 178 | 91.24 136 | 98.86 137 | 93.76 43 | 98.22 201 | 98.98 61 |
|
EI-MVSNet-UG-set | | | 94.35 117 | 94.27 124 | 94.59 127 | 92.46 316 | 85.87 176 | 92.42 186 | 94.69 254 | 93.67 66 | 96.13 105 | 95.84 177 | 91.20 139 | 98.86 137 | 93.78 40 | 98.23 199 | 99.03 52 |
|
PHI-MVS | | | 94.34 118 | 93.80 133 | 95.95 62 | 95.65 238 | 91.67 64 | 94.82 109 | 97.86 84 | 87.86 201 | 93.04 220 | 94.16 251 | 91.58 126 | 98.78 155 | 90.27 147 | 98.96 119 | 97.41 210 |
|
casdiffmvs | | | 94.32 119 | 94.80 100 | 92.85 190 | 96.05 213 | 81.44 230 | 92.35 191 | 98.05 61 | 91.53 119 | 95.75 121 | 96.80 116 | 93.35 82 | 98.49 197 | 91.01 127 | 98.32 188 | 98.64 105 |
|
Regformer-3 | | | 94.28 120 | 94.23 126 | 94.46 135 | 92.78 312 | 86.28 168 | 92.39 188 | 94.70 253 | 93.69 65 | 95.97 109 | 95.56 193 | 91.34 131 | 98.48 201 | 93.45 56 | 98.14 208 | 98.62 109 |
|
bld_raw_dy_0_64 | | | 94.27 121 | 94.15 127 | 94.65 121 | 98.55 42 | 86.28 168 | 95.80 72 | 95.55 229 | 88.41 190 | 97.09 56 | 98.08 39 | 78.69 277 | 98.87 136 | 95.63 10 | 99.53 37 | 98.81 82 |
|
tfpnnormal | | | 94.27 121 | 94.87 98 | 92.48 204 | 97.71 108 | 80.88 237 | 94.55 123 | 95.41 234 | 93.70 62 | 96.67 77 | 97.72 56 | 91.40 130 | 98.18 225 | 87.45 211 | 99.18 91 | 98.36 127 |
|
HQP_MVS | | | 94.26 123 | 93.93 130 | 95.23 99 | 97.71 108 | 88.12 124 | 94.56 121 | 97.81 91 | 91.74 112 | 93.31 206 | 95.59 188 | 86.93 207 | 98.95 124 | 89.26 174 | 98.51 168 | 98.60 112 |
|
baseline | | | 94.26 123 | 94.80 100 | 92.64 196 | 96.08 211 | 80.99 235 | 93.69 149 | 98.04 65 | 90.80 136 | 94.89 161 | 96.32 152 | 93.19 86 | 98.48 201 | 91.68 114 | 98.51 168 | 98.43 124 |
|
OMC-MVS | | | 94.22 125 | 93.69 138 | 95.81 72 | 97.25 134 | 91.27 66 | 92.27 195 | 97.40 121 | 87.10 218 | 94.56 171 | 95.42 201 | 93.74 71 | 98.11 230 | 86.62 225 | 98.85 129 | 98.06 149 |
|
LCM-MVSNet-Re | | | 94.20 126 | 94.58 111 | 93.04 179 | 95.91 224 | 83.13 211 | 93.79 146 | 99.19 3 | 92.00 94 | 98.84 5 | 98.04 42 | 93.64 72 | 99.02 113 | 81.28 281 | 98.54 164 | 96.96 229 |
|
DeepPCF-MVS | | 90.46 6 | 94.20 126 | 93.56 144 | 96.14 54 | 95.96 220 | 92.96 45 | 89.48 281 | 97.46 117 | 85.14 245 | 96.23 98 | 95.42 201 | 93.19 86 | 98.08 231 | 90.37 141 | 98.76 144 | 97.38 216 |
|
KD-MVS_self_test | | | 94.10 128 | 94.73 104 | 92.19 210 | 97.66 114 | 79.49 263 | 94.86 108 | 97.12 148 | 89.59 162 | 96.87 68 | 97.65 59 | 90.40 159 | 98.34 211 | 89.08 179 | 99.35 61 | 98.75 89 |
|
NCCC | | | 94.08 129 | 93.54 145 | 95.70 81 | 96.49 179 | 89.90 87 | 92.39 188 | 96.91 163 | 90.64 140 | 92.33 248 | 94.60 236 | 90.58 155 | 98.96 122 | 90.21 151 | 97.70 236 | 98.23 137 |
|
VDDNet | | | 94.03 130 | 94.27 124 | 93.31 174 | 98.87 20 | 82.36 218 | 95.51 85 | 91.78 310 | 97.19 12 | 96.32 90 | 98.60 18 | 84.24 232 | 98.75 160 | 87.09 218 | 98.83 135 | 98.81 82 |
|
ETH3D cwj APD-0.16 | | | 93.99 131 | 93.38 149 | 95.80 74 | 96.82 158 | 89.92 85 | 92.72 172 | 98.02 68 | 84.73 255 | 93.65 197 | 95.54 195 | 91.68 124 | 99.22 83 | 88.78 185 | 98.49 171 | 98.26 135 |
|
dcpmvs_2 | | | 93.96 132 | 95.01 93 | 90.82 260 | 97.60 117 | 74.04 331 | 93.68 151 | 98.85 7 | 89.80 157 | 97.82 29 | 97.01 103 | 91.14 143 | 99.21 84 | 90.56 135 | 98.59 158 | 99.19 37 |
|
EPP-MVSNet | | | 93.91 133 | 93.68 139 | 94.59 127 | 98.08 81 | 85.55 181 | 97.44 11 | 94.03 267 | 94.22 50 | 94.94 158 | 96.19 161 | 82.07 253 | 99.57 14 | 87.28 215 | 98.89 123 | 98.65 101 |
|
Effi-MVS+-dtu | | | 93.90 134 | 92.60 169 | 97.77 4 | 94.74 268 | 96.67 3 | 94.00 140 | 95.41 234 | 89.94 152 | 91.93 256 | 92.13 304 | 90.12 162 | 98.97 121 | 87.68 208 | 97.48 245 | 97.67 193 |
|
IterMVS-LS | | | 93.78 135 | 94.28 122 | 92.27 207 | 96.27 195 | 79.21 270 | 91.87 216 | 96.78 173 | 91.77 110 | 96.57 82 | 97.07 97 | 87.15 202 | 98.74 163 | 91.99 102 | 99.03 111 | 98.86 76 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
DeepC-MVS_fast | | 89.96 7 | 93.73 136 | 93.44 147 | 94.60 126 | 96.14 206 | 87.90 129 | 93.36 158 | 97.14 145 | 85.53 239 | 93.90 191 | 95.45 199 | 91.30 134 | 98.59 187 | 89.51 167 | 98.62 155 | 97.31 219 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
MVS_111021_LR | | | 93.66 137 | 93.28 152 | 94.80 113 | 96.25 198 | 90.95 71 | 90.21 260 | 95.43 233 | 87.91 198 | 93.74 195 | 94.40 242 | 92.88 98 | 96.38 314 | 90.39 139 | 98.28 192 | 97.07 223 |
|
MVS_111021_HR | | | 93.63 138 | 93.42 148 | 94.26 141 | 96.65 164 | 86.96 149 | 89.30 287 | 96.23 201 | 88.36 192 | 93.57 200 | 94.60 236 | 93.45 77 | 97.77 260 | 90.23 150 | 98.38 179 | 98.03 155 |
|
v1144 | | | 93.50 139 | 93.81 132 | 92.57 201 | 96.28 194 | 79.61 260 | 91.86 220 | 96.96 157 | 86.95 220 | 95.91 115 | 96.32 152 | 87.65 193 | 98.96 122 | 93.51 49 | 98.88 125 | 99.13 42 |
|
v1192 | | | 93.49 140 | 93.78 134 | 92.62 199 | 96.16 204 | 79.62 259 | 91.83 221 | 97.22 141 | 86.07 229 | 96.10 107 | 96.38 148 | 87.22 200 | 99.02 113 | 94.14 31 | 98.88 125 | 99.22 34 |
|
WR-MVS | | | 93.49 140 | 93.72 136 | 92.80 192 | 97.57 120 | 80.03 248 | 90.14 264 | 95.68 220 | 93.70 62 | 96.62 79 | 95.39 204 | 87.21 201 | 99.04 110 | 87.50 210 | 99.64 25 | 99.33 27 |
|
V42 | | | 93.43 142 | 93.58 142 | 92.97 182 | 95.34 251 | 81.22 232 | 92.67 175 | 96.49 190 | 87.25 214 | 96.20 101 | 96.37 149 | 87.32 199 | 98.85 139 | 92.39 95 | 98.21 202 | 98.85 79 |
|
K. test v3 | | | 93.37 143 | 93.27 153 | 93.66 161 | 98.05 84 | 82.62 216 | 94.35 127 | 86.62 341 | 96.05 28 | 97.51 42 | 98.85 12 | 76.59 300 | 99.65 3 | 93.21 70 | 98.20 204 | 98.73 94 |
|
PM-MVS | | | 93.33 144 | 92.67 167 | 95.33 93 | 96.58 170 | 94.06 21 | 92.26 196 | 92.18 301 | 85.92 232 | 96.22 99 | 96.61 132 | 85.64 226 | 95.99 325 | 90.35 142 | 98.23 199 | 95.93 269 |
|
v1240 | | | 93.29 145 | 93.71 137 | 92.06 217 | 96.01 218 | 77.89 288 | 91.81 222 | 97.37 122 | 85.12 246 | 96.69 76 | 96.40 143 | 86.67 213 | 99.07 106 | 94.51 20 | 98.76 144 | 99.22 34 |
|
test_prior3 | | | 93.29 145 | 92.85 159 | 94.61 122 | 95.95 221 | 87.23 139 | 90.21 260 | 97.36 127 | 89.33 168 | 90.77 272 | 94.81 227 | 90.41 157 | 98.68 175 | 88.21 193 | 98.55 161 | 97.93 167 |
|
v2v482 | | | 93.29 145 | 93.63 140 | 92.29 206 | 96.35 188 | 78.82 276 | 91.77 224 | 96.28 197 | 88.45 188 | 95.70 125 | 96.26 158 | 86.02 221 | 98.90 128 | 93.02 78 | 98.81 138 | 99.14 41 |
|
alignmvs | | | 93.26 148 | 92.85 159 | 94.50 131 | 95.70 234 | 87.45 135 | 93.45 156 | 95.76 218 | 91.58 117 | 95.25 145 | 92.42 300 | 81.96 255 | 98.72 165 | 91.61 115 | 97.87 228 | 97.33 218 |
|
v1921920 | | | 93.26 148 | 93.61 141 | 92.19 210 | 96.04 217 | 78.31 282 | 91.88 215 | 97.24 139 | 85.17 244 | 96.19 103 | 96.19 161 | 86.76 212 | 99.05 107 | 94.18 30 | 98.84 130 | 99.22 34 |
|
MSLP-MVS++ | | | 93.25 150 | 93.88 131 | 91.37 237 | 96.34 189 | 82.81 215 | 93.11 161 | 97.74 97 | 89.37 166 | 94.08 181 | 95.29 208 | 90.40 159 | 96.35 316 | 90.35 142 | 98.25 196 | 94.96 298 |
|
GBi-Net | | | 93.21 151 | 92.96 156 | 93.97 149 | 95.40 247 | 84.29 192 | 95.99 62 | 96.56 185 | 88.63 184 | 95.10 150 | 98.53 22 | 81.31 260 | 98.98 117 | 86.74 221 | 98.38 179 | 98.65 101 |
|
test1 | | | 93.21 151 | 92.96 156 | 93.97 149 | 95.40 247 | 84.29 192 | 95.99 62 | 96.56 185 | 88.63 184 | 95.10 150 | 98.53 22 | 81.31 260 | 98.98 117 | 86.74 221 | 98.38 179 | 98.65 101 |
|
v144192 | | | 93.20 153 | 93.54 145 | 92.16 214 | 96.05 213 | 78.26 283 | 91.95 208 | 97.14 145 | 84.98 250 | 95.96 110 | 96.11 165 | 87.08 204 | 99.04 110 | 93.79 39 | 98.84 130 | 99.17 38 |
|
VPNet | | | 93.08 154 | 93.76 135 | 91.03 250 | 98.60 36 | 75.83 317 | 91.51 227 | 95.62 221 | 91.84 104 | 95.74 122 | 97.10 96 | 89.31 173 | 98.32 212 | 85.07 247 | 99.06 101 | 98.93 66 |
|
UGNet | | | 93.08 154 | 92.50 171 | 94.79 114 | 93.87 293 | 87.99 128 | 95.07 101 | 94.26 264 | 90.64 140 | 87.33 329 | 97.67 58 | 86.89 210 | 98.49 197 | 88.10 198 | 98.71 147 | 97.91 170 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
mvs-test1 | | | 93.07 156 | 91.80 187 | 96.89 39 | 94.74 268 | 95.83 6 | 92.17 199 | 95.41 234 | 89.94 152 | 89.85 291 | 90.59 329 | 90.12 162 | 98.88 131 | 87.68 208 | 95.66 291 | 95.97 267 |
|
TSAR-MVS + GP. | | | 93.07 156 | 92.41 173 | 95.06 105 | 95.82 227 | 90.87 74 | 90.97 239 | 92.61 295 | 88.04 197 | 94.61 170 | 93.79 265 | 88.08 185 | 97.81 255 | 89.41 169 | 98.39 177 | 96.50 247 |
|
ETV-MVS | | | 92.99 158 | 92.74 163 | 93.72 160 | 95.86 226 | 86.30 167 | 92.33 192 | 97.84 88 | 91.70 115 | 92.81 227 | 86.17 362 | 92.22 111 | 99.19 87 | 88.03 202 | 97.73 232 | 95.66 283 |
|
EI-MVSNet | | | 92.99 158 | 93.26 154 | 92.19 210 | 92.12 323 | 79.21 270 | 92.32 193 | 94.67 256 | 91.77 110 | 95.24 146 | 95.85 174 | 87.14 203 | 98.49 197 | 91.99 102 | 98.26 194 | 98.86 76 |
|
MCST-MVS | | | 92.91 160 | 92.51 170 | 94.10 145 | 97.52 122 | 85.72 179 | 91.36 232 | 97.13 147 | 80.33 290 | 92.91 225 | 94.24 247 | 91.23 137 | 98.72 165 | 89.99 158 | 97.93 225 | 97.86 176 |
|
h-mvs33 | | | 92.89 161 | 91.99 180 | 95.58 84 | 96.97 147 | 90.55 78 | 93.94 143 | 94.01 270 | 89.23 170 | 93.95 188 | 96.19 161 | 76.88 297 | 99.14 92 | 91.02 125 | 95.71 290 | 97.04 226 |
|
QAPM | | | 92.88 162 | 92.77 161 | 93.22 177 | 95.82 227 | 83.31 206 | 96.45 39 | 97.35 129 | 83.91 260 | 93.75 193 | 96.77 117 | 89.25 174 | 98.88 131 | 84.56 253 | 97.02 259 | 97.49 205 |
|
v148 | | | 92.87 163 | 93.29 150 | 91.62 230 | 96.25 198 | 77.72 291 | 91.28 233 | 95.05 241 | 89.69 158 | 95.93 114 | 96.04 167 | 87.34 198 | 98.38 207 | 90.05 157 | 97.99 222 | 98.78 86 |
|
Anonymous20240521 | | | 92.86 164 | 93.57 143 | 90.74 262 | 96.57 171 | 75.50 319 | 94.15 134 | 95.60 222 | 89.38 165 | 95.90 116 | 97.90 51 | 80.39 268 | 97.96 243 | 92.60 90 | 99.68 19 | 98.75 89 |
|
Effi-MVS+ | | | 92.79 165 | 92.74 163 | 92.94 186 | 95.10 255 | 83.30 207 | 94.00 140 | 97.53 113 | 91.36 122 | 89.35 300 | 90.65 328 | 94.01 69 | 98.66 178 | 87.40 213 | 95.30 301 | 96.88 233 |
|
FMVSNet2 | | | 92.78 166 | 92.73 165 | 92.95 184 | 95.40 247 | 81.98 221 | 94.18 133 | 95.53 231 | 88.63 184 | 96.05 108 | 97.37 75 | 81.31 260 | 98.81 147 | 87.38 214 | 98.67 153 | 98.06 149 |
|
Fast-Effi-MVS+-dtu | | | 92.77 167 | 92.16 175 | 94.58 129 | 94.66 274 | 88.25 122 | 92.05 203 | 96.65 181 | 89.62 160 | 90.08 285 | 91.23 316 | 92.56 105 | 98.60 185 | 86.30 232 | 96.27 279 | 96.90 231 |
|
LF4IMVS | | | 92.72 168 | 92.02 179 | 94.84 112 | 95.65 238 | 91.99 56 | 92.92 166 | 96.60 183 | 85.08 248 | 92.44 240 | 93.62 269 | 86.80 211 | 96.35 316 | 86.81 220 | 98.25 196 | 96.18 260 |
|
train_agg | | | 92.71 169 | 91.83 185 | 95.35 91 | 96.45 181 | 89.46 95 | 90.60 248 | 96.92 161 | 79.37 299 | 90.49 277 | 94.39 243 | 91.20 139 | 98.88 131 | 88.66 189 | 98.43 173 | 97.72 189 |
|
VNet | | | 92.67 170 | 92.96 156 | 91.79 222 | 96.27 195 | 80.15 242 | 91.95 208 | 94.98 243 | 92.19 91 | 94.52 173 | 96.07 166 | 87.43 197 | 97.39 282 | 84.83 249 | 98.38 179 | 97.83 179 |
|
CDPH-MVS | | | 92.67 170 | 91.83 185 | 95.18 101 | 96.94 149 | 88.46 120 | 90.70 246 | 97.07 151 | 77.38 315 | 92.34 247 | 95.08 215 | 92.67 103 | 98.88 131 | 85.74 236 | 98.57 160 | 98.20 141 |
|
agg_prior1 | | | 92.60 172 | 91.76 188 | 95.10 104 | 96.20 200 | 88.89 108 | 90.37 255 | 96.88 165 | 79.67 296 | 90.21 282 | 94.41 241 | 91.30 134 | 98.78 155 | 88.46 192 | 98.37 184 | 97.64 195 |
|
Anonymous202405211 | | | 92.58 173 | 92.50 171 | 92.83 191 | 96.55 173 | 83.22 208 | 92.43 185 | 91.64 311 | 94.10 52 | 95.59 128 | 96.64 130 | 81.88 257 | 97.50 273 | 85.12 244 | 98.52 166 | 97.77 185 |
|
XXY-MVS | | | 92.58 173 | 93.16 155 | 90.84 259 | 97.75 104 | 79.84 253 | 91.87 216 | 96.22 203 | 85.94 231 | 95.53 130 | 97.68 57 | 92.69 102 | 94.48 345 | 83.21 263 | 97.51 243 | 98.21 140 |
|
MVS_Test | | | 92.57 175 | 93.29 150 | 90.40 271 | 93.53 297 | 75.85 315 | 92.52 179 | 96.96 157 | 88.73 181 | 92.35 245 | 96.70 126 | 90.77 147 | 98.37 210 | 92.53 91 | 95.49 295 | 96.99 228 |
|
TAPA-MVS | | 88.58 10 | 92.49 176 | 91.75 189 | 94.73 116 | 96.50 178 | 89.69 91 | 92.91 167 | 97.68 100 | 78.02 313 | 92.79 228 | 94.10 252 | 90.85 146 | 97.96 243 | 84.76 251 | 98.16 206 | 96.54 242 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
patch_mono-2 | | | 92.46 177 | 92.72 166 | 91.71 226 | 96.65 164 | 78.91 274 | 88.85 296 | 97.17 143 | 83.89 261 | 92.45 239 | 96.76 119 | 89.86 169 | 97.09 291 | 90.24 149 | 98.59 158 | 99.12 44 |
|
ab-mvs | | | 92.40 178 | 92.62 168 | 91.74 224 | 97.02 145 | 81.65 225 | 95.84 70 | 95.50 232 | 86.95 220 | 92.95 224 | 97.56 63 | 90.70 152 | 97.50 273 | 79.63 300 | 97.43 247 | 96.06 264 |
|
CANet | | | 92.38 179 | 91.99 180 | 93.52 169 | 93.82 295 | 83.46 205 | 91.14 235 | 97.00 154 | 89.81 156 | 86.47 333 | 94.04 254 | 87.90 191 | 99.21 84 | 89.50 168 | 98.27 193 | 97.90 171 |
|
EIA-MVS | | | 92.35 180 | 92.03 178 | 93.30 175 | 95.81 229 | 83.97 200 | 92.80 170 | 98.17 41 | 87.71 205 | 89.79 294 | 87.56 352 | 91.17 142 | 99.18 88 | 87.97 203 | 97.27 251 | 96.77 237 |
|
DP-MVS Recon | | | 92.31 181 | 91.88 183 | 93.60 163 | 97.18 139 | 86.87 150 | 91.10 237 | 97.37 122 | 84.92 251 | 92.08 253 | 94.08 253 | 88.59 178 | 98.20 222 | 83.50 260 | 98.14 208 | 95.73 278 |
|
F-COLMAP | | | 92.28 182 | 91.06 206 | 95.95 62 | 97.52 122 | 91.90 58 | 93.53 153 | 97.18 142 | 83.98 259 | 88.70 312 | 94.04 254 | 88.41 181 | 98.55 193 | 80.17 293 | 95.99 284 | 97.39 214 |
|
OpenMVS |  | 89.45 8 | 92.27 183 | 92.13 177 | 92.68 195 | 94.53 278 | 84.10 198 | 95.70 75 | 97.03 152 | 82.44 278 | 91.14 268 | 96.42 141 | 88.47 180 | 98.38 207 | 85.95 235 | 97.47 246 | 95.55 287 |
|
hse-mvs2 | | | 92.24 184 | 91.20 202 | 95.38 90 | 96.16 204 | 90.65 77 | 92.52 179 | 92.01 308 | 89.23 170 | 93.95 188 | 92.99 284 | 76.88 297 | 98.69 173 | 91.02 125 | 96.03 282 | 96.81 235 |
|
MVSFormer | | | 92.18 185 | 92.23 174 | 92.04 218 | 94.74 268 | 80.06 246 | 97.15 14 | 97.37 122 | 88.98 176 | 88.83 304 | 92.79 289 | 77.02 294 | 99.60 9 | 96.41 4 | 96.75 270 | 96.46 249 |
|
HQP-MVS | | | 92.09 186 | 91.49 195 | 93.88 156 | 96.36 185 | 84.89 187 | 91.37 229 | 97.31 132 | 87.16 215 | 88.81 306 | 93.40 275 | 84.76 229 | 98.60 185 | 86.55 227 | 97.73 232 | 98.14 144 |
|
DELS-MVS | | | 92.05 187 | 92.16 175 | 91.72 225 | 94.44 279 | 80.13 244 | 87.62 309 | 97.25 138 | 87.34 213 | 92.22 250 | 93.18 281 | 89.54 172 | 98.73 164 | 89.67 165 | 98.20 204 | 96.30 255 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
TinyColmap | | | 92.00 188 | 92.76 162 | 89.71 287 | 95.62 241 | 77.02 299 | 90.72 245 | 96.17 206 | 87.70 206 | 95.26 143 | 96.29 154 | 92.54 106 | 96.45 311 | 81.77 277 | 98.77 143 | 95.66 283 |
|
ETH3 D test6400 | | | 91.91 189 | 91.25 201 | 93.89 155 | 96.59 169 | 84.41 191 | 92.10 201 | 97.72 99 | 78.52 309 | 91.82 257 | 93.78 266 | 88.70 177 | 99.13 94 | 83.61 259 | 98.39 177 | 98.14 144 |
|
CLD-MVS | | | 91.82 190 | 91.41 197 | 93.04 179 | 96.37 183 | 83.65 204 | 86.82 328 | 97.29 135 | 84.65 256 | 92.27 249 | 89.67 338 | 92.20 112 | 97.85 253 | 83.95 257 | 99.47 42 | 97.62 196 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
FA-MVS(test-final) | | | 91.81 191 | 91.85 184 | 91.68 228 | 94.95 258 | 79.99 250 | 96.00 61 | 93.44 278 | 87.80 202 | 94.02 186 | 97.29 85 | 77.60 287 | 98.45 204 | 88.04 201 | 97.49 244 | 96.61 241 |
|
diffmvs | | | 91.74 192 | 91.93 182 | 91.15 248 | 93.06 305 | 78.17 284 | 88.77 299 | 97.51 116 | 86.28 225 | 92.42 241 | 93.96 259 | 88.04 187 | 97.46 276 | 90.69 134 | 96.67 272 | 97.82 181 |
|
CNLPA | | | 91.72 193 | 91.20 202 | 93.26 176 | 96.17 203 | 91.02 69 | 91.14 235 | 95.55 229 | 90.16 150 | 90.87 271 | 93.56 272 | 86.31 217 | 94.40 348 | 79.92 299 | 97.12 255 | 94.37 311 |
|
IterMVS-SCA-FT | | | 91.65 194 | 91.55 191 | 91.94 219 | 93.89 292 | 79.22 269 | 87.56 312 | 93.51 276 | 91.53 119 | 95.37 136 | 96.62 131 | 78.65 278 | 98.90 128 | 91.89 107 | 94.95 307 | 97.70 190 |
|
PVSNet_Blended_VisFu | | | 91.63 195 | 91.20 202 | 92.94 186 | 97.73 107 | 83.95 201 | 92.14 200 | 97.46 117 | 78.85 308 | 92.35 245 | 94.98 220 | 84.16 233 | 99.08 102 | 86.36 231 | 96.77 269 | 95.79 276 |
|
AdaColmap |  | | 91.63 195 | 91.36 198 | 92.47 205 | 95.56 243 | 86.36 165 | 92.24 198 | 96.27 198 | 88.88 180 | 89.90 290 | 92.69 292 | 91.65 125 | 98.32 212 | 77.38 319 | 97.64 239 | 92.72 343 |
|
pmmvs-eth3d | | | 91.54 197 | 90.73 214 | 93.99 147 | 95.76 232 | 87.86 131 | 90.83 242 | 93.98 271 | 78.23 312 | 94.02 186 | 96.22 160 | 82.62 248 | 96.83 301 | 86.57 226 | 98.33 186 | 97.29 220 |
|
API-MVS | | | 91.52 198 | 91.61 190 | 91.26 242 | 94.16 284 | 86.26 170 | 94.66 115 | 94.82 248 | 91.17 128 | 92.13 252 | 91.08 319 | 90.03 168 | 97.06 293 | 79.09 307 | 97.35 250 | 90.45 358 |
|
xiu_mvs_v1_base_debu | | | 91.47 199 | 91.52 192 | 91.33 239 | 95.69 235 | 81.56 226 | 89.92 271 | 96.05 209 | 83.22 265 | 91.26 264 | 90.74 323 | 91.55 127 | 98.82 142 | 89.29 171 | 95.91 285 | 93.62 330 |
|
xiu_mvs_v1_base | | | 91.47 199 | 91.52 192 | 91.33 239 | 95.69 235 | 81.56 226 | 89.92 271 | 96.05 209 | 83.22 265 | 91.26 264 | 90.74 323 | 91.55 127 | 98.82 142 | 89.29 171 | 95.91 285 | 93.62 330 |
|
xiu_mvs_v1_base_debi | | | 91.47 199 | 91.52 192 | 91.33 239 | 95.69 235 | 81.56 226 | 89.92 271 | 96.05 209 | 83.22 265 | 91.26 264 | 90.74 323 | 91.55 127 | 98.82 142 | 89.29 171 | 95.91 285 | 93.62 330 |
|
LFMVS | | | 91.33 202 | 91.16 205 | 91.82 221 | 96.27 195 | 79.36 265 | 95.01 104 | 85.61 351 | 96.04 29 | 94.82 163 | 97.06 98 | 72.03 315 | 98.46 203 | 84.96 248 | 98.70 149 | 97.65 194 |
|
c3_l | | | 91.32 203 | 91.42 196 | 91.00 253 | 92.29 318 | 76.79 306 | 87.52 315 | 96.42 192 | 85.76 235 | 94.72 169 | 93.89 262 | 82.73 245 | 98.16 227 | 90.93 129 | 98.55 161 | 98.04 152 |
|
Fast-Effi-MVS+ | | | 91.28 204 | 90.86 209 | 92.53 203 | 95.45 246 | 82.53 217 | 89.25 290 | 96.52 189 | 85.00 249 | 89.91 289 | 88.55 348 | 92.94 94 | 98.84 140 | 84.72 252 | 95.44 297 | 96.22 258 |
|
MDA-MVSNet-bldmvs | | | 91.04 205 | 90.88 208 | 91.55 232 | 94.68 273 | 80.16 241 | 85.49 340 | 92.14 304 | 90.41 147 | 94.93 159 | 95.79 179 | 85.10 227 | 96.93 298 | 85.15 242 | 94.19 324 | 97.57 199 |
|
PAPM_NR | | | 91.03 206 | 90.81 211 | 91.68 228 | 96.73 162 | 81.10 234 | 93.72 148 | 96.35 196 | 88.19 194 | 88.77 310 | 92.12 305 | 85.09 228 | 97.25 286 | 82.40 272 | 93.90 325 | 96.68 240 |
|
MVS_0304 | | | 90.96 207 | 90.15 227 | 93.37 171 | 93.17 302 | 87.06 144 | 93.62 152 | 92.43 299 | 89.60 161 | 82.25 358 | 95.50 196 | 82.56 249 | 97.83 254 | 84.41 255 | 97.83 230 | 95.22 291 |
|
MSDG | | | 90.82 208 | 90.67 215 | 91.26 242 | 94.16 284 | 83.08 212 | 86.63 333 | 96.19 204 | 90.60 142 | 91.94 255 | 91.89 307 | 89.16 175 | 95.75 327 | 80.96 287 | 94.51 317 | 94.95 299 |
|
test20.03 | | | 90.80 209 | 90.85 210 | 90.63 265 | 95.63 240 | 79.24 268 | 89.81 275 | 92.87 286 | 89.90 154 | 94.39 175 | 96.40 143 | 85.77 222 | 95.27 340 | 73.86 338 | 99.05 104 | 97.39 214 |
|
FMVSNet3 | | | 90.78 210 | 90.32 223 | 92.16 214 | 93.03 307 | 79.92 252 | 92.54 178 | 94.95 244 | 86.17 228 | 95.10 150 | 96.01 169 | 69.97 321 | 98.75 160 | 86.74 221 | 98.38 179 | 97.82 181 |
|
eth_miper_zixun_eth | | | 90.72 211 | 90.61 216 | 91.05 249 | 92.04 325 | 76.84 305 | 86.91 324 | 96.67 180 | 85.21 243 | 94.41 174 | 93.92 260 | 79.53 272 | 98.26 218 | 89.76 163 | 97.02 259 | 98.06 149 |
|
X-MVStestdata | | | 90.70 212 | 88.45 254 | 97.44 17 | 98.56 39 | 93.99 27 | 96.50 36 | 97.95 79 | 94.58 41 | 94.38 176 | 26.89 377 | 94.56 59 | 99.39 52 | 93.57 46 | 99.05 104 | 98.93 66 |
|
BH-untuned | | | 90.68 213 | 90.90 207 | 90.05 282 | 95.98 219 | 79.57 261 | 90.04 267 | 94.94 245 | 87.91 198 | 94.07 182 | 93.00 283 | 87.76 192 | 97.78 259 | 79.19 306 | 95.17 304 | 92.80 342 |
|
cl____ | | | 90.65 214 | 90.56 218 | 90.91 257 | 91.85 327 | 76.98 302 | 86.75 329 | 95.36 238 | 85.53 239 | 94.06 183 | 94.89 224 | 77.36 292 | 97.98 242 | 90.27 147 | 98.98 113 | 97.76 186 |
|
DIV-MVS_self_test | | | 90.65 214 | 90.56 218 | 90.91 257 | 91.85 327 | 76.99 301 | 86.75 329 | 95.36 238 | 85.52 241 | 94.06 183 | 94.89 224 | 77.37 291 | 97.99 241 | 90.28 146 | 98.97 117 | 97.76 186 |
|
114514_t | | | 90.51 216 | 89.80 232 | 92.63 198 | 98.00 91 | 82.24 219 | 93.40 157 | 97.29 135 | 65.84 364 | 89.40 299 | 94.80 230 | 86.99 205 | 98.75 160 | 83.88 258 | 98.61 156 | 96.89 232 |
|
miper_ehance_all_eth | | | 90.48 217 | 90.42 221 | 90.69 263 | 91.62 332 | 76.57 308 | 86.83 327 | 96.18 205 | 83.38 263 | 94.06 183 | 92.66 294 | 82.20 251 | 98.04 233 | 89.79 162 | 97.02 259 | 97.45 207 |
|
BH-RMVSNet | | | 90.47 218 | 90.44 220 | 90.56 267 | 95.21 254 | 78.65 280 | 89.15 291 | 93.94 272 | 88.21 193 | 92.74 230 | 94.22 248 | 86.38 216 | 97.88 247 | 78.67 309 | 95.39 299 | 95.14 294 |
|
Vis-MVSNet (Re-imp) | | | 90.42 219 | 90.16 224 | 91.20 246 | 97.66 114 | 77.32 296 | 94.33 128 | 87.66 335 | 91.20 127 | 92.99 221 | 95.13 212 | 75.40 304 | 98.28 214 | 77.86 312 | 99.19 89 | 97.99 160 |
|
PLC |  | 85.34 15 | 90.40 220 | 88.92 246 | 94.85 111 | 96.53 177 | 90.02 83 | 91.58 226 | 96.48 191 | 80.16 291 | 86.14 335 | 92.18 302 | 85.73 223 | 98.25 219 | 76.87 322 | 94.61 316 | 96.30 255 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
test1111 | | | 90.39 221 | 90.61 216 | 89.74 286 | 98.04 87 | 71.50 347 | 95.59 79 | 79.72 374 | 89.41 164 | 95.94 113 | 98.14 34 | 70.79 318 | 98.81 147 | 88.52 191 | 99.32 66 | 98.90 72 |
|
testgi | | | 90.38 222 | 91.34 199 | 87.50 320 | 97.49 124 | 71.54 346 | 89.43 282 | 95.16 240 | 88.38 191 | 94.54 172 | 94.68 235 | 92.88 98 | 93.09 359 | 71.60 351 | 97.85 229 | 97.88 174 |
|
mvs_anonymous | | | 90.37 223 | 91.30 200 | 87.58 319 | 92.17 322 | 68.00 360 | 89.84 274 | 94.73 252 | 83.82 262 | 93.22 214 | 97.40 73 | 87.54 195 | 97.40 281 | 87.94 204 | 95.05 306 | 97.34 217 |
|
PVSNet_BlendedMVS | | | 90.35 224 | 89.96 229 | 91.54 233 | 94.81 263 | 78.80 278 | 90.14 264 | 96.93 159 | 79.43 298 | 88.68 313 | 95.06 216 | 86.27 218 | 98.15 228 | 80.27 289 | 98.04 218 | 97.68 192 |
|
UnsupCasMVSNet_eth | | | 90.33 225 | 90.34 222 | 90.28 273 | 94.64 276 | 80.24 240 | 89.69 277 | 95.88 214 | 85.77 234 | 93.94 190 | 95.69 185 | 81.99 254 | 92.98 360 | 84.21 256 | 91.30 352 | 97.62 196 |
|
MAR-MVS | | | 90.32 226 | 88.87 249 | 94.66 120 | 94.82 262 | 91.85 59 | 94.22 132 | 94.75 251 | 80.91 285 | 87.52 327 | 88.07 351 | 86.63 214 | 97.87 250 | 76.67 323 | 96.21 280 | 94.25 314 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
RPMNet | | | 90.31 227 | 90.14 228 | 90.81 261 | 91.01 338 | 78.93 272 | 92.52 179 | 98.12 47 | 91.91 98 | 89.10 301 | 96.89 110 | 68.84 322 | 99.41 40 | 90.17 152 | 92.70 341 | 94.08 315 |
|
1121 | | | 90.26 228 | 89.23 239 | 93.34 172 | 97.15 142 | 87.40 136 | 91.94 210 | 94.39 260 | 67.88 359 | 91.02 270 | 94.91 223 | 86.91 209 | 98.59 187 | 81.17 284 | 97.71 235 | 94.02 320 |
|
iter_conf_final | | | 90.23 229 | 89.32 238 | 92.95 184 | 94.65 275 | 81.46 229 | 94.32 130 | 95.40 237 | 85.61 238 | 92.84 226 | 95.37 206 | 54.58 369 | 99.13 94 | 92.16 96 | 98.94 121 | 98.25 136 |
|
IterMVS | | | 90.18 230 | 90.16 224 | 90.21 277 | 93.15 303 | 75.98 314 | 87.56 312 | 92.97 285 | 86.43 224 | 94.09 180 | 96.40 143 | 78.32 282 | 97.43 278 | 87.87 205 | 94.69 314 | 97.23 221 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
TAMVS | | | 90.16 231 | 89.05 243 | 93.49 170 | 96.49 179 | 86.37 164 | 90.34 257 | 92.55 296 | 80.84 288 | 92.99 221 | 94.57 238 | 81.94 256 | 98.20 222 | 73.51 339 | 98.21 202 | 95.90 272 |
|
ECVR-MVS |  | | 90.12 232 | 90.16 224 | 90.00 283 | 97.81 100 | 72.68 341 | 95.76 74 | 78.54 375 | 89.04 174 | 95.36 137 | 98.10 37 | 70.51 319 | 98.64 181 | 87.10 217 | 99.18 91 | 98.67 99 |
|
test_yl | | | 90.11 233 | 89.73 235 | 91.26 242 | 94.09 287 | 79.82 254 | 90.44 252 | 92.65 292 | 90.90 131 | 93.19 215 | 93.30 277 | 73.90 307 | 98.03 234 | 82.23 273 | 96.87 265 | 95.93 269 |
|
DCV-MVSNet | | | 90.11 233 | 89.73 235 | 91.26 242 | 94.09 287 | 79.82 254 | 90.44 252 | 92.65 292 | 90.90 131 | 93.19 215 | 93.30 277 | 73.90 307 | 98.03 234 | 82.23 273 | 96.87 265 | 95.93 269 |
|
Patchmtry | | | 90.11 233 | 89.92 230 | 90.66 264 | 90.35 347 | 77.00 300 | 92.96 165 | 92.81 287 | 90.25 149 | 94.74 167 | 96.93 107 | 67.11 327 | 97.52 272 | 85.17 240 | 98.98 113 | 97.46 206 |
|
MVP-Stereo | | | 90.07 236 | 88.92 246 | 93.54 167 | 96.31 192 | 86.49 159 | 90.93 240 | 95.59 226 | 79.80 292 | 91.48 260 | 95.59 188 | 80.79 265 | 97.39 282 | 78.57 310 | 91.19 353 | 96.76 238 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
AUN-MVS | | | 90.05 237 | 88.30 257 | 95.32 96 | 96.09 210 | 90.52 79 | 92.42 186 | 92.05 307 | 82.08 281 | 88.45 315 | 92.86 286 | 65.76 337 | 98.69 173 | 88.91 182 | 96.07 281 | 96.75 239 |
|
CL-MVSNet_self_test | | | 90.04 238 | 89.90 231 | 90.47 268 | 95.24 253 | 77.81 289 | 86.60 335 | 92.62 294 | 85.64 237 | 93.25 213 | 93.92 260 | 83.84 234 | 96.06 323 | 79.93 297 | 98.03 219 | 97.53 203 |
|
D2MVS | | | 89.93 239 | 89.60 237 | 90.92 255 | 94.03 289 | 78.40 281 | 88.69 301 | 94.85 246 | 78.96 306 | 93.08 217 | 95.09 214 | 74.57 305 | 96.94 296 | 88.19 195 | 98.96 119 | 97.41 210 |
|
miper_lstm_enhance | | | 89.90 240 | 89.80 232 | 90.19 279 | 91.37 335 | 77.50 293 | 83.82 355 | 95.00 242 | 84.84 253 | 93.05 219 | 94.96 221 | 76.53 301 | 95.20 341 | 89.96 159 | 98.67 153 | 97.86 176 |
|
CANet_DTU | | | 89.85 241 | 89.17 241 | 91.87 220 | 92.20 321 | 80.02 249 | 90.79 243 | 95.87 215 | 86.02 230 | 82.53 357 | 91.77 309 | 80.01 269 | 98.57 190 | 85.66 237 | 97.70 236 | 97.01 227 |
|
tttt0517 | | | 89.81 242 | 88.90 248 | 92.55 202 | 97.00 146 | 79.73 258 | 95.03 103 | 83.65 363 | 89.88 155 | 95.30 140 | 94.79 231 | 53.64 372 | 99.39 52 | 91.99 102 | 98.79 141 | 98.54 115 |
|
EPNet | | | 89.80 243 | 88.25 260 | 94.45 136 | 83.91 378 | 86.18 171 | 93.87 144 | 87.07 339 | 91.16 129 | 80.64 366 | 94.72 233 | 78.83 275 | 98.89 130 | 85.17 240 | 98.89 123 | 98.28 133 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
CDS-MVSNet | | | 89.55 244 | 88.22 263 | 93.53 168 | 95.37 250 | 86.49 159 | 89.26 288 | 93.59 274 | 79.76 294 | 91.15 267 | 92.31 301 | 77.12 293 | 98.38 207 | 77.51 317 | 97.92 226 | 95.71 279 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
MG-MVS | | | 89.54 245 | 89.80 232 | 88.76 302 | 94.88 259 | 72.47 343 | 89.60 278 | 92.44 298 | 85.82 233 | 89.48 298 | 95.98 170 | 82.85 243 | 97.74 264 | 81.87 276 | 95.27 302 | 96.08 263 |
|
OpenMVS_ROB |  | 85.12 16 | 89.52 246 | 89.05 243 | 90.92 255 | 94.58 277 | 81.21 233 | 91.10 237 | 93.41 279 | 77.03 319 | 93.41 203 | 93.99 258 | 83.23 239 | 97.80 256 | 79.93 297 | 94.80 311 | 93.74 327 |
|
DPM-MVS | | | 89.35 247 | 88.40 255 | 92.18 213 | 96.13 209 | 84.20 196 | 86.96 323 | 96.15 207 | 75.40 326 | 87.36 328 | 91.55 314 | 83.30 238 | 98.01 238 | 82.17 275 | 96.62 273 | 94.32 313 |
|
MVSTER | | | 89.32 248 | 88.75 250 | 91.03 250 | 90.10 349 | 76.62 307 | 90.85 241 | 94.67 256 | 82.27 279 | 95.24 146 | 95.79 179 | 61.09 358 | 98.49 197 | 90.49 136 | 98.26 194 | 97.97 164 |
|
PatchMatch-RL | | | 89.18 249 | 88.02 268 | 92.64 196 | 95.90 225 | 92.87 47 | 88.67 303 | 91.06 314 | 80.34 289 | 90.03 287 | 91.67 311 | 83.34 237 | 94.42 347 | 76.35 326 | 94.84 310 | 90.64 357 |
|
jason | | | 89.17 250 | 88.32 256 | 91.70 227 | 95.73 233 | 80.07 245 | 88.10 306 | 93.22 281 | 71.98 342 | 90.09 284 | 92.79 289 | 78.53 281 | 98.56 191 | 87.43 212 | 97.06 257 | 96.46 249 |
jason: jason. |
PCF-MVS | | 84.52 17 | 89.12 251 | 87.71 271 | 93.34 172 | 96.06 212 | 85.84 177 | 86.58 336 | 97.31 132 | 68.46 357 | 93.61 199 | 93.89 262 | 87.51 196 | 98.52 195 | 67.85 362 | 98.11 212 | 95.66 283 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
FE-MVS | | | 89.06 252 | 88.29 258 | 91.36 238 | 94.78 265 | 79.57 261 | 96.77 27 | 90.99 315 | 84.87 252 | 92.96 223 | 96.29 154 | 60.69 360 | 98.80 150 | 80.18 292 | 97.11 256 | 95.71 279 |
|
cl22 | | | 89.02 253 | 88.50 253 | 90.59 266 | 89.76 351 | 76.45 309 | 86.62 334 | 94.03 267 | 82.98 271 | 92.65 232 | 92.49 295 | 72.05 314 | 97.53 271 | 88.93 180 | 97.02 259 | 97.78 184 |
|
USDC | | | 89.02 253 | 89.08 242 | 88.84 301 | 95.07 256 | 74.50 326 | 88.97 293 | 96.39 194 | 73.21 336 | 93.27 210 | 96.28 156 | 82.16 252 | 96.39 313 | 77.55 316 | 98.80 140 | 95.62 286 |
|
xiu_mvs_v2_base | | | 89.00 255 | 89.19 240 | 88.46 309 | 94.86 261 | 74.63 323 | 86.97 322 | 95.60 222 | 80.88 286 | 87.83 323 | 88.62 347 | 91.04 144 | 98.81 147 | 82.51 271 | 94.38 318 | 91.93 349 |
|
new-patchmatchnet | | | 88.97 256 | 90.79 212 | 83.50 346 | 94.28 283 | 55.83 380 | 85.34 341 | 93.56 275 | 86.18 227 | 95.47 131 | 95.73 184 | 83.10 240 | 96.51 309 | 85.40 239 | 98.06 216 | 98.16 142 |
|
pmmvs4 | | | 88.95 257 | 87.70 272 | 92.70 194 | 94.30 282 | 85.60 180 | 87.22 318 | 92.16 303 | 74.62 329 | 89.75 296 | 94.19 249 | 77.97 285 | 96.41 312 | 82.71 267 | 96.36 278 | 96.09 262 |
|
iter_conf05 | | | 88.94 258 | 88.09 266 | 91.50 234 | 92.74 314 | 76.97 303 | 92.80 170 | 95.92 212 | 82.82 273 | 93.65 197 | 95.37 206 | 49.41 376 | 99.13 94 | 90.82 130 | 99.28 77 | 98.40 126 |
|
N_pmnet | | | 88.90 259 | 87.25 278 | 93.83 158 | 94.40 281 | 93.81 36 | 84.73 345 | 87.09 338 | 79.36 301 | 93.26 211 | 92.43 299 | 79.29 273 | 91.68 364 | 77.50 318 | 97.22 253 | 96.00 266 |
|
PS-MVSNAJ | | | 88.86 260 | 88.99 245 | 88.48 308 | 94.88 259 | 74.71 321 | 86.69 331 | 95.60 222 | 80.88 286 | 87.83 323 | 87.37 355 | 90.77 147 | 98.82 142 | 82.52 270 | 94.37 319 | 91.93 349 |
|
Patchmatch-RL test | | | 88.81 261 | 88.52 252 | 89.69 288 | 95.33 252 | 79.94 251 | 86.22 337 | 92.71 291 | 78.46 310 | 95.80 119 | 94.18 250 | 66.25 335 | 95.33 338 | 89.22 176 | 98.53 165 | 93.78 325 |
|
Anonymous20231206 | | | 88.77 262 | 88.29 258 | 90.20 278 | 96.31 192 | 78.81 277 | 89.56 280 | 93.49 277 | 74.26 331 | 92.38 243 | 95.58 191 | 82.21 250 | 95.43 335 | 72.07 347 | 98.75 146 | 96.34 253 |
|
PVSNet_Blended | | | 88.74 263 | 88.16 265 | 90.46 270 | 94.81 263 | 78.80 278 | 86.64 332 | 96.93 159 | 74.67 328 | 88.68 313 | 89.18 344 | 86.27 218 | 98.15 228 | 80.27 289 | 96.00 283 | 94.44 310 |
|
thisisatest0530 | | | 88.69 264 | 87.52 274 | 92.20 209 | 96.33 190 | 79.36 265 | 92.81 169 | 84.01 362 | 86.44 223 | 93.67 196 | 92.68 293 | 53.62 373 | 99.25 80 | 89.65 166 | 98.45 172 | 98.00 157 |
|
ppachtmachnet_test | | | 88.61 265 | 88.64 251 | 88.50 307 | 91.76 329 | 70.99 350 | 84.59 348 | 92.98 284 | 79.30 303 | 92.38 243 | 93.53 273 | 79.57 271 | 97.45 277 | 86.50 229 | 97.17 254 | 97.07 223 |
|
UnsupCasMVSNet_bld | | | 88.50 266 | 88.03 267 | 89.90 284 | 95.52 244 | 78.88 275 | 87.39 316 | 94.02 269 | 79.32 302 | 93.06 218 | 94.02 256 | 80.72 266 | 94.27 350 | 75.16 332 | 93.08 337 | 96.54 242 |
|
miper_enhance_ethall | | | 88.42 267 | 87.87 269 | 90.07 280 | 88.67 363 | 75.52 318 | 85.10 342 | 95.59 226 | 75.68 322 | 92.49 236 | 89.45 341 | 78.96 274 | 97.88 247 | 87.86 206 | 97.02 259 | 96.81 235 |
|
1112_ss | | | 88.42 267 | 87.41 275 | 91.45 235 | 96.69 163 | 80.99 235 | 89.72 276 | 96.72 178 | 73.37 335 | 87.00 331 | 90.69 326 | 77.38 290 | 98.20 222 | 81.38 280 | 93.72 328 | 95.15 293 |
|
lupinMVS | | | 88.34 269 | 87.31 276 | 91.45 235 | 94.74 268 | 80.06 246 | 87.23 317 | 92.27 300 | 71.10 346 | 88.83 304 | 91.15 317 | 77.02 294 | 98.53 194 | 86.67 224 | 96.75 270 | 95.76 277 |
|
YYNet1 | | | 88.17 270 | 88.24 261 | 87.93 315 | 92.21 320 | 73.62 333 | 80.75 363 | 88.77 325 | 82.51 277 | 94.99 157 | 95.11 213 | 82.70 246 | 93.70 354 | 83.33 261 | 93.83 326 | 96.48 248 |
|
MDA-MVSNet_test_wron | | | 88.16 271 | 88.23 262 | 87.93 315 | 92.22 319 | 73.71 332 | 80.71 364 | 88.84 324 | 82.52 276 | 94.88 162 | 95.14 211 | 82.70 246 | 93.61 355 | 83.28 262 | 93.80 327 | 96.46 249 |
|
MS-PatchMatch | | | 88.05 272 | 87.75 270 | 88.95 298 | 93.28 299 | 77.93 286 | 87.88 308 | 92.49 297 | 75.42 325 | 92.57 235 | 93.59 271 | 80.44 267 | 94.24 352 | 81.28 281 | 92.75 340 | 94.69 306 |
|
CR-MVSNet | | | 87.89 273 | 87.12 282 | 90.22 276 | 91.01 338 | 78.93 272 | 92.52 179 | 92.81 287 | 73.08 337 | 89.10 301 | 96.93 107 | 67.11 327 | 97.64 268 | 88.80 184 | 92.70 341 | 94.08 315 |
|
pmmvs5 | | | 87.87 274 | 87.14 281 | 90.07 280 | 93.26 301 | 76.97 303 | 88.89 295 | 92.18 301 | 73.71 334 | 88.36 316 | 93.89 262 | 76.86 299 | 96.73 304 | 80.32 288 | 96.81 267 | 96.51 244 |
|
wuyk23d | | | 87.83 275 | 90.79 212 | 78.96 355 | 90.46 346 | 88.63 113 | 92.72 172 | 90.67 319 | 91.65 116 | 98.68 11 | 97.64 60 | 96.06 16 | 77.53 376 | 59.84 371 | 99.41 56 | 70.73 374 |
|
FMVSNet5 | | | 87.82 276 | 86.56 291 | 91.62 230 | 92.31 317 | 79.81 256 | 93.49 154 | 94.81 250 | 83.26 264 | 91.36 262 | 96.93 107 | 52.77 374 | 97.49 275 | 76.07 327 | 98.03 219 | 97.55 202 |
|
GA-MVS | | | 87.70 277 | 86.82 286 | 90.31 272 | 93.27 300 | 77.22 298 | 84.72 347 | 92.79 289 | 85.11 247 | 89.82 292 | 90.07 330 | 66.80 330 | 97.76 262 | 84.56 253 | 94.27 322 | 95.96 268 |
|
TR-MVS | | | 87.70 277 | 87.17 280 | 89.27 295 | 94.11 286 | 79.26 267 | 88.69 301 | 91.86 309 | 81.94 282 | 90.69 275 | 89.79 335 | 82.82 244 | 97.42 279 | 72.65 345 | 91.98 349 | 91.14 354 |
|
thres600view7 | | | 87.66 279 | 87.10 283 | 89.36 293 | 96.05 213 | 73.17 335 | 92.72 172 | 85.31 354 | 91.89 99 | 93.29 208 | 90.97 320 | 63.42 349 | 98.39 205 | 73.23 341 | 96.99 264 | 96.51 244 |
|
PAPR | | | 87.65 280 | 86.77 288 | 90.27 274 | 92.85 309 | 77.38 295 | 88.56 304 | 96.23 201 | 76.82 321 | 84.98 341 | 89.75 337 | 86.08 220 | 97.16 289 | 72.33 346 | 93.35 331 | 96.26 257 |
|
baseline1 | | | 87.62 281 | 87.31 276 | 88.54 306 | 94.71 272 | 74.27 329 | 93.10 162 | 88.20 331 | 86.20 226 | 92.18 251 | 93.04 282 | 73.21 310 | 95.52 330 | 79.32 304 | 85.82 365 | 95.83 274 |
|
our_test_3 | | | 87.55 282 | 87.59 273 | 87.44 321 | 91.76 329 | 70.48 351 | 83.83 354 | 90.55 320 | 79.79 293 | 92.06 254 | 92.17 303 | 78.63 280 | 95.63 328 | 84.77 250 | 94.73 312 | 96.22 258 |
|
PatchT | | | 87.51 283 | 88.17 264 | 85.55 333 | 90.64 341 | 66.91 362 | 92.02 206 | 86.09 345 | 92.20 90 | 89.05 303 | 97.16 93 | 64.15 345 | 96.37 315 | 89.21 177 | 92.98 339 | 93.37 334 |
|
Test_1112_low_res | | | 87.50 284 | 86.58 290 | 90.25 275 | 96.80 161 | 77.75 290 | 87.53 314 | 96.25 199 | 69.73 353 | 86.47 333 | 93.61 270 | 75.67 303 | 97.88 247 | 79.95 295 | 93.20 333 | 95.11 295 |
|
SCA | | | 87.43 285 | 87.21 279 | 88.10 313 | 92.01 326 | 71.98 345 | 89.43 282 | 88.11 333 | 82.26 280 | 88.71 311 | 92.83 287 | 78.65 278 | 97.59 269 | 79.61 301 | 93.30 332 | 94.75 303 |
|
EU-MVSNet | | | 87.39 286 | 86.71 289 | 89.44 290 | 93.40 298 | 76.11 312 | 94.93 107 | 90.00 322 | 57.17 373 | 95.71 124 | 97.37 75 | 64.77 343 | 97.68 267 | 92.67 88 | 94.37 319 | 94.52 308 |
|
thres100view900 | | | 87.35 287 | 86.89 285 | 88.72 303 | 96.14 206 | 73.09 337 | 93.00 164 | 85.31 354 | 92.13 92 | 93.26 211 | 90.96 321 | 63.42 349 | 98.28 214 | 71.27 353 | 96.54 274 | 94.79 301 |
|
CMPMVS |  | 68.83 22 | 87.28 288 | 85.67 301 | 92.09 216 | 88.77 362 | 85.42 182 | 90.31 258 | 94.38 261 | 70.02 352 | 88.00 321 | 93.30 277 | 73.78 309 | 94.03 353 | 75.96 329 | 96.54 274 | 96.83 234 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
sss | | | 87.23 289 | 86.82 286 | 88.46 309 | 93.96 290 | 77.94 285 | 86.84 326 | 92.78 290 | 77.59 314 | 87.61 326 | 91.83 308 | 78.75 276 | 91.92 363 | 77.84 313 | 94.20 323 | 95.52 288 |
|
BH-w/o | | | 87.21 290 | 87.02 284 | 87.79 318 | 94.77 266 | 77.27 297 | 87.90 307 | 93.21 283 | 81.74 283 | 89.99 288 | 88.39 350 | 83.47 236 | 96.93 298 | 71.29 352 | 92.43 345 | 89.15 359 |
|
thres400 | | | 87.20 291 | 86.52 293 | 89.24 297 | 95.77 230 | 72.94 338 | 91.89 213 | 86.00 346 | 90.84 133 | 92.61 233 | 89.80 333 | 63.93 346 | 98.28 214 | 71.27 353 | 96.54 274 | 96.51 244 |
|
CHOSEN 1792x2688 | | | 87.19 292 | 85.92 300 | 91.00 253 | 97.13 143 | 79.41 264 | 84.51 349 | 95.60 222 | 64.14 367 | 90.07 286 | 94.81 227 | 78.26 283 | 97.14 290 | 73.34 340 | 95.38 300 | 96.46 249 |
|
HyFIR lowres test | | | 87.19 292 | 85.51 302 | 92.24 208 | 97.12 144 | 80.51 239 | 85.03 343 | 96.06 208 | 66.11 363 | 91.66 259 | 92.98 285 | 70.12 320 | 99.14 92 | 75.29 331 | 95.23 303 | 97.07 223 |
|
MIMVSNet | | | 87.13 294 | 86.54 292 | 88.89 300 | 96.05 213 | 76.11 312 | 94.39 126 | 88.51 327 | 81.37 284 | 88.27 318 | 96.75 121 | 72.38 312 | 95.52 330 | 65.71 367 | 95.47 296 | 95.03 296 |
|
tfpn200view9 | | | 87.05 295 | 86.52 293 | 88.67 304 | 95.77 230 | 72.94 338 | 91.89 213 | 86.00 346 | 90.84 133 | 92.61 233 | 89.80 333 | 63.93 346 | 98.28 214 | 71.27 353 | 96.54 274 | 94.79 301 |
|
cascas | | | 87.02 296 | 86.28 297 | 89.25 296 | 91.56 333 | 76.45 309 | 84.33 351 | 96.78 173 | 71.01 347 | 86.89 332 | 85.91 363 | 81.35 259 | 96.94 296 | 83.09 264 | 95.60 292 | 94.35 312 |
|
WTY-MVS | | | 86.93 297 | 86.50 295 | 88.24 311 | 94.96 257 | 74.64 322 | 87.19 319 | 92.07 306 | 78.29 311 | 88.32 317 | 91.59 313 | 78.06 284 | 94.27 350 | 74.88 333 | 93.15 335 | 95.80 275 |
|
HY-MVS | | 82.50 18 | 86.81 298 | 85.93 299 | 89.47 289 | 93.63 296 | 77.93 286 | 94.02 139 | 91.58 312 | 75.68 322 | 83.64 350 | 93.64 268 | 77.40 289 | 97.42 279 | 71.70 350 | 92.07 348 | 93.05 339 |
|
1314 | | | 86.46 299 | 86.33 296 | 86.87 325 | 91.65 331 | 74.54 324 | 91.94 210 | 94.10 266 | 74.28 330 | 84.78 343 | 87.33 356 | 83.03 241 | 95.00 342 | 78.72 308 | 91.16 354 | 91.06 355 |
|
ET-MVSNet_ETH3D | | | 86.15 300 | 84.27 309 | 91.79 222 | 93.04 306 | 81.28 231 | 87.17 320 | 86.14 344 | 79.57 297 | 83.65 349 | 88.66 346 | 57.10 364 | 98.18 225 | 87.74 207 | 95.40 298 | 95.90 272 |
|
Patchmatch-test | | | 86.10 301 | 86.01 298 | 86.38 330 | 90.63 342 | 74.22 330 | 89.57 279 | 86.69 340 | 85.73 236 | 89.81 293 | 92.83 287 | 65.24 341 | 91.04 366 | 77.82 315 | 95.78 289 | 93.88 324 |
|
thres200 | | | 85.85 302 | 85.18 303 | 87.88 317 | 94.44 279 | 72.52 342 | 89.08 292 | 86.21 343 | 88.57 187 | 91.44 261 | 88.40 349 | 64.22 344 | 98.00 239 | 68.35 361 | 95.88 288 | 93.12 336 |
|
EPNet_dtu | | | 85.63 303 | 84.37 307 | 89.40 292 | 86.30 372 | 74.33 328 | 91.64 225 | 88.26 329 | 84.84 253 | 72.96 375 | 89.85 331 | 71.27 317 | 97.69 266 | 76.60 324 | 97.62 240 | 96.18 260 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
test2506 | | | 85.42 304 | 84.57 306 | 87.96 314 | 97.81 100 | 66.53 365 | 96.14 56 | 56.35 382 | 89.04 174 | 93.55 201 | 98.10 37 | 42.88 384 | 98.68 175 | 88.09 199 | 99.18 91 | 98.67 99 |
|
PatchmatchNet |  | | 85.22 305 | 84.64 305 | 86.98 324 | 89.51 356 | 69.83 357 | 90.52 250 | 87.34 337 | 78.87 307 | 87.22 330 | 92.74 291 | 66.91 329 | 96.53 307 | 81.77 277 | 86.88 364 | 94.58 307 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
CVMVSNet | | | 85.16 306 | 84.72 304 | 86.48 326 | 92.12 323 | 70.19 352 | 92.32 193 | 88.17 332 | 56.15 374 | 90.64 276 | 95.85 174 | 67.97 325 | 96.69 305 | 88.78 185 | 90.52 356 | 92.56 344 |
|
JIA-IIPM | | | 85.08 307 | 83.04 316 | 91.19 247 | 87.56 365 | 86.14 172 | 89.40 284 | 84.44 361 | 88.98 176 | 82.20 359 | 97.95 46 | 56.82 366 | 96.15 319 | 76.55 325 | 83.45 369 | 91.30 353 |
|
MVS | | | 84.98 308 | 84.30 308 | 87.01 323 | 91.03 337 | 77.69 292 | 91.94 210 | 94.16 265 | 59.36 372 | 84.23 347 | 87.50 354 | 85.66 224 | 96.80 302 | 71.79 348 | 93.05 338 | 86.54 365 |
|
thisisatest0515 | | | 84.72 309 | 82.99 317 | 89.90 284 | 92.96 308 | 75.33 320 | 84.36 350 | 83.42 364 | 77.37 316 | 88.27 318 | 86.65 357 | 53.94 371 | 98.72 165 | 82.56 269 | 97.40 248 | 95.67 282 |
|
FPMVS | | | 84.50 310 | 83.28 314 | 88.16 312 | 96.32 191 | 94.49 16 | 85.76 338 | 85.47 352 | 83.09 268 | 85.20 339 | 94.26 246 | 63.79 348 | 86.58 373 | 63.72 369 | 91.88 351 | 83.40 368 |
|
tpm | | | 84.38 311 | 84.08 310 | 85.30 336 | 90.47 345 | 63.43 375 | 89.34 285 | 85.63 350 | 77.24 318 | 87.62 325 | 95.03 219 | 61.00 359 | 97.30 285 | 79.26 305 | 91.09 355 | 95.16 292 |
|
tpmvs | | | 84.22 312 | 83.97 311 | 84.94 337 | 87.09 369 | 65.18 368 | 91.21 234 | 88.35 328 | 82.87 272 | 85.21 338 | 90.96 321 | 65.24 341 | 96.75 303 | 79.60 303 | 85.25 366 | 92.90 341 |
|
ADS-MVSNet2 | | | 84.01 313 | 82.20 321 | 89.41 291 | 89.04 359 | 76.37 311 | 87.57 310 | 90.98 316 | 72.71 340 | 84.46 344 | 92.45 296 | 68.08 323 | 96.48 310 | 70.58 357 | 83.97 367 | 95.38 289 |
|
test-LLR | | | 83.58 314 | 83.17 315 | 84.79 339 | 89.68 353 | 66.86 363 | 83.08 356 | 84.52 359 | 83.07 269 | 82.85 355 | 84.78 366 | 62.86 352 | 93.49 356 | 82.85 265 | 94.86 308 | 94.03 318 |
|
baseline2 | | | 83.38 315 | 81.54 324 | 88.90 299 | 91.38 334 | 72.84 340 | 88.78 298 | 81.22 369 | 78.97 305 | 79.82 368 | 87.56 352 | 61.73 356 | 97.80 256 | 74.30 336 | 90.05 358 | 96.05 265 |
|
IB-MVS | | 77.21 19 | 83.11 316 | 81.05 327 | 89.29 294 | 91.15 336 | 75.85 315 | 85.66 339 | 86.00 346 | 79.70 295 | 82.02 362 | 86.61 358 | 48.26 377 | 98.39 205 | 77.84 313 | 92.22 346 | 93.63 329 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
CostFormer | | | 83.09 317 | 82.21 320 | 85.73 332 | 89.27 358 | 67.01 361 | 90.35 256 | 86.47 342 | 70.42 350 | 83.52 352 | 93.23 280 | 61.18 357 | 96.85 300 | 77.21 320 | 88.26 362 | 93.34 335 |
|
PMMVS | | | 83.00 318 | 81.11 326 | 88.66 305 | 83.81 379 | 86.44 162 | 82.24 360 | 85.65 349 | 61.75 371 | 82.07 360 | 85.64 364 | 79.75 270 | 91.59 365 | 75.99 328 | 93.09 336 | 87.94 364 |
|
PVSNet | | 76.22 20 | 82.89 319 | 82.37 319 | 84.48 341 | 93.96 290 | 64.38 373 | 78.60 366 | 88.61 326 | 71.50 344 | 84.43 346 | 86.36 361 | 74.27 306 | 94.60 344 | 69.87 359 | 93.69 329 | 94.46 309 |
|
tpmrst | | | 82.85 320 | 82.93 318 | 82.64 348 | 87.65 364 | 58.99 378 | 90.14 264 | 87.90 334 | 75.54 324 | 83.93 348 | 91.63 312 | 66.79 332 | 95.36 336 | 81.21 283 | 81.54 372 | 93.57 333 |
|
test0.0.03 1 | | | 82.48 321 | 81.47 325 | 85.48 334 | 89.70 352 | 73.57 334 | 84.73 345 | 81.64 368 | 83.07 269 | 88.13 320 | 86.61 358 | 62.86 352 | 89.10 372 | 66.24 366 | 90.29 357 | 93.77 326 |
|
ADS-MVSNet | | | 82.25 322 | 81.55 323 | 84.34 342 | 89.04 359 | 65.30 367 | 87.57 310 | 85.13 358 | 72.71 340 | 84.46 344 | 92.45 296 | 68.08 323 | 92.33 362 | 70.58 357 | 83.97 367 | 95.38 289 |
|
DSMNet-mixed | | | 82.21 323 | 81.56 322 | 84.16 343 | 89.57 355 | 70.00 356 | 90.65 247 | 77.66 377 | 54.99 375 | 83.30 353 | 97.57 62 | 77.89 286 | 90.50 368 | 66.86 365 | 95.54 294 | 91.97 348 |
|
KD-MVS_2432*1600 | | | 82.17 324 | 80.75 331 | 86.42 328 | 82.04 380 | 70.09 354 | 81.75 361 | 90.80 317 | 82.56 274 | 90.37 280 | 89.30 342 | 42.90 382 | 96.11 321 | 74.47 334 | 92.55 343 | 93.06 337 |
|
miper_refine_blended | | | 82.17 324 | 80.75 331 | 86.42 328 | 82.04 380 | 70.09 354 | 81.75 361 | 90.80 317 | 82.56 274 | 90.37 280 | 89.30 342 | 42.90 382 | 96.11 321 | 74.47 334 | 92.55 343 | 93.06 337 |
|
gg-mvs-nofinetune | | | 82.10 326 | 81.02 328 | 85.34 335 | 87.46 367 | 71.04 348 | 94.74 112 | 67.56 379 | 96.44 22 | 79.43 369 | 98.99 6 | 45.24 378 | 96.15 319 | 67.18 364 | 92.17 347 | 88.85 361 |
|
PAPM | | | 81.91 327 | 80.11 337 | 87.31 322 | 93.87 293 | 72.32 344 | 84.02 353 | 93.22 281 | 69.47 354 | 76.13 373 | 89.84 332 | 72.15 313 | 97.23 287 | 53.27 375 | 89.02 359 | 92.37 346 |
|
tpm2 | | | 81.46 328 | 80.35 335 | 84.80 338 | 89.90 350 | 65.14 369 | 90.44 252 | 85.36 353 | 65.82 365 | 82.05 361 | 92.44 298 | 57.94 363 | 96.69 305 | 70.71 356 | 88.49 361 | 92.56 344 |
|
PMMVS2 | | | 81.31 329 | 83.44 313 | 74.92 357 | 90.52 344 | 46.49 382 | 69.19 371 | 85.23 357 | 84.30 258 | 87.95 322 | 94.71 234 | 76.95 296 | 84.36 375 | 64.07 368 | 98.09 214 | 93.89 323 |
|
new_pmnet | | | 81.22 330 | 81.01 329 | 81.86 350 | 90.92 340 | 70.15 353 | 84.03 352 | 80.25 373 | 70.83 348 | 85.97 336 | 89.78 336 | 67.93 326 | 84.65 374 | 67.44 363 | 91.90 350 | 90.78 356 |
|
test-mter | | | 81.21 331 | 80.01 338 | 84.79 339 | 89.68 353 | 66.86 363 | 83.08 356 | 84.52 359 | 73.85 333 | 82.85 355 | 84.78 366 | 43.66 381 | 93.49 356 | 82.85 265 | 94.86 308 | 94.03 318 |
|
EPMVS | | | 81.17 332 | 80.37 334 | 83.58 345 | 85.58 374 | 65.08 370 | 90.31 258 | 71.34 378 | 77.31 317 | 85.80 337 | 91.30 315 | 59.38 361 | 92.70 361 | 79.99 294 | 82.34 371 | 92.96 340 |
|
EGC-MVSNET | | | 80.97 333 | 75.73 344 | 96.67 44 | 98.85 23 | 94.55 15 | 96.83 22 | 96.60 183 | 2.44 379 | 5.32 380 | 98.25 32 | 92.24 110 | 98.02 237 | 91.85 108 | 99.21 87 | 97.45 207 |
|
pmmvs3 | | | 80.83 334 | 78.96 340 | 86.45 327 | 87.23 368 | 77.48 294 | 84.87 344 | 82.31 366 | 63.83 368 | 85.03 340 | 89.50 340 | 49.66 375 | 93.10 358 | 73.12 343 | 95.10 305 | 88.78 363 |
|
E-PMN | | | 80.72 335 | 80.86 330 | 80.29 353 | 85.11 375 | 68.77 359 | 72.96 368 | 81.97 367 | 87.76 204 | 83.25 354 | 83.01 370 | 62.22 355 | 89.17 371 | 77.15 321 | 94.31 321 | 82.93 369 |
|
tpm cat1 | | | 80.61 336 | 79.46 339 | 84.07 344 | 88.78 361 | 65.06 371 | 89.26 288 | 88.23 330 | 62.27 370 | 81.90 363 | 89.66 339 | 62.70 354 | 95.29 339 | 71.72 349 | 80.60 373 | 91.86 351 |
|
EMVS | | | 80.35 337 | 80.28 336 | 80.54 352 | 84.73 377 | 69.07 358 | 72.54 370 | 80.73 370 | 87.80 202 | 81.66 364 | 81.73 371 | 62.89 351 | 89.84 369 | 75.79 330 | 94.65 315 | 82.71 370 |
|
CHOSEN 280x420 | | | 80.04 338 | 77.97 343 | 86.23 331 | 90.13 348 | 74.53 325 | 72.87 369 | 89.59 323 | 66.38 362 | 76.29 372 | 85.32 365 | 56.96 365 | 95.36 336 | 69.49 360 | 94.72 313 | 88.79 362 |
|
dp | | | 79.28 339 | 78.62 341 | 81.24 351 | 85.97 373 | 56.45 379 | 86.91 324 | 85.26 356 | 72.97 338 | 81.45 365 | 89.17 345 | 56.01 368 | 95.45 334 | 73.19 342 | 76.68 374 | 91.82 352 |
|
TESTMET0.1,1 | | | 79.09 340 | 78.04 342 | 82.25 349 | 87.52 366 | 64.03 374 | 83.08 356 | 80.62 371 | 70.28 351 | 80.16 367 | 83.22 369 | 44.13 380 | 90.56 367 | 79.95 295 | 93.36 330 | 92.15 347 |
|
MVS-HIRNet | | | 78.83 341 | 80.60 333 | 73.51 358 | 93.07 304 | 47.37 381 | 87.10 321 | 78.00 376 | 68.94 355 | 77.53 371 | 97.26 86 | 71.45 316 | 94.62 343 | 63.28 370 | 88.74 360 | 78.55 373 |
|
PVSNet_0 | | 70.34 21 | 74.58 342 | 72.96 345 | 79.47 354 | 90.63 342 | 66.24 366 | 73.26 367 | 83.40 365 | 63.67 369 | 78.02 370 | 78.35 373 | 72.53 311 | 89.59 370 | 56.68 373 | 60.05 377 | 82.57 371 |
|
MVE |  | 59.87 23 | 73.86 343 | 72.65 346 | 77.47 356 | 87.00 371 | 74.35 327 | 61.37 373 | 60.93 381 | 67.27 360 | 69.69 376 | 86.49 360 | 81.24 263 | 72.33 377 | 56.45 374 | 83.45 369 | 85.74 366 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
test_method | | | 50.44 344 | 48.94 347 | 54.93 359 | 39.68 383 | 12.38 385 | 28.59 374 | 90.09 321 | 6.82 377 | 41.10 379 | 78.41 372 | 54.41 370 | 70.69 378 | 50.12 376 | 51.26 378 | 81.72 372 |
|
tmp_tt | | | 37.97 345 | 44.33 348 | 18.88 361 | 11.80 384 | 21.54 384 | 63.51 372 | 45.66 385 | 4.23 378 | 51.34 378 | 50.48 376 | 59.08 362 | 22.11 380 | 44.50 377 | 68.35 376 | 13.00 376 |
|
cdsmvs_eth3d_5k | | | 23.35 346 | 31.13 349 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 95.58 228 | 0.00 382 | 0.00 383 | 91.15 317 | 93.43 79 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
test123 | | | 9.49 347 | 12.01 350 | 1.91 362 | 2.87 385 | 1.30 386 | 82.38 359 | 1.34 387 | 1.36 380 | 2.84 381 | 6.56 379 | 2.45 385 | 0.97 381 | 2.73 379 | 5.56 379 | 3.47 377 |
|
testmvs | | | 9.02 348 | 11.42 351 | 1.81 363 | 2.77 386 | 1.13 387 | 79.44 365 | 1.90 386 | 1.18 381 | 2.65 382 | 6.80 378 | 1.95 386 | 0.87 382 | 2.62 380 | 3.45 380 | 3.44 378 |
|
pcd_1.5k_mvsjas | | | 7.56 349 | 10.09 352 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.00 382 | 90.77 147 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
ab-mvs-re | | | 7.56 349 | 10.08 353 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 90.69 326 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
test_blank | | | 0.00 351 | 0.00 354 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.00 382 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
uanet_test | | | 0.00 351 | 0.00 354 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.00 382 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
DCPMVS | | | 0.00 351 | 0.00 354 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.00 382 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
sosnet-low-res | | | 0.00 351 | 0.00 354 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.00 382 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
sosnet | | | 0.00 351 | 0.00 354 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.00 382 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
uncertanet | | | 0.00 351 | 0.00 354 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.00 382 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
Regformer | | | 0.00 351 | 0.00 354 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.00 382 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
uanet | | | 0.00 351 | 0.00 354 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.00 382 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
FOURS1 | | | | | | 99.21 3 | 94.68 12 | 98.45 4 | 98.81 8 | 97.73 6 | 98.27 20 | | | | | | |
|
MSC_two_6792asdad | | | | | 95.90 68 | 96.54 174 | 89.57 93 | | 96.87 167 | | | | | 99.41 40 | 94.06 32 | 99.30 69 | 98.72 95 |
|
PC_three_1452 | | | | | | | | | | 75.31 327 | 95.87 117 | 95.75 183 | 92.93 95 | 96.34 318 | 87.18 216 | 98.68 151 | 98.04 152 |
|
No_MVS | | | | | 95.90 68 | 96.54 174 | 89.57 93 | | 96.87 167 | | | | | 99.41 40 | 94.06 32 | 99.30 69 | 98.72 95 |
|
test_one_0601 | | | | | | 98.26 70 | 87.14 142 | | 98.18 37 | 94.25 48 | 96.99 64 | 97.36 78 | 95.13 40 | | | | |
|
eth-test2 | | | | | | 0.00 387 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 387 | | | | | | | | | | | |
|
ZD-MVS | | | | | | 97.23 135 | 90.32 81 | | 97.54 111 | 84.40 257 | 94.78 165 | 95.79 179 | 92.76 101 | 99.39 52 | 88.72 188 | 98.40 174 | |
|
RE-MVS-def | | | | 96.66 20 | | 98.07 82 | 95.27 8 | 96.37 44 | 98.12 47 | 95.66 33 | 97.00 62 | 97.03 100 | 95.40 27 | | 93.49 50 | 98.84 130 | 98.00 157 |
|
IU-MVS | | | | | | 98.51 49 | 86.66 156 | | 96.83 170 | 72.74 339 | 95.83 118 | | | | 93.00 79 | 99.29 72 | 98.64 105 |
|
OPU-MVS | | | | | 95.15 102 | 96.84 156 | 89.43 97 | 95.21 93 | | | | 95.66 186 | 93.12 89 | 98.06 232 | 86.28 233 | 98.61 156 | 97.95 165 |
|
test_241102_TWO | | | | | | | | | 98.10 50 | 91.95 95 | 97.54 39 | 97.25 87 | 95.37 28 | 99.35 63 | 93.29 66 | 99.25 81 | 98.49 119 |
|
test_241102_ONE | | | | | | 98.51 49 | 86.97 147 | | 98.10 50 | 91.85 101 | 97.63 34 | 97.03 100 | 96.48 11 | 98.95 124 | | | |
|
9.14 | | | | 94.81 99 | | 97.49 124 | | 94.11 136 | 98.37 18 | 87.56 211 | 95.38 135 | 96.03 168 | 94.66 56 | 99.08 102 | 90.70 133 | 98.97 117 | |
|
save fliter | | | | | | 97.46 127 | 88.05 126 | 92.04 204 | 97.08 150 | 87.63 208 | | | | | | | |
|
test_0728_THIRD | | | | | | | | | | 93.26 70 | 97.40 49 | 97.35 81 | 94.69 55 | 99.34 66 | 93.88 36 | 99.42 51 | 98.89 73 |
|
test_0728_SECOND | | | | | 94.88 110 | 98.55 42 | 86.72 153 | 95.20 95 | 98.22 33 | | | | | 99.38 58 | 93.44 58 | 99.31 67 | 98.53 116 |
|
test0726 | | | | | | 98.51 49 | 86.69 154 | 95.34 88 | 98.18 37 | 91.85 101 | 97.63 34 | 97.37 75 | 95.58 22 | | | | |
|
GSMVS | | | | | | | | | | | | | | | | | 94.75 303 |
|
test_part2 | | | | | | 98.21 74 | 89.41 98 | | | | 96.72 75 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 66.64 333 | | | | 94.75 303 |
|
sam_mvs | | | | | | | | | | | | | 66.41 334 | | | | |
|
ambc | | | | | 92.98 181 | 96.88 153 | 83.01 213 | 95.92 67 | 96.38 195 | | 96.41 84 | 97.48 69 | 88.26 182 | 97.80 256 | 89.96 159 | 98.93 122 | 98.12 147 |
|
MTGPA |  | | | | | | | | 97.62 103 | | | | | | | | |
|
test_post1 | | | | | | | | 90.21 260 | | | | 5.85 381 | 65.36 339 | 96.00 324 | 79.61 301 | | |
|
test_post | | | | | | | | | | | | 6.07 380 | 65.74 338 | 95.84 326 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 91.71 310 | 66.22 336 | 97.59 269 | | | |
|
GG-mvs-BLEND | | | | | 83.24 347 | 85.06 376 | 71.03 349 | 94.99 106 | 65.55 380 | | 74.09 374 | 75.51 374 | 44.57 379 | 94.46 346 | 59.57 372 | 87.54 363 | 84.24 367 |
|
MTMP | | | | | | | | 94.82 109 | 54.62 383 | | | | | | | | |
|
gm-plane-assit | | | | | | 87.08 370 | 59.33 377 | | | 71.22 345 | | 83.58 368 | | 97.20 288 | 73.95 337 | | |
|
test9_res | | | | | | | | | | | | | | | 88.16 197 | 98.40 174 | 97.83 179 |
|
TEST9 | | | | | | 96.45 181 | 89.46 95 | 90.60 248 | 96.92 161 | 79.09 304 | 90.49 277 | 94.39 243 | 91.31 133 | 98.88 131 | | | |
|
test_8 | | | | | | 96.37 183 | 89.14 102 | 90.51 251 | 96.89 164 | 79.37 299 | 90.42 279 | 94.36 245 | 91.20 139 | 98.82 142 | | | |
|
agg_prior2 | | | | | | | | | | | | | | | 87.06 219 | 98.36 185 | 97.98 161 |
|
agg_prior | | | | | | 96.20 200 | 88.89 108 | | 96.88 165 | | 90.21 282 | | | 98.78 155 | | | |
|
TestCases | | | | | 96.00 59 | 98.02 89 | 92.17 52 | | 98.43 14 | 90.48 143 | 95.04 155 | 96.74 122 | 92.54 106 | 97.86 251 | 85.11 245 | 98.98 113 | 97.98 161 |
|
test_prior4 | | | | | | | 89.91 86 | 90.74 244 | | | | | | | | | |
|
test_prior2 | | | | | | | | 90.21 260 | | 89.33 168 | 90.77 272 | 94.81 227 | 90.41 157 | | 88.21 193 | 98.55 161 | |
|
test_prior | | | | | 94.61 122 | 95.95 221 | 87.23 139 | | 97.36 127 | | | | | 98.68 175 | | | 97.93 167 |
|
旧先验2 | | | | | | | | 90.00 269 | | 68.65 356 | 92.71 231 | | | 96.52 308 | 85.15 242 | | |
|
新几何2 | | | | | | | | 90.02 268 | | | | | | | | | |
|
新几何1 | | | | | 93.17 178 | 97.16 140 | 87.29 138 | | 94.43 259 | 67.95 358 | 91.29 263 | 94.94 222 | 86.97 206 | 98.23 220 | 81.06 286 | 97.75 231 | 93.98 321 |
|
旧先验1 | | | | | | 96.20 200 | 84.17 197 | | 94.82 248 | | | 95.57 192 | 89.57 171 | | | 97.89 227 | 96.32 254 |
|
无先验 | | | | | | | | 89.94 270 | 95.75 219 | 70.81 349 | | | | 98.59 187 | 81.17 284 | | 94.81 300 |
|
原ACMM2 | | | | | | | | 89.34 285 | | | | | | | | | |
|
原ACMM1 | | | | | 92.87 189 | 96.91 152 | 84.22 195 | | 97.01 153 | 76.84 320 | 89.64 297 | 94.46 240 | 88.00 188 | 98.70 171 | 81.53 279 | 98.01 221 | 95.70 281 |
|
test222 | | | | | | 96.95 148 | 85.27 184 | 88.83 297 | 93.61 273 | 65.09 366 | 90.74 274 | 94.85 226 | 84.62 231 | | | 97.36 249 | 93.91 322 |
|
testdata2 | | | | | | | | | | | | | | 98.03 234 | 80.24 291 | | |
|
segment_acmp | | | | | | | | | | | | | 92.14 113 | | | | |
|
testdata | | | | | 91.03 250 | 96.87 154 | 82.01 220 | | 94.28 263 | 71.55 343 | 92.46 238 | 95.42 201 | 85.65 225 | 97.38 284 | 82.64 268 | 97.27 251 | 93.70 328 |
|
testdata1 | | | | | | | | 88.96 294 | | 88.44 189 | | | | | | | |
|
test12 | | | | | 94.43 137 | 95.95 221 | 86.75 152 | | 96.24 200 | | 89.76 295 | | 89.79 170 | 98.79 151 | | 97.95 224 | 97.75 188 |
|
plane_prior7 | | | | | | 97.71 108 | 88.68 112 | | | | | | | | | | |
|
plane_prior6 | | | | | | 97.21 138 | 88.23 123 | | | | | | 86.93 207 | | | | |
|
plane_prior5 | | | | | | | | | 97.81 91 | | | | | 98.95 124 | 89.26 174 | 98.51 168 | 98.60 112 |
|
plane_prior4 | | | | | | | | | | | | 95.59 188 | | | | | |
|
plane_prior3 | | | | | | | 88.43 121 | | | 90.35 148 | 93.31 206 | | | | | | |
|
plane_prior2 | | | | | | | | 94.56 121 | | 91.74 112 | | | | | | | |
|
plane_prior1 | | | | | | 97.38 130 | | | | | | | | | | | |
|
plane_prior | | | | | | | 88.12 124 | 93.01 163 | | 88.98 176 | | | | | | 98.06 216 | |
|
n2 | | | | | | | | | 0.00 388 | | | | | | | | |
|
nn | | | | | | | | | 0.00 388 | | | | | | | | |
|
door-mid | | | | | | | | | 92.13 305 | | | | | | | | |
|
lessismore_v0 | | | | | 93.87 157 | 98.05 84 | 83.77 203 | | 80.32 372 | | 97.13 55 | 97.91 49 | 77.49 288 | 99.11 100 | 92.62 89 | 98.08 215 | 98.74 92 |
|
LGP-MVS_train | | | | | 96.84 40 | 98.36 65 | 92.13 54 | | 98.25 28 | 91.78 108 | 97.07 57 | 97.22 90 | 96.38 13 | 99.28 76 | 92.07 100 | 99.59 29 | 99.11 45 |
|
test11 | | | | | | | | | 96.65 181 | | | | | | | | |
|
door | | | | | | | | | 91.26 313 | | | | | | | | |
|
HQP5-MVS | | | | | | | 84.89 187 | | | | | | | | | | |
|
HQP-NCC | | | | | | 96.36 185 | | 91.37 229 | | 87.16 215 | 88.81 306 | | | | | | |
|
ACMP_Plane | | | | | | 96.36 185 | | 91.37 229 | | 87.16 215 | 88.81 306 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 86.55 227 | | |
|
HQP4-MVS | | | | | | | | | | | 88.81 306 | | | 98.61 183 | | | 98.15 143 |
|
HQP3-MVS | | | | | | | | | 97.31 132 | | | | | | | 97.73 232 | |
|
HQP2-MVS | | | | | | | | | | | | | 84.76 229 | | | | |
|
NP-MVS | | | | | | 96.82 158 | 87.10 143 | | | | | 93.40 275 | | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 42.48 383 | 88.45 305 | | 67.22 361 | 83.56 351 | | 66.80 330 | | 72.86 344 | | 94.06 317 |
|
MDTV_nov1_ep13 | | | | 83.88 312 | | 89.42 357 | 61.52 376 | 88.74 300 | 87.41 336 | 73.99 332 | 84.96 342 | 94.01 257 | 65.25 340 | 95.53 329 | 78.02 311 | 93.16 334 | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 98.82 136 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 99.25 81 | |
|
Test By Simon | | | | | | | | | | | | | 90.61 153 | | | | |
|
ITE_SJBPF | | | | | 95.95 62 | 97.34 132 | 93.36 42 | | 96.55 188 | 91.93 97 | 94.82 163 | 95.39 204 | 91.99 117 | 97.08 292 | 85.53 238 | 97.96 223 | 97.41 210 |
|
DeepMVS_CX |  | | | | 53.83 360 | 70.38 382 | 64.56 372 | | 48.52 384 | 33.01 376 | 65.50 377 | 74.21 375 | 56.19 367 | 46.64 379 | 38.45 378 | 70.07 375 | 50.30 375 |
|