LCM-MVSNet | | | 99.86 1 | 99.86 1 | 99.87 1 | 99.99 1 | 99.77 1 | 99.77 1 | 99.80 1 | 99.97 1 | 99.97 1 | 99.95 1 | 99.74 1 | 99.98 1 | 99.56 1 | 100.00 1 | 99.85 3 |
|
LTVRE_ROB | | 96.88 1 | 99.18 2 | 99.34 2 | 98.72 38 | 99.71 7 | 96.99 46 | 99.69 2 | 99.57 7 | 99.02 15 | 99.62 10 | 99.36 14 | 98.53 7 | 99.52 186 | 98.58 13 | 99.95 5 | 99.66 22 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
UniMVSNet_ETH3D | | | 99.12 3 | 99.28 3 | 98.65 43 | 99.77 3 | 96.34 66 | 99.18 5 | 99.20 18 | 99.67 2 | 99.73 3 | 99.65 4 | 99.15 3 | 99.86 24 | 97.22 49 | 99.92 14 | 99.77 9 |
|
pmmvs6 | | | 99.07 4 | 99.24 4 | 98.56 49 | 99.81 2 | 96.38 64 | 98.87 9 | 99.30 12 | 99.01 16 | 99.63 9 | 99.66 3 | 99.27 2 | 99.68 130 | 97.75 32 | 99.89 25 | 99.62 27 |
|
mvs_tets | | | 98.90 5 | 98.94 6 | 98.75 33 | 99.69 8 | 96.48 62 | 98.54 22 | 99.22 15 | 96.23 118 | 99.71 4 | 99.48 7 | 98.77 6 | 99.93 3 | 98.89 3 | 99.95 5 | 99.84 5 |
|
TDRefinement | | | 98.90 5 | 98.86 8 | 99.02 9 | 99.54 22 | 98.06 8 | 99.34 4 | 99.44 10 | 98.85 20 | 99.00 38 | 99.20 24 | 97.42 32 | 99.59 164 | 97.21 50 | 99.76 47 | 99.40 88 |
|
UA-Net | | | 98.88 7 | 98.76 13 | 99.22 2 | 99.11 87 | 97.89 14 | 99.47 3 | 99.32 11 | 99.08 10 | 97.87 144 | 99.67 2 | 96.47 90 | 99.92 5 | 97.88 25 | 99.98 2 | 99.85 3 |
|
DTE-MVSNet | | | 98.79 8 | 98.86 8 | 98.59 47 | 99.55 20 | 96.12 73 | 98.48 29 | 99.10 33 | 99.36 4 | 99.29 23 | 99.06 41 | 97.27 38 | 99.93 3 | 97.71 34 | 99.91 17 | 99.70 19 |
|
jajsoiax | | | 98.77 9 | 98.79 12 | 98.74 35 | 99.66 11 | 96.48 62 | 98.45 30 | 99.12 30 | 95.83 145 | 99.67 6 | 99.37 12 | 98.25 10 | 99.92 5 | 98.77 5 | 99.94 8 | 99.82 6 |
|
PEN-MVS | | | 98.75 10 | 98.85 10 | 98.44 56 | 99.58 16 | 95.67 92 | 98.45 30 | 99.15 26 | 99.33 5 | 99.30 21 | 99.00 43 | 97.27 38 | 99.92 5 | 97.64 36 | 99.92 14 | 99.75 14 |
|
v7n | | | 98.73 11 | 98.99 5 | 97.95 100 | 99.64 12 | 94.20 160 | 98.67 15 | 99.14 28 | 99.08 10 | 99.42 15 | 99.23 22 | 96.53 85 | 99.91 13 | 99.27 2 | 99.93 10 | 99.73 16 |
|
PS-CasMVS | | | 98.73 11 | 98.85 10 | 98.39 62 | 99.55 20 | 95.47 105 | 98.49 27 | 99.13 29 | 99.22 8 | 99.22 27 | 98.96 47 | 97.35 34 | 99.92 5 | 97.79 30 | 99.93 10 | 99.79 8 |
|
test_djsdf | | | 98.73 11 | 98.74 16 | 98.69 40 | 99.63 13 | 96.30 68 | 98.67 15 | 99.02 54 | 96.50 106 | 99.32 20 | 99.44 10 | 97.43 31 | 99.92 5 | 98.73 7 | 99.95 5 | 99.86 2 |
|
anonymousdsp | | | 98.72 14 | 98.63 19 | 98.99 13 | 99.62 14 | 97.29 39 | 98.65 18 | 99.19 20 | 95.62 153 | 99.35 19 | 99.37 12 | 97.38 33 | 99.90 14 | 98.59 12 | 99.91 17 | 99.77 9 |
|
WR-MVS_H | | | 98.65 15 | 98.62 21 | 98.75 33 | 99.51 27 | 96.61 58 | 98.55 21 | 99.17 21 | 99.05 13 | 99.17 29 | 98.79 58 | 95.47 128 | 99.89 18 | 97.95 24 | 99.91 17 | 99.75 14 |
|
OurMVSNet-221017-0 | | | 98.61 16 | 98.61 23 | 98.63 45 | 99.77 3 | 96.35 65 | 99.17 6 | 99.05 45 | 98.05 43 | 99.61 11 | 99.52 5 | 93.72 182 | 99.88 20 | 98.72 9 | 99.88 26 | 99.65 24 |
|
Anonymous20231211 | | | 98.55 17 | 98.76 13 | 97.94 101 | 98.79 117 | 94.37 151 | 98.84 11 | 99.15 26 | 99.37 3 | 99.67 6 | 99.43 11 | 95.61 122 | 99.72 90 | 98.12 19 | 99.86 28 | 99.73 16 |
|
nrg030 | | | 98.54 18 | 98.62 21 | 98.32 67 | 99.22 62 | 95.66 93 | 97.90 67 | 99.08 39 | 98.31 33 | 99.02 36 | 98.74 62 | 97.68 24 | 99.61 162 | 97.77 31 | 99.85 31 | 99.70 19 |
|
PS-MVSNAJss | | | 98.53 19 | 98.63 19 | 98.21 81 | 99.68 9 | 94.82 133 | 98.10 55 | 99.21 16 | 96.91 90 | 99.75 2 | 99.45 9 | 95.82 110 | 99.92 5 | 98.80 4 | 99.96 4 | 99.89 1 |
|
MIMVSNet1 | | | 98.51 20 | 98.45 26 | 98.67 41 | 99.72 6 | 96.71 52 | 98.76 12 | 98.89 82 | 98.49 28 | 99.38 17 | 99.14 34 | 95.44 130 | 99.84 30 | 96.47 74 | 99.80 40 | 99.47 66 |
|
pm-mvs1 | | | 98.47 21 | 98.67 17 | 97.86 108 | 99.52 26 | 94.58 143 | 98.28 41 | 99.00 62 | 97.57 65 | 99.27 24 | 99.22 23 | 98.32 9 | 99.50 191 | 97.09 56 | 99.75 52 | 99.50 49 |
|
ACMH | | 93.61 9 | 98.44 22 | 98.76 13 | 97.51 134 | 99.43 37 | 93.54 185 | 98.23 45 | 99.05 45 | 97.40 77 | 99.37 18 | 99.08 39 | 98.79 5 | 99.47 200 | 97.74 33 | 99.71 61 | 99.50 49 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
CP-MVSNet | | | 98.42 23 | 98.46 24 | 98.30 71 | 99.46 33 | 95.22 121 | 98.27 43 | 98.84 102 | 99.05 13 | 99.01 37 | 98.65 70 | 95.37 131 | 99.90 14 | 97.57 38 | 99.91 17 | 99.77 9 |
|
abl_6 | | | 98.42 23 | 98.19 32 | 99.09 3 | 99.16 74 | 98.10 6 | 97.73 80 | 99.11 31 | 97.76 53 | 98.62 56 | 98.27 109 | 97.88 19 | 99.80 44 | 95.67 112 | 99.50 122 | 99.38 92 |
|
TransMVSNet (Re) | | | 98.38 25 | 98.67 17 | 97.51 134 | 99.51 27 | 93.39 189 | 98.20 50 | 98.87 90 | 98.23 36 | 99.48 12 | 99.27 20 | 98.47 8 | 99.55 177 | 96.52 71 | 99.53 108 | 99.60 29 |
|
TranMVSNet+NR-MVSNet | | | 98.33 26 | 98.30 31 | 98.43 58 | 99.07 92 | 95.87 82 | 96.73 137 | 99.05 45 | 98.67 24 | 98.84 45 | 98.45 84 | 97.58 28 | 99.88 20 | 96.45 75 | 99.86 28 | 99.54 42 |
|
HPM-MVS_fast | | | 98.32 27 | 98.13 33 | 98.88 24 | 99.54 22 | 97.48 32 | 98.35 34 | 99.03 52 | 95.88 140 | 97.88 141 | 98.22 116 | 98.15 12 | 99.74 80 | 96.50 73 | 99.62 76 | 99.42 85 |
|
ANet_high | | | 98.31 28 | 98.94 6 | 96.41 209 | 99.33 48 | 89.64 253 | 97.92 66 | 99.56 8 | 99.27 6 | 99.66 8 | 99.50 6 | 97.67 25 | 99.83 33 | 97.55 39 | 99.98 2 | 99.77 9 |
|
VPA-MVSNet | | | 98.27 29 | 98.46 24 | 97.70 120 | 99.06 93 | 93.80 174 | 97.76 75 | 99.00 62 | 98.40 30 | 99.07 35 | 98.98 45 | 96.89 64 | 99.75 70 | 97.19 53 | 99.79 41 | 99.55 41 |
|
Vis-MVSNet |  | | 98.27 29 | 98.34 28 | 98.07 91 | 99.33 48 | 95.21 123 | 98.04 59 | 99.46 9 | 97.32 80 | 97.82 149 | 99.11 35 | 96.75 74 | 99.86 24 | 97.84 27 | 99.36 165 | 99.15 146 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
COLMAP_ROB |  | 94.48 6 | 98.25 31 | 98.11 34 | 98.64 44 | 99.21 69 | 97.35 37 | 97.96 62 | 99.16 22 | 98.34 32 | 98.78 49 | 98.52 79 | 97.32 35 | 99.45 207 | 94.08 197 | 99.67 68 | 99.13 151 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
ACMH+ | | 93.58 10 | 98.23 32 | 98.31 29 | 97.98 99 | 99.39 42 | 95.22 121 | 97.55 89 | 99.20 18 | 98.21 37 | 99.25 25 | 98.51 80 | 98.21 11 | 99.40 224 | 94.79 167 | 99.72 58 | 99.32 105 |
|
FC-MVSNet-test | | | 98.16 33 | 98.37 27 | 97.56 129 | 99.49 31 | 93.10 194 | 98.35 34 | 99.21 16 | 98.43 29 | 98.89 41 | 98.83 57 | 94.30 167 | 99.81 38 | 97.87 26 | 99.91 17 | 99.77 9 |
|
mvsmamba | | | 98.16 33 | 98.06 38 | 98.44 56 | 99.53 25 | 95.87 82 | 98.70 13 | 98.94 76 | 97.71 59 | 98.85 43 | 99.10 36 | 91.35 234 | 99.83 33 | 98.47 14 | 99.90 23 | 99.64 26 |
|
SR-MVS-dyc-post | | | 98.14 35 | 97.84 54 | 99.02 9 | 98.81 114 | 98.05 9 | 97.55 89 | 98.86 93 | 97.77 50 | 98.20 102 | 98.07 132 | 96.60 82 | 99.76 63 | 95.49 123 | 99.20 198 | 99.26 124 |
|
MTAPA | | | 98.14 35 | 97.84 54 | 99.06 4 | 99.44 35 | 97.90 12 | 97.25 106 | 98.73 132 | 97.69 61 | 97.90 138 | 97.96 147 | 95.81 114 | 99.82 35 | 96.13 85 | 99.61 82 | 99.45 73 |
|
APDe-MVS | | | 98.14 35 | 98.03 41 | 98.47 55 | 98.72 125 | 96.04 76 | 98.07 57 | 99.10 33 | 95.96 134 | 98.59 61 | 98.69 66 | 96.94 58 | 99.81 38 | 96.64 65 | 99.58 90 | 99.57 36 |
|
APD-MVS_3200maxsize | | | 98.13 38 | 97.90 48 | 98.79 31 | 98.79 117 | 97.31 38 | 97.55 89 | 98.92 79 | 97.72 57 | 98.25 98 | 98.13 124 | 97.10 45 | 99.75 70 | 95.44 130 | 99.24 196 | 99.32 105 |
|
HPM-MVS |  | | 98.11 39 | 97.83 57 | 98.92 22 | 99.42 39 | 97.46 33 | 98.57 19 | 99.05 45 | 95.43 162 | 97.41 167 | 97.50 195 | 97.98 15 | 99.79 45 | 95.58 121 | 99.57 93 | 99.50 49 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
CS-MVS | | | 98.09 40 | 98.01 42 | 98.32 67 | 98.45 165 | 96.69 54 | 98.52 25 | 99.69 2 | 98.07 42 | 96.07 244 | 97.19 223 | 96.88 66 | 99.86 24 | 97.50 41 | 99.73 54 | 98.41 244 |
|
test1172 | | | 98.08 41 | 97.76 64 | 99.05 6 | 98.78 119 | 98.07 7 | 97.41 101 | 98.85 97 | 97.57 65 | 98.15 109 | 97.96 147 | 96.60 82 | 99.76 63 | 95.30 138 | 99.18 202 | 99.33 104 |
|
Gipuma |  | | 98.07 42 | 98.31 29 | 97.36 154 | 99.76 5 | 96.28 69 | 98.51 26 | 99.10 33 | 98.76 23 | 96.79 204 | 99.34 18 | 96.61 80 | 98.82 311 | 96.38 77 | 99.50 122 | 96.98 322 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
ACMMP |  | | 98.05 43 | 97.75 66 | 98.93 21 | 99.23 59 | 97.60 23 | 98.09 56 | 98.96 73 | 95.75 149 | 97.91 137 | 98.06 137 | 96.89 64 | 99.76 63 | 95.32 137 | 99.57 93 | 99.43 84 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
ACMM | | 93.33 11 | 98.05 43 | 97.79 59 | 98.85 25 | 99.15 77 | 97.55 27 | 96.68 139 | 98.83 109 | 95.21 168 | 98.36 83 | 98.13 124 | 98.13 14 | 99.62 156 | 96.04 90 | 99.54 105 | 99.39 90 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
SteuartSystems-ACMMP | | | 98.02 45 | 97.76 64 | 98.79 31 | 99.43 37 | 97.21 43 | 97.15 111 | 98.90 81 | 96.58 102 | 98.08 119 | 97.87 163 | 97.02 53 | 99.76 63 | 95.25 141 | 99.59 88 | 99.40 88 |
Skip Steuart: Steuart Systems R&D Blog. |
zzz-MVS | | | 98.01 46 | 97.66 72 | 99.06 4 | 99.44 35 | 97.90 12 | 95.66 191 | 98.73 132 | 97.69 61 | 97.90 138 | 97.96 147 | 95.81 114 | 99.82 35 | 96.13 85 | 99.61 82 | 99.45 73 |
|
SR-MVS | | | 98.00 47 | 97.66 72 | 99.01 11 | 98.77 121 | 97.93 11 | 97.38 102 | 98.83 109 | 97.32 80 | 98.06 121 | 97.85 164 | 96.65 77 | 99.77 58 | 95.00 160 | 99.11 212 | 99.32 105 |
|
DVP-MVS++ | | | 97.96 48 | 97.90 48 | 98.12 88 | 97.75 249 | 95.40 106 | 99.03 7 | 98.89 82 | 96.62 97 | 98.62 56 | 98.30 100 | 96.97 56 | 99.75 70 | 95.70 108 | 99.25 193 | 99.21 133 |
|
Anonymous20240529 | | | 97.96 48 | 98.04 40 | 97.71 118 | 98.69 132 | 94.28 156 | 97.86 69 | 98.31 197 | 98.79 22 | 99.23 26 | 98.86 56 | 95.76 117 | 99.61 162 | 95.49 123 | 99.36 165 | 99.23 131 |
|
XVS | | | 97.96 48 | 97.63 79 | 98.94 18 | 99.15 77 | 97.66 20 | 97.77 73 | 98.83 109 | 97.42 73 | 96.32 230 | 97.64 183 | 96.49 88 | 99.72 90 | 95.66 114 | 99.37 162 | 99.45 73 |
|
NR-MVSNet | | | 97.96 48 | 97.86 53 | 98.26 73 | 98.73 123 | 95.54 98 | 98.14 53 | 98.73 132 | 97.79 49 | 99.42 15 | 97.83 165 | 94.40 165 | 99.78 49 | 95.91 100 | 99.76 47 | 99.46 68 |
|
RRT_MVS | | | 97.95 52 | 97.79 59 | 98.43 58 | 99.67 10 | 95.56 96 | 98.86 10 | 96.73 295 | 97.99 45 | 99.15 30 | 99.35 16 | 89.84 256 | 99.90 14 | 98.64 10 | 99.90 23 | 99.82 6 |
|
ACMMPR | | | 97.95 52 | 97.62 81 | 98.94 18 | 99.20 70 | 97.56 26 | 97.59 86 | 98.83 109 | 96.05 127 | 97.46 165 | 97.63 184 | 96.77 73 | 99.76 63 | 95.61 118 | 99.46 135 | 99.49 57 |
|
FMVSNet1 | | | 97.95 52 | 98.08 35 | 97.56 129 | 99.14 85 | 93.67 179 | 98.23 45 | 98.66 152 | 97.41 76 | 99.00 38 | 99.19 25 | 95.47 128 | 99.73 85 | 95.83 105 | 99.76 47 | 99.30 111 |
|
SED-MVS | | | 97.94 55 | 97.90 48 | 98.07 91 | 99.22 62 | 95.35 111 | 96.79 130 | 98.83 109 | 96.11 124 | 99.08 33 | 98.24 111 | 97.87 20 | 99.72 90 | 95.44 130 | 99.51 118 | 99.14 149 |
|
HFP-MVS | | | 97.94 55 | 97.64 77 | 98.83 26 | 99.15 77 | 97.50 30 | 97.59 86 | 98.84 102 | 96.05 127 | 97.49 159 | 97.54 190 | 97.07 48 | 99.70 115 | 95.61 118 | 99.46 135 | 99.30 111 |
|
LPG-MVS_test | | | 97.94 55 | 97.67 71 | 98.74 35 | 99.15 77 | 97.02 44 | 97.09 116 | 99.02 54 | 95.15 172 | 98.34 86 | 98.23 113 | 97.91 17 | 99.70 115 | 94.41 182 | 99.73 54 | 99.50 49 |
|
FIs | | | 97.93 58 | 98.07 36 | 97.48 141 | 99.38 43 | 92.95 197 | 98.03 61 | 99.11 31 | 98.04 44 | 98.62 56 | 98.66 68 | 93.75 181 | 99.78 49 | 97.23 48 | 99.84 32 | 99.73 16 |
|
ZNCC-MVS | | | 97.92 59 | 97.62 81 | 98.83 26 | 99.32 50 | 97.24 41 | 97.45 96 | 98.84 102 | 95.76 147 | 96.93 198 | 97.43 201 | 97.26 40 | 99.79 45 | 96.06 87 | 99.53 108 | 99.45 73 |
|
region2R | | | 97.92 59 | 97.59 85 | 98.92 22 | 99.22 62 | 97.55 27 | 97.60 85 | 98.84 102 | 96.00 132 | 97.22 171 | 97.62 185 | 96.87 68 | 99.76 63 | 95.48 126 | 99.43 148 | 99.46 68 |
|
CP-MVS | | | 97.92 59 | 97.56 88 | 98.99 13 | 98.99 101 | 97.82 16 | 97.93 64 | 98.96 73 | 96.11 124 | 96.89 201 | 97.45 199 | 96.85 69 | 99.78 49 | 95.19 144 | 99.63 75 | 99.38 92 |
|
CS-MVS-test | | | 97.91 62 | 97.84 54 | 98.14 86 | 98.52 152 | 96.03 78 | 98.38 33 | 99.67 3 | 98.11 40 | 95.50 266 | 96.92 243 | 96.81 72 | 99.87 22 | 96.87 63 | 99.76 47 | 98.51 237 |
|
mPP-MVS | | | 97.91 62 | 97.53 89 | 99.04 7 | 99.22 62 | 97.87 15 | 97.74 78 | 98.78 123 | 96.04 129 | 97.10 181 | 97.73 177 | 96.53 85 | 99.78 49 | 95.16 148 | 99.50 122 | 99.46 68 |
|
DROMVSNet | | | 97.90 64 | 97.94 47 | 97.79 112 | 98.66 134 | 95.14 124 | 98.31 38 | 99.66 4 | 97.57 65 | 95.95 249 | 97.01 237 | 96.99 55 | 99.82 35 | 97.66 35 | 99.64 73 | 98.39 247 |
|
ACMMP_NAP | | | 97.89 65 | 97.63 79 | 98.67 41 | 99.35 46 | 96.84 49 | 96.36 150 | 98.79 119 | 95.07 176 | 97.88 141 | 98.35 92 | 97.24 42 | 99.72 90 | 96.05 89 | 99.58 90 | 99.45 73 |
|
PGM-MVS | | | 97.88 66 | 97.52 90 | 98.96 16 | 99.20 70 | 97.62 22 | 97.09 116 | 99.06 43 | 95.45 160 | 97.55 154 | 97.94 152 | 97.11 44 | 99.78 49 | 94.77 170 | 99.46 135 | 99.48 63 |
|
DP-MVS | | | 97.87 67 | 97.89 51 | 97.81 111 | 98.62 140 | 94.82 133 | 97.13 114 | 98.79 119 | 98.98 17 | 98.74 52 | 98.49 81 | 95.80 116 | 99.49 194 | 95.04 157 | 99.44 140 | 99.11 159 |
|
RPSCF | | | 97.87 67 | 97.51 91 | 98.95 17 | 99.15 77 | 98.43 3 | 97.56 88 | 99.06 43 | 96.19 121 | 98.48 70 | 98.70 65 | 94.72 151 | 99.24 265 | 94.37 185 | 99.33 180 | 99.17 142 |
|
KD-MVS_self_test | | | 97.86 69 | 98.07 36 | 97.25 161 | 99.22 62 | 92.81 200 | 97.55 89 | 98.94 76 | 97.10 86 | 98.85 43 | 98.88 54 | 95.03 143 | 99.67 135 | 97.39 46 | 99.65 71 | 99.26 124 |
|
test_0402 | | | 97.84 70 | 97.97 44 | 97.47 142 | 99.19 72 | 94.07 163 | 96.71 138 | 98.73 132 | 98.66 25 | 98.56 63 | 98.41 87 | 96.84 70 | 99.69 123 | 94.82 165 | 99.81 37 | 98.64 225 |
|
UniMVSNet_NR-MVSNet | | | 97.83 71 | 97.65 74 | 98.37 63 | 98.72 125 | 95.78 85 | 95.66 191 | 99.02 54 | 98.11 40 | 98.31 93 | 97.69 181 | 94.65 156 | 99.85 27 | 97.02 59 | 99.71 61 | 99.48 63 |
|
UniMVSNet (Re) | | | 97.83 71 | 97.65 74 | 98.35 66 | 98.80 116 | 95.86 84 | 95.92 180 | 99.04 51 | 97.51 70 | 98.22 101 | 97.81 169 | 94.68 154 | 99.78 49 | 97.14 55 | 99.75 52 | 99.41 87 |
|
GST-MVS | | | 97.82 73 | 97.49 94 | 98.81 29 | 99.23 59 | 97.25 40 | 97.16 110 | 98.79 119 | 95.96 134 | 97.53 155 | 97.40 203 | 96.93 60 | 99.77 58 | 95.04 157 | 99.35 170 | 99.42 85 |
|
DeepC-MVS | | 95.41 4 | 97.82 73 | 97.70 67 | 98.16 82 | 98.78 119 | 95.72 87 | 96.23 159 | 99.02 54 | 93.92 214 | 98.62 56 | 98.99 44 | 97.69 23 | 99.62 156 | 96.18 84 | 99.87 27 | 99.15 146 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
DU-MVS | | | 97.79 75 | 97.60 84 | 98.36 64 | 98.73 123 | 95.78 85 | 95.65 194 | 98.87 90 | 97.57 65 | 98.31 93 | 97.83 165 | 94.69 152 | 99.85 27 | 97.02 59 | 99.71 61 | 99.46 68 |
|
DVP-MVS |  | | 97.78 76 | 97.65 74 | 98.16 82 | 99.24 57 | 95.51 100 | 96.74 133 | 98.23 203 | 95.92 137 | 98.40 77 | 98.28 105 | 97.06 50 | 99.71 106 | 95.48 126 | 99.52 113 | 99.26 124 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
LS3D | | | 97.77 77 | 97.50 93 | 98.57 48 | 96.24 320 | 97.58 25 | 98.45 30 | 98.85 97 | 98.58 27 | 97.51 157 | 97.94 152 | 95.74 118 | 99.63 148 | 95.19 144 | 98.97 226 | 98.51 237 |
|
GeoE | | | 97.75 78 | 97.70 67 | 97.89 105 | 98.88 110 | 94.53 144 | 97.10 115 | 98.98 68 | 95.75 149 | 97.62 152 | 97.59 187 | 97.61 27 | 99.77 58 | 96.34 79 | 99.44 140 | 99.36 100 |
|
3Dnovator+ | | 96.13 3 | 97.73 79 | 97.59 85 | 98.15 85 | 98.11 203 | 95.60 95 | 98.04 59 | 98.70 142 | 98.13 39 | 96.93 198 | 98.45 84 | 95.30 135 | 99.62 156 | 95.64 116 | 98.96 227 | 99.24 130 |
|
tfpnnormal | | | 97.72 80 | 97.97 44 | 96.94 175 | 99.26 53 | 92.23 210 | 97.83 71 | 98.45 174 | 98.25 35 | 99.13 32 | 98.66 68 | 96.65 77 | 99.69 123 | 93.92 206 | 99.62 76 | 98.91 192 |
|
Baseline_NR-MVSNet | | | 97.72 80 | 97.79 59 | 97.50 137 | 99.56 18 | 93.29 190 | 95.44 201 | 98.86 93 | 98.20 38 | 98.37 80 | 99.24 21 | 94.69 152 | 99.55 177 | 95.98 96 | 99.79 41 | 99.65 24 |
|
bld_raw_dy_0_64 | | | 97.69 82 | 97.61 83 | 97.91 103 | 99.54 22 | 94.27 157 | 98.06 58 | 98.60 160 | 96.60 99 | 98.79 48 | 98.95 48 | 89.62 257 | 99.84 30 | 98.43 16 | 99.91 17 | 99.62 27 |
|
MP-MVS-pluss | | | 97.69 82 | 97.36 100 | 98.70 39 | 99.50 30 | 96.84 49 | 95.38 208 | 98.99 65 | 92.45 256 | 98.11 113 | 98.31 96 | 97.25 41 | 99.77 58 | 96.60 67 | 99.62 76 | 99.48 63 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
EG-PatchMatch MVS | | | 97.69 82 | 97.79 59 | 97.40 152 | 99.06 93 | 93.52 186 | 95.96 175 | 98.97 72 | 94.55 195 | 98.82 46 | 98.76 61 | 97.31 36 | 99.29 256 | 97.20 52 | 99.44 140 | 99.38 92 |
|
DPE-MVS |  | | 97.64 85 | 97.35 101 | 98.50 52 | 98.85 112 | 96.18 70 | 95.21 222 | 98.99 65 | 95.84 144 | 98.78 49 | 98.08 130 | 96.84 70 | 99.81 38 | 93.98 204 | 99.57 93 | 99.52 46 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
MP-MVS |  | | 97.64 85 | 97.18 113 | 99.00 12 | 99.32 50 | 97.77 18 | 97.49 95 | 98.73 132 | 96.27 115 | 95.59 264 | 97.75 174 | 96.30 98 | 99.78 49 | 93.70 214 | 99.48 130 | 99.45 73 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
#test# | | | 97.62 87 | 97.22 111 | 98.83 26 | 99.15 77 | 97.50 30 | 96.81 128 | 98.84 102 | 94.25 203 | 97.49 159 | 97.54 190 | 97.07 48 | 99.70 115 | 94.37 185 | 99.46 135 | 99.30 111 |
|
3Dnovator | | 96.53 2 | 97.61 88 | 97.64 77 | 97.50 137 | 97.74 252 | 93.65 183 | 98.49 27 | 98.88 88 | 96.86 92 | 97.11 180 | 98.55 77 | 95.82 110 | 99.73 85 | 95.94 98 | 99.42 151 | 99.13 151 |
|
SF-MVS | | | 97.60 89 | 97.39 98 | 98.22 78 | 98.93 106 | 95.69 89 | 97.05 118 | 99.10 33 | 95.32 165 | 97.83 147 | 97.88 161 | 96.44 92 | 99.72 90 | 94.59 177 | 99.39 159 | 99.25 128 |
|
v8 | | | 97.60 89 | 98.06 38 | 96.23 215 | 98.71 128 | 89.44 257 | 97.43 99 | 98.82 117 | 97.29 82 | 98.74 52 | 99.10 36 | 93.86 177 | 99.68 130 | 98.61 11 | 99.94 8 | 99.56 39 |
|
XVG-ACMP-BASELINE | | | 97.58 91 | 97.28 106 | 98.49 53 | 99.16 74 | 96.90 48 | 96.39 147 | 98.98 68 | 95.05 177 | 98.06 121 | 98.02 141 | 95.86 106 | 99.56 173 | 94.37 185 | 99.64 73 | 99.00 175 |
|
v10 | | | 97.55 92 | 97.97 44 | 96.31 213 | 98.60 143 | 89.64 253 | 97.44 97 | 99.02 54 | 96.60 99 | 98.72 54 | 99.16 31 | 93.48 186 | 99.72 90 | 98.76 6 | 99.92 14 | 99.58 31 |
|
OPM-MVS | | | 97.54 93 | 97.25 107 | 98.41 60 | 99.11 87 | 96.61 58 | 95.24 220 | 98.46 173 | 94.58 194 | 98.10 116 | 98.07 132 | 97.09 47 | 99.39 229 | 95.16 148 | 99.44 140 | 99.21 133 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
XXY-MVS | | | 97.54 93 | 97.70 67 | 97.07 169 | 99.46 33 | 92.21 211 | 97.22 109 | 99.00 62 | 94.93 183 | 98.58 62 | 98.92 51 | 97.31 36 | 99.41 222 | 94.44 180 | 99.43 148 | 99.59 30 |
|
Regformer-4 | | | 97.53 95 | 97.47 96 | 97.71 118 | 97.35 281 | 93.91 168 | 95.26 218 | 98.14 220 | 97.97 46 | 98.34 86 | 97.89 157 | 95.49 126 | 99.71 106 | 97.41 44 | 99.42 151 | 99.51 48 |
|
casdiffmvs | | | 97.50 96 | 97.81 58 | 96.56 199 | 98.51 154 | 91.04 233 | 95.83 184 | 99.09 38 | 97.23 83 | 98.33 90 | 98.30 100 | 97.03 52 | 99.37 235 | 96.58 69 | 99.38 161 | 99.28 119 |
|
SixPastTwentyTwo | | | 97.49 97 | 97.57 87 | 97.26 160 | 99.56 18 | 92.33 207 | 98.28 41 | 96.97 284 | 98.30 34 | 99.45 14 | 99.35 16 | 88.43 272 | 99.89 18 | 98.01 23 | 99.76 47 | 99.54 42 |
|
SMA-MVS |  | | 97.48 98 | 97.11 116 | 98.60 46 | 98.83 113 | 96.67 55 | 96.74 133 | 98.73 132 | 91.61 268 | 98.48 70 | 98.36 91 | 96.53 85 | 99.68 130 | 95.17 146 | 99.54 105 | 99.45 73 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
ACMP | | 92.54 13 | 97.47 99 | 97.10 117 | 98.55 50 | 99.04 98 | 96.70 53 | 96.24 158 | 98.89 82 | 93.71 219 | 97.97 132 | 97.75 174 | 97.44 30 | 99.63 148 | 93.22 224 | 99.70 64 | 99.32 105 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
MSP-MVS | | | 97.45 100 | 96.92 130 | 99.03 8 | 99.26 53 | 97.70 19 | 97.66 81 | 98.89 82 | 95.65 151 | 98.51 66 | 96.46 271 | 92.15 217 | 99.81 38 | 95.14 151 | 98.58 268 | 99.58 31 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
baseline | | | 97.44 101 | 97.78 63 | 96.43 205 | 98.52 152 | 90.75 240 | 96.84 126 | 99.03 52 | 96.51 105 | 97.86 145 | 98.02 141 | 96.67 76 | 99.36 237 | 97.09 56 | 99.47 132 | 99.19 138 |
|
TSAR-MVS + MP. | | | 97.42 102 | 97.23 110 | 98.00 98 | 99.38 43 | 95.00 128 | 97.63 84 | 98.20 208 | 93.00 243 | 98.16 107 | 98.06 137 | 95.89 105 | 99.72 90 | 95.67 112 | 99.10 214 | 99.28 119 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
Regformer-2 | | | 97.41 103 | 97.24 109 | 97.93 102 | 97.21 293 | 94.72 136 | 94.85 242 | 98.27 198 | 97.74 54 | 98.11 113 | 97.50 195 | 95.58 124 | 99.69 123 | 96.57 70 | 99.31 184 | 99.37 99 |
|
CSCG | | | 97.40 104 | 97.30 103 | 97.69 122 | 98.95 103 | 94.83 132 | 97.28 105 | 98.99 65 | 96.35 114 | 98.13 112 | 95.95 298 | 95.99 103 | 99.66 141 | 94.36 188 | 99.73 54 | 98.59 231 |
|
XVG-OURS-SEG-HR | | | 97.38 105 | 97.07 120 | 98.30 71 | 99.01 100 | 97.41 36 | 94.66 249 | 99.02 54 | 95.20 169 | 98.15 109 | 97.52 193 | 98.83 4 | 98.43 344 | 94.87 163 | 96.41 337 | 99.07 166 |
|
VDD-MVS | | | 97.37 106 | 97.25 107 | 97.74 116 | 98.69 132 | 94.50 147 | 97.04 119 | 95.61 314 | 98.59 26 | 98.51 66 | 98.72 63 | 92.54 210 | 99.58 166 | 96.02 92 | 99.49 126 | 99.12 156 |
|
SD-MVS | | | 97.37 106 | 97.70 67 | 96.35 210 | 98.14 198 | 95.13 125 | 96.54 142 | 98.92 79 | 95.94 136 | 99.19 28 | 98.08 130 | 97.74 22 | 95.06 373 | 95.24 142 | 99.54 105 | 98.87 202 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
PM-MVS | | | 97.36 108 | 97.10 117 | 98.14 86 | 98.91 108 | 96.77 51 | 96.20 160 | 98.63 158 | 93.82 216 | 98.54 64 | 98.33 94 | 93.98 175 | 99.05 290 | 95.99 95 | 99.45 139 | 98.61 230 |
|
LCM-MVSNet-Re | | | 97.33 109 | 97.33 102 | 97.32 156 | 98.13 201 | 93.79 175 | 96.99 122 | 99.65 5 | 96.74 95 | 99.47 13 | 98.93 50 | 96.91 63 | 99.84 30 | 90.11 287 | 99.06 221 | 98.32 256 |
|
EI-MVSNet-UG-set | | | 97.32 110 | 97.40 97 | 97.09 168 | 97.34 285 | 92.01 219 | 95.33 212 | 97.65 258 | 97.74 54 | 98.30 95 | 98.14 122 | 95.04 142 | 99.69 123 | 97.55 39 | 99.52 113 | 99.58 31 |
|
EI-MVSNet-Vis-set | | | 97.32 110 | 97.39 98 | 97.11 166 | 97.36 280 | 92.08 217 | 95.34 211 | 97.65 258 | 97.74 54 | 98.29 96 | 98.11 128 | 95.05 140 | 99.68 130 | 97.50 41 | 99.50 122 | 99.56 39 |
|
Regformer-1 | | | 97.27 112 | 97.16 114 | 97.61 127 | 97.21 293 | 93.86 171 | 94.85 242 | 98.04 235 | 97.62 64 | 98.03 125 | 97.50 195 | 95.34 132 | 99.63 148 | 96.52 71 | 99.31 184 | 99.35 102 |
|
VPNet | | | 97.26 113 | 97.49 94 | 96.59 195 | 99.47 32 | 90.58 242 | 96.27 154 | 98.53 167 | 97.77 50 | 98.46 73 | 98.41 87 | 94.59 158 | 99.68 130 | 94.61 173 | 99.29 188 | 99.52 46 |
|
Regformer-3 | | | 97.25 114 | 97.29 104 | 97.11 166 | 97.35 281 | 92.32 208 | 95.26 218 | 97.62 263 | 97.67 63 | 98.17 106 | 97.89 157 | 95.05 140 | 99.56 173 | 97.16 54 | 99.42 151 | 99.46 68 |
|
xxxxxxxxxxxxxcwj | | | 97.24 115 | 97.03 123 | 97.89 105 | 98.48 160 | 94.71 137 | 94.53 254 | 99.07 42 | 95.02 179 | 97.83 147 | 97.88 161 | 96.44 92 | 99.72 90 | 94.59 177 | 99.39 159 | 99.25 128 |
|
canonicalmvs | | | 97.23 116 | 97.21 112 | 97.30 157 | 97.65 260 | 94.39 149 | 97.84 70 | 99.05 45 | 97.42 73 | 96.68 211 | 93.85 337 | 97.63 26 | 99.33 245 | 96.29 80 | 98.47 273 | 98.18 272 |
|
AllTest | | | 97.20 117 | 96.92 130 | 98.06 93 | 99.08 90 | 96.16 71 | 97.14 113 | 99.16 22 | 94.35 199 | 97.78 150 | 98.07 132 | 95.84 107 | 99.12 280 | 91.41 252 | 99.42 151 | 98.91 192 |
|
dcpmvs_2 | | | 97.12 118 | 97.99 43 | 94.51 292 | 99.11 87 | 84.00 343 | 97.75 76 | 99.65 5 | 97.38 78 | 99.14 31 | 98.42 86 | 95.16 138 | 99.96 2 | 95.52 122 | 99.78 44 | 99.58 31 |
|
XVG-OURS | | | 97.12 118 | 96.74 139 | 98.26 73 | 98.99 101 | 97.45 34 | 93.82 285 | 99.05 45 | 95.19 170 | 98.32 91 | 97.70 179 | 95.22 137 | 98.41 345 | 94.27 190 | 98.13 285 | 98.93 187 |
|
Anonymous20240521 | | | 97.07 120 | 97.51 91 | 95.76 236 | 99.35 46 | 88.18 280 | 97.78 72 | 98.40 184 | 97.11 85 | 98.34 86 | 99.04 42 | 89.58 259 | 99.79 45 | 98.09 21 | 99.93 10 | 99.30 111 |
|
V42 | | | 97.04 121 | 97.16 114 | 96.68 192 | 98.59 145 | 91.05 232 | 96.33 152 | 98.36 189 | 94.60 191 | 97.99 128 | 98.30 100 | 93.32 188 | 99.62 156 | 97.40 45 | 99.53 108 | 99.38 92 |
|
APD-MVS |  | | 97.00 122 | 96.53 152 | 98.41 60 | 98.55 149 | 96.31 67 | 96.32 153 | 98.77 124 | 92.96 248 | 97.44 166 | 97.58 189 | 95.84 107 | 99.74 80 | 91.96 239 | 99.35 170 | 99.19 138 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
HPM-MVS++ |  | | 96.99 123 | 96.38 159 | 98.81 29 | 98.64 135 | 97.59 24 | 95.97 174 | 98.20 208 | 95.51 158 | 95.06 274 | 96.53 267 | 94.10 172 | 99.70 115 | 94.29 189 | 99.15 204 | 99.13 151 |
|
GBi-Net | | | 96.99 123 | 96.80 136 | 97.56 129 | 97.96 215 | 93.67 179 | 98.23 45 | 98.66 152 | 95.59 155 | 97.99 128 | 99.19 25 | 89.51 263 | 99.73 85 | 94.60 174 | 99.44 140 | 99.30 111 |
|
test1 | | | 96.99 123 | 96.80 136 | 97.56 129 | 97.96 215 | 93.67 179 | 98.23 45 | 98.66 152 | 95.59 155 | 97.99 128 | 99.19 25 | 89.51 263 | 99.73 85 | 94.60 174 | 99.44 140 | 99.30 111 |
|
VDDNet | | | 96.98 126 | 96.84 133 | 97.41 151 | 99.40 41 | 93.26 191 | 97.94 63 | 95.31 320 | 99.26 7 | 98.39 79 | 99.18 28 | 87.85 281 | 99.62 156 | 95.13 153 | 99.09 215 | 99.35 102 |
|
PHI-MVS | | | 96.96 127 | 96.53 152 | 98.25 76 | 97.48 271 | 96.50 61 | 96.76 132 | 98.85 97 | 93.52 222 | 96.19 240 | 96.85 246 | 95.94 104 | 99.42 213 | 93.79 210 | 99.43 148 | 98.83 205 |
|
IS-MVSNet | | | 96.93 128 | 96.68 142 | 97.70 120 | 99.25 56 | 94.00 166 | 98.57 19 | 96.74 293 | 98.36 31 | 98.14 111 | 97.98 146 | 88.23 274 | 99.71 106 | 93.10 227 | 99.72 58 | 99.38 92 |
|
CNVR-MVS | | | 96.92 129 | 96.55 149 | 98.03 97 | 98.00 213 | 95.54 98 | 94.87 240 | 98.17 214 | 94.60 191 | 96.38 227 | 97.05 233 | 95.67 120 | 99.36 237 | 95.12 154 | 99.08 216 | 99.19 138 |
|
IterMVS-LS | | | 96.92 129 | 97.29 104 | 95.79 235 | 98.51 154 | 88.13 283 | 95.10 225 | 98.66 152 | 96.99 87 | 98.46 73 | 98.68 67 | 92.55 208 | 99.74 80 | 96.91 61 | 99.79 41 | 99.50 49 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
WR-MVS | | | 96.90 131 | 96.81 135 | 97.16 163 | 98.56 148 | 92.20 213 | 94.33 259 | 98.12 223 | 97.34 79 | 98.20 102 | 97.33 214 | 92.81 199 | 99.75 70 | 94.79 167 | 99.81 37 | 99.54 42 |
|
DeepPCF-MVS | | 94.58 5 | 96.90 131 | 96.43 158 | 98.31 70 | 97.48 271 | 97.23 42 | 92.56 317 | 98.60 160 | 92.84 250 | 98.54 64 | 97.40 203 | 96.64 79 | 98.78 315 | 94.40 184 | 99.41 157 | 98.93 187 |
|
ETH3D-3000-0.1 | | | 96.89 133 | 96.46 157 | 98.16 82 | 98.62 140 | 95.69 89 | 95.96 175 | 98.98 68 | 93.36 227 | 97.04 188 | 97.31 216 | 94.93 148 | 99.63 148 | 92.60 231 | 99.34 173 | 99.17 142 |
|
v1144 | | | 96.84 134 | 97.08 119 | 96.13 221 | 98.42 167 | 89.28 260 | 95.41 205 | 98.67 150 | 94.21 204 | 97.97 132 | 98.31 96 | 93.06 193 | 99.65 143 | 98.06 22 | 99.62 76 | 99.45 73 |
|
VNet | | | 96.84 134 | 96.83 134 | 96.88 179 | 98.06 204 | 92.02 218 | 96.35 151 | 97.57 265 | 97.70 60 | 97.88 141 | 97.80 170 | 92.40 214 | 99.54 180 | 94.73 172 | 98.96 227 | 99.08 164 |
|
EPP-MVSNet | | | 96.84 134 | 96.58 146 | 97.65 124 | 99.18 73 | 93.78 176 | 98.68 14 | 96.34 298 | 97.91 48 | 97.30 169 | 98.06 137 | 88.46 271 | 99.85 27 | 93.85 208 | 99.40 158 | 99.32 105 |
|
v1192 | | | 96.83 137 | 97.06 121 | 96.15 220 | 98.28 177 | 89.29 259 | 95.36 209 | 98.77 124 | 93.73 218 | 98.11 113 | 98.34 93 | 93.02 197 | 99.67 135 | 98.35 17 | 99.58 90 | 99.50 49 |
|
MVS_111021_LR | | | 96.82 138 | 96.55 149 | 97.62 126 | 98.27 179 | 95.34 113 | 93.81 287 | 98.33 194 | 94.59 193 | 96.56 219 | 96.63 262 | 96.61 80 | 98.73 320 | 94.80 166 | 99.34 173 | 98.78 211 |
|
Effi-MVS+-dtu | | | 96.81 139 | 96.09 171 | 98.99 13 | 96.90 307 | 98.69 2 | 96.42 146 | 98.09 226 | 95.86 142 | 95.15 273 | 95.54 309 | 94.26 168 | 99.81 38 | 94.06 198 | 98.51 272 | 98.47 241 |
|
UGNet | | | 96.81 139 | 96.56 148 | 97.58 128 | 96.64 310 | 93.84 173 | 97.75 76 | 97.12 278 | 96.47 109 | 93.62 315 | 98.88 54 | 93.22 191 | 99.53 182 | 95.61 118 | 99.69 65 | 99.36 100 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
v2v482 | | | 96.78 141 | 97.06 121 | 95.95 228 | 98.57 147 | 88.77 270 | 95.36 209 | 98.26 200 | 95.18 171 | 97.85 146 | 98.23 113 | 92.58 207 | 99.63 148 | 97.80 29 | 99.69 65 | 99.45 73 |
|
test_part1 | | | 96.77 142 | 96.53 152 | 97.47 142 | 98.04 205 | 92.92 198 | 97.93 64 | 98.85 97 | 98.83 21 | 99.30 21 | 99.07 40 | 79.25 323 | 99.79 45 | 97.59 37 | 99.93 10 | 99.69 21 |
|
v1240 | | | 96.74 143 | 97.02 124 | 95.91 231 | 98.18 191 | 88.52 272 | 95.39 207 | 98.88 88 | 93.15 239 | 98.46 73 | 98.40 90 | 92.80 200 | 99.71 106 | 98.45 15 | 99.49 126 | 99.49 57 |
|
DeepC-MVS_fast | | 94.34 7 | 96.74 143 | 96.51 155 | 97.44 148 | 97.69 255 | 94.15 161 | 96.02 170 | 98.43 177 | 93.17 238 | 97.30 169 | 97.38 209 | 95.48 127 | 99.28 258 | 93.74 211 | 99.34 173 | 98.88 200 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
MVS_111021_HR | | | 96.73 145 | 96.54 151 | 97.27 158 | 98.35 172 | 93.66 182 | 93.42 297 | 98.36 189 | 94.74 186 | 96.58 217 | 96.76 255 | 96.54 84 | 98.99 297 | 94.87 163 | 99.27 191 | 99.15 146 |
|
v1921920 | | | 96.72 146 | 96.96 127 | 95.99 224 | 98.21 186 | 88.79 269 | 95.42 203 | 98.79 119 | 93.22 233 | 98.19 105 | 98.26 110 | 92.68 203 | 99.70 115 | 98.34 18 | 99.55 102 | 99.49 57 |
|
FMVSNet2 | | | 96.72 146 | 96.67 143 | 96.87 180 | 97.96 215 | 91.88 221 | 97.15 111 | 98.06 233 | 95.59 155 | 98.50 68 | 98.62 71 | 89.51 263 | 99.65 143 | 94.99 161 | 99.60 86 | 99.07 166 |
|
PMVS |  | 89.60 17 | 96.71 148 | 96.97 125 | 95.95 228 | 99.51 27 | 97.81 17 | 97.42 100 | 97.49 266 | 97.93 47 | 95.95 249 | 98.58 73 | 96.88 66 | 96.91 367 | 89.59 295 | 99.36 165 | 93.12 367 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
testtj | | | 96.69 149 | 96.13 168 | 98.36 64 | 98.46 164 | 96.02 79 | 96.44 145 | 98.70 142 | 94.26 202 | 96.79 204 | 97.13 225 | 94.07 173 | 99.75 70 | 90.53 279 | 98.80 247 | 99.31 110 |
|
v144192 | | | 96.69 149 | 96.90 132 | 96.03 223 | 98.25 182 | 88.92 264 | 95.49 199 | 98.77 124 | 93.05 241 | 98.09 117 | 98.29 104 | 92.51 212 | 99.70 115 | 98.11 20 | 99.56 96 | 99.47 66 |
|
CPTT-MVS | | | 96.69 149 | 96.08 172 | 98.49 53 | 98.89 109 | 96.64 57 | 97.25 106 | 98.77 124 | 92.89 249 | 96.01 248 | 97.13 225 | 92.23 216 | 99.67 135 | 92.24 236 | 99.34 173 | 99.17 142 |
|
HQP_MVS | | | 96.66 152 | 96.33 162 | 97.68 123 | 98.70 130 | 94.29 153 | 96.50 143 | 98.75 128 | 96.36 112 | 96.16 241 | 96.77 253 | 91.91 228 | 99.46 203 | 92.59 233 | 99.20 198 | 99.28 119 |
|
EI-MVSNet | | | 96.63 153 | 96.93 128 | 95.74 237 | 97.26 290 | 88.13 283 | 95.29 216 | 97.65 258 | 96.99 87 | 97.94 135 | 98.19 118 | 92.55 208 | 99.58 166 | 96.91 61 | 99.56 96 | 99.50 49 |
|
patch_mono-2 | | | 96.59 154 | 96.93 128 | 95.55 246 | 98.88 110 | 87.12 305 | 94.47 256 | 99.30 12 | 94.12 208 | 96.65 215 | 98.41 87 | 94.98 146 | 99.87 22 | 95.81 107 | 99.78 44 | 99.66 22 |
|
ab-mvs | | | 96.59 154 | 96.59 145 | 96.60 194 | 98.64 135 | 92.21 211 | 98.35 34 | 97.67 254 | 94.45 196 | 96.99 193 | 98.79 58 | 94.96 147 | 99.49 194 | 90.39 284 | 99.07 218 | 98.08 275 |
|
v148 | | | 96.58 156 | 96.97 125 | 95.42 253 | 98.63 139 | 87.57 295 | 95.09 226 | 97.90 239 | 95.91 139 | 98.24 99 | 97.96 147 | 93.42 187 | 99.39 229 | 96.04 90 | 99.52 113 | 99.29 118 |
|
test20.03 | | | 96.58 156 | 96.61 144 | 96.48 203 | 98.49 158 | 91.72 225 | 95.68 190 | 97.69 253 | 96.81 93 | 98.27 97 | 97.92 155 | 94.18 171 | 98.71 322 | 90.78 269 | 99.66 70 | 99.00 175 |
|
NCCC | | | 96.52 158 | 95.99 176 | 98.10 89 | 97.81 231 | 95.68 91 | 95.00 235 | 98.20 208 | 95.39 163 | 95.40 269 | 96.36 277 | 93.81 179 | 99.45 207 | 93.55 217 | 98.42 274 | 99.17 142 |
|
pmmvs-eth3d | | | 96.49 159 | 96.18 167 | 97.42 150 | 98.25 182 | 94.29 153 | 94.77 246 | 98.07 232 | 89.81 290 | 97.97 132 | 98.33 94 | 93.11 192 | 99.08 287 | 95.46 129 | 99.84 32 | 98.89 196 |
|
OMC-MVS | | | 96.48 160 | 96.00 175 | 97.91 103 | 98.30 174 | 96.01 80 | 94.86 241 | 98.60 160 | 91.88 265 | 97.18 175 | 97.21 222 | 96.11 101 | 99.04 291 | 90.49 283 | 99.34 173 | 98.69 222 |
|
TSAR-MVS + GP. | | | 96.47 161 | 96.12 169 | 97.49 140 | 97.74 252 | 95.23 118 | 94.15 270 | 96.90 286 | 93.26 231 | 98.04 124 | 96.70 258 | 94.41 164 | 98.89 306 | 94.77 170 | 99.14 205 | 98.37 249 |
|
Fast-Effi-MVS+-dtu | | | 96.44 162 | 96.12 169 | 97.39 153 | 97.18 296 | 94.39 149 | 95.46 200 | 98.73 132 | 96.03 131 | 94.72 282 | 94.92 321 | 96.28 100 | 99.69 123 | 93.81 209 | 97.98 290 | 98.09 274 |
|
K. test v3 | | | 96.44 162 | 96.28 163 | 96.95 174 | 99.41 40 | 91.53 227 | 97.65 82 | 90.31 363 | 98.89 19 | 98.93 40 | 99.36 14 | 84.57 301 | 99.92 5 | 97.81 28 | 99.56 96 | 99.39 90 |
|
MSLP-MVS++ | | | 96.42 164 | 96.71 140 | 95.57 243 | 97.82 230 | 90.56 244 | 95.71 186 | 98.84 102 | 94.72 187 | 96.71 210 | 97.39 207 | 94.91 149 | 98.10 359 | 95.28 139 | 99.02 223 | 98.05 284 |
|
Anonymous202405211 | | | 96.34 165 | 95.98 177 | 97.43 149 | 98.25 182 | 93.85 172 | 96.74 133 | 94.41 328 | 97.72 57 | 98.37 80 | 98.03 140 | 87.15 285 | 99.53 182 | 94.06 198 | 99.07 218 | 98.92 191 |
|
h-mvs33 | | | 96.29 166 | 95.63 189 | 98.26 73 | 98.50 157 | 96.11 74 | 96.90 124 | 97.09 279 | 96.58 102 | 97.21 173 | 98.19 118 | 84.14 302 | 99.78 49 | 95.89 101 | 96.17 341 | 98.89 196 |
|
MVS_Test | | | 96.27 167 | 96.79 138 | 94.73 282 | 96.94 305 | 86.63 312 | 96.18 161 | 98.33 194 | 94.94 181 | 96.07 244 | 98.28 105 | 95.25 136 | 99.26 262 | 97.21 50 | 97.90 294 | 98.30 260 |
|
MCST-MVS | | | 96.24 168 | 95.80 183 | 97.56 129 | 98.75 122 | 94.13 162 | 94.66 249 | 98.17 214 | 90.17 286 | 96.21 238 | 96.10 291 | 95.14 139 | 99.43 212 | 94.13 196 | 98.85 243 | 99.13 151 |
|
ETH3D cwj APD-0.16 | | | 96.23 169 | 95.61 191 | 98.09 90 | 97.91 219 | 95.65 94 | 94.94 237 | 98.74 130 | 91.31 274 | 96.02 247 | 97.08 230 | 94.05 174 | 99.69 123 | 91.51 251 | 98.94 231 | 98.93 187 |
|
mvs-test1 | | | 96.20 170 | 95.50 194 | 98.32 67 | 96.90 307 | 98.16 5 | 95.07 229 | 98.09 226 | 95.86 142 | 93.63 314 | 94.32 333 | 94.26 168 | 99.71 106 | 94.06 198 | 97.27 322 | 97.07 319 |
|
Effi-MVS+ | | | 96.19 171 | 96.01 174 | 96.71 189 | 97.43 277 | 92.19 214 | 96.12 164 | 99.10 33 | 95.45 160 | 93.33 327 | 94.71 324 | 97.23 43 | 99.56 173 | 93.21 225 | 97.54 311 | 98.37 249 |
|
DELS-MVS | | | 96.17 172 | 96.23 164 | 95.99 224 | 97.55 267 | 90.04 248 | 92.38 322 | 98.52 168 | 94.13 207 | 96.55 221 | 97.06 232 | 94.99 145 | 99.58 166 | 95.62 117 | 99.28 189 | 98.37 249 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
MVSFormer | | | 96.14 173 | 96.36 160 | 95.49 249 | 97.68 256 | 87.81 291 | 98.67 15 | 99.02 54 | 96.50 106 | 94.48 291 | 96.15 286 | 86.90 286 | 99.92 5 | 98.73 7 | 99.13 208 | 98.74 216 |
|
ETV-MVS | | | 96.13 174 | 95.90 181 | 96.82 183 | 97.76 247 | 93.89 169 | 95.40 206 | 98.95 75 | 95.87 141 | 95.58 265 | 91.00 368 | 96.36 97 | 99.72 90 | 93.36 218 | 98.83 245 | 96.85 329 |
|
testgi | | | 96.07 175 | 96.50 156 | 94.80 279 | 99.26 53 | 87.69 294 | 95.96 175 | 98.58 164 | 95.08 175 | 98.02 127 | 96.25 281 | 97.92 16 | 97.60 364 | 88.68 309 | 98.74 253 | 99.11 159 |
|
LF4IMVS | | | 96.07 175 | 95.63 189 | 97.36 154 | 98.19 188 | 95.55 97 | 95.44 201 | 98.82 117 | 92.29 259 | 95.70 262 | 96.55 265 | 92.63 206 | 98.69 324 | 91.75 248 | 99.33 180 | 97.85 294 |
|
EIA-MVS | | | 96.04 177 | 95.77 185 | 96.85 181 | 97.80 235 | 92.98 196 | 96.12 164 | 99.16 22 | 94.65 189 | 93.77 309 | 91.69 362 | 95.68 119 | 99.67 135 | 94.18 193 | 98.85 243 | 97.91 292 |
|
diffmvs | | | 96.04 177 | 96.23 164 | 95.46 251 | 97.35 281 | 88.03 286 | 93.42 297 | 99.08 39 | 94.09 210 | 96.66 213 | 96.93 241 | 93.85 178 | 99.29 256 | 96.01 94 | 98.67 258 | 99.06 168 |
|
alignmvs | | | 96.01 179 | 95.52 193 | 97.50 137 | 97.77 246 | 94.71 137 | 96.07 166 | 96.84 287 | 97.48 71 | 96.78 208 | 94.28 334 | 85.50 294 | 99.40 224 | 96.22 81 | 98.73 256 | 98.40 245 |
|
TinyColmap | | | 96.00 180 | 96.34 161 | 94.96 270 | 97.90 221 | 87.91 287 | 94.13 273 | 98.49 171 | 94.41 197 | 98.16 107 | 97.76 171 | 96.29 99 | 98.68 327 | 90.52 280 | 99.42 151 | 98.30 260 |
|
PVSNet_Blended_VisFu | | | 95.95 181 | 95.80 183 | 96.42 207 | 99.28 52 | 90.62 241 | 95.31 214 | 99.08 39 | 88.40 304 | 96.97 196 | 98.17 121 | 92.11 219 | 99.78 49 | 93.64 215 | 99.21 197 | 98.86 203 |
|
test_prior3 | | | 95.91 182 | 95.39 195 | 97.46 145 | 97.79 241 | 94.26 158 | 93.33 302 | 98.42 180 | 94.21 204 | 94.02 302 | 96.25 281 | 93.64 183 | 99.34 242 | 91.90 241 | 98.96 227 | 98.79 209 |
|
UnsupCasMVSNet_eth | | | 95.91 182 | 95.73 186 | 96.44 204 | 98.48 160 | 91.52 228 | 95.31 214 | 98.45 174 | 95.76 147 | 97.48 162 | 97.54 190 | 89.53 262 | 98.69 324 | 94.43 181 | 94.61 356 | 99.13 151 |
|
QAPM | | | 95.88 184 | 95.57 192 | 96.80 184 | 97.90 221 | 91.84 223 | 98.18 52 | 98.73 132 | 88.41 303 | 96.42 225 | 98.13 124 | 94.73 150 | 99.75 70 | 88.72 307 | 98.94 231 | 98.81 207 |
|
CANet | | | 95.86 185 | 95.65 188 | 96.49 202 | 96.41 316 | 90.82 237 | 94.36 258 | 98.41 182 | 94.94 181 | 92.62 341 | 96.73 256 | 92.68 203 | 99.71 106 | 95.12 154 | 99.60 86 | 98.94 183 |
|
IterMVS-SCA-FT | | | 95.86 185 | 96.19 166 | 94.85 276 | 97.68 256 | 85.53 323 | 92.42 320 | 97.63 262 | 96.99 87 | 98.36 83 | 98.54 78 | 87.94 276 | 99.75 70 | 97.07 58 | 99.08 216 | 99.27 123 |
|
hse-mvs2 | | | 95.77 187 | 95.09 203 | 97.79 112 | 97.84 227 | 95.51 100 | 95.66 191 | 95.43 319 | 96.58 102 | 97.21 173 | 96.16 285 | 84.14 302 | 99.54 180 | 95.89 101 | 96.92 324 | 98.32 256 |
|
MVP-Stereo | | | 95.69 188 | 95.28 197 | 96.92 176 | 98.15 197 | 93.03 195 | 95.64 196 | 98.20 208 | 90.39 283 | 96.63 216 | 97.73 177 | 91.63 231 | 99.10 285 | 91.84 245 | 97.31 320 | 98.63 227 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
MDA-MVSNet-bldmvs | | | 95.69 188 | 95.67 187 | 95.74 237 | 98.48 160 | 88.76 271 | 92.84 309 | 97.25 271 | 96.00 132 | 97.59 153 | 97.95 151 | 91.38 233 | 99.46 203 | 93.16 226 | 96.35 338 | 98.99 178 |
|
new-patchmatchnet | | | 95.67 190 | 96.58 146 | 92.94 326 | 97.48 271 | 80.21 361 | 92.96 308 | 98.19 213 | 94.83 184 | 98.82 46 | 98.79 58 | 93.31 189 | 99.51 190 | 95.83 105 | 99.04 222 | 99.12 156 |
|
xiu_mvs_v1_base_debu | | | 95.62 191 | 95.96 178 | 94.60 286 | 98.01 209 | 88.42 273 | 93.99 278 | 98.21 205 | 92.98 244 | 95.91 251 | 94.53 327 | 96.39 94 | 99.72 90 | 95.43 133 | 98.19 282 | 95.64 351 |
|
xiu_mvs_v1_base | | | 95.62 191 | 95.96 178 | 94.60 286 | 98.01 209 | 88.42 273 | 93.99 278 | 98.21 205 | 92.98 244 | 95.91 251 | 94.53 327 | 96.39 94 | 99.72 90 | 95.43 133 | 98.19 282 | 95.64 351 |
|
xiu_mvs_v1_base_debi | | | 95.62 191 | 95.96 178 | 94.60 286 | 98.01 209 | 88.42 273 | 93.99 278 | 98.21 205 | 92.98 244 | 95.91 251 | 94.53 327 | 96.39 94 | 99.72 90 | 95.43 133 | 98.19 282 | 95.64 351 |
|
DP-MVS Recon | | | 95.55 194 | 95.13 201 | 96.80 184 | 98.51 154 | 93.99 167 | 94.60 251 | 98.69 145 | 90.20 285 | 95.78 258 | 96.21 284 | 92.73 202 | 98.98 299 | 90.58 278 | 98.86 241 | 97.42 313 |
|
MVS_0304 | | | 95.50 195 | 95.05 207 | 96.84 182 | 96.28 319 | 93.12 193 | 97.00 121 | 96.16 300 | 95.03 178 | 89.22 363 | 97.70 179 | 90.16 252 | 99.48 197 | 94.51 179 | 99.34 173 | 97.93 291 |
|
Fast-Effi-MVS+ | | | 95.49 196 | 95.07 204 | 96.75 187 | 97.67 259 | 92.82 199 | 94.22 266 | 98.60 160 | 91.61 268 | 93.42 325 | 92.90 347 | 96.73 75 | 99.70 115 | 92.60 231 | 97.89 295 | 97.74 299 |
|
TAMVS | | | 95.49 196 | 94.94 209 | 97.16 163 | 98.31 173 | 93.41 188 | 95.07 229 | 96.82 289 | 91.09 277 | 97.51 157 | 97.82 168 | 89.96 253 | 99.42 213 | 88.42 312 | 99.44 140 | 98.64 225 |
|
OpenMVS |  | 94.22 8 | 95.48 198 | 95.20 198 | 96.32 212 | 97.16 297 | 91.96 220 | 97.74 78 | 98.84 102 | 87.26 313 | 94.36 293 | 98.01 143 | 93.95 176 | 99.67 135 | 90.70 275 | 98.75 252 | 97.35 316 |
|
CLD-MVS | | | 95.47 199 | 95.07 204 | 96.69 191 | 98.27 179 | 92.53 204 | 91.36 335 | 98.67 150 | 91.22 276 | 95.78 258 | 94.12 335 | 95.65 121 | 98.98 299 | 90.81 267 | 99.72 58 | 98.57 232 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
train_agg | | | 95.46 200 | 94.66 225 | 97.88 107 | 97.84 227 | 95.23 118 | 93.62 291 | 98.39 185 | 87.04 317 | 93.78 307 | 95.99 293 | 94.58 159 | 99.52 186 | 91.76 247 | 98.90 235 | 98.89 196 |
|
CDPH-MVS | | | 95.45 201 | 94.65 226 | 97.84 110 | 98.28 177 | 94.96 129 | 93.73 289 | 98.33 194 | 85.03 338 | 95.44 267 | 96.60 263 | 95.31 134 | 99.44 210 | 90.01 289 | 99.13 208 | 99.11 159 |
|
IterMVS | | | 95.42 202 | 95.83 182 | 94.20 300 | 97.52 268 | 83.78 345 | 92.41 321 | 97.47 268 | 95.49 159 | 98.06 121 | 98.49 81 | 87.94 276 | 99.58 166 | 96.02 92 | 99.02 223 | 99.23 131 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
agg_prior1 | | | 95.39 203 | 94.60 231 | 97.75 115 | 97.80 235 | 94.96 129 | 93.39 299 | 98.36 189 | 87.20 315 | 93.49 320 | 95.97 296 | 94.65 156 | 99.53 182 | 91.69 249 | 98.86 241 | 98.77 214 |
|
mvs_anonymous | | | 95.36 204 | 96.07 173 | 93.21 318 | 96.29 318 | 81.56 356 | 94.60 251 | 97.66 256 | 93.30 230 | 96.95 197 | 98.91 52 | 93.03 196 | 99.38 232 | 96.60 67 | 97.30 321 | 98.69 222 |
|
MSDG | | | 95.33 205 | 95.13 201 | 95.94 230 | 97.40 279 | 91.85 222 | 91.02 346 | 98.37 188 | 95.30 166 | 96.31 232 | 95.99 293 | 94.51 162 | 98.38 348 | 89.59 295 | 97.65 308 | 97.60 306 |
|
LFMVS | | | 95.32 206 | 94.88 215 | 96.62 193 | 98.03 206 | 91.47 229 | 97.65 82 | 90.72 360 | 99.11 9 | 97.89 140 | 98.31 96 | 79.20 324 | 99.48 197 | 93.91 207 | 99.12 211 | 98.93 187 |
|
F-COLMAP | | | 95.30 207 | 94.38 243 | 98.05 96 | 98.64 135 | 96.04 76 | 95.61 197 | 98.66 152 | 89.00 297 | 93.22 328 | 96.40 275 | 92.90 198 | 99.35 240 | 87.45 327 | 97.53 312 | 98.77 214 |
|
Anonymous20231206 | | | 95.27 208 | 95.06 206 | 95.88 232 | 98.72 125 | 89.37 258 | 95.70 187 | 97.85 242 | 88.00 309 | 96.98 195 | 97.62 185 | 91.95 224 | 99.34 242 | 89.21 300 | 99.53 108 | 98.94 183 |
|
FMVSNet3 | | | 95.26 209 | 94.94 209 | 96.22 217 | 96.53 313 | 90.06 247 | 95.99 172 | 97.66 256 | 94.11 209 | 97.99 128 | 97.91 156 | 80.22 321 | 99.63 148 | 94.60 174 | 99.44 140 | 98.96 180 |
|
c3_l | | | 95.20 210 | 95.32 196 | 94.83 278 | 96.19 324 | 86.43 315 | 91.83 330 | 98.35 193 | 93.47 224 | 97.36 168 | 97.26 219 | 88.69 269 | 99.28 258 | 95.41 136 | 99.36 165 | 98.78 211 |
|
D2MVS | | | 95.18 211 | 95.17 200 | 95.21 259 | 97.76 247 | 87.76 293 | 94.15 270 | 97.94 237 | 89.77 291 | 96.99 193 | 97.68 182 | 87.45 283 | 99.14 278 | 95.03 159 | 99.81 37 | 98.74 216 |
|
N_pmnet | | | 95.18 211 | 94.23 246 | 98.06 93 | 97.85 223 | 96.55 60 | 92.49 318 | 91.63 353 | 89.34 293 | 98.09 117 | 97.41 202 | 90.33 246 | 99.06 289 | 91.58 250 | 99.31 184 | 98.56 233 |
|
HQP-MVS | | | 95.17 213 | 94.58 234 | 96.92 176 | 97.85 223 | 92.47 205 | 94.26 260 | 98.43 177 | 93.18 235 | 92.86 333 | 95.08 315 | 90.33 246 | 99.23 267 | 90.51 281 | 98.74 253 | 99.05 170 |
|
Vis-MVSNet (Re-imp) | | | 95.11 214 | 94.85 216 | 95.87 233 | 99.12 86 | 89.17 261 | 97.54 94 | 94.92 323 | 96.50 106 | 96.58 217 | 97.27 218 | 83.64 306 | 99.48 197 | 88.42 312 | 99.67 68 | 98.97 179 |
|
AdaColmap |  | | 95.11 214 | 94.62 230 | 96.58 196 | 97.33 287 | 94.45 148 | 94.92 238 | 98.08 228 | 93.15 239 | 93.98 305 | 95.53 310 | 94.34 166 | 99.10 285 | 85.69 338 | 98.61 265 | 96.20 345 |
|
API-MVS | | | 95.09 216 | 95.01 208 | 95.31 256 | 96.61 311 | 94.02 165 | 96.83 127 | 97.18 275 | 95.60 154 | 95.79 256 | 94.33 332 | 94.54 161 | 98.37 350 | 85.70 337 | 98.52 270 | 93.52 364 |
|
CL-MVSNet_self_test | | | 95.04 217 | 94.79 222 | 95.82 234 | 97.51 269 | 89.79 251 | 91.14 343 | 96.82 289 | 93.05 241 | 96.72 209 | 96.40 275 | 90.82 240 | 99.16 276 | 91.95 240 | 98.66 260 | 98.50 239 |
|
CNLPA | | | 95.04 217 | 94.47 239 | 96.75 187 | 97.81 231 | 95.25 117 | 94.12 274 | 97.89 240 | 94.41 197 | 94.57 286 | 95.69 303 | 90.30 249 | 98.35 351 | 86.72 332 | 98.76 251 | 96.64 337 |
|
Patchmtry | | | 95.03 219 | 94.59 233 | 96.33 211 | 94.83 352 | 90.82 237 | 96.38 149 | 97.20 273 | 96.59 101 | 97.49 159 | 98.57 74 | 77.67 331 | 99.38 232 | 92.95 230 | 99.62 76 | 98.80 208 |
|
PVSNet_BlendedMVS | | | 95.02 220 | 94.93 211 | 95.27 257 | 97.79 241 | 87.40 300 | 94.14 272 | 98.68 147 | 88.94 298 | 94.51 289 | 98.01 143 | 93.04 194 | 99.30 252 | 89.77 293 | 99.49 126 | 99.11 159 |
|
TAPA-MVS | | 93.32 12 | 94.93 221 | 94.23 246 | 97.04 171 | 98.18 191 | 94.51 145 | 95.22 221 | 98.73 132 | 81.22 355 | 96.25 236 | 95.95 298 | 93.80 180 | 98.98 299 | 89.89 291 | 98.87 239 | 97.62 304 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
FA-MVS(test-final) | | | 94.91 222 | 94.89 214 | 94.99 269 | 97.51 269 | 88.11 285 | 98.27 43 | 95.20 321 | 92.40 258 | 96.68 211 | 98.60 72 | 83.44 307 | 99.28 258 | 93.34 219 | 98.53 269 | 97.59 307 |
|
eth_miper_zixun_eth | | | 94.89 223 | 94.93 211 | 94.75 281 | 95.99 332 | 86.12 318 | 91.35 336 | 98.49 171 | 93.40 225 | 97.12 179 | 97.25 220 | 86.87 288 | 99.35 240 | 95.08 156 | 98.82 246 | 98.78 211 |
|
CDS-MVSNet | | | 94.88 224 | 94.12 251 | 97.14 165 | 97.64 261 | 93.57 184 | 93.96 281 | 97.06 281 | 90.05 287 | 96.30 233 | 96.55 265 | 86.10 290 | 99.47 200 | 90.10 288 | 99.31 184 | 98.40 245 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
MS-PatchMatch | | | 94.83 225 | 94.91 213 | 94.57 289 | 96.81 309 | 87.10 306 | 94.23 265 | 97.34 270 | 88.74 301 | 97.14 177 | 97.11 228 | 91.94 225 | 98.23 355 | 92.99 228 | 97.92 292 | 98.37 249 |
|
pmmvs4 | | | 94.82 226 | 94.19 249 | 96.70 190 | 97.42 278 | 92.75 202 | 92.09 327 | 96.76 291 | 86.80 320 | 95.73 261 | 97.22 221 | 89.28 266 | 98.89 306 | 93.28 222 | 99.14 205 | 98.46 243 |
|
miper_lstm_enhance | | | 94.81 227 | 94.80 221 | 94.85 276 | 96.16 326 | 86.45 314 | 91.14 343 | 98.20 208 | 93.49 223 | 97.03 190 | 97.37 211 | 84.97 298 | 99.26 262 | 95.28 139 | 99.56 96 | 98.83 205 |
|
ETH3 D test6400 | | | 94.77 228 | 93.87 259 | 97.47 142 | 98.12 202 | 93.73 177 | 94.56 253 | 98.70 142 | 85.45 333 | 94.70 284 | 95.93 300 | 91.77 230 | 99.63 148 | 86.45 333 | 99.14 205 | 99.05 170 |
|
cl____ | | | 94.73 229 | 94.64 227 | 95.01 267 | 95.85 335 | 87.00 307 | 91.33 337 | 98.08 228 | 93.34 228 | 97.10 181 | 97.33 214 | 84.01 305 | 99.30 252 | 95.14 151 | 99.56 96 | 98.71 221 |
|
DIV-MVS_self_test | | | 94.73 229 | 94.64 227 | 95.01 267 | 95.86 334 | 87.00 307 | 91.33 337 | 98.08 228 | 93.34 228 | 97.10 181 | 97.34 213 | 84.02 304 | 99.31 249 | 95.15 150 | 99.55 102 | 98.72 219 |
|
YYNet1 | | | 94.73 229 | 94.84 217 | 94.41 295 | 97.47 275 | 85.09 332 | 90.29 352 | 95.85 309 | 92.52 253 | 97.53 155 | 97.76 171 | 91.97 223 | 99.18 271 | 93.31 221 | 96.86 327 | 98.95 181 |
|
MDA-MVSNet_test_wron | | | 94.73 229 | 94.83 219 | 94.42 294 | 97.48 271 | 85.15 330 | 90.28 353 | 95.87 308 | 92.52 253 | 97.48 162 | 97.76 171 | 91.92 227 | 99.17 275 | 93.32 220 | 96.80 330 | 98.94 183 |
|
UnsupCasMVSNet_bld | | | 94.72 233 | 94.26 245 | 96.08 222 | 98.62 140 | 90.54 245 | 93.38 300 | 98.05 234 | 90.30 284 | 97.02 191 | 96.80 252 | 89.54 260 | 99.16 276 | 88.44 311 | 96.18 340 | 98.56 233 |
|
miper_ehance_all_eth | | | 94.69 234 | 94.70 224 | 94.64 283 | 95.77 338 | 86.22 317 | 91.32 339 | 98.24 202 | 91.67 267 | 97.05 187 | 96.65 261 | 88.39 273 | 99.22 269 | 94.88 162 | 98.34 276 | 98.49 240 |
|
BH-untuned | | | 94.69 234 | 94.75 223 | 94.52 291 | 97.95 218 | 87.53 296 | 94.07 275 | 97.01 282 | 93.99 212 | 97.10 181 | 95.65 305 | 92.65 205 | 98.95 304 | 87.60 323 | 96.74 331 | 97.09 318 |
|
RPMNet | | | 94.68 236 | 94.60 231 | 94.90 273 | 95.44 345 | 88.15 281 | 96.18 161 | 98.86 93 | 97.43 72 | 94.10 298 | 98.49 81 | 79.40 322 | 99.76 63 | 95.69 110 | 95.81 343 | 96.81 333 |
|
Patchmatch-RL test | | | 94.66 237 | 94.49 237 | 95.19 260 | 98.54 150 | 88.91 265 | 92.57 316 | 98.74 130 | 91.46 271 | 98.32 91 | 97.75 174 | 77.31 336 | 98.81 313 | 96.06 87 | 99.61 82 | 97.85 294 |
|
CANet_DTU | | | 94.65 238 | 94.21 248 | 95.96 226 | 95.90 333 | 89.68 252 | 93.92 282 | 97.83 246 | 93.19 234 | 90.12 358 | 95.64 306 | 88.52 270 | 99.57 172 | 93.27 223 | 99.47 132 | 98.62 228 |
|
pmmvs5 | | | 94.63 239 | 94.34 244 | 95.50 248 | 97.63 262 | 88.34 276 | 94.02 276 | 97.13 277 | 87.15 316 | 95.22 272 | 97.15 224 | 87.50 282 | 99.27 261 | 93.99 203 | 99.26 192 | 98.88 200 |
|
PAPM_NR | | | 94.61 240 | 94.17 250 | 95.96 226 | 98.36 171 | 91.23 230 | 95.93 179 | 97.95 236 | 92.98 244 | 93.42 325 | 94.43 331 | 90.53 243 | 98.38 348 | 87.60 323 | 96.29 339 | 98.27 264 |
|
PatchMatch-RL | | | 94.61 240 | 93.81 260 | 97.02 173 | 98.19 188 | 95.72 87 | 93.66 290 | 97.23 272 | 88.17 307 | 94.94 279 | 95.62 307 | 91.43 232 | 98.57 335 | 87.36 328 | 97.68 305 | 96.76 335 |
|
BH-RMVSNet | | | 94.56 242 | 94.44 242 | 94.91 271 | 97.57 264 | 87.44 299 | 93.78 288 | 96.26 299 | 93.69 220 | 96.41 226 | 96.50 270 | 92.10 220 | 99.00 295 | 85.96 335 | 97.71 302 | 98.31 258 |
|
USDC | | | 94.56 242 | 94.57 236 | 94.55 290 | 97.78 245 | 86.43 315 | 92.75 312 | 98.65 157 | 85.96 325 | 96.91 200 | 97.93 154 | 90.82 240 | 98.74 319 | 90.71 274 | 99.59 88 | 98.47 241 |
|
iter_conf_final | | | 94.54 244 | 93.91 258 | 96.43 205 | 97.23 292 | 90.41 246 | 96.81 128 | 98.10 224 | 93.87 215 | 96.80 203 | 97.89 157 | 68.02 369 | 99.72 90 | 96.73 64 | 99.77 46 | 99.18 141 |
|
test1111 | | | 94.53 245 | 94.81 220 | 93.72 306 | 99.06 93 | 81.94 355 | 98.31 38 | 83.87 376 | 96.37 111 | 98.49 69 | 99.17 30 | 81.49 312 | 99.73 85 | 96.64 65 | 99.86 28 | 99.49 57 |
|
ppachtmachnet_test | | | 94.49 246 | 94.84 217 | 93.46 312 | 96.16 326 | 82.10 352 | 90.59 349 | 97.48 267 | 90.53 282 | 97.01 192 | 97.59 187 | 91.01 237 | 99.36 237 | 93.97 205 | 99.18 202 | 98.94 183 |
|
test_yl | | | 94.40 247 | 94.00 254 | 95.59 241 | 96.95 303 | 89.52 255 | 94.75 247 | 95.55 316 | 96.18 122 | 96.79 204 | 96.14 288 | 81.09 316 | 99.18 271 | 90.75 270 | 97.77 296 | 98.07 277 |
|
DCV-MVSNet | | | 94.40 247 | 94.00 254 | 95.59 241 | 96.95 303 | 89.52 255 | 94.75 247 | 95.55 316 | 96.18 122 | 96.79 204 | 96.14 288 | 81.09 316 | 99.18 271 | 90.75 270 | 97.77 296 | 98.07 277 |
|
jason | | | 94.39 249 | 94.04 253 | 95.41 255 | 98.29 175 | 87.85 290 | 92.74 314 | 96.75 292 | 85.38 335 | 95.29 270 | 96.15 286 | 88.21 275 | 99.65 143 | 94.24 191 | 99.34 173 | 98.74 216 |
jason: jason. |
ECVR-MVS |  | | 94.37 250 | 94.48 238 | 94.05 303 | 98.95 103 | 83.10 347 | 98.31 38 | 82.48 377 | 96.20 119 | 98.23 100 | 99.16 31 | 81.18 315 | 99.66 141 | 95.95 97 | 99.83 34 | 99.38 92 |
|
1121 | | | 94.26 251 | 93.26 268 | 97.27 158 | 98.26 181 | 94.73 135 | 95.86 181 | 97.71 252 | 77.96 367 | 94.53 288 | 96.71 257 | 91.93 226 | 99.40 224 | 87.71 319 | 98.64 263 | 97.69 302 |
|
EU-MVSNet | | | 94.25 252 | 94.47 239 | 93.60 309 | 98.14 198 | 82.60 350 | 97.24 108 | 92.72 345 | 85.08 336 | 98.48 70 | 98.94 49 | 82.59 310 | 98.76 318 | 97.47 43 | 99.53 108 | 99.44 83 |
|
xiu_mvs_v2_base | | | 94.22 253 | 94.63 229 | 92.99 324 | 97.32 288 | 84.84 335 | 92.12 325 | 97.84 244 | 91.96 263 | 94.17 296 | 93.43 338 | 96.07 102 | 99.71 106 | 91.27 255 | 97.48 314 | 94.42 360 |
|
sss | | | 94.22 253 | 93.72 261 | 95.74 237 | 97.71 254 | 89.95 250 | 93.84 284 | 96.98 283 | 88.38 305 | 93.75 310 | 95.74 302 | 87.94 276 | 98.89 306 | 91.02 261 | 98.10 286 | 98.37 249 |
|
MVSTER | | | 94.21 255 | 93.93 257 | 95.05 266 | 95.83 336 | 86.46 313 | 95.18 223 | 97.65 258 | 92.41 257 | 97.94 135 | 98.00 145 | 72.39 358 | 99.58 166 | 96.36 78 | 99.56 96 | 99.12 156 |
|
MAR-MVS | | | 94.21 255 | 93.03 273 | 97.76 114 | 96.94 305 | 97.44 35 | 96.97 123 | 97.15 276 | 87.89 311 | 92.00 346 | 92.73 351 | 92.14 218 | 99.12 280 | 83.92 351 | 97.51 313 | 96.73 336 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
our_test_3 | | | 94.20 257 | 94.58 234 | 93.07 320 | 96.16 326 | 81.20 358 | 90.42 351 | 96.84 287 | 90.72 280 | 97.14 177 | 97.13 225 | 90.47 244 | 99.11 283 | 94.04 202 | 98.25 280 | 98.91 192 |
|
1112_ss | | | 94.12 258 | 93.42 265 | 96.23 215 | 98.59 145 | 90.85 236 | 94.24 264 | 98.85 97 | 85.49 330 | 92.97 331 | 94.94 319 | 86.01 291 | 99.64 146 | 91.78 246 | 97.92 292 | 98.20 270 |
|
PS-MVSNAJ | | | 94.10 259 | 94.47 239 | 93.00 323 | 97.35 281 | 84.88 334 | 91.86 329 | 97.84 244 | 91.96 263 | 94.17 296 | 92.50 354 | 95.82 110 | 99.71 106 | 91.27 255 | 97.48 314 | 94.40 361 |
|
CHOSEN 1792x2688 | | | 94.10 259 | 93.41 266 | 96.18 219 | 99.16 74 | 90.04 248 | 92.15 324 | 98.68 147 | 79.90 360 | 96.22 237 | 97.83 165 | 87.92 280 | 99.42 213 | 89.18 301 | 99.65 71 | 99.08 164 |
|
MG-MVS | | | 94.08 261 | 94.00 254 | 94.32 297 | 97.09 299 | 85.89 320 | 93.19 306 | 95.96 306 | 92.52 253 | 94.93 280 | 97.51 194 | 89.54 260 | 98.77 316 | 87.52 326 | 97.71 302 | 98.31 258 |
|
PLC |  | 91.02 16 | 94.05 262 | 92.90 275 | 97.51 134 | 98.00 213 | 95.12 126 | 94.25 263 | 98.25 201 | 86.17 323 | 91.48 349 | 95.25 313 | 91.01 237 | 99.19 270 | 85.02 346 | 96.69 332 | 98.22 268 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
114514_t | | | 93.96 263 | 93.22 270 | 96.19 218 | 99.06 93 | 90.97 235 | 95.99 172 | 98.94 76 | 73.88 373 | 93.43 324 | 96.93 241 | 92.38 215 | 99.37 235 | 89.09 302 | 99.28 189 | 98.25 266 |
|
PVSNet_Blended | | | 93.96 263 | 93.65 262 | 94.91 271 | 97.79 241 | 87.40 300 | 91.43 334 | 98.68 147 | 84.50 343 | 94.51 289 | 94.48 330 | 93.04 194 | 99.30 252 | 89.77 293 | 98.61 265 | 98.02 287 |
|
AUN-MVS | | | 93.95 265 | 92.69 283 | 97.74 116 | 97.80 235 | 95.38 108 | 95.57 198 | 95.46 318 | 91.26 275 | 92.64 339 | 96.10 291 | 74.67 347 | 99.55 177 | 93.72 213 | 96.97 323 | 98.30 260 |
|
lupinMVS | | | 93.77 266 | 93.28 267 | 95.24 258 | 97.68 256 | 87.81 291 | 92.12 325 | 96.05 302 | 84.52 342 | 94.48 291 | 95.06 317 | 86.90 286 | 99.63 148 | 93.62 216 | 99.13 208 | 98.27 264 |
|
PatchT | | | 93.75 267 | 93.57 263 | 94.29 299 | 95.05 350 | 87.32 302 | 96.05 167 | 92.98 341 | 97.54 69 | 94.25 294 | 98.72 63 | 75.79 344 | 99.24 265 | 95.92 99 | 95.81 343 | 96.32 343 |
|
EPNet | | | 93.72 268 | 92.62 286 | 97.03 172 | 87.61 382 | 92.25 209 | 96.27 154 | 91.28 354 | 96.74 95 | 87.65 368 | 97.39 207 | 85.00 297 | 99.64 146 | 92.14 237 | 99.48 130 | 99.20 137 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
HyFIR lowres test | | | 93.72 268 | 92.65 284 | 96.91 178 | 98.93 106 | 91.81 224 | 91.23 341 | 98.52 168 | 82.69 348 | 96.46 224 | 96.52 269 | 80.38 320 | 99.90 14 | 90.36 285 | 98.79 248 | 99.03 172 |
|
DPM-MVS | | | 93.68 270 | 92.77 282 | 96.42 207 | 97.91 219 | 92.54 203 | 91.17 342 | 97.47 268 | 84.99 339 | 93.08 330 | 94.74 323 | 89.90 254 | 99.00 295 | 87.54 325 | 98.09 287 | 97.72 300 |
|
PMMVS2 | | | 93.66 271 | 94.07 252 | 92.45 334 | 97.57 264 | 80.67 360 | 86.46 367 | 96.00 304 | 93.99 212 | 97.10 181 | 97.38 209 | 89.90 254 | 97.82 361 | 88.76 306 | 99.47 132 | 98.86 203 |
|
iter_conf05 | | | 93.65 272 | 93.05 271 | 95.46 251 | 96.13 330 | 87.45 298 | 95.95 178 | 98.22 204 | 92.66 252 | 97.04 188 | 97.89 157 | 63.52 375 | 99.72 90 | 96.19 83 | 99.82 36 | 99.21 133 |
|
OpenMVS_ROB |  | 91.80 14 | 93.64 273 | 93.05 271 | 95.42 253 | 97.31 289 | 91.21 231 | 95.08 228 | 96.68 296 | 81.56 352 | 96.88 202 | 96.41 273 | 90.44 245 | 99.25 264 | 85.39 342 | 97.67 306 | 95.80 349 |
|
Patchmatch-test | | | 93.60 274 | 93.25 269 | 94.63 284 | 96.14 329 | 87.47 297 | 96.04 168 | 94.50 327 | 93.57 221 | 96.47 223 | 96.97 238 | 76.50 339 | 98.61 332 | 90.67 276 | 98.41 275 | 97.81 298 |
|
WTY-MVS | | | 93.55 275 | 93.00 274 | 95.19 260 | 97.81 231 | 87.86 288 | 93.89 283 | 96.00 304 | 89.02 296 | 94.07 300 | 95.44 312 | 86.27 289 | 99.33 245 | 87.69 321 | 96.82 328 | 98.39 247 |
|
Test_1112_low_res | | | 93.53 276 | 92.86 276 | 95.54 247 | 98.60 143 | 88.86 267 | 92.75 312 | 98.69 145 | 82.66 349 | 92.65 338 | 96.92 243 | 84.75 299 | 99.56 173 | 90.94 263 | 97.76 298 | 98.19 271 |
|
MIMVSNet | | | 93.42 277 | 92.86 276 | 95.10 264 | 98.17 193 | 88.19 279 | 98.13 54 | 93.69 331 | 92.07 260 | 95.04 277 | 98.21 117 | 80.95 318 | 99.03 294 | 81.42 359 | 98.06 288 | 98.07 277 |
|
FMVSNet5 | | | 93.39 278 | 92.35 288 | 96.50 201 | 95.83 336 | 90.81 239 | 97.31 103 | 98.27 198 | 92.74 251 | 96.27 234 | 98.28 105 | 62.23 376 | 99.67 135 | 90.86 265 | 99.36 165 | 99.03 172 |
|
SCA | | | 93.38 279 | 93.52 264 | 92.96 325 | 96.24 320 | 81.40 357 | 93.24 304 | 94.00 330 | 91.58 270 | 94.57 286 | 96.97 238 | 87.94 276 | 99.42 213 | 89.47 297 | 97.66 307 | 98.06 281 |
|
tttt0517 | | | 93.31 280 | 92.56 287 | 95.57 243 | 98.71 128 | 87.86 288 | 97.44 97 | 87.17 371 | 95.79 146 | 97.47 164 | 96.84 247 | 64.12 373 | 99.81 38 | 96.20 82 | 99.32 182 | 99.02 174 |
|
CR-MVSNet | | | 93.29 281 | 92.79 279 | 94.78 280 | 95.44 345 | 88.15 281 | 96.18 161 | 97.20 273 | 84.94 340 | 94.10 298 | 98.57 74 | 77.67 331 | 99.39 229 | 95.17 146 | 95.81 343 | 96.81 333 |
|
cl22 | | | 93.25 282 | 92.84 278 | 94.46 293 | 94.30 358 | 86.00 319 | 91.09 345 | 96.64 297 | 90.74 279 | 95.79 256 | 96.31 279 | 78.24 328 | 98.77 316 | 94.15 195 | 98.34 276 | 98.62 228 |
|
wuyk23d | | | 93.25 282 | 95.20 198 | 87.40 357 | 96.07 331 | 95.38 108 | 97.04 119 | 94.97 322 | 95.33 164 | 99.70 5 | 98.11 128 | 98.14 13 | 91.94 375 | 77.76 368 | 99.68 67 | 74.89 375 |
|
miper_enhance_ethall | | | 93.14 284 | 92.78 281 | 94.20 300 | 93.65 366 | 85.29 327 | 89.97 355 | 97.85 242 | 85.05 337 | 96.15 243 | 94.56 326 | 85.74 292 | 99.14 278 | 93.74 211 | 98.34 276 | 98.17 273 |
|
baseline1 | | | 93.14 284 | 92.64 285 | 94.62 285 | 97.34 285 | 87.20 304 | 96.67 140 | 93.02 340 | 94.71 188 | 96.51 222 | 95.83 301 | 81.64 311 | 98.60 334 | 90.00 290 | 88.06 371 | 98.07 277 |
|
FE-MVS | | | 92.95 286 | 92.22 290 | 95.11 262 | 97.21 293 | 88.33 277 | 98.54 22 | 93.66 334 | 89.91 289 | 96.21 238 | 98.14 122 | 70.33 365 | 99.50 191 | 87.79 318 | 98.24 281 | 97.51 309 |
|
X-MVStestdata | | | 92.86 287 | 90.83 311 | 98.94 18 | 99.15 77 | 97.66 20 | 97.77 73 | 98.83 109 | 97.42 73 | 96.32 230 | 36.50 377 | 96.49 88 | 99.72 90 | 95.66 114 | 99.37 162 | 99.45 73 |
|
GA-MVS | | | 92.83 288 | 92.15 292 | 94.87 275 | 96.97 302 | 87.27 303 | 90.03 354 | 96.12 301 | 91.83 266 | 94.05 301 | 94.57 325 | 76.01 343 | 98.97 303 | 92.46 235 | 97.34 319 | 98.36 254 |
|
CMPMVS |  | 73.10 23 | 92.74 289 | 91.39 300 | 96.77 186 | 93.57 368 | 94.67 141 | 94.21 267 | 97.67 254 | 80.36 359 | 93.61 316 | 96.60 263 | 82.85 309 | 97.35 365 | 84.86 347 | 98.78 249 | 98.29 263 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
thisisatest0530 | | | 92.71 290 | 91.76 297 | 95.56 245 | 98.42 167 | 88.23 278 | 96.03 169 | 87.35 370 | 94.04 211 | 96.56 219 | 95.47 311 | 64.03 374 | 99.77 58 | 94.78 169 | 99.11 212 | 98.68 224 |
|
HY-MVS | | 91.43 15 | 92.58 291 | 91.81 296 | 94.90 273 | 96.49 314 | 88.87 266 | 97.31 103 | 94.62 325 | 85.92 326 | 90.50 355 | 96.84 247 | 85.05 296 | 99.40 224 | 83.77 354 | 95.78 346 | 96.43 342 |
|
TR-MVS | | | 92.54 292 | 92.20 291 | 93.57 310 | 96.49 314 | 86.66 311 | 93.51 295 | 94.73 324 | 89.96 288 | 94.95 278 | 93.87 336 | 90.24 251 | 98.61 332 | 81.18 360 | 94.88 353 | 95.45 355 |
|
PMMVS | | | 92.39 293 | 91.08 305 | 96.30 214 | 93.12 370 | 92.81 200 | 90.58 350 | 95.96 306 | 79.17 363 | 91.85 348 | 92.27 355 | 90.29 250 | 98.66 329 | 89.85 292 | 96.68 333 | 97.43 312 |
|
1314 | | | 92.38 294 | 92.30 289 | 92.64 330 | 95.42 347 | 85.15 330 | 95.86 181 | 96.97 284 | 85.40 334 | 90.62 352 | 93.06 345 | 91.12 236 | 97.80 362 | 86.74 331 | 95.49 350 | 94.97 358 |
|
new_pmnet | | | 92.34 295 | 91.69 298 | 94.32 297 | 96.23 322 | 89.16 262 | 92.27 323 | 92.88 342 | 84.39 345 | 95.29 270 | 96.35 278 | 85.66 293 | 96.74 371 | 84.53 349 | 97.56 310 | 97.05 320 |
|
CVMVSNet | | | 92.33 296 | 92.79 279 | 90.95 343 | 97.26 290 | 75.84 373 | 95.29 216 | 92.33 348 | 81.86 350 | 96.27 234 | 98.19 118 | 81.44 313 | 98.46 343 | 94.23 192 | 98.29 279 | 98.55 235 |
|
PAPR | | | 92.22 297 | 91.27 303 | 95.07 265 | 95.73 340 | 88.81 268 | 91.97 328 | 97.87 241 | 85.80 328 | 90.91 351 | 92.73 351 | 91.16 235 | 98.33 352 | 79.48 362 | 95.76 347 | 98.08 275 |
|
DSMNet-mixed | | | 92.19 298 | 91.83 295 | 93.25 316 | 96.18 325 | 83.68 346 | 96.27 154 | 93.68 333 | 76.97 370 | 92.54 342 | 99.18 28 | 89.20 268 | 98.55 338 | 83.88 352 | 98.60 267 | 97.51 309 |
|
BH-w/o | | | 92.14 299 | 91.94 293 | 92.73 329 | 97.13 298 | 85.30 326 | 92.46 319 | 95.64 311 | 89.33 294 | 94.21 295 | 92.74 350 | 89.60 258 | 98.24 354 | 81.68 358 | 94.66 355 | 94.66 359 |
|
PCF-MVS | | 89.43 18 | 92.12 300 | 90.64 314 | 96.57 198 | 97.80 235 | 93.48 187 | 89.88 359 | 98.45 174 | 74.46 372 | 96.04 246 | 95.68 304 | 90.71 242 | 99.31 249 | 73.73 371 | 99.01 225 | 96.91 326 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
thres600view7 | | | 92.03 301 | 91.43 299 | 93.82 304 | 98.19 188 | 84.61 337 | 96.27 154 | 90.39 361 | 96.81 93 | 96.37 228 | 93.11 340 | 73.44 356 | 99.49 194 | 80.32 361 | 97.95 291 | 97.36 314 |
|
PatchmatchNet |  | | 91.98 302 | 91.87 294 | 92.30 336 | 94.60 355 | 79.71 362 | 95.12 224 | 93.59 336 | 89.52 292 | 93.61 316 | 97.02 235 | 77.94 329 | 99.18 271 | 90.84 266 | 94.57 358 | 98.01 288 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
cascas | | | 91.89 303 | 91.35 301 | 93.51 311 | 94.27 359 | 85.60 322 | 88.86 364 | 98.61 159 | 79.32 362 | 92.16 345 | 91.44 364 | 89.22 267 | 98.12 358 | 90.80 268 | 97.47 316 | 96.82 332 |
|
JIA-IIPM | | | 91.79 304 | 90.69 313 | 95.11 262 | 93.80 365 | 90.98 234 | 94.16 269 | 91.78 352 | 96.38 110 | 90.30 357 | 99.30 19 | 72.02 359 | 98.90 305 | 88.28 314 | 90.17 368 | 95.45 355 |
|
thres100view900 | | | 91.76 305 | 91.26 304 | 93.26 315 | 98.21 186 | 84.50 338 | 96.39 147 | 90.39 361 | 96.87 91 | 96.33 229 | 93.08 344 | 73.44 356 | 99.42 213 | 78.85 365 | 97.74 299 | 95.85 347 |
|
thres400 | | | 91.68 306 | 91.00 306 | 93.71 307 | 98.02 207 | 84.35 340 | 95.70 187 | 90.79 358 | 96.26 116 | 95.90 254 | 92.13 357 | 73.62 353 | 99.42 213 | 78.85 365 | 97.74 299 | 97.36 314 |
|
tfpn200view9 | | | 91.55 307 | 91.00 306 | 93.21 318 | 98.02 207 | 84.35 340 | 95.70 187 | 90.79 358 | 96.26 116 | 95.90 254 | 92.13 357 | 73.62 353 | 99.42 213 | 78.85 365 | 97.74 299 | 95.85 347 |
|
ADS-MVSNet2 | | | 91.47 308 | 90.51 316 | 94.36 296 | 95.51 343 | 85.63 321 | 95.05 232 | 95.70 310 | 83.46 346 | 92.69 336 | 96.84 247 | 79.15 325 | 99.41 222 | 85.66 339 | 90.52 366 | 98.04 285 |
|
EPNet_dtu | | | 91.39 309 | 90.75 312 | 93.31 314 | 90.48 379 | 82.61 349 | 94.80 244 | 92.88 342 | 93.39 226 | 81.74 376 | 94.90 322 | 81.36 314 | 99.11 283 | 88.28 314 | 98.87 239 | 98.21 269 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
ET-MVSNet_ETH3D | | | 91.12 310 | 89.67 322 | 95.47 250 | 96.41 316 | 89.15 263 | 91.54 333 | 90.23 364 | 89.07 295 | 86.78 372 | 92.84 348 | 69.39 367 | 99.44 210 | 94.16 194 | 96.61 334 | 97.82 296 |
|
PVSNet | | 86.72 19 | 91.10 311 | 90.97 308 | 91.49 340 | 97.56 266 | 78.04 365 | 87.17 366 | 94.60 326 | 84.65 341 | 92.34 343 | 92.20 356 | 87.37 284 | 98.47 342 | 85.17 345 | 97.69 304 | 97.96 289 |
|
tpm | | | 91.08 312 | 90.85 310 | 91.75 339 | 95.33 348 | 78.09 364 | 95.03 234 | 91.27 355 | 88.75 300 | 93.53 319 | 97.40 203 | 71.24 360 | 99.30 252 | 91.25 257 | 93.87 359 | 97.87 293 |
|
thres200 | | | 91.00 313 | 90.42 317 | 92.77 328 | 97.47 275 | 83.98 344 | 94.01 277 | 91.18 356 | 95.12 174 | 95.44 267 | 91.21 366 | 73.93 349 | 99.31 249 | 77.76 368 | 97.63 309 | 95.01 357 |
|
ADS-MVSNet | | | 90.95 314 | 90.26 318 | 93.04 321 | 95.51 343 | 82.37 351 | 95.05 232 | 93.41 337 | 83.46 346 | 92.69 336 | 96.84 247 | 79.15 325 | 98.70 323 | 85.66 339 | 90.52 366 | 98.04 285 |
|
tpmvs | | | 90.79 315 | 90.87 309 | 90.57 346 | 92.75 374 | 76.30 371 | 95.79 185 | 93.64 335 | 91.04 278 | 91.91 347 | 96.26 280 | 77.19 337 | 98.86 310 | 89.38 299 | 89.85 369 | 96.56 340 |
|
thisisatest0515 | | | 90.43 316 | 89.18 328 | 94.17 302 | 97.07 300 | 85.44 324 | 89.75 360 | 87.58 369 | 88.28 306 | 93.69 313 | 91.72 361 | 65.27 372 | 99.58 166 | 90.59 277 | 98.67 258 | 97.50 311 |
|
tpmrst | | | 90.31 317 | 90.61 315 | 89.41 350 | 94.06 363 | 72.37 379 | 95.06 231 | 93.69 331 | 88.01 308 | 92.32 344 | 96.86 245 | 77.45 333 | 98.82 311 | 91.04 260 | 87.01 372 | 97.04 321 |
|
test0.0.03 1 | | | 90.11 318 | 89.21 325 | 92.83 327 | 93.89 364 | 86.87 310 | 91.74 331 | 88.74 368 | 92.02 261 | 94.71 283 | 91.14 367 | 73.92 350 | 94.48 374 | 83.75 355 | 92.94 361 | 97.16 317 |
|
MVS | | | 90.02 319 | 89.20 326 | 92.47 333 | 94.71 353 | 86.90 309 | 95.86 181 | 96.74 293 | 64.72 375 | 90.62 352 | 92.77 349 | 92.54 210 | 98.39 347 | 79.30 363 | 95.56 349 | 92.12 368 |
|
pmmvs3 | | | 90.00 320 | 88.90 330 | 93.32 313 | 94.20 362 | 85.34 325 | 91.25 340 | 92.56 347 | 78.59 364 | 93.82 306 | 95.17 314 | 67.36 371 | 98.69 324 | 89.08 303 | 98.03 289 | 95.92 346 |
|
CHOSEN 280x420 | | | 89.98 321 | 89.19 327 | 92.37 335 | 95.60 342 | 81.13 359 | 86.22 368 | 97.09 279 | 81.44 354 | 87.44 369 | 93.15 339 | 73.99 348 | 99.47 200 | 88.69 308 | 99.07 218 | 96.52 341 |
|
test-LLR | | | 89.97 322 | 89.90 320 | 90.16 347 | 94.24 360 | 74.98 374 | 89.89 356 | 89.06 366 | 92.02 261 | 89.97 359 | 90.77 369 | 73.92 350 | 98.57 335 | 91.88 243 | 97.36 317 | 96.92 324 |
|
FPMVS | | | 89.92 323 | 88.63 331 | 93.82 304 | 98.37 170 | 96.94 47 | 91.58 332 | 93.34 338 | 88.00 309 | 90.32 356 | 97.10 229 | 70.87 363 | 91.13 376 | 71.91 374 | 96.16 342 | 93.39 366 |
|
test2506 | | | 89.86 324 | 89.16 329 | 91.97 338 | 98.95 103 | 76.83 370 | 98.54 22 | 61.07 384 | 96.20 119 | 97.07 186 | 99.16 31 | 55.19 383 | 99.69 123 | 96.43 76 | 99.83 34 | 99.38 92 |
|
CostFormer | | | 89.75 325 | 89.25 323 | 91.26 342 | 94.69 354 | 78.00 366 | 95.32 213 | 91.98 350 | 81.50 353 | 90.55 354 | 96.96 240 | 71.06 362 | 98.89 306 | 88.59 310 | 92.63 363 | 96.87 327 |
|
baseline2 | | | 89.65 326 | 88.44 333 | 93.25 316 | 95.62 341 | 82.71 348 | 93.82 285 | 85.94 373 | 88.89 299 | 87.35 370 | 92.54 353 | 71.23 361 | 99.33 245 | 86.01 334 | 94.60 357 | 97.72 300 |
|
E-PMN | | | 89.52 327 | 89.78 321 | 88.73 352 | 93.14 369 | 77.61 367 | 83.26 371 | 92.02 349 | 94.82 185 | 93.71 311 | 93.11 340 | 75.31 345 | 96.81 368 | 85.81 336 | 96.81 329 | 91.77 370 |
|
EPMVS | | | 89.26 328 | 88.55 332 | 91.39 341 | 92.36 375 | 79.11 363 | 95.65 194 | 79.86 378 | 88.60 302 | 93.12 329 | 96.53 267 | 70.73 364 | 98.10 359 | 90.75 270 | 89.32 370 | 96.98 322 |
|
EMVS | | | 89.06 329 | 89.22 324 | 88.61 353 | 93.00 371 | 77.34 368 | 82.91 372 | 90.92 357 | 94.64 190 | 92.63 340 | 91.81 360 | 76.30 341 | 97.02 366 | 83.83 353 | 96.90 326 | 91.48 371 |
|
KD-MVS_2432*1600 | | | 88.93 330 | 87.74 335 | 92.49 331 | 88.04 380 | 81.99 353 | 89.63 361 | 95.62 312 | 91.35 272 | 95.06 274 | 93.11 340 | 56.58 379 | 98.63 330 | 85.19 343 | 95.07 351 | 96.85 329 |
|
miper_refine_blended | | | 88.93 330 | 87.74 335 | 92.49 331 | 88.04 380 | 81.99 353 | 89.63 361 | 95.62 312 | 91.35 272 | 95.06 274 | 93.11 340 | 56.58 379 | 98.63 330 | 85.19 343 | 95.07 351 | 96.85 329 |
|
IB-MVS | | 85.98 20 | 88.63 332 | 86.95 341 | 93.68 308 | 95.12 349 | 84.82 336 | 90.85 347 | 90.17 365 | 87.55 312 | 88.48 366 | 91.34 365 | 58.01 377 | 99.59 164 | 87.24 329 | 93.80 360 | 96.63 339 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
tpm2 | | | 88.47 333 | 87.69 337 | 90.79 344 | 94.98 351 | 77.34 368 | 95.09 226 | 91.83 351 | 77.51 369 | 89.40 361 | 96.41 273 | 67.83 370 | 98.73 320 | 83.58 356 | 92.60 364 | 96.29 344 |
|
MVS-HIRNet | | | 88.40 334 | 90.20 319 | 82.99 358 | 97.01 301 | 60.04 382 | 93.11 307 | 85.61 374 | 84.45 344 | 88.72 365 | 99.09 38 | 84.72 300 | 98.23 355 | 82.52 357 | 96.59 335 | 90.69 373 |
|
gg-mvs-nofinetune | | | 88.28 335 | 86.96 340 | 92.23 337 | 92.84 373 | 84.44 339 | 98.19 51 | 74.60 380 | 99.08 10 | 87.01 371 | 99.47 8 | 56.93 378 | 98.23 355 | 78.91 364 | 95.61 348 | 94.01 362 |
|
dp | | | 88.08 336 | 88.05 334 | 88.16 356 | 92.85 372 | 68.81 381 | 94.17 268 | 92.88 342 | 85.47 331 | 91.38 350 | 96.14 288 | 68.87 368 | 98.81 313 | 86.88 330 | 83.80 375 | 96.87 327 |
|
tpm cat1 | | | 88.01 337 | 87.33 338 | 90.05 349 | 94.48 356 | 76.28 372 | 94.47 256 | 94.35 329 | 73.84 374 | 89.26 362 | 95.61 308 | 73.64 352 | 98.30 353 | 84.13 350 | 86.20 373 | 95.57 354 |
|
test-mter | | | 87.92 338 | 87.17 339 | 90.16 347 | 94.24 360 | 74.98 374 | 89.89 356 | 89.06 366 | 86.44 322 | 89.97 359 | 90.77 369 | 54.96 384 | 98.57 335 | 91.88 243 | 97.36 317 | 96.92 324 |
|
PAPM | | | 87.64 339 | 85.84 344 | 93.04 321 | 96.54 312 | 84.99 333 | 88.42 365 | 95.57 315 | 79.52 361 | 83.82 373 | 93.05 346 | 80.57 319 | 98.41 345 | 62.29 377 | 92.79 362 | 95.71 350 |
|
TESTMET0.1,1 | | | 87.20 340 | 86.57 342 | 89.07 351 | 93.62 367 | 72.84 378 | 89.89 356 | 87.01 372 | 85.46 332 | 89.12 364 | 90.20 371 | 56.00 382 | 97.72 363 | 90.91 264 | 96.92 324 | 96.64 337 |
|
MVE |  | 73.61 22 | 86.48 341 | 85.92 343 | 88.18 355 | 96.23 322 | 85.28 328 | 81.78 373 | 75.79 379 | 86.01 324 | 82.53 375 | 91.88 359 | 92.74 201 | 87.47 378 | 71.42 375 | 94.86 354 | 91.78 369 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
PVSNet_0 | | 81.89 21 | 84.49 342 | 83.21 345 | 88.34 354 | 95.76 339 | 74.97 376 | 83.49 370 | 92.70 346 | 78.47 365 | 87.94 367 | 86.90 374 | 83.38 308 | 96.63 372 | 73.44 372 | 66.86 378 | 93.40 365 |
|
EGC-MVSNET | | | 83.08 343 | 77.93 346 | 98.53 51 | 99.57 17 | 97.55 27 | 98.33 37 | 98.57 165 | 4.71 379 | 10.38 380 | 98.90 53 | 95.60 123 | 99.50 191 | 95.69 110 | 99.61 82 | 98.55 235 |
|
test_method | | | 66.88 344 | 66.13 347 | 69.11 360 | 62.68 383 | 25.73 385 | 49.76 374 | 96.04 303 | 14.32 378 | 64.27 379 | 91.69 362 | 73.45 355 | 88.05 377 | 76.06 370 | 66.94 377 | 93.54 363 |
|
tmp_tt | | | 57.23 345 | 62.50 348 | 41.44 361 | 34.77 384 | 49.21 384 | 83.93 369 | 60.22 385 | 15.31 377 | 71.11 378 | 79.37 376 | 70.09 366 | 44.86 380 | 64.76 376 | 82.93 376 | 30.25 376 |
|
cdsmvs_eth3d_5k | | | 24.22 346 | 32.30 349 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 98.10 224 | 0.00 382 | 0.00 383 | 95.06 317 | 97.54 29 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
test123 | | | 12.59 347 | 15.49 350 | 3.87 362 | 6.07 385 | 2.55 386 | 90.75 348 | 2.59 387 | 2.52 380 | 5.20 382 | 13.02 379 | 4.96 385 | 1.85 382 | 5.20 379 | 9.09 379 | 7.23 377 |
|
testmvs | | | 12.33 348 | 15.23 351 | 3.64 363 | 5.77 386 | 2.23 387 | 88.99 363 | 3.62 386 | 2.30 381 | 5.29 381 | 13.09 378 | 4.52 386 | 1.95 381 | 5.16 380 | 8.32 380 | 6.75 378 |
|
pcd_1.5k_mvsjas | | | 7.98 349 | 10.65 352 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.00 382 | 95.82 110 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
ab-mvs-re | | | 7.91 350 | 10.55 353 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 94.94 319 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
test_blank | | | 0.00 351 | 0.00 354 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.00 382 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
uanet_test | | | 0.00 351 | 0.00 354 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.00 382 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
DCPMVS | | | 0.00 351 | 0.00 354 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.00 382 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
sosnet-low-res | | | 0.00 351 | 0.00 354 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.00 382 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
sosnet | | | 0.00 351 | 0.00 354 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.00 382 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
uncertanet | | | 0.00 351 | 0.00 354 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.00 382 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
Regformer | | | 0.00 351 | 0.00 354 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.00 382 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
uanet | | | 0.00 351 | 0.00 354 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.00 382 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
FOURS1 | | | | | | 99.59 15 | 98.20 4 | 99.03 7 | 99.25 14 | 98.96 18 | 98.87 42 | | | | | | |
|
MSC_two_6792asdad | | | | | 98.22 78 | 97.75 249 | 95.34 113 | | 98.16 217 | | | | | 99.75 70 | 95.87 103 | 99.51 118 | 99.57 36 |
|
PC_three_1452 | | | | | | | | | | 87.24 314 | 98.37 80 | 97.44 200 | 97.00 54 | 96.78 370 | 92.01 238 | 99.25 193 | 99.21 133 |
|
No_MVS | | | | | 98.22 78 | 97.75 249 | 95.34 113 | | 98.16 217 | | | | | 99.75 70 | 95.87 103 | 99.51 118 | 99.57 36 |
|
test_one_0601 | | | | | | 99.05 97 | 95.50 103 | | 98.87 90 | 97.21 84 | 98.03 125 | 98.30 100 | 96.93 60 | | | | |
|
eth-test2 | | | | | | 0.00 387 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 387 | | | | | | | | | | | |
|
ZD-MVS | | | | | | 98.43 166 | 95.94 81 | | 98.56 166 | 90.72 280 | 96.66 213 | 97.07 231 | 95.02 144 | 99.74 80 | 91.08 259 | 98.93 233 | |
|
RE-MVS-def | | | | 97.88 52 | | 98.81 114 | 98.05 9 | 97.55 89 | 98.86 93 | 97.77 50 | 98.20 102 | 98.07 132 | 96.94 58 | | 95.49 123 | 99.20 198 | 99.26 124 |
|
IU-MVS | | | | | | 99.22 62 | 95.40 106 | | 98.14 220 | 85.77 329 | 98.36 83 | | | | 95.23 143 | 99.51 118 | 99.49 57 |
|
OPU-MVS | | | | | 97.64 125 | 98.01 209 | 95.27 116 | 96.79 130 | | | | 97.35 212 | 96.97 56 | 98.51 341 | 91.21 258 | 99.25 193 | 99.14 149 |
|
test_241102_TWO | | | | | | | | | 98.83 109 | 96.11 124 | 98.62 56 | 98.24 111 | 96.92 62 | 99.72 90 | 95.44 130 | 99.49 126 | 99.49 57 |
|
test_241102_ONE | | | | | | 99.22 62 | 95.35 111 | | 98.83 109 | 96.04 129 | 99.08 33 | 98.13 124 | 97.87 20 | 99.33 245 | | | |
|
9.14 | | | | 96.69 141 | | 98.53 151 | | 96.02 170 | 98.98 68 | 93.23 232 | 97.18 175 | 97.46 198 | 96.47 90 | 99.62 156 | 92.99 228 | 99.32 182 | |
|
save fliter | | | | | | 98.48 160 | 94.71 137 | 94.53 254 | 98.41 182 | 95.02 179 | | | | | | | |
|
test_0728_THIRD | | | | | | | | | | 96.62 97 | 98.40 77 | 98.28 105 | 97.10 45 | 99.71 106 | 95.70 108 | 99.62 76 | 99.58 31 |
|
test_0728_SECOND | | | | | 98.25 76 | 99.23 59 | 95.49 104 | 96.74 133 | 98.89 82 | | | | | 99.75 70 | 95.48 126 | 99.52 113 | 99.53 45 |
|
test0726 | | | | | | 99.24 57 | 95.51 100 | 96.89 125 | 98.89 82 | 95.92 137 | 98.64 55 | 98.31 96 | 97.06 50 | | | | |
|
GSMVS | | | | | | | | | | | | | | | | | 98.06 281 |
|
test_part2 | | | | | | 99.03 99 | 96.07 75 | | | | 98.08 119 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 77.80 330 | | | | 98.06 281 |
|
sam_mvs | | | | | | | | | | | | | 77.38 334 | | | | |
|
ambc | | | | | 96.56 199 | 98.23 185 | 91.68 226 | 97.88 68 | 98.13 222 | | 98.42 76 | 98.56 76 | 94.22 170 | 99.04 291 | 94.05 201 | 99.35 170 | 98.95 181 |
|
MTGPA |  | | | | | | | | 98.73 132 | | | | | | | | |
|
test_post1 | | | | | | | | 94.98 236 | | | | 10.37 381 | 76.21 342 | 99.04 291 | 89.47 297 | | |
|
test_post | | | | | | | | | | | | 10.87 380 | 76.83 338 | 99.07 288 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 96.84 247 | 77.36 335 | 99.42 213 | | | |
|
GG-mvs-BLEND | | | | | 90.60 345 | 91.00 377 | 84.21 342 | 98.23 45 | 72.63 383 | | 82.76 374 | 84.11 375 | 56.14 381 | 96.79 369 | 72.20 373 | 92.09 365 | 90.78 372 |
|
MTMP | | | | | | | | 96.55 141 | 74.60 380 | | | | | | | | |
|
gm-plane-assit | | | | | | 91.79 376 | 71.40 380 | | | 81.67 351 | | 90.11 372 | | 98.99 297 | 84.86 347 | | |
|
test9_res | | | | | | | | | | | | | | | 91.29 254 | 98.89 238 | 99.00 175 |
|
TEST9 | | | | | | 97.84 227 | 95.23 118 | 93.62 291 | 98.39 185 | 86.81 319 | 93.78 307 | 95.99 293 | 94.68 154 | 99.52 186 | | | |
|
test_8 | | | | | | 97.81 231 | 95.07 127 | 93.54 294 | 98.38 187 | 87.04 317 | 93.71 311 | 95.96 297 | 94.58 159 | 99.52 186 | | | |
|
agg_prior2 | | | | | | | | | | | | | | | 90.34 286 | 98.90 235 | 99.10 163 |
|
agg_prior | | | | | | 97.80 235 | 94.96 129 | | 98.36 189 | | 93.49 320 | | | 99.53 182 | | | |
|
TestCases | | | | | 98.06 93 | 99.08 90 | 96.16 71 | | 99.16 22 | 94.35 199 | 97.78 150 | 98.07 132 | 95.84 107 | 99.12 280 | 91.41 252 | 99.42 151 | 98.91 192 |
|
test_prior4 | | | | | | | 95.38 108 | 93.61 293 | | | | | | | | | |
|
test_prior2 | | | | | | | | 93.33 302 | | 94.21 204 | 94.02 302 | 96.25 281 | 93.64 183 | | 91.90 241 | 98.96 227 | |
|
test_prior | | | | | 97.46 145 | 97.79 241 | 94.26 158 | | 98.42 180 | | | | | 99.34 242 | | | 98.79 209 |
|
旧先验2 | | | | | | | | 93.35 301 | | 77.95 368 | 95.77 260 | | | 98.67 328 | 90.74 273 | | |
|
新几何2 | | | | | | | | 93.43 296 | | | | | | | | | |
|
新几何1 | | | | | 97.25 161 | 98.29 175 | 94.70 140 | | 97.73 250 | 77.98 366 | 94.83 281 | 96.67 260 | 92.08 221 | 99.45 207 | 88.17 316 | 98.65 262 | 97.61 305 |
|
旧先验1 | | | | | | 97.80 235 | 93.87 170 | | 97.75 249 | | | 97.04 234 | 93.57 185 | | | 98.68 257 | 98.72 219 |
|
无先验 | | | | | | | | 93.20 305 | 97.91 238 | 80.78 356 | | | | 99.40 224 | 87.71 319 | | 97.94 290 |
|
原ACMM2 | | | | | | | | 92.82 310 | | | | | | | | | |
|
原ACMM1 | | | | | 96.58 196 | 98.16 195 | 92.12 215 | | 98.15 219 | 85.90 327 | 93.49 320 | 96.43 272 | 92.47 213 | 99.38 232 | 87.66 322 | 98.62 264 | 98.23 267 |
|
test222 | | | | | | 98.17 193 | 93.24 192 | 92.74 314 | 97.61 264 | 75.17 371 | 94.65 285 | 96.69 259 | 90.96 239 | | | 98.66 260 | 97.66 303 |
|
testdata2 | | | | | | | | | | | | | | 99.46 203 | 87.84 317 | | |
|
segment_acmp | | | | | | | | | | | | | 95.34 132 | | | | |
|
testdata | | | | | 95.70 240 | 98.16 195 | 90.58 242 | | 97.72 251 | 80.38 358 | 95.62 263 | 97.02 235 | 92.06 222 | 98.98 299 | 89.06 304 | 98.52 270 | 97.54 308 |
|
testdata1 | | | | | | | | 92.77 311 | | 93.78 217 | | | | | | | |
|
test12 | | | | | 97.46 145 | 97.61 263 | 94.07 163 | | 97.78 248 | | 93.57 318 | | 93.31 189 | 99.42 213 | | 98.78 249 | 98.89 196 |
|
plane_prior7 | | | | | | 98.70 130 | 94.67 141 | | | | | | | | | | |
|
plane_prior6 | | | | | | 98.38 169 | 94.37 151 | | | | | | 91.91 228 | | | | |
|
plane_prior5 | | | | | | | | | 98.75 128 | | | | | 99.46 203 | 92.59 233 | 99.20 198 | 99.28 119 |
|
plane_prior4 | | | | | | | | | | | | 96.77 253 | | | | | |
|
plane_prior3 | | | | | | | 94.51 145 | | | 95.29 167 | 96.16 241 | | | | | | |
|
plane_prior2 | | | | | | | | 96.50 143 | | 96.36 112 | | | | | | | |
|
plane_prior1 | | | | | | 98.49 158 | | | | | | | | | | | |
|
plane_prior | | | | | | | 94.29 153 | 95.42 203 | | 94.31 201 | | | | | | 98.93 233 | |
|
n2 | | | | | | | | | 0.00 388 | | | | | | | | |
|
nn | | | | | | | | | 0.00 388 | | | | | | | | |
|
door-mid | | | | | | | | | 98.17 214 | | | | | | | | |
|
lessismore_v0 | | | | | 97.05 170 | 99.36 45 | 92.12 215 | | 84.07 375 | | 98.77 51 | 98.98 45 | 85.36 295 | 99.74 80 | 97.34 47 | 99.37 162 | 99.30 111 |
|
LGP-MVS_train | | | | | 98.74 35 | 99.15 77 | 97.02 44 | | 99.02 54 | 95.15 172 | 98.34 86 | 98.23 113 | 97.91 17 | 99.70 115 | 94.41 182 | 99.73 54 | 99.50 49 |
|
test11 | | | | | | | | | 98.08 228 | | | | | | | | |
|
door | | | | | | | | | 97.81 247 | | | | | | | | |
|
HQP5-MVS | | | | | | | 92.47 205 | | | | | | | | | | |
|
HQP-NCC | | | | | | 97.85 223 | | 94.26 260 | | 93.18 235 | 92.86 333 | | | | | | |
|
ACMP_Plane | | | | | | 97.85 223 | | 94.26 260 | | 93.18 235 | 92.86 333 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 90.51 281 | | |
|
HQP4-MVS | | | | | | | | | | | 92.87 332 | | | 99.23 267 | | | 99.06 168 |
|
HQP3-MVS | | | | | | | | | 98.43 177 | | | | | | | 98.74 253 | |
|
HQP2-MVS | | | | | | | | | | | | | 90.33 246 | | | | |
|
NP-MVS | | | | | | 98.14 198 | 93.72 178 | | | | | 95.08 315 | | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 57.28 383 | 94.89 239 | | 80.59 357 | 94.02 302 | | 78.66 327 | | 85.50 341 | | 97.82 296 |
|
MDTV_nov1_ep13 | | | | 91.28 302 | | 94.31 357 | 73.51 377 | 94.80 244 | 93.16 339 | 86.75 321 | 93.45 323 | 97.40 203 | 76.37 340 | 98.55 338 | 88.85 305 | 96.43 336 | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 99.52 113 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 99.55 102 | |
|
Test By Simon | | | | | | | | | | | | | 94.51 162 | | | | |
|
ITE_SJBPF | | | | | 97.85 109 | 98.64 135 | 96.66 56 | | 98.51 170 | 95.63 152 | 97.22 171 | 97.30 217 | 95.52 125 | 98.55 338 | 90.97 262 | 98.90 235 | 98.34 255 |
|
DeepMVS_CX |  | | | | 77.17 359 | 90.94 378 | 85.28 328 | | 74.08 382 | 52.51 376 | 80.87 377 | 88.03 373 | 75.25 346 | 70.63 379 | 59.23 378 | 84.94 374 | 75.62 374 |
|