LCM-MVSNet | | | 99.86 1 | 99.86 1 | 99.87 1 | 99.99 1 | 99.77 1 | 99.77 1 | 99.80 1 | 99.97 1 | 99.97 1 | 99.95 1 | 99.74 1 | 99.98 1 | 99.56 1 | 100.00 1 | 99.85 3 |
|
LTVRE_ROB | | 96.88 1 | 99.18 2 | 99.34 2 | 98.72 37 | 99.71 9 | 96.99 44 | 99.69 2 | 99.57 11 | 99.02 15 | 99.62 11 | 99.36 20 | 98.53 7 | 99.52 175 | 98.58 19 | 99.95 5 | 99.66 24 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
UniMVSNet_ETH3D | | | 99.12 3 | 99.28 3 | 98.65 42 | 99.77 5 | 96.34 65 | 99.18 5 | 99.20 29 | 99.67 2 | 99.73 3 | 99.65 5 | 99.15 3 | 99.86 24 | 97.22 58 | 99.92 14 | 99.77 11 |
|
pmmvs6 | | | 99.07 4 | 99.24 4 | 98.56 48 | 99.81 2 | 96.38 62 | 98.87 9 | 99.30 21 | 99.01 16 | 99.63 10 | 99.66 3 | 99.27 2 | 99.68 120 | 97.75 41 | 99.89 25 | 99.62 29 |
|
mvs_tets | | | 98.90 5 | 98.94 6 | 98.75 31 | 99.69 10 | 96.48 60 | 98.54 23 | 99.22 26 | 96.23 118 | 99.71 4 | 99.48 9 | 98.77 6 | 99.93 3 | 98.89 7 | 99.95 5 | 99.84 5 |
|
TDRefinement | | | 98.90 5 | 98.86 8 | 99.02 6 | 99.54 26 | 98.06 8 | 99.34 4 | 99.44 16 | 98.85 20 | 99.00 41 | 99.20 31 | 97.42 37 | 99.59 154 | 97.21 59 | 99.76 51 | 99.40 90 |
|
UA-Net | | | 98.88 7 | 98.76 13 | 99.22 2 | 99.11 90 | 97.89 13 | 99.47 3 | 99.32 20 | 99.08 10 | 97.87 151 | 99.67 2 | 96.47 95 | 99.92 5 | 97.88 33 | 99.98 2 | 99.85 3 |
|
DTE-MVSNet | | | 98.79 8 | 98.86 8 | 98.59 46 | 99.55 23 | 96.12 72 | 98.48 30 | 99.10 44 | 99.36 4 | 99.29 25 | 99.06 47 | 97.27 43 | 99.93 3 | 97.71 43 | 99.91 17 | 99.70 22 |
|
jajsoiax | | | 98.77 9 | 98.79 12 | 98.74 34 | 99.66 13 | 96.48 60 | 98.45 31 | 99.12 42 | 95.83 144 | 99.67 7 | 99.37 18 | 98.25 10 | 99.92 5 | 98.77 10 | 99.94 8 | 99.82 6 |
|
PEN-MVS | | | 98.75 10 | 98.85 10 | 98.44 55 | 99.58 19 | 95.67 90 | 98.45 31 | 99.15 38 | 99.33 5 | 99.30 24 | 99.00 50 | 97.27 43 | 99.92 5 | 97.64 47 | 99.92 14 | 99.75 16 |
|
v7n | | | 98.73 11 | 98.99 5 | 97.95 95 | 99.64 14 | 94.20 153 | 98.67 15 | 99.14 40 | 99.08 10 | 99.42 17 | 99.23 29 | 96.53 90 | 99.91 13 | 99.27 4 | 99.93 10 | 99.73 19 |
|
PS-CasMVS | | | 98.73 11 | 98.85 10 | 98.39 61 | 99.55 23 | 95.47 102 | 98.49 28 | 99.13 41 | 99.22 8 | 99.22 30 | 98.96 54 | 97.35 39 | 99.92 5 | 97.79 39 | 99.93 10 | 99.79 9 |
|
test_djsdf | | | 98.73 11 | 98.74 16 | 98.69 39 | 99.63 15 | 96.30 67 | 98.67 15 | 99.02 65 | 96.50 106 | 99.32 23 | 99.44 13 | 97.43 36 | 99.92 5 | 98.73 12 | 99.95 5 | 99.86 2 |
|
anonymousdsp | | | 98.72 14 | 98.63 19 | 98.99 10 | 99.62 16 | 97.29 37 | 98.65 19 | 99.19 31 | 95.62 153 | 99.35 22 | 99.37 18 | 97.38 38 | 99.90 14 | 98.59 18 | 99.91 17 | 99.77 11 |
|
WR-MVS_H | | | 98.65 15 | 98.62 21 | 98.75 31 | 99.51 31 | 96.61 56 | 98.55 22 | 99.17 33 | 99.05 13 | 99.17 32 | 98.79 69 | 95.47 130 | 99.89 18 | 97.95 32 | 99.91 17 | 99.75 16 |
|
OurMVSNet-221017-0 | | | 98.61 16 | 98.61 23 | 98.63 44 | 99.77 5 | 96.35 64 | 99.17 6 | 99.05 56 | 98.05 45 | 99.61 12 | 99.52 7 | 93.72 180 | 99.88 20 | 98.72 14 | 99.88 26 | 99.65 26 |
|
testf1 | | | 98.57 17 | 98.45 27 | 98.93 18 | 99.79 3 | 98.78 2 | 97.69 81 | 99.42 18 | 97.69 60 | 98.92 45 | 98.77 72 | 97.80 22 | 99.25 251 | 96.27 90 | 99.69 69 | 98.76 209 |
|
APD_test2 | | | 98.57 17 | 98.45 27 | 98.93 18 | 99.79 3 | 98.78 2 | 97.69 81 | 99.42 18 | 97.69 60 | 98.92 45 | 98.77 72 | 97.80 22 | 99.25 251 | 96.27 90 | 99.69 69 | 98.76 209 |
|
Anonymous20231211 | | | 98.55 19 | 98.76 13 | 97.94 96 | 98.79 122 | 94.37 144 | 98.84 11 | 99.15 38 | 99.37 3 | 99.67 7 | 99.43 14 | 95.61 126 | 99.72 86 | 98.12 25 | 99.86 29 | 99.73 19 |
|
nrg030 | | | 98.54 20 | 98.62 21 | 98.32 65 | 99.22 67 | 95.66 91 | 97.90 68 | 99.08 50 | 98.31 34 | 99.02 39 | 98.74 75 | 97.68 27 | 99.61 151 | 97.77 40 | 99.85 34 | 99.70 22 |
|
PS-MVSNAJss | | | 98.53 21 | 98.63 19 | 98.21 78 | 99.68 11 | 94.82 129 | 98.10 56 | 99.21 27 | 96.91 89 | 99.75 2 | 99.45 12 | 95.82 115 | 99.92 5 | 98.80 9 | 99.96 4 | 99.89 1 |
|
MIMVSNet1 | | | 98.51 22 | 98.45 27 | 98.67 40 | 99.72 8 | 96.71 50 | 98.76 12 | 98.89 93 | 98.49 29 | 99.38 19 | 99.14 41 | 95.44 132 | 99.84 30 | 96.47 83 | 99.80 44 | 99.47 70 |
|
pm-mvs1 | | | 98.47 23 | 98.67 17 | 97.86 101 | 99.52 30 | 94.58 136 | 98.28 42 | 99.00 74 | 97.57 64 | 99.27 26 | 99.22 30 | 98.32 9 | 99.50 180 | 97.09 65 | 99.75 56 | 99.50 53 |
|
ACMH | | 93.61 9 | 98.44 24 | 98.76 13 | 97.51 124 | 99.43 40 | 93.54 176 | 98.23 46 | 99.05 56 | 97.40 76 | 99.37 20 | 99.08 46 | 98.79 5 | 99.47 189 | 97.74 42 | 99.71 65 | 99.50 53 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
CP-MVSNet | | | 98.42 25 | 98.46 25 | 98.30 68 | 99.46 37 | 95.22 118 | 98.27 44 | 98.84 111 | 99.05 13 | 99.01 40 | 98.65 84 | 95.37 133 | 99.90 14 | 97.57 48 | 99.91 17 | 99.77 11 |
|
TransMVSNet (Re) | | | 98.38 26 | 98.67 17 | 97.51 124 | 99.51 31 | 93.39 182 | 98.20 51 | 98.87 101 | 98.23 38 | 99.48 14 | 99.27 27 | 98.47 8 | 99.55 167 | 96.52 81 | 99.53 115 | 99.60 31 |
|
TranMVSNet+NR-MVSNet | | | 98.33 27 | 98.30 34 | 98.43 57 | 99.07 95 | 95.87 81 | 96.73 143 | 99.05 56 | 98.67 23 | 98.84 51 | 98.45 101 | 97.58 33 | 99.88 20 | 96.45 84 | 99.86 29 | 99.54 45 |
|
HPM-MVS_fast | | | 98.32 28 | 98.13 37 | 98.88 23 | 99.54 26 | 97.48 30 | 98.35 35 | 99.03 63 | 95.88 140 | 97.88 148 | 98.22 134 | 98.15 13 | 99.74 76 | 96.50 82 | 99.62 83 | 99.42 87 |
|
ANet_high | | | 98.31 29 | 98.94 6 | 96.41 203 | 99.33 53 | 89.64 253 | 97.92 67 | 99.56 13 | 99.27 6 | 99.66 9 | 99.50 8 | 97.67 28 | 99.83 33 | 97.55 49 | 99.98 2 | 99.77 11 |
|
VPA-MVSNet | | | 98.27 30 | 98.46 25 | 97.70 111 | 99.06 96 | 93.80 166 | 97.76 76 | 99.00 74 | 98.40 31 | 99.07 38 | 98.98 52 | 96.89 70 | 99.75 67 | 97.19 62 | 99.79 45 | 99.55 44 |
|
Vis-MVSNet |  | | 98.27 30 | 98.34 31 | 98.07 86 | 99.33 53 | 95.21 120 | 98.04 60 | 99.46 14 | 97.32 79 | 97.82 155 | 99.11 42 | 96.75 80 | 99.86 24 | 97.84 36 | 99.36 167 | 99.15 141 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
COLMAP_ROB |  | 94.48 6 | 98.25 32 | 98.11 39 | 98.64 43 | 99.21 74 | 97.35 35 | 97.96 63 | 99.16 34 | 98.34 33 | 98.78 55 | 98.52 94 | 97.32 40 | 99.45 196 | 94.08 205 | 99.67 75 | 99.13 146 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
ACMH+ | | 93.58 10 | 98.23 33 | 98.31 32 | 97.98 94 | 99.39 47 | 95.22 118 | 97.55 92 | 99.20 29 | 98.21 39 | 99.25 28 | 98.51 96 | 98.21 11 | 99.40 213 | 94.79 177 | 99.72 62 | 99.32 104 |
|
FC-MVSNet-test | | | 98.16 34 | 98.37 30 | 97.56 119 | 99.49 35 | 93.10 188 | 98.35 35 | 99.21 27 | 98.43 30 | 98.89 47 | 98.83 68 | 94.30 165 | 99.81 37 | 97.87 34 | 99.91 17 | 99.77 11 |
|
mvsmamba | | | 98.16 34 | 98.06 44 | 98.44 55 | 99.53 29 | 95.87 81 | 98.70 13 | 98.94 87 | 97.71 58 | 98.85 49 | 99.10 43 | 91.35 232 | 99.83 33 | 98.47 20 | 99.90 23 | 99.64 28 |
|
SR-MVS-dyc-post | | | 98.14 36 | 97.84 60 | 99.02 6 | 98.81 119 | 98.05 9 | 97.55 92 | 98.86 104 | 97.77 51 | 98.20 111 | 98.07 150 | 96.60 88 | 99.76 61 | 95.49 132 | 99.20 198 | 99.26 121 |
|
MTAPA | | | 98.14 36 | 97.84 60 | 99.06 3 | 99.44 39 | 97.90 12 | 97.25 108 | 98.73 139 | 97.69 60 | 97.90 146 | 97.96 165 | 95.81 119 | 99.82 35 | 96.13 96 | 99.61 89 | 99.45 76 |
|
APDe-MVS | | | 98.14 36 | 98.03 47 | 98.47 54 | 98.72 129 | 96.04 75 | 98.07 58 | 99.10 44 | 95.96 134 | 98.59 69 | 98.69 80 | 96.94 64 | 99.81 37 | 96.64 76 | 99.58 96 | 99.57 38 |
|
APD-MVS_3200maxsize | | | 98.13 39 | 97.90 54 | 98.79 29 | 98.79 122 | 97.31 36 | 97.55 92 | 98.92 90 | 97.72 56 | 98.25 107 | 98.13 142 | 97.10 51 | 99.75 67 | 95.44 139 | 99.24 196 | 99.32 104 |
|
HPM-MVS |  | | 98.11 40 | 97.83 63 | 98.92 21 | 99.42 42 | 97.46 31 | 98.57 20 | 99.05 56 | 95.43 163 | 97.41 173 | 97.50 206 | 97.98 16 | 99.79 44 | 95.58 130 | 99.57 99 | 99.50 53 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
CS-MVS | | | 98.09 41 | 98.01 48 | 98.32 65 | 98.45 169 | 96.69 52 | 98.52 26 | 99.69 3 | 98.07 44 | 96.07 252 | 97.19 231 | 96.88 72 | 99.86 24 | 97.50 51 | 99.73 58 | 98.41 242 |
|
test_fmvsmvis_n_1920 | | | 98.08 42 | 98.47 24 | 96.93 169 | 99.03 102 | 93.29 183 | 96.32 159 | 99.65 7 | 95.59 155 | 99.71 4 | 99.01 49 | 97.66 29 | 99.60 153 | 99.44 2 | 99.83 37 | 97.90 292 |
|
test_fmvsm_n_1920 | | | 98.08 42 | 98.29 35 | 97.43 137 | 98.88 114 | 93.95 161 | 96.17 171 | 99.57 11 | 95.66 150 | 99.52 13 | 98.71 78 | 97.04 57 | 99.64 136 | 99.21 6 | 99.87 27 | 98.69 218 |
|
Gipuma |  | | 98.07 44 | 98.31 32 | 97.36 143 | 99.76 7 | 96.28 68 | 98.51 27 | 99.10 44 | 98.76 22 | 96.79 212 | 99.34 24 | 96.61 86 | 98.82 301 | 96.38 86 | 99.50 129 | 96.98 323 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
ACMMP |  | | 98.05 45 | 97.75 71 | 98.93 18 | 99.23 64 | 97.60 22 | 98.09 57 | 98.96 84 | 95.75 148 | 97.91 145 | 98.06 155 | 96.89 70 | 99.76 61 | 95.32 147 | 99.57 99 | 99.43 86 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
ACMM | | 93.33 11 | 98.05 45 | 97.79 65 | 98.85 24 | 99.15 81 | 97.55 26 | 96.68 145 | 98.83 117 | 95.21 169 | 98.36 93 | 98.13 142 | 98.13 15 | 99.62 144 | 96.04 100 | 99.54 111 | 99.39 93 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
SteuartSystems-ACMMP | | | 98.02 47 | 97.76 70 | 98.79 29 | 99.43 40 | 97.21 41 | 97.15 114 | 98.90 92 | 96.58 101 | 98.08 127 | 97.87 176 | 97.02 59 | 99.76 61 | 95.25 150 | 99.59 94 | 99.40 90 |
Skip Steuart: Steuart Systems R&D Blog. |
SR-MVS | | | 98.00 48 | 97.66 78 | 99.01 8 | 98.77 125 | 97.93 11 | 97.38 104 | 98.83 117 | 97.32 79 | 98.06 130 | 97.85 177 | 96.65 83 | 99.77 56 | 95.00 169 | 99.11 211 | 99.32 104 |
|
SDMVSNet | | | 97.97 49 | 98.26 36 | 97.11 156 | 99.41 43 | 92.21 206 | 96.92 127 | 98.60 164 | 98.58 26 | 98.78 55 | 99.39 15 | 97.80 22 | 99.62 144 | 94.98 171 | 99.86 29 | 99.52 49 |
|
sd_testset | | | 97.97 49 | 98.12 38 | 97.51 124 | 99.41 43 | 93.44 179 | 97.96 63 | 98.25 204 | 98.58 26 | 98.78 55 | 99.39 15 | 98.21 11 | 99.56 163 | 92.65 239 | 99.86 29 | 99.52 49 |
|
DVP-MVS++ | | | 97.96 51 | 97.90 54 | 98.12 84 | 97.75 253 | 95.40 103 | 99.03 7 | 98.89 93 | 96.62 96 | 98.62 65 | 98.30 118 | 96.97 62 | 99.75 67 | 95.70 118 | 99.25 193 | 99.21 129 |
|
Anonymous20240529 | | | 97.96 51 | 98.04 46 | 97.71 110 | 98.69 136 | 94.28 150 | 97.86 70 | 98.31 201 | 98.79 21 | 99.23 29 | 98.86 67 | 95.76 121 | 99.61 151 | 95.49 132 | 99.36 167 | 99.23 127 |
|
XVS | | | 97.96 51 | 97.63 84 | 98.94 15 | 99.15 81 | 97.66 19 | 97.77 74 | 98.83 117 | 97.42 72 | 96.32 238 | 97.64 195 | 96.49 93 | 99.72 86 | 95.66 123 | 99.37 164 | 99.45 76 |
|
NR-MVSNet | | | 97.96 51 | 97.86 59 | 98.26 70 | 98.73 127 | 95.54 95 | 98.14 54 | 98.73 139 | 97.79 50 | 99.42 17 | 97.83 178 | 94.40 163 | 99.78 47 | 95.91 110 | 99.76 51 | 99.46 72 |
|
APD_test1 | | | 97.95 55 | 97.68 76 | 98.75 31 | 99.60 17 | 98.60 5 | 97.21 112 | 99.08 50 | 96.57 104 | 98.07 129 | 98.38 108 | 96.22 105 | 99.14 267 | 94.71 183 | 99.31 185 | 98.52 234 |
|
RRT_MVS | | | 97.95 55 | 97.79 65 | 98.43 57 | 99.67 12 | 95.56 93 | 98.86 10 | 96.73 295 | 97.99 47 | 99.15 33 | 99.35 22 | 89.84 254 | 99.90 14 | 98.64 16 | 99.90 23 | 99.82 6 |
|
ACMMPR | | | 97.95 55 | 97.62 86 | 98.94 15 | 99.20 75 | 97.56 25 | 97.59 89 | 98.83 117 | 96.05 127 | 97.46 171 | 97.63 196 | 96.77 79 | 99.76 61 | 95.61 127 | 99.46 141 | 99.49 61 |
|
FMVSNet1 | | | 97.95 55 | 98.08 41 | 97.56 119 | 99.14 88 | 93.67 170 | 98.23 46 | 98.66 156 | 97.41 75 | 99.00 41 | 99.19 32 | 95.47 130 | 99.73 81 | 95.83 115 | 99.76 51 | 99.30 109 |
|
SED-MVS | | | 97.94 59 | 97.90 54 | 98.07 86 | 99.22 67 | 95.35 108 | 96.79 136 | 98.83 117 | 96.11 124 | 99.08 36 | 98.24 129 | 97.87 20 | 99.72 86 | 95.44 139 | 99.51 125 | 99.14 144 |
|
HFP-MVS | | | 97.94 59 | 97.64 82 | 98.83 25 | 99.15 81 | 97.50 29 | 97.59 89 | 98.84 111 | 96.05 127 | 97.49 166 | 97.54 202 | 97.07 54 | 99.70 108 | 95.61 127 | 99.46 141 | 99.30 109 |
|
LPG-MVS_test | | | 97.94 59 | 97.67 77 | 98.74 34 | 99.15 81 | 97.02 42 | 97.09 119 | 99.02 65 | 95.15 173 | 98.34 96 | 98.23 131 | 97.91 18 | 99.70 108 | 94.41 191 | 99.73 58 | 99.50 53 |
|
FIs | | | 97.93 62 | 98.07 42 | 97.48 132 | 99.38 48 | 92.95 191 | 98.03 62 | 99.11 43 | 98.04 46 | 98.62 65 | 98.66 82 | 93.75 179 | 99.78 47 | 97.23 57 | 99.84 35 | 99.73 19 |
|
ZNCC-MVS | | | 97.92 63 | 97.62 86 | 98.83 25 | 99.32 55 | 97.24 39 | 97.45 99 | 98.84 111 | 95.76 146 | 96.93 206 | 97.43 210 | 97.26 45 | 99.79 44 | 96.06 97 | 99.53 115 | 99.45 76 |
|
region2R | | | 97.92 63 | 97.59 90 | 98.92 21 | 99.22 67 | 97.55 26 | 97.60 87 | 98.84 111 | 96.00 132 | 97.22 178 | 97.62 197 | 96.87 74 | 99.76 61 | 95.48 135 | 99.43 153 | 99.46 72 |
|
CP-MVS | | | 97.92 63 | 97.56 93 | 98.99 10 | 98.99 105 | 97.82 15 | 97.93 66 | 98.96 84 | 96.11 124 | 96.89 209 | 97.45 208 | 96.85 75 | 99.78 47 | 95.19 153 | 99.63 82 | 99.38 95 |
|
CS-MVS-test | | | 97.91 66 | 97.84 60 | 98.14 82 | 98.52 158 | 96.03 77 | 98.38 34 | 99.67 4 | 98.11 42 | 95.50 273 | 96.92 249 | 96.81 78 | 99.87 22 | 96.87 73 | 99.76 51 | 98.51 235 |
|
mPP-MVS | | | 97.91 66 | 97.53 96 | 99.04 4 | 99.22 67 | 97.87 14 | 97.74 79 | 98.78 131 | 96.04 129 | 97.10 189 | 97.73 190 | 96.53 90 | 99.78 47 | 95.16 157 | 99.50 129 | 99.46 72 |
|
EC-MVSNet | | | 97.90 68 | 97.94 53 | 97.79 105 | 98.66 138 | 95.14 121 | 98.31 39 | 99.66 6 | 97.57 64 | 95.95 256 | 97.01 243 | 96.99 61 | 99.82 35 | 97.66 46 | 99.64 80 | 98.39 245 |
|
ACMMP_NAP | | | 97.89 69 | 97.63 84 | 98.67 40 | 99.35 51 | 96.84 47 | 96.36 156 | 98.79 127 | 95.07 177 | 97.88 148 | 98.35 110 | 97.24 47 | 99.72 86 | 96.05 99 | 99.58 96 | 99.45 76 |
|
PGM-MVS | | | 97.88 70 | 97.52 97 | 98.96 13 | 99.20 75 | 97.62 21 | 97.09 119 | 99.06 54 | 95.45 161 | 97.55 161 | 97.94 168 | 97.11 50 | 99.78 47 | 94.77 180 | 99.46 141 | 99.48 67 |
|
DP-MVS | | | 97.87 71 | 97.89 57 | 97.81 104 | 98.62 145 | 94.82 129 | 97.13 117 | 98.79 127 | 98.98 17 | 98.74 61 | 98.49 97 | 95.80 120 | 99.49 184 | 95.04 166 | 99.44 145 | 99.11 154 |
|
RPSCF | | | 97.87 71 | 97.51 98 | 98.95 14 | 99.15 81 | 98.43 6 | 97.56 91 | 99.06 54 | 96.19 121 | 98.48 79 | 98.70 79 | 94.72 150 | 99.24 254 | 94.37 194 | 99.33 180 | 99.17 138 |
|
KD-MVS_self_test | | | 97.86 73 | 98.07 42 | 97.25 150 | 99.22 67 | 92.81 193 | 97.55 92 | 98.94 87 | 97.10 85 | 98.85 49 | 98.88 65 | 95.03 143 | 99.67 125 | 97.39 55 | 99.65 78 | 99.26 121 |
|
test_0402 | | | 97.84 74 | 97.97 50 | 97.47 133 | 99.19 77 | 94.07 156 | 96.71 144 | 98.73 139 | 98.66 24 | 98.56 71 | 98.41 104 | 96.84 76 | 99.69 115 | 94.82 175 | 99.81 41 | 98.64 222 |
|
UniMVSNet_NR-MVSNet | | | 97.83 75 | 97.65 79 | 98.37 62 | 98.72 129 | 95.78 84 | 95.66 200 | 99.02 65 | 98.11 42 | 98.31 102 | 97.69 193 | 94.65 155 | 99.85 27 | 97.02 68 | 99.71 65 | 99.48 67 |
|
UniMVSNet (Re) | | | 97.83 75 | 97.65 79 | 98.35 64 | 98.80 121 | 95.86 83 | 95.92 188 | 99.04 62 | 97.51 69 | 98.22 110 | 97.81 182 | 94.68 153 | 99.78 47 | 97.14 63 | 99.75 56 | 99.41 89 |
|
casdiffmvs_mvg |  | | 97.83 75 | 98.11 39 | 97.00 166 | 98.57 151 | 92.10 214 | 95.97 182 | 99.18 32 | 97.67 63 | 99.00 41 | 98.48 100 | 97.64 30 | 99.50 180 | 96.96 70 | 99.54 111 | 99.40 90 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
GST-MVS | | | 97.82 78 | 97.49 101 | 98.81 27 | 99.23 64 | 97.25 38 | 97.16 113 | 98.79 127 | 95.96 134 | 97.53 162 | 97.40 212 | 96.93 66 | 99.77 56 | 95.04 166 | 99.35 172 | 99.42 87 |
|
DeepC-MVS | | 95.41 4 | 97.82 78 | 97.70 72 | 98.16 79 | 98.78 124 | 95.72 86 | 96.23 166 | 99.02 65 | 93.92 211 | 98.62 65 | 98.99 51 | 97.69 26 | 99.62 144 | 96.18 95 | 99.87 27 | 99.15 141 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
DU-MVS | | | 97.79 80 | 97.60 89 | 98.36 63 | 98.73 127 | 95.78 84 | 95.65 202 | 98.87 101 | 97.57 64 | 98.31 102 | 97.83 178 | 94.69 151 | 99.85 27 | 97.02 68 | 99.71 65 | 99.46 72 |
|
DVP-MVS |  | | 97.78 81 | 97.65 79 | 98.16 79 | 99.24 62 | 95.51 97 | 96.74 139 | 98.23 207 | 95.92 137 | 98.40 87 | 98.28 123 | 97.06 55 | 99.71 101 | 95.48 135 | 99.52 120 | 99.26 121 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
LS3D | | | 97.77 82 | 97.50 100 | 98.57 47 | 96.24 322 | 97.58 24 | 98.45 31 | 98.85 108 | 98.58 26 | 97.51 164 | 97.94 168 | 95.74 122 | 99.63 139 | 95.19 153 | 98.97 225 | 98.51 235 |
|
GeoE | | | 97.75 83 | 97.70 72 | 97.89 99 | 98.88 114 | 94.53 137 | 97.10 118 | 98.98 80 | 95.75 148 | 97.62 159 | 97.59 199 | 97.61 32 | 99.77 56 | 96.34 88 | 99.44 145 | 99.36 101 |
|
3Dnovator+ | | 96.13 3 | 97.73 84 | 97.59 90 | 98.15 81 | 98.11 209 | 95.60 92 | 98.04 60 | 98.70 148 | 98.13 41 | 96.93 206 | 98.45 101 | 95.30 136 | 99.62 144 | 95.64 125 | 98.96 226 | 99.24 126 |
|
tfpnnormal | | | 97.72 85 | 97.97 50 | 96.94 168 | 99.26 58 | 92.23 205 | 97.83 72 | 98.45 179 | 98.25 37 | 99.13 35 | 98.66 82 | 96.65 83 | 99.69 115 | 93.92 213 | 99.62 83 | 98.91 187 |
|
Baseline_NR-MVSNet | | | 97.72 85 | 97.79 65 | 97.50 128 | 99.56 21 | 93.29 183 | 95.44 212 | 98.86 104 | 98.20 40 | 98.37 90 | 99.24 28 | 94.69 151 | 99.55 167 | 95.98 106 | 99.79 45 | 99.65 26 |
|
bld_raw_dy_0_64 | | | 97.69 87 | 97.61 88 | 97.91 97 | 99.54 26 | 94.27 151 | 98.06 59 | 98.60 164 | 96.60 98 | 98.79 54 | 98.95 56 | 89.62 255 | 99.84 30 | 98.43 22 | 99.91 17 | 99.62 29 |
|
MP-MVS-pluss | | | 97.69 87 | 97.36 106 | 98.70 38 | 99.50 34 | 96.84 47 | 95.38 219 | 98.99 77 | 92.45 254 | 98.11 122 | 98.31 114 | 97.25 46 | 99.77 56 | 96.60 78 | 99.62 83 | 99.48 67 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
EG-PatchMatch MVS | | | 97.69 87 | 97.79 65 | 97.40 141 | 99.06 96 | 93.52 177 | 95.96 184 | 98.97 83 | 94.55 194 | 98.82 52 | 98.76 74 | 97.31 41 | 99.29 243 | 97.20 61 | 99.44 145 | 99.38 95 |
|
DPE-MVS |  | | 97.64 90 | 97.35 107 | 98.50 51 | 98.85 117 | 96.18 69 | 95.21 232 | 98.99 77 | 95.84 143 | 98.78 55 | 98.08 148 | 96.84 76 | 99.81 37 | 93.98 211 | 99.57 99 | 99.52 49 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
MP-MVS |  | | 97.64 90 | 97.18 116 | 99.00 9 | 99.32 55 | 97.77 17 | 97.49 98 | 98.73 139 | 96.27 115 | 95.59 271 | 97.75 187 | 96.30 102 | 99.78 47 | 93.70 221 | 99.48 136 | 99.45 76 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
3Dnovator | | 96.53 2 | 97.61 92 | 97.64 82 | 97.50 128 | 97.74 256 | 93.65 174 | 98.49 28 | 98.88 99 | 96.86 91 | 97.11 188 | 98.55 92 | 95.82 115 | 99.73 81 | 95.94 108 | 99.42 156 | 99.13 146 |
|
SF-MVS | | | 97.60 93 | 97.39 104 | 98.22 75 | 98.93 110 | 95.69 88 | 97.05 121 | 99.10 44 | 95.32 166 | 97.83 154 | 97.88 175 | 96.44 97 | 99.72 86 | 94.59 188 | 99.39 162 | 99.25 125 |
|
v8 | | | 97.60 93 | 98.06 44 | 96.23 209 | 98.71 132 | 89.44 257 | 97.43 102 | 98.82 125 | 97.29 81 | 98.74 61 | 99.10 43 | 93.86 175 | 99.68 120 | 98.61 17 | 99.94 8 | 99.56 42 |
|
XVG-ACMP-BASELINE | | | 97.58 95 | 97.28 111 | 98.49 52 | 99.16 79 | 96.90 46 | 96.39 153 | 98.98 80 | 95.05 178 | 98.06 130 | 98.02 159 | 95.86 111 | 99.56 163 | 94.37 194 | 99.64 80 | 99.00 170 |
|
v10 | | | 97.55 96 | 97.97 50 | 96.31 207 | 98.60 147 | 89.64 253 | 97.44 100 | 99.02 65 | 96.60 98 | 98.72 63 | 99.16 38 | 93.48 184 | 99.72 86 | 98.76 11 | 99.92 14 | 99.58 33 |
|
OPM-MVS | | | 97.54 97 | 97.25 112 | 98.41 59 | 99.11 90 | 96.61 56 | 95.24 230 | 98.46 178 | 94.58 193 | 98.10 124 | 98.07 150 | 97.09 53 | 99.39 217 | 95.16 157 | 99.44 145 | 99.21 129 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
XXY-MVS | | | 97.54 97 | 97.70 72 | 97.07 160 | 99.46 37 | 92.21 206 | 97.22 111 | 99.00 74 | 94.93 182 | 98.58 70 | 98.92 59 | 97.31 41 | 99.41 211 | 94.44 189 | 99.43 153 | 99.59 32 |
|
casdiffmvs |  | | 97.50 99 | 97.81 64 | 96.56 193 | 98.51 160 | 91.04 232 | 95.83 192 | 99.09 49 | 97.23 82 | 98.33 99 | 98.30 118 | 97.03 58 | 99.37 223 | 96.58 80 | 99.38 163 | 99.28 116 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
SixPastTwentyTwo | | | 97.49 100 | 97.57 92 | 97.26 149 | 99.56 21 | 92.33 202 | 98.28 42 | 96.97 284 | 98.30 36 | 99.45 16 | 99.35 22 | 88.43 271 | 99.89 18 | 98.01 30 | 99.76 51 | 99.54 45 |
|
SMA-MVS |  | | 97.48 101 | 97.11 118 | 98.60 45 | 98.83 118 | 96.67 53 | 96.74 139 | 98.73 139 | 91.61 266 | 98.48 79 | 98.36 109 | 96.53 90 | 99.68 120 | 95.17 155 | 99.54 111 | 99.45 76 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
ACMP | | 92.54 13 | 97.47 102 | 97.10 119 | 98.55 49 | 99.04 101 | 96.70 51 | 96.24 165 | 98.89 93 | 93.71 216 | 97.97 140 | 97.75 187 | 97.44 35 | 99.63 139 | 93.22 232 | 99.70 68 | 99.32 104 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
MSP-MVS | | | 97.45 103 | 96.92 132 | 99.03 5 | 99.26 58 | 97.70 18 | 97.66 83 | 98.89 93 | 95.65 151 | 98.51 74 | 96.46 276 | 92.15 217 | 99.81 37 | 95.14 160 | 98.58 267 | 99.58 33 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
tt0805 | | | 97.44 104 | 97.56 93 | 97.11 156 | 99.55 23 | 96.36 63 | 98.66 18 | 95.66 310 | 98.31 34 | 97.09 194 | 95.45 315 | 97.17 49 | 98.50 333 | 98.67 15 | 97.45 318 | 96.48 343 |
|
baseline | | | 97.44 104 | 97.78 69 | 96.43 199 | 98.52 158 | 90.75 239 | 96.84 130 | 99.03 63 | 96.51 105 | 97.86 152 | 98.02 159 | 96.67 82 | 99.36 225 | 97.09 65 | 99.47 138 | 99.19 134 |
|
TSAR-MVS + MP. | | | 97.42 106 | 97.23 114 | 98.00 93 | 99.38 48 | 95.00 125 | 97.63 86 | 98.20 212 | 93.00 239 | 98.16 117 | 98.06 155 | 95.89 110 | 99.72 86 | 95.67 122 | 99.10 213 | 99.28 116 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
CSCG | | | 97.40 107 | 97.30 109 | 97.69 113 | 98.95 107 | 94.83 128 | 97.28 107 | 98.99 77 | 96.35 114 | 98.13 121 | 95.95 301 | 95.99 108 | 99.66 131 | 94.36 196 | 99.73 58 | 98.59 228 |
|
test_fmvs3 | | | 97.38 108 | 97.56 93 | 96.84 176 | 98.63 143 | 92.81 193 | 97.60 87 | 99.61 10 | 90.87 276 | 98.76 60 | 99.66 3 | 94.03 171 | 97.90 354 | 99.24 5 | 99.68 73 | 99.81 8 |
|
XVG-OURS-SEG-HR | | | 97.38 108 | 97.07 122 | 98.30 68 | 99.01 104 | 97.41 34 | 94.66 256 | 99.02 65 | 95.20 170 | 98.15 119 | 97.52 204 | 98.83 4 | 98.43 336 | 94.87 173 | 96.41 338 | 99.07 161 |
|
VDD-MVS | | | 97.37 110 | 97.25 112 | 97.74 108 | 98.69 136 | 94.50 140 | 97.04 122 | 95.61 314 | 98.59 25 | 98.51 74 | 98.72 76 | 92.54 209 | 99.58 156 | 96.02 102 | 99.49 132 | 99.12 151 |
|
SD-MVS | | | 97.37 110 | 97.70 72 | 96.35 204 | 98.14 205 | 95.13 122 | 96.54 148 | 98.92 90 | 95.94 136 | 99.19 31 | 98.08 148 | 97.74 25 | 95.06 374 | 95.24 151 | 99.54 111 | 98.87 197 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
PM-MVS | | | 97.36 112 | 97.10 119 | 98.14 82 | 98.91 112 | 96.77 49 | 96.20 167 | 98.63 162 | 93.82 213 | 98.54 72 | 98.33 112 | 93.98 172 | 99.05 280 | 95.99 105 | 99.45 144 | 98.61 227 |
|
LCM-MVSNet-Re | | | 97.33 113 | 97.33 108 | 97.32 145 | 98.13 208 | 93.79 167 | 96.99 124 | 99.65 7 | 96.74 94 | 99.47 15 | 98.93 58 | 96.91 69 | 99.84 30 | 90.11 292 | 99.06 220 | 98.32 254 |
|
EI-MVSNet-UG-set | | | 97.32 114 | 97.40 103 | 97.09 159 | 97.34 289 | 92.01 217 | 95.33 224 | 97.65 259 | 97.74 54 | 98.30 104 | 98.14 140 | 95.04 142 | 99.69 115 | 97.55 49 | 99.52 120 | 99.58 33 |
|
EI-MVSNet-Vis-set | | | 97.32 114 | 97.39 104 | 97.11 156 | 97.36 286 | 92.08 215 | 95.34 223 | 97.65 259 | 97.74 54 | 98.29 105 | 98.11 146 | 95.05 141 | 99.68 120 | 97.50 51 | 99.50 129 | 99.56 42 |
|
VPNet | | | 97.26 116 | 97.49 101 | 96.59 189 | 99.47 36 | 90.58 241 | 96.27 161 | 98.53 172 | 97.77 51 | 98.46 82 | 98.41 104 | 94.59 156 | 99.68 120 | 94.61 184 | 99.29 188 | 99.52 49 |
|
canonicalmvs | | | 97.23 117 | 97.21 115 | 97.30 146 | 97.65 264 | 94.39 142 | 97.84 71 | 99.05 56 | 97.42 72 | 96.68 219 | 93.85 340 | 97.63 31 | 99.33 232 | 96.29 89 | 98.47 272 | 98.18 270 |
|
AllTest | | | 97.20 118 | 96.92 132 | 98.06 88 | 99.08 93 | 96.16 70 | 97.14 116 | 99.16 34 | 94.35 198 | 97.78 156 | 98.07 150 | 95.84 112 | 99.12 270 | 91.41 258 | 99.42 156 | 98.91 187 |
|
dcpmvs_2 | | | 97.12 119 | 97.99 49 | 94.51 292 | 99.11 90 | 84.00 347 | 97.75 77 | 99.65 7 | 97.38 77 | 99.14 34 | 98.42 103 | 95.16 139 | 99.96 2 | 95.52 131 | 99.78 48 | 99.58 33 |
|
XVG-OURS | | | 97.12 119 | 96.74 141 | 98.26 70 | 98.99 105 | 97.45 32 | 93.82 291 | 99.05 56 | 95.19 171 | 98.32 100 | 97.70 192 | 95.22 138 | 98.41 337 | 94.27 198 | 98.13 285 | 98.93 183 |
|
Anonymous20240521 | | | 97.07 121 | 97.51 98 | 95.76 231 | 99.35 51 | 88.18 281 | 97.78 73 | 98.40 188 | 97.11 84 | 98.34 96 | 99.04 48 | 89.58 257 | 99.79 44 | 98.09 27 | 99.93 10 | 99.30 109 |
|
test_vis3_rt | | | 97.04 122 | 96.98 126 | 97.23 152 | 98.44 170 | 95.88 80 | 96.82 132 | 99.67 4 | 90.30 283 | 99.27 26 | 99.33 25 | 94.04 170 | 96.03 373 | 97.14 63 | 97.83 296 | 99.78 10 |
|
V42 | | | 97.04 122 | 97.16 117 | 96.68 186 | 98.59 149 | 91.05 231 | 96.33 158 | 98.36 193 | 94.60 190 | 97.99 136 | 98.30 118 | 93.32 186 | 99.62 144 | 97.40 54 | 99.53 115 | 99.38 95 |
|
APD-MVS |  | | 97.00 124 | 96.53 154 | 98.41 59 | 98.55 154 | 96.31 66 | 96.32 159 | 98.77 132 | 92.96 244 | 97.44 172 | 97.58 201 | 95.84 112 | 99.74 76 | 91.96 248 | 99.35 172 | 99.19 134 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
HPM-MVS++ |  | | 96.99 125 | 96.38 162 | 98.81 27 | 98.64 139 | 97.59 23 | 95.97 182 | 98.20 212 | 95.51 159 | 95.06 282 | 96.53 272 | 94.10 169 | 99.70 108 | 94.29 197 | 99.15 204 | 99.13 146 |
|
GBi-Net | | | 96.99 125 | 96.80 138 | 97.56 119 | 97.96 220 | 93.67 170 | 98.23 46 | 98.66 156 | 95.59 155 | 97.99 136 | 99.19 32 | 89.51 261 | 99.73 81 | 94.60 185 | 99.44 145 | 99.30 109 |
|
test1 | | | 96.99 125 | 96.80 138 | 97.56 119 | 97.96 220 | 93.67 170 | 98.23 46 | 98.66 156 | 95.59 155 | 97.99 136 | 99.19 32 | 89.51 261 | 99.73 81 | 94.60 185 | 99.44 145 | 99.30 109 |
|
VDDNet | | | 96.98 128 | 96.84 135 | 97.41 140 | 99.40 46 | 93.26 185 | 97.94 65 | 95.31 320 | 99.26 7 | 98.39 89 | 99.18 35 | 87.85 280 | 99.62 144 | 95.13 162 | 99.09 214 | 99.35 103 |
|
PHI-MVS | | | 96.96 129 | 96.53 154 | 98.25 73 | 97.48 276 | 96.50 59 | 96.76 138 | 98.85 108 | 93.52 219 | 96.19 248 | 96.85 252 | 95.94 109 | 99.42 202 | 93.79 217 | 99.43 153 | 98.83 200 |
|
IS-MVSNet | | | 96.93 130 | 96.68 144 | 97.70 111 | 99.25 61 | 94.00 159 | 98.57 20 | 96.74 293 | 98.36 32 | 98.14 120 | 97.98 164 | 88.23 273 | 99.71 101 | 93.10 235 | 99.72 62 | 99.38 95 |
|
CNVR-MVS | | | 96.92 131 | 96.55 151 | 98.03 92 | 98.00 218 | 95.54 95 | 94.87 248 | 98.17 218 | 94.60 190 | 96.38 235 | 97.05 239 | 95.67 124 | 99.36 225 | 95.12 163 | 99.08 215 | 99.19 134 |
|
IterMVS-LS | | | 96.92 131 | 97.29 110 | 95.79 230 | 98.51 160 | 88.13 284 | 95.10 235 | 98.66 156 | 96.99 86 | 98.46 82 | 98.68 81 | 92.55 207 | 99.74 76 | 96.91 71 | 99.79 45 | 99.50 53 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
WR-MVS | | | 96.90 133 | 96.81 137 | 97.16 153 | 98.56 153 | 92.20 209 | 94.33 264 | 98.12 227 | 97.34 78 | 98.20 111 | 97.33 223 | 92.81 197 | 99.75 67 | 94.79 177 | 99.81 41 | 99.54 45 |
|
DeepPCF-MVS | | 94.58 5 | 96.90 133 | 96.43 159 | 98.31 67 | 97.48 276 | 97.23 40 | 92.56 321 | 98.60 164 | 92.84 246 | 98.54 72 | 97.40 212 | 96.64 85 | 98.78 305 | 94.40 193 | 99.41 160 | 98.93 183 |
|
v1144 | | | 96.84 135 | 97.08 121 | 96.13 216 | 98.42 172 | 89.28 260 | 95.41 216 | 98.67 154 | 94.21 201 | 97.97 140 | 98.31 114 | 93.06 191 | 99.65 133 | 98.06 29 | 99.62 83 | 99.45 76 |
|
VNet | | | 96.84 135 | 96.83 136 | 96.88 173 | 98.06 210 | 92.02 216 | 96.35 157 | 97.57 265 | 97.70 59 | 97.88 148 | 97.80 183 | 92.40 214 | 99.54 170 | 94.73 182 | 98.96 226 | 99.08 159 |
|
EPP-MVSNet | | | 96.84 135 | 96.58 148 | 97.65 115 | 99.18 78 | 93.78 168 | 98.68 14 | 96.34 298 | 97.91 49 | 97.30 175 | 98.06 155 | 88.46 270 | 99.85 27 | 93.85 215 | 99.40 161 | 99.32 104 |
|
v1192 | | | 96.83 138 | 97.06 123 | 96.15 215 | 98.28 182 | 89.29 259 | 95.36 220 | 98.77 132 | 93.73 215 | 98.11 122 | 98.34 111 | 93.02 195 | 99.67 125 | 98.35 23 | 99.58 96 | 99.50 53 |
|
MVS_111021_LR | | | 96.82 139 | 96.55 151 | 97.62 117 | 98.27 184 | 95.34 110 | 93.81 293 | 98.33 197 | 94.59 192 | 96.56 227 | 96.63 267 | 96.61 86 | 98.73 310 | 94.80 176 | 99.34 175 | 98.78 205 |
|
Effi-MVS+-dtu | | | 96.81 140 | 96.09 173 | 98.99 10 | 96.90 310 | 98.69 4 | 96.42 152 | 98.09 230 | 95.86 142 | 95.15 281 | 95.54 312 | 94.26 166 | 99.81 37 | 94.06 206 | 98.51 271 | 98.47 239 |
|
UGNet | | | 96.81 140 | 96.56 150 | 97.58 118 | 96.64 313 | 93.84 165 | 97.75 77 | 97.12 278 | 96.47 109 | 93.62 319 | 98.88 65 | 93.22 189 | 99.53 172 | 95.61 127 | 99.69 69 | 99.36 101 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
v2v482 | | | 96.78 142 | 97.06 123 | 95.95 223 | 98.57 151 | 88.77 271 | 95.36 220 | 98.26 203 | 95.18 172 | 97.85 153 | 98.23 131 | 92.58 206 | 99.63 139 | 97.80 38 | 99.69 69 | 99.45 76 |
|
v1240 | | | 96.74 143 | 97.02 125 | 95.91 226 | 98.18 196 | 88.52 273 | 95.39 218 | 98.88 99 | 93.15 235 | 98.46 82 | 98.40 107 | 92.80 198 | 99.71 101 | 98.45 21 | 99.49 132 | 99.49 61 |
|
DeepC-MVS_fast | | 94.34 7 | 96.74 143 | 96.51 156 | 97.44 136 | 97.69 259 | 94.15 154 | 96.02 178 | 98.43 182 | 93.17 234 | 97.30 175 | 97.38 218 | 95.48 129 | 99.28 245 | 93.74 218 | 99.34 175 | 98.88 195 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
MVS_111021_HR | | | 96.73 145 | 96.54 153 | 97.27 148 | 98.35 177 | 93.66 173 | 93.42 303 | 98.36 193 | 94.74 185 | 96.58 225 | 96.76 261 | 96.54 89 | 98.99 287 | 94.87 173 | 99.27 191 | 99.15 141 |
|
v1921920 | | | 96.72 146 | 96.96 129 | 95.99 219 | 98.21 190 | 88.79 270 | 95.42 214 | 98.79 127 | 93.22 229 | 98.19 115 | 98.26 128 | 92.68 202 | 99.70 108 | 98.34 24 | 99.55 108 | 99.49 61 |
|
FMVSNet2 | | | 96.72 146 | 96.67 145 | 96.87 174 | 97.96 220 | 91.88 219 | 97.15 114 | 98.06 236 | 95.59 155 | 98.50 76 | 98.62 86 | 89.51 261 | 99.65 133 | 94.99 170 | 99.60 92 | 99.07 161 |
|
PMVS |  | 89.60 17 | 96.71 148 | 96.97 127 | 95.95 223 | 99.51 31 | 97.81 16 | 97.42 103 | 97.49 266 | 97.93 48 | 95.95 256 | 98.58 88 | 96.88 72 | 96.91 367 | 89.59 300 | 99.36 167 | 93.12 372 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
v144192 | | | 96.69 149 | 96.90 134 | 96.03 218 | 98.25 186 | 88.92 265 | 95.49 210 | 98.77 132 | 93.05 237 | 98.09 125 | 98.29 122 | 92.51 212 | 99.70 108 | 98.11 26 | 99.56 102 | 99.47 70 |
|
CPTT-MVS | | | 96.69 149 | 96.08 174 | 98.49 52 | 98.89 113 | 96.64 55 | 97.25 108 | 98.77 132 | 92.89 245 | 96.01 255 | 97.13 233 | 92.23 216 | 99.67 125 | 92.24 245 | 99.34 175 | 99.17 138 |
|
HQP_MVS | | | 96.66 151 | 96.33 165 | 97.68 114 | 98.70 134 | 94.29 147 | 96.50 149 | 98.75 136 | 96.36 112 | 96.16 249 | 96.77 259 | 91.91 227 | 99.46 192 | 92.59 241 | 99.20 198 | 99.28 116 |
|
EI-MVSNet | | | 96.63 152 | 96.93 130 | 95.74 232 | 97.26 294 | 88.13 284 | 95.29 228 | 97.65 259 | 96.99 86 | 97.94 143 | 98.19 136 | 92.55 207 | 99.58 156 | 96.91 71 | 99.56 102 | 99.50 53 |
|
MVS_0304 | | | 96.62 153 | 96.40 161 | 97.28 147 | 97.91 224 | 92.30 203 | 96.47 151 | 89.74 369 | 97.52 68 | 95.38 277 | 98.63 85 | 92.76 199 | 99.81 37 | 99.28 3 | 99.93 10 | 99.75 16 |
|
patch_mono-2 | | | 96.59 154 | 96.93 130 | 95.55 242 | 98.88 114 | 87.12 307 | 94.47 261 | 99.30 21 | 94.12 204 | 96.65 223 | 98.41 104 | 94.98 146 | 99.87 22 | 95.81 117 | 99.78 48 | 99.66 24 |
|
ab-mvs | | | 96.59 154 | 96.59 147 | 96.60 188 | 98.64 139 | 92.21 206 | 98.35 35 | 97.67 255 | 94.45 195 | 96.99 201 | 98.79 69 | 94.96 147 | 99.49 184 | 90.39 289 | 99.07 217 | 98.08 273 |
|
v148 | | | 96.58 156 | 96.97 127 | 95.42 249 | 98.63 143 | 87.57 297 | 95.09 236 | 97.90 241 | 95.91 139 | 98.24 108 | 97.96 165 | 93.42 185 | 99.39 217 | 96.04 100 | 99.52 120 | 99.29 115 |
|
test20.03 | | | 96.58 156 | 96.61 146 | 96.48 197 | 98.49 164 | 91.72 223 | 95.68 199 | 97.69 254 | 96.81 92 | 98.27 106 | 97.92 171 | 94.18 168 | 98.71 313 | 90.78 275 | 99.66 77 | 99.00 170 |
|
NCCC | | | 96.52 158 | 95.99 178 | 98.10 85 | 97.81 237 | 95.68 89 | 95.00 244 | 98.20 212 | 95.39 164 | 95.40 276 | 96.36 282 | 93.81 177 | 99.45 196 | 93.55 224 | 98.42 274 | 99.17 138 |
|
pmmvs-eth3d | | | 96.49 159 | 96.18 170 | 97.42 139 | 98.25 186 | 94.29 147 | 94.77 252 | 98.07 235 | 89.81 290 | 97.97 140 | 98.33 112 | 93.11 190 | 99.08 277 | 95.46 138 | 99.84 35 | 98.89 191 |
|
OMC-MVS | | | 96.48 160 | 96.00 177 | 97.91 97 | 98.30 179 | 96.01 78 | 94.86 249 | 98.60 164 | 91.88 263 | 97.18 183 | 97.21 230 | 96.11 106 | 99.04 281 | 90.49 288 | 99.34 175 | 98.69 218 |
|
TSAR-MVS + GP. | | | 96.47 161 | 96.12 171 | 97.49 131 | 97.74 256 | 95.23 115 | 94.15 275 | 96.90 286 | 93.26 227 | 98.04 133 | 96.70 263 | 94.41 162 | 98.89 296 | 94.77 180 | 99.14 205 | 98.37 247 |
|
Fast-Effi-MVS+-dtu | | | 96.44 162 | 96.12 171 | 97.39 142 | 97.18 298 | 94.39 142 | 95.46 211 | 98.73 139 | 96.03 131 | 94.72 290 | 94.92 325 | 96.28 104 | 99.69 115 | 93.81 216 | 97.98 290 | 98.09 272 |
|
K. test v3 | | | 96.44 162 | 96.28 166 | 96.95 167 | 99.41 43 | 91.53 225 | 97.65 84 | 90.31 365 | 98.89 19 | 98.93 44 | 99.36 20 | 84.57 303 | 99.92 5 | 97.81 37 | 99.56 102 | 99.39 93 |
|
MSLP-MVS++ | | | 96.42 164 | 96.71 142 | 95.57 239 | 97.82 236 | 90.56 243 | 95.71 195 | 98.84 111 | 94.72 186 | 96.71 218 | 97.39 216 | 94.91 148 | 98.10 352 | 95.28 148 | 99.02 222 | 98.05 282 |
|
test_fmvs2 | | | 96.38 165 | 96.45 158 | 96.16 214 | 97.85 228 | 91.30 228 | 96.81 133 | 99.45 15 | 89.24 295 | 98.49 77 | 99.38 17 | 88.68 268 | 97.62 359 | 98.83 8 | 99.32 182 | 99.57 38 |
|
Anonymous202405211 | | | 96.34 166 | 95.98 179 | 97.43 137 | 98.25 186 | 93.85 164 | 96.74 139 | 94.41 328 | 97.72 56 | 98.37 90 | 98.03 158 | 87.15 285 | 99.53 172 | 94.06 206 | 99.07 217 | 98.92 186 |
|
h-mvs33 | | | 96.29 167 | 95.63 195 | 98.26 70 | 98.50 163 | 96.11 73 | 96.90 128 | 97.09 279 | 96.58 101 | 97.21 180 | 98.19 136 | 84.14 305 | 99.78 47 | 95.89 111 | 96.17 342 | 98.89 191 |
|
MVS_Test | | | 96.27 168 | 96.79 140 | 94.73 282 | 96.94 308 | 86.63 315 | 96.18 168 | 98.33 197 | 94.94 180 | 96.07 252 | 98.28 123 | 95.25 137 | 99.26 249 | 97.21 59 | 97.90 294 | 98.30 258 |
|
MCST-MVS | | | 96.24 169 | 95.80 188 | 97.56 119 | 98.75 126 | 94.13 155 | 94.66 256 | 98.17 218 | 90.17 286 | 96.21 246 | 96.10 295 | 95.14 140 | 99.43 201 | 94.13 204 | 98.85 240 | 99.13 146 |
|
mvsany_test3 | | | 96.21 170 | 95.93 183 | 97.05 161 | 97.40 284 | 94.33 146 | 95.76 194 | 94.20 330 | 89.10 296 | 99.36 21 | 99.60 6 | 93.97 173 | 97.85 355 | 95.40 146 | 98.63 262 | 98.99 173 |
|
Effi-MVS+ | | | 96.19 171 | 96.01 176 | 96.71 183 | 97.43 282 | 92.19 210 | 96.12 172 | 99.10 44 | 95.45 161 | 93.33 330 | 94.71 328 | 97.23 48 | 99.56 163 | 93.21 233 | 97.54 312 | 98.37 247 |
|
DELS-MVS | | | 96.17 172 | 96.23 167 | 95.99 219 | 97.55 272 | 90.04 247 | 92.38 326 | 98.52 173 | 94.13 203 | 96.55 229 | 97.06 238 | 94.99 145 | 99.58 156 | 95.62 126 | 99.28 189 | 98.37 247 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
MVSFormer | | | 96.14 173 | 96.36 163 | 95.49 245 | 97.68 260 | 87.81 293 | 98.67 15 | 99.02 65 | 96.50 106 | 94.48 297 | 96.15 290 | 86.90 286 | 99.92 5 | 98.73 12 | 99.13 207 | 98.74 211 |
|
ETV-MVS | | | 96.13 174 | 95.90 184 | 96.82 177 | 97.76 251 | 93.89 162 | 95.40 217 | 98.95 86 | 95.87 141 | 95.58 272 | 91.00 371 | 96.36 101 | 99.72 86 | 93.36 226 | 98.83 243 | 96.85 330 |
|
testgi | | | 96.07 175 | 96.50 157 | 94.80 278 | 99.26 58 | 87.69 296 | 95.96 184 | 98.58 169 | 95.08 176 | 98.02 135 | 96.25 286 | 97.92 17 | 97.60 360 | 88.68 314 | 98.74 251 | 99.11 154 |
|
LF4IMVS | | | 96.07 175 | 95.63 195 | 97.36 143 | 98.19 193 | 95.55 94 | 95.44 212 | 98.82 125 | 92.29 257 | 95.70 269 | 96.55 270 | 92.63 205 | 98.69 315 | 91.75 256 | 99.33 180 | 97.85 296 |
|
EIA-MVS | | | 96.04 177 | 95.77 190 | 96.85 175 | 97.80 241 | 92.98 190 | 96.12 172 | 99.16 34 | 94.65 188 | 93.77 314 | 91.69 365 | 95.68 123 | 99.67 125 | 94.18 201 | 98.85 240 | 97.91 291 |
|
diffmvs |  | | 96.04 177 | 96.23 167 | 95.46 247 | 97.35 287 | 88.03 287 | 93.42 303 | 99.08 50 | 94.09 207 | 96.66 221 | 96.93 247 | 93.85 176 | 99.29 243 | 96.01 104 | 98.67 257 | 99.06 163 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
alignmvs | | | 96.01 179 | 95.52 198 | 97.50 128 | 97.77 250 | 94.71 131 | 96.07 174 | 96.84 287 | 97.48 70 | 96.78 216 | 94.28 337 | 85.50 296 | 99.40 213 | 96.22 92 | 98.73 254 | 98.40 243 |
|
TinyColmap | | | 96.00 180 | 96.34 164 | 94.96 269 | 97.90 226 | 87.91 289 | 94.13 278 | 98.49 176 | 94.41 196 | 98.16 117 | 97.76 184 | 96.29 103 | 98.68 318 | 90.52 285 | 99.42 156 | 98.30 258 |
|
PVSNet_Blended_VisFu | | | 95.95 181 | 95.80 188 | 96.42 201 | 99.28 57 | 90.62 240 | 95.31 226 | 99.08 50 | 88.40 306 | 96.97 204 | 98.17 139 | 92.11 219 | 99.78 47 | 93.64 222 | 99.21 197 | 98.86 198 |
|
UnsupCasMVSNet_eth | | | 95.91 182 | 95.73 191 | 96.44 198 | 98.48 166 | 91.52 226 | 95.31 226 | 98.45 179 | 95.76 146 | 97.48 168 | 97.54 202 | 89.53 260 | 98.69 315 | 94.43 190 | 94.61 359 | 99.13 146 |
|
QAPM | | | 95.88 183 | 95.57 197 | 96.80 178 | 97.90 226 | 91.84 221 | 98.18 53 | 98.73 139 | 88.41 305 | 96.42 233 | 98.13 142 | 94.73 149 | 99.75 67 | 88.72 312 | 98.94 229 | 98.81 202 |
|
CANet | | | 95.86 184 | 95.65 194 | 96.49 196 | 96.41 319 | 90.82 236 | 94.36 263 | 98.41 186 | 94.94 180 | 92.62 346 | 96.73 262 | 92.68 202 | 99.71 101 | 95.12 163 | 99.60 92 | 98.94 179 |
|
IterMVS-SCA-FT | | | 95.86 184 | 96.19 169 | 94.85 275 | 97.68 260 | 85.53 326 | 92.42 324 | 97.63 263 | 96.99 86 | 98.36 93 | 98.54 93 | 87.94 275 | 99.75 67 | 97.07 67 | 99.08 215 | 99.27 120 |
|
test_f | | | 95.82 186 | 95.88 186 | 95.66 236 | 97.61 267 | 93.21 187 | 95.61 206 | 98.17 218 | 86.98 321 | 98.42 85 | 99.47 10 | 90.46 243 | 94.74 376 | 97.71 43 | 98.45 273 | 99.03 166 |
|
test_vis1_n_1920 | | | 95.77 187 | 96.41 160 | 93.85 307 | 98.55 154 | 84.86 338 | 95.91 189 | 99.71 2 | 92.72 248 | 97.67 158 | 98.90 63 | 87.44 283 | 98.73 310 | 97.96 31 | 98.85 240 | 97.96 288 |
|
hse-mvs2 | | | 95.77 187 | 95.09 207 | 97.79 105 | 97.84 233 | 95.51 97 | 95.66 200 | 95.43 319 | 96.58 101 | 97.21 180 | 96.16 289 | 84.14 305 | 99.54 170 | 95.89 111 | 96.92 325 | 98.32 254 |
|
MVP-Stereo | | | 95.69 189 | 95.28 200 | 96.92 170 | 98.15 203 | 93.03 189 | 95.64 205 | 98.20 212 | 90.39 282 | 96.63 224 | 97.73 190 | 91.63 229 | 99.10 275 | 91.84 253 | 97.31 322 | 98.63 224 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
MDA-MVSNet-bldmvs | | | 95.69 189 | 95.67 192 | 95.74 232 | 98.48 166 | 88.76 272 | 92.84 313 | 97.25 271 | 96.00 132 | 97.59 160 | 97.95 167 | 91.38 231 | 99.46 192 | 93.16 234 | 96.35 339 | 98.99 173 |
|
test_vis1_n | | | 95.67 191 | 95.89 185 | 95.03 264 | 98.18 196 | 89.89 250 | 96.94 126 | 99.28 23 | 88.25 309 | 98.20 111 | 98.92 59 | 86.69 289 | 97.19 362 | 97.70 45 | 98.82 244 | 98.00 287 |
|
new-patchmatchnet | | | 95.67 191 | 96.58 148 | 92.94 330 | 97.48 276 | 80.21 365 | 92.96 312 | 98.19 217 | 94.83 183 | 98.82 52 | 98.79 69 | 93.31 187 | 99.51 179 | 95.83 115 | 99.04 221 | 99.12 151 |
|
xiu_mvs_v1_base_debu | | | 95.62 193 | 95.96 180 | 94.60 286 | 98.01 214 | 88.42 274 | 93.99 283 | 98.21 209 | 92.98 240 | 95.91 258 | 94.53 331 | 96.39 98 | 99.72 86 | 95.43 142 | 98.19 282 | 95.64 354 |
|
xiu_mvs_v1_base | | | 95.62 193 | 95.96 180 | 94.60 286 | 98.01 214 | 88.42 274 | 93.99 283 | 98.21 209 | 92.98 240 | 95.91 258 | 94.53 331 | 96.39 98 | 99.72 86 | 95.43 142 | 98.19 282 | 95.64 354 |
|
xiu_mvs_v1_base_debi | | | 95.62 193 | 95.96 180 | 94.60 286 | 98.01 214 | 88.42 274 | 93.99 283 | 98.21 209 | 92.98 240 | 95.91 258 | 94.53 331 | 96.39 98 | 99.72 86 | 95.43 142 | 98.19 282 | 95.64 354 |
|
DP-MVS Recon | | | 95.55 196 | 95.13 205 | 96.80 178 | 98.51 160 | 93.99 160 | 94.60 258 | 98.69 149 | 90.20 285 | 95.78 265 | 96.21 288 | 92.73 201 | 98.98 289 | 90.58 284 | 98.86 239 | 97.42 314 |
|
Fast-Effi-MVS+ | | | 95.49 197 | 95.07 208 | 96.75 181 | 97.67 263 | 92.82 192 | 94.22 271 | 98.60 164 | 91.61 266 | 93.42 328 | 92.90 350 | 96.73 81 | 99.70 108 | 92.60 240 | 97.89 295 | 97.74 301 |
|
TAMVS | | | 95.49 197 | 94.94 212 | 97.16 153 | 98.31 178 | 93.41 181 | 95.07 239 | 96.82 289 | 91.09 274 | 97.51 164 | 97.82 181 | 89.96 251 | 99.42 202 | 88.42 317 | 99.44 145 | 98.64 222 |
|
OpenMVS |  | 94.22 8 | 95.48 199 | 95.20 202 | 96.32 206 | 97.16 299 | 91.96 218 | 97.74 79 | 98.84 111 | 87.26 316 | 94.36 299 | 98.01 161 | 93.95 174 | 99.67 125 | 90.70 281 | 98.75 250 | 97.35 317 |
|
CLD-MVS | | | 95.47 200 | 95.07 208 | 96.69 185 | 98.27 184 | 92.53 199 | 91.36 339 | 98.67 154 | 91.22 273 | 95.78 265 | 94.12 338 | 95.65 125 | 98.98 289 | 90.81 273 | 99.72 62 | 98.57 229 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
train_agg | | | 95.46 201 | 94.66 228 | 97.88 100 | 97.84 233 | 95.23 115 | 93.62 297 | 98.39 189 | 87.04 319 | 93.78 312 | 95.99 297 | 94.58 157 | 99.52 175 | 91.76 255 | 98.90 233 | 98.89 191 |
|
CDPH-MVS | | | 95.45 202 | 94.65 229 | 97.84 103 | 98.28 182 | 94.96 126 | 93.73 295 | 98.33 197 | 85.03 342 | 95.44 274 | 96.60 268 | 95.31 135 | 99.44 199 | 90.01 294 | 99.13 207 | 99.11 154 |
|
IterMVS | | | 95.42 203 | 95.83 187 | 94.20 303 | 97.52 273 | 83.78 349 | 92.41 325 | 97.47 268 | 95.49 160 | 98.06 130 | 98.49 97 | 87.94 275 | 99.58 156 | 96.02 102 | 99.02 222 | 99.23 127 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
mvs_anonymous | | | 95.36 204 | 96.07 175 | 93.21 322 | 96.29 321 | 81.56 360 | 94.60 258 | 97.66 257 | 93.30 226 | 96.95 205 | 98.91 62 | 93.03 194 | 99.38 220 | 96.60 78 | 97.30 323 | 98.69 218 |
|
test_cas_vis1_n_1920 | | | 95.34 205 | 95.67 192 | 94.35 298 | 98.21 190 | 86.83 313 | 95.61 206 | 99.26 24 | 90.45 281 | 98.17 116 | 98.96 54 | 84.43 304 | 98.31 345 | 96.74 74 | 99.17 203 | 97.90 292 |
|
MSDG | | | 95.33 206 | 95.13 205 | 95.94 225 | 97.40 284 | 91.85 220 | 91.02 350 | 98.37 192 | 95.30 167 | 96.31 240 | 95.99 297 | 94.51 160 | 98.38 340 | 89.59 300 | 97.65 309 | 97.60 307 |
|
LFMVS | | | 95.32 207 | 94.88 218 | 96.62 187 | 98.03 211 | 91.47 227 | 97.65 84 | 90.72 362 | 99.11 9 | 97.89 147 | 98.31 114 | 79.20 329 | 99.48 187 | 93.91 214 | 99.12 210 | 98.93 183 |
|
F-COLMAP | | | 95.30 208 | 94.38 246 | 98.05 91 | 98.64 139 | 96.04 75 | 95.61 206 | 98.66 156 | 89.00 299 | 93.22 331 | 96.40 280 | 92.90 196 | 99.35 228 | 87.45 331 | 97.53 313 | 98.77 208 |
|
Anonymous20231206 | | | 95.27 209 | 95.06 210 | 95.88 227 | 98.72 129 | 89.37 258 | 95.70 196 | 97.85 244 | 88.00 312 | 96.98 203 | 97.62 197 | 91.95 224 | 99.34 230 | 89.21 305 | 99.53 115 | 98.94 179 |
|
FMVSNet3 | | | 95.26 210 | 94.94 212 | 96.22 211 | 96.53 316 | 90.06 246 | 95.99 180 | 97.66 257 | 94.11 205 | 97.99 136 | 97.91 172 | 80.22 327 | 99.63 139 | 94.60 185 | 99.44 145 | 98.96 176 |
|
test_fmvs1_n | | | 95.21 211 | 95.28 200 | 94.99 267 | 98.15 203 | 89.13 264 | 96.81 133 | 99.43 17 | 86.97 322 | 97.21 180 | 98.92 59 | 83.00 313 | 97.13 363 | 98.09 27 | 98.94 229 | 98.72 214 |
|
c3_l | | | 95.20 212 | 95.32 199 | 94.83 277 | 96.19 326 | 86.43 318 | 91.83 334 | 98.35 196 | 93.47 221 | 97.36 174 | 97.26 227 | 88.69 267 | 99.28 245 | 95.41 145 | 99.36 167 | 98.78 205 |
|
D2MVS | | | 95.18 213 | 95.17 204 | 95.21 255 | 97.76 251 | 87.76 295 | 94.15 275 | 97.94 239 | 89.77 291 | 96.99 201 | 97.68 194 | 87.45 282 | 99.14 267 | 95.03 168 | 99.81 41 | 98.74 211 |
|
N_pmnet | | | 95.18 213 | 94.23 249 | 98.06 88 | 97.85 228 | 96.55 58 | 92.49 322 | 91.63 355 | 89.34 293 | 98.09 125 | 97.41 211 | 90.33 245 | 99.06 279 | 91.58 257 | 99.31 185 | 98.56 230 |
|
HQP-MVS | | | 95.17 215 | 94.58 237 | 96.92 170 | 97.85 228 | 92.47 200 | 94.26 265 | 98.43 182 | 93.18 231 | 92.86 337 | 95.08 319 | 90.33 245 | 99.23 256 | 90.51 286 | 98.74 251 | 99.05 165 |
|
Vis-MVSNet (Re-imp) | | | 95.11 216 | 94.85 219 | 95.87 228 | 99.12 89 | 89.17 261 | 97.54 97 | 94.92 323 | 96.50 106 | 96.58 225 | 97.27 226 | 83.64 309 | 99.48 187 | 88.42 317 | 99.67 75 | 98.97 175 |
|
AdaColmap |  | | 95.11 216 | 94.62 233 | 96.58 190 | 97.33 291 | 94.45 141 | 94.92 246 | 98.08 231 | 93.15 235 | 93.98 310 | 95.53 313 | 94.34 164 | 99.10 275 | 85.69 341 | 98.61 264 | 96.20 348 |
|
API-MVS | | | 95.09 218 | 95.01 211 | 95.31 252 | 96.61 314 | 94.02 158 | 96.83 131 | 97.18 275 | 95.60 154 | 95.79 263 | 94.33 336 | 94.54 159 | 98.37 342 | 85.70 340 | 98.52 269 | 93.52 369 |
|
CL-MVSNet_self_test | | | 95.04 219 | 94.79 225 | 95.82 229 | 97.51 274 | 89.79 251 | 91.14 347 | 96.82 289 | 93.05 237 | 96.72 217 | 96.40 280 | 90.82 238 | 99.16 265 | 91.95 249 | 98.66 259 | 98.50 237 |
|
CNLPA | | | 95.04 219 | 94.47 242 | 96.75 181 | 97.81 237 | 95.25 114 | 94.12 279 | 97.89 242 | 94.41 196 | 94.57 293 | 95.69 306 | 90.30 248 | 98.35 343 | 86.72 336 | 98.76 249 | 96.64 338 |
|
Patchmtry | | | 95.03 221 | 94.59 236 | 96.33 205 | 94.83 356 | 90.82 236 | 96.38 155 | 97.20 273 | 96.59 100 | 97.49 166 | 98.57 89 | 77.67 336 | 99.38 220 | 92.95 238 | 99.62 83 | 98.80 203 |
|
PVSNet_BlendedMVS | | | 95.02 222 | 94.93 214 | 95.27 253 | 97.79 246 | 87.40 302 | 94.14 277 | 98.68 151 | 88.94 300 | 94.51 295 | 98.01 161 | 93.04 192 | 99.30 239 | 89.77 298 | 99.49 132 | 99.11 154 |
|
TAPA-MVS | | 93.32 12 | 94.93 223 | 94.23 249 | 97.04 163 | 98.18 196 | 94.51 138 | 95.22 231 | 98.73 139 | 81.22 361 | 96.25 244 | 95.95 301 | 93.80 178 | 98.98 289 | 89.89 296 | 98.87 237 | 97.62 305 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
FA-MVS(test-final) | | | 94.91 224 | 94.89 217 | 94.99 267 | 97.51 274 | 88.11 286 | 98.27 44 | 95.20 321 | 92.40 256 | 96.68 219 | 98.60 87 | 83.44 310 | 99.28 245 | 93.34 227 | 98.53 268 | 97.59 308 |
|
eth_miper_zixun_eth | | | 94.89 225 | 94.93 214 | 94.75 281 | 95.99 334 | 86.12 321 | 91.35 340 | 98.49 176 | 93.40 222 | 97.12 187 | 97.25 228 | 86.87 288 | 99.35 228 | 95.08 165 | 98.82 244 | 98.78 205 |
|
CDS-MVSNet | | | 94.88 226 | 94.12 254 | 97.14 155 | 97.64 265 | 93.57 175 | 93.96 287 | 97.06 281 | 90.05 287 | 96.30 241 | 96.55 270 | 86.10 291 | 99.47 189 | 90.10 293 | 99.31 185 | 98.40 243 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
MS-PatchMatch | | | 94.83 227 | 94.91 216 | 94.57 289 | 96.81 311 | 87.10 308 | 94.23 270 | 97.34 270 | 88.74 303 | 97.14 185 | 97.11 235 | 91.94 225 | 98.23 348 | 92.99 236 | 97.92 292 | 98.37 247 |
|
pmmvs4 | | | 94.82 228 | 94.19 252 | 96.70 184 | 97.42 283 | 92.75 197 | 92.09 331 | 96.76 291 | 86.80 324 | 95.73 268 | 97.22 229 | 89.28 264 | 98.89 296 | 93.28 230 | 99.14 205 | 98.46 241 |
|
miper_lstm_enhance | | | 94.81 229 | 94.80 224 | 94.85 275 | 96.16 328 | 86.45 317 | 91.14 347 | 98.20 212 | 93.49 220 | 97.03 198 | 97.37 220 | 84.97 300 | 99.26 249 | 95.28 148 | 99.56 102 | 98.83 200 |
|
cl____ | | | 94.73 230 | 94.64 230 | 95.01 265 | 95.85 338 | 87.00 309 | 91.33 341 | 98.08 231 | 93.34 224 | 97.10 189 | 97.33 223 | 84.01 308 | 99.30 239 | 95.14 160 | 99.56 102 | 98.71 217 |
|
DIV-MVS_self_test | | | 94.73 230 | 94.64 230 | 95.01 265 | 95.86 337 | 87.00 309 | 91.33 341 | 98.08 231 | 93.34 224 | 97.10 189 | 97.34 222 | 84.02 307 | 99.31 236 | 95.15 159 | 99.55 108 | 98.72 214 |
|
YYNet1 | | | 94.73 230 | 94.84 220 | 94.41 296 | 97.47 280 | 85.09 335 | 90.29 357 | 95.85 308 | 92.52 251 | 97.53 162 | 97.76 184 | 91.97 223 | 99.18 260 | 93.31 229 | 96.86 328 | 98.95 177 |
|
MDA-MVSNet_test_wron | | | 94.73 230 | 94.83 222 | 94.42 295 | 97.48 276 | 85.15 333 | 90.28 358 | 95.87 307 | 92.52 251 | 97.48 168 | 97.76 184 | 91.92 226 | 99.17 264 | 93.32 228 | 96.80 331 | 98.94 179 |
|
UnsupCasMVSNet_bld | | | 94.72 234 | 94.26 248 | 96.08 217 | 98.62 145 | 90.54 244 | 93.38 305 | 98.05 237 | 90.30 283 | 97.02 199 | 96.80 258 | 89.54 258 | 99.16 265 | 88.44 316 | 96.18 341 | 98.56 230 |
|
miper_ehance_all_eth | | | 94.69 235 | 94.70 227 | 94.64 283 | 95.77 341 | 86.22 320 | 91.32 343 | 98.24 206 | 91.67 265 | 97.05 196 | 96.65 266 | 88.39 272 | 99.22 258 | 94.88 172 | 98.34 276 | 98.49 238 |
|
BH-untuned | | | 94.69 235 | 94.75 226 | 94.52 291 | 97.95 223 | 87.53 298 | 94.07 280 | 97.01 282 | 93.99 209 | 97.10 189 | 95.65 308 | 92.65 204 | 98.95 294 | 87.60 327 | 96.74 332 | 97.09 320 |
|
RPMNet | | | 94.68 237 | 94.60 234 | 94.90 272 | 95.44 349 | 88.15 282 | 96.18 168 | 98.86 104 | 97.43 71 | 94.10 304 | 98.49 97 | 79.40 328 | 99.76 61 | 95.69 120 | 95.81 344 | 96.81 334 |
|
Patchmatch-RL test | | | 94.66 238 | 94.49 240 | 95.19 256 | 98.54 156 | 88.91 266 | 92.57 320 | 98.74 138 | 91.46 269 | 98.32 100 | 97.75 187 | 77.31 341 | 98.81 303 | 96.06 97 | 99.61 89 | 97.85 296 |
|
CANet_DTU | | | 94.65 239 | 94.21 251 | 95.96 221 | 95.90 336 | 89.68 252 | 93.92 288 | 97.83 248 | 93.19 230 | 90.12 363 | 95.64 309 | 88.52 269 | 99.57 162 | 93.27 231 | 99.47 138 | 98.62 225 |
|
pmmvs5 | | | 94.63 240 | 94.34 247 | 95.50 244 | 97.63 266 | 88.34 277 | 94.02 281 | 97.13 277 | 87.15 318 | 95.22 280 | 97.15 232 | 87.50 281 | 99.27 248 | 93.99 210 | 99.26 192 | 98.88 195 |
|
PAPM_NR | | | 94.61 241 | 94.17 253 | 95.96 221 | 98.36 176 | 91.23 229 | 95.93 187 | 97.95 238 | 92.98 240 | 93.42 328 | 94.43 335 | 90.53 241 | 98.38 340 | 87.60 327 | 96.29 340 | 98.27 262 |
|
PatchMatch-RL | | | 94.61 241 | 93.81 262 | 97.02 165 | 98.19 193 | 95.72 86 | 93.66 296 | 97.23 272 | 88.17 310 | 94.94 287 | 95.62 310 | 91.43 230 | 98.57 326 | 87.36 332 | 97.68 306 | 96.76 336 |
|
BH-RMVSNet | | | 94.56 243 | 94.44 245 | 94.91 270 | 97.57 269 | 87.44 301 | 93.78 294 | 96.26 299 | 93.69 217 | 96.41 234 | 96.50 275 | 92.10 220 | 99.00 285 | 85.96 338 | 97.71 303 | 98.31 256 |
|
USDC | | | 94.56 243 | 94.57 239 | 94.55 290 | 97.78 249 | 86.43 318 | 92.75 316 | 98.65 161 | 85.96 330 | 96.91 208 | 97.93 170 | 90.82 238 | 98.74 309 | 90.71 280 | 99.59 94 | 98.47 239 |
|
iter_conf_final | | | 94.54 245 | 93.91 261 | 96.43 199 | 97.23 296 | 90.41 245 | 96.81 133 | 98.10 228 | 93.87 212 | 96.80 211 | 97.89 173 | 68.02 374 | 99.72 86 | 96.73 75 | 99.77 50 | 99.18 137 |
|
test1111 | | | 94.53 246 | 94.81 223 | 93.72 310 | 99.06 96 | 81.94 359 | 98.31 39 | 83.87 381 | 96.37 111 | 98.49 77 | 99.17 37 | 81.49 318 | 99.73 81 | 96.64 76 | 99.86 29 | 99.49 61 |
|
test_fmvs1 | | | 94.51 247 | 94.60 234 | 94.26 302 | 95.91 335 | 87.92 288 | 95.35 222 | 99.02 65 | 86.56 326 | 96.79 212 | 98.52 94 | 82.64 315 | 97.00 366 | 97.87 34 | 98.71 255 | 97.88 294 |
|
ppachtmachnet_test | | | 94.49 248 | 94.84 220 | 93.46 316 | 96.16 328 | 82.10 356 | 90.59 354 | 97.48 267 | 90.53 280 | 97.01 200 | 97.59 199 | 91.01 235 | 99.36 225 | 93.97 212 | 99.18 202 | 98.94 179 |
|
test_yl | | | 94.40 249 | 94.00 257 | 95.59 237 | 96.95 306 | 89.52 255 | 94.75 253 | 95.55 316 | 96.18 122 | 96.79 212 | 96.14 292 | 81.09 322 | 99.18 260 | 90.75 276 | 97.77 297 | 98.07 275 |
|
DCV-MVSNet | | | 94.40 249 | 94.00 257 | 95.59 237 | 96.95 306 | 89.52 255 | 94.75 253 | 95.55 316 | 96.18 122 | 96.79 212 | 96.14 292 | 81.09 322 | 99.18 260 | 90.75 276 | 97.77 297 | 98.07 275 |
|
jason | | | 94.39 251 | 94.04 256 | 95.41 251 | 98.29 180 | 87.85 292 | 92.74 318 | 96.75 292 | 85.38 339 | 95.29 278 | 96.15 290 | 88.21 274 | 99.65 133 | 94.24 199 | 99.34 175 | 98.74 211 |
jason: jason. |
ECVR-MVS |  | | 94.37 252 | 94.48 241 | 94.05 306 | 98.95 107 | 83.10 351 | 98.31 39 | 82.48 382 | 96.20 119 | 98.23 109 | 99.16 38 | 81.18 321 | 99.66 131 | 95.95 107 | 99.83 37 | 99.38 95 |
|
EU-MVSNet | | | 94.25 253 | 94.47 242 | 93.60 313 | 98.14 205 | 82.60 354 | 97.24 110 | 92.72 346 | 85.08 340 | 98.48 79 | 98.94 57 | 82.59 316 | 98.76 308 | 97.47 53 | 99.53 115 | 99.44 85 |
|
xiu_mvs_v2_base | | | 94.22 254 | 94.63 232 | 92.99 328 | 97.32 292 | 84.84 339 | 92.12 329 | 97.84 246 | 91.96 261 | 94.17 302 | 93.43 341 | 96.07 107 | 99.71 101 | 91.27 261 | 97.48 315 | 94.42 364 |
|
sss | | | 94.22 254 | 93.72 263 | 95.74 232 | 97.71 258 | 89.95 249 | 93.84 290 | 96.98 283 | 88.38 307 | 93.75 315 | 95.74 305 | 87.94 275 | 98.89 296 | 91.02 267 | 98.10 286 | 98.37 247 |
|
MVSTER | | | 94.21 256 | 93.93 260 | 95.05 263 | 95.83 339 | 86.46 316 | 95.18 233 | 97.65 259 | 92.41 255 | 97.94 143 | 98.00 163 | 72.39 363 | 99.58 156 | 96.36 87 | 99.56 102 | 99.12 151 |
|
MAR-MVS | | | 94.21 256 | 93.03 275 | 97.76 107 | 96.94 308 | 97.44 33 | 96.97 125 | 97.15 276 | 87.89 314 | 92.00 351 | 92.73 354 | 92.14 218 | 99.12 270 | 83.92 354 | 97.51 314 | 96.73 337 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
our_test_3 | | | 94.20 258 | 94.58 237 | 93.07 324 | 96.16 328 | 81.20 362 | 90.42 356 | 96.84 287 | 90.72 278 | 97.14 185 | 97.13 233 | 90.47 242 | 99.11 273 | 94.04 209 | 98.25 280 | 98.91 187 |
|
1112_ss | | | 94.12 259 | 93.42 268 | 96.23 209 | 98.59 149 | 90.85 235 | 94.24 269 | 98.85 108 | 85.49 335 | 92.97 335 | 94.94 323 | 86.01 292 | 99.64 136 | 91.78 254 | 97.92 292 | 98.20 268 |
|
PS-MVSNAJ | | | 94.10 260 | 94.47 242 | 93.00 327 | 97.35 287 | 84.88 337 | 91.86 333 | 97.84 246 | 91.96 261 | 94.17 302 | 92.50 357 | 95.82 115 | 99.71 101 | 91.27 261 | 97.48 315 | 94.40 365 |
|
CHOSEN 1792x2688 | | | 94.10 260 | 93.41 269 | 96.18 213 | 99.16 79 | 90.04 247 | 92.15 328 | 98.68 151 | 79.90 366 | 96.22 245 | 97.83 178 | 87.92 279 | 99.42 202 | 89.18 306 | 99.65 78 | 99.08 159 |
|
MG-MVS | | | 94.08 262 | 94.00 257 | 94.32 299 | 97.09 302 | 85.89 323 | 93.19 310 | 95.96 305 | 92.52 251 | 94.93 288 | 97.51 205 | 89.54 258 | 98.77 306 | 87.52 330 | 97.71 303 | 98.31 256 |
|
PLC |  | 91.02 16 | 94.05 263 | 92.90 278 | 97.51 124 | 98.00 218 | 95.12 123 | 94.25 268 | 98.25 204 | 86.17 328 | 91.48 354 | 95.25 317 | 91.01 235 | 99.19 259 | 85.02 349 | 96.69 333 | 98.22 266 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
test_vis1_rt | | | 94.03 264 | 93.65 264 | 95.17 258 | 95.76 342 | 93.42 180 | 93.97 286 | 98.33 197 | 84.68 346 | 93.17 332 | 95.89 303 | 92.53 211 | 94.79 375 | 93.50 225 | 94.97 355 | 97.31 318 |
|
114514_t | | | 93.96 265 | 93.22 272 | 96.19 212 | 99.06 96 | 90.97 234 | 95.99 180 | 98.94 87 | 73.88 378 | 93.43 327 | 96.93 247 | 92.38 215 | 99.37 223 | 89.09 307 | 99.28 189 | 98.25 264 |
|
PVSNet_Blended | | | 93.96 265 | 93.65 264 | 94.91 270 | 97.79 246 | 87.40 302 | 91.43 338 | 98.68 151 | 84.50 349 | 94.51 295 | 94.48 334 | 93.04 192 | 99.30 239 | 89.77 298 | 98.61 264 | 98.02 285 |
|
AUN-MVS | | | 93.95 267 | 92.69 286 | 97.74 108 | 97.80 241 | 95.38 105 | 95.57 209 | 95.46 318 | 91.26 272 | 92.64 344 | 96.10 295 | 74.67 352 | 99.55 167 | 93.72 220 | 96.97 324 | 98.30 258 |
|
lupinMVS | | | 93.77 268 | 93.28 270 | 95.24 254 | 97.68 260 | 87.81 293 | 92.12 329 | 96.05 301 | 84.52 348 | 94.48 297 | 95.06 321 | 86.90 286 | 99.63 139 | 93.62 223 | 99.13 207 | 98.27 262 |
|
PatchT | | | 93.75 269 | 93.57 266 | 94.29 301 | 95.05 354 | 87.32 304 | 96.05 175 | 92.98 342 | 97.54 67 | 94.25 300 | 98.72 76 | 75.79 349 | 99.24 254 | 95.92 109 | 95.81 344 | 96.32 345 |
|
EPNet | | | 93.72 270 | 92.62 289 | 97.03 164 | 87.61 387 | 92.25 204 | 96.27 161 | 91.28 356 | 96.74 94 | 87.65 373 | 97.39 216 | 85.00 299 | 99.64 136 | 92.14 246 | 99.48 136 | 99.20 133 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
HyFIR lowres test | | | 93.72 270 | 92.65 287 | 96.91 172 | 98.93 110 | 91.81 222 | 91.23 345 | 98.52 173 | 82.69 354 | 96.46 232 | 96.52 274 | 80.38 326 | 99.90 14 | 90.36 290 | 98.79 246 | 99.03 166 |
|
DPM-MVS | | | 93.68 272 | 92.77 285 | 96.42 201 | 97.91 224 | 92.54 198 | 91.17 346 | 97.47 268 | 84.99 344 | 93.08 334 | 94.74 327 | 89.90 252 | 99.00 285 | 87.54 329 | 98.09 287 | 97.72 302 |
|
PMMVS2 | | | 93.66 273 | 94.07 255 | 92.45 338 | 97.57 269 | 80.67 364 | 86.46 372 | 96.00 303 | 93.99 209 | 97.10 189 | 97.38 218 | 89.90 252 | 97.82 356 | 88.76 311 | 99.47 138 | 98.86 198 |
|
iter_conf05 | | | 93.65 274 | 93.05 273 | 95.46 247 | 96.13 332 | 87.45 300 | 95.95 186 | 98.22 208 | 92.66 249 | 97.04 197 | 97.89 173 | 63.52 380 | 99.72 86 | 96.19 94 | 99.82 40 | 99.21 129 |
|
OpenMVS_ROB |  | 91.80 14 | 93.64 275 | 93.05 273 | 95.42 249 | 97.31 293 | 91.21 230 | 95.08 238 | 96.68 296 | 81.56 358 | 96.88 210 | 96.41 278 | 90.44 244 | 99.25 251 | 85.39 345 | 97.67 307 | 95.80 352 |
|
Patchmatch-test | | | 93.60 276 | 93.25 271 | 94.63 284 | 96.14 331 | 87.47 299 | 96.04 176 | 94.50 327 | 93.57 218 | 96.47 231 | 96.97 244 | 76.50 344 | 98.61 323 | 90.67 282 | 98.41 275 | 97.81 300 |
|
WTY-MVS | | | 93.55 277 | 93.00 277 | 95.19 256 | 97.81 237 | 87.86 290 | 93.89 289 | 96.00 303 | 89.02 298 | 94.07 306 | 95.44 316 | 86.27 290 | 99.33 232 | 87.69 325 | 96.82 329 | 98.39 245 |
|
Test_1112_low_res | | | 93.53 278 | 92.86 279 | 95.54 243 | 98.60 147 | 88.86 268 | 92.75 316 | 98.69 149 | 82.66 355 | 92.65 343 | 96.92 249 | 84.75 301 | 99.56 163 | 90.94 269 | 97.76 299 | 98.19 269 |
|
mvsany_test1 | | | 93.47 279 | 93.03 275 | 94.79 279 | 94.05 368 | 92.12 211 | 90.82 352 | 90.01 368 | 85.02 343 | 97.26 177 | 98.28 123 | 93.57 182 | 97.03 364 | 92.51 243 | 95.75 349 | 95.23 360 |
|
MIMVSNet | | | 93.42 280 | 92.86 279 | 95.10 261 | 98.17 199 | 88.19 280 | 98.13 55 | 93.69 332 | 92.07 258 | 95.04 285 | 98.21 135 | 80.95 324 | 99.03 284 | 81.42 362 | 98.06 288 | 98.07 275 |
|
FMVSNet5 | | | 93.39 281 | 92.35 291 | 96.50 195 | 95.83 339 | 90.81 238 | 97.31 105 | 98.27 202 | 92.74 247 | 96.27 242 | 98.28 123 | 62.23 381 | 99.67 125 | 90.86 271 | 99.36 167 | 99.03 166 |
|
SCA | | | 93.38 282 | 93.52 267 | 92.96 329 | 96.24 322 | 81.40 361 | 93.24 308 | 94.00 331 | 91.58 268 | 94.57 293 | 96.97 244 | 87.94 275 | 99.42 202 | 89.47 302 | 97.66 308 | 98.06 279 |
|
tttt0517 | | | 93.31 283 | 92.56 290 | 95.57 239 | 98.71 132 | 87.86 290 | 97.44 100 | 87.17 375 | 95.79 145 | 97.47 170 | 96.84 253 | 64.12 378 | 99.81 37 | 96.20 93 | 99.32 182 | 99.02 169 |
|
CR-MVSNet | | | 93.29 284 | 92.79 282 | 94.78 280 | 95.44 349 | 88.15 282 | 96.18 168 | 97.20 273 | 84.94 345 | 94.10 304 | 98.57 89 | 77.67 336 | 99.39 217 | 95.17 155 | 95.81 344 | 96.81 334 |
|
cl22 | | | 93.25 285 | 92.84 281 | 94.46 294 | 94.30 362 | 86.00 322 | 91.09 349 | 96.64 297 | 90.74 277 | 95.79 263 | 96.31 284 | 78.24 333 | 98.77 306 | 94.15 203 | 98.34 276 | 98.62 225 |
|
wuyk23d | | | 93.25 285 | 95.20 202 | 87.40 362 | 96.07 333 | 95.38 105 | 97.04 122 | 94.97 322 | 95.33 165 | 99.70 6 | 98.11 146 | 98.14 14 | 91.94 380 | 77.76 372 | 99.68 73 | 74.89 380 |
|
miper_enhance_ethall | | | 93.14 287 | 92.78 284 | 94.20 303 | 93.65 371 | 85.29 330 | 89.97 360 | 97.85 244 | 85.05 341 | 96.15 251 | 94.56 330 | 85.74 294 | 99.14 267 | 93.74 218 | 98.34 276 | 98.17 271 |
|
baseline1 | | | 93.14 287 | 92.64 288 | 94.62 285 | 97.34 289 | 87.20 306 | 96.67 146 | 93.02 341 | 94.71 187 | 96.51 230 | 95.83 304 | 81.64 317 | 98.60 325 | 90.00 295 | 88.06 376 | 98.07 275 |
|
FE-MVS | | | 92.95 289 | 92.22 293 | 95.11 259 | 97.21 297 | 88.33 278 | 98.54 23 | 93.66 335 | 89.91 289 | 96.21 246 | 98.14 140 | 70.33 370 | 99.50 180 | 87.79 323 | 98.24 281 | 97.51 310 |
|
X-MVStestdata | | | 92.86 290 | 90.83 315 | 98.94 15 | 99.15 81 | 97.66 19 | 97.77 74 | 98.83 117 | 97.42 72 | 96.32 238 | 36.50 382 | 96.49 93 | 99.72 86 | 95.66 123 | 99.37 164 | 99.45 76 |
|
GA-MVS | | | 92.83 291 | 92.15 295 | 94.87 274 | 96.97 305 | 87.27 305 | 90.03 359 | 96.12 300 | 91.83 264 | 94.05 307 | 94.57 329 | 76.01 348 | 98.97 293 | 92.46 244 | 97.34 321 | 98.36 252 |
|
CMPMVS |  | 73.10 23 | 92.74 292 | 91.39 303 | 96.77 180 | 93.57 373 | 94.67 134 | 94.21 272 | 97.67 255 | 80.36 365 | 93.61 320 | 96.60 268 | 82.85 314 | 97.35 361 | 84.86 350 | 98.78 247 | 98.29 261 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
thisisatest0530 | | | 92.71 293 | 91.76 300 | 95.56 241 | 98.42 172 | 88.23 279 | 96.03 177 | 87.35 374 | 94.04 208 | 96.56 227 | 95.47 314 | 64.03 379 | 99.77 56 | 94.78 179 | 99.11 211 | 98.68 221 |
|
HY-MVS | | 91.43 15 | 92.58 294 | 91.81 299 | 94.90 272 | 96.49 317 | 88.87 267 | 97.31 105 | 94.62 325 | 85.92 331 | 90.50 360 | 96.84 253 | 85.05 298 | 99.40 213 | 83.77 357 | 95.78 347 | 96.43 344 |
|
TR-MVS | | | 92.54 295 | 92.20 294 | 93.57 314 | 96.49 317 | 86.66 314 | 93.51 301 | 94.73 324 | 89.96 288 | 94.95 286 | 93.87 339 | 90.24 250 | 98.61 323 | 81.18 363 | 94.88 356 | 95.45 358 |
|
PMMVS | | | 92.39 296 | 91.08 309 | 96.30 208 | 93.12 375 | 92.81 193 | 90.58 355 | 95.96 305 | 79.17 369 | 91.85 353 | 92.27 358 | 90.29 249 | 98.66 320 | 89.85 297 | 96.68 334 | 97.43 313 |
|
1314 | | | 92.38 297 | 92.30 292 | 92.64 334 | 95.42 351 | 85.15 333 | 95.86 190 | 96.97 284 | 85.40 338 | 90.62 357 | 93.06 348 | 91.12 234 | 97.80 357 | 86.74 335 | 95.49 352 | 94.97 362 |
|
new_pmnet | | | 92.34 298 | 91.69 301 | 94.32 299 | 96.23 324 | 89.16 262 | 92.27 327 | 92.88 343 | 84.39 351 | 95.29 278 | 96.35 283 | 85.66 295 | 96.74 371 | 84.53 352 | 97.56 311 | 97.05 321 |
|
CVMVSNet | | | 92.33 299 | 92.79 282 | 90.95 347 | 97.26 294 | 75.84 378 | 95.29 228 | 92.33 350 | 81.86 356 | 96.27 242 | 98.19 136 | 81.44 319 | 98.46 335 | 94.23 200 | 98.29 279 | 98.55 232 |
|
PAPR | | | 92.22 300 | 91.27 306 | 95.07 262 | 95.73 344 | 88.81 269 | 91.97 332 | 97.87 243 | 85.80 333 | 90.91 356 | 92.73 354 | 91.16 233 | 98.33 344 | 79.48 366 | 95.76 348 | 98.08 273 |
|
DSMNet-mixed | | | 92.19 301 | 91.83 298 | 93.25 320 | 96.18 327 | 83.68 350 | 96.27 161 | 93.68 334 | 76.97 375 | 92.54 347 | 99.18 35 | 89.20 266 | 98.55 329 | 83.88 355 | 98.60 266 | 97.51 310 |
|
BH-w/o | | | 92.14 302 | 91.94 296 | 92.73 333 | 97.13 301 | 85.30 329 | 92.46 323 | 95.64 311 | 89.33 294 | 94.21 301 | 92.74 353 | 89.60 256 | 98.24 347 | 81.68 361 | 94.66 358 | 94.66 363 |
|
PCF-MVS | | 89.43 18 | 92.12 303 | 90.64 318 | 96.57 192 | 97.80 241 | 93.48 178 | 89.88 364 | 98.45 179 | 74.46 377 | 96.04 254 | 95.68 307 | 90.71 240 | 99.31 236 | 73.73 375 | 99.01 224 | 96.91 327 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
dmvs_re | | | 92.08 304 | 91.27 306 | 94.51 292 | 97.16 299 | 92.79 196 | 95.65 202 | 92.64 348 | 94.11 205 | 92.74 340 | 90.98 372 | 83.41 311 | 94.44 378 | 80.72 364 | 94.07 362 | 96.29 346 |
|
thres600view7 | | | 92.03 305 | 91.43 302 | 93.82 308 | 98.19 193 | 84.61 341 | 96.27 161 | 90.39 363 | 96.81 92 | 96.37 236 | 93.11 343 | 73.44 361 | 99.49 184 | 80.32 365 | 97.95 291 | 97.36 315 |
|
PatchmatchNet |  | | 91.98 306 | 91.87 297 | 92.30 340 | 94.60 359 | 79.71 366 | 95.12 234 | 93.59 337 | 89.52 292 | 93.61 320 | 97.02 241 | 77.94 334 | 99.18 260 | 90.84 272 | 94.57 361 | 98.01 286 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
cascas | | | 91.89 307 | 91.35 304 | 93.51 315 | 94.27 363 | 85.60 325 | 88.86 369 | 98.61 163 | 79.32 368 | 92.16 350 | 91.44 367 | 89.22 265 | 98.12 351 | 90.80 274 | 97.47 317 | 96.82 333 |
|
JIA-IIPM | | | 91.79 308 | 90.69 317 | 95.11 259 | 93.80 370 | 90.98 233 | 94.16 274 | 91.78 354 | 96.38 110 | 90.30 362 | 99.30 26 | 72.02 364 | 98.90 295 | 88.28 319 | 90.17 372 | 95.45 358 |
|
thres100view900 | | | 91.76 309 | 91.26 308 | 93.26 319 | 98.21 190 | 84.50 342 | 96.39 153 | 90.39 363 | 96.87 90 | 96.33 237 | 93.08 347 | 73.44 361 | 99.42 202 | 78.85 369 | 97.74 300 | 95.85 350 |
|
thres400 | | | 91.68 310 | 91.00 310 | 93.71 311 | 98.02 212 | 84.35 344 | 95.70 196 | 90.79 360 | 96.26 116 | 95.90 261 | 92.13 360 | 73.62 358 | 99.42 202 | 78.85 369 | 97.74 300 | 97.36 315 |
|
tfpn200view9 | | | 91.55 311 | 91.00 310 | 93.21 322 | 98.02 212 | 84.35 344 | 95.70 196 | 90.79 360 | 96.26 116 | 95.90 261 | 92.13 360 | 73.62 358 | 99.42 202 | 78.85 369 | 97.74 300 | 95.85 350 |
|
ADS-MVSNet2 | | | 91.47 312 | 90.51 320 | 94.36 297 | 95.51 347 | 85.63 324 | 95.05 241 | 95.70 309 | 83.46 352 | 92.69 341 | 96.84 253 | 79.15 330 | 99.41 211 | 85.66 342 | 90.52 370 | 98.04 283 |
|
EPNet_dtu | | | 91.39 313 | 90.75 316 | 93.31 318 | 90.48 384 | 82.61 353 | 94.80 250 | 92.88 343 | 93.39 223 | 81.74 381 | 94.90 326 | 81.36 320 | 99.11 273 | 88.28 319 | 98.87 237 | 98.21 267 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
ET-MVSNet_ETH3D | | | 91.12 314 | 89.67 326 | 95.47 246 | 96.41 319 | 89.15 263 | 91.54 337 | 90.23 366 | 89.07 297 | 86.78 377 | 92.84 351 | 69.39 372 | 99.44 199 | 94.16 202 | 96.61 335 | 97.82 298 |
|
PVSNet | | 86.72 19 | 91.10 315 | 90.97 312 | 91.49 344 | 97.56 271 | 78.04 369 | 87.17 371 | 94.60 326 | 84.65 347 | 92.34 348 | 92.20 359 | 87.37 284 | 98.47 334 | 85.17 348 | 97.69 305 | 97.96 288 |
|
tpm | | | 91.08 316 | 90.85 314 | 91.75 343 | 95.33 352 | 78.09 368 | 95.03 243 | 91.27 357 | 88.75 302 | 93.53 323 | 97.40 212 | 71.24 365 | 99.30 239 | 91.25 263 | 93.87 363 | 97.87 295 |
|
thres200 | | | 91.00 317 | 90.42 321 | 92.77 332 | 97.47 280 | 83.98 348 | 94.01 282 | 91.18 358 | 95.12 175 | 95.44 274 | 91.21 369 | 73.93 354 | 99.31 236 | 77.76 372 | 97.63 310 | 95.01 361 |
|
ADS-MVSNet | | | 90.95 318 | 90.26 322 | 93.04 325 | 95.51 347 | 82.37 355 | 95.05 241 | 93.41 338 | 83.46 352 | 92.69 341 | 96.84 253 | 79.15 330 | 98.70 314 | 85.66 342 | 90.52 370 | 98.04 283 |
|
tpmvs | | | 90.79 319 | 90.87 313 | 90.57 350 | 92.75 379 | 76.30 376 | 95.79 193 | 93.64 336 | 91.04 275 | 91.91 352 | 96.26 285 | 77.19 342 | 98.86 300 | 89.38 304 | 89.85 373 | 96.56 341 |
|
thisisatest0515 | | | 90.43 320 | 89.18 332 | 94.17 305 | 97.07 303 | 85.44 327 | 89.75 365 | 87.58 373 | 88.28 308 | 93.69 318 | 91.72 364 | 65.27 377 | 99.58 156 | 90.59 283 | 98.67 257 | 97.50 312 |
|
tpmrst | | | 90.31 321 | 90.61 319 | 89.41 354 | 94.06 367 | 72.37 384 | 95.06 240 | 93.69 332 | 88.01 311 | 92.32 349 | 96.86 251 | 77.45 338 | 98.82 301 | 91.04 266 | 87.01 377 | 97.04 322 |
|
test0.0.03 1 | | | 90.11 322 | 89.21 329 | 92.83 331 | 93.89 369 | 86.87 312 | 91.74 335 | 88.74 372 | 92.02 259 | 94.71 291 | 91.14 370 | 73.92 355 | 94.48 377 | 83.75 358 | 92.94 365 | 97.16 319 |
|
MVS | | | 90.02 323 | 89.20 330 | 92.47 337 | 94.71 357 | 86.90 311 | 95.86 190 | 96.74 293 | 64.72 380 | 90.62 357 | 92.77 352 | 92.54 209 | 98.39 339 | 79.30 367 | 95.56 351 | 92.12 373 |
|
pmmvs3 | | | 90.00 324 | 88.90 334 | 93.32 317 | 94.20 366 | 85.34 328 | 91.25 344 | 92.56 349 | 78.59 370 | 93.82 311 | 95.17 318 | 67.36 376 | 98.69 315 | 89.08 308 | 98.03 289 | 95.92 349 |
|
CHOSEN 280x420 | | | 89.98 325 | 89.19 331 | 92.37 339 | 95.60 346 | 81.13 363 | 86.22 373 | 97.09 279 | 81.44 360 | 87.44 374 | 93.15 342 | 73.99 353 | 99.47 189 | 88.69 313 | 99.07 217 | 96.52 342 |
|
test-LLR | | | 89.97 326 | 89.90 324 | 90.16 351 | 94.24 364 | 74.98 379 | 89.89 361 | 89.06 370 | 92.02 259 | 89.97 364 | 90.77 373 | 73.92 355 | 98.57 326 | 91.88 251 | 97.36 319 | 96.92 325 |
|
FPMVS | | | 89.92 327 | 88.63 335 | 93.82 308 | 98.37 175 | 96.94 45 | 91.58 336 | 93.34 339 | 88.00 312 | 90.32 361 | 97.10 236 | 70.87 368 | 91.13 381 | 71.91 378 | 96.16 343 | 93.39 371 |
|
test2506 | | | 89.86 328 | 89.16 333 | 91.97 342 | 98.95 107 | 76.83 375 | 98.54 23 | 61.07 389 | 96.20 119 | 97.07 195 | 99.16 38 | 55.19 388 | 99.69 115 | 96.43 85 | 99.83 37 | 99.38 95 |
|
CostFormer | | | 89.75 329 | 89.25 327 | 91.26 346 | 94.69 358 | 78.00 370 | 95.32 225 | 91.98 352 | 81.50 359 | 90.55 359 | 96.96 246 | 71.06 367 | 98.89 296 | 88.59 315 | 92.63 367 | 96.87 328 |
|
baseline2 | | | 89.65 330 | 88.44 337 | 93.25 320 | 95.62 345 | 82.71 352 | 93.82 291 | 85.94 378 | 88.89 301 | 87.35 375 | 92.54 356 | 71.23 366 | 99.33 232 | 86.01 337 | 94.60 360 | 97.72 302 |
|
E-PMN | | | 89.52 331 | 89.78 325 | 88.73 356 | 93.14 374 | 77.61 371 | 83.26 376 | 92.02 351 | 94.82 184 | 93.71 316 | 93.11 343 | 75.31 350 | 96.81 368 | 85.81 339 | 96.81 330 | 91.77 375 |
|
EPMVS | | | 89.26 332 | 88.55 336 | 91.39 345 | 92.36 380 | 79.11 367 | 95.65 202 | 79.86 383 | 88.60 304 | 93.12 333 | 96.53 272 | 70.73 369 | 98.10 352 | 90.75 276 | 89.32 374 | 96.98 323 |
|
EMVS | | | 89.06 333 | 89.22 328 | 88.61 357 | 93.00 376 | 77.34 373 | 82.91 377 | 90.92 359 | 94.64 189 | 92.63 345 | 91.81 363 | 76.30 346 | 97.02 365 | 83.83 356 | 96.90 327 | 91.48 376 |
|
KD-MVS_2432*1600 | | | 88.93 334 | 87.74 339 | 92.49 335 | 88.04 385 | 81.99 357 | 89.63 366 | 95.62 312 | 91.35 270 | 95.06 282 | 93.11 343 | 56.58 384 | 98.63 321 | 85.19 346 | 95.07 353 | 96.85 330 |
|
miper_refine_blended | | | 88.93 334 | 87.74 339 | 92.49 335 | 88.04 385 | 81.99 357 | 89.63 366 | 95.62 312 | 91.35 270 | 95.06 282 | 93.11 343 | 56.58 384 | 98.63 321 | 85.19 346 | 95.07 353 | 96.85 330 |
|
IB-MVS | | 85.98 20 | 88.63 336 | 86.95 346 | 93.68 312 | 95.12 353 | 84.82 340 | 90.85 351 | 90.17 367 | 87.55 315 | 88.48 371 | 91.34 368 | 58.01 382 | 99.59 154 | 87.24 333 | 93.80 364 | 96.63 340 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
tpm2 | | | 88.47 337 | 87.69 341 | 90.79 348 | 94.98 355 | 77.34 373 | 95.09 236 | 91.83 353 | 77.51 374 | 89.40 367 | 96.41 278 | 67.83 375 | 98.73 310 | 83.58 359 | 92.60 368 | 96.29 346 |
|
MVS-HIRNet | | | 88.40 338 | 90.20 323 | 82.99 363 | 97.01 304 | 60.04 387 | 93.11 311 | 85.61 379 | 84.45 350 | 88.72 370 | 99.09 45 | 84.72 302 | 98.23 348 | 82.52 360 | 96.59 336 | 90.69 378 |
|
gg-mvs-nofinetune | | | 88.28 339 | 86.96 345 | 92.23 341 | 92.84 378 | 84.44 343 | 98.19 52 | 74.60 385 | 99.08 10 | 87.01 376 | 99.47 10 | 56.93 383 | 98.23 348 | 78.91 368 | 95.61 350 | 94.01 367 |
|
dp | | | 88.08 340 | 88.05 338 | 88.16 361 | 92.85 377 | 68.81 386 | 94.17 273 | 92.88 343 | 85.47 336 | 91.38 355 | 96.14 292 | 68.87 373 | 98.81 303 | 86.88 334 | 83.80 380 | 96.87 328 |
|
tpm cat1 | | | 88.01 341 | 87.33 342 | 90.05 353 | 94.48 360 | 76.28 377 | 94.47 261 | 94.35 329 | 73.84 379 | 89.26 368 | 95.61 311 | 73.64 357 | 98.30 346 | 84.13 353 | 86.20 378 | 95.57 357 |
|
test-mter | | | 87.92 342 | 87.17 343 | 90.16 351 | 94.24 364 | 74.98 379 | 89.89 361 | 89.06 370 | 86.44 327 | 89.97 364 | 90.77 373 | 54.96 389 | 98.57 326 | 91.88 251 | 97.36 319 | 96.92 325 |
|
PAPM | | | 87.64 343 | 85.84 349 | 93.04 325 | 96.54 315 | 84.99 336 | 88.42 370 | 95.57 315 | 79.52 367 | 83.82 378 | 93.05 349 | 80.57 325 | 98.41 337 | 62.29 381 | 92.79 366 | 95.71 353 |
|
dmvs_testset | | | 87.30 344 | 86.99 344 | 88.24 359 | 96.71 312 | 77.48 372 | 94.68 255 | 86.81 377 | 92.64 250 | 89.61 366 | 87.01 378 | 85.91 293 | 93.12 379 | 61.04 382 | 88.49 375 | 94.13 366 |
|
TESTMET0.1,1 | | | 87.20 345 | 86.57 347 | 89.07 355 | 93.62 372 | 72.84 383 | 89.89 361 | 87.01 376 | 85.46 337 | 89.12 369 | 90.20 375 | 56.00 387 | 97.72 358 | 90.91 270 | 96.92 325 | 96.64 338 |
|
MVE |  | 73.61 22 | 86.48 346 | 85.92 348 | 88.18 360 | 96.23 324 | 85.28 331 | 81.78 378 | 75.79 384 | 86.01 329 | 82.53 380 | 91.88 362 | 92.74 200 | 87.47 383 | 71.42 379 | 94.86 357 | 91.78 374 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
PVSNet_0 | | 81.89 21 | 84.49 347 | 83.21 350 | 88.34 358 | 95.76 342 | 74.97 381 | 83.49 375 | 92.70 347 | 78.47 371 | 87.94 372 | 86.90 379 | 83.38 312 | 96.63 372 | 73.44 376 | 66.86 383 | 93.40 370 |
|
EGC-MVSNET | | | 83.08 348 | 77.93 351 | 98.53 50 | 99.57 20 | 97.55 26 | 98.33 38 | 98.57 170 | 4.71 384 | 10.38 385 | 98.90 63 | 95.60 127 | 99.50 180 | 95.69 120 | 99.61 89 | 98.55 232 |
|
test_method | | | 66.88 349 | 66.13 352 | 69.11 365 | 62.68 388 | 25.73 390 | 49.76 379 | 96.04 302 | 14.32 383 | 64.27 384 | 91.69 365 | 73.45 360 | 88.05 382 | 76.06 374 | 66.94 382 | 93.54 368 |
|
tmp_tt | | | 57.23 350 | 62.50 353 | 41.44 366 | 34.77 389 | 49.21 389 | 83.93 374 | 60.22 390 | 15.31 382 | 71.11 383 | 79.37 381 | 70.09 371 | 44.86 385 | 64.76 380 | 82.93 381 | 30.25 381 |
|
cdsmvs_eth3d_5k | | | 24.22 351 | 32.30 354 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 98.10 228 | 0.00 387 | 0.00 388 | 95.06 321 | 97.54 34 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
test123 | | | 12.59 352 | 15.49 355 | 3.87 367 | 6.07 390 | 2.55 391 | 90.75 353 | 2.59 392 | 2.52 385 | 5.20 387 | 13.02 384 | 4.96 390 | 1.85 387 | 5.20 384 | 9.09 384 | 7.23 382 |
|
testmvs | | | 12.33 353 | 15.23 356 | 3.64 368 | 5.77 391 | 2.23 392 | 88.99 368 | 3.62 391 | 2.30 386 | 5.29 386 | 13.09 383 | 4.52 391 | 1.95 386 | 5.16 385 | 8.32 385 | 6.75 383 |
|
pcd_1.5k_mvsjas | | | 7.98 354 | 10.65 357 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 95.82 115 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
ab-mvs-re | | | 7.91 355 | 10.55 358 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 94.94 323 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
test_blank | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
uanet_test | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
DCPMVS | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
sosnet-low-res | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
sosnet | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
uncertanet | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
Regformer | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
uanet | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
FOURS1 | | | | | | 99.59 18 | 98.20 7 | 99.03 7 | 99.25 25 | 98.96 18 | 98.87 48 | | | | | | |
|
MSC_two_6792asdad | | | | | 98.22 75 | 97.75 253 | 95.34 110 | | 98.16 222 | | | | | 99.75 67 | 95.87 113 | 99.51 125 | 99.57 38 |
|
PC_three_1452 | | | | | | | | | | 87.24 317 | 98.37 90 | 97.44 209 | 97.00 60 | 96.78 370 | 92.01 247 | 99.25 193 | 99.21 129 |
|
No_MVS | | | | | 98.22 75 | 97.75 253 | 95.34 110 | | 98.16 222 | | | | | 99.75 67 | 95.87 113 | 99.51 125 | 99.57 38 |
|
test_one_0601 | | | | | | 99.05 100 | 95.50 100 | | 98.87 101 | 97.21 83 | 98.03 134 | 98.30 118 | 96.93 66 | | | | |
|
eth-test2 | | | | | | 0.00 392 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 392 | | | | | | | | | | | |
|
ZD-MVS | | | | | | 98.43 171 | 95.94 79 | | 98.56 171 | 90.72 278 | 96.66 221 | 97.07 237 | 95.02 144 | 99.74 76 | 91.08 265 | 98.93 231 | |
|
RE-MVS-def | | | | 97.88 58 | | 98.81 119 | 98.05 9 | 97.55 92 | 98.86 104 | 97.77 51 | 98.20 111 | 98.07 150 | 96.94 64 | | 95.49 132 | 99.20 198 | 99.26 121 |
|
IU-MVS | | | | | | 99.22 67 | 95.40 103 | | 98.14 225 | 85.77 334 | 98.36 93 | | | | 95.23 152 | 99.51 125 | 99.49 61 |
|
OPU-MVS | | | | | 97.64 116 | 98.01 214 | 95.27 113 | 96.79 136 | | | | 97.35 221 | 96.97 62 | 98.51 332 | 91.21 264 | 99.25 193 | 99.14 144 |
|
test_241102_TWO | | | | | | | | | 98.83 117 | 96.11 124 | 98.62 65 | 98.24 129 | 96.92 68 | 99.72 86 | 95.44 139 | 99.49 132 | 99.49 61 |
|
test_241102_ONE | | | | | | 99.22 67 | 95.35 108 | | 98.83 117 | 96.04 129 | 99.08 36 | 98.13 142 | 97.87 20 | 99.33 232 | | | |
|
9.14 | | | | 96.69 143 | | 98.53 157 | | 96.02 178 | 98.98 80 | 93.23 228 | 97.18 183 | 97.46 207 | 96.47 95 | 99.62 144 | 92.99 236 | 99.32 182 | |
|
save fliter | | | | | | 98.48 166 | 94.71 131 | 94.53 260 | 98.41 186 | 95.02 179 | | | | | | | |
|
test_0728_THIRD | | | | | | | | | | 96.62 96 | 98.40 87 | 98.28 123 | 97.10 51 | 99.71 101 | 95.70 118 | 99.62 83 | 99.58 33 |
|
test_0728_SECOND | | | | | 98.25 73 | 99.23 64 | 95.49 101 | 96.74 139 | 98.89 93 | | | | | 99.75 67 | 95.48 135 | 99.52 120 | 99.53 48 |
|
test0726 | | | | | | 99.24 62 | 95.51 97 | 96.89 129 | 98.89 93 | 95.92 137 | 98.64 64 | 98.31 114 | 97.06 55 | | | | |
|
GSMVS | | | | | | | | | | | | | | | | | 98.06 279 |
|
test_part2 | | | | | | 99.03 102 | 96.07 74 | | | | 98.08 127 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 77.80 335 | | | | 98.06 279 |
|
sam_mvs | | | | | | | | | | | | | 77.38 339 | | | | |
|
ambc | | | | | 96.56 193 | 98.23 189 | 91.68 224 | 97.88 69 | 98.13 226 | | 98.42 85 | 98.56 91 | 94.22 167 | 99.04 281 | 94.05 208 | 99.35 172 | 98.95 177 |
|
MTGPA |  | | | | | | | | 98.73 139 | | | | | | | | |
|
test_post1 | | | | | | | | 94.98 245 | | | | 10.37 386 | 76.21 347 | 99.04 281 | 89.47 302 | | |
|
test_post | | | | | | | | | | | | 10.87 385 | 76.83 343 | 99.07 278 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 96.84 253 | 77.36 340 | 99.42 202 | | | |
|
GG-mvs-BLEND | | | | | 90.60 349 | 91.00 382 | 84.21 346 | 98.23 46 | 72.63 388 | | 82.76 379 | 84.11 380 | 56.14 386 | 96.79 369 | 72.20 377 | 92.09 369 | 90.78 377 |
|
MTMP | | | | | | | | 96.55 147 | 74.60 385 | | | | | | | | |
|
gm-plane-assit | | | | | | 91.79 381 | 71.40 385 | | | 81.67 357 | | 90.11 376 | | 98.99 287 | 84.86 350 | | |
|
test9_res | | | | | | | | | | | | | | | 91.29 260 | 98.89 236 | 99.00 170 |
|
TEST9 | | | | | | 97.84 233 | 95.23 115 | 93.62 297 | 98.39 189 | 86.81 323 | 93.78 312 | 95.99 297 | 94.68 153 | 99.52 175 | | | |
|
test_8 | | | | | | 97.81 237 | 95.07 124 | 93.54 300 | 98.38 191 | 87.04 319 | 93.71 316 | 95.96 300 | 94.58 157 | 99.52 175 | | | |
|
agg_prior2 | | | | | | | | | | | | | | | 90.34 291 | 98.90 233 | 99.10 158 |
|
agg_prior | | | | | | 97.80 241 | 94.96 126 | | 98.36 193 | | 93.49 324 | | | 99.53 172 | | | |
|
TestCases | | | | | 98.06 88 | 99.08 93 | 96.16 70 | | 99.16 34 | 94.35 198 | 97.78 156 | 98.07 150 | 95.84 112 | 99.12 270 | 91.41 258 | 99.42 156 | 98.91 187 |
|
test_prior4 | | | | | | | 95.38 105 | 93.61 299 | | | | | | | | | |
|
test_prior2 | | | | | | | | 93.33 307 | | 94.21 201 | 94.02 308 | 96.25 286 | 93.64 181 | | 91.90 250 | 98.96 226 | |
|
test_prior | | | | | 97.46 134 | 97.79 246 | 94.26 152 | | 98.42 185 | | | | | 99.34 230 | | | 98.79 204 |
|
旧先验2 | | | | | | | | 93.35 306 | | 77.95 373 | 95.77 267 | | | 98.67 319 | 90.74 279 | | |
|
新几何2 | | | | | | | | 93.43 302 | | | | | | | | | |
|
新几何1 | | | | | 97.25 150 | 98.29 180 | 94.70 133 | | 97.73 252 | 77.98 372 | 94.83 289 | 96.67 265 | 92.08 221 | 99.45 196 | 88.17 321 | 98.65 261 | 97.61 306 |
|
旧先验1 | | | | | | 97.80 241 | 93.87 163 | | 97.75 251 | | | 97.04 240 | 93.57 182 | | | 98.68 256 | 98.72 214 |
|
无先验 | | | | | | | | 93.20 309 | 97.91 240 | 80.78 362 | | | | 99.40 213 | 87.71 324 | | 97.94 290 |
|
原ACMM2 | | | | | | | | 92.82 314 | | | | | | | | | |
|
原ACMM1 | | | | | 96.58 190 | 98.16 201 | 92.12 211 | | 98.15 224 | 85.90 332 | 93.49 324 | 96.43 277 | 92.47 213 | 99.38 220 | 87.66 326 | 98.62 263 | 98.23 265 |
|
test222 | | | | | | 98.17 199 | 93.24 186 | 92.74 318 | 97.61 264 | 75.17 376 | 94.65 292 | 96.69 264 | 90.96 237 | | | 98.66 259 | 97.66 304 |
|
testdata2 | | | | | | | | | | | | | | 99.46 192 | 87.84 322 | | |
|
segment_acmp | | | | | | | | | | | | | 95.34 134 | | | | |
|
testdata | | | | | 95.70 235 | 98.16 201 | 90.58 241 | | 97.72 253 | 80.38 364 | 95.62 270 | 97.02 241 | 92.06 222 | 98.98 289 | 89.06 309 | 98.52 269 | 97.54 309 |
|
testdata1 | | | | | | | | 92.77 315 | | 93.78 214 | | | | | | | |
|
test12 | | | | | 97.46 134 | 97.61 267 | 94.07 156 | | 97.78 250 | | 93.57 322 | | 93.31 187 | 99.42 202 | | 98.78 247 | 98.89 191 |
|
plane_prior7 | | | | | | 98.70 134 | 94.67 134 | | | | | | | | | | |
|
plane_prior6 | | | | | | 98.38 174 | 94.37 144 | | | | | | 91.91 227 | | | | |
|
plane_prior5 | | | | | | | | | 98.75 136 | | | | | 99.46 192 | 92.59 241 | 99.20 198 | 99.28 116 |
|
plane_prior4 | | | | | | | | | | | | 96.77 259 | | | | | |
|
plane_prior3 | | | | | | | 94.51 138 | | | 95.29 168 | 96.16 249 | | | | | | |
|
plane_prior2 | | | | | | | | 96.50 149 | | 96.36 112 | | | | | | | |
|
plane_prior1 | | | | | | 98.49 164 | | | | | | | | | | | |
|
plane_prior | | | | | | | 94.29 147 | 95.42 214 | | 94.31 200 | | | | | | 98.93 231 | |
|
n2 | | | | | | | | | 0.00 393 | | | | | | | | |
|
nn | | | | | | | | | 0.00 393 | | | | | | | | |
|
door-mid | | | | | | | | | 98.17 218 | | | | | | | | |
|
lessismore_v0 | | | | | 97.05 161 | 99.36 50 | 92.12 211 | | 84.07 380 | | 98.77 59 | 98.98 52 | 85.36 297 | 99.74 76 | 97.34 56 | 99.37 164 | 99.30 109 |
|
LGP-MVS_train | | | | | 98.74 34 | 99.15 81 | 97.02 42 | | 99.02 65 | 95.15 173 | 98.34 96 | 98.23 131 | 97.91 18 | 99.70 108 | 94.41 191 | 99.73 58 | 99.50 53 |
|
test11 | | | | | | | | | 98.08 231 | | | | | | | | |
|
door | | | | | | | | | 97.81 249 | | | | | | | | |
|
HQP5-MVS | | | | | | | 92.47 200 | | | | | | | | | | |
|
HQP-NCC | | | | | | 97.85 228 | | 94.26 265 | | 93.18 231 | 92.86 337 | | | | | | |
|
ACMP_Plane | | | | | | 97.85 228 | | 94.26 265 | | 93.18 231 | 92.86 337 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 90.51 286 | | |
|
HQP4-MVS | | | | | | | | | | | 92.87 336 | | | 99.23 256 | | | 99.06 163 |
|
HQP3-MVS | | | | | | | | | 98.43 182 | | | | | | | 98.74 251 | |
|
HQP2-MVS | | | | | | | | | | | | | 90.33 245 | | | | |
|
NP-MVS | | | | | | 98.14 205 | 93.72 169 | | | | | 95.08 319 | | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 57.28 388 | 94.89 247 | | 80.59 363 | 94.02 308 | | 78.66 332 | | 85.50 344 | | 97.82 298 |
|
MDTV_nov1_ep13 | | | | 91.28 305 | | 94.31 361 | 73.51 382 | 94.80 250 | 93.16 340 | 86.75 325 | 93.45 326 | 97.40 212 | 76.37 345 | 98.55 329 | 88.85 310 | 96.43 337 | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 99.52 120 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 99.55 108 | |
|
Test By Simon | | | | | | | | | | | | | 94.51 160 | | | | |
|
ITE_SJBPF | | | | | 97.85 102 | 98.64 139 | 96.66 54 | | 98.51 175 | 95.63 152 | 97.22 178 | 97.30 225 | 95.52 128 | 98.55 329 | 90.97 268 | 98.90 233 | 98.34 253 |
|
DeepMVS_CX |  | | | | 77.17 364 | 90.94 383 | 85.28 331 | | 74.08 387 | 52.51 381 | 80.87 382 | 88.03 377 | 75.25 351 | 70.63 384 | 59.23 383 | 84.94 379 | 75.62 379 |
|