This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.86 199.86 199.87 199.99 199.77 199.77 199.80 299.97 199.97 199.95 199.74 199.98 199.56 1100.00 199.85 3
LTVRE_ROB96.88 199.18 299.34 298.72 3899.71 996.99 4599.69 299.57 1599.02 1999.62 1599.36 2198.53 999.52 18398.58 2999.95 599.66 29
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
UniMVSNet_ETH3D99.12 399.28 398.65 4399.77 596.34 6699.18 699.20 3799.67 299.73 599.65 599.15 399.86 2797.22 7099.92 1599.77 11
pmmvs699.07 499.24 498.56 4999.81 296.38 6398.87 1099.30 2899.01 2099.63 1499.66 399.27 299.68 12497.75 5399.89 2499.62 35
mamv499.05 598.91 899.46 298.94 11599.62 297.98 6599.70 599.49 399.78 299.22 3495.92 12199.95 399.31 499.83 4298.83 209
mvs_tets98.90 698.94 698.75 3299.69 1096.48 6198.54 2499.22 3496.23 12599.71 799.48 1098.77 799.93 498.89 1899.95 599.84 5
TDRefinement98.90 698.86 999.02 799.54 2598.06 999.34 499.44 2098.85 2599.00 4899.20 3697.42 4299.59 16297.21 7199.76 5899.40 100
UA-Net98.88 898.76 1499.22 399.11 9497.89 1499.47 399.32 2699.08 1497.87 16399.67 296.47 10099.92 797.88 4599.98 299.85 3
DTE-MVSNet98.79 998.86 998.59 4799.55 2296.12 7398.48 3199.10 5499.36 599.29 3199.06 5597.27 4899.93 497.71 5599.91 1899.70 25
jajsoiax98.77 1098.79 1398.74 3599.66 1296.48 6198.45 3299.12 5195.83 15199.67 1099.37 1998.25 1399.92 798.77 2199.94 899.82 6
PEN-MVS98.75 1198.85 1198.44 5699.58 1895.67 9198.45 3299.15 4699.33 699.30 3099.00 5897.27 4899.92 797.64 5999.92 1599.75 18
v7n98.73 1298.99 597.95 9899.64 1394.20 15698.67 1699.14 4999.08 1499.42 2399.23 3396.53 9599.91 1599.27 699.93 1199.73 21
PS-CasMVS98.73 1298.85 1198.39 6199.55 2295.47 10298.49 2999.13 5099.22 1099.22 3698.96 6497.35 4499.92 797.79 5199.93 1199.79 9
test_djsdf98.73 1298.74 1798.69 4099.63 1496.30 6898.67 1699.02 8096.50 11399.32 2999.44 1497.43 4199.92 798.73 2399.95 599.86 2
anonymousdsp98.72 1598.63 2198.99 1199.62 1597.29 3898.65 2099.19 3995.62 16099.35 2899.37 1997.38 4399.90 1898.59 2899.91 1899.77 11
WR-MVS_H98.65 1698.62 2398.75 3299.51 2996.61 5798.55 2399.17 4199.05 1799.17 3898.79 7895.47 14299.89 2197.95 4499.91 1899.75 18
OurMVSNet-221017-098.61 1798.61 2598.63 4599.77 596.35 6599.17 799.05 6998.05 5199.61 1699.52 793.72 19299.88 2398.72 2599.88 2599.65 32
test_fmvsmconf0.01_n98.57 1898.74 1798.06 8899.39 4594.63 13696.70 14999.82 195.44 17099.64 1399.52 798.96 499.74 7999.38 399.86 3099.81 7
testf198.57 1898.45 3298.93 1999.79 398.78 397.69 8699.42 2297.69 6698.92 5398.77 8197.80 2599.25 26796.27 10499.69 7898.76 219
APD_test298.57 1898.45 3298.93 1999.79 398.78 397.69 8699.42 2297.69 6698.92 5398.77 8197.80 2599.25 26796.27 10499.69 7898.76 219
Anonymous2023121198.55 2198.76 1497.94 9998.79 13494.37 14898.84 1299.15 4699.37 499.67 1099.43 1595.61 13899.72 9098.12 3799.86 3099.73 21
nrg03098.54 2298.62 2398.32 6599.22 6895.66 9297.90 7199.08 6198.31 4099.02 4598.74 8497.68 3099.61 15997.77 5299.85 3799.70 25
PS-MVSNAJss98.53 2398.63 2198.21 7899.68 1194.82 12998.10 5799.21 3596.91 9799.75 399.45 1395.82 12799.92 798.80 2099.96 499.89 1
MIMVSNet198.51 2498.45 3298.67 4199.72 896.71 5198.76 1398.89 10898.49 3599.38 2599.14 4795.44 14499.84 3396.47 9599.80 5099.47 79
pm-mvs198.47 2598.67 1997.86 10399.52 2894.58 13998.28 4399.00 8997.57 7099.27 3299.22 3498.32 1299.50 18897.09 7799.75 6599.50 62
ACMH93.61 998.44 2698.76 1497.51 12799.43 3893.54 18098.23 4799.05 6997.40 8399.37 2699.08 5498.79 699.47 19897.74 5499.71 7499.50 62
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CP-MVSNet98.42 2798.46 3098.30 6899.46 3595.22 11898.27 4598.84 12799.05 1799.01 4698.65 9495.37 14599.90 1897.57 6099.91 1899.77 11
test_fmvsmconf0.1_n98.41 2898.54 2798.03 9399.16 8294.61 13796.18 17899.73 395.05 18699.60 1799.34 2498.68 899.72 9099.21 899.85 3799.76 16
TransMVSNet (Re)98.38 2998.67 1997.51 12799.51 2993.39 18698.20 5298.87 11698.23 4499.48 1999.27 3098.47 1199.55 17596.52 9399.53 12699.60 36
TranMVSNet+NR-MVSNet98.33 3098.30 4098.43 5899.07 10095.87 8296.73 14799.05 6998.67 2898.84 6198.45 11397.58 3899.88 2396.45 9699.86 3099.54 53
HPM-MVS_fast98.32 3198.13 4398.88 2499.54 2597.48 3198.35 3699.03 7795.88 14797.88 16098.22 14998.15 1699.74 7996.50 9499.62 9399.42 97
ANet_high98.31 3298.94 696.41 21499.33 5389.64 26597.92 7099.56 1799.27 799.66 1299.50 997.67 3199.83 3597.55 6199.98 299.77 11
test_fmvsmconf_n98.30 3398.41 3597.99 9698.94 11594.60 13896.00 19399.64 1394.99 18999.43 2299.18 4098.51 1099.71 10499.13 1199.84 3999.67 27
VPA-MVSNet98.27 3498.46 3097.70 11399.06 10193.80 16997.76 8199.00 8998.40 3799.07 4498.98 6196.89 7599.75 7097.19 7499.79 5299.55 52
Vis-MVSNetpermissive98.27 3498.34 3798.07 8699.33 5395.21 12098.04 6099.46 1897.32 8797.82 16799.11 5096.75 8599.86 2797.84 4899.36 17899.15 150
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
COLMAP_ROBcopyleft94.48 698.25 3698.11 4598.64 4499.21 7597.35 3697.96 6699.16 4298.34 3998.78 6698.52 10597.32 4599.45 20594.08 22099.67 8499.13 155
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
ACMH+93.58 1098.23 3798.31 3897.98 9799.39 4595.22 11897.55 9799.20 3798.21 4599.25 3498.51 10798.21 1499.40 22394.79 19199.72 7199.32 115
FC-MVSNet-test98.16 3898.37 3697.56 12299.49 3393.10 19398.35 3699.21 3598.43 3698.89 5698.83 7794.30 17799.81 3997.87 4699.91 1899.77 11
mvsmamba98.16 3898.06 5098.44 5699.53 2795.87 8298.70 1498.94 10297.71 6498.85 5999.10 5191.35 25099.83 3598.47 3099.90 2399.64 34
SR-MVS-dyc-post98.14 4097.84 7099.02 798.81 13098.05 1097.55 9798.86 11997.77 5798.20 12398.07 16596.60 9399.76 6495.49 14599.20 20999.26 132
MTAPA98.14 4097.84 7099.06 499.44 3797.90 1397.25 11398.73 15597.69 6697.90 15897.96 18095.81 13199.82 3796.13 10999.61 9999.45 85
APDe-MVScopyleft98.14 4098.03 5398.47 5598.72 14296.04 7698.07 5999.10 5495.96 14198.59 8198.69 8996.94 6999.81 3996.64 8899.58 10699.57 46
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
APD-MVS_3200maxsize98.13 4397.90 6398.79 3098.79 13497.31 3797.55 9798.92 10597.72 6298.25 11998.13 15797.10 5699.75 7095.44 15299.24 20799.32 115
HPM-MVScopyleft98.11 4497.83 7398.92 2299.42 4097.46 3298.57 2199.05 6995.43 17197.41 18597.50 21997.98 1999.79 4795.58 14399.57 10999.50 62
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CS-MVS98.09 4598.01 5598.32 6598.45 18296.69 5398.52 2799.69 698.07 5096.07 26797.19 24496.88 7799.86 2797.50 6399.73 6798.41 254
test_fmvsmvis_n_192098.08 4698.47 2996.93 17899.03 10793.29 18896.32 16899.65 1095.59 16299.71 799.01 5797.66 3399.60 16199.44 299.83 4297.90 309
test_fmvsm_n_192098.08 4698.29 4197.43 14098.88 12393.95 16496.17 18299.57 1595.66 15799.52 1898.71 8797.04 6299.64 14399.21 899.87 2798.69 228
Gipumacopyleft98.07 4898.31 3897.36 14699.76 796.28 6998.51 2899.10 5498.76 2796.79 22499.34 2496.61 9198.82 32196.38 9999.50 14096.98 348
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
ACMMPcopyleft98.05 4997.75 8398.93 1999.23 6597.60 2398.09 5898.96 9995.75 15597.91 15798.06 17096.89 7599.76 6495.32 16099.57 10999.43 96
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
ACMM93.33 1198.05 4997.79 7798.85 2599.15 8597.55 2796.68 15098.83 13395.21 17798.36 10598.13 15798.13 1899.62 15296.04 11399.54 12299.39 104
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
bld_raw_dy_0_6498.03 5198.57 2696.38 21599.35 5089.63 26799.26 599.26 3199.27 799.74 499.34 2492.88 21199.93 498.20 3699.87 2799.60 36
SteuartSystems-ACMMP98.02 5297.76 8198.79 3099.43 3897.21 4297.15 11998.90 10796.58 10898.08 13997.87 18997.02 6499.76 6495.25 16399.59 10499.40 100
Skip Steuart: Steuart Systems R&D Blog.
SR-MVS98.00 5397.66 9099.01 998.77 13897.93 1297.38 10998.83 13397.32 8798.06 14297.85 19096.65 8899.77 5995.00 18299.11 22399.32 115
SDMVSNet97.97 5498.26 4297.11 16399.41 4192.21 21696.92 13298.60 18098.58 3298.78 6699.39 1697.80 2599.62 15294.98 18599.86 3099.52 58
sd_testset97.97 5498.12 4497.51 12799.41 4193.44 18397.96 6698.25 21998.58 3298.78 6699.39 1698.21 1499.56 17192.65 25599.86 3099.52 58
DVP-MVS++97.96 5697.90 6398.12 8497.75 26695.40 10399.03 898.89 10896.62 10498.62 7798.30 13296.97 6799.75 7095.70 13199.25 20499.21 140
Anonymous2024052997.96 5698.04 5297.71 11298.69 14994.28 15497.86 7398.31 21698.79 2699.23 3598.86 7695.76 13399.61 15995.49 14599.36 17899.23 138
XVS97.96 5697.63 9698.94 1699.15 8597.66 2097.77 7998.83 13397.42 7896.32 25397.64 20896.49 9899.72 9095.66 13699.37 17599.45 85
NR-MVSNet97.96 5697.86 6998.26 7098.73 14095.54 9598.14 5598.73 15597.79 5699.42 2397.83 19194.40 17599.78 5095.91 12399.76 5899.46 81
APD_test197.95 6097.68 8898.75 3299.60 1698.60 697.21 11799.08 6196.57 11198.07 14198.38 12296.22 11599.14 28594.71 19899.31 19698.52 246
ACMMPR97.95 6097.62 9898.94 1699.20 7797.56 2697.59 9498.83 13396.05 13497.46 18397.63 20996.77 8499.76 6495.61 14099.46 15299.49 70
FMVSNet197.95 6098.08 4797.56 12299.14 9293.67 17498.23 4798.66 17297.41 8299.00 4899.19 3795.47 14299.73 8595.83 12899.76 5899.30 120
SED-MVS97.94 6397.90 6398.07 8699.22 6895.35 10896.79 14098.83 13396.11 13199.08 4298.24 14497.87 2399.72 9095.44 15299.51 13699.14 153
HFP-MVS97.94 6397.64 9498.83 2699.15 8597.50 3097.59 9498.84 12796.05 13497.49 17897.54 21597.07 5999.70 11295.61 14099.46 15299.30 120
LPG-MVS_test97.94 6397.67 8998.74 3599.15 8597.02 4397.09 12499.02 8095.15 18198.34 10898.23 14697.91 2199.70 11294.41 20699.73 6799.50 62
FIs97.93 6698.07 4897.48 13599.38 4792.95 19698.03 6299.11 5298.04 5298.62 7798.66 9193.75 19199.78 5097.23 6999.84 3999.73 21
ZNCC-MVS97.92 6797.62 9898.83 2699.32 5597.24 4097.45 10498.84 12795.76 15396.93 21797.43 22397.26 5099.79 4796.06 11099.53 12699.45 85
region2R97.92 6797.59 10198.92 2299.22 6897.55 2797.60 9298.84 12796.00 13997.22 19097.62 21096.87 7999.76 6495.48 14899.43 16499.46 81
CP-MVS97.92 6797.56 10498.99 1198.99 11097.82 1697.93 6998.96 9996.11 13196.89 22097.45 22196.85 8099.78 5095.19 16699.63 9199.38 106
CS-MVS-test97.91 7097.84 7098.14 8298.52 17196.03 7898.38 3599.67 798.11 4895.50 28896.92 26296.81 8399.87 2596.87 8599.76 5898.51 247
mPP-MVS97.91 7097.53 10799.04 599.22 6897.87 1597.74 8498.78 14796.04 13697.10 20197.73 20396.53 9599.78 5095.16 17099.50 14099.46 81
EC-MVSNet97.90 7297.94 6297.79 10798.66 15195.14 12198.31 4099.66 997.57 7095.95 27197.01 25696.99 6699.82 3797.66 5899.64 8998.39 257
ACMMP_NAP97.89 7397.63 9698.67 4199.35 5096.84 4896.36 16598.79 14395.07 18597.88 16098.35 12497.24 5299.72 9096.05 11299.58 10699.45 85
PGM-MVS97.88 7497.52 10898.96 1499.20 7797.62 2297.09 12499.06 6595.45 16897.55 17397.94 18397.11 5599.78 5094.77 19499.46 15299.48 76
DP-MVS97.87 7597.89 6697.81 10698.62 15894.82 12997.13 12298.79 14398.98 2198.74 7298.49 10895.80 13299.49 19395.04 17999.44 15699.11 163
RPSCF97.87 7597.51 10998.95 1599.15 8598.43 797.56 9699.06 6596.19 12898.48 9198.70 8894.72 16299.24 27194.37 20999.33 19199.17 147
KD-MVS_self_test97.86 7798.07 4897.25 15599.22 6892.81 19897.55 9798.94 10297.10 9398.85 5998.88 7495.03 15599.67 13097.39 6799.65 8799.26 132
test_040297.84 7897.97 5997.47 13699.19 7994.07 15996.71 14898.73 15598.66 2998.56 8398.41 11896.84 8199.69 11994.82 18999.81 4798.64 232
iter_conf0597.83 7998.49 2895.84 24198.88 12389.05 27898.87 1099.42 2299.18 1199.73 599.12 4893.04 20499.91 1598.38 3299.78 5598.58 239
UniMVSNet_NR-MVSNet97.83 7997.65 9198.37 6298.72 14295.78 8595.66 21599.02 8098.11 4898.31 11497.69 20694.65 16799.85 3097.02 8099.71 7499.48 76
UniMVSNet (Re)97.83 7997.65 9198.35 6498.80 13295.86 8495.92 20199.04 7697.51 7598.22 12297.81 19594.68 16599.78 5097.14 7599.75 6599.41 99
casdiffmvs_mvgpermissive97.83 7998.11 4597.00 17598.57 16492.10 22495.97 19699.18 4097.67 6999.00 4898.48 11297.64 3499.50 18896.96 8299.54 12299.40 100
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
GST-MVS97.82 8397.49 11298.81 2899.23 6597.25 3997.16 11898.79 14395.96 14197.53 17497.40 22596.93 7199.77 5995.04 17999.35 18399.42 97
DeepC-MVS95.41 497.82 8397.70 8498.16 7998.78 13795.72 8796.23 17699.02 8093.92 22598.62 7798.99 6097.69 2999.62 15296.18 10899.87 2799.15 150
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
fmvsm_s_conf0.1_n_a97.80 8598.01 5597.18 15899.17 8192.51 20696.57 15399.15 4693.68 23298.89 5699.30 2896.42 10499.37 23599.03 1499.83 4299.66 29
DU-MVS97.79 8697.60 10098.36 6398.73 14095.78 8595.65 21798.87 11697.57 7098.31 11497.83 19194.69 16399.85 3097.02 8099.71 7499.46 81
DVP-MVScopyleft97.78 8797.65 9198.16 7999.24 6395.51 9796.74 14398.23 22295.92 14498.40 9998.28 13797.06 6099.71 10495.48 14899.52 13199.26 132
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
LS3D97.77 8897.50 11198.57 4896.24 33997.58 2598.45 3298.85 12398.58 3297.51 17697.94 18395.74 13499.63 14795.19 16698.97 23798.51 247
GeoE97.75 8997.70 8497.89 10198.88 12394.53 14097.10 12398.98 9595.75 15597.62 17197.59 21297.61 3799.77 5996.34 10199.44 15699.36 112
fmvsm_s_conf0.1_n97.73 9098.02 5496.85 18499.09 9791.43 23996.37 16499.11 5294.19 21599.01 4699.25 3196.30 11099.38 23099.00 1599.88 2599.73 21
3Dnovator+96.13 397.73 9097.59 10198.15 8198.11 22295.60 9398.04 6098.70 16498.13 4796.93 21798.45 11395.30 14899.62 15295.64 13898.96 23899.24 137
tfpnnormal97.72 9297.97 5996.94 17799.26 5992.23 21597.83 7698.45 19498.25 4399.13 4098.66 9196.65 8899.69 11993.92 22899.62 9398.91 196
Baseline_NR-MVSNet97.72 9297.79 7797.50 13199.56 2093.29 18895.44 22798.86 11998.20 4698.37 10299.24 3294.69 16399.55 17595.98 11999.79 5299.65 32
MP-MVS-pluss97.69 9497.36 11798.70 3999.50 3296.84 4895.38 23498.99 9292.45 27398.11 13498.31 12897.25 5199.77 5996.60 9099.62 9399.48 76
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
EG-PatchMatch MVS97.69 9497.79 7797.40 14499.06 10193.52 18195.96 19898.97 9894.55 20598.82 6398.76 8397.31 4699.29 25997.20 7399.44 15699.38 106
fmvsm_l_conf0.5_n97.68 9697.81 7597.27 15298.92 11992.71 20395.89 20399.41 2593.36 24099.00 4898.44 11596.46 10299.65 13899.09 1299.76 5899.45 85
fmvsm_s_conf0.5_n_a97.65 9797.83 7397.13 16298.80 13292.51 20696.25 17499.06 6593.67 23398.64 7599.00 5896.23 11499.36 23898.99 1699.80 5099.53 56
DPE-MVScopyleft97.64 9897.35 11898.50 5298.85 12896.18 7095.21 24798.99 9295.84 15098.78 6698.08 16396.84 8199.81 3993.98 22699.57 10999.52 58
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MP-MVScopyleft97.64 9897.18 12999.00 1099.32 5597.77 1897.49 10398.73 15596.27 12295.59 28697.75 20096.30 11099.78 5093.70 23699.48 14799.45 85
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
fmvsm_s_conf0.5_n97.62 10097.89 6696.80 18898.79 13491.44 23896.14 18399.06 6594.19 21598.82 6398.98 6196.22 11599.38 23098.98 1799.86 3099.58 39
3Dnovator96.53 297.61 10197.64 9497.50 13197.74 26993.65 17898.49 2998.88 11496.86 9997.11 20098.55 10395.82 12799.73 8595.94 12199.42 16799.13 155
fmvsm_l_conf0.5_n_a97.60 10297.76 8197.11 16398.92 11992.28 21395.83 20699.32 2693.22 24698.91 5598.49 10896.31 10999.64 14399.07 1399.76 5899.40 100
SF-MVS97.60 10297.39 11598.22 7598.93 11795.69 8997.05 12699.10 5495.32 17497.83 16697.88 18896.44 10399.72 9094.59 20399.39 17399.25 136
v897.60 10298.06 5096.23 22198.71 14589.44 27097.43 10798.82 14197.29 8998.74 7299.10 5193.86 18799.68 12498.61 2799.94 899.56 50
XVG-ACMP-BASELINE97.58 10597.28 12298.49 5399.16 8296.90 4796.39 16098.98 9595.05 18698.06 14298.02 17495.86 12399.56 17194.37 20999.64 8999.00 179
v1097.55 10697.97 5996.31 21998.60 16089.64 26597.44 10599.02 8096.60 10698.72 7499.16 4493.48 19699.72 9098.76 2299.92 1599.58 39
OPM-MVS97.54 10797.25 12398.41 5999.11 9496.61 5795.24 24598.46 19394.58 20498.10 13698.07 16597.09 5899.39 22795.16 17099.44 15699.21 140
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
XXY-MVS97.54 10797.70 8497.07 16999.46 3592.21 21697.22 11699.00 8994.93 19298.58 8298.92 6897.31 4699.41 22194.44 20499.43 16499.59 38
casdiffmvspermissive97.50 10997.81 7596.56 20598.51 17391.04 24495.83 20699.09 5997.23 9098.33 11198.30 13297.03 6399.37 23596.58 9299.38 17499.28 127
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
SixPastTwentyTwo97.49 11097.57 10397.26 15499.56 2092.33 21198.28 4396.97 29798.30 4299.45 2199.35 2388.43 28999.89 2198.01 4299.76 5899.54 53
SMA-MVScopyleft97.48 11197.11 13198.60 4698.83 12996.67 5496.74 14398.73 15591.61 28698.48 9198.36 12396.53 9599.68 12495.17 16899.54 12299.45 85
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
ACMP92.54 1397.47 11297.10 13298.55 5099.04 10696.70 5296.24 17598.89 10893.71 22997.97 15297.75 20097.44 4099.63 14793.22 24899.70 7799.32 115
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MSP-MVS97.45 11396.92 14699.03 699.26 5997.70 1997.66 8898.89 10895.65 15898.51 8696.46 28992.15 23399.81 3995.14 17398.58 28099.58 39
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
tt080597.44 11497.56 10497.11 16399.55 2296.36 6498.66 1995.66 32298.31 4097.09 20695.45 32897.17 5498.50 35598.67 2697.45 33596.48 368
baseline97.44 11497.78 8096.43 21198.52 17190.75 25196.84 13599.03 7796.51 11297.86 16498.02 17496.67 8799.36 23897.09 7799.47 14999.19 144
MVSMamba_PlusPlus97.43 11697.98 5895.78 24498.88 12389.70 26398.03 6298.85 12399.18 1196.84 22299.12 4893.04 20499.91 1598.38 3299.55 11897.73 322
TSAR-MVS + MP.97.42 11797.23 12598.00 9599.38 4795.00 12597.63 9198.20 22693.00 25898.16 12998.06 17095.89 12299.72 9095.67 13599.10 22599.28 127
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CSCG97.40 11897.30 12097.69 11598.95 11294.83 12897.28 11298.99 9296.35 12198.13 13395.95 31495.99 11999.66 13694.36 21199.73 6798.59 238
test_fmvs397.38 11997.56 10496.84 18698.63 15692.81 19897.60 9299.61 1490.87 29798.76 7199.66 394.03 18397.90 37999.24 799.68 8299.81 7
XVG-OURS-SEG-HR97.38 11997.07 13598.30 6899.01 10997.41 3594.66 27299.02 8095.20 17898.15 13197.52 21798.83 598.43 36094.87 18796.41 35999.07 170
VDD-MVS97.37 12197.25 12397.74 11098.69 14994.50 14397.04 12795.61 32698.59 3198.51 8698.72 8592.54 22599.58 16496.02 11599.49 14399.12 160
SD-MVS97.37 12197.70 8496.35 21698.14 21895.13 12296.54 15598.92 10595.94 14399.19 3798.08 16397.74 2895.06 39995.24 16499.54 12298.87 206
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PM-MVS97.36 12397.10 13298.14 8298.91 12196.77 5096.20 17798.63 17893.82 22698.54 8498.33 12693.98 18499.05 30095.99 11899.45 15598.61 237
LCM-MVSNet-Re97.33 12497.33 11997.32 14898.13 22193.79 17096.99 12999.65 1096.74 10299.47 2098.93 6796.91 7499.84 3390.11 30999.06 23298.32 266
EI-MVSNet-UG-set97.32 12597.40 11497.09 16797.34 30792.01 22795.33 23997.65 27297.74 6098.30 11698.14 15595.04 15499.69 11997.55 6199.52 13199.58 39
EI-MVSNet-Vis-set97.32 12597.39 11597.11 16397.36 30492.08 22595.34 23897.65 27297.74 6098.29 11798.11 16195.05 15399.68 12497.50 6399.50 14099.56 50
VPNet97.26 12797.49 11296.59 20199.47 3490.58 25396.27 17098.53 18797.77 5798.46 9498.41 11894.59 16899.68 12494.61 19999.29 19999.52 58
sasdasda97.23 12897.21 12797.30 14997.65 28194.39 14597.84 7499.05 6997.42 7896.68 23293.85 35497.63 3599.33 24796.29 10298.47 28698.18 283
canonicalmvs97.23 12897.21 12797.30 14997.65 28194.39 14597.84 7499.05 6997.42 7896.68 23293.85 35497.63 3599.33 24796.29 10298.47 28698.18 283
MGCFI-Net97.20 13097.23 12597.08 16897.68 27593.71 17397.79 7799.09 5997.40 8396.59 23993.96 35297.67 3199.35 24296.43 9798.50 28598.17 285
AllTest97.20 13096.92 14698.06 8899.08 9896.16 7197.14 12199.16 4294.35 20997.78 16898.07 16595.84 12499.12 28991.41 27599.42 16798.91 196
dcpmvs_297.12 13297.99 5794.51 30599.11 9484.00 36197.75 8299.65 1097.38 8599.14 3998.42 11795.16 15199.96 295.52 14499.78 5599.58 39
XVG-OURS97.12 13296.74 15698.26 7098.99 11097.45 3393.82 30799.05 6995.19 17998.32 11297.70 20595.22 15098.41 36194.27 21398.13 30198.93 192
Anonymous2024052197.07 13497.51 10995.76 24599.35 5088.18 29597.78 7898.40 20397.11 9298.34 10899.04 5689.58 27599.79 4798.09 3999.93 1199.30 120
test_vis3_rt97.04 13596.98 14097.23 15798.44 18395.88 8196.82 13799.67 790.30 30699.27 3299.33 2794.04 18296.03 39897.14 7597.83 31399.78 10
V4297.04 13597.16 13096.68 19898.59 16291.05 24396.33 16798.36 20894.60 20197.99 14898.30 13293.32 19899.62 15297.40 6699.53 12699.38 106
APD-MVScopyleft97.00 13796.53 17198.41 5998.55 16796.31 6796.32 16898.77 14892.96 26397.44 18497.58 21495.84 12499.74 7991.96 26499.35 18399.19 144
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
HPM-MVS++copyleft96.99 13896.38 17998.81 2898.64 15297.59 2495.97 19698.20 22695.51 16695.06 29896.53 28594.10 18199.70 11294.29 21299.15 21699.13 155
GBi-Net96.99 13896.80 15397.56 12297.96 23393.67 17498.23 4798.66 17295.59 16297.99 14899.19 3789.51 27999.73 8594.60 20099.44 15699.30 120
test196.99 13896.80 15397.56 12297.96 23393.67 17498.23 4798.66 17295.59 16297.99 14899.19 3789.51 27999.73 8594.60 20099.44 15699.30 120
VDDNet96.98 14196.84 15097.41 14399.40 4493.26 19097.94 6895.31 33399.26 998.39 10199.18 4087.85 29899.62 15295.13 17599.09 22699.35 114
PHI-MVS96.96 14296.53 17198.25 7397.48 29496.50 6096.76 14298.85 12393.52 23596.19 26396.85 26595.94 12099.42 21293.79 23299.43 16498.83 209
IS-MVSNet96.93 14396.68 15997.70 11399.25 6294.00 16298.57 2196.74 30698.36 3898.14 13297.98 17988.23 29199.71 10493.10 25199.72 7199.38 106
CNVR-MVS96.92 14496.55 16898.03 9398.00 23195.54 9594.87 26398.17 23294.60 20196.38 25097.05 25295.67 13699.36 23895.12 17699.08 22799.19 144
IterMVS-LS96.92 14497.29 12195.79 24398.51 17388.13 29895.10 25098.66 17296.99 9498.46 9498.68 9092.55 22399.74 7996.91 8399.79 5299.50 62
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
WR-MVS96.90 14696.81 15297.16 15998.56 16692.20 21994.33 28098.12 24197.34 8698.20 12397.33 23692.81 21299.75 7094.79 19199.81 4799.54 53
DeepPCF-MVS94.58 596.90 14696.43 17698.31 6797.48 29497.23 4192.56 34198.60 18092.84 26598.54 8497.40 22596.64 9098.78 32594.40 20899.41 17198.93 192
iter_conf05_1196.88 14896.92 14696.75 19297.70 27392.38 21098.03 6299.03 7794.26 21296.84 22298.43 11691.72 24599.65 13896.67 8799.63 9198.20 280
MM96.87 14996.62 16197.62 11997.72 27193.30 18796.39 16092.61 36497.90 5596.76 22998.64 9590.46 26299.81 3999.16 1099.94 899.76 16
v114496.84 15097.08 13496.13 22898.42 18589.28 27395.41 23198.67 17094.21 21397.97 15298.31 12893.06 20399.65 13898.06 4199.62 9399.45 85
VNet96.84 15096.83 15196.88 18298.06 22392.02 22696.35 16697.57 27897.70 6597.88 16097.80 19692.40 23099.54 17894.73 19698.96 23899.08 168
EPP-MVSNet96.84 15096.58 16597.65 11799.18 8093.78 17198.68 1596.34 31097.91 5497.30 18798.06 17088.46 28899.85 3093.85 23099.40 17299.32 115
v119296.83 15397.06 13696.15 22798.28 19589.29 27295.36 23598.77 14893.73 22898.11 13498.34 12593.02 20999.67 13098.35 3499.58 10699.50 62
MVS_111021_LR96.82 15496.55 16897.62 11998.27 19795.34 11093.81 30998.33 21294.59 20396.56 24296.63 28096.61 9198.73 33094.80 19099.34 18698.78 215
Effi-MVS+-dtu96.81 15596.09 19098.99 1196.90 32798.69 596.42 15998.09 24395.86 14995.15 29695.54 32594.26 17899.81 3994.06 22198.51 28498.47 251
UGNet96.81 15596.56 16797.58 12196.64 33093.84 16897.75 8297.12 29196.47 11693.62 33698.88 7493.22 20199.53 18095.61 14099.69 7899.36 112
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
v2v48296.78 15797.06 13695.95 23598.57 16488.77 28595.36 23598.26 21895.18 18097.85 16598.23 14692.58 22199.63 14797.80 5099.69 7899.45 85
v124096.74 15897.02 13995.91 23898.18 20988.52 28795.39 23398.88 11493.15 25498.46 9498.40 12192.80 21399.71 10498.45 3199.49 14399.49 70
DeepC-MVS_fast94.34 796.74 15896.51 17397.44 13997.69 27494.15 15796.02 19198.43 19793.17 25397.30 18797.38 23195.48 14199.28 26193.74 23399.34 18698.88 204
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MVS_111021_HR96.73 16096.54 17097.27 15298.35 19093.66 17793.42 31998.36 20894.74 19596.58 24096.76 27496.54 9498.99 30794.87 18799.27 20299.15 150
v192192096.72 16196.96 14395.99 23198.21 20388.79 28495.42 22998.79 14393.22 24698.19 12798.26 14292.68 21799.70 11298.34 3599.55 11899.49 70
FMVSNet296.72 16196.67 16096.87 18397.96 23391.88 22997.15 11998.06 24995.59 16298.50 8898.62 9789.51 27999.65 13894.99 18499.60 10299.07 170
PMVScopyleft89.60 1796.71 16396.97 14195.95 23599.51 2997.81 1797.42 10897.49 27997.93 5395.95 27198.58 9996.88 7796.91 39289.59 31799.36 17893.12 397
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
v14419296.69 16496.90 14996.03 23098.25 19988.92 27995.49 22598.77 14893.05 25698.09 13798.29 13692.51 22899.70 11298.11 3899.56 11299.47 79
CPTT-MVS96.69 16496.08 19198.49 5398.89 12296.64 5697.25 11398.77 14892.89 26496.01 27097.13 24692.23 23299.67 13092.24 26199.34 18699.17 147
HQP_MVS96.66 16696.33 18297.68 11698.70 14794.29 15196.50 15698.75 15296.36 11996.16 26496.77 27291.91 24399.46 20192.59 25799.20 20999.28 127
EI-MVSNet96.63 16796.93 14495.74 24697.26 31288.13 29895.29 24397.65 27296.99 9497.94 15598.19 15192.55 22399.58 16496.91 8399.56 11299.50 62
MVS_030496.62 16896.40 17897.28 15197.91 23792.30 21296.47 15889.74 39197.52 7495.38 29298.63 9692.76 21499.81 3999.28 599.93 1199.75 18
patch_mono-296.59 16996.93 14495.55 25698.88 12387.12 32094.47 27799.30 2894.12 21896.65 23798.41 11894.98 15899.87 2595.81 13099.78 5599.66 29
ab-mvs96.59 16996.59 16496.60 20098.64 15292.21 21698.35 3697.67 26894.45 20696.99 21298.79 7894.96 15999.49 19390.39 30699.07 22998.08 289
v14896.58 17196.97 14195.42 26298.63 15687.57 31195.09 25197.90 25495.91 14698.24 12097.96 18093.42 19799.39 22796.04 11399.52 13199.29 126
test20.0396.58 17196.61 16396.48 20998.49 17791.72 23395.68 21497.69 26796.81 10098.27 11897.92 18694.18 18098.71 33390.78 29299.66 8699.00 179
NCCC96.52 17395.99 19598.10 8597.81 25095.68 9095.00 25998.20 22695.39 17295.40 29196.36 29593.81 18999.45 20593.55 23998.42 29099.17 147
pmmvs-eth3d96.49 17496.18 18797.42 14298.25 19994.29 15194.77 26898.07 24889.81 31397.97 15298.33 12693.11 20299.08 29795.46 15199.84 3998.89 200
OMC-MVS96.48 17596.00 19497.91 10098.30 19296.01 7994.86 26498.60 18091.88 28297.18 19597.21 24396.11 11799.04 30190.49 30599.34 18698.69 228
TSAR-MVS + GP.96.47 17696.12 18897.49 13497.74 26995.23 11594.15 29196.90 29993.26 24498.04 14596.70 27694.41 17498.89 31694.77 19499.14 21798.37 259
Fast-Effi-MVS+-dtu96.44 17796.12 18897.39 14597.18 31594.39 14595.46 22698.73 15596.03 13894.72 30694.92 33896.28 11399.69 11993.81 23197.98 30698.09 288
K. test v396.44 17796.28 18396.95 17699.41 4191.53 23597.65 8990.31 38698.89 2498.93 5299.36 2184.57 32299.92 797.81 4999.56 11299.39 104
MSLP-MVS++96.42 17996.71 15795.57 25397.82 24990.56 25595.71 21098.84 12794.72 19696.71 23197.39 22994.91 16098.10 37795.28 16199.02 23498.05 298
test_fmvs296.38 18096.45 17596.16 22697.85 24191.30 24096.81 13899.45 1989.24 31898.49 8999.38 1888.68 28697.62 38498.83 1999.32 19399.57 46
Anonymous20240521196.34 18195.98 19697.43 14098.25 19993.85 16796.74 14394.41 34297.72 6298.37 10298.03 17387.15 30399.53 18094.06 22199.07 22998.92 195
h-mvs3396.29 18295.63 21298.26 7098.50 17696.11 7496.90 13397.09 29296.58 10897.21 19298.19 15184.14 32499.78 5095.89 12496.17 36698.89 200
MVS_Test96.27 18396.79 15594.73 29596.94 32586.63 32896.18 17898.33 21294.94 19096.07 26798.28 13795.25 14999.26 26597.21 7197.90 31198.30 270
MCST-MVS96.24 18495.80 20597.56 12298.75 13994.13 15894.66 27298.17 23290.17 30996.21 26196.10 30895.14 15299.43 21094.13 21998.85 25299.13 155
mvsany_test396.21 18595.93 20097.05 17097.40 30294.33 15095.76 20994.20 34489.10 31999.36 2799.60 693.97 18597.85 38095.40 15998.63 27598.99 182
Effi-MVS+96.19 18696.01 19396.71 19597.43 30092.19 22096.12 18499.10 5495.45 16893.33 34794.71 34197.23 5399.56 17193.21 24997.54 32998.37 259
DELS-MVS96.17 18796.23 18495.99 23197.55 29090.04 25892.38 35098.52 18894.13 21796.55 24497.06 25194.99 15799.58 16495.62 13999.28 20098.37 259
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MVSFormer96.14 18896.36 18095.49 25997.68 27587.81 30798.67 1699.02 8096.50 11394.48 31396.15 30386.90 30499.92 798.73 2399.13 21998.74 221
ETV-MVS96.13 18995.90 20196.82 18797.76 26493.89 16595.40 23298.95 10195.87 14895.58 28791.00 38996.36 10899.72 9093.36 24298.83 25596.85 355
testgi96.07 19096.50 17494.80 29199.26 5987.69 31095.96 19898.58 18495.08 18498.02 14796.25 29997.92 2097.60 38588.68 33198.74 26399.11 163
LF4IMVS96.07 19095.63 21297.36 14698.19 20695.55 9495.44 22798.82 14192.29 27695.70 28496.55 28392.63 22098.69 33691.75 27399.33 19197.85 313
EIA-MVS96.04 19295.77 20796.85 18497.80 25492.98 19596.12 18499.16 4294.65 19993.77 33191.69 38395.68 13599.67 13094.18 21698.85 25297.91 308
diffmvspermissive96.04 19296.23 18495.46 26197.35 30588.03 30193.42 31999.08 6194.09 22196.66 23596.93 26093.85 18899.29 25996.01 11798.67 27099.06 172
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
alignmvs96.01 19495.52 21597.50 13197.77 26394.71 13196.07 18796.84 30097.48 7696.78 22894.28 35085.50 31599.40 22396.22 10698.73 26698.40 255
TinyColmap96.00 19596.34 18194.96 28297.90 23987.91 30394.13 29498.49 19194.41 20798.16 12997.76 19796.29 11298.68 33990.52 30299.42 16798.30 270
PVSNet_Blended_VisFu95.95 19695.80 20596.42 21299.28 5790.62 25295.31 24199.08 6188.40 33196.97 21598.17 15492.11 23599.78 5093.64 23799.21 20898.86 207
SSC-MVS95.92 19797.03 13892.58 35599.28 5778.39 39196.68 15095.12 33598.90 2399.11 4198.66 9191.36 24999.68 12495.00 18299.16 21599.67 27
UnsupCasMVSNet_eth95.91 19895.73 20896.44 21098.48 17991.52 23695.31 24198.45 19495.76 15397.48 18097.54 21589.53 27898.69 33694.43 20594.61 38499.13 155
QAPM95.88 19995.57 21496.80 18897.90 23991.84 23198.18 5498.73 15588.41 33096.42 24898.13 15794.73 16199.75 7088.72 32998.94 24198.81 212
CANet95.86 20095.65 21196.49 20896.41 33690.82 24894.36 27998.41 20194.94 19092.62 36496.73 27592.68 21799.71 10495.12 17699.60 10298.94 188
IterMVS-SCA-FT95.86 20096.19 18694.85 28897.68 27585.53 33992.42 34797.63 27696.99 9498.36 10598.54 10487.94 29399.75 7097.07 7999.08 22799.27 131
test_f95.82 20295.88 20395.66 25097.61 28593.21 19295.61 22198.17 23286.98 34698.42 9799.47 1190.46 26294.74 40197.71 5598.45 28899.03 175
test_vis1_n_192095.77 20396.41 17793.85 32198.55 16784.86 35195.91 20299.71 492.72 26897.67 17098.90 7287.44 30198.73 33097.96 4398.85 25297.96 305
hse-mvs295.77 20395.09 22497.79 10797.84 24695.51 9795.66 21595.43 33196.58 10897.21 19296.16 30284.14 32499.54 17895.89 12496.92 34398.32 266
MVP-Stereo95.69 20595.28 21796.92 17998.15 21693.03 19495.64 22098.20 22690.39 30596.63 23897.73 20391.63 24699.10 29591.84 26997.31 33998.63 234
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
MDA-MVSNet-bldmvs95.69 20595.67 20995.74 24698.48 17988.76 28692.84 33197.25 28496.00 13997.59 17297.95 18291.38 24899.46 20193.16 25096.35 36198.99 182
test_vis1_n95.67 20795.89 20295.03 27798.18 20989.89 26196.94 13199.28 3088.25 33498.20 12398.92 6886.69 30797.19 38797.70 5798.82 25698.00 303
new-patchmatchnet95.67 20796.58 16592.94 34697.48 29480.21 38692.96 32998.19 23194.83 19398.82 6398.79 7893.31 19999.51 18795.83 12899.04 23399.12 160
xiu_mvs_v1_base_debu95.62 20995.96 19794.60 29998.01 22788.42 28893.99 29998.21 22392.98 25995.91 27394.53 34496.39 10599.72 9095.43 15598.19 29895.64 379
xiu_mvs_v1_base95.62 20995.96 19794.60 29998.01 22788.42 28893.99 29998.21 22392.98 25995.91 27394.53 34496.39 10599.72 9095.43 15598.19 29895.64 379
xiu_mvs_v1_base_debi95.62 20995.96 19794.60 29998.01 22788.42 28893.99 29998.21 22392.98 25995.91 27394.53 34496.39 10599.72 9095.43 15598.19 29895.64 379
DP-MVS Recon95.55 21295.13 22296.80 18898.51 17393.99 16394.60 27498.69 16590.20 30895.78 28096.21 30192.73 21698.98 30990.58 30198.86 25197.42 338
WB-MVS95.50 21396.62 16192.11 36499.21 7577.26 39996.12 18495.40 33298.62 3098.84 6198.26 14291.08 25399.50 18893.37 24198.70 26899.58 39
Fast-Effi-MVS+95.49 21495.07 22596.75 19297.67 27992.82 19794.22 28798.60 18091.61 28693.42 34592.90 36596.73 8699.70 11292.60 25697.89 31297.74 321
TAMVS95.49 21494.94 22997.16 15998.31 19193.41 18595.07 25496.82 30291.09 29597.51 17697.82 19489.96 27199.42 21288.42 33499.44 15698.64 232
OpenMVScopyleft94.22 895.48 21695.20 21996.32 21897.16 31691.96 22897.74 8498.84 12787.26 34194.36 31598.01 17693.95 18699.67 13090.70 29898.75 26297.35 341
CLD-MVS95.47 21795.07 22596.69 19798.27 19792.53 20591.36 36498.67 17091.22 29495.78 28094.12 35195.65 13798.98 30990.81 29099.72 7198.57 240
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
train_agg95.46 21894.66 24597.88 10297.84 24695.23 11593.62 31398.39 20487.04 34493.78 32995.99 31094.58 16999.52 18391.76 27298.90 24598.89 200
CDPH-MVS95.45 21994.65 24697.84 10598.28 19594.96 12693.73 31198.33 21285.03 36795.44 28996.60 28195.31 14799.44 20890.01 31199.13 21999.11 163
IterMVS95.42 22095.83 20494.20 31697.52 29183.78 36392.41 34897.47 28195.49 16798.06 14298.49 10887.94 29399.58 16496.02 11599.02 23499.23 138
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
mvs_anonymous95.36 22196.07 19293.21 33796.29 33881.56 37894.60 27497.66 27093.30 24396.95 21698.91 7193.03 20899.38 23096.60 9097.30 34098.69 228
test_cas_vis1_n_192095.34 22295.67 20994.35 31198.21 20386.83 32695.61 22199.26 3190.45 30498.17 12898.96 6484.43 32398.31 36996.74 8699.17 21497.90 309
MSDG95.33 22395.13 22295.94 23797.40 30291.85 23091.02 37598.37 20795.30 17596.31 25595.99 31094.51 17298.38 36489.59 31797.65 32697.60 330
LFMVS95.32 22494.88 23596.62 19998.03 22491.47 23797.65 8990.72 38299.11 1397.89 15998.31 12879.20 34899.48 19693.91 22999.12 22298.93 192
F-COLMAP95.30 22594.38 26398.05 9298.64 15296.04 7695.61 22198.66 17289.00 32293.22 34896.40 29392.90 21099.35 24287.45 34997.53 33098.77 218
Anonymous2023120695.27 22695.06 22795.88 23998.72 14289.37 27195.70 21197.85 25788.00 33796.98 21497.62 21091.95 24099.34 24589.21 32299.53 12698.94 188
FMVSNet395.26 22794.94 22996.22 22396.53 33390.06 25795.99 19497.66 27094.11 21997.99 14897.91 18780.22 34699.63 14794.60 20099.44 15698.96 185
test_fmvs1_n95.21 22895.28 21794.99 28098.15 21689.13 27796.81 13899.43 2186.97 34797.21 19298.92 6883.00 33297.13 38898.09 3998.94 24198.72 224
c3_l95.20 22995.32 21694.83 29096.19 34386.43 33191.83 35998.35 21193.47 23797.36 18697.26 24088.69 28599.28 26195.41 15899.36 17898.78 215
D2MVS95.18 23095.17 22195.21 26897.76 26487.76 30994.15 29197.94 25289.77 31496.99 21297.68 20787.45 30099.14 28595.03 18199.81 4798.74 221
N_pmnet95.18 23094.23 26698.06 8897.85 24196.55 5992.49 34291.63 37289.34 31698.09 13797.41 22490.33 26599.06 29991.58 27499.31 19698.56 241
HQP-MVS95.17 23294.58 25496.92 17997.85 24192.47 20894.26 28198.43 19793.18 25092.86 35595.08 33290.33 26599.23 27390.51 30398.74 26399.05 174
Vis-MVSNet (Re-imp)95.11 23394.85 23695.87 24099.12 9389.17 27497.54 10294.92 33796.50 11396.58 24097.27 23983.64 32899.48 19688.42 33499.67 8498.97 184
AdaColmapbinary95.11 23394.62 25096.58 20297.33 30994.45 14494.92 26198.08 24493.15 25493.98 32795.53 32694.34 17699.10 29585.69 36198.61 27796.20 373
API-MVS95.09 23595.01 22895.31 26596.61 33194.02 16196.83 13697.18 28895.60 16195.79 27894.33 34994.54 17198.37 36685.70 36098.52 28293.52 394
CL-MVSNet_self_test95.04 23694.79 24295.82 24297.51 29289.79 26291.14 37296.82 30293.05 25696.72 23096.40 29390.82 25799.16 28391.95 26598.66 27298.50 249
CNLPA95.04 23694.47 25996.75 19297.81 25095.25 11494.12 29597.89 25594.41 20794.57 30995.69 31990.30 26898.35 36786.72 35698.76 26196.64 363
Patchmtry95.03 23894.59 25396.33 21794.83 38190.82 24896.38 16397.20 28696.59 10797.49 17898.57 10077.67 35599.38 23092.95 25499.62 9398.80 213
PVSNet_BlendedMVS95.02 23994.93 23195.27 26697.79 25987.40 31594.14 29398.68 16788.94 32394.51 31198.01 17693.04 20499.30 25589.77 31599.49 14399.11 163
TAPA-MVS93.32 1294.93 24094.23 26697.04 17298.18 20994.51 14195.22 24698.73 15581.22 38696.25 25995.95 31493.80 19098.98 30989.89 31398.87 24997.62 328
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
FA-MVS(test-final)94.91 24194.89 23494.99 28097.51 29288.11 30098.27 4595.20 33492.40 27596.68 23298.60 9883.44 32999.28 26193.34 24398.53 28197.59 331
eth_miper_zixun_eth94.89 24294.93 23194.75 29495.99 35186.12 33491.35 36598.49 19193.40 23897.12 19997.25 24186.87 30699.35 24295.08 17898.82 25698.78 215
CDS-MVSNet94.88 24394.12 27197.14 16197.64 28393.57 17993.96 30397.06 29490.05 31096.30 25696.55 28386.10 30999.47 19890.10 31099.31 19698.40 255
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MS-PatchMatch94.83 24494.91 23394.57 30296.81 32887.10 32194.23 28697.34 28388.74 32697.14 19797.11 24891.94 24198.23 37392.99 25297.92 30998.37 259
pmmvs494.82 24594.19 26996.70 19697.42 30192.75 20292.09 35596.76 30486.80 34995.73 28397.22 24289.28 28298.89 31693.28 24699.14 21798.46 253
miper_lstm_enhance94.81 24694.80 24194.85 28896.16 34586.45 33091.14 37298.20 22693.49 23697.03 20997.37 23384.97 31999.26 26595.28 16199.56 11298.83 209
cl____94.73 24794.64 24795.01 27895.85 35787.00 32291.33 36698.08 24493.34 24197.10 20197.33 23684.01 32799.30 25595.14 17399.56 11298.71 227
DIV-MVS_self_test94.73 24794.64 24795.01 27895.86 35687.00 32291.33 36698.08 24493.34 24197.10 20197.34 23584.02 32699.31 25295.15 17299.55 11898.72 224
YYNet194.73 24794.84 23794.41 30997.47 29885.09 34890.29 38295.85 32092.52 27097.53 17497.76 19791.97 23999.18 27893.31 24596.86 34698.95 186
MDA-MVSNet_test_wron94.73 24794.83 23994.42 30897.48 29485.15 34690.28 38395.87 31992.52 27097.48 18097.76 19791.92 24299.17 28293.32 24496.80 35198.94 188
UnsupCasMVSNet_bld94.72 25194.26 26596.08 22998.62 15890.54 25693.38 32198.05 25090.30 30697.02 21096.80 27189.54 27699.16 28388.44 33396.18 36598.56 241
miper_ehance_all_eth94.69 25294.70 24494.64 29695.77 36286.22 33391.32 36898.24 22191.67 28497.05 20896.65 27988.39 29099.22 27594.88 18698.34 29298.49 250
BH-untuned94.69 25294.75 24394.52 30497.95 23687.53 31294.07 29697.01 29593.99 22397.10 20195.65 32192.65 21998.95 31487.60 34496.74 35297.09 345
RPMNet94.68 25494.60 25194.90 28595.44 37088.15 29696.18 17898.86 11997.43 7794.10 32098.49 10879.40 34799.76 6495.69 13395.81 36996.81 359
Patchmatch-RL test94.66 25594.49 25795.19 26998.54 16988.91 28092.57 34098.74 15491.46 28998.32 11297.75 20077.31 36098.81 32396.06 11099.61 9997.85 313
CANet_DTU94.65 25694.21 26895.96 23395.90 35389.68 26493.92 30497.83 26193.19 24990.12 38595.64 32288.52 28799.57 17093.27 24799.47 14998.62 235
pmmvs594.63 25794.34 26495.50 25897.63 28488.34 29194.02 29797.13 29087.15 34395.22 29597.15 24587.50 29999.27 26493.99 22599.26 20398.88 204
PAPM_NR94.61 25894.17 27095.96 23398.36 18991.23 24195.93 20097.95 25192.98 25993.42 34594.43 34890.53 26098.38 36487.60 34496.29 36398.27 274
PatchMatch-RL94.61 25893.81 27897.02 17498.19 20695.72 8793.66 31297.23 28588.17 33594.94 30395.62 32391.43 24798.57 34887.36 35097.68 32396.76 361
BH-RMVSNet94.56 26094.44 26294.91 28397.57 28787.44 31493.78 31096.26 31193.69 23196.41 24996.50 28892.10 23699.00 30585.96 35897.71 32098.31 268
USDC94.56 26094.57 25694.55 30397.78 26286.43 33192.75 33498.65 17785.96 35596.91 21997.93 18590.82 25798.74 32990.71 29799.59 10498.47 251
test111194.53 26294.81 24093.72 32499.06 10181.94 37698.31 4083.87 40596.37 11898.49 8999.17 4381.49 33799.73 8596.64 8899.86 3099.49 70
test_fmvs194.51 26394.60 25194.26 31595.91 35287.92 30295.35 23799.02 8086.56 35196.79 22498.52 10582.64 33497.00 39197.87 4698.71 26797.88 311
ppachtmachnet_test94.49 26494.84 23793.46 33096.16 34582.10 37390.59 37997.48 28090.53 30397.01 21197.59 21291.01 25499.36 23893.97 22799.18 21398.94 188
test_yl94.40 26594.00 27495.59 25196.95 32389.52 26894.75 26995.55 32896.18 12996.79 22496.14 30581.09 34199.18 27890.75 29397.77 31498.07 291
DCV-MVSNet94.40 26594.00 27495.59 25196.95 32389.52 26894.75 26995.55 32896.18 12996.79 22496.14 30581.09 34199.18 27890.75 29397.77 31498.07 291
jason94.39 26794.04 27395.41 26498.29 19387.85 30692.74 33696.75 30585.38 36495.29 29396.15 30388.21 29299.65 13894.24 21499.34 18698.74 221
jason: jason.
ECVR-MVScopyleft94.37 26894.48 25894.05 32098.95 11283.10 36698.31 4082.48 40796.20 12698.23 12199.16 4481.18 34099.66 13695.95 12099.83 4299.38 106
EU-MVSNet94.25 26994.47 25993.60 32798.14 21882.60 37197.24 11592.72 36185.08 36598.48 9198.94 6682.59 33598.76 32897.47 6599.53 12699.44 95
xiu_mvs_v2_base94.22 27094.63 24992.99 34497.32 31084.84 35292.12 35397.84 25991.96 28094.17 31893.43 35696.07 11899.71 10491.27 27897.48 33294.42 389
sss94.22 27093.72 27995.74 24697.71 27289.95 26093.84 30696.98 29688.38 33293.75 33295.74 31887.94 29398.89 31691.02 28498.10 30298.37 259
MVSTER94.21 27293.93 27795.05 27695.83 35886.46 32995.18 24897.65 27292.41 27497.94 15598.00 17872.39 38299.58 16496.36 10099.56 11299.12 160
MAR-MVS94.21 27293.03 29097.76 10996.94 32597.44 3496.97 13097.15 28987.89 33992.00 36992.73 37092.14 23499.12 28983.92 37597.51 33196.73 362
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
our_test_394.20 27494.58 25493.07 33996.16 34581.20 38190.42 38196.84 30090.72 29997.14 19797.13 24690.47 26199.11 29294.04 22498.25 29698.91 196
1112_ss94.12 27593.42 28496.23 22198.59 16290.85 24794.24 28598.85 12385.49 36092.97 35394.94 33686.01 31099.64 14391.78 27197.92 30998.20 280
PS-MVSNAJ94.10 27694.47 25993.00 34397.35 30584.88 35091.86 35897.84 25991.96 28094.17 31892.50 37495.82 12799.71 10491.27 27897.48 33294.40 390
CHOSEN 1792x268894.10 27693.41 28596.18 22599.16 8290.04 25892.15 35298.68 16779.90 39196.22 26097.83 19187.92 29799.42 21289.18 32399.65 8799.08 168
MG-MVS94.08 27894.00 27494.32 31297.09 31985.89 33693.19 32795.96 31792.52 27094.93 30497.51 21889.54 27698.77 32687.52 34897.71 32098.31 268
PLCcopyleft91.02 1694.05 27992.90 29397.51 12798.00 23195.12 12394.25 28498.25 21986.17 35391.48 37495.25 33091.01 25499.19 27785.02 37096.69 35498.22 278
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
test_vis1_rt94.03 28093.65 28095.17 27195.76 36393.42 18493.97 30298.33 21284.68 37193.17 34995.89 31692.53 22794.79 40093.50 24094.97 38097.31 342
114514_t93.96 28193.22 28896.19 22499.06 10190.97 24695.99 19498.94 10273.88 40493.43 34496.93 26092.38 23199.37 23589.09 32499.28 20098.25 276
PVSNet_Blended93.96 28193.65 28094.91 28397.79 25987.40 31591.43 36398.68 16784.50 37494.51 31194.48 34793.04 20499.30 25589.77 31598.61 27798.02 301
AUN-MVS93.95 28392.69 30197.74 11097.80 25495.38 10595.57 22495.46 33091.26 29392.64 36296.10 30874.67 37199.55 17593.72 23596.97 34298.30 270
lupinMVS93.77 28493.28 28695.24 26797.68 27587.81 30792.12 35396.05 31384.52 37394.48 31395.06 33486.90 30499.63 14793.62 23899.13 21998.27 274
PatchT93.75 28593.57 28294.29 31495.05 37887.32 31796.05 18892.98 35797.54 7394.25 31698.72 8575.79 36899.24 27195.92 12295.81 36996.32 370
EPNet93.72 28692.62 30497.03 17387.61 41292.25 21496.27 17091.28 37696.74 10287.65 39897.39 22985.00 31899.64 14392.14 26299.48 14799.20 143
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
HyFIR lowres test93.72 28692.65 30296.91 18198.93 11791.81 23291.23 37098.52 18882.69 37996.46 24796.52 28780.38 34599.90 1890.36 30798.79 25899.03 175
DPM-MVS93.68 28892.77 30096.42 21297.91 23792.54 20491.17 37197.47 28184.99 36993.08 35194.74 34089.90 27299.00 30587.54 34698.09 30397.72 323
PMMVS293.66 28994.07 27292.45 35997.57 28780.67 38486.46 39796.00 31593.99 22397.10 20197.38 23189.90 27297.82 38188.76 32899.47 14998.86 207
OpenMVS_ROBcopyleft91.80 1493.64 29093.05 28995.42 26297.31 31191.21 24295.08 25396.68 30881.56 38396.88 22196.41 29190.44 26499.25 26785.39 36697.67 32495.80 377
Patchmatch-test93.60 29193.25 28794.63 29796.14 34987.47 31396.04 18994.50 34193.57 23496.47 24696.97 25776.50 36398.61 34590.67 29998.41 29197.81 317
WTY-MVS93.55 29293.00 29295.19 26997.81 25087.86 30493.89 30596.00 31589.02 32194.07 32295.44 32986.27 30899.33 24787.69 34296.82 34998.39 257
Test_1112_low_res93.53 29392.86 29495.54 25798.60 16088.86 28292.75 33498.69 16582.66 38092.65 36196.92 26284.75 32099.56 17190.94 28697.76 31698.19 282
mvsany_test193.47 29493.03 29094.79 29294.05 39392.12 22190.82 37790.01 39085.02 36897.26 18998.28 13793.57 19497.03 38992.51 25995.75 37495.23 385
MIMVSNet93.42 29592.86 29495.10 27498.17 21288.19 29498.13 5693.69 34792.07 27795.04 30198.21 15080.95 34399.03 30481.42 38598.06 30498.07 291
FMVSNet593.39 29692.35 30696.50 20795.83 35890.81 25097.31 11098.27 21792.74 26796.27 25798.28 13762.23 39899.67 13090.86 28899.36 17899.03 175
SCA93.38 29793.52 28392.96 34596.24 33981.40 38093.24 32594.00 34591.58 28894.57 30996.97 25787.94 29399.42 21289.47 31997.66 32598.06 295
tttt051793.31 29892.56 30595.57 25398.71 14587.86 30497.44 10587.17 39995.79 15297.47 18296.84 26664.12 39699.81 3996.20 10799.32 19399.02 178
CR-MVSNet93.29 29992.79 29794.78 29395.44 37088.15 29696.18 17897.20 28684.94 37094.10 32098.57 10077.67 35599.39 22795.17 16895.81 36996.81 359
cl2293.25 30092.84 29694.46 30794.30 38786.00 33591.09 37496.64 30990.74 29895.79 27896.31 29778.24 35298.77 32694.15 21898.34 29298.62 235
wuyk23d93.25 30095.20 21987.40 38796.07 35095.38 10597.04 12794.97 33695.33 17399.70 998.11 16198.14 1791.94 40577.76 39699.68 8274.89 405
miper_enhance_ethall93.14 30292.78 29994.20 31693.65 39685.29 34389.97 38597.85 25785.05 36696.15 26694.56 34385.74 31299.14 28593.74 23398.34 29298.17 285
baseline193.14 30292.64 30394.62 29897.34 30787.20 31996.67 15293.02 35694.71 19796.51 24595.83 31781.64 33698.60 34790.00 31288.06 40198.07 291
FE-MVS92.95 30492.22 30895.11 27297.21 31488.33 29298.54 2493.66 35089.91 31296.21 26198.14 15570.33 38999.50 18887.79 34098.24 29797.51 334
X-MVStestdata92.86 30590.83 33298.94 1699.15 8597.66 2097.77 7998.83 13397.42 7896.32 25336.50 40996.49 9899.72 9095.66 13699.37 17599.45 85
GA-MVS92.83 30692.15 31094.87 28796.97 32287.27 31890.03 38496.12 31291.83 28394.05 32394.57 34276.01 36798.97 31392.46 26097.34 33898.36 264
CMPMVSbinary73.10 2392.74 30791.39 31996.77 19193.57 39894.67 13494.21 28897.67 26880.36 39093.61 33796.60 28182.85 33397.35 38684.86 37198.78 25998.29 273
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
thisisatest053092.71 30891.76 31695.56 25598.42 18588.23 29396.03 19087.35 39894.04 22296.56 24295.47 32764.03 39799.77 5994.78 19399.11 22398.68 231
HY-MVS91.43 1592.58 30991.81 31494.90 28596.49 33488.87 28197.31 11094.62 33985.92 35690.50 38096.84 26685.05 31799.40 22383.77 37895.78 37296.43 369
TR-MVS92.54 31092.20 30993.57 32896.49 33486.66 32793.51 31794.73 33889.96 31194.95 30293.87 35390.24 27098.61 34581.18 38694.88 38195.45 383
PMMVS92.39 31191.08 32696.30 22093.12 40092.81 19890.58 38095.96 31779.17 39491.85 37192.27 37590.29 26998.66 34189.85 31496.68 35597.43 337
131492.38 31292.30 30792.64 35495.42 37285.15 34695.86 20496.97 29785.40 36390.62 37793.06 36391.12 25297.80 38286.74 35595.49 37794.97 387
new_pmnet92.34 31391.69 31794.32 31296.23 34189.16 27592.27 35192.88 35884.39 37695.29 29396.35 29685.66 31396.74 39684.53 37397.56 32897.05 346
CVMVSNet92.33 31492.79 29790.95 37197.26 31275.84 40395.29 24392.33 36681.86 38196.27 25798.19 15181.44 33898.46 35994.23 21598.29 29598.55 243
PAPR92.22 31591.27 32395.07 27595.73 36588.81 28391.97 35697.87 25685.80 35890.91 37692.73 37091.16 25198.33 36879.48 39095.76 37398.08 289
DSMNet-mixed92.19 31691.83 31393.25 33496.18 34483.68 36496.27 17093.68 34976.97 40192.54 36599.18 4089.20 28498.55 35183.88 37698.60 27997.51 334
BH-w/o92.14 31791.94 31192.73 35297.13 31885.30 34292.46 34495.64 32389.33 31794.21 31792.74 36989.60 27498.24 37281.68 38494.66 38394.66 388
PCF-MVS89.43 1892.12 31890.64 33596.57 20497.80 25493.48 18289.88 38998.45 19474.46 40396.04 26995.68 32090.71 25999.31 25273.73 40199.01 23696.91 352
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
Syy-MVS92.09 31991.80 31592.93 34795.19 37582.65 36992.46 34491.35 37490.67 30191.76 37287.61 40185.64 31498.50 35594.73 19696.84 34797.65 326
dmvs_re92.08 32091.27 32394.51 30597.16 31692.79 20195.65 21792.64 36394.11 21992.74 35890.98 39083.41 33094.44 40380.72 38794.07 38796.29 371
thres600view792.03 32191.43 31893.82 32298.19 20684.61 35496.27 17090.39 38396.81 10096.37 25193.11 35873.44 38099.49 19380.32 38897.95 30897.36 339
PatchmatchNetpermissive91.98 32291.87 31292.30 36194.60 38479.71 38795.12 24993.59 35289.52 31593.61 33797.02 25477.94 35399.18 27890.84 28994.57 38698.01 302
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
cascas91.89 32391.35 32093.51 32994.27 38885.60 33888.86 39498.61 17979.32 39392.16 36891.44 38589.22 28398.12 37690.80 29197.47 33496.82 358
JIA-IIPM91.79 32490.69 33495.11 27293.80 39590.98 24594.16 29091.78 37196.38 11790.30 38399.30 2872.02 38398.90 31588.28 33690.17 39795.45 383
thres100view90091.76 32591.26 32593.26 33398.21 20384.50 35596.39 16090.39 38396.87 9896.33 25293.08 36273.44 38099.42 21278.85 39397.74 31795.85 375
thres40091.68 32691.00 32793.71 32598.02 22584.35 35795.70 21190.79 38096.26 12395.90 27692.13 37873.62 37799.42 21278.85 39397.74 31797.36 339
tfpn200view991.55 32791.00 32793.21 33798.02 22584.35 35795.70 21190.79 38096.26 12395.90 27692.13 37873.62 37799.42 21278.85 39397.74 31795.85 375
WB-MVSnew91.50 32891.29 32192.14 36394.85 38080.32 38593.29 32488.77 39488.57 32994.03 32492.21 37692.56 22298.28 37180.21 38997.08 34197.81 317
ADS-MVSNet291.47 32990.51 33794.36 31095.51 36885.63 33795.05 25695.70 32183.46 37792.69 35996.84 26679.15 34999.41 22185.66 36290.52 39598.04 299
EPNet_dtu91.39 33090.75 33393.31 33290.48 40982.61 37094.80 26592.88 35893.39 23981.74 40694.90 33981.36 33999.11 29288.28 33698.87 24998.21 279
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
ET-MVSNet_ETH3D91.12 33189.67 34395.47 26096.41 33689.15 27691.54 36290.23 38789.07 32086.78 40292.84 36769.39 39199.44 20894.16 21796.61 35697.82 315
PVSNet86.72 1991.10 33290.97 32991.49 36897.56 28978.04 39387.17 39694.60 34084.65 37292.34 36692.20 37787.37 30298.47 35885.17 36997.69 32297.96 305
tpm91.08 33390.85 33191.75 36795.33 37378.09 39295.03 25891.27 37788.75 32593.53 34097.40 22571.24 38499.30 25591.25 28093.87 38897.87 312
thres20091.00 33490.42 33892.77 35197.47 29883.98 36294.01 29891.18 37895.12 18395.44 28991.21 38773.93 37399.31 25277.76 39697.63 32795.01 386
ADS-MVSNet90.95 33590.26 33993.04 34095.51 36882.37 37295.05 25693.41 35383.46 37792.69 35996.84 26679.15 34998.70 33485.66 36290.52 39598.04 299
tpmvs90.79 33690.87 33090.57 37492.75 40476.30 40195.79 20893.64 35191.04 29691.91 37096.26 29877.19 36198.86 32089.38 32189.85 39896.56 366
thisisatest051590.43 33789.18 34994.17 31897.07 32085.44 34089.75 39087.58 39788.28 33393.69 33591.72 38265.27 39599.58 16490.59 30098.67 27097.50 336
tpmrst90.31 33890.61 33689.41 37994.06 39272.37 41095.06 25593.69 34788.01 33692.32 36796.86 26477.45 35798.82 32191.04 28387.01 40297.04 347
test0.0.03 190.11 33989.21 34692.83 34993.89 39486.87 32591.74 36088.74 39592.02 27894.71 30791.14 38873.92 37494.48 40283.75 37992.94 39097.16 344
MVS90.02 34089.20 34792.47 35894.71 38286.90 32495.86 20496.74 30664.72 40690.62 37792.77 36892.54 22598.39 36379.30 39195.56 37692.12 398
pmmvs390.00 34188.90 35193.32 33194.20 39185.34 34191.25 36992.56 36578.59 39593.82 32895.17 33167.36 39498.69 33689.08 32598.03 30595.92 374
CHOSEN 280x42089.98 34289.19 34892.37 36095.60 36781.13 38286.22 39897.09 29281.44 38587.44 39993.15 35773.99 37299.47 19888.69 33099.07 22996.52 367
test-LLR89.97 34389.90 34190.16 37594.24 38974.98 40489.89 38689.06 39292.02 27889.97 38690.77 39173.92 37498.57 34891.88 26797.36 33696.92 350
FPMVS89.92 34488.63 35293.82 32298.37 18896.94 4691.58 36193.34 35488.00 33790.32 38297.10 24970.87 38791.13 40671.91 40496.16 36793.39 396
test250689.86 34589.16 35091.97 36598.95 11276.83 40098.54 2461.07 41496.20 12697.07 20799.16 4455.19 40899.69 11996.43 9799.83 4299.38 106
CostFormer89.75 34689.25 34491.26 37094.69 38378.00 39495.32 24091.98 36981.50 38490.55 37996.96 25971.06 38698.89 31688.59 33292.63 39296.87 353
testing389.72 34788.26 35694.10 31997.66 28084.30 35994.80 26588.25 39694.66 19895.07 29792.51 37341.15 41499.43 21091.81 27098.44 28998.55 243
testing9189.67 34888.55 35393.04 34095.90 35381.80 37792.71 33893.71 34693.71 22990.18 38490.15 39557.11 40099.22 27587.17 35396.32 36298.12 287
baseline289.65 34988.44 35593.25 33495.62 36682.71 36893.82 30785.94 40288.89 32487.35 40092.54 37271.23 38599.33 24786.01 35794.60 38597.72 323
E-PMN89.52 35089.78 34288.73 38193.14 39977.61 39583.26 40392.02 36894.82 19493.71 33393.11 35875.31 36996.81 39385.81 35996.81 35091.77 400
EPMVS89.26 35188.55 35391.39 36992.36 40579.11 39095.65 21779.86 40888.60 32893.12 35096.53 28570.73 38898.10 37790.75 29389.32 39996.98 348
testing9989.21 35288.04 35892.70 35395.78 36181.00 38392.65 33992.03 36793.20 24889.90 38890.08 39755.25 40699.14 28587.54 34695.95 36897.97 304
EMVS89.06 35389.22 34588.61 38293.00 40177.34 39782.91 40490.92 37994.64 20092.63 36391.81 38176.30 36597.02 39083.83 37796.90 34591.48 401
testing1188.93 35487.63 36292.80 35095.87 35581.49 37992.48 34391.54 37391.62 28588.27 39690.24 39355.12 40999.11 29287.30 35196.28 36497.81 317
KD-MVS_2432*160088.93 35487.74 35992.49 35688.04 41081.99 37489.63 39195.62 32491.35 29195.06 29893.11 35856.58 40298.63 34385.19 36795.07 37896.85 355
miper_refine_blended88.93 35487.74 35992.49 35688.04 41081.99 37489.63 39195.62 32491.35 29195.06 29893.11 35856.58 40298.63 34385.19 36795.07 37896.85 355
IB-MVS85.98 2088.63 35786.95 36793.68 32695.12 37784.82 35390.85 37690.17 38887.55 34088.48 39591.34 38658.01 39999.59 16287.24 35293.80 38996.63 365
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
tpm288.47 35887.69 36190.79 37294.98 37977.34 39795.09 25191.83 37077.51 40089.40 39096.41 29167.83 39398.73 33083.58 38092.60 39396.29 371
MVS-HIRNet88.40 35990.20 34082.99 38897.01 32160.04 41393.11 32885.61 40384.45 37588.72 39499.09 5384.72 32198.23 37382.52 38296.59 35790.69 403
gg-mvs-nofinetune88.28 36086.96 36692.23 36292.84 40384.44 35698.19 5374.60 41099.08 1487.01 40199.47 1156.93 40198.23 37378.91 39295.61 37594.01 392
dp88.08 36188.05 35788.16 38692.85 40268.81 41294.17 28992.88 35885.47 36191.38 37596.14 30568.87 39298.81 32386.88 35483.80 40596.87 353
tpm cat188.01 36287.33 36390.05 37894.48 38576.28 40294.47 27794.35 34373.84 40589.26 39195.61 32473.64 37698.30 37084.13 37486.20 40395.57 382
test-mter87.92 36387.17 36490.16 37594.24 38974.98 40489.89 38689.06 39286.44 35289.97 38690.77 39154.96 41098.57 34891.88 26797.36 33696.92 350
PAPM87.64 36485.84 37193.04 34096.54 33284.99 34988.42 39595.57 32779.52 39283.82 40393.05 36480.57 34498.41 36162.29 40792.79 39195.71 378
ETVMVS87.62 36585.75 37293.22 33696.15 34883.26 36592.94 33090.37 38591.39 29090.37 38188.45 39951.93 41198.64 34273.76 40096.38 36097.75 320
UWE-MVS87.57 36686.72 36890.13 37795.21 37473.56 40791.94 35783.78 40688.73 32793.00 35292.87 36655.22 40799.25 26781.74 38397.96 30797.59 331
testing22287.35 36785.50 37492.93 34795.79 36082.83 36792.40 34990.10 38992.80 26688.87 39389.02 39848.34 41298.70 33475.40 39996.74 35297.27 343
dmvs_testset87.30 36886.99 36588.24 38496.71 32977.48 39694.68 27186.81 40192.64 26989.61 38987.01 40385.91 31193.12 40461.04 40888.49 40094.13 391
TESTMET0.1,187.20 36986.57 36989.07 38093.62 39772.84 40989.89 38687.01 40085.46 36289.12 39290.20 39456.00 40597.72 38390.91 28796.92 34396.64 363
myMVS_eth3d87.16 37085.61 37391.82 36695.19 37579.32 38892.46 34491.35 37490.67 30191.76 37287.61 40141.96 41398.50 35582.66 38196.84 34797.65 326
MVEpermissive73.61 2286.48 37185.92 37088.18 38596.23 34185.28 34481.78 40575.79 40986.01 35482.53 40591.88 38092.74 21587.47 40871.42 40594.86 38291.78 399
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PVSNet_081.89 2184.49 37283.21 37588.34 38395.76 36374.97 40683.49 40292.70 36278.47 39687.94 39786.90 40483.38 33196.63 39773.44 40266.86 40893.40 395
EGC-MVSNET83.08 37377.93 37698.53 5199.57 1997.55 2798.33 3998.57 1854.71 41110.38 41298.90 7295.60 13999.50 18895.69 13399.61 9998.55 243
test_method66.88 37466.13 37769.11 39062.68 41525.73 41849.76 40696.04 31414.32 41064.27 41091.69 38373.45 37988.05 40776.06 39866.94 40793.54 393
dongtai63.43 37563.37 37863.60 39183.91 41353.17 41585.14 39943.40 41777.91 39980.96 40779.17 40736.36 41577.10 40937.88 41045.63 40960.54 406
tmp_tt57.23 37662.50 37941.44 39334.77 41649.21 41783.93 40160.22 41515.31 40971.11 40979.37 40670.09 39044.86 41264.76 40682.93 40630.25 408
kuosan54.81 37754.94 38054.42 39274.43 41450.03 41684.98 40044.27 41661.80 40762.49 41170.43 40835.16 41658.04 41119.30 41141.61 41055.19 407
cdsmvs_eth3d_5k24.22 37832.30 3810.00 3960.00 4190.00 4210.00 40798.10 2420.00 4140.00 41595.06 33497.54 390.00 4150.00 4140.00 4130.00 411
test12312.59 37915.49 3823.87 3946.07 4172.55 41990.75 3782.59 4192.52 4125.20 41413.02 4114.96 4171.85 4145.20 4129.09 4117.23 409
testmvs12.33 38015.23 3833.64 3955.77 4182.23 42088.99 3933.62 4182.30 4135.29 41313.09 4104.52 4181.95 4135.16 4138.32 4126.75 410
pcd_1.5k_mvsjas7.98 38110.65 3840.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 41495.82 1270.00 4150.00 4140.00 4130.00 411
ab-mvs-re7.91 38210.55 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 41594.94 3360.00 4190.00 4150.00 4140.00 4130.00 411
test_blank0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uanet_test0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
DCPMVS0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
sosnet-low-res0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
sosnet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uncertanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
Regformer0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
WAC-MVS79.32 38885.41 365
FOURS199.59 1798.20 899.03 899.25 3398.96 2298.87 58
MSC_two_6792asdad98.22 7597.75 26695.34 11098.16 23699.75 7095.87 12699.51 13699.57 46
PC_three_145287.24 34298.37 10297.44 22297.00 6596.78 39592.01 26399.25 20499.21 140
No_MVS98.22 7597.75 26695.34 11098.16 23699.75 7095.87 12699.51 13699.57 46
test_one_060199.05 10595.50 10098.87 11697.21 9198.03 14698.30 13296.93 71
eth-test20.00 419
eth-test0.00 419
ZD-MVS98.43 18495.94 8098.56 18690.72 29996.66 23597.07 25095.02 15699.74 7991.08 28298.93 243
RE-MVS-def97.88 6898.81 13098.05 1097.55 9798.86 11997.77 5798.20 12398.07 16596.94 6995.49 14599.20 20999.26 132
IU-MVS99.22 6895.40 10398.14 23985.77 35998.36 10595.23 16599.51 13699.49 70
OPU-MVS97.64 11898.01 22795.27 11396.79 14097.35 23496.97 6798.51 35491.21 28199.25 20499.14 153
test_241102_TWO98.83 13396.11 13198.62 7798.24 14496.92 7399.72 9095.44 15299.49 14399.49 70
test_241102_ONE99.22 6895.35 10898.83 13396.04 13699.08 4298.13 15797.87 2399.33 247
9.1496.69 15898.53 17096.02 19198.98 9593.23 24597.18 19597.46 22096.47 10099.62 15292.99 25299.32 193
save fliter98.48 17994.71 13194.53 27698.41 20195.02 188
test_0728_THIRD96.62 10498.40 9998.28 13797.10 5699.71 10495.70 13199.62 9399.58 39
test_0728_SECOND98.25 7399.23 6595.49 10196.74 14398.89 10899.75 7095.48 14899.52 13199.53 56
test072699.24 6395.51 9796.89 13498.89 10895.92 14498.64 7598.31 12897.06 60
GSMVS98.06 295
test_part299.03 10796.07 7598.08 139
sam_mvs177.80 35498.06 295
sam_mvs77.38 358
ambc96.56 20598.23 20291.68 23497.88 7298.13 24098.42 9798.56 10294.22 17999.04 30194.05 22399.35 18398.95 186
MTGPAbinary98.73 155
test_post194.98 26010.37 41376.21 36699.04 30189.47 319
test_post10.87 41276.83 36299.07 298
patchmatchnet-post96.84 26677.36 35999.42 212
GG-mvs-BLEND90.60 37391.00 40784.21 36098.23 4772.63 41382.76 40484.11 40556.14 40496.79 39472.20 40392.09 39490.78 402
MTMP96.55 15474.60 410
gm-plane-assit91.79 40671.40 41181.67 38290.11 39698.99 30784.86 371
test9_res91.29 27798.89 24899.00 179
TEST997.84 24695.23 11593.62 31398.39 20486.81 34893.78 32995.99 31094.68 16599.52 183
test_897.81 25095.07 12493.54 31698.38 20687.04 34493.71 33395.96 31394.58 16999.52 183
agg_prior290.34 30898.90 24599.10 167
agg_prior97.80 25494.96 12698.36 20893.49 34199.53 180
TestCases98.06 8899.08 9896.16 7199.16 4294.35 20997.78 16898.07 16595.84 12499.12 28991.41 27599.42 16798.91 196
test_prior495.38 10593.61 315
test_prior293.33 32394.21 21394.02 32596.25 29993.64 19391.90 26698.96 238
test_prior97.46 13797.79 25994.26 15598.42 20099.34 24598.79 214
旧先验293.35 32277.95 39895.77 28298.67 34090.74 296
新几何293.43 318
新几何197.25 15598.29 19394.70 13397.73 26577.98 39794.83 30596.67 27892.08 23799.45 20588.17 33898.65 27497.61 329
旧先验197.80 25493.87 16697.75 26497.04 25393.57 19498.68 26998.72 224
无先验93.20 32697.91 25380.78 38799.40 22387.71 34197.94 307
原ACMM292.82 332
原ACMM196.58 20298.16 21492.12 22198.15 23885.90 35793.49 34196.43 29092.47 22999.38 23087.66 34398.62 27698.23 277
test22298.17 21293.24 19192.74 33697.61 27775.17 40294.65 30896.69 27790.96 25698.66 27297.66 325
testdata299.46 20187.84 339
segment_acmp95.34 146
testdata95.70 24998.16 21490.58 25397.72 26680.38 38995.62 28597.02 25492.06 23898.98 30989.06 32698.52 28297.54 333
testdata192.77 33393.78 227
test1297.46 13797.61 28594.07 15997.78 26393.57 33993.31 19999.42 21298.78 25998.89 200
plane_prior798.70 14794.67 134
plane_prior698.38 18794.37 14891.91 243
plane_prior598.75 15299.46 20192.59 25799.20 20999.28 127
plane_prior496.77 272
plane_prior394.51 14195.29 17696.16 264
plane_prior296.50 15696.36 119
plane_prior198.49 177
plane_prior94.29 15195.42 22994.31 21198.93 243
n20.00 420
nn0.00 420
door-mid98.17 232
lessismore_v097.05 17099.36 4992.12 22184.07 40498.77 7098.98 6185.36 31699.74 7997.34 6899.37 17599.30 120
LGP-MVS_train98.74 3599.15 8597.02 4399.02 8095.15 18198.34 10898.23 14697.91 2199.70 11294.41 20699.73 6799.50 62
test1198.08 244
door97.81 262
HQP5-MVS92.47 208
HQP-NCC97.85 24194.26 28193.18 25092.86 355
ACMP_Plane97.85 24194.26 28193.18 25092.86 355
BP-MVS90.51 303
HQP4-MVS92.87 35499.23 27399.06 172
HQP3-MVS98.43 19798.74 263
HQP2-MVS90.33 265
NP-MVS98.14 21893.72 17295.08 332
MDTV_nov1_ep13_2view57.28 41494.89 26280.59 38894.02 32578.66 35185.50 36497.82 315
MDTV_nov1_ep1391.28 32294.31 38673.51 40894.80 26593.16 35586.75 35093.45 34397.40 22576.37 36498.55 35188.85 32796.43 358
ACMMP++_ref99.52 131
ACMMP++99.55 118
Test By Simon94.51 172
ITE_SJBPF97.85 10498.64 15296.66 5598.51 19095.63 15997.22 19097.30 23895.52 14098.55 35190.97 28598.90 24598.34 265
DeepMVS_CXcopyleft77.17 38990.94 40885.28 34474.08 41252.51 40880.87 40888.03 40075.25 37070.63 41059.23 40984.94 40475.62 404