This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.86 199.86 199.87 199.99 199.77 199.77 199.80 199.97 199.97 199.95 199.74 199.98 199.56 1100.00 199.85 3
LTVRE_ROB96.88 199.18 299.34 298.72 3899.71 796.99 4699.69 299.57 799.02 1599.62 1099.36 1498.53 799.52 18698.58 1399.95 599.66 22
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
UniMVSNet_ETH3D99.12 399.28 398.65 4399.77 396.34 6699.18 599.20 1899.67 299.73 399.65 499.15 399.86 2497.22 4999.92 1499.77 9
pmmvs699.07 499.24 498.56 4999.81 296.38 6498.87 999.30 1299.01 1699.63 999.66 399.27 299.68 13097.75 3299.89 2599.62 27
mvs_tets98.90 598.94 698.75 3399.69 896.48 6298.54 2299.22 1596.23 11899.71 499.48 798.77 699.93 398.89 399.95 599.84 5
TDRefinement98.90 598.86 899.02 999.54 2298.06 899.34 499.44 1098.85 2099.00 3899.20 2497.42 3299.59 16497.21 5099.76 4799.40 88
UA-Net98.88 798.76 1399.22 299.11 8797.89 1499.47 399.32 1199.08 1097.87 14499.67 296.47 9099.92 597.88 2599.98 299.85 3
DTE-MVSNet98.79 898.86 898.59 4799.55 2096.12 7398.48 2999.10 3399.36 499.29 2399.06 4197.27 3899.93 397.71 3499.91 1799.70 19
jajsoiax98.77 998.79 1298.74 3599.66 1196.48 6298.45 3099.12 3095.83 14599.67 699.37 1298.25 1099.92 598.77 599.94 899.82 6
PEN-MVS98.75 1098.85 1098.44 5699.58 1695.67 9298.45 3099.15 2699.33 599.30 2199.00 4397.27 3899.92 597.64 3699.92 1499.75 14
v7n98.73 1198.99 597.95 10099.64 1294.20 16098.67 1599.14 2899.08 1099.42 1599.23 2296.53 8599.91 1399.27 299.93 1099.73 16
PS-CasMVS98.73 1198.85 1098.39 6299.55 2095.47 10598.49 2799.13 2999.22 899.22 2798.96 4797.35 3499.92 597.79 3099.93 1099.79 8
test_djsdf98.73 1198.74 1698.69 4099.63 1396.30 6898.67 1599.02 5496.50 10699.32 2099.44 1097.43 3199.92 598.73 799.95 599.86 2
anonymousdsp98.72 1498.63 1998.99 1399.62 1497.29 3998.65 1899.19 2095.62 15399.35 1999.37 1297.38 3399.90 1498.59 1299.91 1799.77 9
WR-MVS_H98.65 1598.62 2198.75 3399.51 2796.61 5898.55 2199.17 2199.05 1399.17 2998.79 5895.47 12899.89 1897.95 2499.91 1799.75 14
OurMVSNet-221017-098.61 1698.61 2398.63 4599.77 396.35 6599.17 699.05 4598.05 4399.61 1199.52 593.72 18299.88 2098.72 999.88 2699.65 24
Anonymous2023121198.55 1798.76 1397.94 10198.79 11794.37 15198.84 1199.15 2699.37 399.67 699.43 1195.61 12299.72 9098.12 1999.86 2899.73 16
nrg03098.54 1898.62 2198.32 6799.22 6295.66 9397.90 6799.08 3998.31 3399.02 3698.74 6297.68 2499.61 16297.77 3199.85 3199.70 19
PS-MVSNAJss98.53 1998.63 1998.21 8199.68 994.82 13398.10 5599.21 1696.91 9099.75 299.45 995.82 11099.92 598.80 499.96 499.89 1
MIMVSNet198.51 2098.45 2698.67 4199.72 696.71 5298.76 1298.89 8298.49 2899.38 1799.14 3495.44 13099.84 3096.47 7499.80 4099.47 66
pm-mvs198.47 2198.67 1797.86 10899.52 2694.58 14398.28 4199.00 6297.57 6599.27 2499.22 2398.32 999.50 19197.09 5699.75 5299.50 49
ACMH93.61 998.44 2298.76 1397.51 13499.43 3793.54 18598.23 4599.05 4597.40 7799.37 1899.08 3998.79 599.47 20097.74 3399.71 6199.50 49
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CP-MVSNet98.42 2398.46 2498.30 7199.46 3395.22 12198.27 4398.84 10299.05 1399.01 3798.65 7095.37 13199.90 1497.57 3899.91 1799.77 9
abl_698.42 2398.19 3299.09 399.16 7498.10 697.73 8099.11 3197.76 5398.62 5698.27 10997.88 1999.80 4495.67 11299.50 12299.38 92
TransMVSNet (Re)98.38 2598.67 1797.51 13499.51 2793.39 18998.20 5098.87 9098.23 3699.48 1299.27 2098.47 899.55 17796.52 7199.53 10899.60 29
TranMVSNet+NR-MVSNet98.33 2698.30 3198.43 5899.07 9295.87 8296.73 13799.05 4598.67 2498.84 4598.45 8497.58 2899.88 2096.45 7599.86 2899.54 42
HPM-MVS_fast98.32 2798.13 3398.88 2499.54 2297.48 3298.35 3499.03 5295.88 14097.88 14198.22 11698.15 1299.74 8096.50 7399.62 7699.42 85
ANet_high98.31 2898.94 696.41 20999.33 4889.64 25397.92 6699.56 899.27 699.66 899.50 697.67 2599.83 3397.55 3999.98 299.77 9
VPA-MVSNet98.27 2998.46 2497.70 12099.06 9393.80 17497.76 7599.00 6298.40 3099.07 3598.98 4596.89 6499.75 7097.19 5399.79 4199.55 41
Vis-MVSNetpermissive98.27 2998.34 2898.07 9199.33 4895.21 12398.04 5999.46 997.32 8097.82 14999.11 3596.75 7499.86 2497.84 2799.36 16599.15 146
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
COLMAP_ROBcopyleft94.48 698.25 3198.11 3498.64 4499.21 6997.35 3797.96 6299.16 2298.34 3298.78 4998.52 7997.32 3599.45 20794.08 19799.67 6899.13 151
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
ACMH+93.58 1098.23 3298.31 2997.98 9999.39 4295.22 12197.55 8999.20 1898.21 3799.25 2598.51 8098.21 1199.40 22494.79 16799.72 5899.32 105
FC-MVSNet-test98.16 3398.37 2797.56 12999.49 3193.10 19498.35 3499.21 1698.43 2998.89 4198.83 5794.30 16799.81 3897.87 2699.91 1799.77 9
mvsmamba98.16 3398.06 3898.44 5699.53 2595.87 8298.70 1398.94 7697.71 5998.85 4399.10 3691.35 23499.83 3398.47 1499.90 2399.64 26
SR-MVS-dyc-post98.14 3597.84 5499.02 998.81 11498.05 997.55 8998.86 9397.77 5098.20 10298.07 13296.60 8299.76 6395.49 12399.20 19899.26 124
MTAPA98.14 3597.84 5499.06 499.44 3597.90 1297.25 10698.73 13297.69 6197.90 13897.96 14795.81 11499.82 3596.13 8599.61 8299.45 73
APDe-MVS98.14 3598.03 4198.47 5598.72 12596.04 7698.07 5799.10 3395.96 13498.59 6198.69 6696.94 5899.81 3896.64 6599.58 9099.57 36
APD-MVS_3200maxsize98.13 3897.90 4898.79 3198.79 11797.31 3897.55 8998.92 7997.72 5798.25 9898.13 12497.10 4599.75 7095.44 13099.24 19699.32 105
HPM-MVScopyleft98.11 3997.83 5798.92 2299.42 3997.46 3398.57 1999.05 4595.43 16297.41 16797.50 19597.98 1599.79 4595.58 12199.57 9399.50 49
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CS-MVS98.09 4098.01 4298.32 6798.45 16596.69 5498.52 2599.69 298.07 4296.07 24497.19 22396.88 6699.86 2497.50 4199.73 5498.41 244
test117298.08 4197.76 6499.05 698.78 11998.07 797.41 10198.85 9797.57 6598.15 10997.96 14796.60 8299.76 6395.30 13899.18 20299.33 104
Gipumacopyleft98.07 4298.31 2997.36 15499.76 596.28 6998.51 2699.10 3398.76 2396.79 20499.34 1896.61 8098.82 31196.38 7799.50 12296.98 322
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
ACMMPcopyleft98.05 4397.75 6698.93 2199.23 5997.60 2398.09 5698.96 7395.75 14997.91 13798.06 13796.89 6499.76 6395.32 13799.57 9399.43 84
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
ACMM93.33 1198.05 4397.79 5998.85 2599.15 7797.55 2796.68 13998.83 10995.21 16898.36 8398.13 12498.13 1499.62 15696.04 9099.54 10599.39 90
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
SteuartSystems-ACMMP98.02 4597.76 6498.79 3199.43 3797.21 4397.15 11198.90 8196.58 10298.08 11997.87 16397.02 5399.76 6395.25 14199.59 8899.40 88
Skip Steuart: Steuart Systems R&D Blog.
zzz-MVS98.01 4697.66 7299.06 499.44 3597.90 1295.66 19198.73 13297.69 6197.90 13897.96 14795.81 11499.82 3596.13 8599.61 8299.45 73
SR-MVS98.00 4797.66 7299.01 1198.77 12197.93 1197.38 10298.83 10997.32 8098.06 12197.85 16496.65 7799.77 5895.00 16099.11 21299.32 105
DVP-MVS++97.96 4897.90 4898.12 8897.75 24995.40 10699.03 798.89 8296.62 9798.62 5698.30 10096.97 5699.75 7095.70 10899.25 19399.21 133
Anonymous2024052997.96 4898.04 4097.71 11898.69 13294.28 15697.86 6998.31 19798.79 2299.23 2698.86 5695.76 11799.61 16295.49 12399.36 16599.23 131
XVS97.96 4897.63 7998.94 1899.15 7797.66 2097.77 7398.83 10997.42 7396.32 23097.64 18396.49 8899.72 9095.66 11499.37 16299.45 73
NR-MVSNet97.96 4897.86 5398.26 7398.73 12395.54 9898.14 5398.73 13297.79 4999.42 1597.83 16594.40 16599.78 4995.91 10099.76 4799.46 68
RRT_MVS97.95 5297.79 5998.43 5899.67 1095.56 9698.86 1096.73 29597.99 4599.15 3099.35 1689.84 25699.90 1498.64 1099.90 2399.82 6
ACMMPR97.95 5297.62 8198.94 1899.20 7097.56 2697.59 8698.83 10996.05 12797.46 16597.63 18496.77 7399.76 6395.61 11899.46 13599.49 57
FMVSNet197.95 5298.08 3597.56 12999.14 8593.67 17998.23 4598.66 15297.41 7699.00 3899.19 2595.47 12899.73 8595.83 10599.76 4799.30 111
SED-MVS97.94 5597.90 4898.07 9199.22 6295.35 11196.79 13098.83 10996.11 12499.08 3398.24 11197.87 2099.72 9095.44 13099.51 11899.14 149
HFP-MVS97.94 5597.64 7798.83 2699.15 7797.50 3097.59 8698.84 10296.05 12797.49 15997.54 19097.07 4899.70 11595.61 11899.46 13599.30 111
LPG-MVS_test97.94 5597.67 7198.74 3599.15 7797.02 4497.09 11699.02 5495.15 17298.34 8698.23 11397.91 1799.70 11594.41 18299.73 5499.50 49
FIs97.93 5898.07 3697.48 14199.38 4392.95 19798.03 6199.11 3198.04 4498.62 5698.66 6893.75 18199.78 4997.23 4899.84 3299.73 16
ZNCC-MVS97.92 5997.62 8198.83 2699.32 5097.24 4197.45 9698.84 10295.76 14796.93 19897.43 20197.26 4099.79 4596.06 8799.53 10899.45 73
region2R97.92 5997.59 8598.92 2299.22 6297.55 2797.60 8598.84 10296.00 13297.22 17197.62 18596.87 6899.76 6395.48 12699.43 14899.46 68
CP-MVS97.92 5997.56 8898.99 1398.99 10197.82 1697.93 6498.96 7396.11 12496.89 20197.45 19996.85 6999.78 4995.19 14499.63 7599.38 92
CS-MVS-test97.91 6297.84 5498.14 8698.52 15296.03 7898.38 3399.67 398.11 4095.50 26696.92 24396.81 7299.87 2296.87 6399.76 4798.51 237
mPP-MVS97.91 6297.53 8999.04 799.22 6297.87 1597.74 7898.78 12396.04 12997.10 18197.73 17796.53 8599.78 4995.16 14899.50 12299.46 68
DROMVSNet97.90 6497.94 4797.79 11298.66 13495.14 12498.31 3899.66 497.57 6595.95 24997.01 23796.99 5599.82 3597.66 3599.64 7398.39 247
ACMMP_NAP97.89 6597.63 7998.67 4199.35 4696.84 4996.36 15098.79 11995.07 17697.88 14198.35 9297.24 4299.72 9096.05 8999.58 9099.45 73
PGM-MVS97.88 6697.52 9098.96 1699.20 7097.62 2297.09 11699.06 4395.45 16097.55 15497.94 15297.11 4499.78 4994.77 17099.46 13599.48 63
DP-MVS97.87 6797.89 5197.81 11198.62 14094.82 13397.13 11498.79 11998.98 1798.74 5298.49 8195.80 11699.49 19495.04 15799.44 14099.11 159
RPSCF97.87 6797.51 9198.95 1799.15 7798.43 397.56 8899.06 4396.19 12198.48 7098.70 6594.72 15199.24 26594.37 18599.33 18099.17 142
KD-MVS_self_test97.86 6998.07 3697.25 16199.22 6292.81 20097.55 8998.94 7697.10 8698.85 4398.88 5495.03 14399.67 13597.39 4699.65 7199.26 124
test_040297.84 7097.97 4497.47 14299.19 7294.07 16396.71 13898.73 13298.66 2598.56 6398.41 8796.84 7099.69 12394.82 16599.81 3798.64 225
UniMVSNet_NR-MVSNet97.83 7197.65 7498.37 6398.72 12595.78 8595.66 19199.02 5498.11 4098.31 9397.69 18194.65 15699.85 2797.02 5999.71 6199.48 63
UniMVSNet (Re)97.83 7197.65 7498.35 6698.80 11695.86 8495.92 18099.04 5197.51 7098.22 10197.81 16994.68 15499.78 4997.14 5599.75 5299.41 87
GST-MVS97.82 7397.49 9498.81 2999.23 5997.25 4097.16 11098.79 11995.96 13497.53 15597.40 20396.93 6099.77 5895.04 15799.35 17099.42 85
DeepC-MVS95.41 497.82 7397.70 6798.16 8298.78 11995.72 8796.23 15999.02 5493.92 21498.62 5698.99 4497.69 2399.62 15696.18 8499.87 2799.15 146
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DU-MVS97.79 7597.60 8498.36 6498.73 12395.78 8595.65 19498.87 9097.57 6598.31 9397.83 16594.69 15299.85 2797.02 5999.71 6199.46 68
DVP-MVScopyleft97.78 7697.65 7498.16 8299.24 5795.51 10096.74 13398.23 20395.92 13798.40 7798.28 10597.06 5099.71 10695.48 12699.52 11399.26 124
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
LS3D97.77 7797.50 9398.57 4896.24 32097.58 2598.45 3098.85 9798.58 2797.51 15797.94 15295.74 11899.63 14895.19 14498.97 22698.51 237
GeoE97.75 7897.70 6797.89 10598.88 11094.53 14497.10 11598.98 6895.75 14997.62 15297.59 18797.61 2799.77 5896.34 7999.44 14099.36 100
3Dnovator+96.13 397.73 7997.59 8598.15 8598.11 20395.60 9598.04 5998.70 14298.13 3996.93 19898.45 8495.30 13599.62 15695.64 11698.96 22799.24 130
tfpnnormal97.72 8097.97 4496.94 17599.26 5392.23 21097.83 7198.45 17498.25 3599.13 3298.66 6896.65 7799.69 12393.92 20699.62 7698.91 192
Baseline_NR-MVSNet97.72 8097.79 5997.50 13799.56 1893.29 19095.44 20198.86 9398.20 3898.37 8099.24 2194.69 15299.55 17795.98 9699.79 4199.65 24
bld_raw_dy_0_6497.69 8297.61 8397.91 10399.54 2294.27 15798.06 5898.60 16096.60 9998.79 4898.95 4889.62 25799.84 3098.43 1699.91 1799.62 27
MP-MVS-pluss97.69 8297.36 10098.70 3999.50 3096.84 4995.38 20898.99 6592.45 25698.11 11398.31 9697.25 4199.77 5896.60 6799.62 7699.48 63
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
EG-PatchMatch MVS97.69 8297.79 5997.40 15299.06 9393.52 18695.96 17598.97 7294.55 19598.82 4698.76 6197.31 3699.29 25697.20 5299.44 14099.38 92
DPE-MVScopyleft97.64 8597.35 10198.50 5298.85 11296.18 7095.21 22298.99 6595.84 14498.78 4998.08 13096.84 7099.81 3893.98 20499.57 9399.52 46
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MP-MVScopyleft97.64 8597.18 11399.00 1299.32 5097.77 1897.49 9598.73 13296.27 11595.59 26497.75 17496.30 9899.78 4993.70 21499.48 13099.45 73
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
#test#97.62 8797.22 11198.83 2699.15 7797.50 3096.81 12898.84 10294.25 20397.49 15997.54 19097.07 4899.70 11594.37 18599.46 13599.30 111
3Dnovator96.53 297.61 8897.64 7797.50 13797.74 25293.65 18398.49 2798.88 8896.86 9297.11 18098.55 7795.82 11099.73 8595.94 9899.42 15199.13 151
SF-MVS97.60 8997.39 9898.22 7898.93 10695.69 8997.05 11899.10 3395.32 16597.83 14797.88 16196.44 9299.72 9094.59 17799.39 15999.25 128
v897.60 8998.06 3896.23 21598.71 12889.44 25797.43 9998.82 11797.29 8298.74 5299.10 3693.86 17799.68 13098.61 1199.94 899.56 39
XVG-ACMP-BASELINE97.58 9197.28 10698.49 5399.16 7496.90 4896.39 14798.98 6895.05 17798.06 12198.02 14195.86 10699.56 17394.37 18599.64 7399.00 175
v1097.55 9297.97 4496.31 21398.60 14389.64 25397.44 9799.02 5496.60 9998.72 5499.16 3193.48 18699.72 9098.76 699.92 1499.58 31
OPM-MVS97.54 9397.25 10798.41 6099.11 8796.61 5895.24 22098.46 17394.58 19498.10 11698.07 13297.09 4799.39 22995.16 14899.44 14099.21 133
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
XXY-MVS97.54 9397.70 6797.07 16999.46 3392.21 21197.22 10999.00 6294.93 18398.58 6298.92 5197.31 3699.41 22294.44 18099.43 14899.59 30
Regformer-497.53 9597.47 9697.71 11897.35 28193.91 16895.26 21898.14 22097.97 4698.34 8697.89 15795.49 12699.71 10697.41 4499.42 15199.51 48
casdiffmvs97.50 9697.81 5896.56 19998.51 15491.04 23395.83 18499.09 3897.23 8398.33 9098.30 10097.03 5299.37 23596.58 6999.38 16199.28 119
SixPastTwentyTwo97.49 9797.57 8797.26 16099.56 1892.33 20798.28 4196.97 28498.30 3499.45 1499.35 1688.43 27299.89 1898.01 2399.76 4799.54 42
SMA-MVScopyleft97.48 9897.11 11698.60 4698.83 11396.67 5596.74 13398.73 13291.61 26898.48 7098.36 9196.53 8599.68 13095.17 14699.54 10599.45 73
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
ACMP92.54 1397.47 9997.10 11798.55 5099.04 9896.70 5396.24 15898.89 8293.71 21997.97 13297.75 17497.44 3099.63 14893.22 22499.70 6499.32 105
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MSP-MVS97.45 10096.92 13099.03 899.26 5397.70 1997.66 8198.89 8295.65 15198.51 6696.46 27192.15 21799.81 3895.14 15198.58 26899.58 31
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
baseline97.44 10197.78 6396.43 20598.52 15290.75 24096.84 12699.03 5296.51 10597.86 14598.02 14196.67 7699.36 23797.09 5699.47 13299.19 138
TSAR-MVS + MP.97.42 10297.23 11098.00 9899.38 4395.00 12897.63 8498.20 20893.00 24398.16 10798.06 13795.89 10599.72 9095.67 11299.10 21499.28 119
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
Regformer-297.41 10397.24 10997.93 10297.21 29394.72 13694.85 24298.27 19897.74 5498.11 11397.50 19595.58 12499.69 12396.57 7099.31 18499.37 99
CSCG97.40 10497.30 10397.69 12298.95 10394.83 13297.28 10598.99 6596.35 11498.13 11295.95 29895.99 10399.66 14194.36 18899.73 5498.59 231
XVG-OURS-SEG-HR97.38 10597.07 12098.30 7199.01 10097.41 3694.66 24999.02 5495.20 16998.15 10997.52 19398.83 498.43 34494.87 16396.41 33799.07 166
VDD-MVS97.37 10697.25 10797.74 11698.69 13294.50 14797.04 11995.61 31498.59 2698.51 6698.72 6392.54 21099.58 16696.02 9299.49 12699.12 156
SD-MVS97.37 10697.70 6796.35 21098.14 19895.13 12596.54 14298.92 7995.94 13699.19 2898.08 13097.74 2295.06 37395.24 14299.54 10598.87 202
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PM-MVS97.36 10897.10 11798.14 8698.91 10896.77 5196.20 16098.63 15893.82 21698.54 6498.33 9493.98 17599.05 29095.99 9599.45 13998.61 230
LCM-MVSNet-Re97.33 10997.33 10297.32 15698.13 20193.79 17596.99 12299.65 596.74 9599.47 1398.93 5096.91 6399.84 3090.11 28799.06 22198.32 256
EI-MVSNet-UG-set97.32 11097.40 9797.09 16897.34 28592.01 21995.33 21297.65 25897.74 5498.30 9598.14 12295.04 14299.69 12397.55 3999.52 11399.58 31
EI-MVSNet-Vis-set97.32 11097.39 9897.11 16697.36 28092.08 21795.34 21197.65 25897.74 5498.29 9698.11 12895.05 14099.68 13097.50 4199.50 12299.56 39
Regformer-197.27 11297.16 11497.61 12797.21 29393.86 17194.85 24298.04 23597.62 6498.03 12597.50 19595.34 13299.63 14896.52 7199.31 18499.35 102
VPNet97.26 11397.49 9496.59 19599.47 3290.58 24296.27 15498.53 16797.77 5098.46 7398.41 8794.59 15899.68 13094.61 17399.29 18899.52 46
Regformer-397.25 11497.29 10497.11 16697.35 28192.32 20895.26 21897.62 26397.67 6398.17 10697.89 15795.05 14099.56 17397.16 5499.42 15199.46 68
xxxxxxxxxxxxxcwj97.24 11597.03 12397.89 10598.48 16094.71 13794.53 25499.07 4295.02 17997.83 14797.88 16196.44 9299.72 9094.59 17799.39 15999.25 128
canonicalmvs97.23 11697.21 11297.30 15797.65 26094.39 14997.84 7099.05 4597.42 7396.68 21193.85 33797.63 2699.33 24596.29 8098.47 27398.18 272
AllTest97.20 11796.92 13098.06 9399.08 9096.16 7197.14 11399.16 2294.35 19997.78 15098.07 13295.84 10799.12 28091.41 25299.42 15198.91 192
dcpmvs_297.12 11897.99 4394.51 29299.11 8784.00 34397.75 7699.65 597.38 7899.14 3198.42 8695.16 13899.96 295.52 12299.78 4499.58 31
XVG-OURS97.12 11896.74 13998.26 7398.99 10197.45 3493.82 28599.05 4595.19 17098.32 9197.70 17995.22 13798.41 34594.27 19098.13 28598.93 187
Anonymous2024052197.07 12097.51 9195.76 23699.35 4688.18 28097.78 7298.40 18497.11 8598.34 8699.04 4289.58 25999.79 4598.09 2199.93 1099.30 111
V4297.04 12197.16 11496.68 19298.59 14591.05 23296.33 15298.36 18994.60 19197.99 12898.30 10093.32 18899.62 15697.40 4599.53 10899.38 92
APD-MVScopyleft97.00 12296.53 15298.41 6098.55 14996.31 6796.32 15398.77 12492.96 24897.44 16697.58 18995.84 10799.74 8091.96 23999.35 17099.19 138
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
HPM-MVS++copyleft96.99 12396.38 15998.81 2998.64 13597.59 2495.97 17498.20 20895.51 15895.06 27496.53 26794.10 17299.70 11594.29 18999.15 20499.13 151
GBi-Net96.99 12396.80 13697.56 12997.96 21593.67 17998.23 4598.66 15295.59 15597.99 12899.19 2589.51 26399.73 8594.60 17499.44 14099.30 111
test196.99 12396.80 13697.56 12997.96 21593.67 17998.23 4598.66 15295.59 15597.99 12899.19 2589.51 26399.73 8594.60 17499.44 14099.30 111
VDDNet96.98 12696.84 13397.41 15199.40 4193.26 19197.94 6395.31 32099.26 798.39 7999.18 2887.85 28199.62 15695.13 15399.09 21599.35 102
PHI-MVS96.96 12796.53 15298.25 7697.48 27196.50 6196.76 13298.85 9793.52 22296.19 24096.85 24695.94 10499.42 21393.79 21099.43 14898.83 205
IS-MVSNet96.93 12896.68 14297.70 12099.25 5694.00 16698.57 1996.74 29398.36 3198.14 11197.98 14688.23 27499.71 10693.10 22799.72 5899.38 92
CNVR-MVS96.92 12996.55 14998.03 9798.00 21395.54 9894.87 24098.17 21494.60 19196.38 22797.05 23395.67 12099.36 23795.12 15499.08 21699.19 138
IterMVS-LS96.92 12997.29 10495.79 23598.51 15488.13 28395.10 22598.66 15296.99 8798.46 7398.68 6792.55 20899.74 8096.91 6199.79 4199.50 49
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
WR-MVS96.90 13196.81 13597.16 16398.56 14892.20 21394.33 25998.12 22397.34 7998.20 10297.33 21492.81 19999.75 7094.79 16799.81 3799.54 42
DeepPCF-MVS94.58 596.90 13196.43 15898.31 7097.48 27197.23 4292.56 31798.60 16092.84 25098.54 6497.40 20396.64 7998.78 31594.40 18499.41 15798.93 187
ETH3D-3000-0.196.89 13396.46 15798.16 8298.62 14095.69 8995.96 17598.98 6893.36 22797.04 18897.31 21694.93 14899.63 14892.60 23199.34 17399.17 142
v114496.84 13497.08 11996.13 22198.42 16789.28 26095.41 20598.67 15094.21 20497.97 13298.31 9693.06 19399.65 14398.06 2299.62 7699.45 73
VNet96.84 13496.83 13496.88 17998.06 20492.02 21896.35 15197.57 26597.70 6097.88 14197.80 17092.40 21499.54 18094.73 17298.96 22799.08 164
EPP-MVSNet96.84 13496.58 14697.65 12499.18 7393.78 17698.68 1496.34 29897.91 4897.30 16998.06 13788.46 27199.85 2793.85 20899.40 15899.32 105
v119296.83 13797.06 12196.15 22098.28 17789.29 25995.36 20998.77 12493.73 21898.11 11398.34 9393.02 19799.67 13598.35 1799.58 9099.50 49
MVS_111021_LR96.82 13896.55 14997.62 12698.27 17995.34 11393.81 28798.33 19494.59 19396.56 21996.63 26296.61 8098.73 32094.80 16699.34 17398.78 211
Effi-MVS+-dtu96.81 13996.09 17198.99 1396.90 30798.69 296.42 14698.09 22695.86 14295.15 27395.54 30994.26 16899.81 3894.06 19898.51 27298.47 241
UGNet96.81 13996.56 14897.58 12896.64 31093.84 17397.75 7697.12 27896.47 10993.62 31598.88 5493.22 19199.53 18295.61 11899.69 6599.36 100
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
v2v48296.78 14197.06 12195.95 22898.57 14788.77 27095.36 20998.26 20095.18 17197.85 14698.23 11392.58 20799.63 14897.80 2999.69 6599.45 73
test_part196.77 14296.53 15297.47 14298.04 20592.92 19897.93 6498.85 9798.83 2199.30 2199.07 4079.25 32399.79 4597.59 3799.93 1099.69 21
v124096.74 14397.02 12495.91 23198.18 19188.52 27295.39 20798.88 8893.15 23998.46 7398.40 9092.80 20099.71 10698.45 1599.49 12699.49 57
DeepC-MVS_fast94.34 796.74 14396.51 15597.44 14897.69 25594.15 16196.02 17098.43 17793.17 23897.30 16997.38 20995.48 12799.28 25893.74 21199.34 17398.88 200
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MVS_111021_HR96.73 14596.54 15197.27 15898.35 17293.66 18293.42 29798.36 18994.74 18696.58 21796.76 25596.54 8498.99 29794.87 16399.27 19199.15 146
v192192096.72 14696.96 12795.99 22498.21 18688.79 26995.42 20398.79 11993.22 23398.19 10598.26 11092.68 20399.70 11598.34 1899.55 10299.49 57
FMVSNet296.72 14696.67 14396.87 18097.96 21591.88 22197.15 11198.06 23395.59 15598.50 6898.62 7189.51 26399.65 14394.99 16199.60 8699.07 166
PMVScopyleft89.60 1796.71 14896.97 12595.95 22899.51 2797.81 1797.42 10097.49 26697.93 4795.95 24998.58 7396.88 6696.91 36789.59 29599.36 16593.12 367
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
testtj96.69 14996.13 16898.36 6498.46 16496.02 7996.44 14598.70 14294.26 20296.79 20497.13 22594.07 17399.75 7090.53 27998.80 24799.31 110
v14419296.69 14996.90 13296.03 22398.25 18288.92 26495.49 19998.77 12493.05 24198.09 11798.29 10492.51 21299.70 11598.11 2099.56 9699.47 66
CPTT-MVS96.69 14996.08 17298.49 5398.89 10996.64 5797.25 10698.77 12492.89 24996.01 24897.13 22592.23 21699.67 13592.24 23699.34 17399.17 142
HQP_MVS96.66 15296.33 16297.68 12398.70 13094.29 15396.50 14398.75 12896.36 11296.16 24196.77 25391.91 22899.46 20392.59 23399.20 19899.28 119
EI-MVSNet96.63 15396.93 12895.74 23797.26 29088.13 28395.29 21697.65 25896.99 8797.94 13598.19 11892.55 20899.58 16696.91 6199.56 9699.50 49
patch_mono-296.59 15496.93 12895.55 24698.88 11087.12 30594.47 25699.30 1294.12 20896.65 21598.41 8794.98 14699.87 2295.81 10799.78 4499.66 22
ab-mvs96.59 15496.59 14596.60 19498.64 13592.21 21198.35 3497.67 25494.45 19696.99 19398.79 5894.96 14799.49 19490.39 28499.07 21898.08 275
v14896.58 15696.97 12595.42 25398.63 13987.57 29595.09 22697.90 23995.91 13998.24 9997.96 14793.42 18799.39 22996.04 9099.52 11399.29 118
test20.0396.58 15696.61 14496.48 20398.49 15891.72 22595.68 19097.69 25396.81 9398.27 9797.92 15594.18 17198.71 32290.78 26999.66 7099.00 175
NCCC96.52 15895.99 17698.10 8997.81 23195.68 9195.00 23598.20 20895.39 16395.40 26996.36 27793.81 17999.45 20793.55 21798.42 27499.17 142
pmmvs-eth3d96.49 15996.18 16797.42 15098.25 18294.29 15394.77 24698.07 23289.81 29097.97 13298.33 9493.11 19299.08 28795.46 12999.84 3298.89 196
OMC-MVS96.48 16096.00 17597.91 10398.30 17496.01 8094.86 24198.60 16091.88 26597.18 17597.21 22296.11 10199.04 29190.49 28399.34 17398.69 222
TSAR-MVS + GP.96.47 16196.12 16997.49 14097.74 25295.23 11894.15 27096.90 28693.26 23198.04 12496.70 25894.41 16498.89 30694.77 17099.14 20598.37 249
Fast-Effi-MVS+-dtu96.44 16296.12 16997.39 15397.18 29694.39 14995.46 20098.73 13296.03 13194.72 28294.92 32196.28 10099.69 12393.81 20997.98 29098.09 274
K. test v396.44 16296.28 16396.95 17499.41 4091.53 22797.65 8290.31 36398.89 1998.93 4099.36 1484.57 30199.92 597.81 2899.56 9699.39 90
MSLP-MVS++96.42 16496.71 14095.57 24397.82 23090.56 24495.71 18698.84 10294.72 18796.71 21097.39 20794.91 14998.10 35995.28 13999.02 22398.05 284
Anonymous20240521196.34 16595.98 17797.43 14998.25 18293.85 17296.74 13394.41 32897.72 5798.37 8098.03 14087.15 28599.53 18294.06 19899.07 21898.92 191
h-mvs3396.29 16695.63 18998.26 7398.50 15796.11 7496.90 12497.09 27996.58 10297.21 17398.19 11884.14 30299.78 4995.89 10196.17 34198.89 196
MVS_Test96.27 16796.79 13894.73 28296.94 30586.63 31296.18 16198.33 19494.94 18196.07 24498.28 10595.25 13699.26 26297.21 5097.90 29498.30 260
MCST-MVS96.24 16895.80 18397.56 12998.75 12294.13 16294.66 24998.17 21490.17 28696.21 23896.10 29195.14 13999.43 21294.13 19698.85 24399.13 151
ETH3D cwj APD-0.1696.23 16995.61 19198.09 9097.91 21995.65 9494.94 23798.74 13091.31 27496.02 24797.08 23094.05 17499.69 12391.51 25198.94 23198.93 187
mvs-test196.20 17095.50 19498.32 6796.90 30798.16 595.07 22998.09 22695.86 14293.63 31494.32 33394.26 16899.71 10694.06 19897.27 32297.07 319
Effi-MVS+96.19 17196.01 17496.71 18997.43 27792.19 21496.12 16499.10 3395.45 16093.33 32794.71 32497.23 4399.56 17393.21 22597.54 31198.37 249
DELS-MVS96.17 17296.23 16495.99 22497.55 26790.04 24892.38 32298.52 16894.13 20796.55 22197.06 23294.99 14599.58 16695.62 11799.28 18998.37 249
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MVSFormer96.14 17396.36 16095.49 24997.68 25687.81 29198.67 1599.02 5496.50 10694.48 29196.15 28686.90 28699.92 598.73 799.13 20898.74 216
ETV-MVS96.13 17495.90 18196.82 18397.76 24793.89 16995.40 20698.95 7595.87 14195.58 26591.00 36896.36 9799.72 9093.36 21898.83 24596.85 329
testgi96.07 17596.50 15694.80 27999.26 5387.69 29495.96 17598.58 16495.08 17598.02 12796.25 28197.92 1697.60 36488.68 30998.74 25399.11 159
LF4IMVS96.07 17595.63 18997.36 15498.19 18895.55 9795.44 20198.82 11792.29 25995.70 26296.55 26592.63 20698.69 32491.75 24899.33 18097.85 294
EIA-MVS96.04 17795.77 18596.85 18197.80 23592.98 19696.12 16499.16 2294.65 18993.77 30991.69 36295.68 11999.67 13594.18 19398.85 24397.91 292
diffmvs96.04 17796.23 16495.46 25197.35 28188.03 28693.42 29799.08 3994.09 21096.66 21396.93 24193.85 17899.29 25696.01 9498.67 25899.06 168
alignmvs96.01 17995.52 19397.50 13797.77 24694.71 13796.07 16696.84 28797.48 7196.78 20894.28 33485.50 29499.40 22496.22 8198.73 25698.40 245
TinyColmap96.00 18096.34 16194.96 27097.90 22187.91 28794.13 27398.49 17194.41 19798.16 10797.76 17196.29 9998.68 32790.52 28099.42 15198.30 260
PVSNet_Blended_VisFu95.95 18195.80 18396.42 20799.28 5290.62 24195.31 21499.08 3988.40 30496.97 19698.17 12192.11 21999.78 4993.64 21599.21 19798.86 203
test_prior395.91 18295.39 19597.46 14597.79 24194.26 15893.33 30298.42 18094.21 20494.02 30296.25 28193.64 18399.34 24291.90 24198.96 22798.79 209
UnsupCasMVSNet_eth95.91 18295.73 18696.44 20498.48 16091.52 22895.31 21498.45 17495.76 14797.48 16297.54 19089.53 26298.69 32494.43 18194.61 35699.13 151
QAPM95.88 18495.57 19296.80 18497.90 22191.84 22398.18 5298.73 13288.41 30396.42 22598.13 12494.73 15099.75 7088.72 30798.94 23198.81 207
CANet95.86 18595.65 18896.49 20296.41 31690.82 23794.36 25898.41 18294.94 18192.62 34196.73 25692.68 20399.71 10695.12 15499.60 8698.94 183
IterMVS-SCA-FT95.86 18596.19 16694.85 27697.68 25685.53 32392.42 32097.63 26296.99 8798.36 8398.54 7887.94 27699.75 7097.07 5899.08 21699.27 123
hse-mvs295.77 18795.09 20397.79 11297.84 22795.51 10095.66 19195.43 31996.58 10297.21 17396.16 28584.14 30299.54 18095.89 10196.92 32498.32 256
MVP-Stereo95.69 18895.28 19796.92 17698.15 19793.03 19595.64 19698.20 20890.39 28396.63 21697.73 17791.63 23199.10 28591.84 24597.31 32098.63 227
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
MDA-MVSNet-bldmvs95.69 18895.67 18795.74 23798.48 16088.76 27192.84 30997.25 27196.00 13297.59 15397.95 15191.38 23399.46 20393.16 22696.35 33898.99 178
new-patchmatchnet95.67 19096.58 14692.94 32697.48 27180.21 36192.96 30898.19 21394.83 18498.82 4698.79 5893.31 18999.51 19095.83 10599.04 22299.12 156
xiu_mvs_v1_base_debu95.62 19195.96 17894.60 28698.01 20988.42 27393.99 27898.21 20592.98 24495.91 25194.53 32796.39 9499.72 9095.43 13398.19 28295.64 351
xiu_mvs_v1_base95.62 19195.96 17894.60 28698.01 20988.42 27393.99 27898.21 20592.98 24495.91 25194.53 32796.39 9499.72 9095.43 13398.19 28295.64 351
xiu_mvs_v1_base_debi95.62 19195.96 17894.60 28698.01 20988.42 27393.99 27898.21 20592.98 24495.91 25194.53 32796.39 9499.72 9095.43 13398.19 28295.64 351
DP-MVS Recon95.55 19495.13 20196.80 18498.51 15493.99 16794.60 25198.69 14590.20 28595.78 25896.21 28492.73 20298.98 29990.58 27898.86 24197.42 313
MVS_030495.50 19595.05 20796.84 18296.28 31993.12 19397.00 12196.16 30095.03 17889.22 36397.70 17990.16 25299.48 19794.51 17999.34 17397.93 291
Fast-Effi-MVS+95.49 19695.07 20496.75 18797.67 25992.82 19994.22 26698.60 16091.61 26893.42 32592.90 34796.73 7599.70 11592.60 23197.89 29597.74 299
TAMVS95.49 19694.94 20997.16 16398.31 17393.41 18895.07 22996.82 28991.09 27797.51 15797.82 16889.96 25399.42 21388.42 31299.44 14098.64 225
OpenMVScopyleft94.22 895.48 19895.20 19896.32 21297.16 29791.96 22097.74 7898.84 10287.26 31394.36 29398.01 14393.95 17699.67 13590.70 27598.75 25297.35 316
CLD-MVS95.47 19995.07 20496.69 19198.27 17992.53 20491.36 33598.67 15091.22 27695.78 25894.12 33595.65 12198.98 29990.81 26799.72 5898.57 232
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
train_agg95.46 20094.66 22597.88 10797.84 22795.23 11893.62 29198.39 18587.04 31793.78 30795.99 29394.58 15999.52 18691.76 24798.90 23598.89 196
CDPH-MVS95.45 20194.65 22697.84 11098.28 17794.96 12993.73 28998.33 19485.03 33895.44 26796.60 26395.31 13499.44 21090.01 28999.13 20899.11 159
IterMVS95.42 20295.83 18294.20 30097.52 26883.78 34592.41 32197.47 26895.49 15998.06 12198.49 8187.94 27699.58 16696.02 9299.02 22399.23 131
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
agg_prior195.39 20394.60 23197.75 11597.80 23594.96 12993.39 29998.36 18987.20 31593.49 32095.97 29694.65 15699.53 18291.69 24998.86 24198.77 214
mvs_anonymous95.36 20496.07 17393.21 31896.29 31881.56 35694.60 25197.66 25693.30 23096.95 19798.91 5293.03 19699.38 23296.60 6797.30 32198.69 222
MSDG95.33 20595.13 20195.94 23097.40 27991.85 22291.02 34698.37 18895.30 16696.31 23295.99 29394.51 16298.38 34889.59 29597.65 30897.60 306
LFMVS95.32 20694.88 21596.62 19398.03 20691.47 22997.65 8290.72 36099.11 997.89 14098.31 9679.20 32499.48 19793.91 20799.12 21198.93 187
F-COLMAP95.30 20794.38 24398.05 9698.64 13596.04 7695.61 19798.66 15289.00 29793.22 32896.40 27592.90 19899.35 24087.45 32797.53 31298.77 214
Anonymous2023120695.27 20895.06 20695.88 23298.72 12589.37 25895.70 18797.85 24288.00 30996.98 19597.62 18591.95 22499.34 24289.21 30099.53 10898.94 183
FMVSNet395.26 20994.94 20996.22 21796.53 31390.06 24795.99 17297.66 25694.11 20997.99 12897.91 15680.22 32199.63 14894.60 17499.44 14098.96 180
c3_l95.20 21095.32 19694.83 27896.19 32486.43 31591.83 33098.35 19393.47 22497.36 16897.26 21988.69 26999.28 25895.41 13699.36 16598.78 211
D2MVS95.18 21195.17 20095.21 25997.76 24787.76 29394.15 27097.94 23789.77 29196.99 19397.68 18287.45 28399.14 27895.03 15999.81 3798.74 216
N_pmnet95.18 21194.23 24698.06 9397.85 22396.55 6092.49 31891.63 35389.34 29398.09 11797.41 20290.33 24699.06 28991.58 25099.31 18498.56 233
HQP-MVS95.17 21394.58 23496.92 17697.85 22392.47 20594.26 26098.43 17793.18 23592.86 33395.08 31590.33 24699.23 26790.51 28198.74 25399.05 170
Vis-MVSNet (Re-imp)95.11 21494.85 21695.87 23399.12 8689.17 26197.54 9494.92 32396.50 10696.58 21797.27 21883.64 30699.48 19788.42 31299.67 6898.97 179
AdaColmapbinary95.11 21494.62 23096.58 19697.33 28794.45 14894.92 23898.08 22893.15 23993.98 30595.53 31094.34 16699.10 28585.69 33898.61 26596.20 345
API-MVS95.09 21695.01 20895.31 25696.61 31194.02 16596.83 12797.18 27595.60 15495.79 25694.33 33294.54 16198.37 35085.70 33798.52 27093.52 364
CL-MVSNet_self_test95.04 21794.79 22295.82 23497.51 26989.79 25191.14 34396.82 28993.05 24196.72 20996.40 27590.82 24099.16 27691.95 24098.66 26098.50 239
CNLPA95.04 21794.47 23996.75 18797.81 23195.25 11794.12 27497.89 24094.41 19794.57 28695.69 30390.30 24998.35 35186.72 33298.76 25196.64 337
Patchmtry95.03 21994.59 23396.33 21194.83 35290.82 23796.38 14997.20 27396.59 10197.49 15998.57 7477.67 33199.38 23292.95 23099.62 7698.80 208
PVSNet_BlendedMVS95.02 22094.93 21195.27 25797.79 24187.40 30094.14 27298.68 14788.94 29894.51 28998.01 14393.04 19499.30 25289.77 29399.49 12699.11 159
TAPA-MVS93.32 1294.93 22194.23 24697.04 17198.18 19194.51 14595.22 22198.73 13281.22 35596.25 23695.95 29893.80 18098.98 29989.89 29198.87 23997.62 304
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
FA-MVS(test-final)94.91 22294.89 21494.99 26997.51 26988.11 28598.27 4395.20 32192.40 25896.68 21198.60 7283.44 30799.28 25893.34 21998.53 26997.59 307
eth_miper_zixun_eth94.89 22394.93 21194.75 28195.99 33286.12 31891.35 33698.49 17193.40 22597.12 17997.25 22086.87 28899.35 24095.08 15698.82 24698.78 211
CDS-MVSNet94.88 22494.12 25197.14 16597.64 26193.57 18493.96 28197.06 28190.05 28796.30 23396.55 26586.10 29099.47 20090.10 28899.31 18498.40 245
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MS-PatchMatch94.83 22594.91 21394.57 28996.81 30987.10 30694.23 26597.34 27088.74 30197.14 17797.11 22891.94 22598.23 35592.99 22897.92 29298.37 249
pmmvs494.82 22694.19 24996.70 19097.42 27892.75 20292.09 32796.76 29186.80 32095.73 26197.22 22189.28 26698.89 30693.28 22299.14 20598.46 243
miper_lstm_enhance94.81 22794.80 22194.85 27696.16 32686.45 31491.14 34398.20 20893.49 22397.03 19097.37 21184.97 29899.26 26295.28 13999.56 9698.83 205
ETH3 D test640094.77 22893.87 25997.47 14298.12 20293.73 17794.56 25398.70 14285.45 33394.70 28495.93 30091.77 23099.63 14886.45 33399.14 20599.05 170
cl____94.73 22994.64 22795.01 26795.85 33587.00 30791.33 33798.08 22893.34 22897.10 18197.33 21484.01 30599.30 25295.14 15199.56 9698.71 221
DIV-MVS_self_test94.73 22994.64 22795.01 26795.86 33487.00 30791.33 33798.08 22893.34 22897.10 18197.34 21384.02 30499.31 24995.15 15099.55 10298.72 219
YYNet194.73 22994.84 21794.41 29597.47 27585.09 33290.29 35295.85 30992.52 25397.53 15597.76 17191.97 22399.18 27193.31 22196.86 32798.95 181
MDA-MVSNet_test_wron94.73 22994.83 21994.42 29497.48 27185.15 33090.28 35395.87 30892.52 25397.48 16297.76 17191.92 22799.17 27593.32 22096.80 33098.94 183
UnsupCasMVSNet_bld94.72 23394.26 24596.08 22298.62 14090.54 24593.38 30098.05 23490.30 28497.02 19196.80 25289.54 26099.16 27688.44 31196.18 34098.56 233
miper_ehance_all_eth94.69 23494.70 22494.64 28395.77 33886.22 31791.32 33998.24 20291.67 26797.05 18796.65 26188.39 27399.22 26994.88 16298.34 27698.49 240
BH-untuned94.69 23494.75 22394.52 29197.95 21887.53 29694.07 27597.01 28293.99 21297.10 18195.65 30592.65 20598.95 30487.60 32396.74 33197.09 318
RPMNet94.68 23694.60 23194.90 27395.44 34588.15 28196.18 16198.86 9397.43 7294.10 29898.49 8179.40 32299.76 6395.69 11095.81 34396.81 333
Patchmatch-RL test94.66 23794.49 23795.19 26098.54 15088.91 26592.57 31698.74 13091.46 27198.32 9197.75 17477.31 33698.81 31396.06 8799.61 8297.85 294
CANet_DTU94.65 23894.21 24895.96 22695.90 33389.68 25293.92 28297.83 24693.19 23490.12 35895.64 30688.52 27099.57 17293.27 22399.47 13298.62 228
pmmvs594.63 23994.34 24495.50 24897.63 26288.34 27694.02 27697.13 27787.15 31695.22 27297.15 22487.50 28299.27 26193.99 20399.26 19298.88 200
PAPM_NR94.61 24094.17 25095.96 22698.36 17191.23 23095.93 17997.95 23692.98 24493.42 32594.43 33190.53 24398.38 34887.60 32396.29 33998.27 264
PatchMatch-RL94.61 24093.81 26097.02 17398.19 18895.72 8793.66 29097.23 27288.17 30794.94 27995.62 30791.43 23298.57 33587.36 32897.68 30596.76 335
BH-RMVSNet94.56 24294.44 24294.91 27197.57 26487.44 29993.78 28896.26 29993.69 22096.41 22696.50 27092.10 22099.00 29585.96 33597.71 30298.31 258
USDC94.56 24294.57 23694.55 29097.78 24586.43 31592.75 31298.65 15785.96 32596.91 20097.93 15490.82 24098.74 31990.71 27499.59 8898.47 241
iter_conf_final94.54 24493.91 25896.43 20597.23 29290.41 24696.81 12898.10 22493.87 21596.80 20397.89 15768.02 36999.72 9096.73 6499.77 4699.18 141
test111194.53 24594.81 22093.72 30699.06 9381.94 35598.31 3883.87 37696.37 11198.49 6999.17 3081.49 31299.73 8596.64 6599.86 2899.49 57
ppachtmachnet_test94.49 24694.84 21793.46 31296.16 32682.10 35290.59 34997.48 26790.53 28297.01 19297.59 18791.01 23799.36 23793.97 20599.18 20298.94 183
test_yl94.40 24794.00 25495.59 24196.95 30389.52 25594.75 24795.55 31696.18 12296.79 20496.14 28881.09 31699.18 27190.75 27097.77 29698.07 277
DCV-MVSNet94.40 24794.00 25495.59 24196.95 30389.52 25594.75 24795.55 31696.18 12296.79 20496.14 28881.09 31699.18 27190.75 27097.77 29698.07 277
jason94.39 24994.04 25395.41 25598.29 17587.85 29092.74 31496.75 29285.38 33595.29 27096.15 28688.21 27599.65 14394.24 19199.34 17398.74 216
jason: jason.
ECVR-MVScopyleft94.37 25094.48 23894.05 30398.95 10383.10 34798.31 3882.48 37796.20 11998.23 10099.16 3181.18 31599.66 14195.95 9799.83 3499.38 92
112194.26 25193.26 26897.27 15898.26 18194.73 13595.86 18197.71 25277.96 36794.53 28896.71 25791.93 22699.40 22487.71 31998.64 26397.69 302
EU-MVSNet94.25 25294.47 23993.60 30998.14 19882.60 35097.24 10892.72 34585.08 33698.48 7098.94 4982.59 31098.76 31897.47 4399.53 10899.44 83
xiu_mvs_v2_base94.22 25394.63 22992.99 32497.32 28884.84 33592.12 32597.84 24491.96 26394.17 29693.43 33896.07 10299.71 10691.27 25597.48 31494.42 360
sss94.22 25393.72 26195.74 23797.71 25489.95 25093.84 28496.98 28388.38 30593.75 31095.74 30287.94 27698.89 30691.02 26198.10 28698.37 249
MVSTER94.21 25593.93 25795.05 26695.83 33686.46 31395.18 22397.65 25892.41 25797.94 13598.00 14572.39 35899.58 16696.36 7899.56 9699.12 156
MAR-MVS94.21 25593.03 27397.76 11496.94 30597.44 3596.97 12397.15 27687.89 31192.00 34692.73 35192.14 21899.12 28083.92 35197.51 31396.73 336
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
our_test_394.20 25794.58 23493.07 32096.16 32681.20 35890.42 35196.84 28790.72 28097.14 17797.13 22590.47 24499.11 28394.04 20298.25 28098.91 192
1112_ss94.12 25893.42 26596.23 21598.59 14590.85 23694.24 26498.85 9785.49 33092.97 33194.94 31986.01 29199.64 14691.78 24697.92 29298.20 270
PS-MVSNAJ94.10 25994.47 23993.00 32397.35 28184.88 33491.86 32997.84 24491.96 26394.17 29692.50 35495.82 11099.71 10691.27 25597.48 31494.40 361
CHOSEN 1792x268894.10 25993.41 26696.18 21999.16 7490.04 24892.15 32498.68 14779.90 36096.22 23797.83 16587.92 28099.42 21389.18 30199.65 7199.08 164
MG-MVS94.08 26194.00 25494.32 29797.09 29985.89 32093.19 30695.96 30692.52 25394.93 28097.51 19489.54 26098.77 31687.52 32697.71 30298.31 258
PLCcopyleft91.02 1694.05 26292.90 27597.51 13498.00 21395.12 12694.25 26398.25 20186.17 32391.48 34995.25 31391.01 23799.19 27085.02 34696.69 33298.22 268
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
114514_t93.96 26393.22 27096.19 21899.06 9390.97 23595.99 17298.94 7673.88 37393.43 32496.93 24192.38 21599.37 23589.09 30299.28 18998.25 266
PVSNet_Blended93.96 26393.65 26294.91 27197.79 24187.40 30091.43 33498.68 14784.50 34394.51 28994.48 33093.04 19499.30 25289.77 29398.61 26598.02 287
AUN-MVS93.95 26592.69 28397.74 11697.80 23595.38 10895.57 19895.46 31891.26 27592.64 33996.10 29174.67 34799.55 17793.72 21396.97 32398.30 260
lupinMVS93.77 26693.28 26795.24 25897.68 25687.81 29192.12 32596.05 30284.52 34294.48 29195.06 31786.90 28699.63 14893.62 21699.13 20898.27 264
PatchT93.75 26793.57 26394.29 29995.05 35087.32 30296.05 16792.98 34197.54 6994.25 29498.72 6375.79 34499.24 26595.92 9995.81 34396.32 343
EPNet93.72 26892.62 28697.03 17287.61 38292.25 20996.27 15491.28 35496.74 9587.65 36897.39 20785.00 29799.64 14692.14 23799.48 13099.20 137
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
HyFIR lowres test93.72 26892.65 28496.91 17898.93 10691.81 22491.23 34198.52 16882.69 34896.46 22496.52 26980.38 32099.90 1490.36 28598.79 24899.03 172
DPM-MVS93.68 27092.77 28296.42 20797.91 21992.54 20391.17 34297.47 26884.99 33993.08 33094.74 32389.90 25499.00 29587.54 32598.09 28797.72 300
PMMVS293.66 27194.07 25292.45 33497.57 26480.67 36086.46 36796.00 30493.99 21297.10 18197.38 20989.90 25497.82 36188.76 30699.47 13298.86 203
iter_conf0593.65 27293.05 27195.46 25196.13 33087.45 29895.95 17898.22 20492.66 25297.04 18897.89 15763.52 37599.72 9096.19 8399.82 3699.21 133
OpenMVS_ROBcopyleft91.80 1493.64 27393.05 27195.42 25397.31 28991.21 23195.08 22896.68 29681.56 35296.88 20296.41 27390.44 24599.25 26485.39 34297.67 30695.80 349
Patchmatch-test93.60 27493.25 26994.63 28496.14 32987.47 29796.04 16894.50 32793.57 22196.47 22396.97 23876.50 33998.61 33290.67 27698.41 27597.81 298
WTY-MVS93.55 27593.00 27495.19 26097.81 23187.86 28893.89 28396.00 30489.02 29694.07 30095.44 31286.27 28999.33 24587.69 32196.82 32898.39 247
Test_1112_low_res93.53 27692.86 27695.54 24798.60 14388.86 26792.75 31298.69 14582.66 34992.65 33896.92 24384.75 29999.56 17390.94 26397.76 29898.19 271
MIMVSNet93.42 27792.86 27695.10 26498.17 19388.19 27998.13 5493.69 33192.07 26095.04 27798.21 11780.95 31899.03 29481.42 35998.06 28898.07 277
FMVSNet593.39 27892.35 28896.50 20195.83 33690.81 23997.31 10398.27 19892.74 25196.27 23498.28 10562.23 37699.67 13590.86 26599.36 16599.03 172
SCA93.38 27993.52 26492.96 32596.24 32081.40 35793.24 30494.00 33091.58 27094.57 28696.97 23887.94 27699.42 21389.47 29797.66 30798.06 281
tttt051793.31 28092.56 28795.57 24398.71 12887.86 28897.44 9787.17 37195.79 14697.47 16496.84 24764.12 37399.81 3896.20 8299.32 18299.02 174
CR-MVSNet93.29 28192.79 27994.78 28095.44 34588.15 28196.18 16197.20 27384.94 34094.10 29898.57 7477.67 33199.39 22995.17 14695.81 34396.81 333
cl2293.25 28292.84 27894.46 29394.30 35886.00 31991.09 34596.64 29790.74 27995.79 25696.31 27978.24 32898.77 31694.15 19598.34 27698.62 228
wuyk23d93.25 28295.20 19887.40 35796.07 33195.38 10897.04 11994.97 32295.33 16499.70 598.11 12898.14 1391.94 37577.76 36899.68 6774.89 375
miper_enhance_ethall93.14 28492.78 28194.20 30093.65 36685.29 32789.97 35597.85 24285.05 33796.15 24394.56 32685.74 29299.14 27893.74 21198.34 27698.17 273
baseline193.14 28492.64 28594.62 28597.34 28587.20 30496.67 14093.02 34094.71 18896.51 22295.83 30181.64 31198.60 33490.00 29088.06 37198.07 277
FE-MVS92.95 28692.22 29095.11 26297.21 29388.33 27798.54 2293.66 33489.91 28996.21 23898.14 12270.33 36599.50 19187.79 31898.24 28197.51 309
X-MVStestdata92.86 28790.83 31198.94 1899.15 7797.66 2097.77 7398.83 10997.42 7396.32 23036.50 37796.49 8899.72 9095.66 11499.37 16299.45 73
GA-MVS92.83 28892.15 29294.87 27596.97 30287.27 30390.03 35496.12 30191.83 26694.05 30194.57 32576.01 34398.97 30392.46 23597.34 31998.36 254
CMPMVSbinary73.10 2392.74 28991.39 30096.77 18693.57 36894.67 14194.21 26797.67 25480.36 35993.61 31696.60 26382.85 30997.35 36584.86 34798.78 24998.29 263
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
thisisatest053092.71 29091.76 29795.56 24598.42 16788.23 27896.03 16987.35 37094.04 21196.56 21995.47 31164.03 37499.77 5894.78 16999.11 21298.68 224
HY-MVS91.43 1592.58 29191.81 29694.90 27396.49 31488.87 26697.31 10394.62 32585.92 32690.50 35596.84 24785.05 29699.40 22483.77 35495.78 34696.43 342
TR-MVS92.54 29292.20 29193.57 31096.49 31486.66 31193.51 29594.73 32489.96 28894.95 27893.87 33690.24 25198.61 33281.18 36094.88 35395.45 355
PMMVS92.39 29391.08 30596.30 21493.12 37092.81 20090.58 35095.96 30679.17 36391.85 34892.27 35590.29 25098.66 32989.85 29296.68 33397.43 312
131492.38 29492.30 28992.64 33095.42 34785.15 33095.86 18196.97 28485.40 33490.62 35293.06 34591.12 23697.80 36286.74 33195.49 35094.97 358
new_pmnet92.34 29591.69 29894.32 29796.23 32289.16 26292.27 32392.88 34284.39 34595.29 27096.35 27885.66 29396.74 37184.53 34997.56 31097.05 320
CVMVSNet92.33 29692.79 27990.95 34397.26 29075.84 37395.29 21692.33 34881.86 35096.27 23498.19 11881.44 31398.46 34394.23 19298.29 27998.55 235
PAPR92.22 29791.27 30395.07 26595.73 34088.81 26891.97 32897.87 24185.80 32890.91 35192.73 35191.16 23598.33 35279.48 36295.76 34798.08 275
DSMNet-mixed92.19 29891.83 29593.25 31696.18 32583.68 34696.27 15493.68 33376.97 37092.54 34299.18 2889.20 26898.55 33883.88 35298.60 26797.51 309
BH-w/o92.14 29991.94 29392.73 32997.13 29885.30 32692.46 31995.64 31189.33 29494.21 29592.74 35089.60 25898.24 35481.68 35894.66 35594.66 359
PCF-MVS89.43 1892.12 30090.64 31496.57 19897.80 23593.48 18789.88 35998.45 17474.46 37296.04 24695.68 30490.71 24299.31 24973.73 37199.01 22596.91 326
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
thres600view792.03 30191.43 29993.82 30498.19 18884.61 33796.27 15490.39 36196.81 9396.37 22893.11 34073.44 35699.49 19480.32 36197.95 29197.36 314
PatchmatchNetpermissive91.98 30291.87 29492.30 33694.60 35579.71 36295.12 22493.59 33689.52 29293.61 31697.02 23577.94 32999.18 27190.84 26694.57 35898.01 288
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
cascas91.89 30391.35 30193.51 31194.27 35985.60 32288.86 36498.61 15979.32 36292.16 34591.44 36489.22 26798.12 35890.80 26897.47 31696.82 332
JIA-IIPM91.79 30490.69 31395.11 26293.80 36590.98 23494.16 26991.78 35296.38 11090.30 35799.30 1972.02 35998.90 30588.28 31490.17 36895.45 355
thres100view90091.76 30591.26 30493.26 31598.21 18684.50 33896.39 14790.39 36196.87 9196.33 22993.08 34473.44 35699.42 21378.85 36597.74 29995.85 347
thres40091.68 30691.00 30693.71 30798.02 20784.35 34095.70 18790.79 35896.26 11695.90 25492.13 35773.62 35399.42 21378.85 36597.74 29997.36 314
tfpn200view991.55 30791.00 30693.21 31898.02 20784.35 34095.70 18790.79 35896.26 11695.90 25492.13 35773.62 35399.42 21378.85 36597.74 29995.85 347
ADS-MVSNet291.47 30890.51 31694.36 29695.51 34385.63 32195.05 23295.70 31083.46 34692.69 33696.84 24779.15 32599.41 22285.66 33990.52 36698.04 285
EPNet_dtu91.39 30990.75 31293.31 31490.48 37982.61 34994.80 24492.88 34293.39 22681.74 37694.90 32281.36 31499.11 28388.28 31498.87 23998.21 269
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
ET-MVSNet_ETH3D91.12 31089.67 32295.47 25096.41 31689.15 26391.54 33390.23 36489.07 29586.78 37292.84 34869.39 36799.44 21094.16 19496.61 33497.82 296
PVSNet86.72 1991.10 31190.97 30891.49 34097.56 26678.04 36587.17 36694.60 32684.65 34192.34 34392.20 35687.37 28498.47 34285.17 34597.69 30497.96 289
tpm91.08 31290.85 31091.75 33995.33 34878.09 36495.03 23491.27 35588.75 30093.53 31997.40 20371.24 36099.30 25291.25 25793.87 35997.87 293
thres20091.00 31390.42 31792.77 32897.47 27583.98 34494.01 27791.18 35695.12 17495.44 26791.21 36673.93 34999.31 24977.76 36897.63 30995.01 357
ADS-MVSNet90.95 31490.26 31893.04 32195.51 34382.37 35195.05 23293.41 33783.46 34692.69 33696.84 24779.15 32598.70 32385.66 33990.52 36698.04 285
tpmvs90.79 31590.87 30990.57 34692.75 37476.30 37195.79 18593.64 33591.04 27891.91 34796.26 28077.19 33798.86 31089.38 29989.85 36996.56 340
thisisatest051590.43 31689.18 32894.17 30297.07 30085.44 32489.75 36087.58 36988.28 30693.69 31391.72 36165.27 37299.58 16690.59 27798.67 25897.50 311
tpmrst90.31 31790.61 31589.41 35094.06 36372.37 37995.06 23193.69 33188.01 30892.32 34496.86 24577.45 33398.82 31191.04 26087.01 37297.04 321
test0.0.03 190.11 31889.21 32592.83 32793.89 36486.87 31091.74 33188.74 36892.02 26194.71 28391.14 36773.92 35094.48 37483.75 35592.94 36197.16 317
MVS90.02 31989.20 32692.47 33394.71 35386.90 30995.86 18196.74 29364.72 37590.62 35292.77 34992.54 21098.39 34779.30 36395.56 34992.12 368
pmmvs390.00 32088.90 33093.32 31394.20 36285.34 32591.25 34092.56 34778.59 36493.82 30695.17 31467.36 37198.69 32489.08 30398.03 28995.92 346
CHOSEN 280x42089.98 32189.19 32792.37 33595.60 34281.13 35986.22 36897.09 27981.44 35487.44 36993.15 33973.99 34899.47 20088.69 30899.07 21896.52 341
test-LLR89.97 32289.90 32090.16 34794.24 36074.98 37489.89 35689.06 36692.02 26189.97 35990.77 36973.92 35098.57 33591.88 24397.36 31796.92 324
FPMVS89.92 32388.63 33193.82 30498.37 17096.94 4791.58 33293.34 33888.00 30990.32 35697.10 22970.87 36391.13 37671.91 37496.16 34293.39 366
test250689.86 32489.16 32991.97 33898.95 10376.83 37098.54 2261.07 38496.20 11997.07 18699.16 3155.19 38399.69 12396.43 7699.83 3499.38 92
CostFormer89.75 32589.25 32391.26 34294.69 35478.00 36695.32 21391.98 35081.50 35390.55 35496.96 24071.06 36298.89 30688.59 31092.63 36396.87 327
baseline289.65 32688.44 33393.25 31695.62 34182.71 34893.82 28585.94 37388.89 29987.35 37092.54 35371.23 36199.33 24586.01 33494.60 35797.72 300
E-PMN89.52 32789.78 32188.73 35293.14 36977.61 36783.26 37192.02 34994.82 18593.71 31193.11 34075.31 34596.81 36885.81 33696.81 32991.77 370
EPMVS89.26 32888.55 33291.39 34192.36 37579.11 36395.65 19479.86 37888.60 30293.12 32996.53 26770.73 36498.10 35990.75 27089.32 37096.98 322
EMVS89.06 32989.22 32488.61 35393.00 37177.34 36882.91 37290.92 35794.64 19092.63 34091.81 36076.30 34197.02 36683.83 35396.90 32691.48 371
KD-MVS_2432*160088.93 33087.74 33592.49 33188.04 38081.99 35389.63 36195.62 31291.35 27295.06 27493.11 34056.58 37998.63 33085.19 34395.07 35196.85 329
miper_refine_blended88.93 33087.74 33592.49 33188.04 38081.99 35389.63 36195.62 31291.35 27295.06 27493.11 34056.58 37998.63 33085.19 34395.07 35196.85 329
IB-MVS85.98 2088.63 33286.95 34193.68 30895.12 34984.82 33690.85 34790.17 36587.55 31288.48 36691.34 36558.01 37799.59 16487.24 32993.80 36096.63 339
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
tpm288.47 33387.69 33790.79 34494.98 35177.34 36895.09 22691.83 35177.51 36989.40 36196.41 27367.83 37098.73 32083.58 35692.60 36496.29 344
MVS-HIRNet88.40 33490.20 31982.99 35897.01 30160.04 38293.11 30785.61 37484.45 34488.72 36599.09 3884.72 30098.23 35582.52 35796.59 33590.69 373
gg-mvs-nofinetune88.28 33586.96 34092.23 33792.84 37384.44 33998.19 5174.60 38099.08 1087.01 37199.47 856.93 37898.23 35578.91 36495.61 34894.01 362
dp88.08 33688.05 33488.16 35692.85 37268.81 38194.17 26892.88 34285.47 33191.38 35096.14 28868.87 36898.81 31386.88 33083.80 37596.87 327
tpm cat188.01 33787.33 33890.05 34994.48 35676.28 37294.47 25694.35 32973.84 37489.26 36295.61 30873.64 35298.30 35384.13 35086.20 37395.57 354
test-mter87.92 33887.17 33990.16 34794.24 36074.98 37489.89 35689.06 36686.44 32289.97 35990.77 36954.96 38498.57 33591.88 24397.36 31796.92 324
PAPM87.64 33985.84 34493.04 32196.54 31284.99 33388.42 36595.57 31579.52 36183.82 37393.05 34680.57 31998.41 34562.29 37792.79 36295.71 350
TESTMET0.1,187.20 34086.57 34289.07 35193.62 36772.84 37889.89 35687.01 37285.46 33289.12 36490.20 37156.00 38297.72 36390.91 26496.92 32496.64 337
MVEpermissive73.61 2286.48 34185.92 34388.18 35596.23 32285.28 32881.78 37375.79 37986.01 32482.53 37591.88 35992.74 20187.47 37871.42 37594.86 35491.78 369
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PVSNet_081.89 2184.49 34283.21 34588.34 35495.76 33974.97 37683.49 37092.70 34678.47 36587.94 36786.90 37483.38 30896.63 37273.44 37266.86 37893.40 365
EGC-MVSNET83.08 34377.93 34698.53 5199.57 1797.55 2798.33 3798.57 1654.71 37910.38 38098.90 5395.60 12399.50 19195.69 11099.61 8298.55 235
test_method66.88 34466.13 34769.11 36062.68 38325.73 38549.76 37496.04 30314.32 37864.27 37991.69 36273.45 35588.05 37776.06 37066.94 37793.54 363
tmp_tt57.23 34562.50 34841.44 36134.77 38449.21 38483.93 36960.22 38515.31 37771.11 37879.37 37670.09 36644.86 38064.76 37682.93 37630.25 376
cdsmvs_eth3d_5k24.22 34632.30 3490.00 3640.00 3870.00 3880.00 37598.10 2240.00 3820.00 38395.06 31797.54 290.00 3830.00 3810.00 3810.00 379
test12312.59 34715.49 3503.87 3626.07 3852.55 38690.75 3482.59 3872.52 3805.20 38213.02 3794.96 3851.85 3825.20 3799.09 3797.23 377
testmvs12.33 34815.23 3513.64 3635.77 3862.23 38788.99 3633.62 3862.30 3815.29 38113.09 3784.52 3861.95 3815.16 3808.32 3806.75 378
pcd_1.5k_mvsjas7.98 34910.65 3520.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 38295.82 1100.00 3830.00 3810.00 3810.00 379
ab-mvs-re7.91 35010.55 3530.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 38394.94 3190.00 3870.00 3830.00 3810.00 3810.00 379
test_blank0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
uanet_test0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
DCPMVS0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
sosnet-low-res0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
sosnet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
uncertanet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
Regformer0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
uanet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
FOURS199.59 1598.20 499.03 799.25 1498.96 1898.87 42
MSC_two_6792asdad98.22 7897.75 24995.34 11398.16 21799.75 7095.87 10399.51 11899.57 36
PC_three_145287.24 31498.37 8097.44 20097.00 5496.78 37092.01 23899.25 19399.21 133
No_MVS98.22 7897.75 24995.34 11398.16 21799.75 7095.87 10399.51 11899.57 36
test_one_060199.05 9795.50 10398.87 9097.21 8498.03 12598.30 10096.93 60
eth-test20.00 387
eth-test0.00 387
ZD-MVS98.43 16695.94 8198.56 16690.72 28096.66 21397.07 23195.02 14499.74 8091.08 25998.93 233
RE-MVS-def97.88 5298.81 11498.05 997.55 8998.86 9397.77 5098.20 10298.07 13296.94 5895.49 12399.20 19899.26 124
IU-MVS99.22 6295.40 10698.14 22085.77 32998.36 8395.23 14399.51 11899.49 57
OPU-MVS97.64 12598.01 20995.27 11696.79 13097.35 21296.97 5698.51 34191.21 25899.25 19399.14 149
test_241102_TWO98.83 10996.11 12498.62 5698.24 11196.92 6299.72 9095.44 13099.49 12699.49 57
test_241102_ONE99.22 6295.35 11198.83 10996.04 12999.08 3398.13 12497.87 2099.33 245
9.1496.69 14198.53 15196.02 17098.98 6893.23 23297.18 17597.46 19896.47 9099.62 15692.99 22899.32 182
save fliter98.48 16094.71 13794.53 25498.41 18295.02 179
test_0728_THIRD96.62 9798.40 7798.28 10597.10 4599.71 10695.70 10899.62 7699.58 31
test_0728_SECOND98.25 7699.23 5995.49 10496.74 13398.89 8299.75 7095.48 12699.52 11399.53 45
test072699.24 5795.51 10096.89 12598.89 8295.92 13798.64 5598.31 9697.06 50
GSMVS98.06 281
test_part299.03 9996.07 7598.08 119
sam_mvs177.80 33098.06 281
sam_mvs77.38 334
ambc96.56 19998.23 18591.68 22697.88 6898.13 22298.42 7698.56 7694.22 17099.04 29194.05 20199.35 17098.95 181
MTGPAbinary98.73 132
test_post194.98 23610.37 38176.21 34299.04 29189.47 297
test_post10.87 38076.83 33899.07 288
patchmatchnet-post96.84 24777.36 33599.42 213
GG-mvs-BLEND90.60 34591.00 37784.21 34298.23 4572.63 38382.76 37484.11 37556.14 38196.79 36972.20 37392.09 36590.78 372
MTMP96.55 14174.60 380
gm-plane-assit91.79 37671.40 38081.67 35190.11 37298.99 29784.86 347
test9_res91.29 25498.89 23899.00 175
TEST997.84 22795.23 11893.62 29198.39 18586.81 31993.78 30795.99 29394.68 15499.52 186
test_897.81 23195.07 12793.54 29498.38 18787.04 31793.71 31195.96 29794.58 15999.52 186
agg_prior290.34 28698.90 23599.10 163
agg_prior97.80 23594.96 12998.36 18993.49 32099.53 182
TestCases98.06 9399.08 9096.16 7199.16 2294.35 19997.78 15098.07 13295.84 10799.12 28091.41 25299.42 15198.91 192
test_prior495.38 10893.61 293
test_prior293.33 30294.21 20494.02 30296.25 28193.64 18391.90 24198.96 227
test_prior97.46 14597.79 24194.26 15898.42 18099.34 24298.79 209
旧先验293.35 30177.95 36895.77 26098.67 32890.74 273
新几何293.43 296
新几何197.25 16198.29 17594.70 14097.73 25077.98 36694.83 28196.67 26092.08 22199.45 20788.17 31698.65 26297.61 305
旧先验197.80 23593.87 17097.75 24997.04 23493.57 18598.68 25798.72 219
无先验93.20 30597.91 23880.78 35699.40 22487.71 31997.94 290
原ACMM292.82 310
原ACMM196.58 19698.16 19592.12 21598.15 21985.90 32793.49 32096.43 27292.47 21399.38 23287.66 32298.62 26498.23 267
test22298.17 19393.24 19292.74 31497.61 26475.17 37194.65 28596.69 25990.96 23998.66 26097.66 303
testdata299.46 20387.84 317
segment_acmp95.34 132
testdata95.70 24098.16 19590.58 24297.72 25180.38 35895.62 26397.02 23592.06 22298.98 29989.06 30498.52 27097.54 308
testdata192.77 31193.78 217
test1297.46 14597.61 26394.07 16397.78 24893.57 31893.31 18999.42 21398.78 24998.89 196
plane_prior798.70 13094.67 141
plane_prior698.38 16994.37 15191.91 228
plane_prior598.75 12899.46 20392.59 23399.20 19899.28 119
plane_prior496.77 253
plane_prior394.51 14595.29 16796.16 241
plane_prior296.50 14396.36 112
plane_prior198.49 158
plane_prior94.29 15395.42 20394.31 20198.93 233
n20.00 388
nn0.00 388
door-mid98.17 214
lessismore_v097.05 17099.36 4592.12 21584.07 37598.77 5198.98 4585.36 29599.74 8097.34 4799.37 16299.30 111
LGP-MVS_train98.74 3599.15 7797.02 4499.02 5495.15 17298.34 8698.23 11397.91 1799.70 11594.41 18299.73 5499.50 49
test1198.08 228
door97.81 247
HQP5-MVS92.47 205
HQP-NCC97.85 22394.26 26093.18 23592.86 333
ACMP_Plane97.85 22394.26 26093.18 23592.86 333
BP-MVS90.51 281
HQP4-MVS92.87 33299.23 26799.06 168
HQP3-MVS98.43 17798.74 253
HQP2-MVS90.33 246
NP-MVS98.14 19893.72 17895.08 315
MDTV_nov1_ep13_2view57.28 38394.89 23980.59 35794.02 30278.66 32785.50 34197.82 296
MDTV_nov1_ep1391.28 30294.31 35773.51 37794.80 24493.16 33986.75 32193.45 32397.40 20376.37 34098.55 33888.85 30596.43 336
ACMMP++_ref99.52 113
ACMMP++99.55 102
Test By Simon94.51 162
ITE_SJBPF97.85 10998.64 13596.66 5698.51 17095.63 15297.22 17197.30 21795.52 12598.55 33890.97 26298.90 23598.34 255
DeepMVS_CXcopyleft77.17 35990.94 37885.28 32874.08 38252.51 37680.87 37788.03 37375.25 34670.63 37959.23 37884.94 37475.62 374