This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.86 199.86 199.87 199.99 199.77 199.77 199.80 199.97 199.97 199.95 199.74 199.98 199.56 1100.00 199.85 3
LTVRE_ROB96.88 199.18 299.34 298.72 3799.71 996.99 4499.69 299.57 1199.02 1599.62 1199.36 2098.53 799.52 17598.58 1999.95 599.66 24
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
UniMVSNet_ETH3D99.12 399.28 398.65 4299.77 596.34 6599.18 599.20 2999.67 299.73 399.65 599.15 399.86 2497.22 5899.92 1499.77 11
pmmvs699.07 499.24 498.56 4899.81 296.38 6298.87 999.30 2199.01 1699.63 1099.66 399.27 299.68 12097.75 4199.89 2599.62 29
mvs_tets98.90 598.94 698.75 3199.69 1096.48 6098.54 2399.22 2696.23 11899.71 499.48 998.77 699.93 398.89 799.95 599.84 5
TDRefinement98.90 598.86 899.02 699.54 2698.06 899.34 499.44 1698.85 2099.00 4199.20 3197.42 3799.59 15497.21 5999.76 5199.40 90
UA-Net98.88 798.76 1399.22 299.11 9097.89 1399.47 399.32 2099.08 1097.87 15199.67 296.47 9599.92 597.88 3399.98 299.85 3
DTE-MVSNet98.79 898.86 898.59 4699.55 2396.12 7298.48 3099.10 4499.36 499.29 2599.06 4797.27 4399.93 397.71 4399.91 1799.70 22
jajsoiax98.77 998.79 1298.74 3499.66 1396.48 6098.45 3199.12 4295.83 14499.67 799.37 1898.25 1099.92 598.77 1099.94 899.82 6
PEN-MVS98.75 1098.85 1098.44 5599.58 1995.67 9098.45 3199.15 3899.33 599.30 2499.00 5097.27 4399.92 597.64 4799.92 1499.75 16
v7n98.73 1198.99 597.95 9599.64 1494.20 15398.67 1599.14 4099.08 1099.42 1799.23 2996.53 9099.91 1399.27 499.93 1099.73 19
PS-CasMVS98.73 1198.85 1098.39 6199.55 2395.47 10298.49 2899.13 4199.22 899.22 3098.96 5497.35 3999.92 597.79 3999.93 1099.79 9
test_djsdf98.73 1198.74 1698.69 3999.63 1596.30 6798.67 1599.02 6596.50 10699.32 2399.44 1397.43 3699.92 598.73 1299.95 599.86 2
anonymousdsp98.72 1498.63 1998.99 1099.62 1697.29 3798.65 1999.19 3195.62 15399.35 2299.37 1897.38 3899.90 1498.59 1899.91 1799.77 11
WR-MVS_H98.65 1598.62 2198.75 3199.51 3196.61 5698.55 2299.17 3399.05 1399.17 3298.79 6995.47 13099.89 1897.95 3299.91 1799.75 16
OurMVSNet-221017-098.61 1698.61 2398.63 4499.77 596.35 6499.17 699.05 5698.05 4599.61 1299.52 793.72 18099.88 2098.72 1499.88 2699.65 26
testf198.57 1798.45 2798.93 1899.79 398.78 297.69 8199.42 1897.69 6098.92 4598.77 7297.80 2299.25 25196.27 9099.69 6998.76 209
APD_test298.57 1798.45 2798.93 1899.79 398.78 297.69 8199.42 1897.69 6098.92 4598.77 7297.80 2299.25 25196.27 9099.69 6998.76 209
Anonymous2023121198.55 1998.76 1397.94 9698.79 12294.37 14498.84 1199.15 3899.37 399.67 799.43 1495.61 12699.72 8698.12 2599.86 2999.73 19
nrg03098.54 2098.62 2198.32 6599.22 6795.66 9197.90 6899.08 5098.31 3499.02 3998.74 7597.68 2799.61 15197.77 4099.85 3499.70 22
PS-MVSNAJss98.53 2198.63 1998.21 7899.68 1194.82 12998.10 5699.21 2796.91 8999.75 299.45 1295.82 11599.92 598.80 999.96 499.89 1
MIMVSNet198.51 2298.45 2798.67 4099.72 896.71 5098.76 1298.89 9398.49 2999.38 1999.14 4195.44 13299.84 3096.47 8399.80 4499.47 70
pm-mvs198.47 2398.67 1797.86 10199.52 3094.58 13698.28 4299.00 7497.57 6499.27 2699.22 3098.32 999.50 18097.09 6599.75 5699.50 53
ACMH93.61 998.44 2498.76 1397.51 12499.43 4093.54 17698.23 4699.05 5697.40 7699.37 2099.08 4698.79 599.47 18997.74 4299.71 6599.50 53
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CP-MVSNet98.42 2598.46 2598.30 6899.46 3795.22 11898.27 4498.84 11199.05 1399.01 4098.65 8495.37 13399.90 1497.57 4899.91 1799.77 11
TransMVSNet (Re)98.38 2698.67 1797.51 12499.51 3193.39 18298.20 5198.87 10198.23 3899.48 1499.27 2798.47 899.55 16796.52 8199.53 11599.60 31
TranMVSNet+NR-MVSNet98.33 2798.30 3498.43 5799.07 9595.87 8196.73 14399.05 5698.67 2398.84 5198.45 10197.58 3399.88 2096.45 8499.86 2999.54 45
HPM-MVS_fast98.32 2898.13 3798.88 2399.54 2697.48 3098.35 3599.03 6395.88 14097.88 14898.22 13498.15 1399.74 7696.50 8299.62 8399.42 87
ANet_high98.31 2998.94 696.41 20399.33 5389.64 25397.92 6799.56 1399.27 699.66 999.50 897.67 2899.83 3397.55 4999.98 299.77 11
VPA-MVSNet98.27 3098.46 2597.70 11199.06 9693.80 16697.76 7699.00 7498.40 3199.07 3898.98 5296.89 7099.75 6797.19 6299.79 4599.55 44
Vis-MVSNetpermissive98.27 3098.34 3198.07 8699.33 5395.21 12098.04 6099.46 1497.32 7997.82 15599.11 4296.75 8099.86 2497.84 3699.36 16799.15 141
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
COLMAP_ROBcopyleft94.48 698.25 3298.11 3998.64 4399.21 7497.35 3597.96 6399.16 3498.34 3398.78 5598.52 9497.32 4099.45 19694.08 20599.67 7599.13 146
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
ACMH+93.58 1098.23 3398.31 3297.98 9499.39 4795.22 11897.55 9299.20 2998.21 3999.25 2898.51 9698.21 1199.40 21394.79 17799.72 6299.32 104
FC-MVSNet-test98.16 3498.37 3097.56 11999.49 3593.10 18898.35 3599.21 2798.43 3098.89 4798.83 6894.30 16599.81 3797.87 3499.91 1799.77 11
mvsmamba98.16 3498.06 4498.44 5599.53 2995.87 8198.70 1398.94 8797.71 5898.85 4999.10 4391.35 23299.83 3398.47 2099.90 2399.64 28
SR-MVS-dyc-post98.14 3697.84 6099.02 698.81 11998.05 997.55 9298.86 10497.77 5198.20 11198.07 15096.60 8899.76 6195.49 13299.20 19899.26 121
MTAPA98.14 3697.84 6099.06 399.44 3997.90 1297.25 10898.73 13997.69 6097.90 14697.96 16595.81 11999.82 3596.13 9699.61 8999.45 76
APDe-MVS98.14 3698.03 4798.47 5498.72 12996.04 7598.07 5899.10 4495.96 13498.59 6998.69 8096.94 6499.81 3796.64 7699.58 9699.57 38
APD-MVS_3200maxsize98.13 3997.90 5498.79 2998.79 12297.31 3697.55 9298.92 9097.72 5698.25 10798.13 14297.10 5199.75 6795.44 13999.24 19699.32 104
HPM-MVScopyleft98.11 4097.83 6398.92 2199.42 4297.46 3198.57 2099.05 5695.43 16397.41 17397.50 20697.98 1699.79 4495.58 13099.57 9999.50 53
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CS-MVS98.09 4198.01 4898.32 6598.45 16996.69 5298.52 2699.69 398.07 4496.07 25297.19 23196.88 7299.86 2497.50 5199.73 5898.41 242
test_fmvsmvis_n_192098.08 4298.47 2496.93 16999.03 10293.29 18396.32 15999.65 795.59 15599.71 499.01 4997.66 2999.60 15399.44 299.83 3797.90 292
test_fmvsm_n_192098.08 4298.29 3597.43 13798.88 11493.95 16196.17 17199.57 1195.66 15099.52 1398.71 7897.04 5799.64 13699.21 699.87 2798.69 218
Gipumacopyleft98.07 4498.31 3297.36 14399.76 796.28 6898.51 2799.10 4498.76 2296.79 21299.34 2496.61 8698.82 30196.38 8699.50 12996.98 323
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
ACMMPcopyleft98.05 4597.75 7198.93 1899.23 6497.60 2298.09 5798.96 8495.75 14897.91 14598.06 15596.89 7099.76 6195.32 14799.57 9999.43 86
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
ACMM93.33 1198.05 4597.79 6598.85 2499.15 8197.55 2696.68 14598.83 11795.21 16998.36 9398.13 14298.13 1599.62 14496.04 10099.54 11199.39 93
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
SteuartSystems-ACMMP98.02 4797.76 7098.79 2999.43 4097.21 4197.15 11498.90 9296.58 10198.08 12797.87 17697.02 5999.76 6195.25 15099.59 9499.40 90
Skip Steuart: Steuart Systems R&D Blog.
SR-MVS98.00 4897.66 7899.01 898.77 12597.93 1197.38 10498.83 11797.32 7998.06 13097.85 17796.65 8399.77 5695.00 16999.11 21199.32 104
SDMVSNet97.97 4998.26 3697.11 15699.41 4392.21 20696.92 12798.60 16498.58 2698.78 5599.39 1597.80 2299.62 14494.98 17199.86 2999.52 49
sd_testset97.97 4998.12 3897.51 12499.41 4393.44 17997.96 6398.25 20498.58 2698.78 5599.39 1598.21 1199.56 16392.65 23999.86 2999.52 49
DVP-MVS++97.96 5197.90 5498.12 8497.75 25395.40 10399.03 798.89 9396.62 9698.62 6598.30 11896.97 6299.75 6795.70 11899.25 19399.21 129
Anonymous2024052997.96 5198.04 4697.71 11098.69 13694.28 15097.86 7098.31 20198.79 2199.23 2998.86 6795.76 12199.61 15195.49 13299.36 16799.23 127
XVS97.96 5197.63 8498.94 1599.15 8197.66 1997.77 7498.83 11797.42 7296.32 23897.64 19596.49 9399.72 8695.66 12399.37 16499.45 76
NR-MVSNet97.96 5197.86 5998.26 7098.73 12795.54 9598.14 5498.73 13997.79 5099.42 1797.83 17894.40 16399.78 4795.91 11099.76 5199.46 72
APD_test197.95 5597.68 7698.75 3199.60 1798.60 597.21 11299.08 5096.57 10498.07 12998.38 10896.22 10599.14 26794.71 18399.31 18598.52 234
RRT_MVS97.95 5597.79 6598.43 5799.67 1295.56 9398.86 1096.73 29597.99 4799.15 3399.35 2289.84 25499.90 1498.64 1699.90 2399.82 6
ACMMPR97.95 5597.62 8698.94 1599.20 7597.56 2597.59 8998.83 11796.05 12797.46 17197.63 19696.77 7999.76 6195.61 12799.46 14199.49 61
FMVSNet197.95 5598.08 4197.56 11999.14 8893.67 17098.23 4698.66 15697.41 7599.00 4199.19 3295.47 13099.73 8195.83 11599.76 5199.30 109
SED-MVS97.94 5997.90 5498.07 8699.22 6795.35 10896.79 13698.83 11796.11 12499.08 3698.24 12997.87 2099.72 8695.44 13999.51 12599.14 144
HFP-MVS97.94 5997.64 8298.83 2599.15 8197.50 2997.59 8998.84 11196.05 12797.49 16697.54 20297.07 5499.70 10895.61 12799.46 14199.30 109
LPG-MVS_test97.94 5997.67 7798.74 3499.15 8197.02 4297.09 11999.02 6595.15 17398.34 9698.23 13197.91 1899.70 10894.41 19199.73 5899.50 53
FIs97.93 6298.07 4297.48 13299.38 4892.95 19198.03 6299.11 4398.04 4698.62 6598.66 8293.75 17999.78 4797.23 5799.84 3599.73 19
ZNCC-MVS97.92 6397.62 8698.83 2599.32 5597.24 3997.45 9998.84 11195.76 14696.93 20697.43 21097.26 4599.79 4496.06 9799.53 11599.45 76
region2R97.92 6397.59 9098.92 2199.22 6797.55 2697.60 8798.84 11196.00 13297.22 17897.62 19796.87 7499.76 6195.48 13599.43 15399.46 72
CP-MVS97.92 6397.56 9398.99 1098.99 10597.82 1597.93 6698.96 8496.11 12496.89 20997.45 20896.85 7599.78 4795.19 15399.63 8299.38 95
CS-MVS-test97.91 6697.84 6098.14 8298.52 15896.03 7798.38 3499.67 498.11 4295.50 27396.92 24996.81 7899.87 2296.87 7399.76 5198.51 235
mPP-MVS97.91 6697.53 9699.04 499.22 6797.87 1497.74 7998.78 13196.04 12997.10 18997.73 19096.53 9099.78 4795.16 15799.50 12999.46 72
EC-MVSNet97.90 6897.94 5397.79 10598.66 13895.14 12198.31 3999.66 697.57 6495.95 25697.01 24396.99 6199.82 3597.66 4699.64 8098.39 245
ACMMP_NAP97.89 6997.63 8498.67 4099.35 5196.84 4796.36 15698.79 12795.07 17797.88 14898.35 11097.24 4799.72 8696.05 9999.58 9699.45 76
PGM-MVS97.88 7097.52 9798.96 1399.20 7597.62 2197.09 11999.06 5495.45 16197.55 16197.94 16897.11 5099.78 4794.77 18099.46 14199.48 67
DP-MVS97.87 7197.89 5797.81 10498.62 14594.82 12997.13 11798.79 12798.98 1798.74 6198.49 9795.80 12099.49 18495.04 16699.44 14599.11 154
RPSCF97.87 7197.51 9898.95 1499.15 8198.43 697.56 9199.06 5496.19 12198.48 7998.70 7994.72 15099.24 25494.37 19499.33 18099.17 138
KD-MVS_self_test97.86 7398.07 4297.25 15099.22 6792.81 19397.55 9298.94 8797.10 8598.85 4998.88 6595.03 14399.67 12597.39 5599.65 7899.26 121
test_040297.84 7497.97 5097.47 13399.19 7794.07 15696.71 14498.73 13998.66 2498.56 7198.41 10496.84 7699.69 11594.82 17599.81 4198.64 222
UniMVSNet_NR-MVSNet97.83 7597.65 7998.37 6298.72 12995.78 8495.66 20099.02 6598.11 4298.31 10297.69 19394.65 15599.85 2797.02 6899.71 6599.48 67
UniMVSNet (Re)97.83 7597.65 7998.35 6498.80 12195.86 8395.92 18899.04 6297.51 6998.22 11097.81 18294.68 15399.78 4797.14 6399.75 5699.41 89
casdiffmvs_mvgpermissive97.83 7598.11 3997.00 16698.57 15192.10 21495.97 18299.18 3297.67 6399.00 4198.48 10097.64 3099.50 18096.96 7099.54 11199.40 90
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
GST-MVS97.82 7897.49 10198.81 2799.23 6497.25 3897.16 11398.79 12795.96 13497.53 16297.40 21296.93 6699.77 5695.04 16699.35 17299.42 87
DeepC-MVS95.41 497.82 7897.70 7298.16 7998.78 12495.72 8696.23 16699.02 6593.92 21198.62 6598.99 5197.69 2699.62 14496.18 9599.87 2799.15 141
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DU-MVS97.79 8097.60 8998.36 6398.73 12795.78 8495.65 20298.87 10197.57 6498.31 10297.83 17894.69 15199.85 2797.02 6899.71 6599.46 72
DVP-MVScopyleft97.78 8197.65 7998.16 7999.24 6295.51 9796.74 13998.23 20795.92 13798.40 8798.28 12397.06 5599.71 10195.48 13599.52 12099.26 121
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
LS3D97.77 8297.50 10098.57 4796.24 32297.58 2498.45 3198.85 10898.58 2697.51 16497.94 16895.74 12299.63 13995.19 15398.97 22598.51 235
GeoE97.75 8397.70 7297.89 9998.88 11494.53 13797.10 11898.98 8095.75 14897.62 15997.59 19997.61 3299.77 5696.34 8899.44 14599.36 101
3Dnovator+96.13 397.73 8497.59 9098.15 8198.11 20995.60 9298.04 6098.70 14898.13 4196.93 20698.45 10195.30 13699.62 14495.64 12598.96 22699.24 126
tfpnnormal97.72 8597.97 5096.94 16899.26 5892.23 20597.83 7298.45 17998.25 3799.13 3598.66 8296.65 8399.69 11593.92 21399.62 8398.91 187
Baseline_NR-MVSNet97.72 8597.79 6597.50 12899.56 2193.29 18395.44 21298.86 10498.20 4098.37 9099.24 2894.69 15199.55 16795.98 10699.79 4599.65 26
bld_raw_dy_0_6497.69 8797.61 8897.91 9799.54 2694.27 15198.06 5998.60 16496.60 9898.79 5498.95 5689.62 25599.84 3098.43 2299.91 1799.62 29
MP-MVS-pluss97.69 8797.36 10698.70 3899.50 3496.84 4795.38 21998.99 7792.45 25498.11 12298.31 11497.25 4699.77 5696.60 7899.62 8399.48 67
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
EG-PatchMatch MVS97.69 8797.79 6597.40 14199.06 9693.52 17795.96 18498.97 8394.55 19498.82 5298.76 7497.31 4199.29 24397.20 6199.44 14599.38 95
DPE-MVScopyleft97.64 9097.35 10798.50 5198.85 11796.18 6995.21 23298.99 7795.84 14398.78 5598.08 14896.84 7699.81 3793.98 21199.57 9999.52 49
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MP-MVScopyleft97.64 9097.18 11699.00 999.32 5597.77 1797.49 9898.73 13996.27 11595.59 27197.75 18796.30 10299.78 4793.70 22199.48 13699.45 76
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
3Dnovator96.53 297.61 9297.64 8297.50 12897.74 25693.65 17498.49 2898.88 9996.86 9197.11 18898.55 9295.82 11599.73 8195.94 10899.42 15699.13 146
SF-MVS97.60 9397.39 10498.22 7598.93 11095.69 8897.05 12199.10 4495.32 16697.83 15497.88 17596.44 9799.72 8694.59 18899.39 16299.25 125
v897.60 9398.06 4496.23 20998.71 13289.44 25797.43 10298.82 12597.29 8198.74 6199.10 4393.86 17599.68 12098.61 1799.94 899.56 42
XVG-ACMP-BASELINE97.58 9597.28 11198.49 5299.16 7996.90 4696.39 15398.98 8095.05 17898.06 13098.02 15995.86 11199.56 16394.37 19499.64 8099.00 170
v1097.55 9697.97 5096.31 20798.60 14789.64 25397.44 10099.02 6596.60 9898.72 6399.16 3893.48 18499.72 8698.76 1199.92 1499.58 33
OPM-MVS97.54 9797.25 11298.41 5999.11 9096.61 5695.24 23098.46 17894.58 19398.10 12498.07 15097.09 5399.39 21795.16 15799.44 14599.21 129
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
XXY-MVS97.54 9797.70 7297.07 16099.46 3792.21 20697.22 11199.00 7494.93 18298.58 7098.92 5997.31 4199.41 21194.44 18999.43 15399.59 32
casdiffmvspermissive97.50 9997.81 6496.56 19398.51 16091.04 23295.83 19299.09 4997.23 8298.33 9998.30 11897.03 5899.37 22396.58 8099.38 16399.28 116
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
SixPastTwentyTwo97.49 10097.57 9297.26 14999.56 2192.33 20298.28 4296.97 28498.30 3699.45 1699.35 2288.43 27199.89 1898.01 3099.76 5199.54 45
SMA-MVScopyleft97.48 10197.11 11898.60 4598.83 11896.67 5396.74 13998.73 13991.61 26698.48 7998.36 10996.53 9099.68 12095.17 15599.54 11199.45 76
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
ACMP92.54 1397.47 10297.10 11998.55 4999.04 10196.70 5196.24 16598.89 9393.71 21697.97 14097.75 18797.44 3599.63 13993.22 23299.70 6899.32 104
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MSP-MVS97.45 10396.92 13299.03 599.26 5897.70 1897.66 8398.89 9395.65 15198.51 7496.46 27692.15 21799.81 3795.14 16098.58 26799.58 33
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
tt080597.44 10497.56 9397.11 15699.55 2396.36 6398.66 1895.66 31098.31 3497.09 19495.45 31597.17 4998.50 33398.67 1597.45 31896.48 343
baseline97.44 10497.78 6996.43 19998.52 15890.75 23996.84 13099.03 6396.51 10597.86 15298.02 15996.67 8299.36 22597.09 6599.47 13899.19 134
TSAR-MVS + MP.97.42 10697.23 11498.00 9399.38 4895.00 12597.63 8698.20 21293.00 23998.16 11798.06 15595.89 11099.72 8695.67 12299.10 21399.28 116
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CSCG97.40 10797.30 10997.69 11398.95 10794.83 12897.28 10798.99 7796.35 11498.13 12195.95 30195.99 10899.66 13194.36 19699.73 5898.59 228
test_fmvs397.38 10897.56 9396.84 17698.63 14392.81 19397.60 8799.61 1090.87 27698.76 6099.66 394.03 17197.90 35499.24 599.68 7399.81 8
XVG-OURS-SEG-HR97.38 10897.07 12298.30 6899.01 10497.41 3494.66 25699.02 6595.20 17098.15 11997.52 20498.83 498.43 33694.87 17396.41 33899.07 161
VDD-MVS97.37 11097.25 11297.74 10898.69 13694.50 14097.04 12295.61 31498.59 2598.51 7498.72 7692.54 20999.58 15696.02 10299.49 13299.12 151
SD-MVS97.37 11097.70 7296.35 20498.14 20595.13 12296.54 14898.92 9095.94 13699.19 3198.08 14897.74 2595.06 37495.24 15199.54 11198.87 197
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PM-MVS97.36 11297.10 11998.14 8298.91 11296.77 4996.20 16798.63 16293.82 21398.54 7298.33 11293.98 17299.05 28095.99 10599.45 14498.61 227
LCM-MVSNet-Re97.33 11397.33 10897.32 14598.13 20893.79 16796.99 12499.65 796.74 9499.47 1598.93 5896.91 6999.84 3090.11 29299.06 22098.32 254
EI-MVSNet-UG-set97.32 11497.40 10397.09 15997.34 28992.01 21795.33 22497.65 25997.74 5498.30 10498.14 14095.04 14299.69 11597.55 4999.52 12099.58 33
EI-MVSNet-Vis-set97.32 11497.39 10497.11 15697.36 28692.08 21595.34 22397.65 25997.74 5498.29 10598.11 14695.05 14199.68 12097.50 5199.50 12999.56 42
VPNet97.26 11697.49 10196.59 18999.47 3690.58 24196.27 16198.53 17297.77 5198.46 8298.41 10494.59 15699.68 12094.61 18499.29 18899.52 49
canonicalmvs97.23 11797.21 11597.30 14697.65 26494.39 14297.84 7199.05 5697.42 7296.68 21993.85 34097.63 3199.33 23296.29 8998.47 27298.18 270
AllTest97.20 11896.92 13298.06 8899.08 9396.16 7097.14 11699.16 3494.35 19897.78 15698.07 15095.84 11299.12 27091.41 25899.42 15698.91 187
dcpmvs_297.12 11997.99 4994.51 29299.11 9084.00 34797.75 7799.65 797.38 7799.14 3498.42 10395.16 13999.96 295.52 13199.78 4899.58 33
XVG-OURS97.12 11996.74 14198.26 7098.99 10597.45 3293.82 29199.05 5695.19 17198.32 10097.70 19295.22 13898.41 33794.27 19898.13 28598.93 183
Anonymous2024052197.07 12197.51 9895.76 23199.35 5188.18 28197.78 7398.40 18897.11 8498.34 9699.04 4889.58 25799.79 4498.09 2799.93 1099.30 109
test_vis3_rt97.04 12296.98 12697.23 15298.44 17095.88 8096.82 13299.67 490.30 28399.27 2699.33 2594.04 17096.03 37397.14 6397.83 29699.78 10
V4297.04 12297.16 11796.68 18698.59 14991.05 23196.33 15898.36 19394.60 19097.99 13698.30 11893.32 18699.62 14497.40 5499.53 11599.38 95
APD-MVScopyleft97.00 12496.53 15498.41 5998.55 15496.31 6696.32 15998.77 13292.96 24497.44 17297.58 20195.84 11299.74 7691.96 24899.35 17299.19 134
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
HPM-MVS++copyleft96.99 12596.38 16298.81 2798.64 13997.59 2395.97 18298.20 21295.51 15995.06 28296.53 27294.10 16999.70 10894.29 19799.15 20499.13 146
GBi-Net96.99 12596.80 13897.56 11997.96 22093.67 17098.23 4698.66 15695.59 15597.99 13699.19 3289.51 26199.73 8194.60 18599.44 14599.30 109
test196.99 12596.80 13897.56 11997.96 22093.67 17098.23 4698.66 15695.59 15597.99 13699.19 3289.51 26199.73 8194.60 18599.44 14599.30 109
VDDNet96.98 12896.84 13597.41 14099.40 4693.26 18597.94 6595.31 32099.26 798.39 8999.18 3587.85 28099.62 14495.13 16299.09 21499.35 103
PHI-MVS96.96 12996.53 15498.25 7397.48 27696.50 5996.76 13898.85 10893.52 21996.19 24896.85 25295.94 10999.42 20293.79 21799.43 15398.83 200
IS-MVSNet96.93 13096.68 14497.70 11199.25 6194.00 15998.57 2096.74 29398.36 3298.14 12097.98 16488.23 27399.71 10193.10 23599.72 6299.38 95
CNVR-MVS96.92 13196.55 15198.03 9298.00 21895.54 9594.87 24898.17 21894.60 19096.38 23597.05 23995.67 12499.36 22595.12 16399.08 21599.19 134
IterMVS-LS96.92 13197.29 11095.79 23098.51 16088.13 28495.10 23598.66 15696.99 8698.46 8298.68 8192.55 20799.74 7696.91 7199.79 4599.50 53
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
WR-MVS96.90 13396.81 13797.16 15398.56 15392.20 20994.33 26498.12 22797.34 7898.20 11197.33 22392.81 19799.75 6794.79 17799.81 4199.54 45
DeepPCF-MVS94.58 596.90 13396.43 15998.31 6797.48 27697.23 4092.56 32198.60 16492.84 24698.54 7297.40 21296.64 8598.78 30594.40 19399.41 16098.93 183
v114496.84 13597.08 12196.13 21698.42 17289.28 26095.41 21698.67 15494.21 20197.97 14098.31 11493.06 19199.65 13398.06 2999.62 8399.45 76
VNet96.84 13596.83 13696.88 17398.06 21092.02 21696.35 15797.57 26597.70 5997.88 14897.80 18392.40 21499.54 17094.73 18298.96 22699.08 159
EPP-MVSNet96.84 13596.58 14897.65 11599.18 7893.78 16898.68 1496.34 29897.91 4997.30 17598.06 15588.46 27099.85 2793.85 21599.40 16199.32 104
v119296.83 13897.06 12396.15 21598.28 18289.29 25995.36 22098.77 13293.73 21598.11 12298.34 11193.02 19599.67 12598.35 2399.58 9699.50 53
MVS_111021_LR96.82 13996.55 15197.62 11798.27 18495.34 11093.81 29398.33 19794.59 19296.56 22796.63 26796.61 8698.73 31094.80 17699.34 17598.78 205
Effi-MVS+-dtu96.81 14096.09 17398.99 1096.90 31098.69 496.42 15298.09 23095.86 14295.15 28195.54 31294.26 16699.81 3794.06 20698.51 27198.47 239
UGNet96.81 14096.56 15097.58 11896.64 31393.84 16597.75 7797.12 27896.47 10993.62 31998.88 6593.22 18999.53 17295.61 12799.69 6999.36 101
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
v2v48296.78 14297.06 12395.95 22398.57 15188.77 27195.36 22098.26 20395.18 17297.85 15398.23 13192.58 20699.63 13997.80 3899.69 6999.45 76
v124096.74 14397.02 12595.91 22698.18 19688.52 27395.39 21898.88 9993.15 23598.46 8298.40 10792.80 19899.71 10198.45 2199.49 13299.49 61
DeepC-MVS_fast94.34 796.74 14396.51 15697.44 13697.69 25994.15 15496.02 17898.43 18293.17 23497.30 17597.38 21895.48 12999.28 24593.74 21899.34 17598.88 195
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MVS_111021_HR96.73 14596.54 15397.27 14898.35 17793.66 17393.42 30398.36 19394.74 18596.58 22596.76 26196.54 8998.99 28794.87 17399.27 19199.15 141
v192192096.72 14696.96 12995.99 21998.21 19088.79 27095.42 21498.79 12793.22 22998.19 11598.26 12892.68 20299.70 10898.34 2499.55 10899.49 61
FMVSNet296.72 14696.67 14596.87 17497.96 22091.88 21997.15 11498.06 23695.59 15598.50 7698.62 8689.51 26199.65 13394.99 17099.60 9299.07 161
PMVScopyleft89.60 1796.71 14896.97 12795.95 22399.51 3197.81 1697.42 10397.49 26697.93 4895.95 25698.58 8896.88 7296.91 36789.59 30099.36 16793.12 372
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
v14419296.69 14996.90 13496.03 21898.25 18688.92 26595.49 21098.77 13293.05 23798.09 12598.29 12292.51 21299.70 10898.11 2699.56 10299.47 70
CPTT-MVS96.69 14996.08 17498.49 5298.89 11396.64 5597.25 10898.77 13292.89 24596.01 25597.13 23392.23 21699.67 12592.24 24599.34 17599.17 138
HQP_MVS96.66 15196.33 16597.68 11498.70 13494.29 14796.50 14998.75 13696.36 11296.16 24996.77 25991.91 22799.46 19292.59 24199.20 19899.28 116
EI-MVSNet96.63 15296.93 13095.74 23297.26 29488.13 28495.29 22897.65 25996.99 8697.94 14398.19 13692.55 20799.58 15696.91 7199.56 10299.50 53
MVS_030496.62 15396.40 16197.28 14797.91 22492.30 20396.47 15189.74 36997.52 6895.38 27798.63 8592.76 19999.81 3799.28 399.93 1099.75 16
patch_mono-296.59 15496.93 13095.55 24298.88 11487.12 30794.47 26199.30 2194.12 20496.65 22398.41 10494.98 14699.87 2295.81 11799.78 4899.66 24
ab-mvs96.59 15496.59 14796.60 18898.64 13992.21 20698.35 3597.67 25594.45 19596.99 20198.79 6994.96 14799.49 18490.39 28999.07 21798.08 273
v14896.58 15696.97 12795.42 24998.63 14387.57 29795.09 23697.90 24195.91 13998.24 10897.96 16593.42 18599.39 21796.04 10099.52 12099.29 115
test20.0396.58 15696.61 14696.48 19798.49 16491.72 22395.68 19997.69 25496.81 9298.27 10697.92 17194.18 16898.71 31390.78 27599.66 7799.00 170
NCCC96.52 15895.99 17898.10 8597.81 23795.68 8995.00 24498.20 21295.39 16495.40 27696.36 28293.81 17799.45 19693.55 22498.42 27499.17 138
pmmvs-eth3d96.49 15996.18 17097.42 13998.25 18694.29 14794.77 25298.07 23589.81 29097.97 14098.33 11293.11 19099.08 27795.46 13899.84 3598.89 191
OMC-MVS96.48 16096.00 17797.91 9798.30 17996.01 7894.86 24998.60 16491.88 26397.18 18397.21 23096.11 10699.04 28190.49 28899.34 17598.69 218
TSAR-MVS + GP.96.47 16196.12 17197.49 13197.74 25695.23 11594.15 27596.90 28693.26 22798.04 13396.70 26394.41 16298.89 29694.77 18099.14 20598.37 247
Fast-Effi-MVS+-dtu96.44 16296.12 17197.39 14297.18 29894.39 14295.46 21198.73 13996.03 13194.72 29094.92 32596.28 10499.69 11593.81 21697.98 29098.09 272
K. test v396.44 16296.28 16696.95 16799.41 4391.53 22597.65 8490.31 36598.89 1998.93 4499.36 2084.57 30399.92 597.81 3799.56 10299.39 93
MSLP-MVS++96.42 16496.71 14295.57 23997.82 23690.56 24395.71 19598.84 11194.72 18696.71 21897.39 21694.91 14898.10 35295.28 14899.02 22298.05 282
test_fmvs296.38 16596.45 15896.16 21497.85 22891.30 22896.81 13399.45 1589.24 29598.49 7799.38 1788.68 26897.62 35998.83 899.32 18299.57 38
Anonymous20240521196.34 16695.98 17997.43 13798.25 18693.85 16496.74 13994.41 32897.72 5698.37 9098.03 15887.15 28599.53 17294.06 20699.07 21798.92 186
h-mvs3396.29 16795.63 19598.26 7098.50 16396.11 7396.90 12897.09 27996.58 10197.21 18098.19 13684.14 30599.78 4795.89 11196.17 34298.89 191
MVS_Test96.27 16896.79 14094.73 28296.94 30886.63 31596.18 16898.33 19794.94 18096.07 25298.28 12395.25 13799.26 24997.21 5997.90 29498.30 258
MCST-MVS96.24 16995.80 18897.56 11998.75 12694.13 15594.66 25698.17 21890.17 28696.21 24696.10 29595.14 14099.43 20194.13 20498.85 24099.13 146
mvsany_test396.21 17095.93 18397.05 16197.40 28494.33 14695.76 19494.20 33089.10 29699.36 2199.60 693.97 17397.85 35595.40 14698.63 26298.99 173
Effi-MVS+96.19 17196.01 17696.71 18397.43 28292.19 21096.12 17299.10 4495.45 16193.33 33094.71 32897.23 4899.56 16393.21 23397.54 31298.37 247
DELS-MVS96.17 17296.23 16795.99 21997.55 27290.04 24792.38 32698.52 17394.13 20396.55 22997.06 23894.99 14599.58 15695.62 12699.28 18998.37 247
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MVSFormer96.14 17396.36 16395.49 24597.68 26087.81 29398.67 1599.02 6596.50 10694.48 29796.15 29086.90 28699.92 598.73 1299.13 20798.74 211
ETV-MVS96.13 17495.90 18496.82 17797.76 25193.89 16295.40 21798.95 8695.87 14195.58 27291.00 37196.36 10199.72 8693.36 22698.83 24396.85 330
testgi96.07 17596.50 15794.80 27899.26 5887.69 29695.96 18498.58 16995.08 17698.02 13596.25 28697.92 1797.60 36088.68 31498.74 25199.11 154
LF4IMVS96.07 17595.63 19597.36 14398.19 19395.55 9495.44 21298.82 12592.29 25795.70 26996.55 27092.63 20598.69 31591.75 25699.33 18097.85 296
EIA-MVS96.04 17795.77 19096.85 17597.80 24192.98 19096.12 17299.16 3494.65 18893.77 31491.69 36595.68 12399.67 12594.18 20198.85 24097.91 291
diffmvspermissive96.04 17796.23 16795.46 24797.35 28788.03 28793.42 30399.08 5094.09 20796.66 22196.93 24793.85 17699.29 24396.01 10498.67 25799.06 163
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
alignmvs96.01 17995.52 19897.50 12897.77 25094.71 13196.07 17496.84 28797.48 7096.78 21694.28 33785.50 29699.40 21396.22 9298.73 25498.40 243
TinyColmap96.00 18096.34 16494.96 26997.90 22687.91 28994.13 27898.49 17694.41 19698.16 11797.76 18496.29 10398.68 31890.52 28599.42 15698.30 258
PVSNet_Blended_VisFu95.95 18195.80 18896.42 20199.28 5790.62 24095.31 22699.08 5088.40 30696.97 20498.17 13992.11 21999.78 4793.64 22299.21 19798.86 198
UnsupCasMVSNet_eth95.91 18295.73 19196.44 19898.48 16691.52 22695.31 22698.45 17995.76 14697.48 16897.54 20289.53 26098.69 31594.43 19094.61 35999.13 146
QAPM95.88 18395.57 19796.80 17897.90 22691.84 22198.18 5398.73 13988.41 30596.42 23398.13 14294.73 14999.75 6788.72 31298.94 22998.81 202
CANet95.86 18495.65 19496.49 19696.41 31990.82 23694.36 26398.41 18694.94 18092.62 34696.73 26292.68 20299.71 10195.12 16399.60 9298.94 179
IterMVS-SCA-FT95.86 18496.19 16994.85 27597.68 26085.53 32692.42 32497.63 26396.99 8698.36 9398.54 9387.94 27599.75 6797.07 6799.08 21599.27 120
test_f95.82 18695.88 18695.66 23697.61 26793.21 18795.61 20698.17 21886.98 32198.42 8599.47 1090.46 24394.74 37697.71 4398.45 27399.03 166
test_vis1_n_192095.77 18796.41 16093.85 30798.55 15484.86 33895.91 18999.71 292.72 24897.67 15898.90 6387.44 28398.73 31097.96 3198.85 24097.96 288
hse-mvs295.77 18795.09 20797.79 10597.84 23395.51 9795.66 20095.43 31996.58 10197.21 18096.16 28984.14 30599.54 17095.89 11196.92 32598.32 254
MVP-Stereo95.69 18995.28 20096.92 17098.15 20393.03 18995.64 20598.20 21290.39 28296.63 22497.73 19091.63 22999.10 27591.84 25397.31 32298.63 224
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
MDA-MVSNet-bldmvs95.69 18995.67 19295.74 23298.48 16688.76 27292.84 31397.25 27196.00 13297.59 16097.95 16791.38 23199.46 19293.16 23496.35 33998.99 173
test_vis1_n95.67 19195.89 18595.03 26498.18 19689.89 25096.94 12699.28 2388.25 30998.20 11198.92 5986.69 28997.19 36297.70 4598.82 24498.00 287
new-patchmatchnet95.67 19196.58 14892.94 33097.48 27680.21 36592.96 31298.19 21794.83 18398.82 5298.79 6993.31 18799.51 17995.83 11599.04 22199.12 151
xiu_mvs_v1_base_debu95.62 19395.96 18094.60 28698.01 21488.42 27493.99 28398.21 20992.98 24095.91 25894.53 33196.39 9899.72 8695.43 14298.19 28295.64 354
xiu_mvs_v1_base95.62 19395.96 18094.60 28698.01 21488.42 27493.99 28398.21 20992.98 24095.91 25894.53 33196.39 9899.72 8695.43 14298.19 28295.64 354
xiu_mvs_v1_base_debi95.62 19395.96 18094.60 28698.01 21488.42 27493.99 28398.21 20992.98 24095.91 25894.53 33196.39 9899.72 8695.43 14298.19 28295.64 354
DP-MVS Recon95.55 19695.13 20596.80 17898.51 16093.99 16094.60 25898.69 14990.20 28595.78 26596.21 28892.73 20198.98 28990.58 28498.86 23997.42 314
Fast-Effi-MVS+95.49 19795.07 20896.75 18197.67 26392.82 19294.22 27198.60 16491.61 26693.42 32892.90 35096.73 8199.70 10892.60 24097.89 29597.74 301
TAMVS95.49 19794.94 21297.16 15398.31 17893.41 18195.07 23996.82 28991.09 27497.51 16497.82 18189.96 25199.42 20288.42 31799.44 14598.64 222
OpenMVScopyleft94.22 895.48 19995.20 20296.32 20697.16 29991.96 21897.74 7998.84 11187.26 31694.36 29998.01 16193.95 17499.67 12590.70 28198.75 25097.35 317
CLD-MVS95.47 20095.07 20896.69 18598.27 18492.53 19991.36 33998.67 15491.22 27395.78 26594.12 33895.65 12598.98 28990.81 27399.72 6298.57 229
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
train_agg95.46 20194.66 22897.88 10097.84 23395.23 11593.62 29798.39 18987.04 31993.78 31295.99 29794.58 15799.52 17591.76 25598.90 23398.89 191
CDPH-MVS95.45 20294.65 22997.84 10398.28 18294.96 12693.73 29598.33 19785.03 34295.44 27496.60 26895.31 13599.44 19990.01 29499.13 20799.11 154
IterMVS95.42 20395.83 18794.20 30397.52 27383.78 34992.41 32597.47 26895.49 16098.06 13098.49 9787.94 27599.58 15696.02 10299.02 22299.23 127
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
mvs_anonymous95.36 20496.07 17593.21 32296.29 32181.56 36094.60 25897.66 25793.30 22696.95 20598.91 6293.03 19499.38 22096.60 7897.30 32398.69 218
test_cas_vis1_n_192095.34 20595.67 19294.35 29898.21 19086.83 31395.61 20699.26 2490.45 28198.17 11698.96 5484.43 30498.31 34596.74 7499.17 20397.90 292
MSDG95.33 20695.13 20595.94 22597.40 28491.85 22091.02 35098.37 19295.30 16796.31 24095.99 29794.51 16098.38 34089.59 30097.65 30997.60 307
LFMVS95.32 20794.88 21896.62 18798.03 21191.47 22797.65 8490.72 36299.11 997.89 14798.31 11479.20 32999.48 18793.91 21499.12 21098.93 183
F-COLMAP95.30 20894.38 24698.05 9198.64 13996.04 7595.61 20698.66 15689.00 29993.22 33196.40 28092.90 19699.35 22887.45 33197.53 31398.77 208
Anonymous2023120695.27 20995.06 21095.88 22798.72 12989.37 25895.70 19697.85 24488.00 31296.98 20397.62 19791.95 22499.34 23089.21 30599.53 11598.94 179
FMVSNet395.26 21094.94 21296.22 21196.53 31690.06 24695.99 18097.66 25794.11 20597.99 13697.91 17280.22 32799.63 13994.60 18599.44 14598.96 176
test_fmvs1_n95.21 21195.28 20094.99 26798.15 20389.13 26496.81 13399.43 1786.97 32297.21 18098.92 5983.00 31397.13 36398.09 2798.94 22998.72 214
c3_l95.20 21295.32 19994.83 27796.19 32686.43 31891.83 33498.35 19693.47 22197.36 17497.26 22788.69 26799.28 24595.41 14599.36 16798.78 205
D2MVS95.18 21395.17 20495.21 25597.76 25187.76 29594.15 27597.94 23989.77 29196.99 20197.68 19487.45 28299.14 26795.03 16899.81 4198.74 211
N_pmnet95.18 21394.23 24998.06 8897.85 22896.55 5892.49 32291.63 35589.34 29398.09 12597.41 21190.33 24599.06 27991.58 25799.31 18598.56 230
HQP-MVS95.17 21594.58 23796.92 17097.85 22892.47 20094.26 26598.43 18293.18 23192.86 33795.08 31990.33 24599.23 25690.51 28698.74 25199.05 165
Vis-MVSNet (Re-imp)95.11 21694.85 21995.87 22899.12 8989.17 26197.54 9794.92 32396.50 10696.58 22597.27 22683.64 30999.48 18788.42 31799.67 7598.97 175
AdaColmapbinary95.11 21694.62 23396.58 19097.33 29194.45 14194.92 24698.08 23193.15 23593.98 31095.53 31394.34 16499.10 27585.69 34198.61 26496.20 348
API-MVS95.09 21895.01 21195.31 25296.61 31494.02 15896.83 13197.18 27595.60 15495.79 26394.33 33694.54 15998.37 34285.70 34098.52 26993.52 369
CL-MVSNet_self_test95.04 21994.79 22595.82 22997.51 27489.79 25191.14 34796.82 28993.05 23796.72 21796.40 28090.82 23899.16 26591.95 24998.66 25998.50 237
CNLPA95.04 21994.47 24296.75 18197.81 23795.25 11494.12 27997.89 24294.41 19694.57 29395.69 30690.30 24898.35 34386.72 33698.76 24996.64 338
Patchmtry95.03 22194.59 23696.33 20594.83 35690.82 23696.38 15597.20 27396.59 10097.49 16698.57 8977.67 33699.38 22092.95 23899.62 8398.80 203
PVSNet_BlendedMVS95.02 22294.93 21495.27 25397.79 24687.40 30294.14 27798.68 15188.94 30094.51 29598.01 16193.04 19299.30 23989.77 29899.49 13299.11 154
TAPA-MVS93.32 1294.93 22394.23 24997.04 16398.18 19694.51 13895.22 23198.73 13981.22 36196.25 24495.95 30193.80 17898.98 28989.89 29698.87 23797.62 305
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
FA-MVS(test-final)94.91 22494.89 21794.99 26797.51 27488.11 28698.27 4495.20 32192.40 25696.68 21998.60 8783.44 31099.28 24593.34 22798.53 26897.59 308
eth_miper_zixun_eth94.89 22594.93 21494.75 28195.99 33486.12 32191.35 34098.49 17693.40 22297.12 18797.25 22886.87 28899.35 22895.08 16598.82 24498.78 205
CDS-MVSNet94.88 22694.12 25497.14 15597.64 26593.57 17593.96 28797.06 28190.05 28796.30 24196.55 27086.10 29199.47 18990.10 29399.31 18598.40 243
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MS-PatchMatch94.83 22794.91 21694.57 28996.81 31187.10 30894.23 27097.34 27088.74 30397.14 18597.11 23591.94 22598.23 34892.99 23697.92 29298.37 247
pmmvs494.82 22894.19 25296.70 18497.42 28392.75 19792.09 33196.76 29186.80 32495.73 26897.22 22989.28 26498.89 29693.28 23099.14 20598.46 241
miper_lstm_enhance94.81 22994.80 22494.85 27596.16 32886.45 31791.14 34798.20 21293.49 22097.03 19897.37 22084.97 30099.26 24995.28 14899.56 10298.83 200
cl____94.73 23094.64 23095.01 26595.85 33887.00 30991.33 34198.08 23193.34 22497.10 18997.33 22384.01 30899.30 23995.14 16099.56 10298.71 217
DIV-MVS_self_test94.73 23094.64 23095.01 26595.86 33787.00 30991.33 34198.08 23193.34 22497.10 18997.34 22284.02 30799.31 23695.15 15999.55 10898.72 214
YYNet194.73 23094.84 22094.41 29697.47 28085.09 33590.29 35795.85 30892.52 25197.53 16297.76 18491.97 22399.18 26093.31 22996.86 32898.95 177
MDA-MVSNet_test_wron94.73 23094.83 22294.42 29597.48 27685.15 33390.28 35895.87 30792.52 25197.48 16897.76 18491.92 22699.17 26493.32 22896.80 33198.94 179
UnsupCasMVSNet_bld94.72 23494.26 24896.08 21798.62 14590.54 24493.38 30598.05 23790.30 28397.02 19996.80 25889.54 25899.16 26588.44 31696.18 34198.56 230
miper_ehance_all_eth94.69 23594.70 22794.64 28395.77 34186.22 32091.32 34398.24 20691.67 26597.05 19696.65 26688.39 27299.22 25894.88 17298.34 27698.49 238
BH-untuned94.69 23594.75 22694.52 29197.95 22387.53 29894.07 28097.01 28293.99 20997.10 18995.65 30892.65 20498.95 29487.60 32796.74 33297.09 320
RPMNet94.68 23794.60 23494.90 27295.44 34988.15 28296.18 16898.86 10497.43 7194.10 30498.49 9779.40 32899.76 6195.69 12095.81 34496.81 334
Patchmatch-RL test94.66 23894.49 24095.19 25698.54 15688.91 26692.57 32098.74 13891.46 26998.32 10097.75 18777.31 34198.81 30396.06 9799.61 8997.85 296
CANet_DTU94.65 23994.21 25195.96 22195.90 33689.68 25293.92 28897.83 24893.19 23090.12 36395.64 30988.52 26999.57 16293.27 23199.47 13898.62 225
pmmvs594.63 24094.34 24795.50 24497.63 26688.34 27794.02 28197.13 27787.15 31895.22 28097.15 23287.50 28199.27 24893.99 21099.26 19298.88 195
PAPM_NR94.61 24194.17 25395.96 22198.36 17691.23 22995.93 18797.95 23892.98 24093.42 32894.43 33590.53 24198.38 34087.60 32796.29 34098.27 262
PatchMatch-RL94.61 24193.81 26297.02 16598.19 19395.72 8693.66 29697.23 27288.17 31094.94 28795.62 31091.43 23098.57 32687.36 33297.68 30696.76 336
BH-RMVSNet94.56 24394.44 24594.91 27097.57 26987.44 30193.78 29496.26 29993.69 21796.41 23496.50 27592.10 22099.00 28585.96 33897.71 30398.31 256
USDC94.56 24394.57 23994.55 29097.78 24986.43 31892.75 31698.65 16185.96 33096.91 20897.93 17090.82 23898.74 30990.71 28099.59 9498.47 239
iter_conf_final94.54 24593.91 26196.43 19997.23 29690.41 24596.81 13398.10 22893.87 21296.80 21197.89 17368.02 37499.72 8696.73 7599.77 5099.18 137
test111194.53 24694.81 22393.72 31099.06 9681.94 35998.31 3983.87 38196.37 11198.49 7799.17 3781.49 31899.73 8196.64 7699.86 2999.49 61
test_fmvs194.51 24794.60 23494.26 30295.91 33587.92 28895.35 22299.02 6586.56 32696.79 21298.52 9482.64 31597.00 36697.87 3498.71 25597.88 294
ppachtmachnet_test94.49 24894.84 22093.46 31696.16 32882.10 35690.59 35497.48 26790.53 28097.01 20097.59 19991.01 23599.36 22593.97 21299.18 20298.94 179
test_yl94.40 24994.00 25795.59 23796.95 30689.52 25594.75 25395.55 31696.18 12296.79 21296.14 29281.09 32299.18 26090.75 27697.77 29798.07 275
DCV-MVSNet94.40 24994.00 25795.59 23796.95 30689.52 25594.75 25395.55 31696.18 12296.79 21296.14 29281.09 32299.18 26090.75 27697.77 29798.07 275
jason94.39 25194.04 25695.41 25198.29 18087.85 29292.74 31896.75 29285.38 33995.29 27896.15 29088.21 27499.65 13394.24 19999.34 17598.74 211
jason: jason.
ECVR-MVScopyleft94.37 25294.48 24194.05 30698.95 10783.10 35198.31 3982.48 38296.20 11998.23 10999.16 3881.18 32199.66 13195.95 10799.83 3799.38 95
EU-MVSNet94.25 25394.47 24293.60 31398.14 20582.60 35497.24 11092.72 34685.08 34098.48 7998.94 5782.59 31698.76 30897.47 5399.53 11599.44 85
xiu_mvs_v2_base94.22 25494.63 23292.99 32897.32 29284.84 33992.12 32997.84 24691.96 26194.17 30293.43 34196.07 10799.71 10191.27 26197.48 31594.42 364
sss94.22 25493.72 26395.74 23297.71 25889.95 24993.84 29096.98 28388.38 30793.75 31595.74 30587.94 27598.89 29691.02 26798.10 28698.37 247
MVSTER94.21 25693.93 26095.05 26395.83 33986.46 31695.18 23397.65 25992.41 25597.94 14398.00 16372.39 36399.58 15696.36 8799.56 10299.12 151
MAR-MVS94.21 25693.03 27597.76 10796.94 30897.44 3396.97 12597.15 27687.89 31492.00 35192.73 35492.14 21899.12 27083.92 35497.51 31496.73 337
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
our_test_394.20 25894.58 23793.07 32496.16 32881.20 36290.42 35696.84 28790.72 27897.14 18597.13 23390.47 24299.11 27394.04 20998.25 28098.91 187
1112_ss94.12 25993.42 26896.23 20998.59 14990.85 23594.24 26998.85 10885.49 33592.97 33594.94 32386.01 29299.64 13691.78 25497.92 29298.20 268
PS-MVSNAJ94.10 26094.47 24293.00 32797.35 28784.88 33791.86 33397.84 24691.96 26194.17 30292.50 35795.82 11599.71 10191.27 26197.48 31594.40 365
CHOSEN 1792x268894.10 26093.41 26996.18 21399.16 7990.04 24792.15 32898.68 15179.90 36696.22 24597.83 17887.92 27999.42 20289.18 30699.65 7899.08 159
MG-MVS94.08 26294.00 25794.32 29997.09 30285.89 32393.19 31095.96 30592.52 25194.93 28897.51 20589.54 25898.77 30687.52 33097.71 30398.31 256
PLCcopyleft91.02 1694.05 26392.90 27897.51 12498.00 21895.12 12394.25 26898.25 20486.17 32891.48 35495.25 31791.01 23599.19 25985.02 34996.69 33398.22 266
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
test_vis1_rt94.03 26493.65 26495.17 25895.76 34293.42 18093.97 28698.33 19784.68 34693.17 33295.89 30392.53 21194.79 37593.50 22594.97 35597.31 318
114514_t93.96 26593.22 27296.19 21299.06 9690.97 23495.99 18098.94 8773.88 37893.43 32796.93 24792.38 21599.37 22389.09 30799.28 18998.25 264
PVSNet_Blended93.96 26593.65 26494.91 27097.79 24687.40 30291.43 33898.68 15184.50 34994.51 29594.48 33493.04 19299.30 23989.77 29898.61 26498.02 285
AUN-MVS93.95 26792.69 28697.74 10897.80 24195.38 10595.57 20995.46 31891.26 27292.64 34496.10 29574.67 35299.55 16793.72 22096.97 32498.30 258
lupinMVS93.77 26893.28 27095.24 25497.68 26087.81 29392.12 32996.05 30184.52 34894.48 29795.06 32186.90 28699.63 13993.62 22399.13 20798.27 262
PatchT93.75 26993.57 26694.29 30195.05 35487.32 30496.05 17592.98 34297.54 6794.25 30098.72 7675.79 34999.24 25495.92 10995.81 34496.32 345
EPNet93.72 27092.62 28997.03 16487.61 38792.25 20496.27 16191.28 35696.74 9487.65 37397.39 21685.00 29999.64 13692.14 24699.48 13699.20 133
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
HyFIR lowres test93.72 27092.65 28796.91 17298.93 11091.81 22291.23 34598.52 17382.69 35496.46 23296.52 27480.38 32699.90 1490.36 29098.79 24699.03 166
DPM-MVS93.68 27292.77 28596.42 20197.91 22492.54 19891.17 34697.47 26884.99 34493.08 33494.74 32789.90 25299.00 28587.54 32998.09 28797.72 302
PMMVS293.66 27394.07 25592.45 33897.57 26980.67 36486.46 37296.00 30393.99 20997.10 18997.38 21889.90 25297.82 35688.76 31199.47 13898.86 198
iter_conf0593.65 27493.05 27395.46 24796.13 33287.45 30095.95 18698.22 20892.66 24997.04 19797.89 17363.52 38099.72 8696.19 9499.82 4099.21 129
OpenMVS_ROBcopyleft91.80 1493.64 27593.05 27395.42 24997.31 29391.21 23095.08 23896.68 29681.56 35896.88 21096.41 27890.44 24499.25 25185.39 34597.67 30795.80 352
Patchmatch-test93.60 27693.25 27194.63 28496.14 33187.47 29996.04 17694.50 32793.57 21896.47 23196.97 24476.50 34498.61 32390.67 28298.41 27597.81 300
WTY-MVS93.55 27793.00 27795.19 25697.81 23787.86 29093.89 28996.00 30389.02 29894.07 30695.44 31686.27 29099.33 23287.69 32596.82 32998.39 245
Test_1112_low_res93.53 27892.86 27995.54 24398.60 14788.86 26892.75 31698.69 14982.66 35592.65 34396.92 24984.75 30199.56 16390.94 26997.76 29998.19 269
mvsany_test193.47 27993.03 27594.79 27994.05 36892.12 21190.82 35290.01 36885.02 34397.26 17798.28 12393.57 18297.03 36492.51 24395.75 34995.23 360
MIMVSNet93.42 28092.86 27995.10 26198.17 19988.19 28098.13 5593.69 33292.07 25895.04 28598.21 13580.95 32499.03 28481.42 36298.06 28898.07 275
FMVSNet593.39 28192.35 29196.50 19595.83 33990.81 23897.31 10598.27 20292.74 24796.27 24298.28 12362.23 38199.67 12590.86 27199.36 16799.03 166
SCA93.38 28293.52 26792.96 32996.24 32281.40 36193.24 30894.00 33191.58 26894.57 29396.97 24487.94 27599.42 20289.47 30297.66 30898.06 279
tttt051793.31 28392.56 29095.57 23998.71 13287.86 29097.44 10087.17 37595.79 14597.47 17096.84 25364.12 37899.81 3796.20 9399.32 18299.02 169
CR-MVSNet93.29 28492.79 28294.78 28095.44 34988.15 28296.18 16897.20 27384.94 34594.10 30498.57 8977.67 33699.39 21795.17 15595.81 34496.81 334
cl2293.25 28592.84 28194.46 29494.30 36286.00 32291.09 34996.64 29790.74 27795.79 26396.31 28478.24 33398.77 30694.15 20398.34 27698.62 225
wuyk23d93.25 28595.20 20287.40 36296.07 33395.38 10597.04 12294.97 32295.33 16599.70 698.11 14698.14 1491.94 38077.76 37299.68 7374.89 380
miper_enhance_ethall93.14 28792.78 28494.20 30393.65 37185.29 33089.97 36097.85 24485.05 34196.15 25194.56 33085.74 29499.14 26793.74 21898.34 27698.17 271
baseline193.14 28792.64 28894.62 28597.34 28987.20 30696.67 14693.02 34194.71 18796.51 23095.83 30481.64 31798.60 32590.00 29588.06 37698.07 275
FE-MVS92.95 28992.22 29395.11 25997.21 29788.33 27898.54 2393.66 33589.91 28996.21 24698.14 14070.33 37099.50 18087.79 32398.24 28197.51 310
X-MVStestdata92.86 29090.83 31598.94 1599.15 8197.66 1997.77 7498.83 11797.42 7296.32 23836.50 38296.49 9399.72 8695.66 12399.37 16499.45 76
GA-MVS92.83 29192.15 29594.87 27496.97 30587.27 30590.03 35996.12 30091.83 26494.05 30794.57 32976.01 34898.97 29392.46 24497.34 32198.36 252
CMPMVSbinary73.10 2392.74 29291.39 30396.77 18093.57 37394.67 13494.21 27297.67 25580.36 36593.61 32096.60 26882.85 31497.35 36184.86 35098.78 24798.29 261
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
thisisatest053092.71 29391.76 30095.56 24198.42 17288.23 27996.03 17787.35 37494.04 20896.56 22795.47 31464.03 37999.77 5694.78 17999.11 21198.68 221
HY-MVS91.43 1592.58 29491.81 29994.90 27296.49 31788.87 26797.31 10594.62 32585.92 33190.50 36096.84 25385.05 29899.40 21383.77 35795.78 34796.43 344
TR-MVS92.54 29592.20 29493.57 31496.49 31786.66 31493.51 30194.73 32489.96 28894.95 28693.87 33990.24 25098.61 32381.18 36394.88 35695.45 358
PMMVS92.39 29691.08 30996.30 20893.12 37592.81 19390.58 35595.96 30579.17 36991.85 35392.27 35890.29 24998.66 32089.85 29796.68 33497.43 313
131492.38 29792.30 29292.64 33495.42 35185.15 33395.86 19096.97 28485.40 33890.62 35793.06 34891.12 23497.80 35786.74 33595.49 35294.97 362
new_pmnet92.34 29891.69 30194.32 29996.23 32489.16 26292.27 32792.88 34384.39 35195.29 27896.35 28385.66 29596.74 37184.53 35297.56 31197.05 321
CVMVSNet92.33 29992.79 28290.95 34797.26 29475.84 37895.29 22892.33 35081.86 35696.27 24298.19 13681.44 31998.46 33594.23 20098.29 27998.55 232
PAPR92.22 30091.27 30695.07 26295.73 34488.81 26991.97 33297.87 24385.80 33390.91 35692.73 35491.16 23398.33 34479.48 36695.76 34898.08 273
DSMNet-mixed92.19 30191.83 29893.25 32096.18 32783.68 35096.27 16193.68 33476.97 37592.54 34799.18 3589.20 26698.55 32983.88 35598.60 26697.51 310
BH-w/o92.14 30291.94 29692.73 33397.13 30185.30 32992.46 32395.64 31189.33 29494.21 30192.74 35389.60 25698.24 34781.68 36194.66 35894.66 363
PCF-MVS89.43 1892.12 30390.64 31896.57 19297.80 24193.48 17889.88 36498.45 17974.46 37796.04 25495.68 30790.71 24099.31 23673.73 37599.01 22496.91 327
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
dmvs_re92.08 30491.27 30694.51 29297.16 29992.79 19695.65 20292.64 34894.11 20592.74 34090.98 37283.41 31194.44 37880.72 36494.07 36296.29 346
thres600view792.03 30591.43 30293.82 30898.19 19384.61 34196.27 16190.39 36396.81 9296.37 23693.11 34373.44 36199.49 18480.32 36597.95 29197.36 315
PatchmatchNetpermissive91.98 30691.87 29792.30 34094.60 35979.71 36695.12 23493.59 33789.52 29293.61 32097.02 24177.94 33499.18 26090.84 27294.57 36198.01 286
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
cascas91.89 30791.35 30493.51 31594.27 36385.60 32588.86 36998.61 16379.32 36892.16 35091.44 36789.22 26598.12 35190.80 27497.47 31796.82 333
JIA-IIPM91.79 30890.69 31795.11 25993.80 37090.98 23394.16 27491.78 35496.38 11090.30 36299.30 2672.02 36498.90 29588.28 31990.17 37295.45 358
thres100view90091.76 30991.26 30893.26 31998.21 19084.50 34296.39 15390.39 36396.87 9096.33 23793.08 34773.44 36199.42 20278.85 36997.74 30095.85 350
thres40091.68 31091.00 31093.71 31198.02 21284.35 34495.70 19690.79 36096.26 11695.90 26192.13 36073.62 35899.42 20278.85 36997.74 30097.36 315
tfpn200view991.55 31191.00 31093.21 32298.02 21284.35 34495.70 19690.79 36096.26 11695.90 26192.13 36073.62 35899.42 20278.85 36997.74 30095.85 350
ADS-MVSNet291.47 31290.51 32094.36 29795.51 34785.63 32495.05 24195.70 30983.46 35292.69 34196.84 25379.15 33099.41 21185.66 34290.52 37098.04 283
EPNet_dtu91.39 31390.75 31693.31 31890.48 38482.61 35394.80 25092.88 34393.39 22381.74 38194.90 32681.36 32099.11 27388.28 31998.87 23798.21 267
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
ET-MVSNet_ETH3D91.12 31489.67 32695.47 24696.41 31989.15 26391.54 33790.23 36689.07 29786.78 37792.84 35169.39 37299.44 19994.16 20296.61 33597.82 298
PVSNet86.72 1991.10 31590.97 31291.49 34497.56 27178.04 36987.17 37194.60 32684.65 34792.34 34892.20 35987.37 28498.47 33485.17 34897.69 30597.96 288
tpm91.08 31690.85 31491.75 34395.33 35278.09 36895.03 24391.27 35788.75 30293.53 32397.40 21271.24 36599.30 23991.25 26393.87 36397.87 295
thres20091.00 31790.42 32192.77 33297.47 28083.98 34894.01 28291.18 35895.12 17595.44 27491.21 36973.93 35499.31 23677.76 37297.63 31095.01 361
ADS-MVSNet90.95 31890.26 32293.04 32595.51 34782.37 35595.05 24193.41 33883.46 35292.69 34196.84 25379.15 33098.70 31485.66 34290.52 37098.04 283
tpmvs90.79 31990.87 31390.57 35092.75 37976.30 37695.79 19393.64 33691.04 27591.91 35296.26 28577.19 34298.86 30089.38 30489.85 37396.56 341
thisisatest051590.43 32089.18 33294.17 30597.07 30385.44 32789.75 36587.58 37388.28 30893.69 31891.72 36465.27 37799.58 15690.59 28398.67 25797.50 312
tpmrst90.31 32190.61 31989.41 35494.06 36772.37 38495.06 24093.69 33288.01 31192.32 34996.86 25177.45 33898.82 30191.04 26687.01 37797.04 322
test0.0.03 190.11 32289.21 32992.83 33193.89 36986.87 31291.74 33588.74 37292.02 25994.71 29191.14 37073.92 35594.48 37783.75 35892.94 36597.16 319
MVS90.02 32389.20 33092.47 33794.71 35786.90 31195.86 19096.74 29364.72 38090.62 35792.77 35292.54 20998.39 33979.30 36795.56 35192.12 373
pmmvs390.00 32488.90 33493.32 31794.20 36685.34 32891.25 34492.56 34978.59 37093.82 31195.17 31867.36 37698.69 31589.08 30898.03 28995.92 349
CHOSEN 280x42089.98 32589.19 33192.37 33995.60 34681.13 36386.22 37397.09 27981.44 36087.44 37493.15 34273.99 35399.47 18988.69 31399.07 21796.52 342
test-LLR89.97 32689.90 32490.16 35194.24 36474.98 37989.89 36189.06 37092.02 25989.97 36490.77 37373.92 35598.57 32691.88 25197.36 31996.92 325
FPMVS89.92 32788.63 33593.82 30898.37 17596.94 4591.58 33693.34 33988.00 31290.32 36197.10 23670.87 36891.13 38171.91 37896.16 34393.39 371
test250689.86 32889.16 33391.97 34298.95 10776.83 37598.54 2361.07 38996.20 11997.07 19599.16 3855.19 38899.69 11596.43 8599.83 3799.38 95
CostFormer89.75 32989.25 32791.26 34694.69 35878.00 37095.32 22591.98 35281.50 35990.55 35996.96 24671.06 36798.89 29688.59 31592.63 36796.87 328
baseline289.65 33088.44 33793.25 32095.62 34582.71 35293.82 29185.94 37888.89 30187.35 37592.54 35671.23 36699.33 23286.01 33794.60 36097.72 302
E-PMN89.52 33189.78 32588.73 35693.14 37477.61 37183.26 37692.02 35194.82 18493.71 31693.11 34375.31 35096.81 36885.81 33996.81 33091.77 375
EPMVS89.26 33288.55 33691.39 34592.36 38079.11 36795.65 20279.86 38388.60 30493.12 33396.53 27270.73 36998.10 35290.75 27689.32 37496.98 323
EMVS89.06 33389.22 32888.61 35793.00 37677.34 37382.91 37790.92 35994.64 18992.63 34591.81 36376.30 34697.02 36583.83 35696.90 32791.48 376
KD-MVS_2432*160088.93 33487.74 33992.49 33588.04 38581.99 35789.63 36695.62 31291.35 27095.06 28293.11 34356.58 38498.63 32185.19 34695.07 35396.85 330
miper_refine_blended88.93 33487.74 33992.49 33588.04 38581.99 35789.63 36695.62 31291.35 27095.06 28293.11 34356.58 38498.63 32185.19 34695.07 35396.85 330
IB-MVS85.98 2088.63 33686.95 34693.68 31295.12 35384.82 34090.85 35190.17 36787.55 31588.48 37191.34 36858.01 38299.59 15487.24 33393.80 36496.63 340
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
tpm288.47 33787.69 34190.79 34894.98 35577.34 37395.09 23691.83 35377.51 37489.40 36796.41 27867.83 37598.73 31083.58 35992.60 36896.29 346
MVS-HIRNet88.40 33890.20 32382.99 36397.01 30460.04 38793.11 31185.61 37984.45 35088.72 37099.09 4584.72 30298.23 34882.52 36096.59 33690.69 378
gg-mvs-nofinetune88.28 33986.96 34592.23 34192.84 37884.44 34398.19 5274.60 38599.08 1087.01 37699.47 1056.93 38398.23 34878.91 36895.61 35094.01 367
dp88.08 34088.05 33888.16 36192.85 37768.81 38694.17 27392.88 34385.47 33691.38 35596.14 29268.87 37398.81 30386.88 33483.80 38096.87 328
tpm cat188.01 34187.33 34290.05 35394.48 36076.28 37794.47 26194.35 32973.84 37989.26 36895.61 31173.64 35798.30 34684.13 35386.20 37895.57 357
test-mter87.92 34287.17 34390.16 35194.24 36474.98 37989.89 36189.06 37086.44 32789.97 36490.77 37354.96 38998.57 32691.88 25197.36 31996.92 325
PAPM87.64 34385.84 34993.04 32596.54 31584.99 33688.42 37095.57 31579.52 36783.82 37893.05 34980.57 32598.41 33762.29 38192.79 36695.71 353
dmvs_testset87.30 34486.99 34488.24 35996.71 31277.48 37294.68 25586.81 37792.64 25089.61 36687.01 37885.91 29393.12 37961.04 38288.49 37594.13 366
TESTMET0.1,187.20 34586.57 34789.07 35593.62 37272.84 38389.89 36187.01 37685.46 33789.12 36990.20 37556.00 38797.72 35890.91 27096.92 32596.64 338
MVEpermissive73.61 2286.48 34685.92 34888.18 36096.23 32485.28 33181.78 37875.79 38486.01 32982.53 38091.88 36292.74 20087.47 38371.42 37994.86 35791.78 374
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PVSNet_081.89 2184.49 34783.21 35088.34 35895.76 34274.97 38183.49 37592.70 34778.47 37187.94 37286.90 37983.38 31296.63 37273.44 37666.86 38393.40 370
EGC-MVSNET83.08 34877.93 35198.53 5099.57 2097.55 2698.33 3898.57 1704.71 38410.38 38598.90 6395.60 12799.50 18095.69 12099.61 8998.55 232
test_method66.88 34966.13 35269.11 36562.68 38825.73 39049.76 37996.04 30214.32 38364.27 38491.69 36573.45 36088.05 38276.06 37466.94 38293.54 368
tmp_tt57.23 35062.50 35341.44 36634.77 38949.21 38983.93 37460.22 39015.31 38271.11 38379.37 38170.09 37144.86 38564.76 38082.93 38130.25 381
cdsmvs_eth3d_5k24.22 35132.30 3540.00 3690.00 3920.00 3930.00 38098.10 2280.00 3870.00 38895.06 32197.54 340.00 3880.00 3860.00 3860.00 384
test12312.59 35215.49 3553.87 3676.07 3902.55 39190.75 3532.59 3922.52 3855.20 38713.02 3844.96 3901.85 3875.20 3849.09 3847.23 382
testmvs12.33 35315.23 3563.64 3685.77 3912.23 39288.99 3683.62 3912.30 3865.29 38613.09 3834.52 3911.95 3865.16 3858.32 3856.75 383
pcd_1.5k_mvsjas7.98 35410.65 3570.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 38795.82 1150.00 3880.00 3860.00 3860.00 384
ab-mvs-re7.91 35510.55 3580.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 38894.94 3230.00 3920.00 3880.00 3860.00 3860.00 384
test_blank0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
uanet_test0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
DCPMVS0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
sosnet-low-res0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
sosnet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
uncertanet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
Regformer0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
uanet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
FOURS199.59 1898.20 799.03 799.25 2598.96 1898.87 48
MSC_two_6792asdad98.22 7597.75 25395.34 11098.16 22299.75 6795.87 11399.51 12599.57 38
PC_three_145287.24 31798.37 9097.44 20997.00 6096.78 37092.01 24799.25 19399.21 129
No_MVS98.22 7597.75 25395.34 11098.16 22299.75 6795.87 11399.51 12599.57 38
test_one_060199.05 10095.50 10098.87 10197.21 8398.03 13498.30 11896.93 66
eth-test20.00 392
eth-test0.00 392
ZD-MVS98.43 17195.94 7998.56 17190.72 27896.66 22197.07 23795.02 14499.74 7691.08 26598.93 231
RE-MVS-def97.88 5898.81 11998.05 997.55 9298.86 10497.77 5198.20 11198.07 15096.94 6495.49 13299.20 19899.26 121
IU-MVS99.22 6795.40 10398.14 22585.77 33498.36 9395.23 15299.51 12599.49 61
OPU-MVS97.64 11698.01 21495.27 11396.79 13697.35 22196.97 6298.51 33291.21 26499.25 19399.14 144
test_241102_TWO98.83 11796.11 12498.62 6598.24 12996.92 6899.72 8695.44 13999.49 13299.49 61
test_241102_ONE99.22 6795.35 10898.83 11796.04 12999.08 3698.13 14297.87 2099.33 232
9.1496.69 14398.53 15796.02 17898.98 8093.23 22897.18 18397.46 20796.47 9599.62 14492.99 23699.32 182
save fliter98.48 16694.71 13194.53 26098.41 18695.02 179
test_0728_THIRD96.62 9698.40 8798.28 12397.10 5199.71 10195.70 11899.62 8399.58 33
test_0728_SECOND98.25 7399.23 6495.49 10196.74 13998.89 9399.75 6795.48 13599.52 12099.53 48
test072699.24 6295.51 9796.89 12998.89 9395.92 13798.64 6498.31 11497.06 55
GSMVS98.06 279
test_part299.03 10296.07 7498.08 127
sam_mvs177.80 33598.06 279
sam_mvs77.38 339
ambc96.56 19398.23 18991.68 22497.88 6998.13 22698.42 8598.56 9194.22 16799.04 28194.05 20899.35 17298.95 177
MTGPAbinary98.73 139
test_post194.98 24510.37 38676.21 34799.04 28189.47 302
test_post10.87 38576.83 34399.07 278
patchmatchnet-post96.84 25377.36 34099.42 202
GG-mvs-BLEND90.60 34991.00 38284.21 34698.23 4672.63 38882.76 37984.11 38056.14 38696.79 36972.20 37792.09 36990.78 377
MTMP96.55 14774.60 385
gm-plane-assit91.79 38171.40 38581.67 35790.11 37698.99 28784.86 350
test9_res91.29 26098.89 23699.00 170
TEST997.84 23395.23 11593.62 29798.39 18986.81 32393.78 31295.99 29794.68 15399.52 175
test_897.81 23795.07 12493.54 30098.38 19187.04 31993.71 31695.96 30094.58 15799.52 175
agg_prior290.34 29198.90 23399.10 158
agg_prior97.80 24194.96 12698.36 19393.49 32499.53 172
TestCases98.06 8899.08 9396.16 7099.16 3494.35 19897.78 15698.07 15095.84 11299.12 27091.41 25899.42 15698.91 187
test_prior495.38 10593.61 299
test_prior293.33 30794.21 20194.02 30896.25 28693.64 18191.90 25098.96 226
test_prior97.46 13497.79 24694.26 15298.42 18599.34 23098.79 204
旧先验293.35 30677.95 37395.77 26798.67 31990.74 279
新几何293.43 302
新几何197.25 15098.29 18094.70 13397.73 25277.98 37294.83 28996.67 26592.08 22199.45 19688.17 32198.65 26197.61 306
旧先验197.80 24193.87 16397.75 25197.04 24093.57 18298.68 25698.72 214
无先验93.20 30997.91 24080.78 36299.40 21387.71 32497.94 290
原ACMM292.82 314
原ACMM196.58 19098.16 20192.12 21198.15 22485.90 33293.49 32496.43 27792.47 21399.38 22087.66 32698.62 26398.23 265
test22298.17 19993.24 18692.74 31897.61 26475.17 37694.65 29296.69 26490.96 23798.66 25997.66 304
testdata299.46 19287.84 322
segment_acmp95.34 134
testdata95.70 23598.16 20190.58 24197.72 25380.38 36495.62 27097.02 24192.06 22298.98 28989.06 30998.52 26997.54 309
testdata192.77 31593.78 214
test1297.46 13497.61 26794.07 15697.78 25093.57 32293.31 18799.42 20298.78 24798.89 191
plane_prior798.70 13494.67 134
plane_prior698.38 17494.37 14491.91 227
plane_prior598.75 13699.46 19292.59 24199.20 19899.28 116
plane_prior496.77 259
plane_prior394.51 13895.29 16896.16 249
plane_prior296.50 14996.36 112
plane_prior198.49 164
plane_prior94.29 14795.42 21494.31 20098.93 231
n20.00 393
nn0.00 393
door-mid98.17 218
lessismore_v097.05 16199.36 5092.12 21184.07 38098.77 5998.98 5285.36 29799.74 7697.34 5699.37 16499.30 109
LGP-MVS_train98.74 3499.15 8197.02 4299.02 6595.15 17398.34 9698.23 13197.91 1899.70 10894.41 19199.73 5899.50 53
test1198.08 231
door97.81 249
HQP5-MVS92.47 200
HQP-NCC97.85 22894.26 26593.18 23192.86 337
ACMP_Plane97.85 22894.26 26593.18 23192.86 337
BP-MVS90.51 286
HQP4-MVS92.87 33699.23 25699.06 163
HQP3-MVS98.43 18298.74 251
HQP2-MVS90.33 245
NP-MVS98.14 20593.72 16995.08 319
MDTV_nov1_ep13_2view57.28 38894.89 24780.59 36394.02 30878.66 33285.50 34497.82 298
MDTV_nov1_ep1391.28 30594.31 36173.51 38294.80 25093.16 34086.75 32593.45 32697.40 21276.37 34598.55 32988.85 31096.43 337
ACMMP++_ref99.52 120
ACMMP++99.55 108
Test By Simon94.51 160
ITE_SJBPF97.85 10298.64 13996.66 5498.51 17595.63 15297.22 17897.30 22595.52 12898.55 32990.97 26898.90 23398.34 253
DeepMVS_CXcopyleft77.17 36490.94 38385.28 33174.08 38752.51 38180.87 38288.03 37775.25 35170.63 38459.23 38384.94 37975.62 379