This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet95.70 196.40 193.61 298.67 185.39 3295.54 397.36 196.97 199.04 199.05 196.61 195.92 1285.07 4999.27 199.54 1
TDRefinement93.52 293.39 393.88 195.94 1490.26 395.70 296.46 290.58 792.86 4496.29 1688.16 3494.17 9186.07 4098.48 1897.22 17
LTVRE_ROB86.10 193.04 393.44 291.82 2393.73 6385.72 3196.79 195.51 688.86 1395.63 796.99 884.81 6993.16 13491.10 197.53 7196.58 29
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
abl_693.02 493.16 492.60 494.73 4288.99 793.26 1094.19 2789.11 1194.43 1595.27 3691.86 395.09 6087.54 1898.02 3893.71 108
HPM-MVS_fast92.50 592.54 692.37 695.93 1585.81 3092.99 1194.23 2385.21 3192.51 5195.13 4090.65 1095.34 4988.06 998.15 3395.95 40
SR-MVS-dyc-post92.41 692.41 792.39 594.13 5388.95 892.87 1294.16 2888.75 1593.79 2894.43 6188.83 2495.51 4187.16 2597.60 6492.73 143
test117292.40 792.41 792.37 694.68 4389.04 691.98 2993.62 5290.14 1093.63 3594.16 7688.83 2495.51 4187.11 2797.54 7092.54 153
SR-MVS92.23 892.34 991.91 1794.89 3887.85 1192.51 2293.87 4488.20 2093.24 3894.02 8290.15 1795.67 3086.82 2997.34 7792.19 168
HPM-MVScopyleft92.13 992.20 1191.91 1795.58 2584.67 4193.51 694.85 1482.88 5491.77 6593.94 9190.55 1395.73 2788.50 798.23 2995.33 53
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
APD-MVS_3200maxsize92.05 1092.24 1091.48 2493.02 7885.17 3492.47 2495.05 1387.65 2393.21 3994.39 6790.09 1895.08 6186.67 3097.60 6494.18 88
COLMAP_ROBcopyleft83.01 391.97 1191.95 1292.04 1293.68 6486.15 2193.37 895.10 1290.28 892.11 5795.03 4289.75 2194.93 6579.95 10398.27 2795.04 62
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
ACMMPcopyleft91.91 1291.87 1792.03 1395.53 2685.91 2593.35 994.16 2882.52 5892.39 5494.14 7789.15 2395.62 3187.35 2098.24 2894.56 72
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
mPP-MVS91.69 1391.47 2492.37 696.04 1288.48 1092.72 1692.60 9483.09 5191.54 6794.25 7387.67 4295.51 4187.21 2498.11 3493.12 129
CP-MVS91.67 1491.58 2191.96 1495.29 3187.62 1293.38 793.36 6083.16 5091.06 7694.00 8388.26 3195.71 2887.28 2398.39 2192.55 152
XVS91.54 1591.36 2692.08 1095.64 2386.25 1992.64 1793.33 6285.07 3289.99 9394.03 8186.57 5595.80 2187.35 2097.62 6294.20 86
MTAPA91.52 1691.60 2091.29 2996.59 486.29 1792.02 2891.81 11484.07 3792.00 6094.40 6586.63 5395.28 5288.59 598.31 2492.30 160
UA-Net91.49 1791.53 2291.39 2694.98 3582.95 5493.52 592.79 8988.22 1988.53 12697.64 283.45 8194.55 8086.02 4398.60 1396.67 26
ACMMPR91.49 1791.35 2891.92 1695.74 1985.88 2792.58 2093.25 7081.99 6391.40 7094.17 7587.51 4395.87 1587.74 1197.76 5493.99 94
LPG-MVS_test91.47 1991.68 1890.82 3894.75 4081.69 5990.00 5194.27 2082.35 6093.67 3394.82 4891.18 595.52 3985.36 4798.73 795.23 58
region2R91.44 2091.30 3291.87 1995.75 1885.90 2692.63 1993.30 6781.91 6590.88 8194.21 7487.75 4095.87 1587.60 1697.71 5893.83 101
HFP-MVS91.30 2191.39 2591.02 3395.43 2884.66 4292.58 2093.29 6881.99 6391.47 6893.96 8788.35 2995.56 3487.74 1197.74 5692.85 138
zzz-MVS91.27 2291.26 3391.29 2996.59 486.29 1788.94 7691.81 11484.07 3792.00 6094.40 6586.63 5395.28 5288.59 598.31 2492.30 160
ZNCC-MVS91.26 2391.34 2991.01 3595.73 2083.05 5292.18 2694.22 2480.14 8591.29 7393.97 8487.93 3995.87 1588.65 497.96 4594.12 91
APDe-MVS91.22 2491.92 1389.14 6492.97 8078.04 9092.84 1494.14 3283.33 4893.90 2495.73 2588.77 2696.41 187.60 1697.98 4292.98 134
PGM-MVS91.20 2590.95 4191.93 1595.67 2285.85 2890.00 5193.90 4180.32 8291.74 6694.41 6488.17 3395.98 986.37 3397.99 4093.96 96
SteuartSystems-ACMMP91.16 2691.36 2690.55 4293.91 5980.97 6691.49 3593.48 5882.82 5592.60 5093.97 8488.19 3296.29 487.61 1598.20 3294.39 81
Skip Steuart: Steuart Systems R&D Blog.
MP-MVScopyleft91.14 2790.91 4291.83 2196.18 1186.88 1492.20 2593.03 8082.59 5788.52 12794.37 6886.74 5295.41 4786.32 3498.21 3093.19 127
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
GST-MVS90.96 2891.01 3890.82 3895.45 2782.73 5591.75 3393.74 4780.98 7691.38 7193.80 9487.20 4795.80 2187.10 2897.69 5993.93 97
MP-MVS-pluss90.81 2991.08 3589.99 5195.97 1379.88 7288.13 8994.51 1875.79 13792.94 4194.96 4388.36 2895.01 6390.70 298.40 2095.09 61
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ACMH+77.89 1190.73 3091.50 2388.44 7793.00 7976.26 11689.65 6295.55 587.72 2293.89 2694.94 4491.62 493.44 12478.35 12198.76 495.61 47
ACMMP_NAP90.65 3191.07 3789.42 6095.93 1579.54 7789.95 5493.68 5177.65 11391.97 6294.89 4588.38 2795.45 4589.27 397.87 5093.27 123
ACMM79.39 990.65 3190.99 3989.63 5695.03 3483.53 4789.62 6393.35 6179.20 9693.83 2793.60 10190.81 892.96 14085.02 5198.45 1992.41 156
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LS3D90.60 3390.34 4991.38 2789.03 17584.23 4593.58 494.68 1690.65 690.33 8893.95 9084.50 7195.37 4880.87 9395.50 13794.53 75
ACMP79.16 1090.54 3490.60 4790.35 4694.36 4580.98 6589.16 7294.05 3579.03 9992.87 4393.74 9890.60 1295.21 5782.87 7398.76 494.87 63
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
DPE-MVScopyleft90.53 3591.08 3588.88 6693.38 7078.65 8689.15 7394.05 3584.68 3593.90 2494.11 7988.13 3596.30 384.51 5797.81 5291.70 183
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
#test#90.49 3690.31 5091.02 3395.43 2884.66 4290.65 4193.29 6877.00 12091.47 6893.96 8788.35 2995.56 3484.88 5297.74 5692.85 138
SED-MVS90.46 3791.64 1986.93 9494.18 4872.65 13490.47 4693.69 4983.77 4194.11 2294.27 6990.28 1595.84 1986.03 4197.92 4692.29 162
SMA-MVScopyleft90.31 3890.48 4889.83 5295.31 3079.52 7890.98 3993.24 7175.37 14492.84 4595.28 3585.58 6596.09 787.92 1097.76 5493.88 99
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
SF-MVS90.27 3990.80 4488.68 7292.86 8477.09 10591.19 3895.74 381.38 7192.28 5593.80 9486.89 5094.64 7485.52 4597.51 7294.30 84
v7n90.13 4090.96 4087.65 8991.95 10971.06 15989.99 5393.05 7786.53 2694.29 1896.27 1782.69 8894.08 9586.25 3797.63 6197.82 8
PMVScopyleft80.48 690.08 4190.66 4688.34 8096.71 392.97 190.31 4889.57 17388.51 1890.11 9095.12 4190.98 788.92 24177.55 13597.07 8483.13 306
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
DVP-MVS90.06 4291.32 3086.29 10794.16 5172.56 13990.54 4391.01 13583.61 4493.75 3094.65 5389.76 1995.78 2486.42 3197.97 4390.55 210
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
PS-CasMVS90.06 4291.92 1384.47 14496.56 758.83 27689.04 7492.74 9191.40 496.12 396.06 2287.23 4695.57 3379.42 11198.74 699.00 2
PEN-MVS90.03 4491.88 1684.48 14396.57 658.88 27388.95 7593.19 7291.62 396.01 596.16 2087.02 4895.60 3278.69 11798.72 998.97 3
OurMVSNet-221017-090.01 4589.74 5490.83 3793.16 7680.37 6991.91 3293.11 7481.10 7495.32 997.24 572.94 19794.85 6885.07 4997.78 5397.26 15
DTE-MVSNet89.98 4691.91 1584.21 15196.51 857.84 28188.93 7792.84 8891.92 296.16 296.23 1886.95 4995.99 879.05 11498.57 1598.80 6
XVG-ACMP-BASELINE89.98 4689.84 5390.41 4494.91 3784.50 4489.49 6893.98 3779.68 8992.09 5893.89 9283.80 7793.10 13882.67 7598.04 3593.64 113
3Dnovator+83.92 289.97 4889.66 5590.92 3691.27 13281.66 6291.25 3694.13 3388.89 1288.83 12194.26 7277.55 14695.86 1884.88 5295.87 12595.24 57
WR-MVS_H89.91 4991.31 3185.71 12396.32 1062.39 23489.54 6693.31 6590.21 995.57 895.66 2881.42 11295.90 1380.94 9298.80 398.84 5
OPM-MVS89.80 5089.97 5189.27 6294.76 3979.86 7386.76 11292.78 9078.78 10292.51 5193.64 10088.13 3593.84 10584.83 5497.55 6794.10 92
mvs_tets89.78 5189.27 6291.30 2893.51 6684.79 3989.89 5690.63 14370.00 21094.55 1496.67 1187.94 3893.59 11684.27 5995.97 12195.52 48
anonymousdsp89.73 5288.88 6992.27 989.82 16686.67 1590.51 4590.20 16069.87 21195.06 1096.14 2184.28 7393.07 13987.68 1396.34 10997.09 19
test_djsdf89.62 5389.01 6591.45 2592.36 9582.98 5391.98 2990.08 16371.54 19194.28 2096.54 1381.57 11094.27 8286.26 3596.49 10497.09 19
XVG-OURS-SEG-HR89.59 5489.37 6090.28 4794.47 4485.95 2486.84 10893.91 4080.07 8686.75 15893.26 10493.64 290.93 19784.60 5690.75 24993.97 95
APD-MVScopyleft89.54 5589.63 5689.26 6392.57 8981.34 6490.19 4993.08 7680.87 7791.13 7493.19 10586.22 6095.97 1082.23 7997.18 8290.45 212
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
testtj89.51 5689.48 5989.59 5892.26 9980.80 6790.14 5093.54 5683.37 4790.57 8592.55 12784.99 6796.15 581.26 8796.61 9991.83 179
jajsoiax89.41 5788.81 7191.19 3293.38 7084.72 4089.70 5890.29 15769.27 21494.39 1696.38 1586.02 6393.52 12083.96 6195.92 12395.34 52
CPTT-MVS89.39 5888.98 6790.63 4195.09 3386.95 1392.09 2792.30 10079.74 8887.50 14392.38 13081.42 11293.28 12983.07 7097.24 8091.67 184
ACMH76.49 1489.34 5991.14 3483.96 15792.50 9270.36 16489.55 6493.84 4581.89 6694.70 1295.44 3390.69 988.31 25183.33 6898.30 2693.20 126
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CP-MVSNet89.27 6090.91 4284.37 14596.34 958.61 27888.66 8492.06 10590.78 595.67 695.17 3981.80 10895.54 3879.00 11598.69 1098.95 4
XVG-OURS89.18 6188.83 7090.23 4894.28 4686.11 2385.91 12393.60 5580.16 8489.13 11793.44 10283.82 7690.98 19583.86 6395.30 14593.60 115
DeepC-MVS82.31 489.15 6289.08 6489.37 6193.64 6579.07 8188.54 8594.20 2573.53 16289.71 10294.82 4885.09 6695.77 2684.17 6098.03 3793.26 124
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
UniMVSNet_ETH3D89.12 6390.72 4584.31 14997.00 264.33 21289.67 6188.38 19088.84 1494.29 1897.57 390.48 1491.26 18772.57 18697.65 6097.34 14
MSP-MVS89.08 6488.16 7591.83 2195.76 1786.14 2292.75 1593.90 4178.43 10789.16 11692.25 13772.03 20996.36 288.21 890.93 24492.98 134
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
xxxxxxxxxxxxxcwj89.04 6589.13 6388.79 6893.75 6177.44 9886.31 12095.27 1070.80 19992.28 5593.80 9486.89 5094.64 7485.52 4597.51 7294.30 84
SD-MVS88.96 6689.88 5286.22 11091.63 11977.07 10689.82 5793.77 4678.90 10092.88 4292.29 13586.11 6190.22 21986.24 3897.24 8091.36 191
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
HPM-MVS++copyleft88.93 6788.45 7490.38 4594.92 3685.85 2889.70 5891.27 12878.20 10986.69 16192.28 13680.36 12495.06 6286.17 3996.49 10490.22 215
ETH3D-3000-0.188.85 6888.96 6888.52 7391.94 11177.27 10488.71 8295.26 1176.08 12890.66 8492.69 12284.48 7293.83 10683.38 6797.48 7494.47 76
test_040288.65 6989.58 5885.88 11992.55 9072.22 14784.01 15389.44 17588.63 1794.38 1795.77 2486.38 5993.59 11679.84 10495.21 14691.82 180
DP-MVS88.60 7089.01 6587.36 9291.30 13077.50 9787.55 9692.97 8387.95 2189.62 10692.87 11684.56 7093.89 10277.65 13396.62 9890.70 204
Anonymous2023121188.40 7189.62 5784.73 13990.46 15465.27 20388.86 7893.02 8187.15 2493.05 4097.10 682.28 9692.02 16776.70 14397.99 4096.88 23
PS-MVSNAJss88.31 7287.90 7789.56 5993.31 7277.96 9187.94 9291.97 10870.73 20194.19 2196.67 1176.94 15594.57 7883.07 7096.28 11196.15 32
OMC-MVS88.19 7387.52 8290.19 4991.94 11181.68 6187.49 9993.17 7376.02 13188.64 12491.22 15984.24 7493.37 12777.97 13197.03 8595.52 48
TSAR-MVS + MP.88.14 7487.82 7889.09 6595.72 2176.74 11092.49 2391.19 13167.85 23286.63 16294.84 4779.58 13095.96 1187.62 1494.50 16994.56 72
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
RPSCF88.00 7586.93 9291.22 3190.08 16089.30 589.68 6091.11 13279.26 9589.68 10394.81 5182.44 9187.74 25576.54 14588.74 27196.61 28
AllTest87.97 7687.40 8589.68 5491.59 12083.40 4889.50 6795.44 779.47 9188.00 13693.03 10882.66 8991.47 17970.81 19596.14 11794.16 89
TranMVSNet+NR-MVSNet87.86 7788.76 7285.18 13194.02 5664.13 21384.38 14891.29 12784.88 3492.06 5993.84 9386.45 5793.73 10873.22 17798.66 1197.69 9
nrg03087.85 7888.49 7385.91 11790.07 16269.73 16787.86 9394.20 2574.04 15692.70 4994.66 5285.88 6491.50 17879.72 10597.32 7896.50 30
ETH3D cwj APD-0.1687.83 7987.62 8188.47 7591.21 13378.20 8887.26 10194.54 1772.05 18788.89 11892.31 13483.86 7594.24 8581.59 8696.87 8992.97 137
CNVR-MVS87.81 8087.68 8088.21 8292.87 8277.30 10385.25 13391.23 12977.31 11787.07 15191.47 15682.94 8694.71 7184.67 5596.27 11392.62 150
HQP_MVS87.75 8187.43 8488.70 7193.45 6776.42 11489.45 6993.61 5379.44 9386.55 16392.95 11374.84 17295.22 5580.78 9595.83 12694.46 77
NCCC87.36 8286.87 9388.83 6792.32 9878.84 8486.58 11691.09 13378.77 10384.85 19390.89 17380.85 11895.29 5081.14 8995.32 14292.34 158
DeepPCF-MVS81.24 587.28 8386.21 10290.49 4391.48 12784.90 3783.41 17392.38 9970.25 20789.35 11490.68 18082.85 8794.57 7879.55 10795.95 12292.00 173
SixPastTwentyTwo87.20 8487.45 8386.45 10392.52 9169.19 17687.84 9488.05 19681.66 6894.64 1396.53 1465.94 23794.75 7083.02 7296.83 9295.41 50
test_part187.15 8587.82 7885.15 13288.88 17963.04 22487.98 9094.85 1482.52 5893.61 3695.73 2567.51 22895.71 2880.48 10098.83 296.69 25
UniMVSNet (Re)86.87 8686.98 9186.55 10193.11 7768.48 18083.80 16292.87 8580.37 8089.61 10891.81 14877.72 14394.18 8975.00 16198.53 1696.99 22
Vis-MVSNetpermissive86.86 8786.58 9687.72 8792.09 10577.43 10087.35 10092.09 10478.87 10184.27 20894.05 8078.35 13893.65 11080.54 9991.58 23292.08 170
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
UniMVSNet_NR-MVSNet86.84 8887.06 8886.17 11492.86 8467.02 19082.55 19691.56 11883.08 5290.92 7891.82 14778.25 13993.99 9774.16 16598.35 2297.49 13
DU-MVS86.80 8986.99 9086.21 11293.24 7467.02 19083.16 18292.21 10181.73 6790.92 7891.97 14177.20 14993.99 9774.16 16598.35 2297.61 10
Regformer-286.74 9086.08 10488.73 6984.18 26379.20 8083.52 16889.33 17783.33 4889.92 9785.07 27583.23 8493.16 13483.39 6692.72 21193.83 101
IS-MVSNet86.66 9186.82 9586.17 11492.05 10766.87 19291.21 3788.64 18686.30 2889.60 10992.59 12469.22 22094.91 6673.89 16997.89 4996.72 24
v1086.54 9287.10 8784.84 13688.16 19363.28 22186.64 11592.20 10275.42 14392.81 4794.50 5774.05 18294.06 9683.88 6296.28 11197.17 18
pmmvs686.52 9388.06 7681.90 19892.22 10262.28 23784.66 14189.15 17983.54 4689.85 9897.32 488.08 3786.80 26770.43 20397.30 7996.62 27
Regformer-486.41 9485.71 11288.52 7384.27 25977.57 9684.07 15188.00 19882.82 5589.84 9985.48 26382.06 10092.77 14683.83 6491.04 23895.22 60
PHI-MVS86.38 9585.81 10988.08 8388.44 18777.34 10189.35 7193.05 7773.15 17384.76 19487.70 22978.87 13494.18 8980.67 9796.29 11092.73 143
test_prior386.31 9686.31 9986.32 10590.59 15171.99 14983.37 17492.85 8675.43 14184.58 19791.57 15281.92 10694.17 9179.54 10896.97 8692.80 140
CSCG86.26 9786.47 9785.60 12590.87 14474.26 12587.98 9091.85 11180.35 8189.54 11288.01 22379.09 13292.13 16175.51 15495.06 15390.41 213
DeepC-MVS_fast80.27 886.23 9885.65 11487.96 8691.30 13076.92 10787.19 10291.99 10770.56 20284.96 18990.69 17980.01 12795.14 5878.37 12095.78 13091.82 180
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
v886.22 9986.83 9484.36 14787.82 19762.35 23686.42 11891.33 12676.78 12292.73 4894.48 5973.41 19193.72 10983.10 6995.41 13897.01 21
Anonymous2024052986.20 10087.13 8683.42 17090.19 15864.55 21084.55 14390.71 14085.85 2989.94 9695.24 3882.13 9890.40 21469.19 21496.40 10795.31 54
CDPH-MVS86.17 10185.54 11588.05 8592.25 10075.45 11983.85 15992.01 10665.91 24786.19 17091.75 15083.77 7894.98 6477.43 13896.71 9693.73 107
Regformer-186.00 10285.50 11687.49 9084.18 26376.90 10883.52 16887.94 20082.18 6289.19 11585.07 27582.28 9691.89 17182.40 7792.72 21193.69 109
NR-MVSNet86.00 10286.22 10185.34 12993.24 7464.56 20982.21 20890.46 14680.99 7588.42 12991.97 14177.56 14593.85 10372.46 18798.65 1297.61 10
train_agg85.98 10485.28 12088.07 8492.34 9679.70 7583.94 15590.32 15165.79 24884.49 19990.97 16981.93 10493.63 11281.21 8896.54 10290.88 199
FC-MVSNet-test85.93 10587.05 8982.58 18992.25 10056.44 29285.75 12793.09 7577.33 11691.94 6394.65 5374.78 17493.41 12675.11 16098.58 1497.88 7
Effi-MVS+-dtu85.82 10683.38 15393.14 387.13 21291.15 287.70 9588.42 18874.57 15183.56 21685.65 26078.49 13694.21 8772.04 18992.88 20694.05 93
agg_prior185.72 10785.20 12187.28 9391.58 12377.69 9483.69 16590.30 15466.29 24484.32 20391.07 16682.13 9893.18 13281.02 9096.36 10890.98 195
TAPA-MVS77.73 1285.71 10884.83 12788.37 7988.78 18179.72 7487.15 10493.50 5769.17 21585.80 18089.56 20180.76 11992.13 16173.21 18295.51 13693.25 125
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
canonicalmvs85.50 10986.14 10383.58 16787.97 19467.13 18887.55 9694.32 1973.44 16488.47 12887.54 23286.45 5791.06 19475.76 15393.76 18592.54 153
EPP-MVSNet85.47 11085.04 12386.77 9891.52 12669.37 17091.63 3487.98 19981.51 7087.05 15291.83 14666.18 23695.29 5070.75 19896.89 8895.64 45
GeoE85.45 11185.81 10984.37 14590.08 16067.07 18985.86 12691.39 12572.33 18487.59 14190.25 19084.85 6892.37 15578.00 12991.94 22693.66 110
FIs85.35 11286.27 10082.60 18891.86 11457.31 28585.10 13593.05 7775.83 13691.02 7793.97 8473.57 18792.91 14473.97 16898.02 3897.58 12
casdiffmvs85.21 11385.85 10883.31 17286.17 23662.77 22883.03 18493.93 3974.69 15088.21 13492.68 12382.29 9591.89 17177.87 13293.75 18795.27 56
baseline85.20 11485.93 10683.02 17786.30 23162.37 23584.55 14393.96 3874.48 15387.12 14792.03 14082.30 9491.94 16878.39 11994.21 17694.74 68
K. test v385.14 11584.73 12886.37 10491.13 13869.63 16985.45 13176.68 29484.06 3992.44 5396.99 862.03 25694.65 7380.58 9893.24 19694.83 67
EI-MVSNet-Vis-set85.12 11684.53 13686.88 9584.01 26672.76 13383.91 15885.18 23880.44 7988.75 12285.49 26280.08 12691.92 16982.02 8090.85 24795.97 38
ETH3 D test640085.09 11784.87 12685.75 12290.80 14669.34 17185.90 12493.31 6565.43 25486.11 17389.95 19680.92 11794.86 6775.90 15295.57 13593.05 131
CS-MVS85.09 11785.49 11783.90 15986.75 22365.28 20287.53 9895.66 476.39 12481.90 23886.80 24480.98 11695.23 5479.09 11394.36 17391.17 193
Regformer-385.06 11984.67 13386.22 11084.27 25973.43 12984.07 15185.26 23680.77 7888.62 12585.48 26380.56 12290.39 21581.99 8191.04 23894.85 65
EI-MVSNet-UG-set85.04 12084.44 13886.85 9683.87 26972.52 14183.82 16085.15 23980.27 8388.75 12285.45 26679.95 12891.90 17081.92 8390.80 24896.13 33
X-MVStestdata85.04 12082.70 16392.08 1095.64 2386.25 1992.64 1793.33 6285.07 3289.99 9316.05 36386.57 5595.80 2187.35 2097.62 6294.20 86
MSLP-MVS++85.00 12286.03 10581.90 19891.84 11571.56 15786.75 11393.02 8175.95 13487.12 14789.39 20277.98 14089.40 23777.46 13694.78 16284.75 283
F-COLMAP84.97 12383.42 15289.63 5692.39 9483.40 4888.83 7991.92 11073.19 17280.18 26589.15 20877.04 15393.28 12965.82 24192.28 21792.21 167
3Dnovator80.37 784.80 12484.71 13185.06 13486.36 22974.71 12288.77 8190.00 16575.65 13984.96 18993.17 10674.06 18191.19 18978.28 12391.09 23689.29 231
IterMVS-LS84.73 12584.98 12483.96 15787.35 20763.66 21683.25 17889.88 16776.06 12989.62 10692.37 13373.40 19392.52 15178.16 12694.77 16495.69 43
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MVS_111021_HR84.63 12684.34 14285.49 12890.18 15975.86 11879.23 25287.13 21073.35 16585.56 18489.34 20383.60 8090.50 21276.64 14494.05 18190.09 220
HQP-MVS84.61 12784.06 14586.27 10891.19 13470.66 16184.77 13792.68 9273.30 16880.55 25990.17 19472.10 20594.61 7677.30 13994.47 17093.56 117
v119284.57 12884.69 13284.21 15187.75 19962.88 22683.02 18591.43 12269.08 21789.98 9590.89 17372.70 20193.62 11582.41 7694.97 15796.13 33
mvs-test184.55 12982.12 17291.84 2087.13 21289.54 485.05 13688.42 18874.57 15180.60 25682.98 29778.49 13693.98 9972.04 18989.77 25892.00 173
FMVSNet184.55 12985.45 11881.85 20090.27 15761.05 24886.83 10988.27 19378.57 10689.66 10595.64 2975.43 16690.68 20769.09 21595.33 14193.82 103
v114484.54 13184.72 13084.00 15587.67 20162.55 23282.97 18690.93 13670.32 20689.80 10090.99 16873.50 18893.48 12281.69 8594.65 16795.97 38
Gipumacopyleft84.44 13286.33 9878.78 24584.20 26273.57 12889.55 6490.44 14784.24 3684.38 20194.89 4576.35 16480.40 31576.14 14996.80 9482.36 314
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
MCST-MVS84.36 13383.93 14885.63 12491.59 12071.58 15683.52 16892.13 10361.82 27583.96 21089.75 20079.93 12993.46 12378.33 12294.34 17491.87 178
VDDNet84.35 13485.39 11981.25 20895.13 3259.32 26685.42 13281.11 26886.41 2787.41 14496.21 1973.61 18690.61 21066.33 23596.85 9093.81 106
ETV-MVS84.31 13583.91 14985.52 12688.58 18370.40 16384.50 14793.37 5978.76 10484.07 20978.72 33380.39 12395.13 5973.82 17192.98 20491.04 194
v124084.30 13684.51 13783.65 16587.65 20261.26 24582.85 18991.54 11967.94 23090.68 8390.65 18271.71 21193.64 11182.84 7494.78 16296.07 35
MVS_111021_LR84.28 13783.76 15085.83 12189.23 17283.07 5180.99 22683.56 25372.71 17886.07 17489.07 21081.75 10986.19 27777.11 14193.36 19288.24 243
hse-mvs384.25 13882.76 16288.72 7091.82 11782.60 5684.00 15484.98 24571.27 19386.70 15990.55 18463.04 25293.92 10178.26 12494.20 17789.63 222
v14419284.24 13984.41 13983.71 16487.59 20461.57 24182.95 18791.03 13467.82 23389.80 10090.49 18573.28 19493.51 12181.88 8494.89 16096.04 37
v192192084.23 14084.37 14183.79 16187.64 20361.71 24082.91 18891.20 13067.94 23090.06 9190.34 18772.04 20893.59 11682.32 7894.91 15896.07 35
VDD-MVS84.23 14084.58 13583.20 17491.17 13765.16 20583.25 17884.97 24679.79 8787.18 14694.27 6974.77 17590.89 20069.24 21196.54 10293.55 119
v2v48284.09 14284.24 14383.62 16687.13 21261.40 24282.71 19289.71 16972.19 18689.55 11091.41 15770.70 21693.20 13181.02 9093.76 18596.25 31
EG-PatchMatch MVS84.08 14384.11 14483.98 15692.22 10272.61 13882.20 21087.02 21572.63 17988.86 11991.02 16778.52 13591.11 19273.41 17691.09 23688.21 244
DP-MVS Recon84.05 14483.22 15586.52 10291.73 11875.27 12083.23 18092.40 9772.04 18882.04 23688.33 21977.91 14293.95 10066.17 23695.12 15190.34 214
TransMVSNet (Re)84.02 14585.74 11178.85 24491.00 14155.20 30282.29 20487.26 20679.65 9088.38 13195.52 3283.00 8586.88 26567.97 22696.60 10094.45 79
Baseline_NR-MVSNet84.00 14685.90 10778.29 25691.47 12853.44 31182.29 20487.00 21879.06 9889.55 11095.72 2777.20 14986.14 27872.30 18898.51 1795.28 55
TSAR-MVS + GP.83.95 14782.69 16487.72 8789.27 17181.45 6383.72 16481.58 26774.73 14985.66 18186.06 25572.56 20392.69 14875.44 15695.21 14689.01 239
alignmvs83.94 14883.98 14783.80 16087.80 19867.88 18584.54 14591.42 12473.27 17188.41 13087.96 22472.33 20490.83 20276.02 15194.11 17992.69 147
Effi-MVS+83.90 14984.01 14683.57 16887.22 21065.61 20186.55 11792.40 9778.64 10581.34 25084.18 28683.65 7992.93 14274.22 16487.87 28192.17 169
CANet83.79 15082.85 16186.63 9986.17 23672.21 14883.76 16391.43 12277.24 11874.39 30887.45 23475.36 16795.42 4677.03 14292.83 20792.25 166
pm-mvs183.69 15184.95 12579.91 23090.04 16459.66 26382.43 20087.44 20375.52 14087.85 13895.26 3781.25 11485.65 28468.74 21996.04 12094.42 80
AdaColmapbinary83.66 15283.69 15183.57 16890.05 16372.26 14686.29 12290.00 16578.19 11081.65 24587.16 23983.40 8294.24 8561.69 26694.76 16584.21 288
MIMVSNet183.63 15384.59 13480.74 21894.06 5562.77 22882.72 19184.53 24977.57 11590.34 8795.92 2376.88 16185.83 28261.88 26497.42 7593.62 114
WR-MVS83.56 15484.40 14081.06 21393.43 6954.88 30378.67 25985.02 24381.24 7290.74 8291.56 15472.85 19891.08 19368.00 22598.04 3597.23 16
CNLPA83.55 15583.10 15984.90 13589.34 17083.87 4684.54 14588.77 18379.09 9783.54 21788.66 21674.87 17181.73 30966.84 23292.29 21689.11 233
LCM-MVSNet-Re83.48 15685.06 12278.75 24685.94 23955.75 29780.05 23694.27 2076.47 12396.09 494.54 5683.31 8389.75 23259.95 27894.89 16090.75 202
hse-mvs283.47 15781.81 17788.47 7591.03 14082.27 5782.61 19383.69 25171.27 19386.70 15986.05 25663.04 25292.41 15378.26 12493.62 19190.71 203
V4283.47 15783.37 15483.75 16383.16 27563.33 22081.31 22090.23 15969.51 21390.91 8090.81 17674.16 18092.29 15980.06 10190.22 25595.62 46
VPA-MVSNet83.47 15784.73 12879.69 23590.29 15657.52 28481.30 22288.69 18576.29 12587.58 14294.44 6080.60 12187.20 26066.60 23496.82 9394.34 83
RRT_MVS83.25 16081.08 18889.74 5380.55 30379.32 7986.41 11986.69 21972.33 18487.00 15391.08 16444.98 33795.55 3784.47 5896.24 11494.36 82
PAPM_NR83.23 16183.19 15783.33 17190.90 14365.98 19888.19 8890.78 13978.13 11180.87 25487.92 22773.49 19092.42 15270.07 20588.40 27291.60 186
CLD-MVS83.18 16282.64 16584.79 13789.05 17467.82 18677.93 26792.52 9568.33 22485.07 18881.54 31482.06 10092.96 14069.35 21097.91 4893.57 116
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
ANet_high83.17 16385.68 11375.65 28381.24 29045.26 35079.94 23892.91 8483.83 4091.33 7296.88 1080.25 12585.92 28068.89 21795.89 12495.76 42
114514_t83.10 16482.54 16884.77 13892.90 8169.10 17886.65 11490.62 14454.66 31581.46 24790.81 17676.98 15494.38 8172.62 18596.18 11590.82 201
UGNet82.78 16581.64 17986.21 11286.20 23576.24 11786.86 10785.68 23077.07 11973.76 31192.82 11769.64 21791.82 17469.04 21693.69 18890.56 209
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
LF4IMVS82.75 16681.93 17685.19 13082.08 28180.15 7185.53 13088.76 18468.01 22785.58 18387.75 22871.80 21086.85 26674.02 16793.87 18488.58 242
EI-MVSNet82.61 16782.42 17083.20 17483.25 27363.66 21683.50 17185.07 24076.06 12986.55 16385.10 27273.41 19190.25 21678.15 12890.67 25195.68 44
QAPM82.59 16882.59 16782.58 18986.44 22466.69 19489.94 5590.36 15067.97 22984.94 19192.58 12672.71 20092.18 16070.63 20187.73 28388.85 240
Fast-Effi-MVS+-dtu82.54 16981.41 18385.90 11885.60 24176.53 11383.07 18389.62 17273.02 17579.11 27383.51 29180.74 12090.24 21868.76 21889.29 26290.94 197
MVS_Test82.47 17083.22 15580.22 22782.62 28057.75 28382.54 19791.96 10971.16 19782.89 22592.52 12977.41 14790.50 21280.04 10287.84 28292.40 157
v14882.31 17182.48 16981.81 20385.59 24259.66 26381.47 21886.02 22672.85 17688.05 13590.65 18270.73 21590.91 19975.15 15991.79 22794.87 63
API-MVS82.28 17282.61 16681.30 20786.29 23269.79 16588.71 8287.67 20278.42 10882.15 23584.15 28777.98 14091.59 17765.39 24392.75 20882.51 313
MVSFormer82.23 17381.57 18284.19 15385.54 24369.26 17391.98 2990.08 16371.54 19176.23 29285.07 27558.69 27794.27 8286.26 3588.77 26989.03 237
EIA-MVS82.19 17481.23 18685.10 13387.95 19569.17 17783.22 18193.33 6270.42 20378.58 27679.77 33077.29 14894.20 8871.51 19288.96 26791.93 177
PCF-MVS74.62 1582.15 17580.92 19185.84 12089.43 16872.30 14580.53 23191.82 11357.36 30487.81 13989.92 19877.67 14493.63 11258.69 28395.08 15291.58 187
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
PLCcopyleft73.85 1682.09 17680.31 19787.45 9190.86 14580.29 7085.88 12590.65 14268.17 22676.32 29186.33 25073.12 19692.61 15061.40 27090.02 25789.44 226
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
GBi-Net82.02 17782.07 17381.85 20086.38 22661.05 24886.83 10988.27 19372.43 18086.00 17595.64 2963.78 24690.68 20765.95 23793.34 19393.82 103
test182.02 17782.07 17381.85 20086.38 22661.05 24886.83 10988.27 19372.43 18086.00 17595.64 2963.78 24690.68 20765.95 23793.34 19393.82 103
OpenMVScopyleft76.72 1381.98 17982.00 17581.93 19784.42 25568.22 18288.50 8689.48 17466.92 23981.80 24391.86 14372.59 20290.16 22171.19 19491.25 23587.40 256
DIV-MVS_2432*160081.93 18083.14 15878.30 25584.75 25052.75 31580.37 23389.42 17670.24 20890.26 8993.39 10374.55 17986.77 26868.61 22196.64 9795.38 51
tfpnnormal81.79 18182.95 16078.31 25488.93 17855.40 29880.83 22982.85 25776.81 12185.90 17994.14 7774.58 17886.51 27266.82 23395.68 13493.01 133
cl_fuxian81.64 18281.59 18181.79 20480.86 29659.15 27078.61 26090.18 16168.36 22387.20 14587.11 24169.39 21891.62 17678.16 12694.43 17294.60 71
PVSNet_Blended_VisFu81.55 18380.49 19584.70 14191.58 12373.24 13184.21 14991.67 11762.86 26880.94 25287.16 23967.27 23092.87 14569.82 20788.94 26887.99 248
DELS-MVS81.44 18481.25 18482.03 19684.27 25962.87 22776.47 28992.49 9670.97 19881.64 24683.83 28875.03 16992.70 14774.29 16392.22 22090.51 211
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
FMVSNet281.31 18581.61 18080.41 22486.38 22658.75 27783.93 15786.58 22172.43 18087.65 14092.98 11063.78 24690.22 21966.86 23093.92 18392.27 164
TinyColmap81.25 18682.34 17177.99 26185.33 24560.68 25582.32 20388.33 19171.26 19586.97 15492.22 13977.10 15286.98 26462.37 25995.17 14886.31 267
AUN-MVS81.18 18778.78 21488.39 7890.93 14282.14 5882.51 19883.67 25264.69 26280.29 26285.91 25951.07 30792.38 15476.29 14893.63 19090.65 207
tttt051781.07 18879.58 20985.52 12688.99 17766.45 19687.03 10675.51 30273.76 16088.32 13390.20 19137.96 35394.16 9479.36 11295.13 14995.93 41
Fast-Effi-MVS+81.04 18980.57 19282.46 19387.50 20563.22 22278.37 26389.63 17168.01 22781.87 23982.08 30982.31 9392.65 14967.10 22988.30 27791.51 189
BH-untuned80.96 19080.99 18980.84 21788.55 18468.23 18180.33 23488.46 18772.79 17786.55 16386.76 24574.72 17691.77 17561.79 26588.99 26682.52 312
112180.86 19179.81 20884.02 15493.93 5878.70 8581.64 21580.18 27555.43 31283.67 21391.15 16271.29 21391.41 18467.95 22793.06 20181.96 318
eth_miper_zixun_eth80.84 19280.22 20182.71 18681.41 28860.98 25177.81 26990.14 16267.31 23786.95 15587.24 23864.26 24292.31 15775.23 15891.61 23094.85 65
xiu_mvs_v1_base_debu80.84 19280.14 20382.93 18088.31 18871.73 15279.53 24387.17 20765.43 25479.59 26782.73 30476.94 15590.14 22473.22 17788.33 27386.90 262
xiu_mvs_v1_base80.84 19280.14 20382.93 18088.31 18871.73 15279.53 24387.17 20765.43 25479.59 26782.73 30476.94 15590.14 22473.22 17788.33 27386.90 262
xiu_mvs_v1_base_debi80.84 19280.14 20382.93 18088.31 18871.73 15279.53 24387.17 20765.43 25479.59 26782.73 30476.94 15590.14 22473.22 17788.33 27386.90 262
IterMVS-SCA-FT80.64 19679.41 21084.34 14883.93 26769.66 16876.28 29181.09 26972.43 18086.47 16990.19 19260.46 26293.15 13677.45 13786.39 29490.22 215
BH-RMVSNet80.53 19780.22 20181.49 20687.19 21166.21 19777.79 27086.23 22374.21 15583.69 21288.50 21773.25 19590.75 20463.18 25687.90 28087.52 254
Anonymous20240521180.51 19881.19 18778.49 25188.48 18557.26 28676.63 28582.49 25981.21 7384.30 20692.24 13867.99 22686.24 27662.22 26095.13 14991.98 176
cl-mvsnet180.43 19980.23 19981.02 21479.99 30659.25 26777.07 28087.02 21567.38 23586.19 17089.22 20563.09 25090.16 22176.32 14695.80 12893.66 110
cl-mvsnet____80.42 20080.23 19981.02 21479.99 30659.25 26777.07 28087.02 21567.37 23686.18 17289.21 20663.08 25190.16 22176.31 14795.80 12893.65 112
diffmvs80.40 20180.48 19680.17 22879.02 31860.04 25977.54 27490.28 15866.65 24282.40 23087.33 23773.50 18887.35 25977.98 13089.62 26093.13 128
EPNet80.37 20278.41 22086.23 10976.75 32973.28 13087.18 10377.45 28976.24 12768.14 33188.93 21265.41 23993.85 10369.47 20996.12 11991.55 188
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
miper_ehance_all_eth80.34 20380.04 20681.24 21079.82 30858.95 27277.66 27189.66 17065.75 25185.99 17885.11 27168.29 22591.42 18376.03 15092.03 22293.33 120
MG-MVS80.32 20480.94 19078.47 25288.18 19152.62 31882.29 20485.01 24472.01 18979.24 27292.54 12869.36 21993.36 12870.65 20089.19 26589.45 225
VPNet80.25 20581.68 17875.94 28292.46 9347.98 34276.70 28481.67 26673.45 16384.87 19292.82 11774.66 17786.51 27261.66 26796.85 9093.33 120
MAR-MVS80.24 20678.74 21684.73 13986.87 22278.18 8985.75 12787.81 20165.67 25377.84 28178.50 33473.79 18590.53 21161.59 26990.87 24685.49 276
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PM-MVS80.20 20779.00 21383.78 16288.17 19286.66 1681.31 22066.81 34569.64 21288.33 13290.19 19264.58 24083.63 30171.99 19190.03 25681.06 332
Anonymous2024052180.18 20881.25 18476.95 27083.15 27660.84 25382.46 19985.99 22768.76 22186.78 15693.73 9959.13 27477.44 32273.71 17297.55 6792.56 151
LFMVS80.15 20980.56 19378.89 24389.19 17355.93 29485.22 13473.78 31482.96 5384.28 20792.72 12157.38 28690.07 22863.80 25195.75 13190.68 205
DPM-MVS80.10 21079.18 21282.88 18390.71 14969.74 16678.87 25690.84 13760.29 28975.64 30085.92 25867.28 22993.11 13771.24 19391.79 22785.77 273
MSDG80.06 21179.99 20780.25 22683.91 26868.04 18477.51 27589.19 17877.65 11381.94 23783.45 29376.37 16386.31 27563.31 25586.59 29186.41 265
ab-mvs79.67 21280.56 19376.99 26988.48 18556.93 28884.70 14086.06 22568.95 21980.78 25593.08 10775.30 16884.62 29356.78 29290.90 24589.43 227
VNet79.31 21380.27 19876.44 27787.92 19653.95 30775.58 29784.35 25074.39 15482.23 23390.72 17872.84 19984.39 29560.38 27793.98 18290.97 196
bset_n11_16_dypcd79.19 21477.97 22482.86 18485.81 24066.85 19375.02 30279.31 27966.07 24583.50 21883.37 29655.04 30092.10 16478.63 11894.99 15689.63 222
thisisatest053079.07 21577.33 23184.26 15087.13 21264.58 20883.66 16675.95 29768.86 22085.22 18787.36 23638.10 35193.57 11975.47 15594.28 17594.62 69
cl-mvsnet278.97 21678.21 22281.24 21077.74 32259.01 27177.46 27787.13 21065.79 24884.32 20385.10 27258.96 27690.88 20175.36 15792.03 22293.84 100
RPMNet78.88 21778.28 22180.68 22179.58 30962.64 23082.58 19494.16 2874.80 14875.72 29892.59 12448.69 31395.56 3473.48 17582.91 32183.85 293
PAPR78.84 21878.10 22381.07 21285.17 24660.22 25882.21 20890.57 14562.51 27075.32 30384.61 28274.99 17092.30 15859.48 28188.04 27990.68 205
PVSNet_BlendedMVS78.80 21977.84 22581.65 20584.43 25363.41 21879.49 24690.44 14761.70 27875.43 30187.07 24269.11 22191.44 18160.68 27592.24 21890.11 219
FMVSNet378.80 21978.55 21779.57 23782.89 27956.89 29081.76 21285.77 22969.04 21886.00 17590.44 18651.75 30590.09 22765.95 23793.34 19391.72 182
test_yl78.71 22178.51 21879.32 24084.32 25758.84 27478.38 26185.33 23475.99 13282.49 22886.57 24658.01 28090.02 22962.74 25792.73 20989.10 234
DCV-MVSNet78.71 22178.51 21879.32 24084.32 25758.84 27478.38 26185.33 23475.99 13282.49 22886.57 24658.01 28090.02 22962.74 25792.73 20989.10 234
pmmvs-eth3d78.42 22377.04 23482.57 19187.44 20674.41 12480.86 22879.67 27855.68 31084.69 19590.31 18960.91 26085.42 28562.20 26191.59 23187.88 251
MVS_030478.17 22477.23 23280.99 21684.13 26569.07 17981.39 21980.81 27176.28 12667.53 33689.11 20962.87 25486.77 26860.90 27492.01 22587.13 259
mvs_anonymous78.13 22578.76 21576.23 28179.24 31550.31 33678.69 25884.82 24761.60 27983.09 22492.82 11773.89 18487.01 26168.33 22486.41 29391.37 190
RRT_test8_iter0578.08 22677.52 22779.75 23380.84 29752.54 31980.61 23088.96 18167.77 23484.62 19689.29 20433.89 35892.10 16477.59 13494.15 17894.62 69
TAMVS78.08 22676.36 24083.23 17390.62 15072.87 13279.08 25380.01 27761.72 27781.35 24986.92 24363.96 24588.78 24550.61 32593.01 20388.04 247
miper_enhance_ethall77.83 22876.93 23580.51 22276.15 33558.01 28075.47 29988.82 18258.05 29883.59 21580.69 31864.41 24191.20 18873.16 18392.03 22292.33 159
Vis-MVSNet (Re-imp)77.82 22977.79 22677.92 26288.82 18051.29 32983.28 17671.97 32774.04 15682.23 23389.78 19957.38 28689.41 23657.22 29195.41 13893.05 131
CANet_DTU77.81 23077.05 23380.09 22981.37 28959.90 26183.26 17788.29 19269.16 21667.83 33483.72 28960.93 25989.47 23369.22 21389.70 25990.88 199
OpenMVS_ROBcopyleft70.19 1777.77 23177.46 22878.71 24784.39 25661.15 24681.18 22482.52 25862.45 27283.34 21987.37 23566.20 23588.66 24764.69 24785.02 30586.32 266
MDA-MVSNet-bldmvs77.47 23276.90 23679.16 24279.03 31764.59 20766.58 33875.67 30073.15 17388.86 11988.99 21166.94 23181.23 31164.71 24688.22 27891.64 185
jason77.42 23375.75 24682.43 19487.10 21669.27 17277.99 26681.94 26451.47 33477.84 28185.07 27560.32 26489.00 23970.74 19989.27 26489.03 237
jason: jason.
CDS-MVSNet77.32 23475.40 24983.06 17689.00 17672.48 14277.90 26882.17 26260.81 28478.94 27483.49 29259.30 27288.76 24654.64 30992.37 21587.93 250
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
xiu_mvs_v2_base77.19 23576.75 23778.52 25087.01 21861.30 24475.55 29887.12 21361.24 28174.45 30778.79 33277.20 14990.93 19764.62 24984.80 31183.32 302
MVSTER77.09 23675.70 24781.25 20875.27 34261.08 24777.49 27685.07 24060.78 28586.55 16388.68 21543.14 34390.25 21673.69 17390.67 25192.42 155
PS-MVSNAJ77.04 23776.53 23978.56 24987.09 21761.40 24275.26 30087.13 21061.25 28074.38 30977.22 34176.94 15590.94 19664.63 24884.83 31083.35 301
IterMVS76.91 23876.34 24178.64 24880.91 29464.03 21476.30 29079.03 28264.88 26183.11 22289.16 20759.90 26884.46 29468.61 22185.15 30487.42 255
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
D2MVS76.84 23975.67 24880.34 22580.48 30462.16 23973.50 31284.80 24857.61 30282.24 23287.54 23251.31 30687.65 25670.40 20493.19 19891.23 192
CL-MVSNet_2432*160076.81 24077.38 23075.12 28686.90 22051.34 32773.20 31580.63 27368.30 22581.80 24388.40 21866.92 23280.90 31255.35 30394.90 15993.12 129
TR-MVS76.77 24175.79 24579.72 23486.10 23865.79 20077.14 27883.02 25565.20 25981.40 24882.10 30866.30 23490.73 20655.57 30085.27 30282.65 308
USDC76.63 24276.73 23876.34 27983.46 27157.20 28780.02 23788.04 19752.14 33083.65 21491.25 15863.24 24986.65 27154.66 30894.11 17985.17 278
BH-w/o76.57 24376.07 24478.10 25986.88 22165.92 19977.63 27286.33 22265.69 25280.89 25379.95 32768.97 22390.74 20553.01 31785.25 30377.62 338
Patchmtry76.56 24477.46 22873.83 29279.37 31446.60 34782.41 20176.90 29173.81 15985.56 18492.38 13048.07 31583.98 29863.36 25495.31 14490.92 198
PVSNet_Blended76.49 24575.40 24979.76 23284.43 25363.41 21875.14 30190.44 14757.36 30475.43 30178.30 33569.11 22191.44 18160.68 27587.70 28484.42 286
miper_lstm_enhance76.45 24676.10 24377.51 26676.72 33060.97 25264.69 34185.04 24263.98 26483.20 22188.22 22056.67 28978.79 32073.22 17793.12 19992.78 142
lupinMVS76.37 24774.46 25782.09 19585.54 24369.26 17376.79 28280.77 27250.68 34076.23 29282.82 30258.69 27788.94 24069.85 20688.77 26988.07 245
cascas76.29 24874.81 25380.72 22084.47 25262.94 22573.89 31087.34 20455.94 30975.16 30576.53 34463.97 24491.16 19065.00 24490.97 24388.06 246
thres600view775.97 24975.35 25177.85 26487.01 21851.84 32580.45 23273.26 31875.20 14583.10 22386.31 25245.54 32889.05 23855.03 30692.24 21892.66 148
GA-MVS75.83 25074.61 25479.48 23981.87 28359.25 26773.42 31382.88 25668.68 22279.75 26681.80 31150.62 30989.46 23466.85 23185.64 29989.72 221
MVP-Stereo75.81 25173.51 26682.71 18689.35 16973.62 12780.06 23585.20 23760.30 28873.96 31087.94 22557.89 28489.45 23552.02 32074.87 34785.06 280
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
thres100view90075.45 25275.05 25276.66 27687.27 20851.88 32481.07 22573.26 31875.68 13883.25 22086.37 24945.54 32888.80 24251.98 32190.99 24089.31 229
ET-MVSNet_ETH3D75.28 25372.77 27282.81 18583.03 27868.11 18377.09 27976.51 29560.67 28777.60 28580.52 32238.04 35291.15 19170.78 19790.68 25089.17 232
thres40075.14 25474.23 25977.86 26386.24 23352.12 32179.24 25073.87 31273.34 16681.82 24184.60 28346.02 32288.80 24251.98 32190.99 24092.66 148
wuyk23d75.13 25579.30 21162.63 33175.56 33875.18 12180.89 22773.10 32075.06 14794.76 1195.32 3487.73 4152.85 35934.16 35897.11 8359.85 355
EU-MVSNet75.12 25674.43 25877.18 26883.11 27759.48 26585.71 12982.43 26039.76 35885.64 18288.76 21344.71 33987.88 25473.86 17085.88 29884.16 289
HyFIR lowres test75.12 25672.66 27482.50 19291.44 12965.19 20472.47 31787.31 20546.79 34680.29 26284.30 28552.70 30492.10 16451.88 32486.73 29090.22 215
CMPMVSbinary59.41 2075.12 25673.57 26479.77 23175.84 33767.22 18781.21 22382.18 26150.78 33876.50 28887.66 23055.20 29882.99 30362.17 26390.64 25489.09 236
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
pmmvs474.92 25972.98 27180.73 21984.95 24771.71 15576.23 29277.59 28852.83 32477.73 28486.38 24856.35 29284.97 28957.72 29087.05 28885.51 275
tfpn200view974.86 26074.23 25976.74 27586.24 23352.12 32179.24 25073.87 31273.34 16681.82 24184.60 28346.02 32288.80 24251.98 32190.99 24089.31 229
1112_ss74.82 26173.74 26278.04 26089.57 16760.04 25976.49 28887.09 21454.31 31673.66 31279.80 32860.25 26586.76 27058.37 28484.15 31487.32 257
ppachtmachnet_test74.73 26274.00 26176.90 27280.71 30056.89 29071.53 32178.42 28458.24 29679.32 27182.92 30157.91 28384.26 29665.60 24291.36 23489.56 224
Patchmatch-RL test74.48 26373.68 26376.89 27384.83 24966.54 19572.29 31869.16 33857.70 30086.76 15786.33 25045.79 32782.59 30469.63 20890.65 25381.54 323
PatchMatch-RL74.48 26373.22 26878.27 25787.70 20085.26 3375.92 29470.09 33564.34 26376.09 29481.25 31665.87 23878.07 32153.86 31183.82 31571.48 346
XXY-MVS74.44 26576.19 24269.21 31284.61 25152.43 32071.70 32077.18 29060.73 28680.60 25690.96 17175.44 16569.35 34056.13 29688.33 27385.86 272
CR-MVSNet74.00 26673.04 27076.85 27479.58 30962.64 23082.58 19476.90 29150.50 34175.72 29892.38 13048.07 31584.07 29768.72 22082.91 32183.85 293
Test_1112_low_res73.90 26773.08 26976.35 27890.35 15555.95 29373.40 31486.17 22450.70 33973.14 31385.94 25758.31 27985.90 28156.51 29483.22 31887.20 258
test20.0373.75 26874.59 25671.22 30581.11 29251.12 33170.15 32672.10 32670.42 20380.28 26491.50 15564.21 24374.72 33246.96 34194.58 16887.82 253
SCA73.32 26972.57 27675.58 28481.62 28555.86 29578.89 25571.37 33261.73 27674.93 30683.42 29460.46 26287.01 26158.11 28882.63 32583.88 290
baseline173.26 27073.54 26572.43 30184.92 24847.79 34379.89 23974.00 31065.93 24678.81 27586.28 25356.36 29181.63 31056.63 29379.04 33887.87 252
131473.22 27172.56 27775.20 28580.41 30557.84 28181.64 21585.36 23351.68 33373.10 31476.65 34361.45 25885.19 28763.54 25279.21 33782.59 309
MVS73.21 27272.59 27575.06 28780.97 29360.81 25481.64 21585.92 22846.03 34971.68 32077.54 33768.47 22489.77 23155.70 29985.39 30074.60 343
HY-MVS64.64 1873.03 27372.47 27874.71 28883.36 27254.19 30582.14 21181.96 26356.76 30869.57 32886.21 25460.03 26684.83 29249.58 33082.65 32385.11 279
thisisatest051573.00 27470.52 28980.46 22381.45 28759.90 26173.16 31674.31 30957.86 29976.08 29577.78 33637.60 35492.12 16365.00 24491.45 23389.35 228
EPNet_dtu72.87 27571.33 28777.49 26777.72 32360.55 25682.35 20275.79 29866.49 24358.39 35981.06 31753.68 30285.98 27953.55 31292.97 20585.95 270
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CVMVSNet72.62 27671.41 28676.28 28083.25 27360.34 25783.50 17179.02 28337.77 35976.33 29085.10 27249.60 31287.41 25870.54 20277.54 34381.08 330
CHOSEN 1792x268872.45 27770.56 28878.13 25890.02 16563.08 22368.72 33083.16 25442.99 35575.92 29685.46 26557.22 28885.18 28849.87 32981.67 32686.14 268
testgi72.36 27874.61 25465.59 32580.56 30242.82 35668.29 33173.35 31766.87 24081.84 24089.93 19772.08 20766.92 34846.05 34392.54 21387.01 261
thres20072.34 27971.55 28574.70 28983.48 27051.60 32675.02 30273.71 31570.14 20978.56 27780.57 32146.20 32088.20 25246.99 34089.29 26284.32 287
FPMVS72.29 28072.00 28073.14 29588.63 18285.00 3574.65 30667.39 33971.94 19077.80 28387.66 23050.48 31075.83 32849.95 32779.51 33358.58 357
FMVSNet572.10 28171.69 28273.32 29381.57 28653.02 31476.77 28378.37 28563.31 26576.37 28991.85 14436.68 35578.98 31847.87 33792.45 21487.95 249
our_test_371.85 28271.59 28372.62 29980.71 30053.78 30869.72 32871.71 33158.80 29378.03 27880.51 32356.61 29078.84 31962.20 26186.04 29785.23 277
PAPM71.77 28370.06 29476.92 27186.39 22553.97 30676.62 28686.62 22053.44 32163.97 34984.73 28157.79 28592.34 15639.65 35381.33 32984.45 285
IB-MVS62.13 1971.64 28468.97 29879.66 23680.80 29962.26 23873.94 30976.90 29163.27 26668.63 33076.79 34233.83 35991.84 17359.28 28287.26 28684.88 281
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
UnsupCasMVSNet_eth71.63 28572.30 27969.62 31076.47 33252.70 31770.03 32780.97 27059.18 29279.36 27088.21 22160.50 26169.12 34158.33 28677.62 34287.04 260
Anonymous2023120671.38 28671.88 28169.88 30886.31 23054.37 30470.39 32574.62 30552.57 32676.73 28788.76 21359.94 26772.06 33444.35 34693.23 19783.23 304
MIMVSNet71.09 28771.59 28369.57 31187.23 20950.07 33778.91 25471.83 32860.20 29071.26 32191.76 14955.08 29976.09 32641.06 35187.02 28982.54 311
MS-PatchMatch70.93 28870.22 29273.06 29681.85 28462.50 23373.82 31177.90 28652.44 32775.92 29681.27 31555.67 29581.75 30855.37 30277.70 34174.94 342
pmmvs570.73 28970.07 29372.72 29777.03 32852.73 31674.14 30775.65 30150.36 34272.17 31885.37 26955.42 29780.67 31452.86 31887.59 28584.77 282
PatchT70.52 29072.76 27363.79 33079.38 31333.53 36277.63 27265.37 34773.61 16171.77 31992.79 12044.38 34075.65 32964.53 25085.37 30182.18 316
N_pmnet70.20 29168.80 30074.38 29080.91 29484.81 3859.12 35176.45 29655.06 31375.31 30482.36 30755.74 29454.82 35847.02 33987.24 28783.52 297
tpmvs70.16 29269.56 29671.96 30374.71 34648.13 34079.63 24175.45 30365.02 26070.26 32581.88 31045.34 33385.68 28358.34 28575.39 34682.08 317
new-patchmatchnet70.10 29373.37 26760.29 33881.23 29116.95 36659.54 34974.62 30562.93 26780.97 25187.93 22662.83 25571.90 33555.24 30495.01 15592.00 173
YYNet170.06 29470.44 29068.90 31373.76 34853.42 31258.99 35267.20 34158.42 29587.10 14985.39 26859.82 26967.32 34559.79 27983.50 31785.96 269
MDA-MVSNet_test_wron70.05 29570.44 29068.88 31473.84 34753.47 31058.93 35367.28 34058.43 29487.09 15085.40 26759.80 27067.25 34659.66 28083.54 31685.92 271
CostFormer69.98 29668.68 30173.87 29177.14 32650.72 33479.26 24974.51 30751.94 33270.97 32484.75 28045.16 33687.49 25755.16 30579.23 33683.40 300
baseline269.77 29766.89 30778.41 25379.51 31158.09 27976.23 29269.57 33757.50 30364.82 34777.45 33946.02 32288.44 24853.08 31477.83 34088.70 241
PatchmatchNetpermissive69.71 29868.83 29972.33 30277.66 32453.60 30979.29 24869.99 33657.66 30172.53 31682.93 30046.45 31980.08 31760.91 27372.09 35083.31 303
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
JIA-IIPM69.41 29966.64 31177.70 26573.19 35071.24 15875.67 29565.56 34670.42 20365.18 34392.97 11233.64 36083.06 30253.52 31369.61 35678.79 337
UnsupCasMVSNet_bld69.21 30069.68 29567.82 31979.42 31251.15 33067.82 33575.79 29854.15 31777.47 28685.36 27059.26 27370.64 33748.46 33479.35 33581.66 321
gg-mvs-nofinetune68.96 30169.11 29768.52 31876.12 33645.32 34983.59 16755.88 36086.68 2564.62 34897.01 730.36 36383.97 29944.78 34582.94 32076.26 340
tpm268.45 30266.83 30873.30 29478.93 31948.50 33979.76 24071.76 32947.50 34569.92 32783.60 29042.07 34588.40 24948.44 33579.51 33383.01 307
tpm67.95 30368.08 30467.55 32078.74 32043.53 35475.60 29667.10 34454.92 31472.23 31788.10 22242.87 34475.97 32752.21 31980.95 33283.15 305
WTY-MVS67.91 30468.35 30266.58 32380.82 29848.12 34165.96 33972.60 32253.67 32071.20 32281.68 31358.97 27569.06 34248.57 33381.67 32682.55 310
test-LLR67.21 30566.74 30968.63 31676.45 33355.21 30067.89 33267.14 34262.43 27365.08 34472.39 34943.41 34169.37 33861.00 27184.89 30881.31 325
sss66.92 30667.26 30665.90 32477.23 32551.10 33264.79 34071.72 33052.12 33170.13 32680.18 32557.96 28265.36 35350.21 32681.01 33181.25 327
KD-MVS_2432*160066.87 30765.81 31270.04 30667.50 35947.49 34462.56 34579.16 28061.21 28277.98 27980.61 31925.29 36982.48 30553.02 31584.92 30680.16 335
miper_refine_blended66.87 30765.81 31270.04 30667.50 35947.49 34462.56 34579.16 28061.21 28277.98 27980.61 31925.29 36982.48 30553.02 31584.92 30680.16 335
tpm cat166.76 30965.21 31571.42 30477.09 32750.62 33578.01 26573.68 31644.89 35168.64 32979.00 33145.51 33082.42 30749.91 32870.15 35381.23 329
DWT-MVSNet_test66.43 31064.37 31672.63 29874.86 34550.86 33376.52 28772.74 32154.06 31865.50 34168.30 35532.13 36184.84 29161.63 26873.59 34882.19 315
PVSNet58.17 2166.41 31165.63 31468.75 31581.96 28249.88 33862.19 34772.51 32451.03 33668.04 33275.34 34750.84 30874.77 33045.82 34482.96 31981.60 322
tpmrst66.28 31266.69 31065.05 32872.82 35439.33 35778.20 26470.69 33453.16 32367.88 33380.36 32448.18 31474.75 33158.13 28770.79 35281.08 330
Patchmatch-test65.91 31367.38 30561.48 33675.51 33943.21 35568.84 32963.79 34962.48 27172.80 31583.42 29444.89 33859.52 35748.27 33686.45 29281.70 320
ADS-MVSNet265.87 31463.64 31972.55 30073.16 35156.92 28967.10 33674.81 30449.74 34366.04 33982.97 29846.71 31777.26 32342.29 34869.96 35483.46 298
test-mter65.00 31563.79 31868.63 31676.45 33355.21 30067.89 33267.14 34250.98 33765.08 34472.39 34928.27 36669.37 33861.00 27184.89 30881.31 325
test0.0.03 164.66 31664.36 31765.57 32675.03 34446.89 34664.69 34161.58 35462.43 27371.18 32377.54 33743.41 34168.47 34340.75 35282.65 32381.35 324
pmmvs362.47 31760.02 32969.80 30971.58 35764.00 21570.52 32458.44 35839.77 35766.05 33875.84 34527.10 36872.28 33346.15 34284.77 31273.11 344
EPMVS62.47 31762.63 32162.01 33270.63 35838.74 35874.76 30452.86 36253.91 31967.71 33580.01 32639.40 34966.60 34955.54 30168.81 35780.68 334
ADS-MVSNet61.90 31962.19 32261.03 33773.16 35136.42 36067.10 33661.75 35249.74 34366.04 33982.97 29846.71 31763.21 35542.29 34869.96 35483.46 298
PMMVS61.65 32060.38 32665.47 32765.40 36369.26 17363.97 34361.73 35336.80 36060.11 35468.43 35359.42 27166.35 35048.97 33278.57 33960.81 354
E-PMN61.59 32161.62 32361.49 33566.81 36155.40 29853.77 35560.34 35566.80 24158.90 35765.50 35640.48 34866.12 35155.72 29886.25 29562.95 353
TESTMET0.1,161.29 32260.32 32764.19 32972.06 35551.30 32867.89 33262.09 35045.27 35060.65 35369.01 35227.93 36764.74 35456.31 29581.65 32876.53 339
MVS-HIRNet61.16 32362.92 32055.87 34179.09 31635.34 36171.83 31957.98 35946.56 34759.05 35691.14 16349.95 31176.43 32538.74 35471.92 35155.84 358
EMVS61.10 32460.81 32561.99 33365.96 36255.86 29553.10 35658.97 35767.06 23856.89 36063.33 35740.98 34667.03 34754.79 30786.18 29663.08 352
DSMNet-mixed60.98 32561.61 32459.09 34072.88 35345.05 35174.70 30546.61 36526.20 36165.34 34290.32 18855.46 29663.12 35641.72 35081.30 33069.09 350
dp60.70 32660.29 32861.92 33472.04 35638.67 35970.83 32264.08 34851.28 33560.75 35277.28 34036.59 35671.58 33647.41 33862.34 35975.52 341
CHOSEN 280x42059.08 32756.52 33266.76 32276.51 33164.39 21149.62 35759.00 35643.86 35355.66 36168.41 35435.55 35768.21 34443.25 34776.78 34567.69 351
PVSNet_051.08 2256.10 32854.97 33359.48 33975.12 34353.28 31355.16 35461.89 35144.30 35259.16 35562.48 35854.22 30165.91 35235.40 35747.01 36059.25 356
new_pmnet55.69 32957.66 33149.76 34375.47 34030.59 36359.56 34851.45 36343.62 35462.49 35075.48 34640.96 34749.15 36137.39 35672.52 34969.55 349
PMMVS255.64 33059.27 33044.74 34464.30 36412.32 36740.60 35849.79 36453.19 32265.06 34684.81 27953.60 30349.76 36032.68 36089.41 26172.15 345
MVEpermissive40.22 2351.82 33150.47 33455.87 34162.66 36551.91 32331.61 36039.28 36640.65 35650.76 36274.98 34856.24 29344.67 36233.94 35964.11 35871.04 348
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method30.46 33229.60 33533.06 34517.99 3673.84 36913.62 36173.92 3112.79 36318.29 36553.41 36028.53 36543.25 36322.56 36135.27 36252.11 359
cdsmvs_eth3d_5k20.81 33327.75 3360.00 3500.00 3710.00 3720.00 36285.44 2320.00 3670.00 36882.82 30281.46 1110.00 3680.00 3660.00 3660.00 364
tmp_tt20.25 33424.50 3377.49 3474.47 3688.70 36834.17 35925.16 3681.00 36432.43 36418.49 36239.37 3509.21 36521.64 36243.75 3614.57 361
ab-mvs-re6.65 3358.87 3380.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 36879.80 3280.00 3730.00 3680.00 3660.00 3660.00 364
pcd_1.5k_mvsjas6.41 3368.55 3390.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 36876.94 1550.00 3680.00 3660.00 3660.00 364
test1236.27 3378.08 3400.84 3481.11 3700.57 37062.90 3440.82 3700.54 3651.07 3672.75 3671.26 3710.30 3661.04 3641.26 3651.66 362
testmvs5.91 3387.65 3410.72 3491.20 3690.37 37159.14 3500.67 3710.49 3661.11 3662.76 3660.94 3720.24 3671.02 3651.47 3641.55 363
uanet_test0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
sosnet-low-res0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
sosnet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
uncertanet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
Regformer0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
uanet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
ZD-MVS92.22 10280.48 6891.85 11171.22 19690.38 8692.98 11086.06 6296.11 681.99 8196.75 95
RE-MVS-def92.61 594.13 5388.95 892.87 1294.16 2888.75 1593.79 2894.43 6190.64 1187.16 2597.60 6492.73 143
IU-MVS94.18 4872.64 13690.82 13856.98 30689.67 10485.78 4497.92 4693.28 122
OPU-MVS88.27 8191.89 11377.83 9290.47 4691.22 15981.12 11594.68 7274.48 16295.35 14092.29 162
test_241102_TWO93.71 4883.77 4193.49 3794.27 6989.27 2295.84 1986.03 4197.82 5192.04 171
test_241102_ONE94.18 4872.65 13493.69 4983.62 4394.11 2293.78 9790.28 1595.50 44
9.1489.29 6191.84 11588.80 8095.32 975.14 14691.07 7592.89 11587.27 4593.78 10783.69 6597.55 67
save fliter93.75 6177.44 9886.31 12089.72 16870.80 199
test_0728_THIRD85.33 3093.75 3094.65 5387.44 4495.78 2487.41 1998.21 3092.98 134
test_0728_SECOND86.79 9794.25 4772.45 14390.54 4394.10 3495.88 1486.42 3197.97 4392.02 172
test072694.16 5172.56 13990.63 4293.90 4183.61 4493.75 3094.49 5889.76 19
GSMVS83.88 290
test_part293.86 6077.77 9392.84 45
sam_mvs146.11 32183.88 290
sam_mvs45.92 326
ambc82.98 17890.55 15364.86 20688.20 8789.15 17989.40 11393.96 8771.67 21291.38 18678.83 11696.55 10192.71 146
MTGPAbinary91.81 114
test_post178.85 2573.13 36445.19 33580.13 31658.11 288
test_post3.10 36545.43 33177.22 324
patchmatchnet-post81.71 31245.93 32587.01 261
GG-mvs-BLEND67.16 32173.36 34946.54 34884.15 15055.04 36158.64 35861.95 35929.93 36483.87 30038.71 35576.92 34471.07 347
MTMP90.66 4033.14 367
gm-plane-assit75.42 34144.97 35252.17 32872.36 35187.90 25354.10 310
test9_res80.83 9496.45 10690.57 208
TEST992.34 9679.70 7583.94 15590.32 15165.41 25884.49 19990.97 16982.03 10293.63 112
test_892.09 10578.87 8383.82 16090.31 15365.79 24884.36 20290.96 17181.93 10493.44 124
agg_prior279.68 10696.16 11690.22 215
agg_prior91.58 12377.69 9490.30 15484.32 20393.18 132
TestCases89.68 5491.59 12083.40 4895.44 779.47 9188.00 13693.03 10882.66 8991.47 17970.81 19596.14 11794.16 89
test_prior478.97 8284.59 142
test_prior283.37 17475.43 14184.58 19791.57 15281.92 10679.54 10896.97 86
test_prior86.32 10590.59 15171.99 14992.85 8694.17 9192.80 140
旧先验281.73 21356.88 30786.54 16884.90 29072.81 184
新几何281.72 214
新几何182.95 17993.96 5778.56 8780.24 27455.45 31183.93 21191.08 16471.19 21488.33 25065.84 24093.07 20081.95 319
旧先验191.97 10871.77 15181.78 26591.84 14573.92 18393.65 18983.61 296
无先验82.81 19085.62 23158.09 29791.41 18467.95 22784.48 284
原ACMM282.26 207
原ACMM184.60 14292.81 8774.01 12691.50 12062.59 26982.73 22790.67 18176.53 16294.25 8469.24 21195.69 13385.55 274
test22293.31 7276.54 11179.38 24777.79 28752.59 32582.36 23190.84 17566.83 23391.69 22981.25 327
testdata286.43 27463.52 253
segment_acmp81.94 103
testdata79.54 23892.87 8272.34 14480.14 27659.91 29185.47 18691.75 15067.96 22785.24 28668.57 22392.18 22181.06 332
testdata179.62 24273.95 158
test1286.57 10090.74 14772.63 13790.69 14182.76 22679.20 13194.80 6995.32 14292.27 164
plane_prior793.45 6777.31 102
plane_prior692.61 8876.54 11174.84 172
plane_prior593.61 5395.22 5580.78 9595.83 12694.46 77
plane_prior492.95 113
plane_prior376.85 10977.79 11286.55 163
plane_prior289.45 6979.44 93
plane_prior192.83 86
plane_prior76.42 11487.15 10475.94 13595.03 154
n20.00 372
nn0.00 372
door-mid74.45 308
lessismore_v085.95 11691.10 13970.99 16070.91 33391.79 6494.42 6361.76 25792.93 14279.52 11093.03 20293.93 97
LGP-MVS_train90.82 3894.75 4081.69 5994.27 2082.35 6093.67 3394.82 4891.18 595.52 3985.36 4798.73 795.23 58
test1191.46 121
door72.57 323
HQP5-MVS70.66 161
HQP-NCC91.19 13484.77 13773.30 16880.55 259
ACMP_Plane91.19 13484.77 13773.30 16880.55 259
BP-MVS77.30 139
HQP4-MVS80.56 25894.61 7693.56 117
HQP3-MVS92.68 9294.47 170
HQP2-MVS72.10 205
NP-MVS91.95 10974.55 12390.17 194
MDTV_nov1_ep13_2view27.60 36570.76 32346.47 34861.27 35145.20 33449.18 33183.75 295
MDTV_nov1_ep1368.29 30378.03 32143.87 35374.12 30872.22 32552.17 32867.02 33785.54 26145.36 33280.85 31355.73 29784.42 313
ACMMP++_ref95.74 132
ACMMP++97.35 76
Test By Simon79.09 132
ITE_SJBPF90.11 5090.72 14884.97 3690.30 15481.56 6990.02 9291.20 16182.40 9290.81 20373.58 17494.66 16694.56 72
DeepMVS_CXcopyleft24.13 34632.95 36629.49 36421.63 36912.07 36237.95 36345.07 36130.84 36219.21 36417.94 36333.06 36323.69 360