This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet95.70 196.40 193.61 398.67 185.39 3495.54 597.36 196.97 199.04 199.05 196.61 195.92 1585.07 5599.27 199.54 1
mamv495.37 294.51 297.96 196.31 1098.41 191.05 4697.23 295.32 299.01 297.26 580.16 13098.99 195.15 199.14 296.47 32
TDRefinement93.52 393.39 493.88 295.94 1590.26 495.70 496.46 390.58 992.86 4996.29 1888.16 3394.17 9486.07 4698.48 1897.22 19
LTVRE_ROB86.10 193.04 493.44 391.82 2193.73 6185.72 3196.79 195.51 1088.86 1395.63 996.99 1084.81 6993.16 13491.10 297.53 7096.58 30
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
HPM-MVS_fast92.50 592.54 692.37 695.93 1685.81 3092.99 1294.23 2685.21 3992.51 5795.13 4690.65 995.34 5588.06 998.15 3495.95 43
SR-MVS-dyc-post92.41 692.41 792.39 594.13 5288.95 692.87 1494.16 3288.75 1593.79 3194.43 7088.83 2495.51 4787.16 3097.60 6492.73 158
SR-MVS92.23 792.34 891.91 1694.89 3887.85 992.51 2493.87 5188.20 2093.24 4194.02 9390.15 1695.67 3786.82 3497.34 7492.19 188
HPM-MVScopyleft92.13 892.20 1091.91 1695.58 2684.67 4393.51 894.85 1682.88 6391.77 7093.94 10190.55 1295.73 3488.50 798.23 2895.33 56
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
APD-MVS_3200maxsize92.05 992.24 991.48 2293.02 7785.17 3692.47 2695.05 1587.65 2693.21 4294.39 7590.09 1795.08 6486.67 3697.60 6494.18 96
COLMAP_ROBcopyleft83.01 391.97 1091.95 1192.04 1193.68 6286.15 2193.37 1095.10 1490.28 1092.11 6395.03 4889.75 2094.93 6979.95 11498.27 2695.04 66
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
ACMMPcopyleft91.91 1191.87 1692.03 1295.53 2785.91 2593.35 1194.16 3282.52 6692.39 6094.14 8789.15 2395.62 3887.35 2598.24 2794.56 78
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
mPP-MVS91.69 1291.47 2392.37 696.04 1388.48 892.72 1892.60 10083.09 6091.54 7294.25 8187.67 4195.51 4787.21 2998.11 3593.12 146
CP-MVS91.67 1391.58 2091.96 1395.29 3187.62 1093.38 993.36 6583.16 5991.06 8294.00 9488.26 3095.71 3587.28 2898.39 2192.55 168
XVS91.54 1491.36 2592.08 995.64 2486.25 1992.64 1993.33 6785.07 4089.99 10094.03 9286.57 5295.80 2687.35 2597.62 6294.20 93
MTAPA91.52 1591.60 1991.29 2796.59 486.29 1892.02 3091.81 12584.07 4892.00 6694.40 7486.63 5195.28 5888.59 698.31 2492.30 181
UA-Net91.49 1691.53 2191.39 2494.98 3582.95 5593.52 792.79 9488.22 1988.53 13097.64 283.45 8394.55 8286.02 4998.60 1396.67 27
ACMMPR91.49 1691.35 2791.92 1595.74 2085.88 2792.58 2293.25 7381.99 6991.40 7494.17 8687.51 4295.87 1987.74 1497.76 5593.99 104
LPG-MVS_test91.47 1891.68 1790.82 3494.75 4181.69 6090.00 6194.27 2382.35 6793.67 3694.82 5491.18 495.52 4585.36 5398.73 795.23 61
region2R91.44 1991.30 3191.87 1895.75 1985.90 2692.63 2193.30 7181.91 7190.88 8894.21 8287.75 3995.87 1987.60 1997.71 5893.83 113
HFP-MVS91.30 2091.39 2491.02 3095.43 2984.66 4492.58 2293.29 7281.99 6991.47 7393.96 9888.35 2995.56 4287.74 1497.74 5792.85 155
ZNCC-MVS91.26 2191.34 2891.01 3195.73 2183.05 5392.18 2894.22 2880.14 9291.29 7893.97 9587.93 3895.87 1988.65 597.96 4594.12 100
APDe-MVScopyleft91.22 2291.92 1289.14 6492.97 7978.04 9092.84 1694.14 3683.33 5793.90 2795.73 3088.77 2596.41 387.60 1997.98 4292.98 152
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
PGM-MVS91.20 2390.95 4091.93 1495.67 2385.85 2890.00 6193.90 4880.32 8991.74 7194.41 7388.17 3295.98 1286.37 3997.99 4093.96 107
SteuartSystems-ACMMP91.16 2491.36 2590.55 3893.91 5780.97 6791.49 3793.48 6382.82 6492.60 5693.97 9588.19 3196.29 687.61 1898.20 3194.39 89
Skip Steuart: Steuart Systems R&D Blog.
MP-MVScopyleft91.14 2590.91 4191.83 1996.18 1186.88 1492.20 2793.03 8682.59 6588.52 13194.37 7686.74 5095.41 5386.32 4098.21 2993.19 142
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
GST-MVS90.96 2691.01 3790.82 3495.45 2882.73 5691.75 3593.74 5480.98 8391.38 7593.80 10587.20 4695.80 2687.10 3297.69 5993.93 108
MP-MVS-pluss90.81 2791.08 3489.99 4795.97 1479.88 7288.13 10294.51 2075.79 14392.94 4694.96 4988.36 2895.01 6790.70 398.40 2095.09 65
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ACMH+77.89 1190.73 2891.50 2288.44 7693.00 7876.26 11789.65 7495.55 987.72 2593.89 2994.94 5091.62 393.44 12578.35 13098.76 495.61 50
ACMMP_NAP90.65 2991.07 3689.42 5995.93 1679.54 7789.95 6593.68 5877.65 12391.97 6794.89 5188.38 2795.45 5189.27 497.87 5093.27 138
ACMM79.39 990.65 2990.99 3889.63 5595.03 3483.53 4889.62 7593.35 6679.20 10493.83 3093.60 11390.81 792.96 14085.02 5798.45 1992.41 175
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LS3D90.60 3190.34 4891.38 2589.03 18684.23 4693.58 694.68 1990.65 890.33 9493.95 10084.50 7195.37 5480.87 10495.50 14294.53 81
ACMP79.16 1090.54 3290.60 4690.35 4294.36 4480.98 6689.16 8594.05 4179.03 10792.87 4893.74 10990.60 1195.21 6182.87 8198.76 494.87 69
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
DPE-MVScopyleft90.53 3391.08 3488.88 6793.38 6878.65 8489.15 8694.05 4184.68 4493.90 2794.11 9088.13 3496.30 584.51 6497.81 5291.70 204
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SED-MVS90.46 3491.64 1886.93 9794.18 4772.65 14290.47 5593.69 5683.77 5194.11 2594.27 7790.28 1495.84 2486.03 4797.92 4692.29 182
SMA-MVScopyleft90.31 3590.48 4789.83 5195.31 3079.52 7890.98 4793.24 7475.37 15092.84 5095.28 4185.58 6496.09 887.92 1197.76 5593.88 111
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
SF-MVS90.27 3690.80 4388.68 7492.86 8477.09 10591.19 4395.74 781.38 7792.28 6193.80 10586.89 4994.64 7785.52 5297.51 7194.30 92
v7n90.13 3790.96 3987.65 8991.95 11271.06 17089.99 6393.05 8386.53 3094.29 2196.27 1982.69 9094.08 9786.25 4397.63 6197.82 9
PMVScopyleft80.48 690.08 3890.66 4588.34 7996.71 392.97 290.31 5889.57 18888.51 1890.11 9695.12 4790.98 688.92 25077.55 14497.07 8183.13 342
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
DVP-MVS++90.07 3991.09 3387.00 9591.55 12972.64 14496.19 294.10 3985.33 3793.49 3894.64 6281.12 11995.88 1787.41 2395.94 12692.48 171
DVP-MVScopyleft90.06 4091.32 2986.29 10994.16 5072.56 14890.54 5291.01 14683.61 5493.75 3394.65 5989.76 1895.78 3186.42 3797.97 4390.55 234
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
PS-CasMVS90.06 4091.92 1284.47 14896.56 658.83 30689.04 8792.74 9691.40 696.12 596.06 2687.23 4595.57 4179.42 12298.74 699.00 2
PEN-MVS90.03 4291.88 1584.48 14796.57 558.88 30388.95 8893.19 7591.62 596.01 796.16 2487.02 4795.60 3978.69 12798.72 998.97 3
OurMVSNet-221017-090.01 4389.74 5590.83 3393.16 7580.37 6991.91 3393.11 7981.10 8195.32 1197.24 672.94 21094.85 7185.07 5597.78 5397.26 16
DTE-MVSNet89.98 4491.91 1484.21 15896.51 757.84 31388.93 8992.84 9391.92 496.16 496.23 2086.95 4895.99 1179.05 12498.57 1598.80 6
XVG-ACMP-BASELINE89.98 4489.84 5390.41 4094.91 3784.50 4589.49 8093.98 4379.68 9692.09 6493.89 10383.80 7893.10 13782.67 8598.04 3693.64 125
3Dnovator+83.92 289.97 4689.66 5690.92 3291.27 13881.66 6391.25 4194.13 3788.89 1288.83 12594.26 8077.55 15295.86 2384.88 5895.87 13095.24 60
WR-MVS_H89.91 4791.31 3085.71 12496.32 962.39 25889.54 7893.31 7090.21 1195.57 1095.66 3281.42 11695.90 1680.94 10398.80 398.84 5
OPM-MVS89.80 4889.97 5189.27 6194.76 4079.86 7386.76 12592.78 9578.78 11092.51 5793.64 11288.13 3493.84 10684.83 6197.55 6794.10 102
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
mvs_tets89.78 4989.27 6291.30 2693.51 6484.79 4189.89 6790.63 15670.00 22394.55 1896.67 1387.94 3793.59 11784.27 6695.97 12395.52 51
anonymousdsp89.73 5088.88 6992.27 889.82 17186.67 1590.51 5490.20 17369.87 22495.06 1296.14 2584.28 7493.07 13887.68 1696.34 10597.09 21
test_djsdf89.62 5189.01 6691.45 2392.36 9582.98 5491.98 3190.08 17671.54 20594.28 2396.54 1581.57 11494.27 8686.26 4196.49 9997.09 21
XVG-OURS-SEG-HR89.59 5289.37 6090.28 4394.47 4385.95 2486.84 12193.91 4780.07 9386.75 16993.26 11793.64 290.93 19684.60 6390.75 26693.97 106
APD-MVScopyleft89.54 5389.63 5789.26 6292.57 8981.34 6590.19 6093.08 8280.87 8591.13 8093.19 11886.22 5995.97 1382.23 9197.18 7990.45 236
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
jajsoiax89.41 5488.81 7291.19 2993.38 6884.72 4289.70 7090.29 17069.27 22794.39 1996.38 1786.02 6293.52 12183.96 6995.92 12895.34 55
CPTT-MVS89.39 5588.98 6890.63 3795.09 3386.95 1392.09 2992.30 10779.74 9587.50 15492.38 14681.42 11693.28 13083.07 7797.24 7791.67 205
ACMH76.49 1489.34 5691.14 3283.96 16392.50 9270.36 17689.55 7693.84 5281.89 7294.70 1595.44 3790.69 888.31 26083.33 7398.30 2593.20 141
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
testf189.30 5789.12 6389.84 4988.67 19685.64 3290.61 5093.17 7686.02 3393.12 4395.30 3984.94 6689.44 24274.12 18196.10 11894.45 84
APD_test289.30 5789.12 6389.84 4988.67 19685.64 3290.61 5093.17 7686.02 3393.12 4395.30 3984.94 6689.44 24274.12 18196.10 11894.45 84
CP-MVSNet89.27 5990.91 4184.37 14996.34 858.61 30988.66 9692.06 11390.78 795.67 895.17 4581.80 11295.54 4479.00 12598.69 1098.95 4
XVG-OURS89.18 6088.83 7190.23 4494.28 4586.11 2385.91 13693.60 6180.16 9189.13 12293.44 11583.82 7790.98 19483.86 7195.30 15193.60 127
DeepC-MVS82.31 489.15 6189.08 6589.37 6093.64 6379.07 8088.54 9794.20 2973.53 16989.71 10794.82 5485.09 6595.77 3384.17 6798.03 3893.26 139
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
UniMVSNet_ETH3D89.12 6290.72 4484.31 15597.00 264.33 23389.67 7388.38 20288.84 1494.29 2197.57 390.48 1391.26 18572.57 20597.65 6097.34 15
bld_raw_dy_0_6489.10 6390.28 4985.56 12892.90 8062.28 26192.93 1394.80 1788.13 2194.98 1397.01 871.37 23095.87 1984.15 6896.25 11198.52 7
MSP-MVS89.08 6488.16 7791.83 1995.76 1886.14 2292.75 1793.90 4878.43 11589.16 12092.25 15372.03 22596.36 488.21 890.93 26092.98 152
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SD-MVS88.96 6589.88 5286.22 11291.63 12377.07 10689.82 6893.77 5378.90 10892.88 4792.29 15186.11 6090.22 21886.24 4497.24 7791.36 212
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
HPM-MVS++copyleft88.93 6688.45 7590.38 4194.92 3685.85 2889.70 7091.27 13978.20 11786.69 17292.28 15280.36 12895.06 6586.17 4596.49 9990.22 240
test_040288.65 6789.58 5985.88 12092.55 9072.22 15684.01 17189.44 19088.63 1794.38 2095.77 2986.38 5893.59 11779.84 11595.21 15391.82 200
DP-MVS88.60 6889.01 6687.36 9191.30 13677.50 9887.55 10992.97 8987.95 2489.62 11192.87 13284.56 7093.89 10377.65 14296.62 9390.70 228
iter_conf0588.59 6990.04 5084.23 15792.03 10960.51 28591.36 4095.81 688.07 2294.56 1796.17 2272.24 21995.79 2984.85 5995.27 15296.38 33
APD_test188.40 7087.91 7989.88 4889.50 17586.65 1789.98 6491.91 11984.26 4690.87 8993.92 10282.18 10389.29 24673.75 18894.81 17293.70 121
Anonymous2023121188.40 7089.62 5884.73 14290.46 15765.27 22388.86 9093.02 8787.15 2793.05 4597.10 782.28 10292.02 16676.70 15497.99 4096.88 25
PS-MVSNAJss88.31 7287.90 8089.56 5793.31 7077.96 9387.94 10591.97 11670.73 21494.19 2496.67 1376.94 16294.57 8083.07 7796.28 10796.15 35
OMC-MVS88.19 7387.52 8490.19 4591.94 11481.68 6287.49 11293.17 7676.02 13788.64 12891.22 18084.24 7593.37 12877.97 14097.03 8295.52 51
CS-MVS88.14 7487.67 8389.54 5889.56 17379.18 7990.47 5594.77 1879.37 10284.32 22089.33 23083.87 7694.53 8382.45 8794.89 16894.90 67
TSAR-MVS + MP.88.14 7487.82 8189.09 6595.72 2276.74 10992.49 2591.19 14267.85 24786.63 17394.84 5379.58 13595.96 1487.62 1794.50 18094.56 78
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
tt080588.09 7689.79 5482.98 19193.26 7263.94 23791.10 4489.64 18585.07 4090.91 8691.09 18589.16 2291.87 17182.03 9295.87 13093.13 144
EC-MVSNet88.01 7788.32 7687.09 9389.28 18072.03 15890.31 5896.31 480.88 8485.12 20189.67 22684.47 7295.46 5082.56 8696.26 11093.77 119
RPSCF88.00 7886.93 9791.22 2890.08 16489.30 589.68 7291.11 14379.26 10389.68 10894.81 5782.44 9487.74 26476.54 15688.74 29196.61 29
AllTest87.97 7987.40 8889.68 5391.59 12483.40 4989.50 7995.44 1179.47 9888.00 14693.03 12482.66 9191.47 17870.81 21496.14 11594.16 97
mvsmamba87.87 8087.23 8989.78 5292.31 9976.51 11391.09 4591.87 12072.61 19192.16 6295.23 4466.01 25695.59 4086.02 4997.78 5397.24 17
TranMVSNet+NR-MVSNet87.86 8188.76 7385.18 13494.02 5564.13 23484.38 16591.29 13884.88 4392.06 6593.84 10486.45 5593.73 10873.22 19698.66 1197.69 10
nrg03087.85 8288.49 7485.91 11890.07 16669.73 18087.86 10694.20 2974.04 16192.70 5594.66 5885.88 6391.50 17779.72 11797.32 7596.50 31
CNVR-MVS87.81 8387.68 8288.21 8192.87 8277.30 10485.25 14891.23 14077.31 12787.07 16391.47 17482.94 8894.71 7484.67 6296.27 10992.62 165
HQP_MVS87.75 8487.43 8788.70 7393.45 6576.42 11489.45 8193.61 5979.44 10086.55 17492.95 12974.84 18395.22 5980.78 10695.83 13294.46 82
MM87.64 8587.15 9089.09 6589.51 17476.39 11688.68 9586.76 23084.54 4583.58 23693.78 10773.36 20696.48 287.98 1096.21 11294.41 88
MVSMamba_PlusPlus87.53 8688.86 7083.54 17992.03 10962.26 26391.49 3792.62 9988.07 2288.07 14296.17 2272.24 21995.79 2984.85 5994.16 19192.58 166
NCCC87.36 8786.87 9888.83 6892.32 9878.84 8386.58 12991.09 14478.77 11184.85 20990.89 19380.85 12295.29 5681.14 10195.32 14892.34 179
DeepPCF-MVS81.24 587.28 8886.21 10890.49 3991.48 13384.90 3983.41 18992.38 10570.25 22089.35 11990.68 20282.85 8994.57 8079.55 11995.95 12592.00 195
SixPastTwentyTwo87.20 8987.45 8686.45 10692.52 9169.19 18987.84 10788.05 20981.66 7494.64 1696.53 1665.94 25794.75 7383.02 7996.83 8795.41 53
CS-MVS-test87.00 9086.43 10488.71 7289.46 17677.46 9989.42 8395.73 877.87 12181.64 27087.25 26682.43 9594.53 8377.65 14296.46 10194.14 99
UniMVSNet (Re)86.87 9186.98 9686.55 10493.11 7668.48 19383.80 18092.87 9180.37 8789.61 11391.81 16577.72 14994.18 9275.00 17498.53 1696.99 24
Vis-MVSNetpermissive86.86 9286.58 10187.72 8692.09 10677.43 10187.35 11392.09 11278.87 10984.27 22594.05 9178.35 14393.65 11080.54 11091.58 24892.08 192
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
UniMVSNet_NR-MVSNet86.84 9387.06 9386.17 11592.86 8467.02 20782.55 21591.56 12883.08 6190.92 8491.82 16478.25 14493.99 9974.16 17998.35 2297.49 14
DU-MVS86.80 9486.99 9586.21 11393.24 7367.02 20783.16 19892.21 10881.73 7390.92 8491.97 15877.20 15693.99 9974.16 17998.35 2297.61 11
casdiffmvs_mvgpermissive86.72 9587.51 8584.36 15187.09 23665.22 22484.16 16794.23 2677.89 12091.28 7993.66 11184.35 7392.71 14680.07 11194.87 17195.16 63
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_fmvsmconf0.01_n86.68 9686.52 10287.18 9285.94 26378.30 8686.93 11992.20 10965.94 25989.16 12093.16 12083.10 8689.89 23187.81 1294.43 18393.35 134
IS-MVSNet86.66 9786.82 10086.17 11592.05 10866.87 21091.21 4288.64 19986.30 3289.60 11492.59 14069.22 23994.91 7073.89 18597.89 4996.72 26
v1086.54 9887.10 9284.84 13888.16 21063.28 24486.64 12892.20 10975.42 14992.81 5294.50 6674.05 19494.06 9883.88 7096.28 10797.17 20
pmmvs686.52 9988.06 7881.90 21292.22 10262.28 26184.66 15889.15 19383.54 5689.85 10497.32 488.08 3686.80 27970.43 22297.30 7696.62 28
PHI-MVS86.38 10085.81 11888.08 8288.44 20477.34 10289.35 8493.05 8373.15 18284.76 21087.70 25678.87 13994.18 9280.67 10896.29 10692.73 158
MVS_030486.35 10185.92 11487.66 8889.21 18373.16 13988.40 9983.63 27281.27 7880.87 28094.12 8971.49 22995.71 3587.79 1396.50 9894.11 101
CSCG86.26 10286.47 10385.60 12690.87 14974.26 12887.98 10491.85 12180.35 8889.54 11788.01 24879.09 13792.13 16275.51 16795.06 16090.41 237
DeepC-MVS_fast80.27 886.23 10385.65 12387.96 8591.30 13676.92 10787.19 11491.99 11570.56 21584.96 20590.69 20180.01 13295.14 6278.37 12995.78 13691.82 200
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
v886.22 10486.83 9984.36 15187.82 21562.35 26086.42 13191.33 13776.78 13192.73 5494.48 6873.41 20393.72 10983.10 7695.41 14397.01 23
Anonymous2024052986.20 10587.13 9183.42 18190.19 16264.55 23184.55 16090.71 15385.85 3589.94 10395.24 4382.13 10490.40 21469.19 23496.40 10495.31 57
test_fmvsmconf0.1_n86.18 10685.88 11687.08 9485.26 27178.25 8785.82 13991.82 12365.33 27288.55 12992.35 15082.62 9389.80 23386.87 3394.32 18693.18 143
CDPH-MVS86.17 10785.54 12488.05 8492.25 10075.45 12283.85 17792.01 11465.91 26186.19 18391.75 16883.77 7994.98 6877.43 14796.71 9193.73 120
NR-MVSNet86.00 10886.22 10785.34 13293.24 7364.56 23082.21 22790.46 16080.99 8288.42 13491.97 15877.56 15193.85 10472.46 20698.65 1297.61 11
train_agg85.98 10985.28 12988.07 8392.34 9679.70 7583.94 17390.32 16565.79 26284.49 21490.97 18981.93 10893.63 11281.21 9996.54 9690.88 222
FC-MVSNet-test85.93 11087.05 9482.58 20292.25 10056.44 32485.75 14093.09 8177.33 12691.94 6894.65 5974.78 18593.41 12775.11 17398.58 1497.88 8
test_fmvsmconf_n85.88 11185.51 12586.99 9684.77 27878.21 8885.40 14791.39 13565.32 27387.72 15091.81 16582.33 9889.78 23486.68 3594.20 18992.99 151
Effi-MVS+-dtu85.82 11283.38 16093.14 487.13 23291.15 387.70 10888.42 20174.57 15783.56 23785.65 28978.49 14294.21 9072.04 20892.88 22194.05 103
iter_conf05_1185.73 11385.77 12085.60 12688.77 19567.74 20291.49 3794.17 3171.86 20488.07 14292.18 15668.84 24395.06 6581.20 10095.33 14693.99 104
TAPA-MVS77.73 1285.71 11484.83 13588.37 7888.78 19479.72 7487.15 11693.50 6269.17 22885.80 19289.56 22780.76 12392.13 16273.21 20195.51 14193.25 140
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
sasdasda85.50 11586.14 10983.58 17587.97 21167.13 20487.55 10994.32 2173.44 17288.47 13287.54 25986.45 5591.06 19275.76 16593.76 19992.54 169
canonicalmvs85.50 11586.14 10983.58 17587.97 21167.13 20487.55 10994.32 2173.44 17288.47 13287.54 25986.45 5591.06 19275.76 16593.76 19992.54 169
EPP-MVSNet85.47 11785.04 13286.77 10191.52 13269.37 18491.63 3687.98 21181.51 7687.05 16491.83 16366.18 25595.29 5670.75 21796.89 8495.64 48
GeoE85.45 11885.81 11884.37 14990.08 16467.07 20685.86 13891.39 13572.33 19787.59 15290.25 21484.85 6892.37 15678.00 13891.94 24193.66 122
FIs85.35 11986.27 10682.60 20191.86 11657.31 31785.10 15293.05 8375.83 14291.02 8393.97 9573.57 19992.91 14473.97 18498.02 3997.58 13
test_fmvsmvis_n_192085.22 12085.36 12884.81 13985.80 26576.13 12085.15 15192.32 10661.40 30191.33 7690.85 19683.76 8086.16 29284.31 6593.28 21192.15 190
casdiffmvspermissive85.21 12185.85 11783.31 18486.17 25862.77 25183.03 20093.93 4674.69 15688.21 13992.68 13982.29 10191.89 17077.87 14193.75 20295.27 59
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline85.20 12285.93 11383.02 19086.30 25362.37 25984.55 16093.96 4474.48 15887.12 15892.03 15782.30 10091.94 16778.39 12894.21 18894.74 75
K. test v385.14 12384.73 13686.37 10791.13 14369.63 18285.45 14576.68 32184.06 4992.44 5996.99 1062.03 27794.65 7680.58 10993.24 21294.83 74
EI-MVSNet-Vis-set85.12 12484.53 14386.88 9884.01 29172.76 14183.91 17685.18 25280.44 8688.75 12685.49 29180.08 13191.92 16882.02 9390.85 26495.97 41
MGCFI-Net85.04 12585.95 11282.31 20887.52 22463.59 24086.23 13493.96 4473.46 17088.07 14287.83 25486.46 5490.87 20176.17 16093.89 19792.47 173
EI-MVSNet-UG-set85.04 12584.44 14586.85 9983.87 29572.52 15083.82 17885.15 25380.27 9088.75 12685.45 29379.95 13391.90 16981.92 9690.80 26596.13 36
X-MVStestdata85.04 12582.70 17392.08 995.64 2486.25 1992.64 1993.33 6785.07 4089.99 10016.05 40986.57 5295.80 2687.35 2597.62 6294.20 93
MSLP-MVS++85.00 12886.03 11181.90 21291.84 11971.56 16786.75 12693.02 8775.95 14087.12 15889.39 22877.98 14589.40 24577.46 14594.78 17384.75 315
F-COLMAP84.97 12983.42 15989.63 5592.39 9483.40 4988.83 9191.92 11873.19 18180.18 29389.15 23477.04 16093.28 13065.82 26592.28 23292.21 187
3Dnovator80.37 784.80 13084.71 13985.06 13686.36 25174.71 12588.77 9390.00 17875.65 14584.96 20593.17 11974.06 19391.19 18778.28 13291.09 25489.29 258
IterMVS-LS84.73 13184.98 13383.96 16387.35 22763.66 23883.25 19489.88 18076.06 13589.62 11192.37 14973.40 20592.52 15178.16 13594.77 17595.69 46
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MVS_111021_HR84.63 13284.34 14985.49 13190.18 16375.86 12179.23 26887.13 22173.35 17485.56 19689.34 22983.60 8290.50 21276.64 15594.05 19490.09 245
HQP-MVS84.61 13384.06 15286.27 11091.19 13970.66 17284.77 15392.68 9773.30 17780.55 28590.17 21872.10 22194.61 7877.30 14994.47 18193.56 130
v119284.57 13484.69 14084.21 15887.75 21762.88 24883.02 20191.43 13269.08 23089.98 10290.89 19372.70 21493.62 11582.41 8894.97 16596.13 36
FMVSNet184.55 13585.45 12681.85 21490.27 16161.05 27686.83 12288.27 20678.57 11489.66 11095.64 3375.43 17690.68 20769.09 23595.33 14693.82 114
v114484.54 13684.72 13884.00 16187.67 22062.55 25582.97 20390.93 14970.32 21989.80 10590.99 18873.50 20093.48 12381.69 9894.65 17895.97 41
Gipumacopyleft84.44 13786.33 10578.78 25884.20 28973.57 13289.55 7690.44 16184.24 4784.38 21794.89 5176.35 17380.40 33976.14 16196.80 8982.36 351
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
MCST-MVS84.36 13883.93 15585.63 12591.59 12471.58 16583.52 18692.13 11161.82 29483.96 23089.75 22579.93 13493.46 12478.33 13194.34 18591.87 199
VDDNet84.35 13985.39 12781.25 22395.13 3259.32 29685.42 14681.11 29286.41 3187.41 15596.21 2173.61 19890.61 21066.33 25896.85 8593.81 117
ETV-MVS84.31 14083.91 15685.52 12988.58 20070.40 17584.50 16493.37 6478.76 11284.07 22878.72 36580.39 12795.13 6373.82 18792.98 21991.04 218
v124084.30 14184.51 14483.65 17287.65 22161.26 27382.85 20791.54 12967.94 24590.68 9190.65 20571.71 22793.64 11182.84 8294.78 17396.07 38
MVS_111021_LR84.28 14283.76 15785.83 12289.23 18283.07 5280.99 24383.56 27372.71 18986.07 18689.07 23581.75 11386.19 29177.11 15193.36 20788.24 271
h-mvs3384.25 14382.76 17288.72 7191.82 12182.60 5784.00 17284.98 25971.27 20786.70 17090.55 20763.04 27493.92 10278.26 13394.20 18989.63 250
v14419284.24 14484.41 14683.71 17187.59 22361.57 26982.95 20491.03 14567.82 24889.80 10590.49 20873.28 20793.51 12281.88 9794.89 16896.04 40
dcpmvs_284.23 14585.14 13081.50 22088.61 19961.98 26782.90 20693.11 7968.66 23692.77 5392.39 14578.50 14187.63 26676.99 15392.30 22994.90 67
v192192084.23 14584.37 14883.79 16787.64 22261.71 26882.91 20591.20 14167.94 24590.06 9790.34 21172.04 22493.59 11782.32 8994.91 16696.07 38
VDD-MVS84.23 14584.58 14283.20 18791.17 14265.16 22683.25 19484.97 26079.79 9487.18 15794.27 7774.77 18690.89 19969.24 23196.54 9693.55 132
v2v48284.09 14884.24 15083.62 17387.13 23261.40 27082.71 21089.71 18372.19 20089.55 11591.41 17570.70 23493.20 13281.02 10293.76 19996.25 34
EG-PatchMatch MVS84.08 14984.11 15183.98 16292.22 10272.61 14782.20 22987.02 22672.63 19088.86 12391.02 18778.52 14091.11 19073.41 19391.09 25488.21 272
DP-MVS Recon84.05 15083.22 16286.52 10591.73 12275.27 12383.23 19692.40 10372.04 20182.04 26088.33 24477.91 14793.95 10166.17 25995.12 15890.34 239
TransMVSNet (Re)84.02 15185.74 12178.85 25791.00 14655.20 33482.29 22387.26 21779.65 9788.38 13695.52 3683.00 8786.88 27767.97 24996.60 9494.45 84
Baseline_NR-MVSNet84.00 15285.90 11578.29 26991.47 13453.44 34382.29 22387.00 22979.06 10689.55 11595.72 3177.20 15686.14 29372.30 20798.51 1795.28 58
TSAR-MVS + GP.83.95 15382.69 17487.72 8689.27 18181.45 6483.72 18281.58 29174.73 15585.66 19386.06 28472.56 21692.69 14875.44 16995.21 15389.01 266
alignmvs83.94 15483.98 15483.80 16687.80 21667.88 20084.54 16291.42 13473.27 18088.41 13587.96 24972.33 21790.83 20276.02 16394.11 19292.69 162
Effi-MVS+83.90 15584.01 15383.57 17787.22 23065.61 22286.55 13092.40 10378.64 11381.34 27584.18 31283.65 8192.93 14274.22 17887.87 30392.17 189
CANet83.79 15682.85 17186.63 10286.17 25872.21 15783.76 18191.43 13277.24 12874.39 34287.45 26275.36 17795.42 5277.03 15292.83 22292.25 186
pm-mvs183.69 15784.95 13479.91 24490.04 16859.66 29382.43 21987.44 21475.52 14787.85 14895.26 4281.25 11885.65 30268.74 24196.04 12094.42 87
AdaColmapbinary83.66 15883.69 15883.57 17790.05 16772.26 15586.29 13390.00 17878.19 11881.65 26987.16 26883.40 8494.24 8961.69 29994.76 17684.21 324
MIMVSNet183.63 15984.59 14180.74 23294.06 5462.77 25182.72 20984.53 26577.57 12590.34 9395.92 2876.88 16885.83 30061.88 29797.42 7293.62 126
test_fmvsm_n_192083.60 16082.89 17085.74 12385.22 27277.74 9684.12 16990.48 15959.87 32086.45 18291.12 18475.65 17485.89 29882.28 9090.87 26293.58 128
WR-MVS83.56 16184.40 14781.06 22893.43 6754.88 33578.67 27685.02 25781.24 7990.74 9091.56 17272.85 21191.08 19168.00 24898.04 3697.23 18
CNLPA83.55 16283.10 16784.90 13789.34 17983.87 4784.54 16288.77 19679.09 10583.54 23888.66 24174.87 18281.73 33066.84 25492.29 23189.11 260
LCM-MVSNet-Re83.48 16385.06 13178.75 25985.94 26355.75 32980.05 25294.27 2376.47 13296.09 694.54 6583.31 8589.75 23759.95 30994.89 16890.75 225
hse-mvs283.47 16481.81 18788.47 7591.03 14582.27 5882.61 21183.69 27071.27 20786.70 17086.05 28563.04 27492.41 15478.26 13393.62 20690.71 227
V4283.47 16483.37 16183.75 16983.16 30863.33 24381.31 23790.23 17269.51 22690.91 8690.81 19874.16 19292.29 16080.06 11290.22 27395.62 49
VPA-MVSNet83.47 16484.73 13679.69 24890.29 16057.52 31681.30 23988.69 19876.29 13387.58 15394.44 6980.60 12687.20 27166.60 25796.82 8894.34 90
PAPM_NR83.23 16783.19 16483.33 18390.90 14865.98 21888.19 10190.78 15278.13 11980.87 28087.92 25273.49 20292.42 15370.07 22488.40 29391.60 207
CLD-MVS83.18 16882.64 17584.79 14089.05 18567.82 20177.93 28492.52 10168.33 23885.07 20281.54 34182.06 10592.96 14069.35 23097.91 4893.57 129
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
ANet_high83.17 16985.68 12275.65 30381.24 32545.26 38679.94 25492.91 9083.83 5091.33 7696.88 1280.25 12985.92 29568.89 23895.89 12995.76 45
FA-MVS(test-final)83.13 17083.02 16883.43 18086.16 26066.08 21788.00 10388.36 20375.55 14685.02 20392.75 13765.12 26192.50 15274.94 17591.30 25291.72 202
114514_t83.10 17182.54 17884.77 14192.90 8069.10 19186.65 12790.62 15754.66 34981.46 27290.81 19876.98 16194.38 8572.62 20496.18 11390.82 224
UGNet82.78 17281.64 18986.21 11386.20 25776.24 11886.86 12085.68 24477.07 12973.76 34692.82 13369.64 23691.82 17369.04 23793.69 20390.56 233
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
LF4IMVS82.75 17381.93 18585.19 13382.08 31480.15 7185.53 14388.76 19768.01 24285.58 19587.75 25571.80 22686.85 27874.02 18393.87 19888.58 269
EI-MVSNet82.61 17482.42 18083.20 18783.25 30563.66 23883.50 18785.07 25476.06 13586.55 17485.10 29973.41 20390.25 21578.15 13790.67 26895.68 47
QAPM82.59 17582.59 17782.58 20286.44 24666.69 21189.94 6690.36 16467.97 24484.94 20792.58 14272.71 21392.18 16170.63 22087.73 30588.85 267
fmvsm_s_conf0.1_n_a82.58 17681.93 18584.50 14687.68 21973.35 13386.14 13577.70 31061.64 29985.02 20391.62 17077.75 14886.24 28882.79 8387.07 31293.91 110
Fast-Effi-MVS+-dtu82.54 17781.41 19785.90 11985.60 26676.53 11283.07 19989.62 18773.02 18479.11 30383.51 31780.74 12490.24 21768.76 24089.29 28290.94 220
MVS_Test82.47 17883.22 16280.22 24182.62 31357.75 31582.54 21691.96 11771.16 21182.89 24892.52 14477.41 15390.50 21280.04 11387.84 30492.40 176
v14882.31 17982.48 17981.81 21785.59 26759.66 29381.47 23686.02 24072.85 18588.05 14590.65 20570.73 23390.91 19875.15 17291.79 24294.87 69
API-MVS82.28 18082.61 17681.30 22286.29 25469.79 17888.71 9487.67 21378.42 11682.15 25984.15 31377.98 14591.59 17665.39 26892.75 22382.51 350
MVSFormer82.23 18181.57 19484.19 16085.54 26869.26 18691.98 3190.08 17671.54 20576.23 32385.07 30258.69 29994.27 8686.26 4188.77 28989.03 264
fmvsm_s_conf0.5_n_a82.21 18281.51 19684.32 15486.56 24473.35 13385.46 14477.30 31461.81 29584.51 21390.88 19577.36 15486.21 29082.72 8486.97 31793.38 133
EIA-MVS82.19 18381.23 20285.10 13587.95 21369.17 19083.22 19793.33 6770.42 21678.58 30679.77 35777.29 15594.20 9171.51 21088.96 28791.93 198
fmvsm_s_conf0.1_n82.17 18481.59 19283.94 16586.87 24271.57 16685.19 15077.42 31362.27 29384.47 21691.33 17776.43 17085.91 29683.14 7487.14 31094.33 91
PCF-MVS74.62 1582.15 18580.92 20685.84 12189.43 17772.30 15480.53 24791.82 12357.36 33687.81 14989.92 22277.67 15093.63 11258.69 31495.08 15991.58 208
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
PLCcopyleft73.85 1682.09 18680.31 21387.45 9090.86 15080.29 7085.88 13790.65 15568.17 24176.32 32286.33 27973.12 20992.61 15061.40 30290.02 27689.44 253
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
fmvsm_l_conf0.5_n82.06 18781.54 19583.60 17483.94 29273.90 13083.35 19186.10 23758.97 32283.80 23290.36 21074.23 19186.94 27682.90 8090.22 27389.94 247
GBi-Net82.02 18882.07 18281.85 21486.38 24861.05 27686.83 12288.27 20672.43 19286.00 18795.64 3363.78 26890.68 20765.95 26193.34 20893.82 114
test182.02 18882.07 18281.85 21486.38 24861.05 27686.83 12288.27 20672.43 19286.00 18795.64 3363.78 26890.68 20765.95 26193.34 20893.82 114
OpenMVScopyleft76.72 1381.98 19082.00 18481.93 21184.42 28468.22 19588.50 9889.48 18966.92 25481.80 26791.86 16072.59 21590.16 22071.19 21391.25 25387.40 287
KD-MVS_self_test81.93 19183.14 16678.30 26884.75 27952.75 34780.37 24989.42 19170.24 22190.26 9593.39 11674.55 19086.77 28068.61 24396.64 9295.38 54
fmvsm_s_conf0.5_n81.91 19281.30 19983.75 16986.02 26271.56 16784.73 15677.11 31762.44 29084.00 22990.68 20276.42 17185.89 29883.14 7487.11 31193.81 117
SDMVSNet81.90 19383.17 16578.10 27288.81 19262.45 25776.08 31486.05 23973.67 16683.41 23993.04 12282.35 9780.65 33770.06 22595.03 16191.21 214
tfpnnormal81.79 19482.95 16978.31 26788.93 18955.40 33080.83 24682.85 27976.81 13085.90 19194.14 8774.58 18986.51 28466.82 25595.68 14093.01 150
c3_l81.64 19581.59 19281.79 21880.86 33159.15 30078.61 27790.18 17468.36 23787.20 15687.11 27069.39 23791.62 17578.16 13594.43 18394.60 77
PVSNet_Blended_VisFu81.55 19680.49 21184.70 14491.58 12773.24 13784.21 16691.67 12762.86 28480.94 27887.16 26867.27 24992.87 14569.82 22788.94 28887.99 278
fmvsm_l_conf0.5_n_a81.46 19780.87 20783.25 18583.73 29773.21 13883.00 20285.59 24658.22 32882.96 24790.09 22072.30 21886.65 28281.97 9589.95 27789.88 248
DELS-MVS81.44 19881.25 20082.03 21084.27 28862.87 24976.47 30892.49 10270.97 21281.64 27083.83 31475.03 18092.70 14774.29 17792.22 23590.51 235
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
FMVSNet281.31 19981.61 19180.41 23886.38 24858.75 30783.93 17586.58 23272.43 19287.65 15192.98 12663.78 26890.22 21866.86 25293.92 19692.27 184
TinyColmap81.25 20082.34 18177.99 27585.33 27060.68 28382.32 22288.33 20471.26 20986.97 16592.22 15577.10 15986.98 27562.37 29195.17 15586.31 298
AUN-MVS81.18 20178.78 23388.39 7790.93 14782.14 5982.51 21783.67 27164.69 27780.29 28985.91 28851.07 33792.38 15576.29 15993.63 20590.65 231
tttt051781.07 20279.58 22585.52 12988.99 18866.45 21487.03 11875.51 32973.76 16588.32 13890.20 21537.96 39094.16 9679.36 12395.13 15695.93 44
Fast-Effi-MVS+81.04 20380.57 20882.46 20687.50 22563.22 24578.37 28089.63 18668.01 24281.87 26382.08 33582.31 9992.65 14967.10 25188.30 29991.51 210
BH-untuned80.96 20480.99 20480.84 23188.55 20168.23 19480.33 25088.46 20072.79 18886.55 17486.76 27474.72 18791.77 17461.79 29888.99 28682.52 349
eth_miper_zixun_eth80.84 20580.22 21782.71 19981.41 32360.98 27977.81 28690.14 17567.31 25286.95 16687.24 26764.26 26492.31 15875.23 17191.61 24694.85 73
xiu_mvs_v1_base_debu80.84 20580.14 21982.93 19488.31 20571.73 16179.53 25987.17 21865.43 26879.59 29582.73 32976.94 16290.14 22373.22 19688.33 29586.90 292
xiu_mvs_v1_base80.84 20580.14 21982.93 19488.31 20571.73 16179.53 25987.17 21865.43 26879.59 29582.73 32976.94 16290.14 22373.22 19688.33 29586.90 292
xiu_mvs_v1_base_debi80.84 20580.14 21982.93 19488.31 20571.73 16179.53 25987.17 21865.43 26879.59 29582.73 32976.94 16290.14 22373.22 19688.33 29586.90 292
IterMVS-SCA-FT80.64 20979.41 22684.34 15383.93 29369.66 18176.28 31081.09 29372.43 19286.47 18090.19 21660.46 28493.15 13577.45 14686.39 32390.22 240
BH-RMVSNet80.53 21080.22 21781.49 22187.19 23166.21 21677.79 28786.23 23574.21 16083.69 23388.50 24273.25 20890.75 20463.18 28887.90 30287.52 285
Anonymous20240521180.51 21181.19 20378.49 26488.48 20257.26 31876.63 30482.49 28281.21 8084.30 22392.24 15467.99 24686.24 28862.22 29295.13 15691.98 197
DIV-MVS_self_test80.43 21280.23 21581.02 22979.99 33959.25 29777.07 29787.02 22667.38 24986.19 18389.22 23163.09 27290.16 22076.32 15795.80 13493.66 122
cl____80.42 21380.23 21581.02 22979.99 33959.25 29777.07 29787.02 22667.37 25086.18 18589.21 23263.08 27390.16 22076.31 15895.80 13493.65 124
diffmvspermissive80.40 21480.48 21280.17 24279.02 35160.04 28877.54 29190.28 17166.65 25782.40 25487.33 26573.50 20087.35 26977.98 13989.62 28093.13 144
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EPNet80.37 21578.41 24086.23 11176.75 36573.28 13587.18 11577.45 31276.24 13468.14 37488.93 23765.41 26093.85 10469.47 22996.12 11791.55 209
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
miper_ehance_all_eth80.34 21680.04 22281.24 22579.82 34158.95 30277.66 28889.66 18465.75 26585.99 19085.11 29868.29 24591.42 18276.03 16292.03 23793.33 135
MG-MVS80.32 21780.94 20578.47 26588.18 20852.62 35082.29 22385.01 25872.01 20279.24 30292.54 14369.36 23893.36 12970.65 21989.19 28589.45 252
VPNet80.25 21881.68 18875.94 30192.46 9347.98 37376.70 30281.67 28973.45 17184.87 20892.82 13374.66 18886.51 28461.66 30096.85 8593.33 135
MAR-MVS80.24 21978.74 23584.73 14286.87 24278.18 8985.75 14087.81 21265.67 26777.84 31178.50 36673.79 19790.53 21161.59 30190.87 26285.49 308
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PM-MVS80.20 22079.00 23083.78 16888.17 20986.66 1681.31 23766.81 38169.64 22588.33 13790.19 21664.58 26283.63 32171.99 20990.03 27581.06 368
Anonymous2024052180.18 22181.25 20076.95 28883.15 30960.84 28182.46 21885.99 24168.76 23486.78 16793.73 11059.13 29677.44 35173.71 18997.55 6792.56 167
LFMVS80.15 22280.56 20978.89 25689.19 18455.93 32685.22 14973.78 34182.96 6284.28 22492.72 13857.38 30890.07 22763.80 28295.75 13790.68 229
DPM-MVS80.10 22379.18 22982.88 19790.71 15369.74 17978.87 27390.84 15060.29 31675.64 33285.92 28767.28 24893.11 13671.24 21291.79 24285.77 304
MSDG80.06 22479.99 22480.25 24083.91 29468.04 19977.51 29289.19 19277.65 12381.94 26183.45 31976.37 17286.31 28763.31 28786.59 32086.41 296
FE-MVS79.98 22578.86 23183.36 18286.47 24566.45 21489.73 6984.74 26472.80 18784.22 22791.38 17644.95 37193.60 11663.93 28191.50 24990.04 246
sd_testset79.95 22681.39 19875.64 30488.81 19258.07 31176.16 31382.81 28073.67 16683.41 23993.04 12280.96 12177.65 35058.62 31595.03 16191.21 214
ab-mvs79.67 22780.56 20976.99 28788.48 20256.93 32084.70 15786.06 23868.95 23280.78 28293.08 12175.30 17884.62 31056.78 32490.90 26189.43 254
VNet79.31 22880.27 21476.44 29587.92 21453.95 33975.58 32084.35 26674.39 15982.23 25790.72 20072.84 21284.39 31360.38 30893.98 19590.97 219
thisisatest053079.07 22977.33 24984.26 15687.13 23264.58 22983.66 18475.95 32468.86 23385.22 20087.36 26438.10 38893.57 12075.47 16894.28 18794.62 76
cl2278.97 23078.21 24281.24 22577.74 35559.01 30177.46 29487.13 22165.79 26284.32 22085.10 29958.96 29890.88 20075.36 17092.03 23793.84 112
patch_mono-278.89 23179.39 22777.41 28484.78 27768.11 19775.60 31883.11 27660.96 30979.36 29989.89 22375.18 17972.97 36273.32 19592.30 22991.15 216
RPMNet78.88 23278.28 24180.68 23579.58 34262.64 25382.58 21394.16 3274.80 15475.72 33092.59 14048.69 34595.56 4273.48 19282.91 35883.85 329
PAPR78.84 23378.10 24381.07 22785.17 27360.22 28782.21 22790.57 15862.51 28675.32 33684.61 30774.99 18192.30 15959.48 31288.04 30190.68 229
PVSNet_BlendedMVS78.80 23477.84 24481.65 21984.43 28263.41 24179.49 26290.44 16161.70 29875.43 33387.07 27169.11 24091.44 18060.68 30692.24 23390.11 244
FMVSNet378.80 23478.55 23779.57 25082.89 31256.89 32281.76 23185.77 24369.04 23186.00 18790.44 20951.75 33590.09 22665.95 26193.34 20891.72 202
test_yl78.71 23678.51 23879.32 25384.32 28658.84 30478.38 27885.33 24975.99 13882.49 25286.57 27558.01 30290.02 22962.74 28992.73 22489.10 261
DCV-MVSNet78.71 23678.51 23879.32 25384.32 28658.84 30478.38 27885.33 24975.99 13882.49 25286.57 27558.01 30290.02 22962.74 28992.73 22489.10 261
test111178.53 23878.85 23277.56 28192.22 10247.49 37582.61 21169.24 37072.43 19285.28 19994.20 8351.91 33390.07 22765.36 26996.45 10295.11 64
ECVR-MVScopyleft78.44 23978.63 23677.88 27791.85 11748.95 36983.68 18369.91 36772.30 19884.26 22694.20 8351.89 33489.82 23263.58 28396.02 12194.87 69
pmmvs-eth3d78.42 24077.04 25182.57 20487.44 22674.41 12780.86 24579.67 30155.68 34384.69 21190.31 21360.91 28285.42 30362.20 29391.59 24787.88 281
mvs_anonymous78.13 24178.76 23476.23 30079.24 34850.31 36678.69 27584.82 26261.60 30083.09 24692.82 13373.89 19687.01 27268.33 24786.41 32291.37 211
TAMVS78.08 24276.36 25783.23 18690.62 15472.87 14079.08 26980.01 30061.72 29781.35 27486.92 27363.96 26788.78 25450.61 36293.01 21888.04 277
miper_enhance_ethall77.83 24376.93 25280.51 23676.15 37158.01 31275.47 32288.82 19558.05 33083.59 23580.69 34564.41 26391.20 18673.16 20292.03 23792.33 180
Vis-MVSNet (Re-imp)77.82 24477.79 24577.92 27688.82 19151.29 36083.28 19271.97 35574.04 16182.23 25789.78 22457.38 30889.41 24457.22 32395.41 14393.05 148
CANet_DTU77.81 24577.05 25080.09 24381.37 32459.90 29183.26 19388.29 20569.16 22967.83 37783.72 31560.93 28189.47 23969.22 23389.70 27990.88 222
OpenMVS_ROBcopyleft70.19 1777.77 24677.46 24678.71 26084.39 28561.15 27481.18 24182.52 28162.45 28983.34 24187.37 26366.20 25488.66 25664.69 27685.02 33986.32 297
SSC-MVS77.55 24781.64 18965.29 36790.46 15720.33 41373.56 33868.28 37285.44 3688.18 14194.64 6270.93 23281.33 33271.25 21192.03 23794.20 93
MDA-MVSNet-bldmvs77.47 24876.90 25379.16 25579.03 35064.59 22866.58 37775.67 32773.15 18288.86 12388.99 23666.94 25081.23 33364.71 27588.22 30091.64 206
jason77.42 24975.75 26382.43 20787.10 23569.27 18577.99 28381.94 28751.47 36777.84 31185.07 30260.32 28689.00 24870.74 21889.27 28489.03 264
jason: jason.
CDS-MVSNet77.32 25075.40 26683.06 18989.00 18772.48 15177.90 28582.17 28560.81 31078.94 30483.49 31859.30 29488.76 25554.64 34292.37 22887.93 280
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
xiu_mvs_v2_base77.19 25176.75 25478.52 26387.01 23861.30 27275.55 32187.12 22461.24 30674.45 34178.79 36477.20 15690.93 19664.62 27884.80 34683.32 338
MVSTER77.09 25275.70 26481.25 22375.27 37961.08 27577.49 29385.07 25460.78 31186.55 17488.68 24043.14 38090.25 21573.69 19090.67 26892.42 174
PS-MVSNAJ77.04 25376.53 25678.56 26287.09 23661.40 27075.26 32387.13 22161.25 30574.38 34377.22 37776.94 16290.94 19564.63 27784.83 34583.35 337
IterMVS76.91 25476.34 25878.64 26180.91 32964.03 23576.30 30979.03 30464.88 27683.11 24489.16 23359.90 29084.46 31168.61 24385.15 33787.42 286
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
D2MVS76.84 25575.67 26580.34 23980.48 33762.16 26673.50 33984.80 26357.61 33482.24 25687.54 25951.31 33687.65 26570.40 22393.19 21491.23 213
CL-MVSNet_self_test76.81 25677.38 24875.12 30786.90 24051.34 35873.20 34280.63 29768.30 23981.80 26788.40 24366.92 25180.90 33455.35 33694.90 16793.12 146
TR-MVS76.77 25775.79 26279.72 24786.10 26165.79 22077.14 29583.02 27765.20 27481.40 27382.10 33366.30 25390.73 20655.57 33385.27 33382.65 344
USDC76.63 25876.73 25576.34 29783.46 29957.20 31980.02 25388.04 21052.14 36383.65 23491.25 17963.24 27186.65 28254.66 34194.11 19285.17 310
BH-w/o76.57 25976.07 26178.10 27286.88 24165.92 21977.63 28986.33 23365.69 26680.89 27979.95 35468.97 24290.74 20553.01 35285.25 33477.62 379
Patchmtry76.56 26077.46 24673.83 31379.37 34746.60 37982.41 22076.90 31873.81 16485.56 19692.38 14648.07 34883.98 31863.36 28695.31 15090.92 221
PVSNet_Blended76.49 26175.40 26679.76 24684.43 28263.41 24175.14 32490.44 16157.36 33675.43 33378.30 36769.11 24091.44 18060.68 30687.70 30684.42 320
miper_lstm_enhance76.45 26276.10 26077.51 28276.72 36660.97 28064.69 38185.04 25663.98 28083.20 24388.22 24556.67 31278.79 34873.22 19693.12 21592.78 157
lupinMVS76.37 26374.46 27582.09 20985.54 26869.26 18676.79 30080.77 29650.68 37476.23 32382.82 32758.69 29988.94 24969.85 22688.77 28988.07 274
cascas76.29 26474.81 27180.72 23484.47 28162.94 24773.89 33687.34 21555.94 34275.16 33876.53 38263.97 26691.16 18865.00 27290.97 25988.06 276
WB-MVS76.06 26580.01 22364.19 37089.96 17020.58 41272.18 34768.19 37383.21 5886.46 18193.49 11470.19 23578.97 34665.96 26090.46 27293.02 149
thres600view775.97 26675.35 26877.85 27987.01 23851.84 35680.45 24873.26 34675.20 15183.10 24586.31 28145.54 36289.05 24755.03 33992.24 23392.66 163
GA-MVS75.83 26774.61 27279.48 25281.87 31659.25 29773.42 34082.88 27868.68 23579.75 29481.80 33850.62 33989.46 24066.85 25385.64 33089.72 249
MVP-Stereo75.81 26873.51 28482.71 19989.35 17873.62 13180.06 25185.20 25160.30 31573.96 34487.94 25057.89 30689.45 24152.02 35674.87 39085.06 312
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
test_fmvs375.72 26975.20 26977.27 28575.01 38269.47 18378.93 27084.88 26146.67 38187.08 16287.84 25350.44 34171.62 36777.42 14888.53 29290.72 226
thres100view90075.45 27075.05 27076.66 29487.27 22851.88 35581.07 24273.26 34675.68 14483.25 24286.37 27845.54 36288.80 25151.98 35790.99 25689.31 256
ET-MVSNet_ETH3D75.28 27172.77 29282.81 19883.03 31168.11 19777.09 29676.51 32260.67 31377.60 31680.52 34938.04 38991.15 18970.78 21690.68 26789.17 259
thres40075.14 27274.23 27777.86 27886.24 25552.12 35279.24 26673.87 33973.34 17581.82 26584.60 30846.02 35688.80 25151.98 35790.99 25692.66 163
wuyk23d75.13 27379.30 22862.63 37375.56 37575.18 12480.89 24473.10 34875.06 15394.76 1495.32 3887.73 4052.85 40434.16 40397.11 8059.85 400
EU-MVSNet75.12 27474.43 27677.18 28683.11 31059.48 29585.71 14282.43 28339.76 40185.64 19488.76 23844.71 37387.88 26373.86 18685.88 32984.16 325
HyFIR lowres test75.12 27472.66 29482.50 20591.44 13565.19 22572.47 34587.31 21646.79 38080.29 28984.30 31052.70 33092.10 16551.88 36186.73 31890.22 240
CMPMVSbinary59.41 2075.12 27473.57 28279.77 24575.84 37467.22 20381.21 24082.18 28450.78 37276.50 31987.66 25755.20 32282.99 32462.17 29590.64 27189.09 263
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
pmmvs474.92 27772.98 29080.73 23384.95 27471.71 16476.23 31177.59 31152.83 35777.73 31586.38 27756.35 31584.97 30757.72 32287.05 31385.51 307
tfpn200view974.86 27874.23 27776.74 29386.24 25552.12 35279.24 26673.87 33973.34 17581.82 26584.60 30846.02 35688.80 25151.98 35790.99 25689.31 256
1112_ss74.82 27973.74 28078.04 27489.57 17260.04 28876.49 30787.09 22554.31 35073.66 34779.80 35560.25 28786.76 28158.37 31684.15 35087.32 288
EGC-MVSNET74.79 28069.99 32089.19 6394.89 3887.00 1291.89 3486.28 2341.09 4102.23 41295.98 2781.87 11189.48 23879.76 11695.96 12491.10 217
ppachtmachnet_test74.73 28174.00 27976.90 29080.71 33456.89 32271.53 35378.42 30658.24 32779.32 30182.92 32657.91 30584.26 31565.60 26791.36 25189.56 251
Patchmatch-RL test74.48 28273.68 28176.89 29184.83 27666.54 21272.29 34669.16 37157.70 33286.76 16886.33 27945.79 36182.59 32569.63 22890.65 27081.54 359
PatchMatch-RL74.48 28273.22 28778.27 27087.70 21885.26 3575.92 31670.09 36564.34 27876.09 32681.25 34365.87 25878.07 34953.86 34483.82 35271.48 388
XXY-MVS74.44 28476.19 25969.21 34584.61 28052.43 35171.70 35077.18 31660.73 31280.60 28390.96 19175.44 17569.35 37356.13 32988.33 29585.86 303
test250674.12 28573.39 28576.28 29891.85 11744.20 38984.06 17048.20 40872.30 19881.90 26294.20 8327.22 40989.77 23564.81 27496.02 12194.87 69
CR-MVSNet74.00 28673.04 28976.85 29279.58 34262.64 25382.58 21376.90 31850.50 37575.72 33092.38 14648.07 34884.07 31768.72 24282.91 35883.85 329
Test_1112_low_res73.90 28773.08 28876.35 29690.35 15955.95 32573.40 34186.17 23650.70 37373.14 34885.94 28658.31 30185.90 29756.51 32683.22 35587.20 289
test20.0373.75 28874.59 27471.22 33381.11 32751.12 36270.15 36372.10 35470.42 21680.28 29191.50 17364.21 26574.72 36146.96 38094.58 17987.82 283
test_fmvs273.57 28972.80 29175.90 30272.74 39468.84 19277.07 29784.32 26745.14 38782.89 24884.22 31148.37 34670.36 37073.40 19487.03 31488.52 270
SCA73.32 29072.57 29675.58 30581.62 32055.86 32778.89 27271.37 36061.73 29674.93 33983.42 32060.46 28487.01 27258.11 32082.63 36383.88 326
baseline173.26 29173.54 28372.43 32784.92 27547.79 37479.89 25574.00 33765.93 26078.81 30586.28 28256.36 31481.63 33156.63 32579.04 37987.87 282
131473.22 29272.56 29775.20 30680.41 33857.84 31381.64 23485.36 24851.68 36673.10 34976.65 38161.45 27985.19 30563.54 28479.21 37782.59 345
MVS73.21 29372.59 29575.06 30880.97 32860.81 28281.64 23485.92 24246.03 38571.68 35677.54 37268.47 24489.77 23555.70 33285.39 33174.60 385
HY-MVS64.64 1873.03 29472.47 29874.71 30983.36 30354.19 33782.14 23081.96 28656.76 34169.57 36986.21 28360.03 28884.83 30949.58 36882.65 36185.11 311
thisisatest051573.00 29570.52 31280.46 23781.45 32259.90 29173.16 34374.31 33657.86 33176.08 32777.78 37037.60 39192.12 16465.00 27291.45 25089.35 255
EPNet_dtu72.87 29671.33 30877.49 28377.72 35660.55 28482.35 22175.79 32566.49 25858.39 40381.06 34453.68 32685.98 29453.55 34792.97 22085.95 301
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CVMVSNet72.62 29771.41 30776.28 29883.25 30560.34 28683.50 18779.02 30537.77 40576.33 32185.10 29949.60 34487.41 26870.54 22177.54 38581.08 366
CHOSEN 1792x268872.45 29870.56 31178.13 27190.02 16963.08 24668.72 36883.16 27542.99 39575.92 32885.46 29257.22 31085.18 30649.87 36681.67 36586.14 299
testgi72.36 29974.61 27265.59 36480.56 33642.82 39468.29 36973.35 34566.87 25581.84 26489.93 22172.08 22366.92 38646.05 38392.54 22687.01 291
thres20072.34 30071.55 30674.70 31083.48 29851.60 35775.02 32573.71 34270.14 22278.56 30780.57 34846.20 35488.20 26146.99 37989.29 28284.32 321
FPMVS72.29 30172.00 30073.14 31888.63 19885.00 3774.65 32967.39 37571.94 20377.80 31387.66 25750.48 34075.83 35749.95 36479.51 37358.58 402
FMVSNet572.10 30271.69 30273.32 31681.57 32153.02 34676.77 30178.37 30763.31 28176.37 32091.85 16136.68 39278.98 34547.87 37692.45 22787.95 279
our_test_371.85 30371.59 30372.62 32480.71 33453.78 34069.72 36571.71 35958.80 32478.03 30880.51 35056.61 31378.84 34762.20 29386.04 32885.23 309
PAPM71.77 30470.06 31876.92 28986.39 24753.97 33876.62 30586.62 23153.44 35463.97 39384.73 30657.79 30792.34 15739.65 39481.33 36984.45 319
IB-MVS62.13 1971.64 30568.97 32979.66 24980.80 33362.26 26373.94 33576.90 31863.27 28268.63 37376.79 37933.83 39691.84 17259.28 31387.26 30884.88 313
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
UnsupCasMVSNet_eth71.63 30672.30 29969.62 34276.47 36852.70 34970.03 36480.97 29459.18 32179.36 29988.21 24660.50 28369.12 37458.33 31877.62 38487.04 290
testing371.53 30770.79 30973.77 31488.89 19041.86 39676.60 30659.12 39872.83 18680.97 27682.08 33519.80 41487.33 27065.12 27191.68 24592.13 191
test_vis3_rt71.42 30870.67 31073.64 31569.66 40170.46 17466.97 37689.73 18142.68 39788.20 14083.04 32243.77 37560.07 39865.35 27086.66 31990.39 238
Anonymous2023120671.38 30971.88 30169.88 34086.31 25254.37 33670.39 36174.62 33252.57 35976.73 31888.76 23859.94 28972.06 36444.35 38793.23 21383.23 340
test_vis1_n_192071.30 31071.58 30570.47 33677.58 35859.99 29074.25 33084.22 26851.06 36974.85 34079.10 36155.10 32368.83 37668.86 23979.20 37882.58 346
MIMVSNet71.09 31171.59 30369.57 34387.23 22950.07 36778.91 27171.83 35660.20 31871.26 35791.76 16755.08 32476.09 35541.06 39287.02 31582.54 348
test_fmvs1_n70.94 31270.41 31572.53 32673.92 38466.93 20975.99 31584.21 26943.31 39479.40 29879.39 35943.47 37668.55 37869.05 23684.91 34282.10 353
MS-PatchMatch70.93 31370.22 31673.06 31981.85 31762.50 25673.82 33777.90 30852.44 36075.92 32881.27 34255.67 31981.75 32955.37 33577.70 38374.94 384
pmmvs570.73 31470.07 31772.72 32277.03 36352.73 34874.14 33175.65 32850.36 37672.17 35485.37 29655.42 32180.67 33652.86 35387.59 30784.77 314
PatchT70.52 31572.76 29363.79 37279.38 34633.53 40677.63 28965.37 38473.61 16871.77 35592.79 13644.38 37475.65 35864.53 27985.37 33282.18 352
test_vis1_n70.29 31669.99 32071.20 33475.97 37366.50 21376.69 30380.81 29544.22 39075.43 33377.23 37650.00 34268.59 37766.71 25682.85 36078.52 378
N_pmnet70.20 31768.80 33174.38 31180.91 32984.81 4059.12 39376.45 32355.06 34675.31 33782.36 33255.74 31854.82 40347.02 37887.24 30983.52 333
tpmvs70.16 31869.56 32371.96 32974.71 38348.13 37179.63 25775.45 33065.02 27570.26 36581.88 33745.34 36785.68 30158.34 31775.39 38982.08 354
new-patchmatchnet70.10 31973.37 28660.29 38081.23 32616.95 41559.54 39174.62 33262.93 28380.97 27687.93 25162.83 27671.90 36555.24 33795.01 16492.00 195
YYNet170.06 32070.44 31368.90 34773.76 38653.42 34458.99 39467.20 37758.42 32687.10 16085.39 29559.82 29167.32 38359.79 31083.50 35485.96 300
MDA-MVSNet_test_wron70.05 32170.44 31368.88 34873.84 38553.47 34258.93 39567.28 37658.43 32587.09 16185.40 29459.80 29267.25 38459.66 31183.54 35385.92 302
CostFormer69.98 32268.68 33273.87 31277.14 36150.72 36479.26 26574.51 33451.94 36570.97 36084.75 30545.16 37087.49 26755.16 33879.23 37683.40 336
testing9169.94 32368.99 32872.80 32183.81 29645.89 38271.57 35273.64 34468.24 24070.77 36377.82 36934.37 39584.44 31253.64 34687.00 31688.07 274
baseline269.77 32466.89 34078.41 26679.51 34458.09 31076.23 31169.57 36857.50 33564.82 39177.45 37446.02 35688.44 25753.08 34977.83 38188.70 268
PatchmatchNetpermissive69.71 32568.83 33072.33 32877.66 35753.60 34179.29 26469.99 36657.66 33372.53 35282.93 32546.45 35380.08 34160.91 30572.09 39383.31 339
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
test_fmvs169.57 32669.05 32671.14 33569.15 40265.77 22173.98 33483.32 27442.83 39677.77 31478.27 36843.39 37968.50 37968.39 24684.38 34979.15 376
JIA-IIPM69.41 32766.64 34477.70 28073.19 38971.24 16975.67 31765.56 38370.42 21665.18 38792.97 12833.64 39783.06 32253.52 34869.61 39978.79 377
Syy-MVS69.40 32870.03 31967.49 35781.72 31838.94 39971.00 35561.99 38961.38 30270.81 36172.36 39261.37 28079.30 34364.50 28085.18 33584.22 322
testing9969.27 32968.15 33572.63 32383.29 30445.45 38471.15 35471.08 36167.34 25170.43 36477.77 37132.24 39884.35 31453.72 34586.33 32488.10 273
UnsupCasMVSNet_bld69.21 33069.68 32267.82 35579.42 34551.15 36167.82 37375.79 32554.15 35177.47 31785.36 29759.26 29570.64 36948.46 37379.35 37581.66 357
test_cas_vis1_n_192069.20 33169.12 32469.43 34473.68 38762.82 25070.38 36277.21 31546.18 38480.46 28878.95 36352.03 33265.53 39165.77 26677.45 38679.95 374
gg-mvs-nofinetune68.96 33269.11 32568.52 35376.12 37245.32 38583.59 18555.88 40386.68 2864.62 39297.01 830.36 40183.97 31944.78 38682.94 35776.26 381
WB-MVSnew68.72 33369.01 32767.85 35483.22 30743.98 39074.93 32665.98 38255.09 34573.83 34579.11 36065.63 25971.89 36638.21 39985.04 33887.69 284
tpm268.45 33466.83 34173.30 31778.93 35248.50 37079.76 25671.76 35747.50 37969.92 36783.60 31642.07 38288.40 25848.44 37479.51 37383.01 343
tpm67.95 33568.08 33667.55 35678.74 35343.53 39275.60 31867.10 38054.92 34772.23 35388.10 24742.87 38175.97 35652.21 35580.95 37283.15 341
WTY-MVS67.91 33668.35 33366.58 36180.82 33248.12 37265.96 37872.60 34953.67 35371.20 35881.68 34058.97 29769.06 37548.57 37281.67 36582.55 347
testing1167.38 33765.93 34571.73 33183.37 30246.60 37970.95 35769.40 36962.47 28866.14 38076.66 38031.22 39984.10 31649.10 37084.10 35184.49 317
test-LLR67.21 33866.74 34268.63 35176.45 36955.21 33267.89 37067.14 37862.43 29165.08 38872.39 39043.41 37769.37 37161.00 30384.89 34381.31 361
testing22266.93 33965.30 35171.81 33083.38 30145.83 38372.06 34867.50 37464.12 27969.68 36876.37 38327.34 40883.00 32338.88 39588.38 29486.62 295
sss66.92 34067.26 33865.90 36377.23 36051.10 36364.79 38071.72 35852.12 36470.13 36680.18 35257.96 30465.36 39250.21 36381.01 37181.25 363
KD-MVS_2432*160066.87 34165.81 34770.04 33867.50 40347.49 37562.56 38579.16 30261.21 30777.98 30980.61 34625.29 41182.48 32653.02 35084.92 34080.16 372
miper_refine_blended66.87 34165.81 34770.04 33867.50 40347.49 37562.56 38579.16 30261.21 30777.98 30980.61 34625.29 41182.48 32653.02 35084.92 34080.16 372
dmvs_re66.81 34366.98 33966.28 36276.87 36458.68 30871.66 35172.24 35260.29 31669.52 37073.53 38952.38 33164.40 39444.90 38581.44 36875.76 382
tpm cat166.76 34465.21 35271.42 33277.09 36250.62 36578.01 28273.68 34344.89 38868.64 37279.00 36245.51 36482.42 32849.91 36570.15 39681.23 365
UWE-MVS66.43 34565.56 35069.05 34684.15 29040.98 39773.06 34464.71 38554.84 34876.18 32579.62 35829.21 40380.50 33838.54 39889.75 27885.66 305
PVSNet58.17 2166.41 34665.63 34968.75 34981.96 31549.88 36862.19 38772.51 35151.03 37068.04 37575.34 38750.84 33874.77 35945.82 38482.96 35681.60 358
tpmrst66.28 34766.69 34365.05 36872.82 39339.33 39878.20 28170.69 36453.16 35667.88 37680.36 35148.18 34774.75 36058.13 31970.79 39581.08 366
Patchmatch-test65.91 34867.38 33761.48 37875.51 37643.21 39368.84 36763.79 38762.48 28772.80 35183.42 32044.89 37259.52 40048.27 37586.45 32181.70 356
ADS-MVSNet265.87 34963.64 35772.55 32573.16 39056.92 32167.10 37474.81 33149.74 37766.04 38282.97 32346.71 35177.26 35242.29 38969.96 39783.46 334
test_vis1_rt65.64 35064.09 35470.31 33766.09 40770.20 17761.16 38881.60 29038.65 40272.87 35069.66 39552.84 32860.04 39956.16 32877.77 38280.68 370
mvsany_test365.48 35162.97 35973.03 32069.99 40076.17 11964.83 37943.71 41043.68 39280.25 29287.05 27252.83 32963.09 39751.92 36072.44 39279.84 375
test-mter65.00 35263.79 35668.63 35176.45 36955.21 33267.89 37067.14 37850.98 37165.08 38872.39 39028.27 40669.37 37161.00 30384.89 34381.31 361
ETVMVS64.67 35363.34 35868.64 35083.44 30041.89 39569.56 36661.70 39461.33 30468.74 37175.76 38528.76 40479.35 34234.65 40286.16 32784.67 316
myMVS_eth3d64.66 35463.89 35566.97 35981.72 31837.39 40271.00 35561.99 38961.38 30270.81 36172.36 39220.96 41379.30 34349.59 36785.18 33584.22 322
test0.0.03 164.66 35464.36 35365.57 36575.03 38146.89 37864.69 38161.58 39562.43 29171.18 35977.54 37243.41 37768.47 38040.75 39382.65 36181.35 360
test_f64.31 35665.85 34659.67 38166.54 40662.24 26557.76 39770.96 36240.13 39984.36 21882.09 33446.93 35051.67 40561.99 29681.89 36465.12 396
pmmvs362.47 35760.02 37069.80 34171.58 39764.00 23670.52 36058.44 40139.77 40066.05 38175.84 38427.10 41072.28 36346.15 38284.77 34773.11 386
EPMVS62.47 35762.63 36162.01 37470.63 39938.74 40074.76 32752.86 40553.91 35267.71 37880.01 35339.40 38666.60 38755.54 33468.81 40180.68 370
ADS-MVSNet61.90 35962.19 36361.03 37973.16 39036.42 40467.10 37461.75 39249.74 37766.04 38282.97 32346.71 35163.21 39542.29 38969.96 39783.46 334
PMMVS61.65 36060.38 36765.47 36665.40 41069.26 18663.97 38361.73 39336.80 40660.11 39868.43 39759.42 29366.35 38848.97 37178.57 38060.81 399
E-PMN61.59 36161.62 36461.49 37766.81 40555.40 33053.77 40060.34 39766.80 25658.90 40165.50 40040.48 38566.12 38955.72 33186.25 32562.95 398
TESTMET0.1,161.29 36260.32 36864.19 37072.06 39551.30 35967.89 37062.09 38845.27 38660.65 39769.01 39627.93 40764.74 39356.31 32781.65 36776.53 380
MVS-HIRNet61.16 36362.92 36055.87 38479.09 34935.34 40571.83 34957.98 40246.56 38259.05 40091.14 18349.95 34376.43 35438.74 39671.92 39455.84 403
EMVS61.10 36460.81 36661.99 37565.96 40855.86 32753.10 40158.97 40067.06 25356.89 40563.33 40140.98 38367.03 38554.79 34086.18 32663.08 397
DSMNet-mixed60.98 36561.61 36559.09 38372.88 39245.05 38774.70 32846.61 40926.20 40765.34 38690.32 21255.46 32063.12 39641.72 39181.30 37069.09 392
dp60.70 36660.29 36961.92 37672.04 39638.67 40170.83 35864.08 38651.28 36860.75 39677.28 37536.59 39371.58 36847.41 37762.34 40375.52 383
dmvs_testset60.59 36762.54 36254.72 38677.26 35927.74 40974.05 33361.00 39660.48 31465.62 38567.03 39955.93 31768.23 38132.07 40669.46 40068.17 393
CHOSEN 280x42059.08 36856.52 37366.76 36076.51 36764.39 23249.62 40259.00 39943.86 39155.66 40668.41 39835.55 39468.21 38243.25 38876.78 38867.69 394
mvsany_test158.48 36956.47 37464.50 36965.90 40968.21 19656.95 39842.11 41138.30 40365.69 38477.19 37856.96 31159.35 40146.16 38158.96 40465.93 395
PVSNet_051.08 2256.10 37054.97 37559.48 38275.12 38053.28 34555.16 39961.89 39144.30 38959.16 39962.48 40254.22 32565.91 39035.40 40147.01 40559.25 401
new_pmnet55.69 37157.66 37249.76 38775.47 37730.59 40759.56 39051.45 40643.62 39362.49 39475.48 38640.96 38449.15 40737.39 40072.52 39169.55 391
PMMVS255.64 37259.27 37144.74 38864.30 41112.32 41640.60 40349.79 40753.19 35565.06 39084.81 30453.60 32749.76 40632.68 40589.41 28172.15 387
MVEpermissive40.22 2351.82 37350.47 37655.87 38462.66 41251.91 35431.61 40539.28 41240.65 39850.76 40774.98 38856.24 31644.67 40833.94 40464.11 40271.04 390
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
dongtai41.90 37442.65 37739.67 38970.86 39821.11 41161.01 38921.42 41657.36 33657.97 40450.06 40516.40 41558.73 40221.03 40927.69 40939.17 405
kuosan30.83 37532.17 37826.83 39153.36 41319.02 41457.90 39620.44 41738.29 40438.01 40837.82 40715.18 41633.45 4107.74 41120.76 41028.03 406
test_method30.46 37629.60 37933.06 39017.99 4153.84 41813.62 40673.92 3382.79 40918.29 41153.41 40428.53 40543.25 40922.56 40735.27 40752.11 404
cdsmvs_eth3d_5k20.81 37727.75 3800.00 3960.00 4190.00 4210.00 40785.44 2470.00 4140.00 41582.82 32781.46 1150.00 4150.00 4140.00 4130.00 411
tmp_tt20.25 37824.50 3817.49 3934.47 4168.70 41734.17 40425.16 4141.00 41132.43 41018.49 40839.37 3879.21 41221.64 40843.75 4064.57 408
ab-mvs-re6.65 3798.87 3820.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 41579.80 3550.00 4190.00 4150.00 4140.00 4130.00 411
pcd_1.5k_mvsjas6.41 3808.55 3830.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 41476.94 1620.00 4150.00 4140.00 4130.00 411
test1236.27 3818.08 3840.84 3941.11 4180.57 41962.90 3840.82 4180.54 4121.07 4142.75 4131.26 4170.30 4131.04 4121.26 4121.66 409
testmvs5.91 3827.65 3850.72 3951.20 4170.37 42059.14 3920.67 4190.49 4131.11 4132.76 4120.94 4180.24 4141.02 4131.47 4111.55 410
test_blank0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uanet_test0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
DCPMVS0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
sosnet-low-res0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
sosnet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uncertanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
Regformer0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
WAC-MVS37.39 40252.61 354
FOURS196.08 1287.41 1196.19 295.83 592.95 396.57 3
MSC_two_6792asdad88.81 6991.55 12977.99 9191.01 14696.05 987.45 2198.17 3292.40 176
PC_three_145258.96 32390.06 9791.33 17780.66 12593.03 13975.78 16495.94 12692.48 171
No_MVS88.81 6991.55 12977.99 9191.01 14696.05 987.45 2198.17 3292.40 176
test_one_060193.85 5973.27 13694.11 3886.57 2993.47 4094.64 6288.42 26
eth-test20.00 419
eth-test0.00 419
ZD-MVS92.22 10280.48 6891.85 12171.22 21090.38 9292.98 12686.06 6196.11 781.99 9496.75 90
RE-MVS-def92.61 594.13 5288.95 692.87 1494.16 3288.75 1593.79 3194.43 7090.64 1087.16 3097.60 6492.73 158
IU-MVS94.18 4772.64 14490.82 15156.98 33989.67 10985.78 5197.92 4693.28 137
OPU-MVS88.27 8091.89 11577.83 9490.47 5591.22 18081.12 11994.68 7574.48 17695.35 14592.29 182
test_241102_TWO93.71 5583.77 5193.49 3894.27 7789.27 2195.84 2486.03 4797.82 5192.04 193
test_241102_ONE94.18 4772.65 14293.69 5683.62 5394.11 2593.78 10790.28 1495.50 49
9.1489.29 6191.84 11988.80 9295.32 1375.14 15291.07 8192.89 13187.27 4493.78 10783.69 7297.55 67
save fliter93.75 6077.44 10086.31 13289.72 18270.80 213
test_0728_THIRD85.33 3793.75 3394.65 5987.44 4395.78 3187.41 2398.21 2992.98 152
test_0728_SECOND86.79 10094.25 4672.45 15290.54 5294.10 3995.88 1786.42 3797.97 4392.02 194
test072694.16 5072.56 14890.63 4993.90 4883.61 5493.75 3394.49 6789.76 18
GSMVS83.88 326
test_part293.86 5877.77 9592.84 50
sam_mvs146.11 35583.88 326
sam_mvs45.92 360
ambc82.98 19190.55 15664.86 22788.20 10089.15 19389.40 11893.96 9871.67 22891.38 18478.83 12696.55 9592.71 161
MTGPAbinary91.81 125
test_post178.85 2743.13 41045.19 36980.13 34058.11 320
test_post3.10 41145.43 36577.22 353
patchmatchnet-post81.71 33945.93 35987.01 272
GG-mvs-BLEND67.16 35873.36 38846.54 38184.15 16855.04 40458.64 40261.95 40329.93 40283.87 32038.71 39776.92 38771.07 389
MTMP90.66 4833.14 413
gm-plane-assit75.42 37844.97 38852.17 36172.36 39287.90 26254.10 343
test9_res80.83 10596.45 10290.57 232
TEST992.34 9679.70 7583.94 17390.32 16565.41 27184.49 21490.97 18982.03 10693.63 112
test_892.09 10678.87 8283.82 17890.31 16765.79 26284.36 21890.96 19181.93 10893.44 125
agg_prior279.68 11896.16 11490.22 240
agg_prior91.58 12777.69 9790.30 16884.32 22093.18 133
TestCases89.68 5391.59 12483.40 4995.44 1179.47 9888.00 14693.03 12482.66 9191.47 17870.81 21496.14 11594.16 97
test_prior478.97 8184.59 159
test_prior283.37 19075.43 14884.58 21291.57 17181.92 11079.54 12096.97 83
test_prior86.32 10890.59 15571.99 15992.85 9294.17 9492.80 156
旧先验281.73 23256.88 34086.54 17984.90 30872.81 203
新几何281.72 233
新几何182.95 19393.96 5678.56 8580.24 29855.45 34483.93 23191.08 18671.19 23188.33 25965.84 26493.07 21681.95 355
旧先验191.97 11171.77 16081.78 28891.84 16273.92 19593.65 20483.61 332
无先验82.81 20885.62 24558.09 32991.41 18367.95 25084.48 318
原ACMM282.26 226
原ACMM184.60 14592.81 8774.01 12991.50 13062.59 28582.73 25190.67 20476.53 16994.25 8869.24 23195.69 13985.55 306
test22293.31 7076.54 11079.38 26377.79 30952.59 35882.36 25590.84 19766.83 25291.69 24481.25 363
testdata286.43 28663.52 285
segment_acmp81.94 107
testdata79.54 25192.87 8272.34 15380.14 29959.91 31985.47 19891.75 16867.96 24785.24 30468.57 24592.18 23681.06 368
testdata179.62 25873.95 163
test1286.57 10390.74 15172.63 14690.69 15482.76 25079.20 13694.80 7295.32 14892.27 184
plane_prior793.45 6577.31 103
plane_prior692.61 8876.54 11074.84 183
plane_prior593.61 5995.22 5980.78 10695.83 13294.46 82
plane_prior492.95 129
plane_prior376.85 10877.79 12286.55 174
plane_prior289.45 8179.44 100
plane_prior192.83 86
plane_prior76.42 11487.15 11675.94 14195.03 161
n20.00 420
nn0.00 420
door-mid74.45 335
lessismore_v085.95 11791.10 14470.99 17170.91 36391.79 6994.42 7261.76 27892.93 14279.52 12193.03 21793.93 108
LGP-MVS_train90.82 3494.75 4181.69 6094.27 2382.35 6793.67 3694.82 5491.18 495.52 4585.36 5398.73 795.23 61
test1191.46 131
door72.57 350
HQP5-MVS70.66 172
HQP-NCC91.19 13984.77 15373.30 17780.55 285
ACMP_Plane91.19 13984.77 15373.30 17780.55 285
BP-MVS77.30 149
HQP4-MVS80.56 28494.61 7893.56 130
HQP3-MVS92.68 9794.47 181
HQP2-MVS72.10 221
NP-MVS91.95 11274.55 12690.17 218
MDTV_nov1_ep13_2view27.60 41070.76 35946.47 38361.27 39545.20 36849.18 36983.75 331
MDTV_nov1_ep1368.29 33478.03 35443.87 39174.12 33272.22 35352.17 36167.02 37985.54 29045.36 36680.85 33555.73 33084.42 348
ACMMP++_ref95.74 138
ACMMP++97.35 73
Test By Simon79.09 137
ITE_SJBPF90.11 4690.72 15284.97 3890.30 16881.56 7590.02 9991.20 18282.40 9690.81 20373.58 19194.66 17794.56 78
DeepMVS_CXcopyleft24.13 39232.95 41429.49 40821.63 41512.07 40837.95 40945.07 40630.84 40019.21 41117.94 41033.06 40823.69 407