This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet95.70 196.40 193.61 298.67 185.39 3395.54 597.36 196.97 199.04 199.05 196.61 195.92 1385.07 5199.27 199.54 1
TDRefinement93.52 293.39 393.88 195.94 1490.26 395.70 496.46 290.58 892.86 4796.29 1688.16 3394.17 9186.07 4198.48 1797.22 19
LTVRE_ROB86.10 193.04 393.44 291.82 2093.73 6085.72 3096.79 195.51 888.86 1295.63 896.99 884.81 6793.16 13191.10 197.53 7096.58 30
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
HPM-MVS_fast92.50 492.54 592.37 595.93 1585.81 2992.99 1294.23 2285.21 3492.51 5595.13 4490.65 995.34 5188.06 898.15 3495.95 41
SR-MVS-dyc-post92.41 592.41 692.39 494.13 5188.95 592.87 1394.16 2788.75 1493.79 2894.43 6788.83 2495.51 4387.16 2797.60 6492.73 148
SR-MVS92.23 692.34 791.91 1594.89 3787.85 892.51 2393.87 4588.20 1993.24 3994.02 9090.15 1695.67 3386.82 3097.34 7492.19 175
HPM-MVScopyleft92.13 792.20 991.91 1595.58 2584.67 4293.51 894.85 1482.88 5691.77 6893.94 9890.55 1295.73 3088.50 698.23 2795.33 54
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
APD-MVS_3200maxsize92.05 892.24 891.48 2193.02 7885.17 3592.47 2595.05 1387.65 2293.21 4094.39 7290.09 1795.08 6086.67 3197.60 6494.18 92
COLMAP_ROBcopyleft83.01 391.97 991.95 1092.04 1093.68 6286.15 2093.37 1095.10 1290.28 992.11 6195.03 4689.75 2094.93 6479.95 10198.27 2595.04 64
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
ACMMPcopyleft91.91 1091.87 1592.03 1195.53 2685.91 2493.35 1194.16 2782.52 5992.39 5894.14 8489.15 2395.62 3487.35 2298.24 2694.56 76
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
mPP-MVS91.69 1191.47 2292.37 596.04 1288.48 792.72 1792.60 9383.09 5391.54 7094.25 7887.67 4195.51 4387.21 2698.11 3593.12 138
CP-MVS91.67 1291.58 1991.96 1295.29 3087.62 993.38 993.36 5983.16 5291.06 8194.00 9188.26 3095.71 3187.28 2598.39 2092.55 157
XVS91.54 1391.36 2492.08 895.64 2386.25 1892.64 1893.33 6185.07 3589.99 9994.03 8986.57 5295.80 2487.35 2297.62 6294.20 90
MTAPA91.52 1491.60 1891.29 2696.59 486.29 1792.02 3091.81 11684.07 4292.00 6494.40 7186.63 5195.28 5488.59 598.31 2392.30 168
UA-Net91.49 1591.53 2091.39 2394.98 3482.95 5493.52 792.79 8888.22 1888.53 12797.64 283.45 8194.55 7786.02 4498.60 1296.67 27
ACMMPR91.49 1591.35 2691.92 1495.74 1985.88 2692.58 2193.25 6781.99 6291.40 7294.17 8387.51 4295.87 1887.74 1197.76 5593.99 100
LPG-MVS_test91.47 1791.68 1690.82 3394.75 4081.69 5990.00 5794.27 1982.35 6093.67 3394.82 5291.18 495.52 4185.36 4898.73 695.23 59
region2R91.44 1891.30 3091.87 1795.75 1885.90 2592.63 2093.30 6581.91 6490.88 8794.21 7987.75 3995.87 1887.60 1697.71 5893.83 108
HFP-MVS91.30 1991.39 2391.02 2995.43 2884.66 4392.58 2193.29 6681.99 6291.47 7193.96 9588.35 2995.56 3887.74 1197.74 5792.85 145
ZNCC-MVS91.26 2091.34 2791.01 3095.73 2083.05 5292.18 2894.22 2480.14 8591.29 7693.97 9287.93 3895.87 1888.65 497.96 4594.12 96
APDe-MVS91.22 2191.92 1189.14 6492.97 8078.04 8692.84 1594.14 3183.33 5193.90 2495.73 2788.77 2596.41 187.60 1697.98 4292.98 142
PGM-MVS91.20 2290.95 3991.93 1395.67 2285.85 2790.00 5793.90 4280.32 8291.74 6994.41 7088.17 3295.98 1086.37 3497.99 4093.96 103
SteuartSystems-ACMMP91.16 2391.36 2490.55 3793.91 5680.97 6691.49 3793.48 5782.82 5792.60 5493.97 9288.19 3196.29 487.61 1598.20 3194.39 86
Skip Steuart: Steuart Systems R&D Blog.
MP-MVScopyleft91.14 2490.91 4091.83 1896.18 1086.88 1392.20 2793.03 8082.59 5888.52 12894.37 7386.74 5095.41 4986.32 3598.21 2993.19 135
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
GST-MVS90.96 2591.01 3690.82 3395.45 2782.73 5591.75 3593.74 4880.98 7691.38 7393.80 10287.20 4695.80 2487.10 2997.69 5993.93 104
MP-MVS-pluss90.81 2691.08 3389.99 4695.97 1379.88 7188.13 9894.51 1775.79 13792.94 4494.96 4788.36 2895.01 6290.70 298.40 1995.09 63
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ACMH+77.89 1190.73 2791.50 2188.44 7593.00 7976.26 11289.65 7095.55 787.72 2193.89 2694.94 4891.62 393.44 12278.35 11898.76 395.61 48
ACMMP_NAP90.65 2891.07 3589.42 5995.93 1579.54 7689.95 6193.68 5277.65 11691.97 6594.89 4988.38 2795.45 4789.27 397.87 5093.27 131
ACMM79.39 990.65 2890.99 3789.63 5595.03 3383.53 4789.62 7193.35 6079.20 9793.83 2793.60 10990.81 792.96 13785.02 5398.45 1892.41 162
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LS3D90.60 3090.34 4791.38 2489.03 18184.23 4593.58 694.68 1690.65 790.33 9393.95 9784.50 6995.37 5080.87 9195.50 14294.53 79
ACMP79.16 1090.54 3190.60 4590.35 4194.36 4380.98 6589.16 8194.05 3679.03 10092.87 4693.74 10590.60 1195.21 5782.87 7298.76 394.87 67
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
DPE-MVScopyleft90.53 3291.08 3388.88 6693.38 6978.65 8389.15 8294.05 3684.68 3993.90 2494.11 8788.13 3496.30 384.51 5997.81 5291.70 190
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SED-MVS90.46 3391.64 1786.93 9394.18 4672.65 13590.47 5193.69 5083.77 4594.11 2294.27 7490.28 1495.84 2286.03 4297.92 4692.29 169
SMA-MVScopyleft90.31 3490.48 4689.83 5095.31 2979.52 7790.98 4393.24 6875.37 14492.84 4895.28 3885.58 6296.09 687.92 997.76 5593.88 106
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
SF-MVS90.27 3590.80 4288.68 7392.86 8477.09 10191.19 4095.74 581.38 7092.28 5993.80 10286.89 4994.64 7285.52 4797.51 7194.30 89
v7n90.13 3690.96 3887.65 8891.95 11071.06 16189.99 5993.05 7786.53 2694.29 1896.27 1782.69 8794.08 9486.25 3897.63 6197.82 8
PMVScopyleft80.48 690.08 3790.66 4488.34 7896.71 392.97 190.31 5489.57 17888.51 1790.11 9595.12 4590.98 688.92 24377.55 13297.07 8283.13 317
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
DVP-MVS++90.07 3891.09 3287.00 9291.55 12772.64 13796.19 294.10 3485.33 3293.49 3694.64 6081.12 11495.88 1687.41 2095.94 12592.48 159
DVP-MVScopyleft90.06 3991.32 2886.29 10594.16 4972.56 14190.54 4891.01 13683.61 4893.75 3094.65 5789.76 1895.78 2786.42 3297.97 4390.55 220
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
PS-CasMVS90.06 3991.92 1184.47 14396.56 658.83 29389.04 8392.74 9091.40 596.12 496.06 2287.23 4595.57 3779.42 11098.74 599.00 2
PEN-MVS90.03 4191.88 1484.48 14296.57 558.88 29088.95 8493.19 6991.62 496.01 696.16 2087.02 4795.60 3578.69 11598.72 898.97 3
OurMVSNet-221017-090.01 4289.74 5290.83 3293.16 7680.37 6891.91 3393.11 7381.10 7495.32 1097.24 572.94 19894.85 6685.07 5197.78 5397.26 16
DTE-MVSNet89.98 4391.91 1384.21 15196.51 757.84 30088.93 8592.84 8791.92 396.16 396.23 1886.95 4895.99 979.05 11298.57 1498.80 6
XVG-ACMP-BASELINE89.98 4389.84 5090.41 3994.91 3684.50 4489.49 7693.98 3879.68 8992.09 6293.89 10083.80 7693.10 13482.67 7498.04 3693.64 119
3Dnovator+83.92 289.97 4589.66 5390.92 3191.27 13681.66 6291.25 3894.13 3288.89 1188.83 12394.26 7777.55 14595.86 2184.88 5595.87 12995.24 58
WR-MVS_H89.91 4691.31 2985.71 12196.32 962.39 24789.54 7493.31 6490.21 1095.57 995.66 2981.42 11195.90 1480.94 9098.80 298.84 5
OPM-MVS89.80 4789.97 4889.27 6194.76 3979.86 7286.76 12092.78 8978.78 10392.51 5593.64 10888.13 3493.84 10384.83 5697.55 6794.10 98
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
mvs_tets89.78 4889.27 5991.30 2593.51 6584.79 4089.89 6390.63 14670.00 21494.55 1596.67 1187.94 3793.59 11484.27 6195.97 12295.52 49
anonymousdsp89.73 4988.88 6692.27 789.82 16786.67 1490.51 5090.20 16369.87 21595.06 1196.14 2184.28 7293.07 13587.68 1396.34 10697.09 21
test_djsdf89.62 5089.01 6391.45 2292.36 9582.98 5391.98 3190.08 16671.54 19594.28 2096.54 1381.57 10994.27 8386.26 3696.49 10097.09 21
XVG-OURS-SEG-HR89.59 5189.37 5790.28 4294.47 4285.95 2386.84 11693.91 4180.07 8686.75 16093.26 11293.64 290.93 19284.60 5890.75 25793.97 102
APD-MVScopyleft89.54 5289.63 5489.26 6292.57 8981.34 6490.19 5693.08 7680.87 7891.13 7993.19 11386.22 5795.97 1182.23 8097.18 7990.45 222
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
jajsoiax89.41 5388.81 6891.19 2893.38 6984.72 4189.70 6690.29 16069.27 21894.39 1696.38 1586.02 6093.52 11883.96 6395.92 12795.34 53
CPTT-MVS89.39 5488.98 6590.63 3695.09 3286.95 1292.09 2992.30 10079.74 8887.50 14592.38 14081.42 11193.28 12783.07 6997.24 7791.67 191
ACMH76.49 1489.34 5591.14 3183.96 15692.50 9270.36 16789.55 7293.84 4681.89 6594.70 1395.44 3490.69 888.31 25383.33 6798.30 2493.20 134
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
testf189.30 5689.12 6089.84 4888.67 18985.64 3190.61 4693.17 7086.02 2993.12 4195.30 3684.94 6489.44 23474.12 16896.10 11794.45 82
APD_test289.30 5689.12 6089.84 4888.67 18985.64 3190.61 4693.17 7086.02 2993.12 4195.30 3684.94 6489.44 23474.12 16896.10 11794.45 82
CP-MVSNet89.27 5890.91 4084.37 14496.34 858.61 29688.66 9192.06 10590.78 695.67 795.17 4381.80 10795.54 4079.00 11398.69 998.95 4
XVG-OURS89.18 5988.83 6790.23 4394.28 4486.11 2285.91 12993.60 5580.16 8489.13 12093.44 11083.82 7590.98 19083.86 6595.30 15093.60 121
DeepC-MVS82.31 489.15 6089.08 6289.37 6093.64 6379.07 7988.54 9394.20 2573.53 16389.71 10694.82 5285.09 6395.77 2984.17 6298.03 3893.26 132
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
UniMVSNet_ETH3D89.12 6190.72 4384.31 14997.00 264.33 22389.67 6988.38 19388.84 1394.29 1897.57 390.48 1391.26 18272.57 19297.65 6097.34 15
MSP-MVS89.08 6288.16 7391.83 1895.76 1786.14 2192.75 1693.90 4278.43 10889.16 11992.25 14672.03 21096.36 288.21 790.93 25192.98 142
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SD-MVS88.96 6389.88 4986.22 10891.63 12177.07 10289.82 6493.77 4778.90 10192.88 4592.29 14486.11 5890.22 21386.24 3997.24 7791.36 198
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
HPM-MVS++copyleft88.93 6488.45 7190.38 4094.92 3585.85 2789.70 6691.27 12978.20 11086.69 16392.28 14580.36 12395.06 6186.17 4096.49 10090.22 226
test_040288.65 6589.58 5685.88 11792.55 9072.22 14984.01 16089.44 18088.63 1694.38 1795.77 2686.38 5693.59 11479.84 10295.21 15191.82 186
DP-MVS88.60 6689.01 6387.36 9091.30 13477.50 9487.55 10592.97 8387.95 2089.62 11092.87 12684.56 6893.89 10077.65 13096.62 9490.70 214
APD_test188.40 6787.91 7589.88 4789.50 17086.65 1689.98 6091.91 11184.26 4090.87 8893.92 9982.18 9889.29 23873.75 17594.81 17093.70 115
Anonymous2023121188.40 6789.62 5584.73 13890.46 15565.27 21388.86 8693.02 8187.15 2393.05 4397.10 682.28 9792.02 16376.70 14297.99 4096.88 25
PS-MVSNAJss88.31 6987.90 7689.56 5793.31 7177.96 8987.94 10191.97 10870.73 20494.19 2196.67 1176.94 15494.57 7583.07 6996.28 10896.15 33
RRT_MVS88.30 7087.83 7789.70 5293.62 6475.70 11792.36 2689.06 18577.34 11993.63 3595.83 2565.40 24195.90 1485.01 5498.23 2797.49 13
OMC-MVS88.19 7187.52 8190.19 4491.94 11281.68 6187.49 10793.17 7076.02 13188.64 12691.22 16984.24 7393.37 12577.97 12897.03 8395.52 49
CS-MVS88.14 7287.67 8089.54 5889.56 16979.18 7890.47 5194.77 1579.37 9584.32 20789.33 21783.87 7494.53 7882.45 7694.89 16694.90 65
TSAR-MVS + MP.88.14 7287.82 7889.09 6595.72 2176.74 10592.49 2491.19 13267.85 23886.63 16494.84 5179.58 12995.96 1287.62 1494.50 17894.56 76
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
tt080588.09 7489.79 5182.98 17993.26 7363.94 22791.10 4189.64 17585.07 3590.91 8591.09 17489.16 2291.87 16882.03 8195.87 12993.13 136
EC-MVSNet88.01 7588.32 7287.09 9189.28 17572.03 15190.31 5496.31 380.88 7785.12 19189.67 21184.47 7095.46 4682.56 7596.26 11193.77 113
RPSCF88.00 7686.93 9391.22 2790.08 16189.30 489.68 6891.11 13379.26 9689.68 10794.81 5582.44 9087.74 25776.54 14588.74 27896.61 29
AllTest87.97 7787.40 8589.68 5391.59 12283.40 4889.50 7595.44 979.47 9188.00 13893.03 11882.66 8891.47 17570.81 20096.14 11494.16 93
mvsmamba87.87 7887.23 8689.78 5192.31 9976.51 10991.09 4291.87 11272.61 18292.16 6095.23 4166.01 23795.59 3686.02 4497.78 5397.24 17
TranMVSNet+NR-MVSNet87.86 7988.76 6985.18 12994.02 5464.13 22484.38 15391.29 12884.88 3892.06 6393.84 10186.45 5493.73 10573.22 18398.66 1097.69 9
nrg03087.85 8088.49 7085.91 11590.07 16369.73 17187.86 10294.20 2574.04 15592.70 5394.66 5685.88 6191.50 17479.72 10597.32 7596.50 31
CNVR-MVS87.81 8187.68 7988.21 8092.87 8277.30 10085.25 13891.23 13077.31 12187.07 15491.47 16482.94 8594.71 6984.67 5796.27 11092.62 155
HQP_MVS87.75 8287.43 8488.70 7293.45 6676.42 11089.45 7793.61 5379.44 9386.55 16592.95 12374.84 17395.22 5580.78 9395.83 13194.46 80
NCCC87.36 8386.87 9488.83 6792.32 9878.84 8286.58 12491.09 13478.77 10484.85 19890.89 18280.85 11795.29 5281.14 8895.32 14792.34 166
DeepPCF-MVS81.24 587.28 8486.21 10390.49 3891.48 13184.90 3883.41 17892.38 9870.25 21189.35 11890.68 19082.85 8694.57 7579.55 10795.95 12492.00 181
SixPastTwentyTwo87.20 8587.45 8386.45 10292.52 9169.19 18087.84 10388.05 20181.66 6794.64 1496.53 1465.94 23894.75 6883.02 7196.83 8895.41 51
CS-MVS-test87.00 8686.43 9988.71 7189.46 17177.46 9589.42 7995.73 677.87 11481.64 25587.25 25182.43 9194.53 7877.65 13096.46 10294.14 95
UniMVSNet (Re)86.87 8786.98 9286.55 10093.11 7768.48 18483.80 16992.87 8580.37 8089.61 11291.81 15777.72 14294.18 8975.00 16198.53 1596.99 24
Vis-MVSNetpermissive86.86 8886.58 9787.72 8592.09 10677.43 9787.35 10892.09 10478.87 10284.27 21294.05 8878.35 13793.65 10780.54 9791.58 23992.08 178
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
UniMVSNet_NR-MVSNet86.84 8987.06 8986.17 11192.86 8467.02 19682.55 20291.56 11983.08 5490.92 8391.82 15678.25 13893.99 9674.16 16698.35 2197.49 13
DU-MVS86.80 9086.99 9186.21 10993.24 7467.02 19683.16 18692.21 10181.73 6690.92 8391.97 15077.20 14893.99 9674.16 16698.35 2197.61 10
casdiffmvs_mvgpermissive86.72 9187.51 8284.36 14687.09 22665.22 21484.16 15594.23 2277.89 11391.28 7793.66 10784.35 7192.71 14380.07 9894.87 16995.16 61
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
IS-MVSNet86.66 9286.82 9686.17 11192.05 10866.87 19991.21 3988.64 19086.30 2889.60 11392.59 13469.22 22194.91 6573.89 17297.89 4996.72 26
v1086.54 9387.10 8884.84 13388.16 20363.28 23386.64 12392.20 10275.42 14392.81 5094.50 6374.05 18394.06 9583.88 6496.28 10897.17 20
pmmvs686.52 9488.06 7481.90 19992.22 10262.28 25084.66 14689.15 18383.54 5089.85 10397.32 488.08 3686.80 27070.43 20897.30 7696.62 28
PHI-MVS86.38 9585.81 11088.08 8188.44 19777.34 9889.35 8093.05 7773.15 17484.76 19987.70 24278.87 13394.18 8980.67 9596.29 10792.73 148
MVS_030486.35 9685.92 10787.66 8789.21 17873.16 13288.40 9583.63 26281.27 7180.87 26494.12 8671.49 21495.71 3187.79 1096.50 9994.11 97
CSCG86.26 9786.47 9885.60 12390.87 14774.26 12587.98 10091.85 11380.35 8189.54 11688.01 23579.09 13192.13 15975.51 15495.06 15890.41 223
DeepC-MVS_fast80.27 886.23 9885.65 11487.96 8491.30 13476.92 10387.19 10991.99 10770.56 20584.96 19490.69 18980.01 12695.14 5878.37 11795.78 13691.82 186
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
v886.22 9986.83 9584.36 14687.82 20762.35 24986.42 12691.33 12776.78 12592.73 5294.48 6573.41 19293.72 10683.10 6895.41 14397.01 23
Anonymous2024052986.20 10087.13 8783.42 16990.19 15964.55 22184.55 14890.71 14385.85 3189.94 10295.24 4082.13 9990.40 20969.19 22096.40 10595.31 55
CDPH-MVS86.17 10185.54 11588.05 8392.25 10075.45 11883.85 16692.01 10665.91 25086.19 17391.75 15983.77 7794.98 6377.43 13596.71 9293.73 114
NR-MVSNet86.00 10286.22 10285.34 12793.24 7464.56 22082.21 21490.46 15080.99 7588.42 13091.97 15077.56 14493.85 10172.46 19398.65 1197.61 10
train_agg85.98 10385.28 11988.07 8292.34 9679.70 7483.94 16290.32 15565.79 25184.49 20290.97 17881.93 10393.63 10981.21 8796.54 9790.88 208
FC-MVSNet-test85.93 10487.05 9082.58 19092.25 10056.44 31185.75 13293.09 7577.33 12091.94 6694.65 5774.78 17593.41 12475.11 16098.58 1397.88 7
Effi-MVS+-dtu85.82 10583.38 15193.14 387.13 22291.15 287.70 10488.42 19274.57 15183.56 22285.65 27478.49 13694.21 8772.04 19592.88 21494.05 99
TAPA-MVS77.73 1285.71 10684.83 12588.37 7788.78 18879.72 7387.15 11193.50 5669.17 21985.80 18289.56 21280.76 11892.13 15973.21 18895.51 14193.25 133
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
canonicalmvs85.50 10786.14 10483.58 16587.97 20467.13 19487.55 10594.32 1873.44 16588.47 12987.54 24586.45 5491.06 18975.76 15393.76 19392.54 158
EPP-MVSNet85.47 10885.04 12286.77 9791.52 13069.37 17591.63 3687.98 20381.51 6987.05 15591.83 15566.18 23695.29 5270.75 20396.89 8595.64 46
GeoE85.45 10985.81 11084.37 14490.08 16167.07 19585.86 13191.39 12672.33 18887.59 14390.25 20084.85 6692.37 15378.00 12691.94 23393.66 116
FIs85.35 11086.27 10182.60 18991.86 11457.31 30485.10 14193.05 7775.83 13691.02 8293.97 9273.57 18892.91 14173.97 17198.02 3997.58 12
test_fmvsmvis_n_192085.22 11185.36 11884.81 13485.80 25276.13 11585.15 14092.32 9961.40 28391.33 7490.85 18483.76 7886.16 28084.31 6093.28 20492.15 177
casdiffmvspermissive85.21 11285.85 10983.31 17286.17 24762.77 24083.03 18893.93 4074.69 15088.21 13592.68 13382.29 9691.89 16777.87 12993.75 19595.27 57
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline85.20 11385.93 10683.02 17886.30 24162.37 24884.55 14893.96 3974.48 15287.12 14992.03 14982.30 9591.94 16478.39 11694.21 18594.74 73
K. test v385.14 11484.73 12686.37 10391.13 14169.63 17385.45 13676.68 30884.06 4392.44 5796.99 862.03 25894.65 7180.58 9693.24 20594.83 72
EI-MVSNet-Vis-set85.12 11584.53 13386.88 9484.01 27572.76 13483.91 16585.18 24280.44 7988.75 12485.49 27680.08 12591.92 16582.02 8290.85 25595.97 39
EI-MVSNet-UG-set85.04 11684.44 13586.85 9583.87 27872.52 14383.82 16785.15 24380.27 8388.75 12485.45 27879.95 12791.90 16681.92 8490.80 25696.13 34
X-MVStestdata85.04 11682.70 16492.08 895.64 2386.25 1892.64 1893.33 6185.07 3589.99 9916.05 38286.57 5295.80 2487.35 2297.62 6294.20 90
MSLP-MVS++85.00 11886.03 10581.90 19991.84 11771.56 15986.75 12193.02 8175.95 13487.12 14989.39 21577.98 13989.40 23777.46 13394.78 17184.75 294
F-COLMAP84.97 11983.42 15089.63 5592.39 9483.40 4888.83 8791.92 11073.19 17380.18 27789.15 22177.04 15293.28 12765.82 25092.28 22592.21 174
bld_raw_dy_0_6484.85 12084.44 13586.07 11393.73 6074.93 12188.57 9281.90 27870.44 20691.28 7795.18 4256.62 29389.28 23985.15 5097.09 8193.99 100
3Dnovator80.37 784.80 12184.71 12985.06 13186.36 23974.71 12288.77 8990.00 16875.65 13984.96 19493.17 11474.06 18291.19 18478.28 12091.09 24589.29 242
IterMVS-LS84.73 12284.98 12383.96 15687.35 21763.66 22883.25 18289.88 17076.06 12989.62 11092.37 14373.40 19492.52 14878.16 12394.77 17395.69 44
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MVS_111021_HR84.63 12384.34 14085.49 12690.18 16075.86 11679.23 25587.13 21373.35 16685.56 18689.34 21683.60 8090.50 20776.64 14394.05 18990.09 231
HQP-MVS84.61 12484.06 14386.27 10691.19 13770.66 16384.77 14292.68 9173.30 16980.55 26990.17 20472.10 20694.61 7377.30 13794.47 17993.56 124
v119284.57 12584.69 13084.21 15187.75 20962.88 23783.02 18991.43 12369.08 22189.98 10190.89 18272.70 20293.62 11282.41 7794.97 16396.13 34
FMVSNet184.55 12685.45 11681.85 20190.27 15861.05 26386.83 11788.27 19878.57 10789.66 10995.64 3075.43 16690.68 20269.09 22195.33 14693.82 109
v114484.54 12784.72 12884.00 15487.67 21162.55 24482.97 19090.93 13970.32 21089.80 10490.99 17773.50 18993.48 12081.69 8694.65 17695.97 39
Gipumacopyleft84.44 12886.33 10078.78 24584.20 27473.57 12889.55 7290.44 15184.24 4184.38 20494.89 4976.35 16380.40 31976.14 14996.80 9082.36 326
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
MCST-MVS84.36 12983.93 14685.63 12291.59 12271.58 15883.52 17592.13 10361.82 27883.96 21789.75 21079.93 12893.46 12178.33 11994.34 18291.87 185
VDDNet84.35 13085.39 11781.25 21095.13 3159.32 28385.42 13781.11 28386.41 2787.41 14696.21 1973.61 18790.61 20566.33 24496.85 8693.81 112
ETV-MVS84.31 13183.91 14785.52 12488.58 19370.40 16684.50 15293.37 5878.76 10584.07 21678.72 34780.39 12295.13 5973.82 17492.98 21291.04 204
v124084.30 13284.51 13483.65 16387.65 21261.26 26082.85 19491.54 12067.94 23690.68 9090.65 19271.71 21293.64 10882.84 7394.78 17196.07 36
MVS_111021_LR84.28 13383.76 14885.83 11989.23 17783.07 5180.99 23083.56 26372.71 18086.07 17689.07 22281.75 10886.19 27977.11 13993.36 20088.24 255
h-mvs3384.25 13482.76 16388.72 7091.82 11982.60 5684.00 16184.98 24971.27 19786.70 16190.55 19463.04 25593.92 9978.26 12194.20 18689.63 234
v14419284.24 13584.41 13783.71 16287.59 21461.57 25682.95 19191.03 13567.82 23989.80 10490.49 19573.28 19593.51 11981.88 8594.89 16696.04 38
dcpmvs_284.23 13685.14 12081.50 20788.61 19261.98 25482.90 19393.11 7368.66 22792.77 5192.39 13978.50 13587.63 25976.99 14192.30 22294.90 65
v192192084.23 13684.37 13983.79 15987.64 21361.71 25582.91 19291.20 13167.94 23690.06 9690.34 19772.04 20993.59 11482.32 7894.91 16496.07 36
VDD-MVS84.23 13684.58 13283.20 17591.17 14065.16 21683.25 18284.97 25079.79 8787.18 14894.27 7474.77 17690.89 19569.24 21796.54 9793.55 126
v2v48284.09 13984.24 14183.62 16487.13 22261.40 25782.71 19789.71 17372.19 19189.55 11491.41 16570.70 21793.20 12981.02 8993.76 19396.25 32
EG-PatchMatch MVS84.08 14084.11 14283.98 15592.22 10272.61 14082.20 21687.02 21872.63 18188.86 12191.02 17678.52 13491.11 18773.41 18091.09 24588.21 256
DP-MVS Recon84.05 14183.22 15386.52 10191.73 12075.27 11983.23 18492.40 9672.04 19282.04 24588.33 23177.91 14193.95 9866.17 24595.12 15690.34 225
TransMVSNet (Re)84.02 14285.74 11278.85 24491.00 14455.20 32182.29 21087.26 20979.65 9088.38 13295.52 3383.00 8486.88 26867.97 23596.60 9594.45 82
Baseline_NR-MVSNet84.00 14385.90 10878.29 25691.47 13253.44 33082.29 21087.00 22179.06 9989.55 11495.72 2877.20 14886.14 28172.30 19498.51 1695.28 56
TSAR-MVS + GP.83.95 14482.69 16587.72 8589.27 17681.45 6383.72 17181.58 28274.73 14985.66 18386.06 26972.56 20492.69 14575.44 15695.21 15189.01 250
alignmvs83.94 14583.98 14583.80 15887.80 20867.88 19184.54 15091.42 12573.27 17288.41 13187.96 23672.33 20590.83 19776.02 15194.11 18792.69 152
Effi-MVS+83.90 14684.01 14483.57 16687.22 22065.61 21286.55 12592.40 9678.64 10681.34 26084.18 29783.65 7992.93 13974.22 16587.87 28992.17 176
CANet83.79 14782.85 16286.63 9886.17 24772.21 15083.76 17091.43 12377.24 12274.39 32587.45 24775.36 16795.42 4877.03 14092.83 21592.25 173
pm-mvs183.69 14884.95 12479.91 23190.04 16559.66 28082.43 20687.44 20675.52 14187.85 14095.26 3981.25 11385.65 28868.74 22796.04 11994.42 85
AdaColmapbinary83.66 14983.69 14983.57 16690.05 16472.26 14886.29 12890.00 16878.19 11181.65 25487.16 25383.40 8294.24 8661.69 28294.76 17484.21 299
MIMVSNet183.63 15084.59 13180.74 21994.06 5362.77 24082.72 19684.53 25577.57 11890.34 9295.92 2476.88 16085.83 28661.88 28097.42 7293.62 120
test_fmvsm_n_192083.60 15182.89 16185.74 12085.22 25877.74 9284.12 15790.48 14959.87 29986.45 17291.12 17375.65 16485.89 28582.28 7990.87 25393.58 122
WR-MVS83.56 15284.40 13881.06 21593.43 6854.88 32278.67 26385.02 24781.24 7290.74 8991.56 16272.85 19991.08 18868.00 23498.04 3697.23 18
CNLPA83.55 15383.10 15884.90 13289.34 17483.87 4684.54 15088.77 18779.09 9883.54 22388.66 22874.87 17281.73 31266.84 24092.29 22489.11 244
LCM-MVSNet-Re83.48 15485.06 12178.75 24685.94 25155.75 31680.05 23994.27 1976.47 12696.09 594.54 6283.31 8389.75 22959.95 29294.89 16690.75 211
hse-mvs283.47 15581.81 17788.47 7491.03 14382.27 5782.61 19883.69 26071.27 19786.70 16186.05 27063.04 25592.41 15178.26 12193.62 19990.71 213
V4283.47 15583.37 15283.75 16183.16 28463.33 23281.31 22490.23 16269.51 21790.91 8590.81 18674.16 18192.29 15780.06 9990.22 26395.62 47
VPA-MVSNet83.47 15584.73 12679.69 23590.29 15757.52 30381.30 22688.69 18976.29 12787.58 14494.44 6680.60 12187.20 26366.60 24396.82 8994.34 88
PAPM_NR83.23 15883.19 15583.33 17190.90 14665.98 20888.19 9790.78 14278.13 11280.87 26487.92 23973.49 19192.42 15070.07 21088.40 28091.60 193
CLD-MVS83.18 15982.64 16684.79 13589.05 18067.82 19277.93 27192.52 9468.33 22985.07 19281.54 32582.06 10092.96 13769.35 21697.91 4893.57 123
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
ANet_high83.17 16085.68 11375.65 29081.24 30045.26 36979.94 24192.91 8483.83 4491.33 7496.88 1080.25 12485.92 28368.89 22495.89 12895.76 43
FA-MVS(test-final)83.13 16183.02 15983.43 16886.16 24966.08 20788.00 9988.36 19475.55 14085.02 19392.75 13165.12 24292.50 14974.94 16291.30 24391.72 188
114514_t83.10 16282.54 16984.77 13792.90 8169.10 18286.65 12290.62 14754.66 32381.46 25790.81 18676.98 15394.38 8272.62 19196.18 11290.82 210
UGNet82.78 16381.64 17986.21 10986.20 24676.24 11386.86 11585.68 23577.07 12373.76 32892.82 12769.64 21891.82 17069.04 22393.69 19690.56 219
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
LF4IMVS82.75 16481.93 17685.19 12882.08 29180.15 7085.53 13588.76 18868.01 23385.58 18587.75 24171.80 21186.85 26974.02 17093.87 19288.58 253
EI-MVSNet82.61 16582.42 17183.20 17583.25 28263.66 22883.50 17685.07 24476.06 12986.55 16585.10 28473.41 19290.25 21078.15 12590.67 25995.68 45
QAPM82.59 16682.59 16882.58 19086.44 23466.69 20089.94 6290.36 15467.97 23584.94 19692.58 13672.71 20192.18 15870.63 20687.73 29188.85 251
Fast-Effi-MVS+-dtu82.54 16781.41 18385.90 11685.60 25376.53 10883.07 18789.62 17773.02 17679.11 28783.51 30280.74 11990.24 21268.76 22689.29 26990.94 206
MVS_Test82.47 16883.22 15380.22 22882.62 29057.75 30282.54 20391.96 10971.16 20182.89 23292.52 13877.41 14690.50 20780.04 10087.84 29092.40 163
v14882.31 16982.48 17081.81 20485.59 25459.66 28081.47 22386.02 23172.85 17788.05 13790.65 19270.73 21690.91 19475.15 15991.79 23494.87 67
API-MVS82.28 17082.61 16781.30 20986.29 24269.79 16988.71 9087.67 20578.42 10982.15 24384.15 29877.98 13991.59 17365.39 25392.75 21682.51 325
MVSFormer82.23 17181.57 18284.19 15385.54 25569.26 17791.98 3190.08 16671.54 19576.23 30785.07 28758.69 27994.27 8386.26 3688.77 27689.03 248
EIA-MVS82.19 17281.23 18785.10 13087.95 20569.17 18183.22 18593.33 6170.42 20778.58 29079.77 34177.29 14794.20 8871.51 19788.96 27491.93 184
PCF-MVS74.62 1582.15 17380.92 19185.84 11889.43 17272.30 14780.53 23491.82 11557.36 31387.81 14189.92 20777.67 14393.63 10958.69 29795.08 15791.58 194
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
PLCcopyleft73.85 1682.09 17480.31 19787.45 8990.86 14880.29 6985.88 13090.65 14568.17 23176.32 30686.33 26473.12 19792.61 14761.40 28590.02 26589.44 237
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
GBi-Net82.02 17582.07 17381.85 20186.38 23661.05 26386.83 11788.27 19872.43 18386.00 17795.64 3063.78 24990.68 20265.95 24693.34 20193.82 109
test182.02 17582.07 17381.85 20186.38 23661.05 26386.83 11788.27 19872.43 18386.00 17795.64 3063.78 24990.68 20265.95 24693.34 20193.82 109
OpenMVScopyleft76.72 1381.98 17782.00 17581.93 19884.42 26968.22 18688.50 9489.48 17966.92 24481.80 25291.86 15272.59 20390.16 21571.19 19991.25 24487.40 268
KD-MVS_self_test81.93 17883.14 15778.30 25584.75 26452.75 33480.37 23689.42 18170.24 21290.26 9493.39 11174.55 18086.77 27168.61 22996.64 9395.38 52
SDMVSNet81.90 17983.17 15678.10 25988.81 18662.45 24676.08 30086.05 23073.67 16083.41 22493.04 11682.35 9380.65 31870.06 21195.03 15991.21 200
tfpnnormal81.79 18082.95 16078.31 25488.93 18455.40 31780.83 23382.85 26976.81 12485.90 18194.14 8474.58 17986.51 27466.82 24195.68 14093.01 141
c3_l81.64 18181.59 18181.79 20580.86 30659.15 28778.61 26490.18 16468.36 22887.20 14787.11 25569.39 21991.62 17278.16 12394.43 18194.60 75
PVSNet_Blended_VisFu81.55 18280.49 19584.70 14091.58 12573.24 13184.21 15491.67 11862.86 27180.94 26287.16 25367.27 23092.87 14269.82 21388.94 27587.99 260
DELS-MVS81.44 18381.25 18582.03 19784.27 27362.87 23876.47 29492.49 9570.97 20281.64 25583.83 29975.03 17092.70 14474.29 16492.22 22890.51 221
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
FMVSNet281.31 18481.61 18080.41 22586.38 23658.75 29483.93 16486.58 22372.43 18387.65 14292.98 12063.78 24990.22 21366.86 23893.92 19192.27 171
TinyColmap81.25 18582.34 17277.99 26285.33 25760.68 27182.32 20988.33 19671.26 19986.97 15692.22 14877.10 15186.98 26762.37 27495.17 15386.31 278
AUN-MVS81.18 18678.78 21788.39 7690.93 14582.14 5882.51 20483.67 26164.69 26480.29 27385.91 27351.07 31892.38 15276.29 14893.63 19890.65 217
tttt051781.07 18779.58 20885.52 12488.99 18366.45 20387.03 11375.51 31673.76 15988.32 13490.20 20137.96 37194.16 9379.36 11195.13 15495.93 42
Fast-Effi-MVS+81.04 18880.57 19282.46 19487.50 21563.22 23478.37 26789.63 17668.01 23381.87 24882.08 32082.31 9492.65 14667.10 23788.30 28591.51 196
BH-untuned80.96 18980.99 18980.84 21888.55 19468.23 18580.33 23788.46 19172.79 17986.55 16586.76 25974.72 17791.77 17161.79 28188.99 27382.52 324
eth_miper_zixun_eth80.84 19080.22 20182.71 18781.41 29860.98 26677.81 27390.14 16567.31 24286.95 15787.24 25264.26 24592.31 15575.23 15891.61 23794.85 71
xiu_mvs_v1_base_debu80.84 19080.14 20382.93 18288.31 19871.73 15479.53 24687.17 21065.43 25779.59 27982.73 31476.94 15490.14 21873.22 18388.33 28186.90 273
xiu_mvs_v1_base80.84 19080.14 20382.93 18288.31 19871.73 15479.53 24687.17 21065.43 25779.59 27982.73 31476.94 15490.14 21873.22 18388.33 28186.90 273
xiu_mvs_v1_base_debi80.84 19080.14 20382.93 18288.31 19871.73 15479.53 24687.17 21065.43 25779.59 27982.73 31476.94 15490.14 21873.22 18388.33 28186.90 273
IterMVS-SCA-FT80.64 19479.41 20984.34 14883.93 27669.66 17276.28 29681.09 28472.43 18386.47 17190.19 20260.46 26493.15 13277.45 13486.39 30490.22 226
BH-RMVSNet80.53 19580.22 20181.49 20887.19 22166.21 20677.79 27486.23 22774.21 15483.69 21988.50 22973.25 19690.75 19963.18 27187.90 28887.52 266
Anonymous20240521180.51 19681.19 18878.49 25188.48 19557.26 30576.63 29182.49 27281.21 7384.30 21092.24 14767.99 22786.24 27862.22 27595.13 15491.98 183
DIV-MVS_self_test80.43 19780.23 19981.02 21679.99 31459.25 28477.07 28487.02 21867.38 24086.19 17389.22 21863.09 25390.16 21576.32 14695.80 13493.66 116
cl____80.42 19880.23 19981.02 21679.99 31459.25 28477.07 28487.02 21867.37 24186.18 17589.21 21963.08 25490.16 21576.31 14795.80 13493.65 118
diffmvspermissive80.40 19980.48 19680.17 22979.02 32660.04 27577.54 27890.28 16166.65 24782.40 23887.33 25073.50 18987.35 26277.98 12789.62 26793.13 136
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EPNet80.37 20078.41 22486.23 10776.75 34073.28 12987.18 11077.45 30276.24 12868.14 35088.93 22465.41 24093.85 10169.47 21596.12 11691.55 195
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
iter_conf_final80.36 20178.88 21484.79 13586.29 24266.36 20586.95 11486.25 22668.16 23282.09 24489.48 21336.59 37494.51 8079.83 10394.30 18393.50 127
miper_ehance_all_eth80.34 20280.04 20681.24 21279.82 31658.95 28977.66 27589.66 17465.75 25485.99 18085.11 28368.29 22691.42 17976.03 15092.03 23093.33 128
MG-MVS80.32 20380.94 19078.47 25288.18 20152.62 33782.29 21085.01 24872.01 19379.24 28692.54 13769.36 22093.36 12670.65 20589.19 27289.45 236
VPNet80.25 20481.68 17875.94 28892.46 9347.98 36076.70 28981.67 28073.45 16484.87 19792.82 12774.66 17886.51 27461.66 28396.85 8693.33 128
MAR-MVS80.24 20578.74 21984.73 13886.87 23278.18 8585.75 13287.81 20465.67 25677.84 29578.50 34873.79 18690.53 20661.59 28490.87 25385.49 287
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PM-MVS80.20 20679.00 21383.78 16088.17 20286.66 1581.31 22466.81 36269.64 21688.33 13390.19 20264.58 24383.63 30471.99 19690.03 26481.06 343
Anonymous2024052180.18 20781.25 18576.95 27583.15 28560.84 26882.46 20585.99 23268.76 22586.78 15893.73 10659.13 27677.44 32773.71 17697.55 6792.56 156
LFMVS80.15 20880.56 19378.89 24389.19 17955.93 31385.22 13973.78 32882.96 5584.28 21192.72 13257.38 28890.07 22263.80 26595.75 13790.68 215
DPM-MVS80.10 20979.18 21282.88 18590.71 15169.74 17078.87 26090.84 14060.29 29575.64 31585.92 27267.28 22993.11 13371.24 19891.79 23485.77 284
MSDG80.06 21079.99 20780.25 22783.91 27768.04 19077.51 27989.19 18277.65 11681.94 24683.45 30476.37 16286.31 27763.31 27086.59 30186.41 276
FE-MVS79.98 21178.86 21583.36 17086.47 23366.45 20389.73 6584.74 25472.80 17884.22 21591.38 16644.95 35293.60 11363.93 26491.50 24090.04 232
sd_testset79.95 21281.39 18475.64 29188.81 18658.07 29876.16 29982.81 27073.67 16083.41 22493.04 11680.96 11677.65 32658.62 29895.03 15991.21 200
ab-mvs79.67 21380.56 19376.99 27488.48 19556.93 30784.70 14586.06 22968.95 22380.78 26693.08 11575.30 16884.62 29656.78 30790.90 25289.43 238
VNet79.31 21480.27 19876.44 28287.92 20653.95 32675.58 30684.35 25674.39 15382.23 24190.72 18872.84 20084.39 29860.38 29193.98 19090.97 205
thisisatest053079.07 21577.33 23484.26 15087.13 22264.58 21983.66 17375.95 31168.86 22485.22 19087.36 24938.10 36993.57 11775.47 15594.28 18494.62 74
cl2278.97 21678.21 22681.24 21277.74 33059.01 28877.46 28187.13 21365.79 25184.32 20785.10 28458.96 27890.88 19675.36 15792.03 23093.84 107
patch_mono-278.89 21779.39 21077.41 27184.78 26368.11 18875.60 30483.11 26660.96 28879.36 28389.89 20875.18 16972.97 33873.32 18292.30 22291.15 202
RPMNet78.88 21878.28 22580.68 22279.58 31762.64 24282.58 20094.16 2774.80 14875.72 31392.59 13448.69 32695.56 3873.48 17982.91 33383.85 304
PAPR78.84 21978.10 22781.07 21485.17 25960.22 27482.21 21490.57 14862.51 27375.32 31984.61 29274.99 17192.30 15659.48 29588.04 28790.68 215
iter_conf0578.81 22077.35 23383.21 17482.98 28860.75 27084.09 15888.34 19563.12 26984.25 21489.48 21331.41 37994.51 8076.64 14395.83 13194.38 87
PVSNet_BlendedMVS78.80 22177.84 22881.65 20684.43 26763.41 23079.49 24990.44 15161.70 28175.43 31687.07 25669.11 22291.44 17760.68 28992.24 22690.11 230
FMVSNet378.80 22178.55 22179.57 23782.89 28956.89 30981.76 21885.77 23469.04 22286.00 17790.44 19651.75 31690.09 22165.95 24693.34 20191.72 188
test_yl78.71 22378.51 22279.32 24084.32 27158.84 29178.38 26585.33 23975.99 13282.49 23686.57 26058.01 28290.02 22462.74 27292.73 21789.10 245
DCV-MVSNet78.71 22378.51 22279.32 24084.32 27158.84 29178.38 26585.33 23975.99 13282.49 23686.57 26058.01 28290.02 22462.74 27292.73 21789.10 245
test111178.53 22578.85 21677.56 26892.22 10247.49 36282.61 19869.24 35472.43 18385.28 18994.20 8051.91 31490.07 22265.36 25496.45 10395.11 62
ECVR-MVScopyleft78.44 22678.63 22077.88 26491.85 11548.95 35683.68 17269.91 35272.30 18984.26 21394.20 8051.89 31589.82 22663.58 26696.02 12094.87 67
pmmvs-eth3d78.42 22777.04 23682.57 19287.44 21674.41 12480.86 23279.67 29255.68 31984.69 20090.31 19960.91 26285.42 28962.20 27691.59 23887.88 263
mvs_anonymous78.13 22878.76 21876.23 28779.24 32350.31 35378.69 26284.82 25261.60 28283.09 23192.82 12773.89 18587.01 26468.33 23386.41 30391.37 197
TAMVS78.08 22976.36 24283.23 17390.62 15272.87 13379.08 25680.01 29161.72 28081.35 25986.92 25863.96 24888.78 24750.61 34293.01 21188.04 259
miper_enhance_ethall77.83 23076.93 23780.51 22376.15 34658.01 29975.47 30888.82 18658.05 30783.59 22180.69 32964.41 24491.20 18373.16 18992.03 23092.33 167
Vis-MVSNet (Re-imp)77.82 23177.79 22977.92 26388.82 18551.29 34783.28 18071.97 34174.04 15582.23 24189.78 20957.38 28889.41 23657.22 30695.41 14393.05 140
CANet_DTU77.81 23277.05 23580.09 23081.37 29959.90 27883.26 18188.29 19769.16 22067.83 35383.72 30060.93 26189.47 23169.22 21989.70 26690.88 208
OpenMVS_ROBcopyleft70.19 1777.77 23377.46 23078.71 24784.39 27061.15 26181.18 22882.52 27162.45 27583.34 22687.37 24866.20 23588.66 24964.69 26085.02 31586.32 277
MDA-MVSNet-bldmvs77.47 23476.90 23879.16 24279.03 32564.59 21866.58 35275.67 31473.15 17488.86 12188.99 22366.94 23181.23 31464.71 25988.22 28691.64 192
jason77.42 23575.75 24882.43 19587.10 22569.27 17677.99 27081.94 27751.47 34177.84 29585.07 28760.32 26689.00 24170.74 20489.27 27189.03 248
jason: jason.
CDS-MVSNet77.32 23675.40 25183.06 17789.00 18272.48 14477.90 27282.17 27560.81 28978.94 28883.49 30359.30 27488.76 24854.64 32592.37 22187.93 262
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
xiu_mvs_v2_base77.19 23776.75 23978.52 25087.01 22861.30 25975.55 30787.12 21661.24 28574.45 32478.79 34677.20 14890.93 19264.62 26284.80 32283.32 313
MVSTER77.09 23875.70 24981.25 21075.27 35461.08 26277.49 28085.07 24460.78 29086.55 16588.68 22743.14 36190.25 21073.69 17790.67 25992.42 161
PS-MVSNAJ77.04 23976.53 24178.56 24987.09 22661.40 25775.26 30987.13 21361.25 28474.38 32677.22 35776.94 15490.94 19164.63 26184.83 32183.35 312
IterMVS76.91 24076.34 24378.64 24880.91 30464.03 22576.30 29579.03 29564.88 26383.11 22989.16 22059.90 27084.46 29768.61 22985.15 31487.42 267
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
D2MVS76.84 24175.67 25080.34 22680.48 31262.16 25373.50 32384.80 25357.61 31182.24 24087.54 24551.31 31787.65 25870.40 20993.19 20791.23 199
CL-MVSNet_self_test76.81 24277.38 23275.12 29486.90 23051.34 34573.20 32680.63 28868.30 23081.80 25288.40 23066.92 23280.90 31555.35 31994.90 16593.12 138
TR-MVS76.77 24375.79 24779.72 23486.10 25065.79 21077.14 28283.02 26765.20 26181.40 25882.10 31866.30 23490.73 20155.57 31685.27 31282.65 319
USDC76.63 24476.73 24076.34 28483.46 28057.20 30680.02 24088.04 20252.14 33783.65 22091.25 16863.24 25286.65 27354.66 32494.11 18785.17 289
BH-w/o76.57 24576.07 24678.10 25986.88 23165.92 20977.63 27686.33 22465.69 25580.89 26379.95 33868.97 22490.74 20053.01 33385.25 31377.62 354
Patchmtry76.56 24677.46 23073.83 30079.37 32246.60 36682.41 20776.90 30573.81 15885.56 18692.38 14048.07 32983.98 30163.36 26995.31 14990.92 207
PVSNet_Blended76.49 24775.40 25179.76 23384.43 26763.41 23075.14 31090.44 15157.36 31375.43 31678.30 34969.11 22291.44 17760.68 28987.70 29284.42 297
miper_lstm_enhance76.45 24876.10 24577.51 26976.72 34160.97 26764.69 35685.04 24663.98 26683.20 22888.22 23256.67 29278.79 32473.22 18393.12 20892.78 147
lupinMVS76.37 24974.46 26082.09 19685.54 25569.26 17776.79 28780.77 28750.68 34876.23 30782.82 31258.69 27988.94 24269.85 21288.77 27688.07 257
cascas76.29 25074.81 25680.72 22184.47 26662.94 23673.89 32187.34 20755.94 31875.16 32176.53 36163.97 24791.16 18565.00 25690.97 25088.06 258
thres600view775.97 25175.35 25377.85 26687.01 22851.84 34380.45 23573.26 33275.20 14583.10 23086.31 26645.54 34389.05 24055.03 32292.24 22692.66 153
GA-MVS75.83 25274.61 25779.48 23981.87 29359.25 28473.42 32482.88 26868.68 22679.75 27881.80 32250.62 32089.46 23266.85 23985.64 30989.72 233
MVP-Stereo75.81 25373.51 26982.71 18789.35 17373.62 12780.06 23885.20 24160.30 29473.96 32787.94 23757.89 28689.45 23352.02 33674.87 36585.06 291
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
test_fmvs375.72 25475.20 25477.27 27275.01 35769.47 17478.93 25784.88 25146.67 35587.08 15387.84 24050.44 32271.62 34277.42 13688.53 27990.72 212
thres100view90075.45 25575.05 25576.66 28187.27 21851.88 34281.07 22973.26 33275.68 13883.25 22786.37 26345.54 34388.80 24451.98 33790.99 24789.31 240
ET-MVSNet_ETH3D75.28 25672.77 27782.81 18683.03 28768.11 18877.09 28376.51 30960.67 29277.60 30080.52 33338.04 37091.15 18670.78 20290.68 25889.17 243
thres40075.14 25774.23 26277.86 26586.24 24452.12 33979.24 25373.87 32673.34 16781.82 25084.60 29346.02 33788.80 24451.98 33790.99 24792.66 153
wuyk23d75.13 25879.30 21162.63 34875.56 35075.18 12080.89 23173.10 33475.06 14794.76 1295.32 3587.73 4052.85 37834.16 37797.11 8059.85 375
EU-MVSNet75.12 25974.43 26177.18 27383.11 28659.48 28285.71 13482.43 27339.76 37585.64 18488.76 22544.71 35487.88 25673.86 17385.88 30884.16 300
HyFIR lowres test75.12 25972.66 27982.50 19391.44 13365.19 21572.47 32887.31 20846.79 35480.29 27384.30 29552.70 31192.10 16251.88 34186.73 29990.22 226
CMPMVSbinary59.41 2075.12 25973.57 26779.77 23275.84 34967.22 19381.21 22782.18 27450.78 34676.50 30387.66 24355.20 30382.99 30662.17 27890.64 26289.09 247
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
pmmvs474.92 26272.98 27580.73 22084.95 26071.71 15776.23 29777.59 30152.83 33177.73 29986.38 26256.35 29684.97 29357.72 30587.05 29685.51 286
tfpn200view974.86 26374.23 26276.74 28086.24 24452.12 33979.24 25373.87 32673.34 16781.82 25084.60 29346.02 33788.80 24451.98 33790.99 24789.31 240
1112_ss74.82 26473.74 26578.04 26189.57 16860.04 27576.49 29387.09 21754.31 32473.66 32979.80 33960.25 26786.76 27258.37 29984.15 32687.32 269
EGC-MVSNET74.79 26569.99 30389.19 6394.89 3787.00 1191.89 3486.28 2251.09 3832.23 38595.98 2381.87 10689.48 23079.76 10495.96 12391.10 203
ppachtmachnet_test74.73 26674.00 26476.90 27780.71 30956.89 30971.53 33378.42 29758.24 30579.32 28582.92 31157.91 28584.26 29965.60 25291.36 24289.56 235
Patchmatch-RL test74.48 26773.68 26676.89 27884.83 26266.54 20172.29 32969.16 35557.70 30986.76 15986.33 26445.79 34282.59 30769.63 21490.65 26181.54 334
PatchMatch-RL74.48 26773.22 27278.27 25787.70 21085.26 3475.92 30270.09 35064.34 26576.09 30981.25 32765.87 23978.07 32553.86 32783.82 32771.48 363
XXY-MVS74.44 26976.19 24469.21 32784.61 26552.43 33871.70 33177.18 30460.73 29180.60 26790.96 18075.44 16569.35 34856.13 31288.33 28185.86 283
test250674.12 27073.39 27076.28 28591.85 11544.20 37284.06 15948.20 38372.30 18981.90 24794.20 8027.22 38689.77 22764.81 25896.02 12094.87 67
CR-MVSNet74.00 27173.04 27476.85 27979.58 31762.64 24282.58 20076.90 30550.50 34975.72 31392.38 14048.07 32984.07 30068.72 22882.91 33383.85 304
Test_1112_low_res73.90 27273.08 27376.35 28390.35 15655.95 31273.40 32586.17 22850.70 34773.14 33085.94 27158.31 28185.90 28456.51 30983.22 33087.20 270
test20.0373.75 27374.59 25971.22 31581.11 30251.12 34970.15 33972.10 34070.42 20780.28 27591.50 16364.21 24674.72 33746.96 35894.58 17787.82 265
test_fmvs273.57 27472.80 27675.90 28972.74 36968.84 18377.07 28484.32 25745.14 36182.89 23284.22 29648.37 32770.36 34573.40 18187.03 29788.52 254
SCA73.32 27572.57 28175.58 29281.62 29555.86 31478.89 25971.37 34661.73 27974.93 32283.42 30560.46 26487.01 26458.11 30382.63 33883.88 301
baseline173.26 27673.54 26872.43 31184.92 26147.79 36179.89 24274.00 32465.93 24978.81 28986.28 26756.36 29581.63 31356.63 30879.04 35487.87 264
131473.22 27772.56 28275.20 29380.41 31357.84 30081.64 22185.36 23851.68 34073.10 33176.65 36061.45 26085.19 29163.54 26779.21 35282.59 320
MVS73.21 27872.59 28075.06 29580.97 30360.81 26981.64 22185.92 23346.03 35971.68 33877.54 35268.47 22589.77 22755.70 31585.39 31074.60 360
HY-MVS64.64 1873.03 27972.47 28374.71 29683.36 28154.19 32482.14 21781.96 27656.76 31769.57 34686.21 26860.03 26884.83 29549.58 34782.65 33685.11 290
thisisatest051573.00 28070.52 29680.46 22481.45 29759.90 27873.16 32774.31 32357.86 30876.08 31077.78 35137.60 37292.12 16165.00 25691.45 24189.35 239
EPNet_dtu72.87 28171.33 29377.49 27077.72 33160.55 27282.35 20875.79 31266.49 24858.39 37881.06 32853.68 30785.98 28253.55 32892.97 21385.95 281
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CVMVSNet72.62 28271.41 29276.28 28583.25 28260.34 27383.50 17679.02 29637.77 37876.33 30585.10 28449.60 32587.41 26170.54 20777.54 36081.08 341
CHOSEN 1792x268872.45 28370.56 29578.13 25890.02 16663.08 23568.72 34383.16 26542.99 36975.92 31185.46 27757.22 29085.18 29249.87 34681.67 34086.14 279
testgi72.36 28474.61 25765.59 34180.56 31142.82 37668.29 34473.35 33166.87 24581.84 24989.93 20672.08 20866.92 36146.05 36192.54 21987.01 272
thres20072.34 28571.55 29174.70 29783.48 27951.60 34475.02 31173.71 32970.14 21378.56 29180.57 33246.20 33588.20 25446.99 35789.29 26984.32 298
FPMVS72.29 28672.00 28573.14 30488.63 19185.00 3674.65 31467.39 35671.94 19477.80 29787.66 24350.48 32175.83 33349.95 34479.51 34858.58 377
FMVSNet572.10 28771.69 28773.32 30281.57 29653.02 33376.77 28878.37 29863.31 26776.37 30491.85 15336.68 37378.98 32247.87 35492.45 22087.95 261
our_test_371.85 28871.59 28872.62 30880.71 30953.78 32769.72 34171.71 34558.80 30278.03 29280.51 33456.61 29478.84 32362.20 27686.04 30785.23 288
PAPM71.77 28970.06 30276.92 27686.39 23553.97 32576.62 29286.62 22253.44 32863.97 36884.73 29157.79 28792.34 15439.65 37281.33 34484.45 296
IB-MVS62.13 1971.64 29068.97 31079.66 23680.80 30862.26 25173.94 32076.90 30563.27 26868.63 34976.79 35933.83 37791.84 16959.28 29687.26 29484.88 292
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
UnsupCasMVSNet_eth71.63 29172.30 28469.62 32476.47 34352.70 33670.03 34080.97 28559.18 30079.36 28388.21 23360.50 26369.12 34958.33 30177.62 35987.04 271
test_vis3_rt71.42 29270.67 29473.64 30169.66 37570.46 16566.97 35189.73 17142.68 37188.20 13683.04 30743.77 35660.07 37365.35 25586.66 30090.39 224
Anonymous2023120671.38 29371.88 28669.88 32286.31 24054.37 32370.39 33774.62 31952.57 33376.73 30288.76 22559.94 26972.06 34044.35 36593.23 20683.23 315
test_vis1_n_192071.30 29471.58 29070.47 31877.58 33359.99 27774.25 31584.22 25851.06 34374.85 32379.10 34355.10 30468.83 35168.86 22579.20 35382.58 321
MIMVSNet71.09 29571.59 28869.57 32587.23 21950.07 35478.91 25871.83 34260.20 29771.26 33991.76 15855.08 30576.09 33141.06 37087.02 29882.54 323
test_fmvs1_n70.94 29670.41 29972.53 31073.92 35966.93 19875.99 30184.21 25943.31 36879.40 28279.39 34243.47 35768.55 35369.05 22284.91 31882.10 328
MS-PatchMatch70.93 29770.22 30073.06 30581.85 29462.50 24573.82 32277.90 29952.44 33475.92 31181.27 32655.67 30081.75 31155.37 31877.70 35874.94 359
pmmvs570.73 29870.07 30172.72 30777.03 33852.73 33574.14 31675.65 31550.36 35072.17 33685.37 28155.42 30280.67 31752.86 33487.59 29384.77 293
PatchT70.52 29972.76 27863.79 34779.38 32133.53 38277.63 27665.37 36473.61 16271.77 33792.79 13044.38 35575.65 33464.53 26385.37 31182.18 327
test_vis1_n70.29 30069.99 30371.20 31675.97 34866.50 20276.69 29080.81 28644.22 36475.43 31677.23 35650.00 32368.59 35266.71 24282.85 33578.52 353
N_pmnet70.20 30168.80 31274.38 29880.91 30484.81 3959.12 36776.45 31055.06 32175.31 32082.36 31755.74 29954.82 37747.02 35687.24 29583.52 308
tpmvs70.16 30269.56 30671.96 31374.71 35848.13 35879.63 24475.45 31765.02 26270.26 34381.88 32145.34 34885.68 28758.34 30075.39 36482.08 329
new-patchmatchnet70.10 30373.37 27160.29 35581.23 30116.95 38759.54 36574.62 31962.93 27080.97 26187.93 23862.83 25771.90 34155.24 32095.01 16292.00 181
YYNet170.06 30470.44 29768.90 32873.76 36153.42 33158.99 36867.20 35858.42 30487.10 15185.39 28059.82 27167.32 35859.79 29383.50 32985.96 280
MDA-MVSNet_test_wron70.05 30570.44 29768.88 32973.84 36053.47 32958.93 36967.28 35758.43 30387.09 15285.40 27959.80 27267.25 35959.66 29483.54 32885.92 282
CostFormer69.98 30668.68 31373.87 29977.14 33650.72 35179.26 25274.51 32151.94 33970.97 34284.75 29045.16 35187.49 26055.16 32179.23 35183.40 311
baseline269.77 30766.89 32078.41 25379.51 31958.09 29776.23 29769.57 35357.50 31264.82 36677.45 35446.02 33788.44 25053.08 33077.83 35688.70 252
PatchmatchNetpermissive69.71 30868.83 31172.33 31277.66 33253.60 32879.29 25169.99 35157.66 31072.53 33482.93 31046.45 33480.08 32160.91 28872.09 36883.31 314
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
test_fmvs169.57 30969.05 30971.14 31769.15 37665.77 21173.98 31983.32 26442.83 37077.77 29878.27 35043.39 36068.50 35468.39 23284.38 32579.15 351
JIA-IIPM69.41 31066.64 32477.70 26773.19 36471.24 16075.67 30365.56 36370.42 20765.18 36292.97 12233.64 37883.06 30553.52 32969.61 37478.79 352
UnsupCasMVSNet_bld69.21 31169.68 30567.82 33479.42 32051.15 34867.82 34875.79 31254.15 32577.47 30185.36 28259.26 27570.64 34448.46 35179.35 35081.66 332
test_cas_vis1_n_192069.20 31269.12 30769.43 32673.68 36262.82 23970.38 33877.21 30346.18 35880.46 27278.95 34552.03 31365.53 36665.77 25177.45 36179.95 349
gg-mvs-nofinetune68.96 31369.11 30868.52 33376.12 34745.32 36883.59 17455.88 37886.68 2464.62 36797.01 730.36 38183.97 30244.78 36482.94 33276.26 356
tpm268.45 31466.83 32173.30 30378.93 32748.50 35779.76 24371.76 34347.50 35369.92 34583.60 30142.07 36388.40 25148.44 35279.51 34883.01 318
tpm67.95 31568.08 31667.55 33578.74 32843.53 37475.60 30467.10 36154.92 32272.23 33588.10 23442.87 36275.97 33252.21 33580.95 34783.15 316
WTY-MVS67.91 31668.35 31466.58 33880.82 30748.12 35965.96 35372.60 33553.67 32771.20 34081.68 32458.97 27769.06 35048.57 35081.67 34082.55 322
test-LLR67.21 31766.74 32268.63 33176.45 34455.21 31967.89 34567.14 35962.43 27665.08 36372.39 36743.41 35869.37 34661.00 28684.89 31981.31 336
sss66.92 31867.26 31865.90 34077.23 33551.10 35064.79 35571.72 34452.12 33870.13 34480.18 33657.96 28465.36 36750.21 34381.01 34681.25 338
KD-MVS_2432*160066.87 31965.81 32670.04 32067.50 37747.49 36262.56 36079.16 29361.21 28677.98 29380.61 33025.29 38882.48 30853.02 33184.92 31680.16 347
miper_refine_blended66.87 31965.81 32670.04 32067.50 37747.49 36262.56 36079.16 29361.21 28677.98 29380.61 33025.29 38882.48 30853.02 33184.92 31680.16 347
dmvs_re66.81 32166.98 31966.28 33976.87 33958.68 29571.66 33272.24 33860.29 29569.52 34773.53 36652.38 31264.40 36944.90 36381.44 34375.76 357
tpm cat166.76 32265.21 32971.42 31477.09 33750.62 35278.01 26973.68 33044.89 36268.64 34879.00 34445.51 34582.42 31049.91 34570.15 37181.23 340
PVSNet58.17 2166.41 32365.63 32868.75 33081.96 29249.88 35562.19 36272.51 33751.03 34468.04 35175.34 36450.84 31974.77 33545.82 36282.96 33181.60 333
tpmrst66.28 32466.69 32365.05 34472.82 36839.33 37778.20 26870.69 34953.16 33067.88 35280.36 33548.18 32874.75 33658.13 30270.79 37081.08 341
Patchmatch-test65.91 32567.38 31761.48 35375.51 35143.21 37568.84 34263.79 36662.48 27472.80 33383.42 30544.89 35359.52 37548.27 35386.45 30281.70 331
ADS-MVSNet265.87 32663.64 33372.55 30973.16 36556.92 30867.10 34974.81 31849.74 35166.04 35782.97 30846.71 33277.26 32842.29 36769.96 37283.46 309
test_vis1_rt65.64 32764.09 33170.31 31966.09 38170.20 16861.16 36381.60 28138.65 37672.87 33269.66 37052.84 30960.04 37456.16 31177.77 35780.68 345
mvsany_test365.48 32862.97 33473.03 30669.99 37476.17 11464.83 35443.71 38543.68 36680.25 27687.05 25752.83 31063.09 37251.92 34072.44 36779.84 350
test-mter65.00 32963.79 33268.63 33176.45 34455.21 31967.89 34567.14 35950.98 34565.08 36372.39 36728.27 38469.37 34661.00 28684.89 31981.31 336
test0.0.03 164.66 33064.36 33065.57 34275.03 35646.89 36564.69 35661.58 37162.43 27671.18 34177.54 35243.41 35868.47 35540.75 37182.65 33681.35 335
test_f64.31 33165.85 32559.67 35666.54 38062.24 25257.76 37070.96 34740.13 37384.36 20582.09 31946.93 33151.67 37961.99 27981.89 33965.12 371
pmmvs362.47 33260.02 34569.80 32371.58 37264.00 22670.52 33658.44 37639.77 37466.05 35675.84 36227.10 38772.28 33946.15 36084.77 32373.11 361
EPMVS62.47 33262.63 33662.01 34970.63 37338.74 37874.76 31252.86 38053.91 32667.71 35480.01 33739.40 36766.60 36255.54 31768.81 37680.68 345
ADS-MVSNet61.90 33462.19 33861.03 35473.16 36536.42 38067.10 34961.75 36949.74 35166.04 35782.97 30846.71 33263.21 37042.29 36769.96 37283.46 309
PMMVS61.65 33560.38 34265.47 34365.40 38469.26 17763.97 35861.73 37036.80 37960.11 37368.43 37259.42 27366.35 36348.97 34978.57 35560.81 374
E-PMN61.59 33661.62 33961.49 35266.81 37955.40 31753.77 37360.34 37366.80 24658.90 37665.50 37540.48 36666.12 36455.72 31486.25 30562.95 373
TESTMET0.1,161.29 33760.32 34364.19 34672.06 37051.30 34667.89 34562.09 36745.27 36060.65 37269.01 37127.93 38564.74 36856.31 31081.65 34276.53 355
MVS-HIRNet61.16 33862.92 33555.87 35979.09 32435.34 38171.83 33057.98 37746.56 35659.05 37591.14 17249.95 32476.43 33038.74 37371.92 36955.84 378
EMVS61.10 33960.81 34161.99 35065.96 38255.86 31453.10 37458.97 37567.06 24356.89 37963.33 37640.98 36467.03 36054.79 32386.18 30663.08 372
DSMNet-mixed60.98 34061.61 34059.09 35872.88 36745.05 37074.70 31346.61 38426.20 38065.34 36190.32 19855.46 30163.12 37141.72 36981.30 34569.09 367
dp60.70 34160.29 34461.92 35172.04 37138.67 37970.83 33464.08 36551.28 34260.75 37177.28 35536.59 37471.58 34347.41 35562.34 37875.52 358
dmvs_testset60.59 34262.54 33754.72 36177.26 33427.74 38574.05 31861.00 37260.48 29365.62 36067.03 37455.93 29868.23 35632.07 38069.46 37568.17 368
CHOSEN 280x42059.08 34356.52 34866.76 33776.51 34264.39 22249.62 37559.00 37443.86 36555.66 38068.41 37335.55 37668.21 35743.25 36676.78 36367.69 369
mvsany_test158.48 34456.47 34964.50 34565.90 38368.21 18756.95 37142.11 38638.30 37765.69 35977.19 35856.96 29159.35 37646.16 35958.96 37965.93 370
PVSNet_051.08 2256.10 34554.97 35059.48 35775.12 35553.28 33255.16 37261.89 36844.30 36359.16 37462.48 37754.22 30665.91 36535.40 37647.01 38059.25 376
new_pmnet55.69 34657.66 34749.76 36275.47 35230.59 38359.56 36451.45 38143.62 36762.49 36975.48 36340.96 36549.15 38137.39 37572.52 36669.55 366
PMMVS255.64 34759.27 34644.74 36364.30 38512.32 38840.60 37649.79 38253.19 32965.06 36584.81 28953.60 30849.76 38032.68 37989.41 26872.15 362
MVEpermissive40.22 2351.82 34850.47 35155.87 35962.66 38651.91 34131.61 37839.28 38740.65 37250.76 38174.98 36556.24 29744.67 38233.94 37864.11 37771.04 365
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method30.46 34929.60 35233.06 36417.99 3883.84 39013.62 37973.92 3252.79 38218.29 38453.41 37928.53 38343.25 38322.56 38135.27 38252.11 379
cdsmvs_eth3d_5k20.81 35027.75 3530.00 3690.00 3920.00 3930.00 38085.44 2370.00 3870.00 38882.82 31281.46 1100.00 3880.00 3860.00 3860.00 384
tmp_tt20.25 35124.50 3547.49 3664.47 3898.70 38934.17 37725.16 3891.00 38432.43 38318.49 38139.37 3689.21 38521.64 38243.75 3814.57 381
ab-mvs-re6.65 3528.87 3550.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 38879.80 3390.00 3920.00 3880.00 3860.00 3860.00 384
pcd_1.5k_mvsjas6.41 3538.55 3560.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 38776.94 1540.00 3880.00 3860.00 3860.00 384
test1236.27 3548.08 3570.84 3671.11 3910.57 39162.90 3590.82 3910.54 3851.07 3872.75 3861.26 3900.30 3861.04 3841.26 3851.66 382
testmvs5.91 3557.65 3580.72 3681.20 3900.37 39259.14 3660.67 3920.49 3861.11 3862.76 3850.94 3910.24 3871.02 3851.47 3841.55 383
test_blank0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
uanet_test0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
DCPMVS0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
sosnet-low-res0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
sosnet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
uncertanet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
Regformer0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
uanet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
FOURS196.08 1187.41 1096.19 295.83 492.95 296.57 2
MSC_two_6792asdad88.81 6891.55 12777.99 8791.01 13696.05 787.45 1898.17 3292.40 163
PC_three_145258.96 30190.06 9691.33 16780.66 12093.03 13675.78 15295.94 12592.48 159
No_MVS88.81 6891.55 12777.99 8791.01 13696.05 787.45 1898.17 3292.40 163
test_one_060193.85 5873.27 13094.11 3386.57 2593.47 3894.64 6088.42 26
eth-test20.00 392
eth-test0.00 392
ZD-MVS92.22 10280.48 6791.85 11371.22 20090.38 9192.98 12086.06 5996.11 581.99 8396.75 91
RE-MVS-def92.61 494.13 5188.95 592.87 1394.16 2788.75 1493.79 2894.43 6790.64 1087.16 2797.60 6492.73 148
IU-MVS94.18 4672.64 13790.82 14156.98 31589.67 10885.78 4697.92 4693.28 130
OPU-MVS88.27 7991.89 11377.83 9090.47 5191.22 16981.12 11494.68 7074.48 16395.35 14592.29 169
test_241102_TWO93.71 4983.77 4593.49 3694.27 7489.27 2195.84 2286.03 4297.82 5192.04 179
test_241102_ONE94.18 4672.65 13593.69 5083.62 4794.11 2293.78 10490.28 1495.50 45
9.1489.29 5891.84 11788.80 8895.32 1175.14 14691.07 8092.89 12587.27 4493.78 10483.69 6697.55 67
save fliter93.75 5977.44 9686.31 12789.72 17270.80 203
test_0728_THIRD85.33 3293.75 3094.65 5787.44 4395.78 2787.41 2098.21 2992.98 142
test_0728_SECOND86.79 9694.25 4572.45 14590.54 4894.10 3495.88 1686.42 3297.97 4392.02 180
test072694.16 4972.56 14190.63 4593.90 4283.61 4893.75 3094.49 6489.76 18
GSMVS83.88 301
test_part293.86 5777.77 9192.84 48
sam_mvs146.11 33683.88 301
sam_mvs45.92 341
ambc82.98 17990.55 15464.86 21788.20 9689.15 18389.40 11793.96 9571.67 21391.38 18178.83 11496.55 9692.71 151
MTGPAbinary91.81 116
test_post178.85 2613.13 38345.19 35080.13 32058.11 303
test_post3.10 38445.43 34677.22 329
patchmatchnet-post81.71 32345.93 34087.01 264
GG-mvs-BLEND67.16 33673.36 36346.54 36784.15 15655.04 37958.64 37761.95 37829.93 38283.87 30338.71 37476.92 36271.07 364
MTMP90.66 4433.14 388
gm-plane-assit75.42 35344.97 37152.17 33572.36 36987.90 25554.10 326
test9_res80.83 9296.45 10390.57 218
TEST992.34 9679.70 7483.94 16290.32 15565.41 26084.49 20290.97 17882.03 10193.63 109
test_892.09 10678.87 8183.82 16790.31 15765.79 25184.36 20590.96 18081.93 10393.44 122
agg_prior279.68 10696.16 11390.22 226
agg_prior91.58 12577.69 9390.30 15884.32 20793.18 130
TestCases89.68 5391.59 12283.40 4895.44 979.47 9188.00 13893.03 11882.66 8891.47 17570.81 20096.14 11494.16 93
test_prior478.97 8084.59 147
test_prior283.37 17975.43 14284.58 20191.57 16181.92 10579.54 10896.97 84
test_prior86.32 10490.59 15371.99 15292.85 8694.17 9192.80 146
旧先验281.73 21956.88 31686.54 17084.90 29472.81 190
新几何281.72 220
新几何182.95 18193.96 5578.56 8480.24 28955.45 32083.93 21891.08 17571.19 21588.33 25265.84 24993.07 20981.95 330
旧先验191.97 10971.77 15381.78 27991.84 15473.92 18493.65 19783.61 307
无先验82.81 19585.62 23658.09 30691.41 18067.95 23684.48 295
原ACMM282.26 213
原ACMM184.60 14192.81 8774.01 12691.50 12162.59 27282.73 23590.67 19176.53 16194.25 8569.24 21795.69 13985.55 285
test22293.31 7176.54 10679.38 25077.79 30052.59 33282.36 23990.84 18566.83 23391.69 23681.25 338
testdata286.43 27663.52 268
segment_acmp81.94 102
testdata79.54 23892.87 8272.34 14680.14 29059.91 29885.47 18891.75 15967.96 22885.24 29068.57 23192.18 22981.06 343
testdata179.62 24573.95 157
test1286.57 9990.74 14972.63 13990.69 14482.76 23479.20 13094.80 6795.32 14792.27 171
plane_prior793.45 6677.31 99
plane_prior692.61 8876.54 10674.84 173
plane_prior593.61 5395.22 5580.78 9395.83 13194.46 80
plane_prior492.95 123
plane_prior376.85 10477.79 11586.55 165
plane_prior289.45 7779.44 93
plane_prior192.83 86
plane_prior76.42 11087.15 11175.94 13595.03 159
n20.00 393
nn0.00 393
door-mid74.45 322
lessismore_v085.95 11491.10 14270.99 16270.91 34891.79 6794.42 6961.76 25992.93 13979.52 10993.03 21093.93 104
LGP-MVS_train90.82 3394.75 4081.69 5994.27 1982.35 6093.67 3394.82 5291.18 495.52 4185.36 4898.73 695.23 59
test1191.46 122
door72.57 336
HQP5-MVS70.66 163
HQP-NCC91.19 13784.77 14273.30 16980.55 269
ACMP_Plane91.19 13784.77 14273.30 16980.55 269
BP-MVS77.30 137
HQP4-MVS80.56 26894.61 7393.56 124
HQP3-MVS92.68 9194.47 179
HQP2-MVS72.10 206
NP-MVS91.95 11074.55 12390.17 204
MDTV_nov1_ep13_2view27.60 38670.76 33546.47 35761.27 37045.20 34949.18 34883.75 306
MDTV_nov1_ep1368.29 31578.03 32943.87 37374.12 31772.22 33952.17 33567.02 35585.54 27545.36 34780.85 31655.73 31384.42 324
ACMMP++_ref95.74 138
ACMMP++97.35 73
Test By Simon79.09 131
ITE_SJBPF90.11 4590.72 15084.97 3790.30 15881.56 6890.02 9891.20 17182.40 9290.81 19873.58 17894.66 17594.56 76
DeepMVS_CXcopyleft24.13 36532.95 38729.49 38421.63 39012.07 38137.95 38245.07 38030.84 38019.21 38417.94 38333.06 38323.69 380