| MCST-MVS | | | 91.08 1 | 91.46 3 | 89.94 4 | 97.66 2 | 73.37 10 | 97.13 2 | 95.58 11 | 89.33 1 | 85.77 54 | 96.26 30 | 72.84 29 | 99.38 1 | 92.64 20 | 95.93 9 | 97.08 11 |
|
| MM | | | 90.87 2 | 91.52 2 | 88.92 15 | 92.12 100 | 71.10 27 | 97.02 3 | 96.04 6 | 88.70 2 | 91.57 14 | 96.19 32 | 70.12 45 | 98.91 18 | 96.83 1 | 95.06 17 | 96.76 15 |
|
| DPM-MVS | | | 90.70 3 | 90.52 9 | 91.24 1 | 89.68 160 | 76.68 2 | 97.29 1 | 95.35 16 | 82.87 22 | 91.58 13 | 97.22 3 | 79.93 5 | 99.10 9 | 83.12 102 | 97.64 2 | 97.94 1 |
|
| DVP-MVS++ | | | 90.53 4 | 91.09 5 | 88.87 16 | 97.31 4 | 69.91 42 | 93.96 70 | 94.37 53 | 72.48 189 | 92.07 9 | 96.85 16 | 83.82 2 | 99.15 2 | 91.53 30 | 97.42 4 | 97.55 4 |
|
| MSP-MVS | | | 90.38 5 | 91.87 1 | 85.88 91 | 92.83 79 | 64.03 195 | 93.06 112 | 94.33 55 | 82.19 29 | 93.65 3 | 96.15 34 | 85.89 1 | 97.19 84 | 91.02 34 | 97.75 1 | 96.43 31 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| MVS_0304 | | | 90.32 6 | 90.90 7 | 88.55 23 | 94.05 45 | 70.23 36 | 97.00 5 | 93.73 74 | 87.30 4 | 92.15 6 | 96.15 34 | 66.38 67 | 98.94 17 | 96.71 2 | 94.67 33 | 96.47 28 |
|
| CNVR-MVS | | | 90.32 6 | 90.89 8 | 88.61 22 | 96.76 8 | 70.65 30 | 96.47 14 | 94.83 31 | 84.83 11 | 89.07 31 | 96.80 19 | 70.86 41 | 99.06 15 | 92.64 20 | 95.71 11 | 96.12 40 |
|
| DELS-MVS | | | 90.05 8 | 90.09 11 | 89.94 4 | 93.14 70 | 73.88 9 | 97.01 4 | 94.40 51 | 88.32 3 | 85.71 55 | 94.91 73 | 74.11 21 | 98.91 18 | 87.26 62 | 95.94 8 | 97.03 12 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| SED-MVS | | | 89.94 9 | 90.36 10 | 88.70 18 | 96.45 12 | 69.38 55 | 96.89 6 | 94.44 47 | 71.65 219 | 92.11 7 | 97.21 4 | 76.79 9 | 99.11 6 | 92.34 22 | 95.36 14 | 97.62 2 |
|
| DeepPCF-MVS | | 81.17 1 | 89.72 10 | 91.38 4 | 84.72 135 | 93.00 75 | 58.16 313 | 96.72 9 | 94.41 49 | 86.50 8 | 90.25 22 | 97.83 1 | 75.46 14 | 98.67 25 | 92.78 19 | 95.49 13 | 97.32 6 |
|
| patch_mono-2 | | | 89.71 11 | 90.99 6 | 85.85 94 | 96.04 24 | 63.70 205 | 95.04 40 | 95.19 20 | 86.74 7 | 91.53 15 | 95.15 66 | 73.86 22 | 97.58 59 | 93.38 14 | 92.00 69 | 96.28 37 |
|
| CANet | | | 89.61 12 | 89.99 12 | 88.46 24 | 94.39 39 | 69.71 50 | 96.53 13 | 93.78 67 | 86.89 6 | 89.68 28 | 95.78 40 | 65.94 72 | 99.10 9 | 92.99 17 | 93.91 42 | 96.58 21 |
|
| DVP-MVS |  | | 89.41 13 | 89.73 14 | 88.45 25 | 96.40 15 | 69.99 38 | 96.64 10 | 94.52 43 | 71.92 205 | 90.55 20 | 96.93 11 | 73.77 23 | 99.08 11 | 91.91 28 | 94.90 22 | 96.29 35 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| HPM-MVS++ |  | | 89.37 14 | 89.95 13 | 87.64 34 | 95.10 30 | 68.23 86 | 95.24 33 | 94.49 45 | 82.43 26 | 88.90 32 | 96.35 27 | 71.89 38 | 98.63 26 | 88.76 48 | 96.40 6 | 96.06 41 |
|
| balanced_conf03 | | | 89.08 15 | 88.84 17 | 89.81 6 | 93.66 54 | 75.15 5 | 90.61 226 | 93.43 88 | 84.06 14 | 86.20 49 | 90.17 183 | 72.42 33 | 96.98 101 | 93.09 16 | 95.92 10 | 97.29 7 |
|
| NCCC | | | 89.07 16 | 89.46 15 | 87.91 28 | 96.60 10 | 69.05 63 | 96.38 15 | 94.64 40 | 84.42 12 | 86.74 45 | 96.20 31 | 66.56 66 | 98.76 24 | 89.03 47 | 94.56 34 | 95.92 46 |
|
| DPE-MVS |  | | 88.77 17 | 89.21 16 | 87.45 43 | 96.26 20 | 67.56 103 | 94.17 58 | 94.15 60 | 68.77 268 | 90.74 18 | 97.27 2 | 76.09 12 | 98.49 29 | 90.58 38 | 94.91 21 | 96.30 34 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| SMA-MVS |  | | 88.14 18 | 88.29 22 | 87.67 33 | 93.21 67 | 68.72 72 | 93.85 77 | 94.03 63 | 74.18 152 | 91.74 12 | 96.67 21 | 65.61 76 | 98.42 33 | 89.24 44 | 96.08 7 | 95.88 47 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| PS-MVSNAJ | | | 88.14 18 | 87.61 29 | 89.71 7 | 92.06 101 | 76.72 1 | 95.75 20 | 93.26 94 | 83.86 15 | 89.55 29 | 96.06 36 | 53.55 225 | 97.89 43 | 91.10 32 | 93.31 53 | 94.54 109 |
|
| TSAR-MVS + MP. | | | 88.11 20 | 88.64 18 | 86.54 72 | 91.73 115 | 68.04 90 | 90.36 232 | 93.55 81 | 82.89 21 | 91.29 16 | 92.89 126 | 72.27 35 | 96.03 149 | 87.99 52 | 94.77 26 | 95.54 57 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| TSAR-MVS + GP. | | | 87.96 21 | 88.37 21 | 86.70 65 | 93.51 61 | 65.32 160 | 95.15 36 | 93.84 66 | 78.17 96 | 85.93 53 | 94.80 76 | 75.80 13 | 98.21 34 | 89.38 41 | 88.78 107 | 96.59 19 |
|
| DeepC-MVS_fast | | 79.48 2 | 87.95 22 | 88.00 25 | 87.79 31 | 95.86 27 | 68.32 80 | 95.74 21 | 94.11 61 | 83.82 16 | 83.49 77 | 96.19 32 | 64.53 90 | 98.44 31 | 83.42 101 | 94.88 25 | 96.61 18 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| xiu_mvs_v2_base | | | 87.92 23 | 87.38 33 | 89.55 12 | 91.41 127 | 76.43 3 | 95.74 21 | 93.12 102 | 83.53 18 | 89.55 29 | 95.95 38 | 53.45 229 | 97.68 50 | 91.07 33 | 92.62 60 | 94.54 109 |
|
| EPNet | | | 87.84 24 | 88.38 20 | 86.23 82 | 93.30 64 | 66.05 142 | 95.26 32 | 94.84 30 | 87.09 5 | 88.06 34 | 94.53 82 | 66.79 63 | 97.34 73 | 83.89 95 | 91.68 74 | 95.29 70 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| lupinMVS | | | 87.74 25 | 87.77 27 | 87.63 38 | 89.24 175 | 71.18 24 | 96.57 12 | 92.90 111 | 82.70 24 | 87.13 40 | 95.27 59 | 64.99 81 | 95.80 154 | 89.34 42 | 91.80 72 | 95.93 45 |
|
| test_fmvsm_n_1920 | | | 87.69 26 | 88.50 19 | 85.27 115 | 87.05 233 | 63.55 212 | 93.69 87 | 91.08 196 | 84.18 13 | 90.17 24 | 97.04 8 | 67.58 58 | 97.99 39 | 95.72 5 | 90.03 95 | 94.26 119 |
|
| APDe-MVS |  | | 87.54 27 | 87.84 26 | 86.65 66 | 96.07 23 | 66.30 138 | 94.84 45 | 93.78 67 | 69.35 259 | 88.39 33 | 96.34 28 | 67.74 57 | 97.66 54 | 90.62 37 | 93.44 51 | 96.01 44 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| fmvsm_l_conf0.5_n | | | 87.49 28 | 88.19 23 | 85.39 109 | 86.95 234 | 64.37 185 | 94.30 55 | 88.45 297 | 80.51 51 | 92.70 4 | 96.86 15 | 69.98 46 | 97.15 89 | 95.83 4 | 88.08 115 | 94.65 103 |
|
| SD-MVS | | | 87.49 28 | 87.49 31 | 87.50 42 | 93.60 56 | 68.82 69 | 93.90 74 | 92.63 123 | 76.86 117 | 87.90 35 | 95.76 41 | 66.17 69 | 97.63 56 | 89.06 46 | 91.48 78 | 96.05 42 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| fmvsm_l_conf0.5_n_a | | | 87.44 30 | 88.15 24 | 85.30 113 | 87.10 231 | 64.19 192 | 94.41 52 | 88.14 306 | 80.24 59 | 92.54 5 | 96.97 10 | 69.52 48 | 97.17 85 | 95.89 3 | 88.51 110 | 94.56 106 |
|
| dcpmvs_2 | | | 87.37 31 | 87.55 30 | 86.85 58 | 95.04 32 | 68.20 87 | 90.36 232 | 90.66 208 | 79.37 74 | 81.20 99 | 93.67 110 | 74.73 16 | 96.55 123 | 90.88 35 | 92.00 69 | 95.82 48 |
|
| alignmvs | | | 87.28 32 | 86.97 37 | 88.24 27 | 91.30 129 | 71.14 26 | 95.61 25 | 93.56 80 | 79.30 75 | 87.07 42 | 95.25 61 | 68.43 50 | 96.93 109 | 87.87 53 | 84.33 153 | 96.65 17 |
|
| train_agg | | | 87.21 33 | 87.42 32 | 86.60 68 | 94.18 41 | 67.28 110 | 94.16 59 | 93.51 82 | 71.87 210 | 85.52 57 | 95.33 54 | 68.19 52 | 97.27 80 | 89.09 45 | 94.90 22 | 95.25 76 |
|
| MG-MVS | | | 87.11 34 | 86.27 46 | 89.62 8 | 97.79 1 | 76.27 4 | 94.96 43 | 94.49 45 | 78.74 90 | 83.87 75 | 92.94 124 | 64.34 91 | 96.94 107 | 75.19 163 | 94.09 38 | 95.66 52 |
|
| SF-MVS | | | 87.03 35 | 87.09 35 | 86.84 59 | 92.70 85 | 67.45 108 | 93.64 90 | 93.76 70 | 70.78 243 | 86.25 47 | 96.44 26 | 66.98 61 | 97.79 47 | 88.68 49 | 94.56 34 | 95.28 72 |
|
| CSCG | | | 86.87 36 | 86.26 47 | 88.72 17 | 95.05 31 | 70.79 29 | 93.83 82 | 95.33 17 | 68.48 272 | 77.63 145 | 94.35 91 | 73.04 27 | 98.45 30 | 84.92 84 | 93.71 47 | 96.92 14 |
|
| sasdasda | | | 86.85 37 | 86.25 48 | 88.66 20 | 91.80 113 | 71.92 16 | 93.54 95 | 91.71 165 | 80.26 56 | 87.55 37 | 95.25 61 | 63.59 104 | 96.93 109 | 88.18 50 | 84.34 151 | 97.11 9 |
|
| canonicalmvs | | | 86.85 37 | 86.25 48 | 88.66 20 | 91.80 113 | 71.92 16 | 93.54 95 | 91.71 165 | 80.26 56 | 87.55 37 | 95.25 61 | 63.59 104 | 96.93 109 | 88.18 50 | 84.34 151 | 97.11 9 |
|
| UBG | | | 86.83 39 | 86.70 42 | 87.20 48 | 93.07 73 | 69.81 46 | 93.43 103 | 95.56 13 | 81.52 36 | 81.50 95 | 92.12 145 | 73.58 26 | 96.28 134 | 84.37 90 | 85.20 144 | 95.51 58 |
|
| PHI-MVS | | | 86.83 39 | 86.85 41 | 86.78 63 | 93.47 62 | 65.55 156 | 95.39 30 | 95.10 23 | 71.77 215 | 85.69 56 | 96.52 23 | 62.07 124 | 98.77 23 | 86.06 74 | 95.60 12 | 96.03 43 |
|
| SteuartSystems-ACMMP | | | 86.82 41 | 86.90 39 | 86.58 70 | 90.42 145 | 66.38 135 | 96.09 17 | 93.87 65 | 77.73 104 | 84.01 74 | 95.66 43 | 63.39 107 | 97.94 40 | 87.40 60 | 93.55 50 | 95.42 59 |
| Skip Steuart: Steuart Systems R&D Blog. |
| PVSNet_Blended | | | 86.73 42 | 86.86 40 | 86.31 81 | 93.76 50 | 67.53 105 | 96.33 16 | 93.61 78 | 82.34 28 | 81.00 104 | 93.08 120 | 63.19 111 | 97.29 76 | 87.08 65 | 91.38 80 | 94.13 128 |
|
| testing11 | | | 86.71 43 | 86.44 45 | 87.55 40 | 93.54 59 | 71.35 21 | 93.65 89 | 95.58 11 | 81.36 43 | 80.69 107 | 92.21 144 | 72.30 34 | 96.46 128 | 85.18 80 | 83.43 160 | 94.82 95 |
|
| test_fmvsmconf_n | | | 86.58 44 | 87.17 34 | 84.82 128 | 85.28 264 | 62.55 237 | 94.26 57 | 89.78 241 | 83.81 17 | 87.78 36 | 96.33 29 | 65.33 78 | 96.98 101 | 94.40 11 | 87.55 121 | 94.95 87 |
|
| BP-MVS1 | | | 86.54 45 | 86.68 43 | 86.13 85 | 87.80 215 | 67.18 114 | 92.97 117 | 95.62 10 | 79.92 62 | 82.84 84 | 94.14 100 | 74.95 15 | 96.46 128 | 82.91 104 | 88.96 106 | 94.74 97 |
|
| jason | | | 86.40 46 | 86.17 50 | 87.11 51 | 86.16 249 | 70.54 32 | 95.71 24 | 92.19 140 | 82.00 31 | 84.58 67 | 94.34 92 | 61.86 126 | 95.53 174 | 87.76 54 | 90.89 86 | 95.27 73 |
| jason: jason. |
| fmvsm_s_conf0.5_n | | | 86.39 47 | 86.91 38 | 84.82 128 | 87.36 226 | 63.54 213 | 94.74 47 | 90.02 235 | 82.52 25 | 90.14 25 | 96.92 13 | 62.93 116 | 97.84 46 | 95.28 8 | 82.26 170 | 93.07 165 |
|
| WTY-MVS | | | 86.32 48 | 85.81 57 | 87.85 29 | 92.82 81 | 69.37 57 | 95.20 34 | 95.25 18 | 82.71 23 | 81.91 92 | 94.73 77 | 67.93 56 | 97.63 56 | 79.55 132 | 82.25 171 | 96.54 22 |
|
| MSLP-MVS++ | | | 86.27 49 | 85.91 56 | 87.35 45 | 92.01 105 | 68.97 66 | 95.04 40 | 92.70 116 | 79.04 85 | 81.50 95 | 96.50 25 | 58.98 161 | 96.78 115 | 83.49 100 | 93.93 41 | 96.29 35 |
|
| VNet | | | 86.20 50 | 85.65 61 | 87.84 30 | 93.92 47 | 69.99 38 | 95.73 23 | 95.94 7 | 78.43 93 | 86.00 52 | 93.07 121 | 58.22 168 | 97.00 97 | 85.22 78 | 84.33 153 | 96.52 23 |
|
| MVS_111021_HR | | | 86.19 51 | 85.80 58 | 87.37 44 | 93.17 69 | 69.79 47 | 93.99 69 | 93.76 70 | 79.08 82 | 78.88 133 | 93.99 104 | 62.25 123 | 98.15 36 | 85.93 75 | 91.15 84 | 94.15 127 |
|
| SPE-MVS-test | | | 86.14 52 | 87.01 36 | 83.52 177 | 92.63 87 | 59.36 302 | 95.49 27 | 91.92 152 | 80.09 60 | 85.46 59 | 95.53 49 | 61.82 128 | 95.77 157 | 86.77 69 | 93.37 52 | 95.41 60 |
|
| ACMMP_NAP | | | 86.05 53 | 85.80 58 | 86.80 62 | 91.58 119 | 67.53 105 | 91.79 172 | 93.49 85 | 74.93 143 | 84.61 66 | 95.30 56 | 59.42 152 | 97.92 41 | 86.13 72 | 94.92 20 | 94.94 88 |
|
| testing99 | | | 86.01 54 | 85.47 62 | 87.63 38 | 93.62 55 | 71.25 23 | 93.47 101 | 95.23 19 | 80.42 54 | 80.60 109 | 91.95 149 | 71.73 39 | 96.50 126 | 80.02 129 | 82.22 172 | 95.13 79 |
|
| ETV-MVS | | | 86.01 54 | 86.11 51 | 85.70 101 | 90.21 150 | 67.02 120 | 93.43 103 | 91.92 152 | 81.21 45 | 84.13 73 | 94.07 103 | 60.93 136 | 95.63 165 | 89.28 43 | 89.81 96 | 94.46 115 |
|
| testing91 | | | 85.93 56 | 85.31 66 | 87.78 32 | 93.59 57 | 71.47 19 | 93.50 98 | 95.08 26 | 80.26 56 | 80.53 110 | 91.93 150 | 70.43 43 | 96.51 125 | 80.32 127 | 82.13 174 | 95.37 63 |
|
| APD-MVS |  | | 85.93 56 | 85.99 54 | 85.76 98 | 95.98 26 | 65.21 163 | 93.59 93 | 92.58 125 | 66.54 286 | 86.17 50 | 95.88 39 | 63.83 97 | 97.00 97 | 86.39 71 | 92.94 57 | 95.06 82 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| PAPM | | | 85.89 58 | 85.46 63 | 87.18 49 | 88.20 203 | 72.42 15 | 92.41 144 | 92.77 114 | 82.11 30 | 80.34 113 | 93.07 121 | 68.27 51 | 95.02 187 | 78.39 145 | 93.59 49 | 94.09 130 |
|
| CS-MVS | | | 85.80 59 | 86.65 44 | 83.27 185 | 92.00 106 | 58.92 306 | 95.31 31 | 91.86 157 | 79.97 61 | 84.82 65 | 95.40 52 | 62.26 122 | 95.51 175 | 86.11 73 | 92.08 68 | 95.37 63 |
|
| fmvsm_s_conf0.5_n_a | | | 85.75 60 | 86.09 52 | 84.72 135 | 85.73 258 | 63.58 210 | 93.79 83 | 89.32 259 | 81.42 41 | 90.21 23 | 96.91 14 | 62.41 121 | 97.67 51 | 94.48 10 | 80.56 189 | 92.90 171 |
|
| test_fmvsmconf0.1_n | | | 85.71 61 | 86.08 53 | 84.62 142 | 80.83 318 | 62.33 242 | 93.84 80 | 88.81 285 | 83.50 19 | 87.00 43 | 96.01 37 | 63.36 108 | 96.93 109 | 94.04 12 | 87.29 124 | 94.61 105 |
|
| CDPH-MVS | | | 85.71 61 | 85.46 63 | 86.46 74 | 94.75 34 | 67.19 112 | 93.89 75 | 92.83 113 | 70.90 239 | 83.09 82 | 95.28 57 | 63.62 102 | 97.36 71 | 80.63 123 | 94.18 37 | 94.84 92 |
|
| casdiffmvs_mvg |  | | 85.66 63 | 85.18 68 | 87.09 52 | 88.22 202 | 69.35 58 | 93.74 86 | 91.89 155 | 81.47 37 | 80.10 115 | 91.45 159 | 64.80 86 | 96.35 132 | 87.23 63 | 87.69 119 | 95.58 55 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| fmvsm_s_conf0.1_n | | | 85.61 64 | 85.93 55 | 84.68 138 | 82.95 301 | 63.48 215 | 94.03 68 | 89.46 253 | 81.69 34 | 89.86 26 | 96.74 20 | 61.85 127 | 97.75 49 | 94.74 9 | 82.01 176 | 92.81 173 |
|
| MGCFI-Net | | | 85.59 65 | 85.73 60 | 85.17 119 | 91.41 127 | 62.44 238 | 92.87 122 | 91.31 182 | 79.65 68 | 86.99 44 | 95.14 67 | 62.90 117 | 96.12 141 | 87.13 64 | 84.13 158 | 96.96 13 |
|
| GDP-MVS | | | 85.54 66 | 85.32 65 | 86.18 83 | 87.64 218 | 67.95 94 | 92.91 121 | 92.36 130 | 77.81 102 | 83.69 76 | 94.31 94 | 72.84 29 | 96.41 130 | 80.39 126 | 85.95 139 | 94.19 123 |
|
| DeepC-MVS | | 77.85 3 | 85.52 67 | 85.24 67 | 86.37 78 | 88.80 185 | 66.64 129 | 92.15 151 | 93.68 76 | 81.07 46 | 76.91 155 | 93.64 111 | 62.59 119 | 98.44 31 | 85.50 76 | 92.84 59 | 94.03 134 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| casdiffmvs |  | | 85.37 68 | 84.87 74 | 86.84 59 | 88.25 200 | 69.07 62 | 93.04 114 | 91.76 162 | 81.27 44 | 80.84 106 | 92.07 147 | 64.23 92 | 96.06 147 | 84.98 83 | 87.43 123 | 95.39 61 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| ZNCC-MVS | | | 85.33 69 | 85.08 70 | 86.06 86 | 93.09 72 | 65.65 152 | 93.89 75 | 93.41 90 | 73.75 163 | 79.94 117 | 94.68 79 | 60.61 139 | 98.03 38 | 82.63 107 | 93.72 46 | 94.52 111 |
|
| MP-MVS-pluss | | | 85.24 70 | 85.13 69 | 85.56 104 | 91.42 124 | 65.59 154 | 91.54 182 | 92.51 127 | 74.56 146 | 80.62 108 | 95.64 44 | 59.15 156 | 97.00 97 | 86.94 67 | 93.80 43 | 94.07 132 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| testing222 | | | 85.18 71 | 84.69 76 | 86.63 67 | 92.91 77 | 69.91 42 | 92.61 135 | 95.80 9 | 80.31 55 | 80.38 112 | 92.27 141 | 68.73 49 | 95.19 184 | 75.94 157 | 83.27 162 | 94.81 96 |
|
| PAPR | | | 85.15 72 | 84.47 77 | 87.18 49 | 96.02 25 | 68.29 81 | 91.85 170 | 93.00 108 | 76.59 124 | 79.03 129 | 95.00 68 | 61.59 129 | 97.61 58 | 78.16 146 | 89.00 105 | 95.63 53 |
|
| MP-MVS |  | | 85.02 73 | 84.97 72 | 85.17 119 | 92.60 88 | 64.27 190 | 93.24 107 | 92.27 133 | 73.13 174 | 79.63 121 | 94.43 85 | 61.90 125 | 97.17 85 | 85.00 82 | 92.56 61 | 94.06 133 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| baseline | | | 85.01 74 | 84.44 78 | 86.71 64 | 88.33 197 | 68.73 71 | 90.24 237 | 91.82 161 | 81.05 47 | 81.18 100 | 92.50 133 | 63.69 100 | 96.08 146 | 84.45 89 | 86.71 133 | 95.32 68 |
|
| CHOSEN 1792x2688 | | | 84.98 75 | 83.45 92 | 89.57 11 | 89.94 155 | 75.14 6 | 92.07 157 | 92.32 131 | 81.87 32 | 75.68 164 | 88.27 207 | 60.18 142 | 98.60 27 | 80.46 125 | 90.27 94 | 94.96 86 |
|
| MVSMamba_PlusPlus | | | 84.97 76 | 83.65 86 | 88.93 14 | 90.17 151 | 74.04 8 | 87.84 284 | 92.69 118 | 62.18 324 | 81.47 97 | 87.64 221 | 71.47 40 | 96.28 134 | 84.69 86 | 94.74 31 | 96.47 28 |
|
| EIA-MVS | | | 84.84 77 | 84.88 73 | 84.69 137 | 91.30 129 | 62.36 241 | 93.85 77 | 92.04 145 | 79.45 71 | 79.33 126 | 94.28 96 | 62.42 120 | 96.35 132 | 80.05 128 | 91.25 83 | 95.38 62 |
|
| fmvsm_s_conf0.1_n_a | | | 84.76 78 | 84.84 75 | 84.53 144 | 80.23 328 | 63.50 214 | 92.79 124 | 88.73 288 | 80.46 52 | 89.84 27 | 96.65 22 | 60.96 135 | 97.57 61 | 93.80 13 | 80.14 191 | 92.53 180 |
|
| HFP-MVS | | | 84.73 79 | 84.40 79 | 85.72 100 | 93.75 52 | 65.01 169 | 93.50 98 | 93.19 98 | 72.19 199 | 79.22 127 | 94.93 71 | 59.04 159 | 97.67 51 | 81.55 113 | 92.21 64 | 94.49 114 |
|
| MVS | | | 84.66 80 | 82.86 110 | 90.06 2 | 90.93 136 | 74.56 7 | 87.91 282 | 95.54 14 | 68.55 270 | 72.35 206 | 94.71 78 | 59.78 148 | 98.90 20 | 81.29 119 | 94.69 32 | 96.74 16 |
|
| GST-MVS | | | 84.63 81 | 84.29 80 | 85.66 102 | 92.82 81 | 65.27 161 | 93.04 114 | 93.13 101 | 73.20 172 | 78.89 130 | 94.18 99 | 59.41 153 | 97.85 45 | 81.45 115 | 92.48 63 | 93.86 142 |
|
| EC-MVSNet | | | 84.53 82 | 85.04 71 | 83.01 189 | 89.34 167 | 61.37 263 | 94.42 51 | 91.09 194 | 77.91 100 | 83.24 78 | 94.20 98 | 58.37 166 | 95.40 176 | 85.35 77 | 91.41 79 | 92.27 190 |
|
| ACMMPR | | | 84.37 83 | 84.06 81 | 85.28 114 | 93.56 58 | 64.37 185 | 93.50 98 | 93.15 100 | 72.19 199 | 78.85 135 | 94.86 74 | 56.69 188 | 97.45 65 | 81.55 113 | 92.20 65 | 94.02 135 |
|
| region2R | | | 84.36 84 | 84.03 82 | 85.36 111 | 93.54 59 | 64.31 188 | 93.43 103 | 92.95 109 | 72.16 202 | 78.86 134 | 94.84 75 | 56.97 183 | 97.53 63 | 81.38 117 | 92.11 67 | 94.24 121 |
|
| LFMVS | | | 84.34 85 | 82.73 112 | 89.18 13 | 94.76 33 | 73.25 11 | 94.99 42 | 91.89 155 | 71.90 207 | 82.16 91 | 93.49 115 | 47.98 279 | 97.05 92 | 82.55 108 | 84.82 147 | 97.25 8 |
|
| test_yl | | | 84.28 86 | 83.16 102 | 87.64 34 | 94.52 37 | 69.24 59 | 95.78 18 | 95.09 24 | 69.19 262 | 81.09 101 | 92.88 127 | 57.00 181 | 97.44 66 | 81.11 121 | 81.76 178 | 96.23 38 |
|
| DCV-MVSNet | | | 84.28 86 | 83.16 102 | 87.64 34 | 94.52 37 | 69.24 59 | 95.78 18 | 95.09 24 | 69.19 262 | 81.09 101 | 92.88 127 | 57.00 181 | 97.44 66 | 81.11 121 | 81.76 178 | 96.23 38 |
|
| diffmvs |  | | 84.28 86 | 83.83 83 | 85.61 103 | 87.40 224 | 68.02 91 | 90.88 212 | 89.24 262 | 80.54 50 | 81.64 94 | 92.52 132 | 59.83 147 | 94.52 211 | 87.32 61 | 85.11 145 | 94.29 118 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| HY-MVS | | 76.49 5 | 84.28 86 | 83.36 98 | 87.02 55 | 92.22 95 | 67.74 98 | 84.65 310 | 94.50 44 | 79.15 79 | 82.23 90 | 87.93 216 | 66.88 62 | 96.94 107 | 80.53 124 | 82.20 173 | 96.39 33 |
|
| ETVMVS | | | 84.22 90 | 83.71 84 | 85.76 98 | 92.58 89 | 68.25 85 | 92.45 143 | 95.53 15 | 79.54 70 | 79.46 123 | 91.64 157 | 70.29 44 | 94.18 223 | 69.16 218 | 82.76 168 | 94.84 92 |
|
| MAR-MVS | | | 84.18 91 | 83.43 93 | 86.44 75 | 96.25 21 | 65.93 147 | 94.28 56 | 94.27 57 | 74.41 147 | 79.16 128 | 95.61 45 | 53.99 220 | 98.88 22 | 69.62 212 | 93.26 54 | 94.50 113 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| MVS_Test | | | 84.16 92 | 83.20 101 | 87.05 54 | 91.56 120 | 69.82 45 | 89.99 246 | 92.05 144 | 77.77 103 | 82.84 84 | 86.57 238 | 63.93 96 | 96.09 143 | 74.91 168 | 89.18 102 | 95.25 76 |
|
| CANet_DTU | | | 84.09 93 | 83.52 87 | 85.81 95 | 90.30 148 | 66.82 124 | 91.87 168 | 89.01 277 | 85.27 9 | 86.09 51 | 93.74 108 | 47.71 283 | 96.98 101 | 77.90 148 | 89.78 98 | 93.65 147 |
|
| ET-MVSNet_ETH3D | | | 84.01 94 | 83.15 104 | 86.58 70 | 90.78 141 | 70.89 28 | 94.74 47 | 94.62 41 | 81.44 40 | 58.19 339 | 93.64 111 | 73.64 25 | 92.35 288 | 82.66 106 | 78.66 206 | 96.50 27 |
|
| PVSNet_Blended_VisFu | | | 83.97 95 | 83.50 89 | 85.39 109 | 90.02 153 | 66.59 132 | 93.77 84 | 91.73 163 | 77.43 112 | 77.08 154 | 89.81 190 | 63.77 99 | 96.97 104 | 79.67 131 | 88.21 113 | 92.60 177 |
|
| MTAPA | | | 83.91 96 | 83.38 97 | 85.50 105 | 91.89 111 | 65.16 165 | 81.75 335 | 92.23 134 | 75.32 138 | 80.53 110 | 95.21 64 | 56.06 197 | 97.16 88 | 84.86 85 | 92.55 62 | 94.18 124 |
|
| XVS | | | 83.87 97 | 83.47 91 | 85.05 121 | 93.22 65 | 63.78 199 | 92.92 119 | 92.66 120 | 73.99 155 | 78.18 139 | 94.31 94 | 55.25 203 | 97.41 68 | 79.16 136 | 91.58 76 | 93.95 137 |
|
| Effi-MVS+ | | | 83.82 98 | 82.76 111 | 86.99 56 | 89.56 163 | 69.40 53 | 91.35 193 | 86.12 331 | 72.59 186 | 83.22 81 | 92.81 130 | 59.60 150 | 96.01 151 | 81.76 112 | 87.80 118 | 95.56 56 |
|
| test_fmvsmvis_n_1920 | | | 83.80 99 | 83.48 90 | 84.77 132 | 82.51 304 | 63.72 203 | 91.37 191 | 83.99 353 | 81.42 41 | 77.68 144 | 95.74 42 | 58.37 166 | 97.58 59 | 93.38 14 | 86.87 127 | 93.00 168 |
|
| EI-MVSNet-Vis-set | | | 83.77 100 | 83.67 85 | 84.06 159 | 92.79 84 | 63.56 211 | 91.76 175 | 94.81 32 | 79.65 68 | 77.87 142 | 94.09 101 | 63.35 109 | 97.90 42 | 79.35 134 | 79.36 198 | 90.74 216 |
|
| MVSFormer | | | 83.75 101 | 82.88 109 | 86.37 78 | 89.24 175 | 71.18 24 | 89.07 264 | 90.69 205 | 65.80 291 | 87.13 40 | 94.34 92 | 64.99 81 | 92.67 275 | 72.83 180 | 91.80 72 | 95.27 73 |
|
| CP-MVS | | | 83.71 102 | 83.40 96 | 84.65 139 | 93.14 70 | 63.84 197 | 94.59 49 | 92.28 132 | 71.03 237 | 77.41 148 | 94.92 72 | 55.21 206 | 96.19 138 | 81.32 118 | 90.70 88 | 93.91 139 |
|
| test_fmvsmconf0.01_n | | | 83.70 103 | 83.52 87 | 84.25 156 | 75.26 371 | 61.72 256 | 92.17 150 | 87.24 319 | 82.36 27 | 84.91 64 | 95.41 51 | 55.60 201 | 96.83 114 | 92.85 18 | 85.87 140 | 94.21 122 |
|
| baseline2 | | | 83.68 104 | 83.42 95 | 84.48 147 | 87.37 225 | 66.00 144 | 90.06 241 | 95.93 8 | 79.71 67 | 69.08 244 | 90.39 177 | 77.92 6 | 96.28 134 | 78.91 140 | 81.38 182 | 91.16 212 |
|
| reproduce-ours | | | 83.51 105 | 83.33 99 | 84.06 159 | 92.18 98 | 60.49 282 | 90.74 218 | 92.04 145 | 64.35 301 | 83.24 78 | 95.59 47 | 59.05 157 | 97.27 80 | 83.61 97 | 89.17 103 | 94.41 116 |
|
| our_new_method | | | 83.51 105 | 83.33 99 | 84.06 159 | 92.18 98 | 60.49 282 | 90.74 218 | 92.04 145 | 64.35 301 | 83.24 78 | 95.59 47 | 59.05 157 | 97.27 80 | 83.61 97 | 89.17 103 | 94.41 116 |
|
| thisisatest0515 | | | 83.41 107 | 82.49 116 | 86.16 84 | 89.46 166 | 68.26 83 | 93.54 95 | 94.70 37 | 74.31 150 | 75.75 162 | 90.92 167 | 72.62 31 | 96.52 124 | 69.64 210 | 81.50 181 | 93.71 145 |
|
| PVSNet_BlendedMVS | | | 83.38 108 | 83.43 93 | 83.22 186 | 93.76 50 | 67.53 105 | 94.06 63 | 93.61 78 | 79.13 80 | 81.00 104 | 85.14 253 | 63.19 111 | 97.29 76 | 87.08 65 | 73.91 242 | 84.83 312 |
|
| test2506 | | | 83.29 109 | 82.92 108 | 84.37 151 | 88.39 195 | 63.18 223 | 92.01 160 | 91.35 181 | 77.66 106 | 78.49 138 | 91.42 160 | 64.58 89 | 95.09 186 | 73.19 176 | 89.23 100 | 94.85 89 |
|
| PGM-MVS | | | 83.25 110 | 82.70 113 | 84.92 124 | 92.81 83 | 64.07 194 | 90.44 227 | 92.20 138 | 71.28 231 | 77.23 151 | 94.43 85 | 55.17 207 | 97.31 75 | 79.33 135 | 91.38 80 | 93.37 153 |
|
| HPM-MVS |  | | 83.25 110 | 82.95 107 | 84.17 157 | 92.25 94 | 62.88 232 | 90.91 209 | 91.86 157 | 70.30 248 | 77.12 152 | 93.96 105 | 56.75 186 | 96.28 134 | 82.04 110 | 91.34 82 | 93.34 154 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| reproduce_model | | | 83.15 112 | 82.96 105 | 83.73 170 | 92.02 102 | 59.74 294 | 90.37 231 | 92.08 143 | 63.70 308 | 82.86 83 | 95.48 50 | 58.62 163 | 97.17 85 | 83.06 103 | 88.42 111 | 94.26 119 |
|
| EI-MVSNet-UG-set | | | 83.14 113 | 82.96 105 | 83.67 175 | 92.28 93 | 63.19 222 | 91.38 190 | 94.68 38 | 79.22 77 | 76.60 157 | 93.75 107 | 62.64 118 | 97.76 48 | 78.07 147 | 78.01 209 | 90.05 225 |
|
| VDD-MVS | | | 83.06 114 | 81.81 125 | 86.81 61 | 90.86 139 | 67.70 99 | 95.40 29 | 91.50 176 | 75.46 135 | 81.78 93 | 92.34 140 | 40.09 320 | 97.13 90 | 86.85 68 | 82.04 175 | 95.60 54 |
|
| h-mvs33 | | | 83.01 115 | 82.56 115 | 84.35 152 | 89.34 167 | 62.02 248 | 92.72 127 | 93.76 70 | 81.45 38 | 82.73 87 | 92.25 143 | 60.11 143 | 97.13 90 | 87.69 55 | 62.96 321 | 93.91 139 |
|
| PAPM_NR | | | 82.97 116 | 81.84 124 | 86.37 78 | 94.10 44 | 66.76 127 | 87.66 288 | 92.84 112 | 69.96 252 | 74.07 183 | 93.57 113 | 63.10 114 | 97.50 64 | 70.66 205 | 90.58 90 | 94.85 89 |
|
| mPP-MVS | | | 82.96 117 | 82.44 117 | 84.52 145 | 92.83 79 | 62.92 230 | 92.76 125 | 91.85 159 | 71.52 227 | 75.61 167 | 94.24 97 | 53.48 228 | 96.99 100 | 78.97 139 | 90.73 87 | 93.64 148 |
|
| SR-MVS | | | 82.81 118 | 82.58 114 | 83.50 180 | 93.35 63 | 61.16 266 | 92.23 149 | 91.28 186 | 64.48 300 | 81.27 98 | 95.28 57 | 53.71 224 | 95.86 153 | 82.87 105 | 88.77 108 | 93.49 151 |
|
| DP-MVS Recon | | | 82.73 119 | 81.65 126 | 85.98 88 | 97.31 4 | 67.06 117 | 95.15 36 | 91.99 149 | 69.08 265 | 76.50 159 | 93.89 106 | 54.48 215 | 98.20 35 | 70.76 203 | 85.66 142 | 92.69 174 |
|
| CLD-MVS | | | 82.73 119 | 82.35 119 | 83.86 166 | 87.90 210 | 67.65 101 | 95.45 28 | 92.18 141 | 85.06 10 | 72.58 199 | 92.27 141 | 52.46 236 | 95.78 155 | 84.18 91 | 79.06 201 | 88.16 252 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| sss | | | 82.71 121 | 82.38 118 | 83.73 170 | 89.25 172 | 59.58 297 | 92.24 148 | 94.89 29 | 77.96 98 | 79.86 118 | 92.38 138 | 56.70 187 | 97.05 92 | 77.26 151 | 80.86 186 | 94.55 107 |
|
| 3Dnovator | | 73.91 6 | 82.69 122 | 80.82 139 | 88.31 26 | 89.57 162 | 71.26 22 | 92.60 136 | 94.39 52 | 78.84 87 | 67.89 264 | 92.48 136 | 48.42 274 | 98.52 28 | 68.80 223 | 94.40 36 | 95.15 78 |
|
| RRT-MVS | | | 82.61 123 | 81.16 130 | 86.96 57 | 91.10 133 | 68.75 70 | 87.70 287 | 92.20 138 | 76.97 115 | 72.68 195 | 87.10 232 | 51.30 248 | 96.41 130 | 83.56 99 | 87.84 117 | 95.74 50 |
|
| MVSTER | | | 82.47 124 | 82.05 120 | 83.74 168 | 92.68 86 | 69.01 64 | 91.90 167 | 93.21 95 | 79.83 63 | 72.14 207 | 85.71 249 | 74.72 17 | 94.72 198 | 75.72 159 | 72.49 252 | 87.50 258 |
|
| TESTMET0.1,1 | | | 82.41 125 | 81.98 123 | 83.72 172 | 88.08 204 | 63.74 201 | 92.70 129 | 93.77 69 | 79.30 75 | 77.61 146 | 87.57 223 | 58.19 169 | 94.08 227 | 73.91 174 | 86.68 134 | 93.33 156 |
|
| CostFormer | | | 82.33 126 | 81.15 131 | 85.86 93 | 89.01 180 | 68.46 77 | 82.39 332 | 93.01 106 | 75.59 133 | 80.25 114 | 81.57 296 | 72.03 37 | 94.96 190 | 79.06 138 | 77.48 217 | 94.16 126 |
|
| API-MVS | | | 82.28 127 | 80.53 147 | 87.54 41 | 96.13 22 | 70.59 31 | 93.63 91 | 91.04 200 | 65.72 293 | 75.45 169 | 92.83 129 | 56.11 196 | 98.89 21 | 64.10 267 | 89.75 99 | 93.15 161 |
|
| IB-MVS | | 77.80 4 | 82.18 128 | 80.46 149 | 87.35 45 | 89.14 177 | 70.28 35 | 95.59 26 | 95.17 22 | 78.85 86 | 70.19 232 | 85.82 247 | 70.66 42 | 97.67 51 | 72.19 192 | 66.52 293 | 94.09 130 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| xiu_mvs_v1_base_debu | | | 82.16 129 | 81.12 132 | 85.26 116 | 86.42 242 | 68.72 72 | 92.59 138 | 90.44 215 | 73.12 175 | 84.20 70 | 94.36 87 | 38.04 333 | 95.73 159 | 84.12 92 | 86.81 128 | 91.33 205 |
|
| xiu_mvs_v1_base | | | 82.16 129 | 81.12 132 | 85.26 116 | 86.42 242 | 68.72 72 | 92.59 138 | 90.44 215 | 73.12 175 | 84.20 70 | 94.36 87 | 38.04 333 | 95.73 159 | 84.12 92 | 86.81 128 | 91.33 205 |
|
| xiu_mvs_v1_base_debi | | | 82.16 129 | 81.12 132 | 85.26 116 | 86.42 242 | 68.72 72 | 92.59 138 | 90.44 215 | 73.12 175 | 84.20 70 | 94.36 87 | 38.04 333 | 95.73 159 | 84.12 92 | 86.81 128 | 91.33 205 |
|
| 3Dnovator+ | | 73.60 7 | 82.10 132 | 80.60 146 | 86.60 68 | 90.89 138 | 66.80 126 | 95.20 34 | 93.44 87 | 74.05 154 | 67.42 271 | 92.49 135 | 49.46 264 | 97.65 55 | 70.80 202 | 91.68 74 | 95.33 66 |
|
| MVS_111021_LR | | | 82.02 133 | 81.52 127 | 83.51 179 | 88.42 193 | 62.88 232 | 89.77 249 | 88.93 281 | 76.78 120 | 75.55 168 | 93.10 118 | 50.31 255 | 95.38 178 | 83.82 96 | 87.02 126 | 92.26 191 |
|
| PMMVS | | | 81.98 134 | 82.04 121 | 81.78 223 | 89.76 159 | 56.17 332 | 91.13 205 | 90.69 205 | 77.96 98 | 80.09 116 | 93.57 113 | 46.33 293 | 94.99 189 | 81.41 116 | 87.46 122 | 94.17 125 |
|
| baseline1 | | | 81.84 135 | 81.03 136 | 84.28 155 | 91.60 118 | 66.62 130 | 91.08 206 | 91.66 170 | 81.87 32 | 74.86 174 | 91.67 156 | 69.98 46 | 94.92 193 | 71.76 195 | 64.75 308 | 91.29 210 |
|
| EPP-MVSNet | | | 81.79 136 | 81.52 127 | 82.61 199 | 88.77 186 | 60.21 288 | 93.02 116 | 93.66 77 | 68.52 271 | 72.90 193 | 90.39 177 | 72.19 36 | 94.96 190 | 74.93 167 | 79.29 200 | 92.67 175 |
|
| WBMVS | | | 81.67 137 | 80.98 138 | 83.72 172 | 93.07 73 | 69.40 53 | 94.33 54 | 93.05 104 | 76.84 118 | 72.05 209 | 84.14 264 | 74.49 19 | 93.88 241 | 72.76 183 | 68.09 281 | 87.88 254 |
|
| test_vis1_n_1920 | | | 81.66 138 | 82.01 122 | 80.64 250 | 82.24 306 | 55.09 340 | 94.76 46 | 86.87 321 | 81.67 35 | 84.40 69 | 94.63 80 | 38.17 330 | 94.67 202 | 91.98 27 | 83.34 161 | 92.16 194 |
|
| APD-MVS_3200maxsize | | | 81.64 139 | 81.32 129 | 82.59 200 | 92.36 91 | 58.74 308 | 91.39 188 | 91.01 201 | 63.35 312 | 79.72 120 | 94.62 81 | 51.82 239 | 96.14 140 | 79.71 130 | 87.93 116 | 92.89 172 |
|
| mvsmamba | | | 81.55 140 | 80.72 141 | 84.03 163 | 91.42 124 | 66.93 122 | 83.08 326 | 89.13 270 | 78.55 92 | 67.50 269 | 87.02 233 | 51.79 241 | 90.07 329 | 87.48 58 | 90.49 92 | 95.10 81 |
|
| ACMMP |  | | 81.49 141 | 80.67 143 | 83.93 165 | 91.71 116 | 62.90 231 | 92.13 152 | 92.22 137 | 71.79 214 | 71.68 215 | 93.49 115 | 50.32 254 | 96.96 105 | 78.47 144 | 84.22 157 | 91.93 197 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| CDS-MVSNet | | | 81.43 142 | 80.74 140 | 83.52 177 | 86.26 246 | 64.45 179 | 92.09 155 | 90.65 209 | 75.83 131 | 73.95 185 | 89.81 190 | 63.97 95 | 92.91 265 | 71.27 198 | 82.82 165 | 93.20 160 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| mvs_anonymous | | | 81.36 143 | 79.99 154 | 85.46 106 | 90.39 147 | 68.40 78 | 86.88 299 | 90.61 210 | 74.41 147 | 70.31 231 | 84.67 258 | 63.79 98 | 92.32 290 | 73.13 177 | 85.70 141 | 95.67 51 |
|
| ECVR-MVS |  | | 81.29 144 | 80.38 150 | 84.01 164 | 88.39 195 | 61.96 250 | 92.56 141 | 86.79 323 | 77.66 106 | 76.63 156 | 91.42 160 | 46.34 292 | 95.24 183 | 74.36 172 | 89.23 100 | 94.85 89 |
|
| thisisatest0530 | | | 81.15 145 | 80.07 151 | 84.39 150 | 88.26 199 | 65.63 153 | 91.40 186 | 94.62 41 | 71.27 232 | 70.93 222 | 89.18 196 | 72.47 32 | 96.04 148 | 65.62 256 | 76.89 223 | 91.49 201 |
|
| Fast-Effi-MVS+ | | | 81.14 146 | 80.01 153 | 84.51 146 | 90.24 149 | 65.86 148 | 94.12 62 | 89.15 268 | 73.81 162 | 75.37 170 | 88.26 208 | 57.26 176 | 94.53 210 | 66.97 241 | 84.92 146 | 93.15 161 |
|
| HQP-MVS | | | 81.14 146 | 80.64 144 | 82.64 198 | 87.54 220 | 63.66 208 | 94.06 63 | 91.70 168 | 79.80 64 | 74.18 179 | 90.30 179 | 51.63 244 | 95.61 167 | 77.63 149 | 78.90 202 | 88.63 243 |
|
| hse-mvs2 | | | 81.12 148 | 81.11 135 | 81.16 237 | 86.52 241 | 57.48 321 | 89.40 257 | 91.16 189 | 81.45 38 | 82.73 87 | 90.49 175 | 60.11 143 | 94.58 203 | 87.69 55 | 60.41 348 | 91.41 204 |
|
| SR-MVS-dyc-post | | | 81.06 149 | 80.70 142 | 82.15 214 | 92.02 102 | 58.56 310 | 90.90 210 | 90.45 212 | 62.76 319 | 78.89 130 | 94.46 83 | 51.26 249 | 95.61 167 | 78.77 142 | 86.77 131 | 92.28 187 |
|
| HyFIR lowres test | | | 81.03 150 | 79.56 161 | 85.43 107 | 87.81 214 | 68.11 89 | 90.18 238 | 90.01 236 | 70.65 245 | 72.95 192 | 86.06 245 | 63.61 103 | 94.50 212 | 75.01 166 | 79.75 195 | 93.67 146 |
|
| nrg030 | | | 80.93 151 | 79.86 156 | 84.13 158 | 83.69 290 | 68.83 68 | 93.23 108 | 91.20 187 | 75.55 134 | 75.06 172 | 88.22 211 | 63.04 115 | 94.74 197 | 81.88 111 | 66.88 290 | 88.82 241 |
|
| Vis-MVSNet |  | | 80.92 152 | 79.98 155 | 83.74 168 | 88.48 190 | 61.80 252 | 93.44 102 | 88.26 305 | 73.96 158 | 77.73 143 | 91.76 153 | 49.94 259 | 94.76 195 | 65.84 253 | 90.37 93 | 94.65 103 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| test1111 | | | 80.84 153 | 80.02 152 | 83.33 183 | 87.87 211 | 60.76 274 | 92.62 134 | 86.86 322 | 77.86 101 | 75.73 163 | 91.39 162 | 46.35 291 | 94.70 201 | 72.79 182 | 88.68 109 | 94.52 111 |
|
| UWE-MVS | | | 80.81 154 | 81.01 137 | 80.20 260 | 89.33 169 | 57.05 326 | 91.91 166 | 94.71 36 | 75.67 132 | 75.01 173 | 89.37 194 | 63.13 113 | 91.44 313 | 67.19 238 | 82.80 167 | 92.12 195 |
|
| 1314 | | | 80.70 155 | 78.95 173 | 85.94 90 | 87.77 217 | 67.56 103 | 87.91 282 | 92.55 126 | 72.17 201 | 67.44 270 | 93.09 119 | 50.27 256 | 97.04 95 | 71.68 197 | 87.64 120 | 93.23 158 |
|
| tpmrst | | | 80.57 156 | 79.14 171 | 84.84 127 | 90.10 152 | 68.28 82 | 81.70 336 | 89.72 248 | 77.63 108 | 75.96 161 | 79.54 328 | 64.94 83 | 92.71 272 | 75.43 161 | 77.28 220 | 93.55 149 |
|
| 1112_ss | | | 80.56 157 | 79.83 157 | 82.77 193 | 88.65 187 | 60.78 272 | 92.29 146 | 88.36 299 | 72.58 187 | 72.46 203 | 94.95 69 | 65.09 80 | 93.42 252 | 66.38 247 | 77.71 211 | 94.10 129 |
|
| VDDNet | | | 80.50 158 | 78.26 181 | 87.21 47 | 86.19 247 | 69.79 47 | 94.48 50 | 91.31 182 | 60.42 338 | 79.34 125 | 90.91 168 | 38.48 328 | 96.56 122 | 82.16 109 | 81.05 184 | 95.27 73 |
|
| BH-w/o | | | 80.49 159 | 79.30 168 | 84.05 162 | 90.83 140 | 64.36 187 | 93.60 92 | 89.42 256 | 74.35 149 | 69.09 243 | 90.15 185 | 55.23 205 | 95.61 167 | 64.61 264 | 86.43 137 | 92.17 193 |
|
| test_cas_vis1_n_1920 | | | 80.45 160 | 80.61 145 | 79.97 269 | 78.25 354 | 57.01 328 | 94.04 67 | 88.33 300 | 79.06 84 | 82.81 86 | 93.70 109 | 38.65 325 | 91.63 305 | 90.82 36 | 79.81 193 | 91.27 211 |
|
| TAMVS | | | 80.37 161 | 79.45 164 | 83.13 188 | 85.14 267 | 63.37 216 | 91.23 199 | 90.76 204 | 74.81 145 | 72.65 197 | 88.49 202 | 60.63 138 | 92.95 260 | 69.41 214 | 81.95 177 | 93.08 164 |
|
| HQP_MVS | | | 80.34 162 | 79.75 158 | 82.12 216 | 86.94 235 | 62.42 239 | 93.13 110 | 91.31 182 | 78.81 88 | 72.53 200 | 89.14 198 | 50.66 252 | 95.55 172 | 76.74 152 | 78.53 207 | 88.39 249 |
|
| SDMVSNet | | | 80.26 163 | 78.88 174 | 84.40 149 | 89.25 172 | 67.63 102 | 85.35 306 | 93.02 105 | 76.77 121 | 70.84 223 | 87.12 230 | 47.95 280 | 96.09 143 | 85.04 81 | 74.55 233 | 89.48 235 |
|
| HPM-MVS_fast | | | 80.25 164 | 79.55 163 | 82.33 206 | 91.55 121 | 59.95 291 | 91.32 195 | 89.16 267 | 65.23 297 | 74.71 176 | 93.07 121 | 47.81 282 | 95.74 158 | 74.87 170 | 88.23 112 | 91.31 209 |
|
| ab-mvs | | | 80.18 165 | 78.31 180 | 85.80 96 | 88.44 192 | 65.49 159 | 83.00 329 | 92.67 119 | 71.82 213 | 77.36 149 | 85.01 254 | 54.50 212 | 96.59 119 | 76.35 156 | 75.63 230 | 95.32 68 |
|
| IS-MVSNet | | | 80.14 166 | 79.41 165 | 82.33 206 | 87.91 209 | 60.08 290 | 91.97 164 | 88.27 303 | 72.90 182 | 71.44 219 | 91.73 155 | 61.44 130 | 93.66 247 | 62.47 281 | 86.53 135 | 93.24 157 |
|
| test-LLR | | | 80.10 167 | 79.56 161 | 81.72 225 | 86.93 237 | 61.17 264 | 92.70 129 | 91.54 173 | 71.51 228 | 75.62 165 | 86.94 234 | 53.83 221 | 92.38 285 | 72.21 190 | 84.76 149 | 91.60 199 |
|
| PVSNet | | 73.49 8 | 80.05 168 | 78.63 176 | 84.31 153 | 90.92 137 | 64.97 170 | 92.47 142 | 91.05 199 | 79.18 78 | 72.43 204 | 90.51 174 | 37.05 345 | 94.06 229 | 68.06 227 | 86.00 138 | 93.90 141 |
|
| UA-Net | | | 80.02 169 | 79.65 159 | 81.11 239 | 89.33 169 | 57.72 317 | 86.33 303 | 89.00 280 | 77.44 111 | 81.01 103 | 89.15 197 | 59.33 154 | 95.90 152 | 61.01 288 | 84.28 155 | 89.73 231 |
|
| test-mter | | | 79.96 170 | 79.38 167 | 81.72 225 | 86.93 237 | 61.17 264 | 92.70 129 | 91.54 173 | 73.85 160 | 75.62 165 | 86.94 234 | 49.84 261 | 92.38 285 | 72.21 190 | 84.76 149 | 91.60 199 |
|
| QAPM | | | 79.95 171 | 77.39 198 | 87.64 34 | 89.63 161 | 71.41 20 | 93.30 106 | 93.70 75 | 65.34 296 | 67.39 273 | 91.75 154 | 47.83 281 | 98.96 16 | 57.71 304 | 89.81 96 | 92.54 179 |
|
| UGNet | | | 79.87 172 | 78.68 175 | 83.45 182 | 89.96 154 | 61.51 259 | 92.13 152 | 90.79 203 | 76.83 119 | 78.85 135 | 86.33 242 | 38.16 331 | 96.17 139 | 67.93 230 | 87.17 125 | 92.67 175 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| tpm2 | | | 79.80 173 | 77.95 187 | 85.34 112 | 88.28 198 | 68.26 83 | 81.56 338 | 91.42 179 | 70.11 250 | 77.59 147 | 80.50 314 | 67.40 59 | 94.26 221 | 67.34 235 | 77.35 218 | 93.51 150 |
|
| thres200 | | | 79.66 174 | 78.33 179 | 83.66 176 | 92.54 90 | 65.82 150 | 93.06 112 | 96.31 3 | 74.90 144 | 73.30 189 | 88.66 200 | 59.67 149 | 95.61 167 | 47.84 343 | 78.67 205 | 89.56 234 |
|
| CPTT-MVS | | | 79.59 175 | 79.16 170 | 80.89 248 | 91.54 122 | 59.80 293 | 92.10 154 | 88.54 296 | 60.42 338 | 72.96 191 | 93.28 117 | 48.27 275 | 92.80 269 | 78.89 141 | 86.50 136 | 90.06 224 |
|
| Test_1112_low_res | | | 79.56 176 | 78.60 177 | 82.43 202 | 88.24 201 | 60.39 285 | 92.09 155 | 87.99 310 | 72.10 203 | 71.84 211 | 87.42 225 | 64.62 88 | 93.04 256 | 65.80 254 | 77.30 219 | 93.85 143 |
|
| tttt0517 | | | 79.50 177 | 78.53 178 | 82.41 205 | 87.22 228 | 61.43 262 | 89.75 250 | 94.76 33 | 69.29 260 | 67.91 262 | 88.06 215 | 72.92 28 | 95.63 165 | 62.91 277 | 73.90 243 | 90.16 223 |
|
| reproduce_monomvs | | | 79.49 178 | 79.11 172 | 80.64 250 | 92.91 77 | 61.47 261 | 91.17 204 | 93.28 93 | 83.09 20 | 64.04 301 | 82.38 283 | 66.19 68 | 94.57 205 | 81.19 120 | 57.71 356 | 85.88 295 |
|
| FIs | | | 79.47 179 | 79.41 165 | 79.67 276 | 85.95 252 | 59.40 299 | 91.68 179 | 93.94 64 | 78.06 97 | 68.96 248 | 88.28 206 | 66.61 65 | 91.77 301 | 66.20 250 | 74.99 232 | 87.82 255 |
|
| BH-RMVSNet | | | 79.46 180 | 77.65 190 | 84.89 125 | 91.68 117 | 65.66 151 | 93.55 94 | 88.09 308 | 72.93 179 | 73.37 188 | 91.12 166 | 46.20 295 | 96.12 141 | 56.28 309 | 85.61 143 | 92.91 170 |
|
| PCF-MVS | | 73.15 9 | 79.29 181 | 77.63 191 | 84.29 154 | 86.06 250 | 65.96 146 | 87.03 295 | 91.10 193 | 69.86 254 | 69.79 239 | 90.64 170 | 57.54 175 | 96.59 119 | 64.37 266 | 82.29 169 | 90.32 221 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| Vis-MVSNet (Re-imp) | | | 79.24 182 | 79.57 160 | 78.24 296 | 88.46 191 | 52.29 351 | 90.41 229 | 89.12 271 | 74.24 151 | 69.13 242 | 91.91 151 | 65.77 74 | 90.09 328 | 59.00 300 | 88.09 114 | 92.33 184 |
|
| 114514_t | | | 79.17 183 | 77.67 189 | 83.68 174 | 95.32 29 | 65.53 157 | 92.85 123 | 91.60 172 | 63.49 310 | 67.92 261 | 90.63 172 | 46.65 288 | 95.72 163 | 67.01 240 | 83.54 159 | 89.79 229 |
|
| FA-MVS(test-final) | | | 79.12 184 | 77.23 200 | 84.81 131 | 90.54 143 | 63.98 196 | 81.35 341 | 91.71 165 | 71.09 236 | 74.85 175 | 82.94 276 | 52.85 232 | 97.05 92 | 67.97 228 | 81.73 180 | 93.41 152 |
|
| VPA-MVSNet | | | 79.03 185 | 78.00 185 | 82.11 219 | 85.95 252 | 64.48 178 | 93.22 109 | 94.66 39 | 75.05 142 | 74.04 184 | 84.95 255 | 52.17 238 | 93.52 249 | 74.90 169 | 67.04 289 | 88.32 251 |
|
| OPM-MVS | | | 79.00 186 | 78.09 183 | 81.73 224 | 83.52 293 | 63.83 198 | 91.64 181 | 90.30 222 | 76.36 127 | 71.97 210 | 89.93 189 | 46.30 294 | 95.17 185 | 75.10 164 | 77.70 212 | 86.19 284 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| EI-MVSNet | | | 78.97 187 | 78.22 182 | 81.25 234 | 85.33 262 | 62.73 235 | 89.53 254 | 93.21 95 | 72.39 194 | 72.14 207 | 90.13 186 | 60.99 133 | 94.72 198 | 67.73 232 | 72.49 252 | 86.29 281 |
|
| AdaColmap |  | | 78.94 188 | 77.00 204 | 84.76 133 | 96.34 17 | 65.86 148 | 92.66 133 | 87.97 312 | 62.18 324 | 70.56 225 | 92.37 139 | 43.53 308 | 97.35 72 | 64.50 265 | 82.86 164 | 91.05 214 |
|
| GeoE | | | 78.90 189 | 77.43 194 | 83.29 184 | 88.95 181 | 62.02 248 | 92.31 145 | 86.23 329 | 70.24 249 | 71.34 220 | 89.27 195 | 54.43 216 | 94.04 232 | 63.31 273 | 80.81 188 | 93.81 144 |
|
| miper_enhance_ethall | | | 78.86 190 | 77.97 186 | 81.54 229 | 88.00 208 | 65.17 164 | 91.41 184 | 89.15 268 | 75.19 140 | 68.79 251 | 83.98 267 | 67.17 60 | 92.82 267 | 72.73 184 | 65.30 299 | 86.62 278 |
|
| VPNet | | | 78.82 191 | 77.53 193 | 82.70 196 | 84.52 277 | 66.44 134 | 93.93 72 | 92.23 134 | 80.46 52 | 72.60 198 | 88.38 205 | 49.18 268 | 93.13 255 | 72.47 188 | 63.97 318 | 88.55 246 |
|
| EPNet_dtu | | | 78.80 192 | 79.26 169 | 77.43 304 | 88.06 205 | 49.71 366 | 91.96 165 | 91.95 151 | 77.67 105 | 76.56 158 | 91.28 164 | 58.51 164 | 90.20 326 | 56.37 308 | 80.95 185 | 92.39 182 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| tfpn200view9 | | | 78.79 193 | 77.43 194 | 82.88 191 | 92.21 96 | 64.49 176 | 92.05 158 | 96.28 4 | 73.48 169 | 71.75 213 | 88.26 208 | 60.07 145 | 95.32 179 | 45.16 354 | 77.58 214 | 88.83 239 |
|
| TR-MVS | | | 78.77 194 | 77.37 199 | 82.95 190 | 90.49 144 | 60.88 270 | 93.67 88 | 90.07 231 | 70.08 251 | 74.51 177 | 91.37 163 | 45.69 297 | 95.70 164 | 60.12 294 | 80.32 190 | 92.29 186 |
|
| thres400 | | | 78.68 195 | 77.43 194 | 82.43 202 | 92.21 96 | 64.49 176 | 92.05 158 | 96.28 4 | 73.48 169 | 71.75 213 | 88.26 208 | 60.07 145 | 95.32 179 | 45.16 354 | 77.58 214 | 87.48 259 |
|
| BH-untuned | | | 78.68 195 | 77.08 201 | 83.48 181 | 89.84 156 | 63.74 201 | 92.70 129 | 88.59 294 | 71.57 225 | 66.83 280 | 88.65 201 | 51.75 242 | 95.39 177 | 59.03 299 | 84.77 148 | 91.32 208 |
|
| OMC-MVS | | | 78.67 197 | 77.91 188 | 80.95 246 | 85.76 257 | 57.40 323 | 88.49 273 | 88.67 291 | 73.85 160 | 72.43 204 | 92.10 146 | 49.29 267 | 94.55 209 | 72.73 184 | 77.89 210 | 90.91 215 |
|
| tpm | | | 78.58 198 | 77.03 202 | 83.22 186 | 85.94 254 | 64.56 174 | 83.21 325 | 91.14 192 | 78.31 94 | 73.67 186 | 79.68 326 | 64.01 94 | 92.09 295 | 66.07 251 | 71.26 262 | 93.03 166 |
|
| OpenMVS |  | 70.45 11 | 78.54 199 | 75.92 218 | 86.41 77 | 85.93 255 | 71.68 18 | 92.74 126 | 92.51 127 | 66.49 287 | 64.56 295 | 91.96 148 | 43.88 307 | 98.10 37 | 54.61 314 | 90.65 89 | 89.44 237 |
|
| EPMVS | | | 78.49 200 | 75.98 217 | 86.02 87 | 91.21 131 | 69.68 51 | 80.23 350 | 91.20 187 | 75.25 139 | 72.48 202 | 78.11 337 | 54.65 211 | 93.69 246 | 57.66 305 | 83.04 163 | 94.69 99 |
|
| AUN-MVS | | | 78.37 201 | 77.43 194 | 81.17 236 | 86.60 240 | 57.45 322 | 89.46 256 | 91.16 189 | 74.11 153 | 74.40 178 | 90.49 175 | 55.52 202 | 94.57 205 | 74.73 171 | 60.43 347 | 91.48 202 |
|
| thres100view900 | | | 78.37 201 | 77.01 203 | 82.46 201 | 91.89 111 | 63.21 221 | 91.19 203 | 96.33 1 | 72.28 197 | 70.45 228 | 87.89 217 | 60.31 140 | 95.32 179 | 45.16 354 | 77.58 214 | 88.83 239 |
|
| GA-MVS | | | 78.33 203 | 76.23 213 | 84.65 139 | 83.65 291 | 66.30 138 | 91.44 183 | 90.14 229 | 76.01 129 | 70.32 230 | 84.02 266 | 42.50 312 | 94.72 198 | 70.98 200 | 77.00 222 | 92.94 169 |
|
| cascas | | | 78.18 204 | 75.77 220 | 85.41 108 | 87.14 230 | 69.11 61 | 92.96 118 | 91.15 191 | 66.71 285 | 70.47 226 | 86.07 244 | 37.49 339 | 96.48 127 | 70.15 208 | 79.80 194 | 90.65 217 |
|
| UniMVSNet_NR-MVSNet | | | 78.15 205 | 77.55 192 | 79.98 267 | 84.46 279 | 60.26 286 | 92.25 147 | 93.20 97 | 77.50 110 | 68.88 249 | 86.61 237 | 66.10 70 | 92.13 293 | 66.38 247 | 62.55 325 | 87.54 257 |
|
| thres600view7 | | | 78.00 206 | 76.66 208 | 82.03 221 | 91.93 108 | 63.69 206 | 91.30 196 | 96.33 1 | 72.43 192 | 70.46 227 | 87.89 217 | 60.31 140 | 94.92 193 | 42.64 366 | 76.64 224 | 87.48 259 |
|
| FC-MVSNet-test | | | 77.99 207 | 78.08 184 | 77.70 299 | 84.89 272 | 55.51 337 | 90.27 235 | 93.75 73 | 76.87 116 | 66.80 281 | 87.59 222 | 65.71 75 | 90.23 325 | 62.89 278 | 73.94 241 | 87.37 262 |
|
| Anonymous202405211 | | | 77.96 208 | 75.33 226 | 85.87 92 | 93.73 53 | 64.52 175 | 94.85 44 | 85.36 338 | 62.52 322 | 76.11 160 | 90.18 182 | 29.43 374 | 97.29 76 | 68.51 225 | 77.24 221 | 95.81 49 |
|
| cl22 | | | 77.94 209 | 76.78 206 | 81.42 231 | 87.57 219 | 64.93 172 | 90.67 221 | 88.86 284 | 72.45 191 | 67.63 268 | 82.68 280 | 64.07 93 | 92.91 265 | 71.79 193 | 65.30 299 | 86.44 279 |
|
| XXY-MVS | | | 77.94 209 | 76.44 210 | 82.43 202 | 82.60 303 | 64.44 180 | 92.01 160 | 91.83 160 | 73.59 168 | 70.00 235 | 85.82 247 | 54.43 216 | 94.76 195 | 69.63 211 | 68.02 283 | 88.10 253 |
|
| MS-PatchMatch | | | 77.90 211 | 76.50 209 | 82.12 216 | 85.99 251 | 69.95 41 | 91.75 177 | 92.70 116 | 73.97 157 | 62.58 317 | 84.44 262 | 41.11 317 | 95.78 155 | 63.76 270 | 92.17 66 | 80.62 359 |
|
| FMVSNet3 | | | 77.73 212 | 76.04 216 | 82.80 192 | 91.20 132 | 68.99 65 | 91.87 168 | 91.99 149 | 73.35 171 | 67.04 276 | 83.19 275 | 56.62 189 | 92.14 292 | 59.80 296 | 69.34 269 | 87.28 265 |
|
| miper_ehance_all_eth | | | 77.60 213 | 76.44 210 | 81.09 243 | 85.70 259 | 64.41 183 | 90.65 222 | 88.64 293 | 72.31 195 | 67.37 274 | 82.52 281 | 64.77 87 | 92.64 278 | 70.67 204 | 65.30 299 | 86.24 283 |
|
| UniMVSNet (Re) | | | 77.58 214 | 76.78 206 | 79.98 267 | 84.11 285 | 60.80 271 | 91.76 175 | 93.17 99 | 76.56 125 | 69.93 238 | 84.78 257 | 63.32 110 | 92.36 287 | 64.89 263 | 62.51 327 | 86.78 273 |
|
| PatchmatchNet |  | | 77.46 215 | 74.63 233 | 85.96 89 | 89.55 164 | 70.35 34 | 79.97 355 | 89.55 251 | 72.23 198 | 70.94 221 | 76.91 349 | 57.03 179 | 92.79 270 | 54.27 316 | 81.17 183 | 94.74 97 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| v2v482 | | | 77.42 216 | 75.65 222 | 82.73 194 | 80.38 324 | 67.13 116 | 91.85 170 | 90.23 226 | 75.09 141 | 69.37 240 | 83.39 273 | 53.79 223 | 94.44 213 | 71.77 194 | 65.00 305 | 86.63 277 |
|
| CHOSEN 280x420 | | | 77.35 217 | 76.95 205 | 78.55 291 | 87.07 232 | 62.68 236 | 69.71 387 | 82.95 360 | 68.80 267 | 71.48 218 | 87.27 229 | 66.03 71 | 84.00 371 | 76.47 155 | 82.81 166 | 88.95 238 |
|
| PS-MVSNAJss | | | 77.26 218 | 76.31 212 | 80.13 262 | 80.64 322 | 59.16 304 | 90.63 225 | 91.06 198 | 72.80 183 | 68.58 255 | 84.57 260 | 53.55 225 | 93.96 237 | 72.97 178 | 71.96 256 | 87.27 266 |
|
| gg-mvs-nofinetune | | | 77.18 219 | 74.31 240 | 85.80 96 | 91.42 124 | 68.36 79 | 71.78 381 | 94.72 35 | 49.61 381 | 77.12 152 | 45.92 407 | 77.41 8 | 93.98 236 | 67.62 233 | 93.16 55 | 95.05 83 |
|
| WB-MVSnew | | | 77.14 220 | 76.18 215 | 80.01 266 | 86.18 248 | 63.24 219 | 91.26 197 | 94.11 61 | 71.72 217 | 73.52 187 | 87.29 228 | 45.14 302 | 93.00 258 | 56.98 306 | 79.42 196 | 83.80 320 |
|
| MVP-Stereo | | | 77.12 221 | 76.23 213 | 79.79 274 | 81.72 311 | 66.34 137 | 89.29 258 | 90.88 202 | 70.56 246 | 62.01 320 | 82.88 277 | 49.34 265 | 94.13 224 | 65.55 258 | 93.80 43 | 78.88 373 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| sd_testset | | | 77.08 222 | 75.37 224 | 82.20 212 | 89.25 172 | 62.11 247 | 82.06 333 | 89.09 273 | 76.77 121 | 70.84 223 | 87.12 230 | 41.43 316 | 95.01 188 | 67.23 237 | 74.55 233 | 89.48 235 |
|
| MonoMVSNet | | | 76.99 223 | 75.08 229 | 82.73 194 | 83.32 295 | 63.24 219 | 86.47 302 | 86.37 325 | 79.08 82 | 66.31 283 | 79.30 330 | 49.80 262 | 91.72 302 | 79.37 133 | 65.70 297 | 93.23 158 |
|
| dmvs_re | | | 76.93 224 | 75.36 225 | 81.61 227 | 87.78 216 | 60.71 277 | 80.00 354 | 87.99 310 | 79.42 72 | 69.02 246 | 89.47 193 | 46.77 286 | 94.32 215 | 63.38 272 | 74.45 236 | 89.81 228 |
|
| X-MVStestdata | | | 76.86 225 | 74.13 244 | 85.05 121 | 93.22 65 | 63.78 199 | 92.92 119 | 92.66 120 | 73.99 155 | 78.18 139 | 10.19 422 | 55.25 203 | 97.41 68 | 79.16 136 | 91.58 76 | 93.95 137 |
|
| DU-MVS | | | 76.86 225 | 75.84 219 | 79.91 270 | 82.96 299 | 60.26 286 | 91.26 197 | 91.54 173 | 76.46 126 | 68.88 249 | 86.35 240 | 56.16 194 | 92.13 293 | 66.38 247 | 62.55 325 | 87.35 263 |
|
| Anonymous20240529 | | | 76.84 227 | 74.15 243 | 84.88 126 | 91.02 134 | 64.95 171 | 93.84 80 | 91.09 194 | 53.57 369 | 73.00 190 | 87.42 225 | 35.91 349 | 97.32 74 | 69.14 219 | 72.41 254 | 92.36 183 |
|
| c3_l | | | 76.83 228 | 75.47 223 | 80.93 247 | 85.02 270 | 64.18 193 | 90.39 230 | 88.11 307 | 71.66 218 | 66.65 282 | 81.64 294 | 63.58 106 | 92.56 279 | 69.31 216 | 62.86 322 | 86.04 289 |
|
| WR-MVS | | | 76.76 229 | 75.74 221 | 79.82 273 | 84.60 275 | 62.27 245 | 92.60 136 | 92.51 127 | 76.06 128 | 67.87 265 | 85.34 251 | 56.76 185 | 90.24 324 | 62.20 282 | 63.69 320 | 86.94 271 |
|
| v1144 | | | 76.73 230 | 74.88 230 | 82.27 208 | 80.23 328 | 66.60 131 | 91.68 179 | 90.21 228 | 73.69 165 | 69.06 245 | 81.89 289 | 52.73 234 | 94.40 214 | 69.21 217 | 65.23 302 | 85.80 296 |
|
| IterMVS-LS | | | 76.49 231 | 75.18 228 | 80.43 254 | 84.49 278 | 62.74 234 | 90.64 223 | 88.80 286 | 72.40 193 | 65.16 290 | 81.72 292 | 60.98 134 | 92.27 291 | 67.74 231 | 64.65 310 | 86.29 281 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| V42 | | | 76.46 232 | 74.55 236 | 82.19 213 | 79.14 342 | 67.82 96 | 90.26 236 | 89.42 256 | 73.75 163 | 68.63 254 | 81.89 289 | 51.31 247 | 94.09 226 | 71.69 196 | 64.84 306 | 84.66 313 |
|
| v148 | | | 76.19 233 | 74.47 238 | 81.36 232 | 80.05 330 | 64.44 180 | 91.75 177 | 90.23 226 | 73.68 166 | 67.13 275 | 80.84 309 | 55.92 199 | 93.86 244 | 68.95 221 | 61.73 336 | 85.76 299 |
|
| Effi-MVS+-dtu | | | 76.14 234 | 75.28 227 | 78.72 290 | 83.22 296 | 55.17 339 | 89.87 247 | 87.78 313 | 75.42 136 | 67.98 260 | 81.43 298 | 45.08 303 | 92.52 281 | 75.08 165 | 71.63 257 | 88.48 247 |
|
| cl____ | | | 76.07 235 | 74.67 231 | 80.28 257 | 85.15 266 | 61.76 254 | 90.12 239 | 88.73 288 | 71.16 233 | 65.43 287 | 81.57 296 | 61.15 131 | 92.95 260 | 66.54 244 | 62.17 329 | 86.13 287 |
|
| DIV-MVS_self_test | | | 76.07 235 | 74.67 231 | 80.28 257 | 85.14 267 | 61.75 255 | 90.12 239 | 88.73 288 | 71.16 233 | 65.42 288 | 81.60 295 | 61.15 131 | 92.94 264 | 66.54 244 | 62.16 331 | 86.14 285 |
|
| FMVSNet2 | | | 76.07 235 | 74.01 246 | 82.26 210 | 88.85 182 | 67.66 100 | 91.33 194 | 91.61 171 | 70.84 240 | 65.98 284 | 82.25 285 | 48.03 276 | 92.00 297 | 58.46 301 | 68.73 277 | 87.10 268 |
|
| v144192 | | | 76.05 238 | 74.03 245 | 82.12 216 | 79.50 336 | 66.55 133 | 91.39 188 | 89.71 249 | 72.30 196 | 68.17 258 | 81.33 301 | 51.75 242 | 94.03 234 | 67.94 229 | 64.19 313 | 85.77 297 |
|
| NR-MVSNet | | | 76.05 238 | 74.59 234 | 80.44 253 | 82.96 299 | 62.18 246 | 90.83 214 | 91.73 163 | 77.12 114 | 60.96 323 | 86.35 240 | 59.28 155 | 91.80 300 | 60.74 289 | 61.34 340 | 87.35 263 |
|
| v1192 | | | 75.98 240 | 73.92 247 | 82.15 214 | 79.73 332 | 66.24 140 | 91.22 200 | 89.75 243 | 72.67 185 | 68.49 256 | 81.42 299 | 49.86 260 | 94.27 219 | 67.08 239 | 65.02 304 | 85.95 292 |
|
| FE-MVS | | | 75.97 241 | 73.02 257 | 84.82 128 | 89.78 157 | 65.56 155 | 77.44 366 | 91.07 197 | 64.55 299 | 72.66 196 | 79.85 324 | 46.05 296 | 96.69 117 | 54.97 313 | 80.82 187 | 92.21 192 |
|
| eth_miper_zixun_eth | | | 75.96 242 | 74.40 239 | 80.66 249 | 84.66 274 | 63.02 225 | 89.28 259 | 88.27 303 | 71.88 209 | 65.73 285 | 81.65 293 | 59.45 151 | 92.81 268 | 68.13 226 | 60.53 345 | 86.14 285 |
|
| TranMVSNet+NR-MVSNet | | | 75.86 243 | 74.52 237 | 79.89 271 | 82.44 305 | 60.64 280 | 91.37 191 | 91.37 180 | 76.63 123 | 67.65 267 | 86.21 243 | 52.37 237 | 91.55 307 | 61.84 284 | 60.81 343 | 87.48 259 |
|
| SCA | | | 75.82 244 | 72.76 260 | 85.01 123 | 86.63 239 | 70.08 37 | 81.06 343 | 89.19 265 | 71.60 224 | 70.01 234 | 77.09 347 | 45.53 298 | 90.25 321 | 60.43 291 | 73.27 245 | 94.68 100 |
|
| LPG-MVS_test | | | 75.82 244 | 74.58 235 | 79.56 280 | 84.31 282 | 59.37 300 | 90.44 227 | 89.73 246 | 69.49 257 | 64.86 291 | 88.42 203 | 38.65 325 | 94.30 217 | 72.56 186 | 72.76 249 | 85.01 310 |
|
| GBi-Net | | | 75.65 246 | 73.83 248 | 81.10 240 | 88.85 182 | 65.11 166 | 90.01 243 | 90.32 218 | 70.84 240 | 67.04 276 | 80.25 319 | 48.03 276 | 91.54 308 | 59.80 296 | 69.34 269 | 86.64 274 |
|
| test1 | | | 75.65 246 | 73.83 248 | 81.10 240 | 88.85 182 | 65.11 166 | 90.01 243 | 90.32 218 | 70.84 240 | 67.04 276 | 80.25 319 | 48.03 276 | 91.54 308 | 59.80 296 | 69.34 269 | 86.64 274 |
|
| v1921920 | | | 75.63 248 | 73.49 253 | 82.06 220 | 79.38 337 | 66.35 136 | 91.07 208 | 89.48 252 | 71.98 204 | 67.99 259 | 81.22 304 | 49.16 270 | 93.90 240 | 66.56 243 | 64.56 311 | 85.92 294 |
|
| ACMP | | 71.68 10 | 75.58 249 | 74.23 242 | 79.62 278 | 84.97 271 | 59.64 295 | 90.80 215 | 89.07 275 | 70.39 247 | 62.95 313 | 87.30 227 | 38.28 329 | 93.87 242 | 72.89 179 | 71.45 260 | 85.36 306 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| v8 | | | 75.35 250 | 73.26 255 | 81.61 227 | 80.67 321 | 66.82 124 | 89.54 253 | 89.27 261 | 71.65 219 | 63.30 309 | 80.30 318 | 54.99 209 | 94.06 229 | 67.33 236 | 62.33 328 | 83.94 318 |
|
| tpm cat1 | | | 75.30 251 | 72.21 269 | 84.58 143 | 88.52 188 | 67.77 97 | 78.16 364 | 88.02 309 | 61.88 330 | 68.45 257 | 76.37 353 | 60.65 137 | 94.03 234 | 53.77 319 | 74.11 239 | 91.93 197 |
|
| PLC |  | 68.80 14 | 75.23 252 | 73.68 251 | 79.86 272 | 92.93 76 | 58.68 309 | 90.64 223 | 88.30 301 | 60.90 335 | 64.43 299 | 90.53 173 | 42.38 313 | 94.57 205 | 56.52 307 | 76.54 225 | 86.33 280 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| v1240 | | | 75.21 253 | 72.98 258 | 81.88 222 | 79.20 339 | 66.00 144 | 90.75 217 | 89.11 272 | 71.63 223 | 67.41 272 | 81.22 304 | 47.36 284 | 93.87 242 | 65.46 259 | 64.72 309 | 85.77 297 |
|
| Fast-Effi-MVS+-dtu | | | 75.04 254 | 73.37 254 | 80.07 263 | 80.86 317 | 59.52 298 | 91.20 202 | 85.38 337 | 71.90 207 | 65.20 289 | 84.84 256 | 41.46 315 | 92.97 259 | 66.50 246 | 72.96 248 | 87.73 256 |
|
| dp | | | 75.01 255 | 72.09 270 | 83.76 167 | 89.28 171 | 66.22 141 | 79.96 356 | 89.75 243 | 71.16 233 | 67.80 266 | 77.19 346 | 51.81 240 | 92.54 280 | 50.39 327 | 71.44 261 | 92.51 181 |
|
| TAPA-MVS | | 70.22 12 | 74.94 256 | 73.53 252 | 79.17 285 | 90.40 146 | 52.07 352 | 89.19 262 | 89.61 250 | 62.69 321 | 70.07 233 | 92.67 131 | 48.89 273 | 94.32 215 | 38.26 380 | 79.97 192 | 91.12 213 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| v10 | | | 74.77 257 | 72.54 266 | 81.46 230 | 80.33 326 | 66.71 128 | 89.15 263 | 89.08 274 | 70.94 238 | 63.08 312 | 79.86 323 | 52.52 235 | 94.04 232 | 65.70 255 | 62.17 329 | 83.64 321 |
|
| XVG-OURS-SEG-HR | | | 74.70 258 | 73.08 256 | 79.57 279 | 78.25 354 | 57.33 324 | 80.49 346 | 87.32 316 | 63.22 314 | 68.76 252 | 90.12 188 | 44.89 304 | 91.59 306 | 70.55 206 | 74.09 240 | 89.79 229 |
|
| ACMM | | 69.62 13 | 74.34 259 | 72.73 262 | 79.17 285 | 84.25 284 | 57.87 315 | 90.36 232 | 89.93 237 | 63.17 316 | 65.64 286 | 86.04 246 | 37.79 337 | 94.10 225 | 65.89 252 | 71.52 259 | 85.55 302 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| CNLPA | | | 74.31 260 | 72.30 268 | 80.32 255 | 91.49 123 | 61.66 257 | 90.85 213 | 80.72 366 | 56.67 361 | 63.85 304 | 90.64 170 | 46.75 287 | 90.84 316 | 53.79 318 | 75.99 229 | 88.47 248 |
|
| XVG-OURS | | | 74.25 261 | 72.46 267 | 79.63 277 | 78.45 352 | 57.59 320 | 80.33 348 | 87.39 315 | 63.86 306 | 68.76 252 | 89.62 192 | 40.50 319 | 91.72 302 | 69.00 220 | 74.25 238 | 89.58 232 |
|
| test_fmvs1 | | | 74.07 262 | 73.69 250 | 75.22 322 | 78.91 346 | 47.34 379 | 89.06 266 | 74.69 382 | 63.68 309 | 79.41 124 | 91.59 158 | 24.36 384 | 87.77 348 | 85.22 78 | 76.26 227 | 90.55 220 |
|
| CVMVSNet | | | 74.04 263 | 74.27 241 | 73.33 338 | 85.33 262 | 43.94 392 | 89.53 254 | 88.39 298 | 54.33 368 | 70.37 229 | 90.13 186 | 49.17 269 | 84.05 369 | 61.83 285 | 79.36 198 | 91.99 196 |
|
| Baseline_NR-MVSNet | | | 73.99 264 | 72.83 259 | 77.48 303 | 80.78 319 | 59.29 303 | 91.79 172 | 84.55 346 | 68.85 266 | 68.99 247 | 80.70 310 | 56.16 194 | 92.04 296 | 62.67 279 | 60.98 342 | 81.11 353 |
|
| pmmvs4 | | | 73.92 265 | 71.81 274 | 80.25 259 | 79.17 340 | 65.24 162 | 87.43 291 | 87.26 318 | 67.64 278 | 63.46 307 | 83.91 268 | 48.96 272 | 91.53 311 | 62.94 276 | 65.49 298 | 83.96 317 |
|
| D2MVS | | | 73.80 266 | 72.02 271 | 79.15 287 | 79.15 341 | 62.97 226 | 88.58 272 | 90.07 231 | 72.94 178 | 59.22 333 | 78.30 334 | 42.31 314 | 92.70 274 | 65.59 257 | 72.00 255 | 81.79 348 |
|
| CR-MVSNet | | | 73.79 267 | 70.82 282 | 82.70 196 | 83.15 297 | 67.96 92 | 70.25 384 | 84.00 351 | 73.67 167 | 69.97 236 | 72.41 369 | 57.82 172 | 89.48 333 | 52.99 322 | 73.13 246 | 90.64 218 |
|
| test_djsdf | | | 73.76 268 | 72.56 265 | 77.39 305 | 77.00 364 | 53.93 345 | 89.07 264 | 90.69 205 | 65.80 291 | 63.92 302 | 82.03 288 | 43.14 311 | 92.67 275 | 72.83 180 | 68.53 278 | 85.57 301 |
|
| pmmvs5 | | | 73.35 269 | 71.52 276 | 78.86 289 | 78.64 350 | 60.61 281 | 91.08 206 | 86.90 320 | 67.69 275 | 63.32 308 | 83.64 269 | 44.33 306 | 90.53 318 | 62.04 283 | 66.02 295 | 85.46 304 |
|
| Anonymous20231211 | | | 73.08 270 | 70.39 286 | 81.13 238 | 90.62 142 | 63.33 217 | 91.40 186 | 90.06 233 | 51.84 374 | 64.46 298 | 80.67 312 | 36.49 347 | 94.07 228 | 63.83 269 | 64.17 314 | 85.98 291 |
|
| tt0805 | | | 73.07 271 | 70.73 283 | 80.07 263 | 78.37 353 | 57.05 326 | 87.78 285 | 92.18 141 | 61.23 334 | 67.04 276 | 86.49 239 | 31.35 367 | 94.58 203 | 65.06 262 | 67.12 288 | 88.57 245 |
|
| miper_lstm_enhance | | | 73.05 272 | 71.73 275 | 77.03 309 | 83.80 288 | 58.32 312 | 81.76 334 | 88.88 282 | 69.80 255 | 61.01 322 | 78.23 336 | 57.19 177 | 87.51 352 | 65.34 260 | 59.53 350 | 85.27 309 |
|
| jajsoiax | | | 73.05 272 | 71.51 277 | 77.67 300 | 77.46 361 | 54.83 341 | 88.81 268 | 90.04 234 | 69.13 264 | 62.85 315 | 83.51 271 | 31.16 368 | 92.75 271 | 70.83 201 | 69.80 265 | 85.43 305 |
|
| LCM-MVSNet-Re | | | 72.93 274 | 71.84 273 | 76.18 318 | 88.49 189 | 48.02 374 | 80.07 353 | 70.17 394 | 73.96 158 | 52.25 364 | 80.09 322 | 49.98 258 | 88.24 342 | 67.35 234 | 84.23 156 | 92.28 187 |
|
| pm-mvs1 | | | 72.89 275 | 71.09 279 | 78.26 295 | 79.10 343 | 57.62 319 | 90.80 215 | 89.30 260 | 67.66 276 | 62.91 314 | 81.78 291 | 49.11 271 | 92.95 260 | 60.29 293 | 58.89 353 | 84.22 316 |
|
| tpmvs | | | 72.88 276 | 69.76 292 | 82.22 211 | 90.98 135 | 67.05 118 | 78.22 363 | 88.30 301 | 63.10 317 | 64.35 300 | 74.98 360 | 55.09 208 | 94.27 219 | 43.25 360 | 69.57 268 | 85.34 307 |
|
| test0.0.03 1 | | | 72.76 277 | 72.71 263 | 72.88 342 | 80.25 327 | 47.99 375 | 91.22 200 | 89.45 254 | 71.51 228 | 62.51 318 | 87.66 220 | 53.83 221 | 85.06 365 | 50.16 329 | 67.84 286 | 85.58 300 |
|
| UniMVSNet_ETH3D | | | 72.74 278 | 70.53 285 | 79.36 282 | 78.62 351 | 56.64 330 | 85.01 308 | 89.20 264 | 63.77 307 | 64.84 293 | 84.44 262 | 34.05 356 | 91.86 299 | 63.94 268 | 70.89 264 | 89.57 233 |
|
| mvs_tets | | | 72.71 279 | 71.11 278 | 77.52 301 | 77.41 362 | 54.52 343 | 88.45 274 | 89.76 242 | 68.76 269 | 62.70 316 | 83.26 274 | 29.49 373 | 92.71 272 | 70.51 207 | 69.62 267 | 85.34 307 |
|
| FMVSNet1 | | | 72.71 279 | 69.91 290 | 81.10 240 | 83.60 292 | 65.11 166 | 90.01 243 | 90.32 218 | 63.92 305 | 63.56 306 | 80.25 319 | 36.35 348 | 91.54 308 | 54.46 315 | 66.75 291 | 86.64 274 |
|
| test_fmvs1_n | | | 72.69 281 | 71.92 272 | 74.99 325 | 71.15 384 | 47.08 381 | 87.34 293 | 75.67 377 | 63.48 311 | 78.08 141 | 91.17 165 | 20.16 396 | 87.87 345 | 84.65 87 | 75.57 231 | 90.01 226 |
|
| IterMVS | | | 72.65 282 | 70.83 280 | 78.09 297 | 82.17 307 | 62.96 227 | 87.64 289 | 86.28 327 | 71.56 226 | 60.44 326 | 78.85 332 | 45.42 300 | 86.66 356 | 63.30 274 | 61.83 333 | 84.65 314 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| myMVS_eth3d | | | 72.58 283 | 72.74 261 | 72.10 350 | 87.87 211 | 49.45 368 | 88.07 278 | 89.01 277 | 72.91 180 | 63.11 310 | 88.10 212 | 63.63 101 | 85.54 361 | 32.73 395 | 69.23 272 | 81.32 351 |
|
| PatchMatch-RL | | | 72.06 284 | 69.98 287 | 78.28 294 | 89.51 165 | 55.70 336 | 83.49 318 | 83.39 358 | 61.24 333 | 63.72 305 | 82.76 278 | 34.77 353 | 93.03 257 | 53.37 321 | 77.59 213 | 86.12 288 |
|
| PVSNet_0 | | 68.08 15 | 71.81 285 | 68.32 301 | 82.27 208 | 84.68 273 | 62.31 244 | 88.68 270 | 90.31 221 | 75.84 130 | 57.93 344 | 80.65 313 | 37.85 336 | 94.19 222 | 69.94 209 | 29.05 410 | 90.31 222 |
|
| MIMVSNet | | | 71.64 286 | 68.44 299 | 81.23 235 | 81.97 310 | 64.44 180 | 73.05 378 | 88.80 286 | 69.67 256 | 64.59 294 | 74.79 362 | 32.79 359 | 87.82 346 | 53.99 317 | 76.35 226 | 91.42 203 |
|
| test_vis1_n | | | 71.63 287 | 70.73 283 | 74.31 332 | 69.63 390 | 47.29 380 | 86.91 297 | 72.11 388 | 63.21 315 | 75.18 171 | 90.17 183 | 20.40 394 | 85.76 360 | 84.59 88 | 74.42 237 | 89.87 227 |
|
| IterMVS-SCA-FT | | | 71.55 288 | 69.97 288 | 76.32 316 | 81.48 313 | 60.67 279 | 87.64 289 | 85.99 332 | 66.17 289 | 59.50 331 | 78.88 331 | 45.53 298 | 83.65 373 | 62.58 280 | 61.93 332 | 84.63 315 |
|
| v7n | | | 71.31 289 | 68.65 296 | 79.28 283 | 76.40 366 | 60.77 273 | 86.71 300 | 89.45 254 | 64.17 304 | 58.77 338 | 78.24 335 | 44.59 305 | 93.54 248 | 57.76 303 | 61.75 335 | 83.52 324 |
|
| anonymousdsp | | | 71.14 290 | 69.37 294 | 76.45 315 | 72.95 379 | 54.71 342 | 84.19 313 | 88.88 282 | 61.92 329 | 62.15 319 | 79.77 325 | 38.14 332 | 91.44 313 | 68.90 222 | 67.45 287 | 83.21 330 |
|
| F-COLMAP | | | 70.66 291 | 68.44 299 | 77.32 306 | 86.37 245 | 55.91 334 | 88.00 280 | 86.32 326 | 56.94 359 | 57.28 348 | 88.07 214 | 33.58 357 | 92.49 282 | 51.02 325 | 68.37 279 | 83.55 322 |
|
| WR-MVS_H | | | 70.59 292 | 69.94 289 | 72.53 344 | 81.03 316 | 51.43 356 | 87.35 292 | 92.03 148 | 67.38 279 | 60.23 328 | 80.70 310 | 55.84 200 | 83.45 375 | 46.33 350 | 58.58 355 | 82.72 337 |
|
| CP-MVSNet | | | 70.50 293 | 69.91 290 | 72.26 347 | 80.71 320 | 51.00 360 | 87.23 294 | 90.30 222 | 67.84 274 | 59.64 330 | 82.69 279 | 50.23 257 | 82.30 383 | 51.28 324 | 59.28 351 | 83.46 326 |
|
| RPMNet | | | 70.42 294 | 65.68 315 | 84.63 141 | 83.15 297 | 67.96 92 | 70.25 384 | 90.45 212 | 46.83 390 | 69.97 236 | 65.10 390 | 56.48 193 | 95.30 182 | 35.79 385 | 73.13 246 | 90.64 218 |
|
| testing3 | | | 70.38 295 | 70.83 280 | 69.03 362 | 85.82 256 | 43.93 393 | 90.72 220 | 90.56 211 | 68.06 273 | 60.24 327 | 86.82 236 | 64.83 85 | 84.12 367 | 26.33 403 | 64.10 315 | 79.04 372 |
|
| tfpnnormal | | | 70.10 296 | 67.36 305 | 78.32 293 | 83.45 294 | 60.97 269 | 88.85 267 | 92.77 114 | 64.85 298 | 60.83 324 | 78.53 333 | 43.52 309 | 93.48 250 | 31.73 398 | 61.70 337 | 80.52 360 |
|
| TransMVSNet (Re) | | | 70.07 297 | 67.66 303 | 77.31 307 | 80.62 323 | 59.13 305 | 91.78 174 | 84.94 342 | 65.97 290 | 60.08 329 | 80.44 315 | 50.78 251 | 91.87 298 | 48.84 336 | 45.46 384 | 80.94 355 |
|
| CL-MVSNet_self_test | | | 69.92 298 | 68.09 302 | 75.41 321 | 73.25 378 | 55.90 335 | 90.05 242 | 89.90 238 | 69.96 252 | 61.96 321 | 76.54 350 | 51.05 250 | 87.64 349 | 49.51 333 | 50.59 376 | 82.70 339 |
|
| DP-MVS | | | 69.90 299 | 66.48 307 | 80.14 261 | 95.36 28 | 62.93 228 | 89.56 251 | 76.11 375 | 50.27 380 | 57.69 346 | 85.23 252 | 39.68 321 | 95.73 159 | 33.35 390 | 71.05 263 | 81.78 349 |
|
| PS-CasMVS | | | 69.86 300 | 69.13 295 | 72.07 351 | 80.35 325 | 50.57 362 | 87.02 296 | 89.75 243 | 67.27 280 | 59.19 334 | 82.28 284 | 46.58 289 | 82.24 384 | 50.69 326 | 59.02 352 | 83.39 328 |
|
| Syy-MVS | | | 69.65 301 | 69.52 293 | 70.03 358 | 87.87 211 | 43.21 394 | 88.07 278 | 89.01 277 | 72.91 180 | 63.11 310 | 88.10 212 | 45.28 301 | 85.54 361 | 22.07 408 | 69.23 272 | 81.32 351 |
|
| MSDG | | | 69.54 302 | 65.73 314 | 80.96 245 | 85.11 269 | 63.71 204 | 84.19 313 | 83.28 359 | 56.95 358 | 54.50 355 | 84.03 265 | 31.50 365 | 96.03 149 | 42.87 364 | 69.13 274 | 83.14 332 |
|
| PEN-MVS | | | 69.46 303 | 68.56 297 | 72.17 349 | 79.27 338 | 49.71 366 | 86.90 298 | 89.24 262 | 67.24 283 | 59.08 335 | 82.51 282 | 47.23 285 | 83.54 374 | 48.42 338 | 57.12 357 | 83.25 329 |
|
| LS3D | | | 69.17 304 | 66.40 309 | 77.50 302 | 91.92 109 | 56.12 333 | 85.12 307 | 80.37 368 | 46.96 388 | 56.50 350 | 87.51 224 | 37.25 340 | 93.71 245 | 32.52 397 | 79.40 197 | 82.68 340 |
|
| PatchT | | | 69.11 305 | 65.37 319 | 80.32 255 | 82.07 309 | 63.68 207 | 67.96 394 | 87.62 314 | 50.86 378 | 69.37 240 | 65.18 389 | 57.09 178 | 88.53 339 | 41.59 369 | 66.60 292 | 88.74 242 |
|
| KD-MVS_2432*1600 | | | 69.03 306 | 66.37 310 | 77.01 310 | 85.56 260 | 61.06 267 | 81.44 339 | 90.25 224 | 67.27 280 | 58.00 342 | 76.53 351 | 54.49 213 | 87.63 350 | 48.04 340 | 35.77 401 | 82.34 343 |
|
| miper_refine_blended | | | 69.03 306 | 66.37 310 | 77.01 310 | 85.56 260 | 61.06 267 | 81.44 339 | 90.25 224 | 67.27 280 | 58.00 342 | 76.53 351 | 54.49 213 | 87.63 350 | 48.04 340 | 35.77 401 | 82.34 343 |
|
| mvsany_test1 | | | 68.77 308 | 68.56 297 | 69.39 360 | 73.57 377 | 45.88 388 | 80.93 344 | 60.88 408 | 59.65 344 | 71.56 216 | 90.26 181 | 43.22 310 | 75.05 395 | 74.26 173 | 62.70 324 | 87.25 267 |
|
| ACMH | | 63.93 17 | 68.62 309 | 64.81 321 | 80.03 265 | 85.22 265 | 63.25 218 | 87.72 286 | 84.66 344 | 60.83 336 | 51.57 368 | 79.43 329 | 27.29 380 | 94.96 190 | 41.76 367 | 64.84 306 | 81.88 347 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| EG-PatchMatch MVS | | | 68.55 310 | 65.41 318 | 77.96 298 | 78.69 349 | 62.93 228 | 89.86 248 | 89.17 266 | 60.55 337 | 50.27 373 | 77.73 341 | 22.60 390 | 94.06 229 | 47.18 346 | 72.65 251 | 76.88 383 |
|
| ADS-MVSNet | | | 68.54 311 | 64.38 328 | 81.03 244 | 88.06 205 | 66.90 123 | 68.01 392 | 84.02 350 | 57.57 352 | 64.48 296 | 69.87 379 | 38.68 323 | 89.21 335 | 40.87 371 | 67.89 284 | 86.97 269 |
|
| DTE-MVSNet | | | 68.46 312 | 67.33 306 | 71.87 353 | 77.94 358 | 49.00 372 | 86.16 304 | 88.58 295 | 66.36 288 | 58.19 339 | 82.21 286 | 46.36 290 | 83.87 372 | 44.97 357 | 55.17 364 | 82.73 336 |
|
| mmtdpeth | | | 68.33 313 | 66.37 310 | 74.21 333 | 82.81 302 | 51.73 353 | 84.34 312 | 80.42 367 | 67.01 284 | 71.56 216 | 68.58 383 | 30.52 371 | 92.35 288 | 75.89 158 | 36.21 399 | 78.56 377 |
|
| our_test_3 | | | 68.29 314 | 64.69 323 | 79.11 288 | 78.92 344 | 64.85 173 | 88.40 275 | 85.06 340 | 60.32 340 | 52.68 362 | 76.12 355 | 40.81 318 | 89.80 332 | 44.25 359 | 55.65 362 | 82.67 341 |
|
| Patchmatch-RL test | | | 68.17 315 | 64.49 326 | 79.19 284 | 71.22 383 | 53.93 345 | 70.07 386 | 71.54 392 | 69.22 261 | 56.79 349 | 62.89 394 | 56.58 190 | 88.61 336 | 69.53 213 | 52.61 371 | 95.03 85 |
|
| XVG-ACMP-BASELINE | | | 68.04 316 | 65.53 317 | 75.56 320 | 74.06 376 | 52.37 350 | 78.43 360 | 85.88 333 | 62.03 327 | 58.91 337 | 81.21 306 | 20.38 395 | 91.15 315 | 60.69 290 | 68.18 280 | 83.16 331 |
|
| FMVSNet5 | | | 68.04 316 | 65.66 316 | 75.18 324 | 84.43 280 | 57.89 314 | 83.54 317 | 86.26 328 | 61.83 331 | 53.64 360 | 73.30 365 | 37.15 343 | 85.08 364 | 48.99 335 | 61.77 334 | 82.56 342 |
|
| ppachtmachnet_test | | | 67.72 318 | 63.70 330 | 79.77 275 | 78.92 344 | 66.04 143 | 88.68 270 | 82.90 361 | 60.11 342 | 55.45 352 | 75.96 356 | 39.19 322 | 90.55 317 | 39.53 375 | 52.55 372 | 82.71 338 |
|
| ACMH+ | | 65.35 16 | 67.65 319 | 64.55 324 | 76.96 312 | 84.59 276 | 57.10 325 | 88.08 277 | 80.79 365 | 58.59 350 | 53.00 361 | 81.09 308 | 26.63 382 | 92.95 260 | 46.51 348 | 61.69 338 | 80.82 356 |
|
| pmmvs6 | | | 67.57 320 | 64.76 322 | 76.00 319 | 72.82 381 | 53.37 347 | 88.71 269 | 86.78 324 | 53.19 370 | 57.58 347 | 78.03 338 | 35.33 352 | 92.41 284 | 55.56 311 | 54.88 366 | 82.21 345 |
|
| Anonymous20231206 | | | 67.53 321 | 65.78 313 | 72.79 343 | 74.95 372 | 47.59 377 | 88.23 276 | 87.32 316 | 61.75 332 | 58.07 341 | 77.29 344 | 37.79 337 | 87.29 354 | 42.91 362 | 63.71 319 | 83.48 325 |
|
| Patchmtry | | | 67.53 321 | 63.93 329 | 78.34 292 | 82.12 308 | 64.38 184 | 68.72 389 | 84.00 351 | 48.23 387 | 59.24 332 | 72.41 369 | 57.82 172 | 89.27 334 | 46.10 351 | 56.68 361 | 81.36 350 |
|
| USDC | | | 67.43 323 | 64.51 325 | 76.19 317 | 77.94 358 | 55.29 338 | 78.38 361 | 85.00 341 | 73.17 173 | 48.36 381 | 80.37 316 | 21.23 392 | 92.48 283 | 52.15 323 | 64.02 317 | 80.81 357 |
|
| ADS-MVSNet2 | | | 66.90 324 | 63.44 332 | 77.26 308 | 88.06 205 | 60.70 278 | 68.01 392 | 75.56 379 | 57.57 352 | 64.48 296 | 69.87 379 | 38.68 323 | 84.10 368 | 40.87 371 | 67.89 284 | 86.97 269 |
|
| CMPMVS |  | 48.56 21 | 66.77 325 | 64.41 327 | 73.84 335 | 70.65 387 | 50.31 363 | 77.79 365 | 85.73 336 | 45.54 392 | 44.76 391 | 82.14 287 | 35.40 351 | 90.14 327 | 63.18 275 | 74.54 235 | 81.07 354 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| OpenMVS_ROB |  | 61.12 18 | 66.39 326 | 62.92 335 | 76.80 314 | 76.51 365 | 57.77 316 | 89.22 260 | 83.41 357 | 55.48 365 | 53.86 359 | 77.84 339 | 26.28 383 | 93.95 238 | 34.90 387 | 68.76 276 | 78.68 375 |
|
| LTVRE_ROB | | 59.60 19 | 66.27 327 | 63.54 331 | 74.45 329 | 84.00 287 | 51.55 355 | 67.08 396 | 83.53 355 | 58.78 348 | 54.94 354 | 80.31 317 | 34.54 354 | 93.23 254 | 40.64 373 | 68.03 282 | 78.58 376 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| JIA-IIPM | | | 66.06 328 | 62.45 338 | 76.88 313 | 81.42 315 | 54.45 344 | 57.49 408 | 88.67 291 | 49.36 382 | 63.86 303 | 46.86 406 | 56.06 197 | 90.25 321 | 49.53 332 | 68.83 275 | 85.95 292 |
|
| Patchmatch-test | | | 65.86 329 | 60.94 344 | 80.62 252 | 83.75 289 | 58.83 307 | 58.91 407 | 75.26 381 | 44.50 395 | 50.95 372 | 77.09 347 | 58.81 162 | 87.90 344 | 35.13 386 | 64.03 316 | 95.12 80 |
|
| UnsupCasMVSNet_eth | | | 65.79 330 | 63.10 333 | 73.88 334 | 70.71 386 | 50.29 364 | 81.09 342 | 89.88 239 | 72.58 187 | 49.25 378 | 74.77 363 | 32.57 361 | 87.43 353 | 55.96 310 | 41.04 391 | 83.90 319 |
|
| test_fmvs2 | | | 65.78 331 | 64.84 320 | 68.60 364 | 66.54 396 | 41.71 396 | 83.27 322 | 69.81 395 | 54.38 367 | 67.91 262 | 84.54 261 | 15.35 401 | 81.22 388 | 75.65 160 | 66.16 294 | 82.88 333 |
|
| dmvs_testset | | | 65.55 332 | 66.45 308 | 62.86 376 | 79.87 331 | 22.35 422 | 76.55 368 | 71.74 390 | 77.42 113 | 55.85 351 | 87.77 219 | 51.39 246 | 80.69 389 | 31.51 401 | 65.92 296 | 85.55 302 |
|
| pmmvs-eth3d | | | 65.53 333 | 62.32 339 | 75.19 323 | 69.39 391 | 59.59 296 | 82.80 330 | 83.43 356 | 62.52 322 | 51.30 370 | 72.49 367 | 32.86 358 | 87.16 355 | 55.32 312 | 50.73 375 | 78.83 374 |
|
| mamv4 | | | 65.18 334 | 67.43 304 | 58.44 380 | 77.88 360 | 49.36 371 | 69.40 388 | 70.99 393 | 48.31 386 | 57.78 345 | 85.53 250 | 59.01 160 | 51.88 418 | 73.67 175 | 64.32 312 | 74.07 388 |
|
| SixPastTwentyTwo | | | 64.92 335 | 61.78 342 | 74.34 331 | 78.74 348 | 49.76 365 | 83.42 321 | 79.51 371 | 62.86 318 | 50.27 373 | 77.35 342 | 30.92 370 | 90.49 319 | 45.89 352 | 47.06 381 | 82.78 334 |
|
| OurMVSNet-221017-0 | | | 64.68 336 | 62.17 340 | 72.21 348 | 76.08 369 | 47.35 378 | 80.67 345 | 81.02 364 | 56.19 362 | 51.60 367 | 79.66 327 | 27.05 381 | 88.56 338 | 53.60 320 | 53.63 369 | 80.71 358 |
|
| test_0402 | | | 64.54 337 | 61.09 343 | 74.92 326 | 84.10 286 | 60.75 275 | 87.95 281 | 79.71 370 | 52.03 372 | 52.41 363 | 77.20 345 | 32.21 363 | 91.64 304 | 23.14 406 | 61.03 341 | 72.36 394 |
|
| testgi | | | 64.48 338 | 62.87 336 | 69.31 361 | 71.24 382 | 40.62 399 | 85.49 305 | 79.92 369 | 65.36 295 | 54.18 357 | 83.49 272 | 23.74 387 | 84.55 366 | 41.60 368 | 60.79 344 | 82.77 335 |
|
| RPSCF | | | 64.24 339 | 61.98 341 | 71.01 356 | 76.10 368 | 45.00 389 | 75.83 373 | 75.94 376 | 46.94 389 | 58.96 336 | 84.59 259 | 31.40 366 | 82.00 385 | 47.76 344 | 60.33 349 | 86.04 289 |
|
| EU-MVSNet | | | 64.01 340 | 63.01 334 | 67.02 370 | 74.40 375 | 38.86 405 | 83.27 322 | 86.19 330 | 45.11 393 | 54.27 356 | 81.15 307 | 36.91 346 | 80.01 391 | 48.79 337 | 57.02 358 | 82.19 346 |
|
| test20.03 | | | 63.83 341 | 62.65 337 | 67.38 369 | 70.58 388 | 39.94 401 | 86.57 301 | 84.17 348 | 63.29 313 | 51.86 366 | 77.30 343 | 37.09 344 | 82.47 381 | 38.87 379 | 54.13 368 | 79.73 366 |
|
| MDA-MVSNet_test_wron | | | 63.78 342 | 60.16 346 | 74.64 327 | 78.15 356 | 60.41 284 | 83.49 318 | 84.03 349 | 56.17 364 | 39.17 401 | 71.59 375 | 37.22 341 | 83.24 378 | 42.87 364 | 48.73 378 | 80.26 363 |
|
| YYNet1 | | | 63.76 343 | 60.14 347 | 74.62 328 | 78.06 357 | 60.19 289 | 83.46 320 | 83.99 353 | 56.18 363 | 39.25 400 | 71.56 376 | 37.18 342 | 83.34 376 | 42.90 363 | 48.70 379 | 80.32 362 |
|
| K. test v3 | | | 63.09 344 | 59.61 349 | 73.53 337 | 76.26 367 | 49.38 370 | 83.27 322 | 77.15 374 | 64.35 301 | 47.77 383 | 72.32 371 | 28.73 375 | 87.79 347 | 49.93 331 | 36.69 398 | 83.41 327 |
|
| COLMAP_ROB |  | 57.96 20 | 62.98 345 | 59.65 348 | 72.98 341 | 81.44 314 | 53.00 349 | 83.75 316 | 75.53 380 | 48.34 385 | 48.81 380 | 81.40 300 | 24.14 385 | 90.30 320 | 32.95 392 | 60.52 346 | 75.65 386 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| Anonymous20240521 | | | 62.09 346 | 59.08 350 | 71.10 355 | 67.19 394 | 48.72 373 | 83.91 315 | 85.23 339 | 50.38 379 | 47.84 382 | 71.22 378 | 20.74 393 | 85.51 363 | 46.47 349 | 58.75 354 | 79.06 371 |
|
| AllTest | | | 61.66 347 | 58.06 352 | 72.46 345 | 79.57 333 | 51.42 357 | 80.17 351 | 68.61 397 | 51.25 376 | 45.88 385 | 81.23 302 | 19.86 397 | 86.58 357 | 38.98 377 | 57.01 359 | 79.39 368 |
|
| UnsupCasMVSNet_bld | | | 61.60 348 | 57.71 353 | 73.29 339 | 68.73 392 | 51.64 354 | 78.61 359 | 89.05 276 | 57.20 357 | 46.11 384 | 61.96 397 | 28.70 376 | 88.60 337 | 50.08 330 | 38.90 396 | 79.63 367 |
|
| MDA-MVSNet-bldmvs | | | 61.54 349 | 57.70 354 | 73.05 340 | 79.53 335 | 57.00 329 | 83.08 326 | 81.23 363 | 57.57 352 | 34.91 405 | 72.45 368 | 32.79 359 | 86.26 359 | 35.81 384 | 41.95 389 | 75.89 385 |
|
| mvs5depth | | | 61.03 350 | 57.65 355 | 71.18 354 | 67.16 395 | 47.04 383 | 72.74 379 | 77.49 372 | 57.47 355 | 60.52 325 | 72.53 366 | 22.84 389 | 88.38 340 | 49.15 334 | 38.94 395 | 78.11 380 |
|
| KD-MVS_self_test | | | 60.87 351 | 58.60 351 | 67.68 367 | 66.13 397 | 39.93 402 | 75.63 375 | 84.70 343 | 57.32 356 | 49.57 376 | 68.45 384 | 29.55 372 | 82.87 379 | 48.09 339 | 47.94 380 | 80.25 364 |
|
| kuosan | | | 60.86 352 | 60.24 345 | 62.71 377 | 81.57 312 | 46.43 385 | 75.70 374 | 85.88 333 | 57.98 351 | 48.95 379 | 69.53 381 | 58.42 165 | 76.53 393 | 28.25 402 | 35.87 400 | 65.15 401 |
|
| TinyColmap | | | 60.32 353 | 56.42 360 | 72.00 352 | 78.78 347 | 53.18 348 | 78.36 362 | 75.64 378 | 52.30 371 | 41.59 399 | 75.82 358 | 14.76 404 | 88.35 341 | 35.84 383 | 54.71 367 | 74.46 387 |
|
| MVS-HIRNet | | | 60.25 354 | 55.55 361 | 74.35 330 | 84.37 281 | 56.57 331 | 71.64 382 | 74.11 383 | 34.44 404 | 45.54 389 | 42.24 412 | 31.11 369 | 89.81 330 | 40.36 374 | 76.10 228 | 76.67 384 |
|
| MIMVSNet1 | | | 60.16 355 | 57.33 356 | 68.67 363 | 69.71 389 | 44.13 391 | 78.92 358 | 84.21 347 | 55.05 366 | 44.63 392 | 71.85 373 | 23.91 386 | 81.54 387 | 32.63 396 | 55.03 365 | 80.35 361 |
|
| PM-MVS | | | 59.40 356 | 56.59 358 | 67.84 365 | 63.63 400 | 41.86 395 | 76.76 367 | 63.22 405 | 59.01 347 | 51.07 371 | 72.27 372 | 11.72 408 | 83.25 377 | 61.34 286 | 50.28 377 | 78.39 378 |
|
| new-patchmatchnet | | | 59.30 357 | 56.48 359 | 67.79 366 | 65.86 398 | 44.19 390 | 82.47 331 | 81.77 362 | 59.94 343 | 43.65 395 | 66.20 388 | 27.67 379 | 81.68 386 | 39.34 376 | 41.40 390 | 77.50 382 |
|
| test_vis1_rt | | | 59.09 358 | 57.31 357 | 64.43 373 | 68.44 393 | 46.02 387 | 83.05 328 | 48.63 417 | 51.96 373 | 49.57 376 | 63.86 393 | 16.30 399 | 80.20 390 | 71.21 199 | 62.79 323 | 67.07 400 |
|
| test_fmvs3 | | | 56.82 359 | 54.86 363 | 62.69 378 | 53.59 411 | 35.47 408 | 75.87 372 | 65.64 402 | 43.91 396 | 55.10 353 | 71.43 377 | 6.91 416 | 74.40 398 | 68.64 224 | 52.63 370 | 78.20 379 |
|
| DSMNet-mixed | | | 56.78 360 | 54.44 364 | 63.79 374 | 63.21 401 | 29.44 417 | 64.43 399 | 64.10 404 | 42.12 401 | 51.32 369 | 71.60 374 | 31.76 364 | 75.04 396 | 36.23 382 | 65.20 303 | 86.87 272 |
|
| pmmvs3 | | | 55.51 361 | 51.50 367 | 67.53 368 | 57.90 409 | 50.93 361 | 80.37 347 | 73.66 384 | 40.63 402 | 44.15 394 | 64.75 391 | 16.30 399 | 78.97 392 | 44.77 358 | 40.98 393 | 72.69 392 |
|
| TDRefinement | | | 55.28 362 | 51.58 366 | 66.39 371 | 59.53 408 | 46.15 386 | 76.23 370 | 72.80 385 | 44.60 394 | 42.49 397 | 76.28 354 | 15.29 402 | 82.39 382 | 33.20 391 | 43.75 386 | 70.62 396 |
|
| dongtai | | | 55.18 363 | 55.46 362 | 54.34 388 | 76.03 370 | 36.88 406 | 76.07 371 | 84.61 345 | 51.28 375 | 43.41 396 | 64.61 392 | 56.56 191 | 67.81 406 | 18.09 411 | 28.50 411 | 58.32 404 |
|
| LF4IMVS | | | 54.01 364 | 52.12 365 | 59.69 379 | 62.41 403 | 39.91 403 | 68.59 390 | 68.28 399 | 42.96 399 | 44.55 393 | 75.18 359 | 14.09 406 | 68.39 405 | 41.36 370 | 51.68 373 | 70.78 395 |
|
| ttmdpeth | | | 53.34 365 | 49.96 368 | 63.45 375 | 62.07 405 | 40.04 400 | 72.06 380 | 65.64 402 | 42.54 400 | 51.88 365 | 77.79 340 | 13.94 407 | 76.48 394 | 32.93 393 | 30.82 409 | 73.84 389 |
|
| MVStest1 | | | 51.35 366 | 46.89 370 | 64.74 372 | 65.06 399 | 51.10 359 | 67.33 395 | 72.58 386 | 30.20 408 | 35.30 403 | 74.82 361 | 27.70 378 | 69.89 403 | 24.44 405 | 24.57 412 | 73.22 390 |
|
| N_pmnet | | | 50.55 367 | 49.11 369 | 54.88 386 | 77.17 363 | 4.02 430 | 84.36 311 | 2.00 428 | 48.59 383 | 45.86 387 | 68.82 382 | 32.22 362 | 82.80 380 | 31.58 399 | 51.38 374 | 77.81 381 |
|
| new_pmnet | | | 49.31 368 | 46.44 371 | 57.93 381 | 62.84 402 | 40.74 398 | 68.47 391 | 62.96 406 | 36.48 403 | 35.09 404 | 57.81 401 | 14.97 403 | 72.18 400 | 32.86 394 | 46.44 382 | 60.88 403 |
|
| mvsany_test3 | | | 48.86 369 | 46.35 372 | 56.41 382 | 46.00 417 | 31.67 413 | 62.26 401 | 47.25 418 | 43.71 397 | 45.54 389 | 68.15 385 | 10.84 409 | 64.44 414 | 57.95 302 | 35.44 403 | 73.13 391 |
|
| test_f | | | 46.58 370 | 43.45 374 | 55.96 383 | 45.18 418 | 32.05 412 | 61.18 402 | 49.49 416 | 33.39 405 | 42.05 398 | 62.48 396 | 7.00 415 | 65.56 410 | 47.08 347 | 43.21 388 | 70.27 397 |
|
| WB-MVS | | | 46.23 371 | 44.94 373 | 50.11 391 | 62.13 404 | 21.23 424 | 76.48 369 | 55.49 410 | 45.89 391 | 35.78 402 | 61.44 399 | 35.54 350 | 72.83 399 | 9.96 418 | 21.75 413 | 56.27 406 |
|
| FPMVS | | | 45.64 372 | 43.10 376 | 53.23 389 | 51.42 414 | 36.46 407 | 64.97 398 | 71.91 389 | 29.13 409 | 27.53 409 | 61.55 398 | 9.83 411 | 65.01 412 | 16.00 415 | 55.58 363 | 58.22 405 |
|
| SSC-MVS | | | 44.51 373 | 43.35 375 | 47.99 395 | 61.01 407 | 18.90 426 | 74.12 377 | 54.36 411 | 43.42 398 | 34.10 406 | 60.02 400 | 34.42 355 | 70.39 402 | 9.14 420 | 19.57 414 | 54.68 407 |
|
| EGC-MVSNET | | | 42.35 374 | 38.09 377 | 55.11 385 | 74.57 373 | 46.62 384 | 71.63 383 | 55.77 409 | 0.04 423 | 0.24 424 | 62.70 395 | 14.24 405 | 74.91 397 | 17.59 412 | 46.06 383 | 43.80 409 |
|
| LCM-MVSNet | | | 40.54 375 | 35.79 380 | 54.76 387 | 36.92 424 | 30.81 414 | 51.41 411 | 69.02 396 | 22.07 411 | 24.63 411 | 45.37 408 | 4.56 420 | 65.81 409 | 33.67 389 | 34.50 404 | 67.67 398 |
|
| APD_test1 | | | 40.50 376 | 37.31 379 | 50.09 392 | 51.88 412 | 35.27 409 | 59.45 406 | 52.59 413 | 21.64 412 | 26.12 410 | 57.80 402 | 4.56 420 | 66.56 408 | 22.64 407 | 39.09 394 | 48.43 408 |
|
| test_vis3_rt | | | 40.46 377 | 37.79 378 | 48.47 394 | 44.49 419 | 33.35 411 | 66.56 397 | 32.84 425 | 32.39 406 | 29.65 407 | 39.13 415 | 3.91 423 | 68.65 404 | 50.17 328 | 40.99 392 | 43.40 410 |
|
| ANet_high | | | 40.27 378 | 35.20 381 | 55.47 384 | 34.74 425 | 34.47 410 | 63.84 400 | 71.56 391 | 48.42 384 | 18.80 414 | 41.08 413 | 9.52 412 | 64.45 413 | 20.18 409 | 8.66 421 | 67.49 399 |
|
| test_method | | | 38.59 379 | 35.16 382 | 48.89 393 | 54.33 410 | 21.35 423 | 45.32 414 | 53.71 412 | 7.41 420 | 28.74 408 | 51.62 404 | 8.70 413 | 52.87 417 | 33.73 388 | 32.89 405 | 72.47 393 |
|
| PMMVS2 | | | 37.93 380 | 33.61 383 | 50.92 390 | 46.31 416 | 24.76 420 | 60.55 405 | 50.05 414 | 28.94 410 | 20.93 412 | 47.59 405 | 4.41 422 | 65.13 411 | 25.14 404 | 18.55 416 | 62.87 402 |
|
| Gipuma |  | | 34.91 381 | 31.44 384 | 45.30 396 | 70.99 385 | 39.64 404 | 19.85 418 | 72.56 387 | 20.10 414 | 16.16 418 | 21.47 419 | 5.08 419 | 71.16 401 | 13.07 416 | 43.70 387 | 25.08 416 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| testf1 | | | 32.77 382 | 29.47 385 | 42.67 398 | 41.89 421 | 30.81 414 | 52.07 409 | 43.45 419 | 15.45 415 | 18.52 415 | 44.82 409 | 2.12 424 | 58.38 415 | 16.05 413 | 30.87 407 | 38.83 411 |
|
| APD_test2 | | | 32.77 382 | 29.47 385 | 42.67 398 | 41.89 421 | 30.81 414 | 52.07 409 | 43.45 419 | 15.45 415 | 18.52 415 | 44.82 409 | 2.12 424 | 58.38 415 | 16.05 413 | 30.87 407 | 38.83 411 |
|
| PMVS |  | 26.43 22 | 31.84 384 | 28.16 387 | 42.89 397 | 25.87 427 | 27.58 418 | 50.92 412 | 49.78 415 | 21.37 413 | 14.17 419 | 40.81 414 | 2.01 426 | 66.62 407 | 9.61 419 | 38.88 397 | 34.49 415 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| E-PMN | | | 24.61 385 | 24.00 389 | 26.45 402 | 43.74 420 | 18.44 427 | 60.86 403 | 39.66 421 | 15.11 417 | 9.53 421 | 22.10 418 | 6.52 417 | 46.94 420 | 8.31 421 | 10.14 418 | 13.98 418 |
|
| MVE |  | 24.84 23 | 24.35 386 | 19.77 392 | 38.09 400 | 34.56 426 | 26.92 419 | 26.57 416 | 38.87 423 | 11.73 419 | 11.37 420 | 27.44 416 | 1.37 427 | 50.42 419 | 11.41 417 | 14.60 417 | 36.93 413 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| EMVS | | | 23.76 387 | 23.20 391 | 25.46 403 | 41.52 423 | 16.90 428 | 60.56 404 | 38.79 424 | 14.62 418 | 8.99 422 | 20.24 421 | 7.35 414 | 45.82 421 | 7.25 422 | 9.46 419 | 13.64 419 |
|
| tmp_tt | | | 22.26 388 | 23.75 390 | 17.80 404 | 5.23 428 | 12.06 429 | 35.26 415 | 39.48 422 | 2.82 422 | 18.94 413 | 44.20 411 | 22.23 391 | 24.64 423 | 36.30 381 | 9.31 420 | 16.69 417 |
|
| cdsmvs_eth3d_5k | | | 19.86 389 | 26.47 388 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 93.45 86 | 0.00 426 | 0.00 427 | 95.27 59 | 49.56 263 | 0.00 427 | 0.00 426 | 0.00 424 | 0.00 423 |
|
| wuyk23d | | | 11.30 390 | 10.95 393 | 12.33 405 | 48.05 415 | 19.89 425 | 25.89 417 | 1.92 429 | 3.58 421 | 3.12 423 | 1.37 423 | 0.64 428 | 15.77 424 | 6.23 423 | 7.77 422 | 1.35 420 |
|
| ab-mvs-re | | | 7.91 391 | 10.55 394 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 94.95 69 | 0.00 431 | 0.00 427 | 0.00 426 | 0.00 424 | 0.00 423 |
|
| testmvs | | | 7.23 392 | 9.62 395 | 0.06 407 | 0.04 429 | 0.02 432 | 84.98 309 | 0.02 430 | 0.03 424 | 0.18 425 | 1.21 424 | 0.01 430 | 0.02 425 | 0.14 424 | 0.01 423 | 0.13 422 |
|
| test123 | | | 6.92 393 | 9.21 396 | 0.08 406 | 0.03 430 | 0.05 431 | 81.65 337 | 0.01 431 | 0.02 425 | 0.14 426 | 0.85 425 | 0.03 429 | 0.02 425 | 0.12 425 | 0.00 424 | 0.16 421 |
|
| pcd_1.5k_mvsjas | | | 4.46 394 | 5.95 397 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 0.00 426 | 53.55 225 | 0.00 427 | 0.00 426 | 0.00 424 | 0.00 423 |
|
| mmdepth | | | 0.00 395 | 0.00 398 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 0.00 426 | 0.00 431 | 0.00 427 | 0.00 426 | 0.00 424 | 0.00 423 |
|
| monomultidepth | | | 0.00 395 | 0.00 398 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 0.00 426 | 0.00 431 | 0.00 427 | 0.00 426 | 0.00 424 | 0.00 423 |
|
| test_blank | | | 0.00 395 | 0.00 398 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 0.00 426 | 0.00 431 | 0.00 427 | 0.00 426 | 0.00 424 | 0.00 423 |
|
| uanet_test | | | 0.00 395 | 0.00 398 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 0.00 426 | 0.00 431 | 0.00 427 | 0.00 426 | 0.00 424 | 0.00 423 |
|
| DCPMVS | | | 0.00 395 | 0.00 398 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 0.00 426 | 0.00 431 | 0.00 427 | 0.00 426 | 0.00 424 | 0.00 423 |
|
| sosnet-low-res | | | 0.00 395 | 0.00 398 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 0.00 426 | 0.00 431 | 0.00 427 | 0.00 426 | 0.00 424 | 0.00 423 |
|
| sosnet | | | 0.00 395 | 0.00 398 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 0.00 426 | 0.00 431 | 0.00 427 | 0.00 426 | 0.00 424 | 0.00 423 |
|
| uncertanet | | | 0.00 395 | 0.00 398 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 0.00 426 | 0.00 431 | 0.00 427 | 0.00 426 | 0.00 424 | 0.00 423 |
|
| Regformer | | | 0.00 395 | 0.00 398 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 0.00 426 | 0.00 431 | 0.00 427 | 0.00 426 | 0.00 424 | 0.00 423 |
|
| uanet | | | 0.00 395 | 0.00 398 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 0.00 426 | 0.00 431 | 0.00 427 | 0.00 426 | 0.00 424 | 0.00 423 |
|
| WAC-MVS | | | | | | | 49.45 368 | | | | | | | | 31.56 400 | | |
|
| FOURS1 | | | | | | 93.95 46 | 61.77 253 | 93.96 70 | 91.92 152 | 62.14 326 | 86.57 46 | | | | | | |
|
| MSC_two_6792asdad | | | | | 89.60 9 | 97.31 4 | 73.22 12 | | 95.05 27 | | | | | 99.07 13 | 92.01 25 | 94.77 26 | 96.51 24 |
|
| PC_three_1452 | | | | | | | | | | 80.91 48 | 94.07 2 | 96.83 18 | 83.57 4 | 99.12 5 | 95.70 7 | 97.42 4 | 97.55 4 |
|
| No_MVS | | | | | 89.60 9 | 97.31 4 | 73.22 12 | | 95.05 27 | | | | | 99.07 13 | 92.01 25 | 94.77 26 | 96.51 24 |
|
| test_one_0601 | | | | | | 96.32 18 | 69.74 49 | | 94.18 58 | 71.42 230 | 90.67 19 | 96.85 16 | 74.45 20 | | | | |
|
| eth-test2 | | | | | | 0.00 431 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 431 | | | | | | | | | | | |
|
| ZD-MVS | | | | | | 96.63 9 | 65.50 158 | | 93.50 84 | 70.74 244 | 85.26 62 | 95.19 65 | 64.92 84 | 97.29 76 | 87.51 57 | 93.01 56 | |
|
| RE-MVS-def | | | | 80.48 148 | | 92.02 102 | 58.56 310 | 90.90 210 | 90.45 212 | 62.76 319 | 78.89 130 | 94.46 83 | 49.30 266 | | 78.77 142 | 86.77 131 | 92.28 187 |
|
| IU-MVS | | | | | | 96.46 11 | 69.91 42 | | 95.18 21 | 80.75 49 | 95.28 1 | | | | 92.34 22 | 95.36 14 | 96.47 28 |
|
| OPU-MVS | | | | | 89.97 3 | 97.52 3 | 73.15 14 | 96.89 6 | | | | 97.00 9 | 83.82 2 | 99.15 2 | 95.72 5 | 97.63 3 | 97.62 2 |
|
| test_241102_TWO | | | | | | | | | 94.41 49 | 71.65 219 | 92.07 9 | 97.21 4 | 74.58 18 | 99.11 6 | 92.34 22 | 95.36 14 | 96.59 19 |
|
| test_241102_ONE | | | | | | 96.45 12 | 69.38 55 | | 94.44 47 | 71.65 219 | 92.11 7 | 97.05 7 | 76.79 9 | 99.11 6 | | | |
|
| 9.14 | | | | 87.63 28 | | 93.86 48 | | 94.41 52 | 94.18 58 | 72.76 184 | 86.21 48 | 96.51 24 | 66.64 64 | 97.88 44 | 90.08 39 | 94.04 39 | |
|
| save fliter | | | | | | 93.84 49 | 67.89 95 | 95.05 39 | 92.66 120 | 78.19 95 | | | | | | | |
|
| test_0728_THIRD | | | | | | | | | | 72.48 189 | 90.55 20 | 96.93 11 | 76.24 11 | 99.08 11 | 91.53 30 | 94.99 18 | 96.43 31 |
|
| test_0728_SECOND | | | | | 88.70 18 | 96.45 12 | 70.43 33 | 96.64 10 | 94.37 53 | | | | | 99.15 2 | 91.91 28 | 94.90 22 | 96.51 24 |
|
| test0726 | | | | | | 96.40 15 | 69.99 38 | 96.76 8 | 94.33 55 | 71.92 205 | 91.89 11 | 97.11 6 | 73.77 23 | | | | |
|
| GSMVS | | | | | | | | | | | | | | | | | 94.68 100 |
|
| test_part2 | | | | | | 96.29 19 | 68.16 88 | | | | 90.78 17 | | | | | | |
|
| sam_mvs1 | | | | | | | | | | | | | 57.85 171 | | | | 94.68 100 |
|
| sam_mvs | | | | | | | | | | | | | 54.91 210 | | | | |
|
| ambc | | | | | 69.61 359 | 61.38 406 | 41.35 397 | 49.07 413 | 85.86 335 | | 50.18 375 | 66.40 387 | 10.16 410 | 88.14 343 | 45.73 353 | 44.20 385 | 79.32 370 |
|
| MTGPA |  | | | | | | | | 92.23 134 | | | | | | | | |
|
| test_post1 | | | | | | | | 78.95 357 | | | | 20.70 420 | 53.05 230 | 91.50 312 | 60.43 291 | | |
|
| test_post | | | | | | | | | | | | 23.01 417 | 56.49 192 | 92.67 275 | | | |
|
| patchmatchnet-post | | | | | | | | | | | | 67.62 386 | 57.62 174 | 90.25 321 | | | |
|
| GG-mvs-BLEND | | | | | 86.53 73 | 91.91 110 | 69.67 52 | 75.02 376 | 94.75 34 | | 78.67 137 | 90.85 169 | 77.91 7 | 94.56 208 | 72.25 189 | 93.74 45 | 95.36 65 |
|
| MTMP | | | | | | | | 93.77 84 | 32.52 426 | | | | | | | | |
|
| gm-plane-assit | | | | | | 88.42 193 | 67.04 119 | | | 78.62 91 | | 91.83 152 | | 97.37 70 | 76.57 154 | | |
|
| test9_res | | | | | | | | | | | | | | | 89.41 40 | 94.96 19 | 95.29 70 |
|
| TEST9 | | | | | | 94.18 41 | 67.28 110 | 94.16 59 | 93.51 82 | 71.75 216 | 85.52 57 | 95.33 54 | 68.01 54 | 97.27 80 | | | |
|
| test_8 | | | | | | 94.19 40 | 67.19 112 | 94.15 61 | 93.42 89 | 71.87 210 | 85.38 60 | 95.35 53 | 68.19 52 | 96.95 106 | | | |
|
| agg_prior2 | | | | | | | | | | | | | | | 86.41 70 | 94.75 30 | 95.33 66 |
|
| agg_prior | | | | | | 94.16 43 | 66.97 121 | | 93.31 92 | | 84.49 68 | | | 96.75 116 | | | |
|
| TestCases | | | | | 72.46 345 | 79.57 333 | 51.42 357 | | 68.61 397 | 51.25 376 | 45.88 385 | 81.23 302 | 19.86 397 | 86.58 357 | 38.98 377 | 57.01 359 | 79.39 368 |
|
| test_prior4 | | | | | | | 67.18 114 | 93.92 73 | | | | | | | | | |
|
| test_prior2 | | | | | | | | 95.10 38 | | 75.40 137 | 85.25 63 | 95.61 45 | 67.94 55 | | 87.47 59 | 94.77 26 | |
|
| test_prior | | | | | 86.42 76 | 94.71 35 | 67.35 109 | | 93.10 103 | | | | | 96.84 113 | | | 95.05 83 |
|
| 旧先验2 | | | | | | | | 92.00 163 | | 59.37 346 | 87.54 39 | | | 93.47 251 | 75.39 162 | | |
|
| æ–°å‡ ä½•2 | | | | | | | | 91.41 184 | | | | | | | | | |
|
| æ–°å‡ ä½•1 | | | | | 84.73 134 | 92.32 92 | 64.28 189 | | 91.46 178 | 59.56 345 | 79.77 119 | 92.90 125 | 56.95 184 | 96.57 121 | 63.40 271 | 92.91 58 | 93.34 154 |
|
| 旧先验1 | | | | | | 91.94 107 | 60.74 276 | | 91.50 176 | | | 94.36 87 | 65.23 79 | | | 91.84 71 | 94.55 107 |
|
| æ— å…ˆéªŒ | | | | | | | | 92.71 128 | 92.61 124 | 62.03 327 | | | | 97.01 96 | 66.63 242 | | 93.97 136 |
|
| 原ACMM2 | | | | | | | | 92.01 160 | | | | | | | | | |
|
| 原ACMM1 | | | | | 84.42 148 | 93.21 67 | 64.27 190 | | 93.40 91 | 65.39 294 | 79.51 122 | 92.50 133 | 58.11 170 | 96.69 117 | 65.27 261 | 93.96 40 | 92.32 185 |
|
| test222 | | | | | | 89.77 158 | 61.60 258 | 89.55 252 | 89.42 256 | 56.83 360 | 77.28 150 | 92.43 137 | 52.76 233 | | | 91.14 85 | 93.09 163 |
|
| testdata2 | | | | | | | | | | | | | | 96.09 143 | 61.26 287 | | |
|
| segment_acmp | | | | | | | | | | | | | 65.94 72 | | | | |
|
| testdata | | | | | 81.34 233 | 89.02 179 | 57.72 317 | | 89.84 240 | 58.65 349 | 85.32 61 | 94.09 101 | 57.03 179 | 93.28 253 | 69.34 215 | 90.56 91 | 93.03 166 |
|
| testdata1 | | | | | | | | 89.21 261 | | 77.55 109 | | | | | | | |
|
| test12 | | | | | 87.09 52 | 94.60 36 | 68.86 67 | | 92.91 110 | | 82.67 89 | | 65.44 77 | 97.55 62 | | 93.69 48 | 94.84 92 |
|
| plane_prior7 | | | | | | 86.94 235 | 61.51 259 | | | | | | | | | | |
|
| plane_prior6 | | | | | | 87.23 227 | 62.32 243 | | | | | | 50.66 252 | | | | |
|
| plane_prior5 | | | | | | | | | 91.31 182 | | | | | 95.55 172 | 76.74 152 | 78.53 207 | 88.39 249 |
|
| plane_prior4 | | | | | | | | | | | | 89.14 198 | | | | | |
|
| plane_prior3 | | | | | | | 61.95 251 | | | 79.09 81 | 72.53 200 | | | | | | |
|
| plane_prior2 | | | | | | | | 93.13 110 | | 78.81 88 | | | | | | | |
|
| plane_prior1 | | | | | | 87.15 229 | | | | | | | | | | | |
|
| plane_prior | | | | | | | 62.42 239 | 93.85 77 | | 79.38 73 | | | | | | 78.80 204 | |
|
| n2 | | | | | | | | | 0.00 432 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 432 | | | | | | | | |
|
| door-mid | | | | | | | | | 66.01 401 | | | | | | | | |
|
| lessismore_v0 | | | | | 73.72 336 | 72.93 380 | 47.83 376 | | 61.72 407 | | 45.86 387 | 73.76 364 | 28.63 377 | 89.81 330 | 47.75 345 | 31.37 406 | 83.53 323 |
|
| LGP-MVS_train | | | | | 79.56 280 | 84.31 282 | 59.37 300 | | 89.73 246 | 69.49 257 | 64.86 291 | 88.42 203 | 38.65 325 | 94.30 217 | 72.56 186 | 72.76 249 | 85.01 310 |
|
| test11 | | | | | | | | | 93.01 106 | | | | | | | | |
|
| door | | | | | | | | | 66.57 400 | | | | | | | | |
|
| HQP5-MVS | | | | | | | 63.66 208 | | | | | | | | | | |
|
| HQP-NCC | | | | | | 87.54 220 | | 94.06 63 | | 79.80 64 | 74.18 179 | | | | | | |
|
| ACMP_Plane | | | | | | 87.54 220 | | 94.06 63 | | 79.80 64 | 74.18 179 | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 77.63 149 | | |
|
| HQP4-MVS | | | | | | | | | | | 74.18 179 | | | 95.61 167 | | | 88.63 243 |
|
| HQP3-MVS | | | | | | | | | 91.70 168 | | | | | | | 78.90 202 | |
|
| HQP2-MVS | | | | | | | | | | | | | 51.63 244 | | | | |
|
| NP-MVS | | | | | | 87.41 223 | 63.04 224 | | | | | 90.30 179 | | | | | |
|
| MDTV_nov1_ep13_2view | | | | | | | 59.90 292 | 80.13 352 | | 67.65 277 | 72.79 194 | | 54.33 218 | | 59.83 295 | | 92.58 178 |
|
| MDTV_nov1_ep13 | | | | 72.61 264 | | 89.06 178 | 68.48 76 | 80.33 348 | 90.11 230 | 71.84 212 | 71.81 212 | 75.92 357 | 53.01 231 | 93.92 239 | 48.04 340 | 73.38 244 | |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 71.63 257 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 69.72 266 | |
|
| Test By Simon | | | | | | | | | | | | | 54.21 219 | | | | |
|
| ITE_SJBPF | | | | | 70.43 357 | 74.44 374 | 47.06 382 | | 77.32 373 | 60.16 341 | 54.04 358 | 83.53 270 | 23.30 388 | 84.01 370 | 43.07 361 | 61.58 339 | 80.21 365 |
|
| DeepMVS_CX |  | | | | 34.71 401 | 51.45 413 | 24.73 421 | | 28.48 427 | 31.46 407 | 17.49 417 | 52.75 403 | 5.80 418 | 42.60 422 | 18.18 410 | 19.42 415 | 36.81 414 |
|