This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
MCST-MVS91.08 191.46 389.94 497.66 273.37 1097.13 295.58 1089.33 185.77 5496.26 3072.84 2899.38 192.64 2095.93 997.08 11
MM90.87 291.52 288.92 1592.12 9771.10 2797.02 396.04 688.70 291.57 1496.19 3270.12 4398.91 1896.83 195.06 1796.76 15
DPM-MVS90.70 390.52 991.24 189.68 15676.68 297.29 195.35 1582.87 2191.58 1397.22 379.93 599.10 983.12 10097.64 297.94 1
DVP-MVS++90.53 491.09 588.87 1697.31 469.91 4293.96 7094.37 5272.48 18692.07 996.85 1683.82 299.15 291.53 3097.42 497.55 4
MSP-MVS90.38 591.87 185.88 8992.83 7864.03 19393.06 11294.33 5482.19 2893.65 396.15 3485.89 197.19 8291.02 3497.75 196.43 31
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MVS_030490.32 690.90 788.55 2394.05 4570.23 3697.00 593.73 7387.30 492.15 696.15 3466.38 6598.94 1796.71 294.67 3396.47 28
CNVR-MVS90.32 690.89 888.61 2296.76 870.65 3096.47 1494.83 3084.83 1189.07 3196.80 1970.86 3999.06 1592.64 2095.71 1196.12 40
DELS-MVS90.05 890.09 1189.94 493.14 7073.88 997.01 494.40 5088.32 385.71 5594.91 7074.11 2098.91 1887.26 6295.94 897.03 12
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
SED-MVS89.94 990.36 1088.70 1896.45 1269.38 5596.89 694.44 4671.65 21692.11 797.21 476.79 999.11 692.34 2295.36 1497.62 2
DeepPCF-MVS81.17 189.72 1091.38 484.72 13393.00 7558.16 30796.72 994.41 4886.50 890.25 2297.83 175.46 1498.67 2592.78 1995.49 1397.32 6
patch_mono-289.71 1190.99 685.85 9296.04 2463.70 20395.04 4095.19 1986.74 791.53 1595.15 6373.86 2197.58 5993.38 1492.00 6996.28 37
CANet89.61 1289.99 1288.46 2494.39 3969.71 5096.53 1393.78 6686.89 689.68 2895.78 4065.94 6999.10 992.99 1793.91 4296.58 21
DVP-MVScopyleft89.41 1389.73 1488.45 2596.40 1569.99 3896.64 1094.52 4271.92 20290.55 2096.93 1173.77 2299.08 1191.91 2894.90 2296.29 35
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
HPM-MVS++copyleft89.37 1489.95 1387.64 3495.10 3068.23 8695.24 3394.49 4482.43 2588.90 3296.35 2771.89 3698.63 2688.76 4896.40 696.06 41
balanced_conf0389.08 1588.84 1789.81 693.66 5475.15 590.61 22193.43 8784.06 1486.20 4990.17 17872.42 3196.98 9893.09 1695.92 1097.29 7
NCCC89.07 1689.46 1587.91 2896.60 1069.05 6396.38 1594.64 3984.42 1286.74 4596.20 3166.56 6498.76 2489.03 4794.56 3495.92 46
DPE-MVScopyleft88.77 1789.21 1687.45 4396.26 2067.56 10294.17 5894.15 5968.77 26590.74 1897.27 276.09 1298.49 2990.58 3894.91 2196.30 34
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SMA-MVScopyleft88.14 1888.29 2287.67 3393.21 6768.72 7293.85 7794.03 6274.18 14991.74 1296.67 2165.61 7398.42 3389.24 4496.08 795.88 47
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
PS-MVSNAJ88.14 1887.61 2989.71 792.06 9876.72 195.75 2093.26 9283.86 1589.55 2996.06 3653.55 21997.89 4391.10 3293.31 5394.54 108
TSAR-MVS + MP.88.11 2088.64 1886.54 7291.73 11168.04 9090.36 22693.55 8082.89 2091.29 1692.89 12172.27 3396.03 14487.99 5294.77 2695.54 57
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
TSAR-MVS + GP.87.96 2188.37 2186.70 6593.51 6165.32 15895.15 3693.84 6578.17 9485.93 5394.80 7375.80 1398.21 3489.38 4188.78 10496.59 19
DeepC-MVS_fast79.48 287.95 2288.00 2587.79 3195.86 2768.32 8095.74 2194.11 6083.82 1683.49 7696.19 3264.53 8798.44 3183.42 9994.88 2596.61 18
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
xiu_mvs_v2_base87.92 2387.38 3389.55 1291.41 12376.43 395.74 2193.12 10083.53 1889.55 2995.95 3853.45 22397.68 5091.07 3392.62 6094.54 108
EPNet87.84 2488.38 2086.23 8293.30 6466.05 14095.26 3294.84 2987.09 588.06 3494.53 7966.79 6197.34 7383.89 9591.68 7495.29 70
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
lupinMVS87.74 2587.77 2787.63 3889.24 17171.18 2496.57 1292.90 10982.70 2387.13 4095.27 5664.99 7895.80 14989.34 4291.80 7295.93 45
test_fmvsm_n_192087.69 2688.50 1985.27 11387.05 22763.55 21093.69 8791.08 19084.18 1390.17 2497.04 867.58 5697.99 3995.72 590.03 9594.26 116
APDe-MVScopyleft87.54 2787.84 2686.65 6696.07 2366.30 13694.84 4593.78 6669.35 25688.39 3396.34 2867.74 5597.66 5490.62 3793.44 5196.01 44
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
fmvsm_l_conf0.5_n87.49 2888.19 2385.39 10786.95 22864.37 18394.30 5588.45 29180.51 5092.70 496.86 1569.98 4497.15 8695.83 488.08 11194.65 102
SD-MVS87.49 2887.49 3187.50 4293.60 5668.82 6993.90 7492.63 12176.86 11487.90 3595.76 4166.17 6697.63 5689.06 4691.48 7896.05 42
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
fmvsm_l_conf0.5_n_a87.44 3088.15 2485.30 11187.10 22564.19 19094.41 5288.14 30080.24 5892.54 596.97 1069.52 4697.17 8395.89 388.51 10794.56 105
dcpmvs_287.37 3187.55 3086.85 5895.04 3268.20 8790.36 22690.66 20279.37 7281.20 9493.67 10574.73 1596.55 12090.88 3592.00 6995.82 48
alignmvs87.28 3286.97 3788.24 2791.30 12571.14 2695.61 2593.56 7979.30 7387.07 4295.25 5868.43 4896.93 10687.87 5384.33 14896.65 17
train_agg87.21 3387.42 3286.60 6894.18 4167.28 10994.16 5993.51 8171.87 20785.52 5795.33 5168.19 5097.27 8089.09 4594.90 2295.25 76
MG-MVS87.11 3486.27 4589.62 897.79 176.27 494.96 4394.49 4478.74 8883.87 7592.94 11964.34 8896.94 10475.19 15694.09 3895.66 52
SF-MVS87.03 3587.09 3586.84 5992.70 8467.45 10793.64 9093.76 6970.78 24086.25 4796.44 2666.98 5997.79 4788.68 4994.56 3495.28 72
CSCG86.87 3686.26 4688.72 1795.05 3170.79 2993.83 8295.33 1668.48 26977.63 14094.35 8873.04 2698.45 3084.92 8493.71 4796.92 14
sasdasda86.85 3786.25 4788.66 2091.80 10971.92 1693.54 9591.71 15980.26 5587.55 3795.25 5863.59 10196.93 10688.18 5084.34 14697.11 9
canonicalmvs86.85 3786.25 4788.66 2091.80 10971.92 1693.54 9591.71 15980.26 5587.55 3795.25 5863.59 10196.93 10688.18 5084.34 14697.11 9
UBG86.83 3986.70 4287.20 4893.07 7369.81 4693.43 10395.56 1281.52 3581.50 9092.12 14073.58 2596.28 12984.37 9085.20 13995.51 58
PHI-MVS86.83 3986.85 4186.78 6393.47 6265.55 15495.39 3095.10 2271.77 21285.69 5696.52 2362.07 12198.77 2386.06 7495.60 1296.03 43
SteuartSystems-ACMMP86.82 4186.90 3986.58 7090.42 14166.38 13396.09 1793.87 6477.73 10184.01 7495.66 4363.39 10497.94 4087.40 6093.55 5095.42 59
Skip Steuart: Steuart Systems R&D Blog.
PVSNet_Blended86.73 4286.86 4086.31 8193.76 5067.53 10496.33 1693.61 7782.34 2781.00 9993.08 11563.19 10897.29 7687.08 6591.38 8094.13 123
testing1186.71 4386.44 4487.55 4093.54 5971.35 2193.65 8995.58 1081.36 4280.69 10292.21 13972.30 3296.46 12585.18 8083.43 15594.82 95
test_fmvsmconf_n86.58 4487.17 3484.82 12685.28 25862.55 23594.26 5789.78 23583.81 1787.78 3696.33 2965.33 7596.98 9894.40 1187.55 11794.95 87
jason86.40 4586.17 4987.11 5186.16 24370.54 3295.71 2492.19 13782.00 3084.58 6794.34 8961.86 12395.53 16987.76 5490.89 8695.27 73
jason: jason.
fmvsm_s_conf0.5_n86.39 4686.91 3884.82 12687.36 22063.54 21194.74 4790.02 22982.52 2490.14 2596.92 1362.93 11397.84 4695.28 882.26 16593.07 160
WTY-MVS86.32 4785.81 5687.85 2992.82 8069.37 5795.20 3495.25 1782.71 2281.91 8794.73 7467.93 5497.63 5679.55 12682.25 16696.54 22
MSLP-MVS++86.27 4885.91 5587.35 4592.01 10168.97 6695.04 4092.70 11479.04 8381.50 9096.50 2558.98 15696.78 11283.49 9893.93 4196.29 35
VNet86.20 4985.65 6087.84 3093.92 4769.99 3895.73 2395.94 778.43 9186.00 5293.07 11658.22 16297.00 9485.22 7884.33 14896.52 23
MVS_111021_HR86.19 5085.80 5787.37 4493.17 6969.79 4793.99 6993.76 6979.08 8078.88 12893.99 9962.25 12098.15 3685.93 7591.15 8494.15 122
CS-MVS-test86.14 5187.01 3683.52 17292.63 8659.36 29695.49 2791.92 14680.09 5985.46 5995.53 4761.82 12595.77 15286.77 6993.37 5295.41 60
ACMMP_NAP86.05 5285.80 5786.80 6291.58 11567.53 10491.79 17093.49 8474.93 14084.61 6695.30 5359.42 14997.92 4186.13 7294.92 2094.94 88
testing9986.01 5385.47 6187.63 3893.62 5571.25 2393.47 10195.23 1880.42 5380.60 10491.95 14471.73 3796.50 12380.02 12382.22 16795.13 79
ETV-MVS86.01 5386.11 5085.70 9990.21 14667.02 11893.43 10391.92 14681.21 4484.13 7394.07 9860.93 13395.63 16089.28 4389.81 9694.46 114
testing9185.93 5585.31 6487.78 3293.59 5771.47 1993.50 9895.08 2580.26 5580.53 10591.93 14570.43 4196.51 12280.32 12182.13 16995.37 63
APD-MVScopyleft85.93 5585.99 5385.76 9695.98 2665.21 16193.59 9392.58 12366.54 28286.17 5095.88 3963.83 9497.00 9486.39 7192.94 5795.06 82
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
PAPM85.89 5785.46 6287.18 4988.20 19972.42 1592.41 14292.77 11282.11 2980.34 10893.07 11668.27 4995.02 18278.39 13993.59 4994.09 125
CS-MVS85.80 5886.65 4383.27 18092.00 10258.92 30095.31 3191.86 15179.97 6084.82 6595.40 4962.26 11995.51 17086.11 7392.08 6895.37 63
fmvsm_s_conf0.5_n_a85.75 5986.09 5184.72 13385.73 25263.58 20893.79 8389.32 25381.42 4090.21 2396.91 1462.41 11897.67 5194.48 1080.56 18492.90 166
test_fmvsmconf0.1_n85.71 6086.08 5284.62 14080.83 31162.33 24093.84 8088.81 27983.50 1987.00 4396.01 3763.36 10596.93 10694.04 1287.29 12094.61 104
CDPH-MVS85.71 6085.46 6286.46 7494.75 3467.19 11193.89 7592.83 11170.90 23683.09 7995.28 5463.62 9997.36 7180.63 11894.18 3794.84 92
casdiffmvs_mvgpermissive85.66 6285.18 6687.09 5288.22 19869.35 5893.74 8691.89 14981.47 3680.10 11091.45 15464.80 8396.35 12787.23 6387.69 11595.58 55
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
fmvsm_s_conf0.1_n85.61 6385.93 5484.68 13682.95 29563.48 21394.03 6889.46 24781.69 3389.86 2696.74 2061.85 12497.75 4994.74 982.01 17192.81 168
MGCFI-Net85.59 6485.73 5985.17 11791.41 12362.44 23692.87 12091.31 17679.65 6686.99 4495.14 6462.90 11496.12 13687.13 6484.13 15396.96 13
DeepC-MVS77.85 385.52 6585.24 6586.37 7888.80 18166.64 12792.15 14993.68 7581.07 4576.91 15093.64 10662.59 11698.44 3185.50 7692.84 5994.03 129
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
casdiffmvspermissive85.37 6684.87 7286.84 5988.25 19669.07 6293.04 11491.76 15681.27 4380.84 10192.07 14264.23 8996.06 14284.98 8387.43 11995.39 61
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ZNCC-MVS85.33 6785.08 6886.06 8493.09 7265.65 15093.89 7593.41 8973.75 16079.94 11294.68 7660.61 13698.03 3882.63 10393.72 4694.52 110
MP-MVS-pluss85.24 6885.13 6785.56 10291.42 12065.59 15291.54 18092.51 12574.56 14380.62 10395.64 4459.15 15397.00 9486.94 6793.80 4394.07 127
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
testing22285.18 6984.69 7486.63 6792.91 7769.91 4292.61 13395.80 980.31 5480.38 10792.27 13668.73 4795.19 17975.94 15183.27 15794.81 96
PAPR85.15 7084.47 7587.18 4996.02 2568.29 8191.85 16893.00 10676.59 12179.03 12495.00 6561.59 12697.61 5878.16 14089.00 10395.63 53
MP-MVScopyleft85.02 7184.97 7085.17 11792.60 8764.27 18893.24 10792.27 13073.13 17179.63 11694.43 8261.90 12297.17 8385.00 8292.56 6194.06 128
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
baseline85.01 7284.44 7686.71 6488.33 19368.73 7190.24 23191.82 15581.05 4681.18 9592.50 12863.69 9796.08 14184.45 8986.71 12995.32 68
CHOSEN 1792x268884.98 7383.45 9089.57 1189.94 15175.14 692.07 15592.32 12881.87 3175.68 15988.27 20260.18 13998.60 2780.46 12090.27 9494.96 86
MVSMamba_PlusPlus84.97 7483.65 8488.93 1490.17 14774.04 887.84 27892.69 11662.18 31781.47 9287.64 21671.47 3896.28 12984.69 8694.74 3196.47 28
EIA-MVS84.84 7584.88 7184.69 13591.30 12562.36 23993.85 7792.04 14179.45 6979.33 12194.28 9262.42 11796.35 12780.05 12291.25 8395.38 62
fmvsm_s_conf0.1_n_a84.76 7684.84 7384.53 14280.23 32163.50 21292.79 12288.73 28280.46 5189.84 2796.65 2260.96 13297.57 6193.80 1380.14 18692.53 175
HFP-MVS84.73 7784.40 7785.72 9893.75 5265.01 16793.50 9893.19 9672.19 19679.22 12294.93 6859.04 15497.67 5181.55 10992.21 6494.49 113
MVS84.66 7882.86 10590.06 290.93 13274.56 787.91 27695.54 1368.55 26772.35 20194.71 7559.78 14598.90 2081.29 11594.69 3296.74 16
GST-MVS84.63 7984.29 7885.66 10092.82 8065.27 15993.04 11493.13 9973.20 16978.89 12594.18 9559.41 15097.85 4581.45 11192.48 6393.86 137
EC-MVSNet84.53 8085.04 6983.01 18489.34 16361.37 26094.42 5191.09 18877.91 9883.24 7794.20 9458.37 16095.40 17185.35 7791.41 7992.27 185
ACMMPR84.37 8184.06 7985.28 11293.56 5864.37 18393.50 9893.15 9872.19 19678.85 13094.86 7156.69 18297.45 6581.55 10992.20 6594.02 130
region2R84.36 8284.03 8085.36 10993.54 5964.31 18693.43 10392.95 10772.16 19978.86 12994.84 7256.97 17797.53 6381.38 11392.11 6794.24 117
LFMVS84.34 8382.73 10789.18 1394.76 3373.25 1194.99 4291.89 14971.90 20482.16 8693.49 11047.98 27397.05 8982.55 10484.82 14297.25 8
test_yl84.28 8483.16 9887.64 3494.52 3769.24 5995.78 1895.09 2369.19 25981.09 9692.88 12257.00 17597.44 6681.11 11681.76 17396.23 38
DCV-MVSNet84.28 8483.16 9887.64 3494.52 3769.24 5995.78 1895.09 2369.19 25981.09 9692.88 12257.00 17597.44 6681.11 11681.76 17396.23 38
diffmvspermissive84.28 8483.83 8185.61 10187.40 21868.02 9190.88 20989.24 25680.54 4981.64 8992.52 12759.83 14494.52 20587.32 6185.11 14094.29 115
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
HY-MVS76.49 584.28 8483.36 9687.02 5592.22 9467.74 9784.65 30494.50 4379.15 7782.23 8587.93 21166.88 6096.94 10480.53 11982.20 16896.39 33
ETVMVS84.22 8883.71 8285.76 9692.58 8868.25 8592.45 14195.53 1479.54 6879.46 11891.64 15270.29 4294.18 21769.16 21182.76 16394.84 92
MAR-MVS84.18 8983.43 9186.44 7596.25 2165.93 14594.28 5694.27 5674.41 14479.16 12395.61 4553.99 21498.88 2269.62 20593.26 5494.50 112
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MVS_Test84.16 9083.20 9787.05 5491.56 11669.82 4589.99 24092.05 14077.77 10082.84 8086.57 23363.93 9396.09 13874.91 16189.18 10295.25 76
CANet_DTU84.09 9183.52 8585.81 9390.30 14466.82 12291.87 16689.01 27185.27 986.09 5193.74 10347.71 27796.98 9877.90 14289.78 9893.65 142
ET-MVSNet_ETH3D84.01 9283.15 10086.58 7090.78 13770.89 2894.74 4794.62 4081.44 3958.19 33293.64 10673.64 2492.35 28282.66 10278.66 20196.50 27
PVSNet_Blended_VisFu83.97 9383.50 8785.39 10790.02 14966.59 13093.77 8491.73 15777.43 10977.08 14989.81 18563.77 9696.97 10179.67 12588.21 10992.60 172
MTAPA83.91 9483.38 9585.50 10391.89 10765.16 16381.75 32892.23 13175.32 13580.53 10595.21 6156.06 19197.16 8584.86 8592.55 6294.18 119
XVS83.87 9583.47 8985.05 11993.22 6563.78 19792.92 11892.66 11873.99 15278.18 13494.31 9155.25 19797.41 6879.16 13091.58 7693.95 132
Effi-MVS+83.82 9682.76 10686.99 5689.56 15969.40 5391.35 19186.12 32572.59 18383.22 7892.81 12559.60 14796.01 14681.76 10887.80 11495.56 56
test_fmvsmvis_n_192083.80 9783.48 8884.77 13082.51 29763.72 20191.37 18983.99 34781.42 4077.68 13995.74 4258.37 16097.58 5993.38 1486.87 12393.00 163
EI-MVSNet-Vis-set83.77 9883.67 8384.06 15792.79 8363.56 20991.76 17394.81 3179.65 6677.87 13794.09 9663.35 10697.90 4279.35 12879.36 19390.74 211
MVSFormer83.75 9982.88 10486.37 7889.24 17171.18 2489.07 25890.69 19965.80 28787.13 4094.34 8964.99 7892.67 26972.83 17391.80 7295.27 73
CP-MVS83.71 10083.40 9484.65 13793.14 7063.84 19594.59 4992.28 12971.03 23477.41 14394.92 6955.21 20096.19 13381.32 11490.70 8893.91 134
test_fmvsmconf0.01_n83.70 10183.52 8584.25 15475.26 36461.72 25492.17 14887.24 31382.36 2684.91 6495.41 4855.60 19596.83 11192.85 1885.87 13594.21 118
baseline283.68 10283.42 9384.48 14587.37 21966.00 14290.06 23595.93 879.71 6569.08 23890.39 17277.92 696.28 12978.91 13481.38 17791.16 207
thisisatest051583.41 10382.49 11186.16 8389.46 16268.26 8393.54 9594.70 3674.31 14775.75 15790.92 16272.62 2996.52 12169.64 20381.50 17693.71 140
PVSNet_BlendedMVS83.38 10483.43 9183.22 18193.76 5067.53 10494.06 6393.61 7779.13 7881.00 9985.14 24863.19 10897.29 7687.08 6573.91 23784.83 306
test250683.29 10582.92 10384.37 14988.39 19163.18 22192.01 15891.35 17577.66 10378.49 13391.42 15564.58 8695.09 18173.19 16989.23 10094.85 89
PGM-MVS83.25 10682.70 10884.92 12292.81 8264.07 19290.44 22292.20 13571.28 22877.23 14694.43 8255.17 20197.31 7579.33 12991.38 8093.37 148
HPM-MVScopyleft83.25 10682.95 10284.17 15592.25 9362.88 23090.91 20691.86 15170.30 24577.12 14793.96 10056.75 18096.28 12982.04 10691.34 8293.34 149
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
EI-MVSNet-UG-set83.14 10882.96 10183.67 17092.28 9263.19 22091.38 18894.68 3779.22 7576.60 15293.75 10262.64 11597.76 4878.07 14178.01 20490.05 220
VDD-MVS83.06 10981.81 12086.81 6190.86 13567.70 9895.40 2991.50 17075.46 13281.78 8892.34 13540.09 31497.13 8786.85 6882.04 17095.60 54
h-mvs3383.01 11082.56 11084.35 15089.34 16362.02 24692.72 12593.76 6981.45 3782.73 8292.25 13860.11 14097.13 8787.69 5562.96 31693.91 134
PAPM_NR82.97 11181.84 11986.37 7894.10 4466.76 12587.66 28292.84 11069.96 24974.07 17893.57 10863.10 11197.50 6470.66 19890.58 9094.85 89
mPP-MVS82.96 11282.44 11284.52 14392.83 7862.92 22892.76 12391.85 15371.52 22475.61 16294.24 9353.48 22296.99 9778.97 13390.73 8793.64 143
SR-MVS82.81 11382.58 10983.50 17593.35 6361.16 26392.23 14791.28 18064.48 29681.27 9395.28 5453.71 21895.86 14882.87 10188.77 10593.49 146
DP-MVS Recon82.73 11481.65 12185.98 8697.31 467.06 11595.15 3691.99 14369.08 26276.50 15493.89 10154.48 20998.20 3570.76 19685.66 13792.69 169
CLD-MVS82.73 11482.35 11483.86 16287.90 20667.65 10095.45 2892.18 13885.06 1072.58 19492.27 13652.46 23095.78 15084.18 9179.06 19688.16 247
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
sss82.71 11682.38 11383.73 16689.25 16859.58 29192.24 14694.89 2877.96 9679.86 11392.38 13356.70 18197.05 8977.26 14580.86 18194.55 106
3Dnovator73.91 682.69 11780.82 13488.31 2689.57 15871.26 2292.60 13494.39 5178.84 8567.89 25892.48 13148.42 26898.52 2868.80 21694.40 3695.15 78
RRT-MVS82.61 11881.16 12586.96 5791.10 12968.75 7087.70 28192.20 13576.97 11272.68 19087.10 22751.30 24296.41 12683.56 9787.84 11395.74 50
MVSTER82.47 11982.05 11583.74 16492.68 8569.01 6491.90 16593.21 9379.83 6172.14 20285.71 24474.72 1694.72 19375.72 15272.49 24787.50 253
TESTMET0.1,182.41 12081.98 11883.72 16788.08 20063.74 19992.70 12793.77 6879.30 7377.61 14187.57 21858.19 16394.08 22173.91 16786.68 13093.33 151
CostFormer82.33 12181.15 12685.86 9189.01 17668.46 7782.39 32593.01 10475.59 13080.25 10981.57 29072.03 3594.96 18579.06 13277.48 21294.16 121
API-MVS82.28 12280.53 14287.54 4196.13 2270.59 3193.63 9191.04 19465.72 28975.45 16492.83 12456.11 19098.89 2164.10 26089.75 9993.15 156
IB-MVS77.80 482.18 12380.46 14487.35 4589.14 17370.28 3595.59 2695.17 2178.85 8470.19 22685.82 24270.66 4097.67 5172.19 18566.52 28894.09 125
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
xiu_mvs_v1_base_debu82.16 12481.12 12785.26 11486.42 23668.72 7292.59 13690.44 20973.12 17284.20 7094.36 8438.04 32795.73 15484.12 9286.81 12491.33 200
xiu_mvs_v1_base82.16 12481.12 12785.26 11486.42 23668.72 7292.59 13690.44 20973.12 17284.20 7094.36 8438.04 32795.73 15484.12 9286.81 12491.33 200
xiu_mvs_v1_base_debi82.16 12481.12 12785.26 11486.42 23668.72 7292.59 13690.44 20973.12 17284.20 7094.36 8438.04 32795.73 15484.12 9286.81 12491.33 200
3Dnovator+73.60 782.10 12780.60 14186.60 6890.89 13466.80 12495.20 3493.44 8674.05 15167.42 26592.49 13049.46 25897.65 5570.80 19591.68 7495.33 66
MVS_111021_LR82.02 12881.52 12283.51 17488.42 18962.88 23089.77 24388.93 27576.78 11775.55 16393.10 11350.31 24995.38 17383.82 9687.02 12292.26 186
PMMVS81.98 12982.04 11681.78 21889.76 15556.17 32691.13 20290.69 19977.96 9680.09 11193.57 10846.33 28794.99 18481.41 11287.46 11894.17 120
baseline181.84 13081.03 13184.28 15391.60 11466.62 12891.08 20391.66 16481.87 3174.86 16991.67 15169.98 4494.92 18871.76 18864.75 30391.29 205
EPP-MVSNet81.79 13181.52 12282.61 19488.77 18260.21 28393.02 11693.66 7668.52 26872.90 18890.39 17272.19 3494.96 18574.93 16079.29 19592.67 170
WBMVS81.67 13280.98 13383.72 16793.07 7369.40 5394.33 5493.05 10276.84 11572.05 20484.14 25974.49 1893.88 23572.76 17668.09 27687.88 249
test_vis1_n_192081.66 13382.01 11780.64 24582.24 29955.09 33494.76 4686.87 31581.67 3484.40 6994.63 7738.17 32494.67 19791.98 2783.34 15692.16 189
APD-MVS_3200maxsize81.64 13481.32 12482.59 19592.36 9058.74 30291.39 18691.01 19563.35 30579.72 11594.62 7851.82 23396.14 13579.71 12487.93 11292.89 167
mvsmamba81.55 13580.72 13684.03 15991.42 12066.93 12083.08 31989.13 26478.55 9067.50 26387.02 22851.79 23590.07 32287.48 5890.49 9295.10 81
ACMMPcopyleft81.49 13680.67 13883.93 16191.71 11262.90 22992.13 15092.22 13471.79 21171.68 21093.49 11050.32 24896.96 10278.47 13884.22 15291.93 192
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CDS-MVSNet81.43 13780.74 13583.52 17286.26 24064.45 17792.09 15390.65 20375.83 12873.95 18089.81 18563.97 9292.91 25971.27 19182.82 16093.20 155
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
mvs_anonymous81.36 13879.99 14985.46 10490.39 14368.40 7886.88 29390.61 20474.41 14470.31 22584.67 25363.79 9592.32 28373.13 17085.70 13695.67 51
ECVR-MVScopyleft81.29 13980.38 14584.01 16088.39 19161.96 24892.56 13986.79 31777.66 10376.63 15191.42 15546.34 28695.24 17874.36 16589.23 10094.85 89
thisisatest053081.15 14080.07 14684.39 14888.26 19565.63 15191.40 18494.62 4071.27 22970.93 21689.18 19172.47 3096.04 14365.62 24976.89 21891.49 196
Fast-Effi-MVS+81.14 14180.01 14884.51 14490.24 14565.86 14694.12 6289.15 26273.81 15975.37 16588.26 20357.26 17094.53 20466.97 23484.92 14193.15 156
HQP-MVS81.14 14180.64 13982.64 19387.54 21463.66 20694.06 6391.70 16279.80 6274.18 17490.30 17451.63 23895.61 16277.63 14378.90 19788.63 238
hse-mvs281.12 14381.11 13081.16 23286.52 23557.48 31589.40 25191.16 18381.45 3782.73 8290.49 17060.11 14094.58 19887.69 5560.41 34391.41 199
SR-MVS-dyc-post81.06 14480.70 13782.15 20992.02 9958.56 30490.90 20790.45 20662.76 31278.89 12594.46 8051.26 24395.61 16278.77 13686.77 12792.28 182
HyFIR lowres test81.03 14579.56 15685.43 10587.81 21068.11 8990.18 23290.01 23070.65 24272.95 18786.06 24063.61 10094.50 20675.01 15979.75 19093.67 141
nrg03080.93 14679.86 15184.13 15683.69 28468.83 6893.23 10891.20 18175.55 13175.06 16788.22 20663.04 11294.74 19281.88 10766.88 28588.82 236
Vis-MVSNetpermissive80.92 14779.98 15083.74 16488.48 18661.80 25093.44 10288.26 29973.96 15577.73 13891.76 14849.94 25394.76 19065.84 24690.37 9394.65 102
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test111180.84 14880.02 14783.33 17887.87 20760.76 27192.62 13286.86 31677.86 9975.73 15891.39 15746.35 28594.70 19672.79 17588.68 10694.52 110
UWE-MVS80.81 14981.01 13280.20 25489.33 16557.05 32091.91 16494.71 3575.67 12975.01 16889.37 18963.13 11091.44 30667.19 23182.80 16292.12 190
131480.70 15078.95 16785.94 8887.77 21267.56 10287.91 27692.55 12472.17 19867.44 26493.09 11450.27 25097.04 9271.68 19087.64 11693.23 153
tpmrst80.57 15179.14 16684.84 12590.10 14868.28 8281.70 32989.72 24277.63 10575.96 15679.54 32264.94 8092.71 26675.43 15477.28 21593.55 144
1112_ss80.56 15279.83 15282.77 18888.65 18360.78 26992.29 14488.36 29372.58 18472.46 19894.95 6665.09 7793.42 24666.38 24077.71 20694.10 124
VDDNet80.50 15378.26 17587.21 4786.19 24169.79 4794.48 5091.31 17660.42 33179.34 12090.91 16338.48 32296.56 11982.16 10581.05 17995.27 73
BH-w/o80.49 15479.30 16384.05 15890.83 13664.36 18593.60 9289.42 25074.35 14669.09 23790.15 18055.23 19995.61 16264.61 25786.43 13392.17 188
test_cas_vis1_n_192080.45 15580.61 14079.97 26378.25 34757.01 32294.04 6788.33 29479.06 8282.81 8193.70 10438.65 31991.63 29890.82 3679.81 18891.27 206
TAMVS80.37 15679.45 15983.13 18385.14 26163.37 21491.23 19790.76 19874.81 14272.65 19288.49 19760.63 13592.95 25469.41 20781.95 17293.08 159
HQP_MVS80.34 15779.75 15382.12 21186.94 22962.42 23793.13 11091.31 17678.81 8672.53 19589.14 19350.66 24695.55 16776.74 14678.53 20288.39 244
SDMVSNet80.26 15878.88 16884.40 14789.25 16867.63 10185.35 30093.02 10376.77 11870.84 21787.12 22547.95 27496.09 13885.04 8174.55 22889.48 230
HPM-MVS_fast80.25 15979.55 15882.33 20191.55 11759.95 28691.32 19389.16 26165.23 29374.71 17193.07 11647.81 27695.74 15374.87 16388.23 10891.31 204
ab-mvs80.18 16078.31 17485.80 9488.44 18865.49 15783.00 32292.67 11771.82 21077.36 14485.01 24954.50 20696.59 11676.35 15075.63 22595.32 68
IS-MVSNet80.14 16179.41 16082.33 20187.91 20560.08 28591.97 16288.27 29772.90 17971.44 21391.73 15061.44 12793.66 24162.47 27486.53 13193.24 152
test-LLR80.10 16279.56 15681.72 22086.93 23161.17 26192.70 12791.54 16771.51 22575.62 16086.94 22953.83 21592.38 27972.21 18384.76 14491.60 194
PVSNet73.49 880.05 16378.63 17084.31 15190.92 13364.97 16892.47 14091.05 19379.18 7672.43 19990.51 16937.05 33994.06 22368.06 22086.00 13493.90 136
UA-Net80.02 16479.65 15481.11 23489.33 16557.72 31186.33 29789.00 27477.44 10881.01 9889.15 19259.33 15195.90 14761.01 28184.28 15089.73 226
test-mter79.96 16579.38 16281.72 22086.93 23161.17 26192.70 12791.54 16773.85 15775.62 16086.94 22949.84 25592.38 27972.21 18384.76 14491.60 194
QAPM79.95 16677.39 19287.64 3489.63 15771.41 2093.30 10693.70 7465.34 29267.39 26791.75 14947.83 27598.96 1657.71 29789.81 9692.54 174
UGNet79.87 16778.68 16983.45 17789.96 15061.51 25792.13 15090.79 19776.83 11678.85 13086.33 23738.16 32596.17 13467.93 22387.17 12192.67 170
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
tpm279.80 16877.95 18185.34 11088.28 19468.26 8381.56 33191.42 17370.11 24777.59 14280.50 30867.40 5794.26 21567.34 22877.35 21393.51 145
thres20079.66 16978.33 17383.66 17192.54 8965.82 14893.06 11296.31 374.90 14173.30 18488.66 19559.67 14695.61 16247.84 33678.67 20089.56 229
CPTT-MVS79.59 17079.16 16580.89 24391.54 11859.80 28892.10 15288.54 29060.42 33172.96 18693.28 11248.27 26992.80 26378.89 13586.50 13290.06 219
Test_1112_low_res79.56 17178.60 17182.43 19788.24 19760.39 28092.09 15387.99 30472.10 20071.84 20687.42 22064.62 8593.04 25065.80 24777.30 21493.85 138
tttt051779.50 17278.53 17282.41 20087.22 22261.43 25989.75 24494.76 3269.29 25767.91 25688.06 21072.92 2795.63 16062.91 27073.90 23890.16 218
FIs79.47 17379.41 16079.67 27085.95 24659.40 29391.68 17793.94 6378.06 9568.96 24288.28 20166.61 6391.77 29466.20 24374.99 22787.82 250
BH-RMVSNet79.46 17477.65 18484.89 12391.68 11365.66 14993.55 9488.09 30272.93 17673.37 18391.12 16146.20 28996.12 13656.28 30285.61 13892.91 165
PCF-MVS73.15 979.29 17577.63 18584.29 15286.06 24465.96 14487.03 28991.10 18769.86 25169.79 23390.64 16557.54 16996.59 11664.37 25982.29 16490.32 216
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
Vis-MVSNet (Re-imp)79.24 17679.57 15578.24 29088.46 18752.29 34590.41 22489.12 26574.24 14869.13 23691.91 14665.77 7190.09 32159.00 29388.09 11092.33 179
114514_t79.17 17777.67 18383.68 16995.32 2965.53 15592.85 12191.60 16663.49 30367.92 25590.63 16746.65 28295.72 15867.01 23383.54 15489.79 224
FA-MVS(test-final)79.12 17877.23 19484.81 12990.54 13963.98 19481.35 33491.71 15971.09 23374.85 17082.94 27152.85 22697.05 8967.97 22181.73 17593.41 147
VPA-MVSNet79.03 17978.00 17982.11 21485.95 24664.48 17693.22 10994.66 3875.05 13974.04 17984.95 25052.17 23293.52 24374.90 16267.04 28488.32 246
OPM-MVS79.00 18078.09 17781.73 21983.52 28763.83 19691.64 17990.30 21676.36 12471.97 20589.93 18446.30 28895.17 18075.10 15777.70 20786.19 279
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
EI-MVSNet78.97 18178.22 17681.25 22985.33 25662.73 23389.53 24893.21 9372.39 19172.14 20290.13 18160.99 13094.72 19367.73 22572.49 24786.29 276
AdaColmapbinary78.94 18277.00 19884.76 13196.34 1765.86 14692.66 13187.97 30662.18 31770.56 21992.37 13443.53 30297.35 7264.50 25882.86 15991.05 209
GeoE78.90 18377.43 18883.29 17988.95 17762.02 24692.31 14386.23 32370.24 24671.34 21489.27 19054.43 21094.04 22663.31 26680.81 18393.81 139
miper_enhance_ethall78.86 18477.97 18081.54 22488.00 20465.17 16291.41 18289.15 26275.19 13768.79 24583.98 26267.17 5892.82 26172.73 17765.30 29486.62 273
VPNet78.82 18577.53 18782.70 19184.52 27166.44 13293.93 7292.23 13180.46 5172.60 19388.38 20049.18 26293.13 24972.47 18163.97 31388.55 241
EPNet_dtu78.80 18679.26 16477.43 29888.06 20149.71 35991.96 16391.95 14577.67 10276.56 15391.28 15958.51 15890.20 31956.37 30180.95 18092.39 177
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
tfpn200view978.79 18777.43 18882.88 18692.21 9564.49 17492.05 15696.28 473.48 16671.75 20888.26 20360.07 14295.32 17445.16 34777.58 20988.83 234
TR-MVS78.77 18877.37 19382.95 18590.49 14060.88 26793.67 8890.07 22570.08 24874.51 17291.37 15845.69 29195.70 15960.12 28780.32 18592.29 181
thres40078.68 18977.43 18882.43 19792.21 9564.49 17492.05 15696.28 473.48 16671.75 20888.26 20360.07 14295.32 17445.16 34777.58 20987.48 254
BH-untuned78.68 18977.08 19583.48 17689.84 15263.74 19992.70 12788.59 28871.57 22266.83 27488.65 19651.75 23695.39 17259.03 29284.77 14391.32 203
OMC-MVS78.67 19177.91 18280.95 24185.76 25157.40 31788.49 26788.67 28573.85 15772.43 19992.10 14149.29 26194.55 20372.73 17777.89 20590.91 210
tpm78.58 19277.03 19683.22 18185.94 24864.56 17283.21 31891.14 18678.31 9273.67 18179.68 32064.01 9192.09 28866.07 24471.26 25793.03 161
OpenMVScopyleft70.45 1178.54 19375.92 21286.41 7785.93 24971.68 1892.74 12492.51 12566.49 28364.56 28991.96 14343.88 30198.10 3754.61 30790.65 8989.44 232
EPMVS78.49 19475.98 21186.02 8591.21 12769.68 5180.23 34391.20 18175.25 13672.48 19778.11 33154.65 20593.69 24057.66 29883.04 15894.69 98
AUN-MVS78.37 19577.43 18881.17 23186.60 23457.45 31689.46 25091.16 18374.11 15074.40 17390.49 17055.52 19694.57 20074.73 16460.43 34291.48 197
thres100view90078.37 19577.01 19782.46 19691.89 10763.21 21991.19 20196.33 172.28 19470.45 22287.89 21260.31 13795.32 17445.16 34777.58 20988.83 234
GA-MVS78.33 19776.23 20784.65 13783.65 28566.30 13691.44 18190.14 22376.01 12670.32 22484.02 26142.50 30694.72 19370.98 19377.00 21792.94 164
cascas78.18 19875.77 21485.41 10687.14 22469.11 6192.96 11791.15 18566.71 28170.47 22086.07 23937.49 33396.48 12470.15 20179.80 18990.65 212
UniMVSNet_NR-MVSNet78.15 19977.55 18679.98 26184.46 27360.26 28192.25 14593.20 9577.50 10768.88 24386.61 23266.10 6792.13 28666.38 24062.55 32087.54 252
thres600view778.00 20076.66 20282.03 21691.93 10463.69 20491.30 19496.33 172.43 18970.46 22187.89 21260.31 13794.92 18842.64 35976.64 21987.48 254
FC-MVSNet-test77.99 20178.08 17877.70 29384.89 26655.51 33190.27 22993.75 7276.87 11366.80 27587.59 21765.71 7290.23 31862.89 27173.94 23687.37 257
Anonymous20240521177.96 20275.33 22085.87 9093.73 5364.52 17394.85 4485.36 33262.52 31576.11 15590.18 17729.43 36797.29 7668.51 21877.24 21695.81 49
cl2277.94 20376.78 20081.42 22687.57 21364.93 17090.67 21688.86 27872.45 18867.63 26282.68 27564.07 9092.91 25971.79 18665.30 29486.44 274
XXY-MVS77.94 20376.44 20482.43 19782.60 29664.44 17892.01 15891.83 15473.59 16570.00 22985.82 24254.43 21094.76 19069.63 20468.02 27888.10 248
MS-PatchMatch77.90 20576.50 20382.12 21185.99 24569.95 4191.75 17592.70 11473.97 15462.58 31084.44 25741.11 31195.78 15063.76 26392.17 6680.62 353
FMVSNet377.73 20676.04 21082.80 18791.20 12868.99 6591.87 16691.99 14373.35 16867.04 27083.19 27056.62 18392.14 28559.80 28969.34 26487.28 260
miper_ehance_all_eth77.60 20776.44 20481.09 23885.70 25364.41 18190.65 21788.64 28772.31 19267.37 26882.52 27664.77 8492.64 27270.67 19765.30 29486.24 278
UniMVSNet (Re)77.58 20876.78 20079.98 26184.11 27960.80 26891.76 17393.17 9776.56 12269.93 23284.78 25263.32 10792.36 28164.89 25662.51 32286.78 268
PatchmatchNetpermissive77.46 20974.63 22785.96 8789.55 16070.35 3479.97 34889.55 24572.23 19570.94 21576.91 34357.03 17392.79 26454.27 30981.17 17894.74 97
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
v2v48277.42 21075.65 21682.73 18980.38 31767.13 11491.85 16890.23 22075.09 13869.37 23483.39 26853.79 21794.44 20771.77 18765.00 30086.63 272
CHOSEN 280x42077.35 21176.95 19978.55 28587.07 22662.68 23469.71 38082.95 35468.80 26471.48 21287.27 22466.03 6884.00 36476.47 14982.81 16188.95 233
PS-MVSNAJss77.26 21276.31 20680.13 25680.64 31559.16 29890.63 22091.06 19272.80 18068.58 24984.57 25553.55 21993.96 23172.97 17171.96 25187.27 261
gg-mvs-nofinetune77.18 21374.31 23485.80 9491.42 12068.36 7971.78 37494.72 3449.61 37477.12 14745.92 40077.41 893.98 23067.62 22693.16 5595.05 83
WB-MVSnew77.14 21476.18 20980.01 26086.18 24263.24 21791.26 19594.11 6071.72 21473.52 18287.29 22345.14 29693.00 25256.98 29979.42 19183.80 314
MVP-Stereo77.12 21576.23 20779.79 26881.72 30466.34 13589.29 25290.88 19670.56 24362.01 31382.88 27249.34 25994.13 21865.55 25193.80 4378.88 367
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
sd_testset77.08 21675.37 21882.20 20789.25 16862.11 24582.06 32689.09 26776.77 11870.84 21787.12 22541.43 31095.01 18367.23 23074.55 22889.48 230
MonoMVSNet76.99 21775.08 22382.73 18983.32 28963.24 21786.47 29686.37 31979.08 8066.31 27779.30 32449.80 25691.72 29579.37 12765.70 29293.23 153
dmvs_re76.93 21875.36 21981.61 22287.78 21160.71 27480.00 34787.99 30479.42 7069.02 24089.47 18846.77 28094.32 20963.38 26574.45 23189.81 223
X-MVStestdata76.86 21974.13 23885.05 11993.22 6563.78 19792.92 11892.66 11873.99 15278.18 13410.19 41555.25 19797.41 6879.16 13091.58 7693.95 132
DU-MVS76.86 21975.84 21379.91 26482.96 29360.26 28191.26 19591.54 16776.46 12368.88 24386.35 23556.16 18892.13 28666.38 24062.55 32087.35 258
Anonymous2024052976.84 22174.15 23784.88 12491.02 13064.95 16993.84 8091.09 18853.57 36273.00 18587.42 22035.91 34397.32 7469.14 21272.41 24992.36 178
c3_l76.83 22275.47 21780.93 24285.02 26464.18 19190.39 22588.11 30171.66 21566.65 27681.64 28863.58 10392.56 27369.31 20962.86 31786.04 284
WR-MVS76.76 22375.74 21579.82 26784.60 26962.27 24392.60 13492.51 12576.06 12567.87 25985.34 24656.76 17990.24 31762.20 27563.69 31586.94 266
v114476.73 22474.88 22482.27 20380.23 32166.60 12991.68 17790.21 22273.69 16269.06 23981.89 28352.73 22894.40 20869.21 21065.23 29785.80 290
IterMVS-LS76.49 22575.18 22280.43 24884.49 27262.74 23290.64 21888.80 28072.40 19065.16 28481.72 28660.98 13192.27 28467.74 22464.65 30586.29 276
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
V4276.46 22674.55 23082.19 20879.14 33567.82 9590.26 23089.42 25073.75 16068.63 24881.89 28351.31 24194.09 22071.69 18964.84 30184.66 307
v14876.19 22774.47 23281.36 22780.05 32364.44 17891.75 17590.23 22073.68 16367.13 26980.84 30355.92 19393.86 23868.95 21461.73 33185.76 293
Effi-MVS+-dtu76.14 22875.28 22178.72 28483.22 29055.17 33389.87 24187.78 30775.42 13367.98 25481.43 29245.08 29792.52 27575.08 15871.63 25288.48 242
cl____76.07 22974.67 22580.28 25185.15 26061.76 25290.12 23388.73 28271.16 23065.43 28181.57 29061.15 12892.95 25466.54 23762.17 32486.13 282
DIV-MVS_self_test76.07 22974.67 22580.28 25185.14 26161.75 25390.12 23388.73 28271.16 23065.42 28281.60 28961.15 12892.94 25866.54 23762.16 32686.14 280
FMVSNet276.07 22974.01 24082.26 20588.85 17867.66 9991.33 19291.61 16570.84 23765.98 27882.25 27948.03 27092.00 29058.46 29468.73 27287.10 263
v14419276.05 23274.03 23982.12 21179.50 32966.55 13191.39 18689.71 24372.30 19368.17 25281.33 29551.75 23694.03 22867.94 22264.19 30885.77 291
NR-MVSNet76.05 23274.59 22880.44 24782.96 29362.18 24490.83 21191.73 15777.12 11160.96 31686.35 23559.28 15291.80 29360.74 28261.34 33587.35 258
v119275.98 23473.92 24182.15 20979.73 32566.24 13891.22 19889.75 23772.67 18268.49 25081.42 29349.86 25494.27 21367.08 23265.02 29985.95 287
FE-MVS75.97 23573.02 25184.82 12689.78 15365.56 15377.44 35991.07 19164.55 29572.66 19179.85 31846.05 29096.69 11454.97 30680.82 18292.21 187
eth_miper_zixun_eth75.96 23674.40 23380.66 24484.66 26863.02 22389.28 25388.27 29771.88 20665.73 27981.65 28759.45 14892.81 26268.13 21960.53 34086.14 280
TranMVSNet+NR-MVSNet75.86 23774.52 23179.89 26582.44 29860.64 27791.37 18991.37 17476.63 12067.65 26186.21 23852.37 23191.55 30061.84 27760.81 33887.48 254
SCA75.82 23872.76 25485.01 12186.63 23370.08 3781.06 33689.19 25971.60 22170.01 22877.09 34145.53 29290.25 31460.43 28473.27 24094.68 99
LPG-MVS_test75.82 23874.58 22979.56 27484.31 27659.37 29490.44 22289.73 24069.49 25464.86 28588.42 19838.65 31994.30 21172.56 17972.76 24485.01 304
GBi-Net75.65 24073.83 24281.10 23588.85 17865.11 16490.01 23790.32 21270.84 23767.04 27080.25 31348.03 27091.54 30159.80 28969.34 26486.64 269
test175.65 24073.83 24281.10 23588.85 17865.11 16490.01 23790.32 21270.84 23767.04 27080.25 31348.03 27091.54 30159.80 28969.34 26486.64 269
v192192075.63 24273.49 24782.06 21579.38 33066.35 13491.07 20589.48 24671.98 20167.99 25381.22 29849.16 26493.90 23466.56 23664.56 30685.92 289
ACMP71.68 1075.58 24374.23 23679.62 27284.97 26559.64 28990.80 21289.07 26970.39 24462.95 30687.30 22238.28 32393.87 23672.89 17271.45 25585.36 300
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
v875.35 24473.26 24981.61 22280.67 31466.82 12289.54 24789.27 25571.65 21663.30 30280.30 31254.99 20394.06 22367.33 22962.33 32383.94 312
tpm cat175.30 24572.21 26384.58 14188.52 18467.77 9678.16 35788.02 30361.88 32368.45 25176.37 34760.65 13494.03 22853.77 31274.11 23491.93 192
PLCcopyleft68.80 1475.23 24673.68 24579.86 26692.93 7658.68 30390.64 21888.30 29560.90 32864.43 29390.53 16842.38 30794.57 20056.52 30076.54 22086.33 275
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
v124075.21 24772.98 25281.88 21779.20 33266.00 14290.75 21489.11 26671.63 22067.41 26681.22 29847.36 27893.87 23665.46 25264.72 30485.77 291
Fast-Effi-MVS+-dtu75.04 24873.37 24880.07 25780.86 31059.52 29291.20 20085.38 33171.90 20465.20 28384.84 25141.46 30992.97 25366.50 23972.96 24387.73 251
dp75.01 24972.09 26483.76 16389.28 16766.22 13979.96 34989.75 23771.16 23067.80 26077.19 34051.81 23492.54 27450.39 32071.44 25692.51 176
TAPA-MVS70.22 1274.94 25073.53 24679.17 27990.40 14252.07 34689.19 25689.61 24462.69 31470.07 22792.67 12648.89 26794.32 20938.26 37379.97 18791.12 208
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
v1074.77 25172.54 26081.46 22580.33 31966.71 12689.15 25789.08 26870.94 23563.08 30579.86 31752.52 22994.04 22665.70 24862.17 32483.64 315
XVG-OURS-SEG-HR74.70 25273.08 25079.57 27378.25 34757.33 31880.49 33987.32 31063.22 30768.76 24690.12 18344.89 29891.59 29970.55 19974.09 23589.79 224
ACMM69.62 1374.34 25372.73 25679.17 27984.25 27857.87 30990.36 22689.93 23163.17 30965.64 28086.04 24137.79 33194.10 21965.89 24571.52 25485.55 296
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CNLPA74.31 25472.30 26280.32 24991.49 11961.66 25590.85 21080.72 36056.67 35463.85 29790.64 16546.75 28190.84 30953.79 31175.99 22488.47 243
XVG-OURS74.25 25572.46 26179.63 27178.45 34557.59 31480.33 34187.39 30963.86 30068.76 24689.62 18740.50 31391.72 29569.00 21374.25 23389.58 227
test_fmvs174.07 25673.69 24475.22 31678.91 33947.34 37289.06 26074.69 37563.68 30279.41 11991.59 15324.36 37787.77 34185.22 7876.26 22290.55 215
CVMVSNet74.04 25774.27 23573.33 33185.33 25643.94 38589.53 24888.39 29254.33 36170.37 22390.13 18149.17 26384.05 36261.83 27879.36 19391.99 191
Baseline_NR-MVSNet73.99 25872.83 25377.48 29780.78 31259.29 29791.79 17084.55 34068.85 26368.99 24180.70 30456.16 18892.04 28962.67 27260.98 33781.11 347
pmmvs473.92 25971.81 26880.25 25379.17 33365.24 16087.43 28587.26 31267.64 27563.46 30083.91 26348.96 26691.53 30462.94 26965.49 29383.96 311
D2MVS73.80 26072.02 26579.15 28179.15 33462.97 22488.58 26690.07 22572.94 17559.22 32678.30 32842.31 30892.70 26865.59 25072.00 25081.79 342
CR-MVSNet73.79 26170.82 27682.70 19183.15 29167.96 9270.25 37784.00 34573.67 16469.97 23072.41 36357.82 16689.48 32652.99 31573.13 24190.64 213
test_djsdf73.76 26272.56 25977.39 29977.00 35753.93 33989.07 25890.69 19965.80 28763.92 29582.03 28243.14 30592.67 26972.83 17368.53 27385.57 295
pmmvs573.35 26371.52 27078.86 28378.64 34360.61 27891.08 20386.90 31467.69 27263.32 30183.64 26444.33 30090.53 31162.04 27666.02 29085.46 298
Anonymous2023121173.08 26470.39 28081.13 23390.62 13863.33 21591.40 18490.06 22751.84 36764.46 29280.67 30636.49 34194.07 22263.83 26264.17 30985.98 286
tt080573.07 26570.73 27780.07 25778.37 34657.05 32087.78 27992.18 13861.23 32767.04 27086.49 23431.35 36194.58 19865.06 25567.12 28388.57 240
miper_lstm_enhance73.05 26671.73 26977.03 30383.80 28258.32 30681.76 32788.88 27669.80 25261.01 31578.23 33057.19 17187.51 34565.34 25359.53 34585.27 303
jajsoiax73.05 26671.51 27177.67 29477.46 35454.83 33588.81 26290.04 22869.13 26162.85 30883.51 26631.16 36292.75 26570.83 19469.80 26085.43 299
LCM-MVSNet-Re72.93 26871.84 26776.18 31288.49 18548.02 36780.07 34670.17 38773.96 15552.25 35780.09 31649.98 25288.24 33567.35 22784.23 15192.28 182
pm-mvs172.89 26971.09 27378.26 28979.10 33657.62 31390.80 21289.30 25467.66 27362.91 30781.78 28549.11 26592.95 25460.29 28658.89 34884.22 310
tpmvs72.88 27069.76 28682.22 20690.98 13167.05 11678.22 35688.30 29563.10 31064.35 29474.98 35455.09 20294.27 21343.25 35369.57 26385.34 301
test0.0.03 172.76 27172.71 25772.88 33580.25 32047.99 36891.22 19889.45 24871.51 22562.51 31187.66 21553.83 21585.06 35850.16 32267.84 28185.58 294
UniMVSNet_ETH3D72.74 27270.53 27979.36 27678.62 34456.64 32485.01 30289.20 25863.77 30164.84 28784.44 25734.05 35091.86 29263.94 26170.89 25989.57 228
mvs_tets72.71 27371.11 27277.52 29577.41 35554.52 33788.45 26889.76 23668.76 26662.70 30983.26 26929.49 36692.71 26670.51 20069.62 26285.34 301
FMVSNet172.71 27369.91 28481.10 23583.60 28665.11 16490.01 23790.32 21263.92 29963.56 29980.25 31336.35 34291.54 30154.46 30866.75 28686.64 269
test_fmvs1_n72.69 27571.92 26674.99 31971.15 37747.08 37487.34 28775.67 37063.48 30478.08 13691.17 16020.16 38987.87 33884.65 8775.57 22690.01 221
IterMVS72.65 27670.83 27478.09 29182.17 30062.96 22587.64 28386.28 32171.56 22360.44 31978.85 32645.42 29486.66 34963.30 26761.83 32884.65 308
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
myMVS_eth3d72.58 27772.74 25572.10 34387.87 20749.45 36188.07 27289.01 27172.91 17763.11 30388.10 20763.63 9885.54 35432.73 38869.23 26781.32 345
PatchMatch-RL72.06 27869.98 28178.28 28889.51 16155.70 33083.49 31183.39 35261.24 32663.72 29882.76 27334.77 34793.03 25153.37 31477.59 20886.12 283
PVSNet_068.08 1571.81 27968.32 29582.27 20384.68 26762.31 24288.68 26490.31 21575.84 12757.93 33780.65 30737.85 33094.19 21669.94 20229.05 40390.31 217
MIMVSNet71.64 28068.44 29381.23 23081.97 30364.44 17873.05 37188.80 28069.67 25364.59 28874.79 35632.79 35387.82 33953.99 31076.35 22191.42 198
test_vis1_n71.63 28170.73 27774.31 32669.63 38347.29 37386.91 29172.11 38163.21 30875.18 16690.17 17820.40 38785.76 35384.59 8874.42 23289.87 222
IterMVS-SCA-FT71.55 28269.97 28276.32 31081.48 30660.67 27687.64 28385.99 32666.17 28559.50 32478.88 32545.53 29283.65 36662.58 27361.93 32784.63 309
v7n71.31 28368.65 29079.28 27776.40 35960.77 27086.71 29489.45 24864.17 29858.77 33178.24 32944.59 29993.54 24257.76 29661.75 33083.52 318
anonymousdsp71.14 28469.37 28876.45 30972.95 37254.71 33684.19 30688.88 27661.92 32262.15 31279.77 31938.14 32691.44 30668.90 21567.45 28283.21 324
F-COLMAP70.66 28568.44 29377.32 30086.37 23955.91 32888.00 27486.32 32056.94 35257.28 34188.07 20933.58 35192.49 27651.02 31868.37 27483.55 316
WR-MVS_H70.59 28669.94 28372.53 33781.03 30951.43 34987.35 28692.03 14267.38 27660.23 32180.70 30455.84 19483.45 36846.33 34358.58 35082.72 331
CP-MVSNet70.50 28769.91 28472.26 34080.71 31351.00 35387.23 28890.30 21667.84 27159.64 32382.69 27450.23 25182.30 37651.28 31759.28 34683.46 320
RPMNet70.42 28865.68 30884.63 13983.15 29167.96 9270.25 37790.45 20646.83 38369.97 23065.10 38356.48 18795.30 17735.79 37873.13 24190.64 213
testing370.38 28970.83 27469.03 35585.82 25043.93 38690.72 21590.56 20568.06 27060.24 32086.82 23164.83 8284.12 36026.33 39664.10 31079.04 366
tfpnnormal70.10 29067.36 29978.32 28783.45 28860.97 26688.85 26192.77 11264.85 29460.83 31778.53 32743.52 30393.48 24431.73 39161.70 33280.52 354
TransMVSNet (Re)70.07 29167.66 29777.31 30180.62 31659.13 29991.78 17284.94 33665.97 28660.08 32280.44 30950.78 24591.87 29148.84 32945.46 37880.94 349
CL-MVSNet_self_test69.92 29268.09 29675.41 31573.25 37155.90 32990.05 23689.90 23269.96 24961.96 31476.54 34451.05 24487.64 34249.51 32650.59 37082.70 333
DP-MVS69.90 29366.48 30180.14 25595.36 2862.93 22689.56 24576.11 36850.27 37357.69 33985.23 24739.68 31595.73 15433.35 38371.05 25881.78 343
PS-CasMVS69.86 29469.13 28972.07 34480.35 31850.57 35587.02 29089.75 23767.27 27759.19 32782.28 27846.58 28382.24 37750.69 31959.02 34783.39 322
Syy-MVS69.65 29569.52 28770.03 35187.87 20743.21 38788.07 27289.01 27172.91 17763.11 30388.10 20745.28 29585.54 35422.07 40169.23 26781.32 345
MSDG69.54 29665.73 30780.96 24085.11 26363.71 20284.19 30683.28 35356.95 35154.50 34884.03 26031.50 35996.03 14442.87 35769.13 26983.14 326
PEN-MVS69.46 29768.56 29172.17 34279.27 33149.71 35986.90 29289.24 25667.24 28059.08 32882.51 27747.23 27983.54 36748.42 33157.12 35183.25 323
LS3D69.17 29866.40 30377.50 29691.92 10556.12 32785.12 30180.37 36146.96 38156.50 34387.51 21937.25 33493.71 23932.52 39079.40 19282.68 334
PatchT69.11 29965.37 31280.32 24982.07 30263.68 20567.96 38787.62 30850.86 37169.37 23465.18 38257.09 17288.53 33241.59 36266.60 28788.74 237
KD-MVS_2432*160069.03 30066.37 30477.01 30485.56 25461.06 26481.44 33290.25 21867.27 27758.00 33576.53 34554.49 20787.63 34348.04 33335.77 39482.34 337
miper_refine_blended69.03 30066.37 30477.01 30485.56 25461.06 26481.44 33290.25 21867.27 27758.00 33576.53 34554.49 20787.63 34348.04 33335.77 39482.34 337
mvsany_test168.77 30268.56 29169.39 35373.57 37045.88 38180.93 33760.88 40159.65 33771.56 21190.26 17643.22 30475.05 38874.26 16662.70 31987.25 262
ACMH63.93 1768.62 30364.81 31480.03 25985.22 25963.25 21687.72 28084.66 33860.83 32951.57 36179.43 32327.29 37394.96 18541.76 36064.84 30181.88 341
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
EG-PatchMatch MVS68.55 30465.41 31177.96 29278.69 34262.93 22689.86 24289.17 26060.55 33050.27 36677.73 33522.60 38394.06 22347.18 33972.65 24676.88 376
ADS-MVSNet68.54 30564.38 32181.03 23988.06 20166.90 12168.01 38584.02 34457.57 34564.48 29069.87 37338.68 31789.21 32840.87 36467.89 27986.97 264
DTE-MVSNet68.46 30667.33 30071.87 34677.94 35149.00 36586.16 29888.58 28966.36 28458.19 33282.21 28046.36 28483.87 36544.97 35055.17 35882.73 330
our_test_368.29 30764.69 31679.11 28278.92 33764.85 17188.40 26985.06 33460.32 33352.68 35576.12 34940.81 31289.80 32544.25 35255.65 35682.67 335
Patchmatch-RL test68.17 30864.49 31979.19 27871.22 37653.93 33970.07 37971.54 38569.22 25856.79 34262.89 38756.58 18488.61 32969.53 20652.61 36595.03 85
XVG-ACMP-BASELINE68.04 30965.53 31075.56 31474.06 36952.37 34478.43 35385.88 32762.03 32058.91 33081.21 30020.38 38891.15 30860.69 28368.18 27583.16 325
FMVSNet568.04 30965.66 30975.18 31884.43 27457.89 30883.54 31086.26 32261.83 32453.64 35373.30 35937.15 33785.08 35748.99 32861.77 32982.56 336
ppachtmachnet_test67.72 31163.70 32379.77 26978.92 33766.04 14188.68 26482.90 35560.11 33555.45 34575.96 35039.19 31690.55 31039.53 36852.55 36682.71 332
ACMH+65.35 1667.65 31264.55 31776.96 30684.59 27057.10 31988.08 27180.79 35958.59 34353.00 35481.09 30226.63 37592.95 25446.51 34161.69 33380.82 350
pmmvs667.57 31364.76 31576.00 31372.82 37453.37 34188.71 26386.78 31853.19 36357.58 34078.03 33235.33 34692.41 27855.56 30454.88 36082.21 339
Anonymous2023120667.53 31465.78 30672.79 33674.95 36547.59 37088.23 27087.32 31061.75 32558.07 33477.29 33837.79 33187.29 34742.91 35563.71 31483.48 319
Patchmtry67.53 31463.93 32278.34 28682.12 30164.38 18268.72 38284.00 34548.23 38059.24 32572.41 36357.82 16689.27 32746.10 34456.68 35581.36 344
USDC67.43 31664.51 31876.19 31177.94 35155.29 33278.38 35485.00 33573.17 17048.36 37480.37 31021.23 38592.48 27752.15 31664.02 31280.81 351
ADS-MVSNet266.90 31763.44 32577.26 30288.06 20160.70 27568.01 38575.56 37257.57 34564.48 29069.87 37338.68 31784.10 36140.87 36467.89 27986.97 264
CMPMVSbinary48.56 2166.77 31864.41 32073.84 32870.65 38050.31 35677.79 35885.73 33045.54 38544.76 38482.14 28135.40 34590.14 32063.18 26874.54 23081.07 348
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
OpenMVS_ROBcopyleft61.12 1866.39 31962.92 32876.80 30876.51 35857.77 31089.22 25483.41 35155.48 35853.86 35277.84 33326.28 37693.95 23234.90 38068.76 27178.68 369
LTVRE_ROB59.60 1966.27 32063.54 32474.45 32384.00 28151.55 34867.08 38983.53 34958.78 34154.94 34780.31 31134.54 34893.23 24840.64 36668.03 27778.58 370
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
JIA-IIPM66.06 32162.45 33176.88 30781.42 30854.45 33857.49 40188.67 28549.36 37563.86 29646.86 39956.06 19190.25 31449.53 32568.83 27085.95 287
Patchmatch-test65.86 32260.94 33780.62 24683.75 28358.83 30158.91 40075.26 37444.50 38850.95 36577.09 34158.81 15787.90 33735.13 37964.03 31195.12 80
UnsupCasMVSNet_eth65.79 32363.10 32673.88 32770.71 37950.29 35781.09 33589.88 23372.58 18449.25 37174.77 35732.57 35587.43 34655.96 30341.04 38583.90 313
test_fmvs265.78 32464.84 31368.60 35766.54 38941.71 38983.27 31569.81 38854.38 36067.91 25684.54 25615.35 39481.22 38175.65 15366.16 28982.88 327
dmvs_testset65.55 32566.45 30262.86 36979.87 32422.35 41576.55 36171.74 38377.42 11055.85 34487.77 21451.39 24080.69 38231.51 39465.92 29185.55 296
pmmvs-eth3d65.53 32662.32 33275.19 31769.39 38459.59 29082.80 32383.43 35062.52 31551.30 36372.49 36132.86 35287.16 34855.32 30550.73 36978.83 368
mamv465.18 32767.43 29858.44 37377.88 35349.36 36469.40 38170.99 38648.31 37957.78 33885.53 24559.01 15551.88 41173.67 16864.32 30774.07 381
SixPastTwentyTwo64.92 32861.78 33574.34 32578.74 34149.76 35883.42 31479.51 36462.86 31150.27 36677.35 33630.92 36490.49 31245.89 34547.06 37582.78 328
OurMVSNet-221017-064.68 32962.17 33372.21 34176.08 36247.35 37180.67 33881.02 35856.19 35551.60 36079.66 32127.05 37488.56 33153.60 31353.63 36380.71 352
test_040264.54 33061.09 33674.92 32084.10 28060.75 27287.95 27579.71 36352.03 36552.41 35677.20 33932.21 35791.64 29723.14 39961.03 33672.36 387
testgi64.48 33162.87 32969.31 35471.24 37540.62 39285.49 29979.92 36265.36 29154.18 35083.49 26723.74 38084.55 35941.60 36160.79 33982.77 329
RPSCF64.24 33261.98 33471.01 34976.10 36145.00 38275.83 36675.94 36946.94 38258.96 32984.59 25431.40 36082.00 37847.76 33760.33 34486.04 284
EU-MVSNet64.01 33363.01 32767.02 36374.40 36838.86 39883.27 31586.19 32445.11 38654.27 34981.15 30136.91 34080.01 38448.79 33057.02 35282.19 340
test20.0363.83 33462.65 33067.38 36270.58 38139.94 39486.57 29584.17 34263.29 30651.86 35977.30 33737.09 33882.47 37438.87 37254.13 36279.73 360
MDA-MVSNet_test_wron63.78 33560.16 33974.64 32178.15 34960.41 27983.49 31184.03 34356.17 35739.17 39471.59 36937.22 33583.24 37142.87 35748.73 37280.26 357
YYNet163.76 33660.14 34074.62 32278.06 35060.19 28483.46 31383.99 34756.18 35639.25 39371.56 37037.18 33683.34 36942.90 35648.70 37380.32 356
K. test v363.09 33759.61 34273.53 33076.26 36049.38 36383.27 31577.15 36764.35 29747.77 37672.32 36528.73 36887.79 34049.93 32436.69 39283.41 321
COLMAP_ROBcopyleft57.96 2062.98 33859.65 34172.98 33481.44 30753.00 34383.75 30975.53 37348.34 37848.81 37381.40 29424.14 37890.30 31332.95 38560.52 34175.65 379
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
Anonymous2024052162.09 33959.08 34371.10 34867.19 38748.72 36683.91 30885.23 33350.38 37247.84 37571.22 37220.74 38685.51 35646.47 34258.75 34979.06 365
AllTest61.66 34058.06 34572.46 33879.57 32651.42 35080.17 34468.61 39051.25 36945.88 37881.23 29619.86 39086.58 35038.98 37057.01 35379.39 362
UnsupCasMVSNet_bld61.60 34157.71 34673.29 33268.73 38551.64 34778.61 35289.05 27057.20 35046.11 37761.96 39028.70 36988.60 33050.08 32338.90 39079.63 361
MDA-MVSNet-bldmvs61.54 34257.70 34773.05 33379.53 32857.00 32383.08 31981.23 35757.57 34534.91 39872.45 36232.79 35386.26 35235.81 37741.95 38375.89 378
mvs5depth61.03 34357.65 34871.18 34767.16 38847.04 37672.74 37277.49 36557.47 34860.52 31872.53 36022.84 38288.38 33349.15 32738.94 38978.11 373
KD-MVS_self_test60.87 34458.60 34467.68 36066.13 39039.93 39575.63 36884.70 33757.32 34949.57 36968.45 37729.55 36582.87 37248.09 33247.94 37480.25 358
kuosan60.86 34560.24 33862.71 37081.57 30546.43 37875.70 36785.88 32757.98 34448.95 37269.53 37558.42 15976.53 38628.25 39535.87 39365.15 394
TinyColmap60.32 34656.42 35372.00 34578.78 34053.18 34278.36 35575.64 37152.30 36441.59 39275.82 35214.76 39788.35 33435.84 37654.71 36174.46 380
MVS-HIRNet60.25 34755.55 35474.35 32484.37 27556.57 32571.64 37574.11 37634.44 39745.54 38242.24 40531.11 36389.81 32340.36 36776.10 22376.67 377
MIMVSNet160.16 34857.33 34968.67 35669.71 38244.13 38478.92 35184.21 34155.05 35944.63 38571.85 36723.91 37981.54 38032.63 38955.03 35980.35 355
PM-MVS59.40 34956.59 35167.84 35863.63 39341.86 38876.76 36063.22 39859.01 34051.07 36472.27 36611.72 40183.25 37061.34 27950.28 37178.39 371
new-patchmatchnet59.30 35056.48 35267.79 35965.86 39144.19 38382.47 32481.77 35659.94 33643.65 38866.20 38127.67 37281.68 37939.34 36941.40 38477.50 375
test_vis1_rt59.09 35157.31 35064.43 36668.44 38646.02 38083.05 32148.63 41051.96 36649.57 36963.86 38616.30 39280.20 38371.21 19262.79 31867.07 393
test_fmvs356.82 35254.86 35662.69 37153.59 40435.47 40175.87 36565.64 39543.91 38955.10 34671.43 3716.91 40974.40 39168.64 21752.63 36478.20 372
DSMNet-mixed56.78 35354.44 35763.79 36763.21 39429.44 41064.43 39264.10 39742.12 39451.32 36271.60 36831.76 35875.04 38936.23 37565.20 29886.87 267
pmmvs355.51 35451.50 36067.53 36157.90 40250.93 35480.37 34073.66 37740.63 39544.15 38764.75 38416.30 39278.97 38544.77 35140.98 38772.69 385
TDRefinement55.28 35551.58 35966.39 36459.53 40146.15 37976.23 36372.80 37844.60 38742.49 39076.28 34815.29 39582.39 37533.20 38443.75 38070.62 389
dongtai55.18 35655.46 35554.34 38176.03 36336.88 39976.07 36484.61 33951.28 36843.41 38964.61 38556.56 18567.81 39918.09 40428.50 40458.32 397
LF4IMVS54.01 35752.12 35859.69 37262.41 39639.91 39668.59 38368.28 39242.96 39244.55 38675.18 35314.09 39968.39 39841.36 36351.68 36770.78 388
m2depth53.34 35849.96 36163.45 36862.07 39840.04 39372.06 37365.64 39542.54 39351.88 35877.79 33413.94 40076.48 38732.93 38630.82 40273.84 382
MVStest151.35 35946.89 36364.74 36565.06 39251.10 35267.33 38872.58 37930.20 40135.30 39674.82 35527.70 37169.89 39624.44 39824.57 40573.22 383
N_pmnet50.55 36049.11 36254.88 37977.17 3564.02 42384.36 3052.00 42148.59 37645.86 38068.82 37632.22 35682.80 37331.58 39251.38 36877.81 374
new_pmnet49.31 36146.44 36457.93 37462.84 39540.74 39168.47 38462.96 39936.48 39635.09 39757.81 39414.97 39672.18 39332.86 38746.44 37660.88 396
mvsany_test348.86 36246.35 36556.41 37546.00 41031.67 40662.26 39447.25 41143.71 39045.54 38268.15 37810.84 40264.44 40757.95 29535.44 39673.13 384
test_f46.58 36343.45 36755.96 37645.18 41132.05 40561.18 39549.49 40933.39 39842.05 39162.48 3897.00 40865.56 40347.08 34043.21 38270.27 390
WB-MVS46.23 36444.94 36650.11 38462.13 39721.23 41776.48 36255.49 40345.89 38435.78 39561.44 39235.54 34472.83 3929.96 41121.75 40656.27 399
FPMVS45.64 36543.10 36953.23 38251.42 40736.46 40064.97 39171.91 38229.13 40227.53 40261.55 3919.83 40465.01 40516.00 40855.58 35758.22 398
SSC-MVS44.51 36643.35 36847.99 38861.01 40018.90 41974.12 37054.36 40443.42 39134.10 39960.02 39334.42 34970.39 3959.14 41319.57 40754.68 400
EGC-MVSNET42.35 36738.09 37055.11 37874.57 36646.62 37771.63 37655.77 4020.04 4160.24 41762.70 38814.24 39874.91 39017.59 40546.06 37743.80 402
LCM-MVSNet40.54 36835.79 37354.76 38036.92 41730.81 40751.41 40469.02 38922.07 40424.63 40445.37 4014.56 41365.81 40233.67 38234.50 39767.67 391
APD_test140.50 36937.31 37250.09 38551.88 40535.27 40259.45 39952.59 40621.64 40526.12 40357.80 3954.56 41366.56 40122.64 40039.09 38848.43 401
test_vis3_rt40.46 37037.79 37148.47 38744.49 41233.35 40466.56 39032.84 41832.39 39929.65 40039.13 4083.91 41668.65 39750.17 32140.99 38643.40 403
ANet_high40.27 37135.20 37455.47 37734.74 41834.47 40363.84 39371.56 38448.42 37718.80 40741.08 4069.52 40564.45 40620.18 4028.66 41467.49 392
test_method38.59 37235.16 37548.89 38654.33 40321.35 41645.32 40753.71 4057.41 41328.74 40151.62 3978.70 40652.87 41033.73 38132.89 39872.47 386
PMMVS237.93 37333.61 37650.92 38346.31 40924.76 41360.55 39850.05 40728.94 40320.93 40547.59 3984.41 41565.13 40425.14 39718.55 40962.87 395
Gipumacopyleft34.91 37431.44 37745.30 38970.99 37839.64 39719.85 41172.56 38020.10 40716.16 41121.47 4125.08 41271.16 39413.07 40943.70 38125.08 409
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
testf132.77 37529.47 37842.67 39141.89 41430.81 40752.07 40243.45 41215.45 40818.52 40844.82 4022.12 41758.38 40816.05 40630.87 40038.83 404
APD_test232.77 37529.47 37842.67 39141.89 41430.81 40752.07 40243.45 41215.45 40818.52 40844.82 4022.12 41758.38 40816.05 40630.87 40038.83 404
PMVScopyleft26.43 2231.84 37728.16 38042.89 39025.87 42027.58 41150.92 40549.78 40821.37 40614.17 41240.81 4072.01 41966.62 4009.61 41238.88 39134.49 408
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
E-PMN24.61 37824.00 38226.45 39543.74 41318.44 42060.86 39639.66 41415.11 4109.53 41422.10 4116.52 41046.94 4138.31 41410.14 41113.98 411
MVEpermissive24.84 2324.35 37919.77 38538.09 39334.56 41926.92 41226.57 40938.87 41611.73 41211.37 41327.44 4091.37 42050.42 41211.41 41014.60 41036.93 406
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
EMVS23.76 38023.20 38425.46 39641.52 41616.90 42160.56 39738.79 41714.62 4118.99 41520.24 4147.35 40745.82 4147.25 4159.46 41213.64 412
tmp_tt22.26 38123.75 38317.80 3975.23 42112.06 42235.26 40839.48 4152.82 41518.94 40644.20 40422.23 38424.64 41636.30 3749.31 41316.69 410
cdsmvs_eth3d_5k19.86 38226.47 3810.00 4010.00 4240.00 4260.00 41293.45 850.00 4190.00 42095.27 5649.56 2570.00 4200.00 4190.00 4170.00 416
wuyk23d11.30 38310.95 38612.33 39848.05 40819.89 41825.89 4101.92 4223.58 4143.12 4161.37 4160.64 42115.77 4176.23 4167.77 4151.35 413
ab-mvs-re7.91 38410.55 3870.00 4010.00 4240.00 4260.00 4120.00 4250.00 4190.00 42094.95 660.00 4240.00 4200.00 4190.00 4170.00 416
testmvs7.23 3859.62 3880.06 4000.04 4220.02 42584.98 3030.02 4230.03 4170.18 4181.21 4170.01 4230.02 4180.14 4170.01 4160.13 415
test1236.92 3869.21 3890.08 3990.03 4230.05 42481.65 3300.01 4240.02 4180.14 4190.85 4180.03 4220.02 4180.12 4180.00 4170.16 414
pcd_1.5k_mvsjas4.46 3875.95 3900.00 4010.00 4240.00 4260.00 4120.00 4250.00 4190.00 4200.00 41953.55 2190.00 4200.00 4190.00 4170.00 416
monomultidepth0.00 3880.00 3910.00 4010.00 4240.00 4260.00 4120.00 4250.00 4190.00 4200.00 4190.00 4240.00 4200.00 4190.00 4170.00 416
test_blank0.00 3880.00 3910.00 4010.00 4240.00 4260.00 4120.00 4250.00 4190.00 4200.00 4190.00 4240.00 4200.00 4190.00 4170.00 416
uanet_test0.00 3880.00 3910.00 4010.00 4240.00 4260.00 4120.00 4250.00 4190.00 4200.00 4190.00 4240.00 4200.00 4190.00 4170.00 416
DCPMVS0.00 3880.00 3910.00 4010.00 4240.00 4260.00 4120.00 4250.00 4190.00 4200.00 4190.00 4240.00 4200.00 4190.00 4170.00 416
sosnet-low-res0.00 3880.00 3910.00 4010.00 4240.00 4260.00 4120.00 4250.00 4190.00 4200.00 4190.00 4240.00 4200.00 4190.00 4170.00 416
sosnet0.00 3880.00 3910.00 4010.00 4240.00 4260.00 4120.00 4250.00 4190.00 4200.00 4190.00 4240.00 4200.00 4190.00 4170.00 416
uncertanet0.00 3880.00 3910.00 4010.00 4240.00 4260.00 4120.00 4250.00 4190.00 4200.00 4190.00 4240.00 4200.00 4190.00 4170.00 416
Regformer0.00 3880.00 3910.00 4010.00 4240.00 4260.00 4120.00 4250.00 4190.00 4200.00 4190.00 4240.00 4200.00 4190.00 4170.00 416
uanet0.00 3880.00 3910.00 4010.00 4240.00 4260.00 4120.00 4250.00 4190.00 4200.00 4190.00 4240.00 4200.00 4190.00 4170.00 416
WAC-MVS49.45 36131.56 393
FOURS193.95 4661.77 25193.96 7091.92 14662.14 31986.57 46
MSC_two_6792asdad89.60 997.31 473.22 1295.05 2699.07 1392.01 2594.77 2696.51 24
PC_three_145280.91 4794.07 296.83 1883.57 499.12 595.70 797.42 497.55 4
No_MVS89.60 997.31 473.22 1295.05 2699.07 1392.01 2594.77 2696.51 24
test_one_060196.32 1869.74 4994.18 5771.42 22790.67 1996.85 1674.45 19
eth-test20.00 424
eth-test0.00 424
ZD-MVS96.63 965.50 15693.50 8370.74 24185.26 6295.19 6264.92 8197.29 7687.51 5793.01 56
RE-MVS-def80.48 14392.02 9958.56 30490.90 20790.45 20662.76 31278.89 12594.46 8049.30 26078.77 13686.77 12792.28 182
IU-MVS96.46 1169.91 4295.18 2080.75 4895.28 192.34 2295.36 1496.47 28
OPU-MVS89.97 397.52 373.15 1496.89 697.00 983.82 299.15 295.72 597.63 397.62 2
test_241102_TWO94.41 4871.65 21692.07 997.21 474.58 1799.11 692.34 2295.36 1496.59 19
test_241102_ONE96.45 1269.38 5594.44 4671.65 21692.11 797.05 776.79 999.11 6
9.1487.63 2893.86 4894.41 5294.18 5772.76 18186.21 4896.51 2466.64 6297.88 4490.08 3994.04 39
save fliter93.84 4967.89 9495.05 3992.66 11878.19 93
test_0728_THIRD72.48 18690.55 2096.93 1176.24 1199.08 1191.53 3094.99 1896.43 31
test_0728_SECOND88.70 1896.45 1270.43 3396.64 1094.37 5299.15 291.91 2894.90 2296.51 24
test072696.40 1569.99 3896.76 894.33 5471.92 20291.89 1197.11 673.77 22
GSMVS94.68 99
test_part296.29 1968.16 8890.78 17
sam_mvs157.85 16594.68 99
sam_mvs54.91 204
ambc69.61 35261.38 39941.35 39049.07 40685.86 32950.18 36866.40 38010.16 40388.14 33645.73 34644.20 37979.32 364
MTGPAbinary92.23 131
test_post178.95 35020.70 41353.05 22491.50 30560.43 284
test_post23.01 41056.49 18692.67 269
patchmatchnet-post67.62 37957.62 16890.25 314
GG-mvs-BLEND86.53 7391.91 10669.67 5275.02 36994.75 3378.67 13290.85 16477.91 794.56 20272.25 18293.74 4595.36 65
MTMP93.77 8432.52 419
gm-plane-assit88.42 18967.04 11778.62 8991.83 14797.37 7076.57 148
test9_res89.41 4094.96 1995.29 70
TEST994.18 4167.28 10994.16 5993.51 8171.75 21385.52 5795.33 5168.01 5297.27 80
test_894.19 4067.19 11194.15 6193.42 8871.87 20785.38 6095.35 5068.19 5096.95 103
agg_prior286.41 7094.75 3095.33 66
agg_prior94.16 4366.97 11993.31 9184.49 6896.75 113
TestCases72.46 33879.57 32651.42 35068.61 39051.25 36945.88 37881.23 29619.86 39086.58 35038.98 37057.01 35379.39 362
test_prior467.18 11393.92 73
test_prior295.10 3875.40 13485.25 6395.61 4567.94 5387.47 5994.77 26
test_prior86.42 7694.71 3567.35 10893.10 10196.84 11095.05 83
旧先验292.00 16159.37 33987.54 3993.47 24575.39 155
新几何291.41 182
新几何184.73 13292.32 9164.28 18791.46 17259.56 33879.77 11492.90 12056.95 17896.57 11863.40 26492.91 5893.34 149
旧先验191.94 10360.74 27391.50 17094.36 8465.23 7691.84 7194.55 106
无先验92.71 12692.61 12262.03 32097.01 9366.63 23593.97 131
原ACMM292.01 158
原ACMM184.42 14693.21 6764.27 18893.40 9065.39 29079.51 11792.50 12858.11 16496.69 11465.27 25493.96 4092.32 180
test22289.77 15461.60 25689.55 24689.42 25056.83 35377.28 14592.43 13252.76 22791.14 8593.09 158
testdata296.09 13861.26 280
segment_acmp65.94 69
testdata81.34 22889.02 17557.72 31189.84 23458.65 34285.32 6194.09 9657.03 17393.28 24769.34 20890.56 9193.03 161
testdata189.21 25577.55 106
test1287.09 5294.60 3668.86 6792.91 10882.67 8465.44 7497.55 6293.69 4894.84 92
plane_prior786.94 22961.51 257
plane_prior687.23 22162.32 24150.66 246
plane_prior591.31 17695.55 16776.74 14678.53 20288.39 244
plane_prior489.14 193
plane_prior361.95 24979.09 7972.53 195
plane_prior293.13 11078.81 86
plane_prior187.15 223
plane_prior62.42 23793.85 7779.38 7178.80 199
n20.00 425
nn0.00 425
door-mid66.01 394
lessismore_v073.72 32972.93 37347.83 36961.72 40045.86 38073.76 35828.63 37089.81 32347.75 33831.37 39983.53 317
LGP-MVS_train79.56 27484.31 27659.37 29489.73 24069.49 25464.86 28588.42 19838.65 31994.30 21172.56 17972.76 24485.01 304
test1193.01 104
door66.57 393
HQP5-MVS63.66 206
HQP-NCC87.54 21494.06 6379.80 6274.18 174
ACMP_Plane87.54 21494.06 6379.80 6274.18 174
BP-MVS77.63 143
HQP4-MVS74.18 17495.61 16288.63 238
HQP3-MVS91.70 16278.90 197
HQP2-MVS51.63 238
NP-MVS87.41 21763.04 22290.30 174
MDTV_nov1_ep13_2view59.90 28780.13 34567.65 27472.79 18954.33 21259.83 28892.58 173
MDTV_nov1_ep1372.61 25889.06 17468.48 7680.33 34190.11 22471.84 20971.81 20775.92 35153.01 22593.92 23348.04 33373.38 239
ACMMP++_ref71.63 252
ACMMP++69.72 261
Test By Simon54.21 213
ITE_SJBPF70.43 35074.44 36747.06 37577.32 36660.16 33454.04 35183.53 26523.30 38184.01 36343.07 35461.58 33480.21 359
DeepMVS_CXcopyleft34.71 39451.45 40624.73 41428.48 42031.46 40017.49 41052.75 3965.80 41142.60 41518.18 40319.42 40836.81 407