| MCST-MVS | | | 91.08 1 | 91.46 3 | 89.94 4 | 97.66 2 | 73.37 8 | 97.13 2 | 95.58 11 | 89.33 1 | 85.77 51 | 96.26 30 | 72.84 26 | 99.38 1 | 92.64 19 | 95.93 9 | 97.08 9 |
|
| MM | | | 90.87 2 | 91.52 2 | 88.92 13 | 92.12 92 | 71.10 22 | 97.02 3 | 96.04 6 | 88.70 2 | 91.57 13 | 96.19 33 | 70.12 37 | 98.91 17 | 96.83 1 | 95.06 16 | 96.76 12 |
|
| DPM-MVS | | | 90.70 3 | 90.52 8 | 91.24 1 | 89.68 147 | 76.68 2 | 97.29 1 | 95.35 14 | 82.87 20 | 91.58 12 | 97.22 3 | 79.93 5 | 99.10 9 | 83.12 92 | 97.64 2 | 97.94 1 |
|
| DVP-MVS++ | | | 90.53 4 | 91.09 5 | 88.87 14 | 97.31 4 | 69.91 37 | 93.96 70 | 94.37 48 | 72.48 177 | 92.07 8 | 96.85 16 | 83.82 2 | 99.15 2 | 91.53 29 | 97.42 4 | 97.55 4 |
|
| MSP-MVS | | | 90.38 5 | 91.87 1 | 85.88 81 | 92.83 72 | 64.03 185 | 93.06 107 | 94.33 50 | 82.19 28 | 93.65 3 | 96.15 35 | 85.89 1 | 97.19 82 | 91.02 33 | 97.75 1 | 96.43 26 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| CNVR-MVS | | | 90.32 6 | 90.89 7 | 88.61 19 | 96.76 8 | 70.65 26 | 96.47 13 | 94.83 27 | 84.83 11 | 89.07 31 | 96.80 19 | 70.86 34 | 99.06 15 | 92.64 19 | 95.71 10 | 96.12 35 |
|
| DELS-MVS | | | 90.05 7 | 90.09 11 | 89.94 4 | 93.14 66 | 73.88 7 | 97.01 4 | 94.40 46 | 88.32 3 | 85.71 52 | 94.91 68 | 74.11 19 | 98.91 17 | 87.26 59 | 95.94 8 | 97.03 10 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| MVS_0304 | | | 90.01 8 | 90.50 9 | 88.53 20 | 90.14 138 | 70.94 23 | 96.47 13 | 95.72 10 | 87.33 4 | 89.60 28 | 96.26 30 | 68.44 42 | 98.74 24 | 95.82 4 | 94.72 30 | 95.90 42 |
|
| SED-MVS | | | 89.94 9 | 90.36 10 | 88.70 16 | 96.45 12 | 69.38 48 | 96.89 5 | 94.44 42 | 71.65 207 | 92.11 6 | 97.21 4 | 76.79 9 | 99.11 6 | 92.34 21 | 95.36 13 | 97.62 2 |
|
| DeepPCF-MVS | | 81.17 1 | 89.72 10 | 91.38 4 | 84.72 125 | 93.00 69 | 58.16 298 | 96.72 8 | 94.41 44 | 86.50 8 | 90.25 21 | 97.83 1 | 75.46 14 | 98.67 25 | 92.78 18 | 95.49 12 | 97.32 6 |
|
| patch_mono-2 | | | 89.71 11 | 90.99 6 | 85.85 84 | 96.04 24 | 63.70 195 | 95.04 40 | 95.19 17 | 86.74 7 | 91.53 14 | 95.15 62 | 73.86 20 | 97.58 59 | 93.38 14 | 92.00 67 | 96.28 32 |
|
| CANet | | | 89.61 12 | 89.99 12 | 88.46 21 | 94.39 39 | 69.71 44 | 96.53 12 | 93.78 62 | 86.89 6 | 89.68 27 | 95.78 40 | 65.94 63 | 99.10 9 | 92.99 16 | 93.91 40 | 96.58 18 |
|
| DVP-MVS |  | | 89.41 13 | 89.73 14 | 88.45 22 | 96.40 15 | 69.99 33 | 96.64 9 | 94.52 38 | 71.92 193 | 90.55 19 | 96.93 11 | 73.77 21 | 99.08 11 | 91.91 27 | 94.90 21 | 96.29 30 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| HPM-MVS++ |  | | 89.37 14 | 89.95 13 | 87.64 30 | 95.10 30 | 68.23 79 | 95.24 33 | 94.49 40 | 82.43 25 | 88.90 32 | 96.35 27 | 71.89 33 | 98.63 26 | 88.76 47 | 96.40 6 | 96.06 36 |
|
| NCCC | | | 89.07 15 | 89.46 15 | 87.91 25 | 96.60 10 | 69.05 57 | 96.38 15 | 94.64 35 | 84.42 12 | 86.74 43 | 96.20 32 | 66.56 59 | 98.76 23 | 89.03 46 | 94.56 32 | 95.92 41 |
|
| DPE-MVS |  | | 88.77 16 | 89.21 16 | 87.45 37 | 96.26 20 | 67.56 95 | 94.17 57 | 94.15 55 | 68.77 257 | 90.74 17 | 97.27 2 | 76.09 12 | 98.49 29 | 90.58 37 | 94.91 20 | 96.30 29 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| SMA-MVS |  | | 88.14 17 | 88.29 21 | 87.67 29 | 93.21 63 | 68.72 65 | 93.85 77 | 94.03 58 | 74.18 140 | 91.74 11 | 96.67 21 | 65.61 67 | 98.42 33 | 89.24 43 | 96.08 7 | 95.88 43 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| PS-MVSNAJ | | | 88.14 17 | 87.61 28 | 89.71 6 | 92.06 93 | 76.72 1 | 95.75 20 | 93.26 86 | 83.86 14 | 89.55 29 | 96.06 36 | 53.55 208 | 97.89 43 | 91.10 31 | 93.31 51 | 94.54 98 |
|
| TSAR-MVS + MP. | | | 88.11 19 | 88.64 17 | 86.54 64 | 91.73 105 | 68.04 83 | 90.36 220 | 93.55 75 | 82.89 19 | 91.29 15 | 92.89 119 | 72.27 30 | 96.03 135 | 87.99 50 | 94.77 25 | 95.54 52 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| TSAR-MVS + GP. | | | 87.96 20 | 88.37 20 | 86.70 57 | 93.51 56 | 65.32 150 | 95.15 36 | 93.84 61 | 78.17 87 | 85.93 50 | 94.80 71 | 75.80 13 | 98.21 34 | 89.38 40 | 88.78 101 | 96.59 16 |
|
| DeepC-MVS_fast | | 79.48 2 | 87.95 21 | 88.00 24 | 87.79 28 | 95.86 27 | 68.32 73 | 95.74 21 | 94.11 56 | 83.82 15 | 83.49 73 | 96.19 33 | 64.53 81 | 98.44 31 | 83.42 91 | 94.88 24 | 96.61 15 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| xiu_mvs_v2_base | | | 87.92 22 | 87.38 32 | 89.55 11 | 91.41 116 | 76.43 3 | 95.74 21 | 93.12 94 | 83.53 17 | 89.55 29 | 95.95 38 | 53.45 212 | 97.68 50 | 91.07 32 | 92.62 58 | 94.54 98 |
|
| EPNet | | | 87.84 23 | 88.38 19 | 86.23 74 | 93.30 60 | 66.05 132 | 95.26 32 | 94.84 26 | 87.09 5 | 88.06 34 | 94.53 77 | 66.79 56 | 97.34 73 | 83.89 88 | 91.68 72 | 95.29 63 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| lupinMVS | | | 87.74 24 | 87.77 26 | 87.63 34 | 89.24 161 | 71.18 19 | 96.57 11 | 92.90 102 | 82.70 23 | 87.13 39 | 95.27 56 | 64.99 72 | 95.80 140 | 89.34 41 | 91.80 70 | 95.93 40 |
|
| test_fmvsm_n_1920 | | | 87.69 25 | 88.50 18 | 85.27 105 | 87.05 217 | 63.55 202 | 93.69 87 | 91.08 179 | 84.18 13 | 90.17 23 | 97.04 8 | 67.58 51 | 97.99 39 | 95.72 5 | 90.03 92 | 94.26 106 |
|
| APDe-MVS |  | | 87.54 26 | 87.84 25 | 86.65 58 | 96.07 23 | 66.30 128 | 94.84 45 | 93.78 62 | 69.35 248 | 88.39 33 | 96.34 28 | 67.74 50 | 97.66 54 | 90.62 36 | 93.44 49 | 96.01 39 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| fmvsm_l_conf0.5_n | | | 87.49 27 | 88.19 22 | 85.39 99 | 86.95 218 | 64.37 175 | 94.30 54 | 88.45 280 | 80.51 48 | 92.70 4 | 96.86 15 | 69.98 38 | 97.15 86 | 95.83 3 | 88.08 108 | 94.65 92 |
|
| SD-MVS | | | 87.49 27 | 87.49 30 | 87.50 36 | 93.60 53 | 68.82 63 | 93.90 74 | 92.63 113 | 76.86 106 | 87.90 35 | 95.76 41 | 66.17 60 | 97.63 56 | 89.06 45 | 91.48 76 | 96.05 37 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| fmvsm_l_conf0.5_n_a | | | 87.44 29 | 88.15 23 | 85.30 103 | 87.10 215 | 64.19 182 | 94.41 52 | 88.14 289 | 80.24 53 | 92.54 5 | 96.97 10 | 69.52 40 | 97.17 83 | 95.89 2 | 88.51 104 | 94.56 95 |
|
| dcpmvs_2 | | | 87.37 30 | 87.55 29 | 86.85 50 | 95.04 32 | 68.20 80 | 90.36 220 | 90.66 191 | 79.37 66 | 81.20 89 | 93.67 103 | 74.73 15 | 96.55 118 | 90.88 34 | 92.00 67 | 95.82 44 |
|
| alignmvs | | | 87.28 31 | 86.97 36 | 88.24 24 | 91.30 117 | 71.14 21 | 95.61 25 | 93.56 74 | 79.30 67 | 87.07 41 | 95.25 58 | 68.43 43 | 96.93 105 | 87.87 51 | 84.33 142 | 96.65 14 |
|
| train_agg | | | 87.21 32 | 87.42 31 | 86.60 60 | 94.18 41 | 67.28 102 | 94.16 58 | 93.51 76 | 71.87 198 | 85.52 54 | 95.33 51 | 68.19 45 | 97.27 80 | 89.09 44 | 94.90 21 | 95.25 69 |
|
| MG-MVS | | | 87.11 33 | 86.27 42 | 89.62 7 | 97.79 1 | 76.27 4 | 94.96 43 | 94.49 40 | 78.74 82 | 83.87 72 | 92.94 117 | 64.34 82 | 96.94 103 | 75.19 148 | 94.09 36 | 95.66 47 |
|
| SF-MVS | | | 87.03 34 | 87.09 34 | 86.84 51 | 92.70 78 | 67.45 100 | 93.64 89 | 93.76 65 | 70.78 231 | 86.25 45 | 96.44 26 | 66.98 54 | 97.79 47 | 88.68 48 | 94.56 32 | 95.28 65 |
|
| CSCG | | | 86.87 35 | 86.26 43 | 88.72 15 | 95.05 31 | 70.79 25 | 93.83 82 | 95.33 15 | 68.48 261 | 77.63 132 | 94.35 86 | 73.04 24 | 98.45 30 | 84.92 79 | 93.71 45 | 96.92 11 |
|
| canonicalmvs | | | 86.85 36 | 86.25 44 | 88.66 18 | 91.80 104 | 71.92 14 | 93.54 94 | 91.71 150 | 80.26 52 | 87.55 37 | 95.25 58 | 63.59 95 | 96.93 105 | 88.18 49 | 84.34 141 | 97.11 8 |
|
| PHI-MVS | | | 86.83 37 | 86.85 40 | 86.78 55 | 93.47 57 | 65.55 146 | 95.39 30 | 95.10 20 | 71.77 203 | 85.69 53 | 96.52 23 | 62.07 112 | 98.77 22 | 86.06 70 | 95.60 11 | 96.03 38 |
|
| SteuartSystems-ACMMP | | | 86.82 38 | 86.90 38 | 86.58 62 | 90.42 132 | 66.38 125 | 96.09 17 | 93.87 60 | 77.73 94 | 84.01 71 | 95.66 43 | 63.39 97 | 97.94 40 | 87.40 57 | 93.55 48 | 95.42 53 |
| Skip Steuart: Steuart Systems R&D Blog. |
| PVSNet_Blended | | | 86.73 39 | 86.86 39 | 86.31 73 | 93.76 49 | 67.53 97 | 96.33 16 | 93.61 72 | 82.34 27 | 81.00 94 | 93.08 113 | 63.19 101 | 97.29 76 | 87.08 61 | 91.38 78 | 94.13 113 |
|
| test_fmvsmconf_n | | | 86.58 40 | 87.17 33 | 84.82 118 | 85.28 248 | 62.55 226 | 94.26 56 | 89.78 224 | 83.81 16 | 87.78 36 | 96.33 29 | 65.33 69 | 96.98 98 | 94.40 11 | 87.55 113 | 94.95 78 |
|
| jason | | | 86.40 41 | 86.17 45 | 87.11 44 | 86.16 233 | 70.54 28 | 95.71 24 | 92.19 128 | 82.00 30 | 84.58 64 | 94.34 87 | 61.86 114 | 95.53 160 | 87.76 52 | 90.89 84 | 95.27 66 |
| jason: jason. |
| fmvsm_s_conf0.5_n | | | 86.39 42 | 86.91 37 | 84.82 118 | 87.36 210 | 63.54 203 | 94.74 47 | 90.02 218 | 82.52 24 | 90.14 24 | 96.92 13 | 62.93 105 | 97.84 46 | 95.28 8 | 82.26 156 | 93.07 149 |
|
| WTY-MVS | | | 86.32 43 | 85.81 52 | 87.85 26 | 92.82 74 | 69.37 50 | 95.20 34 | 95.25 16 | 82.71 22 | 81.91 84 | 94.73 72 | 67.93 49 | 97.63 56 | 79.55 117 | 82.25 157 | 96.54 19 |
|
| MSLP-MVS++ | | | 86.27 44 | 85.91 51 | 87.35 39 | 92.01 96 | 68.97 60 | 95.04 40 | 92.70 107 | 79.04 76 | 81.50 87 | 96.50 25 | 58.98 147 | 96.78 110 | 83.49 90 | 93.93 39 | 96.29 30 |
|
| VNet | | | 86.20 45 | 85.65 55 | 87.84 27 | 93.92 46 | 69.99 33 | 95.73 23 | 95.94 7 | 78.43 84 | 86.00 49 | 93.07 114 | 58.22 152 | 97.00 94 | 85.22 74 | 84.33 142 | 96.52 20 |
|
| MVS_111021_HR | | | 86.19 46 | 85.80 53 | 87.37 38 | 93.17 65 | 69.79 41 | 93.99 69 | 93.76 65 | 79.08 74 | 78.88 120 | 93.99 97 | 62.25 111 | 98.15 36 | 85.93 71 | 91.15 82 | 94.15 112 |
|
| CS-MVS-test | | | 86.14 47 | 87.01 35 | 83.52 163 | 92.63 81 | 59.36 286 | 95.49 27 | 91.92 137 | 80.09 54 | 85.46 56 | 95.53 47 | 61.82 117 | 95.77 143 | 86.77 65 | 93.37 50 | 95.41 54 |
|
| ACMMP_NAP | | | 86.05 48 | 85.80 53 | 86.80 54 | 91.58 109 | 67.53 97 | 91.79 164 | 93.49 79 | 74.93 131 | 84.61 63 | 95.30 53 | 59.42 141 | 97.92 41 | 86.13 68 | 94.92 19 | 94.94 79 |
|
| ETV-MVS | | | 86.01 49 | 86.11 46 | 85.70 91 | 90.21 137 | 67.02 111 | 93.43 99 | 91.92 137 | 81.21 42 | 84.13 70 | 94.07 96 | 60.93 125 | 95.63 151 | 89.28 42 | 89.81 93 | 94.46 104 |
|
| APD-MVS |  | | 85.93 50 | 85.99 49 | 85.76 88 | 95.98 26 | 65.21 153 | 93.59 92 | 92.58 115 | 66.54 275 | 86.17 47 | 95.88 39 | 63.83 88 | 97.00 94 | 86.39 67 | 92.94 55 | 95.06 73 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| PAPM | | | 85.89 51 | 85.46 56 | 87.18 42 | 88.20 189 | 72.42 13 | 92.41 137 | 92.77 105 | 82.11 29 | 80.34 100 | 93.07 114 | 68.27 44 | 95.02 173 | 78.39 130 | 93.59 47 | 94.09 115 |
|
| CS-MVS | | | 85.80 52 | 86.65 41 | 83.27 171 | 92.00 97 | 58.92 291 | 95.31 31 | 91.86 142 | 79.97 55 | 84.82 62 | 95.40 49 | 62.26 110 | 95.51 161 | 86.11 69 | 92.08 66 | 95.37 57 |
|
| fmvsm_s_conf0.5_n_a | | | 85.75 53 | 86.09 47 | 84.72 125 | 85.73 242 | 63.58 200 | 93.79 83 | 89.32 242 | 81.42 39 | 90.21 22 | 96.91 14 | 62.41 109 | 97.67 51 | 94.48 10 | 80.56 173 | 92.90 155 |
|
| test_fmvsmconf0.1_n | | | 85.71 54 | 86.08 48 | 84.62 132 | 80.83 301 | 62.33 230 | 93.84 80 | 88.81 267 | 83.50 18 | 87.00 42 | 96.01 37 | 63.36 98 | 96.93 105 | 94.04 12 | 87.29 116 | 94.61 94 |
|
| CDPH-MVS | | | 85.71 54 | 85.46 56 | 86.46 66 | 94.75 34 | 67.19 104 | 93.89 75 | 92.83 104 | 70.90 227 | 83.09 76 | 95.28 54 | 63.62 93 | 97.36 71 | 80.63 111 | 94.18 35 | 94.84 83 |
|
| casdiffmvs_mvg |  | | 85.66 56 | 85.18 59 | 87.09 45 | 88.22 188 | 69.35 51 | 93.74 86 | 91.89 140 | 81.47 35 | 80.10 102 | 91.45 148 | 64.80 77 | 96.35 121 | 87.23 60 | 87.69 111 | 95.58 50 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| fmvsm_s_conf0.1_n | | | 85.61 57 | 85.93 50 | 84.68 128 | 82.95 285 | 63.48 205 | 94.03 68 | 89.46 236 | 81.69 33 | 89.86 25 | 96.74 20 | 61.85 115 | 97.75 49 | 94.74 9 | 82.01 160 | 92.81 157 |
|
| DeepC-MVS | | 77.85 3 | 85.52 58 | 85.24 58 | 86.37 70 | 88.80 171 | 66.64 119 | 92.15 144 | 93.68 70 | 81.07 43 | 76.91 142 | 93.64 104 | 62.59 107 | 98.44 31 | 85.50 72 | 92.84 57 | 94.03 119 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| casdiffmvs |  | | 85.37 59 | 84.87 65 | 86.84 51 | 88.25 186 | 69.07 56 | 93.04 109 | 91.76 147 | 81.27 41 | 80.84 96 | 92.07 138 | 64.23 83 | 96.06 133 | 84.98 78 | 87.43 115 | 95.39 55 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| ZNCC-MVS | | | 85.33 60 | 85.08 61 | 86.06 76 | 93.09 68 | 65.65 142 | 93.89 75 | 93.41 83 | 73.75 151 | 79.94 104 | 94.68 74 | 60.61 128 | 98.03 38 | 82.63 95 | 93.72 44 | 94.52 100 |
|
| MP-MVS-pluss | | | 85.24 61 | 85.13 60 | 85.56 94 | 91.42 114 | 65.59 144 | 91.54 174 | 92.51 117 | 74.56 134 | 80.62 97 | 95.64 44 | 59.15 145 | 97.00 94 | 86.94 63 | 93.80 41 | 94.07 117 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| testing222 | | | 85.18 62 | 84.69 67 | 86.63 59 | 92.91 71 | 69.91 37 | 92.61 128 | 95.80 9 | 80.31 51 | 80.38 99 | 92.27 134 | 68.73 41 | 95.19 170 | 75.94 143 | 83.27 149 | 94.81 86 |
|
| PAPR | | | 85.15 63 | 84.47 68 | 87.18 42 | 96.02 25 | 68.29 74 | 91.85 162 | 93.00 99 | 76.59 113 | 79.03 116 | 95.00 63 | 61.59 118 | 97.61 58 | 78.16 131 | 89.00 100 | 95.63 48 |
|
| MP-MVS |  | | 85.02 64 | 84.97 63 | 85.17 109 | 92.60 82 | 64.27 180 | 93.24 102 | 92.27 122 | 73.13 162 | 79.63 108 | 94.43 80 | 61.90 113 | 97.17 83 | 85.00 77 | 92.56 59 | 94.06 118 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| baseline | | | 85.01 65 | 84.44 69 | 86.71 56 | 88.33 183 | 68.73 64 | 90.24 225 | 91.82 146 | 81.05 44 | 81.18 90 | 92.50 126 | 63.69 91 | 96.08 132 | 84.45 83 | 86.71 125 | 95.32 61 |
|
| CHOSEN 1792x2688 | | | 84.98 66 | 83.45 82 | 89.57 10 | 89.94 142 | 75.14 5 | 92.07 150 | 92.32 120 | 81.87 31 | 75.68 151 | 88.27 196 | 60.18 131 | 98.60 27 | 80.46 113 | 90.27 91 | 94.96 77 |
|
| EIA-MVS | | | 84.84 67 | 84.88 64 | 84.69 127 | 91.30 117 | 62.36 229 | 93.85 77 | 92.04 132 | 79.45 63 | 79.33 113 | 94.28 90 | 62.42 108 | 96.35 121 | 80.05 114 | 91.25 81 | 95.38 56 |
|
| fmvsm_s_conf0.1_n_a | | | 84.76 68 | 84.84 66 | 84.53 134 | 80.23 311 | 63.50 204 | 92.79 117 | 88.73 271 | 80.46 49 | 89.84 26 | 96.65 22 | 60.96 124 | 97.57 61 | 93.80 13 | 80.14 175 | 92.53 164 |
|
| HFP-MVS | | | 84.73 69 | 84.40 70 | 85.72 90 | 93.75 51 | 65.01 159 | 93.50 96 | 93.19 90 | 72.19 187 | 79.22 114 | 94.93 66 | 59.04 146 | 97.67 51 | 81.55 102 | 92.21 62 | 94.49 103 |
|
| MVS | | | 84.66 70 | 82.86 97 | 90.06 2 | 90.93 123 | 74.56 6 | 87.91 271 | 95.54 12 | 68.55 259 | 72.35 193 | 94.71 73 | 59.78 137 | 98.90 19 | 81.29 108 | 94.69 31 | 96.74 13 |
|
| GST-MVS | | | 84.63 71 | 84.29 71 | 85.66 92 | 92.82 74 | 65.27 151 | 93.04 109 | 93.13 93 | 73.20 160 | 78.89 117 | 94.18 93 | 59.41 142 | 97.85 45 | 81.45 104 | 92.48 61 | 93.86 127 |
|
| EC-MVSNet | | | 84.53 72 | 85.04 62 | 83.01 175 | 89.34 154 | 61.37 250 | 94.42 51 | 91.09 177 | 77.91 91 | 83.24 74 | 94.20 92 | 58.37 150 | 95.40 162 | 85.35 73 | 91.41 77 | 92.27 174 |
|
| ACMMPR | | | 84.37 73 | 84.06 72 | 85.28 104 | 93.56 54 | 64.37 175 | 93.50 96 | 93.15 92 | 72.19 187 | 78.85 122 | 94.86 69 | 56.69 172 | 97.45 65 | 81.55 102 | 92.20 63 | 94.02 120 |
|
| region2R | | | 84.36 74 | 84.03 73 | 85.36 101 | 93.54 55 | 64.31 178 | 93.43 99 | 92.95 100 | 72.16 190 | 78.86 121 | 94.84 70 | 56.97 167 | 97.53 63 | 81.38 106 | 92.11 65 | 94.24 107 |
|
| LFMVS | | | 84.34 75 | 82.73 99 | 89.18 12 | 94.76 33 | 73.25 9 | 94.99 42 | 91.89 140 | 71.90 195 | 82.16 83 | 93.49 108 | 47.98 259 | 97.05 89 | 82.55 96 | 84.82 137 | 97.25 7 |
|
| test_yl | | | 84.28 76 | 83.16 90 | 87.64 30 | 94.52 37 | 69.24 52 | 95.78 18 | 95.09 21 | 69.19 251 | 81.09 91 | 92.88 120 | 57.00 165 | 97.44 66 | 81.11 109 | 81.76 162 | 96.23 33 |
|
| DCV-MVSNet | | | 84.28 76 | 83.16 90 | 87.64 30 | 94.52 37 | 69.24 52 | 95.78 18 | 95.09 21 | 69.19 251 | 81.09 91 | 92.88 120 | 57.00 165 | 97.44 66 | 81.11 109 | 81.76 162 | 96.23 33 |
|
| diffmvs |  | | 84.28 76 | 83.83 74 | 85.61 93 | 87.40 208 | 68.02 84 | 90.88 204 | 89.24 245 | 80.54 47 | 81.64 86 | 92.52 125 | 59.83 136 | 94.52 198 | 87.32 58 | 85.11 135 | 94.29 105 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| HY-MVS | | 76.49 5 | 84.28 76 | 83.36 88 | 87.02 48 | 92.22 89 | 67.74 90 | 84.65 297 | 94.50 39 | 79.15 71 | 82.23 82 | 87.93 205 | 66.88 55 | 96.94 103 | 80.53 112 | 82.20 158 | 96.39 28 |
|
| ETVMVS | | | 84.22 80 | 83.71 75 | 85.76 88 | 92.58 83 | 68.25 78 | 92.45 136 | 95.53 13 | 79.54 62 | 79.46 110 | 91.64 146 | 70.29 36 | 94.18 211 | 69.16 203 | 82.76 154 | 94.84 83 |
|
| MAR-MVS | | | 84.18 81 | 83.43 83 | 86.44 67 | 96.25 21 | 65.93 137 | 94.28 55 | 94.27 52 | 74.41 135 | 79.16 115 | 95.61 45 | 53.99 203 | 98.88 21 | 69.62 197 | 93.26 52 | 94.50 102 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| MVS_Test | | | 84.16 82 | 83.20 89 | 87.05 47 | 91.56 110 | 69.82 40 | 89.99 234 | 92.05 131 | 77.77 93 | 82.84 77 | 86.57 224 | 63.93 87 | 96.09 129 | 74.91 153 | 89.18 99 | 95.25 69 |
|
| CANet_DTU | | | 84.09 83 | 83.52 77 | 85.81 85 | 90.30 135 | 66.82 114 | 91.87 160 | 89.01 259 | 85.27 9 | 86.09 48 | 93.74 101 | 47.71 263 | 96.98 98 | 77.90 133 | 89.78 95 | 93.65 132 |
|
| ET-MVSNet_ETH3D | | | 84.01 84 | 83.15 92 | 86.58 62 | 90.78 128 | 70.89 24 | 94.74 47 | 94.62 36 | 81.44 38 | 58.19 323 | 93.64 104 | 73.64 23 | 92.35 276 | 82.66 94 | 78.66 190 | 96.50 24 |
|
| PVSNet_Blended_VisFu | | | 83.97 85 | 83.50 79 | 85.39 99 | 90.02 140 | 66.59 122 | 93.77 84 | 91.73 148 | 77.43 102 | 77.08 141 | 89.81 178 | 63.77 90 | 96.97 100 | 79.67 116 | 88.21 106 | 92.60 161 |
|
| MTAPA | | | 83.91 86 | 83.38 87 | 85.50 95 | 91.89 102 | 65.16 155 | 81.75 320 | 92.23 123 | 75.32 126 | 80.53 98 | 95.21 60 | 56.06 180 | 97.16 85 | 84.86 80 | 92.55 60 | 94.18 109 |
|
| XVS | | | 83.87 87 | 83.47 81 | 85.05 110 | 93.22 61 | 63.78 189 | 92.92 114 | 92.66 110 | 73.99 143 | 78.18 126 | 94.31 89 | 55.25 186 | 97.41 68 | 79.16 121 | 91.58 74 | 93.95 122 |
|
| Effi-MVS+ | | | 83.82 88 | 82.76 98 | 86.99 49 | 89.56 150 | 69.40 47 | 91.35 186 | 86.12 313 | 72.59 174 | 83.22 75 | 92.81 123 | 59.60 139 | 96.01 137 | 81.76 101 | 87.80 110 | 95.56 51 |
|
| test_fmvsmvis_n_1920 | | | 83.80 89 | 83.48 80 | 84.77 122 | 82.51 287 | 63.72 193 | 91.37 184 | 83.99 333 | 81.42 39 | 77.68 131 | 95.74 42 | 58.37 150 | 97.58 59 | 93.38 14 | 86.87 119 | 93.00 152 |
|
| EI-MVSNet-Vis-set | | | 83.77 90 | 83.67 76 | 84.06 150 | 92.79 77 | 63.56 201 | 91.76 167 | 94.81 28 | 79.65 61 | 77.87 129 | 94.09 94 | 63.35 99 | 97.90 42 | 79.35 119 | 79.36 182 | 90.74 199 |
|
| MVSFormer | | | 83.75 91 | 82.88 96 | 86.37 70 | 89.24 161 | 71.18 19 | 89.07 253 | 90.69 188 | 65.80 280 | 87.13 39 | 94.34 87 | 64.99 72 | 92.67 262 | 72.83 164 | 91.80 70 | 95.27 66 |
|
| CP-MVS | | | 83.71 92 | 83.40 86 | 84.65 129 | 93.14 66 | 63.84 187 | 94.59 49 | 92.28 121 | 71.03 225 | 77.41 135 | 94.92 67 | 55.21 189 | 96.19 125 | 81.32 107 | 90.70 86 | 93.91 124 |
|
| test_fmvsmconf0.01_n | | | 83.70 93 | 83.52 77 | 84.25 146 | 75.26 353 | 61.72 244 | 92.17 143 | 87.24 302 | 82.36 26 | 84.91 61 | 95.41 48 | 55.60 184 | 96.83 109 | 92.85 17 | 85.87 131 | 94.21 108 |
|
| baseline2 | | | 83.68 94 | 83.42 85 | 84.48 137 | 87.37 209 | 66.00 134 | 90.06 229 | 95.93 8 | 79.71 60 | 69.08 229 | 90.39 166 | 77.92 6 | 96.28 123 | 78.91 125 | 81.38 166 | 91.16 195 |
|
| thisisatest0515 | | | 83.41 95 | 82.49 104 | 86.16 75 | 89.46 153 | 68.26 76 | 93.54 94 | 94.70 32 | 74.31 138 | 75.75 149 | 90.92 156 | 72.62 28 | 96.52 119 | 69.64 195 | 81.50 165 | 93.71 130 |
|
| PVSNet_BlendedMVS | | | 83.38 96 | 83.43 83 | 83.22 172 | 93.76 49 | 67.53 97 | 94.06 63 | 93.61 72 | 79.13 72 | 81.00 94 | 85.14 239 | 63.19 101 | 97.29 76 | 87.08 61 | 73.91 228 | 84.83 298 |
|
| test2506 | | | 83.29 97 | 82.92 95 | 84.37 141 | 88.39 181 | 63.18 212 | 92.01 153 | 91.35 165 | 77.66 96 | 78.49 125 | 91.42 149 | 64.58 80 | 95.09 172 | 73.19 160 | 89.23 97 | 94.85 80 |
|
| iter_conf05 | | | 83.27 98 | 82.70 100 | 84.98 113 | 93.32 59 | 71.84 15 | 94.16 58 | 81.76 344 | 82.74 21 | 73.83 173 | 88.40 192 | 72.77 27 | 94.61 189 | 82.10 98 | 75.21 217 | 88.48 231 |
|
| PGM-MVS | | | 83.25 99 | 82.70 100 | 84.92 114 | 92.81 76 | 64.07 184 | 90.44 216 | 92.20 127 | 71.28 219 | 77.23 138 | 94.43 80 | 55.17 190 | 97.31 75 | 79.33 120 | 91.38 78 | 93.37 138 |
|
| HPM-MVS |  | | 83.25 99 | 82.95 94 | 84.17 148 | 92.25 88 | 62.88 221 | 90.91 201 | 91.86 142 | 70.30 237 | 77.12 139 | 93.96 98 | 56.75 170 | 96.28 123 | 82.04 99 | 91.34 80 | 93.34 139 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| EI-MVSNet-UG-set | | | 83.14 101 | 82.96 93 | 83.67 161 | 92.28 87 | 63.19 211 | 91.38 183 | 94.68 33 | 79.22 69 | 76.60 144 | 93.75 100 | 62.64 106 | 97.76 48 | 78.07 132 | 78.01 193 | 90.05 208 |
|
| VDD-MVS | | | 83.06 102 | 81.81 113 | 86.81 53 | 90.86 126 | 67.70 91 | 95.40 29 | 91.50 160 | 75.46 123 | 81.78 85 | 92.34 133 | 40.09 301 | 97.13 87 | 86.85 64 | 82.04 159 | 95.60 49 |
|
| h-mvs33 | | | 83.01 103 | 82.56 103 | 84.35 142 | 89.34 154 | 62.02 236 | 92.72 120 | 93.76 65 | 81.45 36 | 82.73 79 | 92.25 136 | 60.11 132 | 97.13 87 | 87.69 53 | 62.96 307 | 93.91 124 |
|
| PAPM_NR | | | 82.97 104 | 81.84 112 | 86.37 70 | 94.10 44 | 66.76 117 | 87.66 276 | 92.84 103 | 69.96 241 | 74.07 170 | 93.57 106 | 63.10 103 | 97.50 64 | 70.66 188 | 90.58 88 | 94.85 80 |
|
| mPP-MVS | | | 82.96 105 | 82.44 105 | 84.52 135 | 92.83 72 | 62.92 219 | 92.76 118 | 91.85 144 | 71.52 215 | 75.61 154 | 94.24 91 | 53.48 211 | 96.99 97 | 78.97 124 | 90.73 85 | 93.64 133 |
|
| SR-MVS | | | 82.81 106 | 82.58 102 | 83.50 166 | 93.35 58 | 61.16 253 | 92.23 142 | 91.28 169 | 64.48 289 | 81.27 88 | 95.28 54 | 53.71 207 | 95.86 139 | 82.87 93 | 88.77 102 | 93.49 136 |
|
| DP-MVS Recon | | | 82.73 107 | 81.65 114 | 85.98 78 | 97.31 4 | 67.06 108 | 95.15 36 | 91.99 134 | 69.08 254 | 76.50 146 | 93.89 99 | 54.48 198 | 98.20 35 | 70.76 186 | 85.66 133 | 92.69 158 |
|
| CLD-MVS | | | 82.73 107 | 82.35 107 | 83.86 154 | 87.90 196 | 67.65 93 | 95.45 28 | 92.18 129 | 85.06 10 | 72.58 186 | 92.27 134 | 52.46 219 | 95.78 141 | 84.18 84 | 79.06 185 | 88.16 237 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| sss | | | 82.71 109 | 82.38 106 | 83.73 158 | 89.25 158 | 59.58 281 | 92.24 141 | 94.89 25 | 77.96 89 | 79.86 105 | 92.38 131 | 56.70 171 | 97.05 89 | 77.26 136 | 80.86 170 | 94.55 96 |
|
| 3Dnovator | | 73.91 6 | 82.69 110 | 80.82 125 | 88.31 23 | 89.57 149 | 71.26 18 | 92.60 129 | 94.39 47 | 78.84 79 | 67.89 250 | 92.48 129 | 48.42 254 | 98.52 28 | 68.80 208 | 94.40 34 | 95.15 71 |
|
| MVSTER | | | 82.47 111 | 82.05 108 | 83.74 156 | 92.68 79 | 69.01 58 | 91.90 159 | 93.21 87 | 79.83 56 | 72.14 194 | 85.71 236 | 74.72 16 | 94.72 184 | 75.72 144 | 72.49 239 | 87.50 242 |
|
| TESTMET0.1,1 | | | 82.41 112 | 81.98 111 | 83.72 159 | 88.08 190 | 63.74 191 | 92.70 122 | 93.77 64 | 79.30 67 | 77.61 133 | 87.57 211 | 58.19 153 | 94.08 215 | 73.91 159 | 86.68 126 | 93.33 141 |
|
| CostFormer | | | 82.33 113 | 81.15 118 | 85.86 83 | 89.01 166 | 68.46 70 | 82.39 317 | 93.01 97 | 75.59 121 | 80.25 101 | 81.57 282 | 72.03 32 | 94.96 176 | 79.06 123 | 77.48 201 | 94.16 111 |
|
| API-MVS | | | 82.28 114 | 80.53 132 | 87.54 35 | 96.13 22 | 70.59 27 | 93.63 90 | 91.04 183 | 65.72 282 | 75.45 156 | 92.83 122 | 56.11 179 | 98.89 20 | 64.10 251 | 89.75 96 | 93.15 145 |
|
| IB-MVS | | 77.80 4 | 82.18 115 | 80.46 134 | 87.35 39 | 89.14 163 | 70.28 31 | 95.59 26 | 95.17 19 | 78.85 78 | 70.19 217 | 85.82 234 | 70.66 35 | 97.67 51 | 72.19 175 | 66.52 280 | 94.09 115 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| xiu_mvs_v1_base_debu | | | 82.16 116 | 81.12 119 | 85.26 106 | 86.42 226 | 68.72 65 | 92.59 131 | 90.44 198 | 73.12 163 | 84.20 67 | 94.36 82 | 38.04 315 | 95.73 145 | 84.12 85 | 86.81 120 | 91.33 188 |
|
| xiu_mvs_v1_base | | | 82.16 116 | 81.12 119 | 85.26 106 | 86.42 226 | 68.72 65 | 92.59 131 | 90.44 198 | 73.12 163 | 84.20 67 | 94.36 82 | 38.04 315 | 95.73 145 | 84.12 85 | 86.81 120 | 91.33 188 |
|
| xiu_mvs_v1_base_debi | | | 82.16 116 | 81.12 119 | 85.26 106 | 86.42 226 | 68.72 65 | 92.59 131 | 90.44 198 | 73.12 163 | 84.20 67 | 94.36 82 | 38.04 315 | 95.73 145 | 84.12 85 | 86.81 120 | 91.33 188 |
|
| 3Dnovator+ | | 73.60 7 | 82.10 119 | 80.60 131 | 86.60 60 | 90.89 125 | 66.80 116 | 95.20 34 | 93.44 81 | 74.05 142 | 67.42 256 | 92.49 128 | 49.46 244 | 97.65 55 | 70.80 185 | 91.68 72 | 95.33 59 |
|
| MVS_111021_LR | | | 82.02 120 | 81.52 115 | 83.51 165 | 88.42 179 | 62.88 221 | 89.77 238 | 88.93 263 | 76.78 109 | 75.55 155 | 93.10 111 | 50.31 236 | 95.38 164 | 83.82 89 | 87.02 118 | 92.26 175 |
|
| PMMVS | | | 81.98 121 | 82.04 109 | 81.78 208 | 89.76 146 | 56.17 318 | 91.13 197 | 90.69 188 | 77.96 89 | 80.09 103 | 93.57 106 | 46.33 273 | 94.99 175 | 81.41 105 | 87.46 114 | 94.17 110 |
|
| baseline1 | | | 81.84 122 | 81.03 123 | 84.28 145 | 91.60 108 | 66.62 120 | 91.08 198 | 91.66 154 | 81.87 31 | 74.86 160 | 91.67 145 | 69.98 38 | 94.92 179 | 71.76 178 | 64.75 295 | 91.29 193 |
|
| EPP-MVSNet | | | 81.79 123 | 81.52 115 | 82.61 184 | 88.77 172 | 60.21 273 | 93.02 111 | 93.66 71 | 68.52 260 | 72.90 181 | 90.39 166 | 72.19 31 | 94.96 176 | 74.93 152 | 79.29 184 | 92.67 159 |
|
| iter_conf_final | | | 81.74 124 | 80.93 124 | 84.18 147 | 92.66 80 | 69.10 55 | 92.94 113 | 82.80 342 | 79.01 77 | 74.85 161 | 88.40 192 | 61.83 116 | 94.61 189 | 79.36 118 | 76.52 210 | 88.83 222 |
|
| test_vis1_n_1920 | | | 81.66 125 | 82.01 110 | 80.64 235 | 82.24 290 | 55.09 326 | 94.76 46 | 86.87 304 | 81.67 34 | 84.40 66 | 94.63 75 | 38.17 312 | 94.67 188 | 91.98 26 | 83.34 148 | 92.16 178 |
|
| APD-MVS_3200maxsize | | | 81.64 126 | 81.32 117 | 82.59 185 | 92.36 85 | 58.74 293 | 91.39 181 | 91.01 184 | 63.35 298 | 79.72 107 | 94.62 76 | 51.82 222 | 96.14 127 | 79.71 115 | 87.93 109 | 92.89 156 |
|
| ACMMP |  | | 81.49 127 | 80.67 128 | 83.93 153 | 91.71 106 | 62.90 220 | 92.13 145 | 92.22 126 | 71.79 202 | 71.68 201 | 93.49 108 | 50.32 235 | 96.96 101 | 78.47 129 | 84.22 146 | 91.93 180 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| CDS-MVSNet | | | 81.43 128 | 80.74 126 | 83.52 163 | 86.26 230 | 64.45 169 | 92.09 148 | 90.65 192 | 75.83 120 | 73.95 172 | 89.81 178 | 63.97 86 | 92.91 252 | 71.27 181 | 82.82 152 | 93.20 144 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| mvs_anonymous | | | 81.36 129 | 79.99 139 | 85.46 96 | 90.39 134 | 68.40 71 | 86.88 287 | 90.61 193 | 74.41 135 | 70.31 216 | 84.67 245 | 63.79 89 | 92.32 277 | 73.13 161 | 85.70 132 | 95.67 46 |
|
| ECVR-MVS |  | | 81.29 130 | 80.38 135 | 84.01 152 | 88.39 181 | 61.96 238 | 92.56 134 | 86.79 306 | 77.66 96 | 76.63 143 | 91.42 149 | 46.34 272 | 95.24 169 | 74.36 157 | 89.23 97 | 94.85 80 |
|
| thisisatest0530 | | | 81.15 131 | 80.07 136 | 84.39 140 | 88.26 185 | 65.63 143 | 91.40 179 | 94.62 36 | 71.27 220 | 70.93 207 | 89.18 183 | 72.47 29 | 96.04 134 | 65.62 240 | 76.89 207 | 91.49 184 |
|
| Fast-Effi-MVS+ | | | 81.14 132 | 80.01 138 | 84.51 136 | 90.24 136 | 65.86 138 | 94.12 62 | 89.15 251 | 73.81 150 | 75.37 157 | 88.26 197 | 57.26 160 | 94.53 197 | 66.97 225 | 84.92 136 | 93.15 145 |
|
| HQP-MVS | | | 81.14 132 | 80.64 129 | 82.64 183 | 87.54 204 | 63.66 198 | 94.06 63 | 91.70 152 | 79.80 57 | 74.18 166 | 90.30 168 | 51.63 226 | 95.61 153 | 77.63 134 | 78.90 186 | 88.63 227 |
|
| hse-mvs2 | | | 81.12 134 | 81.11 122 | 81.16 222 | 86.52 225 | 57.48 308 | 89.40 246 | 91.16 172 | 81.45 36 | 82.73 79 | 90.49 164 | 60.11 132 | 94.58 191 | 87.69 53 | 60.41 334 | 91.41 187 |
|
| SR-MVS-dyc-post | | | 81.06 135 | 80.70 127 | 82.15 199 | 92.02 94 | 58.56 295 | 90.90 202 | 90.45 195 | 62.76 305 | 78.89 117 | 94.46 78 | 51.26 230 | 95.61 153 | 78.77 127 | 86.77 123 | 92.28 171 |
|
| HyFIR lowres test | | | 81.03 136 | 79.56 146 | 85.43 97 | 87.81 200 | 68.11 82 | 90.18 226 | 90.01 219 | 70.65 233 | 72.95 180 | 86.06 232 | 63.61 94 | 94.50 199 | 75.01 151 | 79.75 179 | 93.67 131 |
|
| nrg030 | | | 80.93 137 | 79.86 141 | 84.13 149 | 83.69 274 | 68.83 62 | 93.23 103 | 91.20 170 | 75.55 122 | 75.06 159 | 88.22 200 | 63.04 104 | 94.74 183 | 81.88 100 | 66.88 277 | 88.82 225 |
|
| Vis-MVSNet |  | | 80.92 138 | 79.98 140 | 83.74 156 | 88.48 176 | 61.80 240 | 93.44 98 | 88.26 288 | 73.96 146 | 77.73 130 | 91.76 142 | 49.94 240 | 94.76 181 | 65.84 237 | 90.37 90 | 94.65 92 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| test1111 | | | 80.84 139 | 80.02 137 | 83.33 169 | 87.87 197 | 60.76 261 | 92.62 127 | 86.86 305 | 77.86 92 | 75.73 150 | 91.39 151 | 46.35 271 | 94.70 187 | 72.79 166 | 88.68 103 | 94.52 100 |
|
| 1314 | | | 80.70 140 | 78.95 157 | 85.94 80 | 87.77 202 | 67.56 95 | 87.91 271 | 92.55 116 | 72.17 189 | 67.44 255 | 93.09 112 | 50.27 237 | 97.04 92 | 71.68 180 | 87.64 112 | 93.23 143 |
|
| tpmrst | | | 80.57 141 | 79.14 156 | 84.84 117 | 90.10 139 | 68.28 75 | 81.70 321 | 89.72 231 | 77.63 98 | 75.96 148 | 79.54 314 | 64.94 74 | 92.71 259 | 75.43 146 | 77.28 204 | 93.55 134 |
|
| 1112_ss | | | 80.56 142 | 79.83 142 | 82.77 179 | 88.65 173 | 60.78 259 | 92.29 139 | 88.36 282 | 72.58 175 | 72.46 190 | 94.95 64 | 65.09 71 | 93.42 239 | 66.38 231 | 77.71 195 | 94.10 114 |
|
| VDDNet | | | 80.50 143 | 78.26 165 | 87.21 41 | 86.19 231 | 69.79 41 | 94.48 50 | 91.31 166 | 60.42 323 | 79.34 112 | 90.91 157 | 38.48 310 | 96.56 117 | 82.16 97 | 81.05 168 | 95.27 66 |
|
| BH-w/o | | | 80.49 144 | 79.30 153 | 84.05 151 | 90.83 127 | 64.36 177 | 93.60 91 | 89.42 239 | 74.35 137 | 69.09 228 | 90.15 173 | 55.23 188 | 95.61 153 | 64.61 248 | 86.43 129 | 92.17 177 |
|
| test_cas_vis1_n_1920 | | | 80.45 145 | 80.61 130 | 79.97 253 | 78.25 337 | 57.01 314 | 94.04 67 | 88.33 283 | 79.06 75 | 82.81 78 | 93.70 102 | 38.65 307 | 91.63 291 | 90.82 35 | 79.81 177 | 91.27 194 |
|
| TAMVS | | | 80.37 146 | 79.45 149 | 83.13 174 | 85.14 251 | 63.37 206 | 91.23 192 | 90.76 187 | 74.81 133 | 72.65 184 | 88.49 189 | 60.63 127 | 92.95 247 | 69.41 199 | 81.95 161 | 93.08 148 |
|
| HQP_MVS | | | 80.34 147 | 79.75 143 | 82.12 201 | 86.94 219 | 62.42 227 | 93.13 105 | 91.31 166 | 78.81 80 | 72.53 187 | 89.14 185 | 50.66 233 | 95.55 158 | 76.74 137 | 78.53 191 | 88.39 234 |
|
| SDMVSNet | | | 80.26 148 | 78.88 158 | 84.40 139 | 89.25 158 | 67.63 94 | 85.35 293 | 93.02 96 | 76.77 110 | 70.84 208 | 87.12 218 | 47.95 260 | 96.09 129 | 85.04 76 | 74.55 219 | 89.48 218 |
|
| HPM-MVS_fast | | | 80.25 149 | 79.55 148 | 82.33 191 | 91.55 111 | 59.95 276 | 91.32 188 | 89.16 250 | 65.23 286 | 74.71 163 | 93.07 114 | 47.81 262 | 95.74 144 | 74.87 155 | 88.23 105 | 91.31 192 |
|
| ab-mvs | | | 80.18 150 | 78.31 164 | 85.80 86 | 88.44 178 | 65.49 149 | 83.00 314 | 92.67 109 | 71.82 201 | 77.36 136 | 85.01 240 | 54.50 195 | 96.59 114 | 76.35 141 | 75.63 215 | 95.32 61 |
|
| IS-MVSNet | | | 80.14 151 | 79.41 150 | 82.33 191 | 87.91 195 | 60.08 275 | 91.97 157 | 88.27 286 | 72.90 170 | 71.44 204 | 91.73 144 | 61.44 119 | 93.66 234 | 62.47 265 | 86.53 127 | 93.24 142 |
|
| test-LLR | | | 80.10 152 | 79.56 146 | 81.72 210 | 86.93 221 | 61.17 251 | 92.70 122 | 91.54 157 | 71.51 216 | 75.62 152 | 86.94 220 | 53.83 204 | 92.38 273 | 72.21 173 | 84.76 139 | 91.60 182 |
|
| PVSNet | | 73.49 8 | 80.05 153 | 78.63 160 | 84.31 143 | 90.92 124 | 64.97 160 | 92.47 135 | 91.05 182 | 79.18 70 | 72.43 191 | 90.51 163 | 37.05 327 | 94.06 217 | 68.06 212 | 86.00 130 | 93.90 126 |
|
| UA-Net | | | 80.02 154 | 79.65 144 | 81.11 224 | 89.33 156 | 57.72 303 | 86.33 290 | 89.00 262 | 77.44 101 | 81.01 93 | 89.15 184 | 59.33 143 | 95.90 138 | 61.01 272 | 84.28 144 | 89.73 214 |
|
| test-mter | | | 79.96 155 | 79.38 152 | 81.72 210 | 86.93 221 | 61.17 251 | 92.70 122 | 91.54 157 | 73.85 148 | 75.62 152 | 86.94 220 | 49.84 242 | 92.38 273 | 72.21 173 | 84.76 139 | 91.60 182 |
|
| QAPM | | | 79.95 156 | 77.39 182 | 87.64 30 | 89.63 148 | 71.41 17 | 93.30 101 | 93.70 69 | 65.34 285 | 67.39 258 | 91.75 143 | 47.83 261 | 98.96 16 | 57.71 288 | 89.81 93 | 92.54 163 |
|
| UGNet | | | 79.87 157 | 78.68 159 | 83.45 168 | 89.96 141 | 61.51 247 | 92.13 145 | 90.79 186 | 76.83 108 | 78.85 122 | 86.33 228 | 38.16 313 | 96.17 126 | 67.93 215 | 87.17 117 | 92.67 159 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| tpm2 | | | 79.80 158 | 77.95 171 | 85.34 102 | 88.28 184 | 68.26 76 | 81.56 323 | 91.42 163 | 70.11 239 | 77.59 134 | 80.50 300 | 67.40 52 | 94.26 208 | 67.34 220 | 77.35 202 | 93.51 135 |
|
| thres200 | | | 79.66 159 | 78.33 163 | 83.66 162 | 92.54 84 | 65.82 140 | 93.06 107 | 96.31 3 | 74.90 132 | 73.30 177 | 88.66 187 | 59.67 138 | 95.61 153 | 47.84 326 | 78.67 189 | 89.56 217 |
|
| CPTT-MVS | | | 79.59 160 | 79.16 155 | 80.89 233 | 91.54 112 | 59.80 278 | 92.10 147 | 88.54 279 | 60.42 323 | 72.96 179 | 93.28 110 | 48.27 255 | 92.80 256 | 78.89 126 | 86.50 128 | 90.06 207 |
|
| Test_1112_low_res | | | 79.56 161 | 78.60 161 | 82.43 187 | 88.24 187 | 60.39 270 | 92.09 148 | 87.99 293 | 72.10 191 | 71.84 197 | 87.42 213 | 64.62 79 | 93.04 243 | 65.80 238 | 77.30 203 | 93.85 128 |
|
| tttt0517 | | | 79.50 162 | 78.53 162 | 82.41 190 | 87.22 212 | 61.43 249 | 89.75 239 | 94.76 29 | 69.29 249 | 67.91 248 | 88.06 204 | 72.92 25 | 95.63 151 | 62.91 261 | 73.90 229 | 90.16 206 |
|
| FIs | | | 79.47 163 | 79.41 150 | 79.67 260 | 85.95 236 | 59.40 283 | 91.68 171 | 93.94 59 | 78.06 88 | 68.96 233 | 88.28 195 | 66.61 58 | 91.77 288 | 66.20 234 | 74.99 218 | 87.82 239 |
|
| BH-RMVSNet | | | 79.46 164 | 77.65 174 | 84.89 115 | 91.68 107 | 65.66 141 | 93.55 93 | 88.09 291 | 72.93 167 | 73.37 176 | 91.12 155 | 46.20 275 | 96.12 128 | 56.28 293 | 85.61 134 | 92.91 154 |
|
| PCF-MVS | | 73.15 9 | 79.29 165 | 77.63 175 | 84.29 144 | 86.06 234 | 65.96 136 | 87.03 283 | 91.10 176 | 69.86 243 | 69.79 224 | 90.64 159 | 57.54 159 | 96.59 114 | 64.37 250 | 82.29 155 | 90.32 204 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| Vis-MVSNet (Re-imp) | | | 79.24 166 | 79.57 145 | 78.24 281 | 88.46 177 | 52.29 337 | 90.41 218 | 89.12 253 | 74.24 139 | 69.13 227 | 91.91 140 | 65.77 65 | 90.09 313 | 59.00 284 | 88.09 107 | 92.33 168 |
|
| 114514_t | | | 79.17 167 | 77.67 173 | 83.68 160 | 95.32 29 | 65.53 147 | 92.85 116 | 91.60 156 | 63.49 296 | 67.92 247 | 90.63 161 | 46.65 268 | 95.72 149 | 67.01 224 | 83.54 147 | 89.79 212 |
|
| FA-MVS(test-final) | | | 79.12 168 | 77.23 184 | 84.81 121 | 90.54 130 | 63.98 186 | 81.35 326 | 91.71 150 | 71.09 224 | 74.85 161 | 82.94 263 | 52.85 215 | 97.05 89 | 67.97 213 | 81.73 164 | 93.41 137 |
|
| VPA-MVSNet | | | 79.03 169 | 78.00 169 | 82.11 204 | 85.95 236 | 64.48 168 | 93.22 104 | 94.66 34 | 75.05 130 | 74.04 171 | 84.95 241 | 52.17 221 | 93.52 236 | 74.90 154 | 67.04 276 | 88.32 236 |
|
| OPM-MVS | | | 79.00 170 | 78.09 167 | 81.73 209 | 83.52 277 | 63.83 188 | 91.64 173 | 90.30 205 | 76.36 116 | 71.97 196 | 89.93 177 | 46.30 274 | 95.17 171 | 75.10 149 | 77.70 196 | 86.19 270 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| EI-MVSNet | | | 78.97 171 | 78.22 166 | 81.25 219 | 85.33 246 | 62.73 224 | 89.53 243 | 93.21 87 | 72.39 182 | 72.14 194 | 90.13 174 | 60.99 122 | 94.72 184 | 67.73 217 | 72.49 239 | 86.29 266 |
|
| AdaColmap |  | | 78.94 172 | 77.00 188 | 84.76 123 | 96.34 17 | 65.86 138 | 92.66 126 | 87.97 295 | 62.18 310 | 70.56 210 | 92.37 132 | 43.53 289 | 97.35 72 | 64.50 249 | 82.86 151 | 91.05 197 |
|
| GeoE | | | 78.90 173 | 77.43 178 | 83.29 170 | 88.95 167 | 62.02 236 | 92.31 138 | 86.23 311 | 70.24 238 | 71.34 205 | 89.27 182 | 54.43 199 | 94.04 220 | 63.31 257 | 80.81 172 | 93.81 129 |
|
| miper_enhance_ethall | | | 78.86 174 | 77.97 170 | 81.54 214 | 88.00 194 | 65.17 154 | 91.41 177 | 89.15 251 | 75.19 128 | 68.79 236 | 83.98 254 | 67.17 53 | 92.82 254 | 72.73 167 | 65.30 286 | 86.62 263 |
|
| VPNet | | | 78.82 175 | 77.53 177 | 82.70 181 | 84.52 261 | 66.44 124 | 93.93 72 | 92.23 123 | 80.46 49 | 72.60 185 | 88.38 194 | 49.18 248 | 93.13 242 | 72.47 171 | 63.97 304 | 88.55 230 |
|
| EPNet_dtu | | | 78.80 176 | 79.26 154 | 77.43 289 | 88.06 191 | 49.71 350 | 91.96 158 | 91.95 136 | 77.67 95 | 76.56 145 | 91.28 153 | 58.51 149 | 90.20 311 | 56.37 292 | 80.95 169 | 92.39 166 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| tfpn200view9 | | | 78.79 177 | 77.43 178 | 82.88 177 | 92.21 90 | 64.49 166 | 92.05 151 | 96.28 4 | 73.48 157 | 71.75 199 | 88.26 197 | 60.07 134 | 95.32 165 | 45.16 337 | 77.58 198 | 88.83 222 |
|
| TR-MVS | | | 78.77 178 | 77.37 183 | 82.95 176 | 90.49 131 | 60.88 257 | 93.67 88 | 90.07 214 | 70.08 240 | 74.51 164 | 91.37 152 | 45.69 278 | 95.70 150 | 60.12 278 | 80.32 174 | 92.29 170 |
|
| thres400 | | | 78.68 179 | 77.43 178 | 82.43 187 | 92.21 90 | 64.49 166 | 92.05 151 | 96.28 4 | 73.48 157 | 71.75 199 | 88.26 197 | 60.07 134 | 95.32 165 | 45.16 337 | 77.58 198 | 87.48 243 |
|
| BH-untuned | | | 78.68 179 | 77.08 185 | 83.48 167 | 89.84 143 | 63.74 191 | 92.70 122 | 88.59 277 | 71.57 213 | 66.83 265 | 88.65 188 | 51.75 224 | 95.39 163 | 59.03 283 | 84.77 138 | 91.32 191 |
|
| OMC-MVS | | | 78.67 181 | 77.91 172 | 80.95 231 | 85.76 241 | 57.40 310 | 88.49 262 | 88.67 274 | 73.85 148 | 72.43 191 | 92.10 137 | 49.29 247 | 94.55 196 | 72.73 167 | 77.89 194 | 90.91 198 |
|
| tpm | | | 78.58 182 | 77.03 186 | 83.22 172 | 85.94 238 | 64.56 164 | 83.21 311 | 91.14 175 | 78.31 85 | 73.67 174 | 79.68 312 | 64.01 85 | 92.09 282 | 66.07 235 | 71.26 249 | 93.03 150 |
|
| OpenMVS |  | 70.45 11 | 78.54 183 | 75.92 202 | 86.41 69 | 85.93 239 | 71.68 16 | 92.74 119 | 92.51 117 | 66.49 276 | 64.56 280 | 91.96 139 | 43.88 288 | 98.10 37 | 54.61 298 | 90.65 87 | 89.44 220 |
|
| EPMVS | | | 78.49 184 | 75.98 201 | 86.02 77 | 91.21 119 | 69.68 45 | 80.23 335 | 91.20 170 | 75.25 127 | 72.48 189 | 78.11 322 | 54.65 194 | 93.69 233 | 57.66 289 | 83.04 150 | 94.69 88 |
|
| AUN-MVS | | | 78.37 185 | 77.43 178 | 81.17 221 | 86.60 224 | 57.45 309 | 89.46 245 | 91.16 172 | 74.11 141 | 74.40 165 | 90.49 164 | 55.52 185 | 94.57 193 | 74.73 156 | 60.43 333 | 91.48 185 |
|
| thres100view900 | | | 78.37 185 | 77.01 187 | 82.46 186 | 91.89 102 | 63.21 210 | 91.19 196 | 96.33 1 | 72.28 185 | 70.45 213 | 87.89 206 | 60.31 129 | 95.32 165 | 45.16 337 | 77.58 198 | 88.83 222 |
|
| GA-MVS | | | 78.33 187 | 76.23 197 | 84.65 129 | 83.65 275 | 66.30 128 | 91.44 175 | 90.14 212 | 76.01 118 | 70.32 215 | 84.02 253 | 42.50 293 | 94.72 184 | 70.98 183 | 77.00 206 | 92.94 153 |
|
| cascas | | | 78.18 188 | 75.77 204 | 85.41 98 | 87.14 214 | 69.11 54 | 92.96 112 | 91.15 174 | 66.71 274 | 70.47 211 | 86.07 231 | 37.49 321 | 96.48 120 | 70.15 191 | 79.80 178 | 90.65 200 |
|
| UniMVSNet_NR-MVSNet | | | 78.15 189 | 77.55 176 | 79.98 251 | 84.46 263 | 60.26 271 | 92.25 140 | 93.20 89 | 77.50 100 | 68.88 234 | 86.61 223 | 66.10 61 | 92.13 280 | 66.38 231 | 62.55 311 | 87.54 241 |
|
| thres600view7 | | | 78.00 190 | 76.66 192 | 82.03 206 | 91.93 99 | 63.69 196 | 91.30 189 | 96.33 1 | 72.43 180 | 70.46 212 | 87.89 206 | 60.31 129 | 94.92 179 | 42.64 349 | 76.64 208 | 87.48 243 |
|
| FC-MVSNet-test | | | 77.99 191 | 78.08 168 | 77.70 284 | 84.89 256 | 55.51 323 | 90.27 223 | 93.75 68 | 76.87 105 | 66.80 266 | 87.59 210 | 65.71 66 | 90.23 310 | 62.89 262 | 73.94 227 | 87.37 246 |
|
| Anonymous202405211 | | | 77.96 192 | 75.33 211 | 85.87 82 | 93.73 52 | 64.52 165 | 94.85 44 | 85.36 319 | 62.52 308 | 76.11 147 | 90.18 171 | 29.43 356 | 97.29 76 | 68.51 210 | 77.24 205 | 95.81 45 |
|
| cl22 | | | 77.94 193 | 76.78 190 | 81.42 216 | 87.57 203 | 64.93 162 | 90.67 211 | 88.86 266 | 72.45 179 | 67.63 254 | 82.68 267 | 64.07 84 | 92.91 252 | 71.79 176 | 65.30 286 | 86.44 264 |
|
| XXY-MVS | | | 77.94 193 | 76.44 194 | 82.43 187 | 82.60 286 | 64.44 170 | 92.01 153 | 91.83 145 | 73.59 156 | 70.00 220 | 85.82 234 | 54.43 199 | 94.76 181 | 69.63 196 | 68.02 270 | 88.10 238 |
|
| MS-PatchMatch | | | 77.90 195 | 76.50 193 | 82.12 201 | 85.99 235 | 69.95 36 | 91.75 169 | 92.70 107 | 73.97 145 | 62.58 301 | 84.44 249 | 41.11 298 | 95.78 141 | 63.76 254 | 92.17 64 | 80.62 345 |
|
| FMVSNet3 | | | 77.73 196 | 76.04 200 | 82.80 178 | 91.20 120 | 68.99 59 | 91.87 160 | 91.99 134 | 73.35 159 | 67.04 261 | 83.19 262 | 56.62 173 | 92.14 279 | 59.80 280 | 69.34 257 | 87.28 250 |
|
| miper_ehance_all_eth | | | 77.60 197 | 76.44 194 | 81.09 228 | 85.70 243 | 64.41 173 | 90.65 212 | 88.64 276 | 72.31 183 | 67.37 259 | 82.52 268 | 64.77 78 | 92.64 266 | 70.67 187 | 65.30 286 | 86.24 268 |
|
| UniMVSNet (Re) | | | 77.58 198 | 76.78 190 | 79.98 251 | 84.11 269 | 60.80 258 | 91.76 167 | 93.17 91 | 76.56 114 | 69.93 223 | 84.78 244 | 63.32 100 | 92.36 275 | 64.89 247 | 62.51 313 | 86.78 258 |
|
| PatchmatchNet |  | | 77.46 199 | 74.63 217 | 85.96 79 | 89.55 151 | 70.35 30 | 79.97 340 | 89.55 234 | 72.23 186 | 70.94 206 | 76.91 333 | 57.03 163 | 92.79 257 | 54.27 300 | 81.17 167 | 94.74 87 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| v2v482 | | | 77.42 200 | 75.65 207 | 82.73 180 | 80.38 307 | 67.13 107 | 91.85 162 | 90.23 209 | 75.09 129 | 69.37 225 | 83.39 260 | 53.79 206 | 94.44 200 | 71.77 177 | 65.00 292 | 86.63 262 |
|
| CHOSEN 280x420 | | | 77.35 201 | 76.95 189 | 78.55 276 | 87.07 216 | 62.68 225 | 69.71 368 | 82.95 340 | 68.80 256 | 71.48 203 | 87.27 217 | 66.03 62 | 84.00 355 | 76.47 140 | 82.81 153 | 88.95 221 |
|
| PS-MVSNAJss | | | 77.26 202 | 76.31 196 | 80.13 246 | 80.64 305 | 59.16 288 | 90.63 215 | 91.06 181 | 72.80 171 | 68.58 240 | 84.57 247 | 53.55 208 | 93.96 225 | 72.97 162 | 71.96 243 | 87.27 251 |
|
| gg-mvs-nofinetune | | | 77.18 203 | 74.31 224 | 85.80 86 | 91.42 114 | 68.36 72 | 71.78 362 | 94.72 31 | 49.61 363 | 77.12 139 | 45.92 386 | 77.41 8 | 93.98 224 | 67.62 218 | 93.16 53 | 95.05 74 |
|
| WB-MVSnew | | | 77.14 204 | 76.18 199 | 80.01 250 | 86.18 232 | 63.24 209 | 91.26 190 | 94.11 56 | 71.72 205 | 73.52 175 | 87.29 216 | 45.14 283 | 93.00 245 | 56.98 290 | 79.42 180 | 83.80 306 |
|
| MVP-Stereo | | | 77.12 205 | 76.23 197 | 79.79 258 | 81.72 295 | 66.34 127 | 89.29 247 | 90.88 185 | 70.56 235 | 62.01 304 | 82.88 264 | 49.34 245 | 94.13 212 | 65.55 242 | 93.80 41 | 78.88 359 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| sd_testset | | | 77.08 206 | 75.37 209 | 82.20 197 | 89.25 158 | 62.11 235 | 82.06 318 | 89.09 255 | 76.77 110 | 70.84 208 | 87.12 218 | 41.43 297 | 95.01 174 | 67.23 222 | 74.55 219 | 89.48 218 |
|
| dmvs_re | | | 76.93 207 | 75.36 210 | 81.61 212 | 87.78 201 | 60.71 264 | 80.00 339 | 87.99 293 | 79.42 64 | 69.02 231 | 89.47 181 | 46.77 266 | 94.32 202 | 63.38 256 | 74.45 222 | 89.81 211 |
|
| X-MVStestdata | | | 76.86 208 | 74.13 228 | 85.05 110 | 93.22 61 | 63.78 189 | 92.92 114 | 92.66 110 | 73.99 143 | 78.18 126 | 10.19 401 | 55.25 186 | 97.41 68 | 79.16 121 | 91.58 74 | 93.95 122 |
|
| DU-MVS | | | 76.86 208 | 75.84 203 | 79.91 254 | 82.96 283 | 60.26 271 | 91.26 190 | 91.54 157 | 76.46 115 | 68.88 234 | 86.35 226 | 56.16 177 | 92.13 280 | 66.38 231 | 62.55 311 | 87.35 248 |
|
| mvsmamba | | | 76.85 210 | 75.71 206 | 80.25 243 | 83.07 282 | 59.16 288 | 91.44 175 | 80.64 349 | 76.84 107 | 67.95 246 | 86.33 228 | 46.17 276 | 94.24 209 | 76.06 142 | 72.92 235 | 87.36 247 |
|
| Anonymous20240529 | | | 76.84 211 | 74.15 227 | 84.88 116 | 91.02 121 | 64.95 161 | 93.84 80 | 91.09 177 | 53.57 352 | 73.00 178 | 87.42 213 | 35.91 331 | 97.32 74 | 69.14 204 | 72.41 241 | 92.36 167 |
|
| c3_l | | | 76.83 212 | 75.47 208 | 80.93 232 | 85.02 254 | 64.18 183 | 90.39 219 | 88.11 290 | 71.66 206 | 66.65 267 | 81.64 280 | 63.58 96 | 92.56 267 | 69.31 201 | 62.86 308 | 86.04 275 |
|
| WR-MVS | | | 76.76 213 | 75.74 205 | 79.82 257 | 84.60 259 | 62.27 233 | 92.60 129 | 92.51 117 | 76.06 117 | 67.87 251 | 85.34 237 | 56.76 169 | 90.24 309 | 62.20 266 | 63.69 306 | 86.94 256 |
|
| v1144 | | | 76.73 214 | 74.88 214 | 82.27 193 | 80.23 311 | 66.60 121 | 91.68 171 | 90.21 211 | 73.69 153 | 69.06 230 | 81.89 275 | 52.73 217 | 94.40 201 | 69.21 202 | 65.23 289 | 85.80 281 |
|
| IterMVS-LS | | | 76.49 215 | 75.18 213 | 80.43 238 | 84.49 262 | 62.74 223 | 90.64 213 | 88.80 268 | 72.40 181 | 65.16 274 | 81.72 278 | 60.98 123 | 92.27 278 | 67.74 216 | 64.65 297 | 86.29 266 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| V42 | | | 76.46 216 | 74.55 220 | 82.19 198 | 79.14 325 | 67.82 88 | 90.26 224 | 89.42 239 | 73.75 151 | 68.63 239 | 81.89 275 | 51.31 229 | 94.09 214 | 71.69 179 | 64.84 293 | 84.66 299 |
|
| v148 | | | 76.19 217 | 74.47 222 | 81.36 217 | 80.05 313 | 64.44 170 | 91.75 169 | 90.23 209 | 73.68 154 | 67.13 260 | 80.84 295 | 55.92 182 | 93.86 231 | 68.95 206 | 61.73 322 | 85.76 284 |
|
| Effi-MVS+-dtu | | | 76.14 218 | 75.28 212 | 78.72 275 | 83.22 279 | 55.17 325 | 89.87 235 | 87.78 296 | 75.42 124 | 67.98 245 | 81.43 284 | 45.08 284 | 92.52 269 | 75.08 150 | 71.63 244 | 88.48 231 |
|
| cl____ | | | 76.07 219 | 74.67 215 | 80.28 241 | 85.15 250 | 61.76 242 | 90.12 227 | 88.73 271 | 71.16 221 | 65.43 271 | 81.57 282 | 61.15 120 | 92.95 247 | 66.54 228 | 62.17 315 | 86.13 273 |
|
| DIV-MVS_self_test | | | 76.07 219 | 74.67 215 | 80.28 241 | 85.14 251 | 61.75 243 | 90.12 227 | 88.73 271 | 71.16 221 | 65.42 272 | 81.60 281 | 61.15 120 | 92.94 251 | 66.54 228 | 62.16 317 | 86.14 271 |
|
| FMVSNet2 | | | 76.07 219 | 74.01 230 | 82.26 195 | 88.85 168 | 67.66 92 | 91.33 187 | 91.61 155 | 70.84 228 | 65.98 268 | 82.25 271 | 48.03 256 | 92.00 284 | 58.46 285 | 68.73 265 | 87.10 253 |
|
| v144192 | | | 76.05 222 | 74.03 229 | 82.12 201 | 79.50 319 | 66.55 123 | 91.39 181 | 89.71 232 | 72.30 184 | 68.17 243 | 81.33 287 | 51.75 224 | 94.03 222 | 67.94 214 | 64.19 299 | 85.77 282 |
|
| NR-MVSNet | | | 76.05 222 | 74.59 218 | 80.44 237 | 82.96 283 | 62.18 234 | 90.83 206 | 91.73 148 | 77.12 104 | 60.96 308 | 86.35 226 | 59.28 144 | 91.80 287 | 60.74 273 | 61.34 326 | 87.35 248 |
|
| v1192 | | | 75.98 224 | 73.92 231 | 82.15 199 | 79.73 315 | 66.24 130 | 91.22 193 | 89.75 226 | 72.67 173 | 68.49 241 | 81.42 285 | 49.86 241 | 94.27 206 | 67.08 223 | 65.02 291 | 85.95 278 |
|
| FE-MVS | | | 75.97 225 | 73.02 241 | 84.82 118 | 89.78 144 | 65.56 145 | 77.44 351 | 91.07 180 | 64.55 288 | 72.66 183 | 79.85 310 | 46.05 277 | 96.69 112 | 54.97 297 | 80.82 171 | 92.21 176 |
|
| eth_miper_zixun_eth | | | 75.96 226 | 74.40 223 | 80.66 234 | 84.66 258 | 63.02 214 | 89.28 248 | 88.27 286 | 71.88 197 | 65.73 269 | 81.65 279 | 59.45 140 | 92.81 255 | 68.13 211 | 60.53 331 | 86.14 271 |
|
| TranMVSNet+NR-MVSNet | | | 75.86 227 | 74.52 221 | 79.89 255 | 82.44 288 | 60.64 267 | 91.37 184 | 91.37 164 | 76.63 112 | 67.65 253 | 86.21 230 | 52.37 220 | 91.55 293 | 61.84 268 | 60.81 329 | 87.48 243 |
|
| SCA | | | 75.82 228 | 72.76 245 | 85.01 112 | 86.63 223 | 70.08 32 | 81.06 328 | 89.19 248 | 71.60 212 | 70.01 219 | 77.09 331 | 45.53 279 | 90.25 306 | 60.43 275 | 73.27 231 | 94.68 89 |
|
| LPG-MVS_test | | | 75.82 228 | 74.58 219 | 79.56 264 | 84.31 266 | 59.37 284 | 90.44 216 | 89.73 229 | 69.49 246 | 64.86 275 | 88.42 190 | 38.65 307 | 94.30 204 | 72.56 169 | 72.76 236 | 85.01 296 |
|
| GBi-Net | | | 75.65 230 | 73.83 232 | 81.10 225 | 88.85 168 | 65.11 156 | 90.01 231 | 90.32 201 | 70.84 228 | 67.04 261 | 80.25 305 | 48.03 256 | 91.54 294 | 59.80 280 | 69.34 257 | 86.64 259 |
|
| test1 | | | 75.65 230 | 73.83 232 | 81.10 225 | 88.85 168 | 65.11 156 | 90.01 231 | 90.32 201 | 70.84 228 | 67.04 261 | 80.25 305 | 48.03 256 | 91.54 294 | 59.80 280 | 69.34 257 | 86.64 259 |
|
| v1921920 | | | 75.63 232 | 73.49 237 | 82.06 205 | 79.38 320 | 66.35 126 | 91.07 200 | 89.48 235 | 71.98 192 | 67.99 244 | 81.22 290 | 49.16 250 | 93.90 228 | 66.56 227 | 64.56 298 | 85.92 280 |
|
| ACMP | | 71.68 10 | 75.58 233 | 74.23 226 | 79.62 262 | 84.97 255 | 59.64 279 | 90.80 207 | 89.07 257 | 70.39 236 | 62.95 297 | 87.30 215 | 38.28 311 | 93.87 229 | 72.89 163 | 71.45 247 | 85.36 291 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| v8 | | | 75.35 234 | 73.26 239 | 81.61 212 | 80.67 304 | 66.82 114 | 89.54 242 | 89.27 244 | 71.65 207 | 63.30 293 | 80.30 304 | 54.99 192 | 94.06 217 | 67.33 221 | 62.33 314 | 83.94 304 |
|
| tpm cat1 | | | 75.30 235 | 72.21 254 | 84.58 133 | 88.52 174 | 67.77 89 | 78.16 349 | 88.02 292 | 61.88 315 | 68.45 242 | 76.37 337 | 60.65 126 | 94.03 222 | 53.77 303 | 74.11 225 | 91.93 180 |
|
| PLC |  | 68.80 14 | 75.23 236 | 73.68 235 | 79.86 256 | 92.93 70 | 58.68 294 | 90.64 213 | 88.30 284 | 60.90 320 | 64.43 284 | 90.53 162 | 42.38 294 | 94.57 193 | 56.52 291 | 76.54 209 | 86.33 265 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| v1240 | | | 75.21 237 | 72.98 242 | 81.88 207 | 79.20 322 | 66.00 134 | 90.75 209 | 89.11 254 | 71.63 211 | 67.41 257 | 81.22 290 | 47.36 264 | 93.87 229 | 65.46 243 | 64.72 296 | 85.77 282 |
|
| Fast-Effi-MVS+-dtu | | | 75.04 238 | 73.37 238 | 80.07 247 | 80.86 300 | 59.52 282 | 91.20 195 | 85.38 318 | 71.90 195 | 65.20 273 | 84.84 243 | 41.46 296 | 92.97 246 | 66.50 230 | 72.96 234 | 87.73 240 |
|
| dp | | | 75.01 239 | 72.09 255 | 83.76 155 | 89.28 157 | 66.22 131 | 79.96 341 | 89.75 226 | 71.16 221 | 67.80 252 | 77.19 330 | 51.81 223 | 92.54 268 | 50.39 311 | 71.44 248 | 92.51 165 |
|
| TAPA-MVS | | 70.22 12 | 74.94 240 | 73.53 236 | 79.17 269 | 90.40 133 | 52.07 338 | 89.19 251 | 89.61 233 | 62.69 307 | 70.07 218 | 92.67 124 | 48.89 253 | 94.32 202 | 38.26 363 | 79.97 176 | 91.12 196 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| v10 | | | 74.77 241 | 72.54 251 | 81.46 215 | 80.33 309 | 66.71 118 | 89.15 252 | 89.08 256 | 70.94 226 | 63.08 296 | 79.86 309 | 52.52 218 | 94.04 220 | 65.70 239 | 62.17 315 | 83.64 307 |
|
| XVG-OURS-SEG-HR | | | 74.70 242 | 73.08 240 | 79.57 263 | 78.25 337 | 57.33 311 | 80.49 331 | 87.32 299 | 63.22 300 | 68.76 237 | 90.12 176 | 44.89 285 | 91.59 292 | 70.55 189 | 74.09 226 | 89.79 212 |
|
| RRT_MVS | | | 74.44 243 | 72.97 243 | 78.84 274 | 82.36 289 | 57.66 305 | 89.83 237 | 88.79 270 | 70.61 234 | 64.58 279 | 84.89 242 | 39.24 303 | 92.65 265 | 70.11 192 | 66.34 281 | 86.21 269 |
|
| ACMM | | 69.62 13 | 74.34 244 | 72.73 247 | 79.17 269 | 84.25 268 | 57.87 301 | 90.36 220 | 89.93 220 | 63.17 302 | 65.64 270 | 86.04 233 | 37.79 319 | 94.10 213 | 65.89 236 | 71.52 246 | 85.55 287 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| CNLPA | | | 74.31 245 | 72.30 253 | 80.32 239 | 91.49 113 | 61.66 245 | 90.85 205 | 80.72 348 | 56.67 344 | 63.85 288 | 90.64 159 | 46.75 267 | 90.84 301 | 53.79 302 | 75.99 214 | 88.47 233 |
|
| XVG-OURS | | | 74.25 246 | 72.46 252 | 79.63 261 | 78.45 335 | 57.59 307 | 80.33 333 | 87.39 298 | 63.86 293 | 68.76 237 | 89.62 180 | 40.50 300 | 91.72 289 | 69.00 205 | 74.25 224 | 89.58 215 |
|
| test_fmvs1 | | | 74.07 247 | 73.69 234 | 75.22 308 | 78.91 329 | 47.34 362 | 89.06 255 | 74.69 363 | 63.68 295 | 79.41 111 | 91.59 147 | 24.36 365 | 87.77 332 | 85.22 74 | 76.26 212 | 90.55 203 |
|
| CVMVSNet | | | 74.04 248 | 74.27 225 | 73.33 323 | 85.33 246 | 43.94 373 | 89.53 243 | 88.39 281 | 54.33 351 | 70.37 214 | 90.13 174 | 49.17 249 | 84.05 353 | 61.83 269 | 79.36 182 | 91.99 179 |
|
| Baseline_NR-MVSNet | | | 73.99 249 | 72.83 244 | 77.48 288 | 80.78 302 | 59.29 287 | 91.79 164 | 84.55 326 | 68.85 255 | 68.99 232 | 80.70 296 | 56.16 177 | 92.04 283 | 62.67 263 | 60.98 328 | 81.11 339 |
|
| pmmvs4 | | | 73.92 250 | 71.81 259 | 80.25 243 | 79.17 323 | 65.24 152 | 87.43 279 | 87.26 301 | 67.64 268 | 63.46 291 | 83.91 255 | 48.96 252 | 91.53 297 | 62.94 260 | 65.49 285 | 83.96 303 |
|
| D2MVS | | | 73.80 251 | 72.02 256 | 79.15 271 | 79.15 324 | 62.97 215 | 88.58 261 | 90.07 214 | 72.94 166 | 59.22 317 | 78.30 319 | 42.31 295 | 92.70 261 | 65.59 241 | 72.00 242 | 81.79 334 |
|
| CR-MVSNet | | | 73.79 252 | 70.82 267 | 82.70 181 | 83.15 280 | 67.96 85 | 70.25 365 | 84.00 331 | 73.67 155 | 69.97 221 | 72.41 351 | 57.82 156 | 89.48 317 | 52.99 306 | 73.13 232 | 90.64 201 |
|
| test_djsdf | | | 73.76 253 | 72.56 250 | 77.39 290 | 77.00 347 | 53.93 331 | 89.07 253 | 90.69 188 | 65.80 280 | 63.92 286 | 82.03 274 | 43.14 292 | 92.67 262 | 72.83 164 | 68.53 266 | 85.57 286 |
|
| pmmvs5 | | | 73.35 254 | 71.52 261 | 78.86 273 | 78.64 333 | 60.61 268 | 91.08 198 | 86.90 303 | 67.69 265 | 63.32 292 | 83.64 256 | 44.33 287 | 90.53 303 | 62.04 267 | 66.02 283 | 85.46 289 |
|
| Anonymous20231211 | | | 73.08 255 | 70.39 271 | 81.13 223 | 90.62 129 | 63.33 207 | 91.40 179 | 90.06 216 | 51.84 357 | 64.46 283 | 80.67 298 | 36.49 329 | 94.07 216 | 63.83 253 | 64.17 300 | 85.98 277 |
|
| tt0805 | | | 73.07 256 | 70.73 268 | 80.07 247 | 78.37 336 | 57.05 313 | 87.78 273 | 92.18 129 | 61.23 319 | 67.04 261 | 86.49 225 | 31.35 350 | 94.58 191 | 65.06 246 | 67.12 275 | 88.57 229 |
|
| miper_lstm_enhance | | | 73.05 257 | 71.73 260 | 77.03 295 | 83.80 272 | 58.32 297 | 81.76 319 | 88.88 264 | 69.80 244 | 61.01 307 | 78.23 321 | 57.19 161 | 87.51 336 | 65.34 244 | 59.53 336 | 85.27 294 |
|
| jajsoiax | | | 73.05 257 | 71.51 262 | 77.67 285 | 77.46 344 | 54.83 327 | 88.81 257 | 90.04 217 | 69.13 253 | 62.85 299 | 83.51 258 | 31.16 351 | 92.75 258 | 70.83 184 | 69.80 253 | 85.43 290 |
|
| LCM-MVSNet-Re | | | 72.93 259 | 71.84 258 | 76.18 304 | 88.49 175 | 48.02 357 | 80.07 338 | 70.17 374 | 73.96 146 | 52.25 347 | 80.09 308 | 49.98 239 | 88.24 326 | 67.35 219 | 84.23 145 | 92.28 171 |
|
| pm-mvs1 | | | 72.89 260 | 71.09 264 | 78.26 280 | 79.10 326 | 57.62 306 | 90.80 207 | 89.30 243 | 67.66 266 | 62.91 298 | 81.78 277 | 49.11 251 | 92.95 247 | 60.29 277 | 58.89 339 | 84.22 302 |
|
| tpmvs | | | 72.88 261 | 69.76 277 | 82.22 196 | 90.98 122 | 67.05 109 | 78.22 348 | 88.30 284 | 63.10 303 | 64.35 285 | 74.98 344 | 55.09 191 | 94.27 206 | 43.25 343 | 69.57 256 | 85.34 292 |
|
| test0.0.03 1 | | | 72.76 262 | 72.71 248 | 72.88 327 | 80.25 310 | 47.99 358 | 91.22 193 | 89.45 237 | 71.51 216 | 62.51 302 | 87.66 209 | 53.83 204 | 85.06 349 | 50.16 313 | 67.84 273 | 85.58 285 |
|
| UniMVSNet_ETH3D | | | 72.74 263 | 70.53 270 | 79.36 266 | 78.62 334 | 56.64 316 | 85.01 295 | 89.20 247 | 63.77 294 | 64.84 277 | 84.44 249 | 34.05 338 | 91.86 286 | 63.94 252 | 70.89 251 | 89.57 216 |
|
| mvs_tets | | | 72.71 264 | 71.11 263 | 77.52 286 | 77.41 345 | 54.52 329 | 88.45 263 | 89.76 225 | 68.76 258 | 62.70 300 | 83.26 261 | 29.49 355 | 92.71 259 | 70.51 190 | 69.62 255 | 85.34 292 |
|
| FMVSNet1 | | | 72.71 264 | 69.91 275 | 81.10 225 | 83.60 276 | 65.11 156 | 90.01 231 | 90.32 201 | 63.92 292 | 63.56 290 | 80.25 305 | 36.35 330 | 91.54 294 | 54.46 299 | 66.75 278 | 86.64 259 |
|
| test_fmvs1_n | | | 72.69 266 | 71.92 257 | 74.99 311 | 71.15 366 | 47.08 364 | 87.34 281 | 75.67 358 | 63.48 297 | 78.08 128 | 91.17 154 | 20.16 376 | 87.87 329 | 84.65 81 | 75.57 216 | 90.01 209 |
|
| IterMVS | | | 72.65 267 | 70.83 265 | 78.09 282 | 82.17 291 | 62.96 216 | 87.64 277 | 86.28 309 | 71.56 214 | 60.44 310 | 78.85 317 | 45.42 281 | 86.66 340 | 63.30 258 | 61.83 319 | 84.65 300 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| myMVS_eth3d | | | 72.58 268 | 72.74 246 | 72.10 335 | 87.87 197 | 49.45 352 | 88.07 267 | 89.01 259 | 72.91 168 | 63.11 294 | 88.10 201 | 63.63 92 | 85.54 345 | 32.73 377 | 69.23 260 | 81.32 337 |
|
| PatchMatch-RL | | | 72.06 269 | 69.98 272 | 78.28 279 | 89.51 152 | 55.70 322 | 83.49 304 | 83.39 338 | 61.24 318 | 63.72 289 | 82.76 265 | 34.77 335 | 93.03 244 | 53.37 305 | 77.59 197 | 86.12 274 |
|
| PVSNet_0 | | 68.08 15 | 71.81 270 | 68.32 287 | 82.27 193 | 84.68 257 | 62.31 232 | 88.68 259 | 90.31 204 | 75.84 119 | 57.93 328 | 80.65 299 | 37.85 318 | 94.19 210 | 69.94 193 | 29.05 391 | 90.31 205 |
|
| MIMVSNet | | | 71.64 271 | 68.44 285 | 81.23 220 | 81.97 294 | 64.44 170 | 73.05 361 | 88.80 268 | 69.67 245 | 64.59 278 | 74.79 345 | 32.79 342 | 87.82 330 | 53.99 301 | 76.35 211 | 91.42 186 |
|
| test_vis1_n | | | 71.63 272 | 70.73 268 | 74.31 318 | 69.63 372 | 47.29 363 | 86.91 285 | 72.11 369 | 63.21 301 | 75.18 158 | 90.17 172 | 20.40 374 | 85.76 344 | 84.59 82 | 74.42 223 | 89.87 210 |
|
| bld_raw_dy_0_64 | | | 71.59 273 | 69.71 278 | 77.22 294 | 77.82 343 | 58.12 299 | 87.71 275 | 73.66 365 | 68.01 263 | 61.90 306 | 84.29 251 | 33.68 339 | 88.43 324 | 69.91 194 | 70.43 252 | 85.11 295 |
|
| IterMVS-SCA-FT | | | 71.55 274 | 69.97 273 | 76.32 302 | 81.48 296 | 60.67 266 | 87.64 277 | 85.99 314 | 66.17 278 | 59.50 315 | 78.88 316 | 45.53 279 | 83.65 357 | 62.58 264 | 61.93 318 | 84.63 301 |
|
| v7n | | | 71.31 275 | 68.65 282 | 79.28 267 | 76.40 349 | 60.77 260 | 86.71 288 | 89.45 237 | 64.17 291 | 58.77 322 | 78.24 320 | 44.59 286 | 93.54 235 | 57.76 287 | 61.75 321 | 83.52 310 |
|
| anonymousdsp | | | 71.14 276 | 69.37 280 | 76.45 301 | 72.95 361 | 54.71 328 | 84.19 299 | 88.88 264 | 61.92 314 | 62.15 303 | 79.77 311 | 38.14 314 | 91.44 299 | 68.90 207 | 67.45 274 | 83.21 316 |
|
| F-COLMAP | | | 70.66 277 | 68.44 285 | 77.32 291 | 86.37 229 | 55.91 320 | 88.00 269 | 86.32 308 | 56.94 342 | 57.28 331 | 88.07 203 | 33.58 340 | 92.49 270 | 51.02 309 | 68.37 267 | 83.55 308 |
|
| WR-MVS_H | | | 70.59 278 | 69.94 274 | 72.53 329 | 81.03 299 | 51.43 341 | 87.35 280 | 92.03 133 | 67.38 269 | 60.23 312 | 80.70 296 | 55.84 183 | 83.45 359 | 46.33 333 | 58.58 341 | 82.72 323 |
|
| CP-MVSNet | | | 70.50 279 | 69.91 275 | 72.26 332 | 80.71 303 | 51.00 344 | 87.23 282 | 90.30 205 | 67.84 264 | 59.64 314 | 82.69 266 | 50.23 238 | 82.30 367 | 51.28 308 | 59.28 337 | 83.46 312 |
|
| RPMNet | | | 70.42 280 | 65.68 299 | 84.63 131 | 83.15 280 | 67.96 85 | 70.25 365 | 90.45 195 | 46.83 371 | 69.97 221 | 65.10 370 | 56.48 176 | 95.30 168 | 35.79 368 | 73.13 232 | 90.64 201 |
|
| testing3 | | | 70.38 281 | 70.83 265 | 69.03 346 | 85.82 240 | 43.93 374 | 90.72 210 | 90.56 194 | 68.06 262 | 60.24 311 | 86.82 222 | 64.83 76 | 84.12 351 | 26.33 384 | 64.10 301 | 79.04 358 |
|
| tfpnnormal | | | 70.10 282 | 67.36 290 | 78.32 278 | 83.45 278 | 60.97 256 | 88.85 256 | 92.77 105 | 64.85 287 | 60.83 309 | 78.53 318 | 43.52 290 | 93.48 237 | 31.73 380 | 61.70 323 | 80.52 346 |
|
| TransMVSNet (Re) | | | 70.07 283 | 67.66 289 | 77.31 292 | 80.62 306 | 59.13 290 | 91.78 166 | 84.94 323 | 65.97 279 | 60.08 313 | 80.44 301 | 50.78 232 | 91.87 285 | 48.84 319 | 45.46 369 | 80.94 341 |
|
| CL-MVSNet_self_test | | | 69.92 284 | 68.09 288 | 75.41 307 | 73.25 360 | 55.90 321 | 90.05 230 | 89.90 221 | 69.96 241 | 61.96 305 | 76.54 334 | 51.05 231 | 87.64 333 | 49.51 317 | 50.59 361 | 82.70 325 |
|
| DP-MVS | | | 69.90 285 | 66.48 292 | 80.14 245 | 95.36 28 | 62.93 217 | 89.56 240 | 76.11 356 | 50.27 362 | 57.69 329 | 85.23 238 | 39.68 302 | 95.73 145 | 33.35 373 | 71.05 250 | 81.78 335 |
|
| PS-CasMVS | | | 69.86 286 | 69.13 281 | 72.07 336 | 80.35 308 | 50.57 346 | 87.02 284 | 89.75 226 | 67.27 270 | 59.19 318 | 82.28 270 | 46.58 269 | 82.24 368 | 50.69 310 | 59.02 338 | 83.39 314 |
|
| Syy-MVS | | | 69.65 287 | 69.52 279 | 70.03 342 | 87.87 197 | 43.21 375 | 88.07 267 | 89.01 259 | 72.91 168 | 63.11 294 | 88.10 201 | 45.28 282 | 85.54 345 | 22.07 388 | 69.23 260 | 81.32 337 |
|
| MSDG | | | 69.54 288 | 65.73 298 | 80.96 230 | 85.11 253 | 63.71 194 | 84.19 299 | 83.28 339 | 56.95 341 | 54.50 338 | 84.03 252 | 31.50 348 | 96.03 135 | 42.87 347 | 69.13 262 | 83.14 318 |
|
| PEN-MVS | | | 69.46 289 | 68.56 283 | 72.17 334 | 79.27 321 | 49.71 350 | 86.90 286 | 89.24 245 | 67.24 273 | 59.08 319 | 82.51 269 | 47.23 265 | 83.54 358 | 48.42 321 | 57.12 342 | 83.25 315 |
|
| LS3D | | | 69.17 290 | 66.40 294 | 77.50 287 | 91.92 100 | 56.12 319 | 85.12 294 | 80.37 350 | 46.96 369 | 56.50 333 | 87.51 212 | 37.25 322 | 93.71 232 | 32.52 379 | 79.40 181 | 82.68 326 |
|
| PatchT | | | 69.11 291 | 65.37 303 | 80.32 239 | 82.07 293 | 63.68 197 | 67.96 374 | 87.62 297 | 50.86 360 | 69.37 225 | 65.18 369 | 57.09 162 | 88.53 323 | 41.59 352 | 66.60 279 | 88.74 226 |
|
| KD-MVS_2432*1600 | | | 69.03 292 | 66.37 295 | 77.01 296 | 85.56 244 | 61.06 254 | 81.44 324 | 90.25 207 | 67.27 270 | 58.00 326 | 76.53 335 | 54.49 196 | 87.63 334 | 48.04 323 | 35.77 383 | 82.34 329 |
|
| miper_refine_blended | | | 69.03 292 | 66.37 295 | 77.01 296 | 85.56 244 | 61.06 254 | 81.44 324 | 90.25 207 | 67.27 270 | 58.00 326 | 76.53 335 | 54.49 196 | 87.63 334 | 48.04 323 | 35.77 383 | 82.34 329 |
|
| mvsany_test1 | | | 68.77 294 | 68.56 283 | 69.39 344 | 73.57 359 | 45.88 369 | 80.93 329 | 60.88 387 | 59.65 329 | 71.56 202 | 90.26 170 | 43.22 291 | 75.05 377 | 74.26 158 | 62.70 310 | 87.25 252 |
|
| ACMH | | 63.93 17 | 68.62 295 | 64.81 305 | 80.03 249 | 85.22 249 | 63.25 208 | 87.72 274 | 84.66 325 | 60.83 321 | 51.57 350 | 79.43 315 | 27.29 361 | 94.96 176 | 41.76 350 | 64.84 293 | 81.88 333 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| EG-PatchMatch MVS | | | 68.55 296 | 65.41 302 | 77.96 283 | 78.69 332 | 62.93 217 | 89.86 236 | 89.17 249 | 60.55 322 | 50.27 355 | 77.73 325 | 22.60 370 | 94.06 217 | 47.18 329 | 72.65 238 | 76.88 367 |
|
| ADS-MVSNet | | | 68.54 297 | 64.38 312 | 81.03 229 | 88.06 191 | 66.90 113 | 68.01 372 | 84.02 330 | 57.57 336 | 64.48 281 | 69.87 361 | 38.68 305 | 89.21 319 | 40.87 354 | 67.89 271 | 86.97 254 |
|
| DTE-MVSNet | | | 68.46 298 | 67.33 291 | 71.87 338 | 77.94 341 | 49.00 355 | 86.16 291 | 88.58 278 | 66.36 277 | 58.19 323 | 82.21 272 | 46.36 270 | 83.87 356 | 44.97 340 | 55.17 349 | 82.73 322 |
|
| our_test_3 | | | 68.29 299 | 64.69 307 | 79.11 272 | 78.92 327 | 64.85 163 | 88.40 264 | 85.06 321 | 60.32 325 | 52.68 345 | 76.12 339 | 40.81 299 | 89.80 316 | 44.25 342 | 55.65 347 | 82.67 327 |
|
| Patchmatch-RL test | | | 68.17 300 | 64.49 310 | 79.19 268 | 71.22 365 | 53.93 331 | 70.07 367 | 71.54 373 | 69.22 250 | 56.79 332 | 62.89 373 | 56.58 174 | 88.61 320 | 69.53 198 | 52.61 356 | 95.03 76 |
|
| XVG-ACMP-BASELINE | | | 68.04 301 | 65.53 301 | 75.56 306 | 74.06 358 | 52.37 336 | 78.43 345 | 85.88 315 | 62.03 312 | 58.91 321 | 81.21 292 | 20.38 375 | 91.15 300 | 60.69 274 | 68.18 268 | 83.16 317 |
|
| FMVSNet5 | | | 68.04 301 | 65.66 300 | 75.18 310 | 84.43 264 | 57.89 300 | 83.54 303 | 86.26 310 | 61.83 316 | 53.64 343 | 73.30 348 | 37.15 325 | 85.08 348 | 48.99 318 | 61.77 320 | 82.56 328 |
|
| ppachtmachnet_test | | | 67.72 303 | 63.70 314 | 79.77 259 | 78.92 327 | 66.04 133 | 88.68 259 | 82.90 341 | 60.11 327 | 55.45 335 | 75.96 340 | 39.19 304 | 90.55 302 | 39.53 358 | 52.55 357 | 82.71 324 |
|
| ACMH+ | | 65.35 16 | 67.65 304 | 64.55 308 | 76.96 298 | 84.59 260 | 57.10 312 | 88.08 266 | 80.79 347 | 58.59 335 | 53.00 344 | 81.09 294 | 26.63 363 | 92.95 247 | 46.51 331 | 61.69 324 | 80.82 342 |
|
| pmmvs6 | | | 67.57 305 | 64.76 306 | 76.00 305 | 72.82 363 | 53.37 333 | 88.71 258 | 86.78 307 | 53.19 353 | 57.58 330 | 78.03 323 | 35.33 334 | 92.41 272 | 55.56 295 | 54.88 351 | 82.21 331 |
|
| Anonymous20231206 | | | 67.53 306 | 65.78 297 | 72.79 328 | 74.95 354 | 47.59 360 | 88.23 265 | 87.32 299 | 61.75 317 | 58.07 325 | 77.29 328 | 37.79 319 | 87.29 338 | 42.91 345 | 63.71 305 | 83.48 311 |
|
| Patchmtry | | | 67.53 306 | 63.93 313 | 78.34 277 | 82.12 292 | 64.38 174 | 68.72 369 | 84.00 331 | 48.23 368 | 59.24 316 | 72.41 351 | 57.82 156 | 89.27 318 | 46.10 334 | 56.68 346 | 81.36 336 |
|
| USDC | | | 67.43 308 | 64.51 309 | 76.19 303 | 77.94 341 | 55.29 324 | 78.38 346 | 85.00 322 | 73.17 161 | 48.36 362 | 80.37 302 | 21.23 372 | 92.48 271 | 52.15 307 | 64.02 303 | 80.81 343 |
|
| ADS-MVSNet2 | | | 66.90 309 | 63.44 316 | 77.26 293 | 88.06 191 | 60.70 265 | 68.01 372 | 75.56 360 | 57.57 336 | 64.48 281 | 69.87 361 | 38.68 305 | 84.10 352 | 40.87 354 | 67.89 271 | 86.97 254 |
|
| CMPMVS |  | 48.56 21 | 66.77 310 | 64.41 311 | 73.84 320 | 70.65 369 | 50.31 347 | 77.79 350 | 85.73 317 | 45.54 373 | 44.76 372 | 82.14 273 | 35.40 333 | 90.14 312 | 63.18 259 | 74.54 221 | 81.07 340 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| OpenMVS_ROB |  | 61.12 18 | 66.39 311 | 62.92 319 | 76.80 300 | 76.51 348 | 57.77 302 | 89.22 249 | 83.41 337 | 55.48 348 | 53.86 342 | 77.84 324 | 26.28 364 | 93.95 226 | 34.90 370 | 68.76 264 | 78.68 361 |
|
| LTVRE_ROB | | 59.60 19 | 66.27 312 | 63.54 315 | 74.45 315 | 84.00 271 | 51.55 340 | 67.08 375 | 83.53 335 | 58.78 333 | 54.94 337 | 80.31 303 | 34.54 336 | 93.23 241 | 40.64 356 | 68.03 269 | 78.58 362 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| JIA-IIPM | | | 66.06 313 | 62.45 322 | 76.88 299 | 81.42 298 | 54.45 330 | 57.49 387 | 88.67 274 | 49.36 364 | 63.86 287 | 46.86 385 | 56.06 180 | 90.25 306 | 49.53 316 | 68.83 263 | 85.95 278 |
|
| Patchmatch-test | | | 65.86 314 | 60.94 328 | 80.62 236 | 83.75 273 | 58.83 292 | 58.91 386 | 75.26 362 | 44.50 376 | 50.95 354 | 77.09 331 | 58.81 148 | 87.90 328 | 35.13 369 | 64.03 302 | 95.12 72 |
|
| UnsupCasMVSNet_eth | | | 65.79 315 | 63.10 317 | 73.88 319 | 70.71 368 | 50.29 348 | 81.09 327 | 89.88 222 | 72.58 175 | 49.25 360 | 74.77 346 | 32.57 344 | 87.43 337 | 55.96 294 | 41.04 376 | 83.90 305 |
|
| test_fmvs2 | | | 65.78 316 | 64.84 304 | 68.60 348 | 66.54 377 | 41.71 377 | 83.27 308 | 69.81 375 | 54.38 350 | 67.91 248 | 84.54 248 | 15.35 381 | 81.22 372 | 75.65 145 | 66.16 282 | 82.88 319 |
|
| dmvs_testset | | | 65.55 317 | 66.45 293 | 62.86 358 | 79.87 314 | 22.35 401 | 76.55 353 | 71.74 371 | 77.42 103 | 55.85 334 | 87.77 208 | 51.39 228 | 80.69 373 | 31.51 383 | 65.92 284 | 85.55 287 |
|
| pmmvs-eth3d | | | 65.53 318 | 62.32 323 | 75.19 309 | 69.39 373 | 59.59 280 | 82.80 315 | 83.43 336 | 62.52 308 | 51.30 352 | 72.49 349 | 32.86 341 | 87.16 339 | 55.32 296 | 50.73 360 | 78.83 360 |
|
| SixPastTwentyTwo | | | 64.92 319 | 61.78 326 | 74.34 317 | 78.74 331 | 49.76 349 | 83.42 307 | 79.51 353 | 62.86 304 | 50.27 355 | 77.35 326 | 30.92 353 | 90.49 304 | 45.89 335 | 47.06 366 | 82.78 320 |
|
| OurMVSNet-221017-0 | | | 64.68 320 | 62.17 324 | 72.21 333 | 76.08 352 | 47.35 361 | 80.67 330 | 81.02 346 | 56.19 345 | 51.60 349 | 79.66 313 | 27.05 362 | 88.56 322 | 53.60 304 | 53.63 354 | 80.71 344 |
|
| test_0402 | | | 64.54 321 | 61.09 327 | 74.92 312 | 84.10 270 | 60.75 262 | 87.95 270 | 79.71 352 | 52.03 355 | 52.41 346 | 77.20 329 | 32.21 346 | 91.64 290 | 23.14 386 | 61.03 327 | 72.36 375 |
|
| testgi | | | 64.48 322 | 62.87 320 | 69.31 345 | 71.24 364 | 40.62 380 | 85.49 292 | 79.92 351 | 65.36 284 | 54.18 340 | 83.49 259 | 23.74 368 | 84.55 350 | 41.60 351 | 60.79 330 | 82.77 321 |
|
| RPSCF | | | 64.24 323 | 61.98 325 | 71.01 340 | 76.10 351 | 45.00 370 | 75.83 357 | 75.94 357 | 46.94 370 | 58.96 320 | 84.59 246 | 31.40 349 | 82.00 369 | 47.76 327 | 60.33 335 | 86.04 275 |
|
| EU-MVSNet | | | 64.01 324 | 63.01 318 | 67.02 354 | 74.40 357 | 38.86 385 | 83.27 308 | 86.19 312 | 45.11 374 | 54.27 339 | 81.15 293 | 36.91 328 | 80.01 375 | 48.79 320 | 57.02 343 | 82.19 332 |
|
| test20.03 | | | 63.83 325 | 62.65 321 | 67.38 353 | 70.58 370 | 39.94 381 | 86.57 289 | 84.17 328 | 63.29 299 | 51.86 348 | 77.30 327 | 37.09 326 | 82.47 365 | 38.87 362 | 54.13 353 | 79.73 352 |
|
| MDA-MVSNet_test_wron | | | 63.78 326 | 60.16 329 | 74.64 313 | 78.15 339 | 60.41 269 | 83.49 304 | 84.03 329 | 56.17 347 | 39.17 381 | 71.59 357 | 37.22 323 | 83.24 362 | 42.87 347 | 48.73 363 | 80.26 349 |
|
| YYNet1 | | | 63.76 327 | 60.14 330 | 74.62 314 | 78.06 340 | 60.19 274 | 83.46 306 | 83.99 333 | 56.18 346 | 39.25 380 | 71.56 358 | 37.18 324 | 83.34 360 | 42.90 346 | 48.70 364 | 80.32 348 |
|
| K. test v3 | | | 63.09 328 | 59.61 332 | 73.53 322 | 76.26 350 | 49.38 354 | 83.27 308 | 77.15 355 | 64.35 290 | 47.77 364 | 72.32 353 | 28.73 357 | 87.79 331 | 49.93 315 | 36.69 382 | 83.41 313 |
|
| COLMAP_ROB |  | 57.96 20 | 62.98 329 | 59.65 331 | 72.98 326 | 81.44 297 | 53.00 335 | 83.75 302 | 75.53 361 | 48.34 367 | 48.81 361 | 81.40 286 | 24.14 366 | 90.30 305 | 32.95 375 | 60.52 332 | 75.65 370 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| Anonymous20240521 | | | 62.09 330 | 59.08 333 | 71.10 339 | 67.19 376 | 48.72 356 | 83.91 301 | 85.23 320 | 50.38 361 | 47.84 363 | 71.22 360 | 20.74 373 | 85.51 347 | 46.47 332 | 58.75 340 | 79.06 357 |
|
| AllTest | | | 61.66 331 | 58.06 335 | 72.46 330 | 79.57 316 | 51.42 342 | 80.17 336 | 68.61 377 | 51.25 358 | 45.88 366 | 81.23 288 | 19.86 377 | 86.58 341 | 38.98 360 | 57.01 344 | 79.39 354 |
|
| UnsupCasMVSNet_bld | | | 61.60 332 | 57.71 336 | 73.29 324 | 68.73 374 | 51.64 339 | 78.61 344 | 89.05 258 | 57.20 340 | 46.11 365 | 61.96 376 | 28.70 358 | 88.60 321 | 50.08 314 | 38.90 380 | 79.63 353 |
|
| MDA-MVSNet-bldmvs | | | 61.54 333 | 57.70 337 | 73.05 325 | 79.53 318 | 57.00 315 | 83.08 312 | 81.23 345 | 57.57 336 | 34.91 384 | 72.45 350 | 32.79 342 | 86.26 343 | 35.81 367 | 41.95 374 | 75.89 369 |
|
| KD-MVS_self_test | | | 60.87 334 | 58.60 334 | 67.68 351 | 66.13 378 | 39.93 382 | 75.63 358 | 84.70 324 | 57.32 339 | 49.57 358 | 68.45 364 | 29.55 354 | 82.87 363 | 48.09 322 | 47.94 365 | 80.25 350 |
|
| TinyColmap | | | 60.32 335 | 56.42 342 | 72.00 337 | 78.78 330 | 53.18 334 | 78.36 347 | 75.64 359 | 52.30 354 | 41.59 379 | 75.82 342 | 14.76 384 | 88.35 325 | 35.84 366 | 54.71 352 | 74.46 371 |
|
| MVS-HIRNet | | | 60.25 336 | 55.55 343 | 74.35 316 | 84.37 265 | 56.57 317 | 71.64 363 | 74.11 364 | 34.44 384 | 45.54 370 | 42.24 391 | 31.11 352 | 89.81 314 | 40.36 357 | 76.10 213 | 76.67 368 |
|
| MIMVSNet1 | | | 60.16 337 | 57.33 338 | 68.67 347 | 69.71 371 | 44.13 372 | 78.92 343 | 84.21 327 | 55.05 349 | 44.63 373 | 71.85 355 | 23.91 367 | 81.54 371 | 32.63 378 | 55.03 350 | 80.35 347 |
|
| PM-MVS | | | 59.40 338 | 56.59 340 | 67.84 349 | 63.63 380 | 41.86 376 | 76.76 352 | 63.22 384 | 59.01 332 | 51.07 353 | 72.27 354 | 11.72 387 | 83.25 361 | 61.34 270 | 50.28 362 | 78.39 363 |
|
| new-patchmatchnet | | | 59.30 339 | 56.48 341 | 67.79 350 | 65.86 379 | 44.19 371 | 82.47 316 | 81.77 343 | 59.94 328 | 43.65 376 | 66.20 368 | 27.67 360 | 81.68 370 | 39.34 359 | 41.40 375 | 77.50 366 |
|
| test_vis1_rt | | | 59.09 340 | 57.31 339 | 64.43 356 | 68.44 375 | 46.02 368 | 83.05 313 | 48.63 396 | 51.96 356 | 49.57 358 | 63.86 372 | 16.30 379 | 80.20 374 | 71.21 182 | 62.79 309 | 67.07 381 |
|
| test_fmvs3 | | | 56.82 341 | 54.86 344 | 62.69 359 | 53.59 390 | 35.47 387 | 75.87 356 | 65.64 382 | 43.91 377 | 55.10 336 | 71.43 359 | 6.91 395 | 74.40 380 | 68.64 209 | 52.63 355 | 78.20 364 |
|
| DSMNet-mixed | | | 56.78 342 | 54.44 345 | 63.79 357 | 63.21 381 | 29.44 396 | 64.43 378 | 64.10 383 | 42.12 381 | 51.32 351 | 71.60 356 | 31.76 347 | 75.04 378 | 36.23 365 | 65.20 290 | 86.87 257 |
|
| pmmvs3 | | | 55.51 343 | 51.50 348 | 67.53 352 | 57.90 388 | 50.93 345 | 80.37 332 | 73.66 365 | 40.63 382 | 44.15 375 | 64.75 371 | 16.30 379 | 78.97 376 | 44.77 341 | 40.98 378 | 72.69 373 |
|
| TDRefinement | | | 55.28 344 | 51.58 347 | 66.39 355 | 59.53 387 | 46.15 367 | 76.23 355 | 72.80 367 | 44.60 375 | 42.49 377 | 76.28 338 | 15.29 382 | 82.39 366 | 33.20 374 | 43.75 371 | 70.62 377 |
|
| LF4IMVS | | | 54.01 345 | 52.12 346 | 59.69 360 | 62.41 383 | 39.91 383 | 68.59 370 | 68.28 379 | 42.96 380 | 44.55 374 | 75.18 343 | 14.09 386 | 68.39 386 | 41.36 353 | 51.68 358 | 70.78 376 |
|
| N_pmnet | | | 50.55 346 | 49.11 349 | 54.88 366 | 77.17 346 | 4.02 409 | 84.36 298 | 2.00 407 | 48.59 365 | 45.86 368 | 68.82 363 | 32.22 345 | 82.80 364 | 31.58 381 | 51.38 359 | 77.81 365 |
|
| new_pmnet | | | 49.31 347 | 46.44 350 | 57.93 361 | 62.84 382 | 40.74 379 | 68.47 371 | 62.96 385 | 36.48 383 | 35.09 383 | 57.81 380 | 14.97 383 | 72.18 382 | 32.86 376 | 46.44 367 | 60.88 383 |
|
| mvsany_test3 | | | 48.86 348 | 46.35 351 | 56.41 362 | 46.00 396 | 31.67 392 | 62.26 380 | 47.25 397 | 43.71 378 | 45.54 370 | 68.15 365 | 10.84 388 | 64.44 394 | 57.95 286 | 35.44 385 | 73.13 372 |
|
| test_f | | | 46.58 349 | 43.45 353 | 55.96 363 | 45.18 397 | 32.05 391 | 61.18 381 | 49.49 395 | 33.39 385 | 42.05 378 | 62.48 375 | 7.00 394 | 65.56 390 | 47.08 330 | 43.21 373 | 70.27 378 |
|
| WB-MVS | | | 46.23 350 | 44.94 352 | 50.11 370 | 62.13 384 | 21.23 403 | 76.48 354 | 55.49 389 | 45.89 372 | 35.78 382 | 61.44 378 | 35.54 332 | 72.83 381 | 9.96 397 | 21.75 392 | 56.27 385 |
|
| FPMVS | | | 45.64 351 | 43.10 355 | 53.23 368 | 51.42 393 | 36.46 386 | 64.97 377 | 71.91 370 | 29.13 388 | 27.53 388 | 61.55 377 | 9.83 390 | 65.01 392 | 16.00 394 | 55.58 348 | 58.22 384 |
|
| SSC-MVS | | | 44.51 352 | 43.35 354 | 47.99 374 | 61.01 386 | 18.90 405 | 74.12 360 | 54.36 390 | 43.42 379 | 34.10 385 | 60.02 379 | 34.42 337 | 70.39 384 | 9.14 399 | 19.57 393 | 54.68 386 |
|
| EGC-MVSNET | | | 42.35 353 | 38.09 356 | 55.11 365 | 74.57 355 | 46.62 366 | 71.63 364 | 55.77 388 | 0.04 402 | 0.24 403 | 62.70 374 | 14.24 385 | 74.91 379 | 17.59 391 | 46.06 368 | 43.80 388 |
|
| LCM-MVSNet | | | 40.54 354 | 35.79 359 | 54.76 367 | 36.92 403 | 30.81 393 | 51.41 390 | 69.02 376 | 22.07 390 | 24.63 390 | 45.37 387 | 4.56 399 | 65.81 389 | 33.67 372 | 34.50 386 | 67.67 379 |
|
| APD_test1 | | | 40.50 355 | 37.31 358 | 50.09 371 | 51.88 391 | 35.27 388 | 59.45 385 | 52.59 392 | 21.64 391 | 26.12 389 | 57.80 381 | 4.56 399 | 66.56 388 | 22.64 387 | 39.09 379 | 48.43 387 |
|
| test_vis3_rt | | | 40.46 356 | 37.79 357 | 48.47 373 | 44.49 398 | 33.35 390 | 66.56 376 | 32.84 404 | 32.39 386 | 29.65 386 | 39.13 394 | 3.91 402 | 68.65 385 | 50.17 312 | 40.99 377 | 43.40 389 |
|
| ANet_high | | | 40.27 357 | 35.20 360 | 55.47 364 | 34.74 404 | 34.47 389 | 63.84 379 | 71.56 372 | 48.42 366 | 18.80 393 | 41.08 392 | 9.52 391 | 64.45 393 | 20.18 389 | 8.66 400 | 67.49 380 |
|
| test_method | | | 38.59 358 | 35.16 361 | 48.89 372 | 54.33 389 | 21.35 402 | 45.32 393 | 53.71 391 | 7.41 399 | 28.74 387 | 51.62 383 | 8.70 392 | 52.87 397 | 33.73 371 | 32.89 387 | 72.47 374 |
|
| PMMVS2 | | | 37.93 359 | 33.61 362 | 50.92 369 | 46.31 395 | 24.76 399 | 60.55 384 | 50.05 393 | 28.94 389 | 20.93 391 | 47.59 384 | 4.41 401 | 65.13 391 | 25.14 385 | 18.55 395 | 62.87 382 |
|
| Gipuma |  | | 34.91 360 | 31.44 363 | 45.30 375 | 70.99 367 | 39.64 384 | 19.85 397 | 72.56 368 | 20.10 393 | 16.16 397 | 21.47 398 | 5.08 398 | 71.16 383 | 13.07 395 | 43.70 372 | 25.08 395 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| testf1 | | | 32.77 361 | 29.47 364 | 42.67 377 | 41.89 400 | 30.81 393 | 52.07 388 | 43.45 398 | 15.45 394 | 18.52 394 | 44.82 388 | 2.12 403 | 58.38 395 | 16.05 392 | 30.87 389 | 38.83 390 |
|
| APD_test2 | | | 32.77 361 | 29.47 364 | 42.67 377 | 41.89 400 | 30.81 393 | 52.07 388 | 43.45 398 | 15.45 394 | 18.52 394 | 44.82 388 | 2.12 403 | 58.38 395 | 16.05 392 | 30.87 389 | 38.83 390 |
|
| PMVS |  | 26.43 22 | 31.84 363 | 28.16 366 | 42.89 376 | 25.87 406 | 27.58 397 | 50.92 391 | 49.78 394 | 21.37 392 | 14.17 398 | 40.81 393 | 2.01 405 | 66.62 387 | 9.61 398 | 38.88 381 | 34.49 394 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| E-PMN | | | 24.61 364 | 24.00 368 | 26.45 381 | 43.74 399 | 18.44 406 | 60.86 382 | 39.66 400 | 15.11 396 | 9.53 400 | 22.10 397 | 6.52 396 | 46.94 399 | 8.31 400 | 10.14 397 | 13.98 397 |
|
| MVE |  | 24.84 23 | 24.35 365 | 19.77 371 | 38.09 379 | 34.56 405 | 26.92 398 | 26.57 395 | 38.87 402 | 11.73 398 | 11.37 399 | 27.44 395 | 1.37 406 | 50.42 398 | 11.41 396 | 14.60 396 | 36.93 392 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| EMVS | | | 23.76 366 | 23.20 370 | 25.46 382 | 41.52 402 | 16.90 407 | 60.56 383 | 38.79 403 | 14.62 397 | 8.99 401 | 20.24 400 | 7.35 393 | 45.82 400 | 7.25 401 | 9.46 398 | 13.64 398 |
|
| tmp_tt | | | 22.26 367 | 23.75 369 | 17.80 383 | 5.23 407 | 12.06 408 | 35.26 394 | 39.48 401 | 2.82 401 | 18.94 392 | 44.20 390 | 22.23 371 | 24.64 402 | 36.30 364 | 9.31 399 | 16.69 396 |
|
| cdsmvs_eth3d_5k | | | 19.86 368 | 26.47 367 | 0.00 387 | 0.00 410 | 0.00 412 | 0.00 398 | 93.45 80 | 0.00 405 | 0.00 406 | 95.27 56 | 49.56 243 | 0.00 406 | 0.00 405 | 0.00 403 | 0.00 402 |
|
| wuyk23d | | | 11.30 369 | 10.95 372 | 12.33 384 | 48.05 394 | 19.89 404 | 25.89 396 | 1.92 408 | 3.58 400 | 3.12 402 | 1.37 402 | 0.64 407 | 15.77 403 | 6.23 402 | 7.77 401 | 1.35 399 |
|
| ab-mvs-re | | | 7.91 370 | 10.55 373 | 0.00 387 | 0.00 410 | 0.00 412 | 0.00 398 | 0.00 411 | 0.00 405 | 0.00 406 | 94.95 64 | 0.00 410 | 0.00 406 | 0.00 405 | 0.00 403 | 0.00 402 |
|
| testmvs | | | 7.23 371 | 9.62 374 | 0.06 386 | 0.04 408 | 0.02 411 | 84.98 296 | 0.02 409 | 0.03 403 | 0.18 404 | 1.21 403 | 0.01 409 | 0.02 404 | 0.14 403 | 0.01 402 | 0.13 401 |
|
| test123 | | | 6.92 372 | 9.21 375 | 0.08 385 | 0.03 409 | 0.05 410 | 81.65 322 | 0.01 410 | 0.02 404 | 0.14 405 | 0.85 404 | 0.03 408 | 0.02 404 | 0.12 404 | 0.00 403 | 0.16 400 |
|
| pcd_1.5k_mvsjas | | | 4.46 373 | 5.95 376 | 0.00 387 | 0.00 410 | 0.00 412 | 0.00 398 | 0.00 411 | 0.00 405 | 0.00 406 | 0.00 405 | 53.55 208 | 0.00 406 | 0.00 405 | 0.00 403 | 0.00 402 |
|
| test_blank | | | 0.00 374 | 0.00 377 | 0.00 387 | 0.00 410 | 0.00 412 | 0.00 398 | 0.00 411 | 0.00 405 | 0.00 406 | 0.00 405 | 0.00 410 | 0.00 406 | 0.00 405 | 0.00 403 | 0.00 402 |
|
| uanet_test | | | 0.00 374 | 0.00 377 | 0.00 387 | 0.00 410 | 0.00 412 | 0.00 398 | 0.00 411 | 0.00 405 | 0.00 406 | 0.00 405 | 0.00 410 | 0.00 406 | 0.00 405 | 0.00 403 | 0.00 402 |
|
| DCPMVS | | | 0.00 374 | 0.00 377 | 0.00 387 | 0.00 410 | 0.00 412 | 0.00 398 | 0.00 411 | 0.00 405 | 0.00 406 | 0.00 405 | 0.00 410 | 0.00 406 | 0.00 405 | 0.00 403 | 0.00 402 |
|
| sosnet-low-res | | | 0.00 374 | 0.00 377 | 0.00 387 | 0.00 410 | 0.00 412 | 0.00 398 | 0.00 411 | 0.00 405 | 0.00 406 | 0.00 405 | 0.00 410 | 0.00 406 | 0.00 405 | 0.00 403 | 0.00 402 |
|
| sosnet | | | 0.00 374 | 0.00 377 | 0.00 387 | 0.00 410 | 0.00 412 | 0.00 398 | 0.00 411 | 0.00 405 | 0.00 406 | 0.00 405 | 0.00 410 | 0.00 406 | 0.00 405 | 0.00 403 | 0.00 402 |
|
| uncertanet | | | 0.00 374 | 0.00 377 | 0.00 387 | 0.00 410 | 0.00 412 | 0.00 398 | 0.00 411 | 0.00 405 | 0.00 406 | 0.00 405 | 0.00 410 | 0.00 406 | 0.00 405 | 0.00 403 | 0.00 402 |
|
| Regformer | | | 0.00 374 | 0.00 377 | 0.00 387 | 0.00 410 | 0.00 412 | 0.00 398 | 0.00 411 | 0.00 405 | 0.00 406 | 0.00 405 | 0.00 410 | 0.00 406 | 0.00 405 | 0.00 403 | 0.00 402 |
|
| uanet | | | 0.00 374 | 0.00 377 | 0.00 387 | 0.00 410 | 0.00 412 | 0.00 398 | 0.00 411 | 0.00 405 | 0.00 406 | 0.00 405 | 0.00 410 | 0.00 406 | 0.00 405 | 0.00 403 | 0.00 402 |
|
| WAC-MVS | | | | | | | 49.45 352 | | | | | | | | 31.56 382 | | |
|
| FOURS1 | | | | | | 93.95 45 | 61.77 241 | 93.96 70 | 91.92 137 | 62.14 311 | 86.57 44 | | | | | | |
|
| MSC_two_6792asdad | | | | | 89.60 8 | 97.31 4 | 73.22 10 | | 95.05 23 | | | | | 99.07 13 | 92.01 24 | 94.77 25 | 96.51 21 |
|
| PC_three_1452 | | | | | | | | | | 80.91 45 | 94.07 2 | 96.83 18 | 83.57 4 | 99.12 5 | 95.70 7 | 97.42 4 | 97.55 4 |
|
| No_MVS | | | | | 89.60 8 | 97.31 4 | 73.22 10 | | 95.05 23 | | | | | 99.07 13 | 92.01 24 | 94.77 25 | 96.51 21 |
|
| test_one_0601 | | | | | | 96.32 18 | 69.74 43 | | 94.18 53 | 71.42 218 | 90.67 18 | 96.85 16 | 74.45 18 | | | | |
|
| eth-test2 | | | | | | 0.00 410 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 410 | | | | | | | | | | | |
|
| ZD-MVS | | | | | | 96.63 9 | 65.50 148 | | 93.50 78 | 70.74 232 | 85.26 59 | 95.19 61 | 64.92 75 | 97.29 76 | 87.51 55 | 93.01 54 | |
|
| RE-MVS-def | | | | 80.48 133 | | 92.02 94 | 58.56 295 | 90.90 202 | 90.45 195 | 62.76 305 | 78.89 117 | 94.46 78 | 49.30 246 | | 78.77 127 | 86.77 123 | 92.28 171 |
|
| IU-MVS | | | | | | 96.46 11 | 69.91 37 | | 95.18 18 | 80.75 46 | 95.28 1 | | | | 92.34 21 | 95.36 13 | 96.47 25 |
|
| OPU-MVS | | | | | 89.97 3 | 97.52 3 | 73.15 12 | 96.89 5 | | | | 97.00 9 | 83.82 2 | 99.15 2 | 95.72 5 | 97.63 3 | 97.62 2 |
|
| test_241102_TWO | | | | | | | | | 94.41 44 | 71.65 207 | 92.07 8 | 97.21 4 | 74.58 17 | 99.11 6 | 92.34 21 | 95.36 13 | 96.59 16 |
|
| test_241102_ONE | | | | | | 96.45 12 | 69.38 48 | | 94.44 42 | 71.65 207 | 92.11 6 | 97.05 7 | 76.79 9 | 99.11 6 | | | |
|
| 9.14 | | | | 87.63 27 | | 93.86 47 | | 94.41 52 | 94.18 53 | 72.76 172 | 86.21 46 | 96.51 24 | 66.64 57 | 97.88 44 | 90.08 38 | 94.04 37 | |
|
| save fliter | | | | | | 93.84 48 | 67.89 87 | 95.05 39 | 92.66 110 | 78.19 86 | | | | | | | |
|
| test_0728_THIRD | | | | | | | | | | 72.48 177 | 90.55 19 | 96.93 11 | 76.24 11 | 99.08 11 | 91.53 29 | 94.99 17 | 96.43 26 |
|
| test_0728_SECOND | | | | | 88.70 16 | 96.45 12 | 70.43 29 | 96.64 9 | 94.37 48 | | | | | 99.15 2 | 91.91 27 | 94.90 21 | 96.51 21 |
|
| test0726 | | | | | | 96.40 15 | 69.99 33 | 96.76 7 | 94.33 50 | 71.92 193 | 91.89 10 | 97.11 6 | 73.77 21 | | | | |
|
| GSMVS | | | | | | | | | | | | | | | | | 94.68 89 |
|
| test_part2 | | | | | | 96.29 19 | 68.16 81 | | | | 90.78 16 | | | | | | |
|
| sam_mvs1 | | | | | | | | | | | | | 57.85 155 | | | | 94.68 89 |
|
| sam_mvs | | | | | | | | | | | | | 54.91 193 | | | | |
|
| ambc | | | | | 69.61 343 | 61.38 385 | 41.35 378 | 49.07 392 | 85.86 316 | | 50.18 357 | 66.40 367 | 10.16 389 | 88.14 327 | 45.73 336 | 44.20 370 | 79.32 356 |
|
| MTGPA |  | | | | | | | | 92.23 123 | | | | | | | | |
|
| test_post1 | | | | | | | | 78.95 342 | | | | 20.70 399 | 53.05 213 | 91.50 298 | 60.43 275 | | |
|
| test_post | | | | | | | | | | | | 23.01 396 | 56.49 175 | 92.67 262 | | | |
|
| patchmatchnet-post | | | | | | | | | | | | 67.62 366 | 57.62 158 | 90.25 306 | | | |
|
| GG-mvs-BLEND | | | | | 86.53 65 | 91.91 101 | 69.67 46 | 75.02 359 | 94.75 30 | | 78.67 124 | 90.85 158 | 77.91 7 | 94.56 195 | 72.25 172 | 93.74 43 | 95.36 58 |
|
| MTMP | | | | | | | | 93.77 84 | 32.52 405 | | | | | | | | |
|
| gm-plane-assit | | | | | | 88.42 179 | 67.04 110 | | | 78.62 83 | | 91.83 141 | | 97.37 70 | 76.57 139 | | |
|
| test9_res | | | | | | | | | | | | | | | 89.41 39 | 94.96 18 | 95.29 63 |
|
| TEST9 | | | | | | 94.18 41 | 67.28 102 | 94.16 58 | 93.51 76 | 71.75 204 | 85.52 54 | 95.33 51 | 68.01 47 | 97.27 80 | | | |
|
| test_8 | | | | | | 94.19 40 | 67.19 104 | 94.15 61 | 93.42 82 | 71.87 198 | 85.38 57 | 95.35 50 | 68.19 45 | 96.95 102 | | | |
|
| agg_prior2 | | | | | | | | | | | | | | | 86.41 66 | 94.75 29 | 95.33 59 |
|
| agg_prior | | | | | | 94.16 43 | 66.97 112 | | 93.31 85 | | 84.49 65 | | | 96.75 111 | | | |
|
| TestCases | | | | | 72.46 330 | 79.57 316 | 51.42 342 | | 68.61 377 | 51.25 358 | 45.88 366 | 81.23 288 | 19.86 377 | 86.58 341 | 38.98 360 | 57.01 344 | 79.39 354 |
|
| test_prior4 | | | | | | | 67.18 106 | 93.92 73 | | | | | | | | | |
|
| test_prior2 | | | | | | | | 95.10 38 | | 75.40 125 | 85.25 60 | 95.61 45 | 67.94 48 | | 87.47 56 | 94.77 25 | |
|
| test_prior | | | | | 86.42 68 | 94.71 35 | 67.35 101 | | 93.10 95 | | | | | 96.84 108 | | | 95.05 74 |
|
| 旧先验2 | | | | | | | | 92.00 156 | | 59.37 331 | 87.54 38 | | | 93.47 238 | 75.39 147 | | |
|
| æ–°å‡ ä½•2 | | | | | | | | 91.41 177 | | | | | | | | | |
|
| æ–°å‡ ä½•1 | | | | | 84.73 124 | 92.32 86 | 64.28 179 | | 91.46 162 | 59.56 330 | 79.77 106 | 92.90 118 | 56.95 168 | 96.57 116 | 63.40 255 | 92.91 56 | 93.34 139 |
|
| 旧先验1 | | | | | | 91.94 98 | 60.74 263 | | 91.50 160 | | | 94.36 82 | 65.23 70 | | | 91.84 69 | 94.55 96 |
|
| æ— å…ˆéªŒ | | | | | | | | 92.71 121 | 92.61 114 | 62.03 312 | | | | 97.01 93 | 66.63 226 | | 93.97 121 |
|
| 原ACMM2 | | | | | | | | 92.01 153 | | | | | | | | | |
|
| 原ACMM1 | | | | | 84.42 138 | 93.21 63 | 64.27 180 | | 93.40 84 | 65.39 283 | 79.51 109 | 92.50 126 | 58.11 154 | 96.69 112 | 65.27 245 | 93.96 38 | 92.32 169 |
|
| test222 | | | | | | 89.77 145 | 61.60 246 | 89.55 241 | 89.42 239 | 56.83 343 | 77.28 137 | 92.43 130 | 52.76 216 | | | 91.14 83 | 93.09 147 |
|
| testdata2 | | | | | | | | | | | | | | 96.09 129 | 61.26 271 | | |
|
| segment_acmp | | | | | | | | | | | | | 65.94 63 | | | | |
|
| testdata | | | | | 81.34 218 | 89.02 165 | 57.72 303 | | 89.84 223 | 58.65 334 | 85.32 58 | 94.09 94 | 57.03 163 | 93.28 240 | 69.34 200 | 90.56 89 | 93.03 150 |
|
| testdata1 | | | | | | | | 89.21 250 | | 77.55 99 | | | | | | | |
|
| test12 | | | | | 87.09 45 | 94.60 36 | 68.86 61 | | 92.91 101 | | 82.67 81 | | 65.44 68 | 97.55 62 | | 93.69 46 | 94.84 83 |
|
| plane_prior7 | | | | | | 86.94 219 | 61.51 247 | | | | | | | | | | |
|
| plane_prior6 | | | | | | 87.23 211 | 62.32 231 | | | | | | 50.66 233 | | | | |
|
| plane_prior5 | | | | | | | | | 91.31 166 | | | | | 95.55 158 | 76.74 137 | 78.53 191 | 88.39 234 |
|
| plane_prior4 | | | | | | | | | | | | 89.14 185 | | | | | |
|
| plane_prior3 | | | | | | | 61.95 239 | | | 79.09 73 | 72.53 187 | | | | | | |
|
| plane_prior2 | | | | | | | | 93.13 105 | | 78.81 80 | | | | | | | |
|
| plane_prior1 | | | | | | 87.15 213 | | | | | | | | | | | |
|
| plane_prior | | | | | | | 62.42 227 | 93.85 77 | | 79.38 65 | | | | | | 78.80 188 | |
|
| n2 | | | | | | | | | 0.00 411 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 411 | | | | | | | | |
|
| door-mid | | | | | | | | | 66.01 381 | | | | | | | | |
|
| lessismore_v0 | | | | | 73.72 321 | 72.93 362 | 47.83 359 | | 61.72 386 | | 45.86 368 | 73.76 347 | 28.63 359 | 89.81 314 | 47.75 328 | 31.37 388 | 83.53 309 |
|
| LGP-MVS_train | | | | | 79.56 264 | 84.31 266 | 59.37 284 | | 89.73 229 | 69.49 246 | 64.86 275 | 88.42 190 | 38.65 307 | 94.30 204 | 72.56 169 | 72.76 236 | 85.01 296 |
|
| test11 | | | | | | | | | 93.01 97 | | | | | | | | |
|
| door | | | | | | | | | 66.57 380 | | | | | | | | |
|
| HQP5-MVS | | | | | | | 63.66 198 | | | | | | | | | | |
|
| HQP-NCC | | | | | | 87.54 204 | | 94.06 63 | | 79.80 57 | 74.18 166 | | | | | | |
|
| ACMP_Plane | | | | | | 87.54 204 | | 94.06 63 | | 79.80 57 | 74.18 166 | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 77.63 134 | | |
|
| HQP4-MVS | | | | | | | | | | | 74.18 166 | | | 95.61 153 | | | 88.63 227 |
|
| HQP3-MVS | | | | | | | | | 91.70 152 | | | | | | | 78.90 186 | |
|
| HQP2-MVS | | | | | | | | | | | | | 51.63 226 | | | | |
|
| NP-MVS | | | | | | 87.41 207 | 63.04 213 | | | | | 90.30 168 | | | | | |
|
| MDTV_nov1_ep13_2view | | | | | | | 59.90 277 | 80.13 337 | | 67.65 267 | 72.79 182 | | 54.33 201 | | 59.83 279 | | 92.58 162 |
|
| MDTV_nov1_ep13 | | | | 72.61 249 | | 89.06 164 | 68.48 69 | 80.33 333 | 90.11 213 | 71.84 200 | 71.81 198 | 75.92 341 | 53.01 214 | 93.92 227 | 48.04 323 | 73.38 230 | |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 71.63 244 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 69.72 254 | |
|
| Test By Simon | | | | | | | | | | | | | 54.21 202 | | | | |
|
| ITE_SJBPF | | | | | 70.43 341 | 74.44 356 | 47.06 365 | | 77.32 354 | 60.16 326 | 54.04 341 | 83.53 257 | 23.30 369 | 84.01 354 | 43.07 344 | 61.58 325 | 80.21 351 |
|
| DeepMVS_CX |  | | | | 34.71 380 | 51.45 392 | 24.73 400 | | 28.48 406 | 31.46 387 | 17.49 396 | 52.75 382 | 5.80 397 | 42.60 401 | 18.18 390 | 19.42 394 | 36.81 393 |
|