| MCST-MVS | | | 91.08 1 | 91.46 3 | 89.94 4 | 97.66 2 | 73.37 10 | 97.13 2 | 95.58 10 | 89.33 1 | 85.77 54 | 96.26 30 | 72.84 28 | 99.38 1 | 92.64 20 | 95.93 9 | 97.08 11 |
|
| MM | | | 90.87 2 | 91.52 2 | 88.92 15 | 92.12 97 | 71.10 27 | 97.02 3 | 96.04 6 | 88.70 2 | 91.57 14 | 96.19 32 | 70.12 43 | 98.91 18 | 96.83 1 | 95.06 17 | 96.76 15 |
|
| DPM-MVS | | | 90.70 3 | 90.52 9 | 91.24 1 | 89.68 156 | 76.68 2 | 97.29 1 | 95.35 15 | 82.87 21 | 91.58 13 | 97.22 3 | 79.93 5 | 99.10 9 | 83.12 100 | 97.64 2 | 97.94 1 |
|
| DVP-MVS++ | | | 90.53 4 | 91.09 5 | 88.87 16 | 97.31 4 | 69.91 42 | 93.96 70 | 94.37 52 | 72.48 186 | 92.07 9 | 96.85 16 | 83.82 2 | 99.15 2 | 91.53 30 | 97.42 4 | 97.55 4 |
|
| MSP-MVS | | | 90.38 5 | 91.87 1 | 85.88 89 | 92.83 78 | 64.03 193 | 93.06 112 | 94.33 54 | 82.19 28 | 93.65 3 | 96.15 34 | 85.89 1 | 97.19 82 | 91.02 34 | 97.75 1 | 96.43 31 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| MVS_0304 | | | 90.32 6 | 90.90 7 | 88.55 23 | 94.05 45 | 70.23 36 | 97.00 5 | 93.73 73 | 87.30 4 | 92.15 6 | 96.15 34 | 66.38 65 | 98.94 17 | 96.71 2 | 94.67 33 | 96.47 28 |
|
| CNVR-MVS | | | 90.32 6 | 90.89 8 | 88.61 22 | 96.76 8 | 70.65 30 | 96.47 14 | 94.83 30 | 84.83 11 | 89.07 31 | 96.80 19 | 70.86 39 | 99.06 15 | 92.64 20 | 95.71 11 | 96.12 40 |
|
| DELS-MVS | | | 90.05 8 | 90.09 11 | 89.94 4 | 93.14 70 | 73.88 9 | 97.01 4 | 94.40 50 | 88.32 3 | 85.71 55 | 94.91 70 | 74.11 20 | 98.91 18 | 87.26 62 | 95.94 8 | 97.03 12 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| SED-MVS | | | 89.94 9 | 90.36 10 | 88.70 18 | 96.45 12 | 69.38 55 | 96.89 6 | 94.44 46 | 71.65 216 | 92.11 7 | 97.21 4 | 76.79 9 | 99.11 6 | 92.34 22 | 95.36 14 | 97.62 2 |
|
| DeepPCF-MVS | | 81.17 1 | 89.72 10 | 91.38 4 | 84.72 133 | 93.00 75 | 58.16 307 | 96.72 9 | 94.41 48 | 86.50 8 | 90.25 22 | 97.83 1 | 75.46 14 | 98.67 25 | 92.78 19 | 95.49 13 | 97.32 6 |
|
| patch_mono-2 | | | 89.71 11 | 90.99 6 | 85.85 92 | 96.04 24 | 63.70 203 | 95.04 40 | 95.19 19 | 86.74 7 | 91.53 15 | 95.15 63 | 73.86 21 | 97.58 59 | 93.38 14 | 92.00 69 | 96.28 37 |
|
| CANet | | | 89.61 12 | 89.99 12 | 88.46 24 | 94.39 39 | 69.71 50 | 96.53 13 | 93.78 66 | 86.89 6 | 89.68 28 | 95.78 40 | 65.94 69 | 99.10 9 | 92.99 17 | 93.91 42 | 96.58 21 |
|
| DVP-MVS |  | | 89.41 13 | 89.73 14 | 88.45 25 | 96.40 15 | 69.99 38 | 96.64 10 | 94.52 42 | 71.92 202 | 90.55 20 | 96.93 11 | 73.77 22 | 99.08 11 | 91.91 28 | 94.90 22 | 96.29 35 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| HPM-MVS++ |  | | 89.37 14 | 89.95 13 | 87.64 34 | 95.10 30 | 68.23 86 | 95.24 33 | 94.49 44 | 82.43 25 | 88.90 32 | 96.35 27 | 71.89 36 | 98.63 26 | 88.76 48 | 96.40 6 | 96.06 41 |
|
| balanced_conf03 | | | 89.08 15 | 88.84 17 | 89.81 6 | 93.66 54 | 75.15 5 | 90.61 221 | 93.43 87 | 84.06 14 | 86.20 49 | 90.17 178 | 72.42 31 | 96.98 98 | 93.09 16 | 95.92 10 | 97.29 7 |
|
| NCCC | | | 89.07 16 | 89.46 15 | 87.91 28 | 96.60 10 | 69.05 63 | 96.38 15 | 94.64 39 | 84.42 12 | 86.74 45 | 96.20 31 | 66.56 64 | 98.76 24 | 89.03 47 | 94.56 34 | 95.92 46 |
|
| DPE-MVS |  | | 88.77 17 | 89.21 16 | 87.45 43 | 96.26 20 | 67.56 102 | 94.17 58 | 94.15 59 | 68.77 265 | 90.74 18 | 97.27 2 | 76.09 12 | 98.49 29 | 90.58 38 | 94.91 21 | 96.30 34 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| SMA-MVS |  | | 88.14 18 | 88.29 22 | 87.67 33 | 93.21 67 | 68.72 72 | 93.85 77 | 94.03 62 | 74.18 149 | 91.74 12 | 96.67 21 | 65.61 73 | 98.42 33 | 89.24 44 | 96.08 7 | 95.88 47 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| PS-MVSNAJ | | | 88.14 18 | 87.61 29 | 89.71 7 | 92.06 98 | 76.72 1 | 95.75 20 | 93.26 92 | 83.86 15 | 89.55 29 | 96.06 36 | 53.55 219 | 97.89 43 | 91.10 32 | 93.31 53 | 94.54 108 |
|
| TSAR-MVS + MP. | | | 88.11 20 | 88.64 18 | 86.54 72 | 91.73 111 | 68.04 90 | 90.36 226 | 93.55 80 | 82.89 20 | 91.29 16 | 92.89 121 | 72.27 33 | 96.03 144 | 87.99 52 | 94.77 26 | 95.54 57 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| TSAR-MVS + GP. | | | 87.96 21 | 88.37 21 | 86.70 65 | 93.51 61 | 65.32 158 | 95.15 36 | 93.84 65 | 78.17 94 | 85.93 53 | 94.80 73 | 75.80 13 | 98.21 34 | 89.38 41 | 88.78 104 | 96.59 19 |
|
| DeepC-MVS_fast | | 79.48 2 | 87.95 22 | 88.00 25 | 87.79 31 | 95.86 27 | 68.32 80 | 95.74 21 | 94.11 60 | 83.82 16 | 83.49 76 | 96.19 32 | 64.53 87 | 98.44 31 | 83.42 99 | 94.88 25 | 96.61 18 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| xiu_mvs_v2_base | | | 87.92 23 | 87.38 33 | 89.55 12 | 91.41 123 | 76.43 3 | 95.74 21 | 93.12 100 | 83.53 18 | 89.55 29 | 95.95 38 | 53.45 223 | 97.68 50 | 91.07 33 | 92.62 60 | 94.54 108 |
|
| EPNet | | | 87.84 24 | 88.38 20 | 86.23 82 | 93.30 64 | 66.05 140 | 95.26 32 | 94.84 29 | 87.09 5 | 88.06 34 | 94.53 79 | 66.79 61 | 97.34 73 | 83.89 95 | 91.68 74 | 95.29 70 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| lupinMVS | | | 87.74 25 | 87.77 27 | 87.63 38 | 89.24 171 | 71.18 24 | 96.57 12 | 92.90 109 | 82.70 23 | 87.13 40 | 95.27 56 | 64.99 78 | 95.80 149 | 89.34 42 | 91.80 72 | 95.93 45 |
|
| test_fmvsm_n_1920 | | | 87.69 26 | 88.50 19 | 85.27 113 | 87.05 227 | 63.55 210 | 93.69 87 | 91.08 190 | 84.18 13 | 90.17 24 | 97.04 8 | 67.58 56 | 97.99 39 | 95.72 5 | 90.03 95 | 94.26 116 |
|
| APDe-MVS |  | | 87.54 27 | 87.84 26 | 86.65 66 | 96.07 23 | 66.30 136 | 94.84 45 | 93.78 66 | 69.35 256 | 88.39 33 | 96.34 28 | 67.74 55 | 97.66 54 | 90.62 37 | 93.44 51 | 96.01 44 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| fmvsm_l_conf0.5_n | | | 87.49 28 | 88.19 23 | 85.39 107 | 86.95 228 | 64.37 183 | 94.30 55 | 88.45 291 | 80.51 50 | 92.70 4 | 96.86 15 | 69.98 44 | 97.15 86 | 95.83 4 | 88.08 111 | 94.65 102 |
|
| SD-MVS | | | 87.49 28 | 87.49 31 | 87.50 42 | 93.60 56 | 68.82 69 | 93.90 74 | 92.63 121 | 76.86 114 | 87.90 35 | 95.76 41 | 66.17 66 | 97.63 56 | 89.06 46 | 91.48 78 | 96.05 42 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| fmvsm_l_conf0.5_n_a | | | 87.44 30 | 88.15 24 | 85.30 111 | 87.10 225 | 64.19 190 | 94.41 52 | 88.14 300 | 80.24 58 | 92.54 5 | 96.97 10 | 69.52 46 | 97.17 83 | 95.89 3 | 88.51 107 | 94.56 105 |
|
| dcpmvs_2 | | | 87.37 31 | 87.55 30 | 86.85 58 | 95.04 32 | 68.20 87 | 90.36 226 | 90.66 202 | 79.37 72 | 81.20 94 | 93.67 105 | 74.73 15 | 96.55 120 | 90.88 35 | 92.00 69 | 95.82 48 |
|
| alignmvs | | | 87.28 32 | 86.97 37 | 88.24 27 | 91.30 125 | 71.14 26 | 95.61 25 | 93.56 79 | 79.30 73 | 87.07 42 | 95.25 58 | 68.43 48 | 96.93 106 | 87.87 53 | 84.33 148 | 96.65 17 |
|
| train_agg | | | 87.21 33 | 87.42 32 | 86.60 68 | 94.18 41 | 67.28 109 | 94.16 59 | 93.51 81 | 71.87 207 | 85.52 57 | 95.33 51 | 68.19 50 | 97.27 80 | 89.09 45 | 94.90 22 | 95.25 76 |
|
| MG-MVS | | | 87.11 34 | 86.27 45 | 89.62 8 | 97.79 1 | 76.27 4 | 94.96 43 | 94.49 44 | 78.74 88 | 83.87 75 | 92.94 119 | 64.34 88 | 96.94 104 | 75.19 156 | 94.09 38 | 95.66 52 |
|
| SF-MVS | | | 87.03 35 | 87.09 35 | 86.84 59 | 92.70 84 | 67.45 107 | 93.64 90 | 93.76 69 | 70.78 240 | 86.25 47 | 96.44 26 | 66.98 59 | 97.79 47 | 88.68 49 | 94.56 34 | 95.28 72 |
|
| CSCG | | | 86.87 36 | 86.26 46 | 88.72 17 | 95.05 31 | 70.79 29 | 93.83 82 | 95.33 16 | 68.48 269 | 77.63 140 | 94.35 88 | 73.04 26 | 98.45 30 | 84.92 84 | 93.71 47 | 96.92 14 |
|
| sasdasda | | | 86.85 37 | 86.25 47 | 88.66 20 | 91.80 109 | 71.92 16 | 93.54 95 | 91.71 159 | 80.26 55 | 87.55 37 | 95.25 58 | 63.59 101 | 96.93 106 | 88.18 50 | 84.34 146 | 97.11 9 |
|
| canonicalmvs | | | 86.85 37 | 86.25 47 | 88.66 20 | 91.80 109 | 71.92 16 | 93.54 95 | 91.71 159 | 80.26 55 | 87.55 37 | 95.25 58 | 63.59 101 | 96.93 106 | 88.18 50 | 84.34 146 | 97.11 9 |
|
| UBG | | | 86.83 39 | 86.70 42 | 87.20 48 | 93.07 73 | 69.81 46 | 93.43 103 | 95.56 12 | 81.52 35 | 81.50 90 | 92.12 140 | 73.58 25 | 96.28 129 | 84.37 90 | 85.20 139 | 95.51 58 |
|
| PHI-MVS | | | 86.83 39 | 86.85 41 | 86.78 63 | 93.47 62 | 65.55 154 | 95.39 30 | 95.10 22 | 71.77 212 | 85.69 56 | 96.52 23 | 62.07 121 | 98.77 23 | 86.06 74 | 95.60 12 | 96.03 43 |
|
| SteuartSystems-ACMMP | | | 86.82 41 | 86.90 39 | 86.58 70 | 90.42 141 | 66.38 133 | 96.09 17 | 93.87 64 | 77.73 101 | 84.01 74 | 95.66 43 | 63.39 104 | 97.94 40 | 87.40 60 | 93.55 50 | 95.42 59 |
| Skip Steuart: Steuart Systems R&D Blog. |
| PVSNet_Blended | | | 86.73 42 | 86.86 40 | 86.31 81 | 93.76 50 | 67.53 104 | 96.33 16 | 93.61 77 | 82.34 27 | 81.00 99 | 93.08 115 | 63.19 108 | 97.29 76 | 87.08 65 | 91.38 80 | 94.13 123 |
|
| testing11 | | | 86.71 43 | 86.44 44 | 87.55 40 | 93.54 59 | 71.35 21 | 93.65 89 | 95.58 10 | 81.36 42 | 80.69 102 | 92.21 139 | 72.30 32 | 96.46 125 | 85.18 80 | 83.43 155 | 94.82 95 |
|
| test_fmvsmconf_n | | | 86.58 44 | 87.17 34 | 84.82 126 | 85.28 258 | 62.55 235 | 94.26 57 | 89.78 235 | 83.81 17 | 87.78 36 | 96.33 29 | 65.33 75 | 96.98 98 | 94.40 11 | 87.55 117 | 94.95 87 |
|
| jason | | | 86.40 45 | 86.17 49 | 87.11 51 | 86.16 243 | 70.54 32 | 95.71 24 | 92.19 137 | 82.00 30 | 84.58 67 | 94.34 89 | 61.86 123 | 95.53 169 | 87.76 54 | 90.89 86 | 95.27 73 |
| jason: jason. |
| fmvsm_s_conf0.5_n | | | 86.39 46 | 86.91 38 | 84.82 126 | 87.36 220 | 63.54 211 | 94.74 47 | 90.02 229 | 82.52 24 | 90.14 25 | 96.92 13 | 62.93 113 | 97.84 46 | 95.28 8 | 82.26 165 | 93.07 160 |
|
| WTY-MVS | | | 86.32 47 | 85.81 56 | 87.85 29 | 92.82 80 | 69.37 57 | 95.20 34 | 95.25 17 | 82.71 22 | 81.91 87 | 94.73 74 | 67.93 54 | 97.63 56 | 79.55 126 | 82.25 166 | 96.54 22 |
|
| MSLP-MVS++ | | | 86.27 48 | 85.91 55 | 87.35 45 | 92.01 101 | 68.97 66 | 95.04 40 | 92.70 114 | 79.04 83 | 81.50 90 | 96.50 25 | 58.98 156 | 96.78 112 | 83.49 98 | 93.93 41 | 96.29 35 |
|
| VNet | | | 86.20 49 | 85.65 60 | 87.84 30 | 93.92 47 | 69.99 38 | 95.73 23 | 95.94 7 | 78.43 91 | 86.00 52 | 93.07 116 | 58.22 162 | 97.00 94 | 85.22 78 | 84.33 148 | 96.52 23 |
|
| MVS_111021_HR | | | 86.19 50 | 85.80 57 | 87.37 44 | 93.17 69 | 69.79 47 | 93.99 69 | 93.76 69 | 79.08 80 | 78.88 128 | 93.99 99 | 62.25 120 | 98.15 36 | 85.93 75 | 91.15 84 | 94.15 122 |
|
| CS-MVS-test | | | 86.14 51 | 87.01 36 | 83.52 172 | 92.63 86 | 59.36 296 | 95.49 27 | 91.92 146 | 80.09 59 | 85.46 59 | 95.53 47 | 61.82 125 | 95.77 152 | 86.77 69 | 93.37 52 | 95.41 60 |
|
| ACMMP_NAP | | | 86.05 52 | 85.80 57 | 86.80 62 | 91.58 115 | 67.53 104 | 91.79 170 | 93.49 84 | 74.93 140 | 84.61 66 | 95.30 53 | 59.42 149 | 97.92 41 | 86.13 72 | 94.92 20 | 94.94 88 |
|
| testing99 | | | 86.01 53 | 85.47 61 | 87.63 38 | 93.62 55 | 71.25 23 | 93.47 101 | 95.23 18 | 80.42 53 | 80.60 104 | 91.95 144 | 71.73 37 | 96.50 123 | 80.02 123 | 82.22 167 | 95.13 79 |
|
| ETV-MVS | | | 86.01 53 | 86.11 50 | 85.70 99 | 90.21 146 | 67.02 118 | 93.43 103 | 91.92 146 | 81.21 44 | 84.13 73 | 94.07 98 | 60.93 133 | 95.63 160 | 89.28 43 | 89.81 96 | 94.46 114 |
|
| testing91 | | | 85.93 55 | 85.31 64 | 87.78 32 | 93.59 57 | 71.47 19 | 93.50 98 | 95.08 25 | 80.26 55 | 80.53 105 | 91.93 145 | 70.43 41 | 96.51 122 | 80.32 121 | 82.13 169 | 95.37 63 |
|
| APD-MVS |  | | 85.93 55 | 85.99 53 | 85.76 96 | 95.98 26 | 65.21 161 | 93.59 93 | 92.58 123 | 66.54 282 | 86.17 50 | 95.88 39 | 63.83 94 | 97.00 94 | 86.39 71 | 92.94 57 | 95.06 82 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| PAPM | | | 85.89 57 | 85.46 62 | 87.18 49 | 88.20 199 | 72.42 15 | 92.41 142 | 92.77 112 | 82.11 29 | 80.34 108 | 93.07 116 | 68.27 49 | 95.02 182 | 78.39 139 | 93.59 49 | 94.09 125 |
|
| CS-MVS | | | 85.80 58 | 86.65 43 | 83.27 180 | 92.00 102 | 58.92 300 | 95.31 31 | 91.86 151 | 79.97 60 | 84.82 65 | 95.40 49 | 62.26 119 | 95.51 170 | 86.11 73 | 92.08 68 | 95.37 63 |
|
| fmvsm_s_conf0.5_n_a | | | 85.75 59 | 86.09 51 | 84.72 133 | 85.73 252 | 63.58 208 | 93.79 83 | 89.32 253 | 81.42 40 | 90.21 23 | 96.91 14 | 62.41 118 | 97.67 51 | 94.48 10 | 80.56 184 | 92.90 166 |
|
| test_fmvsmconf0.1_n | | | 85.71 60 | 86.08 52 | 84.62 140 | 80.83 311 | 62.33 240 | 93.84 80 | 88.81 279 | 83.50 19 | 87.00 43 | 96.01 37 | 63.36 105 | 96.93 106 | 94.04 12 | 87.29 120 | 94.61 104 |
|
| CDPH-MVS | | | 85.71 60 | 85.46 62 | 86.46 74 | 94.75 34 | 67.19 111 | 93.89 75 | 92.83 111 | 70.90 236 | 83.09 79 | 95.28 54 | 63.62 99 | 97.36 71 | 80.63 118 | 94.18 37 | 94.84 92 |
|
| casdiffmvs_mvg |  | | 85.66 62 | 85.18 66 | 87.09 52 | 88.22 198 | 69.35 58 | 93.74 86 | 91.89 149 | 81.47 36 | 80.10 110 | 91.45 154 | 64.80 83 | 96.35 127 | 87.23 63 | 87.69 115 | 95.58 55 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| fmvsm_s_conf0.1_n | | | 85.61 63 | 85.93 54 | 84.68 136 | 82.95 295 | 63.48 213 | 94.03 68 | 89.46 247 | 81.69 33 | 89.86 26 | 96.74 20 | 61.85 124 | 97.75 49 | 94.74 9 | 82.01 171 | 92.81 168 |
|
| MGCFI-Net | | | 85.59 64 | 85.73 59 | 85.17 117 | 91.41 123 | 62.44 236 | 92.87 120 | 91.31 176 | 79.65 66 | 86.99 44 | 95.14 64 | 62.90 114 | 96.12 136 | 87.13 64 | 84.13 153 | 96.96 13 |
|
| DeepC-MVS | | 77.85 3 | 85.52 65 | 85.24 65 | 86.37 78 | 88.80 181 | 66.64 127 | 92.15 149 | 93.68 75 | 81.07 45 | 76.91 150 | 93.64 106 | 62.59 116 | 98.44 31 | 85.50 76 | 92.84 59 | 94.03 129 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| casdiffmvs |  | | 85.37 66 | 84.87 72 | 86.84 59 | 88.25 196 | 69.07 62 | 93.04 114 | 91.76 156 | 81.27 43 | 80.84 101 | 92.07 142 | 64.23 89 | 96.06 142 | 84.98 83 | 87.43 119 | 95.39 61 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| ZNCC-MVS | | | 85.33 67 | 85.08 68 | 86.06 84 | 93.09 72 | 65.65 150 | 93.89 75 | 93.41 89 | 73.75 160 | 79.94 112 | 94.68 76 | 60.61 136 | 98.03 38 | 82.63 103 | 93.72 46 | 94.52 110 |
|
| MP-MVS-pluss | | | 85.24 68 | 85.13 67 | 85.56 102 | 91.42 120 | 65.59 152 | 91.54 180 | 92.51 125 | 74.56 143 | 80.62 103 | 95.64 44 | 59.15 153 | 97.00 94 | 86.94 67 | 93.80 43 | 94.07 127 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| testing222 | | | 85.18 69 | 84.69 74 | 86.63 67 | 92.91 77 | 69.91 42 | 92.61 133 | 95.80 9 | 80.31 54 | 80.38 107 | 92.27 136 | 68.73 47 | 95.19 179 | 75.94 151 | 83.27 157 | 94.81 96 |
|
| PAPR | | | 85.15 70 | 84.47 75 | 87.18 49 | 96.02 25 | 68.29 81 | 91.85 168 | 93.00 106 | 76.59 121 | 79.03 124 | 95.00 65 | 61.59 126 | 97.61 58 | 78.16 140 | 89.00 103 | 95.63 53 |
|
| MP-MVS |  | | 85.02 71 | 84.97 70 | 85.17 117 | 92.60 87 | 64.27 188 | 93.24 107 | 92.27 130 | 73.13 171 | 79.63 116 | 94.43 82 | 61.90 122 | 97.17 83 | 85.00 82 | 92.56 61 | 94.06 128 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| baseline | | | 85.01 72 | 84.44 76 | 86.71 64 | 88.33 193 | 68.73 71 | 90.24 231 | 91.82 155 | 81.05 46 | 81.18 95 | 92.50 128 | 63.69 97 | 96.08 141 | 84.45 89 | 86.71 129 | 95.32 68 |
|
| CHOSEN 1792x2688 | | | 84.98 73 | 83.45 90 | 89.57 11 | 89.94 151 | 75.14 6 | 92.07 155 | 92.32 128 | 81.87 31 | 75.68 159 | 88.27 202 | 60.18 139 | 98.60 27 | 80.46 120 | 90.27 94 | 94.96 86 |
|
| MVSMamba_PlusPlus | | | 84.97 74 | 83.65 84 | 88.93 14 | 90.17 147 | 74.04 8 | 87.84 278 | 92.69 116 | 62.18 317 | 81.47 92 | 87.64 216 | 71.47 38 | 96.28 129 | 84.69 86 | 94.74 31 | 96.47 28 |
|
| EIA-MVS | | | 84.84 75 | 84.88 71 | 84.69 135 | 91.30 125 | 62.36 239 | 93.85 77 | 92.04 141 | 79.45 69 | 79.33 121 | 94.28 92 | 62.42 117 | 96.35 127 | 80.05 122 | 91.25 83 | 95.38 62 |
|
| fmvsm_s_conf0.1_n_a | | | 84.76 76 | 84.84 73 | 84.53 142 | 80.23 321 | 63.50 212 | 92.79 122 | 88.73 282 | 80.46 51 | 89.84 27 | 96.65 22 | 60.96 132 | 97.57 61 | 93.80 13 | 80.14 186 | 92.53 175 |
|
| HFP-MVS | | | 84.73 77 | 84.40 77 | 85.72 98 | 93.75 52 | 65.01 167 | 93.50 98 | 93.19 96 | 72.19 196 | 79.22 122 | 94.93 68 | 59.04 154 | 97.67 51 | 81.55 109 | 92.21 64 | 94.49 113 |
|
| MVS | | | 84.66 78 | 82.86 105 | 90.06 2 | 90.93 132 | 74.56 7 | 87.91 276 | 95.54 13 | 68.55 267 | 72.35 201 | 94.71 75 | 59.78 145 | 98.90 20 | 81.29 115 | 94.69 32 | 96.74 16 |
|
| GST-MVS | | | 84.63 79 | 84.29 78 | 85.66 100 | 92.82 80 | 65.27 159 | 93.04 114 | 93.13 99 | 73.20 169 | 78.89 125 | 94.18 95 | 59.41 150 | 97.85 45 | 81.45 111 | 92.48 63 | 93.86 137 |
|
| EC-MVSNet | | | 84.53 80 | 85.04 69 | 83.01 184 | 89.34 163 | 61.37 260 | 94.42 51 | 91.09 188 | 77.91 98 | 83.24 77 | 94.20 94 | 58.37 160 | 95.40 171 | 85.35 77 | 91.41 79 | 92.27 185 |
|
| ACMMPR | | | 84.37 81 | 84.06 79 | 85.28 112 | 93.56 58 | 64.37 183 | 93.50 98 | 93.15 98 | 72.19 196 | 78.85 130 | 94.86 71 | 56.69 182 | 97.45 65 | 81.55 109 | 92.20 65 | 94.02 130 |
|
| region2R | | | 84.36 82 | 84.03 80 | 85.36 109 | 93.54 59 | 64.31 186 | 93.43 103 | 92.95 107 | 72.16 199 | 78.86 129 | 94.84 72 | 56.97 177 | 97.53 63 | 81.38 113 | 92.11 67 | 94.24 117 |
|
| LFMVS | | | 84.34 83 | 82.73 107 | 89.18 13 | 94.76 33 | 73.25 11 | 94.99 42 | 91.89 149 | 71.90 204 | 82.16 86 | 93.49 110 | 47.98 273 | 97.05 89 | 82.55 104 | 84.82 142 | 97.25 8 |
|
| test_yl | | | 84.28 84 | 83.16 98 | 87.64 34 | 94.52 37 | 69.24 59 | 95.78 18 | 95.09 23 | 69.19 259 | 81.09 96 | 92.88 122 | 57.00 175 | 97.44 66 | 81.11 116 | 81.76 173 | 96.23 38 |
|
| DCV-MVSNet | | | 84.28 84 | 83.16 98 | 87.64 34 | 94.52 37 | 69.24 59 | 95.78 18 | 95.09 23 | 69.19 259 | 81.09 96 | 92.88 122 | 57.00 175 | 97.44 66 | 81.11 116 | 81.76 173 | 96.23 38 |
|
| diffmvs |  | | 84.28 84 | 83.83 81 | 85.61 101 | 87.40 218 | 68.02 91 | 90.88 209 | 89.24 256 | 80.54 49 | 81.64 89 | 92.52 127 | 59.83 144 | 94.52 205 | 87.32 61 | 85.11 140 | 94.29 115 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| HY-MVS | | 76.49 5 | 84.28 84 | 83.36 96 | 87.02 55 | 92.22 94 | 67.74 97 | 84.65 304 | 94.50 43 | 79.15 77 | 82.23 85 | 87.93 211 | 66.88 60 | 96.94 104 | 80.53 119 | 82.20 168 | 96.39 33 |
|
| ETVMVS | | | 84.22 88 | 83.71 82 | 85.76 96 | 92.58 88 | 68.25 85 | 92.45 141 | 95.53 14 | 79.54 68 | 79.46 118 | 91.64 152 | 70.29 42 | 94.18 217 | 69.16 211 | 82.76 163 | 94.84 92 |
|
| MAR-MVS | | | 84.18 89 | 83.43 91 | 86.44 75 | 96.25 21 | 65.93 145 | 94.28 56 | 94.27 56 | 74.41 144 | 79.16 123 | 95.61 45 | 53.99 214 | 98.88 22 | 69.62 205 | 93.26 54 | 94.50 112 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| MVS_Test | | | 84.16 90 | 83.20 97 | 87.05 54 | 91.56 116 | 69.82 45 | 89.99 240 | 92.05 140 | 77.77 100 | 82.84 80 | 86.57 233 | 63.93 93 | 96.09 138 | 74.91 161 | 89.18 102 | 95.25 76 |
|
| CANet_DTU | | | 84.09 91 | 83.52 85 | 85.81 93 | 90.30 144 | 66.82 122 | 91.87 166 | 89.01 271 | 85.27 9 | 86.09 51 | 93.74 103 | 47.71 277 | 96.98 98 | 77.90 142 | 89.78 98 | 93.65 142 |
|
| ET-MVSNet_ETH3D | | | 84.01 92 | 83.15 100 | 86.58 70 | 90.78 137 | 70.89 28 | 94.74 47 | 94.62 40 | 81.44 39 | 58.19 332 | 93.64 106 | 73.64 24 | 92.35 282 | 82.66 102 | 78.66 201 | 96.50 27 |
|
| PVSNet_Blended_VisFu | | | 83.97 93 | 83.50 87 | 85.39 107 | 90.02 149 | 66.59 130 | 93.77 84 | 91.73 157 | 77.43 109 | 77.08 149 | 89.81 185 | 63.77 96 | 96.97 101 | 79.67 125 | 88.21 109 | 92.60 172 |
|
| MTAPA | | | 83.91 94 | 83.38 95 | 85.50 103 | 91.89 107 | 65.16 163 | 81.75 328 | 92.23 131 | 75.32 135 | 80.53 105 | 95.21 61 | 56.06 191 | 97.16 85 | 84.86 85 | 92.55 62 | 94.18 119 |
|
| XVS | | | 83.87 95 | 83.47 89 | 85.05 119 | 93.22 65 | 63.78 197 | 92.92 118 | 92.66 118 | 73.99 152 | 78.18 134 | 94.31 91 | 55.25 197 | 97.41 68 | 79.16 130 | 91.58 76 | 93.95 132 |
|
| Effi-MVS+ | | | 83.82 96 | 82.76 106 | 86.99 56 | 89.56 159 | 69.40 53 | 91.35 191 | 86.12 325 | 72.59 183 | 83.22 78 | 92.81 125 | 59.60 147 | 96.01 146 | 81.76 108 | 87.80 114 | 95.56 56 |
|
| test_fmvsmvis_n_1920 | | | 83.80 97 | 83.48 88 | 84.77 130 | 82.51 297 | 63.72 201 | 91.37 189 | 83.99 347 | 81.42 40 | 77.68 139 | 95.74 42 | 58.37 160 | 97.58 59 | 93.38 14 | 86.87 123 | 93.00 163 |
|
| EI-MVSNet-Vis-set | | | 83.77 98 | 83.67 83 | 84.06 157 | 92.79 83 | 63.56 209 | 91.76 173 | 94.81 31 | 79.65 66 | 77.87 137 | 94.09 96 | 63.35 106 | 97.90 42 | 79.35 128 | 79.36 193 | 90.74 211 |
|
| MVSFormer | | | 83.75 99 | 82.88 104 | 86.37 78 | 89.24 171 | 71.18 24 | 89.07 258 | 90.69 199 | 65.80 287 | 87.13 40 | 94.34 89 | 64.99 78 | 92.67 269 | 72.83 173 | 91.80 72 | 95.27 73 |
|
| CP-MVS | | | 83.71 100 | 83.40 94 | 84.65 137 | 93.14 70 | 63.84 195 | 94.59 49 | 92.28 129 | 71.03 234 | 77.41 143 | 94.92 69 | 55.21 200 | 96.19 133 | 81.32 114 | 90.70 88 | 93.91 134 |
|
| test_fmvsmconf0.01_n | | | 83.70 101 | 83.52 85 | 84.25 154 | 75.26 364 | 61.72 254 | 92.17 148 | 87.24 313 | 82.36 26 | 84.91 64 | 95.41 48 | 55.60 195 | 96.83 111 | 92.85 18 | 85.87 135 | 94.21 118 |
|
| baseline2 | | | 83.68 102 | 83.42 93 | 84.48 145 | 87.37 219 | 66.00 142 | 90.06 235 | 95.93 8 | 79.71 65 | 69.08 238 | 90.39 172 | 77.92 6 | 96.28 129 | 78.91 134 | 81.38 177 | 91.16 207 |
|
| thisisatest0515 | | | 83.41 103 | 82.49 111 | 86.16 83 | 89.46 162 | 68.26 83 | 93.54 95 | 94.70 36 | 74.31 147 | 75.75 157 | 90.92 162 | 72.62 29 | 96.52 121 | 69.64 203 | 81.50 176 | 93.71 140 |
|
| PVSNet_BlendedMVS | | | 83.38 104 | 83.43 91 | 83.22 181 | 93.76 50 | 67.53 104 | 94.06 63 | 93.61 77 | 79.13 78 | 81.00 99 | 85.14 248 | 63.19 108 | 97.29 76 | 87.08 65 | 73.91 237 | 84.83 306 |
|
| test2506 | | | 83.29 105 | 82.92 103 | 84.37 149 | 88.39 191 | 63.18 221 | 92.01 158 | 91.35 175 | 77.66 103 | 78.49 133 | 91.42 155 | 64.58 86 | 95.09 181 | 73.19 169 | 89.23 100 | 94.85 89 |
|
| PGM-MVS | | | 83.25 106 | 82.70 108 | 84.92 122 | 92.81 82 | 64.07 192 | 90.44 222 | 92.20 135 | 71.28 228 | 77.23 146 | 94.43 82 | 55.17 201 | 97.31 75 | 79.33 129 | 91.38 80 | 93.37 148 |
|
| HPM-MVS |  | | 83.25 106 | 82.95 102 | 84.17 155 | 92.25 93 | 62.88 230 | 90.91 206 | 91.86 151 | 70.30 245 | 77.12 147 | 93.96 100 | 56.75 180 | 96.28 129 | 82.04 106 | 91.34 82 | 93.34 149 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| EI-MVSNet-UG-set | | | 83.14 108 | 82.96 101 | 83.67 170 | 92.28 92 | 63.19 220 | 91.38 188 | 94.68 37 | 79.22 75 | 76.60 152 | 93.75 102 | 62.64 115 | 97.76 48 | 78.07 141 | 78.01 204 | 90.05 220 |
|
| VDD-MVS | | | 83.06 109 | 81.81 120 | 86.81 61 | 90.86 135 | 67.70 98 | 95.40 29 | 91.50 170 | 75.46 132 | 81.78 88 | 92.34 135 | 40.09 314 | 97.13 87 | 86.85 68 | 82.04 170 | 95.60 54 |
|
| h-mvs33 | | | 83.01 110 | 82.56 110 | 84.35 150 | 89.34 163 | 62.02 246 | 92.72 125 | 93.76 69 | 81.45 37 | 82.73 82 | 92.25 138 | 60.11 140 | 97.13 87 | 87.69 55 | 62.96 316 | 93.91 134 |
|
| PAPM_NR | | | 82.97 111 | 81.84 119 | 86.37 78 | 94.10 44 | 66.76 125 | 87.66 282 | 92.84 110 | 69.96 249 | 74.07 178 | 93.57 108 | 63.10 111 | 97.50 64 | 70.66 198 | 90.58 90 | 94.85 89 |
|
| mPP-MVS | | | 82.96 112 | 82.44 112 | 84.52 143 | 92.83 78 | 62.92 228 | 92.76 123 | 91.85 153 | 71.52 224 | 75.61 162 | 94.24 93 | 53.48 222 | 96.99 97 | 78.97 133 | 90.73 87 | 93.64 143 |
|
| SR-MVS | | | 82.81 113 | 82.58 109 | 83.50 175 | 93.35 63 | 61.16 263 | 92.23 147 | 91.28 180 | 64.48 296 | 81.27 93 | 95.28 54 | 53.71 218 | 95.86 148 | 82.87 101 | 88.77 105 | 93.49 146 |
|
| DP-MVS Recon | | | 82.73 114 | 81.65 121 | 85.98 86 | 97.31 4 | 67.06 115 | 95.15 36 | 91.99 143 | 69.08 262 | 76.50 154 | 93.89 101 | 54.48 209 | 98.20 35 | 70.76 196 | 85.66 137 | 92.69 169 |
|
| CLD-MVS | | | 82.73 114 | 82.35 114 | 83.86 162 | 87.90 206 | 67.65 100 | 95.45 28 | 92.18 138 | 85.06 10 | 72.58 194 | 92.27 136 | 52.46 230 | 95.78 150 | 84.18 91 | 79.06 196 | 88.16 247 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| sss | | | 82.71 116 | 82.38 113 | 83.73 166 | 89.25 168 | 59.58 291 | 92.24 146 | 94.89 28 | 77.96 96 | 79.86 113 | 92.38 133 | 56.70 181 | 97.05 89 | 77.26 145 | 80.86 181 | 94.55 106 |
|
| 3Dnovator | | 73.91 6 | 82.69 117 | 80.82 134 | 88.31 26 | 89.57 158 | 71.26 22 | 92.60 134 | 94.39 51 | 78.84 85 | 67.89 258 | 92.48 131 | 48.42 268 | 98.52 28 | 68.80 216 | 94.40 36 | 95.15 78 |
|
| RRT-MVS | | | 82.61 118 | 81.16 125 | 86.96 57 | 91.10 129 | 68.75 70 | 87.70 281 | 92.20 135 | 76.97 112 | 72.68 190 | 87.10 227 | 51.30 242 | 96.41 126 | 83.56 97 | 87.84 113 | 95.74 50 |
|
| MVSTER | | | 82.47 119 | 82.05 115 | 83.74 164 | 92.68 85 | 69.01 64 | 91.90 165 | 93.21 93 | 79.83 61 | 72.14 202 | 85.71 244 | 74.72 16 | 94.72 193 | 75.72 152 | 72.49 247 | 87.50 253 |
|
| TESTMET0.1,1 | | | 82.41 120 | 81.98 118 | 83.72 167 | 88.08 200 | 63.74 199 | 92.70 127 | 93.77 68 | 79.30 73 | 77.61 141 | 87.57 218 | 58.19 163 | 94.08 221 | 73.91 167 | 86.68 130 | 93.33 151 |
|
| CostFormer | | | 82.33 121 | 81.15 126 | 85.86 91 | 89.01 176 | 68.46 77 | 82.39 325 | 93.01 104 | 75.59 130 | 80.25 109 | 81.57 290 | 72.03 35 | 94.96 185 | 79.06 132 | 77.48 212 | 94.16 121 |
|
| API-MVS | | | 82.28 122 | 80.53 142 | 87.54 41 | 96.13 22 | 70.59 31 | 93.63 91 | 91.04 194 | 65.72 289 | 75.45 164 | 92.83 124 | 56.11 190 | 98.89 21 | 64.10 260 | 89.75 99 | 93.15 156 |
|
| IB-MVS | | 77.80 4 | 82.18 123 | 80.46 144 | 87.35 45 | 89.14 173 | 70.28 35 | 95.59 26 | 95.17 21 | 78.85 84 | 70.19 226 | 85.82 242 | 70.66 40 | 97.67 51 | 72.19 185 | 66.52 288 | 94.09 125 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| xiu_mvs_v1_base_debu | | | 82.16 124 | 81.12 127 | 85.26 114 | 86.42 236 | 68.72 72 | 92.59 136 | 90.44 209 | 73.12 172 | 84.20 70 | 94.36 84 | 38.04 327 | 95.73 154 | 84.12 92 | 86.81 124 | 91.33 200 |
|
| xiu_mvs_v1_base | | | 82.16 124 | 81.12 127 | 85.26 114 | 86.42 236 | 68.72 72 | 92.59 136 | 90.44 209 | 73.12 172 | 84.20 70 | 94.36 84 | 38.04 327 | 95.73 154 | 84.12 92 | 86.81 124 | 91.33 200 |
|
| xiu_mvs_v1_base_debi | | | 82.16 124 | 81.12 127 | 85.26 114 | 86.42 236 | 68.72 72 | 92.59 136 | 90.44 209 | 73.12 172 | 84.20 70 | 94.36 84 | 38.04 327 | 95.73 154 | 84.12 92 | 86.81 124 | 91.33 200 |
|
| 3Dnovator+ | | 73.60 7 | 82.10 127 | 80.60 141 | 86.60 68 | 90.89 134 | 66.80 124 | 95.20 34 | 93.44 86 | 74.05 151 | 67.42 265 | 92.49 130 | 49.46 258 | 97.65 55 | 70.80 195 | 91.68 74 | 95.33 66 |
|
| MVS_111021_LR | | | 82.02 128 | 81.52 122 | 83.51 174 | 88.42 189 | 62.88 230 | 89.77 243 | 88.93 275 | 76.78 117 | 75.55 163 | 93.10 113 | 50.31 249 | 95.38 173 | 83.82 96 | 87.02 122 | 92.26 186 |
|
| PMMVS | | | 81.98 129 | 82.04 116 | 81.78 218 | 89.76 155 | 56.17 326 | 91.13 202 | 90.69 199 | 77.96 96 | 80.09 111 | 93.57 108 | 46.33 287 | 94.99 184 | 81.41 112 | 87.46 118 | 94.17 120 |
|
| baseline1 | | | 81.84 130 | 81.03 131 | 84.28 153 | 91.60 114 | 66.62 128 | 91.08 203 | 91.66 164 | 81.87 31 | 74.86 169 | 91.67 151 | 69.98 44 | 94.92 188 | 71.76 188 | 64.75 303 | 91.29 205 |
|
| EPP-MVSNet | | | 81.79 131 | 81.52 122 | 82.61 194 | 88.77 182 | 60.21 283 | 93.02 116 | 93.66 76 | 68.52 268 | 72.90 188 | 90.39 172 | 72.19 34 | 94.96 185 | 74.93 160 | 79.29 195 | 92.67 170 |
|
| WBMVS | | | 81.67 132 | 80.98 133 | 83.72 167 | 93.07 73 | 69.40 53 | 94.33 54 | 93.05 102 | 76.84 115 | 72.05 204 | 84.14 259 | 74.49 18 | 93.88 235 | 72.76 176 | 68.09 276 | 87.88 249 |
|
| test_vis1_n_1920 | | | 81.66 133 | 82.01 117 | 80.64 245 | 82.24 299 | 55.09 334 | 94.76 46 | 86.87 315 | 81.67 34 | 84.40 69 | 94.63 77 | 38.17 324 | 94.67 197 | 91.98 27 | 83.34 156 | 92.16 189 |
|
| APD-MVS_3200maxsize | | | 81.64 134 | 81.32 124 | 82.59 195 | 92.36 90 | 58.74 302 | 91.39 186 | 91.01 195 | 63.35 305 | 79.72 115 | 94.62 78 | 51.82 233 | 96.14 135 | 79.71 124 | 87.93 112 | 92.89 167 |
|
| mvsmamba | | | 81.55 135 | 80.72 136 | 84.03 159 | 91.42 120 | 66.93 120 | 83.08 319 | 89.13 264 | 78.55 90 | 67.50 263 | 87.02 228 | 51.79 235 | 90.07 322 | 87.48 58 | 90.49 92 | 95.10 81 |
|
| ACMMP |  | | 81.49 136 | 80.67 138 | 83.93 161 | 91.71 112 | 62.90 229 | 92.13 150 | 92.22 134 | 71.79 211 | 71.68 210 | 93.49 110 | 50.32 248 | 96.96 102 | 78.47 138 | 84.22 152 | 91.93 192 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| CDS-MVSNet | | | 81.43 137 | 80.74 135 | 83.52 172 | 86.26 240 | 64.45 177 | 92.09 153 | 90.65 203 | 75.83 128 | 73.95 180 | 89.81 185 | 63.97 92 | 92.91 259 | 71.27 191 | 82.82 160 | 93.20 155 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| mvs_anonymous | | | 81.36 138 | 79.99 149 | 85.46 104 | 90.39 143 | 68.40 78 | 86.88 293 | 90.61 204 | 74.41 144 | 70.31 225 | 84.67 253 | 63.79 95 | 92.32 283 | 73.13 170 | 85.70 136 | 95.67 51 |
|
| ECVR-MVS |  | | 81.29 139 | 80.38 145 | 84.01 160 | 88.39 191 | 61.96 248 | 92.56 139 | 86.79 317 | 77.66 103 | 76.63 151 | 91.42 155 | 46.34 286 | 95.24 178 | 74.36 165 | 89.23 100 | 94.85 89 |
|
| thisisatest0530 | | | 81.15 140 | 80.07 146 | 84.39 148 | 88.26 195 | 65.63 151 | 91.40 184 | 94.62 40 | 71.27 229 | 70.93 216 | 89.18 191 | 72.47 30 | 96.04 143 | 65.62 249 | 76.89 218 | 91.49 196 |
|
| Fast-Effi-MVS+ | | | 81.14 141 | 80.01 148 | 84.51 144 | 90.24 145 | 65.86 146 | 94.12 62 | 89.15 262 | 73.81 159 | 75.37 165 | 88.26 203 | 57.26 170 | 94.53 204 | 66.97 234 | 84.92 141 | 93.15 156 |
|
| HQP-MVS | | | 81.14 141 | 80.64 139 | 82.64 193 | 87.54 214 | 63.66 206 | 94.06 63 | 91.70 162 | 79.80 62 | 74.18 174 | 90.30 174 | 51.63 238 | 95.61 162 | 77.63 143 | 78.90 197 | 88.63 238 |
|
| hse-mvs2 | | | 81.12 143 | 81.11 130 | 81.16 232 | 86.52 235 | 57.48 315 | 89.40 251 | 91.16 183 | 81.45 37 | 82.73 82 | 90.49 170 | 60.11 140 | 94.58 198 | 87.69 55 | 60.41 343 | 91.41 199 |
|
| SR-MVS-dyc-post | | | 81.06 144 | 80.70 137 | 82.15 209 | 92.02 99 | 58.56 304 | 90.90 207 | 90.45 206 | 62.76 312 | 78.89 125 | 94.46 80 | 51.26 243 | 95.61 162 | 78.77 136 | 86.77 127 | 92.28 182 |
|
| HyFIR lowres test | | | 81.03 145 | 79.56 156 | 85.43 105 | 87.81 210 | 68.11 89 | 90.18 232 | 90.01 230 | 70.65 242 | 72.95 187 | 86.06 240 | 63.61 100 | 94.50 206 | 75.01 159 | 79.75 190 | 93.67 141 |
|
| nrg030 | | | 80.93 146 | 79.86 151 | 84.13 156 | 83.69 284 | 68.83 68 | 93.23 108 | 91.20 181 | 75.55 131 | 75.06 167 | 88.22 206 | 63.04 112 | 94.74 192 | 81.88 107 | 66.88 285 | 88.82 236 |
|
| Vis-MVSNet |  | | 80.92 147 | 79.98 150 | 83.74 164 | 88.48 186 | 61.80 250 | 93.44 102 | 88.26 299 | 73.96 155 | 77.73 138 | 91.76 148 | 49.94 253 | 94.76 190 | 65.84 246 | 90.37 93 | 94.65 102 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| test1111 | | | 80.84 148 | 80.02 147 | 83.33 178 | 87.87 207 | 60.76 271 | 92.62 132 | 86.86 316 | 77.86 99 | 75.73 158 | 91.39 157 | 46.35 285 | 94.70 196 | 72.79 175 | 88.68 106 | 94.52 110 |
|
| UWE-MVS | | | 80.81 149 | 81.01 132 | 80.20 254 | 89.33 165 | 57.05 320 | 91.91 164 | 94.71 35 | 75.67 129 | 75.01 168 | 89.37 189 | 63.13 110 | 91.44 306 | 67.19 231 | 82.80 162 | 92.12 190 |
|
| 1314 | | | 80.70 150 | 78.95 167 | 85.94 88 | 87.77 212 | 67.56 102 | 87.91 276 | 92.55 124 | 72.17 198 | 67.44 264 | 93.09 114 | 50.27 250 | 97.04 92 | 71.68 190 | 87.64 116 | 93.23 153 |
|
| tpmrst | | | 80.57 151 | 79.14 166 | 84.84 125 | 90.10 148 | 68.28 82 | 81.70 329 | 89.72 242 | 77.63 105 | 75.96 156 | 79.54 322 | 64.94 80 | 92.71 266 | 75.43 154 | 77.28 215 | 93.55 144 |
|
| 1112_ss | | | 80.56 152 | 79.83 152 | 82.77 188 | 88.65 183 | 60.78 269 | 92.29 144 | 88.36 293 | 72.58 184 | 72.46 198 | 94.95 66 | 65.09 77 | 93.42 246 | 66.38 240 | 77.71 206 | 94.10 124 |
|
| VDDNet | | | 80.50 153 | 78.26 175 | 87.21 47 | 86.19 241 | 69.79 47 | 94.48 50 | 91.31 176 | 60.42 331 | 79.34 120 | 90.91 163 | 38.48 322 | 96.56 119 | 82.16 105 | 81.05 179 | 95.27 73 |
|
| BH-w/o | | | 80.49 154 | 79.30 163 | 84.05 158 | 90.83 136 | 64.36 185 | 93.60 92 | 89.42 250 | 74.35 146 | 69.09 237 | 90.15 180 | 55.23 199 | 95.61 162 | 64.61 257 | 86.43 133 | 92.17 188 |
|
| test_cas_vis1_n_1920 | | | 80.45 155 | 80.61 140 | 79.97 263 | 78.25 347 | 57.01 322 | 94.04 67 | 88.33 294 | 79.06 82 | 82.81 81 | 93.70 104 | 38.65 319 | 91.63 298 | 90.82 36 | 79.81 188 | 91.27 206 |
|
| TAMVS | | | 80.37 156 | 79.45 159 | 83.13 183 | 85.14 261 | 63.37 214 | 91.23 197 | 90.76 198 | 74.81 142 | 72.65 192 | 88.49 197 | 60.63 135 | 92.95 254 | 69.41 207 | 81.95 172 | 93.08 159 |
|
| HQP_MVS | | | 80.34 157 | 79.75 153 | 82.12 211 | 86.94 229 | 62.42 237 | 93.13 110 | 91.31 176 | 78.81 86 | 72.53 195 | 89.14 193 | 50.66 246 | 95.55 167 | 76.74 146 | 78.53 202 | 88.39 244 |
|
| SDMVSNet | | | 80.26 158 | 78.88 168 | 84.40 147 | 89.25 168 | 67.63 101 | 85.35 300 | 93.02 103 | 76.77 118 | 70.84 217 | 87.12 225 | 47.95 274 | 96.09 138 | 85.04 81 | 74.55 228 | 89.48 230 |
|
| HPM-MVS_fast | | | 80.25 159 | 79.55 158 | 82.33 201 | 91.55 117 | 59.95 286 | 91.32 193 | 89.16 261 | 65.23 293 | 74.71 171 | 93.07 116 | 47.81 276 | 95.74 153 | 74.87 163 | 88.23 108 | 91.31 204 |
|
| ab-mvs | | | 80.18 160 | 78.31 174 | 85.80 94 | 88.44 188 | 65.49 157 | 83.00 322 | 92.67 117 | 71.82 210 | 77.36 144 | 85.01 249 | 54.50 206 | 96.59 116 | 76.35 150 | 75.63 225 | 95.32 68 |
|
| IS-MVSNet | | | 80.14 161 | 79.41 160 | 82.33 201 | 87.91 205 | 60.08 285 | 91.97 162 | 88.27 297 | 72.90 179 | 71.44 213 | 91.73 150 | 61.44 127 | 93.66 241 | 62.47 274 | 86.53 131 | 93.24 152 |
|
| test-LLR | | | 80.10 162 | 79.56 156 | 81.72 220 | 86.93 231 | 61.17 261 | 92.70 127 | 91.54 167 | 71.51 225 | 75.62 160 | 86.94 229 | 53.83 215 | 92.38 279 | 72.21 183 | 84.76 144 | 91.60 194 |
|
| PVSNet | | 73.49 8 | 80.05 163 | 78.63 170 | 84.31 151 | 90.92 133 | 64.97 168 | 92.47 140 | 91.05 193 | 79.18 76 | 72.43 199 | 90.51 169 | 37.05 339 | 94.06 223 | 68.06 220 | 86.00 134 | 93.90 136 |
|
| UA-Net | | | 80.02 164 | 79.65 154 | 81.11 234 | 89.33 165 | 57.72 311 | 86.33 297 | 89.00 274 | 77.44 108 | 81.01 98 | 89.15 192 | 59.33 151 | 95.90 147 | 61.01 281 | 84.28 150 | 89.73 226 |
|
| test-mter | | | 79.96 165 | 79.38 162 | 81.72 220 | 86.93 231 | 61.17 261 | 92.70 127 | 91.54 167 | 73.85 157 | 75.62 160 | 86.94 229 | 49.84 255 | 92.38 279 | 72.21 183 | 84.76 144 | 91.60 194 |
|
| QAPM | | | 79.95 166 | 77.39 192 | 87.64 34 | 89.63 157 | 71.41 20 | 93.30 106 | 93.70 74 | 65.34 292 | 67.39 267 | 91.75 149 | 47.83 275 | 98.96 16 | 57.71 297 | 89.81 96 | 92.54 174 |
|
| UGNet | | | 79.87 167 | 78.68 169 | 83.45 177 | 89.96 150 | 61.51 257 | 92.13 150 | 90.79 197 | 76.83 116 | 78.85 130 | 86.33 237 | 38.16 325 | 96.17 134 | 67.93 223 | 87.17 121 | 92.67 170 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| tpm2 | | | 79.80 168 | 77.95 181 | 85.34 110 | 88.28 194 | 68.26 83 | 81.56 331 | 91.42 173 | 70.11 247 | 77.59 142 | 80.50 308 | 67.40 57 | 94.26 215 | 67.34 228 | 77.35 213 | 93.51 145 |
|
| thres200 | | | 79.66 169 | 78.33 173 | 83.66 171 | 92.54 89 | 65.82 148 | 93.06 112 | 96.31 3 | 74.90 141 | 73.30 184 | 88.66 195 | 59.67 146 | 95.61 162 | 47.84 336 | 78.67 200 | 89.56 229 |
|
| CPTT-MVS | | | 79.59 170 | 79.16 165 | 80.89 243 | 91.54 118 | 59.80 288 | 92.10 152 | 88.54 290 | 60.42 331 | 72.96 186 | 93.28 112 | 48.27 269 | 92.80 263 | 78.89 135 | 86.50 132 | 90.06 219 |
|
| Test_1112_low_res | | | 79.56 171 | 78.60 171 | 82.43 197 | 88.24 197 | 60.39 280 | 92.09 153 | 87.99 304 | 72.10 200 | 71.84 206 | 87.42 220 | 64.62 85 | 93.04 250 | 65.80 247 | 77.30 214 | 93.85 138 |
|
| tttt0517 | | | 79.50 172 | 78.53 172 | 82.41 200 | 87.22 222 | 61.43 259 | 89.75 244 | 94.76 32 | 69.29 257 | 67.91 256 | 88.06 210 | 72.92 27 | 95.63 160 | 62.91 270 | 73.90 238 | 90.16 218 |
|
| FIs | | | 79.47 173 | 79.41 160 | 79.67 270 | 85.95 246 | 59.40 293 | 91.68 177 | 93.94 63 | 78.06 95 | 68.96 242 | 88.28 201 | 66.61 63 | 91.77 294 | 66.20 243 | 74.99 227 | 87.82 250 |
|
| BH-RMVSNet | | | 79.46 174 | 77.65 184 | 84.89 123 | 91.68 113 | 65.66 149 | 93.55 94 | 88.09 302 | 72.93 176 | 73.37 183 | 91.12 161 | 46.20 289 | 96.12 136 | 56.28 302 | 85.61 138 | 92.91 165 |
|
| PCF-MVS | | 73.15 9 | 79.29 175 | 77.63 185 | 84.29 152 | 86.06 244 | 65.96 144 | 87.03 289 | 91.10 187 | 69.86 251 | 69.79 233 | 90.64 165 | 57.54 169 | 96.59 116 | 64.37 259 | 82.29 164 | 90.32 216 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| Vis-MVSNet (Re-imp) | | | 79.24 176 | 79.57 155 | 78.24 290 | 88.46 187 | 52.29 345 | 90.41 224 | 89.12 265 | 74.24 148 | 69.13 236 | 91.91 146 | 65.77 71 | 90.09 321 | 59.00 293 | 88.09 110 | 92.33 179 |
|
| 114514_t | | | 79.17 177 | 77.67 183 | 83.68 169 | 95.32 29 | 65.53 155 | 92.85 121 | 91.60 166 | 63.49 303 | 67.92 255 | 90.63 167 | 46.65 282 | 95.72 158 | 67.01 233 | 83.54 154 | 89.79 224 |
|
| FA-MVS(test-final) | | | 79.12 178 | 77.23 194 | 84.81 129 | 90.54 139 | 63.98 194 | 81.35 334 | 91.71 159 | 71.09 233 | 74.85 170 | 82.94 271 | 52.85 226 | 97.05 89 | 67.97 221 | 81.73 175 | 93.41 147 |
|
| VPA-MVSNet | | | 79.03 179 | 78.00 179 | 82.11 214 | 85.95 246 | 64.48 176 | 93.22 109 | 94.66 38 | 75.05 139 | 74.04 179 | 84.95 250 | 52.17 232 | 93.52 243 | 74.90 162 | 67.04 284 | 88.32 246 |
|
| OPM-MVS | | | 79.00 180 | 78.09 177 | 81.73 219 | 83.52 287 | 63.83 196 | 91.64 179 | 90.30 216 | 76.36 124 | 71.97 205 | 89.93 184 | 46.30 288 | 95.17 180 | 75.10 157 | 77.70 207 | 86.19 279 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| EI-MVSNet | | | 78.97 181 | 78.22 176 | 81.25 229 | 85.33 256 | 62.73 233 | 89.53 248 | 93.21 93 | 72.39 191 | 72.14 202 | 90.13 181 | 60.99 130 | 94.72 193 | 67.73 225 | 72.49 247 | 86.29 276 |
|
| AdaColmap |  | | 78.94 182 | 77.00 198 | 84.76 131 | 96.34 17 | 65.86 146 | 92.66 131 | 87.97 306 | 62.18 317 | 70.56 219 | 92.37 134 | 43.53 302 | 97.35 72 | 64.50 258 | 82.86 159 | 91.05 209 |
|
| GeoE | | | 78.90 183 | 77.43 188 | 83.29 179 | 88.95 177 | 62.02 246 | 92.31 143 | 86.23 323 | 70.24 246 | 71.34 214 | 89.27 190 | 54.43 210 | 94.04 226 | 63.31 266 | 80.81 183 | 93.81 139 |
|
| miper_enhance_ethall | | | 78.86 184 | 77.97 180 | 81.54 224 | 88.00 204 | 65.17 162 | 91.41 182 | 89.15 262 | 75.19 137 | 68.79 245 | 83.98 262 | 67.17 58 | 92.82 261 | 72.73 177 | 65.30 294 | 86.62 273 |
|
| VPNet | | | 78.82 185 | 77.53 187 | 82.70 191 | 84.52 271 | 66.44 132 | 93.93 72 | 92.23 131 | 80.46 51 | 72.60 193 | 88.38 200 | 49.18 262 | 93.13 249 | 72.47 181 | 63.97 313 | 88.55 241 |
|
| EPNet_dtu | | | 78.80 186 | 79.26 164 | 77.43 298 | 88.06 201 | 49.71 359 | 91.96 163 | 91.95 145 | 77.67 102 | 76.56 153 | 91.28 159 | 58.51 158 | 90.20 319 | 56.37 301 | 80.95 180 | 92.39 177 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| tfpn200view9 | | | 78.79 187 | 77.43 188 | 82.88 186 | 92.21 95 | 64.49 174 | 92.05 156 | 96.28 4 | 73.48 166 | 71.75 208 | 88.26 203 | 60.07 142 | 95.32 174 | 45.16 347 | 77.58 209 | 88.83 234 |
|
| TR-MVS | | | 78.77 188 | 77.37 193 | 82.95 185 | 90.49 140 | 60.88 267 | 93.67 88 | 90.07 225 | 70.08 248 | 74.51 172 | 91.37 158 | 45.69 291 | 95.70 159 | 60.12 287 | 80.32 185 | 92.29 181 |
|
| thres400 | | | 78.68 189 | 77.43 188 | 82.43 197 | 92.21 95 | 64.49 174 | 92.05 156 | 96.28 4 | 73.48 166 | 71.75 208 | 88.26 203 | 60.07 142 | 95.32 174 | 45.16 347 | 77.58 209 | 87.48 254 |
|
| BH-untuned | | | 78.68 189 | 77.08 195 | 83.48 176 | 89.84 152 | 63.74 199 | 92.70 127 | 88.59 288 | 71.57 222 | 66.83 274 | 88.65 196 | 51.75 236 | 95.39 172 | 59.03 292 | 84.77 143 | 91.32 203 |
|
| OMC-MVS | | | 78.67 191 | 77.91 182 | 80.95 241 | 85.76 251 | 57.40 317 | 88.49 267 | 88.67 285 | 73.85 157 | 72.43 199 | 92.10 141 | 49.29 261 | 94.55 203 | 72.73 177 | 77.89 205 | 90.91 210 |
|
| tpm | | | 78.58 192 | 77.03 196 | 83.22 181 | 85.94 248 | 64.56 172 | 83.21 318 | 91.14 186 | 78.31 92 | 73.67 181 | 79.68 320 | 64.01 91 | 92.09 288 | 66.07 244 | 71.26 257 | 93.03 161 |
|
| OpenMVS |  | 70.45 11 | 78.54 193 | 75.92 212 | 86.41 77 | 85.93 249 | 71.68 18 | 92.74 124 | 92.51 125 | 66.49 283 | 64.56 289 | 91.96 143 | 43.88 301 | 98.10 37 | 54.61 307 | 90.65 89 | 89.44 232 |
|
| EPMVS | | | 78.49 194 | 75.98 211 | 86.02 85 | 91.21 127 | 69.68 51 | 80.23 343 | 91.20 181 | 75.25 136 | 72.48 197 | 78.11 331 | 54.65 205 | 93.69 240 | 57.66 298 | 83.04 158 | 94.69 98 |
|
| AUN-MVS | | | 78.37 195 | 77.43 188 | 81.17 231 | 86.60 234 | 57.45 316 | 89.46 250 | 91.16 183 | 74.11 150 | 74.40 173 | 90.49 170 | 55.52 196 | 94.57 200 | 74.73 164 | 60.43 342 | 91.48 197 |
|
| thres100view900 | | | 78.37 195 | 77.01 197 | 82.46 196 | 91.89 107 | 63.21 219 | 91.19 201 | 96.33 1 | 72.28 194 | 70.45 222 | 87.89 212 | 60.31 137 | 95.32 174 | 45.16 347 | 77.58 209 | 88.83 234 |
|
| GA-MVS | | | 78.33 197 | 76.23 207 | 84.65 137 | 83.65 285 | 66.30 136 | 91.44 181 | 90.14 223 | 76.01 126 | 70.32 224 | 84.02 261 | 42.50 306 | 94.72 193 | 70.98 193 | 77.00 217 | 92.94 164 |
|
| cascas | | | 78.18 198 | 75.77 214 | 85.41 106 | 87.14 224 | 69.11 61 | 92.96 117 | 91.15 185 | 66.71 281 | 70.47 220 | 86.07 239 | 37.49 333 | 96.48 124 | 70.15 201 | 79.80 189 | 90.65 212 |
|
| UniMVSNet_NR-MVSNet | | | 78.15 199 | 77.55 186 | 79.98 261 | 84.46 273 | 60.26 281 | 92.25 145 | 93.20 95 | 77.50 107 | 68.88 243 | 86.61 232 | 66.10 67 | 92.13 286 | 66.38 240 | 62.55 320 | 87.54 252 |
|
| thres600view7 | | | 78.00 200 | 76.66 202 | 82.03 216 | 91.93 104 | 63.69 204 | 91.30 194 | 96.33 1 | 72.43 189 | 70.46 221 | 87.89 212 | 60.31 137 | 94.92 188 | 42.64 359 | 76.64 219 | 87.48 254 |
|
| FC-MVSNet-test | | | 77.99 201 | 78.08 178 | 77.70 293 | 84.89 266 | 55.51 331 | 90.27 229 | 93.75 72 | 76.87 113 | 66.80 275 | 87.59 217 | 65.71 72 | 90.23 318 | 62.89 271 | 73.94 236 | 87.37 257 |
|
| Anonymous202405211 | | | 77.96 202 | 75.33 220 | 85.87 90 | 93.73 53 | 64.52 173 | 94.85 44 | 85.36 332 | 62.52 315 | 76.11 155 | 90.18 177 | 29.43 367 | 97.29 76 | 68.51 218 | 77.24 216 | 95.81 49 |
|
| cl22 | | | 77.94 203 | 76.78 200 | 81.42 226 | 87.57 213 | 64.93 170 | 90.67 216 | 88.86 278 | 72.45 188 | 67.63 262 | 82.68 275 | 64.07 90 | 92.91 259 | 71.79 186 | 65.30 294 | 86.44 274 |
|
| XXY-MVS | | | 77.94 203 | 76.44 204 | 82.43 197 | 82.60 296 | 64.44 178 | 92.01 158 | 91.83 154 | 73.59 165 | 70.00 229 | 85.82 242 | 54.43 210 | 94.76 190 | 69.63 204 | 68.02 278 | 88.10 248 |
|
| MS-PatchMatch | | | 77.90 205 | 76.50 203 | 82.12 211 | 85.99 245 | 69.95 41 | 91.75 175 | 92.70 114 | 73.97 154 | 62.58 310 | 84.44 257 | 41.11 311 | 95.78 150 | 63.76 263 | 92.17 66 | 80.62 353 |
|
| FMVSNet3 | | | 77.73 206 | 76.04 210 | 82.80 187 | 91.20 128 | 68.99 65 | 91.87 166 | 91.99 143 | 73.35 168 | 67.04 270 | 83.19 270 | 56.62 183 | 92.14 285 | 59.80 289 | 69.34 264 | 87.28 260 |
|
| miper_ehance_all_eth | | | 77.60 207 | 76.44 204 | 81.09 238 | 85.70 253 | 64.41 181 | 90.65 217 | 88.64 287 | 72.31 192 | 67.37 268 | 82.52 276 | 64.77 84 | 92.64 272 | 70.67 197 | 65.30 294 | 86.24 278 |
|
| UniMVSNet (Re) | | | 77.58 208 | 76.78 200 | 79.98 261 | 84.11 279 | 60.80 268 | 91.76 173 | 93.17 97 | 76.56 122 | 69.93 232 | 84.78 252 | 63.32 107 | 92.36 281 | 64.89 256 | 62.51 322 | 86.78 268 |
|
| PatchmatchNet |  | | 77.46 209 | 74.63 227 | 85.96 87 | 89.55 160 | 70.35 34 | 79.97 348 | 89.55 245 | 72.23 195 | 70.94 215 | 76.91 343 | 57.03 173 | 92.79 264 | 54.27 309 | 81.17 178 | 94.74 97 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| v2v482 | | | 77.42 210 | 75.65 216 | 82.73 189 | 80.38 317 | 67.13 114 | 91.85 168 | 90.23 220 | 75.09 138 | 69.37 234 | 83.39 268 | 53.79 217 | 94.44 207 | 71.77 187 | 65.00 300 | 86.63 272 |
|
| CHOSEN 280x420 | | | 77.35 211 | 76.95 199 | 78.55 285 | 87.07 226 | 62.68 234 | 69.71 380 | 82.95 354 | 68.80 264 | 71.48 212 | 87.27 224 | 66.03 68 | 84.00 364 | 76.47 149 | 82.81 161 | 88.95 233 |
|
| PS-MVSNAJss | | | 77.26 212 | 76.31 206 | 80.13 256 | 80.64 315 | 59.16 298 | 90.63 220 | 91.06 192 | 72.80 180 | 68.58 249 | 84.57 255 | 53.55 219 | 93.96 231 | 72.97 171 | 71.96 251 | 87.27 261 |
|
| gg-mvs-nofinetune | | | 77.18 213 | 74.31 234 | 85.80 94 | 91.42 120 | 68.36 79 | 71.78 374 | 94.72 34 | 49.61 374 | 77.12 147 | 45.92 400 | 77.41 8 | 93.98 230 | 67.62 226 | 93.16 55 | 95.05 83 |
|
| WB-MVSnew | | | 77.14 214 | 76.18 209 | 80.01 260 | 86.18 242 | 63.24 217 | 91.26 195 | 94.11 60 | 71.72 214 | 73.52 182 | 87.29 223 | 45.14 296 | 93.00 252 | 56.98 299 | 79.42 191 | 83.80 314 |
|
| MVP-Stereo | | | 77.12 215 | 76.23 207 | 79.79 268 | 81.72 304 | 66.34 135 | 89.29 252 | 90.88 196 | 70.56 243 | 62.01 313 | 82.88 272 | 49.34 259 | 94.13 218 | 65.55 251 | 93.80 43 | 78.88 367 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| sd_testset | | | 77.08 216 | 75.37 218 | 82.20 207 | 89.25 168 | 62.11 245 | 82.06 326 | 89.09 267 | 76.77 118 | 70.84 217 | 87.12 225 | 41.43 310 | 95.01 183 | 67.23 230 | 74.55 228 | 89.48 230 |
|
| MonoMVSNet | | | 76.99 217 | 75.08 223 | 82.73 189 | 83.32 289 | 63.24 217 | 86.47 296 | 86.37 319 | 79.08 80 | 66.31 277 | 79.30 324 | 49.80 256 | 91.72 295 | 79.37 127 | 65.70 292 | 93.23 153 |
|
| dmvs_re | | | 76.93 218 | 75.36 219 | 81.61 222 | 87.78 211 | 60.71 274 | 80.00 347 | 87.99 304 | 79.42 70 | 69.02 240 | 89.47 188 | 46.77 280 | 94.32 209 | 63.38 265 | 74.45 231 | 89.81 223 |
|
| X-MVStestdata | | | 76.86 219 | 74.13 238 | 85.05 119 | 93.22 65 | 63.78 197 | 92.92 118 | 92.66 118 | 73.99 152 | 78.18 134 | 10.19 415 | 55.25 197 | 97.41 68 | 79.16 130 | 91.58 76 | 93.95 132 |
|
| DU-MVS | | | 76.86 219 | 75.84 213 | 79.91 264 | 82.96 293 | 60.26 281 | 91.26 195 | 91.54 167 | 76.46 123 | 68.88 243 | 86.35 235 | 56.16 188 | 92.13 286 | 66.38 240 | 62.55 320 | 87.35 258 |
|
| Anonymous20240529 | | | 76.84 221 | 74.15 237 | 84.88 124 | 91.02 130 | 64.95 169 | 93.84 80 | 91.09 188 | 53.57 362 | 73.00 185 | 87.42 220 | 35.91 343 | 97.32 74 | 69.14 212 | 72.41 249 | 92.36 178 |
|
| c3_l | | | 76.83 222 | 75.47 217 | 80.93 242 | 85.02 264 | 64.18 191 | 90.39 225 | 88.11 301 | 71.66 215 | 66.65 276 | 81.64 288 | 63.58 103 | 92.56 273 | 69.31 209 | 62.86 317 | 86.04 284 |
|
| WR-MVS | | | 76.76 223 | 75.74 215 | 79.82 267 | 84.60 269 | 62.27 243 | 92.60 134 | 92.51 125 | 76.06 125 | 67.87 259 | 85.34 246 | 56.76 179 | 90.24 317 | 62.20 275 | 63.69 315 | 86.94 266 |
|
| v1144 | | | 76.73 224 | 74.88 224 | 82.27 203 | 80.23 321 | 66.60 129 | 91.68 177 | 90.21 222 | 73.69 162 | 69.06 239 | 81.89 283 | 52.73 228 | 94.40 208 | 69.21 210 | 65.23 297 | 85.80 290 |
|
| IterMVS-LS | | | 76.49 225 | 75.18 222 | 80.43 248 | 84.49 272 | 62.74 232 | 90.64 218 | 88.80 280 | 72.40 190 | 65.16 284 | 81.72 286 | 60.98 131 | 92.27 284 | 67.74 224 | 64.65 305 | 86.29 276 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| V42 | | | 76.46 226 | 74.55 230 | 82.19 208 | 79.14 335 | 67.82 95 | 90.26 230 | 89.42 250 | 73.75 160 | 68.63 248 | 81.89 283 | 51.31 241 | 94.09 220 | 71.69 189 | 64.84 301 | 84.66 307 |
|
| v148 | | | 76.19 227 | 74.47 232 | 81.36 227 | 80.05 323 | 64.44 178 | 91.75 175 | 90.23 220 | 73.68 163 | 67.13 269 | 80.84 303 | 55.92 193 | 93.86 238 | 68.95 214 | 61.73 331 | 85.76 293 |
|
| Effi-MVS+-dtu | | | 76.14 228 | 75.28 221 | 78.72 284 | 83.22 290 | 55.17 333 | 89.87 241 | 87.78 307 | 75.42 133 | 67.98 254 | 81.43 292 | 45.08 297 | 92.52 275 | 75.08 158 | 71.63 252 | 88.48 242 |
|
| cl____ | | | 76.07 229 | 74.67 225 | 80.28 251 | 85.15 260 | 61.76 252 | 90.12 233 | 88.73 282 | 71.16 230 | 65.43 281 | 81.57 290 | 61.15 128 | 92.95 254 | 66.54 237 | 62.17 324 | 86.13 282 |
|
| DIV-MVS_self_test | | | 76.07 229 | 74.67 225 | 80.28 251 | 85.14 261 | 61.75 253 | 90.12 233 | 88.73 282 | 71.16 230 | 65.42 282 | 81.60 289 | 61.15 128 | 92.94 258 | 66.54 237 | 62.16 326 | 86.14 280 |
|
| FMVSNet2 | | | 76.07 229 | 74.01 240 | 82.26 205 | 88.85 178 | 67.66 99 | 91.33 192 | 91.61 165 | 70.84 237 | 65.98 278 | 82.25 279 | 48.03 270 | 92.00 290 | 58.46 294 | 68.73 272 | 87.10 263 |
|
| v144192 | | | 76.05 232 | 74.03 239 | 82.12 211 | 79.50 329 | 66.55 131 | 91.39 186 | 89.71 243 | 72.30 193 | 68.17 252 | 81.33 295 | 51.75 236 | 94.03 228 | 67.94 222 | 64.19 308 | 85.77 291 |
|
| NR-MVSNet | | | 76.05 232 | 74.59 228 | 80.44 247 | 82.96 293 | 62.18 244 | 90.83 211 | 91.73 157 | 77.12 111 | 60.96 316 | 86.35 235 | 59.28 152 | 91.80 293 | 60.74 282 | 61.34 335 | 87.35 258 |
|
| v1192 | | | 75.98 234 | 73.92 241 | 82.15 209 | 79.73 325 | 66.24 138 | 91.22 198 | 89.75 237 | 72.67 182 | 68.49 250 | 81.42 293 | 49.86 254 | 94.27 213 | 67.08 232 | 65.02 299 | 85.95 287 |
|
| FE-MVS | | | 75.97 235 | 73.02 251 | 84.82 126 | 89.78 153 | 65.56 153 | 77.44 359 | 91.07 191 | 64.55 295 | 72.66 191 | 79.85 318 | 46.05 290 | 96.69 114 | 54.97 306 | 80.82 182 | 92.21 187 |
|
| eth_miper_zixun_eth | | | 75.96 236 | 74.40 233 | 80.66 244 | 84.66 268 | 63.02 223 | 89.28 253 | 88.27 297 | 71.88 206 | 65.73 279 | 81.65 287 | 59.45 148 | 92.81 262 | 68.13 219 | 60.53 340 | 86.14 280 |
|
| TranMVSNet+NR-MVSNet | | | 75.86 237 | 74.52 231 | 79.89 265 | 82.44 298 | 60.64 277 | 91.37 189 | 91.37 174 | 76.63 120 | 67.65 261 | 86.21 238 | 52.37 231 | 91.55 300 | 61.84 277 | 60.81 338 | 87.48 254 |
|
| SCA | | | 75.82 238 | 72.76 254 | 85.01 121 | 86.63 233 | 70.08 37 | 81.06 336 | 89.19 259 | 71.60 221 | 70.01 228 | 77.09 341 | 45.53 292 | 90.25 314 | 60.43 284 | 73.27 240 | 94.68 99 |
|
| LPG-MVS_test | | | 75.82 238 | 74.58 229 | 79.56 274 | 84.31 276 | 59.37 294 | 90.44 222 | 89.73 240 | 69.49 254 | 64.86 285 | 88.42 198 | 38.65 319 | 94.30 211 | 72.56 179 | 72.76 244 | 85.01 304 |
|
| GBi-Net | | | 75.65 240 | 73.83 242 | 81.10 235 | 88.85 178 | 65.11 164 | 90.01 237 | 90.32 212 | 70.84 237 | 67.04 270 | 80.25 313 | 48.03 270 | 91.54 301 | 59.80 289 | 69.34 264 | 86.64 269 |
|
| test1 | | | 75.65 240 | 73.83 242 | 81.10 235 | 88.85 178 | 65.11 164 | 90.01 237 | 90.32 212 | 70.84 237 | 67.04 270 | 80.25 313 | 48.03 270 | 91.54 301 | 59.80 289 | 69.34 264 | 86.64 269 |
|
| v1921920 | | | 75.63 242 | 73.49 247 | 82.06 215 | 79.38 330 | 66.35 134 | 91.07 205 | 89.48 246 | 71.98 201 | 67.99 253 | 81.22 298 | 49.16 264 | 93.90 234 | 66.56 236 | 64.56 306 | 85.92 289 |
|
| ACMP | | 71.68 10 | 75.58 243 | 74.23 236 | 79.62 272 | 84.97 265 | 59.64 289 | 90.80 212 | 89.07 269 | 70.39 244 | 62.95 306 | 87.30 222 | 38.28 323 | 93.87 236 | 72.89 172 | 71.45 255 | 85.36 300 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| v8 | | | 75.35 244 | 73.26 249 | 81.61 222 | 80.67 314 | 66.82 122 | 89.54 247 | 89.27 255 | 71.65 216 | 63.30 302 | 80.30 312 | 54.99 203 | 94.06 223 | 67.33 229 | 62.33 323 | 83.94 312 |
|
| tpm cat1 | | | 75.30 245 | 72.21 263 | 84.58 141 | 88.52 184 | 67.77 96 | 78.16 357 | 88.02 303 | 61.88 323 | 68.45 251 | 76.37 347 | 60.65 134 | 94.03 228 | 53.77 312 | 74.11 234 | 91.93 192 |
|
| PLC |  | 68.80 14 | 75.23 246 | 73.68 245 | 79.86 266 | 92.93 76 | 58.68 303 | 90.64 218 | 88.30 295 | 60.90 328 | 64.43 293 | 90.53 168 | 42.38 307 | 94.57 200 | 56.52 300 | 76.54 220 | 86.33 275 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| v1240 | | | 75.21 247 | 72.98 252 | 81.88 217 | 79.20 332 | 66.00 142 | 90.75 214 | 89.11 266 | 71.63 220 | 67.41 266 | 81.22 298 | 47.36 278 | 93.87 236 | 65.46 252 | 64.72 304 | 85.77 291 |
|
| Fast-Effi-MVS+-dtu | | | 75.04 248 | 73.37 248 | 80.07 257 | 80.86 310 | 59.52 292 | 91.20 200 | 85.38 331 | 71.90 204 | 65.20 283 | 84.84 251 | 41.46 309 | 92.97 253 | 66.50 239 | 72.96 243 | 87.73 251 |
|
| dp | | | 75.01 249 | 72.09 264 | 83.76 163 | 89.28 167 | 66.22 139 | 79.96 349 | 89.75 237 | 71.16 230 | 67.80 260 | 77.19 340 | 51.81 234 | 92.54 274 | 50.39 320 | 71.44 256 | 92.51 176 |
|
| TAPA-MVS | | 70.22 12 | 74.94 250 | 73.53 246 | 79.17 279 | 90.40 142 | 52.07 346 | 89.19 256 | 89.61 244 | 62.69 314 | 70.07 227 | 92.67 126 | 48.89 267 | 94.32 209 | 38.26 373 | 79.97 187 | 91.12 208 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| v10 | | | 74.77 251 | 72.54 260 | 81.46 225 | 80.33 319 | 66.71 126 | 89.15 257 | 89.08 268 | 70.94 235 | 63.08 305 | 79.86 317 | 52.52 229 | 94.04 226 | 65.70 248 | 62.17 324 | 83.64 315 |
|
| XVG-OURS-SEG-HR | | | 74.70 252 | 73.08 250 | 79.57 273 | 78.25 347 | 57.33 318 | 80.49 339 | 87.32 310 | 63.22 307 | 68.76 246 | 90.12 183 | 44.89 298 | 91.59 299 | 70.55 199 | 74.09 235 | 89.79 224 |
|
| ACMM | | 69.62 13 | 74.34 253 | 72.73 256 | 79.17 279 | 84.25 278 | 57.87 309 | 90.36 226 | 89.93 231 | 63.17 309 | 65.64 280 | 86.04 241 | 37.79 331 | 94.10 219 | 65.89 245 | 71.52 254 | 85.55 296 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| CNLPA | | | 74.31 254 | 72.30 262 | 80.32 249 | 91.49 119 | 61.66 255 | 90.85 210 | 80.72 360 | 56.67 354 | 63.85 297 | 90.64 165 | 46.75 281 | 90.84 309 | 53.79 311 | 75.99 224 | 88.47 243 |
|
| XVG-OURS | | | 74.25 255 | 72.46 261 | 79.63 271 | 78.45 345 | 57.59 314 | 80.33 341 | 87.39 309 | 63.86 300 | 68.76 246 | 89.62 187 | 40.50 313 | 91.72 295 | 69.00 213 | 74.25 233 | 89.58 227 |
|
| test_fmvs1 | | | 74.07 256 | 73.69 244 | 75.22 316 | 78.91 339 | 47.34 372 | 89.06 260 | 74.69 375 | 63.68 302 | 79.41 119 | 91.59 153 | 24.36 377 | 87.77 341 | 85.22 78 | 76.26 222 | 90.55 215 |
|
| CVMVSNet | | | 74.04 257 | 74.27 235 | 73.33 331 | 85.33 256 | 43.94 385 | 89.53 248 | 88.39 292 | 54.33 361 | 70.37 223 | 90.13 181 | 49.17 263 | 84.05 362 | 61.83 278 | 79.36 193 | 91.99 191 |
|
| Baseline_NR-MVSNet | | | 73.99 258 | 72.83 253 | 77.48 297 | 80.78 312 | 59.29 297 | 91.79 170 | 84.55 340 | 68.85 263 | 68.99 241 | 80.70 304 | 56.16 188 | 92.04 289 | 62.67 272 | 60.98 337 | 81.11 347 |
|
| pmmvs4 | | | 73.92 259 | 71.81 268 | 80.25 253 | 79.17 333 | 65.24 160 | 87.43 285 | 87.26 312 | 67.64 275 | 63.46 300 | 83.91 263 | 48.96 266 | 91.53 304 | 62.94 269 | 65.49 293 | 83.96 311 |
|
| D2MVS | | | 73.80 260 | 72.02 265 | 79.15 281 | 79.15 334 | 62.97 224 | 88.58 266 | 90.07 225 | 72.94 175 | 59.22 326 | 78.30 328 | 42.31 308 | 92.70 268 | 65.59 250 | 72.00 250 | 81.79 342 |
|
| CR-MVSNet | | | 73.79 261 | 70.82 276 | 82.70 191 | 83.15 291 | 67.96 92 | 70.25 377 | 84.00 345 | 73.67 164 | 69.97 230 | 72.41 363 | 57.82 166 | 89.48 326 | 52.99 315 | 73.13 241 | 90.64 213 |
|
| test_djsdf | | | 73.76 262 | 72.56 259 | 77.39 299 | 77.00 357 | 53.93 339 | 89.07 258 | 90.69 199 | 65.80 287 | 63.92 295 | 82.03 282 | 43.14 305 | 92.67 269 | 72.83 173 | 68.53 273 | 85.57 295 |
|
| pmmvs5 | | | 73.35 263 | 71.52 270 | 78.86 283 | 78.64 343 | 60.61 278 | 91.08 203 | 86.90 314 | 67.69 272 | 63.32 301 | 83.64 264 | 44.33 300 | 90.53 311 | 62.04 276 | 66.02 290 | 85.46 298 |
|
| Anonymous20231211 | | | 73.08 264 | 70.39 280 | 81.13 233 | 90.62 138 | 63.33 215 | 91.40 184 | 90.06 227 | 51.84 367 | 64.46 292 | 80.67 306 | 36.49 341 | 94.07 222 | 63.83 262 | 64.17 309 | 85.98 286 |
|
| tt0805 | | | 73.07 265 | 70.73 277 | 80.07 257 | 78.37 346 | 57.05 320 | 87.78 279 | 92.18 138 | 61.23 327 | 67.04 270 | 86.49 234 | 31.35 361 | 94.58 198 | 65.06 255 | 67.12 283 | 88.57 240 |
|
| miper_lstm_enhance | | | 73.05 266 | 71.73 269 | 77.03 303 | 83.80 282 | 58.32 306 | 81.76 327 | 88.88 276 | 69.80 252 | 61.01 315 | 78.23 330 | 57.19 171 | 87.51 345 | 65.34 253 | 59.53 345 | 85.27 303 |
|
| jajsoiax | | | 73.05 266 | 71.51 271 | 77.67 294 | 77.46 354 | 54.83 335 | 88.81 262 | 90.04 228 | 69.13 261 | 62.85 308 | 83.51 266 | 31.16 362 | 92.75 265 | 70.83 194 | 69.80 260 | 85.43 299 |
|
| LCM-MVSNet-Re | | | 72.93 268 | 71.84 267 | 76.18 312 | 88.49 185 | 48.02 367 | 80.07 346 | 70.17 387 | 73.96 155 | 52.25 357 | 80.09 316 | 49.98 252 | 88.24 335 | 67.35 227 | 84.23 151 | 92.28 182 |
|
| pm-mvs1 | | | 72.89 269 | 71.09 273 | 78.26 289 | 79.10 336 | 57.62 313 | 90.80 212 | 89.30 254 | 67.66 273 | 62.91 307 | 81.78 285 | 49.11 265 | 92.95 254 | 60.29 286 | 58.89 348 | 84.22 310 |
|
| tpmvs | | | 72.88 270 | 69.76 286 | 82.22 206 | 90.98 131 | 67.05 116 | 78.22 356 | 88.30 295 | 63.10 310 | 64.35 294 | 74.98 354 | 55.09 202 | 94.27 213 | 43.25 353 | 69.57 263 | 85.34 301 |
|
| test0.0.03 1 | | | 72.76 271 | 72.71 257 | 72.88 335 | 80.25 320 | 47.99 368 | 91.22 198 | 89.45 248 | 71.51 225 | 62.51 311 | 87.66 215 | 53.83 215 | 85.06 358 | 50.16 322 | 67.84 281 | 85.58 294 |
|
| UniMVSNet_ETH3D | | | 72.74 272 | 70.53 279 | 79.36 276 | 78.62 344 | 56.64 324 | 85.01 302 | 89.20 258 | 63.77 301 | 64.84 287 | 84.44 257 | 34.05 350 | 91.86 292 | 63.94 261 | 70.89 259 | 89.57 228 |
|
| mvs_tets | | | 72.71 273 | 71.11 272 | 77.52 295 | 77.41 355 | 54.52 337 | 88.45 268 | 89.76 236 | 68.76 266 | 62.70 309 | 83.26 269 | 29.49 366 | 92.71 266 | 70.51 200 | 69.62 262 | 85.34 301 |
|
| FMVSNet1 | | | 72.71 273 | 69.91 284 | 81.10 235 | 83.60 286 | 65.11 164 | 90.01 237 | 90.32 212 | 63.92 299 | 63.56 299 | 80.25 313 | 36.35 342 | 91.54 301 | 54.46 308 | 66.75 286 | 86.64 269 |
|
| test_fmvs1_n | | | 72.69 275 | 71.92 266 | 74.99 319 | 71.15 377 | 47.08 374 | 87.34 287 | 75.67 370 | 63.48 304 | 78.08 136 | 91.17 160 | 20.16 389 | 87.87 338 | 84.65 87 | 75.57 226 | 90.01 221 |
|
| IterMVS | | | 72.65 276 | 70.83 274 | 78.09 291 | 82.17 300 | 62.96 225 | 87.64 283 | 86.28 321 | 71.56 223 | 60.44 319 | 78.85 326 | 45.42 294 | 86.66 349 | 63.30 267 | 61.83 328 | 84.65 308 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| myMVS_eth3d | | | 72.58 277 | 72.74 255 | 72.10 343 | 87.87 207 | 49.45 361 | 88.07 272 | 89.01 271 | 72.91 177 | 63.11 303 | 88.10 207 | 63.63 98 | 85.54 354 | 32.73 388 | 69.23 267 | 81.32 345 |
|
| PatchMatch-RL | | | 72.06 278 | 69.98 281 | 78.28 288 | 89.51 161 | 55.70 330 | 83.49 311 | 83.39 352 | 61.24 326 | 63.72 298 | 82.76 273 | 34.77 347 | 93.03 251 | 53.37 314 | 77.59 208 | 86.12 283 |
|
| PVSNet_0 | | 68.08 15 | 71.81 279 | 68.32 295 | 82.27 203 | 84.68 267 | 62.31 242 | 88.68 264 | 90.31 215 | 75.84 127 | 57.93 337 | 80.65 307 | 37.85 330 | 94.19 216 | 69.94 202 | 29.05 403 | 90.31 217 |
|
| MIMVSNet | | | 71.64 280 | 68.44 293 | 81.23 230 | 81.97 303 | 64.44 178 | 73.05 371 | 88.80 280 | 69.67 253 | 64.59 288 | 74.79 356 | 32.79 353 | 87.82 339 | 53.99 310 | 76.35 221 | 91.42 198 |
|
| test_vis1_n | | | 71.63 281 | 70.73 277 | 74.31 326 | 69.63 383 | 47.29 373 | 86.91 291 | 72.11 381 | 63.21 308 | 75.18 166 | 90.17 178 | 20.40 387 | 85.76 353 | 84.59 88 | 74.42 232 | 89.87 222 |
|
| IterMVS-SCA-FT | | | 71.55 282 | 69.97 282 | 76.32 310 | 81.48 306 | 60.67 276 | 87.64 283 | 85.99 326 | 66.17 285 | 59.50 324 | 78.88 325 | 45.53 292 | 83.65 366 | 62.58 273 | 61.93 327 | 84.63 309 |
|
| v7n | | | 71.31 283 | 68.65 290 | 79.28 277 | 76.40 359 | 60.77 270 | 86.71 294 | 89.45 248 | 64.17 298 | 58.77 331 | 78.24 329 | 44.59 299 | 93.54 242 | 57.76 296 | 61.75 330 | 83.52 318 |
|
| anonymousdsp | | | 71.14 284 | 69.37 288 | 76.45 309 | 72.95 372 | 54.71 336 | 84.19 306 | 88.88 276 | 61.92 322 | 62.15 312 | 79.77 319 | 38.14 326 | 91.44 306 | 68.90 215 | 67.45 282 | 83.21 324 |
|
| F-COLMAP | | | 70.66 285 | 68.44 293 | 77.32 300 | 86.37 239 | 55.91 328 | 88.00 274 | 86.32 320 | 56.94 352 | 57.28 341 | 88.07 209 | 33.58 351 | 92.49 276 | 51.02 318 | 68.37 274 | 83.55 316 |
|
| WR-MVS_H | | | 70.59 286 | 69.94 283 | 72.53 337 | 81.03 309 | 51.43 349 | 87.35 286 | 92.03 142 | 67.38 276 | 60.23 321 | 80.70 304 | 55.84 194 | 83.45 368 | 46.33 343 | 58.58 350 | 82.72 331 |
|
| CP-MVSNet | | | 70.50 287 | 69.91 284 | 72.26 340 | 80.71 313 | 51.00 353 | 87.23 288 | 90.30 216 | 67.84 271 | 59.64 323 | 82.69 274 | 50.23 251 | 82.30 376 | 51.28 317 | 59.28 346 | 83.46 320 |
|
| RPMNet | | | 70.42 288 | 65.68 308 | 84.63 139 | 83.15 291 | 67.96 92 | 70.25 377 | 90.45 206 | 46.83 383 | 69.97 230 | 65.10 383 | 56.48 187 | 95.30 177 | 35.79 378 | 73.13 241 | 90.64 213 |
|
| testing3 | | | 70.38 289 | 70.83 274 | 69.03 355 | 85.82 250 | 43.93 386 | 90.72 215 | 90.56 205 | 68.06 270 | 60.24 320 | 86.82 231 | 64.83 82 | 84.12 360 | 26.33 396 | 64.10 310 | 79.04 366 |
|
| tfpnnormal | | | 70.10 290 | 67.36 299 | 78.32 287 | 83.45 288 | 60.97 266 | 88.85 261 | 92.77 112 | 64.85 294 | 60.83 317 | 78.53 327 | 43.52 303 | 93.48 244 | 31.73 391 | 61.70 332 | 80.52 354 |
|
| TransMVSNet (Re) | | | 70.07 291 | 67.66 297 | 77.31 301 | 80.62 316 | 59.13 299 | 91.78 172 | 84.94 336 | 65.97 286 | 60.08 322 | 80.44 309 | 50.78 245 | 91.87 291 | 48.84 329 | 45.46 378 | 80.94 349 |
|
| CL-MVSNet_self_test | | | 69.92 292 | 68.09 296 | 75.41 315 | 73.25 371 | 55.90 329 | 90.05 236 | 89.90 232 | 69.96 249 | 61.96 314 | 76.54 344 | 51.05 244 | 87.64 342 | 49.51 326 | 50.59 370 | 82.70 333 |
|
| DP-MVS | | | 69.90 293 | 66.48 301 | 80.14 255 | 95.36 28 | 62.93 226 | 89.56 245 | 76.11 368 | 50.27 373 | 57.69 339 | 85.23 247 | 39.68 315 | 95.73 154 | 33.35 383 | 71.05 258 | 81.78 343 |
|
| PS-CasMVS | | | 69.86 294 | 69.13 289 | 72.07 344 | 80.35 318 | 50.57 355 | 87.02 290 | 89.75 237 | 67.27 277 | 59.19 327 | 82.28 278 | 46.58 283 | 82.24 377 | 50.69 319 | 59.02 347 | 83.39 322 |
|
| Syy-MVS | | | 69.65 295 | 69.52 287 | 70.03 351 | 87.87 207 | 43.21 387 | 88.07 272 | 89.01 271 | 72.91 177 | 63.11 303 | 88.10 207 | 45.28 295 | 85.54 354 | 22.07 401 | 69.23 267 | 81.32 345 |
|
| MSDG | | | 69.54 296 | 65.73 307 | 80.96 240 | 85.11 263 | 63.71 202 | 84.19 306 | 83.28 353 | 56.95 351 | 54.50 348 | 84.03 260 | 31.50 359 | 96.03 144 | 42.87 357 | 69.13 269 | 83.14 326 |
|
| PEN-MVS | | | 69.46 297 | 68.56 291 | 72.17 342 | 79.27 331 | 49.71 359 | 86.90 292 | 89.24 256 | 67.24 280 | 59.08 328 | 82.51 277 | 47.23 279 | 83.54 367 | 48.42 331 | 57.12 351 | 83.25 323 |
|
| LS3D | | | 69.17 298 | 66.40 303 | 77.50 296 | 91.92 105 | 56.12 327 | 85.12 301 | 80.37 361 | 46.96 381 | 56.50 343 | 87.51 219 | 37.25 334 | 93.71 239 | 32.52 390 | 79.40 192 | 82.68 334 |
|
| PatchT | | | 69.11 299 | 65.37 312 | 80.32 249 | 82.07 302 | 63.68 205 | 67.96 387 | 87.62 308 | 50.86 371 | 69.37 234 | 65.18 382 | 57.09 172 | 88.53 332 | 41.59 362 | 66.60 287 | 88.74 237 |
|
| KD-MVS_2432*1600 | | | 69.03 300 | 66.37 304 | 77.01 304 | 85.56 254 | 61.06 264 | 81.44 332 | 90.25 218 | 67.27 277 | 58.00 335 | 76.53 345 | 54.49 207 | 87.63 343 | 48.04 333 | 35.77 394 | 82.34 337 |
|
| miper_refine_blended | | | 69.03 300 | 66.37 304 | 77.01 304 | 85.56 254 | 61.06 264 | 81.44 332 | 90.25 218 | 67.27 277 | 58.00 335 | 76.53 345 | 54.49 207 | 87.63 343 | 48.04 333 | 35.77 394 | 82.34 337 |
|
| mvsany_test1 | | | 68.77 302 | 68.56 291 | 69.39 353 | 73.57 370 | 45.88 381 | 80.93 337 | 60.88 401 | 59.65 337 | 71.56 211 | 90.26 176 | 43.22 304 | 75.05 388 | 74.26 166 | 62.70 319 | 87.25 262 |
|
| ACMH | | 63.93 17 | 68.62 303 | 64.81 314 | 80.03 259 | 85.22 259 | 63.25 216 | 87.72 280 | 84.66 338 | 60.83 329 | 51.57 361 | 79.43 323 | 27.29 373 | 94.96 185 | 41.76 360 | 64.84 301 | 81.88 341 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| EG-PatchMatch MVS | | | 68.55 304 | 65.41 311 | 77.96 292 | 78.69 342 | 62.93 226 | 89.86 242 | 89.17 260 | 60.55 330 | 50.27 366 | 77.73 335 | 22.60 383 | 94.06 223 | 47.18 339 | 72.65 246 | 76.88 376 |
|
| ADS-MVSNet | | | 68.54 305 | 64.38 321 | 81.03 239 | 88.06 201 | 66.90 121 | 68.01 385 | 84.02 344 | 57.57 345 | 64.48 290 | 69.87 373 | 38.68 317 | 89.21 328 | 40.87 364 | 67.89 279 | 86.97 264 |
|
| DTE-MVSNet | | | 68.46 306 | 67.33 300 | 71.87 346 | 77.94 351 | 49.00 365 | 86.16 298 | 88.58 289 | 66.36 284 | 58.19 332 | 82.21 280 | 46.36 284 | 83.87 365 | 44.97 350 | 55.17 358 | 82.73 330 |
|
| our_test_3 | | | 68.29 307 | 64.69 316 | 79.11 282 | 78.92 337 | 64.85 171 | 88.40 269 | 85.06 334 | 60.32 333 | 52.68 355 | 76.12 349 | 40.81 312 | 89.80 325 | 44.25 352 | 55.65 356 | 82.67 335 |
|
| Patchmatch-RL test | | | 68.17 308 | 64.49 319 | 79.19 278 | 71.22 376 | 53.93 339 | 70.07 379 | 71.54 385 | 69.22 258 | 56.79 342 | 62.89 387 | 56.58 184 | 88.61 329 | 69.53 206 | 52.61 365 | 95.03 85 |
|
| XVG-ACMP-BASELINE | | | 68.04 309 | 65.53 310 | 75.56 314 | 74.06 369 | 52.37 344 | 78.43 353 | 85.88 327 | 62.03 320 | 58.91 330 | 81.21 300 | 20.38 388 | 91.15 308 | 60.69 283 | 68.18 275 | 83.16 325 |
|
| FMVSNet5 | | | 68.04 309 | 65.66 309 | 75.18 318 | 84.43 274 | 57.89 308 | 83.54 310 | 86.26 322 | 61.83 324 | 53.64 353 | 73.30 359 | 37.15 337 | 85.08 357 | 48.99 328 | 61.77 329 | 82.56 336 |
|
| ppachtmachnet_test | | | 67.72 311 | 63.70 323 | 79.77 269 | 78.92 337 | 66.04 141 | 88.68 264 | 82.90 355 | 60.11 335 | 55.45 345 | 75.96 350 | 39.19 316 | 90.55 310 | 39.53 368 | 52.55 366 | 82.71 332 |
|
| ACMH+ | | 65.35 16 | 67.65 312 | 64.55 317 | 76.96 306 | 84.59 270 | 57.10 319 | 88.08 271 | 80.79 359 | 58.59 343 | 53.00 354 | 81.09 302 | 26.63 375 | 92.95 254 | 46.51 341 | 61.69 333 | 80.82 350 |
|
| pmmvs6 | | | 67.57 313 | 64.76 315 | 76.00 313 | 72.82 374 | 53.37 341 | 88.71 263 | 86.78 318 | 53.19 363 | 57.58 340 | 78.03 332 | 35.33 346 | 92.41 278 | 55.56 304 | 54.88 360 | 82.21 339 |
|
| Anonymous20231206 | | | 67.53 314 | 65.78 306 | 72.79 336 | 74.95 365 | 47.59 370 | 88.23 270 | 87.32 310 | 61.75 325 | 58.07 334 | 77.29 338 | 37.79 331 | 87.29 347 | 42.91 355 | 63.71 314 | 83.48 319 |
|
| Patchmtry | | | 67.53 314 | 63.93 322 | 78.34 286 | 82.12 301 | 64.38 182 | 68.72 382 | 84.00 345 | 48.23 380 | 59.24 325 | 72.41 363 | 57.82 166 | 89.27 327 | 46.10 344 | 56.68 355 | 81.36 344 |
|
| USDC | | | 67.43 316 | 64.51 318 | 76.19 311 | 77.94 351 | 55.29 332 | 78.38 354 | 85.00 335 | 73.17 170 | 48.36 374 | 80.37 310 | 21.23 385 | 92.48 277 | 52.15 316 | 64.02 312 | 80.81 351 |
|
| ADS-MVSNet2 | | | 66.90 317 | 63.44 325 | 77.26 302 | 88.06 201 | 60.70 275 | 68.01 385 | 75.56 372 | 57.57 345 | 64.48 290 | 69.87 373 | 38.68 317 | 84.10 361 | 40.87 364 | 67.89 279 | 86.97 264 |
|
| CMPMVS |  | 48.56 21 | 66.77 318 | 64.41 320 | 73.84 328 | 70.65 380 | 50.31 356 | 77.79 358 | 85.73 330 | 45.54 385 | 44.76 384 | 82.14 281 | 35.40 345 | 90.14 320 | 63.18 268 | 74.54 230 | 81.07 348 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| OpenMVS_ROB |  | 61.12 18 | 66.39 319 | 62.92 328 | 76.80 308 | 76.51 358 | 57.77 310 | 89.22 254 | 83.41 351 | 55.48 358 | 53.86 352 | 77.84 333 | 26.28 376 | 93.95 232 | 34.90 380 | 68.76 271 | 78.68 369 |
|
| LTVRE_ROB | | 59.60 19 | 66.27 320 | 63.54 324 | 74.45 323 | 84.00 281 | 51.55 348 | 67.08 389 | 83.53 349 | 58.78 341 | 54.94 347 | 80.31 311 | 34.54 348 | 93.23 248 | 40.64 366 | 68.03 277 | 78.58 370 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| JIA-IIPM | | | 66.06 321 | 62.45 331 | 76.88 307 | 81.42 308 | 54.45 338 | 57.49 401 | 88.67 285 | 49.36 375 | 63.86 296 | 46.86 399 | 56.06 191 | 90.25 314 | 49.53 325 | 68.83 270 | 85.95 287 |
|
| Patchmatch-test | | | 65.86 322 | 60.94 337 | 80.62 246 | 83.75 283 | 58.83 301 | 58.91 400 | 75.26 374 | 44.50 388 | 50.95 365 | 77.09 341 | 58.81 157 | 87.90 337 | 35.13 379 | 64.03 311 | 95.12 80 |
|
| UnsupCasMVSNet_eth | | | 65.79 323 | 63.10 326 | 73.88 327 | 70.71 379 | 50.29 357 | 81.09 335 | 89.88 233 | 72.58 184 | 49.25 371 | 74.77 357 | 32.57 355 | 87.43 346 | 55.96 303 | 41.04 385 | 83.90 313 |
|
| test_fmvs2 | | | 65.78 324 | 64.84 313 | 68.60 357 | 66.54 389 | 41.71 389 | 83.27 315 | 69.81 388 | 54.38 360 | 67.91 256 | 84.54 256 | 15.35 394 | 81.22 381 | 75.65 153 | 66.16 289 | 82.88 327 |
|
| dmvs_testset | | | 65.55 325 | 66.45 302 | 62.86 369 | 79.87 324 | 22.35 415 | 76.55 361 | 71.74 383 | 77.42 110 | 55.85 344 | 87.77 214 | 51.39 240 | 80.69 382 | 31.51 394 | 65.92 291 | 85.55 296 |
|
| pmmvs-eth3d | | | 65.53 326 | 62.32 332 | 75.19 317 | 69.39 384 | 59.59 290 | 82.80 323 | 83.43 350 | 62.52 315 | 51.30 363 | 72.49 361 | 32.86 352 | 87.16 348 | 55.32 305 | 50.73 369 | 78.83 368 |
|
| mamv4 | | | 65.18 327 | 67.43 298 | 58.44 373 | 77.88 353 | 49.36 364 | 69.40 381 | 70.99 386 | 48.31 379 | 57.78 338 | 85.53 245 | 59.01 155 | 51.88 411 | 73.67 168 | 64.32 307 | 74.07 381 |
|
| SixPastTwentyTwo | | | 64.92 328 | 61.78 335 | 74.34 325 | 78.74 341 | 49.76 358 | 83.42 314 | 79.51 364 | 62.86 311 | 50.27 366 | 77.35 336 | 30.92 364 | 90.49 312 | 45.89 345 | 47.06 375 | 82.78 328 |
|
| OurMVSNet-221017-0 | | | 64.68 329 | 62.17 333 | 72.21 341 | 76.08 362 | 47.35 371 | 80.67 338 | 81.02 358 | 56.19 355 | 51.60 360 | 79.66 321 | 27.05 374 | 88.56 331 | 53.60 313 | 53.63 363 | 80.71 352 |
|
| test_0402 | | | 64.54 330 | 61.09 336 | 74.92 320 | 84.10 280 | 60.75 272 | 87.95 275 | 79.71 363 | 52.03 365 | 52.41 356 | 77.20 339 | 32.21 357 | 91.64 297 | 23.14 399 | 61.03 336 | 72.36 387 |
|
| testgi | | | 64.48 331 | 62.87 329 | 69.31 354 | 71.24 375 | 40.62 392 | 85.49 299 | 79.92 362 | 65.36 291 | 54.18 350 | 83.49 267 | 23.74 380 | 84.55 359 | 41.60 361 | 60.79 339 | 82.77 329 |
|
| RPSCF | | | 64.24 332 | 61.98 334 | 71.01 349 | 76.10 361 | 45.00 382 | 75.83 366 | 75.94 369 | 46.94 382 | 58.96 329 | 84.59 254 | 31.40 360 | 82.00 378 | 47.76 337 | 60.33 344 | 86.04 284 |
|
| EU-MVSNet | | | 64.01 333 | 63.01 327 | 67.02 363 | 74.40 368 | 38.86 398 | 83.27 315 | 86.19 324 | 45.11 386 | 54.27 349 | 81.15 301 | 36.91 340 | 80.01 384 | 48.79 330 | 57.02 352 | 82.19 340 |
|
| test20.03 | | | 63.83 334 | 62.65 330 | 67.38 362 | 70.58 381 | 39.94 394 | 86.57 295 | 84.17 342 | 63.29 306 | 51.86 359 | 77.30 337 | 37.09 338 | 82.47 374 | 38.87 372 | 54.13 362 | 79.73 360 |
|
| MDA-MVSNet_test_wron | | | 63.78 335 | 60.16 339 | 74.64 321 | 78.15 349 | 60.41 279 | 83.49 311 | 84.03 343 | 56.17 357 | 39.17 394 | 71.59 369 | 37.22 335 | 83.24 371 | 42.87 357 | 48.73 372 | 80.26 357 |
|
| YYNet1 | | | 63.76 336 | 60.14 340 | 74.62 322 | 78.06 350 | 60.19 284 | 83.46 313 | 83.99 347 | 56.18 356 | 39.25 393 | 71.56 370 | 37.18 336 | 83.34 369 | 42.90 356 | 48.70 373 | 80.32 356 |
|
| K. test v3 | | | 63.09 337 | 59.61 342 | 73.53 330 | 76.26 360 | 49.38 363 | 83.27 315 | 77.15 367 | 64.35 297 | 47.77 376 | 72.32 365 | 28.73 368 | 87.79 340 | 49.93 324 | 36.69 392 | 83.41 321 |
|
| COLMAP_ROB |  | 57.96 20 | 62.98 338 | 59.65 341 | 72.98 334 | 81.44 307 | 53.00 343 | 83.75 309 | 75.53 373 | 48.34 378 | 48.81 373 | 81.40 294 | 24.14 378 | 90.30 313 | 32.95 385 | 60.52 341 | 75.65 379 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| Anonymous20240521 | | | 62.09 339 | 59.08 343 | 71.10 348 | 67.19 387 | 48.72 366 | 83.91 308 | 85.23 333 | 50.38 372 | 47.84 375 | 71.22 372 | 20.74 386 | 85.51 356 | 46.47 342 | 58.75 349 | 79.06 365 |
|
| AllTest | | | 61.66 340 | 58.06 345 | 72.46 338 | 79.57 326 | 51.42 350 | 80.17 344 | 68.61 390 | 51.25 369 | 45.88 378 | 81.23 296 | 19.86 390 | 86.58 350 | 38.98 370 | 57.01 353 | 79.39 362 |
|
| UnsupCasMVSNet_bld | | | 61.60 341 | 57.71 346 | 73.29 332 | 68.73 385 | 51.64 347 | 78.61 352 | 89.05 270 | 57.20 350 | 46.11 377 | 61.96 390 | 28.70 369 | 88.60 330 | 50.08 323 | 38.90 390 | 79.63 361 |
|
| MDA-MVSNet-bldmvs | | | 61.54 342 | 57.70 347 | 73.05 333 | 79.53 328 | 57.00 323 | 83.08 319 | 81.23 357 | 57.57 345 | 34.91 398 | 72.45 362 | 32.79 353 | 86.26 352 | 35.81 377 | 41.95 383 | 75.89 378 |
|
| mvs5depth | | | 61.03 343 | 57.65 348 | 71.18 347 | 67.16 388 | 47.04 376 | 72.74 372 | 77.49 365 | 57.47 348 | 60.52 318 | 72.53 360 | 22.84 382 | 88.38 333 | 49.15 327 | 38.94 389 | 78.11 373 |
|
| KD-MVS_self_test | | | 60.87 344 | 58.60 344 | 67.68 360 | 66.13 390 | 39.93 395 | 75.63 368 | 84.70 337 | 57.32 349 | 49.57 369 | 68.45 377 | 29.55 365 | 82.87 372 | 48.09 332 | 47.94 374 | 80.25 358 |
|
| kuosan | | | 60.86 345 | 60.24 338 | 62.71 370 | 81.57 305 | 46.43 378 | 75.70 367 | 85.88 327 | 57.98 344 | 48.95 372 | 69.53 375 | 58.42 159 | 76.53 386 | 28.25 395 | 35.87 393 | 65.15 394 |
|
| TinyColmap | | | 60.32 346 | 56.42 353 | 72.00 345 | 78.78 340 | 53.18 342 | 78.36 355 | 75.64 371 | 52.30 364 | 41.59 392 | 75.82 352 | 14.76 397 | 88.35 334 | 35.84 376 | 54.71 361 | 74.46 380 |
|
| MVS-HIRNet | | | 60.25 347 | 55.55 354 | 74.35 324 | 84.37 275 | 56.57 325 | 71.64 375 | 74.11 376 | 34.44 397 | 45.54 382 | 42.24 405 | 31.11 363 | 89.81 323 | 40.36 367 | 76.10 223 | 76.67 377 |
|
| MIMVSNet1 | | | 60.16 348 | 57.33 349 | 68.67 356 | 69.71 382 | 44.13 384 | 78.92 351 | 84.21 341 | 55.05 359 | 44.63 385 | 71.85 367 | 23.91 379 | 81.54 380 | 32.63 389 | 55.03 359 | 80.35 355 |
|
| PM-MVS | | | 59.40 349 | 56.59 351 | 67.84 358 | 63.63 393 | 41.86 388 | 76.76 360 | 63.22 398 | 59.01 340 | 51.07 364 | 72.27 366 | 11.72 401 | 83.25 370 | 61.34 279 | 50.28 371 | 78.39 371 |
|
| new-patchmatchnet | | | 59.30 350 | 56.48 352 | 67.79 359 | 65.86 391 | 44.19 383 | 82.47 324 | 81.77 356 | 59.94 336 | 43.65 388 | 66.20 381 | 27.67 372 | 81.68 379 | 39.34 369 | 41.40 384 | 77.50 375 |
|
| test_vis1_rt | | | 59.09 351 | 57.31 350 | 64.43 366 | 68.44 386 | 46.02 380 | 83.05 321 | 48.63 410 | 51.96 366 | 49.57 369 | 63.86 386 | 16.30 392 | 80.20 383 | 71.21 192 | 62.79 318 | 67.07 393 |
|
| test_fmvs3 | | | 56.82 352 | 54.86 356 | 62.69 371 | 53.59 404 | 35.47 401 | 75.87 365 | 65.64 395 | 43.91 389 | 55.10 346 | 71.43 371 | 6.91 409 | 74.40 391 | 68.64 217 | 52.63 364 | 78.20 372 |
|
| DSMNet-mixed | | | 56.78 353 | 54.44 357 | 63.79 367 | 63.21 394 | 29.44 410 | 64.43 392 | 64.10 397 | 42.12 394 | 51.32 362 | 71.60 368 | 31.76 358 | 75.04 389 | 36.23 375 | 65.20 298 | 86.87 267 |
|
| pmmvs3 | | | 55.51 354 | 51.50 360 | 67.53 361 | 57.90 402 | 50.93 354 | 80.37 340 | 73.66 377 | 40.63 395 | 44.15 387 | 64.75 384 | 16.30 392 | 78.97 385 | 44.77 351 | 40.98 387 | 72.69 385 |
|
| TDRefinement | | | 55.28 355 | 51.58 359 | 66.39 364 | 59.53 401 | 46.15 379 | 76.23 363 | 72.80 378 | 44.60 387 | 42.49 390 | 76.28 348 | 15.29 395 | 82.39 375 | 33.20 384 | 43.75 380 | 70.62 389 |
|
| dongtai | | | 55.18 356 | 55.46 355 | 54.34 381 | 76.03 363 | 36.88 399 | 76.07 364 | 84.61 339 | 51.28 368 | 43.41 389 | 64.61 385 | 56.56 185 | 67.81 399 | 18.09 404 | 28.50 404 | 58.32 397 |
|
| LF4IMVS | | | 54.01 357 | 52.12 358 | 59.69 372 | 62.41 396 | 39.91 396 | 68.59 383 | 68.28 392 | 42.96 392 | 44.55 386 | 75.18 353 | 14.09 399 | 68.39 398 | 41.36 363 | 51.68 367 | 70.78 388 |
|
| m2depth | | | 53.34 358 | 49.96 361 | 63.45 368 | 62.07 398 | 40.04 393 | 72.06 373 | 65.64 395 | 42.54 393 | 51.88 358 | 77.79 334 | 13.94 400 | 76.48 387 | 32.93 386 | 30.82 402 | 73.84 382 |
|
| MVStest1 | | | 51.35 359 | 46.89 363 | 64.74 365 | 65.06 392 | 51.10 352 | 67.33 388 | 72.58 379 | 30.20 401 | 35.30 396 | 74.82 355 | 27.70 371 | 69.89 396 | 24.44 398 | 24.57 405 | 73.22 383 |
|
| N_pmnet | | | 50.55 360 | 49.11 362 | 54.88 379 | 77.17 356 | 4.02 423 | 84.36 305 | 2.00 421 | 48.59 376 | 45.86 380 | 68.82 376 | 32.22 356 | 82.80 373 | 31.58 392 | 51.38 368 | 77.81 374 |
|
| new_pmnet | | | 49.31 361 | 46.44 364 | 57.93 374 | 62.84 395 | 40.74 391 | 68.47 384 | 62.96 399 | 36.48 396 | 35.09 397 | 57.81 394 | 14.97 396 | 72.18 393 | 32.86 387 | 46.44 376 | 60.88 396 |
|
| mvsany_test3 | | | 48.86 362 | 46.35 365 | 56.41 375 | 46.00 410 | 31.67 406 | 62.26 394 | 47.25 411 | 43.71 390 | 45.54 382 | 68.15 378 | 10.84 402 | 64.44 407 | 57.95 295 | 35.44 396 | 73.13 384 |
|
| test_f | | | 46.58 363 | 43.45 367 | 55.96 376 | 45.18 411 | 32.05 405 | 61.18 395 | 49.49 409 | 33.39 398 | 42.05 391 | 62.48 389 | 7.00 408 | 65.56 403 | 47.08 340 | 43.21 382 | 70.27 390 |
|
| WB-MVS | | | 46.23 364 | 44.94 366 | 50.11 384 | 62.13 397 | 21.23 417 | 76.48 362 | 55.49 403 | 45.89 384 | 35.78 395 | 61.44 392 | 35.54 344 | 72.83 392 | 9.96 411 | 21.75 406 | 56.27 399 |
|
| FPMVS | | | 45.64 365 | 43.10 369 | 53.23 382 | 51.42 407 | 36.46 400 | 64.97 391 | 71.91 382 | 29.13 402 | 27.53 402 | 61.55 391 | 9.83 404 | 65.01 405 | 16.00 408 | 55.58 357 | 58.22 398 |
|
| SSC-MVS | | | 44.51 366 | 43.35 368 | 47.99 388 | 61.01 400 | 18.90 419 | 74.12 370 | 54.36 404 | 43.42 391 | 34.10 399 | 60.02 393 | 34.42 349 | 70.39 395 | 9.14 413 | 19.57 407 | 54.68 400 |
|
| EGC-MVSNET | | | 42.35 367 | 38.09 370 | 55.11 378 | 74.57 366 | 46.62 377 | 71.63 376 | 55.77 402 | 0.04 416 | 0.24 417 | 62.70 388 | 14.24 398 | 74.91 390 | 17.59 405 | 46.06 377 | 43.80 402 |
|
| LCM-MVSNet | | | 40.54 368 | 35.79 373 | 54.76 380 | 36.92 417 | 30.81 407 | 51.41 404 | 69.02 389 | 22.07 404 | 24.63 404 | 45.37 401 | 4.56 413 | 65.81 402 | 33.67 382 | 34.50 397 | 67.67 391 |
|
| APD_test1 | | | 40.50 369 | 37.31 372 | 50.09 385 | 51.88 405 | 35.27 402 | 59.45 399 | 52.59 406 | 21.64 405 | 26.12 403 | 57.80 395 | 4.56 413 | 66.56 401 | 22.64 400 | 39.09 388 | 48.43 401 |
|
| test_vis3_rt | | | 40.46 370 | 37.79 371 | 48.47 387 | 44.49 412 | 33.35 404 | 66.56 390 | 32.84 418 | 32.39 399 | 29.65 400 | 39.13 408 | 3.91 416 | 68.65 397 | 50.17 321 | 40.99 386 | 43.40 403 |
|
| ANet_high | | | 40.27 371 | 35.20 374 | 55.47 377 | 34.74 418 | 34.47 403 | 63.84 393 | 71.56 384 | 48.42 377 | 18.80 407 | 41.08 406 | 9.52 405 | 64.45 406 | 20.18 402 | 8.66 414 | 67.49 392 |
|
| test_method | | | 38.59 372 | 35.16 375 | 48.89 386 | 54.33 403 | 21.35 416 | 45.32 407 | 53.71 405 | 7.41 413 | 28.74 401 | 51.62 397 | 8.70 406 | 52.87 410 | 33.73 381 | 32.89 398 | 72.47 386 |
|
| PMMVS2 | | | 37.93 373 | 33.61 376 | 50.92 383 | 46.31 409 | 24.76 413 | 60.55 398 | 50.05 407 | 28.94 403 | 20.93 405 | 47.59 398 | 4.41 415 | 65.13 404 | 25.14 397 | 18.55 409 | 62.87 395 |
|
| Gipuma |  | | 34.91 374 | 31.44 377 | 45.30 389 | 70.99 378 | 39.64 397 | 19.85 411 | 72.56 380 | 20.10 407 | 16.16 411 | 21.47 412 | 5.08 412 | 71.16 394 | 13.07 409 | 43.70 381 | 25.08 409 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| testf1 | | | 32.77 375 | 29.47 378 | 42.67 391 | 41.89 414 | 30.81 407 | 52.07 402 | 43.45 412 | 15.45 408 | 18.52 408 | 44.82 402 | 2.12 417 | 58.38 408 | 16.05 406 | 30.87 400 | 38.83 404 |
|
| APD_test2 | | | 32.77 375 | 29.47 378 | 42.67 391 | 41.89 414 | 30.81 407 | 52.07 402 | 43.45 412 | 15.45 408 | 18.52 408 | 44.82 402 | 2.12 417 | 58.38 408 | 16.05 406 | 30.87 400 | 38.83 404 |
|
| PMVS |  | 26.43 22 | 31.84 377 | 28.16 380 | 42.89 390 | 25.87 420 | 27.58 411 | 50.92 405 | 49.78 408 | 21.37 406 | 14.17 412 | 40.81 407 | 2.01 419 | 66.62 400 | 9.61 412 | 38.88 391 | 34.49 408 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| E-PMN | | | 24.61 378 | 24.00 382 | 26.45 395 | 43.74 413 | 18.44 420 | 60.86 396 | 39.66 414 | 15.11 410 | 9.53 414 | 22.10 411 | 6.52 410 | 46.94 413 | 8.31 414 | 10.14 411 | 13.98 411 |
|
| MVE |  | 24.84 23 | 24.35 379 | 19.77 385 | 38.09 393 | 34.56 419 | 26.92 412 | 26.57 409 | 38.87 416 | 11.73 412 | 11.37 413 | 27.44 409 | 1.37 420 | 50.42 412 | 11.41 410 | 14.60 410 | 36.93 406 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| EMVS | | | 23.76 380 | 23.20 384 | 25.46 396 | 41.52 416 | 16.90 421 | 60.56 397 | 38.79 417 | 14.62 411 | 8.99 415 | 20.24 414 | 7.35 407 | 45.82 414 | 7.25 415 | 9.46 412 | 13.64 412 |
|
| tmp_tt | | | 22.26 381 | 23.75 383 | 17.80 397 | 5.23 421 | 12.06 422 | 35.26 408 | 39.48 415 | 2.82 415 | 18.94 406 | 44.20 404 | 22.23 384 | 24.64 416 | 36.30 374 | 9.31 413 | 16.69 410 |
|
| cdsmvs_eth3d_5k | | | 19.86 382 | 26.47 381 | 0.00 401 | 0.00 424 | 0.00 426 | 0.00 412 | 93.45 85 | 0.00 419 | 0.00 420 | 95.27 56 | 49.56 257 | 0.00 420 | 0.00 419 | 0.00 417 | 0.00 416 |
|
| wuyk23d | | | 11.30 383 | 10.95 386 | 12.33 398 | 48.05 408 | 19.89 418 | 25.89 410 | 1.92 422 | 3.58 414 | 3.12 416 | 1.37 416 | 0.64 421 | 15.77 417 | 6.23 416 | 7.77 415 | 1.35 413 |
|
| ab-mvs-re | | | 7.91 384 | 10.55 387 | 0.00 401 | 0.00 424 | 0.00 426 | 0.00 412 | 0.00 425 | 0.00 419 | 0.00 420 | 94.95 66 | 0.00 424 | 0.00 420 | 0.00 419 | 0.00 417 | 0.00 416 |
|
| testmvs | | | 7.23 385 | 9.62 388 | 0.06 400 | 0.04 422 | 0.02 425 | 84.98 303 | 0.02 423 | 0.03 417 | 0.18 418 | 1.21 417 | 0.01 423 | 0.02 418 | 0.14 417 | 0.01 416 | 0.13 415 |
|
| test123 | | | 6.92 386 | 9.21 389 | 0.08 399 | 0.03 423 | 0.05 424 | 81.65 330 | 0.01 424 | 0.02 418 | 0.14 419 | 0.85 418 | 0.03 422 | 0.02 418 | 0.12 418 | 0.00 417 | 0.16 414 |
|
| pcd_1.5k_mvsjas | | | 4.46 387 | 5.95 390 | 0.00 401 | 0.00 424 | 0.00 426 | 0.00 412 | 0.00 425 | 0.00 419 | 0.00 420 | 0.00 419 | 53.55 219 | 0.00 420 | 0.00 419 | 0.00 417 | 0.00 416 |
|
| monomultidepth | | | 0.00 388 | 0.00 391 | 0.00 401 | 0.00 424 | 0.00 426 | 0.00 412 | 0.00 425 | 0.00 419 | 0.00 420 | 0.00 419 | 0.00 424 | 0.00 420 | 0.00 419 | 0.00 417 | 0.00 416 |
|
| test_blank | | | 0.00 388 | 0.00 391 | 0.00 401 | 0.00 424 | 0.00 426 | 0.00 412 | 0.00 425 | 0.00 419 | 0.00 420 | 0.00 419 | 0.00 424 | 0.00 420 | 0.00 419 | 0.00 417 | 0.00 416 |
|
| uanet_test | | | 0.00 388 | 0.00 391 | 0.00 401 | 0.00 424 | 0.00 426 | 0.00 412 | 0.00 425 | 0.00 419 | 0.00 420 | 0.00 419 | 0.00 424 | 0.00 420 | 0.00 419 | 0.00 417 | 0.00 416 |
|
| DCPMVS | | | 0.00 388 | 0.00 391 | 0.00 401 | 0.00 424 | 0.00 426 | 0.00 412 | 0.00 425 | 0.00 419 | 0.00 420 | 0.00 419 | 0.00 424 | 0.00 420 | 0.00 419 | 0.00 417 | 0.00 416 |
|
| sosnet-low-res | | | 0.00 388 | 0.00 391 | 0.00 401 | 0.00 424 | 0.00 426 | 0.00 412 | 0.00 425 | 0.00 419 | 0.00 420 | 0.00 419 | 0.00 424 | 0.00 420 | 0.00 419 | 0.00 417 | 0.00 416 |
|
| sosnet | | | 0.00 388 | 0.00 391 | 0.00 401 | 0.00 424 | 0.00 426 | 0.00 412 | 0.00 425 | 0.00 419 | 0.00 420 | 0.00 419 | 0.00 424 | 0.00 420 | 0.00 419 | 0.00 417 | 0.00 416 |
|
| uncertanet | | | 0.00 388 | 0.00 391 | 0.00 401 | 0.00 424 | 0.00 426 | 0.00 412 | 0.00 425 | 0.00 419 | 0.00 420 | 0.00 419 | 0.00 424 | 0.00 420 | 0.00 419 | 0.00 417 | 0.00 416 |
|
| Regformer | | | 0.00 388 | 0.00 391 | 0.00 401 | 0.00 424 | 0.00 426 | 0.00 412 | 0.00 425 | 0.00 419 | 0.00 420 | 0.00 419 | 0.00 424 | 0.00 420 | 0.00 419 | 0.00 417 | 0.00 416 |
|
| uanet | | | 0.00 388 | 0.00 391 | 0.00 401 | 0.00 424 | 0.00 426 | 0.00 412 | 0.00 425 | 0.00 419 | 0.00 420 | 0.00 419 | 0.00 424 | 0.00 420 | 0.00 419 | 0.00 417 | 0.00 416 |
|
| WAC-MVS | | | | | | | 49.45 361 | | | | | | | | 31.56 393 | | |
|
| FOURS1 | | | | | | 93.95 46 | 61.77 251 | 93.96 70 | 91.92 146 | 62.14 319 | 86.57 46 | | | | | | |
|
| MSC_two_6792asdad | | | | | 89.60 9 | 97.31 4 | 73.22 12 | | 95.05 26 | | | | | 99.07 13 | 92.01 25 | 94.77 26 | 96.51 24 |
|
| PC_three_1452 | | | | | | | | | | 80.91 47 | 94.07 2 | 96.83 18 | 83.57 4 | 99.12 5 | 95.70 7 | 97.42 4 | 97.55 4 |
|
| No_MVS | | | | | 89.60 9 | 97.31 4 | 73.22 12 | | 95.05 26 | | | | | 99.07 13 | 92.01 25 | 94.77 26 | 96.51 24 |
|
| test_one_0601 | | | | | | 96.32 18 | 69.74 49 | | 94.18 57 | 71.42 227 | 90.67 19 | 96.85 16 | 74.45 19 | | | | |
|
| eth-test2 | | | | | | 0.00 424 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 424 | | | | | | | | | | | |
|
| ZD-MVS | | | | | | 96.63 9 | 65.50 156 | | 93.50 83 | 70.74 241 | 85.26 62 | 95.19 62 | 64.92 81 | 97.29 76 | 87.51 57 | 93.01 56 | |
|
| RE-MVS-def | | | | 80.48 143 | | 92.02 99 | 58.56 304 | 90.90 207 | 90.45 206 | 62.76 312 | 78.89 125 | 94.46 80 | 49.30 260 | | 78.77 136 | 86.77 127 | 92.28 182 |
|
| IU-MVS | | | | | | 96.46 11 | 69.91 42 | | 95.18 20 | 80.75 48 | 95.28 1 | | | | 92.34 22 | 95.36 14 | 96.47 28 |
|
| OPU-MVS | | | | | 89.97 3 | 97.52 3 | 73.15 14 | 96.89 6 | | | | 97.00 9 | 83.82 2 | 99.15 2 | 95.72 5 | 97.63 3 | 97.62 2 |
|
| test_241102_TWO | | | | | | | | | 94.41 48 | 71.65 216 | 92.07 9 | 97.21 4 | 74.58 17 | 99.11 6 | 92.34 22 | 95.36 14 | 96.59 19 |
|
| test_241102_ONE | | | | | | 96.45 12 | 69.38 55 | | 94.44 46 | 71.65 216 | 92.11 7 | 97.05 7 | 76.79 9 | 99.11 6 | | | |
|
| 9.14 | | | | 87.63 28 | | 93.86 48 | | 94.41 52 | 94.18 57 | 72.76 181 | 86.21 48 | 96.51 24 | 66.64 62 | 97.88 44 | 90.08 39 | 94.04 39 | |
|
| save fliter | | | | | | 93.84 49 | 67.89 94 | 95.05 39 | 92.66 118 | 78.19 93 | | | | | | | |
|
| test_0728_THIRD | | | | | | | | | | 72.48 186 | 90.55 20 | 96.93 11 | 76.24 11 | 99.08 11 | 91.53 30 | 94.99 18 | 96.43 31 |
|
| test_0728_SECOND | | | | | 88.70 18 | 96.45 12 | 70.43 33 | 96.64 10 | 94.37 52 | | | | | 99.15 2 | 91.91 28 | 94.90 22 | 96.51 24 |
|
| test0726 | | | | | | 96.40 15 | 69.99 38 | 96.76 8 | 94.33 54 | 71.92 202 | 91.89 11 | 97.11 6 | 73.77 22 | | | | |
|
| GSMVS | | | | | | | | | | | | | | | | | 94.68 99 |
|
| test_part2 | | | | | | 96.29 19 | 68.16 88 | | | | 90.78 17 | | | | | | |
|
| sam_mvs1 | | | | | | | | | | | | | 57.85 165 | | | | 94.68 99 |
|
| sam_mvs | | | | | | | | | | | | | 54.91 204 | | | | |
|
| ambc | | | | | 69.61 352 | 61.38 399 | 41.35 390 | 49.07 406 | 85.86 329 | | 50.18 368 | 66.40 380 | 10.16 403 | 88.14 336 | 45.73 346 | 44.20 379 | 79.32 364 |
|
| MTGPA |  | | | | | | | | 92.23 131 | | | | | | | | |
|
| test_post1 | | | | | | | | 78.95 350 | | | | 20.70 413 | 53.05 224 | 91.50 305 | 60.43 284 | | |
|
| test_post | | | | | | | | | | | | 23.01 410 | 56.49 186 | 92.67 269 | | | |
|
| patchmatchnet-post | | | | | | | | | | | | 67.62 379 | 57.62 168 | 90.25 314 | | | |
|
| GG-mvs-BLEND | | | | | 86.53 73 | 91.91 106 | 69.67 52 | 75.02 369 | 94.75 33 | | 78.67 132 | 90.85 164 | 77.91 7 | 94.56 202 | 72.25 182 | 93.74 45 | 95.36 65 |
|
| MTMP | | | | | | | | 93.77 84 | 32.52 419 | | | | | | | | |
|
| gm-plane-assit | | | | | | 88.42 189 | 67.04 117 | | | 78.62 89 | | 91.83 147 | | 97.37 70 | 76.57 148 | | |
|
| test9_res | | | | | | | | | | | | | | | 89.41 40 | 94.96 19 | 95.29 70 |
|
| TEST9 | | | | | | 94.18 41 | 67.28 109 | 94.16 59 | 93.51 81 | 71.75 213 | 85.52 57 | 95.33 51 | 68.01 52 | 97.27 80 | | | |
|
| test_8 | | | | | | 94.19 40 | 67.19 111 | 94.15 61 | 93.42 88 | 71.87 207 | 85.38 60 | 95.35 50 | 68.19 50 | 96.95 103 | | | |
|
| agg_prior2 | | | | | | | | | | | | | | | 86.41 70 | 94.75 30 | 95.33 66 |
|
| agg_prior | | | | | | 94.16 43 | 66.97 119 | | 93.31 91 | | 84.49 68 | | | 96.75 113 | | | |
|
| TestCases | | | | | 72.46 338 | 79.57 326 | 51.42 350 | | 68.61 390 | 51.25 369 | 45.88 378 | 81.23 296 | 19.86 390 | 86.58 350 | 38.98 370 | 57.01 353 | 79.39 362 |
|
| test_prior4 | | | | | | | 67.18 113 | 93.92 73 | | | | | | | | | |
|
| test_prior2 | | | | | | | | 95.10 38 | | 75.40 134 | 85.25 63 | 95.61 45 | 67.94 53 | | 87.47 59 | 94.77 26 | |
|
| test_prior | | | | | 86.42 76 | 94.71 35 | 67.35 108 | | 93.10 101 | | | | | 96.84 110 | | | 95.05 83 |
|
| 旧先验2 | | | | | | | | 92.00 161 | | 59.37 339 | 87.54 39 | | | 93.47 245 | 75.39 155 | | |
|
| æ–°å‡ ä½•2 | | | | | | | | 91.41 182 | | | | | | | | | |
|
| æ–°å‡ ä½•1 | | | | | 84.73 132 | 92.32 91 | 64.28 187 | | 91.46 172 | 59.56 338 | 79.77 114 | 92.90 120 | 56.95 178 | 96.57 118 | 63.40 264 | 92.91 58 | 93.34 149 |
|
| 旧先验1 | | | | | | 91.94 103 | 60.74 273 | | 91.50 170 | | | 94.36 84 | 65.23 76 | | | 91.84 71 | 94.55 106 |
|
| æ— å…ˆéªŒ | | | | | | | | 92.71 126 | 92.61 122 | 62.03 320 | | | | 97.01 93 | 66.63 235 | | 93.97 131 |
|
| 原ACMM2 | | | | | | | | 92.01 158 | | | | | | | | | |
|
| 原ACMM1 | | | | | 84.42 146 | 93.21 67 | 64.27 188 | | 93.40 90 | 65.39 290 | 79.51 117 | 92.50 128 | 58.11 164 | 96.69 114 | 65.27 254 | 93.96 40 | 92.32 180 |
|
| test222 | | | | | | 89.77 154 | 61.60 256 | 89.55 246 | 89.42 250 | 56.83 353 | 77.28 145 | 92.43 132 | 52.76 227 | | | 91.14 85 | 93.09 158 |
|
| testdata2 | | | | | | | | | | | | | | 96.09 138 | 61.26 280 | | |
|
| segment_acmp | | | | | | | | | | | | | 65.94 69 | | | | |
|
| testdata | | | | | 81.34 228 | 89.02 175 | 57.72 311 | | 89.84 234 | 58.65 342 | 85.32 61 | 94.09 96 | 57.03 173 | 93.28 247 | 69.34 208 | 90.56 91 | 93.03 161 |
|
| testdata1 | | | | | | | | 89.21 255 | | 77.55 106 | | | | | | | |
|
| test12 | | | | | 87.09 52 | 94.60 36 | 68.86 67 | | 92.91 108 | | 82.67 84 | | 65.44 74 | 97.55 62 | | 93.69 48 | 94.84 92 |
|
| plane_prior7 | | | | | | 86.94 229 | 61.51 257 | | | | | | | | | | |
|
| plane_prior6 | | | | | | 87.23 221 | 62.32 241 | | | | | | 50.66 246 | | | | |
|
| plane_prior5 | | | | | | | | | 91.31 176 | | | | | 95.55 167 | 76.74 146 | 78.53 202 | 88.39 244 |
|
| plane_prior4 | | | | | | | | | | | | 89.14 193 | | | | | |
|
| plane_prior3 | | | | | | | 61.95 249 | | | 79.09 79 | 72.53 195 | | | | | | |
|
| plane_prior2 | | | | | | | | 93.13 110 | | 78.81 86 | | | | | | | |
|
| plane_prior1 | | | | | | 87.15 223 | | | | | | | | | | | |
|
| plane_prior | | | | | | | 62.42 237 | 93.85 77 | | 79.38 71 | | | | | | 78.80 199 | |
|
| n2 | | | | | | | | | 0.00 425 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 425 | | | | | | | | |
|
| door-mid | | | | | | | | | 66.01 394 | | | | | | | | |
|
| lessismore_v0 | | | | | 73.72 329 | 72.93 373 | 47.83 369 | | 61.72 400 | | 45.86 380 | 73.76 358 | 28.63 370 | 89.81 323 | 47.75 338 | 31.37 399 | 83.53 317 |
|
| LGP-MVS_train | | | | | 79.56 274 | 84.31 276 | 59.37 294 | | 89.73 240 | 69.49 254 | 64.86 285 | 88.42 198 | 38.65 319 | 94.30 211 | 72.56 179 | 72.76 244 | 85.01 304 |
|
| test11 | | | | | | | | | 93.01 104 | | | | | | | | |
|
| door | | | | | | | | | 66.57 393 | | | | | | | | |
|
| HQP5-MVS | | | | | | | 63.66 206 | | | | | | | | | | |
|
| HQP-NCC | | | | | | 87.54 214 | | 94.06 63 | | 79.80 62 | 74.18 174 | | | | | | |
|
| ACMP_Plane | | | | | | 87.54 214 | | 94.06 63 | | 79.80 62 | 74.18 174 | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 77.63 143 | | |
|
| HQP4-MVS | | | | | | | | | | | 74.18 174 | | | 95.61 162 | | | 88.63 238 |
|
| HQP3-MVS | | | | | | | | | 91.70 162 | | | | | | | 78.90 197 | |
|
| HQP2-MVS | | | | | | | | | | | | | 51.63 238 | | | | |
|
| NP-MVS | | | | | | 87.41 217 | 63.04 222 | | | | | 90.30 174 | | | | | |
|
| MDTV_nov1_ep13_2view | | | | | | | 59.90 287 | 80.13 345 | | 67.65 274 | 72.79 189 | | 54.33 212 | | 59.83 288 | | 92.58 173 |
|
| MDTV_nov1_ep13 | | | | 72.61 258 | | 89.06 174 | 68.48 76 | 80.33 341 | 90.11 224 | 71.84 209 | 71.81 207 | 75.92 351 | 53.01 225 | 93.92 233 | 48.04 333 | 73.38 239 | |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 71.63 252 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 69.72 261 | |
|
| Test By Simon | | | | | | | | | | | | | 54.21 213 | | | | |
|
| ITE_SJBPF | | | | | 70.43 350 | 74.44 367 | 47.06 375 | | 77.32 366 | 60.16 334 | 54.04 351 | 83.53 265 | 23.30 381 | 84.01 363 | 43.07 354 | 61.58 334 | 80.21 359 |
|
| DeepMVS_CX |  | | | | 34.71 394 | 51.45 406 | 24.73 414 | | 28.48 420 | 31.46 400 | 17.49 410 | 52.75 396 | 5.80 411 | 42.60 415 | 18.18 403 | 19.42 408 | 36.81 407 |
|