| MCST-MVS | | | 91.08 1 | 91.46 3 | 89.94 4 | 97.66 2 | 73.37 8 | 97.13 2 | 95.58 11 | 89.33 1 | 85.77 51 | 96.26 30 | 72.84 26 | 99.38 1 | 92.64 19 | 95.93 9 | 97.08 9 |
|
| MM | | | 90.87 2 | 91.52 2 | 88.92 13 | 92.12 92 | 71.10 22 | 97.02 3 | 96.04 6 | 88.70 2 | 91.57 13 | 96.19 33 | 70.12 37 | 98.91 17 | 96.83 1 | 95.06 16 | 96.76 12 |
|
| DPM-MVS | | | 90.70 3 | 90.52 8 | 91.24 1 | 89.68 147 | 76.68 2 | 97.29 1 | 95.35 14 | 82.87 20 | 91.58 12 | 97.22 3 | 79.93 5 | 99.10 9 | 83.12 92 | 97.64 2 | 97.94 1 |
|
| DVP-MVS++ | | | 90.53 4 | 91.09 5 | 88.87 14 | 97.31 4 | 69.91 37 | 93.96 70 | 94.37 49 | 72.48 178 | 92.07 8 | 96.85 16 | 83.82 2 | 99.15 2 | 91.53 29 | 97.42 4 | 97.55 4 |
|
| MSP-MVS | | | 90.38 5 | 91.87 1 | 85.88 81 | 92.83 72 | 64.03 185 | 93.06 107 | 94.33 51 | 82.19 28 | 93.65 3 | 96.15 35 | 85.89 1 | 97.19 82 | 91.02 33 | 97.75 1 | 96.43 26 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| CNVR-MVS | | | 90.32 6 | 90.89 7 | 88.61 19 | 96.76 8 | 70.65 26 | 96.47 13 | 94.83 27 | 84.83 11 | 89.07 31 | 96.80 19 | 70.86 34 | 99.06 15 | 92.64 19 | 95.71 10 | 96.12 35 |
|
| DELS-MVS | | | 90.05 7 | 90.09 11 | 89.94 4 | 93.14 66 | 73.88 7 | 97.01 4 | 94.40 47 | 88.32 3 | 85.71 52 | 94.91 68 | 74.11 19 | 98.91 17 | 87.26 59 | 95.94 8 | 97.03 10 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| MVS_0304 | | | 90.01 8 | 90.50 9 | 88.53 20 | 90.14 138 | 70.94 23 | 96.47 13 | 95.72 10 | 87.33 4 | 89.60 28 | 96.26 30 | 68.44 42 | 98.74 24 | 95.82 4 | 94.72 30 | 95.90 42 |
|
| SED-MVS | | | 89.94 9 | 90.36 10 | 88.70 16 | 96.45 12 | 69.38 48 | 96.89 5 | 94.44 43 | 71.65 208 | 92.11 6 | 97.21 4 | 76.79 9 | 99.11 6 | 92.34 21 | 95.36 13 | 97.62 2 |
|
| DeepPCF-MVS | | 81.17 1 | 89.72 10 | 91.38 4 | 84.72 125 | 93.00 69 | 58.16 298 | 96.72 8 | 94.41 45 | 86.50 8 | 90.25 21 | 97.83 1 | 75.46 14 | 98.67 25 | 92.78 18 | 95.49 12 | 97.32 6 |
|
| patch_mono-2 | | | 89.71 11 | 90.99 6 | 85.85 84 | 96.04 24 | 63.70 195 | 95.04 40 | 95.19 17 | 86.74 7 | 91.53 14 | 95.15 62 | 73.86 20 | 97.58 59 | 93.38 14 | 92.00 67 | 96.28 32 |
|
| CANet | | | 89.61 12 | 89.99 12 | 88.46 21 | 94.39 39 | 69.71 44 | 96.53 12 | 93.78 63 | 86.89 6 | 89.68 27 | 95.78 40 | 65.94 63 | 99.10 9 | 92.99 16 | 93.91 40 | 96.58 18 |
|
| DVP-MVS |  | | 89.41 13 | 89.73 14 | 88.45 22 | 96.40 15 | 69.99 33 | 96.64 9 | 94.52 39 | 71.92 194 | 90.55 19 | 96.93 11 | 73.77 21 | 99.08 11 | 91.91 27 | 94.90 21 | 96.29 30 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| HPM-MVS++ |  | | 89.37 14 | 89.95 13 | 87.64 30 | 95.10 30 | 68.23 79 | 95.24 33 | 94.49 41 | 82.43 25 | 88.90 32 | 96.35 27 | 71.89 33 | 98.63 26 | 88.76 47 | 96.40 6 | 96.06 36 |
|
| NCCC | | | 89.07 15 | 89.46 15 | 87.91 25 | 96.60 10 | 69.05 57 | 96.38 15 | 94.64 36 | 84.42 12 | 86.74 43 | 96.20 32 | 66.56 59 | 98.76 23 | 89.03 46 | 94.56 32 | 95.92 41 |
|
| DPE-MVS |  | | 88.77 16 | 89.21 16 | 87.45 37 | 96.26 20 | 67.56 95 | 94.17 57 | 94.15 56 | 68.77 258 | 90.74 17 | 97.27 2 | 76.09 12 | 98.49 29 | 90.58 37 | 94.91 20 | 96.30 29 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| SMA-MVS |  | | 88.14 17 | 88.29 21 | 87.67 29 | 93.21 63 | 68.72 65 | 93.85 77 | 94.03 59 | 74.18 141 | 91.74 11 | 96.67 21 | 65.61 67 | 98.42 33 | 89.24 43 | 96.08 7 | 95.88 43 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| PS-MVSNAJ | | | 88.14 17 | 87.61 28 | 89.71 6 | 92.06 93 | 76.72 1 | 95.75 20 | 93.26 87 | 83.86 14 | 89.55 29 | 96.06 36 | 53.55 209 | 97.89 43 | 91.10 31 | 93.31 51 | 94.54 98 |
|
| TSAR-MVS + MP. | | | 88.11 19 | 88.64 17 | 86.54 64 | 91.73 105 | 68.04 83 | 90.36 221 | 93.55 76 | 82.89 19 | 91.29 15 | 92.89 119 | 72.27 30 | 96.03 135 | 87.99 50 | 94.77 25 | 95.54 52 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| TSAR-MVS + GP. | | | 87.96 20 | 88.37 20 | 86.70 57 | 93.51 56 | 65.32 150 | 95.15 36 | 93.84 62 | 78.17 87 | 85.93 50 | 94.80 71 | 75.80 13 | 98.21 34 | 89.38 40 | 88.78 101 | 96.59 16 |
|
| DeepC-MVS_fast | | 79.48 2 | 87.95 21 | 88.00 24 | 87.79 28 | 95.86 27 | 68.32 73 | 95.74 21 | 94.11 57 | 83.82 15 | 83.49 73 | 96.19 33 | 64.53 81 | 98.44 31 | 83.42 91 | 94.88 24 | 96.61 15 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| xiu_mvs_v2_base | | | 87.92 22 | 87.38 32 | 89.55 11 | 91.41 116 | 76.43 3 | 95.74 21 | 93.12 95 | 83.53 17 | 89.55 29 | 95.95 38 | 53.45 213 | 97.68 50 | 91.07 32 | 92.62 58 | 94.54 98 |
|
| EPNet | | | 87.84 23 | 88.38 19 | 86.23 74 | 93.30 60 | 66.05 132 | 95.26 32 | 94.84 26 | 87.09 5 | 88.06 34 | 94.53 77 | 66.79 56 | 97.34 73 | 83.89 88 | 91.68 72 | 95.29 63 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| lupinMVS | | | 87.74 24 | 87.77 26 | 87.63 34 | 89.24 162 | 71.18 19 | 96.57 11 | 92.90 103 | 82.70 23 | 87.13 39 | 95.27 56 | 64.99 72 | 95.80 140 | 89.34 41 | 91.80 70 | 95.93 40 |
|
| test_fmvsm_n_1920 | | | 87.69 25 | 88.50 18 | 85.27 105 | 87.05 218 | 63.55 202 | 93.69 87 | 91.08 180 | 84.18 13 | 90.17 23 | 97.04 8 | 67.58 51 | 97.99 39 | 95.72 5 | 90.03 92 | 94.26 106 |
|
| APDe-MVS |  | | 87.54 26 | 87.84 25 | 86.65 58 | 96.07 23 | 66.30 128 | 94.84 45 | 93.78 63 | 69.35 249 | 88.39 33 | 96.34 28 | 67.74 50 | 97.66 54 | 90.62 36 | 93.44 49 | 96.01 39 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| fmvsm_l_conf0.5_n | | | 87.49 27 | 88.19 22 | 85.39 99 | 86.95 219 | 64.37 175 | 94.30 54 | 88.45 281 | 80.51 48 | 92.70 4 | 96.86 15 | 69.98 38 | 97.15 86 | 95.83 3 | 88.08 108 | 94.65 92 |
|
| SD-MVS | | | 87.49 27 | 87.49 30 | 87.50 36 | 93.60 53 | 68.82 63 | 93.90 74 | 92.63 114 | 76.86 106 | 87.90 35 | 95.76 41 | 66.17 60 | 97.63 56 | 89.06 45 | 91.48 76 | 96.05 37 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| fmvsm_l_conf0.5_n_a | | | 87.44 29 | 88.15 23 | 85.30 103 | 87.10 216 | 64.19 182 | 94.41 52 | 88.14 290 | 80.24 53 | 92.54 5 | 96.97 10 | 69.52 40 | 97.17 83 | 95.89 2 | 88.51 104 | 94.56 95 |
|
| dcpmvs_2 | | | 87.37 30 | 87.55 29 | 86.85 50 | 95.04 32 | 68.20 80 | 90.36 221 | 90.66 192 | 79.37 66 | 81.20 89 | 93.67 103 | 74.73 15 | 96.55 118 | 90.88 34 | 92.00 67 | 95.82 44 |
|
| alignmvs | | | 87.28 31 | 86.97 36 | 88.24 24 | 91.30 117 | 71.14 21 | 95.61 25 | 93.56 75 | 79.30 67 | 87.07 41 | 95.25 58 | 68.43 43 | 96.93 105 | 87.87 51 | 84.33 142 | 96.65 14 |
|
| train_agg | | | 87.21 32 | 87.42 31 | 86.60 60 | 94.18 41 | 67.28 102 | 94.16 58 | 93.51 77 | 71.87 199 | 85.52 54 | 95.33 51 | 68.19 45 | 97.27 80 | 89.09 44 | 94.90 21 | 95.25 69 |
|
| MG-MVS | | | 87.11 33 | 86.27 42 | 89.62 7 | 97.79 1 | 76.27 4 | 94.96 43 | 94.49 41 | 78.74 82 | 83.87 72 | 92.94 117 | 64.34 82 | 96.94 103 | 75.19 148 | 94.09 36 | 95.66 47 |
|
| SF-MVS | | | 87.03 34 | 87.09 34 | 86.84 51 | 92.70 78 | 67.45 100 | 93.64 89 | 93.76 66 | 70.78 232 | 86.25 45 | 96.44 26 | 66.98 54 | 97.79 47 | 88.68 48 | 94.56 32 | 95.28 65 |
|
| CSCG | | | 86.87 35 | 86.26 43 | 88.72 15 | 95.05 31 | 70.79 25 | 93.83 82 | 95.33 15 | 68.48 262 | 77.63 132 | 94.35 86 | 73.04 24 | 98.45 30 | 84.92 79 | 93.71 45 | 96.92 11 |
|
| canonicalmvs | | | 86.85 36 | 86.25 44 | 88.66 18 | 91.80 104 | 71.92 14 | 93.54 94 | 91.71 151 | 80.26 52 | 87.55 37 | 95.25 58 | 63.59 95 | 96.93 105 | 88.18 49 | 84.34 141 | 97.11 8 |
|
| PHI-MVS | | | 86.83 37 | 86.85 40 | 86.78 55 | 93.47 57 | 65.55 146 | 95.39 30 | 95.10 20 | 71.77 204 | 85.69 53 | 96.52 23 | 62.07 113 | 98.77 22 | 86.06 70 | 95.60 11 | 96.03 38 |
|
| SteuartSystems-ACMMP | | | 86.82 38 | 86.90 38 | 86.58 62 | 90.42 132 | 66.38 125 | 96.09 17 | 93.87 61 | 77.73 94 | 84.01 71 | 95.66 43 | 63.39 97 | 97.94 40 | 87.40 57 | 93.55 48 | 95.42 53 |
| Skip Steuart: Steuart Systems R&D Blog. |
| PVSNet_Blended | | | 86.73 39 | 86.86 39 | 86.31 73 | 93.76 49 | 67.53 97 | 96.33 16 | 93.61 73 | 82.34 27 | 81.00 94 | 93.08 113 | 63.19 101 | 97.29 76 | 87.08 61 | 91.38 78 | 94.13 113 |
|
| test_fmvsmconf_n | | | 86.58 40 | 87.17 33 | 84.82 118 | 85.28 249 | 62.55 226 | 94.26 56 | 89.78 225 | 83.81 16 | 87.78 36 | 96.33 29 | 65.33 69 | 96.98 98 | 94.40 11 | 87.55 113 | 94.95 78 |
|
| jason | | | 86.40 41 | 86.17 45 | 87.11 44 | 86.16 234 | 70.54 28 | 95.71 24 | 92.19 129 | 82.00 30 | 84.58 64 | 94.34 87 | 61.86 115 | 95.53 160 | 87.76 52 | 90.89 84 | 95.27 66 |
| jason: jason. |
| fmvsm_s_conf0.5_n | | | 86.39 42 | 86.91 37 | 84.82 118 | 87.36 211 | 63.54 203 | 94.74 47 | 90.02 219 | 82.52 24 | 90.14 24 | 96.92 13 | 62.93 106 | 97.84 46 | 95.28 8 | 82.26 157 | 93.07 149 |
|
| WTY-MVS | | | 86.32 43 | 85.81 52 | 87.85 26 | 92.82 74 | 69.37 50 | 95.20 34 | 95.25 16 | 82.71 22 | 81.91 84 | 94.73 72 | 67.93 49 | 97.63 56 | 79.55 117 | 82.25 158 | 96.54 19 |
|
| MSLP-MVS++ | | | 86.27 44 | 85.91 51 | 87.35 39 | 92.01 96 | 68.97 60 | 95.04 40 | 92.70 108 | 79.04 76 | 81.50 87 | 96.50 25 | 58.98 148 | 96.78 110 | 83.49 90 | 93.93 39 | 96.29 30 |
|
| VNet | | | 86.20 45 | 85.65 55 | 87.84 27 | 93.92 46 | 69.99 33 | 95.73 23 | 95.94 7 | 78.43 84 | 86.00 49 | 93.07 114 | 58.22 153 | 97.00 94 | 85.22 74 | 84.33 142 | 96.52 20 |
|
| MVS_111021_HR | | | 86.19 46 | 85.80 53 | 87.37 38 | 93.17 65 | 69.79 41 | 93.99 69 | 93.76 66 | 79.08 74 | 78.88 120 | 93.99 97 | 62.25 112 | 98.15 36 | 85.93 71 | 91.15 82 | 94.15 112 |
|
| CS-MVS-test | | | 86.14 47 | 87.01 35 | 83.52 163 | 92.63 81 | 59.36 286 | 95.49 27 | 91.92 138 | 80.09 54 | 85.46 56 | 95.53 47 | 61.82 118 | 95.77 143 | 86.77 65 | 93.37 50 | 95.41 54 |
|
| ACMMP_NAP | | | 86.05 48 | 85.80 53 | 86.80 54 | 91.58 109 | 67.53 97 | 91.79 165 | 93.49 80 | 74.93 132 | 84.61 63 | 95.30 53 | 59.42 142 | 97.92 41 | 86.13 68 | 94.92 19 | 94.94 79 |
|
| ETV-MVS | | | 86.01 49 | 86.11 46 | 85.70 91 | 90.21 137 | 67.02 111 | 93.43 99 | 91.92 138 | 81.21 42 | 84.13 70 | 94.07 96 | 60.93 126 | 95.63 151 | 89.28 42 | 89.81 93 | 94.46 104 |
|
| APD-MVS |  | | 85.93 50 | 85.99 49 | 85.76 88 | 95.98 26 | 65.21 153 | 93.59 92 | 92.58 116 | 66.54 276 | 86.17 47 | 95.88 39 | 63.83 88 | 97.00 94 | 86.39 67 | 92.94 55 | 95.06 73 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| PAPM | | | 85.89 51 | 85.46 56 | 87.18 42 | 88.20 190 | 72.42 13 | 92.41 137 | 92.77 106 | 82.11 29 | 80.34 100 | 93.07 114 | 68.27 44 | 95.02 173 | 78.39 130 | 93.59 47 | 94.09 115 |
|
| CS-MVS | | | 85.80 52 | 86.65 41 | 83.27 171 | 92.00 97 | 58.92 291 | 95.31 31 | 91.86 143 | 79.97 55 | 84.82 62 | 95.40 49 | 62.26 111 | 95.51 161 | 86.11 69 | 92.08 66 | 95.37 57 |
|
| fmvsm_s_conf0.5_n_a | | | 85.75 53 | 86.09 47 | 84.72 125 | 85.73 243 | 63.58 200 | 93.79 83 | 89.32 243 | 81.42 39 | 90.21 22 | 96.91 14 | 62.41 110 | 97.67 51 | 94.48 10 | 80.56 174 | 92.90 155 |
|
| test_fmvsmconf0.1_n | | | 85.71 54 | 86.08 48 | 84.62 132 | 80.83 302 | 62.33 230 | 93.84 80 | 88.81 268 | 83.50 18 | 87.00 42 | 96.01 37 | 63.36 98 | 96.93 105 | 94.04 12 | 87.29 116 | 94.61 94 |
|
| CDPH-MVS | | | 85.71 54 | 85.46 56 | 86.46 66 | 94.75 34 | 67.19 104 | 93.89 75 | 92.83 105 | 70.90 228 | 83.09 76 | 95.28 54 | 63.62 93 | 97.36 71 | 80.63 111 | 94.18 35 | 94.84 83 |
|
| casdiffmvs_mvg |  | | 85.66 56 | 85.18 59 | 87.09 45 | 88.22 189 | 69.35 51 | 93.74 86 | 91.89 141 | 81.47 35 | 80.10 102 | 91.45 148 | 64.80 77 | 96.35 121 | 87.23 60 | 87.69 111 | 95.58 50 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| fmvsm_s_conf0.1_n | | | 85.61 57 | 85.93 50 | 84.68 128 | 82.95 286 | 63.48 205 | 94.03 68 | 89.46 237 | 81.69 33 | 89.86 25 | 96.74 20 | 61.85 116 | 97.75 49 | 94.74 9 | 82.01 161 | 92.81 157 |
|
| DeepC-MVS | | 77.85 3 | 85.52 58 | 85.24 58 | 86.37 70 | 88.80 172 | 66.64 119 | 92.15 144 | 93.68 71 | 81.07 43 | 76.91 142 | 93.64 104 | 62.59 108 | 98.44 31 | 85.50 72 | 92.84 57 | 94.03 119 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| casdiffmvs |  | | 85.37 59 | 84.87 65 | 86.84 51 | 88.25 187 | 69.07 56 | 93.04 109 | 91.76 148 | 81.27 41 | 80.84 96 | 92.07 138 | 64.23 83 | 96.06 133 | 84.98 78 | 87.43 115 | 95.39 55 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| ZNCC-MVS | | | 85.33 60 | 85.08 61 | 86.06 76 | 93.09 68 | 65.65 142 | 93.89 75 | 93.41 84 | 73.75 152 | 79.94 104 | 94.68 74 | 60.61 129 | 98.03 38 | 82.63 95 | 93.72 44 | 94.52 100 |
|
| MP-MVS-pluss | | | 85.24 61 | 85.13 60 | 85.56 94 | 91.42 114 | 65.59 144 | 91.54 175 | 92.51 118 | 74.56 135 | 80.62 97 | 95.64 44 | 59.15 146 | 97.00 94 | 86.94 63 | 93.80 41 | 94.07 117 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| testing222 | | | 85.18 62 | 84.69 67 | 86.63 59 | 92.91 71 | 69.91 37 | 92.61 128 | 95.80 9 | 80.31 51 | 80.38 99 | 92.27 134 | 68.73 41 | 95.19 170 | 75.94 143 | 83.27 149 | 94.81 86 |
|
| PAPR | | | 85.15 63 | 84.47 68 | 87.18 42 | 96.02 25 | 68.29 74 | 91.85 163 | 93.00 100 | 76.59 113 | 79.03 116 | 95.00 63 | 61.59 119 | 97.61 58 | 78.16 131 | 89.00 100 | 95.63 48 |
|
| MP-MVS |  | | 85.02 64 | 84.97 63 | 85.17 109 | 92.60 82 | 64.27 180 | 93.24 102 | 92.27 123 | 73.13 163 | 79.63 108 | 94.43 80 | 61.90 114 | 97.17 83 | 85.00 77 | 92.56 59 | 94.06 118 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| baseline | | | 85.01 65 | 84.44 69 | 86.71 56 | 88.33 184 | 68.73 64 | 90.24 226 | 91.82 147 | 81.05 44 | 81.18 90 | 92.50 126 | 63.69 91 | 96.08 132 | 84.45 83 | 86.71 125 | 95.32 61 |
|
| CHOSEN 1792x2688 | | | 84.98 66 | 83.45 82 | 89.57 10 | 89.94 142 | 75.14 5 | 92.07 150 | 92.32 121 | 81.87 31 | 75.68 151 | 88.27 197 | 60.18 132 | 98.60 27 | 80.46 113 | 90.27 91 | 94.96 77 |
|
| EIA-MVS | | | 84.84 67 | 84.88 64 | 84.69 127 | 91.30 117 | 62.36 229 | 93.85 77 | 92.04 133 | 79.45 63 | 79.33 113 | 94.28 90 | 62.42 109 | 96.35 121 | 80.05 114 | 91.25 81 | 95.38 56 |
|
| fmvsm_s_conf0.1_n_a | | | 84.76 68 | 84.84 66 | 84.53 134 | 80.23 312 | 63.50 204 | 92.79 117 | 88.73 272 | 80.46 49 | 89.84 26 | 96.65 22 | 60.96 125 | 97.57 61 | 93.80 13 | 80.14 176 | 92.53 164 |
|
| HFP-MVS | | | 84.73 69 | 84.40 70 | 85.72 90 | 93.75 51 | 65.01 159 | 93.50 96 | 93.19 91 | 72.19 188 | 79.22 114 | 94.93 66 | 59.04 147 | 97.67 51 | 81.55 102 | 92.21 62 | 94.49 103 |
|
| MVS | | | 84.66 70 | 82.86 97 | 90.06 2 | 90.93 123 | 74.56 6 | 87.91 272 | 95.54 12 | 68.55 260 | 72.35 194 | 94.71 73 | 59.78 138 | 98.90 19 | 81.29 108 | 94.69 31 | 96.74 13 |
|
| GST-MVS | | | 84.63 71 | 84.29 71 | 85.66 92 | 92.82 74 | 65.27 151 | 93.04 109 | 93.13 94 | 73.20 161 | 78.89 117 | 94.18 93 | 59.41 143 | 97.85 45 | 81.45 104 | 92.48 61 | 93.86 127 |
|
| EC-MVSNet | | | 84.53 72 | 85.04 62 | 83.01 175 | 89.34 154 | 61.37 250 | 94.42 51 | 91.09 178 | 77.91 91 | 83.24 74 | 94.20 92 | 58.37 151 | 95.40 162 | 85.35 73 | 91.41 77 | 92.27 174 |
|
| ACMMPR | | | 84.37 73 | 84.06 72 | 85.28 104 | 93.56 54 | 64.37 175 | 93.50 96 | 93.15 93 | 72.19 188 | 78.85 122 | 94.86 69 | 56.69 173 | 97.45 65 | 81.55 102 | 92.20 63 | 94.02 120 |
|
| region2R | | | 84.36 74 | 84.03 73 | 85.36 101 | 93.54 55 | 64.31 178 | 93.43 99 | 92.95 101 | 72.16 191 | 78.86 121 | 94.84 70 | 56.97 168 | 97.53 63 | 81.38 106 | 92.11 65 | 94.24 107 |
|
| LFMVS | | | 84.34 75 | 82.73 99 | 89.18 12 | 94.76 33 | 73.25 9 | 94.99 42 | 91.89 141 | 71.90 196 | 82.16 83 | 93.49 108 | 47.98 260 | 97.05 89 | 82.55 96 | 84.82 137 | 97.25 7 |
|
| test_yl | | | 84.28 76 | 83.16 90 | 87.64 30 | 94.52 37 | 69.24 52 | 95.78 18 | 95.09 21 | 69.19 252 | 81.09 91 | 92.88 120 | 57.00 166 | 97.44 66 | 81.11 109 | 81.76 163 | 96.23 33 |
|
| DCV-MVSNet | | | 84.28 76 | 83.16 90 | 87.64 30 | 94.52 37 | 69.24 52 | 95.78 18 | 95.09 21 | 69.19 252 | 81.09 91 | 92.88 120 | 57.00 166 | 97.44 66 | 81.11 109 | 81.76 163 | 96.23 33 |
|
| diffmvs |  | | 84.28 76 | 83.83 74 | 85.61 93 | 87.40 209 | 68.02 84 | 90.88 205 | 89.24 246 | 80.54 47 | 81.64 86 | 92.52 125 | 59.83 137 | 94.52 198 | 87.32 58 | 85.11 135 | 94.29 105 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| HY-MVS | | 76.49 5 | 84.28 76 | 83.36 88 | 87.02 48 | 92.22 89 | 67.74 90 | 84.65 298 | 94.50 40 | 79.15 71 | 82.23 82 | 87.93 206 | 66.88 55 | 96.94 103 | 80.53 112 | 82.20 159 | 96.39 28 |
|
| ETVMVS | | | 84.22 80 | 83.71 75 | 85.76 88 | 92.58 83 | 68.25 78 | 92.45 136 | 95.53 13 | 79.54 62 | 79.46 110 | 91.64 146 | 70.29 36 | 94.18 211 | 69.16 203 | 82.76 155 | 94.84 83 |
|
| MAR-MVS | | | 84.18 81 | 83.43 83 | 86.44 67 | 96.25 21 | 65.93 137 | 94.28 55 | 94.27 53 | 74.41 136 | 79.16 115 | 95.61 45 | 53.99 204 | 98.88 21 | 69.62 197 | 93.26 52 | 94.50 102 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| MVS_Test | | | 84.16 82 | 83.20 89 | 87.05 47 | 91.56 110 | 69.82 40 | 89.99 235 | 92.05 132 | 77.77 93 | 82.84 77 | 86.57 225 | 63.93 87 | 96.09 129 | 74.91 153 | 89.18 99 | 95.25 69 |
|
| CANet_DTU | | | 84.09 83 | 83.52 77 | 85.81 85 | 90.30 135 | 66.82 114 | 91.87 161 | 89.01 260 | 85.27 9 | 86.09 48 | 93.74 101 | 47.71 264 | 96.98 98 | 77.90 133 | 89.78 95 | 93.65 132 |
|
| ET-MVSNet_ETH3D | | | 84.01 84 | 83.15 92 | 86.58 62 | 90.78 128 | 70.89 24 | 94.74 47 | 94.62 37 | 81.44 38 | 58.19 324 | 93.64 104 | 73.64 23 | 92.35 276 | 82.66 94 | 78.66 191 | 96.50 24 |
|
| PVSNet_Blended_VisFu | | | 83.97 85 | 83.50 79 | 85.39 99 | 90.02 140 | 66.59 122 | 93.77 84 | 91.73 149 | 77.43 102 | 77.08 141 | 89.81 178 | 63.77 90 | 96.97 100 | 79.67 116 | 88.21 106 | 92.60 161 |
|
| MTAPA | | | 83.91 86 | 83.38 87 | 85.50 95 | 91.89 102 | 65.16 155 | 81.75 321 | 92.23 124 | 75.32 127 | 80.53 98 | 95.21 60 | 56.06 181 | 97.16 85 | 84.86 80 | 92.55 60 | 94.18 109 |
|
| XVS | | | 83.87 87 | 83.47 81 | 85.05 110 | 93.22 61 | 63.78 189 | 92.92 114 | 92.66 111 | 73.99 144 | 78.18 126 | 94.31 89 | 55.25 187 | 97.41 68 | 79.16 121 | 91.58 74 | 93.95 122 |
|
| Effi-MVS+ | | | 83.82 88 | 82.76 98 | 86.99 49 | 89.56 150 | 69.40 47 | 91.35 187 | 86.12 314 | 72.59 175 | 83.22 75 | 92.81 123 | 59.60 140 | 96.01 137 | 81.76 101 | 87.80 110 | 95.56 51 |
|
| test_fmvsmvis_n_1920 | | | 83.80 89 | 83.48 80 | 84.77 122 | 82.51 288 | 63.72 193 | 91.37 185 | 83.99 334 | 81.42 39 | 77.68 131 | 95.74 42 | 58.37 151 | 97.58 59 | 93.38 14 | 86.87 119 | 93.00 152 |
|
| EI-MVSNet-Vis-set | | | 83.77 90 | 83.67 76 | 84.06 150 | 92.79 77 | 63.56 201 | 91.76 168 | 94.81 28 | 79.65 61 | 77.87 129 | 94.09 94 | 63.35 99 | 97.90 42 | 79.35 119 | 79.36 183 | 90.74 200 |
|
| MVSFormer | | | 83.75 91 | 82.88 96 | 86.37 70 | 89.24 162 | 71.18 19 | 89.07 254 | 90.69 189 | 65.80 281 | 87.13 39 | 94.34 87 | 64.99 72 | 92.67 262 | 72.83 164 | 91.80 70 | 95.27 66 |
|
| CP-MVS | | | 83.71 92 | 83.40 86 | 84.65 129 | 93.14 66 | 63.84 187 | 94.59 49 | 92.28 122 | 71.03 226 | 77.41 135 | 94.92 67 | 55.21 190 | 96.19 125 | 81.32 107 | 90.70 86 | 93.91 124 |
|
| test_fmvsmconf0.01_n | | | 83.70 93 | 83.52 77 | 84.25 146 | 75.26 354 | 61.72 244 | 92.17 143 | 87.24 303 | 82.36 26 | 84.91 61 | 95.41 48 | 55.60 185 | 96.83 109 | 92.85 17 | 85.87 131 | 94.21 108 |
|
| baseline2 | | | 83.68 94 | 83.42 85 | 84.48 137 | 87.37 210 | 66.00 134 | 90.06 230 | 95.93 8 | 79.71 60 | 69.08 230 | 90.39 166 | 77.92 6 | 96.28 123 | 78.91 125 | 81.38 167 | 91.16 196 |
|
| thisisatest0515 | | | 83.41 95 | 82.49 104 | 86.16 75 | 89.46 153 | 68.26 76 | 93.54 94 | 94.70 33 | 74.31 139 | 75.75 149 | 90.92 156 | 72.62 28 | 96.52 119 | 69.64 195 | 81.50 166 | 93.71 130 |
|
| PVSNet_BlendedMVS | | | 83.38 96 | 83.43 83 | 83.22 172 | 93.76 49 | 67.53 97 | 94.06 63 | 93.61 73 | 79.13 72 | 81.00 94 | 85.14 240 | 63.19 101 | 97.29 76 | 87.08 61 | 73.91 229 | 84.83 299 |
|
| test2506 | | | 83.29 97 | 82.92 95 | 84.37 141 | 88.39 182 | 63.18 212 | 92.01 153 | 91.35 166 | 77.66 96 | 78.49 125 | 91.42 149 | 64.58 80 | 95.09 172 | 73.19 160 | 89.23 97 | 94.85 80 |
|
| iter_conf05 | | | 83.27 98 | 82.70 100 | 84.98 113 | 93.32 59 | 71.84 15 | 94.16 58 | 81.76 345 | 82.74 21 | 73.83 174 | 88.40 193 | 72.77 27 | 94.61 189 | 82.10 98 | 75.21 218 | 88.48 232 |
|
| PGM-MVS | | | 83.25 99 | 82.70 100 | 84.92 114 | 92.81 76 | 64.07 184 | 90.44 217 | 92.20 128 | 71.28 220 | 77.23 138 | 94.43 80 | 55.17 191 | 97.31 75 | 79.33 120 | 91.38 78 | 93.37 138 |
|
| HPM-MVS |  | | 83.25 99 | 82.95 94 | 84.17 148 | 92.25 88 | 62.88 221 | 90.91 202 | 91.86 143 | 70.30 238 | 77.12 139 | 93.96 98 | 56.75 171 | 96.28 123 | 82.04 99 | 91.34 80 | 93.34 139 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| EI-MVSNet-UG-set | | | 83.14 101 | 82.96 93 | 83.67 161 | 92.28 87 | 63.19 211 | 91.38 184 | 94.68 34 | 79.22 69 | 76.60 144 | 93.75 100 | 62.64 107 | 97.76 48 | 78.07 132 | 78.01 194 | 90.05 209 |
|
| VDD-MVS | | | 83.06 102 | 81.81 113 | 86.81 53 | 90.86 126 | 67.70 91 | 95.40 29 | 91.50 161 | 75.46 124 | 81.78 85 | 92.34 133 | 40.09 302 | 97.13 87 | 86.85 64 | 82.04 160 | 95.60 49 |
|
| h-mvs33 | | | 83.01 103 | 82.56 103 | 84.35 142 | 89.34 154 | 62.02 236 | 92.72 120 | 93.76 66 | 81.45 36 | 82.73 79 | 92.25 136 | 60.11 133 | 97.13 87 | 87.69 53 | 62.96 308 | 93.91 124 |
|
| PAPM_NR | | | 82.97 104 | 81.84 112 | 86.37 70 | 94.10 44 | 66.76 117 | 87.66 277 | 92.84 104 | 69.96 242 | 74.07 171 | 93.57 106 | 63.10 104 | 97.50 64 | 70.66 188 | 90.58 88 | 94.85 80 |
|
| mPP-MVS | | | 82.96 105 | 82.44 105 | 84.52 135 | 92.83 72 | 62.92 219 | 92.76 118 | 91.85 145 | 71.52 216 | 75.61 154 | 94.24 91 | 53.48 212 | 96.99 97 | 78.97 124 | 90.73 85 | 93.64 133 |
|
| SR-MVS | | | 82.81 106 | 82.58 102 | 83.50 166 | 93.35 58 | 61.16 253 | 92.23 142 | 91.28 170 | 64.48 290 | 81.27 88 | 95.28 54 | 53.71 208 | 95.86 139 | 82.87 93 | 88.77 102 | 93.49 136 |
|
| DP-MVS Recon | | | 82.73 107 | 81.65 114 | 85.98 78 | 97.31 4 | 67.06 108 | 95.15 36 | 91.99 135 | 69.08 255 | 76.50 146 | 93.89 99 | 54.48 199 | 98.20 35 | 70.76 186 | 85.66 133 | 92.69 158 |
|
| CLD-MVS | | | 82.73 107 | 82.35 107 | 83.86 154 | 87.90 197 | 67.65 93 | 95.45 28 | 92.18 130 | 85.06 10 | 72.58 187 | 92.27 134 | 52.46 220 | 95.78 141 | 84.18 84 | 79.06 186 | 88.16 238 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| sss | | | 82.71 109 | 82.38 106 | 83.73 158 | 89.25 159 | 59.58 281 | 92.24 141 | 94.89 25 | 77.96 89 | 79.86 105 | 92.38 131 | 56.70 172 | 97.05 89 | 77.26 136 | 80.86 171 | 94.55 96 |
|
| 3Dnovator | | 73.91 6 | 82.69 110 | 80.82 126 | 88.31 23 | 89.57 149 | 71.26 18 | 92.60 129 | 94.39 48 | 78.84 79 | 67.89 251 | 92.48 129 | 48.42 255 | 98.52 28 | 68.80 208 | 94.40 34 | 95.15 71 |
|
| MVSTER | | | 82.47 111 | 82.05 108 | 83.74 156 | 92.68 79 | 69.01 58 | 91.90 160 | 93.21 88 | 79.83 56 | 72.14 195 | 85.71 237 | 74.72 16 | 94.72 184 | 75.72 144 | 72.49 240 | 87.50 243 |
|
| TESTMET0.1,1 | | | 82.41 112 | 81.98 111 | 83.72 159 | 88.08 191 | 63.74 191 | 92.70 122 | 93.77 65 | 79.30 67 | 77.61 133 | 87.57 212 | 58.19 154 | 94.08 215 | 73.91 159 | 86.68 126 | 93.33 141 |
|
| CostFormer | | | 82.33 113 | 81.15 118 | 85.86 83 | 89.01 167 | 68.46 70 | 82.39 318 | 93.01 98 | 75.59 122 | 80.25 101 | 81.57 283 | 72.03 32 | 94.96 176 | 79.06 123 | 77.48 202 | 94.16 111 |
|
| API-MVS | | | 82.28 114 | 80.53 133 | 87.54 35 | 96.13 22 | 70.59 27 | 93.63 90 | 91.04 184 | 65.72 283 | 75.45 156 | 92.83 122 | 56.11 180 | 98.89 20 | 64.10 252 | 89.75 96 | 93.15 145 |
|
| IB-MVS | | 77.80 4 | 82.18 115 | 80.46 135 | 87.35 39 | 89.14 164 | 70.28 31 | 95.59 26 | 95.17 19 | 78.85 78 | 70.19 218 | 85.82 235 | 70.66 35 | 97.67 51 | 72.19 175 | 66.52 281 | 94.09 115 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| xiu_mvs_v1_base_debu | | | 82.16 116 | 81.12 119 | 85.26 106 | 86.42 227 | 68.72 65 | 92.59 131 | 90.44 199 | 73.12 164 | 84.20 67 | 94.36 82 | 38.04 316 | 95.73 145 | 84.12 85 | 86.81 120 | 91.33 189 |
|
| xiu_mvs_v1_base | | | 82.16 116 | 81.12 119 | 85.26 106 | 86.42 227 | 68.72 65 | 92.59 131 | 90.44 199 | 73.12 164 | 84.20 67 | 94.36 82 | 38.04 316 | 95.73 145 | 84.12 85 | 86.81 120 | 91.33 189 |
|
| xiu_mvs_v1_base_debi | | | 82.16 116 | 81.12 119 | 85.26 106 | 86.42 227 | 68.72 65 | 92.59 131 | 90.44 199 | 73.12 164 | 84.20 67 | 94.36 82 | 38.04 316 | 95.73 145 | 84.12 85 | 86.81 120 | 91.33 189 |
|
| 3Dnovator+ | | 73.60 7 | 82.10 119 | 80.60 132 | 86.60 60 | 90.89 125 | 66.80 116 | 95.20 34 | 93.44 82 | 74.05 143 | 67.42 257 | 92.49 128 | 49.46 245 | 97.65 55 | 70.80 185 | 91.68 72 | 95.33 59 |
|
| MVS_111021_LR | | | 82.02 120 | 81.52 115 | 83.51 165 | 88.42 180 | 62.88 221 | 89.77 239 | 88.93 264 | 76.78 109 | 75.55 155 | 93.10 111 | 50.31 237 | 95.38 164 | 83.82 89 | 87.02 118 | 92.26 175 |
|
| PMMVS | | | 81.98 121 | 82.04 109 | 81.78 208 | 89.76 146 | 56.17 319 | 91.13 198 | 90.69 189 | 77.96 89 | 80.09 103 | 93.57 106 | 46.33 274 | 94.99 175 | 81.41 105 | 87.46 114 | 94.17 110 |
|
| baseline1 | | | 81.84 122 | 81.03 123 | 84.28 145 | 91.60 108 | 66.62 120 | 91.08 199 | 91.66 155 | 81.87 31 | 74.86 161 | 91.67 145 | 69.98 38 | 94.92 179 | 71.76 178 | 64.75 296 | 91.29 194 |
|
| EPP-MVSNet | | | 81.79 123 | 81.52 115 | 82.61 184 | 88.77 173 | 60.21 273 | 93.02 111 | 93.66 72 | 68.52 261 | 72.90 182 | 90.39 166 | 72.19 31 | 94.96 176 | 74.93 152 | 79.29 185 | 92.67 159 |
|
| iter_conf_final | | | 81.74 124 | 80.93 125 | 84.18 147 | 92.66 80 | 69.10 55 | 92.94 113 | 82.80 343 | 79.01 77 | 74.85 162 | 88.40 193 | 61.83 117 | 94.61 189 | 79.36 118 | 76.52 211 | 88.83 223 |
|
| test_vis1_n_1920 | | | 81.66 125 | 82.01 110 | 80.64 235 | 82.24 291 | 55.09 327 | 94.76 46 | 86.87 305 | 81.67 34 | 84.40 66 | 94.63 75 | 38.17 313 | 94.67 188 | 91.98 26 | 83.34 148 | 92.16 178 |
|
| APD-MVS_3200maxsize | | | 81.64 126 | 81.32 117 | 82.59 185 | 92.36 85 | 58.74 293 | 91.39 182 | 91.01 185 | 63.35 299 | 79.72 107 | 94.62 76 | 51.82 223 | 96.14 127 | 79.71 115 | 87.93 109 | 92.89 156 |
|
| ACMMP |  | | 81.49 127 | 80.67 129 | 83.93 153 | 91.71 106 | 62.90 220 | 92.13 145 | 92.22 127 | 71.79 203 | 71.68 202 | 93.49 108 | 50.32 236 | 96.96 101 | 78.47 129 | 84.22 146 | 91.93 181 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| CDS-MVSNet | | | 81.43 128 | 80.74 127 | 83.52 163 | 86.26 231 | 64.45 169 | 92.09 148 | 90.65 193 | 75.83 120 | 73.95 173 | 89.81 178 | 63.97 86 | 92.91 252 | 71.27 181 | 82.82 152 | 93.20 144 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| mvs_anonymous | | | 81.36 129 | 79.99 140 | 85.46 96 | 90.39 134 | 68.40 71 | 86.88 288 | 90.61 194 | 74.41 136 | 70.31 217 | 84.67 246 | 63.79 89 | 92.32 277 | 73.13 161 | 85.70 132 | 95.67 46 |
|
| ECVR-MVS |  | | 81.29 130 | 80.38 136 | 84.01 152 | 88.39 182 | 61.96 238 | 92.56 134 | 86.79 307 | 77.66 96 | 76.63 143 | 91.42 149 | 46.34 273 | 95.24 169 | 74.36 157 | 89.23 97 | 94.85 80 |
|
| thisisatest0530 | | | 81.15 131 | 80.07 137 | 84.39 140 | 88.26 186 | 65.63 143 | 91.40 180 | 94.62 37 | 71.27 221 | 70.93 208 | 89.18 184 | 72.47 29 | 96.04 134 | 65.62 241 | 76.89 208 | 91.49 185 |
|
| Fast-Effi-MVS+ | | | 81.14 132 | 80.01 139 | 84.51 136 | 90.24 136 | 65.86 138 | 94.12 62 | 89.15 252 | 73.81 151 | 75.37 157 | 88.26 198 | 57.26 161 | 94.53 197 | 66.97 226 | 84.92 136 | 93.15 145 |
|
| HQP-MVS | | | 81.14 132 | 80.64 130 | 82.64 183 | 87.54 205 | 63.66 198 | 94.06 63 | 91.70 153 | 79.80 57 | 74.18 167 | 90.30 168 | 51.63 227 | 95.61 153 | 77.63 134 | 78.90 187 | 88.63 228 |
|
| hse-mvs2 | | | 81.12 134 | 81.11 122 | 81.16 222 | 86.52 226 | 57.48 308 | 89.40 247 | 91.16 173 | 81.45 36 | 82.73 79 | 90.49 164 | 60.11 133 | 94.58 191 | 87.69 53 | 60.41 335 | 91.41 188 |
|
| SR-MVS-dyc-post | | | 81.06 135 | 80.70 128 | 82.15 199 | 92.02 94 | 58.56 295 | 90.90 203 | 90.45 196 | 62.76 306 | 78.89 117 | 94.46 78 | 51.26 231 | 95.61 153 | 78.77 127 | 86.77 123 | 92.28 171 |
|
| HyFIR lowres test | | | 81.03 136 | 79.56 147 | 85.43 97 | 87.81 201 | 68.11 82 | 90.18 227 | 90.01 220 | 70.65 234 | 72.95 181 | 86.06 233 | 63.61 94 | 94.50 199 | 75.01 151 | 79.75 180 | 93.67 131 |
|
| nrg030 | | | 80.93 137 | 79.86 142 | 84.13 149 | 83.69 275 | 68.83 62 | 93.23 103 | 91.20 171 | 75.55 123 | 75.06 159 | 88.22 201 | 63.04 105 | 94.74 183 | 81.88 100 | 66.88 278 | 88.82 226 |
|
| Vis-MVSNet |  | | 80.92 138 | 79.98 141 | 83.74 156 | 88.48 177 | 61.80 240 | 93.44 98 | 88.26 289 | 73.96 147 | 77.73 130 | 91.76 142 | 49.94 241 | 94.76 181 | 65.84 238 | 90.37 90 | 94.65 92 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| test1111 | | | 80.84 139 | 80.02 138 | 83.33 169 | 87.87 198 | 60.76 261 | 92.62 127 | 86.86 306 | 77.86 92 | 75.73 150 | 91.39 151 | 46.35 272 | 94.70 187 | 72.79 166 | 88.68 103 | 94.52 100 |
|
| UWE-MVS | | | 80.81 140 | 81.01 124 | 80.20 245 | 89.33 156 | 57.05 313 | 91.91 159 | 94.71 32 | 75.67 121 | 75.01 160 | 89.37 182 | 63.13 103 | 91.44 299 | 67.19 223 | 82.80 154 | 92.12 179 |
|
| 1314 | | | 80.70 141 | 78.95 158 | 85.94 80 | 87.77 203 | 67.56 95 | 87.91 272 | 92.55 117 | 72.17 190 | 67.44 256 | 93.09 112 | 50.27 238 | 97.04 92 | 71.68 180 | 87.64 112 | 93.23 143 |
|
| tpmrst | | | 80.57 142 | 79.14 157 | 84.84 117 | 90.10 139 | 68.28 75 | 81.70 322 | 89.72 232 | 77.63 98 | 75.96 148 | 79.54 315 | 64.94 74 | 92.71 259 | 75.43 146 | 77.28 205 | 93.55 134 |
|
| 1112_ss | | | 80.56 143 | 79.83 143 | 82.77 179 | 88.65 174 | 60.78 259 | 92.29 139 | 88.36 283 | 72.58 176 | 72.46 191 | 94.95 64 | 65.09 71 | 93.42 239 | 66.38 232 | 77.71 196 | 94.10 114 |
|
| VDDNet | | | 80.50 144 | 78.26 166 | 87.21 41 | 86.19 232 | 69.79 41 | 94.48 50 | 91.31 167 | 60.42 324 | 79.34 112 | 90.91 157 | 38.48 311 | 96.56 117 | 82.16 97 | 81.05 169 | 95.27 66 |
|
| BH-w/o | | | 80.49 145 | 79.30 154 | 84.05 151 | 90.83 127 | 64.36 177 | 93.60 91 | 89.42 240 | 74.35 138 | 69.09 229 | 90.15 173 | 55.23 189 | 95.61 153 | 64.61 249 | 86.43 129 | 92.17 177 |
|
| test_cas_vis1_n_1920 | | | 80.45 146 | 80.61 131 | 79.97 254 | 78.25 338 | 57.01 315 | 94.04 67 | 88.33 284 | 79.06 75 | 82.81 78 | 93.70 102 | 38.65 308 | 91.63 291 | 90.82 35 | 79.81 178 | 91.27 195 |
|
| TAMVS | | | 80.37 147 | 79.45 150 | 83.13 174 | 85.14 252 | 63.37 206 | 91.23 193 | 90.76 188 | 74.81 134 | 72.65 185 | 88.49 190 | 60.63 128 | 92.95 247 | 69.41 199 | 81.95 162 | 93.08 148 |
|
| HQP_MVS | | | 80.34 148 | 79.75 144 | 82.12 201 | 86.94 220 | 62.42 227 | 93.13 105 | 91.31 167 | 78.81 80 | 72.53 188 | 89.14 186 | 50.66 234 | 95.55 158 | 76.74 137 | 78.53 192 | 88.39 235 |
|
| SDMVSNet | | | 80.26 149 | 78.88 159 | 84.40 139 | 89.25 159 | 67.63 94 | 85.35 294 | 93.02 97 | 76.77 110 | 70.84 209 | 87.12 219 | 47.95 261 | 96.09 129 | 85.04 76 | 74.55 220 | 89.48 219 |
|
| HPM-MVS_fast | | | 80.25 150 | 79.55 149 | 82.33 191 | 91.55 111 | 59.95 276 | 91.32 189 | 89.16 251 | 65.23 287 | 74.71 164 | 93.07 114 | 47.81 263 | 95.74 144 | 74.87 155 | 88.23 105 | 91.31 193 |
|
| ab-mvs | | | 80.18 151 | 78.31 165 | 85.80 86 | 88.44 179 | 65.49 149 | 83.00 315 | 92.67 110 | 71.82 202 | 77.36 136 | 85.01 241 | 54.50 196 | 96.59 114 | 76.35 141 | 75.63 216 | 95.32 61 |
|
| IS-MVSNet | | | 80.14 152 | 79.41 151 | 82.33 191 | 87.91 196 | 60.08 275 | 91.97 157 | 88.27 287 | 72.90 171 | 71.44 205 | 91.73 144 | 61.44 120 | 93.66 234 | 62.47 266 | 86.53 127 | 93.24 142 |
|
| test-LLR | | | 80.10 153 | 79.56 147 | 81.72 210 | 86.93 222 | 61.17 251 | 92.70 122 | 91.54 158 | 71.51 217 | 75.62 152 | 86.94 221 | 53.83 205 | 92.38 273 | 72.21 173 | 84.76 139 | 91.60 183 |
|
| PVSNet | | 73.49 8 | 80.05 154 | 78.63 161 | 84.31 143 | 90.92 124 | 64.97 160 | 92.47 135 | 91.05 183 | 79.18 70 | 72.43 192 | 90.51 163 | 37.05 328 | 94.06 217 | 68.06 212 | 86.00 130 | 93.90 126 |
|
| UA-Net | | | 80.02 155 | 79.65 145 | 81.11 224 | 89.33 156 | 57.72 303 | 86.33 291 | 89.00 263 | 77.44 101 | 81.01 93 | 89.15 185 | 59.33 144 | 95.90 138 | 61.01 273 | 84.28 144 | 89.73 215 |
|
| test-mter | | | 79.96 156 | 79.38 153 | 81.72 210 | 86.93 222 | 61.17 251 | 92.70 122 | 91.54 158 | 73.85 149 | 75.62 152 | 86.94 221 | 49.84 243 | 92.38 273 | 72.21 173 | 84.76 139 | 91.60 183 |
|
| QAPM | | | 79.95 157 | 77.39 183 | 87.64 30 | 89.63 148 | 71.41 17 | 93.30 101 | 93.70 70 | 65.34 286 | 67.39 259 | 91.75 143 | 47.83 262 | 98.96 16 | 57.71 289 | 89.81 93 | 92.54 163 |
|
| UGNet | | | 79.87 158 | 78.68 160 | 83.45 168 | 89.96 141 | 61.51 247 | 92.13 145 | 90.79 187 | 76.83 108 | 78.85 122 | 86.33 229 | 38.16 314 | 96.17 126 | 67.93 215 | 87.17 117 | 92.67 159 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| tpm2 | | | 79.80 159 | 77.95 172 | 85.34 102 | 88.28 185 | 68.26 76 | 81.56 324 | 91.42 164 | 70.11 240 | 77.59 134 | 80.50 301 | 67.40 52 | 94.26 208 | 67.34 220 | 77.35 203 | 93.51 135 |
|
| thres200 | | | 79.66 160 | 78.33 164 | 83.66 162 | 92.54 84 | 65.82 140 | 93.06 107 | 96.31 3 | 74.90 133 | 73.30 178 | 88.66 188 | 59.67 139 | 95.61 153 | 47.84 327 | 78.67 190 | 89.56 218 |
|
| CPTT-MVS | | | 79.59 161 | 79.16 156 | 80.89 233 | 91.54 112 | 59.80 278 | 92.10 147 | 88.54 280 | 60.42 324 | 72.96 180 | 93.28 110 | 48.27 256 | 92.80 256 | 78.89 126 | 86.50 128 | 90.06 208 |
|
| Test_1112_low_res | | | 79.56 162 | 78.60 162 | 82.43 187 | 88.24 188 | 60.39 270 | 92.09 148 | 87.99 294 | 72.10 192 | 71.84 198 | 87.42 214 | 64.62 79 | 93.04 243 | 65.80 239 | 77.30 204 | 93.85 128 |
|
| tttt0517 | | | 79.50 163 | 78.53 163 | 82.41 190 | 87.22 213 | 61.43 249 | 89.75 240 | 94.76 29 | 69.29 250 | 67.91 249 | 88.06 205 | 72.92 25 | 95.63 151 | 62.91 262 | 73.90 230 | 90.16 207 |
|
| FIs | | | 79.47 164 | 79.41 151 | 79.67 261 | 85.95 237 | 59.40 283 | 91.68 172 | 93.94 60 | 78.06 88 | 68.96 234 | 88.28 196 | 66.61 58 | 91.77 288 | 66.20 235 | 74.99 219 | 87.82 240 |
|
| BH-RMVSNet | | | 79.46 165 | 77.65 175 | 84.89 115 | 91.68 107 | 65.66 141 | 93.55 93 | 88.09 292 | 72.93 168 | 73.37 177 | 91.12 155 | 46.20 276 | 96.12 128 | 56.28 294 | 85.61 134 | 92.91 154 |
|
| PCF-MVS | | 73.15 9 | 79.29 166 | 77.63 176 | 84.29 144 | 86.06 235 | 65.96 136 | 87.03 284 | 91.10 177 | 69.86 244 | 69.79 225 | 90.64 159 | 57.54 160 | 96.59 114 | 64.37 251 | 82.29 156 | 90.32 205 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| Vis-MVSNet (Re-imp) | | | 79.24 167 | 79.57 146 | 78.24 282 | 88.46 178 | 52.29 338 | 90.41 219 | 89.12 254 | 74.24 140 | 69.13 228 | 91.91 140 | 65.77 65 | 90.09 314 | 59.00 285 | 88.09 107 | 92.33 168 |
|
| 114514_t | | | 79.17 168 | 77.67 174 | 83.68 160 | 95.32 29 | 65.53 147 | 92.85 116 | 91.60 157 | 63.49 297 | 67.92 248 | 90.63 161 | 46.65 269 | 95.72 149 | 67.01 225 | 83.54 147 | 89.79 213 |
|
| FA-MVS(test-final) | | | 79.12 169 | 77.23 185 | 84.81 121 | 90.54 130 | 63.98 186 | 81.35 327 | 91.71 151 | 71.09 225 | 74.85 162 | 82.94 264 | 52.85 216 | 97.05 89 | 67.97 213 | 81.73 165 | 93.41 137 |
|
| VPA-MVSNet | | | 79.03 170 | 78.00 170 | 82.11 204 | 85.95 237 | 64.48 168 | 93.22 104 | 94.66 35 | 75.05 131 | 74.04 172 | 84.95 242 | 52.17 222 | 93.52 236 | 74.90 154 | 67.04 277 | 88.32 237 |
|
| OPM-MVS | | | 79.00 171 | 78.09 168 | 81.73 209 | 83.52 278 | 63.83 188 | 91.64 174 | 90.30 206 | 76.36 116 | 71.97 197 | 89.93 177 | 46.30 275 | 95.17 171 | 75.10 149 | 77.70 197 | 86.19 271 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| EI-MVSNet | | | 78.97 172 | 78.22 167 | 81.25 219 | 85.33 247 | 62.73 224 | 89.53 244 | 93.21 88 | 72.39 183 | 72.14 195 | 90.13 174 | 60.99 123 | 94.72 184 | 67.73 217 | 72.49 240 | 86.29 267 |
|
| AdaColmap |  | | 78.94 173 | 77.00 189 | 84.76 123 | 96.34 17 | 65.86 138 | 92.66 126 | 87.97 296 | 62.18 311 | 70.56 211 | 92.37 132 | 43.53 290 | 97.35 72 | 64.50 250 | 82.86 151 | 91.05 198 |
|
| GeoE | | | 78.90 174 | 77.43 179 | 83.29 170 | 88.95 168 | 62.02 236 | 92.31 138 | 86.23 312 | 70.24 239 | 71.34 206 | 89.27 183 | 54.43 200 | 94.04 220 | 63.31 258 | 80.81 173 | 93.81 129 |
|
| miper_enhance_ethall | | | 78.86 175 | 77.97 171 | 81.54 214 | 88.00 195 | 65.17 154 | 91.41 178 | 89.15 252 | 75.19 129 | 68.79 237 | 83.98 255 | 67.17 53 | 92.82 254 | 72.73 167 | 65.30 287 | 86.62 264 |
|
| VPNet | | | 78.82 176 | 77.53 178 | 82.70 181 | 84.52 262 | 66.44 124 | 93.93 72 | 92.23 124 | 80.46 49 | 72.60 186 | 88.38 195 | 49.18 249 | 93.13 242 | 72.47 171 | 63.97 305 | 88.55 231 |
|
| EPNet_dtu | | | 78.80 177 | 79.26 155 | 77.43 290 | 88.06 192 | 49.71 351 | 91.96 158 | 91.95 137 | 77.67 95 | 76.56 145 | 91.28 153 | 58.51 150 | 90.20 312 | 56.37 293 | 80.95 170 | 92.39 166 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| tfpn200view9 | | | 78.79 178 | 77.43 179 | 82.88 177 | 92.21 90 | 64.49 166 | 92.05 151 | 96.28 4 | 73.48 158 | 71.75 200 | 88.26 198 | 60.07 135 | 95.32 165 | 45.16 338 | 77.58 199 | 88.83 223 |
|
| TR-MVS | | | 78.77 179 | 77.37 184 | 82.95 176 | 90.49 131 | 60.88 257 | 93.67 88 | 90.07 215 | 70.08 241 | 74.51 165 | 91.37 152 | 45.69 279 | 95.70 150 | 60.12 279 | 80.32 175 | 92.29 170 |
|
| thres400 | | | 78.68 180 | 77.43 179 | 82.43 187 | 92.21 90 | 64.49 166 | 92.05 151 | 96.28 4 | 73.48 158 | 71.75 200 | 88.26 198 | 60.07 135 | 95.32 165 | 45.16 338 | 77.58 199 | 87.48 244 |
|
| BH-untuned | | | 78.68 180 | 77.08 186 | 83.48 167 | 89.84 143 | 63.74 191 | 92.70 122 | 88.59 278 | 71.57 214 | 66.83 266 | 88.65 189 | 51.75 225 | 95.39 163 | 59.03 284 | 84.77 138 | 91.32 192 |
|
| OMC-MVS | | | 78.67 182 | 77.91 173 | 80.95 231 | 85.76 242 | 57.40 310 | 88.49 263 | 88.67 275 | 73.85 149 | 72.43 192 | 92.10 137 | 49.29 248 | 94.55 196 | 72.73 167 | 77.89 195 | 90.91 199 |
|
| tpm | | | 78.58 183 | 77.03 187 | 83.22 172 | 85.94 239 | 64.56 164 | 83.21 312 | 91.14 176 | 78.31 85 | 73.67 175 | 79.68 313 | 64.01 85 | 92.09 282 | 66.07 236 | 71.26 250 | 93.03 150 |
|
| OpenMVS |  | 70.45 11 | 78.54 184 | 75.92 203 | 86.41 69 | 85.93 240 | 71.68 16 | 92.74 119 | 92.51 118 | 66.49 277 | 64.56 281 | 91.96 139 | 43.88 289 | 98.10 37 | 54.61 299 | 90.65 87 | 89.44 221 |
|
| EPMVS | | | 78.49 185 | 75.98 202 | 86.02 77 | 91.21 119 | 69.68 45 | 80.23 336 | 91.20 171 | 75.25 128 | 72.48 190 | 78.11 323 | 54.65 195 | 93.69 233 | 57.66 290 | 83.04 150 | 94.69 88 |
|
| AUN-MVS | | | 78.37 186 | 77.43 179 | 81.17 221 | 86.60 225 | 57.45 309 | 89.46 246 | 91.16 173 | 74.11 142 | 74.40 166 | 90.49 164 | 55.52 186 | 94.57 193 | 74.73 156 | 60.43 334 | 91.48 186 |
|
| thres100view900 | | | 78.37 186 | 77.01 188 | 82.46 186 | 91.89 102 | 63.21 210 | 91.19 197 | 96.33 1 | 72.28 186 | 70.45 214 | 87.89 207 | 60.31 130 | 95.32 165 | 45.16 338 | 77.58 199 | 88.83 223 |
|
| GA-MVS | | | 78.33 188 | 76.23 198 | 84.65 129 | 83.65 276 | 66.30 128 | 91.44 176 | 90.14 213 | 76.01 118 | 70.32 216 | 84.02 254 | 42.50 294 | 94.72 184 | 70.98 183 | 77.00 207 | 92.94 153 |
|
| cascas | | | 78.18 189 | 75.77 205 | 85.41 98 | 87.14 215 | 69.11 54 | 92.96 112 | 91.15 175 | 66.71 275 | 70.47 212 | 86.07 232 | 37.49 322 | 96.48 120 | 70.15 191 | 79.80 179 | 90.65 201 |
|
| UniMVSNet_NR-MVSNet | | | 78.15 190 | 77.55 177 | 79.98 252 | 84.46 264 | 60.26 271 | 92.25 140 | 93.20 90 | 77.50 100 | 68.88 235 | 86.61 224 | 66.10 61 | 92.13 280 | 66.38 232 | 62.55 312 | 87.54 242 |
|
| thres600view7 | | | 78.00 191 | 76.66 193 | 82.03 206 | 91.93 99 | 63.69 196 | 91.30 190 | 96.33 1 | 72.43 181 | 70.46 213 | 87.89 207 | 60.31 130 | 94.92 179 | 42.64 350 | 76.64 209 | 87.48 244 |
|
| FC-MVSNet-test | | | 77.99 192 | 78.08 169 | 77.70 285 | 84.89 257 | 55.51 324 | 90.27 224 | 93.75 69 | 76.87 105 | 66.80 267 | 87.59 211 | 65.71 66 | 90.23 311 | 62.89 263 | 73.94 228 | 87.37 247 |
|
| Anonymous202405211 | | | 77.96 193 | 75.33 212 | 85.87 82 | 93.73 52 | 64.52 165 | 94.85 44 | 85.36 320 | 62.52 309 | 76.11 147 | 90.18 171 | 29.43 357 | 97.29 76 | 68.51 210 | 77.24 206 | 95.81 45 |
|
| cl22 | | | 77.94 194 | 76.78 191 | 81.42 216 | 87.57 204 | 64.93 162 | 90.67 212 | 88.86 267 | 72.45 180 | 67.63 255 | 82.68 268 | 64.07 84 | 92.91 252 | 71.79 176 | 65.30 287 | 86.44 265 |
|
| XXY-MVS | | | 77.94 194 | 76.44 195 | 82.43 187 | 82.60 287 | 64.44 170 | 92.01 153 | 91.83 146 | 73.59 157 | 70.00 221 | 85.82 235 | 54.43 200 | 94.76 181 | 69.63 196 | 68.02 271 | 88.10 239 |
|
| MS-PatchMatch | | | 77.90 196 | 76.50 194 | 82.12 201 | 85.99 236 | 69.95 36 | 91.75 170 | 92.70 108 | 73.97 146 | 62.58 302 | 84.44 250 | 41.11 299 | 95.78 141 | 63.76 255 | 92.17 64 | 80.62 346 |
|
| FMVSNet3 | | | 77.73 197 | 76.04 201 | 82.80 178 | 91.20 120 | 68.99 59 | 91.87 161 | 91.99 135 | 73.35 160 | 67.04 262 | 83.19 263 | 56.62 174 | 92.14 279 | 59.80 281 | 69.34 258 | 87.28 251 |
|
| miper_ehance_all_eth | | | 77.60 198 | 76.44 195 | 81.09 228 | 85.70 244 | 64.41 173 | 90.65 213 | 88.64 277 | 72.31 184 | 67.37 260 | 82.52 269 | 64.77 78 | 92.64 266 | 70.67 187 | 65.30 287 | 86.24 269 |
|
| UniMVSNet (Re) | | | 77.58 199 | 76.78 191 | 79.98 252 | 84.11 270 | 60.80 258 | 91.76 168 | 93.17 92 | 76.56 114 | 69.93 224 | 84.78 245 | 63.32 100 | 92.36 275 | 64.89 248 | 62.51 314 | 86.78 259 |
|
| PatchmatchNet |  | | 77.46 200 | 74.63 218 | 85.96 79 | 89.55 151 | 70.35 30 | 79.97 341 | 89.55 235 | 72.23 187 | 70.94 207 | 76.91 334 | 57.03 164 | 92.79 257 | 54.27 301 | 81.17 168 | 94.74 87 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| v2v482 | | | 77.42 201 | 75.65 208 | 82.73 180 | 80.38 308 | 67.13 107 | 91.85 163 | 90.23 210 | 75.09 130 | 69.37 226 | 83.39 261 | 53.79 207 | 94.44 200 | 71.77 177 | 65.00 293 | 86.63 263 |
|
| CHOSEN 280x420 | | | 77.35 202 | 76.95 190 | 78.55 277 | 87.07 217 | 62.68 225 | 69.71 369 | 82.95 341 | 68.80 257 | 71.48 204 | 87.27 218 | 66.03 62 | 84.00 356 | 76.47 140 | 82.81 153 | 88.95 222 |
|
| PS-MVSNAJss | | | 77.26 203 | 76.31 197 | 80.13 247 | 80.64 306 | 59.16 288 | 90.63 216 | 91.06 182 | 72.80 172 | 68.58 241 | 84.57 248 | 53.55 209 | 93.96 225 | 72.97 162 | 71.96 244 | 87.27 252 |
|
| gg-mvs-nofinetune | | | 77.18 204 | 74.31 225 | 85.80 86 | 91.42 114 | 68.36 72 | 71.78 363 | 94.72 31 | 49.61 364 | 77.12 139 | 45.92 387 | 77.41 8 | 93.98 224 | 67.62 218 | 93.16 53 | 95.05 74 |
|
| WB-MVSnew | | | 77.14 205 | 76.18 200 | 80.01 251 | 86.18 233 | 63.24 209 | 91.26 191 | 94.11 57 | 71.72 206 | 73.52 176 | 87.29 217 | 45.14 284 | 93.00 245 | 56.98 291 | 79.42 181 | 83.80 307 |
|
| MVP-Stereo | | | 77.12 206 | 76.23 198 | 79.79 259 | 81.72 296 | 66.34 127 | 89.29 248 | 90.88 186 | 70.56 236 | 62.01 305 | 82.88 265 | 49.34 246 | 94.13 212 | 65.55 243 | 93.80 41 | 78.88 360 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| sd_testset | | | 77.08 207 | 75.37 210 | 82.20 197 | 89.25 159 | 62.11 235 | 82.06 319 | 89.09 256 | 76.77 110 | 70.84 209 | 87.12 219 | 41.43 298 | 95.01 174 | 67.23 222 | 74.55 220 | 89.48 219 |
|
| dmvs_re | | | 76.93 208 | 75.36 211 | 81.61 212 | 87.78 202 | 60.71 264 | 80.00 340 | 87.99 294 | 79.42 64 | 69.02 232 | 89.47 181 | 46.77 267 | 94.32 202 | 63.38 257 | 74.45 223 | 89.81 212 |
|
| X-MVStestdata | | | 76.86 209 | 74.13 229 | 85.05 110 | 93.22 61 | 63.78 189 | 92.92 114 | 92.66 111 | 73.99 144 | 78.18 126 | 10.19 402 | 55.25 187 | 97.41 68 | 79.16 121 | 91.58 74 | 93.95 122 |
|
| DU-MVS | | | 76.86 209 | 75.84 204 | 79.91 255 | 82.96 284 | 60.26 271 | 91.26 191 | 91.54 158 | 76.46 115 | 68.88 235 | 86.35 227 | 56.16 178 | 92.13 280 | 66.38 232 | 62.55 312 | 87.35 249 |
|
| mvsmamba | | | 76.85 211 | 75.71 207 | 80.25 243 | 83.07 283 | 59.16 288 | 91.44 176 | 80.64 350 | 76.84 107 | 67.95 247 | 86.33 229 | 46.17 277 | 94.24 209 | 76.06 142 | 72.92 236 | 87.36 248 |
|
| Anonymous20240529 | | | 76.84 212 | 74.15 228 | 84.88 116 | 91.02 121 | 64.95 161 | 93.84 80 | 91.09 178 | 53.57 353 | 73.00 179 | 87.42 214 | 35.91 332 | 97.32 74 | 69.14 204 | 72.41 242 | 92.36 167 |
|
| c3_l | | | 76.83 213 | 75.47 209 | 80.93 232 | 85.02 255 | 64.18 183 | 90.39 220 | 88.11 291 | 71.66 207 | 66.65 268 | 81.64 281 | 63.58 96 | 92.56 267 | 69.31 201 | 62.86 309 | 86.04 276 |
|
| WR-MVS | | | 76.76 214 | 75.74 206 | 79.82 258 | 84.60 260 | 62.27 233 | 92.60 129 | 92.51 118 | 76.06 117 | 67.87 252 | 85.34 238 | 56.76 170 | 90.24 310 | 62.20 267 | 63.69 307 | 86.94 257 |
|
| v1144 | | | 76.73 215 | 74.88 215 | 82.27 193 | 80.23 312 | 66.60 121 | 91.68 172 | 90.21 212 | 73.69 154 | 69.06 231 | 81.89 276 | 52.73 218 | 94.40 201 | 69.21 202 | 65.23 290 | 85.80 282 |
|
| IterMVS-LS | | | 76.49 216 | 75.18 214 | 80.43 238 | 84.49 263 | 62.74 223 | 90.64 214 | 88.80 269 | 72.40 182 | 65.16 275 | 81.72 279 | 60.98 124 | 92.27 278 | 67.74 216 | 64.65 298 | 86.29 267 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| V42 | | | 76.46 217 | 74.55 221 | 82.19 198 | 79.14 326 | 67.82 88 | 90.26 225 | 89.42 240 | 73.75 152 | 68.63 240 | 81.89 276 | 51.31 230 | 94.09 214 | 71.69 179 | 64.84 294 | 84.66 300 |
|
| v148 | | | 76.19 218 | 74.47 223 | 81.36 217 | 80.05 314 | 64.44 170 | 91.75 170 | 90.23 210 | 73.68 155 | 67.13 261 | 80.84 296 | 55.92 183 | 93.86 231 | 68.95 206 | 61.73 323 | 85.76 285 |
|
| Effi-MVS+-dtu | | | 76.14 219 | 75.28 213 | 78.72 276 | 83.22 280 | 55.17 326 | 89.87 236 | 87.78 297 | 75.42 125 | 67.98 246 | 81.43 285 | 45.08 285 | 92.52 269 | 75.08 150 | 71.63 245 | 88.48 232 |
|
| cl____ | | | 76.07 220 | 74.67 216 | 80.28 241 | 85.15 251 | 61.76 242 | 90.12 228 | 88.73 272 | 71.16 222 | 65.43 272 | 81.57 283 | 61.15 121 | 92.95 247 | 66.54 229 | 62.17 316 | 86.13 274 |
|
| DIV-MVS_self_test | | | 76.07 220 | 74.67 216 | 80.28 241 | 85.14 252 | 61.75 243 | 90.12 228 | 88.73 272 | 71.16 222 | 65.42 273 | 81.60 282 | 61.15 121 | 92.94 251 | 66.54 229 | 62.16 318 | 86.14 272 |
|
| FMVSNet2 | | | 76.07 220 | 74.01 231 | 82.26 195 | 88.85 169 | 67.66 92 | 91.33 188 | 91.61 156 | 70.84 229 | 65.98 269 | 82.25 272 | 48.03 257 | 92.00 284 | 58.46 286 | 68.73 266 | 87.10 254 |
|
| v144192 | | | 76.05 223 | 74.03 230 | 82.12 201 | 79.50 320 | 66.55 123 | 91.39 182 | 89.71 233 | 72.30 185 | 68.17 244 | 81.33 288 | 51.75 225 | 94.03 222 | 67.94 214 | 64.19 300 | 85.77 283 |
|
| NR-MVSNet | | | 76.05 223 | 74.59 219 | 80.44 237 | 82.96 284 | 62.18 234 | 90.83 207 | 91.73 149 | 77.12 104 | 60.96 309 | 86.35 227 | 59.28 145 | 91.80 287 | 60.74 274 | 61.34 327 | 87.35 249 |
|
| v1192 | | | 75.98 225 | 73.92 232 | 82.15 199 | 79.73 316 | 66.24 130 | 91.22 194 | 89.75 227 | 72.67 174 | 68.49 242 | 81.42 286 | 49.86 242 | 94.27 206 | 67.08 224 | 65.02 292 | 85.95 279 |
|
| FE-MVS | | | 75.97 226 | 73.02 242 | 84.82 118 | 89.78 144 | 65.56 145 | 77.44 352 | 91.07 181 | 64.55 289 | 72.66 184 | 79.85 311 | 46.05 278 | 96.69 112 | 54.97 298 | 80.82 172 | 92.21 176 |
|
| eth_miper_zixun_eth | | | 75.96 227 | 74.40 224 | 80.66 234 | 84.66 259 | 63.02 214 | 89.28 249 | 88.27 287 | 71.88 198 | 65.73 270 | 81.65 280 | 59.45 141 | 92.81 255 | 68.13 211 | 60.53 332 | 86.14 272 |
|
| TranMVSNet+NR-MVSNet | | | 75.86 228 | 74.52 222 | 79.89 256 | 82.44 289 | 60.64 267 | 91.37 185 | 91.37 165 | 76.63 112 | 67.65 254 | 86.21 231 | 52.37 221 | 91.55 293 | 61.84 269 | 60.81 330 | 87.48 244 |
|
| SCA | | | 75.82 229 | 72.76 246 | 85.01 112 | 86.63 224 | 70.08 32 | 81.06 329 | 89.19 249 | 71.60 213 | 70.01 220 | 77.09 332 | 45.53 280 | 90.25 307 | 60.43 276 | 73.27 232 | 94.68 89 |
|
| LPG-MVS_test | | | 75.82 229 | 74.58 220 | 79.56 265 | 84.31 267 | 59.37 284 | 90.44 217 | 89.73 230 | 69.49 247 | 64.86 276 | 88.42 191 | 38.65 308 | 94.30 204 | 72.56 169 | 72.76 237 | 85.01 297 |
|
| GBi-Net | | | 75.65 231 | 73.83 233 | 81.10 225 | 88.85 169 | 65.11 156 | 90.01 232 | 90.32 202 | 70.84 229 | 67.04 262 | 80.25 306 | 48.03 257 | 91.54 294 | 59.80 281 | 69.34 258 | 86.64 260 |
|
| test1 | | | 75.65 231 | 73.83 233 | 81.10 225 | 88.85 169 | 65.11 156 | 90.01 232 | 90.32 202 | 70.84 229 | 67.04 262 | 80.25 306 | 48.03 257 | 91.54 294 | 59.80 281 | 69.34 258 | 86.64 260 |
|
| v1921920 | | | 75.63 233 | 73.49 238 | 82.06 205 | 79.38 321 | 66.35 126 | 91.07 201 | 89.48 236 | 71.98 193 | 67.99 245 | 81.22 291 | 49.16 251 | 93.90 228 | 66.56 228 | 64.56 299 | 85.92 281 |
|
| ACMP | | 71.68 10 | 75.58 234 | 74.23 227 | 79.62 263 | 84.97 256 | 59.64 279 | 90.80 208 | 89.07 258 | 70.39 237 | 62.95 298 | 87.30 216 | 38.28 312 | 93.87 229 | 72.89 163 | 71.45 248 | 85.36 292 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| v8 | | | 75.35 235 | 73.26 240 | 81.61 212 | 80.67 305 | 66.82 114 | 89.54 243 | 89.27 245 | 71.65 208 | 63.30 294 | 80.30 305 | 54.99 193 | 94.06 217 | 67.33 221 | 62.33 315 | 83.94 305 |
|
| tpm cat1 | | | 75.30 236 | 72.21 255 | 84.58 133 | 88.52 175 | 67.77 89 | 78.16 350 | 88.02 293 | 61.88 316 | 68.45 243 | 76.37 338 | 60.65 127 | 94.03 222 | 53.77 304 | 74.11 226 | 91.93 181 |
|
| PLC |  | 68.80 14 | 75.23 237 | 73.68 236 | 79.86 257 | 92.93 70 | 58.68 294 | 90.64 214 | 88.30 285 | 60.90 321 | 64.43 285 | 90.53 162 | 42.38 295 | 94.57 193 | 56.52 292 | 76.54 210 | 86.33 266 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| v1240 | | | 75.21 238 | 72.98 243 | 81.88 207 | 79.20 323 | 66.00 134 | 90.75 210 | 89.11 255 | 71.63 212 | 67.41 258 | 81.22 291 | 47.36 265 | 93.87 229 | 65.46 244 | 64.72 297 | 85.77 283 |
|
| Fast-Effi-MVS+-dtu | | | 75.04 239 | 73.37 239 | 80.07 248 | 80.86 301 | 59.52 282 | 91.20 196 | 85.38 319 | 71.90 196 | 65.20 274 | 84.84 244 | 41.46 297 | 92.97 246 | 66.50 231 | 72.96 235 | 87.73 241 |
|
| dp | | | 75.01 240 | 72.09 256 | 83.76 155 | 89.28 158 | 66.22 131 | 79.96 342 | 89.75 227 | 71.16 222 | 67.80 253 | 77.19 331 | 51.81 224 | 92.54 268 | 50.39 312 | 71.44 249 | 92.51 165 |
|
| TAPA-MVS | | 70.22 12 | 74.94 241 | 73.53 237 | 79.17 270 | 90.40 133 | 52.07 339 | 89.19 252 | 89.61 234 | 62.69 308 | 70.07 219 | 92.67 124 | 48.89 254 | 94.32 202 | 38.26 364 | 79.97 177 | 91.12 197 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| v10 | | | 74.77 242 | 72.54 252 | 81.46 215 | 80.33 310 | 66.71 118 | 89.15 253 | 89.08 257 | 70.94 227 | 63.08 297 | 79.86 310 | 52.52 219 | 94.04 220 | 65.70 240 | 62.17 316 | 83.64 308 |
|
| XVG-OURS-SEG-HR | | | 74.70 243 | 73.08 241 | 79.57 264 | 78.25 338 | 57.33 311 | 80.49 332 | 87.32 300 | 63.22 301 | 68.76 238 | 90.12 176 | 44.89 286 | 91.59 292 | 70.55 189 | 74.09 227 | 89.79 213 |
|
| RRT_MVS | | | 74.44 244 | 72.97 244 | 78.84 275 | 82.36 290 | 57.66 305 | 89.83 238 | 88.79 271 | 70.61 235 | 64.58 280 | 84.89 243 | 39.24 304 | 92.65 265 | 70.11 192 | 66.34 282 | 86.21 270 |
|
| ACMM | | 69.62 13 | 74.34 245 | 72.73 248 | 79.17 270 | 84.25 269 | 57.87 301 | 90.36 221 | 89.93 221 | 63.17 303 | 65.64 271 | 86.04 234 | 37.79 320 | 94.10 213 | 65.89 237 | 71.52 247 | 85.55 288 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| CNLPA | | | 74.31 246 | 72.30 254 | 80.32 239 | 91.49 113 | 61.66 245 | 90.85 206 | 80.72 349 | 56.67 345 | 63.85 289 | 90.64 159 | 46.75 268 | 90.84 302 | 53.79 303 | 75.99 215 | 88.47 234 |
|
| XVG-OURS | | | 74.25 247 | 72.46 253 | 79.63 262 | 78.45 336 | 57.59 307 | 80.33 334 | 87.39 299 | 63.86 294 | 68.76 238 | 89.62 180 | 40.50 301 | 91.72 289 | 69.00 205 | 74.25 225 | 89.58 216 |
|
| test_fmvs1 | | | 74.07 248 | 73.69 235 | 75.22 309 | 78.91 330 | 47.34 363 | 89.06 256 | 74.69 364 | 63.68 296 | 79.41 111 | 91.59 147 | 24.36 366 | 87.77 333 | 85.22 74 | 76.26 213 | 90.55 204 |
|
| CVMVSNet | | | 74.04 249 | 74.27 226 | 73.33 324 | 85.33 247 | 43.94 374 | 89.53 244 | 88.39 282 | 54.33 352 | 70.37 215 | 90.13 174 | 49.17 250 | 84.05 354 | 61.83 270 | 79.36 183 | 91.99 180 |
|
| Baseline_NR-MVSNet | | | 73.99 250 | 72.83 245 | 77.48 289 | 80.78 303 | 59.29 287 | 91.79 165 | 84.55 327 | 68.85 256 | 68.99 233 | 80.70 297 | 56.16 178 | 92.04 283 | 62.67 264 | 60.98 329 | 81.11 340 |
|
| pmmvs4 | | | 73.92 251 | 71.81 260 | 80.25 243 | 79.17 324 | 65.24 152 | 87.43 280 | 87.26 302 | 67.64 269 | 63.46 292 | 83.91 256 | 48.96 253 | 91.53 297 | 62.94 261 | 65.49 286 | 83.96 304 |
|
| D2MVS | | | 73.80 252 | 72.02 257 | 79.15 272 | 79.15 325 | 62.97 215 | 88.58 262 | 90.07 215 | 72.94 167 | 59.22 318 | 78.30 320 | 42.31 296 | 92.70 261 | 65.59 242 | 72.00 243 | 81.79 335 |
|
| CR-MVSNet | | | 73.79 253 | 70.82 268 | 82.70 181 | 83.15 281 | 67.96 85 | 70.25 366 | 84.00 332 | 73.67 156 | 69.97 222 | 72.41 352 | 57.82 157 | 89.48 318 | 52.99 307 | 73.13 233 | 90.64 202 |
|
| test_djsdf | | | 73.76 254 | 72.56 251 | 77.39 291 | 77.00 348 | 53.93 332 | 89.07 254 | 90.69 189 | 65.80 281 | 63.92 287 | 82.03 275 | 43.14 293 | 92.67 262 | 72.83 164 | 68.53 267 | 85.57 287 |
|
| pmmvs5 | | | 73.35 255 | 71.52 262 | 78.86 274 | 78.64 334 | 60.61 268 | 91.08 199 | 86.90 304 | 67.69 266 | 63.32 293 | 83.64 257 | 44.33 288 | 90.53 304 | 62.04 268 | 66.02 284 | 85.46 290 |
|
| Anonymous20231211 | | | 73.08 256 | 70.39 272 | 81.13 223 | 90.62 129 | 63.33 207 | 91.40 180 | 90.06 217 | 51.84 358 | 64.46 284 | 80.67 299 | 36.49 330 | 94.07 216 | 63.83 254 | 64.17 301 | 85.98 278 |
|
| tt0805 | | | 73.07 257 | 70.73 269 | 80.07 248 | 78.37 337 | 57.05 313 | 87.78 274 | 92.18 130 | 61.23 320 | 67.04 262 | 86.49 226 | 31.35 351 | 94.58 191 | 65.06 247 | 67.12 276 | 88.57 230 |
|
| miper_lstm_enhance | | | 73.05 258 | 71.73 261 | 77.03 296 | 83.80 273 | 58.32 297 | 81.76 320 | 88.88 265 | 69.80 245 | 61.01 308 | 78.23 322 | 57.19 162 | 87.51 337 | 65.34 245 | 59.53 337 | 85.27 295 |
|
| jajsoiax | | | 73.05 258 | 71.51 263 | 77.67 286 | 77.46 345 | 54.83 328 | 88.81 258 | 90.04 218 | 69.13 254 | 62.85 300 | 83.51 259 | 31.16 352 | 92.75 258 | 70.83 184 | 69.80 254 | 85.43 291 |
|
| LCM-MVSNet-Re | | | 72.93 260 | 71.84 259 | 76.18 305 | 88.49 176 | 48.02 358 | 80.07 339 | 70.17 375 | 73.96 147 | 52.25 348 | 80.09 309 | 49.98 240 | 88.24 327 | 67.35 219 | 84.23 145 | 92.28 171 |
|
| pm-mvs1 | | | 72.89 261 | 71.09 265 | 78.26 281 | 79.10 327 | 57.62 306 | 90.80 208 | 89.30 244 | 67.66 267 | 62.91 299 | 81.78 278 | 49.11 252 | 92.95 247 | 60.29 278 | 58.89 340 | 84.22 303 |
|
| tpmvs | | | 72.88 262 | 69.76 278 | 82.22 196 | 90.98 122 | 67.05 109 | 78.22 349 | 88.30 285 | 63.10 304 | 64.35 286 | 74.98 345 | 55.09 192 | 94.27 206 | 43.25 344 | 69.57 257 | 85.34 293 |
|
| test0.0.03 1 | | | 72.76 263 | 72.71 249 | 72.88 328 | 80.25 311 | 47.99 359 | 91.22 194 | 89.45 238 | 71.51 217 | 62.51 303 | 87.66 210 | 53.83 205 | 85.06 350 | 50.16 314 | 67.84 274 | 85.58 286 |
|
| UniMVSNet_ETH3D | | | 72.74 264 | 70.53 271 | 79.36 267 | 78.62 335 | 56.64 317 | 85.01 296 | 89.20 248 | 63.77 295 | 64.84 278 | 84.44 250 | 34.05 339 | 91.86 286 | 63.94 253 | 70.89 252 | 89.57 217 |
|
| mvs_tets | | | 72.71 265 | 71.11 264 | 77.52 287 | 77.41 346 | 54.52 330 | 88.45 264 | 89.76 226 | 68.76 259 | 62.70 301 | 83.26 262 | 29.49 356 | 92.71 259 | 70.51 190 | 69.62 256 | 85.34 293 |
|
| FMVSNet1 | | | 72.71 265 | 69.91 276 | 81.10 225 | 83.60 277 | 65.11 156 | 90.01 232 | 90.32 202 | 63.92 293 | 63.56 291 | 80.25 306 | 36.35 331 | 91.54 294 | 54.46 300 | 66.75 279 | 86.64 260 |
|
| test_fmvs1_n | | | 72.69 267 | 71.92 258 | 74.99 312 | 71.15 367 | 47.08 365 | 87.34 282 | 75.67 359 | 63.48 298 | 78.08 128 | 91.17 154 | 20.16 377 | 87.87 330 | 84.65 81 | 75.57 217 | 90.01 210 |
|
| IterMVS | | | 72.65 268 | 70.83 266 | 78.09 283 | 82.17 292 | 62.96 216 | 87.64 278 | 86.28 310 | 71.56 215 | 60.44 311 | 78.85 318 | 45.42 282 | 86.66 341 | 63.30 259 | 61.83 320 | 84.65 301 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| myMVS_eth3d | | | 72.58 269 | 72.74 247 | 72.10 336 | 87.87 198 | 49.45 353 | 88.07 268 | 89.01 260 | 72.91 169 | 63.11 295 | 88.10 202 | 63.63 92 | 85.54 346 | 32.73 378 | 69.23 261 | 81.32 338 |
|
| PatchMatch-RL | | | 72.06 270 | 69.98 273 | 78.28 280 | 89.51 152 | 55.70 323 | 83.49 305 | 83.39 339 | 61.24 319 | 63.72 290 | 82.76 266 | 34.77 336 | 93.03 244 | 53.37 306 | 77.59 198 | 86.12 275 |
|
| PVSNet_0 | | 68.08 15 | 71.81 271 | 68.32 288 | 82.27 193 | 84.68 258 | 62.31 232 | 88.68 260 | 90.31 205 | 75.84 119 | 57.93 329 | 80.65 300 | 37.85 319 | 94.19 210 | 69.94 193 | 29.05 392 | 90.31 206 |
|
| MIMVSNet | | | 71.64 272 | 68.44 286 | 81.23 220 | 81.97 295 | 64.44 170 | 73.05 362 | 88.80 269 | 69.67 246 | 64.59 279 | 74.79 346 | 32.79 343 | 87.82 331 | 53.99 302 | 76.35 212 | 91.42 187 |
|
| test_vis1_n | | | 71.63 273 | 70.73 269 | 74.31 319 | 69.63 373 | 47.29 364 | 86.91 286 | 72.11 370 | 63.21 302 | 75.18 158 | 90.17 172 | 20.40 375 | 85.76 345 | 84.59 82 | 74.42 224 | 89.87 211 |
|
| bld_raw_dy_0_64 | | | 71.59 274 | 69.71 279 | 77.22 295 | 77.82 344 | 58.12 299 | 87.71 276 | 73.66 366 | 68.01 264 | 61.90 307 | 84.29 252 | 33.68 340 | 88.43 325 | 69.91 194 | 70.43 253 | 85.11 296 |
|
| IterMVS-SCA-FT | | | 71.55 275 | 69.97 274 | 76.32 303 | 81.48 297 | 60.67 266 | 87.64 278 | 85.99 315 | 66.17 279 | 59.50 316 | 78.88 317 | 45.53 280 | 83.65 358 | 62.58 265 | 61.93 319 | 84.63 302 |
|
| v7n | | | 71.31 276 | 68.65 283 | 79.28 268 | 76.40 350 | 60.77 260 | 86.71 289 | 89.45 238 | 64.17 292 | 58.77 323 | 78.24 321 | 44.59 287 | 93.54 235 | 57.76 288 | 61.75 322 | 83.52 311 |
|
| anonymousdsp | | | 71.14 277 | 69.37 281 | 76.45 302 | 72.95 362 | 54.71 329 | 84.19 300 | 88.88 265 | 61.92 315 | 62.15 304 | 79.77 312 | 38.14 315 | 91.44 299 | 68.90 207 | 67.45 275 | 83.21 317 |
|
| F-COLMAP | | | 70.66 278 | 68.44 286 | 77.32 292 | 86.37 230 | 55.91 321 | 88.00 270 | 86.32 309 | 56.94 343 | 57.28 332 | 88.07 204 | 33.58 341 | 92.49 270 | 51.02 310 | 68.37 268 | 83.55 309 |
|
| WR-MVS_H | | | 70.59 279 | 69.94 275 | 72.53 330 | 81.03 300 | 51.43 342 | 87.35 281 | 92.03 134 | 67.38 270 | 60.23 313 | 80.70 297 | 55.84 184 | 83.45 360 | 46.33 334 | 58.58 342 | 82.72 324 |
|
| CP-MVSNet | | | 70.50 280 | 69.91 276 | 72.26 333 | 80.71 304 | 51.00 345 | 87.23 283 | 90.30 206 | 67.84 265 | 59.64 315 | 82.69 267 | 50.23 239 | 82.30 368 | 51.28 309 | 59.28 338 | 83.46 313 |
|
| RPMNet | | | 70.42 281 | 65.68 300 | 84.63 131 | 83.15 281 | 67.96 85 | 70.25 366 | 90.45 196 | 46.83 372 | 69.97 222 | 65.10 371 | 56.48 177 | 95.30 168 | 35.79 369 | 73.13 233 | 90.64 202 |
|
| testing3 | | | 70.38 282 | 70.83 266 | 69.03 347 | 85.82 241 | 43.93 375 | 90.72 211 | 90.56 195 | 68.06 263 | 60.24 312 | 86.82 223 | 64.83 76 | 84.12 352 | 26.33 385 | 64.10 302 | 79.04 359 |
|
| tfpnnormal | | | 70.10 283 | 67.36 291 | 78.32 279 | 83.45 279 | 60.97 256 | 88.85 257 | 92.77 106 | 64.85 288 | 60.83 310 | 78.53 319 | 43.52 291 | 93.48 237 | 31.73 381 | 61.70 324 | 80.52 347 |
|
| TransMVSNet (Re) | | | 70.07 284 | 67.66 290 | 77.31 293 | 80.62 307 | 59.13 290 | 91.78 167 | 84.94 324 | 65.97 280 | 60.08 314 | 80.44 302 | 50.78 233 | 91.87 285 | 48.84 320 | 45.46 370 | 80.94 342 |
|
| CL-MVSNet_self_test | | | 69.92 285 | 68.09 289 | 75.41 308 | 73.25 361 | 55.90 322 | 90.05 231 | 89.90 222 | 69.96 242 | 61.96 306 | 76.54 335 | 51.05 232 | 87.64 334 | 49.51 318 | 50.59 362 | 82.70 326 |
|
| DP-MVS | | | 69.90 286 | 66.48 293 | 80.14 246 | 95.36 28 | 62.93 217 | 89.56 241 | 76.11 357 | 50.27 363 | 57.69 330 | 85.23 239 | 39.68 303 | 95.73 145 | 33.35 374 | 71.05 251 | 81.78 336 |
|
| PS-CasMVS | | | 69.86 287 | 69.13 282 | 72.07 337 | 80.35 309 | 50.57 347 | 87.02 285 | 89.75 227 | 67.27 271 | 59.19 319 | 82.28 271 | 46.58 270 | 82.24 369 | 50.69 311 | 59.02 339 | 83.39 315 |
|
| Syy-MVS | | | 69.65 288 | 69.52 280 | 70.03 343 | 87.87 198 | 43.21 376 | 88.07 268 | 89.01 260 | 72.91 169 | 63.11 295 | 88.10 202 | 45.28 283 | 85.54 346 | 22.07 389 | 69.23 261 | 81.32 338 |
|
| MSDG | | | 69.54 289 | 65.73 299 | 80.96 230 | 85.11 254 | 63.71 194 | 84.19 300 | 83.28 340 | 56.95 342 | 54.50 339 | 84.03 253 | 31.50 349 | 96.03 135 | 42.87 348 | 69.13 263 | 83.14 319 |
|
| PEN-MVS | | | 69.46 290 | 68.56 284 | 72.17 335 | 79.27 322 | 49.71 351 | 86.90 287 | 89.24 246 | 67.24 274 | 59.08 320 | 82.51 270 | 47.23 266 | 83.54 359 | 48.42 322 | 57.12 343 | 83.25 316 |
|
| LS3D | | | 69.17 291 | 66.40 295 | 77.50 288 | 91.92 100 | 56.12 320 | 85.12 295 | 80.37 351 | 46.96 370 | 56.50 334 | 87.51 213 | 37.25 323 | 93.71 232 | 32.52 380 | 79.40 182 | 82.68 327 |
|
| PatchT | | | 69.11 292 | 65.37 304 | 80.32 239 | 82.07 294 | 63.68 197 | 67.96 375 | 87.62 298 | 50.86 361 | 69.37 226 | 65.18 370 | 57.09 163 | 88.53 324 | 41.59 353 | 66.60 280 | 88.74 227 |
|
| KD-MVS_2432*1600 | | | 69.03 293 | 66.37 296 | 77.01 297 | 85.56 245 | 61.06 254 | 81.44 325 | 90.25 208 | 67.27 271 | 58.00 327 | 76.53 336 | 54.49 197 | 87.63 335 | 48.04 324 | 35.77 384 | 82.34 330 |
|
| miper_refine_blended | | | 69.03 293 | 66.37 296 | 77.01 297 | 85.56 245 | 61.06 254 | 81.44 325 | 90.25 208 | 67.27 271 | 58.00 327 | 76.53 336 | 54.49 197 | 87.63 335 | 48.04 324 | 35.77 384 | 82.34 330 |
|
| mvsany_test1 | | | 68.77 295 | 68.56 284 | 69.39 345 | 73.57 360 | 45.88 370 | 80.93 330 | 60.88 388 | 59.65 330 | 71.56 203 | 90.26 170 | 43.22 292 | 75.05 378 | 74.26 158 | 62.70 311 | 87.25 253 |
|
| ACMH | | 63.93 17 | 68.62 296 | 64.81 306 | 80.03 250 | 85.22 250 | 63.25 208 | 87.72 275 | 84.66 326 | 60.83 322 | 51.57 351 | 79.43 316 | 27.29 362 | 94.96 176 | 41.76 351 | 64.84 294 | 81.88 334 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| EG-PatchMatch MVS | | | 68.55 297 | 65.41 303 | 77.96 284 | 78.69 333 | 62.93 217 | 89.86 237 | 89.17 250 | 60.55 323 | 50.27 356 | 77.73 326 | 22.60 371 | 94.06 217 | 47.18 330 | 72.65 239 | 76.88 368 |
|
| ADS-MVSNet | | | 68.54 298 | 64.38 313 | 81.03 229 | 88.06 192 | 66.90 113 | 68.01 373 | 84.02 331 | 57.57 337 | 64.48 282 | 69.87 362 | 38.68 306 | 89.21 320 | 40.87 355 | 67.89 272 | 86.97 255 |
|
| DTE-MVSNet | | | 68.46 299 | 67.33 292 | 71.87 339 | 77.94 342 | 49.00 356 | 86.16 292 | 88.58 279 | 66.36 278 | 58.19 324 | 82.21 273 | 46.36 271 | 83.87 357 | 44.97 341 | 55.17 350 | 82.73 323 |
|
| our_test_3 | | | 68.29 300 | 64.69 308 | 79.11 273 | 78.92 328 | 64.85 163 | 88.40 265 | 85.06 322 | 60.32 326 | 52.68 346 | 76.12 340 | 40.81 300 | 89.80 317 | 44.25 343 | 55.65 348 | 82.67 328 |
|
| Patchmatch-RL test | | | 68.17 301 | 64.49 311 | 79.19 269 | 71.22 366 | 53.93 332 | 70.07 368 | 71.54 374 | 69.22 251 | 56.79 333 | 62.89 374 | 56.58 175 | 88.61 321 | 69.53 198 | 52.61 357 | 95.03 76 |
|
| XVG-ACMP-BASELINE | | | 68.04 302 | 65.53 302 | 75.56 307 | 74.06 359 | 52.37 337 | 78.43 346 | 85.88 316 | 62.03 313 | 58.91 322 | 81.21 293 | 20.38 376 | 91.15 301 | 60.69 275 | 68.18 269 | 83.16 318 |
|
| FMVSNet5 | | | 68.04 302 | 65.66 301 | 75.18 311 | 84.43 265 | 57.89 300 | 83.54 304 | 86.26 311 | 61.83 317 | 53.64 344 | 73.30 349 | 37.15 326 | 85.08 349 | 48.99 319 | 61.77 321 | 82.56 329 |
|
| ppachtmachnet_test | | | 67.72 304 | 63.70 315 | 79.77 260 | 78.92 328 | 66.04 133 | 88.68 260 | 82.90 342 | 60.11 328 | 55.45 336 | 75.96 341 | 39.19 305 | 90.55 303 | 39.53 359 | 52.55 358 | 82.71 325 |
|
| ACMH+ | | 65.35 16 | 67.65 305 | 64.55 309 | 76.96 299 | 84.59 261 | 57.10 312 | 88.08 267 | 80.79 348 | 58.59 336 | 53.00 345 | 81.09 295 | 26.63 364 | 92.95 247 | 46.51 332 | 61.69 325 | 80.82 343 |
|
| pmmvs6 | | | 67.57 306 | 64.76 307 | 76.00 306 | 72.82 364 | 53.37 334 | 88.71 259 | 86.78 308 | 53.19 354 | 57.58 331 | 78.03 324 | 35.33 335 | 92.41 272 | 55.56 296 | 54.88 352 | 82.21 332 |
|
| Anonymous20231206 | | | 67.53 307 | 65.78 298 | 72.79 329 | 74.95 355 | 47.59 361 | 88.23 266 | 87.32 300 | 61.75 318 | 58.07 326 | 77.29 329 | 37.79 320 | 87.29 339 | 42.91 346 | 63.71 306 | 83.48 312 |
|
| Patchmtry | | | 67.53 307 | 63.93 314 | 78.34 278 | 82.12 293 | 64.38 174 | 68.72 370 | 84.00 332 | 48.23 369 | 59.24 317 | 72.41 352 | 57.82 157 | 89.27 319 | 46.10 335 | 56.68 347 | 81.36 337 |
|
| USDC | | | 67.43 309 | 64.51 310 | 76.19 304 | 77.94 342 | 55.29 325 | 78.38 347 | 85.00 323 | 73.17 162 | 48.36 363 | 80.37 303 | 21.23 373 | 92.48 271 | 52.15 308 | 64.02 304 | 80.81 344 |
|
| ADS-MVSNet2 | | | 66.90 310 | 63.44 317 | 77.26 294 | 88.06 192 | 60.70 265 | 68.01 373 | 75.56 361 | 57.57 337 | 64.48 282 | 69.87 362 | 38.68 306 | 84.10 353 | 40.87 355 | 67.89 272 | 86.97 255 |
|
| CMPMVS |  | 48.56 21 | 66.77 311 | 64.41 312 | 73.84 321 | 70.65 370 | 50.31 348 | 77.79 351 | 85.73 318 | 45.54 374 | 44.76 373 | 82.14 274 | 35.40 334 | 90.14 313 | 63.18 260 | 74.54 222 | 81.07 341 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| OpenMVS_ROB |  | 61.12 18 | 66.39 312 | 62.92 320 | 76.80 301 | 76.51 349 | 57.77 302 | 89.22 250 | 83.41 338 | 55.48 349 | 53.86 343 | 77.84 325 | 26.28 365 | 93.95 226 | 34.90 371 | 68.76 265 | 78.68 362 |
|
| LTVRE_ROB | | 59.60 19 | 66.27 313 | 63.54 316 | 74.45 316 | 84.00 272 | 51.55 341 | 67.08 376 | 83.53 336 | 58.78 334 | 54.94 338 | 80.31 304 | 34.54 337 | 93.23 241 | 40.64 357 | 68.03 270 | 78.58 363 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| JIA-IIPM | | | 66.06 314 | 62.45 323 | 76.88 300 | 81.42 299 | 54.45 331 | 57.49 388 | 88.67 275 | 49.36 365 | 63.86 288 | 46.86 386 | 56.06 181 | 90.25 307 | 49.53 317 | 68.83 264 | 85.95 279 |
|
| Patchmatch-test | | | 65.86 315 | 60.94 329 | 80.62 236 | 83.75 274 | 58.83 292 | 58.91 387 | 75.26 363 | 44.50 377 | 50.95 355 | 77.09 332 | 58.81 149 | 87.90 329 | 35.13 370 | 64.03 303 | 95.12 72 |
|
| UnsupCasMVSNet_eth | | | 65.79 316 | 63.10 318 | 73.88 320 | 70.71 369 | 50.29 349 | 81.09 328 | 89.88 223 | 72.58 176 | 49.25 361 | 74.77 347 | 32.57 345 | 87.43 338 | 55.96 295 | 41.04 377 | 83.90 306 |
|
| test_fmvs2 | | | 65.78 317 | 64.84 305 | 68.60 349 | 66.54 378 | 41.71 378 | 83.27 309 | 69.81 376 | 54.38 351 | 67.91 249 | 84.54 249 | 15.35 382 | 81.22 373 | 75.65 145 | 66.16 283 | 82.88 320 |
|
| dmvs_testset | | | 65.55 318 | 66.45 294 | 62.86 359 | 79.87 315 | 22.35 402 | 76.55 354 | 71.74 372 | 77.42 103 | 55.85 335 | 87.77 209 | 51.39 229 | 80.69 374 | 31.51 384 | 65.92 285 | 85.55 288 |
|
| pmmvs-eth3d | | | 65.53 319 | 62.32 324 | 75.19 310 | 69.39 374 | 59.59 280 | 82.80 316 | 83.43 337 | 62.52 309 | 51.30 353 | 72.49 350 | 32.86 342 | 87.16 340 | 55.32 297 | 50.73 361 | 78.83 361 |
|
| SixPastTwentyTwo | | | 64.92 320 | 61.78 327 | 74.34 318 | 78.74 332 | 49.76 350 | 83.42 308 | 79.51 354 | 62.86 305 | 50.27 356 | 77.35 327 | 30.92 354 | 90.49 305 | 45.89 336 | 47.06 367 | 82.78 321 |
|
| OurMVSNet-221017-0 | | | 64.68 321 | 62.17 325 | 72.21 334 | 76.08 353 | 47.35 362 | 80.67 331 | 81.02 347 | 56.19 346 | 51.60 350 | 79.66 314 | 27.05 363 | 88.56 323 | 53.60 305 | 53.63 355 | 80.71 345 |
|
| test_0402 | | | 64.54 322 | 61.09 328 | 74.92 313 | 84.10 271 | 60.75 262 | 87.95 271 | 79.71 353 | 52.03 356 | 52.41 347 | 77.20 330 | 32.21 347 | 91.64 290 | 23.14 387 | 61.03 328 | 72.36 376 |
|
| testgi | | | 64.48 323 | 62.87 321 | 69.31 346 | 71.24 365 | 40.62 381 | 85.49 293 | 79.92 352 | 65.36 285 | 54.18 341 | 83.49 260 | 23.74 369 | 84.55 351 | 41.60 352 | 60.79 331 | 82.77 322 |
|
| RPSCF | | | 64.24 324 | 61.98 326 | 71.01 341 | 76.10 352 | 45.00 371 | 75.83 358 | 75.94 358 | 46.94 371 | 58.96 321 | 84.59 247 | 31.40 350 | 82.00 370 | 47.76 328 | 60.33 336 | 86.04 276 |
|
| EU-MVSNet | | | 64.01 325 | 63.01 319 | 67.02 355 | 74.40 358 | 38.86 386 | 83.27 309 | 86.19 313 | 45.11 375 | 54.27 340 | 81.15 294 | 36.91 329 | 80.01 376 | 48.79 321 | 57.02 344 | 82.19 333 |
|
| test20.03 | | | 63.83 326 | 62.65 322 | 67.38 354 | 70.58 371 | 39.94 382 | 86.57 290 | 84.17 329 | 63.29 300 | 51.86 349 | 77.30 328 | 37.09 327 | 82.47 366 | 38.87 363 | 54.13 354 | 79.73 353 |
|
| MDA-MVSNet_test_wron | | | 63.78 327 | 60.16 330 | 74.64 314 | 78.15 340 | 60.41 269 | 83.49 305 | 84.03 330 | 56.17 348 | 39.17 382 | 71.59 358 | 37.22 324 | 83.24 363 | 42.87 348 | 48.73 364 | 80.26 350 |
|
| YYNet1 | | | 63.76 328 | 60.14 331 | 74.62 315 | 78.06 341 | 60.19 274 | 83.46 307 | 83.99 334 | 56.18 347 | 39.25 381 | 71.56 359 | 37.18 325 | 83.34 361 | 42.90 347 | 48.70 365 | 80.32 349 |
|
| K. test v3 | | | 63.09 329 | 59.61 333 | 73.53 323 | 76.26 351 | 49.38 355 | 83.27 309 | 77.15 356 | 64.35 291 | 47.77 365 | 72.32 354 | 28.73 358 | 87.79 332 | 49.93 316 | 36.69 383 | 83.41 314 |
|
| COLMAP_ROB |  | 57.96 20 | 62.98 330 | 59.65 332 | 72.98 327 | 81.44 298 | 53.00 336 | 83.75 303 | 75.53 362 | 48.34 368 | 48.81 362 | 81.40 287 | 24.14 367 | 90.30 306 | 32.95 376 | 60.52 333 | 75.65 371 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| Anonymous20240521 | | | 62.09 331 | 59.08 334 | 71.10 340 | 67.19 377 | 48.72 357 | 83.91 302 | 85.23 321 | 50.38 362 | 47.84 364 | 71.22 361 | 20.74 374 | 85.51 348 | 46.47 333 | 58.75 341 | 79.06 358 |
|
| AllTest | | | 61.66 332 | 58.06 336 | 72.46 331 | 79.57 317 | 51.42 343 | 80.17 337 | 68.61 378 | 51.25 359 | 45.88 367 | 81.23 289 | 19.86 378 | 86.58 342 | 38.98 361 | 57.01 345 | 79.39 355 |
|
| UnsupCasMVSNet_bld | | | 61.60 333 | 57.71 337 | 73.29 325 | 68.73 375 | 51.64 340 | 78.61 345 | 89.05 259 | 57.20 341 | 46.11 366 | 61.96 377 | 28.70 359 | 88.60 322 | 50.08 315 | 38.90 381 | 79.63 354 |
|
| MDA-MVSNet-bldmvs | | | 61.54 334 | 57.70 338 | 73.05 326 | 79.53 319 | 57.00 316 | 83.08 313 | 81.23 346 | 57.57 337 | 34.91 385 | 72.45 351 | 32.79 343 | 86.26 344 | 35.81 368 | 41.95 375 | 75.89 370 |
|
| KD-MVS_self_test | | | 60.87 335 | 58.60 335 | 67.68 352 | 66.13 379 | 39.93 383 | 75.63 359 | 84.70 325 | 57.32 340 | 49.57 359 | 68.45 365 | 29.55 355 | 82.87 364 | 48.09 323 | 47.94 366 | 80.25 351 |
|
| TinyColmap | | | 60.32 336 | 56.42 343 | 72.00 338 | 78.78 331 | 53.18 335 | 78.36 348 | 75.64 360 | 52.30 355 | 41.59 380 | 75.82 343 | 14.76 385 | 88.35 326 | 35.84 367 | 54.71 353 | 74.46 372 |
|
| MVS-HIRNet | | | 60.25 337 | 55.55 344 | 74.35 317 | 84.37 266 | 56.57 318 | 71.64 364 | 74.11 365 | 34.44 385 | 45.54 371 | 42.24 392 | 31.11 353 | 89.81 315 | 40.36 358 | 76.10 214 | 76.67 369 |
|
| MIMVSNet1 | | | 60.16 338 | 57.33 339 | 68.67 348 | 69.71 372 | 44.13 373 | 78.92 344 | 84.21 328 | 55.05 350 | 44.63 374 | 71.85 356 | 23.91 368 | 81.54 372 | 32.63 379 | 55.03 351 | 80.35 348 |
|
| PM-MVS | | | 59.40 339 | 56.59 341 | 67.84 350 | 63.63 381 | 41.86 377 | 76.76 353 | 63.22 385 | 59.01 333 | 51.07 354 | 72.27 355 | 11.72 388 | 83.25 362 | 61.34 271 | 50.28 363 | 78.39 364 |
|
| new-patchmatchnet | | | 59.30 340 | 56.48 342 | 67.79 351 | 65.86 380 | 44.19 372 | 82.47 317 | 81.77 344 | 59.94 329 | 43.65 377 | 66.20 369 | 27.67 361 | 81.68 371 | 39.34 360 | 41.40 376 | 77.50 367 |
|
| test_vis1_rt | | | 59.09 341 | 57.31 340 | 64.43 357 | 68.44 376 | 46.02 369 | 83.05 314 | 48.63 397 | 51.96 357 | 49.57 359 | 63.86 373 | 16.30 380 | 80.20 375 | 71.21 182 | 62.79 310 | 67.07 382 |
|
| test_fmvs3 | | | 56.82 342 | 54.86 345 | 62.69 360 | 53.59 391 | 35.47 388 | 75.87 357 | 65.64 383 | 43.91 378 | 55.10 337 | 71.43 360 | 6.91 396 | 74.40 381 | 68.64 209 | 52.63 356 | 78.20 365 |
|
| DSMNet-mixed | | | 56.78 343 | 54.44 346 | 63.79 358 | 63.21 382 | 29.44 397 | 64.43 379 | 64.10 384 | 42.12 382 | 51.32 352 | 71.60 357 | 31.76 348 | 75.04 379 | 36.23 366 | 65.20 291 | 86.87 258 |
|
| pmmvs3 | | | 55.51 344 | 51.50 349 | 67.53 353 | 57.90 389 | 50.93 346 | 80.37 333 | 73.66 366 | 40.63 383 | 44.15 376 | 64.75 372 | 16.30 380 | 78.97 377 | 44.77 342 | 40.98 379 | 72.69 374 |
|
| TDRefinement | | | 55.28 345 | 51.58 348 | 66.39 356 | 59.53 388 | 46.15 368 | 76.23 356 | 72.80 368 | 44.60 376 | 42.49 378 | 76.28 339 | 15.29 383 | 82.39 367 | 33.20 375 | 43.75 372 | 70.62 378 |
|
| LF4IMVS | | | 54.01 346 | 52.12 347 | 59.69 361 | 62.41 384 | 39.91 384 | 68.59 371 | 68.28 380 | 42.96 381 | 44.55 375 | 75.18 344 | 14.09 387 | 68.39 387 | 41.36 354 | 51.68 359 | 70.78 377 |
|
| N_pmnet | | | 50.55 347 | 49.11 350 | 54.88 367 | 77.17 347 | 4.02 410 | 84.36 299 | 2.00 408 | 48.59 366 | 45.86 369 | 68.82 364 | 32.22 346 | 82.80 365 | 31.58 382 | 51.38 360 | 77.81 366 |
|
| new_pmnet | | | 49.31 348 | 46.44 351 | 57.93 362 | 62.84 383 | 40.74 380 | 68.47 372 | 62.96 386 | 36.48 384 | 35.09 384 | 57.81 381 | 14.97 384 | 72.18 383 | 32.86 377 | 46.44 368 | 60.88 384 |
|
| mvsany_test3 | | | 48.86 349 | 46.35 352 | 56.41 363 | 46.00 397 | 31.67 393 | 62.26 381 | 47.25 398 | 43.71 379 | 45.54 371 | 68.15 366 | 10.84 389 | 64.44 395 | 57.95 287 | 35.44 386 | 73.13 373 |
|
| test_f | | | 46.58 350 | 43.45 354 | 55.96 364 | 45.18 398 | 32.05 392 | 61.18 382 | 49.49 396 | 33.39 386 | 42.05 379 | 62.48 376 | 7.00 395 | 65.56 391 | 47.08 331 | 43.21 374 | 70.27 379 |
|
| WB-MVS | | | 46.23 351 | 44.94 353 | 50.11 371 | 62.13 385 | 21.23 404 | 76.48 355 | 55.49 390 | 45.89 373 | 35.78 383 | 61.44 379 | 35.54 333 | 72.83 382 | 9.96 398 | 21.75 393 | 56.27 386 |
|
| FPMVS | | | 45.64 352 | 43.10 356 | 53.23 369 | 51.42 394 | 36.46 387 | 64.97 378 | 71.91 371 | 29.13 389 | 27.53 389 | 61.55 378 | 9.83 391 | 65.01 393 | 16.00 395 | 55.58 349 | 58.22 385 |
|
| SSC-MVS | | | 44.51 353 | 43.35 355 | 47.99 375 | 61.01 387 | 18.90 406 | 74.12 361 | 54.36 391 | 43.42 380 | 34.10 386 | 60.02 380 | 34.42 338 | 70.39 385 | 9.14 400 | 19.57 394 | 54.68 387 |
|
| EGC-MVSNET | | | 42.35 354 | 38.09 357 | 55.11 366 | 74.57 356 | 46.62 367 | 71.63 365 | 55.77 389 | 0.04 403 | 0.24 404 | 62.70 375 | 14.24 386 | 74.91 380 | 17.59 392 | 46.06 369 | 43.80 389 |
|
| LCM-MVSNet | | | 40.54 355 | 35.79 360 | 54.76 368 | 36.92 404 | 30.81 394 | 51.41 391 | 69.02 377 | 22.07 391 | 24.63 391 | 45.37 388 | 4.56 400 | 65.81 390 | 33.67 373 | 34.50 387 | 67.67 380 |
|
| APD_test1 | | | 40.50 356 | 37.31 359 | 50.09 372 | 51.88 392 | 35.27 389 | 59.45 386 | 52.59 393 | 21.64 392 | 26.12 390 | 57.80 382 | 4.56 400 | 66.56 389 | 22.64 388 | 39.09 380 | 48.43 388 |
|
| test_vis3_rt | | | 40.46 357 | 37.79 358 | 48.47 374 | 44.49 399 | 33.35 391 | 66.56 377 | 32.84 405 | 32.39 387 | 29.65 387 | 39.13 395 | 3.91 403 | 68.65 386 | 50.17 313 | 40.99 378 | 43.40 390 |
|
| ANet_high | | | 40.27 358 | 35.20 361 | 55.47 365 | 34.74 405 | 34.47 390 | 63.84 380 | 71.56 373 | 48.42 367 | 18.80 394 | 41.08 393 | 9.52 392 | 64.45 394 | 20.18 390 | 8.66 401 | 67.49 381 |
|
| test_method | | | 38.59 359 | 35.16 362 | 48.89 373 | 54.33 390 | 21.35 403 | 45.32 394 | 53.71 392 | 7.41 400 | 28.74 388 | 51.62 384 | 8.70 393 | 52.87 398 | 33.73 372 | 32.89 388 | 72.47 375 |
|
| PMMVS2 | | | 37.93 360 | 33.61 363 | 50.92 370 | 46.31 396 | 24.76 400 | 60.55 385 | 50.05 394 | 28.94 390 | 20.93 392 | 47.59 385 | 4.41 402 | 65.13 392 | 25.14 386 | 18.55 396 | 62.87 383 |
|
| Gipuma |  | | 34.91 361 | 31.44 364 | 45.30 376 | 70.99 368 | 39.64 385 | 19.85 398 | 72.56 369 | 20.10 394 | 16.16 398 | 21.47 399 | 5.08 399 | 71.16 384 | 13.07 396 | 43.70 373 | 25.08 396 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| testf1 | | | 32.77 362 | 29.47 365 | 42.67 378 | 41.89 401 | 30.81 394 | 52.07 389 | 43.45 399 | 15.45 395 | 18.52 395 | 44.82 389 | 2.12 404 | 58.38 396 | 16.05 393 | 30.87 390 | 38.83 391 |
|
| APD_test2 | | | 32.77 362 | 29.47 365 | 42.67 378 | 41.89 401 | 30.81 394 | 52.07 389 | 43.45 399 | 15.45 395 | 18.52 395 | 44.82 389 | 2.12 404 | 58.38 396 | 16.05 393 | 30.87 390 | 38.83 391 |
|
| PMVS |  | 26.43 22 | 31.84 364 | 28.16 367 | 42.89 377 | 25.87 407 | 27.58 398 | 50.92 392 | 49.78 395 | 21.37 393 | 14.17 399 | 40.81 394 | 2.01 406 | 66.62 388 | 9.61 399 | 38.88 382 | 34.49 395 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| E-PMN | | | 24.61 365 | 24.00 369 | 26.45 382 | 43.74 400 | 18.44 407 | 60.86 383 | 39.66 401 | 15.11 397 | 9.53 401 | 22.10 398 | 6.52 397 | 46.94 400 | 8.31 401 | 10.14 398 | 13.98 398 |
|
| MVE |  | 24.84 23 | 24.35 366 | 19.77 372 | 38.09 380 | 34.56 406 | 26.92 399 | 26.57 396 | 38.87 403 | 11.73 399 | 11.37 400 | 27.44 396 | 1.37 407 | 50.42 399 | 11.41 397 | 14.60 397 | 36.93 393 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| EMVS | | | 23.76 367 | 23.20 371 | 25.46 383 | 41.52 403 | 16.90 408 | 60.56 384 | 38.79 404 | 14.62 398 | 8.99 402 | 20.24 401 | 7.35 394 | 45.82 401 | 7.25 402 | 9.46 399 | 13.64 399 |
|
| tmp_tt | | | 22.26 368 | 23.75 370 | 17.80 384 | 5.23 408 | 12.06 409 | 35.26 395 | 39.48 402 | 2.82 402 | 18.94 393 | 44.20 391 | 22.23 372 | 24.64 403 | 36.30 365 | 9.31 400 | 16.69 397 |
|
| cdsmvs_eth3d_5k | | | 19.86 369 | 26.47 368 | 0.00 388 | 0.00 411 | 0.00 413 | 0.00 399 | 93.45 81 | 0.00 406 | 0.00 407 | 95.27 56 | 49.56 244 | 0.00 407 | 0.00 406 | 0.00 404 | 0.00 403 |
|
| wuyk23d | | | 11.30 370 | 10.95 373 | 12.33 385 | 48.05 395 | 19.89 405 | 25.89 397 | 1.92 409 | 3.58 401 | 3.12 403 | 1.37 403 | 0.64 408 | 15.77 404 | 6.23 403 | 7.77 402 | 1.35 400 |
|
| ab-mvs-re | | | 7.91 371 | 10.55 374 | 0.00 388 | 0.00 411 | 0.00 413 | 0.00 399 | 0.00 412 | 0.00 406 | 0.00 407 | 94.95 64 | 0.00 411 | 0.00 407 | 0.00 406 | 0.00 404 | 0.00 403 |
|
| testmvs | | | 7.23 372 | 9.62 375 | 0.06 387 | 0.04 409 | 0.02 412 | 84.98 297 | 0.02 410 | 0.03 404 | 0.18 405 | 1.21 404 | 0.01 410 | 0.02 405 | 0.14 404 | 0.01 403 | 0.13 402 |
|
| test123 | | | 6.92 373 | 9.21 376 | 0.08 386 | 0.03 410 | 0.05 411 | 81.65 323 | 0.01 411 | 0.02 405 | 0.14 406 | 0.85 405 | 0.03 409 | 0.02 405 | 0.12 405 | 0.00 404 | 0.16 401 |
|
| pcd_1.5k_mvsjas | | | 4.46 374 | 5.95 377 | 0.00 388 | 0.00 411 | 0.00 413 | 0.00 399 | 0.00 412 | 0.00 406 | 0.00 407 | 0.00 406 | 53.55 209 | 0.00 407 | 0.00 406 | 0.00 404 | 0.00 403 |
|
| test_blank | | | 0.00 375 | 0.00 378 | 0.00 388 | 0.00 411 | 0.00 413 | 0.00 399 | 0.00 412 | 0.00 406 | 0.00 407 | 0.00 406 | 0.00 411 | 0.00 407 | 0.00 406 | 0.00 404 | 0.00 403 |
|
| uanet_test | | | 0.00 375 | 0.00 378 | 0.00 388 | 0.00 411 | 0.00 413 | 0.00 399 | 0.00 412 | 0.00 406 | 0.00 407 | 0.00 406 | 0.00 411 | 0.00 407 | 0.00 406 | 0.00 404 | 0.00 403 |
|
| DCPMVS | | | 0.00 375 | 0.00 378 | 0.00 388 | 0.00 411 | 0.00 413 | 0.00 399 | 0.00 412 | 0.00 406 | 0.00 407 | 0.00 406 | 0.00 411 | 0.00 407 | 0.00 406 | 0.00 404 | 0.00 403 |
|
| sosnet-low-res | | | 0.00 375 | 0.00 378 | 0.00 388 | 0.00 411 | 0.00 413 | 0.00 399 | 0.00 412 | 0.00 406 | 0.00 407 | 0.00 406 | 0.00 411 | 0.00 407 | 0.00 406 | 0.00 404 | 0.00 403 |
|
| sosnet | | | 0.00 375 | 0.00 378 | 0.00 388 | 0.00 411 | 0.00 413 | 0.00 399 | 0.00 412 | 0.00 406 | 0.00 407 | 0.00 406 | 0.00 411 | 0.00 407 | 0.00 406 | 0.00 404 | 0.00 403 |
|
| uncertanet | | | 0.00 375 | 0.00 378 | 0.00 388 | 0.00 411 | 0.00 413 | 0.00 399 | 0.00 412 | 0.00 406 | 0.00 407 | 0.00 406 | 0.00 411 | 0.00 407 | 0.00 406 | 0.00 404 | 0.00 403 |
|
| Regformer | | | 0.00 375 | 0.00 378 | 0.00 388 | 0.00 411 | 0.00 413 | 0.00 399 | 0.00 412 | 0.00 406 | 0.00 407 | 0.00 406 | 0.00 411 | 0.00 407 | 0.00 406 | 0.00 404 | 0.00 403 |
|
| uanet | | | 0.00 375 | 0.00 378 | 0.00 388 | 0.00 411 | 0.00 413 | 0.00 399 | 0.00 412 | 0.00 406 | 0.00 407 | 0.00 406 | 0.00 411 | 0.00 407 | 0.00 406 | 0.00 404 | 0.00 403 |
|
| WAC-MVS | | | | | | | 49.45 353 | | | | | | | | 31.56 383 | | |
|
| FOURS1 | | | | | | 93.95 45 | 61.77 241 | 93.96 70 | 91.92 138 | 62.14 312 | 86.57 44 | | | | | | |
|
| MSC_two_6792asdad | | | | | 89.60 8 | 97.31 4 | 73.22 10 | | 95.05 23 | | | | | 99.07 13 | 92.01 24 | 94.77 25 | 96.51 21 |
|
| PC_three_1452 | | | | | | | | | | 80.91 45 | 94.07 2 | 96.83 18 | 83.57 4 | 99.12 5 | 95.70 7 | 97.42 4 | 97.55 4 |
|
| No_MVS | | | | | 89.60 8 | 97.31 4 | 73.22 10 | | 95.05 23 | | | | | 99.07 13 | 92.01 24 | 94.77 25 | 96.51 21 |
|
| test_one_0601 | | | | | | 96.32 18 | 69.74 43 | | 94.18 54 | 71.42 219 | 90.67 18 | 96.85 16 | 74.45 18 | | | | |
|
| eth-test2 | | | | | | 0.00 411 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 411 | | | | | | | | | | | |
|
| ZD-MVS | | | | | | 96.63 9 | 65.50 148 | | 93.50 79 | 70.74 233 | 85.26 59 | 95.19 61 | 64.92 75 | 97.29 76 | 87.51 55 | 93.01 54 | |
|
| RE-MVS-def | | | | 80.48 134 | | 92.02 94 | 58.56 295 | 90.90 203 | 90.45 196 | 62.76 306 | 78.89 117 | 94.46 78 | 49.30 247 | | 78.77 127 | 86.77 123 | 92.28 171 |
|
| IU-MVS | | | | | | 96.46 11 | 69.91 37 | | 95.18 18 | 80.75 46 | 95.28 1 | | | | 92.34 21 | 95.36 13 | 96.47 25 |
|
| OPU-MVS | | | | | 89.97 3 | 97.52 3 | 73.15 12 | 96.89 5 | | | | 97.00 9 | 83.82 2 | 99.15 2 | 95.72 5 | 97.63 3 | 97.62 2 |
|
| test_241102_TWO | | | | | | | | | 94.41 45 | 71.65 208 | 92.07 8 | 97.21 4 | 74.58 17 | 99.11 6 | 92.34 21 | 95.36 13 | 96.59 16 |
|
| test_241102_ONE | | | | | | 96.45 12 | 69.38 48 | | 94.44 43 | 71.65 208 | 92.11 6 | 97.05 7 | 76.79 9 | 99.11 6 | | | |
|
| 9.14 | | | | 87.63 27 | | 93.86 47 | | 94.41 52 | 94.18 54 | 72.76 173 | 86.21 46 | 96.51 24 | 66.64 57 | 97.88 44 | 90.08 38 | 94.04 37 | |
|
| save fliter | | | | | | 93.84 48 | 67.89 87 | 95.05 39 | 92.66 111 | 78.19 86 | | | | | | | |
|
| test_0728_THIRD | | | | | | | | | | 72.48 178 | 90.55 19 | 96.93 11 | 76.24 11 | 99.08 11 | 91.53 29 | 94.99 17 | 96.43 26 |
|
| test_0728_SECOND | | | | | 88.70 16 | 96.45 12 | 70.43 29 | 96.64 9 | 94.37 49 | | | | | 99.15 2 | 91.91 27 | 94.90 21 | 96.51 21 |
|
| test0726 | | | | | | 96.40 15 | 69.99 33 | 96.76 7 | 94.33 51 | 71.92 194 | 91.89 10 | 97.11 6 | 73.77 21 | | | | |
|
| GSMVS | | | | | | | | | | | | | | | | | 94.68 89 |
|
| test_part2 | | | | | | 96.29 19 | 68.16 81 | | | | 90.78 16 | | | | | | |
|
| sam_mvs1 | | | | | | | | | | | | | 57.85 156 | | | | 94.68 89 |
|
| sam_mvs | | | | | | | | | | | | | 54.91 194 | | | | |
|
| ambc | | | | | 69.61 344 | 61.38 386 | 41.35 379 | 49.07 393 | 85.86 317 | | 50.18 358 | 66.40 368 | 10.16 390 | 88.14 328 | 45.73 337 | 44.20 371 | 79.32 357 |
|
| MTGPA |  | | | | | | | | 92.23 124 | | | | | | | | |
|
| test_post1 | | | | | | | | 78.95 343 | | | | 20.70 400 | 53.05 214 | 91.50 298 | 60.43 276 | | |
|
| test_post | | | | | | | | | | | | 23.01 397 | 56.49 176 | 92.67 262 | | | |
|
| patchmatchnet-post | | | | | | | | | | | | 67.62 367 | 57.62 159 | 90.25 307 | | | |
|
| GG-mvs-BLEND | | | | | 86.53 65 | 91.91 101 | 69.67 46 | 75.02 360 | 94.75 30 | | 78.67 124 | 90.85 158 | 77.91 7 | 94.56 195 | 72.25 172 | 93.74 43 | 95.36 58 |
|
| MTMP | | | | | | | | 93.77 84 | 32.52 406 | | | | | | | | |
|
| gm-plane-assit | | | | | | 88.42 180 | 67.04 110 | | | 78.62 83 | | 91.83 141 | | 97.37 70 | 76.57 139 | | |
|
| test9_res | | | | | | | | | | | | | | | 89.41 39 | 94.96 18 | 95.29 63 |
|
| TEST9 | | | | | | 94.18 41 | 67.28 102 | 94.16 58 | 93.51 77 | 71.75 205 | 85.52 54 | 95.33 51 | 68.01 47 | 97.27 80 | | | |
|
| test_8 | | | | | | 94.19 40 | 67.19 104 | 94.15 61 | 93.42 83 | 71.87 199 | 85.38 57 | 95.35 50 | 68.19 45 | 96.95 102 | | | |
|
| agg_prior2 | | | | | | | | | | | | | | | 86.41 66 | 94.75 29 | 95.33 59 |
|
| agg_prior | | | | | | 94.16 43 | 66.97 112 | | 93.31 86 | | 84.49 65 | | | 96.75 111 | | | |
|
| TestCases | | | | | 72.46 331 | 79.57 317 | 51.42 343 | | 68.61 378 | 51.25 359 | 45.88 367 | 81.23 289 | 19.86 378 | 86.58 342 | 38.98 361 | 57.01 345 | 79.39 355 |
|
| test_prior4 | | | | | | | 67.18 106 | 93.92 73 | | | | | | | | | |
|
| test_prior2 | | | | | | | | 95.10 38 | | 75.40 126 | 85.25 60 | 95.61 45 | 67.94 48 | | 87.47 56 | 94.77 25 | |
|
| test_prior | | | | | 86.42 68 | 94.71 35 | 67.35 101 | | 93.10 96 | | | | | 96.84 108 | | | 95.05 74 |
|
| 旧先验2 | | | | | | | | 92.00 156 | | 59.37 332 | 87.54 38 | | | 93.47 238 | 75.39 147 | | |
|
| æ–°å‡ ä½•2 | | | | | | | | 91.41 178 | | | | | | | | | |
|
| æ–°å‡ ä½•1 | | | | | 84.73 124 | 92.32 86 | 64.28 179 | | 91.46 163 | 59.56 331 | 79.77 106 | 92.90 118 | 56.95 169 | 96.57 116 | 63.40 256 | 92.91 56 | 93.34 139 |
|
| 旧先验1 | | | | | | 91.94 98 | 60.74 263 | | 91.50 161 | | | 94.36 82 | 65.23 70 | | | 91.84 69 | 94.55 96 |
|
| æ— å…ˆéªŒ | | | | | | | | 92.71 121 | 92.61 115 | 62.03 313 | | | | 97.01 93 | 66.63 227 | | 93.97 121 |
|
| 原ACMM2 | | | | | | | | 92.01 153 | | | | | | | | | |
|
| 原ACMM1 | | | | | 84.42 138 | 93.21 63 | 64.27 180 | | 93.40 85 | 65.39 284 | 79.51 109 | 92.50 126 | 58.11 155 | 96.69 112 | 65.27 246 | 93.96 38 | 92.32 169 |
|
| test222 | | | | | | 89.77 145 | 61.60 246 | 89.55 242 | 89.42 240 | 56.83 344 | 77.28 137 | 92.43 130 | 52.76 217 | | | 91.14 83 | 93.09 147 |
|
| testdata2 | | | | | | | | | | | | | | 96.09 129 | 61.26 272 | | |
|
| segment_acmp | | | | | | | | | | | | | 65.94 63 | | | | |
|
| testdata | | | | | 81.34 218 | 89.02 166 | 57.72 303 | | 89.84 224 | 58.65 335 | 85.32 58 | 94.09 94 | 57.03 164 | 93.28 240 | 69.34 200 | 90.56 89 | 93.03 150 |
|
| testdata1 | | | | | | | | 89.21 251 | | 77.55 99 | | | | | | | |
|
| test12 | | | | | 87.09 45 | 94.60 36 | 68.86 61 | | 92.91 102 | | 82.67 81 | | 65.44 68 | 97.55 62 | | 93.69 46 | 94.84 83 |
|
| plane_prior7 | | | | | | 86.94 220 | 61.51 247 | | | | | | | | | | |
|
| plane_prior6 | | | | | | 87.23 212 | 62.32 231 | | | | | | 50.66 234 | | | | |
|
| plane_prior5 | | | | | | | | | 91.31 167 | | | | | 95.55 158 | 76.74 137 | 78.53 192 | 88.39 235 |
|
| plane_prior4 | | | | | | | | | | | | 89.14 186 | | | | | |
|
| plane_prior3 | | | | | | | 61.95 239 | | | 79.09 73 | 72.53 188 | | | | | | |
|
| plane_prior2 | | | | | | | | 93.13 105 | | 78.81 80 | | | | | | | |
|
| plane_prior1 | | | | | | 87.15 214 | | | | | | | | | | | |
|
| plane_prior | | | | | | | 62.42 227 | 93.85 77 | | 79.38 65 | | | | | | 78.80 189 | |
|
| n2 | | | | | | | | | 0.00 412 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 412 | | | | | | | | |
|
| door-mid | | | | | | | | | 66.01 382 | | | | | | | | |
|
| lessismore_v0 | | | | | 73.72 322 | 72.93 363 | 47.83 360 | | 61.72 387 | | 45.86 369 | 73.76 348 | 28.63 360 | 89.81 315 | 47.75 329 | 31.37 389 | 83.53 310 |
|
| LGP-MVS_train | | | | | 79.56 265 | 84.31 267 | 59.37 284 | | 89.73 230 | 69.49 247 | 64.86 276 | 88.42 191 | 38.65 308 | 94.30 204 | 72.56 169 | 72.76 237 | 85.01 297 |
|
| test11 | | | | | | | | | 93.01 98 | | | | | | | | |
|
| door | | | | | | | | | 66.57 381 | | | | | | | | |
|
| HQP5-MVS | | | | | | | 63.66 198 | | | | | | | | | | |
|
| HQP-NCC | | | | | | 87.54 205 | | 94.06 63 | | 79.80 57 | 74.18 167 | | | | | | |
|
| ACMP_Plane | | | | | | 87.54 205 | | 94.06 63 | | 79.80 57 | 74.18 167 | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 77.63 134 | | |
|
| HQP4-MVS | | | | | | | | | | | 74.18 167 | | | 95.61 153 | | | 88.63 228 |
|
| HQP3-MVS | | | | | | | | | 91.70 153 | | | | | | | 78.90 187 | |
|
| HQP2-MVS | | | | | | | | | | | | | 51.63 227 | | | | |
|
| NP-MVS | | | | | | 87.41 208 | 63.04 213 | | | | | 90.30 168 | | | | | |
|
| MDTV_nov1_ep13_2view | | | | | | | 59.90 277 | 80.13 338 | | 67.65 268 | 72.79 183 | | 54.33 202 | | 59.83 280 | | 92.58 162 |
|
| MDTV_nov1_ep13 | | | | 72.61 250 | | 89.06 165 | 68.48 69 | 80.33 334 | 90.11 214 | 71.84 201 | 71.81 199 | 75.92 342 | 53.01 215 | 93.92 227 | 48.04 324 | 73.38 231 | |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 71.63 245 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 69.72 255 | |
|
| Test By Simon | | | | | | | | | | | | | 54.21 203 | | | | |
|
| ITE_SJBPF | | | | | 70.43 342 | 74.44 357 | 47.06 366 | | 77.32 355 | 60.16 327 | 54.04 342 | 83.53 258 | 23.30 370 | 84.01 355 | 43.07 345 | 61.58 326 | 80.21 352 |
|
| DeepMVS_CX |  | | | | 34.71 381 | 51.45 393 | 24.73 401 | | 28.48 407 | 31.46 388 | 17.49 397 | 52.75 383 | 5.80 398 | 42.60 402 | 18.18 391 | 19.42 395 | 36.81 394 |
|