This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
MCST-MVS91.08 191.46 389.94 497.66 273.37 1097.13 295.58 1189.33 185.77 5496.26 3072.84 2699.38 192.64 1995.93 997.08 10
MM90.87 291.52 288.92 1492.12 9571.10 2897.02 396.04 688.70 291.57 1396.19 3370.12 4098.91 1796.83 195.06 1696.76 14
DPM-MVS90.70 390.52 891.24 189.68 15376.68 297.29 195.35 1582.87 2191.58 1297.22 379.93 599.10 983.12 9797.64 297.94 1
DVP-MVS++90.53 491.09 588.87 1597.31 469.91 4393.96 7094.37 5272.48 18292.07 896.85 1683.82 299.15 291.53 2997.42 497.55 4
MSP-MVS90.38 591.87 185.88 8892.83 7664.03 19193.06 11194.33 5482.19 2893.65 396.15 3585.89 197.19 8391.02 3397.75 196.43 29
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
CNVR-MVS90.32 690.89 788.61 2196.76 870.65 3296.47 1394.83 3084.83 1289.07 3296.80 1970.86 3699.06 1592.64 1995.71 1096.12 38
DELS-MVS90.05 790.09 1189.94 493.14 6973.88 997.01 494.40 5088.32 385.71 5594.91 7074.11 1998.91 1787.26 6195.94 897.03 11
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MVS_030490.01 890.50 988.53 2290.14 14470.94 2996.47 1395.72 1087.33 489.60 2996.26 3068.44 4698.74 2495.82 494.72 3095.90 45
SED-MVS89.94 990.36 1088.70 1796.45 1269.38 5496.89 594.44 4671.65 21292.11 697.21 476.79 999.11 692.34 2195.36 1397.62 2
DeepPCF-MVS81.17 189.72 1091.38 484.72 13293.00 7358.16 30596.72 894.41 4886.50 890.25 2297.83 175.46 1498.67 2592.78 1895.49 1297.32 6
patch_mono-289.71 1190.99 685.85 9196.04 2463.70 20195.04 4095.19 1986.74 791.53 1495.15 6373.86 2097.58 5993.38 1492.00 7096.28 35
CANet89.61 1289.99 1288.46 2394.39 3969.71 5096.53 1293.78 6686.89 689.68 2895.78 4065.94 6999.10 992.99 1693.91 4196.58 20
DVP-MVScopyleft89.41 1389.73 1488.45 2496.40 1569.99 3996.64 994.52 4271.92 19890.55 1996.93 1173.77 2199.08 1191.91 2794.90 2196.29 33
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
HPM-MVS++copyleft89.37 1489.95 1387.64 3395.10 3068.23 8495.24 3394.49 4482.43 2588.90 3396.35 2771.89 3398.63 2688.76 4896.40 696.06 39
NCCC89.07 1589.46 1587.91 2796.60 1069.05 6296.38 1594.64 3984.42 1386.74 4696.20 3266.56 6598.76 2389.03 4794.56 3295.92 44
MVSMamba_pp88.94 1688.82 1789.29 1294.04 4574.01 794.81 4692.74 11185.13 1090.37 2190.13 17968.40 4897.38 7089.42 3994.34 3596.47 27
DPE-MVScopyleft88.77 1789.21 1687.45 4396.26 2067.56 10094.17 5894.15 5968.77 26290.74 1797.27 276.09 1298.49 2990.58 3794.91 2096.30 32
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SMA-MVScopyleft88.14 1888.29 2287.67 3293.21 6668.72 7093.85 7794.03 6274.18 14591.74 1196.67 2165.61 7398.42 3389.24 4496.08 795.88 46
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
PS-MVSNAJ88.14 1887.61 2989.71 692.06 9676.72 195.75 2093.26 9083.86 1589.55 3096.06 3653.55 21997.89 4391.10 3193.31 5394.54 105
TSAR-MVS + MP.88.11 2088.64 1886.54 7091.73 10968.04 8890.36 22593.55 7982.89 2091.29 1592.89 12172.27 3096.03 14387.99 5294.77 2595.54 55
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
TSAR-MVS + GP.87.96 2188.37 2186.70 6393.51 6065.32 15695.15 3693.84 6578.17 9185.93 5394.80 7375.80 1398.21 3489.38 4188.78 10496.59 18
DeepC-MVS_fast79.48 287.95 2288.00 2587.79 3095.86 2768.32 7895.74 2194.11 6083.82 1683.49 7696.19 3364.53 8798.44 3183.42 9694.88 2496.61 17
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
xiu_mvs_v2_base87.92 2387.38 3389.55 1191.41 12076.43 395.74 2193.12 9883.53 1889.55 3095.95 3853.45 22397.68 5091.07 3292.62 6094.54 105
EPNet87.84 2488.38 2086.23 8093.30 6366.05 13895.26 3294.84 2987.09 588.06 3594.53 7966.79 6297.34 7483.89 9391.68 7595.29 67
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
lupinMVS87.74 2587.77 2787.63 3789.24 16871.18 2596.57 1192.90 10682.70 2387.13 4195.27 5664.99 7895.80 14889.34 4291.80 7395.93 43
test_fmvsm_n_192087.69 2688.50 1985.27 11287.05 22463.55 20893.69 8791.08 18684.18 1490.17 2497.04 867.58 5697.99 3995.72 590.03 9594.26 113
APDe-MVScopyleft87.54 2787.84 2686.65 6496.07 2366.30 13494.84 4593.78 6669.35 25388.39 3496.34 2867.74 5597.66 5490.62 3693.44 5196.01 42
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
fmvsm_l_conf0.5_n87.49 2888.19 2385.39 10686.95 22564.37 18194.30 5588.45 28980.51 4992.70 496.86 1569.98 4197.15 8795.83 388.08 11294.65 99
SD-MVS87.49 2887.49 3187.50 4293.60 5568.82 6893.90 7492.63 11876.86 11087.90 3695.76 4166.17 6697.63 5689.06 4691.48 7996.05 40
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
fmvsm_l_conf0.5_n_a87.44 3088.15 2485.30 11087.10 22264.19 18894.41 5388.14 29880.24 5792.54 596.97 1069.52 4397.17 8495.89 288.51 10794.56 102
dcpmvs_287.37 3187.55 3086.85 5695.04 3268.20 8590.36 22590.66 19879.37 7181.20 9393.67 10574.73 1596.55 12190.88 3492.00 7095.82 47
alignmvs87.28 3286.97 3788.24 2691.30 12271.14 2795.61 2593.56 7879.30 7287.07 4395.25 5868.43 4796.93 10787.87 5384.33 14796.65 16
train_agg87.21 3387.42 3286.60 6694.18 4167.28 10794.16 5993.51 8071.87 20385.52 5795.33 5168.19 5097.27 8189.09 4594.90 2195.25 73
MG-MVS87.11 3486.27 4489.62 797.79 176.27 494.96 4394.49 4478.74 8683.87 7592.94 11964.34 8896.94 10575.19 15494.09 3795.66 50
SF-MVS87.03 3587.09 3586.84 5792.70 8267.45 10593.64 9093.76 6970.78 23786.25 4896.44 2666.98 6097.79 4788.68 4994.56 3295.28 69
CSCG86.87 3686.26 4588.72 1695.05 3170.79 3193.83 8295.33 1668.48 26677.63 13994.35 8873.04 2498.45 3084.92 8393.71 4696.92 13
sasdasda86.85 3786.25 4688.66 1991.80 10771.92 1693.54 9591.71 15580.26 5487.55 3895.25 5863.59 10196.93 10788.18 5084.34 14597.11 8
canonicalmvs86.85 3786.25 4688.66 1991.80 10771.92 1693.54 9591.71 15580.26 5487.55 3895.25 5863.59 10196.93 10788.18 5084.34 14597.11 8
PHI-MVS86.83 3986.85 4186.78 6193.47 6165.55 15295.39 3095.10 2271.77 20885.69 5696.52 2362.07 12198.77 2286.06 7395.60 1196.03 41
SteuartSystems-ACMMP86.82 4086.90 3986.58 6890.42 13766.38 13196.09 1793.87 6477.73 9884.01 7495.66 4363.39 10497.94 4087.40 5993.55 4995.42 56
Skip Steuart: Steuart Systems R&D Blog.
PVSNet_Blended86.73 4186.86 4086.31 7993.76 5067.53 10296.33 1693.61 7682.34 2781.00 9893.08 11563.19 10897.29 7787.08 6491.38 8194.13 120
testing1186.71 4286.44 4387.55 4093.54 5871.35 2293.65 8995.58 1181.36 4180.69 10192.21 13972.30 2996.46 12685.18 7983.43 15494.82 92
test_fmvsmconf_n86.58 4387.17 3484.82 12585.28 25562.55 23294.26 5789.78 23283.81 1787.78 3796.33 2965.33 7596.98 9994.40 1187.55 11794.95 83
jason86.40 4486.17 4887.11 5086.16 24070.54 3495.71 2492.19 13382.00 3084.58 6794.34 8961.86 12395.53 16987.76 5490.89 8795.27 70
jason: jason.
fmvsm_s_conf0.5_n86.39 4586.91 3884.82 12587.36 21763.54 20994.74 4890.02 22682.52 2490.14 2596.92 1362.93 11397.84 4695.28 882.26 16493.07 156
WTY-MVS86.32 4685.81 5587.85 2892.82 7869.37 5695.20 3495.25 1782.71 2281.91 8794.73 7467.93 5497.63 5679.55 12382.25 16596.54 21
MSLP-MVS++86.27 4785.91 5487.35 4592.01 9968.97 6595.04 4092.70 11279.04 8181.50 9096.50 2558.98 15696.78 11383.49 9593.93 4096.29 33
VNet86.20 4885.65 5987.84 2993.92 4769.99 3995.73 2395.94 778.43 8886.00 5293.07 11658.22 16297.00 9585.22 7784.33 14796.52 22
MVS_111021_HR86.19 4985.80 5687.37 4493.17 6869.79 4793.99 6993.76 6979.08 7978.88 12793.99 9962.25 12098.15 3685.93 7491.15 8594.15 119
CS-MVS-test86.14 5087.01 3683.52 17092.63 8459.36 29395.49 2791.92 14280.09 5885.46 5995.53 4761.82 12595.77 15186.77 6893.37 5295.41 57
ACMMP_NAP86.05 5185.80 5686.80 6091.58 11367.53 10291.79 16993.49 8374.93 13684.61 6695.30 5359.42 14997.92 4186.13 7194.92 1994.94 84
testing9986.01 5285.47 6087.63 3793.62 5471.25 2493.47 10195.23 1880.42 5280.60 10391.95 14371.73 3496.50 12480.02 12082.22 16695.13 76
ETV-MVS86.01 5286.11 4985.70 9890.21 14267.02 11693.43 10391.92 14281.21 4384.13 7394.07 9860.93 13395.63 15989.28 4389.81 9694.46 111
testing9185.93 5485.31 6387.78 3193.59 5671.47 1993.50 9895.08 2580.26 5480.53 10491.93 14470.43 3896.51 12380.32 11882.13 16895.37 60
APD-MVScopyleft85.93 5485.99 5285.76 9595.98 2665.21 15993.59 9392.58 12066.54 27986.17 5095.88 3963.83 9497.00 9586.39 7092.94 5795.06 78
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
PAPM85.89 5685.46 6187.18 4888.20 19672.42 1592.41 14192.77 10982.11 2980.34 10793.07 11668.27 4995.02 18278.39 13593.59 4894.09 122
CS-MVS85.80 5786.65 4283.27 17892.00 10058.92 29895.31 3191.86 14779.97 5984.82 6595.40 4962.26 11995.51 17086.11 7292.08 6995.37 60
fmvsm_s_conf0.5_n_a85.75 5886.09 5084.72 13285.73 24963.58 20693.79 8389.32 25081.42 3990.21 2396.91 1462.41 11897.67 5194.48 1080.56 18392.90 162
test_fmvsmconf0.1_n85.71 5986.08 5184.62 13980.83 30962.33 23793.84 8088.81 27683.50 1987.00 4496.01 3763.36 10596.93 10794.04 1287.29 12094.61 101
CDPH-MVS85.71 5985.46 6186.46 7294.75 3467.19 10993.89 7592.83 10870.90 23383.09 7995.28 5463.62 9997.36 7280.63 11594.18 3694.84 89
casdiffmvs_mvgpermissive85.66 6185.18 6587.09 5188.22 19569.35 5793.74 8691.89 14581.47 3580.10 10991.45 15364.80 8396.35 12787.23 6287.69 11595.58 53
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
fmvsm_s_conf0.1_n85.61 6285.93 5384.68 13582.95 29363.48 21194.03 6889.46 24481.69 3389.86 2696.74 2061.85 12497.75 4994.74 982.01 17092.81 164
MGCFI-Net85.59 6385.73 5885.17 11691.41 12062.44 23392.87 11991.31 17279.65 6586.99 4595.14 6462.90 11496.12 13587.13 6384.13 15296.96 12
DeepC-MVS77.85 385.52 6485.24 6486.37 7688.80 17866.64 12492.15 14893.68 7481.07 4476.91 14993.64 10662.59 11698.44 3185.50 7592.84 5994.03 126
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
casdiffmvspermissive85.37 6584.87 7186.84 5788.25 19369.07 6193.04 11391.76 15281.27 4280.84 10092.07 14164.23 8996.06 14184.98 8287.43 11995.39 58
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ZNCC-MVS85.33 6685.08 6786.06 8393.09 7165.65 14893.89 7593.41 8773.75 15679.94 11194.68 7660.61 13698.03 3882.63 10093.72 4594.52 107
MP-MVS-pluss85.24 6785.13 6685.56 10191.42 11865.59 15091.54 17992.51 12274.56 13980.62 10295.64 4459.15 15397.00 9586.94 6693.80 4294.07 124
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
testing22285.18 6884.69 7386.63 6592.91 7569.91 4392.61 13295.80 980.31 5380.38 10692.27 13668.73 4595.19 17975.94 14983.27 15694.81 93
PAPR85.15 6984.47 7487.18 4896.02 2568.29 7991.85 16793.00 10376.59 11779.03 12395.00 6561.59 12697.61 5878.16 13689.00 10395.63 51
MP-MVScopyleft85.02 7084.97 6985.17 11692.60 8564.27 18693.24 10692.27 12773.13 16779.63 11594.43 8261.90 12297.17 8485.00 8192.56 6194.06 125
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
baseline85.01 7184.44 7586.71 6288.33 19068.73 6990.24 23091.82 15181.05 4581.18 9492.50 12863.69 9796.08 14084.45 8886.71 12995.32 65
CHOSEN 1792x268884.98 7283.45 8889.57 1089.94 14875.14 592.07 15492.32 12581.87 3175.68 15888.27 20260.18 13998.60 2780.46 11790.27 9494.96 82
EIA-MVS84.84 7384.88 7084.69 13491.30 12262.36 23693.85 7792.04 13779.45 6879.33 12094.28 9262.42 11796.35 12780.05 11991.25 8495.38 59
fmvsm_s_conf0.1_n_a84.76 7484.84 7284.53 14180.23 31963.50 21092.79 12188.73 27980.46 5089.84 2796.65 2260.96 13297.57 6193.80 1380.14 18592.53 172
HFP-MVS84.73 7584.40 7685.72 9793.75 5265.01 16593.50 9893.19 9472.19 19279.22 12194.93 6859.04 15497.67 5181.55 10692.21 6594.49 110
MVS84.66 7682.86 10490.06 290.93 12874.56 687.91 27595.54 1368.55 26472.35 20094.71 7559.78 14598.90 1981.29 11294.69 3196.74 15
GST-MVS84.63 7784.29 7785.66 9992.82 7865.27 15793.04 11393.13 9773.20 16578.89 12494.18 9559.41 15097.85 4581.45 10892.48 6393.86 134
EC-MVSNet84.53 7885.04 6883.01 18289.34 16061.37 25794.42 5291.09 18477.91 9583.24 7794.20 9458.37 16095.40 17185.35 7691.41 8092.27 182
ACMMPR84.37 7984.06 7885.28 11193.56 5764.37 18193.50 9893.15 9672.19 19278.85 12994.86 7156.69 18297.45 6581.55 10692.20 6694.02 127
region2R84.36 8084.03 7985.36 10893.54 5864.31 18493.43 10392.95 10472.16 19578.86 12894.84 7256.97 17797.53 6381.38 11092.11 6894.24 114
LFMVS84.34 8182.73 10689.18 1394.76 3373.25 1194.99 4291.89 14571.90 20082.16 8693.49 11047.98 27097.05 9082.55 10184.82 14197.25 7
test_yl84.28 8283.16 9787.64 3394.52 3769.24 5895.78 1895.09 2369.19 25681.09 9592.88 12257.00 17597.44 6681.11 11381.76 17296.23 36
DCV-MVSNet84.28 8283.16 9787.64 3394.52 3769.24 5895.78 1895.09 2369.19 25681.09 9592.88 12257.00 17597.44 6681.11 11381.76 17296.23 36
diffmvspermissive84.28 8283.83 8085.61 10087.40 21568.02 8990.88 20989.24 25380.54 4881.64 8992.52 12759.83 14494.52 20587.32 6085.11 13994.29 112
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
HY-MVS76.49 584.28 8283.36 9587.02 5492.22 9267.74 9584.65 30194.50 4379.15 7682.23 8587.93 21166.88 6196.94 10580.53 11682.20 16796.39 31
ETVMVS84.22 8683.71 8185.76 9592.58 8668.25 8392.45 14095.53 1479.54 6779.46 11791.64 15170.29 3994.18 21869.16 20982.76 16294.84 89
MAR-MVS84.18 8783.43 8986.44 7396.25 2165.93 14394.28 5694.27 5674.41 14079.16 12295.61 4553.99 21498.88 2169.62 20393.26 5494.50 109
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MVS_Test84.16 8883.20 9687.05 5391.56 11469.82 4689.99 23992.05 13677.77 9782.84 8086.57 23163.93 9396.09 13774.91 15989.18 10295.25 73
CANet_DTU84.09 8983.52 8385.81 9290.30 14066.82 11991.87 16589.01 26885.27 986.09 5193.74 10347.71 27496.98 9977.90 13889.78 9893.65 139
iter_conf05_1184.06 9083.37 9486.15 8293.04 7266.63 12587.84 27790.21 21871.10 22981.47 9189.48 18768.80 4496.96 10275.97 14892.39 6494.87 85
ET-MVSNet_ETH3D84.01 9183.15 9986.58 6890.78 13370.89 3094.74 4894.62 4081.44 3858.19 32993.64 10673.64 2392.35 28282.66 9978.66 20096.50 26
PVSNet_Blended_VisFu83.97 9283.50 8585.39 10690.02 14666.59 12893.77 8491.73 15377.43 10677.08 14889.81 18463.77 9696.97 10179.67 12288.21 11092.60 168
MTAPA83.91 9383.38 9385.50 10291.89 10565.16 16181.75 32592.23 12875.32 13180.53 10495.21 6156.06 19197.16 8684.86 8492.55 6294.18 116
XVS83.87 9483.47 8785.05 11893.22 6463.78 19592.92 11792.66 11573.99 14878.18 13394.31 9155.25 19797.41 6879.16 12691.58 7793.95 129
Effi-MVS+83.82 9582.76 10586.99 5589.56 15669.40 5391.35 19186.12 32272.59 17983.22 7892.81 12559.60 14796.01 14581.76 10587.80 11495.56 54
test_fmvsmvis_n_192083.80 9683.48 8684.77 12982.51 29563.72 19991.37 18983.99 34481.42 3977.68 13895.74 4258.37 16097.58 5993.38 1486.87 12393.00 159
EI-MVSNet-Vis-set83.77 9783.67 8284.06 15692.79 8163.56 20791.76 17294.81 3179.65 6577.87 13694.09 9663.35 10697.90 4279.35 12479.36 19290.74 208
MVSFormer83.75 9882.88 10386.37 7689.24 16871.18 2589.07 25790.69 19565.80 28487.13 4194.34 8964.99 7892.67 26972.83 17191.80 7395.27 70
CP-MVS83.71 9983.40 9284.65 13693.14 6963.84 19394.59 5092.28 12671.03 23177.41 14294.92 6955.21 20096.19 13281.32 11190.70 8993.91 131
test_fmvsmconf0.01_n83.70 10083.52 8384.25 15375.26 36261.72 25192.17 14787.24 31182.36 2684.91 6495.41 4855.60 19596.83 11292.85 1785.87 13594.21 115
baseline283.68 10183.42 9184.48 14487.37 21666.00 14090.06 23495.93 879.71 6469.08 23690.39 17177.92 696.28 12978.91 13081.38 17691.16 204
thisisatest051583.41 10282.49 11086.16 8189.46 15968.26 8193.54 9594.70 3674.31 14375.75 15690.92 16172.62 2796.52 12269.64 20181.50 17593.71 137
PVSNet_BlendedMVS83.38 10383.43 8983.22 17993.76 5067.53 10294.06 6393.61 7679.13 7781.00 9885.14 24763.19 10897.29 7787.08 6473.91 23684.83 303
test250683.29 10482.92 10284.37 14888.39 18863.18 21892.01 15791.35 17177.66 10078.49 13291.42 15464.58 8695.09 18173.19 16789.23 10094.85 86
PGM-MVS83.25 10582.70 10784.92 12192.81 8064.07 19090.44 22192.20 13271.28 22477.23 14594.43 8255.17 20197.31 7679.33 12591.38 8193.37 145
HPM-MVScopyleft83.25 10582.95 10184.17 15492.25 9162.88 22790.91 20691.86 14770.30 24277.12 14693.96 10056.75 18096.28 12982.04 10391.34 8393.34 146
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
iter_conf0583.18 10781.72 12087.58 3990.17 14373.92 883.37 31288.63 28562.18 31473.79 18087.64 21671.47 3596.28 12984.69 8593.54 5092.54 170
EI-MVSNet-UG-set83.14 10882.96 10083.67 16892.28 9063.19 21791.38 18894.68 3779.22 7476.60 15193.75 10262.64 11597.76 4878.07 13778.01 20390.05 217
VDD-MVS83.06 10981.81 11986.81 5990.86 13167.70 9695.40 2991.50 16675.46 12881.78 8892.34 13540.09 31297.13 8886.85 6782.04 16995.60 52
h-mvs3383.01 11082.56 10984.35 14989.34 16062.02 24392.72 12493.76 6981.45 3682.73 8292.25 13860.11 14097.13 8887.69 5562.96 31493.91 131
PAPM_NR82.97 11181.84 11886.37 7694.10 4466.76 12287.66 28092.84 10769.96 24674.07 17793.57 10863.10 11197.50 6470.66 19690.58 9194.85 86
mPP-MVS82.96 11282.44 11184.52 14292.83 7662.92 22592.76 12291.85 14971.52 22075.61 16194.24 9353.48 22296.99 9878.97 12990.73 8893.64 140
SR-MVS82.81 11382.58 10883.50 17393.35 6261.16 26092.23 14691.28 17664.48 29381.27 9295.28 5453.71 21895.86 14782.87 9888.77 10593.49 143
DP-MVS Recon82.73 11481.65 12185.98 8597.31 467.06 11395.15 3691.99 13969.08 25976.50 15393.89 10154.48 20998.20 3570.76 19485.66 13792.69 165
CLD-MVS82.73 11482.35 11383.86 16087.90 20367.65 9895.45 2892.18 13485.06 1172.58 19392.27 13652.46 23095.78 14984.18 8979.06 19588.16 244
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
sss82.71 11682.38 11283.73 16489.25 16559.58 28892.24 14594.89 2877.96 9379.86 11292.38 13356.70 18197.05 9077.26 14180.86 18094.55 103
3Dnovator73.91 682.69 11780.82 13288.31 2589.57 15571.26 2392.60 13394.39 5178.84 8367.89 25792.48 13148.42 26598.52 2868.80 21494.40 3495.15 75
MVSTER82.47 11882.05 11483.74 16292.68 8369.01 6391.90 16493.21 9179.83 6072.14 20185.71 24374.72 1694.72 19375.72 15072.49 24787.50 249
TESTMET0.1,182.41 11981.98 11783.72 16588.08 19763.74 19792.70 12693.77 6879.30 7277.61 14087.57 21858.19 16394.08 22273.91 16586.68 13093.33 148
CostFormer82.33 12081.15 12585.86 9089.01 17368.46 7582.39 32293.01 10175.59 12680.25 10881.57 28972.03 3294.96 18579.06 12877.48 21194.16 118
API-MVS82.28 12180.53 13987.54 4196.13 2270.59 3393.63 9191.04 19065.72 28675.45 16392.83 12456.11 19098.89 2064.10 25889.75 9993.15 152
IB-MVS77.80 482.18 12280.46 14187.35 4589.14 17070.28 3795.59 2695.17 2178.85 8270.19 22485.82 24170.66 3797.67 5172.19 18266.52 28794.09 122
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
xiu_mvs_v1_base_debu82.16 12381.12 12685.26 11386.42 23368.72 7092.59 13590.44 20573.12 16884.20 7094.36 8438.04 32595.73 15384.12 9086.81 12491.33 197
xiu_mvs_v1_base82.16 12381.12 12685.26 11386.42 23368.72 7092.59 13590.44 20573.12 16884.20 7094.36 8438.04 32595.73 15384.12 9086.81 12491.33 197
xiu_mvs_v1_base_debi82.16 12381.12 12685.26 11386.42 23368.72 7092.59 13590.44 20573.12 16884.20 7094.36 8438.04 32595.73 15384.12 9086.81 12491.33 197
3Dnovator+73.60 782.10 12680.60 13886.60 6690.89 13066.80 12195.20 3493.44 8574.05 14767.42 26392.49 13049.46 25597.65 5570.80 19391.68 7595.33 63
MVS_111021_LR82.02 12781.52 12283.51 17288.42 18662.88 22789.77 24288.93 27276.78 11375.55 16293.10 11350.31 24795.38 17383.82 9487.02 12292.26 183
PMMVS81.98 12882.04 11581.78 21589.76 15256.17 32491.13 20290.69 19577.96 9380.09 11093.57 10846.33 28494.99 18481.41 10987.46 11894.17 117
baseline181.84 12981.03 13084.28 15291.60 11266.62 12691.08 20391.66 16081.87 3174.86 16891.67 15069.98 4194.92 18871.76 18664.75 30191.29 202
EPP-MVSNet81.79 13081.52 12282.61 19188.77 17960.21 28093.02 11593.66 7568.52 26572.90 18890.39 17172.19 3194.96 18574.93 15879.29 19492.67 166
test_vis1_n_192081.66 13182.01 11680.64 24282.24 29755.09 33294.76 4786.87 31381.67 3484.40 6994.63 7738.17 32294.67 19791.98 2683.34 15592.16 186
APD-MVS_3200maxsize81.64 13281.32 12482.59 19292.36 8858.74 30091.39 18691.01 19163.35 30279.72 11494.62 7851.82 23396.14 13479.71 12187.93 11392.89 163
ACMMPcopyleft81.49 13380.67 13583.93 15991.71 11062.90 22692.13 14992.22 13171.79 20771.68 20893.49 11050.32 24696.96 10278.47 13484.22 15191.93 189
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CDS-MVSNet81.43 13480.74 13383.52 17086.26 23764.45 17592.09 15290.65 19975.83 12473.95 17989.81 18463.97 9292.91 25971.27 18982.82 15993.20 151
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
mvs_anonymous81.36 13579.99 14685.46 10390.39 13968.40 7686.88 29190.61 20074.41 14070.31 22384.67 25263.79 9592.32 28373.13 16885.70 13695.67 49
ECVR-MVScopyleft81.29 13680.38 14284.01 15888.39 18861.96 24592.56 13886.79 31577.66 10076.63 15091.42 15446.34 28395.24 17874.36 16389.23 10094.85 86
thisisatest053081.15 13780.07 14384.39 14788.26 19265.63 14991.40 18494.62 4071.27 22570.93 21489.18 19172.47 2896.04 14265.62 24776.89 21791.49 193
Fast-Effi-MVS+81.14 13880.01 14584.51 14390.24 14165.86 14494.12 6289.15 26073.81 15575.37 16488.26 20357.26 17094.53 20466.97 23284.92 14093.15 152
HQP-MVS81.14 13880.64 13682.64 19087.54 21163.66 20494.06 6391.70 15879.80 6174.18 17390.30 17351.63 23795.61 16177.63 13978.90 19688.63 235
hse-mvs281.12 14081.11 12981.16 22986.52 23257.48 31389.40 25091.16 17981.45 3682.73 8290.49 16960.11 14094.58 19887.69 5560.41 34191.41 196
SR-MVS-dyc-post81.06 14180.70 13482.15 20692.02 9758.56 30290.90 20790.45 20262.76 30978.89 12494.46 8051.26 24195.61 16178.77 13286.77 12792.28 179
HyFIR lowres test81.03 14279.56 15385.43 10487.81 20768.11 8790.18 23190.01 22770.65 23972.95 18786.06 23963.61 10094.50 20675.01 15779.75 18993.67 138
nrg03080.93 14379.86 14884.13 15583.69 28268.83 6793.23 10791.20 17775.55 12775.06 16688.22 20663.04 11294.74 19281.88 10466.88 28488.82 233
Vis-MVSNetpermissive80.92 14479.98 14783.74 16288.48 18361.80 24793.44 10288.26 29773.96 15177.73 13791.76 14749.94 25194.76 19065.84 24490.37 9394.65 99
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test111180.84 14580.02 14483.33 17687.87 20460.76 26892.62 13186.86 31477.86 9675.73 15791.39 15646.35 28294.70 19672.79 17388.68 10694.52 107
UWE-MVS80.81 14681.01 13180.20 25289.33 16257.05 31891.91 16394.71 3575.67 12575.01 16789.37 18963.13 11091.44 30567.19 22982.80 16192.12 187
131480.70 14778.95 16485.94 8787.77 20967.56 10087.91 27592.55 12172.17 19467.44 26293.09 11450.27 24897.04 9371.68 18887.64 11693.23 150
tpmrst80.57 14879.14 16384.84 12490.10 14568.28 8081.70 32689.72 23977.63 10275.96 15579.54 32164.94 8092.71 26675.43 15277.28 21493.55 141
1112_ss80.56 14979.83 14982.77 18688.65 18060.78 26692.29 14388.36 29172.58 18072.46 19794.95 6665.09 7793.42 24666.38 23877.71 20594.10 121
VDDNet80.50 15078.26 17287.21 4786.19 23869.79 4794.48 5191.31 17260.42 32879.34 11990.91 16238.48 32096.56 12082.16 10281.05 17895.27 70
BH-w/o80.49 15179.30 16084.05 15790.83 13264.36 18393.60 9289.42 24774.35 14269.09 23590.15 17855.23 19995.61 16164.61 25586.43 13392.17 185
test_cas_vis1_n_192080.45 15280.61 13779.97 26178.25 34557.01 32094.04 6788.33 29279.06 8082.81 8193.70 10438.65 31791.63 29790.82 3579.81 18791.27 203
TAMVS80.37 15379.45 15683.13 18185.14 25863.37 21291.23 19790.76 19474.81 13872.65 19188.49 19760.63 13592.95 25469.41 20581.95 17193.08 155
HQP_MVS80.34 15479.75 15082.12 20886.94 22662.42 23493.13 10991.31 17278.81 8472.53 19489.14 19350.66 24495.55 16776.74 14278.53 20188.39 241
SDMVSNet80.26 15578.88 16584.40 14689.25 16567.63 9985.35 29793.02 10076.77 11470.84 21587.12 22547.95 27196.09 13785.04 8074.55 22789.48 227
HPM-MVS_fast80.25 15679.55 15582.33 19891.55 11559.95 28391.32 19389.16 25865.23 29074.71 17093.07 11647.81 27395.74 15274.87 16188.23 10991.31 201
ab-mvs80.18 15778.31 17185.80 9388.44 18565.49 15583.00 31992.67 11471.82 20677.36 14385.01 24854.50 20696.59 11776.35 14675.63 22495.32 65
IS-MVSNet80.14 15879.41 15782.33 19887.91 20260.08 28291.97 16188.27 29572.90 17571.44 21191.73 14961.44 12793.66 24162.47 27286.53 13193.24 149
test-LLR80.10 15979.56 15381.72 21786.93 22861.17 25892.70 12691.54 16371.51 22175.62 15986.94 22753.83 21592.38 27972.21 18084.76 14391.60 191
PVSNet73.49 880.05 16078.63 16784.31 15090.92 12964.97 16692.47 13991.05 18979.18 7572.43 19890.51 16837.05 33794.06 22468.06 21886.00 13493.90 133
UA-Net80.02 16179.65 15181.11 23189.33 16257.72 30986.33 29489.00 27177.44 10581.01 9789.15 19259.33 15195.90 14661.01 27984.28 14989.73 223
test-mter79.96 16279.38 15981.72 21786.93 22861.17 25892.70 12691.54 16373.85 15375.62 15986.94 22749.84 25392.38 27972.21 18084.76 14391.60 191
QAPM79.95 16377.39 18987.64 3389.63 15471.41 2093.30 10593.70 7365.34 28967.39 26591.75 14847.83 27298.96 1657.71 29589.81 9692.54 170
UGNet79.87 16478.68 16683.45 17589.96 14761.51 25492.13 14990.79 19376.83 11278.85 12986.33 23538.16 32396.17 13367.93 22187.17 12192.67 166
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
tpm279.80 16577.95 17885.34 10988.28 19168.26 8181.56 32891.42 16970.11 24477.59 14180.50 30767.40 5894.26 21567.34 22677.35 21293.51 142
thres20079.66 16678.33 17083.66 16992.54 8765.82 14693.06 11196.31 374.90 13773.30 18488.66 19559.67 14695.61 16147.84 33378.67 19989.56 226
CPTT-MVS79.59 16779.16 16280.89 24091.54 11659.80 28592.10 15188.54 28860.42 32872.96 18693.28 11248.27 26692.80 26378.89 13186.50 13290.06 216
Test_1112_low_res79.56 16878.60 16882.43 19488.24 19460.39 27792.09 15287.99 30272.10 19671.84 20487.42 22064.62 8593.04 25065.80 24577.30 21393.85 135
tttt051779.50 16978.53 16982.41 19787.22 21961.43 25689.75 24394.76 3269.29 25467.91 25588.06 21072.92 2595.63 15962.91 26873.90 23790.16 215
FIs79.47 17079.41 15779.67 26885.95 24359.40 29091.68 17693.94 6378.06 9268.96 24088.28 20166.61 6491.77 29466.20 24174.99 22687.82 246
BH-RMVSNet79.46 17177.65 18184.89 12291.68 11165.66 14793.55 9488.09 30072.93 17273.37 18391.12 16046.20 28696.12 13556.28 30085.61 13892.91 161
PCF-MVS73.15 979.29 17277.63 18284.29 15186.06 24165.96 14287.03 28791.10 18369.86 24869.79 23190.64 16457.54 16996.59 11764.37 25782.29 16390.32 213
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
Vis-MVSNet (Re-imp)79.24 17379.57 15278.24 28888.46 18452.29 34390.41 22389.12 26274.24 14469.13 23491.91 14565.77 7190.09 32059.00 29188.09 11192.33 176
114514_t79.17 17477.67 18083.68 16795.32 2965.53 15392.85 12091.60 16263.49 30067.92 25490.63 16646.65 27995.72 15767.01 23183.54 15389.79 221
FA-MVS(test-final)79.12 17577.23 19184.81 12890.54 13563.98 19281.35 33191.71 15571.09 23074.85 16982.94 27052.85 22697.05 9067.97 21981.73 17493.41 144
VPA-MVSNet79.03 17678.00 17682.11 21185.95 24364.48 17493.22 10894.66 3875.05 13574.04 17884.95 24952.17 23293.52 24374.90 16067.04 28388.32 243
OPM-MVS79.00 17778.09 17481.73 21683.52 28563.83 19491.64 17890.30 21276.36 12071.97 20389.93 18346.30 28595.17 18075.10 15577.70 20686.19 276
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
EI-MVSNet78.97 17878.22 17381.25 22685.33 25362.73 23089.53 24793.21 9172.39 18772.14 20190.13 17960.99 13094.72 19367.73 22372.49 24786.29 273
AdaColmapbinary78.94 17977.00 19584.76 13096.34 1765.86 14492.66 13087.97 30462.18 31470.56 21792.37 13443.53 30097.35 7364.50 25682.86 15891.05 206
GeoE78.90 18077.43 18583.29 17788.95 17462.02 24392.31 14286.23 32070.24 24371.34 21289.27 19054.43 21094.04 22763.31 26480.81 18293.81 136
miper_enhance_ethall78.86 18177.97 17781.54 22188.00 20165.17 16091.41 18289.15 26075.19 13368.79 24383.98 26167.17 5992.82 26172.73 17465.30 29286.62 270
VPNet78.82 18277.53 18482.70 18884.52 26966.44 13093.93 7292.23 12880.46 5072.60 19288.38 20049.18 25993.13 24972.47 17863.97 31188.55 238
EPNet_dtu78.80 18379.26 16177.43 29688.06 19849.71 35691.96 16291.95 14177.67 9976.56 15291.28 15858.51 15890.20 31856.37 29980.95 17992.39 174
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
tfpn200view978.79 18477.43 18582.88 18492.21 9364.49 17292.05 15596.28 473.48 16271.75 20688.26 20360.07 14295.32 17445.16 34477.58 20888.83 231
TR-MVS78.77 18577.37 19082.95 18390.49 13660.88 26493.67 8890.07 22270.08 24574.51 17191.37 15745.69 28995.70 15860.12 28580.32 18492.29 178
thres40078.68 18677.43 18582.43 19492.21 9364.49 17292.05 15596.28 473.48 16271.75 20688.26 20360.07 14295.32 17445.16 34477.58 20887.48 250
BH-untuned78.68 18677.08 19283.48 17489.84 14963.74 19792.70 12688.59 28671.57 21866.83 27288.65 19651.75 23595.39 17259.03 29084.77 14291.32 200
OMC-MVS78.67 18877.91 17980.95 23885.76 24857.40 31588.49 26688.67 28273.85 15372.43 19892.10 14049.29 25894.55 20372.73 17477.89 20490.91 207
tpm78.58 18977.03 19383.22 17985.94 24564.56 17083.21 31691.14 18278.31 8973.67 18179.68 31964.01 9192.09 28866.07 24271.26 25793.03 157
OpenMVScopyleft70.45 1178.54 19075.92 20986.41 7585.93 24671.68 1892.74 12392.51 12266.49 28064.56 28691.96 14243.88 29998.10 3754.61 30590.65 9089.44 229
EPMVS78.49 19175.98 20886.02 8491.21 12469.68 5180.23 34091.20 17775.25 13272.48 19678.11 32954.65 20593.69 24057.66 29683.04 15794.69 95
AUN-MVS78.37 19277.43 18581.17 22886.60 23157.45 31489.46 24991.16 17974.11 14674.40 17290.49 16955.52 19694.57 20074.73 16260.43 34091.48 194
thres100view90078.37 19277.01 19482.46 19391.89 10563.21 21691.19 20196.33 172.28 19070.45 22087.89 21260.31 13795.32 17445.16 34477.58 20888.83 231
GA-MVS78.33 19476.23 20484.65 13683.65 28366.30 13491.44 18090.14 22076.01 12270.32 22284.02 26042.50 30494.72 19370.98 19177.00 21692.94 160
cascas78.18 19575.77 21185.41 10587.14 22169.11 6092.96 11691.15 18166.71 27870.47 21886.07 23837.49 33196.48 12570.15 19979.80 18890.65 209
UniMVSNet_NR-MVSNet78.15 19677.55 18379.98 25984.46 27160.26 27892.25 14493.20 9377.50 10468.88 24186.61 23066.10 6792.13 28666.38 23862.55 31887.54 248
thres600view778.00 19776.66 19982.03 21391.93 10263.69 20291.30 19496.33 172.43 18570.46 21987.89 21260.31 13794.92 18842.64 35676.64 21887.48 250
FC-MVSNet-test77.99 19878.08 17577.70 29184.89 26455.51 32990.27 22893.75 7276.87 10966.80 27387.59 21765.71 7290.23 31762.89 26973.94 23587.37 253
Anonymous20240521177.96 19975.33 21885.87 8993.73 5364.52 17194.85 4485.36 32962.52 31276.11 15490.18 17629.43 36597.29 7768.51 21677.24 21595.81 48
cl2277.94 20076.78 19781.42 22387.57 21064.93 16890.67 21688.86 27572.45 18467.63 26182.68 27464.07 9092.91 25971.79 18465.30 29286.44 271
XXY-MVS77.94 20076.44 20182.43 19482.60 29464.44 17692.01 15791.83 15073.59 16170.00 22785.82 24154.43 21094.76 19069.63 20268.02 27788.10 245
MS-PatchMatch77.90 20276.50 20082.12 20885.99 24269.95 4291.75 17492.70 11273.97 15062.58 30784.44 25641.11 30995.78 14963.76 26192.17 6780.62 351
FMVSNet377.73 20376.04 20782.80 18591.20 12568.99 6491.87 16591.99 13973.35 16467.04 26883.19 26956.62 18392.14 28559.80 28769.34 26487.28 257
miper_ehance_all_eth77.60 20476.44 20181.09 23585.70 25064.41 17990.65 21788.64 28472.31 18867.37 26682.52 27564.77 8492.64 27270.67 19565.30 29286.24 275
UniMVSNet (Re)77.58 20576.78 19779.98 25984.11 27760.80 26591.76 17293.17 9576.56 11869.93 23084.78 25163.32 10792.36 28164.89 25462.51 32086.78 265
PatchmatchNetpermissive77.46 20674.63 22585.96 8689.55 15770.35 3679.97 34589.55 24272.23 19170.94 21376.91 34057.03 17392.79 26454.27 30781.17 17794.74 94
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
v2v48277.42 20775.65 21482.73 18780.38 31567.13 11291.85 16790.23 21675.09 13469.37 23283.39 26753.79 21794.44 20771.77 18565.00 29886.63 269
CHOSEN 280x42077.35 20876.95 19678.55 28387.07 22362.68 23169.71 37682.95 35168.80 26171.48 21087.27 22466.03 6884.00 36176.47 14582.81 16088.95 230
PS-MVSNAJss77.26 20976.31 20380.13 25480.64 31359.16 29590.63 22091.06 18872.80 17668.58 24784.57 25453.55 21993.96 23272.97 16971.96 25187.27 258
gg-mvs-nofinetune77.18 21074.31 23285.80 9391.42 11868.36 7771.78 37094.72 3449.61 37177.12 14645.92 39577.41 893.98 23167.62 22493.16 5595.05 79
WB-MVSnew77.14 21176.18 20680.01 25886.18 23963.24 21591.26 19594.11 6071.72 21073.52 18287.29 22345.14 29493.00 25256.98 29779.42 19083.80 312
MVP-Stereo77.12 21276.23 20479.79 26681.72 30266.34 13389.29 25190.88 19270.56 24062.01 31182.88 27149.34 25694.13 21965.55 24993.80 4278.88 365
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
sd_testset77.08 21375.37 21682.20 20489.25 16562.11 24282.06 32389.09 26476.77 11470.84 21587.12 22541.43 30895.01 18367.23 22874.55 22789.48 227
dmvs_re76.93 21475.36 21781.61 21987.78 20860.71 27180.00 34487.99 30279.42 6969.02 23889.47 18846.77 27794.32 20963.38 26374.45 23089.81 220
bld_raw_dy_0_6476.92 21574.65 22483.71 16684.96 26371.37 2173.29 36889.16 25850.14 37062.32 30984.19 25867.48 5795.61 16172.10 18388.25 10884.14 308
X-MVStestdata76.86 21674.13 23685.05 11893.22 6463.78 19592.92 11792.66 11573.99 14878.18 13310.19 41055.25 19797.41 6879.16 12691.58 7793.95 129
DU-MVS76.86 21675.84 21079.91 26282.96 29160.26 27891.26 19591.54 16376.46 11968.88 24186.35 23356.16 18892.13 28666.38 23862.55 31887.35 255
mvsmamba76.85 21875.71 21380.25 25083.07 29059.16 29591.44 18080.64 35876.84 11167.95 25386.33 23546.17 28794.24 21676.06 14772.92 24387.36 254
Anonymous2024052976.84 21974.15 23584.88 12391.02 12664.95 16793.84 8091.09 18453.57 35873.00 18587.42 22035.91 34197.32 7569.14 21072.41 24992.36 175
c3_l76.83 22075.47 21580.93 23985.02 26164.18 18990.39 22488.11 29971.66 21166.65 27481.64 28763.58 10392.56 27369.31 20762.86 31586.04 281
WR-MVS76.76 22175.74 21279.82 26584.60 26762.27 24092.60 13392.51 12276.06 12167.87 25885.34 24556.76 17990.24 31662.20 27363.69 31386.94 263
v114476.73 22274.88 22182.27 20080.23 31966.60 12791.68 17690.21 21873.69 15869.06 23781.89 28252.73 22894.40 20869.21 20865.23 29585.80 287
IterMVS-LS76.49 22375.18 22080.43 24584.49 27062.74 22990.64 21888.80 27772.40 18665.16 28181.72 28560.98 13192.27 28467.74 22264.65 30386.29 273
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
V4276.46 22474.55 22882.19 20579.14 33367.82 9390.26 22989.42 24773.75 15668.63 24681.89 28251.31 24094.09 22171.69 18764.84 29984.66 304
v14876.19 22574.47 23081.36 22480.05 32164.44 17691.75 17490.23 21673.68 15967.13 26780.84 30255.92 19393.86 23868.95 21261.73 32985.76 290
Effi-MVS+-dtu76.14 22675.28 21978.72 28283.22 28755.17 33189.87 24087.78 30575.42 12967.98 25281.43 29145.08 29592.52 27575.08 15671.63 25288.48 239
cl____76.07 22774.67 22280.28 24885.15 25761.76 24990.12 23288.73 27971.16 22665.43 27881.57 28961.15 12892.95 25466.54 23562.17 32286.13 279
DIV-MVS_self_test76.07 22774.67 22280.28 24885.14 25861.75 25090.12 23288.73 27971.16 22665.42 27981.60 28861.15 12892.94 25866.54 23562.16 32486.14 277
FMVSNet276.07 22774.01 23882.26 20288.85 17567.66 9791.33 19291.61 16170.84 23465.98 27582.25 27848.03 26792.00 29058.46 29268.73 27287.10 260
v14419276.05 23074.03 23782.12 20879.50 32766.55 12991.39 18689.71 24072.30 18968.17 25081.33 29451.75 23594.03 22967.94 22064.19 30685.77 288
NR-MVSNet76.05 23074.59 22680.44 24482.96 29162.18 24190.83 21191.73 15377.12 10860.96 31486.35 23359.28 15291.80 29360.74 28061.34 33387.35 255
v119275.98 23273.92 23982.15 20679.73 32366.24 13691.22 19889.75 23472.67 17868.49 24881.42 29249.86 25294.27 21367.08 23065.02 29785.95 284
FE-MVS75.97 23373.02 24984.82 12589.78 15065.56 15177.44 35691.07 18764.55 29272.66 19079.85 31746.05 28896.69 11554.97 30480.82 18192.21 184
eth_miper_zixun_eth75.96 23474.40 23180.66 24184.66 26663.02 22089.28 25288.27 29571.88 20265.73 27681.65 28659.45 14892.81 26268.13 21760.53 33886.14 277
TranMVSNet+NR-MVSNet75.86 23574.52 22979.89 26382.44 29660.64 27491.37 18991.37 17076.63 11667.65 26086.21 23752.37 23191.55 29961.84 27560.81 33687.48 250
SCA75.82 23672.76 25285.01 12086.63 23070.08 3881.06 33389.19 25671.60 21770.01 22677.09 33845.53 29090.25 31360.43 28273.27 23994.68 96
LPG-MVS_test75.82 23674.58 22779.56 27284.31 27459.37 29190.44 22189.73 23769.49 25164.86 28288.42 19838.65 31794.30 21172.56 17672.76 24485.01 301
GBi-Net75.65 23873.83 24081.10 23288.85 17565.11 16290.01 23690.32 20870.84 23467.04 26880.25 31248.03 26791.54 30059.80 28769.34 26486.64 266
test175.65 23873.83 24081.10 23288.85 17565.11 16290.01 23690.32 20870.84 23467.04 26880.25 31248.03 26791.54 30059.80 28769.34 26486.64 266
v192192075.63 24073.49 24582.06 21279.38 32866.35 13291.07 20589.48 24371.98 19767.99 25181.22 29749.16 26193.90 23566.56 23464.56 30485.92 286
ACMP71.68 1075.58 24174.23 23479.62 27084.97 26259.64 28690.80 21289.07 26670.39 24162.95 30387.30 22238.28 32193.87 23672.89 17071.45 25585.36 297
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
v875.35 24273.26 24781.61 21980.67 31266.82 11989.54 24689.27 25271.65 21263.30 29980.30 31154.99 20394.06 22467.33 22762.33 32183.94 310
tpm cat175.30 24372.21 26184.58 14088.52 18167.77 9478.16 35488.02 30161.88 32068.45 24976.37 34460.65 13494.03 22953.77 31074.11 23391.93 189
PLCcopyleft68.80 1475.23 24473.68 24379.86 26492.93 7458.68 30190.64 21888.30 29360.90 32564.43 29090.53 16742.38 30594.57 20056.52 29876.54 21986.33 272
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
v124075.21 24572.98 25081.88 21479.20 33066.00 14090.75 21489.11 26371.63 21667.41 26481.22 29747.36 27593.87 23665.46 25064.72 30285.77 288
Fast-Effi-MVS+-dtu75.04 24673.37 24680.07 25580.86 30859.52 28991.20 20085.38 32871.90 20065.20 28084.84 25041.46 30792.97 25366.50 23772.96 24287.73 247
dp75.01 24772.09 26283.76 16189.28 16466.22 13779.96 34689.75 23471.16 22667.80 25977.19 33751.81 23492.54 27450.39 31871.44 25692.51 173
TAPA-MVS70.22 1274.94 24873.53 24479.17 27790.40 13852.07 34489.19 25589.61 24162.69 31170.07 22592.67 12648.89 26494.32 20938.26 37079.97 18691.12 205
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
v1074.77 24972.54 25881.46 22280.33 31766.71 12389.15 25689.08 26570.94 23263.08 30279.86 31652.52 22994.04 22765.70 24662.17 32283.64 313
XVG-OURS-SEG-HR74.70 25073.08 24879.57 27178.25 34557.33 31680.49 33687.32 30863.22 30468.76 24490.12 18244.89 29691.59 29870.55 19774.09 23489.79 221
ACMM69.62 1374.34 25172.73 25479.17 27784.25 27657.87 30790.36 22589.93 22863.17 30665.64 27786.04 24037.79 32994.10 22065.89 24371.52 25485.55 293
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CNLPA74.31 25272.30 26080.32 24691.49 11761.66 25290.85 21080.72 35756.67 35063.85 29490.64 16446.75 27890.84 30853.79 30975.99 22388.47 240
XVG-OURS74.25 25372.46 25979.63 26978.45 34357.59 31280.33 33887.39 30763.86 29768.76 24489.62 18640.50 31191.72 29569.00 21174.25 23289.58 224
test_fmvs174.07 25473.69 24275.22 31478.91 33747.34 36989.06 25974.69 37263.68 29979.41 11891.59 15224.36 37487.77 33885.22 7776.26 22190.55 212
CVMVSNet74.04 25574.27 23373.33 32985.33 25343.94 38189.53 24788.39 29054.33 35770.37 22190.13 17949.17 26084.05 35961.83 27679.36 19291.99 188
Baseline_NR-MVSNet73.99 25672.83 25177.48 29580.78 31059.29 29491.79 16984.55 33768.85 26068.99 23980.70 30356.16 18892.04 28962.67 27060.98 33581.11 345
pmmvs473.92 25771.81 26680.25 25079.17 33165.24 15887.43 28387.26 31067.64 27263.46 29783.91 26248.96 26391.53 30362.94 26765.49 29183.96 309
D2MVS73.80 25872.02 26379.15 27979.15 33262.97 22188.58 26590.07 22272.94 17159.22 32378.30 32642.31 30692.70 26865.59 24872.00 25081.79 340
CR-MVSNet73.79 25970.82 27482.70 18883.15 28867.96 9070.25 37384.00 34273.67 16069.97 22872.41 35857.82 16689.48 32452.99 31373.13 24090.64 210
test_djsdf73.76 26072.56 25777.39 29777.00 35553.93 33789.07 25790.69 19565.80 28463.92 29282.03 28143.14 30392.67 26972.83 17168.53 27385.57 292
pmmvs573.35 26171.52 26878.86 28178.64 34160.61 27591.08 20386.90 31267.69 26963.32 29883.64 26344.33 29890.53 31062.04 27466.02 28985.46 295
Anonymous2023121173.08 26270.39 27881.13 23090.62 13463.33 21391.40 18490.06 22451.84 36364.46 28980.67 30536.49 33994.07 22363.83 26064.17 30785.98 283
tt080573.07 26370.73 27580.07 25578.37 34457.05 31887.78 27892.18 13461.23 32467.04 26886.49 23231.35 35994.58 19865.06 25367.12 28288.57 237
miper_lstm_enhance73.05 26471.73 26777.03 30183.80 28058.32 30481.76 32488.88 27369.80 24961.01 31378.23 32857.19 17187.51 34265.34 25159.53 34385.27 300
jajsoiax73.05 26471.51 26977.67 29277.46 35254.83 33388.81 26190.04 22569.13 25862.85 30583.51 26531.16 36092.75 26570.83 19269.80 26085.43 296
LCM-MVSNet-Re72.93 26671.84 26576.18 31088.49 18248.02 36480.07 34370.17 38373.96 15152.25 35480.09 31549.98 25088.24 33267.35 22584.23 15092.28 179
pm-mvs172.89 26771.09 27178.26 28779.10 33457.62 31190.80 21289.30 25167.66 27062.91 30481.78 28449.11 26292.95 25460.29 28458.89 34684.22 307
tpmvs72.88 26869.76 28482.22 20390.98 12767.05 11478.22 35388.30 29363.10 30764.35 29174.98 35155.09 20294.27 21343.25 35069.57 26385.34 298
test0.0.03 172.76 26972.71 25572.88 33380.25 31847.99 36591.22 19889.45 24571.51 22162.51 30887.66 21553.83 21585.06 35550.16 32067.84 28085.58 291
UniMVSNet_ETH3D72.74 27070.53 27779.36 27478.62 34256.64 32285.01 29989.20 25563.77 29864.84 28484.44 25634.05 34891.86 29263.94 25970.89 25989.57 225
mvs_tets72.71 27171.11 27077.52 29377.41 35354.52 33588.45 26789.76 23368.76 26362.70 30683.26 26829.49 36492.71 26670.51 19869.62 26285.34 298
FMVSNet172.71 27169.91 28281.10 23283.60 28465.11 16290.01 23690.32 20863.92 29663.56 29680.25 31236.35 34091.54 30054.46 30666.75 28586.64 266
test_fmvs1_n72.69 27371.92 26474.99 31771.15 37547.08 37187.34 28575.67 36763.48 30178.08 13591.17 15920.16 38587.87 33584.65 8675.57 22590.01 218
IterMVS72.65 27470.83 27278.09 28982.17 29862.96 22287.64 28186.28 31871.56 21960.44 31678.85 32445.42 29286.66 34663.30 26561.83 32684.65 305
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
myMVS_eth3d72.58 27572.74 25372.10 34187.87 20449.45 35888.07 27189.01 26872.91 17363.11 30088.10 20763.63 9885.54 35132.73 38469.23 26781.32 343
PatchMatch-RL72.06 27669.98 27978.28 28689.51 15855.70 32883.49 30883.39 34961.24 32363.72 29582.76 27234.77 34593.03 25153.37 31277.59 20786.12 280
PVSNet_068.08 1571.81 27768.32 29382.27 20084.68 26562.31 23988.68 26390.31 21175.84 12357.93 33480.65 30637.85 32894.19 21769.94 20029.05 39990.31 214
MIMVSNet71.64 27868.44 29181.23 22781.97 30164.44 17673.05 36988.80 27769.67 25064.59 28574.79 35232.79 35187.82 33653.99 30876.35 22091.42 195
test_vis1_n71.63 27970.73 27574.31 32469.63 38147.29 37086.91 28972.11 37763.21 30575.18 16590.17 17720.40 38385.76 35084.59 8774.42 23189.87 219
IterMVS-SCA-FT71.55 28069.97 28076.32 30881.48 30460.67 27387.64 28185.99 32366.17 28259.50 32178.88 32345.53 29083.65 36362.58 27161.93 32584.63 306
v7n71.31 28168.65 28879.28 27576.40 35760.77 26786.71 29289.45 24564.17 29558.77 32878.24 32744.59 29793.54 24257.76 29461.75 32883.52 316
anonymousdsp71.14 28269.37 28676.45 30772.95 37054.71 33484.19 30388.88 27361.92 31962.15 31079.77 31838.14 32491.44 30568.90 21367.45 28183.21 322
F-COLMAP70.66 28368.44 29177.32 29886.37 23655.91 32688.00 27386.32 31756.94 34857.28 33888.07 20933.58 34992.49 27651.02 31668.37 27483.55 314
WR-MVS_H70.59 28469.94 28172.53 33581.03 30751.43 34787.35 28492.03 13867.38 27360.23 31880.70 30355.84 19483.45 36546.33 34058.58 34882.72 329
CP-MVSNet70.50 28569.91 28272.26 33880.71 31151.00 35087.23 28690.30 21267.84 26859.64 32082.69 27350.23 24982.30 37351.28 31559.28 34483.46 318
RPMNet70.42 28665.68 30684.63 13883.15 28867.96 9070.25 37390.45 20246.83 38069.97 22865.10 37856.48 18795.30 17735.79 37573.13 24090.64 210
testing370.38 28770.83 27269.03 35285.82 24743.93 38290.72 21590.56 20168.06 26760.24 31786.82 22964.83 8284.12 35726.33 39264.10 30879.04 364
tfpnnormal70.10 28867.36 29778.32 28583.45 28660.97 26388.85 26092.77 10964.85 29160.83 31578.53 32543.52 30193.48 24431.73 38761.70 33080.52 352
TransMVSNet (Re)70.07 28967.66 29577.31 29980.62 31459.13 29791.78 17184.94 33365.97 28360.08 31980.44 30850.78 24391.87 29148.84 32645.46 37680.94 347
CL-MVSNet_self_test69.92 29068.09 29475.41 31373.25 36955.90 32790.05 23589.90 22969.96 24661.96 31276.54 34151.05 24287.64 33949.51 32450.59 36882.70 331
DP-MVS69.90 29166.48 29980.14 25395.36 2862.93 22389.56 24476.11 36550.27 36957.69 33685.23 24639.68 31395.73 15333.35 38071.05 25881.78 341
PS-CasMVS69.86 29269.13 28772.07 34280.35 31650.57 35287.02 28889.75 23467.27 27459.19 32482.28 27746.58 28082.24 37450.69 31759.02 34583.39 320
Syy-MVS69.65 29369.52 28570.03 34887.87 20443.21 38388.07 27189.01 26872.91 17363.11 30088.10 20745.28 29385.54 35122.07 39669.23 26781.32 343
MSDG69.54 29465.73 30580.96 23785.11 26063.71 20084.19 30383.28 35056.95 34754.50 34584.03 25931.50 35796.03 14342.87 35469.13 26983.14 324
PEN-MVS69.46 29568.56 28972.17 34079.27 32949.71 35686.90 29089.24 25367.24 27759.08 32582.51 27647.23 27683.54 36448.42 32857.12 34983.25 321
LS3D69.17 29666.40 30177.50 29491.92 10356.12 32585.12 29880.37 35946.96 37856.50 34087.51 21937.25 33293.71 23932.52 38679.40 19182.68 332
PatchT69.11 29765.37 31080.32 24682.07 30063.68 20367.96 38387.62 30650.86 36769.37 23265.18 37757.09 17288.53 33041.59 35966.60 28688.74 234
KD-MVS_2432*160069.03 29866.37 30277.01 30285.56 25161.06 26181.44 32990.25 21467.27 27458.00 33276.53 34254.49 20787.63 34048.04 33035.77 39182.34 335
miper_refine_blended69.03 29866.37 30277.01 30285.56 25161.06 26181.44 32990.25 21467.27 27458.00 33276.53 34254.49 20787.63 34048.04 33035.77 39182.34 335
mvsany_test168.77 30068.56 28969.39 35073.57 36845.88 37780.93 33460.88 39659.65 33471.56 20990.26 17543.22 30275.05 38474.26 16462.70 31787.25 259
ACMH63.93 1768.62 30164.81 31280.03 25785.22 25663.25 21487.72 27984.66 33560.83 32651.57 35779.43 32227.29 37094.96 18541.76 35764.84 29981.88 339
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
EG-PatchMatch MVS68.55 30265.41 30977.96 29078.69 34062.93 22389.86 24189.17 25760.55 32750.27 36277.73 33222.60 37994.06 22447.18 33672.65 24676.88 373
ADS-MVSNet68.54 30364.38 31981.03 23688.06 19866.90 11868.01 38184.02 34157.57 34264.48 28769.87 36838.68 31589.21 32640.87 36167.89 27886.97 261
DTE-MVSNet68.46 30467.33 29871.87 34477.94 34949.00 36286.16 29588.58 28766.36 28158.19 32982.21 27946.36 28183.87 36244.97 34755.17 35682.73 328
our_test_368.29 30564.69 31479.11 28078.92 33564.85 16988.40 26885.06 33160.32 33052.68 35276.12 34640.81 31089.80 32344.25 34955.65 35482.67 333
Patchmatch-RL test68.17 30664.49 31779.19 27671.22 37453.93 33770.07 37571.54 38169.22 25556.79 33962.89 38256.58 18488.61 32769.53 20452.61 36395.03 81
XVG-ACMP-BASELINE68.04 30765.53 30875.56 31274.06 36752.37 34278.43 35085.88 32462.03 31758.91 32781.21 29920.38 38491.15 30760.69 28168.18 27583.16 323
FMVSNet568.04 30765.66 30775.18 31684.43 27257.89 30683.54 30786.26 31961.83 32153.64 35073.30 35537.15 33585.08 35448.99 32561.77 32782.56 334
ppachtmachnet_test67.72 30963.70 32179.77 26778.92 33566.04 13988.68 26382.90 35260.11 33255.45 34275.96 34739.19 31490.55 30939.53 36552.55 36482.71 330
ACMH+65.35 1667.65 31064.55 31576.96 30484.59 26857.10 31788.08 27080.79 35658.59 34053.00 35181.09 30126.63 37292.95 25446.51 33861.69 33180.82 348
pmmvs667.57 31164.76 31376.00 31172.82 37253.37 33988.71 26286.78 31653.19 35957.58 33778.03 33035.33 34492.41 27855.56 30254.88 35882.21 337
Anonymous2023120667.53 31265.78 30472.79 33474.95 36347.59 36788.23 26987.32 30861.75 32258.07 33177.29 33537.79 32987.29 34442.91 35263.71 31283.48 317
Patchmtry67.53 31263.93 32078.34 28482.12 29964.38 18068.72 37884.00 34248.23 37759.24 32272.41 35857.82 16689.27 32546.10 34156.68 35381.36 342
USDC67.43 31464.51 31676.19 30977.94 34955.29 33078.38 35185.00 33273.17 16648.36 37080.37 30921.23 38192.48 27752.15 31464.02 31080.81 349
ADS-MVSNet266.90 31563.44 32377.26 30088.06 19860.70 27268.01 38175.56 36957.57 34264.48 28769.87 36838.68 31584.10 35840.87 36167.89 27886.97 261
CMPMVSbinary48.56 2166.77 31664.41 31873.84 32670.65 37850.31 35377.79 35585.73 32745.54 38244.76 38082.14 28035.40 34390.14 31963.18 26674.54 22981.07 346
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
OpenMVS_ROBcopyleft61.12 1866.39 31762.92 32676.80 30676.51 35657.77 30889.22 25383.41 34855.48 35453.86 34977.84 33126.28 37393.95 23334.90 37768.76 27178.68 367
LTVRE_ROB59.60 1966.27 31863.54 32274.45 32184.00 27951.55 34667.08 38483.53 34658.78 33854.94 34480.31 31034.54 34693.23 24840.64 36368.03 27678.58 368
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
JIA-IIPM66.06 31962.45 32976.88 30581.42 30654.45 33657.49 39688.67 28249.36 37263.86 29346.86 39456.06 19190.25 31349.53 32368.83 27085.95 284
Patchmatch-test65.86 32060.94 33580.62 24383.75 28158.83 29958.91 39575.26 37144.50 38550.95 36177.09 33858.81 15787.90 33435.13 37664.03 30995.12 77
UnsupCasMVSNet_eth65.79 32163.10 32473.88 32570.71 37750.29 35481.09 33289.88 23072.58 18049.25 36774.77 35332.57 35387.43 34355.96 30141.04 38383.90 311
test_fmvs265.78 32264.84 31168.60 35466.54 38641.71 38583.27 31369.81 38454.38 35667.91 25584.54 25515.35 39081.22 37875.65 15166.16 28882.88 325
dmvs_testset65.55 32366.45 30062.86 36479.87 32222.35 41076.55 35871.74 37977.42 10755.85 34187.77 21451.39 23980.69 37931.51 39065.92 29085.55 293
pmmvs-eth3d65.53 32462.32 33075.19 31569.39 38259.59 28782.80 32083.43 34762.52 31251.30 35972.49 35632.86 35087.16 34555.32 30350.73 36778.83 366
mamv465.18 32567.43 29658.44 36877.88 35149.36 36169.40 37770.99 38248.31 37657.78 33585.53 24459.01 15551.88 40673.67 16664.32 30574.07 378
SixPastTwentyTwo64.92 32661.78 33374.34 32378.74 33949.76 35583.42 31179.51 36262.86 30850.27 36277.35 33330.92 36290.49 31145.89 34247.06 37382.78 326
OurMVSNet-221017-064.68 32762.17 33172.21 33976.08 36047.35 36880.67 33581.02 35556.19 35151.60 35679.66 32027.05 37188.56 32953.60 31153.63 36180.71 350
test_040264.54 32861.09 33474.92 31884.10 27860.75 26987.95 27479.71 36152.03 36152.41 35377.20 33632.21 35591.64 29623.14 39461.03 33472.36 382
testgi64.48 32962.87 32769.31 35171.24 37340.62 38885.49 29679.92 36065.36 28854.18 34783.49 26623.74 37784.55 35641.60 35860.79 33782.77 327
RPSCF64.24 33061.98 33271.01 34676.10 35945.00 37875.83 36375.94 36646.94 37958.96 32684.59 25331.40 35882.00 37547.76 33460.33 34286.04 281
EU-MVSNet64.01 33163.01 32567.02 36074.40 36638.86 39383.27 31386.19 32145.11 38354.27 34681.15 30036.91 33880.01 38148.79 32757.02 35082.19 338
test20.0363.83 33262.65 32867.38 35970.58 37939.94 38986.57 29384.17 33963.29 30351.86 35577.30 33437.09 33682.47 37138.87 36954.13 36079.73 358
MDA-MVSNet_test_wron63.78 33360.16 33774.64 31978.15 34760.41 27683.49 30884.03 34056.17 35339.17 39071.59 36437.22 33383.24 36842.87 35448.73 37080.26 355
YYNet163.76 33460.14 33874.62 32078.06 34860.19 28183.46 31083.99 34456.18 35239.25 38971.56 36537.18 33483.34 36642.90 35348.70 37180.32 354
K. test v363.09 33559.61 34073.53 32876.26 35849.38 36083.27 31377.15 36464.35 29447.77 37272.32 36028.73 36687.79 33749.93 32236.69 38983.41 319
COLMAP_ROBcopyleft57.96 2062.98 33659.65 33972.98 33281.44 30553.00 34183.75 30675.53 37048.34 37548.81 36981.40 29324.14 37590.30 31232.95 38260.52 33975.65 376
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
Anonymous2024052162.09 33759.08 34171.10 34567.19 38548.72 36383.91 30585.23 33050.38 36847.84 37171.22 36720.74 38285.51 35346.47 33958.75 34779.06 363
AllTest61.66 33858.06 34372.46 33679.57 32451.42 34880.17 34168.61 38651.25 36545.88 37481.23 29519.86 38686.58 34738.98 36757.01 35179.39 360
UnsupCasMVSNet_bld61.60 33957.71 34473.29 33068.73 38351.64 34578.61 34989.05 26757.20 34646.11 37361.96 38528.70 36788.60 32850.08 32138.90 38779.63 359
MDA-MVSNet-bldmvs61.54 34057.70 34573.05 33179.53 32657.00 32183.08 31781.23 35457.57 34234.91 39372.45 35732.79 35186.26 34935.81 37441.95 38175.89 375
KD-MVS_self_test60.87 34158.60 34267.68 35766.13 38739.93 39075.63 36584.70 33457.32 34549.57 36568.45 37229.55 36382.87 36948.09 32947.94 37280.25 356
kuosan60.86 34260.24 33662.71 36581.57 30346.43 37475.70 36485.88 32457.98 34148.95 36869.53 37058.42 15976.53 38328.25 39135.87 39065.15 389
TinyColmap60.32 34356.42 35072.00 34378.78 33853.18 34078.36 35275.64 36852.30 36041.59 38875.82 34914.76 39388.35 33135.84 37354.71 35974.46 377
MVS-HIRNet60.25 34455.55 35174.35 32284.37 27356.57 32371.64 37174.11 37334.44 39345.54 37842.24 40031.11 36189.81 32140.36 36476.10 22276.67 374
MIMVSNet160.16 34557.33 34668.67 35369.71 38044.13 38078.92 34884.21 33855.05 35544.63 38171.85 36223.91 37681.54 37732.63 38555.03 35780.35 353
PM-MVS59.40 34656.59 34867.84 35563.63 38941.86 38476.76 35763.22 39359.01 33751.07 36072.27 36111.72 39683.25 36761.34 27750.28 36978.39 369
new-patchmatchnet59.30 34756.48 34967.79 35665.86 38844.19 37982.47 32181.77 35359.94 33343.65 38466.20 37627.67 36981.68 37639.34 36641.40 38277.50 372
test_vis1_rt59.09 34857.31 34764.43 36268.44 38446.02 37683.05 31848.63 40551.96 36249.57 36563.86 38116.30 38880.20 38071.21 19062.79 31667.07 388
test_fmvs356.82 34954.86 35362.69 36653.59 39935.47 39675.87 36265.64 39143.91 38655.10 34371.43 3666.91 40474.40 38768.64 21552.63 36278.20 370
DSMNet-mixed56.78 35054.44 35463.79 36363.21 39029.44 40564.43 38764.10 39242.12 39051.32 35871.60 36331.76 35675.04 38536.23 37265.20 29686.87 264
pmmvs355.51 35151.50 35767.53 35857.90 39750.93 35180.37 33773.66 37440.63 39144.15 38364.75 37916.30 38878.97 38244.77 34840.98 38572.69 380
TDRefinement55.28 35251.58 35666.39 36159.53 39646.15 37576.23 36072.80 37544.60 38442.49 38676.28 34515.29 39182.39 37233.20 38143.75 37870.62 384
dongtai55.18 35355.46 35254.34 37676.03 36136.88 39476.07 36184.61 33651.28 36443.41 38564.61 38056.56 18567.81 39418.09 39928.50 40058.32 392
LF4IMVS54.01 35452.12 35559.69 36762.41 39239.91 39168.59 37968.28 38842.96 38944.55 38275.18 35014.09 39568.39 39341.36 36051.68 36570.78 383
N_pmnet50.55 35549.11 35854.88 37477.17 3544.02 41884.36 3022.00 41648.59 37345.86 37668.82 37132.22 35482.80 37031.58 38851.38 36677.81 371
new_pmnet49.31 35646.44 35957.93 36962.84 39140.74 38768.47 38062.96 39436.48 39235.09 39257.81 38914.97 39272.18 38932.86 38346.44 37460.88 391
mvsany_test348.86 35746.35 36056.41 37046.00 40531.67 40162.26 38947.25 40643.71 38745.54 37868.15 37310.84 39764.44 40257.95 29335.44 39373.13 379
test_f46.58 35843.45 36255.96 37145.18 40632.05 40061.18 39049.49 40433.39 39442.05 38762.48 3847.00 40365.56 39847.08 33743.21 38070.27 385
WB-MVS46.23 35944.94 36150.11 37962.13 39321.23 41276.48 35955.49 39845.89 38135.78 39161.44 38735.54 34272.83 3889.96 40621.75 40156.27 394
FPMVS45.64 36043.10 36453.23 37751.42 40236.46 39564.97 38671.91 37829.13 39727.53 39761.55 3869.83 39965.01 40016.00 40355.58 35558.22 393
SSC-MVS44.51 36143.35 36347.99 38361.01 39518.90 41474.12 36754.36 39943.42 38834.10 39460.02 38834.42 34770.39 3919.14 40819.57 40254.68 395
EGC-MVSNET42.35 36238.09 36555.11 37374.57 36446.62 37371.63 37255.77 3970.04 4110.24 41262.70 38314.24 39474.91 38617.59 40046.06 37543.80 397
LCM-MVSNet40.54 36335.79 36854.76 37536.92 41230.81 40251.41 39969.02 38522.07 39924.63 39945.37 3964.56 40865.81 39733.67 37934.50 39467.67 386
APD_test140.50 36437.31 36750.09 38051.88 40035.27 39759.45 39452.59 40121.64 40026.12 39857.80 3904.56 40866.56 39622.64 39539.09 38648.43 396
test_vis3_rt40.46 36537.79 36648.47 38244.49 40733.35 39966.56 38532.84 41332.39 39529.65 39539.13 4033.91 41168.65 39250.17 31940.99 38443.40 398
ANet_high40.27 36635.20 36955.47 37234.74 41334.47 39863.84 38871.56 38048.42 37418.80 40241.08 4019.52 40064.45 40120.18 3978.66 40967.49 387
test_method38.59 36735.16 37048.89 38154.33 39821.35 41145.32 40253.71 4007.41 40828.74 39651.62 3928.70 40152.87 40533.73 37832.89 39572.47 381
PMMVS237.93 36833.61 37150.92 37846.31 40424.76 40860.55 39350.05 40228.94 39820.93 40047.59 3934.41 41065.13 39925.14 39318.55 40462.87 390
Gipumacopyleft34.91 36931.44 37245.30 38470.99 37639.64 39219.85 40672.56 37620.10 40216.16 40621.47 4075.08 40771.16 39013.07 40443.70 37925.08 404
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
testf132.77 37029.47 37342.67 38641.89 40930.81 40252.07 39743.45 40715.45 40318.52 40344.82 3972.12 41258.38 40316.05 40130.87 39738.83 399
APD_test232.77 37029.47 37342.67 38641.89 40930.81 40252.07 39743.45 40715.45 40318.52 40344.82 3972.12 41258.38 40316.05 40130.87 39738.83 399
PMVScopyleft26.43 2231.84 37228.16 37542.89 38525.87 41527.58 40650.92 40049.78 40321.37 40114.17 40740.81 4022.01 41466.62 3959.61 40738.88 38834.49 403
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
E-PMN24.61 37324.00 37726.45 39043.74 40818.44 41560.86 39139.66 40915.11 4059.53 40922.10 4066.52 40546.94 4088.31 40910.14 40613.98 406
MVEpermissive24.84 2324.35 37419.77 38038.09 38834.56 41426.92 40726.57 40438.87 41111.73 40711.37 40827.44 4041.37 41550.42 40711.41 40514.60 40536.93 401
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
EMVS23.76 37523.20 37925.46 39141.52 41116.90 41660.56 39238.79 41214.62 4068.99 41020.24 4097.35 40245.82 4097.25 4109.46 40713.64 407
tmp_tt22.26 37623.75 37817.80 3925.23 41612.06 41735.26 40339.48 4102.82 41018.94 40144.20 39922.23 38024.64 41136.30 3719.31 40816.69 405
cdsmvs_eth3d_5k19.86 37726.47 3760.00 3960.00 4190.00 4210.00 40793.45 840.00 4140.00 41595.27 5649.56 2540.00 4150.00 4140.00 4120.00 411
wuyk23d11.30 37810.95 38112.33 39348.05 40319.89 41325.89 4051.92 4173.58 4093.12 4111.37 4110.64 41615.77 4126.23 4117.77 4101.35 408
ab-mvs-re7.91 37910.55 3820.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 41594.95 660.00 4190.00 4150.00 4140.00 4120.00 411
testmvs7.23 3809.62 3830.06 3950.04 4170.02 42084.98 3000.02 4180.03 4120.18 4131.21 4120.01 4180.02 4130.14 4120.01 4110.13 410
test1236.92 3819.21 3840.08 3940.03 4180.05 41981.65 3270.01 4190.02 4130.14 4140.85 4130.03 4170.02 4130.12 4130.00 4120.16 409
pcd_1.5k_mvsjas4.46 3825.95 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 41453.55 2190.00 4150.00 4140.00 4120.00 411
test_blank0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4120.00 411
uanet_test0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4120.00 411
DCPMVS0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4120.00 411
sosnet-low-res0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4120.00 411
sosnet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4120.00 411
uncertanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4120.00 411
Regformer0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4120.00 411
uanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4120.00 411
WAC-MVS49.45 35831.56 389
FOURS193.95 4661.77 24893.96 7091.92 14262.14 31686.57 47
MSC_two_6792asdad89.60 897.31 473.22 1295.05 2699.07 1392.01 2494.77 2596.51 23
PC_three_145280.91 4694.07 296.83 1883.57 499.12 595.70 797.42 497.55 4
No_MVS89.60 897.31 473.22 1295.05 2699.07 1392.01 2494.77 2596.51 23
test_one_060196.32 1869.74 4994.18 5771.42 22390.67 1896.85 1674.45 18
eth-test20.00 419
eth-test0.00 419
ZD-MVS96.63 965.50 15493.50 8270.74 23885.26 6295.19 6264.92 8197.29 7787.51 5793.01 56
RE-MVS-def80.48 14092.02 9758.56 30290.90 20790.45 20262.76 30978.89 12494.46 8049.30 25778.77 13286.77 12792.28 179
IU-MVS96.46 1169.91 4395.18 2080.75 4795.28 192.34 2195.36 1396.47 27
OPU-MVS89.97 397.52 373.15 1496.89 597.00 983.82 299.15 295.72 597.63 397.62 2
test_241102_TWO94.41 4871.65 21292.07 897.21 474.58 1799.11 692.34 2195.36 1396.59 18
test_241102_ONE96.45 1269.38 5494.44 4671.65 21292.11 697.05 776.79 999.11 6
9.1487.63 2893.86 4894.41 5394.18 5772.76 17786.21 4996.51 2466.64 6397.88 4490.08 3894.04 38
save fliter93.84 4967.89 9295.05 3992.66 11578.19 90
test_0728_THIRD72.48 18290.55 1996.93 1176.24 1199.08 1191.53 2994.99 1796.43 29
test_0728_SECOND88.70 1796.45 1270.43 3596.64 994.37 5299.15 291.91 2794.90 2196.51 23
test072696.40 1569.99 3996.76 794.33 5471.92 19891.89 1097.11 673.77 21
GSMVS94.68 96
test_part296.29 1968.16 8690.78 16
sam_mvs157.85 16594.68 96
sam_mvs54.91 204
ambc69.61 34961.38 39441.35 38649.07 40185.86 32650.18 36466.40 37510.16 39888.14 33345.73 34344.20 37779.32 362
MTGPAbinary92.23 128
test_post178.95 34720.70 40853.05 22491.50 30460.43 282
test_post23.01 40556.49 18692.67 269
patchmatchnet-post67.62 37457.62 16890.25 313
GG-mvs-BLEND86.53 7191.91 10469.67 5275.02 36694.75 3378.67 13190.85 16377.91 794.56 20272.25 17993.74 4495.36 62
MTMP93.77 8432.52 414
gm-plane-assit88.42 18667.04 11578.62 8791.83 14697.37 7176.57 144
test9_res89.41 4094.96 1895.29 67
TEST994.18 4167.28 10794.16 5993.51 8071.75 20985.52 5795.33 5168.01 5297.27 81
test_894.19 4067.19 10994.15 6193.42 8671.87 20385.38 6095.35 5068.19 5096.95 104
agg_prior286.41 6994.75 2995.33 63
agg_prior94.16 4366.97 11793.31 8984.49 6896.75 114
TestCases72.46 33679.57 32451.42 34868.61 38651.25 36545.88 37481.23 29519.86 38686.58 34738.98 36757.01 35179.39 360
test_prior467.18 11193.92 73
test_prior295.10 3875.40 13085.25 6395.61 4567.94 5387.47 5894.77 25
test_prior86.42 7494.71 3567.35 10693.10 9996.84 11195.05 79
旧先验292.00 16059.37 33687.54 4093.47 24575.39 153
新几何291.41 182
新几何184.73 13192.32 8964.28 18591.46 16859.56 33579.77 11392.90 12056.95 17896.57 11963.40 26292.91 5893.34 146
旧先验191.94 10160.74 27091.50 16694.36 8465.23 7691.84 7294.55 103
无先验92.71 12592.61 11962.03 31797.01 9466.63 23393.97 128
原ACMM292.01 157
原ACMM184.42 14593.21 6664.27 18693.40 8865.39 28779.51 11692.50 12858.11 16496.69 11565.27 25293.96 3992.32 177
test22289.77 15161.60 25389.55 24589.42 24756.83 34977.28 14492.43 13252.76 22791.14 8693.09 154
testdata296.09 13761.26 278
segment_acmp65.94 69
testdata81.34 22589.02 17257.72 30989.84 23158.65 33985.32 6194.09 9657.03 17393.28 24769.34 20690.56 9293.03 157
testdata189.21 25477.55 103
test1287.09 5194.60 3668.86 6692.91 10582.67 8465.44 7497.55 6293.69 4794.84 89
plane_prior786.94 22661.51 254
plane_prior687.23 21862.32 23850.66 244
plane_prior591.31 17295.55 16776.74 14278.53 20188.39 241
plane_prior489.14 193
plane_prior361.95 24679.09 7872.53 194
plane_prior293.13 10978.81 84
plane_prior187.15 220
plane_prior62.42 23493.85 7779.38 7078.80 198
n20.00 420
nn0.00 420
door-mid66.01 390
lessismore_v073.72 32772.93 37147.83 36661.72 39545.86 37673.76 35428.63 36889.81 32147.75 33531.37 39683.53 315
LGP-MVS_train79.56 27284.31 27459.37 29189.73 23769.49 25164.86 28288.42 19838.65 31794.30 21172.56 17672.76 24485.01 301
test1193.01 101
door66.57 389
HQP5-MVS63.66 204
HQP-NCC87.54 21194.06 6379.80 6174.18 173
ACMP_Plane87.54 21194.06 6379.80 6174.18 173
BP-MVS77.63 139
HQP4-MVS74.18 17395.61 16188.63 235
HQP3-MVS91.70 15878.90 196
HQP2-MVS51.63 237
NP-MVS87.41 21463.04 21990.30 173
MDTV_nov1_ep13_2view59.90 28480.13 34267.65 27172.79 18954.33 21259.83 28692.58 169
MDTV_nov1_ep1372.61 25689.06 17168.48 7480.33 33890.11 22171.84 20571.81 20575.92 34853.01 22593.92 23448.04 33073.38 238
ACMMP++_ref71.63 252
ACMMP++69.72 261
Test By Simon54.21 213
ITE_SJBPF70.43 34774.44 36547.06 37277.32 36360.16 33154.04 34883.53 26423.30 37884.01 36043.07 35161.58 33280.21 357
DeepMVS_CXcopyleft34.71 38951.45 40124.73 40928.48 41531.46 39617.49 40552.75 3915.80 40642.60 41018.18 39819.42 40336.81 402