| MCST-MVS | | | 91.08 1 | 91.46 3 | 89.94 5 | 97.66 2 | 73.37 11 | 97.13 4 | 95.58 11 | 89.33 1 | 85.77 57 | 96.26 32 | 72.84 26 | 99.38 1 | 92.64 19 | 95.93 9 | 97.08 12 |
|
| MM | | | 90.87 2 | 91.52 2 | 88.92 16 | 92.12 97 | 71.10 28 | 97.02 5 | 96.04 6 | 88.70 2 | 91.57 14 | 96.19 35 | 70.12 39 | 98.91 17 | 96.83 1 | 95.06 16 | 96.76 17 |
|
| DPM-MVS | | | 90.70 3 | 90.52 8 | 91.24 1 | 89.68 154 | 76.68 2 | 97.29 2 | 95.35 15 | 82.87 22 | 91.58 13 | 97.22 3 | 79.93 5 | 99.10 9 | 83.12 100 | 97.64 2 | 97.94 1 |
|
| DVP-MVS++ | | | 90.53 4 | 91.09 5 | 88.87 17 | 97.31 4 | 69.91 44 | 93.96 74 | 94.37 52 | 72.48 186 | 92.07 8 | 96.85 16 | 83.82 2 | 99.15 2 | 91.53 29 | 97.42 4 | 97.55 4 |
|
| MSP-MVS | | | 90.38 5 | 91.87 1 | 85.88 89 | 92.83 78 | 64.03 192 | 93.06 115 | 94.33 54 | 82.19 30 | 93.65 3 | 96.15 37 | 85.89 1 | 97.19 86 | 91.02 33 | 97.75 1 | 96.43 32 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| CNVR-MVS | | | 90.32 6 | 90.89 7 | 88.61 23 | 96.76 8 | 70.65 32 | 96.47 15 | 94.83 30 | 84.83 13 | 89.07 35 | 96.80 19 | 70.86 35 | 99.06 15 | 92.64 19 | 95.71 10 | 96.12 41 |
|
| iter_conf05_11 | | | 90.28 7 | 90.32 11 | 90.15 2 | 94.06 45 | 75.87 5 | 97.43 1 | 93.31 89 | 87.80 4 | 91.61 12 | 96.57 23 | 66.22 66 | 97.38 70 | 90.88 34 | 94.97 18 | 97.22 8 |
|
| DELS-MVS | | | 90.05 8 | 90.09 12 | 89.94 5 | 93.14 72 | 73.88 10 | 97.01 6 | 94.40 50 | 88.32 3 | 85.71 58 | 94.91 72 | 74.11 19 | 98.91 17 | 87.26 64 | 95.94 8 | 97.03 13 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| MVS_0304 | | | 90.01 9 | 90.50 9 | 88.53 24 | 90.14 145 | 70.94 29 | 96.47 15 | 95.72 10 | 87.33 5 | 89.60 32 | 96.26 32 | 68.44 45 | 98.74 24 | 95.82 4 | 94.72 32 | 95.90 48 |
|
| SED-MVS | | | 89.94 10 | 90.36 10 | 88.70 19 | 96.45 12 | 69.38 55 | 96.89 7 | 94.44 46 | 71.65 216 | 92.11 6 | 97.21 4 | 76.79 9 | 99.11 6 | 92.34 21 | 95.36 13 | 97.62 2 |
|
| DeepPCF-MVS | | 81.17 1 | 89.72 11 | 91.38 4 | 84.72 133 | 93.00 75 | 58.16 306 | 96.72 10 | 94.41 48 | 86.50 9 | 90.25 25 | 97.83 1 | 75.46 14 | 98.67 25 | 92.78 18 | 95.49 12 | 97.32 6 |
|
| patch_mono-2 | | | 89.71 12 | 90.99 6 | 85.85 92 | 96.04 24 | 63.70 202 | 95.04 43 | 95.19 19 | 86.74 8 | 91.53 15 | 95.15 65 | 73.86 20 | 97.58 59 | 93.38 14 | 92.00 71 | 96.28 38 |
|
| CANet | | | 89.61 13 | 89.99 13 | 88.46 25 | 94.39 39 | 69.71 51 | 96.53 14 | 93.78 66 | 86.89 7 | 89.68 31 | 95.78 42 | 65.94 70 | 99.10 9 | 92.99 16 | 93.91 44 | 96.58 23 |
|
| DVP-MVS |  | | 89.41 14 | 89.73 15 | 88.45 26 | 96.40 15 | 69.99 40 | 96.64 11 | 94.52 42 | 71.92 202 | 90.55 21 | 96.93 11 | 73.77 21 | 99.08 11 | 91.91 27 | 94.90 22 | 96.29 36 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| HPM-MVS++ |  | | 89.37 15 | 89.95 14 | 87.64 36 | 95.10 30 | 68.23 86 | 95.24 35 | 94.49 44 | 82.43 27 | 88.90 36 | 96.35 28 | 71.89 33 | 98.63 26 | 88.76 51 | 96.40 6 | 96.06 42 |
|
| bld_raw_dy_0_64 | | | 89.23 16 | 89.56 16 | 88.21 29 | 93.91 50 | 70.09 38 | 97.16 3 | 93.13 98 | 82.64 25 | 90.75 18 | 96.28 31 | 68.30 49 | 97.37 72 | 89.84 40 | 94.07 40 | 97.17 9 |
|
| NCCC | | | 89.07 17 | 89.46 17 | 87.91 30 | 96.60 10 | 69.05 63 | 96.38 17 | 94.64 39 | 84.42 14 | 86.74 49 | 96.20 34 | 66.56 65 | 98.76 23 | 89.03 50 | 94.56 34 | 95.92 47 |
|
| MVSMamba_pp | | | 88.94 18 | 88.82 19 | 89.29 14 | 94.04 46 | 74.01 9 | 94.81 50 | 92.74 113 | 85.13 11 | 90.37 23 | 90.13 183 | 68.40 47 | 97.38 70 | 89.42 42 | 94.34 37 | 96.47 30 |
|
| DPE-MVS |  | | 88.77 19 | 89.21 18 | 87.45 45 | 96.26 20 | 67.56 102 | 94.17 62 | 94.15 59 | 68.77 265 | 90.74 19 | 97.27 2 | 76.09 12 | 98.49 29 | 90.58 38 | 94.91 21 | 96.30 35 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| mamv4 | | | 88.66 20 | 88.41 22 | 89.39 13 | 94.02 47 | 74.04 8 | 94.94 47 | 92.69 116 | 80.90 49 | 90.32 24 | 90.30 176 | 68.33 48 | 97.28 83 | 89.47 41 | 94.74 31 | 96.84 16 |
|
| SMA-MVS |  | | 88.14 21 | 88.29 25 | 87.67 35 | 93.21 69 | 68.72 71 | 93.85 81 | 94.03 62 | 74.18 149 | 91.74 11 | 96.67 21 | 65.61 74 | 98.42 33 | 89.24 47 | 96.08 7 | 95.88 49 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| PS-MVSNAJ | | | 88.14 21 | 87.61 32 | 89.71 7 | 92.06 98 | 76.72 1 | 95.75 22 | 93.26 91 | 83.86 16 | 89.55 33 | 96.06 38 | 53.55 217 | 97.89 43 | 91.10 31 | 93.31 55 | 94.54 107 |
|
| TSAR-MVS + MP. | | | 88.11 23 | 88.64 20 | 86.54 72 | 91.73 111 | 68.04 90 | 90.36 229 | 93.55 79 | 82.89 21 | 91.29 16 | 92.89 123 | 72.27 30 | 96.03 144 | 87.99 55 | 94.77 26 | 95.54 58 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| TSAR-MVS + GP. | | | 87.96 24 | 88.37 24 | 86.70 65 | 93.51 63 | 65.32 157 | 95.15 38 | 93.84 65 | 78.17 95 | 85.93 56 | 94.80 75 | 75.80 13 | 98.21 34 | 89.38 44 | 88.78 105 | 96.59 21 |
|
| DeepC-MVS_fast | | 79.48 2 | 87.95 25 | 88.00 28 | 87.79 33 | 95.86 27 | 68.32 80 | 95.74 23 | 94.11 60 | 83.82 17 | 83.49 79 | 96.19 35 | 64.53 88 | 98.44 31 | 83.42 99 | 94.88 25 | 96.61 20 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| xiu_mvs_v2_base | | | 87.92 26 | 87.38 36 | 89.55 12 | 91.41 122 | 76.43 3 | 95.74 23 | 93.12 100 | 83.53 19 | 89.55 33 | 95.95 40 | 53.45 221 | 97.68 50 | 91.07 32 | 92.62 62 | 94.54 107 |
|
| EPNet | | | 87.84 27 | 88.38 23 | 86.23 82 | 93.30 66 | 66.05 139 | 95.26 34 | 94.84 29 | 87.09 6 | 88.06 38 | 94.53 81 | 66.79 62 | 97.34 76 | 83.89 96 | 91.68 76 | 95.29 70 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| lupinMVS | | | 87.74 28 | 87.77 30 | 87.63 40 | 89.24 169 | 71.18 25 | 96.57 13 | 92.90 108 | 82.70 24 | 87.13 44 | 95.27 58 | 64.99 79 | 95.80 149 | 89.34 45 | 91.80 74 | 95.93 46 |
|
| test_fmvsm_n_1920 | | | 87.69 29 | 88.50 21 | 85.27 113 | 87.05 225 | 63.55 209 | 93.69 91 | 91.08 189 | 84.18 15 | 90.17 27 | 97.04 8 | 67.58 57 | 97.99 39 | 95.72 5 | 90.03 96 | 94.26 115 |
|
| APDe-MVS |  | | 87.54 30 | 87.84 29 | 86.65 66 | 96.07 23 | 66.30 135 | 94.84 49 | 93.78 66 | 69.35 256 | 88.39 37 | 96.34 29 | 67.74 56 | 97.66 54 | 90.62 37 | 93.44 53 | 96.01 45 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| fmvsm_l_conf0.5_n | | | 87.49 31 | 88.19 26 | 85.39 107 | 86.95 226 | 64.37 182 | 94.30 59 | 88.45 290 | 80.51 53 | 92.70 4 | 96.86 15 | 69.98 40 | 97.15 90 | 95.83 3 | 88.08 112 | 94.65 101 |
|
| SD-MVS | | | 87.49 31 | 87.49 34 | 87.50 44 | 93.60 58 | 68.82 69 | 93.90 78 | 92.63 121 | 76.86 114 | 87.90 39 | 95.76 43 | 66.17 67 | 97.63 56 | 89.06 49 | 91.48 80 | 96.05 43 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| fmvsm_l_conf0.5_n_a | | | 87.44 33 | 88.15 27 | 85.30 111 | 87.10 223 | 64.19 189 | 94.41 57 | 88.14 299 | 80.24 61 | 92.54 5 | 96.97 10 | 69.52 42 | 97.17 87 | 95.89 2 | 88.51 108 | 94.56 104 |
|
| dcpmvs_2 | | | 87.37 34 | 87.55 33 | 86.85 58 | 95.04 32 | 68.20 87 | 90.36 229 | 90.66 201 | 79.37 75 | 81.20 95 | 93.67 107 | 74.73 15 | 96.55 123 | 90.88 34 | 92.00 71 | 95.82 50 |
|
| alignmvs | | | 87.28 35 | 86.97 40 | 88.24 28 | 91.30 124 | 71.14 27 | 95.61 27 | 93.56 78 | 79.30 76 | 87.07 46 | 95.25 60 | 68.43 46 | 96.93 109 | 87.87 56 | 84.33 147 | 96.65 19 |
|
| train_agg | | | 87.21 36 | 87.42 35 | 86.60 68 | 94.18 41 | 67.28 109 | 94.16 63 | 93.51 80 | 71.87 207 | 85.52 60 | 95.33 53 | 68.19 51 | 97.27 84 | 89.09 48 | 94.90 22 | 95.25 76 |
|
| MG-MVS | | | 87.11 37 | 86.27 47 | 89.62 8 | 97.79 1 | 76.27 4 | 94.96 46 | 94.49 44 | 78.74 90 | 83.87 78 | 92.94 121 | 64.34 89 | 96.94 107 | 75.19 156 | 94.09 39 | 95.66 53 |
|
| SF-MVS | | | 87.03 38 | 87.09 38 | 86.84 59 | 92.70 84 | 67.45 107 | 93.64 94 | 93.76 69 | 70.78 240 | 86.25 51 | 96.44 27 | 66.98 60 | 97.79 47 | 88.68 52 | 94.56 34 | 95.28 72 |
|
| CSCG | | | 86.87 39 | 86.26 48 | 88.72 18 | 95.05 31 | 70.79 31 | 93.83 86 | 95.33 16 | 68.48 269 | 77.63 142 | 94.35 90 | 73.04 24 | 98.45 30 | 84.92 86 | 93.71 49 | 96.92 15 |
|
| sasdasda | | | 86.85 40 | 86.25 49 | 88.66 21 | 91.80 109 | 71.92 17 | 93.54 99 | 91.71 158 | 80.26 58 | 87.55 41 | 95.25 60 | 63.59 102 | 96.93 109 | 88.18 53 | 84.34 145 | 97.11 10 |
|
| canonicalmvs | | | 86.85 40 | 86.25 49 | 88.66 21 | 91.80 109 | 71.92 17 | 93.54 99 | 91.71 158 | 80.26 58 | 87.55 41 | 95.25 60 | 63.59 102 | 96.93 109 | 88.18 53 | 84.34 145 | 97.11 10 |
|
| PHI-MVS | | | 86.83 42 | 86.85 44 | 86.78 63 | 93.47 64 | 65.55 153 | 95.39 32 | 95.10 22 | 71.77 212 | 85.69 59 | 96.52 24 | 62.07 122 | 98.77 22 | 86.06 76 | 95.60 11 | 96.03 44 |
|
| SteuartSystems-ACMMP | | | 86.82 43 | 86.90 42 | 86.58 70 | 90.42 139 | 66.38 132 | 96.09 19 | 93.87 64 | 77.73 102 | 84.01 77 | 95.66 45 | 63.39 105 | 97.94 40 | 87.40 62 | 93.55 52 | 95.42 59 |
| Skip Steuart: Steuart Systems R&D Blog. |
| PVSNet_Blended | | | 86.73 44 | 86.86 43 | 86.31 81 | 93.76 53 | 67.53 104 | 96.33 18 | 93.61 76 | 82.34 29 | 81.00 100 | 93.08 117 | 63.19 109 | 97.29 79 | 87.08 67 | 91.38 82 | 94.13 122 |
|
| testing11 | | | 86.71 45 | 86.44 46 | 87.55 42 | 93.54 61 | 71.35 22 | 93.65 93 | 95.58 11 | 81.36 43 | 80.69 103 | 92.21 141 | 72.30 29 | 96.46 128 | 85.18 82 | 83.43 154 | 94.82 94 |
|
| test_fmvsmconf_n | | | 86.58 46 | 87.17 37 | 84.82 126 | 85.28 257 | 62.55 233 | 94.26 61 | 89.78 235 | 83.81 18 | 87.78 40 | 96.33 30 | 65.33 76 | 96.98 102 | 94.40 11 | 87.55 117 | 94.95 86 |
|
| jason | | | 86.40 47 | 86.17 51 | 87.11 52 | 86.16 242 | 70.54 34 | 95.71 26 | 92.19 136 | 82.00 32 | 84.58 70 | 94.34 91 | 61.86 124 | 95.53 169 | 87.76 57 | 90.89 88 | 95.27 73 |
| jason: jason. |
| fmvsm_s_conf0.5_n | | | 86.39 48 | 86.91 41 | 84.82 126 | 87.36 218 | 63.54 210 | 94.74 52 | 90.02 228 | 82.52 26 | 90.14 28 | 96.92 13 | 62.93 114 | 97.84 46 | 95.28 8 | 82.26 164 | 93.07 158 |
|
| WTY-MVS | | | 86.32 49 | 85.81 58 | 87.85 31 | 92.82 80 | 69.37 57 | 95.20 36 | 95.25 17 | 82.71 23 | 81.91 90 | 94.73 76 | 67.93 55 | 97.63 56 | 79.55 126 | 82.25 165 | 96.54 24 |
|
| MSLP-MVS++ | | | 86.27 50 | 85.91 57 | 87.35 47 | 92.01 101 | 68.97 66 | 95.04 43 | 92.70 114 | 79.04 85 | 81.50 93 | 96.50 26 | 58.98 156 | 96.78 115 | 83.49 98 | 93.93 43 | 96.29 36 |
|
| VNet | | | 86.20 51 | 85.65 62 | 87.84 32 | 93.92 49 | 69.99 40 | 95.73 25 | 95.94 7 | 78.43 92 | 86.00 55 | 93.07 118 | 58.22 161 | 97.00 98 | 85.22 80 | 84.33 147 | 96.52 25 |
|
| MVS_111021_HR | | | 86.19 52 | 85.80 59 | 87.37 46 | 93.17 71 | 69.79 48 | 93.99 73 | 93.76 69 | 79.08 83 | 78.88 129 | 93.99 101 | 62.25 121 | 98.15 36 | 85.93 77 | 91.15 86 | 94.15 121 |
|
| CS-MVS-test | | | 86.14 53 | 87.01 39 | 83.52 171 | 92.63 86 | 59.36 294 | 95.49 29 | 91.92 145 | 80.09 62 | 85.46 62 | 95.53 49 | 61.82 126 | 95.77 152 | 86.77 71 | 93.37 54 | 95.41 60 |
|
| ACMMP_NAP | | | 86.05 54 | 85.80 59 | 86.80 62 | 91.58 115 | 67.53 104 | 91.79 173 | 93.49 83 | 74.93 140 | 84.61 69 | 95.30 55 | 59.42 150 | 97.92 41 | 86.13 74 | 94.92 20 | 94.94 87 |
|
| testing99 | | | 86.01 55 | 85.47 63 | 87.63 40 | 93.62 57 | 71.25 24 | 93.47 105 | 95.23 18 | 80.42 56 | 80.60 105 | 91.95 145 | 71.73 34 | 96.50 126 | 80.02 123 | 82.22 166 | 95.13 79 |
|
| ETV-MVS | | | 86.01 55 | 86.11 52 | 85.70 99 | 90.21 144 | 67.02 118 | 93.43 107 | 91.92 145 | 81.21 45 | 84.13 76 | 94.07 100 | 60.93 134 | 95.63 160 | 89.28 46 | 89.81 97 | 94.46 113 |
|
| testing91 | | | 85.93 57 | 85.31 66 | 87.78 34 | 93.59 59 | 71.47 20 | 93.50 102 | 95.08 25 | 80.26 58 | 80.53 106 | 91.93 146 | 70.43 37 | 96.51 125 | 80.32 121 | 82.13 168 | 95.37 63 |
|
| APD-MVS |  | | 85.93 57 | 85.99 55 | 85.76 96 | 95.98 26 | 65.21 160 | 93.59 97 | 92.58 123 | 66.54 282 | 86.17 53 | 95.88 41 | 63.83 95 | 97.00 98 | 86.39 73 | 92.94 59 | 95.06 81 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| PAPM | | | 85.89 59 | 85.46 64 | 87.18 50 | 88.20 197 | 72.42 16 | 92.41 145 | 92.77 111 | 82.11 31 | 80.34 109 | 93.07 118 | 68.27 50 | 95.02 183 | 78.39 138 | 93.59 51 | 94.09 124 |
|
| CS-MVS | | | 85.80 60 | 86.65 45 | 83.27 179 | 92.00 102 | 58.92 299 | 95.31 33 | 91.86 150 | 79.97 63 | 84.82 68 | 95.40 51 | 62.26 120 | 95.51 170 | 86.11 75 | 92.08 70 | 95.37 63 |
|
| fmvsm_s_conf0.5_n_a | | | 85.75 61 | 86.09 53 | 84.72 133 | 85.73 251 | 63.58 207 | 93.79 87 | 89.32 253 | 81.42 41 | 90.21 26 | 96.91 14 | 62.41 119 | 97.67 51 | 94.48 10 | 80.56 183 | 92.90 164 |
|
| test_fmvsmconf0.1_n | | | 85.71 62 | 86.08 54 | 84.62 140 | 80.83 309 | 62.33 238 | 93.84 84 | 88.81 278 | 83.50 20 | 87.00 47 | 96.01 39 | 63.36 106 | 96.93 109 | 94.04 12 | 87.29 120 | 94.61 103 |
|
| CDPH-MVS | | | 85.71 62 | 85.46 64 | 86.46 74 | 94.75 34 | 67.19 111 | 93.89 79 | 92.83 110 | 70.90 236 | 83.09 82 | 95.28 56 | 63.62 100 | 97.36 74 | 80.63 118 | 94.18 38 | 94.84 91 |
|
| casdiffmvs_mvg |  | | 85.66 64 | 85.18 68 | 87.09 53 | 88.22 196 | 69.35 58 | 93.74 90 | 91.89 148 | 81.47 37 | 80.10 111 | 91.45 155 | 64.80 84 | 96.35 129 | 87.23 65 | 87.69 115 | 95.58 56 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| fmvsm_s_conf0.1_n | | | 85.61 65 | 85.93 56 | 84.68 136 | 82.95 294 | 63.48 212 | 94.03 72 | 89.46 247 | 81.69 35 | 89.86 29 | 96.74 20 | 61.85 125 | 97.75 49 | 94.74 9 | 82.01 170 | 92.81 166 |
|
| MGCFI-Net | | | 85.59 66 | 85.73 61 | 85.17 117 | 91.41 122 | 62.44 234 | 92.87 123 | 91.31 175 | 79.65 69 | 86.99 48 | 95.14 66 | 62.90 115 | 96.12 136 | 87.13 66 | 84.13 152 | 96.96 14 |
|
| DeepC-MVS | | 77.85 3 | 85.52 67 | 85.24 67 | 86.37 78 | 88.80 179 | 66.64 126 | 92.15 152 | 93.68 74 | 81.07 46 | 76.91 152 | 93.64 108 | 62.59 117 | 98.44 31 | 85.50 78 | 92.84 61 | 94.03 128 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| casdiffmvs |  | | 85.37 68 | 84.87 74 | 86.84 59 | 88.25 194 | 69.07 62 | 93.04 117 | 91.76 155 | 81.27 44 | 80.84 102 | 92.07 143 | 64.23 90 | 96.06 142 | 84.98 85 | 87.43 119 | 95.39 61 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| ZNCC-MVS | | | 85.33 69 | 85.08 70 | 86.06 84 | 93.09 74 | 65.65 149 | 93.89 79 | 93.41 87 | 73.75 160 | 79.94 113 | 94.68 78 | 60.61 137 | 98.03 38 | 82.63 103 | 93.72 48 | 94.52 109 |
|
| MP-MVS-pluss | | | 85.24 70 | 85.13 69 | 85.56 102 | 91.42 120 | 65.59 151 | 91.54 183 | 92.51 125 | 74.56 143 | 80.62 104 | 95.64 46 | 59.15 154 | 97.00 98 | 86.94 69 | 93.80 45 | 94.07 126 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| testing222 | | | 85.18 71 | 84.69 76 | 86.63 67 | 92.91 77 | 69.91 44 | 92.61 136 | 95.80 9 | 80.31 57 | 80.38 108 | 92.27 138 | 68.73 44 | 95.19 180 | 75.94 151 | 83.27 156 | 94.81 95 |
|
| PAPR | | | 85.15 72 | 84.47 77 | 87.18 50 | 96.02 25 | 68.29 81 | 91.85 171 | 93.00 105 | 76.59 121 | 79.03 125 | 95.00 67 | 61.59 127 | 97.61 58 | 78.16 139 | 89.00 104 | 95.63 54 |
|
| MP-MVS |  | | 85.02 73 | 84.97 72 | 85.17 117 | 92.60 87 | 64.27 187 | 93.24 110 | 92.27 130 | 73.13 171 | 79.63 117 | 94.43 84 | 61.90 123 | 97.17 87 | 85.00 84 | 92.56 63 | 94.06 127 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| baseline | | | 85.01 74 | 84.44 78 | 86.71 64 | 88.33 191 | 68.73 70 | 90.24 234 | 91.82 154 | 81.05 47 | 81.18 96 | 92.50 130 | 63.69 98 | 96.08 141 | 84.45 90 | 86.71 129 | 95.32 68 |
|
| CHOSEN 1792x2688 | | | 84.98 75 | 83.45 91 | 89.57 11 | 89.94 149 | 75.14 6 | 92.07 158 | 92.32 128 | 81.87 33 | 75.68 161 | 88.27 205 | 60.18 140 | 98.60 27 | 80.46 120 | 90.27 95 | 94.96 85 |
|
| EIA-MVS | | | 84.84 76 | 84.88 73 | 84.69 135 | 91.30 124 | 62.36 237 | 93.85 81 | 92.04 140 | 79.45 72 | 79.33 122 | 94.28 94 | 62.42 118 | 96.35 129 | 80.05 122 | 91.25 85 | 95.38 62 |
|
| fmvsm_s_conf0.1_n_a | | | 84.76 77 | 84.84 75 | 84.53 142 | 80.23 319 | 63.50 211 | 92.79 125 | 88.73 281 | 80.46 54 | 89.84 30 | 96.65 22 | 60.96 133 | 97.57 61 | 93.80 13 | 80.14 185 | 92.53 173 |
|
| HFP-MVS | | | 84.73 78 | 84.40 79 | 85.72 98 | 93.75 55 | 65.01 166 | 93.50 102 | 93.19 95 | 72.19 196 | 79.22 123 | 94.93 70 | 59.04 155 | 97.67 51 | 81.55 109 | 92.21 66 | 94.49 112 |
|
| MVS | | | 84.66 79 | 82.86 107 | 90.06 3 | 90.93 130 | 74.56 7 | 87.91 279 | 95.54 13 | 68.55 267 | 72.35 202 | 94.71 77 | 59.78 146 | 98.90 19 | 81.29 115 | 94.69 33 | 96.74 18 |
|
| GST-MVS | | | 84.63 80 | 84.29 80 | 85.66 100 | 92.82 80 | 65.27 158 | 93.04 117 | 93.13 98 | 73.20 169 | 78.89 126 | 94.18 97 | 59.41 151 | 97.85 45 | 81.45 111 | 92.48 65 | 93.86 136 |
|
| EC-MVSNet | | | 84.53 81 | 85.04 71 | 83.01 183 | 89.34 161 | 61.37 258 | 94.42 56 | 91.09 187 | 77.91 99 | 83.24 80 | 94.20 96 | 58.37 159 | 95.40 171 | 85.35 79 | 91.41 81 | 92.27 183 |
|
| ACMMPR | | | 84.37 82 | 84.06 81 | 85.28 112 | 93.56 60 | 64.37 182 | 93.50 102 | 93.15 97 | 72.19 196 | 78.85 131 | 94.86 73 | 56.69 181 | 97.45 65 | 81.55 109 | 92.20 67 | 94.02 129 |
|
| region2R | | | 84.36 83 | 84.03 82 | 85.36 109 | 93.54 61 | 64.31 185 | 93.43 107 | 92.95 106 | 72.16 199 | 78.86 130 | 94.84 74 | 56.97 176 | 97.53 63 | 81.38 113 | 92.11 69 | 94.24 116 |
|
| LFMVS | | | 84.34 84 | 82.73 109 | 89.18 15 | 94.76 33 | 73.25 12 | 94.99 45 | 91.89 148 | 71.90 204 | 82.16 89 | 93.49 112 | 47.98 268 | 97.05 93 | 82.55 104 | 84.82 141 | 97.25 7 |
|
| test_yl | | | 84.28 85 | 83.16 100 | 87.64 36 | 94.52 37 | 69.24 59 | 95.78 20 | 95.09 23 | 69.19 259 | 81.09 97 | 92.88 124 | 57.00 174 | 97.44 66 | 81.11 116 | 81.76 172 | 96.23 39 |
|
| DCV-MVSNet | | | 84.28 85 | 83.16 100 | 87.64 36 | 94.52 37 | 69.24 59 | 95.78 20 | 95.09 23 | 69.19 259 | 81.09 97 | 92.88 124 | 57.00 174 | 97.44 66 | 81.11 116 | 81.76 172 | 96.23 39 |
|
| diffmvs |  | | 84.28 85 | 83.83 83 | 85.61 101 | 87.40 216 | 68.02 91 | 90.88 213 | 89.24 256 | 80.54 52 | 81.64 92 | 92.52 129 | 59.83 145 | 94.52 206 | 87.32 63 | 85.11 139 | 94.29 114 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| HY-MVS | | 76.49 5 | 84.28 85 | 83.36 98 | 87.02 56 | 92.22 94 | 67.74 97 | 84.65 304 | 94.50 43 | 79.15 80 | 82.23 88 | 87.93 214 | 66.88 61 | 96.94 107 | 80.53 119 | 82.20 167 | 96.39 34 |
|
| ETVMVS | | | 84.22 89 | 83.71 84 | 85.76 96 | 92.58 88 | 68.25 85 | 92.45 144 | 95.53 14 | 79.54 71 | 79.46 119 | 91.64 153 | 70.29 38 | 94.18 219 | 69.16 209 | 82.76 162 | 94.84 91 |
|
| MAR-MVS | | | 84.18 90 | 83.43 93 | 86.44 75 | 96.25 21 | 65.93 144 | 94.28 60 | 94.27 56 | 74.41 144 | 79.16 124 | 95.61 47 | 53.99 212 | 98.88 21 | 69.62 203 | 93.26 56 | 94.50 111 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| MVS_Test | | | 84.16 91 | 83.20 99 | 87.05 55 | 91.56 116 | 69.82 47 | 89.99 243 | 92.05 139 | 77.77 101 | 82.84 83 | 86.57 233 | 63.93 94 | 96.09 138 | 74.91 161 | 89.18 103 | 95.25 76 |
|
| CANet_DTU | | | 84.09 92 | 83.52 86 | 85.81 93 | 90.30 142 | 66.82 121 | 91.87 169 | 89.01 270 | 85.27 10 | 86.09 54 | 93.74 105 | 47.71 272 | 96.98 102 | 77.90 141 | 89.78 99 | 93.65 141 |
|
| ET-MVSNet_ETH3D | | | 84.01 93 | 83.15 102 | 86.58 70 | 90.78 135 | 70.89 30 | 94.74 52 | 94.62 40 | 81.44 40 | 58.19 330 | 93.64 108 | 73.64 23 | 92.35 283 | 82.66 102 | 78.66 200 | 96.50 29 |
|
| PVSNet_Blended_VisFu | | | 83.97 94 | 83.50 88 | 85.39 107 | 90.02 147 | 66.59 129 | 93.77 88 | 91.73 156 | 77.43 110 | 77.08 151 | 89.81 188 | 63.77 97 | 96.97 104 | 79.67 125 | 88.21 110 | 92.60 170 |
|
| MTAPA | | | 83.91 95 | 83.38 97 | 85.50 103 | 91.89 107 | 65.16 162 | 81.75 327 | 92.23 131 | 75.32 135 | 80.53 106 | 95.21 63 | 56.06 189 | 97.16 89 | 84.86 87 | 92.55 64 | 94.18 118 |
|
| XVS | | | 83.87 96 | 83.47 90 | 85.05 119 | 93.22 67 | 63.78 196 | 92.92 121 | 92.66 118 | 73.99 152 | 78.18 135 | 94.31 93 | 55.25 195 | 97.41 68 | 79.16 129 | 91.58 78 | 93.95 131 |
|
| Effi-MVS+ | | | 83.82 97 | 82.76 108 | 86.99 57 | 89.56 157 | 69.40 54 | 91.35 195 | 86.12 323 | 72.59 183 | 83.22 81 | 92.81 127 | 59.60 148 | 96.01 146 | 81.76 108 | 87.80 114 | 95.56 57 |
|
| test_fmvsmvis_n_1920 | | | 83.80 98 | 83.48 89 | 84.77 130 | 82.51 296 | 63.72 200 | 91.37 193 | 83.99 343 | 81.42 41 | 77.68 141 | 95.74 44 | 58.37 159 | 97.58 59 | 93.38 14 | 86.87 123 | 93.00 161 |
|
| EI-MVSNet-Vis-set | | | 83.77 99 | 83.67 85 | 84.06 158 | 92.79 83 | 63.56 208 | 91.76 176 | 94.81 31 | 79.65 69 | 77.87 139 | 94.09 98 | 63.35 107 | 97.90 42 | 79.35 127 | 79.36 192 | 90.74 209 |
|
| MVSFormer | | | 83.75 100 | 82.88 106 | 86.37 78 | 89.24 169 | 71.18 25 | 89.07 261 | 90.69 198 | 65.80 287 | 87.13 44 | 94.34 91 | 64.99 79 | 92.67 270 | 72.83 172 | 91.80 74 | 95.27 73 |
|
| CP-MVS | | | 83.71 101 | 83.40 96 | 84.65 137 | 93.14 72 | 63.84 194 | 94.59 54 | 92.28 129 | 71.03 234 | 77.41 145 | 94.92 71 | 55.21 198 | 96.19 133 | 81.32 114 | 90.70 90 | 93.91 133 |
|
| test_fmvsmconf0.01_n | | | 83.70 102 | 83.52 86 | 84.25 155 | 75.26 360 | 61.72 252 | 92.17 151 | 87.24 312 | 82.36 28 | 84.91 67 | 95.41 50 | 55.60 193 | 96.83 114 | 92.85 17 | 85.87 135 | 94.21 117 |
|
| baseline2 | | | 83.68 103 | 83.42 95 | 84.48 145 | 87.37 217 | 66.00 141 | 90.06 238 | 95.93 8 | 79.71 68 | 69.08 238 | 90.39 174 | 77.92 6 | 96.28 131 | 78.91 133 | 81.38 176 | 91.16 205 |
|
| iter_conf05 | | | 83.65 104 | 83.44 92 | 84.28 153 | 86.17 241 | 68.61 75 | 95.08 41 | 89.82 234 | 80.90 49 | 78.08 137 | 90.49 171 | 69.08 43 | 95.22 179 | 84.29 91 | 77.07 216 | 89.02 231 |
|
| thisisatest0515 | | | 83.41 105 | 82.49 113 | 86.16 83 | 89.46 160 | 68.26 83 | 93.54 99 | 94.70 36 | 74.31 147 | 75.75 159 | 90.92 163 | 72.62 27 | 96.52 124 | 69.64 201 | 81.50 175 | 93.71 139 |
|
| PVSNet_BlendedMVS | | | 83.38 106 | 83.43 93 | 83.22 180 | 93.76 53 | 67.53 104 | 94.06 67 | 93.61 76 | 79.13 81 | 81.00 100 | 85.14 248 | 63.19 109 | 97.29 79 | 87.08 67 | 73.91 237 | 84.83 305 |
|
| test2506 | | | 83.29 107 | 82.92 105 | 84.37 149 | 88.39 189 | 63.18 219 | 92.01 161 | 91.35 174 | 77.66 104 | 78.49 134 | 91.42 156 | 64.58 87 | 95.09 182 | 73.19 168 | 89.23 101 | 94.85 88 |
|
| PGM-MVS | | | 83.25 108 | 82.70 110 | 84.92 122 | 92.81 82 | 64.07 191 | 90.44 225 | 92.20 135 | 71.28 228 | 77.23 148 | 94.43 84 | 55.17 199 | 97.31 78 | 79.33 128 | 91.38 82 | 93.37 147 |
|
| HPM-MVS |  | | 83.25 108 | 82.95 104 | 84.17 156 | 92.25 93 | 62.88 228 | 90.91 210 | 91.86 150 | 70.30 245 | 77.12 149 | 93.96 102 | 56.75 179 | 96.28 131 | 82.04 106 | 91.34 84 | 93.34 148 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| EI-MVSNet-UG-set | | | 83.14 110 | 82.96 103 | 83.67 169 | 92.28 92 | 63.19 218 | 91.38 192 | 94.68 37 | 79.22 78 | 76.60 154 | 93.75 104 | 62.64 116 | 97.76 48 | 78.07 140 | 78.01 203 | 90.05 218 |
|
| VDD-MVS | | | 83.06 111 | 81.81 122 | 86.81 61 | 90.86 133 | 67.70 98 | 95.40 31 | 91.50 169 | 75.46 132 | 81.78 91 | 92.34 137 | 40.09 310 | 97.13 91 | 86.85 70 | 82.04 169 | 95.60 55 |
|
| h-mvs33 | | | 83.01 112 | 82.56 112 | 84.35 150 | 89.34 161 | 62.02 244 | 92.72 128 | 93.76 69 | 81.45 38 | 82.73 85 | 92.25 140 | 60.11 141 | 97.13 91 | 87.69 58 | 62.96 314 | 93.91 133 |
|
| PAPM_NR | | | 82.97 113 | 81.84 121 | 86.37 78 | 94.10 44 | 66.76 124 | 87.66 283 | 92.84 109 | 69.96 249 | 74.07 180 | 93.57 110 | 63.10 112 | 97.50 64 | 70.66 196 | 90.58 92 | 94.85 88 |
|
| mPP-MVS | | | 82.96 114 | 82.44 114 | 84.52 143 | 92.83 78 | 62.92 226 | 92.76 126 | 91.85 152 | 71.52 224 | 75.61 164 | 94.24 95 | 53.48 220 | 96.99 101 | 78.97 132 | 90.73 89 | 93.64 142 |
|
| SR-MVS | | | 82.81 115 | 82.58 111 | 83.50 174 | 93.35 65 | 61.16 261 | 92.23 150 | 91.28 179 | 64.48 296 | 81.27 94 | 95.28 56 | 53.71 216 | 95.86 148 | 82.87 101 | 88.77 106 | 93.49 145 |
|
| DP-MVS Recon | | | 82.73 116 | 81.65 123 | 85.98 86 | 97.31 4 | 67.06 115 | 95.15 38 | 91.99 142 | 69.08 262 | 76.50 156 | 93.89 103 | 54.48 207 | 98.20 35 | 70.76 194 | 85.66 137 | 92.69 167 |
|
| CLD-MVS | | | 82.73 116 | 82.35 116 | 83.86 162 | 87.90 204 | 67.65 100 | 95.45 30 | 92.18 137 | 85.06 12 | 72.58 195 | 92.27 138 | 52.46 228 | 95.78 150 | 84.18 92 | 79.06 195 | 88.16 246 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| sss | | | 82.71 118 | 82.38 115 | 83.73 166 | 89.25 166 | 59.58 289 | 92.24 149 | 94.89 28 | 77.96 97 | 79.86 114 | 92.38 135 | 56.70 180 | 97.05 93 | 77.26 144 | 80.86 180 | 94.55 105 |
|
| 3Dnovator | | 73.91 6 | 82.69 119 | 80.82 134 | 88.31 27 | 89.57 156 | 71.26 23 | 92.60 137 | 94.39 51 | 78.84 87 | 67.89 259 | 92.48 133 | 48.42 263 | 98.52 28 | 68.80 214 | 94.40 36 | 95.15 78 |
|
| MVSTER | | | 82.47 120 | 82.05 117 | 83.74 164 | 92.68 85 | 69.01 64 | 91.90 168 | 93.21 92 | 79.83 64 | 72.14 203 | 85.71 245 | 74.72 16 | 94.72 194 | 75.72 152 | 72.49 248 | 87.50 251 |
|
| TESTMET0.1,1 | | | 82.41 121 | 81.98 120 | 83.72 167 | 88.08 198 | 63.74 198 | 92.70 130 | 93.77 68 | 79.30 76 | 77.61 143 | 87.57 220 | 58.19 162 | 94.08 223 | 73.91 167 | 86.68 130 | 93.33 150 |
|
| CostFormer | | | 82.33 122 | 81.15 127 | 85.86 91 | 89.01 174 | 68.46 77 | 82.39 324 | 93.01 103 | 75.59 130 | 80.25 110 | 81.57 289 | 72.03 32 | 94.96 186 | 79.06 131 | 77.48 211 | 94.16 120 |
|
| API-MVS | | | 82.28 123 | 80.53 141 | 87.54 43 | 96.13 22 | 70.59 33 | 93.63 95 | 91.04 193 | 65.72 289 | 75.45 166 | 92.83 126 | 56.11 188 | 98.89 20 | 64.10 258 | 89.75 100 | 93.15 154 |
|
| IB-MVS | | 77.80 4 | 82.18 124 | 80.46 143 | 87.35 47 | 89.14 171 | 70.28 37 | 95.59 28 | 95.17 21 | 78.85 86 | 70.19 226 | 85.82 243 | 70.66 36 | 97.67 51 | 72.19 183 | 66.52 288 | 94.09 124 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| xiu_mvs_v1_base_debu | | | 82.16 125 | 81.12 128 | 85.26 114 | 86.42 234 | 68.72 71 | 92.59 139 | 90.44 208 | 73.12 172 | 84.20 73 | 94.36 86 | 38.04 323 | 95.73 154 | 84.12 93 | 86.81 124 | 91.33 198 |
|
| xiu_mvs_v1_base | | | 82.16 125 | 81.12 128 | 85.26 114 | 86.42 234 | 68.72 71 | 92.59 139 | 90.44 208 | 73.12 172 | 84.20 73 | 94.36 86 | 38.04 323 | 95.73 154 | 84.12 93 | 86.81 124 | 91.33 198 |
|
| xiu_mvs_v1_base_debi | | | 82.16 125 | 81.12 128 | 85.26 114 | 86.42 234 | 68.72 71 | 92.59 139 | 90.44 208 | 73.12 172 | 84.20 73 | 94.36 86 | 38.04 323 | 95.73 154 | 84.12 93 | 86.81 124 | 91.33 198 |
|
| 3Dnovator+ | | 73.60 7 | 82.10 128 | 80.60 140 | 86.60 68 | 90.89 132 | 66.80 123 | 95.20 36 | 93.44 85 | 74.05 151 | 67.42 265 | 92.49 132 | 49.46 253 | 97.65 55 | 70.80 193 | 91.68 76 | 95.33 66 |
|
| MVS_111021_LR | | | 82.02 129 | 81.52 124 | 83.51 173 | 88.42 187 | 62.88 228 | 89.77 246 | 88.93 274 | 76.78 117 | 75.55 165 | 93.10 115 | 50.31 245 | 95.38 173 | 83.82 97 | 87.02 122 | 92.26 184 |
|
| PMMVS | | | 81.98 130 | 82.04 118 | 81.78 216 | 89.76 153 | 56.17 325 | 91.13 206 | 90.69 198 | 77.96 97 | 80.09 112 | 93.57 110 | 46.33 282 | 94.99 185 | 81.41 112 | 87.46 118 | 94.17 119 |
|
| baseline1 | | | 81.84 131 | 81.03 132 | 84.28 153 | 91.60 114 | 66.62 127 | 91.08 207 | 91.66 163 | 81.87 33 | 74.86 171 | 91.67 152 | 69.98 40 | 94.92 189 | 71.76 186 | 64.75 302 | 91.29 203 |
|
| EPP-MVSNet | | | 81.79 132 | 81.52 124 | 82.61 192 | 88.77 180 | 60.21 281 | 93.02 119 | 93.66 75 | 68.52 268 | 72.90 190 | 90.39 174 | 72.19 31 | 94.96 186 | 74.93 160 | 79.29 194 | 92.67 168 |
|
| test_vis1_n_1920 | | | 81.66 133 | 82.01 119 | 80.64 243 | 82.24 298 | 55.09 333 | 94.76 51 | 86.87 314 | 81.67 36 | 84.40 72 | 94.63 79 | 38.17 320 | 94.67 198 | 91.98 26 | 83.34 155 | 92.16 187 |
|
| APD-MVS_3200maxsize | | | 81.64 134 | 81.32 126 | 82.59 193 | 92.36 90 | 58.74 301 | 91.39 190 | 91.01 194 | 63.35 305 | 79.72 116 | 94.62 80 | 51.82 231 | 96.14 135 | 79.71 124 | 87.93 113 | 92.89 165 |
|
| ACMMP |  | | 81.49 135 | 80.67 137 | 83.93 161 | 91.71 112 | 62.90 227 | 92.13 153 | 92.22 134 | 71.79 211 | 71.68 210 | 93.49 112 | 50.32 244 | 96.96 105 | 78.47 137 | 84.22 151 | 91.93 190 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| CDS-MVSNet | | | 81.43 136 | 80.74 135 | 83.52 171 | 86.26 238 | 64.45 176 | 92.09 156 | 90.65 202 | 75.83 128 | 73.95 182 | 89.81 188 | 63.97 93 | 92.91 260 | 71.27 189 | 82.82 159 | 93.20 153 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| mvs_anonymous | | | 81.36 137 | 79.99 148 | 85.46 104 | 90.39 141 | 68.40 78 | 86.88 294 | 90.61 203 | 74.41 144 | 70.31 225 | 84.67 253 | 63.79 96 | 92.32 284 | 73.13 169 | 85.70 136 | 95.67 52 |
|
| ECVR-MVS |  | | 81.29 138 | 80.38 144 | 84.01 160 | 88.39 189 | 61.96 246 | 92.56 142 | 86.79 316 | 77.66 104 | 76.63 153 | 91.42 156 | 46.34 281 | 95.24 178 | 74.36 165 | 89.23 101 | 94.85 88 |
|
| thisisatest0530 | | | 81.15 139 | 80.07 145 | 84.39 148 | 88.26 193 | 65.63 150 | 91.40 188 | 94.62 40 | 71.27 229 | 70.93 216 | 89.18 194 | 72.47 28 | 96.04 143 | 65.62 247 | 76.89 218 | 91.49 194 |
|
| Fast-Effi-MVS+ | | | 81.14 140 | 80.01 147 | 84.51 144 | 90.24 143 | 65.86 145 | 94.12 66 | 89.15 262 | 73.81 159 | 75.37 167 | 88.26 206 | 57.26 169 | 94.53 205 | 66.97 232 | 84.92 140 | 93.15 154 |
|
| HQP-MVS | | | 81.14 140 | 80.64 138 | 82.64 191 | 87.54 212 | 63.66 205 | 94.06 67 | 91.70 161 | 79.80 65 | 74.18 176 | 90.30 176 | 51.63 235 | 95.61 162 | 77.63 142 | 78.90 196 | 88.63 237 |
|
| hse-mvs2 | | | 81.12 142 | 81.11 131 | 81.16 230 | 86.52 233 | 57.48 314 | 89.40 254 | 91.16 182 | 81.45 38 | 82.73 85 | 90.49 171 | 60.11 141 | 94.58 199 | 87.69 58 | 60.41 341 | 91.41 197 |
|
| SR-MVS-dyc-post | | | 81.06 143 | 80.70 136 | 82.15 207 | 92.02 99 | 58.56 303 | 90.90 211 | 90.45 205 | 62.76 312 | 78.89 126 | 94.46 82 | 51.26 239 | 95.61 162 | 78.77 135 | 86.77 127 | 92.28 180 |
|
| HyFIR lowres test | | | 81.03 144 | 79.56 155 | 85.43 105 | 87.81 208 | 68.11 89 | 90.18 235 | 90.01 229 | 70.65 242 | 72.95 189 | 86.06 241 | 63.61 101 | 94.50 207 | 75.01 159 | 79.75 189 | 93.67 140 |
|
| nrg030 | | | 80.93 145 | 79.86 150 | 84.13 157 | 83.69 283 | 68.83 68 | 93.23 111 | 91.20 180 | 75.55 131 | 75.06 169 | 88.22 209 | 63.04 113 | 94.74 193 | 81.88 107 | 66.88 285 | 88.82 235 |
|
| Vis-MVSNet |  | | 80.92 146 | 79.98 149 | 83.74 164 | 88.48 184 | 61.80 248 | 93.44 106 | 88.26 298 | 73.96 155 | 77.73 140 | 91.76 149 | 49.94 249 | 94.76 191 | 65.84 244 | 90.37 94 | 94.65 101 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| test1111 | | | 80.84 147 | 80.02 146 | 83.33 177 | 87.87 205 | 60.76 269 | 92.62 135 | 86.86 315 | 77.86 100 | 75.73 160 | 91.39 158 | 46.35 280 | 94.70 197 | 72.79 174 | 88.68 107 | 94.52 109 |
|
| UWE-MVS | | | 80.81 148 | 81.01 133 | 80.20 253 | 89.33 163 | 57.05 319 | 91.91 167 | 94.71 35 | 75.67 129 | 75.01 170 | 89.37 192 | 63.13 111 | 91.44 306 | 67.19 229 | 82.80 161 | 92.12 188 |
|
| 1314 | | | 80.70 149 | 78.95 166 | 85.94 88 | 87.77 210 | 67.56 102 | 87.91 279 | 92.55 124 | 72.17 198 | 67.44 264 | 93.09 116 | 50.27 246 | 97.04 96 | 71.68 188 | 87.64 116 | 93.23 152 |
|
| tpmrst | | | 80.57 150 | 79.14 165 | 84.84 125 | 90.10 146 | 68.28 82 | 81.70 328 | 89.72 242 | 77.63 106 | 75.96 158 | 79.54 321 | 64.94 81 | 92.71 267 | 75.43 154 | 77.28 214 | 93.55 143 |
|
| 1112_ss | | | 80.56 151 | 79.83 151 | 82.77 187 | 88.65 181 | 60.78 267 | 92.29 147 | 88.36 292 | 72.58 184 | 72.46 199 | 94.95 68 | 65.09 78 | 93.42 247 | 66.38 238 | 77.71 205 | 94.10 123 |
|
| VDDNet | | | 80.50 152 | 78.26 174 | 87.21 49 | 86.19 239 | 69.79 48 | 94.48 55 | 91.31 175 | 60.42 330 | 79.34 121 | 90.91 164 | 38.48 318 | 96.56 122 | 82.16 105 | 81.05 178 | 95.27 73 |
|
| BH-w/o | | | 80.49 153 | 79.30 162 | 84.05 159 | 90.83 134 | 64.36 184 | 93.60 96 | 89.42 250 | 74.35 146 | 69.09 237 | 90.15 182 | 55.23 197 | 95.61 162 | 64.61 255 | 86.43 133 | 92.17 186 |
|
| test_cas_vis1_n_1920 | | | 80.45 154 | 80.61 139 | 79.97 262 | 78.25 345 | 57.01 321 | 94.04 71 | 88.33 293 | 79.06 84 | 82.81 84 | 93.70 106 | 38.65 315 | 91.63 298 | 90.82 36 | 79.81 187 | 91.27 204 |
|
| TAMVS | | | 80.37 155 | 79.45 158 | 83.13 182 | 85.14 260 | 63.37 213 | 91.23 201 | 90.76 197 | 74.81 142 | 72.65 193 | 88.49 200 | 60.63 136 | 92.95 255 | 69.41 205 | 81.95 171 | 93.08 157 |
|
| HQP_MVS | | | 80.34 156 | 79.75 152 | 82.12 209 | 86.94 227 | 62.42 235 | 93.13 113 | 91.31 175 | 78.81 88 | 72.53 196 | 89.14 196 | 50.66 242 | 95.55 167 | 76.74 145 | 78.53 201 | 88.39 243 |
|
| SDMVSNet | | | 80.26 157 | 78.88 167 | 84.40 147 | 89.25 166 | 67.63 101 | 85.35 300 | 93.02 102 | 76.77 118 | 70.84 217 | 87.12 227 | 47.95 269 | 96.09 138 | 85.04 83 | 74.55 228 | 89.48 228 |
|
| HPM-MVS_fast | | | 80.25 158 | 79.55 157 | 82.33 199 | 91.55 117 | 59.95 284 | 91.32 197 | 89.16 261 | 65.23 293 | 74.71 173 | 93.07 118 | 47.81 271 | 95.74 153 | 74.87 163 | 88.23 109 | 91.31 202 |
|
| ab-mvs | | | 80.18 159 | 78.31 173 | 85.80 94 | 88.44 186 | 65.49 156 | 83.00 321 | 92.67 117 | 71.82 210 | 77.36 146 | 85.01 249 | 54.50 204 | 96.59 119 | 76.35 149 | 75.63 225 | 95.32 68 |
|
| IS-MVSNet | | | 80.14 160 | 79.41 159 | 82.33 199 | 87.91 203 | 60.08 283 | 91.97 165 | 88.27 296 | 72.90 179 | 71.44 213 | 91.73 151 | 61.44 128 | 93.66 242 | 62.47 272 | 86.53 131 | 93.24 151 |
|
| test-LLR | | | 80.10 161 | 79.56 155 | 81.72 218 | 86.93 229 | 61.17 259 | 92.70 130 | 91.54 166 | 71.51 225 | 75.62 162 | 86.94 229 | 53.83 213 | 92.38 280 | 72.21 181 | 84.76 143 | 91.60 192 |
|
| PVSNet | | 73.49 8 | 80.05 162 | 78.63 169 | 84.31 151 | 90.92 131 | 64.97 167 | 92.47 143 | 91.05 192 | 79.18 79 | 72.43 200 | 90.51 170 | 37.05 335 | 94.06 225 | 68.06 218 | 86.00 134 | 93.90 135 |
|
| UA-Net | | | 80.02 163 | 79.65 153 | 81.11 232 | 89.33 163 | 57.72 310 | 86.33 297 | 89.00 273 | 77.44 109 | 81.01 99 | 89.15 195 | 59.33 152 | 95.90 147 | 61.01 279 | 84.28 149 | 89.73 224 |
|
| test-mter | | | 79.96 164 | 79.38 161 | 81.72 218 | 86.93 229 | 61.17 259 | 92.70 130 | 91.54 166 | 73.85 157 | 75.62 162 | 86.94 229 | 49.84 251 | 92.38 280 | 72.21 181 | 84.76 143 | 91.60 192 |
|
| QAPM | | | 79.95 165 | 77.39 191 | 87.64 36 | 89.63 155 | 71.41 21 | 93.30 109 | 93.70 73 | 65.34 292 | 67.39 267 | 91.75 150 | 47.83 270 | 98.96 16 | 57.71 295 | 89.81 97 | 92.54 172 |
|
| UGNet | | | 79.87 166 | 78.68 168 | 83.45 176 | 89.96 148 | 61.51 255 | 92.13 153 | 90.79 196 | 76.83 116 | 78.85 131 | 86.33 237 | 38.16 321 | 96.17 134 | 67.93 221 | 87.17 121 | 92.67 168 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| tpm2 | | | 79.80 167 | 77.95 180 | 85.34 110 | 88.28 192 | 68.26 83 | 81.56 330 | 91.42 172 | 70.11 247 | 77.59 144 | 80.50 307 | 67.40 58 | 94.26 216 | 67.34 226 | 77.35 212 | 93.51 144 |
|
| thres200 | | | 79.66 168 | 78.33 172 | 83.66 170 | 92.54 89 | 65.82 147 | 93.06 115 | 96.31 3 | 74.90 141 | 73.30 186 | 88.66 198 | 59.67 147 | 95.61 162 | 47.84 333 | 78.67 199 | 89.56 227 |
|
| CPTT-MVS | | | 79.59 169 | 79.16 164 | 80.89 241 | 91.54 118 | 59.80 286 | 92.10 155 | 88.54 289 | 60.42 330 | 72.96 188 | 93.28 114 | 48.27 264 | 92.80 264 | 78.89 134 | 86.50 132 | 90.06 217 |
|
| Test_1112_low_res | | | 79.56 170 | 78.60 170 | 82.43 195 | 88.24 195 | 60.39 278 | 92.09 156 | 87.99 303 | 72.10 200 | 71.84 206 | 87.42 222 | 64.62 86 | 93.04 251 | 65.80 245 | 77.30 213 | 93.85 137 |
|
| tttt0517 | | | 79.50 171 | 78.53 171 | 82.41 198 | 87.22 220 | 61.43 257 | 89.75 247 | 94.76 32 | 69.29 257 | 67.91 257 | 88.06 213 | 72.92 25 | 95.63 160 | 62.91 268 | 73.90 238 | 90.16 216 |
|
| FIs | | | 79.47 172 | 79.41 159 | 79.67 269 | 85.95 245 | 59.40 291 | 91.68 180 | 93.94 63 | 78.06 96 | 68.96 242 | 88.28 204 | 66.61 64 | 91.77 295 | 66.20 241 | 74.99 227 | 87.82 248 |
|
| BH-RMVSNet | | | 79.46 173 | 77.65 183 | 84.89 123 | 91.68 113 | 65.66 148 | 93.55 98 | 88.09 301 | 72.93 176 | 73.37 185 | 91.12 162 | 46.20 284 | 96.12 136 | 56.28 300 | 85.61 138 | 92.91 163 |
|
| PCF-MVS | | 73.15 9 | 79.29 174 | 77.63 184 | 84.29 152 | 86.06 243 | 65.96 143 | 87.03 290 | 91.10 186 | 69.86 251 | 69.79 233 | 90.64 166 | 57.54 168 | 96.59 119 | 64.37 257 | 82.29 163 | 90.32 214 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| Vis-MVSNet (Re-imp) | | | 79.24 175 | 79.57 154 | 78.24 289 | 88.46 185 | 52.29 344 | 90.41 227 | 89.12 264 | 74.24 148 | 69.13 236 | 91.91 147 | 65.77 72 | 90.09 321 | 59.00 291 | 88.09 111 | 92.33 177 |
|
| 114514_t | | | 79.17 176 | 77.67 182 | 83.68 168 | 95.32 29 | 65.53 154 | 92.85 124 | 91.60 165 | 63.49 303 | 67.92 256 | 90.63 168 | 46.65 277 | 95.72 158 | 67.01 231 | 83.54 153 | 89.79 222 |
|
| FA-MVS(test-final) | | | 79.12 177 | 77.23 193 | 84.81 129 | 90.54 137 | 63.98 193 | 81.35 333 | 91.71 158 | 71.09 233 | 74.85 172 | 82.94 270 | 52.85 224 | 97.05 93 | 67.97 219 | 81.73 174 | 93.41 146 |
|
| VPA-MVSNet | | | 79.03 178 | 78.00 178 | 82.11 212 | 85.95 245 | 64.48 175 | 93.22 112 | 94.66 38 | 75.05 139 | 74.04 181 | 84.95 250 | 52.17 230 | 93.52 244 | 74.90 162 | 67.04 284 | 88.32 245 |
|
| OPM-MVS | | | 79.00 179 | 78.09 176 | 81.73 217 | 83.52 286 | 63.83 195 | 91.64 182 | 90.30 215 | 76.36 124 | 71.97 205 | 89.93 187 | 46.30 283 | 95.17 181 | 75.10 157 | 77.70 206 | 86.19 278 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| EI-MVSNet | | | 78.97 180 | 78.22 175 | 81.25 227 | 85.33 255 | 62.73 231 | 89.53 251 | 93.21 92 | 72.39 191 | 72.14 203 | 90.13 183 | 60.99 131 | 94.72 194 | 67.73 223 | 72.49 248 | 86.29 275 |
|
| AdaColmap |  | | 78.94 181 | 77.00 197 | 84.76 131 | 96.34 17 | 65.86 145 | 92.66 134 | 87.97 305 | 62.18 317 | 70.56 219 | 92.37 136 | 43.53 298 | 97.35 75 | 64.50 256 | 82.86 158 | 91.05 207 |
|
| GeoE | | | 78.90 182 | 77.43 187 | 83.29 178 | 88.95 175 | 62.02 244 | 92.31 146 | 86.23 321 | 70.24 246 | 71.34 214 | 89.27 193 | 54.43 208 | 94.04 228 | 63.31 264 | 80.81 182 | 93.81 138 |
|
| miper_enhance_ethall | | | 78.86 183 | 77.97 179 | 81.54 222 | 88.00 202 | 65.17 161 | 91.41 186 | 89.15 262 | 75.19 137 | 68.79 245 | 83.98 261 | 67.17 59 | 92.82 262 | 72.73 175 | 65.30 293 | 86.62 272 |
|
| VPNet | | | 78.82 184 | 77.53 186 | 82.70 189 | 84.52 270 | 66.44 131 | 93.93 76 | 92.23 131 | 80.46 54 | 72.60 194 | 88.38 203 | 49.18 257 | 93.13 250 | 72.47 179 | 63.97 311 | 88.55 240 |
|
| EPNet_dtu | | | 78.80 185 | 79.26 163 | 77.43 297 | 88.06 199 | 49.71 357 | 91.96 166 | 91.95 144 | 77.67 103 | 76.56 155 | 91.28 160 | 58.51 158 | 90.20 319 | 56.37 299 | 80.95 179 | 92.39 175 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| tfpn200view9 | | | 78.79 186 | 77.43 187 | 82.88 185 | 92.21 95 | 64.49 173 | 92.05 159 | 96.28 4 | 73.48 166 | 71.75 208 | 88.26 206 | 60.07 143 | 95.32 174 | 45.16 344 | 77.58 208 | 88.83 233 |
|
| TR-MVS | | | 78.77 187 | 77.37 192 | 82.95 184 | 90.49 138 | 60.88 265 | 93.67 92 | 90.07 224 | 70.08 248 | 74.51 174 | 91.37 159 | 45.69 287 | 95.70 159 | 60.12 285 | 80.32 184 | 92.29 179 |
|
| thres400 | | | 78.68 188 | 77.43 187 | 82.43 195 | 92.21 95 | 64.49 173 | 92.05 159 | 96.28 4 | 73.48 166 | 71.75 208 | 88.26 206 | 60.07 143 | 95.32 174 | 45.16 344 | 77.58 208 | 87.48 252 |
|
| BH-untuned | | | 78.68 188 | 77.08 194 | 83.48 175 | 89.84 150 | 63.74 198 | 92.70 130 | 88.59 287 | 71.57 222 | 66.83 274 | 88.65 199 | 51.75 233 | 95.39 172 | 59.03 290 | 84.77 142 | 91.32 201 |
|
| OMC-MVS | | | 78.67 190 | 77.91 181 | 80.95 239 | 85.76 250 | 57.40 316 | 88.49 270 | 88.67 284 | 73.85 157 | 72.43 200 | 92.10 142 | 49.29 256 | 94.55 204 | 72.73 175 | 77.89 204 | 90.91 208 |
|
| tpm | | | 78.58 191 | 77.03 195 | 83.22 180 | 85.94 247 | 64.56 171 | 83.21 318 | 91.14 185 | 78.31 93 | 73.67 183 | 79.68 319 | 64.01 92 | 92.09 289 | 66.07 242 | 71.26 258 | 93.03 159 |
|
| OpenMVS |  | 70.45 11 | 78.54 192 | 75.92 211 | 86.41 77 | 85.93 248 | 71.68 19 | 92.74 127 | 92.51 125 | 66.49 283 | 64.56 288 | 91.96 144 | 43.88 297 | 98.10 37 | 54.61 305 | 90.65 91 | 89.44 230 |
|
| EPMVS | | | 78.49 193 | 75.98 210 | 86.02 85 | 91.21 126 | 69.68 52 | 80.23 342 | 91.20 180 | 75.25 136 | 72.48 198 | 78.11 329 | 54.65 203 | 93.69 241 | 57.66 296 | 83.04 157 | 94.69 97 |
|
| AUN-MVS | | | 78.37 194 | 77.43 187 | 81.17 229 | 86.60 232 | 57.45 315 | 89.46 253 | 91.16 182 | 74.11 150 | 74.40 175 | 90.49 171 | 55.52 194 | 94.57 201 | 74.73 164 | 60.43 340 | 91.48 195 |
|
| thres100view900 | | | 78.37 194 | 77.01 196 | 82.46 194 | 91.89 107 | 63.21 217 | 91.19 205 | 96.33 1 | 72.28 194 | 70.45 222 | 87.89 215 | 60.31 138 | 95.32 174 | 45.16 344 | 77.58 208 | 88.83 233 |
|
| GA-MVS | | | 78.33 196 | 76.23 206 | 84.65 137 | 83.65 284 | 66.30 135 | 91.44 184 | 90.14 222 | 76.01 126 | 70.32 224 | 84.02 260 | 42.50 302 | 94.72 194 | 70.98 191 | 77.00 217 | 92.94 162 |
|
| cascas | | | 78.18 197 | 75.77 213 | 85.41 106 | 87.14 222 | 69.11 61 | 92.96 120 | 91.15 184 | 66.71 281 | 70.47 220 | 86.07 240 | 37.49 329 | 96.48 127 | 70.15 199 | 79.80 188 | 90.65 210 |
|
| UniMVSNet_NR-MVSNet | | | 78.15 198 | 77.55 185 | 79.98 260 | 84.46 272 | 60.26 279 | 92.25 148 | 93.20 94 | 77.50 108 | 68.88 243 | 86.61 232 | 66.10 68 | 92.13 287 | 66.38 238 | 62.55 318 | 87.54 250 |
|
| thres600view7 | | | 78.00 199 | 76.66 201 | 82.03 214 | 91.93 104 | 63.69 203 | 91.30 198 | 96.33 1 | 72.43 189 | 70.46 221 | 87.89 215 | 60.31 138 | 94.92 189 | 42.64 356 | 76.64 219 | 87.48 252 |
|
| FC-MVSNet-test | | | 77.99 200 | 78.08 177 | 77.70 292 | 84.89 265 | 55.51 330 | 90.27 232 | 93.75 72 | 76.87 113 | 66.80 275 | 87.59 219 | 65.71 73 | 90.23 318 | 62.89 269 | 73.94 236 | 87.37 255 |
|
| Anonymous202405211 | | | 77.96 201 | 75.33 220 | 85.87 90 | 93.73 56 | 64.52 172 | 94.85 48 | 85.36 329 | 62.52 315 | 76.11 157 | 90.18 180 | 29.43 363 | 97.29 79 | 68.51 216 | 77.24 215 | 95.81 51 |
|
| cl22 | | | 77.94 202 | 76.78 199 | 81.42 224 | 87.57 211 | 64.93 169 | 90.67 220 | 88.86 277 | 72.45 188 | 67.63 263 | 82.68 274 | 64.07 91 | 92.91 260 | 71.79 184 | 65.30 293 | 86.44 273 |
|
| XXY-MVS | | | 77.94 202 | 76.44 203 | 82.43 195 | 82.60 295 | 64.44 177 | 92.01 161 | 91.83 153 | 73.59 165 | 70.00 229 | 85.82 243 | 54.43 208 | 94.76 191 | 69.63 202 | 68.02 278 | 88.10 247 |
|
| MS-PatchMatch | | | 77.90 204 | 76.50 202 | 82.12 209 | 85.99 244 | 69.95 43 | 91.75 178 | 92.70 114 | 73.97 154 | 62.58 309 | 84.44 257 | 41.11 307 | 95.78 150 | 63.76 261 | 92.17 68 | 80.62 352 |
|
| FMVSNet3 | | | 77.73 205 | 76.04 209 | 82.80 186 | 91.20 127 | 68.99 65 | 91.87 169 | 91.99 142 | 73.35 168 | 67.04 270 | 83.19 269 | 56.62 182 | 92.14 286 | 59.80 287 | 69.34 265 | 87.28 259 |
|
| miper_ehance_all_eth | | | 77.60 206 | 76.44 203 | 81.09 236 | 85.70 252 | 64.41 180 | 90.65 221 | 88.64 286 | 72.31 192 | 67.37 268 | 82.52 275 | 64.77 85 | 92.64 273 | 70.67 195 | 65.30 293 | 86.24 277 |
|
| UniMVSNet (Re) | | | 77.58 207 | 76.78 199 | 79.98 260 | 84.11 278 | 60.80 266 | 91.76 176 | 93.17 96 | 76.56 122 | 69.93 232 | 84.78 252 | 63.32 108 | 92.36 282 | 64.89 254 | 62.51 320 | 86.78 267 |
|
| PatchmatchNet |  | | 77.46 208 | 74.63 226 | 85.96 87 | 89.55 158 | 70.35 36 | 79.97 347 | 89.55 245 | 72.23 195 | 70.94 215 | 76.91 340 | 57.03 172 | 92.79 265 | 54.27 307 | 81.17 177 | 94.74 96 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| v2v482 | | | 77.42 209 | 75.65 216 | 82.73 188 | 80.38 315 | 67.13 114 | 91.85 171 | 90.23 219 | 75.09 138 | 69.37 234 | 83.39 267 | 53.79 215 | 94.44 208 | 71.77 185 | 65.00 299 | 86.63 271 |
|
| CHOSEN 280x420 | | | 77.35 210 | 76.95 198 | 78.55 284 | 87.07 224 | 62.68 232 | 69.71 375 | 82.95 350 | 68.80 264 | 71.48 212 | 87.27 226 | 66.03 69 | 84.00 362 | 76.47 148 | 82.81 160 | 88.95 232 |
|
| PS-MVSNAJss | | | 77.26 211 | 76.31 205 | 80.13 255 | 80.64 313 | 59.16 296 | 90.63 224 | 91.06 191 | 72.80 180 | 68.58 249 | 84.57 255 | 53.55 217 | 93.96 233 | 72.97 170 | 71.96 252 | 87.27 260 |
|
| gg-mvs-nofinetune | | | 77.18 212 | 74.31 233 | 85.80 94 | 91.42 120 | 68.36 79 | 71.78 369 | 94.72 34 | 49.61 370 | 77.12 149 | 45.92 393 | 77.41 8 | 93.98 232 | 67.62 224 | 93.16 57 | 95.05 82 |
|
| WB-MVSnew | | | 77.14 213 | 76.18 208 | 80.01 259 | 86.18 240 | 63.24 216 | 91.26 199 | 94.11 60 | 71.72 214 | 73.52 184 | 87.29 225 | 45.14 292 | 93.00 253 | 56.98 297 | 79.42 190 | 83.80 313 |
|
| MVP-Stereo | | | 77.12 214 | 76.23 206 | 79.79 267 | 81.72 303 | 66.34 134 | 89.29 255 | 90.88 195 | 70.56 243 | 62.01 312 | 82.88 271 | 49.34 254 | 94.13 220 | 65.55 249 | 93.80 45 | 78.88 366 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| sd_testset | | | 77.08 215 | 75.37 218 | 82.20 205 | 89.25 166 | 62.11 243 | 82.06 325 | 89.09 266 | 76.77 118 | 70.84 217 | 87.12 227 | 41.43 306 | 95.01 184 | 67.23 228 | 74.55 228 | 89.48 228 |
|
| dmvs_re | | | 76.93 216 | 75.36 219 | 81.61 220 | 87.78 209 | 60.71 272 | 80.00 346 | 87.99 303 | 79.42 73 | 69.02 240 | 89.47 191 | 46.77 275 | 94.32 210 | 63.38 263 | 74.45 231 | 89.81 221 |
|
| X-MVStestdata | | | 76.86 217 | 74.13 237 | 85.05 119 | 93.22 67 | 63.78 196 | 92.92 121 | 92.66 118 | 73.99 152 | 78.18 135 | 10.19 408 | 55.25 195 | 97.41 68 | 79.16 129 | 91.58 78 | 93.95 131 |
|
| DU-MVS | | | 76.86 217 | 75.84 212 | 79.91 263 | 82.96 292 | 60.26 279 | 91.26 199 | 91.54 166 | 76.46 123 | 68.88 243 | 86.35 235 | 56.16 186 | 92.13 287 | 66.38 238 | 62.55 318 | 87.35 257 |
|
| mvsmamba | | | 76.85 219 | 75.71 215 | 80.25 251 | 83.07 291 | 59.16 296 | 91.44 184 | 80.64 357 | 76.84 115 | 67.95 255 | 86.33 237 | 46.17 285 | 94.24 217 | 76.06 150 | 72.92 244 | 87.36 256 |
|
| Anonymous20240529 | | | 76.84 220 | 74.15 236 | 84.88 124 | 91.02 128 | 64.95 168 | 93.84 84 | 91.09 187 | 53.57 359 | 73.00 187 | 87.42 222 | 35.91 339 | 97.32 77 | 69.14 210 | 72.41 250 | 92.36 176 |
|
| c3_l | | | 76.83 221 | 75.47 217 | 80.93 240 | 85.02 263 | 64.18 190 | 90.39 228 | 88.11 300 | 71.66 215 | 66.65 276 | 81.64 287 | 63.58 104 | 92.56 274 | 69.31 207 | 62.86 315 | 86.04 283 |
|
| WR-MVS | | | 76.76 222 | 75.74 214 | 79.82 266 | 84.60 268 | 62.27 241 | 92.60 137 | 92.51 125 | 76.06 125 | 67.87 260 | 85.34 246 | 56.76 178 | 90.24 317 | 62.20 273 | 63.69 313 | 86.94 265 |
|
| v1144 | | | 76.73 223 | 74.88 223 | 82.27 201 | 80.23 319 | 66.60 128 | 91.68 180 | 90.21 221 | 73.69 162 | 69.06 239 | 81.89 282 | 52.73 226 | 94.40 209 | 69.21 208 | 65.23 296 | 85.80 289 |
|
| IterMVS-LS | | | 76.49 224 | 75.18 222 | 80.43 246 | 84.49 271 | 62.74 230 | 90.64 222 | 88.80 279 | 72.40 190 | 65.16 283 | 81.72 285 | 60.98 132 | 92.27 285 | 67.74 222 | 64.65 304 | 86.29 275 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| V42 | | | 76.46 225 | 74.55 229 | 82.19 206 | 79.14 333 | 67.82 95 | 90.26 233 | 89.42 250 | 73.75 160 | 68.63 248 | 81.89 282 | 51.31 238 | 94.09 222 | 71.69 187 | 64.84 300 | 84.66 306 |
|
| v148 | | | 76.19 226 | 74.47 231 | 81.36 225 | 80.05 321 | 64.44 177 | 91.75 178 | 90.23 219 | 73.68 163 | 67.13 269 | 80.84 302 | 55.92 191 | 93.86 239 | 68.95 212 | 61.73 329 | 85.76 292 |
|
| Effi-MVS+-dtu | | | 76.14 227 | 75.28 221 | 78.72 283 | 83.22 288 | 55.17 332 | 89.87 244 | 87.78 306 | 75.42 133 | 67.98 254 | 81.43 291 | 45.08 293 | 92.52 276 | 75.08 158 | 71.63 253 | 88.48 241 |
|
| cl____ | | | 76.07 228 | 74.67 224 | 80.28 249 | 85.15 259 | 61.76 250 | 90.12 236 | 88.73 281 | 71.16 230 | 65.43 280 | 81.57 289 | 61.15 129 | 92.95 255 | 66.54 235 | 62.17 322 | 86.13 281 |
|
| DIV-MVS_self_test | | | 76.07 228 | 74.67 224 | 80.28 249 | 85.14 260 | 61.75 251 | 90.12 236 | 88.73 281 | 71.16 230 | 65.42 281 | 81.60 288 | 61.15 129 | 92.94 259 | 66.54 235 | 62.16 324 | 86.14 279 |
|
| FMVSNet2 | | | 76.07 228 | 74.01 239 | 82.26 203 | 88.85 176 | 67.66 99 | 91.33 196 | 91.61 164 | 70.84 237 | 65.98 277 | 82.25 278 | 48.03 265 | 92.00 291 | 58.46 292 | 68.73 273 | 87.10 262 |
|
| v144192 | | | 76.05 231 | 74.03 238 | 82.12 209 | 79.50 327 | 66.55 130 | 91.39 190 | 89.71 243 | 72.30 193 | 68.17 252 | 81.33 294 | 51.75 233 | 94.03 230 | 67.94 220 | 64.19 306 | 85.77 290 |
|
| NR-MVSNet | | | 76.05 231 | 74.59 227 | 80.44 245 | 82.96 292 | 62.18 242 | 90.83 215 | 91.73 156 | 77.12 112 | 60.96 315 | 86.35 235 | 59.28 153 | 91.80 294 | 60.74 280 | 61.34 333 | 87.35 257 |
|
| v1192 | | | 75.98 233 | 73.92 240 | 82.15 207 | 79.73 323 | 66.24 137 | 91.22 202 | 89.75 237 | 72.67 182 | 68.49 250 | 81.42 292 | 49.86 250 | 94.27 214 | 67.08 230 | 65.02 298 | 85.95 286 |
|
| FE-MVS | | | 75.97 234 | 73.02 250 | 84.82 126 | 89.78 151 | 65.56 152 | 77.44 358 | 91.07 190 | 64.55 295 | 72.66 192 | 79.85 317 | 46.05 286 | 96.69 117 | 54.97 304 | 80.82 181 | 92.21 185 |
|
| eth_miper_zixun_eth | | | 75.96 235 | 74.40 232 | 80.66 242 | 84.66 267 | 63.02 221 | 89.28 256 | 88.27 296 | 71.88 206 | 65.73 278 | 81.65 286 | 59.45 149 | 92.81 263 | 68.13 217 | 60.53 338 | 86.14 279 |
|
| TranMVSNet+NR-MVSNet | | | 75.86 236 | 74.52 230 | 79.89 264 | 82.44 297 | 60.64 275 | 91.37 193 | 91.37 173 | 76.63 120 | 67.65 262 | 86.21 239 | 52.37 229 | 91.55 300 | 61.84 275 | 60.81 336 | 87.48 252 |
|
| SCA | | | 75.82 237 | 72.76 253 | 85.01 121 | 86.63 231 | 70.08 39 | 81.06 335 | 89.19 259 | 71.60 221 | 70.01 228 | 77.09 338 | 45.53 288 | 90.25 314 | 60.43 282 | 73.27 240 | 94.68 98 |
|
| LPG-MVS_test | | | 75.82 237 | 74.58 228 | 79.56 273 | 84.31 275 | 59.37 292 | 90.44 225 | 89.73 240 | 69.49 254 | 64.86 284 | 88.42 201 | 38.65 315 | 94.30 212 | 72.56 177 | 72.76 245 | 85.01 303 |
|
| GBi-Net | | | 75.65 239 | 73.83 241 | 81.10 233 | 88.85 176 | 65.11 163 | 90.01 240 | 90.32 211 | 70.84 237 | 67.04 270 | 80.25 312 | 48.03 265 | 91.54 301 | 59.80 287 | 69.34 265 | 86.64 268 |
|
| test1 | | | 75.65 239 | 73.83 241 | 81.10 233 | 88.85 176 | 65.11 163 | 90.01 240 | 90.32 211 | 70.84 237 | 67.04 270 | 80.25 312 | 48.03 265 | 91.54 301 | 59.80 287 | 69.34 265 | 86.64 268 |
|
| v1921920 | | | 75.63 241 | 73.49 246 | 82.06 213 | 79.38 328 | 66.35 133 | 91.07 209 | 89.48 246 | 71.98 201 | 67.99 253 | 81.22 297 | 49.16 259 | 93.90 236 | 66.56 234 | 64.56 305 | 85.92 288 |
|
| ACMP | | 71.68 10 | 75.58 242 | 74.23 235 | 79.62 271 | 84.97 264 | 59.64 287 | 90.80 216 | 89.07 268 | 70.39 244 | 62.95 305 | 87.30 224 | 38.28 319 | 93.87 237 | 72.89 171 | 71.45 256 | 85.36 299 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| v8 | | | 75.35 243 | 73.26 248 | 81.61 220 | 80.67 312 | 66.82 121 | 89.54 250 | 89.27 255 | 71.65 216 | 63.30 301 | 80.30 311 | 54.99 201 | 94.06 225 | 67.33 227 | 62.33 321 | 83.94 311 |
|
| tpm cat1 | | | 75.30 244 | 72.21 262 | 84.58 141 | 88.52 182 | 67.77 96 | 78.16 356 | 88.02 302 | 61.88 322 | 68.45 251 | 76.37 344 | 60.65 135 | 94.03 230 | 53.77 310 | 74.11 234 | 91.93 190 |
|
| PLC |  | 68.80 14 | 75.23 245 | 73.68 244 | 79.86 265 | 92.93 76 | 58.68 302 | 90.64 222 | 88.30 294 | 60.90 327 | 64.43 292 | 90.53 169 | 42.38 303 | 94.57 201 | 56.52 298 | 76.54 220 | 86.33 274 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| v1240 | | | 75.21 246 | 72.98 251 | 81.88 215 | 79.20 330 | 66.00 141 | 90.75 218 | 89.11 265 | 71.63 220 | 67.41 266 | 81.22 297 | 47.36 273 | 93.87 237 | 65.46 250 | 64.72 303 | 85.77 290 |
|
| Fast-Effi-MVS+-dtu | | | 75.04 247 | 73.37 247 | 80.07 256 | 80.86 308 | 59.52 290 | 91.20 204 | 85.38 328 | 71.90 204 | 65.20 282 | 84.84 251 | 41.46 305 | 92.97 254 | 66.50 237 | 72.96 243 | 87.73 249 |
|
| dp | | | 75.01 248 | 72.09 263 | 83.76 163 | 89.28 165 | 66.22 138 | 79.96 348 | 89.75 237 | 71.16 230 | 67.80 261 | 77.19 337 | 51.81 232 | 92.54 275 | 50.39 318 | 71.44 257 | 92.51 174 |
|
| TAPA-MVS | | 70.22 12 | 74.94 249 | 73.53 245 | 79.17 278 | 90.40 140 | 52.07 345 | 89.19 259 | 89.61 244 | 62.69 314 | 70.07 227 | 92.67 128 | 48.89 262 | 94.32 210 | 38.26 370 | 79.97 186 | 91.12 206 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| v10 | | | 74.77 250 | 72.54 259 | 81.46 223 | 80.33 317 | 66.71 125 | 89.15 260 | 89.08 267 | 70.94 235 | 63.08 304 | 79.86 316 | 52.52 227 | 94.04 228 | 65.70 246 | 62.17 322 | 83.64 314 |
|
| XVG-OURS-SEG-HR | | | 74.70 251 | 73.08 249 | 79.57 272 | 78.25 345 | 57.33 317 | 80.49 338 | 87.32 309 | 63.22 307 | 68.76 246 | 90.12 186 | 44.89 294 | 91.59 299 | 70.55 197 | 74.09 235 | 89.79 222 |
|
| ACMM | | 69.62 13 | 74.34 252 | 72.73 255 | 79.17 278 | 84.25 277 | 57.87 308 | 90.36 229 | 89.93 230 | 63.17 309 | 65.64 279 | 86.04 242 | 37.79 327 | 94.10 221 | 65.89 243 | 71.52 255 | 85.55 295 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| CNLPA | | | 74.31 253 | 72.30 261 | 80.32 247 | 91.49 119 | 61.66 253 | 90.85 214 | 80.72 356 | 56.67 351 | 63.85 296 | 90.64 166 | 46.75 276 | 90.84 309 | 53.79 309 | 75.99 224 | 88.47 242 |
|
| XVG-OURS | | | 74.25 254 | 72.46 260 | 79.63 270 | 78.45 343 | 57.59 313 | 80.33 340 | 87.39 308 | 63.86 300 | 68.76 246 | 89.62 190 | 40.50 309 | 91.72 296 | 69.00 211 | 74.25 233 | 89.58 225 |
|
| test_fmvs1 | | | 74.07 255 | 73.69 243 | 75.22 315 | 78.91 337 | 47.34 369 | 89.06 263 | 74.69 371 | 63.68 302 | 79.41 120 | 91.59 154 | 24.36 372 | 87.77 339 | 85.22 80 | 76.26 222 | 90.55 213 |
|
| CVMVSNet | | | 74.04 256 | 74.27 234 | 73.33 330 | 85.33 255 | 43.94 380 | 89.53 251 | 88.39 291 | 54.33 358 | 70.37 223 | 90.13 183 | 49.17 258 | 84.05 360 | 61.83 276 | 79.36 192 | 91.99 189 |
|
| Baseline_NR-MVSNet | | | 73.99 257 | 72.83 252 | 77.48 296 | 80.78 310 | 59.29 295 | 91.79 173 | 84.55 336 | 68.85 263 | 68.99 241 | 80.70 303 | 56.16 186 | 92.04 290 | 62.67 270 | 60.98 335 | 81.11 346 |
|
| pmmvs4 | | | 73.92 258 | 71.81 267 | 80.25 251 | 79.17 331 | 65.24 159 | 87.43 286 | 87.26 311 | 67.64 275 | 63.46 299 | 83.91 262 | 48.96 261 | 91.53 304 | 62.94 267 | 65.49 292 | 83.96 310 |
|
| D2MVS | | | 73.80 259 | 72.02 264 | 79.15 280 | 79.15 332 | 62.97 222 | 88.58 269 | 90.07 224 | 72.94 175 | 59.22 324 | 78.30 326 | 42.31 304 | 92.70 269 | 65.59 248 | 72.00 251 | 81.79 341 |
|
| CR-MVSNet | | | 73.79 260 | 70.82 275 | 82.70 189 | 83.15 289 | 67.96 92 | 70.25 372 | 84.00 341 | 73.67 164 | 69.97 230 | 72.41 358 | 57.82 165 | 89.48 325 | 52.99 313 | 73.13 241 | 90.64 211 |
|
| test_djsdf | | | 73.76 261 | 72.56 258 | 77.39 298 | 77.00 354 | 53.93 338 | 89.07 261 | 90.69 198 | 65.80 287 | 63.92 294 | 82.03 281 | 43.14 301 | 92.67 270 | 72.83 172 | 68.53 274 | 85.57 294 |
|
| pmmvs5 | | | 73.35 262 | 71.52 269 | 78.86 282 | 78.64 341 | 60.61 276 | 91.08 207 | 86.90 313 | 67.69 272 | 63.32 300 | 83.64 263 | 44.33 296 | 90.53 311 | 62.04 274 | 66.02 290 | 85.46 297 |
|
| Anonymous20231211 | | | 73.08 263 | 70.39 279 | 81.13 231 | 90.62 136 | 63.33 214 | 91.40 188 | 90.06 226 | 51.84 364 | 64.46 291 | 80.67 305 | 36.49 337 | 94.07 224 | 63.83 260 | 64.17 307 | 85.98 285 |
|
| tt0805 | | | 73.07 264 | 70.73 276 | 80.07 256 | 78.37 344 | 57.05 319 | 87.78 281 | 92.18 137 | 61.23 326 | 67.04 270 | 86.49 234 | 31.35 357 | 94.58 199 | 65.06 253 | 67.12 283 | 88.57 239 |
|
| miper_lstm_enhance | | | 73.05 265 | 71.73 268 | 77.03 302 | 83.80 281 | 58.32 305 | 81.76 326 | 88.88 275 | 69.80 252 | 61.01 314 | 78.23 328 | 57.19 170 | 87.51 343 | 65.34 251 | 59.53 343 | 85.27 302 |
|
| jajsoiax | | | 73.05 265 | 71.51 270 | 77.67 293 | 77.46 351 | 54.83 334 | 88.81 265 | 90.04 227 | 69.13 261 | 62.85 307 | 83.51 265 | 31.16 358 | 92.75 266 | 70.83 192 | 69.80 261 | 85.43 298 |
|
| LCM-MVSNet-Re | | | 72.93 267 | 71.84 266 | 76.18 311 | 88.49 183 | 48.02 364 | 80.07 345 | 70.17 381 | 73.96 155 | 52.25 354 | 80.09 315 | 49.98 248 | 88.24 333 | 67.35 225 | 84.23 150 | 92.28 180 |
|
| pm-mvs1 | | | 72.89 268 | 71.09 272 | 78.26 288 | 79.10 334 | 57.62 312 | 90.80 216 | 89.30 254 | 67.66 273 | 62.91 306 | 81.78 284 | 49.11 260 | 92.95 255 | 60.29 284 | 58.89 346 | 84.22 309 |
|
| tpmvs | | | 72.88 269 | 69.76 285 | 82.22 204 | 90.98 129 | 67.05 116 | 78.22 355 | 88.30 294 | 63.10 310 | 64.35 293 | 74.98 351 | 55.09 200 | 94.27 214 | 43.25 350 | 69.57 264 | 85.34 300 |
|
| test0.0.03 1 | | | 72.76 270 | 72.71 256 | 72.88 334 | 80.25 318 | 47.99 365 | 91.22 202 | 89.45 248 | 71.51 225 | 62.51 310 | 87.66 218 | 53.83 213 | 85.06 356 | 50.16 320 | 67.84 281 | 85.58 293 |
|
| UniMVSNet_ETH3D | | | 72.74 271 | 70.53 278 | 79.36 275 | 78.62 342 | 56.64 323 | 85.01 302 | 89.20 258 | 63.77 301 | 64.84 286 | 84.44 257 | 34.05 346 | 91.86 293 | 63.94 259 | 70.89 260 | 89.57 226 |
|
| mvs_tets | | | 72.71 272 | 71.11 271 | 77.52 294 | 77.41 352 | 54.52 336 | 88.45 271 | 89.76 236 | 68.76 266 | 62.70 308 | 83.26 268 | 29.49 362 | 92.71 267 | 70.51 198 | 69.62 263 | 85.34 300 |
|
| FMVSNet1 | | | 72.71 272 | 69.91 283 | 81.10 233 | 83.60 285 | 65.11 163 | 90.01 240 | 90.32 211 | 63.92 299 | 63.56 298 | 80.25 312 | 36.35 338 | 91.54 301 | 54.46 306 | 66.75 286 | 86.64 268 |
|
| test_fmvs1_n | | | 72.69 274 | 71.92 265 | 74.99 318 | 71.15 373 | 47.08 371 | 87.34 288 | 75.67 366 | 63.48 304 | 78.08 137 | 91.17 161 | 20.16 383 | 87.87 336 | 84.65 88 | 75.57 226 | 90.01 219 |
|
| IterMVS | | | 72.65 275 | 70.83 273 | 78.09 290 | 82.17 299 | 62.96 223 | 87.64 284 | 86.28 319 | 71.56 223 | 60.44 317 | 78.85 324 | 45.42 290 | 86.66 347 | 63.30 265 | 61.83 326 | 84.65 307 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| myMVS_eth3d | | | 72.58 276 | 72.74 254 | 72.10 342 | 87.87 205 | 49.45 359 | 88.07 275 | 89.01 270 | 72.91 177 | 63.11 302 | 88.10 210 | 63.63 99 | 85.54 352 | 32.73 384 | 69.23 268 | 81.32 344 |
|
| PatchMatch-RL | | | 72.06 277 | 69.98 280 | 78.28 287 | 89.51 159 | 55.70 329 | 83.49 311 | 83.39 348 | 61.24 325 | 63.72 297 | 82.76 272 | 34.77 343 | 93.03 252 | 53.37 312 | 77.59 207 | 86.12 282 |
|
| PVSNet_0 | | 68.08 15 | 71.81 278 | 68.32 294 | 82.27 201 | 84.68 266 | 62.31 240 | 88.68 267 | 90.31 214 | 75.84 127 | 57.93 335 | 80.65 306 | 37.85 326 | 94.19 218 | 69.94 200 | 29.05 398 | 90.31 215 |
|
| MIMVSNet | | | 71.64 279 | 68.44 292 | 81.23 228 | 81.97 302 | 64.44 177 | 73.05 368 | 88.80 279 | 69.67 253 | 64.59 287 | 74.79 352 | 32.79 349 | 87.82 337 | 53.99 308 | 76.35 221 | 91.42 196 |
|
| test_vis1_n | | | 71.63 280 | 70.73 276 | 74.31 325 | 69.63 379 | 47.29 370 | 86.91 292 | 72.11 376 | 63.21 308 | 75.18 168 | 90.17 181 | 20.40 381 | 85.76 351 | 84.59 89 | 74.42 232 | 89.87 220 |
|
| IterMVS-SCA-FT | | | 71.55 281 | 69.97 281 | 76.32 309 | 81.48 304 | 60.67 274 | 87.64 284 | 85.99 324 | 66.17 285 | 59.50 322 | 78.88 323 | 45.53 288 | 83.65 364 | 62.58 271 | 61.93 325 | 84.63 308 |
|
| v7n | | | 71.31 282 | 68.65 289 | 79.28 276 | 76.40 356 | 60.77 268 | 86.71 295 | 89.45 248 | 64.17 298 | 58.77 329 | 78.24 327 | 44.59 295 | 93.54 243 | 57.76 294 | 61.75 328 | 83.52 317 |
|
| anonymousdsp | | | 71.14 283 | 69.37 287 | 76.45 308 | 72.95 368 | 54.71 335 | 84.19 306 | 88.88 275 | 61.92 321 | 62.15 311 | 79.77 318 | 38.14 322 | 91.44 306 | 68.90 213 | 67.45 282 | 83.21 323 |
|
| F-COLMAP | | | 70.66 284 | 68.44 292 | 77.32 299 | 86.37 237 | 55.91 327 | 88.00 277 | 86.32 318 | 56.94 349 | 57.28 338 | 88.07 212 | 33.58 347 | 92.49 277 | 51.02 316 | 68.37 275 | 83.55 315 |
|
| WR-MVS_H | | | 70.59 285 | 69.94 282 | 72.53 336 | 81.03 307 | 51.43 348 | 87.35 287 | 92.03 141 | 67.38 276 | 60.23 319 | 80.70 303 | 55.84 192 | 83.45 366 | 46.33 340 | 58.58 348 | 82.72 330 |
|
| CP-MVSNet | | | 70.50 286 | 69.91 283 | 72.26 339 | 80.71 311 | 51.00 351 | 87.23 289 | 90.30 215 | 67.84 271 | 59.64 321 | 82.69 273 | 50.23 247 | 82.30 374 | 51.28 315 | 59.28 344 | 83.46 319 |
|
| RPMNet | | | 70.42 287 | 65.68 306 | 84.63 139 | 83.15 289 | 67.96 92 | 70.25 372 | 90.45 205 | 46.83 378 | 69.97 230 | 65.10 377 | 56.48 185 | 95.30 177 | 35.79 375 | 73.13 241 | 90.64 211 |
|
| testing3 | | | 70.38 288 | 70.83 273 | 69.03 353 | 85.82 249 | 43.93 381 | 90.72 219 | 90.56 204 | 68.06 270 | 60.24 318 | 86.82 231 | 64.83 83 | 84.12 358 | 26.33 391 | 64.10 308 | 79.04 365 |
|
| tfpnnormal | | | 70.10 289 | 67.36 297 | 78.32 286 | 83.45 287 | 60.97 264 | 88.85 264 | 92.77 111 | 64.85 294 | 60.83 316 | 78.53 325 | 43.52 299 | 93.48 245 | 31.73 387 | 61.70 330 | 80.52 353 |
|
| TransMVSNet (Re) | | | 70.07 290 | 67.66 296 | 77.31 300 | 80.62 314 | 59.13 298 | 91.78 175 | 84.94 333 | 65.97 286 | 60.08 320 | 80.44 308 | 50.78 241 | 91.87 292 | 48.84 326 | 45.46 376 | 80.94 348 |
|
| CL-MVSNet_self_test | | | 69.92 291 | 68.09 295 | 75.41 314 | 73.25 367 | 55.90 328 | 90.05 239 | 89.90 231 | 69.96 249 | 61.96 313 | 76.54 341 | 51.05 240 | 87.64 340 | 49.51 324 | 50.59 368 | 82.70 332 |
|
| DP-MVS | | | 69.90 292 | 66.48 299 | 80.14 254 | 95.36 28 | 62.93 224 | 89.56 248 | 76.11 364 | 50.27 369 | 57.69 336 | 85.23 247 | 39.68 311 | 95.73 154 | 33.35 380 | 71.05 259 | 81.78 342 |
|
| PS-CasMVS | | | 69.86 293 | 69.13 288 | 72.07 343 | 80.35 316 | 50.57 353 | 87.02 291 | 89.75 237 | 67.27 277 | 59.19 325 | 82.28 277 | 46.58 278 | 82.24 375 | 50.69 317 | 59.02 345 | 83.39 321 |
|
| Syy-MVS | | | 69.65 294 | 69.52 286 | 70.03 349 | 87.87 205 | 43.21 382 | 88.07 275 | 89.01 270 | 72.91 177 | 63.11 302 | 88.10 210 | 45.28 291 | 85.54 352 | 22.07 395 | 69.23 268 | 81.32 344 |
|
| MSDG | | | 69.54 295 | 65.73 305 | 80.96 238 | 85.11 262 | 63.71 201 | 84.19 306 | 83.28 349 | 56.95 348 | 54.50 345 | 84.03 259 | 31.50 355 | 96.03 144 | 42.87 354 | 69.13 270 | 83.14 325 |
|
| PEN-MVS | | | 69.46 296 | 68.56 290 | 72.17 341 | 79.27 329 | 49.71 357 | 86.90 293 | 89.24 256 | 67.24 280 | 59.08 326 | 82.51 276 | 47.23 274 | 83.54 365 | 48.42 328 | 57.12 349 | 83.25 322 |
|
| LS3D | | | 69.17 297 | 66.40 301 | 77.50 295 | 91.92 105 | 56.12 326 | 85.12 301 | 80.37 358 | 46.96 376 | 56.50 340 | 87.51 221 | 37.25 330 | 93.71 240 | 32.52 386 | 79.40 191 | 82.68 333 |
|
| PatchT | | | 69.11 298 | 65.37 310 | 80.32 247 | 82.07 301 | 63.68 204 | 67.96 381 | 87.62 307 | 50.86 367 | 69.37 234 | 65.18 376 | 57.09 171 | 88.53 331 | 41.59 359 | 66.60 287 | 88.74 236 |
|
| KD-MVS_2432*1600 | | | 69.03 299 | 66.37 302 | 77.01 303 | 85.56 253 | 61.06 262 | 81.44 331 | 90.25 217 | 67.27 277 | 58.00 333 | 76.53 342 | 54.49 205 | 87.63 341 | 48.04 330 | 35.77 390 | 82.34 336 |
|
| miper_refine_blended | | | 69.03 299 | 66.37 302 | 77.01 303 | 85.56 253 | 61.06 262 | 81.44 331 | 90.25 217 | 67.27 277 | 58.00 333 | 76.53 342 | 54.49 205 | 87.63 341 | 48.04 330 | 35.77 390 | 82.34 336 |
|
| mvsany_test1 | | | 68.77 301 | 68.56 290 | 69.39 351 | 73.57 366 | 45.88 376 | 80.93 336 | 60.88 394 | 59.65 336 | 71.56 211 | 90.26 179 | 43.22 300 | 75.05 384 | 74.26 166 | 62.70 317 | 87.25 261 |
|
| ACMH | | 63.93 17 | 68.62 302 | 64.81 312 | 80.03 258 | 85.22 258 | 63.25 215 | 87.72 282 | 84.66 335 | 60.83 328 | 51.57 357 | 79.43 322 | 27.29 368 | 94.96 186 | 41.76 357 | 64.84 300 | 81.88 340 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| EG-PatchMatch MVS | | | 68.55 303 | 65.41 309 | 77.96 291 | 78.69 340 | 62.93 224 | 89.86 245 | 89.17 260 | 60.55 329 | 50.27 362 | 77.73 332 | 22.60 377 | 94.06 225 | 47.18 336 | 72.65 247 | 76.88 374 |
|
| ADS-MVSNet | | | 68.54 304 | 64.38 319 | 81.03 237 | 88.06 199 | 66.90 120 | 68.01 379 | 84.02 340 | 57.57 343 | 64.48 289 | 69.87 368 | 38.68 313 | 89.21 327 | 40.87 361 | 67.89 279 | 86.97 263 |
|
| DTE-MVSNet | | | 68.46 305 | 67.33 298 | 71.87 345 | 77.94 349 | 49.00 362 | 86.16 298 | 88.58 288 | 66.36 284 | 58.19 330 | 82.21 279 | 46.36 279 | 83.87 363 | 44.97 347 | 55.17 356 | 82.73 329 |
|
| our_test_3 | | | 68.29 306 | 64.69 314 | 79.11 281 | 78.92 335 | 64.85 170 | 88.40 272 | 85.06 331 | 60.32 332 | 52.68 352 | 76.12 346 | 40.81 308 | 89.80 324 | 44.25 349 | 55.65 354 | 82.67 334 |
|
| Patchmatch-RL test | | | 68.17 307 | 64.49 317 | 79.19 277 | 71.22 372 | 53.93 338 | 70.07 374 | 71.54 380 | 69.22 258 | 56.79 339 | 62.89 380 | 56.58 183 | 88.61 328 | 69.53 204 | 52.61 363 | 95.03 84 |
|
| XVG-ACMP-BASELINE | | | 68.04 308 | 65.53 308 | 75.56 313 | 74.06 365 | 52.37 343 | 78.43 352 | 85.88 325 | 62.03 319 | 58.91 328 | 81.21 299 | 20.38 382 | 91.15 308 | 60.69 281 | 68.18 276 | 83.16 324 |
|
| FMVSNet5 | | | 68.04 308 | 65.66 307 | 75.18 317 | 84.43 273 | 57.89 307 | 83.54 310 | 86.26 320 | 61.83 323 | 53.64 350 | 73.30 355 | 37.15 333 | 85.08 355 | 48.99 325 | 61.77 327 | 82.56 335 |
|
| ppachtmachnet_test | | | 67.72 310 | 63.70 321 | 79.77 268 | 78.92 335 | 66.04 140 | 88.68 267 | 82.90 351 | 60.11 334 | 55.45 342 | 75.96 347 | 39.19 312 | 90.55 310 | 39.53 365 | 52.55 364 | 82.71 331 |
|
| ACMH+ | | 65.35 16 | 67.65 311 | 64.55 315 | 76.96 305 | 84.59 269 | 57.10 318 | 88.08 274 | 80.79 355 | 58.59 342 | 53.00 351 | 81.09 301 | 26.63 370 | 92.95 255 | 46.51 338 | 61.69 331 | 80.82 349 |
|
| pmmvs6 | | | 67.57 312 | 64.76 313 | 76.00 312 | 72.82 370 | 53.37 340 | 88.71 266 | 86.78 317 | 53.19 360 | 57.58 337 | 78.03 330 | 35.33 342 | 92.41 279 | 55.56 302 | 54.88 358 | 82.21 338 |
|
| Anonymous20231206 | | | 67.53 313 | 65.78 304 | 72.79 335 | 74.95 361 | 47.59 367 | 88.23 273 | 87.32 309 | 61.75 324 | 58.07 332 | 77.29 335 | 37.79 327 | 87.29 345 | 42.91 352 | 63.71 312 | 83.48 318 |
|
| Patchmtry | | | 67.53 313 | 63.93 320 | 78.34 285 | 82.12 300 | 64.38 181 | 68.72 376 | 84.00 341 | 48.23 375 | 59.24 323 | 72.41 358 | 57.82 165 | 89.27 326 | 46.10 341 | 56.68 353 | 81.36 343 |
|
| USDC | | | 67.43 315 | 64.51 316 | 76.19 310 | 77.94 349 | 55.29 331 | 78.38 353 | 85.00 332 | 73.17 170 | 48.36 369 | 80.37 309 | 21.23 379 | 92.48 278 | 52.15 314 | 64.02 310 | 80.81 350 |
|
| ADS-MVSNet2 | | | 66.90 316 | 63.44 323 | 77.26 301 | 88.06 199 | 60.70 273 | 68.01 379 | 75.56 368 | 57.57 343 | 64.48 289 | 69.87 368 | 38.68 313 | 84.10 359 | 40.87 361 | 67.89 279 | 86.97 263 |
|
| CMPMVS |  | 48.56 21 | 66.77 317 | 64.41 318 | 73.84 327 | 70.65 376 | 50.31 354 | 77.79 357 | 85.73 327 | 45.54 380 | 44.76 379 | 82.14 280 | 35.40 341 | 90.14 320 | 63.18 266 | 74.54 230 | 81.07 347 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| OpenMVS_ROB |  | 61.12 18 | 66.39 318 | 62.92 326 | 76.80 307 | 76.51 355 | 57.77 309 | 89.22 257 | 83.41 347 | 55.48 355 | 53.86 349 | 77.84 331 | 26.28 371 | 93.95 234 | 34.90 377 | 68.76 272 | 78.68 368 |
|
| LTVRE_ROB | | 59.60 19 | 66.27 319 | 63.54 322 | 74.45 322 | 84.00 280 | 51.55 347 | 67.08 382 | 83.53 345 | 58.78 340 | 54.94 344 | 80.31 310 | 34.54 344 | 93.23 249 | 40.64 363 | 68.03 277 | 78.58 369 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| JIA-IIPM | | | 66.06 320 | 62.45 329 | 76.88 306 | 81.42 306 | 54.45 337 | 57.49 394 | 88.67 284 | 49.36 371 | 63.86 295 | 46.86 392 | 56.06 189 | 90.25 314 | 49.53 323 | 68.83 271 | 85.95 286 |
|
| Patchmatch-test | | | 65.86 321 | 60.94 335 | 80.62 244 | 83.75 282 | 58.83 300 | 58.91 393 | 75.26 370 | 44.50 383 | 50.95 361 | 77.09 338 | 58.81 157 | 87.90 335 | 35.13 376 | 64.03 309 | 95.12 80 |
|
| UnsupCasMVSNet_eth | | | 65.79 322 | 63.10 324 | 73.88 326 | 70.71 375 | 50.29 355 | 81.09 334 | 89.88 232 | 72.58 184 | 49.25 367 | 74.77 353 | 32.57 351 | 87.43 344 | 55.96 301 | 41.04 383 | 83.90 312 |
|
| test_fmvs2 | | | 65.78 323 | 64.84 311 | 68.60 355 | 66.54 384 | 41.71 384 | 83.27 315 | 69.81 382 | 54.38 357 | 67.91 257 | 84.54 256 | 15.35 388 | 81.22 379 | 75.65 153 | 66.16 289 | 82.88 326 |
|
| dmvs_testset | | | 65.55 324 | 66.45 300 | 62.86 365 | 79.87 322 | 22.35 408 | 76.55 360 | 71.74 378 | 77.42 111 | 55.85 341 | 87.77 217 | 51.39 237 | 80.69 380 | 31.51 390 | 65.92 291 | 85.55 295 |
|
| pmmvs-eth3d | | | 65.53 325 | 62.32 330 | 75.19 316 | 69.39 380 | 59.59 288 | 82.80 322 | 83.43 346 | 62.52 315 | 51.30 359 | 72.49 356 | 32.86 348 | 87.16 346 | 55.32 303 | 50.73 367 | 78.83 367 |
|
| SixPastTwentyTwo | | | 64.92 326 | 61.78 333 | 74.34 324 | 78.74 339 | 49.76 356 | 83.42 314 | 79.51 361 | 62.86 311 | 50.27 362 | 77.35 333 | 30.92 360 | 90.49 312 | 45.89 342 | 47.06 373 | 82.78 327 |
|
| OurMVSNet-221017-0 | | | 64.68 327 | 62.17 331 | 72.21 340 | 76.08 359 | 47.35 368 | 80.67 337 | 81.02 354 | 56.19 352 | 51.60 356 | 79.66 320 | 27.05 369 | 88.56 330 | 53.60 311 | 53.63 361 | 80.71 351 |
|
| test_0402 | | | 64.54 328 | 61.09 334 | 74.92 319 | 84.10 279 | 60.75 270 | 87.95 278 | 79.71 360 | 52.03 362 | 52.41 353 | 77.20 336 | 32.21 353 | 91.64 297 | 23.14 393 | 61.03 334 | 72.36 382 |
|
| testgi | | | 64.48 329 | 62.87 327 | 69.31 352 | 71.24 371 | 40.62 387 | 85.49 299 | 79.92 359 | 65.36 291 | 54.18 347 | 83.49 266 | 23.74 375 | 84.55 357 | 41.60 358 | 60.79 337 | 82.77 328 |
|
| RPSCF | | | 64.24 330 | 61.98 332 | 71.01 347 | 76.10 358 | 45.00 377 | 75.83 364 | 75.94 365 | 46.94 377 | 58.96 327 | 84.59 254 | 31.40 356 | 82.00 376 | 47.76 334 | 60.33 342 | 86.04 283 |
|
| EU-MVSNet | | | 64.01 331 | 63.01 325 | 67.02 361 | 74.40 364 | 38.86 392 | 83.27 315 | 86.19 322 | 45.11 381 | 54.27 346 | 81.15 300 | 36.91 336 | 80.01 382 | 48.79 327 | 57.02 350 | 82.19 339 |
|
| test20.03 | | | 63.83 332 | 62.65 328 | 67.38 360 | 70.58 377 | 39.94 388 | 86.57 296 | 84.17 338 | 63.29 306 | 51.86 355 | 77.30 334 | 37.09 334 | 82.47 372 | 38.87 369 | 54.13 360 | 79.73 359 |
|
| MDA-MVSNet_test_wron | | | 63.78 333 | 60.16 336 | 74.64 320 | 78.15 347 | 60.41 277 | 83.49 311 | 84.03 339 | 56.17 354 | 39.17 388 | 71.59 364 | 37.22 331 | 83.24 369 | 42.87 354 | 48.73 370 | 80.26 356 |
|
| YYNet1 | | | 63.76 334 | 60.14 337 | 74.62 321 | 78.06 348 | 60.19 282 | 83.46 313 | 83.99 343 | 56.18 353 | 39.25 387 | 71.56 365 | 37.18 332 | 83.34 367 | 42.90 353 | 48.70 371 | 80.32 355 |
|
| K. test v3 | | | 63.09 335 | 59.61 339 | 73.53 329 | 76.26 357 | 49.38 361 | 83.27 315 | 77.15 363 | 64.35 297 | 47.77 371 | 72.32 360 | 28.73 364 | 87.79 338 | 49.93 322 | 36.69 389 | 83.41 320 |
|
| COLMAP_ROB |  | 57.96 20 | 62.98 336 | 59.65 338 | 72.98 333 | 81.44 305 | 53.00 342 | 83.75 309 | 75.53 369 | 48.34 374 | 48.81 368 | 81.40 293 | 24.14 373 | 90.30 313 | 32.95 382 | 60.52 339 | 75.65 377 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| Anonymous20240521 | | | 62.09 337 | 59.08 340 | 71.10 346 | 67.19 383 | 48.72 363 | 83.91 308 | 85.23 330 | 50.38 368 | 47.84 370 | 71.22 367 | 20.74 380 | 85.51 354 | 46.47 339 | 58.75 347 | 79.06 364 |
|
| AllTest | | | 61.66 338 | 58.06 342 | 72.46 337 | 79.57 324 | 51.42 349 | 80.17 343 | 68.61 384 | 51.25 365 | 45.88 373 | 81.23 295 | 19.86 384 | 86.58 348 | 38.98 367 | 57.01 351 | 79.39 361 |
|
| UnsupCasMVSNet_bld | | | 61.60 339 | 57.71 343 | 73.29 331 | 68.73 381 | 51.64 346 | 78.61 351 | 89.05 269 | 57.20 347 | 46.11 372 | 61.96 383 | 28.70 365 | 88.60 329 | 50.08 321 | 38.90 387 | 79.63 360 |
|
| MDA-MVSNet-bldmvs | | | 61.54 340 | 57.70 344 | 73.05 332 | 79.53 326 | 57.00 322 | 83.08 319 | 81.23 353 | 57.57 343 | 34.91 391 | 72.45 357 | 32.79 349 | 86.26 350 | 35.81 374 | 41.95 381 | 75.89 376 |
|
| KD-MVS_self_test | | | 60.87 341 | 58.60 341 | 67.68 358 | 66.13 385 | 39.93 389 | 75.63 365 | 84.70 334 | 57.32 346 | 49.57 365 | 68.45 371 | 29.55 361 | 82.87 370 | 48.09 329 | 47.94 372 | 80.25 357 |
|
| TinyColmap | | | 60.32 342 | 56.42 349 | 72.00 344 | 78.78 338 | 53.18 341 | 78.36 354 | 75.64 367 | 52.30 361 | 41.59 386 | 75.82 349 | 14.76 391 | 88.35 332 | 35.84 373 | 54.71 359 | 74.46 378 |
|
| MVS-HIRNet | | | 60.25 343 | 55.55 350 | 74.35 323 | 84.37 274 | 56.57 324 | 71.64 370 | 74.11 372 | 34.44 391 | 45.54 377 | 42.24 398 | 31.11 359 | 89.81 322 | 40.36 364 | 76.10 223 | 76.67 375 |
|
| MIMVSNet1 | | | 60.16 344 | 57.33 345 | 68.67 354 | 69.71 378 | 44.13 379 | 78.92 350 | 84.21 337 | 55.05 356 | 44.63 380 | 71.85 362 | 23.91 374 | 81.54 378 | 32.63 385 | 55.03 357 | 80.35 354 |
|
| PM-MVS | | | 59.40 345 | 56.59 347 | 67.84 356 | 63.63 387 | 41.86 383 | 76.76 359 | 63.22 391 | 59.01 339 | 51.07 360 | 72.27 361 | 11.72 394 | 83.25 368 | 61.34 277 | 50.28 369 | 78.39 370 |
|
| new-patchmatchnet | | | 59.30 346 | 56.48 348 | 67.79 357 | 65.86 386 | 44.19 378 | 82.47 323 | 81.77 352 | 59.94 335 | 43.65 383 | 66.20 375 | 27.67 367 | 81.68 377 | 39.34 366 | 41.40 382 | 77.50 373 |
|
| test_vis1_rt | | | 59.09 347 | 57.31 346 | 64.43 363 | 68.44 382 | 46.02 375 | 83.05 320 | 48.63 403 | 51.96 363 | 49.57 365 | 63.86 379 | 16.30 386 | 80.20 381 | 71.21 190 | 62.79 316 | 67.07 388 |
|
| test_fmvs3 | | | 56.82 348 | 54.86 351 | 62.69 366 | 53.59 397 | 35.47 394 | 75.87 363 | 65.64 389 | 43.91 384 | 55.10 343 | 71.43 366 | 6.91 402 | 74.40 387 | 68.64 215 | 52.63 362 | 78.20 371 |
|
| DSMNet-mixed | | | 56.78 349 | 54.44 352 | 63.79 364 | 63.21 388 | 29.44 403 | 64.43 385 | 64.10 390 | 42.12 388 | 51.32 358 | 71.60 363 | 31.76 354 | 75.04 385 | 36.23 372 | 65.20 297 | 86.87 266 |
|
| pmmvs3 | | | 55.51 350 | 51.50 355 | 67.53 359 | 57.90 395 | 50.93 352 | 80.37 339 | 73.66 373 | 40.63 389 | 44.15 382 | 64.75 378 | 16.30 386 | 78.97 383 | 44.77 348 | 40.98 385 | 72.69 380 |
|
| TDRefinement | | | 55.28 351 | 51.58 354 | 66.39 362 | 59.53 394 | 46.15 374 | 76.23 362 | 72.80 374 | 44.60 382 | 42.49 384 | 76.28 345 | 15.29 389 | 82.39 373 | 33.20 381 | 43.75 378 | 70.62 384 |
|
| LF4IMVS | | | 54.01 352 | 52.12 353 | 59.69 367 | 62.41 390 | 39.91 390 | 68.59 377 | 68.28 386 | 42.96 387 | 44.55 381 | 75.18 350 | 14.09 393 | 68.39 393 | 41.36 360 | 51.68 365 | 70.78 383 |
|
| N_pmnet | | | 50.55 353 | 49.11 356 | 54.88 373 | 77.17 353 | 4.02 416 | 84.36 305 | 2.00 414 | 48.59 372 | 45.86 375 | 68.82 370 | 32.22 352 | 82.80 371 | 31.58 388 | 51.38 366 | 77.81 372 |
|
| new_pmnet | | | 49.31 354 | 46.44 357 | 57.93 368 | 62.84 389 | 40.74 386 | 68.47 378 | 62.96 392 | 36.48 390 | 35.09 390 | 57.81 387 | 14.97 390 | 72.18 389 | 32.86 383 | 46.44 374 | 60.88 390 |
|
| mvsany_test3 | | | 48.86 355 | 46.35 358 | 56.41 369 | 46.00 403 | 31.67 399 | 62.26 387 | 47.25 404 | 43.71 385 | 45.54 377 | 68.15 372 | 10.84 395 | 64.44 401 | 57.95 293 | 35.44 392 | 73.13 379 |
|
| test_f | | | 46.58 356 | 43.45 360 | 55.96 370 | 45.18 404 | 32.05 398 | 61.18 388 | 49.49 402 | 33.39 392 | 42.05 385 | 62.48 382 | 7.00 401 | 65.56 397 | 47.08 337 | 43.21 380 | 70.27 385 |
|
| WB-MVS | | | 46.23 357 | 44.94 359 | 50.11 377 | 62.13 391 | 21.23 410 | 76.48 361 | 55.49 396 | 45.89 379 | 35.78 389 | 61.44 385 | 35.54 340 | 72.83 388 | 9.96 404 | 21.75 399 | 56.27 392 |
|
| FPMVS | | | 45.64 358 | 43.10 362 | 53.23 375 | 51.42 400 | 36.46 393 | 64.97 384 | 71.91 377 | 29.13 395 | 27.53 395 | 61.55 384 | 9.83 397 | 65.01 399 | 16.00 401 | 55.58 355 | 58.22 391 |
|
| SSC-MVS | | | 44.51 359 | 43.35 361 | 47.99 381 | 61.01 393 | 18.90 412 | 74.12 367 | 54.36 397 | 43.42 386 | 34.10 392 | 60.02 386 | 34.42 345 | 70.39 391 | 9.14 406 | 19.57 400 | 54.68 393 |
|
| EGC-MVSNET | | | 42.35 360 | 38.09 363 | 55.11 372 | 74.57 362 | 46.62 373 | 71.63 371 | 55.77 395 | 0.04 409 | 0.24 410 | 62.70 381 | 14.24 392 | 74.91 386 | 17.59 398 | 46.06 375 | 43.80 395 |
|
| LCM-MVSNet | | | 40.54 361 | 35.79 366 | 54.76 374 | 36.92 410 | 30.81 400 | 51.41 397 | 69.02 383 | 22.07 397 | 24.63 397 | 45.37 394 | 4.56 406 | 65.81 396 | 33.67 379 | 34.50 393 | 67.67 386 |
|
| APD_test1 | | | 40.50 362 | 37.31 365 | 50.09 378 | 51.88 398 | 35.27 395 | 59.45 392 | 52.59 399 | 21.64 398 | 26.12 396 | 57.80 388 | 4.56 406 | 66.56 395 | 22.64 394 | 39.09 386 | 48.43 394 |
|
| test_vis3_rt | | | 40.46 363 | 37.79 364 | 48.47 380 | 44.49 405 | 33.35 397 | 66.56 383 | 32.84 411 | 32.39 393 | 29.65 393 | 39.13 401 | 3.91 409 | 68.65 392 | 50.17 319 | 40.99 384 | 43.40 396 |
|
| ANet_high | | | 40.27 364 | 35.20 367 | 55.47 371 | 34.74 411 | 34.47 396 | 63.84 386 | 71.56 379 | 48.42 373 | 18.80 400 | 41.08 399 | 9.52 398 | 64.45 400 | 20.18 396 | 8.66 407 | 67.49 387 |
|
| test_method | | | 38.59 365 | 35.16 368 | 48.89 379 | 54.33 396 | 21.35 409 | 45.32 400 | 53.71 398 | 7.41 406 | 28.74 394 | 51.62 390 | 8.70 399 | 52.87 404 | 33.73 378 | 32.89 394 | 72.47 381 |
|
| PMMVS2 | | | 37.93 366 | 33.61 369 | 50.92 376 | 46.31 402 | 24.76 406 | 60.55 391 | 50.05 400 | 28.94 396 | 20.93 398 | 47.59 391 | 4.41 408 | 65.13 398 | 25.14 392 | 18.55 402 | 62.87 389 |
|
| Gipuma |  | | 34.91 367 | 31.44 370 | 45.30 382 | 70.99 374 | 39.64 391 | 19.85 404 | 72.56 375 | 20.10 400 | 16.16 404 | 21.47 405 | 5.08 405 | 71.16 390 | 13.07 402 | 43.70 379 | 25.08 402 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| testf1 | | | 32.77 368 | 29.47 371 | 42.67 384 | 41.89 407 | 30.81 400 | 52.07 395 | 43.45 405 | 15.45 401 | 18.52 401 | 44.82 395 | 2.12 410 | 58.38 402 | 16.05 399 | 30.87 396 | 38.83 397 |
|
| APD_test2 | | | 32.77 368 | 29.47 371 | 42.67 384 | 41.89 407 | 30.81 400 | 52.07 395 | 43.45 405 | 15.45 401 | 18.52 401 | 44.82 395 | 2.12 410 | 58.38 402 | 16.05 399 | 30.87 396 | 38.83 397 |
|
| PMVS |  | 26.43 22 | 31.84 370 | 28.16 373 | 42.89 383 | 25.87 413 | 27.58 404 | 50.92 398 | 49.78 401 | 21.37 399 | 14.17 405 | 40.81 400 | 2.01 412 | 66.62 394 | 9.61 405 | 38.88 388 | 34.49 401 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| E-PMN | | | 24.61 371 | 24.00 375 | 26.45 388 | 43.74 406 | 18.44 413 | 60.86 389 | 39.66 407 | 15.11 403 | 9.53 407 | 22.10 404 | 6.52 403 | 46.94 406 | 8.31 407 | 10.14 404 | 13.98 404 |
|
| MVE |  | 24.84 23 | 24.35 372 | 19.77 378 | 38.09 386 | 34.56 412 | 26.92 405 | 26.57 402 | 38.87 409 | 11.73 405 | 11.37 406 | 27.44 402 | 1.37 413 | 50.42 405 | 11.41 403 | 14.60 403 | 36.93 399 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| EMVS | | | 23.76 373 | 23.20 377 | 25.46 389 | 41.52 409 | 16.90 414 | 60.56 390 | 38.79 410 | 14.62 404 | 8.99 408 | 20.24 407 | 7.35 400 | 45.82 407 | 7.25 408 | 9.46 405 | 13.64 405 |
|
| tmp_tt | | | 22.26 374 | 23.75 376 | 17.80 390 | 5.23 414 | 12.06 415 | 35.26 401 | 39.48 408 | 2.82 408 | 18.94 399 | 44.20 397 | 22.23 378 | 24.64 409 | 36.30 371 | 9.31 406 | 16.69 403 |
|
| cdsmvs_eth3d_5k | | | 19.86 375 | 26.47 374 | 0.00 394 | 0.00 417 | 0.00 419 | 0.00 405 | 93.45 84 | 0.00 412 | 0.00 413 | 95.27 58 | 49.56 252 | 0.00 413 | 0.00 412 | 0.00 410 | 0.00 409 |
|
| wuyk23d | | | 11.30 376 | 10.95 379 | 12.33 391 | 48.05 401 | 19.89 411 | 25.89 403 | 1.92 415 | 3.58 407 | 3.12 409 | 1.37 409 | 0.64 414 | 15.77 410 | 6.23 409 | 7.77 408 | 1.35 406 |
|
| ab-mvs-re | | | 7.91 377 | 10.55 380 | 0.00 394 | 0.00 417 | 0.00 419 | 0.00 405 | 0.00 418 | 0.00 412 | 0.00 413 | 94.95 68 | 0.00 417 | 0.00 413 | 0.00 412 | 0.00 410 | 0.00 409 |
|
| testmvs | | | 7.23 378 | 9.62 381 | 0.06 393 | 0.04 415 | 0.02 418 | 84.98 303 | 0.02 416 | 0.03 410 | 0.18 411 | 1.21 410 | 0.01 416 | 0.02 411 | 0.14 410 | 0.01 409 | 0.13 408 |
|
| test123 | | | 6.92 379 | 9.21 382 | 0.08 392 | 0.03 416 | 0.05 417 | 81.65 329 | 0.01 417 | 0.02 411 | 0.14 412 | 0.85 411 | 0.03 415 | 0.02 411 | 0.12 411 | 0.00 410 | 0.16 407 |
|
| pcd_1.5k_mvsjas | | | 4.46 380 | 5.95 383 | 0.00 394 | 0.00 417 | 0.00 419 | 0.00 405 | 0.00 418 | 0.00 412 | 0.00 413 | 0.00 412 | 53.55 217 | 0.00 413 | 0.00 412 | 0.00 410 | 0.00 409 |
|
| test_blank | | | 0.00 381 | 0.00 384 | 0.00 394 | 0.00 417 | 0.00 419 | 0.00 405 | 0.00 418 | 0.00 412 | 0.00 413 | 0.00 412 | 0.00 417 | 0.00 413 | 0.00 412 | 0.00 410 | 0.00 409 |
|
| uanet_test | | | 0.00 381 | 0.00 384 | 0.00 394 | 0.00 417 | 0.00 419 | 0.00 405 | 0.00 418 | 0.00 412 | 0.00 413 | 0.00 412 | 0.00 417 | 0.00 413 | 0.00 412 | 0.00 410 | 0.00 409 |
|
| DCPMVS | | | 0.00 381 | 0.00 384 | 0.00 394 | 0.00 417 | 0.00 419 | 0.00 405 | 0.00 418 | 0.00 412 | 0.00 413 | 0.00 412 | 0.00 417 | 0.00 413 | 0.00 412 | 0.00 410 | 0.00 409 |
|
| sosnet-low-res | | | 0.00 381 | 0.00 384 | 0.00 394 | 0.00 417 | 0.00 419 | 0.00 405 | 0.00 418 | 0.00 412 | 0.00 413 | 0.00 412 | 0.00 417 | 0.00 413 | 0.00 412 | 0.00 410 | 0.00 409 |
|
| sosnet | | | 0.00 381 | 0.00 384 | 0.00 394 | 0.00 417 | 0.00 419 | 0.00 405 | 0.00 418 | 0.00 412 | 0.00 413 | 0.00 412 | 0.00 417 | 0.00 413 | 0.00 412 | 0.00 410 | 0.00 409 |
|
| uncertanet | | | 0.00 381 | 0.00 384 | 0.00 394 | 0.00 417 | 0.00 419 | 0.00 405 | 0.00 418 | 0.00 412 | 0.00 413 | 0.00 412 | 0.00 417 | 0.00 413 | 0.00 412 | 0.00 410 | 0.00 409 |
|
| Regformer | | | 0.00 381 | 0.00 384 | 0.00 394 | 0.00 417 | 0.00 419 | 0.00 405 | 0.00 418 | 0.00 412 | 0.00 413 | 0.00 412 | 0.00 417 | 0.00 413 | 0.00 412 | 0.00 410 | 0.00 409 |
|
| uanet | | | 0.00 381 | 0.00 384 | 0.00 394 | 0.00 417 | 0.00 419 | 0.00 405 | 0.00 418 | 0.00 412 | 0.00 413 | 0.00 412 | 0.00 417 | 0.00 413 | 0.00 412 | 0.00 410 | 0.00 409 |
|
| WAC-MVS | | | | | | | 49.45 359 | | | | | | | | 31.56 389 | | |
|
| FOURS1 | | | | | | 93.95 48 | 61.77 249 | 93.96 74 | 91.92 145 | 62.14 318 | 86.57 50 | | | | | | |
|
| MSC_two_6792asdad | | | | | 89.60 9 | 97.31 4 | 73.22 13 | | 95.05 26 | | | | | 99.07 13 | 92.01 24 | 94.77 26 | 96.51 26 |
|
| PC_three_1452 | | | | | | | | | | 80.91 48 | 94.07 2 | 96.83 18 | 83.57 4 | 99.12 5 | 95.70 7 | 97.42 4 | 97.55 4 |
|
| No_MVS | | | | | 89.60 9 | 97.31 4 | 73.22 13 | | 95.05 26 | | | | | 99.07 13 | 92.01 24 | 94.77 26 | 96.51 26 |
|
| test_one_0601 | | | | | | 96.32 18 | 69.74 50 | | 94.18 57 | 71.42 227 | 90.67 20 | 96.85 16 | 74.45 18 | | | | |
|
| eth-test2 | | | | | | 0.00 417 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 417 | | | | | | | | | | | |
|
| ZD-MVS | | | | | | 96.63 9 | 65.50 155 | | 93.50 82 | 70.74 241 | 85.26 65 | 95.19 64 | 64.92 82 | 97.29 79 | 87.51 60 | 93.01 58 | |
|
| RE-MVS-def | | | | 80.48 142 | | 92.02 99 | 58.56 303 | 90.90 211 | 90.45 205 | 62.76 312 | 78.89 126 | 94.46 82 | 49.30 255 | | 78.77 135 | 86.77 127 | 92.28 180 |
|
| IU-MVS | | | | | | 96.46 11 | 69.91 44 | | 95.18 20 | 80.75 51 | 95.28 1 | | | | 92.34 21 | 95.36 13 | 96.47 30 |
|
| OPU-MVS | | | | | 89.97 4 | 97.52 3 | 73.15 15 | 96.89 7 | | | | 97.00 9 | 83.82 2 | 99.15 2 | 95.72 5 | 97.63 3 | 97.62 2 |
|
| test_241102_TWO | | | | | | | | | 94.41 48 | 71.65 216 | 92.07 8 | 97.21 4 | 74.58 17 | 99.11 6 | 92.34 21 | 95.36 13 | 96.59 21 |
|
| test_241102_ONE | | | | | | 96.45 12 | 69.38 55 | | 94.44 46 | 71.65 216 | 92.11 6 | 97.05 7 | 76.79 9 | 99.11 6 | | | |
|
| 9.14 | | | | 87.63 31 | | 93.86 51 | | 94.41 57 | 94.18 57 | 72.76 181 | 86.21 52 | 96.51 25 | 66.64 63 | 97.88 44 | 90.08 39 | 94.04 41 | |
|
| save fliter | | | | | | 93.84 52 | 67.89 94 | 95.05 42 | 92.66 118 | 78.19 94 | | | | | | | |
|
| test_0728_THIRD | | | | | | | | | | 72.48 186 | 90.55 21 | 96.93 11 | 76.24 11 | 99.08 11 | 91.53 29 | 94.99 17 | 96.43 32 |
|
| test_0728_SECOND | | | | | 88.70 19 | 96.45 12 | 70.43 35 | 96.64 11 | 94.37 52 | | | | | 99.15 2 | 91.91 27 | 94.90 22 | 96.51 26 |
|
| test0726 | | | | | | 96.40 15 | 69.99 40 | 96.76 9 | 94.33 54 | 71.92 202 | 91.89 10 | 97.11 6 | 73.77 21 | | | | |
|
| GSMVS | | | | | | | | | | | | | | | | | 94.68 98 |
|
| test_part2 | | | | | | 96.29 19 | 68.16 88 | | | | 90.78 17 | | | | | | |
|
| sam_mvs1 | | | | | | | | | | | | | 57.85 164 | | | | 94.68 98 |
|
| sam_mvs | | | | | | | | | | | | | 54.91 202 | | | | |
|
| ambc | | | | | 69.61 350 | 61.38 392 | 41.35 385 | 49.07 399 | 85.86 326 | | 50.18 364 | 66.40 374 | 10.16 396 | 88.14 334 | 45.73 343 | 44.20 377 | 79.32 363 |
|
| MTGPA |  | | | | | | | | 92.23 131 | | | | | | | | |
|
| test_post1 | | | | | | | | 78.95 349 | | | | 20.70 406 | 53.05 222 | 91.50 305 | 60.43 282 | | |
|
| test_post | | | | | | | | | | | | 23.01 403 | 56.49 184 | 92.67 270 | | | |
|
| patchmatchnet-post | | | | | | | | | | | | 67.62 373 | 57.62 167 | 90.25 314 | | | |
|
| GG-mvs-BLEND | | | | | 86.53 73 | 91.91 106 | 69.67 53 | 75.02 366 | 94.75 33 | | 78.67 133 | 90.85 165 | 77.91 7 | 94.56 203 | 72.25 180 | 93.74 47 | 95.36 65 |
|
| MTMP | | | | | | | | 93.77 88 | 32.52 412 | | | | | | | | |
|
| gm-plane-assit | | | | | | 88.42 187 | 67.04 117 | | | 78.62 91 | | 91.83 148 | | 97.37 72 | 76.57 147 | | |
|
| test9_res | | | | | | | | | | | | | | | 89.41 43 | 94.96 19 | 95.29 70 |
|
| TEST9 | | | | | | 94.18 41 | 67.28 109 | 94.16 63 | 93.51 80 | 71.75 213 | 85.52 60 | 95.33 53 | 68.01 53 | 97.27 84 | | | |
|
| test_8 | | | | | | 94.19 40 | 67.19 111 | 94.15 65 | 93.42 86 | 71.87 207 | 85.38 63 | 95.35 52 | 68.19 51 | 96.95 106 | | | |
|
| agg_prior2 | | | | | | | | | | | | | | | 86.41 72 | 94.75 30 | 95.33 66 |
|
| agg_prior | | | | | | 94.16 43 | 66.97 119 | | 93.31 89 | | 84.49 71 | | | 96.75 116 | | | |
|
| TestCases | | | | | 72.46 337 | 79.57 324 | 51.42 349 | | 68.61 384 | 51.25 365 | 45.88 373 | 81.23 295 | 19.86 384 | 86.58 348 | 38.98 367 | 57.01 351 | 79.39 361 |
|
| test_prior4 | | | | | | | 67.18 113 | 93.92 77 | | | | | | | | | |
|
| test_prior2 | | | | | | | | 95.10 40 | | 75.40 134 | 85.25 66 | 95.61 47 | 67.94 54 | | 87.47 61 | 94.77 26 | |
|
| test_prior | | | | | 86.42 76 | 94.71 35 | 67.35 108 | | 93.10 101 | | | | | 96.84 113 | | | 95.05 82 |
|
| 旧先验2 | | | | | | | | 92.00 164 | | 59.37 338 | 87.54 43 | | | 93.47 246 | 75.39 155 | | |
|
| æ–°å‡ ä½•2 | | | | | | | | 91.41 186 | | | | | | | | | |
|
| æ–°å‡ ä½•1 | | | | | 84.73 132 | 92.32 91 | 64.28 186 | | 91.46 171 | 59.56 337 | 79.77 115 | 92.90 122 | 56.95 177 | 96.57 121 | 63.40 262 | 92.91 60 | 93.34 148 |
|
| 旧先验1 | | | | | | 91.94 103 | 60.74 271 | | 91.50 169 | | | 94.36 86 | 65.23 77 | | | 91.84 73 | 94.55 105 |
|
| æ— å…ˆéªŒ | | | | | | | | 92.71 129 | 92.61 122 | 62.03 319 | | | | 97.01 97 | 66.63 233 | | 93.97 130 |
|
| 原ACMM2 | | | | | | | | 92.01 161 | | | | | | | | | |
|
| 原ACMM1 | | | | | 84.42 146 | 93.21 69 | 64.27 187 | | 93.40 88 | 65.39 290 | 79.51 118 | 92.50 130 | 58.11 163 | 96.69 117 | 65.27 252 | 93.96 42 | 92.32 178 |
|
| test222 | | | | | | 89.77 152 | 61.60 254 | 89.55 249 | 89.42 250 | 56.83 350 | 77.28 147 | 92.43 134 | 52.76 225 | | | 91.14 87 | 93.09 156 |
|
| testdata2 | | | | | | | | | | | | | | 96.09 138 | 61.26 278 | | |
|
| segment_acmp | | | | | | | | | | | | | 65.94 70 | | | | |
|
| testdata | | | | | 81.34 226 | 89.02 173 | 57.72 310 | | 89.84 233 | 58.65 341 | 85.32 64 | 94.09 98 | 57.03 172 | 93.28 248 | 69.34 206 | 90.56 93 | 93.03 159 |
|
| testdata1 | | | | | | | | 89.21 258 | | 77.55 107 | | | | | | | |
|
| test12 | | | | | 87.09 53 | 94.60 36 | 68.86 67 | | 92.91 107 | | 82.67 87 | | 65.44 75 | 97.55 62 | | 93.69 50 | 94.84 91 |
|
| plane_prior7 | | | | | | 86.94 227 | 61.51 255 | | | | | | | | | | |
|
| plane_prior6 | | | | | | 87.23 219 | 62.32 239 | | | | | | 50.66 242 | | | | |
|
| plane_prior5 | | | | | | | | | 91.31 175 | | | | | 95.55 167 | 76.74 145 | 78.53 201 | 88.39 243 |
|
| plane_prior4 | | | | | | | | | | | | 89.14 196 | | | | | |
|
| plane_prior3 | | | | | | | 61.95 247 | | | 79.09 82 | 72.53 196 | | | | | | |
|
| plane_prior2 | | | | | | | | 93.13 113 | | 78.81 88 | | | | | | | |
|
| plane_prior1 | | | | | | 87.15 221 | | | | | | | | | | | |
|
| plane_prior | | | | | | | 62.42 235 | 93.85 81 | | 79.38 74 | | | | | | 78.80 198 | |
|
| n2 | | | | | | | | | 0.00 418 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 418 | | | | | | | | |
|
| door-mid | | | | | | | | | 66.01 388 | | | | | | | | |
|
| lessismore_v0 | | | | | 73.72 328 | 72.93 369 | 47.83 366 | | 61.72 393 | | 45.86 375 | 73.76 354 | 28.63 366 | 89.81 322 | 47.75 335 | 31.37 395 | 83.53 316 |
|
| LGP-MVS_train | | | | | 79.56 273 | 84.31 275 | 59.37 292 | | 89.73 240 | 69.49 254 | 64.86 284 | 88.42 201 | 38.65 315 | 94.30 212 | 72.56 177 | 72.76 245 | 85.01 303 |
|
| test11 | | | | | | | | | 93.01 103 | | | | | | | | |
|
| door | | | | | | | | | 66.57 387 | | | | | | | | |
|
| HQP5-MVS | | | | | | | 63.66 205 | | | | | | | | | | |
|
| HQP-NCC | | | | | | 87.54 212 | | 94.06 67 | | 79.80 65 | 74.18 176 | | | | | | |
|
| ACMP_Plane | | | | | | 87.54 212 | | 94.06 67 | | 79.80 65 | 74.18 176 | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 77.63 142 | | |
|
| HQP4-MVS | | | | | | | | | | | 74.18 176 | | | 95.61 162 | | | 88.63 237 |
|
| HQP3-MVS | | | | | | | | | 91.70 161 | | | | | | | 78.90 196 | |
|
| HQP2-MVS | | | | | | | | | | | | | 51.63 235 | | | | |
|
| NP-MVS | | | | | | 87.41 215 | 63.04 220 | | | | | 90.30 176 | | | | | |
|
| MDTV_nov1_ep13_2view | | | | | | | 59.90 285 | 80.13 344 | | 67.65 274 | 72.79 191 | | 54.33 210 | | 59.83 286 | | 92.58 171 |
|
| MDTV_nov1_ep13 | | | | 72.61 257 | | 89.06 172 | 68.48 76 | 80.33 340 | 90.11 223 | 71.84 209 | 71.81 207 | 75.92 348 | 53.01 223 | 93.92 235 | 48.04 330 | 73.38 239 | |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 71.63 253 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 69.72 262 | |
|
| Test By Simon | | | | | | | | | | | | | 54.21 211 | | | | |
|
| ITE_SJBPF | | | | | 70.43 348 | 74.44 363 | 47.06 372 | | 77.32 362 | 60.16 333 | 54.04 348 | 83.53 264 | 23.30 376 | 84.01 361 | 43.07 351 | 61.58 332 | 80.21 358 |
|
| DeepMVS_CX |  | | | | 34.71 387 | 51.45 399 | 24.73 407 | | 28.48 413 | 31.46 394 | 17.49 403 | 52.75 389 | 5.80 404 | 42.60 408 | 18.18 397 | 19.42 401 | 36.81 400 |
|