| MCST-MVS | | | 91.08 1 | 91.46 3 | 89.94 4 | 97.66 2 | 73.37 10 | 97.13 2 | 95.58 11 | 89.33 1 | 85.77 56 | 96.26 32 | 72.84 29 | 99.38 1 | 92.64 22 | 95.93 9 | 97.08 11 |
|
| MM | | | 90.87 2 | 91.52 2 | 88.92 15 | 92.12 100 | 71.10 27 | 97.02 3 | 96.04 6 | 88.70 2 | 91.57 14 | 96.19 34 | 70.12 45 | 98.91 18 | 96.83 1 | 95.06 17 | 96.76 15 |
|
| DPM-MVS | | | 90.70 3 | 90.52 9 | 91.24 1 | 89.68 160 | 76.68 2 | 97.29 1 | 95.35 16 | 82.87 24 | 91.58 13 | 97.22 3 | 79.93 5 | 99.10 9 | 83.12 104 | 97.64 2 | 97.94 1 |
|
| DVP-MVS++ | | | 90.53 4 | 91.09 5 | 88.87 16 | 97.31 4 | 69.91 42 | 93.96 72 | 94.37 53 | 72.48 191 | 92.07 9 | 96.85 16 | 83.82 2 | 99.15 2 | 91.53 32 | 97.42 4 | 97.55 4 |
|
| MSP-MVS | | | 90.38 5 | 91.87 1 | 85.88 91 | 92.83 79 | 64.03 195 | 93.06 114 | 94.33 55 | 82.19 31 | 93.65 3 | 96.15 36 | 85.89 1 | 97.19 86 | 91.02 36 | 97.75 1 | 96.43 31 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| MVS_0304 | | | 90.32 6 | 90.90 7 | 88.55 23 | 94.05 45 | 70.23 36 | 97.00 5 | 93.73 74 | 87.30 4 | 92.15 6 | 96.15 36 | 66.38 67 | 98.94 17 | 96.71 2 | 94.67 33 | 96.47 28 |
|
| CNVR-MVS | | | 90.32 6 | 90.89 8 | 88.61 22 | 96.76 8 | 70.65 30 | 96.47 14 | 94.83 31 | 84.83 11 | 89.07 31 | 96.80 19 | 70.86 41 | 99.06 15 | 92.64 22 | 95.71 11 | 96.12 40 |
|
| DELS-MVS | | | 90.05 8 | 90.09 11 | 89.94 4 | 93.14 70 | 73.88 9 | 97.01 4 | 94.40 51 | 88.32 3 | 85.71 57 | 94.91 75 | 74.11 21 | 98.91 18 | 87.26 64 | 95.94 8 | 97.03 12 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| SED-MVS | | | 89.94 9 | 90.36 10 | 88.70 18 | 96.45 12 | 69.38 55 | 96.89 6 | 94.44 47 | 71.65 221 | 92.11 7 | 97.21 4 | 76.79 9 | 99.11 6 | 92.34 24 | 95.36 14 | 97.62 2 |
|
| DeepPCF-MVS | | 81.17 1 | 89.72 10 | 91.38 4 | 84.72 135 | 93.00 75 | 58.16 315 | 96.72 9 | 94.41 49 | 86.50 8 | 90.25 22 | 97.83 1 | 75.46 14 | 98.67 25 | 92.78 21 | 95.49 13 | 97.32 6 |
|
| patch_mono-2 | | | 89.71 11 | 90.99 6 | 85.85 94 | 96.04 24 | 63.70 205 | 95.04 40 | 95.19 20 | 86.74 7 | 91.53 15 | 95.15 68 | 73.86 22 | 97.58 61 | 93.38 16 | 92.00 69 | 96.28 37 |
|
| CANet | | | 89.61 12 | 89.99 12 | 88.46 24 | 94.39 39 | 69.71 50 | 96.53 13 | 93.78 67 | 86.89 6 | 89.68 28 | 95.78 42 | 65.94 72 | 99.10 9 | 92.99 19 | 93.91 42 | 96.58 21 |
|
| DVP-MVS |  | | 89.41 13 | 89.73 14 | 88.45 25 | 96.40 15 | 69.99 38 | 96.64 10 | 94.52 43 | 71.92 207 | 90.55 20 | 96.93 11 | 73.77 23 | 99.08 11 | 91.91 30 | 94.90 22 | 96.29 35 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| HPM-MVS++ |  | | 89.37 14 | 89.95 13 | 87.64 34 | 95.10 30 | 68.23 86 | 95.24 33 | 94.49 45 | 82.43 28 | 88.90 32 | 96.35 29 | 71.89 38 | 98.63 26 | 88.76 50 | 96.40 6 | 96.06 41 |
|
| balanced_conf03 | | | 89.08 15 | 88.84 17 | 89.81 6 | 93.66 54 | 75.15 5 | 90.61 228 | 93.43 88 | 84.06 14 | 86.20 51 | 90.17 185 | 72.42 33 | 96.98 103 | 93.09 18 | 95.92 10 | 97.29 7 |
|
| NCCC | | | 89.07 16 | 89.46 15 | 87.91 28 | 96.60 10 | 69.05 63 | 96.38 15 | 94.64 40 | 84.42 12 | 86.74 47 | 96.20 33 | 66.56 66 | 98.76 24 | 89.03 49 | 94.56 34 | 95.92 46 |
|
| DPE-MVS |  | | 88.77 17 | 89.21 16 | 87.45 43 | 96.26 20 | 67.56 103 | 94.17 59 | 94.15 60 | 68.77 270 | 90.74 18 | 97.27 2 | 76.09 12 | 98.49 29 | 90.58 40 | 94.91 21 | 96.30 34 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| SMA-MVS |  | | 88.14 18 | 88.29 22 | 87.67 33 | 93.21 67 | 68.72 72 | 93.85 79 | 94.03 63 | 74.18 154 | 91.74 12 | 96.67 22 | 65.61 76 | 98.42 33 | 89.24 46 | 96.08 7 | 95.88 47 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| PS-MVSNAJ | | | 88.14 18 | 87.61 29 | 89.71 7 | 92.06 101 | 76.72 1 | 95.75 20 | 93.26 94 | 83.86 15 | 89.55 29 | 96.06 38 | 53.55 226 | 97.89 43 | 91.10 34 | 93.31 53 | 94.54 109 |
|
| TSAR-MVS + MP. | | | 88.11 20 | 88.64 18 | 86.54 72 | 91.73 115 | 68.04 90 | 90.36 234 | 93.55 81 | 82.89 23 | 91.29 16 | 92.89 128 | 72.27 35 | 96.03 151 | 87.99 54 | 94.77 26 | 95.54 57 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| TSAR-MVS + GP. | | | 87.96 21 | 88.37 21 | 86.70 65 | 93.51 61 | 65.32 160 | 95.15 36 | 93.84 66 | 78.17 98 | 85.93 55 | 94.80 78 | 75.80 13 | 98.21 34 | 89.38 43 | 88.78 107 | 96.59 19 |
|
| DeepC-MVS_fast | | 79.48 2 | 87.95 22 | 88.00 25 | 87.79 31 | 95.86 27 | 68.32 80 | 95.74 21 | 94.11 61 | 83.82 16 | 83.49 79 | 96.19 34 | 64.53 90 | 98.44 31 | 83.42 103 | 94.88 25 | 96.61 18 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| xiu_mvs_v2_base | | | 87.92 23 | 87.38 33 | 89.55 12 | 91.41 127 | 76.43 3 | 95.74 21 | 93.12 102 | 83.53 18 | 89.55 29 | 95.95 40 | 53.45 230 | 97.68 51 | 91.07 35 | 92.62 60 | 94.54 109 |
|
| EPNet | | | 87.84 24 | 88.38 20 | 86.23 82 | 93.30 64 | 66.05 142 | 95.26 32 | 94.84 30 | 87.09 5 | 88.06 35 | 94.53 84 | 66.79 63 | 97.34 75 | 83.89 97 | 91.68 74 | 95.29 70 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| lupinMVS | | | 87.74 25 | 87.77 27 | 87.63 38 | 89.24 175 | 71.18 24 | 96.57 12 | 92.90 111 | 82.70 26 | 87.13 42 | 95.27 61 | 64.99 81 | 95.80 156 | 89.34 44 | 91.80 72 | 95.93 45 |
|
| test_fmvsm_n_1920 | | | 87.69 26 | 88.50 19 | 85.27 115 | 87.05 233 | 63.55 212 | 93.69 89 | 91.08 196 | 84.18 13 | 90.17 24 | 97.04 8 | 67.58 58 | 97.99 39 | 95.72 5 | 90.03 95 | 94.26 119 |
|
| APDe-MVS |  | | 87.54 27 | 87.84 26 | 86.65 66 | 96.07 23 | 66.30 138 | 94.84 45 | 93.78 67 | 69.35 261 | 88.39 34 | 96.34 30 | 67.74 57 | 97.66 56 | 90.62 39 | 93.44 51 | 96.01 44 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| fmvsm_l_conf0.5_n | | | 87.49 28 | 88.19 23 | 85.39 109 | 86.95 234 | 64.37 185 | 94.30 56 | 88.45 297 | 80.51 53 | 92.70 4 | 96.86 15 | 69.98 46 | 97.15 91 | 95.83 4 | 88.08 115 | 94.65 103 |
|
| SD-MVS | | | 87.49 28 | 87.49 31 | 87.50 42 | 93.60 56 | 68.82 69 | 93.90 76 | 92.63 123 | 76.86 119 | 87.90 37 | 95.76 43 | 66.17 69 | 97.63 58 | 89.06 48 | 91.48 78 | 96.05 42 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| fmvsm_l_conf0.5_n_a | | | 87.44 30 | 88.15 24 | 85.30 113 | 87.10 231 | 64.19 192 | 94.41 52 | 88.14 306 | 80.24 61 | 92.54 5 | 96.97 10 | 69.52 48 | 97.17 87 | 95.89 3 | 88.51 110 | 94.56 106 |
|
| dcpmvs_2 | | | 87.37 31 | 87.55 30 | 86.85 58 | 95.04 32 | 68.20 87 | 90.36 234 | 90.66 208 | 79.37 76 | 81.20 101 | 93.67 112 | 74.73 16 | 96.55 125 | 90.88 37 | 92.00 69 | 95.82 48 |
|
| alignmvs | | | 87.28 32 | 86.97 37 | 88.24 27 | 91.30 129 | 71.14 26 | 95.61 25 | 93.56 80 | 79.30 77 | 87.07 44 | 95.25 63 | 68.43 50 | 96.93 111 | 87.87 55 | 84.33 154 | 96.65 17 |
|
| train_agg | | | 87.21 33 | 87.42 32 | 86.60 68 | 94.18 41 | 67.28 110 | 94.16 60 | 93.51 82 | 71.87 212 | 85.52 59 | 95.33 56 | 68.19 52 | 97.27 82 | 89.09 47 | 94.90 22 | 95.25 76 |
|
| MG-MVS | | | 87.11 34 | 86.27 46 | 89.62 8 | 97.79 1 | 76.27 4 | 94.96 43 | 94.49 45 | 78.74 92 | 83.87 77 | 92.94 126 | 64.34 91 | 96.94 109 | 75.19 165 | 94.09 38 | 95.66 52 |
|
| SF-MVS | | | 87.03 35 | 87.09 35 | 86.84 59 | 92.70 85 | 67.45 108 | 93.64 92 | 93.76 70 | 70.78 245 | 86.25 49 | 96.44 27 | 66.98 61 | 97.79 47 | 88.68 51 | 94.56 34 | 95.28 72 |
|
| CSCG | | | 86.87 36 | 86.26 47 | 88.72 17 | 95.05 31 | 70.79 29 | 93.83 84 | 95.33 17 | 68.48 274 | 77.63 147 | 94.35 93 | 73.04 27 | 98.45 30 | 84.92 86 | 93.71 47 | 96.92 14 |
|
| sasdasda | | | 86.85 37 | 86.25 48 | 88.66 20 | 91.80 113 | 71.92 16 | 93.54 97 | 91.71 165 | 80.26 58 | 87.55 39 | 95.25 63 | 63.59 104 | 96.93 111 | 88.18 52 | 84.34 152 | 97.11 9 |
|
| canonicalmvs | | | 86.85 37 | 86.25 48 | 88.66 20 | 91.80 113 | 71.92 16 | 93.54 97 | 91.71 165 | 80.26 58 | 87.55 39 | 95.25 63 | 63.59 104 | 96.93 111 | 88.18 52 | 84.34 152 | 97.11 9 |
|
| UBG | | | 86.83 39 | 86.70 42 | 87.20 48 | 93.07 73 | 69.81 46 | 93.43 105 | 95.56 13 | 81.52 38 | 81.50 97 | 92.12 147 | 73.58 26 | 96.28 136 | 84.37 92 | 85.20 144 | 95.51 58 |
|
| PHI-MVS | | | 86.83 39 | 86.85 41 | 86.78 63 | 93.47 62 | 65.55 156 | 95.39 30 | 95.10 23 | 71.77 217 | 85.69 58 | 96.52 24 | 62.07 124 | 98.77 23 | 86.06 76 | 95.60 12 | 96.03 43 |
|
| SteuartSystems-ACMMP | | | 86.82 41 | 86.90 39 | 86.58 70 | 90.42 145 | 66.38 135 | 96.09 17 | 93.87 65 | 77.73 106 | 84.01 76 | 95.66 45 | 63.39 107 | 97.94 40 | 87.40 62 | 93.55 50 | 95.42 59 |
| Skip Steuart: Steuart Systems R&D Blog. |
| PVSNet_Blended | | | 86.73 42 | 86.86 40 | 86.31 81 | 93.76 50 | 67.53 105 | 96.33 16 | 93.61 78 | 82.34 30 | 81.00 106 | 93.08 122 | 63.19 111 | 97.29 78 | 87.08 67 | 91.38 80 | 94.13 128 |
|
| testing11 | | | 86.71 43 | 86.44 45 | 87.55 40 | 93.54 59 | 71.35 21 | 93.65 91 | 95.58 11 | 81.36 45 | 80.69 109 | 92.21 146 | 72.30 34 | 96.46 130 | 85.18 82 | 83.43 162 | 94.82 95 |
|
| test_fmvsmconf_n | | | 86.58 44 | 87.17 34 | 84.82 128 | 85.28 265 | 62.55 237 | 94.26 58 | 89.78 241 | 83.81 17 | 87.78 38 | 96.33 31 | 65.33 78 | 96.98 103 | 94.40 11 | 87.55 121 | 94.95 87 |
|
| BP-MVS1 | | | 86.54 45 | 86.68 43 | 86.13 85 | 87.80 215 | 67.18 114 | 92.97 119 | 95.62 10 | 79.92 64 | 82.84 86 | 94.14 102 | 74.95 15 | 96.46 130 | 82.91 106 | 88.96 106 | 94.74 97 |
|
| jason | | | 86.40 46 | 86.17 50 | 87.11 51 | 86.16 250 | 70.54 32 | 95.71 24 | 92.19 140 | 82.00 33 | 84.58 69 | 94.34 94 | 61.86 126 | 95.53 176 | 87.76 56 | 90.89 86 | 95.27 73 |
| jason: jason. |
| fmvsm_s_conf0.5_n | | | 86.39 47 | 86.91 38 | 84.82 128 | 87.36 226 | 63.54 213 | 94.74 47 | 90.02 235 | 82.52 27 | 90.14 25 | 96.92 13 | 62.93 116 | 97.84 46 | 95.28 8 | 82.26 172 | 93.07 165 |
|
| WTY-MVS | | | 86.32 48 | 85.81 57 | 87.85 29 | 92.82 81 | 69.37 57 | 95.20 34 | 95.25 18 | 82.71 25 | 81.91 94 | 94.73 79 | 67.93 56 | 97.63 58 | 79.55 134 | 82.25 173 | 96.54 22 |
|
| MSLP-MVS++ | | | 86.27 49 | 85.91 56 | 87.35 45 | 92.01 105 | 68.97 66 | 95.04 40 | 92.70 116 | 79.04 87 | 81.50 97 | 96.50 26 | 58.98 161 | 96.78 117 | 83.49 102 | 93.93 41 | 96.29 35 |
|
| VNet | | | 86.20 50 | 85.65 61 | 87.84 30 | 93.92 47 | 69.99 38 | 95.73 23 | 95.94 7 | 78.43 95 | 86.00 54 | 93.07 123 | 58.22 168 | 97.00 99 | 85.22 80 | 84.33 154 | 96.52 23 |
|
| MVS_111021_HR | | | 86.19 51 | 85.80 58 | 87.37 44 | 93.17 69 | 69.79 47 | 93.99 71 | 93.76 70 | 79.08 84 | 78.88 135 | 93.99 106 | 62.25 123 | 98.15 36 | 85.93 77 | 91.15 84 | 94.15 127 |
|
| SPE-MVS-test | | | 86.14 52 | 87.01 36 | 83.52 177 | 92.63 87 | 59.36 304 | 95.49 27 | 91.92 152 | 80.09 62 | 85.46 61 | 95.53 51 | 61.82 128 | 95.77 159 | 86.77 71 | 93.37 52 | 95.41 60 |
|
| ACMMP_NAP | | | 86.05 53 | 85.80 58 | 86.80 62 | 91.58 119 | 67.53 105 | 91.79 174 | 93.49 85 | 74.93 145 | 84.61 68 | 95.30 58 | 59.42 152 | 97.92 41 | 86.13 74 | 94.92 20 | 94.94 88 |
|
| testing99 | | | 86.01 54 | 85.47 63 | 87.63 38 | 93.62 55 | 71.25 23 | 93.47 103 | 95.23 19 | 80.42 56 | 80.60 111 | 91.95 151 | 71.73 39 | 96.50 128 | 80.02 131 | 82.22 174 | 95.13 79 |
|
| ETV-MVS | | | 86.01 54 | 86.11 51 | 85.70 101 | 90.21 150 | 67.02 120 | 93.43 105 | 91.92 152 | 81.21 47 | 84.13 75 | 94.07 105 | 60.93 136 | 95.63 167 | 89.28 45 | 89.81 96 | 94.46 115 |
|
| testing91 | | | 85.93 56 | 85.31 67 | 87.78 32 | 93.59 57 | 71.47 19 | 93.50 100 | 95.08 26 | 80.26 58 | 80.53 112 | 91.93 152 | 70.43 43 | 96.51 127 | 80.32 129 | 82.13 176 | 95.37 63 |
|
| APD-MVS |  | | 85.93 56 | 85.99 54 | 85.76 98 | 95.98 26 | 65.21 163 | 93.59 95 | 92.58 125 | 66.54 288 | 86.17 52 | 95.88 41 | 63.83 97 | 97.00 99 | 86.39 73 | 92.94 57 | 95.06 82 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| PAPM | | | 85.89 58 | 85.46 64 | 87.18 49 | 88.20 203 | 72.42 15 | 92.41 146 | 92.77 114 | 82.11 32 | 80.34 115 | 93.07 123 | 68.27 51 | 95.02 189 | 78.39 147 | 93.59 49 | 94.09 130 |
|
| CS-MVS | | | 85.80 59 | 86.65 44 | 83.27 186 | 92.00 106 | 58.92 308 | 95.31 31 | 91.86 157 | 79.97 63 | 84.82 67 | 95.40 54 | 62.26 122 | 95.51 177 | 86.11 75 | 92.08 68 | 95.37 63 |
|
| fmvsm_s_conf0.5_n_a | | | 85.75 60 | 86.09 52 | 84.72 135 | 85.73 259 | 63.58 210 | 93.79 85 | 89.32 259 | 81.42 43 | 90.21 23 | 96.91 14 | 62.41 121 | 97.67 53 | 94.48 10 | 80.56 191 | 92.90 171 |
|
| test_fmvsmconf0.1_n | | | 85.71 61 | 86.08 53 | 84.62 142 | 80.83 320 | 62.33 242 | 93.84 82 | 88.81 285 | 83.50 19 | 87.00 45 | 96.01 39 | 63.36 108 | 96.93 111 | 94.04 13 | 87.29 124 | 94.61 105 |
|
| CDPH-MVS | | | 85.71 61 | 85.46 64 | 86.46 74 | 94.75 34 | 67.19 112 | 93.89 77 | 92.83 113 | 70.90 241 | 83.09 84 | 95.28 59 | 63.62 102 | 97.36 73 | 80.63 125 | 94.18 37 | 94.84 92 |
|
| casdiffmvs_mvg |  | | 85.66 63 | 85.18 69 | 87.09 52 | 88.22 202 | 69.35 58 | 93.74 88 | 91.89 155 | 81.47 39 | 80.10 117 | 91.45 161 | 64.80 86 | 96.35 134 | 87.23 65 | 87.69 119 | 95.58 55 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| fmvsm_s_conf0.1_n | | | 85.61 64 | 85.93 55 | 84.68 138 | 82.95 303 | 63.48 215 | 94.03 70 | 89.46 253 | 81.69 36 | 89.86 26 | 96.74 20 | 61.85 127 | 97.75 49 | 94.74 9 | 82.01 178 | 92.81 173 |
|
| MGCFI-Net | | | 85.59 65 | 85.73 60 | 85.17 119 | 91.41 127 | 62.44 238 | 92.87 124 | 91.31 182 | 79.65 70 | 86.99 46 | 95.14 69 | 62.90 117 | 96.12 143 | 87.13 66 | 84.13 159 | 96.96 13 |
|
| GDP-MVS | | | 85.54 66 | 85.32 66 | 86.18 83 | 87.64 218 | 67.95 94 | 92.91 123 | 92.36 130 | 77.81 104 | 83.69 78 | 94.31 96 | 72.84 29 | 96.41 132 | 80.39 128 | 85.95 139 | 94.19 123 |
|
| DeepC-MVS | | 77.85 3 | 85.52 67 | 85.24 68 | 86.37 78 | 88.80 185 | 66.64 129 | 92.15 153 | 93.68 76 | 81.07 48 | 76.91 157 | 93.64 113 | 62.59 119 | 98.44 31 | 85.50 78 | 92.84 59 | 94.03 134 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| casdiffmvs |  | | 85.37 68 | 84.87 75 | 86.84 59 | 88.25 200 | 69.07 62 | 93.04 116 | 91.76 162 | 81.27 46 | 80.84 108 | 92.07 149 | 64.23 92 | 96.06 149 | 84.98 85 | 87.43 123 | 95.39 61 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| ZNCC-MVS | | | 85.33 69 | 85.08 71 | 86.06 86 | 93.09 72 | 65.65 152 | 93.89 77 | 93.41 90 | 73.75 165 | 79.94 119 | 94.68 81 | 60.61 139 | 98.03 38 | 82.63 109 | 93.72 46 | 94.52 111 |
|
| MP-MVS-pluss | | | 85.24 70 | 85.13 70 | 85.56 104 | 91.42 124 | 65.59 154 | 91.54 184 | 92.51 127 | 74.56 148 | 80.62 110 | 95.64 46 | 59.15 156 | 97.00 99 | 86.94 69 | 93.80 43 | 94.07 132 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| testing222 | | | 85.18 71 | 84.69 78 | 86.63 67 | 92.91 77 | 69.91 42 | 92.61 137 | 95.80 9 | 80.31 57 | 80.38 114 | 92.27 143 | 68.73 49 | 95.19 186 | 75.94 159 | 83.27 164 | 94.81 96 |
|
| PAPR | | | 85.15 72 | 84.47 79 | 87.18 49 | 96.02 25 | 68.29 81 | 91.85 172 | 93.00 108 | 76.59 126 | 79.03 131 | 95.00 70 | 61.59 129 | 97.61 60 | 78.16 148 | 89.00 105 | 95.63 53 |
|
| fmvsm_s_conf0.5_n_2 | | | 85.06 73 | 85.60 62 | 83.44 183 | 86.92 239 | 60.53 282 | 94.41 52 | 87.31 318 | 83.30 20 | 88.72 33 | 96.72 21 | 54.28 219 | 97.75 49 | 94.07 12 | 84.68 151 | 92.04 196 |
|
| MP-MVS |  | | 85.02 74 | 84.97 73 | 85.17 119 | 92.60 88 | 64.27 190 | 93.24 109 | 92.27 133 | 73.13 176 | 79.63 123 | 94.43 87 | 61.90 125 | 97.17 87 | 85.00 84 | 92.56 61 | 94.06 133 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| baseline | | | 85.01 75 | 84.44 80 | 86.71 64 | 88.33 197 | 68.73 71 | 90.24 239 | 91.82 161 | 81.05 49 | 81.18 102 | 92.50 135 | 63.69 100 | 96.08 148 | 84.45 91 | 86.71 133 | 95.32 68 |
|
| CHOSEN 1792x2688 | | | 84.98 76 | 83.45 94 | 89.57 11 | 89.94 155 | 75.14 6 | 92.07 159 | 92.32 131 | 81.87 34 | 75.68 166 | 88.27 209 | 60.18 142 | 98.60 27 | 80.46 127 | 90.27 94 | 94.96 86 |
|
| MVSMamba_PlusPlus | | | 84.97 77 | 83.65 88 | 88.93 14 | 90.17 151 | 74.04 8 | 87.84 286 | 92.69 118 | 62.18 326 | 81.47 99 | 87.64 223 | 71.47 40 | 96.28 136 | 84.69 88 | 94.74 31 | 96.47 28 |
|
| EIA-MVS | | | 84.84 78 | 84.88 74 | 84.69 137 | 91.30 129 | 62.36 241 | 93.85 79 | 92.04 145 | 79.45 73 | 79.33 128 | 94.28 98 | 62.42 120 | 96.35 134 | 80.05 130 | 91.25 83 | 95.38 62 |
|
| fmvsm_s_conf0.1_n_a | | | 84.76 79 | 84.84 76 | 84.53 144 | 80.23 330 | 63.50 214 | 92.79 126 | 88.73 288 | 80.46 54 | 89.84 27 | 96.65 23 | 60.96 135 | 97.57 63 | 93.80 14 | 80.14 193 | 92.53 180 |
|
| HFP-MVS | | | 84.73 80 | 84.40 81 | 85.72 100 | 93.75 52 | 65.01 169 | 93.50 100 | 93.19 98 | 72.19 201 | 79.22 129 | 94.93 73 | 59.04 159 | 97.67 53 | 81.55 115 | 92.21 64 | 94.49 114 |
|
| MVS | | | 84.66 81 | 82.86 112 | 90.06 2 | 90.93 136 | 74.56 7 | 87.91 284 | 95.54 14 | 68.55 272 | 72.35 208 | 94.71 80 | 59.78 148 | 98.90 20 | 81.29 121 | 94.69 32 | 96.74 16 |
|
| GST-MVS | | | 84.63 82 | 84.29 82 | 85.66 102 | 92.82 81 | 65.27 161 | 93.04 116 | 93.13 101 | 73.20 174 | 78.89 132 | 94.18 101 | 59.41 153 | 97.85 45 | 81.45 117 | 92.48 63 | 93.86 142 |
|
| EC-MVSNet | | | 84.53 83 | 85.04 72 | 83.01 191 | 89.34 167 | 61.37 263 | 94.42 51 | 91.09 194 | 77.91 102 | 83.24 80 | 94.20 100 | 58.37 166 | 95.40 178 | 85.35 79 | 91.41 79 | 92.27 190 |
|
| fmvsm_s_conf0.1_n_2 | | | 84.40 84 | 84.78 77 | 83.27 186 | 85.25 266 | 60.41 285 | 94.13 63 | 85.69 338 | 83.05 22 | 87.99 36 | 96.37 28 | 52.75 235 | 97.68 51 | 93.75 15 | 84.05 160 | 91.71 200 |
|
| ACMMPR | | | 84.37 85 | 84.06 83 | 85.28 114 | 93.56 58 | 64.37 185 | 93.50 100 | 93.15 100 | 72.19 201 | 78.85 137 | 94.86 76 | 56.69 188 | 97.45 67 | 81.55 115 | 92.20 65 | 94.02 135 |
|
| region2R | | | 84.36 86 | 84.03 84 | 85.36 111 | 93.54 59 | 64.31 188 | 93.43 105 | 92.95 109 | 72.16 204 | 78.86 136 | 94.84 77 | 56.97 183 | 97.53 65 | 81.38 119 | 92.11 67 | 94.24 121 |
|
| LFMVS | | | 84.34 87 | 82.73 114 | 89.18 13 | 94.76 33 | 73.25 11 | 94.99 42 | 91.89 155 | 71.90 209 | 82.16 93 | 93.49 117 | 47.98 281 | 97.05 94 | 82.55 110 | 84.82 147 | 97.25 8 |
|
| test_yl | | | 84.28 88 | 83.16 104 | 87.64 34 | 94.52 37 | 69.24 59 | 95.78 18 | 95.09 24 | 69.19 264 | 81.09 103 | 92.88 129 | 57.00 181 | 97.44 68 | 81.11 123 | 81.76 180 | 96.23 38 |
|
| DCV-MVSNet | | | 84.28 88 | 83.16 104 | 87.64 34 | 94.52 37 | 69.24 59 | 95.78 18 | 95.09 24 | 69.19 264 | 81.09 103 | 92.88 129 | 57.00 181 | 97.44 68 | 81.11 123 | 81.76 180 | 96.23 38 |
|
| diffmvs |  | | 84.28 88 | 83.83 85 | 85.61 103 | 87.40 224 | 68.02 91 | 90.88 214 | 89.24 262 | 80.54 52 | 81.64 96 | 92.52 134 | 59.83 147 | 94.52 213 | 87.32 63 | 85.11 145 | 94.29 118 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| HY-MVS | | 76.49 5 | 84.28 88 | 83.36 100 | 87.02 55 | 92.22 95 | 67.74 98 | 84.65 312 | 94.50 44 | 79.15 81 | 82.23 92 | 87.93 218 | 66.88 62 | 96.94 109 | 80.53 126 | 82.20 175 | 96.39 33 |
|
| ETVMVS | | | 84.22 92 | 83.71 86 | 85.76 98 | 92.58 89 | 68.25 85 | 92.45 145 | 95.53 15 | 79.54 72 | 79.46 125 | 91.64 159 | 70.29 44 | 94.18 225 | 69.16 220 | 82.76 170 | 94.84 92 |
|
| MAR-MVS | | | 84.18 93 | 83.43 95 | 86.44 75 | 96.25 21 | 65.93 147 | 94.28 57 | 94.27 57 | 74.41 149 | 79.16 130 | 95.61 47 | 53.99 221 | 98.88 22 | 69.62 214 | 93.26 54 | 94.50 113 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| MVS_Test | | | 84.16 94 | 83.20 103 | 87.05 54 | 91.56 120 | 69.82 45 | 89.99 248 | 92.05 144 | 77.77 105 | 82.84 86 | 86.57 240 | 63.93 96 | 96.09 145 | 74.91 170 | 89.18 102 | 95.25 76 |
|
| CANet_DTU | | | 84.09 95 | 83.52 89 | 85.81 95 | 90.30 148 | 66.82 124 | 91.87 170 | 89.01 277 | 85.27 9 | 86.09 53 | 93.74 110 | 47.71 285 | 96.98 103 | 77.90 150 | 89.78 98 | 93.65 147 |
|
| ET-MVSNet_ETH3D | | | 84.01 96 | 83.15 106 | 86.58 70 | 90.78 141 | 70.89 28 | 94.74 47 | 94.62 41 | 81.44 42 | 58.19 341 | 93.64 113 | 73.64 25 | 92.35 290 | 82.66 108 | 78.66 208 | 96.50 27 |
|
| PVSNet_Blended_VisFu | | | 83.97 97 | 83.50 91 | 85.39 109 | 90.02 153 | 66.59 132 | 93.77 86 | 91.73 163 | 77.43 114 | 77.08 156 | 89.81 192 | 63.77 99 | 96.97 106 | 79.67 133 | 88.21 113 | 92.60 177 |
|
| MTAPA | | | 83.91 98 | 83.38 99 | 85.50 105 | 91.89 111 | 65.16 165 | 81.75 337 | 92.23 134 | 75.32 140 | 80.53 112 | 95.21 66 | 56.06 197 | 97.16 90 | 84.86 87 | 92.55 62 | 94.18 124 |
|
| XVS | | | 83.87 99 | 83.47 93 | 85.05 121 | 93.22 65 | 63.78 199 | 92.92 121 | 92.66 120 | 73.99 157 | 78.18 141 | 94.31 96 | 55.25 203 | 97.41 70 | 79.16 138 | 91.58 76 | 93.95 137 |
|
| Effi-MVS+ | | | 83.82 100 | 82.76 113 | 86.99 56 | 89.56 163 | 69.40 53 | 91.35 195 | 86.12 332 | 72.59 188 | 83.22 83 | 92.81 132 | 59.60 150 | 96.01 153 | 81.76 114 | 87.80 118 | 95.56 56 |
|
| test_fmvsmvis_n_1920 | | | 83.80 101 | 83.48 92 | 84.77 132 | 82.51 306 | 63.72 203 | 91.37 193 | 83.99 355 | 81.42 43 | 77.68 146 | 95.74 44 | 58.37 166 | 97.58 61 | 93.38 16 | 86.87 127 | 93.00 168 |
|
| EI-MVSNet-Vis-set | | | 83.77 102 | 83.67 87 | 84.06 159 | 92.79 84 | 63.56 211 | 91.76 177 | 94.81 32 | 79.65 70 | 77.87 144 | 94.09 103 | 63.35 109 | 97.90 42 | 79.35 136 | 79.36 200 | 90.74 218 |
|
| MVSFormer | | | 83.75 103 | 82.88 111 | 86.37 78 | 89.24 175 | 71.18 24 | 89.07 266 | 90.69 205 | 65.80 293 | 87.13 42 | 94.34 94 | 64.99 81 | 92.67 277 | 72.83 182 | 91.80 72 | 95.27 73 |
|
| CP-MVS | | | 83.71 104 | 83.40 98 | 84.65 139 | 93.14 70 | 63.84 197 | 94.59 49 | 92.28 132 | 71.03 239 | 77.41 150 | 94.92 74 | 55.21 206 | 96.19 140 | 81.32 120 | 90.70 88 | 93.91 139 |
|
| test_fmvsmconf0.01_n | | | 83.70 105 | 83.52 89 | 84.25 156 | 75.26 373 | 61.72 256 | 92.17 152 | 87.24 320 | 82.36 29 | 84.91 66 | 95.41 53 | 55.60 201 | 96.83 116 | 92.85 20 | 85.87 140 | 94.21 122 |
|
| baseline2 | | | 83.68 106 | 83.42 97 | 84.48 147 | 87.37 225 | 66.00 144 | 90.06 243 | 95.93 8 | 79.71 69 | 69.08 246 | 90.39 179 | 77.92 6 | 96.28 136 | 78.91 142 | 81.38 184 | 91.16 214 |
|
| reproduce-ours | | | 83.51 107 | 83.33 101 | 84.06 159 | 92.18 98 | 60.49 283 | 90.74 220 | 92.04 145 | 64.35 303 | 83.24 80 | 95.59 49 | 59.05 157 | 97.27 82 | 83.61 99 | 89.17 103 | 94.41 116 |
|
| our_new_method | | | 83.51 107 | 83.33 101 | 84.06 159 | 92.18 98 | 60.49 283 | 90.74 220 | 92.04 145 | 64.35 303 | 83.24 80 | 95.59 49 | 59.05 157 | 97.27 82 | 83.61 99 | 89.17 103 | 94.41 116 |
|
| thisisatest0515 | | | 83.41 109 | 82.49 118 | 86.16 84 | 89.46 166 | 68.26 83 | 93.54 97 | 94.70 37 | 74.31 152 | 75.75 164 | 90.92 169 | 72.62 31 | 96.52 126 | 69.64 212 | 81.50 183 | 93.71 145 |
|
| PVSNet_BlendedMVS | | | 83.38 110 | 83.43 95 | 83.22 188 | 93.76 50 | 67.53 105 | 94.06 65 | 93.61 78 | 79.13 82 | 81.00 106 | 85.14 255 | 63.19 111 | 97.29 78 | 87.08 67 | 73.91 244 | 84.83 314 |
|
| test2506 | | | 83.29 111 | 82.92 110 | 84.37 151 | 88.39 195 | 63.18 223 | 92.01 162 | 91.35 181 | 77.66 108 | 78.49 140 | 91.42 162 | 64.58 89 | 95.09 188 | 73.19 178 | 89.23 100 | 94.85 89 |
|
| PGM-MVS | | | 83.25 112 | 82.70 115 | 84.92 124 | 92.81 83 | 64.07 194 | 90.44 229 | 92.20 138 | 71.28 233 | 77.23 153 | 94.43 87 | 55.17 207 | 97.31 77 | 79.33 137 | 91.38 80 | 93.37 153 |
|
| HPM-MVS |  | | 83.25 112 | 82.95 109 | 84.17 157 | 92.25 94 | 62.88 232 | 90.91 211 | 91.86 157 | 70.30 250 | 77.12 154 | 93.96 107 | 56.75 186 | 96.28 136 | 82.04 112 | 91.34 82 | 93.34 154 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| reproduce_model | | | 83.15 114 | 82.96 107 | 83.73 170 | 92.02 102 | 59.74 296 | 90.37 233 | 92.08 143 | 63.70 310 | 82.86 85 | 95.48 52 | 58.62 163 | 97.17 87 | 83.06 105 | 88.42 111 | 94.26 119 |
|
| EI-MVSNet-UG-set | | | 83.14 115 | 82.96 107 | 83.67 175 | 92.28 93 | 63.19 222 | 91.38 192 | 94.68 38 | 79.22 79 | 76.60 159 | 93.75 109 | 62.64 118 | 97.76 48 | 78.07 149 | 78.01 211 | 90.05 227 |
|
| VDD-MVS | | | 83.06 116 | 81.81 127 | 86.81 61 | 90.86 139 | 67.70 99 | 95.40 29 | 91.50 176 | 75.46 137 | 81.78 95 | 92.34 142 | 40.09 322 | 97.13 92 | 86.85 70 | 82.04 177 | 95.60 54 |
|
| h-mvs33 | | | 83.01 117 | 82.56 117 | 84.35 152 | 89.34 167 | 62.02 248 | 92.72 129 | 93.76 70 | 81.45 40 | 82.73 89 | 92.25 145 | 60.11 143 | 97.13 92 | 87.69 57 | 62.96 323 | 93.91 139 |
|
| PAPM_NR | | | 82.97 118 | 81.84 126 | 86.37 78 | 94.10 44 | 66.76 127 | 87.66 290 | 92.84 112 | 69.96 254 | 74.07 185 | 93.57 115 | 63.10 114 | 97.50 66 | 70.66 207 | 90.58 90 | 94.85 89 |
|
| mPP-MVS | | | 82.96 119 | 82.44 119 | 84.52 145 | 92.83 79 | 62.92 230 | 92.76 127 | 91.85 159 | 71.52 229 | 75.61 169 | 94.24 99 | 53.48 229 | 96.99 102 | 78.97 141 | 90.73 87 | 93.64 148 |
|
| SR-MVS | | | 82.81 120 | 82.58 116 | 83.50 180 | 93.35 63 | 61.16 266 | 92.23 151 | 91.28 186 | 64.48 302 | 81.27 100 | 95.28 59 | 53.71 225 | 95.86 155 | 82.87 107 | 88.77 108 | 93.49 151 |
|
| DP-MVS Recon | | | 82.73 121 | 81.65 128 | 85.98 88 | 97.31 4 | 67.06 117 | 95.15 36 | 91.99 149 | 69.08 267 | 76.50 161 | 93.89 108 | 54.48 215 | 98.20 35 | 70.76 205 | 85.66 142 | 92.69 174 |
|
| CLD-MVS | | | 82.73 121 | 82.35 121 | 83.86 166 | 87.90 210 | 67.65 101 | 95.45 28 | 92.18 141 | 85.06 10 | 72.58 201 | 92.27 143 | 52.46 238 | 95.78 157 | 84.18 93 | 79.06 203 | 88.16 254 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| sss | | | 82.71 123 | 82.38 120 | 83.73 170 | 89.25 172 | 59.58 299 | 92.24 150 | 94.89 29 | 77.96 100 | 79.86 120 | 92.38 140 | 56.70 187 | 97.05 94 | 77.26 153 | 80.86 188 | 94.55 107 |
|
| 3Dnovator | | 73.91 6 | 82.69 124 | 80.82 141 | 88.31 26 | 89.57 162 | 71.26 22 | 92.60 138 | 94.39 52 | 78.84 89 | 67.89 266 | 92.48 138 | 48.42 276 | 98.52 28 | 68.80 225 | 94.40 36 | 95.15 78 |
|
| RRT-MVS | | | 82.61 125 | 81.16 132 | 86.96 57 | 91.10 133 | 68.75 70 | 87.70 289 | 92.20 138 | 76.97 117 | 72.68 197 | 87.10 234 | 51.30 250 | 96.41 132 | 83.56 101 | 87.84 117 | 95.74 50 |
|
| MVSTER | | | 82.47 126 | 82.05 122 | 83.74 168 | 92.68 86 | 69.01 64 | 91.90 169 | 93.21 95 | 79.83 65 | 72.14 209 | 85.71 251 | 74.72 17 | 94.72 200 | 75.72 161 | 72.49 254 | 87.50 260 |
|
| TESTMET0.1,1 | | | 82.41 127 | 81.98 125 | 83.72 172 | 88.08 204 | 63.74 201 | 92.70 131 | 93.77 69 | 79.30 77 | 77.61 148 | 87.57 225 | 58.19 169 | 94.08 229 | 73.91 176 | 86.68 134 | 93.33 156 |
|
| CostFormer | | | 82.33 128 | 81.15 133 | 85.86 93 | 89.01 180 | 68.46 77 | 82.39 334 | 93.01 106 | 75.59 135 | 80.25 116 | 81.57 298 | 72.03 37 | 94.96 192 | 79.06 140 | 77.48 219 | 94.16 126 |
|
| API-MVS | | | 82.28 129 | 80.53 149 | 87.54 41 | 96.13 22 | 70.59 31 | 93.63 93 | 91.04 200 | 65.72 295 | 75.45 171 | 92.83 131 | 56.11 196 | 98.89 21 | 64.10 269 | 89.75 99 | 93.15 161 |
|
| IB-MVS | | 77.80 4 | 82.18 130 | 80.46 151 | 87.35 45 | 89.14 177 | 70.28 35 | 95.59 26 | 95.17 22 | 78.85 88 | 70.19 234 | 85.82 249 | 70.66 42 | 97.67 53 | 72.19 194 | 66.52 295 | 94.09 130 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| xiu_mvs_v1_base_debu | | | 82.16 131 | 81.12 134 | 85.26 116 | 86.42 243 | 68.72 72 | 92.59 140 | 90.44 215 | 73.12 177 | 84.20 72 | 94.36 89 | 38.04 335 | 95.73 161 | 84.12 94 | 86.81 128 | 91.33 207 |
|
| xiu_mvs_v1_base | | | 82.16 131 | 81.12 134 | 85.26 116 | 86.42 243 | 68.72 72 | 92.59 140 | 90.44 215 | 73.12 177 | 84.20 72 | 94.36 89 | 38.04 335 | 95.73 161 | 84.12 94 | 86.81 128 | 91.33 207 |
|
| xiu_mvs_v1_base_debi | | | 82.16 131 | 81.12 134 | 85.26 116 | 86.42 243 | 68.72 72 | 92.59 140 | 90.44 215 | 73.12 177 | 84.20 72 | 94.36 89 | 38.04 335 | 95.73 161 | 84.12 94 | 86.81 128 | 91.33 207 |
|
| 3Dnovator+ | | 73.60 7 | 82.10 134 | 80.60 148 | 86.60 68 | 90.89 138 | 66.80 126 | 95.20 34 | 93.44 87 | 74.05 156 | 67.42 273 | 92.49 137 | 49.46 266 | 97.65 57 | 70.80 204 | 91.68 74 | 95.33 66 |
|
| MVS_111021_LR | | | 82.02 135 | 81.52 129 | 83.51 179 | 88.42 193 | 62.88 232 | 89.77 251 | 88.93 281 | 76.78 122 | 75.55 170 | 93.10 120 | 50.31 257 | 95.38 180 | 83.82 98 | 87.02 126 | 92.26 191 |
|
| PMMVS | | | 81.98 136 | 82.04 123 | 81.78 225 | 89.76 159 | 56.17 334 | 91.13 207 | 90.69 205 | 77.96 100 | 80.09 118 | 93.57 115 | 46.33 295 | 94.99 191 | 81.41 118 | 87.46 122 | 94.17 125 |
|
| baseline1 | | | 81.84 137 | 81.03 138 | 84.28 155 | 91.60 118 | 66.62 130 | 91.08 208 | 91.66 170 | 81.87 34 | 74.86 176 | 91.67 158 | 69.98 46 | 94.92 195 | 71.76 197 | 64.75 310 | 91.29 212 |
|
| EPP-MVSNet | | | 81.79 138 | 81.52 129 | 82.61 201 | 88.77 186 | 60.21 290 | 93.02 118 | 93.66 77 | 68.52 273 | 72.90 195 | 90.39 179 | 72.19 36 | 94.96 192 | 74.93 169 | 79.29 202 | 92.67 175 |
|
| WBMVS | | | 81.67 139 | 80.98 140 | 83.72 172 | 93.07 73 | 69.40 53 | 94.33 55 | 93.05 104 | 76.84 120 | 72.05 211 | 84.14 266 | 74.49 19 | 93.88 243 | 72.76 185 | 68.09 283 | 87.88 256 |
|
| test_vis1_n_1920 | | | 81.66 140 | 82.01 124 | 80.64 252 | 82.24 308 | 55.09 342 | 94.76 46 | 86.87 322 | 81.67 37 | 84.40 71 | 94.63 82 | 38.17 332 | 94.67 204 | 91.98 29 | 83.34 163 | 92.16 194 |
|
| APD-MVS_3200maxsize | | | 81.64 141 | 81.32 131 | 82.59 202 | 92.36 91 | 58.74 310 | 91.39 190 | 91.01 201 | 63.35 314 | 79.72 122 | 94.62 83 | 51.82 241 | 96.14 142 | 79.71 132 | 87.93 116 | 92.89 172 |
|
| mvsmamba | | | 81.55 142 | 80.72 143 | 84.03 163 | 91.42 124 | 66.93 122 | 83.08 328 | 89.13 270 | 78.55 94 | 67.50 271 | 87.02 235 | 51.79 243 | 90.07 331 | 87.48 60 | 90.49 92 | 95.10 81 |
|
| ACMMP |  | | 81.49 143 | 80.67 145 | 83.93 165 | 91.71 116 | 62.90 231 | 92.13 154 | 92.22 137 | 71.79 216 | 71.68 217 | 93.49 117 | 50.32 256 | 96.96 107 | 78.47 146 | 84.22 158 | 91.93 198 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| CDS-MVSNet | | | 81.43 144 | 80.74 142 | 83.52 177 | 86.26 247 | 64.45 179 | 92.09 157 | 90.65 209 | 75.83 133 | 73.95 187 | 89.81 192 | 63.97 95 | 92.91 267 | 71.27 200 | 82.82 167 | 93.20 160 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| mvs_anonymous | | | 81.36 145 | 79.99 156 | 85.46 106 | 90.39 147 | 68.40 78 | 86.88 301 | 90.61 210 | 74.41 149 | 70.31 233 | 84.67 260 | 63.79 98 | 92.32 292 | 73.13 179 | 85.70 141 | 95.67 51 |
|
| ECVR-MVS |  | | 81.29 146 | 80.38 152 | 84.01 164 | 88.39 195 | 61.96 250 | 92.56 143 | 86.79 324 | 77.66 108 | 76.63 158 | 91.42 162 | 46.34 294 | 95.24 185 | 74.36 174 | 89.23 100 | 94.85 89 |
|
| thisisatest0530 | | | 81.15 147 | 80.07 153 | 84.39 150 | 88.26 199 | 65.63 153 | 91.40 188 | 94.62 41 | 71.27 234 | 70.93 224 | 89.18 198 | 72.47 32 | 96.04 150 | 65.62 258 | 76.89 225 | 91.49 203 |
|
| Fast-Effi-MVS+ | | | 81.14 148 | 80.01 155 | 84.51 146 | 90.24 149 | 65.86 148 | 94.12 64 | 89.15 268 | 73.81 164 | 75.37 172 | 88.26 210 | 57.26 176 | 94.53 212 | 66.97 243 | 84.92 146 | 93.15 161 |
|
| HQP-MVS | | | 81.14 148 | 80.64 146 | 82.64 200 | 87.54 220 | 63.66 208 | 94.06 65 | 91.70 168 | 79.80 66 | 74.18 181 | 90.30 181 | 51.63 246 | 95.61 169 | 77.63 151 | 78.90 204 | 88.63 245 |
|
| hse-mvs2 | | | 81.12 150 | 81.11 137 | 81.16 239 | 86.52 242 | 57.48 323 | 89.40 259 | 91.16 189 | 81.45 40 | 82.73 89 | 90.49 177 | 60.11 143 | 94.58 205 | 87.69 57 | 60.41 350 | 91.41 206 |
|
| SR-MVS-dyc-post | | | 81.06 151 | 80.70 144 | 82.15 216 | 92.02 102 | 58.56 312 | 90.90 212 | 90.45 212 | 62.76 321 | 78.89 132 | 94.46 85 | 51.26 251 | 95.61 169 | 78.77 144 | 86.77 131 | 92.28 187 |
|
| HyFIR lowres test | | | 81.03 152 | 79.56 163 | 85.43 107 | 87.81 214 | 68.11 89 | 90.18 240 | 90.01 236 | 70.65 247 | 72.95 194 | 86.06 247 | 63.61 103 | 94.50 214 | 75.01 168 | 79.75 197 | 93.67 146 |
|
| nrg030 | | | 80.93 153 | 79.86 158 | 84.13 158 | 83.69 292 | 68.83 68 | 93.23 110 | 91.20 187 | 75.55 136 | 75.06 174 | 88.22 213 | 63.04 115 | 94.74 199 | 81.88 113 | 66.88 292 | 88.82 243 |
|
| Vis-MVSNet |  | | 80.92 154 | 79.98 157 | 83.74 168 | 88.48 190 | 61.80 252 | 93.44 104 | 88.26 305 | 73.96 160 | 77.73 145 | 91.76 155 | 49.94 261 | 94.76 197 | 65.84 255 | 90.37 93 | 94.65 103 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| test1111 | | | 80.84 155 | 80.02 154 | 83.33 184 | 87.87 211 | 60.76 274 | 92.62 136 | 86.86 323 | 77.86 103 | 75.73 165 | 91.39 164 | 46.35 293 | 94.70 203 | 72.79 184 | 88.68 109 | 94.52 111 |
|
| UWE-MVS | | | 80.81 156 | 81.01 139 | 80.20 262 | 89.33 169 | 57.05 328 | 91.91 168 | 94.71 36 | 75.67 134 | 75.01 175 | 89.37 196 | 63.13 113 | 91.44 315 | 67.19 240 | 82.80 169 | 92.12 195 |
|
| 1314 | | | 80.70 157 | 78.95 175 | 85.94 90 | 87.77 217 | 67.56 103 | 87.91 284 | 92.55 126 | 72.17 203 | 67.44 272 | 93.09 121 | 50.27 258 | 97.04 97 | 71.68 199 | 87.64 120 | 93.23 158 |
|
| tpmrst | | | 80.57 158 | 79.14 173 | 84.84 127 | 90.10 152 | 68.28 82 | 81.70 338 | 89.72 248 | 77.63 110 | 75.96 163 | 79.54 330 | 64.94 83 | 92.71 274 | 75.43 163 | 77.28 222 | 93.55 149 |
|
| 1112_ss | | | 80.56 159 | 79.83 159 | 82.77 195 | 88.65 187 | 60.78 272 | 92.29 148 | 88.36 299 | 72.58 189 | 72.46 205 | 94.95 71 | 65.09 80 | 93.42 254 | 66.38 249 | 77.71 213 | 94.10 129 |
|
| VDDNet | | | 80.50 160 | 78.26 183 | 87.21 47 | 86.19 248 | 69.79 47 | 94.48 50 | 91.31 182 | 60.42 340 | 79.34 127 | 90.91 170 | 38.48 330 | 96.56 124 | 82.16 111 | 81.05 186 | 95.27 73 |
|
| BH-w/o | | | 80.49 161 | 79.30 170 | 84.05 162 | 90.83 140 | 64.36 187 | 93.60 94 | 89.42 256 | 74.35 151 | 69.09 245 | 90.15 187 | 55.23 205 | 95.61 169 | 64.61 266 | 86.43 137 | 92.17 193 |
|
| test_cas_vis1_n_1920 | | | 80.45 162 | 80.61 147 | 79.97 271 | 78.25 356 | 57.01 330 | 94.04 69 | 88.33 300 | 79.06 86 | 82.81 88 | 93.70 111 | 38.65 327 | 91.63 307 | 90.82 38 | 79.81 195 | 91.27 213 |
|
| TAMVS | | | 80.37 163 | 79.45 166 | 83.13 190 | 85.14 269 | 63.37 216 | 91.23 201 | 90.76 204 | 74.81 147 | 72.65 199 | 88.49 204 | 60.63 138 | 92.95 262 | 69.41 216 | 81.95 179 | 93.08 164 |
|
| HQP_MVS | | | 80.34 164 | 79.75 160 | 82.12 218 | 86.94 235 | 62.42 239 | 93.13 112 | 91.31 182 | 78.81 90 | 72.53 202 | 89.14 200 | 50.66 254 | 95.55 174 | 76.74 154 | 78.53 209 | 88.39 251 |
|
| SDMVSNet | | | 80.26 165 | 78.88 176 | 84.40 149 | 89.25 172 | 67.63 102 | 85.35 308 | 93.02 105 | 76.77 123 | 70.84 225 | 87.12 232 | 47.95 282 | 96.09 145 | 85.04 83 | 74.55 235 | 89.48 237 |
|
| HPM-MVS_fast | | | 80.25 166 | 79.55 165 | 82.33 208 | 91.55 121 | 59.95 293 | 91.32 197 | 89.16 267 | 65.23 299 | 74.71 178 | 93.07 123 | 47.81 284 | 95.74 160 | 74.87 172 | 88.23 112 | 91.31 211 |
|
| ab-mvs | | | 80.18 167 | 78.31 182 | 85.80 96 | 88.44 192 | 65.49 159 | 83.00 331 | 92.67 119 | 71.82 215 | 77.36 151 | 85.01 256 | 54.50 212 | 96.59 121 | 76.35 158 | 75.63 232 | 95.32 68 |
|
| IS-MVSNet | | | 80.14 168 | 79.41 167 | 82.33 208 | 87.91 209 | 60.08 292 | 91.97 166 | 88.27 303 | 72.90 184 | 71.44 221 | 91.73 157 | 61.44 130 | 93.66 249 | 62.47 283 | 86.53 135 | 93.24 157 |
|
| test-LLR | | | 80.10 169 | 79.56 163 | 81.72 227 | 86.93 237 | 61.17 264 | 92.70 131 | 91.54 173 | 71.51 230 | 75.62 167 | 86.94 236 | 53.83 222 | 92.38 287 | 72.21 192 | 84.76 149 | 91.60 201 |
|
| PVSNet | | 73.49 8 | 80.05 170 | 78.63 178 | 84.31 153 | 90.92 137 | 64.97 170 | 92.47 144 | 91.05 199 | 79.18 80 | 72.43 206 | 90.51 176 | 37.05 347 | 94.06 231 | 68.06 229 | 86.00 138 | 93.90 141 |
|
| UA-Net | | | 80.02 171 | 79.65 161 | 81.11 241 | 89.33 169 | 57.72 319 | 86.33 305 | 89.00 280 | 77.44 113 | 81.01 105 | 89.15 199 | 59.33 154 | 95.90 154 | 61.01 290 | 84.28 156 | 89.73 233 |
|
| test-mter | | | 79.96 172 | 79.38 169 | 81.72 227 | 86.93 237 | 61.17 264 | 92.70 131 | 91.54 173 | 73.85 162 | 75.62 167 | 86.94 236 | 49.84 263 | 92.38 287 | 72.21 192 | 84.76 149 | 91.60 201 |
|
| QAPM | | | 79.95 173 | 77.39 200 | 87.64 34 | 89.63 161 | 71.41 20 | 93.30 108 | 93.70 75 | 65.34 298 | 67.39 275 | 91.75 156 | 47.83 283 | 98.96 16 | 57.71 306 | 89.81 96 | 92.54 179 |
|
| UGNet | | | 79.87 174 | 78.68 177 | 83.45 182 | 89.96 154 | 61.51 259 | 92.13 154 | 90.79 203 | 76.83 121 | 78.85 137 | 86.33 244 | 38.16 333 | 96.17 141 | 67.93 232 | 87.17 125 | 92.67 175 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| tpm2 | | | 79.80 175 | 77.95 189 | 85.34 112 | 88.28 198 | 68.26 83 | 81.56 340 | 91.42 179 | 70.11 252 | 77.59 149 | 80.50 316 | 67.40 59 | 94.26 223 | 67.34 237 | 77.35 220 | 93.51 150 |
|
| thres200 | | | 79.66 176 | 78.33 181 | 83.66 176 | 92.54 90 | 65.82 150 | 93.06 114 | 96.31 3 | 74.90 146 | 73.30 191 | 88.66 202 | 59.67 149 | 95.61 169 | 47.84 345 | 78.67 207 | 89.56 236 |
|
| CPTT-MVS | | | 79.59 177 | 79.16 172 | 80.89 250 | 91.54 122 | 59.80 295 | 92.10 156 | 88.54 296 | 60.42 340 | 72.96 193 | 93.28 119 | 48.27 277 | 92.80 271 | 78.89 143 | 86.50 136 | 90.06 226 |
|
| Test_1112_low_res | | | 79.56 178 | 78.60 179 | 82.43 204 | 88.24 201 | 60.39 287 | 92.09 157 | 87.99 310 | 72.10 205 | 71.84 213 | 87.42 227 | 64.62 88 | 93.04 258 | 65.80 256 | 77.30 221 | 93.85 143 |
|
| tttt0517 | | | 79.50 179 | 78.53 180 | 82.41 207 | 87.22 228 | 61.43 262 | 89.75 252 | 94.76 33 | 69.29 262 | 67.91 264 | 88.06 217 | 72.92 28 | 95.63 167 | 62.91 279 | 73.90 245 | 90.16 225 |
|
| reproduce_monomvs | | | 79.49 180 | 79.11 174 | 80.64 252 | 92.91 77 | 61.47 261 | 91.17 206 | 93.28 93 | 83.09 21 | 64.04 303 | 82.38 285 | 66.19 68 | 94.57 207 | 81.19 122 | 57.71 358 | 85.88 297 |
|
| FIs | | | 79.47 181 | 79.41 167 | 79.67 278 | 85.95 253 | 59.40 301 | 91.68 181 | 93.94 64 | 78.06 99 | 68.96 250 | 88.28 208 | 66.61 65 | 91.77 303 | 66.20 252 | 74.99 234 | 87.82 257 |
|
| BH-RMVSNet | | | 79.46 182 | 77.65 192 | 84.89 125 | 91.68 117 | 65.66 151 | 93.55 96 | 88.09 308 | 72.93 181 | 73.37 190 | 91.12 168 | 46.20 297 | 96.12 143 | 56.28 311 | 85.61 143 | 92.91 170 |
|
| PCF-MVS | | 73.15 9 | 79.29 183 | 77.63 193 | 84.29 154 | 86.06 251 | 65.96 146 | 87.03 297 | 91.10 193 | 69.86 256 | 69.79 241 | 90.64 172 | 57.54 175 | 96.59 121 | 64.37 268 | 82.29 171 | 90.32 223 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| Vis-MVSNet (Re-imp) | | | 79.24 184 | 79.57 162 | 78.24 298 | 88.46 191 | 52.29 353 | 90.41 231 | 89.12 271 | 74.24 153 | 69.13 244 | 91.91 153 | 65.77 74 | 90.09 330 | 59.00 302 | 88.09 114 | 92.33 184 |
|
| 114514_t | | | 79.17 185 | 77.67 191 | 83.68 174 | 95.32 29 | 65.53 157 | 92.85 125 | 91.60 172 | 63.49 312 | 67.92 263 | 90.63 174 | 46.65 290 | 95.72 165 | 67.01 242 | 83.54 161 | 89.79 231 |
|
| FA-MVS(test-final) | | | 79.12 186 | 77.23 202 | 84.81 131 | 90.54 143 | 63.98 196 | 81.35 343 | 91.71 165 | 71.09 238 | 74.85 177 | 82.94 278 | 52.85 233 | 97.05 94 | 67.97 230 | 81.73 182 | 93.41 152 |
|
| VPA-MVSNet | | | 79.03 187 | 78.00 187 | 82.11 221 | 85.95 253 | 64.48 178 | 93.22 111 | 94.66 39 | 75.05 144 | 74.04 186 | 84.95 257 | 52.17 240 | 93.52 251 | 74.90 171 | 67.04 291 | 88.32 253 |
|
| OPM-MVS | | | 79.00 188 | 78.09 185 | 81.73 226 | 83.52 295 | 63.83 198 | 91.64 183 | 90.30 222 | 76.36 129 | 71.97 212 | 89.93 191 | 46.30 296 | 95.17 187 | 75.10 166 | 77.70 214 | 86.19 286 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| EI-MVSNet | | | 78.97 189 | 78.22 184 | 81.25 236 | 85.33 263 | 62.73 235 | 89.53 256 | 93.21 95 | 72.39 196 | 72.14 209 | 90.13 188 | 60.99 133 | 94.72 200 | 67.73 234 | 72.49 254 | 86.29 283 |
|
| AdaColmap |  | | 78.94 190 | 77.00 206 | 84.76 133 | 96.34 17 | 65.86 148 | 92.66 135 | 87.97 312 | 62.18 326 | 70.56 227 | 92.37 141 | 43.53 310 | 97.35 74 | 64.50 267 | 82.86 166 | 91.05 216 |
|
| GeoE | | | 78.90 191 | 77.43 196 | 83.29 185 | 88.95 181 | 62.02 248 | 92.31 147 | 86.23 330 | 70.24 251 | 71.34 222 | 89.27 197 | 54.43 216 | 94.04 234 | 63.31 275 | 80.81 190 | 93.81 144 |
|
| miper_enhance_ethall | | | 78.86 192 | 77.97 188 | 81.54 231 | 88.00 208 | 65.17 164 | 91.41 186 | 89.15 268 | 75.19 142 | 68.79 253 | 83.98 269 | 67.17 60 | 92.82 269 | 72.73 186 | 65.30 301 | 86.62 280 |
|
| VPNet | | | 78.82 193 | 77.53 195 | 82.70 198 | 84.52 279 | 66.44 134 | 93.93 74 | 92.23 134 | 80.46 54 | 72.60 200 | 88.38 207 | 49.18 270 | 93.13 257 | 72.47 190 | 63.97 320 | 88.55 248 |
|
| EPNet_dtu | | | 78.80 194 | 79.26 171 | 77.43 306 | 88.06 205 | 49.71 368 | 91.96 167 | 91.95 151 | 77.67 107 | 76.56 160 | 91.28 166 | 58.51 164 | 90.20 328 | 56.37 310 | 80.95 187 | 92.39 182 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| tfpn200view9 | | | 78.79 195 | 77.43 196 | 82.88 193 | 92.21 96 | 64.49 176 | 92.05 160 | 96.28 4 | 73.48 171 | 71.75 215 | 88.26 210 | 60.07 145 | 95.32 181 | 45.16 356 | 77.58 216 | 88.83 241 |
|
| TR-MVS | | | 78.77 196 | 77.37 201 | 82.95 192 | 90.49 144 | 60.88 270 | 93.67 90 | 90.07 231 | 70.08 253 | 74.51 179 | 91.37 165 | 45.69 299 | 95.70 166 | 60.12 296 | 80.32 192 | 92.29 186 |
|
| thres400 | | | 78.68 197 | 77.43 196 | 82.43 204 | 92.21 96 | 64.49 176 | 92.05 160 | 96.28 4 | 73.48 171 | 71.75 215 | 88.26 210 | 60.07 145 | 95.32 181 | 45.16 356 | 77.58 216 | 87.48 261 |
|
| BH-untuned | | | 78.68 197 | 77.08 203 | 83.48 181 | 89.84 156 | 63.74 201 | 92.70 131 | 88.59 294 | 71.57 227 | 66.83 282 | 88.65 203 | 51.75 244 | 95.39 179 | 59.03 301 | 84.77 148 | 91.32 210 |
|
| OMC-MVS | | | 78.67 199 | 77.91 190 | 80.95 248 | 85.76 258 | 57.40 325 | 88.49 275 | 88.67 291 | 73.85 162 | 72.43 206 | 92.10 148 | 49.29 269 | 94.55 211 | 72.73 186 | 77.89 212 | 90.91 217 |
|
| tpm | | | 78.58 200 | 77.03 204 | 83.22 188 | 85.94 255 | 64.56 174 | 83.21 327 | 91.14 192 | 78.31 96 | 73.67 188 | 79.68 328 | 64.01 94 | 92.09 297 | 66.07 253 | 71.26 264 | 93.03 166 |
|
| OpenMVS |  | 70.45 11 | 78.54 201 | 75.92 220 | 86.41 77 | 85.93 256 | 71.68 18 | 92.74 128 | 92.51 127 | 66.49 289 | 64.56 297 | 91.96 150 | 43.88 309 | 98.10 37 | 54.61 316 | 90.65 89 | 89.44 239 |
|
| EPMVS | | | 78.49 202 | 75.98 219 | 86.02 87 | 91.21 131 | 69.68 51 | 80.23 352 | 91.20 187 | 75.25 141 | 72.48 204 | 78.11 339 | 54.65 211 | 93.69 248 | 57.66 307 | 83.04 165 | 94.69 99 |
|
| AUN-MVS | | | 78.37 203 | 77.43 196 | 81.17 238 | 86.60 241 | 57.45 324 | 89.46 258 | 91.16 189 | 74.11 155 | 74.40 180 | 90.49 177 | 55.52 202 | 94.57 207 | 74.73 173 | 60.43 349 | 91.48 204 |
|
| thres100view900 | | | 78.37 203 | 77.01 205 | 82.46 203 | 91.89 111 | 63.21 221 | 91.19 205 | 96.33 1 | 72.28 199 | 70.45 230 | 87.89 219 | 60.31 140 | 95.32 181 | 45.16 356 | 77.58 216 | 88.83 241 |
|
| GA-MVS | | | 78.33 205 | 76.23 215 | 84.65 139 | 83.65 293 | 66.30 138 | 91.44 185 | 90.14 229 | 76.01 131 | 70.32 232 | 84.02 268 | 42.50 314 | 94.72 200 | 70.98 202 | 77.00 224 | 92.94 169 |
|
| cascas | | | 78.18 206 | 75.77 222 | 85.41 108 | 87.14 230 | 69.11 61 | 92.96 120 | 91.15 191 | 66.71 287 | 70.47 228 | 86.07 246 | 37.49 341 | 96.48 129 | 70.15 210 | 79.80 196 | 90.65 219 |
|
| UniMVSNet_NR-MVSNet | | | 78.15 207 | 77.55 194 | 79.98 269 | 84.46 281 | 60.26 288 | 92.25 149 | 93.20 97 | 77.50 112 | 68.88 251 | 86.61 239 | 66.10 70 | 92.13 295 | 66.38 249 | 62.55 327 | 87.54 259 |
|
| thres600view7 | | | 78.00 208 | 76.66 210 | 82.03 223 | 91.93 108 | 63.69 206 | 91.30 198 | 96.33 1 | 72.43 194 | 70.46 229 | 87.89 219 | 60.31 140 | 94.92 195 | 42.64 368 | 76.64 226 | 87.48 261 |
|
| FC-MVSNet-test | | | 77.99 209 | 78.08 186 | 77.70 301 | 84.89 274 | 55.51 339 | 90.27 237 | 93.75 73 | 76.87 118 | 66.80 283 | 87.59 224 | 65.71 75 | 90.23 327 | 62.89 280 | 73.94 243 | 87.37 264 |
|
| Anonymous202405211 | | | 77.96 210 | 75.33 228 | 85.87 92 | 93.73 53 | 64.52 175 | 94.85 44 | 85.36 340 | 62.52 324 | 76.11 162 | 90.18 184 | 29.43 376 | 97.29 78 | 68.51 227 | 77.24 223 | 95.81 49 |
|
| cl22 | | | 77.94 211 | 76.78 208 | 81.42 233 | 87.57 219 | 64.93 172 | 90.67 223 | 88.86 284 | 72.45 193 | 67.63 270 | 82.68 282 | 64.07 93 | 92.91 267 | 71.79 195 | 65.30 301 | 86.44 281 |
|
| XXY-MVS | | | 77.94 211 | 76.44 212 | 82.43 204 | 82.60 305 | 64.44 180 | 92.01 162 | 91.83 160 | 73.59 170 | 70.00 237 | 85.82 249 | 54.43 216 | 94.76 197 | 69.63 213 | 68.02 285 | 88.10 255 |
|
| MS-PatchMatch | | | 77.90 213 | 76.50 211 | 82.12 218 | 85.99 252 | 69.95 41 | 91.75 179 | 92.70 116 | 73.97 159 | 62.58 319 | 84.44 264 | 41.11 319 | 95.78 157 | 63.76 272 | 92.17 66 | 80.62 361 |
|
| FMVSNet3 | | | 77.73 214 | 76.04 218 | 82.80 194 | 91.20 132 | 68.99 65 | 91.87 170 | 91.99 149 | 73.35 173 | 67.04 278 | 83.19 277 | 56.62 189 | 92.14 294 | 59.80 298 | 69.34 271 | 87.28 267 |
|
| miper_ehance_all_eth | | | 77.60 215 | 76.44 212 | 81.09 245 | 85.70 260 | 64.41 183 | 90.65 224 | 88.64 293 | 72.31 197 | 67.37 276 | 82.52 283 | 64.77 87 | 92.64 280 | 70.67 206 | 65.30 301 | 86.24 285 |
|
| UniMVSNet (Re) | | | 77.58 216 | 76.78 208 | 79.98 269 | 84.11 287 | 60.80 271 | 91.76 177 | 93.17 99 | 76.56 127 | 69.93 240 | 84.78 259 | 63.32 110 | 92.36 289 | 64.89 265 | 62.51 329 | 86.78 275 |
|
| PatchmatchNet |  | | 77.46 217 | 74.63 235 | 85.96 89 | 89.55 164 | 70.35 34 | 79.97 357 | 89.55 251 | 72.23 200 | 70.94 223 | 76.91 351 | 57.03 179 | 92.79 272 | 54.27 318 | 81.17 185 | 94.74 97 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| v2v482 | | | 77.42 218 | 75.65 224 | 82.73 196 | 80.38 326 | 67.13 116 | 91.85 172 | 90.23 226 | 75.09 143 | 69.37 242 | 83.39 275 | 53.79 224 | 94.44 215 | 71.77 196 | 65.00 307 | 86.63 279 |
|
| CHOSEN 280x420 | | | 77.35 219 | 76.95 207 | 78.55 293 | 87.07 232 | 62.68 236 | 69.71 389 | 82.95 362 | 68.80 269 | 71.48 220 | 87.27 231 | 66.03 71 | 84.00 373 | 76.47 157 | 82.81 168 | 88.95 240 |
|
| PS-MVSNAJss | | | 77.26 220 | 76.31 214 | 80.13 264 | 80.64 324 | 59.16 306 | 90.63 227 | 91.06 198 | 72.80 185 | 68.58 257 | 84.57 262 | 53.55 226 | 93.96 239 | 72.97 180 | 71.96 258 | 87.27 268 |
|
| gg-mvs-nofinetune | | | 77.18 221 | 74.31 242 | 85.80 96 | 91.42 124 | 68.36 79 | 71.78 383 | 94.72 35 | 49.61 383 | 77.12 154 | 45.92 409 | 77.41 8 | 93.98 238 | 67.62 235 | 93.16 55 | 95.05 83 |
|
| WB-MVSnew | | | 77.14 222 | 76.18 217 | 80.01 268 | 86.18 249 | 63.24 219 | 91.26 199 | 94.11 61 | 71.72 219 | 73.52 189 | 87.29 230 | 45.14 304 | 93.00 260 | 56.98 308 | 79.42 198 | 83.80 322 |
|
| MVP-Stereo | | | 77.12 223 | 76.23 215 | 79.79 276 | 81.72 313 | 66.34 137 | 89.29 260 | 90.88 202 | 70.56 248 | 62.01 322 | 82.88 279 | 49.34 267 | 94.13 226 | 65.55 260 | 93.80 43 | 78.88 375 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| sd_testset | | | 77.08 224 | 75.37 226 | 82.20 214 | 89.25 172 | 62.11 247 | 82.06 335 | 89.09 273 | 76.77 123 | 70.84 225 | 87.12 232 | 41.43 318 | 95.01 190 | 67.23 239 | 74.55 235 | 89.48 237 |
|
| MonoMVSNet | | | 76.99 225 | 75.08 231 | 82.73 196 | 83.32 297 | 63.24 219 | 86.47 304 | 86.37 326 | 79.08 84 | 66.31 285 | 79.30 332 | 49.80 264 | 91.72 304 | 79.37 135 | 65.70 299 | 93.23 158 |
|
| dmvs_re | | | 76.93 226 | 75.36 227 | 81.61 229 | 87.78 216 | 60.71 277 | 80.00 356 | 87.99 310 | 79.42 74 | 69.02 248 | 89.47 195 | 46.77 288 | 94.32 217 | 63.38 274 | 74.45 238 | 89.81 230 |
|
| X-MVStestdata | | | 76.86 227 | 74.13 246 | 85.05 121 | 93.22 65 | 63.78 199 | 92.92 121 | 92.66 120 | 73.99 157 | 78.18 141 | 10.19 424 | 55.25 203 | 97.41 70 | 79.16 138 | 91.58 76 | 93.95 137 |
|
| DU-MVS | | | 76.86 227 | 75.84 221 | 79.91 272 | 82.96 301 | 60.26 288 | 91.26 199 | 91.54 173 | 76.46 128 | 68.88 251 | 86.35 242 | 56.16 194 | 92.13 295 | 66.38 249 | 62.55 327 | 87.35 265 |
|
| Anonymous20240529 | | | 76.84 229 | 74.15 245 | 84.88 126 | 91.02 134 | 64.95 171 | 93.84 82 | 91.09 194 | 53.57 371 | 73.00 192 | 87.42 227 | 35.91 351 | 97.32 76 | 69.14 221 | 72.41 256 | 92.36 183 |
|
| c3_l | | | 76.83 230 | 75.47 225 | 80.93 249 | 85.02 272 | 64.18 193 | 90.39 232 | 88.11 307 | 71.66 220 | 66.65 284 | 81.64 296 | 63.58 106 | 92.56 281 | 69.31 218 | 62.86 324 | 86.04 291 |
|
| WR-MVS | | | 76.76 231 | 75.74 223 | 79.82 275 | 84.60 277 | 62.27 245 | 92.60 138 | 92.51 127 | 76.06 130 | 67.87 267 | 85.34 253 | 56.76 185 | 90.24 326 | 62.20 284 | 63.69 322 | 86.94 273 |
|
| v1144 | | | 76.73 232 | 74.88 232 | 82.27 210 | 80.23 330 | 66.60 131 | 91.68 181 | 90.21 228 | 73.69 167 | 69.06 247 | 81.89 291 | 52.73 236 | 94.40 216 | 69.21 219 | 65.23 304 | 85.80 298 |
|
| IterMVS-LS | | | 76.49 233 | 75.18 230 | 80.43 256 | 84.49 280 | 62.74 234 | 90.64 225 | 88.80 286 | 72.40 195 | 65.16 292 | 81.72 294 | 60.98 134 | 92.27 293 | 67.74 233 | 64.65 312 | 86.29 283 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| V42 | | | 76.46 234 | 74.55 238 | 82.19 215 | 79.14 344 | 67.82 96 | 90.26 238 | 89.42 256 | 73.75 165 | 68.63 256 | 81.89 291 | 51.31 249 | 94.09 228 | 71.69 198 | 64.84 308 | 84.66 315 |
|
| v148 | | | 76.19 235 | 74.47 240 | 81.36 234 | 80.05 332 | 64.44 180 | 91.75 179 | 90.23 226 | 73.68 168 | 67.13 277 | 80.84 311 | 55.92 199 | 93.86 246 | 68.95 223 | 61.73 338 | 85.76 301 |
|
| Effi-MVS+-dtu | | | 76.14 236 | 75.28 229 | 78.72 292 | 83.22 298 | 55.17 341 | 89.87 249 | 87.78 313 | 75.42 138 | 67.98 262 | 81.43 300 | 45.08 305 | 92.52 283 | 75.08 167 | 71.63 259 | 88.48 249 |
|
| cl____ | | | 76.07 237 | 74.67 233 | 80.28 259 | 85.15 268 | 61.76 254 | 90.12 241 | 88.73 288 | 71.16 235 | 65.43 289 | 81.57 298 | 61.15 131 | 92.95 262 | 66.54 246 | 62.17 331 | 86.13 289 |
|
| DIV-MVS_self_test | | | 76.07 237 | 74.67 233 | 80.28 259 | 85.14 269 | 61.75 255 | 90.12 241 | 88.73 288 | 71.16 235 | 65.42 290 | 81.60 297 | 61.15 131 | 92.94 266 | 66.54 246 | 62.16 333 | 86.14 287 |
|
| FMVSNet2 | | | 76.07 237 | 74.01 248 | 82.26 212 | 88.85 182 | 67.66 100 | 91.33 196 | 91.61 171 | 70.84 242 | 65.98 286 | 82.25 287 | 48.03 278 | 92.00 299 | 58.46 303 | 68.73 279 | 87.10 270 |
|
| v144192 | | | 76.05 240 | 74.03 247 | 82.12 218 | 79.50 338 | 66.55 133 | 91.39 190 | 89.71 249 | 72.30 198 | 68.17 260 | 81.33 303 | 51.75 244 | 94.03 236 | 67.94 231 | 64.19 315 | 85.77 299 |
|
| NR-MVSNet | | | 76.05 240 | 74.59 236 | 80.44 255 | 82.96 301 | 62.18 246 | 90.83 216 | 91.73 163 | 77.12 116 | 60.96 325 | 86.35 242 | 59.28 155 | 91.80 302 | 60.74 291 | 61.34 342 | 87.35 265 |
|
| v1192 | | | 75.98 242 | 73.92 249 | 82.15 216 | 79.73 334 | 66.24 140 | 91.22 202 | 89.75 243 | 72.67 187 | 68.49 258 | 81.42 301 | 49.86 262 | 94.27 221 | 67.08 241 | 65.02 306 | 85.95 294 |
|
| FE-MVS | | | 75.97 243 | 73.02 259 | 84.82 128 | 89.78 157 | 65.56 155 | 77.44 368 | 91.07 197 | 64.55 301 | 72.66 198 | 79.85 326 | 46.05 298 | 96.69 119 | 54.97 315 | 80.82 189 | 92.21 192 |
|
| eth_miper_zixun_eth | | | 75.96 244 | 74.40 241 | 80.66 251 | 84.66 276 | 63.02 225 | 89.28 261 | 88.27 303 | 71.88 211 | 65.73 287 | 81.65 295 | 59.45 151 | 92.81 270 | 68.13 228 | 60.53 347 | 86.14 287 |
|
| TranMVSNet+NR-MVSNet | | | 75.86 245 | 74.52 239 | 79.89 273 | 82.44 307 | 60.64 280 | 91.37 193 | 91.37 180 | 76.63 125 | 67.65 269 | 86.21 245 | 52.37 239 | 91.55 309 | 61.84 286 | 60.81 345 | 87.48 261 |
|
| SCA | | | 75.82 246 | 72.76 262 | 85.01 123 | 86.63 240 | 70.08 37 | 81.06 345 | 89.19 265 | 71.60 226 | 70.01 236 | 77.09 349 | 45.53 300 | 90.25 323 | 60.43 293 | 73.27 247 | 94.68 100 |
|
| LPG-MVS_test | | | 75.82 246 | 74.58 237 | 79.56 282 | 84.31 284 | 59.37 302 | 90.44 229 | 89.73 246 | 69.49 259 | 64.86 293 | 88.42 205 | 38.65 327 | 94.30 219 | 72.56 188 | 72.76 251 | 85.01 312 |
|
| GBi-Net | | | 75.65 248 | 73.83 250 | 81.10 242 | 88.85 182 | 65.11 166 | 90.01 245 | 90.32 218 | 70.84 242 | 67.04 278 | 80.25 321 | 48.03 278 | 91.54 310 | 59.80 298 | 69.34 271 | 86.64 276 |
|
| test1 | | | 75.65 248 | 73.83 250 | 81.10 242 | 88.85 182 | 65.11 166 | 90.01 245 | 90.32 218 | 70.84 242 | 67.04 278 | 80.25 321 | 48.03 278 | 91.54 310 | 59.80 298 | 69.34 271 | 86.64 276 |
|
| v1921920 | | | 75.63 250 | 73.49 255 | 82.06 222 | 79.38 339 | 66.35 136 | 91.07 210 | 89.48 252 | 71.98 206 | 67.99 261 | 81.22 306 | 49.16 272 | 93.90 242 | 66.56 245 | 64.56 313 | 85.92 296 |
|
| ACMP | | 71.68 10 | 75.58 251 | 74.23 244 | 79.62 280 | 84.97 273 | 59.64 297 | 90.80 217 | 89.07 275 | 70.39 249 | 62.95 315 | 87.30 229 | 38.28 331 | 93.87 244 | 72.89 181 | 71.45 262 | 85.36 308 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| v8 | | | 75.35 252 | 73.26 257 | 81.61 229 | 80.67 323 | 66.82 124 | 89.54 255 | 89.27 261 | 71.65 221 | 63.30 311 | 80.30 320 | 54.99 209 | 94.06 231 | 67.33 238 | 62.33 330 | 83.94 320 |
|
| tpm cat1 | | | 75.30 253 | 72.21 271 | 84.58 143 | 88.52 188 | 67.77 97 | 78.16 366 | 88.02 309 | 61.88 332 | 68.45 259 | 76.37 355 | 60.65 137 | 94.03 236 | 53.77 321 | 74.11 241 | 91.93 198 |
|
| PLC |  | 68.80 14 | 75.23 254 | 73.68 253 | 79.86 274 | 92.93 76 | 58.68 311 | 90.64 225 | 88.30 301 | 60.90 337 | 64.43 301 | 90.53 175 | 42.38 315 | 94.57 207 | 56.52 309 | 76.54 227 | 86.33 282 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| v1240 | | | 75.21 255 | 72.98 260 | 81.88 224 | 79.20 341 | 66.00 144 | 90.75 219 | 89.11 272 | 71.63 225 | 67.41 274 | 81.22 306 | 47.36 286 | 93.87 244 | 65.46 261 | 64.72 311 | 85.77 299 |
|
| Fast-Effi-MVS+-dtu | | | 75.04 256 | 73.37 256 | 80.07 265 | 80.86 319 | 59.52 300 | 91.20 204 | 85.38 339 | 71.90 209 | 65.20 291 | 84.84 258 | 41.46 317 | 92.97 261 | 66.50 248 | 72.96 250 | 87.73 258 |
|
| dp | | | 75.01 257 | 72.09 272 | 83.76 167 | 89.28 171 | 66.22 141 | 79.96 358 | 89.75 243 | 71.16 235 | 67.80 268 | 77.19 348 | 51.81 242 | 92.54 282 | 50.39 329 | 71.44 263 | 92.51 181 |
|
| TAPA-MVS | | 70.22 12 | 74.94 258 | 73.53 254 | 79.17 287 | 90.40 146 | 52.07 354 | 89.19 264 | 89.61 250 | 62.69 323 | 70.07 235 | 92.67 133 | 48.89 275 | 94.32 217 | 38.26 382 | 79.97 194 | 91.12 215 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| v10 | | | 74.77 259 | 72.54 268 | 81.46 232 | 80.33 328 | 66.71 128 | 89.15 265 | 89.08 274 | 70.94 240 | 63.08 314 | 79.86 325 | 52.52 237 | 94.04 234 | 65.70 257 | 62.17 331 | 83.64 323 |
|
| XVG-OURS-SEG-HR | | | 74.70 260 | 73.08 258 | 79.57 281 | 78.25 356 | 57.33 326 | 80.49 348 | 87.32 316 | 63.22 316 | 68.76 254 | 90.12 190 | 44.89 306 | 91.59 308 | 70.55 208 | 74.09 242 | 89.79 231 |
|
| ACMM | | 69.62 13 | 74.34 261 | 72.73 264 | 79.17 287 | 84.25 286 | 57.87 317 | 90.36 234 | 89.93 237 | 63.17 318 | 65.64 288 | 86.04 248 | 37.79 339 | 94.10 227 | 65.89 254 | 71.52 261 | 85.55 304 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| CNLPA | | | 74.31 262 | 72.30 270 | 80.32 257 | 91.49 123 | 61.66 257 | 90.85 215 | 80.72 368 | 56.67 363 | 63.85 306 | 90.64 172 | 46.75 289 | 90.84 318 | 53.79 320 | 75.99 231 | 88.47 250 |
|
| XVG-OURS | | | 74.25 263 | 72.46 269 | 79.63 279 | 78.45 354 | 57.59 322 | 80.33 350 | 87.39 315 | 63.86 308 | 68.76 254 | 89.62 194 | 40.50 321 | 91.72 304 | 69.00 222 | 74.25 240 | 89.58 234 |
|
| test_fmvs1 | | | 74.07 264 | 73.69 252 | 75.22 324 | 78.91 348 | 47.34 381 | 89.06 268 | 74.69 384 | 63.68 311 | 79.41 126 | 91.59 160 | 24.36 386 | 87.77 350 | 85.22 80 | 76.26 229 | 90.55 222 |
|
| CVMVSNet | | | 74.04 265 | 74.27 243 | 73.33 340 | 85.33 263 | 43.94 394 | 89.53 256 | 88.39 298 | 54.33 370 | 70.37 231 | 90.13 188 | 49.17 271 | 84.05 371 | 61.83 287 | 79.36 200 | 91.99 197 |
|
| Baseline_NR-MVSNet | | | 73.99 266 | 72.83 261 | 77.48 305 | 80.78 321 | 59.29 305 | 91.79 174 | 84.55 348 | 68.85 268 | 68.99 249 | 80.70 312 | 56.16 194 | 92.04 298 | 62.67 281 | 60.98 344 | 81.11 355 |
|
| pmmvs4 | | | 73.92 267 | 71.81 276 | 80.25 261 | 79.17 342 | 65.24 162 | 87.43 293 | 87.26 319 | 67.64 280 | 63.46 309 | 83.91 270 | 48.96 274 | 91.53 313 | 62.94 278 | 65.49 300 | 83.96 319 |
|
| D2MVS | | | 73.80 268 | 72.02 273 | 79.15 289 | 79.15 343 | 62.97 226 | 88.58 274 | 90.07 231 | 72.94 180 | 59.22 335 | 78.30 336 | 42.31 316 | 92.70 276 | 65.59 259 | 72.00 257 | 81.79 350 |
|
| CR-MVSNet | | | 73.79 269 | 70.82 284 | 82.70 198 | 83.15 299 | 67.96 92 | 70.25 386 | 84.00 353 | 73.67 169 | 69.97 238 | 72.41 371 | 57.82 172 | 89.48 335 | 52.99 324 | 73.13 248 | 90.64 220 |
|
| test_djsdf | | | 73.76 270 | 72.56 267 | 77.39 307 | 77.00 366 | 53.93 347 | 89.07 266 | 90.69 205 | 65.80 293 | 63.92 304 | 82.03 290 | 43.14 313 | 92.67 277 | 72.83 182 | 68.53 280 | 85.57 303 |
|
| pmmvs5 | | | 73.35 271 | 71.52 278 | 78.86 291 | 78.64 352 | 60.61 281 | 91.08 208 | 86.90 321 | 67.69 277 | 63.32 310 | 83.64 271 | 44.33 308 | 90.53 320 | 62.04 285 | 66.02 297 | 85.46 306 |
|
| Anonymous20231211 | | | 73.08 272 | 70.39 288 | 81.13 240 | 90.62 142 | 63.33 217 | 91.40 188 | 90.06 233 | 51.84 376 | 64.46 300 | 80.67 314 | 36.49 349 | 94.07 230 | 63.83 271 | 64.17 316 | 85.98 293 |
|
| tt0805 | | | 73.07 273 | 70.73 285 | 80.07 265 | 78.37 355 | 57.05 328 | 87.78 287 | 92.18 141 | 61.23 336 | 67.04 278 | 86.49 241 | 31.35 369 | 94.58 205 | 65.06 264 | 67.12 290 | 88.57 247 |
|
| miper_lstm_enhance | | | 73.05 274 | 71.73 277 | 77.03 311 | 83.80 290 | 58.32 314 | 81.76 336 | 88.88 282 | 69.80 257 | 61.01 324 | 78.23 338 | 57.19 177 | 87.51 354 | 65.34 262 | 59.53 352 | 85.27 311 |
|
| jajsoiax | | | 73.05 274 | 71.51 279 | 77.67 302 | 77.46 363 | 54.83 343 | 88.81 270 | 90.04 234 | 69.13 266 | 62.85 317 | 83.51 273 | 31.16 370 | 92.75 273 | 70.83 203 | 69.80 267 | 85.43 307 |
|
| LCM-MVSNet-Re | | | 72.93 276 | 71.84 275 | 76.18 320 | 88.49 189 | 48.02 376 | 80.07 355 | 70.17 396 | 73.96 160 | 52.25 366 | 80.09 324 | 49.98 260 | 88.24 344 | 67.35 236 | 84.23 157 | 92.28 187 |
|
| pm-mvs1 | | | 72.89 277 | 71.09 281 | 78.26 297 | 79.10 345 | 57.62 321 | 90.80 217 | 89.30 260 | 67.66 278 | 62.91 316 | 81.78 293 | 49.11 273 | 92.95 262 | 60.29 295 | 58.89 355 | 84.22 318 |
|
| tpmvs | | | 72.88 278 | 69.76 294 | 82.22 213 | 90.98 135 | 67.05 118 | 78.22 365 | 88.30 301 | 63.10 319 | 64.35 302 | 74.98 362 | 55.09 208 | 94.27 221 | 43.25 362 | 69.57 270 | 85.34 309 |
|
| test0.0.03 1 | | | 72.76 279 | 72.71 265 | 72.88 344 | 80.25 329 | 47.99 377 | 91.22 202 | 89.45 254 | 71.51 230 | 62.51 320 | 87.66 222 | 53.83 222 | 85.06 367 | 50.16 331 | 67.84 288 | 85.58 302 |
|
| UniMVSNet_ETH3D | | | 72.74 280 | 70.53 287 | 79.36 284 | 78.62 353 | 56.64 332 | 85.01 310 | 89.20 264 | 63.77 309 | 64.84 295 | 84.44 264 | 34.05 358 | 91.86 301 | 63.94 270 | 70.89 266 | 89.57 235 |
|
| mvs_tets | | | 72.71 281 | 71.11 280 | 77.52 303 | 77.41 364 | 54.52 345 | 88.45 276 | 89.76 242 | 68.76 271 | 62.70 318 | 83.26 276 | 29.49 375 | 92.71 274 | 70.51 209 | 69.62 269 | 85.34 309 |
|
| FMVSNet1 | | | 72.71 281 | 69.91 292 | 81.10 242 | 83.60 294 | 65.11 166 | 90.01 245 | 90.32 218 | 63.92 307 | 63.56 308 | 80.25 321 | 36.35 350 | 91.54 310 | 54.46 317 | 66.75 293 | 86.64 276 |
|
| test_fmvs1_n | | | 72.69 283 | 71.92 274 | 74.99 327 | 71.15 386 | 47.08 383 | 87.34 295 | 75.67 379 | 63.48 313 | 78.08 143 | 91.17 167 | 20.16 398 | 87.87 347 | 84.65 89 | 75.57 233 | 90.01 228 |
|
| IterMVS | | | 72.65 284 | 70.83 282 | 78.09 299 | 82.17 309 | 62.96 227 | 87.64 291 | 86.28 328 | 71.56 228 | 60.44 328 | 78.85 334 | 45.42 302 | 86.66 358 | 63.30 276 | 61.83 335 | 84.65 316 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| myMVS_eth3d | | | 72.58 285 | 72.74 263 | 72.10 352 | 87.87 211 | 49.45 370 | 88.07 280 | 89.01 277 | 72.91 182 | 63.11 312 | 88.10 214 | 63.63 101 | 85.54 363 | 32.73 397 | 69.23 274 | 81.32 353 |
|
| PatchMatch-RL | | | 72.06 286 | 69.98 289 | 78.28 296 | 89.51 165 | 55.70 338 | 83.49 320 | 83.39 360 | 61.24 335 | 63.72 307 | 82.76 280 | 34.77 355 | 93.03 259 | 53.37 323 | 77.59 215 | 86.12 290 |
|
| PVSNet_0 | | 68.08 15 | 71.81 287 | 68.32 303 | 82.27 210 | 84.68 275 | 62.31 244 | 88.68 272 | 90.31 221 | 75.84 132 | 57.93 346 | 80.65 315 | 37.85 338 | 94.19 224 | 69.94 211 | 29.05 412 | 90.31 224 |
|
| MIMVSNet | | | 71.64 288 | 68.44 301 | 81.23 237 | 81.97 312 | 64.44 180 | 73.05 380 | 88.80 286 | 69.67 258 | 64.59 296 | 74.79 364 | 32.79 361 | 87.82 348 | 53.99 319 | 76.35 228 | 91.42 205 |
|
| test_vis1_n | | | 71.63 289 | 70.73 285 | 74.31 334 | 69.63 392 | 47.29 382 | 86.91 299 | 72.11 390 | 63.21 317 | 75.18 173 | 90.17 185 | 20.40 396 | 85.76 362 | 84.59 90 | 74.42 239 | 89.87 229 |
|
| IterMVS-SCA-FT | | | 71.55 290 | 69.97 290 | 76.32 318 | 81.48 315 | 60.67 279 | 87.64 291 | 85.99 333 | 66.17 291 | 59.50 333 | 78.88 333 | 45.53 300 | 83.65 375 | 62.58 282 | 61.93 334 | 84.63 317 |
|
| v7n | | | 71.31 291 | 68.65 298 | 79.28 285 | 76.40 368 | 60.77 273 | 86.71 302 | 89.45 254 | 64.17 306 | 58.77 340 | 78.24 337 | 44.59 307 | 93.54 250 | 57.76 305 | 61.75 337 | 83.52 326 |
|
| anonymousdsp | | | 71.14 292 | 69.37 296 | 76.45 317 | 72.95 381 | 54.71 344 | 84.19 315 | 88.88 282 | 61.92 331 | 62.15 321 | 79.77 327 | 38.14 334 | 91.44 315 | 68.90 224 | 67.45 289 | 83.21 332 |
|
| F-COLMAP | | | 70.66 293 | 68.44 301 | 77.32 308 | 86.37 246 | 55.91 336 | 88.00 282 | 86.32 327 | 56.94 361 | 57.28 350 | 88.07 216 | 33.58 359 | 92.49 284 | 51.02 327 | 68.37 281 | 83.55 324 |
|
| WR-MVS_H | | | 70.59 294 | 69.94 291 | 72.53 346 | 81.03 318 | 51.43 358 | 87.35 294 | 92.03 148 | 67.38 281 | 60.23 330 | 80.70 312 | 55.84 200 | 83.45 377 | 46.33 352 | 58.58 357 | 82.72 339 |
|
| CP-MVSNet | | | 70.50 295 | 69.91 292 | 72.26 349 | 80.71 322 | 51.00 362 | 87.23 296 | 90.30 222 | 67.84 276 | 59.64 332 | 82.69 281 | 50.23 259 | 82.30 385 | 51.28 326 | 59.28 353 | 83.46 328 |
|
| RPMNet | | | 70.42 296 | 65.68 317 | 84.63 141 | 83.15 299 | 67.96 92 | 70.25 386 | 90.45 212 | 46.83 392 | 69.97 238 | 65.10 392 | 56.48 193 | 95.30 184 | 35.79 387 | 73.13 248 | 90.64 220 |
|
| testing3 | | | 70.38 297 | 70.83 282 | 69.03 364 | 85.82 257 | 43.93 395 | 90.72 222 | 90.56 211 | 68.06 275 | 60.24 329 | 86.82 238 | 64.83 85 | 84.12 369 | 26.33 405 | 64.10 317 | 79.04 374 |
|
| tfpnnormal | | | 70.10 298 | 67.36 307 | 78.32 295 | 83.45 296 | 60.97 269 | 88.85 269 | 92.77 114 | 64.85 300 | 60.83 326 | 78.53 335 | 43.52 311 | 93.48 252 | 31.73 400 | 61.70 339 | 80.52 362 |
|
| TransMVSNet (Re) | | | 70.07 299 | 67.66 305 | 77.31 309 | 80.62 325 | 59.13 307 | 91.78 176 | 84.94 344 | 65.97 292 | 60.08 331 | 80.44 317 | 50.78 253 | 91.87 300 | 48.84 338 | 45.46 386 | 80.94 357 |
|
| CL-MVSNet_self_test | | | 69.92 300 | 68.09 304 | 75.41 323 | 73.25 380 | 55.90 337 | 90.05 244 | 89.90 238 | 69.96 254 | 61.96 323 | 76.54 352 | 51.05 252 | 87.64 351 | 49.51 335 | 50.59 378 | 82.70 341 |
|
| DP-MVS | | | 69.90 301 | 66.48 309 | 80.14 263 | 95.36 28 | 62.93 228 | 89.56 253 | 76.11 377 | 50.27 382 | 57.69 348 | 85.23 254 | 39.68 323 | 95.73 161 | 33.35 392 | 71.05 265 | 81.78 351 |
|
| PS-CasMVS | | | 69.86 302 | 69.13 297 | 72.07 353 | 80.35 327 | 50.57 364 | 87.02 298 | 89.75 243 | 67.27 282 | 59.19 336 | 82.28 286 | 46.58 291 | 82.24 386 | 50.69 328 | 59.02 354 | 83.39 330 |
|
| Syy-MVS | | | 69.65 303 | 69.52 295 | 70.03 360 | 87.87 211 | 43.21 396 | 88.07 280 | 89.01 277 | 72.91 182 | 63.11 312 | 88.10 214 | 45.28 303 | 85.54 363 | 22.07 410 | 69.23 274 | 81.32 353 |
|
| MSDG | | | 69.54 304 | 65.73 316 | 80.96 247 | 85.11 271 | 63.71 204 | 84.19 315 | 83.28 361 | 56.95 360 | 54.50 357 | 84.03 267 | 31.50 367 | 96.03 151 | 42.87 366 | 69.13 276 | 83.14 334 |
|
| PEN-MVS | | | 69.46 305 | 68.56 299 | 72.17 351 | 79.27 340 | 49.71 368 | 86.90 300 | 89.24 262 | 67.24 285 | 59.08 337 | 82.51 284 | 47.23 287 | 83.54 376 | 48.42 340 | 57.12 359 | 83.25 331 |
|
| LS3D | | | 69.17 306 | 66.40 311 | 77.50 304 | 91.92 109 | 56.12 335 | 85.12 309 | 80.37 370 | 46.96 390 | 56.50 352 | 87.51 226 | 37.25 342 | 93.71 247 | 32.52 399 | 79.40 199 | 82.68 342 |
|
| PatchT | | | 69.11 307 | 65.37 321 | 80.32 257 | 82.07 311 | 63.68 207 | 67.96 396 | 87.62 314 | 50.86 380 | 69.37 242 | 65.18 391 | 57.09 178 | 88.53 341 | 41.59 371 | 66.60 294 | 88.74 244 |
|
| KD-MVS_2432*1600 | | | 69.03 308 | 66.37 312 | 77.01 312 | 85.56 261 | 61.06 267 | 81.44 341 | 90.25 224 | 67.27 282 | 58.00 344 | 76.53 353 | 54.49 213 | 87.63 352 | 48.04 342 | 35.77 403 | 82.34 345 |
|
| miper_refine_blended | | | 69.03 308 | 66.37 312 | 77.01 312 | 85.56 261 | 61.06 267 | 81.44 341 | 90.25 224 | 67.27 282 | 58.00 344 | 76.53 353 | 54.49 213 | 87.63 352 | 48.04 342 | 35.77 403 | 82.34 345 |
|
| mvsany_test1 | | | 68.77 310 | 68.56 299 | 69.39 362 | 73.57 379 | 45.88 390 | 80.93 346 | 60.88 410 | 59.65 346 | 71.56 218 | 90.26 183 | 43.22 312 | 75.05 397 | 74.26 175 | 62.70 326 | 87.25 269 |
|
| ACMH | | 63.93 17 | 68.62 311 | 64.81 323 | 80.03 267 | 85.22 267 | 63.25 218 | 87.72 288 | 84.66 346 | 60.83 338 | 51.57 370 | 79.43 331 | 27.29 382 | 94.96 192 | 41.76 369 | 64.84 308 | 81.88 349 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| EG-PatchMatch MVS | | | 68.55 312 | 65.41 320 | 77.96 300 | 78.69 351 | 62.93 228 | 89.86 250 | 89.17 266 | 60.55 339 | 50.27 375 | 77.73 343 | 22.60 392 | 94.06 231 | 47.18 348 | 72.65 253 | 76.88 385 |
|
| ADS-MVSNet | | | 68.54 313 | 64.38 330 | 81.03 246 | 88.06 205 | 66.90 123 | 68.01 394 | 84.02 352 | 57.57 354 | 64.48 298 | 69.87 381 | 38.68 325 | 89.21 337 | 40.87 373 | 67.89 286 | 86.97 271 |
|
| DTE-MVSNet | | | 68.46 314 | 67.33 308 | 71.87 355 | 77.94 360 | 49.00 374 | 86.16 306 | 88.58 295 | 66.36 290 | 58.19 341 | 82.21 288 | 46.36 292 | 83.87 374 | 44.97 359 | 55.17 366 | 82.73 338 |
|
| mmtdpeth | | | 68.33 315 | 66.37 312 | 74.21 335 | 82.81 304 | 51.73 355 | 84.34 314 | 80.42 369 | 67.01 286 | 71.56 218 | 68.58 385 | 30.52 373 | 92.35 290 | 75.89 160 | 36.21 401 | 78.56 379 |
|
| our_test_3 | | | 68.29 316 | 64.69 325 | 79.11 290 | 78.92 346 | 64.85 173 | 88.40 277 | 85.06 342 | 60.32 342 | 52.68 364 | 76.12 357 | 40.81 320 | 89.80 334 | 44.25 361 | 55.65 364 | 82.67 343 |
|
| Patchmatch-RL test | | | 68.17 317 | 64.49 328 | 79.19 286 | 71.22 385 | 53.93 347 | 70.07 388 | 71.54 394 | 69.22 263 | 56.79 351 | 62.89 396 | 56.58 190 | 88.61 338 | 69.53 215 | 52.61 373 | 95.03 85 |
|
| XVG-ACMP-BASELINE | | | 68.04 318 | 65.53 319 | 75.56 322 | 74.06 378 | 52.37 352 | 78.43 362 | 85.88 334 | 62.03 329 | 58.91 339 | 81.21 308 | 20.38 397 | 91.15 317 | 60.69 292 | 68.18 282 | 83.16 333 |
|
| FMVSNet5 | | | 68.04 318 | 65.66 318 | 75.18 326 | 84.43 282 | 57.89 316 | 83.54 319 | 86.26 329 | 61.83 333 | 53.64 362 | 73.30 367 | 37.15 345 | 85.08 366 | 48.99 337 | 61.77 336 | 82.56 344 |
|
| ppachtmachnet_test | | | 67.72 320 | 63.70 332 | 79.77 277 | 78.92 346 | 66.04 143 | 88.68 272 | 82.90 363 | 60.11 344 | 55.45 354 | 75.96 358 | 39.19 324 | 90.55 319 | 39.53 377 | 52.55 374 | 82.71 340 |
|
| ACMH+ | | 65.35 16 | 67.65 321 | 64.55 326 | 76.96 314 | 84.59 278 | 57.10 327 | 88.08 279 | 80.79 367 | 58.59 352 | 53.00 363 | 81.09 310 | 26.63 384 | 92.95 262 | 46.51 350 | 61.69 340 | 80.82 358 |
|
| pmmvs6 | | | 67.57 322 | 64.76 324 | 76.00 321 | 72.82 383 | 53.37 349 | 88.71 271 | 86.78 325 | 53.19 372 | 57.58 349 | 78.03 340 | 35.33 354 | 92.41 286 | 55.56 313 | 54.88 368 | 82.21 347 |
|
| Anonymous20231206 | | | 67.53 323 | 65.78 315 | 72.79 345 | 74.95 374 | 47.59 379 | 88.23 278 | 87.32 316 | 61.75 334 | 58.07 343 | 77.29 346 | 37.79 339 | 87.29 356 | 42.91 364 | 63.71 321 | 83.48 327 |
|
| Patchmtry | | | 67.53 323 | 63.93 331 | 78.34 294 | 82.12 310 | 64.38 184 | 68.72 391 | 84.00 353 | 48.23 389 | 59.24 334 | 72.41 371 | 57.82 172 | 89.27 336 | 46.10 353 | 56.68 363 | 81.36 352 |
|
| USDC | | | 67.43 325 | 64.51 327 | 76.19 319 | 77.94 360 | 55.29 340 | 78.38 363 | 85.00 343 | 73.17 175 | 48.36 383 | 80.37 318 | 21.23 394 | 92.48 285 | 52.15 325 | 64.02 319 | 80.81 359 |
|
| ADS-MVSNet2 | | | 66.90 326 | 63.44 334 | 77.26 310 | 88.06 205 | 60.70 278 | 68.01 394 | 75.56 381 | 57.57 354 | 64.48 298 | 69.87 381 | 38.68 325 | 84.10 370 | 40.87 373 | 67.89 286 | 86.97 271 |
|
| CMPMVS |  | 48.56 21 | 66.77 327 | 64.41 329 | 73.84 337 | 70.65 389 | 50.31 365 | 77.79 367 | 85.73 337 | 45.54 394 | 44.76 393 | 82.14 289 | 35.40 353 | 90.14 329 | 63.18 277 | 74.54 237 | 81.07 356 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| OpenMVS_ROB |  | 61.12 18 | 66.39 328 | 62.92 337 | 76.80 316 | 76.51 367 | 57.77 318 | 89.22 262 | 83.41 359 | 55.48 367 | 53.86 361 | 77.84 341 | 26.28 385 | 93.95 240 | 34.90 389 | 68.76 278 | 78.68 377 |
|
| LTVRE_ROB | | 59.60 19 | 66.27 329 | 63.54 333 | 74.45 331 | 84.00 289 | 51.55 357 | 67.08 398 | 83.53 357 | 58.78 350 | 54.94 356 | 80.31 319 | 34.54 356 | 93.23 256 | 40.64 375 | 68.03 284 | 78.58 378 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| JIA-IIPM | | | 66.06 330 | 62.45 340 | 76.88 315 | 81.42 317 | 54.45 346 | 57.49 410 | 88.67 291 | 49.36 384 | 63.86 305 | 46.86 408 | 56.06 197 | 90.25 323 | 49.53 334 | 68.83 277 | 85.95 294 |
|
| Patchmatch-test | | | 65.86 331 | 60.94 346 | 80.62 254 | 83.75 291 | 58.83 309 | 58.91 409 | 75.26 383 | 44.50 397 | 50.95 374 | 77.09 349 | 58.81 162 | 87.90 346 | 35.13 388 | 64.03 318 | 95.12 80 |
|
| UnsupCasMVSNet_eth | | | 65.79 332 | 63.10 335 | 73.88 336 | 70.71 388 | 50.29 366 | 81.09 344 | 89.88 239 | 72.58 189 | 49.25 380 | 74.77 365 | 32.57 363 | 87.43 355 | 55.96 312 | 41.04 393 | 83.90 321 |
|
| test_fmvs2 | | | 65.78 333 | 64.84 322 | 68.60 366 | 66.54 398 | 41.71 398 | 83.27 324 | 69.81 397 | 54.38 369 | 67.91 264 | 84.54 263 | 15.35 403 | 81.22 390 | 75.65 162 | 66.16 296 | 82.88 335 |
|
| dmvs_testset | | | 65.55 334 | 66.45 310 | 62.86 378 | 79.87 333 | 22.35 424 | 76.55 370 | 71.74 392 | 77.42 115 | 55.85 353 | 87.77 221 | 51.39 248 | 80.69 391 | 31.51 403 | 65.92 298 | 85.55 304 |
|
| pmmvs-eth3d | | | 65.53 335 | 62.32 341 | 75.19 325 | 69.39 393 | 59.59 298 | 82.80 332 | 83.43 358 | 62.52 324 | 51.30 372 | 72.49 369 | 32.86 360 | 87.16 357 | 55.32 314 | 50.73 377 | 78.83 376 |
|
| mamv4 | | | 65.18 336 | 67.43 306 | 58.44 382 | 77.88 362 | 49.36 373 | 69.40 390 | 70.99 395 | 48.31 388 | 57.78 347 | 85.53 252 | 59.01 160 | 51.88 420 | 73.67 177 | 64.32 314 | 74.07 390 |
|
| SixPastTwentyTwo | | | 64.92 337 | 61.78 344 | 74.34 333 | 78.74 350 | 49.76 367 | 83.42 323 | 79.51 373 | 62.86 320 | 50.27 375 | 77.35 344 | 30.92 372 | 90.49 321 | 45.89 354 | 47.06 383 | 82.78 336 |
|
| OurMVSNet-221017-0 | | | 64.68 338 | 62.17 342 | 72.21 350 | 76.08 371 | 47.35 380 | 80.67 347 | 81.02 366 | 56.19 364 | 51.60 369 | 79.66 329 | 27.05 383 | 88.56 340 | 53.60 322 | 53.63 371 | 80.71 360 |
|
| test_0402 | | | 64.54 339 | 61.09 345 | 74.92 328 | 84.10 288 | 60.75 275 | 87.95 283 | 79.71 372 | 52.03 374 | 52.41 365 | 77.20 347 | 32.21 365 | 91.64 306 | 23.14 408 | 61.03 343 | 72.36 396 |
|
| testgi | | | 64.48 340 | 62.87 338 | 69.31 363 | 71.24 384 | 40.62 401 | 85.49 307 | 79.92 371 | 65.36 297 | 54.18 359 | 83.49 274 | 23.74 389 | 84.55 368 | 41.60 370 | 60.79 346 | 82.77 337 |
|
| RPSCF | | | 64.24 341 | 61.98 343 | 71.01 358 | 76.10 370 | 45.00 391 | 75.83 375 | 75.94 378 | 46.94 391 | 58.96 338 | 84.59 261 | 31.40 368 | 82.00 387 | 47.76 346 | 60.33 351 | 86.04 291 |
|
| EU-MVSNet | | | 64.01 342 | 63.01 336 | 67.02 372 | 74.40 377 | 38.86 407 | 83.27 324 | 86.19 331 | 45.11 395 | 54.27 358 | 81.15 309 | 36.91 348 | 80.01 393 | 48.79 339 | 57.02 360 | 82.19 348 |
|
| test20.03 | | | 63.83 343 | 62.65 339 | 67.38 371 | 70.58 390 | 39.94 403 | 86.57 303 | 84.17 350 | 63.29 315 | 51.86 368 | 77.30 345 | 37.09 346 | 82.47 383 | 38.87 381 | 54.13 370 | 79.73 368 |
|
| MDA-MVSNet_test_wron | | | 63.78 344 | 60.16 348 | 74.64 329 | 78.15 358 | 60.41 285 | 83.49 320 | 84.03 351 | 56.17 366 | 39.17 403 | 71.59 377 | 37.22 343 | 83.24 380 | 42.87 366 | 48.73 380 | 80.26 365 |
|
| YYNet1 | | | 63.76 345 | 60.14 349 | 74.62 330 | 78.06 359 | 60.19 291 | 83.46 322 | 83.99 355 | 56.18 365 | 39.25 402 | 71.56 378 | 37.18 344 | 83.34 378 | 42.90 365 | 48.70 381 | 80.32 364 |
|
| K. test v3 | | | 63.09 346 | 59.61 351 | 73.53 339 | 76.26 369 | 49.38 372 | 83.27 324 | 77.15 376 | 64.35 303 | 47.77 385 | 72.32 373 | 28.73 377 | 87.79 349 | 49.93 333 | 36.69 400 | 83.41 329 |
|
| COLMAP_ROB |  | 57.96 20 | 62.98 347 | 59.65 350 | 72.98 343 | 81.44 316 | 53.00 351 | 83.75 318 | 75.53 382 | 48.34 387 | 48.81 382 | 81.40 302 | 24.14 387 | 90.30 322 | 32.95 394 | 60.52 348 | 75.65 388 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| Anonymous20240521 | | | 62.09 348 | 59.08 352 | 71.10 357 | 67.19 396 | 48.72 375 | 83.91 317 | 85.23 341 | 50.38 381 | 47.84 384 | 71.22 380 | 20.74 395 | 85.51 365 | 46.47 351 | 58.75 356 | 79.06 373 |
|
| AllTest | | | 61.66 349 | 58.06 354 | 72.46 347 | 79.57 335 | 51.42 359 | 80.17 353 | 68.61 399 | 51.25 378 | 45.88 387 | 81.23 304 | 19.86 399 | 86.58 359 | 38.98 379 | 57.01 361 | 79.39 370 |
|
| UnsupCasMVSNet_bld | | | 61.60 350 | 57.71 355 | 73.29 341 | 68.73 394 | 51.64 356 | 78.61 361 | 89.05 276 | 57.20 359 | 46.11 386 | 61.96 399 | 28.70 378 | 88.60 339 | 50.08 332 | 38.90 398 | 79.63 369 |
|
| MDA-MVSNet-bldmvs | | | 61.54 351 | 57.70 356 | 73.05 342 | 79.53 337 | 57.00 331 | 83.08 328 | 81.23 365 | 57.57 354 | 34.91 407 | 72.45 370 | 32.79 361 | 86.26 361 | 35.81 386 | 41.95 391 | 75.89 387 |
|
| mvs5depth | | | 61.03 352 | 57.65 357 | 71.18 356 | 67.16 397 | 47.04 385 | 72.74 381 | 77.49 374 | 57.47 357 | 60.52 327 | 72.53 368 | 22.84 391 | 88.38 342 | 49.15 336 | 38.94 397 | 78.11 382 |
|
| KD-MVS_self_test | | | 60.87 353 | 58.60 353 | 67.68 369 | 66.13 399 | 39.93 404 | 75.63 377 | 84.70 345 | 57.32 358 | 49.57 378 | 68.45 386 | 29.55 374 | 82.87 381 | 48.09 341 | 47.94 382 | 80.25 366 |
|
| kuosan | | | 60.86 354 | 60.24 347 | 62.71 379 | 81.57 314 | 46.43 387 | 75.70 376 | 85.88 334 | 57.98 353 | 48.95 381 | 69.53 383 | 58.42 165 | 76.53 395 | 28.25 404 | 35.87 402 | 65.15 403 |
|
| TinyColmap | | | 60.32 355 | 56.42 362 | 72.00 354 | 78.78 349 | 53.18 350 | 78.36 364 | 75.64 380 | 52.30 373 | 41.59 401 | 75.82 360 | 14.76 406 | 88.35 343 | 35.84 385 | 54.71 369 | 74.46 389 |
|
| MVS-HIRNet | | | 60.25 356 | 55.55 363 | 74.35 332 | 84.37 283 | 56.57 333 | 71.64 384 | 74.11 385 | 34.44 406 | 45.54 391 | 42.24 414 | 31.11 371 | 89.81 332 | 40.36 376 | 76.10 230 | 76.67 386 |
|
| MIMVSNet1 | | | 60.16 357 | 57.33 358 | 68.67 365 | 69.71 391 | 44.13 393 | 78.92 360 | 84.21 349 | 55.05 368 | 44.63 394 | 71.85 375 | 23.91 388 | 81.54 389 | 32.63 398 | 55.03 367 | 80.35 363 |
|
| PM-MVS | | | 59.40 358 | 56.59 360 | 67.84 367 | 63.63 402 | 41.86 397 | 76.76 369 | 63.22 407 | 59.01 349 | 51.07 373 | 72.27 374 | 11.72 410 | 83.25 379 | 61.34 288 | 50.28 379 | 78.39 380 |
|
| new-patchmatchnet | | | 59.30 359 | 56.48 361 | 67.79 368 | 65.86 400 | 44.19 392 | 82.47 333 | 81.77 364 | 59.94 345 | 43.65 397 | 66.20 390 | 27.67 381 | 81.68 388 | 39.34 378 | 41.40 392 | 77.50 384 |
|
| test_vis1_rt | | | 59.09 360 | 57.31 359 | 64.43 375 | 68.44 395 | 46.02 389 | 83.05 330 | 48.63 419 | 51.96 375 | 49.57 378 | 63.86 395 | 16.30 401 | 80.20 392 | 71.21 201 | 62.79 325 | 67.07 402 |
|
| test_fmvs3 | | | 56.82 361 | 54.86 365 | 62.69 380 | 53.59 413 | 35.47 410 | 75.87 374 | 65.64 404 | 43.91 398 | 55.10 355 | 71.43 379 | 6.91 418 | 74.40 400 | 68.64 226 | 52.63 372 | 78.20 381 |
|
| DSMNet-mixed | | | 56.78 362 | 54.44 366 | 63.79 376 | 63.21 403 | 29.44 419 | 64.43 401 | 64.10 406 | 42.12 403 | 51.32 371 | 71.60 376 | 31.76 366 | 75.04 398 | 36.23 384 | 65.20 305 | 86.87 274 |
|
| pmmvs3 | | | 55.51 363 | 51.50 369 | 67.53 370 | 57.90 411 | 50.93 363 | 80.37 349 | 73.66 386 | 40.63 404 | 44.15 396 | 64.75 393 | 16.30 401 | 78.97 394 | 44.77 360 | 40.98 395 | 72.69 394 |
|
| TDRefinement | | | 55.28 364 | 51.58 368 | 66.39 373 | 59.53 410 | 46.15 388 | 76.23 372 | 72.80 387 | 44.60 396 | 42.49 399 | 76.28 356 | 15.29 404 | 82.39 384 | 33.20 393 | 43.75 388 | 70.62 398 |
|
| dongtai | | | 55.18 365 | 55.46 364 | 54.34 390 | 76.03 372 | 36.88 408 | 76.07 373 | 84.61 347 | 51.28 377 | 43.41 398 | 64.61 394 | 56.56 191 | 67.81 408 | 18.09 413 | 28.50 413 | 58.32 406 |
|
| LF4IMVS | | | 54.01 366 | 52.12 367 | 59.69 381 | 62.41 405 | 39.91 405 | 68.59 392 | 68.28 401 | 42.96 401 | 44.55 395 | 75.18 361 | 14.09 408 | 68.39 407 | 41.36 372 | 51.68 375 | 70.78 397 |
|
| ttmdpeth | | | 53.34 367 | 49.96 370 | 63.45 377 | 62.07 407 | 40.04 402 | 72.06 382 | 65.64 404 | 42.54 402 | 51.88 367 | 77.79 342 | 13.94 409 | 76.48 396 | 32.93 395 | 30.82 411 | 73.84 391 |
|
| MVStest1 | | | 51.35 368 | 46.89 372 | 64.74 374 | 65.06 401 | 51.10 361 | 67.33 397 | 72.58 388 | 30.20 410 | 35.30 405 | 74.82 363 | 27.70 380 | 69.89 405 | 24.44 407 | 24.57 414 | 73.22 392 |
|
| N_pmnet | | | 50.55 369 | 49.11 371 | 54.88 388 | 77.17 365 | 4.02 432 | 84.36 313 | 2.00 430 | 48.59 385 | 45.86 389 | 68.82 384 | 32.22 364 | 82.80 382 | 31.58 401 | 51.38 376 | 77.81 383 |
|
| new_pmnet | | | 49.31 370 | 46.44 373 | 57.93 383 | 62.84 404 | 40.74 400 | 68.47 393 | 62.96 408 | 36.48 405 | 35.09 406 | 57.81 403 | 14.97 405 | 72.18 402 | 32.86 396 | 46.44 384 | 60.88 405 |
|
| mvsany_test3 | | | 48.86 371 | 46.35 374 | 56.41 384 | 46.00 419 | 31.67 415 | 62.26 403 | 47.25 420 | 43.71 399 | 45.54 391 | 68.15 387 | 10.84 411 | 64.44 416 | 57.95 304 | 35.44 405 | 73.13 393 |
|
| test_f | | | 46.58 372 | 43.45 376 | 55.96 385 | 45.18 420 | 32.05 414 | 61.18 404 | 49.49 418 | 33.39 407 | 42.05 400 | 62.48 398 | 7.00 417 | 65.56 412 | 47.08 349 | 43.21 390 | 70.27 399 |
|
| WB-MVS | | | 46.23 373 | 44.94 375 | 50.11 393 | 62.13 406 | 21.23 426 | 76.48 371 | 55.49 412 | 45.89 393 | 35.78 404 | 61.44 401 | 35.54 352 | 72.83 401 | 9.96 420 | 21.75 415 | 56.27 408 |
|
| FPMVS | | | 45.64 374 | 43.10 378 | 53.23 391 | 51.42 416 | 36.46 409 | 64.97 400 | 71.91 391 | 29.13 411 | 27.53 411 | 61.55 400 | 9.83 413 | 65.01 414 | 16.00 417 | 55.58 365 | 58.22 407 |
|
| SSC-MVS | | | 44.51 375 | 43.35 377 | 47.99 397 | 61.01 409 | 18.90 428 | 74.12 379 | 54.36 413 | 43.42 400 | 34.10 408 | 60.02 402 | 34.42 357 | 70.39 404 | 9.14 422 | 19.57 416 | 54.68 409 |
|
| EGC-MVSNET | | | 42.35 376 | 38.09 379 | 55.11 387 | 74.57 375 | 46.62 386 | 71.63 385 | 55.77 411 | 0.04 425 | 0.24 426 | 62.70 397 | 14.24 407 | 74.91 399 | 17.59 414 | 46.06 385 | 43.80 411 |
|
| LCM-MVSNet | | | 40.54 377 | 35.79 382 | 54.76 389 | 36.92 426 | 30.81 416 | 51.41 413 | 69.02 398 | 22.07 413 | 24.63 413 | 45.37 410 | 4.56 422 | 65.81 411 | 33.67 391 | 34.50 406 | 67.67 400 |
|
| APD_test1 | | | 40.50 378 | 37.31 381 | 50.09 394 | 51.88 414 | 35.27 411 | 59.45 408 | 52.59 415 | 21.64 414 | 26.12 412 | 57.80 404 | 4.56 422 | 66.56 410 | 22.64 409 | 39.09 396 | 48.43 410 |
|
| test_vis3_rt | | | 40.46 379 | 37.79 380 | 48.47 396 | 44.49 421 | 33.35 413 | 66.56 399 | 32.84 427 | 32.39 408 | 29.65 409 | 39.13 417 | 3.91 425 | 68.65 406 | 50.17 330 | 40.99 394 | 43.40 412 |
|
| ANet_high | | | 40.27 380 | 35.20 383 | 55.47 386 | 34.74 427 | 34.47 412 | 63.84 402 | 71.56 393 | 48.42 386 | 18.80 416 | 41.08 415 | 9.52 414 | 64.45 415 | 20.18 411 | 8.66 423 | 67.49 401 |
|
| test_method | | | 38.59 381 | 35.16 384 | 48.89 395 | 54.33 412 | 21.35 425 | 45.32 416 | 53.71 414 | 7.41 422 | 28.74 410 | 51.62 406 | 8.70 415 | 52.87 419 | 33.73 390 | 32.89 407 | 72.47 395 |
|
| PMMVS2 | | | 37.93 382 | 33.61 385 | 50.92 392 | 46.31 418 | 24.76 422 | 60.55 407 | 50.05 416 | 28.94 412 | 20.93 414 | 47.59 407 | 4.41 424 | 65.13 413 | 25.14 406 | 18.55 418 | 62.87 404 |
|
| Gipuma |  | | 34.91 383 | 31.44 386 | 45.30 398 | 70.99 387 | 39.64 406 | 19.85 420 | 72.56 389 | 20.10 416 | 16.16 420 | 21.47 421 | 5.08 421 | 71.16 403 | 13.07 418 | 43.70 389 | 25.08 418 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| testf1 | | | 32.77 384 | 29.47 387 | 42.67 400 | 41.89 423 | 30.81 416 | 52.07 411 | 43.45 421 | 15.45 417 | 18.52 417 | 44.82 411 | 2.12 426 | 58.38 417 | 16.05 415 | 30.87 409 | 38.83 413 |
|
| APD_test2 | | | 32.77 384 | 29.47 387 | 42.67 400 | 41.89 423 | 30.81 416 | 52.07 411 | 43.45 421 | 15.45 417 | 18.52 417 | 44.82 411 | 2.12 426 | 58.38 417 | 16.05 415 | 30.87 409 | 38.83 413 |
|
| PMVS |  | 26.43 22 | 31.84 386 | 28.16 389 | 42.89 399 | 25.87 429 | 27.58 420 | 50.92 414 | 49.78 417 | 21.37 415 | 14.17 421 | 40.81 416 | 2.01 428 | 66.62 409 | 9.61 421 | 38.88 399 | 34.49 417 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| E-PMN | | | 24.61 387 | 24.00 391 | 26.45 404 | 43.74 422 | 18.44 429 | 60.86 405 | 39.66 423 | 15.11 419 | 9.53 423 | 22.10 420 | 6.52 419 | 46.94 422 | 8.31 423 | 10.14 420 | 13.98 420 |
|
| MVE |  | 24.84 23 | 24.35 388 | 19.77 394 | 38.09 402 | 34.56 428 | 26.92 421 | 26.57 418 | 38.87 425 | 11.73 421 | 11.37 422 | 27.44 418 | 1.37 429 | 50.42 421 | 11.41 419 | 14.60 419 | 36.93 415 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| EMVS | | | 23.76 389 | 23.20 393 | 25.46 405 | 41.52 425 | 16.90 430 | 60.56 406 | 38.79 426 | 14.62 420 | 8.99 424 | 20.24 423 | 7.35 416 | 45.82 423 | 7.25 424 | 9.46 421 | 13.64 421 |
|
| tmp_tt | | | 22.26 390 | 23.75 392 | 17.80 406 | 5.23 430 | 12.06 431 | 35.26 417 | 39.48 424 | 2.82 424 | 18.94 415 | 44.20 413 | 22.23 393 | 24.64 425 | 36.30 383 | 9.31 422 | 16.69 419 |
|
| cdsmvs_eth3d_5k | | | 19.86 391 | 26.47 390 | 0.00 410 | 0.00 433 | 0.00 435 | 0.00 421 | 93.45 86 | 0.00 428 | 0.00 429 | 95.27 61 | 49.56 265 | 0.00 429 | 0.00 428 | 0.00 426 | 0.00 425 |
|
| wuyk23d | | | 11.30 392 | 10.95 395 | 12.33 407 | 48.05 417 | 19.89 427 | 25.89 419 | 1.92 431 | 3.58 423 | 3.12 425 | 1.37 425 | 0.64 430 | 15.77 426 | 6.23 425 | 7.77 424 | 1.35 422 |
|
| ab-mvs-re | | | 7.91 393 | 10.55 396 | 0.00 410 | 0.00 433 | 0.00 435 | 0.00 421 | 0.00 434 | 0.00 428 | 0.00 429 | 94.95 71 | 0.00 433 | 0.00 429 | 0.00 428 | 0.00 426 | 0.00 425 |
|
| testmvs | | | 7.23 394 | 9.62 397 | 0.06 409 | 0.04 431 | 0.02 434 | 84.98 311 | 0.02 432 | 0.03 426 | 0.18 427 | 1.21 426 | 0.01 432 | 0.02 427 | 0.14 426 | 0.01 425 | 0.13 424 |
|
| test123 | | | 6.92 395 | 9.21 398 | 0.08 408 | 0.03 432 | 0.05 433 | 81.65 339 | 0.01 433 | 0.02 427 | 0.14 428 | 0.85 427 | 0.03 431 | 0.02 427 | 0.12 427 | 0.00 426 | 0.16 423 |
|
| pcd_1.5k_mvsjas | | | 4.46 396 | 5.95 399 | 0.00 410 | 0.00 433 | 0.00 435 | 0.00 421 | 0.00 434 | 0.00 428 | 0.00 429 | 0.00 428 | 53.55 226 | 0.00 429 | 0.00 428 | 0.00 426 | 0.00 425 |
|
| mmdepth | | | 0.00 397 | 0.00 400 | 0.00 410 | 0.00 433 | 0.00 435 | 0.00 421 | 0.00 434 | 0.00 428 | 0.00 429 | 0.00 428 | 0.00 433 | 0.00 429 | 0.00 428 | 0.00 426 | 0.00 425 |
|
| monomultidepth | | | 0.00 397 | 0.00 400 | 0.00 410 | 0.00 433 | 0.00 435 | 0.00 421 | 0.00 434 | 0.00 428 | 0.00 429 | 0.00 428 | 0.00 433 | 0.00 429 | 0.00 428 | 0.00 426 | 0.00 425 |
|
| test_blank | | | 0.00 397 | 0.00 400 | 0.00 410 | 0.00 433 | 0.00 435 | 0.00 421 | 0.00 434 | 0.00 428 | 0.00 429 | 0.00 428 | 0.00 433 | 0.00 429 | 0.00 428 | 0.00 426 | 0.00 425 |
|
| uanet_test | | | 0.00 397 | 0.00 400 | 0.00 410 | 0.00 433 | 0.00 435 | 0.00 421 | 0.00 434 | 0.00 428 | 0.00 429 | 0.00 428 | 0.00 433 | 0.00 429 | 0.00 428 | 0.00 426 | 0.00 425 |
|
| DCPMVS | | | 0.00 397 | 0.00 400 | 0.00 410 | 0.00 433 | 0.00 435 | 0.00 421 | 0.00 434 | 0.00 428 | 0.00 429 | 0.00 428 | 0.00 433 | 0.00 429 | 0.00 428 | 0.00 426 | 0.00 425 |
|
| sosnet-low-res | | | 0.00 397 | 0.00 400 | 0.00 410 | 0.00 433 | 0.00 435 | 0.00 421 | 0.00 434 | 0.00 428 | 0.00 429 | 0.00 428 | 0.00 433 | 0.00 429 | 0.00 428 | 0.00 426 | 0.00 425 |
|
| sosnet | | | 0.00 397 | 0.00 400 | 0.00 410 | 0.00 433 | 0.00 435 | 0.00 421 | 0.00 434 | 0.00 428 | 0.00 429 | 0.00 428 | 0.00 433 | 0.00 429 | 0.00 428 | 0.00 426 | 0.00 425 |
|
| uncertanet | | | 0.00 397 | 0.00 400 | 0.00 410 | 0.00 433 | 0.00 435 | 0.00 421 | 0.00 434 | 0.00 428 | 0.00 429 | 0.00 428 | 0.00 433 | 0.00 429 | 0.00 428 | 0.00 426 | 0.00 425 |
|
| Regformer | | | 0.00 397 | 0.00 400 | 0.00 410 | 0.00 433 | 0.00 435 | 0.00 421 | 0.00 434 | 0.00 428 | 0.00 429 | 0.00 428 | 0.00 433 | 0.00 429 | 0.00 428 | 0.00 426 | 0.00 425 |
|
| uanet | | | 0.00 397 | 0.00 400 | 0.00 410 | 0.00 433 | 0.00 435 | 0.00 421 | 0.00 434 | 0.00 428 | 0.00 429 | 0.00 428 | 0.00 433 | 0.00 429 | 0.00 428 | 0.00 426 | 0.00 425 |
|
| WAC-MVS | | | | | | | 49.45 370 | | | | | | | | 31.56 402 | | |
|
| FOURS1 | | | | | | 93.95 46 | 61.77 253 | 93.96 72 | 91.92 152 | 62.14 328 | 86.57 48 | | | | | | |
|
| MSC_two_6792asdad | | | | | 89.60 9 | 97.31 4 | 73.22 12 | | 95.05 27 | | | | | 99.07 13 | 92.01 27 | 94.77 26 | 96.51 24 |
|
| PC_three_1452 | | | | | | | | | | 80.91 50 | 94.07 2 | 96.83 18 | 83.57 4 | 99.12 5 | 95.70 7 | 97.42 4 | 97.55 4 |
|
| No_MVS | | | | | 89.60 9 | 97.31 4 | 73.22 12 | | 95.05 27 | | | | | 99.07 13 | 92.01 27 | 94.77 26 | 96.51 24 |
|
| test_one_0601 | | | | | | 96.32 18 | 69.74 49 | | 94.18 58 | 71.42 232 | 90.67 19 | 96.85 16 | 74.45 20 | | | | |
|
| eth-test2 | | | | | | 0.00 433 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 433 | | | | | | | | | | | |
|
| ZD-MVS | | | | | | 96.63 9 | 65.50 158 | | 93.50 84 | 70.74 246 | 85.26 64 | 95.19 67 | 64.92 84 | 97.29 78 | 87.51 59 | 93.01 56 | |
|
| RE-MVS-def | | | | 80.48 150 | | 92.02 102 | 58.56 312 | 90.90 212 | 90.45 212 | 62.76 321 | 78.89 132 | 94.46 85 | 49.30 268 | | 78.77 144 | 86.77 131 | 92.28 187 |
|
| IU-MVS | | | | | | 96.46 11 | 69.91 42 | | 95.18 21 | 80.75 51 | 95.28 1 | | | | 92.34 24 | 95.36 14 | 96.47 28 |
|
| OPU-MVS | | | | | 89.97 3 | 97.52 3 | 73.15 14 | 96.89 6 | | | | 97.00 9 | 83.82 2 | 99.15 2 | 95.72 5 | 97.63 3 | 97.62 2 |
|
| test_241102_TWO | | | | | | | | | 94.41 49 | 71.65 221 | 92.07 9 | 97.21 4 | 74.58 18 | 99.11 6 | 92.34 24 | 95.36 14 | 96.59 19 |
|
| test_241102_ONE | | | | | | 96.45 12 | 69.38 55 | | 94.44 47 | 71.65 221 | 92.11 7 | 97.05 7 | 76.79 9 | 99.11 6 | | | |
|
| 9.14 | | | | 87.63 28 | | 93.86 48 | | 94.41 52 | 94.18 58 | 72.76 186 | 86.21 50 | 96.51 25 | 66.64 64 | 97.88 44 | 90.08 41 | 94.04 39 | |
|
| save fliter | | | | | | 93.84 49 | 67.89 95 | 95.05 39 | 92.66 120 | 78.19 97 | | | | | | | |
|
| test_0728_THIRD | | | | | | | | | | 72.48 191 | 90.55 20 | 96.93 11 | 76.24 11 | 99.08 11 | 91.53 32 | 94.99 18 | 96.43 31 |
|
| test_0728_SECOND | | | | | 88.70 18 | 96.45 12 | 70.43 33 | 96.64 10 | 94.37 53 | | | | | 99.15 2 | 91.91 30 | 94.90 22 | 96.51 24 |
|
| test0726 | | | | | | 96.40 15 | 69.99 38 | 96.76 8 | 94.33 55 | 71.92 207 | 91.89 11 | 97.11 6 | 73.77 23 | | | | |
|
| GSMVS | | | | | | | | | | | | | | | | | 94.68 100 |
|
| test_part2 | | | | | | 96.29 19 | 68.16 88 | | | | 90.78 17 | | | | | | |
|
| sam_mvs1 | | | | | | | | | | | | | 57.85 171 | | | | 94.68 100 |
|
| sam_mvs | | | | | | | | | | | | | 54.91 210 | | | | |
|
| ambc | | | | | 69.61 361 | 61.38 408 | 41.35 399 | 49.07 415 | 85.86 336 | | 50.18 377 | 66.40 389 | 10.16 412 | 88.14 345 | 45.73 355 | 44.20 387 | 79.32 372 |
|
| MTGPA |  | | | | | | | | 92.23 134 | | | | | | | | |
|
| test_post1 | | | | | | | | 78.95 359 | | | | 20.70 422 | 53.05 231 | 91.50 314 | 60.43 293 | | |
|
| test_post | | | | | | | | | | | | 23.01 419 | 56.49 192 | 92.67 277 | | | |
|
| patchmatchnet-post | | | | | | | | | | | | 67.62 388 | 57.62 174 | 90.25 323 | | | |
|
| GG-mvs-BLEND | | | | | 86.53 73 | 91.91 110 | 69.67 52 | 75.02 378 | 94.75 34 | | 78.67 139 | 90.85 171 | 77.91 7 | 94.56 210 | 72.25 191 | 93.74 45 | 95.36 65 |
|
| MTMP | | | | | | | | 93.77 86 | 32.52 428 | | | | | | | | |
|
| gm-plane-assit | | | | | | 88.42 193 | 67.04 119 | | | 78.62 93 | | 91.83 154 | | 97.37 72 | 76.57 156 | | |
|
| test9_res | | | | | | | | | | | | | | | 89.41 42 | 94.96 19 | 95.29 70 |
|
| TEST9 | | | | | | 94.18 41 | 67.28 110 | 94.16 60 | 93.51 82 | 71.75 218 | 85.52 59 | 95.33 56 | 68.01 54 | 97.27 82 | | | |
|
| test_8 | | | | | | 94.19 40 | 67.19 112 | 94.15 62 | 93.42 89 | 71.87 212 | 85.38 62 | 95.35 55 | 68.19 52 | 96.95 108 | | | |
|
| agg_prior2 | | | | | | | | | | | | | | | 86.41 72 | 94.75 30 | 95.33 66 |
|
| agg_prior | | | | | | 94.16 43 | 66.97 121 | | 93.31 92 | | 84.49 70 | | | 96.75 118 | | | |
|
| TestCases | | | | | 72.46 347 | 79.57 335 | 51.42 359 | | 68.61 399 | 51.25 378 | 45.88 387 | 81.23 304 | 19.86 399 | 86.58 359 | 38.98 379 | 57.01 361 | 79.39 370 |
|
| test_prior4 | | | | | | | 67.18 114 | 93.92 75 | | | | | | | | | |
|
| test_prior2 | | | | | | | | 95.10 38 | | 75.40 139 | 85.25 65 | 95.61 47 | 67.94 55 | | 87.47 61 | 94.77 26 | |
|
| test_prior | | | | | 86.42 76 | 94.71 35 | 67.35 109 | | 93.10 103 | | | | | 96.84 115 | | | 95.05 83 |
|
| 旧先验2 | | | | | | | | 92.00 165 | | 59.37 348 | 87.54 41 | | | 93.47 253 | 75.39 164 | | |
|
| æ–°å‡ ä½•2 | | | | | | | | 91.41 186 | | | | | | | | | |
|
| æ–°å‡ ä½•1 | | | | | 84.73 134 | 92.32 92 | 64.28 189 | | 91.46 178 | 59.56 347 | 79.77 121 | 92.90 127 | 56.95 184 | 96.57 123 | 63.40 273 | 92.91 58 | 93.34 154 |
|
| 旧先验1 | | | | | | 91.94 107 | 60.74 276 | | 91.50 176 | | | 94.36 89 | 65.23 79 | | | 91.84 71 | 94.55 107 |
|
| æ— å…ˆéªŒ | | | | | | | | 92.71 130 | 92.61 124 | 62.03 329 | | | | 97.01 98 | 66.63 244 | | 93.97 136 |
|
| 原ACMM2 | | | | | | | | 92.01 162 | | | | | | | | | |
|
| 原ACMM1 | | | | | 84.42 148 | 93.21 67 | 64.27 190 | | 93.40 91 | 65.39 296 | 79.51 124 | 92.50 135 | 58.11 170 | 96.69 119 | 65.27 263 | 93.96 40 | 92.32 185 |
|
| test222 | | | | | | 89.77 158 | 61.60 258 | 89.55 254 | 89.42 256 | 56.83 362 | 77.28 152 | 92.43 139 | 52.76 234 | | | 91.14 85 | 93.09 163 |
|
| testdata2 | | | | | | | | | | | | | | 96.09 145 | 61.26 289 | | |
|
| segment_acmp | | | | | | | | | | | | | 65.94 72 | | | | |
|
| testdata | | | | | 81.34 235 | 89.02 179 | 57.72 319 | | 89.84 240 | 58.65 351 | 85.32 63 | 94.09 103 | 57.03 179 | 93.28 255 | 69.34 217 | 90.56 91 | 93.03 166 |
|
| testdata1 | | | | | | | | 89.21 263 | | 77.55 111 | | | | | | | |
|
| test12 | | | | | 87.09 52 | 94.60 36 | 68.86 67 | | 92.91 110 | | 82.67 91 | | 65.44 77 | 97.55 64 | | 93.69 48 | 94.84 92 |
|
| plane_prior7 | | | | | | 86.94 235 | 61.51 259 | | | | | | | | | | |
|
| plane_prior6 | | | | | | 87.23 227 | 62.32 243 | | | | | | 50.66 254 | | | | |
|
| plane_prior5 | | | | | | | | | 91.31 182 | | | | | 95.55 174 | 76.74 154 | 78.53 209 | 88.39 251 |
|
| plane_prior4 | | | | | | | | | | | | 89.14 200 | | | | | |
|
| plane_prior3 | | | | | | | 61.95 251 | | | 79.09 83 | 72.53 202 | | | | | | |
|
| plane_prior2 | | | | | | | | 93.13 112 | | 78.81 90 | | | | | | | |
|
| plane_prior1 | | | | | | 87.15 229 | | | | | | | | | | | |
|
| plane_prior | | | | | | | 62.42 239 | 93.85 79 | | 79.38 75 | | | | | | 78.80 206 | |
|
| n2 | | | | | | | | | 0.00 434 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 434 | | | | | | | | |
|
| door-mid | | | | | | | | | 66.01 403 | | | | | | | | |
|
| lessismore_v0 | | | | | 73.72 338 | 72.93 382 | 47.83 378 | | 61.72 409 | | 45.86 389 | 73.76 366 | 28.63 379 | 89.81 332 | 47.75 347 | 31.37 408 | 83.53 325 |
|
| LGP-MVS_train | | | | | 79.56 282 | 84.31 284 | 59.37 302 | | 89.73 246 | 69.49 259 | 64.86 293 | 88.42 205 | 38.65 327 | 94.30 219 | 72.56 188 | 72.76 251 | 85.01 312 |
|
| test11 | | | | | | | | | 93.01 106 | | | | | | | | |
|
| door | | | | | | | | | 66.57 402 | | | | | | | | |
|
| HQP5-MVS | | | | | | | 63.66 208 | | | | | | | | | | |
|
| HQP-NCC | | | | | | 87.54 220 | | 94.06 65 | | 79.80 66 | 74.18 181 | | | | | | |
|
| ACMP_Plane | | | | | | 87.54 220 | | 94.06 65 | | 79.80 66 | 74.18 181 | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 77.63 151 | | |
|
| HQP4-MVS | | | | | | | | | | | 74.18 181 | | | 95.61 169 | | | 88.63 245 |
|
| HQP3-MVS | | | | | | | | | 91.70 168 | | | | | | | 78.90 204 | |
|
| HQP2-MVS | | | | | | | | | | | | | 51.63 246 | | | | |
|
| NP-MVS | | | | | | 87.41 223 | 63.04 224 | | | | | 90.30 181 | | | | | |
|
| MDTV_nov1_ep13_2view | | | | | | | 59.90 294 | 80.13 354 | | 67.65 279 | 72.79 196 | | 54.33 218 | | 59.83 297 | | 92.58 178 |
|
| MDTV_nov1_ep13 | | | | 72.61 266 | | 89.06 178 | 68.48 76 | 80.33 350 | 90.11 230 | 71.84 214 | 71.81 214 | 75.92 359 | 53.01 232 | 93.92 241 | 48.04 342 | 73.38 246 | |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 71.63 259 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 69.72 268 | |
|
| Test By Simon | | | | | | | | | | | | | 54.21 220 | | | | |
|
| ITE_SJBPF | | | | | 70.43 359 | 74.44 376 | 47.06 384 | | 77.32 375 | 60.16 343 | 54.04 360 | 83.53 272 | 23.30 390 | 84.01 372 | 43.07 363 | 61.58 341 | 80.21 367 |
|
| DeepMVS_CX |  | | | | 34.71 403 | 51.45 415 | 24.73 423 | | 28.48 429 | 31.46 409 | 17.49 419 | 52.75 405 | 5.80 420 | 42.60 424 | 18.18 412 | 19.42 417 | 36.81 416 |
|