| MCST-MVS | | | 91.08 1 | 91.46 2 | 89.94 4 | 97.66 2 | 73.37 8 | 97.13 2 | 95.58 9 | 89.33 1 | 85.77 44 | 96.26 24 | 72.84 26 | 99.38 1 | 92.64 12 | 95.93 9 | 97.08 9 |
|
| DPM-MVS | | | 90.70 2 | 90.52 7 | 91.24 1 | 89.68 144 | 76.68 2 | 97.29 1 | 95.35 11 | 82.87 19 | 91.58 10 | 97.22 3 | 79.93 5 | 99.10 9 | 83.12 85 | 97.64 2 | 97.94 1 |
|
| DVP-MVS++ | | | 90.53 3 | 91.09 4 | 88.87 13 | 97.31 4 | 69.91 36 | 93.96 65 | 94.37 45 | 72.48 167 | 92.07 6 | 96.85 12 | 83.82 2 | 99.15 2 | 91.53 22 | 97.42 4 | 97.55 4 |
|
| MSP-MVS | | | 90.38 4 | 91.87 1 | 85.88 79 | 92.83 71 | 64.03 180 | 93.06 101 | 94.33 47 | 82.19 26 | 93.65 3 | 96.15 28 | 85.89 1 | 97.19 77 | 91.02 26 | 97.75 1 | 96.43 25 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| CNVR-MVS | | | 90.32 5 | 90.89 6 | 88.61 18 | 96.76 8 | 70.65 25 | 96.47 12 | 94.83 24 | 84.83 10 | 89.07 24 | 96.80 15 | 70.86 34 | 99.06 15 | 92.64 12 | 95.71 10 | 96.12 34 |
|
| DELS-MVS | | | 90.05 6 | 90.09 10 | 89.94 4 | 93.14 66 | 73.88 7 | 97.01 3 | 94.40 43 | 88.32 2 | 85.71 45 | 94.91 61 | 74.11 19 | 98.91 17 | 87.26 52 | 95.94 8 | 97.03 10 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| MVS_0304 | | | 90.01 7 | 90.50 8 | 88.53 19 | 90.14 135 | 70.94 22 | 96.47 12 | 95.72 8 | 87.33 3 | 89.60 21 | 96.26 24 | 68.44 37 | 98.74 23 | 95.82 1 | 94.72 29 | 95.90 41 |
|
| SED-MVS | | | 89.94 8 | 90.36 9 | 88.70 15 | 96.45 12 | 69.38 46 | 96.89 4 | 94.44 39 | 71.65 196 | 92.11 4 | 97.21 4 | 76.79 9 | 99.11 6 | 92.34 14 | 95.36 13 | 97.62 2 |
|
| DeepPCF-MVS | | 81.17 1 | 89.72 9 | 91.38 3 | 84.72 119 | 93.00 69 | 58.16 288 | 96.72 7 | 94.41 41 | 86.50 7 | 90.25 18 | 97.83 1 | 75.46 14 | 98.67 24 | 92.78 11 | 95.49 12 | 97.32 6 |
|
| patch_mono-2 | | | 89.71 10 | 90.99 5 | 85.85 82 | 96.04 24 | 63.70 190 | 95.04 39 | 95.19 14 | 86.74 6 | 91.53 11 | 95.15 55 | 73.86 20 | 97.58 55 | 93.38 7 | 92.00 66 | 96.28 31 |
|
| CANet | | | 89.61 11 | 89.99 11 | 88.46 20 | 94.39 39 | 69.71 42 | 96.53 11 | 93.78 58 | 86.89 5 | 89.68 20 | 95.78 33 | 65.94 58 | 99.10 9 | 92.99 9 | 93.91 39 | 96.58 17 |
|
| DVP-MVS |  | | 89.41 12 | 89.73 13 | 88.45 21 | 96.40 15 | 69.99 32 | 96.64 8 | 94.52 35 | 71.92 183 | 90.55 16 | 96.93 10 | 73.77 21 | 99.08 11 | 91.91 20 | 94.90 20 | 96.29 29 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| HPM-MVS++ |  | | 89.37 13 | 89.95 12 | 87.64 29 | 95.10 30 | 68.23 76 | 95.24 32 | 94.49 37 | 82.43 23 | 88.90 25 | 96.35 21 | 71.89 33 | 98.63 25 | 88.76 40 | 96.40 6 | 96.06 35 |
|
| NCCC | | | 89.07 14 | 89.46 14 | 87.91 24 | 96.60 10 | 69.05 55 | 96.38 14 | 94.64 32 | 84.42 11 | 86.74 36 | 96.20 26 | 66.56 54 | 98.76 22 | 89.03 39 | 94.56 31 | 95.92 40 |
|
| DPE-MVS |  | | 88.77 15 | 89.21 15 | 87.45 36 | 96.26 20 | 67.56 92 | 94.17 53 | 94.15 52 | 68.77 246 | 90.74 14 | 97.27 2 | 76.09 12 | 98.49 28 | 90.58 30 | 94.91 19 | 96.30 28 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| SMA-MVS |  | | 88.14 16 | 88.29 20 | 87.67 28 | 93.21 63 | 68.72 63 | 93.85 72 | 94.03 54 | 74.18 131 | 91.74 9 | 96.67 16 | 65.61 62 | 98.42 32 | 89.24 36 | 96.08 7 | 95.88 42 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| PS-MVSNAJ | | | 88.14 16 | 87.61 25 | 89.71 6 | 92.06 90 | 76.72 1 | 95.75 19 | 93.26 82 | 83.86 13 | 89.55 22 | 96.06 29 | 53.55 199 | 97.89 42 | 91.10 24 | 93.31 50 | 94.54 93 |
|
| TSAR-MVS + MP. | | | 88.11 18 | 88.64 16 | 86.54 62 | 91.73 102 | 68.04 80 | 90.36 210 | 93.55 71 | 82.89 18 | 91.29 12 | 92.89 112 | 72.27 30 | 96.03 128 | 87.99 43 | 94.77 24 | 95.54 51 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| TSAR-MVS + GP. | | | 87.96 19 | 88.37 19 | 86.70 56 | 93.51 56 | 65.32 147 | 95.15 35 | 93.84 57 | 78.17 78 | 85.93 43 | 94.80 64 | 75.80 13 | 98.21 33 | 89.38 33 | 88.78 100 | 96.59 15 |
|
| DeepC-MVS_fast | | 79.48 2 | 87.95 20 | 88.00 21 | 87.79 27 | 95.86 27 | 68.32 71 | 95.74 20 | 94.11 53 | 83.82 14 | 83.49 66 | 96.19 27 | 64.53 76 | 98.44 30 | 83.42 84 | 94.88 23 | 96.61 14 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| xiu_mvs_v2_base | | | 87.92 21 | 87.38 29 | 89.55 11 | 91.41 113 | 76.43 3 | 95.74 20 | 93.12 90 | 83.53 16 | 89.55 22 | 95.95 31 | 53.45 203 | 97.68 47 | 91.07 25 | 92.62 57 | 94.54 93 |
|
| EPNet | | | 87.84 22 | 88.38 18 | 86.23 72 | 93.30 60 | 66.05 129 | 95.26 31 | 94.84 23 | 87.09 4 | 88.06 27 | 94.53 70 | 66.79 51 | 97.34 68 | 83.89 81 | 91.68 71 | 95.29 62 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| lupinMVS | | | 87.74 23 | 87.77 23 | 87.63 33 | 89.24 158 | 71.18 19 | 96.57 10 | 92.90 98 | 82.70 22 | 87.13 32 | 95.27 49 | 64.99 67 | 95.80 133 | 89.34 34 | 91.80 69 | 95.93 39 |
|
| test_fmvsm_n_1920 | | | 87.69 24 | 88.50 17 | 85.27 100 | 87.05 211 | 63.55 196 | 93.69 81 | 91.08 175 | 84.18 12 | 90.17 19 | 97.04 8 | 67.58 46 | 97.99 38 | 95.72 2 | 90.03 91 | 94.26 101 |
|
| APDe-MVS | | | 87.54 25 | 87.84 22 | 86.65 57 | 96.07 23 | 66.30 125 | 94.84 44 | 93.78 58 | 69.35 237 | 88.39 26 | 96.34 22 | 67.74 45 | 97.66 50 | 90.62 29 | 93.44 48 | 96.01 38 |
|
| SD-MVS | | | 87.49 26 | 87.49 27 | 87.50 35 | 93.60 53 | 68.82 61 | 93.90 69 | 92.63 109 | 76.86 97 | 87.90 28 | 95.76 34 | 66.17 55 | 97.63 52 | 89.06 38 | 91.48 75 | 96.05 36 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| dcpmvs_2 | | | 87.37 27 | 87.55 26 | 86.85 49 | 95.04 32 | 68.20 77 | 90.36 210 | 90.66 187 | 79.37 57 | 81.20 82 | 93.67 96 | 74.73 15 | 96.55 111 | 90.88 27 | 92.00 66 | 95.82 43 |
|
| alignmvs | | | 87.28 28 | 86.97 33 | 88.24 23 | 91.30 114 | 71.14 21 | 95.61 24 | 93.56 70 | 79.30 58 | 87.07 34 | 95.25 51 | 68.43 38 | 96.93 98 | 87.87 44 | 84.33 139 | 96.65 13 |
|
| train_agg | | | 87.21 29 | 87.42 28 | 86.60 58 | 94.18 41 | 67.28 99 | 94.16 54 | 93.51 72 | 71.87 188 | 85.52 47 | 95.33 44 | 68.19 40 | 97.27 75 | 89.09 37 | 94.90 20 | 95.25 68 |
|
| MG-MVS | | | 87.11 30 | 86.27 38 | 89.62 7 | 97.79 1 | 76.27 4 | 94.96 42 | 94.49 37 | 78.74 73 | 83.87 65 | 92.94 110 | 64.34 77 | 96.94 96 | 75.19 140 | 94.09 35 | 95.66 46 |
|
| SF-MVS | | | 87.03 31 | 87.09 31 | 86.84 50 | 92.70 77 | 67.45 97 | 93.64 83 | 93.76 61 | 70.78 220 | 86.25 38 | 96.44 20 | 66.98 49 | 97.79 45 | 88.68 41 | 94.56 31 | 95.28 64 |
|
| CSCG | | | 86.87 32 | 86.26 39 | 88.72 14 | 95.05 31 | 70.79 24 | 93.83 77 | 95.33 12 | 68.48 250 | 77.63 123 | 94.35 79 | 73.04 24 | 98.45 29 | 84.92 72 | 93.71 44 | 96.92 11 |
|
| canonicalmvs | | | 86.85 33 | 86.25 40 | 88.66 17 | 91.80 101 | 71.92 14 | 93.54 88 | 91.71 146 | 80.26 45 | 87.55 30 | 95.25 51 | 63.59 90 | 96.93 98 | 88.18 42 | 84.34 138 | 97.11 8 |
|
| PHI-MVS | | | 86.83 34 | 86.85 36 | 86.78 54 | 93.47 57 | 65.55 143 | 95.39 29 | 95.10 17 | 71.77 193 | 85.69 46 | 96.52 17 | 62.07 105 | 98.77 21 | 86.06 63 | 95.60 11 | 96.03 37 |
|
| SteuartSystems-ACMMP | | | 86.82 35 | 86.90 34 | 86.58 60 | 90.42 129 | 66.38 122 | 96.09 16 | 93.87 56 | 77.73 85 | 84.01 64 | 95.66 36 | 63.39 92 | 97.94 39 | 87.40 50 | 93.55 47 | 95.42 52 |
| Skip Steuart: Steuart Systems R&D Blog. |
| PVSNet_Blended | | | 86.73 36 | 86.86 35 | 86.31 71 | 93.76 49 | 67.53 94 | 96.33 15 | 93.61 68 | 82.34 25 | 81.00 87 | 93.08 106 | 63.19 96 | 97.29 71 | 87.08 54 | 91.38 77 | 94.13 108 |
|
| test_fmvsmconf_n | | | 86.58 37 | 87.17 30 | 84.82 113 | 85.28 239 | 62.55 216 | 94.26 52 | 89.78 219 | 83.81 15 | 87.78 29 | 96.33 23 | 65.33 64 | 96.98 91 | 94.40 5 | 87.55 110 | 94.95 77 |
|
| jason | | | 86.40 38 | 86.17 41 | 87.11 43 | 86.16 225 | 70.54 27 | 95.71 23 | 92.19 124 | 82.00 28 | 84.58 57 | 94.34 80 | 61.86 107 | 95.53 153 | 87.76 45 | 90.89 83 | 95.27 65 |
| jason: jason. |
| WTY-MVS | | | 86.32 39 | 85.81 46 | 87.85 25 | 92.82 73 | 69.37 48 | 95.20 33 | 95.25 13 | 82.71 21 | 81.91 77 | 94.73 65 | 67.93 44 | 97.63 52 | 79.55 110 | 82.25 151 | 96.54 18 |
|
| MSLP-MVS++ | | | 86.27 40 | 85.91 45 | 87.35 38 | 92.01 93 | 68.97 58 | 95.04 39 | 92.70 103 | 79.04 67 | 81.50 80 | 96.50 19 | 58.98 138 | 96.78 103 | 83.49 83 | 93.93 38 | 96.29 29 |
|
| VNet | | | 86.20 41 | 85.65 49 | 87.84 26 | 93.92 46 | 69.99 32 | 95.73 22 | 95.94 6 | 78.43 75 | 86.00 42 | 93.07 107 | 58.22 143 | 97.00 87 | 85.22 67 | 84.33 139 | 96.52 19 |
|
| MVS_111021_HR | | | 86.19 42 | 85.80 47 | 87.37 37 | 93.17 65 | 69.79 39 | 93.99 64 | 93.76 61 | 79.08 65 | 78.88 111 | 93.99 90 | 62.25 104 | 98.15 35 | 85.93 64 | 91.15 81 | 94.15 107 |
|
| CS-MVS-test | | | 86.14 43 | 87.01 32 | 83.52 154 | 92.63 80 | 59.36 276 | 95.49 26 | 91.92 133 | 80.09 46 | 85.46 49 | 95.53 40 | 61.82 109 | 95.77 136 | 86.77 58 | 93.37 49 | 95.41 53 |
|
| ACMMP_NAP | | | 86.05 44 | 85.80 47 | 86.80 53 | 91.58 106 | 67.53 94 | 91.79 155 | 93.49 75 | 74.93 122 | 84.61 56 | 95.30 46 | 59.42 132 | 97.92 40 | 86.13 61 | 94.92 18 | 94.94 78 |
|
| ETV-MVS | | | 86.01 45 | 86.11 42 | 85.70 88 | 90.21 134 | 67.02 108 | 93.43 93 | 91.92 133 | 81.21 38 | 84.13 63 | 94.07 89 | 60.93 116 | 95.63 144 | 89.28 35 | 89.81 92 | 94.46 99 |
|
| APD-MVS |  | | 85.93 46 | 85.99 44 | 85.76 86 | 95.98 26 | 65.21 150 | 93.59 86 | 92.58 111 | 66.54 264 | 86.17 40 | 95.88 32 | 63.83 83 | 97.00 87 | 86.39 60 | 92.94 54 | 95.06 72 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| PAPM | | | 85.89 47 | 85.46 50 | 87.18 41 | 88.20 186 | 72.42 13 | 92.41 128 | 92.77 101 | 82.11 27 | 80.34 92 | 93.07 107 | 68.27 39 | 95.02 165 | 78.39 123 | 93.59 46 | 94.09 110 |
|
| CS-MVS | | | 85.80 48 | 86.65 37 | 83.27 162 | 92.00 94 | 58.92 281 | 95.31 30 | 91.86 138 | 79.97 47 | 84.82 55 | 95.40 42 | 62.26 103 | 95.51 154 | 86.11 62 | 92.08 65 | 95.37 56 |
|
| test_fmvsmconf0.1_n | | | 85.71 49 | 86.08 43 | 84.62 124 | 80.83 291 | 62.33 220 | 93.84 75 | 88.81 259 | 83.50 17 | 87.00 35 | 96.01 30 | 63.36 93 | 96.93 98 | 94.04 6 | 87.29 113 | 94.61 90 |
|
| CDPH-MVS | | | 85.71 49 | 85.46 50 | 86.46 64 | 94.75 34 | 67.19 101 | 93.89 70 | 92.83 100 | 70.90 216 | 83.09 69 | 95.28 47 | 63.62 88 | 97.36 66 | 80.63 104 | 94.18 34 | 94.84 82 |
|
| casdiffmvs_mvg |  | | 85.66 51 | 85.18 53 | 87.09 44 | 88.22 185 | 69.35 49 | 93.74 80 | 91.89 136 | 81.47 32 | 80.10 94 | 91.45 139 | 64.80 72 | 96.35 114 | 87.23 53 | 87.69 108 | 95.58 49 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| DeepC-MVS | | 77.85 3 | 85.52 52 | 85.24 52 | 86.37 68 | 88.80 168 | 66.64 116 | 92.15 135 | 93.68 66 | 81.07 39 | 76.91 133 | 93.64 97 | 62.59 101 | 98.44 30 | 85.50 65 | 92.84 56 | 94.03 114 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| casdiffmvs |  | | 85.37 53 | 84.87 59 | 86.84 50 | 88.25 183 | 69.07 54 | 93.04 103 | 91.76 143 | 81.27 37 | 80.84 89 | 92.07 130 | 64.23 78 | 96.06 126 | 84.98 71 | 87.43 112 | 95.39 54 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| ZNCC-MVS | | | 85.33 54 | 85.08 55 | 86.06 74 | 93.09 68 | 65.65 139 | 93.89 70 | 93.41 79 | 73.75 142 | 79.94 96 | 94.68 67 | 60.61 119 | 98.03 37 | 82.63 88 | 93.72 43 | 94.52 95 |
|
| MP-MVS-pluss | | | 85.24 55 | 85.13 54 | 85.56 91 | 91.42 111 | 65.59 141 | 91.54 165 | 92.51 113 | 74.56 125 | 80.62 90 | 95.64 37 | 59.15 136 | 97.00 87 | 86.94 56 | 93.80 40 | 94.07 112 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| PAPR | | | 85.15 56 | 84.47 60 | 87.18 41 | 96.02 25 | 68.29 72 | 91.85 153 | 93.00 95 | 76.59 104 | 79.03 107 | 95.00 56 | 61.59 110 | 97.61 54 | 78.16 124 | 89.00 99 | 95.63 47 |
|
| MP-MVS |  | | 85.02 57 | 84.97 57 | 85.17 104 | 92.60 81 | 64.27 176 | 93.24 96 | 92.27 118 | 73.13 153 | 79.63 100 | 94.43 73 | 61.90 106 | 97.17 78 | 85.00 70 | 92.56 58 | 94.06 113 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| baseline | | | 85.01 58 | 84.44 61 | 86.71 55 | 88.33 180 | 68.73 62 | 90.24 215 | 91.82 142 | 81.05 40 | 81.18 83 | 92.50 119 | 63.69 86 | 96.08 125 | 84.45 76 | 86.71 122 | 95.32 60 |
|
| CHOSEN 1792x2688 | | | 84.98 59 | 83.45 73 | 89.57 10 | 89.94 139 | 75.14 5 | 92.07 141 | 92.32 116 | 81.87 29 | 75.68 142 | 88.27 187 | 60.18 122 | 98.60 26 | 80.46 106 | 90.27 90 | 94.96 76 |
|
| EIA-MVS | | | 84.84 60 | 84.88 58 | 84.69 120 | 91.30 114 | 62.36 219 | 93.85 72 | 92.04 128 | 79.45 54 | 79.33 104 | 94.28 83 | 62.42 102 | 96.35 114 | 80.05 107 | 91.25 80 | 95.38 55 |
|
| HFP-MVS | | | 84.73 61 | 84.40 62 | 85.72 87 | 93.75 51 | 65.01 156 | 93.50 90 | 93.19 86 | 72.19 177 | 79.22 105 | 94.93 59 | 59.04 137 | 97.67 48 | 81.55 95 | 92.21 61 | 94.49 98 |
|
| MVS | | | 84.66 62 | 82.86 88 | 90.06 2 | 90.93 120 | 74.56 6 | 87.91 260 | 95.54 10 | 68.55 248 | 72.35 183 | 94.71 66 | 59.78 128 | 98.90 18 | 81.29 101 | 94.69 30 | 96.74 12 |
|
| GST-MVS | | | 84.63 63 | 84.29 63 | 85.66 89 | 92.82 73 | 65.27 148 | 93.04 103 | 93.13 89 | 73.20 151 | 78.89 108 | 94.18 86 | 59.41 133 | 97.85 44 | 81.45 97 | 92.48 60 | 93.86 122 |
|
| EC-MVSNet | | | 84.53 64 | 85.04 56 | 83.01 166 | 89.34 151 | 61.37 240 | 94.42 49 | 91.09 173 | 77.91 82 | 83.24 67 | 94.20 85 | 58.37 141 | 95.40 155 | 85.35 66 | 91.41 76 | 92.27 165 |
|
| ACMMPR | | | 84.37 65 | 84.06 64 | 85.28 99 | 93.56 54 | 64.37 172 | 93.50 90 | 93.15 88 | 72.19 177 | 78.85 113 | 94.86 62 | 56.69 163 | 97.45 60 | 81.55 95 | 92.20 62 | 94.02 115 |
|
| region2R | | | 84.36 66 | 84.03 65 | 85.36 97 | 93.54 55 | 64.31 174 | 93.43 93 | 92.95 96 | 72.16 180 | 78.86 112 | 94.84 63 | 56.97 158 | 97.53 58 | 81.38 99 | 92.11 64 | 94.24 102 |
|
| LFMVS | | | 84.34 67 | 82.73 90 | 89.18 12 | 94.76 33 | 73.25 9 | 94.99 41 | 91.89 136 | 71.90 185 | 82.16 76 | 93.49 101 | 47.98 250 | 97.05 82 | 82.55 89 | 84.82 134 | 97.25 7 |
|
| test_yl | | | 84.28 68 | 83.16 81 | 87.64 29 | 94.52 37 | 69.24 50 | 95.78 17 | 95.09 18 | 69.19 240 | 81.09 84 | 92.88 113 | 57.00 156 | 97.44 61 | 81.11 102 | 81.76 155 | 96.23 32 |
|
| DCV-MVSNet | | | 84.28 68 | 83.16 81 | 87.64 29 | 94.52 37 | 69.24 50 | 95.78 17 | 95.09 18 | 69.19 240 | 81.09 84 | 92.88 113 | 57.00 156 | 97.44 61 | 81.11 102 | 81.76 155 | 96.23 32 |
|
| diffmvs |  | | 84.28 68 | 83.83 66 | 85.61 90 | 87.40 204 | 68.02 81 | 90.88 194 | 89.24 238 | 80.54 43 | 81.64 79 | 92.52 118 | 59.83 127 | 94.52 190 | 87.32 51 | 85.11 132 | 94.29 100 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| HY-MVS | | 76.49 5 | 84.28 68 | 83.36 79 | 87.02 47 | 92.22 87 | 67.74 87 | 84.65 286 | 94.50 36 | 79.15 62 | 82.23 75 | 87.93 195 | 66.88 50 | 96.94 96 | 80.53 105 | 82.20 152 | 96.39 27 |
|
| MAR-MVS | | | 84.18 72 | 83.43 74 | 86.44 65 | 96.25 21 | 65.93 134 | 94.28 51 | 94.27 49 | 74.41 126 | 79.16 106 | 95.61 38 | 53.99 194 | 98.88 20 | 69.62 189 | 93.26 51 | 94.50 97 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| MVS_Test | | | 84.16 73 | 83.20 80 | 87.05 46 | 91.56 107 | 69.82 38 | 89.99 224 | 92.05 127 | 77.77 84 | 82.84 70 | 86.57 213 | 63.93 82 | 96.09 122 | 74.91 145 | 89.18 98 | 95.25 68 |
|
| CANet_DTU | | | 84.09 74 | 83.52 68 | 85.81 83 | 90.30 132 | 66.82 111 | 91.87 151 | 89.01 252 | 85.27 8 | 86.09 41 | 93.74 94 | 47.71 254 | 96.98 91 | 77.90 126 | 89.78 94 | 93.65 127 |
|
| ET-MVSNet_ETH3D | | | 84.01 75 | 83.15 83 | 86.58 60 | 90.78 125 | 70.89 23 | 94.74 46 | 94.62 33 | 81.44 35 | 58.19 312 | 93.64 97 | 73.64 23 | 92.35 266 | 82.66 87 | 78.66 180 | 96.50 23 |
|
| PVSNet_Blended_VisFu | | | 83.97 76 | 83.50 70 | 85.39 96 | 90.02 137 | 66.59 119 | 93.77 78 | 91.73 144 | 77.43 93 | 77.08 132 | 89.81 169 | 63.77 85 | 96.97 93 | 79.67 109 | 88.21 104 | 92.60 153 |
|
| MTAPA | | | 83.91 77 | 83.38 78 | 85.50 92 | 91.89 99 | 65.16 152 | 81.75 309 | 92.23 119 | 75.32 117 | 80.53 91 | 95.21 53 | 56.06 171 | 97.16 79 | 84.86 73 | 92.55 59 | 94.18 104 |
|
| XVS | | | 83.87 78 | 83.47 72 | 85.05 105 | 93.22 61 | 63.78 184 | 92.92 108 | 92.66 106 | 73.99 134 | 78.18 117 | 94.31 82 | 55.25 177 | 97.41 63 | 79.16 114 | 91.58 73 | 93.95 117 |
|
| Effi-MVS+ | | | 83.82 79 | 82.76 89 | 86.99 48 | 89.56 147 | 69.40 45 | 91.35 177 | 86.12 302 | 72.59 164 | 83.22 68 | 92.81 116 | 59.60 130 | 96.01 130 | 81.76 94 | 87.80 107 | 95.56 50 |
|
| test_fmvsmvis_n_1920 | | | 83.80 80 | 83.48 71 | 84.77 116 | 82.51 277 | 63.72 188 | 91.37 175 | 83.99 322 | 81.42 36 | 77.68 122 | 95.74 35 | 58.37 141 | 97.58 55 | 93.38 7 | 86.87 116 | 93.00 146 |
|
| EI-MVSNet-Vis-set | | | 83.77 81 | 83.67 67 | 84.06 141 | 92.79 76 | 63.56 195 | 91.76 158 | 94.81 25 | 79.65 53 | 77.87 120 | 94.09 87 | 63.35 94 | 97.90 41 | 79.35 112 | 79.36 172 | 90.74 190 |
|
| MVSFormer | | | 83.75 82 | 82.88 87 | 86.37 68 | 89.24 158 | 71.18 19 | 89.07 243 | 90.69 184 | 65.80 269 | 87.13 32 | 94.34 80 | 64.99 67 | 92.67 252 | 72.83 156 | 91.80 69 | 95.27 65 |
|
| CP-MVS | | | 83.71 83 | 83.40 77 | 84.65 121 | 93.14 66 | 63.84 182 | 94.59 47 | 92.28 117 | 71.03 214 | 77.41 126 | 94.92 60 | 55.21 180 | 96.19 118 | 81.32 100 | 90.70 85 | 93.91 119 |
|
| test_fmvsmconf0.01_n | | | 83.70 84 | 83.52 68 | 84.25 137 | 75.26 342 | 61.72 234 | 92.17 134 | 87.24 291 | 82.36 24 | 84.91 54 | 95.41 41 | 55.60 175 | 96.83 102 | 92.85 10 | 85.87 128 | 94.21 103 |
|
| baseline2 | | | 83.68 85 | 83.42 76 | 84.48 128 | 87.37 205 | 66.00 131 | 90.06 219 | 95.93 7 | 79.71 52 | 69.08 219 | 90.39 157 | 77.92 6 | 96.28 116 | 78.91 118 | 81.38 159 | 91.16 186 |
|
| thisisatest0515 | | | 83.41 86 | 82.49 95 | 86.16 73 | 89.46 150 | 68.26 74 | 93.54 88 | 94.70 29 | 74.31 129 | 75.75 140 | 90.92 147 | 72.62 28 | 96.52 112 | 69.64 187 | 81.50 158 | 93.71 125 |
|
| PVSNet_BlendedMVS | | | 83.38 87 | 83.43 74 | 83.22 163 | 93.76 49 | 67.53 94 | 94.06 59 | 93.61 68 | 79.13 63 | 81.00 87 | 85.14 228 | 63.19 96 | 97.29 71 | 87.08 54 | 73.91 218 | 84.83 289 |
|
| test2506 | | | 83.29 88 | 82.92 86 | 84.37 132 | 88.39 178 | 63.18 202 | 92.01 144 | 91.35 161 | 77.66 87 | 78.49 116 | 91.42 140 | 64.58 75 | 95.09 164 | 73.19 152 | 89.23 96 | 94.85 79 |
|
| iter_conf05 | | | 83.27 89 | 82.70 91 | 84.98 108 | 93.32 59 | 71.84 15 | 94.16 54 | 81.76 333 | 82.74 20 | 73.83 164 | 88.40 183 | 72.77 27 | 94.61 181 | 82.10 91 | 75.21 207 | 88.48 222 |
|
| PGM-MVS | | | 83.25 90 | 82.70 91 | 84.92 109 | 92.81 75 | 64.07 179 | 90.44 206 | 92.20 123 | 71.28 208 | 77.23 129 | 94.43 73 | 55.17 181 | 97.31 70 | 79.33 113 | 91.38 77 | 93.37 133 |
|
| HPM-MVS |  | | 83.25 90 | 82.95 85 | 84.17 139 | 92.25 86 | 62.88 211 | 90.91 191 | 91.86 138 | 70.30 226 | 77.12 130 | 93.96 91 | 56.75 161 | 96.28 116 | 82.04 92 | 91.34 79 | 93.34 134 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| EI-MVSNet-UG-set | | | 83.14 92 | 82.96 84 | 83.67 152 | 92.28 85 | 63.19 201 | 91.38 174 | 94.68 30 | 79.22 60 | 76.60 135 | 93.75 93 | 62.64 100 | 97.76 46 | 78.07 125 | 78.01 183 | 90.05 199 |
|
| VDD-MVS | | | 83.06 93 | 81.81 104 | 86.81 52 | 90.86 123 | 67.70 88 | 95.40 28 | 91.50 156 | 75.46 114 | 81.78 78 | 92.34 126 | 40.09 290 | 97.13 80 | 86.85 57 | 82.04 153 | 95.60 48 |
|
| h-mvs33 | | | 83.01 94 | 82.56 94 | 84.35 133 | 89.34 151 | 62.02 226 | 92.72 113 | 93.76 61 | 81.45 33 | 82.73 72 | 92.25 128 | 60.11 123 | 97.13 80 | 87.69 46 | 62.96 296 | 93.91 119 |
|
| PAPM_NR | | | 82.97 95 | 81.84 103 | 86.37 68 | 94.10 44 | 66.76 114 | 87.66 265 | 92.84 99 | 69.96 230 | 74.07 161 | 93.57 99 | 63.10 98 | 97.50 59 | 70.66 180 | 90.58 87 | 94.85 79 |
|
| mPP-MVS | | | 82.96 96 | 82.44 96 | 84.52 126 | 92.83 71 | 62.92 209 | 92.76 111 | 91.85 140 | 71.52 204 | 75.61 145 | 94.24 84 | 53.48 202 | 96.99 90 | 78.97 117 | 90.73 84 | 93.64 128 |
|
| SR-MVS | | | 82.81 97 | 82.58 93 | 83.50 157 | 93.35 58 | 61.16 243 | 92.23 133 | 91.28 165 | 64.48 278 | 81.27 81 | 95.28 47 | 53.71 198 | 95.86 132 | 82.87 86 | 88.77 101 | 93.49 131 |
|
| DP-MVS Recon | | | 82.73 98 | 81.65 105 | 85.98 76 | 97.31 4 | 67.06 105 | 95.15 35 | 91.99 130 | 69.08 243 | 76.50 137 | 93.89 92 | 54.48 189 | 98.20 34 | 70.76 178 | 85.66 130 | 92.69 150 |
|
| CLD-MVS | | | 82.73 98 | 82.35 98 | 83.86 145 | 87.90 193 | 67.65 90 | 95.45 27 | 92.18 125 | 85.06 9 | 72.58 176 | 92.27 127 | 52.46 210 | 95.78 134 | 84.18 77 | 79.06 175 | 88.16 228 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| sss | | | 82.71 100 | 82.38 97 | 83.73 149 | 89.25 155 | 59.58 271 | 92.24 132 | 94.89 22 | 77.96 80 | 79.86 97 | 92.38 124 | 56.70 162 | 97.05 82 | 77.26 129 | 80.86 163 | 94.55 91 |
|
| 3Dnovator | | 73.91 6 | 82.69 101 | 80.82 116 | 88.31 22 | 89.57 146 | 71.26 18 | 92.60 121 | 94.39 44 | 78.84 70 | 67.89 240 | 92.48 122 | 48.42 245 | 98.52 27 | 68.80 199 | 94.40 33 | 95.15 70 |
|
| MVSTER | | | 82.47 102 | 82.05 99 | 83.74 147 | 92.68 78 | 69.01 56 | 91.90 150 | 93.21 83 | 79.83 48 | 72.14 184 | 85.71 225 | 74.72 16 | 94.72 176 | 75.72 136 | 72.49 229 | 87.50 233 |
|
| TESTMET0.1,1 | | | 82.41 103 | 81.98 102 | 83.72 150 | 88.08 187 | 63.74 186 | 92.70 115 | 93.77 60 | 79.30 58 | 77.61 124 | 87.57 201 | 58.19 144 | 94.08 206 | 73.91 151 | 86.68 123 | 93.33 136 |
|
| CostFormer | | | 82.33 104 | 81.15 109 | 85.86 81 | 89.01 163 | 68.46 68 | 82.39 306 | 93.01 93 | 75.59 112 | 80.25 93 | 81.57 271 | 72.03 32 | 94.96 168 | 79.06 116 | 77.48 191 | 94.16 106 |
|
| API-MVS | | | 82.28 105 | 80.53 123 | 87.54 34 | 96.13 22 | 70.59 26 | 93.63 84 | 91.04 179 | 65.72 271 | 75.45 147 | 92.83 115 | 56.11 170 | 98.89 19 | 64.10 242 | 89.75 95 | 93.15 140 |
|
| IB-MVS | | 77.80 4 | 82.18 106 | 80.46 125 | 87.35 38 | 89.14 160 | 70.28 30 | 95.59 25 | 95.17 16 | 78.85 69 | 70.19 207 | 85.82 223 | 70.66 35 | 97.67 48 | 72.19 167 | 66.52 269 | 94.09 110 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| xiu_mvs_v1_base_debu | | | 82.16 107 | 81.12 110 | 85.26 101 | 86.42 219 | 68.72 63 | 92.59 123 | 90.44 194 | 73.12 154 | 84.20 60 | 94.36 75 | 38.04 304 | 95.73 138 | 84.12 78 | 86.81 117 | 91.33 179 |
|
| xiu_mvs_v1_base | | | 82.16 107 | 81.12 110 | 85.26 101 | 86.42 219 | 68.72 63 | 92.59 123 | 90.44 194 | 73.12 154 | 84.20 60 | 94.36 75 | 38.04 304 | 95.73 138 | 84.12 78 | 86.81 117 | 91.33 179 |
|
| xiu_mvs_v1_base_debi | | | 82.16 107 | 81.12 110 | 85.26 101 | 86.42 219 | 68.72 63 | 92.59 123 | 90.44 194 | 73.12 154 | 84.20 60 | 94.36 75 | 38.04 304 | 95.73 138 | 84.12 78 | 86.81 117 | 91.33 179 |
|
| 3Dnovator+ | | 73.60 7 | 82.10 110 | 80.60 122 | 86.60 58 | 90.89 122 | 66.80 113 | 95.20 33 | 93.44 77 | 74.05 133 | 67.42 246 | 92.49 121 | 49.46 235 | 97.65 51 | 70.80 177 | 91.68 71 | 95.33 58 |
|
| MVS_111021_LR | | | 82.02 111 | 81.52 106 | 83.51 156 | 88.42 176 | 62.88 211 | 89.77 228 | 88.93 255 | 76.78 100 | 75.55 146 | 93.10 104 | 50.31 227 | 95.38 157 | 83.82 82 | 87.02 115 | 92.26 166 |
|
| PMMVS | | | 81.98 112 | 82.04 100 | 81.78 199 | 89.76 143 | 56.17 308 | 91.13 187 | 90.69 184 | 77.96 80 | 80.09 95 | 93.57 99 | 46.33 264 | 94.99 167 | 81.41 98 | 87.46 111 | 94.17 105 |
|
| baseline1 | | | 81.84 113 | 81.03 114 | 84.28 136 | 91.60 105 | 66.62 117 | 91.08 188 | 91.66 150 | 81.87 29 | 74.86 151 | 91.67 137 | 69.98 36 | 94.92 171 | 71.76 170 | 64.75 284 | 91.29 184 |
|
| EPP-MVSNet | | | 81.79 114 | 81.52 106 | 82.61 175 | 88.77 169 | 60.21 263 | 93.02 105 | 93.66 67 | 68.52 249 | 72.90 171 | 90.39 157 | 72.19 31 | 94.96 168 | 74.93 144 | 79.29 174 | 92.67 151 |
|
| iter_conf_final | | | 81.74 115 | 80.93 115 | 84.18 138 | 92.66 79 | 69.10 53 | 92.94 107 | 82.80 331 | 79.01 68 | 74.85 152 | 88.40 183 | 61.83 108 | 94.61 181 | 79.36 111 | 76.52 200 | 88.83 213 |
|
| test_vis1_n_1920 | | | 81.66 116 | 82.01 101 | 80.64 226 | 82.24 280 | 55.09 316 | 94.76 45 | 86.87 293 | 81.67 31 | 84.40 59 | 94.63 68 | 38.17 301 | 94.67 180 | 91.98 19 | 83.34 145 | 92.16 169 |
|
| APD-MVS_3200maxsize | | | 81.64 117 | 81.32 108 | 82.59 176 | 92.36 83 | 58.74 283 | 91.39 172 | 91.01 180 | 63.35 287 | 79.72 99 | 94.62 69 | 51.82 213 | 96.14 120 | 79.71 108 | 87.93 106 | 92.89 149 |
|
| ACMMP |  | | 81.49 118 | 80.67 119 | 83.93 144 | 91.71 103 | 62.90 210 | 92.13 136 | 92.22 122 | 71.79 192 | 71.68 191 | 93.49 101 | 50.32 226 | 96.96 94 | 78.47 122 | 84.22 143 | 91.93 171 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| CDS-MVSNet | | | 81.43 119 | 80.74 117 | 83.52 154 | 86.26 223 | 64.45 166 | 92.09 139 | 90.65 188 | 75.83 111 | 73.95 163 | 89.81 169 | 63.97 81 | 92.91 242 | 71.27 173 | 82.82 148 | 93.20 139 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| mvs_anonymous | | | 81.36 120 | 79.99 130 | 85.46 93 | 90.39 131 | 68.40 69 | 86.88 276 | 90.61 189 | 74.41 126 | 70.31 206 | 84.67 234 | 63.79 84 | 92.32 267 | 73.13 153 | 85.70 129 | 95.67 45 |
|
| ECVR-MVS |  | | 81.29 121 | 80.38 126 | 84.01 143 | 88.39 178 | 61.96 228 | 92.56 126 | 86.79 295 | 77.66 87 | 76.63 134 | 91.42 140 | 46.34 263 | 95.24 162 | 74.36 149 | 89.23 96 | 94.85 79 |
|
| thisisatest0530 | | | 81.15 122 | 80.07 127 | 84.39 131 | 88.26 182 | 65.63 140 | 91.40 170 | 94.62 33 | 71.27 209 | 70.93 197 | 89.18 174 | 72.47 29 | 96.04 127 | 65.62 231 | 76.89 197 | 91.49 175 |
|
| Fast-Effi-MVS+ | | | 81.14 123 | 80.01 129 | 84.51 127 | 90.24 133 | 65.86 135 | 94.12 58 | 89.15 244 | 73.81 141 | 75.37 148 | 88.26 188 | 57.26 151 | 94.53 189 | 66.97 216 | 84.92 133 | 93.15 140 |
|
| HQP-MVS | | | 81.14 123 | 80.64 120 | 82.64 174 | 87.54 200 | 63.66 193 | 94.06 59 | 91.70 148 | 79.80 49 | 74.18 157 | 90.30 159 | 51.63 217 | 95.61 146 | 77.63 127 | 78.90 176 | 88.63 218 |
|
| hse-mvs2 | | | 81.12 125 | 81.11 113 | 81.16 213 | 86.52 218 | 57.48 298 | 89.40 236 | 91.16 168 | 81.45 33 | 82.73 72 | 90.49 155 | 60.11 123 | 94.58 183 | 87.69 46 | 60.41 323 | 91.41 178 |
|
| SR-MVS-dyc-post | | | 81.06 126 | 80.70 118 | 82.15 190 | 92.02 91 | 58.56 285 | 90.90 192 | 90.45 191 | 62.76 294 | 78.89 108 | 94.46 71 | 51.26 221 | 95.61 146 | 78.77 120 | 86.77 120 | 92.28 162 |
|
| HyFIR lowres test | | | 81.03 127 | 79.56 137 | 85.43 94 | 87.81 196 | 68.11 79 | 90.18 216 | 90.01 214 | 70.65 222 | 72.95 170 | 86.06 221 | 63.61 89 | 94.50 191 | 75.01 143 | 79.75 170 | 93.67 126 |
|
| nrg030 | | | 80.93 128 | 79.86 132 | 84.13 140 | 83.69 265 | 68.83 60 | 93.23 97 | 91.20 166 | 75.55 113 | 75.06 150 | 88.22 191 | 63.04 99 | 94.74 175 | 81.88 93 | 66.88 266 | 88.82 216 |
|
| Vis-MVSNet |  | | 80.92 129 | 79.98 131 | 83.74 147 | 88.48 173 | 61.80 230 | 93.44 92 | 88.26 278 | 73.96 137 | 77.73 121 | 91.76 134 | 49.94 231 | 94.76 173 | 65.84 228 | 90.37 89 | 94.65 89 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| test1111 | | | 80.84 130 | 80.02 128 | 83.33 160 | 87.87 194 | 60.76 251 | 92.62 120 | 86.86 294 | 77.86 83 | 75.73 141 | 91.39 142 | 46.35 262 | 94.70 179 | 72.79 158 | 88.68 102 | 94.52 95 |
|
| 1314 | | | 80.70 131 | 78.95 148 | 85.94 78 | 87.77 198 | 67.56 92 | 87.91 260 | 92.55 112 | 72.17 179 | 67.44 245 | 93.09 105 | 50.27 228 | 97.04 85 | 71.68 172 | 87.64 109 | 93.23 138 |
|
| tpmrst | | | 80.57 132 | 79.14 147 | 84.84 112 | 90.10 136 | 68.28 73 | 81.70 310 | 89.72 226 | 77.63 89 | 75.96 139 | 79.54 303 | 64.94 69 | 92.71 249 | 75.43 138 | 77.28 194 | 93.55 129 |
|
| 1112_ss | | | 80.56 133 | 79.83 133 | 82.77 170 | 88.65 170 | 60.78 249 | 92.29 130 | 88.36 272 | 72.58 165 | 72.46 180 | 94.95 57 | 65.09 66 | 93.42 230 | 66.38 222 | 77.71 185 | 94.10 109 |
|
| VDDNet | | | 80.50 134 | 78.26 156 | 87.21 40 | 86.19 224 | 69.79 39 | 94.48 48 | 91.31 162 | 60.42 312 | 79.34 103 | 90.91 148 | 38.48 299 | 96.56 110 | 82.16 90 | 81.05 161 | 95.27 65 |
|
| BH-w/o | | | 80.49 135 | 79.30 144 | 84.05 142 | 90.83 124 | 64.36 173 | 93.60 85 | 89.42 233 | 74.35 128 | 69.09 218 | 90.15 164 | 55.23 179 | 95.61 146 | 64.61 239 | 86.43 126 | 92.17 168 |
|
| test_cas_vis1_n_1920 | | | 80.45 136 | 80.61 121 | 79.97 243 | 78.25 326 | 57.01 304 | 94.04 63 | 88.33 273 | 79.06 66 | 82.81 71 | 93.70 95 | 38.65 296 | 91.63 281 | 90.82 28 | 79.81 168 | 91.27 185 |
|
| TAMVS | | | 80.37 137 | 79.45 140 | 83.13 165 | 85.14 242 | 63.37 197 | 91.23 182 | 90.76 183 | 74.81 124 | 72.65 174 | 88.49 180 | 60.63 118 | 92.95 237 | 69.41 191 | 81.95 154 | 93.08 143 |
|
| HQP_MVS | | | 80.34 138 | 79.75 134 | 82.12 192 | 86.94 212 | 62.42 217 | 93.13 99 | 91.31 162 | 78.81 71 | 72.53 177 | 89.14 176 | 50.66 224 | 95.55 151 | 76.74 130 | 78.53 181 | 88.39 225 |
|
| SDMVSNet | | | 80.26 139 | 78.88 149 | 84.40 130 | 89.25 155 | 67.63 91 | 85.35 282 | 93.02 92 | 76.77 101 | 70.84 198 | 87.12 207 | 47.95 251 | 96.09 122 | 85.04 69 | 74.55 209 | 89.48 209 |
|
| HPM-MVS_fast | | | 80.25 140 | 79.55 139 | 82.33 182 | 91.55 108 | 59.95 266 | 91.32 179 | 89.16 243 | 65.23 275 | 74.71 154 | 93.07 107 | 47.81 253 | 95.74 137 | 74.87 147 | 88.23 103 | 91.31 183 |
|
| ab-mvs | | | 80.18 141 | 78.31 155 | 85.80 84 | 88.44 175 | 65.49 146 | 83.00 303 | 92.67 105 | 71.82 191 | 77.36 127 | 85.01 229 | 54.50 186 | 96.59 107 | 76.35 134 | 75.63 205 | 95.32 60 |
|
| IS-MVSNet | | | 80.14 142 | 79.41 141 | 82.33 182 | 87.91 192 | 60.08 265 | 91.97 148 | 88.27 276 | 72.90 160 | 71.44 194 | 91.73 136 | 61.44 111 | 93.66 225 | 62.47 256 | 86.53 124 | 93.24 137 |
|
| test-LLR | | | 80.10 143 | 79.56 137 | 81.72 201 | 86.93 214 | 61.17 241 | 92.70 115 | 91.54 153 | 71.51 205 | 75.62 143 | 86.94 209 | 53.83 195 | 92.38 263 | 72.21 165 | 84.76 136 | 91.60 173 |
|
| PVSNet | | 73.49 8 | 80.05 144 | 78.63 151 | 84.31 134 | 90.92 121 | 64.97 157 | 92.47 127 | 91.05 178 | 79.18 61 | 72.43 181 | 90.51 154 | 37.05 316 | 94.06 208 | 68.06 203 | 86.00 127 | 93.90 121 |
|
| UA-Net | | | 80.02 145 | 79.65 135 | 81.11 215 | 89.33 153 | 57.72 293 | 86.33 279 | 89.00 254 | 77.44 92 | 81.01 86 | 89.15 175 | 59.33 134 | 95.90 131 | 61.01 263 | 84.28 141 | 89.73 205 |
|
| test-mter | | | 79.96 146 | 79.38 143 | 81.72 201 | 86.93 214 | 61.17 241 | 92.70 115 | 91.54 153 | 73.85 139 | 75.62 143 | 86.94 209 | 49.84 233 | 92.38 263 | 72.21 165 | 84.76 136 | 91.60 173 |
|
| QAPM | | | 79.95 147 | 77.39 173 | 87.64 29 | 89.63 145 | 71.41 17 | 93.30 95 | 93.70 65 | 65.34 274 | 67.39 248 | 91.75 135 | 47.83 252 | 98.96 16 | 57.71 279 | 89.81 92 | 92.54 155 |
|
| UGNet | | | 79.87 148 | 78.68 150 | 83.45 159 | 89.96 138 | 61.51 237 | 92.13 136 | 90.79 182 | 76.83 99 | 78.85 113 | 86.33 217 | 38.16 302 | 96.17 119 | 67.93 206 | 87.17 114 | 92.67 151 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| tpm2 | | | 79.80 149 | 77.95 162 | 85.34 98 | 88.28 181 | 68.26 74 | 81.56 312 | 91.42 159 | 70.11 228 | 77.59 125 | 80.50 289 | 67.40 47 | 94.26 200 | 67.34 211 | 77.35 192 | 93.51 130 |
|
| thres200 | | | 79.66 150 | 78.33 154 | 83.66 153 | 92.54 82 | 65.82 137 | 93.06 101 | 96.31 3 | 74.90 123 | 73.30 167 | 88.66 178 | 59.67 129 | 95.61 146 | 47.84 316 | 78.67 179 | 89.56 208 |
|
| CPTT-MVS | | | 79.59 151 | 79.16 146 | 80.89 224 | 91.54 109 | 59.80 268 | 92.10 138 | 88.54 270 | 60.42 312 | 72.96 169 | 93.28 103 | 48.27 246 | 92.80 246 | 78.89 119 | 86.50 125 | 90.06 198 |
|
| Test_1112_low_res | | | 79.56 152 | 78.60 152 | 82.43 178 | 88.24 184 | 60.39 260 | 92.09 139 | 87.99 282 | 72.10 181 | 71.84 187 | 87.42 203 | 64.62 74 | 93.04 234 | 65.80 229 | 77.30 193 | 93.85 123 |
|
| tttt0517 | | | 79.50 153 | 78.53 153 | 82.41 181 | 87.22 207 | 61.43 239 | 89.75 229 | 94.76 26 | 69.29 238 | 67.91 238 | 88.06 194 | 72.92 25 | 95.63 144 | 62.91 252 | 73.90 219 | 90.16 197 |
|
| FIs | | | 79.47 154 | 79.41 141 | 79.67 250 | 85.95 228 | 59.40 273 | 91.68 162 | 93.94 55 | 78.06 79 | 68.96 223 | 88.28 186 | 66.61 53 | 91.77 278 | 66.20 225 | 74.99 208 | 87.82 230 |
|
| BH-RMVSNet | | | 79.46 155 | 77.65 165 | 84.89 110 | 91.68 104 | 65.66 138 | 93.55 87 | 88.09 280 | 72.93 158 | 73.37 166 | 91.12 146 | 46.20 266 | 96.12 121 | 56.28 283 | 85.61 131 | 92.91 148 |
|
| PCF-MVS | | 73.15 9 | 79.29 156 | 77.63 166 | 84.29 135 | 86.06 226 | 65.96 133 | 87.03 272 | 91.10 172 | 69.86 232 | 69.79 214 | 90.64 150 | 57.54 150 | 96.59 107 | 64.37 241 | 82.29 150 | 90.32 195 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| Vis-MVSNet (Re-imp) | | | 79.24 157 | 79.57 136 | 78.24 271 | 88.46 174 | 52.29 327 | 90.41 208 | 89.12 246 | 74.24 130 | 69.13 217 | 91.91 132 | 65.77 60 | 90.09 303 | 59.00 275 | 88.09 105 | 92.33 159 |
|
| 114514_t | | | 79.17 158 | 77.67 164 | 83.68 151 | 95.32 29 | 65.53 144 | 92.85 110 | 91.60 152 | 63.49 285 | 67.92 237 | 90.63 152 | 46.65 259 | 95.72 142 | 67.01 215 | 83.54 144 | 89.79 203 |
|
| FA-MVS(test-final) | | | 79.12 159 | 77.23 175 | 84.81 115 | 90.54 127 | 63.98 181 | 81.35 315 | 91.71 146 | 71.09 213 | 74.85 152 | 82.94 252 | 52.85 206 | 97.05 82 | 67.97 204 | 81.73 157 | 93.41 132 |
|
| VPA-MVSNet | | | 79.03 160 | 78.00 160 | 82.11 195 | 85.95 228 | 64.48 165 | 93.22 98 | 94.66 31 | 75.05 121 | 74.04 162 | 84.95 230 | 52.17 212 | 93.52 227 | 74.90 146 | 67.04 265 | 88.32 227 |
|
| OPM-MVS | | | 79.00 161 | 78.09 158 | 81.73 200 | 83.52 268 | 63.83 183 | 91.64 164 | 90.30 201 | 76.36 107 | 71.97 186 | 89.93 168 | 46.30 265 | 95.17 163 | 75.10 141 | 77.70 186 | 86.19 261 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| EI-MVSNet | | | 78.97 162 | 78.22 157 | 81.25 210 | 85.33 237 | 62.73 214 | 89.53 233 | 93.21 83 | 72.39 172 | 72.14 184 | 90.13 165 | 60.99 114 | 94.72 176 | 67.73 208 | 72.49 229 | 86.29 257 |
|
| AdaColmap |  | | 78.94 163 | 77.00 179 | 84.76 117 | 96.34 17 | 65.86 135 | 92.66 119 | 87.97 284 | 62.18 299 | 70.56 200 | 92.37 125 | 43.53 278 | 97.35 67 | 64.50 240 | 82.86 147 | 91.05 188 |
|
| GeoE | | | 78.90 164 | 77.43 169 | 83.29 161 | 88.95 164 | 62.02 226 | 92.31 129 | 86.23 300 | 70.24 227 | 71.34 195 | 89.27 173 | 54.43 190 | 94.04 211 | 63.31 248 | 80.81 165 | 93.81 124 |
|
| miper_enhance_ethall | | | 78.86 165 | 77.97 161 | 81.54 205 | 88.00 191 | 65.17 151 | 91.41 168 | 89.15 244 | 75.19 119 | 68.79 226 | 83.98 243 | 67.17 48 | 92.82 244 | 72.73 159 | 65.30 275 | 86.62 254 |
|
| VPNet | | | 78.82 166 | 77.53 168 | 82.70 172 | 84.52 252 | 66.44 121 | 93.93 67 | 92.23 119 | 80.46 44 | 72.60 175 | 88.38 185 | 49.18 239 | 93.13 233 | 72.47 163 | 63.97 293 | 88.55 221 |
|
| EPNet_dtu | | | 78.80 167 | 79.26 145 | 77.43 279 | 88.06 188 | 49.71 340 | 91.96 149 | 91.95 132 | 77.67 86 | 76.56 136 | 91.28 144 | 58.51 140 | 90.20 301 | 56.37 282 | 80.95 162 | 92.39 157 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| tfpn200view9 | | | 78.79 168 | 77.43 169 | 82.88 168 | 92.21 88 | 64.49 163 | 92.05 142 | 96.28 4 | 73.48 148 | 71.75 189 | 88.26 188 | 60.07 125 | 95.32 158 | 45.16 327 | 77.58 188 | 88.83 213 |
|
| TR-MVS | | | 78.77 169 | 77.37 174 | 82.95 167 | 90.49 128 | 60.88 247 | 93.67 82 | 90.07 210 | 70.08 229 | 74.51 155 | 91.37 143 | 45.69 269 | 95.70 143 | 60.12 269 | 80.32 166 | 92.29 161 |
|
| thres400 | | | 78.68 170 | 77.43 169 | 82.43 178 | 92.21 88 | 64.49 163 | 92.05 142 | 96.28 4 | 73.48 148 | 71.75 189 | 88.26 188 | 60.07 125 | 95.32 158 | 45.16 327 | 77.58 188 | 87.48 234 |
|
| BH-untuned | | | 78.68 170 | 77.08 176 | 83.48 158 | 89.84 140 | 63.74 186 | 92.70 115 | 88.59 268 | 71.57 202 | 66.83 255 | 88.65 179 | 51.75 215 | 95.39 156 | 59.03 274 | 84.77 135 | 91.32 182 |
|
| OMC-MVS | | | 78.67 172 | 77.91 163 | 80.95 222 | 85.76 233 | 57.40 300 | 88.49 252 | 88.67 265 | 73.85 139 | 72.43 181 | 92.10 129 | 49.29 238 | 94.55 188 | 72.73 159 | 77.89 184 | 90.91 189 |
|
| tpm | | | 78.58 173 | 77.03 177 | 83.22 163 | 85.94 230 | 64.56 161 | 83.21 300 | 91.14 171 | 78.31 76 | 73.67 165 | 79.68 301 | 64.01 80 | 92.09 272 | 66.07 226 | 71.26 239 | 93.03 144 |
|
| OpenMVS |  | 70.45 11 | 78.54 174 | 75.92 192 | 86.41 67 | 85.93 231 | 71.68 16 | 92.74 112 | 92.51 113 | 66.49 265 | 64.56 270 | 91.96 131 | 43.88 277 | 98.10 36 | 54.61 288 | 90.65 86 | 89.44 211 |
|
| EPMVS | | | 78.49 175 | 75.98 191 | 86.02 75 | 91.21 116 | 69.68 43 | 80.23 324 | 91.20 166 | 75.25 118 | 72.48 179 | 78.11 311 | 54.65 185 | 93.69 224 | 57.66 280 | 83.04 146 | 94.69 85 |
|
| AUN-MVS | | | 78.37 176 | 77.43 169 | 81.17 212 | 86.60 217 | 57.45 299 | 89.46 235 | 91.16 168 | 74.11 132 | 74.40 156 | 90.49 155 | 55.52 176 | 94.57 185 | 74.73 148 | 60.43 322 | 91.48 176 |
|
| thres100view900 | | | 78.37 176 | 77.01 178 | 82.46 177 | 91.89 99 | 63.21 200 | 91.19 186 | 96.33 1 | 72.28 175 | 70.45 203 | 87.89 196 | 60.31 120 | 95.32 158 | 45.16 327 | 77.58 188 | 88.83 213 |
|
| GA-MVS | | | 78.33 178 | 76.23 188 | 84.65 121 | 83.65 266 | 66.30 125 | 91.44 166 | 90.14 208 | 76.01 109 | 70.32 205 | 84.02 242 | 42.50 282 | 94.72 176 | 70.98 175 | 77.00 196 | 92.94 147 |
|
| cascas | | | 78.18 179 | 75.77 194 | 85.41 95 | 87.14 209 | 69.11 52 | 92.96 106 | 91.15 170 | 66.71 263 | 70.47 201 | 86.07 220 | 37.49 310 | 96.48 113 | 70.15 183 | 79.80 169 | 90.65 191 |
|
| UniMVSNet_NR-MVSNet | | | 78.15 180 | 77.55 167 | 79.98 241 | 84.46 254 | 60.26 261 | 92.25 131 | 93.20 85 | 77.50 91 | 68.88 224 | 86.61 212 | 66.10 56 | 92.13 270 | 66.38 222 | 62.55 300 | 87.54 232 |
|
| thres600view7 | | | 78.00 181 | 76.66 183 | 82.03 197 | 91.93 96 | 63.69 191 | 91.30 180 | 96.33 1 | 72.43 170 | 70.46 202 | 87.89 196 | 60.31 120 | 94.92 171 | 42.64 339 | 76.64 198 | 87.48 234 |
|
| FC-MVSNet-test | | | 77.99 182 | 78.08 159 | 77.70 274 | 84.89 247 | 55.51 313 | 90.27 213 | 93.75 64 | 76.87 96 | 66.80 256 | 87.59 200 | 65.71 61 | 90.23 300 | 62.89 253 | 73.94 217 | 87.37 237 |
|
| Anonymous202405211 | | | 77.96 183 | 75.33 201 | 85.87 80 | 93.73 52 | 64.52 162 | 94.85 43 | 85.36 308 | 62.52 297 | 76.11 138 | 90.18 162 | 29.43 345 | 97.29 71 | 68.51 201 | 77.24 195 | 95.81 44 |
|
| cl22 | | | 77.94 184 | 76.78 181 | 81.42 207 | 87.57 199 | 64.93 159 | 90.67 201 | 88.86 258 | 72.45 169 | 67.63 244 | 82.68 256 | 64.07 79 | 92.91 242 | 71.79 168 | 65.30 275 | 86.44 255 |
|
| XXY-MVS | | | 77.94 184 | 76.44 185 | 82.43 178 | 82.60 276 | 64.44 167 | 92.01 144 | 91.83 141 | 73.59 147 | 70.00 210 | 85.82 223 | 54.43 190 | 94.76 173 | 69.63 188 | 68.02 259 | 88.10 229 |
|
| MS-PatchMatch | | | 77.90 186 | 76.50 184 | 82.12 192 | 85.99 227 | 69.95 35 | 91.75 160 | 92.70 103 | 73.97 136 | 62.58 290 | 84.44 238 | 41.11 287 | 95.78 134 | 63.76 245 | 92.17 63 | 80.62 334 |
|
| FMVSNet3 | | | 77.73 187 | 76.04 190 | 82.80 169 | 91.20 117 | 68.99 57 | 91.87 151 | 91.99 130 | 73.35 150 | 67.04 251 | 83.19 251 | 56.62 164 | 92.14 269 | 59.80 271 | 69.34 247 | 87.28 241 |
|
| miper_ehance_all_eth | | | 77.60 188 | 76.44 185 | 81.09 219 | 85.70 234 | 64.41 170 | 90.65 202 | 88.64 267 | 72.31 173 | 67.37 249 | 82.52 257 | 64.77 73 | 92.64 256 | 70.67 179 | 65.30 275 | 86.24 259 |
|
| UniMVSNet (Re) | | | 77.58 189 | 76.78 181 | 79.98 241 | 84.11 260 | 60.80 248 | 91.76 158 | 93.17 87 | 76.56 105 | 69.93 213 | 84.78 233 | 63.32 95 | 92.36 265 | 64.89 238 | 62.51 302 | 86.78 249 |
|
| PatchmatchNet |  | | 77.46 190 | 74.63 207 | 85.96 77 | 89.55 148 | 70.35 29 | 79.97 329 | 89.55 229 | 72.23 176 | 70.94 196 | 76.91 322 | 57.03 154 | 92.79 247 | 54.27 290 | 81.17 160 | 94.74 84 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| v2v482 | | | 77.42 191 | 75.65 197 | 82.73 171 | 80.38 297 | 67.13 104 | 91.85 153 | 90.23 205 | 75.09 120 | 69.37 215 | 83.39 249 | 53.79 197 | 94.44 192 | 71.77 169 | 65.00 281 | 86.63 253 |
|
| CHOSEN 280x420 | | | 77.35 192 | 76.95 180 | 78.55 266 | 87.07 210 | 62.68 215 | 69.71 357 | 82.95 329 | 68.80 245 | 71.48 193 | 87.27 206 | 66.03 57 | 84.00 344 | 76.47 133 | 82.81 149 | 88.95 212 |
|
| PS-MVSNAJss | | | 77.26 193 | 76.31 187 | 80.13 237 | 80.64 295 | 59.16 278 | 90.63 205 | 91.06 177 | 72.80 161 | 68.58 230 | 84.57 236 | 53.55 199 | 93.96 216 | 72.97 154 | 71.96 233 | 87.27 242 |
|
| gg-mvs-nofinetune | | | 77.18 194 | 74.31 214 | 85.80 84 | 91.42 111 | 68.36 70 | 71.78 351 | 94.72 28 | 49.61 352 | 77.12 130 | 45.92 375 | 77.41 8 | 93.98 215 | 67.62 209 | 93.16 52 | 95.05 73 |
|
| MVP-Stereo | | | 77.12 195 | 76.23 188 | 79.79 248 | 81.72 285 | 66.34 124 | 89.29 237 | 90.88 181 | 70.56 224 | 62.01 293 | 82.88 253 | 49.34 236 | 94.13 203 | 65.55 233 | 93.80 40 | 78.88 348 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| sd_testset | | | 77.08 196 | 75.37 199 | 82.20 188 | 89.25 155 | 62.11 225 | 82.06 307 | 89.09 248 | 76.77 101 | 70.84 198 | 87.12 207 | 41.43 286 | 95.01 166 | 67.23 213 | 74.55 209 | 89.48 209 |
|
| dmvs_re | | | 76.93 197 | 75.36 200 | 81.61 203 | 87.78 197 | 60.71 254 | 80.00 328 | 87.99 282 | 79.42 55 | 69.02 221 | 89.47 172 | 46.77 257 | 94.32 194 | 63.38 247 | 74.45 212 | 89.81 202 |
|
| X-MVStestdata | | | 76.86 198 | 74.13 218 | 85.05 105 | 93.22 61 | 63.78 184 | 92.92 108 | 92.66 106 | 73.99 134 | 78.18 117 | 10.19 390 | 55.25 177 | 97.41 63 | 79.16 114 | 91.58 73 | 93.95 117 |
|
| DU-MVS | | | 76.86 198 | 75.84 193 | 79.91 244 | 82.96 274 | 60.26 261 | 91.26 181 | 91.54 153 | 76.46 106 | 68.88 224 | 86.35 215 | 56.16 168 | 92.13 270 | 66.38 222 | 62.55 300 | 87.35 239 |
|
| mvsmamba | | | 76.85 200 | 75.71 196 | 80.25 234 | 83.07 273 | 59.16 278 | 91.44 166 | 80.64 338 | 76.84 98 | 67.95 236 | 86.33 217 | 46.17 267 | 94.24 201 | 76.06 135 | 72.92 225 | 87.36 238 |
|
| Anonymous20240529 | | | 76.84 201 | 74.15 217 | 84.88 111 | 91.02 118 | 64.95 158 | 93.84 75 | 91.09 173 | 53.57 341 | 73.00 168 | 87.42 203 | 35.91 320 | 97.32 69 | 69.14 195 | 72.41 231 | 92.36 158 |
|
| c3_l | | | 76.83 202 | 75.47 198 | 80.93 223 | 85.02 245 | 64.18 178 | 90.39 209 | 88.11 279 | 71.66 195 | 66.65 257 | 81.64 269 | 63.58 91 | 92.56 257 | 69.31 193 | 62.86 297 | 86.04 266 |
|
| WR-MVS | | | 76.76 203 | 75.74 195 | 79.82 247 | 84.60 250 | 62.27 223 | 92.60 121 | 92.51 113 | 76.06 108 | 67.87 241 | 85.34 226 | 56.76 160 | 90.24 299 | 62.20 257 | 63.69 295 | 86.94 247 |
|
| v1144 | | | 76.73 204 | 74.88 204 | 82.27 184 | 80.23 301 | 66.60 118 | 91.68 162 | 90.21 207 | 73.69 144 | 69.06 220 | 81.89 264 | 52.73 208 | 94.40 193 | 69.21 194 | 65.23 278 | 85.80 272 |
|
| IterMVS-LS | | | 76.49 205 | 75.18 203 | 80.43 229 | 84.49 253 | 62.74 213 | 90.64 203 | 88.80 260 | 72.40 171 | 65.16 264 | 81.72 267 | 60.98 115 | 92.27 268 | 67.74 207 | 64.65 286 | 86.29 257 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| V42 | | | 76.46 206 | 74.55 210 | 82.19 189 | 79.14 314 | 67.82 85 | 90.26 214 | 89.42 233 | 73.75 142 | 68.63 229 | 81.89 264 | 51.31 220 | 94.09 205 | 71.69 171 | 64.84 282 | 84.66 290 |
|
| v148 | | | 76.19 207 | 74.47 212 | 81.36 208 | 80.05 302 | 64.44 167 | 91.75 160 | 90.23 205 | 73.68 145 | 67.13 250 | 80.84 284 | 55.92 173 | 93.86 222 | 68.95 197 | 61.73 311 | 85.76 275 |
|
| Effi-MVS+-dtu | | | 76.14 208 | 75.28 202 | 78.72 265 | 83.22 270 | 55.17 315 | 89.87 225 | 87.78 285 | 75.42 115 | 67.98 235 | 81.43 273 | 45.08 273 | 92.52 259 | 75.08 142 | 71.63 234 | 88.48 222 |
|
| cl____ | | | 76.07 209 | 74.67 205 | 80.28 232 | 85.15 241 | 61.76 232 | 90.12 217 | 88.73 263 | 71.16 210 | 65.43 261 | 81.57 271 | 61.15 112 | 92.95 237 | 66.54 219 | 62.17 304 | 86.13 264 |
|
| DIV-MVS_self_test | | | 76.07 209 | 74.67 205 | 80.28 232 | 85.14 242 | 61.75 233 | 90.12 217 | 88.73 263 | 71.16 210 | 65.42 262 | 81.60 270 | 61.15 112 | 92.94 241 | 66.54 219 | 62.16 306 | 86.14 262 |
|
| FMVSNet2 | | | 76.07 209 | 74.01 220 | 82.26 186 | 88.85 165 | 67.66 89 | 91.33 178 | 91.61 151 | 70.84 217 | 65.98 258 | 82.25 260 | 48.03 247 | 92.00 274 | 58.46 276 | 68.73 254 | 87.10 244 |
|
| v144192 | | | 76.05 212 | 74.03 219 | 82.12 192 | 79.50 308 | 66.55 120 | 91.39 172 | 89.71 227 | 72.30 174 | 68.17 233 | 81.33 276 | 51.75 215 | 94.03 213 | 67.94 205 | 64.19 288 | 85.77 273 |
|
| NR-MVSNet | | | 76.05 212 | 74.59 208 | 80.44 228 | 82.96 274 | 62.18 224 | 90.83 196 | 91.73 144 | 77.12 95 | 60.96 297 | 86.35 215 | 59.28 135 | 91.80 277 | 60.74 264 | 61.34 315 | 87.35 239 |
|
| v1192 | | | 75.98 214 | 73.92 221 | 82.15 190 | 79.73 304 | 66.24 127 | 91.22 183 | 89.75 221 | 72.67 163 | 68.49 231 | 81.42 274 | 49.86 232 | 94.27 198 | 67.08 214 | 65.02 280 | 85.95 269 |
|
| FE-MVS | | | 75.97 215 | 73.02 231 | 84.82 113 | 89.78 141 | 65.56 142 | 77.44 340 | 91.07 176 | 64.55 277 | 72.66 173 | 79.85 299 | 46.05 268 | 96.69 105 | 54.97 287 | 80.82 164 | 92.21 167 |
|
| eth_miper_zixun_eth | | | 75.96 216 | 74.40 213 | 80.66 225 | 84.66 249 | 63.02 204 | 89.28 238 | 88.27 276 | 71.88 187 | 65.73 259 | 81.65 268 | 59.45 131 | 92.81 245 | 68.13 202 | 60.53 320 | 86.14 262 |
|
| TranMVSNet+NR-MVSNet | | | 75.86 217 | 74.52 211 | 79.89 245 | 82.44 278 | 60.64 257 | 91.37 175 | 91.37 160 | 76.63 103 | 67.65 243 | 86.21 219 | 52.37 211 | 91.55 283 | 61.84 259 | 60.81 318 | 87.48 234 |
|
| SCA | | | 75.82 218 | 72.76 235 | 85.01 107 | 86.63 216 | 70.08 31 | 81.06 317 | 89.19 241 | 71.60 201 | 70.01 209 | 77.09 320 | 45.53 270 | 90.25 296 | 60.43 266 | 73.27 221 | 94.68 86 |
|
| LPG-MVS_test | | | 75.82 218 | 74.58 209 | 79.56 254 | 84.31 257 | 59.37 274 | 90.44 206 | 89.73 224 | 69.49 235 | 64.86 265 | 88.42 181 | 38.65 296 | 94.30 196 | 72.56 161 | 72.76 226 | 85.01 287 |
|
| GBi-Net | | | 75.65 220 | 73.83 222 | 81.10 216 | 88.85 165 | 65.11 153 | 90.01 221 | 90.32 197 | 70.84 217 | 67.04 251 | 80.25 294 | 48.03 247 | 91.54 284 | 59.80 271 | 69.34 247 | 86.64 250 |
|
| test1 | | | 75.65 220 | 73.83 222 | 81.10 216 | 88.85 165 | 65.11 153 | 90.01 221 | 90.32 197 | 70.84 217 | 67.04 251 | 80.25 294 | 48.03 247 | 91.54 284 | 59.80 271 | 69.34 247 | 86.64 250 |
|
| v1921920 | | | 75.63 222 | 73.49 227 | 82.06 196 | 79.38 309 | 66.35 123 | 91.07 190 | 89.48 230 | 71.98 182 | 67.99 234 | 81.22 279 | 49.16 241 | 93.90 219 | 66.56 218 | 64.56 287 | 85.92 271 |
|
| ACMP | | 71.68 10 | 75.58 223 | 74.23 216 | 79.62 252 | 84.97 246 | 59.64 269 | 90.80 197 | 89.07 250 | 70.39 225 | 62.95 286 | 87.30 205 | 38.28 300 | 93.87 220 | 72.89 155 | 71.45 237 | 85.36 282 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| v8 | | | 75.35 224 | 73.26 229 | 81.61 203 | 80.67 294 | 66.82 111 | 89.54 232 | 89.27 237 | 71.65 196 | 63.30 283 | 80.30 293 | 54.99 183 | 94.06 208 | 67.33 212 | 62.33 303 | 83.94 295 |
|
| tpm cat1 | | | 75.30 225 | 72.21 244 | 84.58 125 | 88.52 171 | 67.77 86 | 78.16 338 | 88.02 281 | 61.88 304 | 68.45 232 | 76.37 326 | 60.65 117 | 94.03 213 | 53.77 293 | 74.11 215 | 91.93 171 |
|
| PLC |  | 68.80 14 | 75.23 226 | 73.68 225 | 79.86 246 | 92.93 70 | 58.68 284 | 90.64 203 | 88.30 274 | 60.90 309 | 64.43 274 | 90.53 153 | 42.38 283 | 94.57 185 | 56.52 281 | 76.54 199 | 86.33 256 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| v1240 | | | 75.21 227 | 72.98 232 | 81.88 198 | 79.20 311 | 66.00 131 | 90.75 199 | 89.11 247 | 71.63 200 | 67.41 247 | 81.22 279 | 47.36 255 | 93.87 220 | 65.46 234 | 64.72 285 | 85.77 273 |
|
| Fast-Effi-MVS+-dtu | | | 75.04 228 | 73.37 228 | 80.07 238 | 80.86 290 | 59.52 272 | 91.20 185 | 85.38 307 | 71.90 185 | 65.20 263 | 84.84 232 | 41.46 285 | 92.97 236 | 66.50 221 | 72.96 224 | 87.73 231 |
|
| dp | | | 75.01 229 | 72.09 245 | 83.76 146 | 89.28 154 | 66.22 128 | 79.96 330 | 89.75 221 | 71.16 210 | 67.80 242 | 77.19 319 | 51.81 214 | 92.54 258 | 50.39 301 | 71.44 238 | 92.51 156 |
|
| TAPA-MVS | | 70.22 12 | 74.94 230 | 73.53 226 | 79.17 259 | 90.40 130 | 52.07 328 | 89.19 241 | 89.61 228 | 62.69 296 | 70.07 208 | 92.67 117 | 48.89 244 | 94.32 194 | 38.26 353 | 79.97 167 | 91.12 187 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| v10 | | | 74.77 231 | 72.54 241 | 81.46 206 | 80.33 299 | 66.71 115 | 89.15 242 | 89.08 249 | 70.94 215 | 63.08 285 | 79.86 298 | 52.52 209 | 94.04 211 | 65.70 230 | 62.17 304 | 83.64 297 |
|
| XVG-OURS-SEG-HR | | | 74.70 232 | 73.08 230 | 79.57 253 | 78.25 326 | 57.33 301 | 80.49 320 | 87.32 288 | 63.22 289 | 68.76 227 | 90.12 167 | 44.89 274 | 91.59 282 | 70.55 181 | 74.09 216 | 89.79 203 |
|
| RRT_MVS | | | 74.44 233 | 72.97 233 | 78.84 264 | 82.36 279 | 57.66 295 | 89.83 227 | 88.79 262 | 70.61 223 | 64.58 269 | 84.89 231 | 39.24 292 | 92.65 255 | 70.11 184 | 66.34 270 | 86.21 260 |
|
| ACMM | | 69.62 13 | 74.34 234 | 72.73 237 | 79.17 259 | 84.25 259 | 57.87 291 | 90.36 210 | 89.93 215 | 63.17 291 | 65.64 260 | 86.04 222 | 37.79 308 | 94.10 204 | 65.89 227 | 71.52 236 | 85.55 278 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| CNLPA | | | 74.31 235 | 72.30 243 | 80.32 230 | 91.49 110 | 61.66 235 | 90.85 195 | 80.72 337 | 56.67 333 | 63.85 278 | 90.64 150 | 46.75 258 | 90.84 291 | 53.79 292 | 75.99 204 | 88.47 224 |
|
| XVG-OURS | | | 74.25 236 | 72.46 242 | 79.63 251 | 78.45 324 | 57.59 297 | 80.33 322 | 87.39 287 | 63.86 282 | 68.76 227 | 89.62 171 | 40.50 289 | 91.72 279 | 69.00 196 | 74.25 214 | 89.58 206 |
|
| test_fmvs1 | | | 74.07 237 | 73.69 224 | 75.22 298 | 78.91 318 | 47.34 351 | 89.06 245 | 74.69 352 | 63.68 284 | 79.41 102 | 91.59 138 | 24.36 354 | 87.77 322 | 85.22 67 | 76.26 202 | 90.55 194 |
|
| CVMVSNet | | | 74.04 238 | 74.27 215 | 73.33 313 | 85.33 237 | 43.94 362 | 89.53 233 | 88.39 271 | 54.33 340 | 70.37 204 | 90.13 165 | 49.17 240 | 84.05 342 | 61.83 260 | 79.36 172 | 91.99 170 |
|
| Baseline_NR-MVSNet | | | 73.99 239 | 72.83 234 | 77.48 278 | 80.78 292 | 59.29 277 | 91.79 155 | 84.55 315 | 68.85 244 | 68.99 222 | 80.70 285 | 56.16 168 | 92.04 273 | 62.67 254 | 60.98 317 | 81.11 328 |
|
| pmmvs4 | | | 73.92 240 | 71.81 249 | 80.25 234 | 79.17 312 | 65.24 149 | 87.43 268 | 87.26 290 | 67.64 257 | 63.46 281 | 83.91 244 | 48.96 243 | 91.53 287 | 62.94 251 | 65.49 274 | 83.96 294 |
|
| D2MVS | | | 73.80 241 | 72.02 246 | 79.15 261 | 79.15 313 | 62.97 205 | 88.58 251 | 90.07 210 | 72.94 157 | 59.22 306 | 78.30 308 | 42.31 284 | 92.70 251 | 65.59 232 | 72.00 232 | 81.79 324 |
|
| CR-MVSNet | | | 73.79 242 | 70.82 257 | 82.70 172 | 83.15 271 | 67.96 82 | 70.25 354 | 84.00 320 | 73.67 146 | 69.97 211 | 72.41 340 | 57.82 147 | 89.48 307 | 52.99 296 | 73.13 222 | 90.64 192 |
|
| test_djsdf | | | 73.76 243 | 72.56 240 | 77.39 280 | 77.00 336 | 53.93 321 | 89.07 243 | 90.69 184 | 65.80 269 | 63.92 276 | 82.03 263 | 43.14 281 | 92.67 252 | 72.83 156 | 68.53 255 | 85.57 277 |
|
| pmmvs5 | | | 73.35 244 | 71.52 251 | 78.86 263 | 78.64 322 | 60.61 258 | 91.08 188 | 86.90 292 | 67.69 254 | 63.32 282 | 83.64 245 | 44.33 276 | 90.53 293 | 62.04 258 | 66.02 272 | 85.46 280 |
|
| Anonymous20231211 | | | 73.08 245 | 70.39 261 | 81.13 214 | 90.62 126 | 63.33 198 | 91.40 170 | 90.06 212 | 51.84 346 | 64.46 273 | 80.67 287 | 36.49 318 | 94.07 207 | 63.83 244 | 64.17 289 | 85.98 268 |
|
| tt0805 | | | 73.07 246 | 70.73 258 | 80.07 238 | 78.37 325 | 57.05 303 | 87.78 262 | 92.18 125 | 61.23 308 | 67.04 251 | 86.49 214 | 31.35 339 | 94.58 183 | 65.06 237 | 67.12 264 | 88.57 220 |
|
| miper_lstm_enhance | | | 73.05 247 | 71.73 250 | 77.03 285 | 83.80 263 | 58.32 287 | 81.76 308 | 88.88 256 | 69.80 233 | 61.01 296 | 78.23 310 | 57.19 152 | 87.51 326 | 65.34 235 | 59.53 325 | 85.27 285 |
|
| jajsoiax | | | 73.05 247 | 71.51 252 | 77.67 275 | 77.46 333 | 54.83 317 | 88.81 247 | 90.04 213 | 69.13 242 | 62.85 288 | 83.51 247 | 31.16 340 | 92.75 248 | 70.83 176 | 69.80 243 | 85.43 281 |
|
| LCM-MVSNet-Re | | | 72.93 249 | 71.84 248 | 76.18 294 | 88.49 172 | 48.02 346 | 80.07 327 | 70.17 363 | 73.96 137 | 52.25 336 | 80.09 297 | 49.98 230 | 88.24 316 | 67.35 210 | 84.23 142 | 92.28 162 |
|
| pm-mvs1 | | | 72.89 250 | 71.09 254 | 78.26 270 | 79.10 315 | 57.62 296 | 90.80 197 | 89.30 236 | 67.66 255 | 62.91 287 | 81.78 266 | 49.11 242 | 92.95 237 | 60.29 268 | 58.89 328 | 84.22 293 |
|
| tpmvs | | | 72.88 251 | 69.76 267 | 82.22 187 | 90.98 119 | 67.05 106 | 78.22 337 | 88.30 274 | 63.10 292 | 64.35 275 | 74.98 333 | 55.09 182 | 94.27 198 | 43.25 333 | 69.57 246 | 85.34 283 |
|
| test0.0.03 1 | | | 72.76 252 | 72.71 238 | 72.88 317 | 80.25 300 | 47.99 347 | 91.22 183 | 89.45 231 | 71.51 205 | 62.51 291 | 87.66 199 | 53.83 195 | 85.06 338 | 50.16 303 | 67.84 262 | 85.58 276 |
|
| UniMVSNet_ETH3D | | | 72.74 253 | 70.53 260 | 79.36 256 | 78.62 323 | 56.64 306 | 85.01 284 | 89.20 240 | 63.77 283 | 64.84 267 | 84.44 238 | 34.05 327 | 91.86 276 | 63.94 243 | 70.89 241 | 89.57 207 |
|
| mvs_tets | | | 72.71 254 | 71.11 253 | 77.52 276 | 77.41 334 | 54.52 319 | 88.45 253 | 89.76 220 | 68.76 247 | 62.70 289 | 83.26 250 | 29.49 344 | 92.71 249 | 70.51 182 | 69.62 245 | 85.34 283 |
|
| FMVSNet1 | | | 72.71 254 | 69.91 265 | 81.10 216 | 83.60 267 | 65.11 153 | 90.01 221 | 90.32 197 | 63.92 281 | 63.56 280 | 80.25 294 | 36.35 319 | 91.54 284 | 54.46 289 | 66.75 267 | 86.64 250 |
|
| test_fmvs1_n | | | 72.69 256 | 71.92 247 | 74.99 301 | 71.15 355 | 47.08 353 | 87.34 270 | 75.67 347 | 63.48 286 | 78.08 119 | 91.17 145 | 20.16 365 | 87.87 319 | 84.65 74 | 75.57 206 | 90.01 200 |
|
| IterMVS | | | 72.65 257 | 70.83 255 | 78.09 272 | 82.17 281 | 62.96 206 | 87.64 266 | 86.28 298 | 71.56 203 | 60.44 299 | 78.85 306 | 45.42 272 | 86.66 330 | 63.30 249 | 61.83 308 | 84.65 291 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| myMVS_eth3d | | | 72.58 258 | 72.74 236 | 72.10 325 | 87.87 194 | 49.45 342 | 88.07 257 | 89.01 252 | 72.91 159 | 63.11 284 | 88.10 192 | 63.63 87 | 85.54 335 | 32.73 367 | 69.23 250 | 81.32 327 |
|
| PatchMatch-RL | | | 72.06 259 | 69.98 262 | 78.28 269 | 89.51 149 | 55.70 312 | 83.49 293 | 83.39 327 | 61.24 307 | 63.72 279 | 82.76 254 | 34.77 324 | 93.03 235 | 53.37 295 | 77.59 187 | 86.12 265 |
|
| PVSNet_0 | | 68.08 15 | 71.81 260 | 68.32 276 | 82.27 184 | 84.68 248 | 62.31 222 | 88.68 249 | 90.31 200 | 75.84 110 | 57.93 317 | 80.65 288 | 37.85 307 | 94.19 202 | 69.94 185 | 29.05 380 | 90.31 196 |
|
| MIMVSNet | | | 71.64 261 | 68.44 274 | 81.23 211 | 81.97 284 | 64.44 167 | 73.05 350 | 88.80 260 | 69.67 234 | 64.59 268 | 74.79 334 | 32.79 331 | 87.82 320 | 53.99 291 | 76.35 201 | 91.42 177 |
|
| test_vis1_n | | | 71.63 262 | 70.73 258 | 74.31 308 | 69.63 361 | 47.29 352 | 86.91 274 | 72.11 358 | 63.21 290 | 75.18 149 | 90.17 163 | 20.40 363 | 85.76 334 | 84.59 75 | 74.42 213 | 89.87 201 |
|
| bld_raw_dy_0_64 | | | 71.59 263 | 69.71 268 | 77.22 284 | 77.82 332 | 58.12 289 | 87.71 264 | 73.66 354 | 68.01 252 | 61.90 295 | 84.29 240 | 33.68 328 | 88.43 314 | 69.91 186 | 70.43 242 | 85.11 286 |
|
| IterMVS-SCA-FT | | | 71.55 264 | 69.97 263 | 76.32 292 | 81.48 286 | 60.67 256 | 87.64 266 | 85.99 303 | 66.17 267 | 59.50 304 | 78.88 305 | 45.53 270 | 83.65 346 | 62.58 255 | 61.93 307 | 84.63 292 |
|
| v7n | | | 71.31 265 | 68.65 271 | 79.28 257 | 76.40 338 | 60.77 250 | 86.71 277 | 89.45 231 | 64.17 280 | 58.77 311 | 78.24 309 | 44.59 275 | 93.54 226 | 57.76 278 | 61.75 310 | 83.52 300 |
|
| anonymousdsp | | | 71.14 266 | 69.37 269 | 76.45 291 | 72.95 350 | 54.71 318 | 84.19 288 | 88.88 256 | 61.92 303 | 62.15 292 | 79.77 300 | 38.14 303 | 91.44 289 | 68.90 198 | 67.45 263 | 83.21 306 |
|
| F-COLMAP | | | 70.66 267 | 68.44 274 | 77.32 281 | 86.37 222 | 55.91 310 | 88.00 258 | 86.32 297 | 56.94 331 | 57.28 320 | 88.07 193 | 33.58 329 | 92.49 260 | 51.02 299 | 68.37 256 | 83.55 298 |
|
| WR-MVS_H | | | 70.59 268 | 69.94 264 | 72.53 319 | 81.03 289 | 51.43 331 | 87.35 269 | 92.03 129 | 67.38 258 | 60.23 301 | 80.70 285 | 55.84 174 | 83.45 348 | 46.33 323 | 58.58 330 | 82.72 313 |
|
| CP-MVSNet | | | 70.50 269 | 69.91 265 | 72.26 322 | 80.71 293 | 51.00 334 | 87.23 271 | 90.30 201 | 67.84 253 | 59.64 303 | 82.69 255 | 50.23 229 | 82.30 356 | 51.28 298 | 59.28 326 | 83.46 302 |
|
| RPMNet | | | 70.42 270 | 65.68 288 | 84.63 123 | 83.15 271 | 67.96 82 | 70.25 354 | 90.45 191 | 46.83 360 | 69.97 211 | 65.10 359 | 56.48 167 | 95.30 161 | 35.79 358 | 73.13 222 | 90.64 192 |
|
| testing3 | | | 70.38 271 | 70.83 255 | 69.03 335 | 85.82 232 | 43.93 363 | 90.72 200 | 90.56 190 | 68.06 251 | 60.24 300 | 86.82 211 | 64.83 71 | 84.12 340 | 26.33 373 | 64.10 290 | 79.04 347 |
|
| tfpnnormal | | | 70.10 272 | 67.36 279 | 78.32 268 | 83.45 269 | 60.97 246 | 88.85 246 | 92.77 101 | 64.85 276 | 60.83 298 | 78.53 307 | 43.52 279 | 93.48 228 | 31.73 370 | 61.70 312 | 80.52 335 |
|
| TransMVSNet (Re) | | | 70.07 273 | 67.66 278 | 77.31 282 | 80.62 296 | 59.13 280 | 91.78 157 | 84.94 312 | 65.97 268 | 60.08 302 | 80.44 290 | 50.78 223 | 91.87 275 | 48.84 309 | 45.46 358 | 80.94 330 |
|
| CL-MVSNet_self_test | | | 69.92 274 | 68.09 277 | 75.41 297 | 73.25 349 | 55.90 311 | 90.05 220 | 89.90 216 | 69.96 230 | 61.96 294 | 76.54 323 | 51.05 222 | 87.64 323 | 49.51 307 | 50.59 350 | 82.70 315 |
|
| DP-MVS | | | 69.90 275 | 66.48 281 | 80.14 236 | 95.36 28 | 62.93 207 | 89.56 230 | 76.11 345 | 50.27 351 | 57.69 318 | 85.23 227 | 39.68 291 | 95.73 138 | 33.35 363 | 71.05 240 | 81.78 325 |
|
| PS-CasMVS | | | 69.86 276 | 69.13 270 | 72.07 326 | 80.35 298 | 50.57 336 | 87.02 273 | 89.75 221 | 67.27 259 | 59.19 307 | 82.28 259 | 46.58 260 | 82.24 357 | 50.69 300 | 59.02 327 | 83.39 304 |
|
| MSDG | | | 69.54 277 | 65.73 287 | 80.96 221 | 85.11 244 | 63.71 189 | 84.19 288 | 83.28 328 | 56.95 330 | 54.50 327 | 84.03 241 | 31.50 337 | 96.03 128 | 42.87 337 | 69.13 251 | 83.14 308 |
|
| PEN-MVS | | | 69.46 278 | 68.56 272 | 72.17 324 | 79.27 310 | 49.71 340 | 86.90 275 | 89.24 238 | 67.24 262 | 59.08 308 | 82.51 258 | 47.23 256 | 83.54 347 | 48.42 311 | 57.12 331 | 83.25 305 |
|
| LS3D | | | 69.17 279 | 66.40 283 | 77.50 277 | 91.92 97 | 56.12 309 | 85.12 283 | 80.37 339 | 46.96 358 | 56.50 322 | 87.51 202 | 37.25 311 | 93.71 223 | 32.52 369 | 79.40 171 | 82.68 316 |
|
| PatchT | | | 69.11 280 | 65.37 292 | 80.32 230 | 82.07 283 | 63.68 192 | 67.96 363 | 87.62 286 | 50.86 349 | 69.37 215 | 65.18 358 | 57.09 153 | 88.53 313 | 41.59 342 | 66.60 268 | 88.74 217 |
|
| KD-MVS_2432*1600 | | | 69.03 281 | 66.37 284 | 77.01 286 | 85.56 235 | 61.06 244 | 81.44 313 | 90.25 203 | 67.27 259 | 58.00 315 | 76.53 324 | 54.49 187 | 87.63 324 | 48.04 313 | 35.77 372 | 82.34 319 |
|
| miper_refine_blended | | | 69.03 281 | 66.37 284 | 77.01 286 | 85.56 235 | 61.06 244 | 81.44 313 | 90.25 203 | 67.27 259 | 58.00 315 | 76.53 324 | 54.49 187 | 87.63 324 | 48.04 313 | 35.77 372 | 82.34 319 |
|
| mvsany_test1 | | | 68.77 283 | 68.56 272 | 69.39 333 | 73.57 348 | 45.88 358 | 80.93 318 | 60.88 376 | 59.65 318 | 71.56 192 | 90.26 161 | 43.22 280 | 75.05 366 | 74.26 150 | 62.70 299 | 87.25 243 |
|
| ACMH | | 63.93 17 | 68.62 284 | 64.81 294 | 80.03 240 | 85.22 240 | 63.25 199 | 87.72 263 | 84.66 314 | 60.83 310 | 51.57 339 | 79.43 304 | 27.29 350 | 94.96 168 | 41.76 340 | 64.84 282 | 81.88 323 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| EG-PatchMatch MVS | | | 68.55 285 | 65.41 291 | 77.96 273 | 78.69 321 | 62.93 207 | 89.86 226 | 89.17 242 | 60.55 311 | 50.27 344 | 77.73 314 | 22.60 359 | 94.06 208 | 47.18 319 | 72.65 228 | 76.88 356 |
|
| ADS-MVSNet | | | 68.54 286 | 64.38 301 | 81.03 220 | 88.06 188 | 66.90 110 | 68.01 361 | 84.02 319 | 57.57 325 | 64.48 271 | 69.87 350 | 38.68 294 | 89.21 309 | 40.87 344 | 67.89 260 | 86.97 245 |
|
| DTE-MVSNet | | | 68.46 287 | 67.33 280 | 71.87 328 | 77.94 330 | 49.00 344 | 86.16 280 | 88.58 269 | 66.36 266 | 58.19 312 | 82.21 261 | 46.36 261 | 83.87 345 | 44.97 330 | 55.17 338 | 82.73 312 |
|
| our_test_3 | | | 68.29 288 | 64.69 296 | 79.11 262 | 78.92 316 | 64.85 160 | 88.40 254 | 85.06 310 | 60.32 314 | 52.68 334 | 76.12 328 | 40.81 288 | 89.80 306 | 44.25 332 | 55.65 336 | 82.67 317 |
|
| Patchmatch-RL test | | | 68.17 289 | 64.49 299 | 79.19 258 | 71.22 354 | 53.93 321 | 70.07 356 | 71.54 362 | 69.22 239 | 56.79 321 | 62.89 362 | 56.58 165 | 88.61 310 | 69.53 190 | 52.61 345 | 95.03 75 |
|
| XVG-ACMP-BASELINE | | | 68.04 290 | 65.53 290 | 75.56 296 | 74.06 347 | 52.37 326 | 78.43 334 | 85.88 304 | 62.03 301 | 58.91 310 | 81.21 281 | 20.38 364 | 91.15 290 | 60.69 265 | 68.18 257 | 83.16 307 |
|
| FMVSNet5 | | | 68.04 290 | 65.66 289 | 75.18 300 | 84.43 255 | 57.89 290 | 83.54 292 | 86.26 299 | 61.83 305 | 53.64 332 | 73.30 337 | 37.15 314 | 85.08 337 | 48.99 308 | 61.77 309 | 82.56 318 |
|
| ppachtmachnet_test | | | 67.72 292 | 63.70 303 | 79.77 249 | 78.92 316 | 66.04 130 | 88.68 249 | 82.90 330 | 60.11 316 | 55.45 324 | 75.96 329 | 39.19 293 | 90.55 292 | 39.53 348 | 52.55 346 | 82.71 314 |
|
| ACMH+ | | 65.35 16 | 67.65 293 | 64.55 297 | 76.96 288 | 84.59 251 | 57.10 302 | 88.08 256 | 80.79 336 | 58.59 324 | 53.00 333 | 81.09 283 | 26.63 352 | 92.95 237 | 46.51 321 | 61.69 313 | 80.82 331 |
|
| pmmvs6 | | | 67.57 294 | 64.76 295 | 76.00 295 | 72.82 352 | 53.37 323 | 88.71 248 | 86.78 296 | 53.19 342 | 57.58 319 | 78.03 312 | 35.33 323 | 92.41 262 | 55.56 285 | 54.88 340 | 82.21 321 |
|
| Anonymous20231206 | | | 67.53 295 | 65.78 286 | 72.79 318 | 74.95 343 | 47.59 349 | 88.23 255 | 87.32 288 | 61.75 306 | 58.07 314 | 77.29 317 | 37.79 308 | 87.29 328 | 42.91 335 | 63.71 294 | 83.48 301 |
|
| Patchmtry | | | 67.53 295 | 63.93 302 | 78.34 267 | 82.12 282 | 64.38 171 | 68.72 358 | 84.00 320 | 48.23 357 | 59.24 305 | 72.41 340 | 57.82 147 | 89.27 308 | 46.10 324 | 56.68 335 | 81.36 326 |
|
| USDC | | | 67.43 297 | 64.51 298 | 76.19 293 | 77.94 330 | 55.29 314 | 78.38 335 | 85.00 311 | 73.17 152 | 48.36 351 | 80.37 291 | 21.23 361 | 92.48 261 | 52.15 297 | 64.02 292 | 80.81 332 |
|
| ADS-MVSNet2 | | | 66.90 298 | 63.44 305 | 77.26 283 | 88.06 188 | 60.70 255 | 68.01 361 | 75.56 349 | 57.57 325 | 64.48 271 | 69.87 350 | 38.68 294 | 84.10 341 | 40.87 344 | 67.89 260 | 86.97 245 |
|
| CMPMVS |  | 48.56 21 | 66.77 299 | 64.41 300 | 73.84 310 | 70.65 358 | 50.31 337 | 77.79 339 | 85.73 306 | 45.54 362 | 44.76 361 | 82.14 262 | 35.40 322 | 90.14 302 | 63.18 250 | 74.54 211 | 81.07 329 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| OpenMVS_ROB |  | 61.12 18 | 66.39 300 | 62.92 308 | 76.80 290 | 76.51 337 | 57.77 292 | 89.22 239 | 83.41 326 | 55.48 337 | 53.86 331 | 77.84 313 | 26.28 353 | 93.95 217 | 34.90 360 | 68.76 253 | 78.68 350 |
|
| LTVRE_ROB | | 59.60 19 | 66.27 301 | 63.54 304 | 74.45 305 | 84.00 262 | 51.55 330 | 67.08 364 | 83.53 324 | 58.78 322 | 54.94 326 | 80.31 292 | 34.54 325 | 93.23 232 | 40.64 346 | 68.03 258 | 78.58 351 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| JIA-IIPM | | | 66.06 302 | 62.45 311 | 76.88 289 | 81.42 288 | 54.45 320 | 57.49 376 | 88.67 265 | 49.36 353 | 63.86 277 | 46.86 374 | 56.06 171 | 90.25 296 | 49.53 306 | 68.83 252 | 85.95 269 |
|
| Patchmatch-test | | | 65.86 303 | 60.94 317 | 80.62 227 | 83.75 264 | 58.83 282 | 58.91 375 | 75.26 351 | 44.50 365 | 50.95 343 | 77.09 320 | 58.81 139 | 87.90 318 | 35.13 359 | 64.03 291 | 95.12 71 |
|
| UnsupCasMVSNet_eth | | | 65.79 304 | 63.10 306 | 73.88 309 | 70.71 357 | 50.29 338 | 81.09 316 | 89.88 217 | 72.58 165 | 49.25 349 | 74.77 335 | 32.57 333 | 87.43 327 | 55.96 284 | 41.04 365 | 83.90 296 |
|
| test_fmvs2 | | | 65.78 305 | 64.84 293 | 68.60 337 | 66.54 366 | 41.71 365 | 83.27 297 | 69.81 364 | 54.38 339 | 67.91 238 | 84.54 237 | 15.35 370 | 81.22 361 | 75.65 137 | 66.16 271 | 82.88 309 |
|
| dmvs_testset | | | 65.55 306 | 66.45 282 | 62.86 347 | 79.87 303 | 22.35 389 | 76.55 342 | 71.74 360 | 77.42 94 | 55.85 323 | 87.77 198 | 51.39 219 | 80.69 362 | 31.51 372 | 65.92 273 | 85.55 278 |
|
| pmmvs-eth3d | | | 65.53 307 | 62.32 312 | 75.19 299 | 69.39 362 | 59.59 270 | 82.80 304 | 83.43 325 | 62.52 297 | 51.30 341 | 72.49 338 | 32.86 330 | 87.16 329 | 55.32 286 | 50.73 349 | 78.83 349 |
|
| SixPastTwentyTwo | | | 64.92 308 | 61.78 315 | 74.34 307 | 78.74 320 | 49.76 339 | 83.42 296 | 79.51 342 | 62.86 293 | 50.27 344 | 77.35 315 | 30.92 342 | 90.49 294 | 45.89 325 | 47.06 355 | 82.78 310 |
|
| OurMVSNet-221017-0 | | | 64.68 309 | 62.17 313 | 72.21 323 | 76.08 341 | 47.35 350 | 80.67 319 | 81.02 335 | 56.19 334 | 51.60 338 | 79.66 302 | 27.05 351 | 88.56 312 | 53.60 294 | 53.63 343 | 80.71 333 |
|
| test_0402 | | | 64.54 310 | 61.09 316 | 74.92 302 | 84.10 261 | 60.75 252 | 87.95 259 | 79.71 341 | 52.03 344 | 52.41 335 | 77.20 318 | 32.21 335 | 91.64 280 | 23.14 375 | 61.03 316 | 72.36 364 |
|
| testgi | | | 64.48 311 | 62.87 309 | 69.31 334 | 71.24 353 | 40.62 368 | 85.49 281 | 79.92 340 | 65.36 273 | 54.18 329 | 83.49 248 | 23.74 357 | 84.55 339 | 41.60 341 | 60.79 319 | 82.77 311 |
|
| RPSCF | | | 64.24 312 | 61.98 314 | 71.01 330 | 76.10 340 | 45.00 359 | 75.83 346 | 75.94 346 | 46.94 359 | 58.96 309 | 84.59 235 | 31.40 338 | 82.00 358 | 47.76 317 | 60.33 324 | 86.04 266 |
|
| EU-MVSNet | | | 64.01 313 | 63.01 307 | 67.02 343 | 74.40 346 | 38.86 373 | 83.27 297 | 86.19 301 | 45.11 363 | 54.27 328 | 81.15 282 | 36.91 317 | 80.01 364 | 48.79 310 | 57.02 332 | 82.19 322 |
|
| test20.03 | | | 63.83 314 | 62.65 310 | 67.38 342 | 70.58 359 | 39.94 369 | 86.57 278 | 84.17 317 | 63.29 288 | 51.86 337 | 77.30 316 | 37.09 315 | 82.47 354 | 38.87 352 | 54.13 342 | 79.73 341 |
|
| MDA-MVSNet_test_wron | | | 63.78 315 | 60.16 318 | 74.64 303 | 78.15 328 | 60.41 259 | 83.49 293 | 84.03 318 | 56.17 336 | 39.17 370 | 71.59 346 | 37.22 312 | 83.24 351 | 42.87 337 | 48.73 352 | 80.26 338 |
|
| YYNet1 | | | 63.76 316 | 60.14 319 | 74.62 304 | 78.06 329 | 60.19 264 | 83.46 295 | 83.99 322 | 56.18 335 | 39.25 369 | 71.56 347 | 37.18 313 | 83.34 349 | 42.90 336 | 48.70 353 | 80.32 337 |
|
| K. test v3 | | | 63.09 317 | 59.61 321 | 73.53 312 | 76.26 339 | 49.38 343 | 83.27 297 | 77.15 344 | 64.35 279 | 47.77 353 | 72.32 342 | 28.73 346 | 87.79 321 | 49.93 305 | 36.69 371 | 83.41 303 |
|
| COLMAP_ROB |  | 57.96 20 | 62.98 318 | 59.65 320 | 72.98 316 | 81.44 287 | 53.00 325 | 83.75 291 | 75.53 350 | 48.34 356 | 48.81 350 | 81.40 275 | 24.14 355 | 90.30 295 | 32.95 365 | 60.52 321 | 75.65 359 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| Anonymous20240521 | | | 62.09 319 | 59.08 322 | 71.10 329 | 67.19 365 | 48.72 345 | 83.91 290 | 85.23 309 | 50.38 350 | 47.84 352 | 71.22 349 | 20.74 362 | 85.51 336 | 46.47 322 | 58.75 329 | 79.06 346 |
|
| AllTest | | | 61.66 320 | 58.06 324 | 72.46 320 | 79.57 305 | 51.42 332 | 80.17 325 | 68.61 366 | 51.25 347 | 45.88 355 | 81.23 277 | 19.86 366 | 86.58 331 | 38.98 350 | 57.01 333 | 79.39 343 |
|
| UnsupCasMVSNet_bld | | | 61.60 321 | 57.71 325 | 73.29 314 | 68.73 363 | 51.64 329 | 78.61 333 | 89.05 251 | 57.20 329 | 46.11 354 | 61.96 365 | 28.70 347 | 88.60 311 | 50.08 304 | 38.90 369 | 79.63 342 |
|
| MDA-MVSNet-bldmvs | | | 61.54 322 | 57.70 326 | 73.05 315 | 79.53 307 | 57.00 305 | 83.08 301 | 81.23 334 | 57.57 325 | 34.91 373 | 72.45 339 | 32.79 331 | 86.26 333 | 35.81 357 | 41.95 363 | 75.89 358 |
|
| KD-MVS_self_test | | | 60.87 323 | 58.60 323 | 67.68 340 | 66.13 367 | 39.93 370 | 75.63 347 | 84.70 313 | 57.32 328 | 49.57 347 | 68.45 353 | 29.55 343 | 82.87 352 | 48.09 312 | 47.94 354 | 80.25 339 |
|
| TinyColmap | | | 60.32 324 | 56.42 331 | 72.00 327 | 78.78 319 | 53.18 324 | 78.36 336 | 75.64 348 | 52.30 343 | 41.59 368 | 75.82 331 | 14.76 373 | 88.35 315 | 35.84 356 | 54.71 341 | 74.46 360 |
|
| MVS-HIRNet | | | 60.25 325 | 55.55 332 | 74.35 306 | 84.37 256 | 56.57 307 | 71.64 352 | 74.11 353 | 34.44 373 | 45.54 359 | 42.24 380 | 31.11 341 | 89.81 304 | 40.36 347 | 76.10 203 | 76.67 357 |
|
| MIMVSNet1 | | | 60.16 326 | 57.33 327 | 68.67 336 | 69.71 360 | 44.13 361 | 78.92 332 | 84.21 316 | 55.05 338 | 44.63 362 | 71.85 344 | 23.91 356 | 81.54 360 | 32.63 368 | 55.03 339 | 80.35 336 |
|
| PM-MVS | | | 59.40 327 | 56.59 329 | 67.84 338 | 63.63 369 | 41.86 364 | 76.76 341 | 63.22 373 | 59.01 321 | 51.07 342 | 72.27 343 | 11.72 376 | 83.25 350 | 61.34 261 | 50.28 351 | 78.39 352 |
|
| new-patchmatchnet | | | 59.30 328 | 56.48 330 | 67.79 339 | 65.86 368 | 44.19 360 | 82.47 305 | 81.77 332 | 59.94 317 | 43.65 365 | 66.20 357 | 27.67 349 | 81.68 359 | 39.34 349 | 41.40 364 | 77.50 355 |
|
| test_vis1_rt | | | 59.09 329 | 57.31 328 | 64.43 345 | 68.44 364 | 46.02 357 | 83.05 302 | 48.63 385 | 51.96 345 | 49.57 347 | 63.86 361 | 16.30 368 | 80.20 363 | 71.21 174 | 62.79 298 | 67.07 370 |
|
| test_fmvs3 | | | 56.82 330 | 54.86 333 | 62.69 348 | 53.59 379 | 35.47 375 | 75.87 345 | 65.64 371 | 43.91 366 | 55.10 325 | 71.43 348 | 6.91 384 | 74.40 369 | 68.64 200 | 52.63 344 | 78.20 353 |
|
| DSMNet-mixed | | | 56.78 331 | 54.44 334 | 63.79 346 | 63.21 370 | 29.44 384 | 64.43 367 | 64.10 372 | 42.12 370 | 51.32 340 | 71.60 345 | 31.76 336 | 75.04 367 | 36.23 355 | 65.20 279 | 86.87 248 |
|
| pmmvs3 | | | 55.51 332 | 51.50 337 | 67.53 341 | 57.90 377 | 50.93 335 | 80.37 321 | 73.66 354 | 40.63 371 | 44.15 364 | 64.75 360 | 16.30 368 | 78.97 365 | 44.77 331 | 40.98 367 | 72.69 362 |
|
| TDRefinement | | | 55.28 333 | 51.58 336 | 66.39 344 | 59.53 376 | 46.15 356 | 76.23 344 | 72.80 356 | 44.60 364 | 42.49 366 | 76.28 327 | 15.29 371 | 82.39 355 | 33.20 364 | 43.75 360 | 70.62 366 |
|
| LF4IMVS | | | 54.01 334 | 52.12 335 | 59.69 349 | 62.41 372 | 39.91 371 | 68.59 359 | 68.28 368 | 42.96 369 | 44.55 363 | 75.18 332 | 14.09 375 | 68.39 375 | 41.36 343 | 51.68 347 | 70.78 365 |
|
| N_pmnet | | | 50.55 335 | 49.11 338 | 54.88 355 | 77.17 335 | 4.02 397 | 84.36 287 | 2.00 396 | 48.59 354 | 45.86 357 | 68.82 352 | 32.22 334 | 82.80 353 | 31.58 371 | 51.38 348 | 77.81 354 |
|
| new_pmnet | | | 49.31 336 | 46.44 339 | 57.93 350 | 62.84 371 | 40.74 367 | 68.47 360 | 62.96 374 | 36.48 372 | 35.09 372 | 57.81 369 | 14.97 372 | 72.18 371 | 32.86 366 | 46.44 356 | 60.88 372 |
|
| mvsany_test3 | | | 48.86 337 | 46.35 340 | 56.41 351 | 46.00 385 | 31.67 380 | 62.26 369 | 47.25 386 | 43.71 367 | 45.54 359 | 68.15 354 | 10.84 377 | 64.44 383 | 57.95 277 | 35.44 374 | 73.13 361 |
|
| test_f | | | 46.58 338 | 43.45 342 | 55.96 352 | 45.18 386 | 32.05 379 | 61.18 370 | 49.49 384 | 33.39 374 | 42.05 367 | 62.48 364 | 7.00 383 | 65.56 379 | 47.08 320 | 43.21 362 | 70.27 367 |
|
| WB-MVS | | | 46.23 339 | 44.94 341 | 50.11 359 | 62.13 373 | 21.23 391 | 76.48 343 | 55.49 378 | 45.89 361 | 35.78 371 | 61.44 367 | 35.54 321 | 72.83 370 | 9.96 385 | 21.75 381 | 56.27 374 |
|
| FPMVS | | | 45.64 340 | 43.10 344 | 53.23 357 | 51.42 382 | 36.46 374 | 64.97 366 | 71.91 359 | 29.13 377 | 27.53 377 | 61.55 366 | 9.83 379 | 65.01 381 | 16.00 382 | 55.58 337 | 58.22 373 |
|
| SSC-MVS | | | 44.51 341 | 43.35 343 | 47.99 363 | 61.01 375 | 18.90 393 | 74.12 349 | 54.36 379 | 43.42 368 | 34.10 374 | 60.02 368 | 34.42 326 | 70.39 373 | 9.14 387 | 19.57 382 | 54.68 375 |
|
| EGC-MVSNET | | | 42.35 342 | 38.09 345 | 55.11 354 | 74.57 344 | 46.62 355 | 71.63 353 | 55.77 377 | 0.04 391 | 0.24 392 | 62.70 363 | 14.24 374 | 74.91 368 | 17.59 379 | 46.06 357 | 43.80 377 |
|
| LCM-MVSNet | | | 40.54 343 | 35.79 348 | 54.76 356 | 36.92 392 | 30.81 381 | 51.41 379 | 69.02 365 | 22.07 379 | 24.63 379 | 45.37 376 | 4.56 388 | 65.81 378 | 33.67 362 | 34.50 375 | 67.67 368 |
|
| APD_test1 | | | 40.50 344 | 37.31 347 | 50.09 360 | 51.88 380 | 35.27 376 | 59.45 374 | 52.59 381 | 21.64 380 | 26.12 378 | 57.80 370 | 4.56 388 | 66.56 377 | 22.64 376 | 39.09 368 | 48.43 376 |
|
| test_vis3_rt | | | 40.46 345 | 37.79 346 | 48.47 362 | 44.49 387 | 33.35 378 | 66.56 365 | 32.84 393 | 32.39 375 | 29.65 375 | 39.13 383 | 3.91 391 | 68.65 374 | 50.17 302 | 40.99 366 | 43.40 378 |
|
| ANet_high | | | 40.27 346 | 35.20 349 | 55.47 353 | 34.74 393 | 34.47 377 | 63.84 368 | 71.56 361 | 48.42 355 | 18.80 382 | 41.08 381 | 9.52 380 | 64.45 382 | 20.18 377 | 8.66 389 | 67.49 369 |
|
| test_method | | | 38.59 347 | 35.16 350 | 48.89 361 | 54.33 378 | 21.35 390 | 45.32 382 | 53.71 380 | 7.41 388 | 28.74 376 | 51.62 372 | 8.70 381 | 52.87 386 | 33.73 361 | 32.89 376 | 72.47 363 |
|
| PMMVS2 | | | 37.93 348 | 33.61 351 | 50.92 358 | 46.31 384 | 24.76 387 | 60.55 373 | 50.05 382 | 28.94 378 | 20.93 380 | 47.59 373 | 4.41 390 | 65.13 380 | 25.14 374 | 18.55 384 | 62.87 371 |
|
| Gipuma |  | | 34.91 349 | 31.44 352 | 45.30 364 | 70.99 356 | 39.64 372 | 19.85 386 | 72.56 357 | 20.10 382 | 16.16 386 | 21.47 387 | 5.08 387 | 71.16 372 | 13.07 383 | 43.70 361 | 25.08 384 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| testf1 | | | 32.77 350 | 29.47 353 | 42.67 366 | 41.89 389 | 30.81 381 | 52.07 377 | 43.45 387 | 15.45 383 | 18.52 383 | 44.82 377 | 2.12 392 | 58.38 384 | 16.05 380 | 30.87 378 | 38.83 379 |
|
| APD_test2 | | | 32.77 350 | 29.47 353 | 42.67 366 | 41.89 389 | 30.81 381 | 52.07 377 | 43.45 387 | 15.45 383 | 18.52 383 | 44.82 377 | 2.12 392 | 58.38 384 | 16.05 380 | 30.87 378 | 38.83 379 |
|
| PMVS |  | 26.43 22 | 31.84 352 | 28.16 355 | 42.89 365 | 25.87 395 | 27.58 385 | 50.92 380 | 49.78 383 | 21.37 381 | 14.17 387 | 40.81 382 | 2.01 394 | 66.62 376 | 9.61 386 | 38.88 370 | 34.49 383 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| E-PMN | | | 24.61 353 | 24.00 357 | 26.45 370 | 43.74 388 | 18.44 394 | 60.86 371 | 39.66 389 | 15.11 385 | 9.53 389 | 22.10 386 | 6.52 385 | 46.94 388 | 8.31 388 | 10.14 386 | 13.98 386 |
|
| MVE |  | 24.84 23 | 24.35 354 | 19.77 360 | 38.09 368 | 34.56 394 | 26.92 386 | 26.57 384 | 38.87 391 | 11.73 387 | 11.37 388 | 27.44 384 | 1.37 395 | 50.42 387 | 11.41 384 | 14.60 385 | 36.93 381 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| EMVS | | | 23.76 355 | 23.20 359 | 25.46 371 | 41.52 391 | 16.90 395 | 60.56 372 | 38.79 392 | 14.62 386 | 8.99 390 | 20.24 389 | 7.35 382 | 45.82 389 | 7.25 389 | 9.46 387 | 13.64 387 |
|
| tmp_tt | | | 22.26 356 | 23.75 358 | 17.80 372 | 5.23 396 | 12.06 396 | 35.26 383 | 39.48 390 | 2.82 390 | 18.94 381 | 44.20 379 | 22.23 360 | 24.64 391 | 36.30 354 | 9.31 388 | 16.69 385 |
|
| cdsmvs_eth3d_5k | | | 19.86 357 | 26.47 356 | 0.00 376 | 0.00 399 | 0.00 400 | 0.00 387 | 93.45 76 | 0.00 394 | 0.00 395 | 95.27 49 | 49.56 234 | 0.00 395 | 0.00 393 | 0.00 392 | 0.00 391 |
|
| wuyk23d | | | 11.30 358 | 10.95 361 | 12.33 373 | 48.05 383 | 19.89 392 | 25.89 385 | 1.92 397 | 3.58 389 | 3.12 391 | 1.37 391 | 0.64 396 | 15.77 392 | 6.23 390 | 7.77 390 | 1.35 388 |
|
| ab-mvs-re | | | 7.91 359 | 10.55 362 | 0.00 376 | 0.00 399 | 0.00 400 | 0.00 387 | 0.00 400 | 0.00 394 | 0.00 395 | 94.95 57 | 0.00 399 | 0.00 395 | 0.00 393 | 0.00 392 | 0.00 391 |
|
| testmvs | | | 7.23 360 | 9.62 363 | 0.06 375 | 0.04 397 | 0.02 399 | 84.98 285 | 0.02 398 | 0.03 392 | 0.18 393 | 1.21 392 | 0.01 398 | 0.02 393 | 0.14 391 | 0.01 391 | 0.13 390 |
|
| test123 | | | 6.92 361 | 9.21 364 | 0.08 374 | 0.03 398 | 0.05 398 | 81.65 311 | 0.01 399 | 0.02 393 | 0.14 394 | 0.85 393 | 0.03 397 | 0.02 393 | 0.12 392 | 0.00 392 | 0.16 389 |
|
| pcd_1.5k_mvsjas | | | 4.46 362 | 5.95 365 | 0.00 376 | 0.00 399 | 0.00 400 | 0.00 387 | 0.00 400 | 0.00 394 | 0.00 395 | 0.00 394 | 53.55 199 | 0.00 395 | 0.00 393 | 0.00 392 | 0.00 391 |
|
| test_blank | | | 0.00 363 | 0.00 366 | 0.00 376 | 0.00 399 | 0.00 400 | 0.00 387 | 0.00 400 | 0.00 394 | 0.00 395 | 0.00 394 | 0.00 399 | 0.00 395 | 0.00 393 | 0.00 392 | 0.00 391 |
|
| uanet_test | | | 0.00 363 | 0.00 366 | 0.00 376 | 0.00 399 | 0.00 400 | 0.00 387 | 0.00 400 | 0.00 394 | 0.00 395 | 0.00 394 | 0.00 399 | 0.00 395 | 0.00 393 | 0.00 392 | 0.00 391 |
|
| DCPMVS | | | 0.00 363 | 0.00 366 | 0.00 376 | 0.00 399 | 0.00 400 | 0.00 387 | 0.00 400 | 0.00 394 | 0.00 395 | 0.00 394 | 0.00 399 | 0.00 395 | 0.00 393 | 0.00 392 | 0.00 391 |
|
| sosnet-low-res | | | 0.00 363 | 0.00 366 | 0.00 376 | 0.00 399 | 0.00 400 | 0.00 387 | 0.00 400 | 0.00 394 | 0.00 395 | 0.00 394 | 0.00 399 | 0.00 395 | 0.00 393 | 0.00 392 | 0.00 391 |
|
| sosnet | | | 0.00 363 | 0.00 366 | 0.00 376 | 0.00 399 | 0.00 400 | 0.00 387 | 0.00 400 | 0.00 394 | 0.00 395 | 0.00 394 | 0.00 399 | 0.00 395 | 0.00 393 | 0.00 392 | 0.00 391 |
|
| uncertanet | | | 0.00 363 | 0.00 366 | 0.00 376 | 0.00 399 | 0.00 400 | 0.00 387 | 0.00 400 | 0.00 394 | 0.00 395 | 0.00 394 | 0.00 399 | 0.00 395 | 0.00 393 | 0.00 392 | 0.00 391 |
|
| Regformer | | | 0.00 363 | 0.00 366 | 0.00 376 | 0.00 399 | 0.00 400 | 0.00 387 | 0.00 400 | 0.00 394 | 0.00 395 | 0.00 394 | 0.00 399 | 0.00 395 | 0.00 393 | 0.00 392 | 0.00 391 |
|
| uanet | | | 0.00 363 | 0.00 366 | 0.00 376 | 0.00 399 | 0.00 400 | 0.00 387 | 0.00 400 | 0.00 394 | 0.00 395 | 0.00 394 | 0.00 399 | 0.00 395 | 0.00 393 | 0.00 392 | 0.00 391 |
|
| FOURS1 | | | | | | 93.95 45 | 61.77 231 | 93.96 65 | 91.92 133 | 62.14 300 | 86.57 37 | | | | | | |
|
| MSC_two_6792asdad | | | | | 89.60 8 | 97.31 4 | 73.22 10 | | 95.05 20 | | | | | 99.07 13 | 92.01 17 | 94.77 24 | 96.51 20 |
|
| PC_three_1452 | | | | | | | | | | 80.91 41 | 94.07 2 | 96.83 14 | 83.57 4 | 99.12 5 | 95.70 4 | 97.42 4 | 97.55 4 |
|
| No_MVS | | | | | 89.60 8 | 97.31 4 | 73.22 10 | | 95.05 20 | | | | | 99.07 13 | 92.01 17 | 94.77 24 | 96.51 20 |
|
| test_one_0601 | | | | | | 96.32 18 | 69.74 41 | | 94.18 50 | 71.42 207 | 90.67 15 | 96.85 12 | 74.45 18 | | | | |
|
| eth-test2 | | | | | | 0.00 399 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 399 | | | | | | | | | | | |
|
| ZD-MVS | | | | | | 96.63 9 | 65.50 145 | | 93.50 74 | 70.74 221 | 85.26 52 | 95.19 54 | 64.92 70 | 97.29 71 | 87.51 48 | 93.01 53 | |
|
| RE-MVS-def | | | | 80.48 124 | | 92.02 91 | 58.56 285 | 90.90 192 | 90.45 191 | 62.76 294 | 78.89 108 | 94.46 71 | 49.30 237 | | 78.77 120 | 86.77 120 | 92.28 162 |
|
| IU-MVS | | | | | | 96.46 11 | 69.91 36 | | 95.18 15 | 80.75 42 | 95.28 1 | | | | 92.34 14 | 95.36 13 | 96.47 24 |
|
| OPU-MVS | | | | | 89.97 3 | 97.52 3 | 73.15 12 | 96.89 4 | | | | 97.00 9 | 83.82 2 | 99.15 2 | 95.72 2 | 97.63 3 | 97.62 2 |
|
| test_241102_TWO | | | | | | | | | 94.41 41 | 71.65 196 | 92.07 6 | 97.21 4 | 74.58 17 | 99.11 6 | 92.34 14 | 95.36 13 | 96.59 15 |
|
| test_241102_ONE | | | | | | 96.45 12 | 69.38 46 | | 94.44 39 | 71.65 196 | 92.11 4 | 97.05 7 | 76.79 9 | 99.11 6 | | | |
|
| 9.14 | | | | 87.63 24 | | 93.86 47 | | 94.41 50 | 94.18 50 | 72.76 162 | 86.21 39 | 96.51 18 | 66.64 52 | 97.88 43 | 90.08 31 | 94.04 36 | |
|
| save fliter | | | | | | 93.84 48 | 67.89 84 | 95.05 38 | 92.66 106 | 78.19 77 | | | | | | | |
|
| test_0728_THIRD | | | | | | | | | | 72.48 167 | 90.55 16 | 96.93 10 | 76.24 11 | 99.08 11 | 91.53 22 | 94.99 16 | 96.43 25 |
|
| test_0728_SECOND | | | | | 88.70 15 | 96.45 12 | 70.43 28 | 96.64 8 | 94.37 45 | | | | | 99.15 2 | 91.91 20 | 94.90 20 | 96.51 20 |
|
| test0726 | | | | | | 96.40 15 | 69.99 32 | 96.76 6 | 94.33 47 | 71.92 183 | 91.89 8 | 97.11 6 | 73.77 21 | | | | |
|
| GSMVS | | | | | | | | | | | | | | | | | 94.68 86 |
|
| test_part2 | | | | | | 96.29 19 | 68.16 78 | | | | 90.78 13 | | | | | | |
|
| sam_mvs1 | | | | | | | | | | | | | 57.85 146 | | | | 94.68 86 |
|
| sam_mvs | | | | | | | | | | | | | 54.91 184 | | | | |
|
| ambc | | | | | 69.61 332 | 61.38 374 | 41.35 366 | 49.07 381 | 85.86 305 | | 50.18 346 | 66.40 356 | 10.16 378 | 88.14 317 | 45.73 326 | 44.20 359 | 79.32 345 |
|
| MTGPA |  | | | | | | | | 92.23 119 | | | | | | | | |
|
| test_post1 | | | | | | | | 78.95 331 | | | | 20.70 388 | 53.05 204 | 91.50 288 | 60.43 266 | | |
|
| test_post | | | | | | | | | | | | 23.01 385 | 56.49 166 | 92.67 252 | | | |
|
| patchmatchnet-post | | | | | | | | | | | | 67.62 355 | 57.62 149 | 90.25 296 | | | |
|
| GG-mvs-BLEND | | | | | 86.53 63 | 91.91 98 | 69.67 44 | 75.02 348 | 94.75 27 | | 78.67 115 | 90.85 149 | 77.91 7 | 94.56 187 | 72.25 164 | 93.74 42 | 95.36 57 |
|
| MTMP | | | | | | | | 93.77 78 | 32.52 394 | | | | | | | | |
|
| gm-plane-assit | | | | | | 88.42 176 | 67.04 107 | | | 78.62 74 | | 91.83 133 | | 97.37 65 | 76.57 132 | | |
|
| test9_res | | | | | | | | | | | | | | | 89.41 32 | 94.96 17 | 95.29 62 |
|
| TEST9 | | | | | | 94.18 41 | 67.28 99 | 94.16 54 | 93.51 72 | 71.75 194 | 85.52 47 | 95.33 44 | 68.01 42 | 97.27 75 | | | |
|
| test_8 | | | | | | 94.19 40 | 67.19 101 | 94.15 57 | 93.42 78 | 71.87 188 | 85.38 50 | 95.35 43 | 68.19 40 | 96.95 95 | | | |
|
| agg_prior2 | | | | | | | | | | | | | | | 86.41 59 | 94.75 28 | 95.33 58 |
|
| agg_prior | | | | | | 94.16 43 | 66.97 109 | | 93.31 81 | | 84.49 58 | | | 96.75 104 | | | |
|
| TestCases | | | | | 72.46 320 | 79.57 305 | 51.42 332 | | 68.61 366 | 51.25 347 | 45.88 355 | 81.23 277 | 19.86 366 | 86.58 331 | 38.98 350 | 57.01 333 | 79.39 343 |
|
| test_prior4 | | | | | | | 67.18 103 | 93.92 68 | | | | | | | | | |
|
| test_prior2 | | | | | | | | 95.10 37 | | 75.40 116 | 85.25 53 | 95.61 38 | 67.94 43 | | 87.47 49 | 94.77 24 | |
|
| test_prior | | | | | 86.42 66 | 94.71 35 | 67.35 98 | | 93.10 91 | | | | | 96.84 101 | | | 95.05 73 |
|
| 旧先验2 | | | | | | | | 92.00 147 | | 59.37 320 | 87.54 31 | | | 93.47 229 | 75.39 139 | | |
|
| æ–°å‡ ä½•2 | | | | | | | | 91.41 168 | | | | | | | | | |
|
| æ–°å‡ ä½•1 | | | | | 84.73 118 | 92.32 84 | 64.28 175 | | 91.46 158 | 59.56 319 | 79.77 98 | 92.90 111 | 56.95 159 | 96.57 109 | 63.40 246 | 92.91 55 | 93.34 134 |
|
| 旧先验1 | | | | | | 91.94 95 | 60.74 253 | | 91.50 156 | | | 94.36 75 | 65.23 65 | | | 91.84 68 | 94.55 91 |
|
| æ— å…ˆéªŒ | | | | | | | | 92.71 114 | 92.61 110 | 62.03 301 | | | | 97.01 86 | 66.63 217 | | 93.97 116 |
|
| 原ACMM2 | | | | | | | | 92.01 144 | | | | | | | | | |
|
| 原ACMM1 | | | | | 84.42 129 | 93.21 63 | 64.27 176 | | 93.40 80 | 65.39 272 | 79.51 101 | 92.50 119 | 58.11 145 | 96.69 105 | 65.27 236 | 93.96 37 | 92.32 160 |
|
| test222 | | | | | | 89.77 142 | 61.60 236 | 89.55 231 | 89.42 233 | 56.83 332 | 77.28 128 | 92.43 123 | 52.76 207 | | | 91.14 82 | 93.09 142 |
|
| testdata2 | | | | | | | | | | | | | | 96.09 122 | 61.26 262 | | |
|
| segment_acmp | | | | | | | | | | | | | 65.94 58 | | | | |
|
| testdata | | | | | 81.34 209 | 89.02 162 | 57.72 293 | | 89.84 218 | 58.65 323 | 85.32 51 | 94.09 87 | 57.03 154 | 93.28 231 | 69.34 192 | 90.56 88 | 93.03 144 |
|
| testdata1 | | | | | | | | 89.21 240 | | 77.55 90 | | | | | | | |
|
| test12 | | | | | 87.09 44 | 94.60 36 | 68.86 59 | | 92.91 97 | | 82.67 74 | | 65.44 63 | 97.55 57 | | 93.69 45 | 94.84 82 |
|
| plane_prior7 | | | | | | 86.94 212 | 61.51 237 | | | | | | | | | | |
|
| plane_prior6 | | | | | | 87.23 206 | 62.32 221 | | | | | | 50.66 224 | | | | |
|
| plane_prior5 | | | | | | | | | 91.31 162 | | | | | 95.55 151 | 76.74 130 | 78.53 181 | 88.39 225 |
|
| plane_prior4 | | | | | | | | | | | | 89.14 176 | | | | | |
|
| plane_prior3 | | | | | | | 61.95 229 | | | 79.09 64 | 72.53 177 | | | | | | |
|
| plane_prior2 | | | | | | | | 93.13 99 | | 78.81 71 | | | | | | | |
|
| plane_prior1 | | | | | | 87.15 208 | | | | | | | | | | | |
|
| plane_prior | | | | | | | 62.42 217 | 93.85 72 | | 79.38 56 | | | | | | 78.80 178 | |
|
| n2 | | | | | | | | | 0.00 400 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 400 | | | | | | | | |
|
| door-mid | | | | | | | | | 66.01 370 | | | | | | | | |
|
| lessismore_v0 | | | | | 73.72 311 | 72.93 351 | 47.83 348 | | 61.72 375 | | 45.86 357 | 73.76 336 | 28.63 348 | 89.81 304 | 47.75 318 | 31.37 377 | 83.53 299 |
|
| LGP-MVS_train | | | | | 79.56 254 | 84.31 257 | 59.37 274 | | 89.73 224 | 69.49 235 | 64.86 265 | 88.42 181 | 38.65 296 | 94.30 196 | 72.56 161 | 72.76 226 | 85.01 287 |
|
| test11 | | | | | | | | | 93.01 93 | | | | | | | | |
|
| door | | | | | | | | | 66.57 369 | | | | | | | | |
|
| HQP5-MVS | | | | | | | 63.66 193 | | | | | | | | | | |
|
| HQP-NCC | | | | | | 87.54 200 | | 94.06 59 | | 79.80 49 | 74.18 157 | | | | | | |
|
| ACMP_Plane | | | | | | 87.54 200 | | 94.06 59 | | 79.80 49 | 74.18 157 | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 77.63 127 | | |
|
| HQP4-MVS | | | | | | | | | | | 74.18 157 | | | 95.61 146 | | | 88.63 218 |
|
| HQP3-MVS | | | | | | | | | 91.70 148 | | | | | | | 78.90 176 | |
|
| HQP2-MVS | | | | | | | | | | | | | 51.63 217 | | | | |
|
| NP-MVS | | | | | | 87.41 203 | 63.04 203 | | | | | 90.30 159 | | | | | |
|
| MDTV_nov1_ep13_2view | | | | | | | 59.90 267 | 80.13 326 | | 67.65 256 | 72.79 172 | | 54.33 192 | | 59.83 270 | | 92.58 154 |
|
| MDTV_nov1_ep13 | | | | 72.61 239 | | 89.06 161 | 68.48 67 | 80.33 322 | 90.11 209 | 71.84 190 | 71.81 188 | 75.92 330 | 53.01 205 | 93.92 218 | 48.04 313 | 73.38 220 | |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 71.63 234 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 69.72 244 | |
|
| Test By Simon | | | | | | | | | | | | | 54.21 193 | | | | |
|
| ITE_SJBPF | | | | | 70.43 331 | 74.44 345 | 47.06 354 | | 77.32 343 | 60.16 315 | 54.04 330 | 83.53 246 | 23.30 358 | 84.01 343 | 43.07 334 | 61.58 314 | 80.21 340 |
|
| DeepMVS_CX |  | | | | 34.71 369 | 51.45 381 | 24.73 388 | | 28.48 395 | 31.46 376 | 17.49 385 | 52.75 371 | 5.80 386 | 42.60 390 | 18.18 378 | 19.42 383 | 36.81 382 |
|