| MCST-MVS | | | 91.08 1 | 91.46 3 | 89.94 4 | 97.66 2 | 73.37 10 | 97.13 2 | 95.58 11 | 89.33 1 | 85.77 54 | 96.26 30 | 72.84 26 | 99.38 1 | 92.64 19 | 95.93 9 | 97.08 10 |
|
| MM | | | 90.87 2 | 91.52 2 | 88.92 14 | 92.12 95 | 71.10 28 | 97.02 3 | 96.04 6 | 88.70 2 | 91.57 13 | 96.19 33 | 70.12 40 | 98.91 17 | 96.83 1 | 95.06 16 | 96.76 14 |
|
| DPM-MVS | | | 90.70 3 | 90.52 8 | 91.24 1 | 89.68 153 | 76.68 2 | 97.29 1 | 95.35 15 | 82.87 21 | 91.58 12 | 97.22 3 | 79.93 5 | 99.10 9 | 83.12 97 | 97.64 2 | 97.94 1 |
|
| DVP-MVS++ | | | 90.53 4 | 91.09 5 | 88.87 15 | 97.31 4 | 69.91 43 | 93.96 70 | 94.37 52 | 72.48 182 | 92.07 8 | 96.85 16 | 83.82 2 | 99.15 2 | 91.53 29 | 97.42 4 | 97.55 4 |
|
| MSP-MVS | | | 90.38 5 | 91.87 1 | 85.88 88 | 92.83 76 | 64.03 191 | 93.06 111 | 94.33 54 | 82.19 28 | 93.65 3 | 96.15 35 | 85.89 1 | 97.19 83 | 91.02 33 | 97.75 1 | 96.43 29 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| CNVR-MVS | | | 90.32 6 | 90.89 7 | 88.61 21 | 96.76 8 | 70.65 32 | 96.47 13 | 94.83 30 | 84.83 12 | 89.07 32 | 96.80 19 | 70.86 36 | 99.06 15 | 92.64 19 | 95.71 10 | 96.12 38 |
|
| DELS-MVS | | | 90.05 7 | 90.09 11 | 89.94 4 | 93.14 69 | 73.88 9 | 97.01 4 | 94.40 50 | 88.32 3 | 85.71 55 | 94.91 70 | 74.11 19 | 98.91 17 | 87.26 61 | 95.94 8 | 97.03 11 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| MVS_0304 | | | 90.01 8 | 90.50 9 | 88.53 22 | 90.14 144 | 70.94 29 | 96.47 13 | 95.72 10 | 87.33 4 | 89.60 29 | 96.26 30 | 68.44 46 | 98.74 24 | 95.82 4 | 94.72 30 | 95.90 45 |
|
| SED-MVS | | | 89.94 9 | 90.36 10 | 88.70 17 | 96.45 12 | 69.38 54 | 96.89 5 | 94.44 46 | 71.65 212 | 92.11 6 | 97.21 4 | 76.79 9 | 99.11 6 | 92.34 21 | 95.36 13 | 97.62 2 |
|
| DeepPCF-MVS | | 81.17 1 | 89.72 10 | 91.38 4 | 84.72 132 | 93.00 73 | 58.16 305 | 96.72 8 | 94.41 48 | 86.50 8 | 90.25 22 | 97.83 1 | 75.46 14 | 98.67 25 | 92.78 18 | 95.49 12 | 97.32 6 |
|
| patch_mono-2 | | | 89.71 11 | 90.99 6 | 85.85 91 | 96.04 24 | 63.70 201 | 95.04 40 | 95.19 19 | 86.74 7 | 91.53 14 | 95.15 63 | 73.86 20 | 97.58 59 | 93.38 14 | 92.00 70 | 96.28 35 |
|
| CANet | | | 89.61 12 | 89.99 12 | 88.46 23 | 94.39 39 | 69.71 50 | 96.53 12 | 93.78 66 | 86.89 6 | 89.68 28 | 95.78 40 | 65.94 69 | 99.10 9 | 92.99 16 | 93.91 41 | 96.58 20 |
|
| DVP-MVS |  | | 89.41 13 | 89.73 14 | 88.45 24 | 96.40 15 | 69.99 39 | 96.64 9 | 94.52 42 | 71.92 198 | 90.55 19 | 96.93 11 | 73.77 21 | 99.08 11 | 91.91 27 | 94.90 21 | 96.29 33 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| HPM-MVS++ |  | | 89.37 14 | 89.95 13 | 87.64 33 | 95.10 30 | 68.23 84 | 95.24 33 | 94.49 44 | 82.43 25 | 88.90 33 | 96.35 27 | 71.89 33 | 98.63 26 | 88.76 48 | 96.40 6 | 96.06 39 |
|
| NCCC | | | 89.07 15 | 89.46 15 | 87.91 27 | 96.60 10 | 69.05 62 | 96.38 15 | 94.64 39 | 84.42 13 | 86.74 46 | 96.20 32 | 66.56 65 | 98.76 23 | 89.03 47 | 94.56 32 | 95.92 44 |
|
| MVSMamba_pp | | | 88.94 16 | 88.82 17 | 89.29 12 | 94.04 45 | 74.01 7 | 94.81 46 | 92.74 111 | 85.13 10 | 90.37 21 | 90.13 179 | 68.40 48 | 97.38 70 | 89.42 39 | 94.34 35 | 96.47 27 |
|
| DPE-MVS |  | | 88.77 17 | 89.21 16 | 87.45 43 | 96.26 20 | 67.56 100 | 94.17 58 | 94.15 59 | 68.77 262 | 90.74 17 | 97.27 2 | 76.09 12 | 98.49 29 | 90.58 37 | 94.91 20 | 96.30 32 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| SMA-MVS |  | | 88.14 18 | 88.29 22 | 87.67 32 | 93.21 66 | 68.72 70 | 93.85 77 | 94.03 62 | 74.18 145 | 91.74 11 | 96.67 21 | 65.61 73 | 98.42 33 | 89.24 44 | 96.08 7 | 95.88 46 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| PS-MVSNAJ | | | 88.14 18 | 87.61 29 | 89.71 6 | 92.06 96 | 76.72 1 | 95.75 20 | 93.26 90 | 83.86 15 | 89.55 30 | 96.06 36 | 53.55 219 | 97.89 43 | 91.10 31 | 93.31 53 | 94.54 105 |
|
| TSAR-MVS + MP. | | | 88.11 20 | 88.64 18 | 86.54 70 | 91.73 109 | 68.04 88 | 90.36 225 | 93.55 79 | 82.89 20 | 91.29 15 | 92.89 121 | 72.27 30 | 96.03 143 | 87.99 52 | 94.77 25 | 95.54 55 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| TSAR-MVS + GP. | | | 87.96 21 | 88.37 21 | 86.70 63 | 93.51 60 | 65.32 156 | 95.15 36 | 93.84 65 | 78.17 91 | 85.93 53 | 94.80 73 | 75.80 13 | 98.21 34 | 89.38 41 | 88.78 104 | 96.59 18 |
|
| DeepC-MVS_fast | | 79.48 2 | 87.95 22 | 88.00 25 | 87.79 30 | 95.86 27 | 68.32 78 | 95.74 21 | 94.11 60 | 83.82 16 | 83.49 76 | 96.19 33 | 64.53 87 | 98.44 31 | 83.42 96 | 94.88 24 | 96.61 17 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| xiu_mvs_v2_base | | | 87.92 23 | 87.38 33 | 89.55 11 | 91.41 120 | 76.43 3 | 95.74 21 | 93.12 98 | 83.53 18 | 89.55 30 | 95.95 38 | 53.45 223 | 97.68 50 | 91.07 32 | 92.62 60 | 94.54 105 |
|
| EPNet | | | 87.84 24 | 88.38 20 | 86.23 80 | 93.30 63 | 66.05 138 | 95.26 32 | 94.84 29 | 87.09 5 | 88.06 35 | 94.53 79 | 66.79 62 | 97.34 74 | 83.89 93 | 91.68 75 | 95.29 67 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| lupinMVS | | | 87.74 25 | 87.77 27 | 87.63 37 | 89.24 168 | 71.18 25 | 96.57 11 | 92.90 106 | 82.70 23 | 87.13 41 | 95.27 56 | 64.99 78 | 95.80 148 | 89.34 42 | 91.80 73 | 95.93 43 |
|
| test_fmvsm_n_1920 | | | 87.69 26 | 88.50 19 | 85.27 112 | 87.05 224 | 63.55 208 | 93.69 87 | 91.08 186 | 84.18 14 | 90.17 24 | 97.04 8 | 67.58 56 | 97.99 39 | 95.72 5 | 90.03 95 | 94.26 113 |
|
| APDe-MVS |  | | 87.54 27 | 87.84 26 | 86.65 64 | 96.07 23 | 66.30 134 | 94.84 45 | 93.78 66 | 69.35 253 | 88.39 34 | 96.34 28 | 67.74 55 | 97.66 54 | 90.62 36 | 93.44 51 | 96.01 42 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| fmvsm_l_conf0.5_n | | | 87.49 28 | 88.19 23 | 85.39 106 | 86.95 225 | 64.37 181 | 94.30 55 | 88.45 289 | 80.51 49 | 92.70 4 | 96.86 15 | 69.98 41 | 97.15 87 | 95.83 3 | 88.08 112 | 94.65 99 |
|
| SD-MVS | | | 87.49 28 | 87.49 31 | 87.50 42 | 93.60 55 | 68.82 68 | 93.90 74 | 92.63 118 | 76.86 110 | 87.90 36 | 95.76 41 | 66.17 66 | 97.63 56 | 89.06 46 | 91.48 79 | 96.05 40 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| fmvsm_l_conf0.5_n_a | | | 87.44 30 | 88.15 24 | 85.30 110 | 87.10 222 | 64.19 188 | 94.41 53 | 88.14 298 | 80.24 57 | 92.54 5 | 96.97 10 | 69.52 43 | 97.17 84 | 95.89 2 | 88.51 107 | 94.56 102 |
|
| dcpmvs_2 | | | 87.37 31 | 87.55 30 | 86.85 56 | 95.04 32 | 68.20 85 | 90.36 225 | 90.66 198 | 79.37 71 | 81.20 93 | 93.67 105 | 74.73 15 | 96.55 121 | 90.88 34 | 92.00 70 | 95.82 47 |
|
| alignmvs | | | 87.28 32 | 86.97 37 | 88.24 26 | 91.30 122 | 71.14 27 | 95.61 25 | 93.56 78 | 79.30 72 | 87.07 43 | 95.25 58 | 68.43 47 | 96.93 107 | 87.87 53 | 84.33 147 | 96.65 16 |
|
| train_agg | | | 87.21 33 | 87.42 32 | 86.60 66 | 94.18 41 | 67.28 107 | 94.16 59 | 93.51 80 | 71.87 203 | 85.52 57 | 95.33 51 | 68.19 50 | 97.27 81 | 89.09 45 | 94.90 21 | 95.25 73 |
|
| MG-MVS | | | 87.11 34 | 86.27 44 | 89.62 7 | 97.79 1 | 76.27 4 | 94.96 43 | 94.49 44 | 78.74 86 | 83.87 75 | 92.94 119 | 64.34 88 | 96.94 105 | 75.19 154 | 94.09 37 | 95.66 50 |
|
| SF-MVS | | | 87.03 35 | 87.09 35 | 86.84 57 | 92.70 82 | 67.45 105 | 93.64 90 | 93.76 69 | 70.78 237 | 86.25 48 | 96.44 26 | 66.98 60 | 97.79 47 | 88.68 49 | 94.56 32 | 95.28 69 |
|
| CSCG | | | 86.87 36 | 86.26 45 | 88.72 16 | 95.05 31 | 70.79 31 | 93.83 82 | 95.33 16 | 68.48 266 | 77.63 139 | 94.35 88 | 73.04 24 | 98.45 30 | 84.92 83 | 93.71 46 | 96.92 13 |
|
| sasdasda | | | 86.85 37 | 86.25 46 | 88.66 19 | 91.80 107 | 71.92 16 | 93.54 95 | 91.71 155 | 80.26 54 | 87.55 38 | 95.25 58 | 63.59 101 | 96.93 107 | 88.18 50 | 84.34 145 | 97.11 8 |
|
| canonicalmvs | | | 86.85 37 | 86.25 46 | 88.66 19 | 91.80 107 | 71.92 16 | 93.54 95 | 91.71 155 | 80.26 54 | 87.55 38 | 95.25 58 | 63.59 101 | 96.93 107 | 88.18 50 | 84.34 145 | 97.11 8 |
|
| PHI-MVS | | | 86.83 39 | 86.85 41 | 86.78 61 | 93.47 61 | 65.55 152 | 95.39 30 | 95.10 22 | 71.77 208 | 85.69 56 | 96.52 23 | 62.07 121 | 98.77 22 | 86.06 73 | 95.60 11 | 96.03 41 |
|
| SteuartSystems-ACMMP | | | 86.82 40 | 86.90 39 | 86.58 68 | 90.42 137 | 66.38 131 | 96.09 17 | 93.87 64 | 77.73 98 | 84.01 74 | 95.66 43 | 63.39 104 | 97.94 40 | 87.40 59 | 93.55 49 | 95.42 56 |
| Skip Steuart: Steuart Systems R&D Blog. |
| PVSNet_Blended | | | 86.73 41 | 86.86 40 | 86.31 79 | 93.76 50 | 67.53 102 | 96.33 16 | 93.61 76 | 82.34 27 | 81.00 98 | 93.08 115 | 63.19 108 | 97.29 77 | 87.08 64 | 91.38 81 | 94.13 120 |
|
| testing11 | | | 86.71 42 | 86.44 43 | 87.55 40 | 93.54 58 | 71.35 22 | 93.65 89 | 95.58 11 | 81.36 41 | 80.69 101 | 92.21 139 | 72.30 29 | 96.46 126 | 85.18 79 | 83.43 154 | 94.82 92 |
|
| test_fmvsmconf_n | | | 86.58 43 | 87.17 34 | 84.82 125 | 85.28 255 | 62.55 232 | 94.26 57 | 89.78 232 | 83.81 17 | 87.78 37 | 96.33 29 | 65.33 75 | 96.98 99 | 94.40 11 | 87.55 117 | 94.95 83 |
|
| jason | | | 86.40 44 | 86.17 48 | 87.11 50 | 86.16 240 | 70.54 34 | 95.71 24 | 92.19 133 | 82.00 30 | 84.58 67 | 94.34 89 | 61.86 123 | 95.53 169 | 87.76 54 | 90.89 87 | 95.27 70 |
| jason: jason. |
| fmvsm_s_conf0.5_n | | | 86.39 45 | 86.91 38 | 84.82 125 | 87.36 217 | 63.54 209 | 94.74 48 | 90.02 226 | 82.52 24 | 90.14 25 | 96.92 13 | 62.93 113 | 97.84 46 | 95.28 8 | 82.26 164 | 93.07 156 |
|
| WTY-MVS | | | 86.32 46 | 85.81 55 | 87.85 28 | 92.82 78 | 69.37 56 | 95.20 34 | 95.25 17 | 82.71 22 | 81.91 87 | 94.73 74 | 67.93 54 | 97.63 56 | 79.55 123 | 82.25 165 | 96.54 21 |
|
| MSLP-MVS++ | | | 86.27 47 | 85.91 54 | 87.35 45 | 92.01 99 | 68.97 65 | 95.04 40 | 92.70 112 | 79.04 81 | 81.50 90 | 96.50 25 | 58.98 156 | 96.78 113 | 83.49 95 | 93.93 40 | 96.29 33 |
|
| VNet | | | 86.20 48 | 85.65 59 | 87.84 29 | 93.92 47 | 69.99 39 | 95.73 23 | 95.94 7 | 78.43 88 | 86.00 52 | 93.07 116 | 58.22 162 | 97.00 95 | 85.22 77 | 84.33 147 | 96.52 22 |
|
| MVS_111021_HR | | | 86.19 49 | 85.80 56 | 87.37 44 | 93.17 68 | 69.79 47 | 93.99 69 | 93.76 69 | 79.08 79 | 78.88 127 | 93.99 99 | 62.25 120 | 98.15 36 | 85.93 74 | 91.15 85 | 94.15 119 |
|
| CS-MVS-test | | | 86.14 50 | 87.01 36 | 83.52 170 | 92.63 84 | 59.36 293 | 95.49 27 | 91.92 142 | 80.09 58 | 85.46 59 | 95.53 47 | 61.82 125 | 95.77 151 | 86.77 68 | 93.37 52 | 95.41 57 |
|
| ACMMP_NAP | | | 86.05 51 | 85.80 56 | 86.80 60 | 91.58 113 | 67.53 102 | 91.79 169 | 93.49 83 | 74.93 136 | 84.61 66 | 95.30 53 | 59.42 149 | 97.92 41 | 86.13 71 | 94.92 19 | 94.94 84 |
|
| testing99 | | | 86.01 52 | 85.47 60 | 87.63 37 | 93.62 54 | 71.25 24 | 93.47 101 | 95.23 18 | 80.42 52 | 80.60 103 | 91.95 143 | 71.73 34 | 96.50 124 | 80.02 120 | 82.22 166 | 95.13 76 |
|
| ETV-MVS | | | 86.01 52 | 86.11 49 | 85.70 98 | 90.21 142 | 67.02 116 | 93.43 103 | 91.92 142 | 81.21 43 | 84.13 73 | 94.07 98 | 60.93 133 | 95.63 159 | 89.28 43 | 89.81 96 | 94.46 111 |
|
| testing91 | | | 85.93 54 | 85.31 63 | 87.78 31 | 93.59 56 | 71.47 19 | 93.50 98 | 95.08 25 | 80.26 54 | 80.53 104 | 91.93 144 | 70.43 38 | 96.51 123 | 80.32 118 | 82.13 168 | 95.37 60 |
|
| APD-MVS |  | | 85.93 54 | 85.99 52 | 85.76 95 | 95.98 26 | 65.21 159 | 93.59 93 | 92.58 120 | 66.54 279 | 86.17 50 | 95.88 39 | 63.83 94 | 97.00 95 | 86.39 70 | 92.94 57 | 95.06 78 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| PAPM | | | 85.89 56 | 85.46 61 | 87.18 48 | 88.20 196 | 72.42 15 | 92.41 141 | 92.77 109 | 82.11 29 | 80.34 107 | 93.07 116 | 68.27 49 | 95.02 182 | 78.39 135 | 93.59 48 | 94.09 122 |
|
| CS-MVS | | | 85.80 57 | 86.65 42 | 83.27 178 | 92.00 100 | 58.92 298 | 95.31 31 | 91.86 147 | 79.97 59 | 84.82 65 | 95.40 49 | 62.26 119 | 95.51 170 | 86.11 72 | 92.08 69 | 95.37 60 |
|
| fmvsm_s_conf0.5_n_a | | | 85.75 58 | 86.09 50 | 84.72 132 | 85.73 249 | 63.58 206 | 93.79 83 | 89.32 250 | 81.42 39 | 90.21 23 | 96.91 14 | 62.41 118 | 97.67 51 | 94.48 10 | 80.56 183 | 92.90 162 |
|
| test_fmvsmconf0.1_n | | | 85.71 59 | 86.08 51 | 84.62 139 | 80.83 309 | 62.33 237 | 93.84 80 | 88.81 276 | 83.50 19 | 87.00 44 | 96.01 37 | 63.36 105 | 96.93 107 | 94.04 12 | 87.29 120 | 94.61 101 |
|
| CDPH-MVS | | | 85.71 59 | 85.46 61 | 86.46 72 | 94.75 34 | 67.19 109 | 93.89 75 | 92.83 108 | 70.90 233 | 83.09 79 | 95.28 54 | 63.62 99 | 97.36 72 | 80.63 115 | 94.18 36 | 94.84 89 |
|
| casdiffmvs_mvg |  | | 85.66 61 | 85.18 65 | 87.09 51 | 88.22 195 | 69.35 57 | 93.74 86 | 91.89 145 | 81.47 35 | 80.10 109 | 91.45 153 | 64.80 83 | 96.35 127 | 87.23 62 | 87.69 115 | 95.58 53 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| fmvsm_s_conf0.1_n | | | 85.61 62 | 85.93 53 | 84.68 135 | 82.95 293 | 63.48 211 | 94.03 68 | 89.46 244 | 81.69 33 | 89.86 26 | 96.74 20 | 61.85 124 | 97.75 49 | 94.74 9 | 82.01 170 | 92.81 164 |
|
| MGCFI-Net | | | 85.59 63 | 85.73 58 | 85.17 116 | 91.41 120 | 62.44 233 | 92.87 119 | 91.31 172 | 79.65 65 | 86.99 45 | 95.14 64 | 62.90 114 | 96.12 135 | 87.13 63 | 84.13 152 | 96.96 12 |
|
| DeepC-MVS | | 77.85 3 | 85.52 64 | 85.24 64 | 86.37 76 | 88.80 178 | 66.64 124 | 92.15 148 | 93.68 74 | 81.07 44 | 76.91 149 | 93.64 106 | 62.59 116 | 98.44 31 | 85.50 75 | 92.84 59 | 94.03 126 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| casdiffmvs |  | | 85.37 65 | 84.87 71 | 86.84 57 | 88.25 193 | 69.07 61 | 93.04 113 | 91.76 152 | 81.27 42 | 80.84 100 | 92.07 141 | 64.23 89 | 96.06 141 | 84.98 82 | 87.43 119 | 95.39 58 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| ZNCC-MVS | | | 85.33 66 | 85.08 67 | 86.06 83 | 93.09 71 | 65.65 148 | 93.89 75 | 93.41 87 | 73.75 156 | 79.94 111 | 94.68 76 | 60.61 136 | 98.03 38 | 82.63 100 | 93.72 45 | 94.52 107 |
|
| MP-MVS-pluss | | | 85.24 67 | 85.13 66 | 85.56 101 | 91.42 118 | 65.59 150 | 91.54 179 | 92.51 122 | 74.56 139 | 80.62 102 | 95.64 44 | 59.15 153 | 97.00 95 | 86.94 66 | 93.80 42 | 94.07 124 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| testing222 | | | 85.18 68 | 84.69 73 | 86.63 65 | 92.91 75 | 69.91 43 | 92.61 132 | 95.80 9 | 80.31 53 | 80.38 106 | 92.27 136 | 68.73 45 | 95.19 179 | 75.94 149 | 83.27 156 | 94.81 93 |
|
| PAPR | | | 85.15 69 | 84.47 74 | 87.18 48 | 96.02 25 | 68.29 79 | 91.85 167 | 93.00 103 | 76.59 117 | 79.03 123 | 95.00 65 | 61.59 126 | 97.61 58 | 78.16 136 | 89.00 103 | 95.63 51 |
|
| MP-MVS |  | | 85.02 70 | 84.97 69 | 85.17 116 | 92.60 85 | 64.27 186 | 93.24 106 | 92.27 127 | 73.13 167 | 79.63 115 | 94.43 82 | 61.90 122 | 97.17 84 | 85.00 81 | 92.56 61 | 94.06 125 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| baseline | | | 85.01 71 | 84.44 75 | 86.71 62 | 88.33 190 | 68.73 69 | 90.24 230 | 91.82 151 | 81.05 45 | 81.18 94 | 92.50 128 | 63.69 97 | 96.08 140 | 84.45 88 | 86.71 129 | 95.32 65 |
|
| CHOSEN 1792x2688 | | | 84.98 72 | 83.45 88 | 89.57 10 | 89.94 148 | 75.14 5 | 92.07 154 | 92.32 125 | 81.87 31 | 75.68 158 | 88.27 202 | 60.18 139 | 98.60 27 | 80.46 117 | 90.27 94 | 94.96 82 |
|
| EIA-MVS | | | 84.84 73 | 84.88 70 | 84.69 134 | 91.30 122 | 62.36 236 | 93.85 77 | 92.04 137 | 79.45 68 | 79.33 120 | 94.28 92 | 62.42 117 | 96.35 127 | 80.05 119 | 91.25 84 | 95.38 59 |
|
| fmvsm_s_conf0.1_n_a | | | 84.76 74 | 84.84 72 | 84.53 141 | 80.23 319 | 63.50 210 | 92.79 121 | 88.73 279 | 80.46 50 | 89.84 27 | 96.65 22 | 60.96 132 | 97.57 61 | 93.80 13 | 80.14 185 | 92.53 172 |
|
| HFP-MVS | | | 84.73 75 | 84.40 76 | 85.72 97 | 93.75 52 | 65.01 165 | 93.50 98 | 93.19 94 | 72.19 192 | 79.22 121 | 94.93 68 | 59.04 154 | 97.67 51 | 81.55 106 | 92.21 65 | 94.49 110 |
|
| MVS | | | 84.66 76 | 82.86 104 | 90.06 2 | 90.93 128 | 74.56 6 | 87.91 275 | 95.54 13 | 68.55 264 | 72.35 200 | 94.71 75 | 59.78 145 | 98.90 19 | 81.29 112 | 94.69 31 | 96.74 15 |
|
| GST-MVS | | | 84.63 77 | 84.29 77 | 85.66 99 | 92.82 78 | 65.27 157 | 93.04 113 | 93.13 97 | 73.20 165 | 78.89 124 | 94.18 95 | 59.41 150 | 97.85 45 | 81.45 108 | 92.48 63 | 93.86 134 |
|
| EC-MVSNet | | | 84.53 78 | 85.04 68 | 83.01 182 | 89.34 160 | 61.37 257 | 94.42 52 | 91.09 184 | 77.91 95 | 83.24 77 | 94.20 94 | 58.37 160 | 95.40 171 | 85.35 76 | 91.41 80 | 92.27 182 |
|
| ACMMPR | | | 84.37 79 | 84.06 78 | 85.28 111 | 93.56 57 | 64.37 181 | 93.50 98 | 93.15 96 | 72.19 192 | 78.85 129 | 94.86 71 | 56.69 182 | 97.45 65 | 81.55 106 | 92.20 66 | 94.02 127 |
|
| region2R | | | 84.36 80 | 84.03 79 | 85.36 108 | 93.54 58 | 64.31 184 | 93.43 103 | 92.95 104 | 72.16 195 | 78.86 128 | 94.84 72 | 56.97 177 | 97.53 63 | 81.38 110 | 92.11 68 | 94.24 114 |
|
| LFMVS | | | 84.34 81 | 82.73 106 | 89.18 13 | 94.76 33 | 73.25 11 | 94.99 42 | 91.89 145 | 71.90 200 | 82.16 86 | 93.49 110 | 47.98 270 | 97.05 90 | 82.55 101 | 84.82 141 | 97.25 7 |
|
| test_yl | | | 84.28 82 | 83.16 97 | 87.64 33 | 94.52 37 | 69.24 58 | 95.78 18 | 95.09 23 | 69.19 256 | 81.09 95 | 92.88 122 | 57.00 175 | 97.44 66 | 81.11 113 | 81.76 172 | 96.23 36 |
|
| DCV-MVSNet | | | 84.28 82 | 83.16 97 | 87.64 33 | 94.52 37 | 69.24 58 | 95.78 18 | 95.09 23 | 69.19 256 | 81.09 95 | 92.88 122 | 57.00 175 | 97.44 66 | 81.11 113 | 81.76 172 | 96.23 36 |
|
| diffmvs |  | | 84.28 82 | 83.83 80 | 85.61 100 | 87.40 215 | 68.02 89 | 90.88 209 | 89.24 253 | 80.54 48 | 81.64 89 | 92.52 127 | 59.83 144 | 94.52 205 | 87.32 60 | 85.11 139 | 94.29 112 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| HY-MVS | | 76.49 5 | 84.28 82 | 83.36 95 | 87.02 54 | 92.22 92 | 67.74 95 | 84.65 301 | 94.50 43 | 79.15 76 | 82.23 85 | 87.93 211 | 66.88 61 | 96.94 105 | 80.53 116 | 82.20 167 | 96.39 31 |
|
| ETVMVS | | | 84.22 86 | 83.71 81 | 85.76 95 | 92.58 86 | 68.25 83 | 92.45 140 | 95.53 14 | 79.54 67 | 79.46 117 | 91.64 151 | 70.29 39 | 94.18 218 | 69.16 209 | 82.76 162 | 94.84 89 |
|
| MAR-MVS | | | 84.18 87 | 83.43 89 | 86.44 73 | 96.25 21 | 65.93 143 | 94.28 56 | 94.27 56 | 74.41 140 | 79.16 122 | 95.61 45 | 53.99 214 | 98.88 21 | 69.62 203 | 93.26 54 | 94.50 109 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| MVS_Test | | | 84.16 88 | 83.20 96 | 87.05 53 | 91.56 114 | 69.82 46 | 89.99 239 | 92.05 136 | 77.77 97 | 82.84 80 | 86.57 231 | 63.93 93 | 96.09 137 | 74.91 159 | 89.18 102 | 95.25 73 |
|
| CANet_DTU | | | 84.09 89 | 83.52 83 | 85.81 92 | 90.30 140 | 66.82 119 | 91.87 165 | 89.01 268 | 85.27 9 | 86.09 51 | 93.74 103 | 47.71 274 | 96.98 99 | 77.90 138 | 89.78 98 | 93.65 139 |
|
| iter_conf05_11 | | | 84.06 90 | 83.37 94 | 86.15 82 | 93.04 72 | 66.63 125 | 87.84 277 | 90.21 218 | 71.10 229 | 81.47 91 | 89.48 187 | 68.80 44 | 96.96 102 | 75.97 148 | 92.39 64 | 94.87 85 |
|
| ET-MVSNet_ETH3D | | | 84.01 91 | 83.15 99 | 86.58 68 | 90.78 133 | 70.89 30 | 94.74 48 | 94.62 40 | 81.44 38 | 58.19 329 | 93.64 106 | 73.64 23 | 92.35 282 | 82.66 99 | 78.66 200 | 96.50 26 |
|
| PVSNet_Blended_VisFu | | | 83.97 92 | 83.50 85 | 85.39 106 | 90.02 146 | 66.59 128 | 93.77 84 | 91.73 153 | 77.43 106 | 77.08 148 | 89.81 184 | 63.77 96 | 96.97 101 | 79.67 122 | 88.21 110 | 92.60 168 |
|
| MTAPA | | | 83.91 93 | 83.38 93 | 85.50 102 | 91.89 105 | 65.16 161 | 81.75 325 | 92.23 128 | 75.32 131 | 80.53 104 | 95.21 61 | 56.06 191 | 97.16 86 | 84.86 84 | 92.55 62 | 94.18 116 |
|
| XVS | | | 83.87 94 | 83.47 87 | 85.05 118 | 93.22 64 | 63.78 195 | 92.92 117 | 92.66 115 | 73.99 148 | 78.18 133 | 94.31 91 | 55.25 197 | 97.41 68 | 79.16 126 | 91.58 77 | 93.95 129 |
|
| Effi-MVS+ | | | 83.82 95 | 82.76 105 | 86.99 55 | 89.56 156 | 69.40 53 | 91.35 191 | 86.12 322 | 72.59 179 | 83.22 78 | 92.81 125 | 59.60 147 | 96.01 145 | 81.76 105 | 87.80 114 | 95.56 54 |
|
| test_fmvsmvis_n_1920 | | | 83.80 96 | 83.48 86 | 84.77 129 | 82.51 295 | 63.72 199 | 91.37 189 | 83.99 344 | 81.42 39 | 77.68 138 | 95.74 42 | 58.37 160 | 97.58 59 | 93.38 14 | 86.87 123 | 93.00 159 |
|
| EI-MVSNet-Vis-set | | | 83.77 97 | 83.67 82 | 84.06 156 | 92.79 81 | 63.56 207 | 91.76 172 | 94.81 31 | 79.65 65 | 77.87 136 | 94.09 96 | 63.35 106 | 97.90 42 | 79.35 124 | 79.36 192 | 90.74 208 |
|
| MVSFormer | | | 83.75 98 | 82.88 103 | 86.37 76 | 89.24 168 | 71.18 25 | 89.07 257 | 90.69 195 | 65.80 284 | 87.13 41 | 94.34 89 | 64.99 78 | 92.67 269 | 72.83 171 | 91.80 73 | 95.27 70 |
|
| CP-MVS | | | 83.71 99 | 83.40 92 | 84.65 136 | 93.14 69 | 63.84 193 | 94.59 50 | 92.28 126 | 71.03 231 | 77.41 142 | 94.92 69 | 55.21 200 | 96.19 132 | 81.32 111 | 90.70 89 | 93.91 131 |
|
| test_fmvsmconf0.01_n | | | 83.70 100 | 83.52 83 | 84.25 153 | 75.26 362 | 61.72 251 | 92.17 147 | 87.24 311 | 82.36 26 | 84.91 64 | 95.41 48 | 55.60 195 | 96.83 112 | 92.85 17 | 85.87 135 | 94.21 115 |
|
| baseline2 | | | 83.68 101 | 83.42 91 | 84.48 144 | 87.37 216 | 66.00 140 | 90.06 234 | 95.93 8 | 79.71 64 | 69.08 236 | 90.39 171 | 77.92 6 | 96.28 129 | 78.91 130 | 81.38 176 | 91.16 204 |
|
| thisisatest0515 | | | 83.41 102 | 82.49 110 | 86.16 81 | 89.46 159 | 68.26 81 | 93.54 95 | 94.70 36 | 74.31 143 | 75.75 156 | 90.92 161 | 72.62 27 | 96.52 122 | 69.64 201 | 81.50 175 | 93.71 137 |
|
| PVSNet_BlendedMVS | | | 83.38 103 | 83.43 89 | 83.22 179 | 93.76 50 | 67.53 102 | 94.06 63 | 93.61 76 | 79.13 77 | 81.00 98 | 85.14 247 | 63.19 108 | 97.29 77 | 87.08 64 | 73.91 236 | 84.83 303 |
|
| test2506 | | | 83.29 104 | 82.92 102 | 84.37 148 | 88.39 188 | 63.18 218 | 92.01 157 | 91.35 171 | 77.66 100 | 78.49 132 | 91.42 154 | 64.58 86 | 95.09 181 | 73.19 167 | 89.23 100 | 94.85 86 |
|
| PGM-MVS | | | 83.25 105 | 82.70 107 | 84.92 121 | 92.81 80 | 64.07 190 | 90.44 221 | 92.20 132 | 71.28 224 | 77.23 145 | 94.43 82 | 55.17 201 | 97.31 76 | 79.33 125 | 91.38 81 | 93.37 145 |
|
| HPM-MVS |  | | 83.25 105 | 82.95 101 | 84.17 154 | 92.25 91 | 62.88 227 | 90.91 206 | 91.86 147 | 70.30 242 | 77.12 146 | 93.96 100 | 56.75 180 | 96.28 129 | 82.04 103 | 91.34 83 | 93.34 146 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| iter_conf05 | | | 83.18 107 | 81.72 120 | 87.58 39 | 90.17 143 | 73.92 8 | 83.37 312 | 88.63 285 | 62.18 314 | 73.79 180 | 87.64 216 | 71.47 35 | 96.28 129 | 84.69 85 | 93.54 50 | 92.54 170 |
|
| EI-MVSNet-UG-set | | | 83.14 108 | 82.96 100 | 83.67 168 | 92.28 90 | 63.19 217 | 91.38 188 | 94.68 37 | 79.22 74 | 76.60 151 | 93.75 102 | 62.64 115 | 97.76 48 | 78.07 137 | 78.01 203 | 90.05 217 |
|
| VDD-MVS | | | 83.06 109 | 81.81 119 | 86.81 59 | 90.86 131 | 67.70 96 | 95.40 29 | 91.50 166 | 75.46 128 | 81.78 88 | 92.34 135 | 40.09 312 | 97.13 88 | 86.85 67 | 82.04 169 | 95.60 52 |
|
| h-mvs33 | | | 83.01 110 | 82.56 109 | 84.35 149 | 89.34 160 | 62.02 243 | 92.72 124 | 93.76 69 | 81.45 36 | 82.73 82 | 92.25 138 | 60.11 140 | 97.13 88 | 87.69 55 | 62.96 314 | 93.91 131 |
|
| PAPM_NR | | | 82.97 111 | 81.84 118 | 86.37 76 | 94.10 44 | 66.76 122 | 87.66 280 | 92.84 107 | 69.96 246 | 74.07 177 | 93.57 108 | 63.10 111 | 97.50 64 | 70.66 196 | 90.58 91 | 94.85 86 |
|
| mPP-MVS | | | 82.96 112 | 82.44 111 | 84.52 142 | 92.83 76 | 62.92 225 | 92.76 122 | 91.85 149 | 71.52 220 | 75.61 161 | 94.24 93 | 53.48 222 | 96.99 98 | 78.97 129 | 90.73 88 | 93.64 140 |
|
| SR-MVS | | | 82.81 113 | 82.58 108 | 83.50 173 | 93.35 62 | 61.16 260 | 92.23 146 | 91.28 176 | 64.48 293 | 81.27 92 | 95.28 54 | 53.71 218 | 95.86 147 | 82.87 98 | 88.77 105 | 93.49 143 |
|
| DP-MVS Recon | | | 82.73 114 | 81.65 121 | 85.98 85 | 97.31 4 | 67.06 113 | 95.15 36 | 91.99 139 | 69.08 259 | 76.50 153 | 93.89 101 | 54.48 209 | 98.20 35 | 70.76 194 | 85.66 137 | 92.69 165 |
|
| CLD-MVS | | | 82.73 114 | 82.35 113 | 83.86 160 | 87.90 203 | 67.65 98 | 95.45 28 | 92.18 134 | 85.06 11 | 72.58 193 | 92.27 136 | 52.46 230 | 95.78 149 | 84.18 89 | 79.06 195 | 88.16 244 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| sss | | | 82.71 116 | 82.38 112 | 83.73 164 | 89.25 165 | 59.58 288 | 92.24 145 | 94.89 28 | 77.96 93 | 79.86 112 | 92.38 133 | 56.70 181 | 97.05 90 | 77.26 141 | 80.86 180 | 94.55 103 |
|
| 3Dnovator | | 73.91 6 | 82.69 117 | 80.82 132 | 88.31 25 | 89.57 155 | 71.26 23 | 92.60 133 | 94.39 51 | 78.84 83 | 67.89 257 | 92.48 131 | 48.42 265 | 98.52 28 | 68.80 214 | 94.40 34 | 95.15 75 |
|
| MVSTER | | | 82.47 118 | 82.05 114 | 83.74 162 | 92.68 83 | 69.01 63 | 91.90 164 | 93.21 91 | 79.83 60 | 72.14 201 | 85.71 243 | 74.72 16 | 94.72 193 | 75.72 150 | 72.49 247 | 87.50 249 |
|
| TESTMET0.1,1 | | | 82.41 119 | 81.98 117 | 83.72 165 | 88.08 197 | 63.74 197 | 92.70 126 | 93.77 68 | 79.30 72 | 77.61 140 | 87.57 218 | 58.19 163 | 94.08 222 | 73.91 165 | 86.68 130 | 93.33 148 |
|
| CostFormer | | | 82.33 120 | 81.15 125 | 85.86 90 | 89.01 173 | 68.46 75 | 82.39 322 | 93.01 101 | 75.59 126 | 80.25 108 | 81.57 289 | 72.03 32 | 94.96 185 | 79.06 128 | 77.48 211 | 94.16 118 |
|
| API-MVS | | | 82.28 121 | 80.53 139 | 87.54 41 | 96.13 22 | 70.59 33 | 93.63 91 | 91.04 190 | 65.72 286 | 75.45 163 | 92.83 124 | 56.11 190 | 98.89 20 | 64.10 258 | 89.75 99 | 93.15 152 |
|
| IB-MVS | | 77.80 4 | 82.18 122 | 80.46 141 | 87.35 45 | 89.14 170 | 70.28 37 | 95.59 26 | 95.17 21 | 78.85 82 | 70.19 224 | 85.82 241 | 70.66 37 | 97.67 51 | 72.19 182 | 66.52 287 | 94.09 122 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| xiu_mvs_v1_base_debu | | | 82.16 123 | 81.12 126 | 85.26 113 | 86.42 233 | 68.72 70 | 92.59 135 | 90.44 205 | 73.12 168 | 84.20 70 | 94.36 84 | 38.04 325 | 95.73 153 | 84.12 90 | 86.81 124 | 91.33 197 |
|
| xiu_mvs_v1_base | | | 82.16 123 | 81.12 126 | 85.26 113 | 86.42 233 | 68.72 70 | 92.59 135 | 90.44 205 | 73.12 168 | 84.20 70 | 94.36 84 | 38.04 325 | 95.73 153 | 84.12 90 | 86.81 124 | 91.33 197 |
|
| xiu_mvs_v1_base_debi | | | 82.16 123 | 81.12 126 | 85.26 113 | 86.42 233 | 68.72 70 | 92.59 135 | 90.44 205 | 73.12 168 | 84.20 70 | 94.36 84 | 38.04 325 | 95.73 153 | 84.12 90 | 86.81 124 | 91.33 197 |
|
| 3Dnovator+ | | 73.60 7 | 82.10 126 | 80.60 138 | 86.60 66 | 90.89 130 | 66.80 121 | 95.20 34 | 93.44 85 | 74.05 147 | 67.42 263 | 92.49 130 | 49.46 255 | 97.65 55 | 70.80 193 | 91.68 75 | 95.33 63 |
|
| MVS_111021_LR | | | 82.02 127 | 81.52 122 | 83.51 172 | 88.42 186 | 62.88 227 | 89.77 242 | 88.93 272 | 76.78 113 | 75.55 162 | 93.10 113 | 50.31 247 | 95.38 173 | 83.82 94 | 87.02 122 | 92.26 183 |
|
| PMMVS | | | 81.98 128 | 82.04 115 | 81.78 215 | 89.76 152 | 56.17 324 | 91.13 202 | 90.69 195 | 77.96 93 | 80.09 110 | 93.57 108 | 46.33 284 | 94.99 184 | 81.41 109 | 87.46 118 | 94.17 117 |
|
| baseline1 | | | 81.84 129 | 81.03 130 | 84.28 152 | 91.60 112 | 66.62 126 | 91.08 203 | 91.66 160 | 81.87 31 | 74.86 168 | 91.67 150 | 69.98 41 | 94.92 188 | 71.76 186 | 64.75 301 | 91.29 202 |
|
| EPP-MVSNet | | | 81.79 130 | 81.52 122 | 82.61 191 | 88.77 179 | 60.21 280 | 93.02 115 | 93.66 75 | 68.52 265 | 72.90 188 | 90.39 171 | 72.19 31 | 94.96 185 | 74.93 158 | 79.29 194 | 92.67 166 |
|
| test_vis1_n_1920 | | | 81.66 131 | 82.01 116 | 80.64 242 | 82.24 297 | 55.09 332 | 94.76 47 | 86.87 313 | 81.67 34 | 84.40 69 | 94.63 77 | 38.17 322 | 94.67 197 | 91.98 26 | 83.34 155 | 92.16 186 |
|
| APD-MVS_3200maxsize | | | 81.64 132 | 81.32 124 | 82.59 192 | 92.36 88 | 58.74 300 | 91.39 186 | 91.01 191 | 63.35 302 | 79.72 114 | 94.62 78 | 51.82 233 | 96.14 134 | 79.71 121 | 87.93 113 | 92.89 163 |
|
| ACMMP |  | | 81.49 133 | 80.67 135 | 83.93 159 | 91.71 110 | 62.90 226 | 92.13 149 | 92.22 131 | 71.79 207 | 71.68 208 | 93.49 110 | 50.32 246 | 96.96 102 | 78.47 134 | 84.22 151 | 91.93 189 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| CDS-MVSNet | | | 81.43 134 | 80.74 133 | 83.52 170 | 86.26 237 | 64.45 175 | 92.09 152 | 90.65 199 | 75.83 124 | 73.95 179 | 89.81 184 | 63.97 92 | 92.91 259 | 71.27 189 | 82.82 159 | 93.20 151 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| mvs_anonymous | | | 81.36 135 | 79.99 146 | 85.46 103 | 90.39 139 | 68.40 76 | 86.88 291 | 90.61 200 | 74.41 140 | 70.31 223 | 84.67 252 | 63.79 95 | 92.32 283 | 73.13 168 | 85.70 136 | 95.67 49 |
|
| ECVR-MVS |  | | 81.29 136 | 80.38 142 | 84.01 158 | 88.39 188 | 61.96 245 | 92.56 138 | 86.79 315 | 77.66 100 | 76.63 150 | 91.42 154 | 46.34 283 | 95.24 178 | 74.36 163 | 89.23 100 | 94.85 86 |
|
| thisisatest0530 | | | 81.15 137 | 80.07 143 | 84.39 147 | 88.26 192 | 65.63 149 | 91.40 184 | 94.62 40 | 71.27 225 | 70.93 214 | 89.18 191 | 72.47 28 | 96.04 142 | 65.62 247 | 76.89 217 | 91.49 193 |
|
| Fast-Effi-MVS+ | | | 81.14 138 | 80.01 145 | 84.51 143 | 90.24 141 | 65.86 144 | 94.12 62 | 89.15 260 | 73.81 155 | 75.37 164 | 88.26 203 | 57.26 170 | 94.53 204 | 66.97 232 | 84.92 140 | 93.15 152 |
|
| HQP-MVS | | | 81.14 138 | 80.64 136 | 82.64 190 | 87.54 211 | 63.66 204 | 94.06 63 | 91.70 158 | 79.80 61 | 74.18 173 | 90.30 173 | 51.63 237 | 95.61 161 | 77.63 139 | 78.90 196 | 88.63 235 |
|
| hse-mvs2 | | | 81.12 140 | 81.11 129 | 81.16 229 | 86.52 232 | 57.48 313 | 89.40 250 | 91.16 179 | 81.45 36 | 82.73 82 | 90.49 169 | 60.11 140 | 94.58 198 | 87.69 55 | 60.41 341 | 91.41 196 |
|
| SR-MVS-dyc-post | | | 81.06 141 | 80.70 134 | 82.15 206 | 92.02 97 | 58.56 302 | 90.90 207 | 90.45 202 | 62.76 309 | 78.89 124 | 94.46 80 | 51.26 241 | 95.61 161 | 78.77 132 | 86.77 127 | 92.28 179 |
|
| HyFIR lowres test | | | 81.03 142 | 79.56 153 | 85.43 104 | 87.81 207 | 68.11 87 | 90.18 231 | 90.01 227 | 70.65 239 | 72.95 187 | 86.06 239 | 63.61 100 | 94.50 206 | 75.01 157 | 79.75 189 | 93.67 138 |
|
| nrg030 | | | 80.93 143 | 79.86 148 | 84.13 155 | 83.69 282 | 68.83 67 | 93.23 107 | 91.20 177 | 75.55 127 | 75.06 166 | 88.22 206 | 63.04 112 | 94.74 192 | 81.88 104 | 66.88 284 | 88.82 233 |
|
| Vis-MVSNet |  | | 80.92 144 | 79.98 147 | 83.74 162 | 88.48 183 | 61.80 247 | 93.44 102 | 88.26 297 | 73.96 151 | 77.73 137 | 91.76 147 | 49.94 251 | 94.76 190 | 65.84 244 | 90.37 93 | 94.65 99 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| test1111 | | | 80.84 145 | 80.02 144 | 83.33 176 | 87.87 204 | 60.76 268 | 92.62 131 | 86.86 314 | 77.86 96 | 75.73 157 | 91.39 156 | 46.35 282 | 94.70 196 | 72.79 173 | 88.68 106 | 94.52 107 |
|
| UWE-MVS | | | 80.81 146 | 81.01 131 | 80.20 252 | 89.33 162 | 57.05 318 | 91.91 163 | 94.71 35 | 75.67 125 | 75.01 167 | 89.37 189 | 63.13 110 | 91.44 305 | 67.19 229 | 82.80 161 | 92.12 187 |
|
| 1314 | | | 80.70 147 | 78.95 164 | 85.94 87 | 87.77 209 | 67.56 100 | 87.91 275 | 92.55 121 | 72.17 194 | 67.44 262 | 93.09 114 | 50.27 248 | 97.04 93 | 71.68 188 | 87.64 116 | 93.23 150 |
|
| tpmrst | | | 80.57 148 | 79.14 163 | 84.84 124 | 90.10 145 | 68.28 80 | 81.70 326 | 89.72 239 | 77.63 102 | 75.96 155 | 79.54 321 | 64.94 80 | 92.71 266 | 75.43 152 | 77.28 214 | 93.55 141 |
|
| 1112_ss | | | 80.56 149 | 79.83 149 | 82.77 186 | 88.65 180 | 60.78 266 | 92.29 143 | 88.36 291 | 72.58 180 | 72.46 197 | 94.95 66 | 65.09 77 | 93.42 246 | 66.38 238 | 77.71 205 | 94.10 121 |
|
| VDDNet | | | 80.50 150 | 78.26 172 | 87.21 47 | 86.19 238 | 69.79 47 | 94.48 51 | 91.31 172 | 60.42 328 | 79.34 119 | 90.91 162 | 38.48 320 | 96.56 120 | 82.16 102 | 81.05 178 | 95.27 70 |
|
| BH-w/o | | | 80.49 151 | 79.30 160 | 84.05 157 | 90.83 132 | 64.36 183 | 93.60 92 | 89.42 247 | 74.35 142 | 69.09 235 | 90.15 178 | 55.23 199 | 95.61 161 | 64.61 255 | 86.43 133 | 92.17 185 |
|
| test_cas_vis1_n_1920 | | | 80.45 152 | 80.61 137 | 79.97 261 | 78.25 345 | 57.01 320 | 94.04 67 | 88.33 292 | 79.06 80 | 82.81 81 | 93.70 104 | 38.65 317 | 91.63 297 | 90.82 35 | 79.81 187 | 91.27 203 |
|
| TAMVS | | | 80.37 153 | 79.45 156 | 83.13 181 | 85.14 258 | 63.37 212 | 91.23 197 | 90.76 194 | 74.81 138 | 72.65 191 | 88.49 197 | 60.63 135 | 92.95 254 | 69.41 205 | 81.95 171 | 93.08 155 |
|
| HQP_MVS | | | 80.34 154 | 79.75 150 | 82.12 208 | 86.94 226 | 62.42 234 | 93.13 109 | 91.31 172 | 78.81 84 | 72.53 194 | 89.14 193 | 50.66 244 | 95.55 167 | 76.74 142 | 78.53 201 | 88.39 241 |
|
| SDMVSNet | | | 80.26 155 | 78.88 165 | 84.40 146 | 89.25 165 | 67.63 99 | 85.35 297 | 93.02 100 | 76.77 114 | 70.84 215 | 87.12 225 | 47.95 271 | 96.09 137 | 85.04 80 | 74.55 227 | 89.48 227 |
|
| HPM-MVS_fast | | | 80.25 156 | 79.55 155 | 82.33 198 | 91.55 115 | 59.95 283 | 91.32 193 | 89.16 258 | 65.23 290 | 74.71 170 | 93.07 116 | 47.81 273 | 95.74 152 | 74.87 161 | 88.23 109 | 91.31 201 |
|
| ab-mvs | | | 80.18 157 | 78.31 171 | 85.80 93 | 88.44 185 | 65.49 155 | 83.00 319 | 92.67 114 | 71.82 206 | 77.36 143 | 85.01 248 | 54.50 206 | 96.59 117 | 76.35 146 | 75.63 224 | 95.32 65 |
|
| IS-MVSNet | | | 80.14 158 | 79.41 157 | 82.33 198 | 87.91 202 | 60.08 282 | 91.97 161 | 88.27 295 | 72.90 175 | 71.44 211 | 91.73 149 | 61.44 127 | 93.66 241 | 62.47 272 | 86.53 131 | 93.24 149 |
|
| test-LLR | | | 80.10 159 | 79.56 153 | 81.72 217 | 86.93 228 | 61.17 258 | 92.70 126 | 91.54 163 | 71.51 221 | 75.62 159 | 86.94 227 | 53.83 215 | 92.38 279 | 72.21 180 | 84.76 143 | 91.60 191 |
|
| PVSNet | | 73.49 8 | 80.05 160 | 78.63 167 | 84.31 150 | 90.92 129 | 64.97 166 | 92.47 139 | 91.05 189 | 79.18 75 | 72.43 198 | 90.51 168 | 37.05 337 | 94.06 224 | 68.06 218 | 86.00 134 | 93.90 133 |
|
| UA-Net | | | 80.02 161 | 79.65 151 | 81.11 231 | 89.33 162 | 57.72 309 | 86.33 294 | 89.00 271 | 77.44 105 | 81.01 97 | 89.15 192 | 59.33 151 | 95.90 146 | 61.01 279 | 84.28 149 | 89.73 223 |
|
| test-mter | | | 79.96 162 | 79.38 159 | 81.72 217 | 86.93 228 | 61.17 258 | 92.70 126 | 91.54 163 | 73.85 153 | 75.62 159 | 86.94 227 | 49.84 253 | 92.38 279 | 72.21 180 | 84.76 143 | 91.60 191 |
|
| QAPM | | | 79.95 163 | 77.39 189 | 87.64 33 | 89.63 154 | 71.41 20 | 93.30 105 | 93.70 73 | 65.34 289 | 67.39 265 | 91.75 148 | 47.83 272 | 98.96 16 | 57.71 295 | 89.81 96 | 92.54 170 |
|
| UGNet | | | 79.87 164 | 78.68 166 | 83.45 175 | 89.96 147 | 61.51 254 | 92.13 149 | 90.79 193 | 76.83 112 | 78.85 129 | 86.33 235 | 38.16 323 | 96.17 133 | 67.93 221 | 87.17 121 | 92.67 166 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| tpm2 | | | 79.80 165 | 77.95 178 | 85.34 109 | 88.28 191 | 68.26 81 | 81.56 328 | 91.42 169 | 70.11 244 | 77.59 141 | 80.50 307 | 67.40 58 | 94.26 215 | 67.34 226 | 77.35 212 | 93.51 142 |
|
| thres200 | | | 79.66 166 | 78.33 170 | 83.66 169 | 92.54 87 | 65.82 146 | 93.06 111 | 96.31 3 | 74.90 137 | 73.30 184 | 88.66 195 | 59.67 146 | 95.61 161 | 47.84 333 | 78.67 199 | 89.56 226 |
|
| CPTT-MVS | | | 79.59 167 | 79.16 162 | 80.89 240 | 91.54 116 | 59.80 285 | 92.10 151 | 88.54 288 | 60.42 328 | 72.96 186 | 93.28 112 | 48.27 266 | 92.80 263 | 78.89 131 | 86.50 132 | 90.06 216 |
|
| Test_1112_low_res | | | 79.56 168 | 78.60 168 | 82.43 194 | 88.24 194 | 60.39 277 | 92.09 152 | 87.99 302 | 72.10 196 | 71.84 204 | 87.42 220 | 64.62 85 | 93.04 250 | 65.80 245 | 77.30 213 | 93.85 135 |
|
| tttt0517 | | | 79.50 169 | 78.53 169 | 82.41 197 | 87.22 219 | 61.43 256 | 89.75 243 | 94.76 32 | 69.29 254 | 67.91 255 | 88.06 210 | 72.92 25 | 95.63 159 | 62.91 268 | 73.90 237 | 90.16 215 |
|
| FIs | | | 79.47 170 | 79.41 157 | 79.67 268 | 85.95 243 | 59.40 290 | 91.68 176 | 93.94 63 | 78.06 92 | 68.96 240 | 88.28 201 | 66.61 64 | 91.77 294 | 66.20 241 | 74.99 226 | 87.82 246 |
|
| BH-RMVSNet | | | 79.46 171 | 77.65 181 | 84.89 122 | 91.68 111 | 65.66 147 | 93.55 94 | 88.09 300 | 72.93 172 | 73.37 183 | 91.12 160 | 46.20 286 | 96.12 135 | 56.28 300 | 85.61 138 | 92.91 161 |
|
| PCF-MVS | | 73.15 9 | 79.29 172 | 77.63 182 | 84.29 151 | 86.06 241 | 65.96 142 | 87.03 287 | 91.10 183 | 69.86 248 | 69.79 231 | 90.64 164 | 57.54 169 | 96.59 117 | 64.37 257 | 82.29 163 | 90.32 213 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| Vis-MVSNet (Re-imp) | | | 79.24 173 | 79.57 152 | 78.24 288 | 88.46 184 | 52.29 343 | 90.41 223 | 89.12 262 | 74.24 144 | 69.13 234 | 91.91 145 | 65.77 71 | 90.09 320 | 59.00 291 | 88.09 111 | 92.33 176 |
|
| 114514_t | | | 79.17 174 | 77.67 180 | 83.68 167 | 95.32 29 | 65.53 153 | 92.85 120 | 91.60 162 | 63.49 300 | 67.92 254 | 90.63 166 | 46.65 279 | 95.72 157 | 67.01 231 | 83.54 153 | 89.79 221 |
|
| FA-MVS(test-final) | | | 79.12 175 | 77.23 191 | 84.81 128 | 90.54 135 | 63.98 192 | 81.35 331 | 91.71 155 | 71.09 230 | 74.85 169 | 82.94 270 | 52.85 226 | 97.05 90 | 67.97 219 | 81.73 174 | 93.41 144 |
|
| VPA-MVSNet | | | 79.03 176 | 78.00 176 | 82.11 211 | 85.95 243 | 64.48 174 | 93.22 108 | 94.66 38 | 75.05 135 | 74.04 178 | 84.95 249 | 52.17 232 | 93.52 243 | 74.90 160 | 67.04 283 | 88.32 243 |
|
| OPM-MVS | | | 79.00 177 | 78.09 174 | 81.73 216 | 83.52 285 | 63.83 194 | 91.64 178 | 90.30 212 | 76.36 120 | 71.97 203 | 89.93 183 | 46.30 285 | 95.17 180 | 75.10 155 | 77.70 206 | 86.19 276 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| EI-MVSNet | | | 78.97 178 | 78.22 173 | 81.25 226 | 85.33 253 | 62.73 230 | 89.53 247 | 93.21 91 | 72.39 187 | 72.14 201 | 90.13 179 | 60.99 130 | 94.72 193 | 67.73 223 | 72.49 247 | 86.29 273 |
|
| AdaColmap |  | | 78.94 179 | 77.00 195 | 84.76 130 | 96.34 17 | 65.86 144 | 92.66 130 | 87.97 304 | 62.18 314 | 70.56 217 | 92.37 134 | 43.53 300 | 97.35 73 | 64.50 256 | 82.86 158 | 91.05 206 |
|
| GeoE | | | 78.90 180 | 77.43 185 | 83.29 177 | 88.95 174 | 62.02 243 | 92.31 142 | 86.23 320 | 70.24 243 | 71.34 212 | 89.27 190 | 54.43 210 | 94.04 227 | 63.31 264 | 80.81 182 | 93.81 136 |
|
| miper_enhance_ethall | | | 78.86 181 | 77.97 177 | 81.54 221 | 88.00 201 | 65.17 160 | 91.41 182 | 89.15 260 | 75.19 133 | 68.79 243 | 83.98 261 | 67.17 59 | 92.82 261 | 72.73 174 | 65.30 292 | 86.62 270 |
|
| VPNet | | | 78.82 182 | 77.53 184 | 82.70 188 | 84.52 269 | 66.44 130 | 93.93 72 | 92.23 128 | 80.46 50 | 72.60 192 | 88.38 200 | 49.18 259 | 93.13 249 | 72.47 178 | 63.97 311 | 88.55 238 |
|
| EPNet_dtu | | | 78.80 183 | 79.26 161 | 77.43 296 | 88.06 198 | 49.71 356 | 91.96 162 | 91.95 141 | 77.67 99 | 76.56 152 | 91.28 158 | 58.51 158 | 90.20 318 | 56.37 299 | 80.95 179 | 92.39 174 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| tfpn200view9 | | | 78.79 184 | 77.43 185 | 82.88 184 | 92.21 93 | 64.49 172 | 92.05 155 | 96.28 4 | 73.48 162 | 71.75 206 | 88.26 203 | 60.07 142 | 95.32 174 | 45.16 344 | 77.58 208 | 88.83 231 |
|
| TR-MVS | | | 78.77 185 | 77.37 190 | 82.95 183 | 90.49 136 | 60.88 264 | 93.67 88 | 90.07 222 | 70.08 245 | 74.51 171 | 91.37 157 | 45.69 289 | 95.70 158 | 60.12 285 | 80.32 184 | 92.29 178 |
|
| thres400 | | | 78.68 186 | 77.43 185 | 82.43 194 | 92.21 93 | 64.49 172 | 92.05 155 | 96.28 4 | 73.48 162 | 71.75 206 | 88.26 203 | 60.07 142 | 95.32 174 | 45.16 344 | 77.58 208 | 87.48 250 |
|
| BH-untuned | | | 78.68 186 | 77.08 192 | 83.48 174 | 89.84 149 | 63.74 197 | 92.70 126 | 88.59 286 | 71.57 218 | 66.83 272 | 88.65 196 | 51.75 235 | 95.39 172 | 59.03 290 | 84.77 142 | 91.32 200 |
|
| OMC-MVS | | | 78.67 188 | 77.91 179 | 80.95 238 | 85.76 248 | 57.40 315 | 88.49 266 | 88.67 282 | 73.85 153 | 72.43 198 | 92.10 140 | 49.29 258 | 94.55 203 | 72.73 174 | 77.89 204 | 90.91 207 |
|
| tpm | | | 78.58 189 | 77.03 193 | 83.22 179 | 85.94 245 | 64.56 170 | 83.21 316 | 91.14 182 | 78.31 89 | 73.67 181 | 79.68 319 | 64.01 91 | 92.09 288 | 66.07 242 | 71.26 257 | 93.03 157 |
|
| OpenMVS |  | 70.45 11 | 78.54 190 | 75.92 209 | 86.41 75 | 85.93 246 | 71.68 18 | 92.74 123 | 92.51 122 | 66.49 280 | 64.56 286 | 91.96 142 | 43.88 299 | 98.10 37 | 54.61 305 | 90.65 90 | 89.44 229 |
|
| EPMVS | | | 78.49 191 | 75.98 208 | 86.02 84 | 91.21 124 | 69.68 51 | 80.23 340 | 91.20 177 | 75.25 132 | 72.48 196 | 78.11 329 | 54.65 205 | 93.69 240 | 57.66 296 | 83.04 157 | 94.69 95 |
|
| AUN-MVS | | | 78.37 192 | 77.43 185 | 81.17 228 | 86.60 231 | 57.45 314 | 89.46 249 | 91.16 179 | 74.11 146 | 74.40 172 | 90.49 169 | 55.52 196 | 94.57 200 | 74.73 162 | 60.43 340 | 91.48 194 |
|
| thres100view900 | | | 78.37 192 | 77.01 194 | 82.46 193 | 91.89 105 | 63.21 216 | 91.19 201 | 96.33 1 | 72.28 190 | 70.45 220 | 87.89 212 | 60.31 137 | 95.32 174 | 45.16 344 | 77.58 208 | 88.83 231 |
|
| GA-MVS | | | 78.33 194 | 76.23 204 | 84.65 136 | 83.65 283 | 66.30 134 | 91.44 180 | 90.14 220 | 76.01 122 | 70.32 222 | 84.02 260 | 42.50 304 | 94.72 193 | 70.98 191 | 77.00 216 | 92.94 160 |
|
| cascas | | | 78.18 195 | 75.77 211 | 85.41 105 | 87.14 221 | 69.11 60 | 92.96 116 | 91.15 181 | 66.71 278 | 70.47 218 | 86.07 238 | 37.49 331 | 96.48 125 | 70.15 199 | 79.80 188 | 90.65 209 |
|
| UniMVSNet_NR-MVSNet | | | 78.15 196 | 77.55 183 | 79.98 259 | 84.46 271 | 60.26 278 | 92.25 144 | 93.20 93 | 77.50 104 | 68.88 241 | 86.61 230 | 66.10 67 | 92.13 286 | 66.38 238 | 62.55 318 | 87.54 248 |
|
| thres600view7 | | | 78.00 197 | 76.66 199 | 82.03 213 | 91.93 102 | 63.69 202 | 91.30 194 | 96.33 1 | 72.43 185 | 70.46 219 | 87.89 212 | 60.31 137 | 94.92 188 | 42.64 356 | 76.64 218 | 87.48 250 |
|
| FC-MVSNet-test | | | 77.99 198 | 78.08 175 | 77.70 291 | 84.89 264 | 55.51 329 | 90.27 228 | 93.75 72 | 76.87 109 | 66.80 273 | 87.59 217 | 65.71 72 | 90.23 317 | 62.89 269 | 73.94 235 | 87.37 253 |
|
| Anonymous202405211 | | | 77.96 199 | 75.33 218 | 85.87 89 | 93.73 53 | 64.52 171 | 94.85 44 | 85.36 329 | 62.52 312 | 76.11 154 | 90.18 176 | 29.43 365 | 97.29 77 | 68.51 216 | 77.24 215 | 95.81 48 |
|
| cl22 | | | 77.94 200 | 76.78 197 | 81.42 223 | 87.57 210 | 64.93 168 | 90.67 216 | 88.86 275 | 72.45 184 | 67.63 261 | 82.68 274 | 64.07 90 | 92.91 259 | 71.79 184 | 65.30 292 | 86.44 271 |
|
| XXY-MVS | | | 77.94 200 | 76.44 201 | 82.43 194 | 82.60 294 | 64.44 176 | 92.01 157 | 91.83 150 | 73.59 161 | 70.00 227 | 85.82 241 | 54.43 210 | 94.76 190 | 69.63 202 | 68.02 277 | 88.10 245 |
|
| MS-PatchMatch | | | 77.90 202 | 76.50 200 | 82.12 208 | 85.99 242 | 69.95 42 | 91.75 174 | 92.70 112 | 73.97 150 | 62.58 307 | 84.44 256 | 41.11 309 | 95.78 149 | 63.76 261 | 92.17 67 | 80.62 351 |
|
| FMVSNet3 | | | 77.73 203 | 76.04 207 | 82.80 185 | 91.20 125 | 68.99 64 | 91.87 165 | 91.99 139 | 73.35 164 | 67.04 268 | 83.19 269 | 56.62 183 | 92.14 285 | 59.80 287 | 69.34 264 | 87.28 257 |
|
| miper_ehance_all_eth | | | 77.60 204 | 76.44 201 | 81.09 235 | 85.70 250 | 64.41 179 | 90.65 217 | 88.64 284 | 72.31 188 | 67.37 266 | 82.52 275 | 64.77 84 | 92.64 272 | 70.67 195 | 65.30 292 | 86.24 275 |
|
| UniMVSNet (Re) | | | 77.58 205 | 76.78 197 | 79.98 259 | 84.11 277 | 60.80 265 | 91.76 172 | 93.17 95 | 76.56 118 | 69.93 230 | 84.78 251 | 63.32 107 | 92.36 281 | 64.89 254 | 62.51 320 | 86.78 265 |
|
| PatchmatchNet |  | | 77.46 206 | 74.63 225 | 85.96 86 | 89.55 157 | 70.35 36 | 79.97 345 | 89.55 242 | 72.23 191 | 70.94 213 | 76.91 340 | 57.03 173 | 92.79 264 | 54.27 307 | 81.17 177 | 94.74 94 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| v2v482 | | | 77.42 207 | 75.65 214 | 82.73 187 | 80.38 315 | 67.13 112 | 91.85 167 | 90.23 216 | 75.09 134 | 69.37 232 | 83.39 267 | 53.79 217 | 94.44 207 | 71.77 185 | 65.00 298 | 86.63 269 |
|
| CHOSEN 280x420 | | | 77.35 208 | 76.95 196 | 78.55 283 | 87.07 223 | 62.68 231 | 69.71 376 | 82.95 351 | 68.80 261 | 71.48 210 | 87.27 224 | 66.03 68 | 84.00 361 | 76.47 145 | 82.81 160 | 88.95 230 |
|
| PS-MVSNAJss | | | 77.26 209 | 76.31 203 | 80.13 254 | 80.64 313 | 59.16 295 | 90.63 220 | 91.06 188 | 72.80 176 | 68.58 247 | 84.57 254 | 53.55 219 | 93.96 232 | 72.97 169 | 71.96 251 | 87.27 258 |
|
| gg-mvs-nofinetune | | | 77.18 210 | 74.31 232 | 85.80 93 | 91.42 118 | 68.36 77 | 71.78 370 | 94.72 34 | 49.61 371 | 77.12 146 | 45.92 395 | 77.41 8 | 93.98 231 | 67.62 224 | 93.16 55 | 95.05 79 |
|
| WB-MVSnew | | | 77.14 211 | 76.18 206 | 80.01 258 | 86.18 239 | 63.24 215 | 91.26 195 | 94.11 60 | 71.72 210 | 73.52 182 | 87.29 223 | 45.14 294 | 93.00 252 | 56.98 297 | 79.42 190 | 83.80 312 |
|
| MVP-Stereo | | | 77.12 212 | 76.23 204 | 79.79 266 | 81.72 302 | 66.34 133 | 89.29 251 | 90.88 192 | 70.56 240 | 62.01 311 | 82.88 271 | 49.34 256 | 94.13 219 | 65.55 249 | 93.80 42 | 78.88 365 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| sd_testset | | | 77.08 213 | 75.37 216 | 82.20 204 | 89.25 165 | 62.11 242 | 82.06 323 | 89.09 264 | 76.77 114 | 70.84 215 | 87.12 225 | 41.43 308 | 95.01 183 | 67.23 228 | 74.55 227 | 89.48 227 |
|
| dmvs_re | | | 76.93 214 | 75.36 217 | 81.61 219 | 87.78 208 | 60.71 271 | 80.00 344 | 87.99 302 | 79.42 69 | 69.02 238 | 89.47 188 | 46.77 277 | 94.32 209 | 63.38 263 | 74.45 230 | 89.81 220 |
|
| bld_raw_dy_0_64 | | | 76.92 215 | 74.65 224 | 83.71 166 | 84.96 263 | 71.37 21 | 73.29 368 | 89.16 258 | 50.14 370 | 62.32 309 | 84.19 258 | 67.48 57 | 95.61 161 | 72.10 183 | 88.25 108 | 84.14 308 |
|
| X-MVStestdata | | | 76.86 216 | 74.13 236 | 85.05 118 | 93.22 64 | 63.78 195 | 92.92 117 | 92.66 115 | 73.99 148 | 78.18 133 | 10.19 410 | 55.25 197 | 97.41 68 | 79.16 126 | 91.58 77 | 93.95 129 |
|
| DU-MVS | | | 76.86 216 | 75.84 210 | 79.91 262 | 82.96 291 | 60.26 278 | 91.26 195 | 91.54 163 | 76.46 119 | 68.88 241 | 86.35 233 | 56.16 188 | 92.13 286 | 66.38 238 | 62.55 318 | 87.35 255 |
|
| mvsmamba | | | 76.85 218 | 75.71 213 | 80.25 250 | 83.07 290 | 59.16 295 | 91.44 180 | 80.64 358 | 76.84 111 | 67.95 253 | 86.33 235 | 46.17 287 | 94.24 216 | 76.06 147 | 72.92 243 | 87.36 254 |
|
| Anonymous20240529 | | | 76.84 219 | 74.15 235 | 84.88 123 | 91.02 126 | 64.95 167 | 93.84 80 | 91.09 184 | 53.57 358 | 73.00 185 | 87.42 220 | 35.91 341 | 97.32 75 | 69.14 210 | 72.41 249 | 92.36 175 |
|
| c3_l | | | 76.83 220 | 75.47 215 | 80.93 239 | 85.02 261 | 64.18 189 | 90.39 224 | 88.11 299 | 71.66 211 | 66.65 274 | 81.64 287 | 63.58 103 | 92.56 273 | 69.31 207 | 62.86 315 | 86.04 281 |
|
| WR-MVS | | | 76.76 221 | 75.74 212 | 79.82 265 | 84.60 267 | 62.27 240 | 92.60 133 | 92.51 122 | 76.06 121 | 67.87 258 | 85.34 245 | 56.76 179 | 90.24 316 | 62.20 273 | 63.69 313 | 86.94 263 |
|
| v1144 | | | 76.73 222 | 74.88 221 | 82.27 200 | 80.23 319 | 66.60 127 | 91.68 176 | 90.21 218 | 73.69 158 | 69.06 237 | 81.89 282 | 52.73 228 | 94.40 208 | 69.21 208 | 65.23 295 | 85.80 287 |
|
| IterMVS-LS | | | 76.49 223 | 75.18 220 | 80.43 245 | 84.49 270 | 62.74 229 | 90.64 218 | 88.80 277 | 72.40 186 | 65.16 281 | 81.72 285 | 60.98 131 | 92.27 284 | 67.74 222 | 64.65 303 | 86.29 273 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| V42 | | | 76.46 224 | 74.55 228 | 82.19 205 | 79.14 333 | 67.82 93 | 90.26 229 | 89.42 247 | 73.75 156 | 68.63 246 | 81.89 282 | 51.31 240 | 94.09 221 | 71.69 187 | 64.84 299 | 84.66 304 |
|
| v148 | | | 76.19 225 | 74.47 230 | 81.36 224 | 80.05 321 | 64.44 176 | 91.75 174 | 90.23 216 | 73.68 159 | 67.13 267 | 80.84 302 | 55.92 193 | 93.86 238 | 68.95 212 | 61.73 329 | 85.76 290 |
|
| Effi-MVS+-dtu | | | 76.14 226 | 75.28 219 | 78.72 282 | 83.22 287 | 55.17 331 | 89.87 240 | 87.78 305 | 75.42 129 | 67.98 252 | 81.43 291 | 45.08 295 | 92.52 275 | 75.08 156 | 71.63 252 | 88.48 239 |
|
| cl____ | | | 76.07 227 | 74.67 222 | 80.28 248 | 85.15 257 | 61.76 249 | 90.12 232 | 88.73 279 | 71.16 226 | 65.43 278 | 81.57 289 | 61.15 128 | 92.95 254 | 66.54 235 | 62.17 322 | 86.13 279 |
|
| DIV-MVS_self_test | | | 76.07 227 | 74.67 222 | 80.28 248 | 85.14 258 | 61.75 250 | 90.12 232 | 88.73 279 | 71.16 226 | 65.42 279 | 81.60 288 | 61.15 128 | 92.94 258 | 66.54 235 | 62.16 324 | 86.14 277 |
|
| FMVSNet2 | | | 76.07 227 | 74.01 238 | 82.26 202 | 88.85 175 | 67.66 97 | 91.33 192 | 91.61 161 | 70.84 234 | 65.98 275 | 82.25 278 | 48.03 267 | 92.00 290 | 58.46 292 | 68.73 272 | 87.10 260 |
|
| v144192 | | | 76.05 230 | 74.03 237 | 82.12 208 | 79.50 327 | 66.55 129 | 91.39 186 | 89.71 240 | 72.30 189 | 68.17 250 | 81.33 294 | 51.75 235 | 94.03 229 | 67.94 220 | 64.19 306 | 85.77 288 |
|
| NR-MVSNet | | | 76.05 230 | 74.59 226 | 80.44 244 | 82.96 291 | 62.18 241 | 90.83 211 | 91.73 153 | 77.12 108 | 60.96 314 | 86.35 233 | 59.28 152 | 91.80 293 | 60.74 280 | 61.34 333 | 87.35 255 |
|
| v1192 | | | 75.98 232 | 73.92 239 | 82.15 206 | 79.73 323 | 66.24 136 | 91.22 198 | 89.75 234 | 72.67 178 | 68.49 248 | 81.42 292 | 49.86 252 | 94.27 213 | 67.08 230 | 65.02 297 | 85.95 284 |
|
| FE-MVS | | | 75.97 233 | 73.02 249 | 84.82 125 | 89.78 150 | 65.56 151 | 77.44 356 | 91.07 187 | 64.55 292 | 72.66 190 | 79.85 317 | 46.05 288 | 96.69 115 | 54.97 304 | 80.82 181 | 92.21 184 |
|
| eth_miper_zixun_eth | | | 75.96 234 | 74.40 231 | 80.66 241 | 84.66 266 | 63.02 220 | 89.28 252 | 88.27 295 | 71.88 202 | 65.73 276 | 81.65 286 | 59.45 148 | 92.81 262 | 68.13 217 | 60.53 338 | 86.14 277 |
|
| TranMVSNet+NR-MVSNet | | | 75.86 235 | 74.52 229 | 79.89 263 | 82.44 296 | 60.64 274 | 91.37 189 | 91.37 170 | 76.63 116 | 67.65 260 | 86.21 237 | 52.37 231 | 91.55 299 | 61.84 275 | 60.81 336 | 87.48 250 |
|
| SCA | | | 75.82 236 | 72.76 252 | 85.01 120 | 86.63 230 | 70.08 38 | 81.06 333 | 89.19 256 | 71.60 217 | 70.01 226 | 77.09 338 | 45.53 290 | 90.25 313 | 60.43 282 | 73.27 239 | 94.68 96 |
|
| LPG-MVS_test | | | 75.82 236 | 74.58 227 | 79.56 272 | 84.31 274 | 59.37 291 | 90.44 221 | 89.73 237 | 69.49 251 | 64.86 282 | 88.42 198 | 38.65 317 | 94.30 211 | 72.56 176 | 72.76 244 | 85.01 301 |
|
| GBi-Net | | | 75.65 238 | 73.83 240 | 81.10 232 | 88.85 175 | 65.11 162 | 90.01 236 | 90.32 208 | 70.84 234 | 67.04 268 | 80.25 312 | 48.03 267 | 91.54 300 | 59.80 287 | 69.34 264 | 86.64 266 |
|
| test1 | | | 75.65 238 | 73.83 240 | 81.10 232 | 88.85 175 | 65.11 162 | 90.01 236 | 90.32 208 | 70.84 234 | 67.04 268 | 80.25 312 | 48.03 267 | 91.54 300 | 59.80 287 | 69.34 264 | 86.64 266 |
|
| v1921920 | | | 75.63 240 | 73.49 245 | 82.06 212 | 79.38 328 | 66.35 132 | 91.07 205 | 89.48 243 | 71.98 197 | 67.99 251 | 81.22 297 | 49.16 261 | 93.90 235 | 66.56 234 | 64.56 304 | 85.92 286 |
|
| ACMP | | 71.68 10 | 75.58 241 | 74.23 234 | 79.62 270 | 84.97 262 | 59.64 286 | 90.80 212 | 89.07 266 | 70.39 241 | 62.95 303 | 87.30 222 | 38.28 321 | 93.87 236 | 72.89 170 | 71.45 255 | 85.36 297 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| v8 | | | 75.35 242 | 73.26 247 | 81.61 219 | 80.67 312 | 66.82 119 | 89.54 246 | 89.27 252 | 71.65 212 | 63.30 299 | 80.30 311 | 54.99 203 | 94.06 224 | 67.33 227 | 62.33 321 | 83.94 310 |
|
| tpm cat1 | | | 75.30 243 | 72.21 261 | 84.58 140 | 88.52 181 | 67.77 94 | 78.16 354 | 88.02 301 | 61.88 320 | 68.45 249 | 76.37 344 | 60.65 134 | 94.03 229 | 53.77 310 | 74.11 233 | 91.93 189 |
|
| PLC |  | 68.80 14 | 75.23 244 | 73.68 243 | 79.86 264 | 92.93 74 | 58.68 301 | 90.64 218 | 88.30 293 | 60.90 325 | 64.43 290 | 90.53 167 | 42.38 305 | 94.57 200 | 56.52 298 | 76.54 219 | 86.33 272 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| v1240 | | | 75.21 245 | 72.98 250 | 81.88 214 | 79.20 330 | 66.00 140 | 90.75 214 | 89.11 263 | 71.63 216 | 67.41 264 | 81.22 297 | 47.36 275 | 93.87 236 | 65.46 250 | 64.72 302 | 85.77 288 |
|
| Fast-Effi-MVS+-dtu | | | 75.04 246 | 73.37 246 | 80.07 255 | 80.86 308 | 59.52 289 | 91.20 200 | 85.38 328 | 71.90 200 | 65.20 280 | 84.84 250 | 41.46 307 | 92.97 253 | 66.50 237 | 72.96 242 | 87.73 247 |
|
| dp | | | 75.01 247 | 72.09 262 | 83.76 161 | 89.28 164 | 66.22 137 | 79.96 346 | 89.75 234 | 71.16 226 | 67.80 259 | 77.19 337 | 51.81 234 | 92.54 274 | 50.39 318 | 71.44 256 | 92.51 173 |
|
| TAPA-MVS | | 70.22 12 | 74.94 248 | 73.53 244 | 79.17 277 | 90.40 138 | 52.07 344 | 89.19 255 | 89.61 241 | 62.69 311 | 70.07 225 | 92.67 126 | 48.89 264 | 94.32 209 | 38.26 370 | 79.97 186 | 91.12 205 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| v10 | | | 74.77 249 | 72.54 258 | 81.46 222 | 80.33 317 | 66.71 123 | 89.15 256 | 89.08 265 | 70.94 232 | 63.08 302 | 79.86 316 | 52.52 229 | 94.04 227 | 65.70 246 | 62.17 322 | 83.64 313 |
|
| XVG-OURS-SEG-HR | | | 74.70 250 | 73.08 248 | 79.57 271 | 78.25 345 | 57.33 316 | 80.49 336 | 87.32 308 | 63.22 304 | 68.76 244 | 90.12 182 | 44.89 296 | 91.59 298 | 70.55 197 | 74.09 234 | 89.79 221 |
|
| ACMM | | 69.62 13 | 74.34 251 | 72.73 254 | 79.17 277 | 84.25 276 | 57.87 307 | 90.36 225 | 89.93 228 | 63.17 306 | 65.64 277 | 86.04 240 | 37.79 329 | 94.10 220 | 65.89 243 | 71.52 254 | 85.55 293 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| CNLPA | | | 74.31 252 | 72.30 260 | 80.32 246 | 91.49 117 | 61.66 252 | 90.85 210 | 80.72 357 | 56.67 350 | 63.85 294 | 90.64 164 | 46.75 278 | 90.84 308 | 53.79 309 | 75.99 223 | 88.47 240 |
|
| XVG-OURS | | | 74.25 253 | 72.46 259 | 79.63 269 | 78.45 343 | 57.59 312 | 80.33 338 | 87.39 307 | 63.86 297 | 68.76 244 | 89.62 186 | 40.50 311 | 91.72 295 | 69.00 211 | 74.25 232 | 89.58 224 |
|
| test_fmvs1 | | | 74.07 254 | 73.69 242 | 75.22 314 | 78.91 337 | 47.34 369 | 89.06 259 | 74.69 372 | 63.68 299 | 79.41 118 | 91.59 152 | 24.36 374 | 87.77 338 | 85.22 77 | 76.26 221 | 90.55 212 |
|
| CVMVSNet | | | 74.04 255 | 74.27 233 | 73.33 329 | 85.33 253 | 43.94 381 | 89.53 247 | 88.39 290 | 54.33 357 | 70.37 221 | 90.13 179 | 49.17 260 | 84.05 359 | 61.83 276 | 79.36 192 | 91.99 188 |
|
| Baseline_NR-MVSNet | | | 73.99 256 | 72.83 251 | 77.48 295 | 80.78 310 | 59.29 294 | 91.79 169 | 84.55 337 | 68.85 260 | 68.99 239 | 80.70 303 | 56.16 188 | 92.04 289 | 62.67 270 | 60.98 335 | 81.11 345 |
|
| pmmvs4 | | | 73.92 257 | 71.81 266 | 80.25 250 | 79.17 331 | 65.24 158 | 87.43 283 | 87.26 310 | 67.64 272 | 63.46 297 | 83.91 262 | 48.96 263 | 91.53 303 | 62.94 267 | 65.49 291 | 83.96 309 |
|
| D2MVS | | | 73.80 258 | 72.02 263 | 79.15 279 | 79.15 332 | 62.97 221 | 88.58 265 | 90.07 222 | 72.94 171 | 59.22 323 | 78.30 326 | 42.31 306 | 92.70 268 | 65.59 248 | 72.00 250 | 81.79 340 |
|
| CR-MVSNet | | | 73.79 259 | 70.82 274 | 82.70 188 | 83.15 288 | 67.96 90 | 70.25 373 | 84.00 342 | 73.67 160 | 69.97 228 | 72.41 358 | 57.82 166 | 89.48 324 | 52.99 313 | 73.13 240 | 90.64 210 |
|
| test_djsdf | | | 73.76 260 | 72.56 257 | 77.39 297 | 77.00 355 | 53.93 337 | 89.07 257 | 90.69 195 | 65.80 284 | 63.92 292 | 82.03 281 | 43.14 303 | 92.67 269 | 72.83 171 | 68.53 273 | 85.57 292 |
|
| pmmvs5 | | | 73.35 261 | 71.52 268 | 78.86 281 | 78.64 341 | 60.61 275 | 91.08 203 | 86.90 312 | 67.69 269 | 63.32 298 | 83.64 263 | 44.33 298 | 90.53 310 | 62.04 274 | 66.02 289 | 85.46 295 |
|
| Anonymous20231211 | | | 73.08 262 | 70.39 278 | 81.13 230 | 90.62 134 | 63.33 213 | 91.40 184 | 90.06 224 | 51.84 363 | 64.46 289 | 80.67 305 | 36.49 339 | 94.07 223 | 63.83 260 | 64.17 307 | 85.98 283 |
|
| tt0805 | | | 73.07 263 | 70.73 275 | 80.07 255 | 78.37 344 | 57.05 318 | 87.78 278 | 92.18 134 | 61.23 324 | 67.04 268 | 86.49 232 | 31.35 359 | 94.58 198 | 65.06 253 | 67.12 282 | 88.57 237 |
|
| miper_lstm_enhance | | | 73.05 264 | 71.73 267 | 77.03 301 | 83.80 280 | 58.32 304 | 81.76 324 | 88.88 273 | 69.80 249 | 61.01 313 | 78.23 328 | 57.19 171 | 87.51 342 | 65.34 251 | 59.53 343 | 85.27 300 |
|
| jajsoiax | | | 73.05 264 | 71.51 269 | 77.67 292 | 77.46 352 | 54.83 333 | 88.81 261 | 90.04 225 | 69.13 258 | 62.85 305 | 83.51 265 | 31.16 360 | 92.75 265 | 70.83 192 | 69.80 260 | 85.43 296 |
|
| LCM-MVSNet-Re | | | 72.93 266 | 71.84 265 | 76.18 310 | 88.49 182 | 48.02 364 | 80.07 343 | 70.17 383 | 73.96 151 | 52.25 354 | 80.09 315 | 49.98 250 | 88.24 332 | 67.35 225 | 84.23 150 | 92.28 179 |
|
| pm-mvs1 | | | 72.89 267 | 71.09 271 | 78.26 287 | 79.10 334 | 57.62 311 | 90.80 212 | 89.30 251 | 67.66 270 | 62.91 304 | 81.78 284 | 49.11 262 | 92.95 254 | 60.29 284 | 58.89 346 | 84.22 307 |
|
| tpmvs | | | 72.88 268 | 69.76 284 | 82.22 203 | 90.98 127 | 67.05 114 | 78.22 353 | 88.30 293 | 63.10 307 | 64.35 291 | 74.98 351 | 55.09 202 | 94.27 213 | 43.25 350 | 69.57 263 | 85.34 298 |
|
| test0.0.03 1 | | | 72.76 269 | 72.71 255 | 72.88 333 | 80.25 318 | 47.99 365 | 91.22 198 | 89.45 245 | 71.51 221 | 62.51 308 | 87.66 215 | 53.83 215 | 85.06 355 | 50.16 320 | 67.84 280 | 85.58 291 |
|
| UniMVSNet_ETH3D | | | 72.74 270 | 70.53 277 | 79.36 274 | 78.62 342 | 56.64 322 | 85.01 299 | 89.20 255 | 63.77 298 | 64.84 284 | 84.44 256 | 34.05 348 | 91.86 292 | 63.94 259 | 70.89 259 | 89.57 225 |
|
| mvs_tets | | | 72.71 271 | 71.11 270 | 77.52 293 | 77.41 353 | 54.52 335 | 88.45 267 | 89.76 233 | 68.76 263 | 62.70 306 | 83.26 268 | 29.49 364 | 92.71 266 | 70.51 198 | 69.62 262 | 85.34 298 |
|
| FMVSNet1 | | | 72.71 271 | 69.91 282 | 81.10 232 | 83.60 284 | 65.11 162 | 90.01 236 | 90.32 208 | 63.92 296 | 63.56 296 | 80.25 312 | 36.35 340 | 91.54 300 | 54.46 306 | 66.75 285 | 86.64 266 |
|
| test_fmvs1_n | | | 72.69 273 | 71.92 264 | 74.99 317 | 71.15 375 | 47.08 371 | 87.34 285 | 75.67 367 | 63.48 301 | 78.08 135 | 91.17 159 | 20.16 385 | 87.87 335 | 84.65 86 | 75.57 225 | 90.01 218 |
|
| IterMVS | | | 72.65 274 | 70.83 272 | 78.09 289 | 82.17 298 | 62.96 222 | 87.64 281 | 86.28 318 | 71.56 219 | 60.44 316 | 78.85 324 | 45.42 292 | 86.66 346 | 63.30 265 | 61.83 326 | 84.65 305 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| myMVS_eth3d | | | 72.58 275 | 72.74 253 | 72.10 341 | 87.87 204 | 49.45 358 | 88.07 271 | 89.01 268 | 72.91 173 | 63.11 300 | 88.10 207 | 63.63 98 | 85.54 351 | 32.73 384 | 69.23 267 | 81.32 343 |
|
| PatchMatch-RL | | | 72.06 276 | 69.98 279 | 78.28 286 | 89.51 158 | 55.70 328 | 83.49 308 | 83.39 349 | 61.24 323 | 63.72 295 | 82.76 272 | 34.77 345 | 93.03 251 | 53.37 312 | 77.59 207 | 86.12 280 |
|
| PVSNet_0 | | 68.08 15 | 71.81 277 | 68.32 293 | 82.27 200 | 84.68 265 | 62.31 239 | 88.68 263 | 90.31 211 | 75.84 123 | 57.93 334 | 80.65 306 | 37.85 328 | 94.19 217 | 69.94 200 | 29.05 399 | 90.31 214 |
|
| MIMVSNet | | | 71.64 278 | 68.44 291 | 81.23 227 | 81.97 301 | 64.44 176 | 73.05 369 | 88.80 277 | 69.67 250 | 64.59 285 | 74.79 352 | 32.79 351 | 87.82 336 | 53.99 308 | 76.35 220 | 91.42 195 |
|
| test_vis1_n | | | 71.63 279 | 70.73 275 | 74.31 324 | 69.63 381 | 47.29 370 | 86.91 289 | 72.11 377 | 63.21 305 | 75.18 165 | 90.17 177 | 20.40 383 | 85.76 350 | 84.59 87 | 74.42 231 | 89.87 219 |
|
| IterMVS-SCA-FT | | | 71.55 280 | 69.97 280 | 76.32 308 | 81.48 304 | 60.67 273 | 87.64 281 | 85.99 323 | 66.17 282 | 59.50 321 | 78.88 323 | 45.53 290 | 83.65 363 | 62.58 271 | 61.93 325 | 84.63 306 |
|
| v7n | | | 71.31 281 | 68.65 288 | 79.28 275 | 76.40 357 | 60.77 267 | 86.71 292 | 89.45 245 | 64.17 295 | 58.77 328 | 78.24 327 | 44.59 297 | 93.54 242 | 57.76 294 | 61.75 328 | 83.52 316 |
|
| anonymousdsp | | | 71.14 282 | 69.37 286 | 76.45 307 | 72.95 370 | 54.71 334 | 84.19 303 | 88.88 273 | 61.92 319 | 62.15 310 | 79.77 318 | 38.14 324 | 91.44 305 | 68.90 213 | 67.45 281 | 83.21 322 |
|
| F-COLMAP | | | 70.66 283 | 68.44 291 | 77.32 298 | 86.37 236 | 55.91 326 | 88.00 273 | 86.32 317 | 56.94 348 | 57.28 338 | 88.07 209 | 33.58 349 | 92.49 276 | 51.02 316 | 68.37 274 | 83.55 314 |
|
| WR-MVS_H | | | 70.59 284 | 69.94 281 | 72.53 335 | 81.03 307 | 51.43 347 | 87.35 284 | 92.03 138 | 67.38 273 | 60.23 318 | 80.70 303 | 55.84 194 | 83.45 365 | 46.33 340 | 58.58 348 | 82.72 329 |
|
| CP-MVSNet | | | 70.50 285 | 69.91 282 | 72.26 338 | 80.71 311 | 51.00 350 | 87.23 286 | 90.30 212 | 67.84 268 | 59.64 320 | 82.69 273 | 50.23 249 | 82.30 373 | 51.28 315 | 59.28 344 | 83.46 318 |
|
| RPMNet | | | 70.42 286 | 65.68 306 | 84.63 138 | 83.15 288 | 67.96 90 | 70.25 373 | 90.45 202 | 46.83 380 | 69.97 228 | 65.10 378 | 56.48 187 | 95.30 177 | 35.79 375 | 73.13 240 | 90.64 210 |
|
| testing3 | | | 70.38 287 | 70.83 272 | 69.03 352 | 85.82 247 | 43.93 382 | 90.72 215 | 90.56 201 | 68.06 267 | 60.24 317 | 86.82 229 | 64.83 82 | 84.12 357 | 26.33 392 | 64.10 308 | 79.04 364 |
|
| tfpnnormal | | | 70.10 288 | 67.36 297 | 78.32 285 | 83.45 286 | 60.97 263 | 88.85 260 | 92.77 109 | 64.85 291 | 60.83 315 | 78.53 325 | 43.52 301 | 93.48 244 | 31.73 387 | 61.70 330 | 80.52 352 |
|
| TransMVSNet (Re) | | | 70.07 289 | 67.66 295 | 77.31 299 | 80.62 314 | 59.13 297 | 91.78 171 | 84.94 333 | 65.97 283 | 60.08 319 | 80.44 308 | 50.78 243 | 91.87 291 | 48.84 326 | 45.46 376 | 80.94 347 |
|
| CL-MVSNet_self_test | | | 69.92 290 | 68.09 294 | 75.41 313 | 73.25 369 | 55.90 327 | 90.05 235 | 89.90 229 | 69.96 246 | 61.96 312 | 76.54 341 | 51.05 242 | 87.64 339 | 49.51 324 | 50.59 368 | 82.70 331 |
|
| DP-MVS | | | 69.90 291 | 66.48 299 | 80.14 253 | 95.36 28 | 62.93 223 | 89.56 244 | 76.11 365 | 50.27 369 | 57.69 336 | 85.23 246 | 39.68 313 | 95.73 153 | 33.35 380 | 71.05 258 | 81.78 341 |
|
| PS-CasMVS | | | 69.86 292 | 69.13 287 | 72.07 342 | 80.35 316 | 50.57 352 | 87.02 288 | 89.75 234 | 67.27 274 | 59.19 324 | 82.28 277 | 46.58 280 | 82.24 374 | 50.69 317 | 59.02 345 | 83.39 320 |
|
| Syy-MVS | | | 69.65 293 | 69.52 285 | 70.03 348 | 87.87 204 | 43.21 383 | 88.07 271 | 89.01 268 | 72.91 173 | 63.11 300 | 88.10 207 | 45.28 293 | 85.54 351 | 22.07 396 | 69.23 267 | 81.32 343 |
|
| MSDG | | | 69.54 294 | 65.73 305 | 80.96 237 | 85.11 260 | 63.71 200 | 84.19 303 | 83.28 350 | 56.95 347 | 54.50 345 | 84.03 259 | 31.50 357 | 96.03 143 | 42.87 354 | 69.13 269 | 83.14 324 |
|
| PEN-MVS | | | 69.46 295 | 68.56 289 | 72.17 340 | 79.27 329 | 49.71 356 | 86.90 290 | 89.24 253 | 67.24 277 | 59.08 325 | 82.51 276 | 47.23 276 | 83.54 364 | 48.42 328 | 57.12 349 | 83.25 321 |
|
| LS3D | | | 69.17 296 | 66.40 301 | 77.50 294 | 91.92 103 | 56.12 325 | 85.12 298 | 80.37 359 | 46.96 378 | 56.50 340 | 87.51 219 | 37.25 332 | 93.71 239 | 32.52 386 | 79.40 191 | 82.68 332 |
|
| PatchT | | | 69.11 297 | 65.37 310 | 80.32 246 | 82.07 300 | 63.68 203 | 67.96 383 | 87.62 306 | 50.86 367 | 69.37 232 | 65.18 377 | 57.09 172 | 88.53 330 | 41.59 359 | 66.60 286 | 88.74 234 |
|
| KD-MVS_2432*1600 | | | 69.03 298 | 66.37 302 | 77.01 302 | 85.56 251 | 61.06 261 | 81.44 329 | 90.25 214 | 67.27 274 | 58.00 332 | 76.53 342 | 54.49 207 | 87.63 340 | 48.04 330 | 35.77 391 | 82.34 335 |
|
| miper_refine_blended | | | 69.03 298 | 66.37 302 | 77.01 302 | 85.56 251 | 61.06 261 | 81.44 329 | 90.25 214 | 67.27 274 | 58.00 332 | 76.53 342 | 54.49 207 | 87.63 340 | 48.04 330 | 35.77 391 | 82.34 335 |
|
| mvsany_test1 | | | 68.77 300 | 68.56 289 | 69.39 350 | 73.57 368 | 45.88 377 | 80.93 334 | 60.88 396 | 59.65 334 | 71.56 209 | 90.26 175 | 43.22 302 | 75.05 384 | 74.26 164 | 62.70 317 | 87.25 259 |
|
| ACMH | | 63.93 17 | 68.62 301 | 64.81 312 | 80.03 257 | 85.22 256 | 63.25 214 | 87.72 279 | 84.66 335 | 60.83 326 | 51.57 357 | 79.43 322 | 27.29 370 | 94.96 185 | 41.76 357 | 64.84 299 | 81.88 339 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| EG-PatchMatch MVS | | | 68.55 302 | 65.41 309 | 77.96 290 | 78.69 340 | 62.93 223 | 89.86 241 | 89.17 257 | 60.55 327 | 50.27 362 | 77.73 332 | 22.60 379 | 94.06 224 | 47.18 336 | 72.65 246 | 76.88 373 |
|
| ADS-MVSNet | | | 68.54 303 | 64.38 319 | 81.03 236 | 88.06 198 | 66.90 118 | 68.01 381 | 84.02 341 | 57.57 342 | 64.48 287 | 69.87 368 | 38.68 315 | 89.21 326 | 40.87 361 | 67.89 278 | 86.97 261 |
|
| DTE-MVSNet | | | 68.46 304 | 67.33 298 | 71.87 344 | 77.94 349 | 49.00 362 | 86.16 295 | 88.58 287 | 66.36 281 | 58.19 329 | 82.21 279 | 46.36 281 | 83.87 362 | 44.97 347 | 55.17 356 | 82.73 328 |
|
| our_test_3 | | | 68.29 305 | 64.69 314 | 79.11 280 | 78.92 335 | 64.85 169 | 88.40 268 | 85.06 331 | 60.32 330 | 52.68 352 | 76.12 346 | 40.81 310 | 89.80 323 | 44.25 349 | 55.65 354 | 82.67 333 |
|
| Patchmatch-RL test | | | 68.17 306 | 64.49 317 | 79.19 276 | 71.22 374 | 53.93 337 | 70.07 375 | 71.54 381 | 69.22 255 | 56.79 339 | 62.89 382 | 56.58 184 | 88.61 327 | 69.53 204 | 52.61 363 | 95.03 81 |
|
| XVG-ACMP-BASELINE | | | 68.04 307 | 65.53 308 | 75.56 312 | 74.06 367 | 52.37 342 | 78.43 350 | 85.88 324 | 62.03 317 | 58.91 327 | 81.21 299 | 20.38 384 | 91.15 307 | 60.69 281 | 68.18 275 | 83.16 323 |
|
| FMVSNet5 | | | 68.04 307 | 65.66 307 | 75.18 316 | 84.43 272 | 57.89 306 | 83.54 307 | 86.26 319 | 61.83 321 | 53.64 350 | 73.30 355 | 37.15 335 | 85.08 354 | 48.99 325 | 61.77 327 | 82.56 334 |
|
| ppachtmachnet_test | | | 67.72 309 | 63.70 321 | 79.77 267 | 78.92 335 | 66.04 139 | 88.68 263 | 82.90 352 | 60.11 332 | 55.45 342 | 75.96 347 | 39.19 314 | 90.55 309 | 39.53 365 | 52.55 364 | 82.71 330 |
|
| ACMH+ | | 65.35 16 | 67.65 310 | 64.55 315 | 76.96 304 | 84.59 268 | 57.10 317 | 88.08 270 | 80.79 356 | 58.59 340 | 53.00 351 | 81.09 301 | 26.63 372 | 92.95 254 | 46.51 338 | 61.69 331 | 80.82 348 |
|
| pmmvs6 | | | 67.57 311 | 64.76 313 | 76.00 311 | 72.82 372 | 53.37 339 | 88.71 262 | 86.78 316 | 53.19 359 | 57.58 337 | 78.03 330 | 35.33 344 | 92.41 278 | 55.56 302 | 54.88 358 | 82.21 337 |
|
| Anonymous20231206 | | | 67.53 312 | 65.78 304 | 72.79 334 | 74.95 363 | 47.59 367 | 88.23 269 | 87.32 308 | 61.75 322 | 58.07 331 | 77.29 335 | 37.79 329 | 87.29 344 | 42.91 352 | 63.71 312 | 83.48 317 |
|
| Patchmtry | | | 67.53 312 | 63.93 320 | 78.34 284 | 82.12 299 | 64.38 180 | 68.72 378 | 84.00 342 | 48.23 377 | 59.24 322 | 72.41 358 | 57.82 166 | 89.27 325 | 46.10 341 | 56.68 353 | 81.36 342 |
|
| USDC | | | 67.43 314 | 64.51 316 | 76.19 309 | 77.94 349 | 55.29 330 | 78.38 351 | 85.00 332 | 73.17 166 | 48.36 370 | 80.37 309 | 21.23 381 | 92.48 277 | 52.15 314 | 64.02 310 | 80.81 349 |
|
| ADS-MVSNet2 | | | 66.90 315 | 63.44 323 | 77.26 300 | 88.06 198 | 60.70 272 | 68.01 381 | 75.56 369 | 57.57 342 | 64.48 287 | 69.87 368 | 38.68 315 | 84.10 358 | 40.87 361 | 67.89 278 | 86.97 261 |
|
| CMPMVS |  | 48.56 21 | 66.77 316 | 64.41 318 | 73.84 326 | 70.65 378 | 50.31 353 | 77.79 355 | 85.73 327 | 45.54 382 | 44.76 380 | 82.14 280 | 35.40 343 | 90.14 319 | 63.18 266 | 74.54 229 | 81.07 346 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| OpenMVS_ROB |  | 61.12 18 | 66.39 317 | 62.92 326 | 76.80 306 | 76.51 356 | 57.77 308 | 89.22 253 | 83.41 348 | 55.48 354 | 53.86 349 | 77.84 331 | 26.28 373 | 93.95 233 | 34.90 377 | 68.76 271 | 78.68 367 |
|
| LTVRE_ROB | | 59.60 19 | 66.27 318 | 63.54 322 | 74.45 321 | 84.00 279 | 51.55 346 | 67.08 384 | 83.53 346 | 58.78 338 | 54.94 344 | 80.31 310 | 34.54 346 | 93.23 248 | 40.64 363 | 68.03 276 | 78.58 368 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| JIA-IIPM | | | 66.06 319 | 62.45 329 | 76.88 305 | 81.42 306 | 54.45 336 | 57.49 396 | 88.67 282 | 49.36 372 | 63.86 293 | 46.86 394 | 56.06 191 | 90.25 313 | 49.53 323 | 68.83 270 | 85.95 284 |
|
| Patchmatch-test | | | 65.86 320 | 60.94 335 | 80.62 243 | 83.75 281 | 58.83 299 | 58.91 395 | 75.26 371 | 44.50 385 | 50.95 361 | 77.09 338 | 58.81 157 | 87.90 334 | 35.13 376 | 64.03 309 | 95.12 77 |
|
| UnsupCasMVSNet_eth | | | 65.79 321 | 63.10 324 | 73.88 325 | 70.71 377 | 50.29 354 | 81.09 332 | 89.88 230 | 72.58 180 | 49.25 367 | 74.77 353 | 32.57 353 | 87.43 343 | 55.96 301 | 41.04 383 | 83.90 311 |
|
| test_fmvs2 | | | 65.78 322 | 64.84 311 | 68.60 354 | 66.54 386 | 41.71 385 | 83.27 313 | 69.81 384 | 54.38 356 | 67.91 255 | 84.54 255 | 15.35 390 | 81.22 378 | 75.65 151 | 66.16 288 | 82.88 325 |
|
| dmvs_testset | | | 65.55 323 | 66.45 300 | 62.86 364 | 79.87 322 | 22.35 410 | 76.55 358 | 71.74 379 | 77.42 107 | 55.85 341 | 87.77 214 | 51.39 239 | 80.69 379 | 31.51 390 | 65.92 290 | 85.55 293 |
|
| pmmvs-eth3d | | | 65.53 324 | 62.32 330 | 75.19 315 | 69.39 382 | 59.59 287 | 82.80 320 | 83.43 347 | 62.52 312 | 51.30 359 | 72.49 356 | 32.86 350 | 87.16 345 | 55.32 303 | 50.73 367 | 78.83 366 |
|
| mamv4 | | | 65.18 325 | 67.43 296 | 58.44 368 | 77.88 351 | 49.36 361 | 69.40 377 | 70.99 382 | 48.31 376 | 57.78 335 | 85.53 244 | 59.01 155 | 51.88 406 | 73.67 166 | 64.32 305 | 74.07 378 |
|
| SixPastTwentyTwo | | | 64.92 326 | 61.78 333 | 74.34 323 | 78.74 339 | 49.76 355 | 83.42 311 | 79.51 362 | 62.86 308 | 50.27 362 | 77.35 333 | 30.92 362 | 90.49 311 | 45.89 342 | 47.06 373 | 82.78 326 |
|
| OurMVSNet-221017-0 | | | 64.68 327 | 62.17 331 | 72.21 339 | 76.08 360 | 47.35 368 | 80.67 335 | 81.02 355 | 56.19 351 | 51.60 356 | 79.66 320 | 27.05 371 | 88.56 329 | 53.60 311 | 53.63 361 | 80.71 350 |
|
| test_0402 | | | 64.54 328 | 61.09 334 | 74.92 318 | 84.10 278 | 60.75 269 | 87.95 274 | 79.71 361 | 52.03 361 | 52.41 353 | 77.20 336 | 32.21 355 | 91.64 296 | 23.14 394 | 61.03 334 | 72.36 382 |
|
| testgi | | | 64.48 329 | 62.87 327 | 69.31 351 | 71.24 373 | 40.62 388 | 85.49 296 | 79.92 360 | 65.36 288 | 54.18 347 | 83.49 266 | 23.74 377 | 84.55 356 | 41.60 358 | 60.79 337 | 82.77 327 |
|
| RPSCF | | | 64.24 330 | 61.98 332 | 71.01 346 | 76.10 359 | 45.00 378 | 75.83 363 | 75.94 366 | 46.94 379 | 58.96 326 | 84.59 253 | 31.40 358 | 82.00 375 | 47.76 334 | 60.33 342 | 86.04 281 |
|
| EU-MVSNet | | | 64.01 331 | 63.01 325 | 67.02 360 | 74.40 366 | 38.86 393 | 83.27 313 | 86.19 321 | 45.11 383 | 54.27 346 | 81.15 300 | 36.91 338 | 80.01 381 | 48.79 327 | 57.02 350 | 82.19 338 |
|
| test20.03 | | | 63.83 332 | 62.65 328 | 67.38 359 | 70.58 379 | 39.94 389 | 86.57 293 | 84.17 339 | 63.29 303 | 51.86 355 | 77.30 334 | 37.09 336 | 82.47 371 | 38.87 369 | 54.13 360 | 79.73 358 |
|
| MDA-MVSNet_test_wron | | | 63.78 333 | 60.16 337 | 74.64 319 | 78.15 347 | 60.41 276 | 83.49 308 | 84.03 340 | 56.17 353 | 39.17 390 | 71.59 364 | 37.22 333 | 83.24 368 | 42.87 354 | 48.73 370 | 80.26 355 |
|
| YYNet1 | | | 63.76 334 | 60.14 338 | 74.62 320 | 78.06 348 | 60.19 281 | 83.46 310 | 83.99 344 | 56.18 352 | 39.25 389 | 71.56 365 | 37.18 334 | 83.34 366 | 42.90 353 | 48.70 371 | 80.32 354 |
|
| K. test v3 | | | 63.09 335 | 59.61 340 | 73.53 328 | 76.26 358 | 49.38 360 | 83.27 313 | 77.15 364 | 64.35 294 | 47.77 372 | 72.32 360 | 28.73 366 | 87.79 337 | 49.93 322 | 36.69 389 | 83.41 319 |
|
| COLMAP_ROB |  | 57.96 20 | 62.98 336 | 59.65 339 | 72.98 332 | 81.44 305 | 53.00 341 | 83.75 306 | 75.53 370 | 48.34 375 | 48.81 369 | 81.40 293 | 24.14 375 | 90.30 312 | 32.95 382 | 60.52 339 | 75.65 376 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| Anonymous20240521 | | | 62.09 337 | 59.08 341 | 71.10 345 | 67.19 385 | 48.72 363 | 83.91 305 | 85.23 330 | 50.38 368 | 47.84 371 | 71.22 367 | 20.74 382 | 85.51 353 | 46.47 339 | 58.75 347 | 79.06 363 |
|
| AllTest | | | 61.66 338 | 58.06 343 | 72.46 336 | 79.57 324 | 51.42 348 | 80.17 341 | 68.61 386 | 51.25 365 | 45.88 374 | 81.23 295 | 19.86 386 | 86.58 347 | 38.98 367 | 57.01 351 | 79.39 360 |
|
| UnsupCasMVSNet_bld | | | 61.60 339 | 57.71 344 | 73.29 330 | 68.73 383 | 51.64 345 | 78.61 349 | 89.05 267 | 57.20 346 | 46.11 373 | 61.96 385 | 28.70 367 | 88.60 328 | 50.08 321 | 38.90 387 | 79.63 359 |
|
| MDA-MVSNet-bldmvs | | | 61.54 340 | 57.70 345 | 73.05 331 | 79.53 326 | 57.00 321 | 83.08 317 | 81.23 354 | 57.57 342 | 34.91 393 | 72.45 357 | 32.79 351 | 86.26 349 | 35.81 374 | 41.95 381 | 75.89 375 |
|
| KD-MVS_self_test | | | 60.87 341 | 58.60 342 | 67.68 357 | 66.13 387 | 39.93 390 | 75.63 365 | 84.70 334 | 57.32 345 | 49.57 365 | 68.45 372 | 29.55 363 | 82.87 369 | 48.09 329 | 47.94 372 | 80.25 356 |
|
| kuosan | | | 60.86 342 | 60.24 336 | 62.71 365 | 81.57 303 | 46.43 374 | 75.70 364 | 85.88 324 | 57.98 341 | 48.95 368 | 69.53 370 | 58.42 159 | 76.53 383 | 28.25 391 | 35.87 390 | 65.15 389 |
|
| TinyColmap | | | 60.32 343 | 56.42 350 | 72.00 343 | 78.78 338 | 53.18 340 | 78.36 352 | 75.64 368 | 52.30 360 | 41.59 388 | 75.82 349 | 14.76 393 | 88.35 331 | 35.84 373 | 54.71 359 | 74.46 377 |
|
| MVS-HIRNet | | | 60.25 344 | 55.55 351 | 74.35 322 | 84.37 273 | 56.57 323 | 71.64 371 | 74.11 373 | 34.44 393 | 45.54 378 | 42.24 400 | 31.11 361 | 89.81 321 | 40.36 364 | 76.10 222 | 76.67 374 |
|
| MIMVSNet1 | | | 60.16 345 | 57.33 346 | 68.67 353 | 69.71 380 | 44.13 380 | 78.92 348 | 84.21 338 | 55.05 355 | 44.63 381 | 71.85 362 | 23.91 376 | 81.54 377 | 32.63 385 | 55.03 357 | 80.35 353 |
|
| PM-MVS | | | 59.40 346 | 56.59 348 | 67.84 355 | 63.63 389 | 41.86 384 | 76.76 357 | 63.22 393 | 59.01 337 | 51.07 360 | 72.27 361 | 11.72 396 | 83.25 367 | 61.34 277 | 50.28 369 | 78.39 369 |
|
| new-patchmatchnet | | | 59.30 347 | 56.48 349 | 67.79 356 | 65.86 388 | 44.19 379 | 82.47 321 | 81.77 353 | 59.94 333 | 43.65 384 | 66.20 376 | 27.67 369 | 81.68 376 | 39.34 366 | 41.40 382 | 77.50 372 |
|
| test_vis1_rt | | | 59.09 348 | 57.31 347 | 64.43 362 | 68.44 384 | 46.02 376 | 83.05 318 | 48.63 405 | 51.96 362 | 49.57 365 | 63.86 381 | 16.30 388 | 80.20 380 | 71.21 190 | 62.79 316 | 67.07 388 |
|
| test_fmvs3 | | | 56.82 349 | 54.86 353 | 62.69 366 | 53.59 399 | 35.47 396 | 75.87 362 | 65.64 391 | 43.91 386 | 55.10 343 | 71.43 366 | 6.91 404 | 74.40 387 | 68.64 215 | 52.63 362 | 78.20 370 |
|
| DSMNet-mixed | | | 56.78 350 | 54.44 354 | 63.79 363 | 63.21 390 | 29.44 405 | 64.43 387 | 64.10 392 | 42.12 390 | 51.32 358 | 71.60 363 | 31.76 356 | 75.04 385 | 36.23 372 | 65.20 296 | 86.87 264 |
|
| pmmvs3 | | | 55.51 351 | 51.50 357 | 67.53 358 | 57.90 397 | 50.93 351 | 80.37 337 | 73.66 374 | 40.63 391 | 44.15 383 | 64.75 379 | 16.30 388 | 78.97 382 | 44.77 348 | 40.98 385 | 72.69 380 |
|
| TDRefinement | | | 55.28 352 | 51.58 356 | 66.39 361 | 59.53 396 | 46.15 375 | 76.23 360 | 72.80 375 | 44.60 384 | 42.49 386 | 76.28 345 | 15.29 391 | 82.39 372 | 33.20 381 | 43.75 378 | 70.62 384 |
|
| dongtai | | | 55.18 353 | 55.46 352 | 54.34 376 | 76.03 361 | 36.88 394 | 76.07 361 | 84.61 336 | 51.28 364 | 43.41 385 | 64.61 380 | 56.56 185 | 67.81 394 | 18.09 399 | 28.50 400 | 58.32 392 |
|
| LF4IMVS | | | 54.01 354 | 52.12 355 | 59.69 367 | 62.41 392 | 39.91 391 | 68.59 379 | 68.28 388 | 42.96 389 | 44.55 382 | 75.18 350 | 14.09 395 | 68.39 393 | 41.36 360 | 51.68 365 | 70.78 383 |
|
| N_pmnet | | | 50.55 355 | 49.11 358 | 54.88 374 | 77.17 354 | 4.02 418 | 84.36 302 | 2.00 416 | 48.59 373 | 45.86 376 | 68.82 371 | 32.22 354 | 82.80 370 | 31.58 388 | 51.38 366 | 77.81 371 |
|
| new_pmnet | | | 49.31 356 | 46.44 359 | 57.93 369 | 62.84 391 | 40.74 387 | 68.47 380 | 62.96 394 | 36.48 392 | 35.09 392 | 57.81 389 | 14.97 392 | 72.18 389 | 32.86 383 | 46.44 374 | 60.88 391 |
|
| mvsany_test3 | | | 48.86 357 | 46.35 360 | 56.41 370 | 46.00 405 | 31.67 401 | 62.26 389 | 47.25 406 | 43.71 387 | 45.54 378 | 68.15 373 | 10.84 397 | 64.44 402 | 57.95 293 | 35.44 393 | 73.13 379 |
|
| test_f | | | 46.58 358 | 43.45 362 | 55.96 371 | 45.18 406 | 32.05 400 | 61.18 390 | 49.49 404 | 33.39 394 | 42.05 387 | 62.48 384 | 7.00 403 | 65.56 398 | 47.08 337 | 43.21 380 | 70.27 385 |
|
| WB-MVS | | | 46.23 359 | 44.94 361 | 50.11 379 | 62.13 393 | 21.23 412 | 76.48 359 | 55.49 398 | 45.89 381 | 35.78 391 | 61.44 387 | 35.54 342 | 72.83 388 | 9.96 406 | 21.75 401 | 56.27 394 |
|
| FPMVS | | | 45.64 360 | 43.10 364 | 53.23 377 | 51.42 402 | 36.46 395 | 64.97 386 | 71.91 378 | 29.13 397 | 27.53 397 | 61.55 386 | 9.83 399 | 65.01 400 | 16.00 403 | 55.58 355 | 58.22 393 |
|
| SSC-MVS | | | 44.51 361 | 43.35 363 | 47.99 383 | 61.01 395 | 18.90 414 | 74.12 367 | 54.36 399 | 43.42 388 | 34.10 394 | 60.02 388 | 34.42 347 | 70.39 391 | 9.14 408 | 19.57 402 | 54.68 395 |
|
| EGC-MVSNET | | | 42.35 362 | 38.09 365 | 55.11 373 | 74.57 364 | 46.62 373 | 71.63 372 | 55.77 397 | 0.04 411 | 0.24 412 | 62.70 383 | 14.24 394 | 74.91 386 | 17.59 400 | 46.06 375 | 43.80 397 |
|
| LCM-MVSNet | | | 40.54 363 | 35.79 368 | 54.76 375 | 36.92 412 | 30.81 402 | 51.41 399 | 69.02 385 | 22.07 399 | 24.63 399 | 45.37 396 | 4.56 408 | 65.81 397 | 33.67 379 | 34.50 394 | 67.67 386 |
|
| APD_test1 | | | 40.50 364 | 37.31 367 | 50.09 380 | 51.88 400 | 35.27 397 | 59.45 394 | 52.59 401 | 21.64 400 | 26.12 398 | 57.80 390 | 4.56 408 | 66.56 396 | 22.64 395 | 39.09 386 | 48.43 396 |
|
| test_vis3_rt | | | 40.46 365 | 37.79 366 | 48.47 382 | 44.49 407 | 33.35 399 | 66.56 385 | 32.84 413 | 32.39 395 | 29.65 395 | 39.13 403 | 3.91 411 | 68.65 392 | 50.17 319 | 40.99 384 | 43.40 398 |
|
| ANet_high | | | 40.27 366 | 35.20 369 | 55.47 372 | 34.74 413 | 34.47 398 | 63.84 388 | 71.56 380 | 48.42 374 | 18.80 402 | 41.08 401 | 9.52 400 | 64.45 401 | 20.18 397 | 8.66 409 | 67.49 387 |
|
| test_method | | | 38.59 367 | 35.16 370 | 48.89 381 | 54.33 398 | 21.35 411 | 45.32 402 | 53.71 400 | 7.41 408 | 28.74 396 | 51.62 392 | 8.70 401 | 52.87 405 | 33.73 378 | 32.89 395 | 72.47 381 |
|
| PMMVS2 | | | 37.93 368 | 33.61 371 | 50.92 378 | 46.31 404 | 24.76 408 | 60.55 393 | 50.05 402 | 28.94 398 | 20.93 400 | 47.59 393 | 4.41 410 | 65.13 399 | 25.14 393 | 18.55 404 | 62.87 390 |
|
| Gipuma |  | | 34.91 369 | 31.44 372 | 45.30 384 | 70.99 376 | 39.64 392 | 19.85 406 | 72.56 376 | 20.10 402 | 16.16 406 | 21.47 407 | 5.08 407 | 71.16 390 | 13.07 404 | 43.70 379 | 25.08 404 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| testf1 | | | 32.77 370 | 29.47 373 | 42.67 386 | 41.89 409 | 30.81 402 | 52.07 397 | 43.45 407 | 15.45 403 | 18.52 403 | 44.82 397 | 2.12 412 | 58.38 403 | 16.05 401 | 30.87 397 | 38.83 399 |
|
| APD_test2 | | | 32.77 370 | 29.47 373 | 42.67 386 | 41.89 409 | 30.81 402 | 52.07 397 | 43.45 407 | 15.45 403 | 18.52 403 | 44.82 397 | 2.12 412 | 58.38 403 | 16.05 401 | 30.87 397 | 38.83 399 |
|
| PMVS |  | 26.43 22 | 31.84 372 | 28.16 375 | 42.89 385 | 25.87 415 | 27.58 406 | 50.92 400 | 49.78 403 | 21.37 401 | 14.17 407 | 40.81 402 | 2.01 414 | 66.62 395 | 9.61 407 | 38.88 388 | 34.49 403 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| E-PMN | | | 24.61 373 | 24.00 377 | 26.45 390 | 43.74 408 | 18.44 415 | 60.86 391 | 39.66 409 | 15.11 405 | 9.53 409 | 22.10 406 | 6.52 405 | 46.94 408 | 8.31 409 | 10.14 406 | 13.98 406 |
|
| MVE |  | 24.84 23 | 24.35 374 | 19.77 380 | 38.09 388 | 34.56 414 | 26.92 407 | 26.57 404 | 38.87 411 | 11.73 407 | 11.37 408 | 27.44 404 | 1.37 415 | 50.42 407 | 11.41 405 | 14.60 405 | 36.93 401 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| EMVS | | | 23.76 375 | 23.20 379 | 25.46 391 | 41.52 411 | 16.90 416 | 60.56 392 | 38.79 412 | 14.62 406 | 8.99 410 | 20.24 409 | 7.35 402 | 45.82 409 | 7.25 410 | 9.46 407 | 13.64 407 |
|
| tmp_tt | | | 22.26 376 | 23.75 378 | 17.80 392 | 5.23 416 | 12.06 417 | 35.26 403 | 39.48 410 | 2.82 410 | 18.94 401 | 44.20 399 | 22.23 380 | 24.64 411 | 36.30 371 | 9.31 408 | 16.69 405 |
|
| cdsmvs_eth3d_5k | | | 19.86 377 | 26.47 376 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 93.45 84 | 0.00 414 | 0.00 415 | 95.27 56 | 49.56 254 | 0.00 415 | 0.00 414 | 0.00 412 | 0.00 411 |
|
| wuyk23d | | | 11.30 378 | 10.95 381 | 12.33 393 | 48.05 403 | 19.89 413 | 25.89 405 | 1.92 417 | 3.58 409 | 3.12 411 | 1.37 411 | 0.64 416 | 15.77 412 | 6.23 411 | 7.77 410 | 1.35 408 |
|
| ab-mvs-re | | | 7.91 379 | 10.55 382 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 0.00 420 | 0.00 414 | 0.00 415 | 94.95 66 | 0.00 419 | 0.00 415 | 0.00 414 | 0.00 412 | 0.00 411 |
|
| testmvs | | | 7.23 380 | 9.62 383 | 0.06 395 | 0.04 417 | 0.02 420 | 84.98 300 | 0.02 418 | 0.03 412 | 0.18 413 | 1.21 412 | 0.01 418 | 0.02 413 | 0.14 412 | 0.01 411 | 0.13 410 |
|
| test123 | | | 6.92 381 | 9.21 384 | 0.08 394 | 0.03 418 | 0.05 419 | 81.65 327 | 0.01 419 | 0.02 413 | 0.14 414 | 0.85 413 | 0.03 417 | 0.02 413 | 0.12 413 | 0.00 412 | 0.16 409 |
|
| pcd_1.5k_mvsjas | | | 4.46 382 | 5.95 385 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 0.00 420 | 0.00 414 | 0.00 415 | 0.00 414 | 53.55 219 | 0.00 415 | 0.00 414 | 0.00 412 | 0.00 411 |
|
| test_blank | | | 0.00 383 | 0.00 386 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 0.00 420 | 0.00 414 | 0.00 415 | 0.00 414 | 0.00 419 | 0.00 415 | 0.00 414 | 0.00 412 | 0.00 411 |
|
| uanet_test | | | 0.00 383 | 0.00 386 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 0.00 420 | 0.00 414 | 0.00 415 | 0.00 414 | 0.00 419 | 0.00 415 | 0.00 414 | 0.00 412 | 0.00 411 |
|
| DCPMVS | | | 0.00 383 | 0.00 386 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 0.00 420 | 0.00 414 | 0.00 415 | 0.00 414 | 0.00 419 | 0.00 415 | 0.00 414 | 0.00 412 | 0.00 411 |
|
| sosnet-low-res | | | 0.00 383 | 0.00 386 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 0.00 420 | 0.00 414 | 0.00 415 | 0.00 414 | 0.00 419 | 0.00 415 | 0.00 414 | 0.00 412 | 0.00 411 |
|
| sosnet | | | 0.00 383 | 0.00 386 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 0.00 420 | 0.00 414 | 0.00 415 | 0.00 414 | 0.00 419 | 0.00 415 | 0.00 414 | 0.00 412 | 0.00 411 |
|
| uncertanet | | | 0.00 383 | 0.00 386 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 0.00 420 | 0.00 414 | 0.00 415 | 0.00 414 | 0.00 419 | 0.00 415 | 0.00 414 | 0.00 412 | 0.00 411 |
|
| Regformer | | | 0.00 383 | 0.00 386 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 0.00 420 | 0.00 414 | 0.00 415 | 0.00 414 | 0.00 419 | 0.00 415 | 0.00 414 | 0.00 412 | 0.00 411 |
|
| uanet | | | 0.00 383 | 0.00 386 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 0.00 420 | 0.00 414 | 0.00 415 | 0.00 414 | 0.00 419 | 0.00 415 | 0.00 414 | 0.00 412 | 0.00 411 |
|
| WAC-MVS | | | | | | | 49.45 358 | | | | | | | | 31.56 389 | | |
|
| FOURS1 | | | | | | 93.95 46 | 61.77 248 | 93.96 70 | 91.92 142 | 62.14 316 | 86.57 47 | | | | | | |
|
| MSC_two_6792asdad | | | | | 89.60 8 | 97.31 4 | 73.22 12 | | 95.05 26 | | | | | 99.07 13 | 92.01 24 | 94.77 25 | 96.51 23 |
|
| PC_three_1452 | | | | | | | | | | 80.91 46 | 94.07 2 | 96.83 18 | 83.57 4 | 99.12 5 | 95.70 7 | 97.42 4 | 97.55 4 |
|
| No_MVS | | | | | 89.60 8 | 97.31 4 | 73.22 12 | | 95.05 26 | | | | | 99.07 13 | 92.01 24 | 94.77 25 | 96.51 23 |
|
| test_one_0601 | | | | | | 96.32 18 | 69.74 49 | | 94.18 57 | 71.42 223 | 90.67 18 | 96.85 16 | 74.45 18 | | | | |
|
| eth-test2 | | | | | | 0.00 419 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 419 | | | | | | | | | | | |
|
| ZD-MVS | | | | | | 96.63 9 | 65.50 154 | | 93.50 82 | 70.74 238 | 85.26 62 | 95.19 62 | 64.92 81 | 97.29 77 | 87.51 57 | 93.01 56 | |
|
| RE-MVS-def | | | | 80.48 140 | | 92.02 97 | 58.56 302 | 90.90 207 | 90.45 202 | 62.76 309 | 78.89 124 | 94.46 80 | 49.30 257 | | 78.77 132 | 86.77 127 | 92.28 179 |
|
| IU-MVS | | | | | | 96.46 11 | 69.91 43 | | 95.18 20 | 80.75 47 | 95.28 1 | | | | 92.34 21 | 95.36 13 | 96.47 27 |
|
| OPU-MVS | | | | | 89.97 3 | 97.52 3 | 73.15 14 | 96.89 5 | | | | 97.00 9 | 83.82 2 | 99.15 2 | 95.72 5 | 97.63 3 | 97.62 2 |
|
| test_241102_TWO | | | | | | | | | 94.41 48 | 71.65 212 | 92.07 8 | 97.21 4 | 74.58 17 | 99.11 6 | 92.34 21 | 95.36 13 | 96.59 18 |
|
| test_241102_ONE | | | | | | 96.45 12 | 69.38 54 | | 94.44 46 | 71.65 212 | 92.11 6 | 97.05 7 | 76.79 9 | 99.11 6 | | | |
|
| 9.14 | | | | 87.63 28 | | 93.86 48 | | 94.41 53 | 94.18 57 | 72.76 177 | 86.21 49 | 96.51 24 | 66.64 63 | 97.88 44 | 90.08 38 | 94.04 38 | |
|
| save fliter | | | | | | 93.84 49 | 67.89 92 | 95.05 39 | 92.66 115 | 78.19 90 | | | | | | | |
|
| test_0728_THIRD | | | | | | | | | | 72.48 182 | 90.55 19 | 96.93 11 | 76.24 11 | 99.08 11 | 91.53 29 | 94.99 17 | 96.43 29 |
|
| test_0728_SECOND | | | | | 88.70 17 | 96.45 12 | 70.43 35 | 96.64 9 | 94.37 52 | | | | | 99.15 2 | 91.91 27 | 94.90 21 | 96.51 23 |
|
| test0726 | | | | | | 96.40 15 | 69.99 39 | 96.76 7 | 94.33 54 | 71.92 198 | 91.89 10 | 97.11 6 | 73.77 21 | | | | |
|
| GSMVS | | | | | | | | | | | | | | | | | 94.68 96 |
|
| test_part2 | | | | | | 96.29 19 | 68.16 86 | | | | 90.78 16 | | | | | | |
|
| sam_mvs1 | | | | | | | | | | | | | 57.85 165 | | | | 94.68 96 |
|
| sam_mvs | | | | | | | | | | | | | 54.91 204 | | | | |
|
| ambc | | | | | 69.61 349 | 61.38 394 | 41.35 386 | 49.07 401 | 85.86 326 | | 50.18 364 | 66.40 375 | 10.16 398 | 88.14 333 | 45.73 343 | 44.20 377 | 79.32 362 |
|
| MTGPA |  | | | | | | | | 92.23 128 | | | | | | | | |
|
| test_post1 | | | | | | | | 78.95 347 | | | | 20.70 408 | 53.05 224 | 91.50 304 | 60.43 282 | | |
|
| test_post | | | | | | | | | | | | 23.01 405 | 56.49 186 | 92.67 269 | | | |
|
| patchmatchnet-post | | | | | | | | | | | | 67.62 374 | 57.62 168 | 90.25 313 | | | |
|
| GG-mvs-BLEND | | | | | 86.53 71 | 91.91 104 | 69.67 52 | 75.02 366 | 94.75 33 | | 78.67 131 | 90.85 163 | 77.91 7 | 94.56 202 | 72.25 179 | 93.74 44 | 95.36 62 |
|
| MTMP | | | | | | | | 93.77 84 | 32.52 414 | | | | | | | | |
|
| gm-plane-assit | | | | | | 88.42 186 | 67.04 115 | | | 78.62 87 | | 91.83 146 | | 97.37 71 | 76.57 144 | | |
|
| test9_res | | | | | | | | | | | | | | | 89.41 40 | 94.96 18 | 95.29 67 |
|
| TEST9 | | | | | | 94.18 41 | 67.28 107 | 94.16 59 | 93.51 80 | 71.75 209 | 85.52 57 | 95.33 51 | 68.01 52 | 97.27 81 | | | |
|
| test_8 | | | | | | 94.19 40 | 67.19 109 | 94.15 61 | 93.42 86 | 71.87 203 | 85.38 60 | 95.35 50 | 68.19 50 | 96.95 104 | | | |
|
| agg_prior2 | | | | | | | | | | | | | | | 86.41 69 | 94.75 29 | 95.33 63 |
|
| agg_prior | | | | | | 94.16 43 | 66.97 117 | | 93.31 89 | | 84.49 68 | | | 96.75 114 | | | |
|
| TestCases | | | | | 72.46 336 | 79.57 324 | 51.42 348 | | 68.61 386 | 51.25 365 | 45.88 374 | 81.23 295 | 19.86 386 | 86.58 347 | 38.98 367 | 57.01 351 | 79.39 360 |
|
| test_prior4 | | | | | | | 67.18 111 | 93.92 73 | | | | | | | | | |
|
| test_prior2 | | | | | | | | 95.10 38 | | 75.40 130 | 85.25 63 | 95.61 45 | 67.94 53 | | 87.47 58 | 94.77 25 | |
|
| test_prior | | | | | 86.42 74 | 94.71 35 | 67.35 106 | | 93.10 99 | | | | | 96.84 111 | | | 95.05 79 |
|
| 旧先验2 | | | | | | | | 92.00 160 | | 59.37 336 | 87.54 40 | | | 93.47 245 | 75.39 153 | | |
|
| æ–°å‡ ä½•2 | | | | | | | | 91.41 182 | | | | | | | | | |
|
| æ–°å‡ ä½•1 | | | | | 84.73 131 | 92.32 89 | 64.28 185 | | 91.46 168 | 59.56 335 | 79.77 113 | 92.90 120 | 56.95 178 | 96.57 119 | 63.40 262 | 92.91 58 | 93.34 146 |
|
| 旧先验1 | | | | | | 91.94 101 | 60.74 270 | | 91.50 166 | | | 94.36 84 | 65.23 76 | | | 91.84 72 | 94.55 103 |
|
| æ— å…ˆéªŒ | | | | | | | | 92.71 125 | 92.61 119 | 62.03 317 | | | | 97.01 94 | 66.63 233 | | 93.97 128 |
|
| 原ACMM2 | | | | | | | | 92.01 157 | | | | | | | | | |
|
| 原ACMM1 | | | | | 84.42 145 | 93.21 66 | 64.27 186 | | 93.40 88 | 65.39 287 | 79.51 116 | 92.50 128 | 58.11 164 | 96.69 115 | 65.27 252 | 93.96 39 | 92.32 177 |
|
| test222 | | | | | | 89.77 151 | 61.60 253 | 89.55 245 | 89.42 247 | 56.83 349 | 77.28 144 | 92.43 132 | 52.76 227 | | | 91.14 86 | 93.09 154 |
|
| testdata2 | | | | | | | | | | | | | | 96.09 137 | 61.26 278 | | |
|
| segment_acmp | | | | | | | | | | | | | 65.94 69 | | | | |
|
| testdata | | | | | 81.34 225 | 89.02 172 | 57.72 309 | | 89.84 231 | 58.65 339 | 85.32 61 | 94.09 96 | 57.03 173 | 93.28 247 | 69.34 206 | 90.56 92 | 93.03 157 |
|
| testdata1 | | | | | | | | 89.21 254 | | 77.55 103 | | | | | | | |
|
| test12 | | | | | 87.09 51 | 94.60 36 | 68.86 66 | | 92.91 105 | | 82.67 84 | | 65.44 74 | 97.55 62 | | 93.69 47 | 94.84 89 |
|
| plane_prior7 | | | | | | 86.94 226 | 61.51 254 | | | | | | | | | | |
|
| plane_prior6 | | | | | | 87.23 218 | 62.32 238 | | | | | | 50.66 244 | | | | |
|
| plane_prior5 | | | | | | | | | 91.31 172 | | | | | 95.55 167 | 76.74 142 | 78.53 201 | 88.39 241 |
|
| plane_prior4 | | | | | | | | | | | | 89.14 193 | | | | | |
|
| plane_prior3 | | | | | | | 61.95 246 | | | 79.09 78 | 72.53 194 | | | | | | |
|
| plane_prior2 | | | | | | | | 93.13 109 | | 78.81 84 | | | | | | | |
|
| plane_prior1 | | | | | | 87.15 220 | | | | | | | | | | | |
|
| plane_prior | | | | | | | 62.42 234 | 93.85 77 | | 79.38 70 | | | | | | 78.80 198 | |
|
| n2 | | | | | | | | | 0.00 420 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 420 | | | | | | | | |
|
| door-mid | | | | | | | | | 66.01 390 | | | | | | | | |
|
| lessismore_v0 | | | | | 73.72 327 | 72.93 371 | 47.83 366 | | 61.72 395 | | 45.86 376 | 73.76 354 | 28.63 368 | 89.81 321 | 47.75 335 | 31.37 396 | 83.53 315 |
|
| LGP-MVS_train | | | | | 79.56 272 | 84.31 274 | 59.37 291 | | 89.73 237 | 69.49 251 | 64.86 282 | 88.42 198 | 38.65 317 | 94.30 211 | 72.56 176 | 72.76 244 | 85.01 301 |
|
| test11 | | | | | | | | | 93.01 101 | | | | | | | | |
|
| door | | | | | | | | | 66.57 389 | | | | | | | | |
|
| HQP5-MVS | | | | | | | 63.66 204 | | | | | | | | | | |
|
| HQP-NCC | | | | | | 87.54 211 | | 94.06 63 | | 79.80 61 | 74.18 173 | | | | | | |
|
| ACMP_Plane | | | | | | 87.54 211 | | 94.06 63 | | 79.80 61 | 74.18 173 | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 77.63 139 | | |
|
| HQP4-MVS | | | | | | | | | | | 74.18 173 | | | 95.61 161 | | | 88.63 235 |
|
| HQP3-MVS | | | | | | | | | 91.70 158 | | | | | | | 78.90 196 | |
|
| HQP2-MVS | | | | | | | | | | | | | 51.63 237 | | | | |
|
| NP-MVS | | | | | | 87.41 214 | 63.04 219 | | | | | 90.30 173 | | | | | |
|
| MDTV_nov1_ep13_2view | | | | | | | 59.90 284 | 80.13 342 | | 67.65 271 | 72.79 189 | | 54.33 212 | | 59.83 286 | | 92.58 169 |
|
| MDTV_nov1_ep13 | | | | 72.61 256 | | 89.06 171 | 68.48 74 | 80.33 338 | 90.11 221 | 71.84 205 | 71.81 205 | 75.92 348 | 53.01 225 | 93.92 234 | 48.04 330 | 73.38 238 | |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 71.63 252 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 69.72 261 | |
|
| Test By Simon | | | | | | | | | | | | | 54.21 213 | | | | |
|
| ITE_SJBPF | | | | | 70.43 347 | 74.44 365 | 47.06 372 | | 77.32 363 | 60.16 331 | 54.04 348 | 83.53 264 | 23.30 378 | 84.01 360 | 43.07 351 | 61.58 332 | 80.21 357 |
|
| DeepMVS_CX |  | | | | 34.71 389 | 51.45 401 | 24.73 409 | | 28.48 415 | 31.46 396 | 17.49 405 | 52.75 391 | 5.80 406 | 42.60 410 | 18.18 398 | 19.42 403 | 36.81 402 |
|