| MCST-MVS | | | 91.08 1 | 91.46 3 | 89.94 4 | 97.66 2 | 73.37 10 | 97.13 2 | 95.58 11 | 89.33 1 | 85.77 57 | 96.26 33 | 72.84 29 | 99.38 1 | 92.64 23 | 95.93 9 | 97.08 11 |
|
| MM | | | 90.87 2 | 91.52 2 | 88.92 15 | 92.12 100 | 71.10 27 | 97.02 3 | 96.04 6 | 88.70 2 | 91.57 15 | 96.19 35 | 70.12 45 | 98.91 18 | 96.83 1 | 95.06 17 | 96.76 15 |
|
| DPM-MVS | | | 90.70 3 | 90.52 9 | 91.24 1 | 89.68 160 | 76.68 2 | 97.29 1 | 95.35 16 | 82.87 25 | 91.58 14 | 97.22 4 | 79.93 5 | 99.10 9 | 83.12 105 | 97.64 2 | 97.94 1 |
|
| DVP-MVS++ | | | 90.53 4 | 91.09 5 | 88.87 16 | 97.31 4 | 69.91 42 | 93.96 72 | 94.37 53 | 72.48 192 | 92.07 9 | 96.85 17 | 83.82 2 | 99.15 2 | 91.53 33 | 97.42 4 | 97.55 4 |
|
| MSP-MVS | | | 90.38 5 | 91.87 1 | 85.88 91 | 92.83 79 | 64.03 195 | 93.06 115 | 94.33 55 | 82.19 32 | 93.65 3 | 96.15 37 | 85.89 1 | 97.19 86 | 91.02 37 | 97.75 1 | 96.43 31 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| MVS_0304 | | | 90.32 6 | 90.90 7 | 88.55 23 | 94.05 45 | 70.23 36 | 97.00 5 | 93.73 74 | 87.30 4 | 92.15 6 | 96.15 37 | 66.38 67 | 98.94 17 | 96.71 2 | 94.67 33 | 96.47 28 |
|
| CNVR-MVS | | | 90.32 6 | 90.89 8 | 88.61 22 | 96.76 8 | 70.65 30 | 96.47 14 | 94.83 31 | 84.83 11 | 89.07 32 | 96.80 20 | 70.86 41 | 99.06 15 | 92.64 23 | 95.71 11 | 96.12 40 |
|
| DELS-MVS | | | 90.05 8 | 90.09 11 | 89.94 4 | 93.14 70 | 73.88 9 | 97.01 4 | 94.40 51 | 88.32 3 | 85.71 58 | 94.91 76 | 74.11 21 | 98.91 18 | 87.26 65 | 95.94 8 | 97.03 12 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| SED-MVS | | | 89.94 9 | 90.36 10 | 88.70 18 | 96.45 12 | 69.38 55 | 96.89 6 | 94.44 47 | 71.65 222 | 92.11 7 | 97.21 5 | 76.79 9 | 99.11 6 | 92.34 25 | 95.36 14 | 97.62 2 |
|
| DeepPCF-MVS | | 81.17 1 | 89.72 10 | 91.38 4 | 84.72 135 | 93.00 75 | 58.16 316 | 96.72 9 | 94.41 49 | 86.50 8 | 90.25 23 | 97.83 1 | 75.46 14 | 98.67 25 | 92.78 22 | 95.49 13 | 97.32 6 |
|
| patch_mono-2 | | | 89.71 11 | 90.99 6 | 85.85 94 | 96.04 24 | 63.70 205 | 95.04 40 | 95.19 20 | 86.74 7 | 91.53 16 | 95.15 69 | 73.86 22 | 97.58 61 | 93.38 17 | 92.00 69 | 96.28 37 |
|
| CANet | | | 89.61 12 | 89.99 12 | 88.46 24 | 94.39 39 | 69.71 50 | 96.53 13 | 93.78 67 | 86.89 6 | 89.68 29 | 95.78 43 | 65.94 72 | 99.10 9 | 92.99 20 | 93.91 42 | 96.58 21 |
|
| DVP-MVS |  | | 89.41 13 | 89.73 14 | 88.45 25 | 96.40 15 | 69.99 38 | 96.64 10 | 94.52 43 | 71.92 208 | 90.55 21 | 96.93 12 | 73.77 23 | 99.08 11 | 91.91 31 | 94.90 22 | 96.29 35 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| HPM-MVS++ |  | | 89.37 14 | 89.95 13 | 87.64 34 | 95.10 30 | 68.23 86 | 95.24 33 | 94.49 45 | 82.43 29 | 88.90 33 | 96.35 30 | 71.89 38 | 98.63 26 | 88.76 51 | 96.40 6 | 96.06 41 |
|
| balanced_conf03 | | | 89.08 15 | 88.84 17 | 89.81 6 | 93.66 54 | 75.15 5 | 90.61 229 | 93.43 88 | 84.06 15 | 86.20 52 | 90.17 186 | 72.42 33 | 96.98 103 | 93.09 19 | 95.92 10 | 97.29 7 |
|
| NCCC | | | 89.07 16 | 89.46 15 | 87.91 28 | 96.60 10 | 69.05 63 | 96.38 15 | 94.64 40 | 84.42 12 | 86.74 48 | 96.20 34 | 66.56 66 | 98.76 24 | 89.03 50 | 94.56 34 | 95.92 46 |
|
| DPE-MVS |  | | 88.77 17 | 89.21 16 | 87.45 43 | 96.26 20 | 67.56 103 | 94.17 59 | 94.15 60 | 68.77 271 | 90.74 19 | 97.27 2 | 76.09 12 | 98.49 29 | 90.58 41 | 94.91 21 | 96.30 34 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| SMA-MVS |  | | 88.14 18 | 88.29 22 | 87.67 33 | 93.21 67 | 68.72 72 | 93.85 79 | 94.03 63 | 74.18 155 | 91.74 12 | 96.67 23 | 65.61 77 | 98.42 33 | 89.24 47 | 96.08 7 | 95.88 47 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| PS-MVSNAJ | | | 88.14 18 | 87.61 30 | 89.71 7 | 92.06 101 | 76.72 1 | 95.75 20 | 93.26 94 | 83.86 16 | 89.55 30 | 96.06 39 | 53.55 227 | 97.89 43 | 91.10 35 | 93.31 53 | 94.54 110 |
|
| TSAR-MVS + MP. | | | 88.11 20 | 88.64 18 | 86.54 72 | 91.73 115 | 68.04 90 | 90.36 235 | 93.55 81 | 82.89 24 | 91.29 17 | 92.89 129 | 72.27 35 | 96.03 151 | 87.99 55 | 94.77 26 | 95.54 57 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| TSAR-MVS + GP. | | | 87.96 21 | 88.37 21 | 86.70 65 | 93.51 61 | 65.32 160 | 95.15 36 | 93.84 66 | 78.17 99 | 85.93 56 | 94.80 79 | 75.80 13 | 98.21 34 | 89.38 44 | 88.78 108 | 96.59 19 |
|
| DeepC-MVS_fast | | 79.48 2 | 87.95 22 | 88.00 25 | 87.79 31 | 95.86 27 | 68.32 80 | 95.74 21 | 94.11 61 | 83.82 17 | 83.49 80 | 96.19 35 | 64.53 91 | 98.44 31 | 83.42 104 | 94.88 25 | 96.61 18 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| xiu_mvs_v2_base | | | 87.92 23 | 87.38 34 | 89.55 12 | 91.41 127 | 76.43 3 | 95.74 21 | 93.12 102 | 83.53 19 | 89.55 30 | 95.95 41 | 53.45 231 | 97.68 51 | 91.07 36 | 92.62 60 | 94.54 110 |
|
| EPNet | | | 87.84 24 | 88.38 20 | 86.23 82 | 93.30 64 | 66.05 142 | 95.26 32 | 94.84 30 | 87.09 5 | 88.06 36 | 94.53 85 | 66.79 63 | 97.34 75 | 83.89 98 | 91.68 74 | 95.29 70 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| lupinMVS | | | 87.74 25 | 87.77 28 | 87.63 38 | 89.24 175 | 71.18 24 | 96.57 12 | 92.90 111 | 82.70 27 | 87.13 43 | 95.27 62 | 64.99 82 | 95.80 156 | 89.34 45 | 91.80 72 | 95.93 45 |
|
| test_fmvsm_n_1920 | | | 87.69 26 | 88.50 19 | 85.27 115 | 87.05 234 | 63.55 212 | 93.69 89 | 91.08 196 | 84.18 14 | 90.17 25 | 97.04 9 | 67.58 58 | 97.99 39 | 95.72 5 | 90.03 96 | 94.26 120 |
|
| APDe-MVS |  | | 87.54 27 | 87.84 27 | 86.65 66 | 96.07 23 | 66.30 138 | 94.84 45 | 93.78 67 | 69.35 262 | 88.39 35 | 96.34 31 | 67.74 57 | 97.66 56 | 90.62 40 | 93.44 51 | 96.01 44 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| fmvsm_l_conf0.5_n | | | 87.49 28 | 88.19 23 | 85.39 109 | 86.95 235 | 64.37 185 | 94.30 56 | 88.45 297 | 80.51 54 | 92.70 4 | 96.86 16 | 69.98 46 | 97.15 91 | 95.83 4 | 88.08 116 | 94.65 104 |
|
| SD-MVS | | | 87.49 28 | 87.49 32 | 87.50 42 | 93.60 56 | 68.82 69 | 93.90 76 | 92.63 123 | 76.86 120 | 87.90 38 | 95.76 44 | 66.17 69 | 97.63 58 | 89.06 49 | 91.48 78 | 96.05 42 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| fmvsm_l_conf0.5_n_a | | | 87.44 30 | 88.15 24 | 85.30 113 | 87.10 232 | 64.19 192 | 94.41 52 | 88.14 306 | 80.24 62 | 92.54 5 | 96.97 11 | 69.52 48 | 97.17 87 | 95.89 3 | 88.51 111 | 94.56 107 |
|
| dcpmvs_2 | | | 87.37 31 | 87.55 31 | 86.85 58 | 95.04 32 | 68.20 87 | 90.36 235 | 90.66 208 | 79.37 77 | 81.20 102 | 93.67 113 | 74.73 16 | 96.55 125 | 90.88 38 | 92.00 69 | 95.82 48 |
|
| alignmvs | | | 87.28 32 | 86.97 38 | 88.24 27 | 91.30 129 | 71.14 26 | 95.61 25 | 93.56 80 | 79.30 78 | 87.07 45 | 95.25 64 | 68.43 50 | 96.93 111 | 87.87 56 | 84.33 155 | 96.65 17 |
|
| train_agg | | | 87.21 33 | 87.42 33 | 86.60 68 | 94.18 41 | 67.28 110 | 94.16 60 | 93.51 82 | 71.87 213 | 85.52 60 | 95.33 57 | 68.19 52 | 97.27 82 | 89.09 48 | 94.90 22 | 95.25 76 |
|
| MG-MVS | | | 87.11 34 | 86.27 47 | 89.62 8 | 97.79 1 | 76.27 4 | 94.96 43 | 94.49 45 | 78.74 93 | 83.87 78 | 92.94 127 | 64.34 92 | 96.94 109 | 75.19 166 | 94.09 38 | 95.66 52 |
|
| SF-MVS | | | 87.03 35 | 87.09 36 | 86.84 59 | 92.70 85 | 67.45 108 | 93.64 92 | 93.76 70 | 70.78 246 | 86.25 50 | 96.44 28 | 66.98 61 | 97.79 47 | 88.68 52 | 94.56 34 | 95.28 72 |
|
| fmvsm_s_conf0.5_n_3 | | | 86.88 36 | 87.99 26 | 83.58 177 | 87.26 227 | 60.74 276 | 93.21 112 | 87.94 313 | 84.22 13 | 91.70 13 | 97.27 2 | 65.91 74 | 95.02 189 | 93.95 14 | 90.42 93 | 94.99 86 |
|
| CSCG | | | 86.87 37 | 86.26 48 | 88.72 17 | 95.05 31 | 70.79 29 | 93.83 84 | 95.33 17 | 68.48 275 | 77.63 148 | 94.35 94 | 73.04 27 | 98.45 30 | 84.92 87 | 93.71 47 | 96.92 14 |
|
| sasdasda | | | 86.85 38 | 86.25 49 | 88.66 20 | 91.80 113 | 71.92 16 | 93.54 97 | 91.71 165 | 80.26 59 | 87.55 40 | 95.25 64 | 63.59 105 | 96.93 111 | 88.18 53 | 84.34 153 | 97.11 9 |
|
| canonicalmvs | | | 86.85 38 | 86.25 49 | 88.66 20 | 91.80 113 | 71.92 16 | 93.54 97 | 91.71 165 | 80.26 59 | 87.55 40 | 95.25 64 | 63.59 105 | 96.93 111 | 88.18 53 | 84.34 153 | 97.11 9 |
|
| UBG | | | 86.83 40 | 86.70 43 | 87.20 48 | 93.07 73 | 69.81 46 | 93.43 105 | 95.56 13 | 81.52 39 | 81.50 98 | 92.12 148 | 73.58 26 | 96.28 136 | 84.37 93 | 85.20 145 | 95.51 58 |
|
| PHI-MVS | | | 86.83 40 | 86.85 42 | 86.78 63 | 93.47 62 | 65.55 156 | 95.39 30 | 95.10 23 | 71.77 218 | 85.69 59 | 96.52 25 | 62.07 125 | 98.77 23 | 86.06 77 | 95.60 12 | 96.03 43 |
|
| SteuartSystems-ACMMP | | | 86.82 42 | 86.90 40 | 86.58 70 | 90.42 145 | 66.38 135 | 96.09 17 | 93.87 65 | 77.73 107 | 84.01 77 | 95.66 46 | 63.39 108 | 97.94 40 | 87.40 63 | 93.55 50 | 95.42 59 |
| Skip Steuart: Steuart Systems R&D Blog. |
| PVSNet_Blended | | | 86.73 43 | 86.86 41 | 86.31 81 | 93.76 50 | 67.53 105 | 96.33 16 | 93.61 78 | 82.34 31 | 81.00 107 | 93.08 123 | 63.19 112 | 97.29 78 | 87.08 68 | 91.38 80 | 94.13 129 |
|
| testing11 | | | 86.71 44 | 86.44 46 | 87.55 40 | 93.54 59 | 71.35 21 | 93.65 91 | 95.58 11 | 81.36 46 | 80.69 110 | 92.21 147 | 72.30 34 | 96.46 130 | 85.18 83 | 83.43 163 | 94.82 96 |
|
| test_fmvsmconf_n | | | 86.58 45 | 87.17 35 | 84.82 128 | 85.28 266 | 62.55 237 | 94.26 58 | 89.78 241 | 83.81 18 | 87.78 39 | 96.33 32 | 65.33 79 | 96.98 103 | 94.40 11 | 87.55 122 | 94.95 88 |
|
| BP-MVS1 | | | 86.54 46 | 86.68 44 | 86.13 85 | 87.80 215 | 67.18 114 | 92.97 120 | 95.62 10 | 79.92 65 | 82.84 87 | 94.14 103 | 74.95 15 | 96.46 130 | 82.91 107 | 88.96 107 | 94.74 98 |
|
| jason | | | 86.40 47 | 86.17 51 | 87.11 51 | 86.16 251 | 70.54 32 | 95.71 24 | 92.19 140 | 82.00 34 | 84.58 70 | 94.34 95 | 61.86 127 | 95.53 176 | 87.76 57 | 90.89 86 | 95.27 73 |
| jason: jason. |
| fmvsm_s_conf0.5_n | | | 86.39 48 | 86.91 39 | 84.82 128 | 87.36 226 | 63.54 213 | 94.74 47 | 90.02 235 | 82.52 28 | 90.14 26 | 96.92 14 | 62.93 117 | 97.84 46 | 95.28 8 | 82.26 173 | 93.07 166 |
|
| WTY-MVS | | | 86.32 49 | 85.81 58 | 87.85 29 | 92.82 81 | 69.37 57 | 95.20 34 | 95.25 18 | 82.71 26 | 81.91 95 | 94.73 80 | 67.93 56 | 97.63 58 | 79.55 135 | 82.25 174 | 96.54 22 |
|
| MSLP-MVS++ | | | 86.27 50 | 85.91 57 | 87.35 45 | 92.01 105 | 68.97 66 | 95.04 40 | 92.70 116 | 79.04 88 | 81.50 98 | 96.50 27 | 58.98 162 | 96.78 117 | 83.49 103 | 93.93 41 | 96.29 35 |
|
| VNet | | | 86.20 51 | 85.65 62 | 87.84 30 | 93.92 47 | 69.99 38 | 95.73 23 | 95.94 7 | 78.43 96 | 86.00 55 | 93.07 124 | 58.22 169 | 97.00 99 | 85.22 81 | 84.33 155 | 96.52 23 |
|
| MVS_111021_HR | | | 86.19 52 | 85.80 59 | 87.37 44 | 93.17 69 | 69.79 47 | 93.99 71 | 93.76 70 | 79.08 85 | 78.88 136 | 93.99 107 | 62.25 124 | 98.15 36 | 85.93 78 | 91.15 84 | 94.15 128 |
|
| SPE-MVS-test | | | 86.14 53 | 87.01 37 | 83.52 178 | 92.63 87 | 59.36 305 | 95.49 27 | 91.92 152 | 80.09 63 | 85.46 62 | 95.53 52 | 61.82 129 | 95.77 159 | 86.77 72 | 93.37 52 | 95.41 60 |
|
| ACMMP_NAP | | | 86.05 54 | 85.80 59 | 86.80 62 | 91.58 119 | 67.53 105 | 91.79 175 | 93.49 85 | 74.93 146 | 84.61 69 | 95.30 59 | 59.42 153 | 97.92 41 | 86.13 75 | 94.92 20 | 94.94 89 |
|
| testing99 | | | 86.01 55 | 85.47 64 | 87.63 38 | 93.62 55 | 71.25 23 | 93.47 103 | 95.23 19 | 80.42 57 | 80.60 112 | 91.95 152 | 71.73 39 | 96.50 128 | 80.02 132 | 82.22 175 | 95.13 79 |
|
| ETV-MVS | | | 86.01 55 | 86.11 52 | 85.70 101 | 90.21 150 | 67.02 120 | 93.43 105 | 91.92 152 | 81.21 48 | 84.13 76 | 94.07 106 | 60.93 137 | 95.63 167 | 89.28 46 | 89.81 97 | 94.46 116 |
|
| testing91 | | | 85.93 57 | 85.31 68 | 87.78 32 | 93.59 57 | 71.47 19 | 93.50 100 | 95.08 26 | 80.26 59 | 80.53 113 | 91.93 153 | 70.43 43 | 96.51 127 | 80.32 130 | 82.13 177 | 95.37 63 |
|
| APD-MVS |  | | 85.93 57 | 85.99 55 | 85.76 98 | 95.98 26 | 65.21 163 | 93.59 95 | 92.58 125 | 66.54 289 | 86.17 53 | 95.88 42 | 63.83 98 | 97.00 99 | 86.39 74 | 92.94 57 | 95.06 82 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| PAPM | | | 85.89 59 | 85.46 65 | 87.18 49 | 88.20 203 | 72.42 15 | 92.41 147 | 92.77 114 | 82.11 33 | 80.34 116 | 93.07 124 | 68.27 51 | 95.02 189 | 78.39 148 | 93.59 49 | 94.09 131 |
|
| CS-MVS | | | 85.80 60 | 86.65 45 | 83.27 187 | 92.00 106 | 58.92 309 | 95.31 31 | 91.86 157 | 79.97 64 | 84.82 68 | 95.40 55 | 62.26 123 | 95.51 177 | 86.11 76 | 92.08 68 | 95.37 63 |
|
| fmvsm_s_conf0.5_n_a | | | 85.75 61 | 86.09 53 | 84.72 135 | 85.73 260 | 63.58 210 | 93.79 85 | 89.32 259 | 81.42 44 | 90.21 24 | 96.91 15 | 62.41 122 | 97.67 53 | 94.48 10 | 80.56 192 | 92.90 172 |
|
| test_fmvsmconf0.1_n | | | 85.71 62 | 86.08 54 | 84.62 142 | 80.83 321 | 62.33 242 | 93.84 82 | 88.81 285 | 83.50 20 | 87.00 46 | 96.01 40 | 63.36 109 | 96.93 111 | 94.04 13 | 87.29 125 | 94.61 106 |
|
| CDPH-MVS | | | 85.71 62 | 85.46 65 | 86.46 74 | 94.75 34 | 67.19 112 | 93.89 77 | 92.83 113 | 70.90 242 | 83.09 85 | 95.28 60 | 63.62 103 | 97.36 73 | 80.63 126 | 94.18 37 | 94.84 93 |
|
| casdiffmvs_mvg |  | | 85.66 64 | 85.18 70 | 87.09 52 | 88.22 202 | 69.35 58 | 93.74 88 | 91.89 155 | 81.47 40 | 80.10 118 | 91.45 162 | 64.80 87 | 96.35 134 | 87.23 66 | 87.69 120 | 95.58 55 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| fmvsm_s_conf0.1_n | | | 85.61 65 | 85.93 56 | 84.68 138 | 82.95 304 | 63.48 215 | 94.03 70 | 89.46 253 | 81.69 37 | 89.86 27 | 96.74 21 | 61.85 128 | 97.75 49 | 94.74 9 | 82.01 179 | 92.81 174 |
|
| MGCFI-Net | | | 85.59 66 | 85.73 61 | 85.17 119 | 91.41 127 | 62.44 238 | 92.87 125 | 91.31 182 | 79.65 71 | 86.99 47 | 95.14 70 | 62.90 118 | 96.12 143 | 87.13 67 | 84.13 160 | 96.96 13 |
|
| GDP-MVS | | | 85.54 67 | 85.32 67 | 86.18 83 | 87.64 218 | 67.95 94 | 92.91 124 | 92.36 130 | 77.81 105 | 83.69 79 | 94.31 97 | 72.84 29 | 96.41 132 | 80.39 129 | 85.95 140 | 94.19 124 |
|
| DeepC-MVS | | 77.85 3 | 85.52 68 | 85.24 69 | 86.37 78 | 88.80 185 | 66.64 129 | 92.15 154 | 93.68 76 | 81.07 49 | 76.91 158 | 93.64 114 | 62.59 120 | 98.44 31 | 85.50 79 | 92.84 59 | 94.03 135 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| casdiffmvs |  | | 85.37 69 | 84.87 76 | 86.84 59 | 88.25 200 | 69.07 62 | 93.04 117 | 91.76 162 | 81.27 47 | 80.84 109 | 92.07 150 | 64.23 93 | 96.06 149 | 84.98 86 | 87.43 124 | 95.39 61 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| ZNCC-MVS | | | 85.33 70 | 85.08 72 | 86.06 86 | 93.09 72 | 65.65 152 | 93.89 77 | 93.41 90 | 73.75 166 | 79.94 120 | 94.68 82 | 60.61 140 | 98.03 38 | 82.63 110 | 93.72 46 | 94.52 112 |
|
| MP-MVS-pluss | | | 85.24 71 | 85.13 71 | 85.56 104 | 91.42 124 | 65.59 154 | 91.54 185 | 92.51 127 | 74.56 149 | 80.62 111 | 95.64 47 | 59.15 157 | 97.00 99 | 86.94 70 | 93.80 43 | 94.07 133 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| testing222 | | | 85.18 72 | 84.69 79 | 86.63 67 | 92.91 77 | 69.91 42 | 92.61 138 | 95.80 9 | 80.31 58 | 80.38 115 | 92.27 144 | 68.73 49 | 95.19 186 | 75.94 160 | 83.27 165 | 94.81 97 |
|
| PAPR | | | 85.15 73 | 84.47 80 | 87.18 49 | 96.02 25 | 68.29 81 | 91.85 173 | 93.00 108 | 76.59 127 | 79.03 132 | 95.00 71 | 61.59 130 | 97.61 60 | 78.16 149 | 89.00 106 | 95.63 53 |
|
| fmvsm_s_conf0.5_n_2 | | | 85.06 74 | 85.60 63 | 83.44 184 | 86.92 240 | 60.53 283 | 94.41 52 | 87.31 319 | 83.30 21 | 88.72 34 | 96.72 22 | 54.28 220 | 97.75 49 | 94.07 12 | 84.68 152 | 92.04 197 |
|
| MP-MVS |  | | 85.02 75 | 84.97 74 | 85.17 119 | 92.60 88 | 64.27 190 | 93.24 109 | 92.27 133 | 73.13 177 | 79.63 124 | 94.43 88 | 61.90 126 | 97.17 87 | 85.00 85 | 92.56 61 | 94.06 134 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| baseline | | | 85.01 76 | 84.44 81 | 86.71 64 | 88.33 197 | 68.73 71 | 90.24 240 | 91.82 161 | 81.05 50 | 81.18 103 | 92.50 136 | 63.69 101 | 96.08 148 | 84.45 92 | 86.71 134 | 95.32 68 |
|
| CHOSEN 1792x2688 | | | 84.98 77 | 83.45 95 | 89.57 11 | 89.94 155 | 75.14 6 | 92.07 160 | 92.32 131 | 81.87 35 | 75.68 167 | 88.27 210 | 60.18 143 | 98.60 27 | 80.46 128 | 90.27 95 | 94.96 87 |
|
| MVSMamba_PlusPlus | | | 84.97 78 | 83.65 89 | 88.93 14 | 90.17 151 | 74.04 8 | 87.84 287 | 92.69 118 | 62.18 327 | 81.47 100 | 87.64 224 | 71.47 40 | 96.28 136 | 84.69 89 | 94.74 31 | 96.47 28 |
|
| EIA-MVS | | | 84.84 79 | 84.88 75 | 84.69 137 | 91.30 129 | 62.36 241 | 93.85 79 | 92.04 145 | 79.45 74 | 79.33 129 | 94.28 99 | 62.42 121 | 96.35 134 | 80.05 131 | 91.25 83 | 95.38 62 |
|
| fmvsm_s_conf0.1_n_a | | | 84.76 80 | 84.84 77 | 84.53 144 | 80.23 331 | 63.50 214 | 92.79 127 | 88.73 288 | 80.46 55 | 89.84 28 | 96.65 24 | 60.96 136 | 97.57 63 | 93.80 15 | 80.14 194 | 92.53 181 |
|
| HFP-MVS | | | 84.73 81 | 84.40 82 | 85.72 100 | 93.75 52 | 65.01 169 | 93.50 100 | 93.19 98 | 72.19 202 | 79.22 130 | 94.93 74 | 59.04 160 | 97.67 53 | 81.55 116 | 92.21 64 | 94.49 115 |
|
| MVS | | | 84.66 82 | 82.86 113 | 90.06 2 | 90.93 136 | 74.56 7 | 87.91 285 | 95.54 14 | 68.55 273 | 72.35 209 | 94.71 81 | 59.78 149 | 98.90 20 | 81.29 122 | 94.69 32 | 96.74 16 |
|
| GST-MVS | | | 84.63 83 | 84.29 83 | 85.66 102 | 92.82 81 | 65.27 161 | 93.04 117 | 93.13 101 | 73.20 175 | 78.89 133 | 94.18 102 | 59.41 154 | 97.85 45 | 81.45 118 | 92.48 63 | 93.86 143 |
|
| EC-MVSNet | | | 84.53 84 | 85.04 73 | 83.01 192 | 89.34 167 | 61.37 263 | 94.42 51 | 91.09 194 | 77.91 103 | 83.24 81 | 94.20 101 | 58.37 167 | 95.40 178 | 85.35 80 | 91.41 79 | 92.27 191 |
|
| fmvsm_s_conf0.1_n_2 | | | 84.40 85 | 84.78 78 | 83.27 187 | 85.25 267 | 60.41 286 | 94.13 63 | 85.69 339 | 83.05 23 | 87.99 37 | 96.37 29 | 52.75 236 | 97.68 51 | 93.75 16 | 84.05 161 | 91.71 201 |
|
| ACMMPR | | | 84.37 86 | 84.06 84 | 85.28 114 | 93.56 58 | 64.37 185 | 93.50 100 | 93.15 100 | 72.19 202 | 78.85 138 | 94.86 77 | 56.69 189 | 97.45 67 | 81.55 116 | 92.20 65 | 94.02 136 |
|
| region2R | | | 84.36 87 | 84.03 85 | 85.36 111 | 93.54 59 | 64.31 188 | 93.43 105 | 92.95 109 | 72.16 205 | 78.86 137 | 94.84 78 | 56.97 184 | 97.53 65 | 81.38 120 | 92.11 67 | 94.24 122 |
|
| LFMVS | | | 84.34 88 | 82.73 115 | 89.18 13 | 94.76 33 | 73.25 11 | 94.99 42 | 91.89 155 | 71.90 210 | 82.16 94 | 93.49 118 | 47.98 282 | 97.05 94 | 82.55 111 | 84.82 148 | 97.25 8 |
|
| test_yl | | | 84.28 89 | 83.16 105 | 87.64 34 | 94.52 37 | 69.24 59 | 95.78 18 | 95.09 24 | 69.19 265 | 81.09 104 | 92.88 130 | 57.00 182 | 97.44 68 | 81.11 124 | 81.76 181 | 96.23 38 |
|
| DCV-MVSNet | | | 84.28 89 | 83.16 105 | 87.64 34 | 94.52 37 | 69.24 59 | 95.78 18 | 95.09 24 | 69.19 265 | 81.09 104 | 92.88 130 | 57.00 182 | 97.44 68 | 81.11 124 | 81.76 181 | 96.23 38 |
|
| diffmvs |  | | 84.28 89 | 83.83 86 | 85.61 103 | 87.40 224 | 68.02 91 | 90.88 215 | 89.24 262 | 80.54 53 | 81.64 97 | 92.52 135 | 59.83 148 | 94.52 214 | 87.32 64 | 85.11 146 | 94.29 119 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| HY-MVS | | 76.49 5 | 84.28 89 | 83.36 101 | 87.02 55 | 92.22 95 | 67.74 98 | 84.65 313 | 94.50 44 | 79.15 82 | 82.23 93 | 87.93 219 | 66.88 62 | 96.94 109 | 80.53 127 | 82.20 176 | 96.39 33 |
|
| ETVMVS | | | 84.22 93 | 83.71 87 | 85.76 98 | 92.58 89 | 68.25 85 | 92.45 146 | 95.53 15 | 79.54 73 | 79.46 126 | 91.64 160 | 70.29 44 | 94.18 226 | 69.16 221 | 82.76 171 | 94.84 93 |
|
| MAR-MVS | | | 84.18 94 | 83.43 96 | 86.44 75 | 96.25 21 | 65.93 147 | 94.28 57 | 94.27 57 | 74.41 150 | 79.16 131 | 95.61 48 | 53.99 222 | 98.88 22 | 69.62 215 | 93.26 54 | 94.50 114 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| MVS_Test | | | 84.16 95 | 83.20 104 | 87.05 54 | 91.56 120 | 69.82 45 | 89.99 249 | 92.05 144 | 77.77 106 | 82.84 87 | 86.57 241 | 63.93 97 | 96.09 145 | 74.91 171 | 89.18 103 | 95.25 76 |
|
| CANet_DTU | | | 84.09 96 | 83.52 90 | 85.81 95 | 90.30 148 | 66.82 124 | 91.87 171 | 89.01 277 | 85.27 9 | 86.09 54 | 93.74 111 | 47.71 286 | 96.98 103 | 77.90 151 | 89.78 99 | 93.65 148 |
|
| ET-MVSNet_ETH3D | | | 84.01 97 | 83.15 107 | 86.58 70 | 90.78 141 | 70.89 28 | 94.74 47 | 94.62 41 | 81.44 43 | 58.19 342 | 93.64 114 | 73.64 25 | 92.35 291 | 82.66 109 | 78.66 209 | 96.50 27 |
|
| PVSNet_Blended_VisFu | | | 83.97 98 | 83.50 92 | 85.39 109 | 90.02 153 | 66.59 132 | 93.77 86 | 91.73 163 | 77.43 115 | 77.08 157 | 89.81 193 | 63.77 100 | 96.97 106 | 79.67 134 | 88.21 114 | 92.60 178 |
|
| MTAPA | | | 83.91 99 | 83.38 100 | 85.50 105 | 91.89 111 | 65.16 165 | 81.75 338 | 92.23 134 | 75.32 141 | 80.53 113 | 95.21 67 | 56.06 198 | 97.16 90 | 84.86 88 | 92.55 62 | 94.18 125 |
|
| XVS | | | 83.87 100 | 83.47 94 | 85.05 121 | 93.22 65 | 63.78 199 | 92.92 122 | 92.66 120 | 73.99 158 | 78.18 142 | 94.31 97 | 55.25 204 | 97.41 70 | 79.16 139 | 91.58 76 | 93.95 138 |
|
| Effi-MVS+ | | | 83.82 101 | 82.76 114 | 86.99 56 | 89.56 163 | 69.40 53 | 91.35 196 | 86.12 333 | 72.59 189 | 83.22 84 | 92.81 133 | 59.60 151 | 96.01 153 | 81.76 115 | 87.80 119 | 95.56 56 |
|
| test_fmvsmvis_n_1920 | | | 83.80 102 | 83.48 93 | 84.77 132 | 82.51 307 | 63.72 203 | 91.37 194 | 83.99 356 | 81.42 44 | 77.68 147 | 95.74 45 | 58.37 167 | 97.58 61 | 93.38 17 | 86.87 128 | 93.00 169 |
|
| EI-MVSNet-Vis-set | | | 83.77 103 | 83.67 88 | 84.06 159 | 92.79 84 | 63.56 211 | 91.76 178 | 94.81 32 | 79.65 71 | 77.87 145 | 94.09 104 | 63.35 110 | 97.90 42 | 79.35 137 | 79.36 201 | 90.74 219 |
|
| MVSFormer | | | 83.75 104 | 82.88 112 | 86.37 78 | 89.24 175 | 71.18 24 | 89.07 267 | 90.69 205 | 65.80 294 | 87.13 43 | 94.34 95 | 64.99 82 | 92.67 278 | 72.83 183 | 91.80 72 | 95.27 73 |
|
| CP-MVS | | | 83.71 105 | 83.40 99 | 84.65 139 | 93.14 70 | 63.84 197 | 94.59 49 | 92.28 132 | 71.03 240 | 77.41 151 | 94.92 75 | 55.21 207 | 96.19 140 | 81.32 121 | 90.70 88 | 93.91 140 |
|
| test_fmvsmconf0.01_n | | | 83.70 106 | 83.52 90 | 84.25 156 | 75.26 374 | 61.72 256 | 92.17 153 | 87.24 321 | 82.36 30 | 84.91 67 | 95.41 54 | 55.60 202 | 96.83 116 | 92.85 21 | 85.87 141 | 94.21 123 |
|
| baseline2 | | | 83.68 107 | 83.42 98 | 84.48 147 | 87.37 225 | 66.00 144 | 90.06 244 | 95.93 8 | 79.71 70 | 69.08 247 | 90.39 180 | 77.92 6 | 96.28 136 | 78.91 143 | 81.38 185 | 91.16 215 |
|
| reproduce-ours | | | 83.51 108 | 83.33 102 | 84.06 159 | 92.18 98 | 60.49 284 | 90.74 221 | 92.04 145 | 64.35 304 | 83.24 81 | 95.59 50 | 59.05 158 | 97.27 82 | 83.61 100 | 89.17 104 | 94.41 117 |
|
| our_new_method | | | 83.51 108 | 83.33 102 | 84.06 159 | 92.18 98 | 60.49 284 | 90.74 221 | 92.04 145 | 64.35 304 | 83.24 81 | 95.59 50 | 59.05 158 | 97.27 82 | 83.61 100 | 89.17 104 | 94.41 117 |
|
| thisisatest0515 | | | 83.41 110 | 82.49 119 | 86.16 84 | 89.46 166 | 68.26 83 | 93.54 97 | 94.70 37 | 74.31 153 | 75.75 165 | 90.92 170 | 72.62 31 | 96.52 126 | 69.64 213 | 81.50 184 | 93.71 146 |
|
| PVSNet_BlendedMVS | | | 83.38 111 | 83.43 96 | 83.22 189 | 93.76 50 | 67.53 105 | 94.06 65 | 93.61 78 | 79.13 83 | 81.00 107 | 85.14 256 | 63.19 112 | 97.29 78 | 87.08 68 | 73.91 245 | 84.83 315 |
|
| test2506 | | | 83.29 112 | 82.92 111 | 84.37 151 | 88.39 195 | 63.18 223 | 92.01 163 | 91.35 181 | 77.66 109 | 78.49 141 | 91.42 163 | 64.58 90 | 95.09 188 | 73.19 179 | 89.23 101 | 94.85 90 |
|
| PGM-MVS | | | 83.25 113 | 82.70 116 | 84.92 124 | 92.81 83 | 64.07 194 | 90.44 230 | 92.20 138 | 71.28 234 | 77.23 154 | 94.43 88 | 55.17 208 | 97.31 77 | 79.33 138 | 91.38 80 | 93.37 154 |
|
| HPM-MVS |  | | 83.25 113 | 82.95 110 | 84.17 157 | 92.25 94 | 62.88 232 | 90.91 212 | 91.86 157 | 70.30 251 | 77.12 155 | 93.96 108 | 56.75 187 | 96.28 136 | 82.04 113 | 91.34 82 | 93.34 155 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| reproduce_model | | | 83.15 115 | 82.96 108 | 83.73 170 | 92.02 102 | 59.74 297 | 90.37 234 | 92.08 143 | 63.70 311 | 82.86 86 | 95.48 53 | 58.62 164 | 97.17 87 | 83.06 106 | 88.42 112 | 94.26 120 |
|
| EI-MVSNet-UG-set | | | 83.14 116 | 82.96 108 | 83.67 175 | 92.28 93 | 63.19 222 | 91.38 193 | 94.68 38 | 79.22 80 | 76.60 160 | 93.75 110 | 62.64 119 | 97.76 48 | 78.07 150 | 78.01 212 | 90.05 228 |
|
| VDD-MVS | | | 83.06 117 | 81.81 128 | 86.81 61 | 90.86 139 | 67.70 99 | 95.40 29 | 91.50 176 | 75.46 138 | 81.78 96 | 92.34 143 | 40.09 323 | 97.13 92 | 86.85 71 | 82.04 178 | 95.60 54 |
|
| h-mvs33 | | | 83.01 118 | 82.56 118 | 84.35 152 | 89.34 167 | 62.02 248 | 92.72 130 | 93.76 70 | 81.45 41 | 82.73 90 | 92.25 146 | 60.11 144 | 97.13 92 | 87.69 58 | 62.96 324 | 93.91 140 |
|
| PAPM_NR | | | 82.97 119 | 81.84 127 | 86.37 78 | 94.10 44 | 66.76 127 | 87.66 291 | 92.84 112 | 69.96 255 | 74.07 186 | 93.57 116 | 63.10 115 | 97.50 66 | 70.66 208 | 90.58 90 | 94.85 90 |
|
| mPP-MVS | | | 82.96 120 | 82.44 120 | 84.52 145 | 92.83 79 | 62.92 230 | 92.76 128 | 91.85 159 | 71.52 230 | 75.61 170 | 94.24 100 | 53.48 230 | 96.99 102 | 78.97 142 | 90.73 87 | 93.64 149 |
|
| SR-MVS | | | 82.81 121 | 82.58 117 | 83.50 181 | 93.35 63 | 61.16 266 | 92.23 152 | 91.28 186 | 64.48 303 | 81.27 101 | 95.28 60 | 53.71 226 | 95.86 155 | 82.87 108 | 88.77 109 | 93.49 152 |
|
| DP-MVS Recon | | | 82.73 122 | 81.65 129 | 85.98 88 | 97.31 4 | 67.06 117 | 95.15 36 | 91.99 149 | 69.08 268 | 76.50 162 | 93.89 109 | 54.48 216 | 98.20 35 | 70.76 206 | 85.66 143 | 92.69 175 |
|
| CLD-MVS | | | 82.73 122 | 82.35 122 | 83.86 166 | 87.90 210 | 67.65 101 | 95.45 28 | 92.18 141 | 85.06 10 | 72.58 202 | 92.27 144 | 52.46 239 | 95.78 157 | 84.18 94 | 79.06 204 | 88.16 255 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| sss | | | 82.71 124 | 82.38 121 | 83.73 170 | 89.25 172 | 59.58 300 | 92.24 151 | 94.89 29 | 77.96 101 | 79.86 121 | 92.38 141 | 56.70 188 | 97.05 94 | 77.26 154 | 80.86 189 | 94.55 108 |
|
| 3Dnovator | | 73.91 6 | 82.69 125 | 80.82 142 | 88.31 26 | 89.57 162 | 71.26 22 | 92.60 139 | 94.39 52 | 78.84 90 | 67.89 267 | 92.48 139 | 48.42 277 | 98.52 28 | 68.80 226 | 94.40 36 | 95.15 78 |
|
| RRT-MVS | | | 82.61 126 | 81.16 133 | 86.96 57 | 91.10 133 | 68.75 70 | 87.70 290 | 92.20 138 | 76.97 118 | 72.68 198 | 87.10 235 | 51.30 251 | 96.41 132 | 83.56 102 | 87.84 118 | 95.74 50 |
|
| MVSTER | | | 82.47 127 | 82.05 123 | 83.74 168 | 92.68 86 | 69.01 64 | 91.90 170 | 93.21 95 | 79.83 66 | 72.14 210 | 85.71 252 | 74.72 17 | 94.72 201 | 75.72 162 | 72.49 255 | 87.50 261 |
|
| TESTMET0.1,1 | | | 82.41 128 | 81.98 126 | 83.72 172 | 88.08 204 | 63.74 201 | 92.70 132 | 93.77 69 | 79.30 78 | 77.61 149 | 87.57 226 | 58.19 170 | 94.08 230 | 73.91 177 | 86.68 135 | 93.33 157 |
|
| CostFormer | | | 82.33 129 | 81.15 134 | 85.86 93 | 89.01 180 | 68.46 77 | 82.39 335 | 93.01 106 | 75.59 136 | 80.25 117 | 81.57 299 | 72.03 37 | 94.96 193 | 79.06 141 | 77.48 220 | 94.16 127 |
|
| API-MVS | | | 82.28 130 | 80.53 150 | 87.54 41 | 96.13 22 | 70.59 31 | 93.63 93 | 91.04 200 | 65.72 296 | 75.45 172 | 92.83 132 | 56.11 197 | 98.89 21 | 64.10 270 | 89.75 100 | 93.15 162 |
|
| IB-MVS | | 77.80 4 | 82.18 131 | 80.46 152 | 87.35 45 | 89.14 177 | 70.28 35 | 95.59 26 | 95.17 22 | 78.85 89 | 70.19 235 | 85.82 250 | 70.66 42 | 97.67 53 | 72.19 195 | 66.52 296 | 94.09 131 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| xiu_mvs_v1_base_debu | | | 82.16 132 | 81.12 135 | 85.26 116 | 86.42 244 | 68.72 72 | 92.59 141 | 90.44 215 | 73.12 178 | 84.20 73 | 94.36 90 | 38.04 336 | 95.73 161 | 84.12 95 | 86.81 129 | 91.33 208 |
|
| xiu_mvs_v1_base | | | 82.16 132 | 81.12 135 | 85.26 116 | 86.42 244 | 68.72 72 | 92.59 141 | 90.44 215 | 73.12 178 | 84.20 73 | 94.36 90 | 38.04 336 | 95.73 161 | 84.12 95 | 86.81 129 | 91.33 208 |
|
| xiu_mvs_v1_base_debi | | | 82.16 132 | 81.12 135 | 85.26 116 | 86.42 244 | 68.72 72 | 92.59 141 | 90.44 215 | 73.12 178 | 84.20 73 | 94.36 90 | 38.04 336 | 95.73 161 | 84.12 95 | 86.81 129 | 91.33 208 |
|
| 3Dnovator+ | | 73.60 7 | 82.10 135 | 80.60 149 | 86.60 68 | 90.89 138 | 66.80 126 | 95.20 34 | 93.44 87 | 74.05 157 | 67.42 274 | 92.49 138 | 49.46 267 | 97.65 57 | 70.80 205 | 91.68 74 | 95.33 66 |
|
| MVS_111021_LR | | | 82.02 136 | 81.52 130 | 83.51 180 | 88.42 193 | 62.88 232 | 89.77 252 | 88.93 281 | 76.78 123 | 75.55 171 | 93.10 121 | 50.31 258 | 95.38 180 | 83.82 99 | 87.02 127 | 92.26 192 |
|
| PMMVS | | | 81.98 137 | 82.04 124 | 81.78 226 | 89.76 159 | 56.17 335 | 91.13 208 | 90.69 205 | 77.96 101 | 80.09 119 | 93.57 116 | 46.33 296 | 94.99 192 | 81.41 119 | 87.46 123 | 94.17 126 |
|
| baseline1 | | | 81.84 138 | 81.03 139 | 84.28 155 | 91.60 118 | 66.62 130 | 91.08 209 | 91.66 170 | 81.87 35 | 74.86 177 | 91.67 159 | 69.98 46 | 94.92 196 | 71.76 198 | 64.75 311 | 91.29 213 |
|
| EPP-MVSNet | | | 81.79 139 | 81.52 130 | 82.61 202 | 88.77 186 | 60.21 291 | 93.02 119 | 93.66 77 | 68.52 274 | 72.90 196 | 90.39 180 | 72.19 36 | 94.96 193 | 74.93 170 | 79.29 203 | 92.67 176 |
|
| WBMVS | | | 81.67 140 | 80.98 141 | 83.72 172 | 93.07 73 | 69.40 53 | 94.33 55 | 93.05 104 | 76.84 121 | 72.05 212 | 84.14 267 | 74.49 19 | 93.88 244 | 72.76 186 | 68.09 284 | 87.88 257 |
|
| test_vis1_n_1920 | | | 81.66 141 | 82.01 125 | 80.64 253 | 82.24 309 | 55.09 343 | 94.76 46 | 86.87 323 | 81.67 38 | 84.40 72 | 94.63 83 | 38.17 333 | 94.67 205 | 91.98 30 | 83.34 164 | 92.16 195 |
|
| APD-MVS_3200maxsize | | | 81.64 142 | 81.32 132 | 82.59 203 | 92.36 91 | 58.74 311 | 91.39 191 | 91.01 201 | 63.35 315 | 79.72 123 | 94.62 84 | 51.82 242 | 96.14 142 | 79.71 133 | 87.93 117 | 92.89 173 |
|
| mvsmamba | | | 81.55 143 | 80.72 144 | 84.03 163 | 91.42 124 | 66.93 122 | 83.08 329 | 89.13 270 | 78.55 95 | 67.50 272 | 87.02 236 | 51.79 244 | 90.07 332 | 87.48 61 | 90.49 92 | 95.10 81 |
|
| ACMMP |  | | 81.49 144 | 80.67 146 | 83.93 165 | 91.71 116 | 62.90 231 | 92.13 155 | 92.22 137 | 71.79 217 | 71.68 218 | 93.49 118 | 50.32 257 | 96.96 107 | 78.47 147 | 84.22 159 | 91.93 199 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| CDS-MVSNet | | | 81.43 145 | 80.74 143 | 83.52 178 | 86.26 248 | 64.45 179 | 92.09 158 | 90.65 209 | 75.83 134 | 73.95 188 | 89.81 193 | 63.97 96 | 92.91 268 | 71.27 201 | 82.82 168 | 93.20 161 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| mvs_anonymous | | | 81.36 146 | 79.99 157 | 85.46 106 | 90.39 147 | 68.40 78 | 86.88 302 | 90.61 210 | 74.41 150 | 70.31 234 | 84.67 261 | 63.79 99 | 92.32 293 | 73.13 180 | 85.70 142 | 95.67 51 |
|
| ECVR-MVS |  | | 81.29 147 | 80.38 153 | 84.01 164 | 88.39 195 | 61.96 250 | 92.56 144 | 86.79 325 | 77.66 109 | 76.63 159 | 91.42 163 | 46.34 295 | 95.24 185 | 74.36 175 | 89.23 101 | 94.85 90 |
|
| thisisatest0530 | | | 81.15 148 | 80.07 154 | 84.39 150 | 88.26 199 | 65.63 153 | 91.40 189 | 94.62 41 | 71.27 235 | 70.93 225 | 89.18 199 | 72.47 32 | 96.04 150 | 65.62 259 | 76.89 226 | 91.49 204 |
|
| Fast-Effi-MVS+ | | | 81.14 149 | 80.01 156 | 84.51 146 | 90.24 149 | 65.86 148 | 94.12 64 | 89.15 268 | 73.81 165 | 75.37 173 | 88.26 211 | 57.26 177 | 94.53 213 | 66.97 244 | 84.92 147 | 93.15 162 |
|
| HQP-MVS | | | 81.14 149 | 80.64 147 | 82.64 201 | 87.54 220 | 63.66 208 | 94.06 65 | 91.70 168 | 79.80 67 | 74.18 182 | 90.30 182 | 51.63 247 | 95.61 169 | 77.63 152 | 78.90 205 | 88.63 246 |
|
| hse-mvs2 | | | 81.12 151 | 81.11 138 | 81.16 240 | 86.52 243 | 57.48 324 | 89.40 260 | 91.16 189 | 81.45 41 | 82.73 90 | 90.49 178 | 60.11 144 | 94.58 206 | 87.69 58 | 60.41 351 | 91.41 207 |
|
| SR-MVS-dyc-post | | | 81.06 152 | 80.70 145 | 82.15 217 | 92.02 102 | 58.56 313 | 90.90 213 | 90.45 212 | 62.76 322 | 78.89 133 | 94.46 86 | 51.26 252 | 95.61 169 | 78.77 145 | 86.77 132 | 92.28 188 |
|
| HyFIR lowres test | | | 81.03 153 | 79.56 164 | 85.43 107 | 87.81 214 | 68.11 89 | 90.18 241 | 90.01 236 | 70.65 248 | 72.95 195 | 86.06 248 | 63.61 104 | 94.50 215 | 75.01 169 | 79.75 198 | 93.67 147 |
|
| nrg030 | | | 80.93 154 | 79.86 159 | 84.13 158 | 83.69 293 | 68.83 68 | 93.23 110 | 91.20 187 | 75.55 137 | 75.06 175 | 88.22 214 | 63.04 116 | 94.74 200 | 81.88 114 | 66.88 293 | 88.82 244 |
|
| Vis-MVSNet |  | | 80.92 155 | 79.98 158 | 83.74 168 | 88.48 190 | 61.80 252 | 93.44 104 | 88.26 305 | 73.96 161 | 77.73 146 | 91.76 156 | 49.94 262 | 94.76 198 | 65.84 256 | 90.37 94 | 94.65 104 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| test1111 | | | 80.84 156 | 80.02 155 | 83.33 185 | 87.87 211 | 60.76 274 | 92.62 137 | 86.86 324 | 77.86 104 | 75.73 166 | 91.39 165 | 46.35 294 | 94.70 204 | 72.79 185 | 88.68 110 | 94.52 112 |
|
| UWE-MVS | | | 80.81 157 | 81.01 140 | 80.20 263 | 89.33 169 | 57.05 329 | 91.91 169 | 94.71 36 | 75.67 135 | 75.01 176 | 89.37 197 | 63.13 114 | 91.44 316 | 67.19 241 | 82.80 170 | 92.12 196 |
|
| 1314 | | | 80.70 158 | 78.95 176 | 85.94 90 | 87.77 217 | 67.56 103 | 87.91 285 | 92.55 126 | 72.17 204 | 67.44 273 | 93.09 122 | 50.27 259 | 97.04 97 | 71.68 200 | 87.64 121 | 93.23 159 |
|
| tpmrst | | | 80.57 159 | 79.14 174 | 84.84 127 | 90.10 152 | 68.28 82 | 81.70 339 | 89.72 248 | 77.63 111 | 75.96 164 | 79.54 331 | 64.94 84 | 92.71 275 | 75.43 164 | 77.28 223 | 93.55 150 |
|
| 1112_ss | | | 80.56 160 | 79.83 160 | 82.77 196 | 88.65 187 | 60.78 272 | 92.29 149 | 88.36 299 | 72.58 190 | 72.46 206 | 94.95 72 | 65.09 81 | 93.42 255 | 66.38 250 | 77.71 214 | 94.10 130 |
|
| VDDNet | | | 80.50 161 | 78.26 184 | 87.21 47 | 86.19 249 | 69.79 47 | 94.48 50 | 91.31 182 | 60.42 341 | 79.34 128 | 90.91 171 | 38.48 331 | 96.56 124 | 82.16 112 | 81.05 187 | 95.27 73 |
|
| BH-w/o | | | 80.49 162 | 79.30 171 | 84.05 162 | 90.83 140 | 64.36 187 | 93.60 94 | 89.42 256 | 74.35 152 | 69.09 246 | 90.15 188 | 55.23 206 | 95.61 169 | 64.61 267 | 86.43 138 | 92.17 194 |
|
| test_cas_vis1_n_1920 | | | 80.45 163 | 80.61 148 | 79.97 272 | 78.25 357 | 57.01 331 | 94.04 69 | 88.33 300 | 79.06 87 | 82.81 89 | 93.70 112 | 38.65 328 | 91.63 308 | 90.82 39 | 79.81 196 | 91.27 214 |
|
| TAMVS | | | 80.37 164 | 79.45 167 | 83.13 191 | 85.14 270 | 63.37 216 | 91.23 202 | 90.76 204 | 74.81 148 | 72.65 200 | 88.49 205 | 60.63 139 | 92.95 263 | 69.41 217 | 81.95 180 | 93.08 165 |
|
| HQP_MVS | | | 80.34 165 | 79.75 161 | 82.12 219 | 86.94 236 | 62.42 239 | 93.13 113 | 91.31 182 | 78.81 91 | 72.53 203 | 89.14 201 | 50.66 255 | 95.55 174 | 76.74 155 | 78.53 210 | 88.39 252 |
|
| SDMVSNet | | | 80.26 166 | 78.88 177 | 84.40 149 | 89.25 172 | 67.63 102 | 85.35 309 | 93.02 105 | 76.77 124 | 70.84 226 | 87.12 233 | 47.95 283 | 96.09 145 | 85.04 84 | 74.55 236 | 89.48 238 |
|
| HPM-MVS_fast | | | 80.25 167 | 79.55 166 | 82.33 209 | 91.55 121 | 59.95 294 | 91.32 198 | 89.16 267 | 65.23 300 | 74.71 179 | 93.07 124 | 47.81 285 | 95.74 160 | 74.87 173 | 88.23 113 | 91.31 212 |
|
| ab-mvs | | | 80.18 168 | 78.31 183 | 85.80 96 | 88.44 192 | 65.49 159 | 83.00 332 | 92.67 119 | 71.82 216 | 77.36 152 | 85.01 257 | 54.50 213 | 96.59 121 | 76.35 159 | 75.63 233 | 95.32 68 |
|
| IS-MVSNet | | | 80.14 169 | 79.41 168 | 82.33 209 | 87.91 209 | 60.08 293 | 91.97 167 | 88.27 303 | 72.90 185 | 71.44 222 | 91.73 158 | 61.44 131 | 93.66 250 | 62.47 284 | 86.53 136 | 93.24 158 |
|
| test-LLR | | | 80.10 170 | 79.56 164 | 81.72 228 | 86.93 238 | 61.17 264 | 92.70 132 | 91.54 173 | 71.51 231 | 75.62 168 | 86.94 237 | 53.83 223 | 92.38 288 | 72.21 193 | 84.76 150 | 91.60 202 |
|
| PVSNet | | 73.49 8 | 80.05 171 | 78.63 179 | 84.31 153 | 90.92 137 | 64.97 170 | 92.47 145 | 91.05 199 | 79.18 81 | 72.43 207 | 90.51 177 | 37.05 348 | 94.06 232 | 68.06 230 | 86.00 139 | 93.90 142 |
|
| UA-Net | | | 80.02 172 | 79.65 162 | 81.11 242 | 89.33 169 | 57.72 320 | 86.33 306 | 89.00 280 | 77.44 114 | 81.01 106 | 89.15 200 | 59.33 155 | 95.90 154 | 61.01 291 | 84.28 157 | 89.73 234 |
|
| test-mter | | | 79.96 173 | 79.38 170 | 81.72 228 | 86.93 238 | 61.17 264 | 92.70 132 | 91.54 173 | 73.85 163 | 75.62 168 | 86.94 237 | 49.84 264 | 92.38 288 | 72.21 193 | 84.76 150 | 91.60 202 |
|
| QAPM | | | 79.95 174 | 77.39 201 | 87.64 34 | 89.63 161 | 71.41 20 | 93.30 108 | 93.70 75 | 65.34 299 | 67.39 276 | 91.75 157 | 47.83 284 | 98.96 16 | 57.71 307 | 89.81 97 | 92.54 180 |
|
| UGNet | | | 79.87 175 | 78.68 178 | 83.45 183 | 89.96 154 | 61.51 259 | 92.13 155 | 90.79 203 | 76.83 122 | 78.85 138 | 86.33 245 | 38.16 334 | 96.17 141 | 67.93 233 | 87.17 126 | 92.67 176 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| tpm2 | | | 79.80 176 | 77.95 190 | 85.34 112 | 88.28 198 | 68.26 83 | 81.56 341 | 91.42 179 | 70.11 253 | 77.59 150 | 80.50 317 | 67.40 59 | 94.26 224 | 67.34 238 | 77.35 221 | 93.51 151 |
|
| thres200 | | | 79.66 177 | 78.33 182 | 83.66 176 | 92.54 90 | 65.82 150 | 93.06 115 | 96.31 3 | 74.90 147 | 73.30 192 | 88.66 203 | 59.67 150 | 95.61 169 | 47.84 346 | 78.67 208 | 89.56 237 |
|
| CPTT-MVS | | | 79.59 178 | 79.16 173 | 80.89 251 | 91.54 122 | 59.80 296 | 92.10 157 | 88.54 296 | 60.42 341 | 72.96 194 | 93.28 120 | 48.27 278 | 92.80 272 | 78.89 144 | 86.50 137 | 90.06 227 |
|
| Test_1112_low_res | | | 79.56 179 | 78.60 180 | 82.43 205 | 88.24 201 | 60.39 288 | 92.09 158 | 87.99 310 | 72.10 206 | 71.84 214 | 87.42 228 | 64.62 89 | 93.04 259 | 65.80 257 | 77.30 222 | 93.85 144 |
|
| tttt0517 | | | 79.50 180 | 78.53 181 | 82.41 208 | 87.22 229 | 61.43 262 | 89.75 253 | 94.76 33 | 69.29 263 | 67.91 265 | 88.06 218 | 72.92 28 | 95.63 167 | 62.91 280 | 73.90 246 | 90.16 226 |
|
| reproduce_monomvs | | | 79.49 181 | 79.11 175 | 80.64 253 | 92.91 77 | 61.47 261 | 91.17 207 | 93.28 93 | 83.09 22 | 64.04 304 | 82.38 286 | 66.19 68 | 94.57 208 | 81.19 123 | 57.71 359 | 85.88 298 |
|
| FIs | | | 79.47 182 | 79.41 168 | 79.67 279 | 85.95 254 | 59.40 302 | 91.68 182 | 93.94 64 | 78.06 100 | 68.96 251 | 88.28 209 | 66.61 65 | 91.77 304 | 66.20 253 | 74.99 235 | 87.82 258 |
|
| BH-RMVSNet | | | 79.46 183 | 77.65 193 | 84.89 125 | 91.68 117 | 65.66 151 | 93.55 96 | 88.09 308 | 72.93 182 | 73.37 191 | 91.12 169 | 46.20 298 | 96.12 143 | 56.28 312 | 85.61 144 | 92.91 171 |
|
| PCF-MVS | | 73.15 9 | 79.29 184 | 77.63 194 | 84.29 154 | 86.06 252 | 65.96 146 | 87.03 298 | 91.10 193 | 69.86 257 | 69.79 242 | 90.64 173 | 57.54 176 | 96.59 121 | 64.37 269 | 82.29 172 | 90.32 224 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| Vis-MVSNet (Re-imp) | | | 79.24 185 | 79.57 163 | 78.24 299 | 88.46 191 | 52.29 354 | 90.41 232 | 89.12 271 | 74.24 154 | 69.13 245 | 91.91 154 | 65.77 75 | 90.09 331 | 59.00 303 | 88.09 115 | 92.33 185 |
|
| 114514_t | | | 79.17 186 | 77.67 192 | 83.68 174 | 95.32 29 | 65.53 157 | 92.85 126 | 91.60 172 | 63.49 313 | 67.92 264 | 90.63 175 | 46.65 291 | 95.72 165 | 67.01 243 | 83.54 162 | 89.79 232 |
|
| FA-MVS(test-final) | | | 79.12 187 | 77.23 203 | 84.81 131 | 90.54 143 | 63.98 196 | 81.35 344 | 91.71 165 | 71.09 239 | 74.85 178 | 82.94 279 | 52.85 234 | 97.05 94 | 67.97 231 | 81.73 183 | 93.41 153 |
|
| VPA-MVSNet | | | 79.03 188 | 78.00 188 | 82.11 222 | 85.95 254 | 64.48 178 | 93.22 111 | 94.66 39 | 75.05 145 | 74.04 187 | 84.95 258 | 52.17 241 | 93.52 252 | 74.90 172 | 67.04 292 | 88.32 254 |
|
| OPM-MVS | | | 79.00 189 | 78.09 186 | 81.73 227 | 83.52 296 | 63.83 198 | 91.64 184 | 90.30 222 | 76.36 130 | 71.97 213 | 89.93 192 | 46.30 297 | 95.17 187 | 75.10 167 | 77.70 215 | 86.19 287 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| EI-MVSNet | | | 78.97 190 | 78.22 185 | 81.25 237 | 85.33 264 | 62.73 235 | 89.53 257 | 93.21 95 | 72.39 197 | 72.14 210 | 90.13 189 | 60.99 134 | 94.72 201 | 67.73 235 | 72.49 255 | 86.29 284 |
|
| AdaColmap |  | | 78.94 191 | 77.00 207 | 84.76 133 | 96.34 17 | 65.86 148 | 92.66 136 | 87.97 312 | 62.18 327 | 70.56 228 | 92.37 142 | 43.53 311 | 97.35 74 | 64.50 268 | 82.86 167 | 91.05 217 |
|
| GeoE | | | 78.90 192 | 77.43 197 | 83.29 186 | 88.95 181 | 62.02 248 | 92.31 148 | 86.23 331 | 70.24 252 | 71.34 223 | 89.27 198 | 54.43 217 | 94.04 235 | 63.31 276 | 80.81 191 | 93.81 145 |
|
| miper_enhance_ethall | | | 78.86 193 | 77.97 189 | 81.54 232 | 88.00 208 | 65.17 164 | 91.41 187 | 89.15 268 | 75.19 143 | 68.79 254 | 83.98 270 | 67.17 60 | 92.82 270 | 72.73 187 | 65.30 302 | 86.62 281 |
|
| VPNet | | | 78.82 194 | 77.53 196 | 82.70 199 | 84.52 280 | 66.44 134 | 93.93 74 | 92.23 134 | 80.46 55 | 72.60 201 | 88.38 208 | 49.18 271 | 93.13 258 | 72.47 191 | 63.97 321 | 88.55 249 |
|
| EPNet_dtu | | | 78.80 195 | 79.26 172 | 77.43 307 | 88.06 205 | 49.71 369 | 91.96 168 | 91.95 151 | 77.67 108 | 76.56 161 | 91.28 167 | 58.51 165 | 90.20 329 | 56.37 311 | 80.95 188 | 92.39 183 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| tfpn200view9 | | | 78.79 196 | 77.43 197 | 82.88 194 | 92.21 96 | 64.49 176 | 92.05 161 | 96.28 4 | 73.48 172 | 71.75 216 | 88.26 211 | 60.07 146 | 95.32 181 | 45.16 357 | 77.58 217 | 88.83 242 |
|
| TR-MVS | | | 78.77 197 | 77.37 202 | 82.95 193 | 90.49 144 | 60.88 270 | 93.67 90 | 90.07 231 | 70.08 254 | 74.51 180 | 91.37 166 | 45.69 300 | 95.70 166 | 60.12 297 | 80.32 193 | 92.29 187 |
|
| thres400 | | | 78.68 198 | 77.43 197 | 82.43 205 | 92.21 96 | 64.49 176 | 92.05 161 | 96.28 4 | 73.48 172 | 71.75 216 | 88.26 211 | 60.07 146 | 95.32 181 | 45.16 357 | 77.58 217 | 87.48 262 |
|
| BH-untuned | | | 78.68 198 | 77.08 204 | 83.48 182 | 89.84 156 | 63.74 201 | 92.70 132 | 88.59 294 | 71.57 228 | 66.83 283 | 88.65 204 | 51.75 245 | 95.39 179 | 59.03 302 | 84.77 149 | 91.32 211 |
|
| OMC-MVS | | | 78.67 200 | 77.91 191 | 80.95 249 | 85.76 259 | 57.40 326 | 88.49 276 | 88.67 291 | 73.85 163 | 72.43 207 | 92.10 149 | 49.29 270 | 94.55 212 | 72.73 187 | 77.89 213 | 90.91 218 |
|
| tpm | | | 78.58 201 | 77.03 205 | 83.22 189 | 85.94 256 | 64.56 174 | 83.21 328 | 91.14 192 | 78.31 97 | 73.67 189 | 79.68 329 | 64.01 95 | 92.09 298 | 66.07 254 | 71.26 265 | 93.03 167 |
|
| OpenMVS |  | 70.45 11 | 78.54 202 | 75.92 221 | 86.41 77 | 85.93 257 | 71.68 18 | 92.74 129 | 92.51 127 | 66.49 290 | 64.56 298 | 91.96 151 | 43.88 310 | 98.10 37 | 54.61 317 | 90.65 89 | 89.44 240 |
|
| EPMVS | | | 78.49 203 | 75.98 220 | 86.02 87 | 91.21 131 | 69.68 51 | 80.23 353 | 91.20 187 | 75.25 142 | 72.48 205 | 78.11 340 | 54.65 212 | 93.69 249 | 57.66 308 | 83.04 166 | 94.69 100 |
|
| AUN-MVS | | | 78.37 204 | 77.43 197 | 81.17 239 | 86.60 242 | 57.45 325 | 89.46 259 | 91.16 189 | 74.11 156 | 74.40 181 | 90.49 178 | 55.52 203 | 94.57 208 | 74.73 174 | 60.43 350 | 91.48 205 |
|
| thres100view900 | | | 78.37 204 | 77.01 206 | 82.46 204 | 91.89 111 | 63.21 221 | 91.19 206 | 96.33 1 | 72.28 200 | 70.45 231 | 87.89 220 | 60.31 141 | 95.32 181 | 45.16 357 | 77.58 217 | 88.83 242 |
|
| GA-MVS | | | 78.33 206 | 76.23 216 | 84.65 139 | 83.65 294 | 66.30 138 | 91.44 186 | 90.14 229 | 76.01 132 | 70.32 233 | 84.02 269 | 42.50 315 | 94.72 201 | 70.98 203 | 77.00 225 | 92.94 170 |
|
| cascas | | | 78.18 207 | 75.77 223 | 85.41 108 | 87.14 231 | 69.11 61 | 92.96 121 | 91.15 191 | 66.71 288 | 70.47 229 | 86.07 247 | 37.49 342 | 96.48 129 | 70.15 211 | 79.80 197 | 90.65 220 |
|
| UniMVSNet_NR-MVSNet | | | 78.15 208 | 77.55 195 | 79.98 270 | 84.46 282 | 60.26 289 | 92.25 150 | 93.20 97 | 77.50 113 | 68.88 252 | 86.61 240 | 66.10 70 | 92.13 296 | 66.38 250 | 62.55 328 | 87.54 260 |
|
| thres600view7 | | | 78.00 209 | 76.66 211 | 82.03 224 | 91.93 108 | 63.69 206 | 91.30 199 | 96.33 1 | 72.43 195 | 70.46 230 | 87.89 220 | 60.31 141 | 94.92 196 | 42.64 369 | 76.64 227 | 87.48 262 |
|
| FC-MVSNet-test | | | 77.99 210 | 78.08 187 | 77.70 302 | 84.89 275 | 55.51 340 | 90.27 238 | 93.75 73 | 76.87 119 | 66.80 284 | 87.59 225 | 65.71 76 | 90.23 328 | 62.89 281 | 73.94 244 | 87.37 265 |
|
| Anonymous202405211 | | | 77.96 211 | 75.33 229 | 85.87 92 | 93.73 53 | 64.52 175 | 94.85 44 | 85.36 341 | 62.52 325 | 76.11 163 | 90.18 185 | 29.43 377 | 97.29 78 | 68.51 228 | 77.24 224 | 95.81 49 |
|
| cl22 | | | 77.94 212 | 76.78 209 | 81.42 234 | 87.57 219 | 64.93 172 | 90.67 224 | 88.86 284 | 72.45 194 | 67.63 271 | 82.68 283 | 64.07 94 | 92.91 268 | 71.79 196 | 65.30 302 | 86.44 282 |
|
| XXY-MVS | | | 77.94 212 | 76.44 213 | 82.43 205 | 82.60 306 | 64.44 180 | 92.01 163 | 91.83 160 | 73.59 171 | 70.00 238 | 85.82 250 | 54.43 217 | 94.76 198 | 69.63 214 | 68.02 286 | 88.10 256 |
|
| MS-PatchMatch | | | 77.90 214 | 76.50 212 | 82.12 219 | 85.99 253 | 69.95 41 | 91.75 180 | 92.70 116 | 73.97 160 | 62.58 320 | 84.44 265 | 41.11 320 | 95.78 157 | 63.76 273 | 92.17 66 | 80.62 362 |
|
| FMVSNet3 | | | 77.73 215 | 76.04 219 | 82.80 195 | 91.20 132 | 68.99 65 | 91.87 171 | 91.99 149 | 73.35 174 | 67.04 279 | 83.19 278 | 56.62 190 | 92.14 295 | 59.80 299 | 69.34 272 | 87.28 268 |
|
| miper_ehance_all_eth | | | 77.60 216 | 76.44 213 | 81.09 246 | 85.70 261 | 64.41 183 | 90.65 225 | 88.64 293 | 72.31 198 | 67.37 277 | 82.52 284 | 64.77 88 | 92.64 281 | 70.67 207 | 65.30 302 | 86.24 286 |
|
| UniMVSNet (Re) | | | 77.58 217 | 76.78 209 | 79.98 270 | 84.11 288 | 60.80 271 | 91.76 178 | 93.17 99 | 76.56 128 | 69.93 241 | 84.78 260 | 63.32 111 | 92.36 290 | 64.89 266 | 62.51 330 | 86.78 276 |
|
| PatchmatchNet |  | | 77.46 218 | 74.63 236 | 85.96 89 | 89.55 164 | 70.35 34 | 79.97 358 | 89.55 251 | 72.23 201 | 70.94 224 | 76.91 352 | 57.03 180 | 92.79 273 | 54.27 319 | 81.17 186 | 94.74 98 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| v2v482 | | | 77.42 219 | 75.65 225 | 82.73 197 | 80.38 327 | 67.13 116 | 91.85 173 | 90.23 226 | 75.09 144 | 69.37 243 | 83.39 276 | 53.79 225 | 94.44 216 | 71.77 197 | 65.00 308 | 86.63 280 |
|
| CHOSEN 280x420 | | | 77.35 220 | 76.95 208 | 78.55 294 | 87.07 233 | 62.68 236 | 69.71 390 | 82.95 363 | 68.80 270 | 71.48 221 | 87.27 232 | 66.03 71 | 84.00 374 | 76.47 158 | 82.81 169 | 88.95 241 |
|
| PS-MVSNAJss | | | 77.26 221 | 76.31 215 | 80.13 265 | 80.64 325 | 59.16 307 | 90.63 228 | 91.06 198 | 72.80 186 | 68.58 258 | 84.57 263 | 53.55 227 | 93.96 240 | 72.97 181 | 71.96 259 | 87.27 269 |
|
| gg-mvs-nofinetune | | | 77.18 222 | 74.31 243 | 85.80 96 | 91.42 124 | 68.36 79 | 71.78 384 | 94.72 35 | 49.61 384 | 77.12 155 | 45.92 410 | 77.41 8 | 93.98 239 | 67.62 236 | 93.16 55 | 95.05 83 |
|
| WB-MVSnew | | | 77.14 223 | 76.18 218 | 80.01 269 | 86.18 250 | 63.24 219 | 91.26 200 | 94.11 61 | 71.72 220 | 73.52 190 | 87.29 231 | 45.14 305 | 93.00 261 | 56.98 309 | 79.42 199 | 83.80 323 |
|
| MVP-Stereo | | | 77.12 224 | 76.23 216 | 79.79 277 | 81.72 314 | 66.34 137 | 89.29 261 | 90.88 202 | 70.56 249 | 62.01 323 | 82.88 280 | 49.34 268 | 94.13 227 | 65.55 261 | 93.80 43 | 78.88 376 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| sd_testset | | | 77.08 225 | 75.37 227 | 82.20 215 | 89.25 172 | 62.11 247 | 82.06 336 | 89.09 273 | 76.77 124 | 70.84 226 | 87.12 233 | 41.43 319 | 95.01 191 | 67.23 240 | 74.55 236 | 89.48 238 |
|
| MonoMVSNet | | | 76.99 226 | 75.08 232 | 82.73 197 | 83.32 298 | 63.24 219 | 86.47 305 | 86.37 327 | 79.08 85 | 66.31 286 | 79.30 333 | 49.80 265 | 91.72 305 | 79.37 136 | 65.70 300 | 93.23 159 |
|
| dmvs_re | | | 76.93 227 | 75.36 228 | 81.61 230 | 87.78 216 | 60.71 278 | 80.00 357 | 87.99 310 | 79.42 75 | 69.02 249 | 89.47 196 | 46.77 289 | 94.32 218 | 63.38 275 | 74.45 239 | 89.81 231 |
|
| X-MVStestdata | | | 76.86 228 | 74.13 247 | 85.05 121 | 93.22 65 | 63.78 199 | 92.92 122 | 92.66 120 | 73.99 158 | 78.18 142 | 10.19 425 | 55.25 204 | 97.41 70 | 79.16 139 | 91.58 76 | 93.95 138 |
|
| DU-MVS | | | 76.86 228 | 75.84 222 | 79.91 273 | 82.96 302 | 60.26 289 | 91.26 200 | 91.54 173 | 76.46 129 | 68.88 252 | 86.35 243 | 56.16 195 | 92.13 296 | 66.38 250 | 62.55 328 | 87.35 266 |
|
| Anonymous20240529 | | | 76.84 230 | 74.15 246 | 84.88 126 | 91.02 134 | 64.95 171 | 93.84 82 | 91.09 194 | 53.57 372 | 73.00 193 | 87.42 228 | 35.91 352 | 97.32 76 | 69.14 222 | 72.41 257 | 92.36 184 |
|
| c3_l | | | 76.83 231 | 75.47 226 | 80.93 250 | 85.02 273 | 64.18 193 | 90.39 233 | 88.11 307 | 71.66 221 | 66.65 285 | 81.64 297 | 63.58 107 | 92.56 282 | 69.31 219 | 62.86 325 | 86.04 292 |
|
| WR-MVS | | | 76.76 232 | 75.74 224 | 79.82 276 | 84.60 278 | 62.27 245 | 92.60 139 | 92.51 127 | 76.06 131 | 67.87 268 | 85.34 254 | 56.76 186 | 90.24 327 | 62.20 285 | 63.69 323 | 86.94 274 |
|
| v1144 | | | 76.73 233 | 74.88 233 | 82.27 211 | 80.23 331 | 66.60 131 | 91.68 182 | 90.21 228 | 73.69 168 | 69.06 248 | 81.89 292 | 52.73 237 | 94.40 217 | 69.21 220 | 65.23 305 | 85.80 299 |
|
| IterMVS-LS | | | 76.49 234 | 75.18 231 | 80.43 257 | 84.49 281 | 62.74 234 | 90.64 226 | 88.80 286 | 72.40 196 | 65.16 293 | 81.72 295 | 60.98 135 | 92.27 294 | 67.74 234 | 64.65 313 | 86.29 284 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| V42 | | | 76.46 235 | 74.55 239 | 82.19 216 | 79.14 345 | 67.82 96 | 90.26 239 | 89.42 256 | 73.75 166 | 68.63 257 | 81.89 292 | 51.31 250 | 94.09 229 | 71.69 199 | 64.84 309 | 84.66 316 |
|
| v148 | | | 76.19 236 | 74.47 241 | 81.36 235 | 80.05 333 | 64.44 180 | 91.75 180 | 90.23 226 | 73.68 169 | 67.13 278 | 80.84 312 | 55.92 200 | 93.86 247 | 68.95 224 | 61.73 339 | 85.76 302 |
|
| Effi-MVS+-dtu | | | 76.14 237 | 75.28 230 | 78.72 293 | 83.22 299 | 55.17 342 | 89.87 250 | 87.78 314 | 75.42 139 | 67.98 263 | 81.43 301 | 45.08 306 | 92.52 284 | 75.08 168 | 71.63 260 | 88.48 250 |
|
| cl____ | | | 76.07 238 | 74.67 234 | 80.28 260 | 85.15 269 | 61.76 254 | 90.12 242 | 88.73 288 | 71.16 236 | 65.43 290 | 81.57 299 | 61.15 132 | 92.95 263 | 66.54 247 | 62.17 332 | 86.13 290 |
|
| DIV-MVS_self_test | | | 76.07 238 | 74.67 234 | 80.28 260 | 85.14 270 | 61.75 255 | 90.12 242 | 88.73 288 | 71.16 236 | 65.42 291 | 81.60 298 | 61.15 132 | 92.94 267 | 66.54 247 | 62.16 334 | 86.14 288 |
|
| FMVSNet2 | | | 76.07 238 | 74.01 249 | 82.26 213 | 88.85 182 | 67.66 100 | 91.33 197 | 91.61 171 | 70.84 243 | 65.98 287 | 82.25 288 | 48.03 279 | 92.00 300 | 58.46 304 | 68.73 280 | 87.10 271 |
|
| v144192 | | | 76.05 241 | 74.03 248 | 82.12 219 | 79.50 339 | 66.55 133 | 91.39 191 | 89.71 249 | 72.30 199 | 68.17 261 | 81.33 304 | 51.75 245 | 94.03 237 | 67.94 232 | 64.19 316 | 85.77 300 |
|
| NR-MVSNet | | | 76.05 241 | 74.59 237 | 80.44 256 | 82.96 302 | 62.18 246 | 90.83 217 | 91.73 163 | 77.12 117 | 60.96 326 | 86.35 243 | 59.28 156 | 91.80 303 | 60.74 292 | 61.34 343 | 87.35 266 |
|
| v1192 | | | 75.98 243 | 73.92 250 | 82.15 217 | 79.73 335 | 66.24 140 | 91.22 203 | 89.75 243 | 72.67 188 | 68.49 259 | 81.42 302 | 49.86 263 | 94.27 222 | 67.08 242 | 65.02 307 | 85.95 295 |
|
| FE-MVS | | | 75.97 244 | 73.02 260 | 84.82 128 | 89.78 157 | 65.56 155 | 77.44 369 | 91.07 197 | 64.55 302 | 72.66 199 | 79.85 327 | 46.05 299 | 96.69 119 | 54.97 316 | 80.82 190 | 92.21 193 |
|
| eth_miper_zixun_eth | | | 75.96 245 | 74.40 242 | 80.66 252 | 84.66 277 | 63.02 225 | 89.28 262 | 88.27 303 | 71.88 212 | 65.73 288 | 81.65 296 | 59.45 152 | 92.81 271 | 68.13 229 | 60.53 348 | 86.14 288 |
|
| TranMVSNet+NR-MVSNet | | | 75.86 246 | 74.52 240 | 79.89 274 | 82.44 308 | 60.64 281 | 91.37 194 | 91.37 180 | 76.63 126 | 67.65 270 | 86.21 246 | 52.37 240 | 91.55 310 | 61.84 287 | 60.81 346 | 87.48 262 |
|
| SCA | | | 75.82 247 | 72.76 263 | 85.01 123 | 86.63 241 | 70.08 37 | 81.06 346 | 89.19 265 | 71.60 227 | 70.01 237 | 77.09 350 | 45.53 301 | 90.25 324 | 60.43 294 | 73.27 248 | 94.68 101 |
|
| LPG-MVS_test | | | 75.82 247 | 74.58 238 | 79.56 283 | 84.31 285 | 59.37 303 | 90.44 230 | 89.73 246 | 69.49 260 | 64.86 294 | 88.42 206 | 38.65 328 | 94.30 220 | 72.56 189 | 72.76 252 | 85.01 313 |
|
| GBi-Net | | | 75.65 249 | 73.83 251 | 81.10 243 | 88.85 182 | 65.11 166 | 90.01 246 | 90.32 218 | 70.84 243 | 67.04 279 | 80.25 322 | 48.03 279 | 91.54 311 | 59.80 299 | 69.34 272 | 86.64 277 |
|
| test1 | | | 75.65 249 | 73.83 251 | 81.10 243 | 88.85 182 | 65.11 166 | 90.01 246 | 90.32 218 | 70.84 243 | 67.04 279 | 80.25 322 | 48.03 279 | 91.54 311 | 59.80 299 | 69.34 272 | 86.64 277 |
|
| v1921920 | | | 75.63 251 | 73.49 256 | 82.06 223 | 79.38 340 | 66.35 136 | 91.07 211 | 89.48 252 | 71.98 207 | 67.99 262 | 81.22 307 | 49.16 273 | 93.90 243 | 66.56 246 | 64.56 314 | 85.92 297 |
|
| ACMP | | 71.68 10 | 75.58 252 | 74.23 245 | 79.62 281 | 84.97 274 | 59.64 298 | 90.80 218 | 89.07 275 | 70.39 250 | 62.95 316 | 87.30 230 | 38.28 332 | 93.87 245 | 72.89 182 | 71.45 263 | 85.36 309 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| v8 | | | 75.35 253 | 73.26 258 | 81.61 230 | 80.67 324 | 66.82 124 | 89.54 256 | 89.27 261 | 71.65 222 | 63.30 312 | 80.30 321 | 54.99 210 | 94.06 232 | 67.33 239 | 62.33 331 | 83.94 321 |
|
| tpm cat1 | | | 75.30 254 | 72.21 272 | 84.58 143 | 88.52 188 | 67.77 97 | 78.16 367 | 88.02 309 | 61.88 333 | 68.45 260 | 76.37 356 | 60.65 138 | 94.03 237 | 53.77 322 | 74.11 242 | 91.93 199 |
|
| PLC |  | 68.80 14 | 75.23 255 | 73.68 254 | 79.86 275 | 92.93 76 | 58.68 312 | 90.64 226 | 88.30 301 | 60.90 338 | 64.43 302 | 90.53 176 | 42.38 316 | 94.57 208 | 56.52 310 | 76.54 228 | 86.33 283 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| v1240 | | | 75.21 256 | 72.98 261 | 81.88 225 | 79.20 342 | 66.00 144 | 90.75 220 | 89.11 272 | 71.63 226 | 67.41 275 | 81.22 307 | 47.36 287 | 93.87 245 | 65.46 262 | 64.72 312 | 85.77 300 |
|
| Fast-Effi-MVS+-dtu | | | 75.04 257 | 73.37 257 | 80.07 266 | 80.86 320 | 59.52 301 | 91.20 205 | 85.38 340 | 71.90 210 | 65.20 292 | 84.84 259 | 41.46 318 | 92.97 262 | 66.50 249 | 72.96 251 | 87.73 259 |
|
| dp | | | 75.01 258 | 72.09 273 | 83.76 167 | 89.28 171 | 66.22 141 | 79.96 359 | 89.75 243 | 71.16 236 | 67.80 269 | 77.19 349 | 51.81 243 | 92.54 283 | 50.39 330 | 71.44 264 | 92.51 182 |
|
| TAPA-MVS | | 70.22 12 | 74.94 259 | 73.53 255 | 79.17 288 | 90.40 146 | 52.07 355 | 89.19 265 | 89.61 250 | 62.69 324 | 70.07 236 | 92.67 134 | 48.89 276 | 94.32 218 | 38.26 383 | 79.97 195 | 91.12 216 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| v10 | | | 74.77 260 | 72.54 269 | 81.46 233 | 80.33 329 | 66.71 128 | 89.15 266 | 89.08 274 | 70.94 241 | 63.08 315 | 79.86 326 | 52.52 238 | 94.04 235 | 65.70 258 | 62.17 332 | 83.64 324 |
|
| XVG-OURS-SEG-HR | | | 74.70 261 | 73.08 259 | 79.57 282 | 78.25 357 | 57.33 327 | 80.49 349 | 87.32 317 | 63.22 317 | 68.76 255 | 90.12 191 | 44.89 307 | 91.59 309 | 70.55 209 | 74.09 243 | 89.79 232 |
|
| ACMM | | 69.62 13 | 74.34 262 | 72.73 265 | 79.17 288 | 84.25 287 | 57.87 318 | 90.36 235 | 89.93 237 | 63.17 319 | 65.64 289 | 86.04 249 | 37.79 340 | 94.10 228 | 65.89 255 | 71.52 262 | 85.55 305 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| CNLPA | | | 74.31 263 | 72.30 271 | 80.32 258 | 91.49 123 | 61.66 257 | 90.85 216 | 80.72 369 | 56.67 364 | 63.85 307 | 90.64 173 | 46.75 290 | 90.84 319 | 53.79 321 | 75.99 232 | 88.47 251 |
|
| XVG-OURS | | | 74.25 264 | 72.46 270 | 79.63 280 | 78.45 355 | 57.59 323 | 80.33 351 | 87.39 316 | 63.86 309 | 68.76 255 | 89.62 195 | 40.50 322 | 91.72 305 | 69.00 223 | 74.25 241 | 89.58 235 |
|
| test_fmvs1 | | | 74.07 265 | 73.69 253 | 75.22 325 | 78.91 349 | 47.34 382 | 89.06 269 | 74.69 385 | 63.68 312 | 79.41 127 | 91.59 161 | 24.36 387 | 87.77 351 | 85.22 81 | 76.26 230 | 90.55 223 |
|
| CVMVSNet | | | 74.04 266 | 74.27 244 | 73.33 341 | 85.33 264 | 43.94 395 | 89.53 257 | 88.39 298 | 54.33 371 | 70.37 232 | 90.13 189 | 49.17 272 | 84.05 372 | 61.83 288 | 79.36 201 | 91.99 198 |
|
| Baseline_NR-MVSNet | | | 73.99 267 | 72.83 262 | 77.48 306 | 80.78 322 | 59.29 306 | 91.79 175 | 84.55 349 | 68.85 269 | 68.99 250 | 80.70 313 | 56.16 195 | 92.04 299 | 62.67 282 | 60.98 345 | 81.11 356 |
|
| pmmvs4 | | | 73.92 268 | 71.81 277 | 80.25 262 | 79.17 343 | 65.24 162 | 87.43 294 | 87.26 320 | 67.64 281 | 63.46 310 | 83.91 271 | 48.96 275 | 91.53 314 | 62.94 279 | 65.49 301 | 83.96 320 |
|
| D2MVS | | | 73.80 269 | 72.02 274 | 79.15 290 | 79.15 344 | 62.97 226 | 88.58 275 | 90.07 231 | 72.94 181 | 59.22 336 | 78.30 337 | 42.31 317 | 92.70 277 | 65.59 260 | 72.00 258 | 81.79 351 |
|
| CR-MVSNet | | | 73.79 270 | 70.82 285 | 82.70 199 | 83.15 300 | 67.96 92 | 70.25 387 | 84.00 354 | 73.67 170 | 69.97 239 | 72.41 372 | 57.82 173 | 89.48 336 | 52.99 325 | 73.13 249 | 90.64 221 |
|
| test_djsdf | | | 73.76 271 | 72.56 268 | 77.39 308 | 77.00 367 | 53.93 348 | 89.07 267 | 90.69 205 | 65.80 294 | 63.92 305 | 82.03 291 | 43.14 314 | 92.67 278 | 72.83 183 | 68.53 281 | 85.57 304 |
|
| pmmvs5 | | | 73.35 272 | 71.52 279 | 78.86 292 | 78.64 353 | 60.61 282 | 91.08 209 | 86.90 322 | 67.69 278 | 63.32 311 | 83.64 272 | 44.33 309 | 90.53 321 | 62.04 286 | 66.02 298 | 85.46 307 |
|
| Anonymous20231211 | | | 73.08 273 | 70.39 289 | 81.13 241 | 90.62 142 | 63.33 217 | 91.40 189 | 90.06 233 | 51.84 377 | 64.46 301 | 80.67 315 | 36.49 350 | 94.07 231 | 63.83 272 | 64.17 317 | 85.98 294 |
|
| tt0805 | | | 73.07 274 | 70.73 286 | 80.07 266 | 78.37 356 | 57.05 329 | 87.78 288 | 92.18 141 | 61.23 337 | 67.04 279 | 86.49 242 | 31.35 370 | 94.58 206 | 65.06 265 | 67.12 291 | 88.57 248 |
|
| miper_lstm_enhance | | | 73.05 275 | 71.73 278 | 77.03 312 | 83.80 291 | 58.32 315 | 81.76 337 | 88.88 282 | 69.80 258 | 61.01 325 | 78.23 339 | 57.19 178 | 87.51 355 | 65.34 263 | 59.53 353 | 85.27 312 |
|
| jajsoiax | | | 73.05 275 | 71.51 280 | 77.67 303 | 77.46 364 | 54.83 344 | 88.81 271 | 90.04 234 | 69.13 267 | 62.85 318 | 83.51 274 | 31.16 371 | 92.75 274 | 70.83 204 | 69.80 268 | 85.43 308 |
|
| LCM-MVSNet-Re | | | 72.93 277 | 71.84 276 | 76.18 321 | 88.49 189 | 48.02 377 | 80.07 356 | 70.17 397 | 73.96 161 | 52.25 367 | 80.09 325 | 49.98 261 | 88.24 345 | 67.35 237 | 84.23 158 | 92.28 188 |
|
| pm-mvs1 | | | 72.89 278 | 71.09 282 | 78.26 298 | 79.10 346 | 57.62 322 | 90.80 218 | 89.30 260 | 67.66 279 | 62.91 317 | 81.78 294 | 49.11 274 | 92.95 263 | 60.29 296 | 58.89 356 | 84.22 319 |
|
| tpmvs | | | 72.88 279 | 69.76 295 | 82.22 214 | 90.98 135 | 67.05 118 | 78.22 366 | 88.30 301 | 63.10 320 | 64.35 303 | 74.98 363 | 55.09 209 | 94.27 222 | 43.25 363 | 69.57 271 | 85.34 310 |
|
| test0.0.03 1 | | | 72.76 280 | 72.71 266 | 72.88 345 | 80.25 330 | 47.99 378 | 91.22 203 | 89.45 254 | 71.51 231 | 62.51 321 | 87.66 223 | 53.83 223 | 85.06 368 | 50.16 332 | 67.84 289 | 85.58 303 |
|
| UniMVSNet_ETH3D | | | 72.74 281 | 70.53 288 | 79.36 285 | 78.62 354 | 56.64 333 | 85.01 311 | 89.20 264 | 63.77 310 | 64.84 296 | 84.44 265 | 34.05 359 | 91.86 302 | 63.94 271 | 70.89 267 | 89.57 236 |
|
| mvs_tets | | | 72.71 282 | 71.11 281 | 77.52 304 | 77.41 365 | 54.52 346 | 88.45 277 | 89.76 242 | 68.76 272 | 62.70 319 | 83.26 277 | 29.49 376 | 92.71 275 | 70.51 210 | 69.62 270 | 85.34 310 |
|
| FMVSNet1 | | | 72.71 282 | 69.91 293 | 81.10 243 | 83.60 295 | 65.11 166 | 90.01 246 | 90.32 218 | 63.92 308 | 63.56 309 | 80.25 322 | 36.35 351 | 91.54 311 | 54.46 318 | 66.75 294 | 86.64 277 |
|
| test_fmvs1_n | | | 72.69 284 | 71.92 275 | 74.99 328 | 71.15 387 | 47.08 384 | 87.34 296 | 75.67 380 | 63.48 314 | 78.08 144 | 91.17 168 | 20.16 399 | 87.87 348 | 84.65 90 | 75.57 234 | 90.01 229 |
|
| IterMVS | | | 72.65 285 | 70.83 283 | 78.09 300 | 82.17 310 | 62.96 227 | 87.64 292 | 86.28 329 | 71.56 229 | 60.44 329 | 78.85 335 | 45.42 303 | 86.66 359 | 63.30 277 | 61.83 336 | 84.65 317 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| myMVS_eth3d | | | 72.58 286 | 72.74 264 | 72.10 353 | 87.87 211 | 49.45 371 | 88.07 281 | 89.01 277 | 72.91 183 | 63.11 313 | 88.10 215 | 63.63 102 | 85.54 364 | 32.73 398 | 69.23 275 | 81.32 354 |
|
| PatchMatch-RL | | | 72.06 287 | 69.98 290 | 78.28 297 | 89.51 165 | 55.70 339 | 83.49 321 | 83.39 361 | 61.24 336 | 63.72 308 | 82.76 281 | 34.77 356 | 93.03 260 | 53.37 324 | 77.59 216 | 86.12 291 |
|
| PVSNet_0 | | 68.08 15 | 71.81 288 | 68.32 304 | 82.27 211 | 84.68 276 | 62.31 244 | 88.68 273 | 90.31 221 | 75.84 133 | 57.93 347 | 80.65 316 | 37.85 339 | 94.19 225 | 69.94 212 | 29.05 413 | 90.31 225 |
|
| MIMVSNet | | | 71.64 289 | 68.44 302 | 81.23 238 | 81.97 313 | 64.44 180 | 73.05 381 | 88.80 286 | 69.67 259 | 64.59 297 | 74.79 365 | 32.79 362 | 87.82 349 | 53.99 320 | 76.35 229 | 91.42 206 |
|
| test_vis1_n | | | 71.63 290 | 70.73 286 | 74.31 335 | 69.63 393 | 47.29 383 | 86.91 300 | 72.11 391 | 63.21 318 | 75.18 174 | 90.17 186 | 20.40 397 | 85.76 363 | 84.59 91 | 74.42 240 | 89.87 230 |
|
| IterMVS-SCA-FT | | | 71.55 291 | 69.97 291 | 76.32 319 | 81.48 316 | 60.67 280 | 87.64 292 | 85.99 334 | 66.17 292 | 59.50 334 | 78.88 334 | 45.53 301 | 83.65 376 | 62.58 283 | 61.93 335 | 84.63 318 |
|
| v7n | | | 71.31 292 | 68.65 299 | 79.28 286 | 76.40 369 | 60.77 273 | 86.71 303 | 89.45 254 | 64.17 307 | 58.77 341 | 78.24 338 | 44.59 308 | 93.54 251 | 57.76 306 | 61.75 338 | 83.52 327 |
|
| anonymousdsp | | | 71.14 293 | 69.37 297 | 76.45 318 | 72.95 382 | 54.71 345 | 84.19 316 | 88.88 282 | 61.92 332 | 62.15 322 | 79.77 328 | 38.14 335 | 91.44 316 | 68.90 225 | 67.45 290 | 83.21 333 |
|
| F-COLMAP | | | 70.66 294 | 68.44 302 | 77.32 309 | 86.37 247 | 55.91 337 | 88.00 283 | 86.32 328 | 56.94 362 | 57.28 351 | 88.07 217 | 33.58 360 | 92.49 285 | 51.02 328 | 68.37 282 | 83.55 325 |
|
| WR-MVS_H | | | 70.59 295 | 69.94 292 | 72.53 347 | 81.03 319 | 51.43 359 | 87.35 295 | 92.03 148 | 67.38 282 | 60.23 331 | 80.70 313 | 55.84 201 | 83.45 378 | 46.33 353 | 58.58 358 | 82.72 340 |
|
| CP-MVSNet | | | 70.50 296 | 69.91 293 | 72.26 350 | 80.71 323 | 51.00 363 | 87.23 297 | 90.30 222 | 67.84 277 | 59.64 333 | 82.69 282 | 50.23 260 | 82.30 386 | 51.28 327 | 59.28 354 | 83.46 329 |
|
| RPMNet | | | 70.42 297 | 65.68 318 | 84.63 141 | 83.15 300 | 67.96 92 | 70.25 387 | 90.45 212 | 46.83 393 | 69.97 239 | 65.10 393 | 56.48 194 | 95.30 184 | 35.79 388 | 73.13 249 | 90.64 221 |
|
| testing3 | | | 70.38 298 | 70.83 283 | 69.03 365 | 85.82 258 | 43.93 396 | 90.72 223 | 90.56 211 | 68.06 276 | 60.24 330 | 86.82 239 | 64.83 86 | 84.12 370 | 26.33 406 | 64.10 318 | 79.04 375 |
|
| tfpnnormal | | | 70.10 299 | 67.36 308 | 78.32 296 | 83.45 297 | 60.97 269 | 88.85 270 | 92.77 114 | 64.85 301 | 60.83 327 | 78.53 336 | 43.52 312 | 93.48 253 | 31.73 401 | 61.70 340 | 80.52 363 |
|
| TransMVSNet (Re) | | | 70.07 300 | 67.66 306 | 77.31 310 | 80.62 326 | 59.13 308 | 91.78 177 | 84.94 345 | 65.97 293 | 60.08 332 | 80.44 318 | 50.78 254 | 91.87 301 | 48.84 339 | 45.46 387 | 80.94 358 |
|
| CL-MVSNet_self_test | | | 69.92 301 | 68.09 305 | 75.41 324 | 73.25 381 | 55.90 338 | 90.05 245 | 89.90 238 | 69.96 255 | 61.96 324 | 76.54 353 | 51.05 253 | 87.64 352 | 49.51 336 | 50.59 379 | 82.70 342 |
|
| DP-MVS | | | 69.90 302 | 66.48 310 | 80.14 264 | 95.36 28 | 62.93 228 | 89.56 254 | 76.11 378 | 50.27 383 | 57.69 349 | 85.23 255 | 39.68 324 | 95.73 161 | 33.35 393 | 71.05 266 | 81.78 352 |
|
| PS-CasMVS | | | 69.86 303 | 69.13 298 | 72.07 354 | 80.35 328 | 50.57 365 | 87.02 299 | 89.75 243 | 67.27 283 | 59.19 337 | 82.28 287 | 46.58 292 | 82.24 387 | 50.69 329 | 59.02 355 | 83.39 331 |
|
| Syy-MVS | | | 69.65 304 | 69.52 296 | 70.03 361 | 87.87 211 | 43.21 397 | 88.07 281 | 89.01 277 | 72.91 183 | 63.11 313 | 88.10 215 | 45.28 304 | 85.54 364 | 22.07 411 | 69.23 275 | 81.32 354 |
|
| MSDG | | | 69.54 305 | 65.73 317 | 80.96 248 | 85.11 272 | 63.71 204 | 84.19 316 | 83.28 362 | 56.95 361 | 54.50 358 | 84.03 268 | 31.50 368 | 96.03 151 | 42.87 367 | 69.13 277 | 83.14 335 |
|
| PEN-MVS | | | 69.46 306 | 68.56 300 | 72.17 352 | 79.27 341 | 49.71 369 | 86.90 301 | 89.24 262 | 67.24 286 | 59.08 338 | 82.51 285 | 47.23 288 | 83.54 377 | 48.42 341 | 57.12 360 | 83.25 332 |
|
| LS3D | | | 69.17 307 | 66.40 312 | 77.50 305 | 91.92 109 | 56.12 336 | 85.12 310 | 80.37 371 | 46.96 391 | 56.50 353 | 87.51 227 | 37.25 343 | 93.71 248 | 32.52 400 | 79.40 200 | 82.68 343 |
|
| PatchT | | | 69.11 308 | 65.37 322 | 80.32 258 | 82.07 312 | 63.68 207 | 67.96 397 | 87.62 315 | 50.86 381 | 69.37 243 | 65.18 392 | 57.09 179 | 88.53 342 | 41.59 372 | 66.60 295 | 88.74 245 |
|
| KD-MVS_2432*1600 | | | 69.03 309 | 66.37 313 | 77.01 313 | 85.56 262 | 61.06 267 | 81.44 342 | 90.25 224 | 67.27 283 | 58.00 345 | 76.53 354 | 54.49 214 | 87.63 353 | 48.04 343 | 35.77 404 | 82.34 346 |
|
| miper_refine_blended | | | 69.03 309 | 66.37 313 | 77.01 313 | 85.56 262 | 61.06 267 | 81.44 342 | 90.25 224 | 67.27 283 | 58.00 345 | 76.53 354 | 54.49 214 | 87.63 353 | 48.04 343 | 35.77 404 | 82.34 346 |
|
| mvsany_test1 | | | 68.77 311 | 68.56 300 | 69.39 363 | 73.57 380 | 45.88 391 | 80.93 347 | 60.88 411 | 59.65 347 | 71.56 219 | 90.26 184 | 43.22 313 | 75.05 398 | 74.26 176 | 62.70 327 | 87.25 270 |
|
| ACMH | | 63.93 17 | 68.62 312 | 64.81 324 | 80.03 268 | 85.22 268 | 63.25 218 | 87.72 289 | 84.66 347 | 60.83 339 | 51.57 371 | 79.43 332 | 27.29 383 | 94.96 193 | 41.76 370 | 64.84 309 | 81.88 350 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| EG-PatchMatch MVS | | | 68.55 313 | 65.41 321 | 77.96 301 | 78.69 352 | 62.93 228 | 89.86 251 | 89.17 266 | 60.55 340 | 50.27 376 | 77.73 344 | 22.60 393 | 94.06 232 | 47.18 349 | 72.65 254 | 76.88 386 |
|
| ADS-MVSNet | | | 68.54 314 | 64.38 331 | 81.03 247 | 88.06 205 | 66.90 123 | 68.01 395 | 84.02 353 | 57.57 355 | 64.48 299 | 69.87 382 | 38.68 326 | 89.21 338 | 40.87 374 | 67.89 287 | 86.97 272 |
|
| DTE-MVSNet | | | 68.46 315 | 67.33 309 | 71.87 356 | 77.94 361 | 49.00 375 | 86.16 307 | 88.58 295 | 66.36 291 | 58.19 342 | 82.21 289 | 46.36 293 | 83.87 375 | 44.97 360 | 55.17 367 | 82.73 339 |
|
| mmtdpeth | | | 68.33 316 | 66.37 313 | 74.21 336 | 82.81 305 | 51.73 356 | 84.34 315 | 80.42 370 | 67.01 287 | 71.56 219 | 68.58 386 | 30.52 374 | 92.35 291 | 75.89 161 | 36.21 402 | 78.56 380 |
|
| our_test_3 | | | 68.29 317 | 64.69 326 | 79.11 291 | 78.92 347 | 64.85 173 | 88.40 278 | 85.06 343 | 60.32 343 | 52.68 365 | 76.12 358 | 40.81 321 | 89.80 335 | 44.25 362 | 55.65 365 | 82.67 344 |
|
| Patchmatch-RL test | | | 68.17 318 | 64.49 329 | 79.19 287 | 71.22 386 | 53.93 348 | 70.07 389 | 71.54 395 | 69.22 264 | 56.79 352 | 62.89 397 | 56.58 191 | 88.61 339 | 69.53 216 | 52.61 374 | 95.03 85 |
|
| XVG-ACMP-BASELINE | | | 68.04 319 | 65.53 320 | 75.56 323 | 74.06 379 | 52.37 353 | 78.43 363 | 85.88 335 | 62.03 330 | 58.91 340 | 81.21 309 | 20.38 398 | 91.15 318 | 60.69 293 | 68.18 283 | 83.16 334 |
|
| FMVSNet5 | | | 68.04 319 | 65.66 319 | 75.18 327 | 84.43 283 | 57.89 317 | 83.54 320 | 86.26 330 | 61.83 334 | 53.64 363 | 73.30 368 | 37.15 346 | 85.08 367 | 48.99 338 | 61.77 337 | 82.56 345 |
|
| ppachtmachnet_test | | | 67.72 321 | 63.70 333 | 79.77 278 | 78.92 347 | 66.04 143 | 88.68 273 | 82.90 364 | 60.11 345 | 55.45 355 | 75.96 359 | 39.19 325 | 90.55 320 | 39.53 378 | 52.55 375 | 82.71 341 |
|
| ACMH+ | | 65.35 16 | 67.65 322 | 64.55 327 | 76.96 315 | 84.59 279 | 57.10 328 | 88.08 280 | 80.79 368 | 58.59 353 | 53.00 364 | 81.09 311 | 26.63 385 | 92.95 263 | 46.51 351 | 61.69 341 | 80.82 359 |
|
| pmmvs6 | | | 67.57 323 | 64.76 325 | 76.00 322 | 72.82 384 | 53.37 350 | 88.71 272 | 86.78 326 | 53.19 373 | 57.58 350 | 78.03 341 | 35.33 355 | 92.41 287 | 55.56 314 | 54.88 369 | 82.21 348 |
|
| Anonymous20231206 | | | 67.53 324 | 65.78 316 | 72.79 346 | 74.95 375 | 47.59 380 | 88.23 279 | 87.32 317 | 61.75 335 | 58.07 344 | 77.29 347 | 37.79 340 | 87.29 357 | 42.91 365 | 63.71 322 | 83.48 328 |
|
| Patchmtry | | | 67.53 324 | 63.93 332 | 78.34 295 | 82.12 311 | 64.38 184 | 68.72 392 | 84.00 354 | 48.23 390 | 59.24 335 | 72.41 372 | 57.82 173 | 89.27 337 | 46.10 354 | 56.68 364 | 81.36 353 |
|
| USDC | | | 67.43 326 | 64.51 328 | 76.19 320 | 77.94 361 | 55.29 341 | 78.38 364 | 85.00 344 | 73.17 176 | 48.36 384 | 80.37 319 | 21.23 395 | 92.48 286 | 52.15 326 | 64.02 320 | 80.81 360 |
|
| ADS-MVSNet2 | | | 66.90 327 | 63.44 335 | 77.26 311 | 88.06 205 | 60.70 279 | 68.01 395 | 75.56 382 | 57.57 355 | 64.48 299 | 69.87 382 | 38.68 326 | 84.10 371 | 40.87 374 | 67.89 287 | 86.97 272 |
|
| CMPMVS |  | 48.56 21 | 66.77 328 | 64.41 330 | 73.84 338 | 70.65 390 | 50.31 366 | 77.79 368 | 85.73 338 | 45.54 395 | 44.76 394 | 82.14 290 | 35.40 354 | 90.14 330 | 63.18 278 | 74.54 238 | 81.07 357 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| OpenMVS_ROB |  | 61.12 18 | 66.39 329 | 62.92 338 | 76.80 317 | 76.51 368 | 57.77 319 | 89.22 263 | 83.41 360 | 55.48 368 | 53.86 362 | 77.84 342 | 26.28 386 | 93.95 241 | 34.90 390 | 68.76 279 | 78.68 378 |
|
| LTVRE_ROB | | 59.60 19 | 66.27 330 | 63.54 334 | 74.45 332 | 84.00 290 | 51.55 358 | 67.08 399 | 83.53 358 | 58.78 351 | 54.94 357 | 80.31 320 | 34.54 357 | 93.23 257 | 40.64 376 | 68.03 285 | 78.58 379 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| JIA-IIPM | | | 66.06 331 | 62.45 341 | 76.88 316 | 81.42 318 | 54.45 347 | 57.49 411 | 88.67 291 | 49.36 385 | 63.86 306 | 46.86 409 | 56.06 198 | 90.25 324 | 49.53 335 | 68.83 278 | 85.95 295 |
|
| Patchmatch-test | | | 65.86 332 | 60.94 347 | 80.62 255 | 83.75 292 | 58.83 310 | 58.91 410 | 75.26 384 | 44.50 398 | 50.95 375 | 77.09 350 | 58.81 163 | 87.90 347 | 35.13 389 | 64.03 319 | 95.12 80 |
|
| UnsupCasMVSNet_eth | | | 65.79 333 | 63.10 336 | 73.88 337 | 70.71 389 | 50.29 367 | 81.09 345 | 89.88 239 | 72.58 190 | 49.25 381 | 74.77 366 | 32.57 364 | 87.43 356 | 55.96 313 | 41.04 394 | 83.90 322 |
|
| test_fmvs2 | | | 65.78 334 | 64.84 323 | 68.60 367 | 66.54 399 | 41.71 399 | 83.27 325 | 69.81 398 | 54.38 370 | 67.91 265 | 84.54 264 | 15.35 404 | 81.22 391 | 75.65 163 | 66.16 297 | 82.88 336 |
|
| dmvs_testset | | | 65.55 335 | 66.45 311 | 62.86 379 | 79.87 334 | 22.35 425 | 76.55 371 | 71.74 393 | 77.42 116 | 55.85 354 | 87.77 222 | 51.39 249 | 80.69 392 | 31.51 404 | 65.92 299 | 85.55 305 |
|
| pmmvs-eth3d | | | 65.53 336 | 62.32 342 | 75.19 326 | 69.39 394 | 59.59 299 | 82.80 333 | 83.43 359 | 62.52 325 | 51.30 373 | 72.49 370 | 32.86 361 | 87.16 358 | 55.32 315 | 50.73 378 | 78.83 377 |
|
| mamv4 | | | 65.18 337 | 67.43 307 | 58.44 383 | 77.88 363 | 49.36 374 | 69.40 391 | 70.99 396 | 48.31 389 | 57.78 348 | 85.53 253 | 59.01 161 | 51.88 421 | 73.67 178 | 64.32 315 | 74.07 391 |
|
| SixPastTwentyTwo | | | 64.92 338 | 61.78 345 | 74.34 334 | 78.74 351 | 49.76 368 | 83.42 324 | 79.51 374 | 62.86 321 | 50.27 376 | 77.35 345 | 30.92 373 | 90.49 322 | 45.89 355 | 47.06 384 | 82.78 337 |
|
| OurMVSNet-221017-0 | | | 64.68 339 | 62.17 343 | 72.21 351 | 76.08 372 | 47.35 381 | 80.67 348 | 81.02 367 | 56.19 365 | 51.60 370 | 79.66 330 | 27.05 384 | 88.56 341 | 53.60 323 | 53.63 372 | 80.71 361 |
|
| test_0402 | | | 64.54 340 | 61.09 346 | 74.92 329 | 84.10 289 | 60.75 275 | 87.95 284 | 79.71 373 | 52.03 375 | 52.41 366 | 77.20 348 | 32.21 366 | 91.64 307 | 23.14 409 | 61.03 344 | 72.36 397 |
|
| testgi | | | 64.48 341 | 62.87 339 | 69.31 364 | 71.24 385 | 40.62 402 | 85.49 308 | 79.92 372 | 65.36 298 | 54.18 360 | 83.49 275 | 23.74 390 | 84.55 369 | 41.60 371 | 60.79 347 | 82.77 338 |
|
| RPSCF | | | 64.24 342 | 61.98 344 | 71.01 359 | 76.10 371 | 45.00 392 | 75.83 376 | 75.94 379 | 46.94 392 | 58.96 339 | 84.59 262 | 31.40 369 | 82.00 388 | 47.76 347 | 60.33 352 | 86.04 292 |
|
| EU-MVSNet | | | 64.01 343 | 63.01 337 | 67.02 373 | 74.40 378 | 38.86 408 | 83.27 325 | 86.19 332 | 45.11 396 | 54.27 359 | 81.15 310 | 36.91 349 | 80.01 394 | 48.79 340 | 57.02 361 | 82.19 349 |
|
| test20.03 | | | 63.83 344 | 62.65 340 | 67.38 372 | 70.58 391 | 39.94 404 | 86.57 304 | 84.17 351 | 63.29 316 | 51.86 369 | 77.30 346 | 37.09 347 | 82.47 384 | 38.87 382 | 54.13 371 | 79.73 369 |
|
| MDA-MVSNet_test_wron | | | 63.78 345 | 60.16 349 | 74.64 330 | 78.15 359 | 60.41 286 | 83.49 321 | 84.03 352 | 56.17 367 | 39.17 404 | 71.59 378 | 37.22 344 | 83.24 381 | 42.87 367 | 48.73 381 | 80.26 366 |
|
| YYNet1 | | | 63.76 346 | 60.14 350 | 74.62 331 | 78.06 360 | 60.19 292 | 83.46 323 | 83.99 356 | 56.18 366 | 39.25 403 | 71.56 379 | 37.18 345 | 83.34 379 | 42.90 366 | 48.70 382 | 80.32 365 |
|
| K. test v3 | | | 63.09 347 | 59.61 352 | 73.53 340 | 76.26 370 | 49.38 373 | 83.27 325 | 77.15 377 | 64.35 304 | 47.77 386 | 72.32 374 | 28.73 378 | 87.79 350 | 49.93 334 | 36.69 401 | 83.41 330 |
|
| COLMAP_ROB |  | 57.96 20 | 62.98 348 | 59.65 351 | 72.98 344 | 81.44 317 | 53.00 352 | 83.75 319 | 75.53 383 | 48.34 388 | 48.81 383 | 81.40 303 | 24.14 388 | 90.30 323 | 32.95 395 | 60.52 349 | 75.65 389 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| Anonymous20240521 | | | 62.09 349 | 59.08 353 | 71.10 358 | 67.19 397 | 48.72 376 | 83.91 318 | 85.23 342 | 50.38 382 | 47.84 385 | 71.22 381 | 20.74 396 | 85.51 366 | 46.47 352 | 58.75 357 | 79.06 374 |
|
| AllTest | | | 61.66 350 | 58.06 355 | 72.46 348 | 79.57 336 | 51.42 360 | 80.17 354 | 68.61 400 | 51.25 379 | 45.88 388 | 81.23 305 | 19.86 400 | 86.58 360 | 38.98 380 | 57.01 362 | 79.39 371 |
|
| UnsupCasMVSNet_bld | | | 61.60 351 | 57.71 356 | 73.29 342 | 68.73 395 | 51.64 357 | 78.61 362 | 89.05 276 | 57.20 360 | 46.11 387 | 61.96 400 | 28.70 379 | 88.60 340 | 50.08 333 | 38.90 399 | 79.63 370 |
|
| MDA-MVSNet-bldmvs | | | 61.54 352 | 57.70 357 | 73.05 343 | 79.53 338 | 57.00 332 | 83.08 329 | 81.23 366 | 57.57 355 | 34.91 408 | 72.45 371 | 32.79 362 | 86.26 362 | 35.81 387 | 41.95 392 | 75.89 388 |
|
| mvs5depth | | | 61.03 353 | 57.65 358 | 71.18 357 | 67.16 398 | 47.04 386 | 72.74 382 | 77.49 375 | 57.47 358 | 60.52 328 | 72.53 369 | 22.84 392 | 88.38 343 | 49.15 337 | 38.94 398 | 78.11 383 |
|
| KD-MVS_self_test | | | 60.87 354 | 58.60 354 | 67.68 370 | 66.13 400 | 39.93 405 | 75.63 378 | 84.70 346 | 57.32 359 | 49.57 379 | 68.45 387 | 29.55 375 | 82.87 382 | 48.09 342 | 47.94 383 | 80.25 367 |
|
| kuosan | | | 60.86 355 | 60.24 348 | 62.71 380 | 81.57 315 | 46.43 388 | 75.70 377 | 85.88 335 | 57.98 354 | 48.95 382 | 69.53 384 | 58.42 166 | 76.53 396 | 28.25 405 | 35.87 403 | 65.15 404 |
|
| TinyColmap | | | 60.32 356 | 56.42 363 | 72.00 355 | 78.78 350 | 53.18 351 | 78.36 365 | 75.64 381 | 52.30 374 | 41.59 402 | 75.82 361 | 14.76 407 | 88.35 344 | 35.84 386 | 54.71 370 | 74.46 390 |
|
| MVS-HIRNet | | | 60.25 357 | 55.55 364 | 74.35 333 | 84.37 284 | 56.57 334 | 71.64 385 | 74.11 386 | 34.44 407 | 45.54 392 | 42.24 415 | 31.11 372 | 89.81 333 | 40.36 377 | 76.10 231 | 76.67 387 |
|
| MIMVSNet1 | | | 60.16 358 | 57.33 359 | 68.67 366 | 69.71 392 | 44.13 394 | 78.92 361 | 84.21 350 | 55.05 369 | 44.63 395 | 71.85 376 | 23.91 389 | 81.54 390 | 32.63 399 | 55.03 368 | 80.35 364 |
|
| PM-MVS | | | 59.40 359 | 56.59 361 | 67.84 368 | 63.63 403 | 41.86 398 | 76.76 370 | 63.22 408 | 59.01 350 | 51.07 374 | 72.27 375 | 11.72 411 | 83.25 380 | 61.34 289 | 50.28 380 | 78.39 381 |
|
| new-patchmatchnet | | | 59.30 360 | 56.48 362 | 67.79 369 | 65.86 401 | 44.19 393 | 82.47 334 | 81.77 365 | 59.94 346 | 43.65 398 | 66.20 391 | 27.67 382 | 81.68 389 | 39.34 379 | 41.40 393 | 77.50 385 |
|
| test_vis1_rt | | | 59.09 361 | 57.31 360 | 64.43 376 | 68.44 396 | 46.02 390 | 83.05 331 | 48.63 420 | 51.96 376 | 49.57 379 | 63.86 396 | 16.30 402 | 80.20 393 | 71.21 202 | 62.79 326 | 67.07 403 |
|
| test_fmvs3 | | | 56.82 362 | 54.86 366 | 62.69 381 | 53.59 414 | 35.47 411 | 75.87 375 | 65.64 405 | 43.91 399 | 55.10 356 | 71.43 380 | 6.91 419 | 74.40 401 | 68.64 227 | 52.63 373 | 78.20 382 |
|
| DSMNet-mixed | | | 56.78 363 | 54.44 367 | 63.79 377 | 63.21 404 | 29.44 420 | 64.43 402 | 64.10 407 | 42.12 404 | 51.32 372 | 71.60 377 | 31.76 367 | 75.04 399 | 36.23 385 | 65.20 306 | 86.87 275 |
|
| pmmvs3 | | | 55.51 364 | 51.50 370 | 67.53 371 | 57.90 412 | 50.93 364 | 80.37 350 | 73.66 387 | 40.63 405 | 44.15 397 | 64.75 394 | 16.30 402 | 78.97 395 | 44.77 361 | 40.98 396 | 72.69 395 |
|
| TDRefinement | | | 55.28 365 | 51.58 369 | 66.39 374 | 59.53 411 | 46.15 389 | 76.23 373 | 72.80 388 | 44.60 397 | 42.49 400 | 76.28 357 | 15.29 405 | 82.39 385 | 33.20 394 | 43.75 389 | 70.62 399 |
|
| dongtai | | | 55.18 366 | 55.46 365 | 54.34 391 | 76.03 373 | 36.88 409 | 76.07 374 | 84.61 348 | 51.28 378 | 43.41 399 | 64.61 395 | 56.56 192 | 67.81 409 | 18.09 414 | 28.50 414 | 58.32 407 |
|
| LF4IMVS | | | 54.01 367 | 52.12 368 | 59.69 382 | 62.41 406 | 39.91 406 | 68.59 393 | 68.28 402 | 42.96 402 | 44.55 396 | 75.18 362 | 14.09 409 | 68.39 408 | 41.36 373 | 51.68 376 | 70.78 398 |
|
| ttmdpeth | | | 53.34 368 | 49.96 371 | 63.45 378 | 62.07 408 | 40.04 403 | 72.06 383 | 65.64 405 | 42.54 403 | 51.88 368 | 77.79 343 | 13.94 410 | 76.48 397 | 32.93 396 | 30.82 412 | 73.84 392 |
|
| MVStest1 | | | 51.35 369 | 46.89 373 | 64.74 375 | 65.06 402 | 51.10 362 | 67.33 398 | 72.58 389 | 30.20 411 | 35.30 406 | 74.82 364 | 27.70 381 | 69.89 406 | 24.44 408 | 24.57 415 | 73.22 393 |
|
| N_pmnet | | | 50.55 370 | 49.11 372 | 54.88 389 | 77.17 366 | 4.02 433 | 84.36 314 | 2.00 431 | 48.59 386 | 45.86 390 | 68.82 385 | 32.22 365 | 82.80 383 | 31.58 402 | 51.38 377 | 77.81 384 |
|
| new_pmnet | | | 49.31 371 | 46.44 374 | 57.93 384 | 62.84 405 | 40.74 401 | 68.47 394 | 62.96 409 | 36.48 406 | 35.09 407 | 57.81 404 | 14.97 406 | 72.18 403 | 32.86 397 | 46.44 385 | 60.88 406 |
|
| mvsany_test3 | | | 48.86 372 | 46.35 375 | 56.41 385 | 46.00 420 | 31.67 416 | 62.26 404 | 47.25 421 | 43.71 400 | 45.54 392 | 68.15 388 | 10.84 412 | 64.44 417 | 57.95 305 | 35.44 406 | 73.13 394 |
|
| test_f | | | 46.58 373 | 43.45 377 | 55.96 386 | 45.18 421 | 32.05 415 | 61.18 405 | 49.49 419 | 33.39 408 | 42.05 401 | 62.48 399 | 7.00 418 | 65.56 413 | 47.08 350 | 43.21 391 | 70.27 400 |
|
| WB-MVS | | | 46.23 374 | 44.94 376 | 50.11 394 | 62.13 407 | 21.23 427 | 76.48 372 | 55.49 413 | 45.89 394 | 35.78 405 | 61.44 402 | 35.54 353 | 72.83 402 | 9.96 421 | 21.75 416 | 56.27 409 |
|
| FPMVS | | | 45.64 375 | 43.10 379 | 53.23 392 | 51.42 417 | 36.46 410 | 64.97 401 | 71.91 392 | 29.13 412 | 27.53 412 | 61.55 401 | 9.83 414 | 65.01 415 | 16.00 418 | 55.58 366 | 58.22 408 |
|
| SSC-MVS | | | 44.51 376 | 43.35 378 | 47.99 398 | 61.01 410 | 18.90 429 | 74.12 380 | 54.36 414 | 43.42 401 | 34.10 409 | 60.02 403 | 34.42 358 | 70.39 405 | 9.14 423 | 19.57 417 | 54.68 410 |
|
| EGC-MVSNET | | | 42.35 377 | 38.09 380 | 55.11 388 | 74.57 376 | 46.62 387 | 71.63 386 | 55.77 412 | 0.04 426 | 0.24 427 | 62.70 398 | 14.24 408 | 74.91 400 | 17.59 415 | 46.06 386 | 43.80 412 |
|
| LCM-MVSNet | | | 40.54 378 | 35.79 383 | 54.76 390 | 36.92 427 | 30.81 417 | 51.41 414 | 69.02 399 | 22.07 414 | 24.63 414 | 45.37 411 | 4.56 423 | 65.81 412 | 33.67 392 | 34.50 407 | 67.67 401 |
|
| APD_test1 | | | 40.50 379 | 37.31 382 | 50.09 395 | 51.88 415 | 35.27 412 | 59.45 409 | 52.59 416 | 21.64 415 | 26.12 413 | 57.80 405 | 4.56 423 | 66.56 411 | 22.64 410 | 39.09 397 | 48.43 411 |
|
| test_vis3_rt | | | 40.46 380 | 37.79 381 | 48.47 397 | 44.49 422 | 33.35 414 | 66.56 400 | 32.84 428 | 32.39 409 | 29.65 410 | 39.13 418 | 3.91 426 | 68.65 407 | 50.17 331 | 40.99 395 | 43.40 413 |
|
| ANet_high | | | 40.27 381 | 35.20 384 | 55.47 387 | 34.74 428 | 34.47 413 | 63.84 403 | 71.56 394 | 48.42 387 | 18.80 417 | 41.08 416 | 9.52 415 | 64.45 416 | 20.18 412 | 8.66 424 | 67.49 402 |
|
| test_method | | | 38.59 382 | 35.16 385 | 48.89 396 | 54.33 413 | 21.35 426 | 45.32 417 | 53.71 415 | 7.41 423 | 28.74 411 | 51.62 407 | 8.70 416 | 52.87 420 | 33.73 391 | 32.89 408 | 72.47 396 |
|
| PMMVS2 | | | 37.93 383 | 33.61 386 | 50.92 393 | 46.31 419 | 24.76 423 | 60.55 408 | 50.05 417 | 28.94 413 | 20.93 415 | 47.59 408 | 4.41 425 | 65.13 414 | 25.14 407 | 18.55 419 | 62.87 405 |
|
| Gipuma |  | | 34.91 384 | 31.44 387 | 45.30 399 | 70.99 388 | 39.64 407 | 19.85 421 | 72.56 390 | 20.10 417 | 16.16 421 | 21.47 422 | 5.08 422 | 71.16 404 | 13.07 419 | 43.70 390 | 25.08 419 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| testf1 | | | 32.77 385 | 29.47 388 | 42.67 401 | 41.89 424 | 30.81 417 | 52.07 412 | 43.45 422 | 15.45 418 | 18.52 418 | 44.82 412 | 2.12 427 | 58.38 418 | 16.05 416 | 30.87 410 | 38.83 414 |
|
| APD_test2 | | | 32.77 385 | 29.47 388 | 42.67 401 | 41.89 424 | 30.81 417 | 52.07 412 | 43.45 422 | 15.45 418 | 18.52 418 | 44.82 412 | 2.12 427 | 58.38 418 | 16.05 416 | 30.87 410 | 38.83 414 |
|
| PMVS |  | 26.43 22 | 31.84 387 | 28.16 390 | 42.89 400 | 25.87 430 | 27.58 421 | 50.92 415 | 49.78 418 | 21.37 416 | 14.17 422 | 40.81 417 | 2.01 429 | 66.62 410 | 9.61 422 | 38.88 400 | 34.49 418 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| E-PMN | | | 24.61 388 | 24.00 392 | 26.45 405 | 43.74 423 | 18.44 430 | 60.86 406 | 39.66 424 | 15.11 420 | 9.53 424 | 22.10 421 | 6.52 420 | 46.94 423 | 8.31 424 | 10.14 421 | 13.98 421 |
|
| MVE |  | 24.84 23 | 24.35 389 | 19.77 395 | 38.09 403 | 34.56 429 | 26.92 422 | 26.57 419 | 38.87 426 | 11.73 422 | 11.37 423 | 27.44 419 | 1.37 430 | 50.42 422 | 11.41 420 | 14.60 420 | 36.93 416 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| EMVS | | | 23.76 390 | 23.20 394 | 25.46 406 | 41.52 426 | 16.90 431 | 60.56 407 | 38.79 427 | 14.62 421 | 8.99 425 | 20.24 424 | 7.35 417 | 45.82 424 | 7.25 425 | 9.46 422 | 13.64 422 |
|
| tmp_tt | | | 22.26 391 | 23.75 393 | 17.80 407 | 5.23 431 | 12.06 432 | 35.26 418 | 39.48 425 | 2.82 425 | 18.94 416 | 44.20 414 | 22.23 394 | 24.64 426 | 36.30 384 | 9.31 423 | 16.69 420 |
|
| cdsmvs_eth3d_5k | | | 19.86 392 | 26.47 391 | 0.00 411 | 0.00 434 | 0.00 436 | 0.00 422 | 93.45 86 | 0.00 429 | 0.00 430 | 95.27 62 | 49.56 266 | 0.00 430 | 0.00 429 | 0.00 427 | 0.00 426 |
|
| wuyk23d | | | 11.30 393 | 10.95 396 | 12.33 408 | 48.05 418 | 19.89 428 | 25.89 420 | 1.92 432 | 3.58 424 | 3.12 426 | 1.37 426 | 0.64 431 | 15.77 427 | 6.23 426 | 7.77 425 | 1.35 423 |
|
| ab-mvs-re | | | 7.91 394 | 10.55 397 | 0.00 411 | 0.00 434 | 0.00 436 | 0.00 422 | 0.00 435 | 0.00 429 | 0.00 430 | 94.95 72 | 0.00 434 | 0.00 430 | 0.00 429 | 0.00 427 | 0.00 426 |
|
| testmvs | | | 7.23 395 | 9.62 398 | 0.06 410 | 0.04 432 | 0.02 435 | 84.98 312 | 0.02 433 | 0.03 427 | 0.18 428 | 1.21 427 | 0.01 433 | 0.02 428 | 0.14 427 | 0.01 426 | 0.13 425 |
|
| test123 | | | 6.92 396 | 9.21 399 | 0.08 409 | 0.03 433 | 0.05 434 | 81.65 340 | 0.01 434 | 0.02 428 | 0.14 429 | 0.85 428 | 0.03 432 | 0.02 428 | 0.12 428 | 0.00 427 | 0.16 424 |
|
| pcd_1.5k_mvsjas | | | 4.46 397 | 5.95 400 | 0.00 411 | 0.00 434 | 0.00 436 | 0.00 422 | 0.00 435 | 0.00 429 | 0.00 430 | 0.00 429 | 53.55 227 | 0.00 430 | 0.00 429 | 0.00 427 | 0.00 426 |
|
| mmdepth | | | 0.00 398 | 0.00 401 | 0.00 411 | 0.00 434 | 0.00 436 | 0.00 422 | 0.00 435 | 0.00 429 | 0.00 430 | 0.00 429 | 0.00 434 | 0.00 430 | 0.00 429 | 0.00 427 | 0.00 426 |
|
| monomultidepth | | | 0.00 398 | 0.00 401 | 0.00 411 | 0.00 434 | 0.00 436 | 0.00 422 | 0.00 435 | 0.00 429 | 0.00 430 | 0.00 429 | 0.00 434 | 0.00 430 | 0.00 429 | 0.00 427 | 0.00 426 |
|
| test_blank | | | 0.00 398 | 0.00 401 | 0.00 411 | 0.00 434 | 0.00 436 | 0.00 422 | 0.00 435 | 0.00 429 | 0.00 430 | 0.00 429 | 0.00 434 | 0.00 430 | 0.00 429 | 0.00 427 | 0.00 426 |
|
| uanet_test | | | 0.00 398 | 0.00 401 | 0.00 411 | 0.00 434 | 0.00 436 | 0.00 422 | 0.00 435 | 0.00 429 | 0.00 430 | 0.00 429 | 0.00 434 | 0.00 430 | 0.00 429 | 0.00 427 | 0.00 426 |
|
| DCPMVS | | | 0.00 398 | 0.00 401 | 0.00 411 | 0.00 434 | 0.00 436 | 0.00 422 | 0.00 435 | 0.00 429 | 0.00 430 | 0.00 429 | 0.00 434 | 0.00 430 | 0.00 429 | 0.00 427 | 0.00 426 |
|
| sosnet-low-res | | | 0.00 398 | 0.00 401 | 0.00 411 | 0.00 434 | 0.00 436 | 0.00 422 | 0.00 435 | 0.00 429 | 0.00 430 | 0.00 429 | 0.00 434 | 0.00 430 | 0.00 429 | 0.00 427 | 0.00 426 |
|
| sosnet | | | 0.00 398 | 0.00 401 | 0.00 411 | 0.00 434 | 0.00 436 | 0.00 422 | 0.00 435 | 0.00 429 | 0.00 430 | 0.00 429 | 0.00 434 | 0.00 430 | 0.00 429 | 0.00 427 | 0.00 426 |
|
| uncertanet | | | 0.00 398 | 0.00 401 | 0.00 411 | 0.00 434 | 0.00 436 | 0.00 422 | 0.00 435 | 0.00 429 | 0.00 430 | 0.00 429 | 0.00 434 | 0.00 430 | 0.00 429 | 0.00 427 | 0.00 426 |
|
| Regformer | | | 0.00 398 | 0.00 401 | 0.00 411 | 0.00 434 | 0.00 436 | 0.00 422 | 0.00 435 | 0.00 429 | 0.00 430 | 0.00 429 | 0.00 434 | 0.00 430 | 0.00 429 | 0.00 427 | 0.00 426 |
|
| uanet | | | 0.00 398 | 0.00 401 | 0.00 411 | 0.00 434 | 0.00 436 | 0.00 422 | 0.00 435 | 0.00 429 | 0.00 430 | 0.00 429 | 0.00 434 | 0.00 430 | 0.00 429 | 0.00 427 | 0.00 426 |
|
| WAC-MVS | | | | | | | 49.45 371 | | | | | | | | 31.56 403 | | |
|
| FOURS1 | | | | | | 93.95 46 | 61.77 253 | 93.96 72 | 91.92 152 | 62.14 329 | 86.57 49 | | | | | | |
|
| MSC_two_6792asdad | | | | | 89.60 9 | 97.31 4 | 73.22 12 | | 95.05 27 | | | | | 99.07 13 | 92.01 28 | 94.77 26 | 96.51 24 |
|
| PC_three_1452 | | | | | | | | | | 80.91 51 | 94.07 2 | 96.83 19 | 83.57 4 | 99.12 5 | 95.70 7 | 97.42 4 | 97.55 4 |
|
| No_MVS | | | | | 89.60 9 | 97.31 4 | 73.22 12 | | 95.05 27 | | | | | 99.07 13 | 92.01 28 | 94.77 26 | 96.51 24 |
|
| test_one_0601 | | | | | | 96.32 18 | 69.74 49 | | 94.18 58 | 71.42 233 | 90.67 20 | 96.85 17 | 74.45 20 | | | | |
|
| eth-test2 | | | | | | 0.00 434 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 434 | | | | | | | | | | | |
|
| ZD-MVS | | | | | | 96.63 9 | 65.50 158 | | 93.50 84 | 70.74 247 | 85.26 65 | 95.19 68 | 64.92 85 | 97.29 78 | 87.51 60 | 93.01 56 | |
|
| RE-MVS-def | | | | 80.48 151 | | 92.02 102 | 58.56 313 | 90.90 213 | 90.45 212 | 62.76 322 | 78.89 133 | 94.46 86 | 49.30 269 | | 78.77 145 | 86.77 132 | 92.28 188 |
|
| IU-MVS | | | | | | 96.46 11 | 69.91 42 | | 95.18 21 | 80.75 52 | 95.28 1 | | | | 92.34 25 | 95.36 14 | 96.47 28 |
|
| OPU-MVS | | | | | 89.97 3 | 97.52 3 | 73.15 14 | 96.89 6 | | | | 97.00 10 | 83.82 2 | 99.15 2 | 95.72 5 | 97.63 3 | 97.62 2 |
|
| test_241102_TWO | | | | | | | | | 94.41 49 | 71.65 222 | 92.07 9 | 97.21 5 | 74.58 18 | 99.11 6 | 92.34 25 | 95.36 14 | 96.59 19 |
|
| test_241102_ONE | | | | | | 96.45 12 | 69.38 55 | | 94.44 47 | 71.65 222 | 92.11 7 | 97.05 8 | 76.79 9 | 99.11 6 | | | |
|
| 9.14 | | | | 87.63 29 | | 93.86 48 | | 94.41 52 | 94.18 58 | 72.76 187 | 86.21 51 | 96.51 26 | 66.64 64 | 97.88 44 | 90.08 42 | 94.04 39 | |
|
| save fliter | | | | | | 93.84 49 | 67.89 95 | 95.05 39 | 92.66 120 | 78.19 98 | | | | | | | |
|
| test_0728_THIRD | | | | | | | | | | 72.48 192 | 90.55 21 | 96.93 12 | 76.24 11 | 99.08 11 | 91.53 33 | 94.99 18 | 96.43 31 |
|
| test_0728_SECOND | | | | | 88.70 18 | 96.45 12 | 70.43 33 | 96.64 10 | 94.37 53 | | | | | 99.15 2 | 91.91 31 | 94.90 22 | 96.51 24 |
|
| test0726 | | | | | | 96.40 15 | 69.99 38 | 96.76 8 | 94.33 55 | 71.92 208 | 91.89 11 | 97.11 7 | 73.77 23 | | | | |
|
| GSMVS | | | | | | | | | | | | | | | | | 94.68 101 |
|
| test_part2 | | | | | | 96.29 19 | 68.16 88 | | | | 90.78 18 | | | | | | |
|
| sam_mvs1 | | | | | | | | | | | | | 57.85 172 | | | | 94.68 101 |
|
| sam_mvs | | | | | | | | | | | | | 54.91 211 | | | | |
|
| ambc | | | | | 69.61 362 | 61.38 409 | 41.35 400 | 49.07 416 | 85.86 337 | | 50.18 378 | 66.40 390 | 10.16 413 | 88.14 346 | 45.73 356 | 44.20 388 | 79.32 373 |
|
| MTGPA |  | | | | | | | | 92.23 134 | | | | | | | | |
|
| test_post1 | | | | | | | | 78.95 360 | | | | 20.70 423 | 53.05 232 | 91.50 315 | 60.43 294 | | |
|
| test_post | | | | | | | | | | | | 23.01 420 | 56.49 193 | 92.67 278 | | | |
|
| patchmatchnet-post | | | | | | | | | | | | 67.62 389 | 57.62 175 | 90.25 324 | | | |
|
| GG-mvs-BLEND | | | | | 86.53 73 | 91.91 110 | 69.67 52 | 75.02 379 | 94.75 34 | | 78.67 140 | 90.85 172 | 77.91 7 | 94.56 211 | 72.25 192 | 93.74 45 | 95.36 65 |
|
| MTMP | | | | | | | | 93.77 86 | 32.52 429 | | | | | | | | |
|
| gm-plane-assit | | | | | | 88.42 193 | 67.04 119 | | | 78.62 94 | | 91.83 155 | | 97.37 72 | 76.57 157 | | |
|
| test9_res | | | | | | | | | | | | | | | 89.41 43 | 94.96 19 | 95.29 70 |
|
| TEST9 | | | | | | 94.18 41 | 67.28 110 | 94.16 60 | 93.51 82 | 71.75 219 | 85.52 60 | 95.33 57 | 68.01 54 | 97.27 82 | | | |
|
| test_8 | | | | | | 94.19 40 | 67.19 112 | 94.15 62 | 93.42 89 | 71.87 213 | 85.38 63 | 95.35 56 | 68.19 52 | 96.95 108 | | | |
|
| agg_prior2 | | | | | | | | | | | | | | | 86.41 73 | 94.75 30 | 95.33 66 |
|
| agg_prior | | | | | | 94.16 43 | 66.97 121 | | 93.31 92 | | 84.49 71 | | | 96.75 118 | | | |
|
| TestCases | | | | | 72.46 348 | 79.57 336 | 51.42 360 | | 68.61 400 | 51.25 379 | 45.88 388 | 81.23 305 | 19.86 400 | 86.58 360 | 38.98 380 | 57.01 362 | 79.39 371 |
|
| test_prior4 | | | | | | | 67.18 114 | 93.92 75 | | | | | | | | | |
|
| test_prior2 | | | | | | | | 95.10 38 | | 75.40 140 | 85.25 66 | 95.61 48 | 67.94 55 | | 87.47 62 | 94.77 26 | |
|
| test_prior | | | | | 86.42 76 | 94.71 35 | 67.35 109 | | 93.10 103 | | | | | 96.84 115 | | | 95.05 83 |
|
| 旧先验2 | | | | | | | | 92.00 166 | | 59.37 349 | 87.54 42 | | | 93.47 254 | 75.39 165 | | |
|
| æ–°å‡ ä½•2 | | | | | | | | 91.41 187 | | | | | | | | | |
|
| æ–°å‡ ä½•1 | | | | | 84.73 134 | 92.32 92 | 64.28 189 | | 91.46 178 | 59.56 348 | 79.77 122 | 92.90 128 | 56.95 185 | 96.57 123 | 63.40 274 | 92.91 58 | 93.34 155 |
|
| 旧先验1 | | | | | | 91.94 107 | 60.74 276 | | 91.50 176 | | | 94.36 90 | 65.23 80 | | | 91.84 71 | 94.55 108 |
|
| æ— å…ˆéªŒ | | | | | | | | 92.71 131 | 92.61 124 | 62.03 330 | | | | 97.01 98 | 66.63 245 | | 93.97 137 |
|
| 原ACMM2 | | | | | | | | 92.01 163 | | | | | | | | | |
|
| 原ACMM1 | | | | | 84.42 148 | 93.21 67 | 64.27 190 | | 93.40 91 | 65.39 297 | 79.51 125 | 92.50 136 | 58.11 171 | 96.69 119 | 65.27 264 | 93.96 40 | 92.32 186 |
|
| test222 | | | | | | 89.77 158 | 61.60 258 | 89.55 255 | 89.42 256 | 56.83 363 | 77.28 153 | 92.43 140 | 52.76 235 | | | 91.14 85 | 93.09 164 |
|
| testdata2 | | | | | | | | | | | | | | 96.09 145 | 61.26 290 | | |
|
| segment_acmp | | | | | | | | | | | | | 65.94 72 | | | | |
|
| testdata | | | | | 81.34 236 | 89.02 179 | 57.72 320 | | 89.84 240 | 58.65 352 | 85.32 64 | 94.09 104 | 57.03 180 | 93.28 256 | 69.34 218 | 90.56 91 | 93.03 167 |
|
| testdata1 | | | | | | | | 89.21 264 | | 77.55 112 | | | | | | | |
|
| test12 | | | | | 87.09 52 | 94.60 36 | 68.86 67 | | 92.91 110 | | 82.67 92 | | 65.44 78 | 97.55 64 | | 93.69 48 | 94.84 93 |
|
| plane_prior7 | | | | | | 86.94 236 | 61.51 259 | | | | | | | | | | |
|
| plane_prior6 | | | | | | 87.23 228 | 62.32 243 | | | | | | 50.66 255 | | | | |
|
| plane_prior5 | | | | | | | | | 91.31 182 | | | | | 95.55 174 | 76.74 155 | 78.53 210 | 88.39 252 |
|
| plane_prior4 | | | | | | | | | | | | 89.14 201 | | | | | |
|
| plane_prior3 | | | | | | | 61.95 251 | | | 79.09 84 | 72.53 203 | | | | | | |
|
| plane_prior2 | | | | | | | | 93.13 113 | | 78.81 91 | | | | | | | |
|
| plane_prior1 | | | | | | 87.15 230 | | | | | | | | | | | |
|
| plane_prior | | | | | | | 62.42 239 | 93.85 79 | | 79.38 76 | | | | | | 78.80 207 | |
|
| n2 | | | | | | | | | 0.00 435 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 435 | | | | | | | | |
|
| door-mid | | | | | | | | | 66.01 404 | | | | | | | | |
|
| lessismore_v0 | | | | | 73.72 339 | 72.93 383 | 47.83 379 | | 61.72 410 | | 45.86 390 | 73.76 367 | 28.63 380 | 89.81 333 | 47.75 348 | 31.37 409 | 83.53 326 |
|
| LGP-MVS_train | | | | | 79.56 283 | 84.31 285 | 59.37 303 | | 89.73 246 | 69.49 260 | 64.86 294 | 88.42 206 | 38.65 328 | 94.30 220 | 72.56 189 | 72.76 252 | 85.01 313 |
|
| test11 | | | | | | | | | 93.01 106 | | | | | | | | |
|
| door | | | | | | | | | 66.57 403 | | | | | | | | |
|
| HQP5-MVS | | | | | | | 63.66 208 | | | | | | | | | | |
|
| HQP-NCC | | | | | | 87.54 220 | | 94.06 65 | | 79.80 67 | 74.18 182 | | | | | | |
|
| ACMP_Plane | | | | | | 87.54 220 | | 94.06 65 | | 79.80 67 | 74.18 182 | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 77.63 152 | | |
|
| HQP4-MVS | | | | | | | | | | | 74.18 182 | | | 95.61 169 | | | 88.63 246 |
|
| HQP3-MVS | | | | | | | | | 91.70 168 | | | | | | | 78.90 205 | |
|
| HQP2-MVS | | | | | | | | | | | | | 51.63 247 | | | | |
|
| NP-MVS | | | | | | 87.41 223 | 63.04 224 | | | | | 90.30 182 | | | | | |
|
| MDTV_nov1_ep13_2view | | | | | | | 59.90 295 | 80.13 355 | | 67.65 280 | 72.79 197 | | 54.33 219 | | 59.83 298 | | 92.58 179 |
|
| MDTV_nov1_ep13 | | | | 72.61 267 | | 89.06 178 | 68.48 76 | 80.33 351 | 90.11 230 | 71.84 215 | 71.81 215 | 75.92 360 | 53.01 233 | 93.92 242 | 48.04 343 | 73.38 247 | |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 71.63 260 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 69.72 269 | |
|
| Test By Simon | | | | | | | | | | | | | 54.21 221 | | | | |
|
| ITE_SJBPF | | | | | 70.43 360 | 74.44 377 | 47.06 385 | | 77.32 376 | 60.16 344 | 54.04 361 | 83.53 273 | 23.30 391 | 84.01 373 | 43.07 364 | 61.58 342 | 80.21 368 |
|
| DeepMVS_CX |  | | | | 34.71 404 | 51.45 416 | 24.73 424 | | 28.48 430 | 31.46 410 | 17.49 420 | 52.75 406 | 5.80 421 | 42.60 425 | 18.18 413 | 19.42 418 | 36.81 417 |
|