This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
MCST-MVS91.08 191.46 389.94 597.66 273.37 1197.13 495.58 1189.33 185.77 5796.26 3272.84 2699.38 192.64 1995.93 997.08 12
MM90.87 291.52 288.92 1692.12 9771.10 2897.02 596.04 688.70 291.57 1496.19 3570.12 3998.91 1796.83 195.06 1696.76 17
DPM-MVS90.70 390.52 891.24 189.68 15476.68 297.29 295.35 1582.87 2291.58 1397.22 379.93 599.10 983.12 10097.64 297.94 1
DVP-MVS++90.53 491.09 588.87 1797.31 469.91 4493.96 7494.37 5272.48 18692.07 896.85 1683.82 299.15 291.53 2997.42 497.55 4
MSP-MVS90.38 591.87 185.88 8992.83 7864.03 19293.06 11594.33 5482.19 3093.65 396.15 3785.89 197.19 8691.02 3397.75 196.43 32
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
CNVR-MVS90.32 690.89 788.61 2396.76 870.65 3296.47 1594.83 3084.83 1389.07 3596.80 1970.86 3599.06 1592.64 1995.71 1096.12 41
iter_conf05_1190.28 790.32 1190.15 294.06 4575.87 597.43 193.31 8987.80 491.61 1296.57 2366.22 6697.38 7090.88 3494.97 1897.22 8
DELS-MVS90.05 890.09 1289.94 593.14 7273.88 1097.01 694.40 5088.32 385.71 5894.91 7274.11 1998.91 1787.26 6495.94 897.03 13
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MVS_030490.01 990.50 988.53 2490.14 14570.94 2996.47 1595.72 1087.33 589.60 3296.26 3268.44 4598.74 2495.82 494.72 3295.90 48
SED-MVS89.94 1090.36 1088.70 1996.45 1269.38 5596.89 794.44 4671.65 21692.11 697.21 476.79 999.11 692.34 2195.36 1397.62 2
DeepPCF-MVS81.17 189.72 1191.38 484.72 13393.00 7558.16 30696.72 1094.41 4886.50 990.25 2597.83 175.46 1498.67 2592.78 1895.49 1297.32 6
patch_mono-289.71 1290.99 685.85 9296.04 2463.70 20295.04 4395.19 1986.74 891.53 1595.15 6573.86 2097.58 5993.38 1492.00 7196.28 38
CANet89.61 1389.99 1388.46 2594.39 3969.71 5196.53 1493.78 6686.89 789.68 3195.78 4265.94 7099.10 992.99 1693.91 4496.58 23
DVP-MVScopyleft89.41 1489.73 1588.45 2696.40 1569.99 4096.64 1194.52 4271.92 20290.55 2196.93 1173.77 2199.08 1191.91 2794.90 2296.29 36
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
HPM-MVS++copyleft89.37 1589.95 1487.64 3695.10 3068.23 8695.24 3594.49 4482.43 2788.90 3696.35 2871.89 3398.63 2688.76 5196.40 696.06 42
bld_raw_dy_0_6489.23 1689.56 1688.21 2993.91 5070.09 3897.16 393.13 9882.64 2590.75 1896.28 3168.30 4997.37 7289.84 4094.07 4097.17 9
NCCC89.07 1789.46 1787.91 3096.60 1069.05 6396.38 1794.64 3984.42 1486.74 4996.20 3466.56 6598.76 2389.03 5094.56 3495.92 47
MVSMamba_pp88.94 1888.82 1989.29 1494.04 4674.01 994.81 5092.74 11385.13 1190.37 2390.13 18368.40 4797.38 7089.42 4294.34 3796.47 30
DPE-MVScopyleft88.77 1989.21 1887.45 4596.26 2067.56 10294.17 6294.15 5968.77 26590.74 1997.27 276.09 1298.49 2990.58 3894.91 2196.30 35
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
mamv488.66 2088.41 2289.39 1394.02 4774.04 894.94 4792.69 11680.90 4990.32 2490.30 17668.33 4897.28 8389.47 4194.74 3196.84 16
SMA-MVScopyleft88.14 2188.29 2587.67 3593.21 6968.72 7193.85 8194.03 6274.18 14991.74 1196.67 2165.61 7498.42 3389.24 4796.08 795.88 49
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
PS-MVSNAJ88.14 2187.61 3289.71 792.06 9876.72 195.75 2293.26 9183.86 1689.55 3396.06 3853.55 21797.89 4391.10 3193.31 5594.54 107
TSAR-MVS + MP.88.11 2388.64 2086.54 7291.73 11168.04 9090.36 22993.55 7982.89 2191.29 1692.89 12372.27 3096.03 14487.99 5594.77 2695.54 58
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
TSAR-MVS + GP.87.96 2488.37 2486.70 6593.51 6365.32 15795.15 3893.84 6578.17 9585.93 5694.80 7575.80 1398.21 3489.38 4488.78 10596.59 21
DeepC-MVS_fast79.48 287.95 2588.00 2887.79 3395.86 2768.32 8095.74 2394.11 6083.82 1783.49 7996.19 3564.53 8898.44 3183.42 9994.88 2596.61 20
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
xiu_mvs_v2_base87.92 2687.38 3689.55 1291.41 12276.43 395.74 2393.12 10083.53 1989.55 3395.95 4053.45 22197.68 5091.07 3292.62 6294.54 107
EPNet87.84 2788.38 2386.23 8293.30 6666.05 13995.26 3494.84 2987.09 688.06 3894.53 8166.79 6297.34 7683.89 9691.68 7695.29 70
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
lupinMVS87.74 2887.77 3087.63 4089.24 16971.18 2596.57 1392.90 10882.70 2487.13 4495.27 5864.99 7995.80 14989.34 4591.80 7495.93 46
test_fmvsm_n_192087.69 2988.50 2185.27 11387.05 22563.55 20993.69 9191.08 18984.18 1590.17 2797.04 867.58 5797.99 3995.72 590.03 9694.26 115
APDe-MVScopyleft87.54 3087.84 2986.65 6696.07 2366.30 13594.84 4993.78 6669.35 25688.39 3796.34 2967.74 5697.66 5490.62 3793.44 5396.01 45
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
fmvsm_l_conf0.5_n87.49 3188.19 2685.39 10786.95 22664.37 18294.30 5988.45 29080.51 5392.70 496.86 1569.98 4097.15 9095.83 388.08 11294.65 101
SD-MVS87.49 3187.49 3487.50 4493.60 5868.82 6993.90 7892.63 12176.86 11487.90 3995.76 4366.17 6797.63 5689.06 4991.48 8096.05 43
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
fmvsm_l_conf0.5_n_a87.44 3388.15 2785.30 11187.10 22364.19 18994.41 5788.14 29980.24 6192.54 596.97 1069.52 4297.17 8795.89 288.51 10894.56 104
dcpmvs_287.37 3487.55 3386.85 5895.04 3268.20 8790.36 22990.66 20179.37 7581.20 9593.67 10774.73 1596.55 12390.88 3492.00 7195.82 50
alignmvs87.28 3586.97 4088.24 2891.30 12471.14 2795.61 2793.56 7879.30 7687.07 4695.25 6068.43 4696.93 10987.87 5684.33 14796.65 19
train_agg87.21 3687.42 3586.60 6894.18 4167.28 10994.16 6393.51 8071.87 20785.52 6095.33 5368.19 5197.27 8489.09 4894.90 2295.25 76
MG-MVS87.11 3786.27 4789.62 897.79 176.27 494.96 4694.49 4478.74 9083.87 7892.94 12164.34 8996.94 10775.19 15694.09 3995.66 53
SF-MVS87.03 3887.09 3886.84 5992.70 8467.45 10793.64 9493.76 6970.78 24086.25 5196.44 2766.98 6097.79 4788.68 5294.56 3495.28 72
CSCG86.87 3986.26 4888.72 1895.05 3170.79 3193.83 8695.33 1668.48 26977.63 14294.35 9073.04 2498.45 3084.92 8693.71 4996.92 15
sasdasda86.85 4086.25 4988.66 2191.80 10971.92 1793.54 9991.71 15880.26 5887.55 4195.25 6063.59 10296.93 10988.18 5384.34 14597.11 10
canonicalmvs86.85 4086.25 4988.66 2191.80 10971.92 1793.54 9991.71 15880.26 5887.55 4195.25 6063.59 10296.93 10988.18 5384.34 14597.11 10
PHI-MVS86.83 4286.85 4486.78 6393.47 6465.55 15395.39 3295.10 2271.77 21285.69 5996.52 2462.07 12298.77 2286.06 7695.60 1196.03 44
SteuartSystems-ACMMP86.82 4386.90 4286.58 7090.42 13966.38 13296.09 1993.87 6477.73 10284.01 7795.66 4563.39 10597.94 4087.40 6293.55 5295.42 59
Skip Steuart: Steuart Systems R&D Blog.
PVSNet_Blended86.73 4486.86 4386.31 8193.76 5367.53 10496.33 1893.61 7682.34 2981.00 10093.08 11763.19 10997.29 7987.08 6791.38 8294.13 122
testing1186.71 4586.44 4687.55 4293.54 6171.35 2293.65 9395.58 1181.36 4380.69 10392.21 14172.30 2996.46 12885.18 8283.43 15494.82 94
test_fmvsmconf_n86.58 4687.17 3784.82 12685.28 25762.55 23394.26 6189.78 23583.81 1887.78 4096.33 3065.33 7696.98 10294.40 1187.55 11794.95 86
jason86.40 4786.17 5187.11 5286.16 24270.54 3495.71 2692.19 13682.00 3284.58 7094.34 9161.86 12495.53 16987.76 5790.89 8895.27 73
jason: jason.
fmvsm_s_conf0.5_n86.39 4886.91 4184.82 12687.36 21863.54 21094.74 5290.02 22882.52 2690.14 2896.92 1362.93 11497.84 4695.28 882.26 16493.07 158
WTY-MVS86.32 4985.81 5887.85 3192.82 8069.37 5795.20 3695.25 1782.71 2381.91 9094.73 7667.93 5597.63 5679.55 12682.25 16596.54 24
MSLP-MVS++86.27 5085.91 5787.35 4792.01 10168.97 6695.04 4392.70 11479.04 8581.50 9396.50 2658.98 15696.78 11583.49 9893.93 4396.29 36
VNet86.20 5185.65 6287.84 3293.92 4969.99 4095.73 2595.94 778.43 9286.00 5593.07 11858.22 16197.00 9885.22 8084.33 14796.52 25
MVS_111021_HR86.19 5285.80 5987.37 4693.17 7169.79 4893.99 7393.76 6979.08 8378.88 12993.99 10162.25 12198.15 3685.93 7791.15 8694.15 121
CS-MVS-test86.14 5387.01 3983.52 17192.63 8659.36 29495.49 2991.92 14580.09 6285.46 6295.53 4961.82 12695.77 15286.77 7193.37 5495.41 60
ACMMP_NAP86.05 5485.80 5986.80 6291.58 11567.53 10491.79 17393.49 8374.93 14084.61 6995.30 5559.42 15097.92 4186.13 7494.92 2094.94 87
testing9986.01 5585.47 6387.63 4093.62 5771.25 2493.47 10595.23 1880.42 5680.60 10591.95 14571.73 3496.50 12680.02 12382.22 16695.13 79
ETV-MVS86.01 5586.11 5285.70 9990.21 14467.02 11893.43 10791.92 14581.21 4584.13 7694.07 10060.93 13495.63 16089.28 4689.81 9794.46 113
testing9185.93 5785.31 6687.78 3493.59 5971.47 2093.50 10295.08 2580.26 5880.53 10691.93 14670.43 3796.51 12580.32 12182.13 16895.37 63
APD-MVScopyleft85.93 5785.99 5585.76 9695.98 2665.21 16093.59 9792.58 12366.54 28286.17 5395.88 4163.83 9597.00 9886.39 7392.94 5995.06 81
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
PAPM85.89 5985.46 6487.18 5088.20 19772.42 1692.41 14592.77 11182.11 3180.34 10993.07 11868.27 5095.02 18378.39 13893.59 5194.09 124
CS-MVS85.80 6086.65 4583.27 17992.00 10258.92 29995.31 3391.86 15079.97 6384.82 6895.40 5162.26 12095.51 17086.11 7592.08 7095.37 63
fmvsm_s_conf0.5_n_a85.75 6186.09 5384.72 13385.73 25163.58 20793.79 8789.32 25381.42 4190.21 2696.91 1462.41 11997.67 5194.48 1080.56 18392.90 164
test_fmvsmconf0.1_n85.71 6286.08 5484.62 14080.83 30962.33 23893.84 8488.81 27883.50 2087.00 4796.01 3963.36 10696.93 10994.04 1287.29 12094.61 103
CDPH-MVS85.71 6285.46 6486.46 7494.75 3467.19 11193.89 7992.83 11070.90 23683.09 8295.28 5663.62 10097.36 7480.63 11894.18 3894.84 91
casdiffmvs_mvgpermissive85.66 6485.18 6887.09 5388.22 19669.35 5893.74 9091.89 14881.47 3780.10 11191.45 15564.80 8496.35 12987.23 6587.69 11595.58 56
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
fmvsm_s_conf0.1_n85.61 6585.93 5684.68 13682.95 29463.48 21294.03 7289.46 24781.69 3589.86 2996.74 2061.85 12597.75 4994.74 982.01 17092.81 166
MGCFI-Net85.59 6685.73 6185.17 11791.41 12262.44 23492.87 12391.31 17579.65 6986.99 4895.14 6662.90 11596.12 13687.13 6684.13 15296.96 14
DeepC-MVS77.85 385.52 6785.24 6786.37 7888.80 17966.64 12692.15 15293.68 7481.07 4676.91 15293.64 10862.59 11798.44 3185.50 7892.84 6194.03 128
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
casdiffmvspermissive85.37 6884.87 7486.84 5988.25 19469.07 6293.04 11791.76 15581.27 4480.84 10292.07 14364.23 9096.06 14284.98 8587.43 11995.39 61
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ZNCC-MVS85.33 6985.08 7086.06 8493.09 7465.65 14993.89 7993.41 8773.75 16079.94 11394.68 7860.61 13798.03 3882.63 10393.72 4894.52 109
MP-MVS-pluss85.24 7085.13 6985.56 10291.42 12065.59 15191.54 18392.51 12574.56 14380.62 10495.64 4659.15 15497.00 9886.94 6993.80 4594.07 126
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
testing22285.18 7184.69 7686.63 6792.91 7769.91 4492.61 13695.80 980.31 5780.38 10892.27 13868.73 4495.19 18075.94 15183.27 15694.81 95
PAPR85.15 7284.47 7787.18 5096.02 2568.29 8191.85 17193.00 10576.59 12179.03 12595.00 6761.59 12797.61 5878.16 13989.00 10495.63 54
MP-MVScopyleft85.02 7384.97 7285.17 11792.60 8764.27 18793.24 11092.27 13073.13 17179.63 11794.43 8461.90 12397.17 8785.00 8492.56 6394.06 127
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
baseline85.01 7484.44 7886.71 6488.33 19168.73 7090.24 23491.82 15481.05 4781.18 9692.50 13063.69 9896.08 14184.45 9086.71 12995.32 68
CHOSEN 1792x268884.98 7583.45 9189.57 1189.94 14975.14 692.07 15892.32 12881.87 3375.68 16188.27 20560.18 14098.60 2780.46 12090.27 9594.96 85
EIA-MVS84.84 7684.88 7384.69 13591.30 12462.36 23793.85 8192.04 14079.45 7279.33 12294.28 9462.42 11896.35 12980.05 12291.25 8595.38 62
fmvsm_s_conf0.1_n_a84.76 7784.84 7584.53 14280.23 31963.50 21192.79 12588.73 28180.46 5489.84 3096.65 2260.96 13397.57 6193.80 1380.14 18592.53 173
HFP-MVS84.73 7884.40 7985.72 9893.75 5565.01 16693.50 10293.19 9572.19 19679.22 12394.93 7059.04 15597.67 5181.55 10992.21 6694.49 112
MVS84.66 7982.86 10790.06 390.93 13074.56 787.91 27995.54 1368.55 26772.35 20294.71 7759.78 14698.90 1981.29 11594.69 3396.74 18
GST-MVS84.63 8084.29 8085.66 10092.82 8065.27 15893.04 11793.13 9873.20 16978.89 12694.18 9759.41 15197.85 4581.45 11192.48 6593.86 136
EC-MVSNet84.53 8185.04 7183.01 18389.34 16161.37 25894.42 5691.09 18777.91 9983.24 8094.20 9658.37 15995.40 17185.35 7991.41 8192.27 183
ACMMPR84.37 8284.06 8185.28 11293.56 6064.37 18293.50 10293.15 9772.19 19678.85 13194.86 7356.69 18197.45 6581.55 10992.20 6794.02 129
region2R84.36 8384.03 8285.36 10993.54 6164.31 18593.43 10792.95 10672.16 19978.86 13094.84 7456.97 17697.53 6381.38 11392.11 6994.24 116
LFMVS84.34 8482.73 10989.18 1594.76 3373.25 1294.99 4591.89 14871.90 20482.16 8993.49 11247.98 26897.05 9382.55 10484.82 14197.25 7
test_yl84.28 8583.16 10087.64 3694.52 3769.24 5995.78 2095.09 2369.19 25981.09 9792.88 12457.00 17497.44 6681.11 11681.76 17296.23 39
DCV-MVSNet84.28 8583.16 10087.64 3694.52 3769.24 5995.78 2095.09 2369.19 25981.09 9792.88 12457.00 17497.44 6681.11 11681.76 17296.23 39
diffmvspermissive84.28 8583.83 8385.61 10187.40 21668.02 9190.88 21389.24 25680.54 5281.64 9292.52 12959.83 14594.52 20687.32 6385.11 13994.29 114
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
HY-MVS76.49 584.28 8583.36 9887.02 5692.22 9467.74 9784.65 30494.50 4379.15 8082.23 8887.93 21466.88 6196.94 10780.53 11982.20 16796.39 34
ETVMVS84.22 8983.71 8485.76 9692.58 8868.25 8592.45 14495.53 1479.54 7179.46 11991.64 15370.29 3894.18 21969.16 20982.76 16294.84 91
MAR-MVS84.18 9083.43 9386.44 7596.25 2165.93 14494.28 6094.27 5674.41 14479.16 12495.61 4753.99 21298.88 2169.62 20393.26 5694.50 111
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MVS_Test84.16 9183.20 9987.05 5591.56 11669.82 4789.99 24392.05 13977.77 10182.84 8386.57 23363.93 9496.09 13874.91 16189.18 10395.25 76
CANet_DTU84.09 9283.52 8685.81 9390.30 14266.82 12191.87 16989.01 27085.27 1086.09 5493.74 10547.71 27296.98 10277.90 14189.78 9993.65 141
ET-MVSNet_ETH3D84.01 9383.15 10286.58 7090.78 13570.89 3094.74 5294.62 4081.44 4058.19 33093.64 10873.64 2392.35 28382.66 10278.66 20096.50 29
PVSNet_Blended_VisFu83.97 9483.50 8885.39 10790.02 14766.59 12993.77 8891.73 15677.43 11077.08 15189.81 18863.77 9796.97 10479.67 12588.21 11092.60 170
MTAPA83.91 9583.38 9785.50 10391.89 10765.16 16281.75 32792.23 13175.32 13580.53 10695.21 6356.06 18997.16 8984.86 8792.55 6494.18 118
XVS83.87 9683.47 9085.05 11993.22 6763.78 19692.92 12192.66 11873.99 15278.18 13594.31 9355.25 19597.41 6879.16 12991.58 7893.95 131
Effi-MVS+83.82 9782.76 10886.99 5789.56 15769.40 5491.35 19586.12 32372.59 18383.22 8192.81 12759.60 14896.01 14681.76 10887.80 11495.56 57
test_fmvsmvis_n_192083.80 9883.48 8984.77 13082.51 29663.72 20091.37 19383.99 34381.42 4177.68 14195.74 4458.37 15997.58 5993.38 1486.87 12393.00 161
EI-MVSNet-Vis-set83.77 9983.67 8584.06 15892.79 8363.56 20891.76 17694.81 3179.65 6977.87 13994.09 9863.35 10797.90 4279.35 12779.36 19290.74 209
MVSFormer83.75 10082.88 10686.37 7889.24 16971.18 2589.07 26190.69 19865.80 28787.13 4494.34 9164.99 7992.67 27072.83 17291.80 7495.27 73
CP-MVS83.71 10183.40 9684.65 13793.14 7263.84 19494.59 5492.28 12971.03 23477.41 14594.92 7155.21 19896.19 13381.32 11490.70 9093.91 133
test_fmvsmconf0.01_n83.70 10283.52 8684.25 15575.26 36061.72 25292.17 15187.24 31282.36 2884.91 6795.41 5055.60 19396.83 11492.85 1785.87 13594.21 117
baseline283.68 10383.42 9584.48 14587.37 21766.00 14190.06 23895.93 879.71 6869.08 23890.39 17477.92 696.28 13178.91 13381.38 17691.16 205
iter_conf0583.65 10483.44 9284.28 15386.17 24168.61 7595.08 4189.82 23480.90 4978.08 13790.49 17169.08 4395.22 17984.29 9177.07 21689.02 231
thisisatest051583.41 10582.49 11386.16 8389.46 16068.26 8393.54 9994.70 3674.31 14775.75 15990.92 16372.62 2796.52 12469.64 20181.50 17593.71 139
PVSNet_BlendedMVS83.38 10683.43 9383.22 18093.76 5367.53 10494.06 6793.61 7679.13 8181.00 10085.14 24863.19 10997.29 7987.08 6773.91 23784.83 305
test250683.29 10782.92 10584.37 14988.39 18963.18 21992.01 16191.35 17477.66 10478.49 13491.42 15664.58 8795.09 18273.19 16889.23 10194.85 88
PGM-MVS83.25 10882.70 11084.92 12292.81 8264.07 19190.44 22592.20 13571.28 22877.23 14894.43 8455.17 19997.31 7879.33 12891.38 8293.37 147
HPM-MVScopyleft83.25 10882.95 10484.17 15692.25 9362.88 22890.91 21091.86 15070.30 24577.12 14993.96 10256.75 17996.28 13182.04 10691.34 8493.34 148
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
EI-MVSNet-UG-set83.14 11082.96 10383.67 16992.28 9263.19 21891.38 19294.68 3779.22 7876.60 15493.75 10462.64 11697.76 4878.07 14078.01 20390.05 218
VDD-MVS83.06 11181.81 12286.81 6190.86 13367.70 9895.40 3191.50 16975.46 13281.78 9192.34 13740.09 31097.13 9186.85 7082.04 16995.60 55
h-mvs3383.01 11282.56 11284.35 15089.34 16162.02 24492.72 12893.76 6981.45 3882.73 8592.25 14060.11 14197.13 9187.69 5862.96 31493.91 133
PAPM_NR82.97 11381.84 12186.37 7894.10 4466.76 12487.66 28392.84 10969.96 24974.07 18093.57 11063.10 11297.50 6470.66 19690.58 9294.85 88
mPP-MVS82.96 11482.44 11484.52 14392.83 7862.92 22692.76 12691.85 15271.52 22475.61 16494.24 9553.48 22096.99 10178.97 13290.73 8993.64 142
SR-MVS82.81 11582.58 11183.50 17493.35 6561.16 26192.23 15091.28 17964.48 29681.27 9495.28 5653.71 21695.86 14882.87 10188.77 10693.49 145
DP-MVS Recon82.73 11681.65 12385.98 8697.31 467.06 11595.15 3891.99 14269.08 26276.50 15693.89 10354.48 20798.20 3570.76 19485.66 13792.69 167
CLD-MVS82.73 11682.35 11683.86 16287.90 20467.65 10095.45 3092.18 13785.06 1272.58 19592.27 13852.46 22895.78 15084.18 9279.06 19588.16 246
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
sss82.71 11882.38 11583.73 16689.25 16659.58 28992.24 14994.89 2877.96 9779.86 11492.38 13556.70 18097.05 9377.26 14480.86 18094.55 105
3Dnovator73.91 682.69 11980.82 13488.31 2789.57 15671.26 2392.60 13794.39 5178.84 8767.89 25992.48 13348.42 26398.52 2868.80 21494.40 3695.15 78
MVSTER82.47 12082.05 11783.74 16492.68 8569.01 6491.90 16893.21 9279.83 6472.14 20385.71 24574.72 1694.72 19475.72 15272.49 24887.50 251
TESTMET0.1,182.41 12181.98 12083.72 16788.08 19863.74 19892.70 13093.77 6879.30 7677.61 14387.57 22058.19 16294.08 22373.91 16786.68 13093.33 150
CostFormer82.33 12281.15 12785.86 9189.01 17468.46 7782.39 32493.01 10375.59 13080.25 11081.57 28972.03 3294.96 18679.06 13177.48 21194.16 120
API-MVS82.28 12380.53 14187.54 4396.13 2270.59 3393.63 9591.04 19365.72 28975.45 16692.83 12656.11 18898.89 2064.10 25889.75 10093.15 154
IB-MVS77.80 482.18 12480.46 14387.35 4789.14 17170.28 3795.59 2895.17 2178.85 8670.19 22685.82 24370.66 3697.67 5172.19 18366.52 28894.09 124
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
xiu_mvs_v1_base_debu82.16 12581.12 12885.26 11486.42 23468.72 7192.59 13990.44 20873.12 17284.20 7394.36 8638.04 32395.73 15484.12 9386.81 12491.33 198
xiu_mvs_v1_base82.16 12581.12 12885.26 11486.42 23468.72 7192.59 13990.44 20873.12 17284.20 7394.36 8638.04 32395.73 15484.12 9386.81 12491.33 198
xiu_mvs_v1_base_debi82.16 12581.12 12885.26 11486.42 23468.72 7192.59 13990.44 20873.12 17284.20 7394.36 8638.04 32395.73 15484.12 9386.81 12491.33 198
3Dnovator+73.60 782.10 12880.60 14086.60 6890.89 13266.80 12395.20 3693.44 8574.05 15167.42 26592.49 13249.46 25397.65 5570.80 19391.68 7695.33 66
MVS_111021_LR82.02 12981.52 12483.51 17388.42 18762.88 22889.77 24688.93 27476.78 11775.55 16593.10 11550.31 24595.38 17383.82 9787.02 12292.26 184
PMMVS81.98 13082.04 11881.78 21689.76 15356.17 32591.13 20690.69 19877.96 9780.09 11293.57 11046.33 28294.99 18581.41 11287.46 11894.17 119
baseline181.84 13181.03 13284.28 15391.60 11466.62 12791.08 20791.66 16381.87 3374.86 17191.67 15269.98 4094.92 18971.76 18664.75 30291.29 203
EPP-MVSNet81.79 13281.52 12482.61 19288.77 18060.21 28193.02 11993.66 7568.52 26872.90 19090.39 17472.19 3194.96 18674.93 16079.29 19492.67 168
test_vis1_n_192081.66 13382.01 11980.64 24382.24 29855.09 33394.76 5186.87 31481.67 3684.40 7294.63 7938.17 32094.67 19891.98 2683.34 15592.16 187
APD-MVS_3200maxsize81.64 13481.32 12682.59 19392.36 9058.74 30191.39 19091.01 19463.35 30579.72 11694.62 8051.82 23196.14 13579.71 12487.93 11392.89 165
ACMMPcopyleft81.49 13580.67 13783.93 16191.71 11262.90 22792.13 15392.22 13471.79 21171.68 21093.49 11250.32 24496.96 10578.47 13784.22 15191.93 190
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CDS-MVSNet81.43 13680.74 13583.52 17186.26 23864.45 17692.09 15690.65 20275.83 12873.95 18289.81 18863.97 9392.91 26071.27 18982.82 15993.20 153
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
mvs_anonymous81.36 13779.99 14885.46 10490.39 14168.40 7886.88 29490.61 20374.41 14470.31 22584.67 25363.79 9692.32 28473.13 16985.70 13695.67 52
ECVR-MVScopyleft81.29 13880.38 14484.01 16088.39 18961.96 24692.56 14286.79 31677.66 10476.63 15391.42 15646.34 28195.24 17874.36 16589.23 10194.85 88
thisisatest053081.15 13980.07 14584.39 14888.26 19365.63 15091.40 18894.62 4071.27 22970.93 21689.18 19472.47 2896.04 14365.62 24776.89 21891.49 194
Fast-Effi-MVS+81.14 14080.01 14784.51 14490.24 14365.86 14594.12 6689.15 26273.81 15975.37 16788.26 20657.26 16994.53 20566.97 23284.92 14093.15 154
HQP-MVS81.14 14080.64 13882.64 19187.54 21263.66 20594.06 6791.70 16179.80 6574.18 17690.30 17651.63 23595.61 16277.63 14278.90 19688.63 237
hse-mvs281.12 14281.11 13181.16 23086.52 23357.48 31489.40 25491.16 18281.45 3882.73 8590.49 17160.11 14194.58 19987.69 5860.41 34191.41 197
SR-MVS-dyc-post81.06 14380.70 13682.15 20792.02 9958.56 30390.90 21190.45 20562.76 31278.89 12694.46 8251.26 23995.61 16278.77 13586.77 12792.28 180
HyFIR lowres test81.03 14479.56 15585.43 10587.81 20868.11 8990.18 23590.01 22970.65 24272.95 18986.06 24163.61 10194.50 20775.01 15979.75 18993.67 140
nrg03080.93 14579.86 15084.13 15783.69 28368.83 6893.23 11191.20 18075.55 13175.06 16988.22 20963.04 11394.74 19381.88 10766.88 28588.82 235
Vis-MVSNetpermissive80.92 14679.98 14983.74 16488.48 18461.80 24893.44 10688.26 29873.96 15577.73 14091.76 14949.94 24994.76 19165.84 24490.37 9494.65 101
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test111180.84 14780.02 14683.33 17787.87 20560.76 26992.62 13586.86 31577.86 10075.73 16091.39 15846.35 28094.70 19772.79 17488.68 10794.52 109
UWE-MVS80.81 14881.01 13380.20 25389.33 16357.05 31991.91 16794.71 3575.67 12975.01 17089.37 19263.13 11191.44 30667.19 22982.80 16192.12 188
131480.70 14978.95 16685.94 8887.77 21067.56 10287.91 27992.55 12472.17 19867.44 26493.09 11650.27 24697.04 9671.68 18887.64 11693.23 152
tpmrst80.57 15079.14 16584.84 12590.10 14668.28 8281.70 32889.72 24277.63 10675.96 15879.54 32164.94 8192.71 26775.43 15477.28 21493.55 143
1112_ss80.56 15179.83 15182.77 18788.65 18160.78 26792.29 14788.36 29272.58 18472.46 19994.95 6865.09 7893.42 24766.38 23877.71 20594.10 123
VDDNet80.50 15278.26 17487.21 4986.19 23969.79 4894.48 5591.31 17560.42 33079.34 12190.91 16438.48 31896.56 12282.16 10581.05 17895.27 73
BH-w/o80.49 15379.30 16284.05 15990.83 13464.36 18493.60 9689.42 25074.35 14669.09 23790.15 18255.23 19795.61 16264.61 25586.43 13392.17 186
test_cas_vis1_n_192080.45 15480.61 13979.97 26278.25 34557.01 32194.04 7188.33 29379.06 8482.81 8493.70 10638.65 31591.63 29890.82 3679.81 18791.27 204
TAMVS80.37 15579.45 15883.13 18285.14 26063.37 21391.23 20190.76 19774.81 14272.65 19388.49 20060.63 13692.95 25569.41 20581.95 17193.08 157
HQP_MVS80.34 15679.75 15282.12 20986.94 22762.42 23593.13 11391.31 17578.81 8872.53 19689.14 19650.66 24295.55 16776.74 14578.53 20188.39 243
SDMVSNet80.26 15778.88 16784.40 14789.25 16667.63 10185.35 30093.02 10276.77 11870.84 21787.12 22747.95 26996.09 13885.04 8374.55 22889.48 228
HPM-MVS_fast80.25 15879.55 15782.33 19991.55 11759.95 28491.32 19789.16 26165.23 29374.71 17393.07 11847.81 27195.74 15374.87 16388.23 10991.31 202
ab-mvs80.18 15978.31 17385.80 9488.44 18665.49 15683.00 32192.67 11771.82 21077.36 14685.01 24954.50 20496.59 11976.35 14975.63 22595.32 68
IS-MVSNet80.14 16079.41 15982.33 19987.91 20360.08 28391.97 16588.27 29672.90 17971.44 21391.73 15161.44 12893.66 24262.47 27286.53 13193.24 151
test-LLR80.10 16179.56 15581.72 21886.93 22961.17 25992.70 13091.54 16671.51 22575.62 16286.94 22953.83 21392.38 28072.21 18184.76 14391.60 192
PVSNet73.49 880.05 16278.63 16984.31 15190.92 13164.97 16792.47 14391.05 19279.18 7972.43 20090.51 17037.05 33594.06 22568.06 21886.00 13493.90 135
UA-Net80.02 16379.65 15381.11 23289.33 16357.72 31086.33 29789.00 27377.44 10981.01 9989.15 19559.33 15295.90 14761.01 27984.28 14989.73 224
test-mter79.96 16479.38 16181.72 21886.93 22961.17 25992.70 13091.54 16673.85 15775.62 16286.94 22949.84 25192.38 28072.21 18184.76 14391.60 192
QAPM79.95 16577.39 19187.64 3689.63 15571.41 2193.30 10993.70 7365.34 29267.39 26791.75 15047.83 27098.96 1657.71 29589.81 9792.54 172
UGNet79.87 16678.68 16883.45 17689.96 14861.51 25592.13 15390.79 19676.83 11678.85 13186.33 23738.16 32196.17 13467.93 22187.17 12192.67 168
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
tpm279.80 16777.95 18085.34 11088.28 19268.26 8381.56 33091.42 17270.11 24777.59 14480.50 30767.40 5894.26 21667.34 22677.35 21293.51 144
thres20079.66 16878.33 17283.66 17092.54 8965.82 14793.06 11596.31 374.90 14173.30 18688.66 19859.67 14795.61 16247.84 33378.67 19989.56 227
CPTT-MVS79.59 16979.16 16480.89 24191.54 11859.80 28692.10 15588.54 28960.42 33072.96 18893.28 11448.27 26492.80 26478.89 13486.50 13290.06 217
Test_1112_low_res79.56 17078.60 17082.43 19588.24 19560.39 27892.09 15687.99 30372.10 20071.84 20687.42 22264.62 8693.04 25165.80 24577.30 21393.85 137
tttt051779.50 17178.53 17182.41 19887.22 22061.43 25789.75 24794.76 3269.29 25767.91 25788.06 21372.92 2595.63 16062.91 26873.90 23890.16 216
FIs79.47 17279.41 15979.67 26985.95 24559.40 29191.68 18093.94 6378.06 9668.96 24288.28 20466.61 6491.77 29566.20 24174.99 22787.82 248
BH-RMVSNet79.46 17377.65 18384.89 12391.68 11365.66 14893.55 9888.09 30172.93 17673.37 18591.12 16246.20 28496.12 13656.28 30085.61 13892.91 163
PCF-MVS73.15 979.29 17477.63 18484.29 15286.06 24365.96 14387.03 29091.10 18669.86 25169.79 23390.64 16657.54 16896.59 11964.37 25782.29 16390.32 214
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
Vis-MVSNet (Re-imp)79.24 17579.57 15478.24 28988.46 18552.29 34490.41 22789.12 26474.24 14869.13 23691.91 14765.77 7290.09 32159.00 29188.09 11192.33 177
114514_t79.17 17677.67 18283.68 16895.32 2965.53 15492.85 12491.60 16563.49 30367.92 25690.63 16846.65 27795.72 15867.01 23183.54 15389.79 222
FA-MVS(test-final)79.12 17777.23 19384.81 12990.54 13763.98 19381.35 33391.71 15871.09 23374.85 17282.94 27052.85 22497.05 9367.97 21981.73 17493.41 146
VPA-MVSNet79.03 17878.00 17882.11 21285.95 24564.48 17593.22 11294.66 3875.05 13974.04 18184.95 25052.17 23093.52 24474.90 16267.04 28488.32 245
OPM-MVS79.00 17978.09 17681.73 21783.52 28663.83 19591.64 18290.30 21576.36 12471.97 20589.93 18746.30 28395.17 18175.10 15777.70 20686.19 278
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
EI-MVSNet78.97 18078.22 17581.25 22785.33 25562.73 23189.53 25193.21 9272.39 19172.14 20390.13 18360.99 13194.72 19467.73 22372.49 24886.29 275
AdaColmapbinary78.94 18177.00 19784.76 13196.34 1765.86 14592.66 13487.97 30562.18 31770.56 21992.37 13643.53 29897.35 7564.50 25682.86 15891.05 207
GeoE78.90 18277.43 18783.29 17888.95 17562.02 24492.31 14686.23 32170.24 24671.34 21489.27 19354.43 20894.04 22863.31 26480.81 18293.81 138
miper_enhance_ethall78.86 18377.97 17981.54 22288.00 20265.17 16191.41 18689.15 26275.19 13768.79 24583.98 26167.17 5992.82 26272.73 17565.30 29386.62 272
VPNet78.82 18477.53 18682.70 18984.52 27066.44 13193.93 7692.23 13180.46 5472.60 19488.38 20349.18 25793.13 25072.47 17963.97 31188.55 240
EPNet_dtu78.80 18579.26 16377.43 29788.06 19949.71 35791.96 16691.95 14477.67 10376.56 15591.28 16058.51 15890.20 31956.37 29980.95 17992.39 175
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
tfpn200view978.79 18677.43 18782.88 18592.21 9564.49 17392.05 15996.28 473.48 16671.75 20888.26 20660.07 14395.32 17445.16 34477.58 20888.83 233
TR-MVS78.77 18777.37 19282.95 18490.49 13860.88 26593.67 9290.07 22470.08 24874.51 17491.37 15945.69 28795.70 15960.12 28580.32 18492.29 179
thres40078.68 18877.43 18782.43 19592.21 9564.49 17392.05 15996.28 473.48 16671.75 20888.26 20660.07 14395.32 17445.16 34477.58 20887.48 252
BH-untuned78.68 18877.08 19483.48 17589.84 15063.74 19892.70 13088.59 28771.57 22266.83 27488.65 19951.75 23395.39 17259.03 29084.77 14291.32 201
OMC-MVS78.67 19077.91 18180.95 23985.76 25057.40 31688.49 27088.67 28473.85 15772.43 20092.10 14249.29 25694.55 20472.73 17577.89 20490.91 208
tpm78.58 19177.03 19583.22 18085.94 24764.56 17183.21 31891.14 18578.31 9373.67 18379.68 31964.01 9292.09 28966.07 24271.26 25893.03 159
OpenMVScopyleft70.45 1178.54 19275.92 21186.41 7785.93 24871.68 1992.74 12792.51 12566.49 28364.56 28891.96 14443.88 29798.10 3754.61 30590.65 9189.44 230
EPMVS78.49 19375.98 21086.02 8591.21 12669.68 5280.23 34291.20 18075.25 13672.48 19878.11 32954.65 20393.69 24157.66 29683.04 15794.69 97
AUN-MVS78.37 19477.43 18781.17 22986.60 23257.45 31589.46 25391.16 18274.11 15074.40 17590.49 17155.52 19494.57 20174.73 16460.43 34091.48 195
thres100view90078.37 19477.01 19682.46 19491.89 10763.21 21791.19 20596.33 172.28 19470.45 22287.89 21560.31 13895.32 17445.16 34477.58 20888.83 233
GA-MVS78.33 19676.23 20684.65 13783.65 28466.30 13591.44 18490.14 22276.01 12670.32 22484.02 26042.50 30294.72 19470.98 19177.00 21792.94 162
cascas78.18 19775.77 21385.41 10687.14 22269.11 6192.96 12091.15 18466.71 28170.47 22086.07 24037.49 32996.48 12770.15 19979.80 18890.65 210
UniMVSNet_NR-MVSNet78.15 19877.55 18579.98 26084.46 27260.26 27992.25 14893.20 9477.50 10868.88 24386.61 23266.10 6892.13 28766.38 23862.55 31887.54 250
thres600view778.00 19976.66 20182.03 21491.93 10463.69 20391.30 19896.33 172.43 18970.46 22187.89 21560.31 13894.92 18942.64 35676.64 21987.48 252
FC-MVSNet-test77.99 20078.08 17777.70 29284.89 26555.51 33090.27 23293.75 7276.87 11366.80 27587.59 21965.71 7390.23 31862.89 26973.94 23687.37 255
Anonymous20240521177.96 20175.33 22085.87 9093.73 5664.52 17294.85 4885.36 32962.52 31576.11 15790.18 18029.43 36397.29 7968.51 21677.24 21595.81 51
cl2277.94 20276.78 19981.42 22487.57 21164.93 16990.67 22088.86 27772.45 18867.63 26382.68 27464.07 9192.91 26071.79 18465.30 29386.44 273
XXY-MVS77.94 20276.44 20382.43 19582.60 29564.44 17792.01 16191.83 15373.59 16570.00 22985.82 24354.43 20894.76 19169.63 20268.02 27888.10 247
MS-PatchMatch77.90 20476.50 20282.12 20985.99 24469.95 4391.75 17892.70 11473.97 15462.58 30984.44 25741.11 30795.78 15063.76 26192.17 6880.62 352
FMVSNet377.73 20576.04 20982.80 18691.20 12768.99 6591.87 16991.99 14273.35 16867.04 27083.19 26956.62 18292.14 28659.80 28769.34 26587.28 259
miper_ehance_all_eth77.60 20676.44 20381.09 23685.70 25264.41 18090.65 22188.64 28672.31 19267.37 26882.52 27564.77 8592.64 27370.67 19565.30 29386.24 277
UniMVSNet (Re)77.58 20776.78 19979.98 26084.11 27860.80 26691.76 17693.17 9676.56 12269.93 23284.78 25263.32 10892.36 28264.89 25462.51 32086.78 267
PatchmatchNetpermissive77.46 20874.63 22685.96 8789.55 15870.35 3679.97 34789.55 24572.23 19570.94 21576.91 34057.03 17292.79 26554.27 30781.17 17794.74 96
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
v2v48277.42 20975.65 21682.73 18880.38 31567.13 11491.85 17190.23 21975.09 13869.37 23483.39 26753.79 21594.44 20871.77 18565.00 29986.63 271
CHOSEN 280x42077.35 21076.95 19878.55 28487.07 22462.68 23269.71 37582.95 35068.80 26471.48 21287.27 22666.03 6984.00 36276.47 14882.81 16088.95 232
PS-MVSNAJss77.26 21176.31 20580.13 25580.64 31359.16 29690.63 22491.06 19172.80 18068.58 24984.57 25553.55 21793.96 23372.97 17071.96 25287.27 260
gg-mvs-nofinetune77.18 21274.31 23385.80 9491.42 12068.36 7971.78 36994.72 3449.61 37077.12 14945.92 39377.41 893.98 23267.62 22493.16 5795.05 82
WB-MVSnew77.14 21376.18 20880.01 25986.18 24063.24 21691.26 19994.11 6071.72 21473.52 18487.29 22545.14 29293.00 25356.98 29779.42 19083.80 313
MVP-Stereo77.12 21476.23 20679.79 26781.72 30366.34 13489.29 25590.88 19570.56 24362.01 31282.88 27149.34 25494.13 22065.55 24993.80 4578.88 366
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
sd_testset77.08 21575.37 21882.20 20589.25 16662.11 24382.06 32589.09 26676.77 11870.84 21787.12 22741.43 30695.01 18467.23 22874.55 22889.48 228
dmvs_re76.93 21675.36 21981.61 22087.78 20960.71 27280.00 34687.99 30379.42 7369.02 24089.47 19146.77 27594.32 21063.38 26374.45 23189.81 221
X-MVStestdata76.86 21774.13 23785.05 11993.22 6763.78 19692.92 12192.66 11873.99 15278.18 13510.19 40855.25 19597.41 6879.16 12991.58 7893.95 131
DU-MVS76.86 21775.84 21279.91 26382.96 29260.26 27991.26 19991.54 16676.46 12368.88 24386.35 23556.16 18692.13 28766.38 23862.55 31887.35 257
mvsmamba76.85 21975.71 21580.25 25183.07 29159.16 29691.44 18480.64 35776.84 11567.95 25586.33 23746.17 28594.24 21776.06 15072.92 24487.36 256
Anonymous2024052976.84 22074.15 23684.88 12491.02 12864.95 16893.84 8491.09 18753.57 35973.00 18787.42 22235.91 33997.32 7769.14 21072.41 25092.36 176
c3_l76.83 22175.47 21780.93 24085.02 26364.18 19090.39 22888.11 30071.66 21566.65 27681.64 28763.58 10492.56 27469.31 20762.86 31586.04 283
WR-MVS76.76 22275.74 21479.82 26684.60 26862.27 24192.60 13792.51 12576.06 12567.87 26085.34 24656.76 17890.24 31762.20 27363.69 31386.94 265
v114476.73 22374.88 22382.27 20180.23 31966.60 12891.68 18090.21 22173.69 16269.06 23981.89 28252.73 22694.40 20969.21 20865.23 29685.80 289
IterMVS-LS76.49 22475.18 22280.43 24684.49 27162.74 23090.64 22288.80 27972.40 19065.16 28381.72 28560.98 13292.27 28567.74 22264.65 30486.29 275
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
V4276.46 22574.55 22982.19 20679.14 33367.82 9590.26 23389.42 25073.75 16068.63 24881.89 28251.31 23894.09 22271.69 18764.84 30084.66 306
v14876.19 22674.47 23181.36 22580.05 32164.44 17791.75 17890.23 21973.68 16367.13 26980.84 30255.92 19193.86 23968.95 21261.73 32985.76 292
Effi-MVS+-dtu76.14 22775.28 22178.72 28383.22 28855.17 33289.87 24487.78 30675.42 13367.98 25481.43 29145.08 29392.52 27675.08 15871.63 25388.48 241
cl____76.07 22874.67 22480.28 24985.15 25961.76 25090.12 23688.73 28171.16 23065.43 28081.57 28961.15 12992.95 25566.54 23562.17 32286.13 281
DIV-MVS_self_test76.07 22874.67 22480.28 24985.14 26061.75 25190.12 23688.73 28171.16 23065.42 28181.60 28861.15 12992.94 25966.54 23562.16 32486.14 279
FMVSNet276.07 22874.01 23982.26 20388.85 17667.66 9991.33 19691.61 16470.84 23765.98 27782.25 27848.03 26592.00 29158.46 29268.73 27387.10 262
v14419276.05 23174.03 23882.12 20979.50 32766.55 13091.39 19089.71 24372.30 19368.17 25281.33 29451.75 23394.03 23067.94 22064.19 30685.77 290
NR-MVSNet76.05 23174.59 22780.44 24582.96 29262.18 24290.83 21591.73 15677.12 11260.96 31586.35 23559.28 15391.80 29460.74 28061.34 33387.35 257
v119275.98 23373.92 24082.15 20779.73 32366.24 13791.22 20289.75 23772.67 18268.49 25081.42 29249.86 25094.27 21467.08 23065.02 29885.95 286
FE-MVS75.97 23473.02 25084.82 12689.78 15165.56 15277.44 35891.07 19064.55 29572.66 19279.85 31746.05 28696.69 11754.97 30480.82 18192.21 185
eth_miper_zixun_eth75.96 23574.40 23280.66 24284.66 26763.02 22189.28 25688.27 29671.88 20665.73 27881.65 28659.45 14992.81 26368.13 21760.53 33886.14 279
TranMVSNet+NR-MVSNet75.86 23674.52 23079.89 26482.44 29760.64 27591.37 19391.37 17376.63 12067.65 26286.21 23952.37 22991.55 30061.84 27560.81 33687.48 252
SCA75.82 23772.76 25385.01 12186.63 23170.08 3981.06 33589.19 25971.60 22170.01 22877.09 33845.53 28890.25 31460.43 28273.27 24094.68 98
LPG-MVS_test75.82 23774.58 22879.56 27384.31 27559.37 29290.44 22589.73 24069.49 25464.86 28488.42 20138.65 31594.30 21272.56 17772.76 24585.01 303
GBi-Net75.65 23973.83 24181.10 23388.85 17665.11 16390.01 24090.32 21170.84 23767.04 27080.25 31248.03 26591.54 30159.80 28769.34 26586.64 268
test175.65 23973.83 24181.10 23388.85 17665.11 16390.01 24090.32 21170.84 23767.04 27080.25 31248.03 26591.54 30159.80 28769.34 26586.64 268
v192192075.63 24173.49 24682.06 21379.38 32866.35 13391.07 20989.48 24671.98 20167.99 25381.22 29749.16 25993.90 23666.56 23464.56 30585.92 288
ACMP71.68 1075.58 24274.23 23579.62 27184.97 26459.64 28790.80 21689.07 26870.39 24462.95 30587.30 22438.28 31993.87 23772.89 17171.45 25685.36 299
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
v875.35 24373.26 24881.61 22080.67 31266.82 12189.54 25089.27 25571.65 21663.30 30180.30 31154.99 20194.06 22567.33 22762.33 32183.94 311
tpm cat175.30 24472.21 26284.58 14188.52 18267.77 9678.16 35688.02 30261.88 32268.45 25176.37 34460.65 13594.03 23053.77 31074.11 23491.93 190
PLCcopyleft68.80 1475.23 24573.68 24479.86 26592.93 7658.68 30290.64 22288.30 29460.90 32764.43 29290.53 16942.38 30394.57 20156.52 29876.54 22086.33 274
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
v124075.21 24672.98 25181.88 21579.20 33066.00 14190.75 21889.11 26571.63 22067.41 26681.22 29747.36 27393.87 23765.46 25064.72 30385.77 290
Fast-Effi-MVS+-dtu75.04 24773.37 24780.07 25680.86 30859.52 29091.20 20485.38 32871.90 20465.20 28284.84 25141.46 30592.97 25466.50 23772.96 24387.73 249
dp75.01 24872.09 26383.76 16389.28 16566.22 13879.96 34889.75 23771.16 23067.80 26177.19 33751.81 23292.54 27550.39 31871.44 25792.51 174
TAPA-MVS70.22 1274.94 24973.53 24579.17 27890.40 14052.07 34589.19 25989.61 24462.69 31470.07 22792.67 12848.89 26294.32 21038.26 37079.97 18691.12 206
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
v1074.77 25072.54 25981.46 22380.33 31766.71 12589.15 26089.08 26770.94 23563.08 30479.86 31652.52 22794.04 22865.70 24662.17 32283.64 314
XVG-OURS-SEG-HR74.70 25173.08 24979.57 27278.25 34557.33 31780.49 33887.32 30963.22 30768.76 24690.12 18644.89 29491.59 29970.55 19774.09 23589.79 222
ACMM69.62 1374.34 25272.73 25579.17 27884.25 27757.87 30890.36 22989.93 23063.17 30965.64 27986.04 24237.79 32794.10 22165.89 24371.52 25585.55 295
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CNLPA74.31 25372.30 26180.32 24791.49 11961.66 25390.85 21480.72 35656.67 35163.85 29690.64 16646.75 27690.84 30953.79 30975.99 22488.47 242
XVG-OURS74.25 25472.46 26079.63 27078.45 34357.59 31380.33 34087.39 30863.86 30068.76 24689.62 19040.50 30991.72 29669.00 21174.25 23389.58 225
test_fmvs174.07 25573.69 24375.22 31578.91 33747.34 36989.06 26374.69 37163.68 30279.41 12091.59 15424.36 37287.77 33985.22 8076.26 22290.55 213
CVMVSNet74.04 25674.27 23473.33 33085.33 25543.94 38089.53 25188.39 29154.33 35870.37 22390.13 18349.17 25884.05 36061.83 27679.36 19291.99 189
Baseline_NR-MVSNet73.99 25772.83 25277.48 29680.78 31059.29 29591.79 17384.55 33668.85 26368.99 24180.70 30356.16 18692.04 29062.67 27060.98 33581.11 346
pmmvs473.92 25871.81 26780.25 25179.17 33165.24 15987.43 28687.26 31167.64 27563.46 29983.91 26248.96 26191.53 30462.94 26765.49 29283.96 310
D2MVS73.80 25972.02 26479.15 28079.15 33262.97 22288.58 26990.07 22472.94 17559.22 32478.30 32642.31 30492.70 26965.59 24872.00 25181.79 341
CR-MVSNet73.79 26070.82 27582.70 18983.15 28967.96 9270.25 37284.00 34173.67 16469.97 23072.41 35857.82 16589.48 32552.99 31373.13 24190.64 211
test_djsdf73.76 26172.56 25877.39 29877.00 35453.93 33889.07 26190.69 19865.80 28763.92 29482.03 28143.14 30192.67 27072.83 17268.53 27485.57 294
pmmvs573.35 26271.52 26978.86 28278.64 34160.61 27691.08 20786.90 31367.69 27263.32 30083.64 26344.33 29690.53 31162.04 27466.02 29085.46 297
Anonymous2023121173.08 26370.39 27981.13 23190.62 13663.33 21491.40 18890.06 22651.84 36464.46 29180.67 30536.49 33794.07 22463.83 26064.17 30785.98 285
tt080573.07 26470.73 27680.07 25678.37 34457.05 31987.78 28192.18 13761.23 32667.04 27086.49 23431.35 35794.58 19965.06 25367.12 28388.57 239
miper_lstm_enhance73.05 26571.73 26877.03 30283.80 28158.32 30581.76 32688.88 27569.80 25261.01 31478.23 32857.19 17087.51 34365.34 25159.53 34385.27 302
jajsoiax73.05 26571.51 27077.67 29377.46 35154.83 33488.81 26590.04 22769.13 26162.85 30783.51 26531.16 35892.75 26670.83 19269.80 26185.43 298
LCM-MVSNet-Re72.93 26771.84 26676.18 31188.49 18348.02 36480.07 34570.17 38173.96 15552.25 35480.09 31549.98 24888.24 33367.35 22584.23 15092.28 180
pm-mvs172.89 26871.09 27278.26 28879.10 33457.62 31290.80 21689.30 25467.66 27362.91 30681.78 28449.11 26092.95 25560.29 28458.89 34684.22 309
tpmvs72.88 26969.76 28582.22 20490.98 12967.05 11678.22 35588.30 29463.10 31064.35 29374.98 35155.09 20094.27 21443.25 35069.57 26485.34 300
test0.0.03 172.76 27072.71 25672.88 33480.25 31847.99 36591.22 20289.45 24871.51 22562.51 31087.66 21853.83 21385.06 35650.16 32067.84 28185.58 293
UniMVSNet_ETH3D72.74 27170.53 27879.36 27578.62 34256.64 32385.01 30289.20 25863.77 30164.84 28684.44 25734.05 34691.86 29363.94 25970.89 26089.57 226
mvs_tets72.71 27271.11 27177.52 29477.41 35254.52 33688.45 27189.76 23668.76 26662.70 30883.26 26829.49 36292.71 26770.51 19869.62 26385.34 300
FMVSNet172.71 27269.91 28381.10 23383.60 28565.11 16390.01 24090.32 21163.92 29963.56 29880.25 31236.35 33891.54 30154.46 30666.75 28686.64 268
test_fmvs1_n72.69 27471.92 26574.99 31871.15 37347.08 37187.34 28875.67 36663.48 30478.08 13791.17 16120.16 38387.87 33684.65 8875.57 22690.01 219
IterMVS72.65 27570.83 27378.09 29082.17 29962.96 22387.64 28486.28 31971.56 22360.44 31778.85 32445.42 29086.66 34763.30 26561.83 32684.65 307
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
myMVS_eth3d72.58 27672.74 25472.10 34287.87 20549.45 35988.07 27589.01 27072.91 17763.11 30288.10 21063.63 9985.54 35232.73 38469.23 26881.32 344
PatchMatch-RL72.06 27769.98 28078.28 28789.51 15955.70 32983.49 31183.39 34861.24 32563.72 29782.76 27234.77 34393.03 25253.37 31277.59 20786.12 282
PVSNet_068.08 1571.81 27868.32 29482.27 20184.68 26662.31 24088.68 26790.31 21475.84 12757.93 33580.65 30637.85 32694.19 21869.94 20029.05 39890.31 215
MIMVSNet71.64 27968.44 29281.23 22881.97 30264.44 17773.05 36888.80 27969.67 25364.59 28774.79 35232.79 34987.82 33753.99 30876.35 22191.42 196
test_vis1_n71.63 28070.73 27674.31 32569.63 37947.29 37086.91 29272.11 37663.21 30875.18 16890.17 18120.40 38185.76 35184.59 8974.42 23289.87 220
IterMVS-SCA-FT71.55 28169.97 28176.32 30981.48 30460.67 27487.64 28485.99 32466.17 28559.50 32278.88 32345.53 28883.65 36462.58 27161.93 32584.63 308
v7n71.31 28268.65 28979.28 27676.40 35660.77 26886.71 29589.45 24864.17 29858.77 32978.24 32744.59 29593.54 24357.76 29461.75 32883.52 317
anonymousdsp71.14 28369.37 28776.45 30872.95 36854.71 33584.19 30688.88 27561.92 32162.15 31179.77 31838.14 32291.44 30668.90 21367.45 28283.21 323
F-COLMAP70.66 28468.44 29277.32 29986.37 23755.91 32788.00 27786.32 31856.94 34957.28 33888.07 21233.58 34792.49 27751.02 31668.37 27583.55 315
WR-MVS_H70.59 28569.94 28272.53 33681.03 30751.43 34887.35 28792.03 14167.38 27660.23 31980.70 30355.84 19283.45 36646.33 34058.58 34882.72 330
CP-MVSNet70.50 28669.91 28372.26 33980.71 31151.00 35187.23 28990.30 21567.84 27159.64 32182.69 27350.23 24782.30 37451.28 31559.28 34483.46 319
RPMNet70.42 28765.68 30684.63 13983.15 28967.96 9270.25 37290.45 20546.83 37869.97 23065.10 37756.48 18595.30 17735.79 37573.13 24190.64 211
testing370.38 28870.83 27369.03 35385.82 24943.93 38190.72 21990.56 20468.06 27060.24 31886.82 23164.83 8384.12 35826.33 39164.10 30879.04 365
tfpnnormal70.10 28967.36 29778.32 28683.45 28760.97 26488.85 26492.77 11164.85 29460.83 31678.53 32543.52 29993.48 24531.73 38761.70 33080.52 353
TransMVSNet (Re)70.07 29067.66 29677.31 30080.62 31459.13 29891.78 17584.94 33365.97 28660.08 32080.44 30850.78 24191.87 29248.84 32645.46 37680.94 348
CL-MVSNet_self_test69.92 29168.09 29575.41 31473.25 36755.90 32890.05 23989.90 23169.96 24961.96 31376.54 34151.05 24087.64 34049.51 32450.59 36882.70 332
DP-MVS69.90 29266.48 29980.14 25495.36 2862.93 22489.56 24876.11 36450.27 36957.69 33685.23 24739.68 31195.73 15433.35 38071.05 25981.78 342
PS-CasMVS69.86 29369.13 28872.07 34380.35 31650.57 35387.02 29189.75 23767.27 27759.19 32582.28 27746.58 27882.24 37550.69 31759.02 34583.39 321
Syy-MVS69.65 29469.52 28670.03 34987.87 20543.21 38288.07 27589.01 27072.91 17763.11 30288.10 21045.28 29185.54 35222.07 39569.23 26881.32 344
MSDG69.54 29565.73 30580.96 23885.11 26263.71 20184.19 30683.28 34956.95 34854.50 34584.03 25931.50 35596.03 14442.87 35469.13 27083.14 325
PEN-MVS69.46 29668.56 29072.17 34179.27 32949.71 35786.90 29389.24 25667.24 28059.08 32682.51 27647.23 27483.54 36548.42 32857.12 34983.25 322
LS3D69.17 29766.40 30177.50 29591.92 10556.12 32685.12 30180.37 35846.96 37656.50 34087.51 22137.25 33093.71 24032.52 38679.40 19182.68 333
PatchT69.11 29865.37 31080.32 24782.07 30163.68 20467.96 38187.62 30750.86 36769.37 23465.18 37657.09 17188.53 33141.59 35966.60 28788.74 236
KD-MVS_2432*160069.03 29966.37 30277.01 30385.56 25361.06 26281.44 33190.25 21767.27 27758.00 33376.53 34254.49 20587.63 34148.04 33035.77 39082.34 336
miper_refine_blended69.03 29966.37 30277.01 30385.56 25361.06 26281.44 33190.25 21767.27 27758.00 33376.53 34254.49 20587.63 34148.04 33035.77 39082.34 336
mvsany_test168.77 30168.56 29069.39 35173.57 36645.88 37680.93 33660.88 39459.65 33671.56 21190.26 17943.22 30075.05 38474.26 16662.70 31787.25 261
ACMH63.93 1768.62 30264.81 31280.03 25885.22 25863.25 21587.72 28284.66 33560.83 32851.57 35779.43 32227.29 36894.96 18641.76 35764.84 30081.88 340
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
EG-PatchMatch MVS68.55 30365.41 30977.96 29178.69 34062.93 22489.86 24589.17 26060.55 32950.27 36277.73 33222.60 37794.06 22547.18 33672.65 24776.88 374
ADS-MVSNet68.54 30464.38 31981.03 23788.06 19966.90 12068.01 37984.02 34057.57 34364.48 28969.87 36838.68 31389.21 32740.87 36167.89 27986.97 263
DTE-MVSNet68.46 30567.33 29871.87 34577.94 34949.00 36286.16 29888.58 28866.36 28458.19 33082.21 27946.36 27983.87 36344.97 34755.17 35682.73 329
our_test_368.29 30664.69 31479.11 28178.92 33564.85 17088.40 27285.06 33160.32 33252.68 35276.12 34640.81 30889.80 32444.25 34955.65 35482.67 334
Patchmatch-RL test68.17 30764.49 31779.19 27771.22 37253.93 33870.07 37471.54 38069.22 25856.79 33962.89 38056.58 18388.61 32869.53 20452.61 36395.03 84
XVG-ACMP-BASELINE68.04 30865.53 30875.56 31374.06 36552.37 34378.43 35285.88 32562.03 31958.91 32881.21 29920.38 38291.15 30860.69 28168.18 27683.16 324
FMVSNet568.04 30865.66 30775.18 31784.43 27357.89 30783.54 31086.26 32061.83 32353.64 35073.30 35537.15 33385.08 35548.99 32561.77 32782.56 335
ppachtmachnet_test67.72 31063.70 32179.77 26878.92 33566.04 14088.68 26782.90 35160.11 33455.45 34275.96 34739.19 31290.55 31039.53 36552.55 36482.71 331
ACMH+65.35 1667.65 31164.55 31576.96 30584.59 26957.10 31888.08 27480.79 35558.59 34253.00 35181.09 30126.63 37092.95 25546.51 33861.69 33180.82 349
pmmvs667.57 31264.76 31376.00 31272.82 37053.37 34088.71 26686.78 31753.19 36057.58 33778.03 33035.33 34292.41 27955.56 30254.88 35882.21 338
Anonymous2023120667.53 31365.78 30472.79 33574.95 36147.59 36788.23 27387.32 30961.75 32458.07 33277.29 33537.79 32787.29 34542.91 35263.71 31283.48 318
Patchmtry67.53 31363.93 32078.34 28582.12 30064.38 18168.72 37684.00 34148.23 37559.24 32372.41 35857.82 16589.27 32646.10 34156.68 35381.36 343
USDC67.43 31564.51 31676.19 31077.94 34955.29 33178.38 35385.00 33273.17 17048.36 36980.37 30921.23 37992.48 27852.15 31464.02 31080.81 350
ADS-MVSNet266.90 31663.44 32377.26 30188.06 19960.70 27368.01 37975.56 36857.57 34364.48 28969.87 36838.68 31384.10 35940.87 36167.89 27986.97 263
CMPMVSbinary48.56 2166.77 31764.41 31873.84 32770.65 37650.31 35477.79 35785.73 32745.54 38044.76 37982.14 28035.40 34190.14 32063.18 26674.54 23081.07 347
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
OpenMVS_ROBcopyleft61.12 1866.39 31862.92 32676.80 30776.51 35557.77 30989.22 25783.41 34755.48 35553.86 34977.84 33126.28 37193.95 23434.90 37768.76 27278.68 368
LTVRE_ROB59.60 1966.27 31963.54 32274.45 32284.00 28051.55 34767.08 38283.53 34558.78 34054.94 34480.31 31034.54 34493.23 24940.64 36368.03 27778.58 369
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
JIA-IIPM66.06 32062.45 32976.88 30681.42 30654.45 33757.49 39488.67 28449.36 37163.86 29546.86 39256.06 18990.25 31449.53 32368.83 27185.95 286
Patchmatch-test65.86 32160.94 33580.62 24483.75 28258.83 30058.91 39375.26 37044.50 38350.95 36177.09 33858.81 15787.90 33535.13 37664.03 30995.12 80
UnsupCasMVSNet_eth65.79 32263.10 32473.88 32670.71 37550.29 35581.09 33489.88 23272.58 18449.25 36774.77 35332.57 35187.43 34455.96 30141.04 38383.90 312
test_fmvs265.78 32364.84 31168.60 35566.54 38441.71 38483.27 31569.81 38254.38 35767.91 25784.54 25615.35 38881.22 37975.65 15366.16 28982.88 326
dmvs_testset65.55 32466.45 30062.86 36579.87 32222.35 40876.55 36071.74 37877.42 11155.85 34187.77 21751.39 23780.69 38031.51 39065.92 29185.55 295
pmmvs-eth3d65.53 32562.32 33075.19 31669.39 38059.59 28882.80 32283.43 34662.52 31551.30 35972.49 35632.86 34887.16 34655.32 30350.73 36778.83 367
SixPastTwentyTwo64.92 32661.78 33374.34 32478.74 33949.76 35683.42 31479.51 36162.86 31150.27 36277.35 33330.92 36090.49 31245.89 34247.06 37382.78 327
OurMVSNet-221017-064.68 32762.17 33172.21 34076.08 35947.35 36880.67 33781.02 35456.19 35251.60 35679.66 32027.05 36988.56 33053.60 31153.63 36180.71 351
test_040264.54 32861.09 33474.92 31984.10 27960.75 27087.95 27879.71 36052.03 36252.41 35377.20 33632.21 35391.64 29723.14 39361.03 33472.36 382
testgi64.48 32962.87 32769.31 35271.24 37140.62 38785.49 29979.92 35965.36 29154.18 34783.49 26623.74 37584.55 35741.60 35860.79 33782.77 328
RPSCF64.24 33061.98 33271.01 34776.10 35845.00 37775.83 36475.94 36546.94 37758.96 32784.59 25431.40 35682.00 37647.76 33460.33 34286.04 283
EU-MVSNet64.01 33163.01 32567.02 36174.40 36438.86 39283.27 31586.19 32245.11 38154.27 34681.15 30036.91 33680.01 38248.79 32757.02 35082.19 339
test20.0363.83 33262.65 32867.38 36070.58 37739.94 38886.57 29684.17 33863.29 30651.86 35577.30 33437.09 33482.47 37238.87 36954.13 36079.73 359
MDA-MVSNet_test_wron63.78 33360.16 33674.64 32078.15 34760.41 27783.49 31184.03 33956.17 35439.17 38871.59 36437.22 33183.24 36942.87 35448.73 37080.26 356
YYNet163.76 33460.14 33774.62 32178.06 34860.19 28283.46 31383.99 34356.18 35339.25 38771.56 36537.18 33283.34 36742.90 35348.70 37180.32 355
K. test v363.09 33559.61 33973.53 32976.26 35749.38 36183.27 31577.15 36364.35 29747.77 37172.32 36028.73 36487.79 33849.93 32236.69 38983.41 320
COLMAP_ROBcopyleft57.96 2062.98 33659.65 33872.98 33381.44 30553.00 34283.75 30975.53 36948.34 37448.81 36881.40 29324.14 37390.30 31332.95 38260.52 33975.65 377
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
Anonymous2024052162.09 33759.08 34071.10 34667.19 38348.72 36383.91 30885.23 33050.38 36847.84 37071.22 36720.74 38085.51 35446.47 33958.75 34779.06 364
AllTest61.66 33858.06 34272.46 33779.57 32451.42 34980.17 34368.61 38451.25 36545.88 37381.23 29519.86 38486.58 34838.98 36757.01 35179.39 361
UnsupCasMVSNet_bld61.60 33957.71 34373.29 33168.73 38151.64 34678.61 35189.05 26957.20 34746.11 37261.96 38328.70 36588.60 32950.08 32138.90 38779.63 360
MDA-MVSNet-bldmvs61.54 34057.70 34473.05 33279.53 32657.00 32283.08 31981.23 35357.57 34334.91 39172.45 35732.79 34986.26 35035.81 37441.95 38175.89 376
KD-MVS_self_test60.87 34158.60 34167.68 35866.13 38539.93 38975.63 36584.70 33457.32 34649.57 36568.45 37129.55 36182.87 37048.09 32947.94 37280.25 357
TinyColmap60.32 34256.42 34972.00 34478.78 33853.18 34178.36 35475.64 36752.30 36141.59 38675.82 34914.76 39188.35 33235.84 37354.71 35974.46 378
MVS-HIRNet60.25 34355.55 35074.35 32384.37 27456.57 32471.64 37074.11 37234.44 39145.54 37742.24 39831.11 35989.81 32240.36 36476.10 22376.67 375
MIMVSNet160.16 34457.33 34568.67 35469.71 37844.13 37978.92 35084.21 33755.05 35644.63 38071.85 36223.91 37481.54 37832.63 38555.03 35780.35 354
PM-MVS59.40 34556.59 34767.84 35663.63 38741.86 38376.76 35963.22 39159.01 33951.07 36072.27 36111.72 39483.25 36861.34 27750.28 36978.39 370
new-patchmatchnet59.30 34656.48 34867.79 35765.86 38644.19 37882.47 32381.77 35259.94 33543.65 38366.20 37527.67 36781.68 37739.34 36641.40 38277.50 373
test_vis1_rt59.09 34757.31 34664.43 36368.44 38246.02 37583.05 32048.63 40351.96 36349.57 36563.86 37916.30 38680.20 38171.21 19062.79 31667.07 388
test_fmvs356.82 34854.86 35162.69 36653.59 39735.47 39475.87 36365.64 38943.91 38455.10 34371.43 3666.91 40274.40 38768.64 21552.63 36278.20 371
DSMNet-mixed56.78 34954.44 35263.79 36463.21 38829.44 40364.43 38564.10 39042.12 38851.32 35871.60 36331.76 35475.04 38536.23 37265.20 29786.87 266
pmmvs355.51 35051.50 35567.53 35957.90 39550.93 35280.37 33973.66 37340.63 38944.15 38264.75 37816.30 38678.97 38344.77 34840.98 38572.69 380
TDRefinement55.28 35151.58 35466.39 36259.53 39446.15 37476.23 36272.80 37444.60 38242.49 38476.28 34515.29 38982.39 37333.20 38143.75 37870.62 384
LF4IMVS54.01 35252.12 35359.69 36762.41 39039.91 39068.59 37768.28 38642.96 38744.55 38175.18 35014.09 39368.39 39341.36 36051.68 36570.78 383
N_pmnet50.55 35349.11 35654.88 37377.17 3534.02 41684.36 3052.00 41448.59 37245.86 37568.82 37032.22 35282.80 37131.58 38851.38 36677.81 372
new_pmnet49.31 35446.44 35757.93 36862.84 38940.74 38668.47 37862.96 39236.48 39035.09 39057.81 38714.97 39072.18 38932.86 38346.44 37460.88 390
mvsany_test348.86 35546.35 35856.41 36946.00 40331.67 39962.26 38747.25 40443.71 38545.54 37768.15 37210.84 39564.44 40157.95 29335.44 39273.13 379
test_f46.58 35643.45 36055.96 37045.18 40432.05 39861.18 38849.49 40233.39 39242.05 38562.48 3827.00 40165.56 39747.08 33743.21 38070.27 385
WB-MVS46.23 35744.94 35950.11 37762.13 39121.23 41076.48 36155.49 39645.89 37935.78 38961.44 38535.54 34072.83 3889.96 40421.75 39956.27 392
FPMVS45.64 35843.10 36253.23 37551.42 40036.46 39364.97 38471.91 37729.13 39527.53 39561.55 3849.83 39765.01 39916.00 40155.58 35558.22 391
SSC-MVS44.51 35943.35 36147.99 38161.01 39318.90 41274.12 36754.36 39743.42 38634.10 39260.02 38634.42 34570.39 3919.14 40619.57 40054.68 393
EGC-MVSNET42.35 36038.09 36355.11 37274.57 36246.62 37371.63 37155.77 3950.04 4090.24 41062.70 38114.24 39274.91 38617.59 39846.06 37543.80 395
LCM-MVSNet40.54 36135.79 36654.76 37436.92 41030.81 40051.41 39769.02 38322.07 39724.63 39745.37 3944.56 40665.81 39633.67 37934.50 39367.67 386
APD_test140.50 36237.31 36550.09 37851.88 39835.27 39559.45 39252.59 39921.64 39826.12 39657.80 3884.56 40666.56 39522.64 39439.09 38648.43 394
test_vis3_rt40.46 36337.79 36448.47 38044.49 40533.35 39766.56 38332.84 41132.39 39329.65 39339.13 4013.91 40968.65 39250.17 31940.99 38443.40 396
ANet_high40.27 36435.20 36755.47 37134.74 41134.47 39663.84 38671.56 37948.42 37318.80 40041.08 3999.52 39864.45 40020.18 3968.66 40767.49 387
test_method38.59 36535.16 36848.89 37954.33 39621.35 40945.32 40053.71 3987.41 40628.74 39451.62 3908.70 39952.87 40433.73 37832.89 39472.47 381
PMMVS237.93 36633.61 36950.92 37646.31 40224.76 40660.55 39150.05 40028.94 39620.93 39847.59 3914.41 40865.13 39825.14 39218.55 40262.87 389
Gipumacopyleft34.91 36731.44 37045.30 38270.99 37439.64 39119.85 40472.56 37520.10 40016.16 40421.47 4055.08 40571.16 39013.07 40243.70 37925.08 402
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
testf132.77 36829.47 37142.67 38441.89 40730.81 40052.07 39543.45 40515.45 40118.52 40144.82 3952.12 41058.38 40216.05 39930.87 39638.83 397
APD_test232.77 36829.47 37142.67 38441.89 40730.81 40052.07 39543.45 40515.45 40118.52 40144.82 3952.12 41058.38 40216.05 39930.87 39638.83 397
PMVScopyleft26.43 2231.84 37028.16 37342.89 38325.87 41327.58 40450.92 39849.78 40121.37 39914.17 40540.81 4002.01 41266.62 3949.61 40538.88 38834.49 401
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
E-PMN24.61 37124.00 37526.45 38843.74 40618.44 41360.86 38939.66 40715.11 4039.53 40722.10 4046.52 40346.94 4068.31 40710.14 40413.98 404
MVEpermissive24.84 2324.35 37219.77 37838.09 38634.56 41226.92 40526.57 40238.87 40911.73 40511.37 40627.44 4021.37 41350.42 40511.41 40314.60 40336.93 399
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
EMVS23.76 37323.20 37725.46 38941.52 40916.90 41460.56 39038.79 41014.62 4048.99 40820.24 4077.35 40045.82 4077.25 4089.46 40513.64 405
tmp_tt22.26 37423.75 37617.80 3905.23 41412.06 41535.26 40139.48 4082.82 40818.94 39944.20 39722.23 37824.64 40936.30 3719.31 40616.69 403
cdsmvs_eth3d_5k19.86 37526.47 3740.00 3940.00 4170.00 4190.00 40593.45 840.00 4120.00 41395.27 5849.56 2520.00 4130.00 4120.00 4100.00 409
wuyk23d11.30 37610.95 37912.33 39148.05 40119.89 41125.89 4031.92 4153.58 4073.12 4091.37 4090.64 41415.77 4106.23 4097.77 4081.35 406
ab-mvs-re7.91 37710.55 3800.00 3940.00 4170.00 4190.00 4050.00 4180.00 4120.00 41394.95 680.00 4170.00 4130.00 4120.00 4100.00 409
testmvs7.23 3789.62 3810.06 3930.04 4150.02 41884.98 3030.02 4160.03 4100.18 4111.21 4100.01 4160.02 4110.14 4100.01 4090.13 408
test1236.92 3799.21 3820.08 3920.03 4160.05 41781.65 3290.01 4170.02 4110.14 4120.85 4110.03 4150.02 4110.12 4110.00 4100.16 407
pcd_1.5k_mvsjas4.46 3805.95 3830.00 3940.00 4170.00 4190.00 4050.00 4180.00 4120.00 4130.00 41253.55 2170.00 4130.00 4120.00 4100.00 409
test_blank0.00 3810.00 3840.00 3940.00 4170.00 4190.00 4050.00 4180.00 4120.00 4130.00 4120.00 4170.00 4130.00 4120.00 4100.00 409
uanet_test0.00 3810.00 3840.00 3940.00 4170.00 4190.00 4050.00 4180.00 4120.00 4130.00 4120.00 4170.00 4130.00 4120.00 4100.00 409
DCPMVS0.00 3810.00 3840.00 3940.00 4170.00 4190.00 4050.00 4180.00 4120.00 4130.00 4120.00 4170.00 4130.00 4120.00 4100.00 409
sosnet-low-res0.00 3810.00 3840.00 3940.00 4170.00 4190.00 4050.00 4180.00 4120.00 4130.00 4120.00 4170.00 4130.00 4120.00 4100.00 409
sosnet0.00 3810.00 3840.00 3940.00 4170.00 4190.00 4050.00 4180.00 4120.00 4130.00 4120.00 4170.00 4130.00 4120.00 4100.00 409
uncertanet0.00 3810.00 3840.00 3940.00 4170.00 4190.00 4050.00 4180.00 4120.00 4130.00 4120.00 4170.00 4130.00 4120.00 4100.00 409
Regformer0.00 3810.00 3840.00 3940.00 4170.00 4190.00 4050.00 4180.00 4120.00 4130.00 4120.00 4170.00 4130.00 4120.00 4100.00 409
uanet0.00 3810.00 3840.00 3940.00 4170.00 4190.00 4050.00 4180.00 4120.00 4130.00 4120.00 4170.00 4130.00 4120.00 4100.00 409
WAC-MVS49.45 35931.56 389
FOURS193.95 4861.77 24993.96 7491.92 14562.14 31886.57 50
MSC_two_6792asdad89.60 997.31 473.22 1395.05 2699.07 1392.01 2494.77 2696.51 26
PC_three_145280.91 4894.07 296.83 1883.57 499.12 595.70 797.42 497.55 4
No_MVS89.60 997.31 473.22 1395.05 2699.07 1392.01 2494.77 2696.51 26
test_one_060196.32 1869.74 5094.18 5771.42 22790.67 2096.85 1674.45 18
eth-test20.00 417
eth-test0.00 417
ZD-MVS96.63 965.50 15593.50 8270.74 24185.26 6595.19 6464.92 8297.29 7987.51 6093.01 58
RE-MVS-def80.48 14292.02 9958.56 30390.90 21190.45 20562.76 31278.89 12694.46 8249.30 25578.77 13586.77 12792.28 180
IU-MVS96.46 1169.91 4495.18 2080.75 5195.28 192.34 2195.36 1396.47 30
OPU-MVS89.97 497.52 373.15 1596.89 797.00 983.82 299.15 295.72 597.63 397.62 2
test_241102_TWO94.41 4871.65 21692.07 897.21 474.58 1799.11 692.34 2195.36 1396.59 21
test_241102_ONE96.45 1269.38 5594.44 4671.65 21692.11 697.05 776.79 999.11 6
9.1487.63 3193.86 5194.41 5794.18 5772.76 18186.21 5296.51 2566.64 6397.88 4490.08 3994.04 41
save fliter93.84 5267.89 9495.05 4292.66 11878.19 94
test_0728_THIRD72.48 18690.55 2196.93 1176.24 1199.08 1191.53 2994.99 1796.43 32
test_0728_SECOND88.70 1996.45 1270.43 3596.64 1194.37 5299.15 291.91 2794.90 2296.51 26
test072696.40 1569.99 4096.76 994.33 5471.92 20291.89 1097.11 673.77 21
GSMVS94.68 98
test_part296.29 1968.16 8890.78 17
sam_mvs157.85 16494.68 98
sam_mvs54.91 202
ambc69.61 35061.38 39241.35 38549.07 39985.86 32650.18 36466.40 37410.16 39688.14 33445.73 34344.20 37779.32 363
MTGPAbinary92.23 131
test_post178.95 34920.70 40653.05 22291.50 30560.43 282
test_post23.01 40356.49 18492.67 270
patchmatchnet-post67.62 37357.62 16790.25 314
GG-mvs-BLEND86.53 7391.91 10669.67 5375.02 36694.75 3378.67 13390.85 16577.91 794.56 20372.25 18093.74 4795.36 65
MTMP93.77 8832.52 412
gm-plane-assit88.42 18767.04 11778.62 9191.83 14897.37 7276.57 147
test9_res89.41 4394.96 1995.29 70
TEST994.18 4167.28 10994.16 6393.51 8071.75 21385.52 6095.33 5368.01 5397.27 84
test_894.19 4067.19 11194.15 6593.42 8671.87 20785.38 6395.35 5268.19 5196.95 106
agg_prior286.41 7294.75 3095.33 66
agg_prior94.16 4366.97 11993.31 8984.49 7196.75 116
TestCases72.46 33779.57 32451.42 34968.61 38451.25 36545.88 37381.23 29519.86 38486.58 34838.98 36757.01 35179.39 361
test_prior467.18 11393.92 77
test_prior295.10 4075.40 13485.25 6695.61 4767.94 5487.47 6194.77 26
test_prior86.42 7694.71 3567.35 10893.10 10196.84 11395.05 82
旧先验292.00 16459.37 33887.54 4393.47 24675.39 155
新几何291.41 186
新几何184.73 13292.32 9164.28 18691.46 17159.56 33779.77 11592.90 12256.95 17796.57 12163.40 26292.91 6093.34 148
旧先验191.94 10360.74 27191.50 16994.36 8665.23 7791.84 7394.55 105
无先验92.71 12992.61 12262.03 31997.01 9766.63 23393.97 130
原ACMM292.01 161
原ACMM184.42 14693.21 6964.27 18793.40 8865.39 29079.51 11892.50 13058.11 16396.69 11765.27 25293.96 4292.32 178
test22289.77 15261.60 25489.55 24989.42 25056.83 35077.28 14792.43 13452.76 22591.14 8793.09 156
testdata296.09 13861.26 278
segment_acmp65.94 70
testdata81.34 22689.02 17357.72 31089.84 23358.65 34185.32 6494.09 9857.03 17293.28 24869.34 20690.56 9393.03 159
testdata189.21 25877.55 107
test1287.09 5394.60 3668.86 6792.91 10782.67 8765.44 7597.55 6293.69 5094.84 91
plane_prior786.94 22761.51 255
plane_prior687.23 21962.32 23950.66 242
plane_prior591.31 17595.55 16776.74 14578.53 20188.39 243
plane_prior489.14 196
plane_prior361.95 24779.09 8272.53 196
plane_prior293.13 11378.81 88
plane_prior187.15 221
plane_prior62.42 23593.85 8179.38 7478.80 198
n20.00 418
nn0.00 418
door-mid66.01 388
lessismore_v073.72 32872.93 36947.83 36661.72 39345.86 37573.76 35428.63 36689.81 32247.75 33531.37 39583.53 316
LGP-MVS_train79.56 27384.31 27559.37 29289.73 24069.49 25464.86 28488.42 20138.65 31594.30 21272.56 17772.76 24585.01 303
test1193.01 103
door66.57 387
HQP5-MVS63.66 205
HQP-NCC87.54 21294.06 6779.80 6574.18 176
ACMP_Plane87.54 21294.06 6779.80 6574.18 176
BP-MVS77.63 142
HQP4-MVS74.18 17695.61 16288.63 237
HQP3-MVS91.70 16178.90 196
HQP2-MVS51.63 235
NP-MVS87.41 21563.04 22090.30 176
MDTV_nov1_ep13_2view59.90 28580.13 34467.65 27472.79 19154.33 21059.83 28692.58 171
MDTV_nov1_ep1372.61 25789.06 17268.48 7680.33 34090.11 22371.84 20971.81 20775.92 34853.01 22393.92 23548.04 33073.38 239
ACMMP++_ref71.63 253
ACMMP++69.72 262
Test By Simon54.21 211
ITE_SJBPF70.43 34874.44 36347.06 37277.32 36260.16 33354.04 34883.53 26423.30 37684.01 36143.07 35161.58 33280.21 358
DeepMVS_CXcopyleft34.71 38751.45 39924.73 40728.48 41331.46 39417.49 40352.75 3895.80 40442.60 40818.18 39719.42 40136.81 400