LCM-MVSNet | | | 86.90 1 | 88.67 1 | 81.57 21 | 91.50 1 | 63.30 116 | 84.80 32 | 87.77 9 | 86.18 1 | 96.26 1 | 96.06 1 | 90.32 1 | 84.49 68 | 68.08 85 | 97.05 1 | 96.93 1 |
|
TDRefinement | | | 86.32 2 | 86.33 2 | 86.29 1 | 88.64 31 | 81.19 4 | 88.84 4 | 90.72 1 | 78.27 8 | 87.95 14 | 92.53 13 | 79.37 13 | 84.79 65 | 74.51 47 | 96.15 2 | 92.88 7 |
|
SR-MVS-dyc-post | | | 84.75 3 | 85.26 5 | 83.21 3 | 86.19 49 | 79.18 6 | 87.23 8 | 86.27 19 | 77.51 10 | 87.65 18 | 90.73 47 | 79.20 14 | 85.58 48 | 78.11 23 | 94.46 36 | 84.89 94 |
|
HPM-MVS_fast | | | 84.59 4 | 85.10 6 | 83.06 4 | 88.60 32 | 75.83 23 | 86.27 24 | 86.89 15 | 73.69 23 | 86.17 37 | 91.70 25 | 78.23 19 | 85.20 57 | 79.45 12 | 94.91 24 | 88.15 47 |
|
SR-MVS | | | 84.51 5 | 85.27 4 | 82.25 18 | 88.52 33 | 77.71 13 | 86.81 16 | 85.25 36 | 77.42 13 | 86.15 38 | 90.24 71 | 81.69 5 | 85.94 34 | 77.77 26 | 93.58 61 | 83.09 150 |
|
ACMMP |  | | 84.22 6 | 84.84 8 | 82.35 17 | 89.23 21 | 76.66 22 | 87.65 6 | 85.89 25 | 71.03 41 | 85.85 42 | 90.58 51 | 78.77 16 | 85.78 41 | 79.37 15 | 95.17 16 | 84.62 105 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
LTVRE_ROB | | 75.46 1 | 84.22 6 | 84.98 7 | 81.94 20 | 84.82 73 | 75.40 25 | 91.60 3 | 87.80 7 | 73.52 24 | 88.90 11 | 93.06 6 | 71.39 68 | 81.53 113 | 81.53 3 | 92.15 82 | 88.91 38 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
HPM-MVS |  | | 84.12 8 | 84.63 9 | 82.60 13 | 88.21 35 | 74.40 31 | 85.24 28 | 87.21 13 | 70.69 44 | 85.14 54 | 90.42 58 | 78.99 15 | 86.62 12 | 80.83 5 | 94.93 23 | 86.79 63 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
CP-MVS | | | 84.12 8 | 84.55 10 | 82.80 10 | 89.42 17 | 79.74 5 | 88.19 5 | 84.43 57 | 71.96 38 | 84.70 61 | 90.56 52 | 77.12 25 | 86.18 25 | 79.24 17 | 95.36 12 | 82.49 167 |
|
mPP-MVS | | | 84.01 10 | 84.39 11 | 82.88 6 | 90.65 3 | 81.38 3 | 87.08 12 | 82.79 82 | 72.41 34 | 85.11 55 | 90.85 44 | 76.65 28 | 84.89 62 | 79.30 16 | 94.63 33 | 82.35 169 |
|
COLMAP_ROB |  | 72.78 3 | 83.75 11 | 84.11 15 | 82.68 12 | 82.97 104 | 74.39 32 | 87.18 10 | 88.18 6 | 78.98 6 | 86.11 40 | 91.47 30 | 79.70 12 | 85.76 42 | 66.91 100 | 95.46 11 | 87.89 48 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
ACMMPR | | | 83.62 12 | 83.93 17 | 82.69 11 | 89.78 10 | 77.51 18 | 87.01 14 | 84.19 64 | 70.23 45 | 84.49 63 | 90.67 50 | 75.15 41 | 86.37 17 | 79.58 10 | 94.26 49 | 84.18 123 |
|
APD-MVS_3200maxsize | | | 83.57 13 | 84.33 12 | 81.31 28 | 82.83 107 | 73.53 40 | 85.50 27 | 87.45 12 | 74.11 19 | 86.45 35 | 90.52 55 | 80.02 10 | 84.48 69 | 77.73 27 | 94.34 47 | 85.93 74 |
|
region2R | | | 83.54 14 | 83.86 19 | 82.58 14 | 89.82 9 | 77.53 16 | 87.06 13 | 84.23 63 | 70.19 47 | 83.86 71 | 90.72 49 | 75.20 40 | 86.27 20 | 79.41 14 | 94.25 50 | 83.95 127 |
|
XVS | | | 83.51 15 | 83.73 20 | 82.85 8 | 89.43 15 | 77.61 14 | 86.80 17 | 84.66 52 | 72.71 27 | 82.87 82 | 90.39 62 | 73.86 52 | 86.31 18 | 78.84 19 | 94.03 53 | 84.64 103 |
|
LPG-MVS_test | | | 83.47 16 | 84.33 12 | 80.90 32 | 87.00 39 | 70.41 60 | 82.04 56 | 86.35 16 | 69.77 49 | 87.75 15 | 91.13 34 | 81.83 3 | 86.20 23 | 77.13 34 | 95.96 5 | 86.08 71 |
|
HFP-MVS | | | 83.39 17 | 84.03 16 | 81.48 23 | 89.25 20 | 75.69 24 | 87.01 14 | 84.27 60 | 70.23 45 | 84.47 64 | 90.43 57 | 76.79 26 | 85.94 34 | 79.58 10 | 94.23 51 | 82.82 159 |
|
MTAPA | | | 83.19 18 | 83.87 18 | 81.13 30 | 91.16 2 | 78.16 11 | 84.87 30 | 80.63 123 | 72.08 36 | 84.93 56 | 90.79 45 | 74.65 46 | 84.42 71 | 80.98 4 | 94.75 28 | 80.82 195 |
|
MP-MVS |  | | 83.19 18 | 83.54 23 | 82.14 19 | 90.54 4 | 79.00 8 | 86.42 22 | 83.59 73 | 71.31 39 | 81.26 102 | 90.96 39 | 74.57 47 | 84.69 66 | 78.41 21 | 94.78 27 | 82.74 162 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
ZNCC-MVS | | | 83.12 20 | 83.68 21 | 81.45 24 | 89.14 24 | 73.28 42 | 86.32 23 | 85.97 24 | 67.39 58 | 84.02 68 | 90.39 62 | 74.73 45 | 86.46 14 | 80.73 6 | 94.43 40 | 84.60 108 |
|
PGM-MVS | | | 83.07 21 | 83.25 30 | 82.54 15 | 89.57 13 | 77.21 20 | 82.04 56 | 85.40 33 | 67.96 57 | 84.91 59 | 90.88 42 | 75.59 36 | 86.57 13 | 78.16 22 | 94.71 30 | 83.82 128 |
|
SteuartSystems-ACMMP | | | 83.07 21 | 83.64 22 | 81.35 26 | 85.14 68 | 71.00 54 | 85.53 26 | 84.78 45 | 70.91 42 | 85.64 45 | 90.41 59 | 75.55 38 | 87.69 3 | 79.75 7 | 95.08 19 | 85.36 84 |
Skip Steuart: Steuart Systems R&D Blog. |
APDe-MVS | | | 82.88 23 | 84.14 14 | 79.08 52 | 84.80 75 | 66.72 90 | 86.54 20 | 85.11 38 | 72.00 37 | 86.65 31 | 91.75 24 | 78.20 20 | 87.04 8 | 77.93 25 | 94.32 48 | 83.47 139 |
|
GST-MVS | | | 82.79 24 | 83.27 29 | 81.34 27 | 88.99 26 | 73.29 41 | 85.94 25 | 85.13 37 | 68.58 56 | 84.14 67 | 90.21 73 | 73.37 56 | 86.41 15 | 79.09 18 | 93.98 56 | 84.30 122 |
|
ACMP | | 69.50 8 | 82.64 25 | 83.38 26 | 80.40 37 | 86.50 45 | 69.44 67 | 82.30 53 | 86.08 23 | 66.80 63 | 86.70 30 | 89.99 76 | 81.64 6 | 85.95 33 | 74.35 48 | 96.11 3 | 85.81 76 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
MP-MVS-pluss | | | 82.54 26 | 83.46 25 | 79.76 41 | 88.88 30 | 68.44 76 | 81.57 59 | 86.33 18 | 63.17 105 | 85.38 52 | 91.26 33 | 76.33 30 | 84.67 67 | 83.30 1 | 94.96 22 | 86.17 70 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
ACMMP_NAP | | | 82.33 27 | 83.28 28 | 79.46 48 | 89.28 18 | 69.09 74 | 83.62 42 | 84.98 41 | 64.77 87 | 83.97 69 | 91.02 38 | 75.53 39 | 85.93 36 | 82.00 2 | 94.36 45 | 83.35 144 |
|
SMA-MVS |  | | 82.12 28 | 82.68 38 | 80.43 36 | 88.90 29 | 69.52 65 | 85.12 29 | 84.76 46 | 63.53 99 | 84.23 66 | 91.47 30 | 72.02 62 | 87.16 6 | 79.74 9 | 94.36 45 | 84.61 106 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
ACMM | | 69.25 9 | 82.11 29 | 83.31 27 | 78.49 63 | 88.17 36 | 73.96 34 | 83.11 49 | 84.52 56 | 66.40 67 | 87.45 22 | 89.16 93 | 81.02 8 | 80.52 136 | 74.27 49 | 95.73 7 | 80.98 191 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
DPE-MVS |  | | 82.00 30 | 83.02 33 | 78.95 57 | 85.36 65 | 67.25 85 | 82.91 50 | 84.98 41 | 73.52 24 | 85.43 51 | 90.03 75 | 76.37 29 | 86.97 10 | 74.56 46 | 94.02 55 | 82.62 164 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
SED-MVS | | | 81.78 31 | 83.48 24 | 76.67 82 | 86.12 53 | 61.06 133 | 83.62 42 | 84.72 48 | 72.61 30 | 87.38 24 | 89.70 81 | 77.48 23 | 85.89 39 | 75.29 41 | 94.39 41 | 83.08 151 |
|
PMVS |  | 70.70 6 | 81.70 32 | 83.15 31 | 77.36 76 | 90.35 5 | 82.82 2 | 82.15 54 | 79.22 148 | 74.08 20 | 87.16 28 | 91.97 19 | 84.80 2 | 76.97 195 | 64.98 111 | 93.61 60 | 72.28 285 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
UA-Net | | | 81.56 33 | 82.28 40 | 79.40 49 | 88.91 28 | 69.16 72 | 84.67 33 | 80.01 137 | 75.34 15 | 79.80 118 | 94.91 2 | 69.79 83 | 80.25 140 | 72.63 59 | 94.46 36 | 88.78 42 |
|
CPTT-MVS | | | 81.51 34 | 81.76 43 | 80.76 34 | 89.20 22 | 78.75 9 | 86.48 21 | 82.03 93 | 68.80 52 | 80.92 107 | 88.52 108 | 72.00 63 | 82.39 99 | 74.80 43 | 93.04 68 | 81.14 185 |
|
DVP-MVS++ | | | 81.24 35 | 82.74 37 | 76.76 81 | 83.14 96 | 60.90 137 | 91.64 1 | 85.49 29 | 74.03 21 | 84.93 56 | 90.38 64 | 66.82 106 | 85.90 37 | 77.43 30 | 90.78 114 | 83.49 136 |
|
ACMH+ | | 66.64 10 | 81.20 36 | 82.48 39 | 77.35 77 | 81.16 129 | 62.39 121 | 80.51 66 | 87.80 7 | 73.02 26 | 87.57 20 | 91.08 36 | 80.28 9 | 82.44 98 | 64.82 112 | 96.10 4 | 87.21 57 |
|
DVP-MVS |  | | 81.15 37 | 83.12 32 | 75.24 102 | 86.16 51 | 60.78 140 | 83.77 40 | 80.58 125 | 72.48 32 | 85.83 43 | 90.41 59 | 78.57 17 | 85.69 44 | 75.86 38 | 94.39 41 | 79.24 222 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
APD-MVS |  | | 81.13 38 | 81.73 44 | 79.36 50 | 84.47 80 | 70.53 59 | 83.85 38 | 83.70 71 | 69.43 51 | 83.67 73 | 88.96 99 | 75.89 34 | 86.41 15 | 72.62 60 | 92.95 69 | 81.14 185 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
3Dnovator+ | | 73.19 2 | 81.08 39 | 80.48 51 | 82.87 7 | 81.41 125 | 72.03 45 | 84.38 34 | 86.23 22 | 77.28 14 | 80.65 111 | 90.18 74 | 59.80 173 | 87.58 4 | 73.06 56 | 91.34 94 | 89.01 34 |
|
DeepC-MVS | | 72.44 4 | 81.00 40 | 80.83 50 | 81.50 22 | 86.70 44 | 70.03 64 | 82.06 55 | 87.00 14 | 59.89 127 | 80.91 108 | 90.53 53 | 72.19 60 | 88.56 1 | 73.67 53 | 94.52 35 | 85.92 75 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
OPM-MVS | | | 80.99 41 | 81.63 46 | 79.07 53 | 86.86 43 | 69.39 68 | 79.41 83 | 84.00 69 | 65.64 71 | 85.54 49 | 89.28 87 | 76.32 31 | 83.47 83 | 74.03 50 | 93.57 62 | 84.35 119 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
LS3D | | | 80.99 41 | 80.85 49 | 81.41 25 | 78.37 162 | 71.37 50 | 87.45 7 | 85.87 26 | 77.48 12 | 81.98 91 | 89.95 78 | 69.14 86 | 85.26 53 | 66.15 101 | 91.24 96 | 87.61 52 |
|
SF-MVS | | | 80.72 43 | 81.80 42 | 77.48 73 | 82.03 117 | 64.40 108 | 83.41 46 | 88.46 5 | 65.28 79 | 84.29 65 | 89.18 91 | 73.73 55 | 83.22 87 | 76.01 37 | 93.77 58 | 84.81 100 |
|
XVG-ACMP-BASELINE | | | 80.54 44 | 81.06 48 | 78.98 56 | 87.01 38 | 72.91 43 | 80.23 74 | 85.56 28 | 66.56 66 | 85.64 45 | 89.57 83 | 69.12 87 | 80.55 135 | 72.51 61 | 93.37 63 | 83.48 138 |
|
MSP-MVS | | | 80.49 45 | 79.67 58 | 82.96 5 | 89.70 11 | 77.46 19 | 87.16 11 | 85.10 39 | 64.94 86 | 81.05 105 | 88.38 112 | 57.10 201 | 87.10 7 | 79.75 7 | 83.87 224 | 84.31 120 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
PEN-MVS | | | 80.46 46 | 82.91 34 | 73.11 129 | 89.83 8 | 39.02 310 | 77.06 112 | 82.61 86 | 80.04 4 | 90.60 6 | 92.85 9 | 74.93 44 | 85.21 56 | 63.15 131 | 95.15 17 | 95.09 2 |
|
PS-CasMVS | | | 80.41 47 | 82.86 36 | 73.07 131 | 89.93 6 | 39.21 307 | 77.15 110 | 81.28 107 | 79.74 5 | 90.87 4 | 92.73 11 | 75.03 43 | 84.93 61 | 63.83 123 | 95.19 15 | 95.07 3 |
|
DTE-MVSNet | | | 80.35 48 | 82.89 35 | 72.74 144 | 89.84 7 | 37.34 327 | 77.16 109 | 81.81 97 | 80.45 3 | 90.92 3 | 92.95 7 | 74.57 47 | 86.12 28 | 63.65 124 | 94.68 31 | 94.76 6 |
|
SD-MVS | | | 80.28 49 | 81.55 47 | 76.47 87 | 83.57 90 | 67.83 80 | 83.39 47 | 85.35 35 | 64.42 89 | 86.14 39 | 87.07 127 | 74.02 51 | 80.97 127 | 77.70 28 | 92.32 80 | 80.62 202 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
WR-MVS_H | | | 80.22 50 | 82.17 41 | 74.39 107 | 89.46 14 | 42.69 284 | 78.24 96 | 82.24 89 | 78.21 9 | 89.57 9 | 92.10 18 | 68.05 96 | 85.59 47 | 66.04 103 | 95.62 9 | 94.88 5 |
|
HPM-MVS++ |  | | 79.89 51 | 79.80 57 | 80.18 39 | 89.02 25 | 78.44 10 | 83.49 45 | 80.18 134 | 64.71 88 | 78.11 136 | 88.39 111 | 65.46 122 | 83.14 88 | 77.64 29 | 91.20 97 | 78.94 225 |
|
XVG-OURS-SEG-HR | | | 79.62 52 | 79.99 55 | 78.49 63 | 86.46 46 | 74.79 29 | 77.15 110 | 85.39 34 | 66.73 64 | 80.39 114 | 88.85 102 | 74.43 50 | 78.33 176 | 74.73 45 | 85.79 196 | 82.35 169 |
|
XVG-OURS | | | 79.51 53 | 79.82 56 | 78.58 62 | 86.11 56 | 74.96 28 | 76.33 122 | 84.95 43 | 66.89 61 | 82.75 85 | 88.99 98 | 66.82 106 | 78.37 174 | 74.80 43 | 90.76 117 | 82.40 168 |
|
CP-MVSNet | | | 79.48 54 | 81.65 45 | 72.98 134 | 89.66 12 | 39.06 309 | 76.76 113 | 80.46 127 | 78.91 7 | 90.32 7 | 91.70 25 | 68.49 91 | 84.89 62 | 63.40 128 | 95.12 18 | 95.01 4 |
|
OMC-MVS | | | 79.41 55 | 78.79 63 | 81.28 29 | 80.62 132 | 70.71 58 | 80.91 62 | 84.76 46 | 62.54 109 | 81.77 94 | 86.65 142 | 71.46 66 | 83.53 82 | 67.95 89 | 92.44 76 | 89.60 24 |
|
v7n | | | 79.37 56 | 80.41 52 | 76.28 89 | 78.67 161 | 55.81 173 | 79.22 85 | 82.51 88 | 70.72 43 | 87.54 21 | 92.44 14 | 68.00 98 | 81.34 115 | 72.84 57 | 91.72 84 | 91.69 10 |
|
TSAR-MVS + MP. | | | 79.05 57 | 78.81 62 | 79.74 42 | 88.94 27 | 67.52 83 | 86.61 19 | 81.38 105 | 51.71 218 | 77.15 147 | 91.42 32 | 65.49 121 | 87.20 5 | 79.44 13 | 87.17 182 | 84.51 115 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
mvs_tets | | | 78.93 58 | 78.67 65 | 79.72 43 | 84.81 74 | 73.93 35 | 80.65 64 | 76.50 187 | 51.98 215 | 87.40 23 | 91.86 21 | 76.09 33 | 78.53 166 | 68.58 80 | 90.20 123 | 86.69 66 |
|
test_djsdf | | | 78.88 59 | 78.27 69 | 80.70 35 | 81.42 124 | 71.24 52 | 83.98 36 | 75.72 194 | 52.27 210 | 87.37 26 | 92.25 16 | 68.04 97 | 80.56 133 | 72.28 63 | 91.15 99 | 90.32 22 |
|
HQP_MVS | | | 78.77 60 | 78.78 64 | 78.72 59 | 85.18 66 | 65.18 100 | 82.74 51 | 85.49 29 | 65.45 74 | 78.23 133 | 89.11 94 | 60.83 163 | 86.15 26 | 71.09 67 | 90.94 106 | 84.82 98 |
|
anonymousdsp | | | 78.60 61 | 77.80 72 | 81.00 31 | 78.01 168 | 74.34 33 | 80.09 76 | 76.12 189 | 50.51 236 | 89.19 10 | 90.88 42 | 71.45 67 | 77.78 188 | 73.38 54 | 90.60 119 | 90.90 18 |
|
OurMVSNet-221017-0 | | | 78.57 62 | 78.53 67 | 78.67 60 | 80.48 133 | 64.16 109 | 80.24 73 | 82.06 92 | 61.89 113 | 88.77 12 | 93.32 4 | 57.15 199 | 82.60 97 | 70.08 73 | 92.80 71 | 89.25 28 |
|
jajsoiax | | | 78.51 63 | 78.16 70 | 79.59 47 | 84.65 77 | 73.83 37 | 80.42 68 | 76.12 189 | 51.33 226 | 87.19 27 | 91.51 29 | 73.79 54 | 78.44 170 | 68.27 83 | 90.13 127 | 86.49 68 |
|
CNVR-MVS | | | 78.49 64 | 78.59 66 | 78.16 67 | 85.86 60 | 67.40 84 | 78.12 99 | 81.50 101 | 63.92 93 | 77.51 144 | 86.56 146 | 68.43 93 | 84.82 64 | 73.83 51 | 91.61 88 | 82.26 172 |
|
DeepPCF-MVS | | 71.07 5 | 78.48 65 | 77.14 79 | 82.52 16 | 84.39 83 | 77.04 21 | 76.35 120 | 84.05 67 | 56.66 159 | 80.27 115 | 85.31 172 | 68.56 90 | 87.03 9 | 67.39 95 | 91.26 95 | 83.50 135 |
|
DP-MVS | | | 78.44 66 | 79.29 60 | 75.90 93 | 81.86 120 | 65.33 98 | 79.05 86 | 84.63 54 | 74.83 18 | 80.41 113 | 86.27 153 | 71.68 64 | 83.45 84 | 62.45 135 | 92.40 77 | 78.92 226 |
|
NCCC | | | 78.25 67 | 78.04 71 | 78.89 58 | 85.61 62 | 69.45 66 | 79.80 80 | 80.99 116 | 65.77 70 | 75.55 175 | 86.25 155 | 67.42 100 | 85.42 49 | 70.10 72 | 90.88 112 | 81.81 178 |
|
RRT_MVS | | | 78.18 68 | 77.69 73 | 79.66 46 | 83.14 96 | 61.34 130 | 83.29 48 | 80.34 132 | 57.43 151 | 86.65 31 | 91.79 23 | 50.52 233 | 86.01 30 | 71.36 66 | 94.65 32 | 91.62 11 |
|
test_0402 | | | 78.17 69 | 79.48 59 | 74.24 109 | 83.50 91 | 59.15 154 | 72.52 157 | 74.60 204 | 75.34 15 | 88.69 13 | 91.81 22 | 75.06 42 | 82.37 100 | 65.10 109 | 88.68 156 | 81.20 183 |
|
AllTest | | | 77.66 70 | 77.43 75 | 78.35 65 | 79.19 150 | 70.81 55 | 78.60 91 | 88.64 3 | 65.37 77 | 80.09 116 | 88.17 116 | 70.33 76 | 78.43 171 | 55.60 191 | 90.90 110 | 85.81 76 |
|
PS-MVSNAJss | | | 77.54 71 | 77.35 77 | 78.13 69 | 84.88 72 | 66.37 92 | 78.55 92 | 79.59 143 | 53.48 202 | 86.29 36 | 92.43 15 | 62.39 144 | 80.25 140 | 67.90 90 | 90.61 118 | 87.77 49 |
|
ACMH | | 63.62 14 | 77.50 72 | 80.11 54 | 69.68 186 | 79.61 140 | 56.28 169 | 78.81 88 | 83.62 72 | 63.41 103 | 87.14 29 | 90.23 72 | 76.11 32 | 73.32 232 | 67.58 91 | 94.44 39 | 79.44 220 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
CDPH-MVS | | | 77.33 73 | 77.06 80 | 78.14 68 | 84.21 84 | 63.98 111 | 76.07 126 | 83.45 74 | 54.20 189 | 77.68 143 | 87.18 123 | 69.98 80 | 85.37 50 | 68.01 87 | 92.72 74 | 85.08 91 |
|
mvsmamba | | | 77.20 74 | 76.37 84 | 79.69 45 | 80.34 135 | 61.52 128 | 80.58 65 | 82.12 91 | 53.54 201 | 83.93 70 | 91.03 37 | 49.49 239 | 85.97 32 | 73.26 55 | 93.08 67 | 91.59 12 |
|
DeepC-MVS_fast | | 69.89 7 | 77.17 75 | 76.33 86 | 79.70 44 | 83.90 88 | 67.94 78 | 80.06 78 | 83.75 70 | 56.73 158 | 74.88 183 | 85.32 171 | 65.54 120 | 87.79 2 | 65.61 107 | 91.14 100 | 83.35 144 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
EC-MVSNet | | | 77.08 76 | 77.39 76 | 76.14 91 | 76.86 186 | 56.87 167 | 80.32 72 | 87.52 11 | 63.45 101 | 74.66 188 | 84.52 179 | 69.87 82 | 84.94 60 | 69.76 75 | 89.59 139 | 86.60 67 |
|
X-MVStestdata | | | 76.81 77 | 74.79 100 | 82.85 8 | 89.43 15 | 77.61 14 | 86.80 17 | 84.66 52 | 72.71 27 | 82.87 82 | 9.95 381 | 73.86 52 | 86.31 18 | 78.84 19 | 94.03 53 | 84.64 103 |
|
UniMVSNet_ETH3D | | | 76.74 78 | 79.02 61 | 69.92 185 | 89.27 19 | 43.81 272 | 74.47 146 | 71.70 225 | 72.33 35 | 85.50 50 | 93.65 3 | 77.98 21 | 76.88 198 | 54.60 201 | 91.64 86 | 89.08 32 |
|
CS-MVS | | | 76.51 79 | 76.00 89 | 78.06 70 | 77.02 179 | 64.77 105 | 80.78 63 | 82.66 85 | 60.39 123 | 74.15 195 | 83.30 199 | 69.65 84 | 82.07 106 | 69.27 78 | 86.75 187 | 87.36 55 |
|
train_agg | | | 76.38 80 | 76.55 83 | 75.86 94 | 85.47 63 | 69.32 70 | 76.42 118 | 78.69 157 | 54.00 194 | 76.97 149 | 86.74 136 | 66.60 110 | 81.10 121 | 72.50 62 | 91.56 90 | 77.15 247 |
|
MVS_0304 | | | 76.32 81 | 75.96 91 | 77.42 75 | 79.33 145 | 60.86 139 | 80.18 75 | 74.88 201 | 66.93 60 | 69.11 257 | 88.95 100 | 57.84 195 | 86.12 28 | 76.63 36 | 89.77 136 | 85.28 85 |
|
TranMVSNet+NR-MVSNet | | | 76.13 82 | 77.66 74 | 71.56 162 | 84.61 78 | 42.57 286 | 70.98 184 | 78.29 166 | 68.67 55 | 83.04 78 | 89.26 88 | 72.99 58 | 80.75 132 | 55.58 194 | 95.47 10 | 91.35 13 |
|
tt0805 | | | 76.12 83 | 78.43 68 | 69.20 192 | 81.32 126 | 41.37 292 | 76.72 114 | 77.64 175 | 63.78 96 | 82.06 90 | 87.88 121 | 79.78 11 | 79.05 157 | 64.33 116 | 92.40 77 | 87.17 60 |
|
SixPastTwentyTwo | | | 75.77 84 | 76.34 85 | 74.06 112 | 81.69 122 | 54.84 178 | 76.47 115 | 75.49 196 | 64.10 92 | 87.73 17 | 92.24 17 | 50.45 235 | 81.30 117 | 67.41 93 | 91.46 92 | 86.04 73 |
|
RPSCF | | | 75.76 85 | 74.37 105 | 79.93 40 | 74.81 210 | 77.53 16 | 77.53 104 | 79.30 147 | 59.44 130 | 78.88 126 | 89.80 80 | 71.26 69 | 73.09 234 | 57.45 175 | 80.89 256 | 89.17 31 |
|
v10 | | | 75.69 86 | 76.20 87 | 74.16 110 | 74.44 219 | 48.69 224 | 75.84 130 | 82.93 81 | 59.02 135 | 85.92 41 | 89.17 92 | 58.56 183 | 82.74 95 | 70.73 69 | 89.14 150 | 91.05 15 |
|
testf1 | | | 75.66 87 | 76.57 81 | 72.95 135 | 67.07 296 | 67.62 81 | 76.10 124 | 80.68 121 | 64.95 84 | 86.58 33 | 90.94 40 | 71.20 70 | 71.68 255 | 60.46 151 | 91.13 101 | 79.56 216 |
|
APD_test2 | | | 75.66 87 | 76.57 81 | 72.95 135 | 67.07 296 | 67.62 81 | 76.10 124 | 80.68 121 | 64.95 84 | 86.58 33 | 90.94 40 | 71.20 70 | 71.68 255 | 60.46 151 | 91.13 101 | 79.56 216 |
|
Anonymous20231211 | | | 75.54 89 | 77.19 78 | 70.59 171 | 77.67 174 | 45.70 261 | 74.73 142 | 80.19 133 | 68.80 52 | 82.95 81 | 92.91 8 | 66.26 113 | 76.76 200 | 58.41 171 | 92.77 72 | 89.30 27 |
|
Effi-MVS+-dtu | | | 75.43 90 | 72.28 142 | 84.91 2 | 77.05 177 | 83.58 1 | 78.47 93 | 77.70 174 | 57.68 146 | 74.89 182 | 78.13 267 | 64.80 128 | 84.26 73 | 56.46 184 | 85.32 203 | 86.88 62 |
|
F-COLMAP | | | 75.29 91 | 73.99 111 | 79.18 51 | 81.73 121 | 71.90 46 | 81.86 58 | 82.98 79 | 59.86 128 | 72.27 220 | 84.00 186 | 64.56 130 | 83.07 91 | 51.48 223 | 87.19 181 | 82.56 166 |
|
casdiffmvs_mvg |  | | 75.26 92 | 76.18 88 | 72.52 149 | 72.87 246 | 49.47 219 | 72.94 155 | 84.71 50 | 59.49 129 | 80.90 109 | 88.81 103 | 70.07 79 | 79.71 148 | 67.40 94 | 88.39 158 | 88.40 46 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
HQP-MVS | | | 75.24 93 | 75.01 99 | 75.94 92 | 82.37 111 | 58.80 157 | 77.32 106 | 84.12 65 | 59.08 131 | 71.58 228 | 85.96 165 | 58.09 188 | 85.30 52 | 67.38 96 | 89.16 147 | 83.73 133 |
|
TAPA-MVS | | 65.27 12 | 75.16 94 | 74.29 107 | 77.77 71 | 74.86 209 | 68.08 77 | 77.89 100 | 84.04 68 | 55.15 172 | 76.19 171 | 83.39 193 | 66.91 104 | 80.11 144 | 60.04 158 | 90.14 126 | 85.13 89 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
IS-MVSNet | | | 75.10 95 | 75.42 97 | 74.15 111 | 79.23 148 | 48.05 233 | 79.43 81 | 78.04 170 | 70.09 48 | 79.17 124 | 88.02 120 | 53.04 219 | 83.60 80 | 58.05 173 | 93.76 59 | 90.79 19 |
|
v8 | | | 75.07 96 | 75.64 94 | 73.35 123 | 73.42 232 | 47.46 243 | 75.20 133 | 81.45 103 | 60.05 125 | 85.64 45 | 89.26 88 | 58.08 190 | 81.80 110 | 69.71 77 | 87.97 166 | 90.79 19 |
|
APD_test1 | | | 75.04 97 | 75.38 98 | 74.02 113 | 69.89 271 | 70.15 62 | 76.46 116 | 79.71 139 | 65.50 73 | 82.99 80 | 88.60 107 | 66.94 103 | 72.35 245 | 59.77 161 | 88.54 157 | 79.56 216 |
|
UniMVSNet (Re) | | | 75.00 98 | 75.48 96 | 73.56 121 | 83.14 96 | 47.92 235 | 70.41 192 | 81.04 115 | 63.67 97 | 79.54 120 | 86.37 151 | 62.83 138 | 81.82 109 | 57.10 178 | 95.25 14 | 90.94 17 |
|
PHI-MVS | | | 74.92 99 | 74.36 106 | 76.61 83 | 76.40 189 | 62.32 122 | 80.38 69 | 83.15 77 | 54.16 191 | 73.23 209 | 80.75 228 | 62.19 147 | 83.86 75 | 68.02 86 | 90.92 109 | 83.65 134 |
|
DU-MVS | | | 74.91 100 | 75.57 95 | 72.93 138 | 83.50 91 | 45.79 258 | 69.47 201 | 80.14 135 | 65.22 80 | 81.74 96 | 87.08 125 | 61.82 150 | 81.07 123 | 56.21 186 | 94.98 20 | 91.93 8 |
|
UniMVSNet_NR-MVSNet | | | 74.90 101 | 75.65 93 | 72.64 147 | 83.04 102 | 45.79 258 | 69.26 204 | 78.81 154 | 66.66 65 | 81.74 96 | 86.88 131 | 63.26 136 | 81.07 123 | 56.21 186 | 94.98 20 | 91.05 15 |
|
CS-MVS-test | | | 74.89 102 | 74.23 108 | 76.86 80 | 77.01 180 | 62.94 119 | 78.98 87 | 84.61 55 | 58.62 138 | 70.17 247 | 80.80 227 | 66.74 109 | 81.96 107 | 61.74 138 | 89.40 145 | 85.69 81 |
|
nrg030 | | | 74.87 103 | 75.99 90 | 71.52 163 | 74.90 208 | 49.88 218 | 74.10 150 | 82.58 87 | 54.55 183 | 83.50 75 | 89.21 90 | 71.51 65 | 75.74 208 | 61.24 142 | 92.34 79 | 88.94 37 |
|
Vis-MVSNet |  | | 74.85 104 | 74.56 102 | 75.72 95 | 81.63 123 | 64.64 106 | 76.35 120 | 79.06 150 | 62.85 107 | 73.33 207 | 88.41 110 | 62.54 142 | 79.59 151 | 63.94 122 | 82.92 234 | 82.94 155 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
MSLP-MVS++ | | | 74.48 105 | 75.78 92 | 70.59 171 | 84.66 76 | 62.40 120 | 78.65 90 | 84.24 62 | 60.55 122 | 77.71 142 | 81.98 215 | 63.12 137 | 77.64 190 | 62.95 132 | 88.14 161 | 71.73 290 |
|
AdaColmap |  | | 74.22 106 | 74.56 102 | 73.20 126 | 81.95 118 | 60.97 135 | 79.43 81 | 80.90 117 | 65.57 72 | 72.54 218 | 81.76 219 | 70.98 73 | 85.26 53 | 47.88 256 | 90.00 128 | 73.37 273 |
|
CSCG | | | 74.12 107 | 74.39 104 | 73.33 124 | 79.35 144 | 61.66 127 | 77.45 105 | 81.98 94 | 62.47 111 | 79.06 125 | 80.19 237 | 61.83 149 | 78.79 163 | 59.83 160 | 87.35 175 | 79.54 219 |
|
PAPM_NR | | | 73.91 108 | 74.16 109 | 73.16 127 | 81.90 119 | 53.50 188 | 81.28 60 | 81.40 104 | 66.17 68 | 73.30 208 | 83.31 198 | 59.96 169 | 83.10 90 | 58.45 170 | 81.66 251 | 82.87 157 |
|
EPP-MVSNet | | | 73.86 109 | 73.38 121 | 75.31 100 | 78.19 164 | 53.35 190 | 80.45 67 | 77.32 179 | 65.11 82 | 76.47 166 | 86.80 132 | 49.47 240 | 83.77 76 | 53.89 210 | 92.72 74 | 88.81 41 |
|
K. test v3 | | | 73.67 110 | 73.61 118 | 73.87 115 | 79.78 138 | 55.62 176 | 74.69 144 | 62.04 300 | 66.16 69 | 84.76 60 | 93.23 5 | 49.47 240 | 80.97 127 | 65.66 106 | 86.67 188 | 85.02 93 |
|
NR-MVSNet | | | 73.62 111 | 74.05 110 | 72.33 155 | 83.50 91 | 43.71 273 | 65.65 257 | 77.32 179 | 64.32 90 | 75.59 174 | 87.08 125 | 62.45 143 | 81.34 115 | 54.90 197 | 95.63 8 | 91.93 8 |
|
DP-MVS Recon | | | 73.57 112 | 72.69 135 | 76.23 90 | 82.85 106 | 63.39 114 | 74.32 147 | 82.96 80 | 57.75 145 | 70.35 244 | 81.98 215 | 64.34 132 | 84.41 72 | 49.69 237 | 89.95 130 | 80.89 193 |
|
CNLPA | | | 73.44 113 | 73.03 130 | 74.66 103 | 78.27 163 | 75.29 26 | 75.99 127 | 78.49 161 | 65.39 76 | 75.67 173 | 83.22 203 | 61.23 158 | 66.77 294 | 53.70 212 | 85.33 202 | 81.92 177 |
|
MCST-MVS | | | 73.42 114 | 73.34 123 | 73.63 120 | 81.28 127 | 59.17 153 | 74.80 140 | 83.13 78 | 45.50 272 | 72.84 213 | 83.78 189 | 65.15 125 | 80.99 125 | 64.54 113 | 89.09 152 | 80.73 199 |
|
v1192 | | | 73.40 115 | 73.42 119 | 73.32 125 | 74.65 216 | 48.67 225 | 72.21 160 | 81.73 98 | 52.76 207 | 81.85 92 | 84.56 178 | 57.12 200 | 82.24 104 | 68.58 80 | 87.33 176 | 89.06 33 |
|
114514_t | | | 73.40 115 | 73.33 124 | 73.64 119 | 84.15 86 | 57.11 165 | 78.20 97 | 80.02 136 | 43.76 286 | 72.55 217 | 86.07 163 | 64.00 133 | 83.35 86 | 60.14 156 | 91.03 105 | 80.45 205 |
|
FC-MVSNet-test | | | 73.32 117 | 74.78 101 | 68.93 200 | 79.21 149 | 36.57 329 | 71.82 172 | 79.54 145 | 57.63 150 | 82.57 87 | 90.38 64 | 59.38 176 | 78.99 159 | 57.91 174 | 94.56 34 | 91.23 14 |
|
v1144 | | | 73.29 118 | 73.39 120 | 73.01 132 | 74.12 224 | 48.11 231 | 72.01 164 | 81.08 114 | 53.83 198 | 81.77 94 | 84.68 176 | 58.07 191 | 81.91 108 | 68.10 84 | 86.86 184 | 88.99 36 |
|
GeoE | | | 73.14 119 | 73.77 116 | 71.26 166 | 78.09 166 | 52.64 193 | 74.32 147 | 79.56 144 | 56.32 162 | 76.35 169 | 83.36 197 | 70.76 74 | 77.96 184 | 63.32 129 | 81.84 245 | 83.18 148 |
|
baseline | | | 73.10 120 | 73.96 112 | 70.51 173 | 71.46 255 | 46.39 255 | 72.08 162 | 84.40 58 | 55.95 165 | 76.62 161 | 86.46 149 | 67.20 101 | 78.03 183 | 64.22 117 | 87.27 179 | 87.11 61 |
|
h-mvs33 | | | 73.08 121 | 71.61 151 | 77.48 73 | 83.89 89 | 72.89 44 | 70.47 190 | 71.12 241 | 54.28 185 | 77.89 137 | 83.41 192 | 49.04 243 | 80.98 126 | 63.62 125 | 90.77 116 | 78.58 229 |
|
TSAR-MVS + GP. | | | 73.08 121 | 71.60 152 | 77.54 72 | 78.99 157 | 70.73 57 | 74.96 135 | 69.38 252 | 60.73 121 | 74.39 192 | 78.44 261 | 57.72 196 | 82.78 94 | 60.16 155 | 89.60 138 | 79.11 224 |
|
v1240 | | | 73.06 123 | 73.14 126 | 72.84 141 | 74.74 212 | 47.27 246 | 71.88 171 | 81.11 111 | 51.80 217 | 82.28 89 | 84.21 183 | 56.22 208 | 82.34 101 | 68.82 79 | 87.17 182 | 88.91 38 |
|
casdiffmvs |  | | 73.06 123 | 73.84 113 | 70.72 169 | 71.32 256 | 46.71 251 | 70.93 185 | 84.26 61 | 55.62 168 | 77.46 145 | 87.10 124 | 67.09 102 | 77.81 186 | 63.95 120 | 86.83 185 | 87.64 51 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
IterMVS-LS | | | 73.01 125 | 73.12 128 | 72.66 146 | 73.79 228 | 49.90 214 | 71.63 173 | 78.44 162 | 58.22 140 | 80.51 112 | 86.63 143 | 58.15 187 | 79.62 149 | 62.51 133 | 88.20 160 | 88.48 44 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
CANet | | | 73.00 126 | 71.84 146 | 76.48 86 | 75.82 198 | 61.28 131 | 74.81 138 | 80.37 130 | 63.17 105 | 62.43 310 | 80.50 232 | 61.10 160 | 85.16 59 | 64.00 119 | 84.34 220 | 83.01 154 |
|
v144192 | | | 72.99 127 | 73.06 129 | 72.77 142 | 74.58 217 | 47.48 242 | 71.90 170 | 80.44 128 | 51.57 220 | 81.46 100 | 84.11 185 | 58.04 192 | 82.12 105 | 67.98 88 | 87.47 172 | 88.70 43 |
|
MVS_111021_HR | | | 72.98 128 | 72.97 132 | 72.99 133 | 80.82 130 | 65.47 97 | 68.81 211 | 72.77 217 | 57.67 147 | 75.76 172 | 82.38 212 | 71.01 72 | 77.17 193 | 61.38 141 | 86.15 192 | 76.32 251 |
|
v1921920 | | | 72.96 129 | 72.98 131 | 72.89 140 | 74.67 213 | 47.58 241 | 71.92 169 | 80.69 120 | 51.70 219 | 81.69 98 | 83.89 187 | 56.58 206 | 82.25 103 | 68.34 82 | 87.36 174 | 88.82 40 |
|
CLD-MVS | | | 72.88 130 | 72.36 141 | 74.43 106 | 77.03 178 | 54.30 182 | 68.77 214 | 83.43 75 | 52.12 212 | 76.79 158 | 74.44 295 | 69.54 85 | 83.91 74 | 55.88 189 | 93.25 66 | 85.09 90 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
bld_raw_dy_0_64 | | | 72.85 131 | 72.76 134 | 73.09 130 | 85.08 70 | 64.80 104 | 78.72 89 | 64.22 287 | 51.92 216 | 83.13 77 | 90.26 70 | 39.21 299 | 69.91 268 | 70.73 69 | 91.60 89 | 84.56 110 |
|
EI-MVSNet-Vis-set | | | 72.78 132 | 71.87 145 | 75.54 98 | 74.77 211 | 59.02 155 | 72.24 159 | 71.56 228 | 63.92 93 | 78.59 128 | 71.59 317 | 66.22 114 | 78.60 165 | 67.58 91 | 80.32 262 | 89.00 35 |
|
ETV-MVS | | | 72.72 133 | 72.16 144 | 74.38 108 | 76.90 184 | 55.95 170 | 73.34 153 | 84.67 51 | 62.04 112 | 72.19 223 | 70.81 321 | 65.90 117 | 85.24 55 | 58.64 168 | 84.96 210 | 81.95 176 |
|
PCF-MVS | | 63.80 13 | 72.70 134 | 71.69 148 | 75.72 95 | 78.10 165 | 60.01 147 | 73.04 154 | 81.50 101 | 45.34 276 | 79.66 119 | 84.35 182 | 65.15 125 | 82.65 96 | 48.70 246 | 89.38 146 | 84.50 116 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
EI-MVSNet-UG-set | | | 72.63 135 | 71.68 149 | 75.47 99 | 74.67 213 | 58.64 160 | 72.02 163 | 71.50 229 | 63.53 99 | 78.58 130 | 71.39 320 | 65.98 115 | 78.53 166 | 67.30 98 | 80.18 264 | 89.23 29 |
|
Anonymous20240529 | | | 72.56 136 | 73.79 115 | 68.86 202 | 76.89 185 | 45.21 263 | 68.80 213 | 77.25 181 | 67.16 59 | 76.89 153 | 90.44 56 | 65.95 116 | 74.19 228 | 50.75 229 | 90.00 128 | 87.18 59 |
|
FIs | | | 72.56 136 | 73.80 114 | 68.84 203 | 78.74 160 | 37.74 323 | 71.02 183 | 79.83 138 | 56.12 163 | 80.88 110 | 89.45 85 | 58.18 185 | 78.28 177 | 56.63 180 | 93.36 64 | 90.51 21 |
|
v2v482 | | | 72.55 138 | 72.58 137 | 72.43 152 | 72.92 245 | 46.72 250 | 71.41 176 | 79.13 149 | 55.27 170 | 81.17 104 | 85.25 173 | 55.41 210 | 81.13 120 | 67.25 99 | 85.46 198 | 89.43 26 |
|
test_fmvsmvis_n_1920 | | | 72.36 139 | 72.49 138 | 71.96 158 | 71.29 257 | 64.06 110 | 72.79 156 | 81.82 96 | 40.23 311 | 81.25 103 | 81.04 225 | 70.62 75 | 68.69 276 | 69.74 76 | 83.60 230 | 83.14 149 |
|
hse-mvs2 | | | 72.32 140 | 70.66 163 | 77.31 78 | 83.10 101 | 71.77 47 | 69.19 206 | 71.45 231 | 54.28 185 | 77.89 137 | 78.26 263 | 49.04 243 | 79.23 154 | 63.62 125 | 89.13 151 | 80.92 192 |
|
canonicalmvs | | | 72.29 141 | 73.38 121 | 69.04 195 | 74.23 220 | 47.37 244 | 73.93 151 | 83.18 76 | 54.36 184 | 76.61 162 | 81.64 221 | 72.03 61 | 75.34 212 | 57.12 177 | 87.28 178 | 84.40 117 |
|
Effi-MVS+ | | | 72.10 142 | 72.28 142 | 71.58 161 | 74.21 222 | 50.33 207 | 74.72 143 | 82.73 83 | 62.62 108 | 70.77 240 | 76.83 277 | 69.96 81 | 80.97 127 | 60.20 153 | 78.43 282 | 83.45 141 |
|
MVS_111021_LR | | | 72.10 142 | 71.82 147 | 72.95 135 | 79.53 142 | 73.90 36 | 70.45 191 | 66.64 265 | 56.87 155 | 76.81 157 | 81.76 219 | 68.78 88 | 71.76 253 | 61.81 136 | 83.74 226 | 73.18 275 |
|
pmmvs6 | | | 71.82 144 | 73.66 117 | 66.31 231 | 75.94 197 | 42.01 288 | 66.99 239 | 72.53 220 | 63.45 101 | 76.43 167 | 92.78 10 | 72.95 59 | 69.69 270 | 51.41 224 | 90.46 120 | 87.22 56 |
|
PLC |  | 62.01 16 | 71.79 145 | 70.28 165 | 76.33 88 | 80.31 136 | 68.63 75 | 78.18 98 | 81.24 108 | 54.57 182 | 67.09 280 | 80.63 230 | 59.44 174 | 81.74 112 | 46.91 263 | 84.17 221 | 78.63 227 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
VDDNet | | | 71.60 146 | 73.13 127 | 67.02 224 | 86.29 47 | 41.11 294 | 69.97 195 | 66.50 266 | 68.72 54 | 74.74 184 | 91.70 25 | 59.90 170 | 75.81 206 | 48.58 248 | 91.72 84 | 84.15 124 |
|
3Dnovator | | 65.95 11 | 71.50 147 | 71.22 157 | 72.34 154 | 73.16 236 | 63.09 117 | 78.37 94 | 78.32 164 | 57.67 147 | 72.22 222 | 84.61 177 | 54.77 211 | 78.47 168 | 60.82 149 | 81.07 255 | 75.45 257 |
|
FA-MVS(test-final) | | | 71.27 148 | 71.06 158 | 71.92 159 | 73.96 225 | 52.32 196 | 76.45 117 | 76.12 189 | 59.07 134 | 74.04 199 | 86.18 156 | 52.18 223 | 79.43 153 | 59.75 162 | 81.76 246 | 84.03 125 |
|
WR-MVS | | | 71.20 149 | 72.48 139 | 67.36 219 | 84.98 71 | 35.70 337 | 64.43 272 | 68.66 256 | 65.05 83 | 81.49 99 | 86.43 150 | 57.57 197 | 76.48 202 | 50.36 233 | 93.32 65 | 89.90 23 |
|
V42 | | | 71.06 150 | 70.83 161 | 71.72 160 | 67.25 293 | 47.14 247 | 65.94 251 | 80.35 131 | 51.35 225 | 83.40 76 | 83.23 201 | 59.25 177 | 78.80 162 | 65.91 104 | 80.81 258 | 89.23 29 |
|
FMVSNet1 | | | 71.06 150 | 72.48 139 | 66.81 225 | 77.65 175 | 40.68 298 | 71.96 166 | 73.03 212 | 61.14 117 | 79.45 122 | 90.36 67 | 60.44 165 | 75.20 214 | 50.20 234 | 88.05 163 | 84.54 111 |
|
dcpmvs_2 | | | 71.02 152 | 72.65 136 | 66.16 232 | 76.06 196 | 50.49 205 | 71.97 165 | 79.36 146 | 50.34 237 | 82.81 84 | 83.63 190 | 64.38 131 | 67.27 288 | 61.54 140 | 83.71 228 | 80.71 201 |
|
API-MVS | | | 70.97 153 | 71.51 154 | 69.37 188 | 75.20 203 | 55.94 171 | 80.99 61 | 76.84 184 | 62.48 110 | 71.24 236 | 77.51 273 | 61.51 154 | 80.96 130 | 52.04 219 | 85.76 197 | 71.22 295 |
|
VDD-MVS | | | 70.81 154 | 71.44 155 | 68.91 201 | 79.07 155 | 46.51 252 | 67.82 226 | 70.83 245 | 61.23 116 | 74.07 198 | 88.69 104 | 59.86 171 | 75.62 209 | 51.11 226 | 90.28 122 | 84.61 106 |
|
EG-PatchMatch MVS | | | 70.70 155 | 70.88 160 | 70.16 179 | 82.64 110 | 58.80 157 | 71.48 174 | 73.64 208 | 54.98 173 | 76.55 163 | 81.77 218 | 61.10 160 | 78.94 160 | 54.87 198 | 80.84 257 | 72.74 280 |
|
Baseline_NR-MVSNet | | | 70.62 156 | 73.19 125 | 62.92 262 | 76.97 181 | 34.44 345 | 68.84 209 | 70.88 244 | 60.25 124 | 79.50 121 | 90.53 53 | 61.82 150 | 69.11 274 | 54.67 200 | 95.27 13 | 85.22 86 |
|
alignmvs | | | 70.54 157 | 71.00 159 | 69.15 194 | 73.50 230 | 48.04 234 | 69.85 198 | 79.62 140 | 53.94 197 | 76.54 164 | 82.00 214 | 59.00 179 | 74.68 221 | 57.32 176 | 87.21 180 | 84.72 101 |
|
MG-MVS | | | 70.47 158 | 71.34 156 | 67.85 214 | 79.26 147 | 40.42 302 | 74.67 145 | 75.15 200 | 58.41 139 | 68.74 268 | 88.14 119 | 56.08 209 | 83.69 79 | 59.90 159 | 81.71 250 | 79.43 221 |
|
AUN-MVS | | | 70.22 159 | 67.88 195 | 77.22 79 | 82.96 105 | 71.61 48 | 69.08 207 | 71.39 232 | 49.17 249 | 71.70 226 | 78.07 268 | 37.62 310 | 79.21 155 | 61.81 136 | 89.15 149 | 80.82 195 |
|
UGNet | | | 70.20 160 | 69.05 175 | 73.65 118 | 76.24 191 | 63.64 112 | 75.87 129 | 72.53 220 | 61.48 115 | 60.93 320 | 86.14 159 | 52.37 222 | 77.12 194 | 50.67 230 | 85.21 204 | 80.17 210 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
PVSNet_Blended_VisFu | | | 70.04 161 | 68.88 178 | 73.53 122 | 82.71 108 | 63.62 113 | 74.81 138 | 81.95 95 | 48.53 254 | 67.16 279 | 79.18 252 | 51.42 229 | 78.38 173 | 54.39 205 | 79.72 271 | 78.60 228 |
|
Fast-Effi-MVS+-dtu | | | 70.00 162 | 68.74 182 | 73.77 116 | 73.47 231 | 64.53 107 | 71.36 177 | 78.14 169 | 55.81 167 | 68.84 267 | 74.71 292 | 65.36 123 | 75.75 207 | 52.00 220 | 79.00 276 | 81.03 188 |
|
DPM-MVS | | | 69.98 163 | 69.22 174 | 72.26 156 | 82.69 109 | 58.82 156 | 70.53 189 | 81.23 109 | 47.79 261 | 64.16 296 | 80.21 235 | 51.32 230 | 83.12 89 | 60.14 156 | 84.95 211 | 74.83 263 |
|
MVSFormer | | | 69.93 164 | 69.03 176 | 72.63 148 | 74.93 206 | 59.19 151 | 83.98 36 | 75.72 194 | 52.27 210 | 63.53 306 | 76.74 278 | 43.19 273 | 80.56 133 | 72.28 63 | 78.67 280 | 78.14 236 |
|
MVS_Test | | | 69.84 165 | 70.71 162 | 67.24 220 | 67.49 292 | 43.25 280 | 69.87 197 | 81.22 110 | 52.69 208 | 71.57 231 | 86.68 139 | 62.09 148 | 74.51 223 | 66.05 102 | 78.74 278 | 83.96 126 |
|
c3_l | | | 69.82 166 | 69.89 167 | 69.61 187 | 66.24 302 | 43.48 276 | 68.12 223 | 79.61 142 | 51.43 222 | 77.72 141 | 80.18 238 | 54.61 214 | 78.15 182 | 63.62 125 | 87.50 171 | 87.20 58 |
|
test_fmvsm_n_1920 | | | 69.63 167 | 68.45 185 | 73.16 127 | 70.56 264 | 65.86 95 | 70.26 193 | 78.35 163 | 37.69 323 | 74.29 193 | 78.89 257 | 61.10 160 | 68.10 281 | 65.87 105 | 79.07 275 | 85.53 83 |
|
TransMVSNet (Re) | | | 69.62 168 | 71.63 150 | 63.57 252 | 76.51 188 | 35.93 335 | 65.75 256 | 71.29 236 | 61.05 118 | 75.02 180 | 89.90 79 | 65.88 118 | 70.41 267 | 49.79 236 | 89.48 141 | 84.38 118 |
|
EI-MVSNet | | | 69.61 169 | 69.01 177 | 71.41 165 | 73.94 226 | 49.90 214 | 71.31 179 | 71.32 234 | 58.22 140 | 75.40 178 | 70.44 323 | 58.16 186 | 75.85 204 | 62.51 133 | 79.81 268 | 88.48 44 |
|
Gipuma |  | | 69.55 170 | 72.83 133 | 59.70 287 | 63.63 322 | 53.97 185 | 80.08 77 | 75.93 192 | 64.24 91 | 73.49 204 | 88.93 101 | 57.89 194 | 62.46 310 | 59.75 162 | 91.55 91 | 62.67 345 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
tttt0517 | | | 69.46 171 | 67.79 197 | 74.46 104 | 75.34 201 | 52.72 192 | 75.05 134 | 63.27 293 | 54.69 179 | 78.87 127 | 84.37 181 | 26.63 363 | 81.15 119 | 63.95 120 | 87.93 167 | 89.51 25 |
|
eth_miper_zixun_eth | | | 69.42 172 | 68.73 183 | 71.50 164 | 67.99 286 | 46.42 253 | 67.58 228 | 78.81 154 | 50.72 233 | 78.13 135 | 80.34 234 | 50.15 237 | 80.34 138 | 60.18 154 | 84.65 214 | 87.74 50 |
|
BH-untuned | | | 69.39 173 | 69.46 169 | 69.18 193 | 77.96 169 | 56.88 166 | 68.47 220 | 77.53 176 | 56.77 157 | 77.79 140 | 79.63 244 | 60.30 167 | 80.20 143 | 46.04 269 | 80.65 259 | 70.47 301 |
|
v148 | | | 69.38 174 | 69.39 170 | 69.36 189 | 69.14 279 | 44.56 267 | 68.83 210 | 72.70 218 | 54.79 177 | 78.59 128 | 84.12 184 | 54.69 212 | 76.74 201 | 59.40 165 | 82.20 239 | 86.79 63 |
|
PAPR | | | 69.20 175 | 68.66 184 | 70.82 168 | 75.15 205 | 47.77 238 | 75.31 132 | 81.11 111 | 49.62 246 | 66.33 282 | 79.27 249 | 61.53 153 | 82.96 92 | 48.12 254 | 81.50 253 | 81.74 179 |
|
QAPM | | | 69.18 176 | 69.26 172 | 68.94 199 | 71.61 254 | 52.58 194 | 80.37 70 | 78.79 156 | 49.63 245 | 73.51 203 | 85.14 174 | 53.66 217 | 79.12 156 | 55.11 196 | 75.54 298 | 75.11 262 |
|
LCM-MVSNet-Re | | | 69.10 177 | 71.57 153 | 61.70 271 | 70.37 267 | 34.30 347 | 61.45 292 | 79.62 140 | 56.81 156 | 89.59 8 | 88.16 118 | 68.44 92 | 72.94 235 | 42.30 289 | 87.33 176 | 77.85 242 |
|
EPNet | | | 69.10 177 | 67.32 202 | 74.46 104 | 68.33 283 | 61.27 132 | 77.56 102 | 63.57 291 | 60.95 119 | 56.62 338 | 82.75 206 | 51.53 228 | 81.24 118 | 54.36 206 | 90.20 123 | 80.88 194 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
DELS-MVS | | | 68.83 179 | 68.31 186 | 70.38 174 | 70.55 266 | 48.31 227 | 63.78 278 | 82.13 90 | 54.00 194 | 68.96 261 | 75.17 288 | 58.95 180 | 80.06 145 | 58.55 169 | 82.74 236 | 82.76 160 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
Fast-Effi-MVS+ | | | 68.81 180 | 68.30 187 | 70.35 175 | 74.66 215 | 48.61 226 | 66.06 250 | 78.32 164 | 50.62 234 | 71.48 234 | 75.54 284 | 68.75 89 | 79.59 151 | 50.55 232 | 78.73 279 | 82.86 158 |
|
OpenMVS |  | 62.51 15 | 68.76 181 | 68.75 181 | 68.78 204 | 70.56 264 | 53.91 186 | 78.29 95 | 77.35 178 | 48.85 252 | 70.22 246 | 83.52 191 | 52.65 221 | 76.93 196 | 55.31 195 | 81.99 241 | 75.49 256 |
|
VPA-MVSNet | | | 68.71 182 | 70.37 164 | 63.72 250 | 76.13 193 | 38.06 321 | 64.10 274 | 71.48 230 | 56.60 161 | 74.10 197 | 88.31 113 | 64.78 129 | 69.72 269 | 47.69 258 | 90.15 125 | 83.37 143 |
|
iter_conf_final | | | 68.69 183 | 67.00 208 | 73.76 117 | 73.68 229 | 52.33 195 | 75.96 128 | 73.54 209 | 50.56 235 | 69.90 250 | 82.85 204 | 24.76 372 | 83.73 77 | 65.40 108 | 86.33 191 | 85.22 86 |
|
BH-RMVSNet | | | 68.69 183 | 68.20 191 | 70.14 180 | 76.40 189 | 53.90 187 | 64.62 269 | 73.48 210 | 58.01 142 | 73.91 201 | 81.78 217 | 59.09 178 | 78.22 178 | 48.59 247 | 77.96 287 | 78.31 232 |
|
EIA-MVS | | | 68.59 185 | 67.16 204 | 72.90 139 | 75.18 204 | 55.64 175 | 69.39 202 | 81.29 106 | 52.44 209 | 64.53 292 | 70.69 322 | 60.33 166 | 82.30 102 | 54.27 207 | 76.31 293 | 80.75 198 |
|
pm-mvs1 | | | 68.40 186 | 69.85 168 | 64.04 248 | 73.10 240 | 39.94 304 | 64.61 270 | 70.50 246 | 55.52 169 | 73.97 200 | 89.33 86 | 63.91 134 | 68.38 279 | 49.68 238 | 88.02 164 | 83.81 129 |
|
miper_ehance_all_eth | | | 68.36 187 | 68.16 192 | 68.98 197 | 65.14 313 | 43.34 278 | 67.07 238 | 78.92 153 | 49.11 250 | 76.21 170 | 77.72 270 | 53.48 218 | 77.92 185 | 61.16 144 | 84.59 216 | 85.68 82 |
|
GBi-Net | | | 68.30 188 | 68.79 179 | 66.81 225 | 73.14 237 | 40.68 298 | 71.96 166 | 73.03 212 | 54.81 174 | 74.72 185 | 90.36 67 | 48.63 249 | 75.20 214 | 47.12 260 | 85.37 199 | 84.54 111 |
|
test1 | | | 68.30 188 | 68.79 179 | 66.81 225 | 73.14 237 | 40.68 298 | 71.96 166 | 73.03 212 | 54.81 174 | 74.72 185 | 90.36 67 | 48.63 249 | 75.20 214 | 47.12 260 | 85.37 199 | 84.54 111 |
|
FE-MVS | | | 68.29 190 | 66.96 209 | 72.26 156 | 74.16 223 | 54.24 183 | 77.55 103 | 73.42 211 | 57.65 149 | 72.66 215 | 84.91 175 | 32.02 336 | 81.49 114 | 48.43 250 | 81.85 244 | 81.04 187 |
|
DIV-MVS_self_test | | | 68.27 191 | 68.26 188 | 68.29 209 | 64.98 314 | 43.67 274 | 65.89 252 | 74.67 202 | 50.04 242 | 76.86 155 | 82.43 210 | 48.74 247 | 75.38 210 | 60.94 147 | 89.81 133 | 85.81 76 |
|
cl____ | | | 68.26 192 | 68.26 188 | 68.29 209 | 64.98 314 | 43.67 274 | 65.89 252 | 74.67 202 | 50.04 242 | 76.86 155 | 82.42 211 | 48.74 247 | 75.38 210 | 60.92 148 | 89.81 133 | 85.80 80 |
|
TinyColmap | | | 67.98 193 | 69.28 171 | 64.08 246 | 67.98 287 | 46.82 249 | 70.04 194 | 75.26 198 | 53.05 204 | 77.36 146 | 86.79 133 | 59.39 175 | 72.59 242 | 45.64 272 | 88.01 165 | 72.83 278 |
|
xiu_mvs_v1_base_debu | | | 67.87 194 | 67.07 205 | 70.26 176 | 79.13 152 | 61.90 124 | 67.34 232 | 71.25 237 | 47.98 257 | 67.70 272 | 74.19 300 | 61.31 155 | 72.62 239 | 56.51 181 | 78.26 284 | 76.27 252 |
|
xiu_mvs_v1_base | | | 67.87 194 | 67.07 205 | 70.26 176 | 79.13 152 | 61.90 124 | 67.34 232 | 71.25 237 | 47.98 257 | 67.70 272 | 74.19 300 | 61.31 155 | 72.62 239 | 56.51 181 | 78.26 284 | 76.27 252 |
|
xiu_mvs_v1_base_debi | | | 67.87 194 | 67.07 205 | 70.26 176 | 79.13 152 | 61.90 124 | 67.34 232 | 71.25 237 | 47.98 257 | 67.70 272 | 74.19 300 | 61.31 155 | 72.62 239 | 56.51 181 | 78.26 284 | 76.27 252 |
|
MAR-MVS | | | 67.72 197 | 66.16 213 | 72.40 153 | 74.45 218 | 64.99 103 | 74.87 136 | 77.50 177 | 48.67 253 | 65.78 286 | 68.58 342 | 57.01 203 | 77.79 187 | 46.68 266 | 81.92 242 | 74.42 266 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
IterMVS-SCA-FT | | | 67.68 198 | 66.07 214 | 72.49 151 | 73.34 234 | 58.20 162 | 63.80 277 | 65.55 274 | 48.10 256 | 76.91 152 | 82.64 209 | 45.20 260 | 78.84 161 | 61.20 143 | 77.89 288 | 80.44 206 |
|
LF4IMVS | | | 67.50 199 | 67.31 203 | 68.08 212 | 58.86 348 | 61.93 123 | 71.43 175 | 75.90 193 | 44.67 282 | 72.42 219 | 80.20 236 | 57.16 198 | 70.44 265 | 58.99 167 | 86.12 193 | 71.88 288 |
|
FMVSNet2 | | | 67.48 200 | 68.21 190 | 65.29 237 | 73.14 237 | 38.94 311 | 68.81 211 | 71.21 240 | 54.81 174 | 76.73 159 | 86.48 148 | 48.63 249 | 74.60 222 | 47.98 255 | 86.11 194 | 82.35 169 |
|
MSDG | | | 67.47 201 | 67.48 201 | 67.46 218 | 70.70 261 | 54.69 180 | 66.90 242 | 78.17 167 | 60.88 120 | 70.41 243 | 74.76 290 | 61.22 159 | 73.18 233 | 47.38 259 | 76.87 290 | 74.49 265 |
|
diffmvs |  | | 67.42 202 | 67.50 200 | 67.20 221 | 62.26 327 | 45.21 263 | 64.87 266 | 77.04 182 | 48.21 255 | 71.74 225 | 79.70 243 | 58.40 184 | 71.17 259 | 64.99 110 | 80.27 263 | 85.22 86 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
iter_conf05 | | | 67.34 203 | 65.62 216 | 72.50 150 | 69.82 272 | 47.06 248 | 72.19 161 | 76.86 183 | 45.32 277 | 72.86 212 | 82.85 204 | 20.53 379 | 83.73 77 | 61.13 145 | 89.02 153 | 86.70 65 |
|
cl22 | | | 67.14 204 | 66.51 211 | 69.03 196 | 63.20 323 | 43.46 277 | 66.88 243 | 76.25 188 | 49.22 248 | 74.48 190 | 77.88 269 | 45.49 259 | 77.40 192 | 60.64 150 | 84.59 216 | 86.24 69 |
|
ANet_high | | | 67.08 205 | 69.94 166 | 58.51 296 | 57.55 353 | 27.09 372 | 58.43 314 | 76.80 185 | 63.56 98 | 82.40 88 | 91.93 20 | 59.82 172 | 64.98 301 | 50.10 235 | 88.86 155 | 83.46 140 |
|
LFMVS | | | 67.06 206 | 67.89 194 | 64.56 242 | 78.02 167 | 38.25 318 | 70.81 188 | 59.60 307 | 65.18 81 | 71.06 238 | 86.56 146 | 43.85 269 | 75.22 213 | 46.35 267 | 89.63 137 | 80.21 209 |
|
thisisatest0530 | | | 67.05 207 | 65.16 221 | 72.73 145 | 73.10 240 | 50.55 204 | 71.26 181 | 63.91 289 | 50.22 239 | 74.46 191 | 80.75 228 | 26.81 362 | 80.25 140 | 59.43 164 | 86.50 189 | 87.37 54 |
|
MIMVSNet1 | | | 66.57 208 | 69.23 173 | 58.59 295 | 81.26 128 | 37.73 324 | 64.06 275 | 57.62 312 | 57.02 154 | 78.40 132 | 90.75 46 | 62.65 139 | 58.10 325 | 41.77 294 | 89.58 140 | 79.95 211 |
|
tfpnnormal | | | 66.48 209 | 67.93 193 | 62.16 268 | 73.40 233 | 36.65 328 | 63.45 280 | 64.99 278 | 55.97 164 | 72.82 214 | 87.80 122 | 57.06 202 | 69.10 275 | 48.31 252 | 87.54 169 | 80.72 200 |
|
KD-MVS_self_test | | | 66.38 210 | 67.51 199 | 62.97 260 | 61.76 329 | 34.39 346 | 58.11 316 | 75.30 197 | 50.84 232 | 77.12 148 | 85.42 170 | 56.84 204 | 69.44 271 | 51.07 227 | 91.16 98 | 85.08 91 |
|
SDMVSNet | | | 66.36 211 | 67.85 196 | 61.88 270 | 73.04 243 | 46.14 257 | 58.54 312 | 71.36 233 | 51.42 223 | 68.93 263 | 82.72 207 | 65.62 119 | 62.22 313 | 54.41 204 | 84.67 212 | 77.28 245 |
|
Anonymous202405211 | | | 66.02 212 | 66.89 210 | 63.43 255 | 74.22 221 | 38.14 319 | 59.00 308 | 66.13 268 | 63.33 104 | 69.76 253 | 85.95 166 | 51.88 224 | 70.50 264 | 44.23 280 | 87.52 170 | 81.64 180 |
|
miper_enhance_ethall | | | 65.86 213 | 65.05 228 | 68.28 211 | 61.62 331 | 42.62 285 | 64.74 267 | 77.97 171 | 42.52 295 | 73.42 206 | 72.79 310 | 49.66 238 | 77.68 189 | 58.12 172 | 84.59 216 | 84.54 111 |
|
RPMNet | | | 65.77 214 | 65.08 227 | 67.84 215 | 66.37 299 | 48.24 229 | 70.93 185 | 86.27 19 | 54.66 180 | 61.35 314 | 86.77 135 | 33.29 324 | 85.67 46 | 55.93 188 | 70.17 331 | 69.62 309 |
|
VPNet | | | 65.58 215 | 67.56 198 | 59.65 288 | 79.72 139 | 30.17 364 | 60.27 302 | 62.14 296 | 54.19 190 | 71.24 236 | 86.63 143 | 58.80 181 | 67.62 285 | 44.17 281 | 90.87 113 | 81.18 184 |
|
PVSNet_BlendedMVS | | | 65.38 216 | 64.30 229 | 68.61 205 | 69.81 273 | 49.36 220 | 65.60 259 | 78.96 151 | 45.50 272 | 59.98 323 | 78.61 259 | 51.82 225 | 78.20 179 | 44.30 278 | 84.11 222 | 78.27 233 |
|
TAMVS | | | 65.31 217 | 63.75 234 | 69.97 184 | 82.23 115 | 59.76 149 | 66.78 244 | 63.37 292 | 45.20 278 | 69.79 252 | 79.37 248 | 47.42 255 | 72.17 246 | 34.48 340 | 85.15 206 | 77.99 240 |
|
test_yl | | | 65.11 218 | 65.09 225 | 65.18 238 | 70.59 262 | 40.86 296 | 63.22 285 | 72.79 215 | 57.91 143 | 68.88 265 | 79.07 255 | 42.85 276 | 74.89 218 | 45.50 274 | 84.97 207 | 79.81 212 |
|
DCV-MVSNet | | | 65.11 218 | 65.09 225 | 65.18 238 | 70.59 262 | 40.86 296 | 63.22 285 | 72.79 215 | 57.91 143 | 68.88 265 | 79.07 255 | 42.85 276 | 74.89 218 | 45.50 274 | 84.97 207 | 79.81 212 |
|
mvs_anonymous | | | 65.08 220 | 65.49 217 | 63.83 249 | 63.79 320 | 37.60 325 | 66.52 247 | 69.82 250 | 43.44 290 | 73.46 205 | 86.08 162 | 58.79 182 | 71.75 254 | 51.90 221 | 75.63 297 | 82.15 173 |
|
FMVSNet3 | | | 65.00 221 | 65.16 221 | 64.52 243 | 69.47 276 | 37.56 326 | 66.63 245 | 70.38 247 | 51.55 221 | 74.72 185 | 83.27 200 | 37.89 308 | 74.44 224 | 47.12 260 | 85.37 199 | 81.57 181 |
|
ECVR-MVS |  | | 64.82 222 | 65.22 219 | 63.60 251 | 78.80 158 | 31.14 361 | 66.97 240 | 56.47 322 | 54.23 187 | 69.94 249 | 88.68 105 | 37.23 311 | 74.81 220 | 45.28 277 | 89.41 143 | 84.86 96 |
|
BH-w/o | | | 64.81 223 | 64.29 230 | 66.36 230 | 76.08 195 | 54.71 179 | 65.61 258 | 75.23 199 | 50.10 241 | 71.05 239 | 71.86 316 | 54.33 215 | 79.02 158 | 38.20 317 | 76.14 294 | 65.36 332 |
|
EGC-MVSNET | | | 64.77 224 | 61.17 255 | 75.60 97 | 86.90 42 | 74.47 30 | 84.04 35 | 68.62 257 | 0.60 383 | 1.13 385 | 91.61 28 | 65.32 124 | 74.15 229 | 64.01 118 | 88.28 159 | 78.17 235 |
|
test1111 | | | 64.62 225 | 65.19 220 | 62.93 261 | 79.01 156 | 29.91 365 | 65.45 260 | 54.41 331 | 54.09 192 | 71.47 235 | 88.48 109 | 37.02 312 | 74.29 227 | 46.83 265 | 89.94 131 | 84.58 109 |
|
cascas | | | 64.59 226 | 62.77 245 | 70.05 182 | 75.27 202 | 50.02 211 | 61.79 291 | 71.61 226 | 42.46 296 | 63.68 303 | 68.89 338 | 49.33 242 | 80.35 137 | 47.82 257 | 84.05 223 | 79.78 214 |
|
TR-MVS | | | 64.59 226 | 63.54 237 | 67.73 217 | 75.75 200 | 50.83 203 | 63.39 281 | 70.29 248 | 49.33 247 | 71.55 232 | 74.55 293 | 50.94 231 | 78.46 169 | 40.43 302 | 75.69 296 | 73.89 270 |
|
PM-MVS | | | 64.49 228 | 63.61 236 | 67.14 223 | 76.68 187 | 75.15 27 | 68.49 219 | 42.85 365 | 51.17 229 | 77.85 139 | 80.51 231 | 45.76 256 | 66.31 297 | 52.83 218 | 76.35 292 | 59.96 354 |
|
jason | | | 64.47 229 | 62.84 244 | 69.34 191 | 76.91 183 | 59.20 150 | 67.15 237 | 65.67 271 | 35.29 334 | 65.16 289 | 76.74 278 | 44.67 264 | 70.68 261 | 54.74 199 | 79.28 274 | 78.14 236 |
jason: jason. |
xiu_mvs_v2_base | | | 64.43 230 | 63.96 232 | 65.85 236 | 77.72 173 | 51.32 200 | 63.63 279 | 72.31 223 | 45.06 281 | 61.70 311 | 69.66 331 | 62.56 140 | 73.93 231 | 49.06 243 | 73.91 310 | 72.31 284 |
|
pmmvs-eth3d | | | 64.41 231 | 63.27 240 | 67.82 216 | 75.81 199 | 60.18 146 | 69.49 200 | 62.05 299 | 38.81 319 | 74.13 196 | 82.23 213 | 43.76 270 | 68.65 277 | 42.53 288 | 80.63 261 | 74.63 264 |
|
CDS-MVSNet | | | 64.33 232 | 62.66 246 | 69.35 190 | 80.44 134 | 58.28 161 | 65.26 262 | 65.66 272 | 44.36 283 | 67.30 278 | 75.54 284 | 43.27 272 | 71.77 252 | 37.68 320 | 84.44 219 | 78.01 239 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
PS-MVSNAJ | | | 64.27 233 | 63.73 235 | 65.90 235 | 77.82 171 | 51.42 199 | 63.33 282 | 72.33 222 | 45.09 280 | 61.60 312 | 68.04 343 | 62.39 144 | 73.95 230 | 49.07 242 | 73.87 311 | 72.34 283 |
|
ab-mvs | | | 64.11 234 | 65.13 224 | 61.05 278 | 71.99 252 | 38.03 322 | 67.59 227 | 68.79 255 | 49.08 251 | 65.32 288 | 86.26 154 | 58.02 193 | 66.85 292 | 39.33 306 | 79.79 270 | 78.27 233 |
|
CANet_DTU | | | 64.04 235 | 63.83 233 | 64.66 241 | 68.39 280 | 42.97 282 | 73.45 152 | 74.50 205 | 52.05 214 | 54.78 346 | 75.44 287 | 43.99 268 | 70.42 266 | 53.49 214 | 78.41 283 | 80.59 203 |
|
VNet | | | 64.01 236 | 65.15 223 | 60.57 282 | 73.28 235 | 35.61 338 | 57.60 318 | 67.08 263 | 54.61 181 | 66.76 281 | 83.37 195 | 56.28 207 | 66.87 290 | 42.19 290 | 85.20 205 | 79.23 223 |
|
sd_testset | | | 63.55 237 | 65.38 218 | 58.07 298 | 73.04 243 | 38.83 313 | 57.41 319 | 65.44 275 | 51.42 223 | 68.93 263 | 82.72 207 | 63.76 135 | 58.11 324 | 41.05 298 | 84.67 212 | 77.28 245 |
|
Anonymous20240521 | | | 63.55 237 | 66.07 214 | 55.99 305 | 66.18 304 | 44.04 271 | 68.77 214 | 68.80 254 | 46.99 266 | 72.57 216 | 85.84 167 | 39.87 294 | 50.22 335 | 53.40 217 | 92.23 81 | 73.71 272 |
|
lupinMVS | | | 63.36 239 | 61.49 253 | 68.97 198 | 74.93 206 | 59.19 151 | 65.80 255 | 64.52 284 | 34.68 339 | 63.53 306 | 74.25 298 | 43.19 273 | 70.62 262 | 53.88 211 | 78.67 280 | 77.10 248 |
|
ET-MVSNet_ETH3D | | | 63.32 240 | 60.69 261 | 71.20 167 | 70.15 270 | 55.66 174 | 65.02 265 | 64.32 285 | 43.28 294 | 68.99 260 | 72.05 315 | 25.46 369 | 78.19 181 | 54.16 209 | 82.80 235 | 79.74 215 |
|
MVSTER | | | 63.29 241 | 61.60 252 | 68.36 207 | 59.77 344 | 46.21 256 | 60.62 299 | 71.32 234 | 41.83 298 | 75.40 178 | 79.12 253 | 30.25 351 | 75.85 204 | 56.30 185 | 79.81 268 | 83.03 153 |
|
OpenMVS_ROB |  | 54.93 17 | 63.23 242 | 63.28 239 | 63.07 258 | 69.81 273 | 45.34 262 | 68.52 218 | 67.14 262 | 43.74 287 | 70.61 242 | 79.22 250 | 47.90 253 | 72.66 238 | 48.75 245 | 73.84 312 | 71.21 296 |
|
IterMVS | | | 63.12 243 | 62.48 247 | 65.02 240 | 66.34 301 | 52.86 191 | 63.81 276 | 62.25 295 | 46.57 269 | 71.51 233 | 80.40 233 | 44.60 265 | 66.82 293 | 51.38 225 | 75.47 299 | 75.38 259 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
HyFIR lowres test | | | 63.01 244 | 60.47 262 | 70.61 170 | 83.04 102 | 54.10 184 | 59.93 304 | 72.24 224 | 33.67 344 | 69.00 259 | 75.63 283 | 38.69 302 | 76.93 196 | 36.60 328 | 75.45 300 | 80.81 197 |
|
GA-MVS | | | 62.91 245 | 61.66 249 | 66.66 229 | 67.09 295 | 44.49 268 | 61.18 296 | 69.36 253 | 51.33 226 | 69.33 256 | 74.47 294 | 36.83 313 | 74.94 217 | 50.60 231 | 74.72 305 | 80.57 204 |
|
PVSNet_Blended | | | 62.90 246 | 61.64 250 | 66.69 228 | 69.81 273 | 49.36 220 | 61.23 295 | 78.96 151 | 42.04 297 | 59.98 323 | 68.86 339 | 51.82 225 | 78.20 179 | 44.30 278 | 77.77 289 | 72.52 281 |
|
USDC | | | 62.80 247 | 63.10 242 | 61.89 269 | 65.19 310 | 43.30 279 | 67.42 231 | 74.20 206 | 35.80 333 | 72.25 221 | 84.48 180 | 45.67 257 | 71.95 251 | 37.95 319 | 84.97 207 | 70.42 303 |
|
Vis-MVSNet (Re-imp) | | | 62.74 248 | 63.21 241 | 61.34 276 | 72.19 250 | 31.56 358 | 67.31 236 | 53.87 332 | 53.60 200 | 69.88 251 | 83.37 195 | 40.52 290 | 70.98 260 | 41.40 296 | 86.78 186 | 81.48 182 |
|
patch_mono-2 | | | 62.73 249 | 64.08 231 | 58.68 294 | 70.36 268 | 55.87 172 | 60.84 298 | 64.11 288 | 41.23 303 | 64.04 297 | 78.22 264 | 60.00 168 | 48.80 339 | 54.17 208 | 83.71 228 | 71.37 292 |
|
D2MVS | | | 62.58 250 | 61.05 257 | 67.20 221 | 63.85 319 | 47.92 235 | 56.29 324 | 69.58 251 | 39.32 314 | 70.07 248 | 78.19 265 | 34.93 319 | 72.68 237 | 53.44 215 | 83.74 226 | 81.00 190 |
|
CL-MVSNet_self_test | | | 62.44 251 | 63.40 238 | 59.55 289 | 72.34 249 | 32.38 354 | 56.39 323 | 64.84 280 | 51.21 228 | 67.46 276 | 81.01 226 | 50.75 232 | 63.51 308 | 38.47 315 | 88.12 162 | 82.75 161 |
|
MDA-MVSNet-bldmvs | | | 62.34 252 | 61.73 248 | 64.16 244 | 61.64 330 | 49.90 214 | 48.11 350 | 57.24 318 | 53.31 203 | 80.95 106 | 79.39 247 | 49.00 245 | 61.55 315 | 45.92 270 | 80.05 265 | 81.03 188 |
|
miper_lstm_enhance | | | 61.97 253 | 61.63 251 | 62.98 259 | 60.04 338 | 45.74 260 | 47.53 352 | 70.95 242 | 44.04 284 | 73.06 210 | 78.84 258 | 39.72 295 | 60.33 317 | 55.82 190 | 84.64 215 | 82.88 156 |
|
wuyk23d | | | 61.97 253 | 66.25 212 | 49.12 333 | 58.19 352 | 60.77 142 | 66.32 248 | 52.97 340 | 55.93 166 | 90.62 5 | 86.91 130 | 73.07 57 | 35.98 376 | 20.63 379 | 91.63 87 | 50.62 366 |
|
thres600view7 | | | 61.82 255 | 61.38 254 | 63.12 257 | 71.81 253 | 34.93 342 | 64.64 268 | 56.99 319 | 54.78 178 | 70.33 245 | 79.74 242 | 32.07 334 | 72.42 244 | 38.61 313 | 83.46 231 | 82.02 174 |
|
PAPM | | | 61.79 256 | 60.37 263 | 66.05 233 | 76.09 194 | 41.87 289 | 69.30 203 | 76.79 186 | 40.64 309 | 53.80 351 | 79.62 245 | 44.38 266 | 82.92 93 | 29.64 358 | 73.11 315 | 73.36 274 |
|
MVP-Stereo | | | 61.56 257 | 59.22 269 | 68.58 206 | 79.28 146 | 60.44 144 | 69.20 205 | 71.57 227 | 43.58 289 | 56.42 339 | 78.37 262 | 39.57 297 | 76.46 203 | 34.86 339 | 60.16 362 | 68.86 316 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
CMPMVS |  | 48.73 20 | 61.54 258 | 60.89 258 | 63.52 253 | 61.08 333 | 51.55 198 | 68.07 224 | 68.00 260 | 33.88 341 | 65.87 284 | 81.25 223 | 37.91 307 | 67.71 283 | 49.32 241 | 82.60 237 | 71.31 294 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
test2506 | | | 61.23 259 | 60.85 259 | 62.38 266 | 78.80 158 | 27.88 371 | 67.33 235 | 37.42 378 | 54.23 187 | 67.55 275 | 88.68 105 | 17.87 384 | 74.39 225 | 46.33 268 | 89.41 143 | 84.86 96 |
|
thres100view900 | | | 61.17 260 | 61.09 256 | 61.39 275 | 72.14 251 | 35.01 341 | 65.42 261 | 56.99 319 | 55.23 171 | 70.71 241 | 79.90 240 | 32.07 334 | 72.09 247 | 35.61 335 | 81.73 247 | 77.08 249 |
|
Patchmtry | | | 60.91 261 | 63.01 243 | 54.62 310 | 66.10 305 | 26.27 375 | 67.47 230 | 56.40 323 | 54.05 193 | 72.04 224 | 86.66 140 | 33.19 325 | 60.17 318 | 43.69 282 | 87.45 173 | 77.42 243 |
|
EU-MVSNet | | | 60.82 262 | 60.80 260 | 60.86 281 | 68.37 281 | 41.16 293 | 72.27 158 | 68.27 259 | 26.96 364 | 69.08 258 | 75.71 282 | 32.09 333 | 67.44 286 | 55.59 193 | 78.90 277 | 73.97 268 |
|
pmmvs4 | | | 60.78 263 | 59.04 271 | 66.00 234 | 73.06 242 | 57.67 164 | 64.53 271 | 60.22 305 | 36.91 328 | 65.96 283 | 77.27 274 | 39.66 296 | 68.54 278 | 38.87 310 | 74.89 304 | 71.80 289 |
|
thres400 | | | 60.77 264 | 59.97 265 | 63.15 256 | 70.78 259 | 35.35 339 | 63.27 283 | 57.47 313 | 53.00 205 | 68.31 269 | 77.09 275 | 32.45 331 | 72.09 247 | 35.61 335 | 81.73 247 | 82.02 174 |
|
MVS | | | 60.62 265 | 59.97 265 | 62.58 264 | 68.13 285 | 47.28 245 | 68.59 216 | 73.96 207 | 32.19 348 | 59.94 325 | 68.86 339 | 50.48 234 | 77.64 190 | 41.85 293 | 75.74 295 | 62.83 343 |
|
thisisatest0515 | | | 60.48 266 | 57.86 280 | 68.34 208 | 67.25 293 | 46.42 253 | 60.58 300 | 62.14 296 | 40.82 307 | 63.58 305 | 69.12 334 | 26.28 365 | 78.34 175 | 48.83 244 | 82.13 240 | 80.26 208 |
|
tfpn200view9 | | | 60.35 267 | 59.97 265 | 61.51 273 | 70.78 259 | 35.35 339 | 63.27 283 | 57.47 313 | 53.00 205 | 68.31 269 | 77.09 275 | 32.45 331 | 72.09 247 | 35.61 335 | 81.73 247 | 77.08 249 |
|
ppachtmachnet_test | | | 60.26 268 | 59.61 268 | 62.20 267 | 67.70 290 | 44.33 269 | 58.18 315 | 60.96 303 | 40.75 308 | 65.80 285 | 72.57 311 | 41.23 283 | 63.92 305 | 46.87 264 | 82.42 238 | 78.33 231 |
|
Patchmatch-RL test | | | 59.95 269 | 59.12 270 | 62.44 265 | 72.46 248 | 54.61 181 | 59.63 305 | 47.51 357 | 41.05 306 | 74.58 189 | 74.30 297 | 31.06 345 | 65.31 298 | 51.61 222 | 79.85 267 | 67.39 319 |
|
1314 | | | 59.83 270 | 58.86 273 | 62.74 263 | 65.71 307 | 44.78 266 | 68.59 216 | 72.63 219 | 33.54 346 | 61.05 318 | 67.29 348 | 43.62 271 | 71.26 258 | 49.49 240 | 67.84 344 | 72.19 286 |
|
IB-MVS | | 49.67 18 | 59.69 271 | 56.96 286 | 67.90 213 | 68.19 284 | 50.30 208 | 61.42 293 | 65.18 277 | 47.57 263 | 55.83 342 | 67.15 349 | 23.77 375 | 79.60 150 | 43.56 284 | 79.97 266 | 73.79 271 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
1112_ss | | | 59.48 272 | 58.99 272 | 60.96 280 | 77.84 170 | 42.39 287 | 61.42 293 | 68.45 258 | 37.96 322 | 59.93 326 | 67.46 345 | 45.11 262 | 65.07 300 | 40.89 300 | 71.81 321 | 75.41 258 |
|
FPMVS | | | 59.43 273 | 60.07 264 | 57.51 300 | 77.62 176 | 71.52 49 | 62.33 289 | 50.92 345 | 57.40 152 | 69.40 255 | 80.00 239 | 39.14 300 | 61.92 314 | 37.47 323 | 66.36 347 | 39.09 377 |
|
CVMVSNet | | | 59.21 274 | 58.44 277 | 61.51 273 | 73.94 226 | 47.76 239 | 71.31 179 | 64.56 283 | 26.91 366 | 60.34 322 | 70.44 323 | 36.24 316 | 67.65 284 | 53.57 213 | 68.66 339 | 69.12 314 |
|
CR-MVSNet | | | 58.96 275 | 58.49 276 | 60.36 284 | 66.37 299 | 48.24 229 | 70.93 185 | 56.40 323 | 32.87 347 | 61.35 314 | 86.66 140 | 33.19 325 | 63.22 309 | 48.50 249 | 70.17 331 | 69.62 309 |
|
EPNet_dtu | | | 58.93 276 | 58.52 275 | 60.16 286 | 67.91 288 | 47.70 240 | 69.97 195 | 58.02 311 | 49.73 244 | 47.28 367 | 73.02 309 | 38.14 304 | 62.34 311 | 36.57 329 | 85.99 195 | 70.43 302 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
Test_1112_low_res | | | 58.78 277 | 58.69 274 | 59.04 293 | 79.41 143 | 38.13 320 | 57.62 317 | 66.98 264 | 34.74 337 | 59.62 329 | 77.56 272 | 42.92 275 | 63.65 307 | 38.66 312 | 70.73 327 | 75.35 260 |
|
PatchMatch-RL | | | 58.68 278 | 57.72 281 | 61.57 272 | 76.21 192 | 73.59 39 | 61.83 290 | 49.00 352 | 47.30 265 | 61.08 316 | 68.97 336 | 50.16 236 | 59.01 321 | 36.06 334 | 68.84 338 | 52.10 364 |
|
SCA | | | 58.57 279 | 58.04 279 | 60.17 285 | 70.17 269 | 41.07 295 | 65.19 263 | 53.38 338 | 43.34 293 | 61.00 319 | 73.48 304 | 45.20 260 | 69.38 272 | 40.34 303 | 70.31 330 | 70.05 304 |
|
CHOSEN 1792x2688 | | | 58.09 280 | 56.30 291 | 63.45 254 | 79.95 137 | 50.93 202 | 54.07 335 | 65.59 273 | 28.56 360 | 61.53 313 | 74.33 296 | 41.09 286 | 66.52 296 | 33.91 343 | 67.69 345 | 72.92 277 |
|
HY-MVS | | 49.31 19 | 57.96 281 | 57.59 282 | 59.10 292 | 66.85 298 | 36.17 332 | 65.13 264 | 65.39 276 | 39.24 316 | 54.69 348 | 78.14 266 | 44.28 267 | 67.18 289 | 33.75 344 | 70.79 326 | 73.95 269 |
|
baseline1 | | | 57.82 282 | 58.36 278 | 56.19 304 | 69.17 278 | 30.76 363 | 62.94 287 | 55.21 326 | 46.04 271 | 63.83 301 | 78.47 260 | 41.20 284 | 63.68 306 | 39.44 305 | 68.99 337 | 74.13 267 |
|
thres200 | | | 57.55 283 | 57.02 285 | 59.17 290 | 67.89 289 | 34.93 342 | 58.91 310 | 57.25 317 | 50.24 238 | 64.01 298 | 71.46 319 | 32.49 330 | 71.39 257 | 31.31 350 | 79.57 272 | 71.19 297 |
|
CostFormer | | | 57.35 284 | 56.14 292 | 60.97 279 | 63.76 321 | 38.43 315 | 67.50 229 | 60.22 305 | 37.14 327 | 59.12 330 | 76.34 280 | 32.78 328 | 71.99 250 | 39.12 309 | 69.27 336 | 72.47 282 |
|
test_fmvs3 | | | 56.78 285 | 55.99 294 | 59.12 291 | 53.96 371 | 48.09 232 | 58.76 311 | 66.22 267 | 27.54 362 | 76.66 160 | 68.69 341 | 25.32 371 | 51.31 332 | 53.42 216 | 73.38 313 | 77.97 241 |
|
our_test_3 | | | 56.46 286 | 56.51 289 | 56.30 303 | 67.70 290 | 39.66 306 | 55.36 331 | 52.34 343 | 40.57 310 | 63.85 300 | 69.91 330 | 40.04 293 | 58.22 323 | 43.49 285 | 75.29 303 | 71.03 299 |
|
tpm2 | | | 56.12 287 | 54.64 300 | 60.55 283 | 66.24 302 | 36.01 333 | 68.14 222 | 56.77 321 | 33.60 345 | 58.25 333 | 75.52 286 | 30.25 351 | 74.33 226 | 33.27 345 | 69.76 335 | 71.32 293 |
|
tpmvs | | | 55.84 288 | 55.45 298 | 57.01 301 | 60.33 337 | 33.20 352 | 65.89 252 | 59.29 309 | 47.52 264 | 56.04 340 | 73.60 303 | 31.05 346 | 68.06 282 | 40.64 301 | 64.64 350 | 69.77 307 |
|
gg-mvs-nofinetune | | | 55.75 289 | 56.75 288 | 52.72 318 | 62.87 324 | 28.04 370 | 68.92 208 | 41.36 373 | 71.09 40 | 50.80 359 | 92.63 12 | 20.74 378 | 66.86 291 | 29.97 356 | 72.41 317 | 63.25 342 |
|
test20.03 | | | 55.74 290 | 57.51 283 | 50.42 326 | 59.89 343 | 32.09 356 | 50.63 344 | 49.01 351 | 50.11 240 | 65.07 290 | 83.23 201 | 45.61 258 | 48.11 344 | 30.22 354 | 83.82 225 | 71.07 298 |
|
MS-PatchMatch | | | 55.59 291 | 54.89 299 | 57.68 299 | 69.18 277 | 49.05 223 | 61.00 297 | 62.93 294 | 35.98 331 | 58.36 332 | 68.93 337 | 36.71 314 | 66.59 295 | 37.62 322 | 63.30 354 | 57.39 360 |
|
baseline2 | | | 55.57 292 | 52.74 308 | 64.05 247 | 65.26 309 | 44.11 270 | 62.38 288 | 54.43 330 | 39.03 317 | 51.21 357 | 67.35 347 | 33.66 323 | 72.45 243 | 37.14 325 | 64.22 352 | 75.60 255 |
|
XXY-MVS | | | 55.19 293 | 57.40 284 | 48.56 335 | 64.45 317 | 34.84 344 | 51.54 342 | 53.59 334 | 38.99 318 | 63.79 302 | 79.43 246 | 56.59 205 | 45.57 350 | 36.92 327 | 71.29 323 | 65.25 333 |
|
FMVSNet5 | | | 55.08 294 | 55.54 297 | 53.71 312 | 65.80 306 | 33.50 351 | 56.22 325 | 52.50 342 | 43.72 288 | 61.06 317 | 83.38 194 | 25.46 369 | 54.87 328 | 30.11 355 | 81.64 252 | 72.75 279 |
|
test_fmvs2 | | | 54.80 295 | 54.11 302 | 56.88 302 | 51.76 375 | 49.95 213 | 56.70 322 | 65.80 270 | 26.22 367 | 69.42 254 | 65.25 352 | 31.82 337 | 49.98 336 | 49.63 239 | 70.36 329 | 70.71 300 |
|
PatchmatchNet |  | | 54.60 296 | 54.27 301 | 55.59 306 | 65.17 312 | 39.08 308 | 66.92 241 | 51.80 344 | 39.89 312 | 58.39 331 | 73.12 308 | 31.69 339 | 58.33 322 | 43.01 287 | 58.38 368 | 69.38 312 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
MIMVSNet | | | 54.39 297 | 56.12 293 | 49.20 331 | 72.57 247 | 30.91 362 | 59.98 303 | 48.43 354 | 41.66 299 | 55.94 341 | 83.86 188 | 41.19 285 | 50.42 334 | 26.05 368 | 75.38 301 | 66.27 327 |
|
Anonymous20231206 | | | 54.13 298 | 55.82 295 | 49.04 334 | 70.89 258 | 35.96 334 | 51.73 341 | 50.87 346 | 34.86 335 | 62.49 309 | 79.22 250 | 42.52 279 | 44.29 360 | 27.95 365 | 81.88 243 | 66.88 323 |
|
JIA-IIPM | | | 54.03 299 | 51.62 313 | 61.25 277 | 59.14 347 | 55.21 177 | 59.10 307 | 47.72 355 | 50.85 231 | 50.31 363 | 85.81 168 | 20.10 381 | 63.97 304 | 36.16 333 | 55.41 373 | 64.55 339 |
|
tpm cat1 | | | 54.02 300 | 52.63 309 | 58.19 297 | 64.85 316 | 39.86 305 | 66.26 249 | 57.28 316 | 32.16 349 | 56.90 336 | 70.39 325 | 32.75 329 | 65.30 299 | 34.29 341 | 58.79 365 | 69.41 311 |
|
testgi | | | 54.00 301 | 56.86 287 | 45.45 344 | 58.20 351 | 25.81 376 | 49.05 346 | 49.50 350 | 45.43 275 | 67.84 271 | 81.17 224 | 51.81 227 | 43.20 364 | 29.30 359 | 79.41 273 | 67.34 321 |
|
PatchT | | | 53.35 302 | 56.47 290 | 43.99 351 | 64.19 318 | 17.46 383 | 59.15 306 | 43.10 364 | 52.11 213 | 54.74 347 | 86.95 129 | 29.97 354 | 49.98 336 | 43.62 283 | 74.40 308 | 64.53 340 |
|
test_vis1_n_1920 | | | 52.96 303 | 53.50 304 | 51.32 323 | 59.15 346 | 44.90 265 | 56.13 326 | 64.29 286 | 30.56 358 | 59.87 327 | 60.68 363 | 40.16 292 | 47.47 345 | 48.25 253 | 62.46 356 | 61.58 351 |
|
new-patchmatchnet | | | 52.89 304 | 55.76 296 | 44.26 350 | 59.94 342 | 6.31 387 | 37.36 372 | 50.76 347 | 41.10 304 | 64.28 295 | 79.82 241 | 44.77 263 | 48.43 343 | 36.24 332 | 87.61 168 | 78.03 238 |
|
test_fmvs1_n | | | 52.70 305 | 52.01 312 | 54.76 308 | 53.83 372 | 50.36 206 | 55.80 328 | 65.90 269 | 24.96 370 | 65.39 287 | 60.64 364 | 27.69 360 | 48.46 341 | 45.88 271 | 67.99 342 | 65.46 331 |
|
YYNet1 | | | 52.58 306 | 53.50 304 | 49.85 327 | 54.15 368 | 36.45 331 | 40.53 365 | 46.55 359 | 38.09 321 | 75.52 176 | 73.31 307 | 41.08 287 | 43.88 361 | 41.10 297 | 71.14 325 | 69.21 313 |
|
MDA-MVSNet_test_wron | | | 52.57 307 | 53.49 306 | 49.81 328 | 54.24 367 | 36.47 330 | 40.48 366 | 46.58 358 | 38.13 320 | 75.47 177 | 73.32 306 | 41.05 288 | 43.85 362 | 40.98 299 | 71.20 324 | 69.10 315 |
|
pmmvs5 | | | 52.49 308 | 52.58 310 | 52.21 320 | 54.99 365 | 32.38 354 | 55.45 330 | 53.84 333 | 32.15 350 | 55.49 344 | 74.81 289 | 38.08 305 | 57.37 326 | 34.02 342 | 74.40 308 | 66.88 323 |
|
UnsupCasMVSNet_eth | | | 52.26 309 | 53.29 307 | 49.16 332 | 55.08 364 | 33.67 350 | 50.03 345 | 58.79 310 | 37.67 324 | 63.43 308 | 74.75 291 | 41.82 281 | 45.83 349 | 38.59 314 | 59.42 364 | 67.98 318 |
|
N_pmnet | | | 52.06 310 | 51.11 318 | 54.92 307 | 59.64 345 | 71.03 53 | 37.42 371 | 61.62 302 | 33.68 343 | 57.12 334 | 72.10 312 | 37.94 306 | 31.03 378 | 29.13 364 | 71.35 322 | 62.70 344 |
|
KD-MVS_2432*1600 | | | 52.05 311 | 51.58 314 | 53.44 314 | 52.11 373 | 31.20 359 | 44.88 359 | 64.83 281 | 41.53 300 | 64.37 293 | 70.03 328 | 15.61 388 | 64.20 302 | 36.25 330 | 74.61 306 | 64.93 336 |
|
miper_refine_blended | | | 52.05 311 | 51.58 314 | 53.44 314 | 52.11 373 | 31.20 359 | 44.88 359 | 64.83 281 | 41.53 300 | 64.37 293 | 70.03 328 | 15.61 388 | 64.20 302 | 36.25 330 | 74.61 306 | 64.93 336 |
|
test_vis3_rt | | | 51.94 313 | 51.04 319 | 54.65 309 | 46.32 382 | 50.13 210 | 44.34 361 | 78.17 167 | 23.62 374 | 68.95 262 | 62.81 356 | 21.41 377 | 38.52 374 | 41.49 295 | 72.22 318 | 75.30 261 |
|
PVSNet | | 43.83 21 | 51.56 314 | 51.17 317 | 52.73 317 | 68.34 282 | 38.27 317 | 48.22 349 | 53.56 336 | 36.41 329 | 54.29 349 | 64.94 353 | 34.60 320 | 54.20 331 | 30.34 353 | 69.87 333 | 65.71 330 |
|
test_fmvs1 | | | 51.51 315 | 50.86 322 | 53.48 313 | 49.72 378 | 49.35 222 | 54.11 334 | 64.96 279 | 24.64 372 | 63.66 304 | 59.61 367 | 28.33 359 | 48.45 342 | 45.38 276 | 67.30 346 | 62.66 346 |
|
test_vis1_n | | | 51.27 316 | 50.41 325 | 53.83 311 | 56.99 355 | 50.01 212 | 56.75 321 | 60.53 304 | 25.68 368 | 59.74 328 | 57.86 368 | 29.40 356 | 47.41 346 | 43.10 286 | 63.66 353 | 64.08 341 |
|
test_cas_vis1_n_1920 | | | 50.90 317 | 50.92 321 | 50.83 325 | 54.12 370 | 47.80 237 | 51.44 343 | 54.61 329 | 26.95 365 | 63.95 299 | 60.85 362 | 37.86 309 | 44.97 355 | 45.53 273 | 62.97 355 | 59.72 355 |
|
tpm | | | 50.60 318 | 52.42 311 | 45.14 346 | 65.18 311 | 26.29 374 | 60.30 301 | 43.50 362 | 37.41 325 | 57.01 335 | 79.09 254 | 30.20 353 | 42.32 365 | 32.77 347 | 66.36 347 | 66.81 325 |
|
test-LLR | | | 50.43 319 | 50.69 324 | 49.64 329 | 60.76 334 | 41.87 289 | 53.18 337 | 45.48 360 | 43.41 291 | 49.41 364 | 60.47 365 | 29.22 357 | 44.73 357 | 42.09 291 | 72.14 319 | 62.33 349 |
|
tpmrst | | | 50.15 320 | 51.38 316 | 46.45 341 | 56.05 359 | 24.77 377 | 64.40 273 | 49.98 348 | 36.14 330 | 53.32 352 | 69.59 332 | 35.16 318 | 48.69 340 | 39.24 307 | 58.51 367 | 65.89 328 |
|
UnsupCasMVSNet_bld | | | 50.01 321 | 51.03 320 | 46.95 337 | 58.61 349 | 32.64 353 | 48.31 348 | 53.27 339 | 34.27 340 | 60.47 321 | 71.53 318 | 41.40 282 | 47.07 347 | 30.68 352 | 60.78 361 | 61.13 352 |
|
dmvs_re | | | 49.91 322 | 50.77 323 | 47.34 336 | 59.98 339 | 38.86 312 | 53.18 337 | 53.58 335 | 39.75 313 | 55.06 345 | 61.58 361 | 36.42 315 | 44.40 359 | 29.15 363 | 68.23 340 | 58.75 357 |
|
WTY-MVS | | | 49.39 323 | 50.31 326 | 46.62 340 | 61.22 332 | 32.00 357 | 46.61 355 | 49.77 349 | 33.87 342 | 54.12 350 | 69.55 333 | 41.96 280 | 45.40 352 | 31.28 351 | 64.42 351 | 62.47 347 |
|
ADS-MVSNet2 | | | 48.76 324 | 47.25 333 | 53.29 316 | 55.90 361 | 40.54 301 | 47.34 353 | 54.99 328 | 31.41 355 | 50.48 360 | 72.06 313 | 31.23 342 | 54.26 330 | 25.93 369 | 55.93 370 | 65.07 334 |
|
test-mter | | | 48.56 325 | 48.20 330 | 49.64 329 | 60.76 334 | 41.87 289 | 53.18 337 | 45.48 360 | 31.91 353 | 49.41 364 | 60.47 365 | 18.34 382 | 44.73 357 | 42.09 291 | 72.14 319 | 62.33 349 |
|
Patchmatch-test | | | 47.93 326 | 49.96 327 | 41.84 354 | 57.42 354 | 24.26 378 | 48.75 347 | 41.49 372 | 39.30 315 | 56.79 337 | 73.48 304 | 30.48 350 | 33.87 377 | 29.29 360 | 72.61 316 | 67.39 319 |
|
test0.0.03 1 | | | 47.72 327 | 48.31 329 | 45.93 342 | 55.53 363 | 29.39 366 | 46.40 356 | 41.21 374 | 43.41 291 | 55.81 343 | 67.65 344 | 29.22 357 | 43.77 363 | 25.73 371 | 69.87 333 | 64.62 338 |
|
sss | | | 47.59 328 | 48.32 328 | 45.40 345 | 56.73 358 | 33.96 348 | 45.17 358 | 48.51 353 | 32.11 352 | 52.37 354 | 65.79 350 | 40.39 291 | 41.91 368 | 31.85 348 | 61.97 358 | 60.35 353 |
|
pmmvs3 | | | 46.71 329 | 45.09 339 | 51.55 322 | 56.76 357 | 48.25 228 | 55.78 329 | 39.53 377 | 24.13 373 | 50.35 362 | 63.40 354 | 15.90 387 | 51.08 333 | 29.29 360 | 70.69 328 | 55.33 363 |
|
test_vis1_rt | | | 46.70 330 | 45.24 338 | 51.06 324 | 44.58 383 | 51.04 201 | 39.91 367 | 67.56 261 | 21.84 378 | 51.94 355 | 50.79 376 | 33.83 322 | 39.77 371 | 35.25 338 | 61.50 359 | 62.38 348 |
|
EPMVS | | | 45.74 331 | 46.53 334 | 43.39 352 | 54.14 369 | 22.33 380 | 55.02 332 | 35.00 381 | 34.69 338 | 51.09 358 | 70.20 327 | 25.92 367 | 42.04 367 | 37.19 324 | 55.50 372 | 65.78 329 |
|
MVS-HIRNet | | | 45.53 332 | 47.29 332 | 40.24 357 | 62.29 326 | 26.82 373 | 56.02 327 | 37.41 379 | 29.74 359 | 43.69 377 | 81.27 222 | 33.96 321 | 55.48 327 | 24.46 374 | 56.79 369 | 38.43 378 |
|
dmvs_testset | | | 45.26 333 | 47.51 331 | 38.49 360 | 59.96 341 | 14.71 385 | 58.50 313 | 43.39 363 | 41.30 302 | 51.79 356 | 56.48 369 | 39.44 298 | 49.91 338 | 21.42 377 | 55.35 374 | 50.85 365 |
|
TESTMET0.1,1 | | | 45.17 334 | 44.93 340 | 45.89 343 | 56.02 360 | 38.31 316 | 53.18 337 | 41.94 371 | 27.85 361 | 44.86 373 | 56.47 370 | 17.93 383 | 41.50 369 | 38.08 318 | 68.06 341 | 57.85 358 |
|
E-PMN | | | 45.17 334 | 45.36 337 | 44.60 348 | 50.07 376 | 42.75 283 | 38.66 369 | 42.29 369 | 46.39 270 | 39.55 378 | 51.15 375 | 26.00 366 | 45.37 353 | 37.68 320 | 76.41 291 | 45.69 372 |
|
PMMVS | | | 44.69 336 | 43.95 344 | 46.92 338 | 50.05 377 | 53.47 189 | 48.08 351 | 42.40 367 | 22.36 376 | 44.01 376 | 53.05 373 | 42.60 278 | 45.49 351 | 31.69 349 | 61.36 360 | 41.79 375 |
|
ADS-MVSNet | | | 44.62 337 | 45.58 336 | 41.73 355 | 55.90 361 | 20.83 381 | 47.34 353 | 39.94 376 | 31.41 355 | 50.48 360 | 72.06 313 | 31.23 342 | 39.31 372 | 25.93 369 | 55.93 370 | 65.07 334 |
|
EMVS | | | 44.61 338 | 44.45 343 | 45.10 347 | 48.91 379 | 43.00 281 | 37.92 370 | 41.10 375 | 46.75 268 | 38.00 380 | 48.43 378 | 26.42 364 | 46.27 348 | 37.11 326 | 75.38 301 | 46.03 371 |
|
dp | | | 44.09 339 | 44.88 341 | 41.72 356 | 58.53 350 | 23.18 379 | 54.70 333 | 42.38 368 | 34.80 336 | 44.25 375 | 65.61 351 | 24.48 374 | 44.80 356 | 29.77 357 | 49.42 376 | 57.18 361 |
|
test_f | | | 43.79 340 | 45.63 335 | 38.24 361 | 42.29 386 | 38.58 314 | 34.76 374 | 47.68 356 | 22.22 377 | 67.34 277 | 63.15 355 | 31.82 337 | 30.60 379 | 39.19 308 | 62.28 357 | 45.53 373 |
|
mvsany_test3 | | | 43.76 341 | 41.01 345 | 52.01 321 | 48.09 380 | 57.74 163 | 42.47 363 | 23.85 387 | 23.30 375 | 64.80 291 | 62.17 359 | 27.12 361 | 40.59 370 | 29.17 362 | 48.11 377 | 57.69 359 |
|
DSMNet-mixed | | | 43.18 342 | 44.66 342 | 38.75 359 | 54.75 366 | 28.88 369 | 57.06 320 | 27.42 384 | 13.47 380 | 47.27 368 | 77.67 271 | 38.83 301 | 39.29 373 | 25.32 373 | 60.12 363 | 48.08 368 |
|
CHOSEN 280x420 | | | 41.62 343 | 39.89 348 | 46.80 339 | 61.81 328 | 51.59 197 | 33.56 375 | 35.74 380 | 27.48 363 | 37.64 381 | 53.53 371 | 23.24 376 | 42.09 366 | 27.39 366 | 58.64 366 | 46.72 370 |
|
PVSNet_0 | | 36.71 22 | 41.12 344 | 40.78 347 | 42.14 353 | 59.97 340 | 40.13 303 | 40.97 364 | 42.24 370 | 30.81 357 | 44.86 373 | 49.41 377 | 40.70 289 | 45.12 354 | 23.15 375 | 34.96 380 | 41.16 376 |
|
mvsany_test1 | | | 37.88 345 | 35.74 350 | 44.28 349 | 47.28 381 | 49.90 214 | 36.54 373 | 24.37 386 | 19.56 379 | 45.76 369 | 53.46 372 | 32.99 327 | 37.97 375 | 26.17 367 | 35.52 379 | 44.99 374 |
|
PMMVS2 | | | 37.74 346 | 40.87 346 | 28.36 363 | 42.41 385 | 5.35 388 | 24.61 376 | 27.75 383 | 32.15 350 | 47.85 366 | 70.27 326 | 35.85 317 | 29.51 380 | 19.08 380 | 67.85 343 | 50.22 367 |
|
new_pmnet | | | 37.55 347 | 39.80 349 | 30.79 362 | 56.83 356 | 16.46 384 | 39.35 368 | 30.65 382 | 25.59 369 | 45.26 371 | 61.60 360 | 24.54 373 | 28.02 381 | 21.60 376 | 52.80 375 | 47.90 369 |
|
MVE |  | 27.91 23 | 36.69 348 | 35.64 351 | 39.84 358 | 43.37 384 | 35.85 336 | 19.49 377 | 24.61 385 | 24.68 371 | 39.05 379 | 62.63 358 | 38.67 303 | 27.10 382 | 21.04 378 | 47.25 378 | 56.56 362 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
test_method | | | 19.26 349 | 19.12 353 | 19.71 364 | 9.09 388 | 1.91 390 | 7.79 379 | 53.44 337 | 1.42 382 | 10.27 384 | 35.80 379 | 17.42 385 | 25.11 383 | 12.44 381 | 24.38 382 | 32.10 379 |
|
cdsmvs_eth3d_5k | | | 17.71 350 | 23.62 352 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 70.17 249 | 0.00 387 | 0.00 388 | 74.25 298 | 68.16 95 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
tmp_tt | | | 11.98 351 | 14.73 354 | 3.72 366 | 2.28 389 | 4.62 389 | 19.44 378 | 14.50 389 | 0.47 384 | 21.55 382 | 9.58 382 | 25.78 368 | 4.57 385 | 11.61 382 | 27.37 381 | 1.96 381 |
|
ab-mvs-re | | | 5.62 352 | 7.50 355 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 67.46 345 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
pcd_1.5k_mvsjas | | | 5.20 353 | 6.93 356 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 62.39 144 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
test123 | | | 4.43 354 | 5.78 357 | 0.39 368 | 0.97 390 | 0.28 391 | 46.33 357 | 0.45 391 | 0.31 385 | 0.62 386 | 1.50 385 | 0.61 391 | 0.11 387 | 0.56 384 | 0.63 384 | 0.77 383 |
|
testmvs | | | 4.06 355 | 5.28 358 | 0.41 367 | 0.64 391 | 0.16 392 | 42.54 362 | 0.31 392 | 0.26 386 | 0.50 387 | 1.40 386 | 0.77 390 | 0.17 386 | 0.56 384 | 0.55 385 | 0.90 382 |
|
test_blank | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
uanet_test | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
DCPMVS | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
sosnet-low-res | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
sosnet | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
uncertanet | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
Regformer | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
uanet | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
FOURS1 | | | | | | 89.19 23 | 77.84 12 | 91.64 1 | 89.11 2 | 84.05 2 | 91.57 2 | | | | | | |
|
MSC_two_6792asdad | | | | | 79.02 54 | 83.14 96 | 67.03 87 | | 80.75 118 | | | | | 86.24 21 | 77.27 32 | 94.85 25 | 83.78 130 |
|
PC_three_1452 | | | | | | | | | | 46.98 267 | 81.83 93 | 86.28 152 | 66.55 112 | 84.47 70 | 63.31 130 | 90.78 114 | 83.49 136 |
|
No_MVS | | | | | 79.02 54 | 83.14 96 | 67.03 87 | | 80.75 118 | | | | | 86.24 21 | 77.27 32 | 94.85 25 | 83.78 130 |
|
test_one_0601 | | | | | | 85.84 61 | 61.45 129 | | 85.63 27 | 75.27 17 | 85.62 48 | 90.38 64 | 76.72 27 | | | | |
|
eth-test2 | | | | | | 0.00 392 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 392 | | | | | | | | | | | |
|
ZD-MVS | | | | | | 83.91 87 | 69.36 69 | | 81.09 113 | 58.91 137 | 82.73 86 | 89.11 94 | 75.77 35 | 86.63 11 | 72.73 58 | 92.93 70 | |
|
RE-MVS-def | | | | 85.50 3 | | 86.19 49 | 79.18 6 | 87.23 8 | 86.27 19 | 77.51 10 | 87.65 18 | 90.73 47 | 81.38 7 | | 78.11 23 | 94.46 36 | 84.89 94 |
|
IU-MVS | | | | | | 86.12 53 | 60.90 137 | | 80.38 129 | 45.49 274 | 81.31 101 | | | | 75.64 40 | 94.39 41 | 84.65 102 |
|
OPU-MVS | | | | | 78.65 61 | 83.44 94 | 66.85 89 | 83.62 42 | | | | 86.12 160 | 66.82 106 | 86.01 30 | 61.72 139 | 89.79 135 | 83.08 151 |
|
test_241102_TWO | | | | | | | | | 84.80 44 | 72.61 30 | 84.93 56 | 89.70 81 | 77.73 22 | 85.89 39 | 75.29 41 | 94.22 52 | 83.25 146 |
|
test_241102_ONE | | | | | | 86.12 53 | 61.06 133 | | 84.72 48 | 72.64 29 | 87.38 24 | 89.47 84 | 77.48 23 | 85.74 43 | | | |
|
9.14 | | | | 80.22 53 | | 80.68 131 | | 80.35 71 | 87.69 10 | 59.90 126 | 83.00 79 | 88.20 115 | 74.57 47 | 81.75 111 | 73.75 52 | 93.78 57 | |
|
save fliter | | | | | | 87.00 39 | 67.23 86 | 79.24 84 | 77.94 172 | 56.65 160 | | | | | | | |
|
test_0728_THIRD | | | | | | | | | | 74.03 21 | 85.83 43 | 90.41 59 | 75.58 37 | 85.69 44 | 77.43 30 | 94.74 29 | 84.31 120 |
|
test_0728_SECOND | | | | | 76.57 84 | 86.20 48 | 60.57 143 | 83.77 40 | 85.49 29 | | | | | 85.90 37 | 75.86 38 | 94.39 41 | 83.25 146 |
|
test0726 | | | | | | 86.16 51 | 60.78 140 | 83.81 39 | 85.10 39 | 72.48 32 | 85.27 53 | 89.96 77 | 78.57 17 | | | | |
|
GSMVS | | | | | | | | | | | | | | | | | 70.05 304 |
|
test_part2 | | | | | | 85.90 57 | 66.44 91 | | | | 84.61 62 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 31.41 340 | | | | 70.05 304 |
|
sam_mvs | | | | | | | | | | | | | 31.21 344 | | | | |
|
ambc | | | | | 70.10 181 | 77.74 172 | 50.21 209 | 74.28 149 | 77.93 173 | | 79.26 123 | 88.29 114 | 54.11 216 | 79.77 147 | 64.43 114 | 91.10 103 | 80.30 207 |
|
MTGPA |  | | | | | | | | 80.63 123 | | | | | | | | |
|
test_post1 | | | | | | | | 66.63 245 | | | | 2.08 383 | 30.66 349 | 59.33 320 | 40.34 303 | | |
|
test_post | | | | | | | | | | | | 1.99 384 | 30.91 347 | 54.76 329 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 68.99 335 | 31.32 341 | 69.38 272 | | | |
|
GG-mvs-BLEND | | | | | 52.24 319 | 60.64 336 | 29.21 368 | 69.73 199 | 42.41 366 | | 45.47 370 | 52.33 374 | 20.43 380 | 68.16 280 | 25.52 372 | 65.42 349 | 59.36 356 |
|
MTMP | | | | | | | | 84.83 31 | 19.26 388 | | | | | | | | |
|
gm-plane-assit | | | | | | 62.51 325 | 33.91 349 | | | 37.25 326 | | 62.71 357 | | 72.74 236 | 38.70 311 | | |
|
test9_res | | | | | | | | | | | | | | | 72.12 65 | 91.37 93 | 77.40 244 |
|
TEST9 | | | | | | 85.47 63 | 69.32 70 | 76.42 118 | 78.69 157 | 53.73 199 | 76.97 149 | 86.74 136 | 66.84 105 | 81.10 121 | | | |
|
test_8 | | | | | | 85.09 69 | 67.89 79 | 76.26 123 | 78.66 159 | 54.00 194 | 76.89 153 | 86.72 138 | 66.60 110 | 80.89 131 | | | |
|
agg_prior2 | | | | | | | | | | | | | | | 70.70 71 | 90.93 108 | 78.55 230 |
|
agg_prior | | | | | | 84.44 82 | 66.02 94 | | 78.62 160 | | 76.95 151 | | | 80.34 138 | | | |
|
TestCases | | | | | 78.35 65 | 79.19 150 | 70.81 55 | | 88.64 3 | 65.37 77 | 80.09 116 | 88.17 116 | 70.33 76 | 78.43 171 | 55.60 191 | 90.90 110 | 85.81 76 |
|
test_prior4 | | | | | | | 70.14 63 | 77.57 101 | | | | | | | | | |
|
test_prior2 | | | | | | | | 75.57 131 | | 58.92 136 | 76.53 165 | 86.78 134 | 67.83 99 | | 69.81 74 | 92.76 73 | |
|
test_prior | | | | | 75.27 101 | 82.15 116 | 59.85 148 | | 84.33 59 | | | | | 83.39 85 | | | 82.58 165 |
|
旧先验2 | | | | | | | | 71.17 182 | | 45.11 279 | 78.54 131 | | | 61.28 316 | 59.19 166 | | |
|
新几何2 | | | | | | | | 71.33 178 | | | | | | | | | |
|
新几何1 | | | | | 69.99 183 | 88.37 34 | 71.34 51 | | 62.08 298 | 43.85 285 | 74.99 181 | 86.11 161 | 52.85 220 | 70.57 263 | 50.99 228 | 83.23 233 | 68.05 317 |
|
旧先验1 | | | | | | 84.55 79 | 60.36 145 | | 63.69 290 | | | 87.05 128 | 54.65 213 | | | 83.34 232 | 69.66 308 |
|
无先验 | | | | | | | | 74.82 137 | 70.94 243 | 47.75 262 | | | | 76.85 199 | 54.47 202 | | 72.09 287 |
|
原ACMM2 | | | | | | | | 74.78 141 | | | | | | | | | |
|
原ACMM1 | | | | | 73.90 114 | 85.90 57 | 65.15 102 | | 81.67 99 | 50.97 230 | 74.25 194 | 86.16 158 | 61.60 152 | 83.54 81 | 56.75 179 | 91.08 104 | 73.00 276 |
|
test222 | | | | | | 87.30 37 | 69.15 73 | 67.85 225 | 59.59 308 | 41.06 305 | 73.05 211 | 85.72 169 | 48.03 252 | | | 80.65 259 | 66.92 322 |
|
testdata2 | | | | | | | | | | | | | | 67.30 287 | 48.34 251 | | |
|
segment_acmp | | | | | | | | | | | | | 68.30 94 | | | | |
|
testdata | | | | | 64.13 245 | 85.87 59 | 63.34 115 | | 61.80 301 | 47.83 260 | 76.42 168 | 86.60 145 | 48.83 246 | 62.31 312 | 54.46 203 | 81.26 254 | 66.74 326 |
|
testdata1 | | | | | | | | 68.34 221 | | 57.24 153 | | | | | | | |
|
test12 | | | | | 76.51 85 | 82.28 114 | 60.94 136 | | 81.64 100 | | 73.60 202 | | 64.88 127 | 85.19 58 | | 90.42 121 | 83.38 142 |
|
plane_prior7 | | | | | | 85.18 66 | 66.21 93 | | | | | | | | | | |
|
plane_prior6 | | | | | | 84.18 85 | 65.31 99 | | | | | | 60.83 163 | | | | |
|
plane_prior5 | | | | | | | | | 85.49 29 | | | | | 86.15 26 | 71.09 67 | 90.94 106 | 84.82 98 |
|
plane_prior4 | | | | | | | | | | | | 89.11 94 | | | | | |
|
plane_prior3 | | | | | | | 65.67 96 | | | 63.82 95 | 78.23 133 | | | | | | |
|
plane_prior2 | | | | | | | | 82.74 51 | | 65.45 74 | | | | | | | |
|
plane_prior1 | | | | | | 84.46 81 | | | | | | | | | | | |
|
plane_prior | | | | | | | 65.18 100 | 80.06 78 | | 61.88 114 | | | | | | 89.91 132 | |
|
n2 | | | | | | | | | 0.00 393 | | | | | | | | |
|
nn | | | | | | | | | 0.00 393 | | | | | | | | |
|
door-mid | | | | | | | | | 55.02 327 | | | | | | | | |
|
lessismore_v0 | | | | | 72.75 143 | 79.60 141 | 56.83 168 | | 57.37 315 | | 83.80 72 | 89.01 97 | 47.45 254 | 78.74 164 | 64.39 115 | 86.49 190 | 82.69 163 |
|
LGP-MVS_train | | | | | 80.90 32 | 87.00 39 | 70.41 60 | | 86.35 16 | 69.77 49 | 87.75 15 | 91.13 34 | 81.83 3 | 86.20 23 | 77.13 34 | 95.96 5 | 86.08 71 |
|
test11 | | | | | | | | | 82.71 84 | | | | | | | | |
|
door | | | | | | | | | 52.91 341 | | | | | | | | |
|
HQP5-MVS | | | | | | | 58.80 157 | | | | | | | | | | |
|
HQP-NCC | | | | | | 82.37 111 | | 77.32 106 | | 59.08 131 | 71.58 228 | | | | | | |
|
ACMP_Plane | | | | | | 82.37 111 | | 77.32 106 | | 59.08 131 | 71.58 228 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 67.38 96 | | |
|
HQP4-MVS | | | | | | | | | | | 71.59 227 | | | 85.31 51 | | | 83.74 132 |
|
HQP3-MVS | | | | | | | | | 84.12 65 | | | | | | | 89.16 147 | |
|
HQP2-MVS | | | | | | | | | | | | | 58.09 188 | | | | |
|
NP-MVS | | | | | | 83.34 95 | 63.07 118 | | | | | 85.97 164 | | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 18.41 382 | 53.74 336 | | 31.57 354 | 44.89 372 | | 29.90 355 | | 32.93 346 | | 71.48 291 |
|
MDTV_nov1_ep13 | | | | 54.05 303 | | 65.54 308 | 29.30 367 | 59.00 308 | 55.22 325 | 35.96 332 | 52.44 353 | 75.98 281 | 30.77 348 | 59.62 319 | 38.21 316 | 73.33 314 | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 89.47 142 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 91.96 83 | |
|
Test By Simon | | | | | | | | | | | | | 62.56 140 | | | | |
|
ITE_SJBPF | | | | | 80.35 38 | 76.94 182 | 73.60 38 | | 80.48 126 | 66.87 62 | 83.64 74 | 86.18 156 | 70.25 78 | 79.90 146 | 61.12 146 | 88.95 154 | 87.56 53 |
|
DeepMVS_CX |  | | | | 11.83 365 | 15.51 387 | 13.86 386 | | 11.25 390 | 5.76 381 | 20.85 383 | 26.46 380 | 17.06 386 | 9.22 384 | 9.69 383 | 13.82 383 | 12.42 380 |
|