This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
mamv490.28 188.75 194.85 193.34 196.17 182.69 5591.63 186.34 197.97 194.77 366.57 11795.38 187.74 197.72 193.00 8
LCM-MVSNet86.90 288.67 281.57 2291.50 263.30 12084.80 3287.77 1086.18 296.26 296.06 190.32 184.49 7068.08 9197.05 296.93 1
TDRefinement86.32 386.33 386.29 288.64 3281.19 588.84 490.72 278.27 987.95 1592.53 1579.37 1384.79 6674.51 4996.15 392.88 9
SR-MVS-dyc-post84.75 485.26 683.21 486.19 5079.18 787.23 886.27 2177.51 1187.65 1990.73 5079.20 1485.58 4978.11 2494.46 3684.89 97
HPM-MVS_fast84.59 585.10 783.06 588.60 3375.83 2486.27 2486.89 1673.69 2486.17 3891.70 2878.23 1985.20 5879.45 1394.91 2588.15 50
SR-MVS84.51 685.27 582.25 1988.52 3477.71 1486.81 1685.25 4077.42 1486.15 3990.24 7381.69 585.94 3577.77 2793.58 6183.09 158
ACMMPcopyleft84.22 784.84 982.35 1889.23 2276.66 2387.65 685.89 2871.03 4685.85 4390.58 5478.77 1685.78 4279.37 1695.17 1784.62 108
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
LTVRE_ROB75.46 184.22 784.98 881.94 2184.82 7375.40 2691.60 387.80 873.52 2588.90 1293.06 771.39 7081.53 11681.53 492.15 8288.91 40
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
HPM-MVScopyleft84.12 984.63 1082.60 1488.21 3674.40 3285.24 2887.21 1470.69 4985.14 5690.42 6178.99 1586.62 1480.83 694.93 2486.79 66
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CP-MVS84.12 984.55 1182.80 1189.42 1879.74 688.19 584.43 6171.96 4184.70 6390.56 5577.12 2586.18 2779.24 1895.36 1382.49 176
mPP-MVS84.01 1184.39 1282.88 790.65 481.38 487.08 1282.79 8772.41 3785.11 5790.85 4776.65 2884.89 6379.30 1794.63 3382.35 178
COLMAP_ROBcopyleft72.78 383.75 1284.11 1682.68 1382.97 10374.39 3387.18 1088.18 778.98 786.11 4191.47 3379.70 1285.76 4366.91 11195.46 1287.89 51
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
ACMMPR83.62 1383.93 1882.69 1289.78 1177.51 1987.01 1484.19 6870.23 5084.49 6590.67 5375.15 4186.37 1979.58 1194.26 4984.18 126
APD-MVS_3200maxsize83.57 1484.33 1381.31 2982.83 10673.53 4185.50 2787.45 1374.11 2086.45 3690.52 5880.02 1084.48 7177.73 2894.34 4785.93 77
region2R83.54 1583.86 2082.58 1589.82 1077.53 1787.06 1384.23 6770.19 5283.86 7390.72 5275.20 4086.27 2279.41 1594.25 5083.95 131
XVS83.51 1683.73 2182.85 989.43 1677.61 1586.80 1784.66 5672.71 3082.87 8390.39 6573.86 5286.31 2078.84 2094.03 5384.64 106
LPG-MVS_test83.47 1784.33 1380.90 3387.00 4070.41 6182.04 6086.35 1869.77 5487.75 1691.13 3781.83 386.20 2577.13 3695.96 686.08 73
HFP-MVS83.39 1884.03 1781.48 2489.25 2175.69 2587.01 1484.27 6470.23 5084.47 6690.43 6076.79 2685.94 3579.58 1194.23 5182.82 167
MTAPA83.19 1983.87 1981.13 3191.16 378.16 1284.87 3080.63 13072.08 3984.93 5890.79 4874.65 4684.42 7380.98 594.75 2980.82 206
MP-MVScopyleft83.19 1983.54 2482.14 2090.54 579.00 986.42 2283.59 7771.31 4381.26 10390.96 4274.57 4784.69 6778.41 2294.78 2882.74 170
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ZNCC-MVS83.12 2183.68 2281.45 2589.14 2573.28 4386.32 2385.97 2767.39 6484.02 7090.39 6574.73 4586.46 1680.73 794.43 4084.60 111
PGM-MVS83.07 2283.25 3182.54 1689.57 1477.21 2182.04 6085.40 3767.96 6384.91 6190.88 4575.59 3686.57 1578.16 2394.71 3183.82 133
SteuartSystems-ACMMP83.07 2283.64 2381.35 2785.14 6971.00 5585.53 2684.78 4970.91 4785.64 4690.41 6275.55 3887.69 579.75 895.08 2085.36 88
Skip Steuart: Steuart Systems R&D Blog.
APDe-MVScopyleft82.88 2484.14 1579.08 5384.80 7566.72 9186.54 2085.11 4272.00 4086.65 3291.75 2778.20 2087.04 1077.93 2694.32 4883.47 145
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
GST-MVS82.79 2583.27 3081.34 2888.99 2773.29 4285.94 2585.13 4168.58 6184.14 6990.21 7573.37 5686.41 1779.09 1993.98 5684.30 125
ACMP69.50 882.64 2683.38 2780.40 3886.50 4669.44 6882.30 5686.08 2666.80 6986.70 3189.99 7881.64 685.95 3474.35 5196.11 485.81 79
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MP-MVS-pluss82.54 2783.46 2679.76 4288.88 3168.44 7781.57 6386.33 2063.17 11285.38 5491.26 3676.33 3084.67 6883.30 294.96 2386.17 72
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ACMMP_NAP82.33 2883.28 2979.46 4989.28 1969.09 7583.62 4384.98 4564.77 9483.97 7191.02 4175.53 3985.93 3782.00 394.36 4583.35 151
SMA-MVScopyleft82.12 2982.68 3980.43 3788.90 3069.52 6685.12 2984.76 5063.53 10684.23 6891.47 3372.02 6487.16 879.74 1094.36 4584.61 109
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
ACMM69.25 982.11 3083.31 2878.49 6488.17 3773.96 3583.11 5184.52 6066.40 7387.45 2389.16 9681.02 880.52 13974.27 5295.73 880.98 202
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
DPE-MVScopyleft82.00 3183.02 3478.95 5885.36 6667.25 8682.91 5284.98 4573.52 2585.43 5390.03 7776.37 2986.97 1274.56 4894.02 5582.62 173
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SED-MVS81.78 3283.48 2576.67 8386.12 5461.06 14083.62 4384.72 5272.61 3387.38 2589.70 8377.48 2385.89 4075.29 4394.39 4183.08 159
PMVScopyleft70.70 681.70 3383.15 3277.36 7790.35 682.82 382.15 5779.22 15674.08 2187.16 2991.97 2184.80 276.97 19864.98 12393.61 6072.28 306
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
UA-Net81.56 3482.28 4179.40 5088.91 2969.16 7384.67 3380.01 14375.34 1679.80 11994.91 269.79 8580.25 14372.63 6494.46 3688.78 44
CPTT-MVS81.51 3581.76 4480.76 3589.20 2378.75 1086.48 2182.03 10068.80 5780.92 10888.52 11272.00 6582.39 10274.80 4593.04 6881.14 196
DVP-MVS++81.24 3682.74 3876.76 8283.14 9660.90 14491.64 185.49 3374.03 2284.93 5890.38 6766.82 11085.90 3877.43 3190.78 11383.49 142
ACMH+66.64 1081.20 3782.48 4077.35 7881.16 12962.39 12580.51 7187.80 873.02 2787.57 2191.08 3980.28 982.44 10164.82 12496.10 587.21 60
DVP-MVScopyleft81.15 3883.12 3375.24 10586.16 5260.78 14783.77 4180.58 13272.48 3585.83 4490.41 6278.57 1785.69 4575.86 4094.39 4179.24 234
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
APD-MVScopyleft81.13 3981.73 4579.36 5184.47 8070.53 6083.85 3983.70 7569.43 5683.67 7588.96 10275.89 3486.41 1772.62 6592.95 6981.14 196
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
3Dnovator+73.19 281.08 4080.48 5282.87 881.41 12472.03 4684.38 3586.23 2577.28 1580.65 11290.18 7659.80 18487.58 673.06 6091.34 9389.01 36
DeepC-MVS72.44 481.00 4180.83 5181.50 2386.70 4570.03 6582.06 5887.00 1559.89 13480.91 10990.53 5672.19 6188.56 273.67 5694.52 3585.92 78
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
OPM-MVS80.99 4281.63 4779.07 5486.86 4469.39 6979.41 8884.00 7365.64 7785.54 5089.28 8976.32 3183.47 8674.03 5393.57 6284.35 122
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
LS3D80.99 4280.85 5081.41 2678.37 16571.37 5187.45 785.87 2977.48 1381.98 9289.95 8069.14 8885.26 5466.15 11391.24 9587.61 55
SF-MVS80.72 4481.80 4377.48 7482.03 11664.40 11283.41 4788.46 665.28 8584.29 6789.18 9473.73 5583.22 9076.01 3993.77 5884.81 103
XVG-ACMP-BASELINE80.54 4581.06 4978.98 5787.01 3972.91 4480.23 7985.56 3266.56 7285.64 4689.57 8569.12 8980.55 13872.51 6693.37 6383.48 144
MSP-MVS80.49 4679.67 5982.96 689.70 1277.46 2087.16 1185.10 4364.94 9381.05 10688.38 11657.10 21387.10 979.75 883.87 23184.31 123
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
PEN-MVS80.46 4782.91 3573.11 13589.83 939.02 32377.06 11682.61 9280.04 590.60 792.85 1174.93 4485.21 5763.15 14395.15 1895.09 2
PS-CasMVS80.41 4882.86 3773.07 13689.93 739.21 32077.15 11481.28 11479.74 690.87 592.73 1375.03 4384.93 6263.83 13595.19 1695.07 3
DTE-MVSNet80.35 4982.89 3672.74 15089.84 837.34 34077.16 11381.81 10480.45 490.92 492.95 974.57 4786.12 3063.65 13694.68 3294.76 6
SD-MVS80.28 5081.55 4876.47 8883.57 9067.83 8183.39 4885.35 3964.42 9686.14 4087.07 13274.02 5180.97 13077.70 2992.32 8080.62 214
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
WR-MVS_H80.22 5182.17 4274.39 11389.46 1542.69 29778.24 10082.24 9678.21 1089.57 1092.10 2068.05 9885.59 4866.04 11695.62 1094.88 5
HPM-MVS++copyleft79.89 5279.80 5880.18 4089.02 2678.44 1183.49 4680.18 14064.71 9578.11 13988.39 11565.46 12883.14 9177.64 3091.20 9678.94 238
XVG-OURS-SEG-HR79.62 5379.99 5678.49 6486.46 4774.79 3077.15 11485.39 3866.73 7080.39 11588.85 10574.43 5078.33 17974.73 4785.79 20382.35 178
XVG-OURS79.51 5479.82 5778.58 6386.11 5774.96 2976.33 12684.95 4766.89 6782.75 8688.99 10166.82 11078.37 17774.80 4590.76 11682.40 177
CP-MVSNet79.48 5581.65 4672.98 13989.66 1339.06 32276.76 11780.46 13478.91 890.32 891.70 2868.49 9384.89 6363.40 14095.12 1995.01 4
OMC-MVS79.41 5678.79 6681.28 3080.62 13470.71 5980.91 6784.76 5062.54 11681.77 9586.65 14771.46 6883.53 8567.95 9692.44 7689.60 26
v7n79.37 5780.41 5376.28 9078.67 16455.81 18279.22 9082.51 9470.72 4887.54 2292.44 1668.00 10081.34 11872.84 6291.72 8491.69 12
TSAR-MVS + MP.79.05 5878.81 6579.74 4388.94 2867.52 8486.61 1981.38 11251.71 22777.15 15091.42 3565.49 12787.20 779.44 1487.17 18784.51 117
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
mvs_tets78.93 5978.67 6879.72 4484.81 7473.93 3680.65 6976.50 19651.98 22587.40 2491.86 2576.09 3378.53 16968.58 8690.20 12286.69 68
test_djsdf78.88 6078.27 7280.70 3681.42 12371.24 5383.98 3775.72 20352.27 22087.37 2792.25 1868.04 9980.56 13672.28 6891.15 9890.32 23
HQP_MVS78.77 6178.78 6778.72 6085.18 6765.18 10582.74 5385.49 3365.45 8078.23 13689.11 9760.83 17386.15 2871.09 7190.94 10584.82 101
bld_raw_dy_0_6478.68 6279.65 6075.78 9681.22 12848.82 23384.61 3485.68 3071.63 4286.52 3593.06 755.45 22584.65 6969.70 8388.98 15393.87 7
anonymousdsp78.60 6377.80 7681.00 3278.01 17174.34 3480.09 8176.12 19850.51 24489.19 1190.88 4571.45 6977.78 19173.38 5790.60 11890.90 19
OurMVSNet-221017-078.57 6478.53 7078.67 6180.48 13564.16 11380.24 7882.06 9961.89 12088.77 1393.32 557.15 21182.60 10070.08 7892.80 7189.25 30
jajsoiax78.51 6578.16 7479.59 4784.65 7773.83 3880.42 7376.12 19851.33 23587.19 2891.51 3273.79 5478.44 17368.27 8990.13 12686.49 70
CNVR-MVS78.49 6678.59 6978.16 6885.86 6167.40 8578.12 10381.50 10863.92 10077.51 14786.56 15168.43 9584.82 6573.83 5491.61 8882.26 182
DeepPCF-MVS71.07 578.48 6777.14 8382.52 1784.39 8377.04 2276.35 12484.05 7156.66 16580.27 11685.31 17868.56 9287.03 1167.39 10391.26 9483.50 141
DP-MVS78.44 6879.29 6375.90 9481.86 11965.33 10379.05 9184.63 5874.83 1980.41 11486.27 15971.68 6683.45 8762.45 14792.40 7778.92 239
NCCC78.25 6978.04 7578.89 5985.61 6369.45 6779.80 8580.99 12365.77 7675.55 18286.25 16167.42 10385.42 5070.10 7790.88 11181.81 188
test_040278.17 7079.48 6174.24 11583.50 9159.15 16172.52 16674.60 21375.34 1688.69 1491.81 2675.06 4282.37 10365.10 12188.68 15681.20 194
MM78.15 7177.68 7779.55 4880.10 13965.47 10180.94 6678.74 16671.22 4472.40 22988.70 10760.51 17587.70 477.40 3389.13 15085.48 87
iter_conf0577.90 7279.33 6273.61 12680.83 13046.85 26082.06 5886.72 1772.78 2885.44 5291.94 2256.47 22083.95 7770.51 7587.24 18390.02 24
AllTest77.66 7377.43 7978.35 6679.19 15370.81 5678.60 9588.64 465.37 8380.09 11788.17 12070.33 7878.43 17455.60 20490.90 10985.81 79
PS-MVSNAJss77.54 7477.35 8178.13 7084.88 7266.37 9378.55 9679.59 15053.48 21286.29 3792.43 1762.39 15280.25 14367.90 9790.61 11787.77 52
ACMH63.62 1477.50 7580.11 5569.68 19479.61 14356.28 17878.81 9383.62 7663.41 11087.14 3090.23 7476.11 3273.32 24067.58 9894.44 3979.44 232
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CDPH-MVS77.33 7677.06 8478.14 6984.21 8463.98 11576.07 13083.45 7854.20 19977.68 14687.18 12869.98 8285.37 5168.01 9492.72 7485.08 94
mvsmamba77.20 7776.37 8879.69 4680.34 13761.52 13380.58 7082.12 9853.54 21183.93 7291.03 4049.49 25785.97 3373.26 5893.08 6791.59 13
DeepC-MVS_fast69.89 777.17 7876.33 9079.70 4583.90 8867.94 7980.06 8383.75 7456.73 16474.88 19185.32 17765.54 12687.79 365.61 12091.14 9983.35 151
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
EC-MVSNet77.08 7977.39 8076.14 9276.86 19156.87 17680.32 7787.52 1263.45 10874.66 19684.52 18669.87 8484.94 6169.76 8089.59 13886.60 69
MVSMamba_PlusPlus76.88 8078.21 7372.88 14680.83 13048.71 23483.28 4982.79 8772.78 2879.17 12591.94 2256.47 22083.95 7770.51 7586.15 19885.99 76
X-MVStestdata76.81 8174.79 10582.85 989.43 1677.61 1586.80 1784.66 5672.71 3082.87 839.95 40873.86 5286.31 2078.84 2094.03 5384.64 106
UniMVSNet_ETH3D76.74 8279.02 6469.92 19289.27 2043.81 28474.47 15171.70 23372.33 3885.50 5193.65 477.98 2176.88 20154.60 21591.64 8689.08 34
CS-MVS76.51 8376.00 9378.06 7177.02 18364.77 10980.78 6882.66 9160.39 13074.15 20483.30 20769.65 8682.07 10969.27 8486.75 19387.36 58
train_agg76.38 8476.55 8775.86 9585.47 6469.32 7176.42 12278.69 16754.00 20476.97 15286.74 14166.60 11581.10 12472.50 6791.56 8977.15 261
MVS_030476.32 8575.96 9577.42 7679.33 14860.86 14680.18 8074.88 21066.93 6669.11 26888.95 10357.84 20786.12 3076.63 3889.77 13585.28 89
TranMVSNet+NR-MVSNet76.13 8677.66 7871.56 16784.61 7842.57 29970.98 19578.29 17668.67 6083.04 7989.26 9072.99 5880.75 13555.58 20795.47 1191.35 14
tt080576.12 8778.43 7169.20 20281.32 12541.37 30576.72 11877.64 18563.78 10382.06 9187.88 12579.78 1179.05 16064.33 12892.40 7787.17 63
SixPastTwentyTwo75.77 8876.34 8974.06 11881.69 12154.84 18776.47 11975.49 20564.10 9987.73 1892.24 1950.45 25381.30 12067.41 10191.46 9186.04 75
RPSCF75.76 8974.37 11079.93 4174.81 21777.53 1777.53 10879.30 15559.44 13778.88 12989.80 8271.26 7173.09 24257.45 18780.89 26389.17 33
v1075.69 9076.20 9174.16 11674.44 22648.69 23575.84 13482.93 8659.02 14285.92 4289.17 9558.56 19482.74 9870.73 7389.14 14991.05 16
testf175.66 9176.57 8572.95 14067.07 32167.62 8276.10 12880.68 12864.95 9186.58 3390.94 4371.20 7271.68 26360.46 16291.13 10079.56 228
APD_test275.66 9176.57 8572.95 14067.07 32167.62 8276.10 12880.68 12864.95 9186.58 3390.94 4371.20 7271.68 26360.46 16291.13 10079.56 228
Anonymous2023121175.54 9377.19 8270.59 17677.67 17745.70 27374.73 14680.19 13968.80 5782.95 8292.91 1066.26 11976.76 20358.41 18292.77 7289.30 29
Effi-MVS+-dtu75.43 9472.28 15184.91 377.05 18183.58 278.47 9777.70 18457.68 15374.89 19078.13 28264.80 13484.26 7556.46 19785.32 21086.88 65
iter_conf05_1175.31 9575.20 10375.61 9976.77 19254.48 19183.28 4986.25 2455.47 17779.17 12586.44 15552.98 23884.17 7668.03 9288.46 15888.17 49
F-COLMAP75.29 9673.99 11679.18 5281.73 12071.90 4781.86 6282.98 8459.86 13572.27 23084.00 19364.56 13683.07 9451.48 23787.19 18682.56 175
casdiffmvs_mvgpermissive75.26 9776.18 9272.52 15572.87 25549.47 22872.94 16484.71 5459.49 13680.90 11088.81 10670.07 8179.71 15167.40 10288.39 15988.40 48
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
HQP-MVS75.24 9875.01 10475.94 9382.37 11058.80 16677.32 11084.12 6959.08 13871.58 23885.96 17158.09 20085.30 5367.38 10589.16 14683.73 138
TAPA-MVS65.27 1275.16 9974.29 11277.77 7274.86 21668.08 7877.89 10484.04 7255.15 18076.19 17783.39 20166.91 10880.11 14760.04 16990.14 12585.13 92
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
IS-MVSNet75.10 10075.42 10174.15 11779.23 15148.05 24479.43 8678.04 18070.09 5379.17 12588.02 12453.04 23783.60 8358.05 18493.76 5990.79 20
v875.07 10175.64 9873.35 12973.42 24047.46 25475.20 13781.45 11060.05 13285.64 4689.26 9058.08 20281.80 11369.71 8287.97 16790.79 20
APD_test175.04 10275.38 10274.02 11969.89 28770.15 6376.46 12079.71 14665.50 7982.99 8188.60 11166.94 10772.35 25359.77 17288.54 15779.56 228
UniMVSNet (Re)75.00 10375.48 10073.56 12783.14 9647.92 24670.41 20481.04 12263.67 10479.54 12186.37 15762.83 14681.82 11257.10 19195.25 1590.94 18
PHI-MVS74.92 10474.36 11176.61 8476.40 19562.32 12680.38 7483.15 8254.16 20173.23 21980.75 23962.19 15583.86 8068.02 9390.92 10883.65 139
DU-MVS74.91 10575.57 9972.93 14383.50 9145.79 27069.47 21480.14 14165.22 8681.74 9787.08 13061.82 15881.07 12656.21 19994.98 2191.93 10
UniMVSNet_NR-MVSNet74.90 10675.65 9772.64 15383.04 10145.79 27069.26 21778.81 16266.66 7181.74 9786.88 13663.26 14281.07 12656.21 19994.98 2191.05 16
CS-MVS-test74.89 10774.23 11376.86 8177.01 18462.94 12378.98 9284.61 5958.62 14570.17 25880.80 23866.74 11481.96 11061.74 15089.40 14485.69 84
nrg03074.87 10875.99 9471.52 16874.90 21549.88 22774.10 15682.58 9354.55 19283.50 7789.21 9271.51 6775.74 21161.24 15492.34 7988.94 39
Vis-MVSNetpermissive74.85 10974.56 10775.72 9781.63 12264.64 11076.35 12479.06 15862.85 11473.33 21788.41 11462.54 15079.59 15463.94 13482.92 24182.94 163
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MSLP-MVS++74.48 11075.78 9670.59 17684.66 7662.40 12478.65 9484.24 6660.55 12977.71 14581.98 22363.12 14377.64 19362.95 14488.14 16271.73 311
AdaColmapbinary74.22 11174.56 10773.20 13281.95 11760.97 14279.43 8680.90 12465.57 7872.54 22781.76 22770.98 7585.26 5447.88 27290.00 12773.37 292
CSCG74.12 11274.39 10973.33 13079.35 14761.66 13277.45 10981.98 10162.47 11879.06 12880.19 24961.83 15778.79 16659.83 17187.35 17679.54 231
test_fmvsmconf0.01_n73.91 11373.64 12374.71 10669.79 29166.25 9475.90 13279.90 14446.03 28376.48 17185.02 18167.96 10173.97 23574.47 5087.22 18483.90 132
PAPM_NR73.91 11374.16 11473.16 13381.90 11853.50 19881.28 6481.40 11166.17 7473.30 21883.31 20659.96 18083.10 9358.45 18181.66 25882.87 165
EPP-MVSNet73.86 11573.38 12775.31 10378.19 16753.35 20080.45 7277.32 18965.11 8976.47 17286.80 13749.47 25883.77 8153.89 22492.72 7488.81 43
K. test v373.67 11673.61 12473.87 12179.78 14155.62 18574.69 14862.04 30966.16 7584.76 6293.23 649.47 25880.97 13065.66 11986.67 19485.02 96
NR-MVSNet73.62 11774.05 11572.33 16083.50 9143.71 28565.65 27077.32 18964.32 9775.59 18187.08 13062.45 15181.34 11854.90 21095.63 991.93 10
DP-MVS Recon73.57 11872.69 14376.23 9182.85 10563.39 11874.32 15282.96 8557.75 15270.35 25481.98 22364.34 13884.41 7449.69 25189.95 12980.89 204
CNLPA73.44 11973.03 13874.66 10778.27 16675.29 2775.99 13178.49 17165.39 8275.67 18083.22 21261.23 16666.77 30853.70 22685.33 20981.92 187
MCST-MVS73.42 12073.34 13073.63 12581.28 12659.17 16074.80 14483.13 8345.50 28672.84 22283.78 19765.15 13180.99 12864.54 12589.09 15280.73 210
v119273.40 12173.42 12573.32 13174.65 22348.67 23672.21 16981.73 10552.76 21781.85 9384.56 18557.12 21282.24 10768.58 8687.33 17889.06 35
114514_t73.40 12173.33 13173.64 12484.15 8657.11 17478.20 10180.02 14243.76 30272.55 22686.07 16964.00 13983.35 8960.14 16791.03 10480.45 217
FC-MVSNet-test73.32 12374.78 10668.93 21179.21 15236.57 34271.82 18279.54 15257.63 15782.57 8890.38 6759.38 18778.99 16257.91 18594.56 3491.23 15
v114473.29 12473.39 12673.01 13774.12 23248.11 24272.01 17481.08 12153.83 20881.77 9584.68 18358.07 20381.91 11168.10 9086.86 18988.99 38
test_fmvsmconf0.1_n73.26 12572.82 14274.56 10869.10 29766.18 9674.65 15079.34 15445.58 28575.54 18383.91 19467.19 10573.88 23873.26 5886.86 18983.63 140
GeoE73.14 12673.77 12171.26 17178.09 16952.64 20374.32 15279.56 15156.32 16876.35 17583.36 20570.76 7677.96 18763.32 14181.84 25283.18 156
baseline73.10 12773.96 11770.51 17871.46 26546.39 26772.08 17184.40 6255.95 17276.62 16486.46 15467.20 10478.03 18664.22 12987.27 18287.11 64
h-mvs3373.08 12871.61 16077.48 7483.89 8972.89 4570.47 20271.12 24954.28 19577.89 14083.41 20049.04 26280.98 12963.62 13790.77 11578.58 242
TSAR-MVS + GP.73.08 12871.60 16177.54 7378.99 16070.73 5874.96 13969.38 26160.73 12874.39 20178.44 27657.72 20882.78 9760.16 16689.60 13779.11 236
v124073.06 13073.14 13372.84 14774.74 21947.27 25871.88 18181.11 11851.80 22682.28 9084.21 19056.22 22382.34 10468.82 8587.17 18788.91 40
casdiffmvspermissive73.06 13073.84 11870.72 17471.32 26646.71 26370.93 19684.26 6555.62 17577.46 14887.10 12967.09 10677.81 18963.95 13286.83 19187.64 54
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
IterMVS-LS73.01 13273.12 13572.66 15273.79 23649.90 22371.63 18478.44 17258.22 14780.51 11386.63 14858.15 19879.62 15262.51 14588.20 16188.48 46
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CANet73.00 13371.84 15576.48 8775.82 20561.28 13674.81 14280.37 13763.17 11262.43 32780.50 24361.10 17085.16 6064.00 13184.34 22783.01 162
v14419272.99 13473.06 13772.77 14874.58 22447.48 25371.90 18080.44 13551.57 22981.46 10184.11 19258.04 20482.12 10867.98 9587.47 17388.70 45
MVS_111021_HR72.98 13572.97 14072.99 13880.82 13265.47 10168.81 22472.77 22557.67 15475.76 17982.38 21971.01 7477.17 19661.38 15386.15 19876.32 267
v192192072.96 13672.98 13972.89 14574.67 22047.58 25271.92 17980.69 12751.70 22881.69 9983.89 19556.58 21882.25 10668.34 8887.36 17588.82 42
test_fmvsmconf_n72.91 13772.40 14974.46 10968.62 30166.12 9774.21 15578.80 16445.64 28474.62 19783.25 20966.80 11373.86 23972.97 6186.66 19583.39 148
CLD-MVS72.88 13872.36 15074.43 11277.03 18254.30 19268.77 22783.43 7952.12 22276.79 16174.44 31169.54 8783.91 7955.88 20293.25 6685.09 93
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
EI-MVSNet-Vis-set72.78 13971.87 15475.54 10174.77 21859.02 16472.24 16871.56 23663.92 10078.59 13171.59 33366.22 12078.60 16867.58 9880.32 27089.00 37
ETV-MVS72.72 14072.16 15374.38 11476.90 18955.95 17973.34 16184.67 5562.04 11972.19 23370.81 33865.90 12385.24 5658.64 17984.96 21781.95 186
PCF-MVS63.80 1372.70 14171.69 15775.72 9778.10 16860.01 15473.04 16381.50 10845.34 29079.66 12084.35 18965.15 13182.65 9948.70 26189.38 14584.50 118
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
EI-MVSNet-UG-set72.63 14271.68 15875.47 10274.67 22058.64 16972.02 17371.50 23763.53 10678.58 13371.39 33765.98 12178.53 16967.30 10880.18 27289.23 31
Anonymous2024052972.56 14373.79 12068.86 21376.89 19045.21 27568.80 22677.25 19167.16 6576.89 15690.44 5965.95 12274.19 23350.75 24390.00 12787.18 62
FIs72.56 14373.80 11968.84 21478.74 16337.74 33671.02 19479.83 14556.12 16980.88 11189.45 8758.18 19678.28 18056.63 19393.36 6490.51 22
v2v48272.55 14572.58 14572.43 15772.92 25446.72 26271.41 18779.13 15755.27 17881.17 10585.25 17955.41 22681.13 12367.25 10985.46 20589.43 28
test_fmvsmvis_n_192072.36 14672.49 14671.96 16371.29 26764.06 11472.79 16581.82 10340.23 33381.25 10481.04 23570.62 7768.69 28469.74 8183.60 23783.14 157
hse-mvs272.32 14770.66 17277.31 7983.10 10071.77 4869.19 21971.45 23954.28 19577.89 14078.26 27849.04 26279.23 15763.62 13789.13 15080.92 203
sasdasda72.29 14873.38 12769.04 20574.23 22747.37 25573.93 15883.18 8054.36 19376.61 16581.64 22972.03 6275.34 21557.12 18987.28 18084.40 119
canonicalmvs72.29 14873.38 12769.04 20574.23 22747.37 25573.93 15883.18 8054.36 19376.61 16581.64 22972.03 6275.34 21557.12 18987.28 18084.40 119
Effi-MVS+72.10 15072.28 15171.58 16674.21 23050.33 21674.72 14782.73 8962.62 11570.77 25076.83 29269.96 8380.97 13060.20 16478.43 29083.45 147
MVS_111021_LR72.10 15071.82 15672.95 14079.53 14573.90 3770.45 20366.64 27556.87 16176.81 16081.76 22768.78 9071.76 26161.81 14883.74 23373.18 294
pmmvs671.82 15273.66 12266.31 24475.94 20442.01 30166.99 25272.53 22863.45 10876.43 17392.78 1272.95 5969.69 27751.41 23890.46 11987.22 59
PLCcopyleft62.01 1671.79 15370.28 17476.33 8980.31 13868.63 7678.18 10281.24 11554.57 19167.09 29680.63 24159.44 18581.74 11546.91 27984.17 22878.63 240
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
MGCFI-Net71.70 15473.10 13667.49 23073.23 24443.08 29372.06 17282.43 9554.58 19075.97 17882.00 22172.42 6075.22 21757.84 18687.34 17784.18 126
VDDNet71.60 15573.13 13467.02 23786.29 4841.11 30769.97 20866.50 27668.72 5974.74 19291.70 2859.90 18175.81 20948.58 26391.72 8484.15 128
3Dnovator65.95 1171.50 15671.22 16672.34 15973.16 24563.09 12178.37 9878.32 17457.67 15472.22 23284.61 18454.77 22778.47 17160.82 16081.07 26275.45 273
FA-MVS(test-final)71.27 15771.06 16771.92 16473.96 23352.32 20576.45 12176.12 19859.07 14174.04 20986.18 16252.18 24279.43 15659.75 17381.76 25384.03 129
WR-MVS71.20 15872.48 14767.36 23284.98 7135.70 35064.43 28568.66 26665.05 9081.49 10086.43 15657.57 20976.48 20550.36 24793.32 6589.90 25
V4271.06 15970.83 17071.72 16567.25 31747.14 25965.94 26480.35 13851.35 23483.40 7883.23 21059.25 18878.80 16565.91 11780.81 26689.23 31
FMVSNet171.06 15972.48 14766.81 23877.65 17840.68 31171.96 17673.03 22061.14 12479.45 12390.36 7060.44 17675.20 21950.20 24888.05 16484.54 113
dcpmvs_271.02 16172.65 14466.16 24576.06 20350.49 21471.97 17579.36 15350.34 24582.81 8583.63 19864.38 13767.27 29961.54 15283.71 23580.71 212
API-MVS70.97 16271.51 16369.37 19775.20 21055.94 18080.99 6576.84 19362.48 11771.24 24677.51 28861.51 16280.96 13352.04 23385.76 20471.22 316
VDD-MVS70.81 16371.44 16468.91 21279.07 15846.51 26467.82 23970.83 25361.23 12374.07 20788.69 10859.86 18275.62 21251.11 24090.28 12184.61 109
EG-PatchMatch MVS70.70 16470.88 16970.16 18682.64 10958.80 16671.48 18573.64 21754.98 18176.55 16881.77 22661.10 17078.94 16354.87 21180.84 26572.74 301
Baseline_NR-MVSNet70.62 16573.19 13262.92 27576.97 18534.44 35868.84 22270.88 25260.25 13179.50 12290.53 5661.82 15869.11 28154.67 21495.27 1485.22 90
alignmvs70.54 16671.00 16869.15 20473.50 23848.04 24569.85 21179.62 14753.94 20776.54 16982.00 22159.00 19074.68 22657.32 18887.21 18584.72 104
MG-MVS70.47 16771.34 16567.85 22679.26 15040.42 31574.67 14975.15 20958.41 14668.74 28088.14 12356.08 22483.69 8259.90 17081.71 25779.43 233
AUN-MVS70.22 16867.88 20477.22 8082.96 10471.61 4969.08 22071.39 24049.17 25971.70 23678.07 28337.62 32979.21 15861.81 14889.15 14880.82 206
UGNet70.20 16969.05 18473.65 12376.24 19763.64 11675.87 13372.53 22861.48 12260.93 33786.14 16552.37 24177.12 19750.67 24485.21 21180.17 222
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
PVSNet_Blended_VisFu70.04 17068.88 18773.53 12882.71 10763.62 11774.81 14281.95 10248.53 26467.16 29579.18 26751.42 24878.38 17654.39 21979.72 27978.60 241
Fast-Effi-MVS+-dtu70.00 17168.74 19173.77 12273.47 23964.53 11171.36 18878.14 17955.81 17468.84 27874.71 30865.36 12975.75 21052.00 23479.00 28481.03 199
DPM-MVS69.98 17269.22 18372.26 16182.69 10858.82 16570.53 20181.23 11647.79 27164.16 31280.21 24751.32 24983.12 9260.14 16784.95 21874.83 279
MVSFormer69.93 17369.03 18572.63 15474.93 21359.19 15883.98 3775.72 20352.27 22063.53 32276.74 29343.19 29380.56 13672.28 6878.67 28878.14 249
MVS_Test69.84 17470.71 17167.24 23367.49 31543.25 29269.87 21081.22 11752.69 21871.57 24186.68 14462.09 15674.51 22866.05 11578.74 28683.96 130
c3_l69.82 17569.89 17669.61 19566.24 32743.48 28868.12 23679.61 14951.43 23177.72 14480.18 25054.61 23078.15 18563.62 13787.50 17287.20 61
test_fmvsm_n_192069.63 17668.45 19473.16 13370.56 27665.86 9970.26 20578.35 17337.69 34974.29 20278.89 27261.10 17068.10 29065.87 11879.07 28385.53 86
TransMVSNet (Re)69.62 17771.63 15963.57 26576.51 19435.93 34865.75 26971.29 24461.05 12575.02 18889.90 8165.88 12470.41 27549.79 25089.48 14084.38 121
EI-MVSNet69.61 17869.01 18671.41 17073.94 23449.90 22371.31 19071.32 24258.22 14775.40 18670.44 34058.16 19775.85 20762.51 14579.81 27688.48 46
Gipumacopyleft69.55 17972.83 14159.70 30063.63 34753.97 19580.08 8275.93 20164.24 9873.49 21488.93 10457.89 20662.46 32859.75 17391.55 9062.67 370
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
tttt051769.46 18067.79 20674.46 10975.34 20852.72 20275.05 13863.27 30254.69 18778.87 13084.37 18826.63 38281.15 12263.95 13287.93 16889.51 27
eth_miper_zixun_eth69.42 18168.73 19271.50 16967.99 30946.42 26567.58 24178.81 16250.72 24278.13 13880.34 24650.15 25580.34 14160.18 16584.65 22187.74 53
BH-untuned69.39 18269.46 17869.18 20377.96 17256.88 17568.47 23377.53 18656.77 16377.79 14379.63 25860.30 17880.20 14646.04 28680.65 26770.47 322
v14869.38 18369.39 17969.36 19869.14 29644.56 27968.83 22372.70 22654.79 18578.59 13184.12 19154.69 22876.74 20459.40 17682.20 24686.79 66
PAPR69.20 18468.66 19370.82 17375.15 21247.77 24975.31 13681.11 11849.62 25566.33 29879.27 26461.53 16182.96 9548.12 26981.50 26081.74 190
QAPM69.18 18569.26 18168.94 21071.61 26352.58 20480.37 7578.79 16549.63 25473.51 21385.14 18053.66 23479.12 15955.11 20975.54 31275.11 278
LCM-MVSNet-Re69.10 18671.57 16261.70 28470.37 28134.30 36061.45 30579.62 14756.81 16289.59 988.16 12268.44 9472.94 24342.30 30687.33 17877.85 255
EPNet69.10 18667.32 21174.46 10968.33 30561.27 13777.56 10663.57 30060.95 12656.62 36182.75 21351.53 24781.24 12154.36 22090.20 12280.88 205
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DELS-MVS68.83 18868.31 19570.38 17970.55 27848.31 23863.78 29182.13 9754.00 20468.96 27275.17 30458.95 19180.06 14858.55 18082.74 24382.76 168
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
Fast-Effi-MVS+68.81 18968.30 19670.35 18174.66 22248.61 23766.06 26378.32 17450.62 24371.48 24475.54 30068.75 9179.59 15450.55 24678.73 28782.86 166
OpenMVScopyleft62.51 1568.76 19068.75 19068.78 21570.56 27653.91 19678.29 9977.35 18848.85 26270.22 25683.52 19952.65 24076.93 19955.31 20881.99 24875.49 272
VPA-MVSNet68.71 19170.37 17363.72 26376.13 19938.06 33464.10 28771.48 23856.60 16774.10 20688.31 11764.78 13569.72 27647.69 27490.15 12483.37 150
BH-RMVSNet68.69 19268.20 20070.14 18776.40 19553.90 19764.62 28273.48 21858.01 14973.91 21181.78 22559.09 18978.22 18148.59 26277.96 29678.31 245
EIA-MVS68.59 19367.16 21372.90 14475.18 21155.64 18469.39 21581.29 11352.44 21964.53 30870.69 33960.33 17782.30 10554.27 22176.31 30680.75 209
pm-mvs168.40 19469.85 17764.04 26173.10 24939.94 31764.61 28370.50 25455.52 17673.97 21089.33 8863.91 14068.38 28749.68 25288.02 16583.81 134
miper_ehance_all_eth68.36 19568.16 20168.98 20865.14 33843.34 29067.07 25178.92 16149.11 26076.21 17677.72 28553.48 23577.92 18861.16 15684.59 22385.68 85
GBi-Net68.30 19668.79 18866.81 23873.14 24640.68 31171.96 17673.03 22054.81 18274.72 19390.36 7048.63 26875.20 21947.12 27685.37 20684.54 113
test168.30 19668.79 18866.81 23873.14 24640.68 31171.96 17673.03 22054.81 18274.72 19390.36 7048.63 26875.20 21947.12 27685.37 20684.54 113
FE-MVS68.29 19866.96 21772.26 16174.16 23154.24 19377.55 10773.42 21957.65 15672.66 22484.91 18232.02 35581.49 11748.43 26581.85 25181.04 198
DIV-MVS_self_test68.27 19968.26 19768.29 22164.98 33943.67 28665.89 26574.67 21150.04 25176.86 15882.43 21748.74 26675.38 21360.94 15889.81 13285.81 79
cl____68.26 20068.26 19768.29 22164.98 33943.67 28665.89 26574.67 21150.04 25176.86 15882.42 21848.74 26675.38 21360.92 15989.81 13285.80 83
TinyColmap67.98 20169.28 18064.08 25967.98 31046.82 26170.04 20675.26 20753.05 21477.36 14986.79 13859.39 18672.59 25045.64 28988.01 16672.83 299
xiu_mvs_v1_base_debu67.87 20267.07 21470.26 18279.13 15561.90 12967.34 24571.25 24547.98 26767.70 28874.19 31661.31 16372.62 24756.51 19478.26 29276.27 268
xiu_mvs_v1_base67.87 20267.07 21470.26 18279.13 15561.90 12967.34 24571.25 24547.98 26767.70 28874.19 31661.31 16372.62 24756.51 19478.26 29276.27 268
xiu_mvs_v1_base_debi67.87 20267.07 21470.26 18279.13 15561.90 12967.34 24571.25 24547.98 26767.70 28874.19 31661.31 16372.62 24756.51 19478.26 29276.27 268
MAR-MVS67.72 20566.16 22372.40 15874.45 22564.99 10874.87 14077.50 18748.67 26365.78 30268.58 36357.01 21577.79 19046.68 28281.92 24974.42 285
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
IterMVS-SCA-FT67.68 20666.07 22572.49 15673.34 24258.20 17163.80 29065.55 28448.10 26676.91 15582.64 21645.20 28078.84 16461.20 15577.89 29780.44 218
LF4IMVS67.50 20767.31 21268.08 22458.86 37361.93 12871.43 18675.90 20244.67 29672.42 22880.20 24857.16 21070.44 27358.99 17886.12 20071.88 309
fmvsm_l_conf0.5_n67.48 20866.88 21969.28 20167.41 31662.04 12770.69 20069.85 25839.46 33669.59 26481.09 23458.15 19868.73 28367.51 10078.16 29577.07 265
FMVSNet267.48 20868.21 19965.29 25073.14 24638.94 32468.81 22471.21 24854.81 18276.73 16286.48 15348.63 26874.60 22747.98 27186.11 20182.35 178
MSDG67.47 21067.48 21067.46 23170.70 27254.69 18966.90 25578.17 17760.88 12770.41 25374.76 30661.22 16873.18 24147.38 27576.87 30274.49 283
diffmvspermissive67.42 21167.50 20967.20 23462.26 35245.21 27564.87 27977.04 19248.21 26571.74 23579.70 25758.40 19571.17 26764.99 12280.27 27185.22 90
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
fmvsm_s_conf0.1_n_a67.37 21266.36 22170.37 18070.86 26961.17 13874.00 15757.18 32840.77 32868.83 27980.88 23763.11 14467.61 29566.94 11074.72 31982.33 181
cl2267.14 21366.51 22069.03 20763.20 34843.46 28966.88 25676.25 19749.22 25874.48 19977.88 28445.49 27977.40 19560.64 16184.59 22386.24 71
ANet_high67.08 21469.94 17558.51 30957.55 37927.09 39158.43 32876.80 19463.56 10582.40 8991.93 2459.82 18364.98 31950.10 24988.86 15583.46 146
LFMVS67.06 21567.89 20364.56 25578.02 17038.25 33170.81 19959.60 31665.18 8771.06 24886.56 15143.85 28975.22 21746.35 28389.63 13680.21 221
thisisatest053067.05 21665.16 23572.73 15173.10 24950.55 21371.26 19263.91 29850.22 24874.46 20080.75 23926.81 38180.25 14359.43 17586.50 19687.37 57
fmvsm_s_conf0.5_n_a67.00 21765.95 22870.17 18569.72 29261.16 13973.34 16156.83 33140.96 32568.36 28280.08 25262.84 14567.57 29666.90 11274.50 32381.78 189
fmvsm_l_conf0.5_n_a66.66 21865.97 22768.72 21667.09 31961.38 13570.03 20769.15 26338.59 34368.41 28180.36 24556.56 21968.32 28866.10 11477.45 29976.46 266
fmvsm_s_conf0.1_n66.60 21965.54 22969.77 19368.99 29859.15 16172.12 17056.74 33340.72 33068.25 28580.14 25161.18 16966.92 30267.34 10774.40 32483.23 155
MIMVSNet166.57 22069.23 18258.59 30881.26 12737.73 33764.06 28857.62 32157.02 16078.40 13590.75 4962.65 14758.10 34741.77 31189.58 13979.95 223
tfpnnormal66.48 22167.93 20262.16 28173.40 24136.65 34163.45 29364.99 28855.97 17172.82 22387.80 12657.06 21469.10 28248.31 26787.54 17080.72 211
KD-MVS_self_test66.38 22267.51 20862.97 27361.76 35434.39 35958.11 33175.30 20650.84 24177.12 15185.42 17656.84 21669.44 27851.07 24191.16 9785.08 94
SDMVSNet66.36 22367.85 20561.88 28373.04 25246.14 26958.54 32671.36 24151.42 23268.93 27482.72 21465.62 12562.22 33154.41 21884.67 21977.28 258
fmvsm_s_conf0.5_n66.34 22465.27 23269.57 19668.20 30659.14 16371.66 18356.48 33440.92 32667.78 28779.46 26061.23 16666.90 30367.39 10374.32 32782.66 172
Anonymous20240521166.02 22566.89 21863.43 26874.22 22938.14 33259.00 32266.13 27863.33 11169.76 26385.95 17251.88 24370.50 27244.23 29787.52 17181.64 191
miper_enhance_ethall65.86 22665.05 24268.28 22361.62 35642.62 29864.74 28077.97 18142.52 31273.42 21672.79 32649.66 25677.68 19258.12 18384.59 22384.54 113
RPMNet65.77 22765.08 24167.84 22766.37 32448.24 24070.93 19686.27 2154.66 18861.35 33186.77 14033.29 34385.67 4755.93 20170.17 35669.62 331
VPNet65.58 22867.56 20759.65 30179.72 14230.17 38060.27 31662.14 30554.19 20071.24 24686.63 14858.80 19267.62 29444.17 29890.87 11281.18 195
PVSNet_BlendedMVS65.38 22964.30 24368.61 21769.81 28849.36 22965.60 27278.96 15945.50 28659.98 34078.61 27451.82 24478.20 18244.30 29584.11 22978.27 246
TAMVS65.31 23063.75 24969.97 19182.23 11459.76 15666.78 25763.37 30145.20 29169.79 26279.37 26347.42 27472.17 25434.48 36085.15 21377.99 253
test_yl65.11 23165.09 23965.18 25170.59 27440.86 30963.22 29872.79 22357.91 15068.88 27679.07 27042.85 29674.89 22345.50 29184.97 21479.81 224
DCV-MVSNet65.11 23165.09 23965.18 25170.59 27440.86 30963.22 29872.79 22357.91 15068.88 27679.07 27042.85 29674.89 22345.50 29184.97 21479.81 224
mvs_anonymous65.08 23365.49 23063.83 26263.79 34537.60 33866.52 26069.82 25943.44 30773.46 21586.08 16858.79 19371.75 26251.90 23575.63 31182.15 183
FMVSNet365.00 23465.16 23564.52 25669.47 29337.56 33966.63 25870.38 25551.55 23074.72 19383.27 20837.89 32774.44 22947.12 27685.37 20681.57 192
ECVR-MVScopyleft64.82 23565.22 23363.60 26478.80 16131.14 37566.97 25356.47 33554.23 19769.94 26088.68 10937.23 33074.81 22545.28 29489.41 14284.86 99
BH-w/o64.81 23664.29 24466.36 24376.08 20254.71 18865.61 27175.23 20850.10 25071.05 24971.86 33254.33 23179.02 16138.20 33476.14 30765.36 357
EGC-MVSNET64.77 23761.17 27075.60 10086.90 4374.47 3184.04 3668.62 2670.60 4101.13 41291.61 3165.32 13074.15 23464.01 13088.28 16078.17 248
test111164.62 23865.19 23462.93 27479.01 15929.91 38165.45 27354.41 34554.09 20271.47 24588.48 11337.02 33174.29 23246.83 28189.94 13084.58 112
cascas64.59 23962.77 26070.05 18975.27 20950.02 22061.79 30471.61 23442.46 31363.68 31968.89 35949.33 26080.35 14047.82 27384.05 23079.78 226
TR-MVS64.59 23963.54 25267.73 22975.75 20750.83 21263.39 29470.29 25649.33 25771.55 24274.55 30950.94 25078.46 17240.43 31975.69 31073.89 289
PM-MVS64.49 24163.61 25167.14 23676.68 19375.15 2868.49 23242.85 39051.17 23877.85 14280.51 24245.76 27666.31 31152.83 23276.35 30559.96 379
jason64.47 24262.84 25969.34 20076.91 18759.20 15767.15 25065.67 28135.29 36065.16 30576.74 29344.67 28470.68 26954.74 21379.28 28278.14 249
jason: jason.
xiu_mvs_v2_base64.43 24363.96 24765.85 24977.72 17651.32 20963.63 29272.31 23145.06 29461.70 32869.66 35162.56 14873.93 23749.06 25873.91 32972.31 305
pmmvs-eth3d64.41 24463.27 25567.82 22875.81 20660.18 15369.49 21362.05 30838.81 34274.13 20582.23 22043.76 29068.65 28542.53 30580.63 26974.63 280
CDS-MVSNet64.33 24562.66 26169.35 19980.44 13658.28 17065.26 27565.66 28244.36 29767.30 29475.54 30043.27 29271.77 26037.68 33784.44 22678.01 252
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
PS-MVSNAJ64.27 24663.73 25065.90 24877.82 17451.42 20863.33 29572.33 23045.09 29361.60 32968.04 36562.39 15273.95 23649.07 25773.87 33072.34 304
ab-mvs64.11 24765.13 23861.05 29171.99 26138.03 33567.59 24068.79 26549.08 26165.32 30486.26 16058.02 20566.85 30639.33 32379.79 27878.27 246
CANet_DTU64.04 24863.83 24864.66 25468.39 30242.97 29573.45 16074.50 21452.05 22454.78 37075.44 30343.99 28870.42 27453.49 22878.41 29180.59 215
VNet64.01 24965.15 23760.57 29573.28 24335.61 35157.60 33367.08 27354.61 18966.76 29783.37 20356.28 22266.87 30442.19 30785.20 21279.23 235
sd_testset63.55 25065.38 23158.07 31173.04 25238.83 32657.41 33465.44 28551.42 23268.93 27482.72 21463.76 14158.11 34641.05 31584.67 21977.28 258
Anonymous2024052163.55 25066.07 22555.99 32166.18 32944.04 28368.77 22768.80 26446.99 27672.57 22585.84 17339.87 31450.22 36053.40 23192.23 8173.71 291
lupinMVS63.36 25261.49 26868.97 20974.93 21359.19 15865.80 26864.52 29434.68 36563.53 32274.25 31443.19 29370.62 27053.88 22578.67 28877.10 262
ET-MVSNet_ETH3D63.32 25360.69 27671.20 17270.15 28555.66 18365.02 27864.32 29543.28 31168.99 27172.05 33125.46 38878.19 18454.16 22382.80 24279.74 227
MVSTER63.29 25461.60 26768.36 21959.77 36946.21 26860.62 31371.32 24241.83 31675.40 18679.12 26830.25 37075.85 20756.30 19879.81 27683.03 161
OpenMVS_ROBcopyleft54.93 1763.23 25563.28 25463.07 27169.81 28845.34 27468.52 23167.14 27243.74 30370.61 25279.22 26547.90 27272.66 24648.75 26073.84 33171.21 317
IterMVS63.12 25662.48 26265.02 25366.34 32652.86 20163.81 28962.25 30446.57 27971.51 24380.40 24444.60 28566.82 30751.38 23975.47 31375.38 275
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
HyFIR lowres test63.01 25760.47 27770.61 17583.04 10154.10 19459.93 31872.24 23233.67 37069.00 27075.63 29938.69 32176.93 19936.60 34775.45 31480.81 208
GA-MVS62.91 25861.66 26466.66 24267.09 31944.49 28061.18 30969.36 26251.33 23569.33 26774.47 31036.83 33274.94 22250.60 24574.72 31980.57 216
PVSNet_Blended62.90 25961.64 26566.69 24169.81 28849.36 22961.23 30878.96 15942.04 31459.98 34068.86 36051.82 24478.20 18244.30 29577.77 29872.52 302
USDC62.80 26063.10 25761.89 28265.19 33543.30 29167.42 24474.20 21535.80 35972.25 23184.48 18745.67 27771.95 25937.95 33684.97 21470.42 324
Vis-MVSNet (Re-imp)62.74 26163.21 25661.34 28972.19 25931.56 37267.31 24953.87 34753.60 21069.88 26183.37 20340.52 31070.98 26841.40 31386.78 19281.48 193
patch_mono-262.73 26264.08 24658.68 30770.36 28255.87 18160.84 31164.11 29741.23 32164.04 31378.22 27960.00 17948.80 36454.17 22283.71 23571.37 313
D2MVS62.58 26361.05 27267.20 23463.85 34447.92 24656.29 34069.58 26039.32 33770.07 25978.19 28034.93 33872.68 24553.44 22983.74 23381.00 201
CL-MVSNet_self_test62.44 26463.40 25359.55 30272.34 25832.38 36756.39 33964.84 29051.21 23767.46 29281.01 23650.75 25163.51 32638.47 33288.12 16382.75 169
MDA-MVSNet-bldmvs62.34 26561.73 26364.16 25761.64 35549.90 22348.11 37557.24 32753.31 21380.95 10779.39 26249.00 26461.55 33345.92 28780.05 27381.03 199
miper_lstm_enhance61.97 26661.63 26662.98 27260.04 36345.74 27247.53 37770.95 25044.04 29873.06 22078.84 27339.72 31560.33 33655.82 20384.64 22282.88 164
wuyk23d61.97 26666.25 22249.12 35658.19 37860.77 14966.32 26152.97 35555.93 17390.62 686.91 13573.07 5735.98 40220.63 40591.63 8750.62 391
thres600view761.82 26861.38 26963.12 27071.81 26234.93 35564.64 28156.99 32954.78 18670.33 25579.74 25632.07 35372.42 25238.61 33083.46 23882.02 184
SSC-MVS61.79 26966.08 22448.89 35876.91 18710.00 41453.56 35947.37 37768.20 6276.56 16789.21 9254.13 23257.59 34854.75 21274.07 32879.08 237
PAPM61.79 26960.37 27866.05 24676.09 20041.87 30269.30 21676.79 19540.64 33153.80 37579.62 25944.38 28682.92 9629.64 38073.11 33573.36 293
MVP-Stereo61.56 27159.22 28468.58 21879.28 14960.44 15169.20 21871.57 23543.58 30556.42 36278.37 27739.57 31776.46 20634.86 35960.16 38768.86 338
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
CMPMVSbinary48.73 2061.54 27260.89 27363.52 26661.08 35851.55 20768.07 23768.00 27033.88 36765.87 30081.25 23237.91 32667.71 29249.32 25682.60 24471.31 315
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test250661.23 27360.85 27462.38 27978.80 16127.88 38967.33 24837.42 40354.23 19767.55 29188.68 10917.87 40774.39 23046.33 28489.41 14284.86 99
thres100view90061.17 27461.09 27161.39 28872.14 26035.01 35465.42 27456.99 32955.23 17970.71 25179.90 25432.07 35372.09 25535.61 35581.73 25477.08 263
Patchmtry60.91 27563.01 25854.62 32866.10 33026.27 39567.47 24356.40 33654.05 20372.04 23486.66 14533.19 34460.17 33743.69 29987.45 17477.42 256
EU-MVSNet60.82 27660.80 27560.86 29468.37 30341.16 30672.27 16768.27 26926.96 39069.08 26975.71 29832.09 35267.44 29755.59 20678.90 28573.97 287
pmmvs460.78 27759.04 28666.00 24773.06 25157.67 17364.53 28460.22 31436.91 35465.96 29977.27 28939.66 31668.54 28638.87 32774.89 31871.80 310
thres40060.77 27859.97 28063.15 26970.78 27035.35 35263.27 29657.47 32253.00 21568.31 28377.09 29032.45 35072.09 25535.61 35581.73 25482.02 184
MVS60.62 27959.97 28062.58 27768.13 30847.28 25768.59 22973.96 21632.19 37459.94 34268.86 36050.48 25277.64 19341.85 31075.74 30962.83 368
thisisatest051560.48 28057.86 29668.34 22067.25 31746.42 26560.58 31462.14 30540.82 32763.58 32169.12 35426.28 38478.34 17848.83 25982.13 24780.26 220
tfpn200view960.35 28159.97 28061.51 28670.78 27035.35 35263.27 29657.47 32253.00 21568.31 28377.09 29032.45 35072.09 25535.61 35581.73 25477.08 263
ppachtmachnet_test60.26 28259.61 28362.20 28067.70 31344.33 28158.18 33060.96 31240.75 32965.80 30172.57 32741.23 30363.92 32346.87 28082.42 24578.33 244
WB-MVS60.04 28364.19 24547.59 36076.09 20010.22 41352.44 36446.74 37865.17 8874.07 20787.48 12753.48 23555.28 35149.36 25572.84 33677.28 258
Patchmatch-RL test59.95 28459.12 28562.44 27872.46 25754.61 19059.63 31947.51 37641.05 32474.58 19874.30 31331.06 36465.31 31651.61 23679.85 27567.39 344
131459.83 28558.86 28862.74 27665.71 33244.78 27868.59 22972.63 22733.54 37261.05 33567.29 37143.62 29171.26 26649.49 25467.84 36972.19 307
IB-MVS49.67 1859.69 28656.96 30267.90 22568.19 30750.30 21761.42 30665.18 28747.57 27355.83 36567.15 37223.77 39479.60 15343.56 30179.97 27473.79 290
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
1112_ss59.48 28758.99 28760.96 29377.84 17342.39 30061.42 30668.45 26837.96 34759.93 34367.46 36845.11 28265.07 31840.89 31771.81 34575.41 274
FPMVS59.43 28860.07 27957.51 31477.62 17971.52 5062.33 30250.92 36257.40 15869.40 26680.00 25339.14 31961.92 33237.47 34066.36 37239.09 402
CVMVSNet59.21 28958.44 29261.51 28673.94 23447.76 25071.31 19064.56 29326.91 39260.34 33970.44 34036.24 33567.65 29353.57 22768.66 36469.12 336
CR-MVSNet58.96 29058.49 29160.36 29766.37 32448.24 24070.93 19656.40 33632.87 37361.35 33186.66 14533.19 34463.22 32748.50 26470.17 35669.62 331
EPNet_dtu58.93 29158.52 29060.16 29967.91 31147.70 25169.97 20858.02 32049.73 25347.28 39373.02 32538.14 32362.34 32936.57 34885.99 20270.43 323
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Test_1112_low_res58.78 29258.69 28959.04 30679.41 14638.13 33357.62 33266.98 27434.74 36359.62 34677.56 28742.92 29563.65 32538.66 32970.73 35275.35 276
PatchMatch-RL58.68 29357.72 29761.57 28576.21 19873.59 4061.83 30349.00 37147.30 27561.08 33368.97 35650.16 25459.01 34136.06 35468.84 36352.10 389
SCA58.57 29458.04 29560.17 29870.17 28441.07 30865.19 27653.38 35343.34 31061.00 33673.48 32045.20 28069.38 27940.34 32070.31 35570.05 325
testing358.28 29558.38 29358.00 31277.45 18026.12 39660.78 31243.00 38956.02 17070.18 25775.76 29713.27 41467.24 30048.02 27080.89 26380.65 213
CHOSEN 1792x268858.09 29656.30 30763.45 26779.95 14050.93 21154.07 35765.59 28328.56 38661.53 33074.33 31241.09 30666.52 31033.91 36367.69 37072.92 297
HY-MVS49.31 1957.96 29757.59 29859.10 30566.85 32336.17 34565.13 27765.39 28639.24 33954.69 37278.14 28144.28 28767.18 30133.75 36570.79 35173.95 288
baseline157.82 29858.36 29456.19 32069.17 29530.76 37862.94 30055.21 34046.04 28263.83 31778.47 27541.20 30463.68 32439.44 32268.99 36274.13 286
thres20057.55 29957.02 30159.17 30367.89 31234.93 35558.91 32457.25 32650.24 24764.01 31471.46 33532.49 34971.39 26531.31 37279.57 28071.19 318
CostFormer57.35 30056.14 30860.97 29263.76 34638.43 32867.50 24260.22 31437.14 35359.12 34876.34 29532.78 34771.99 25839.12 32669.27 36172.47 303
test_fmvs356.78 30155.99 31059.12 30453.96 39748.09 24358.76 32566.22 27727.54 38876.66 16368.69 36225.32 39051.31 35753.42 23073.38 33377.97 254
our_test_356.46 30256.51 30556.30 31967.70 31339.66 31955.36 34852.34 35940.57 33263.85 31669.91 35040.04 31358.22 34543.49 30275.29 31771.03 320
tpm256.12 30354.64 31960.55 29666.24 32736.01 34668.14 23556.77 33233.60 37158.25 35175.52 30230.25 37074.33 23133.27 36669.76 36071.32 314
tpmvs55.84 30455.45 31457.01 31660.33 36233.20 36565.89 26559.29 31847.52 27456.04 36373.60 31931.05 36568.06 29140.64 31864.64 37569.77 329
gg-mvs-nofinetune55.75 30556.75 30452.72 33762.87 34928.04 38868.92 22141.36 39871.09 4550.80 38492.63 1420.74 39966.86 30529.97 37872.41 33963.25 367
testing9155.74 30655.29 31657.08 31570.63 27330.85 37754.94 35256.31 33850.34 24557.08 35570.10 34724.50 39265.86 31236.98 34576.75 30374.53 282
test20.0355.74 30657.51 29950.42 34759.89 36832.09 36950.63 36949.01 37050.11 24965.07 30683.23 21045.61 27848.11 36930.22 37683.82 23271.07 319
MS-PatchMatch55.59 30854.89 31757.68 31369.18 29449.05 23261.00 31062.93 30335.98 35758.36 35068.93 35836.71 33366.59 30937.62 33963.30 37957.39 385
baseline255.57 30952.74 32864.05 26065.26 33444.11 28262.38 30154.43 34439.03 34051.21 38267.35 37033.66 34272.45 25137.14 34264.22 37775.60 271
XXY-MVS55.19 31057.40 30048.56 35964.45 34234.84 35751.54 36753.59 34938.99 34163.79 31879.43 26156.59 21745.57 37536.92 34671.29 34865.25 358
testing9955.16 31154.56 32056.98 31770.13 28630.58 37954.55 35554.11 34649.53 25656.76 35970.14 34622.76 39665.79 31336.99 34476.04 30874.57 281
FMVSNet555.08 31255.54 31353.71 33065.80 33133.50 36456.22 34152.50 35743.72 30461.06 33483.38 20225.46 38854.87 35230.11 37781.64 25972.75 300
test_fmvs254.80 31354.11 32256.88 31851.76 40149.95 22256.70 33865.80 28026.22 39369.42 26565.25 37531.82 35649.98 36149.63 25370.36 35470.71 321
PatchmatchNetpermissive54.60 31454.27 32155.59 32465.17 33739.08 32166.92 25451.80 36139.89 33458.39 34973.12 32431.69 35858.33 34443.01 30458.38 39369.38 334
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MIMVSNet54.39 31556.12 30949.20 35472.57 25630.91 37659.98 31748.43 37341.66 31755.94 36483.86 19641.19 30550.42 35926.05 39075.38 31566.27 352
Syy-MVS54.13 31655.45 31450.18 34868.77 29923.59 40055.02 34944.55 38343.80 30058.05 35264.07 37746.22 27558.83 34246.16 28572.36 34068.12 340
Anonymous2023120654.13 31655.82 31149.04 35770.89 26835.96 34751.73 36650.87 36334.86 36162.49 32679.22 26542.52 29944.29 38527.95 38781.88 25066.88 348
JIA-IIPM54.03 31851.62 33661.25 29059.14 37255.21 18659.10 32147.72 37450.85 24050.31 38885.81 17420.10 40163.97 32236.16 35255.41 39864.55 364
tpm cat154.02 31952.63 33058.19 31064.85 34139.86 31866.26 26257.28 32532.16 37556.90 35770.39 34232.75 34865.30 31734.29 36158.79 39069.41 333
testgi54.00 32056.86 30345.45 36958.20 37725.81 39749.05 37149.50 36945.43 28967.84 28681.17 23351.81 24643.20 38929.30 38179.41 28167.34 346
WB-MVSnew53.94 32154.76 31851.49 34371.53 26428.05 38758.22 32950.36 36537.94 34859.16 34770.17 34549.21 26151.94 35624.49 39771.80 34674.47 284
testing22253.37 32252.50 33255.98 32270.51 27929.68 38256.20 34251.85 36046.19 28156.76 35968.94 35719.18 40465.39 31525.87 39376.98 30172.87 298
PatchT53.35 32356.47 30643.99 37664.19 34317.46 40759.15 32043.10 38852.11 22354.74 37186.95 13429.97 37349.98 36143.62 30074.40 32464.53 365
testing1153.13 32452.26 33455.75 32370.44 28031.73 37154.75 35352.40 35844.81 29552.36 37968.40 36421.83 39765.74 31432.64 36972.73 33769.78 328
test_vis1_n_192052.96 32553.50 32451.32 34459.15 37144.90 27756.13 34364.29 29630.56 38459.87 34460.68 38840.16 31247.47 37048.25 26862.46 38161.58 376
UWE-MVS52.94 32652.70 32953.65 33173.56 23727.49 39057.30 33549.57 36838.56 34462.79 32571.42 33619.49 40360.41 33524.33 39977.33 30073.06 295
new-patchmatchnet52.89 32755.76 31244.26 37559.94 3676.31 41537.36 39950.76 36441.10 32264.28 31179.82 25544.77 28348.43 36836.24 35187.61 16978.03 251
test_fmvs1_n52.70 32852.01 33554.76 32653.83 39850.36 21555.80 34565.90 27924.96 39765.39 30360.64 38927.69 37948.46 36645.88 28867.99 36765.46 356
YYNet152.58 32953.50 32449.85 35054.15 39436.45 34440.53 39246.55 38038.09 34675.52 18473.31 32341.08 30743.88 38641.10 31471.14 35069.21 335
MDA-MVSNet_test_wron52.57 33053.49 32649.81 35154.24 39336.47 34340.48 39346.58 37938.13 34575.47 18573.32 32241.05 30843.85 38740.98 31671.20 34969.10 337
pmmvs552.49 33152.58 33152.21 33954.99 39132.38 36755.45 34753.84 34832.15 37655.49 36774.81 30538.08 32457.37 34934.02 36274.40 32466.88 348
UnsupCasMVSNet_eth52.26 33253.29 32749.16 35555.08 39033.67 36350.03 37058.79 31937.67 35063.43 32474.75 30741.82 30145.83 37438.59 33159.42 38967.98 343
N_pmnet52.06 33351.11 34154.92 32559.64 37071.03 5437.42 39861.62 31133.68 36957.12 35472.10 32837.94 32531.03 40429.13 38671.35 34762.70 369
KD-MVS_2432*160052.05 33451.58 33753.44 33352.11 39931.20 37344.88 38564.83 29141.53 31864.37 30970.03 34815.61 41164.20 32036.25 34974.61 32164.93 361
miper_refine_blended52.05 33451.58 33753.44 33352.11 39931.20 37344.88 38564.83 29141.53 31864.37 30970.03 34815.61 41164.20 32036.25 34974.61 32164.93 361
test_vis3_rt51.94 33651.04 34254.65 32746.32 40850.13 21944.34 38778.17 17723.62 40168.95 27362.81 38121.41 39838.52 40041.49 31272.22 34275.30 277
PVSNet43.83 2151.56 33751.17 34052.73 33668.34 30438.27 33048.22 37453.56 35136.41 35554.29 37364.94 37634.60 33954.20 35530.34 37569.87 35865.71 355
test_fmvs151.51 33850.86 34553.48 33249.72 40449.35 23154.11 35664.96 28924.64 39963.66 32059.61 39228.33 37848.45 36745.38 29367.30 37162.66 371
test_vis1_n51.27 33950.41 34953.83 32956.99 38150.01 22156.75 33760.53 31325.68 39559.74 34557.86 39329.40 37547.41 37143.10 30363.66 37864.08 366
test_cas_vis1_n_192050.90 34050.92 34450.83 34654.12 39647.80 24851.44 36854.61 34326.95 39163.95 31560.85 38737.86 32844.97 38045.53 29062.97 38059.72 380
tpm50.60 34152.42 33345.14 37165.18 33626.29 39460.30 31543.50 38637.41 35157.01 35679.09 26930.20 37242.32 39032.77 36866.36 37266.81 350
test-LLR50.43 34250.69 34749.64 35260.76 35941.87 30253.18 36045.48 38143.41 30849.41 38960.47 39029.22 37644.73 38242.09 30872.14 34362.33 374
myMVS_eth3d50.36 34350.52 34849.88 34968.77 29922.69 40255.02 34944.55 38343.80 30058.05 35264.07 37714.16 41358.83 34233.90 36472.36 34068.12 340
ETVMVS50.32 34449.87 35251.68 34170.30 28326.66 39352.33 36543.93 38543.54 30654.91 36967.95 36620.01 40260.17 33722.47 40173.40 33268.22 339
tpmrst50.15 34551.38 33946.45 36656.05 38524.77 39864.40 28649.98 36636.14 35653.32 37669.59 35235.16 33748.69 36539.24 32458.51 39265.89 353
UnsupCasMVSNet_bld50.01 34651.03 34346.95 36258.61 37432.64 36648.31 37353.27 35434.27 36660.47 33871.53 33441.40 30247.07 37230.68 37460.78 38661.13 377
dmvs_re49.91 34750.77 34647.34 36159.98 36438.86 32553.18 36053.58 35039.75 33555.06 36861.58 38636.42 33444.40 38429.15 38568.23 36558.75 382
WTY-MVS49.39 34850.31 35046.62 36561.22 35732.00 37046.61 38049.77 36733.87 36854.12 37469.55 35341.96 30045.40 37731.28 37364.42 37662.47 372
ADS-MVSNet248.76 34947.25 35853.29 33555.90 38740.54 31447.34 37854.99 34231.41 38150.48 38572.06 32931.23 36154.26 35425.93 39155.93 39565.07 359
test-mter48.56 35048.20 35549.64 35260.76 35941.87 30253.18 36045.48 38131.91 37949.41 38960.47 39018.34 40544.73 38242.09 30872.14 34362.33 374
Patchmatch-test47.93 35149.96 35141.84 37957.42 38024.26 39948.75 37241.49 39739.30 33856.79 35873.48 32030.48 36933.87 40329.29 38272.61 33867.39 344
test0.0.03 147.72 35248.31 35445.93 36755.53 38929.39 38346.40 38141.21 39943.41 30855.81 36667.65 36729.22 37643.77 38825.73 39469.87 35864.62 363
sss47.59 35348.32 35345.40 37056.73 38433.96 36145.17 38348.51 37232.11 37852.37 37865.79 37340.39 31141.91 39331.85 37061.97 38360.35 378
pmmvs346.71 35445.09 36451.55 34256.76 38348.25 23955.78 34639.53 40224.13 40050.35 38763.40 37915.90 41051.08 35829.29 38270.69 35355.33 388
test_vis1_rt46.70 35545.24 36351.06 34544.58 40951.04 21039.91 39467.56 27121.84 40551.94 38050.79 40133.83 34139.77 39735.25 35861.50 38462.38 373
EPMVS45.74 35646.53 35943.39 37754.14 39522.33 40455.02 34935.00 40634.69 36451.09 38370.20 34425.92 38642.04 39237.19 34155.50 39765.78 354
MVS-HIRNet45.53 35747.29 35740.24 38262.29 35126.82 39256.02 34437.41 40429.74 38543.69 40381.27 23133.96 34055.48 35024.46 39856.79 39438.43 403
dmvs_testset45.26 35847.51 35638.49 38559.96 36614.71 40958.50 32743.39 38741.30 32051.79 38156.48 39439.44 31849.91 36321.42 40355.35 39950.85 390
TESTMET0.1,145.17 35944.93 36545.89 36856.02 38638.31 32953.18 36041.94 39627.85 38744.86 39956.47 39517.93 40641.50 39538.08 33568.06 36657.85 383
E-PMN45.17 35945.36 36244.60 37350.07 40242.75 29638.66 39642.29 39446.39 28039.55 40451.15 40026.00 38545.37 37837.68 33776.41 30445.69 397
PMMVS44.69 36143.95 36946.92 36350.05 40353.47 19948.08 37642.40 39222.36 40344.01 40253.05 39842.60 29845.49 37631.69 37161.36 38541.79 400
ADS-MVSNet44.62 36245.58 36141.73 38055.90 38720.83 40547.34 37839.94 40131.41 38150.48 38572.06 32931.23 36139.31 39825.93 39155.93 39565.07 359
EMVS44.61 36344.45 36845.10 37248.91 40543.00 29437.92 39741.10 40046.75 27838.00 40648.43 40326.42 38346.27 37337.11 34375.38 31546.03 396
dp44.09 36444.88 36641.72 38158.53 37623.18 40154.70 35442.38 39334.80 36244.25 40165.61 37424.48 39344.80 38129.77 37949.42 40157.18 386
test_f43.79 36545.63 36038.24 38642.29 41238.58 32734.76 40147.68 37522.22 40467.34 29363.15 38031.82 35630.60 40539.19 32562.28 38245.53 398
mvsany_test343.76 36641.01 37052.01 34048.09 40657.74 17242.47 38923.85 41223.30 40264.80 30762.17 38427.12 38040.59 39629.17 38448.11 40257.69 384
DSMNet-mixed43.18 36744.66 36738.75 38454.75 39228.88 38657.06 33627.42 40913.47 40747.27 39477.67 28638.83 32039.29 39925.32 39660.12 38848.08 393
CHOSEN 280x42041.62 36839.89 37346.80 36461.81 35351.59 20633.56 40235.74 40527.48 38937.64 40753.53 39623.24 39542.09 39127.39 38858.64 39146.72 395
PVSNet_036.71 2241.12 36940.78 37242.14 37859.97 36540.13 31640.97 39142.24 39530.81 38344.86 39949.41 40240.70 30945.12 37923.15 40034.96 40541.16 401
mvsany_test137.88 37035.74 37544.28 37447.28 40749.90 22336.54 40024.37 41119.56 40645.76 39553.46 39732.99 34637.97 40126.17 38935.52 40444.99 399
PMMVS237.74 37140.87 37128.36 38842.41 4115.35 41624.61 40327.75 40832.15 37647.85 39270.27 34335.85 33629.51 40619.08 40667.85 36850.22 392
new_pmnet37.55 37239.80 37430.79 38756.83 38216.46 40839.35 39530.65 40725.59 39645.26 39761.60 38524.54 39128.02 40721.60 40252.80 40047.90 394
MVEpermissive27.91 2336.69 37335.64 37639.84 38343.37 41035.85 34919.49 40424.61 41024.68 39839.05 40562.63 38338.67 32227.10 40821.04 40447.25 40356.56 387
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
dongtai31.66 37432.98 37727.71 38958.58 37512.61 41145.02 38414.24 41541.90 31547.93 39143.91 40410.65 41541.81 39414.06 40720.53 40828.72 405
kuosan22.02 37523.52 37917.54 39141.56 41311.24 41241.99 39013.39 41626.13 39428.87 40830.75 4069.72 41621.94 4104.77 41114.49 40919.43 406
test_method19.26 37619.12 38019.71 3909.09 4151.91 4187.79 40653.44 3521.42 40910.27 41135.80 40517.42 40825.11 40912.44 40824.38 40732.10 404
cdsmvs_eth3d_5k17.71 37723.62 3780.00 3960.00 4190.00 4210.00 40770.17 2570.00 4140.00 41574.25 31468.16 970.00 4150.00 4140.00 4130.00 411
tmp_tt11.98 37814.73 3813.72 3932.28 4164.62 41719.44 40514.50 4140.47 41121.55 4099.58 40925.78 3874.57 41211.61 40927.37 4061.96 408
ab-mvs-re5.62 3797.50 3820.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 41567.46 3680.00 4190.00 4150.00 4140.00 4130.00 411
pcd_1.5k_mvsjas5.20 3806.93 3830.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 41462.39 1520.00 4150.00 4140.00 4130.00 411
test1234.43 3815.78 3840.39 3950.97 4170.28 41946.33 3820.45 4180.31 4120.62 4131.50 4120.61 4180.11 4140.56 4120.63 4110.77 410
testmvs4.06 3825.28 3850.41 3940.64 4180.16 42042.54 3880.31 4190.26 4130.50 4141.40 4130.77 4170.17 4130.56 4120.55 4120.90 409
test_blank0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uanet_test0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
DCPMVS0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
sosnet-low-res0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
sosnet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uncertanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
Regformer0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
WAC-MVS22.69 40236.10 353
FOURS189.19 2477.84 1391.64 189.11 384.05 391.57 3
MSC_two_6792asdad79.02 5583.14 9667.03 8880.75 12586.24 2377.27 3494.85 2683.78 135
PC_three_145246.98 27781.83 9486.28 15866.55 11884.47 7263.31 14290.78 11383.49 142
No_MVS79.02 5583.14 9667.03 8880.75 12586.24 2377.27 3494.85 2683.78 135
test_one_060185.84 6261.45 13485.63 3175.27 1885.62 4990.38 6776.72 27
eth-test20.00 419
eth-test0.00 419
ZD-MVS83.91 8769.36 7081.09 12058.91 14482.73 8789.11 9775.77 3586.63 1372.73 6392.93 70
RE-MVS-def85.50 486.19 5079.18 787.23 886.27 2177.51 1187.65 1990.73 5081.38 778.11 2494.46 3684.89 97
IU-MVS86.12 5460.90 14480.38 13645.49 28881.31 10275.64 4294.39 4184.65 105
OPU-MVS78.65 6283.44 9466.85 9083.62 4386.12 16666.82 11086.01 3261.72 15189.79 13483.08 159
test_241102_TWO84.80 4872.61 3384.93 5889.70 8377.73 2285.89 4075.29 4394.22 5283.25 153
test_241102_ONE86.12 5461.06 14084.72 5272.64 3287.38 2589.47 8677.48 2385.74 44
9.1480.22 5480.68 13380.35 7687.69 1159.90 13383.00 8088.20 11974.57 4781.75 11473.75 5593.78 57
save fliter87.00 4067.23 8779.24 8977.94 18256.65 166
test_0728_THIRD74.03 2285.83 4490.41 6275.58 3785.69 4577.43 3194.74 3084.31 123
test_0728_SECOND76.57 8586.20 4960.57 15083.77 4185.49 3385.90 3875.86 4094.39 4183.25 153
test072686.16 5260.78 14783.81 4085.10 4372.48 3585.27 5589.96 7978.57 17
GSMVS70.05 325
test_part285.90 5866.44 9284.61 64
sam_mvs131.41 35970.05 325
sam_mvs31.21 363
ambc70.10 18877.74 17550.21 21874.28 15477.93 18379.26 12488.29 11854.11 23379.77 15064.43 12691.10 10280.30 219
MTGPAbinary80.63 130
test_post166.63 2582.08 41030.66 36859.33 34040.34 320
test_post1.99 41130.91 36654.76 353
patchmatchnet-post68.99 35531.32 36069.38 279
GG-mvs-BLEND52.24 33860.64 36129.21 38569.73 21242.41 39145.47 39652.33 39920.43 40068.16 28925.52 39565.42 37459.36 381
MTMP84.83 3119.26 413
gm-plane-assit62.51 35033.91 36237.25 35262.71 38272.74 24438.70 328
test9_res72.12 7091.37 9277.40 257
TEST985.47 6469.32 7176.42 12278.69 16753.73 20976.97 15286.74 14166.84 10981.10 124
test_885.09 7067.89 8076.26 12778.66 16954.00 20476.89 15686.72 14366.60 11580.89 134
agg_prior270.70 7490.93 10778.55 243
agg_prior84.44 8266.02 9878.62 17076.95 15480.34 141
TestCases78.35 6679.19 15370.81 5688.64 465.37 8380.09 11788.17 12070.33 7878.43 17455.60 20490.90 10985.81 79
test_prior470.14 6477.57 105
test_prior275.57 13558.92 14376.53 17086.78 13967.83 10269.81 7992.76 73
test_prior75.27 10482.15 11559.85 15584.33 6383.39 8882.58 174
旧先验271.17 19345.11 29278.54 13461.28 33459.19 177
新几何271.33 189
新几何169.99 19088.37 3571.34 5262.08 30743.85 29974.99 18986.11 16752.85 23970.57 27150.99 24283.23 24068.05 342
旧先验184.55 7960.36 15263.69 29987.05 13354.65 22983.34 23969.66 330
无先验74.82 14170.94 25147.75 27276.85 20254.47 21672.09 308
原ACMM274.78 145
原ACMM173.90 12085.90 5865.15 10781.67 10650.97 23974.25 20386.16 16461.60 16083.54 8456.75 19291.08 10373.00 296
test22287.30 3869.15 7467.85 23859.59 31741.06 32373.05 22185.72 17548.03 27180.65 26766.92 347
testdata267.30 29848.34 266
segment_acmp68.30 96
testdata64.13 25885.87 6063.34 11961.80 31047.83 27076.42 17486.60 15048.83 26562.31 33054.46 21781.26 26166.74 351
testdata168.34 23457.24 159
test1276.51 8682.28 11360.94 14381.64 10773.60 21264.88 13385.19 5990.42 12083.38 149
plane_prior785.18 6766.21 95
plane_prior684.18 8565.31 10460.83 173
plane_prior585.49 3386.15 2871.09 7190.94 10584.82 101
plane_prior489.11 97
plane_prior365.67 10063.82 10278.23 136
plane_prior282.74 5365.45 80
plane_prior184.46 81
plane_prior65.18 10580.06 8361.88 12189.91 131
n20.00 420
nn0.00 420
door-mid55.02 341
lessismore_v072.75 14979.60 14456.83 17757.37 32483.80 7489.01 10047.45 27378.74 16764.39 12786.49 19782.69 171
LGP-MVS_train80.90 3387.00 4070.41 6186.35 1869.77 5487.75 1691.13 3781.83 386.20 2577.13 3695.96 686.08 73
test1182.71 90
door52.91 356
HQP5-MVS58.80 166
HQP-NCC82.37 11077.32 11059.08 13871.58 238
ACMP_Plane82.37 11077.32 11059.08 13871.58 238
BP-MVS67.38 105
HQP4-MVS71.59 23785.31 5283.74 137
HQP3-MVS84.12 6989.16 146
HQP2-MVS58.09 200
NP-MVS83.34 9563.07 12285.97 170
MDTV_nov1_ep13_2view18.41 40653.74 35831.57 38044.89 39829.90 37432.93 36771.48 312
MDTV_nov1_ep1354.05 32365.54 33329.30 38459.00 32255.22 33935.96 35852.44 37775.98 29630.77 36759.62 33938.21 33373.33 334
ACMMP++_ref89.47 141
ACMMP++91.96 83
Test By Simon62.56 148
ITE_SJBPF80.35 3976.94 18673.60 3980.48 13366.87 6883.64 7686.18 16270.25 8079.90 14961.12 15788.95 15487.56 56
DeepMVS_CXcopyleft11.83 39215.51 41413.86 41011.25 4175.76 40820.85 41026.46 40717.06 4099.22 4119.69 41013.82 41012.42 407