LCM-MVSNet | | | 86.90 1 | 88.67 1 | 81.57 25 | 91.50 1 | 63.30 124 | 84.80 34 | 87.77 10 | 86.18 1 | 96.26 1 | 96.06 1 | 90.32 1 | 84.49 70 | 68.08 93 | 97.05 1 | 96.93 1 |
|
TDRefinement | | | 86.32 2 | 86.33 2 | 86.29 1 | 88.64 33 | 81.19 5 | 88.84 4 | 90.72 1 | 78.27 9 | 87.95 15 | 92.53 13 | 79.37 13 | 84.79 67 | 74.51 51 | 96.15 2 | 92.88 7 |
|
abl_6 | | | 84.92 3 | 85.70 3 | 82.57 17 | 86.72 49 | 79.27 8 | 87.56 7 | 86.08 28 | 77.48 13 | 88.12 14 | 91.53 28 | 81.18 8 | 84.31 76 | 78.12 24 | 94.47 37 | 84.15 123 |
|
test1172 | | | 84.85 4 | 85.39 5 | 83.21 3 | 88.34 38 | 80.50 6 | 85.12 30 | 85.22 43 | 81.06 3 | 87.20 28 | 90.28 70 | 79.20 14 | 85.58 48 | 78.04 27 | 94.08 56 | 83.55 135 |
|
SR-MVS-dyc-post | | | 84.75 5 | 85.26 7 | 83.21 3 | 86.19 55 | 79.18 9 | 87.23 9 | 86.27 23 | 77.51 11 | 87.65 19 | 90.73 46 | 79.20 14 | 85.58 48 | 78.11 25 | 94.46 38 | 84.89 92 |
|
HPM-MVS_fast | | | 84.59 6 | 85.10 8 | 83.06 6 | 88.60 34 | 75.83 27 | 86.27 25 | 86.89 18 | 73.69 25 | 86.17 36 | 91.70 24 | 78.23 20 | 85.20 58 | 79.45 13 | 94.91 25 | 88.15 45 |
|
SR-MVS | | | 84.51 7 | 85.27 6 | 82.25 21 | 88.52 35 | 77.71 17 | 86.81 17 | 85.25 42 | 77.42 15 | 86.15 37 | 90.24 71 | 81.69 5 | 85.94 33 | 77.77 29 | 93.58 67 | 83.09 151 |
|
ACMMP |  | | 84.22 8 | 84.84 10 | 82.35 20 | 89.23 23 | 76.66 26 | 87.65 6 | 85.89 31 | 71.03 45 | 85.85 41 | 90.58 50 | 78.77 17 | 85.78 41 | 79.37 16 | 95.17 17 | 84.62 104 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
LTVRE_ROB | | 75.46 1 | 84.22 8 | 84.98 9 | 81.94 23 | 84.82 78 | 75.40 30 | 91.60 3 | 87.80 8 | 73.52 26 | 88.90 11 | 93.06 6 | 71.39 75 | 81.53 121 | 81.53 3 | 92.15 89 | 88.91 37 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
HPM-MVS |  | | 84.12 10 | 84.63 11 | 82.60 15 | 88.21 39 | 74.40 36 | 85.24 29 | 87.21 16 | 70.69 48 | 85.14 54 | 90.42 58 | 78.99 16 | 86.62 14 | 80.83 6 | 94.93 24 | 86.79 62 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
CP-MVS | | | 84.12 10 | 84.55 12 | 82.80 12 | 89.42 18 | 79.74 7 | 88.19 5 | 84.43 65 | 71.96 42 | 84.70 62 | 90.56 51 | 77.12 26 | 86.18 27 | 79.24 18 | 95.36 13 | 82.49 171 |
|
mPP-MVS | | | 84.01 12 | 84.39 13 | 82.88 8 | 90.65 4 | 81.38 4 | 87.08 13 | 82.79 92 | 72.41 36 | 85.11 55 | 90.85 42 | 76.65 30 | 84.89 64 | 79.30 17 | 94.63 34 | 82.35 174 |
|
COLMAP_ROB |  | 72.78 3 | 83.75 13 | 84.11 17 | 82.68 14 | 82.97 110 | 74.39 37 | 87.18 11 | 88.18 7 | 78.98 7 | 86.11 39 | 91.47 30 | 79.70 12 | 85.76 42 | 66.91 108 | 95.46 11 | 87.89 47 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
ACMMPR | | | 83.62 14 | 83.93 19 | 82.69 13 | 89.78 11 | 77.51 22 | 87.01 15 | 84.19 74 | 70.23 49 | 84.49 64 | 90.67 49 | 75.15 43 | 86.37 19 | 79.58 11 | 94.26 51 | 84.18 122 |
|
APD-MVS_3200maxsize | | | 83.57 15 | 84.33 14 | 81.31 33 | 82.83 113 | 73.53 45 | 85.50 28 | 87.45 14 | 74.11 21 | 86.45 34 | 90.52 54 | 80.02 11 | 84.48 71 | 77.73 30 | 94.34 49 | 85.93 73 |
|
region2R | | | 83.54 16 | 83.86 21 | 82.58 16 | 89.82 10 | 77.53 20 | 87.06 14 | 84.23 73 | 70.19 51 | 83.86 73 | 90.72 48 | 75.20 42 | 86.27 22 | 79.41 15 | 94.25 52 | 83.95 126 |
|
XVS | | | 83.51 17 | 83.73 22 | 82.85 10 | 89.43 16 | 77.61 18 | 86.80 18 | 84.66 58 | 72.71 29 | 82.87 82 | 90.39 62 | 73.86 56 | 86.31 20 | 78.84 20 | 94.03 57 | 84.64 102 |
|
LPG-MVS_test | | | 83.47 18 | 84.33 14 | 80.90 38 | 87.00 43 | 70.41 66 | 82.04 60 | 86.35 20 | 69.77 53 | 87.75 16 | 91.13 35 | 81.83 3 | 86.20 25 | 77.13 37 | 95.96 5 | 86.08 69 |
|
HFP-MVS | | | 83.39 19 | 84.03 18 | 81.48 27 | 89.25 21 | 75.69 28 | 87.01 15 | 84.27 69 | 70.23 49 | 84.47 65 | 90.43 56 | 76.79 27 | 85.94 33 | 79.58 11 | 94.23 53 | 82.82 161 |
|
MTAPA | | | 83.19 20 | 83.87 20 | 81.13 35 | 91.16 2 | 78.16 14 | 84.87 32 | 80.63 128 | 72.08 39 | 84.93 56 | 90.79 43 | 74.65 49 | 84.42 73 | 80.98 4 | 94.75 29 | 80.82 199 |
|
MP-MVS |  | | 83.19 20 | 83.54 26 | 82.14 22 | 90.54 5 | 79.00 11 | 86.42 23 | 83.59 83 | 71.31 43 | 81.26 102 | 90.96 39 | 74.57 51 | 84.69 68 | 78.41 22 | 94.78 28 | 82.74 165 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
ZNCC-MVS | | | 83.12 22 | 83.68 23 | 81.45 29 | 89.14 26 | 73.28 47 | 86.32 24 | 85.97 30 | 67.39 64 | 84.02 71 | 90.39 62 | 74.73 48 | 86.46 16 | 80.73 7 | 94.43 42 | 84.60 107 |
|
PGM-MVS | | | 83.07 23 | 83.25 33 | 82.54 18 | 89.57 14 | 77.21 24 | 82.04 60 | 85.40 39 | 67.96 62 | 84.91 60 | 90.88 40 | 75.59 38 | 86.57 15 | 78.16 23 | 94.71 32 | 83.82 127 |
|
SteuartSystems-ACMMP | | | 83.07 23 | 83.64 24 | 81.35 31 | 85.14 74 | 71.00 60 | 85.53 27 | 84.78 52 | 70.91 46 | 85.64 44 | 90.41 59 | 75.55 40 | 87.69 3 | 79.75 8 | 95.08 20 | 85.36 82 |
Skip Steuart: Steuart Systems R&D Blog. |
zzz-MVS | | | 83.01 25 | 83.63 25 | 81.13 35 | 91.16 2 | 78.16 14 | 82.72 56 | 80.63 128 | 72.08 39 | 84.93 56 | 90.79 43 | 74.65 49 | 84.42 73 | 80.98 4 | 94.75 29 | 80.82 199 |
|
APDe-MVS | | | 82.88 26 | 84.14 16 | 79.08 57 | 84.80 80 | 66.72 96 | 86.54 21 | 85.11 45 | 72.00 41 | 86.65 33 | 91.75 23 | 78.20 21 | 87.04 9 | 77.93 28 | 94.32 50 | 83.47 140 |
|
GST-MVS | | | 82.79 27 | 83.27 32 | 81.34 32 | 88.99 28 | 73.29 46 | 85.94 26 | 85.13 44 | 68.58 60 | 84.14 70 | 90.21 73 | 73.37 61 | 86.41 17 | 79.09 19 | 93.98 60 | 84.30 121 |
|
ACMP | | 69.50 8 | 82.64 28 | 83.38 29 | 80.40 43 | 86.50 51 | 69.44 74 | 82.30 57 | 86.08 28 | 66.80 69 | 86.70 32 | 89.99 76 | 81.64 6 | 85.95 32 | 74.35 52 | 96.11 3 | 85.81 75 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
MP-MVS-pluss | | | 82.54 29 | 83.46 28 | 79.76 47 | 88.88 32 | 68.44 83 | 81.57 63 | 86.33 22 | 63.17 110 | 85.38 51 | 91.26 34 | 76.33 32 | 84.67 69 | 83.30 1 | 94.96 23 | 86.17 68 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
#test# | | | 82.40 30 | 82.71 41 | 81.48 27 | 89.25 21 | 75.69 28 | 84.47 36 | 84.27 69 | 64.45 94 | 84.47 65 | 90.43 56 | 76.79 27 | 85.94 33 | 76.01 39 | 94.23 53 | 82.82 161 |
|
ACMMP_NAP | | | 82.33 31 | 83.28 31 | 79.46 53 | 89.28 19 | 69.09 81 | 83.62 45 | 84.98 48 | 64.77 91 | 83.97 72 | 91.02 38 | 75.53 41 | 85.93 36 | 82.00 2 | 94.36 47 | 83.35 145 |
|
SMA-MVS |  | | 82.12 32 | 82.68 42 | 80.43 42 | 88.90 31 | 69.52 72 | 85.12 30 | 84.76 53 | 63.53 104 | 84.23 69 | 91.47 30 | 72.02 67 | 87.16 7 | 79.74 10 | 94.36 47 | 84.61 105 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
ACMM | | 69.25 9 | 82.11 33 | 83.31 30 | 78.49 68 | 88.17 40 | 73.96 39 | 83.11 52 | 84.52 64 | 66.40 74 | 87.45 23 | 89.16 94 | 81.02 9 | 80.52 144 | 74.27 53 | 95.73 7 | 80.98 195 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
DPE-MVS |  | | 82.00 34 | 83.02 36 | 78.95 62 | 85.36 71 | 67.25 90 | 82.91 53 | 84.98 48 | 73.52 26 | 85.43 50 | 90.03 75 | 76.37 31 | 86.97 11 | 74.56 50 | 94.02 59 | 82.62 167 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
SED-MVS | | | 81.78 35 | 83.48 27 | 76.67 89 | 86.12 59 | 61.06 138 | 83.62 45 | 84.72 55 | 72.61 32 | 87.38 25 | 89.70 81 | 77.48 24 | 85.89 39 | 75.29 45 | 94.39 43 | 83.08 152 |
|
PMVS |  | 70.70 6 | 81.70 36 | 83.15 34 | 77.36 83 | 90.35 6 | 82.82 2 | 82.15 58 | 79.22 151 | 74.08 22 | 87.16 30 | 91.97 19 | 84.80 2 | 76.97 205 | 64.98 119 | 93.61 65 | 72.28 286 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
UA-Net | | | 81.56 37 | 82.28 44 | 79.40 54 | 88.91 30 | 69.16 79 | 84.67 35 | 80.01 142 | 75.34 17 | 79.80 119 | 94.91 2 | 69.79 87 | 80.25 149 | 72.63 63 | 94.46 38 | 88.78 41 |
|
CPTT-MVS | | | 81.51 38 | 81.76 47 | 80.76 40 | 89.20 24 | 78.75 12 | 86.48 22 | 82.03 101 | 68.80 56 | 80.92 107 | 88.52 106 | 72.00 68 | 82.39 108 | 74.80 47 | 93.04 73 | 81.14 190 |
|
DVP-MVS++ | | | 81.24 39 | 82.74 40 | 76.76 88 | 83.14 103 | 60.90 142 | 91.64 1 | 85.49 35 | 74.03 23 | 84.93 56 | 90.38 64 | 66.82 113 | 85.90 37 | 77.43 33 | 90.78 120 | 83.49 137 |
|
ACMH+ | | 66.64 10 | 81.20 40 | 82.48 43 | 77.35 84 | 81.16 136 | 62.39 128 | 80.51 68 | 87.80 8 | 73.02 28 | 87.57 21 | 91.08 37 | 80.28 10 | 82.44 107 | 64.82 120 | 96.10 4 | 87.21 56 |
|
testtj | | | 81.19 41 | 81.70 49 | 79.67 51 | 83.95 93 | 69.77 71 | 83.58 48 | 84.63 60 | 72.13 38 | 82.85 84 | 88.36 111 | 75.00 46 | 86.79 12 | 71.99 72 | 92.84 76 | 82.44 172 |
|
DVP-MVS |  | | 81.15 42 | 83.12 35 | 75.24 111 | 86.16 57 | 60.78 144 | 83.77 43 | 80.58 131 | 72.48 34 | 85.83 42 | 90.41 59 | 78.57 18 | 85.69 44 | 75.86 42 | 94.39 43 | 79.24 223 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
APD-MVS |  | | 81.13 43 | 81.73 48 | 79.36 55 | 84.47 85 | 70.53 65 | 83.85 41 | 83.70 81 | 69.43 55 | 83.67 75 | 88.96 100 | 75.89 36 | 86.41 17 | 72.62 64 | 92.95 74 | 81.14 190 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
3Dnovator+ | | 73.19 2 | 81.08 44 | 80.48 57 | 82.87 9 | 81.41 133 | 72.03 50 | 84.38 37 | 86.23 26 | 77.28 16 | 80.65 110 | 90.18 74 | 59.80 177 | 87.58 4 | 73.06 60 | 91.34 102 | 89.01 33 |
|
DeepC-MVS | | 72.44 4 | 81.00 45 | 80.83 56 | 81.50 26 | 86.70 50 | 70.03 70 | 82.06 59 | 87.00 17 | 59.89 133 | 80.91 108 | 90.53 52 | 72.19 65 | 88.56 1 | 73.67 57 | 94.52 36 | 85.92 74 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
OPM-MVS | | | 80.99 46 | 81.63 51 | 79.07 58 | 86.86 48 | 69.39 75 | 79.41 85 | 84.00 79 | 65.64 78 | 85.54 48 | 89.28 87 | 76.32 33 | 83.47 89 | 74.03 54 | 93.57 68 | 84.35 118 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
LS3D | | | 80.99 46 | 80.85 55 | 81.41 30 | 78.37 169 | 71.37 56 | 87.45 8 | 85.87 32 | 77.48 13 | 81.98 91 | 89.95 78 | 69.14 90 | 85.26 54 | 66.15 109 | 91.24 104 | 87.61 51 |
|
SF-MVS | | | 80.72 48 | 81.80 46 | 77.48 80 | 82.03 124 | 64.40 116 | 83.41 50 | 88.46 6 | 65.28 85 | 84.29 67 | 89.18 91 | 73.73 59 | 83.22 94 | 76.01 39 | 93.77 62 | 84.81 98 |
|
XVG-ACMP-BASELINE | | | 80.54 49 | 81.06 53 | 78.98 61 | 87.01 42 | 72.91 48 | 80.23 77 | 85.56 34 | 66.56 73 | 85.64 44 | 89.57 83 | 69.12 91 | 80.55 143 | 72.51 65 | 93.37 69 | 83.48 139 |
|
MSP-MVS | | | 80.49 50 | 79.67 65 | 82.96 7 | 89.70 12 | 77.46 23 | 87.16 12 | 85.10 46 | 64.94 90 | 81.05 104 | 88.38 110 | 57.10 205 | 87.10 8 | 79.75 8 | 83.87 228 | 84.31 119 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
PEN-MVS | | | 80.46 51 | 82.91 37 | 73.11 140 | 89.83 9 | 39.02 303 | 77.06 116 | 82.61 95 | 80.04 5 | 90.60 6 | 92.85 9 | 74.93 47 | 85.21 57 | 63.15 140 | 95.15 18 | 95.09 2 |
|
PS-CasMVS | | | 80.41 52 | 82.86 39 | 73.07 141 | 89.93 7 | 39.21 300 | 77.15 114 | 81.28 114 | 79.74 6 | 90.87 4 | 92.73 11 | 75.03 45 | 84.93 63 | 63.83 131 | 95.19 16 | 95.07 3 |
|
DTE-MVSNet | | | 80.35 53 | 82.89 38 | 72.74 152 | 89.84 8 | 37.34 318 | 77.16 113 | 81.81 104 | 80.45 4 | 90.92 3 | 92.95 7 | 74.57 51 | 86.12 30 | 63.65 132 | 94.68 33 | 94.76 6 |
|
xxxxxxxxxxxxxcwj | | | 80.31 54 | 80.94 54 | 78.42 70 | 87.00 43 | 67.23 91 | 79.24 86 | 88.61 5 | 56.65 166 | 84.29 67 | 89.18 91 | 73.73 59 | 83.22 94 | 76.01 39 | 93.77 62 | 84.81 98 |
|
SD-MVS | | | 80.28 55 | 81.55 52 | 76.47 94 | 83.57 97 | 67.83 87 | 83.39 51 | 85.35 41 | 64.42 95 | 86.14 38 | 87.07 127 | 74.02 55 | 80.97 134 | 77.70 31 | 92.32 87 | 80.62 206 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
WR-MVS_H | | | 80.22 56 | 82.17 45 | 74.39 118 | 89.46 15 | 42.69 276 | 78.24 101 | 82.24 98 | 78.21 10 | 89.57 9 | 92.10 18 | 68.05 102 | 85.59 47 | 66.04 111 | 95.62 9 | 94.88 5 |
|
HPM-MVS++ |  | | 79.89 57 | 79.80 63 | 80.18 45 | 89.02 27 | 78.44 13 | 83.49 49 | 80.18 139 | 64.71 93 | 78.11 139 | 88.39 109 | 65.46 128 | 83.14 96 | 77.64 32 | 91.20 105 | 78.94 226 |
|
XVG-OURS-SEG-HR | | | 79.62 58 | 79.99 61 | 78.49 68 | 86.46 52 | 74.79 34 | 77.15 114 | 85.39 40 | 66.73 70 | 80.39 114 | 88.85 102 | 74.43 54 | 78.33 185 | 74.73 49 | 85.79 198 | 82.35 174 |
|
XVG-OURS | | | 79.51 59 | 79.82 62 | 78.58 67 | 86.11 62 | 74.96 33 | 76.33 124 | 84.95 50 | 66.89 66 | 82.75 85 | 88.99 99 | 66.82 113 | 78.37 183 | 74.80 47 | 90.76 123 | 82.40 173 |
|
CP-MVSNet | | | 79.48 60 | 81.65 50 | 72.98 144 | 89.66 13 | 39.06 302 | 76.76 118 | 80.46 133 | 78.91 8 | 90.32 7 | 91.70 24 | 68.49 97 | 84.89 64 | 63.40 137 | 95.12 19 | 95.01 4 |
|
OMC-MVS | | | 79.41 61 | 78.79 70 | 81.28 34 | 80.62 140 | 70.71 64 | 80.91 66 | 84.76 53 | 62.54 114 | 81.77 94 | 86.65 144 | 71.46 73 | 83.53 88 | 67.95 98 | 92.44 84 | 89.60 23 |
|
v7n | | | 79.37 62 | 80.41 58 | 76.28 96 | 78.67 168 | 55.81 178 | 79.22 88 | 82.51 97 | 70.72 47 | 87.54 22 | 92.44 14 | 68.00 104 | 81.34 122 | 72.84 61 | 91.72 91 | 91.69 10 |
|
ETH3D-3000-0.1 | | | 79.14 63 | 79.80 63 | 77.16 87 | 80.67 139 | 64.57 113 | 80.26 75 | 87.60 12 | 60.74 127 | 82.47 88 | 88.03 119 | 71.73 70 | 81.81 117 | 73.12 59 | 93.61 65 | 85.09 87 |
|
TSAR-MVS + MP. | | | 79.05 64 | 78.81 69 | 79.74 48 | 88.94 29 | 67.52 88 | 86.61 20 | 81.38 112 | 51.71 226 | 77.15 151 | 91.42 33 | 65.49 127 | 87.20 6 | 79.44 14 | 87.17 185 | 84.51 113 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
mvs_tets | | | 78.93 65 | 78.67 73 | 79.72 49 | 84.81 79 | 73.93 40 | 80.65 67 | 76.50 189 | 51.98 224 | 87.40 24 | 91.86 21 | 76.09 35 | 78.53 175 | 68.58 88 | 90.20 129 | 86.69 64 |
|
test_djsdf | | | 78.88 66 | 78.27 76 | 80.70 41 | 81.42 132 | 71.24 58 | 83.98 39 | 75.72 195 | 52.27 219 | 87.37 27 | 92.25 16 | 68.04 103 | 80.56 141 | 72.28 68 | 91.15 107 | 90.32 20 |
|
HQP_MVS | | | 78.77 67 | 78.78 71 | 78.72 64 | 85.18 72 | 65.18 108 | 82.74 54 | 85.49 35 | 65.45 80 | 78.23 136 | 89.11 95 | 60.83 168 | 86.15 28 | 71.09 74 | 90.94 112 | 84.82 96 |
|
anonymousdsp | | | 78.60 68 | 77.80 80 | 81.00 37 | 78.01 175 | 74.34 38 | 80.09 78 | 76.12 191 | 50.51 241 | 89.19 10 | 90.88 40 | 71.45 74 | 77.78 197 | 73.38 58 | 90.60 125 | 90.90 16 |
|
OurMVSNet-221017-0 | | | 78.57 69 | 78.53 75 | 78.67 65 | 80.48 141 | 64.16 117 | 80.24 76 | 82.06 100 | 61.89 118 | 88.77 12 | 93.32 4 | 57.15 203 | 82.60 106 | 70.08 80 | 92.80 78 | 89.25 27 |
|
jajsoiax | | | 78.51 70 | 78.16 78 | 79.59 52 | 84.65 82 | 73.83 42 | 80.42 70 | 76.12 191 | 51.33 232 | 87.19 29 | 91.51 29 | 73.79 58 | 78.44 179 | 68.27 91 | 90.13 134 | 86.49 66 |
|
CNVR-MVS | | | 78.49 71 | 78.59 74 | 78.16 73 | 85.86 66 | 67.40 89 | 78.12 104 | 81.50 108 | 63.92 99 | 77.51 148 | 86.56 148 | 68.43 99 | 84.82 66 | 73.83 55 | 91.61 96 | 82.26 177 |
|
DeepPCF-MVS | | 71.07 5 | 78.48 72 | 77.14 87 | 82.52 19 | 84.39 89 | 77.04 25 | 76.35 122 | 84.05 77 | 56.66 165 | 80.27 115 | 85.31 175 | 68.56 96 | 87.03 10 | 67.39 103 | 91.26 103 | 83.50 136 |
|
DP-MVS | | | 78.44 73 | 79.29 67 | 75.90 101 | 81.86 127 | 65.33 106 | 79.05 90 | 84.63 60 | 74.83 20 | 80.41 113 | 86.27 155 | 71.68 71 | 83.45 90 | 62.45 144 | 92.40 85 | 78.92 227 |
|
ETH3D cwj APD-0.16 | | | 78.38 74 | 78.72 72 | 77.38 82 | 80.09 144 | 66.16 101 | 79.08 89 | 86.13 27 | 57.55 156 | 80.93 106 | 87.76 122 | 71.98 69 | 82.73 104 | 72.11 71 | 92.83 77 | 83.25 147 |
|
NCCC | | | 78.25 75 | 78.04 79 | 78.89 63 | 85.61 68 | 69.45 73 | 79.80 82 | 80.99 123 | 65.77 77 | 75.55 181 | 86.25 157 | 67.42 107 | 85.42 50 | 70.10 79 | 90.88 118 | 81.81 183 |
|
test_0402 | | | 78.17 76 | 79.48 66 | 74.24 121 | 83.50 98 | 59.15 160 | 72.52 161 | 74.60 208 | 75.34 17 | 88.69 13 | 91.81 22 | 75.06 44 | 82.37 109 | 65.10 117 | 88.68 160 | 81.20 188 |
|
AllTest | | | 77.66 77 | 77.43 82 | 78.35 71 | 79.19 157 | 70.81 61 | 78.60 94 | 88.64 3 | 65.37 83 | 80.09 117 | 88.17 115 | 70.33 81 | 78.43 180 | 55.60 196 | 90.90 116 | 85.81 75 |
|
PS-MVSNAJss | | | 77.54 78 | 77.35 84 | 78.13 75 | 84.88 77 | 66.37 99 | 78.55 95 | 79.59 147 | 53.48 209 | 86.29 35 | 92.43 15 | 62.39 150 | 80.25 149 | 67.90 99 | 90.61 124 | 87.77 48 |
|
ACMH | | 63.62 14 | 77.50 79 | 80.11 60 | 69.68 191 | 79.61 148 | 56.28 175 | 78.81 91 | 83.62 82 | 63.41 108 | 87.14 31 | 90.23 72 | 76.11 34 | 73.32 244 | 67.58 100 | 94.44 41 | 79.44 221 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
CDPH-MVS | | | 77.33 80 | 77.06 88 | 78.14 74 | 84.21 90 | 63.98 119 | 76.07 127 | 83.45 84 | 54.20 197 | 77.68 147 | 87.18 123 | 69.98 84 | 85.37 51 | 68.01 95 | 92.72 82 | 85.08 89 |
|
DeepC-MVS_fast | | 69.89 7 | 77.17 81 | 76.33 92 | 79.70 50 | 83.90 95 | 67.94 85 | 80.06 80 | 83.75 80 | 56.73 164 | 74.88 189 | 85.32 174 | 65.54 126 | 87.79 2 | 65.61 115 | 91.14 108 | 83.35 145 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
DROMVSNet | | | 77.08 82 | 77.39 83 | 76.14 99 | 76.86 193 | 56.87 173 | 80.32 74 | 87.52 13 | 63.45 106 | 74.66 195 | 84.52 182 | 69.87 86 | 84.94 62 | 69.76 84 | 89.59 145 | 86.60 65 |
|
test_part1 | | | 76.97 83 | 78.21 77 | 73.25 137 | 77.87 177 | 45.76 252 | 78.27 100 | 87.26 15 | 66.69 71 | 85.31 52 | 91.43 32 | 55.95 214 | 84.24 78 | 65.71 113 | 95.43 12 | 89.75 22 |
|
X-MVStestdata | | | 76.81 84 | 74.79 103 | 82.85 10 | 89.43 16 | 77.61 18 | 86.80 18 | 84.66 58 | 72.71 29 | 82.87 82 | 9.95 371 | 73.86 56 | 86.31 20 | 78.84 20 | 94.03 57 | 84.64 102 |
|
UniMVSNet_ETH3D | | | 76.74 85 | 79.02 68 | 69.92 190 | 89.27 20 | 43.81 264 | 74.47 148 | 71.70 228 | 72.33 37 | 85.50 49 | 93.65 3 | 77.98 22 | 76.88 208 | 54.60 206 | 91.64 94 | 89.08 31 |
|
test_prior3 | | | 76.71 86 | 77.19 85 | 75.27 109 | 82.15 122 | 59.85 153 | 75.57 131 | 84.33 67 | 58.92 141 | 76.53 170 | 86.78 135 | 67.83 105 | 83.39 91 | 69.81 82 | 92.76 80 | 82.58 168 |
|
train_agg | | | 76.38 87 | 76.55 89 | 75.86 102 | 85.47 69 | 69.32 77 | 76.42 120 | 78.69 160 | 54.00 202 | 76.97 154 | 86.74 138 | 66.60 116 | 81.10 128 | 72.50 66 | 91.56 97 | 77.15 247 |
|
TranMVSNet+NR-MVSNet | | | 76.13 88 | 77.66 81 | 71.56 166 | 84.61 83 | 42.57 278 | 70.98 186 | 78.29 169 | 68.67 59 | 83.04 79 | 89.26 88 | 72.99 63 | 80.75 140 | 55.58 199 | 95.47 10 | 91.35 11 |
|
agg_prior1 | | | 75.89 89 | 76.41 90 | 74.31 120 | 84.44 87 | 66.02 102 | 76.12 126 | 78.62 163 | 54.40 191 | 76.95 156 | 86.85 132 | 66.44 119 | 80.34 146 | 72.45 67 | 91.42 100 | 76.57 251 |
|
SixPastTwentyTwo | | | 75.77 90 | 76.34 91 | 74.06 124 | 81.69 130 | 54.84 183 | 76.47 119 | 75.49 197 | 64.10 98 | 87.73 18 | 92.24 17 | 50.45 239 | 81.30 124 | 67.41 102 | 91.46 99 | 86.04 71 |
|
RPSCF | | | 75.76 91 | 74.37 109 | 79.93 46 | 74.81 217 | 77.53 20 | 77.53 108 | 79.30 150 | 59.44 136 | 78.88 128 | 89.80 80 | 71.26 76 | 73.09 246 | 57.45 179 | 80.89 260 | 89.17 30 |
|
ETH3 D test6400 | | | 75.73 92 | 76.00 94 | 74.92 112 | 81.75 128 | 56.93 171 | 78.31 98 | 84.60 62 | 52.83 215 | 77.15 151 | 85.14 177 | 68.59 95 | 84.03 79 | 65.44 116 | 90.20 129 | 83.82 127 |
|
v10 | | | 75.69 93 | 76.20 93 | 74.16 122 | 74.44 228 | 48.69 219 | 75.84 130 | 82.93 91 | 59.02 140 | 85.92 40 | 89.17 93 | 58.56 188 | 82.74 103 | 70.73 76 | 89.14 155 | 91.05 13 |
|
Anonymous20231211 | | | 75.54 94 | 77.19 85 | 70.59 175 | 77.67 182 | 45.70 254 | 74.73 144 | 80.19 138 | 68.80 56 | 82.95 81 | 92.91 8 | 66.26 120 | 76.76 211 | 58.41 175 | 92.77 79 | 89.30 26 |
|
Effi-MVS+-dtu | | | 75.43 95 | 72.28 145 | 84.91 2 | 77.05 185 | 83.58 1 | 78.47 96 | 77.70 176 | 57.68 151 | 74.89 188 | 78.13 263 | 64.80 135 | 84.26 77 | 56.46 188 | 85.32 206 | 86.88 61 |
|
Regformer-2 | | | 75.32 96 | 74.47 107 | 77.88 76 | 74.22 230 | 66.65 97 | 72.77 159 | 77.54 178 | 68.47 61 | 80.44 112 | 72.08 312 | 70.60 80 | 80.97 134 | 70.08 80 | 84.02 226 | 86.01 72 |
|
F-COLMAP | | | 75.29 97 | 73.99 114 | 79.18 56 | 81.73 129 | 71.90 51 | 81.86 62 | 82.98 89 | 59.86 134 | 72.27 224 | 84.00 189 | 64.56 138 | 83.07 99 | 51.48 226 | 87.19 184 | 82.56 170 |
|
HQP-MVS | | | 75.24 98 | 75.01 102 | 75.94 100 | 82.37 117 | 58.80 163 | 77.32 110 | 84.12 75 | 59.08 137 | 71.58 232 | 85.96 167 | 58.09 193 | 85.30 53 | 67.38 104 | 89.16 152 | 83.73 133 |
|
TAPA-MVS | | 65.27 12 | 75.16 99 | 74.29 111 | 77.77 77 | 74.86 216 | 68.08 84 | 77.89 105 | 84.04 78 | 55.15 179 | 76.19 177 | 83.39 195 | 66.91 111 | 80.11 154 | 60.04 164 | 90.14 133 | 85.13 86 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
IS-MVSNet | | | 75.10 100 | 75.42 101 | 74.15 123 | 79.23 155 | 48.05 228 | 79.43 83 | 78.04 172 | 70.09 52 | 79.17 126 | 88.02 120 | 53.04 224 | 83.60 85 | 58.05 177 | 93.76 64 | 90.79 17 |
|
v8 | | | 75.07 101 | 75.64 98 | 73.35 133 | 73.42 240 | 47.46 237 | 75.20 135 | 81.45 110 | 60.05 131 | 85.64 44 | 89.26 88 | 58.08 195 | 81.80 118 | 69.71 85 | 87.97 168 | 90.79 17 |
|
UniMVSNet (Re) | | | 75.00 102 | 75.48 100 | 73.56 131 | 83.14 103 | 47.92 230 | 70.41 194 | 81.04 122 | 63.67 102 | 79.54 121 | 86.37 153 | 62.83 144 | 81.82 116 | 57.10 182 | 95.25 15 | 90.94 15 |
|
PHI-MVS | | | 74.92 103 | 74.36 110 | 76.61 90 | 76.40 196 | 62.32 129 | 80.38 71 | 83.15 87 | 54.16 199 | 73.23 213 | 80.75 225 | 62.19 153 | 83.86 81 | 68.02 94 | 90.92 115 | 83.65 134 |
|
DU-MVS | | | 74.91 104 | 75.57 99 | 72.93 146 | 83.50 98 | 45.79 250 | 69.47 203 | 80.14 140 | 65.22 86 | 81.74 96 | 87.08 125 | 61.82 156 | 81.07 130 | 56.21 191 | 94.98 21 | 91.93 8 |
|
UniMVSNet_NR-MVSNet | | | 74.90 105 | 75.65 97 | 72.64 155 | 83.04 108 | 45.79 250 | 69.26 206 | 78.81 157 | 66.66 72 | 81.74 96 | 86.88 131 | 63.26 142 | 81.07 130 | 56.21 191 | 94.98 21 | 91.05 13 |
|
nrg030 | | | 74.87 106 | 75.99 95 | 71.52 167 | 74.90 215 | 49.88 215 | 74.10 152 | 82.58 96 | 54.55 190 | 83.50 77 | 89.21 90 | 71.51 72 | 75.74 220 | 61.24 150 | 92.34 86 | 88.94 36 |
|
Vis-MVSNet |  | | 74.85 107 | 74.56 105 | 75.72 103 | 81.63 131 | 64.64 112 | 76.35 122 | 79.06 153 | 62.85 112 | 73.33 211 | 88.41 108 | 62.54 148 | 79.59 160 | 63.94 130 | 82.92 236 | 82.94 157 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
Regformer-4 | | | 74.64 108 | 73.67 121 | 77.55 78 | 74.74 219 | 64.49 115 | 72.91 157 | 75.42 199 | 67.45 63 | 80.24 116 | 72.07 314 | 68.98 92 | 80.19 153 | 70.29 78 | 80.91 258 | 87.98 46 |
|
MSLP-MVS++ | | | 74.48 109 | 75.78 96 | 70.59 175 | 84.66 81 | 62.40 127 | 78.65 93 | 84.24 72 | 60.55 129 | 77.71 146 | 81.98 212 | 63.12 143 | 77.64 199 | 62.95 141 | 88.14 163 | 71.73 291 |
|
Regformer-1 | | | 74.28 110 | 73.63 123 | 76.21 98 | 74.22 230 | 64.12 118 | 72.77 159 | 75.46 198 | 66.86 68 | 79.27 124 | 72.08 312 | 69.29 89 | 78.74 171 | 68.73 87 | 84.02 226 | 85.77 80 |
|
AdaColmap |  | | 74.22 111 | 74.56 105 | 73.20 138 | 81.95 125 | 60.97 140 | 79.43 83 | 80.90 124 | 65.57 79 | 72.54 221 | 81.76 216 | 70.98 78 | 85.26 54 | 47.88 256 | 90.00 135 | 73.37 274 |
|
CSCG | | | 74.12 112 | 74.39 108 | 73.33 134 | 79.35 152 | 61.66 134 | 77.45 109 | 81.98 102 | 62.47 116 | 79.06 127 | 80.19 234 | 61.83 155 | 78.79 170 | 59.83 166 | 87.35 178 | 79.54 220 |
|
PAPM_NR | | | 73.91 113 | 74.16 112 | 73.16 139 | 81.90 126 | 53.50 193 | 81.28 64 | 81.40 111 | 66.17 75 | 73.30 212 | 83.31 200 | 59.96 173 | 83.10 98 | 58.45 174 | 81.66 252 | 82.87 159 |
|
EPP-MVSNet | | | 73.86 114 | 73.38 127 | 75.31 108 | 78.19 171 | 53.35 195 | 80.45 69 | 77.32 182 | 65.11 88 | 76.47 172 | 86.80 133 | 49.47 243 | 83.77 82 | 53.89 214 | 92.72 82 | 88.81 40 |
|
mvs-test1 | | | 73.81 115 | 70.69 167 | 83.18 5 | 77.05 185 | 81.39 3 | 75.39 133 | 77.70 176 | 57.68 151 | 71.19 242 | 74.72 289 | 64.80 135 | 83.66 84 | 56.46 188 | 81.19 256 | 84.50 114 |
|
RRT_MVS | | | 73.80 116 | 71.19 162 | 81.60 24 | 71.04 263 | 70.33 68 | 78.78 92 | 74.91 205 | 56.96 160 | 77.83 143 | 85.56 172 | 32.82 326 | 87.39 5 | 71.16 73 | 91.68 93 | 87.07 60 |
|
K. test v3 | | | 73.67 117 | 73.61 124 | 73.87 126 | 79.78 146 | 55.62 181 | 74.69 146 | 62.04 296 | 66.16 76 | 84.76 61 | 93.23 5 | 49.47 243 | 80.97 134 | 65.66 114 | 86.67 191 | 85.02 91 |
|
CS-MVS-test | | | 73.63 118 | 73.74 120 | 73.30 136 | 75.80 206 | 51.70 200 | 77.02 117 | 86.83 19 | 61.29 121 | 68.47 267 | 79.23 247 | 65.42 129 | 85.14 61 | 64.04 125 | 85.55 200 | 83.07 154 |
|
NR-MVSNet | | | 73.62 119 | 74.05 113 | 72.33 161 | 83.50 98 | 43.71 265 | 65.65 261 | 77.32 182 | 64.32 96 | 75.59 180 | 87.08 125 | 62.45 149 | 81.34 122 | 54.90 202 | 95.63 8 | 91.93 8 |
|
DP-MVS Recon | | | 73.57 120 | 72.69 140 | 76.23 97 | 82.85 112 | 63.39 122 | 74.32 149 | 82.96 90 | 57.75 150 | 70.35 249 | 81.98 212 | 64.34 139 | 84.41 75 | 49.69 240 | 89.95 137 | 80.89 197 |
|
CNLPA | | | 73.44 121 | 73.03 136 | 74.66 113 | 78.27 170 | 75.29 31 | 75.99 128 | 78.49 165 | 65.39 82 | 75.67 179 | 83.22 204 | 61.23 164 | 66.77 300 | 53.70 216 | 85.33 205 | 81.92 182 |
|
MCST-MVS | | | 73.42 122 | 73.34 129 | 73.63 130 | 81.28 134 | 59.17 159 | 74.80 142 | 83.13 88 | 45.50 278 | 72.84 216 | 83.78 192 | 65.15 132 | 80.99 132 | 64.54 121 | 89.09 157 | 80.73 204 |
|
v1192 | | | 73.40 123 | 73.42 125 | 73.32 135 | 74.65 225 | 48.67 220 | 72.21 164 | 81.73 105 | 52.76 216 | 81.85 92 | 84.56 181 | 57.12 204 | 82.24 113 | 68.58 88 | 87.33 179 | 89.06 32 |
|
114514_t | | | 73.40 123 | 73.33 130 | 73.64 129 | 84.15 92 | 57.11 170 | 78.20 102 | 80.02 141 | 43.76 292 | 72.55 220 | 86.07 165 | 64.00 140 | 83.35 93 | 60.14 162 | 91.03 111 | 80.45 209 |
|
FC-MVSNet-test | | | 73.32 125 | 74.78 104 | 68.93 204 | 79.21 156 | 36.57 320 | 71.82 174 | 79.54 149 | 57.63 155 | 82.57 87 | 90.38 64 | 59.38 181 | 78.99 166 | 57.91 178 | 94.56 35 | 91.23 12 |
|
v1144 | | | 73.29 126 | 73.39 126 | 73.01 142 | 74.12 234 | 48.11 227 | 72.01 167 | 81.08 121 | 53.83 206 | 81.77 94 | 84.68 179 | 58.07 196 | 81.91 115 | 68.10 92 | 86.86 187 | 88.99 35 |
|
GeoE | | | 73.14 127 | 73.77 119 | 71.26 170 | 78.09 173 | 52.64 198 | 74.32 149 | 79.56 148 | 56.32 169 | 76.35 175 | 83.36 199 | 70.76 79 | 77.96 193 | 63.32 138 | 81.84 247 | 83.18 150 |
|
baseline | | | 73.10 128 | 73.96 115 | 70.51 177 | 71.46 261 | 46.39 248 | 72.08 165 | 84.40 66 | 55.95 172 | 76.62 166 | 86.46 151 | 67.20 108 | 78.03 192 | 64.22 124 | 87.27 182 | 87.11 59 |
|
h-mvs33 | | | 73.08 129 | 71.61 155 | 77.48 80 | 83.89 96 | 72.89 49 | 70.47 192 | 71.12 243 | 54.28 193 | 77.89 140 | 83.41 194 | 49.04 246 | 80.98 133 | 63.62 133 | 90.77 122 | 78.58 230 |
|
TSAR-MVS + GP. | | | 73.08 129 | 71.60 156 | 77.54 79 | 78.99 164 | 70.73 63 | 74.96 137 | 69.38 254 | 60.73 128 | 74.39 199 | 78.44 258 | 57.72 200 | 82.78 102 | 60.16 161 | 89.60 144 | 79.11 225 |
|
v1240 | | | 73.06 131 | 73.14 132 | 72.84 149 | 74.74 219 | 47.27 240 | 71.88 173 | 81.11 118 | 51.80 225 | 82.28 90 | 84.21 186 | 56.22 212 | 82.34 110 | 68.82 86 | 87.17 185 | 88.91 37 |
|
casdiffmvs | | | 73.06 131 | 73.84 116 | 70.72 173 | 71.32 262 | 46.71 244 | 70.93 187 | 84.26 71 | 55.62 175 | 77.46 149 | 87.10 124 | 67.09 109 | 77.81 195 | 63.95 128 | 86.83 188 | 87.64 50 |
|
IterMVS-LS | | | 73.01 133 | 73.12 134 | 72.66 154 | 73.79 237 | 49.90 212 | 71.63 175 | 78.44 166 | 58.22 145 | 80.51 111 | 86.63 145 | 58.15 192 | 79.62 158 | 62.51 142 | 88.20 162 | 88.48 43 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
CANet | | | 73.00 134 | 71.84 150 | 76.48 93 | 75.82 204 | 61.28 136 | 74.81 140 | 80.37 136 | 63.17 110 | 62.43 304 | 80.50 229 | 61.10 166 | 85.16 60 | 64.00 127 | 84.34 222 | 83.01 156 |
|
v144192 | | | 72.99 135 | 73.06 135 | 72.77 150 | 74.58 226 | 47.48 236 | 71.90 172 | 80.44 134 | 51.57 228 | 81.46 100 | 84.11 188 | 58.04 197 | 82.12 114 | 67.98 96 | 87.47 175 | 88.70 42 |
|
MVS_111021_HR | | | 72.98 136 | 72.97 138 | 72.99 143 | 80.82 137 | 65.47 105 | 68.81 213 | 72.77 219 | 57.67 153 | 75.76 178 | 82.38 209 | 71.01 77 | 77.17 203 | 61.38 149 | 86.15 194 | 76.32 252 |
|
v1921920 | | | 72.96 137 | 72.98 137 | 72.89 148 | 74.67 222 | 47.58 235 | 71.92 171 | 80.69 127 | 51.70 227 | 81.69 98 | 83.89 190 | 56.58 210 | 82.25 112 | 68.34 90 | 87.36 177 | 88.82 39 |
|
CLD-MVS | | | 72.88 138 | 72.36 144 | 74.43 117 | 77.03 187 | 54.30 187 | 68.77 216 | 83.43 85 | 52.12 221 | 76.79 164 | 74.44 293 | 69.54 88 | 83.91 80 | 55.88 194 | 93.25 72 | 85.09 87 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
Regformer-3 | | | 72.86 139 | 72.28 145 | 74.62 114 | 74.74 219 | 60.18 150 | 72.91 157 | 71.76 227 | 64.74 92 | 78.42 134 | 72.07 314 | 67.00 110 | 76.28 215 | 67.97 97 | 80.91 258 | 87.39 53 |
|
EI-MVSNet-Vis-set | | | 72.78 140 | 71.87 149 | 75.54 106 | 74.77 218 | 59.02 161 | 72.24 163 | 71.56 231 | 63.92 99 | 78.59 130 | 71.59 320 | 66.22 121 | 78.60 173 | 67.58 100 | 80.32 266 | 89.00 34 |
|
ETV-MVS | | | 72.72 141 | 72.16 148 | 74.38 119 | 76.90 191 | 55.95 176 | 73.34 155 | 84.67 57 | 62.04 117 | 72.19 227 | 70.81 324 | 65.90 124 | 85.24 56 | 58.64 172 | 84.96 213 | 81.95 181 |
|
PCF-MVS | | 63.80 13 | 72.70 142 | 71.69 152 | 75.72 103 | 78.10 172 | 60.01 152 | 73.04 156 | 81.50 108 | 45.34 282 | 79.66 120 | 84.35 185 | 65.15 132 | 82.65 105 | 48.70 248 | 89.38 151 | 84.50 114 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
EI-MVSNet-UG-set | | | 72.63 143 | 71.68 153 | 75.47 107 | 74.67 222 | 58.64 166 | 72.02 166 | 71.50 232 | 63.53 104 | 78.58 132 | 71.39 323 | 65.98 122 | 78.53 175 | 67.30 106 | 80.18 268 | 89.23 28 |
|
Anonymous20240529 | | | 72.56 144 | 73.79 118 | 68.86 206 | 76.89 192 | 45.21 256 | 68.80 215 | 77.25 184 | 67.16 65 | 76.89 159 | 90.44 55 | 65.95 123 | 74.19 240 | 50.75 232 | 90.00 135 | 87.18 58 |
|
FIs | | | 72.56 144 | 73.80 117 | 68.84 207 | 78.74 167 | 37.74 314 | 71.02 185 | 79.83 143 | 56.12 170 | 80.88 109 | 89.45 85 | 58.18 190 | 78.28 186 | 56.63 184 | 93.36 70 | 90.51 19 |
|
v2v482 | | | 72.55 146 | 72.58 141 | 72.43 158 | 72.92 252 | 46.72 243 | 71.41 178 | 79.13 152 | 55.27 177 | 81.17 103 | 85.25 176 | 55.41 215 | 81.13 127 | 67.25 107 | 85.46 201 | 89.43 25 |
|
hse-mvs2 | | | 72.32 147 | 70.66 168 | 77.31 85 | 83.10 107 | 71.77 52 | 69.19 208 | 71.45 234 | 54.28 193 | 77.89 140 | 78.26 260 | 49.04 246 | 79.23 162 | 63.62 133 | 89.13 156 | 80.92 196 |
|
canonicalmvs | | | 72.29 148 | 73.38 127 | 69.04 199 | 74.23 229 | 47.37 238 | 73.93 153 | 83.18 86 | 54.36 192 | 76.61 167 | 81.64 218 | 72.03 66 | 75.34 224 | 57.12 181 | 87.28 181 | 84.40 116 |
|
Effi-MVS+ | | | 72.10 149 | 72.28 145 | 71.58 165 | 74.21 233 | 50.33 208 | 74.72 145 | 82.73 93 | 62.62 113 | 70.77 245 | 76.83 273 | 69.96 85 | 80.97 134 | 60.20 159 | 78.43 285 | 83.45 142 |
|
MVS_111021_LR | | | 72.10 149 | 71.82 151 | 72.95 145 | 79.53 150 | 73.90 41 | 70.45 193 | 66.64 267 | 56.87 161 | 76.81 163 | 81.76 216 | 68.78 93 | 71.76 264 | 61.81 145 | 83.74 230 | 73.18 276 |
|
pmmvs6 | | | 71.82 151 | 73.66 122 | 66.31 237 | 75.94 203 | 42.01 281 | 66.99 243 | 72.53 222 | 63.45 106 | 76.43 173 | 92.78 10 | 72.95 64 | 69.69 278 | 51.41 227 | 90.46 126 | 87.22 55 |
|
PLC |  | 62.01 16 | 71.79 152 | 70.28 170 | 76.33 95 | 80.31 143 | 68.63 82 | 78.18 103 | 81.24 115 | 54.57 189 | 67.09 279 | 80.63 227 | 59.44 178 | 81.74 120 | 46.91 263 | 84.17 223 | 78.63 228 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
VDDNet | | | 71.60 153 | 73.13 133 | 67.02 230 | 86.29 53 | 41.11 286 | 69.97 196 | 66.50 268 | 68.72 58 | 74.74 191 | 91.70 24 | 59.90 174 | 75.81 218 | 48.58 250 | 91.72 91 | 84.15 123 |
|
3Dnovator | | 65.95 11 | 71.50 154 | 71.22 161 | 72.34 160 | 73.16 244 | 63.09 125 | 78.37 97 | 78.32 167 | 57.67 153 | 72.22 226 | 84.61 180 | 54.77 216 | 78.47 177 | 60.82 156 | 81.07 257 | 75.45 258 |
|
WR-MVS | | | 71.20 155 | 72.48 142 | 67.36 225 | 84.98 76 | 35.70 328 | 64.43 276 | 68.66 258 | 65.05 89 | 81.49 99 | 86.43 152 | 57.57 201 | 76.48 213 | 50.36 236 | 93.32 71 | 89.90 21 |
|
V42 | | | 71.06 156 | 70.83 165 | 71.72 164 | 67.25 297 | 47.14 241 | 65.94 255 | 80.35 137 | 51.35 231 | 83.40 78 | 83.23 202 | 59.25 182 | 78.80 169 | 65.91 112 | 80.81 262 | 89.23 28 |
|
FMVSNet1 | | | 71.06 156 | 72.48 142 | 66.81 231 | 77.65 183 | 40.68 291 | 71.96 168 | 73.03 214 | 61.14 123 | 79.45 123 | 90.36 67 | 60.44 170 | 75.20 226 | 50.20 237 | 88.05 165 | 84.54 109 |
|
API-MVS | | | 70.97 158 | 71.51 158 | 69.37 193 | 75.20 210 | 55.94 177 | 80.99 65 | 76.84 186 | 62.48 115 | 71.24 240 | 77.51 269 | 61.51 160 | 80.96 138 | 52.04 222 | 85.76 199 | 71.22 295 |
|
VDD-MVS | | | 70.81 159 | 71.44 159 | 68.91 205 | 79.07 162 | 46.51 245 | 67.82 229 | 70.83 247 | 61.23 122 | 74.07 203 | 88.69 103 | 59.86 175 | 75.62 221 | 51.11 229 | 90.28 128 | 84.61 105 |
|
EG-PatchMatch MVS | | | 70.70 160 | 70.88 164 | 70.16 183 | 82.64 116 | 58.80 163 | 71.48 176 | 73.64 212 | 54.98 180 | 76.55 168 | 81.77 215 | 61.10 166 | 78.94 167 | 54.87 203 | 80.84 261 | 72.74 281 |
|
Baseline_NR-MVSNet | | | 70.62 161 | 73.19 131 | 62.92 268 | 76.97 188 | 34.44 336 | 68.84 211 | 70.88 246 | 60.25 130 | 79.50 122 | 90.53 52 | 61.82 156 | 69.11 282 | 54.67 205 | 95.27 14 | 85.22 83 |
|
alignmvs | | | 70.54 162 | 71.00 163 | 69.15 198 | 73.50 238 | 48.04 229 | 69.85 199 | 79.62 144 | 53.94 205 | 76.54 169 | 82.00 211 | 59.00 184 | 74.68 233 | 57.32 180 | 87.21 183 | 84.72 100 |
|
MG-MVS | | | 70.47 163 | 71.34 160 | 67.85 219 | 79.26 154 | 40.42 295 | 74.67 147 | 75.15 204 | 58.41 144 | 68.74 266 | 88.14 118 | 56.08 213 | 83.69 83 | 59.90 165 | 81.71 251 | 79.43 222 |
|
AUN-MVS | | | 70.22 164 | 67.88 201 | 77.22 86 | 82.96 111 | 71.61 53 | 69.08 209 | 71.39 235 | 49.17 254 | 71.70 230 | 78.07 264 | 37.62 311 | 79.21 163 | 61.81 145 | 89.15 154 | 80.82 199 |
|
UGNet | | | 70.20 165 | 69.05 181 | 73.65 128 | 76.24 198 | 63.64 120 | 75.87 129 | 72.53 222 | 61.48 120 | 60.93 314 | 86.14 161 | 52.37 228 | 77.12 204 | 50.67 233 | 85.21 207 | 80.17 214 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
PVSNet_Blended_VisFu | | | 70.04 166 | 68.88 184 | 73.53 132 | 82.71 114 | 63.62 121 | 74.81 140 | 81.95 103 | 48.53 260 | 67.16 278 | 79.18 250 | 51.42 234 | 78.38 182 | 54.39 210 | 79.72 275 | 78.60 229 |
|
Fast-Effi-MVS+-dtu | | | 70.00 167 | 68.74 188 | 73.77 127 | 73.47 239 | 64.53 114 | 71.36 179 | 78.14 171 | 55.81 174 | 68.84 265 | 74.71 290 | 65.36 130 | 75.75 219 | 52.00 223 | 79.00 279 | 81.03 192 |
|
DPM-MVS | | | 69.98 168 | 69.22 180 | 72.26 162 | 82.69 115 | 58.82 162 | 70.53 191 | 81.23 116 | 47.79 267 | 64.16 293 | 80.21 232 | 51.32 235 | 83.12 97 | 60.14 162 | 84.95 214 | 74.83 264 |
|
MVSFormer | | | 69.93 169 | 69.03 182 | 72.63 156 | 74.93 213 | 59.19 157 | 83.98 39 | 75.72 195 | 52.27 219 | 63.53 300 | 76.74 274 | 43.19 277 | 80.56 141 | 72.28 68 | 78.67 283 | 78.14 239 |
|
MVS_Test | | | 69.84 170 | 70.71 166 | 67.24 226 | 67.49 296 | 43.25 272 | 69.87 198 | 81.22 117 | 52.69 217 | 71.57 235 | 86.68 141 | 62.09 154 | 74.51 235 | 66.05 110 | 78.74 281 | 83.96 125 |
|
c3_l | | | 69.82 171 | 69.89 172 | 69.61 192 | 66.24 305 | 43.48 268 | 68.12 226 | 79.61 146 | 51.43 230 | 77.72 145 | 80.18 235 | 54.61 219 | 78.15 191 | 63.62 133 | 87.50 174 | 87.20 57 |
|
TransMVSNet (Re) | | | 69.62 172 | 71.63 154 | 63.57 257 | 76.51 195 | 35.93 326 | 65.75 260 | 71.29 238 | 61.05 124 | 75.02 186 | 89.90 79 | 65.88 125 | 70.41 276 | 49.79 239 | 89.48 147 | 84.38 117 |
|
EI-MVSNet | | | 69.61 173 | 69.01 183 | 71.41 169 | 73.94 235 | 49.90 212 | 71.31 181 | 71.32 236 | 58.22 145 | 75.40 184 | 70.44 326 | 58.16 191 | 75.85 216 | 62.51 142 | 79.81 272 | 88.48 43 |
|
Gipuma |  | | 69.55 174 | 72.83 139 | 59.70 292 | 63.63 325 | 53.97 189 | 80.08 79 | 75.93 193 | 64.24 97 | 73.49 208 | 88.93 101 | 57.89 199 | 62.46 317 | 59.75 167 | 91.55 98 | 62.67 344 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
tttt0517 | | | 69.46 175 | 67.79 202 | 74.46 115 | 75.34 208 | 52.72 197 | 75.05 136 | 63.27 287 | 54.69 186 | 78.87 129 | 84.37 184 | 26.63 355 | 81.15 126 | 63.95 128 | 87.93 169 | 89.51 24 |
|
eth_miper_zixun_eth | | | 69.42 176 | 68.73 189 | 71.50 168 | 67.99 290 | 46.42 246 | 67.58 231 | 78.81 157 | 50.72 239 | 78.13 138 | 80.34 231 | 50.15 241 | 80.34 146 | 60.18 160 | 84.65 216 | 87.74 49 |
|
BH-untuned | | | 69.39 177 | 69.46 175 | 69.18 197 | 77.96 176 | 56.88 172 | 68.47 223 | 77.53 179 | 56.77 163 | 77.79 144 | 79.63 241 | 60.30 172 | 80.20 152 | 46.04 269 | 80.65 263 | 70.47 300 |
|
v148 | | | 69.38 178 | 69.39 176 | 69.36 194 | 69.14 283 | 44.56 259 | 68.83 212 | 72.70 220 | 54.79 184 | 78.59 130 | 84.12 187 | 54.69 217 | 76.74 212 | 59.40 169 | 82.20 242 | 86.79 62 |
|
CS-MVS | | | 69.29 179 | 69.70 174 | 68.07 217 | 70.59 268 | 42.36 280 | 69.70 201 | 84.56 63 | 53.13 211 | 67.96 270 | 76.74 274 | 59.41 179 | 83.56 86 | 60.33 158 | 84.84 215 | 78.28 235 |
|
1121 | | | 69.23 180 | 68.26 193 | 72.12 163 | 88.36 37 | 71.40 55 | 68.59 218 | 62.06 294 | 43.80 291 | 74.75 190 | 86.18 158 | 52.92 225 | 76.85 209 | 54.47 207 | 83.27 234 | 68.12 317 |
|
PAPR | | | 69.20 181 | 68.66 190 | 70.82 172 | 75.15 212 | 47.77 232 | 75.31 134 | 81.11 118 | 49.62 251 | 66.33 281 | 79.27 246 | 61.53 159 | 82.96 100 | 48.12 254 | 81.50 254 | 81.74 184 |
|
QAPM | | | 69.18 182 | 69.26 178 | 68.94 203 | 71.61 260 | 52.58 199 | 80.37 72 | 78.79 159 | 49.63 250 | 73.51 207 | 85.14 177 | 53.66 222 | 79.12 164 | 55.11 201 | 75.54 301 | 75.11 262 |
|
LCM-MVSNet-Re | | | 69.10 183 | 71.57 157 | 61.70 276 | 70.37 273 | 34.30 338 | 61.45 299 | 79.62 144 | 56.81 162 | 89.59 8 | 88.16 117 | 68.44 98 | 72.94 247 | 42.30 286 | 87.33 179 | 77.85 244 |
|
EPNet | | | 69.10 183 | 67.32 207 | 74.46 115 | 68.33 287 | 61.27 137 | 77.56 107 | 63.57 285 | 60.95 125 | 56.62 330 | 82.75 205 | 51.53 233 | 81.24 125 | 54.36 211 | 90.20 129 | 80.88 198 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
DELS-MVS | | | 68.83 185 | 68.31 191 | 70.38 178 | 70.55 272 | 48.31 223 | 63.78 283 | 82.13 99 | 54.00 202 | 68.96 262 | 75.17 285 | 58.95 185 | 80.06 155 | 58.55 173 | 82.74 238 | 82.76 163 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
Fast-Effi-MVS+ | | | 68.81 186 | 68.30 192 | 70.35 179 | 74.66 224 | 48.61 221 | 66.06 254 | 78.32 167 | 50.62 240 | 71.48 238 | 75.54 281 | 68.75 94 | 79.59 160 | 50.55 235 | 78.73 282 | 82.86 160 |
|
OpenMVS |  | 62.51 15 | 68.76 187 | 68.75 187 | 68.78 208 | 70.56 271 | 53.91 190 | 78.29 99 | 77.35 181 | 48.85 257 | 70.22 251 | 83.52 193 | 52.65 227 | 76.93 206 | 55.31 200 | 81.99 244 | 75.49 257 |
|
VPA-MVSNet | | | 68.71 188 | 70.37 169 | 63.72 255 | 76.13 200 | 38.06 312 | 64.10 278 | 71.48 233 | 56.60 168 | 74.10 202 | 88.31 112 | 64.78 137 | 69.72 277 | 47.69 258 | 90.15 132 | 83.37 144 |
|
BH-RMVSNet | | | 68.69 189 | 68.20 197 | 70.14 184 | 76.40 196 | 53.90 191 | 64.62 273 | 73.48 213 | 58.01 147 | 73.91 205 | 81.78 214 | 59.09 183 | 78.22 187 | 48.59 249 | 77.96 290 | 78.31 233 |
|
EIA-MVS | | | 68.59 190 | 67.16 209 | 72.90 147 | 75.18 211 | 55.64 180 | 69.39 204 | 81.29 113 | 52.44 218 | 64.53 289 | 70.69 325 | 60.33 171 | 82.30 111 | 54.27 212 | 76.31 296 | 80.75 203 |
|
pm-mvs1 | | | 68.40 191 | 69.85 173 | 64.04 253 | 73.10 248 | 39.94 297 | 64.61 274 | 70.50 248 | 55.52 176 | 73.97 204 | 89.33 86 | 63.91 141 | 68.38 286 | 49.68 241 | 88.02 166 | 83.81 129 |
|
miper_ehance_all_eth | | | 68.36 192 | 68.16 198 | 68.98 201 | 65.14 316 | 43.34 270 | 67.07 242 | 78.92 156 | 49.11 255 | 76.21 176 | 77.72 266 | 53.48 223 | 77.92 194 | 61.16 152 | 84.59 218 | 85.68 81 |
|
GBi-Net | | | 68.30 193 | 68.79 185 | 66.81 231 | 73.14 245 | 40.68 291 | 71.96 168 | 73.03 214 | 54.81 181 | 74.72 192 | 90.36 67 | 48.63 252 | 75.20 226 | 47.12 260 | 85.37 202 | 84.54 109 |
|
test1 | | | 68.30 193 | 68.79 185 | 66.81 231 | 73.14 245 | 40.68 291 | 71.96 168 | 73.03 214 | 54.81 181 | 74.72 192 | 90.36 67 | 48.63 252 | 75.20 226 | 47.12 260 | 85.37 202 | 84.54 109 |
|
DIV-MVS_self_test | | | 68.27 195 | 68.26 193 | 68.29 213 | 64.98 317 | 43.67 266 | 65.89 256 | 74.67 206 | 50.04 246 | 76.86 161 | 82.43 207 | 48.74 250 | 75.38 222 | 60.94 154 | 89.81 140 | 85.81 75 |
|
cl____ | | | 68.26 196 | 68.26 193 | 68.29 213 | 64.98 317 | 43.67 266 | 65.89 256 | 74.67 206 | 50.04 246 | 76.86 161 | 82.42 208 | 48.74 250 | 75.38 222 | 60.92 155 | 89.81 140 | 85.80 79 |
|
TinyColmap | | | 67.98 197 | 69.28 177 | 64.08 251 | 67.98 291 | 46.82 242 | 70.04 195 | 75.26 202 | 53.05 212 | 77.36 150 | 86.79 134 | 59.39 180 | 72.59 254 | 45.64 271 | 88.01 167 | 72.83 279 |
|
xiu_mvs_v1_base_debu | | | 67.87 198 | 67.07 210 | 70.26 180 | 79.13 159 | 61.90 131 | 67.34 235 | 71.25 239 | 47.98 263 | 67.70 272 | 74.19 299 | 61.31 161 | 72.62 251 | 56.51 185 | 78.26 287 | 76.27 253 |
|
xiu_mvs_v1_base | | | 67.87 198 | 67.07 210 | 70.26 180 | 79.13 159 | 61.90 131 | 67.34 235 | 71.25 239 | 47.98 263 | 67.70 272 | 74.19 299 | 61.31 161 | 72.62 251 | 56.51 185 | 78.26 287 | 76.27 253 |
|
xiu_mvs_v1_base_debi | | | 67.87 198 | 67.07 210 | 70.26 180 | 79.13 159 | 61.90 131 | 67.34 235 | 71.25 239 | 47.98 263 | 67.70 272 | 74.19 299 | 61.31 161 | 72.62 251 | 56.51 185 | 78.26 287 | 76.27 253 |
|
MAR-MVS | | | 67.72 201 | 66.16 216 | 72.40 159 | 74.45 227 | 64.99 111 | 74.87 138 | 77.50 180 | 48.67 258 | 65.78 285 | 68.58 344 | 57.01 207 | 77.79 196 | 46.68 266 | 81.92 245 | 74.42 267 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
IterMVS-SCA-FT | | | 67.68 202 | 66.07 217 | 72.49 157 | 73.34 242 | 58.20 168 | 63.80 282 | 65.55 273 | 48.10 262 | 76.91 158 | 82.64 206 | 45.20 264 | 78.84 168 | 61.20 151 | 77.89 291 | 80.44 210 |
|
LF4IMVS | | | 67.50 203 | 67.31 208 | 68.08 216 | 58.86 349 | 61.93 130 | 71.43 177 | 75.90 194 | 44.67 287 | 72.42 223 | 80.20 233 | 57.16 202 | 70.44 274 | 58.99 171 | 86.12 195 | 71.88 289 |
|
FMVSNet2 | | | 67.48 204 | 68.21 196 | 65.29 242 | 73.14 245 | 38.94 304 | 68.81 213 | 71.21 242 | 54.81 181 | 76.73 165 | 86.48 150 | 48.63 252 | 74.60 234 | 47.98 255 | 86.11 196 | 82.35 174 |
|
MSDG | | | 67.47 205 | 67.48 206 | 67.46 224 | 70.70 267 | 54.69 185 | 66.90 246 | 78.17 170 | 60.88 126 | 70.41 248 | 74.76 287 | 61.22 165 | 73.18 245 | 47.38 259 | 76.87 293 | 74.49 266 |
|
diffmvs | | | 67.42 206 | 67.50 205 | 67.20 227 | 62.26 330 | 45.21 256 | 64.87 270 | 77.04 185 | 48.21 261 | 71.74 229 | 79.70 240 | 58.40 189 | 71.17 268 | 64.99 118 | 80.27 267 | 85.22 83 |
|
cl22 | | | 67.14 207 | 66.51 214 | 69.03 200 | 63.20 326 | 43.46 269 | 66.88 247 | 76.25 190 | 49.22 253 | 74.48 197 | 77.88 265 | 45.49 263 | 77.40 201 | 60.64 157 | 84.59 218 | 86.24 67 |
|
ANet_high | | | 67.08 208 | 69.94 171 | 58.51 300 | 57.55 354 | 27.09 363 | 58.43 317 | 76.80 187 | 63.56 103 | 82.40 89 | 91.93 20 | 59.82 176 | 64.98 308 | 50.10 238 | 88.86 159 | 83.46 141 |
|
LFMVS | | | 67.06 209 | 67.89 200 | 64.56 247 | 78.02 174 | 38.25 309 | 70.81 190 | 59.60 302 | 65.18 87 | 71.06 243 | 86.56 148 | 43.85 273 | 75.22 225 | 46.35 267 | 89.63 143 | 80.21 213 |
|
thisisatest0530 | | | 67.05 210 | 65.16 223 | 72.73 153 | 73.10 248 | 50.55 207 | 71.26 183 | 63.91 283 | 50.22 243 | 74.46 198 | 80.75 225 | 26.81 354 | 80.25 149 | 59.43 168 | 86.50 192 | 87.37 54 |
|
bset_n11_16_dypcd | | | 66.91 211 | 65.84 219 | 70.12 185 | 72.95 251 | 53.54 192 | 63.64 284 | 68.65 259 | 48.54 259 | 72.54 221 | 74.28 296 | 40.58 294 | 78.54 174 | 63.52 136 | 87.82 170 | 78.29 234 |
|
MIMVSNet1 | | | 66.57 212 | 69.23 179 | 58.59 299 | 81.26 135 | 37.73 315 | 64.06 279 | 57.62 308 | 57.02 159 | 78.40 135 | 90.75 45 | 62.65 145 | 58.10 330 | 41.77 291 | 89.58 146 | 79.95 215 |
|
tfpnnormal | | | 66.48 213 | 67.93 199 | 62.16 274 | 73.40 241 | 36.65 319 | 63.45 286 | 64.99 276 | 55.97 171 | 72.82 217 | 87.80 121 | 57.06 206 | 69.10 283 | 48.31 253 | 87.54 172 | 80.72 205 |
|
KD-MVS_self_test | | | 66.38 214 | 67.51 204 | 62.97 266 | 61.76 332 | 34.39 337 | 58.11 319 | 75.30 201 | 50.84 238 | 77.12 153 | 85.42 173 | 56.84 208 | 69.44 279 | 51.07 230 | 91.16 106 | 85.08 89 |
|
Anonymous202405211 | | | 66.02 215 | 66.89 213 | 63.43 260 | 74.22 230 | 38.14 310 | 59.00 314 | 66.13 269 | 63.33 109 | 69.76 256 | 85.95 168 | 51.88 229 | 70.50 273 | 44.23 278 | 87.52 173 | 81.64 185 |
|
miper_enhance_ethall | | | 65.86 216 | 65.05 231 | 68.28 215 | 61.62 334 | 42.62 277 | 64.74 271 | 77.97 173 | 42.52 301 | 73.42 210 | 72.79 309 | 49.66 242 | 77.68 198 | 58.12 176 | 84.59 218 | 84.54 109 |
|
RRT_test8_iter05 | | | 65.80 217 | 65.13 226 | 67.80 222 | 67.02 300 | 40.85 290 | 67.13 241 | 75.33 200 | 49.73 248 | 72.69 218 | 81.32 219 | 24.45 365 | 77.37 202 | 61.69 148 | 86.82 189 | 85.18 85 |
|
RPMNet | | | 65.77 218 | 65.08 230 | 67.84 220 | 66.37 302 | 48.24 225 | 70.93 187 | 86.27 23 | 54.66 187 | 61.35 308 | 86.77 137 | 33.29 323 | 85.67 46 | 55.93 193 | 70.17 331 | 69.62 309 |
|
VPNet | | | 65.58 219 | 67.56 203 | 59.65 293 | 79.72 147 | 30.17 355 | 60.27 308 | 62.14 291 | 54.19 198 | 71.24 240 | 86.63 145 | 58.80 186 | 67.62 291 | 44.17 279 | 90.87 119 | 81.18 189 |
|
PVSNet_BlendedMVS | | | 65.38 220 | 64.30 232 | 68.61 209 | 69.81 276 | 49.36 216 | 65.60 263 | 78.96 154 | 45.50 278 | 59.98 317 | 78.61 256 | 51.82 230 | 78.20 188 | 44.30 276 | 84.11 224 | 78.27 236 |
|
TAMVS | | | 65.31 221 | 63.75 236 | 69.97 189 | 82.23 121 | 59.76 155 | 66.78 248 | 63.37 286 | 45.20 283 | 69.79 255 | 79.37 245 | 47.42 258 | 72.17 257 | 34.48 334 | 85.15 209 | 77.99 243 |
|
test_yl | | | 65.11 222 | 65.09 228 | 65.18 243 | 70.59 268 | 40.86 288 | 63.22 291 | 72.79 217 | 57.91 148 | 68.88 263 | 79.07 253 | 42.85 280 | 74.89 230 | 45.50 272 | 84.97 210 | 79.81 216 |
|
DCV-MVSNet | | | 65.11 222 | 65.09 228 | 65.18 243 | 70.59 268 | 40.86 288 | 63.22 291 | 72.79 217 | 57.91 148 | 68.88 263 | 79.07 253 | 42.85 280 | 74.89 230 | 45.50 272 | 84.97 210 | 79.81 216 |
|
mvs_anonymous | | | 65.08 224 | 65.49 220 | 63.83 254 | 63.79 323 | 37.60 316 | 66.52 251 | 69.82 252 | 43.44 296 | 73.46 209 | 86.08 164 | 58.79 187 | 71.75 265 | 51.90 224 | 75.63 300 | 82.15 178 |
|
FMVSNet3 | | | 65.00 225 | 65.16 223 | 64.52 248 | 69.47 279 | 37.56 317 | 66.63 249 | 70.38 249 | 51.55 229 | 74.72 192 | 83.27 201 | 37.89 310 | 74.44 236 | 47.12 260 | 85.37 202 | 81.57 186 |
|
ECVR-MVS |  | | 64.82 226 | 65.22 221 | 63.60 256 | 78.80 165 | 31.14 352 | 66.97 244 | 56.47 318 | 54.23 195 | 69.94 253 | 88.68 104 | 37.23 312 | 74.81 232 | 45.28 274 | 89.41 149 | 84.86 94 |
|
BH-w/o | | | 64.81 227 | 64.29 233 | 66.36 236 | 76.08 202 | 54.71 184 | 65.61 262 | 75.23 203 | 50.10 245 | 71.05 244 | 71.86 319 | 54.33 220 | 79.02 165 | 38.20 312 | 76.14 297 | 65.36 332 |
|
EGC-MVSNET | | | 64.77 228 | 61.17 258 | 75.60 105 | 86.90 47 | 74.47 35 | 84.04 38 | 68.62 260 | 0.60 373 | 1.13 375 | 91.61 27 | 65.32 131 | 74.15 241 | 64.01 126 | 88.28 161 | 78.17 238 |
|
test1111 | | | 64.62 229 | 65.19 222 | 62.93 267 | 79.01 163 | 29.91 356 | 65.45 264 | 54.41 326 | 54.09 200 | 71.47 239 | 88.48 107 | 37.02 313 | 74.29 239 | 46.83 265 | 89.94 138 | 84.58 108 |
|
cascas | | | 64.59 230 | 62.77 247 | 70.05 187 | 75.27 209 | 50.02 211 | 61.79 298 | 71.61 229 | 42.46 302 | 63.68 298 | 68.89 341 | 49.33 245 | 80.35 145 | 47.82 257 | 84.05 225 | 79.78 218 |
|
TR-MVS | | | 64.59 230 | 63.54 239 | 67.73 223 | 75.75 207 | 50.83 206 | 63.39 287 | 70.29 250 | 49.33 252 | 71.55 236 | 74.55 291 | 50.94 236 | 78.46 178 | 40.43 298 | 75.69 299 | 73.89 271 |
|
PM-MVS | | | 64.49 232 | 63.61 238 | 67.14 229 | 76.68 194 | 75.15 32 | 68.49 222 | 42.85 357 | 51.17 235 | 77.85 142 | 80.51 228 | 45.76 259 | 66.31 303 | 52.83 221 | 76.35 295 | 59.96 350 |
|
jason | | | 64.47 233 | 62.84 246 | 69.34 196 | 76.91 190 | 59.20 156 | 67.15 240 | 65.67 270 | 35.29 336 | 65.16 287 | 76.74 274 | 44.67 268 | 70.68 270 | 54.74 204 | 79.28 278 | 78.14 239 |
jason: jason. |
xiu_mvs_v2_base | | | 64.43 234 | 63.96 234 | 65.85 241 | 77.72 181 | 51.32 204 | 63.63 285 | 72.31 225 | 45.06 286 | 61.70 305 | 69.66 334 | 62.56 146 | 73.93 243 | 49.06 245 | 73.91 313 | 72.31 285 |
|
pmmvs-eth3d | | | 64.41 235 | 63.27 242 | 67.82 221 | 75.81 205 | 60.18 150 | 69.49 202 | 62.05 295 | 38.81 321 | 74.13 201 | 82.23 210 | 43.76 274 | 68.65 284 | 42.53 285 | 80.63 265 | 74.63 265 |
|
CDS-MVSNet | | | 64.33 236 | 62.66 248 | 69.35 195 | 80.44 142 | 58.28 167 | 65.26 266 | 65.66 271 | 44.36 288 | 67.30 277 | 75.54 281 | 43.27 276 | 71.77 263 | 37.68 315 | 84.44 221 | 78.01 242 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
PS-MVSNAJ | | | 64.27 237 | 63.73 237 | 65.90 240 | 77.82 179 | 51.42 203 | 63.33 288 | 72.33 224 | 45.09 285 | 61.60 306 | 68.04 345 | 62.39 150 | 73.95 242 | 49.07 244 | 73.87 314 | 72.34 284 |
|
ab-mvs | | | 64.11 238 | 65.13 226 | 61.05 283 | 71.99 258 | 38.03 313 | 67.59 230 | 68.79 257 | 49.08 256 | 65.32 286 | 86.26 156 | 58.02 198 | 66.85 298 | 39.33 302 | 79.79 274 | 78.27 236 |
|
CANet_DTU | | | 64.04 239 | 63.83 235 | 64.66 246 | 68.39 284 | 42.97 274 | 73.45 154 | 74.50 209 | 52.05 223 | 54.78 337 | 75.44 284 | 43.99 272 | 70.42 275 | 53.49 218 | 78.41 286 | 80.59 207 |
|
VNet | | | 64.01 240 | 65.15 225 | 60.57 287 | 73.28 243 | 35.61 329 | 57.60 321 | 67.08 265 | 54.61 188 | 66.76 280 | 83.37 197 | 56.28 211 | 66.87 296 | 42.19 287 | 85.20 208 | 79.23 224 |
|
Anonymous20240521 | | | 63.55 241 | 66.07 217 | 55.99 307 | 66.18 307 | 44.04 263 | 68.77 216 | 68.80 256 | 46.99 272 | 72.57 219 | 85.84 169 | 39.87 298 | 50.22 339 | 53.40 220 | 92.23 88 | 73.71 273 |
|
lupinMVS | | | 63.36 242 | 61.49 256 | 68.97 202 | 74.93 213 | 59.19 157 | 65.80 259 | 64.52 281 | 34.68 341 | 63.53 300 | 74.25 297 | 43.19 277 | 70.62 271 | 53.88 215 | 78.67 283 | 77.10 248 |
|
ET-MVSNet_ETH3D | | | 63.32 243 | 60.69 264 | 71.20 171 | 70.15 275 | 55.66 179 | 65.02 269 | 64.32 282 | 43.28 300 | 68.99 261 | 72.05 318 | 25.46 361 | 78.19 190 | 54.16 213 | 82.80 237 | 79.74 219 |
|
MVSTER | | | 63.29 244 | 61.60 255 | 68.36 211 | 59.77 346 | 46.21 249 | 60.62 305 | 71.32 236 | 41.83 304 | 75.40 184 | 79.12 251 | 30.25 347 | 75.85 216 | 56.30 190 | 79.81 272 | 83.03 155 |
|
OpenMVS_ROB |  | 54.93 17 | 63.23 245 | 63.28 241 | 63.07 264 | 69.81 276 | 45.34 255 | 68.52 221 | 67.14 264 | 43.74 293 | 70.61 247 | 79.22 248 | 47.90 256 | 72.66 250 | 48.75 247 | 73.84 315 | 71.21 296 |
|
IterMVS | | | 63.12 246 | 62.48 249 | 65.02 245 | 66.34 304 | 52.86 196 | 63.81 281 | 62.25 290 | 46.57 275 | 71.51 237 | 80.40 230 | 44.60 269 | 66.82 299 | 51.38 228 | 75.47 302 | 75.38 260 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
HyFIR lowres test | | | 63.01 247 | 60.47 265 | 70.61 174 | 83.04 108 | 54.10 188 | 59.93 310 | 72.24 226 | 33.67 346 | 69.00 260 | 75.63 280 | 38.69 304 | 76.93 206 | 36.60 323 | 75.45 303 | 80.81 202 |
|
GA-MVS | | | 62.91 248 | 61.66 252 | 66.66 235 | 67.09 299 | 44.49 260 | 61.18 303 | 69.36 255 | 51.33 232 | 69.33 258 | 74.47 292 | 36.83 314 | 74.94 229 | 50.60 234 | 74.72 308 | 80.57 208 |
|
PVSNet_Blended | | | 62.90 249 | 61.64 253 | 66.69 234 | 69.81 276 | 49.36 216 | 61.23 302 | 78.96 154 | 42.04 303 | 59.98 317 | 68.86 342 | 51.82 230 | 78.20 188 | 44.30 276 | 77.77 292 | 72.52 282 |
|
USDC | | | 62.80 250 | 63.10 244 | 61.89 275 | 65.19 313 | 43.30 271 | 67.42 234 | 74.20 210 | 35.80 335 | 72.25 225 | 84.48 183 | 45.67 261 | 71.95 262 | 37.95 314 | 84.97 210 | 70.42 302 |
|
Vis-MVSNet (Re-imp) | | | 62.74 251 | 63.21 243 | 61.34 281 | 72.19 256 | 31.56 349 | 67.31 239 | 53.87 327 | 53.60 208 | 69.88 254 | 83.37 197 | 40.52 295 | 70.98 269 | 41.40 292 | 86.78 190 | 81.48 187 |
|
D2MVS | | | 62.58 252 | 61.05 260 | 67.20 227 | 63.85 322 | 47.92 230 | 56.29 324 | 69.58 253 | 39.32 316 | 70.07 252 | 78.19 261 | 34.93 319 | 72.68 249 | 53.44 219 | 83.74 230 | 81.00 194 |
|
MVS_0304 | | | 62.51 253 | 62.27 250 | 63.25 261 | 69.39 280 | 48.47 222 | 64.05 280 | 62.48 289 | 59.69 135 | 54.10 342 | 81.04 223 | 45.71 260 | 66.31 303 | 41.38 293 | 82.58 240 | 74.96 263 |
|
CL-MVSNet_self_test | | | 62.44 254 | 63.40 240 | 59.55 294 | 72.34 255 | 32.38 345 | 56.39 323 | 64.84 277 | 51.21 234 | 67.46 276 | 81.01 224 | 50.75 237 | 63.51 315 | 38.47 310 | 88.12 164 | 82.75 164 |
|
MDA-MVSNet-bldmvs | | | 62.34 255 | 61.73 251 | 64.16 249 | 61.64 333 | 49.90 212 | 48.11 345 | 57.24 314 | 53.31 210 | 80.95 105 | 79.39 244 | 49.00 248 | 61.55 321 | 45.92 270 | 80.05 269 | 81.03 192 |
|
miper_lstm_enhance | | | 61.97 256 | 61.63 254 | 62.98 265 | 60.04 342 | 45.74 253 | 47.53 347 | 70.95 244 | 44.04 289 | 73.06 214 | 78.84 255 | 39.72 299 | 60.33 323 | 55.82 195 | 84.64 217 | 82.88 158 |
|
wuyk23d | | | 61.97 256 | 66.25 215 | 49.12 327 | 58.19 353 | 60.77 146 | 66.32 252 | 52.97 334 | 55.93 173 | 90.62 5 | 86.91 130 | 73.07 62 | 35.98 367 | 20.63 369 | 91.63 95 | 50.62 358 |
|
thres600view7 | | | 61.82 258 | 61.38 257 | 63.12 263 | 71.81 259 | 34.93 333 | 64.64 272 | 56.99 315 | 54.78 185 | 70.33 250 | 79.74 239 | 32.07 333 | 72.42 256 | 38.61 308 | 83.46 232 | 82.02 179 |
|
PAPM | | | 61.79 259 | 60.37 266 | 66.05 238 | 76.09 201 | 41.87 282 | 69.30 205 | 76.79 188 | 40.64 313 | 53.80 343 | 79.62 242 | 44.38 270 | 82.92 101 | 29.64 352 | 73.11 317 | 73.36 275 |
|
MVP-Stereo | | | 61.56 260 | 59.22 272 | 68.58 210 | 79.28 153 | 60.44 148 | 69.20 207 | 71.57 230 | 43.58 295 | 56.42 331 | 78.37 259 | 39.57 301 | 76.46 214 | 34.86 333 | 60.16 355 | 68.86 316 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
CMPMVS |  | 48.73 20 | 61.54 261 | 60.89 261 | 63.52 258 | 61.08 337 | 51.55 202 | 68.07 227 | 68.00 263 | 33.88 343 | 65.87 283 | 81.25 221 | 37.91 309 | 67.71 289 | 49.32 243 | 82.60 239 | 71.31 294 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
test2506 | | | 61.23 262 | 60.85 262 | 62.38 272 | 78.80 165 | 27.88 362 | 67.33 238 | 37.42 370 | 54.23 195 | 67.55 275 | 88.68 104 | 17.87 374 | 74.39 237 | 46.33 268 | 89.41 149 | 84.86 94 |
|
thres100view900 | | | 61.17 263 | 61.09 259 | 61.39 280 | 72.14 257 | 35.01 332 | 65.42 265 | 56.99 315 | 55.23 178 | 70.71 246 | 79.90 237 | 32.07 333 | 72.09 258 | 35.61 330 | 81.73 248 | 77.08 249 |
|
Patchmtry | | | 60.91 264 | 63.01 245 | 54.62 310 | 66.10 308 | 26.27 366 | 67.47 233 | 56.40 319 | 54.05 201 | 72.04 228 | 86.66 142 | 33.19 324 | 60.17 324 | 43.69 280 | 87.45 176 | 77.42 245 |
|
EU-MVSNet | | | 60.82 265 | 60.80 263 | 60.86 286 | 68.37 285 | 41.16 285 | 72.27 162 | 68.27 262 | 26.96 364 | 69.08 259 | 75.71 279 | 32.09 332 | 67.44 292 | 55.59 198 | 78.90 280 | 73.97 269 |
|
pmmvs4 | | | 60.78 266 | 59.04 274 | 66.00 239 | 73.06 250 | 57.67 169 | 64.53 275 | 60.22 300 | 36.91 330 | 65.96 282 | 77.27 270 | 39.66 300 | 68.54 285 | 38.87 305 | 74.89 307 | 71.80 290 |
|
thres400 | | | 60.77 267 | 59.97 268 | 63.15 262 | 70.78 265 | 35.35 330 | 63.27 289 | 57.47 309 | 53.00 213 | 68.31 268 | 77.09 271 | 32.45 330 | 72.09 258 | 35.61 330 | 81.73 248 | 82.02 179 |
|
MVS | | | 60.62 268 | 59.97 268 | 62.58 270 | 68.13 289 | 47.28 239 | 68.59 218 | 73.96 211 | 32.19 350 | 59.94 319 | 68.86 342 | 50.48 238 | 77.64 199 | 41.85 290 | 75.74 298 | 62.83 342 |
|
thisisatest0515 | | | 60.48 269 | 57.86 283 | 68.34 212 | 67.25 297 | 46.42 246 | 60.58 306 | 62.14 291 | 40.82 311 | 63.58 299 | 69.12 337 | 26.28 357 | 78.34 184 | 48.83 246 | 82.13 243 | 80.26 212 |
|
tfpn200view9 | | | 60.35 270 | 59.97 268 | 61.51 278 | 70.78 265 | 35.35 330 | 63.27 289 | 57.47 309 | 53.00 213 | 68.31 268 | 77.09 271 | 32.45 330 | 72.09 258 | 35.61 330 | 81.73 248 | 77.08 249 |
|
ppachtmachnet_test | | | 60.26 271 | 59.61 271 | 62.20 273 | 67.70 294 | 44.33 261 | 58.18 318 | 60.96 299 | 40.75 312 | 65.80 284 | 72.57 310 | 41.23 287 | 63.92 312 | 46.87 264 | 82.42 241 | 78.33 232 |
|
Patchmatch-RL test | | | 59.95 272 | 59.12 273 | 62.44 271 | 72.46 254 | 54.61 186 | 59.63 311 | 47.51 350 | 41.05 310 | 74.58 196 | 74.30 295 | 31.06 341 | 65.31 305 | 51.61 225 | 79.85 271 | 67.39 320 |
|
1314 | | | 59.83 273 | 58.86 276 | 62.74 269 | 65.71 310 | 44.78 258 | 68.59 218 | 72.63 221 | 33.54 348 | 61.05 312 | 67.29 350 | 43.62 275 | 71.26 267 | 49.49 242 | 67.84 342 | 72.19 287 |
|
IB-MVS | | 49.67 18 | 59.69 274 | 56.96 289 | 67.90 218 | 68.19 288 | 50.30 209 | 61.42 300 | 65.18 275 | 47.57 269 | 55.83 334 | 67.15 351 | 23.77 366 | 79.60 159 | 43.56 282 | 79.97 270 | 73.79 272 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
1112_ss | | | 59.48 275 | 58.99 275 | 60.96 285 | 77.84 178 | 42.39 279 | 61.42 300 | 68.45 261 | 37.96 325 | 59.93 320 | 67.46 347 | 45.11 266 | 65.07 307 | 40.89 296 | 71.81 322 | 75.41 259 |
|
FPMVS | | | 59.43 276 | 60.07 267 | 57.51 303 | 77.62 184 | 71.52 54 | 62.33 295 | 50.92 339 | 57.40 157 | 69.40 257 | 80.00 236 | 39.14 302 | 61.92 320 | 37.47 318 | 66.36 344 | 39.09 367 |
|
CVMVSNet | | | 59.21 277 | 58.44 280 | 61.51 278 | 73.94 235 | 47.76 233 | 71.31 181 | 64.56 280 | 26.91 365 | 60.34 316 | 70.44 326 | 36.24 316 | 67.65 290 | 53.57 217 | 68.66 339 | 69.12 314 |
|
CR-MVSNet | | | 58.96 278 | 58.49 279 | 60.36 289 | 66.37 302 | 48.24 225 | 70.93 187 | 56.40 319 | 32.87 349 | 61.35 308 | 86.66 142 | 33.19 324 | 63.22 316 | 48.50 251 | 70.17 331 | 69.62 309 |
|
EPNet_dtu | | | 58.93 279 | 58.52 278 | 60.16 291 | 67.91 292 | 47.70 234 | 69.97 196 | 58.02 306 | 49.73 248 | 47.28 358 | 73.02 308 | 38.14 306 | 62.34 318 | 36.57 324 | 85.99 197 | 70.43 301 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
Test_1112_low_res | | | 58.78 280 | 58.69 277 | 59.04 297 | 79.41 151 | 38.13 311 | 57.62 320 | 66.98 266 | 34.74 339 | 59.62 321 | 77.56 268 | 42.92 279 | 63.65 314 | 38.66 307 | 70.73 328 | 75.35 261 |
|
PatchMatch-RL | | | 58.68 281 | 57.72 284 | 61.57 277 | 76.21 199 | 73.59 44 | 61.83 297 | 49.00 346 | 47.30 271 | 61.08 310 | 68.97 339 | 50.16 240 | 59.01 327 | 36.06 329 | 68.84 338 | 52.10 357 |
|
SCA | | | 58.57 282 | 58.04 282 | 60.17 290 | 70.17 274 | 41.07 287 | 65.19 267 | 53.38 332 | 43.34 299 | 61.00 313 | 73.48 303 | 45.20 264 | 69.38 280 | 40.34 299 | 70.31 330 | 70.05 304 |
|
CHOSEN 1792x2688 | | | 58.09 283 | 56.30 294 | 63.45 259 | 79.95 145 | 50.93 205 | 54.07 332 | 65.59 272 | 28.56 361 | 61.53 307 | 74.33 294 | 41.09 290 | 66.52 302 | 33.91 337 | 67.69 343 | 72.92 278 |
|
HY-MVS | | 49.31 19 | 57.96 284 | 57.59 285 | 59.10 296 | 66.85 301 | 36.17 323 | 65.13 268 | 65.39 274 | 39.24 318 | 54.69 339 | 78.14 262 | 44.28 271 | 67.18 295 | 33.75 338 | 70.79 327 | 73.95 270 |
|
baseline1 | | | 57.82 285 | 58.36 281 | 56.19 306 | 69.17 282 | 30.76 354 | 62.94 293 | 55.21 322 | 46.04 277 | 63.83 296 | 78.47 257 | 41.20 288 | 63.68 313 | 39.44 301 | 68.99 337 | 74.13 268 |
|
thres200 | | | 57.55 286 | 57.02 288 | 59.17 295 | 67.89 293 | 34.93 333 | 58.91 316 | 57.25 313 | 50.24 242 | 64.01 294 | 71.46 322 | 32.49 329 | 71.39 266 | 31.31 344 | 79.57 276 | 71.19 297 |
|
CostFormer | | | 57.35 287 | 56.14 295 | 60.97 284 | 63.76 324 | 38.43 306 | 67.50 232 | 60.22 300 | 37.14 329 | 59.12 322 | 76.34 277 | 32.78 327 | 71.99 261 | 39.12 304 | 69.27 336 | 72.47 283 |
|
our_test_3 | | | 56.46 288 | 56.51 292 | 56.30 305 | 67.70 294 | 39.66 299 | 55.36 329 | 52.34 337 | 40.57 314 | 63.85 295 | 69.91 333 | 40.04 297 | 58.22 329 | 43.49 283 | 75.29 306 | 71.03 299 |
|
tpm2 | | | 56.12 289 | 54.64 302 | 60.55 288 | 66.24 305 | 36.01 324 | 68.14 225 | 56.77 317 | 33.60 347 | 58.25 325 | 75.52 283 | 30.25 347 | 74.33 238 | 33.27 339 | 69.76 335 | 71.32 293 |
|
tpmvs | | | 55.84 290 | 55.45 300 | 57.01 304 | 60.33 341 | 33.20 343 | 65.89 256 | 59.29 304 | 47.52 270 | 56.04 332 | 73.60 302 | 31.05 342 | 68.06 288 | 40.64 297 | 64.64 347 | 69.77 307 |
|
gg-mvs-nofinetune | | | 55.75 291 | 56.75 291 | 52.72 316 | 62.87 327 | 28.04 361 | 68.92 210 | 41.36 365 | 71.09 44 | 50.80 350 | 92.63 12 | 20.74 369 | 66.86 297 | 29.97 350 | 72.41 319 | 63.25 341 |
|
test20.03 | | | 55.74 292 | 57.51 286 | 50.42 320 | 59.89 345 | 32.09 347 | 50.63 339 | 49.01 345 | 50.11 244 | 65.07 288 | 83.23 202 | 45.61 262 | 48.11 343 | 30.22 348 | 83.82 229 | 71.07 298 |
|
MS-PatchMatch | | | 55.59 293 | 54.89 301 | 57.68 302 | 69.18 281 | 49.05 218 | 61.00 304 | 62.93 288 | 35.98 333 | 58.36 324 | 68.93 340 | 36.71 315 | 66.59 301 | 37.62 317 | 63.30 351 | 57.39 353 |
|
baseline2 | | | 55.57 294 | 52.74 308 | 64.05 252 | 65.26 312 | 44.11 262 | 62.38 294 | 54.43 325 | 39.03 319 | 51.21 348 | 67.35 349 | 33.66 322 | 72.45 255 | 37.14 320 | 64.22 349 | 75.60 256 |
|
XXY-MVS | | | 55.19 295 | 57.40 287 | 48.56 329 | 64.45 320 | 34.84 335 | 51.54 338 | 53.59 329 | 38.99 320 | 63.79 297 | 79.43 243 | 56.59 209 | 45.57 347 | 36.92 322 | 71.29 324 | 65.25 333 |
|
FMVSNet5 | | | 55.08 296 | 55.54 299 | 53.71 311 | 65.80 309 | 33.50 342 | 56.22 325 | 52.50 336 | 43.72 294 | 61.06 311 | 83.38 196 | 25.46 361 | 54.87 333 | 30.11 349 | 81.64 253 | 72.75 280 |
|
PatchmatchNet |  | | 54.60 297 | 54.27 303 | 55.59 308 | 65.17 315 | 39.08 301 | 66.92 245 | 51.80 338 | 39.89 315 | 58.39 323 | 73.12 307 | 31.69 335 | 58.33 328 | 43.01 284 | 58.38 361 | 69.38 312 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
MIMVSNet | | | 54.39 298 | 56.12 296 | 49.20 325 | 72.57 253 | 30.91 353 | 59.98 309 | 48.43 348 | 41.66 305 | 55.94 333 | 83.86 191 | 41.19 289 | 50.42 338 | 26.05 359 | 75.38 304 | 66.27 328 |
|
Anonymous20231206 | | | 54.13 299 | 55.82 297 | 49.04 328 | 70.89 264 | 35.96 325 | 51.73 337 | 50.87 340 | 34.86 337 | 62.49 303 | 79.22 248 | 42.52 283 | 44.29 355 | 27.95 357 | 81.88 246 | 66.88 324 |
|
JIA-IIPM | | | 54.03 300 | 51.62 312 | 61.25 282 | 59.14 348 | 55.21 182 | 59.10 313 | 47.72 349 | 50.85 237 | 50.31 354 | 85.81 170 | 20.10 371 | 63.97 311 | 36.16 328 | 55.41 366 | 64.55 339 |
|
tpm cat1 | | | 54.02 301 | 52.63 309 | 58.19 301 | 64.85 319 | 39.86 298 | 66.26 253 | 57.28 312 | 32.16 351 | 56.90 328 | 70.39 328 | 32.75 328 | 65.30 306 | 34.29 335 | 58.79 358 | 69.41 311 |
|
testgi | | | 54.00 302 | 56.86 290 | 45.45 337 | 58.20 352 | 25.81 367 | 49.05 341 | 49.50 344 | 45.43 281 | 67.84 271 | 81.17 222 | 51.81 232 | 43.20 359 | 29.30 353 | 79.41 277 | 67.34 322 |
|
PatchT | | | 53.35 303 | 56.47 293 | 43.99 343 | 64.19 321 | 17.46 374 | 59.15 312 | 43.10 356 | 52.11 222 | 54.74 338 | 86.95 129 | 29.97 350 | 49.98 340 | 43.62 281 | 74.40 311 | 64.53 340 |
|
DWT-MVSNet_test | | | 53.04 304 | 51.12 317 | 58.77 298 | 61.23 335 | 38.67 305 | 62.16 296 | 57.74 307 | 38.24 322 | 51.76 347 | 59.07 361 | 21.36 368 | 67.40 293 | 44.80 275 | 63.76 350 | 70.25 303 |
|
new-patchmatchnet | | | 52.89 305 | 55.76 298 | 44.26 342 | 59.94 344 | 6.31 377 | 37.36 364 | 50.76 341 | 41.10 308 | 64.28 292 | 79.82 238 | 44.77 267 | 48.43 342 | 36.24 327 | 87.61 171 | 78.03 241 |
|
YYNet1 | | | 52.58 306 | 53.50 305 | 49.85 321 | 54.15 368 | 36.45 322 | 40.53 358 | 46.55 352 | 38.09 324 | 75.52 182 | 73.31 306 | 41.08 291 | 43.88 356 | 41.10 294 | 71.14 326 | 69.21 313 |
|
MDA-MVSNet_test_wron | | | 52.57 307 | 53.49 306 | 49.81 322 | 54.24 367 | 36.47 321 | 40.48 359 | 46.58 351 | 38.13 323 | 75.47 183 | 73.32 305 | 41.05 292 | 43.85 357 | 40.98 295 | 71.20 325 | 69.10 315 |
|
pmmvs5 | | | 52.49 308 | 52.58 310 | 52.21 318 | 54.99 365 | 32.38 345 | 55.45 328 | 53.84 328 | 32.15 352 | 55.49 336 | 74.81 286 | 38.08 307 | 57.37 331 | 34.02 336 | 74.40 311 | 66.88 324 |
|
UnsupCasMVSNet_eth | | | 52.26 309 | 53.29 307 | 49.16 326 | 55.08 364 | 33.67 341 | 50.03 340 | 58.79 305 | 37.67 326 | 63.43 302 | 74.75 288 | 41.82 285 | 45.83 346 | 38.59 309 | 59.42 357 | 67.98 319 |
|
N_pmnet | | | 52.06 310 | 51.11 318 | 54.92 309 | 59.64 347 | 71.03 59 | 37.42 363 | 61.62 298 | 33.68 345 | 57.12 326 | 72.10 311 | 37.94 308 | 31.03 369 | 29.13 356 | 71.35 323 | 62.70 343 |
|
KD-MVS_2432*1600 | | | 52.05 311 | 51.58 313 | 53.44 312 | 52.11 370 | 31.20 350 | 44.88 354 | 64.83 278 | 41.53 306 | 64.37 290 | 70.03 331 | 15.61 378 | 64.20 309 | 36.25 325 | 74.61 309 | 64.93 336 |
|
miper_refine_blended | | | 52.05 311 | 51.58 313 | 53.44 312 | 52.11 370 | 31.20 350 | 44.88 354 | 64.83 278 | 41.53 306 | 64.37 290 | 70.03 331 | 15.61 378 | 64.20 309 | 36.25 325 | 74.61 309 | 64.93 336 |
|
PVSNet | | 43.83 21 | 51.56 313 | 51.17 316 | 52.73 315 | 68.34 286 | 38.27 308 | 48.22 344 | 53.56 330 | 36.41 331 | 54.29 340 | 64.94 354 | 34.60 320 | 54.20 336 | 30.34 347 | 69.87 333 | 65.71 331 |
|
tpm | | | 50.60 314 | 52.42 311 | 45.14 339 | 65.18 314 | 26.29 365 | 60.30 307 | 43.50 355 | 37.41 327 | 57.01 327 | 79.09 252 | 30.20 349 | 42.32 360 | 32.77 341 | 66.36 344 | 66.81 326 |
|
test-LLR | | | 50.43 315 | 50.69 320 | 49.64 323 | 60.76 338 | 41.87 282 | 53.18 334 | 45.48 353 | 43.41 297 | 49.41 355 | 60.47 359 | 29.22 352 | 44.73 353 | 42.09 288 | 72.14 320 | 62.33 346 |
|
tpmrst | | | 50.15 316 | 51.38 315 | 46.45 334 | 56.05 359 | 24.77 368 | 64.40 277 | 49.98 342 | 36.14 332 | 53.32 344 | 69.59 335 | 35.16 318 | 48.69 341 | 39.24 303 | 58.51 360 | 65.89 329 |
|
UnsupCasMVSNet_bld | | | 50.01 317 | 51.03 319 | 46.95 330 | 58.61 350 | 32.64 344 | 48.31 343 | 53.27 333 | 34.27 342 | 60.47 315 | 71.53 321 | 41.40 286 | 47.07 344 | 30.68 346 | 60.78 354 | 61.13 348 |
|
WTY-MVS | | | 49.39 318 | 50.31 321 | 46.62 333 | 61.22 336 | 32.00 348 | 46.61 350 | 49.77 343 | 33.87 344 | 54.12 341 | 69.55 336 | 41.96 284 | 45.40 349 | 31.28 345 | 64.42 348 | 62.47 345 |
|
ADS-MVSNet2 | | | 48.76 319 | 47.25 327 | 53.29 314 | 55.90 361 | 40.54 294 | 47.34 348 | 54.99 324 | 31.41 357 | 50.48 351 | 72.06 316 | 31.23 338 | 54.26 335 | 25.93 360 | 55.93 363 | 65.07 334 |
|
test-mter | | | 48.56 320 | 48.20 325 | 49.64 323 | 60.76 338 | 41.87 282 | 53.18 334 | 45.48 353 | 31.91 355 | 49.41 355 | 60.47 359 | 18.34 372 | 44.73 353 | 42.09 288 | 72.14 320 | 62.33 346 |
|
Patchmatch-test | | | 47.93 321 | 49.96 322 | 41.84 346 | 57.42 355 | 24.26 369 | 48.75 342 | 41.49 364 | 39.30 317 | 56.79 329 | 73.48 303 | 30.48 346 | 33.87 368 | 29.29 354 | 72.61 318 | 67.39 320 |
|
test0.0.03 1 | | | 47.72 322 | 48.31 324 | 45.93 335 | 55.53 363 | 29.39 357 | 46.40 351 | 41.21 366 | 43.41 297 | 55.81 335 | 67.65 346 | 29.22 352 | 43.77 358 | 25.73 362 | 69.87 333 | 64.62 338 |
|
sss | | | 47.59 323 | 48.32 323 | 45.40 338 | 56.73 358 | 33.96 339 | 45.17 353 | 48.51 347 | 32.11 354 | 52.37 346 | 65.79 352 | 40.39 296 | 41.91 363 | 31.85 342 | 61.97 352 | 60.35 349 |
|
pmmvs3 | | | 46.71 324 | 45.09 331 | 51.55 319 | 56.76 357 | 48.25 224 | 55.78 327 | 39.53 369 | 24.13 368 | 50.35 353 | 63.40 355 | 15.90 377 | 51.08 337 | 29.29 354 | 70.69 329 | 55.33 356 |
|
EPMVS | | | 45.74 325 | 46.53 328 | 43.39 344 | 54.14 369 | 22.33 371 | 55.02 330 | 35.00 373 | 34.69 340 | 51.09 349 | 70.20 330 | 25.92 359 | 42.04 362 | 37.19 319 | 55.50 365 | 65.78 330 |
|
MVS-HIRNet | | | 45.53 326 | 47.29 326 | 40.24 349 | 62.29 329 | 26.82 364 | 56.02 326 | 37.41 371 | 29.74 360 | 43.69 367 | 81.27 220 | 33.96 321 | 55.48 332 | 24.46 365 | 56.79 362 | 38.43 368 |
|
TESTMET0.1,1 | | | 45.17 327 | 44.93 332 | 45.89 336 | 56.02 360 | 38.31 307 | 53.18 334 | 41.94 363 | 27.85 362 | 44.86 363 | 56.47 362 | 17.93 373 | 41.50 364 | 38.08 313 | 68.06 340 | 57.85 352 |
|
E-PMN | | | 45.17 327 | 45.36 330 | 44.60 341 | 50.07 372 | 42.75 275 | 38.66 361 | 42.29 361 | 46.39 276 | 39.55 368 | 51.15 366 | 26.00 358 | 45.37 350 | 37.68 315 | 76.41 294 | 45.69 364 |
|
PMMVS | | | 44.69 329 | 43.95 336 | 46.92 331 | 50.05 373 | 53.47 194 | 48.08 346 | 42.40 359 | 22.36 369 | 44.01 366 | 53.05 364 | 42.60 282 | 45.49 348 | 31.69 343 | 61.36 353 | 41.79 365 |
|
ADS-MVSNet | | | 44.62 330 | 45.58 329 | 41.73 347 | 55.90 361 | 20.83 372 | 47.34 348 | 39.94 368 | 31.41 357 | 50.48 351 | 72.06 316 | 31.23 338 | 39.31 365 | 25.93 360 | 55.93 363 | 65.07 334 |
|
EMVS | | | 44.61 331 | 44.45 335 | 45.10 340 | 48.91 374 | 43.00 273 | 37.92 362 | 41.10 367 | 46.75 274 | 38.00 370 | 48.43 368 | 26.42 356 | 46.27 345 | 37.11 321 | 75.38 304 | 46.03 363 |
|
dp | | | 44.09 332 | 44.88 333 | 41.72 348 | 58.53 351 | 23.18 370 | 54.70 331 | 42.38 360 | 34.80 338 | 44.25 365 | 65.61 353 | 24.48 364 | 44.80 352 | 29.77 351 | 49.42 368 | 57.18 354 |
|
DSMNet-mixed | | | 43.18 333 | 44.66 334 | 38.75 351 | 54.75 366 | 28.88 360 | 57.06 322 | 27.42 376 | 13.47 370 | 47.27 359 | 77.67 267 | 38.83 303 | 39.29 366 | 25.32 364 | 60.12 356 | 48.08 360 |
|
CHOSEN 280x420 | | | 41.62 334 | 39.89 339 | 46.80 332 | 61.81 331 | 51.59 201 | 33.56 365 | 35.74 372 | 27.48 363 | 37.64 371 | 53.53 363 | 23.24 367 | 42.09 361 | 27.39 358 | 58.64 359 | 46.72 362 |
|
PVSNet_0 | | 36.71 22 | 41.12 335 | 40.78 338 | 42.14 345 | 59.97 343 | 40.13 296 | 40.97 357 | 42.24 362 | 30.81 359 | 44.86 363 | 49.41 367 | 40.70 293 | 45.12 351 | 23.15 366 | 34.96 370 | 41.16 366 |
|
PMMVS2 | | | 37.74 336 | 40.87 337 | 28.36 353 | 42.41 376 | 5.35 378 | 24.61 366 | 27.75 375 | 32.15 352 | 47.85 357 | 70.27 329 | 35.85 317 | 29.51 370 | 19.08 370 | 67.85 341 | 50.22 359 |
|
new_pmnet | | | 37.55 337 | 39.80 340 | 30.79 352 | 56.83 356 | 16.46 375 | 39.35 360 | 30.65 374 | 25.59 366 | 45.26 361 | 61.60 358 | 24.54 363 | 28.02 371 | 21.60 367 | 52.80 367 | 47.90 361 |
|
MVE |  | 27.91 23 | 36.69 338 | 35.64 341 | 39.84 350 | 43.37 375 | 35.85 327 | 19.49 367 | 24.61 377 | 24.68 367 | 39.05 369 | 62.63 357 | 38.67 305 | 27.10 372 | 21.04 368 | 47.25 369 | 56.56 355 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
test_method | | | 19.26 339 | 19.12 343 | 19.71 354 | 9.09 378 | 1.91 380 | 7.79 369 | 53.44 331 | 1.42 372 | 10.27 374 | 35.80 369 | 17.42 375 | 25.11 373 | 12.44 371 | 24.38 372 | 32.10 369 |
|
cdsmvs_eth3d_5k | | | 17.71 340 | 23.62 342 | 0.00 359 | 0.00 382 | 0.00 383 | 0.00 370 | 70.17 251 | 0.00 377 | 0.00 378 | 74.25 297 | 68.16 101 | 0.00 378 | 0.00 376 | 0.00 376 | 0.00 374 |
|
tmp_tt | | | 11.98 341 | 14.73 344 | 3.72 356 | 2.28 379 | 4.62 379 | 19.44 368 | 14.50 379 | 0.47 374 | 21.55 372 | 9.58 372 | 25.78 360 | 4.57 375 | 11.61 372 | 27.37 371 | 1.96 371 |
|
ab-mvs-re | | | 5.62 342 | 7.50 345 | 0.00 359 | 0.00 382 | 0.00 383 | 0.00 370 | 0.00 383 | 0.00 377 | 0.00 378 | 67.46 347 | 0.00 382 | 0.00 378 | 0.00 376 | 0.00 376 | 0.00 374 |
|
pcd_1.5k_mvsjas | | | 5.20 343 | 6.93 346 | 0.00 359 | 0.00 382 | 0.00 383 | 0.00 370 | 0.00 383 | 0.00 377 | 0.00 378 | 0.00 377 | 62.39 150 | 0.00 378 | 0.00 376 | 0.00 376 | 0.00 374 |
|
test123 | | | 4.43 344 | 5.78 347 | 0.39 358 | 0.97 380 | 0.28 381 | 46.33 352 | 0.45 381 | 0.31 375 | 0.62 376 | 1.50 375 | 0.61 381 | 0.11 377 | 0.56 374 | 0.63 374 | 0.77 373 |
|
testmvs | | | 4.06 345 | 5.28 348 | 0.41 357 | 0.64 381 | 0.16 382 | 42.54 356 | 0.31 382 | 0.26 376 | 0.50 377 | 1.40 376 | 0.77 380 | 0.17 376 | 0.56 374 | 0.55 375 | 0.90 372 |
|
test_blank | | | 0.00 346 | 0.00 349 | 0.00 359 | 0.00 382 | 0.00 383 | 0.00 370 | 0.00 383 | 0.00 377 | 0.00 378 | 0.00 377 | 0.00 382 | 0.00 378 | 0.00 376 | 0.00 376 | 0.00 374 |
|
uanet_test | | | 0.00 346 | 0.00 349 | 0.00 359 | 0.00 382 | 0.00 383 | 0.00 370 | 0.00 383 | 0.00 377 | 0.00 378 | 0.00 377 | 0.00 382 | 0.00 378 | 0.00 376 | 0.00 376 | 0.00 374 |
|
sosnet-low-res | | | 0.00 346 | 0.00 349 | 0.00 359 | 0.00 382 | 0.00 383 | 0.00 370 | 0.00 383 | 0.00 377 | 0.00 378 | 0.00 377 | 0.00 382 | 0.00 378 | 0.00 376 | 0.00 376 | 0.00 374 |
|
sosnet | | | 0.00 346 | 0.00 349 | 0.00 359 | 0.00 382 | 0.00 383 | 0.00 370 | 0.00 383 | 0.00 377 | 0.00 378 | 0.00 377 | 0.00 382 | 0.00 378 | 0.00 376 | 0.00 376 | 0.00 374 |
|
uncertanet | | | 0.00 346 | 0.00 349 | 0.00 359 | 0.00 382 | 0.00 383 | 0.00 370 | 0.00 383 | 0.00 377 | 0.00 378 | 0.00 377 | 0.00 382 | 0.00 378 | 0.00 376 | 0.00 376 | 0.00 374 |
|
Regformer | | | 0.00 346 | 0.00 349 | 0.00 359 | 0.00 382 | 0.00 383 | 0.00 370 | 0.00 383 | 0.00 377 | 0.00 378 | 0.00 377 | 0.00 382 | 0.00 378 | 0.00 376 | 0.00 376 | 0.00 374 |
|
uanet | | | 0.00 346 | 0.00 349 | 0.00 359 | 0.00 382 | 0.00 383 | 0.00 370 | 0.00 383 | 0.00 377 | 0.00 378 | 0.00 377 | 0.00 382 | 0.00 378 | 0.00 376 | 0.00 376 | 0.00 374 |
|
FOURS1 | | | | | | 89.19 25 | 77.84 16 | 91.64 1 | 89.11 2 | 84.05 2 | 91.57 2 | | | | | | |
|
MSC_two_6792asdad | | | | | 79.02 59 | 83.14 103 | 67.03 93 | | 80.75 125 | | | | | 86.24 23 | 77.27 35 | 94.85 26 | 83.78 130 |
|
PC_three_1452 | | | | | | | | | | 46.98 273 | 81.83 93 | 86.28 154 | 66.55 118 | 84.47 72 | 63.31 139 | 90.78 120 | 83.49 137 |
|
No_MVS | | | | | 79.02 59 | 83.14 103 | 67.03 93 | | 80.75 125 | | | | | 86.24 23 | 77.27 35 | 94.85 26 | 83.78 130 |
|
test_one_0601 | | | | | | 85.84 67 | 61.45 135 | | 85.63 33 | 75.27 19 | 85.62 47 | 90.38 64 | 76.72 29 | | | | |
|
eth-test2 | | | | | | 0.00 382 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 382 | | | | | | | | | | | |
|
ZD-MVS | | | | | | 83.91 94 | 69.36 76 | | 81.09 120 | 58.91 143 | 82.73 86 | 89.11 95 | 75.77 37 | 86.63 13 | 72.73 62 | 92.93 75 | |
|
RE-MVS-def | | | | 85.50 4 | | 86.19 55 | 79.18 9 | 87.23 9 | 86.27 23 | 77.51 11 | 87.65 19 | 90.73 46 | 81.38 7 | | 78.11 25 | 94.46 38 | 84.89 92 |
|
IU-MVS | | | | | | 86.12 59 | 60.90 142 | | 80.38 135 | 45.49 280 | 81.31 101 | | | | 75.64 44 | 94.39 43 | 84.65 101 |
|
OPU-MVS | | | | | 78.65 66 | 83.44 101 | 66.85 95 | 83.62 45 | | | | 86.12 162 | 66.82 113 | 86.01 31 | 61.72 147 | 89.79 142 | 83.08 152 |
|
test_241102_TWO | | | | | | | | | 84.80 51 | 72.61 32 | 84.93 56 | 89.70 81 | 77.73 23 | 85.89 39 | 75.29 45 | 94.22 55 | 83.25 147 |
|
test_241102_ONE | | | | | | 86.12 59 | 61.06 138 | | 84.72 55 | 72.64 31 | 87.38 25 | 89.47 84 | 77.48 24 | 85.74 43 | | | |
|
9.14 | | | | 80.22 59 | | 80.68 138 | | 80.35 73 | 87.69 11 | 59.90 132 | 83.00 80 | 88.20 114 | 74.57 51 | 81.75 119 | 73.75 56 | 93.78 61 | |
|
save fliter | | | | | | 87.00 43 | 67.23 91 | 79.24 86 | 77.94 174 | 56.65 166 | | | | | | | |
|
test_0728_THIRD | | | | | | | | | | 74.03 23 | 85.83 42 | 90.41 59 | 75.58 39 | 85.69 44 | 77.43 33 | 94.74 31 | 84.31 119 |
|
test_0728_SECOND | | | | | 76.57 91 | 86.20 54 | 60.57 147 | 83.77 43 | 85.49 35 | | | | | 85.90 37 | 75.86 42 | 94.39 43 | 83.25 147 |
|
test0726 | | | | | | 86.16 57 | 60.78 144 | 83.81 42 | 85.10 46 | 72.48 34 | 85.27 53 | 89.96 77 | 78.57 18 | | | | |
|
GSMVS | | | | | | | | | | | | | | | | | 70.05 304 |
|
test_part2 | | | | | | 85.90 63 | 66.44 98 | | | | 84.61 63 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 31.41 336 | | | | 70.05 304 |
|
sam_mvs | | | | | | | | | | | | | 31.21 340 | | | | |
|
ambc | | | | | 70.10 186 | 77.74 180 | 50.21 210 | 74.28 151 | 77.93 175 | | 79.26 125 | 88.29 113 | 54.11 221 | 79.77 157 | 64.43 122 | 91.10 109 | 80.30 211 |
|
MTGPA |  | | | | | | | | 80.63 128 | | | | | | | | |
|
test_post1 | | | | | | | | 66.63 249 | | | | 2.08 373 | 30.66 345 | 59.33 326 | 40.34 299 | | |
|
test_post | | | | | | | | | | | | 1.99 374 | 30.91 343 | 54.76 334 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 68.99 338 | 31.32 337 | 69.38 280 | | | |
|
GG-mvs-BLEND | | | | | 52.24 317 | 60.64 340 | 29.21 359 | 69.73 200 | 42.41 358 | | 45.47 360 | 52.33 365 | 20.43 370 | 68.16 287 | 25.52 363 | 65.42 346 | 59.36 351 |
|
MTMP | | | | | | | | 84.83 33 | 19.26 378 | | | | | | | | |
|
gm-plane-assit | | | | | | 62.51 328 | 33.91 340 | | | 37.25 328 | | 62.71 356 | | 72.74 248 | 38.70 306 | | |
|
test9_res | | | | | | | | | | | | | | | 72.12 70 | 91.37 101 | 77.40 246 |
|
TEST9 | | | | | | 85.47 69 | 69.32 77 | 76.42 120 | 78.69 160 | 53.73 207 | 76.97 154 | 86.74 138 | 66.84 112 | 81.10 128 | | | |
|
test_8 | | | | | | 85.09 75 | 67.89 86 | 76.26 125 | 78.66 162 | 54.00 202 | 76.89 159 | 86.72 140 | 66.60 116 | 80.89 139 | | | |
|
agg_prior2 | | | | | | | | | | | | | | | 70.70 77 | 90.93 114 | 78.55 231 |
|
agg_prior | | | | | | 84.44 87 | 66.02 102 | | 78.62 163 | | 76.95 156 | | | 80.34 146 | | | |
|
TestCases | | | | | 78.35 71 | 79.19 157 | 70.81 61 | | 88.64 3 | 65.37 83 | 80.09 117 | 88.17 115 | 70.33 81 | 78.43 180 | 55.60 196 | 90.90 116 | 85.81 75 |
|
test_prior4 | | | | | | | 70.14 69 | 77.57 106 | | | | | | | | | |
|
test_prior2 | | | | | | | | 75.57 131 | | 58.92 141 | 76.53 170 | 86.78 135 | 67.83 105 | | 69.81 82 | 92.76 80 | |
|
test_prior | | | | | 75.27 109 | 82.15 122 | 59.85 153 | | 84.33 67 | | | | | 83.39 91 | | | 82.58 168 |
|
旧先验2 | | | | | | | | 71.17 184 | | 45.11 284 | 78.54 133 | | | 61.28 322 | 59.19 170 | | |
|
新几何2 | | | | | | | | 71.33 180 | | | | | | | | | |
|
新几何1 | | | | | 69.99 188 | 88.37 36 | 71.34 57 | | 62.08 293 | 43.85 290 | 74.99 187 | 86.11 163 | 52.85 226 | 70.57 272 | 50.99 231 | 83.23 235 | 68.05 318 |
|
旧先验1 | | | | | | 84.55 84 | 60.36 149 | | 63.69 284 | | | 87.05 128 | 54.65 218 | | | 83.34 233 | 69.66 308 |
|
无先验 | | | | | | | | 74.82 139 | 70.94 245 | 47.75 268 | | | | 76.85 209 | 54.47 207 | | 72.09 288 |
|
原ACMM2 | | | | | | | | 74.78 143 | | | | | | | | | |
|
原ACMM1 | | | | | 73.90 125 | 85.90 63 | 65.15 110 | | 81.67 106 | 50.97 236 | 74.25 200 | 86.16 160 | 61.60 158 | 83.54 87 | 56.75 183 | 91.08 110 | 73.00 277 |
|
test222 | | | | | | 87.30 41 | 69.15 80 | 67.85 228 | 59.59 303 | 41.06 309 | 73.05 215 | 85.72 171 | 48.03 255 | | | 80.65 263 | 66.92 323 |
|
testdata2 | | | | | | | | | | | | | | 67.30 294 | 48.34 252 | | |
|
segment_acmp | | | | | | | | | | | | | 68.30 100 | | | | |
|
testdata | | | | | 64.13 250 | 85.87 65 | 63.34 123 | | 61.80 297 | 47.83 266 | 76.42 174 | 86.60 147 | 48.83 249 | 62.31 319 | 54.46 209 | 81.26 255 | 66.74 327 |
|
testdata1 | | | | | | | | 68.34 224 | | 57.24 158 | | | | | | | |
|
test12 | | | | | 76.51 92 | 82.28 120 | 60.94 141 | | 81.64 107 | | 73.60 206 | | 64.88 134 | 85.19 59 | | 90.42 127 | 83.38 143 |
|
plane_prior7 | | | | | | 85.18 72 | 66.21 100 | | | | | | | | | | |
|
plane_prior6 | | | | | | 84.18 91 | 65.31 107 | | | | | | 60.83 168 | | | | |
|
plane_prior5 | | | | | | | | | 85.49 35 | | | | | 86.15 28 | 71.09 74 | 90.94 112 | 84.82 96 |
|
plane_prior4 | | | | | | | | | | | | 89.11 95 | | | | | |
|
plane_prior3 | | | | | | | 65.67 104 | | | 63.82 101 | 78.23 136 | | | | | | |
|
plane_prior2 | | | | | | | | 82.74 54 | | 65.45 80 | | | | | | | |
|
plane_prior1 | | | | | | 84.46 86 | | | | | | | | | | | |
|
plane_prior | | | | | | | 65.18 108 | 80.06 80 | | 61.88 119 | | | | | | 89.91 139 | |
|
n2 | | | | | | | | | 0.00 383 | | | | | | | | |
|
nn | | | | | | | | | 0.00 383 | | | | | | | | |
|
door-mid | | | | | | | | | 55.02 323 | | | | | | | | |
|
lessismore_v0 | | | | | 72.75 151 | 79.60 149 | 56.83 174 | | 57.37 311 | | 83.80 74 | 89.01 98 | 47.45 257 | 78.74 171 | 64.39 123 | 86.49 193 | 82.69 166 |
|
LGP-MVS_train | | | | | 80.90 38 | 87.00 43 | 70.41 66 | | 86.35 20 | 69.77 53 | 87.75 16 | 91.13 35 | 81.83 3 | 86.20 25 | 77.13 37 | 95.96 5 | 86.08 69 |
|
test11 | | | | | | | | | 82.71 94 | | | | | | | | |
|
door | | | | | | | | | 52.91 335 | | | | | | | | |
|
HQP5-MVS | | | | | | | 58.80 163 | | | | | | | | | | |
|
HQP-NCC | | | | | | 82.37 117 | | 77.32 110 | | 59.08 137 | 71.58 232 | | | | | | |
|
ACMP_Plane | | | | | | 82.37 117 | | 77.32 110 | | 59.08 137 | 71.58 232 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 67.38 104 | | |
|
HQP4-MVS | | | | | | | | | | | 71.59 231 | | | 85.31 52 | | | 83.74 132 |
|
HQP3-MVS | | | | | | | | | 84.12 75 | | | | | | | 89.16 152 | |
|
HQP2-MVS | | | | | | | | | | | | | 58.09 193 | | | | |
|
NP-MVS | | | | | | 83.34 102 | 63.07 126 | | | | | 85.97 166 | | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 18.41 373 | 53.74 333 | | 31.57 356 | 44.89 362 | | 29.90 351 | | 32.93 340 | | 71.48 292 |
|
MDTV_nov1_ep13 | | | | 54.05 304 | | 65.54 311 | 29.30 358 | 59.00 314 | 55.22 321 | 35.96 334 | 52.44 345 | 75.98 278 | 30.77 344 | 59.62 325 | 38.21 311 | 73.33 316 | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 89.47 148 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 91.96 90 | |
|
Test By Simon | | | | | | | | | | | | | 62.56 146 | | | | |
|
ITE_SJBPF | | | | | 80.35 44 | 76.94 189 | 73.60 43 | | 80.48 132 | 66.87 67 | 83.64 76 | 86.18 158 | 70.25 83 | 79.90 156 | 61.12 153 | 88.95 158 | 87.56 52 |
|
DeepMVS_CX |  | | | | 11.83 355 | 15.51 377 | 13.86 376 | | 11.25 380 | 5.76 371 | 20.85 373 | 26.46 370 | 17.06 376 | 9.22 374 | 9.69 373 | 13.82 373 | 12.42 370 |
|