This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet86.90 188.67 181.57 2191.50 163.30 12084.80 3287.77 986.18 196.26 196.06 190.32 184.49 6968.08 8997.05 196.93 1
TDRefinement86.32 286.33 286.29 188.64 3181.19 488.84 490.72 178.27 887.95 1492.53 1379.37 1384.79 6674.51 4896.15 292.88 7
SR-MVS-dyc-post84.75 385.26 583.21 386.19 4979.18 687.23 886.27 1977.51 1087.65 1890.73 4779.20 1485.58 4978.11 2394.46 3684.89 95
HPM-MVS_fast84.59 485.10 683.06 488.60 3275.83 2386.27 2486.89 1573.69 2386.17 3791.70 2578.23 1985.20 5879.45 1294.91 2488.15 47
SR-MVS84.51 585.27 482.25 1888.52 3377.71 1386.81 1685.25 3677.42 1386.15 3890.24 7181.69 585.94 3577.77 2693.58 6183.09 155
ACMMPcopyleft84.22 684.84 882.35 1789.23 2176.66 2287.65 685.89 2571.03 4285.85 4290.58 5178.77 1685.78 4279.37 1595.17 1684.62 106
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
LTVRE_ROB75.46 184.22 684.98 781.94 2084.82 7375.40 2591.60 387.80 773.52 2488.90 1193.06 671.39 6881.53 11481.53 392.15 8288.91 38
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
HPM-MVScopyleft84.12 884.63 982.60 1388.21 3574.40 3185.24 2887.21 1370.69 4585.14 5490.42 5878.99 1586.62 1380.83 594.93 2386.79 63
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CP-MVS84.12 884.55 1082.80 1089.42 1779.74 588.19 584.43 5771.96 3884.70 6190.56 5277.12 2586.18 2679.24 1795.36 1282.49 173
mPP-MVS84.01 1084.39 1182.88 690.65 381.38 387.08 1282.79 8272.41 3485.11 5590.85 4476.65 2884.89 6379.30 1694.63 3382.35 175
COLMAP_ROBcopyleft72.78 383.75 1184.11 1582.68 1282.97 10474.39 3287.18 1088.18 678.98 686.11 4091.47 3079.70 1285.76 4366.91 10895.46 1187.89 48
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
ACMMPR83.62 1283.93 1782.69 1189.78 1077.51 1887.01 1484.19 6470.23 4684.49 6390.67 5075.15 4186.37 1879.58 1094.26 4984.18 124
APD-MVS_3200maxsize83.57 1384.33 1281.31 2882.83 10773.53 4085.50 2787.45 1274.11 1986.45 3590.52 5580.02 1084.48 7077.73 2794.34 4785.93 74
region2R83.54 1483.86 1982.58 1489.82 977.53 1687.06 1384.23 6370.19 4883.86 7190.72 4975.20 4086.27 2179.41 1494.25 5083.95 128
XVS83.51 1583.73 2082.85 889.43 1577.61 1486.80 1784.66 5272.71 2782.87 8290.39 6273.86 5286.31 1978.84 1994.03 5384.64 104
LPG-MVS_test83.47 1684.33 1280.90 3287.00 3970.41 6082.04 5686.35 1669.77 5087.75 1591.13 3481.83 386.20 2477.13 3595.96 586.08 71
HFP-MVS83.39 1784.03 1681.48 2389.25 2075.69 2487.01 1484.27 6070.23 4684.47 6490.43 5776.79 2685.94 3579.58 1094.23 5182.82 164
MTAPA83.19 1883.87 1881.13 3091.16 278.16 1184.87 3080.63 12372.08 3684.93 5690.79 4574.65 4684.42 7280.98 494.75 2880.82 203
MP-MVScopyleft83.19 1883.54 2382.14 1990.54 479.00 886.42 2283.59 7371.31 3981.26 10290.96 3974.57 4784.69 6778.41 2194.78 2782.74 167
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ZNCC-MVS83.12 2083.68 2181.45 2489.14 2473.28 4286.32 2385.97 2467.39 6084.02 6890.39 6274.73 4586.46 1580.73 694.43 4084.60 109
PGM-MVS83.07 2183.25 3082.54 1589.57 1377.21 2082.04 5685.40 3367.96 5984.91 5990.88 4275.59 3686.57 1478.16 2294.71 3083.82 130
SteuartSystems-ACMMP83.07 2183.64 2281.35 2685.14 6871.00 5485.53 2684.78 4570.91 4385.64 4590.41 5975.55 3887.69 479.75 795.08 1985.36 85
Skip Steuart: Steuart Systems R&D Blog.
APDe-MVScopyleft82.88 2384.14 1479.08 5384.80 7566.72 9086.54 2085.11 3872.00 3786.65 3191.75 2478.20 2087.04 977.93 2594.32 4883.47 142
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
GST-MVS82.79 2483.27 2981.34 2788.99 2673.29 4185.94 2585.13 3768.58 5784.14 6790.21 7373.37 5686.41 1679.09 1893.98 5684.30 123
ACMP69.50 882.64 2583.38 2680.40 3786.50 4569.44 6782.30 5386.08 2366.80 6586.70 3089.99 7681.64 685.95 3474.35 5096.11 385.81 76
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MP-MVS-pluss82.54 2683.46 2579.76 4188.88 3068.44 7681.57 5986.33 1863.17 10885.38 5291.26 3376.33 3084.67 6883.30 194.96 2286.17 70
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ACMMP_NAP82.33 2783.28 2879.46 4989.28 1869.09 7483.62 4284.98 4164.77 9083.97 6991.02 3875.53 3985.93 3782.00 294.36 4583.35 148
SMA-MVScopyleft82.12 2882.68 3880.43 3688.90 2969.52 6585.12 2984.76 4663.53 10284.23 6691.47 3072.02 6287.16 779.74 994.36 4584.61 107
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
ACMM69.25 982.11 2983.31 2778.49 6488.17 3673.96 3483.11 4984.52 5666.40 6987.45 2289.16 9481.02 880.52 13774.27 5195.73 780.98 199
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
DPE-MVScopyleft82.00 3083.02 3378.95 5885.36 6567.25 8582.91 5084.98 4173.52 2485.43 5190.03 7576.37 2986.97 1174.56 4794.02 5582.62 170
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SED-MVS81.78 3183.48 2476.67 8386.12 5361.06 14183.62 4284.72 4872.61 3087.38 2489.70 8177.48 2385.89 4075.29 4294.39 4183.08 156
PMVScopyleft70.70 681.70 3283.15 3177.36 7790.35 582.82 282.15 5479.22 15074.08 2087.16 2891.97 1984.80 276.97 19664.98 12193.61 6072.28 303
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
UA-Net81.56 3382.28 4079.40 5088.91 2869.16 7284.67 3380.01 13775.34 1579.80 11894.91 269.79 8380.25 14172.63 6394.46 3688.78 42
CPTT-MVS81.51 3481.76 4380.76 3489.20 2278.75 986.48 2182.03 9368.80 5380.92 10788.52 11072.00 6382.39 10074.80 4493.04 6881.14 193
DVP-MVS++81.24 3582.74 3776.76 8283.14 9660.90 14591.64 185.49 2974.03 2184.93 5690.38 6466.82 10885.90 3877.43 3090.78 11483.49 139
ACMH+66.64 1081.20 3682.48 3977.35 7881.16 12962.39 12580.51 6787.80 773.02 2687.57 2091.08 3680.28 982.44 9964.82 12296.10 487.21 57
DVP-MVScopyleft81.15 3783.12 3275.24 10386.16 5160.78 14883.77 4080.58 12572.48 3285.83 4390.41 5978.57 1785.69 4575.86 3994.39 4179.24 231
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
APD-MVScopyleft81.13 3881.73 4479.36 5184.47 8070.53 5983.85 3883.70 7169.43 5283.67 7388.96 10075.89 3486.41 1672.62 6492.95 6981.14 193
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
3Dnovator+73.19 281.08 3980.48 5182.87 781.41 12572.03 4584.38 3486.23 2277.28 1480.65 11190.18 7459.80 18187.58 573.06 5991.34 9489.01 34
DeepC-MVS72.44 481.00 4080.83 5081.50 2286.70 4470.03 6482.06 5587.00 1459.89 13080.91 10890.53 5372.19 6088.56 173.67 5594.52 3585.92 75
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
OPM-MVS80.99 4181.63 4679.07 5486.86 4369.39 6879.41 8484.00 6965.64 7385.54 4989.28 8776.32 3183.47 8474.03 5293.57 6284.35 120
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
LS3D80.99 4180.85 4981.41 2578.37 16371.37 5087.45 785.87 2677.48 1281.98 9189.95 7869.14 8685.26 5466.15 11091.24 9687.61 52
SF-MVS80.72 4381.80 4277.48 7482.03 11764.40 11283.41 4688.46 565.28 8184.29 6589.18 9273.73 5583.22 8876.01 3893.77 5884.81 101
XVG-ACMP-BASELINE80.54 4481.06 4878.98 5787.01 3872.91 4380.23 7585.56 2866.56 6885.64 4589.57 8369.12 8780.55 13672.51 6593.37 6383.48 141
MSP-MVS80.49 4579.67 5882.96 589.70 1177.46 1987.16 1185.10 3964.94 8981.05 10588.38 11457.10 21087.10 879.75 783.87 22884.31 121
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
PEN-MVS80.46 4682.91 3473.11 13389.83 839.02 32077.06 11382.61 8680.04 490.60 692.85 974.93 4485.21 5763.15 14195.15 1795.09 2
PS-CasMVS80.41 4782.86 3673.07 13589.93 639.21 31777.15 11181.28 10779.74 590.87 492.73 1175.03 4384.93 6263.83 13395.19 1595.07 3
DTE-MVSNet80.35 4882.89 3572.74 14889.84 737.34 33777.16 11081.81 9780.45 390.92 392.95 774.57 4786.12 2963.65 13494.68 3194.76 6
SD-MVS80.28 4981.55 4776.47 8883.57 9067.83 8083.39 4785.35 3564.42 9286.14 3987.07 13074.02 5180.97 12877.70 2892.32 8080.62 211
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
WR-MVS_H80.22 5082.17 4174.39 11189.46 1442.69 29478.24 9782.24 8978.21 989.57 992.10 1868.05 9685.59 4866.04 11395.62 994.88 5
HPM-MVS++copyleft79.89 5179.80 5780.18 3989.02 2578.44 1083.49 4580.18 13464.71 9178.11 13688.39 11365.46 12583.14 8977.64 2991.20 9778.94 235
XVG-OURS-SEG-HR79.62 5279.99 5578.49 6486.46 4674.79 2977.15 11185.39 3466.73 6680.39 11488.85 10374.43 5078.33 17774.73 4685.79 20082.35 175
XVG-OURS79.51 5379.82 5678.58 6386.11 5674.96 2876.33 12384.95 4366.89 6382.75 8588.99 9966.82 10878.37 17574.80 4490.76 11782.40 174
CP-MVSNet79.48 5481.65 4572.98 13889.66 1239.06 31976.76 11480.46 12778.91 790.32 791.70 2568.49 9184.89 6363.40 13895.12 1895.01 4
OMC-MVS79.41 5578.79 6381.28 2980.62 13270.71 5880.91 6384.76 4662.54 11281.77 9486.65 14571.46 6683.53 8367.95 9392.44 7689.60 24
v7n79.37 5680.41 5276.28 9078.67 16255.81 18379.22 8682.51 8870.72 4487.54 2192.44 1468.00 9881.34 11672.84 6191.72 8491.69 10
TSAR-MVS + MP.79.05 5778.81 6279.74 4288.94 2767.52 8386.61 1981.38 10551.71 22277.15 14791.42 3265.49 12487.20 679.44 1387.17 18484.51 116
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
mvs_tets78.93 5878.67 6579.72 4384.81 7473.93 3580.65 6576.50 19151.98 21987.40 2391.86 2176.09 3378.53 16768.58 8490.20 12386.69 66
test_djsdf78.88 5978.27 6980.70 3581.42 12471.24 5283.98 3675.72 19852.27 21487.37 2692.25 1668.04 9780.56 13472.28 6791.15 9990.32 22
HQP_MVS78.77 6078.78 6478.72 6085.18 6665.18 10482.74 5185.49 2965.45 7678.23 13389.11 9560.83 17086.15 2771.09 7190.94 10684.82 99
anonymousdsp78.60 6177.80 7281.00 3178.01 16974.34 3380.09 7776.12 19350.51 24089.19 1090.88 4271.45 6777.78 18973.38 5690.60 11990.90 18
OurMVSNet-221017-078.57 6278.53 6778.67 6180.48 13364.16 11380.24 7482.06 9261.89 11688.77 1293.32 457.15 20882.60 9870.08 7792.80 7189.25 28
jajsoiax78.51 6378.16 7079.59 4784.65 7773.83 3780.42 6976.12 19351.33 23087.19 2791.51 2973.79 5478.44 17168.27 8790.13 12786.49 68
CNVR-MVS78.49 6478.59 6678.16 6885.86 6067.40 8478.12 10081.50 10163.92 9677.51 14486.56 14968.43 9384.82 6573.83 5391.61 8882.26 179
DeepPCF-MVS71.07 578.48 6577.14 8082.52 1684.39 8377.04 2176.35 12184.05 6756.66 16280.27 11585.31 17568.56 9087.03 1067.39 10091.26 9583.50 138
DP-MVS78.44 6679.29 6075.90 9481.86 12065.33 10279.05 8784.63 5474.83 1880.41 11386.27 15671.68 6483.45 8562.45 14592.40 7778.92 236
NCCC78.25 6778.04 7178.89 5985.61 6269.45 6679.80 8180.99 11665.77 7275.55 17786.25 15867.42 10185.42 5070.10 7690.88 11281.81 185
RRT_MVS78.18 6877.69 7379.66 4683.14 9661.34 13683.29 4880.34 13257.43 15486.65 3191.79 2350.52 24586.01 3171.36 7094.65 3291.62 11
test_040278.17 6979.48 5974.24 11383.50 9159.15 16272.52 16374.60 20875.34 1588.69 1391.81 2275.06 4282.37 10165.10 11988.68 15781.20 191
MM78.15 7077.68 7479.55 4880.10 13765.47 10080.94 6278.74 16071.22 4072.40 22588.70 10560.51 17287.70 377.40 3289.13 15185.48 84
AllTest77.66 7177.43 7678.35 6679.19 15170.81 5578.60 9288.64 365.37 7980.09 11688.17 11870.33 7678.43 17255.60 20190.90 11085.81 76
PS-MVSNAJss77.54 7277.35 7878.13 7084.88 7266.37 9278.55 9379.59 14453.48 20686.29 3692.43 1562.39 14980.25 14167.90 9490.61 11887.77 49
ACMH63.62 1477.50 7380.11 5469.68 19379.61 14156.28 17978.81 8983.62 7263.41 10687.14 2990.23 7276.11 3273.32 23667.58 9594.44 3979.44 229
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CDPH-MVS77.33 7477.06 8178.14 6984.21 8463.98 11576.07 12783.45 7454.20 19377.68 14387.18 12669.98 8085.37 5168.01 9192.72 7485.08 92
mvsmamba77.20 7576.37 8579.69 4580.34 13561.52 13380.58 6682.12 9153.54 20583.93 7091.03 3749.49 25185.97 3373.26 5793.08 6791.59 12
DeepC-MVS_fast69.89 777.17 7676.33 8779.70 4483.90 8867.94 7880.06 7983.75 7056.73 16174.88 18685.32 17465.54 12387.79 265.61 11791.14 10083.35 148
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
EC-MVSNet77.08 7777.39 7776.14 9276.86 18956.87 17780.32 7387.52 1163.45 10474.66 19184.52 18369.87 8284.94 6169.76 7989.59 13986.60 67
X-MVStestdata76.81 7874.79 10182.85 889.43 1577.61 1486.80 1784.66 5272.71 2782.87 829.95 40373.86 5286.31 1978.84 1994.03 5384.64 104
UniMVSNet_ETH3D76.74 7979.02 6169.92 19189.27 1943.81 28274.47 14971.70 22972.33 3585.50 5093.65 377.98 2176.88 19954.60 21291.64 8689.08 32
CS-MVS76.51 8076.00 9078.06 7177.02 18164.77 10980.78 6482.66 8560.39 12674.15 19983.30 20469.65 8482.07 10769.27 8286.75 19087.36 55
train_agg76.38 8176.55 8475.86 9585.47 6369.32 7076.42 11978.69 16154.00 19876.97 14986.74 13966.60 11381.10 12272.50 6691.56 9077.15 258
MVS_030476.32 8275.96 9277.42 7679.33 14660.86 14780.18 7674.88 20566.93 6269.11 26588.95 10157.84 20486.12 2976.63 3789.77 13685.28 86
TranMVSNet+NR-MVSNet76.13 8377.66 7571.56 16684.61 7842.57 29670.98 19278.29 17068.67 5683.04 7889.26 8872.99 5880.75 13355.58 20495.47 1091.35 13
tt080576.12 8478.43 6869.20 20181.32 12641.37 30276.72 11577.64 17963.78 9982.06 9087.88 12379.78 1179.05 15864.33 12692.40 7787.17 60
SixPastTwentyTwo75.77 8576.34 8674.06 11681.69 12254.84 18876.47 11675.49 20064.10 9587.73 1792.24 1750.45 24781.30 11867.41 9891.46 9286.04 73
RPSCF75.76 8674.37 10679.93 4074.81 21477.53 1677.53 10579.30 14959.44 13378.88 12689.80 8071.26 6973.09 23857.45 18580.89 26089.17 31
v1075.69 8776.20 8874.16 11474.44 22348.69 23475.84 13282.93 8159.02 13885.92 4189.17 9358.56 19182.74 9670.73 7389.14 15091.05 15
testf175.66 8876.57 8272.95 13967.07 31867.62 8176.10 12580.68 12164.95 8786.58 3390.94 4071.20 7071.68 25960.46 16191.13 10179.56 225
APD_test275.66 8876.57 8272.95 13967.07 31867.62 8176.10 12580.68 12164.95 8786.58 3390.94 4071.20 7071.68 25960.46 16191.13 10179.56 225
Anonymous2023121175.54 9077.19 7970.59 17577.67 17545.70 27174.73 14480.19 13368.80 5382.95 8192.91 866.26 11676.76 20158.41 18192.77 7289.30 27
Effi-MVS+-dtu75.43 9172.28 14684.91 277.05 17983.58 178.47 9477.70 17857.68 14974.89 18578.13 27964.80 13184.26 7456.46 19485.32 20786.88 62
F-COLMAP75.29 9273.99 11279.18 5281.73 12171.90 4681.86 5882.98 7959.86 13172.27 22684.00 19064.56 13383.07 9251.48 23487.19 18382.56 172
casdiffmvs_mvgpermissive75.26 9376.18 8972.52 15372.87 25149.47 22972.94 16184.71 5059.49 13280.90 10988.81 10470.07 7979.71 14967.40 9988.39 15988.40 46
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
HQP-MVS75.24 9475.01 10075.94 9382.37 11158.80 16777.32 10784.12 6559.08 13471.58 23485.96 16858.09 19785.30 5367.38 10289.16 14783.73 135
TAPA-MVS65.27 1275.16 9574.29 10877.77 7274.86 21368.08 7777.89 10184.04 6855.15 17676.19 17383.39 19866.91 10680.11 14560.04 16890.14 12685.13 90
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
IS-MVSNet75.10 9675.42 9874.15 11579.23 14948.05 24379.43 8278.04 17470.09 4979.17 12488.02 12253.04 23183.60 8158.05 18393.76 5990.79 19
v875.07 9775.64 9573.35 12773.42 23747.46 25375.20 13581.45 10360.05 12885.64 4589.26 8858.08 19981.80 11169.71 8187.97 16790.79 19
APD_test175.04 9875.38 9974.02 11769.89 28370.15 6276.46 11779.71 14065.50 7582.99 8088.60 10966.94 10572.35 24959.77 17188.54 15879.56 225
UniMVSNet (Re)75.00 9975.48 9773.56 12583.14 9647.92 24570.41 20181.04 11563.67 10079.54 12086.37 15462.83 14381.82 11057.10 18895.25 1490.94 17
PHI-MVS74.92 10074.36 10776.61 8476.40 19262.32 12680.38 7083.15 7754.16 19573.23 21480.75 23662.19 15283.86 7668.02 9090.92 10983.65 136
DU-MVS74.91 10175.57 9672.93 14283.50 9145.79 26869.47 21180.14 13565.22 8281.74 9687.08 12861.82 15581.07 12456.21 19694.98 2091.93 8
UniMVSNet_NR-MVSNet74.90 10275.65 9472.64 15183.04 10245.79 26869.26 21478.81 15666.66 6781.74 9686.88 13463.26 13981.07 12456.21 19694.98 2091.05 15
CS-MVS-test74.89 10374.23 10976.86 8177.01 18262.94 12378.98 8884.61 5558.62 14170.17 25480.80 23566.74 11281.96 10861.74 14889.40 14585.69 81
nrg03074.87 10475.99 9171.52 16774.90 21249.88 22874.10 15482.58 8754.55 18783.50 7589.21 9071.51 6575.74 20961.24 15292.34 7988.94 37
Vis-MVSNetpermissive74.85 10574.56 10375.72 9681.63 12364.64 11076.35 12179.06 15262.85 11073.33 21288.41 11262.54 14779.59 15263.94 13282.92 23882.94 160
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MSLP-MVS++74.48 10675.78 9370.59 17584.66 7662.40 12478.65 9184.24 6260.55 12577.71 14281.98 22163.12 14077.64 19162.95 14288.14 16271.73 308
AdaColmapbinary74.22 10774.56 10373.20 13081.95 11860.97 14379.43 8280.90 11765.57 7472.54 22381.76 22570.98 7385.26 5447.88 26990.00 12873.37 289
CSCG74.12 10874.39 10573.33 12879.35 14561.66 13277.45 10681.98 9462.47 11479.06 12580.19 24661.83 15478.79 16459.83 17087.35 17679.54 228
test_fmvsmconf0.01_n73.91 10973.64 11974.71 10469.79 28866.25 9375.90 13079.90 13846.03 27976.48 16785.02 17867.96 9973.97 23174.47 4987.22 18183.90 129
PAPM_NR73.91 10974.16 11073.16 13181.90 11953.50 19881.28 6081.40 10466.17 7073.30 21383.31 20359.96 17783.10 9158.45 18081.66 25582.87 162
EPP-MVSNet73.86 11173.38 12375.31 10178.19 16553.35 20080.45 6877.32 18365.11 8576.47 16886.80 13549.47 25283.77 7753.89 22192.72 7488.81 41
K. test v373.67 11273.61 12073.87 11979.78 13955.62 18674.69 14662.04 30666.16 7184.76 6093.23 549.47 25280.97 12865.66 11686.67 19185.02 94
NR-MVSNet73.62 11374.05 11172.33 15983.50 9143.71 28365.65 26777.32 18364.32 9375.59 17687.08 12862.45 14881.34 11654.90 20795.63 891.93 8
DP-MVS Recon73.57 11472.69 13876.23 9182.85 10663.39 11874.32 15082.96 8057.75 14870.35 25081.98 22164.34 13584.41 7349.69 24889.95 13080.89 201
CNLPA73.44 11573.03 13274.66 10578.27 16475.29 2675.99 12878.49 16565.39 7875.67 17583.22 20961.23 16366.77 30553.70 22385.33 20681.92 184
MCST-MVS73.42 11673.34 12573.63 12481.28 12759.17 16174.80 14283.13 7845.50 28272.84 21883.78 19465.15 12880.99 12664.54 12389.09 15380.73 207
v119273.40 11773.42 12173.32 12974.65 22048.67 23572.21 16681.73 9852.76 21181.85 9284.56 18257.12 20982.24 10568.58 8487.33 17789.06 33
114514_t73.40 11773.33 12673.64 12384.15 8657.11 17578.20 9880.02 13643.76 29972.55 22286.07 16664.00 13683.35 8760.14 16691.03 10580.45 214
FC-MVSNet-test73.32 11974.78 10268.93 20979.21 15036.57 33971.82 17979.54 14657.63 15382.57 8790.38 6459.38 18478.99 16057.91 18494.56 3491.23 14
v114473.29 12073.39 12273.01 13674.12 22848.11 24172.01 17181.08 11453.83 20281.77 9484.68 18058.07 20081.91 10968.10 8886.86 18688.99 36
test_fmvsmconf0.1_n73.26 12172.82 13674.56 10669.10 29466.18 9574.65 14879.34 14845.58 28175.54 17883.91 19167.19 10373.88 23473.26 5786.86 18683.63 137
GeoE73.14 12273.77 11771.26 17078.09 16752.64 20374.32 15079.56 14556.32 16576.35 17183.36 20270.76 7477.96 18563.32 13981.84 24983.18 153
baseline73.10 12373.96 11370.51 17771.46 26146.39 26572.08 16984.40 5855.95 16976.62 16186.46 15267.20 10278.03 18464.22 12787.27 18087.11 61
h-mvs3373.08 12471.61 15577.48 7483.89 8972.89 4470.47 19971.12 24554.28 18977.89 13783.41 19749.04 25680.98 12763.62 13590.77 11678.58 239
TSAR-MVS + GP.73.08 12471.60 15677.54 7378.99 15870.73 5774.96 13769.38 25760.73 12474.39 19678.44 27357.72 20582.78 9560.16 16589.60 13879.11 233
v124073.06 12673.14 12872.84 14574.74 21647.27 25671.88 17881.11 11151.80 22182.28 8984.21 18756.22 21882.34 10268.82 8387.17 18488.91 38
casdiffmvspermissive73.06 12673.84 11470.72 17371.32 26246.71 26170.93 19384.26 6155.62 17277.46 14587.10 12767.09 10477.81 18763.95 13086.83 18887.64 51
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
IterMVS-LS73.01 12873.12 13072.66 15073.79 23249.90 22471.63 18178.44 16658.22 14380.51 11286.63 14658.15 19579.62 15062.51 14388.20 16188.48 44
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CANet73.00 12971.84 15076.48 8775.82 20261.28 13774.81 14080.37 13063.17 10862.43 32480.50 24061.10 16785.16 6064.00 12984.34 22483.01 159
v14419272.99 13073.06 13172.77 14674.58 22147.48 25271.90 17780.44 12851.57 22481.46 10084.11 18958.04 20182.12 10667.98 9287.47 17388.70 43
MVS_111021_HR72.98 13172.97 13472.99 13780.82 13065.47 10068.81 22172.77 22157.67 15075.76 17482.38 21871.01 7277.17 19461.38 15186.15 19676.32 264
v192192072.96 13272.98 13372.89 14474.67 21747.58 25171.92 17680.69 12051.70 22381.69 9883.89 19256.58 21582.25 10468.34 8687.36 17588.82 40
test_fmvsmconf_n72.91 13372.40 14474.46 10768.62 29866.12 9674.21 15378.80 15845.64 28074.62 19283.25 20666.80 11173.86 23572.97 6086.66 19283.39 145
CLD-MVS72.88 13472.36 14574.43 11077.03 18054.30 19268.77 22483.43 7552.12 21676.79 15874.44 30869.54 8583.91 7555.88 19993.25 6685.09 91
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
bld_raw_dy_0_6472.85 13572.76 13773.09 13485.08 7064.80 10878.72 9064.22 29351.92 22083.13 7790.26 7039.21 31369.91 27270.73 7391.60 8984.56 111
EI-MVSNet-Vis-set72.78 13671.87 14975.54 9974.77 21559.02 16572.24 16571.56 23263.92 9678.59 12871.59 33066.22 11778.60 16667.58 9580.32 26789.00 35
ETV-MVS72.72 13772.16 14874.38 11276.90 18755.95 18073.34 15884.67 5162.04 11572.19 22970.81 33565.90 12085.24 5658.64 17884.96 21481.95 183
PCF-MVS63.80 1372.70 13871.69 15275.72 9678.10 16660.01 15573.04 16081.50 10145.34 28679.66 11984.35 18665.15 12882.65 9748.70 25889.38 14684.50 117
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
EI-MVSNet-UG-set72.63 13971.68 15375.47 10074.67 21758.64 17072.02 17071.50 23363.53 10278.58 13071.39 33465.98 11878.53 16767.30 10580.18 26989.23 29
Anonymous2024052972.56 14073.79 11668.86 21176.89 18845.21 27368.80 22377.25 18567.16 6176.89 15390.44 5665.95 11974.19 22950.75 24090.00 12887.18 59
FIs72.56 14073.80 11568.84 21278.74 16137.74 33371.02 19179.83 13956.12 16680.88 11089.45 8558.18 19378.28 17856.63 19093.36 6490.51 21
v2v48272.55 14272.58 14072.43 15672.92 25046.72 26071.41 18479.13 15155.27 17481.17 10485.25 17655.41 22081.13 12167.25 10685.46 20289.43 26
test_fmvsmvis_n_192072.36 14372.49 14171.96 16271.29 26364.06 11472.79 16281.82 9640.23 32981.25 10381.04 23270.62 7568.69 28169.74 8083.60 23483.14 154
hse-mvs272.32 14470.66 16777.31 7983.10 10171.77 4769.19 21671.45 23554.28 18977.89 13778.26 27549.04 25679.23 15563.62 13589.13 15180.92 200
canonicalmvs72.29 14573.38 12369.04 20474.23 22447.37 25473.93 15683.18 7654.36 18876.61 16281.64 22772.03 6175.34 21357.12 18787.28 17984.40 118
Effi-MVS+72.10 14672.28 14671.58 16574.21 22650.33 21774.72 14582.73 8362.62 11170.77 24676.83 28969.96 8180.97 12860.20 16378.43 28783.45 144
MVS_111021_LR72.10 14671.82 15172.95 13979.53 14373.90 3670.45 20066.64 27156.87 15876.81 15781.76 22568.78 8871.76 25761.81 14683.74 23073.18 291
pmmvs671.82 14873.66 11866.31 24175.94 20142.01 29866.99 24972.53 22463.45 10476.43 16992.78 1072.95 5969.69 27451.41 23590.46 12087.22 56
PLCcopyleft62.01 1671.79 14970.28 16976.33 8980.31 13668.63 7578.18 9981.24 10854.57 18667.09 29380.63 23859.44 18281.74 11346.91 27684.17 22578.63 237
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
VDDNet71.60 15073.13 12967.02 23486.29 4741.11 30469.97 20566.50 27268.72 5574.74 18791.70 2559.90 17875.81 20748.58 26091.72 8484.15 125
3Dnovator65.95 1171.50 15171.22 16172.34 15873.16 24163.09 12178.37 9578.32 16857.67 15072.22 22884.61 18154.77 22178.47 16960.82 15981.07 25975.45 270
FA-MVS(test-final)71.27 15271.06 16271.92 16373.96 22952.32 20676.45 11876.12 19359.07 13774.04 20486.18 15952.18 23579.43 15459.75 17281.76 25084.03 126
WR-MVS71.20 15372.48 14267.36 22984.98 7135.70 34764.43 28268.66 26265.05 8681.49 9986.43 15357.57 20676.48 20350.36 24493.32 6589.90 23
V4271.06 15470.83 16571.72 16467.25 31447.14 25765.94 26180.35 13151.35 22983.40 7683.23 20759.25 18578.80 16365.91 11480.81 26389.23 29
FMVSNet171.06 15472.48 14266.81 23577.65 17640.68 30871.96 17373.03 21661.14 12079.45 12290.36 6760.44 17375.20 21550.20 24588.05 16484.54 112
dcpmvs_271.02 15672.65 13966.16 24276.06 20050.49 21571.97 17279.36 14750.34 24182.81 8483.63 19564.38 13467.27 29661.54 15083.71 23280.71 209
API-MVS70.97 15771.51 15869.37 19675.20 20755.94 18180.99 6176.84 18862.48 11371.24 24277.51 28561.51 15980.96 13152.04 23085.76 20171.22 313
VDD-MVS70.81 15871.44 15968.91 21079.07 15646.51 26267.82 23670.83 24961.23 11974.07 20288.69 10659.86 17975.62 21051.11 23790.28 12284.61 107
EG-PatchMatch MVS70.70 15970.88 16470.16 18582.64 11058.80 16771.48 18273.64 21254.98 17776.55 16481.77 22461.10 16778.94 16154.87 20880.84 26272.74 298
Baseline_NR-MVSNet70.62 16073.19 12762.92 27276.97 18334.44 35568.84 21970.88 24860.25 12779.50 12190.53 5361.82 15569.11 27854.67 21195.27 1385.22 87
alignmvs70.54 16171.00 16369.15 20373.50 23548.04 24469.85 20879.62 14153.94 20176.54 16582.00 22059.00 18774.68 22257.32 18687.21 18284.72 102
MG-MVS70.47 16271.34 16067.85 22479.26 14840.42 31274.67 14775.15 20458.41 14268.74 27788.14 12156.08 21983.69 8059.90 16981.71 25479.43 230
AUN-MVS70.22 16367.88 19977.22 8082.96 10571.61 4869.08 21771.39 23649.17 25571.70 23278.07 28037.62 32479.21 15661.81 14689.15 14980.82 203
UGNet70.20 16469.05 17973.65 12276.24 19463.64 11675.87 13172.53 22461.48 11860.93 33486.14 16252.37 23477.12 19550.67 24185.21 20880.17 219
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
PVSNet_Blended_VisFu70.04 16568.88 18273.53 12682.71 10863.62 11774.81 14081.95 9548.53 26067.16 29279.18 26451.42 24178.38 17454.39 21679.72 27678.60 238
Fast-Effi-MVS+-dtu70.00 16668.74 18673.77 12073.47 23664.53 11171.36 18578.14 17355.81 17168.84 27574.71 30565.36 12675.75 20852.00 23179.00 28181.03 196
DPM-MVS69.98 16769.22 17872.26 16082.69 10958.82 16670.53 19881.23 10947.79 26764.16 30980.21 24451.32 24283.12 9060.14 16684.95 21574.83 276
MVSFormer69.93 16869.03 18072.63 15274.93 21059.19 15983.98 3675.72 19852.27 21463.53 31976.74 29043.19 28780.56 13472.28 6778.67 28578.14 246
MVS_Test69.84 16970.71 16667.24 23067.49 31243.25 29069.87 20781.22 11052.69 21271.57 23786.68 14262.09 15374.51 22466.05 11278.74 28383.96 127
c3_l69.82 17069.89 17169.61 19466.24 32443.48 28668.12 23379.61 14351.43 22677.72 14180.18 24754.61 22478.15 18363.62 13587.50 17287.20 58
test_fmvsm_n_192069.63 17168.45 18973.16 13170.56 27265.86 9870.26 20278.35 16737.69 34574.29 19778.89 26961.10 16768.10 28765.87 11579.07 28085.53 83
TransMVSNet (Re)69.62 17271.63 15463.57 26276.51 19135.93 34565.75 26671.29 24061.05 12175.02 18389.90 7965.88 12170.41 27149.79 24789.48 14184.38 119
EI-MVSNet69.61 17369.01 18171.41 16973.94 23049.90 22471.31 18771.32 23858.22 14375.40 18170.44 33758.16 19475.85 20562.51 14379.81 27388.48 44
Gipumacopyleft69.55 17472.83 13559.70 29763.63 34453.97 19580.08 7875.93 19664.24 9473.49 20988.93 10257.89 20362.46 32559.75 17291.55 9162.67 367
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
tttt051769.46 17567.79 20174.46 10775.34 20552.72 20275.05 13663.27 29954.69 18378.87 12784.37 18526.63 37781.15 12063.95 13087.93 16889.51 25
eth_miper_zixun_eth69.42 17668.73 18771.50 16867.99 30646.42 26367.58 23878.81 15650.72 23778.13 13580.34 24350.15 24980.34 13960.18 16484.65 21887.74 50
BH-untuned69.39 17769.46 17369.18 20277.96 17056.88 17668.47 23077.53 18056.77 16077.79 14079.63 25560.30 17580.20 14446.04 28380.65 26470.47 319
v14869.38 17869.39 17469.36 19769.14 29344.56 27768.83 22072.70 22254.79 18178.59 12884.12 18854.69 22276.74 20259.40 17582.20 24386.79 63
PAPR69.20 17968.66 18870.82 17275.15 20947.77 24875.31 13481.11 11149.62 25166.33 29579.27 26161.53 15882.96 9348.12 26681.50 25781.74 187
QAPM69.18 18069.26 17668.94 20871.61 25952.58 20480.37 7178.79 15949.63 25073.51 20885.14 17753.66 22879.12 15755.11 20675.54 30975.11 275
LCM-MVSNet-Re69.10 18171.57 15761.70 28170.37 27734.30 35761.45 30279.62 14156.81 15989.59 888.16 12068.44 9272.94 23942.30 30387.33 17777.85 252
EPNet69.10 18167.32 20674.46 10768.33 30261.27 13877.56 10363.57 29760.95 12256.62 35882.75 21251.53 24081.24 11954.36 21790.20 12380.88 202
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DELS-MVS68.83 18368.31 19070.38 17870.55 27448.31 23763.78 28882.13 9054.00 19868.96 26975.17 30158.95 18880.06 14658.55 17982.74 24082.76 165
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
Fast-Effi-MVS+68.81 18468.30 19170.35 18074.66 21948.61 23666.06 26078.32 16850.62 23871.48 24075.54 29768.75 8979.59 15250.55 24378.73 28482.86 163
OpenMVScopyleft62.51 1568.76 18568.75 18568.78 21370.56 27253.91 19678.29 9677.35 18248.85 25870.22 25283.52 19652.65 23376.93 19755.31 20581.99 24575.49 269
VPA-MVSNet68.71 18670.37 16863.72 26076.13 19638.06 33164.10 28471.48 23456.60 16474.10 20188.31 11564.78 13269.72 27347.69 27190.15 12583.37 147
iter_conf_final68.69 18767.00 21273.76 12173.68 23352.33 20575.96 12973.54 21350.56 23969.90 25782.85 21024.76 38683.73 7865.40 11886.33 19585.22 87
BH-RMVSNet68.69 18768.20 19570.14 18676.40 19253.90 19764.62 27973.48 21458.01 14573.91 20681.78 22359.09 18678.22 17948.59 25977.96 29378.31 242
EIA-MVS68.59 18967.16 20872.90 14375.18 20855.64 18569.39 21281.29 10652.44 21364.53 30570.69 33660.33 17482.30 10354.27 21876.31 30380.75 206
pm-mvs168.40 19069.85 17264.04 25873.10 24539.94 31464.61 28070.50 25055.52 17373.97 20589.33 8663.91 13768.38 28449.68 24988.02 16583.81 131
miper_ehance_all_eth68.36 19168.16 19668.98 20665.14 33543.34 28867.07 24878.92 15549.11 25676.21 17277.72 28253.48 22977.92 18661.16 15484.59 22085.68 82
GBi-Net68.30 19268.79 18366.81 23573.14 24240.68 30871.96 17373.03 21654.81 17874.72 18890.36 6748.63 26275.20 21547.12 27385.37 20384.54 112
test168.30 19268.79 18366.81 23573.14 24240.68 30871.96 17373.03 21654.81 17874.72 18890.36 6748.63 26275.20 21547.12 27385.37 20384.54 112
FE-MVS68.29 19466.96 21372.26 16074.16 22754.24 19377.55 10473.42 21557.65 15272.66 22084.91 17932.02 35081.49 11548.43 26281.85 24881.04 195
DIV-MVS_self_test68.27 19568.26 19268.29 21964.98 33643.67 28465.89 26274.67 20650.04 24776.86 15582.43 21648.74 26075.38 21160.94 15789.81 13385.81 76
cl____68.26 19668.26 19268.29 21964.98 33643.67 28465.89 26274.67 20650.04 24776.86 15582.42 21748.74 26075.38 21160.92 15889.81 13385.80 80
TinyColmap67.98 19769.28 17564.08 25667.98 30746.82 25970.04 20375.26 20253.05 20877.36 14686.79 13659.39 18372.59 24645.64 28688.01 16672.83 296
xiu_mvs_v1_base_debu67.87 19867.07 20970.26 18179.13 15361.90 12967.34 24271.25 24147.98 26367.70 28574.19 31361.31 16072.62 24356.51 19178.26 28976.27 265
xiu_mvs_v1_base67.87 19867.07 20970.26 18179.13 15361.90 12967.34 24271.25 24147.98 26367.70 28574.19 31361.31 16072.62 24356.51 19178.26 28976.27 265
xiu_mvs_v1_base_debi67.87 19867.07 20970.26 18179.13 15361.90 12967.34 24271.25 24147.98 26367.70 28574.19 31361.31 16072.62 24356.51 19178.26 28976.27 265
MAR-MVS67.72 20166.16 21972.40 15774.45 22264.99 10774.87 13877.50 18148.67 25965.78 29968.58 36057.01 21277.79 18846.68 27981.92 24674.42 282
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
IterMVS-SCA-FT67.68 20266.07 22172.49 15573.34 23958.20 17263.80 28765.55 28048.10 26276.91 15282.64 21545.20 27478.84 16261.20 15377.89 29480.44 215
LF4IMVS67.50 20367.31 20768.08 22258.86 37061.93 12871.43 18375.90 19744.67 29372.42 22480.20 24557.16 20770.44 26958.99 17786.12 19771.88 306
fmvsm_l_conf0.5_n67.48 20466.88 21569.28 20067.41 31362.04 12770.69 19769.85 25439.46 33269.59 26181.09 23158.15 19568.73 28067.51 9778.16 29277.07 262
FMVSNet267.48 20468.21 19465.29 24773.14 24238.94 32168.81 22171.21 24454.81 17876.73 15986.48 15148.63 26274.60 22347.98 26886.11 19882.35 175
MSDG67.47 20667.48 20567.46 22870.70 26854.69 19066.90 25278.17 17160.88 12370.41 24974.76 30361.22 16573.18 23747.38 27276.87 29974.49 280
diffmvspermissive67.42 20767.50 20467.20 23162.26 34945.21 27364.87 27677.04 18648.21 26171.74 23179.70 25458.40 19271.17 26364.99 12080.27 26885.22 87
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
fmvsm_s_conf0.1_n_a67.37 20866.36 21770.37 17970.86 26561.17 13974.00 15557.18 32540.77 32468.83 27680.88 23463.11 14167.61 29266.94 10774.72 31682.33 178
iter_conf0567.34 20965.62 22572.50 15469.82 28447.06 25872.19 16776.86 18745.32 28772.86 21782.85 21020.53 39683.73 7861.13 15589.02 15486.70 65
cl2267.14 21066.51 21669.03 20563.20 34543.46 28766.88 25376.25 19249.22 25474.48 19477.88 28145.49 27377.40 19360.64 16084.59 22086.24 69
ANet_high67.08 21169.94 17058.51 30657.55 37527.09 38858.43 32576.80 18963.56 10182.40 8891.93 2059.82 18064.98 31650.10 24688.86 15683.46 143
LFMVS67.06 21267.89 19864.56 25278.02 16838.25 32870.81 19659.60 31365.18 8371.06 24486.56 14943.85 28375.22 21446.35 28089.63 13780.21 218
thisisatest053067.05 21365.16 23272.73 14973.10 24550.55 21471.26 18963.91 29550.22 24474.46 19580.75 23626.81 37680.25 14159.43 17486.50 19387.37 54
fmvsm_s_conf0.5_n_a67.00 21465.95 22470.17 18469.72 28961.16 14073.34 15856.83 32840.96 32168.36 27980.08 24962.84 14267.57 29366.90 10974.50 32081.78 186
fmvsm_l_conf0.5_n_a66.66 21565.97 22368.72 21467.09 31661.38 13570.03 20469.15 25938.59 33968.41 27880.36 24256.56 21668.32 28566.10 11177.45 29676.46 263
fmvsm_s_conf0.1_n66.60 21665.54 22669.77 19268.99 29559.15 16272.12 16856.74 33040.72 32668.25 28280.14 24861.18 16666.92 29967.34 10474.40 32183.23 152
MIMVSNet166.57 21769.23 17758.59 30581.26 12837.73 33464.06 28557.62 31857.02 15778.40 13290.75 4662.65 14458.10 34441.77 30889.58 14079.95 220
tfpnnormal66.48 21867.93 19762.16 27873.40 23836.65 33863.45 29064.99 28455.97 16872.82 21987.80 12457.06 21169.10 27948.31 26487.54 17080.72 208
KD-MVS_self_test66.38 21967.51 20362.97 27061.76 35134.39 35658.11 32875.30 20150.84 23677.12 14885.42 17356.84 21369.44 27551.07 23891.16 9885.08 92
SDMVSNet66.36 22067.85 20061.88 28073.04 24846.14 26758.54 32371.36 23751.42 22768.93 27182.72 21365.62 12262.22 32854.41 21584.67 21677.28 255
fmvsm_s_conf0.5_n66.34 22165.27 22969.57 19568.20 30359.14 16471.66 18056.48 33140.92 32267.78 28479.46 25761.23 16366.90 30067.39 10074.32 32482.66 169
Anonymous20240521166.02 22266.89 21463.43 26574.22 22538.14 32959.00 31966.13 27463.33 10769.76 26085.95 16951.88 23670.50 26844.23 29487.52 17181.64 188
miper_enhance_ethall65.86 22365.05 23968.28 22161.62 35342.62 29564.74 27777.97 17542.52 30973.42 21172.79 32349.66 25077.68 19058.12 18284.59 22084.54 112
RPMNet65.77 22465.08 23867.84 22566.37 32148.24 23970.93 19386.27 1954.66 18461.35 32886.77 13833.29 33885.67 4755.93 19870.17 35369.62 328
VPNet65.58 22567.56 20259.65 29879.72 14030.17 37760.27 31362.14 30254.19 19471.24 24286.63 14658.80 18967.62 29144.17 29590.87 11381.18 192
PVSNet_BlendedMVS65.38 22664.30 24068.61 21569.81 28549.36 23065.60 26978.96 15345.50 28259.98 33778.61 27151.82 23778.20 18044.30 29284.11 22678.27 243
TAMVS65.31 22763.75 24669.97 19082.23 11559.76 15766.78 25463.37 29845.20 28869.79 25979.37 26047.42 26872.17 25034.48 35785.15 21077.99 250
test_yl65.11 22865.09 23665.18 24870.59 27040.86 30663.22 29572.79 21957.91 14668.88 27379.07 26742.85 29074.89 21945.50 28884.97 21179.81 221
DCV-MVSNet65.11 22865.09 23665.18 24870.59 27040.86 30663.22 29572.79 21957.91 14668.88 27379.07 26742.85 29074.89 21945.50 28884.97 21179.81 221
mvs_anonymous65.08 23065.49 22763.83 25963.79 34237.60 33566.52 25769.82 25543.44 30473.46 21086.08 16558.79 19071.75 25851.90 23275.63 30882.15 180
FMVSNet365.00 23165.16 23264.52 25369.47 29037.56 33666.63 25570.38 25151.55 22574.72 18883.27 20537.89 32274.44 22547.12 27385.37 20381.57 189
ECVR-MVScopyleft64.82 23265.22 23063.60 26178.80 15931.14 37266.97 25056.47 33254.23 19169.94 25688.68 10737.23 32574.81 22145.28 29189.41 14384.86 97
BH-w/o64.81 23364.29 24166.36 24076.08 19954.71 18965.61 26875.23 20350.10 24671.05 24571.86 32954.33 22579.02 15938.20 33176.14 30465.36 354
EGC-MVSNET64.77 23461.17 26775.60 9886.90 4274.47 3084.04 3568.62 2630.60 4051.13 40791.61 2865.32 12774.15 23064.01 12888.28 16078.17 245
test111164.62 23565.19 23162.93 27179.01 15729.91 37865.45 27054.41 34254.09 19671.47 24188.48 11137.02 32674.29 22846.83 27889.94 13184.58 110
cascas64.59 23662.77 25770.05 18875.27 20650.02 22161.79 30171.61 23042.46 31063.68 31668.89 35649.33 25480.35 13847.82 27084.05 22779.78 223
TR-MVS64.59 23663.54 24967.73 22775.75 20450.83 21363.39 29170.29 25249.33 25371.55 23874.55 30650.94 24378.46 17040.43 31675.69 30773.89 286
PM-MVS64.49 23863.61 24867.14 23376.68 19075.15 2768.49 22942.85 38751.17 23377.85 13980.51 23945.76 27066.31 30852.83 22976.35 30259.96 376
jason64.47 23962.84 25669.34 19976.91 18559.20 15867.15 24765.67 27735.29 35665.16 30276.74 29044.67 27870.68 26554.74 21079.28 27978.14 246
jason: jason.
xiu_mvs_v2_base64.43 24063.96 24465.85 24677.72 17451.32 21063.63 28972.31 22745.06 29161.70 32569.66 34862.56 14573.93 23349.06 25573.91 32672.31 302
pmmvs-eth3d64.41 24163.27 25267.82 22675.81 20360.18 15469.49 21062.05 30538.81 33874.13 20082.23 21943.76 28468.65 28242.53 30280.63 26674.63 277
CDS-MVSNet64.33 24262.66 25869.35 19880.44 13458.28 17165.26 27265.66 27844.36 29467.30 29175.54 29743.27 28671.77 25637.68 33484.44 22378.01 249
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
PS-MVSNAJ64.27 24363.73 24765.90 24577.82 17251.42 20963.33 29272.33 22645.09 29061.60 32668.04 36262.39 14973.95 23249.07 25473.87 32772.34 301
ab-mvs64.11 24465.13 23561.05 28871.99 25738.03 33267.59 23768.79 26149.08 25765.32 30186.26 15758.02 20266.85 30339.33 32079.79 27578.27 243
CANet_DTU64.04 24563.83 24564.66 25168.39 29942.97 29273.45 15774.50 20952.05 21854.78 36775.44 30043.99 28270.42 27053.49 22578.41 28880.59 212
VNet64.01 24665.15 23460.57 29273.28 24035.61 34857.60 33067.08 26954.61 18566.76 29483.37 20056.28 21766.87 30142.19 30485.20 20979.23 232
sd_testset63.55 24765.38 22858.07 30873.04 24838.83 32357.41 33165.44 28151.42 22768.93 27182.72 21363.76 13858.11 34341.05 31284.67 21677.28 255
Anonymous2024052163.55 24766.07 22155.99 31866.18 32644.04 28168.77 22468.80 26046.99 27272.57 22185.84 17039.87 30850.22 35753.40 22892.23 8173.71 288
lupinMVS63.36 24961.49 26568.97 20774.93 21059.19 15965.80 26564.52 29034.68 36163.53 31974.25 31143.19 28770.62 26653.88 22278.67 28577.10 259
ET-MVSNet_ETH3D63.32 25060.69 27371.20 17170.15 28155.66 18465.02 27564.32 29143.28 30868.99 26872.05 32825.46 38378.19 18254.16 22082.80 23979.74 224
MVSTER63.29 25161.60 26468.36 21759.77 36646.21 26660.62 31071.32 23841.83 31275.40 18179.12 26530.25 36575.85 20556.30 19579.81 27383.03 158
OpenMVS_ROBcopyleft54.93 1763.23 25263.28 25163.07 26869.81 28545.34 27268.52 22867.14 26843.74 30070.61 24879.22 26247.90 26672.66 24248.75 25773.84 32871.21 314
IterMVS63.12 25362.48 25965.02 25066.34 32352.86 20163.81 28662.25 30146.57 27571.51 23980.40 24144.60 27966.82 30451.38 23675.47 31075.38 272
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
HyFIR lowres test63.01 25460.47 27470.61 17483.04 10254.10 19459.93 31572.24 22833.67 36669.00 26775.63 29638.69 31676.93 19736.60 34475.45 31180.81 205
GA-MVS62.91 25561.66 26166.66 23967.09 31644.49 27861.18 30669.36 25851.33 23069.33 26474.47 30736.83 32774.94 21850.60 24274.72 31680.57 213
PVSNet_Blended62.90 25661.64 26266.69 23869.81 28549.36 23061.23 30578.96 15342.04 31159.98 33768.86 35751.82 23778.20 18044.30 29277.77 29572.52 299
USDC62.80 25763.10 25461.89 27965.19 33243.30 28967.42 24174.20 21035.80 35572.25 22784.48 18445.67 27171.95 25537.95 33384.97 21170.42 321
Vis-MVSNet (Re-imp)62.74 25863.21 25361.34 28672.19 25531.56 36967.31 24653.87 34453.60 20469.88 25883.37 20040.52 30470.98 26441.40 31086.78 18981.48 190
patch_mono-262.73 25964.08 24358.68 30470.36 27855.87 18260.84 30864.11 29441.23 31764.04 31078.22 27660.00 17648.80 36154.17 21983.71 23271.37 310
D2MVS62.58 26061.05 26967.20 23163.85 34147.92 24556.29 33769.58 25639.32 33370.07 25578.19 27734.93 33372.68 24153.44 22683.74 23081.00 198
CL-MVSNet_self_test62.44 26163.40 25059.55 29972.34 25432.38 36456.39 33664.84 28651.21 23267.46 28981.01 23350.75 24463.51 32338.47 32988.12 16382.75 166
MDA-MVSNet-bldmvs62.34 26261.73 26064.16 25461.64 35249.90 22448.11 37257.24 32453.31 20780.95 10679.39 25949.00 25861.55 33045.92 28480.05 27081.03 196
miper_lstm_enhance61.97 26361.63 26362.98 26960.04 36045.74 27047.53 37470.95 24644.04 29573.06 21578.84 27039.72 30960.33 33355.82 20084.64 21982.88 161
wuyk23d61.97 26366.25 21849.12 35358.19 37460.77 15066.32 25852.97 35255.93 17090.62 586.91 13373.07 5735.98 39820.63 40291.63 8750.62 388
thres600view761.82 26561.38 26663.12 26771.81 25834.93 35264.64 27856.99 32654.78 18270.33 25179.74 25332.07 34872.42 24838.61 32783.46 23582.02 181
SSC-MVS61.79 26666.08 22048.89 35576.91 18510.00 40953.56 35647.37 37468.20 5876.56 16389.21 9054.13 22657.59 34554.75 20974.07 32579.08 234
PAPM61.79 26660.37 27566.05 24376.09 19741.87 29969.30 21376.79 19040.64 32753.80 37279.62 25644.38 28082.92 9429.64 37773.11 33273.36 290
MVP-Stereo61.56 26859.22 28168.58 21679.28 14760.44 15269.20 21571.57 23143.58 30256.42 35978.37 27439.57 31176.46 20434.86 35660.16 38468.86 335
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
CMPMVSbinary48.73 2061.54 26960.89 27063.52 26361.08 35551.55 20868.07 23468.00 26633.88 36365.87 29781.25 22937.91 32167.71 28949.32 25382.60 24171.31 312
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test250661.23 27060.85 27162.38 27678.80 15927.88 38667.33 24537.42 40054.23 19167.55 28888.68 10717.87 40474.39 22646.33 28189.41 14384.86 97
thres100view90061.17 27161.09 26861.39 28572.14 25635.01 35165.42 27156.99 32655.23 17570.71 24779.90 25132.07 34872.09 25135.61 35281.73 25177.08 260
Patchmtry60.91 27263.01 25554.62 32566.10 32726.27 39267.47 24056.40 33354.05 19772.04 23086.66 14333.19 33960.17 33443.69 29687.45 17477.42 253
EU-MVSNet60.82 27360.80 27260.86 29168.37 30041.16 30372.27 16468.27 26526.96 38669.08 26675.71 29532.09 34767.44 29455.59 20378.90 28273.97 284
pmmvs460.78 27459.04 28366.00 24473.06 24757.67 17464.53 28160.22 31136.91 35065.96 29677.27 28639.66 31068.54 28338.87 32474.89 31571.80 307
thres40060.77 27559.97 27763.15 26670.78 26635.35 34963.27 29357.47 31953.00 20968.31 28077.09 28732.45 34572.09 25135.61 35281.73 25182.02 181
MVS60.62 27659.97 27762.58 27468.13 30547.28 25568.59 22673.96 21132.19 37059.94 33968.86 35750.48 24677.64 19141.85 30775.74 30662.83 365
thisisatest051560.48 27757.86 29368.34 21867.25 31446.42 26360.58 31162.14 30240.82 32363.58 31869.12 35126.28 37978.34 17648.83 25682.13 24480.26 217
tfpn200view960.35 27859.97 27761.51 28370.78 26635.35 34963.27 29357.47 31953.00 20968.31 28077.09 28732.45 34572.09 25135.61 35281.73 25177.08 260
ppachtmachnet_test60.26 27959.61 28062.20 27767.70 31044.33 27958.18 32760.96 30940.75 32565.80 29872.57 32441.23 29763.92 32046.87 27782.42 24278.33 241
WB-MVS60.04 28064.19 24247.59 35776.09 19710.22 40852.44 36146.74 37565.17 8474.07 20287.48 12553.48 22955.28 34849.36 25272.84 33377.28 255
Patchmatch-RL test59.95 28159.12 28262.44 27572.46 25354.61 19159.63 31647.51 37341.05 32074.58 19374.30 31031.06 35965.31 31351.61 23379.85 27267.39 341
131459.83 28258.86 28562.74 27365.71 32944.78 27668.59 22672.63 22333.54 36861.05 33267.29 36843.62 28571.26 26249.49 25167.84 36672.19 304
IB-MVS49.67 1859.69 28356.96 29967.90 22368.19 30450.30 21861.42 30365.18 28347.57 26955.83 36267.15 36923.77 39079.60 15143.56 29879.97 27173.79 287
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
1112_ss59.48 28458.99 28460.96 29077.84 17142.39 29761.42 30368.45 26437.96 34359.93 34067.46 36545.11 27665.07 31540.89 31471.81 34275.41 271
FPMVS59.43 28560.07 27657.51 31177.62 17771.52 4962.33 29950.92 35957.40 15569.40 26380.00 25039.14 31461.92 32937.47 33766.36 36939.09 399
CVMVSNet59.21 28658.44 28961.51 28373.94 23047.76 24971.31 18764.56 28926.91 38860.34 33670.44 33736.24 33067.65 29053.57 22468.66 36169.12 333
CR-MVSNet58.96 28758.49 28860.36 29466.37 32148.24 23970.93 19356.40 33332.87 36961.35 32886.66 14333.19 33963.22 32448.50 26170.17 35369.62 328
EPNet_dtu58.93 28858.52 28760.16 29667.91 30847.70 25069.97 20558.02 31749.73 24947.28 38973.02 32238.14 31862.34 32636.57 34585.99 19970.43 320
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Test_1112_low_res58.78 28958.69 28659.04 30379.41 14438.13 33057.62 32966.98 27034.74 35959.62 34377.56 28442.92 28963.65 32238.66 32670.73 34975.35 273
PatchMatch-RL58.68 29057.72 29461.57 28276.21 19573.59 3961.83 30049.00 36847.30 27161.08 33068.97 35350.16 24859.01 33836.06 35168.84 36052.10 386
SCA58.57 29158.04 29260.17 29570.17 28041.07 30565.19 27353.38 35043.34 30761.00 33373.48 31745.20 27469.38 27640.34 31770.31 35270.05 322
testing358.28 29258.38 29058.00 30977.45 17826.12 39360.78 30943.00 38656.02 16770.18 25375.76 29413.27 41167.24 29748.02 26780.89 26080.65 210
CHOSEN 1792x268858.09 29356.30 30463.45 26479.95 13850.93 21254.07 35465.59 27928.56 38261.53 32774.33 30941.09 30066.52 30733.91 36067.69 36772.92 294
HY-MVS49.31 1957.96 29457.59 29559.10 30266.85 32036.17 34265.13 27465.39 28239.24 33554.69 36978.14 27844.28 28167.18 29833.75 36270.79 34873.95 285
baseline157.82 29558.36 29156.19 31769.17 29230.76 37562.94 29755.21 33746.04 27863.83 31478.47 27241.20 29863.68 32139.44 31968.99 35974.13 283
thres20057.55 29657.02 29859.17 30067.89 30934.93 35258.91 32157.25 32350.24 24364.01 31171.46 33232.49 34471.39 26131.31 36979.57 27771.19 315
CostFormer57.35 29756.14 30560.97 28963.76 34338.43 32567.50 23960.22 31137.14 34959.12 34576.34 29232.78 34271.99 25439.12 32369.27 35872.47 300
test_fmvs356.78 29855.99 30759.12 30153.96 39348.09 24258.76 32266.22 27327.54 38476.66 16068.69 35925.32 38551.31 35453.42 22773.38 33077.97 251
our_test_356.46 29956.51 30256.30 31667.70 31039.66 31655.36 34552.34 35640.57 32863.85 31369.91 34740.04 30758.22 34243.49 29975.29 31471.03 317
tpm256.12 30054.64 31660.55 29366.24 32436.01 34368.14 23256.77 32933.60 36758.25 34875.52 29930.25 36574.33 22733.27 36369.76 35771.32 311
tpmvs55.84 30155.45 31157.01 31360.33 35933.20 36265.89 26259.29 31547.52 27056.04 36073.60 31631.05 36068.06 28840.64 31564.64 37269.77 326
gg-mvs-nofinetune55.75 30256.75 30152.72 33462.87 34628.04 38568.92 21841.36 39571.09 4150.80 38192.63 1220.74 39566.86 30229.97 37572.41 33663.25 364
testing9155.74 30355.29 31357.08 31270.63 26930.85 37454.94 34956.31 33550.34 24157.08 35270.10 34424.50 38865.86 30936.98 34276.75 30074.53 279
test20.0355.74 30357.51 29650.42 34459.89 36532.09 36650.63 36649.01 36750.11 24565.07 30383.23 20745.61 27248.11 36630.22 37383.82 22971.07 316
MS-PatchMatch55.59 30554.89 31457.68 31069.18 29149.05 23361.00 30762.93 30035.98 35358.36 34768.93 35536.71 32866.59 30637.62 33663.30 37657.39 382
baseline255.57 30652.74 32564.05 25765.26 33144.11 28062.38 29854.43 34139.03 33651.21 37967.35 36733.66 33772.45 24737.14 33964.22 37475.60 268
XXY-MVS55.19 30757.40 29748.56 35664.45 33934.84 35451.54 36453.59 34638.99 33763.79 31579.43 25856.59 21445.57 37236.92 34371.29 34565.25 355
testing9955.16 30854.56 31756.98 31470.13 28230.58 37654.55 35254.11 34349.53 25256.76 35670.14 34322.76 39265.79 31036.99 34176.04 30574.57 278
FMVSNet555.08 30955.54 31053.71 32765.80 32833.50 36156.22 33852.50 35443.72 30161.06 33183.38 19925.46 38354.87 34930.11 37481.64 25672.75 297
test_fmvs254.80 31054.11 31956.88 31551.76 39749.95 22356.70 33565.80 27626.22 38969.42 26265.25 37231.82 35149.98 35849.63 25070.36 35170.71 318
PatchmatchNetpermissive54.60 31154.27 31855.59 32165.17 33439.08 31866.92 25151.80 35839.89 33058.39 34673.12 32131.69 35358.33 34143.01 30158.38 39069.38 331
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MIMVSNet54.39 31256.12 30649.20 35172.57 25230.91 37359.98 31448.43 37041.66 31355.94 36183.86 19341.19 29950.42 35626.05 38775.38 31266.27 349
Syy-MVS54.13 31355.45 31150.18 34568.77 29623.59 39755.02 34644.55 38043.80 29758.05 34964.07 37446.22 26958.83 33946.16 28272.36 33768.12 337
Anonymous2023120654.13 31355.82 30849.04 35470.89 26435.96 34451.73 36350.87 36034.86 35762.49 32379.22 26242.52 29344.29 38227.95 38481.88 24766.88 345
JIA-IIPM54.03 31551.62 33361.25 28759.14 36955.21 18759.10 31847.72 37150.85 23550.31 38585.81 17120.10 39863.97 31936.16 34955.41 39564.55 361
tpm cat154.02 31652.63 32758.19 30764.85 33839.86 31566.26 25957.28 32232.16 37156.90 35470.39 33932.75 34365.30 31434.29 35858.79 38769.41 330
testgi54.00 31756.86 30045.45 36658.20 37325.81 39449.05 36849.50 36645.43 28567.84 28381.17 23051.81 23943.20 38629.30 37879.41 27867.34 343
WB-MVSnew53.94 31854.76 31551.49 34071.53 26028.05 38458.22 32650.36 36237.94 34459.16 34470.17 34249.21 25551.94 35324.49 39471.80 34374.47 281
testing22253.37 31952.50 32955.98 31970.51 27529.68 37956.20 33951.85 35746.19 27756.76 35668.94 35419.18 40165.39 31225.87 39076.98 29872.87 295
PatchT53.35 32056.47 30343.99 37364.19 34017.46 40459.15 31743.10 38552.11 21754.74 36886.95 13229.97 36849.98 35843.62 29774.40 32164.53 362
testing1153.13 32152.26 33155.75 32070.44 27631.73 36854.75 35052.40 35544.81 29252.36 37668.40 36121.83 39365.74 31132.64 36672.73 33469.78 325
test_vis1_n_192052.96 32253.50 32151.32 34159.15 36844.90 27556.13 34064.29 29230.56 38059.87 34160.68 38540.16 30647.47 36748.25 26562.46 37861.58 373
UWE-MVS52.94 32352.70 32653.65 32873.56 23427.49 38757.30 33249.57 36538.56 34062.79 32271.42 33319.49 40060.41 33224.33 39677.33 29773.06 292
new-patchmatchnet52.89 32455.76 30944.26 37259.94 3646.31 41037.36 39450.76 36141.10 31864.28 30879.82 25244.77 27748.43 36536.24 34887.61 16978.03 248
test_fmvs1_n52.70 32552.01 33254.76 32353.83 39450.36 21655.80 34265.90 27524.96 39265.39 30060.64 38627.69 37448.46 36345.88 28567.99 36465.46 353
YYNet152.58 32653.50 32149.85 34754.15 39036.45 34140.53 38746.55 37738.09 34275.52 17973.31 32041.08 30143.88 38341.10 31171.14 34769.21 332
MDA-MVSNet_test_wron52.57 32753.49 32349.81 34854.24 38936.47 34040.48 38846.58 37638.13 34175.47 18073.32 31941.05 30243.85 38440.98 31371.20 34669.10 334
pmmvs552.49 32852.58 32852.21 33654.99 38732.38 36455.45 34453.84 34532.15 37255.49 36474.81 30238.08 31957.37 34634.02 35974.40 32166.88 345
UnsupCasMVSNet_eth52.26 32953.29 32449.16 35255.08 38633.67 36050.03 36758.79 31637.67 34663.43 32174.75 30441.82 29545.83 37138.59 32859.42 38667.98 340
N_pmnet52.06 33051.11 33854.92 32259.64 36771.03 5337.42 39361.62 30833.68 36557.12 35172.10 32537.94 32031.03 40029.13 38371.35 34462.70 366
KD-MVS_2432*160052.05 33151.58 33453.44 33052.11 39531.20 37044.88 38164.83 28741.53 31464.37 30670.03 34515.61 40864.20 31736.25 34674.61 31864.93 358
miper_refine_blended52.05 33151.58 33453.44 33052.11 39531.20 37044.88 38164.83 28741.53 31464.37 30670.03 34515.61 40864.20 31736.25 34674.61 31864.93 358
test_vis3_rt51.94 33351.04 33954.65 32446.32 40450.13 22044.34 38378.17 17123.62 39668.95 27062.81 37821.41 39438.52 39641.49 30972.22 33975.30 274
PVSNet43.83 2151.56 33451.17 33752.73 33368.34 30138.27 32748.22 37153.56 34836.41 35154.29 37064.94 37334.60 33454.20 35230.34 37269.87 35565.71 352
test_fmvs151.51 33550.86 34253.48 32949.72 40049.35 23254.11 35364.96 28524.64 39463.66 31759.61 38928.33 37348.45 36445.38 29067.30 36862.66 368
test_vis1_n51.27 33650.41 34653.83 32656.99 37750.01 22256.75 33460.53 31025.68 39059.74 34257.86 39029.40 37047.41 36843.10 30063.66 37564.08 363
test_cas_vis1_n_192050.90 33750.92 34150.83 34354.12 39247.80 24751.44 36554.61 34026.95 38763.95 31260.85 38437.86 32344.97 37745.53 28762.97 37759.72 377
tpm50.60 33852.42 33045.14 36865.18 33326.29 39160.30 31243.50 38337.41 34757.01 35379.09 26630.20 36742.32 38732.77 36566.36 36966.81 347
test-LLR50.43 33950.69 34449.64 34960.76 35641.87 29953.18 35745.48 37843.41 30549.41 38660.47 38729.22 37144.73 37942.09 30572.14 34062.33 371
myMVS_eth3d50.36 34050.52 34549.88 34668.77 29622.69 39955.02 34644.55 38043.80 29758.05 34964.07 37414.16 41058.83 33933.90 36172.36 33768.12 337
ETVMVS50.32 34149.87 34951.68 33870.30 27926.66 39052.33 36243.93 38243.54 30354.91 36667.95 36320.01 39960.17 33422.47 39873.40 32968.22 336
tpmrst50.15 34251.38 33646.45 36356.05 38124.77 39564.40 28349.98 36336.14 35253.32 37369.59 34935.16 33248.69 36239.24 32158.51 38965.89 350
UnsupCasMVSNet_bld50.01 34351.03 34046.95 35958.61 37132.64 36348.31 37053.27 35134.27 36260.47 33571.53 33141.40 29647.07 36930.68 37160.78 38361.13 374
dmvs_re49.91 34450.77 34347.34 35859.98 36138.86 32253.18 35753.58 34739.75 33155.06 36561.58 38336.42 32944.40 38129.15 38268.23 36258.75 379
WTY-MVS49.39 34550.31 34746.62 36261.22 35432.00 36746.61 37749.77 36433.87 36454.12 37169.55 35041.96 29445.40 37431.28 37064.42 37362.47 369
ADS-MVSNet248.76 34647.25 35553.29 33255.90 38340.54 31147.34 37554.99 33931.41 37750.48 38272.06 32631.23 35654.26 35125.93 38855.93 39265.07 356
test-mter48.56 34748.20 35249.64 34960.76 35641.87 29953.18 35745.48 37831.91 37549.41 38660.47 38718.34 40244.73 37942.09 30572.14 34062.33 371
Patchmatch-test47.93 34849.96 34841.84 37657.42 37624.26 39648.75 36941.49 39439.30 33456.79 35573.48 31730.48 36433.87 39929.29 37972.61 33567.39 341
test0.0.03 147.72 34948.31 35145.93 36455.53 38529.39 38046.40 37841.21 39643.41 30555.81 36367.65 36429.22 37143.77 38525.73 39169.87 35564.62 360
sss47.59 35048.32 35045.40 36756.73 38033.96 35845.17 38048.51 36932.11 37452.37 37565.79 37040.39 30541.91 39031.85 36761.97 38060.35 375
pmmvs346.71 35145.09 36151.55 33956.76 37948.25 23855.78 34339.53 39924.13 39550.35 38463.40 37615.90 40751.08 35529.29 37970.69 35055.33 385
test_vis1_rt46.70 35245.24 36051.06 34244.58 40551.04 21139.91 38967.56 26721.84 40051.94 37750.79 39833.83 33639.77 39335.25 35561.50 38162.38 370
EPMVS45.74 35346.53 35643.39 37454.14 39122.33 40155.02 34635.00 40334.69 36051.09 38070.20 34125.92 38142.04 38937.19 33855.50 39465.78 351
MVS-HIRNet45.53 35447.29 35440.24 37962.29 34826.82 38956.02 34137.41 40129.74 38143.69 39981.27 22833.96 33555.48 34724.46 39556.79 39138.43 400
dmvs_testset45.26 35547.51 35338.49 38259.96 36314.71 40658.50 32443.39 38441.30 31651.79 37856.48 39139.44 31249.91 36021.42 40055.35 39650.85 387
TESTMET0.1,145.17 35644.93 36245.89 36556.02 38238.31 32653.18 35741.94 39327.85 38344.86 39556.47 39217.93 40341.50 39138.08 33268.06 36357.85 380
E-PMN45.17 35645.36 35944.60 37050.07 39842.75 29338.66 39142.29 39146.39 27639.55 40051.15 39726.00 38045.37 37537.68 33476.41 30145.69 394
PMMVS44.69 35843.95 36646.92 36050.05 39953.47 19948.08 37342.40 38922.36 39844.01 39853.05 39542.60 29245.49 37331.69 36861.36 38241.79 397
ADS-MVSNet44.62 35945.58 35841.73 37755.90 38320.83 40247.34 37539.94 39831.41 37750.48 38272.06 32631.23 35639.31 39425.93 38855.93 39265.07 356
EMVS44.61 36044.45 36545.10 36948.91 40143.00 29137.92 39241.10 39746.75 27438.00 40248.43 40026.42 37846.27 37037.11 34075.38 31246.03 393
dp44.09 36144.88 36341.72 37858.53 37223.18 39854.70 35142.38 39034.80 35844.25 39765.61 37124.48 38944.80 37829.77 37649.42 39857.18 383
test_f43.79 36245.63 35738.24 38342.29 40838.58 32434.76 39647.68 37222.22 39967.34 29063.15 37731.82 35130.60 40139.19 32262.28 37945.53 395
mvsany_test343.76 36341.01 36752.01 33748.09 40257.74 17342.47 38523.85 40923.30 39764.80 30462.17 38127.12 37540.59 39229.17 38148.11 39957.69 381
DSMNet-mixed43.18 36444.66 36438.75 38154.75 38828.88 38357.06 33327.42 40613.47 40247.27 39077.67 28338.83 31539.29 39525.32 39360.12 38548.08 390
CHOSEN 280x42041.62 36539.89 37046.80 36161.81 35051.59 20733.56 39735.74 40227.48 38537.64 40353.53 39323.24 39142.09 38827.39 38558.64 38846.72 392
PVSNet_036.71 2241.12 36640.78 36942.14 37559.97 36240.13 31340.97 38642.24 39230.81 37944.86 39549.41 39940.70 30345.12 37623.15 39734.96 40241.16 398
mvsany_test137.88 36735.74 37244.28 37147.28 40349.90 22436.54 39524.37 40819.56 40145.76 39153.46 39432.99 34137.97 39726.17 38635.52 40144.99 396
PMMVS237.74 36840.87 36828.36 38542.41 4075.35 41124.61 39827.75 40532.15 37247.85 38870.27 34035.85 33129.51 40219.08 40367.85 36550.22 389
new_pmnet37.55 36939.80 37130.79 38456.83 37816.46 40539.35 39030.65 40425.59 39145.26 39361.60 38224.54 38728.02 40321.60 39952.80 39747.90 391
MVEpermissive27.91 2336.69 37035.64 37339.84 38043.37 40635.85 34619.49 39924.61 40724.68 39339.05 40162.63 38038.67 31727.10 40421.04 40147.25 40056.56 384
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method19.26 37119.12 37519.71 3869.09 4101.91 4137.79 40153.44 3491.42 40410.27 40635.80 40117.42 40525.11 40512.44 40424.38 40432.10 401
cdsmvs_eth3d_5k17.71 37223.62 3740.00 3910.00 4140.00 4160.00 40270.17 2530.00 4090.00 41074.25 31168.16 950.00 4100.00 4090.00 4080.00 406
tmp_tt11.98 37314.73 3763.72 3882.28 4114.62 41219.44 40014.50 4110.47 40621.55 4049.58 40425.78 3824.57 40711.61 40527.37 4031.96 403
ab-mvs-re5.62 3747.50 3770.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 41067.46 3650.00 4140.00 4100.00 4090.00 4080.00 406
pcd_1.5k_mvsjas5.20 3756.93 3780.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 40962.39 1490.00 4100.00 4090.00 4080.00 406
test1234.43 3765.78 3790.39 3900.97 4120.28 41446.33 3790.45 4130.31 4070.62 4081.50 4070.61 4130.11 4090.56 4070.63 4060.77 405
testmvs4.06 3775.28 3800.41 3890.64 4130.16 41542.54 3840.31 4140.26 4080.50 4091.40 4080.77 4120.17 4080.56 4070.55 4070.90 404
test_blank0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uanet_test0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
DCPMVS0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
sosnet-low-res0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
sosnet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uncertanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
Regformer0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
WAC-MVS22.69 39936.10 350
FOURS189.19 2377.84 1291.64 189.11 284.05 291.57 2
MSC_two_6792asdad79.02 5583.14 9667.03 8780.75 11886.24 2277.27 3394.85 2583.78 132
PC_three_145246.98 27381.83 9386.28 15566.55 11584.47 7163.31 14090.78 11483.49 139
No_MVS79.02 5583.14 9667.03 8780.75 11886.24 2277.27 3394.85 2583.78 132
test_one_060185.84 6161.45 13485.63 2775.27 1785.62 4890.38 6476.72 27
eth-test20.00 414
eth-test0.00 414
ZD-MVS83.91 8769.36 6981.09 11358.91 14082.73 8689.11 9575.77 3586.63 1272.73 6292.93 70
RE-MVS-def85.50 386.19 4979.18 687.23 886.27 1977.51 1087.65 1890.73 4781.38 778.11 2394.46 3684.89 95
IU-MVS86.12 5360.90 14580.38 12945.49 28481.31 10175.64 4194.39 4184.65 103
OPU-MVS78.65 6283.44 9466.85 8983.62 4286.12 16366.82 10886.01 3161.72 14989.79 13583.08 156
test_241102_TWO84.80 4472.61 3084.93 5689.70 8177.73 2285.89 4075.29 4294.22 5283.25 150
test_241102_ONE86.12 5361.06 14184.72 4872.64 2987.38 2489.47 8477.48 2385.74 44
9.1480.22 5380.68 13180.35 7287.69 1059.90 12983.00 7988.20 11774.57 4781.75 11273.75 5493.78 57
save fliter87.00 3967.23 8679.24 8577.94 17656.65 163
test_0728_THIRD74.03 2185.83 4390.41 5975.58 3785.69 4577.43 3094.74 2984.31 121
test_0728_SECOND76.57 8586.20 4860.57 15183.77 4085.49 2985.90 3875.86 3994.39 4183.25 150
test072686.16 5160.78 14883.81 3985.10 3972.48 3285.27 5389.96 7778.57 17
GSMVS70.05 322
test_part285.90 5766.44 9184.61 62
sam_mvs131.41 35470.05 322
sam_mvs31.21 358
ambc70.10 18777.74 17350.21 21974.28 15277.93 17779.26 12388.29 11654.11 22779.77 14864.43 12491.10 10380.30 216
MTGPAbinary80.63 123
test_post166.63 2552.08 40530.66 36359.33 33740.34 317
test_post1.99 40630.91 36154.76 350
patchmatchnet-post68.99 35231.32 35569.38 276
GG-mvs-BLEND52.24 33560.64 35829.21 38269.73 20942.41 38845.47 39252.33 39620.43 39768.16 28625.52 39265.42 37159.36 378
MTMP84.83 3119.26 410
gm-plane-assit62.51 34733.91 35937.25 34862.71 37972.74 24038.70 325
test9_res72.12 6991.37 9377.40 254
TEST985.47 6369.32 7076.42 11978.69 16153.73 20376.97 14986.74 13966.84 10781.10 122
test_885.09 6967.89 7976.26 12478.66 16354.00 19876.89 15386.72 14166.60 11380.89 132
agg_prior270.70 7590.93 10878.55 240
agg_prior84.44 8266.02 9778.62 16476.95 15180.34 139
TestCases78.35 6679.19 15170.81 5588.64 365.37 7980.09 11688.17 11870.33 7678.43 17255.60 20190.90 11085.81 76
test_prior470.14 6377.57 102
test_prior275.57 13358.92 13976.53 16686.78 13767.83 10069.81 7892.76 73
test_prior75.27 10282.15 11659.85 15684.33 5983.39 8682.58 171
旧先验271.17 19045.11 28978.54 13161.28 33159.19 176
新几何271.33 186
新几何169.99 18988.37 3471.34 5162.08 30443.85 29674.99 18486.11 16452.85 23270.57 26750.99 23983.23 23768.05 339
旧先验184.55 7960.36 15363.69 29687.05 13154.65 22383.34 23669.66 327
无先验74.82 13970.94 24747.75 26876.85 20054.47 21372.09 305
原ACMM274.78 143
原ACMM173.90 11885.90 5765.15 10681.67 9950.97 23474.25 19886.16 16161.60 15783.54 8256.75 18991.08 10473.00 293
test22287.30 3769.15 7367.85 23559.59 31441.06 31973.05 21685.72 17248.03 26580.65 26466.92 344
testdata267.30 29548.34 263
segment_acmp68.30 94
testdata64.13 25585.87 5963.34 11961.80 30747.83 26676.42 17086.60 14848.83 25962.31 32754.46 21481.26 25866.74 348
testdata168.34 23157.24 156
test1276.51 8682.28 11460.94 14481.64 10073.60 20764.88 13085.19 5990.42 12183.38 146
plane_prior785.18 6666.21 94
plane_prior684.18 8565.31 10360.83 170
plane_prior585.49 2986.15 2771.09 7190.94 10684.82 99
plane_prior489.11 95
plane_prior365.67 9963.82 9878.23 133
plane_prior282.74 5165.45 76
plane_prior184.46 81
plane_prior65.18 10480.06 7961.88 11789.91 132
n20.00 415
nn0.00 415
door-mid55.02 338
lessismore_v072.75 14779.60 14256.83 17857.37 32183.80 7289.01 9847.45 26778.74 16564.39 12586.49 19482.69 168
LGP-MVS_train80.90 3287.00 3970.41 6086.35 1669.77 5087.75 1591.13 3481.83 386.20 2477.13 3595.96 586.08 71
test1182.71 84
door52.91 353
HQP5-MVS58.80 167
HQP-NCC82.37 11177.32 10759.08 13471.58 234
ACMP_Plane82.37 11177.32 10759.08 13471.58 234
BP-MVS67.38 102
HQP4-MVS71.59 23385.31 5283.74 134
HQP3-MVS84.12 6589.16 147
HQP2-MVS58.09 197
NP-MVS83.34 9563.07 12285.97 167
MDTV_nov1_ep13_2view18.41 40353.74 35531.57 37644.89 39429.90 36932.93 36471.48 309
MDTV_nov1_ep1354.05 32065.54 33029.30 38159.00 31955.22 33635.96 35452.44 37475.98 29330.77 36259.62 33638.21 33073.33 331
ACMMP++_ref89.47 142
ACMMP++91.96 83
Test By Simon62.56 145
ITE_SJBPF80.35 3876.94 18473.60 3880.48 12666.87 6483.64 7486.18 15970.25 7879.90 14761.12 15688.95 15587.56 53
DeepMVS_CXcopyleft11.83 38715.51 40913.86 40711.25 4125.76 40320.85 40526.46 40217.06 4069.22 4069.69 40613.82 40512.42 402