| mamv4 | | | 90.28 1 | 88.75 1 | 94.85 1 | 93.34 1 | 96.17 1 | 82.69 55 | 91.63 1 | 86.34 1 | 97.97 1 | 94.77 3 | 66.57 117 | 95.38 1 | 87.74 1 | 97.72 1 | 93.00 8 |
|
| LCM-MVSNet | | | 86.90 2 | 88.67 2 | 81.57 22 | 91.50 2 | 63.30 120 | 84.80 32 | 87.77 10 | 86.18 2 | 96.26 2 | 96.06 1 | 90.32 1 | 84.49 70 | 68.08 91 | 97.05 2 | 96.93 1 |
|
| TDRefinement | | | 86.32 3 | 86.33 3 | 86.29 2 | 88.64 32 | 81.19 5 | 88.84 4 | 90.72 2 | 78.27 9 | 87.95 15 | 92.53 15 | 79.37 13 | 84.79 66 | 74.51 49 | 96.15 3 | 92.88 9 |
|
| SR-MVS-dyc-post | | | 84.75 4 | 85.26 6 | 83.21 4 | 86.19 50 | 79.18 7 | 87.23 8 | 86.27 21 | 77.51 11 | 87.65 19 | 90.73 50 | 79.20 14 | 85.58 49 | 78.11 24 | 94.46 36 | 84.89 97 |
|
| HPM-MVS_fast | | | 84.59 5 | 85.10 7 | 83.06 5 | 88.60 33 | 75.83 24 | 86.27 24 | 86.89 16 | 73.69 24 | 86.17 38 | 91.70 28 | 78.23 19 | 85.20 58 | 79.45 13 | 94.91 25 | 88.15 50 |
|
| SR-MVS | | | 84.51 6 | 85.27 5 | 82.25 19 | 88.52 34 | 77.71 14 | 86.81 16 | 85.25 40 | 77.42 14 | 86.15 39 | 90.24 73 | 81.69 5 | 85.94 35 | 77.77 27 | 93.58 61 | 83.09 158 |
|
| ACMMP |  | | 84.22 7 | 84.84 9 | 82.35 18 | 89.23 22 | 76.66 23 | 87.65 6 | 85.89 28 | 71.03 46 | 85.85 43 | 90.58 54 | 78.77 16 | 85.78 42 | 79.37 16 | 95.17 17 | 84.62 108 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| LTVRE_ROB | | 75.46 1 | 84.22 7 | 84.98 8 | 81.94 21 | 84.82 73 | 75.40 26 | 91.60 3 | 87.80 8 | 73.52 25 | 88.90 12 | 93.06 7 | 71.39 70 | 81.53 116 | 81.53 4 | 92.15 82 | 88.91 40 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| HPM-MVS |  | | 84.12 9 | 84.63 10 | 82.60 14 | 88.21 36 | 74.40 32 | 85.24 28 | 87.21 14 | 70.69 49 | 85.14 56 | 90.42 61 | 78.99 15 | 86.62 14 | 80.83 6 | 94.93 24 | 86.79 66 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| CP-MVS | | | 84.12 9 | 84.55 11 | 82.80 11 | 89.42 18 | 79.74 6 | 88.19 5 | 84.43 61 | 71.96 41 | 84.70 63 | 90.56 55 | 77.12 25 | 86.18 27 | 79.24 18 | 95.36 13 | 82.49 176 |
|
| mPP-MVS | | | 84.01 11 | 84.39 12 | 82.88 7 | 90.65 4 | 81.38 4 | 87.08 12 | 82.79 87 | 72.41 37 | 85.11 57 | 90.85 47 | 76.65 28 | 84.89 63 | 79.30 17 | 94.63 33 | 82.35 178 |
|
| COLMAP_ROB |  | 72.78 3 | 83.75 12 | 84.11 16 | 82.68 13 | 82.97 103 | 74.39 33 | 87.18 10 | 88.18 7 | 78.98 7 | 86.11 41 | 91.47 33 | 79.70 12 | 85.76 43 | 66.91 111 | 95.46 12 | 87.89 51 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| ACMMPR | | | 83.62 13 | 83.93 18 | 82.69 12 | 89.78 11 | 77.51 19 | 87.01 14 | 84.19 68 | 70.23 50 | 84.49 65 | 90.67 53 | 75.15 41 | 86.37 19 | 79.58 11 | 94.26 49 | 84.18 126 |
|
| APD-MVS_3200maxsize | | | 83.57 14 | 84.33 13 | 81.31 29 | 82.83 106 | 73.53 41 | 85.50 27 | 87.45 13 | 74.11 20 | 86.45 36 | 90.52 58 | 80.02 10 | 84.48 71 | 77.73 28 | 94.34 47 | 85.93 77 |
|
| region2R | | | 83.54 15 | 83.86 20 | 82.58 15 | 89.82 10 | 77.53 17 | 87.06 13 | 84.23 67 | 70.19 52 | 83.86 73 | 90.72 52 | 75.20 40 | 86.27 22 | 79.41 15 | 94.25 50 | 83.95 131 |
|
| XVS | | | 83.51 16 | 83.73 21 | 82.85 9 | 89.43 16 | 77.61 15 | 86.80 17 | 84.66 56 | 72.71 30 | 82.87 83 | 90.39 65 | 73.86 52 | 86.31 20 | 78.84 20 | 94.03 53 | 84.64 106 |
|
| LPG-MVS_test | | | 83.47 17 | 84.33 13 | 80.90 33 | 87.00 40 | 70.41 61 | 82.04 60 | 86.35 18 | 69.77 54 | 87.75 16 | 91.13 37 | 81.83 3 | 86.20 25 | 77.13 36 | 95.96 6 | 86.08 73 |
|
| HFP-MVS | | | 83.39 18 | 84.03 17 | 81.48 24 | 89.25 21 | 75.69 25 | 87.01 14 | 84.27 64 | 70.23 50 | 84.47 66 | 90.43 60 | 76.79 26 | 85.94 35 | 79.58 11 | 94.23 51 | 82.82 167 |
|
| MTAPA | | | 83.19 19 | 83.87 19 | 81.13 31 | 91.16 3 | 78.16 12 | 84.87 30 | 80.63 130 | 72.08 39 | 84.93 58 | 90.79 48 | 74.65 46 | 84.42 73 | 80.98 5 | 94.75 29 | 80.82 206 |
|
| MP-MVS |  | | 83.19 19 | 83.54 24 | 82.14 20 | 90.54 5 | 79.00 9 | 86.42 22 | 83.59 77 | 71.31 43 | 81.26 103 | 90.96 42 | 74.57 47 | 84.69 67 | 78.41 22 | 94.78 28 | 82.74 170 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| ZNCC-MVS | | | 83.12 21 | 83.68 22 | 81.45 25 | 89.14 25 | 73.28 43 | 86.32 23 | 85.97 27 | 67.39 64 | 84.02 70 | 90.39 65 | 74.73 45 | 86.46 16 | 80.73 7 | 94.43 40 | 84.60 111 |
|
| PGM-MVS | | | 83.07 22 | 83.25 31 | 82.54 16 | 89.57 14 | 77.21 21 | 82.04 60 | 85.40 37 | 67.96 63 | 84.91 61 | 90.88 45 | 75.59 36 | 86.57 15 | 78.16 23 | 94.71 31 | 83.82 133 |
|
| SteuartSystems-ACMMP | | | 83.07 22 | 83.64 23 | 81.35 27 | 85.14 69 | 71.00 55 | 85.53 26 | 84.78 49 | 70.91 47 | 85.64 46 | 90.41 62 | 75.55 38 | 87.69 5 | 79.75 8 | 95.08 20 | 85.36 88 |
| Skip Steuart: Steuart Systems R&D Blog. |
| APDe-MVS |  | | 82.88 24 | 84.14 15 | 79.08 53 | 84.80 75 | 66.72 91 | 86.54 20 | 85.11 42 | 72.00 40 | 86.65 32 | 91.75 27 | 78.20 20 | 87.04 10 | 77.93 26 | 94.32 48 | 83.47 145 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| GST-MVS | | | 82.79 25 | 83.27 30 | 81.34 28 | 88.99 27 | 73.29 42 | 85.94 25 | 85.13 41 | 68.58 61 | 84.14 69 | 90.21 75 | 73.37 56 | 86.41 17 | 79.09 19 | 93.98 56 | 84.30 125 |
|
| ACMP | | 69.50 8 | 82.64 26 | 83.38 27 | 80.40 38 | 86.50 46 | 69.44 68 | 82.30 56 | 86.08 26 | 66.80 69 | 86.70 31 | 89.99 78 | 81.64 6 | 85.95 34 | 74.35 51 | 96.11 4 | 85.81 79 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| MP-MVS-pluss | | | 82.54 27 | 83.46 26 | 79.76 42 | 88.88 31 | 68.44 77 | 81.57 63 | 86.33 20 | 63.17 112 | 85.38 54 | 91.26 36 | 76.33 30 | 84.67 68 | 83.30 2 | 94.96 23 | 86.17 72 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| ACMMP_NAP | | | 82.33 28 | 83.28 29 | 79.46 49 | 89.28 19 | 69.09 75 | 83.62 43 | 84.98 45 | 64.77 94 | 83.97 71 | 91.02 41 | 75.53 39 | 85.93 37 | 82.00 3 | 94.36 45 | 83.35 151 |
|
| SMA-MVS |  | | 82.12 29 | 82.68 39 | 80.43 37 | 88.90 30 | 69.52 66 | 85.12 29 | 84.76 50 | 63.53 106 | 84.23 68 | 91.47 33 | 72.02 64 | 87.16 8 | 79.74 10 | 94.36 45 | 84.61 109 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| ACMM | | 69.25 9 | 82.11 30 | 83.31 28 | 78.49 64 | 88.17 37 | 73.96 35 | 83.11 51 | 84.52 60 | 66.40 73 | 87.45 23 | 89.16 96 | 81.02 8 | 80.52 139 | 74.27 52 | 95.73 8 | 80.98 202 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| DPE-MVS |  | | 82.00 31 | 83.02 34 | 78.95 58 | 85.36 66 | 67.25 86 | 82.91 52 | 84.98 45 | 73.52 25 | 85.43 53 | 90.03 77 | 76.37 29 | 86.97 12 | 74.56 48 | 94.02 55 | 82.62 173 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| SED-MVS | | | 81.78 32 | 83.48 25 | 76.67 83 | 86.12 54 | 61.06 140 | 83.62 43 | 84.72 52 | 72.61 33 | 87.38 25 | 89.70 83 | 77.48 23 | 85.89 40 | 75.29 43 | 94.39 41 | 83.08 159 |
|
| PMVS |  | 70.70 6 | 81.70 33 | 83.15 32 | 77.36 77 | 90.35 6 | 82.82 3 | 82.15 57 | 79.22 156 | 74.08 21 | 87.16 29 | 91.97 21 | 84.80 2 | 76.97 198 | 64.98 123 | 93.61 60 | 72.28 306 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| UA-Net | | | 81.56 34 | 82.28 41 | 79.40 50 | 88.91 29 | 69.16 73 | 84.67 33 | 80.01 143 | 75.34 16 | 79.80 119 | 94.91 2 | 69.79 85 | 80.25 143 | 72.63 64 | 94.46 36 | 88.78 44 |
|
| CPTT-MVS | | | 81.51 35 | 81.76 44 | 80.76 35 | 89.20 23 | 78.75 10 | 86.48 21 | 82.03 100 | 68.80 57 | 80.92 108 | 88.52 112 | 72.00 65 | 82.39 102 | 74.80 45 | 93.04 68 | 81.14 196 |
|
| DVP-MVS++ | | | 81.24 36 | 82.74 38 | 76.76 82 | 83.14 96 | 60.90 144 | 91.64 1 | 85.49 33 | 74.03 22 | 84.93 58 | 90.38 67 | 66.82 110 | 85.90 38 | 77.43 31 | 90.78 113 | 83.49 142 |
|
| ACMH+ | | 66.64 10 | 81.20 37 | 82.48 40 | 77.35 78 | 81.16 129 | 62.39 125 | 80.51 71 | 87.80 8 | 73.02 27 | 87.57 21 | 91.08 39 | 80.28 9 | 82.44 101 | 64.82 124 | 96.10 5 | 87.21 60 |
|
| DVP-MVS |  | | 81.15 38 | 83.12 33 | 75.24 105 | 86.16 52 | 60.78 147 | 83.77 41 | 80.58 132 | 72.48 35 | 85.83 44 | 90.41 62 | 78.57 17 | 85.69 45 | 75.86 40 | 94.39 41 | 79.24 234 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| APD-MVS |  | | 81.13 39 | 81.73 45 | 79.36 51 | 84.47 80 | 70.53 60 | 83.85 39 | 83.70 75 | 69.43 56 | 83.67 75 | 88.96 102 | 75.89 34 | 86.41 17 | 72.62 65 | 92.95 69 | 81.14 196 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| 3Dnovator+ | | 73.19 2 | 81.08 40 | 80.48 52 | 82.87 8 | 81.41 124 | 72.03 46 | 84.38 35 | 86.23 25 | 77.28 15 | 80.65 112 | 90.18 76 | 59.80 184 | 87.58 6 | 73.06 60 | 91.34 93 | 89.01 36 |
|
| DeepC-MVS | | 72.44 4 | 81.00 41 | 80.83 51 | 81.50 23 | 86.70 45 | 70.03 65 | 82.06 58 | 87.00 15 | 59.89 134 | 80.91 109 | 90.53 56 | 72.19 61 | 88.56 2 | 73.67 56 | 94.52 35 | 85.92 78 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| OPM-MVS | | | 80.99 42 | 81.63 47 | 79.07 54 | 86.86 44 | 69.39 69 | 79.41 88 | 84.00 73 | 65.64 77 | 85.54 50 | 89.28 89 | 76.32 31 | 83.47 86 | 74.03 53 | 93.57 62 | 84.35 122 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| LS3D | | | 80.99 42 | 80.85 50 | 81.41 26 | 78.37 165 | 71.37 51 | 87.45 7 | 85.87 29 | 77.48 13 | 81.98 92 | 89.95 80 | 69.14 88 | 85.26 54 | 66.15 113 | 91.24 95 | 87.61 55 |
|
| SF-MVS | | | 80.72 44 | 81.80 43 | 77.48 74 | 82.03 116 | 64.40 112 | 83.41 47 | 88.46 6 | 65.28 85 | 84.29 67 | 89.18 94 | 73.73 55 | 83.22 90 | 76.01 39 | 93.77 58 | 84.81 103 |
|
| XVG-ACMP-BASELINE | | | 80.54 45 | 81.06 49 | 78.98 57 | 87.01 39 | 72.91 44 | 80.23 79 | 85.56 32 | 66.56 72 | 85.64 46 | 89.57 85 | 69.12 89 | 80.55 138 | 72.51 66 | 93.37 63 | 83.48 144 |
|
| MSP-MVS | | | 80.49 46 | 79.67 59 | 82.96 6 | 89.70 12 | 77.46 20 | 87.16 11 | 85.10 43 | 64.94 93 | 81.05 106 | 88.38 116 | 57.10 213 | 87.10 9 | 79.75 8 | 83.87 231 | 84.31 123 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| PEN-MVS | | | 80.46 47 | 82.91 35 | 73.11 135 | 89.83 9 | 39.02 323 | 77.06 116 | 82.61 92 | 80.04 5 | 90.60 7 | 92.85 11 | 74.93 44 | 85.21 57 | 63.15 143 | 95.15 18 | 95.09 2 |
|
| PS-CasMVS | | | 80.41 48 | 82.86 37 | 73.07 136 | 89.93 7 | 39.21 320 | 77.15 114 | 81.28 114 | 79.74 6 | 90.87 5 | 92.73 13 | 75.03 43 | 84.93 62 | 63.83 135 | 95.19 16 | 95.07 3 |
|
| DTE-MVSNet | | | 80.35 49 | 82.89 36 | 72.74 150 | 89.84 8 | 37.34 340 | 77.16 113 | 81.81 104 | 80.45 4 | 90.92 4 | 92.95 9 | 74.57 47 | 86.12 30 | 63.65 136 | 94.68 32 | 94.76 6 |
|
| SD-MVS | | | 80.28 50 | 81.55 48 | 76.47 88 | 83.57 90 | 67.83 81 | 83.39 48 | 85.35 39 | 64.42 96 | 86.14 40 | 87.07 132 | 74.02 51 | 80.97 130 | 77.70 29 | 92.32 80 | 80.62 214 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| WR-MVS_H | | | 80.22 51 | 82.17 42 | 74.39 113 | 89.46 15 | 42.69 297 | 78.24 100 | 82.24 96 | 78.21 10 | 89.57 10 | 92.10 20 | 68.05 98 | 85.59 48 | 66.04 116 | 95.62 10 | 94.88 5 |
|
| HPM-MVS++ |  | | 79.89 52 | 79.80 58 | 80.18 40 | 89.02 26 | 78.44 11 | 83.49 46 | 80.18 140 | 64.71 95 | 78.11 139 | 88.39 115 | 65.46 128 | 83.14 91 | 77.64 30 | 91.20 96 | 78.94 238 |
|
| XVG-OURS-SEG-HR | | | 79.62 53 | 79.99 56 | 78.49 64 | 86.46 47 | 74.79 30 | 77.15 114 | 85.39 38 | 66.73 70 | 80.39 115 | 88.85 105 | 74.43 50 | 78.33 179 | 74.73 47 | 85.79 203 | 82.35 178 |
|
| XVG-OURS | | | 79.51 54 | 79.82 57 | 78.58 63 | 86.11 57 | 74.96 29 | 76.33 126 | 84.95 47 | 66.89 67 | 82.75 86 | 88.99 101 | 66.82 110 | 78.37 177 | 74.80 45 | 90.76 116 | 82.40 177 |
|
| CP-MVSNet | | | 79.48 55 | 81.65 46 | 72.98 139 | 89.66 13 | 39.06 322 | 76.76 117 | 80.46 134 | 78.91 8 | 90.32 8 | 91.70 28 | 68.49 93 | 84.89 63 | 63.40 140 | 95.12 19 | 95.01 4 |
|
| OMC-MVS | | | 79.41 56 | 78.79 66 | 81.28 30 | 80.62 134 | 70.71 59 | 80.91 67 | 84.76 50 | 62.54 116 | 81.77 95 | 86.65 147 | 71.46 68 | 83.53 85 | 67.95 96 | 92.44 76 | 89.60 26 |
|
| v7n | | | 79.37 57 | 80.41 53 | 76.28 90 | 78.67 164 | 55.81 182 | 79.22 90 | 82.51 94 | 70.72 48 | 87.54 22 | 92.44 16 | 68.00 100 | 81.34 118 | 72.84 62 | 91.72 84 | 91.69 12 |
|
| TSAR-MVS + MP. | | | 79.05 58 | 78.81 65 | 79.74 43 | 88.94 28 | 67.52 84 | 86.61 19 | 81.38 112 | 51.71 227 | 77.15 150 | 91.42 35 | 65.49 127 | 87.20 7 | 79.44 14 | 87.17 187 | 84.51 117 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| mvs_tets | | | 78.93 59 | 78.67 68 | 79.72 44 | 84.81 74 | 73.93 36 | 80.65 69 | 76.50 196 | 51.98 225 | 87.40 24 | 91.86 25 | 76.09 33 | 78.53 169 | 68.58 86 | 90.20 122 | 86.69 68 |
|
| test_djsdf | | | 78.88 60 | 78.27 72 | 80.70 36 | 81.42 123 | 71.24 53 | 83.98 37 | 75.72 203 | 52.27 220 | 87.37 27 | 92.25 18 | 68.04 99 | 80.56 136 | 72.28 68 | 91.15 98 | 90.32 23 |
|
| HQP_MVS | | | 78.77 61 | 78.78 67 | 78.72 60 | 85.18 67 | 65.18 105 | 82.74 53 | 85.49 33 | 65.45 80 | 78.23 136 | 89.11 97 | 60.83 173 | 86.15 28 | 71.09 71 | 90.94 105 | 84.82 101 |
|
| bld_raw_dy_0_64 | | | 78.68 62 | 79.65 60 | 75.78 96 | 81.22 128 | 48.82 233 | 84.61 34 | 85.68 30 | 71.63 42 | 86.52 35 | 93.06 7 | 55.45 225 | 84.65 69 | 69.70 83 | 88.98 153 | 93.87 7 |
|
| anonymousdsp | | | 78.60 63 | 77.80 76 | 81.00 32 | 78.01 171 | 74.34 34 | 80.09 81 | 76.12 198 | 50.51 244 | 89.19 11 | 90.88 45 | 71.45 69 | 77.78 191 | 73.38 57 | 90.60 118 | 90.90 19 |
|
| OurMVSNet-221017-0 | | | 78.57 64 | 78.53 70 | 78.67 61 | 80.48 135 | 64.16 113 | 80.24 78 | 82.06 99 | 61.89 120 | 88.77 13 | 93.32 5 | 57.15 211 | 82.60 100 | 70.08 78 | 92.80 71 | 89.25 30 |
|
| jajsoiax | | | 78.51 65 | 78.16 74 | 79.59 47 | 84.65 77 | 73.83 38 | 80.42 73 | 76.12 198 | 51.33 235 | 87.19 28 | 91.51 32 | 73.79 54 | 78.44 173 | 68.27 89 | 90.13 126 | 86.49 70 |
|
| CNVR-MVS | | | 78.49 66 | 78.59 69 | 78.16 68 | 85.86 61 | 67.40 85 | 78.12 103 | 81.50 108 | 63.92 100 | 77.51 147 | 86.56 151 | 68.43 95 | 84.82 65 | 73.83 54 | 91.61 88 | 82.26 182 |
|
| DeepPCF-MVS | | 71.07 5 | 78.48 67 | 77.14 83 | 82.52 17 | 84.39 83 | 77.04 22 | 76.35 124 | 84.05 71 | 56.66 165 | 80.27 116 | 85.31 178 | 68.56 92 | 87.03 11 | 67.39 103 | 91.26 94 | 83.50 141 |
|
| DP-MVS | | | 78.44 68 | 79.29 63 | 75.90 94 | 81.86 119 | 65.33 103 | 79.05 91 | 84.63 58 | 74.83 19 | 80.41 114 | 86.27 159 | 71.68 66 | 83.45 87 | 62.45 147 | 92.40 77 | 78.92 239 |
|
| NCCC | | | 78.25 69 | 78.04 75 | 78.89 59 | 85.61 63 | 69.45 67 | 79.80 85 | 80.99 123 | 65.77 76 | 75.55 182 | 86.25 161 | 67.42 103 | 85.42 50 | 70.10 77 | 90.88 111 | 81.81 188 |
|
| test_0402 | | | 78.17 70 | 79.48 61 | 74.24 115 | 83.50 91 | 59.15 161 | 72.52 166 | 74.60 213 | 75.34 16 | 88.69 14 | 91.81 26 | 75.06 42 | 82.37 103 | 65.10 121 | 88.68 156 | 81.20 194 |
|
| MM | | | 78.15 71 | 77.68 77 | 79.55 48 | 80.10 139 | 65.47 101 | 80.94 66 | 78.74 166 | 71.22 44 | 72.40 229 | 88.70 107 | 60.51 175 | 87.70 4 | 77.40 33 | 89.13 150 | 85.48 87 |
|
| iter_conf05 | | | 77.90 72 | 79.33 62 | 73.61 126 | 80.83 130 | 46.85 260 | 82.06 58 | 86.72 17 | 72.78 28 | 85.44 52 | 91.94 22 | 56.47 220 | 83.95 77 | 70.51 75 | 87.24 183 | 90.02 24 |
|
| AllTest | | | 77.66 73 | 77.43 79 | 78.35 66 | 79.19 153 | 70.81 56 | 78.60 95 | 88.64 4 | 65.37 83 | 80.09 117 | 88.17 120 | 70.33 78 | 78.43 174 | 55.60 204 | 90.90 109 | 85.81 79 |
|
| PS-MVSNAJss | | | 77.54 74 | 77.35 81 | 78.13 70 | 84.88 72 | 66.37 93 | 78.55 96 | 79.59 150 | 53.48 212 | 86.29 37 | 92.43 17 | 62.39 152 | 80.25 143 | 67.90 97 | 90.61 117 | 87.77 52 |
|
| ACMH | | 63.62 14 | 77.50 75 | 80.11 55 | 69.68 194 | 79.61 143 | 56.28 178 | 78.81 93 | 83.62 76 | 63.41 110 | 87.14 30 | 90.23 74 | 76.11 32 | 73.32 240 | 67.58 98 | 94.44 39 | 79.44 232 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| CDPH-MVS | | | 77.33 76 | 77.06 84 | 78.14 69 | 84.21 84 | 63.98 115 | 76.07 130 | 83.45 78 | 54.20 199 | 77.68 146 | 87.18 128 | 69.98 82 | 85.37 51 | 68.01 94 | 92.72 74 | 85.08 94 |
|
| mvsmamba | | | 77.20 77 | 76.37 88 | 79.69 46 | 80.34 137 | 61.52 133 | 80.58 70 | 82.12 98 | 53.54 211 | 83.93 72 | 91.03 40 | 49.49 257 | 85.97 33 | 73.26 58 | 93.08 67 | 91.59 13 |
|
| DeepC-MVS_fast | | 69.89 7 | 77.17 78 | 76.33 90 | 79.70 45 | 83.90 88 | 67.94 79 | 80.06 83 | 83.75 74 | 56.73 164 | 74.88 191 | 85.32 177 | 65.54 126 | 87.79 3 | 65.61 120 | 91.14 99 | 83.35 151 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| EC-MVSNet | | | 77.08 79 | 77.39 80 | 76.14 92 | 76.86 191 | 56.87 176 | 80.32 77 | 87.52 12 | 63.45 108 | 74.66 196 | 84.52 186 | 69.87 84 | 84.94 61 | 69.76 80 | 89.59 138 | 86.60 69 |
|
| MVSMamba_PlusPlus | | | 76.88 80 | 78.21 73 | 72.88 146 | 80.83 130 | 48.71 234 | 83.28 49 | 82.79 87 | 72.78 28 | 79.17 125 | 91.94 22 | 56.47 220 | 83.95 77 | 70.51 75 | 86.15 198 | 85.99 76 |
|
| X-MVStestdata | | | 76.81 81 | 74.79 105 | 82.85 9 | 89.43 16 | 77.61 15 | 86.80 17 | 84.66 56 | 72.71 30 | 82.87 83 | 9.95 408 | 73.86 52 | 86.31 20 | 78.84 20 | 94.03 53 | 84.64 106 |
|
| UniMVSNet_ETH3D | | | 76.74 82 | 79.02 64 | 69.92 192 | 89.27 20 | 43.81 284 | 74.47 151 | 71.70 233 | 72.33 38 | 85.50 51 | 93.65 4 | 77.98 21 | 76.88 201 | 54.60 215 | 91.64 86 | 89.08 34 |
|
| CS-MVS | | | 76.51 83 | 76.00 93 | 78.06 71 | 77.02 183 | 64.77 109 | 80.78 68 | 82.66 91 | 60.39 130 | 74.15 204 | 83.30 207 | 69.65 86 | 82.07 109 | 69.27 84 | 86.75 193 | 87.36 58 |
|
| train_agg | | | 76.38 84 | 76.55 87 | 75.86 95 | 85.47 64 | 69.32 71 | 76.42 122 | 78.69 167 | 54.00 204 | 76.97 152 | 86.74 141 | 66.60 115 | 81.10 124 | 72.50 67 | 91.56 89 | 77.15 261 |
|
| MVS_0304 | | | 76.32 85 | 75.96 95 | 77.42 76 | 79.33 148 | 60.86 146 | 80.18 80 | 74.88 210 | 66.93 66 | 69.11 268 | 88.95 103 | 57.84 207 | 86.12 30 | 76.63 38 | 89.77 135 | 85.28 89 |
|
| TranMVSNet+NR-MVSNet | | | 76.13 86 | 77.66 78 | 71.56 167 | 84.61 78 | 42.57 299 | 70.98 195 | 78.29 176 | 68.67 60 | 83.04 79 | 89.26 90 | 72.99 58 | 80.75 135 | 55.58 207 | 95.47 11 | 91.35 14 |
|
| tt0805 | | | 76.12 87 | 78.43 71 | 69.20 202 | 81.32 125 | 41.37 305 | 76.72 118 | 77.64 185 | 63.78 103 | 82.06 91 | 87.88 125 | 79.78 11 | 79.05 160 | 64.33 128 | 92.40 77 | 87.17 63 |
|
| SixPastTwentyTwo | | | 75.77 88 | 76.34 89 | 74.06 118 | 81.69 121 | 54.84 187 | 76.47 119 | 75.49 205 | 64.10 99 | 87.73 18 | 92.24 19 | 50.45 253 | 81.30 120 | 67.41 101 | 91.46 91 | 86.04 75 |
|
| RPSCF | | | 75.76 89 | 74.37 110 | 79.93 41 | 74.81 217 | 77.53 17 | 77.53 108 | 79.30 155 | 59.44 137 | 78.88 129 | 89.80 82 | 71.26 71 | 73.09 242 | 57.45 187 | 80.89 263 | 89.17 33 |
|
| v10 | | | 75.69 90 | 76.20 91 | 74.16 116 | 74.44 226 | 48.69 235 | 75.84 134 | 82.93 86 | 59.02 142 | 85.92 42 | 89.17 95 | 58.56 194 | 82.74 98 | 70.73 73 | 89.14 149 | 91.05 16 |
|
| testf1 | | | 75.66 91 | 76.57 85 | 72.95 140 | 67.07 321 | 67.62 82 | 76.10 128 | 80.68 128 | 64.95 91 | 86.58 33 | 90.94 43 | 71.20 72 | 71.68 263 | 60.46 162 | 91.13 100 | 79.56 228 |
|
| APD_test2 | | | 75.66 91 | 76.57 85 | 72.95 140 | 67.07 321 | 67.62 82 | 76.10 128 | 80.68 128 | 64.95 91 | 86.58 33 | 90.94 43 | 71.20 72 | 71.68 263 | 60.46 162 | 91.13 100 | 79.56 228 |
|
| Anonymous20231211 | | | 75.54 93 | 77.19 82 | 70.59 176 | 77.67 177 | 45.70 273 | 74.73 146 | 80.19 139 | 68.80 57 | 82.95 82 | 92.91 10 | 66.26 119 | 76.76 203 | 58.41 182 | 92.77 72 | 89.30 29 |
|
| Effi-MVS+-dtu | | | 75.43 94 | 72.28 151 | 84.91 3 | 77.05 181 | 83.58 2 | 78.47 97 | 77.70 184 | 57.68 153 | 74.89 190 | 78.13 282 | 64.80 134 | 84.26 75 | 56.46 197 | 85.32 210 | 86.88 65 |
|
| iter_conf05_11 | | | 75.31 95 | 75.20 103 | 75.61 99 | 76.77 192 | 54.48 191 | 83.28 49 | 86.25 24 | 55.47 177 | 79.17 125 | 86.44 155 | 52.98 238 | 84.17 76 | 68.03 92 | 88.46 158 | 88.17 49 |
|
| F-COLMAP | | | 75.29 96 | 73.99 116 | 79.18 52 | 81.73 120 | 71.90 47 | 81.86 62 | 82.98 84 | 59.86 135 | 72.27 230 | 84.00 193 | 64.56 136 | 83.07 94 | 51.48 237 | 87.19 186 | 82.56 175 |
|
| casdiffmvs_mvg |  | | 75.26 97 | 76.18 92 | 72.52 155 | 72.87 255 | 49.47 228 | 72.94 164 | 84.71 54 | 59.49 136 | 80.90 110 | 88.81 106 | 70.07 81 | 79.71 151 | 67.40 102 | 88.39 159 | 88.40 48 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| HQP-MVS | | | 75.24 98 | 75.01 104 | 75.94 93 | 82.37 110 | 58.80 166 | 77.32 110 | 84.12 69 | 59.08 138 | 71.58 238 | 85.96 171 | 58.09 200 | 85.30 53 | 67.38 105 | 89.16 146 | 83.73 138 |
|
| TAPA-MVS | | 65.27 12 | 75.16 99 | 74.29 112 | 77.77 72 | 74.86 216 | 68.08 78 | 77.89 104 | 84.04 72 | 55.15 180 | 76.19 177 | 83.39 201 | 66.91 108 | 80.11 147 | 60.04 169 | 90.14 125 | 85.13 92 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| IS-MVSNet | | | 75.10 100 | 75.42 101 | 74.15 117 | 79.23 151 | 48.05 244 | 79.43 86 | 78.04 180 | 70.09 53 | 79.17 125 | 88.02 124 | 53.04 237 | 83.60 83 | 58.05 184 | 93.76 59 | 90.79 20 |
|
| v8 | | | 75.07 101 | 75.64 98 | 73.35 129 | 73.42 240 | 47.46 254 | 75.20 137 | 81.45 110 | 60.05 132 | 85.64 46 | 89.26 90 | 58.08 202 | 81.80 113 | 69.71 82 | 87.97 167 | 90.79 20 |
|
| APD_test1 | | | 75.04 102 | 75.38 102 | 74.02 119 | 69.89 287 | 70.15 63 | 76.46 120 | 79.71 146 | 65.50 79 | 82.99 81 | 88.60 111 | 66.94 107 | 72.35 253 | 59.77 172 | 88.54 157 | 79.56 228 |
|
| UniMVSNet (Re) | | | 75.00 103 | 75.48 100 | 73.56 127 | 83.14 96 | 47.92 246 | 70.41 204 | 81.04 122 | 63.67 104 | 79.54 121 | 86.37 157 | 62.83 146 | 81.82 112 | 57.10 191 | 95.25 15 | 90.94 18 |
|
| PHI-MVS | | | 74.92 104 | 74.36 111 | 76.61 84 | 76.40 195 | 62.32 126 | 80.38 74 | 83.15 82 | 54.16 201 | 73.23 219 | 80.75 239 | 62.19 155 | 83.86 80 | 68.02 93 | 90.92 108 | 83.65 139 |
|
| DU-MVS | | | 74.91 105 | 75.57 99 | 72.93 143 | 83.50 91 | 45.79 270 | 69.47 214 | 80.14 141 | 65.22 86 | 81.74 97 | 87.08 130 | 61.82 158 | 81.07 126 | 56.21 199 | 94.98 21 | 91.93 10 |
|
| UniMVSNet_NR-MVSNet | | | 74.90 106 | 75.65 97 | 72.64 153 | 83.04 101 | 45.79 270 | 69.26 217 | 78.81 162 | 66.66 71 | 81.74 97 | 86.88 136 | 63.26 142 | 81.07 126 | 56.21 199 | 94.98 21 | 91.05 16 |
|
| CS-MVS-test | | | 74.89 107 | 74.23 113 | 76.86 81 | 77.01 184 | 62.94 123 | 78.98 92 | 84.61 59 | 58.62 145 | 70.17 258 | 80.80 238 | 66.74 114 | 81.96 110 | 61.74 150 | 89.40 144 | 85.69 84 |
|
| nrg030 | | | 74.87 108 | 75.99 94 | 71.52 168 | 74.90 215 | 49.88 227 | 74.10 156 | 82.58 93 | 54.55 192 | 83.50 77 | 89.21 92 | 71.51 67 | 75.74 211 | 61.24 154 | 92.34 79 | 88.94 39 |
|
| Vis-MVSNet |  | | 74.85 109 | 74.56 107 | 75.72 97 | 81.63 122 | 64.64 110 | 76.35 124 | 79.06 158 | 62.85 114 | 73.33 217 | 88.41 114 | 62.54 150 | 79.59 154 | 63.94 134 | 82.92 241 | 82.94 163 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| MSLP-MVS++ | | | 74.48 110 | 75.78 96 | 70.59 176 | 84.66 76 | 62.40 124 | 78.65 94 | 84.24 66 | 60.55 129 | 77.71 145 | 81.98 223 | 63.12 143 | 77.64 193 | 62.95 144 | 88.14 162 | 71.73 311 |
|
| AdaColmap |  | | 74.22 111 | 74.56 107 | 73.20 132 | 81.95 117 | 60.97 142 | 79.43 86 | 80.90 124 | 65.57 78 | 72.54 227 | 81.76 227 | 70.98 75 | 85.26 54 | 47.88 272 | 90.00 127 | 73.37 292 |
|
| CSCG | | | 74.12 112 | 74.39 109 | 73.33 130 | 79.35 147 | 61.66 132 | 77.45 109 | 81.98 101 | 62.47 118 | 79.06 128 | 80.19 249 | 61.83 157 | 78.79 166 | 59.83 171 | 87.35 176 | 79.54 231 |
|
| test_fmvsmconf0.01_n | | | 73.91 113 | 73.64 123 | 74.71 106 | 69.79 291 | 66.25 94 | 75.90 132 | 79.90 144 | 46.03 283 | 76.48 171 | 85.02 181 | 67.96 101 | 73.97 235 | 74.47 50 | 87.22 184 | 83.90 132 |
|
| PAPM_NR | | | 73.91 113 | 74.16 114 | 73.16 133 | 81.90 118 | 53.50 198 | 81.28 64 | 81.40 111 | 66.17 74 | 73.30 218 | 83.31 206 | 59.96 180 | 83.10 93 | 58.45 181 | 81.66 258 | 82.87 165 |
|
| EPP-MVSNet | | | 73.86 115 | 73.38 127 | 75.31 103 | 78.19 167 | 53.35 200 | 80.45 72 | 77.32 189 | 65.11 89 | 76.47 172 | 86.80 137 | 49.47 258 | 83.77 81 | 53.89 224 | 92.72 74 | 88.81 43 |
|
| K. test v3 | | | 73.67 116 | 73.61 124 | 73.87 121 | 79.78 141 | 55.62 185 | 74.69 148 | 62.04 309 | 66.16 75 | 84.76 62 | 93.23 6 | 49.47 258 | 80.97 130 | 65.66 119 | 86.67 194 | 85.02 96 |
|
| NR-MVSNet | | | 73.62 117 | 74.05 115 | 72.33 160 | 83.50 91 | 43.71 285 | 65.65 270 | 77.32 189 | 64.32 97 | 75.59 181 | 87.08 130 | 62.45 151 | 81.34 118 | 54.90 210 | 95.63 9 | 91.93 10 |
|
| DP-MVS Recon | | | 73.57 118 | 72.69 143 | 76.23 91 | 82.85 105 | 63.39 118 | 74.32 152 | 82.96 85 | 57.75 152 | 70.35 254 | 81.98 223 | 64.34 138 | 84.41 74 | 49.69 251 | 89.95 129 | 80.89 204 |
|
| CNLPA | | | 73.44 119 | 73.03 138 | 74.66 107 | 78.27 166 | 75.29 27 | 75.99 131 | 78.49 171 | 65.39 82 | 75.67 180 | 83.22 212 | 61.23 166 | 66.77 308 | 53.70 226 | 85.33 209 | 81.92 187 |
|
| MCST-MVS | | | 73.42 120 | 73.34 130 | 73.63 125 | 81.28 126 | 59.17 160 | 74.80 144 | 83.13 83 | 45.50 286 | 72.84 222 | 83.78 197 | 65.15 131 | 80.99 128 | 64.54 125 | 89.09 152 | 80.73 210 |
|
| v1192 | | | 73.40 121 | 73.42 125 | 73.32 131 | 74.65 223 | 48.67 236 | 72.21 169 | 81.73 105 | 52.76 217 | 81.85 93 | 84.56 185 | 57.12 212 | 82.24 107 | 68.58 86 | 87.33 178 | 89.06 35 |
|
| 114514_t | | | 73.40 121 | 73.33 131 | 73.64 124 | 84.15 86 | 57.11 174 | 78.20 101 | 80.02 142 | 43.76 302 | 72.55 226 | 86.07 169 | 64.00 139 | 83.35 89 | 60.14 167 | 91.03 104 | 80.45 217 |
|
| FC-MVSNet-test | | | 73.32 123 | 74.78 106 | 68.93 211 | 79.21 152 | 36.57 342 | 71.82 182 | 79.54 152 | 57.63 157 | 82.57 88 | 90.38 67 | 59.38 187 | 78.99 162 | 57.91 185 | 94.56 34 | 91.23 15 |
|
| v1144 | | | 73.29 124 | 73.39 126 | 73.01 137 | 74.12 232 | 48.11 242 | 72.01 174 | 81.08 121 | 53.83 208 | 81.77 95 | 84.68 183 | 58.07 203 | 81.91 111 | 68.10 90 | 86.86 189 | 88.99 38 |
|
| test_fmvsmconf0.1_n | | | 73.26 125 | 72.82 142 | 74.56 108 | 69.10 297 | 66.18 96 | 74.65 150 | 79.34 154 | 45.58 285 | 75.54 183 | 83.91 194 | 67.19 105 | 73.88 238 | 73.26 58 | 86.86 189 | 83.63 140 |
|
| GeoE | | | 73.14 126 | 73.77 121 | 71.26 171 | 78.09 169 | 52.64 203 | 74.32 152 | 79.56 151 | 56.32 168 | 76.35 175 | 83.36 205 | 70.76 76 | 77.96 187 | 63.32 141 | 81.84 252 | 83.18 156 |
|
| baseline | | | 73.10 127 | 73.96 117 | 70.51 178 | 71.46 265 | 46.39 267 | 72.08 171 | 84.40 62 | 55.95 172 | 76.62 164 | 86.46 154 | 67.20 104 | 78.03 186 | 64.22 129 | 87.27 182 | 87.11 64 |
|
| h-mvs33 | | | 73.08 128 | 71.61 160 | 77.48 74 | 83.89 89 | 72.89 45 | 70.47 202 | 71.12 249 | 54.28 195 | 77.89 140 | 83.41 200 | 49.04 262 | 80.98 129 | 63.62 137 | 90.77 115 | 78.58 242 |
|
| TSAR-MVS + GP. | | | 73.08 128 | 71.60 161 | 77.54 73 | 78.99 160 | 70.73 58 | 74.96 139 | 69.38 261 | 60.73 128 | 74.39 201 | 78.44 276 | 57.72 208 | 82.78 97 | 60.16 166 | 89.60 137 | 79.11 236 |
|
| v1240 | | | 73.06 130 | 73.14 133 | 72.84 147 | 74.74 219 | 47.27 258 | 71.88 181 | 81.11 118 | 51.80 226 | 82.28 90 | 84.21 190 | 56.22 223 | 82.34 104 | 68.82 85 | 87.17 187 | 88.91 40 |
|
| casdiffmvs |  | | 73.06 130 | 73.84 118 | 70.72 174 | 71.32 266 | 46.71 263 | 70.93 196 | 84.26 65 | 55.62 175 | 77.46 148 | 87.10 129 | 67.09 106 | 77.81 189 | 63.95 132 | 86.83 191 | 87.64 54 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| IterMVS-LS | | | 73.01 132 | 73.12 135 | 72.66 152 | 73.79 236 | 49.90 223 | 71.63 184 | 78.44 172 | 58.22 147 | 80.51 113 | 86.63 148 | 58.15 198 | 79.62 152 | 62.51 145 | 88.20 161 | 88.48 46 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| CANet | | | 73.00 133 | 71.84 155 | 76.48 87 | 75.82 205 | 61.28 136 | 74.81 142 | 80.37 137 | 63.17 112 | 62.43 327 | 80.50 243 | 61.10 170 | 85.16 60 | 64.00 131 | 84.34 227 | 83.01 162 |
|
| v144192 | | | 72.99 134 | 73.06 137 | 72.77 148 | 74.58 224 | 47.48 253 | 71.90 180 | 80.44 135 | 51.57 229 | 81.46 101 | 84.11 192 | 58.04 204 | 82.12 108 | 67.98 95 | 87.47 173 | 88.70 45 |
|
| MVS_111021_HR | | | 72.98 135 | 72.97 140 | 72.99 138 | 80.82 132 | 65.47 101 | 68.81 224 | 72.77 225 | 57.67 154 | 75.76 179 | 82.38 219 | 71.01 74 | 77.17 196 | 61.38 153 | 86.15 198 | 76.32 267 |
|
| v1921920 | | | 72.96 136 | 72.98 139 | 72.89 145 | 74.67 220 | 47.58 252 | 71.92 179 | 80.69 127 | 51.70 228 | 81.69 99 | 83.89 195 | 56.58 218 | 82.25 106 | 68.34 88 | 87.36 175 | 88.82 42 |
|
| test_fmvsmconf_n | | | 72.91 137 | 72.40 149 | 74.46 109 | 68.62 301 | 66.12 97 | 74.21 155 | 78.80 164 | 45.64 284 | 74.62 197 | 83.25 209 | 66.80 113 | 73.86 239 | 72.97 61 | 86.66 195 | 83.39 148 |
|
| CLD-MVS | | | 72.88 138 | 72.36 150 | 74.43 112 | 77.03 182 | 54.30 192 | 68.77 227 | 83.43 79 | 52.12 222 | 76.79 161 | 74.44 311 | 69.54 87 | 83.91 79 | 55.88 202 | 93.25 66 | 85.09 93 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| EI-MVSNet-Vis-set | | | 72.78 139 | 71.87 154 | 75.54 101 | 74.77 218 | 59.02 164 | 72.24 168 | 71.56 236 | 63.92 100 | 78.59 131 | 71.59 333 | 66.22 120 | 78.60 168 | 67.58 98 | 80.32 270 | 89.00 37 |
|
| ETV-MVS | | | 72.72 140 | 72.16 153 | 74.38 114 | 76.90 189 | 55.95 179 | 73.34 161 | 84.67 55 | 62.04 119 | 72.19 233 | 70.81 338 | 65.90 123 | 85.24 56 | 58.64 179 | 84.96 217 | 81.95 186 |
|
| PCF-MVS | | 63.80 13 | 72.70 141 | 71.69 157 | 75.72 97 | 78.10 168 | 60.01 154 | 73.04 163 | 81.50 108 | 45.34 290 | 79.66 120 | 84.35 189 | 65.15 131 | 82.65 99 | 48.70 261 | 89.38 145 | 84.50 118 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| EI-MVSNet-UG-set | | | 72.63 142 | 71.68 158 | 75.47 102 | 74.67 220 | 58.64 169 | 72.02 173 | 71.50 237 | 63.53 106 | 78.58 133 | 71.39 337 | 65.98 121 | 78.53 169 | 67.30 108 | 80.18 272 | 89.23 31 |
|
| Anonymous20240529 | | | 72.56 143 | 73.79 120 | 68.86 213 | 76.89 190 | 45.21 275 | 68.80 226 | 77.25 191 | 67.16 65 | 76.89 156 | 90.44 59 | 65.95 122 | 74.19 233 | 50.75 243 | 90.00 127 | 87.18 62 |
|
| FIs | | | 72.56 143 | 73.80 119 | 68.84 214 | 78.74 163 | 37.74 336 | 71.02 194 | 79.83 145 | 56.12 169 | 80.88 111 | 89.45 87 | 58.18 196 | 78.28 180 | 56.63 193 | 93.36 64 | 90.51 22 |
|
| v2v482 | | | 72.55 145 | 72.58 145 | 72.43 157 | 72.92 254 | 46.72 262 | 71.41 187 | 79.13 157 | 55.27 178 | 81.17 105 | 85.25 179 | 55.41 226 | 81.13 123 | 67.25 109 | 85.46 205 | 89.43 28 |
|
| test_fmvsmvis_n_1920 | | | 72.36 146 | 72.49 146 | 71.96 163 | 71.29 267 | 64.06 114 | 72.79 165 | 81.82 103 | 40.23 333 | 81.25 104 | 81.04 235 | 70.62 77 | 68.69 284 | 69.74 81 | 83.60 237 | 83.14 157 |
|
| hse-mvs2 | | | 72.32 147 | 70.66 172 | 77.31 79 | 83.10 100 | 71.77 48 | 69.19 219 | 71.45 239 | 54.28 195 | 77.89 140 | 78.26 278 | 49.04 262 | 79.23 157 | 63.62 137 | 89.13 150 | 80.92 203 |
|
| sasdasda | | | 72.29 148 | 73.38 127 | 69.04 205 | 74.23 227 | 47.37 255 | 73.93 158 | 83.18 80 | 54.36 193 | 76.61 165 | 81.64 229 | 72.03 62 | 75.34 215 | 57.12 189 | 87.28 180 | 84.40 119 |
|
| canonicalmvs | | | 72.29 148 | 73.38 127 | 69.04 205 | 74.23 227 | 47.37 255 | 73.93 158 | 83.18 80 | 54.36 193 | 76.61 165 | 81.64 229 | 72.03 62 | 75.34 215 | 57.12 189 | 87.28 180 | 84.40 119 |
|
| Effi-MVS+ | | | 72.10 150 | 72.28 151 | 71.58 166 | 74.21 230 | 50.33 216 | 74.72 147 | 82.73 89 | 62.62 115 | 70.77 250 | 76.83 292 | 69.96 83 | 80.97 130 | 60.20 164 | 78.43 290 | 83.45 147 |
|
| MVS_111021_LR | | | 72.10 150 | 71.82 156 | 72.95 140 | 79.53 145 | 73.90 37 | 70.45 203 | 66.64 275 | 56.87 161 | 76.81 160 | 81.76 227 | 68.78 90 | 71.76 261 | 61.81 148 | 83.74 233 | 73.18 294 |
|
| pmmvs6 | | | 71.82 152 | 73.66 122 | 66.31 244 | 75.94 204 | 42.01 301 | 66.99 252 | 72.53 228 | 63.45 108 | 76.43 173 | 92.78 12 | 72.95 59 | 69.69 277 | 51.41 238 | 90.46 119 | 87.22 59 |
|
| PLC |  | 62.01 16 | 71.79 153 | 70.28 174 | 76.33 89 | 80.31 138 | 68.63 76 | 78.18 102 | 81.24 115 | 54.57 191 | 67.09 296 | 80.63 241 | 59.44 185 | 81.74 115 | 46.91 279 | 84.17 228 | 78.63 240 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| MGCFI-Net | | | 71.70 154 | 73.10 136 | 67.49 230 | 73.23 244 | 43.08 293 | 72.06 172 | 82.43 95 | 54.58 190 | 75.97 178 | 82.00 221 | 72.42 60 | 75.22 217 | 57.84 186 | 87.34 177 | 84.18 126 |
|
| VDDNet | | | 71.60 155 | 73.13 134 | 67.02 237 | 86.29 48 | 41.11 307 | 69.97 208 | 66.50 276 | 68.72 59 | 74.74 192 | 91.70 28 | 59.90 181 | 75.81 209 | 48.58 263 | 91.72 84 | 84.15 128 |
|
| 3Dnovator | | 65.95 11 | 71.50 156 | 71.22 166 | 72.34 159 | 73.16 245 | 63.09 121 | 78.37 98 | 78.32 174 | 57.67 154 | 72.22 232 | 84.61 184 | 54.77 227 | 78.47 171 | 60.82 160 | 81.07 262 | 75.45 273 |
|
| FA-MVS(test-final) | | | 71.27 157 | 71.06 167 | 71.92 164 | 73.96 233 | 52.32 205 | 76.45 121 | 76.12 198 | 59.07 141 | 74.04 209 | 86.18 162 | 52.18 242 | 79.43 156 | 59.75 173 | 81.76 253 | 84.03 129 |
|
| WR-MVS | | | 71.20 158 | 72.48 147 | 67.36 232 | 84.98 71 | 35.70 350 | 64.43 285 | 68.66 266 | 65.05 90 | 81.49 100 | 86.43 156 | 57.57 209 | 76.48 205 | 50.36 247 | 93.32 65 | 89.90 25 |
|
| V42 | | | 71.06 159 | 70.83 170 | 71.72 165 | 67.25 317 | 47.14 259 | 65.94 264 | 80.35 138 | 51.35 234 | 83.40 78 | 83.23 210 | 59.25 188 | 78.80 165 | 65.91 117 | 80.81 266 | 89.23 31 |
|
| FMVSNet1 | | | 71.06 159 | 72.48 147 | 66.81 238 | 77.65 178 | 40.68 311 | 71.96 176 | 73.03 220 | 61.14 124 | 79.45 123 | 90.36 70 | 60.44 176 | 75.20 219 | 50.20 248 | 88.05 164 | 84.54 113 |
|
| dcpmvs_2 | | | 71.02 161 | 72.65 144 | 66.16 245 | 76.06 203 | 50.49 214 | 71.97 175 | 79.36 153 | 50.34 245 | 82.81 85 | 83.63 198 | 64.38 137 | 67.27 299 | 61.54 152 | 83.71 235 | 80.71 212 |
|
| API-MVS | | | 70.97 162 | 71.51 163 | 69.37 197 | 75.20 210 | 55.94 180 | 80.99 65 | 76.84 193 | 62.48 117 | 71.24 246 | 77.51 288 | 61.51 162 | 80.96 133 | 52.04 233 | 85.76 204 | 71.22 316 |
|
| VDD-MVS | | | 70.81 163 | 71.44 164 | 68.91 212 | 79.07 158 | 46.51 264 | 67.82 239 | 70.83 253 | 61.23 123 | 74.07 207 | 88.69 108 | 59.86 182 | 75.62 212 | 51.11 240 | 90.28 121 | 84.61 109 |
|
| EG-PatchMatch MVS | | | 70.70 164 | 70.88 169 | 70.16 186 | 82.64 109 | 58.80 166 | 71.48 185 | 73.64 217 | 54.98 181 | 76.55 168 | 81.77 226 | 61.10 170 | 78.94 163 | 54.87 211 | 80.84 265 | 72.74 301 |
|
| Baseline_NR-MVSNet | | | 70.62 165 | 73.19 132 | 62.92 275 | 76.97 185 | 34.44 358 | 68.84 222 | 70.88 252 | 60.25 131 | 79.50 122 | 90.53 56 | 61.82 158 | 69.11 281 | 54.67 214 | 95.27 14 | 85.22 90 |
|
| alignmvs | | | 70.54 166 | 71.00 168 | 69.15 204 | 73.50 238 | 48.04 245 | 69.85 211 | 79.62 147 | 53.94 207 | 76.54 169 | 82.00 221 | 59.00 190 | 74.68 226 | 57.32 188 | 87.21 185 | 84.72 104 |
|
| MG-MVS | | | 70.47 167 | 71.34 165 | 67.85 226 | 79.26 150 | 40.42 315 | 74.67 149 | 75.15 209 | 58.41 146 | 68.74 280 | 88.14 123 | 56.08 224 | 83.69 82 | 59.90 170 | 81.71 257 | 79.43 233 |
|
| AUN-MVS | | | 70.22 168 | 67.88 204 | 77.22 80 | 82.96 104 | 71.61 49 | 69.08 220 | 71.39 240 | 49.17 259 | 71.70 236 | 78.07 283 | 37.62 329 | 79.21 158 | 61.81 148 | 89.15 148 | 80.82 206 |
|
| UGNet | | | 70.20 169 | 69.05 184 | 73.65 123 | 76.24 197 | 63.64 116 | 75.87 133 | 72.53 228 | 61.48 122 | 60.93 337 | 86.14 165 | 52.37 241 | 77.12 197 | 50.67 244 | 85.21 211 | 80.17 222 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| PVSNet_Blended_VisFu | | | 70.04 170 | 68.88 187 | 73.53 128 | 82.71 107 | 63.62 117 | 74.81 142 | 81.95 102 | 48.53 264 | 67.16 295 | 79.18 267 | 51.42 248 | 78.38 176 | 54.39 219 | 79.72 279 | 78.60 241 |
|
| Fast-Effi-MVS+-dtu | | | 70.00 171 | 68.74 191 | 73.77 122 | 73.47 239 | 64.53 111 | 71.36 188 | 78.14 179 | 55.81 174 | 68.84 278 | 74.71 308 | 65.36 129 | 75.75 210 | 52.00 234 | 79.00 284 | 81.03 199 |
|
| DPM-MVS | | | 69.98 172 | 69.22 183 | 72.26 161 | 82.69 108 | 58.82 165 | 70.53 201 | 81.23 116 | 47.79 271 | 64.16 312 | 80.21 247 | 51.32 249 | 83.12 92 | 60.14 167 | 84.95 218 | 74.83 279 |
|
| MVSFormer | | | 69.93 173 | 69.03 185 | 72.63 154 | 74.93 213 | 59.19 158 | 83.98 37 | 75.72 203 | 52.27 220 | 63.53 322 | 76.74 293 | 43.19 293 | 80.56 136 | 72.28 68 | 78.67 288 | 78.14 249 |
|
| MVS_Test | | | 69.84 174 | 70.71 171 | 67.24 233 | 67.49 315 | 43.25 292 | 69.87 210 | 81.22 117 | 52.69 218 | 71.57 241 | 86.68 144 | 62.09 156 | 74.51 228 | 66.05 115 | 78.74 286 | 83.96 130 |
|
| c3_l | | | 69.82 175 | 69.89 176 | 69.61 195 | 66.24 327 | 43.48 288 | 68.12 236 | 79.61 149 | 51.43 231 | 77.72 144 | 80.18 250 | 54.61 230 | 78.15 185 | 63.62 137 | 87.50 172 | 87.20 61 |
|
| test_fmvsm_n_1920 | | | 69.63 176 | 68.45 194 | 73.16 133 | 70.56 276 | 65.86 99 | 70.26 205 | 78.35 173 | 37.69 349 | 74.29 202 | 78.89 272 | 61.10 170 | 68.10 290 | 65.87 118 | 79.07 283 | 85.53 86 |
|
| TransMVSNet (Re) | | | 69.62 177 | 71.63 159 | 63.57 265 | 76.51 194 | 35.93 348 | 65.75 269 | 71.29 244 | 61.05 125 | 75.02 188 | 89.90 81 | 65.88 124 | 70.41 275 | 49.79 250 | 89.48 140 | 84.38 121 |
|
| EI-MVSNet | | | 69.61 178 | 69.01 186 | 71.41 170 | 73.94 234 | 49.90 223 | 71.31 190 | 71.32 242 | 58.22 147 | 75.40 186 | 70.44 340 | 58.16 197 | 75.85 207 | 62.51 145 | 79.81 276 | 88.48 46 |
|
| Gipuma |  | | 69.55 179 | 72.83 141 | 59.70 300 | 63.63 347 | 53.97 195 | 80.08 82 | 75.93 201 | 64.24 98 | 73.49 214 | 88.93 104 | 57.89 206 | 62.46 328 | 59.75 173 | 91.55 90 | 62.67 370 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| tttt0517 | | | 69.46 180 | 67.79 206 | 74.46 109 | 75.34 208 | 52.72 202 | 75.05 138 | 63.27 302 | 54.69 187 | 78.87 130 | 84.37 188 | 26.63 382 | 81.15 122 | 63.95 132 | 87.93 168 | 89.51 27 |
|
| eth_miper_zixun_eth | | | 69.42 181 | 68.73 192 | 71.50 169 | 67.99 309 | 46.42 265 | 67.58 241 | 78.81 162 | 50.72 242 | 78.13 138 | 80.34 246 | 50.15 255 | 80.34 141 | 60.18 165 | 84.65 221 | 87.74 53 |
|
| BH-untuned | | | 69.39 182 | 69.46 178 | 69.18 203 | 77.96 172 | 56.88 175 | 68.47 233 | 77.53 186 | 56.77 163 | 77.79 143 | 79.63 258 | 60.30 178 | 80.20 146 | 46.04 286 | 80.65 267 | 70.47 322 |
|
| v148 | | | 69.38 183 | 69.39 179 | 69.36 198 | 69.14 296 | 44.56 279 | 68.83 223 | 72.70 226 | 54.79 185 | 78.59 131 | 84.12 191 | 54.69 228 | 76.74 204 | 59.40 176 | 82.20 246 | 86.79 66 |
|
| PAPR | | | 69.20 184 | 68.66 193 | 70.82 173 | 75.15 212 | 47.77 249 | 75.31 136 | 81.11 118 | 49.62 255 | 66.33 298 | 79.27 264 | 61.53 161 | 82.96 95 | 48.12 269 | 81.50 260 | 81.74 190 |
|
| QAPM | | | 69.18 185 | 69.26 181 | 68.94 210 | 71.61 263 | 52.58 204 | 80.37 75 | 78.79 165 | 49.63 254 | 73.51 213 | 85.14 180 | 53.66 234 | 79.12 159 | 55.11 209 | 75.54 312 | 75.11 278 |
|
| LCM-MVSNet-Re | | | 69.10 186 | 71.57 162 | 61.70 284 | 70.37 281 | 34.30 360 | 61.45 305 | 79.62 147 | 56.81 162 | 89.59 9 | 88.16 122 | 68.44 94 | 72.94 243 | 42.30 306 | 87.33 178 | 77.85 255 |
|
| EPNet | | | 69.10 186 | 67.32 211 | 74.46 109 | 68.33 305 | 61.27 137 | 77.56 106 | 63.57 300 | 60.95 126 | 56.62 361 | 82.75 213 | 51.53 247 | 81.24 121 | 54.36 220 | 90.20 122 | 80.88 205 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| DELS-MVS | | | 68.83 188 | 68.31 195 | 70.38 179 | 70.55 278 | 48.31 238 | 63.78 291 | 82.13 97 | 54.00 204 | 68.96 272 | 75.17 304 | 58.95 191 | 80.06 148 | 58.55 180 | 82.74 243 | 82.76 168 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| Fast-Effi-MVS+ | | | 68.81 189 | 68.30 196 | 70.35 181 | 74.66 222 | 48.61 237 | 66.06 263 | 78.32 174 | 50.62 243 | 71.48 244 | 75.54 300 | 68.75 91 | 79.59 154 | 50.55 246 | 78.73 287 | 82.86 166 |
|
| OpenMVS |  | 62.51 15 | 68.76 190 | 68.75 190 | 68.78 215 | 70.56 276 | 53.91 196 | 78.29 99 | 77.35 188 | 48.85 262 | 70.22 256 | 83.52 199 | 52.65 240 | 76.93 199 | 55.31 208 | 81.99 248 | 75.49 272 |
|
| VPA-MVSNet | | | 68.71 191 | 70.37 173 | 63.72 263 | 76.13 199 | 38.06 334 | 64.10 287 | 71.48 238 | 56.60 167 | 74.10 206 | 88.31 117 | 64.78 135 | 69.72 276 | 47.69 274 | 90.15 124 | 83.37 150 |
|
| BH-RMVSNet | | | 68.69 192 | 68.20 200 | 70.14 187 | 76.40 195 | 53.90 197 | 64.62 282 | 73.48 218 | 58.01 149 | 73.91 211 | 81.78 225 | 59.09 189 | 78.22 181 | 48.59 262 | 77.96 296 | 78.31 245 |
|
| EIA-MVS | | | 68.59 193 | 67.16 213 | 72.90 144 | 75.18 211 | 55.64 184 | 69.39 215 | 81.29 113 | 52.44 219 | 64.53 308 | 70.69 339 | 60.33 177 | 82.30 105 | 54.27 221 | 76.31 306 | 80.75 209 |
|
| pm-mvs1 | | | 68.40 194 | 69.85 177 | 64.04 261 | 73.10 249 | 39.94 317 | 64.61 283 | 70.50 254 | 55.52 176 | 73.97 210 | 89.33 88 | 63.91 140 | 68.38 287 | 49.68 252 | 88.02 165 | 83.81 134 |
|
| miper_ehance_all_eth | | | 68.36 195 | 68.16 201 | 68.98 208 | 65.14 338 | 43.34 290 | 67.07 251 | 78.92 161 | 49.11 260 | 76.21 176 | 77.72 285 | 53.48 235 | 77.92 188 | 61.16 156 | 84.59 223 | 85.68 85 |
|
| GBi-Net | | | 68.30 196 | 68.79 188 | 66.81 238 | 73.14 246 | 40.68 311 | 71.96 176 | 73.03 220 | 54.81 182 | 74.72 193 | 90.36 70 | 48.63 268 | 75.20 219 | 47.12 276 | 85.37 206 | 84.54 113 |
|
| test1 | | | 68.30 196 | 68.79 188 | 66.81 238 | 73.14 246 | 40.68 311 | 71.96 176 | 73.03 220 | 54.81 182 | 74.72 193 | 90.36 70 | 48.63 268 | 75.20 219 | 47.12 276 | 85.37 206 | 84.54 113 |
|
| FE-MVS | | | 68.29 198 | 66.96 217 | 72.26 161 | 74.16 231 | 54.24 193 | 77.55 107 | 73.42 219 | 57.65 156 | 72.66 224 | 84.91 182 | 32.02 355 | 81.49 117 | 48.43 265 | 81.85 251 | 81.04 198 |
|
| DIV-MVS_self_test | | | 68.27 199 | 68.26 197 | 68.29 221 | 64.98 339 | 43.67 286 | 65.89 265 | 74.67 211 | 50.04 251 | 76.86 158 | 82.43 217 | 48.74 266 | 75.38 213 | 60.94 158 | 89.81 132 | 85.81 79 |
|
| cl____ | | | 68.26 200 | 68.26 197 | 68.29 221 | 64.98 339 | 43.67 286 | 65.89 265 | 74.67 211 | 50.04 251 | 76.86 158 | 82.42 218 | 48.74 266 | 75.38 213 | 60.92 159 | 89.81 132 | 85.80 83 |
|
| TinyColmap | | | 67.98 201 | 69.28 180 | 64.08 259 | 67.98 310 | 46.82 261 | 70.04 206 | 75.26 207 | 53.05 214 | 77.36 149 | 86.79 138 | 59.39 186 | 72.59 250 | 45.64 289 | 88.01 166 | 72.83 299 |
|
| xiu_mvs_v1_base_debu | | | 67.87 202 | 67.07 214 | 70.26 182 | 79.13 155 | 61.90 129 | 67.34 245 | 71.25 245 | 47.98 267 | 67.70 288 | 74.19 316 | 61.31 163 | 72.62 247 | 56.51 194 | 78.26 292 | 76.27 268 |
|
| xiu_mvs_v1_base | | | 67.87 202 | 67.07 214 | 70.26 182 | 79.13 155 | 61.90 129 | 67.34 245 | 71.25 245 | 47.98 267 | 67.70 288 | 74.19 316 | 61.31 163 | 72.62 247 | 56.51 194 | 78.26 292 | 76.27 268 |
|
| xiu_mvs_v1_base_debi | | | 67.87 202 | 67.07 214 | 70.26 182 | 79.13 155 | 61.90 129 | 67.34 245 | 71.25 245 | 47.98 267 | 67.70 288 | 74.19 316 | 61.31 163 | 72.62 247 | 56.51 194 | 78.26 292 | 76.27 268 |
|
| MAR-MVS | | | 67.72 205 | 66.16 223 | 72.40 158 | 74.45 225 | 64.99 108 | 74.87 140 | 77.50 187 | 48.67 263 | 65.78 302 | 68.58 363 | 57.01 215 | 77.79 190 | 46.68 282 | 81.92 249 | 74.42 285 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| IterMVS-SCA-FT | | | 67.68 206 | 66.07 225 | 72.49 156 | 73.34 242 | 58.20 171 | 63.80 290 | 65.55 284 | 48.10 266 | 76.91 155 | 82.64 216 | 45.20 280 | 78.84 164 | 61.20 155 | 77.89 297 | 80.44 218 |
|
| LF4IMVS | | | 67.50 207 | 67.31 212 | 68.08 224 | 58.86 373 | 61.93 128 | 71.43 186 | 75.90 202 | 44.67 296 | 72.42 228 | 80.20 248 | 57.16 210 | 70.44 273 | 58.99 178 | 86.12 200 | 71.88 309 |
|
| fmvsm_l_conf0.5_n | | | 67.48 208 | 66.88 219 | 69.28 201 | 67.41 316 | 62.04 127 | 70.69 200 | 69.85 258 | 39.46 336 | 69.59 264 | 81.09 234 | 58.15 198 | 68.73 283 | 67.51 100 | 78.16 295 | 77.07 265 |
|
| FMVSNet2 | | | 67.48 208 | 68.21 199 | 65.29 250 | 73.14 246 | 38.94 324 | 68.81 224 | 71.21 248 | 54.81 182 | 76.73 162 | 86.48 153 | 48.63 268 | 74.60 227 | 47.98 271 | 86.11 201 | 82.35 178 |
|
| MSDG | | | 67.47 210 | 67.48 210 | 67.46 231 | 70.70 272 | 54.69 189 | 66.90 255 | 78.17 177 | 60.88 127 | 70.41 253 | 74.76 306 | 61.22 168 | 73.18 241 | 47.38 275 | 76.87 302 | 74.49 283 |
|
| diffmvs |  | | 67.42 211 | 67.50 209 | 67.20 234 | 62.26 352 | 45.21 275 | 64.87 279 | 77.04 192 | 48.21 265 | 71.74 235 | 79.70 257 | 58.40 195 | 71.17 267 | 64.99 122 | 80.27 271 | 85.22 90 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| fmvsm_s_conf0.1_n_a | | | 67.37 212 | 66.36 221 | 70.37 180 | 70.86 269 | 61.17 138 | 74.00 157 | 57.18 328 | 40.77 328 | 68.83 279 | 80.88 237 | 63.11 144 | 67.61 295 | 66.94 110 | 74.72 319 | 82.33 181 |
|
| cl22 | | | 67.14 213 | 66.51 220 | 69.03 207 | 63.20 348 | 43.46 289 | 66.88 256 | 76.25 197 | 49.22 258 | 74.48 199 | 77.88 284 | 45.49 279 | 77.40 195 | 60.64 161 | 84.59 223 | 86.24 71 |
|
| ANet_high | | | 67.08 214 | 69.94 175 | 58.51 309 | 57.55 379 | 27.09 391 | 58.43 328 | 76.80 194 | 63.56 105 | 82.40 89 | 91.93 24 | 59.82 183 | 64.98 319 | 50.10 249 | 88.86 155 | 83.46 146 |
|
| LFMVS | | | 67.06 215 | 67.89 203 | 64.56 255 | 78.02 170 | 38.25 331 | 70.81 199 | 59.60 316 | 65.18 87 | 71.06 248 | 86.56 151 | 43.85 289 | 75.22 217 | 46.35 283 | 89.63 136 | 80.21 221 |
|
| thisisatest0530 | | | 67.05 216 | 65.16 235 | 72.73 151 | 73.10 249 | 50.55 213 | 71.26 192 | 63.91 298 | 50.22 248 | 74.46 200 | 80.75 239 | 26.81 381 | 80.25 143 | 59.43 175 | 86.50 196 | 87.37 57 |
|
| fmvsm_s_conf0.5_n_a | | | 67.00 217 | 65.95 228 | 70.17 185 | 69.72 292 | 61.16 139 | 73.34 161 | 56.83 331 | 40.96 325 | 68.36 282 | 80.08 252 | 62.84 145 | 67.57 296 | 66.90 112 | 74.50 323 | 81.78 189 |
|
| fmvsm_l_conf0.5_n_a | | | 66.66 218 | 65.97 227 | 68.72 216 | 67.09 319 | 61.38 135 | 70.03 207 | 69.15 263 | 38.59 343 | 68.41 281 | 80.36 245 | 56.56 219 | 68.32 288 | 66.10 114 | 77.45 299 | 76.46 266 |
|
| fmvsm_s_conf0.1_n | | | 66.60 219 | 65.54 229 | 69.77 193 | 68.99 298 | 59.15 161 | 72.12 170 | 56.74 333 | 40.72 330 | 68.25 285 | 80.14 251 | 61.18 169 | 66.92 302 | 67.34 107 | 74.40 324 | 83.23 155 |
|
| MIMVSNet1 | | | 66.57 220 | 69.23 182 | 58.59 308 | 81.26 127 | 37.73 337 | 64.06 288 | 57.62 321 | 57.02 160 | 78.40 135 | 90.75 49 | 62.65 147 | 58.10 347 | 41.77 311 | 89.58 139 | 79.95 223 |
|
| tfpnnormal | | | 66.48 221 | 67.93 202 | 62.16 281 | 73.40 241 | 36.65 341 | 63.45 293 | 64.99 288 | 55.97 171 | 72.82 223 | 87.80 126 | 57.06 214 | 69.10 282 | 48.31 267 | 87.54 170 | 80.72 211 |
|
| KD-MVS_self_test | | | 66.38 222 | 67.51 208 | 62.97 273 | 61.76 354 | 34.39 359 | 58.11 331 | 75.30 206 | 50.84 241 | 77.12 151 | 85.42 176 | 56.84 216 | 69.44 278 | 51.07 241 | 91.16 97 | 85.08 94 |
|
| SDMVSNet | | | 66.36 223 | 67.85 205 | 61.88 283 | 73.04 252 | 46.14 269 | 58.54 326 | 71.36 241 | 51.42 232 | 68.93 274 | 82.72 214 | 65.62 125 | 62.22 331 | 54.41 218 | 84.67 219 | 77.28 258 |
|
| fmvsm_s_conf0.5_n | | | 66.34 224 | 65.27 232 | 69.57 196 | 68.20 306 | 59.14 163 | 71.66 183 | 56.48 334 | 40.92 326 | 67.78 287 | 79.46 260 | 61.23 166 | 66.90 303 | 67.39 103 | 74.32 327 | 82.66 172 |
|
| Anonymous202405211 | | | 66.02 225 | 66.89 218 | 63.43 268 | 74.22 229 | 38.14 332 | 59.00 322 | 66.13 278 | 63.33 111 | 69.76 263 | 85.95 172 | 51.88 243 | 70.50 272 | 44.23 297 | 87.52 171 | 81.64 191 |
|
| miper_enhance_ethall | | | 65.86 226 | 65.05 242 | 68.28 223 | 61.62 356 | 42.62 298 | 64.74 280 | 77.97 181 | 42.52 312 | 73.42 216 | 72.79 326 | 49.66 256 | 77.68 192 | 58.12 183 | 84.59 223 | 84.54 113 |
|
| RPMNet | | | 65.77 227 | 65.08 241 | 67.84 227 | 66.37 324 | 48.24 240 | 70.93 196 | 86.27 21 | 54.66 188 | 61.35 331 | 86.77 140 | 33.29 343 | 85.67 47 | 55.93 201 | 70.17 356 | 69.62 331 |
|
| VPNet | | | 65.58 228 | 67.56 207 | 59.65 301 | 79.72 142 | 30.17 380 | 60.27 316 | 62.14 305 | 54.19 200 | 71.24 246 | 86.63 148 | 58.80 192 | 67.62 294 | 44.17 298 | 90.87 112 | 81.18 195 |
|
| PVSNet_BlendedMVS | | | 65.38 229 | 64.30 243 | 68.61 217 | 69.81 288 | 49.36 229 | 65.60 272 | 78.96 159 | 45.50 286 | 59.98 340 | 78.61 274 | 51.82 244 | 78.20 182 | 44.30 295 | 84.11 229 | 78.27 246 |
|
| TAMVS | | | 65.31 230 | 63.75 249 | 69.97 191 | 82.23 114 | 59.76 156 | 66.78 257 | 63.37 301 | 45.20 291 | 69.79 262 | 79.37 263 | 47.42 274 | 72.17 254 | 34.48 360 | 85.15 213 | 77.99 253 |
|
| test_yl | | | 65.11 231 | 65.09 239 | 65.18 251 | 70.59 274 | 40.86 309 | 63.22 298 | 72.79 223 | 57.91 150 | 68.88 276 | 79.07 270 | 42.85 296 | 74.89 223 | 45.50 291 | 84.97 214 | 79.81 224 |
|
| DCV-MVSNet | | | 65.11 231 | 65.09 239 | 65.18 251 | 70.59 274 | 40.86 309 | 63.22 298 | 72.79 223 | 57.91 150 | 68.88 276 | 79.07 270 | 42.85 296 | 74.89 223 | 45.50 291 | 84.97 214 | 79.81 224 |
|
| mvs_anonymous | | | 65.08 233 | 65.49 230 | 63.83 262 | 63.79 345 | 37.60 338 | 66.52 260 | 69.82 259 | 43.44 307 | 73.46 215 | 86.08 168 | 58.79 193 | 71.75 262 | 51.90 235 | 75.63 311 | 82.15 183 |
|
| FMVSNet3 | | | 65.00 234 | 65.16 235 | 64.52 256 | 69.47 293 | 37.56 339 | 66.63 258 | 70.38 255 | 51.55 230 | 74.72 193 | 83.27 208 | 37.89 327 | 74.44 229 | 47.12 276 | 85.37 206 | 81.57 192 |
|
| ECVR-MVS |  | | 64.82 235 | 65.22 233 | 63.60 264 | 78.80 161 | 31.14 375 | 66.97 253 | 56.47 335 | 54.23 197 | 69.94 260 | 88.68 109 | 37.23 330 | 74.81 225 | 45.28 294 | 89.41 142 | 84.86 99 |
|
| BH-w/o | | | 64.81 236 | 64.29 244 | 66.36 243 | 76.08 202 | 54.71 188 | 65.61 271 | 75.23 208 | 50.10 250 | 71.05 249 | 71.86 332 | 54.33 231 | 79.02 161 | 38.20 334 | 76.14 307 | 65.36 357 |
|
| EGC-MVSNET | | | 64.77 237 | 61.17 270 | 75.60 100 | 86.90 43 | 74.47 31 | 84.04 36 | 68.62 267 | 0.60 410 | 1.13 412 | 91.61 31 | 65.32 130 | 74.15 234 | 64.01 130 | 88.28 160 | 78.17 248 |
|
| test1111 | | | 64.62 238 | 65.19 234 | 62.93 274 | 79.01 159 | 29.91 381 | 65.45 273 | 54.41 345 | 54.09 202 | 71.47 245 | 88.48 113 | 37.02 331 | 74.29 232 | 46.83 281 | 89.94 130 | 84.58 112 |
|
| cascas | | | 64.59 239 | 62.77 260 | 70.05 189 | 75.27 209 | 50.02 220 | 61.79 304 | 71.61 234 | 42.46 313 | 63.68 319 | 68.89 359 | 49.33 260 | 80.35 140 | 47.82 273 | 84.05 230 | 79.78 226 |
|
| TR-MVS | | | 64.59 239 | 63.54 252 | 67.73 229 | 75.75 207 | 50.83 212 | 63.39 294 | 70.29 256 | 49.33 257 | 71.55 242 | 74.55 309 | 50.94 250 | 78.46 172 | 40.43 319 | 75.69 310 | 73.89 289 |
|
| PM-MVS | | | 64.49 241 | 63.61 251 | 67.14 236 | 76.68 193 | 75.15 28 | 68.49 232 | 42.85 390 | 51.17 238 | 77.85 142 | 80.51 242 | 45.76 276 | 66.31 311 | 52.83 232 | 76.35 305 | 59.96 379 |
|
| jason | | | 64.47 242 | 62.84 259 | 69.34 200 | 76.91 187 | 59.20 157 | 67.15 250 | 65.67 281 | 35.29 360 | 65.16 305 | 76.74 293 | 44.67 284 | 70.68 269 | 54.74 213 | 79.28 282 | 78.14 249 |
| jason: jason. |
| xiu_mvs_v2_base | | | 64.43 243 | 63.96 247 | 65.85 249 | 77.72 176 | 51.32 209 | 63.63 292 | 72.31 231 | 45.06 294 | 61.70 328 | 69.66 351 | 62.56 148 | 73.93 237 | 49.06 258 | 73.91 329 | 72.31 305 |
|
| pmmvs-eth3d | | | 64.41 244 | 63.27 255 | 67.82 228 | 75.81 206 | 60.18 153 | 69.49 213 | 62.05 308 | 38.81 342 | 74.13 205 | 82.23 220 | 43.76 290 | 68.65 285 | 42.53 305 | 80.63 269 | 74.63 280 |
|
| CDS-MVSNet | | | 64.33 245 | 62.66 261 | 69.35 199 | 80.44 136 | 58.28 170 | 65.26 275 | 65.66 282 | 44.36 297 | 67.30 294 | 75.54 300 | 43.27 292 | 71.77 260 | 37.68 337 | 84.44 226 | 78.01 252 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| PS-MVSNAJ | | | 64.27 246 | 63.73 250 | 65.90 248 | 77.82 174 | 51.42 208 | 63.33 295 | 72.33 230 | 45.09 293 | 61.60 329 | 68.04 365 | 62.39 152 | 73.95 236 | 49.07 257 | 73.87 330 | 72.34 304 |
|
| ab-mvs | | | 64.11 247 | 65.13 238 | 61.05 291 | 71.99 261 | 38.03 335 | 67.59 240 | 68.79 265 | 49.08 261 | 65.32 304 | 86.26 160 | 58.02 205 | 66.85 306 | 39.33 323 | 79.79 278 | 78.27 246 |
|
| CANet_DTU | | | 64.04 248 | 63.83 248 | 64.66 254 | 68.39 302 | 42.97 295 | 73.45 160 | 74.50 214 | 52.05 224 | 54.78 370 | 75.44 303 | 43.99 288 | 70.42 274 | 53.49 228 | 78.41 291 | 80.59 215 |
|
| VNet | | | 64.01 249 | 65.15 237 | 60.57 295 | 73.28 243 | 35.61 351 | 57.60 333 | 67.08 273 | 54.61 189 | 66.76 297 | 83.37 203 | 56.28 222 | 66.87 304 | 42.19 307 | 85.20 212 | 79.23 235 |
|
| sd_testset | | | 63.55 250 | 65.38 231 | 58.07 311 | 73.04 252 | 38.83 326 | 57.41 334 | 65.44 285 | 51.42 232 | 68.93 274 | 82.72 214 | 63.76 141 | 58.11 346 | 41.05 315 | 84.67 219 | 77.28 258 |
|
| Anonymous20240521 | | | 63.55 250 | 66.07 225 | 55.99 321 | 66.18 329 | 44.04 283 | 68.77 227 | 68.80 264 | 46.99 276 | 72.57 225 | 85.84 173 | 39.87 314 | 50.22 360 | 53.40 231 | 92.23 81 | 73.71 291 |
|
| lupinMVS | | | 63.36 252 | 61.49 268 | 68.97 209 | 74.93 213 | 59.19 158 | 65.80 268 | 64.52 294 | 34.68 365 | 63.53 322 | 74.25 314 | 43.19 293 | 70.62 270 | 53.88 225 | 78.67 288 | 77.10 262 |
|
| ET-MVSNet_ETH3D | | | 63.32 253 | 60.69 276 | 71.20 172 | 70.15 285 | 55.66 183 | 65.02 278 | 64.32 295 | 43.28 311 | 68.99 271 | 72.05 331 | 25.46 388 | 78.19 184 | 54.16 223 | 82.80 242 | 79.74 227 |
|
| MVSTER | | | 63.29 254 | 61.60 267 | 68.36 219 | 59.77 369 | 46.21 268 | 60.62 313 | 71.32 242 | 41.83 316 | 75.40 186 | 79.12 268 | 30.25 370 | 75.85 207 | 56.30 198 | 79.81 276 | 83.03 161 |
|
| OpenMVS_ROB |  | 54.93 17 | 63.23 255 | 63.28 254 | 63.07 271 | 69.81 288 | 45.34 274 | 68.52 231 | 67.14 272 | 43.74 303 | 70.61 252 | 79.22 265 | 47.90 272 | 72.66 246 | 48.75 260 | 73.84 331 | 71.21 317 |
|
| IterMVS | | | 63.12 256 | 62.48 262 | 65.02 253 | 66.34 326 | 52.86 201 | 63.81 289 | 62.25 304 | 46.57 279 | 71.51 243 | 80.40 244 | 44.60 285 | 66.82 307 | 51.38 239 | 75.47 313 | 75.38 275 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| HyFIR lowres test | | | 63.01 257 | 60.47 277 | 70.61 175 | 83.04 101 | 54.10 194 | 59.93 318 | 72.24 232 | 33.67 370 | 69.00 270 | 75.63 299 | 38.69 321 | 76.93 199 | 36.60 347 | 75.45 314 | 80.81 208 |
|
| GA-MVS | | | 62.91 258 | 61.66 264 | 66.66 242 | 67.09 319 | 44.49 280 | 61.18 309 | 69.36 262 | 51.33 235 | 69.33 267 | 74.47 310 | 36.83 332 | 74.94 222 | 50.60 245 | 74.72 319 | 80.57 216 |
|
| PVSNet_Blended | | | 62.90 259 | 61.64 265 | 66.69 241 | 69.81 288 | 49.36 229 | 61.23 308 | 78.96 159 | 42.04 314 | 59.98 340 | 68.86 360 | 51.82 244 | 78.20 182 | 44.30 295 | 77.77 298 | 72.52 302 |
|
| USDC | | | 62.80 260 | 63.10 257 | 61.89 282 | 65.19 335 | 43.30 291 | 67.42 244 | 74.20 215 | 35.80 359 | 72.25 231 | 84.48 187 | 45.67 277 | 71.95 259 | 37.95 336 | 84.97 214 | 70.42 324 |
|
| Vis-MVSNet (Re-imp) | | | 62.74 261 | 63.21 256 | 61.34 289 | 72.19 259 | 31.56 372 | 67.31 249 | 53.87 347 | 53.60 210 | 69.88 261 | 83.37 203 | 40.52 310 | 70.98 268 | 41.40 313 | 86.78 192 | 81.48 193 |
|
| patch_mono-2 | | | 62.73 262 | 64.08 246 | 58.68 307 | 70.36 282 | 55.87 181 | 60.84 311 | 64.11 297 | 41.23 321 | 64.04 313 | 78.22 279 | 60.00 179 | 48.80 364 | 54.17 222 | 83.71 235 | 71.37 313 |
|
| D2MVS | | | 62.58 263 | 61.05 272 | 67.20 234 | 63.85 344 | 47.92 246 | 56.29 340 | 69.58 260 | 39.32 337 | 70.07 259 | 78.19 280 | 34.93 338 | 72.68 245 | 53.44 229 | 83.74 233 | 81.00 201 |
|
| CL-MVSNet_self_test | | | 62.44 264 | 63.40 253 | 59.55 302 | 72.34 258 | 32.38 367 | 56.39 339 | 64.84 290 | 51.21 237 | 67.46 292 | 81.01 236 | 50.75 251 | 63.51 326 | 38.47 332 | 88.12 163 | 82.75 169 |
|
| MDA-MVSNet-bldmvs | | | 62.34 265 | 61.73 263 | 64.16 257 | 61.64 355 | 49.90 223 | 48.11 375 | 57.24 327 | 53.31 213 | 80.95 107 | 79.39 262 | 49.00 264 | 61.55 333 | 45.92 287 | 80.05 273 | 81.03 199 |
|
| miper_lstm_enhance | | | 61.97 266 | 61.63 266 | 62.98 272 | 60.04 363 | 45.74 272 | 47.53 377 | 70.95 250 | 44.04 298 | 73.06 220 | 78.84 273 | 39.72 315 | 60.33 336 | 55.82 203 | 84.64 222 | 82.88 164 |
|
| wuyk23d | | | 61.97 266 | 66.25 222 | 49.12 356 | 58.19 378 | 60.77 149 | 66.32 261 | 52.97 355 | 55.93 173 | 90.62 6 | 86.91 135 | 73.07 57 | 35.98 402 | 20.63 405 | 91.63 87 | 50.62 391 |
|
| thres600view7 | | | 61.82 268 | 61.38 269 | 63.12 270 | 71.81 262 | 34.93 355 | 64.64 281 | 56.99 329 | 54.78 186 | 70.33 255 | 79.74 256 | 32.07 353 | 72.42 252 | 38.61 330 | 83.46 238 | 82.02 184 |
|
| SSC-MVS | | | 61.79 269 | 66.08 224 | 48.89 358 | 76.91 187 | 10.00 414 | 53.56 359 | 47.37 377 | 68.20 62 | 76.56 167 | 89.21 92 | 54.13 232 | 57.59 348 | 54.75 212 | 74.07 328 | 79.08 237 |
|
| PAPM | | | 61.79 269 | 60.37 278 | 66.05 246 | 76.09 200 | 41.87 302 | 69.30 216 | 76.79 195 | 40.64 331 | 53.80 375 | 79.62 259 | 44.38 286 | 82.92 96 | 29.64 380 | 73.11 335 | 73.36 293 |
|
| MVP-Stereo | | | 61.56 271 | 59.22 284 | 68.58 218 | 79.28 149 | 60.44 151 | 69.20 218 | 71.57 235 | 43.58 305 | 56.42 362 | 78.37 277 | 39.57 317 | 76.46 206 | 34.86 359 | 60.16 387 | 68.86 338 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| CMPMVS |  | 48.73 20 | 61.54 272 | 60.89 273 | 63.52 266 | 61.08 358 | 51.55 207 | 68.07 237 | 68.00 270 | 33.88 367 | 65.87 300 | 81.25 232 | 37.91 326 | 67.71 292 | 49.32 256 | 82.60 244 | 71.31 315 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| test2506 | | | 61.23 273 | 60.85 274 | 62.38 279 | 78.80 161 | 27.88 389 | 67.33 248 | 37.42 403 | 54.23 197 | 67.55 291 | 88.68 109 | 17.87 407 | 74.39 230 | 46.33 284 | 89.41 142 | 84.86 99 |
|
| thres100view900 | | | 61.17 274 | 61.09 271 | 61.39 288 | 72.14 260 | 35.01 354 | 65.42 274 | 56.99 329 | 55.23 179 | 70.71 251 | 79.90 254 | 32.07 353 | 72.09 255 | 35.61 355 | 81.73 254 | 77.08 263 |
|
| Patchmtry | | | 60.91 275 | 63.01 258 | 54.62 328 | 66.10 330 | 26.27 395 | 67.47 243 | 56.40 336 | 54.05 203 | 72.04 234 | 86.66 145 | 33.19 344 | 60.17 337 | 43.69 299 | 87.45 174 | 77.42 256 |
|
| EU-MVSNet | | | 60.82 276 | 60.80 275 | 60.86 294 | 68.37 303 | 41.16 306 | 72.27 167 | 68.27 269 | 26.96 390 | 69.08 269 | 75.71 298 | 32.09 352 | 67.44 297 | 55.59 206 | 78.90 285 | 73.97 287 |
|
| pmmvs4 | | | 60.78 277 | 59.04 286 | 66.00 247 | 73.06 251 | 57.67 173 | 64.53 284 | 60.22 314 | 36.91 354 | 65.96 299 | 77.27 289 | 39.66 316 | 68.54 286 | 38.87 327 | 74.89 318 | 71.80 310 |
|
| thres400 | | | 60.77 278 | 59.97 280 | 63.15 269 | 70.78 270 | 35.35 352 | 63.27 296 | 57.47 322 | 53.00 215 | 68.31 283 | 77.09 290 | 32.45 350 | 72.09 255 | 35.61 355 | 81.73 254 | 82.02 184 |
|
| MVS | | | 60.62 279 | 59.97 280 | 62.58 277 | 68.13 308 | 47.28 257 | 68.59 229 | 73.96 216 | 32.19 374 | 59.94 342 | 68.86 360 | 50.48 252 | 77.64 193 | 41.85 310 | 75.74 309 | 62.83 368 |
|
| thisisatest0515 | | | 60.48 280 | 57.86 296 | 68.34 220 | 67.25 317 | 46.42 265 | 60.58 314 | 62.14 305 | 40.82 327 | 63.58 321 | 69.12 354 | 26.28 384 | 78.34 178 | 48.83 259 | 82.13 247 | 80.26 220 |
|
| tfpn200view9 | | | 60.35 281 | 59.97 280 | 61.51 286 | 70.78 270 | 35.35 352 | 63.27 296 | 57.47 322 | 53.00 215 | 68.31 283 | 77.09 290 | 32.45 350 | 72.09 255 | 35.61 355 | 81.73 254 | 77.08 263 |
|
| ppachtmachnet_test | | | 60.26 282 | 59.61 283 | 62.20 280 | 67.70 313 | 44.33 281 | 58.18 330 | 60.96 312 | 40.75 329 | 65.80 301 | 72.57 327 | 41.23 303 | 63.92 323 | 46.87 280 | 82.42 245 | 78.33 244 |
|
| WB-MVS | | | 60.04 283 | 64.19 245 | 47.59 360 | 76.09 200 | 10.22 413 | 52.44 364 | 46.74 378 | 65.17 88 | 74.07 207 | 87.48 127 | 53.48 235 | 55.28 351 | 49.36 255 | 72.84 336 | 77.28 258 |
|
| Patchmatch-RL test | | | 59.95 284 | 59.12 285 | 62.44 278 | 72.46 257 | 54.61 190 | 59.63 319 | 47.51 376 | 41.05 324 | 74.58 198 | 74.30 313 | 31.06 364 | 65.31 316 | 51.61 236 | 79.85 275 | 67.39 344 |
|
| 1314 | | | 59.83 285 | 58.86 288 | 62.74 276 | 65.71 332 | 44.78 278 | 68.59 229 | 72.63 227 | 33.54 372 | 61.05 335 | 67.29 371 | 43.62 291 | 71.26 266 | 49.49 254 | 67.84 369 | 72.19 307 |
|
| IB-MVS | | 49.67 18 | 59.69 286 | 56.96 302 | 67.90 225 | 68.19 307 | 50.30 217 | 61.42 306 | 65.18 287 | 47.57 273 | 55.83 365 | 67.15 372 | 23.77 394 | 79.60 153 | 43.56 301 | 79.97 274 | 73.79 290 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| 1112_ss | | | 59.48 287 | 58.99 287 | 60.96 293 | 77.84 173 | 42.39 300 | 61.42 306 | 68.45 268 | 37.96 347 | 59.93 343 | 67.46 368 | 45.11 282 | 65.07 318 | 40.89 317 | 71.81 345 | 75.41 274 |
|
| FPMVS | | | 59.43 288 | 60.07 279 | 57.51 314 | 77.62 179 | 71.52 50 | 62.33 302 | 50.92 362 | 57.40 158 | 69.40 266 | 80.00 253 | 39.14 319 | 61.92 332 | 37.47 340 | 66.36 372 | 39.09 402 |
|
| CVMVSNet | | | 59.21 289 | 58.44 292 | 61.51 286 | 73.94 234 | 47.76 250 | 71.31 190 | 64.56 293 | 26.91 392 | 60.34 339 | 70.44 340 | 36.24 335 | 67.65 293 | 53.57 227 | 68.66 364 | 69.12 336 |
|
| CR-MVSNet | | | 58.96 290 | 58.49 291 | 60.36 297 | 66.37 324 | 48.24 240 | 70.93 196 | 56.40 336 | 32.87 373 | 61.35 331 | 86.66 145 | 33.19 344 | 63.22 327 | 48.50 264 | 70.17 356 | 69.62 331 |
|
| EPNet_dtu | | | 58.93 291 | 58.52 290 | 60.16 299 | 67.91 311 | 47.70 251 | 69.97 208 | 58.02 320 | 49.73 253 | 47.28 393 | 73.02 325 | 38.14 323 | 62.34 329 | 36.57 348 | 85.99 202 | 70.43 323 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| Test_1112_low_res | | | 58.78 292 | 58.69 289 | 59.04 306 | 79.41 146 | 38.13 333 | 57.62 332 | 66.98 274 | 34.74 363 | 59.62 346 | 77.56 287 | 42.92 295 | 63.65 325 | 38.66 329 | 70.73 352 | 75.35 276 |
|
| PatchMatch-RL | | | 58.68 293 | 57.72 297 | 61.57 285 | 76.21 198 | 73.59 40 | 61.83 303 | 49.00 371 | 47.30 275 | 61.08 333 | 68.97 356 | 50.16 254 | 59.01 341 | 36.06 354 | 68.84 363 | 52.10 389 |
|
| SCA | | | 58.57 294 | 58.04 295 | 60.17 298 | 70.17 284 | 41.07 308 | 65.19 276 | 53.38 353 | 43.34 310 | 61.00 336 | 73.48 320 | 45.20 280 | 69.38 279 | 40.34 320 | 70.31 355 | 70.05 325 |
|
| testing3 | | | 58.28 295 | 58.38 293 | 58.00 312 | 77.45 180 | 26.12 396 | 60.78 312 | 43.00 389 | 56.02 170 | 70.18 257 | 75.76 297 | 13.27 414 | 67.24 300 | 48.02 270 | 80.89 263 | 80.65 213 |
|
| CHOSEN 1792x2688 | | | 58.09 296 | 56.30 307 | 63.45 267 | 79.95 140 | 50.93 211 | 54.07 357 | 65.59 283 | 28.56 386 | 61.53 330 | 74.33 312 | 41.09 306 | 66.52 310 | 33.91 363 | 67.69 370 | 72.92 297 |
|
| HY-MVS | | 49.31 19 | 57.96 297 | 57.59 298 | 59.10 305 | 66.85 323 | 36.17 345 | 65.13 277 | 65.39 286 | 39.24 339 | 54.69 372 | 78.14 281 | 44.28 287 | 67.18 301 | 33.75 365 | 70.79 351 | 73.95 288 |
|
| baseline1 | | | 57.82 298 | 58.36 294 | 56.19 320 | 69.17 295 | 30.76 378 | 62.94 300 | 55.21 340 | 46.04 282 | 63.83 317 | 78.47 275 | 41.20 304 | 63.68 324 | 39.44 322 | 68.99 362 | 74.13 286 |
|
| thres200 | | | 57.55 299 | 57.02 301 | 59.17 303 | 67.89 312 | 34.93 355 | 58.91 324 | 57.25 326 | 50.24 247 | 64.01 314 | 71.46 335 | 32.49 349 | 71.39 265 | 31.31 372 | 79.57 280 | 71.19 318 |
|
| CostFormer | | | 57.35 300 | 56.14 308 | 60.97 292 | 63.76 346 | 38.43 328 | 67.50 242 | 60.22 314 | 37.14 353 | 59.12 348 | 76.34 295 | 32.78 347 | 71.99 258 | 39.12 326 | 69.27 361 | 72.47 303 |
|
| test_fmvs3 | | | 56.78 301 | 55.99 310 | 59.12 304 | 53.96 397 | 48.09 243 | 58.76 325 | 66.22 277 | 27.54 388 | 76.66 163 | 68.69 362 | 25.32 390 | 51.31 357 | 53.42 230 | 73.38 333 | 77.97 254 |
|
| our_test_3 | | | 56.46 302 | 56.51 305 | 56.30 319 | 67.70 313 | 39.66 319 | 55.36 348 | 52.34 359 | 40.57 332 | 63.85 316 | 69.91 350 | 40.04 313 | 58.22 345 | 43.49 302 | 75.29 317 | 71.03 320 |
|
| tpm2 | | | 56.12 303 | 54.64 319 | 60.55 296 | 66.24 327 | 36.01 346 | 68.14 235 | 56.77 332 | 33.60 371 | 58.25 351 | 75.52 302 | 30.25 370 | 74.33 231 | 33.27 366 | 69.76 360 | 71.32 314 |
|
| tpmvs | | | 55.84 304 | 55.45 314 | 57.01 316 | 60.33 362 | 33.20 365 | 65.89 265 | 59.29 318 | 47.52 274 | 56.04 363 | 73.60 319 | 31.05 365 | 68.06 291 | 40.64 318 | 64.64 375 | 69.77 329 |
|
| gg-mvs-nofinetune | | | 55.75 305 | 56.75 304 | 52.72 337 | 62.87 349 | 28.04 388 | 68.92 221 | 41.36 398 | 71.09 45 | 50.80 384 | 92.63 14 | 20.74 399 | 66.86 305 | 29.97 378 | 72.41 339 | 63.25 367 |
|
| testing91 | | | 55.74 306 | 55.29 316 | 57.08 315 | 70.63 273 | 30.85 377 | 54.94 352 | 56.31 338 | 50.34 245 | 57.08 355 | 70.10 347 | 24.50 392 | 65.86 312 | 36.98 345 | 76.75 303 | 74.53 282 |
|
| test20.03 | | | 55.74 306 | 57.51 299 | 50.42 347 | 59.89 368 | 32.09 369 | 50.63 369 | 49.01 370 | 50.11 249 | 65.07 306 | 83.23 210 | 45.61 278 | 48.11 369 | 30.22 376 | 83.82 232 | 71.07 319 |
|
| MS-PatchMatch | | | 55.59 308 | 54.89 317 | 57.68 313 | 69.18 294 | 49.05 232 | 61.00 310 | 62.93 303 | 35.98 357 | 58.36 350 | 68.93 358 | 36.71 333 | 66.59 309 | 37.62 339 | 63.30 379 | 57.39 385 |
|
| baseline2 | | | 55.57 309 | 52.74 328 | 64.05 260 | 65.26 334 | 44.11 282 | 62.38 301 | 54.43 344 | 39.03 340 | 51.21 382 | 67.35 370 | 33.66 342 | 72.45 251 | 37.14 342 | 64.22 377 | 75.60 271 |
|
| XXY-MVS | | | 55.19 310 | 57.40 300 | 48.56 359 | 64.45 342 | 34.84 357 | 51.54 367 | 53.59 349 | 38.99 341 | 63.79 318 | 79.43 261 | 56.59 217 | 45.57 375 | 36.92 346 | 71.29 348 | 65.25 358 |
|
| testing99 | | | 55.16 311 | 54.56 320 | 56.98 317 | 70.13 286 | 30.58 379 | 54.55 355 | 54.11 346 | 49.53 256 | 56.76 359 | 70.14 346 | 22.76 396 | 65.79 313 | 36.99 344 | 76.04 308 | 74.57 281 |
|
| FMVSNet5 | | | 55.08 312 | 55.54 313 | 53.71 330 | 65.80 331 | 33.50 364 | 56.22 341 | 52.50 357 | 43.72 304 | 61.06 334 | 83.38 202 | 25.46 388 | 54.87 352 | 30.11 377 | 81.64 259 | 72.75 300 |
|
| test_fmvs2 | | | 54.80 313 | 54.11 322 | 56.88 318 | 51.76 401 | 49.95 222 | 56.70 338 | 65.80 280 | 26.22 393 | 69.42 265 | 65.25 375 | 31.82 356 | 49.98 361 | 49.63 253 | 70.36 354 | 70.71 321 |
|
| PatchmatchNet |  | | 54.60 314 | 54.27 321 | 55.59 324 | 65.17 337 | 39.08 321 | 66.92 254 | 51.80 361 | 39.89 334 | 58.39 349 | 73.12 324 | 31.69 358 | 58.33 344 | 43.01 304 | 58.38 393 | 69.38 334 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| MIMVSNet | | | 54.39 315 | 56.12 309 | 49.20 354 | 72.57 256 | 30.91 376 | 59.98 317 | 48.43 373 | 41.66 317 | 55.94 364 | 83.86 196 | 41.19 305 | 50.42 359 | 26.05 390 | 75.38 315 | 66.27 352 |
|
| Syy-MVS | | | 54.13 316 | 55.45 314 | 50.18 348 | 68.77 299 | 23.59 400 | 55.02 349 | 44.55 383 | 43.80 300 | 58.05 352 | 64.07 377 | 46.22 275 | 58.83 342 | 46.16 285 | 72.36 340 | 68.12 340 |
|
| Anonymous20231206 | | | 54.13 316 | 55.82 311 | 49.04 357 | 70.89 268 | 35.96 347 | 51.73 366 | 50.87 363 | 34.86 361 | 62.49 326 | 79.22 265 | 42.52 299 | 44.29 385 | 27.95 387 | 81.88 250 | 66.88 348 |
|
| JIA-IIPM | | | 54.03 318 | 51.62 336 | 61.25 290 | 59.14 372 | 55.21 186 | 59.10 321 | 47.72 374 | 50.85 240 | 50.31 388 | 85.81 174 | 20.10 401 | 63.97 322 | 36.16 352 | 55.41 398 | 64.55 364 |
|
| tpm cat1 | | | 54.02 319 | 52.63 330 | 58.19 310 | 64.85 341 | 39.86 318 | 66.26 262 | 57.28 325 | 32.16 375 | 56.90 357 | 70.39 342 | 32.75 348 | 65.30 317 | 34.29 361 | 58.79 390 | 69.41 333 |
|
| testgi | | | 54.00 320 | 56.86 303 | 45.45 369 | 58.20 377 | 25.81 397 | 49.05 371 | 49.50 369 | 45.43 289 | 67.84 286 | 81.17 233 | 51.81 246 | 43.20 389 | 29.30 381 | 79.41 281 | 67.34 346 |
|
| WB-MVSnew | | | 53.94 321 | 54.76 318 | 51.49 343 | 71.53 264 | 28.05 387 | 58.22 329 | 50.36 365 | 37.94 348 | 59.16 347 | 70.17 345 | 49.21 261 | 51.94 356 | 24.49 397 | 71.80 346 | 74.47 284 |
|
| testing222 | | | 53.37 322 | 52.50 332 | 55.98 322 | 70.51 279 | 29.68 382 | 56.20 342 | 51.85 360 | 46.19 281 | 56.76 359 | 68.94 357 | 19.18 404 | 65.39 315 | 25.87 393 | 76.98 301 | 72.87 298 |
|
| PatchT | | | 53.35 323 | 56.47 306 | 43.99 376 | 64.19 343 | 17.46 407 | 59.15 320 | 43.10 388 | 52.11 223 | 54.74 371 | 86.95 134 | 29.97 373 | 49.98 361 | 43.62 300 | 74.40 324 | 64.53 365 |
|
| testing11 | | | 53.13 324 | 52.26 334 | 55.75 323 | 70.44 280 | 31.73 371 | 54.75 353 | 52.40 358 | 44.81 295 | 52.36 379 | 68.40 364 | 21.83 397 | 65.74 314 | 32.64 369 | 72.73 337 | 69.78 328 |
|
| test_vis1_n_1920 | | | 52.96 325 | 53.50 324 | 51.32 344 | 59.15 371 | 44.90 277 | 56.13 343 | 64.29 296 | 30.56 384 | 59.87 344 | 60.68 388 | 40.16 312 | 47.47 370 | 48.25 268 | 62.46 381 | 61.58 376 |
|
| UWE-MVS | | | 52.94 326 | 52.70 329 | 53.65 331 | 73.56 237 | 27.49 390 | 57.30 335 | 49.57 368 | 38.56 344 | 62.79 325 | 71.42 336 | 19.49 403 | 60.41 335 | 24.33 399 | 77.33 300 | 73.06 295 |
|
| new-patchmatchnet | | | 52.89 327 | 55.76 312 | 44.26 375 | 59.94 367 | 6.31 415 | 37.36 399 | 50.76 364 | 41.10 322 | 64.28 311 | 79.82 255 | 44.77 283 | 48.43 368 | 36.24 351 | 87.61 169 | 78.03 251 |
|
| test_fmvs1_n | | | 52.70 328 | 52.01 335 | 54.76 326 | 53.83 398 | 50.36 215 | 55.80 345 | 65.90 279 | 24.96 397 | 65.39 303 | 60.64 389 | 27.69 379 | 48.46 366 | 45.88 288 | 67.99 367 | 65.46 356 |
|
| YYNet1 | | | 52.58 329 | 53.50 324 | 49.85 350 | 54.15 394 | 36.45 344 | 40.53 392 | 46.55 380 | 38.09 346 | 75.52 184 | 73.31 323 | 41.08 307 | 43.88 386 | 41.10 314 | 71.14 350 | 69.21 335 |
|
| MDA-MVSNet_test_wron | | | 52.57 330 | 53.49 326 | 49.81 351 | 54.24 393 | 36.47 343 | 40.48 393 | 46.58 379 | 38.13 345 | 75.47 185 | 73.32 322 | 41.05 308 | 43.85 387 | 40.98 316 | 71.20 349 | 69.10 337 |
|
| pmmvs5 | | | 52.49 331 | 52.58 331 | 52.21 339 | 54.99 391 | 32.38 367 | 55.45 347 | 53.84 348 | 32.15 376 | 55.49 367 | 74.81 305 | 38.08 324 | 57.37 349 | 34.02 362 | 74.40 324 | 66.88 348 |
|
| UnsupCasMVSNet_eth | | | 52.26 332 | 53.29 327 | 49.16 355 | 55.08 390 | 33.67 363 | 50.03 370 | 58.79 319 | 37.67 350 | 63.43 324 | 74.75 307 | 41.82 301 | 45.83 374 | 38.59 331 | 59.42 389 | 67.98 343 |
|
| N_pmnet | | | 52.06 333 | 51.11 341 | 54.92 325 | 59.64 370 | 71.03 54 | 37.42 398 | 61.62 311 | 33.68 369 | 57.12 354 | 72.10 328 | 37.94 325 | 31.03 404 | 29.13 386 | 71.35 347 | 62.70 369 |
|
| KD-MVS_2432*1600 | | | 52.05 334 | 51.58 337 | 53.44 333 | 52.11 399 | 31.20 373 | 44.88 385 | 64.83 291 | 41.53 318 | 64.37 309 | 70.03 348 | 15.61 411 | 64.20 320 | 36.25 349 | 74.61 321 | 64.93 361 |
|
| miper_refine_blended | | | 52.05 334 | 51.58 337 | 53.44 333 | 52.11 399 | 31.20 373 | 44.88 385 | 64.83 291 | 41.53 318 | 64.37 309 | 70.03 348 | 15.61 411 | 64.20 320 | 36.25 349 | 74.61 321 | 64.93 361 |
|
| test_vis3_rt | | | 51.94 336 | 51.04 342 | 54.65 327 | 46.32 408 | 50.13 219 | 44.34 387 | 78.17 177 | 23.62 401 | 68.95 273 | 62.81 381 | 21.41 398 | 38.52 400 | 41.49 312 | 72.22 342 | 75.30 277 |
|
| PVSNet | | 43.83 21 | 51.56 337 | 51.17 340 | 52.73 336 | 68.34 304 | 38.27 330 | 48.22 374 | 53.56 351 | 36.41 355 | 54.29 373 | 64.94 376 | 34.60 339 | 54.20 355 | 30.34 375 | 69.87 358 | 65.71 355 |
|
| test_fmvs1 | | | 51.51 338 | 50.86 345 | 53.48 332 | 49.72 404 | 49.35 231 | 54.11 356 | 64.96 289 | 24.64 399 | 63.66 320 | 59.61 392 | 28.33 378 | 48.45 367 | 45.38 293 | 67.30 371 | 62.66 371 |
|
| test_vis1_n | | | 51.27 339 | 50.41 349 | 53.83 329 | 56.99 381 | 50.01 221 | 56.75 337 | 60.53 313 | 25.68 395 | 59.74 345 | 57.86 393 | 29.40 375 | 47.41 371 | 43.10 303 | 63.66 378 | 64.08 366 |
|
| test_cas_vis1_n_1920 | | | 50.90 340 | 50.92 344 | 50.83 346 | 54.12 396 | 47.80 248 | 51.44 368 | 54.61 343 | 26.95 391 | 63.95 315 | 60.85 387 | 37.86 328 | 44.97 380 | 45.53 290 | 62.97 380 | 59.72 380 |
|
| tpm | | | 50.60 341 | 52.42 333 | 45.14 371 | 65.18 336 | 26.29 394 | 60.30 315 | 43.50 386 | 37.41 351 | 57.01 356 | 79.09 269 | 30.20 372 | 42.32 390 | 32.77 368 | 66.36 372 | 66.81 350 |
|
| test-LLR | | | 50.43 342 | 50.69 347 | 49.64 352 | 60.76 359 | 41.87 302 | 53.18 360 | 45.48 381 | 43.41 308 | 49.41 389 | 60.47 390 | 29.22 376 | 44.73 382 | 42.09 308 | 72.14 343 | 62.33 374 |
|
| myMVS_eth3d | | | 50.36 343 | 50.52 348 | 49.88 349 | 68.77 299 | 22.69 402 | 55.02 349 | 44.55 383 | 43.80 300 | 58.05 352 | 64.07 377 | 14.16 413 | 58.83 342 | 33.90 364 | 72.36 340 | 68.12 340 |
|
| ETVMVS | | | 50.32 344 | 49.87 352 | 51.68 341 | 70.30 283 | 26.66 393 | 52.33 365 | 43.93 385 | 43.54 306 | 54.91 369 | 67.95 366 | 20.01 402 | 60.17 337 | 22.47 401 | 73.40 332 | 68.22 339 |
|
| tpmrst | | | 50.15 345 | 51.38 339 | 46.45 366 | 56.05 385 | 24.77 398 | 64.40 286 | 49.98 366 | 36.14 356 | 53.32 376 | 69.59 352 | 35.16 337 | 48.69 365 | 39.24 324 | 58.51 392 | 65.89 353 |
|
| UnsupCasMVSNet_bld | | | 50.01 346 | 51.03 343 | 46.95 362 | 58.61 374 | 32.64 366 | 48.31 373 | 53.27 354 | 34.27 366 | 60.47 338 | 71.53 334 | 41.40 302 | 47.07 372 | 30.68 374 | 60.78 386 | 61.13 377 |
|
| dmvs_re | | | 49.91 347 | 50.77 346 | 47.34 361 | 59.98 364 | 38.86 325 | 53.18 360 | 53.58 350 | 39.75 335 | 55.06 368 | 61.58 386 | 36.42 334 | 44.40 384 | 29.15 385 | 68.23 365 | 58.75 382 |
|
| WTY-MVS | | | 49.39 348 | 50.31 350 | 46.62 365 | 61.22 357 | 32.00 370 | 46.61 380 | 49.77 367 | 33.87 368 | 54.12 374 | 69.55 353 | 41.96 300 | 45.40 377 | 31.28 373 | 64.42 376 | 62.47 372 |
|
| ADS-MVSNet2 | | | 48.76 349 | 47.25 358 | 53.29 335 | 55.90 387 | 40.54 314 | 47.34 378 | 54.99 342 | 31.41 381 | 50.48 385 | 72.06 329 | 31.23 361 | 54.26 354 | 25.93 391 | 55.93 395 | 65.07 359 |
|
| test-mter | | | 48.56 350 | 48.20 355 | 49.64 352 | 60.76 359 | 41.87 302 | 53.18 360 | 45.48 381 | 31.91 379 | 49.41 389 | 60.47 390 | 18.34 405 | 44.73 382 | 42.09 308 | 72.14 343 | 62.33 374 |
|
| Patchmatch-test | | | 47.93 351 | 49.96 351 | 41.84 379 | 57.42 380 | 24.26 399 | 48.75 372 | 41.49 397 | 39.30 338 | 56.79 358 | 73.48 320 | 30.48 369 | 33.87 403 | 29.29 382 | 72.61 338 | 67.39 344 |
|
| test0.0.03 1 | | | 47.72 352 | 48.31 354 | 45.93 367 | 55.53 389 | 29.39 383 | 46.40 381 | 41.21 399 | 43.41 308 | 55.81 366 | 67.65 367 | 29.22 376 | 43.77 388 | 25.73 394 | 69.87 358 | 64.62 363 |
|
| sss | | | 47.59 353 | 48.32 353 | 45.40 370 | 56.73 384 | 33.96 361 | 45.17 383 | 48.51 372 | 32.11 378 | 52.37 378 | 65.79 373 | 40.39 311 | 41.91 393 | 31.85 370 | 61.97 383 | 60.35 378 |
|
| pmmvs3 | | | 46.71 354 | 45.09 364 | 51.55 342 | 56.76 383 | 48.25 239 | 55.78 346 | 39.53 402 | 24.13 400 | 50.35 387 | 63.40 379 | 15.90 410 | 51.08 358 | 29.29 382 | 70.69 353 | 55.33 388 |
|
| test_vis1_rt | | | 46.70 355 | 45.24 363 | 51.06 345 | 44.58 409 | 51.04 210 | 39.91 394 | 67.56 271 | 21.84 405 | 51.94 380 | 50.79 401 | 33.83 341 | 39.77 397 | 35.25 358 | 61.50 384 | 62.38 373 |
|
| EPMVS | | | 45.74 356 | 46.53 359 | 43.39 377 | 54.14 395 | 22.33 404 | 55.02 349 | 35.00 406 | 34.69 364 | 51.09 383 | 70.20 344 | 25.92 386 | 42.04 392 | 37.19 341 | 55.50 397 | 65.78 354 |
|
| MVS-HIRNet | | | 45.53 357 | 47.29 357 | 40.24 382 | 62.29 351 | 26.82 392 | 56.02 344 | 37.41 404 | 29.74 385 | 43.69 403 | 81.27 231 | 33.96 340 | 55.48 350 | 24.46 398 | 56.79 394 | 38.43 403 |
|
| dmvs_testset | | | 45.26 358 | 47.51 356 | 38.49 385 | 59.96 366 | 14.71 409 | 58.50 327 | 43.39 387 | 41.30 320 | 51.79 381 | 56.48 394 | 39.44 318 | 49.91 363 | 21.42 403 | 55.35 399 | 50.85 390 |
|
| TESTMET0.1,1 | | | 45.17 359 | 44.93 365 | 45.89 368 | 56.02 386 | 38.31 329 | 53.18 360 | 41.94 396 | 27.85 387 | 44.86 399 | 56.47 395 | 17.93 406 | 41.50 395 | 38.08 335 | 68.06 366 | 57.85 383 |
|
| E-PMN | | | 45.17 359 | 45.36 362 | 44.60 373 | 50.07 402 | 42.75 296 | 38.66 396 | 42.29 394 | 46.39 280 | 39.55 404 | 51.15 400 | 26.00 385 | 45.37 378 | 37.68 337 | 76.41 304 | 45.69 397 |
|
| PMMVS | | | 44.69 361 | 43.95 369 | 46.92 363 | 50.05 403 | 53.47 199 | 48.08 376 | 42.40 392 | 22.36 403 | 44.01 402 | 53.05 398 | 42.60 298 | 45.49 376 | 31.69 371 | 61.36 385 | 41.79 400 |
|
| ADS-MVSNet | | | 44.62 362 | 45.58 361 | 41.73 380 | 55.90 387 | 20.83 405 | 47.34 378 | 39.94 401 | 31.41 381 | 50.48 385 | 72.06 329 | 31.23 361 | 39.31 398 | 25.93 391 | 55.93 395 | 65.07 359 |
|
| EMVS | | | 44.61 363 | 44.45 368 | 45.10 372 | 48.91 405 | 43.00 294 | 37.92 397 | 41.10 400 | 46.75 278 | 38.00 406 | 48.43 403 | 26.42 383 | 46.27 373 | 37.11 343 | 75.38 315 | 46.03 396 |
|
| dp | | | 44.09 364 | 44.88 366 | 41.72 381 | 58.53 376 | 23.18 401 | 54.70 354 | 42.38 393 | 34.80 362 | 44.25 401 | 65.61 374 | 24.48 393 | 44.80 381 | 29.77 379 | 49.42 401 | 57.18 386 |
|
| test_f | | | 43.79 365 | 45.63 360 | 38.24 386 | 42.29 412 | 38.58 327 | 34.76 401 | 47.68 375 | 22.22 404 | 67.34 293 | 63.15 380 | 31.82 356 | 30.60 405 | 39.19 325 | 62.28 382 | 45.53 398 |
|
| mvsany_test3 | | | 43.76 366 | 41.01 370 | 52.01 340 | 48.09 406 | 57.74 172 | 42.47 389 | 23.85 412 | 23.30 402 | 64.80 307 | 62.17 384 | 27.12 380 | 40.59 396 | 29.17 384 | 48.11 402 | 57.69 384 |
|
| DSMNet-mixed | | | 43.18 367 | 44.66 367 | 38.75 384 | 54.75 392 | 28.88 386 | 57.06 336 | 27.42 409 | 13.47 407 | 47.27 394 | 77.67 286 | 38.83 320 | 39.29 399 | 25.32 396 | 60.12 388 | 48.08 393 |
|
| CHOSEN 280x420 | | | 41.62 368 | 39.89 373 | 46.80 364 | 61.81 353 | 51.59 206 | 33.56 402 | 35.74 405 | 27.48 389 | 37.64 407 | 53.53 396 | 23.24 395 | 42.09 391 | 27.39 388 | 58.64 391 | 46.72 395 |
|
| PVSNet_0 | | 36.71 22 | 41.12 369 | 40.78 372 | 42.14 378 | 59.97 365 | 40.13 316 | 40.97 391 | 42.24 395 | 30.81 383 | 44.86 399 | 49.41 402 | 40.70 309 | 45.12 379 | 23.15 400 | 34.96 405 | 41.16 401 |
|
| mvsany_test1 | | | 37.88 370 | 35.74 375 | 44.28 374 | 47.28 407 | 49.90 223 | 36.54 400 | 24.37 411 | 19.56 406 | 45.76 395 | 53.46 397 | 32.99 346 | 37.97 401 | 26.17 389 | 35.52 404 | 44.99 399 |
|
| PMMVS2 | | | 37.74 371 | 40.87 371 | 28.36 388 | 42.41 411 | 5.35 416 | 24.61 403 | 27.75 408 | 32.15 376 | 47.85 392 | 70.27 343 | 35.85 336 | 29.51 406 | 19.08 406 | 67.85 368 | 50.22 392 |
|
| new_pmnet | | | 37.55 372 | 39.80 374 | 30.79 387 | 56.83 382 | 16.46 408 | 39.35 395 | 30.65 407 | 25.59 396 | 45.26 397 | 61.60 385 | 24.54 391 | 28.02 407 | 21.60 402 | 52.80 400 | 47.90 394 |
|
| MVE |  | 27.91 23 | 36.69 373 | 35.64 376 | 39.84 383 | 43.37 410 | 35.85 349 | 19.49 404 | 24.61 410 | 24.68 398 | 39.05 405 | 62.63 383 | 38.67 322 | 27.10 408 | 21.04 404 | 47.25 403 | 56.56 387 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| dongtai | | | 31.66 374 | 32.98 377 | 27.71 389 | 58.58 375 | 12.61 411 | 45.02 384 | 14.24 415 | 41.90 315 | 47.93 391 | 43.91 404 | 10.65 415 | 41.81 394 | 14.06 407 | 20.53 408 | 28.72 405 |
|
| kuosan | | | 22.02 375 | 23.52 379 | 17.54 391 | 41.56 413 | 11.24 412 | 41.99 390 | 13.39 416 | 26.13 394 | 28.87 408 | 30.75 406 | 9.72 416 | 21.94 410 | 4.77 411 | 14.49 409 | 19.43 406 |
|
| test_method | | | 19.26 376 | 19.12 380 | 19.71 390 | 9.09 415 | 1.91 418 | 7.79 406 | 53.44 352 | 1.42 409 | 10.27 411 | 35.80 405 | 17.42 408 | 25.11 409 | 12.44 408 | 24.38 407 | 32.10 404 |
|
| cdsmvs_eth3d_5k | | | 17.71 377 | 23.62 378 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 70.17 257 | 0.00 414 | 0.00 415 | 74.25 314 | 68.16 97 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| tmp_tt | | | 11.98 378 | 14.73 381 | 3.72 393 | 2.28 416 | 4.62 417 | 19.44 405 | 14.50 414 | 0.47 411 | 21.55 409 | 9.58 409 | 25.78 387 | 4.57 412 | 11.61 409 | 27.37 406 | 1.96 408 |
|
| ab-mvs-re | | | 5.62 379 | 7.50 382 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 0.00 420 | 0.00 414 | 0.00 415 | 67.46 368 | 0.00 419 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| pcd_1.5k_mvsjas | | | 5.20 380 | 6.93 383 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 0.00 420 | 0.00 414 | 0.00 415 | 0.00 414 | 62.39 152 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| test123 | | | 4.43 381 | 5.78 384 | 0.39 395 | 0.97 417 | 0.28 419 | 46.33 382 | 0.45 418 | 0.31 412 | 0.62 413 | 1.50 412 | 0.61 418 | 0.11 414 | 0.56 412 | 0.63 411 | 0.77 410 |
|
| testmvs | | | 4.06 382 | 5.28 385 | 0.41 394 | 0.64 418 | 0.16 420 | 42.54 388 | 0.31 419 | 0.26 413 | 0.50 414 | 1.40 413 | 0.77 417 | 0.17 413 | 0.56 412 | 0.55 412 | 0.90 409 |
|
| test_blank | | | 0.00 383 | 0.00 386 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 0.00 420 | 0.00 414 | 0.00 415 | 0.00 414 | 0.00 419 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| uanet_test | | | 0.00 383 | 0.00 386 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 0.00 420 | 0.00 414 | 0.00 415 | 0.00 414 | 0.00 419 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| DCPMVS | | | 0.00 383 | 0.00 386 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 0.00 420 | 0.00 414 | 0.00 415 | 0.00 414 | 0.00 419 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| sosnet-low-res | | | 0.00 383 | 0.00 386 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 0.00 420 | 0.00 414 | 0.00 415 | 0.00 414 | 0.00 419 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| sosnet | | | 0.00 383 | 0.00 386 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 0.00 420 | 0.00 414 | 0.00 415 | 0.00 414 | 0.00 419 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| uncertanet | | | 0.00 383 | 0.00 386 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 0.00 420 | 0.00 414 | 0.00 415 | 0.00 414 | 0.00 419 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| Regformer | | | 0.00 383 | 0.00 386 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 0.00 420 | 0.00 414 | 0.00 415 | 0.00 414 | 0.00 419 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| uanet | | | 0.00 383 | 0.00 386 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 0.00 420 | 0.00 414 | 0.00 415 | 0.00 414 | 0.00 419 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| WAC-MVS | | | | | | | 22.69 402 | | | | | | | | 36.10 353 | | |
|
| FOURS1 | | | | | | 89.19 24 | 77.84 13 | 91.64 1 | 89.11 3 | 84.05 3 | 91.57 3 | | | | | | |
|
| MSC_two_6792asdad | | | | | 79.02 55 | 83.14 96 | 67.03 88 | | 80.75 125 | | | | | 86.24 23 | 77.27 34 | 94.85 26 | 83.78 135 |
|
| PC_three_1452 | | | | | | | | | | 46.98 277 | 81.83 94 | 86.28 158 | 66.55 118 | 84.47 72 | 63.31 142 | 90.78 113 | 83.49 142 |
|
| No_MVS | | | | | 79.02 55 | 83.14 96 | 67.03 88 | | 80.75 125 | | | | | 86.24 23 | 77.27 34 | 94.85 26 | 83.78 135 |
|
| test_one_0601 | | | | | | 85.84 62 | 61.45 134 | | 85.63 31 | 75.27 18 | 85.62 49 | 90.38 67 | 76.72 27 | | | | |
|
| eth-test2 | | | | | | 0.00 419 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 419 | | | | | | | | | | | |
|
| ZD-MVS | | | | | | 83.91 87 | 69.36 70 | | 81.09 120 | 58.91 144 | 82.73 87 | 89.11 97 | 75.77 35 | 86.63 13 | 72.73 63 | 92.93 70 | |
|
| RE-MVS-def | | | | 85.50 4 | | 86.19 50 | 79.18 7 | 87.23 8 | 86.27 21 | 77.51 11 | 87.65 19 | 90.73 50 | 81.38 7 | | 78.11 24 | 94.46 36 | 84.89 97 |
|
| IU-MVS | | | | | | 86.12 54 | 60.90 144 | | 80.38 136 | 45.49 288 | 81.31 102 | | | | 75.64 42 | 94.39 41 | 84.65 105 |
|
| OPU-MVS | | | | | 78.65 62 | 83.44 94 | 66.85 90 | 83.62 43 | | | | 86.12 166 | 66.82 110 | 86.01 32 | 61.72 151 | 89.79 134 | 83.08 159 |
|
| test_241102_TWO | | | | | | | | | 84.80 48 | 72.61 33 | 84.93 58 | 89.70 83 | 77.73 22 | 85.89 40 | 75.29 43 | 94.22 52 | 83.25 153 |
|
| test_241102_ONE | | | | | | 86.12 54 | 61.06 140 | | 84.72 52 | 72.64 32 | 87.38 25 | 89.47 86 | 77.48 23 | 85.74 44 | | | |
|
| 9.14 | | | | 80.22 54 | | 80.68 133 | | 80.35 76 | 87.69 11 | 59.90 133 | 83.00 80 | 88.20 119 | 74.57 47 | 81.75 114 | 73.75 55 | 93.78 57 | |
|
| save fliter | | | | | | 87.00 40 | 67.23 87 | 79.24 89 | 77.94 182 | 56.65 166 | | | | | | | |
|
| test_0728_THIRD | | | | | | | | | | 74.03 22 | 85.83 44 | 90.41 62 | 75.58 37 | 85.69 45 | 77.43 31 | 94.74 30 | 84.31 123 |
|
| test_0728_SECOND | | | | | 76.57 85 | 86.20 49 | 60.57 150 | 83.77 41 | 85.49 33 | | | | | 85.90 38 | 75.86 40 | 94.39 41 | 83.25 153 |
|
| test0726 | | | | | | 86.16 52 | 60.78 147 | 83.81 40 | 85.10 43 | 72.48 35 | 85.27 55 | 89.96 79 | 78.57 17 | | | | |
|
| GSMVS | | | | | | | | | | | | | | | | | 70.05 325 |
|
| test_part2 | | | | | | 85.90 58 | 66.44 92 | | | | 84.61 64 | | | | | | |
|
| sam_mvs1 | | | | | | | | | | | | | 31.41 359 | | | | 70.05 325 |
|
| sam_mvs | | | | | | | | | | | | | 31.21 363 | | | | |
|
| ambc | | | | | 70.10 188 | 77.74 175 | 50.21 218 | 74.28 154 | 77.93 183 | | 79.26 124 | 88.29 118 | 54.11 233 | 79.77 150 | 64.43 126 | 91.10 102 | 80.30 219 |
|
| MTGPA |  | | | | | | | | 80.63 130 | | | | | | | | |
|
| test_post1 | | | | | | | | 66.63 258 | | | | 2.08 410 | 30.66 368 | 59.33 340 | 40.34 320 | | |
|
| test_post | | | | | | | | | | | | 1.99 411 | 30.91 366 | 54.76 353 | | | |
|
| patchmatchnet-post | | | | | | | | | | | | 68.99 355 | 31.32 360 | 69.38 279 | | | |
|
| GG-mvs-BLEND | | | | | 52.24 338 | 60.64 361 | 29.21 385 | 69.73 212 | 42.41 391 | | 45.47 396 | 52.33 399 | 20.43 400 | 68.16 289 | 25.52 395 | 65.42 374 | 59.36 381 |
|
| MTMP | | | | | | | | 84.83 31 | 19.26 413 | | | | | | | | |
|
| gm-plane-assit | | | | | | 62.51 350 | 33.91 362 | | | 37.25 352 | | 62.71 382 | | 72.74 244 | 38.70 328 | | |
|
| test9_res | | | | | | | | | | | | | | | 72.12 70 | 91.37 92 | 77.40 257 |
|
| TEST9 | | | | | | 85.47 64 | 69.32 71 | 76.42 122 | 78.69 167 | 53.73 209 | 76.97 152 | 86.74 141 | 66.84 109 | 81.10 124 | | | |
|
| test_8 | | | | | | 85.09 70 | 67.89 80 | 76.26 127 | 78.66 169 | 54.00 204 | 76.89 156 | 86.72 143 | 66.60 115 | 80.89 134 | | | |
|
| agg_prior2 | | | | | | | | | | | | | | | 70.70 74 | 90.93 107 | 78.55 243 |
|
| agg_prior | | | | | | 84.44 82 | 66.02 98 | | 78.62 170 | | 76.95 154 | | | 80.34 141 | | | |
|
| TestCases | | | | | 78.35 66 | 79.19 153 | 70.81 56 | | 88.64 4 | 65.37 83 | 80.09 117 | 88.17 120 | 70.33 78 | 78.43 174 | 55.60 204 | 90.90 109 | 85.81 79 |
|
| test_prior4 | | | | | | | 70.14 64 | 77.57 105 | | | | | | | | | |
|
| test_prior2 | | | | | | | | 75.57 135 | | 58.92 143 | 76.53 170 | 86.78 139 | 67.83 102 | | 69.81 79 | 92.76 73 | |
|
| test_prior | | | | | 75.27 104 | 82.15 115 | 59.85 155 | | 84.33 63 | | | | | 83.39 88 | | | 82.58 174 |
|
| 旧先验2 | | | | | | | | 71.17 193 | | 45.11 292 | 78.54 134 | | | 61.28 334 | 59.19 177 | | |
|
| 新几何2 | | | | | | | | 71.33 189 | | | | | | | | | |
|
| 新几何1 | | | | | 69.99 190 | 88.37 35 | 71.34 52 | | 62.08 307 | 43.85 299 | 74.99 189 | 86.11 167 | 52.85 239 | 70.57 271 | 50.99 242 | 83.23 240 | 68.05 342 |
|
| 旧先验1 | | | | | | 84.55 79 | 60.36 152 | | 63.69 299 | | | 87.05 133 | 54.65 229 | | | 83.34 239 | 69.66 330 |
|
| 无先验 | | | | | | | | 74.82 141 | 70.94 251 | 47.75 272 | | | | 76.85 202 | 54.47 216 | | 72.09 308 |
|
| 原ACMM2 | | | | | | | | 74.78 145 | | | | | | | | | |
|
| 原ACMM1 | | | | | 73.90 120 | 85.90 58 | 65.15 107 | | 81.67 106 | 50.97 239 | 74.25 203 | 86.16 164 | 61.60 160 | 83.54 84 | 56.75 192 | 91.08 103 | 73.00 296 |
|
| test222 | | | | | | 87.30 38 | 69.15 74 | 67.85 238 | 59.59 317 | 41.06 323 | 73.05 221 | 85.72 175 | 48.03 271 | | | 80.65 267 | 66.92 347 |
|
| testdata2 | | | | | | | | | | | | | | 67.30 298 | 48.34 266 | | |
|
| segment_acmp | | | | | | | | | | | | | 68.30 96 | | | | |
|
| testdata | | | | | 64.13 258 | 85.87 60 | 63.34 119 | | 61.80 310 | 47.83 270 | 76.42 174 | 86.60 150 | 48.83 265 | 62.31 330 | 54.46 217 | 81.26 261 | 66.74 351 |
|
| testdata1 | | | | | | | | 68.34 234 | | 57.24 159 | | | | | | | |
|
| test12 | | | | | 76.51 86 | 82.28 113 | 60.94 143 | | 81.64 107 | | 73.60 212 | | 64.88 133 | 85.19 59 | | 90.42 120 | 83.38 149 |
|
| plane_prior7 | | | | | | 85.18 67 | 66.21 95 | | | | | | | | | | |
|
| plane_prior6 | | | | | | 84.18 85 | 65.31 104 | | | | | | 60.83 173 | | | | |
|
| plane_prior5 | | | | | | | | | 85.49 33 | | | | | 86.15 28 | 71.09 71 | 90.94 105 | 84.82 101 |
|
| plane_prior4 | | | | | | | | | | | | 89.11 97 | | | | | |
|
| plane_prior3 | | | | | | | 65.67 100 | | | 63.82 102 | 78.23 136 | | | | | | |
|
| plane_prior2 | | | | | | | | 82.74 53 | | 65.45 80 | | | | | | | |
|
| plane_prior1 | | | | | | 84.46 81 | | | | | | | | | | | |
|
| plane_prior | | | | | | | 65.18 105 | 80.06 83 | | 61.88 121 | | | | | | 89.91 131 | |
|
| n2 | | | | | | | | | 0.00 420 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 420 | | | | | | | | |
|
| door-mid | | | | | | | | | 55.02 341 | | | | | | | | |
|
| lessismore_v0 | | | | | 72.75 149 | 79.60 144 | 56.83 177 | | 57.37 324 | | 83.80 74 | 89.01 100 | 47.45 273 | 78.74 167 | 64.39 127 | 86.49 197 | 82.69 171 |
|
| LGP-MVS_train | | | | | 80.90 33 | 87.00 40 | 70.41 61 | | 86.35 18 | 69.77 54 | 87.75 16 | 91.13 37 | 81.83 3 | 86.20 25 | 77.13 36 | 95.96 6 | 86.08 73 |
|
| test11 | | | | | | | | | 82.71 90 | | | | | | | | |
|
| door | | | | | | | | | 52.91 356 | | | | | | | | |
|
| HQP5-MVS | | | | | | | 58.80 166 | | | | | | | | | | |
|
| HQP-NCC | | | | | | 82.37 110 | | 77.32 110 | | 59.08 138 | 71.58 238 | | | | | | |
|
| ACMP_Plane | | | | | | 82.37 110 | | 77.32 110 | | 59.08 138 | 71.58 238 | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 67.38 105 | | |
|
| HQP4-MVS | | | | | | | | | | | 71.59 237 | | | 85.31 52 | | | 83.74 137 |
|
| HQP3-MVS | | | | | | | | | 84.12 69 | | | | | | | 89.16 146 | |
|
| HQP2-MVS | | | | | | | | | | | | | 58.09 200 | | | | |
|
| NP-MVS | | | | | | 83.34 95 | 63.07 122 | | | | | 85.97 170 | | | | | |
|
| MDTV_nov1_ep13_2view | | | | | | | 18.41 406 | 53.74 358 | | 31.57 380 | 44.89 398 | | 29.90 374 | | 32.93 367 | | 71.48 312 |
|
| MDTV_nov1_ep13 | | | | 54.05 323 | | 65.54 333 | 29.30 384 | 59.00 322 | 55.22 339 | 35.96 358 | 52.44 377 | 75.98 296 | 30.77 367 | 59.62 339 | 38.21 333 | 73.33 334 | |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 89.47 141 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 91.96 83 | |
|
| Test By Simon | | | | | | | | | | | | | 62.56 148 | | | | |
|
| ITE_SJBPF | | | | | 80.35 39 | 76.94 186 | 73.60 39 | | 80.48 133 | 66.87 68 | 83.64 76 | 86.18 162 | 70.25 80 | 79.90 149 | 61.12 157 | 88.95 154 | 87.56 56 |
|
| DeepMVS_CX |  | | | | 11.83 392 | 15.51 414 | 13.86 410 | | 11.25 417 | 5.76 408 | 20.85 410 | 26.46 407 | 17.06 409 | 9.22 411 | 9.69 410 | 13.82 410 | 12.42 407 |
|