LCM-MVSNet | | | 86.90 1 | 88.67 1 | 81.57 24 | 91.50 1 | 63.30 125 | 84.80 34 | 87.77 10 | 86.18 1 | 96.26 1 | 96.06 1 | 90.32 1 | 84.49 70 | 68.08 96 | 97.05 1 | 96.93 1 |
|
TDRefinement | | | 86.32 2 | 86.33 2 | 86.29 1 | 88.64 33 | 81.19 5 | 88.84 4 | 90.72 1 | 78.27 9 | 87.95 15 | 92.53 13 | 79.37 13 | 84.79 67 | 74.51 51 | 96.15 2 | 92.88 7 |
|
abl_6 | | | 84.92 3 | 85.70 3 | 82.57 17 | 86.72 49 | 79.27 8 | 87.56 7 | 86.08 27 | 77.48 13 | 88.12 14 | 91.53 29 | 81.18 8 | 84.31 76 | 78.12 24 | 94.47 38 | 84.15 128 |
|
test1172 | | | 84.85 4 | 85.39 5 | 83.21 3 | 88.34 38 | 80.50 6 | 85.12 30 | 85.22 42 | 81.06 3 | 87.20 28 | 90.28 72 | 79.20 14 | 85.58 49 | 78.04 27 | 94.08 57 | 83.55 141 |
|
SR-MVS-dyc-post | | | 84.75 5 | 85.26 7 | 83.21 3 | 86.19 55 | 79.18 9 | 87.23 9 | 86.27 22 | 77.51 11 | 87.65 19 | 90.73 48 | 79.20 14 | 85.58 49 | 78.11 25 | 94.46 39 | 84.89 96 |
|
HPM-MVS_fast | | | 84.59 6 | 85.10 8 | 83.06 6 | 88.60 34 | 75.83 27 | 86.27 25 | 86.89 18 | 73.69 25 | 86.17 37 | 91.70 25 | 78.23 20 | 85.20 59 | 79.45 13 | 94.91 25 | 88.15 47 |
|
SR-MVS | | | 84.51 7 | 85.27 6 | 82.25 21 | 88.52 35 | 77.71 17 | 86.81 17 | 85.25 41 | 77.42 15 | 86.15 38 | 90.24 74 | 81.69 5 | 85.94 34 | 77.77 29 | 93.58 68 | 83.09 157 |
|
ACMMP |  | | 84.22 8 | 84.84 10 | 82.35 20 | 89.23 23 | 76.66 26 | 87.65 6 | 85.89 30 | 71.03 45 | 85.85 42 | 90.58 52 | 78.77 17 | 85.78 42 | 79.37 16 | 95.17 17 | 84.62 108 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
LTVRE_ROB | | 75.46 1 | 84.22 8 | 84.98 9 | 81.94 23 | 84.82 79 | 75.40 30 | 91.60 3 | 87.80 8 | 73.52 26 | 88.90 11 | 93.06 6 | 71.39 75 | 81.53 124 | 81.53 3 | 92.15 91 | 88.91 39 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
HPM-MVS |  | | 84.12 10 | 84.63 11 | 82.60 15 | 88.21 39 | 74.40 36 | 85.24 29 | 87.21 16 | 70.69 48 | 85.14 55 | 90.42 60 | 78.99 16 | 86.62 13 | 80.83 6 | 94.93 24 | 86.79 64 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
CP-MVS | | | 84.12 10 | 84.55 12 | 82.80 12 | 89.42 18 | 79.74 7 | 88.19 5 | 84.43 64 | 71.96 42 | 84.70 63 | 90.56 53 | 77.12 26 | 86.18 26 | 79.24 18 | 95.36 13 | 82.49 176 |
|
mPP-MVS | | | 84.01 12 | 84.39 13 | 82.88 8 | 90.65 4 | 81.38 4 | 87.08 13 | 82.79 91 | 72.41 36 | 85.11 56 | 90.85 44 | 76.65 30 | 84.89 64 | 79.30 17 | 94.63 35 | 82.35 179 |
|
COLMAP_ROB |  | 72.78 3 | 83.75 13 | 84.11 17 | 82.68 14 | 82.97 112 | 74.39 37 | 87.18 11 | 88.18 7 | 78.98 7 | 86.11 40 | 91.47 31 | 79.70 12 | 85.76 43 | 66.91 111 | 95.46 11 | 87.89 49 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
ACMMPR | | | 83.62 14 | 83.93 19 | 82.69 13 | 89.78 11 | 77.51 22 | 87.01 15 | 84.19 73 | 70.23 49 | 84.49 65 | 90.67 51 | 75.15 43 | 86.37 18 | 79.58 11 | 94.26 52 | 84.18 127 |
|
APD-MVS_3200maxsize | | | 83.57 15 | 84.33 14 | 81.31 32 | 82.83 115 | 73.53 45 | 85.50 28 | 87.45 14 | 74.11 21 | 86.45 35 | 90.52 56 | 80.02 11 | 84.48 71 | 77.73 30 | 94.34 50 | 85.93 76 |
|
region2R | | | 83.54 16 | 83.86 21 | 82.58 16 | 89.82 10 | 77.53 20 | 87.06 14 | 84.23 72 | 70.19 51 | 83.86 75 | 90.72 50 | 75.20 42 | 86.27 21 | 79.41 15 | 94.25 53 | 83.95 132 |
|
XVS | | | 83.51 17 | 83.73 22 | 82.85 10 | 89.43 16 | 77.61 18 | 86.80 18 | 84.66 57 | 72.71 29 | 82.87 85 | 90.39 64 | 73.86 56 | 86.31 19 | 78.84 20 | 94.03 58 | 84.64 106 |
|
LPG-MVS_test | | | 83.47 18 | 84.33 14 | 80.90 37 | 87.00 43 | 70.41 66 | 82.04 61 | 86.35 19 | 69.77 53 | 87.75 16 | 91.13 36 | 81.83 3 | 86.20 24 | 77.13 37 | 95.96 5 | 86.08 72 |
|
HFP-MVS | | | 83.39 19 | 84.03 18 | 81.48 26 | 89.25 21 | 75.69 28 | 87.01 15 | 84.27 68 | 70.23 49 | 84.47 66 | 90.43 58 | 76.79 27 | 85.94 34 | 79.58 11 | 94.23 54 | 82.82 166 |
|
MTAPA | | | 83.19 20 | 83.87 20 | 81.13 34 | 91.16 2 | 78.16 14 | 84.87 32 | 80.63 129 | 72.08 39 | 84.93 57 | 90.79 45 | 74.65 49 | 84.42 73 | 80.98 4 | 94.75 29 | 80.82 205 |
|
MP-MVS |  | | 83.19 20 | 83.54 26 | 82.14 22 | 90.54 5 | 79.00 11 | 86.42 23 | 83.59 82 | 71.31 43 | 81.26 106 | 90.96 41 | 74.57 51 | 84.69 68 | 78.41 22 | 94.78 28 | 82.74 170 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
ZNCC-MVS | | | 83.12 22 | 83.68 23 | 81.45 28 | 89.14 26 | 73.28 47 | 86.32 24 | 85.97 29 | 67.39 64 | 84.02 72 | 90.39 64 | 74.73 48 | 86.46 15 | 80.73 7 | 94.43 43 | 84.60 111 |
|
PGM-MVS | | | 83.07 23 | 83.25 33 | 82.54 18 | 89.57 14 | 77.21 24 | 82.04 61 | 85.40 38 | 67.96 62 | 84.91 61 | 90.88 42 | 75.59 38 | 86.57 14 | 78.16 23 | 94.71 32 | 83.82 133 |
|
SteuartSystems-ACMMP | | | 83.07 23 | 83.64 24 | 81.35 30 | 85.14 74 | 71.00 60 | 85.53 27 | 84.78 51 | 70.91 46 | 85.64 45 | 90.41 61 | 75.55 40 | 87.69 3 | 79.75 8 | 95.08 20 | 85.36 86 |
Skip Steuart: Steuart Systems R&D Blog. |
zzz-MVS | | | 83.01 25 | 83.63 25 | 81.13 34 | 91.16 2 | 78.16 14 | 82.72 57 | 80.63 129 | 72.08 39 | 84.93 57 | 90.79 45 | 74.65 49 | 84.42 73 | 80.98 4 | 94.75 29 | 80.82 205 |
|
APDe-MVS | | | 82.88 26 | 84.14 16 | 79.08 58 | 84.80 81 | 66.72 95 | 86.54 21 | 85.11 44 | 72.00 41 | 86.65 33 | 91.75 24 | 78.20 21 | 87.04 8 | 77.93 28 | 94.32 51 | 83.47 146 |
|
GST-MVS | | | 82.79 27 | 83.27 32 | 81.34 31 | 88.99 28 | 73.29 46 | 85.94 26 | 85.13 43 | 68.58 60 | 84.14 71 | 90.21 76 | 73.37 61 | 86.41 16 | 79.09 19 | 93.98 61 | 84.30 126 |
|
ACMP | | 69.50 8 | 82.64 28 | 83.38 29 | 80.40 42 | 86.50 51 | 69.44 73 | 82.30 58 | 86.08 27 | 66.80 69 | 86.70 32 | 89.99 79 | 81.64 6 | 85.95 33 | 74.35 52 | 96.11 3 | 85.81 78 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
MP-MVS-pluss | | | 82.54 29 | 83.46 28 | 79.76 46 | 88.88 32 | 68.44 82 | 81.57 64 | 86.33 21 | 63.17 110 | 85.38 52 | 91.26 35 | 76.33 32 | 84.67 69 | 83.30 1 | 94.96 23 | 86.17 71 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
#test# | | | 82.40 30 | 82.71 41 | 81.48 26 | 89.25 21 | 75.69 28 | 84.47 36 | 84.27 68 | 64.45 94 | 84.47 66 | 90.43 58 | 76.79 27 | 85.94 34 | 76.01 39 | 94.23 54 | 82.82 166 |
|
ACMMP_NAP | | | 82.33 31 | 83.28 31 | 79.46 54 | 89.28 19 | 69.09 80 | 83.62 45 | 84.98 47 | 64.77 91 | 83.97 73 | 91.02 40 | 75.53 41 | 85.93 37 | 82.00 2 | 94.36 48 | 83.35 151 |
|
SMA-MVS |  | | 82.12 32 | 82.68 42 | 80.43 41 | 88.90 31 | 69.52 71 | 85.12 30 | 84.76 52 | 63.53 104 | 84.23 70 | 91.47 31 | 72.02 67 | 87.16 6 | 79.74 10 | 94.36 48 | 84.61 109 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
ACMM | | 69.25 9 | 82.11 33 | 83.31 30 | 78.49 69 | 88.17 40 | 73.96 39 | 83.11 53 | 84.52 63 | 66.40 74 | 87.45 23 | 89.16 97 | 81.02 9 | 80.52 148 | 74.27 53 | 95.73 7 | 80.98 201 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
DPE-MVS |  | | 82.00 34 | 83.02 36 | 78.95 63 | 85.36 71 | 67.25 89 | 82.91 54 | 84.98 47 | 73.52 26 | 85.43 51 | 90.03 78 | 76.37 31 | 86.97 10 | 74.56 50 | 94.02 60 | 82.62 172 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
SED-MVS | | | 81.78 35 | 83.48 27 | 76.67 92 | 86.12 59 | 61.06 142 | 83.62 45 | 84.72 54 | 72.61 32 | 87.38 25 | 89.70 84 | 77.48 24 | 85.89 40 | 75.29 45 | 94.39 44 | 83.08 158 |
|
PMVS |  | 70.70 6 | 81.70 36 | 83.15 34 | 77.36 85 | 90.35 6 | 82.82 2 | 82.15 59 | 79.22 154 | 74.08 22 | 87.16 30 | 91.97 19 | 84.80 2 | 76.97 208 | 64.98 123 | 93.61 66 | 72.28 291 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
UA-Net | | | 81.56 37 | 82.28 44 | 79.40 55 | 88.91 30 | 69.16 78 | 84.67 35 | 80.01 144 | 75.34 17 | 79.80 123 | 94.91 2 | 69.79 87 | 80.25 153 | 72.63 64 | 94.46 39 | 88.78 43 |
|
CPTT-MVS | | | 81.51 38 | 81.76 47 | 80.76 39 | 89.20 24 | 78.75 12 | 86.48 22 | 82.03 102 | 68.80 56 | 80.92 111 | 88.52 109 | 72.00 68 | 82.39 109 | 74.80 47 | 93.04 75 | 81.14 195 |
|
DVP-MVS++ | | | 81.24 39 | 82.74 40 | 76.76 91 | 83.14 104 | 60.90 146 | 91.64 1 | 85.49 34 | 74.03 23 | 84.93 57 | 90.38 66 | 66.82 114 | 85.90 38 | 77.43 33 | 90.78 122 | 83.49 143 |
|
ACMH+ | | 66.64 10 | 81.20 40 | 82.48 43 | 77.35 86 | 81.16 138 | 62.39 130 | 80.51 71 | 87.80 8 | 73.02 28 | 87.57 21 | 91.08 38 | 80.28 10 | 82.44 108 | 64.82 124 | 96.10 4 | 87.21 59 |
|
testtj | | | 81.19 41 | 81.70 49 | 79.67 51 | 83.95 94 | 69.77 70 | 83.58 48 | 84.63 59 | 72.13 38 | 82.85 87 | 88.36 114 | 75.00 46 | 86.79 11 | 71.99 73 | 92.84 78 | 82.44 177 |
|
DVP-MVS |  | | 81.15 42 | 83.12 35 | 75.24 114 | 86.16 57 | 60.78 148 | 83.77 43 | 80.58 132 | 72.48 34 | 85.83 43 | 90.41 61 | 78.57 18 | 85.69 45 | 75.86 42 | 94.39 44 | 79.24 230 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
APD-MVS |  | | 81.13 43 | 81.73 48 | 79.36 56 | 84.47 86 | 70.53 65 | 83.85 41 | 83.70 80 | 69.43 55 | 83.67 77 | 88.96 103 | 75.89 36 | 86.41 16 | 72.62 65 | 92.95 76 | 81.14 195 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
3Dnovator+ | | 73.19 2 | 81.08 44 | 80.48 57 | 82.87 9 | 81.41 135 | 72.03 50 | 84.38 37 | 86.23 25 | 77.28 16 | 80.65 114 | 90.18 77 | 59.80 180 | 87.58 4 | 73.06 61 | 91.34 104 | 89.01 35 |
|
DeepC-MVS | | 72.44 4 | 81.00 45 | 80.83 56 | 81.50 25 | 86.70 50 | 70.03 69 | 82.06 60 | 87.00 17 | 59.89 133 | 80.91 112 | 90.53 54 | 72.19 65 | 88.56 1 | 73.67 57 | 94.52 37 | 85.92 77 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
OPM-MVS | | | 80.99 46 | 81.63 51 | 79.07 59 | 86.86 48 | 69.39 74 | 79.41 88 | 84.00 78 | 65.64 78 | 85.54 49 | 89.28 90 | 76.32 33 | 83.47 90 | 74.03 54 | 93.57 69 | 84.35 123 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
LS3D | | | 80.99 46 | 80.85 55 | 81.41 29 | 78.37 172 | 71.37 56 | 87.45 8 | 85.87 31 | 77.48 13 | 81.98 95 | 89.95 81 | 69.14 91 | 85.26 55 | 66.15 112 | 91.24 106 | 87.61 53 |
|
SF-MVS | | | 80.72 48 | 81.80 46 | 77.48 82 | 82.03 126 | 64.40 117 | 83.41 50 | 88.46 6 | 65.28 85 | 84.29 68 | 89.18 94 | 73.73 59 | 83.22 95 | 76.01 39 | 93.77 63 | 84.81 102 |
|
XVG-ACMP-BASELINE | | | 80.54 49 | 81.06 53 | 78.98 62 | 87.01 42 | 72.91 48 | 80.23 80 | 85.56 33 | 66.56 73 | 85.64 45 | 89.57 86 | 69.12 92 | 80.55 147 | 72.51 66 | 93.37 70 | 83.48 145 |
|
MSP-MVS | | | 80.49 50 | 79.67 65 | 82.96 7 | 89.70 12 | 77.46 23 | 87.16 12 | 85.10 45 | 64.94 90 | 81.05 108 | 88.38 113 | 57.10 207 | 87.10 7 | 79.75 8 | 83.87 230 | 84.31 124 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
PEN-MVS | | | 80.46 51 | 82.91 37 | 73.11 143 | 89.83 9 | 39.02 309 | 77.06 121 | 82.61 95 | 80.04 5 | 90.60 6 | 92.85 9 | 74.93 47 | 85.21 58 | 63.15 142 | 95.15 18 | 95.09 2 |
|
PS-CasMVS | | | 80.41 52 | 82.86 39 | 73.07 145 | 89.93 7 | 39.21 306 | 77.15 119 | 81.28 115 | 79.74 6 | 90.87 4 | 92.73 11 | 75.03 45 | 84.93 63 | 63.83 134 | 95.19 16 | 95.07 3 |
|
DTE-MVSNet | | | 80.35 53 | 82.89 38 | 72.74 156 | 89.84 8 | 37.34 323 | 77.16 118 | 81.81 105 | 80.45 4 | 90.92 3 | 92.95 7 | 74.57 51 | 86.12 29 | 63.65 135 | 94.68 33 | 94.76 6 |
|
xxxxxxxxxxxxxcwj | | | 80.31 54 | 80.94 54 | 78.42 71 | 87.00 43 | 67.23 90 | 79.24 89 | 88.61 5 | 56.65 169 | 84.29 68 | 89.18 94 | 73.73 59 | 83.22 95 | 76.01 39 | 93.77 63 | 84.81 102 |
|
SD-MVS | | | 80.28 55 | 81.55 52 | 76.47 97 | 83.57 98 | 67.83 86 | 83.39 51 | 85.35 40 | 64.42 95 | 86.14 39 | 87.07 130 | 74.02 55 | 80.97 138 | 77.70 31 | 92.32 89 | 80.62 213 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
WR-MVS_H | | | 80.22 56 | 82.17 45 | 74.39 121 | 89.46 15 | 42.69 284 | 78.24 105 | 82.24 98 | 78.21 10 | 89.57 9 | 92.10 18 | 68.05 103 | 85.59 48 | 66.04 114 | 95.62 9 | 94.88 5 |
|
HPM-MVS++ |  | | 79.89 57 | 79.80 63 | 80.18 44 | 89.02 27 | 78.44 13 | 83.49 49 | 80.18 141 | 64.71 93 | 78.11 143 | 88.39 112 | 65.46 130 | 83.14 97 | 77.64 32 | 91.20 107 | 78.94 233 |
|
XVG-OURS-SEG-HR | | | 79.62 58 | 79.99 61 | 78.49 69 | 86.46 52 | 74.79 34 | 77.15 119 | 85.39 39 | 66.73 70 | 80.39 118 | 88.85 105 | 74.43 54 | 78.33 189 | 74.73 49 | 85.79 202 | 82.35 179 |
|
XVG-OURS | | | 79.51 59 | 79.82 62 | 78.58 68 | 86.11 62 | 74.96 33 | 76.33 129 | 84.95 49 | 66.89 66 | 82.75 89 | 88.99 102 | 66.82 114 | 78.37 187 | 74.80 47 | 90.76 125 | 82.40 178 |
|
CP-MVSNet | | | 79.48 60 | 81.65 50 | 72.98 148 | 89.66 13 | 39.06 308 | 76.76 122 | 80.46 134 | 78.91 8 | 90.32 7 | 91.70 25 | 68.49 98 | 84.89 64 | 63.40 139 | 95.12 19 | 95.01 4 |
|
OMC-MVS | | | 79.41 61 | 78.79 70 | 81.28 33 | 80.62 142 | 70.71 64 | 80.91 67 | 84.76 52 | 62.54 114 | 81.77 98 | 86.65 147 | 71.46 73 | 83.53 89 | 67.95 101 | 92.44 86 | 89.60 25 |
|
v7n | | | 79.37 62 | 80.41 58 | 76.28 99 | 78.67 171 | 55.81 183 | 79.22 91 | 82.51 97 | 70.72 47 | 87.54 22 | 92.44 14 | 68.00 105 | 81.34 126 | 72.84 62 | 91.72 93 | 91.69 10 |
|
ETH3D-3000-0.1 | | | 79.14 63 | 79.80 63 | 77.16 89 | 80.67 141 | 64.57 114 | 80.26 78 | 87.60 12 | 60.74 126 | 82.47 92 | 88.03 122 | 71.73 70 | 81.81 120 | 73.12 60 | 93.61 66 | 85.09 91 |
|
TSAR-MVS + MP. | | | 79.05 64 | 78.81 69 | 79.74 47 | 88.94 29 | 67.52 87 | 86.61 20 | 81.38 113 | 51.71 230 | 77.15 154 | 91.42 34 | 65.49 129 | 87.20 5 | 79.44 14 | 87.17 188 | 84.51 118 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
mvs_tets | | | 78.93 65 | 78.67 73 | 79.72 48 | 84.81 80 | 73.93 40 | 80.65 69 | 76.50 193 | 51.98 227 | 87.40 24 | 91.86 21 | 76.09 35 | 78.53 179 | 68.58 91 | 90.20 131 | 86.69 67 |
|
test_djsdf | | | 78.88 66 | 78.27 76 | 80.70 40 | 81.42 134 | 71.24 58 | 83.98 39 | 75.72 200 | 52.27 222 | 87.37 27 | 92.25 16 | 68.04 104 | 80.56 145 | 72.28 69 | 91.15 109 | 90.32 22 |
|
HQP_MVS | | | 78.77 67 | 78.78 71 | 78.72 65 | 85.18 72 | 65.18 107 | 82.74 55 | 85.49 34 | 65.45 80 | 78.23 140 | 89.11 98 | 60.83 170 | 86.15 27 | 71.09 75 | 90.94 114 | 84.82 100 |
|
anonymousdsp | | | 78.60 68 | 77.80 80 | 81.00 36 | 78.01 178 | 74.34 38 | 80.09 81 | 76.12 195 | 50.51 246 | 89.19 10 | 90.88 42 | 71.45 74 | 77.78 201 | 73.38 58 | 90.60 127 | 90.90 18 |
|
OurMVSNet-221017-0 | | | 78.57 69 | 78.53 75 | 78.67 66 | 80.48 143 | 64.16 118 | 80.24 79 | 82.06 101 | 61.89 118 | 88.77 12 | 93.32 4 | 57.15 205 | 82.60 107 | 70.08 82 | 92.80 80 | 89.25 29 |
|
jajsoiax | | | 78.51 70 | 78.16 78 | 79.59 53 | 84.65 83 | 73.83 42 | 80.42 73 | 76.12 195 | 51.33 236 | 87.19 29 | 91.51 30 | 73.79 58 | 78.44 183 | 68.27 94 | 90.13 136 | 86.49 69 |
|
CNVR-MVS | | | 78.49 71 | 78.59 74 | 78.16 74 | 85.86 66 | 67.40 88 | 78.12 108 | 81.50 109 | 63.92 99 | 77.51 151 | 86.56 151 | 68.43 100 | 84.82 66 | 73.83 55 | 91.61 97 | 82.26 182 |
|
DeepPCF-MVS | | 71.07 5 | 78.48 72 | 77.14 88 | 82.52 19 | 84.39 90 | 77.04 25 | 76.35 127 | 84.05 76 | 56.66 168 | 80.27 119 | 85.31 178 | 68.56 97 | 87.03 9 | 67.39 106 | 91.26 105 | 83.50 142 |
|
DP-MVS | | | 78.44 73 | 79.29 67 | 75.90 104 | 81.86 129 | 65.33 105 | 79.05 93 | 84.63 59 | 74.83 20 | 80.41 117 | 86.27 158 | 71.68 71 | 83.45 91 | 62.45 146 | 92.40 87 | 78.92 234 |
|
ETH3D cwj APD-0.16 | | | 78.38 74 | 78.72 72 | 77.38 84 | 80.09 147 | 66.16 100 | 79.08 92 | 86.13 26 | 57.55 159 | 80.93 110 | 87.76 125 | 71.98 69 | 82.73 105 | 72.11 72 | 92.83 79 | 83.25 153 |
|
NCCC | | | 78.25 75 | 78.04 79 | 78.89 64 | 85.61 68 | 69.45 72 | 79.80 85 | 80.99 124 | 65.77 77 | 75.55 184 | 86.25 160 | 67.42 108 | 85.42 51 | 70.10 81 | 90.88 120 | 81.81 188 |
|
RRT_MVS | | | 78.18 76 | 77.69 81 | 79.66 52 | 83.14 104 | 61.34 139 | 83.29 52 | 80.34 139 | 57.43 160 | 86.65 33 | 91.79 23 | 50.52 241 | 86.01 30 | 71.36 74 | 94.65 34 | 91.62 11 |
|
test_0402 | | | 78.17 77 | 79.48 66 | 74.24 124 | 83.50 99 | 59.15 164 | 72.52 167 | 74.60 211 | 75.34 17 | 88.69 13 | 91.81 22 | 75.06 44 | 82.37 110 | 65.10 121 | 88.68 164 | 81.20 193 |
|
AllTest | | | 77.66 78 | 77.43 83 | 78.35 72 | 79.19 160 | 70.81 61 | 78.60 98 | 88.64 3 | 65.37 83 | 80.09 121 | 88.17 118 | 70.33 81 | 78.43 184 | 55.60 200 | 90.90 118 | 85.81 78 |
|
PS-MVSNAJss | | | 77.54 79 | 77.35 85 | 78.13 76 | 84.88 78 | 66.37 98 | 78.55 99 | 79.59 149 | 53.48 213 | 86.29 36 | 92.43 15 | 62.39 152 | 80.25 153 | 67.90 102 | 90.61 126 | 87.77 50 |
|
ACMH | | 63.62 14 | 77.50 80 | 80.11 60 | 69.68 197 | 79.61 151 | 56.28 179 | 78.81 95 | 83.62 81 | 63.41 108 | 87.14 31 | 90.23 75 | 76.11 34 | 73.32 247 | 67.58 103 | 94.44 42 | 79.44 228 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
CDPH-MVS | | | 77.33 81 | 77.06 89 | 78.14 75 | 84.21 91 | 63.98 120 | 76.07 132 | 83.45 83 | 54.20 200 | 77.68 150 | 87.18 126 | 69.98 84 | 85.37 52 | 68.01 98 | 92.72 84 | 85.08 93 |
|
mvsmamba | | | 77.20 82 | 76.37 92 | 79.69 50 | 80.34 145 | 61.52 137 | 80.58 70 | 82.12 100 | 53.54 212 | 83.93 74 | 91.03 39 | 49.49 247 | 85.97 32 | 73.26 59 | 93.08 74 | 91.59 12 |
|
DeepC-MVS_fast | | 69.89 7 | 77.17 83 | 76.33 94 | 79.70 49 | 83.90 96 | 67.94 84 | 80.06 83 | 83.75 79 | 56.73 167 | 74.88 192 | 85.32 177 | 65.54 128 | 87.79 2 | 65.61 118 | 91.14 110 | 83.35 151 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
DROMVSNet | | | 77.08 84 | 77.39 84 | 76.14 102 | 76.86 198 | 56.87 177 | 80.32 77 | 87.52 13 | 63.45 106 | 74.66 198 | 84.52 186 | 69.87 86 | 84.94 62 | 69.76 86 | 89.59 147 | 86.60 68 |
|
test_part1 | | | 76.97 85 | 78.21 77 | 73.25 140 | 77.87 180 | 45.76 260 | 78.27 104 | 87.26 15 | 66.69 71 | 85.31 53 | 91.43 33 | 55.95 216 | 84.24 78 | 65.71 116 | 95.43 12 | 89.75 24 |
|
X-MVStestdata | | | 76.81 86 | 74.79 106 | 82.85 10 | 89.43 16 | 77.61 18 | 86.80 18 | 84.66 57 | 72.71 29 | 82.87 85 | 9.95 376 | 73.86 56 | 86.31 19 | 78.84 20 | 94.03 58 | 84.64 106 |
|
UniMVSNet_ETH3D | | | 76.74 87 | 79.02 68 | 69.92 196 | 89.27 20 | 43.81 272 | 74.47 154 | 71.70 233 | 72.33 37 | 85.50 50 | 93.65 3 | 77.98 22 | 76.88 211 | 54.60 210 | 91.64 95 | 89.08 33 |
|
test_prior3 | | | 76.71 88 | 77.19 86 | 75.27 112 | 82.15 124 | 59.85 157 | 75.57 137 | 84.33 66 | 58.92 142 | 76.53 173 | 86.78 138 | 67.83 106 | 83.39 92 | 69.81 84 | 92.76 82 | 82.58 173 |
|
CS-MVS | | | 76.51 89 | 76.00 96 | 78.06 77 | 77.02 191 | 64.77 112 | 80.78 68 | 82.66 94 | 60.39 129 | 74.15 204 | 83.30 206 | 69.65 88 | 82.07 116 | 69.27 88 | 86.75 193 | 87.36 57 |
|
train_agg | | | 76.38 90 | 76.55 90 | 75.86 105 | 85.47 69 | 69.32 76 | 76.42 125 | 78.69 163 | 54.00 205 | 76.97 157 | 86.74 141 | 66.60 118 | 81.10 132 | 72.50 67 | 91.56 99 | 77.15 252 |
|
TranMVSNet+NR-MVSNet | | | 76.13 91 | 77.66 82 | 71.56 173 | 84.61 84 | 42.57 286 | 70.98 194 | 78.29 172 | 68.67 59 | 83.04 82 | 89.26 91 | 72.99 63 | 80.75 144 | 55.58 203 | 95.47 10 | 91.35 13 |
|
agg_prior1 | | | 75.89 92 | 76.41 91 | 74.31 123 | 84.44 88 | 66.02 101 | 76.12 131 | 78.62 166 | 54.40 194 | 76.95 159 | 86.85 135 | 66.44 121 | 80.34 150 | 72.45 68 | 91.42 102 | 76.57 256 |
|
SixPastTwentyTwo | | | 75.77 93 | 76.34 93 | 74.06 127 | 81.69 132 | 54.84 188 | 76.47 123 | 75.49 202 | 64.10 98 | 87.73 18 | 92.24 17 | 50.45 243 | 81.30 128 | 67.41 105 | 91.46 101 | 86.04 74 |
|
RPSCF | | | 75.76 94 | 74.37 112 | 79.93 45 | 74.81 222 | 77.53 20 | 77.53 113 | 79.30 153 | 59.44 136 | 78.88 132 | 89.80 83 | 71.26 76 | 73.09 249 | 57.45 183 | 80.89 266 | 89.17 32 |
|
ETH3 D test6400 | | | 75.73 95 | 76.00 96 | 74.92 115 | 81.75 130 | 56.93 175 | 78.31 102 | 84.60 62 | 52.83 218 | 77.15 154 | 85.14 180 | 68.59 96 | 84.03 79 | 65.44 119 | 90.20 131 | 83.82 133 |
|
v10 | | | 75.69 96 | 76.20 95 | 74.16 125 | 74.44 233 | 48.69 226 | 75.84 136 | 82.93 90 | 59.02 141 | 85.92 41 | 89.17 96 | 58.56 190 | 82.74 104 | 70.73 77 | 89.14 158 | 91.05 15 |
|
Anonymous20231211 | | | 75.54 97 | 77.19 86 | 70.59 182 | 77.67 185 | 45.70 262 | 74.73 150 | 80.19 140 | 68.80 56 | 82.95 84 | 92.91 8 | 66.26 122 | 76.76 214 | 58.41 179 | 92.77 81 | 89.30 28 |
|
Effi-MVS+-dtu | | | 75.43 98 | 72.28 150 | 84.91 2 | 77.05 188 | 83.58 1 | 78.47 100 | 77.70 179 | 57.68 153 | 74.89 191 | 78.13 271 | 64.80 136 | 84.26 77 | 56.46 192 | 85.32 209 | 86.88 63 |
|
Regformer-2 | | | 75.32 99 | 74.47 110 | 77.88 78 | 74.22 235 | 66.65 96 | 72.77 165 | 77.54 181 | 68.47 61 | 80.44 116 | 72.08 318 | 70.60 80 | 80.97 138 | 70.08 82 | 84.02 228 | 86.01 75 |
|
F-COLMAP | | | 75.29 100 | 73.99 118 | 79.18 57 | 81.73 131 | 71.90 51 | 81.86 63 | 82.98 88 | 59.86 134 | 72.27 229 | 84.00 193 | 64.56 139 | 83.07 100 | 51.48 231 | 87.19 187 | 82.56 175 |
|
HQP-MVS | | | 75.24 101 | 75.01 105 | 75.94 103 | 82.37 119 | 58.80 167 | 77.32 115 | 84.12 74 | 59.08 137 | 71.58 237 | 85.96 171 | 58.09 195 | 85.30 54 | 67.38 107 | 89.16 155 | 83.73 139 |
|
TAPA-MVS | | 65.27 12 | 75.16 102 | 74.29 114 | 77.77 79 | 74.86 221 | 68.08 83 | 77.89 109 | 84.04 77 | 55.15 182 | 76.19 180 | 83.39 200 | 66.91 112 | 80.11 158 | 60.04 167 | 90.14 135 | 85.13 90 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
IS-MVSNet | | | 75.10 103 | 75.42 104 | 74.15 126 | 79.23 158 | 48.05 235 | 79.43 86 | 78.04 175 | 70.09 52 | 79.17 130 | 88.02 123 | 53.04 226 | 83.60 87 | 58.05 181 | 93.76 65 | 90.79 19 |
|
v8 | | | 75.07 104 | 75.64 101 | 73.35 137 | 73.42 248 | 47.46 244 | 75.20 141 | 81.45 111 | 60.05 131 | 85.64 45 | 89.26 91 | 58.08 197 | 81.80 121 | 69.71 87 | 87.97 172 | 90.79 19 |
|
UniMVSNet (Re) | | | 75.00 105 | 75.48 103 | 73.56 135 | 83.14 104 | 47.92 237 | 70.41 202 | 81.04 123 | 63.67 102 | 79.54 125 | 86.37 156 | 62.83 146 | 81.82 119 | 57.10 186 | 95.25 15 | 90.94 17 |
|
PHI-MVS | | | 74.92 106 | 74.36 113 | 76.61 93 | 76.40 201 | 62.32 131 | 80.38 74 | 83.15 86 | 54.16 202 | 73.23 218 | 80.75 233 | 62.19 155 | 83.86 81 | 68.02 97 | 90.92 117 | 83.65 140 |
|
DU-MVS | | | 74.91 107 | 75.57 102 | 72.93 150 | 83.50 99 | 45.79 258 | 69.47 210 | 80.14 142 | 65.22 86 | 81.74 100 | 87.08 128 | 61.82 158 | 81.07 134 | 56.21 195 | 94.98 21 | 91.93 8 |
|
UniMVSNet_NR-MVSNet | | | 74.90 108 | 75.65 100 | 72.64 159 | 83.04 110 | 45.79 258 | 69.26 213 | 78.81 160 | 66.66 72 | 81.74 100 | 86.88 134 | 63.26 144 | 81.07 134 | 56.21 195 | 94.98 21 | 91.05 15 |
|
CS-MVS-test | | | 74.89 109 | 74.23 115 | 76.86 90 | 77.01 192 | 62.94 128 | 78.98 94 | 84.61 61 | 58.62 145 | 70.17 257 | 80.80 232 | 66.74 117 | 81.96 117 | 61.74 149 | 89.40 153 | 85.69 84 |
|
nrg030 | | | 74.87 110 | 75.99 98 | 71.52 174 | 74.90 220 | 49.88 222 | 74.10 158 | 82.58 96 | 54.55 193 | 83.50 79 | 89.21 93 | 71.51 72 | 75.74 223 | 61.24 153 | 92.34 88 | 88.94 38 |
|
Vis-MVSNet |  | | 74.85 111 | 74.56 108 | 75.72 106 | 81.63 133 | 64.64 113 | 76.35 127 | 79.06 156 | 62.85 112 | 73.33 216 | 88.41 111 | 62.54 150 | 79.59 164 | 63.94 133 | 82.92 240 | 82.94 162 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
Regformer-4 | | | 74.64 112 | 73.67 124 | 77.55 80 | 74.74 224 | 64.49 116 | 72.91 163 | 75.42 204 | 67.45 63 | 80.24 120 | 72.07 320 | 68.98 93 | 80.19 157 | 70.29 80 | 80.91 264 | 87.98 48 |
|
MSLP-MVS++ | | | 74.48 113 | 75.78 99 | 70.59 182 | 84.66 82 | 62.40 129 | 78.65 97 | 84.24 71 | 60.55 128 | 77.71 149 | 81.98 220 | 63.12 145 | 77.64 203 | 62.95 143 | 88.14 167 | 71.73 296 |
|
Regformer-1 | | | 74.28 114 | 73.63 126 | 76.21 101 | 74.22 235 | 64.12 119 | 72.77 165 | 75.46 203 | 66.86 68 | 79.27 128 | 72.08 318 | 69.29 90 | 78.74 176 | 68.73 90 | 84.02 228 | 85.77 83 |
|
AdaColmap |  | | 74.22 115 | 74.56 108 | 73.20 141 | 81.95 127 | 60.97 144 | 79.43 86 | 80.90 125 | 65.57 79 | 72.54 227 | 81.76 224 | 70.98 78 | 85.26 55 | 47.88 262 | 90.00 137 | 73.37 279 |
|
CSCG | | | 74.12 116 | 74.39 111 | 73.33 138 | 79.35 155 | 61.66 136 | 77.45 114 | 81.98 103 | 62.47 116 | 79.06 131 | 80.19 242 | 61.83 157 | 78.79 175 | 59.83 169 | 87.35 181 | 79.54 227 |
|
PAPM_NR | | | 73.91 117 | 74.16 116 | 73.16 142 | 81.90 128 | 53.50 198 | 81.28 65 | 81.40 112 | 66.17 75 | 73.30 217 | 83.31 205 | 59.96 176 | 83.10 99 | 58.45 178 | 81.66 258 | 82.87 164 |
|
EPP-MVSNet | | | 73.86 118 | 73.38 130 | 75.31 111 | 78.19 174 | 53.35 200 | 80.45 72 | 77.32 185 | 65.11 88 | 76.47 175 | 86.80 136 | 49.47 248 | 83.77 82 | 53.89 219 | 92.72 84 | 88.81 42 |
|
mvs-test1 | | | 73.81 119 | 70.69 172 | 83.18 5 | 77.05 188 | 81.39 3 | 75.39 139 | 77.70 179 | 57.68 153 | 71.19 247 | 74.72 296 | 64.80 136 | 83.66 86 | 56.46 192 | 81.19 262 | 84.50 119 |
|
K. test v3 | | | 73.67 120 | 73.61 127 | 73.87 129 | 79.78 149 | 55.62 186 | 74.69 152 | 62.04 302 | 66.16 76 | 84.76 62 | 93.23 5 | 49.47 248 | 80.97 138 | 65.66 117 | 86.67 194 | 85.02 95 |
|
NR-MVSNet | | | 73.62 121 | 74.05 117 | 72.33 166 | 83.50 99 | 43.71 273 | 65.65 267 | 77.32 185 | 64.32 96 | 75.59 183 | 87.08 128 | 62.45 151 | 81.34 126 | 54.90 206 | 95.63 8 | 91.93 8 |
|
DP-MVS Recon | | | 73.57 122 | 72.69 144 | 76.23 100 | 82.85 114 | 63.39 123 | 74.32 155 | 82.96 89 | 57.75 152 | 70.35 254 | 81.98 220 | 64.34 141 | 84.41 75 | 49.69 245 | 89.95 139 | 80.89 203 |
|
CNLPA | | | 73.44 123 | 73.03 139 | 74.66 116 | 78.27 173 | 75.29 31 | 75.99 133 | 78.49 168 | 65.39 82 | 75.67 182 | 83.22 210 | 61.23 166 | 66.77 304 | 53.70 221 | 85.33 208 | 81.92 187 |
|
MCST-MVS | | | 73.42 124 | 73.34 132 | 73.63 134 | 81.28 136 | 59.17 163 | 74.80 148 | 83.13 87 | 45.50 282 | 72.84 222 | 83.78 196 | 65.15 133 | 80.99 136 | 64.54 125 | 89.09 160 | 80.73 210 |
|
v1192 | | | 73.40 125 | 73.42 128 | 73.32 139 | 74.65 230 | 48.67 227 | 72.21 170 | 81.73 106 | 52.76 219 | 81.85 96 | 84.56 185 | 57.12 206 | 82.24 114 | 68.58 91 | 87.33 182 | 89.06 34 |
|
114514_t | | | 73.40 125 | 73.33 133 | 73.64 133 | 84.15 93 | 57.11 174 | 78.20 106 | 80.02 143 | 43.76 297 | 72.55 226 | 86.07 169 | 64.00 142 | 83.35 94 | 60.14 165 | 91.03 113 | 80.45 216 |
|
FC-MVSNet-test | | | 73.32 127 | 74.78 107 | 68.93 210 | 79.21 159 | 36.57 325 | 71.82 182 | 79.54 151 | 57.63 158 | 82.57 91 | 90.38 66 | 59.38 183 | 78.99 171 | 57.91 182 | 94.56 36 | 91.23 14 |
|
v1144 | | | 73.29 128 | 73.39 129 | 73.01 146 | 74.12 240 | 48.11 234 | 72.01 174 | 81.08 122 | 53.83 209 | 81.77 98 | 84.68 183 | 58.07 198 | 81.91 118 | 68.10 95 | 86.86 190 | 88.99 37 |
|
GeoE | | | 73.14 129 | 73.77 123 | 71.26 177 | 78.09 176 | 52.64 203 | 74.32 155 | 79.56 150 | 56.32 172 | 76.35 178 | 83.36 204 | 70.76 79 | 77.96 197 | 63.32 140 | 81.84 252 | 83.18 156 |
|
baseline | | | 73.10 130 | 73.96 119 | 70.51 184 | 71.46 268 | 46.39 256 | 72.08 172 | 84.40 65 | 55.95 175 | 76.62 169 | 86.46 154 | 67.20 109 | 78.03 196 | 64.22 128 | 87.27 185 | 87.11 62 |
|
h-mvs33 | | | 73.08 131 | 71.61 160 | 77.48 82 | 83.89 97 | 72.89 49 | 70.47 200 | 71.12 248 | 54.28 196 | 77.89 144 | 83.41 199 | 49.04 251 | 80.98 137 | 63.62 136 | 90.77 124 | 78.58 237 |
|
TSAR-MVS + GP. | | | 73.08 131 | 71.60 161 | 77.54 81 | 78.99 167 | 70.73 63 | 74.96 143 | 69.38 259 | 60.73 127 | 74.39 202 | 78.44 265 | 57.72 202 | 82.78 103 | 60.16 164 | 89.60 146 | 79.11 232 |
|
v1240 | | | 73.06 133 | 73.14 135 | 72.84 153 | 74.74 224 | 47.27 247 | 71.88 181 | 81.11 119 | 51.80 229 | 82.28 94 | 84.21 190 | 56.22 214 | 82.34 111 | 68.82 89 | 87.17 188 | 88.91 39 |
|
casdiffmvs | | | 73.06 133 | 73.84 120 | 70.72 180 | 71.32 269 | 46.71 252 | 70.93 195 | 84.26 70 | 55.62 178 | 77.46 152 | 87.10 127 | 67.09 110 | 77.81 199 | 63.95 131 | 86.83 191 | 87.64 52 |
|
IterMVS-LS | | | 73.01 135 | 73.12 137 | 72.66 158 | 73.79 244 | 49.90 219 | 71.63 183 | 78.44 169 | 58.22 147 | 80.51 115 | 86.63 148 | 58.15 194 | 79.62 162 | 62.51 144 | 88.20 166 | 88.48 45 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
CANet | | | 73.00 136 | 71.84 155 | 76.48 96 | 75.82 210 | 61.28 140 | 74.81 146 | 80.37 137 | 63.17 110 | 62.43 310 | 80.50 237 | 61.10 168 | 85.16 61 | 64.00 130 | 84.34 224 | 83.01 161 |
|
v144192 | | | 72.99 137 | 73.06 138 | 72.77 154 | 74.58 231 | 47.48 243 | 71.90 180 | 80.44 135 | 51.57 232 | 81.46 104 | 84.11 192 | 58.04 199 | 82.12 115 | 67.98 99 | 87.47 178 | 88.70 44 |
|
MVS_111021_HR | | | 72.98 138 | 72.97 141 | 72.99 147 | 80.82 139 | 65.47 104 | 68.81 220 | 72.77 224 | 57.67 155 | 75.76 181 | 82.38 217 | 71.01 77 | 77.17 206 | 61.38 152 | 86.15 198 | 76.32 257 |
|
v1921920 | | | 72.96 139 | 72.98 140 | 72.89 152 | 74.67 227 | 47.58 242 | 71.92 179 | 80.69 128 | 51.70 231 | 81.69 102 | 83.89 194 | 56.58 212 | 82.25 113 | 68.34 93 | 87.36 180 | 88.82 41 |
|
CLD-MVS | | | 72.88 140 | 72.36 149 | 74.43 120 | 77.03 190 | 54.30 192 | 68.77 223 | 83.43 84 | 52.12 224 | 76.79 167 | 74.44 300 | 69.54 89 | 83.91 80 | 55.88 198 | 93.25 73 | 85.09 91 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
Regformer-3 | | | 72.86 141 | 72.28 150 | 74.62 117 | 74.74 224 | 60.18 154 | 72.91 163 | 71.76 232 | 64.74 92 | 78.42 138 | 72.07 320 | 67.00 111 | 76.28 218 | 67.97 100 | 80.91 264 | 87.39 55 |
|
bld_raw_dy_0_64 | | | 72.85 142 | 72.76 143 | 73.09 144 | 85.08 76 | 64.80 111 | 78.72 96 | 64.22 287 | 51.92 228 | 83.13 81 | 90.26 73 | 39.21 306 | 69.91 280 | 70.73 77 | 91.60 98 | 84.56 113 |
|
EI-MVSNet-Vis-set | | | 72.78 143 | 71.87 154 | 75.54 109 | 74.77 223 | 59.02 165 | 72.24 169 | 71.56 236 | 63.92 99 | 78.59 134 | 71.59 326 | 66.22 123 | 78.60 178 | 67.58 103 | 80.32 272 | 89.00 36 |
|
ETV-MVS | | | 72.72 144 | 72.16 153 | 74.38 122 | 76.90 196 | 55.95 180 | 73.34 161 | 84.67 56 | 62.04 117 | 72.19 232 | 70.81 330 | 65.90 126 | 85.24 57 | 58.64 176 | 84.96 216 | 81.95 186 |
|
PCF-MVS | | 63.80 13 | 72.70 145 | 71.69 157 | 75.72 106 | 78.10 175 | 60.01 156 | 73.04 162 | 81.50 109 | 45.34 286 | 79.66 124 | 84.35 189 | 65.15 133 | 82.65 106 | 48.70 253 | 89.38 154 | 84.50 119 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
EI-MVSNet-UG-set | | | 72.63 146 | 71.68 158 | 75.47 110 | 74.67 227 | 58.64 170 | 72.02 173 | 71.50 237 | 63.53 104 | 78.58 136 | 71.39 329 | 65.98 124 | 78.53 179 | 67.30 109 | 80.18 274 | 89.23 30 |
|
Anonymous20240529 | | | 72.56 147 | 73.79 122 | 68.86 212 | 76.89 197 | 45.21 264 | 68.80 222 | 77.25 187 | 67.16 65 | 76.89 162 | 90.44 57 | 65.95 125 | 74.19 243 | 50.75 237 | 90.00 137 | 87.18 61 |
|
FIs | | | 72.56 147 | 73.80 121 | 68.84 213 | 78.74 170 | 37.74 319 | 71.02 193 | 79.83 145 | 56.12 173 | 80.88 113 | 89.45 88 | 58.18 192 | 78.28 190 | 56.63 188 | 93.36 71 | 90.51 21 |
|
v2v482 | | | 72.55 149 | 72.58 146 | 72.43 163 | 72.92 259 | 46.72 251 | 71.41 186 | 79.13 155 | 55.27 180 | 81.17 107 | 85.25 179 | 55.41 217 | 81.13 131 | 67.25 110 | 85.46 204 | 89.43 27 |
|
hse-mvs2 | | | 72.32 150 | 70.66 173 | 77.31 87 | 83.10 109 | 71.77 52 | 69.19 215 | 71.45 239 | 54.28 196 | 77.89 144 | 78.26 267 | 49.04 251 | 79.23 167 | 63.62 136 | 89.13 159 | 80.92 202 |
|
canonicalmvs | | | 72.29 151 | 73.38 130 | 69.04 205 | 74.23 234 | 47.37 245 | 73.93 159 | 83.18 85 | 54.36 195 | 76.61 170 | 81.64 226 | 72.03 66 | 75.34 227 | 57.12 185 | 87.28 184 | 84.40 121 |
|
Effi-MVS+ | | | 72.10 152 | 72.28 150 | 71.58 172 | 74.21 238 | 50.33 215 | 74.72 151 | 82.73 92 | 62.62 113 | 70.77 250 | 76.83 281 | 69.96 85 | 80.97 138 | 60.20 162 | 78.43 291 | 83.45 148 |
|
MVS_111021_LR | | | 72.10 152 | 71.82 156 | 72.95 149 | 79.53 153 | 73.90 41 | 70.45 201 | 66.64 271 | 56.87 164 | 76.81 166 | 81.76 224 | 68.78 94 | 71.76 267 | 61.81 147 | 83.74 232 | 73.18 281 |
|
pmmvs6 | | | 71.82 154 | 73.66 125 | 66.31 241 | 75.94 209 | 42.01 288 | 66.99 249 | 72.53 227 | 63.45 106 | 76.43 176 | 92.78 10 | 72.95 64 | 69.69 282 | 51.41 232 | 90.46 128 | 87.22 58 |
|
PLC |  | 62.01 16 | 71.79 155 | 70.28 175 | 76.33 98 | 80.31 146 | 68.63 81 | 78.18 107 | 81.24 116 | 54.57 192 | 67.09 284 | 80.63 235 | 59.44 181 | 81.74 123 | 46.91 269 | 84.17 225 | 78.63 235 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
VDDNet | | | 71.60 156 | 73.13 136 | 67.02 234 | 86.29 53 | 41.11 293 | 69.97 204 | 66.50 272 | 68.72 58 | 74.74 194 | 91.70 25 | 59.90 177 | 75.81 221 | 48.58 255 | 91.72 93 | 84.15 128 |
|
3Dnovator | | 65.95 11 | 71.50 157 | 71.22 166 | 72.34 165 | 73.16 252 | 63.09 126 | 78.37 101 | 78.32 170 | 57.67 155 | 72.22 231 | 84.61 184 | 54.77 218 | 78.47 181 | 60.82 160 | 81.07 263 | 75.45 263 |
|
FA-MVS(test-final) | | | 71.27 158 | 71.06 167 | 71.92 170 | 73.96 241 | 52.32 206 | 76.45 124 | 76.12 195 | 59.07 140 | 74.04 208 | 86.18 161 | 52.18 231 | 79.43 166 | 59.75 170 | 81.76 253 | 84.03 130 |
|
WR-MVS | | | 71.20 159 | 72.48 147 | 67.36 229 | 84.98 77 | 35.70 333 | 64.43 282 | 68.66 263 | 65.05 89 | 81.49 103 | 86.43 155 | 57.57 203 | 76.48 216 | 50.36 241 | 93.32 72 | 89.90 23 |
|
V42 | | | 71.06 160 | 70.83 170 | 71.72 171 | 67.25 304 | 47.14 248 | 65.94 261 | 80.35 138 | 51.35 235 | 83.40 80 | 83.23 208 | 59.25 184 | 78.80 174 | 65.91 115 | 80.81 268 | 89.23 30 |
|
FMVSNet1 | | | 71.06 160 | 72.48 147 | 66.81 235 | 77.65 186 | 40.68 297 | 71.96 176 | 73.03 219 | 61.14 122 | 79.45 127 | 90.36 69 | 60.44 172 | 75.20 229 | 50.20 242 | 88.05 169 | 84.54 114 |
|
dcpmvs_2 | | | 71.02 162 | 72.65 145 | 66.16 242 | 76.06 208 | 50.49 214 | 71.97 175 | 79.36 152 | 50.34 247 | 82.81 88 | 83.63 197 | 64.38 140 | 67.27 298 | 61.54 151 | 83.71 234 | 80.71 212 |
|
API-MVS | | | 70.97 163 | 71.51 163 | 69.37 199 | 75.20 215 | 55.94 181 | 80.99 66 | 76.84 190 | 62.48 115 | 71.24 245 | 77.51 277 | 61.51 162 | 80.96 142 | 52.04 227 | 85.76 203 | 71.22 301 |
|
VDD-MVS | | | 70.81 164 | 71.44 164 | 68.91 211 | 79.07 165 | 46.51 253 | 67.82 236 | 70.83 252 | 61.23 121 | 74.07 207 | 88.69 106 | 59.86 178 | 75.62 224 | 51.11 234 | 90.28 130 | 84.61 109 |
|
EG-PatchMatch MVS | | | 70.70 165 | 70.88 169 | 70.16 190 | 82.64 118 | 58.80 167 | 71.48 184 | 73.64 215 | 54.98 183 | 76.55 171 | 81.77 223 | 61.10 168 | 78.94 172 | 54.87 207 | 80.84 267 | 72.74 286 |
|
Baseline_NR-MVSNet | | | 70.62 166 | 73.19 134 | 62.92 273 | 76.97 193 | 34.44 341 | 68.84 218 | 70.88 251 | 60.25 130 | 79.50 126 | 90.53 54 | 61.82 158 | 69.11 286 | 54.67 209 | 95.27 14 | 85.22 87 |
|
alignmvs | | | 70.54 167 | 71.00 168 | 69.15 204 | 73.50 246 | 48.04 236 | 69.85 207 | 79.62 146 | 53.94 208 | 76.54 172 | 82.00 219 | 59.00 186 | 74.68 236 | 57.32 184 | 87.21 186 | 84.72 104 |
|
MG-MVS | | | 70.47 168 | 71.34 165 | 67.85 224 | 79.26 157 | 40.42 301 | 74.67 153 | 75.15 208 | 58.41 146 | 68.74 273 | 88.14 121 | 56.08 215 | 83.69 85 | 59.90 168 | 81.71 257 | 79.43 229 |
|
AUN-MVS | | | 70.22 169 | 67.88 205 | 77.22 88 | 82.96 113 | 71.61 53 | 69.08 216 | 71.39 240 | 49.17 259 | 71.70 235 | 78.07 272 | 37.62 316 | 79.21 168 | 61.81 147 | 89.15 157 | 80.82 205 |
|
UGNet | | | 70.20 170 | 69.05 185 | 73.65 132 | 76.24 203 | 63.64 121 | 75.87 135 | 72.53 227 | 61.48 120 | 60.93 320 | 86.14 165 | 52.37 230 | 77.12 207 | 50.67 238 | 85.21 210 | 80.17 221 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
PVSNet_Blended_VisFu | | | 70.04 171 | 68.88 188 | 73.53 136 | 82.71 116 | 63.62 122 | 74.81 146 | 81.95 104 | 48.53 264 | 67.16 283 | 79.18 257 | 51.42 237 | 78.38 186 | 54.39 214 | 79.72 281 | 78.60 236 |
|
Fast-Effi-MVS+-dtu | | | 70.00 172 | 68.74 192 | 73.77 130 | 73.47 247 | 64.53 115 | 71.36 187 | 78.14 174 | 55.81 177 | 68.84 272 | 74.71 297 | 65.36 131 | 75.75 222 | 52.00 228 | 79.00 285 | 81.03 198 |
|
DPM-MVS | | | 69.98 173 | 69.22 184 | 72.26 167 | 82.69 117 | 58.82 166 | 70.53 199 | 81.23 117 | 47.79 271 | 64.16 298 | 80.21 240 | 51.32 238 | 83.12 98 | 60.14 165 | 84.95 217 | 74.83 269 |
|
MVSFormer | | | 69.93 174 | 69.03 186 | 72.63 160 | 74.93 218 | 59.19 161 | 83.98 39 | 75.72 200 | 52.27 222 | 63.53 306 | 76.74 282 | 43.19 282 | 80.56 145 | 72.28 69 | 78.67 289 | 78.14 244 |
|
MVS_Test | | | 69.84 175 | 70.71 171 | 67.24 230 | 67.49 303 | 43.25 280 | 69.87 206 | 81.22 118 | 52.69 220 | 71.57 240 | 86.68 144 | 62.09 156 | 74.51 238 | 66.05 113 | 78.74 287 | 83.96 131 |
|
c3_l | | | 69.82 176 | 69.89 177 | 69.61 198 | 66.24 311 | 43.48 276 | 68.12 233 | 79.61 148 | 51.43 234 | 77.72 148 | 80.18 243 | 54.61 221 | 78.15 195 | 63.62 136 | 87.50 177 | 87.20 60 |
|
TransMVSNet (Re) | | | 69.62 177 | 71.63 159 | 63.57 262 | 76.51 200 | 35.93 331 | 65.75 266 | 71.29 243 | 61.05 123 | 75.02 189 | 89.90 82 | 65.88 127 | 70.41 279 | 49.79 244 | 89.48 149 | 84.38 122 |
|
EI-MVSNet | | | 69.61 178 | 69.01 187 | 71.41 176 | 73.94 242 | 49.90 219 | 71.31 189 | 71.32 241 | 58.22 147 | 75.40 187 | 70.44 332 | 58.16 193 | 75.85 219 | 62.51 144 | 79.81 278 | 88.48 45 |
|
Gipuma |  | | 69.55 179 | 72.83 142 | 59.70 297 | 63.63 331 | 53.97 195 | 80.08 82 | 75.93 198 | 64.24 97 | 73.49 213 | 88.93 104 | 57.89 201 | 62.46 321 | 59.75 170 | 91.55 100 | 62.67 349 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
tttt0517 | | | 69.46 180 | 67.79 206 | 74.46 118 | 75.34 213 | 52.72 202 | 75.05 142 | 63.27 293 | 54.69 189 | 78.87 133 | 84.37 188 | 26.63 360 | 81.15 130 | 63.95 131 | 87.93 173 | 89.51 26 |
|
eth_miper_zixun_eth | | | 69.42 181 | 68.73 193 | 71.50 175 | 67.99 297 | 46.42 254 | 67.58 238 | 78.81 160 | 50.72 243 | 78.13 142 | 80.34 239 | 50.15 245 | 80.34 150 | 60.18 163 | 84.65 218 | 87.74 51 |
|
BH-untuned | | | 69.39 182 | 69.46 179 | 69.18 203 | 77.96 179 | 56.88 176 | 68.47 230 | 77.53 182 | 56.77 166 | 77.79 147 | 79.63 249 | 60.30 174 | 80.20 156 | 46.04 275 | 80.65 269 | 70.47 306 |
|
v148 | | | 69.38 183 | 69.39 180 | 69.36 200 | 69.14 290 | 44.56 267 | 68.83 219 | 72.70 225 | 54.79 187 | 78.59 134 | 84.12 191 | 54.69 219 | 76.74 215 | 59.40 173 | 82.20 246 | 86.79 64 |
|
1121 | | | 69.23 184 | 68.26 197 | 72.12 169 | 88.36 37 | 71.40 55 | 68.59 225 | 62.06 300 | 43.80 296 | 74.75 193 | 86.18 161 | 52.92 227 | 76.85 212 | 54.47 211 | 83.27 238 | 68.12 322 |
|
PAPR | | | 69.20 185 | 68.66 194 | 70.82 179 | 75.15 217 | 47.77 239 | 75.31 140 | 81.11 119 | 49.62 256 | 66.33 286 | 79.27 254 | 61.53 161 | 82.96 101 | 48.12 260 | 81.50 260 | 81.74 189 |
|
QAPM | | | 69.18 186 | 69.26 182 | 68.94 209 | 71.61 267 | 52.58 204 | 80.37 75 | 78.79 162 | 49.63 255 | 73.51 212 | 85.14 180 | 53.66 224 | 79.12 169 | 55.11 205 | 75.54 307 | 75.11 267 |
|
LCM-MVSNet-Re | | | 69.10 187 | 71.57 162 | 61.70 281 | 70.37 278 | 34.30 343 | 61.45 303 | 79.62 146 | 56.81 165 | 89.59 8 | 88.16 120 | 68.44 99 | 72.94 250 | 42.30 291 | 87.33 182 | 77.85 249 |
|
EPNet | | | 69.10 187 | 67.32 211 | 74.46 118 | 68.33 294 | 61.27 141 | 77.56 111 | 63.57 291 | 60.95 124 | 56.62 336 | 82.75 213 | 51.53 236 | 81.24 129 | 54.36 215 | 90.20 131 | 80.88 204 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
DELS-MVS | | | 68.83 189 | 68.31 195 | 70.38 185 | 70.55 277 | 48.31 230 | 63.78 289 | 82.13 99 | 54.00 205 | 68.96 269 | 75.17 292 | 58.95 187 | 80.06 159 | 58.55 177 | 82.74 242 | 82.76 168 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
Fast-Effi-MVS+ | | | 68.81 190 | 68.30 196 | 70.35 186 | 74.66 229 | 48.61 228 | 66.06 260 | 78.32 170 | 50.62 244 | 71.48 243 | 75.54 288 | 68.75 95 | 79.59 164 | 50.55 240 | 78.73 288 | 82.86 165 |
|
OpenMVS |  | 62.51 15 | 68.76 191 | 68.75 191 | 68.78 214 | 70.56 276 | 53.91 196 | 78.29 103 | 77.35 184 | 48.85 262 | 70.22 256 | 83.52 198 | 52.65 229 | 76.93 209 | 55.31 204 | 81.99 248 | 75.49 262 |
|
VPA-MVSNet | | | 68.71 192 | 70.37 174 | 63.72 260 | 76.13 205 | 38.06 317 | 64.10 284 | 71.48 238 | 56.60 171 | 74.10 206 | 88.31 115 | 64.78 138 | 69.72 281 | 47.69 264 | 90.15 134 | 83.37 150 |
|
iter_conf_final | | | 68.69 193 | 67.00 217 | 73.76 131 | 73.68 245 | 52.33 205 | 75.96 134 | 73.54 216 | 50.56 245 | 69.90 260 | 82.85 211 | 24.76 368 | 83.73 83 | 65.40 120 | 86.33 197 | 85.22 87 |
|
BH-RMVSNet | | | 68.69 193 | 68.20 201 | 70.14 191 | 76.40 201 | 53.90 197 | 64.62 279 | 73.48 217 | 58.01 149 | 73.91 210 | 81.78 222 | 59.09 185 | 78.22 191 | 48.59 254 | 77.96 296 | 78.31 240 |
|
EIA-MVS | | | 68.59 195 | 67.16 213 | 72.90 151 | 75.18 216 | 55.64 185 | 69.39 211 | 81.29 114 | 52.44 221 | 64.53 294 | 70.69 331 | 60.33 173 | 82.30 112 | 54.27 216 | 76.31 302 | 80.75 209 |
|
pm-mvs1 | | | 68.40 196 | 69.85 178 | 64.04 258 | 73.10 256 | 39.94 303 | 64.61 280 | 70.50 253 | 55.52 179 | 73.97 209 | 89.33 89 | 63.91 143 | 68.38 290 | 49.68 246 | 88.02 170 | 83.81 135 |
|
miper_ehance_all_eth | | | 68.36 197 | 68.16 202 | 68.98 207 | 65.14 322 | 43.34 278 | 67.07 248 | 78.92 159 | 49.11 260 | 76.21 179 | 77.72 274 | 53.48 225 | 77.92 198 | 61.16 155 | 84.59 220 | 85.68 85 |
|
GBi-Net | | | 68.30 198 | 68.79 189 | 66.81 235 | 73.14 253 | 40.68 297 | 71.96 176 | 73.03 219 | 54.81 184 | 74.72 195 | 90.36 69 | 48.63 257 | 75.20 229 | 47.12 266 | 85.37 205 | 84.54 114 |
|
test1 | | | 68.30 198 | 68.79 189 | 66.81 235 | 73.14 253 | 40.68 297 | 71.96 176 | 73.03 219 | 54.81 184 | 74.72 195 | 90.36 69 | 48.63 257 | 75.20 229 | 47.12 266 | 85.37 205 | 84.54 114 |
|
FE-MVS | | | 68.29 200 | 66.96 218 | 72.26 167 | 74.16 239 | 54.24 193 | 77.55 112 | 73.42 218 | 57.65 157 | 72.66 224 | 84.91 182 | 32.02 339 | 81.49 125 | 48.43 257 | 81.85 251 | 81.04 197 |
|
DIV-MVS_self_test | | | 68.27 201 | 68.26 197 | 68.29 219 | 64.98 323 | 43.67 274 | 65.89 262 | 74.67 209 | 50.04 252 | 76.86 164 | 82.43 215 | 48.74 255 | 75.38 225 | 60.94 158 | 89.81 142 | 85.81 78 |
|
cl____ | | | 68.26 202 | 68.26 197 | 68.29 219 | 64.98 323 | 43.67 274 | 65.89 262 | 74.67 209 | 50.04 252 | 76.86 164 | 82.42 216 | 48.74 255 | 75.38 225 | 60.92 159 | 89.81 142 | 85.80 82 |
|
TinyColmap | | | 67.98 203 | 69.28 181 | 64.08 256 | 67.98 298 | 46.82 250 | 70.04 203 | 75.26 206 | 53.05 215 | 77.36 153 | 86.79 137 | 59.39 182 | 72.59 257 | 45.64 277 | 88.01 171 | 72.83 284 |
|
xiu_mvs_v1_base_debu | | | 67.87 204 | 67.07 214 | 70.26 187 | 79.13 162 | 61.90 133 | 67.34 242 | 71.25 244 | 47.98 267 | 67.70 277 | 74.19 305 | 61.31 163 | 72.62 254 | 56.51 189 | 78.26 293 | 76.27 258 |
|
xiu_mvs_v1_base | | | 67.87 204 | 67.07 214 | 70.26 187 | 79.13 162 | 61.90 133 | 67.34 242 | 71.25 244 | 47.98 267 | 67.70 277 | 74.19 305 | 61.31 163 | 72.62 254 | 56.51 189 | 78.26 293 | 76.27 258 |
|
xiu_mvs_v1_base_debi | | | 67.87 204 | 67.07 214 | 70.26 187 | 79.13 162 | 61.90 133 | 67.34 242 | 71.25 244 | 47.98 267 | 67.70 277 | 74.19 305 | 61.31 163 | 72.62 254 | 56.51 189 | 78.26 293 | 76.27 258 |
|
MAR-MVS | | | 67.72 207 | 66.16 222 | 72.40 164 | 74.45 232 | 64.99 110 | 74.87 144 | 77.50 183 | 48.67 263 | 65.78 290 | 68.58 350 | 57.01 209 | 77.79 200 | 46.68 272 | 81.92 249 | 74.42 272 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
IterMVS-SCA-FT | | | 67.68 208 | 66.07 223 | 72.49 162 | 73.34 250 | 58.20 172 | 63.80 288 | 65.55 277 | 48.10 266 | 76.91 161 | 82.64 214 | 45.20 269 | 78.84 173 | 61.20 154 | 77.89 297 | 80.44 217 |
|
LF4IMVS | | | 67.50 209 | 67.31 212 | 68.08 222 | 58.86 354 | 61.93 132 | 71.43 185 | 75.90 199 | 44.67 292 | 72.42 228 | 80.20 241 | 57.16 204 | 70.44 277 | 58.99 175 | 86.12 199 | 71.88 294 |
|
FMVSNet2 | | | 67.48 210 | 68.21 200 | 65.29 247 | 73.14 253 | 38.94 310 | 68.81 220 | 71.21 247 | 54.81 184 | 76.73 168 | 86.48 153 | 48.63 257 | 74.60 237 | 47.98 261 | 86.11 200 | 82.35 179 |
|
MSDG | | | 67.47 211 | 67.48 210 | 67.46 228 | 70.70 273 | 54.69 190 | 66.90 252 | 78.17 173 | 60.88 125 | 70.41 253 | 74.76 294 | 61.22 167 | 73.18 248 | 47.38 265 | 76.87 299 | 74.49 271 |
|
diffmvs | | | 67.42 212 | 67.50 209 | 67.20 231 | 62.26 336 | 45.21 264 | 64.87 276 | 77.04 188 | 48.21 265 | 71.74 234 | 79.70 248 | 58.40 191 | 71.17 271 | 64.99 122 | 80.27 273 | 85.22 87 |
|
iter_conf05 | | | 67.34 213 | 65.62 225 | 72.50 161 | 69.82 282 | 47.06 249 | 72.19 171 | 76.86 189 | 45.32 287 | 72.86 221 | 82.85 211 | 20.53 374 | 83.73 83 | 61.13 156 | 89.02 161 | 86.70 66 |
|
cl22 | | | 67.14 214 | 66.51 220 | 69.03 206 | 63.20 332 | 43.46 277 | 66.88 253 | 76.25 194 | 49.22 258 | 74.48 200 | 77.88 273 | 45.49 268 | 77.40 205 | 60.64 161 | 84.59 220 | 86.24 70 |
|
ANet_high | | | 67.08 215 | 69.94 176 | 58.51 305 | 57.55 359 | 27.09 368 | 58.43 322 | 76.80 191 | 63.56 103 | 82.40 93 | 91.93 20 | 59.82 179 | 64.98 312 | 50.10 243 | 88.86 163 | 83.46 147 |
|
LFMVS | | | 67.06 216 | 67.89 204 | 64.56 252 | 78.02 177 | 38.25 314 | 70.81 198 | 59.60 308 | 65.18 87 | 71.06 248 | 86.56 151 | 43.85 278 | 75.22 228 | 46.35 273 | 89.63 145 | 80.21 220 |
|
thisisatest0530 | | | 67.05 217 | 65.16 229 | 72.73 157 | 73.10 256 | 50.55 213 | 71.26 191 | 63.91 289 | 50.22 249 | 74.46 201 | 80.75 233 | 26.81 359 | 80.25 153 | 59.43 172 | 86.50 195 | 87.37 56 |
|
MIMVSNet1 | | | 66.57 218 | 69.23 183 | 58.59 304 | 81.26 137 | 37.73 320 | 64.06 285 | 57.62 313 | 57.02 163 | 78.40 139 | 90.75 47 | 62.65 147 | 58.10 334 | 41.77 296 | 89.58 148 | 79.95 222 |
|
tfpnnormal | | | 66.48 219 | 67.93 203 | 62.16 279 | 73.40 249 | 36.65 324 | 63.45 291 | 64.99 280 | 55.97 174 | 72.82 223 | 87.80 124 | 57.06 208 | 69.10 287 | 48.31 259 | 87.54 175 | 80.72 211 |
|
KD-MVS_self_test | | | 66.38 220 | 67.51 208 | 62.97 271 | 61.76 338 | 34.39 342 | 58.11 324 | 75.30 205 | 50.84 242 | 77.12 156 | 85.42 176 | 56.84 210 | 69.44 283 | 51.07 235 | 91.16 108 | 85.08 93 |
|
Anonymous202405211 | | | 66.02 221 | 66.89 219 | 63.43 265 | 74.22 235 | 38.14 315 | 59.00 319 | 66.13 273 | 63.33 109 | 69.76 263 | 85.95 172 | 51.88 232 | 70.50 276 | 44.23 283 | 87.52 176 | 81.64 190 |
|
miper_enhance_ethall | | | 65.86 222 | 65.05 236 | 68.28 221 | 61.62 340 | 42.62 285 | 64.74 277 | 77.97 176 | 42.52 306 | 73.42 215 | 72.79 315 | 49.66 246 | 77.68 202 | 58.12 180 | 84.59 220 | 84.54 114 |
|
RPMNet | | | 65.77 223 | 65.08 235 | 67.84 225 | 66.37 308 | 48.24 232 | 70.93 195 | 86.27 22 | 54.66 190 | 61.35 314 | 86.77 140 | 33.29 328 | 85.67 47 | 55.93 197 | 70.17 337 | 69.62 314 |
|
VPNet | | | 65.58 224 | 67.56 207 | 59.65 298 | 79.72 150 | 30.17 360 | 60.27 313 | 62.14 297 | 54.19 201 | 71.24 245 | 86.63 148 | 58.80 188 | 67.62 295 | 44.17 284 | 90.87 121 | 81.18 194 |
|
PVSNet_BlendedMVS | | | 65.38 225 | 64.30 237 | 68.61 215 | 69.81 283 | 49.36 223 | 65.60 269 | 78.96 157 | 45.50 282 | 59.98 323 | 78.61 263 | 51.82 233 | 78.20 192 | 44.30 281 | 84.11 226 | 78.27 241 |
|
TAMVS | | | 65.31 226 | 63.75 242 | 69.97 195 | 82.23 123 | 59.76 159 | 66.78 254 | 63.37 292 | 45.20 288 | 69.79 262 | 79.37 253 | 47.42 263 | 72.17 260 | 34.48 339 | 85.15 212 | 77.99 248 |
|
test_yl | | | 65.11 227 | 65.09 233 | 65.18 248 | 70.59 274 | 40.86 295 | 63.22 296 | 72.79 222 | 57.91 150 | 68.88 270 | 79.07 260 | 42.85 285 | 74.89 233 | 45.50 278 | 84.97 213 | 79.81 223 |
|
DCV-MVSNet | | | 65.11 227 | 65.09 233 | 65.18 248 | 70.59 274 | 40.86 295 | 63.22 296 | 72.79 222 | 57.91 150 | 68.88 270 | 79.07 260 | 42.85 285 | 74.89 233 | 45.50 278 | 84.97 213 | 79.81 223 |
|
mvs_anonymous | | | 65.08 229 | 65.49 226 | 63.83 259 | 63.79 329 | 37.60 321 | 66.52 257 | 69.82 257 | 43.44 301 | 73.46 214 | 86.08 168 | 58.79 189 | 71.75 268 | 51.90 229 | 75.63 306 | 82.15 183 |
|
FMVSNet3 | | | 65.00 230 | 65.16 229 | 64.52 253 | 69.47 286 | 37.56 322 | 66.63 255 | 70.38 254 | 51.55 233 | 74.72 195 | 83.27 207 | 37.89 315 | 74.44 239 | 47.12 266 | 85.37 205 | 81.57 191 |
|
ECVR-MVS |  | | 64.82 231 | 65.22 227 | 63.60 261 | 78.80 168 | 31.14 357 | 66.97 250 | 56.47 323 | 54.23 198 | 69.94 259 | 88.68 107 | 37.23 317 | 74.81 235 | 45.28 280 | 89.41 151 | 84.86 98 |
|
BH-w/o | | | 64.81 232 | 64.29 238 | 66.36 240 | 76.08 207 | 54.71 189 | 65.61 268 | 75.23 207 | 50.10 251 | 71.05 249 | 71.86 325 | 54.33 222 | 79.02 170 | 38.20 317 | 76.14 303 | 65.36 337 |
|
EGC-MVSNET | | | 64.77 233 | 61.17 264 | 75.60 108 | 86.90 47 | 74.47 35 | 84.04 38 | 68.62 264 | 0.60 378 | 1.13 380 | 91.61 28 | 65.32 132 | 74.15 244 | 64.01 129 | 88.28 165 | 78.17 243 |
|
test1111 | | | 64.62 234 | 65.19 228 | 62.93 272 | 79.01 166 | 29.91 361 | 65.45 270 | 54.41 331 | 54.09 203 | 71.47 244 | 88.48 110 | 37.02 318 | 74.29 242 | 46.83 271 | 89.94 140 | 84.58 112 |
|
cascas | | | 64.59 235 | 62.77 253 | 70.05 193 | 75.27 214 | 50.02 218 | 61.79 302 | 71.61 234 | 42.46 307 | 63.68 304 | 68.89 347 | 49.33 250 | 80.35 149 | 47.82 263 | 84.05 227 | 79.78 225 |
|
TR-MVS | | | 64.59 235 | 63.54 245 | 67.73 227 | 75.75 212 | 50.83 212 | 63.39 292 | 70.29 255 | 49.33 257 | 71.55 241 | 74.55 298 | 50.94 239 | 78.46 182 | 40.43 303 | 75.69 305 | 73.89 276 |
|
PM-MVS | | | 64.49 237 | 63.61 244 | 67.14 233 | 76.68 199 | 75.15 32 | 68.49 229 | 42.85 362 | 51.17 239 | 77.85 146 | 80.51 236 | 45.76 264 | 66.31 307 | 52.83 226 | 76.35 301 | 59.96 355 |
|
jason | | | 64.47 238 | 62.84 252 | 69.34 202 | 76.91 195 | 59.20 160 | 67.15 247 | 65.67 274 | 35.29 341 | 65.16 292 | 76.74 282 | 44.67 273 | 70.68 273 | 54.74 208 | 79.28 284 | 78.14 244 |
jason: jason. |
xiu_mvs_v2_base | | | 64.43 239 | 63.96 240 | 65.85 246 | 77.72 184 | 51.32 210 | 63.63 290 | 72.31 230 | 45.06 291 | 61.70 311 | 69.66 340 | 62.56 148 | 73.93 246 | 49.06 250 | 73.91 319 | 72.31 290 |
|
pmmvs-eth3d | | | 64.41 240 | 63.27 248 | 67.82 226 | 75.81 211 | 60.18 154 | 69.49 209 | 62.05 301 | 38.81 327 | 74.13 205 | 82.23 218 | 43.76 279 | 68.65 288 | 42.53 290 | 80.63 271 | 74.63 270 |
|
CDS-MVSNet | | | 64.33 241 | 62.66 254 | 69.35 201 | 80.44 144 | 58.28 171 | 65.26 272 | 65.66 275 | 44.36 293 | 67.30 282 | 75.54 288 | 43.27 281 | 71.77 266 | 37.68 320 | 84.44 223 | 78.01 247 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
PS-MVSNAJ | | | 64.27 242 | 63.73 243 | 65.90 245 | 77.82 182 | 51.42 209 | 63.33 293 | 72.33 229 | 45.09 290 | 61.60 312 | 68.04 351 | 62.39 152 | 73.95 245 | 49.07 249 | 73.87 320 | 72.34 289 |
|
ab-mvs | | | 64.11 243 | 65.13 232 | 61.05 288 | 71.99 265 | 38.03 318 | 67.59 237 | 68.79 262 | 49.08 261 | 65.32 291 | 86.26 159 | 58.02 200 | 66.85 302 | 39.33 307 | 79.79 280 | 78.27 241 |
|
CANet_DTU | | | 64.04 244 | 63.83 241 | 64.66 251 | 68.39 291 | 42.97 282 | 73.45 160 | 74.50 212 | 52.05 226 | 54.78 343 | 75.44 291 | 43.99 277 | 70.42 278 | 53.49 223 | 78.41 292 | 80.59 214 |
|
VNet | | | 64.01 245 | 65.15 231 | 60.57 292 | 73.28 251 | 35.61 334 | 57.60 326 | 67.08 269 | 54.61 191 | 66.76 285 | 83.37 202 | 56.28 213 | 66.87 300 | 42.19 292 | 85.20 211 | 79.23 231 |
|
Anonymous20240521 | | | 63.55 246 | 66.07 223 | 55.99 312 | 66.18 313 | 44.04 271 | 68.77 223 | 68.80 261 | 46.99 276 | 72.57 225 | 85.84 173 | 39.87 302 | 50.22 343 | 53.40 225 | 92.23 90 | 73.71 278 |
|
lupinMVS | | | 63.36 247 | 61.49 262 | 68.97 208 | 74.93 218 | 59.19 161 | 65.80 265 | 64.52 285 | 34.68 346 | 63.53 306 | 74.25 303 | 43.19 282 | 70.62 274 | 53.88 220 | 78.67 289 | 77.10 253 |
|
ET-MVSNet_ETH3D | | | 63.32 248 | 60.69 270 | 71.20 178 | 70.15 281 | 55.66 184 | 65.02 275 | 64.32 286 | 43.28 305 | 68.99 268 | 72.05 324 | 25.46 366 | 78.19 194 | 54.16 218 | 82.80 241 | 79.74 226 |
|
MVSTER | | | 63.29 249 | 61.60 261 | 68.36 217 | 59.77 351 | 46.21 257 | 60.62 310 | 71.32 241 | 41.83 309 | 75.40 187 | 79.12 258 | 30.25 352 | 75.85 219 | 56.30 194 | 79.81 278 | 83.03 160 |
|
OpenMVS_ROB |  | 54.93 17 | 63.23 250 | 63.28 247 | 63.07 269 | 69.81 283 | 45.34 263 | 68.52 228 | 67.14 268 | 43.74 298 | 70.61 252 | 79.22 255 | 47.90 261 | 72.66 253 | 48.75 252 | 73.84 321 | 71.21 302 |
|
IterMVS | | | 63.12 251 | 62.48 255 | 65.02 250 | 66.34 310 | 52.86 201 | 63.81 287 | 62.25 296 | 46.57 279 | 71.51 242 | 80.40 238 | 44.60 274 | 66.82 303 | 51.38 233 | 75.47 308 | 75.38 265 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
HyFIR lowres test | | | 63.01 252 | 60.47 271 | 70.61 181 | 83.04 110 | 54.10 194 | 59.93 315 | 72.24 231 | 33.67 351 | 69.00 267 | 75.63 287 | 38.69 309 | 76.93 209 | 36.60 328 | 75.45 309 | 80.81 208 |
|
GA-MVS | | | 62.91 253 | 61.66 258 | 66.66 239 | 67.09 306 | 44.49 268 | 61.18 307 | 69.36 260 | 51.33 236 | 69.33 265 | 74.47 299 | 36.83 319 | 74.94 232 | 50.60 239 | 74.72 314 | 80.57 215 |
|
PVSNet_Blended | | | 62.90 254 | 61.64 259 | 66.69 238 | 69.81 283 | 49.36 223 | 61.23 306 | 78.96 157 | 42.04 308 | 59.98 323 | 68.86 348 | 51.82 233 | 78.20 192 | 44.30 281 | 77.77 298 | 72.52 287 |
|
USDC | | | 62.80 255 | 63.10 250 | 61.89 280 | 65.19 319 | 43.30 279 | 67.42 241 | 74.20 213 | 35.80 340 | 72.25 230 | 84.48 187 | 45.67 266 | 71.95 265 | 37.95 319 | 84.97 213 | 70.42 308 |
|
Vis-MVSNet (Re-imp) | | | 62.74 256 | 63.21 249 | 61.34 286 | 72.19 263 | 31.56 354 | 67.31 246 | 53.87 332 | 53.60 211 | 69.88 261 | 83.37 202 | 40.52 299 | 70.98 272 | 41.40 297 | 86.78 192 | 81.48 192 |
|
patch_mono-2 | | | 62.73 257 | 64.08 239 | 58.68 303 | 70.36 279 | 55.87 182 | 60.84 309 | 64.11 288 | 41.23 313 | 64.04 299 | 78.22 268 | 60.00 175 | 48.80 345 | 54.17 217 | 83.71 234 | 71.37 298 |
|
D2MVS | | | 62.58 258 | 61.05 266 | 67.20 231 | 63.85 328 | 47.92 237 | 56.29 329 | 69.58 258 | 39.32 322 | 70.07 258 | 78.19 269 | 34.93 324 | 72.68 252 | 53.44 224 | 83.74 232 | 81.00 200 |
|
MVS_0304 | | | 62.51 259 | 62.27 256 | 63.25 266 | 69.39 287 | 48.47 229 | 64.05 286 | 62.48 295 | 59.69 135 | 54.10 348 | 81.04 230 | 45.71 265 | 66.31 307 | 41.38 298 | 82.58 244 | 74.96 268 |
|
CL-MVSNet_self_test | | | 62.44 260 | 63.40 246 | 59.55 299 | 72.34 262 | 32.38 350 | 56.39 328 | 64.84 281 | 51.21 238 | 67.46 281 | 81.01 231 | 50.75 240 | 63.51 319 | 38.47 315 | 88.12 168 | 82.75 169 |
|
MDA-MVSNet-bldmvs | | | 62.34 261 | 61.73 257 | 64.16 254 | 61.64 339 | 49.90 219 | 48.11 350 | 57.24 319 | 53.31 214 | 80.95 109 | 79.39 252 | 49.00 253 | 61.55 325 | 45.92 276 | 80.05 275 | 81.03 198 |
|
miper_lstm_enhance | | | 61.97 262 | 61.63 260 | 62.98 270 | 60.04 347 | 45.74 261 | 47.53 352 | 70.95 249 | 44.04 294 | 73.06 219 | 78.84 262 | 39.72 303 | 60.33 327 | 55.82 199 | 84.64 219 | 82.88 163 |
|
wuyk23d | | | 61.97 262 | 66.25 221 | 49.12 332 | 58.19 358 | 60.77 150 | 66.32 258 | 52.97 339 | 55.93 176 | 90.62 5 | 86.91 133 | 73.07 62 | 35.98 372 | 20.63 374 | 91.63 96 | 50.62 363 |
|
thres600view7 | | | 61.82 264 | 61.38 263 | 63.12 268 | 71.81 266 | 34.93 338 | 64.64 278 | 56.99 320 | 54.78 188 | 70.33 255 | 79.74 247 | 32.07 337 | 72.42 259 | 38.61 313 | 83.46 236 | 82.02 184 |
|
PAPM | | | 61.79 265 | 60.37 272 | 66.05 243 | 76.09 206 | 41.87 289 | 69.30 212 | 76.79 192 | 40.64 319 | 53.80 349 | 79.62 250 | 44.38 275 | 82.92 102 | 29.64 357 | 73.11 323 | 73.36 280 |
|
MVP-Stereo | | | 61.56 266 | 59.22 278 | 68.58 216 | 79.28 156 | 60.44 152 | 69.20 214 | 71.57 235 | 43.58 300 | 56.42 337 | 78.37 266 | 39.57 305 | 76.46 217 | 34.86 338 | 60.16 360 | 68.86 321 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
CMPMVS |  | 48.73 20 | 61.54 267 | 60.89 267 | 63.52 263 | 61.08 342 | 51.55 208 | 68.07 234 | 68.00 267 | 33.88 348 | 65.87 288 | 81.25 228 | 37.91 314 | 67.71 293 | 49.32 248 | 82.60 243 | 71.31 300 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
test2506 | | | 61.23 268 | 60.85 268 | 62.38 277 | 78.80 168 | 27.88 367 | 67.33 245 | 37.42 375 | 54.23 198 | 67.55 280 | 88.68 107 | 17.87 379 | 74.39 240 | 46.33 274 | 89.41 151 | 84.86 98 |
|
thres100view900 | | | 61.17 269 | 61.09 265 | 61.39 285 | 72.14 264 | 35.01 337 | 65.42 271 | 56.99 320 | 55.23 181 | 70.71 251 | 79.90 245 | 32.07 337 | 72.09 261 | 35.61 335 | 81.73 254 | 77.08 254 |
|
Patchmtry | | | 60.91 270 | 63.01 251 | 54.62 315 | 66.10 314 | 26.27 371 | 67.47 240 | 56.40 324 | 54.05 204 | 72.04 233 | 86.66 145 | 33.19 329 | 60.17 328 | 43.69 285 | 87.45 179 | 77.42 250 |
|
EU-MVSNet | | | 60.82 271 | 60.80 269 | 60.86 291 | 68.37 292 | 41.16 292 | 72.27 168 | 68.27 266 | 26.96 369 | 69.08 266 | 75.71 286 | 32.09 336 | 67.44 296 | 55.59 202 | 78.90 286 | 73.97 274 |
|
pmmvs4 | | | 60.78 272 | 59.04 280 | 66.00 244 | 73.06 258 | 57.67 173 | 64.53 281 | 60.22 306 | 36.91 335 | 65.96 287 | 77.27 278 | 39.66 304 | 68.54 289 | 38.87 310 | 74.89 313 | 71.80 295 |
|
thres400 | | | 60.77 273 | 59.97 274 | 63.15 267 | 70.78 271 | 35.35 335 | 63.27 294 | 57.47 314 | 53.00 216 | 68.31 274 | 77.09 279 | 32.45 334 | 72.09 261 | 35.61 335 | 81.73 254 | 82.02 184 |
|
MVS | | | 60.62 274 | 59.97 274 | 62.58 275 | 68.13 296 | 47.28 246 | 68.59 225 | 73.96 214 | 32.19 355 | 59.94 325 | 68.86 348 | 50.48 242 | 77.64 203 | 41.85 295 | 75.74 304 | 62.83 347 |
|
thisisatest0515 | | | 60.48 275 | 57.86 289 | 68.34 218 | 67.25 304 | 46.42 254 | 60.58 311 | 62.14 297 | 40.82 317 | 63.58 305 | 69.12 343 | 26.28 362 | 78.34 188 | 48.83 251 | 82.13 247 | 80.26 219 |
|
tfpn200view9 | | | 60.35 276 | 59.97 274 | 61.51 283 | 70.78 271 | 35.35 335 | 63.27 294 | 57.47 314 | 53.00 216 | 68.31 274 | 77.09 279 | 32.45 334 | 72.09 261 | 35.61 335 | 81.73 254 | 77.08 254 |
|
ppachtmachnet_test | | | 60.26 277 | 59.61 277 | 62.20 278 | 67.70 301 | 44.33 269 | 58.18 323 | 60.96 305 | 40.75 318 | 65.80 289 | 72.57 316 | 41.23 292 | 63.92 316 | 46.87 270 | 82.42 245 | 78.33 239 |
|
Patchmatch-RL test | | | 59.95 278 | 59.12 279 | 62.44 276 | 72.46 261 | 54.61 191 | 59.63 316 | 47.51 355 | 41.05 316 | 74.58 199 | 74.30 302 | 31.06 346 | 65.31 309 | 51.61 230 | 79.85 277 | 67.39 325 |
|
1314 | | | 59.83 279 | 58.86 282 | 62.74 274 | 65.71 316 | 44.78 266 | 68.59 225 | 72.63 226 | 33.54 353 | 61.05 318 | 67.29 356 | 43.62 280 | 71.26 270 | 49.49 247 | 67.84 348 | 72.19 292 |
|
IB-MVS | | 49.67 18 | 59.69 280 | 56.96 295 | 67.90 223 | 68.19 295 | 50.30 216 | 61.42 304 | 65.18 279 | 47.57 273 | 55.83 340 | 67.15 357 | 23.77 371 | 79.60 163 | 43.56 287 | 79.97 276 | 73.79 277 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
1112_ss | | | 59.48 281 | 58.99 281 | 60.96 290 | 77.84 181 | 42.39 287 | 61.42 304 | 68.45 265 | 37.96 330 | 59.93 326 | 67.46 353 | 45.11 271 | 65.07 311 | 40.89 301 | 71.81 328 | 75.41 264 |
|
FPMVS | | | 59.43 282 | 60.07 273 | 57.51 308 | 77.62 187 | 71.52 54 | 62.33 300 | 50.92 344 | 57.40 161 | 69.40 264 | 80.00 244 | 39.14 307 | 61.92 324 | 37.47 323 | 66.36 350 | 39.09 372 |
|
CVMVSNet | | | 59.21 283 | 58.44 286 | 61.51 283 | 73.94 242 | 47.76 240 | 71.31 189 | 64.56 284 | 26.91 370 | 60.34 322 | 70.44 332 | 36.24 321 | 67.65 294 | 53.57 222 | 68.66 345 | 69.12 319 |
|
CR-MVSNet | | | 58.96 284 | 58.49 285 | 60.36 294 | 66.37 308 | 48.24 232 | 70.93 195 | 56.40 324 | 32.87 354 | 61.35 314 | 86.66 145 | 33.19 329 | 63.22 320 | 48.50 256 | 70.17 337 | 69.62 314 |
|
EPNet_dtu | | | 58.93 285 | 58.52 284 | 60.16 296 | 67.91 299 | 47.70 241 | 69.97 204 | 58.02 312 | 49.73 254 | 47.28 363 | 73.02 314 | 38.14 311 | 62.34 322 | 36.57 329 | 85.99 201 | 70.43 307 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
Test_1112_low_res | | | 58.78 286 | 58.69 283 | 59.04 302 | 79.41 154 | 38.13 316 | 57.62 325 | 66.98 270 | 34.74 344 | 59.62 327 | 77.56 276 | 42.92 284 | 63.65 318 | 38.66 312 | 70.73 334 | 75.35 266 |
|
PatchMatch-RL | | | 58.68 287 | 57.72 290 | 61.57 282 | 76.21 204 | 73.59 44 | 61.83 301 | 49.00 351 | 47.30 275 | 61.08 316 | 68.97 345 | 50.16 244 | 59.01 331 | 36.06 334 | 68.84 344 | 52.10 362 |
|
SCA | | | 58.57 288 | 58.04 288 | 60.17 295 | 70.17 280 | 41.07 294 | 65.19 273 | 53.38 337 | 43.34 304 | 61.00 319 | 73.48 309 | 45.20 269 | 69.38 284 | 40.34 304 | 70.31 336 | 70.05 309 |
|
CHOSEN 1792x2688 | | | 58.09 289 | 56.30 300 | 63.45 264 | 79.95 148 | 50.93 211 | 54.07 337 | 65.59 276 | 28.56 366 | 61.53 313 | 74.33 301 | 41.09 295 | 66.52 306 | 33.91 342 | 67.69 349 | 72.92 283 |
|
HY-MVS | | 49.31 19 | 57.96 290 | 57.59 291 | 59.10 301 | 66.85 307 | 36.17 328 | 65.13 274 | 65.39 278 | 39.24 324 | 54.69 345 | 78.14 270 | 44.28 276 | 67.18 299 | 33.75 343 | 70.79 333 | 73.95 275 |
|
baseline1 | | | 57.82 291 | 58.36 287 | 56.19 311 | 69.17 289 | 30.76 359 | 62.94 298 | 55.21 327 | 46.04 281 | 63.83 302 | 78.47 264 | 41.20 293 | 63.68 317 | 39.44 306 | 68.99 343 | 74.13 273 |
|
thres200 | | | 57.55 292 | 57.02 294 | 59.17 300 | 67.89 300 | 34.93 338 | 58.91 321 | 57.25 318 | 50.24 248 | 64.01 300 | 71.46 328 | 32.49 333 | 71.39 269 | 31.31 349 | 79.57 282 | 71.19 303 |
|
CostFormer | | | 57.35 293 | 56.14 301 | 60.97 289 | 63.76 330 | 38.43 311 | 67.50 239 | 60.22 306 | 37.14 334 | 59.12 328 | 76.34 284 | 32.78 331 | 71.99 264 | 39.12 309 | 69.27 342 | 72.47 288 |
|
our_test_3 | | | 56.46 294 | 56.51 298 | 56.30 310 | 67.70 301 | 39.66 305 | 55.36 334 | 52.34 342 | 40.57 320 | 63.85 301 | 69.91 339 | 40.04 301 | 58.22 333 | 43.49 288 | 75.29 312 | 71.03 305 |
|
tpm2 | | | 56.12 295 | 54.64 308 | 60.55 293 | 66.24 311 | 36.01 329 | 68.14 232 | 56.77 322 | 33.60 352 | 58.25 331 | 75.52 290 | 30.25 352 | 74.33 241 | 33.27 344 | 69.76 341 | 71.32 299 |
|
tpmvs | | | 55.84 296 | 55.45 306 | 57.01 309 | 60.33 346 | 33.20 348 | 65.89 262 | 59.29 310 | 47.52 274 | 56.04 338 | 73.60 308 | 31.05 347 | 68.06 292 | 40.64 302 | 64.64 353 | 69.77 312 |
|
gg-mvs-nofinetune | | | 55.75 297 | 56.75 297 | 52.72 321 | 62.87 333 | 28.04 366 | 68.92 217 | 41.36 370 | 71.09 44 | 50.80 355 | 92.63 12 | 20.74 373 | 66.86 301 | 29.97 355 | 72.41 325 | 63.25 346 |
|
test20.03 | | | 55.74 298 | 57.51 292 | 50.42 325 | 59.89 350 | 32.09 352 | 50.63 344 | 49.01 350 | 50.11 250 | 65.07 293 | 83.23 208 | 45.61 267 | 48.11 348 | 30.22 353 | 83.82 231 | 71.07 304 |
|
MS-PatchMatch | | | 55.59 299 | 54.89 307 | 57.68 307 | 69.18 288 | 49.05 225 | 61.00 308 | 62.93 294 | 35.98 338 | 58.36 330 | 68.93 346 | 36.71 320 | 66.59 305 | 37.62 322 | 63.30 356 | 57.39 358 |
|
baseline2 | | | 55.57 300 | 52.74 314 | 64.05 257 | 65.26 318 | 44.11 270 | 62.38 299 | 54.43 330 | 39.03 325 | 51.21 353 | 67.35 355 | 33.66 327 | 72.45 258 | 37.14 325 | 64.22 355 | 75.60 261 |
|
XXY-MVS | | | 55.19 301 | 57.40 293 | 48.56 334 | 64.45 326 | 34.84 340 | 51.54 343 | 53.59 334 | 38.99 326 | 63.79 303 | 79.43 251 | 56.59 211 | 45.57 352 | 36.92 327 | 71.29 330 | 65.25 338 |
|
FMVSNet5 | | | 55.08 302 | 55.54 305 | 53.71 316 | 65.80 315 | 33.50 347 | 56.22 330 | 52.50 341 | 43.72 299 | 61.06 317 | 83.38 201 | 25.46 366 | 54.87 337 | 30.11 354 | 81.64 259 | 72.75 285 |
|
PatchmatchNet |  | | 54.60 303 | 54.27 309 | 55.59 313 | 65.17 321 | 39.08 307 | 66.92 251 | 51.80 343 | 39.89 321 | 58.39 329 | 73.12 313 | 31.69 340 | 58.33 332 | 43.01 289 | 58.38 366 | 69.38 317 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
MIMVSNet | | | 54.39 304 | 56.12 302 | 49.20 330 | 72.57 260 | 30.91 358 | 59.98 314 | 48.43 353 | 41.66 310 | 55.94 339 | 83.86 195 | 41.19 294 | 50.42 342 | 26.05 364 | 75.38 310 | 66.27 333 |
|
Anonymous20231206 | | | 54.13 305 | 55.82 303 | 49.04 333 | 70.89 270 | 35.96 330 | 51.73 342 | 50.87 345 | 34.86 342 | 62.49 309 | 79.22 255 | 42.52 288 | 44.29 360 | 27.95 362 | 81.88 250 | 66.88 329 |
|
JIA-IIPM | | | 54.03 306 | 51.62 318 | 61.25 287 | 59.14 353 | 55.21 187 | 59.10 318 | 47.72 354 | 50.85 241 | 50.31 359 | 85.81 174 | 20.10 376 | 63.97 315 | 36.16 333 | 55.41 371 | 64.55 344 |
|
tpm cat1 | | | 54.02 307 | 52.63 315 | 58.19 306 | 64.85 325 | 39.86 304 | 66.26 259 | 57.28 317 | 32.16 356 | 56.90 334 | 70.39 334 | 32.75 332 | 65.30 310 | 34.29 340 | 58.79 363 | 69.41 316 |
|
testgi | | | 54.00 308 | 56.86 296 | 45.45 342 | 58.20 357 | 25.81 372 | 49.05 346 | 49.50 349 | 45.43 285 | 67.84 276 | 81.17 229 | 51.81 235 | 43.20 364 | 29.30 358 | 79.41 283 | 67.34 327 |
|
PatchT | | | 53.35 309 | 56.47 299 | 43.99 348 | 64.19 327 | 17.46 379 | 59.15 317 | 43.10 361 | 52.11 225 | 54.74 344 | 86.95 132 | 29.97 355 | 49.98 344 | 43.62 286 | 74.40 317 | 64.53 345 |
|
new-patchmatchnet | | | 52.89 310 | 55.76 304 | 44.26 347 | 59.94 349 | 6.31 382 | 37.36 369 | 50.76 346 | 41.10 314 | 64.28 297 | 79.82 246 | 44.77 272 | 48.43 347 | 36.24 332 | 87.61 174 | 78.03 246 |
|
YYNet1 | | | 52.58 311 | 53.50 311 | 49.85 326 | 54.15 373 | 36.45 327 | 40.53 363 | 46.55 357 | 38.09 329 | 75.52 185 | 73.31 312 | 41.08 296 | 43.88 361 | 41.10 299 | 71.14 332 | 69.21 318 |
|
MDA-MVSNet_test_wron | | | 52.57 312 | 53.49 312 | 49.81 327 | 54.24 372 | 36.47 326 | 40.48 364 | 46.58 356 | 38.13 328 | 75.47 186 | 73.32 311 | 41.05 297 | 43.85 362 | 40.98 300 | 71.20 331 | 69.10 320 |
|
pmmvs5 | | | 52.49 313 | 52.58 316 | 52.21 323 | 54.99 370 | 32.38 350 | 55.45 333 | 53.84 333 | 32.15 357 | 55.49 342 | 74.81 293 | 38.08 312 | 57.37 335 | 34.02 341 | 74.40 317 | 66.88 329 |
|
UnsupCasMVSNet_eth | | | 52.26 314 | 53.29 313 | 49.16 331 | 55.08 369 | 33.67 346 | 50.03 345 | 58.79 311 | 37.67 331 | 63.43 308 | 74.75 295 | 41.82 290 | 45.83 351 | 38.59 314 | 59.42 362 | 67.98 324 |
|
N_pmnet | | | 52.06 315 | 51.11 323 | 54.92 314 | 59.64 352 | 71.03 59 | 37.42 368 | 61.62 304 | 33.68 350 | 57.12 332 | 72.10 317 | 37.94 313 | 31.03 374 | 29.13 361 | 71.35 329 | 62.70 348 |
|
KD-MVS_2432*1600 | | | 52.05 316 | 51.58 319 | 53.44 317 | 52.11 375 | 31.20 355 | 44.88 359 | 64.83 282 | 41.53 311 | 64.37 295 | 70.03 337 | 15.61 383 | 64.20 313 | 36.25 330 | 74.61 315 | 64.93 341 |
|
miper_refine_blended | | | 52.05 316 | 51.58 319 | 53.44 317 | 52.11 375 | 31.20 355 | 44.88 359 | 64.83 282 | 41.53 311 | 64.37 295 | 70.03 337 | 15.61 383 | 64.20 313 | 36.25 330 | 74.61 315 | 64.93 341 |
|
PVSNet | | 43.83 21 | 51.56 318 | 51.17 322 | 52.73 320 | 68.34 293 | 38.27 313 | 48.22 349 | 53.56 335 | 36.41 336 | 54.29 346 | 64.94 360 | 34.60 325 | 54.20 340 | 30.34 352 | 69.87 339 | 65.71 336 |
|
tpm | | | 50.60 319 | 52.42 317 | 45.14 344 | 65.18 320 | 26.29 370 | 60.30 312 | 43.50 360 | 37.41 332 | 57.01 333 | 79.09 259 | 30.20 354 | 42.32 365 | 32.77 346 | 66.36 350 | 66.81 331 |
|
test-LLR | | | 50.43 320 | 50.69 325 | 49.64 328 | 60.76 343 | 41.87 289 | 53.18 339 | 45.48 358 | 43.41 302 | 49.41 360 | 60.47 365 | 29.22 357 | 44.73 358 | 42.09 293 | 72.14 326 | 62.33 351 |
|
tpmrst | | | 50.15 321 | 51.38 321 | 46.45 339 | 56.05 364 | 24.77 373 | 64.40 283 | 49.98 347 | 36.14 337 | 53.32 350 | 69.59 341 | 35.16 323 | 48.69 346 | 39.24 308 | 58.51 365 | 65.89 334 |
|
UnsupCasMVSNet_bld | | | 50.01 322 | 51.03 324 | 46.95 335 | 58.61 355 | 32.64 349 | 48.31 348 | 53.27 338 | 34.27 347 | 60.47 321 | 71.53 327 | 41.40 291 | 47.07 349 | 30.68 351 | 60.78 359 | 61.13 353 |
|
WTY-MVS | | | 49.39 323 | 50.31 326 | 46.62 338 | 61.22 341 | 32.00 353 | 46.61 355 | 49.77 348 | 33.87 349 | 54.12 347 | 69.55 342 | 41.96 289 | 45.40 354 | 31.28 350 | 64.42 354 | 62.47 350 |
|
ADS-MVSNet2 | | | 48.76 324 | 47.25 332 | 53.29 319 | 55.90 366 | 40.54 300 | 47.34 353 | 54.99 329 | 31.41 362 | 50.48 356 | 72.06 322 | 31.23 343 | 54.26 339 | 25.93 365 | 55.93 368 | 65.07 339 |
|
test-mter | | | 48.56 325 | 48.20 330 | 49.64 328 | 60.76 343 | 41.87 289 | 53.18 339 | 45.48 358 | 31.91 360 | 49.41 360 | 60.47 365 | 18.34 377 | 44.73 358 | 42.09 293 | 72.14 326 | 62.33 351 |
|
Patchmatch-test | | | 47.93 326 | 49.96 327 | 41.84 351 | 57.42 360 | 24.26 374 | 48.75 347 | 41.49 369 | 39.30 323 | 56.79 335 | 73.48 309 | 30.48 351 | 33.87 373 | 29.29 359 | 72.61 324 | 67.39 325 |
|
test0.0.03 1 | | | 47.72 327 | 48.31 329 | 45.93 340 | 55.53 368 | 29.39 362 | 46.40 356 | 41.21 371 | 43.41 302 | 55.81 341 | 67.65 352 | 29.22 357 | 43.77 363 | 25.73 367 | 69.87 339 | 64.62 343 |
|
sss | | | 47.59 328 | 48.32 328 | 45.40 343 | 56.73 363 | 33.96 344 | 45.17 358 | 48.51 352 | 32.11 359 | 52.37 352 | 65.79 358 | 40.39 300 | 41.91 368 | 31.85 347 | 61.97 357 | 60.35 354 |
|
pmmvs3 | | | 46.71 329 | 45.09 336 | 51.55 324 | 56.76 362 | 48.25 231 | 55.78 332 | 39.53 374 | 24.13 373 | 50.35 358 | 63.40 361 | 15.90 382 | 51.08 341 | 29.29 359 | 70.69 335 | 55.33 361 |
|
EPMVS | | | 45.74 330 | 46.53 333 | 43.39 349 | 54.14 374 | 22.33 376 | 55.02 335 | 35.00 378 | 34.69 345 | 51.09 354 | 70.20 336 | 25.92 364 | 42.04 367 | 37.19 324 | 55.50 370 | 65.78 335 |
|
MVS-HIRNet | | | 45.53 331 | 47.29 331 | 40.24 354 | 62.29 335 | 26.82 369 | 56.02 331 | 37.41 376 | 29.74 365 | 43.69 372 | 81.27 227 | 33.96 326 | 55.48 336 | 24.46 370 | 56.79 367 | 38.43 373 |
|
TESTMET0.1,1 | | | 45.17 332 | 44.93 337 | 45.89 341 | 56.02 365 | 38.31 312 | 53.18 339 | 41.94 368 | 27.85 367 | 44.86 368 | 56.47 367 | 17.93 378 | 41.50 369 | 38.08 318 | 68.06 346 | 57.85 357 |
|
E-PMN | | | 45.17 332 | 45.36 335 | 44.60 346 | 50.07 377 | 42.75 283 | 38.66 366 | 42.29 366 | 46.39 280 | 39.55 373 | 51.15 371 | 26.00 363 | 45.37 355 | 37.68 320 | 76.41 300 | 45.69 369 |
|
PMMVS | | | 44.69 334 | 43.95 341 | 46.92 336 | 50.05 378 | 53.47 199 | 48.08 351 | 42.40 364 | 22.36 374 | 44.01 371 | 53.05 369 | 42.60 287 | 45.49 353 | 31.69 348 | 61.36 358 | 41.79 370 |
|
ADS-MVSNet | | | 44.62 335 | 45.58 334 | 41.73 352 | 55.90 366 | 20.83 377 | 47.34 353 | 39.94 373 | 31.41 362 | 50.48 356 | 72.06 322 | 31.23 343 | 39.31 370 | 25.93 365 | 55.93 368 | 65.07 339 |
|
EMVS | | | 44.61 336 | 44.45 340 | 45.10 345 | 48.91 379 | 43.00 281 | 37.92 367 | 41.10 372 | 46.75 278 | 38.00 375 | 48.43 373 | 26.42 361 | 46.27 350 | 37.11 326 | 75.38 310 | 46.03 368 |
|
dp | | | 44.09 337 | 44.88 338 | 41.72 353 | 58.53 356 | 23.18 375 | 54.70 336 | 42.38 365 | 34.80 343 | 44.25 370 | 65.61 359 | 24.48 370 | 44.80 357 | 29.77 356 | 49.42 373 | 57.18 359 |
|
DSMNet-mixed | | | 43.18 338 | 44.66 339 | 38.75 356 | 54.75 371 | 28.88 365 | 57.06 327 | 27.42 381 | 13.47 375 | 47.27 364 | 77.67 275 | 38.83 308 | 39.29 371 | 25.32 369 | 60.12 361 | 48.08 365 |
|
CHOSEN 280x420 | | | 41.62 339 | 39.89 344 | 46.80 337 | 61.81 337 | 51.59 207 | 33.56 370 | 35.74 377 | 27.48 368 | 37.64 376 | 53.53 368 | 23.24 372 | 42.09 366 | 27.39 363 | 58.64 364 | 46.72 367 |
|
PVSNet_0 | | 36.71 22 | 41.12 340 | 40.78 343 | 42.14 350 | 59.97 348 | 40.13 302 | 40.97 362 | 42.24 367 | 30.81 364 | 44.86 368 | 49.41 372 | 40.70 298 | 45.12 356 | 23.15 371 | 34.96 375 | 41.16 371 |
|
PMMVS2 | | | 37.74 341 | 40.87 342 | 28.36 358 | 42.41 381 | 5.35 383 | 24.61 371 | 27.75 380 | 32.15 357 | 47.85 362 | 70.27 335 | 35.85 322 | 29.51 375 | 19.08 375 | 67.85 347 | 50.22 364 |
|
new_pmnet | | | 37.55 342 | 39.80 345 | 30.79 357 | 56.83 361 | 16.46 380 | 39.35 365 | 30.65 379 | 25.59 371 | 45.26 366 | 61.60 364 | 24.54 369 | 28.02 376 | 21.60 372 | 52.80 372 | 47.90 366 |
|
MVE |  | 27.91 23 | 36.69 343 | 35.64 346 | 39.84 355 | 43.37 380 | 35.85 332 | 19.49 372 | 24.61 382 | 24.68 372 | 39.05 374 | 62.63 363 | 38.67 310 | 27.10 377 | 21.04 373 | 47.25 374 | 56.56 360 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
test_method | | | 19.26 344 | 19.12 348 | 19.71 359 | 9.09 383 | 1.91 385 | 7.79 374 | 53.44 336 | 1.42 377 | 10.27 379 | 35.80 374 | 17.42 380 | 25.11 378 | 12.44 376 | 24.38 377 | 32.10 374 |
|
cdsmvs_eth3d_5k | | | 17.71 345 | 23.62 347 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 70.17 256 | 0.00 382 | 0.00 383 | 74.25 303 | 68.16 102 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
tmp_tt | | | 11.98 346 | 14.73 349 | 3.72 361 | 2.28 384 | 4.62 384 | 19.44 373 | 14.50 384 | 0.47 379 | 21.55 377 | 9.58 377 | 25.78 365 | 4.57 380 | 11.61 377 | 27.37 376 | 1.96 376 |
|
ab-mvs-re | | | 5.62 347 | 7.50 350 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 67.46 353 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
pcd_1.5k_mvsjas | | | 5.20 348 | 6.93 351 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.00 382 | 62.39 152 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
test123 | | | 4.43 349 | 5.78 352 | 0.39 363 | 0.97 385 | 0.28 386 | 46.33 357 | 0.45 386 | 0.31 380 | 0.62 381 | 1.50 380 | 0.61 386 | 0.11 382 | 0.56 379 | 0.63 379 | 0.77 378 |
|
testmvs | | | 4.06 350 | 5.28 353 | 0.41 362 | 0.64 386 | 0.16 387 | 42.54 361 | 0.31 387 | 0.26 381 | 0.50 382 | 1.40 381 | 0.77 385 | 0.17 381 | 0.56 379 | 0.55 380 | 0.90 377 |
|
test_blank | | | 0.00 351 | 0.00 354 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.00 382 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
uanet_test | | | 0.00 351 | 0.00 354 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.00 382 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
DCPMVS | | | 0.00 351 | 0.00 354 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.00 382 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
sosnet-low-res | | | 0.00 351 | 0.00 354 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.00 382 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
sosnet | | | 0.00 351 | 0.00 354 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.00 382 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
uncertanet | | | 0.00 351 | 0.00 354 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.00 382 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
Regformer | | | 0.00 351 | 0.00 354 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.00 382 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
uanet | | | 0.00 351 | 0.00 354 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.00 382 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
FOURS1 | | | | | | 89.19 25 | 77.84 16 | 91.64 1 | 89.11 2 | 84.05 2 | 91.57 2 | | | | | | |
|
MSC_two_6792asdad | | | | | 79.02 60 | 83.14 104 | 67.03 92 | | 80.75 126 | | | | | 86.24 22 | 77.27 35 | 94.85 26 | 83.78 136 |
|
PC_three_1452 | | | | | | | | | | 46.98 277 | 81.83 97 | 86.28 157 | 66.55 120 | 84.47 72 | 63.31 141 | 90.78 122 | 83.49 143 |
|
No_MVS | | | | | 79.02 60 | 83.14 104 | 67.03 92 | | 80.75 126 | | | | | 86.24 22 | 77.27 35 | 94.85 26 | 83.78 136 |
|
test_one_0601 | | | | | | 85.84 67 | 61.45 138 | | 85.63 32 | 75.27 19 | 85.62 48 | 90.38 66 | 76.72 29 | | | | |
|
eth-test2 | | | | | | 0.00 387 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 387 | | | | | | | | | | | |
|
ZD-MVS | | | | | | 83.91 95 | 69.36 75 | | 81.09 121 | 58.91 144 | 82.73 90 | 89.11 98 | 75.77 37 | 86.63 12 | 72.73 63 | 92.93 77 | |
|
RE-MVS-def | | | | 85.50 4 | | 86.19 55 | 79.18 9 | 87.23 9 | 86.27 22 | 77.51 11 | 87.65 19 | 90.73 48 | 81.38 7 | | 78.11 25 | 94.46 39 | 84.89 96 |
|
IU-MVS | | | | | | 86.12 59 | 60.90 146 | | 80.38 136 | 45.49 284 | 81.31 105 | | | | 75.64 44 | 94.39 44 | 84.65 105 |
|
OPU-MVS | | | | | 78.65 67 | 83.44 102 | 66.85 94 | 83.62 45 | | | | 86.12 166 | 66.82 114 | 86.01 30 | 61.72 150 | 89.79 144 | 83.08 158 |
|
test_241102_TWO | | | | | | | | | 84.80 50 | 72.61 32 | 84.93 57 | 89.70 84 | 77.73 23 | 85.89 40 | 75.29 45 | 94.22 56 | 83.25 153 |
|
test_241102_ONE | | | | | | 86.12 59 | 61.06 142 | | 84.72 54 | 72.64 31 | 87.38 25 | 89.47 87 | 77.48 24 | 85.74 44 | | | |
|
9.14 | | | | 80.22 59 | | 80.68 140 | | 80.35 76 | 87.69 11 | 59.90 132 | 83.00 83 | 88.20 117 | 74.57 51 | 81.75 122 | 73.75 56 | 93.78 62 | |
|
save fliter | | | | | | 87.00 43 | 67.23 90 | 79.24 89 | 77.94 177 | 56.65 169 | | | | | | | |
|
test_0728_THIRD | | | | | | | | | | 74.03 23 | 85.83 43 | 90.41 61 | 75.58 39 | 85.69 45 | 77.43 33 | 94.74 31 | 84.31 124 |
|
test_0728_SECOND | | | | | 76.57 94 | 86.20 54 | 60.57 151 | 83.77 43 | 85.49 34 | | | | | 85.90 38 | 75.86 42 | 94.39 44 | 83.25 153 |
|
test0726 | | | | | | 86.16 57 | 60.78 148 | 83.81 42 | 85.10 45 | 72.48 34 | 85.27 54 | 89.96 80 | 78.57 18 | | | | |
|
GSMVS | | | | | | | | | | | | | | | | | 70.05 309 |
|
test_part2 | | | | | | 85.90 63 | 66.44 97 | | | | 84.61 64 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 31.41 341 | | | | 70.05 309 |
|
sam_mvs | | | | | | | | | | | | | 31.21 345 | | | | |
|
ambc | | | | | 70.10 192 | 77.74 183 | 50.21 217 | 74.28 157 | 77.93 178 | | 79.26 129 | 88.29 116 | 54.11 223 | 79.77 161 | 64.43 126 | 91.10 111 | 80.30 218 |
|
MTGPA |  | | | | | | | | 80.63 129 | | | | | | | | |
|
test_post1 | | | | | | | | 66.63 255 | | | | 2.08 378 | 30.66 350 | 59.33 330 | 40.34 304 | | |
|
test_post | | | | | | | | | | | | 1.99 379 | 30.91 348 | 54.76 338 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 68.99 344 | 31.32 342 | 69.38 284 | | | |
|
GG-mvs-BLEND | | | | | 52.24 322 | 60.64 345 | 29.21 364 | 69.73 208 | 42.41 363 | | 45.47 365 | 52.33 370 | 20.43 375 | 68.16 291 | 25.52 368 | 65.42 352 | 59.36 356 |
|
MTMP | | | | | | | | 84.83 33 | 19.26 383 | | | | | | | | |
|
gm-plane-assit | | | | | | 62.51 334 | 33.91 345 | | | 37.25 333 | | 62.71 362 | | 72.74 251 | 38.70 311 | | |
|
test9_res | | | | | | | | | | | | | | | 72.12 71 | 91.37 103 | 77.40 251 |
|
TEST9 | | | | | | 85.47 69 | 69.32 76 | 76.42 125 | 78.69 163 | 53.73 210 | 76.97 157 | 86.74 141 | 66.84 113 | 81.10 132 | | | |
|
test_8 | | | | | | 85.09 75 | 67.89 85 | 76.26 130 | 78.66 165 | 54.00 205 | 76.89 162 | 86.72 143 | 66.60 118 | 80.89 143 | | | |
|
agg_prior2 | | | | | | | | | | | | | | | 70.70 79 | 90.93 116 | 78.55 238 |
|
agg_prior | | | | | | 84.44 88 | 66.02 101 | | 78.62 166 | | 76.95 159 | | | 80.34 150 | | | |
|
TestCases | | | | | 78.35 72 | 79.19 160 | 70.81 61 | | 88.64 3 | 65.37 83 | 80.09 121 | 88.17 118 | 70.33 81 | 78.43 184 | 55.60 200 | 90.90 118 | 85.81 78 |
|
test_prior4 | | | | | | | 70.14 68 | 77.57 110 | | | | | | | | | |
|
test_prior2 | | | | | | | | 75.57 137 | | 58.92 142 | 76.53 173 | 86.78 138 | 67.83 106 | | 69.81 84 | 92.76 82 | |
|
test_prior | | | | | 75.27 112 | 82.15 124 | 59.85 157 | | 84.33 66 | | | | | 83.39 92 | | | 82.58 173 |
|
旧先验2 | | | | | | | | 71.17 192 | | 45.11 289 | 78.54 137 | | | 61.28 326 | 59.19 174 | | |
|
新几何2 | | | | | | | | 71.33 188 | | | | | | | | | |
|
新几何1 | | | | | 69.99 194 | 88.37 36 | 71.34 57 | | 62.08 299 | 43.85 295 | 74.99 190 | 86.11 167 | 52.85 228 | 70.57 275 | 50.99 236 | 83.23 239 | 68.05 323 |
|
旧先验1 | | | | | | 84.55 85 | 60.36 153 | | 63.69 290 | | | 87.05 131 | 54.65 220 | | | 83.34 237 | 69.66 313 |
|
无先验 | | | | | | | | 74.82 145 | 70.94 250 | 47.75 272 | | | | 76.85 212 | 54.47 211 | | 72.09 293 |
|
原ACMM2 | | | | | | | | 74.78 149 | | | | | | | | | |
|
原ACMM1 | | | | | 73.90 128 | 85.90 63 | 65.15 109 | | 81.67 107 | 50.97 240 | 74.25 203 | 86.16 164 | 61.60 160 | 83.54 88 | 56.75 187 | 91.08 112 | 73.00 282 |
|
test222 | | | | | | 87.30 41 | 69.15 79 | 67.85 235 | 59.59 309 | 41.06 315 | 73.05 220 | 85.72 175 | 48.03 260 | | | 80.65 269 | 66.92 328 |
|
testdata2 | | | | | | | | | | | | | | 67.30 297 | 48.34 258 | | |
|
segment_acmp | | | | | | | | | | | | | 68.30 101 | | | | |
|
testdata | | | | | 64.13 255 | 85.87 65 | 63.34 124 | | 61.80 303 | 47.83 270 | 76.42 177 | 86.60 150 | 48.83 254 | 62.31 323 | 54.46 213 | 81.26 261 | 66.74 332 |
|
testdata1 | | | | | | | | 68.34 231 | | 57.24 162 | | | | | | | |
|
test12 | | | | | 76.51 95 | 82.28 122 | 60.94 145 | | 81.64 108 | | 73.60 211 | | 64.88 135 | 85.19 60 | | 90.42 129 | 83.38 149 |
|
plane_prior7 | | | | | | 85.18 72 | 66.21 99 | | | | | | | | | | |
|
plane_prior6 | | | | | | 84.18 92 | 65.31 106 | | | | | | 60.83 170 | | | | |
|
plane_prior5 | | | | | | | | | 85.49 34 | | | | | 86.15 27 | 71.09 75 | 90.94 114 | 84.82 100 |
|
plane_prior4 | | | | | | | | | | | | 89.11 98 | | | | | |
|
plane_prior3 | | | | | | | 65.67 103 | | | 63.82 101 | 78.23 140 | | | | | | |
|
plane_prior2 | | | | | | | | 82.74 55 | | 65.45 80 | | | | | | | |
|
plane_prior1 | | | | | | 84.46 87 | | | | | | | | | | | |
|
plane_prior | | | | | | | 65.18 107 | 80.06 83 | | 61.88 119 | | | | | | 89.91 141 | |
|
n2 | | | | | | | | | 0.00 388 | | | | | | | | |
|
nn | | | | | | | | | 0.00 388 | | | | | | | | |
|
door-mid | | | | | | | | | 55.02 328 | | | | | | | | |
|
lessismore_v0 | | | | | 72.75 155 | 79.60 152 | 56.83 178 | | 57.37 316 | | 83.80 76 | 89.01 101 | 47.45 262 | 78.74 176 | 64.39 127 | 86.49 196 | 82.69 171 |
|
LGP-MVS_train | | | | | 80.90 37 | 87.00 43 | 70.41 66 | | 86.35 19 | 69.77 53 | 87.75 16 | 91.13 36 | 81.83 3 | 86.20 24 | 77.13 37 | 95.96 5 | 86.08 72 |
|
test11 | | | | | | | | | 82.71 93 | | | | | | | | |
|
door | | | | | | | | | 52.91 340 | | | | | | | | |
|
HQP5-MVS | | | | | | | 58.80 167 | | | | | | | | | | |
|
HQP-NCC | | | | | | 82.37 119 | | 77.32 115 | | 59.08 137 | 71.58 237 | | | | | | |
|
ACMP_Plane | | | | | | 82.37 119 | | 77.32 115 | | 59.08 137 | 71.58 237 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 67.38 107 | | |
|
HQP4-MVS | | | | | | | | | | | 71.59 236 | | | 85.31 53 | | | 83.74 138 |
|
HQP3-MVS | | | | | | | | | 84.12 74 | | | | | | | 89.16 155 | |
|
HQP2-MVS | | | | | | | | | | | | | 58.09 195 | | | | |
|
NP-MVS | | | | | | 83.34 103 | 63.07 127 | | | | | 85.97 170 | | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 18.41 378 | 53.74 338 | | 31.57 361 | 44.89 367 | | 29.90 356 | | 32.93 345 | | 71.48 297 |
|
MDTV_nov1_ep13 | | | | 54.05 310 | | 65.54 317 | 29.30 363 | 59.00 319 | 55.22 326 | 35.96 339 | 52.44 351 | 75.98 285 | 30.77 349 | 59.62 329 | 38.21 316 | 73.33 322 | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 89.47 150 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 91.96 92 | |
|
Test By Simon | | | | | | | | | | | | | 62.56 148 | | | | |
|
ITE_SJBPF | | | | | 80.35 43 | 76.94 194 | 73.60 43 | | 80.48 133 | 66.87 67 | 83.64 78 | 86.18 161 | 70.25 83 | 79.90 160 | 61.12 157 | 88.95 162 | 87.56 54 |
|
DeepMVS_CX |  | | | | 11.83 360 | 15.51 382 | 13.86 381 | | 11.25 385 | 5.76 376 | 20.85 378 | 26.46 375 | 17.06 381 | 9.22 379 | 9.69 378 | 13.82 378 | 12.42 375 |
|