This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.95 199.95 199.95 199.99 199.99 199.95 299.97 1899.99 2100.00 199.98 1099.78 17100.00 199.92 22100.00 199.87 29
mvs_tets99.90 299.90 399.90 799.96 799.79 4699.72 3199.88 4599.92 2999.98 1399.93 1799.94 499.98 2199.77 38100.00 199.92 18
test_fmvsmconf0.01_n99.89 399.88 699.91 299.98 399.76 6199.12 201100.00 1100.00 199.99 799.91 2499.98 1100.00 199.97 4100.00 199.99 1
test_vis3_rt99.89 399.90 399.87 2099.98 399.75 6799.70 36100.00 199.73 77100.00 199.89 3599.79 1699.88 19299.98 1100.00 199.98 3
jajsoiax99.89 399.89 599.89 1099.96 799.78 4999.70 3699.86 5099.89 3999.98 1399.90 3099.94 499.98 2199.75 39100.00 199.90 20
ANet_high99.88 699.87 1099.91 299.99 199.91 499.65 60100.00 199.90 33100.00 199.97 1199.61 3299.97 3599.75 39100.00 199.84 35
LTVRE_ROB99.19 199.88 699.87 1099.88 1699.91 3099.90 799.96 199.92 3099.90 3399.97 1999.87 4899.81 1499.95 6699.54 6099.99 1699.80 46
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
test_fmvsmconf0.1_n99.87 899.86 1299.91 299.97 699.74 7399.01 23199.99 1099.99 299.98 1399.88 4399.97 299.99 899.96 9100.00 199.98 3
fmvsm_s_conf0.1_n99.86 999.85 1699.89 1099.93 2499.78 4999.07 21899.98 1199.99 299.98 1399.90 3099.88 899.92 11999.93 2099.99 1699.98 3
pmmvs699.86 999.86 1299.83 3299.94 1899.90 799.83 799.91 3399.85 5399.94 3499.95 1399.73 2199.90 15999.65 4699.97 5499.69 82
fmvsm_s_conf0.1_n_a99.85 1199.83 2099.91 299.95 1599.82 3599.10 20899.98 1199.99 299.98 1399.91 2499.68 2699.93 9799.93 2099.99 1699.99 1
test_fmvsmconf_n99.85 1199.84 1999.88 1699.91 3099.73 7698.97 24399.98 1199.99 299.96 2399.85 5999.93 799.99 899.94 1699.99 1699.93 15
mvsany_test399.85 1199.88 699.75 7399.95 1599.37 18299.53 8899.98 1199.77 7599.99 799.95 1399.85 1099.94 8099.95 1299.98 3999.94 13
UniMVSNet_ETH3D99.85 1199.83 2099.90 799.89 3899.91 499.89 499.71 12999.93 2699.95 3199.89 3599.71 2299.96 5699.51 6699.97 5499.84 35
test_fmvsmvis_n_192099.84 1599.86 1299.81 3999.88 4399.55 14199.17 18199.98 1199.99 299.96 2399.84 6599.96 399.99 899.96 999.99 1699.88 24
test_fmvsm_n_192099.84 1599.85 1699.83 3299.82 7299.70 9099.17 18199.97 1899.99 299.96 2399.82 7699.94 4100.00 199.95 12100.00 199.80 46
PS-MVSNAJss99.84 1599.82 2299.89 1099.96 799.77 5499.68 4799.85 5599.95 2199.98 1399.92 2199.28 6699.98 2199.75 39100.00 199.94 13
test_djsdf99.84 1599.81 2399.91 299.94 1899.84 2499.77 1699.80 8299.73 7799.97 1999.92 2199.77 1999.98 2199.43 74100.00 199.90 20
fmvsm_s_conf0.5_n99.83 1999.81 2399.87 2099.85 5799.78 4999.03 22699.96 2399.99 299.97 1999.84 6599.78 1799.92 11999.92 2299.99 1699.92 18
test_fmvs399.83 1999.93 299.53 17799.96 798.62 27799.67 51100.00 199.95 21100.00 199.95 1399.85 1099.99 899.98 199.99 1699.98 3
fmvsm_s_conf0.5_n_a99.82 2199.79 2799.89 1099.85 5799.82 3599.03 22699.96 2399.99 299.97 1999.84 6599.58 3699.93 9799.92 2299.98 3999.93 15
v7n99.82 2199.80 2699.88 1699.96 799.84 2499.82 999.82 6999.84 5699.94 3499.91 2499.13 8699.96 5699.83 3299.99 1699.83 39
fmvsm_l_conf0.5_n_a99.80 2399.79 2799.84 2999.88 4399.64 11199.12 20199.91 3399.98 1499.95 3199.67 17099.67 2799.99 899.94 1699.99 1699.88 24
fmvsm_l_conf0.5_n99.80 2399.78 3199.85 2699.88 4399.66 10299.11 20599.91 3399.98 1499.96 2399.64 18299.60 3499.99 899.95 1299.99 1699.88 24
anonymousdsp99.80 2399.77 3399.90 799.96 799.88 1299.73 2899.85 5599.70 8899.92 4499.93 1799.45 4799.97 3599.36 88100.00 199.85 34
pm-mvs199.79 2699.79 2799.78 5399.91 3099.83 2999.76 2099.87 4799.73 7799.89 5599.87 4899.63 2999.87 20699.54 6099.92 10499.63 127
sd_testset99.78 2799.78 3199.80 4499.80 8699.76 6199.80 1299.79 8899.97 1699.89 5599.89 3599.53 4399.99 899.36 8899.96 6799.65 112
UA-Net99.78 2799.76 3699.86 2499.72 14099.71 8399.91 399.95 2899.96 1899.71 13499.91 2499.15 8199.97 3599.50 68100.00 199.90 20
TransMVSNet (Re)99.78 2799.77 3399.81 3999.91 3099.85 1999.75 2399.86 5099.70 8899.91 4799.89 3599.60 3499.87 20699.59 5199.74 21999.71 75
SDMVSNet99.77 3099.77 3399.76 6399.80 8699.65 10899.63 6299.86 5099.97 1699.89 5599.89 3599.52 4499.99 899.42 7999.96 6799.65 112
test_cas_vis1_n_192099.76 3199.86 1299.45 19699.93 2498.40 29099.30 14099.98 1199.94 2499.99 799.89 3599.80 1599.97 3599.96 999.97 5499.97 7
test_f99.75 3299.88 699.37 22399.96 798.21 30299.51 95100.00 199.94 24100.00 199.93 1799.58 3699.94 8099.97 499.99 1699.97 7
OurMVSNet-221017-099.75 3299.71 3999.84 2999.96 799.83 2999.83 799.85 5599.80 6799.93 3899.93 1798.54 16599.93 9799.59 5199.98 3999.76 65
Vis-MVSNetpermissive99.75 3299.74 3799.79 5099.88 4399.66 10299.69 4399.92 3099.67 9799.77 10799.75 11999.61 3299.98 2199.35 9199.98 3999.72 72
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
mvsmamba99.74 3599.70 4099.85 2699.93 2499.83 2999.76 2099.81 7899.96 1899.91 4799.81 8298.60 15699.94 8099.58 5499.98 3999.77 59
mamv499.73 3699.74 3799.70 10399.66 17199.87 1499.69 4399.93 2999.93 2699.93 3899.86 5499.07 94100.00 199.66 4499.92 10499.24 273
test_vis1_n_192099.72 3799.88 699.27 24999.93 2497.84 32799.34 127100.00 199.99 299.99 799.82 7699.87 999.99 899.97 499.99 1699.97 7
test_fmvs299.72 3799.85 1699.34 23099.91 3098.08 31599.48 101100.00 199.90 3399.99 799.91 2499.50 4699.98 2199.98 199.99 1699.96 10
TDRefinement99.72 3799.70 4099.77 5699.90 3699.85 1999.86 699.92 3099.69 9199.78 10299.92 2199.37 5699.88 19298.93 15199.95 8199.60 152
XXY-MVS99.71 4099.67 4899.81 3999.89 3899.72 8199.59 7799.82 6999.39 14999.82 8299.84 6599.38 5499.91 14199.38 8499.93 9999.80 46
nrg03099.70 4199.66 5099.82 3699.76 11799.84 2499.61 7099.70 13499.93 2699.78 10299.68 16699.10 8799.78 30999.45 7299.96 6799.83 39
FC-MVSNet-test99.70 4199.65 5299.86 2499.88 4399.86 1899.72 3199.78 9499.90 3399.82 8299.83 6998.45 18099.87 20699.51 6699.97 5499.86 31
bld_raw_dy_0_6499.69 4399.67 4899.74 7899.84 6099.58 13499.88 599.83 6399.96 1899.94 3499.91 2498.33 19799.98 2199.42 7999.96 6799.67 94
GeoE99.69 4399.66 5099.78 5399.76 11799.76 6199.60 7699.82 6999.46 13699.75 11699.56 23699.63 2999.95 6699.43 7499.88 13599.62 138
v1099.69 4399.69 4499.66 11799.81 8099.39 17799.66 5599.75 10899.60 11999.92 4499.87 4898.75 13599.86 22599.90 2599.99 1699.73 70
EC-MVSNet99.69 4399.69 4499.68 10799.71 14399.91 499.76 2099.96 2399.86 4899.51 21399.39 28399.57 3899.93 9799.64 4899.86 15499.20 286
test_vis1_n99.68 4799.79 2799.36 22799.94 1898.18 30599.52 89100.00 199.86 48100.00 199.88 4398.99 10599.96 5699.97 499.96 6799.95 11
test_fmvs1_n99.68 4799.81 2399.28 24699.95 1597.93 32499.49 100100.00 199.82 6199.99 799.89 3599.21 7599.98 2199.97 499.98 3999.93 15
CS-MVS-test99.68 4799.70 4099.64 12999.57 20499.83 2999.78 1499.97 1899.92 2999.50 21599.38 28599.57 3899.95 6699.69 4399.90 11699.15 298
v899.68 4799.69 4499.65 12299.80 8699.40 17499.66 5599.76 10399.64 10599.93 3899.85 5998.66 14899.84 25799.88 2999.99 1699.71 75
DTE-MVSNet99.68 4799.61 6299.88 1699.80 8699.87 1499.67 5199.71 12999.72 8199.84 7799.78 10498.67 14699.97 3599.30 10099.95 8199.80 46
casdiffmvs_mvgpermissive99.68 4799.68 4799.69 10599.81 8099.59 13099.29 14799.90 3899.71 8399.79 9899.73 12699.54 4199.84 25799.36 8899.96 6799.65 112
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CS-MVS99.67 5399.70 4099.58 15899.53 22499.84 2499.79 1399.96 2399.90 3399.61 17699.41 27599.51 4599.95 6699.66 4499.89 12698.96 339
VPA-MVSNet99.66 5499.62 5899.79 5099.68 16399.75 6799.62 6599.69 14199.85 5399.80 9399.81 8298.81 12399.91 14199.47 7099.88 13599.70 78
PS-CasMVS99.66 5499.58 7099.89 1099.80 8699.85 1999.66 5599.73 11799.62 11099.84 7799.71 14298.62 15299.96 5699.30 10099.96 6799.86 31
PEN-MVS99.66 5499.59 6799.89 1099.83 6599.87 1499.66 5599.73 11799.70 8899.84 7799.73 12698.56 16299.96 5699.29 10399.94 9299.83 39
FMVSNet199.66 5499.63 5799.73 8899.78 10599.77 5499.68 4799.70 13499.67 9799.82 8299.83 6998.98 10799.90 15999.24 10799.97 5499.53 187
MIMVSNet199.66 5499.62 5899.80 4499.94 1899.87 1499.69 4399.77 9799.78 7099.93 3899.89 3597.94 23299.92 11999.65 4699.98 3999.62 138
FIs99.65 5999.58 7099.84 2999.84 6099.85 1999.66 5599.75 10899.86 4899.74 12499.79 9698.27 20599.85 24299.37 8799.93 9999.83 39
iter_conf0599.64 6099.65 5299.60 15199.68 16399.62 11899.82 999.89 4099.92 2999.93 3899.86 5498.28 20299.96 5699.54 6099.91 11499.23 277
testf199.63 6199.60 6599.72 9499.94 1899.95 299.47 10499.89 4099.43 14499.88 6399.80 8699.26 7099.90 15998.81 15999.88 13599.32 258
APD_test299.63 6199.60 6599.72 9499.94 1899.95 299.47 10499.89 4099.43 14499.88 6399.80 8699.26 7099.90 15998.81 15999.88 13599.32 258
tt080599.63 6199.57 7499.81 3999.87 5099.88 1299.58 7998.70 35099.72 8199.91 4799.60 21799.43 4899.81 29699.81 3699.53 28899.73 70
KD-MVS_self_test99.63 6199.59 6799.76 6399.84 6099.90 799.37 12299.79 8899.83 5999.88 6399.85 5998.42 18499.90 15999.60 5099.73 22499.49 209
casdiffmvspermissive99.63 6199.61 6299.67 11099.79 9899.59 13099.13 19799.85 5599.79 6999.76 11199.72 13499.33 6199.82 28199.21 11099.94 9299.59 159
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline99.63 6199.62 5899.66 11799.80 8699.62 11899.44 11099.80 8299.71 8399.72 12999.69 15599.15 8199.83 27299.32 9799.94 9299.53 187
Anonymous2023121199.62 6799.57 7499.76 6399.61 18399.60 12899.81 1199.73 11799.82 6199.90 5199.90 3097.97 23199.86 22599.42 7999.96 6799.80 46
DeepC-MVS98.90 499.62 6799.61 6299.67 11099.72 14099.44 16199.24 16199.71 12999.27 16399.93 3899.90 3099.70 2499.93 9798.99 13999.99 1699.64 122
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
dcpmvs_299.61 6999.64 5699.53 17799.79 9898.82 25699.58 7999.97 1899.95 2199.96 2399.76 11498.44 18199.99 899.34 9299.96 6799.78 55
WR-MVS_H99.61 6999.53 8499.87 2099.80 8699.83 2999.67 5199.75 10899.58 12299.85 7499.69 15598.18 21699.94 8099.28 10599.95 8199.83 39
ACMH98.42 699.59 7199.54 8099.72 9499.86 5399.62 11899.56 8499.79 8898.77 23899.80 9399.85 5999.64 2899.85 24298.70 17199.89 12699.70 78
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
v119299.57 7299.57 7499.57 16499.77 11399.22 21499.04 22299.60 19299.18 17899.87 7199.72 13499.08 9299.85 24299.89 2899.98 3999.66 104
EG-PatchMatch MVS99.57 7299.56 7999.62 14599.77 11399.33 19299.26 15499.76 10399.32 15799.80 9399.78 10499.29 6499.87 20699.15 12299.91 11499.66 104
Gipumacopyleft99.57 7299.59 6799.49 18499.98 399.71 8399.72 3199.84 6199.81 6499.94 3499.78 10498.91 11599.71 33598.41 18599.95 8199.05 326
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
v192192099.56 7599.57 7499.55 17199.75 12899.11 22799.05 21999.61 18199.15 18999.88 6399.71 14299.08 9299.87 20699.90 2599.97 5499.66 104
v124099.56 7599.58 7099.51 18199.80 8699.00 23899.00 23499.65 16399.15 18999.90 5199.75 11999.09 8999.88 19299.90 2599.96 6799.67 94
V4299.56 7599.54 8099.63 13699.79 9899.46 15499.39 11699.59 19899.24 16999.86 7299.70 14998.55 16399.82 28199.79 3799.95 8199.60 152
MVSMamba_PlusPlus99.55 7899.58 7099.47 19099.68 16399.40 17499.52 8999.70 13499.92 2999.77 10799.86 5498.28 20299.96 5699.54 6099.90 11699.05 326
v14419299.55 7899.54 8099.58 15899.78 10599.20 21999.11 20599.62 17499.18 17899.89 5599.72 13498.66 14899.87 20699.88 2999.97 5499.66 104
test20.0399.55 7899.54 8099.58 15899.79 9899.37 18299.02 22999.89 4099.60 11999.82 8299.62 20098.81 12399.89 17799.43 7499.86 15499.47 217
v114499.54 8199.53 8499.59 15499.79 9899.28 20099.10 20899.61 18199.20 17699.84 7799.73 12698.67 14699.84 25799.86 3199.98 3999.64 122
CP-MVSNet99.54 8199.43 10099.87 2099.76 11799.82 3599.57 8299.61 18199.54 12399.80 9399.64 18297.79 24399.95 6699.21 11099.94 9299.84 35
TranMVSNet+NR-MVSNet99.54 8199.47 8999.76 6399.58 19499.64 11199.30 14099.63 17199.61 11399.71 13499.56 23698.76 13399.96 5699.14 12899.92 10499.68 88
SSC-MVS99.52 8499.42 10299.83 3299.86 5399.65 10899.52 8999.81 7899.87 4599.81 8999.79 9696.78 28799.99 899.83 3299.51 29299.86 31
iter_conf05_1199.51 8599.49 8799.57 16499.42 27199.67 9999.52 8999.77 9799.78 7099.77 10799.73 12698.10 22099.89 17799.42 7999.93 9999.16 295
patch_mono-299.51 8599.46 9399.64 12999.70 15199.11 22799.04 22299.87 4799.71 8399.47 22099.79 9698.24 20799.98 2199.38 8499.96 6799.83 39
v2v48299.50 8799.47 8999.58 15899.78 10599.25 20799.14 19199.58 20799.25 16799.81 8999.62 20098.24 20799.84 25799.83 3299.97 5499.64 122
ACMH+98.40 899.50 8799.43 10099.71 9999.86 5399.76 6199.32 13299.77 9799.53 12599.77 10799.76 11499.26 7099.78 30997.77 23999.88 13599.60 152
Baseline_NR-MVSNet99.49 8999.37 11099.82 3699.91 3099.84 2498.83 25999.86 5099.68 9399.65 15699.88 4397.67 25199.87 20699.03 13699.86 15499.76 65
TAMVS99.49 8999.45 9599.63 13699.48 24799.42 16899.45 10899.57 20999.66 10199.78 10299.83 6997.85 23999.86 22599.44 7399.96 6799.61 148
test_fmvs199.48 9199.65 5298.97 29099.54 21897.16 35099.11 20599.98 1199.78 7099.96 2399.81 8298.72 14099.97 3599.95 1299.97 5499.79 53
pmmvs-eth3d99.48 9199.47 8999.51 18199.77 11399.41 17398.81 26499.66 15399.42 14899.75 11699.66 17599.20 7699.76 31998.98 14199.99 1699.36 248
EI-MVSNet-UG-set99.48 9199.50 8699.42 20599.57 20498.65 27499.24 16199.46 25999.68 9399.80 9399.66 17598.99 10599.89 17799.19 11499.90 11699.72 72
APDe-MVScopyleft99.48 9199.36 11399.85 2699.55 21699.81 4099.50 9699.69 14198.99 20499.75 11699.71 14298.79 12899.93 9798.46 18399.85 15899.80 46
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
PMMVS299.48 9199.45 9599.57 16499.76 11798.99 23998.09 33699.90 3898.95 21099.78 10299.58 22599.57 3899.93 9799.48 6999.95 8199.79 53
DSMNet-mixed99.48 9199.65 5298.95 29399.71 14397.27 34799.50 9699.82 6999.59 12199.41 23899.85 5999.62 31100.00 199.53 6499.89 12699.59 159
DP-MVS99.48 9199.39 10599.74 7899.57 20499.62 11899.29 14799.61 18199.87 4599.74 12499.76 11498.69 14299.87 20698.20 20199.80 19499.75 68
EI-MVSNet-Vis-set99.47 9899.49 8799.42 20599.57 20498.66 27199.24 16199.46 25999.67 9799.79 9899.65 18098.97 10999.89 17799.15 12299.89 12699.71 75
VPNet99.46 9999.37 11099.71 9999.82 7299.59 13099.48 10199.70 13499.81 6499.69 14199.58 22597.66 25599.86 22599.17 11999.44 30299.67 94
ACMM98.09 1199.46 9999.38 10799.72 9499.80 8699.69 9499.13 19799.65 16398.99 20499.64 15799.72 13499.39 5099.86 22598.23 19899.81 18999.60 152
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test_vis1_rt99.45 10199.46 9399.41 21299.71 14398.63 27698.99 23999.96 2399.03 20299.95 3199.12 33498.75 13599.84 25799.82 3599.82 18099.77 59
COLMAP_ROBcopyleft98.06 1299.45 10199.37 11099.70 10399.83 6599.70 9099.38 11899.78 9499.53 12599.67 15099.78 10499.19 7799.86 22597.32 27799.87 14699.55 174
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
WB-MVS99.44 10399.32 12099.80 4499.81 8099.61 12599.47 10499.81 7899.82 6199.71 13499.72 13496.60 29199.98 2199.75 3999.23 33299.82 45
mvsany_test199.44 10399.45 9599.40 21499.37 28098.64 27597.90 35999.59 19899.27 16399.92 4499.82 7699.74 2099.93 9799.55 5999.87 14699.63 127
Anonymous2024052199.44 10399.42 10299.49 18499.89 3898.96 24499.62 6599.76 10399.85 5399.82 8299.88 4396.39 30199.97 3599.59 5199.98 3999.55 174
tfpnnormal99.43 10699.38 10799.60 15199.87 5099.75 6799.59 7799.78 9499.71 8399.90 5199.69 15598.85 12199.90 15997.25 28899.78 20499.15 298
HPM-MVS_fast99.43 10699.30 12799.80 4499.83 6599.81 4099.52 8999.70 13498.35 28699.51 21399.50 25499.31 6299.88 19298.18 20599.84 16399.69 82
3Dnovator99.15 299.43 10699.36 11399.65 12299.39 27599.42 16899.70 3699.56 21499.23 17199.35 24899.80 8699.17 7999.95 6698.21 20099.84 16399.59 159
Anonymous2024052999.42 10999.34 11599.65 12299.53 22499.60 12899.63 6299.39 28099.47 13399.76 11199.78 10498.13 21899.86 22598.70 17199.68 24499.49 209
SixPastTwentyTwo99.42 10999.30 12799.76 6399.92 2999.67 9999.70 3699.14 32999.65 10399.89 5599.90 3096.20 30799.94 8099.42 7999.92 10499.67 94
GBi-Net99.42 10999.31 12299.73 8899.49 24299.77 5499.68 4799.70 13499.44 13999.62 17099.83 6997.21 27299.90 15998.96 14599.90 11699.53 187
test199.42 10999.31 12299.73 8899.49 24299.77 5499.68 4799.70 13499.44 13999.62 17099.83 6997.21 27299.90 15998.96 14599.90 11699.53 187
MVSFormer99.41 11399.44 9899.31 24099.57 20498.40 29099.77 1699.80 8299.73 7799.63 16199.30 30498.02 22699.98 2199.43 7499.69 23999.55 174
IterMVS-LS99.41 11399.47 8999.25 25599.81 8098.09 31298.85 25699.76 10399.62 11099.83 8199.64 18298.54 16599.97 3599.15 12299.99 1699.68 88
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
SED-MVS99.40 11599.28 13499.77 5699.69 15599.82 3599.20 17199.54 22699.13 19199.82 8299.63 19398.91 11599.92 11997.85 23499.70 23599.58 164
v14899.40 11599.41 10499.39 21799.76 11798.94 24599.09 21299.59 19899.17 18399.81 8999.61 20998.41 18599.69 34499.32 9799.94 9299.53 187
NR-MVSNet99.40 11599.31 12299.68 10799.43 26699.55 14199.73 2899.50 24899.46 13699.88 6399.36 29197.54 25899.87 20698.97 14399.87 14699.63 127
PVSNet_Blended_VisFu99.40 11599.38 10799.44 19999.90 3698.66 27198.94 24899.91 3397.97 31299.79 9899.73 12699.05 9999.97 3599.15 12299.99 1699.68 88
EU-MVSNet99.39 11999.62 5898.72 32199.88 4396.44 36499.56 8499.85 5599.90 3399.90 5199.85 5998.09 22199.83 27299.58 5499.95 8199.90 20
CHOSEN 1792x268899.39 11999.30 12799.65 12299.88 4399.25 20798.78 27199.88 4598.66 24999.96 2399.79 9697.45 26199.93 9799.34 9299.99 1699.78 55
DVP-MVS++99.38 12199.25 14099.77 5699.03 35399.77 5499.74 2599.61 18199.18 17899.76 11199.61 20999.00 10399.92 11997.72 24599.60 27099.62 138
EI-MVSNet99.38 12199.44 9899.21 25999.58 19498.09 31299.26 15499.46 25999.62 11099.75 11699.67 17098.54 16599.85 24299.15 12299.92 10499.68 88
UGNet99.38 12199.34 11599.49 18498.90 36398.90 25199.70 3699.35 28999.86 4898.57 34799.81 8298.50 17599.93 9799.38 8499.98 3999.66 104
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
UniMVSNet_NR-MVSNet99.37 12499.25 14099.72 9499.47 25399.56 13898.97 24399.61 18199.43 14499.67 15099.28 30897.85 23999.95 6699.17 11999.81 18999.65 112
UniMVSNet (Re)99.37 12499.26 13899.68 10799.51 23199.58 13498.98 24299.60 19299.43 14499.70 13899.36 29197.70 24799.88 19299.20 11399.87 14699.59 159
CSCG99.37 12499.29 13299.60 15199.71 14399.46 15499.43 11299.85 5598.79 23499.41 23899.60 21798.92 11399.92 11998.02 21499.92 10499.43 233
APD_test199.36 12799.28 13499.61 14899.89 3899.89 1099.32 13299.74 11399.18 17899.69 14199.75 11998.41 18599.84 25797.85 23499.70 23599.10 309
PM-MVS99.36 12799.29 13299.58 15899.83 6599.66 10298.95 24699.86 5098.85 22599.81 8999.73 12698.40 18999.92 11998.36 18899.83 17199.17 293
new-patchmatchnet99.35 12999.57 7498.71 32399.82 7296.62 36298.55 29599.75 10899.50 12799.88 6399.87 4899.31 6299.88 19299.43 74100.00 199.62 138
Anonymous2023120699.35 12999.31 12299.47 19099.74 13499.06 23799.28 14999.74 11399.23 17199.72 12999.53 24797.63 25799.88 19299.11 13099.84 16399.48 213
MTAPA99.35 12999.20 14599.80 4499.81 8099.81 4099.33 13099.53 23599.27 16399.42 23299.63 19398.21 21299.95 6697.83 23899.79 19999.65 112
FMVSNet299.35 12999.28 13499.55 17199.49 24299.35 18999.45 10899.57 20999.44 13999.70 13899.74 12297.21 27299.87 20699.03 13699.94 9299.44 227
3Dnovator+98.92 399.35 12999.24 14299.67 11099.35 28599.47 15099.62 6599.50 24899.44 13999.12 29199.78 10498.77 13299.94 8097.87 23199.72 23099.62 138
TSAR-MVS + MP.99.34 13499.24 14299.63 13699.82 7299.37 18299.26 15499.35 28998.77 23899.57 18799.70 14999.27 6999.88 19297.71 24799.75 21299.65 112
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
diffmvspermissive99.34 13499.32 12099.39 21799.67 17098.77 26298.57 29399.81 7899.61 11399.48 21899.41 27598.47 17699.86 22598.97 14399.90 11699.53 187
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DELS-MVS99.34 13499.30 12799.48 18899.51 23199.36 18698.12 33299.53 23599.36 15399.41 23899.61 20999.22 7499.87 20699.21 11099.68 24499.20 286
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
DU-MVS99.33 13799.21 14499.71 9999.43 26699.56 13898.83 25999.53 23599.38 15099.67 15099.36 29197.67 25199.95 6699.17 11999.81 18999.63 127
ab-mvs99.33 13799.28 13499.47 19099.57 20499.39 17799.78 1499.43 26798.87 22299.57 18799.82 7698.06 22499.87 20698.69 17399.73 22499.15 298
DVP-MVScopyleft99.32 13999.17 14899.77 5699.69 15599.80 4499.14 19199.31 29899.16 18599.62 17099.61 20998.35 19399.91 14197.88 22899.72 23099.61 148
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
APD-MVS_3200maxsize99.31 14099.16 14999.74 7899.53 22499.75 6799.27 15299.61 18199.19 17799.57 18799.64 18298.76 13399.90 15997.29 27999.62 26099.56 171
SteuartSystems-ACMMP99.30 14199.14 15399.76 6399.87 5099.66 10299.18 17699.60 19298.55 26099.57 18799.67 17099.03 10299.94 8097.01 29899.80 19499.69 82
Skip Steuart: Steuart Systems R&D Blog.
testgi99.29 14299.26 13899.37 22399.75 12898.81 25798.84 25799.89 4098.38 27999.75 11699.04 34499.36 5999.86 22599.08 13399.25 32899.45 222
ACMMP_NAP99.28 14399.11 16299.79 5099.75 12899.81 4098.95 24699.53 23598.27 29599.53 20699.73 12698.75 13599.87 20697.70 25099.83 17199.68 88
LCM-MVSNet-Re99.28 14399.15 15299.67 11099.33 29999.76 6199.34 12799.97 1898.93 21499.91 4799.79 9698.68 14399.93 9796.80 31199.56 27799.30 264
mvs_anonymous99.28 14399.39 10598.94 29499.19 32797.81 32999.02 22999.55 22099.78 7099.85 7499.80 8698.24 20799.86 22599.57 5699.50 29599.15 298
MVS_Test99.28 14399.31 12299.19 26299.35 28598.79 26099.36 12599.49 25299.17 18399.21 27899.67 17098.78 13099.66 36599.09 13299.66 25399.10 309
SR-MVS-dyc-post99.27 14799.11 16299.73 8899.54 21899.74 7399.26 15499.62 17499.16 18599.52 20899.64 18298.41 18599.91 14197.27 28299.61 26799.54 182
XVS99.27 14799.11 16299.75 7399.71 14399.71 8399.37 12299.61 18199.29 15998.76 33099.47 26598.47 17699.88 19297.62 25899.73 22499.67 94
OPM-MVS99.26 14999.13 15599.63 13699.70 15199.61 12598.58 28999.48 25398.50 26799.52 20899.63 19399.14 8499.76 31997.89 22799.77 20899.51 199
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
HFP-MVS99.25 15099.08 17399.76 6399.73 13799.70 9099.31 13799.59 19898.36 28199.36 24799.37 28798.80 12799.91 14197.43 27199.75 21299.68 88
HPM-MVScopyleft99.25 15099.07 17799.78 5399.81 8099.75 6799.61 7099.67 14897.72 32799.35 24899.25 31599.23 7399.92 11997.21 29199.82 18099.67 94
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
ACMMPcopyleft99.25 15099.08 17399.74 7899.79 9899.68 9799.50 9699.65 16398.07 30699.52 20899.69 15598.57 16099.92 11997.18 29399.79 19999.63 127
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
LS3D99.24 15399.11 16299.61 14898.38 39699.79 4699.57 8299.68 14499.61 11399.15 28699.71 14298.70 14199.91 14197.54 26499.68 24499.13 306
xiu_mvs_v1_base_debu99.23 15499.34 11598.91 30099.59 18998.23 29998.47 30599.66 15399.61 11399.68 14498.94 36099.39 5099.97 3599.18 11699.55 28198.51 374
xiu_mvs_v1_base99.23 15499.34 11598.91 30099.59 18998.23 29998.47 30599.66 15399.61 11399.68 14498.94 36099.39 5099.97 3599.18 11699.55 28198.51 374
xiu_mvs_v1_base_debi99.23 15499.34 11598.91 30099.59 18998.23 29998.47 30599.66 15399.61 11399.68 14498.94 36099.39 5099.97 3599.18 11699.55 28198.51 374
region2R99.23 15499.05 18399.77 5699.76 11799.70 9099.31 13799.59 19898.41 27599.32 25699.36 29198.73 13999.93 9797.29 27999.74 21999.67 94
ACMMPR99.23 15499.06 17999.76 6399.74 13499.69 9499.31 13799.59 19898.36 28199.35 24899.38 28598.61 15499.93 9797.43 27199.75 21299.67 94
XVG-ACMP-BASELINE99.23 15499.10 17099.63 13699.82 7299.58 13498.83 25999.72 12698.36 28199.60 17999.71 14298.92 11399.91 14197.08 29699.84 16399.40 238
CP-MVS99.23 15499.05 18399.75 7399.66 17199.66 10299.38 11899.62 17498.38 27999.06 29999.27 31098.79 12899.94 8097.51 26799.82 18099.66 104
DeepC-MVS_fast98.47 599.23 15499.12 15999.56 16899.28 31099.22 21498.99 23999.40 27799.08 19699.58 18499.64 18298.90 11899.83 27297.44 27099.75 21299.63 127
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ZNCC-MVS99.22 16299.04 18999.77 5699.76 11799.73 7699.28 14999.56 21498.19 30099.14 28899.29 30798.84 12299.92 11997.53 26699.80 19499.64 122
D2MVS99.22 16299.19 14699.29 24499.69 15598.74 26498.81 26499.41 27098.55 26099.68 14499.69 15598.13 21899.87 20698.82 15799.98 3999.24 273
LPG-MVS_test99.22 16299.05 18399.74 7899.82 7299.63 11699.16 18799.73 11797.56 33299.64 15799.69 15599.37 5699.89 17796.66 31999.87 14699.69 82
CDS-MVSNet99.22 16299.13 15599.50 18399.35 28599.11 22798.96 24599.54 22699.46 13699.61 17699.70 14996.31 30399.83 27299.34 9299.88 13599.55 174
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
test_040299.22 16299.14 15399.45 19699.79 9899.43 16599.28 14999.68 14499.54 12399.40 24399.56 23699.07 9499.82 28196.01 35099.96 6799.11 307
AllTest99.21 16799.07 17799.63 13699.78 10599.64 11199.12 20199.83 6398.63 25299.63 16199.72 13498.68 14399.75 32396.38 33799.83 17199.51 199
XVG-OURS99.21 16799.06 17999.65 12299.82 7299.62 11897.87 36099.74 11398.36 28199.66 15499.68 16699.71 2299.90 15996.84 31099.88 13599.43 233
Fast-Effi-MVS+-dtu99.20 16999.12 15999.43 20399.25 31599.69 9499.05 21999.82 6999.50 12798.97 30399.05 34298.98 10799.98 2198.20 20199.24 33098.62 365
VDD-MVS99.20 16999.11 16299.44 19999.43 26698.98 24099.50 9698.32 37299.80 6799.56 19499.69 15596.99 28299.85 24298.99 13999.73 22499.50 204
PGM-MVS99.20 16999.01 19699.77 5699.75 12899.71 8399.16 18799.72 12697.99 31099.42 23299.60 21798.81 12399.93 9796.91 30499.74 21999.66 104
SR-MVS99.19 17299.00 20099.74 7899.51 23199.72 8199.18 17699.60 19298.85 22599.47 22099.58 22598.38 19099.92 11996.92 30399.54 28699.57 169
SMA-MVScopyleft99.19 17299.00 20099.73 8899.46 25799.73 7699.13 19799.52 24097.40 34399.57 18799.64 18298.93 11299.83 27297.61 26099.79 19999.63 127
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
pmmvs599.19 17299.11 16299.42 20599.76 11798.88 25398.55 29599.73 11798.82 22999.72 12999.62 20096.56 29299.82 28199.32 9799.95 8199.56 171
mPP-MVS99.19 17299.00 20099.76 6399.76 11799.68 9799.38 11899.54 22698.34 29099.01 30199.50 25498.53 16999.93 9797.18 29399.78 20499.66 104
MM99.18 17699.05 18399.55 17199.35 28598.81 25799.05 21997.79 38399.99 299.48 21899.59 22296.29 30599.95 6699.94 1699.98 3999.88 24
ETV-MVS99.18 17699.18 14799.16 26599.34 29499.28 20099.12 20199.79 8899.48 12998.93 30798.55 38199.40 4999.93 9798.51 18199.52 29198.28 384
VNet99.18 17699.06 17999.56 16899.24 31799.36 18699.33 13099.31 29899.67 9799.47 22099.57 23296.48 29599.84 25799.15 12299.30 32199.47 217
RPSCF99.18 17699.02 19399.64 12999.83 6599.85 1999.44 11099.82 6998.33 29199.50 21599.78 10497.90 23499.65 37196.78 31299.83 17199.44 227
DeepPCF-MVS98.42 699.18 17699.02 19399.67 11099.22 32099.75 6797.25 38799.47 25698.72 24399.66 15499.70 14999.29 6499.63 37498.07 21399.81 18999.62 138
MVS_030499.17 18199.03 19199.59 15499.44 26298.90 25199.04 22295.32 40099.99 299.68 14499.57 23298.30 20099.97 3599.94 1699.98 3999.88 24
EPP-MVSNet99.17 18199.00 20099.66 11799.80 8699.43 16599.70 3699.24 31499.48 12999.56 19499.77 11194.89 31999.93 9798.72 17099.89 12699.63 127
GST-MVS99.16 18398.96 21299.75 7399.73 13799.73 7699.20 17199.55 22098.22 29799.32 25699.35 29698.65 15099.91 14196.86 30799.74 21999.62 138
MVP-Stereo99.16 18399.08 17399.43 20399.48 24799.07 23599.08 21599.55 22098.63 25299.31 26099.68 16698.19 21499.78 30998.18 20599.58 27599.45 222
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
XVG-OURS-SEG-HR99.16 18398.99 20699.66 11799.84 6099.64 11198.25 32299.73 11798.39 27899.63 16199.43 27399.70 2499.90 15997.34 27698.64 36899.44 227
jason99.16 18399.11 16299.32 23799.75 12898.44 28798.26 32199.39 28098.70 24699.74 12499.30 30498.54 16599.97 3598.48 18299.82 18099.55 174
jason: jason.
DPE-MVScopyleft99.14 18798.92 21899.82 3699.57 20499.77 5498.74 27499.60 19298.55 26099.76 11199.69 15598.23 21199.92 11996.39 33699.75 21299.76 65
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MP-MVS-pluss99.14 18798.92 21899.80 4499.83 6599.83 2998.61 28299.63 17196.84 36399.44 22699.58 22598.81 12399.91 14197.70 25099.82 18099.67 94
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
pmmvs499.13 18999.06 17999.36 22799.57 20499.10 23298.01 34599.25 31198.78 23699.58 18499.44 27298.24 20799.76 31998.74 16899.93 9999.22 280
MVS_111021_LR99.13 18999.03 19199.42 20599.58 19499.32 19497.91 35899.73 11798.68 24799.31 26099.48 26199.09 8999.66 36597.70 25099.77 20899.29 267
EIA-MVS99.12 19199.01 19699.45 19699.36 28399.62 11899.34 12799.79 8898.41 27598.84 32098.89 36498.75 13599.84 25798.15 20999.51 29298.89 349
TSAR-MVS + GP.99.12 19199.04 18999.38 22099.34 29499.16 22298.15 32899.29 30298.18 30199.63 16199.62 20099.18 7899.68 35698.20 20199.74 21999.30 264
MVS_111021_HR99.12 19199.02 19399.40 21499.50 23799.11 22797.92 35699.71 12998.76 24199.08 29599.47 26599.17 7999.54 38797.85 23499.76 21099.54 182
CANet99.11 19499.05 18399.28 24698.83 37098.56 28098.71 27899.41 27099.25 16799.23 27399.22 32297.66 25599.94 8099.19 11499.97 5499.33 255
WR-MVS99.11 19498.93 21499.66 11799.30 30599.42 16898.42 31099.37 28599.04 20199.57 18799.20 32696.89 28499.86 22598.66 17599.87 14699.70 78
PHI-MVS99.11 19498.95 21399.59 15499.13 33699.59 13099.17 18199.65 16397.88 32099.25 26999.46 26898.97 10999.80 30397.26 28499.82 18099.37 245
SF-MVS99.10 19798.93 21499.62 14599.58 19499.51 14699.13 19799.65 16397.97 31299.42 23299.61 20998.86 12099.87 20696.45 33499.68 24499.49 209
MSDG99.08 19898.98 20999.37 22399.60 18599.13 22597.54 37399.74 11398.84 22899.53 20699.55 24399.10 8799.79 30697.07 29799.86 15499.18 291
Effi-MVS+-dtu99.07 19998.92 21899.52 17998.89 36699.78 4999.15 18999.66 15399.34 15498.92 31099.24 32097.69 24999.98 2198.11 21199.28 32498.81 356
Effi-MVS+99.06 20098.97 21099.34 23099.31 30198.98 24098.31 31799.91 3398.81 23198.79 32798.94 36099.14 8499.84 25798.79 16198.74 36299.20 286
MP-MVScopyleft99.06 20098.83 23099.76 6399.76 11799.71 8399.32 13299.50 24898.35 28698.97 30399.48 26198.37 19199.92 11995.95 35699.75 21299.63 127
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MDA-MVSNet-bldmvs99.06 20099.05 18399.07 28199.80 8697.83 32898.89 25199.72 12699.29 15999.63 16199.70 14996.47 29699.89 17798.17 20799.82 18099.50 204
MSLP-MVS++99.05 20399.09 17198.91 30099.21 32298.36 29598.82 26399.47 25698.85 22598.90 31399.56 23698.78 13099.09 40298.57 17899.68 24499.26 270
1112_ss99.05 20398.84 22899.67 11099.66 17199.29 19898.52 30199.82 6997.65 33099.43 23099.16 32896.42 29899.91 14199.07 13499.84 16399.80 46
ACMP97.51 1499.05 20398.84 22899.67 11099.78 10599.55 14198.88 25299.66 15397.11 35899.47 22099.60 21799.07 9499.89 17796.18 34599.85 15899.58 164
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MSP-MVS99.04 20698.79 23599.81 3999.78 10599.73 7699.35 12699.57 20998.54 26399.54 20198.99 35196.81 28699.93 9796.97 30199.53 28899.77 59
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
PVSNet_BlendedMVS99.03 20799.01 19699.09 27699.54 21897.99 31898.58 28999.82 6997.62 33199.34 25199.71 14298.52 17299.77 31797.98 21999.97 5499.52 197
IS-MVSNet99.03 20798.85 22699.55 17199.80 8699.25 20799.73 2899.15 32899.37 15199.61 17699.71 14294.73 32299.81 29697.70 25099.88 13599.58 164
MGCFI-Net99.02 20999.01 19699.06 28399.11 34398.60 27899.63 6299.67 14899.63 10798.58 34597.65 39999.07 9499.57 38398.85 15398.92 34999.03 330
sasdasda99.02 20999.00 20099.09 27699.10 34598.70 26699.61 7099.66 15399.63 10798.64 33997.65 39999.04 10099.54 38798.79 16198.92 34999.04 328
xiu_mvs_v2_base99.02 20999.11 16298.77 31899.37 28098.09 31298.13 33199.51 24499.47 13399.42 23298.54 38299.38 5499.97 3598.83 15599.33 31798.24 386
Fast-Effi-MVS+99.02 20998.87 22499.46 19399.38 27899.50 14799.04 22299.79 8897.17 35498.62 34198.74 37399.34 6099.95 6698.32 19299.41 30798.92 345
canonicalmvs99.02 20999.00 20099.09 27699.10 34598.70 26699.61 7099.66 15399.63 10798.64 33997.65 39999.04 10099.54 38798.79 16198.92 34999.04 328
MCST-MVS99.02 20998.81 23299.65 12299.58 19499.49 14898.58 28999.07 33398.40 27799.04 30099.25 31598.51 17499.80 30397.31 27899.51 29299.65 112
SD-MVS99.01 21599.30 12798.15 34699.50 23799.40 17498.94 24899.61 18199.22 17599.75 11699.82 7699.54 4195.51 41197.48 26899.87 14699.54 182
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
LF4IMVS99.01 21598.92 21899.27 24999.71 14399.28 20098.59 28799.77 9798.32 29299.39 24499.41 27598.62 15299.84 25796.62 32499.84 16398.69 363
IterMVS-SCA-FT99.00 21799.16 14998.51 33099.75 12895.90 37498.07 33999.84 6199.84 5699.89 5599.73 12696.01 31099.99 899.33 95100.00 199.63 127
MS-PatchMatch99.00 21798.97 21099.09 27699.11 34398.19 30398.76 27399.33 29298.49 26999.44 22699.58 22598.21 21299.69 34498.20 20199.62 26099.39 240
PS-MVSNAJ99.00 21799.08 17398.76 31999.37 28098.10 31198.00 34799.51 24499.47 13399.41 23898.50 38499.28 6699.97 3598.83 15599.34 31698.20 390
CNVR-MVS98.99 22098.80 23499.56 16899.25 31599.43 16598.54 29899.27 30698.58 25898.80 32599.43 27398.53 16999.70 33897.22 29099.59 27499.54 182
VDDNet98.97 22198.82 23199.42 20599.71 14398.81 25799.62 6598.68 35199.81 6499.38 24599.80 8694.25 32699.85 24298.79 16199.32 31999.59 159
IterMVS98.97 22199.16 14998.42 33499.74 13495.64 37798.06 34199.83 6399.83 5999.85 7499.74 12296.10 30999.99 899.27 106100.00 199.63 127
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
TinyColmap98.97 22198.93 21499.07 28199.46 25798.19 30397.75 36499.75 10898.79 23499.54 20199.70 14998.97 10999.62 37596.63 32399.83 17199.41 237
HPM-MVS++copyleft98.96 22498.70 24199.74 7899.52 22999.71 8398.86 25499.19 32498.47 27198.59 34499.06 34198.08 22399.91 14196.94 30299.60 27099.60 152
lupinMVS98.96 22498.87 22499.24 25799.57 20498.40 29098.12 33299.18 32598.28 29499.63 16199.13 33098.02 22699.97 3598.22 19999.69 23999.35 251
USDC98.96 22498.93 21499.05 28499.54 21897.99 31897.07 39399.80 8298.21 29899.75 11699.77 11198.43 18299.64 37397.90 22699.88 13599.51 199
YYNet198.95 22798.99 20698.84 31199.64 17697.14 35298.22 32499.32 29498.92 21699.59 18299.66 17597.40 26399.83 27298.27 19599.90 11699.55 174
MDA-MVSNet_test_wron98.95 22798.99 20698.85 30999.64 17697.16 35098.23 32399.33 29298.93 21499.56 19499.66 17597.39 26599.83 27298.29 19399.88 13599.55 174
Test_1112_low_res98.95 22798.73 23799.63 13699.68 16399.15 22498.09 33699.80 8297.14 35699.46 22499.40 27996.11 30899.89 17799.01 13899.84 16399.84 35
CANet_DTU98.91 23098.85 22699.09 27698.79 37698.13 30798.18 32599.31 29899.48 12998.86 31899.51 25196.56 29299.95 6699.05 13599.95 8199.19 289
HyFIR lowres test98.91 23098.64 24399.73 8899.85 5799.47 15098.07 33999.83 6398.64 25199.89 5599.60 21792.57 344100.00 199.33 9599.97 5499.72 72
HQP_MVS98.90 23298.68 24299.55 17199.58 19499.24 21198.80 26799.54 22698.94 21199.14 28899.25 31597.24 27099.82 28195.84 36099.78 20499.60 152
sss98.90 23298.77 23699.27 24999.48 24798.44 28798.72 27699.32 29497.94 31699.37 24699.35 29696.31 30399.91 14198.85 15399.63 25999.47 217
OMC-MVS98.90 23298.72 23899.44 19999.39 27599.42 16898.58 28999.64 16997.31 34899.44 22699.62 20098.59 15799.69 34496.17 34699.79 19999.22 280
ppachtmachnet_test98.89 23599.12 15998.20 34599.66 17195.24 38397.63 36999.68 14499.08 19699.78 10299.62 20098.65 15099.88 19298.02 21499.96 6799.48 213
new_pmnet98.88 23698.89 22298.84 31199.70 15197.62 33698.15 32899.50 24897.98 31199.62 17099.54 24598.15 21799.94 8097.55 26399.84 16398.95 341
K. test v398.87 23798.60 24699.69 10599.93 2499.46 15499.74 2594.97 40199.78 7099.88 6399.88 4393.66 33499.97 3599.61 4999.95 8199.64 122
APD-MVScopyleft98.87 23798.59 24899.71 9999.50 23799.62 11899.01 23199.57 20996.80 36599.54 20199.63 19398.29 20199.91 14195.24 37299.71 23399.61 148
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
our_test_398.85 23999.09 17198.13 34799.66 17194.90 38797.72 36599.58 20799.07 19899.64 15799.62 20098.19 21499.93 9798.41 18599.95 8199.55 174
UnsupCasMVSNet_eth98.83 24098.57 25299.59 15499.68 16399.45 15998.99 23999.67 14899.48 12999.55 19999.36 29194.92 31899.86 22598.95 14996.57 40299.45 222
NCCC98.82 24198.57 25299.58 15899.21 32299.31 19598.61 28299.25 31198.65 25098.43 35499.26 31397.86 23799.81 29696.55 32599.27 32799.61 148
PMVScopyleft92.94 2198.82 24198.81 23298.85 30999.84 6097.99 31899.20 17199.47 25699.71 8399.42 23299.82 7698.09 22199.47 39593.88 39199.85 15899.07 324
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
FMVSNet398.80 24398.63 24599.32 23799.13 33698.72 26599.10 20899.48 25399.23 17199.62 17099.64 18292.57 34499.86 22598.96 14599.90 11699.39 240
Patchmtry98.78 24498.54 25699.49 18498.89 36699.19 22099.32 13299.67 14899.65 10399.72 12999.79 9691.87 35299.95 6698.00 21899.97 5499.33 255
Vis-MVSNet (Re-imp)98.77 24598.58 25199.34 23099.78 10598.88 25399.61 7099.56 21499.11 19599.24 27299.56 23693.00 34299.78 30997.43 27199.89 12699.35 251
CLD-MVS98.76 24698.57 25299.33 23399.57 20498.97 24297.53 37599.55 22096.41 36899.27 26799.13 33099.07 9499.78 30996.73 31599.89 12699.23 277
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
Anonymous20240521198.75 24798.46 26199.63 13699.34 29499.66 10299.47 10497.65 38499.28 16299.56 19499.50 25493.15 33899.84 25798.62 17699.58 27599.40 238
CPTT-MVS98.74 24898.44 26399.64 12999.61 18399.38 17999.18 17699.55 22096.49 36799.27 26799.37 28797.11 27899.92 11995.74 36399.67 25099.62 138
F-COLMAP98.74 24898.45 26299.62 14599.57 20499.47 15098.84 25799.65 16396.31 37198.93 30799.19 32797.68 25099.87 20696.52 32799.37 31299.53 187
N_pmnet98.73 25098.53 25799.35 22999.72 14098.67 26898.34 31494.65 40298.35 28699.79 9899.68 16698.03 22599.93 9798.28 19499.92 10499.44 227
c3_l98.72 25198.71 23998.72 32199.12 33897.22 34997.68 36899.56 21498.90 21899.54 20199.48 26196.37 30299.73 32997.88 22899.88 13599.21 282
CL-MVSNet_self_test98.71 25298.56 25599.15 26799.22 32098.66 27197.14 39099.51 24498.09 30599.54 20199.27 31096.87 28599.74 32698.43 18498.96 34699.03 330
PVSNet_Blended98.70 25398.59 24899.02 28699.54 21897.99 31897.58 37299.82 6995.70 37999.34 25198.98 35498.52 17299.77 31797.98 21999.83 17199.30 264
dmvs_re98.69 25498.48 25999.31 24099.55 21699.42 16899.54 8798.38 36999.32 15798.72 33398.71 37496.76 28899.21 40096.01 35099.35 31599.31 262
eth_miper_zixun_eth98.68 25598.71 23998.60 32699.10 34596.84 35997.52 37799.54 22698.94 21199.58 18499.48 26196.25 30699.76 31998.01 21799.93 9999.21 282
PatchMatch-RL98.68 25598.47 26099.30 24399.44 26299.28 20098.14 33099.54 22697.12 35799.11 29299.25 31597.80 24299.70 33896.51 32899.30 32198.93 343
miper_lstm_enhance98.65 25798.60 24698.82 31699.20 32597.33 34697.78 36399.66 15399.01 20399.59 18299.50 25494.62 32399.85 24298.12 21099.90 11699.26 270
h-mvs3398.61 25898.34 27499.44 19999.60 18598.67 26899.27 15299.44 26499.68 9399.32 25699.49 25892.50 347100.00 199.24 10796.51 40399.65 112
CVMVSNet98.61 25898.88 22397.80 35899.58 19493.60 39599.26 15499.64 16999.66 10199.72 12999.67 17093.26 33799.93 9799.30 10099.81 18999.87 29
Patchmatch-RL test98.60 26098.36 27199.33 23399.77 11399.07 23598.27 31999.87 4798.91 21799.74 12499.72 13490.57 36999.79 30698.55 17999.85 15899.11 307
RPMNet98.60 26098.53 25798.83 31399.05 35198.12 30899.30 14099.62 17499.86 4899.16 28499.74 12292.53 34699.92 11998.75 16798.77 35898.44 379
AdaColmapbinary98.60 26098.35 27399.38 22099.12 33899.22 21498.67 27999.42 26997.84 32498.81 32399.27 31097.32 26899.81 29695.14 37499.53 28899.10 309
miper_ehance_all_eth98.59 26398.59 24898.59 32798.98 35997.07 35397.49 37899.52 24098.50 26799.52 20899.37 28796.41 30099.71 33597.86 23299.62 26099.00 337
WTY-MVS98.59 26398.37 27099.26 25299.43 26698.40 29098.74 27499.13 33198.10 30399.21 27899.24 32094.82 32099.90 15997.86 23298.77 35899.49 209
CNLPA98.57 26598.34 27499.28 24699.18 33099.10 23298.34 31499.41 27098.48 27098.52 34998.98 35497.05 28099.78 30995.59 36599.50 29598.96 339
CDPH-MVS98.56 26698.20 28499.61 14899.50 23799.46 15498.32 31699.41 27095.22 38499.21 27899.10 33898.34 19599.82 28195.09 37699.66 25399.56 171
UnsupCasMVSNet_bld98.55 26798.27 28099.40 21499.56 21599.37 18297.97 35299.68 14497.49 33999.08 29599.35 29695.41 31799.82 28197.70 25098.19 38399.01 336
cl____98.54 26898.41 26698.92 29899.03 35397.80 33197.46 37999.59 19898.90 21899.60 17999.46 26893.85 33099.78 30997.97 22199.89 12699.17 293
DIV-MVS_self_test98.54 26898.42 26598.92 29899.03 35397.80 33197.46 37999.59 19898.90 21899.60 17999.46 26893.87 32999.78 30997.97 22199.89 12699.18 291
FA-MVS(test-final)98.52 27098.32 27699.10 27599.48 24798.67 26899.77 1698.60 35897.35 34699.63 16199.80 8693.07 34099.84 25797.92 22499.30 32198.78 359
hse-mvs298.52 27098.30 27899.16 26599.29 30798.60 27898.77 27299.02 33799.68 9399.32 25699.04 34492.50 34799.85 24299.24 10797.87 39399.03 330
MG-MVS98.52 27098.39 26898.94 29499.15 33397.39 34598.18 32599.21 32198.89 22199.23 27399.63 19397.37 26699.74 32694.22 38599.61 26799.69 82
DP-MVS Recon98.50 27398.23 28199.31 24099.49 24299.46 15498.56 29499.63 17194.86 39098.85 31999.37 28797.81 24199.59 38196.08 34799.44 30298.88 350
CMPMVSbinary77.52 2398.50 27398.19 28799.41 21298.33 39899.56 13899.01 23199.59 19895.44 38199.57 18799.80 8695.64 31399.46 39796.47 33299.92 10499.21 282
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
114514_t98.49 27598.11 29299.64 12999.73 13799.58 13499.24 16199.76 10389.94 40299.42 23299.56 23697.76 24699.86 22597.74 24499.82 18099.47 217
PMMVS98.49 27598.29 27999.11 27398.96 36098.42 28997.54 37399.32 29497.53 33698.47 35298.15 39197.88 23699.82 28197.46 26999.24 33099.09 313
MVSTER98.47 27798.22 28299.24 25799.06 35098.35 29699.08 21599.46 25999.27 16399.75 11699.66 17588.61 38099.85 24299.14 12899.92 10499.52 197
LFMVS98.46 27898.19 28799.26 25299.24 31798.52 28399.62 6596.94 39299.87 4599.31 26099.58 22591.04 36099.81 29698.68 17499.42 30699.45 222
PatchT98.45 27998.32 27698.83 31398.94 36198.29 29799.24 16198.82 34599.84 5699.08 29599.76 11491.37 35599.94 8098.82 15799.00 34498.26 385
MIMVSNet98.43 28098.20 28499.11 27399.53 22498.38 29499.58 7998.61 35698.96 20899.33 25399.76 11490.92 36299.81 29697.38 27499.76 21099.15 298
PVSNet97.47 1598.42 28198.44 26398.35 33799.46 25796.26 36896.70 39899.34 29197.68 32999.00 30299.13 33097.40 26399.72 33197.59 26299.68 24499.08 319
CHOSEN 280x42098.41 28298.41 26698.40 33599.34 29495.89 37596.94 39599.44 26498.80 23399.25 26999.52 24993.51 33699.98 2198.94 15099.98 3999.32 258
BH-RMVSNet98.41 28298.14 29099.21 25999.21 32298.47 28498.60 28498.26 37398.35 28698.93 30799.31 30297.20 27599.66 36594.32 38399.10 33799.51 199
QAPM98.40 28497.99 29899.65 12299.39 27599.47 15099.67 5199.52 24091.70 39998.78 32999.80 8698.55 16399.95 6694.71 38099.75 21299.53 187
API-MVS98.38 28598.39 26898.35 33798.83 37099.26 20499.14 19199.18 32598.59 25798.66 33898.78 37198.61 15499.57 38394.14 38699.56 27796.21 405
HQP-MVS98.36 28698.02 29799.39 21799.31 30198.94 24597.98 34999.37 28597.45 34098.15 36398.83 36796.67 28999.70 33894.73 37899.67 25099.53 187
PAPM_NR98.36 28698.04 29599.33 23399.48 24798.93 24898.79 27099.28 30597.54 33598.56 34898.57 37997.12 27799.69 34494.09 38798.90 35399.38 242
PLCcopyleft97.35 1698.36 28697.99 29899.48 18899.32 30099.24 21198.50 30399.51 24495.19 38698.58 34598.96 35896.95 28399.83 27295.63 36499.25 32899.37 245
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
train_agg98.35 28997.95 30299.57 16499.35 28599.35 18998.11 33499.41 27094.90 38897.92 37398.99 35198.02 22699.85 24295.38 37099.44 30299.50 204
CR-MVSNet98.35 28998.20 28498.83 31399.05 35198.12 30899.30 14099.67 14897.39 34499.16 28499.79 9691.87 35299.91 14198.78 16598.77 35898.44 379
WB-MVSnew98.34 29198.14 29098.96 29198.14 40597.90 32698.27 31997.26 39198.63 25298.80 32598.00 39497.77 24499.90 15997.37 27598.98 34599.09 313
DPM-MVS98.28 29297.94 30699.32 23799.36 28399.11 22797.31 38598.78 34796.88 36198.84 32099.11 33797.77 24499.61 37994.03 38999.36 31399.23 277
alignmvs98.28 29297.96 30199.25 25599.12 33898.93 24899.03 22698.42 36699.64 10598.72 33397.85 39690.86 36599.62 37598.88 15299.13 33499.19 289
test_yl98.25 29497.95 30299.13 27199.17 33198.47 28499.00 23498.67 35398.97 20699.22 27699.02 34991.31 35699.69 34497.26 28498.93 34799.24 273
DCV-MVSNet98.25 29497.95 30299.13 27199.17 33198.47 28499.00 23498.67 35398.97 20699.22 27699.02 34991.31 35699.69 34497.26 28498.93 34799.24 273
MAR-MVS98.24 29697.92 30899.19 26298.78 37899.65 10899.17 18199.14 32995.36 38298.04 37098.81 37097.47 26099.72 33195.47 36899.06 33898.21 388
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
OpenMVScopyleft98.12 1098.23 29797.89 31199.26 25299.19 32799.26 20499.65 6099.69 14191.33 40098.14 36799.77 11198.28 20299.96 5695.41 36999.55 28198.58 370
BH-untuned98.22 29898.09 29398.58 32999.38 27897.24 34898.55 29598.98 34097.81 32599.20 28398.76 37297.01 28199.65 37194.83 37798.33 37698.86 352
HY-MVS98.23 998.21 29997.95 30298.99 28899.03 35398.24 29899.61 7098.72 34996.81 36498.73 33299.51 25194.06 32799.86 22596.91 30498.20 38198.86 352
Syy-MVS98.17 30097.85 31299.15 26798.50 39398.79 26098.60 28499.21 32197.89 31896.76 39496.37 41595.47 31699.57 38399.10 13198.73 36499.09 313
EPNet98.13 30197.77 31699.18 26494.57 41497.99 31899.24 16197.96 37899.74 7697.29 38799.62 20093.13 33999.97 3598.59 17799.83 17199.58 164
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
SCA98.11 30298.36 27197.36 36999.20 32592.99 39798.17 32798.49 36398.24 29699.10 29499.57 23296.01 31099.94 8096.86 30799.62 26099.14 303
Patchmatch-test98.10 30397.98 30098.48 33299.27 31296.48 36399.40 11499.07 33398.81 23199.23 27399.57 23290.11 37399.87 20696.69 31699.64 25799.09 313
pmmvs398.08 30497.80 31398.91 30099.41 27397.69 33597.87 36099.66 15395.87 37599.50 21599.51 25190.35 37199.97 3598.55 17999.47 29999.08 319
JIA-IIPM98.06 30597.92 30898.50 33198.59 38997.02 35498.80 26798.51 36199.88 4497.89 37599.87 4891.89 35199.90 15998.16 20897.68 39598.59 368
miper_enhance_ethall98.03 30697.94 30698.32 34098.27 39996.43 36596.95 39499.41 27096.37 37099.43 23098.96 35894.74 32199.69 34497.71 24799.62 26098.83 355
TAPA-MVS97.92 1398.03 30697.55 32299.46 19399.47 25399.44 16198.50 30399.62 17486.79 40399.07 29899.26 31398.26 20699.62 37597.28 28199.73 22499.31 262
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
131498.00 30897.90 31098.27 34498.90 36397.45 34299.30 14099.06 33594.98 38797.21 38999.12 33498.43 18299.67 36195.58 36698.56 37197.71 397
GA-MVS97.99 30997.68 31998.93 29799.52 22998.04 31697.19 38999.05 33698.32 29298.81 32398.97 35689.89 37699.41 39898.33 19199.05 34099.34 254
MVS-HIRNet97.86 31098.22 28296.76 37899.28 31091.53 40598.38 31292.60 40899.13 19199.31 26099.96 1297.18 27699.68 35698.34 19099.83 17199.07 324
FE-MVS97.85 31197.42 32499.15 26799.44 26298.75 26399.77 1698.20 37595.85 37699.33 25399.80 8688.86 37999.88 19296.40 33599.12 33598.81 356
AUN-MVS97.82 31297.38 32599.14 27099.27 31298.53 28198.72 27699.02 33798.10 30397.18 39099.03 34889.26 37899.85 24297.94 22397.91 39199.03 330
FMVSNet597.80 31397.25 32999.42 20598.83 37098.97 24299.38 11899.80 8298.87 22299.25 26999.69 15580.60 40099.91 14198.96 14599.90 11699.38 242
ADS-MVSNet297.78 31497.66 32198.12 34899.14 33495.36 38099.22 16898.75 34896.97 35998.25 35999.64 18290.90 36399.94 8096.51 32899.56 27799.08 319
test111197.74 31598.16 28996.49 38399.60 18589.86 41399.71 3591.21 40999.89 3999.88 6399.87 4893.73 33399.90 15999.56 5799.99 1699.70 78
ECVR-MVScopyleft97.73 31698.04 29596.78 37799.59 18990.81 40999.72 3190.43 41199.89 3999.86 7299.86 5493.60 33599.89 17799.46 7199.99 1699.65 112
baseline197.73 31697.33 32698.96 29199.30 30597.73 33399.40 11498.42 36699.33 15699.46 22499.21 32491.18 35899.82 28198.35 18991.26 40999.32 258
tpmrst97.73 31698.07 29496.73 38098.71 38592.00 40199.10 20898.86 34298.52 26598.92 31099.54 24591.90 35099.82 28198.02 21499.03 34298.37 381
ADS-MVSNet97.72 31997.67 32097.86 35699.14 33494.65 38899.22 16898.86 34296.97 35998.25 35999.64 18290.90 36399.84 25796.51 32899.56 27799.08 319
PatchmatchNetpermissive97.65 32097.80 31397.18 37498.82 37392.49 39999.17 18198.39 36898.12 30298.79 32799.58 22590.71 36799.89 17797.23 28999.41 30799.16 295
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
tttt051797.62 32197.20 33098.90 30699.76 11797.40 34499.48 10194.36 40399.06 20099.70 13899.49 25884.55 39599.94 8098.73 16999.65 25599.36 248
EPNet_dtu97.62 32197.79 31597.11 37696.67 41192.31 40098.51 30298.04 37699.24 16995.77 40399.47 26593.78 33299.66 36598.98 14199.62 26099.37 245
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
wuyk23d97.58 32399.13 15592.93 39099.69 15599.49 14899.52 8999.77 9797.97 31299.96 2399.79 9699.84 1299.94 8095.85 35999.82 18079.36 408
cl2297.56 32497.28 32798.40 33598.37 39796.75 36097.24 38899.37 28597.31 34899.41 23899.22 32287.30 38299.37 39997.70 25099.62 26099.08 319
PAPR97.56 32497.07 33299.04 28598.80 37498.11 31097.63 36999.25 31194.56 39398.02 37198.25 38997.43 26299.68 35690.90 39898.74 36299.33 255
thisisatest053097.45 32696.95 33698.94 29499.68 16397.73 33399.09 21294.19 40598.61 25699.56 19499.30 30484.30 39699.93 9798.27 19599.54 28699.16 295
TR-MVS97.44 32797.15 33198.32 34098.53 39197.46 34198.47 30597.91 38096.85 36298.21 36298.51 38396.42 29899.51 39392.16 39497.29 39897.98 394
tpmvs97.39 32897.69 31896.52 38298.41 39591.76 40299.30 14098.94 34197.74 32697.85 37899.55 24392.40 34999.73 32996.25 34298.73 36498.06 393
test0.0.03 197.37 32996.91 33998.74 32097.72 40797.57 33797.60 37197.36 39098.00 30899.21 27898.02 39290.04 37499.79 30698.37 18795.89 40698.86 352
OpenMVS_ROBcopyleft97.31 1797.36 33096.84 34098.89 30799.29 30799.45 15998.87 25399.48 25386.54 40599.44 22699.74 12297.34 26799.86 22591.61 39599.28 32497.37 401
dmvs_testset97.27 33196.83 34198.59 32799.46 25797.55 33899.25 16096.84 39398.78 23697.24 38897.67 39897.11 27898.97 40486.59 40898.54 37299.27 268
BH-w/o97.20 33297.01 33497.76 35999.08 34995.69 37698.03 34498.52 36095.76 37897.96 37298.02 39295.62 31499.47 39592.82 39397.25 39998.12 392
test-LLR97.15 33396.95 33697.74 36198.18 40295.02 38597.38 38196.10 39498.00 30897.81 38098.58 37790.04 37499.91 14197.69 25698.78 35698.31 382
tpm97.15 33396.95 33697.75 36098.91 36294.24 39099.32 13297.96 37897.71 32898.29 35799.32 30086.72 39099.92 11998.10 21296.24 40599.09 313
E-PMN97.14 33597.43 32396.27 38598.79 37691.62 40495.54 40399.01 33999.44 13998.88 31499.12 33492.78 34399.68 35694.30 38499.03 34297.50 398
cascas96.99 33696.82 34297.48 36597.57 41095.64 37796.43 40099.56 21491.75 39897.13 39297.61 40295.58 31598.63 40696.68 31799.11 33698.18 391
thisisatest051596.98 33796.42 34498.66 32499.42 27197.47 34097.27 38694.30 40497.24 35099.15 28698.86 36685.01 39399.87 20697.10 29599.39 30998.63 364
EMVS96.96 33897.28 32795.99 38898.76 38191.03 40795.26 40598.61 35699.34 15498.92 31098.88 36593.79 33199.66 36592.87 39299.05 34097.30 402
dp96.86 33997.07 33296.24 38698.68 38790.30 41299.19 17598.38 36997.35 34698.23 36199.59 22287.23 38399.82 28196.27 34198.73 36498.59 368
baseline296.83 34096.28 34698.46 33399.09 34896.91 35798.83 25993.87 40797.23 35196.23 40298.36 38688.12 38199.90 15996.68 31798.14 38698.57 371
ET-MVSNet_ETH3D96.78 34196.07 35098.91 30099.26 31497.92 32597.70 36796.05 39797.96 31592.37 40998.43 38587.06 38499.90 15998.27 19597.56 39698.91 346
tpm cat196.78 34196.98 33596.16 38798.85 36990.59 41199.08 21599.32 29492.37 39697.73 38499.46 26891.15 35999.69 34496.07 34898.80 35598.21 388
PCF-MVS96.03 1896.73 34395.86 35499.33 23399.44 26299.16 22296.87 39699.44 26486.58 40498.95 30599.40 27994.38 32599.88 19287.93 40299.80 19498.95 341
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
CostFormer96.71 34496.79 34396.46 38498.90 36390.71 41099.41 11398.68 35194.69 39298.14 36799.34 29986.32 39299.80 30397.60 26198.07 38998.88 350
MVEpermissive92.54 2296.66 34596.11 34998.31 34299.68 16397.55 33897.94 35495.60 39999.37 15190.68 41098.70 37596.56 29298.61 40786.94 40799.55 28198.77 361
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
thres600view796.60 34696.16 34897.93 35399.63 17896.09 37299.18 17697.57 38598.77 23898.72 33397.32 40487.04 38599.72 33188.57 40098.62 36997.98 394
EPMVS96.53 34796.32 34597.17 37598.18 40292.97 39899.39 11689.95 41298.21 29898.61 34299.59 22286.69 39199.72 33196.99 29999.23 33298.81 356
testing396.48 34895.63 35999.01 28799.23 31997.81 32998.90 25099.10 33298.72 24397.84 37997.92 39572.44 41299.85 24297.21 29199.33 31799.35 251
thres40096.40 34995.89 35297.92 35499.58 19496.11 37099.00 23497.54 38898.43 27298.52 34996.98 40786.85 38799.67 36187.62 40398.51 37397.98 394
thres100view90096.39 35096.03 35197.47 36699.63 17895.93 37399.18 17697.57 38598.75 24298.70 33697.31 40587.04 38599.67 36187.62 40398.51 37396.81 403
tpm296.35 35196.22 34796.73 38098.88 36891.75 40399.21 17098.51 36193.27 39597.89 37599.21 32484.83 39499.70 33896.04 34998.18 38498.75 362
FPMVS96.32 35295.50 36098.79 31799.60 18598.17 30698.46 30998.80 34697.16 35596.28 39999.63 19382.19 39799.09 40288.45 40198.89 35499.10 309
tfpn200view996.30 35395.89 35297.53 36399.58 19496.11 37099.00 23497.54 38898.43 27298.52 34996.98 40786.85 38799.67 36187.62 40398.51 37396.81 403
TESTMET0.1,196.24 35495.84 35597.41 36898.24 40093.84 39397.38 38195.84 39898.43 27297.81 38098.56 38079.77 40299.89 17797.77 23998.77 35898.52 373
test-mter96.23 35595.73 35797.74 36198.18 40295.02 38597.38 38196.10 39497.90 31797.81 38098.58 37779.12 40599.91 14197.69 25698.78 35698.31 382
UWE-MVS96.21 35695.78 35697.49 36498.53 39193.83 39498.04 34293.94 40698.96 20898.46 35398.17 39079.86 40199.87 20696.99 29999.06 33898.78 359
ETVMVS96.14 35795.22 36798.89 30798.80 37498.01 31798.66 28098.35 37198.71 24597.18 39096.31 41774.23 41199.75 32396.64 32298.13 38898.90 347
X-MVStestdata96.09 35894.87 37099.75 7399.71 14399.71 8399.37 12299.61 18199.29 15998.76 33061.30 41898.47 17699.88 19297.62 25899.73 22499.67 94
thres20096.09 35895.68 35897.33 37199.48 24796.22 36998.53 30097.57 38598.06 30798.37 35696.73 41186.84 38999.61 37986.99 40698.57 37096.16 406
testing1196.05 36095.41 36297.97 35198.78 37895.27 38298.59 28798.23 37498.86 22496.56 39796.91 40975.20 40899.69 34497.26 28498.29 37898.93 343
testing9196.00 36195.32 36598.02 34998.76 38195.39 37998.38 31298.65 35598.82 22996.84 39396.71 41275.06 40999.71 33596.46 33398.23 38098.98 338
KD-MVS_2432*160095.89 36295.41 36297.31 37294.96 41293.89 39197.09 39199.22 31897.23 35198.88 31499.04 34479.23 40399.54 38796.24 34396.81 40098.50 377
miper_refine_blended95.89 36295.41 36297.31 37294.96 41293.89 39197.09 39199.22 31897.23 35198.88 31499.04 34479.23 40399.54 38796.24 34396.81 40098.50 377
gg-mvs-nofinetune95.87 36495.17 36997.97 35198.19 40196.95 35599.69 4389.23 41399.89 3996.24 40199.94 1681.19 39899.51 39393.99 39098.20 38197.44 399
testing9995.86 36595.19 36897.87 35598.76 38195.03 38498.62 28198.44 36598.68 24796.67 39696.66 41374.31 41099.69 34496.51 32898.03 39098.90 347
PVSNet_095.53 1995.85 36695.31 36697.47 36698.78 37893.48 39695.72 40299.40 27796.18 37397.37 38597.73 39795.73 31299.58 38295.49 36781.40 41099.36 248
tmp_tt95.75 36795.42 36196.76 37889.90 41694.42 38998.86 25497.87 38278.01 40799.30 26599.69 15597.70 24795.89 40999.29 10398.14 38699.95 11
MVS95.72 36894.63 37398.99 28898.56 39097.98 32399.30 14098.86 34272.71 40997.30 38699.08 33998.34 19599.74 32689.21 39998.33 37699.26 270
myMVS_eth3d95.63 36994.73 37198.34 33998.50 39396.36 36698.60 28499.21 32197.89 31896.76 39496.37 41572.10 41399.57 38394.38 38298.73 36499.09 313
PAPM95.61 37094.71 37298.31 34299.12 33896.63 36196.66 39998.46 36490.77 40196.25 40098.68 37693.01 34199.69 34481.60 40997.86 39498.62 365
testing22295.60 37194.59 37498.61 32598.66 38897.45 34298.54 29897.90 38198.53 26496.54 39896.47 41470.62 41599.81 29695.91 35898.15 38598.56 372
IB-MVS95.41 2095.30 37294.46 37697.84 35798.76 38195.33 38197.33 38496.07 39696.02 37495.37 40697.41 40376.17 40799.96 5697.54 26495.44 40898.22 387
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
test250694.73 37394.59 37495.15 38999.59 18985.90 41599.75 2374.01 41799.89 3999.71 13499.86 5479.00 40699.90 15999.52 6599.99 1699.65 112
test_method91.72 37492.32 37789.91 39293.49 41570.18 41890.28 40699.56 21461.71 41095.39 40599.52 24993.90 32899.94 8098.76 16698.27 37999.62 138
dongtai89.37 37588.91 37890.76 39199.19 32777.46 41695.47 40487.82 41592.28 39794.17 40898.82 36971.22 41495.54 41063.85 41097.34 39799.27 268
EGC-MVSNET89.05 37685.52 37999.64 12999.89 3899.78 4999.56 8499.52 24024.19 41149.96 41299.83 6999.15 8199.92 11997.71 24799.85 15899.21 282
kuosan85.65 37784.57 38088.90 39397.91 40677.11 41796.37 40187.62 41685.24 40685.45 41196.83 41069.94 41690.98 41245.90 41195.83 40798.62 365
test12329.31 37833.05 38318.08 39425.93 41812.24 41997.53 37510.93 41911.78 41224.21 41350.08 42221.04 4178.60 41323.51 41232.43 41233.39 409
testmvs28.94 37933.33 38115.79 39526.03 4179.81 42096.77 39715.67 41811.55 41323.87 41450.74 42119.03 4188.53 41423.21 41333.07 41129.03 410
cdsmvs_eth3d_5k24.88 38033.17 3820.00 3960.00 4190.00 4210.00 40799.62 1740.00 4140.00 41599.13 33099.82 130.00 4150.00 4140.00 4130.00 411
pcd_1.5k_mvsjas16.61 38122.14 3840.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 415100.00 199.28 660.00 4150.00 4140.00 4130.00 411
test_blank8.33 38211.11 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 415100.00 10.00 4190.00 4150.00 4140.00 4130.00 411
uanet_test8.33 38211.11 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 415100.00 10.00 4190.00 4150.00 4140.00 4130.00 411
DCPMVS8.33 38211.11 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 415100.00 10.00 4190.00 4150.00 4140.00 4130.00 411
sosnet-low-res8.33 38211.11 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 415100.00 10.00 4190.00 4150.00 4140.00 4130.00 411
sosnet8.33 38211.11 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 415100.00 10.00 4190.00 4150.00 4140.00 4130.00 411
uncertanet8.33 38211.11 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 415100.00 10.00 4190.00 4150.00 4140.00 4130.00 411
Regformer8.33 38211.11 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 415100.00 10.00 4190.00 4150.00 4140.00 4130.00 411
uanet8.33 38211.11 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 415100.00 10.00 4190.00 4150.00 4140.00 4130.00 411
ab-mvs-re8.26 39011.02 3930.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 41599.16 3280.00 4190.00 4150.00 4140.00 4130.00 411
WAC-MVS96.36 36695.20 373
FOURS199.83 6599.89 1099.74 2599.71 12999.69 9199.63 161
MSC_two_6792asdad99.74 7899.03 35399.53 14499.23 31599.92 11997.77 23999.69 23999.78 55
PC_three_145297.56 33299.68 14499.41 27599.09 8997.09 40896.66 31999.60 27099.62 138
No_MVS99.74 7899.03 35399.53 14499.23 31599.92 11997.77 23999.69 23999.78 55
test_one_060199.63 17899.76 6199.55 22099.23 17199.31 26099.61 20998.59 157
eth-test20.00 419
eth-test0.00 419
ZD-MVS99.43 26699.61 12599.43 26796.38 36999.11 29299.07 34097.86 23799.92 11994.04 38899.49 297
RE-MVS-def99.13 15599.54 21899.74 7399.26 15499.62 17499.16 18599.52 20899.64 18298.57 16097.27 28299.61 26799.54 182
IU-MVS99.69 15599.77 5499.22 31897.50 33899.69 14197.75 24399.70 23599.77 59
OPU-MVS99.29 24499.12 33899.44 16199.20 17199.40 27999.00 10398.84 40596.54 32699.60 27099.58 164
test_241102_TWO99.54 22699.13 19199.76 11199.63 19398.32 19999.92 11997.85 23499.69 23999.75 68
test_241102_ONE99.69 15599.82 3599.54 22699.12 19499.82 8299.49 25898.91 11599.52 392
9.1498.64 24399.45 26198.81 26499.60 19297.52 33799.28 26699.56 23698.53 16999.83 27295.36 37199.64 257
save fliter99.53 22499.25 20798.29 31899.38 28499.07 198
test_0728_THIRD99.18 17899.62 17099.61 20998.58 15999.91 14197.72 24599.80 19499.77 59
test_0728_SECOND99.83 3299.70 15199.79 4699.14 19199.61 18199.92 11997.88 22899.72 23099.77 59
test072699.69 15599.80 4499.24 16199.57 20999.16 18599.73 12899.65 18098.35 193
GSMVS99.14 303
test_part299.62 18299.67 9999.55 199
sam_mvs190.81 36699.14 303
sam_mvs90.52 370
ambc99.20 26199.35 28598.53 28199.17 18199.46 25999.67 15099.80 8698.46 17999.70 33897.92 22499.70 23599.38 242
MTGPAbinary99.53 235
test_post199.14 19151.63 42089.54 37799.82 28196.86 307
test_post52.41 41990.25 37299.86 225
patchmatchnet-post99.62 20090.58 36899.94 80
GG-mvs-BLEND97.36 36997.59 40896.87 35899.70 3688.49 41494.64 40797.26 40680.66 39999.12 40191.50 39696.50 40496.08 407
MTMP99.09 21298.59 359
gm-plane-assit97.59 40889.02 41493.47 39498.30 38799.84 25796.38 337
test9_res95.10 37599.44 30299.50 204
TEST999.35 28599.35 18998.11 33499.41 27094.83 39197.92 37398.99 35198.02 22699.85 242
test_899.34 29499.31 19598.08 33899.40 27794.90 38897.87 37798.97 35698.02 22699.84 257
agg_prior294.58 38199.46 30199.50 204
agg_prior99.35 28599.36 18699.39 28097.76 38399.85 242
TestCases99.63 13699.78 10599.64 11199.83 6398.63 25299.63 16199.72 13498.68 14399.75 32396.38 33799.83 17199.51 199
test_prior499.19 22098.00 347
test_prior297.95 35397.87 32198.05 36999.05 34297.90 23495.99 35399.49 297
test_prior99.46 19399.35 28599.22 21499.39 28099.69 34499.48 213
旧先验297.94 35495.33 38398.94 30699.88 19296.75 313
新几何298.04 342
新几何199.52 17999.50 23799.22 21499.26 30895.66 38098.60 34399.28 30897.67 25199.89 17795.95 35699.32 31999.45 222
旧先验199.49 24299.29 19899.26 30899.39 28397.67 25199.36 31399.46 221
无先验98.01 34599.23 31595.83 37799.85 24295.79 36299.44 227
原ACMM297.92 356
原ACMM199.37 22399.47 25398.87 25599.27 30696.74 36698.26 35899.32 30097.93 23399.82 28195.96 35599.38 31099.43 233
test22299.51 23199.08 23497.83 36299.29 30295.21 38598.68 33799.31 30297.28 26999.38 31099.43 233
testdata299.89 17795.99 353
segment_acmp98.37 191
testdata99.42 20599.51 23198.93 24899.30 30196.20 37298.87 31799.40 27998.33 19799.89 17796.29 34099.28 32499.44 227
testdata197.72 36597.86 323
test1299.54 17699.29 30799.33 19299.16 32798.43 35497.54 25899.82 28199.47 29999.48 213
plane_prior799.58 19499.38 179
plane_prior699.47 25399.26 20497.24 270
plane_prior599.54 22699.82 28195.84 36099.78 20499.60 152
plane_prior499.25 315
plane_prior399.31 19598.36 28199.14 288
plane_prior298.80 26798.94 211
plane_prior199.51 231
plane_prior99.24 21198.42 31097.87 32199.71 233
n20.00 420
nn0.00 420
door-mid99.83 63
lessismore_v099.64 12999.86 5399.38 17990.66 41099.89 5599.83 6994.56 32499.97 3599.56 5799.92 10499.57 169
LGP-MVS_train99.74 7899.82 7299.63 11699.73 11797.56 33299.64 15799.69 15599.37 5699.89 17796.66 31999.87 14699.69 82
test1199.29 302
door99.77 97
HQP5-MVS98.94 245
HQP-NCC99.31 30197.98 34997.45 34098.15 363
ACMP_Plane99.31 30197.98 34997.45 34098.15 363
BP-MVS94.73 378
HQP4-MVS98.15 36399.70 33899.53 187
HQP3-MVS99.37 28599.67 250
HQP2-MVS96.67 289
NP-MVS99.40 27499.13 22598.83 367
MDTV_nov1_ep13_2view91.44 40699.14 19197.37 34599.21 27891.78 35496.75 31399.03 330
MDTV_nov1_ep1397.73 31798.70 38690.83 40899.15 18998.02 37798.51 26698.82 32299.61 20990.98 36199.66 36596.89 30698.92 349
ACMMP++_ref99.94 92
ACMMP++99.79 199
Test By Simon98.41 185
ITE_SJBPF99.38 22099.63 17899.44 16199.73 11798.56 25999.33 25399.53 24798.88 11999.68 35696.01 35099.65 25599.02 335
DeepMVS_CXcopyleft97.98 35099.69 15596.95 35599.26 30875.51 40895.74 40498.28 38896.47 29699.62 37591.23 39797.89 39297.38 400