This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.95 199.95 199.95 199.99 199.99 199.95 299.97 299.99 1100.00 199.98 1099.78 6100.00 199.92 1100.00 199.87 9
mvs_tets99.90 299.90 299.90 599.96 499.79 4199.72 2999.88 1899.92 999.98 399.93 1599.94 199.98 999.77 12100.00 199.92 3
jajsoiax99.89 399.89 399.89 899.96 499.78 4499.70 3499.86 2399.89 1699.98 399.90 2399.94 199.98 999.75 13100.00 199.90 4
ANet_high99.88 499.87 499.91 299.99 199.91 299.65 57100.00 199.90 11100.00 199.97 1199.61 1799.97 1999.75 13100.00 199.84 14
LTVRE_ROB99.19 199.88 499.87 499.88 1299.91 1899.90 599.96 199.92 999.90 1199.97 699.87 3399.81 599.95 4799.54 3299.99 1299.80 25
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
pmmvs699.86 699.86 699.83 2499.94 1199.90 599.83 699.91 1299.85 3099.94 1299.95 1399.73 899.90 14099.65 1999.97 3699.69 58
UniMVSNet_ETH3D99.85 799.83 799.90 599.89 2499.91 299.89 499.71 9799.93 799.95 1199.89 2799.71 999.96 3799.51 3799.97 3699.84 14
PS-MVSNAJss99.84 899.82 899.89 899.96 499.77 4799.68 4399.85 2799.95 499.98 399.92 1899.28 4399.98 999.75 13100.00 199.94 2
test_djsdf99.84 899.81 999.91 299.94 1199.84 2099.77 1499.80 5199.73 5199.97 699.92 1899.77 799.98 999.43 45100.00 199.90 4
v7n99.82 1099.80 1099.88 1299.96 499.84 2099.82 899.82 4099.84 3399.94 1299.91 2199.13 6099.96 3799.83 999.99 1299.83 18
anonymousdsp99.80 1199.77 1299.90 599.96 499.88 999.73 2699.85 2799.70 5999.92 1999.93 1599.45 2599.97 1999.36 57100.00 199.85 13
pm-mvs199.79 1299.79 1199.78 4099.91 1899.83 2599.76 1899.87 2099.73 5199.89 3099.87 3399.63 1499.87 18499.54 3299.92 8299.63 103
UA-Net99.78 1399.76 1499.86 1799.72 11499.71 7499.91 399.95 899.96 299.71 10699.91 2199.15 5599.97 1999.50 39100.00 199.90 4
TransMVSNet (Re)99.78 1399.77 1299.81 2999.91 1899.85 1599.75 2199.86 2399.70 5999.91 2199.89 2799.60 1999.87 18499.59 2499.74 19599.71 51
OurMVSNet-221017-099.75 1599.71 1699.84 2299.96 499.83 2599.83 699.85 2799.80 4299.93 1599.93 1598.54 14099.93 7699.59 2499.98 2699.76 42
Vis-MVSNetpermissive99.75 1599.74 1599.79 3799.88 2899.66 9299.69 4099.92 999.67 6899.77 7799.75 9399.61 1799.98 999.35 5899.98 2699.72 48
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
mvsmamba99.74 1799.70 1799.85 1999.93 1599.83 2599.76 1899.81 4999.96 299.91 2199.81 5998.60 13199.94 6199.58 2799.98 2699.77 37
TDRefinement99.72 1899.70 1799.77 4399.90 2299.85 1599.86 599.92 999.69 6299.78 7299.92 1899.37 3399.88 17198.93 12099.95 5999.60 128
XXY-MVS99.71 1999.67 2499.81 2999.89 2499.72 7299.59 7199.82 4099.39 12099.82 5499.84 4899.38 3199.91 12099.38 5299.93 7899.80 25
bld_raw_dy_0_6499.70 2099.65 2799.85 1999.95 1099.77 4799.66 5199.71 9799.95 499.91 2199.77 8498.35 168100.00 199.54 3299.99 1299.79 31
nrg03099.70 2099.66 2599.82 2699.76 9099.84 2099.61 6599.70 10399.93 799.78 7299.68 13699.10 6199.78 28899.45 4399.96 5099.83 18
FC-MVSNet-test99.70 2099.65 2799.86 1799.88 2899.86 1499.72 2999.78 6299.90 1199.82 5499.83 4998.45 15599.87 18499.51 3799.97 3699.86 11
GeoE99.69 2399.66 2599.78 4099.76 9099.76 5599.60 7099.82 4099.46 10999.75 8799.56 21099.63 1499.95 4799.43 4599.88 11099.62 114
v1099.69 2399.69 2199.66 10299.81 5699.39 16099.66 5199.75 7799.60 9099.92 1999.87 3398.75 11299.86 20499.90 299.99 1299.73 47
DROMVSNet99.69 2399.69 2199.68 9299.71 11799.91 299.76 1899.96 699.86 2599.51 18599.39 26199.57 2099.93 7699.64 2199.86 12699.20 268
CS-MVS-test99.68 2699.70 1799.64 11499.57 17599.83 2599.78 1199.97 299.92 999.50 18799.38 26399.57 2099.95 4799.69 1699.90 9299.15 279
v899.68 2699.69 2199.65 10799.80 6199.40 15899.66 5199.76 7099.64 7699.93 1599.85 4398.66 12399.84 23999.88 699.99 1299.71 51
DTE-MVSNet99.68 2699.61 3699.88 1299.80 6199.87 1199.67 4799.71 9799.72 5499.84 4999.78 7798.67 12199.97 1999.30 6999.95 5999.80 25
CS-MVS99.67 2999.70 1799.58 14199.53 19399.84 2099.79 1099.96 699.90 1199.61 14899.41 25399.51 2499.95 4799.66 1899.89 10198.96 312
RRT_MVS99.67 2999.59 3999.91 299.94 1199.88 999.78 1199.27 28999.87 2299.91 2199.87 3398.04 19799.96 3799.68 1799.99 1299.90 4
VPA-MVSNet99.66 3199.62 3299.79 3799.68 13799.75 5999.62 6099.69 10999.85 3099.80 6499.81 5998.81 9799.91 12099.47 4199.88 11099.70 54
PS-CasMVS99.66 3199.58 4399.89 899.80 6199.85 1599.66 5199.73 8599.62 8099.84 4999.71 11298.62 12799.96 3799.30 6999.96 5099.86 11
PEN-MVS99.66 3199.59 3999.89 899.83 4299.87 1199.66 5199.73 8599.70 5999.84 4999.73 9998.56 13799.96 3799.29 7299.94 7099.83 18
FMVSNet199.66 3199.63 3199.73 7699.78 7899.77 4799.68 4399.70 10399.67 6899.82 5499.83 4998.98 7899.90 14099.24 7699.97 3699.53 168
MIMVSNet199.66 3199.62 3299.80 3299.94 1199.87 1199.69 4099.77 6599.78 4799.93 1599.89 2797.94 20699.92 9699.65 1999.98 2699.62 114
FIs99.65 3699.58 4399.84 2299.84 3899.85 1599.66 5199.75 7799.86 2599.74 9699.79 7098.27 17799.85 22299.37 5599.93 7899.83 18
KD-MVS_self_test99.63 3799.59 3999.76 5099.84 3899.90 599.37 10499.79 5799.83 3699.88 3699.85 4398.42 15999.90 14099.60 2399.73 20299.49 192
casdiffmvs99.63 3799.61 3699.67 9599.79 7199.59 11699.13 17899.85 2799.79 4599.76 7999.72 10599.33 3899.82 26199.21 7999.94 7099.59 137
baseline99.63 3799.62 3299.66 10299.80 6199.62 10599.44 9299.80 5199.71 5599.72 10199.69 12599.15 5599.83 25199.32 6599.94 7099.53 168
Anonymous2023121199.62 4099.57 4699.76 5099.61 15499.60 11399.81 999.73 8599.82 3899.90 2699.90 2397.97 20599.86 20499.42 5099.96 5099.80 25
DeepC-MVS98.90 499.62 4099.61 3699.67 9599.72 11499.44 14699.24 14199.71 9799.27 13499.93 1599.90 2399.70 1199.93 7698.99 10899.99 1299.64 98
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
dcpmvs_299.61 4299.64 3099.53 16099.79 7198.82 24799.58 7399.97 299.95 499.96 899.76 8898.44 15699.99 699.34 5999.96 5099.78 33
WR-MVS_H99.61 4299.53 5599.87 1599.80 6199.83 2599.67 4799.75 7799.58 9399.85 4699.69 12598.18 18999.94 6199.28 7499.95 5999.83 18
ACMH98.42 699.59 4499.54 5199.72 8299.86 3499.62 10599.56 7799.79 5798.77 20699.80 6499.85 4399.64 1399.85 22298.70 13899.89 10199.70 54
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
v119299.57 4599.57 4699.57 14799.77 8699.22 20199.04 19899.60 16299.18 14999.87 4399.72 10599.08 6799.85 22299.89 599.98 2699.66 81
EG-PatchMatch MVS99.57 4599.56 5099.62 13099.77 8699.33 17699.26 13499.76 7099.32 12999.80 6499.78 7799.29 4199.87 18499.15 9299.91 9199.66 81
Gipumacopyleft99.57 4599.59 3999.49 17199.98 399.71 7499.72 2999.84 3399.81 3999.94 1299.78 7798.91 8799.71 31398.41 15299.95 5999.05 303
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
v192192099.56 4899.57 4699.55 15499.75 10199.11 21599.05 19699.61 14999.15 15999.88 3699.71 11299.08 6799.87 18499.90 299.97 3699.66 81
v124099.56 4899.58 4399.51 16599.80 6199.00 22799.00 20699.65 13199.15 15999.90 2699.75 9399.09 6399.88 17199.90 299.96 5099.67 71
V4299.56 4899.54 5199.63 12199.79 7199.46 13999.39 9899.59 16999.24 14099.86 4499.70 11998.55 13899.82 26199.79 1199.95 5999.60 128
v14419299.55 5199.54 5199.58 14199.78 7899.20 20799.11 18499.62 14299.18 14999.89 3099.72 10598.66 12399.87 18499.88 699.97 3699.66 81
test20.0399.55 5199.54 5199.58 14199.79 7199.37 16699.02 20299.89 1699.60 9099.82 5499.62 17198.81 9799.89 15699.43 4599.86 12699.47 202
v114499.54 5399.53 5599.59 13799.79 7199.28 18499.10 18599.61 14999.20 14799.84 4999.73 9998.67 12199.84 23999.86 899.98 2699.64 98
CP-MVSNet99.54 5399.43 6999.87 1599.76 9099.82 3199.57 7599.61 14999.54 9499.80 6499.64 15297.79 21999.95 4799.21 7999.94 7099.84 14
TranMVSNet+NR-MVSNet99.54 5399.47 5999.76 5099.58 16599.64 9999.30 12199.63 13999.61 8499.71 10699.56 21098.76 11099.96 3799.14 9899.92 8299.68 64
patch_mono-299.51 5699.46 6399.64 11499.70 12599.11 21599.04 19899.87 2099.71 5599.47 19299.79 7098.24 17999.98 999.38 5299.96 5099.83 18
v2v48299.50 5799.47 5999.58 14199.78 7899.25 19299.14 17299.58 17999.25 13899.81 6199.62 17198.24 17999.84 23999.83 999.97 3699.64 98
ACMH+98.40 899.50 5799.43 6999.71 8699.86 3499.76 5599.32 11499.77 6599.53 9699.77 7799.76 8899.26 4799.78 28897.77 20999.88 11099.60 128
Baseline_NR-MVSNet99.49 5999.37 7999.82 2699.91 1899.84 2098.83 23299.86 2399.68 6499.65 12799.88 3097.67 22799.87 18499.03 10599.86 12699.76 42
TAMVS99.49 5999.45 6499.63 12199.48 22199.42 15399.45 8999.57 18199.66 7299.78 7299.83 4997.85 21599.86 20499.44 4499.96 5099.61 124
pmmvs-eth3d99.48 6199.47 5999.51 16599.77 8699.41 15798.81 23799.66 12199.42 11999.75 8799.66 14599.20 5099.76 29898.98 11099.99 1299.36 236
EI-MVSNet-UG-set99.48 6199.50 5799.42 19299.57 17598.65 26499.24 14199.46 23899.68 6499.80 6499.66 14598.99 7799.89 15699.19 8399.90 9299.72 48
APDe-MVS99.48 6199.36 8299.85 1999.55 18799.81 3499.50 8299.69 10998.99 17599.75 8799.71 11298.79 10499.93 7698.46 15099.85 13099.80 25
PMMVS299.48 6199.45 6499.57 14799.76 9098.99 22898.09 30699.90 1598.95 18199.78 7299.58 19799.57 2099.93 7699.48 4099.95 5999.79 31
DSMNet-mixed99.48 6199.65 2798.95 27199.71 11797.27 32399.50 8299.82 4099.59 9299.41 21299.85 4399.62 16100.00 199.53 3599.89 10199.59 137
DP-MVS99.48 6199.39 7499.74 6699.57 17599.62 10599.29 12899.61 14999.87 2299.74 9699.76 8898.69 11799.87 18498.20 17099.80 16799.75 45
EI-MVSNet-Vis-set99.47 6799.49 5899.42 19299.57 17598.66 26199.24 14199.46 23899.67 6899.79 6999.65 15098.97 8099.89 15699.15 9299.89 10199.71 51
VPNet99.46 6899.37 7999.71 8699.82 4999.59 11699.48 8699.70 10399.81 3999.69 11299.58 19797.66 23199.86 20499.17 8899.44 28299.67 71
ACMM98.09 1199.46 6899.38 7699.72 8299.80 6199.69 8599.13 17899.65 13198.99 17599.64 12999.72 10599.39 2799.86 20498.23 16799.81 16299.60 128
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Regformer-499.45 7099.44 6699.50 16899.52 19998.94 23599.17 16299.53 20799.64 7699.76 7999.60 18998.96 8399.90 14098.91 12199.84 13599.67 71
COLMAP_ROBcopyleft98.06 1299.45 7099.37 7999.70 9099.83 4299.70 8199.38 10099.78 6299.53 9699.67 11999.78 7799.19 5199.86 20497.32 24699.87 11999.55 154
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
Anonymous2024052199.44 7299.42 7199.49 17199.89 2498.96 23399.62 6099.76 7099.85 3099.82 5499.88 3096.39 27699.97 1999.59 2499.98 2699.55 154
tfpnnormal99.43 7399.38 7699.60 13599.87 3299.75 5999.59 7199.78 6299.71 5599.90 2699.69 12598.85 9599.90 14097.25 25699.78 17899.15 279
HPM-MVS_fast99.43 7399.30 9599.80 3299.83 4299.81 3499.52 8099.70 10398.35 25099.51 18599.50 23099.31 3999.88 17198.18 17499.84 13599.69 58
3Dnovator99.15 299.43 7399.36 8299.65 10799.39 25199.42 15399.70 3499.56 18699.23 14299.35 22399.80 6299.17 5399.95 4798.21 16999.84 13599.59 137
Anonymous2024052999.42 7699.34 8499.65 10799.53 19399.60 11399.63 5999.39 26099.47 10599.76 7999.78 7798.13 19199.86 20498.70 13899.68 22199.49 192
SixPastTwentyTwo99.42 7699.30 9599.76 5099.92 1799.67 9099.70 3499.14 31299.65 7499.89 3099.90 2396.20 28199.94 6199.42 5099.92 8299.67 71
GBi-Net99.42 7699.31 9099.73 7699.49 21599.77 4799.68 4399.70 10399.44 11299.62 14299.83 4997.21 25099.90 14098.96 11499.90 9299.53 168
test199.42 7699.31 9099.73 7699.49 21599.77 4799.68 4399.70 10399.44 11299.62 14299.83 4997.21 25099.90 14098.96 11499.90 9299.53 168
Regformer-399.41 8099.41 7299.40 20099.52 19998.70 25699.17 16299.44 24399.62 8099.75 8799.60 18998.90 9099.85 22298.89 12299.84 13599.65 89
MVSFormer99.41 8099.44 6699.31 22599.57 17598.40 27699.77 1499.80 5199.73 5199.63 13399.30 28498.02 20099.98 999.43 4599.69 21699.55 154
IterMVS-LS99.41 8099.47 5999.25 23799.81 5698.09 29598.85 22999.76 7099.62 8099.83 5399.64 15298.54 14099.97 1999.15 9299.99 1299.68 64
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
SED-MVS99.40 8399.28 10299.77 4399.69 12999.82 3199.20 15199.54 19899.13 16199.82 5499.63 16298.91 8799.92 9697.85 20499.70 21399.58 142
v14899.40 8399.41 7299.39 20499.76 9098.94 23599.09 19099.59 16999.17 15399.81 6199.61 18098.41 16099.69 32199.32 6599.94 7099.53 168
NR-MVSNet99.40 8399.31 9099.68 9299.43 24099.55 12599.73 2699.50 22399.46 10999.88 3699.36 27097.54 23599.87 18498.97 11299.87 11999.63 103
PVSNet_Blended_VisFu99.40 8399.38 7699.44 18699.90 2298.66 26198.94 22099.91 1297.97 27699.79 6999.73 9999.05 7299.97 1999.15 9299.99 1299.68 64
EU-MVSNet99.39 8799.62 3298.72 29899.88 2896.44 33999.56 7799.85 2799.90 1199.90 2699.85 4398.09 19399.83 25199.58 2799.95 5999.90 4
CHOSEN 1792x268899.39 8799.30 9599.65 10799.88 2899.25 19298.78 24499.88 1898.66 21499.96 899.79 7097.45 23899.93 7699.34 5999.99 1299.78 33
DVP-MVS++99.38 8999.25 10999.77 4399.03 32999.77 4799.74 2399.61 14999.18 14999.76 7999.61 18099.00 7599.92 9697.72 21599.60 25099.62 114
EI-MVSNet99.38 8999.44 6699.21 24299.58 16598.09 29599.26 13499.46 23899.62 8099.75 8799.67 14198.54 14099.85 22299.15 9299.92 8299.68 64
UGNet99.38 8999.34 8499.49 17198.90 33998.90 24399.70 3499.35 27199.86 2598.57 32199.81 5998.50 15099.93 7699.38 5299.98 2699.66 81
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
UniMVSNet_NR-MVSNet99.37 9299.25 10999.72 8299.47 22799.56 12298.97 21699.61 14999.43 11799.67 11999.28 28997.85 21599.95 4799.17 8899.81 16299.65 89
UniMVSNet (Re)99.37 9299.26 10799.68 9299.51 20499.58 11998.98 21599.60 16299.43 11799.70 10999.36 27097.70 22299.88 17199.20 8299.87 11999.59 137
CSCG99.37 9299.29 10099.60 13599.71 11799.46 13999.43 9499.85 2798.79 20399.41 21299.60 18998.92 8599.92 9698.02 18499.92 8299.43 219
PM-MVS99.36 9599.29 10099.58 14199.83 4299.66 9298.95 21899.86 2398.85 19599.81 6199.73 9998.40 16499.92 9698.36 15599.83 14599.17 275
abl_699.36 9599.23 11399.75 6099.71 11799.74 6599.33 11199.76 7099.07 16899.65 12799.63 16299.09 6399.92 9697.13 26399.76 18499.58 142
new-patchmatchnet99.35 9799.57 4698.71 30099.82 4996.62 33798.55 26599.75 7799.50 9899.88 3699.87 3399.31 3999.88 17199.43 45100.00 199.62 114
Anonymous2023120699.35 9799.31 9099.47 17799.74 10799.06 22699.28 12999.74 8299.23 14299.72 10199.53 22197.63 23399.88 17199.11 10099.84 13599.48 197
MTAPA99.35 9799.20 11599.80 3299.81 5699.81 3499.33 11199.53 20799.27 13499.42 20499.63 16298.21 18499.95 4797.83 20799.79 17299.65 89
FMVSNet299.35 9799.28 10299.55 15499.49 21599.35 17399.45 8999.57 18199.44 11299.70 10999.74 9597.21 25099.87 18499.03 10599.94 7099.44 213
3Dnovator+98.92 399.35 9799.24 11199.67 9599.35 26199.47 13599.62 6099.50 22399.44 11299.12 26899.78 7798.77 10999.94 6197.87 20199.72 20899.62 114
TSAR-MVS + MP.99.34 10299.24 11199.63 12199.82 4999.37 16699.26 13499.35 27198.77 20699.57 15999.70 11999.27 4699.88 17197.71 21799.75 18799.65 89
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
Regformer-299.34 10299.27 10599.53 16099.41 24699.10 22098.99 21199.53 20799.47 10599.66 12399.52 22398.80 10199.89 15698.31 16199.74 19599.60 128
diffmvs99.34 10299.32 8999.39 20499.67 14298.77 25198.57 26399.81 4999.61 8499.48 19099.41 25398.47 15199.86 20498.97 11299.90 9299.53 168
DELS-MVS99.34 10299.30 9599.48 17599.51 20499.36 16998.12 30299.53 20799.36 12499.41 21299.61 18099.22 4999.87 18499.21 7999.68 22199.20 268
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
DU-MVS99.33 10699.21 11499.71 8699.43 24099.56 12298.83 23299.53 20799.38 12199.67 11999.36 27097.67 22799.95 4799.17 8899.81 16299.63 103
ab-mvs99.33 10699.28 10299.47 17799.57 17599.39 16099.78 1199.43 24798.87 19399.57 15999.82 5698.06 19699.87 18498.69 14099.73 20299.15 279
DVP-MVScopyleft99.32 10899.17 11899.77 4399.69 12999.80 3999.14 17299.31 28099.16 15599.62 14299.61 18098.35 16899.91 12097.88 19899.72 20899.61 124
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
Regformer-199.32 10899.27 10599.47 17799.41 24698.95 23498.99 21199.48 23099.48 10099.66 12399.52 22398.78 10699.87 18498.36 15599.74 19599.60 128
APD-MVS_3200maxsize99.31 11099.16 11999.74 6699.53 19399.75 5999.27 13299.61 14999.19 14899.57 15999.64 15298.76 11099.90 14097.29 24899.62 24099.56 151
zzz-MVS99.30 11199.14 12399.80 3299.81 5699.81 3498.73 25099.53 20799.27 13499.42 20499.63 16298.21 18499.95 4797.83 20799.79 17299.65 89
SteuartSystems-ACMMP99.30 11199.14 12399.76 5099.87 3299.66 9299.18 15799.60 16298.55 22599.57 15999.67 14199.03 7499.94 6197.01 26799.80 16799.69 58
Skip Steuart: Steuart Systems R&D Blog.
testgi99.29 11399.26 10799.37 21199.75 10198.81 24898.84 23099.89 1698.38 24399.75 8799.04 32699.36 3699.86 20499.08 10299.25 31099.45 208
ACMMP_NAP99.28 11499.11 13399.79 3799.75 10199.81 3498.95 21899.53 20798.27 25999.53 17899.73 9998.75 11299.87 18497.70 22099.83 14599.68 64
LCM-MVSNet-Re99.28 11499.15 12299.67 9599.33 27699.76 5599.34 10999.97 298.93 18599.91 2199.79 7098.68 11899.93 7696.80 28099.56 25799.30 248
mvs_anonymous99.28 11499.39 7498.94 27299.19 30497.81 30899.02 20299.55 19299.78 4799.85 4699.80 6298.24 17999.86 20499.57 2999.50 27499.15 279
MVS_Test99.28 11499.31 9099.19 24599.35 26198.79 25099.36 10799.49 22899.17 15399.21 25499.67 14198.78 10699.66 34199.09 10199.66 23299.10 290
SR-MVS-dyc-post99.27 11899.11 13399.73 7699.54 18899.74 6599.26 13499.62 14299.16 15599.52 18099.64 15298.41 16099.91 12097.27 25199.61 24799.54 162
XVS99.27 11899.11 13399.75 6099.71 11799.71 7499.37 10499.61 14999.29 13098.76 30799.47 24398.47 15199.88 17197.62 22899.73 20299.67 71
OPM-MVS99.26 12099.13 12699.63 12199.70 12599.61 11198.58 25999.48 23098.50 23199.52 18099.63 16299.14 5899.76 29897.89 19799.77 18299.51 181
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
HFP-MVS99.25 12199.08 14499.76 5099.73 11099.70 8199.31 11899.59 16998.36 24599.36 22199.37 26598.80 10199.91 12097.43 24199.75 18799.68 64
HPM-MVScopyleft99.25 12199.07 14899.78 4099.81 5699.75 5999.61 6599.67 11797.72 29099.35 22399.25 29699.23 4899.92 9697.21 25999.82 15499.67 71
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
ACMMPcopyleft99.25 12199.08 14499.74 6699.79 7199.68 8899.50 8299.65 13198.07 27099.52 18099.69 12598.57 13599.92 9697.18 26099.79 17299.63 103
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
LS3D99.24 12499.11 13399.61 13398.38 36699.79 4199.57 7599.68 11299.61 8499.15 26399.71 11298.70 11699.91 12097.54 23499.68 22199.13 287
test117299.23 12599.05 15499.74 6699.52 19999.75 5999.20 15199.61 14998.97 17799.48 19099.58 19798.41 16099.91 12097.15 26299.55 26199.57 148
xiu_mvs_v1_base_debu99.23 12599.34 8498.91 27899.59 16098.23 28498.47 27499.66 12199.61 8499.68 11498.94 34399.39 2799.97 1999.18 8599.55 26198.51 341
xiu_mvs_v1_base99.23 12599.34 8498.91 27899.59 16098.23 28498.47 27499.66 12199.61 8499.68 11498.94 34399.39 2799.97 1999.18 8599.55 26198.51 341
xiu_mvs_v1_base_debi99.23 12599.34 8498.91 27899.59 16098.23 28498.47 27499.66 12199.61 8499.68 11498.94 34399.39 2799.97 1999.18 8599.55 26198.51 341
region2R99.23 12599.05 15499.77 4399.76 9099.70 8199.31 11899.59 16998.41 23999.32 23199.36 27098.73 11599.93 7697.29 24899.74 19599.67 71
ACMMPR99.23 12599.06 15099.76 5099.74 10799.69 8599.31 11899.59 16998.36 24599.35 22399.38 26398.61 12999.93 7697.43 24199.75 18799.67 71
XVG-ACMP-BASELINE99.23 12599.10 14199.63 12199.82 4999.58 11998.83 23299.72 9498.36 24599.60 15199.71 11298.92 8599.91 12097.08 26599.84 13599.40 225
CP-MVS99.23 12599.05 15499.75 6099.66 14399.66 9299.38 10099.62 14298.38 24399.06 27699.27 29198.79 10499.94 6197.51 23799.82 15499.66 81
DeepC-MVS_fast98.47 599.23 12599.12 13099.56 15199.28 28899.22 20198.99 21199.40 25799.08 16699.58 15699.64 15298.90 9099.83 25197.44 24099.75 18799.63 103
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ZNCC-MVS99.22 13499.04 16099.77 4399.76 9099.73 6899.28 12999.56 18698.19 26499.14 26599.29 28798.84 9699.92 9697.53 23699.80 16799.64 98
D2MVS99.22 13499.19 11699.29 22899.69 12998.74 25498.81 23799.41 25098.55 22599.68 11499.69 12598.13 19199.87 18498.82 12799.98 2699.24 257
LPG-MVS_test99.22 13499.05 15499.74 6699.82 4999.63 10399.16 16899.73 8597.56 29699.64 12999.69 12599.37 3399.89 15696.66 28899.87 11999.69 58
CDS-MVSNet99.22 13499.13 12699.50 16899.35 26199.11 21598.96 21799.54 19899.46 10999.61 14899.70 11996.31 27899.83 25199.34 5999.88 11099.55 154
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
test_040299.22 13499.14 12399.45 18499.79 7199.43 15099.28 12999.68 11299.54 9499.40 21799.56 21099.07 6999.82 26196.01 31799.96 5099.11 288
AllTest99.21 13999.07 14899.63 12199.78 7899.64 9999.12 18299.83 3598.63 21799.63 13399.72 10598.68 11899.75 30296.38 30499.83 14599.51 181
XVG-OURS99.21 13999.06 15099.65 10799.82 4999.62 10597.87 33099.74 8298.36 24599.66 12399.68 13699.71 999.90 14096.84 27899.88 11099.43 219
Fast-Effi-MVS+-dtu99.20 14199.12 13099.43 19099.25 29399.69 8599.05 19699.82 4099.50 9898.97 28099.05 32398.98 7899.98 998.20 17099.24 31298.62 334
VDD-MVS99.20 14199.11 13399.44 18699.43 24098.98 22999.50 8298.32 34999.80 4299.56 16699.69 12596.99 26099.85 22298.99 10899.73 20299.50 187
PGM-MVS99.20 14199.01 16699.77 4399.75 10199.71 7499.16 16899.72 9497.99 27499.42 20499.60 18998.81 9799.93 7696.91 27299.74 19599.66 81
SR-MVS99.19 14499.00 16999.74 6699.51 20499.72 7299.18 15799.60 16298.85 19599.47 19299.58 19798.38 16599.92 9696.92 27199.54 26799.57 148
SMA-MVScopyleft99.19 14499.00 16999.73 7699.46 23299.73 6899.13 17899.52 21597.40 30799.57 15999.64 15298.93 8499.83 25197.61 23099.79 17299.63 103
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
pmmvs599.19 14499.11 13399.42 19299.76 9098.88 24498.55 26599.73 8598.82 19999.72 10199.62 17196.56 26799.82 26199.32 6599.95 5999.56 151
mPP-MVS99.19 14499.00 16999.76 5099.76 9099.68 8899.38 10099.54 19898.34 25499.01 27899.50 23098.53 14499.93 7697.18 26099.78 17899.66 81
ETV-MVS99.18 14899.18 11799.16 24899.34 27199.28 18499.12 18299.79 5799.48 10098.93 28498.55 36399.40 2699.93 7698.51 14899.52 27198.28 351
VNet99.18 14899.06 15099.56 15199.24 29599.36 16999.33 11199.31 28099.67 6899.47 19299.57 20796.48 27099.84 23999.15 9299.30 30399.47 202
RPSCF99.18 14899.02 16399.64 11499.83 4299.85 1599.44 9299.82 4098.33 25599.50 18799.78 7797.90 20999.65 34796.78 28199.83 14599.44 213
DeepPCF-MVS98.42 699.18 14899.02 16399.67 9599.22 29799.75 5997.25 35799.47 23498.72 21199.66 12399.70 11999.29 4199.63 35098.07 18399.81 16299.62 114
EPP-MVSNet99.17 15299.00 16999.66 10299.80 6199.43 15099.70 3499.24 29899.48 10099.56 16699.77 8494.89 29499.93 7698.72 13799.89 10199.63 103
GST-MVS99.16 15398.96 18099.75 6099.73 11099.73 6899.20 15199.55 19298.22 26199.32 23199.35 27598.65 12599.91 12096.86 27599.74 19599.62 114
MVP-Stereo99.16 15399.08 14499.43 19099.48 22199.07 22499.08 19399.55 19298.63 21799.31 23599.68 13698.19 18799.78 28898.18 17499.58 25599.45 208
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
XVG-OURS-SEG-HR99.16 15398.99 17499.66 10299.84 3899.64 9998.25 29299.73 8598.39 24299.63 13399.43 25199.70 1199.90 14097.34 24598.64 34399.44 213
jason99.16 15399.11 13399.32 22299.75 10198.44 27398.26 29199.39 26098.70 21299.74 9699.30 28498.54 14099.97 1998.48 14999.82 15499.55 154
jason: jason.
DPE-MVScopyleft99.14 15798.92 18799.82 2699.57 17599.77 4798.74 24899.60 16298.55 22599.76 7999.69 12598.23 18399.92 9696.39 30399.75 18799.76 42
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MP-MVS-pluss99.14 15798.92 18799.80 3299.83 4299.83 2598.61 25599.63 13996.84 32999.44 19899.58 19798.81 9799.91 12097.70 22099.82 15499.67 71
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
pmmvs499.13 15999.06 15099.36 21499.57 17599.10 22098.01 31499.25 29598.78 20599.58 15699.44 25098.24 17999.76 29898.74 13599.93 7899.22 262
MVS_111021_LR99.13 15999.03 16299.42 19299.58 16599.32 17897.91 32999.73 8598.68 21399.31 23599.48 23899.09 6399.66 34197.70 22099.77 18299.29 251
EIA-MVS99.12 16199.01 16699.45 18499.36 25999.62 10599.34 10999.79 5798.41 23998.84 29798.89 34898.75 11299.84 23998.15 17899.51 27298.89 319
#test#99.12 16198.90 19199.76 5099.73 11099.70 8199.10 18599.59 16997.60 29599.36 22199.37 26598.80 10199.91 12096.84 27899.75 18799.68 64
TSAR-MVS + GP.99.12 16199.04 16099.38 20899.34 27199.16 21098.15 29899.29 28598.18 26599.63 13399.62 17199.18 5299.68 33298.20 17099.74 19599.30 248
MVS_111021_HR99.12 16199.02 16399.40 20099.50 21099.11 21597.92 32799.71 9798.76 20999.08 27299.47 24399.17 5399.54 36097.85 20499.76 18499.54 162
xxxxxxxxxxxxxcwj99.11 16598.96 18099.54 15899.53 19399.25 19298.29 28899.76 7099.07 16899.42 20499.61 18098.86 9399.87 18496.45 30099.68 22199.49 192
CANet99.11 16599.05 15499.28 23098.83 34898.56 26698.71 25399.41 25099.25 13899.23 24899.22 30397.66 23199.94 6199.19 8399.97 3699.33 242
WR-MVS99.11 16598.93 18399.66 10299.30 28399.42 15398.42 28099.37 26799.04 17399.57 15999.20 30796.89 26299.86 20498.66 14299.87 11999.70 54
PHI-MVS99.11 16598.95 18299.59 13799.13 31299.59 11699.17 16299.65 13197.88 28299.25 24499.46 24698.97 8099.80 28297.26 25399.82 15499.37 233
SF-MVS99.10 16998.93 18399.62 13099.58 16599.51 13099.13 17899.65 13197.97 27699.42 20499.61 18098.86 9399.87 18496.45 30099.68 22199.49 192
MSDG99.08 17098.98 17799.37 21199.60 15699.13 21397.54 34399.74 8298.84 19899.53 17899.55 21799.10 6199.79 28597.07 26699.86 12699.18 273
Effi-MVS+-dtu99.07 17198.92 18799.52 16298.89 34299.78 4499.15 17099.66 12199.34 12598.92 28799.24 30197.69 22499.98 998.11 18099.28 30698.81 326
Effi-MVS+99.06 17298.97 17899.34 21699.31 27998.98 22998.31 28799.91 1298.81 20098.79 30398.94 34399.14 5899.84 23998.79 12998.74 33999.20 268
MP-MVScopyleft99.06 17298.83 20099.76 5099.76 9099.71 7499.32 11499.50 22398.35 25098.97 28099.48 23898.37 16699.92 9695.95 32399.75 18799.63 103
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MDA-MVSNet-bldmvs99.06 17299.05 15499.07 26399.80 6197.83 30798.89 22299.72 9499.29 13099.63 13399.70 11996.47 27199.89 15698.17 17699.82 15499.50 187
MSLP-MVS++99.05 17599.09 14298.91 27899.21 29998.36 28098.82 23699.47 23498.85 19598.90 29099.56 21098.78 10699.09 37398.57 14599.68 22199.26 254
1112_ss99.05 17598.84 19899.67 9599.66 14399.29 18298.52 27099.82 4097.65 29399.43 20299.16 31096.42 27399.91 12099.07 10399.84 13599.80 25
ACMP97.51 1499.05 17598.84 19899.67 9599.78 7899.55 12598.88 22399.66 12197.11 32399.47 19299.60 18999.07 6999.89 15696.18 31299.85 13099.58 142
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MSP-MVS99.04 17898.79 20599.81 2999.78 7899.73 6899.35 10899.57 18198.54 22899.54 17398.99 33396.81 26499.93 7696.97 26999.53 26999.77 37
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
PVSNet_BlendedMVS99.03 17999.01 16699.09 25999.54 18897.99 29998.58 25999.82 4097.62 29499.34 22699.71 11298.52 14799.77 29697.98 18999.97 3699.52 179
IS-MVSNet99.03 17998.85 19699.55 15499.80 6199.25 19299.73 2699.15 31199.37 12299.61 14899.71 11294.73 29799.81 27797.70 22099.88 11099.58 142
xiu_mvs_v2_base99.02 18199.11 13398.77 29599.37 25798.09 29598.13 30199.51 21999.47 10599.42 20498.54 36499.38 3199.97 1998.83 12599.33 30098.24 353
Fast-Effi-MVS+99.02 18198.87 19499.46 18099.38 25499.50 13199.04 19899.79 5797.17 31998.62 31698.74 35699.34 3799.95 4798.32 16099.41 28898.92 317
canonicalmvs99.02 18199.00 16999.09 25999.10 32098.70 25699.61 6599.66 12199.63 7998.64 31597.65 37799.04 7399.54 36098.79 12998.92 32899.04 304
MCST-MVS99.02 18198.81 20299.65 10799.58 16599.49 13298.58 25999.07 31598.40 24199.04 27799.25 29698.51 14999.80 28297.31 24799.51 27299.65 89
SD-MVS99.01 18599.30 9598.15 32099.50 21099.40 15898.94 22099.61 14999.22 14699.75 8799.82 5699.54 2395.51 38097.48 23899.87 11999.54 162
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
LF4IMVS99.01 18598.92 18799.27 23299.71 11799.28 18498.59 25899.77 6598.32 25699.39 21899.41 25398.62 12799.84 23996.62 29299.84 13598.69 332
IterMVS-SCA-FT99.00 18799.16 11998.51 30599.75 10195.90 34798.07 30999.84 3399.84 3399.89 3099.73 9996.01 28599.99 699.33 63100.00 199.63 103
MS-PatchMatch99.00 18798.97 17899.09 25999.11 31998.19 28798.76 24799.33 27498.49 23399.44 19899.58 19798.21 18499.69 32198.20 17099.62 24099.39 228
PS-MVSNAJ99.00 18799.08 14498.76 29699.37 25798.10 29498.00 31699.51 21999.47 10599.41 21298.50 36699.28 4399.97 1998.83 12599.34 29898.20 357
CNVR-MVS98.99 19098.80 20499.56 15199.25 29399.43 15098.54 26899.27 28998.58 22298.80 30299.43 25198.53 14499.70 31597.22 25899.59 25499.54 162
VDDNet98.97 19198.82 20199.42 19299.71 11798.81 24899.62 6098.68 33299.81 3999.38 21999.80 6294.25 30199.85 22298.79 12999.32 30199.59 137
IterMVS98.97 19199.16 11998.42 30999.74 10795.64 35098.06 31199.83 3599.83 3699.85 4699.74 9596.10 28499.99 699.27 75100.00 199.63 103
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
TinyColmap98.97 19198.93 18399.07 26399.46 23298.19 28797.75 33499.75 7798.79 20399.54 17399.70 11998.97 8099.62 35196.63 29199.83 14599.41 223
HPM-MVS++copyleft98.96 19498.70 21299.74 6699.52 19999.71 7498.86 22799.19 30798.47 23598.59 31999.06 32298.08 19599.91 12096.94 27099.60 25099.60 128
lupinMVS98.96 19498.87 19499.24 23999.57 17598.40 27698.12 30299.18 30898.28 25899.63 13399.13 31298.02 20099.97 1998.22 16899.69 21699.35 239
USDC98.96 19498.93 18399.05 26599.54 18897.99 29997.07 36399.80 5198.21 26299.75 8799.77 8498.43 15799.64 34997.90 19699.88 11099.51 181
YYNet198.95 19798.99 17498.84 28899.64 14797.14 32798.22 29499.32 27698.92 18799.59 15499.66 14597.40 24099.83 25198.27 16499.90 9299.55 154
MDA-MVSNet_test_wron98.95 19798.99 17498.85 28699.64 14797.16 32698.23 29399.33 27498.93 18599.56 16699.66 14597.39 24299.83 25198.29 16299.88 11099.55 154
Test_1112_low_res98.95 19798.73 20799.63 12199.68 13799.15 21298.09 30699.80 5197.14 32199.46 19699.40 25796.11 28399.89 15699.01 10799.84 13599.84 14
CANet_DTU98.91 20098.85 19699.09 25998.79 35398.13 29098.18 29599.31 28099.48 10098.86 29599.51 22796.56 26799.95 4799.05 10499.95 5999.19 271
HyFIR lowres test98.91 20098.64 21599.73 7699.85 3799.47 13598.07 30999.83 3598.64 21699.89 3099.60 18992.57 319100.00 199.33 6399.97 3699.72 48
HQP_MVS98.90 20298.68 21499.55 15499.58 16599.24 19798.80 24099.54 19898.94 18299.14 26599.25 29697.24 24899.82 26195.84 32699.78 17899.60 128
sss98.90 20298.77 20699.27 23299.48 22198.44 27398.72 25199.32 27697.94 28099.37 22099.35 27596.31 27899.91 12098.85 12499.63 23999.47 202
OMC-MVS98.90 20298.72 20899.44 18699.39 25199.42 15398.58 25999.64 13797.31 31399.44 19899.62 17198.59 13299.69 32196.17 31399.79 17299.22 262
ppachtmachnet_test98.89 20599.12 13098.20 31999.66 14395.24 35497.63 33999.68 11299.08 16699.78 7299.62 17198.65 12599.88 17198.02 18499.96 5099.48 197
MVS_030498.88 20698.71 20999.39 20498.85 34698.91 24299.45 8999.30 28398.56 22397.26 36599.68 13696.18 28299.96 3799.17 8899.94 7099.29 251
new_pmnet98.88 20698.89 19298.84 28899.70 12597.62 31498.15 29899.50 22397.98 27599.62 14299.54 21998.15 19099.94 6197.55 23399.84 13598.95 314
K. test v398.87 20898.60 21899.69 9199.93 1599.46 13999.74 2394.97 37299.78 4799.88 3699.88 3093.66 30999.97 1999.61 2299.95 5999.64 98
APD-MVScopyleft98.87 20898.59 22099.71 8699.50 21099.62 10599.01 20499.57 18196.80 33199.54 17399.63 16298.29 17599.91 12095.24 34099.71 21199.61 124
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
our_test_398.85 21099.09 14298.13 32199.66 14394.90 35797.72 33599.58 17999.07 16899.64 12999.62 17198.19 18799.93 7698.41 15299.95 5999.55 154
mvs-test198.83 21198.70 21299.22 24198.89 34299.65 9798.88 22399.66 12199.34 12598.29 33298.94 34397.69 22499.96 3798.11 18098.54 34798.04 361
UnsupCasMVSNet_eth98.83 21198.57 22499.59 13799.68 13799.45 14498.99 21199.67 11799.48 10099.55 17199.36 27094.92 29399.86 20498.95 11896.57 37199.45 208
NCCC98.82 21398.57 22499.58 14199.21 29999.31 17998.61 25599.25 29598.65 21598.43 32999.26 29497.86 21399.81 27796.55 29399.27 30999.61 124
PMVScopyleft92.94 2198.82 21398.81 20298.85 28699.84 3897.99 29999.20 15199.47 23499.71 5599.42 20499.82 5698.09 19399.47 36793.88 35999.85 13099.07 301
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
FMVSNet398.80 21598.63 21799.32 22299.13 31298.72 25599.10 18599.48 23099.23 14299.62 14299.64 15292.57 31999.86 20498.96 11499.90 9299.39 228
Patchmtry98.78 21698.54 22899.49 17198.89 34299.19 20899.32 11499.67 11799.65 7499.72 10199.79 7091.87 32799.95 4798.00 18899.97 3699.33 242
ETH3D-3000-0.198.77 21798.50 23299.59 13799.47 22799.53 12798.77 24599.60 16297.33 31299.23 24899.50 23097.91 20899.83 25195.02 34499.67 22899.41 223
Vis-MVSNet (Re-imp)98.77 21798.58 22399.34 21699.78 7898.88 24499.61 6599.56 18699.11 16599.24 24799.56 21093.00 31799.78 28897.43 24199.89 10199.35 239
CLD-MVS98.76 21998.57 22499.33 21899.57 17598.97 23197.53 34599.55 19296.41 33599.27 24299.13 31299.07 6999.78 28896.73 28499.89 10199.23 260
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
iter_conf_final98.75 22098.54 22899.40 20099.33 27698.75 25299.26 13499.59 16999.80 4299.76 7999.58 19790.17 34899.92 9699.37 5599.97 3699.54 162
Anonymous20240521198.75 22098.46 23499.63 12199.34 27199.66 9299.47 8897.65 35899.28 13399.56 16699.50 23093.15 31399.84 23998.62 14399.58 25599.40 225
CPTT-MVS98.74 22298.44 23699.64 11499.61 15499.38 16399.18 15799.55 19296.49 33499.27 24299.37 26597.11 25699.92 9695.74 33099.67 22899.62 114
F-COLMAP98.74 22298.45 23599.62 13099.57 17599.47 13598.84 23099.65 13196.31 33898.93 28499.19 30997.68 22699.87 18496.52 29599.37 29599.53 168
N_pmnet98.73 22498.53 23099.35 21599.72 11498.67 25898.34 28394.65 37398.35 25099.79 6999.68 13698.03 19899.93 7698.28 16399.92 8299.44 213
c3_l98.72 22598.71 20998.72 29899.12 31497.22 32597.68 33899.56 18698.90 18999.54 17399.48 23896.37 27799.73 30797.88 19899.88 11099.21 264
CL-MVSNet_self_test98.71 22698.56 22799.15 25099.22 29798.66 26197.14 36099.51 21998.09 26999.54 17399.27 29196.87 26399.74 30498.43 15198.96 32599.03 305
PVSNet_Blended98.70 22798.59 22099.02 26799.54 18897.99 29997.58 34299.82 4095.70 34799.34 22698.98 33698.52 14799.77 29697.98 18999.83 14599.30 248
eth_miper_zixun_eth98.68 22898.71 20998.60 30299.10 32096.84 33497.52 34799.54 19898.94 18299.58 15699.48 23896.25 28099.76 29898.01 18799.93 7899.21 264
PatchMatch-RL98.68 22898.47 23399.30 22799.44 23799.28 18498.14 30099.54 19897.12 32299.11 26999.25 29697.80 21899.70 31596.51 29699.30 30398.93 316
miper_lstm_enhance98.65 23098.60 21898.82 29399.20 30297.33 32297.78 33399.66 12199.01 17499.59 15499.50 23094.62 29899.85 22298.12 17999.90 9299.26 254
test_part198.63 23198.26 25599.75 6099.40 24999.49 13299.67 4799.68 11299.86 2599.88 3699.86 4086.73 36799.93 7699.34 5999.97 3699.81 24
test_prior398.62 23298.34 24799.46 18099.35 26199.22 20197.95 32399.39 26097.87 28398.05 34599.05 32397.90 20999.69 32195.99 31999.49 27699.48 197
h-mvs3398.61 23398.34 24799.44 18699.60 15698.67 25899.27 13299.44 24399.68 6499.32 23199.49 23592.50 322100.00 199.24 7696.51 37299.65 89
CVMVSNet98.61 23398.88 19397.80 32999.58 16593.60 36499.26 13499.64 13799.66 7299.72 10199.67 14193.26 31299.93 7699.30 6999.81 16299.87 9
Patchmatch-RL test98.60 23598.36 24499.33 21899.77 8699.07 22498.27 29099.87 2098.91 18899.74 9699.72 10590.57 34499.79 28598.55 14699.85 13099.11 288
RPMNet98.60 23598.53 23098.83 29099.05 32598.12 29199.30 12199.62 14299.86 2599.16 26199.74 9592.53 32199.92 9698.75 13498.77 33598.44 346
AdaColmapbinary98.60 23598.35 24699.38 20899.12 31499.22 20198.67 25499.42 24997.84 28798.81 30099.27 29197.32 24699.81 27795.14 34199.53 26999.10 290
miper_ehance_all_eth98.59 23898.59 22098.59 30398.98 33597.07 32897.49 34899.52 21598.50 23199.52 18099.37 26596.41 27599.71 31397.86 20299.62 24099.00 311
WTY-MVS98.59 23898.37 24399.26 23499.43 24098.40 27698.74 24899.13 31498.10 26799.21 25499.24 30194.82 29599.90 14097.86 20298.77 33599.49 192
CNLPA98.57 24098.34 24799.28 23099.18 30699.10 22098.34 28399.41 25098.48 23498.52 32498.98 33697.05 25899.78 28895.59 33299.50 27498.96 312
testtj98.56 24198.17 26699.72 8299.45 23599.60 11398.88 22399.50 22396.88 32699.18 26099.48 23897.08 25799.92 9693.69 36099.38 29199.63 103
112198.56 24198.24 25699.52 16299.49 21599.24 19799.30 12199.22 30295.77 34598.52 32499.29 28797.39 24299.85 22295.79 32899.34 29899.46 206
CDPH-MVS98.56 24198.20 26199.61 13399.50 21099.46 13998.32 28699.41 25095.22 35299.21 25499.10 31998.34 17199.82 26195.09 34399.66 23299.56 151
UnsupCasMVSNet_bld98.55 24498.27 25499.40 20099.56 18699.37 16697.97 32299.68 11297.49 30399.08 27299.35 27595.41 29299.82 26197.70 22098.19 35699.01 310
cl____98.54 24598.41 23998.92 27699.03 32997.80 30997.46 34999.59 16998.90 18999.60 15199.46 24693.85 30599.78 28897.97 19199.89 10199.17 275
DIV-MVS_self_test98.54 24598.42 23898.92 27699.03 32997.80 30997.46 34999.59 16998.90 18999.60 15199.46 24693.87 30499.78 28897.97 19199.89 10199.18 273
FA-MVS(test-final)98.52 24798.32 25099.10 25899.48 22198.67 25899.77 1498.60 33897.35 31099.63 13399.80 6293.07 31599.84 23997.92 19499.30 30398.78 329
hse-mvs298.52 24798.30 25299.16 24899.29 28598.60 26598.77 24599.02 31999.68 6499.32 23199.04 32692.50 32299.85 22299.24 7697.87 36399.03 305
MG-MVS98.52 24798.39 24198.94 27299.15 30997.39 32198.18 29599.21 30698.89 19299.23 24899.63 16297.37 24499.74 30494.22 35399.61 24799.69 58
ETH3D cwj APD-0.1698.50 25098.16 26799.51 16599.04 32799.39 16098.47 27499.47 23496.70 33398.78 30599.33 27997.62 23499.86 20494.69 34999.38 29199.28 253
DP-MVS Recon98.50 25098.23 25799.31 22599.49 21599.46 13998.56 26499.63 13994.86 35898.85 29699.37 26597.81 21799.59 35796.08 31499.44 28298.88 320
CMPMVSbinary77.52 2398.50 25098.19 26499.41 19998.33 36899.56 12299.01 20499.59 16995.44 34999.57 15999.80 6295.64 28999.46 36996.47 29999.92 8299.21 264
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
114514_t98.49 25398.11 27099.64 11499.73 11099.58 11999.24 14199.76 7089.94 37199.42 20499.56 21097.76 22199.86 20497.74 21499.82 15499.47 202
PMMVS98.49 25398.29 25399.11 25698.96 33698.42 27597.54 34399.32 27697.53 30098.47 32898.15 37297.88 21299.82 26197.46 23999.24 31299.09 293
MVSTER98.47 25598.22 25999.24 23999.06 32498.35 28199.08 19399.46 23899.27 13499.75 8799.66 14588.61 35699.85 22299.14 9899.92 8299.52 179
iter_conf0598.46 25698.23 25799.15 25099.04 32797.99 29999.10 18599.61 14999.79 4599.76 7999.58 19787.88 35899.92 9699.31 6899.97 3699.53 168
LFMVS98.46 25698.19 26499.26 23499.24 29598.52 26999.62 6096.94 36599.87 2299.31 23599.58 19791.04 33599.81 27798.68 14199.42 28799.45 208
PatchT98.45 25898.32 25098.83 29098.94 33798.29 28299.24 14198.82 32799.84 3399.08 27299.76 8891.37 33099.94 6198.82 12799.00 32498.26 352
MIMVSNet98.43 25998.20 26199.11 25699.53 19398.38 27999.58 7398.61 33698.96 18099.33 22899.76 8890.92 33799.81 27797.38 24499.76 18499.15 279
PVSNet97.47 1598.42 26098.44 23698.35 31299.46 23296.26 34196.70 36899.34 27397.68 29299.00 27999.13 31297.40 24099.72 30997.59 23299.68 22199.08 296
CHOSEN 280x42098.41 26198.41 23998.40 31099.34 27195.89 34896.94 36599.44 24398.80 20299.25 24499.52 22393.51 31199.98 998.94 11999.98 2699.32 245
BH-RMVSNet98.41 26198.14 26999.21 24299.21 29998.47 27098.60 25798.26 35098.35 25098.93 28499.31 28297.20 25399.66 34194.32 35199.10 31899.51 181
QAPM98.40 26397.99 27699.65 10799.39 25199.47 13599.67 4799.52 21591.70 36898.78 30599.80 6298.55 13899.95 4794.71 34899.75 18799.53 168
API-MVS98.38 26498.39 24198.35 31298.83 34899.26 18899.14 17299.18 30898.59 22198.66 31498.78 35498.61 12999.57 35994.14 35499.56 25796.21 373
HQP-MVS98.36 26598.02 27599.39 20499.31 27998.94 23597.98 31999.37 26797.45 30498.15 33998.83 35196.67 26599.70 31594.73 34699.67 22899.53 168
PAPM_NR98.36 26598.04 27399.33 21899.48 22198.93 23998.79 24399.28 28897.54 29998.56 32298.57 36197.12 25599.69 32194.09 35598.90 33099.38 230
PLCcopyleft97.35 1698.36 26597.99 27699.48 17599.32 27899.24 19798.50 27299.51 21995.19 35498.58 32098.96 34196.95 26199.83 25195.63 33199.25 31099.37 233
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
train_agg98.35 26897.95 28099.57 14799.35 26199.35 17398.11 30499.41 25094.90 35697.92 35098.99 33398.02 20099.85 22295.38 33899.44 28299.50 187
CR-MVSNet98.35 26898.20 26198.83 29099.05 32598.12 29199.30 12199.67 11797.39 30899.16 26199.79 7091.87 32799.91 12098.78 13298.77 33598.44 346
agg_prior198.33 27097.92 28699.57 14799.35 26199.36 16997.99 31899.39 26094.85 35997.76 35998.98 33698.03 19899.85 22295.49 33499.44 28299.51 181
DPM-MVS98.28 27197.94 28499.32 22299.36 25999.11 21597.31 35598.78 32996.88 32698.84 29799.11 31897.77 22099.61 35594.03 35799.36 29699.23 260
alignmvs98.28 27197.96 27999.25 23799.12 31498.93 23999.03 20198.42 34599.64 7698.72 31097.85 37590.86 34099.62 35198.88 12399.13 31599.19 271
test_yl98.25 27397.95 28099.13 25499.17 30798.47 27099.00 20698.67 33498.97 17799.22 25299.02 33191.31 33199.69 32197.26 25398.93 32699.24 257
DCV-MVSNet98.25 27397.95 28099.13 25499.17 30798.47 27099.00 20698.67 33498.97 17799.22 25299.02 33191.31 33199.69 32197.26 25398.93 32699.24 257
MAR-MVS98.24 27597.92 28699.19 24598.78 35599.65 9799.17 16299.14 31295.36 35098.04 34798.81 35397.47 23799.72 30995.47 33699.06 31998.21 355
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
OpenMVScopyleft98.12 1098.23 27697.89 29099.26 23499.19 30499.26 18899.65 5799.69 10991.33 36998.14 34399.77 8498.28 17699.96 3795.41 33799.55 26198.58 338
BH-untuned98.22 27798.09 27198.58 30499.38 25497.24 32498.55 26598.98 32297.81 28899.20 25998.76 35597.01 25999.65 34794.83 34598.33 35198.86 322
HY-MVS98.23 998.21 27897.95 28098.99 26899.03 32998.24 28399.61 6598.72 33196.81 33098.73 30999.51 22794.06 30299.86 20496.91 27298.20 35498.86 322
EPNet98.13 27997.77 29499.18 24794.57 38297.99 29999.24 14197.96 35499.74 5097.29 36499.62 17193.13 31499.97 1998.59 14499.83 14599.58 142
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
SCA98.11 28098.36 24497.36 33999.20 30292.99 36698.17 29798.49 34398.24 26099.10 27199.57 20796.01 28599.94 6196.86 27599.62 24099.14 284
Patchmatch-test98.10 28197.98 27898.48 30799.27 29096.48 33899.40 9699.07 31598.81 20099.23 24899.57 20790.11 34999.87 18496.69 28599.64 23799.09 293
pmmvs398.08 28297.80 29198.91 27899.41 24697.69 31397.87 33099.66 12195.87 34299.50 18799.51 22790.35 34699.97 1998.55 14699.47 27999.08 296
JIA-IIPM98.06 28397.92 28698.50 30698.59 36297.02 32998.80 24098.51 34199.88 2197.89 35299.87 3391.89 32699.90 14098.16 17797.68 36598.59 336
miper_enhance_ethall98.03 28497.94 28498.32 31498.27 36996.43 34096.95 36499.41 25096.37 33799.43 20298.96 34194.74 29699.69 32197.71 21799.62 24098.83 325
TAPA-MVS97.92 1398.03 28497.55 30099.46 18099.47 22799.44 14698.50 27299.62 14286.79 37299.07 27599.26 29498.26 17899.62 35197.28 25099.73 20299.31 247
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
131498.00 28697.90 28998.27 31898.90 33997.45 31999.30 12199.06 31794.98 35597.21 36699.12 31698.43 15799.67 33795.58 33398.56 34697.71 365
GA-MVS97.99 28797.68 29798.93 27599.52 19998.04 29897.19 35999.05 31898.32 25698.81 30098.97 33989.89 35299.41 37098.33 15999.05 32099.34 241
MVS-HIRNet97.86 28898.22 25996.76 34899.28 28891.53 37498.38 28292.60 37899.13 16199.31 23599.96 1297.18 25499.68 33298.34 15899.83 14599.07 301
FE-MVS97.85 28997.42 30299.15 25099.44 23798.75 25299.77 1498.20 35195.85 34399.33 22899.80 6288.86 35599.88 17196.40 30299.12 31698.81 326
AUN-MVS97.82 29097.38 30399.14 25399.27 29098.53 26798.72 25199.02 31998.10 26797.18 36799.03 33089.26 35499.85 22297.94 19397.91 36199.03 305
FMVSNet597.80 29197.25 30799.42 19298.83 34898.97 23199.38 10099.80 5198.87 19399.25 24499.69 12580.60 37899.91 12098.96 11499.90 9299.38 230
ADS-MVSNet297.78 29297.66 29998.12 32299.14 31095.36 35299.22 14898.75 33096.97 32498.25 33599.64 15290.90 33899.94 6196.51 29699.56 25799.08 296
ETH3 D test640097.76 29397.19 30999.50 16899.38 25499.26 18898.34 28399.49 22892.99 36598.54 32399.20 30795.92 28799.82 26191.14 36799.66 23299.40 225
test111197.74 29498.16 26796.49 35399.60 15689.86 38299.71 3391.21 37999.89 1699.88 3699.87 3393.73 30899.90 14099.56 3099.99 1299.70 54
ECVR-MVScopyleft97.73 29598.04 27396.78 34799.59 16090.81 37899.72 2990.43 38199.89 1699.86 4499.86 4093.60 31099.89 15699.46 4299.99 1299.65 89
baseline197.73 29597.33 30498.96 27099.30 28397.73 31199.40 9698.42 34599.33 12899.46 19699.21 30591.18 33399.82 26198.35 15791.26 37799.32 245
tpmrst97.73 29598.07 27296.73 35098.71 35992.00 37099.10 18598.86 32498.52 22998.92 28799.54 21991.90 32599.82 26198.02 18499.03 32298.37 348
ADS-MVSNet97.72 29897.67 29897.86 32799.14 31094.65 35899.22 14898.86 32496.97 32498.25 33599.64 15290.90 33899.84 23996.51 29699.56 25799.08 296
PatchmatchNetpermissive97.65 29997.80 29197.18 34498.82 35192.49 36899.17 16298.39 34798.12 26698.79 30399.58 19790.71 34299.89 15697.23 25799.41 28899.16 277
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
tttt051797.62 30097.20 30898.90 28499.76 9097.40 32099.48 8694.36 37499.06 17299.70 10999.49 23584.55 37399.94 6198.73 13699.65 23599.36 236
EPNet_dtu97.62 30097.79 29397.11 34696.67 37992.31 36998.51 27198.04 35299.24 14095.77 37399.47 24393.78 30799.66 34198.98 11099.62 24099.37 233
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
wuyk23d97.58 30299.13 12692.93 36099.69 12999.49 13299.52 8099.77 6597.97 27699.96 899.79 7099.84 399.94 6195.85 32599.82 15479.36 376
cl2297.56 30397.28 30598.40 31098.37 36796.75 33597.24 35899.37 26797.31 31399.41 21299.22 30387.30 35999.37 37197.70 22099.62 24099.08 296
PAPR97.56 30397.07 31199.04 26698.80 35298.11 29397.63 33999.25 29594.56 36298.02 34898.25 37197.43 23999.68 33290.90 36898.74 33999.33 242
thisisatest053097.45 30596.95 31598.94 27299.68 13797.73 31199.09 19094.19 37698.61 22099.56 16699.30 28484.30 37499.93 7698.27 16499.54 26799.16 277
TR-MVS97.44 30697.15 31098.32 31498.53 36497.46 31898.47 27497.91 35696.85 32898.21 33898.51 36596.42 27399.51 36592.16 36397.29 36797.98 362
tpmvs97.39 30797.69 29696.52 35298.41 36591.76 37199.30 12198.94 32397.74 28997.85 35599.55 21792.40 32499.73 30796.25 30998.73 34198.06 360
test0.0.03 197.37 30896.91 31898.74 29797.72 37597.57 31597.60 34197.36 36498.00 27299.21 25498.02 37390.04 35099.79 28598.37 15495.89 37598.86 322
OpenMVS_ROBcopyleft97.31 1797.36 30996.84 31998.89 28599.29 28599.45 14498.87 22699.48 23086.54 37499.44 19899.74 9597.34 24599.86 20491.61 36499.28 30697.37 369
BH-w/o97.20 31097.01 31397.76 33099.08 32395.69 34998.03 31398.52 34095.76 34697.96 34998.02 37395.62 29099.47 36792.82 36297.25 36898.12 359
test-LLR97.15 31196.95 31597.74 33298.18 37295.02 35597.38 35196.10 36698.00 27297.81 35698.58 35990.04 35099.91 12097.69 22698.78 33398.31 349
tpm97.15 31196.95 31597.75 33198.91 33894.24 36099.32 11497.96 35497.71 29198.29 33299.32 28086.72 36899.92 9698.10 18296.24 37499.09 293
E-PMN97.14 31397.43 30196.27 35598.79 35391.62 37395.54 37299.01 32199.44 11298.88 29199.12 31692.78 31899.68 33294.30 35299.03 32297.50 366
cascas96.99 31496.82 32097.48 33597.57 37895.64 35096.43 37099.56 18691.75 36797.13 36897.61 37895.58 29198.63 37696.68 28699.11 31798.18 358
thisisatest051596.98 31596.42 32298.66 30199.42 24597.47 31797.27 35694.30 37597.24 31599.15 26398.86 35085.01 37199.87 18497.10 26499.39 29098.63 333
EMVS96.96 31697.28 30595.99 35898.76 35791.03 37695.26 37398.61 33699.34 12598.92 28798.88 34993.79 30699.66 34192.87 36199.05 32097.30 370
dp96.86 31797.07 31196.24 35698.68 36190.30 38199.19 15698.38 34897.35 31098.23 33799.59 19587.23 36099.82 26196.27 30898.73 34198.59 336
baseline296.83 31896.28 32498.46 30899.09 32296.91 33298.83 23293.87 37797.23 31696.23 37298.36 36888.12 35799.90 14096.68 28698.14 35898.57 339
ET-MVSNet_ETH3D96.78 31996.07 32898.91 27899.26 29297.92 30697.70 33796.05 36997.96 27992.37 37898.43 36787.06 36199.90 14098.27 16497.56 36698.91 318
tpm cat196.78 31996.98 31496.16 35798.85 34690.59 38099.08 19399.32 27692.37 36697.73 36199.46 24691.15 33499.69 32196.07 31598.80 33298.21 355
PCF-MVS96.03 1896.73 32195.86 33299.33 21899.44 23799.16 21096.87 36699.44 24386.58 37398.95 28299.40 25794.38 30099.88 17187.93 37299.80 16798.95 314
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
CostFormer96.71 32296.79 32196.46 35498.90 33990.71 37999.41 9598.68 33294.69 36198.14 34399.34 27886.32 37099.80 28297.60 23198.07 36098.88 320
MVEpermissive92.54 2296.66 32396.11 32798.31 31699.68 13797.55 31697.94 32595.60 37199.37 12290.68 37998.70 35796.56 26798.61 37786.94 37799.55 26198.77 330
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
thres600view796.60 32496.16 32697.93 32599.63 14996.09 34599.18 15797.57 35998.77 20698.72 31097.32 38087.04 36299.72 30988.57 37098.62 34497.98 362
EPMVS96.53 32596.32 32397.17 34598.18 37292.97 36799.39 9889.95 38298.21 26298.61 31799.59 19586.69 36999.72 30996.99 26899.23 31498.81 326
thres40096.40 32695.89 33097.92 32699.58 16596.11 34399.00 20697.54 36298.43 23698.52 32496.98 38386.85 36499.67 33787.62 37398.51 34897.98 362
thres100view90096.39 32796.03 32997.47 33699.63 14995.93 34699.18 15797.57 35998.75 21098.70 31297.31 38187.04 36299.67 33787.62 37398.51 34896.81 371
tpm296.35 32896.22 32596.73 35098.88 34591.75 37299.21 15098.51 34193.27 36497.89 35299.21 30584.83 37299.70 31596.04 31698.18 35798.75 331
FPMVS96.32 32995.50 33698.79 29499.60 15698.17 28998.46 27998.80 32897.16 32096.28 36999.63 16282.19 37599.09 37388.45 37198.89 33199.10 290
tfpn200view996.30 33095.89 33097.53 33499.58 16596.11 34399.00 20697.54 36298.43 23698.52 32496.98 38386.85 36499.67 33787.62 37398.51 34896.81 371
TESTMET0.1,196.24 33195.84 33397.41 33898.24 37093.84 36397.38 35195.84 37098.43 23697.81 35698.56 36279.77 37999.89 15697.77 20998.77 33598.52 340
test-mter96.23 33295.73 33497.74 33298.18 37295.02 35597.38 35196.10 36697.90 28197.81 35698.58 35979.12 38299.91 12097.69 22698.78 33398.31 349
X-MVStestdata96.09 33394.87 34299.75 6099.71 11799.71 7499.37 10499.61 14999.29 13098.76 30761.30 38698.47 15199.88 17197.62 22899.73 20299.67 71
thres20096.09 33395.68 33597.33 34199.48 22196.22 34298.53 26997.57 35998.06 27198.37 33196.73 38586.84 36699.61 35586.99 37698.57 34596.16 374
KD-MVS_2432*160095.89 33595.41 33897.31 34294.96 38093.89 36197.09 36199.22 30297.23 31698.88 29199.04 32679.23 38099.54 36096.24 31096.81 36998.50 344
miper_refine_blended95.89 33595.41 33897.31 34294.96 38093.89 36197.09 36199.22 30297.23 31698.88 29199.04 32679.23 38099.54 36096.24 31096.81 36998.50 344
gg-mvs-nofinetune95.87 33795.17 34197.97 32498.19 37196.95 33099.69 4089.23 38399.89 1696.24 37199.94 1481.19 37699.51 36593.99 35898.20 35497.44 367
PVSNet_095.53 1995.85 33895.31 34097.47 33698.78 35593.48 36595.72 37199.40 25796.18 34097.37 36297.73 37695.73 28899.58 35895.49 33481.40 37899.36 236
tmp_tt95.75 33995.42 33796.76 34889.90 38494.42 35998.86 22797.87 35778.01 37599.30 24099.69 12597.70 22295.89 37999.29 7298.14 35899.95 1
MVS95.72 34094.63 34498.99 26898.56 36397.98 30599.30 12198.86 32472.71 37797.30 36399.08 32098.34 17199.74 30489.21 36998.33 35199.26 254
PAPM95.61 34194.71 34398.31 31699.12 31496.63 33696.66 36998.46 34490.77 37096.25 37098.68 35893.01 31699.69 32181.60 37897.86 36498.62 334
IB-MVS95.41 2095.30 34294.46 34697.84 32898.76 35795.33 35397.33 35496.07 36896.02 34195.37 37697.41 37976.17 38499.96 3797.54 23495.44 37698.22 354
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
test250694.73 34394.59 34595.15 35999.59 16085.90 38499.75 2174.01 38599.89 1699.71 10699.86 4079.00 38399.90 14099.52 3699.99 1299.65 89
test_method91.72 34492.32 34789.91 36193.49 38370.18 38590.28 37499.56 18661.71 37895.39 37599.52 22393.90 30399.94 6198.76 13398.27 35399.62 114
EGC-MVSNET89.05 34585.52 34899.64 11499.89 2499.78 4499.56 7799.52 21524.19 37949.96 38099.83 4999.15 5599.92 9697.71 21799.85 13099.21 264
test12329.31 34633.05 35118.08 36225.93 38612.24 38697.53 34510.93 38711.78 38024.21 38150.08 39021.04 3858.60 38123.51 37932.43 38033.39 377
testmvs28.94 34733.33 34915.79 36326.03 3859.81 38796.77 36715.67 38611.55 38123.87 38250.74 38919.03 3868.53 38223.21 38033.07 37929.03 378
cdsmvs_eth3d_5k24.88 34833.17 3500.00 3640.00 3870.00 3880.00 37599.62 1420.00 3820.00 38399.13 31299.82 40.00 3830.00 3810.00 3810.00 379
pcd_1.5k_mvsjas16.61 34922.14 3520.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 383100.00 199.28 430.00 3830.00 3810.00 3810.00 379
test_blank8.33 35011.11 3530.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 383100.00 10.00 3870.00 3830.00 3810.00 3810.00 379
uanet_test8.33 35011.11 3530.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 383100.00 10.00 3870.00 3830.00 3810.00 3810.00 379
DCPMVS8.33 35011.11 3530.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 383100.00 10.00 3870.00 3830.00 3810.00 3810.00 379
sosnet-low-res8.33 35011.11 3530.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 383100.00 10.00 3870.00 3830.00 3810.00 3810.00 379
sosnet8.33 35011.11 3530.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 383100.00 10.00 3870.00 3830.00 3810.00 3810.00 379
uncertanet8.33 35011.11 3530.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 383100.00 10.00 3870.00 3830.00 3810.00 3810.00 379
Regformer8.33 35011.11 3530.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 383100.00 10.00 3870.00 3830.00 3810.00 3810.00 379
uanet8.33 35011.11 3530.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 383100.00 10.00 3870.00 3830.00 3810.00 3810.00 379
ab-mvs-re8.26 35811.02 3610.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 38399.16 3100.00 3870.00 3830.00 3810.00 3810.00 379
FOURS199.83 4299.89 899.74 2399.71 9799.69 6299.63 133
MSC_two_6792asdad99.74 6699.03 32999.53 12799.23 29999.92 9697.77 20999.69 21699.78 33
PC_three_145297.56 29699.68 11499.41 25399.09 6397.09 37896.66 28899.60 25099.62 114
No_MVS99.74 6699.03 32999.53 12799.23 29999.92 9697.77 20999.69 21699.78 33
test_one_060199.63 14999.76 5599.55 19299.23 14299.31 23599.61 18098.59 132
eth-test20.00 387
eth-test0.00 387
ZD-MVS99.43 24099.61 11199.43 24796.38 33699.11 26999.07 32197.86 21399.92 9694.04 35699.49 276
RE-MVS-def99.13 12699.54 18899.74 6599.26 13499.62 14299.16 15599.52 18099.64 15298.57 13597.27 25199.61 24799.54 162
IU-MVS99.69 12999.77 4799.22 30297.50 30299.69 11297.75 21399.70 21399.77 37
OPU-MVS99.29 22899.12 31499.44 14699.20 15199.40 25799.00 7598.84 37596.54 29499.60 25099.58 142
test_241102_TWO99.54 19899.13 16199.76 7999.63 16298.32 17499.92 9697.85 20499.69 21699.75 45
test_241102_ONE99.69 12999.82 3199.54 19899.12 16499.82 5499.49 23598.91 8799.52 364
9.1498.64 21599.45 23598.81 23799.60 16297.52 30199.28 24199.56 21098.53 14499.83 25195.36 33999.64 237
save fliter99.53 19399.25 19298.29 28899.38 26699.07 168
test_0728_THIRD99.18 14999.62 14299.61 18098.58 13499.91 12097.72 21599.80 16799.77 37
test_0728_SECOND99.83 2499.70 12599.79 4199.14 17299.61 14999.92 9697.88 19899.72 20899.77 37
test072699.69 12999.80 3999.24 14199.57 18199.16 15599.73 10099.65 15098.35 168
GSMVS99.14 284
test_part299.62 15399.67 9099.55 171
sam_mvs190.81 34199.14 284
sam_mvs90.52 345
ambc99.20 24499.35 26198.53 26799.17 16299.46 23899.67 11999.80 6298.46 15499.70 31597.92 19499.70 21399.38 230
MTGPAbinary99.53 207
test_post199.14 17251.63 38889.54 35399.82 26196.86 275
test_post52.41 38790.25 34799.86 204
patchmatchnet-post99.62 17190.58 34399.94 61
GG-mvs-BLEND97.36 33997.59 37696.87 33399.70 3488.49 38494.64 37797.26 38280.66 37799.12 37291.50 36596.50 37396.08 375
MTMP99.09 19098.59 339
gm-plane-assit97.59 37689.02 38393.47 36398.30 36999.84 23996.38 304
test9_res95.10 34299.44 28299.50 187
TEST999.35 26199.35 17398.11 30499.41 25094.83 36097.92 35098.99 33398.02 20099.85 222
test_899.34 27199.31 17998.08 30899.40 25794.90 35697.87 35498.97 33998.02 20099.84 239
agg_prior294.58 35099.46 28199.50 187
agg_prior99.35 26199.36 16999.39 26097.76 35999.85 222
TestCases99.63 12199.78 7899.64 9999.83 3598.63 21799.63 13399.72 10598.68 11899.75 30296.38 30499.83 14599.51 181
test_prior499.19 20898.00 316
test_prior297.95 32397.87 28398.05 34599.05 32397.90 20995.99 31999.49 276
test_prior99.46 18099.35 26199.22 20199.39 26099.69 32199.48 197
旧先验297.94 32595.33 35198.94 28399.88 17196.75 282
新几何298.04 312
新几何199.52 16299.50 21099.22 20199.26 29295.66 34898.60 31899.28 28997.67 22799.89 15695.95 32399.32 30199.45 208
旧先验199.49 21599.29 18299.26 29299.39 26197.67 22799.36 29699.46 206
无先验98.01 31499.23 29995.83 34499.85 22295.79 32899.44 213
原ACMM297.92 327
原ACMM199.37 21199.47 22798.87 24699.27 28996.74 33298.26 33499.32 28097.93 20799.82 26195.96 32299.38 29199.43 219
test22299.51 20499.08 22397.83 33299.29 28595.21 35398.68 31399.31 28297.28 24799.38 29199.43 219
testdata299.89 15695.99 319
segment_acmp98.37 166
testdata99.42 19299.51 20498.93 23999.30 28396.20 33998.87 29499.40 25798.33 17399.89 15696.29 30799.28 30699.44 213
testdata197.72 33597.86 286
test1299.54 15899.29 28599.33 17699.16 31098.43 32997.54 23599.82 26199.47 27999.48 197
plane_prior799.58 16599.38 163
plane_prior699.47 22799.26 18897.24 248
plane_prior599.54 19899.82 26195.84 32699.78 17899.60 128
plane_prior499.25 296
plane_prior399.31 17998.36 24599.14 265
plane_prior298.80 24098.94 182
plane_prior199.51 204
plane_prior99.24 19798.42 28097.87 28399.71 211
n20.00 388
nn0.00 388
door-mid99.83 35
lessismore_v099.64 11499.86 3499.38 16390.66 38099.89 3099.83 4994.56 29999.97 1999.56 3099.92 8299.57 148
LGP-MVS_train99.74 6699.82 4999.63 10399.73 8597.56 29699.64 12999.69 12599.37 3399.89 15696.66 28899.87 11999.69 58
test1199.29 285
door99.77 65
HQP5-MVS98.94 235
HQP-NCC99.31 27997.98 31997.45 30498.15 339
ACMP_Plane99.31 27997.98 31997.45 30498.15 339
BP-MVS94.73 346
HQP4-MVS98.15 33999.70 31599.53 168
HQP3-MVS99.37 26799.67 228
HQP2-MVS96.67 265
NP-MVS99.40 24999.13 21398.83 351
MDTV_nov1_ep13_2view91.44 37599.14 17297.37 30999.21 25491.78 32996.75 28299.03 305
MDTV_nov1_ep1397.73 29598.70 36090.83 37799.15 17098.02 35398.51 23098.82 29999.61 18090.98 33699.66 34196.89 27498.92 328
ACMMP++_ref99.94 70
ACMMP++99.79 172
Test By Simon98.41 160
ITE_SJBPF99.38 20899.63 14999.44 14699.73 8598.56 22399.33 22899.53 22198.88 9299.68 33296.01 31799.65 23599.02 309
DeepMVS_CXcopyleft97.98 32399.69 12996.95 33099.26 29275.51 37695.74 37498.28 37096.47 27199.62 35191.23 36697.89 36297.38 368