This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.95 199.95 199.95 199.99 199.99 199.95 299.97 299.99 1100.00 199.98 899.78 6100.00 199.92 1100.00 199.87 9
mvs_tets99.90 299.90 299.90 499.96 499.79 3699.72 1999.88 1699.92 699.98 399.93 1399.94 199.98 799.77 12100.00 199.92 3
jajsoiax99.89 399.89 399.89 799.96 499.78 3999.70 2299.86 2099.89 1199.98 399.90 2199.94 199.98 799.75 13100.00 199.90 4
ANet_high99.88 499.87 499.91 299.99 199.91 299.65 44100.00 199.90 7100.00 199.97 999.61 1799.97 1799.75 13100.00 199.84 14
LTVRE_ROB99.19 199.88 499.87 499.88 1199.91 1599.90 499.96 199.92 699.90 799.97 699.87 3199.81 599.95 4599.54 2699.99 1299.80 24
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
pmmvs699.86 699.86 699.83 2199.94 1099.90 499.83 699.91 999.85 2099.94 1199.95 1199.73 899.90 12999.65 1699.97 3099.69 52
UniMVSNet_ETH3D99.85 799.83 799.90 499.89 2199.91 299.89 499.71 9399.93 499.95 1099.89 2599.71 999.96 3599.51 3099.97 3099.84 14
PS-MVSNAJss99.84 899.82 899.89 799.96 499.77 4199.68 3199.85 2499.95 399.98 399.92 1699.28 4199.98 799.75 13100.00 199.94 2
test_djsdf99.84 899.81 999.91 299.94 1099.84 1899.77 1199.80 4799.73 4099.97 699.92 1699.77 799.98 799.43 37100.00 199.90 4
v7n99.82 1099.80 1099.88 1199.96 499.84 1899.82 899.82 3799.84 2399.94 1199.91 1999.13 5799.96 3599.83 999.99 1299.83 18
anonymousdsp99.80 1199.77 1299.90 499.96 499.88 799.73 1699.85 2499.70 4899.92 1899.93 1399.45 2299.97 1799.36 49100.00 199.85 13
pm-mvs199.79 1299.79 1199.78 3799.91 1599.83 2299.76 1399.87 1899.73 4099.89 2699.87 3199.63 1499.87 17099.54 2699.92 7499.63 95
UA-Net99.78 1399.76 1499.86 1699.72 10899.71 6599.91 399.95 499.96 299.71 10099.91 1999.15 5399.97 1799.50 32100.00 199.90 4
TransMVSNet (Re)99.78 1399.77 1299.81 2699.91 1599.85 1299.75 1499.86 2099.70 4899.91 2099.89 2599.60 1999.87 17099.59 2099.74 18499.71 46
OurMVSNet-221017-099.75 1599.71 1699.84 1999.96 499.83 2299.83 699.85 2499.80 3299.93 1499.93 1398.54 13399.93 7199.59 2099.98 2199.76 37
Vis-MVSNetpermissive99.75 1599.74 1599.79 3499.88 2499.66 8399.69 2899.92 699.67 5699.77 7399.75 8099.61 1799.98 799.35 5099.98 2199.72 43
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
TDRefinement99.72 1799.70 1799.77 4099.90 1999.85 1299.86 599.92 699.69 5199.78 6899.92 1699.37 3199.88 15798.93 11199.95 4999.60 119
XXY-MVS99.71 1899.67 2099.81 2699.89 2199.72 6399.59 5999.82 3799.39 10999.82 5099.84 4299.38 2999.91 10899.38 4699.93 7099.80 24
nrg03099.70 1999.66 2199.82 2399.76 8499.84 1899.61 5399.70 9799.93 499.78 6899.68 12499.10 5899.78 27399.45 3599.96 4299.83 18
FC-MVSNet-test99.70 1999.65 2399.86 1699.88 2499.86 1199.72 1999.78 5899.90 799.82 5099.83 4398.45 14899.87 17099.51 3099.97 3099.86 11
GeoE99.69 2199.66 2199.78 3799.76 8499.76 4799.60 5899.82 3799.46 9899.75 8099.56 19599.63 1499.95 4599.43 3799.88 10099.62 106
v1099.69 2199.69 1899.66 9599.81 5199.39 14999.66 3999.75 7399.60 7899.92 1899.87 3198.75 10799.86 19099.90 299.99 1299.73 42
v899.68 2399.69 1899.65 10099.80 5699.40 14799.66 3999.76 6699.64 6499.93 1499.85 3798.66 11899.84 22599.88 699.99 1299.71 46
DTE-MVSNet99.68 2399.61 3099.88 1199.80 5699.87 899.67 3599.71 9399.72 4399.84 4399.78 6698.67 11699.97 1799.30 5999.95 4999.80 24
VPA-MVSNet99.66 2599.62 2699.79 3499.68 13099.75 5099.62 4799.69 10399.85 2099.80 6099.81 5298.81 9299.91 10899.47 3499.88 10099.70 49
PS-CasMVS99.66 2599.58 3699.89 799.80 5699.85 1299.66 3999.73 8199.62 6899.84 4399.71 10098.62 12299.96 3599.30 5999.96 4299.86 11
PEN-MVS99.66 2599.59 3399.89 799.83 3899.87 899.66 3999.73 8199.70 4899.84 4399.73 8798.56 13099.96 3599.29 6299.94 6299.83 18
FMVSNet199.66 2599.63 2599.73 7099.78 7299.77 4199.68 3199.70 9799.67 5699.82 5099.83 4398.98 7399.90 12999.24 6699.97 3099.53 158
MIMVSNet199.66 2599.62 2699.80 2999.94 1099.87 899.69 2899.77 6199.78 3599.93 1499.89 2597.94 19599.92 9099.65 1699.98 2199.62 106
FIs99.65 3099.58 3699.84 1999.84 3499.85 1299.66 3999.75 7399.86 1699.74 8999.79 6098.27 16899.85 20899.37 4899.93 7099.83 18
DIV-MVS_2432*160099.63 3199.59 3399.76 4699.84 3499.90 499.37 9099.79 5399.83 2699.88 3299.85 3798.42 15199.90 12999.60 1999.73 19199.49 181
casdiffmvs99.63 3199.61 3099.67 8899.79 6699.59 10799.13 16599.85 2499.79 3499.76 7599.72 9399.33 3699.82 24699.21 6999.94 6299.59 128
baseline99.63 3199.62 2699.66 9599.80 5699.62 9699.44 7899.80 4799.71 4499.72 9599.69 11399.15 5399.83 23699.32 5699.94 6299.53 158
Anonymous2023121199.62 3499.57 3999.76 4699.61 14699.60 10499.81 999.73 8199.82 2899.90 2299.90 2197.97 19499.86 19099.42 4399.96 4299.80 24
DeepC-MVS98.90 499.62 3499.61 3099.67 8899.72 10899.44 13599.24 12899.71 9399.27 12499.93 1499.90 2199.70 1199.93 7198.99 9999.99 1299.64 90
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
WR-MVS_H99.61 3699.53 4999.87 1499.80 5699.83 2299.67 3599.75 7399.58 8199.85 4099.69 11398.18 17999.94 5799.28 6499.95 4999.83 18
ACMH98.42 699.59 3799.54 4499.72 7699.86 3099.62 9699.56 6499.79 5398.77 19499.80 6099.85 3799.64 1399.85 20898.70 12999.89 9299.70 49
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
v119299.57 3899.57 3999.57 13699.77 8099.22 19099.04 18499.60 15599.18 13899.87 3899.72 9399.08 6399.85 20899.89 599.98 2199.66 75
EG-PatchMatch MVS99.57 3899.56 4399.62 12099.77 8099.33 16599.26 12099.76 6699.32 11899.80 6099.78 6699.29 3999.87 17099.15 8399.91 8399.66 75
Gipumacopyleft99.57 3899.59 3399.49 15999.98 399.71 6599.72 1999.84 3099.81 2999.94 1199.78 6698.91 8299.71 29898.41 14399.95 4999.05 289
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
v192192099.56 4199.57 3999.55 14399.75 9599.11 20499.05 18299.61 14499.15 14799.88 3299.71 10099.08 6399.87 17099.90 299.97 3099.66 75
v124099.56 4199.58 3699.51 15399.80 5699.00 21599.00 19199.65 12699.15 14799.90 2299.75 8099.09 6099.88 15799.90 299.96 4299.67 65
V4299.56 4199.54 4499.63 11199.79 6699.46 12899.39 8499.59 16299.24 13099.86 3999.70 10798.55 13199.82 24699.79 1199.95 4999.60 119
v14419299.55 4499.54 4499.58 13199.78 7299.20 19699.11 17199.62 13799.18 13899.89 2699.72 9398.66 11899.87 17099.88 699.97 3099.66 75
test20.0399.55 4499.54 4499.58 13199.79 6699.37 15599.02 18799.89 1399.60 7899.82 5099.62 16098.81 9299.89 14399.43 3799.86 11699.47 191
v114499.54 4699.53 4999.59 12799.79 6699.28 17399.10 17299.61 14499.20 13699.84 4399.73 8798.67 11699.84 22599.86 899.98 2199.64 90
CP-MVSNet99.54 4699.43 6299.87 1499.76 8499.82 2699.57 6299.61 14499.54 8299.80 6099.64 14197.79 20899.95 4599.21 6999.94 6299.84 14
TranMVSNet+NR-MVSNet99.54 4699.47 5399.76 4699.58 15499.64 9099.30 10799.63 13499.61 7299.71 10099.56 19598.76 10599.96 3599.14 8999.92 7499.68 58
CS-MVS99.52 4999.54 4499.47 16599.51 19199.85 1299.62 4799.93 599.75 3899.34 21299.13 29499.39 2499.91 10899.43 3799.75 17598.66 316
v2v48299.50 5099.47 5399.58 13199.78 7299.25 18199.14 15999.58 17199.25 12899.81 5799.62 16098.24 17099.84 22599.83 999.97 3099.64 90
ACMH+98.40 899.50 5099.43 6299.71 8099.86 3099.76 4799.32 10099.77 6199.53 8499.77 7399.76 7699.26 4599.78 27397.77 19999.88 10099.60 119
Baseline_NR-MVSNet99.49 5299.37 7299.82 2399.91 1599.84 1898.83 21899.86 2099.68 5299.65 11999.88 2897.67 21699.87 17099.03 9699.86 11699.76 37
TAMVS99.49 5299.45 5799.63 11199.48 20999.42 14299.45 7599.57 17399.66 6099.78 6899.83 4397.85 20499.86 19099.44 3699.96 4299.61 115
pmmvs-eth3d99.48 5499.47 5399.51 15399.77 8099.41 14698.81 22399.66 11599.42 10899.75 8099.66 13499.20 4899.76 28398.98 10199.99 1299.36 225
EI-MVSNet-UG-set99.48 5499.50 5199.42 18199.57 16498.65 24899.24 12899.46 22899.68 5299.80 6099.66 13498.99 7299.89 14399.19 7499.90 8499.72 43
APDe-MVS99.48 5499.36 7599.85 1899.55 17599.81 2999.50 6899.69 10398.99 16399.75 8099.71 10098.79 9999.93 7198.46 14199.85 11999.80 24
PMMVS299.48 5499.45 5799.57 13699.76 8498.99 21698.09 29299.90 1298.95 16999.78 6899.58 18499.57 2099.93 7199.48 3399.95 4999.79 30
DSMNet-mixed99.48 5499.65 2398.95 25899.71 11197.27 30899.50 6899.82 3799.59 8099.41 19899.85 3799.62 16100.00 199.53 2899.89 9299.59 128
DP-MVS99.48 5499.39 6799.74 6299.57 16499.62 9699.29 11499.61 14499.87 1499.74 8999.76 7698.69 11299.87 17098.20 16199.80 15599.75 40
EI-MVSNet-Vis-set99.47 6099.49 5299.42 18199.57 16498.66 24599.24 12899.46 22899.67 5699.79 6599.65 13998.97 7599.89 14399.15 8399.89 9299.71 46
VPNet99.46 6199.37 7299.71 8099.82 4499.59 10799.48 7299.70 9799.81 2999.69 10599.58 18497.66 22099.86 19099.17 7999.44 26899.67 65
ACMM98.09 1199.46 6199.38 6999.72 7699.80 5699.69 7699.13 16599.65 12698.99 16399.64 12199.72 9399.39 2499.86 19098.23 15899.81 15099.60 119
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Regformer-499.45 6399.44 5999.50 15699.52 18698.94 22399.17 14999.53 19899.64 6499.76 7599.60 17698.96 7899.90 12998.91 11299.84 12399.67 65
COLMAP_ROBcopyleft98.06 1299.45 6399.37 7299.70 8499.83 3899.70 7299.38 8699.78 5899.53 8499.67 11199.78 6699.19 4999.86 19097.32 23299.87 10999.55 145
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
Anonymous2024052199.44 6599.42 6499.49 15999.89 2198.96 22199.62 4799.76 6699.85 2099.82 5099.88 2896.39 26599.97 1799.59 2099.98 2199.55 145
tfpnnormal99.43 6699.38 6999.60 12599.87 2899.75 5099.59 5999.78 5899.71 4499.90 2299.69 11398.85 9099.90 12997.25 24299.78 16699.15 266
HPM-MVS_fast99.43 6699.30 8899.80 2999.83 3899.81 2999.52 6699.70 9798.35 23899.51 17499.50 21699.31 3799.88 15798.18 16599.84 12399.69 52
3Dnovator99.15 299.43 6699.36 7599.65 10099.39 23799.42 14299.70 2299.56 17899.23 13299.35 20999.80 5499.17 5199.95 4598.21 16099.84 12399.59 128
Anonymous2024052999.42 6999.34 7799.65 10099.53 18199.60 10499.63 4699.39 25099.47 9499.76 7599.78 6698.13 18199.86 19098.70 12999.68 20999.49 181
SixPastTwentyTwo99.42 6999.30 8899.76 4699.92 1499.67 8199.70 2299.14 29999.65 6299.89 2699.90 2196.20 27099.94 5799.42 4399.92 7499.67 65
GBi-Net99.42 6999.31 8399.73 7099.49 20399.77 4199.68 3199.70 9799.44 10199.62 13299.83 4397.21 23999.90 12998.96 10599.90 8499.53 158
test199.42 6999.31 8399.73 7099.49 20399.77 4199.68 3199.70 9799.44 10199.62 13299.83 4397.21 23999.90 12998.96 10599.90 8499.53 158
Regformer-399.41 7399.41 6599.40 19199.52 18698.70 24199.17 14999.44 23399.62 6899.75 8099.60 17698.90 8599.85 20898.89 11399.84 12399.65 83
MVSFormer99.41 7399.44 5999.31 21599.57 16498.40 26299.77 1199.80 4799.73 4099.63 12599.30 26698.02 18999.98 799.43 3799.69 20699.55 145
IterMVS-LS99.41 7399.47 5399.25 22799.81 5198.09 28198.85 21599.76 6699.62 6899.83 4899.64 14198.54 13399.97 1799.15 8399.99 1299.68 58
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
SED-MVS99.40 7699.28 9599.77 4099.69 12199.82 2699.20 13899.54 18999.13 14999.82 5099.63 15198.91 8299.92 9097.85 19499.70 20399.58 133
v14899.40 7699.41 6599.39 19499.76 8498.94 22399.09 17699.59 16299.17 14199.81 5799.61 16998.41 15299.69 30699.32 5699.94 6299.53 158
NR-MVSNet99.40 7699.31 8399.68 8699.43 22699.55 11699.73 1699.50 21399.46 9899.88 3299.36 25297.54 22499.87 17098.97 10399.87 10999.63 95
PVSNet_Blended_VisFu99.40 7699.38 6999.44 17599.90 1998.66 24598.94 20699.91 997.97 26499.79 6599.73 8799.05 6899.97 1799.15 8399.99 1299.68 58
EU-MVSNet99.39 8099.62 2698.72 28599.88 2496.44 32499.56 6499.85 2499.90 799.90 2299.85 3798.09 18399.83 23699.58 2399.95 4999.90 4
CHOSEN 1792x268899.39 8099.30 8899.65 10099.88 2499.25 18198.78 23099.88 1698.66 20299.96 899.79 6097.45 22799.93 7199.34 5199.99 1299.78 32
EI-MVSNet99.38 8299.44 5999.21 23299.58 15498.09 28199.26 12099.46 22899.62 6899.75 8099.67 13098.54 13399.85 20899.15 8399.92 7499.68 58
UGNet99.38 8299.34 7799.49 15998.90 32098.90 23199.70 2299.35 26199.86 1698.57 30699.81 5298.50 14399.93 7199.38 4699.98 2199.66 75
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
UniMVSNet_NR-MVSNet99.37 8499.25 10299.72 7699.47 21499.56 11398.97 20299.61 14499.43 10699.67 11199.28 27197.85 20499.95 4599.17 7999.81 15099.65 83
UniMVSNet (Re)99.37 8499.26 10099.68 8699.51 19199.58 11098.98 20099.60 15599.43 10699.70 10299.36 25297.70 21199.88 15799.20 7299.87 10999.59 128
CSCG99.37 8499.29 9399.60 12599.71 11199.46 12899.43 8099.85 2498.79 19199.41 19899.60 17698.92 8099.92 9098.02 17599.92 7499.43 208
PM-MVS99.36 8799.29 9399.58 13199.83 3899.66 8398.95 20499.86 2098.85 18399.81 5799.73 8798.40 15699.92 9098.36 14699.83 13399.17 262
abl_699.36 8799.23 10599.75 5699.71 11199.74 5699.33 9799.76 6699.07 15699.65 11999.63 15199.09 6099.92 9097.13 25099.76 17299.58 133
new-patchmatchnet99.35 8999.57 3998.71 28799.82 4496.62 32298.55 25199.75 7399.50 8799.88 3299.87 3199.31 3799.88 15799.43 37100.00 199.62 106
Anonymous2023120699.35 8999.31 8399.47 16599.74 10199.06 21499.28 11599.74 7899.23 13299.72 9599.53 20797.63 22299.88 15799.11 9199.84 12399.48 186
MTAPA99.35 8999.20 10799.80 2999.81 5199.81 2999.33 9799.53 19899.27 12499.42 19099.63 15198.21 17499.95 4597.83 19799.79 16099.65 83
FMVSNet299.35 8999.28 9599.55 14399.49 20399.35 16299.45 7599.57 17399.44 10199.70 10299.74 8397.21 23999.87 17099.03 9699.94 6299.44 202
3Dnovator+98.92 399.35 8999.24 10399.67 8899.35 24799.47 12499.62 4799.50 21399.44 10199.12 25399.78 6698.77 10499.94 5797.87 19199.72 19799.62 106
TSAR-MVS + MP.99.34 9499.24 10399.63 11199.82 4499.37 15599.26 12099.35 26198.77 19499.57 14899.70 10799.27 4499.88 15797.71 20499.75 17599.65 83
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
Regformer-299.34 9499.27 9899.53 14999.41 23299.10 20898.99 19699.53 19899.47 9499.66 11599.52 20998.80 9699.89 14398.31 15299.74 18499.60 119
diffmvs99.34 9499.32 8299.39 19499.67 13598.77 23898.57 24999.81 4699.61 7299.48 17799.41 23998.47 14499.86 19098.97 10399.90 8499.53 158
DELS-MVS99.34 9499.30 8899.48 16399.51 19199.36 15898.12 28899.53 19899.36 11399.41 19899.61 16999.22 4799.87 17099.21 6999.68 20999.20 256
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
DU-MVS99.33 9899.21 10699.71 8099.43 22699.56 11398.83 21899.53 19899.38 11099.67 11199.36 25297.67 21699.95 4599.17 7999.81 15099.63 95
ab-mvs99.33 9899.28 9599.47 16599.57 16499.39 14999.78 1099.43 23798.87 18199.57 14899.82 4998.06 18699.87 17098.69 13199.73 19199.15 266
DVP-MVS99.32 10099.17 11099.77 4099.69 12199.80 3499.14 15999.31 27099.16 14399.62 13299.61 16998.35 16099.91 10897.88 18899.72 19799.61 115
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
Regformer-199.32 10099.27 9899.47 16599.41 23298.95 22298.99 19699.48 22099.48 8999.66 11599.52 20998.78 10199.87 17098.36 14699.74 18499.60 119
APD-MVS_3200maxsize99.31 10299.16 11199.74 6299.53 18199.75 5099.27 11899.61 14499.19 13799.57 14899.64 14198.76 10599.90 12997.29 23499.62 22899.56 142
zzz-MVS99.30 10399.14 11599.80 2999.81 5199.81 2998.73 23699.53 19899.27 12499.42 19099.63 15198.21 17499.95 4597.83 19799.79 16099.65 83
SteuartSystems-ACMMP99.30 10399.14 11599.76 4699.87 2899.66 8399.18 14499.60 15598.55 21399.57 14899.67 13099.03 7099.94 5797.01 25499.80 15599.69 52
Skip Steuart: Steuart Systems R&D Blog.
testgi99.29 10599.26 10099.37 20199.75 9598.81 23598.84 21699.89 1398.38 23199.75 8099.04 30999.36 3499.86 19099.08 9399.25 29599.45 197
ACMMP_NAP99.28 10699.11 12599.79 3499.75 9599.81 2998.95 20499.53 19898.27 24799.53 16799.73 8798.75 10799.87 17097.70 20699.83 13399.68 58
LCM-MVSNet-Re99.28 10699.15 11499.67 8899.33 26299.76 4799.34 9599.97 298.93 17399.91 2099.79 6098.68 11399.93 7196.80 26799.56 24399.30 237
mvs_anonymous99.28 10699.39 6798.94 25999.19 28997.81 29399.02 18799.55 18499.78 3599.85 4099.80 5498.24 17099.86 19099.57 2499.50 26099.15 266
MVS_Test99.28 10699.31 8399.19 23599.35 24798.79 23799.36 9399.49 21899.17 14199.21 23999.67 13098.78 10199.66 32699.09 9299.66 22099.10 276
SR-MVS-dyc-post99.27 11099.11 12599.73 7099.54 17699.74 5699.26 12099.62 13799.16 14399.52 16999.64 14198.41 15299.91 10897.27 23799.61 23599.54 153
XVS99.27 11099.11 12599.75 5699.71 11199.71 6599.37 9099.61 14499.29 12098.76 29299.47 22998.47 14499.88 15797.62 21499.73 19199.67 65
OPM-MVS99.26 11299.13 11899.63 11199.70 11899.61 10298.58 24599.48 22098.50 21999.52 16999.63 15199.14 5599.76 28397.89 18799.77 17099.51 170
HFP-MVS99.25 11399.08 13699.76 4699.73 10499.70 7299.31 10499.59 16298.36 23399.36 20799.37 24798.80 9699.91 10897.43 22799.75 17599.68 58
HPM-MVScopyleft99.25 11399.07 14099.78 3799.81 5199.75 5099.61 5399.67 11197.72 27899.35 20999.25 27899.23 4699.92 9097.21 24599.82 14299.67 65
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
ACMMPcopyleft99.25 11399.08 13699.74 6299.79 6699.68 7999.50 6899.65 12698.07 25899.52 16999.69 11398.57 12899.92 9097.18 24799.79 16099.63 95
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
LS3D99.24 11699.11 12599.61 12398.38 34999.79 3699.57 6299.68 10699.61 7299.15 24899.71 10098.70 11199.91 10897.54 22099.68 20999.13 273
test117299.23 11799.05 14699.74 6299.52 18699.75 5099.20 13899.61 14498.97 16599.48 17799.58 18498.41 15299.91 10897.15 24999.55 24799.57 139
xiu_mvs_v1_base_debu99.23 11799.34 7798.91 26599.59 15198.23 27098.47 26099.66 11599.61 7299.68 10798.94 32699.39 2499.97 1799.18 7699.55 24798.51 326
xiu_mvs_v1_base99.23 11799.34 7798.91 26599.59 15198.23 27098.47 26099.66 11599.61 7299.68 10798.94 32699.39 2499.97 1799.18 7699.55 24798.51 326
xiu_mvs_v1_base_debi99.23 11799.34 7798.91 26599.59 15198.23 27098.47 26099.66 11599.61 7299.68 10798.94 32699.39 2499.97 1799.18 7699.55 24798.51 326
region2R99.23 11799.05 14699.77 4099.76 8499.70 7299.31 10499.59 16298.41 22799.32 21799.36 25298.73 11099.93 7197.29 23499.74 18499.67 65
ACMMPR99.23 11799.06 14299.76 4699.74 10199.69 7699.31 10499.59 16298.36 23399.35 20999.38 24698.61 12499.93 7197.43 22799.75 17599.67 65
XVG-ACMP-BASELINE99.23 11799.10 13399.63 11199.82 4499.58 11098.83 21899.72 9098.36 23399.60 14099.71 10098.92 8099.91 10897.08 25299.84 12399.40 214
CP-MVS99.23 11799.05 14699.75 5699.66 13699.66 8399.38 8699.62 13798.38 23199.06 26199.27 27398.79 9999.94 5797.51 22399.82 14299.66 75
DeepC-MVS_fast98.47 599.23 11799.12 12299.56 14099.28 27399.22 19098.99 19699.40 24799.08 15499.58 14599.64 14198.90 8599.83 23697.44 22699.75 17599.63 95
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ZNCC-MVS99.22 12699.04 15299.77 4099.76 8499.73 5999.28 11599.56 17898.19 25299.14 25099.29 26998.84 9199.92 9097.53 22299.80 15599.64 90
D2MVS99.22 12699.19 10899.29 21899.69 12198.74 23998.81 22399.41 24098.55 21399.68 10799.69 11398.13 18199.87 17098.82 11899.98 2199.24 246
LPG-MVS_test99.22 12699.05 14699.74 6299.82 4499.63 9499.16 15599.73 8197.56 28499.64 12199.69 11399.37 3199.89 14396.66 27599.87 10999.69 52
CDS-MVSNet99.22 12699.13 11899.50 15699.35 24799.11 20498.96 20399.54 18999.46 9899.61 13899.70 10796.31 26799.83 23699.34 5199.88 10099.55 145
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
test_040299.22 12699.14 11599.45 17399.79 6699.43 13999.28 11599.68 10699.54 8299.40 20399.56 19599.07 6599.82 24696.01 30299.96 4299.11 274
AllTest99.21 13199.07 14099.63 11199.78 7299.64 9099.12 16999.83 3298.63 20599.63 12599.72 9398.68 11399.75 28796.38 28999.83 13399.51 170
XVG-OURS99.21 13199.06 14299.65 10099.82 4499.62 9697.87 31699.74 7898.36 23399.66 11599.68 12499.71 999.90 12996.84 26599.88 10099.43 208
Fast-Effi-MVS+-dtu99.20 13399.12 12299.43 17999.25 27899.69 7699.05 18299.82 3799.50 8798.97 26599.05 30698.98 7399.98 798.20 16199.24 29798.62 318
VDD-MVS99.20 13399.11 12599.44 17599.43 22698.98 21799.50 6898.32 33599.80 3299.56 15599.69 11396.99 24999.85 20898.99 9999.73 19199.50 176
PGM-MVS99.20 13399.01 15899.77 4099.75 9599.71 6599.16 15599.72 9097.99 26299.42 19099.60 17698.81 9299.93 7196.91 25999.74 18499.66 75
SR-MVS99.19 13699.00 16199.74 6299.51 19199.72 6399.18 14499.60 15598.85 18399.47 17999.58 18498.38 15799.92 9096.92 25899.54 25399.57 139
SMA-MVScopyleft99.19 13699.00 16199.73 7099.46 21999.73 5999.13 16599.52 20697.40 29499.57 14899.64 14198.93 7999.83 23697.61 21699.79 16099.63 95
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
pmmvs599.19 13699.11 12599.42 18199.76 8498.88 23298.55 25199.73 8198.82 18799.72 9599.62 16096.56 25699.82 24699.32 5699.95 4999.56 142
mPP-MVS99.19 13699.00 16199.76 4699.76 8499.68 7999.38 8699.54 18998.34 24299.01 26399.50 21698.53 13799.93 7197.18 24799.78 16699.66 75
ETV-MVS99.18 14099.18 10999.16 23899.34 25799.28 17399.12 16999.79 5399.48 8998.93 26998.55 34699.40 2399.93 7198.51 13999.52 25798.28 336
VNet99.18 14099.06 14299.56 14099.24 28099.36 15899.33 9799.31 27099.67 5699.47 17999.57 19296.48 25999.84 22599.15 8399.30 28999.47 191
RPSCF99.18 14099.02 15599.64 10799.83 3899.85 1299.44 7899.82 3798.33 24399.50 17599.78 6697.90 19899.65 33396.78 26899.83 13399.44 202
DeepPCF-MVS98.42 699.18 14099.02 15599.67 8899.22 28299.75 5097.25 34399.47 22498.72 19999.66 11599.70 10799.29 3999.63 33698.07 17499.81 15099.62 106
EPP-MVSNet99.17 14499.00 16199.66 9599.80 5699.43 13999.70 2299.24 28799.48 8999.56 15599.77 7394.89 28499.93 7198.72 12899.89 9299.63 95
GST-MVS99.16 14598.96 17299.75 5699.73 10499.73 5999.20 13899.55 18498.22 24999.32 21799.35 25798.65 12099.91 10896.86 26299.74 18499.62 106
MVP-Stereo99.16 14599.08 13699.43 17999.48 20999.07 21299.08 17999.55 18498.63 20599.31 22199.68 12498.19 17799.78 27398.18 16599.58 24199.45 197
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
XVG-OURS-SEG-HR99.16 14598.99 16699.66 9599.84 3499.64 9098.25 27899.73 8198.39 23099.63 12599.43 23799.70 1199.90 12997.34 23198.64 32799.44 202
jason99.16 14599.11 12599.32 21299.75 9598.44 25998.26 27799.39 25098.70 20099.74 8999.30 26698.54 13399.97 1798.48 14099.82 14299.55 145
jason: jason.
DPE-MVScopyleft99.14 14998.92 17999.82 2399.57 16499.77 4198.74 23499.60 15598.55 21399.76 7599.69 11398.23 17399.92 9096.39 28899.75 17599.76 37
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MP-MVS-pluss99.14 14998.92 17999.80 2999.83 3899.83 2298.61 24199.63 13496.84 31599.44 18499.58 18498.81 9299.91 10897.70 20699.82 14299.67 65
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
pmmvs499.13 15199.06 14299.36 20499.57 16499.10 20898.01 30099.25 28498.78 19399.58 14599.44 23698.24 17099.76 28398.74 12699.93 7099.22 251
MVS_111021_LR99.13 15199.03 15499.42 18199.58 15499.32 16797.91 31599.73 8198.68 20199.31 22199.48 22499.09 6099.66 32697.70 20699.77 17099.29 240
EIA-MVS99.12 15399.01 15899.45 17399.36 24599.62 9699.34 9599.79 5398.41 22798.84 28298.89 33198.75 10799.84 22598.15 16999.51 25898.89 304
#test#99.12 15398.90 18399.76 4699.73 10499.70 7299.10 17299.59 16297.60 28399.36 20799.37 24798.80 9699.91 10896.84 26599.75 17599.68 58
TSAR-MVS + GP.99.12 15399.04 15299.38 19899.34 25799.16 19998.15 28499.29 27598.18 25399.63 12599.62 16099.18 5099.68 31798.20 16199.74 18499.30 237
MVS_111021_HR99.12 15399.02 15599.40 19199.50 19899.11 20497.92 31399.71 9398.76 19799.08 25799.47 22999.17 5199.54 34697.85 19499.76 17299.54 153
xxxxxxxxxxxxxcwj99.11 15798.96 17299.54 14799.53 18199.25 18198.29 27499.76 6699.07 15699.42 19099.61 16998.86 8899.87 17096.45 28699.68 20999.49 181
CANet99.11 15799.05 14699.28 22098.83 32998.56 25198.71 23999.41 24099.25 12899.23 23399.22 28597.66 22099.94 5799.19 7499.97 3099.33 231
WR-MVS99.11 15798.93 17599.66 9599.30 26899.42 14298.42 26699.37 25799.04 16199.57 14899.20 28996.89 25199.86 19098.66 13399.87 10999.70 49
PHI-MVS99.11 15798.95 17499.59 12799.13 29799.59 10799.17 14999.65 12697.88 27099.25 22999.46 23298.97 7599.80 26797.26 23999.82 14299.37 222
SF-MVS99.10 16198.93 17599.62 12099.58 15499.51 11999.13 16599.65 12697.97 26499.42 19099.61 16998.86 8899.87 17096.45 28699.68 20999.49 181
MSDG99.08 16298.98 16999.37 20199.60 14899.13 20297.54 32999.74 7898.84 18699.53 16799.55 20299.10 5899.79 27097.07 25399.86 11699.18 260
Effi-MVS+-dtu99.07 16398.92 17999.52 15098.89 32399.78 3999.15 15799.66 11599.34 11498.92 27299.24 28397.69 21399.98 798.11 17199.28 29198.81 311
Effi-MVS+99.06 16498.97 17099.34 20699.31 26498.98 21798.31 27399.91 998.81 18898.79 28898.94 32699.14 5599.84 22598.79 12098.74 32399.20 256
MP-MVScopyleft99.06 16498.83 19299.76 4699.76 8499.71 6599.32 10099.50 21398.35 23898.97 26599.48 22498.37 15899.92 9095.95 30899.75 17599.63 95
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MDA-MVSNet-bldmvs99.06 16499.05 14699.07 25099.80 5697.83 29298.89 20899.72 9099.29 12099.63 12599.70 10796.47 26099.89 14398.17 16799.82 14299.50 176
MSLP-MVS++99.05 16799.09 13498.91 26599.21 28498.36 26698.82 22299.47 22498.85 18398.90 27599.56 19598.78 10199.09 35998.57 13699.68 20999.26 243
1112_ss99.05 16798.84 19099.67 8899.66 13699.29 17198.52 25699.82 3797.65 28199.43 18899.16 29296.42 26299.91 10899.07 9499.84 12399.80 24
ACMP97.51 1499.05 16798.84 19099.67 8899.78 7299.55 11698.88 20999.66 11597.11 30999.47 17999.60 17699.07 6599.89 14396.18 29799.85 11999.58 133
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MSP-MVS99.04 17098.79 19799.81 2699.78 7299.73 5999.35 9499.57 17398.54 21699.54 16298.99 31696.81 25399.93 7196.97 25699.53 25599.77 33
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
PVSNet_BlendedMVS99.03 17199.01 15899.09 24699.54 17697.99 28598.58 24599.82 3797.62 28299.34 21299.71 10098.52 14099.77 28197.98 18099.97 3099.52 168
IS-MVSNet99.03 17198.85 18899.55 14399.80 5699.25 18199.73 1699.15 29899.37 11199.61 13899.71 10094.73 28799.81 26297.70 20699.88 10099.58 133
xiu_mvs_v2_base99.02 17399.11 12598.77 28299.37 24398.09 28198.13 28799.51 20999.47 9499.42 19098.54 34799.38 2999.97 1798.83 11699.33 28698.24 338
Fast-Effi-MVS+99.02 17398.87 18699.46 16999.38 24099.50 12099.04 18499.79 5397.17 30598.62 30198.74 33999.34 3599.95 4598.32 15199.41 27498.92 302
canonicalmvs99.02 17399.00 16199.09 24699.10 30598.70 24199.61 5399.66 11599.63 6798.64 30097.65 36099.04 6999.54 34698.79 12098.92 31299.04 290
MCST-MVS99.02 17398.81 19499.65 10099.58 15499.49 12198.58 24599.07 30298.40 22999.04 26299.25 27898.51 14299.80 26797.31 23399.51 25899.65 83
SD-MVS99.01 17799.30 8898.15 30799.50 19899.40 14798.94 20699.61 14499.22 13599.75 8099.82 4999.54 2195.51 36597.48 22499.87 10999.54 153
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
LF4IMVS99.01 17798.92 17999.27 22299.71 11199.28 17398.59 24499.77 6198.32 24499.39 20499.41 23998.62 12299.84 22596.62 27899.84 12398.69 315
IterMVS-SCA-FT99.00 17999.16 11198.51 29299.75 9595.90 33298.07 29599.84 3099.84 2399.89 2699.73 8796.01 27499.99 599.33 54100.00 199.63 95
MS-PatchMatch99.00 17998.97 17099.09 24699.11 30498.19 27398.76 23399.33 26498.49 22199.44 18499.58 18498.21 17499.69 30698.20 16199.62 22899.39 217
PS-MVSNAJ99.00 17999.08 13698.76 28399.37 24398.10 28098.00 30299.51 20999.47 9499.41 19898.50 34999.28 4199.97 1798.83 11699.34 28498.20 342
CNVR-MVS98.99 18298.80 19699.56 14099.25 27899.43 13998.54 25499.27 27998.58 21098.80 28799.43 23798.53 13799.70 30097.22 24499.59 24099.54 153
VDDNet98.97 18398.82 19399.42 18199.71 11198.81 23599.62 4798.68 31999.81 2999.38 20599.80 5494.25 29199.85 20898.79 12099.32 28799.59 128
IterMVS98.97 18399.16 11198.42 29699.74 10195.64 33598.06 29799.83 3299.83 2699.85 4099.74 8396.10 27399.99 599.27 65100.00 199.63 95
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
TinyColmap98.97 18398.93 17599.07 25099.46 21998.19 27397.75 32099.75 7398.79 19199.54 16299.70 10798.97 7599.62 33796.63 27799.83 13399.41 212
HPM-MVS++copyleft98.96 18698.70 20499.74 6299.52 18699.71 6598.86 21399.19 29498.47 22398.59 30499.06 30598.08 18599.91 10896.94 25799.60 23899.60 119
lupinMVS98.96 18698.87 18699.24 22999.57 16498.40 26298.12 28899.18 29598.28 24699.63 12599.13 29498.02 18999.97 1798.22 15999.69 20699.35 228
USDC98.96 18698.93 17599.05 25299.54 17697.99 28597.07 34999.80 4798.21 25099.75 8099.77 7398.43 14999.64 33597.90 18699.88 10099.51 170
YYNet198.95 18998.99 16698.84 27599.64 14097.14 31298.22 28099.32 26698.92 17599.59 14399.66 13497.40 22999.83 23698.27 15599.90 8499.55 145
MDA-MVSNet_test_wron98.95 18998.99 16698.85 27399.64 14097.16 31198.23 27999.33 26498.93 17399.56 15599.66 13497.39 23199.83 23698.29 15399.88 10099.55 145
Test_1112_low_res98.95 18998.73 19999.63 11199.68 13099.15 20198.09 29299.80 4797.14 30799.46 18299.40 24196.11 27299.89 14399.01 9899.84 12399.84 14
CANet_DTU98.91 19298.85 18899.09 24698.79 33598.13 27698.18 28199.31 27099.48 8998.86 28099.51 21396.56 25699.95 4599.05 9599.95 4999.19 258
HyFIR lowres test98.91 19298.64 20799.73 7099.85 3399.47 12498.07 29599.83 3298.64 20499.89 2699.60 17692.57 306100.00 199.33 5499.97 3099.72 43
HQP_MVS98.90 19498.68 20699.55 14399.58 15499.24 18698.80 22699.54 18998.94 17099.14 25099.25 27897.24 23799.82 24695.84 31199.78 16699.60 119
sss98.90 19498.77 19899.27 22299.48 20998.44 25998.72 23799.32 26697.94 26899.37 20699.35 25796.31 26799.91 10898.85 11599.63 22799.47 191
OMC-MVS98.90 19498.72 20099.44 17599.39 23799.42 14298.58 24599.64 13297.31 29999.44 18499.62 16098.59 12699.69 30696.17 29899.79 16099.22 251
ppachtmachnet_test98.89 19799.12 12298.20 30699.66 13695.24 33997.63 32599.68 10699.08 15499.78 6899.62 16098.65 12099.88 15798.02 17599.96 4299.48 186
MVS_030498.88 19898.71 20199.39 19498.85 32798.91 23099.45 7599.30 27398.56 21197.26 35099.68 12496.18 27199.96 3599.17 7999.94 6299.29 240
new_pmnet98.88 19898.89 18498.84 27599.70 11897.62 29998.15 28499.50 21397.98 26399.62 13299.54 20498.15 18099.94 5797.55 21999.84 12398.95 299
K. test v398.87 20098.60 21099.69 8599.93 1399.46 12899.74 1594.97 35999.78 3599.88 3299.88 2893.66 29899.97 1799.61 1899.95 4999.64 90
APD-MVScopyleft98.87 20098.59 21299.71 8099.50 19899.62 9699.01 18999.57 17396.80 31799.54 16299.63 15198.29 16699.91 10895.24 32599.71 20199.61 115
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
our_test_398.85 20299.09 13498.13 30899.66 13694.90 34297.72 32199.58 17199.07 15699.64 12199.62 16098.19 17799.93 7198.41 14399.95 4999.55 145
mvs-test198.83 20398.70 20499.22 23198.89 32399.65 8898.88 20999.66 11599.34 11498.29 31798.94 32697.69 21399.96 3598.11 17198.54 33198.04 346
UnsupCasMVSNet_eth98.83 20398.57 21699.59 12799.68 13099.45 13398.99 19699.67 11199.48 8999.55 16099.36 25294.92 28399.86 19098.95 10996.57 35699.45 197
NCCC98.82 20598.57 21699.58 13199.21 28499.31 16898.61 24199.25 28498.65 20398.43 31499.26 27697.86 20299.81 26296.55 27999.27 29499.61 115
PMVScopyleft92.94 2198.82 20598.81 19498.85 27399.84 3497.99 28599.20 13899.47 22499.71 4499.42 19099.82 4998.09 18399.47 35393.88 34499.85 11999.07 287
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
FMVSNet398.80 20798.63 20999.32 21299.13 29798.72 24099.10 17299.48 22099.23 13299.62 13299.64 14192.57 30699.86 19098.96 10599.90 8499.39 217
Patchmtry98.78 20898.54 22099.49 15998.89 32399.19 19799.32 10099.67 11199.65 6299.72 9599.79 6091.87 31599.95 4598.00 17999.97 3099.33 231
ETH3D-3000-0.198.77 20998.50 22499.59 12799.47 21499.53 11898.77 23199.60 15597.33 29899.23 23399.50 21697.91 19799.83 23695.02 32999.67 21699.41 212
Vis-MVSNet (Re-imp)98.77 20998.58 21599.34 20699.78 7298.88 23299.61 5399.56 17899.11 15399.24 23299.56 19593.00 30499.78 27397.43 22799.89 9299.35 228
CLD-MVS98.76 21198.57 21699.33 20899.57 16498.97 21997.53 33199.55 18496.41 32199.27 22799.13 29499.07 6599.78 27396.73 27199.89 9299.23 249
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
Anonymous20240521198.75 21298.46 22699.63 11199.34 25799.66 8399.47 7497.65 34499.28 12399.56 15599.50 21693.15 30199.84 22598.62 13499.58 24199.40 214
RRT_MVS98.75 21298.54 22099.41 18998.14 35898.61 24998.98 20099.66 11599.31 11999.84 4399.75 8091.98 31299.98 799.20 7299.95 4999.62 106
CPTT-MVS98.74 21498.44 22999.64 10799.61 14699.38 15299.18 14499.55 18496.49 32099.27 22799.37 24797.11 24599.92 9095.74 31599.67 21699.62 106
F-COLMAP98.74 21498.45 22799.62 12099.57 16499.47 12498.84 21699.65 12696.31 32498.93 26999.19 29197.68 21599.87 17096.52 28199.37 28199.53 158
N_pmnet98.73 21698.53 22299.35 20599.72 10898.67 24398.34 26994.65 36098.35 23899.79 6599.68 12498.03 18799.93 7198.28 15499.92 7499.44 202
cl_fuxian98.72 21798.71 20198.72 28599.12 29997.22 31097.68 32499.56 17898.90 17799.54 16299.48 22496.37 26699.73 29297.88 18899.88 10099.21 253
CL-MVSNet_2432*160098.71 21898.56 21999.15 24099.22 28298.66 24597.14 34699.51 20998.09 25799.54 16299.27 27396.87 25299.74 28998.43 14298.96 30999.03 291
PVSNet_Blended98.70 21998.59 21299.02 25499.54 17697.99 28597.58 32899.82 3795.70 33399.34 21298.98 31998.52 14099.77 28197.98 18099.83 13399.30 237
bset_n11_16_dypcd98.69 22098.45 22799.42 18199.69 12198.52 25496.06 35796.80 35299.71 4499.73 9399.54 20495.14 28299.96 3599.39 4599.95 4999.79 30
eth_miper_zixun_eth98.68 22198.71 20198.60 28999.10 30596.84 31997.52 33399.54 18998.94 17099.58 14599.48 22496.25 26999.76 28398.01 17899.93 7099.21 253
PatchMatch-RL98.68 22198.47 22599.30 21799.44 22499.28 17398.14 28699.54 18997.12 30899.11 25499.25 27897.80 20799.70 30096.51 28299.30 28998.93 301
miper_lstm_enhance98.65 22398.60 21098.82 28099.20 28797.33 30797.78 31999.66 11599.01 16299.59 14399.50 21694.62 28899.85 20898.12 17099.90 8499.26 243
test_part198.63 22498.26 24799.75 5699.40 23599.49 12199.67 3599.68 10699.86 1699.88 3299.86 3686.73 35299.93 7199.34 5199.97 3099.81 23
test_prior398.62 22598.34 24099.46 16999.35 24799.22 19097.95 30999.39 25097.87 27198.05 33099.05 30697.90 19899.69 30695.99 30499.49 26299.48 186
hse-mvs398.61 22698.34 24099.44 17599.60 14898.67 24399.27 11899.44 23399.68 5299.32 21799.49 22192.50 309100.00 199.24 6696.51 35799.65 83
CVMVSNet98.61 22698.88 18597.80 31699.58 15493.60 34999.26 12099.64 13299.66 6099.72 9599.67 13093.26 30099.93 7199.30 5999.81 15099.87 9
Patchmatch-RL test98.60 22898.36 23799.33 20899.77 8099.07 21298.27 27699.87 1898.91 17699.74 8999.72 9390.57 33299.79 27098.55 13799.85 11999.11 274
RPMNet98.60 22898.53 22298.83 27799.05 31098.12 27799.30 10799.62 13799.86 1699.16 24699.74 8392.53 30899.92 9098.75 12598.77 31998.44 331
AdaColmapbinary98.60 22898.35 23999.38 19899.12 29999.22 19098.67 24099.42 23997.84 27598.81 28599.27 27397.32 23599.81 26295.14 32699.53 25599.10 276
miper_ehance_all_eth98.59 23198.59 21298.59 29098.98 31697.07 31397.49 33499.52 20698.50 21999.52 16999.37 24796.41 26499.71 29897.86 19299.62 22899.00 297
WTY-MVS98.59 23198.37 23699.26 22499.43 22698.40 26298.74 23499.13 30198.10 25599.21 23999.24 28394.82 28599.90 12997.86 19298.77 31999.49 181
CNLPA98.57 23398.34 24099.28 22099.18 29199.10 20898.34 26999.41 24098.48 22298.52 30998.98 31997.05 24799.78 27395.59 31799.50 26098.96 298
testtj98.56 23498.17 25799.72 7699.45 22299.60 10498.88 20999.50 21396.88 31299.18 24599.48 22497.08 24699.92 9093.69 34599.38 27799.63 95
112198.56 23498.24 24899.52 15099.49 20399.24 18699.30 10799.22 28995.77 33198.52 30999.29 26997.39 23199.85 20895.79 31399.34 28499.46 195
CDPH-MVS98.56 23498.20 25299.61 12399.50 19899.46 12898.32 27299.41 24095.22 33899.21 23999.10 30298.34 16299.82 24695.09 32899.66 22099.56 142
UnsupCasMVSNet_bld98.55 23798.27 24699.40 19199.56 17499.37 15597.97 30899.68 10697.49 29099.08 25799.35 25795.41 28199.82 24697.70 20698.19 34099.01 296
cl-mvsnet____98.54 23898.41 23298.92 26399.03 31397.80 29497.46 33599.59 16298.90 17799.60 14099.46 23293.85 29599.78 27397.97 18299.89 9299.17 262
cl-mvsnet198.54 23898.42 23198.92 26399.03 31397.80 29497.46 33599.59 16298.90 17799.60 14099.46 23293.87 29499.78 27397.97 18299.89 9299.18 260
hse-mvs298.52 24098.30 24499.16 23899.29 27098.60 25098.77 23199.02 30699.68 5299.32 21799.04 30992.50 30999.85 20899.24 6697.87 34899.03 291
MG-MVS98.52 24098.39 23498.94 25999.15 29497.39 30698.18 28199.21 29398.89 18099.23 23399.63 15197.37 23399.74 28994.22 33899.61 23599.69 52
ETH3D cwj APD-0.1698.50 24298.16 25899.51 15399.04 31299.39 14998.47 26099.47 22496.70 31998.78 29099.33 26197.62 22399.86 19094.69 33499.38 27799.28 242
DP-MVS Recon98.50 24298.23 24999.31 21599.49 20399.46 12898.56 25099.63 13494.86 34498.85 28199.37 24797.81 20699.59 34396.08 29999.44 26898.88 305
CMPMVSbinary77.52 2398.50 24298.19 25599.41 18998.33 35199.56 11399.01 18999.59 16295.44 33599.57 14899.80 5495.64 27899.46 35596.47 28599.92 7499.21 253
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
114514_t98.49 24598.11 26099.64 10799.73 10499.58 11099.24 12899.76 6689.94 35799.42 19099.56 19597.76 21099.86 19097.74 20299.82 14299.47 191
PMMVS98.49 24598.29 24599.11 24498.96 31798.42 26197.54 32999.32 26697.53 28798.47 31398.15 35597.88 20199.82 24697.46 22599.24 29799.09 279
MVSTER98.47 24798.22 25099.24 22999.06 30998.35 26799.08 17999.46 22899.27 12499.75 8099.66 13488.61 34299.85 20899.14 8999.92 7499.52 168
LFMVS98.46 24898.19 25599.26 22499.24 28098.52 25499.62 4796.94 35199.87 1499.31 22199.58 18491.04 32399.81 26298.68 13299.42 27399.45 197
PatchT98.45 24998.32 24398.83 27798.94 31898.29 26899.24 12898.82 31499.84 2399.08 25799.76 7691.37 31899.94 5798.82 11899.00 30898.26 337
MIMVSNet98.43 25098.20 25299.11 24499.53 18198.38 26599.58 6198.61 32398.96 16899.33 21599.76 7690.92 32599.81 26297.38 23099.76 17299.15 266
PVSNet97.47 1598.42 25198.44 22998.35 29999.46 21996.26 32696.70 35499.34 26397.68 28099.00 26499.13 29497.40 22999.72 29497.59 21899.68 20999.08 282
CHOSEN 280x42098.41 25298.41 23298.40 29799.34 25795.89 33396.94 35199.44 23398.80 19099.25 22999.52 20993.51 29999.98 798.94 11099.98 2199.32 234
BH-RMVSNet98.41 25298.14 25999.21 23299.21 28498.47 25698.60 24398.26 33698.35 23898.93 26999.31 26497.20 24299.66 32694.32 33699.10 30299.51 170
QAPM98.40 25497.99 26599.65 10099.39 23799.47 12499.67 3599.52 20691.70 35498.78 29099.80 5498.55 13199.95 4594.71 33399.75 17599.53 158
API-MVS98.38 25598.39 23498.35 29998.83 32999.26 17799.14 15999.18 29598.59 20998.66 29998.78 33798.61 12499.57 34594.14 33999.56 24396.21 358
HQP-MVS98.36 25698.02 26499.39 19499.31 26498.94 22397.98 30599.37 25797.45 29198.15 32498.83 33496.67 25499.70 30094.73 33199.67 21699.53 158
PAPM_NR98.36 25698.04 26399.33 20899.48 20998.93 22798.79 22999.28 27897.54 28698.56 30798.57 34497.12 24499.69 30694.09 34098.90 31499.38 219
PLCcopyleft97.35 1698.36 25697.99 26599.48 16399.32 26399.24 18698.50 25899.51 20995.19 34098.58 30598.96 32496.95 25099.83 23695.63 31699.25 29599.37 222
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
train_agg98.35 25997.95 26999.57 13699.35 24799.35 16298.11 29099.41 24094.90 34297.92 33598.99 31698.02 18999.85 20895.38 32399.44 26899.50 176
CR-MVSNet98.35 25998.20 25298.83 27799.05 31098.12 27799.30 10799.67 11197.39 29599.16 24699.79 6091.87 31599.91 10898.78 12398.77 31998.44 331
agg_prior198.33 26197.92 27599.57 13699.35 24799.36 15897.99 30499.39 25094.85 34597.76 34498.98 31998.03 18799.85 20895.49 31999.44 26899.51 170
DPM-MVS98.28 26297.94 27399.32 21299.36 24599.11 20497.31 34198.78 31696.88 31298.84 28299.11 30197.77 20999.61 34194.03 34299.36 28299.23 249
alignmvs98.28 26297.96 26899.25 22799.12 29998.93 22799.03 18698.42 33199.64 6498.72 29597.85 35890.86 32899.62 33798.88 11499.13 30099.19 258
test_yl98.25 26497.95 26999.13 24299.17 29298.47 25699.00 19198.67 32198.97 16599.22 23799.02 31491.31 31999.69 30697.26 23998.93 31099.24 246
DCV-MVSNet98.25 26497.95 26999.13 24299.17 29298.47 25699.00 19198.67 32198.97 16599.22 23799.02 31491.31 31999.69 30697.26 23998.93 31099.24 246
MAR-MVS98.24 26697.92 27599.19 23598.78 33799.65 8899.17 14999.14 29995.36 33698.04 33298.81 33697.47 22699.72 29495.47 32199.06 30398.21 340
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
OpenMVScopyleft98.12 1098.23 26797.89 27999.26 22499.19 28999.26 17799.65 4499.69 10391.33 35598.14 32899.77 7398.28 16799.96 3595.41 32299.55 24798.58 322
BH-untuned98.22 26898.09 26198.58 29199.38 24097.24 30998.55 25198.98 30997.81 27699.20 24498.76 33897.01 24899.65 33394.83 33098.33 33598.86 307
HY-MVS98.23 998.21 26997.95 26998.99 25599.03 31398.24 26999.61 5398.72 31896.81 31698.73 29499.51 21394.06 29299.86 19096.91 25998.20 33898.86 307
EPNet98.13 27097.77 28399.18 23794.57 36697.99 28599.24 12897.96 33999.74 3997.29 34999.62 16093.13 30299.97 1798.59 13599.83 13399.58 133
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
SCA98.11 27198.36 23797.36 32799.20 28792.99 35298.17 28398.49 32998.24 24899.10 25699.57 19296.01 27499.94 5796.86 26299.62 22899.14 270
Patchmatch-test98.10 27297.98 26798.48 29499.27 27596.48 32399.40 8299.07 30298.81 18899.23 23399.57 19290.11 33699.87 17096.69 27299.64 22599.09 279
pmmvs398.08 27397.80 28098.91 26599.41 23297.69 29897.87 31699.66 11595.87 32999.50 17599.51 21390.35 33499.97 1798.55 13799.47 26599.08 282
JIA-IIPM98.06 27497.92 27598.50 29398.59 34497.02 31498.80 22698.51 32799.88 1397.89 33799.87 3191.89 31499.90 12998.16 16897.68 35098.59 320
miper_enhance_ethall98.03 27597.94 27398.32 30198.27 35296.43 32596.95 35099.41 24096.37 32399.43 18898.96 32494.74 28699.69 30697.71 20499.62 22898.83 310
TAPA-MVS97.92 1398.03 27597.55 28999.46 16999.47 21499.44 13598.50 25899.62 13786.79 35899.07 26099.26 27698.26 16999.62 33797.28 23699.73 19199.31 236
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
131498.00 27797.90 27898.27 30598.90 32097.45 30499.30 10799.06 30494.98 34197.21 35199.12 29998.43 14999.67 32295.58 31898.56 33097.71 350
GA-MVS97.99 27897.68 28698.93 26299.52 18698.04 28497.19 34599.05 30598.32 24498.81 28598.97 32289.89 33999.41 35698.33 15099.05 30499.34 230
MVS-HIRNet97.86 27998.22 25096.76 33599.28 27391.53 36198.38 26892.60 36599.13 14999.31 22199.96 1097.18 24399.68 31798.34 14999.83 13399.07 287
AUN-MVS97.82 28097.38 29199.14 24199.27 27598.53 25298.72 23799.02 30698.10 25597.18 35299.03 31389.26 34199.85 20897.94 18497.91 34699.03 291
FMVSNet597.80 28197.25 29599.42 18198.83 32998.97 21999.38 8699.80 4798.87 18199.25 22999.69 11380.60 36499.91 10898.96 10599.90 8499.38 219
ADS-MVSNet297.78 28297.66 28898.12 30999.14 29595.36 33799.22 13598.75 31796.97 31098.25 32099.64 14190.90 32699.94 5796.51 28299.56 24399.08 282
ETH3 D test640097.76 28397.19 29899.50 15699.38 24099.26 17798.34 26999.49 21892.99 35198.54 30899.20 28995.92 27699.82 24691.14 35299.66 22099.40 214
baseline197.73 28497.33 29298.96 25799.30 26897.73 29699.40 8298.42 33199.33 11799.46 18299.21 28791.18 32199.82 24698.35 14891.26 36299.32 234
tpmrst97.73 28498.07 26296.73 33798.71 34192.00 35699.10 17298.86 31198.52 21798.92 27299.54 20491.90 31399.82 24698.02 17599.03 30698.37 333
ADS-MVSNet97.72 28697.67 28797.86 31499.14 29594.65 34399.22 13598.86 31196.97 31098.25 32099.64 14190.90 32699.84 22596.51 28299.56 24399.08 282
PatchmatchNetpermissive97.65 28797.80 28097.18 33298.82 33292.49 35499.17 14998.39 33398.12 25498.79 28899.58 18490.71 33099.89 14397.23 24399.41 27499.16 264
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
tttt051797.62 28897.20 29798.90 27199.76 8497.40 30599.48 7294.36 36199.06 16099.70 10299.49 22184.55 35899.94 5798.73 12799.65 22399.36 225
EPNet_dtu97.62 28897.79 28297.11 33496.67 36392.31 35598.51 25798.04 33799.24 13095.77 35999.47 22993.78 29799.66 32698.98 10199.62 22899.37 222
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
wuyk23d97.58 29099.13 11892.93 34699.69 12199.49 12199.52 6699.77 6197.97 26499.96 899.79 6099.84 399.94 5795.85 31099.82 14279.36 361
cl-mvsnet297.56 29197.28 29398.40 29798.37 35096.75 32097.24 34499.37 25797.31 29999.41 19899.22 28587.30 34499.37 35797.70 20699.62 22899.08 282
PAPR97.56 29197.07 30099.04 25398.80 33498.11 27997.63 32599.25 28494.56 34898.02 33398.25 35497.43 22899.68 31790.90 35398.74 32399.33 231
thisisatest053097.45 29396.95 30498.94 25999.68 13097.73 29699.09 17694.19 36398.61 20899.56 15599.30 26684.30 35999.93 7198.27 15599.54 25399.16 264
TR-MVS97.44 29497.15 29998.32 30198.53 34697.46 30398.47 26097.91 34196.85 31498.21 32398.51 34896.42 26299.51 35192.16 34897.29 35297.98 347
tpmvs97.39 29597.69 28596.52 34098.41 34891.76 35899.30 10798.94 31097.74 27797.85 34099.55 20292.40 31199.73 29296.25 29498.73 32598.06 345
test0.0.03 197.37 29696.91 30798.74 28497.72 35997.57 30097.60 32797.36 35098.00 26099.21 23998.02 35690.04 33799.79 27098.37 14595.89 36098.86 307
OpenMVS_ROBcopyleft97.31 1797.36 29796.84 30898.89 27299.29 27099.45 13398.87 21299.48 22086.54 36099.44 18499.74 8397.34 23499.86 19091.61 34999.28 29197.37 354
RRT_test8_iter0597.35 29897.25 29597.63 32198.81 33393.13 35199.26 12099.89 1399.51 8699.83 4899.68 12479.03 36999.88 15799.53 2899.72 19799.89 8
BH-w/o97.20 29997.01 30297.76 31799.08 30895.69 33498.03 29998.52 32695.76 33297.96 33498.02 35695.62 27999.47 35392.82 34797.25 35398.12 344
test-LLR97.15 30096.95 30497.74 31998.18 35595.02 34097.38 33796.10 35398.00 26097.81 34198.58 34290.04 33799.91 10897.69 21298.78 31798.31 334
tpm97.15 30096.95 30497.75 31898.91 31994.24 34599.32 10097.96 33997.71 27998.29 31799.32 26286.72 35399.92 9098.10 17396.24 35999.09 279
E-PMN97.14 30297.43 29096.27 34298.79 33591.62 36095.54 35999.01 30899.44 10198.88 27699.12 29992.78 30599.68 31794.30 33799.03 30697.50 351
cascas96.99 30396.82 30997.48 32397.57 36295.64 33596.43 35699.56 17891.75 35397.13 35397.61 36195.58 28098.63 36296.68 27399.11 30198.18 343
thisisatest051596.98 30496.42 31198.66 28899.42 23197.47 30297.27 34294.30 36297.24 30199.15 24898.86 33385.01 35699.87 17097.10 25199.39 27698.63 317
EMVS96.96 30597.28 29395.99 34598.76 33991.03 36395.26 36098.61 32399.34 11498.92 27298.88 33293.79 29699.66 32692.87 34699.05 30497.30 355
dp96.86 30697.07 30096.24 34398.68 34390.30 36799.19 14398.38 33497.35 29798.23 32299.59 18287.23 34599.82 24696.27 29398.73 32598.59 320
baseline296.83 30796.28 31398.46 29599.09 30796.91 31798.83 21893.87 36497.23 30296.23 35898.36 35188.12 34399.90 12996.68 27398.14 34298.57 323
ET-MVSNet_ETH3D96.78 30896.07 31798.91 26599.26 27797.92 29197.70 32396.05 35697.96 26792.37 36498.43 35087.06 34699.90 12998.27 15597.56 35198.91 303
tpm cat196.78 30896.98 30396.16 34498.85 32790.59 36699.08 17999.32 26692.37 35297.73 34699.46 23291.15 32299.69 30696.07 30098.80 31698.21 340
PCF-MVS96.03 1896.73 31095.86 32199.33 20899.44 22499.16 19996.87 35299.44 23386.58 35998.95 26799.40 24194.38 29099.88 15787.93 35799.80 15598.95 299
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
CostFormer96.71 31196.79 31096.46 34198.90 32090.71 36599.41 8198.68 31994.69 34798.14 32899.34 26086.32 35599.80 26797.60 21798.07 34498.88 305
MVEpermissive92.54 2296.66 31296.11 31698.31 30399.68 13097.55 30197.94 31195.60 35899.37 11190.68 36598.70 34096.56 25698.61 36386.94 36299.55 24798.77 313
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
thres600view796.60 31396.16 31597.93 31299.63 14296.09 33099.18 14497.57 34598.77 19498.72 29597.32 36487.04 34799.72 29488.57 35598.62 32897.98 347
EPMVS96.53 31496.32 31297.17 33398.18 35592.97 35399.39 8489.95 36798.21 25098.61 30299.59 18286.69 35499.72 29496.99 25599.23 29998.81 311
thres40096.40 31595.89 31997.92 31399.58 15496.11 32899.00 19197.54 34898.43 22498.52 30996.98 36786.85 34999.67 32287.62 35898.51 33297.98 347
thres100view90096.39 31696.03 31897.47 32499.63 14295.93 33199.18 14497.57 34598.75 19898.70 29797.31 36587.04 34799.67 32287.62 35898.51 33296.81 356
tpm296.35 31796.22 31496.73 33798.88 32691.75 35999.21 13798.51 32793.27 35097.89 33799.21 28784.83 35799.70 30096.04 30198.18 34198.75 314
FPMVS96.32 31895.50 32698.79 28199.60 14898.17 27598.46 26598.80 31597.16 30696.28 35599.63 15182.19 36099.09 35988.45 35698.89 31599.10 276
tfpn200view996.30 31995.89 31997.53 32299.58 15496.11 32899.00 19197.54 34898.43 22498.52 30996.98 36786.85 34999.67 32287.62 35898.51 33296.81 356
TESTMET0.1,196.24 32095.84 32297.41 32698.24 35393.84 34897.38 33795.84 35798.43 22497.81 34198.56 34579.77 36599.89 14397.77 19998.77 31998.52 325
test-mter96.23 32195.73 32497.74 31998.18 35595.02 34097.38 33796.10 35397.90 26997.81 34198.58 34279.12 36899.91 10897.69 21298.78 31798.31 334
X-MVStestdata96.09 32294.87 33299.75 5699.71 11199.71 6599.37 9099.61 14499.29 12098.76 29261.30 37098.47 14499.88 15797.62 21499.73 19199.67 65
thres20096.09 32295.68 32597.33 32999.48 20996.22 32798.53 25597.57 34598.06 25998.37 31696.73 36986.84 35199.61 34186.99 36198.57 32996.16 359
DWT-MVSNet_test96.03 32495.80 32396.71 33998.50 34791.93 35799.25 12797.87 34295.99 32896.81 35497.61 36181.02 36299.66 32697.20 24697.98 34598.54 324
KD-MVS_2432*160095.89 32595.41 32897.31 33094.96 36493.89 34697.09 34799.22 28997.23 30298.88 27699.04 30979.23 36699.54 34696.24 29596.81 35498.50 329
miper_refine_blended95.89 32595.41 32897.31 33094.96 36493.89 34697.09 34799.22 28997.23 30298.88 27699.04 30979.23 36699.54 34696.24 29596.81 35498.50 329
gg-mvs-nofinetune95.87 32795.17 33197.97 31198.19 35496.95 31599.69 2889.23 36899.89 1196.24 35799.94 1281.19 36199.51 35193.99 34398.20 33897.44 352
PVSNet_095.53 1995.85 32895.31 33097.47 32498.78 33793.48 35095.72 35899.40 24796.18 32697.37 34797.73 35995.73 27799.58 34495.49 31981.40 36399.36 225
tmp_tt95.75 32995.42 32796.76 33589.90 36894.42 34498.86 21397.87 34278.01 36199.30 22599.69 11397.70 21195.89 36499.29 6298.14 34299.95 1
MVS95.72 33094.63 33498.99 25598.56 34597.98 29099.30 10798.86 31172.71 36397.30 34899.08 30398.34 16299.74 28989.21 35498.33 33599.26 243
PAPM95.61 33194.71 33398.31 30399.12 29996.63 32196.66 35598.46 33090.77 35696.25 35698.68 34193.01 30399.69 30681.60 36397.86 34998.62 318
IB-MVS95.41 2095.30 33294.46 33597.84 31598.76 33995.33 33897.33 34096.07 35596.02 32795.37 36297.41 36376.17 37099.96 3597.54 22095.44 36198.22 339
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
test_method91.72 33392.32 33689.91 34793.49 36770.18 36990.28 36199.56 17861.71 36495.39 36199.52 20993.90 29399.94 5798.76 12498.27 33799.62 106
test12329.31 33433.05 33918.08 34825.93 37012.24 37097.53 33110.93 37111.78 36524.21 36650.08 37421.04 3718.60 36623.51 36432.43 36533.39 362
testmvs28.94 33533.33 33715.79 34926.03 3699.81 37196.77 35315.67 37011.55 36623.87 36750.74 37319.03 3728.53 36723.21 36533.07 36429.03 363
cdsmvs_eth3d_5k24.88 33633.17 3380.00 3500.00 3710.00 3720.00 36299.62 1370.00 3670.00 36899.13 29499.82 40.00 3680.00 3660.00 3660.00 364
pcd_1.5k_mvsjas16.61 33722.14 3400.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 368100.00 199.28 410.00 3680.00 3660.00 3660.00 364
uanet_test8.33 33811.11 3410.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 368100.00 10.00 3730.00 3680.00 3660.00 3660.00 364
sosnet-low-res8.33 33811.11 3410.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 368100.00 10.00 3730.00 3680.00 3660.00 3660.00 364
sosnet8.33 33811.11 3410.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 368100.00 10.00 3730.00 3680.00 3660.00 3660.00 364
uncertanet8.33 33811.11 3410.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 368100.00 10.00 3730.00 3680.00 3660.00 3660.00 364
Regformer8.33 33811.11 3410.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 368100.00 10.00 3730.00 3680.00 3660.00 3660.00 364
uanet8.33 33811.11 3410.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 368100.00 10.00 3730.00 3680.00 3660.00 3660.00 364
ab-mvs-re8.26 34411.02 3470.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 36899.16 2920.00 3730.00 3680.00 3660.00 3660.00 364
ZD-MVS99.43 22699.61 10299.43 23796.38 32299.11 25499.07 30497.86 20299.92 9094.04 34199.49 262
RE-MVS-def99.13 11899.54 17699.74 5699.26 12099.62 13799.16 14399.52 16999.64 14198.57 12897.27 23799.61 23599.54 153
IU-MVS99.69 12199.77 4199.22 28997.50 28999.69 10597.75 20199.70 20399.77 33
OPU-MVS99.29 21899.12 29999.44 13599.20 13899.40 24199.00 7198.84 36196.54 28099.60 23899.58 133
test_241102_TWO99.54 18999.13 14999.76 7599.63 15198.32 16599.92 9097.85 19499.69 20699.75 40
test_241102_ONE99.69 12199.82 2699.54 18999.12 15299.82 5099.49 22198.91 8299.52 350
9.1498.64 20799.45 22298.81 22399.60 15597.52 28899.28 22699.56 19598.53 13799.83 23695.36 32499.64 225
save fliter99.53 18199.25 18198.29 27499.38 25699.07 156
test_0728_THIRD99.18 13899.62 13299.61 16998.58 12799.91 10897.72 20399.80 15599.77 33
test_0728_SECOND99.83 2199.70 11899.79 3699.14 15999.61 14499.92 9097.88 18899.72 19799.77 33
test072699.69 12199.80 3499.24 12899.57 17399.16 14399.73 9399.65 13998.35 160
GSMVS99.14 270
test_part299.62 14599.67 8199.55 160
sam_mvs190.81 32999.14 270
sam_mvs90.52 333
ambc99.20 23499.35 24798.53 25299.17 14999.46 22899.67 11199.80 5498.46 14799.70 30097.92 18599.70 20399.38 219
MTGPAbinary99.53 198
test_post199.14 15951.63 37289.54 34099.82 24696.86 262
test_post52.41 37190.25 33599.86 190
patchmatchnet-post99.62 16090.58 33199.94 57
GG-mvs-BLEND97.36 32797.59 36096.87 31899.70 2288.49 36994.64 36397.26 36680.66 36399.12 35891.50 35096.50 35896.08 360
MTMP99.09 17698.59 325
gm-plane-assit97.59 36089.02 36893.47 34998.30 35299.84 22596.38 289
test9_res95.10 32799.44 26899.50 176
TEST999.35 24799.35 16298.11 29099.41 24094.83 34697.92 33598.99 31698.02 18999.85 208
test_899.34 25799.31 16898.08 29499.40 24794.90 34297.87 33998.97 32298.02 18999.84 225
agg_prior294.58 33599.46 26799.50 176
agg_prior99.35 24799.36 15899.39 25097.76 34499.85 208
TestCases99.63 11199.78 7299.64 9099.83 3298.63 20599.63 12599.72 9398.68 11399.75 28796.38 28999.83 13399.51 170
test_prior499.19 19798.00 302
test_prior297.95 30997.87 27198.05 33099.05 30697.90 19895.99 30499.49 262
test_prior99.46 16999.35 24799.22 19099.39 25099.69 30699.48 186
旧先验297.94 31195.33 33798.94 26899.88 15796.75 269
新几何298.04 298
新几何199.52 15099.50 19899.22 19099.26 28195.66 33498.60 30399.28 27197.67 21699.89 14395.95 30899.32 28799.45 197
旧先验199.49 20399.29 17199.26 28199.39 24597.67 21699.36 28299.46 195
无先验98.01 30099.23 28895.83 33099.85 20895.79 31399.44 202
原ACMM297.92 313
原ACMM199.37 20199.47 21498.87 23499.27 27996.74 31898.26 31999.32 26297.93 19699.82 24695.96 30799.38 27799.43 208
test22299.51 19199.08 21197.83 31899.29 27595.21 33998.68 29899.31 26497.28 23699.38 27799.43 208
testdata299.89 14395.99 304
segment_acmp98.37 158
testdata99.42 18199.51 19198.93 22799.30 27396.20 32598.87 27999.40 24198.33 16499.89 14396.29 29299.28 29199.44 202
testdata197.72 32197.86 274
test1299.54 14799.29 27099.33 16599.16 29798.43 31497.54 22499.82 24699.47 26599.48 186
plane_prior799.58 15499.38 152
plane_prior699.47 21499.26 17797.24 237
plane_prior599.54 18999.82 24695.84 31199.78 16699.60 119
plane_prior499.25 278
plane_prior399.31 16898.36 23399.14 250
plane_prior298.80 22698.94 170
plane_prior199.51 191
plane_prior99.24 18698.42 26697.87 27199.71 201
n20.00 372
nn0.00 372
door-mid99.83 32
lessismore_v099.64 10799.86 3099.38 15290.66 36699.89 2699.83 4394.56 28999.97 1799.56 2599.92 7499.57 139
LGP-MVS_train99.74 6299.82 4499.63 9499.73 8197.56 28499.64 12199.69 11399.37 3199.89 14396.66 27599.87 10999.69 52
test1199.29 275
door99.77 61
HQP5-MVS98.94 223
HQP-NCC99.31 26497.98 30597.45 29198.15 324
ACMP_Plane99.31 26497.98 30597.45 29198.15 324
BP-MVS94.73 331
HQP4-MVS98.15 32499.70 30099.53 158
HQP3-MVS99.37 25799.67 216
HQP2-MVS96.67 254
NP-MVS99.40 23599.13 20298.83 334
MDTV_nov1_ep13_2view91.44 36299.14 15997.37 29699.21 23991.78 31796.75 26999.03 291
MDTV_nov1_ep1397.73 28498.70 34290.83 36499.15 15798.02 33898.51 21898.82 28499.61 16990.98 32499.66 32696.89 26198.92 312
ACMMP++_ref99.94 62
ACMMP++99.79 160
Test By Simon98.41 152
ITE_SJBPF99.38 19899.63 14299.44 13599.73 8198.56 21199.33 21599.53 20798.88 8799.68 31796.01 30299.65 22399.02 295
DeepMVS_CXcopyleft97.98 31099.69 12196.95 31599.26 28175.51 36295.74 36098.28 35396.47 26099.62 33791.23 35197.89 34797.38 353