This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.95 199.95 199.95 199.99 199.99 199.95 299.97 1399.99 1100.00 199.98 1099.78 13100.00 199.92 14100.00 199.87 20
mvs_tets99.90 299.90 399.90 599.96 599.79 4499.72 3099.88 3499.92 1899.98 1299.93 1799.94 299.98 1599.77 27100.00 199.92 12
test_vis3_rt99.89 399.90 399.87 1599.98 399.75 6399.70 35100.00 199.73 64100.00 199.89 3199.79 1299.88 17899.98 1100.00 199.98 1
jajsoiax99.89 399.89 599.89 899.96 599.78 4799.70 3599.86 3999.89 2699.98 1299.90 2799.94 299.98 1599.75 28100.00 199.90 13
ANet_high99.88 599.87 999.91 299.99 199.91 499.65 59100.00 199.90 20100.00 199.97 1199.61 2599.97 2799.75 28100.00 199.84 25
LTVRE_ROB99.19 199.88 599.87 999.88 1299.91 2899.90 799.96 199.92 2299.90 2099.97 1599.87 4399.81 1099.95 5799.54 4899.99 1499.80 35
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
pmmvs699.86 799.86 1199.83 2599.94 1699.90 799.83 699.91 2599.85 4099.94 2599.95 1399.73 1699.90 14799.65 3499.97 4699.69 72
mvsany_test399.85 899.88 699.75 6499.95 1399.37 16899.53 8599.98 999.77 6299.99 799.95 1399.85 699.94 7099.95 1099.98 3399.94 9
UniMVSNet_ETH3D99.85 899.83 1699.90 599.89 3599.91 499.89 499.71 11499.93 1699.95 2399.89 3199.71 1799.96 4899.51 5399.97 4699.84 25
test_fmvsmvis_n_192099.84 1099.86 1199.81 3199.88 4099.55 12899.17 17599.98 999.99 199.96 1799.84 5799.96 199.99 799.96 899.99 1499.88 18
test_fmvsm_n_192099.84 1099.85 1499.83 2599.82 6399.70 8499.17 17599.97 1399.99 199.96 1799.82 6699.94 2100.00 199.95 10100.00 199.80 35
PS-MVSNAJss99.84 1099.82 1799.89 899.96 599.77 5099.68 4599.85 4499.95 1099.98 1299.92 2199.28 5799.98 1599.75 28100.00 199.94 9
test_djsdf99.84 1099.81 1899.91 299.94 1699.84 2499.77 1599.80 6899.73 6499.97 1599.92 2199.77 1499.98 1599.43 61100.00 199.90 13
test_fmvs399.83 1499.93 299.53 16399.96 598.62 26199.67 49100.00 199.95 10100.00 199.95 1399.85 699.99 799.98 199.99 1499.98 1
v7n99.82 1599.80 2099.88 1299.96 599.84 2499.82 899.82 5799.84 4399.94 2599.91 2499.13 7799.96 4899.83 2299.99 1499.83 29
anonymousdsp99.80 1699.77 2499.90 599.96 599.88 1299.73 2799.85 4499.70 7599.92 3299.93 1799.45 3899.97 2799.36 74100.00 199.85 24
pm-mvs199.79 1799.79 2199.78 4499.91 2899.83 2999.76 1999.87 3699.73 6499.89 4599.87 4399.63 2299.87 19299.54 4899.92 9699.63 116
sd_testset99.78 1899.78 2399.80 3699.80 7699.76 5899.80 1099.79 7499.97 699.89 4599.89 3199.53 3499.99 799.36 7499.96 6199.65 101
UA-Net99.78 1899.76 2799.86 1899.72 13099.71 7799.91 399.95 2199.96 899.71 12399.91 2499.15 7299.97 2799.50 55100.00 199.90 13
TransMVSNet (Re)99.78 1899.77 2499.81 3199.91 2899.85 1999.75 2299.86 3999.70 7599.91 3599.89 3199.60 2799.87 19299.59 3999.74 20899.71 65
SDMVSNet99.77 2199.77 2499.76 5499.80 7699.65 10099.63 6199.86 3999.97 699.89 4599.89 3199.52 3599.99 799.42 6699.96 6199.65 101
test_cas_vis1_n_192099.76 2299.86 1199.45 18199.93 2398.40 27399.30 13399.98 999.94 1499.99 799.89 3199.80 1199.97 2799.96 899.97 4699.97 3
test_f99.75 2399.88 699.37 20999.96 598.21 28599.51 89100.00 199.94 14100.00 199.93 1799.58 2899.94 7099.97 499.99 1499.97 3
OurMVSNet-221017-099.75 2399.71 2999.84 2399.96 599.83 2999.83 699.85 4499.80 5399.93 2899.93 1798.54 15399.93 8799.59 3999.98 3399.76 55
Vis-MVSNetpermissive99.75 2399.74 2899.79 4199.88 4099.66 9599.69 4299.92 2299.67 8499.77 9699.75 10999.61 2599.98 1599.35 7799.98 3399.72 62
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
mvsmamba99.74 2699.70 3099.85 2099.93 2399.83 2999.76 1999.81 6699.96 899.91 3599.81 7298.60 14499.94 7099.58 4299.98 3399.77 49
test_vis1_n_192099.72 2799.88 699.27 23599.93 2397.84 30999.34 120100.00 199.99 199.99 799.82 6699.87 599.99 799.97 499.99 1499.97 3
test_fmvs299.72 2799.85 1499.34 21699.91 2898.08 29899.48 95100.00 199.90 2099.99 799.91 2499.50 3799.98 1599.98 199.99 1499.96 6
TDRefinement99.72 2799.70 3099.77 4799.90 3399.85 1999.86 599.92 2299.69 7899.78 9199.92 2199.37 4799.88 17898.93 13799.95 7499.60 141
XXY-MVS99.71 3099.67 3899.81 3199.89 3599.72 7599.59 7499.82 5799.39 13499.82 7299.84 5799.38 4599.91 12999.38 6999.93 9299.80 35
bld_raw_dy_0_6499.70 3199.65 4199.85 2099.95 1399.77 5099.66 5399.71 11499.95 1099.91 3599.77 10098.35 181100.00 199.54 4899.99 1499.79 42
nrg03099.70 3199.66 3999.82 2899.76 10799.84 2499.61 6899.70 12099.93 1699.78 9199.68 15499.10 7899.78 29299.45 5999.96 6199.83 29
FC-MVSNet-test99.70 3199.65 4199.86 1899.88 4099.86 1899.72 3099.78 8099.90 2099.82 7299.83 5998.45 16899.87 19299.51 5399.97 4699.86 22
GeoE99.69 3499.66 3999.78 4499.76 10799.76 5899.60 7399.82 5799.46 12199.75 10599.56 22399.63 2299.95 5799.43 6199.88 12499.62 127
v1099.69 3499.69 3499.66 10699.81 7199.39 16399.66 5399.75 9399.60 10499.92 3299.87 4398.75 12399.86 21099.90 1599.99 1499.73 60
EC-MVSNet99.69 3499.69 3499.68 9699.71 13399.91 499.76 1999.96 1899.86 3599.51 20199.39 27099.57 2999.93 8799.64 3699.86 14399.20 273
test_vis1_n99.68 3799.79 2199.36 21399.94 1698.18 28899.52 86100.00 199.86 35100.00 199.88 3998.99 9399.96 4899.97 499.96 6199.95 7
test_fmvs1_n99.68 3799.81 1899.28 23299.95 1397.93 30799.49 94100.00 199.82 4899.99 799.89 3199.21 6699.98 1599.97 499.98 3399.93 11
CS-MVS-test99.68 3799.70 3099.64 11899.57 19199.83 2999.78 1299.97 1399.92 1899.50 20399.38 27299.57 2999.95 5799.69 3199.90 10699.15 284
v899.68 3799.69 3499.65 11199.80 7699.40 16199.66 5399.76 8899.64 9299.93 2899.85 5298.66 13699.84 24199.88 1999.99 1499.71 65
DTE-MVSNet99.68 3799.61 5199.88 1299.80 7699.87 1599.67 4999.71 11499.72 6899.84 6799.78 9398.67 13499.97 2799.30 8799.95 7499.80 35
casdiffmvs_mvgpermissive99.68 3799.68 3799.69 9499.81 7199.59 11899.29 14099.90 2899.71 7099.79 8799.73 11699.54 3299.84 24199.36 7499.96 6199.65 101
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CS-MVS99.67 4399.70 3099.58 14699.53 21199.84 2499.79 1199.96 1899.90 2099.61 16499.41 26299.51 3699.95 5799.66 3399.89 11598.96 318
RRT_MVS99.67 4399.59 5699.91 299.94 1699.88 1299.78 1299.27 29199.87 3299.91 3599.87 4398.04 21099.96 4899.68 3299.99 1499.90 13
VPA-MVSNet99.66 4599.62 4799.79 4199.68 15399.75 6399.62 6399.69 12699.85 4099.80 8299.81 7298.81 11199.91 12999.47 5799.88 12499.70 68
PS-CasMVS99.66 4599.58 6099.89 899.80 7699.85 1999.66 5399.73 10299.62 9599.84 6799.71 13098.62 14099.96 4899.30 8799.96 6199.86 22
PEN-MVS99.66 4599.59 5699.89 899.83 5699.87 1599.66 5399.73 10299.70 7599.84 6799.73 11698.56 15099.96 4899.29 9099.94 8599.83 29
FMVSNet199.66 4599.63 4699.73 7899.78 9599.77 5099.68 4599.70 12099.67 8499.82 7299.83 5998.98 9599.90 14799.24 9499.97 4699.53 177
MIMVSNet199.66 4599.62 4799.80 3699.94 1699.87 1599.69 4299.77 8399.78 5899.93 2899.89 3197.94 21899.92 10799.65 3499.98 3399.62 127
FIs99.65 5099.58 6099.84 2399.84 5299.85 1999.66 5399.75 9399.86 3599.74 11399.79 8698.27 19199.85 22799.37 7299.93 9299.83 29
testf199.63 5199.60 5499.72 8499.94 1699.95 299.47 9899.89 3099.43 12999.88 5399.80 7699.26 6199.90 14798.81 14499.88 12499.32 248
APD_test299.63 5199.60 5499.72 8499.94 1699.95 299.47 9899.89 3099.43 12999.88 5399.80 7699.26 6199.90 14798.81 14499.88 12499.32 248
tt080599.63 5199.57 6399.81 3199.87 4599.88 1299.58 7698.70 33399.72 6899.91 3599.60 20399.43 3999.81 28099.81 2599.53 27799.73 60
KD-MVS_self_test99.63 5199.59 5699.76 5499.84 5299.90 799.37 11599.79 7499.83 4699.88 5399.85 5298.42 17299.90 14799.60 3899.73 21399.49 200
casdiffmvspermissive99.63 5199.61 5199.67 9999.79 8899.59 11899.13 19199.85 4499.79 5699.76 9899.72 12399.33 5299.82 26599.21 9799.94 8599.59 148
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline99.63 5199.62 4799.66 10699.80 7699.62 10899.44 10399.80 6899.71 7099.72 11899.69 14399.15 7299.83 25699.32 8399.94 8599.53 177
Anonymous2023121199.62 5799.57 6399.76 5499.61 17099.60 11699.81 999.73 10299.82 4899.90 4199.90 2797.97 21799.86 21099.42 6699.96 6199.80 35
DeepC-MVS98.90 499.62 5799.61 5199.67 9999.72 13099.44 14899.24 15599.71 11499.27 14899.93 2899.90 2799.70 1999.93 8798.99 12599.99 1499.64 111
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
dcpmvs_299.61 5999.64 4599.53 16399.79 8898.82 24299.58 7699.97 1399.95 1099.96 1799.76 10498.44 16999.99 799.34 7899.96 6199.78 45
WR-MVS_H99.61 5999.53 7399.87 1599.80 7699.83 2999.67 4999.75 9399.58 10799.85 6499.69 14398.18 20299.94 7099.28 9299.95 7499.83 29
ACMH98.42 699.59 6199.54 6999.72 8499.86 4899.62 10899.56 8199.79 7498.77 22099.80 8299.85 5299.64 2199.85 22798.70 15599.89 11599.70 68
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
v119299.57 6299.57 6399.57 15299.77 10399.22 20099.04 21199.60 17699.18 16399.87 6199.72 12399.08 8399.85 22799.89 1899.98 3399.66 93
EG-PatchMatch MVS99.57 6299.56 6899.62 13499.77 10399.33 17899.26 14799.76 8899.32 14299.80 8299.78 9399.29 5599.87 19299.15 10999.91 10599.66 93
Gipumacopyleft99.57 6299.59 5699.49 17099.98 399.71 7799.72 3099.84 5099.81 5099.94 2599.78 9398.91 10399.71 31798.41 16999.95 7499.05 309
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
v192192099.56 6599.57 6399.55 15899.75 11899.11 21399.05 20999.61 16499.15 17499.88 5399.71 13099.08 8399.87 19299.90 1599.97 4699.66 93
v124099.56 6599.58 6099.51 16799.80 7699.00 22499.00 22099.65 14699.15 17499.90 4199.75 10999.09 8099.88 17899.90 1599.96 6199.67 84
V4299.56 6599.54 6999.63 12599.79 8899.46 14199.39 10999.59 18299.24 15499.86 6299.70 13798.55 15199.82 26599.79 2699.95 7499.60 141
v14419299.55 6899.54 6999.58 14699.78 9599.20 20599.11 19799.62 15799.18 16399.89 4599.72 12398.66 13699.87 19299.88 1999.97 4699.66 93
test20.0399.55 6899.54 6999.58 14699.79 8899.37 16899.02 21699.89 3099.60 10499.82 7299.62 18698.81 11199.89 16499.43 6199.86 14399.47 208
v114499.54 7099.53 7399.59 14299.79 8899.28 18699.10 19999.61 16499.20 16199.84 6799.73 11698.67 13499.84 24199.86 2199.98 3399.64 111
CP-MVSNet99.54 7099.43 8899.87 1599.76 10799.82 3599.57 7999.61 16499.54 10899.80 8299.64 16997.79 22999.95 5799.21 9799.94 8599.84 25
TranMVSNet+NR-MVSNet99.54 7099.47 7799.76 5499.58 18199.64 10299.30 13399.63 15499.61 9899.71 12399.56 22398.76 12199.96 4899.14 11599.92 9699.68 78
patch_mono-299.51 7399.46 8199.64 11899.70 14199.11 21399.04 21199.87 3699.71 7099.47 20799.79 8698.24 19399.98 1599.38 6999.96 6199.83 29
v2v48299.50 7499.47 7799.58 14699.78 9599.25 19399.14 18599.58 19299.25 15299.81 7999.62 18698.24 19399.84 24199.83 2299.97 4699.64 111
ACMH+98.40 899.50 7499.43 8899.71 8999.86 4899.76 5899.32 12599.77 8399.53 11099.77 9699.76 10499.26 6199.78 29297.77 22399.88 12499.60 141
Baseline_NR-MVSNet99.49 7699.37 9799.82 2899.91 2899.84 2498.83 24399.86 3999.68 8099.65 14499.88 3997.67 23699.87 19299.03 12299.86 14399.76 55
TAMVS99.49 7699.45 8399.63 12599.48 23499.42 15599.45 10199.57 19499.66 8899.78 9199.83 5997.85 22599.86 21099.44 6099.96 6199.61 137
test_fmvs199.48 7899.65 4198.97 27399.54 20597.16 33099.11 19799.98 999.78 5899.96 1799.81 7298.72 12899.97 2799.95 1099.97 4699.79 42
pmmvs-eth3d99.48 7899.47 7799.51 16799.77 10399.41 16098.81 24899.66 13799.42 13399.75 10599.66 16299.20 6799.76 30298.98 12799.99 1499.36 239
EI-MVSNet-UG-set99.48 7899.50 7599.42 19099.57 19198.65 25899.24 15599.46 24499.68 8099.80 8299.66 16298.99 9399.89 16499.19 10199.90 10699.72 62
APDe-MVS99.48 7899.36 10099.85 2099.55 20399.81 3899.50 9099.69 12698.99 18999.75 10599.71 13098.79 11699.93 8798.46 16799.85 14799.80 35
PMMVS299.48 7899.45 8399.57 15299.76 10798.99 22598.09 31299.90 2898.95 19499.78 9199.58 21099.57 2999.93 8799.48 5699.95 7499.79 42
DSMNet-mixed99.48 7899.65 4198.95 27599.71 13397.27 32799.50 9099.82 5799.59 10699.41 22599.85 5299.62 24100.00 199.53 5199.89 11599.59 148
DP-MVS99.48 7899.39 9299.74 6999.57 19199.62 10899.29 14099.61 16499.87 3299.74 11399.76 10498.69 13099.87 19298.20 18599.80 18399.75 58
EI-MVSNet-Vis-set99.47 8599.49 7699.42 19099.57 19198.66 25599.24 15599.46 24499.67 8499.79 8799.65 16798.97 9799.89 16499.15 10999.89 11599.71 65
VPNet99.46 8699.37 9799.71 8999.82 6399.59 11899.48 9599.70 12099.81 5099.69 12999.58 21097.66 24099.86 21099.17 10699.44 29099.67 84
ACMM98.09 1199.46 8699.38 9499.72 8499.80 7699.69 8899.13 19199.65 14698.99 18999.64 14599.72 12399.39 4199.86 21098.23 18299.81 17899.60 141
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test_vis1_rt99.45 8899.46 8199.41 19799.71 13398.63 26098.99 22599.96 1899.03 18799.95 2399.12 32198.75 12399.84 24199.82 2499.82 16999.77 49
COLMAP_ROBcopyleft98.06 1299.45 8899.37 9799.70 9399.83 5699.70 8499.38 11199.78 8099.53 11099.67 13899.78 9399.19 6899.86 21097.32 26099.87 13599.55 163
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
mvsany_test199.44 9099.45 8399.40 19999.37 26698.64 25997.90 33499.59 18299.27 14899.92 3299.82 6699.74 1599.93 8799.55 4799.87 13599.63 116
Anonymous2024052199.44 9099.42 9099.49 17099.89 3598.96 23099.62 6399.76 8899.85 4099.82 7299.88 3996.39 28499.97 2799.59 3999.98 3399.55 163
tfpnnormal99.43 9299.38 9499.60 14099.87 4599.75 6399.59 7499.78 8099.71 7099.90 4199.69 14398.85 10999.90 14797.25 27099.78 19399.15 284
HPM-MVS_fast99.43 9299.30 11399.80 3699.83 5699.81 3899.52 8699.70 12098.35 26399.51 20199.50 24199.31 5399.88 17898.18 18999.84 15299.69 72
3Dnovator99.15 299.43 9299.36 10099.65 11199.39 26199.42 15599.70 3599.56 19999.23 15699.35 23599.80 7699.17 7099.95 5798.21 18499.84 15299.59 148
Anonymous2024052999.42 9599.34 10299.65 11199.53 21199.60 11699.63 6199.39 26599.47 11899.76 9899.78 9398.13 20499.86 21098.70 15599.68 23399.49 200
SixPastTwentyTwo99.42 9599.30 11399.76 5499.92 2799.67 9399.70 3599.14 31399.65 9099.89 4599.90 2796.20 28999.94 7099.42 6699.92 9699.67 84
GBi-Net99.42 9599.31 10899.73 7899.49 22999.77 5099.68 4599.70 12099.44 12499.62 15899.83 5997.21 25799.90 14798.96 13199.90 10699.53 177
test199.42 9599.31 10899.73 7899.49 22999.77 5099.68 4599.70 12099.44 12499.62 15899.83 5997.21 25799.90 14798.96 13199.90 10699.53 177
MVSFormer99.41 9999.44 8699.31 22699.57 19198.40 27399.77 1599.80 6899.73 6499.63 14999.30 29198.02 21299.98 1599.43 6199.69 22899.55 163
IterMVS-LS99.41 9999.47 7799.25 24199.81 7198.09 29598.85 24099.76 8899.62 9599.83 7199.64 16998.54 15399.97 2799.15 10999.99 1499.68 78
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
SED-MVS99.40 10199.28 12099.77 4799.69 14599.82 3599.20 16599.54 21199.13 17699.82 7299.63 17998.91 10399.92 10797.85 21899.70 22499.58 153
v14899.40 10199.41 9199.39 20399.76 10798.94 23199.09 20399.59 18299.17 16899.81 7999.61 19598.41 17399.69 32599.32 8399.94 8599.53 177
NR-MVSNet99.40 10199.31 10899.68 9699.43 25399.55 12899.73 2799.50 23399.46 12199.88 5399.36 27897.54 24399.87 19298.97 12999.87 13599.63 116
PVSNet_Blended_VisFu99.40 10199.38 9499.44 18499.90 3398.66 25598.94 23399.91 2597.97 28999.79 8799.73 11699.05 8899.97 2799.15 10999.99 1499.68 78
EU-MVSNet99.39 10599.62 4798.72 30299.88 4096.44 34499.56 8199.85 4499.90 2099.90 4199.85 5298.09 20699.83 25699.58 4299.95 7499.90 13
CHOSEN 1792x268899.39 10599.30 11399.65 11199.88 4099.25 19398.78 25599.88 3498.66 22899.96 1799.79 8697.45 24699.93 8799.34 7899.99 1499.78 45
DVP-MVS++99.38 10799.25 12699.77 4799.03 33699.77 5099.74 2499.61 16499.18 16399.76 9899.61 19599.00 9199.92 10797.72 22999.60 25999.62 127
EI-MVSNet99.38 10799.44 8699.21 24599.58 18198.09 29599.26 14799.46 24499.62 9599.75 10599.67 15898.54 15399.85 22799.15 10999.92 9699.68 78
UGNet99.38 10799.34 10299.49 17098.90 34698.90 23799.70 3599.35 27499.86 3598.57 33199.81 7298.50 16399.93 8799.38 6999.98 3399.66 93
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
UniMVSNet_NR-MVSNet99.37 11099.25 12699.72 8499.47 24099.56 12598.97 22999.61 16499.43 12999.67 13899.28 29597.85 22599.95 5799.17 10699.81 17899.65 101
UniMVSNet (Re)99.37 11099.26 12499.68 9699.51 21899.58 12298.98 22899.60 17699.43 12999.70 12699.36 27897.70 23299.88 17899.20 10099.87 13599.59 148
CSCG99.37 11099.29 11899.60 14099.71 13399.46 14199.43 10599.85 4498.79 21699.41 22599.60 20398.92 10199.92 10798.02 19899.92 9699.43 224
APD_test199.36 11399.28 12099.61 13799.89 3599.89 1099.32 12599.74 9899.18 16399.69 12999.75 10998.41 17399.84 24197.85 21899.70 22499.10 295
PM-MVS99.36 11399.29 11899.58 14699.83 5699.66 9598.95 23199.86 3998.85 20899.81 7999.73 11698.40 17799.92 10798.36 17299.83 16099.17 280
new-patchmatchnet99.35 11599.57 6398.71 30499.82 6396.62 34298.55 27499.75 9399.50 11299.88 5399.87 4399.31 5399.88 17899.43 61100.00 199.62 127
Anonymous2023120699.35 11599.31 10899.47 17699.74 12499.06 22399.28 14299.74 9899.23 15699.72 11899.53 23497.63 24299.88 17899.11 11799.84 15299.48 204
MTAPA99.35 11599.20 13199.80 3699.81 7199.81 3899.33 12399.53 22099.27 14899.42 21999.63 17998.21 19899.95 5797.83 22299.79 18899.65 101
FMVSNet299.35 11599.28 12099.55 15899.49 22999.35 17599.45 10199.57 19499.44 12499.70 12699.74 11297.21 25799.87 19299.03 12299.94 8599.44 218
3Dnovator+98.92 399.35 11599.24 12899.67 9999.35 27199.47 13799.62 6399.50 23399.44 12499.12 27899.78 9398.77 12099.94 7097.87 21599.72 21999.62 127
TSAR-MVS + MP.99.34 12099.24 12899.63 12599.82 6399.37 16899.26 14799.35 27498.77 22099.57 17599.70 13799.27 6099.88 17897.71 23199.75 20199.65 101
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
diffmvspermissive99.34 12099.32 10799.39 20399.67 15898.77 24698.57 27299.81 6699.61 9899.48 20699.41 26298.47 16499.86 21098.97 12999.90 10699.53 177
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DELS-MVS99.34 12099.30 11399.48 17499.51 21899.36 17298.12 30899.53 22099.36 13899.41 22599.61 19599.22 6599.87 19299.21 9799.68 23399.20 273
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
DU-MVS99.33 12399.21 13099.71 8999.43 25399.56 12598.83 24399.53 22099.38 13599.67 13899.36 27897.67 23699.95 5799.17 10699.81 17899.63 116
ab-mvs99.33 12399.28 12099.47 17699.57 19199.39 16399.78 1299.43 25298.87 20699.57 17599.82 6698.06 20999.87 19298.69 15799.73 21399.15 284
DVP-MVScopyleft99.32 12599.17 13499.77 4799.69 14599.80 4299.14 18599.31 28399.16 17099.62 15899.61 19598.35 18199.91 12997.88 21299.72 21999.61 137
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
APD-MVS_3200maxsize99.31 12699.16 13599.74 6999.53 21199.75 6399.27 14599.61 16499.19 16299.57 17599.64 16998.76 12199.90 14797.29 26299.62 24999.56 160
SteuartSystems-ACMMP99.30 12799.14 13999.76 5499.87 4599.66 9599.18 17099.60 17698.55 23899.57 17599.67 15899.03 9099.94 7097.01 27999.80 18399.69 72
Skip Steuart: Steuart Systems R&D Blog.
testgi99.29 12899.26 12499.37 20999.75 11898.81 24398.84 24199.89 3098.38 25699.75 10599.04 33199.36 5099.86 21099.08 11999.25 31599.45 213
ACMMP_NAP99.28 12999.11 14899.79 4199.75 11899.81 3898.95 23199.53 22098.27 27299.53 19499.73 11698.75 12399.87 19297.70 23499.83 16099.68 78
LCM-MVSNet-Re99.28 12999.15 13899.67 9999.33 28499.76 5899.34 12099.97 1398.93 19899.91 3599.79 8698.68 13199.93 8796.80 29199.56 26699.30 254
mvs_anonymous99.28 12999.39 9298.94 27699.19 31297.81 31199.02 21699.55 20599.78 5899.85 6499.80 7698.24 19399.86 21099.57 4499.50 28399.15 284
MVS_Test99.28 12999.31 10899.19 24899.35 27198.79 24599.36 11899.49 23799.17 16899.21 26599.67 15898.78 11899.66 34499.09 11899.66 24299.10 295
SR-MVS-dyc-post99.27 13399.11 14899.73 7899.54 20599.74 6999.26 14799.62 15799.16 17099.52 19699.64 16998.41 17399.91 12997.27 26599.61 25699.54 171
XVS99.27 13399.11 14899.75 6499.71 13399.71 7799.37 11599.61 16499.29 14498.76 31699.47 25298.47 16499.88 17897.62 24299.73 21399.67 84
OPM-MVS99.26 13599.13 14199.63 12599.70 14199.61 11498.58 26899.48 23898.50 24499.52 19699.63 17999.14 7599.76 30297.89 21199.77 19799.51 190
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
HFP-MVS99.25 13699.08 15999.76 5499.73 12799.70 8499.31 13099.59 18298.36 25899.36 23499.37 27498.80 11599.91 12997.43 25599.75 20199.68 78
HPM-MVScopyleft99.25 13699.07 16399.78 4499.81 7199.75 6399.61 6899.67 13397.72 30299.35 23599.25 30299.23 6499.92 10797.21 27399.82 16999.67 84
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
ACMMPcopyleft99.25 13699.08 15999.74 6999.79 8899.68 9199.50 9099.65 14698.07 28399.52 19699.69 14398.57 14899.92 10797.18 27499.79 18899.63 116
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
LS3D99.24 13999.11 14899.61 13798.38 37199.79 4499.57 7999.68 12999.61 9899.15 27399.71 13098.70 12999.91 12997.54 24899.68 23399.13 292
xiu_mvs_v1_base_debu99.23 14099.34 10298.91 28299.59 17698.23 28298.47 28399.66 13799.61 9899.68 13298.94 34799.39 4199.97 2799.18 10399.55 27098.51 347
xiu_mvs_v1_base99.23 14099.34 10298.91 28299.59 17698.23 28298.47 28399.66 13799.61 9899.68 13298.94 34799.39 4199.97 2799.18 10399.55 27098.51 347
xiu_mvs_v1_base_debi99.23 14099.34 10298.91 28299.59 17698.23 28298.47 28399.66 13799.61 9899.68 13298.94 34799.39 4199.97 2799.18 10399.55 27098.51 347
region2R99.23 14099.05 16999.77 4799.76 10799.70 8499.31 13099.59 18298.41 25299.32 24399.36 27898.73 12799.93 8797.29 26299.74 20899.67 84
ACMMPR99.23 14099.06 16599.76 5499.74 12499.69 8899.31 13099.59 18298.36 25899.35 23599.38 27298.61 14299.93 8797.43 25599.75 20199.67 84
XVG-ACMP-BASELINE99.23 14099.10 15699.63 12599.82 6399.58 12298.83 24399.72 11198.36 25899.60 16799.71 13098.92 10199.91 12997.08 27799.84 15299.40 229
CP-MVS99.23 14099.05 16999.75 6499.66 15999.66 9599.38 11199.62 15798.38 25699.06 28699.27 29798.79 11699.94 7097.51 25199.82 16999.66 93
DeepC-MVS_fast98.47 599.23 14099.12 14599.56 15599.28 29699.22 20098.99 22599.40 26299.08 18199.58 17299.64 16998.90 10699.83 25697.44 25499.75 20199.63 116
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ZNCC-MVS99.22 14899.04 17499.77 4799.76 10799.73 7199.28 14299.56 19998.19 27799.14 27599.29 29498.84 11099.92 10797.53 25099.80 18399.64 111
D2MVS99.22 14899.19 13299.29 23099.69 14598.74 24998.81 24899.41 25598.55 23899.68 13299.69 14398.13 20499.87 19298.82 14299.98 3399.24 262
LPG-MVS_test99.22 14899.05 16999.74 6999.82 6399.63 10699.16 18199.73 10297.56 30799.64 14599.69 14399.37 4799.89 16496.66 29999.87 13599.69 72
CDS-MVSNet99.22 14899.13 14199.50 16999.35 27199.11 21398.96 23099.54 21199.46 12199.61 16499.70 13796.31 28699.83 25699.34 7899.88 12499.55 163
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
test_040299.22 14899.14 13999.45 18199.79 8899.43 15299.28 14299.68 12999.54 10899.40 23099.56 22399.07 8599.82 26596.01 32799.96 6199.11 293
AllTest99.21 15399.07 16399.63 12599.78 9599.64 10299.12 19599.83 5298.63 23199.63 14999.72 12398.68 13199.75 30696.38 31499.83 16099.51 190
XVG-OURS99.21 15399.06 16599.65 11199.82 6399.62 10897.87 33599.74 9898.36 25899.66 14299.68 15499.71 1799.90 14796.84 29099.88 12499.43 224
Fast-Effi-MVS+-dtu99.20 15599.12 14599.43 18899.25 30199.69 8899.05 20999.82 5799.50 11298.97 29099.05 32998.98 9599.98 1598.20 18599.24 31798.62 340
VDD-MVS99.20 15599.11 14899.44 18499.43 25398.98 22699.50 9098.32 35299.80 5399.56 18299.69 14396.99 26799.85 22798.99 12599.73 21399.50 195
PGM-MVS99.20 15599.01 18199.77 4799.75 11899.71 7799.16 18199.72 11197.99 28799.42 21999.60 20398.81 11199.93 8796.91 28499.74 20899.66 93
SR-MVS99.19 15899.00 18499.74 6999.51 21899.72 7599.18 17099.60 17698.85 20899.47 20799.58 21098.38 17899.92 10796.92 28399.54 27599.57 158
SMA-MVScopyleft99.19 15899.00 18499.73 7899.46 24499.73 7199.13 19199.52 22597.40 31899.57 17599.64 16998.93 10099.83 25697.61 24499.79 18899.63 116
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
pmmvs599.19 15899.11 14899.42 19099.76 10798.88 23998.55 27499.73 10298.82 21299.72 11899.62 18696.56 27599.82 26599.32 8399.95 7499.56 160
mPP-MVS99.19 15899.00 18499.76 5499.76 10799.68 9199.38 11199.54 21198.34 26799.01 28899.50 24198.53 15799.93 8797.18 27499.78 19399.66 93
ETV-MVS99.18 16299.18 13399.16 25199.34 27999.28 18699.12 19599.79 7499.48 11498.93 29498.55 36799.40 4099.93 8798.51 16599.52 28098.28 357
VNet99.18 16299.06 16599.56 15599.24 30399.36 17299.33 12399.31 28399.67 8499.47 20799.57 21996.48 27899.84 24199.15 10999.30 30899.47 208
RPSCF99.18 16299.02 17899.64 11899.83 5699.85 1999.44 10399.82 5798.33 26899.50 20399.78 9397.90 22099.65 35096.78 29299.83 16099.44 218
DeepPCF-MVS98.42 699.18 16299.02 17899.67 9999.22 30599.75 6397.25 36299.47 24198.72 22599.66 14299.70 13799.29 5599.63 35398.07 19799.81 17899.62 127
MVS_030499.17 16699.03 17699.59 14299.44 24998.90 23799.04 21195.32 37699.99 199.68 13299.57 21998.30 18899.97 2799.94 1399.98 3399.88 18
EPP-MVSNet99.17 16699.00 18499.66 10699.80 7699.43 15299.70 3599.24 30099.48 11499.56 18299.77 10094.89 30099.93 8798.72 15499.89 11599.63 116
GST-MVS99.16 16898.96 19599.75 6499.73 12799.73 7199.20 16599.55 20598.22 27499.32 24399.35 28398.65 13899.91 12996.86 28799.74 20899.62 127
MVP-Stereo99.16 16899.08 15999.43 18899.48 23499.07 22199.08 20699.55 20598.63 23199.31 24799.68 15498.19 20099.78 29298.18 18999.58 26499.45 213
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
XVG-OURS-SEG-HR99.16 16898.99 18999.66 10699.84 5299.64 10298.25 29899.73 10298.39 25599.63 14999.43 26099.70 1999.90 14797.34 25998.64 34899.44 218
jason99.16 16899.11 14899.32 22399.75 11898.44 27098.26 29799.39 26598.70 22699.74 11399.30 29198.54 15399.97 2798.48 16699.82 16999.55 163
jason: jason.
DPE-MVScopyleft99.14 17298.92 20199.82 2899.57 19199.77 5098.74 25899.60 17698.55 23899.76 9899.69 14398.23 19799.92 10796.39 31399.75 20199.76 55
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MP-MVS-pluss99.14 17298.92 20199.80 3699.83 5699.83 2998.61 26499.63 15496.84 33899.44 21399.58 21098.81 11199.91 12997.70 23499.82 16999.67 84
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
pmmvs499.13 17499.06 16599.36 21399.57 19199.10 21898.01 32099.25 29798.78 21899.58 17299.44 25998.24 19399.76 30298.74 15299.93 9299.22 267
MVS_111021_LR99.13 17499.03 17699.42 19099.58 18199.32 18097.91 33399.73 10298.68 22799.31 24799.48 24899.09 8099.66 34497.70 23499.77 19799.29 257
EIA-MVS99.12 17699.01 18199.45 18199.36 26999.62 10899.34 12099.79 7498.41 25298.84 30798.89 35198.75 12399.84 24198.15 19399.51 28198.89 325
TSAR-MVS + GP.99.12 17699.04 17499.38 20699.34 27999.16 20898.15 30499.29 28798.18 27899.63 14999.62 18699.18 6999.68 33598.20 18599.74 20899.30 254
MVS_111021_HR99.12 17699.02 17899.40 19999.50 22499.11 21397.92 33199.71 11498.76 22399.08 28299.47 25299.17 7099.54 36397.85 21899.76 19999.54 171
CANet99.11 17999.05 16999.28 23298.83 35398.56 26398.71 26299.41 25599.25 15299.23 26099.22 30997.66 24099.94 7099.19 10199.97 4699.33 245
WR-MVS99.11 17998.93 19799.66 10699.30 29199.42 15598.42 28899.37 27099.04 18699.57 17599.20 31396.89 26999.86 21098.66 15999.87 13599.70 68
PHI-MVS99.11 17998.95 19699.59 14299.13 32099.59 11899.17 17599.65 14697.88 29599.25 25699.46 25598.97 9799.80 28697.26 26799.82 16999.37 236
SF-MVS99.10 18298.93 19799.62 13499.58 18199.51 13399.13 19199.65 14697.97 28999.42 21999.61 19598.86 10899.87 19296.45 31199.68 23399.49 200
MSDG99.08 18398.98 19299.37 20999.60 17299.13 21197.54 34899.74 9898.84 21199.53 19499.55 23099.10 7899.79 28997.07 27899.86 14399.18 278
Effi-MVS+-dtu99.07 18498.92 20199.52 16598.89 34999.78 4799.15 18399.66 13799.34 13998.92 29799.24 30797.69 23499.98 1598.11 19599.28 31198.81 332
Effi-MVS+99.06 18598.97 19399.34 21699.31 28798.98 22698.31 29499.91 2598.81 21398.79 31398.94 34799.14 7599.84 24198.79 14698.74 34499.20 273
MP-MVScopyleft99.06 18598.83 21399.76 5499.76 10799.71 7799.32 12599.50 23398.35 26398.97 29099.48 24898.37 17999.92 10795.95 33399.75 20199.63 116
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MDA-MVSNet-bldmvs99.06 18599.05 16999.07 26699.80 7697.83 31098.89 23599.72 11199.29 14499.63 14999.70 13796.47 27999.89 16498.17 19199.82 16999.50 195
MSLP-MVS++99.05 18899.09 15798.91 28299.21 30798.36 27898.82 24799.47 24198.85 20898.90 30099.56 22398.78 11899.09 37798.57 16299.68 23399.26 259
1112_ss99.05 18898.84 21199.67 9999.66 15999.29 18498.52 27999.82 5797.65 30599.43 21799.16 31596.42 28199.91 12999.07 12099.84 15299.80 35
ACMP97.51 1499.05 18898.84 21199.67 9999.78 9599.55 12898.88 23699.66 13797.11 33399.47 20799.60 20399.07 8599.89 16496.18 32299.85 14799.58 153
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MSP-MVS99.04 19198.79 21899.81 3199.78 9599.73 7199.35 11999.57 19498.54 24199.54 18998.99 33896.81 27199.93 8796.97 28199.53 27799.77 49
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
PVSNet_BlendedMVS99.03 19299.01 18199.09 26299.54 20597.99 30098.58 26899.82 5797.62 30699.34 23899.71 13098.52 16099.77 30097.98 20399.97 4699.52 188
IS-MVSNet99.03 19298.85 20999.55 15899.80 7699.25 19399.73 2799.15 31299.37 13699.61 16499.71 13094.73 30399.81 28097.70 23499.88 12499.58 153
xiu_mvs_v2_base99.02 19499.11 14898.77 29999.37 26698.09 29598.13 30799.51 22999.47 11899.42 21998.54 36899.38 4599.97 2798.83 14099.33 30598.24 359
Fast-Effi-MVS+99.02 19498.87 20799.46 17899.38 26499.50 13499.04 21199.79 7497.17 32998.62 32698.74 35999.34 5199.95 5798.32 17699.41 29598.92 323
canonicalmvs99.02 19499.00 18499.09 26299.10 32898.70 25199.61 6899.66 13799.63 9498.64 32597.65 38299.04 8999.54 36398.79 14698.92 33399.04 310
MCST-MVS99.02 19498.81 21599.65 11199.58 18199.49 13598.58 26899.07 31698.40 25499.04 28799.25 30298.51 16299.80 28697.31 26199.51 28199.65 101
SD-MVS99.01 19899.30 11398.15 32599.50 22499.40 16198.94 23399.61 16499.22 16099.75 10599.82 6699.54 3295.51 38597.48 25299.87 13599.54 171
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
LF4IMVS99.01 19898.92 20199.27 23599.71 13399.28 18698.59 26799.77 8398.32 26999.39 23199.41 26298.62 14099.84 24196.62 30399.84 15298.69 338
IterMVS-SCA-FT99.00 20099.16 13598.51 31099.75 11895.90 35298.07 31599.84 5099.84 4399.89 4599.73 11696.01 29299.99 799.33 81100.00 199.63 116
MS-PatchMatch99.00 20098.97 19399.09 26299.11 32798.19 28698.76 25799.33 27798.49 24699.44 21399.58 21098.21 19899.69 32598.20 18599.62 24999.39 231
PS-MVSNAJ99.00 20099.08 15998.76 30099.37 26698.10 29498.00 32299.51 22999.47 11899.41 22598.50 37099.28 5799.97 2798.83 14099.34 30498.20 363
CNVR-MVS98.99 20398.80 21799.56 15599.25 30199.43 15298.54 27799.27 29198.58 23698.80 31299.43 26098.53 15799.70 31997.22 27299.59 26399.54 171
VDDNet98.97 20498.82 21499.42 19099.71 13398.81 24399.62 6398.68 33499.81 5099.38 23299.80 7694.25 30799.85 22798.79 14699.32 30699.59 148
IterMVS98.97 20499.16 13598.42 31499.74 12495.64 35598.06 31799.83 5299.83 4699.85 6499.74 11296.10 29199.99 799.27 93100.00 199.63 116
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
TinyColmap98.97 20498.93 19799.07 26699.46 24498.19 28697.75 33999.75 9398.79 21699.54 18999.70 13798.97 9799.62 35496.63 30299.83 16099.41 228
HPM-MVS++copyleft98.96 20798.70 22499.74 6999.52 21699.71 7798.86 23899.19 30898.47 24898.59 32999.06 32898.08 20899.91 12996.94 28299.60 25999.60 141
lupinMVS98.96 20798.87 20799.24 24399.57 19198.40 27398.12 30899.18 30998.28 27199.63 14999.13 31798.02 21299.97 2798.22 18399.69 22899.35 242
USDC98.96 20798.93 19799.05 26899.54 20597.99 30097.07 36899.80 6898.21 27599.75 10599.77 10098.43 17099.64 35297.90 21099.88 12499.51 190
YYNet198.95 21098.99 18998.84 29299.64 16397.14 33298.22 30099.32 27998.92 20099.59 17099.66 16297.40 24899.83 25698.27 17999.90 10699.55 163
MDA-MVSNet_test_wron98.95 21098.99 18998.85 29099.64 16397.16 33098.23 29999.33 27798.93 19899.56 18299.66 16297.39 25099.83 25698.29 17799.88 12499.55 163
Test_1112_low_res98.95 21098.73 22099.63 12599.68 15399.15 21098.09 31299.80 6897.14 33199.46 21199.40 26696.11 29099.89 16499.01 12499.84 15299.84 25
CANet_DTU98.91 21398.85 20999.09 26298.79 35898.13 29098.18 30199.31 28399.48 11498.86 30599.51 23896.56 27599.95 5799.05 12199.95 7499.19 276
HyFIR lowres test98.91 21398.64 22699.73 7899.85 5199.47 13798.07 31599.83 5298.64 23099.89 4599.60 20392.57 325100.00 199.33 8199.97 4699.72 62
HQP_MVS98.90 21598.68 22599.55 15899.58 18199.24 19798.80 25199.54 21198.94 19599.14 27599.25 30297.24 25599.82 26595.84 33699.78 19399.60 141
sss98.90 21598.77 21999.27 23599.48 23498.44 27098.72 26099.32 27997.94 29399.37 23399.35 28396.31 28699.91 12998.85 13999.63 24899.47 208
OMC-MVS98.90 21598.72 22199.44 18499.39 26199.42 15598.58 26899.64 15297.31 32399.44 21399.62 18698.59 14599.69 32596.17 32399.79 18899.22 267
ppachtmachnet_test98.89 21899.12 14598.20 32499.66 15995.24 35997.63 34499.68 12999.08 18199.78 9199.62 18698.65 13899.88 17898.02 19899.96 6199.48 204
new_pmnet98.88 21998.89 20598.84 29299.70 14197.62 31798.15 30499.50 23397.98 28899.62 15899.54 23298.15 20399.94 7097.55 24799.84 15298.95 320
K. test v398.87 22098.60 22999.69 9499.93 2399.46 14199.74 2494.97 37799.78 5899.88 5399.88 3993.66 31599.97 2799.61 3799.95 7499.64 111
APD-MVScopyleft98.87 22098.59 23199.71 8999.50 22499.62 10899.01 21899.57 19496.80 34099.54 18999.63 17998.29 18999.91 12995.24 34899.71 22299.61 137
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
our_test_398.85 22299.09 15798.13 32699.66 15994.90 36297.72 34099.58 19299.07 18399.64 14599.62 18698.19 20099.93 8798.41 16999.95 7499.55 163
UnsupCasMVSNet_eth98.83 22398.57 23599.59 14299.68 15399.45 14698.99 22599.67 13399.48 11499.55 18799.36 27894.92 29999.86 21098.95 13596.57 37699.45 213
NCCC98.82 22498.57 23599.58 14699.21 30799.31 18198.61 26499.25 29798.65 22998.43 33799.26 30097.86 22399.81 28096.55 30499.27 31499.61 137
PMVScopyleft92.94 2198.82 22498.81 21598.85 29099.84 5297.99 30099.20 16599.47 24199.71 7099.42 21999.82 6698.09 20699.47 37093.88 36599.85 14799.07 307
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
FMVSNet398.80 22698.63 22899.32 22399.13 32098.72 25099.10 19999.48 23899.23 15699.62 15899.64 16992.57 32599.86 21098.96 13199.90 10699.39 231
Patchmtry98.78 22798.54 23999.49 17098.89 34999.19 20699.32 12599.67 13399.65 9099.72 11899.79 8691.87 33399.95 5798.00 20299.97 4699.33 245
Vis-MVSNet (Re-imp)98.77 22898.58 23499.34 21699.78 9598.88 23999.61 6899.56 19999.11 18099.24 25999.56 22393.00 32399.78 29297.43 25599.89 11599.35 242
CLD-MVS98.76 22998.57 23599.33 21999.57 19198.97 22897.53 35099.55 20596.41 34399.27 25499.13 31799.07 8599.78 29296.73 29599.89 11599.23 265
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
iter_conf_final98.75 23098.54 23999.40 19999.33 28498.75 24799.26 14799.59 18299.80 5399.76 9899.58 21090.17 35499.92 10799.37 7299.97 4699.54 171
Anonymous20240521198.75 23098.46 24599.63 12599.34 27999.66 9599.47 9897.65 36199.28 14799.56 18299.50 24193.15 31999.84 24198.62 16099.58 26499.40 229
CPTT-MVS98.74 23298.44 24799.64 11899.61 17099.38 16599.18 17099.55 20596.49 34299.27 25499.37 27497.11 26399.92 10795.74 33999.67 23999.62 127
F-COLMAP98.74 23298.45 24699.62 13499.57 19199.47 13798.84 24199.65 14696.31 34698.93 29499.19 31497.68 23599.87 19296.52 30699.37 30099.53 177
N_pmnet98.73 23498.53 24199.35 21599.72 13098.67 25298.34 29194.65 37898.35 26399.79 8799.68 15498.03 21199.93 8798.28 17899.92 9699.44 218
c3_l98.72 23598.71 22298.72 30299.12 32297.22 32997.68 34399.56 19998.90 20299.54 18999.48 24896.37 28599.73 31197.88 21299.88 12499.21 269
CL-MVSNet_self_test98.71 23698.56 23899.15 25399.22 30598.66 25597.14 36599.51 22998.09 28299.54 18999.27 29796.87 27099.74 30898.43 16898.96 33099.03 311
PVSNet_Blended98.70 23798.59 23199.02 27099.54 20597.99 30097.58 34799.82 5795.70 35499.34 23898.98 34198.52 16099.77 30097.98 20399.83 16099.30 254
dmvs_re98.69 23898.48 24399.31 22699.55 20399.42 15599.54 8498.38 35099.32 14298.72 31998.71 36096.76 27299.21 37596.01 32799.35 30399.31 252
eth_miper_zixun_eth98.68 23998.71 22298.60 30699.10 32896.84 33997.52 35299.54 21198.94 19599.58 17299.48 24896.25 28899.76 30298.01 20199.93 9299.21 269
PatchMatch-RL98.68 23998.47 24499.30 22999.44 24999.28 18698.14 30699.54 21197.12 33299.11 27999.25 30297.80 22899.70 31996.51 30799.30 30898.93 322
miper_lstm_enhance98.65 24198.60 22998.82 29799.20 31097.33 32697.78 33899.66 13799.01 18899.59 17099.50 24194.62 30499.85 22798.12 19499.90 10699.26 259
h-mvs3398.61 24298.34 25899.44 18499.60 17298.67 25299.27 14599.44 24999.68 8099.32 24399.49 24592.50 328100.00 199.24 9496.51 37799.65 101
CVMVSNet98.61 24298.88 20697.80 33499.58 18193.60 36999.26 14799.64 15299.66 8899.72 11899.67 15893.26 31899.93 8799.30 8799.81 17899.87 20
Patchmatch-RL test98.60 24498.36 25599.33 21999.77 10399.07 22198.27 29699.87 3698.91 20199.74 11399.72 12390.57 35099.79 28998.55 16399.85 14799.11 293
RPMNet98.60 24498.53 24198.83 29499.05 33398.12 29199.30 13399.62 15799.86 3599.16 27199.74 11292.53 32799.92 10798.75 15198.77 34098.44 352
AdaColmapbinary98.60 24498.35 25799.38 20699.12 32299.22 20098.67 26399.42 25497.84 29998.81 31099.27 29797.32 25399.81 28095.14 34999.53 27799.10 295
miper_ehance_all_eth98.59 24798.59 23198.59 30798.98 34297.07 33397.49 35399.52 22598.50 24499.52 19699.37 27496.41 28399.71 31797.86 21699.62 24999.00 317
WTY-MVS98.59 24798.37 25499.26 23899.43 25398.40 27398.74 25899.13 31598.10 28099.21 26599.24 30794.82 30199.90 14797.86 21698.77 34099.49 200
CNLPA98.57 24998.34 25899.28 23299.18 31499.10 21898.34 29199.41 25598.48 24798.52 33398.98 34197.05 26599.78 29295.59 34199.50 28398.96 318
CDPH-MVS98.56 25098.20 26999.61 13799.50 22499.46 14198.32 29399.41 25595.22 35999.21 26599.10 32598.34 18499.82 26595.09 35199.66 24299.56 160
UnsupCasMVSNet_bld98.55 25198.27 26499.40 19999.56 20299.37 16897.97 32799.68 12997.49 31499.08 28299.35 28395.41 29899.82 26597.70 23498.19 36199.01 316
cl____98.54 25298.41 25098.92 28099.03 33697.80 31297.46 35499.59 18298.90 20299.60 16799.46 25593.85 31199.78 29297.97 20599.89 11599.17 280
DIV-MVS_self_test98.54 25298.42 24998.92 28099.03 33697.80 31297.46 35499.59 18298.90 20299.60 16799.46 25593.87 31099.78 29297.97 20599.89 11599.18 278
FA-MVS(test-final)98.52 25498.32 26099.10 26199.48 23498.67 25299.77 1598.60 34097.35 32199.63 14999.80 7693.07 32199.84 24197.92 20899.30 30898.78 335
hse-mvs298.52 25498.30 26299.16 25199.29 29398.60 26298.77 25699.02 32099.68 8099.32 24399.04 33192.50 32899.85 22799.24 9497.87 36899.03 311
MG-MVS98.52 25498.39 25298.94 27699.15 31797.39 32598.18 30199.21 30798.89 20599.23 26099.63 17997.37 25199.74 30894.22 35999.61 25699.69 72
DP-MVS Recon98.50 25798.23 26599.31 22699.49 22999.46 14198.56 27399.63 15494.86 36598.85 30699.37 27497.81 22799.59 36096.08 32499.44 29098.88 326
CMPMVSbinary77.52 2398.50 25798.19 27299.41 19798.33 37399.56 12599.01 21899.59 18295.44 35699.57 17599.80 7695.64 29599.46 37296.47 31099.92 9699.21 269
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
114514_t98.49 25998.11 27699.64 11899.73 12799.58 12299.24 15599.76 8889.94 37699.42 21999.56 22397.76 23199.86 21097.74 22899.82 16999.47 208
PMMVS98.49 25998.29 26399.11 25998.96 34398.42 27297.54 34899.32 27997.53 31198.47 33698.15 37697.88 22299.82 26597.46 25399.24 31799.09 299
MVSTER98.47 26198.22 26799.24 24399.06 33298.35 27999.08 20699.46 24499.27 14899.75 10599.66 16288.61 36299.85 22799.14 11599.92 9699.52 188
iter_conf0598.46 26298.23 26599.15 25399.04 33597.99 30099.10 19999.61 16499.79 5699.76 9899.58 21087.88 36499.92 10799.31 8699.97 4699.53 177
LFMVS98.46 26298.19 27299.26 23899.24 30398.52 26699.62 6396.94 36899.87 3299.31 24799.58 21091.04 34199.81 28098.68 15899.42 29499.45 213
PatchT98.45 26498.32 26098.83 29498.94 34498.29 28099.24 15598.82 32899.84 4399.08 28299.76 10491.37 33699.94 7098.82 14299.00 32998.26 358
MIMVSNet98.43 26598.20 26999.11 25999.53 21198.38 27799.58 7698.61 33898.96 19399.33 24099.76 10490.92 34399.81 28097.38 25899.76 19999.15 284
PVSNet97.47 1598.42 26698.44 24798.35 31799.46 24496.26 34696.70 37399.34 27697.68 30499.00 28999.13 31797.40 24899.72 31397.59 24699.68 23399.08 302
CHOSEN 280x42098.41 26798.41 25098.40 31599.34 27995.89 35396.94 37099.44 24998.80 21599.25 25699.52 23693.51 31799.98 1598.94 13699.98 3399.32 248
BH-RMVSNet98.41 26798.14 27599.21 24599.21 30798.47 26798.60 26698.26 35398.35 26398.93 29499.31 28997.20 26099.66 34494.32 35799.10 32399.51 190
QAPM98.40 26997.99 28299.65 11199.39 26199.47 13799.67 4999.52 22591.70 37398.78 31599.80 7698.55 15199.95 5794.71 35599.75 20199.53 177
API-MVS98.38 27098.39 25298.35 31798.83 35399.26 19099.14 18599.18 30998.59 23598.66 32498.78 35798.61 14299.57 36294.14 36099.56 26696.21 378
HQP-MVS98.36 27198.02 28199.39 20399.31 28798.94 23197.98 32499.37 27097.45 31598.15 34698.83 35496.67 27399.70 31994.73 35399.67 23999.53 177
PAPM_NR98.36 27198.04 27999.33 21999.48 23498.93 23498.79 25499.28 29097.54 31098.56 33298.57 36597.12 26299.69 32594.09 36198.90 33599.38 233
PLCcopyleft97.35 1698.36 27197.99 28299.48 17499.32 28699.24 19798.50 28199.51 22995.19 36198.58 33098.96 34596.95 26899.83 25695.63 34099.25 31599.37 236
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
train_agg98.35 27497.95 28699.57 15299.35 27199.35 17598.11 31099.41 25594.90 36397.92 35698.99 33898.02 21299.85 22795.38 34699.44 29099.50 195
CR-MVSNet98.35 27498.20 26998.83 29499.05 33398.12 29199.30 13399.67 13397.39 31999.16 27199.79 8691.87 33399.91 12998.78 14998.77 34098.44 352
DPM-MVS98.28 27697.94 29099.32 22399.36 26999.11 21397.31 36098.78 33096.88 33698.84 30799.11 32497.77 23099.61 35894.03 36399.36 30199.23 265
alignmvs98.28 27697.96 28599.25 24199.12 32298.93 23499.03 21598.42 34799.64 9298.72 31997.85 37990.86 34699.62 35498.88 13899.13 32099.19 276
test_yl98.25 27897.95 28699.13 25799.17 31598.47 26799.00 22098.67 33698.97 19199.22 26399.02 33691.31 33799.69 32597.26 26798.93 33199.24 262
DCV-MVSNet98.25 27897.95 28699.13 25799.17 31598.47 26799.00 22098.67 33698.97 19199.22 26399.02 33691.31 33799.69 32597.26 26798.93 33199.24 262
MAR-MVS98.24 28097.92 29299.19 24898.78 36099.65 10099.17 17599.14 31395.36 35798.04 35398.81 35697.47 24599.72 31395.47 34499.06 32498.21 361
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
OpenMVScopyleft98.12 1098.23 28197.89 29599.26 23899.19 31299.26 19099.65 5999.69 12691.33 37498.14 35099.77 10098.28 19099.96 4895.41 34599.55 27098.58 344
BH-untuned98.22 28298.09 27798.58 30999.38 26497.24 32898.55 27498.98 32397.81 30099.20 27098.76 35897.01 26699.65 35094.83 35298.33 35698.86 328
HY-MVS98.23 998.21 28397.95 28698.99 27199.03 33698.24 28199.61 6898.72 33296.81 33998.73 31899.51 23894.06 30899.86 21096.91 28498.20 35998.86 328
EPNet98.13 28497.77 29999.18 25094.57 38797.99 30099.24 15597.96 35799.74 6397.29 36999.62 18693.13 32099.97 2798.59 16199.83 16099.58 153
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
SCA98.11 28598.36 25597.36 34499.20 31092.99 37198.17 30398.49 34598.24 27399.10 28199.57 21996.01 29299.94 7096.86 28799.62 24999.14 289
Patchmatch-test98.10 28697.98 28498.48 31299.27 29896.48 34399.40 10799.07 31698.81 21399.23 26099.57 21990.11 35599.87 19296.69 29699.64 24699.09 299
pmmvs398.08 28797.80 29698.91 28299.41 25997.69 31697.87 33599.66 13795.87 35099.50 20399.51 23890.35 35299.97 2798.55 16399.47 28799.08 302
JIA-IIPM98.06 28897.92 29298.50 31198.59 36797.02 33498.80 25198.51 34399.88 3197.89 35899.87 4391.89 33299.90 14798.16 19297.68 37098.59 342
miper_enhance_ethall98.03 28997.94 29098.32 31998.27 37496.43 34596.95 36999.41 25596.37 34599.43 21798.96 34594.74 30299.69 32597.71 23199.62 24998.83 331
TAPA-MVS97.92 1398.03 28997.55 30599.46 17899.47 24099.44 14898.50 28199.62 15786.79 37799.07 28599.26 30098.26 19299.62 35497.28 26499.73 21399.31 252
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
131498.00 29197.90 29498.27 32398.90 34697.45 32399.30 13399.06 31894.98 36297.21 37199.12 32198.43 17099.67 34095.58 34298.56 35197.71 370
GA-MVS97.99 29297.68 30298.93 27999.52 21698.04 29997.19 36499.05 31998.32 26998.81 31098.97 34389.89 35899.41 37398.33 17599.05 32599.34 244
MVS-HIRNet97.86 29398.22 26796.76 35399.28 29691.53 37998.38 29092.60 38399.13 17699.31 24799.96 1297.18 26199.68 33598.34 17499.83 16099.07 307
FE-MVS97.85 29497.42 30799.15 25399.44 24998.75 24799.77 1598.20 35495.85 35199.33 24099.80 7688.86 36199.88 17896.40 31299.12 32198.81 332
AUN-MVS97.82 29597.38 30899.14 25699.27 29898.53 26498.72 26099.02 32098.10 28097.18 37299.03 33589.26 36099.85 22797.94 20797.91 36699.03 311
FMVSNet597.80 29697.25 31299.42 19098.83 35398.97 22899.38 11199.80 6898.87 20699.25 25699.69 14380.60 38399.91 12998.96 13199.90 10699.38 233
ADS-MVSNet297.78 29797.66 30498.12 32799.14 31895.36 35799.22 16298.75 33196.97 33498.25 34299.64 16990.90 34499.94 7096.51 30799.56 26699.08 302
test111197.74 29898.16 27496.49 35899.60 17289.86 38799.71 3491.21 38499.89 2699.88 5399.87 4393.73 31499.90 14799.56 4599.99 1499.70 68
ECVR-MVScopyleft97.73 29998.04 27996.78 35299.59 17690.81 38399.72 3090.43 38699.89 2699.86 6299.86 5093.60 31699.89 16499.46 5899.99 1499.65 101
baseline197.73 29997.33 30998.96 27499.30 29197.73 31499.40 10798.42 34799.33 14199.46 21199.21 31191.18 33999.82 26598.35 17391.26 38299.32 248
tpmrst97.73 29998.07 27896.73 35598.71 36492.00 37599.10 19998.86 32598.52 24298.92 29799.54 23291.90 33199.82 26598.02 19899.03 32798.37 354
ADS-MVSNet97.72 30297.67 30397.86 33299.14 31894.65 36399.22 16298.86 32596.97 33498.25 34299.64 16990.90 34499.84 24196.51 30799.56 26699.08 302
PatchmatchNetpermissive97.65 30397.80 29697.18 34998.82 35692.49 37399.17 17598.39 34998.12 27998.79 31399.58 21090.71 34899.89 16497.23 27199.41 29599.16 282
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
tttt051797.62 30497.20 31398.90 28899.76 10797.40 32499.48 9594.36 37999.06 18599.70 12699.49 24584.55 37899.94 7098.73 15399.65 24499.36 239
EPNet_dtu97.62 30497.79 29897.11 35196.67 38492.31 37498.51 28098.04 35599.24 15495.77 37899.47 25293.78 31399.66 34498.98 12799.62 24999.37 236
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
wuyk23d97.58 30699.13 14192.93 36599.69 14599.49 13599.52 8699.77 8397.97 28999.96 1799.79 8699.84 899.94 7095.85 33599.82 16979.36 381
cl2297.56 30797.28 31098.40 31598.37 37296.75 34097.24 36399.37 27097.31 32399.41 22599.22 30987.30 36599.37 37497.70 23499.62 24999.08 302
PAPR97.56 30797.07 31599.04 26998.80 35798.11 29397.63 34499.25 29794.56 36898.02 35498.25 37597.43 24799.68 33590.90 37298.74 34499.33 245
thisisatest053097.45 30996.95 31998.94 27699.68 15397.73 31499.09 20394.19 38198.61 23499.56 18299.30 29184.30 37999.93 8798.27 17999.54 27599.16 282
TR-MVS97.44 31097.15 31498.32 31998.53 36997.46 32298.47 28397.91 35996.85 33798.21 34598.51 36996.42 28199.51 36892.16 36897.29 37297.98 367
tpmvs97.39 31197.69 30196.52 35798.41 37091.76 37699.30 13398.94 32497.74 30197.85 36199.55 23092.40 33099.73 31196.25 31998.73 34698.06 366
test0.0.03 197.37 31296.91 32298.74 30197.72 38097.57 31897.60 34697.36 36798.00 28599.21 26598.02 37790.04 35699.79 28998.37 17195.89 38098.86 328
OpenMVS_ROBcopyleft97.31 1797.36 31396.84 32398.89 28999.29 29399.45 14698.87 23799.48 23886.54 37999.44 21399.74 11297.34 25299.86 21091.61 36999.28 31197.37 374
dmvs_testset97.27 31496.83 32498.59 30799.46 24497.55 31999.25 15496.84 36998.78 21897.24 37097.67 38197.11 26398.97 37986.59 38298.54 35299.27 258
BH-w/o97.20 31597.01 31797.76 33599.08 33195.69 35498.03 31998.52 34295.76 35397.96 35598.02 37795.62 29699.47 37092.82 36797.25 37398.12 365
test-LLR97.15 31696.95 31997.74 33798.18 37795.02 36097.38 35696.10 37098.00 28597.81 36298.58 36390.04 35699.91 12997.69 24098.78 33898.31 355
tpm97.15 31696.95 31997.75 33698.91 34594.24 36599.32 12597.96 35797.71 30398.29 34099.32 28786.72 37399.92 10798.10 19696.24 37999.09 299
E-PMN97.14 31897.43 30696.27 36098.79 35891.62 37895.54 37799.01 32299.44 12498.88 30199.12 32192.78 32499.68 33594.30 35899.03 32797.50 371
cascas96.99 31996.82 32597.48 34097.57 38395.64 35596.43 37599.56 19991.75 37297.13 37397.61 38395.58 29798.63 38196.68 29799.11 32298.18 364
thisisatest051596.98 32096.42 32798.66 30599.42 25897.47 32197.27 36194.30 38097.24 32599.15 27398.86 35385.01 37699.87 19297.10 27699.39 29798.63 339
EMVS96.96 32197.28 31095.99 36398.76 36291.03 38195.26 37898.61 33899.34 13998.92 29798.88 35293.79 31299.66 34492.87 36699.05 32597.30 375
dp96.86 32297.07 31596.24 36198.68 36690.30 38699.19 16998.38 35097.35 32198.23 34499.59 20887.23 36699.82 26596.27 31898.73 34698.59 342
baseline296.83 32396.28 32998.46 31399.09 33096.91 33798.83 24393.87 38297.23 32696.23 37798.36 37288.12 36399.90 14796.68 29798.14 36398.57 345
ET-MVSNet_ETH3D96.78 32496.07 33398.91 28299.26 30097.92 30897.70 34296.05 37397.96 29292.37 38398.43 37187.06 36799.90 14798.27 17997.56 37198.91 324
tpm cat196.78 32496.98 31896.16 36298.85 35290.59 38599.08 20699.32 27992.37 37197.73 36699.46 25591.15 34099.69 32596.07 32598.80 33798.21 361
PCF-MVS96.03 1896.73 32695.86 33799.33 21999.44 24999.16 20896.87 37199.44 24986.58 37898.95 29299.40 26694.38 30699.88 17887.93 37699.80 18398.95 320
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
CostFormer96.71 32796.79 32696.46 35998.90 34690.71 38499.41 10698.68 33494.69 36798.14 35099.34 28686.32 37599.80 28697.60 24598.07 36598.88 326
MVEpermissive92.54 2296.66 32896.11 33298.31 32199.68 15397.55 31997.94 32995.60 37599.37 13690.68 38498.70 36196.56 27598.61 38286.94 38199.55 27098.77 336
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
thres600view796.60 32996.16 33197.93 33099.63 16596.09 35099.18 17097.57 36298.77 22098.72 31997.32 38587.04 36899.72 31388.57 37498.62 34997.98 367
EPMVS96.53 33096.32 32897.17 35098.18 37792.97 37299.39 10989.95 38798.21 27598.61 32799.59 20886.69 37499.72 31396.99 28099.23 31998.81 332
thres40096.40 33195.89 33597.92 33199.58 18196.11 34899.00 22097.54 36598.43 24998.52 33396.98 38886.85 37099.67 34087.62 37798.51 35397.98 367
thres100view90096.39 33296.03 33497.47 34199.63 16595.93 35199.18 17097.57 36298.75 22498.70 32297.31 38687.04 36899.67 34087.62 37798.51 35396.81 376
tpm296.35 33396.22 33096.73 35598.88 35191.75 37799.21 16498.51 34393.27 37097.89 35899.21 31184.83 37799.70 31996.04 32698.18 36298.75 337
FPMVS96.32 33495.50 34198.79 29899.60 17298.17 28998.46 28798.80 32997.16 33096.28 37499.63 17982.19 38099.09 37788.45 37598.89 33699.10 295
tfpn200view996.30 33595.89 33597.53 33999.58 18196.11 34899.00 22097.54 36598.43 24998.52 33396.98 38886.85 37099.67 34087.62 37798.51 35396.81 376
TESTMET0.1,196.24 33695.84 33897.41 34398.24 37593.84 36897.38 35695.84 37498.43 24997.81 36298.56 36679.77 38499.89 16497.77 22398.77 34098.52 346
test-mter96.23 33795.73 33997.74 33798.18 37795.02 36097.38 35696.10 37097.90 29497.81 36298.58 36379.12 38799.91 12997.69 24098.78 33898.31 355
X-MVStestdata96.09 33894.87 34799.75 6499.71 13399.71 7799.37 11599.61 16499.29 14498.76 31661.30 39198.47 16499.88 17897.62 24299.73 21399.67 84
thres20096.09 33895.68 34097.33 34699.48 23496.22 34798.53 27897.57 36298.06 28498.37 33996.73 39086.84 37299.61 35886.99 38098.57 35096.16 379
KD-MVS_2432*160095.89 34095.41 34397.31 34794.96 38593.89 36697.09 36699.22 30497.23 32698.88 30199.04 33179.23 38599.54 36396.24 32096.81 37498.50 350
miper_refine_blended95.89 34095.41 34397.31 34794.96 38593.89 36697.09 36699.22 30497.23 32698.88 30199.04 33179.23 38599.54 36396.24 32096.81 37498.50 350
gg-mvs-nofinetune95.87 34295.17 34697.97 32998.19 37696.95 33599.69 4289.23 38899.89 2696.24 37699.94 1681.19 38199.51 36893.99 36498.20 35997.44 372
PVSNet_095.53 1995.85 34395.31 34597.47 34198.78 36093.48 37095.72 37699.40 26296.18 34897.37 36797.73 38095.73 29499.58 36195.49 34381.40 38399.36 239
tmp_tt95.75 34495.42 34296.76 35389.90 38994.42 36498.86 23897.87 36078.01 38099.30 25299.69 14397.70 23295.89 38499.29 9098.14 36399.95 7
MVS95.72 34594.63 34998.99 27198.56 36897.98 30699.30 13398.86 32572.71 38297.30 36899.08 32698.34 18499.74 30889.21 37398.33 35699.26 259
PAPM95.61 34694.71 34898.31 32199.12 32296.63 34196.66 37498.46 34690.77 37596.25 37598.68 36293.01 32299.69 32581.60 38397.86 36998.62 340
IB-MVS95.41 2095.30 34794.46 35197.84 33398.76 36295.33 35897.33 35996.07 37296.02 34995.37 38197.41 38476.17 38999.96 4897.54 24895.44 38198.22 360
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
test250694.73 34894.59 35095.15 36499.59 17685.90 38999.75 2274.01 39099.89 2699.71 12399.86 5079.00 38899.90 14799.52 5299.99 1499.65 101
test_method91.72 34992.32 35289.91 36693.49 38870.18 39090.28 37999.56 19961.71 38395.39 38099.52 23693.90 30999.94 7098.76 15098.27 35899.62 127
EGC-MVSNET89.05 35085.52 35399.64 11899.89 3599.78 4799.56 8199.52 22524.19 38449.96 38599.83 5999.15 7299.92 10797.71 23199.85 14799.21 269
test12329.31 35133.05 35618.08 36725.93 39112.24 39197.53 35010.93 39211.78 38524.21 38650.08 39521.04 3908.60 38623.51 38432.43 38533.39 382
testmvs28.94 35233.33 35415.79 36826.03 3909.81 39296.77 37215.67 39111.55 38623.87 38750.74 39419.03 3918.53 38723.21 38533.07 38429.03 383
cdsmvs_eth3d_5k24.88 35333.17 3550.00 3690.00 3920.00 3930.00 38099.62 1570.00 3870.00 38899.13 31799.82 90.00 3880.00 3860.00 3860.00 384
pcd_1.5k_mvsjas16.61 35422.14 3570.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 388100.00 199.28 570.00 3880.00 3860.00 3860.00 384
test_blank8.33 35511.11 3580.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 388100.00 10.00 3920.00 3880.00 3860.00 3860.00 384
uanet_test8.33 35511.11 3580.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 388100.00 10.00 3920.00 3880.00 3860.00 3860.00 384
DCPMVS8.33 35511.11 3580.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 388100.00 10.00 3920.00 3880.00 3860.00 3860.00 384
sosnet-low-res8.33 35511.11 3580.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 388100.00 10.00 3920.00 3880.00 3860.00 3860.00 384
sosnet8.33 35511.11 3580.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 388100.00 10.00 3920.00 3880.00 3860.00 3860.00 384
uncertanet8.33 35511.11 3580.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 388100.00 10.00 3920.00 3880.00 3860.00 3860.00 384
Regformer8.33 35511.11 3580.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 388100.00 10.00 3920.00 3880.00 3860.00 3860.00 384
uanet8.33 35511.11 3580.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 388100.00 10.00 3920.00 3880.00 3860.00 3860.00 384
ab-mvs-re8.26 36311.02 3660.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 38899.16 3150.00 3920.00 3880.00 3860.00 3860.00 384
FOURS199.83 5699.89 1099.74 2499.71 11499.69 7899.63 149
MSC_two_6792asdad99.74 6999.03 33699.53 13199.23 30199.92 10797.77 22399.69 22899.78 45
PC_three_145297.56 30799.68 13299.41 26299.09 8097.09 38396.66 29999.60 25999.62 127
No_MVS99.74 6999.03 33699.53 13199.23 30199.92 10797.77 22399.69 22899.78 45
test_one_060199.63 16599.76 5899.55 20599.23 15699.31 24799.61 19598.59 145
eth-test20.00 392
eth-test0.00 392
ZD-MVS99.43 25399.61 11499.43 25296.38 34499.11 27999.07 32797.86 22399.92 10794.04 36299.49 285
RE-MVS-def99.13 14199.54 20599.74 6999.26 14799.62 15799.16 17099.52 19699.64 16998.57 14897.27 26599.61 25699.54 171
IU-MVS99.69 14599.77 5099.22 30497.50 31399.69 12997.75 22799.70 22499.77 49
OPU-MVS99.29 23099.12 32299.44 14899.20 16599.40 26699.00 9198.84 38096.54 30599.60 25999.58 153
test_241102_TWO99.54 21199.13 17699.76 9899.63 17998.32 18799.92 10797.85 21899.69 22899.75 58
test_241102_ONE99.69 14599.82 3599.54 21199.12 17999.82 7299.49 24598.91 10399.52 367
9.1498.64 22699.45 24898.81 24899.60 17697.52 31299.28 25399.56 22398.53 15799.83 25695.36 34799.64 246
save fliter99.53 21199.25 19398.29 29599.38 26999.07 183
test_0728_THIRD99.18 16399.62 15899.61 19598.58 14799.91 12997.72 22999.80 18399.77 49
test_0728_SECOND99.83 2599.70 14199.79 4499.14 18599.61 16499.92 10797.88 21299.72 21999.77 49
test072699.69 14599.80 4299.24 15599.57 19499.16 17099.73 11799.65 16798.35 181
GSMVS99.14 289
test_part299.62 16999.67 9399.55 187
sam_mvs190.81 34799.14 289
sam_mvs90.52 351
ambc99.20 24799.35 27198.53 26499.17 17599.46 24499.67 13899.80 7698.46 16799.70 31997.92 20899.70 22499.38 233
MTGPAbinary99.53 220
test_post199.14 18551.63 39389.54 35999.82 26596.86 287
test_post52.41 39290.25 35399.86 210
patchmatchnet-post99.62 18690.58 34999.94 70
GG-mvs-BLEND97.36 34497.59 38196.87 33899.70 3588.49 38994.64 38297.26 38780.66 38299.12 37691.50 37096.50 37896.08 380
MTMP99.09 20398.59 341
gm-plane-assit97.59 38189.02 38893.47 36998.30 37399.84 24196.38 314
test9_res95.10 35099.44 29099.50 195
TEST999.35 27199.35 17598.11 31099.41 25594.83 36697.92 35698.99 33898.02 21299.85 227
test_899.34 27999.31 18198.08 31499.40 26294.90 36397.87 36098.97 34398.02 21299.84 241
agg_prior294.58 35699.46 28999.50 195
agg_prior99.35 27199.36 17299.39 26597.76 36599.85 227
TestCases99.63 12599.78 9599.64 10299.83 5298.63 23199.63 14999.72 12398.68 13199.75 30696.38 31499.83 16099.51 190
test_prior499.19 20698.00 322
test_prior297.95 32897.87 29698.05 35299.05 32997.90 22095.99 33099.49 285
test_prior99.46 17899.35 27199.22 20099.39 26599.69 32599.48 204
旧先验297.94 32995.33 35898.94 29399.88 17896.75 293
新几何298.04 318
新几何199.52 16599.50 22499.22 20099.26 29495.66 35598.60 32899.28 29597.67 23699.89 16495.95 33399.32 30699.45 213
旧先验199.49 22999.29 18499.26 29499.39 27097.67 23699.36 30199.46 212
无先验98.01 32099.23 30195.83 35299.85 22795.79 33899.44 218
原ACMM297.92 331
原ACMM199.37 20999.47 24098.87 24199.27 29196.74 34198.26 34199.32 28797.93 21999.82 26595.96 33299.38 29899.43 224
test22299.51 21899.08 22097.83 33799.29 28795.21 36098.68 32399.31 28997.28 25499.38 29899.43 224
testdata299.89 16495.99 330
segment_acmp98.37 179
testdata99.42 19099.51 21898.93 23499.30 28696.20 34798.87 30499.40 26698.33 18699.89 16496.29 31799.28 31199.44 218
testdata197.72 34097.86 298
test1299.54 16299.29 29399.33 17899.16 31198.43 33797.54 24399.82 26599.47 28799.48 204
plane_prior799.58 18199.38 165
plane_prior699.47 24099.26 19097.24 255
plane_prior599.54 21199.82 26595.84 33699.78 19399.60 141
plane_prior499.25 302
plane_prior399.31 18198.36 25899.14 275
plane_prior298.80 25198.94 195
plane_prior199.51 218
plane_prior99.24 19798.42 28897.87 29699.71 222
n20.00 393
nn0.00 393
door-mid99.83 52
lessismore_v099.64 11899.86 4899.38 16590.66 38599.89 4599.83 5994.56 30599.97 2799.56 4599.92 9699.57 158
LGP-MVS_train99.74 6999.82 6399.63 10699.73 10297.56 30799.64 14599.69 14399.37 4799.89 16496.66 29999.87 13599.69 72
test1199.29 287
door99.77 83
HQP5-MVS98.94 231
HQP-NCC99.31 28797.98 32497.45 31598.15 346
ACMP_Plane99.31 28797.98 32497.45 31598.15 346
BP-MVS94.73 353
HQP4-MVS98.15 34699.70 31999.53 177
HQP3-MVS99.37 27099.67 239
HQP2-MVS96.67 273
NP-MVS99.40 26099.13 21198.83 354
MDTV_nov1_ep13_2view91.44 38099.14 18597.37 32099.21 26591.78 33596.75 29399.03 311
MDTV_nov1_ep1397.73 30098.70 36590.83 38299.15 18398.02 35698.51 24398.82 30999.61 19590.98 34299.66 34496.89 28698.92 333
ACMMP++_ref99.94 85
ACMMP++99.79 188
Test By Simon98.41 173
ITE_SJBPF99.38 20699.63 16599.44 14899.73 10298.56 23799.33 24099.53 23498.88 10799.68 33596.01 32799.65 24499.02 315
DeepMVS_CXcopyleft97.98 32899.69 14596.95 33599.26 29475.51 38195.74 37998.28 37496.47 27999.62 35491.23 37197.89 36797.38 373