This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DVP-MVS++90.23 191.01 187.89 2394.34 2771.25 5695.06 194.23 378.38 3292.78 495.74 682.45 397.49 389.42 596.68 294.95 9
SED-MVS90.08 290.85 287.77 2595.30 270.98 6293.57 794.06 1077.24 4993.10 195.72 882.99 197.44 589.07 1096.63 494.88 13
DVP-MVScopyleft89.60 390.35 387.33 3995.27 571.25 5693.49 992.73 5977.33 4792.12 995.78 480.98 997.40 789.08 896.41 1293.33 78
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
MSP-MVS89.51 489.91 588.30 994.28 3073.46 1692.90 1694.11 680.27 991.35 1494.16 3578.35 1396.77 2389.59 494.22 5794.67 23
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DPE-MVScopyleft89.48 589.98 488.01 1594.80 1172.69 3091.59 4294.10 875.90 8492.29 795.66 1081.67 697.38 987.44 2396.34 1593.95 50
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
APDe-MVS89.15 689.63 687.73 2794.49 1871.69 5193.83 493.96 1375.70 8891.06 1696.03 176.84 1497.03 1689.09 795.65 2794.47 30
SMA-MVScopyleft89.08 789.23 788.61 594.25 3173.73 992.40 2393.63 2174.77 10692.29 795.97 274.28 2997.24 1188.58 1596.91 194.87 15
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
HPM-MVS++copyleft89.02 889.15 888.63 495.01 976.03 192.38 2692.85 5480.26 1087.78 2894.27 3175.89 1996.81 2287.45 2296.44 993.05 88
CNVR-MVS88.93 989.13 988.33 794.77 1273.82 890.51 6093.00 4380.90 688.06 2694.06 3976.43 1696.84 2088.48 1795.99 1894.34 36
SteuartSystems-ACMMP88.72 1088.86 1088.32 892.14 6972.96 2493.73 593.67 2080.19 1188.10 2594.80 1673.76 3397.11 1487.51 2195.82 2194.90 12
Skip Steuart: Steuart Systems R&D Blog.
SF-MVS88.46 1188.74 1187.64 3492.78 6171.95 4992.40 2394.74 275.71 8689.16 1995.10 1475.65 2196.19 4287.07 2496.01 1794.79 20
DeepPCF-MVS80.84 188.10 1288.56 1286.73 4992.24 6869.03 9689.57 8493.39 3077.53 4489.79 1894.12 3678.98 1296.58 3485.66 2795.72 2494.58 26
MVS_030488.08 1388.08 1688.08 1389.67 11372.04 4792.26 3289.26 16984.19 185.01 4595.18 1369.93 6497.20 1391.63 195.60 2894.99 8
SD-MVS88.06 1488.50 1386.71 5092.60 6672.71 2891.81 4193.19 3577.87 3590.32 1794.00 4174.83 2393.78 13587.63 2094.27 5693.65 65
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
NCCC88.06 1488.01 1888.24 1094.41 2273.62 1091.22 5192.83 5581.50 485.79 3893.47 5173.02 3997.00 1784.90 3294.94 3894.10 44
ACMMP_NAP88.05 1688.08 1687.94 1893.70 4173.05 2190.86 5593.59 2376.27 7888.14 2495.09 1571.06 5396.67 2887.67 1996.37 1494.09 45
TSAR-MVS + MP.88.02 1788.11 1587.72 2993.68 4372.13 4591.41 4692.35 7474.62 11088.90 2093.85 4675.75 2096.00 4887.80 1894.63 4695.04 6
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
ZNCC-MVS87.94 1887.85 1988.20 1194.39 2473.33 1893.03 1493.81 1776.81 6285.24 4394.32 3071.76 4696.93 1885.53 2995.79 2294.32 37
MP-MVScopyleft87.71 1987.64 2187.93 2094.36 2673.88 692.71 2292.65 6477.57 4083.84 7294.40 2972.24 4296.28 3985.65 2895.30 3493.62 68
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MP-MVS-pluss87.67 2087.72 2087.54 3593.64 4472.04 4789.80 7893.50 2575.17 9986.34 3495.29 1270.86 5496.00 4888.78 1396.04 1694.58 26
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
HFP-MVS87.58 2187.47 2387.94 1894.58 1673.54 1493.04 1293.24 3376.78 6484.91 4994.44 2770.78 5596.61 3184.53 3994.89 4093.66 61
ACMMPR87.44 2287.23 2688.08 1394.64 1373.59 1193.04 1293.20 3476.78 6484.66 5694.52 2068.81 7796.65 2984.53 3994.90 3994.00 49
APD-MVScopyleft87.44 2287.52 2287.19 4194.24 3272.39 3891.86 4092.83 5573.01 14588.58 2194.52 2073.36 3496.49 3584.26 4295.01 3692.70 97
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
GST-MVS87.42 2487.26 2487.89 2394.12 3672.97 2392.39 2593.43 2876.89 6084.68 5393.99 4370.67 5796.82 2184.18 4695.01 3693.90 53
region2R87.42 2487.20 2788.09 1294.63 1473.55 1293.03 1493.12 3776.73 6784.45 6094.52 2069.09 7396.70 2684.37 4194.83 4394.03 48
MCST-MVS87.37 2687.25 2587.73 2794.53 1772.46 3789.82 7693.82 1673.07 14384.86 5292.89 6476.22 1796.33 3784.89 3495.13 3594.40 33
MTAPA87.23 2787.00 2887.90 2194.18 3574.25 586.58 17792.02 8579.45 1885.88 3694.80 1668.07 8096.21 4186.69 2695.34 3293.23 81
XVS87.18 2886.91 3288.00 1694.42 2073.33 1892.78 1892.99 4579.14 2083.67 7594.17 3467.45 8696.60 3283.06 5394.50 4994.07 46
HPM-MVScopyleft87.11 2986.98 2987.50 3793.88 3972.16 4492.19 3393.33 3176.07 8183.81 7393.95 4569.77 6796.01 4785.15 3094.66 4594.32 37
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CP-MVS87.11 2986.92 3187.68 3394.20 3473.86 793.98 392.82 5876.62 6983.68 7494.46 2467.93 8195.95 5184.20 4594.39 5293.23 81
DeepC-MVS79.81 287.08 3186.88 3387.69 3291.16 8072.32 4290.31 6793.94 1477.12 5482.82 8694.23 3372.13 4497.09 1584.83 3595.37 3193.65 65
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DeepC-MVS_fast79.65 386.91 3286.62 3587.76 2693.52 4672.37 4091.26 4793.04 3876.62 6984.22 6493.36 5371.44 5096.76 2480.82 7595.33 3394.16 42
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SR-MVS86.73 3386.67 3486.91 4594.11 3772.11 4692.37 2792.56 6774.50 11186.84 3294.65 1967.31 8895.77 5384.80 3692.85 6692.84 95
CS-MVS86.69 3486.95 3085.90 6290.76 9067.57 13292.83 1793.30 3279.67 1684.57 5992.27 7671.47 4995.02 8584.24 4493.46 6295.13 5
PGM-MVS86.68 3586.27 3987.90 2194.22 3373.38 1790.22 6993.04 3875.53 9083.86 7194.42 2867.87 8396.64 3082.70 6294.57 4893.66 61
mPP-MVS86.67 3686.32 3887.72 2994.41 2273.55 1292.74 2092.22 8076.87 6182.81 8794.25 3266.44 9596.24 4082.88 5794.28 5593.38 75
CANet86.45 3786.10 4487.51 3690.09 10170.94 6689.70 8292.59 6681.78 381.32 10291.43 9670.34 5997.23 1284.26 4293.36 6394.37 34
train_agg86.43 3886.20 4087.13 4393.26 5072.96 2488.75 10791.89 9368.69 22385.00 4793.10 5774.43 2695.41 6684.97 3195.71 2593.02 90
PHI-MVS86.43 3886.17 4287.24 4090.88 8770.96 6492.27 3194.07 972.45 14885.22 4491.90 8269.47 6996.42 3683.28 5295.94 1994.35 35
CSCG86.41 4086.19 4187.07 4492.91 5872.48 3690.81 5693.56 2473.95 12283.16 8191.07 10675.94 1895.19 7479.94 8494.38 5393.55 71
CS-MVS-test86.29 4186.48 3685.71 6491.02 8367.21 14292.36 2893.78 1878.97 2783.51 7891.20 10170.65 5895.15 7681.96 6694.89 4094.77 21
EC-MVSNet86.01 4286.38 3784.91 8489.31 13066.27 15692.32 2993.63 2179.37 1984.17 6691.88 8369.04 7695.43 6483.93 4793.77 6093.01 91
casdiffmvs_mvgpermissive85.99 4386.09 4585.70 6587.65 19267.22 14188.69 11193.04 3879.64 1785.33 4292.54 7373.30 3594.50 10683.49 4991.14 8895.37 1
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
APD-MVS_3200maxsize85.97 4485.88 4686.22 5692.69 6369.53 8891.93 3792.99 4573.54 13485.94 3594.51 2365.80 10595.61 5683.04 5592.51 7093.53 73
canonicalmvs85.91 4585.87 4786.04 5989.84 11169.44 9390.45 6593.00 4376.70 6888.01 2791.23 9973.28 3693.91 13081.50 6988.80 11494.77 21
ACMMPcopyleft85.89 4685.39 5187.38 3893.59 4572.63 3292.74 2093.18 3676.78 6480.73 11193.82 4764.33 11596.29 3882.67 6390.69 9293.23 81
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
SR-MVS-dyc-post85.77 4785.61 4986.23 5593.06 5570.63 7291.88 3892.27 7673.53 13585.69 3994.45 2565.00 11395.56 5782.75 5891.87 7892.50 106
CDPH-MVS85.76 4885.29 5687.17 4293.49 4771.08 6088.58 11592.42 7268.32 23084.61 5793.48 4972.32 4196.15 4479.00 8895.43 3094.28 39
TSAR-MVS + GP.85.71 4985.33 5386.84 4691.34 7872.50 3589.07 9687.28 22476.41 7185.80 3790.22 12474.15 3195.37 7181.82 6791.88 7792.65 101
dcpmvs_285.63 5086.15 4384.06 11691.71 7564.94 18786.47 18091.87 9573.63 13086.60 3393.02 6276.57 1591.87 21283.36 5092.15 7495.35 2
alignmvs85.48 5185.32 5485.96 6189.51 11969.47 9089.74 8092.47 6876.17 7987.73 3091.46 9570.32 6093.78 13581.51 6888.95 11194.63 25
3Dnovator+77.84 485.48 5184.47 6488.51 691.08 8173.49 1593.18 1193.78 1880.79 776.66 18593.37 5260.40 17896.75 2577.20 10793.73 6195.29 4
MSLP-MVS++85.43 5385.76 4884.45 9991.93 7270.24 7590.71 5792.86 5377.46 4684.22 6492.81 6867.16 9092.94 17680.36 8094.35 5490.16 183
DELS-MVS85.41 5485.30 5585.77 6388.49 16167.93 12485.52 20993.44 2778.70 2883.63 7789.03 15474.57 2495.71 5580.26 8294.04 5893.66 61
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
HPM-MVS_fast85.35 5584.95 6086.57 5293.69 4270.58 7492.15 3591.62 10373.89 12582.67 8994.09 3762.60 13495.54 5980.93 7392.93 6593.57 70
test_fmvsm_n_192085.29 5685.34 5285.13 7586.12 22269.93 8288.65 11390.78 12669.97 19288.27 2393.98 4471.39 5191.54 22088.49 1690.45 9493.91 51
MVS_111021_HR85.14 5784.75 6186.32 5491.65 7672.70 2985.98 19290.33 13976.11 8082.08 9291.61 9071.36 5294.17 11981.02 7292.58 6992.08 121
casdiffmvspermissive85.11 5885.14 5785.01 7887.20 20765.77 16987.75 14392.83 5577.84 3684.36 6392.38 7572.15 4393.93 12981.27 7190.48 9395.33 3
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
UA-Net85.08 5984.96 5985.45 6792.07 7068.07 12289.78 7990.86 12582.48 284.60 5893.20 5669.35 7095.22 7371.39 16490.88 9193.07 87
DPM-MVS84.93 6084.29 6586.84 4690.20 9973.04 2287.12 15993.04 3869.80 19682.85 8591.22 10073.06 3896.02 4676.72 11694.63 4691.46 138
baseline84.93 6084.98 5884.80 8887.30 20565.39 17887.30 15592.88 5277.62 3884.04 6992.26 7771.81 4593.96 12381.31 7090.30 9695.03 7
ETV-MVS84.90 6284.67 6285.59 6689.39 12468.66 11188.74 10992.64 6579.97 1484.10 6785.71 24469.32 7195.38 6880.82 7591.37 8592.72 96
EI-MVSNet-Vis-set84.19 6383.81 6785.31 6988.18 17167.85 12587.66 14589.73 15680.05 1382.95 8289.59 13870.74 5694.82 9480.66 7984.72 16293.28 80
test_fmvsmvis_n_192084.02 6483.87 6684.49 9784.12 25269.37 9488.15 13087.96 20870.01 19083.95 7093.23 5568.80 7891.51 22388.61 1489.96 10392.57 102
nrg03083.88 6583.53 6884.96 8086.77 21569.28 9590.46 6492.67 6174.79 10582.95 8291.33 9872.70 4093.09 17080.79 7779.28 23492.50 106
EI-MVSNet-UG-set83.81 6683.38 7085.09 7687.87 18167.53 13387.44 15189.66 15779.74 1582.23 9189.41 14770.24 6194.74 9779.95 8383.92 17292.99 92
CPTT-MVS83.73 6783.33 7184.92 8393.28 4970.86 6892.09 3690.38 13568.75 22279.57 12292.83 6660.60 17493.04 17480.92 7491.56 8390.86 157
EPNet83.72 6882.92 7786.14 5884.22 25069.48 8991.05 5485.27 25181.30 576.83 18091.65 8766.09 10095.56 5776.00 12293.85 5993.38 75
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
patch_mono-283.65 6984.54 6380.99 21090.06 10665.83 16584.21 23788.74 19471.60 16385.01 4592.44 7474.51 2583.50 31682.15 6592.15 7493.64 67
HQP_MVS83.64 7083.14 7285.14 7390.08 10268.71 10791.25 4992.44 6979.12 2278.92 13191.00 11060.42 17695.38 6878.71 9286.32 14591.33 139
Effi-MVS+83.62 7183.08 7385.24 7188.38 16667.45 13488.89 10189.15 17575.50 9182.27 9088.28 17669.61 6894.45 10877.81 10187.84 12493.84 56
OPM-MVS83.50 7282.95 7685.14 7388.79 15170.95 6589.13 9591.52 10677.55 4380.96 10991.75 8560.71 16994.50 10679.67 8586.51 14389.97 199
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
Vis-MVSNetpermissive83.46 7382.80 7985.43 6890.25 9868.74 10590.30 6890.13 14576.33 7780.87 11092.89 6461.00 16694.20 11772.45 15890.97 8993.35 77
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MG-MVS83.41 7483.45 6983.28 14292.74 6262.28 23888.17 12889.50 16075.22 9581.49 10192.74 7266.75 9195.11 7972.85 15291.58 8292.45 109
EPP-MVSNet83.40 7583.02 7584.57 9290.13 10064.47 19792.32 2990.73 12774.45 11479.35 12591.10 10469.05 7595.12 7772.78 15387.22 13294.13 43
3Dnovator76.31 583.38 7682.31 8586.59 5187.94 18072.94 2790.64 5892.14 8477.21 5175.47 21092.83 6658.56 18594.72 9873.24 14992.71 6892.13 120
EIA-MVS83.31 7782.80 7984.82 8689.59 11565.59 17188.21 12692.68 6074.66 10878.96 12986.42 23169.06 7495.26 7275.54 12890.09 10093.62 68
h-mvs3383.15 7882.19 8686.02 6090.56 9270.85 6988.15 13089.16 17476.02 8284.67 5491.39 9761.54 15295.50 6082.71 6075.48 27991.72 129
MVS_Test83.15 7883.06 7483.41 13986.86 21163.21 22486.11 19092.00 8774.31 11582.87 8489.44 14670.03 6293.21 15977.39 10688.50 12093.81 57
IS-MVSNet83.15 7882.81 7884.18 10989.94 10963.30 22291.59 4288.46 20079.04 2479.49 12392.16 7865.10 11094.28 11167.71 19991.86 8094.95 9
DP-MVS Recon83.11 8182.09 8886.15 5794.44 1970.92 6788.79 10592.20 8170.53 18279.17 12791.03 10964.12 11796.03 4568.39 19690.14 9991.50 135
PAPM_NR83.02 8282.41 8284.82 8692.47 6766.37 15487.93 13891.80 9873.82 12677.32 16990.66 11567.90 8294.90 9070.37 17389.48 10893.19 84
VDD-MVS83.01 8382.36 8484.96 8091.02 8366.40 15388.91 10088.11 20377.57 4084.39 6293.29 5452.19 23693.91 13077.05 10988.70 11694.57 28
MVSFormer82.85 8482.05 8985.24 7187.35 20070.21 7690.50 6190.38 13568.55 22581.32 10289.47 14161.68 14993.46 15278.98 8990.26 9792.05 122
OMC-MVS82.69 8581.97 9284.85 8588.75 15367.42 13587.98 13490.87 12474.92 10279.72 12091.65 8762.19 14493.96 12375.26 13086.42 14493.16 85
PVSNet_Blended_VisFu82.62 8681.83 9484.96 8090.80 8969.76 8688.74 10991.70 10269.39 20378.96 12988.46 17165.47 10794.87 9374.42 13588.57 11790.24 181
MVS_111021_LR82.61 8782.11 8784.11 11088.82 14871.58 5285.15 21286.16 24174.69 10780.47 11391.04 10762.29 14190.55 24680.33 8190.08 10190.20 182
HQP-MVS82.61 8782.02 9084.37 10189.33 12766.98 14589.17 9092.19 8276.41 7177.23 17290.23 12360.17 17995.11 7977.47 10485.99 15291.03 151
CLD-MVS82.31 8981.65 9584.29 10688.47 16267.73 12885.81 20092.35 7475.78 8578.33 14686.58 22664.01 11894.35 10976.05 12187.48 12990.79 158
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
VNet82.21 9082.41 8281.62 19090.82 8860.93 25284.47 22889.78 15376.36 7684.07 6891.88 8364.71 11490.26 24870.68 17088.89 11293.66 61
diffmvspermissive82.10 9181.88 9382.76 17283.00 27863.78 21083.68 24489.76 15472.94 14682.02 9389.85 13065.96 10490.79 24282.38 6487.30 13193.71 60
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
LPG-MVS_test82.08 9281.27 9884.50 9589.23 13468.76 10390.22 6991.94 9175.37 9376.64 18691.51 9254.29 21894.91 8778.44 9483.78 17389.83 204
FIs82.07 9382.42 8181.04 20988.80 15058.34 27888.26 12593.49 2676.93 5978.47 14391.04 10769.92 6592.34 19569.87 18084.97 15992.44 110
PS-MVSNAJss82.07 9381.31 9784.34 10486.51 21867.27 13989.27 8891.51 10771.75 15779.37 12490.22 12463.15 12894.27 11277.69 10282.36 19791.49 136
API-MVS81.99 9581.23 9984.26 10790.94 8570.18 8191.10 5289.32 16571.51 16578.66 13788.28 17665.26 10895.10 8264.74 22691.23 8787.51 262
UniMVSNet_NR-MVSNet81.88 9681.54 9682.92 16188.46 16363.46 21887.13 15892.37 7380.19 1178.38 14489.14 15071.66 4893.05 17270.05 17676.46 26492.25 115
MAR-MVS81.84 9780.70 10885.27 7091.32 7971.53 5389.82 7690.92 12169.77 19778.50 14186.21 23562.36 14094.52 10565.36 22092.05 7689.77 207
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
LFMVS81.82 9881.23 9983.57 13491.89 7363.43 22089.84 7581.85 29777.04 5783.21 7993.10 5752.26 23593.43 15471.98 15989.95 10493.85 54
hse-mvs281.72 9980.94 10584.07 11588.72 15467.68 13085.87 19687.26 22576.02 8284.67 5488.22 17961.54 15293.48 15082.71 6073.44 30691.06 149
GeoE81.71 10081.01 10483.80 12989.51 11964.45 19888.97 9888.73 19571.27 16878.63 13889.76 13266.32 9793.20 16269.89 17986.02 15193.74 59
xiu_mvs_v2_base81.69 10181.05 10283.60 13289.15 13768.03 12384.46 23090.02 14770.67 17981.30 10586.53 22963.17 12794.19 11875.60 12788.54 11888.57 244
PS-MVSNAJ81.69 10181.02 10383.70 13189.51 11968.21 12084.28 23690.09 14670.79 17681.26 10685.62 24963.15 12894.29 11075.62 12688.87 11388.59 243
mvsmamba81.69 10180.74 10784.56 9387.45 19966.72 14991.26 4785.89 24574.66 10878.23 14990.56 11754.33 21794.91 8780.73 7883.54 18292.04 124
PAPR81.66 10480.89 10683.99 12390.27 9764.00 20586.76 17391.77 10168.84 22177.13 17889.50 13967.63 8494.88 9267.55 20188.52 11993.09 86
UniMVSNet (Re)81.60 10581.11 10183.09 15288.38 16664.41 19987.60 14693.02 4278.42 3178.56 14088.16 18069.78 6693.26 15869.58 18376.49 26391.60 130
FC-MVSNet-test81.52 10682.02 9080.03 23088.42 16555.97 31587.95 13693.42 2977.10 5577.38 16790.98 11269.96 6391.79 21368.46 19584.50 16492.33 111
VDDNet81.52 10680.67 10984.05 11890.44 9564.13 20489.73 8185.91 24471.11 17183.18 8093.48 4950.54 25993.49 14973.40 14688.25 12294.54 29
ACMP74.13 681.51 10880.57 11084.36 10289.42 12268.69 11089.97 7391.50 11074.46 11375.04 22990.41 12053.82 22394.54 10377.56 10382.91 18989.86 203
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
jason81.39 10980.29 11784.70 9086.63 21769.90 8485.95 19386.77 23263.24 28181.07 10889.47 14161.08 16592.15 20178.33 9790.07 10292.05 122
jason: jason.
lupinMVS81.39 10980.27 11884.76 8987.35 20070.21 7685.55 20586.41 23662.85 28881.32 10288.61 16661.68 14992.24 19978.41 9690.26 9791.83 126
test_yl81.17 11180.47 11383.24 14589.13 13863.62 21186.21 18789.95 15072.43 15181.78 9889.61 13657.50 19593.58 14370.75 16886.90 13692.52 104
DCV-MVSNet81.17 11180.47 11383.24 14589.13 13863.62 21186.21 18789.95 15072.43 15181.78 9889.61 13657.50 19593.58 14370.75 16886.90 13692.52 104
DU-MVS81.12 11380.52 11282.90 16287.80 18563.46 21887.02 16291.87 9579.01 2578.38 14489.07 15265.02 11193.05 17270.05 17676.46 26492.20 117
PVSNet_Blended80.98 11480.34 11582.90 16288.85 14565.40 17684.43 23292.00 8767.62 23578.11 15385.05 26366.02 10294.27 11271.52 16189.50 10789.01 227
FA-MVS(test-final)80.96 11579.91 12384.10 11188.30 16965.01 18584.55 22790.01 14873.25 14079.61 12187.57 19358.35 18794.72 9871.29 16586.25 14792.56 103
QAPM80.88 11679.50 13285.03 7788.01 17968.97 9991.59 4292.00 8766.63 24675.15 22592.16 7857.70 19295.45 6263.52 23088.76 11590.66 164
TranMVSNet+NR-MVSNet80.84 11780.31 11682.42 17787.85 18262.33 23687.74 14491.33 11280.55 877.99 15789.86 12965.23 10992.62 18267.05 20875.24 28892.30 113
UGNet80.83 11879.59 13084.54 9488.04 17768.09 12189.42 8588.16 20276.95 5876.22 19789.46 14349.30 27493.94 12668.48 19490.31 9591.60 130
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Fast-Effi-MVS+80.81 11979.92 12283.47 13588.85 14564.51 19485.53 20789.39 16370.79 17678.49 14285.06 26267.54 8593.58 14367.03 20986.58 14192.32 112
XVG-OURS-SEG-HR80.81 11979.76 12683.96 12585.60 22968.78 10283.54 25090.50 13270.66 18076.71 18491.66 8660.69 17091.26 22976.94 11081.58 20591.83 126
xiu_mvs_v1_base_debu80.80 12179.72 12784.03 12087.35 20070.19 7885.56 20288.77 19069.06 21581.83 9488.16 18050.91 25392.85 17878.29 9887.56 12689.06 222
xiu_mvs_v1_base80.80 12179.72 12784.03 12087.35 20070.19 7885.56 20288.77 19069.06 21581.83 9488.16 18050.91 25392.85 17878.29 9887.56 12689.06 222
xiu_mvs_v1_base_debi80.80 12179.72 12784.03 12087.35 20070.19 7885.56 20288.77 19069.06 21581.83 9488.16 18050.91 25392.85 17878.29 9887.56 12689.06 222
ACMM73.20 880.78 12479.84 12583.58 13389.31 13068.37 11589.99 7291.60 10470.28 18677.25 17089.66 13453.37 22793.53 14874.24 13882.85 19088.85 235
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
114514_t80.68 12579.51 13184.20 10894.09 3867.27 13989.64 8391.11 11858.75 32374.08 24090.72 11458.10 18895.04 8469.70 18189.42 10990.30 179
iter_conf_final80.63 12679.35 13684.46 9889.36 12667.70 12989.85 7484.49 26173.19 14178.30 14788.94 15545.98 29894.56 10179.59 8684.48 16691.11 146
CANet_DTU80.61 12779.87 12482.83 16485.60 22963.17 22787.36 15288.65 19676.37 7575.88 20488.44 17253.51 22693.07 17173.30 14789.74 10692.25 115
VPA-MVSNet80.60 12880.55 11180.76 21688.07 17660.80 25586.86 16791.58 10575.67 8980.24 11589.45 14563.34 12290.25 24970.51 17279.22 23591.23 143
PVSNet_BlendedMVS80.60 12880.02 12082.36 17988.85 14565.40 17686.16 18992.00 8769.34 20578.11 15386.09 23966.02 10294.27 11271.52 16182.06 19987.39 264
AdaColmapbinary80.58 13079.42 13384.06 11693.09 5468.91 10089.36 8788.97 18469.27 20675.70 20789.69 13357.20 19995.77 5363.06 23588.41 12187.50 263
EI-MVSNet80.52 13179.98 12182.12 18084.28 24863.19 22686.41 18188.95 18574.18 11978.69 13587.54 19666.62 9292.43 18972.57 15680.57 21890.74 162
XVG-OURS80.41 13279.23 14083.97 12485.64 22869.02 9783.03 26090.39 13471.09 17277.63 16391.49 9454.62 21691.35 22775.71 12483.47 18391.54 132
SDMVSNet80.38 13380.18 11980.99 21089.03 14364.94 18780.45 28689.40 16275.19 9776.61 18889.98 12760.61 17387.69 28776.83 11383.55 18090.33 177
PCF-MVS73.52 780.38 13378.84 14985.01 7887.71 18968.99 9883.65 24591.46 11163.00 28577.77 16190.28 12166.10 9995.09 8361.40 25388.22 12390.94 155
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
X-MVStestdata80.37 13577.83 17288.00 1694.42 2073.33 1892.78 1892.99 4579.14 2083.67 7512.47 38167.45 8696.60 3283.06 5394.50 4994.07 46
RRT_MVS80.35 13679.22 14183.74 13087.63 19365.46 17591.08 5388.92 18773.82 12676.44 19390.03 12649.05 27994.25 11676.84 11179.20 23691.51 133
test_djsdf80.30 13779.32 13783.27 14383.98 25665.37 17990.50 6190.38 13568.55 22576.19 19888.70 16256.44 20393.46 15278.98 8980.14 22490.97 154
v2v48280.23 13879.29 13883.05 15583.62 26164.14 20387.04 16189.97 14973.61 13178.18 15287.22 20461.10 16493.82 13376.11 11976.78 26191.18 144
NR-MVSNet80.23 13879.38 13482.78 17087.80 18563.34 22186.31 18491.09 11979.01 2572.17 25989.07 15267.20 8992.81 18166.08 21575.65 27592.20 117
Anonymous2024052980.19 14078.89 14884.10 11190.60 9164.75 19188.95 9990.90 12265.97 25480.59 11291.17 10349.97 26493.73 14169.16 18782.70 19493.81 57
IterMVS-LS80.06 14179.38 13482.11 18185.89 22463.20 22586.79 17089.34 16474.19 11875.45 21386.72 21666.62 9292.39 19172.58 15576.86 25890.75 161
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Effi-MVS+-dtu80.03 14278.57 15484.42 10085.13 23868.74 10588.77 10688.10 20474.99 10174.97 23083.49 28557.27 19893.36 15573.53 14380.88 21291.18 144
v114480.03 14279.03 14583.01 15783.78 25964.51 19487.11 16090.57 13171.96 15678.08 15586.20 23661.41 15693.94 12674.93 13177.23 25290.60 167
iter_conf0580.00 14478.70 15083.91 12787.84 18365.83 16588.84 10484.92 25671.61 16278.70 13488.94 15543.88 31394.56 10179.28 8784.28 16991.33 139
v879.97 14579.02 14682.80 16784.09 25364.50 19687.96 13590.29 14274.13 12175.24 22386.81 21362.88 13393.89 13274.39 13675.40 28390.00 195
OpenMVScopyleft72.83 1079.77 14678.33 16184.09 11385.17 23469.91 8390.57 5990.97 12066.70 24272.17 25991.91 8154.70 21493.96 12361.81 25090.95 9088.41 247
v1079.74 14778.67 15182.97 16084.06 25464.95 18687.88 14190.62 12973.11 14275.11 22686.56 22761.46 15594.05 12273.68 14175.55 27789.90 201
ECVR-MVScopyleft79.61 14879.26 13980.67 21890.08 10254.69 32687.89 14077.44 33374.88 10380.27 11492.79 6948.96 28192.45 18868.55 19392.50 7194.86 16
BH-RMVSNet79.61 14878.44 15783.14 15089.38 12565.93 16284.95 21787.15 22773.56 13378.19 15189.79 13156.67 20293.36 15559.53 26786.74 13990.13 185
v119279.59 15078.43 15883.07 15483.55 26364.52 19386.93 16590.58 13070.83 17577.78 16085.90 24059.15 18293.94 12673.96 14077.19 25490.76 160
ab-mvs79.51 15178.97 14781.14 20688.46 16360.91 25383.84 24289.24 17170.36 18479.03 12888.87 15963.23 12690.21 25065.12 22282.57 19592.28 114
WR-MVS79.49 15279.22 14180.27 22688.79 15158.35 27785.06 21488.61 19878.56 2977.65 16288.34 17463.81 12190.66 24564.98 22477.22 25391.80 128
v14419279.47 15378.37 15982.78 17083.35 26663.96 20686.96 16390.36 13869.99 19177.50 16485.67 24760.66 17193.77 13774.27 13776.58 26290.62 165
BH-untuned79.47 15378.60 15382.05 18289.19 13665.91 16386.07 19188.52 19972.18 15375.42 21487.69 19061.15 16393.54 14760.38 26086.83 13886.70 283
test111179.43 15579.18 14380.15 22889.99 10753.31 33987.33 15477.05 33675.04 10080.23 11692.77 7148.97 28092.33 19668.87 19092.40 7394.81 19
mvs_anonymous79.42 15679.11 14480.34 22484.45 24757.97 28482.59 26287.62 21767.40 23876.17 20188.56 16968.47 7989.59 25870.65 17186.05 15093.47 74
thisisatest053079.40 15777.76 17784.31 10587.69 19165.10 18487.36 15284.26 26770.04 18977.42 16688.26 17849.94 26594.79 9670.20 17484.70 16393.03 89
tttt051779.40 15777.91 16983.90 12888.10 17463.84 20888.37 12284.05 26971.45 16676.78 18289.12 15149.93 26794.89 9170.18 17583.18 18792.96 93
V4279.38 15978.24 16382.83 16481.10 31165.50 17385.55 20589.82 15271.57 16478.21 15086.12 23860.66 17193.18 16575.64 12575.46 28189.81 206
jajsoiax79.29 16077.96 16783.27 14384.68 24466.57 15289.25 8990.16 14469.20 21075.46 21289.49 14045.75 30393.13 16876.84 11180.80 21490.11 187
v192192079.22 16178.03 16682.80 16783.30 26863.94 20786.80 16990.33 13969.91 19477.48 16585.53 25058.44 18693.75 13973.60 14276.85 25990.71 163
AUN-MVS79.21 16277.60 18284.05 11888.71 15567.61 13185.84 19887.26 22569.08 21477.23 17288.14 18453.20 22993.47 15175.50 12973.45 30591.06 149
TAPA-MVS73.13 979.15 16377.94 16882.79 16989.59 11562.99 23188.16 12991.51 10765.77 25577.14 17791.09 10560.91 16793.21 15950.26 32787.05 13492.17 119
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
mvs_tets79.13 16477.77 17683.22 14784.70 24366.37 15489.17 9090.19 14369.38 20475.40 21589.46 14344.17 31193.15 16676.78 11480.70 21690.14 184
UniMVSNet_ETH3D79.10 16578.24 16381.70 18986.85 21260.24 26487.28 15688.79 18974.25 11776.84 17990.53 11949.48 27091.56 21967.98 19782.15 19893.29 79
CDS-MVSNet79.07 16677.70 17983.17 14987.60 19468.23 11984.40 23486.20 24067.49 23776.36 19486.54 22861.54 15290.79 24261.86 24987.33 13090.49 171
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MVSTER79.01 16777.88 17182.38 17883.07 27564.80 19084.08 24188.95 18569.01 21878.69 13587.17 20754.70 21492.43 18974.69 13280.57 21889.89 202
v124078.99 16877.78 17582.64 17383.21 27063.54 21586.62 17690.30 14169.74 20077.33 16885.68 24657.04 20093.76 13873.13 15076.92 25690.62 165
Anonymous2023121178.97 16977.69 18082.81 16690.54 9364.29 20190.11 7191.51 10765.01 26476.16 20288.13 18550.56 25893.03 17569.68 18277.56 25191.11 146
v7n78.97 16977.58 18383.14 15083.45 26565.51 17288.32 12391.21 11473.69 12972.41 25686.32 23457.93 18993.81 13469.18 18675.65 27590.11 187
TAMVS78.89 17177.51 18483.03 15687.80 18567.79 12784.72 22185.05 25467.63 23476.75 18387.70 18962.25 14290.82 24158.53 27887.13 13390.49 171
c3_l78.75 17277.91 16981.26 20182.89 28161.56 24784.09 24089.13 17769.97 19275.56 20884.29 27366.36 9692.09 20373.47 14575.48 27990.12 186
tt080578.73 17377.83 17281.43 19585.17 23460.30 26389.41 8690.90 12271.21 16977.17 17688.73 16146.38 29393.21 15972.57 15678.96 23790.79 158
v14878.72 17477.80 17481.47 19482.73 28461.96 24286.30 18588.08 20573.26 13976.18 19985.47 25262.46 13892.36 19371.92 16073.82 30290.09 189
VPNet78.69 17578.66 15278.76 25188.31 16855.72 31784.45 23186.63 23476.79 6378.26 14890.55 11859.30 18189.70 25766.63 21077.05 25590.88 156
ET-MVSNet_ETH3D78.63 17676.63 20584.64 9186.73 21669.47 9085.01 21584.61 25969.54 20166.51 31786.59 22450.16 26291.75 21476.26 11884.24 17092.69 99
anonymousdsp78.60 17777.15 19082.98 15980.51 31767.08 14387.24 15789.53 15965.66 25775.16 22487.19 20652.52 23092.25 19877.17 10879.34 23389.61 211
miper_ehance_all_eth78.59 17877.76 17781.08 20882.66 28661.56 24783.65 24589.15 17568.87 22075.55 20983.79 28166.49 9492.03 20473.25 14876.39 26689.64 210
WR-MVS_H78.51 17978.49 15578.56 25588.02 17856.38 31088.43 11792.67 6177.14 5373.89 24187.55 19566.25 9889.24 26458.92 27373.55 30490.06 193
GBi-Net78.40 18077.40 18581.40 19787.60 19463.01 22888.39 11989.28 16671.63 15975.34 21787.28 20054.80 21091.11 23262.72 23779.57 22890.09 189
test178.40 18077.40 18581.40 19787.60 19463.01 22888.39 11989.28 16671.63 15975.34 21787.28 20054.80 21091.11 23262.72 23779.57 22890.09 189
Vis-MVSNet (Re-imp)78.36 18278.45 15678.07 26388.64 15751.78 34686.70 17479.63 31974.14 12075.11 22690.83 11361.29 16089.75 25558.10 28291.60 8192.69 99
Anonymous20240521178.25 18377.01 19281.99 18491.03 8260.67 25784.77 22083.90 27170.65 18180.00 11891.20 10141.08 33091.43 22565.21 22185.26 15793.85 54
CP-MVSNet78.22 18478.34 16077.84 26587.83 18454.54 32887.94 13791.17 11677.65 3773.48 24488.49 17062.24 14388.43 27862.19 24474.07 29790.55 169
BH-w/o78.21 18577.33 18880.84 21488.81 14965.13 18384.87 21887.85 21369.75 19874.52 23684.74 26761.34 15893.11 16958.24 28185.84 15484.27 316
FMVSNet278.20 18677.21 18981.20 20487.60 19462.89 23287.47 15089.02 18071.63 15975.29 22287.28 20054.80 21091.10 23562.38 24279.38 23289.61 211
MVS78.19 18776.99 19481.78 18785.66 22766.99 14484.66 22290.47 13355.08 34272.02 26185.27 25563.83 12094.11 12166.10 21489.80 10584.24 317
Baseline_NR-MVSNet78.15 18878.33 16177.61 27085.79 22556.21 31386.78 17185.76 24773.60 13277.93 15887.57 19365.02 11188.99 26867.14 20775.33 28587.63 258
CNLPA78.08 18976.79 19981.97 18590.40 9671.07 6187.59 14784.55 26066.03 25372.38 25789.64 13557.56 19486.04 29759.61 26683.35 18488.79 238
cl2278.07 19077.01 19281.23 20282.37 29361.83 24483.55 24987.98 20768.96 21975.06 22883.87 27761.40 15791.88 21173.53 14376.39 26689.98 198
PLCcopyleft70.83 1178.05 19176.37 21083.08 15391.88 7467.80 12688.19 12789.46 16164.33 27269.87 28488.38 17353.66 22493.58 14358.86 27482.73 19287.86 254
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
Fast-Effi-MVS+-dtu78.02 19276.49 20682.62 17483.16 27466.96 14786.94 16487.45 22272.45 14871.49 26684.17 27454.79 21391.58 21867.61 20080.31 22189.30 218
PS-CasMVS78.01 19378.09 16577.77 26787.71 18954.39 33088.02 13391.22 11377.50 4573.26 24688.64 16560.73 16888.41 27961.88 24873.88 30190.53 170
HY-MVS69.67 1277.95 19477.15 19080.36 22387.57 19860.21 26583.37 25287.78 21566.11 25075.37 21687.06 21163.27 12490.48 24761.38 25482.43 19690.40 175
eth_miper_zixun_eth77.92 19576.69 20381.61 19283.00 27861.98 24183.15 25589.20 17369.52 20274.86 23284.35 27261.76 14892.56 18571.50 16372.89 31090.28 180
FMVSNet377.88 19676.85 19780.97 21286.84 21362.36 23586.52 17988.77 19071.13 17075.34 21786.66 22254.07 22191.10 23562.72 23779.57 22889.45 214
miper_enhance_ethall77.87 19776.86 19680.92 21381.65 30061.38 24982.68 26188.98 18265.52 25975.47 21082.30 30065.76 10692.00 20672.95 15176.39 26689.39 215
FE-MVS77.78 19875.68 21684.08 11488.09 17566.00 16083.13 25687.79 21468.42 22978.01 15685.23 25745.50 30595.12 7759.11 27185.83 15591.11 146
PEN-MVS77.73 19977.69 18077.84 26587.07 21053.91 33387.91 13991.18 11577.56 4273.14 24888.82 16061.23 16189.17 26559.95 26372.37 31290.43 173
cl____77.72 20076.76 20080.58 21982.49 29060.48 26083.09 25787.87 21169.22 20874.38 23885.22 25862.10 14591.53 22171.09 16675.41 28289.73 209
DIV-MVS_self_test77.72 20076.76 20080.58 21982.48 29160.48 26083.09 25787.86 21269.22 20874.38 23885.24 25662.10 14591.53 22171.09 16675.40 28389.74 208
sd_testset77.70 20277.40 18578.60 25489.03 14360.02 26679.00 30385.83 24675.19 9776.61 18889.98 12754.81 20985.46 30262.63 24183.55 18090.33 177
PAPM77.68 20376.40 20981.51 19387.29 20661.85 24383.78 24389.59 15864.74 26671.23 26788.70 16262.59 13593.66 14252.66 31387.03 13589.01 227
CHOSEN 1792x268877.63 20475.69 21583.44 13689.98 10868.58 11378.70 30787.50 22056.38 33775.80 20686.84 21258.67 18491.40 22661.58 25285.75 15690.34 176
HyFIR lowres test77.53 20575.40 22283.94 12689.59 11566.62 15080.36 28788.64 19756.29 33876.45 19085.17 25957.64 19393.28 15761.34 25583.10 18891.91 125
FMVSNet177.44 20676.12 21281.40 19786.81 21463.01 22888.39 11989.28 16670.49 18374.39 23787.28 20049.06 27891.11 23260.91 25778.52 24090.09 189
TR-MVS77.44 20676.18 21181.20 20488.24 17063.24 22384.61 22586.40 23767.55 23677.81 15986.48 23054.10 22093.15 16657.75 28582.72 19387.20 269
1112_ss77.40 20876.43 20880.32 22589.11 14260.41 26283.65 24587.72 21662.13 29773.05 24986.72 21662.58 13689.97 25262.11 24780.80 21490.59 168
thisisatest051577.33 20975.38 22383.18 14885.27 23363.80 20982.11 26683.27 28165.06 26275.91 20383.84 27949.54 26994.27 11267.24 20586.19 14891.48 137
test250677.30 21076.49 20679.74 23690.08 10252.02 34287.86 14263.10 37174.88 10380.16 11792.79 6938.29 34092.35 19468.74 19292.50 7194.86 16
bld_raw_dy_0_6477.29 21175.98 21381.22 20385.04 24065.47 17488.14 13277.56 33069.20 21073.77 24289.40 14942.24 32488.85 27476.78 11481.64 20489.33 217
pm-mvs177.25 21276.68 20478.93 24984.22 25058.62 27686.41 18188.36 20171.37 16773.31 24588.01 18661.22 16289.15 26664.24 22873.01 30989.03 226
LCM-MVSNet-Re77.05 21376.94 19577.36 27387.20 20751.60 34780.06 29080.46 31075.20 9667.69 30186.72 21662.48 13788.98 26963.44 23289.25 11091.51 133
DTE-MVSNet76.99 21476.80 19877.54 27286.24 22053.06 34187.52 14890.66 12877.08 5672.50 25488.67 16460.48 17589.52 25957.33 28970.74 32390.05 194
baseline176.98 21576.75 20277.66 26888.13 17255.66 31885.12 21381.89 29573.04 14476.79 18188.90 15762.43 13987.78 28663.30 23471.18 32189.55 213
LS3D76.95 21674.82 22983.37 14090.45 9467.36 13889.15 9486.94 23061.87 29969.52 28790.61 11651.71 24794.53 10446.38 34786.71 14088.21 249
GA-MVS76.87 21775.17 22781.97 18582.75 28362.58 23381.44 27586.35 23972.16 15574.74 23382.89 29246.20 29792.02 20568.85 19181.09 21091.30 142
DP-MVS76.78 21874.57 23183.42 13793.29 4869.46 9288.55 11683.70 27363.98 27870.20 27588.89 15854.01 22294.80 9546.66 34481.88 20286.01 295
cascas76.72 21974.64 23082.99 15885.78 22665.88 16482.33 26489.21 17260.85 30572.74 25181.02 31147.28 28893.75 13967.48 20285.02 15889.34 216
131476.53 22075.30 22680.21 22783.93 25762.32 23784.66 22288.81 18860.23 30970.16 27884.07 27655.30 20790.73 24467.37 20383.21 18687.59 261
thres100view90076.50 22175.55 21979.33 24489.52 11856.99 29985.83 19983.23 28273.94 12376.32 19587.12 20851.89 24491.95 20748.33 33583.75 17589.07 220
thres600view776.50 22175.44 22079.68 23889.40 12357.16 29685.53 20783.23 28273.79 12876.26 19687.09 20951.89 24491.89 21048.05 34083.72 17890.00 195
thres40076.50 22175.37 22479.86 23389.13 13857.65 29085.17 21083.60 27473.41 13776.45 19086.39 23252.12 23791.95 20748.33 33583.75 17590.00 195
tfpn200view976.42 22475.37 22479.55 24389.13 13857.65 29085.17 21083.60 27473.41 13776.45 19086.39 23252.12 23791.95 20748.33 33583.75 17589.07 220
Test_1112_low_res76.40 22575.44 22079.27 24589.28 13258.09 28081.69 27087.07 22859.53 31672.48 25586.67 22161.30 15989.33 26260.81 25980.15 22390.41 174
F-COLMAP76.38 22674.33 23682.50 17689.28 13266.95 14888.41 11889.03 17964.05 27666.83 31188.61 16646.78 29192.89 17757.48 28678.55 23987.67 257
LTVRE_ROB69.57 1376.25 22774.54 23381.41 19688.60 15864.38 20079.24 29989.12 17870.76 17869.79 28687.86 18749.09 27793.20 16256.21 29980.16 22286.65 284
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
MVP-Stereo76.12 22874.46 23581.13 20785.37 23269.79 8584.42 23387.95 20965.03 26367.46 30485.33 25453.28 22891.73 21658.01 28383.27 18581.85 339
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
XVG-ACMP-BASELINE76.11 22974.27 23781.62 19083.20 27164.67 19283.60 24889.75 15569.75 19871.85 26287.09 20932.78 35292.11 20269.99 17880.43 22088.09 250
ACMH+68.96 1476.01 23074.01 23882.03 18388.60 15865.31 18088.86 10287.55 21870.25 18767.75 30087.47 19841.27 32893.19 16458.37 27975.94 27287.60 259
ACMH67.68 1675.89 23173.93 23981.77 18888.71 15566.61 15188.62 11489.01 18169.81 19566.78 31286.70 22041.95 32791.51 22355.64 30078.14 24687.17 270
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
IB-MVS68.01 1575.85 23273.36 24683.31 14184.76 24266.03 15883.38 25185.06 25370.21 18869.40 28881.05 31045.76 30294.66 10065.10 22375.49 27889.25 219
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
baseline275.70 23373.83 24281.30 20083.26 26961.79 24582.57 26380.65 30666.81 23966.88 31083.42 28657.86 19192.19 20063.47 23179.57 22889.91 200
WTY-MVS75.65 23475.68 21675.57 28886.40 21956.82 30177.92 31582.40 29165.10 26176.18 19987.72 18863.13 13180.90 32860.31 26181.96 20089.00 229
thres20075.55 23574.47 23478.82 25087.78 18857.85 28783.07 25983.51 27772.44 15075.84 20584.42 26952.08 23991.75 21447.41 34283.64 17986.86 279
test_vis1_n_192075.52 23675.78 21474.75 29879.84 32457.44 29483.26 25385.52 24962.83 28979.34 12686.17 23745.10 30779.71 33278.75 9181.21 20987.10 276
EPNet_dtu75.46 23774.86 22877.23 27682.57 28854.60 32786.89 16683.09 28571.64 15866.25 31985.86 24255.99 20488.04 28354.92 30286.55 14289.05 225
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
IterMVS-SCA-FT75.43 23873.87 24180.11 22982.69 28564.85 18981.57 27283.47 27869.16 21270.49 27284.15 27551.95 24288.15 28169.23 18572.14 31587.34 266
XXY-MVS75.41 23975.56 21874.96 29483.59 26257.82 28880.59 28383.87 27266.54 24774.93 23188.31 17563.24 12580.09 33162.16 24576.85 25986.97 277
TransMVSNet (Re)75.39 24074.56 23277.86 26485.50 23157.10 29886.78 17186.09 24372.17 15471.53 26587.34 19963.01 13289.31 26356.84 29461.83 34987.17 270
CostFormer75.24 24173.90 24079.27 24582.65 28758.27 27980.80 27882.73 28961.57 30075.33 22083.13 29055.52 20591.07 23864.98 22478.34 24588.45 245
D2MVS74.82 24273.21 24779.64 24079.81 32562.56 23480.34 28887.35 22364.37 27168.86 29282.66 29646.37 29490.10 25167.91 19881.24 20886.25 288
pmmvs674.69 24373.39 24578.61 25381.38 30657.48 29386.64 17587.95 20964.99 26570.18 27686.61 22350.43 26089.52 25962.12 24670.18 32588.83 236
tfpnnormal74.39 24473.16 24878.08 26286.10 22358.05 28184.65 22487.53 21970.32 18571.22 26885.63 24854.97 20889.86 25343.03 35675.02 29086.32 287
IterMVS74.29 24572.94 25078.35 25981.53 30363.49 21781.58 27182.49 29068.06 23269.99 28183.69 28351.66 24885.54 30065.85 21771.64 31886.01 295
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
OurMVSNet-221017-074.26 24672.42 25479.80 23583.76 26059.59 27185.92 19586.64 23366.39 24866.96 30987.58 19239.46 33491.60 21765.76 21869.27 32888.22 248
SCA74.22 24772.33 25579.91 23284.05 25562.17 23979.96 29379.29 32266.30 24972.38 25780.13 32051.95 24288.60 27659.25 26977.67 25088.96 231
miper_lstm_enhance74.11 24873.11 24977.13 27780.11 32059.62 27072.23 34086.92 23166.76 24170.40 27382.92 29156.93 20182.92 32069.06 18872.63 31188.87 234
EG-PatchMatch MVS74.04 24971.82 25880.71 21784.92 24167.42 13585.86 19788.08 20566.04 25264.22 33183.85 27835.10 34992.56 18557.44 28780.83 21382.16 338
pmmvs474.03 25071.91 25780.39 22281.96 29668.32 11681.45 27482.14 29359.32 31769.87 28485.13 26052.40 23388.13 28260.21 26274.74 29384.73 313
MS-PatchMatch73.83 25172.67 25177.30 27583.87 25866.02 15981.82 26784.66 25861.37 30368.61 29582.82 29447.29 28788.21 28059.27 26884.32 16877.68 353
test_cas_vis1_n_192073.76 25273.74 24373.81 30575.90 34559.77 26880.51 28482.40 29158.30 32581.62 10085.69 24544.35 31076.41 35076.29 11778.61 23885.23 305
sss73.60 25373.64 24473.51 30782.80 28255.01 32476.12 32281.69 29862.47 29474.68 23485.85 24357.32 19778.11 33960.86 25880.93 21187.39 264
RPMNet73.51 25470.49 27182.58 17581.32 30965.19 18175.92 32492.27 7657.60 33172.73 25276.45 34552.30 23495.43 6448.14 33977.71 24887.11 274
SixPastTwentyTwo73.37 25571.26 26579.70 23785.08 23957.89 28685.57 20183.56 27671.03 17365.66 32185.88 24142.10 32592.57 18459.11 27163.34 34788.65 242
CR-MVSNet73.37 25571.27 26479.67 23981.32 30965.19 18175.92 32480.30 31259.92 31272.73 25281.19 30852.50 23186.69 29259.84 26477.71 24887.11 274
MSDG73.36 25770.99 26680.49 22184.51 24665.80 16780.71 28186.13 24265.70 25665.46 32283.74 28244.60 30890.91 24051.13 32076.89 25784.74 312
tpm273.26 25871.46 26078.63 25283.34 26756.71 30480.65 28280.40 31156.63 33673.55 24382.02 30551.80 24691.24 23056.35 29878.42 24387.95 251
RPSCF73.23 25971.46 26078.54 25682.50 28959.85 26782.18 26582.84 28858.96 32071.15 26989.41 14745.48 30684.77 30858.82 27571.83 31791.02 153
PatchmatchNetpermissive73.12 26071.33 26378.49 25883.18 27260.85 25479.63 29578.57 32564.13 27371.73 26379.81 32551.20 25185.97 29857.40 28876.36 26988.66 241
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
COLMAP_ROBcopyleft66.92 1773.01 26170.41 27380.81 21587.13 20965.63 17088.30 12484.19 26862.96 28663.80 33587.69 19038.04 34192.56 18546.66 34474.91 29184.24 317
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
CVMVSNet72.99 26272.58 25274.25 30284.28 24850.85 35286.41 18183.45 27944.56 35973.23 24787.54 19649.38 27285.70 29965.90 21678.44 24286.19 290
test-LLR72.94 26372.43 25374.48 29981.35 30758.04 28278.38 30877.46 33166.66 24369.95 28279.00 32948.06 28479.24 33366.13 21284.83 16086.15 291
test_040272.79 26470.44 27279.84 23488.13 17265.99 16185.93 19484.29 26565.57 25867.40 30685.49 25146.92 29092.61 18335.88 36574.38 29680.94 344
tpmrst72.39 26572.13 25673.18 31180.54 31649.91 35679.91 29479.08 32363.11 28371.69 26479.95 32255.32 20682.77 32165.66 21973.89 30086.87 278
PatchMatch-RL72.38 26670.90 26776.80 28088.60 15867.38 13779.53 29676.17 34162.75 29169.36 28982.00 30645.51 30484.89 30753.62 30880.58 21778.12 352
CL-MVSNet_self_test72.37 26771.46 26075.09 29379.49 33153.53 33580.76 28085.01 25569.12 21370.51 27182.05 30457.92 19084.13 31152.27 31566.00 34187.60 259
tpm72.37 26771.71 25974.35 30182.19 29452.00 34379.22 30077.29 33464.56 26872.95 25083.68 28451.35 24983.26 31958.33 28075.80 27387.81 255
PVSNet64.34 1872.08 26970.87 26875.69 28686.21 22156.44 30874.37 33680.73 30562.06 29870.17 27782.23 30242.86 31883.31 31854.77 30384.45 16787.32 267
pmmvs571.55 27070.20 27675.61 28777.83 33856.39 30981.74 26980.89 30257.76 32967.46 30484.49 26849.26 27585.32 30457.08 29175.29 28685.11 309
test-mter71.41 27170.39 27474.48 29981.35 30758.04 28278.38 30877.46 33160.32 30869.95 28279.00 32936.08 34779.24 33366.13 21284.83 16086.15 291
K. test v371.19 27268.51 28479.21 24783.04 27757.78 28984.35 23576.91 33772.90 14762.99 33882.86 29339.27 33591.09 23761.65 25152.66 36588.75 239
dmvs_re71.14 27370.58 26972.80 31281.96 29659.68 26975.60 32879.34 32168.55 22569.27 29180.72 31649.42 27176.54 34752.56 31477.79 24782.19 337
tpmvs71.09 27469.29 27976.49 28182.04 29556.04 31478.92 30581.37 30164.05 27667.18 30878.28 33549.74 26889.77 25449.67 33072.37 31283.67 324
AllTest70.96 27568.09 29079.58 24185.15 23663.62 21184.58 22679.83 31662.31 29560.32 34686.73 21432.02 35388.96 27150.28 32571.57 31986.15 291
test_fmvs170.93 27670.52 27072.16 31673.71 35555.05 32380.82 27778.77 32451.21 35378.58 13984.41 27031.20 35676.94 34575.88 12380.12 22584.47 315
test_fmvs1_n70.86 27770.24 27572.73 31372.51 36355.28 32181.27 27679.71 31851.49 35278.73 13384.87 26427.54 36077.02 34476.06 12079.97 22685.88 298
Patchmtry70.74 27869.16 28175.49 29080.72 31354.07 33274.94 33580.30 31258.34 32470.01 27981.19 30852.50 23186.54 29353.37 31071.09 32285.87 299
MIMVSNet70.69 27969.30 27874.88 29584.52 24556.35 31175.87 32679.42 32064.59 26767.76 29982.41 29841.10 32981.54 32546.64 34681.34 20686.75 282
tpm cat170.57 28068.31 28677.35 27482.41 29257.95 28578.08 31280.22 31452.04 34868.54 29677.66 34052.00 24187.84 28551.77 31672.07 31686.25 288
OpenMVS_ROBcopyleft64.09 1970.56 28168.19 28777.65 26980.26 31859.41 27385.01 21582.96 28758.76 32265.43 32382.33 29937.63 34391.23 23145.34 35276.03 27182.32 335
pmmvs-eth3d70.50 28267.83 29478.52 25777.37 34166.18 15781.82 26781.51 29958.90 32163.90 33480.42 31842.69 31986.28 29658.56 27765.30 34383.11 330
USDC70.33 28368.37 28576.21 28380.60 31556.23 31279.19 30186.49 23560.89 30461.29 34285.47 25231.78 35589.47 26153.37 31076.21 27082.94 334
Patchmatch-RL test70.24 28467.78 29677.61 27077.43 34059.57 27271.16 34370.33 35462.94 28768.65 29472.77 35550.62 25785.49 30169.58 18366.58 33887.77 256
CMPMVSbinary51.72 2170.19 28568.16 28876.28 28273.15 36057.55 29279.47 29783.92 27048.02 35656.48 35984.81 26543.13 31686.42 29562.67 24081.81 20384.89 310
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
ppachtmachnet_test70.04 28667.34 30178.14 26179.80 32661.13 25079.19 30180.59 30759.16 31965.27 32479.29 32646.75 29287.29 28949.33 33166.72 33686.00 297
gg-mvs-nofinetune69.95 28767.96 29175.94 28483.07 27554.51 32977.23 31970.29 35563.11 28370.32 27462.33 36443.62 31488.69 27553.88 30787.76 12584.62 314
TESTMET0.1,169.89 28869.00 28272.55 31479.27 33456.85 30078.38 30874.71 34757.64 33068.09 29877.19 34237.75 34276.70 34663.92 22984.09 17184.10 320
test_vis1_n69.85 28969.21 28071.77 31872.66 36255.27 32281.48 27376.21 34052.03 34975.30 22183.20 28928.97 35876.22 35274.60 13378.41 24483.81 323
FMVSNet569.50 29067.96 29174.15 30382.97 28055.35 32080.01 29282.12 29462.56 29363.02 33681.53 30736.92 34481.92 32348.42 33474.06 29885.17 308
PMMVS69.34 29168.67 28371.35 32375.67 34762.03 24075.17 33073.46 35050.00 35468.68 29379.05 32752.07 24078.13 33861.16 25682.77 19173.90 359
our_test_369.14 29267.00 30375.57 28879.80 32658.80 27477.96 31377.81 32859.55 31562.90 33978.25 33647.43 28683.97 31251.71 31767.58 33583.93 322
EPMVS69.02 29368.16 28871.59 31979.61 32949.80 35877.40 31766.93 36362.82 29070.01 27979.05 32745.79 30177.86 34156.58 29675.26 28787.13 273
KD-MVS_self_test68.81 29467.59 29972.46 31574.29 35345.45 36477.93 31487.00 22963.12 28263.99 33378.99 33142.32 32184.77 30856.55 29764.09 34687.16 272
Anonymous2024052168.80 29567.22 30273.55 30674.33 35254.11 33183.18 25485.61 24858.15 32661.68 34180.94 31330.71 35781.27 32757.00 29273.34 30885.28 304
Anonymous2023120668.60 29667.80 29571.02 32580.23 31950.75 35378.30 31180.47 30956.79 33566.11 32082.63 29746.35 29578.95 33543.62 35575.70 27483.36 327
MIMVSNet168.58 29766.78 30573.98 30480.07 32151.82 34580.77 27984.37 26264.40 27059.75 34982.16 30336.47 34583.63 31542.73 35770.33 32486.48 286
EU-MVSNet68.53 29867.61 29871.31 32478.51 33747.01 36284.47 22884.27 26642.27 36266.44 31884.79 26640.44 33283.76 31358.76 27668.54 33383.17 328
PatchT68.46 29967.85 29370.29 32880.70 31443.93 37172.47 33974.88 34460.15 31070.55 27076.57 34449.94 26581.59 32450.58 32174.83 29285.34 303
test_fmvs268.35 30067.48 30070.98 32669.50 36651.95 34480.05 29176.38 33949.33 35574.65 23584.38 27123.30 36675.40 35774.51 13475.17 28985.60 300
test0.0.03 168.00 30167.69 29768.90 33377.55 33947.43 36075.70 32772.95 35266.66 24366.56 31382.29 30148.06 28475.87 35444.97 35374.51 29583.41 326
TDRefinement67.49 30264.34 31176.92 27873.47 35861.07 25184.86 21982.98 28659.77 31358.30 35385.13 26026.06 36187.89 28447.92 34160.59 35481.81 340
test20.0367.45 30366.95 30468.94 33275.48 34944.84 36977.50 31677.67 32966.66 24363.01 33783.80 28047.02 28978.40 33742.53 35868.86 33283.58 325
UnsupCasMVSNet_eth67.33 30465.99 30771.37 32173.48 35751.47 34975.16 33185.19 25265.20 26060.78 34480.93 31542.35 32077.20 34357.12 29053.69 36485.44 302
TinyColmap67.30 30564.81 30974.76 29781.92 29856.68 30580.29 28981.49 30060.33 30756.27 36083.22 28724.77 36387.66 28845.52 35069.47 32779.95 348
dp66.80 30665.43 30870.90 32779.74 32848.82 35975.12 33374.77 34559.61 31464.08 33277.23 34142.89 31780.72 32948.86 33366.58 33883.16 329
MDA-MVSNet-bldmvs66.68 30763.66 31675.75 28579.28 33360.56 25973.92 33778.35 32664.43 26950.13 36679.87 32444.02 31283.67 31446.10 34856.86 35783.03 332
testgi66.67 30866.53 30667.08 34075.62 34841.69 37575.93 32376.50 33866.11 25065.20 32786.59 22435.72 34874.71 35943.71 35473.38 30784.84 311
CHOSEN 280x42066.51 30964.71 31071.90 31781.45 30463.52 21657.98 37168.95 36153.57 34462.59 34076.70 34346.22 29675.29 35855.25 30179.68 22776.88 355
PM-MVS66.41 31064.14 31273.20 31073.92 35456.45 30778.97 30464.96 36963.88 28064.72 32880.24 31919.84 36983.44 31766.24 21164.52 34579.71 349
JIA-IIPM66.32 31162.82 32276.82 27977.09 34261.72 24665.34 36475.38 34258.04 32864.51 32962.32 36542.05 32686.51 29451.45 31969.22 32982.21 336
KD-MVS_2432*160066.22 31263.89 31473.21 30875.47 35053.42 33770.76 34684.35 26364.10 27466.52 31578.52 33334.55 35084.98 30550.40 32350.33 36881.23 342
miper_refine_blended66.22 31263.89 31473.21 30875.47 35053.42 33770.76 34684.35 26364.10 27466.52 31578.52 33334.55 35084.98 30550.40 32350.33 36881.23 342
ADS-MVSNet266.20 31463.33 31774.82 29679.92 32258.75 27567.55 35775.19 34353.37 34565.25 32575.86 34842.32 32180.53 33041.57 35968.91 33085.18 306
YYNet165.03 31562.91 32071.38 32075.85 34656.60 30669.12 35474.66 34857.28 33354.12 36277.87 33845.85 30074.48 36049.95 32861.52 35183.05 331
MDA-MVSNet_test_wron65.03 31562.92 31971.37 32175.93 34456.73 30269.09 35574.73 34657.28 33354.03 36377.89 33745.88 29974.39 36149.89 32961.55 35082.99 333
Patchmatch-test64.82 31763.24 31869.57 33079.42 33249.82 35763.49 36869.05 36051.98 35059.95 34880.13 32050.91 25370.98 36640.66 36173.57 30387.90 253
ADS-MVSNet64.36 31862.88 32168.78 33579.92 32247.17 36167.55 35771.18 35353.37 34565.25 32575.86 34842.32 32173.99 36241.57 35968.91 33085.18 306
LF4IMVS64.02 31962.19 32369.50 33170.90 36453.29 34076.13 32177.18 33552.65 34758.59 35180.98 31223.55 36576.52 34853.06 31266.66 33778.68 351
UnsupCasMVSNet_bld63.70 32061.53 32670.21 32973.69 35651.39 35072.82 33881.89 29555.63 34057.81 35571.80 35738.67 33778.61 33649.26 33252.21 36680.63 345
test_fmvs363.36 32161.82 32467.98 33762.51 37346.96 36377.37 31874.03 34945.24 35867.50 30378.79 33212.16 37772.98 36572.77 15466.02 34083.99 321
dmvs_testset62.63 32264.11 31358.19 35078.55 33624.76 38575.28 32965.94 36667.91 23360.34 34576.01 34753.56 22573.94 36331.79 36867.65 33475.88 357
mvsany_test162.30 32361.26 32765.41 34269.52 36554.86 32566.86 35949.78 38046.65 35768.50 29783.21 28849.15 27666.28 37256.93 29360.77 35275.11 358
new-patchmatchnet61.73 32461.73 32561.70 34672.74 36124.50 38669.16 35378.03 32761.40 30156.72 35875.53 35138.42 33876.48 34945.95 34957.67 35684.13 319
PVSNet_057.27 2061.67 32559.27 32868.85 33479.61 32957.44 29468.01 35673.44 35155.93 33958.54 35270.41 36044.58 30977.55 34247.01 34335.91 37471.55 362
test_vis1_rt60.28 32658.42 32965.84 34167.25 36955.60 31970.44 34860.94 37344.33 36059.00 35066.64 36224.91 36268.67 37062.80 23669.48 32673.25 360
MVS-HIRNet59.14 32757.67 33063.57 34481.65 30043.50 37271.73 34165.06 36839.59 36651.43 36557.73 37038.34 33982.58 32239.53 36273.95 29964.62 366
pmmvs357.79 32854.26 33268.37 33664.02 37256.72 30375.12 33365.17 36740.20 36452.93 36469.86 36120.36 36875.48 35645.45 35155.25 36372.90 361
DSMNet-mixed57.77 32956.90 33160.38 34867.70 36835.61 37869.18 35253.97 37832.30 37457.49 35679.88 32340.39 33368.57 37138.78 36372.37 31276.97 354
LCM-MVSNet54.25 33049.68 33967.97 33853.73 38145.28 36766.85 36080.78 30435.96 37039.45 37162.23 3668.70 38178.06 34048.24 33851.20 36780.57 346
mvsany_test353.99 33151.45 33561.61 34755.51 37744.74 37063.52 36745.41 38443.69 36158.11 35476.45 34517.99 37063.76 37554.77 30347.59 37076.34 356
FPMVS53.68 33251.64 33459.81 34965.08 37151.03 35169.48 35169.58 35841.46 36340.67 36972.32 35616.46 37370.00 36924.24 37665.42 34258.40 371
APD_test153.31 33349.93 33863.42 34565.68 37050.13 35571.59 34266.90 36434.43 37140.58 37071.56 3588.65 38276.27 35134.64 36755.36 36263.86 367
N_pmnet52.79 33453.26 33351.40 35878.99 3357.68 38969.52 3503.89 38951.63 35157.01 35774.98 35240.83 33165.96 37337.78 36464.67 34480.56 347
test_f52.09 33550.82 33655.90 35453.82 38042.31 37459.42 37058.31 37636.45 36956.12 36170.96 35912.18 37657.79 37753.51 30956.57 35967.60 363
EGC-MVSNET52.07 33647.05 34067.14 33983.51 26460.71 25680.50 28567.75 3620.07 3840.43 38575.85 35024.26 36481.54 32528.82 37062.25 34859.16 369
new_pmnet50.91 33750.29 33752.78 35768.58 36734.94 38063.71 36656.63 37739.73 36544.95 36765.47 36321.93 36758.48 37634.98 36656.62 35864.92 365
ANet_high50.57 33846.10 34263.99 34348.67 38439.13 37670.99 34580.85 30361.39 30231.18 37357.70 37117.02 37273.65 36431.22 36915.89 38179.18 350
test_vis3_rt49.26 33947.02 34156.00 35354.30 37845.27 36866.76 36148.08 38136.83 36844.38 36853.20 3737.17 38464.07 37456.77 29555.66 36058.65 370
testf145.72 34041.96 34357.00 35156.90 37545.32 36566.14 36259.26 37426.19 37530.89 37460.96 3684.14 38570.64 36726.39 37446.73 37255.04 372
APD_test245.72 34041.96 34357.00 35156.90 37545.32 36566.14 36259.26 37426.19 37530.89 37460.96 3684.14 38570.64 36726.39 37446.73 37255.04 372
Gipumacopyleft45.18 34241.86 34555.16 35677.03 34351.52 34832.50 37780.52 30832.46 37327.12 37635.02 3779.52 38075.50 35522.31 37760.21 35538.45 376
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft37.38 2244.16 34340.28 34655.82 35540.82 38642.54 37365.12 36563.99 37034.43 37124.48 37757.12 3723.92 38776.17 35317.10 37955.52 36148.75 374
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
PMMVS240.82 34438.86 34746.69 35953.84 37916.45 38748.61 37449.92 37937.49 36731.67 37260.97 3678.14 38356.42 37828.42 37130.72 37667.19 364
E-PMN31.77 34530.64 34835.15 36252.87 38227.67 38257.09 37247.86 38224.64 37716.40 38233.05 37811.23 37854.90 37914.46 38118.15 37922.87 378
test_method31.52 34629.28 35038.23 36127.03 3886.50 39020.94 37962.21 3724.05 38222.35 38052.50 37413.33 37447.58 38127.04 37334.04 37560.62 368
EMVS30.81 34729.65 34934.27 36350.96 38325.95 38456.58 37346.80 38324.01 37815.53 38330.68 37912.47 37554.43 38012.81 38217.05 38022.43 379
MVEpermissive26.22 2330.37 34825.89 35243.81 36044.55 38535.46 37928.87 37839.07 38518.20 37918.58 38140.18 3762.68 38847.37 38217.07 38023.78 37848.60 375
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
cdsmvs_eth3d_5k19.96 34926.61 3510.00 3690.00 3920.00 3930.00 38089.26 1690.00 3870.00 38888.61 16661.62 1510.00 3880.00 3860.00 3860.00 384
tmp_tt18.61 35021.40 35310.23 3664.82 38910.11 38834.70 37630.74 3871.48 38323.91 37926.07 38028.42 35913.41 38527.12 37215.35 3827.17 380
wuyk23d16.82 35115.94 35419.46 36558.74 37431.45 38139.22 3753.74 3906.84 3816.04 3842.70 3841.27 38924.29 38410.54 38314.40 3832.63 381
ab-mvs-re7.23 3529.64 3550.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 38886.72 2160.00 3920.00 3880.00 3860.00 3860.00 384
test1236.12 3538.11 3560.14 3670.06 3910.09 39171.05 3440.03 3920.04 3860.25 3871.30 3860.05 3900.03 3870.21 3850.01 3850.29 382
testmvs6.04 3548.02 3570.10 3680.08 3900.03 39269.74 3490.04 3910.05 3850.31 3861.68 3850.02 3910.04 3860.24 3840.02 3840.25 383
pcd_1.5k_mvsjas5.26 3557.02 3580.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 38763.15 1280.00 3880.00 3860.00 3860.00 384
test_blank0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
uanet_test0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
DCPMVS0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
sosnet-low-res0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
sosnet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
uncertanet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
Regformer0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
uanet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
FOURS195.00 1072.39 3895.06 193.84 1574.49 11291.30 15
MSC_two_6792asdad89.16 194.34 2775.53 292.99 4597.53 189.67 296.44 994.41 31
PC_three_145268.21 23192.02 1294.00 4182.09 595.98 5084.58 3896.68 294.95 9
No_MVS89.16 194.34 2775.53 292.99 4597.53 189.67 296.44 994.41 31
test_one_060195.07 771.46 5494.14 578.27 3492.05 1195.74 680.83 11
eth-test20.00 392
eth-test0.00 392
ZD-MVS94.38 2572.22 4392.67 6170.98 17487.75 2994.07 3874.01 3296.70 2684.66 3794.84 42
RE-MVS-def85.48 5093.06 5570.63 7291.88 3892.27 7673.53 13585.69 3994.45 2563.87 11982.75 5891.87 7892.50 106
IU-MVS95.30 271.25 5692.95 5166.81 23992.39 688.94 1296.63 494.85 18
OPU-MVS89.06 394.62 1575.42 493.57 794.02 4082.45 396.87 1983.77 4896.48 894.88 13
test_241102_TWO94.06 1077.24 4992.78 495.72 881.26 897.44 589.07 1096.58 694.26 40
test_241102_ONE95.30 270.98 6294.06 1077.17 5293.10 195.39 1182.99 197.27 10
9.1488.26 1492.84 6091.52 4594.75 173.93 12488.57 2294.67 1875.57 2295.79 5286.77 2595.76 23
save fliter93.80 4072.35 4190.47 6391.17 11674.31 115
test_0728_THIRD78.38 3292.12 995.78 481.46 797.40 789.42 596.57 794.67 23
test_0728_SECOND87.71 3195.34 171.43 5593.49 994.23 397.49 389.08 896.41 1294.21 41
test072695.27 571.25 5693.60 694.11 677.33 4792.81 395.79 380.98 9
GSMVS88.96 231
test_part295.06 872.65 3191.80 13
sam_mvs151.32 25088.96 231
sam_mvs50.01 263
ambc75.24 29273.16 35950.51 35463.05 36987.47 22164.28 33077.81 33917.80 37189.73 25657.88 28460.64 35385.49 301
MTGPAbinary92.02 85
test_post178.90 3065.43 38348.81 28385.44 30359.25 269
test_post5.46 38250.36 26184.24 310
patchmatchnet-post74.00 35351.12 25288.60 276
GG-mvs-BLEND75.38 29181.59 30255.80 31679.32 29869.63 35767.19 30773.67 35443.24 31588.90 27350.41 32284.50 16481.45 341
MTMP92.18 3432.83 386
gm-plane-assit81.40 30553.83 33462.72 29280.94 31392.39 19163.40 233
test9_res84.90 3295.70 2692.87 94
TEST993.26 5072.96 2488.75 10791.89 9368.44 22885.00 4793.10 5774.36 2895.41 66
test_893.13 5272.57 3488.68 11291.84 9768.69 22384.87 5193.10 5774.43 2695.16 75
agg_prior282.91 5695.45 2992.70 97
agg_prior92.85 5971.94 5091.78 10084.41 6194.93 86
TestCases79.58 24185.15 23663.62 21179.83 31662.31 29560.32 34686.73 21432.02 35388.96 27150.28 32571.57 31986.15 291
test_prior472.60 3389.01 97
test_prior288.85 10375.41 9284.91 4993.54 4874.28 2983.31 5195.86 20
test_prior86.33 5392.61 6569.59 8792.97 5095.48 6193.91 51
旧先验286.56 17858.10 32787.04 3188.98 26974.07 139
新几何286.29 186
新几何183.42 13793.13 5270.71 7085.48 25057.43 33281.80 9791.98 8063.28 12392.27 19764.60 22792.99 6487.27 268
旧先验191.96 7165.79 16886.37 23893.08 6169.31 7292.74 6788.74 240
无先验87.48 14988.98 18260.00 31194.12 12067.28 20488.97 230
原ACMM286.86 167
原ACMM184.35 10393.01 5768.79 10192.44 6963.96 27981.09 10791.57 9166.06 10195.45 6267.19 20694.82 4488.81 237
test22291.50 7768.26 11884.16 23883.20 28454.63 34379.74 11991.63 8958.97 18391.42 8486.77 281
testdata291.01 23962.37 243
segment_acmp73.08 37
testdata79.97 23190.90 8664.21 20284.71 25759.27 31885.40 4192.91 6362.02 14789.08 26768.95 18991.37 8586.63 285
testdata184.14 23975.71 86
test1286.80 4892.63 6470.70 7191.79 9982.71 8871.67 4796.16 4394.50 4993.54 72
plane_prior790.08 10268.51 114
plane_prior689.84 11168.70 10960.42 176
plane_prior592.44 6995.38 6878.71 9286.32 14591.33 139
plane_prior491.00 110
plane_prior368.60 11278.44 3078.92 131
plane_prior291.25 4979.12 22
plane_prior189.90 110
plane_prior68.71 10790.38 6677.62 3886.16 149
n20.00 393
nn0.00 393
door-mid69.98 356
lessismore_v078.97 24881.01 31257.15 29765.99 36561.16 34382.82 29439.12 33691.34 22859.67 26546.92 37188.43 246
LGP-MVS_train84.50 9589.23 13468.76 10391.94 9175.37 9376.64 18691.51 9254.29 21894.91 8778.44 9483.78 17389.83 204
test1192.23 79
door69.44 359
HQP5-MVS66.98 145
HQP-NCC89.33 12789.17 9076.41 7177.23 172
ACMP_Plane89.33 12789.17 9076.41 7177.23 172
BP-MVS77.47 104
HQP4-MVS77.24 17195.11 7991.03 151
HQP3-MVS92.19 8285.99 152
HQP2-MVS60.17 179
NP-MVS89.62 11468.32 11690.24 122
MDTV_nov1_ep13_2view37.79 37775.16 33155.10 34166.53 31449.34 27353.98 30687.94 252
MDTV_nov1_ep1369.97 27783.18 27253.48 33677.10 32080.18 31560.45 30669.33 29080.44 31748.89 28286.90 29151.60 31878.51 241
ACMMP++_ref81.95 201
ACMMP++81.25 207
Test By Simon64.33 115
ITE_SJBPF78.22 26081.77 29960.57 25883.30 28069.25 20767.54 30287.20 20536.33 34687.28 29054.34 30574.62 29486.80 280
DeepMVS_CXcopyleft27.40 36440.17 38726.90 38324.59 38817.44 38023.95 37848.61 3759.77 37926.48 38318.06 37824.47 37728.83 377