DVP-MVS++ | | | 90.23 1 | 91.01 1 | 87.89 23 | 94.34 27 | 71.25 56 | 95.06 1 | 94.23 3 | 78.38 32 | 92.78 4 | 95.74 6 | 82.45 3 | 97.49 3 | 89.42 5 | 96.68 2 | 94.95 9 |
|
SED-MVS | | | 90.08 2 | 90.85 2 | 87.77 25 | 95.30 2 | 70.98 62 | 93.57 7 | 94.06 10 | 77.24 49 | 93.10 1 | 95.72 8 | 82.99 1 | 97.44 5 | 89.07 10 | 96.63 4 | 94.88 13 |
|
DVP-MVS |  | | 89.60 3 | 90.35 3 | 87.33 39 | 95.27 5 | 71.25 56 | 93.49 9 | 92.73 59 | 77.33 47 | 92.12 9 | 95.78 4 | 80.98 9 | 97.40 7 | 89.08 8 | 96.41 12 | 93.33 78 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
MSP-MVS | | | 89.51 4 | 89.91 5 | 88.30 9 | 94.28 30 | 73.46 16 | 92.90 16 | 94.11 6 | 80.27 9 | 91.35 14 | 94.16 35 | 78.35 13 | 96.77 23 | 89.59 4 | 94.22 57 | 94.67 23 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
DPE-MVS |  | | 89.48 5 | 89.98 4 | 88.01 15 | 94.80 11 | 72.69 30 | 91.59 42 | 94.10 8 | 75.90 84 | 92.29 7 | 95.66 10 | 81.67 6 | 97.38 9 | 87.44 23 | 96.34 15 | 93.95 50 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
APDe-MVS | | | 89.15 6 | 89.63 6 | 87.73 27 | 94.49 18 | 71.69 51 | 93.83 4 | 93.96 13 | 75.70 88 | 91.06 16 | 96.03 1 | 76.84 14 | 97.03 16 | 89.09 7 | 95.65 27 | 94.47 30 |
|
SMA-MVS |  | | 89.08 7 | 89.23 7 | 88.61 5 | 94.25 31 | 73.73 9 | 92.40 23 | 93.63 21 | 74.77 106 | 92.29 7 | 95.97 2 | 74.28 29 | 97.24 11 | 88.58 15 | 96.91 1 | 94.87 15 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
HPM-MVS++ |  | | 89.02 8 | 89.15 8 | 88.63 4 | 95.01 9 | 76.03 1 | 92.38 26 | 92.85 54 | 80.26 10 | 87.78 28 | 94.27 31 | 75.89 19 | 96.81 22 | 87.45 22 | 96.44 9 | 93.05 88 |
|
CNVR-MVS | | | 88.93 9 | 89.13 9 | 88.33 7 | 94.77 12 | 73.82 8 | 90.51 60 | 93.00 43 | 80.90 6 | 88.06 26 | 94.06 39 | 76.43 16 | 96.84 20 | 88.48 17 | 95.99 18 | 94.34 36 |
|
SteuartSystems-ACMMP | | | 88.72 10 | 88.86 10 | 88.32 8 | 92.14 69 | 72.96 24 | 93.73 5 | 93.67 20 | 80.19 11 | 88.10 25 | 94.80 16 | 73.76 33 | 97.11 14 | 87.51 21 | 95.82 21 | 94.90 12 |
Skip Steuart: Steuart Systems R&D Blog. |
SF-MVS | | | 88.46 11 | 88.74 11 | 87.64 34 | 92.78 61 | 71.95 49 | 92.40 23 | 94.74 2 | 75.71 86 | 89.16 19 | 95.10 14 | 75.65 21 | 96.19 42 | 87.07 24 | 96.01 17 | 94.79 20 |
|
DeepPCF-MVS | | 80.84 1 | 88.10 12 | 88.56 12 | 86.73 49 | 92.24 68 | 69.03 96 | 89.57 84 | 93.39 30 | 77.53 44 | 89.79 18 | 94.12 36 | 78.98 12 | 96.58 34 | 85.66 27 | 95.72 24 | 94.58 26 |
|
MVS_0304 | | | 88.08 13 | 88.08 16 | 88.08 13 | 89.67 113 | 72.04 47 | 92.26 32 | 89.26 169 | 84.19 1 | 85.01 45 | 95.18 13 | 69.93 64 | 97.20 13 | 91.63 1 | 95.60 28 | 94.99 8 |
|
SD-MVS | | | 88.06 14 | 88.50 13 | 86.71 50 | 92.60 66 | 72.71 28 | 91.81 41 | 93.19 35 | 77.87 35 | 90.32 17 | 94.00 41 | 74.83 23 | 93.78 135 | 87.63 20 | 94.27 56 | 93.65 65 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
NCCC | | | 88.06 14 | 88.01 18 | 88.24 10 | 94.41 22 | 73.62 10 | 91.22 51 | 92.83 55 | 81.50 4 | 85.79 38 | 93.47 51 | 73.02 39 | 97.00 17 | 84.90 32 | 94.94 38 | 94.10 44 |
|
ACMMP_NAP | | | 88.05 16 | 88.08 16 | 87.94 18 | 93.70 41 | 73.05 21 | 90.86 55 | 93.59 23 | 76.27 78 | 88.14 24 | 95.09 15 | 71.06 53 | 96.67 28 | 87.67 19 | 96.37 14 | 94.09 45 |
|
TSAR-MVS + MP. | | | 88.02 17 | 88.11 15 | 87.72 29 | 93.68 43 | 72.13 45 | 91.41 46 | 92.35 74 | 74.62 110 | 88.90 20 | 93.85 46 | 75.75 20 | 96.00 48 | 87.80 18 | 94.63 46 | 95.04 6 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
ZNCC-MVS | | | 87.94 18 | 87.85 19 | 88.20 11 | 94.39 24 | 73.33 18 | 93.03 14 | 93.81 17 | 76.81 62 | 85.24 43 | 94.32 30 | 71.76 46 | 96.93 18 | 85.53 29 | 95.79 22 | 94.32 37 |
|
MP-MVS |  | | 87.71 19 | 87.64 21 | 87.93 20 | 94.36 26 | 73.88 6 | 92.71 22 | 92.65 64 | 77.57 40 | 83.84 72 | 94.40 29 | 72.24 42 | 96.28 39 | 85.65 28 | 95.30 34 | 93.62 68 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
MP-MVS-pluss | | | 87.67 20 | 87.72 20 | 87.54 35 | 93.64 44 | 72.04 47 | 89.80 78 | 93.50 25 | 75.17 99 | 86.34 34 | 95.29 12 | 70.86 54 | 96.00 48 | 88.78 13 | 96.04 16 | 94.58 26 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
HFP-MVS | | | 87.58 21 | 87.47 23 | 87.94 18 | 94.58 16 | 73.54 14 | 93.04 12 | 93.24 33 | 76.78 64 | 84.91 49 | 94.44 27 | 70.78 55 | 96.61 31 | 84.53 39 | 94.89 40 | 93.66 61 |
|
ACMMPR | | | 87.44 22 | 87.23 26 | 88.08 13 | 94.64 13 | 73.59 11 | 93.04 12 | 93.20 34 | 76.78 64 | 84.66 56 | 94.52 20 | 68.81 77 | 96.65 29 | 84.53 39 | 94.90 39 | 94.00 49 |
|
APD-MVS |  | | 87.44 22 | 87.52 22 | 87.19 41 | 94.24 32 | 72.39 38 | 91.86 40 | 92.83 55 | 73.01 145 | 88.58 21 | 94.52 20 | 73.36 34 | 96.49 35 | 84.26 42 | 95.01 36 | 92.70 97 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
GST-MVS | | | 87.42 24 | 87.26 24 | 87.89 23 | 94.12 36 | 72.97 23 | 92.39 25 | 93.43 28 | 76.89 60 | 84.68 53 | 93.99 43 | 70.67 57 | 96.82 21 | 84.18 46 | 95.01 36 | 93.90 53 |
|
region2R | | | 87.42 24 | 87.20 27 | 88.09 12 | 94.63 14 | 73.55 12 | 93.03 14 | 93.12 37 | 76.73 67 | 84.45 60 | 94.52 20 | 69.09 73 | 96.70 26 | 84.37 41 | 94.83 43 | 94.03 48 |
|
MCST-MVS | | | 87.37 26 | 87.25 25 | 87.73 27 | 94.53 17 | 72.46 37 | 89.82 76 | 93.82 16 | 73.07 143 | 84.86 52 | 92.89 64 | 76.22 17 | 96.33 37 | 84.89 34 | 95.13 35 | 94.40 33 |
|
MTAPA | | | 87.23 27 | 87.00 28 | 87.90 21 | 94.18 35 | 74.25 5 | 86.58 177 | 92.02 85 | 79.45 18 | 85.88 36 | 94.80 16 | 68.07 80 | 96.21 41 | 86.69 26 | 95.34 32 | 93.23 81 |
|
XVS | | | 87.18 28 | 86.91 32 | 88.00 16 | 94.42 20 | 73.33 18 | 92.78 18 | 92.99 45 | 79.14 20 | 83.67 75 | 94.17 34 | 67.45 86 | 96.60 32 | 83.06 53 | 94.50 49 | 94.07 46 |
|
HPM-MVS |  | | 87.11 29 | 86.98 29 | 87.50 37 | 93.88 39 | 72.16 44 | 92.19 33 | 93.33 31 | 76.07 81 | 83.81 73 | 93.95 45 | 69.77 67 | 96.01 47 | 85.15 30 | 94.66 45 | 94.32 37 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
CP-MVS | | | 87.11 29 | 86.92 31 | 87.68 33 | 94.20 34 | 73.86 7 | 93.98 3 | 92.82 58 | 76.62 69 | 83.68 74 | 94.46 24 | 67.93 81 | 95.95 51 | 84.20 45 | 94.39 52 | 93.23 81 |
|
DeepC-MVS | | 79.81 2 | 87.08 31 | 86.88 33 | 87.69 32 | 91.16 80 | 72.32 42 | 90.31 67 | 93.94 14 | 77.12 54 | 82.82 86 | 94.23 33 | 72.13 44 | 97.09 15 | 84.83 35 | 95.37 31 | 93.65 65 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
DeepC-MVS_fast | | 79.65 3 | 86.91 32 | 86.62 35 | 87.76 26 | 93.52 46 | 72.37 40 | 91.26 47 | 93.04 38 | 76.62 69 | 84.22 64 | 93.36 53 | 71.44 50 | 96.76 24 | 80.82 75 | 95.33 33 | 94.16 42 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
SR-MVS | | | 86.73 33 | 86.67 34 | 86.91 45 | 94.11 37 | 72.11 46 | 92.37 27 | 92.56 67 | 74.50 111 | 86.84 32 | 94.65 19 | 67.31 88 | 95.77 53 | 84.80 36 | 92.85 66 | 92.84 95 |
|
CS-MVS | | | 86.69 34 | 86.95 30 | 85.90 62 | 90.76 90 | 67.57 132 | 92.83 17 | 93.30 32 | 79.67 16 | 84.57 59 | 92.27 76 | 71.47 49 | 95.02 85 | 84.24 44 | 93.46 62 | 95.13 5 |
|
PGM-MVS | | | 86.68 35 | 86.27 39 | 87.90 21 | 94.22 33 | 73.38 17 | 90.22 69 | 93.04 38 | 75.53 90 | 83.86 71 | 94.42 28 | 67.87 83 | 96.64 30 | 82.70 62 | 94.57 48 | 93.66 61 |
|
mPP-MVS | | | 86.67 36 | 86.32 38 | 87.72 29 | 94.41 22 | 73.55 12 | 92.74 20 | 92.22 80 | 76.87 61 | 82.81 87 | 94.25 32 | 66.44 95 | 96.24 40 | 82.88 57 | 94.28 55 | 93.38 75 |
|
CANet | | | 86.45 37 | 86.10 44 | 87.51 36 | 90.09 101 | 70.94 66 | 89.70 82 | 92.59 66 | 81.78 3 | 81.32 102 | 91.43 96 | 70.34 59 | 97.23 12 | 84.26 42 | 93.36 63 | 94.37 34 |
|
train_agg | | | 86.43 38 | 86.20 40 | 87.13 43 | 93.26 50 | 72.96 24 | 88.75 107 | 91.89 93 | 68.69 223 | 85.00 47 | 93.10 57 | 74.43 26 | 95.41 66 | 84.97 31 | 95.71 25 | 93.02 90 |
|
PHI-MVS | | | 86.43 38 | 86.17 42 | 87.24 40 | 90.88 87 | 70.96 64 | 92.27 31 | 94.07 9 | 72.45 148 | 85.22 44 | 91.90 82 | 69.47 69 | 96.42 36 | 83.28 52 | 95.94 19 | 94.35 35 |
|
CSCG | | | 86.41 40 | 86.19 41 | 87.07 44 | 92.91 58 | 72.48 36 | 90.81 56 | 93.56 24 | 73.95 122 | 83.16 81 | 91.07 106 | 75.94 18 | 95.19 74 | 79.94 84 | 94.38 53 | 93.55 71 |
|
CS-MVS-test | | | 86.29 41 | 86.48 36 | 85.71 64 | 91.02 83 | 67.21 142 | 92.36 28 | 93.78 18 | 78.97 27 | 83.51 78 | 91.20 101 | 70.65 58 | 95.15 76 | 81.96 66 | 94.89 40 | 94.77 21 |
|
EC-MVSNet | | | 86.01 42 | 86.38 37 | 84.91 84 | 89.31 130 | 66.27 156 | 92.32 29 | 93.63 21 | 79.37 19 | 84.17 66 | 91.88 83 | 69.04 76 | 95.43 64 | 83.93 47 | 93.77 60 | 93.01 91 |
|
casdiffmvs_mvg |  | | 85.99 43 | 86.09 45 | 85.70 65 | 87.65 192 | 67.22 141 | 88.69 111 | 93.04 38 | 79.64 17 | 85.33 42 | 92.54 73 | 73.30 35 | 94.50 106 | 83.49 49 | 91.14 88 | 95.37 1 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
APD-MVS_3200maxsize | | | 85.97 44 | 85.88 46 | 86.22 56 | 92.69 63 | 69.53 88 | 91.93 37 | 92.99 45 | 73.54 134 | 85.94 35 | 94.51 23 | 65.80 105 | 95.61 56 | 83.04 55 | 92.51 70 | 93.53 73 |
|
canonicalmvs | | | 85.91 45 | 85.87 47 | 86.04 59 | 89.84 111 | 69.44 93 | 90.45 65 | 93.00 43 | 76.70 68 | 88.01 27 | 91.23 99 | 73.28 36 | 93.91 130 | 81.50 69 | 88.80 114 | 94.77 21 |
|
ACMMP |  | | 85.89 46 | 85.39 51 | 87.38 38 | 93.59 45 | 72.63 32 | 92.74 20 | 93.18 36 | 76.78 64 | 80.73 111 | 93.82 47 | 64.33 115 | 96.29 38 | 82.67 63 | 90.69 92 | 93.23 81 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
SR-MVS-dyc-post | | | 85.77 47 | 85.61 49 | 86.23 55 | 93.06 55 | 70.63 72 | 91.88 38 | 92.27 76 | 73.53 135 | 85.69 39 | 94.45 25 | 65.00 113 | 95.56 57 | 82.75 58 | 91.87 78 | 92.50 106 |
|
CDPH-MVS | | | 85.76 48 | 85.29 56 | 87.17 42 | 93.49 47 | 71.08 60 | 88.58 115 | 92.42 72 | 68.32 230 | 84.61 57 | 93.48 49 | 72.32 41 | 96.15 44 | 79.00 88 | 95.43 30 | 94.28 39 |
|
TSAR-MVS + GP. | | | 85.71 49 | 85.33 53 | 86.84 46 | 91.34 78 | 72.50 35 | 89.07 96 | 87.28 224 | 76.41 71 | 85.80 37 | 90.22 124 | 74.15 31 | 95.37 71 | 81.82 67 | 91.88 77 | 92.65 101 |
|
dcpmvs_2 | | | 85.63 50 | 86.15 43 | 84.06 116 | 91.71 75 | 64.94 187 | 86.47 180 | 91.87 95 | 73.63 130 | 86.60 33 | 93.02 62 | 76.57 15 | 91.87 212 | 83.36 50 | 92.15 74 | 95.35 2 |
|
alignmvs | | | 85.48 51 | 85.32 54 | 85.96 61 | 89.51 119 | 69.47 90 | 89.74 80 | 92.47 68 | 76.17 79 | 87.73 30 | 91.46 95 | 70.32 60 | 93.78 135 | 81.51 68 | 88.95 111 | 94.63 25 |
|
3Dnovator+ | | 77.84 4 | 85.48 51 | 84.47 64 | 88.51 6 | 91.08 81 | 73.49 15 | 93.18 11 | 93.78 18 | 80.79 7 | 76.66 185 | 93.37 52 | 60.40 178 | 96.75 25 | 77.20 107 | 93.73 61 | 95.29 4 |
|
MSLP-MVS++ | | | 85.43 53 | 85.76 48 | 84.45 99 | 91.93 72 | 70.24 75 | 90.71 57 | 92.86 53 | 77.46 46 | 84.22 64 | 92.81 68 | 67.16 90 | 92.94 176 | 80.36 80 | 94.35 54 | 90.16 183 |
|
DELS-MVS | | | 85.41 54 | 85.30 55 | 85.77 63 | 88.49 161 | 67.93 124 | 85.52 209 | 93.44 27 | 78.70 28 | 83.63 77 | 89.03 154 | 74.57 24 | 95.71 55 | 80.26 82 | 94.04 58 | 93.66 61 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
HPM-MVS_fast | | | 85.35 55 | 84.95 60 | 86.57 52 | 93.69 42 | 70.58 74 | 92.15 35 | 91.62 103 | 73.89 125 | 82.67 89 | 94.09 37 | 62.60 134 | 95.54 59 | 80.93 73 | 92.93 65 | 93.57 70 |
|
test_fmvsm_n_1920 | | | 85.29 56 | 85.34 52 | 85.13 75 | 86.12 222 | 69.93 82 | 88.65 113 | 90.78 126 | 69.97 192 | 88.27 23 | 93.98 44 | 71.39 51 | 91.54 220 | 88.49 16 | 90.45 94 | 93.91 51 |
|
MVS_111021_HR | | | 85.14 57 | 84.75 61 | 86.32 54 | 91.65 76 | 72.70 29 | 85.98 192 | 90.33 139 | 76.11 80 | 82.08 92 | 91.61 90 | 71.36 52 | 94.17 119 | 81.02 72 | 92.58 69 | 92.08 121 |
|
casdiffmvs |  | | 85.11 58 | 85.14 57 | 85.01 78 | 87.20 207 | 65.77 169 | 87.75 143 | 92.83 55 | 77.84 36 | 84.36 63 | 92.38 75 | 72.15 43 | 93.93 129 | 81.27 71 | 90.48 93 | 95.33 3 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
UA-Net | | | 85.08 59 | 84.96 59 | 85.45 67 | 92.07 70 | 68.07 122 | 89.78 79 | 90.86 125 | 82.48 2 | 84.60 58 | 93.20 56 | 69.35 70 | 95.22 73 | 71.39 164 | 90.88 91 | 93.07 87 |
|
DPM-MVS | | | 84.93 60 | 84.29 65 | 86.84 46 | 90.20 99 | 73.04 22 | 87.12 159 | 93.04 38 | 69.80 196 | 82.85 85 | 91.22 100 | 73.06 38 | 96.02 46 | 76.72 116 | 94.63 46 | 91.46 138 |
|
baseline | | | 84.93 60 | 84.98 58 | 84.80 88 | 87.30 205 | 65.39 178 | 87.30 155 | 92.88 52 | 77.62 38 | 84.04 69 | 92.26 77 | 71.81 45 | 93.96 123 | 81.31 70 | 90.30 96 | 95.03 7 |
|
ETV-MVS | | | 84.90 62 | 84.67 62 | 85.59 66 | 89.39 124 | 68.66 111 | 88.74 109 | 92.64 65 | 79.97 14 | 84.10 67 | 85.71 244 | 69.32 71 | 95.38 68 | 80.82 75 | 91.37 85 | 92.72 96 |
|
EI-MVSNet-Vis-set | | | 84.19 63 | 83.81 67 | 85.31 69 | 88.18 171 | 67.85 125 | 87.66 145 | 89.73 156 | 80.05 13 | 82.95 82 | 89.59 138 | 70.74 56 | 94.82 94 | 80.66 79 | 84.72 162 | 93.28 80 |
|
test_fmvsmvis_n_1920 | | | 84.02 64 | 83.87 66 | 84.49 97 | 84.12 252 | 69.37 94 | 88.15 130 | 87.96 208 | 70.01 190 | 83.95 70 | 93.23 55 | 68.80 78 | 91.51 223 | 88.61 14 | 89.96 103 | 92.57 102 |
|
nrg030 | | | 83.88 65 | 83.53 68 | 84.96 80 | 86.77 215 | 69.28 95 | 90.46 64 | 92.67 61 | 74.79 105 | 82.95 82 | 91.33 98 | 72.70 40 | 93.09 170 | 80.79 77 | 79.28 234 | 92.50 106 |
|
EI-MVSNet-UG-set | | | 83.81 66 | 83.38 70 | 85.09 76 | 87.87 181 | 67.53 133 | 87.44 151 | 89.66 157 | 79.74 15 | 82.23 91 | 89.41 147 | 70.24 61 | 94.74 97 | 79.95 83 | 83.92 172 | 92.99 92 |
|
CPTT-MVS | | | 83.73 67 | 83.33 71 | 84.92 83 | 93.28 49 | 70.86 68 | 92.09 36 | 90.38 135 | 68.75 222 | 79.57 122 | 92.83 66 | 60.60 174 | 93.04 174 | 80.92 74 | 91.56 83 | 90.86 157 |
|
EPNet | | | 83.72 68 | 82.92 77 | 86.14 58 | 84.22 250 | 69.48 89 | 91.05 54 | 85.27 251 | 81.30 5 | 76.83 180 | 91.65 87 | 66.09 100 | 95.56 57 | 76.00 122 | 93.85 59 | 93.38 75 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
patch_mono-2 | | | 83.65 69 | 84.54 63 | 80.99 210 | 90.06 106 | 65.83 165 | 84.21 237 | 88.74 194 | 71.60 163 | 85.01 45 | 92.44 74 | 74.51 25 | 83.50 316 | 82.15 65 | 92.15 74 | 93.64 67 |
|
HQP_MVS | | | 83.64 70 | 83.14 72 | 85.14 73 | 90.08 102 | 68.71 107 | 91.25 49 | 92.44 69 | 79.12 22 | 78.92 131 | 91.00 110 | 60.42 176 | 95.38 68 | 78.71 92 | 86.32 145 | 91.33 139 |
|
Effi-MVS+ | | | 83.62 71 | 83.08 73 | 85.24 71 | 88.38 166 | 67.45 134 | 88.89 101 | 89.15 175 | 75.50 91 | 82.27 90 | 88.28 176 | 69.61 68 | 94.45 108 | 77.81 101 | 87.84 124 | 93.84 56 |
|
OPM-MVS | | | 83.50 72 | 82.95 76 | 85.14 73 | 88.79 151 | 70.95 65 | 89.13 95 | 91.52 106 | 77.55 43 | 80.96 109 | 91.75 85 | 60.71 169 | 94.50 106 | 79.67 85 | 86.51 143 | 89.97 199 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
Vis-MVSNet |  | | 83.46 73 | 82.80 79 | 85.43 68 | 90.25 98 | 68.74 105 | 90.30 68 | 90.13 145 | 76.33 77 | 80.87 110 | 92.89 64 | 61.00 166 | 94.20 117 | 72.45 158 | 90.97 89 | 93.35 77 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
MG-MVS | | | 83.41 74 | 83.45 69 | 83.28 142 | 92.74 62 | 62.28 238 | 88.17 128 | 89.50 160 | 75.22 95 | 81.49 101 | 92.74 72 | 66.75 91 | 95.11 79 | 72.85 152 | 91.58 82 | 92.45 109 |
|
EPP-MVSNet | | | 83.40 75 | 83.02 75 | 84.57 92 | 90.13 100 | 64.47 197 | 92.32 29 | 90.73 127 | 74.45 114 | 79.35 125 | 91.10 104 | 69.05 75 | 95.12 77 | 72.78 153 | 87.22 132 | 94.13 43 |
|
3Dnovator | | 76.31 5 | 83.38 76 | 82.31 85 | 86.59 51 | 87.94 180 | 72.94 27 | 90.64 58 | 92.14 84 | 77.21 51 | 75.47 210 | 92.83 66 | 58.56 185 | 94.72 98 | 73.24 149 | 92.71 68 | 92.13 120 |
|
EIA-MVS | | | 83.31 77 | 82.80 79 | 84.82 86 | 89.59 115 | 65.59 171 | 88.21 126 | 92.68 60 | 74.66 108 | 78.96 129 | 86.42 231 | 69.06 74 | 95.26 72 | 75.54 128 | 90.09 100 | 93.62 68 |
|
h-mvs33 | | | 83.15 78 | 82.19 86 | 86.02 60 | 90.56 92 | 70.85 69 | 88.15 130 | 89.16 174 | 76.02 82 | 84.67 54 | 91.39 97 | 61.54 152 | 95.50 60 | 82.71 60 | 75.48 279 | 91.72 129 |
|
MVS_Test | | | 83.15 78 | 83.06 74 | 83.41 139 | 86.86 211 | 63.21 224 | 86.11 190 | 92.00 87 | 74.31 115 | 82.87 84 | 89.44 146 | 70.03 62 | 93.21 159 | 77.39 106 | 88.50 120 | 93.81 57 |
|
IS-MVSNet | | | 83.15 78 | 82.81 78 | 84.18 109 | 89.94 109 | 63.30 222 | 91.59 42 | 88.46 200 | 79.04 24 | 79.49 123 | 92.16 78 | 65.10 110 | 94.28 111 | 67.71 199 | 91.86 80 | 94.95 9 |
|
DP-MVS Recon | | | 83.11 81 | 82.09 88 | 86.15 57 | 94.44 19 | 70.92 67 | 88.79 105 | 92.20 81 | 70.53 182 | 79.17 127 | 91.03 109 | 64.12 117 | 96.03 45 | 68.39 196 | 90.14 99 | 91.50 135 |
|
PAPM_NR | | | 83.02 82 | 82.41 82 | 84.82 86 | 92.47 67 | 66.37 154 | 87.93 138 | 91.80 98 | 73.82 126 | 77.32 169 | 90.66 115 | 67.90 82 | 94.90 90 | 70.37 173 | 89.48 108 | 93.19 84 |
|
VDD-MVS | | | 83.01 83 | 82.36 84 | 84.96 80 | 91.02 83 | 66.40 153 | 88.91 100 | 88.11 203 | 77.57 40 | 84.39 62 | 93.29 54 | 52.19 236 | 93.91 130 | 77.05 109 | 88.70 116 | 94.57 28 |
|
MVSFormer | | | 82.85 84 | 82.05 89 | 85.24 71 | 87.35 200 | 70.21 76 | 90.50 61 | 90.38 135 | 68.55 225 | 81.32 102 | 89.47 141 | 61.68 149 | 93.46 152 | 78.98 89 | 90.26 97 | 92.05 122 |
|
OMC-MVS | | | 82.69 85 | 81.97 92 | 84.85 85 | 88.75 153 | 67.42 135 | 87.98 134 | 90.87 124 | 74.92 102 | 79.72 120 | 91.65 87 | 62.19 144 | 93.96 123 | 75.26 130 | 86.42 144 | 93.16 85 |
|
PVSNet_Blended_VisFu | | | 82.62 86 | 81.83 94 | 84.96 80 | 90.80 89 | 69.76 86 | 88.74 109 | 91.70 102 | 69.39 203 | 78.96 129 | 88.46 171 | 65.47 107 | 94.87 93 | 74.42 135 | 88.57 117 | 90.24 181 |
|
MVS_111021_LR | | | 82.61 87 | 82.11 87 | 84.11 110 | 88.82 148 | 71.58 52 | 85.15 212 | 86.16 241 | 74.69 107 | 80.47 113 | 91.04 107 | 62.29 141 | 90.55 246 | 80.33 81 | 90.08 101 | 90.20 182 |
|
HQP-MVS | | | 82.61 87 | 82.02 90 | 84.37 101 | 89.33 127 | 66.98 145 | 89.17 90 | 92.19 82 | 76.41 71 | 77.23 172 | 90.23 123 | 60.17 179 | 95.11 79 | 77.47 104 | 85.99 152 | 91.03 151 |
|
CLD-MVS | | | 82.31 89 | 81.65 95 | 84.29 106 | 88.47 162 | 67.73 128 | 85.81 200 | 92.35 74 | 75.78 85 | 78.33 146 | 86.58 226 | 64.01 118 | 94.35 109 | 76.05 121 | 87.48 129 | 90.79 158 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
VNet | | | 82.21 90 | 82.41 82 | 81.62 190 | 90.82 88 | 60.93 252 | 84.47 228 | 89.78 153 | 76.36 76 | 84.07 68 | 91.88 83 | 64.71 114 | 90.26 248 | 70.68 170 | 88.89 112 | 93.66 61 |
|
diffmvs |  | | 82.10 91 | 81.88 93 | 82.76 172 | 83.00 278 | 63.78 210 | 83.68 244 | 89.76 154 | 72.94 146 | 82.02 93 | 89.85 130 | 65.96 104 | 90.79 242 | 82.38 64 | 87.30 131 | 93.71 60 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
LPG-MVS_test | | | 82.08 92 | 81.27 98 | 84.50 95 | 89.23 134 | 68.76 103 | 90.22 69 | 91.94 91 | 75.37 93 | 76.64 186 | 91.51 92 | 54.29 218 | 94.91 87 | 78.44 94 | 83.78 173 | 89.83 204 |
|
FIs | | | 82.07 93 | 82.42 81 | 81.04 209 | 88.80 150 | 58.34 278 | 88.26 125 | 93.49 26 | 76.93 59 | 78.47 143 | 91.04 107 | 69.92 65 | 92.34 195 | 69.87 180 | 84.97 159 | 92.44 110 |
|
PS-MVSNAJss | | | 82.07 93 | 81.31 97 | 84.34 104 | 86.51 218 | 67.27 139 | 89.27 88 | 91.51 107 | 71.75 157 | 79.37 124 | 90.22 124 | 63.15 128 | 94.27 112 | 77.69 102 | 82.36 197 | 91.49 136 |
|
API-MVS | | | 81.99 95 | 81.23 99 | 84.26 107 | 90.94 85 | 70.18 81 | 91.10 52 | 89.32 165 | 71.51 165 | 78.66 137 | 88.28 176 | 65.26 108 | 95.10 82 | 64.74 226 | 91.23 87 | 87.51 262 |
|
UniMVSNet_NR-MVSNet | | | 81.88 96 | 81.54 96 | 82.92 161 | 88.46 163 | 63.46 218 | 87.13 158 | 92.37 73 | 80.19 11 | 78.38 144 | 89.14 150 | 71.66 48 | 93.05 172 | 70.05 176 | 76.46 264 | 92.25 115 |
|
MAR-MVS | | | 81.84 97 | 80.70 108 | 85.27 70 | 91.32 79 | 71.53 53 | 89.82 76 | 90.92 121 | 69.77 197 | 78.50 141 | 86.21 235 | 62.36 140 | 94.52 105 | 65.36 220 | 92.05 76 | 89.77 207 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
LFMVS | | | 81.82 98 | 81.23 99 | 83.57 134 | 91.89 73 | 63.43 220 | 89.84 75 | 81.85 297 | 77.04 57 | 83.21 79 | 93.10 57 | 52.26 235 | 93.43 154 | 71.98 159 | 89.95 104 | 93.85 54 |
|
hse-mvs2 | | | 81.72 99 | 80.94 105 | 84.07 115 | 88.72 154 | 67.68 130 | 85.87 196 | 87.26 225 | 76.02 82 | 84.67 54 | 88.22 179 | 61.54 152 | 93.48 150 | 82.71 60 | 73.44 306 | 91.06 149 |
|
GeoE | | | 81.71 100 | 81.01 104 | 83.80 129 | 89.51 119 | 64.45 198 | 88.97 98 | 88.73 195 | 71.27 168 | 78.63 138 | 89.76 132 | 66.32 97 | 93.20 162 | 69.89 179 | 86.02 151 | 93.74 59 |
|
xiu_mvs_v2_base | | | 81.69 101 | 81.05 102 | 83.60 132 | 89.15 137 | 68.03 123 | 84.46 230 | 90.02 147 | 70.67 179 | 81.30 105 | 86.53 229 | 63.17 127 | 94.19 118 | 75.60 127 | 88.54 118 | 88.57 244 |
|
PS-MVSNAJ | | | 81.69 101 | 81.02 103 | 83.70 131 | 89.51 119 | 68.21 120 | 84.28 236 | 90.09 146 | 70.79 176 | 81.26 106 | 85.62 249 | 63.15 128 | 94.29 110 | 75.62 126 | 88.87 113 | 88.59 243 |
|
mvsmamba | | | 81.69 101 | 80.74 107 | 84.56 93 | 87.45 199 | 66.72 149 | 91.26 47 | 85.89 245 | 74.66 108 | 78.23 149 | 90.56 117 | 54.33 217 | 94.91 87 | 80.73 78 | 83.54 182 | 92.04 124 |
|
PAPR | | | 81.66 104 | 80.89 106 | 83.99 123 | 90.27 97 | 64.00 205 | 86.76 173 | 91.77 101 | 68.84 221 | 77.13 178 | 89.50 139 | 67.63 84 | 94.88 92 | 67.55 201 | 88.52 119 | 93.09 86 |
|
UniMVSNet (Re) | | | 81.60 105 | 81.11 101 | 83.09 152 | 88.38 166 | 64.41 199 | 87.60 146 | 93.02 42 | 78.42 31 | 78.56 140 | 88.16 180 | 69.78 66 | 93.26 158 | 69.58 183 | 76.49 263 | 91.60 130 |
|
FC-MVSNet-test | | | 81.52 106 | 82.02 90 | 80.03 230 | 88.42 165 | 55.97 315 | 87.95 136 | 93.42 29 | 77.10 55 | 77.38 167 | 90.98 112 | 69.96 63 | 91.79 213 | 68.46 195 | 84.50 164 | 92.33 111 |
|
VDDNet | | | 81.52 106 | 80.67 109 | 84.05 118 | 90.44 95 | 64.13 204 | 89.73 81 | 85.91 244 | 71.11 171 | 83.18 80 | 93.48 49 | 50.54 259 | 93.49 149 | 73.40 146 | 88.25 122 | 94.54 29 |
|
ACMP | | 74.13 6 | 81.51 108 | 80.57 110 | 84.36 102 | 89.42 122 | 68.69 110 | 89.97 73 | 91.50 110 | 74.46 113 | 75.04 229 | 90.41 120 | 53.82 223 | 94.54 103 | 77.56 103 | 82.91 189 | 89.86 203 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
jason | | | 81.39 109 | 80.29 117 | 84.70 90 | 86.63 217 | 69.90 84 | 85.95 193 | 86.77 232 | 63.24 281 | 81.07 108 | 89.47 141 | 61.08 165 | 92.15 201 | 78.33 97 | 90.07 102 | 92.05 122 |
jason: jason. |
lupinMVS | | | 81.39 109 | 80.27 118 | 84.76 89 | 87.35 200 | 70.21 76 | 85.55 205 | 86.41 236 | 62.85 288 | 81.32 102 | 88.61 166 | 61.68 149 | 92.24 199 | 78.41 96 | 90.26 97 | 91.83 126 |
|
test_yl | | | 81.17 111 | 80.47 113 | 83.24 145 | 89.13 138 | 63.62 211 | 86.21 187 | 89.95 150 | 72.43 151 | 81.78 98 | 89.61 136 | 57.50 195 | 93.58 143 | 70.75 168 | 86.90 136 | 92.52 104 |
|
DCV-MVSNet | | | 81.17 111 | 80.47 113 | 83.24 145 | 89.13 138 | 63.62 211 | 86.21 187 | 89.95 150 | 72.43 151 | 81.78 98 | 89.61 136 | 57.50 195 | 93.58 143 | 70.75 168 | 86.90 136 | 92.52 104 |
|
DU-MVS | | | 81.12 113 | 80.52 112 | 82.90 162 | 87.80 185 | 63.46 218 | 87.02 162 | 91.87 95 | 79.01 25 | 78.38 144 | 89.07 152 | 65.02 111 | 93.05 172 | 70.05 176 | 76.46 264 | 92.20 117 |
|
PVSNet_Blended | | | 80.98 114 | 80.34 115 | 82.90 162 | 88.85 145 | 65.40 176 | 84.43 232 | 92.00 87 | 67.62 235 | 78.11 153 | 85.05 263 | 66.02 102 | 94.27 112 | 71.52 161 | 89.50 107 | 89.01 227 |
|
FA-MVS(test-final) | | | 80.96 115 | 79.91 123 | 84.10 111 | 88.30 169 | 65.01 185 | 84.55 227 | 90.01 148 | 73.25 140 | 79.61 121 | 87.57 193 | 58.35 187 | 94.72 98 | 71.29 165 | 86.25 147 | 92.56 103 |
|
QAPM | | | 80.88 116 | 79.50 132 | 85.03 77 | 88.01 179 | 68.97 99 | 91.59 42 | 92.00 87 | 66.63 246 | 75.15 225 | 92.16 78 | 57.70 192 | 95.45 62 | 63.52 230 | 88.76 115 | 90.66 164 |
|
TranMVSNet+NR-MVSNet | | | 80.84 117 | 80.31 116 | 82.42 177 | 87.85 182 | 62.33 236 | 87.74 144 | 91.33 112 | 80.55 8 | 77.99 157 | 89.86 129 | 65.23 109 | 92.62 182 | 67.05 208 | 75.24 288 | 92.30 113 |
|
UGNet | | | 80.83 118 | 79.59 130 | 84.54 94 | 88.04 177 | 68.09 121 | 89.42 85 | 88.16 202 | 76.95 58 | 76.22 197 | 89.46 143 | 49.30 274 | 93.94 126 | 68.48 194 | 90.31 95 | 91.60 130 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
Fast-Effi-MVS+ | | | 80.81 119 | 79.92 122 | 83.47 135 | 88.85 145 | 64.51 194 | 85.53 207 | 89.39 163 | 70.79 176 | 78.49 142 | 85.06 262 | 67.54 85 | 93.58 143 | 67.03 209 | 86.58 141 | 92.32 112 |
|
XVG-OURS-SEG-HR | | | 80.81 119 | 79.76 126 | 83.96 125 | 85.60 229 | 68.78 102 | 83.54 250 | 90.50 132 | 70.66 180 | 76.71 184 | 91.66 86 | 60.69 170 | 91.26 229 | 76.94 110 | 81.58 205 | 91.83 126 |
|
xiu_mvs_v1_base_debu | | | 80.80 121 | 79.72 127 | 84.03 120 | 87.35 200 | 70.19 78 | 85.56 202 | 88.77 190 | 69.06 215 | 81.83 94 | 88.16 180 | 50.91 253 | 92.85 178 | 78.29 98 | 87.56 126 | 89.06 222 |
|
xiu_mvs_v1_base | | | 80.80 121 | 79.72 127 | 84.03 120 | 87.35 200 | 70.19 78 | 85.56 202 | 88.77 190 | 69.06 215 | 81.83 94 | 88.16 180 | 50.91 253 | 92.85 178 | 78.29 98 | 87.56 126 | 89.06 222 |
|
xiu_mvs_v1_base_debi | | | 80.80 121 | 79.72 127 | 84.03 120 | 87.35 200 | 70.19 78 | 85.56 202 | 88.77 190 | 69.06 215 | 81.83 94 | 88.16 180 | 50.91 253 | 92.85 178 | 78.29 98 | 87.56 126 | 89.06 222 |
|
ACMM | | 73.20 8 | 80.78 124 | 79.84 125 | 83.58 133 | 89.31 130 | 68.37 115 | 89.99 72 | 91.60 104 | 70.28 186 | 77.25 170 | 89.66 134 | 53.37 227 | 93.53 148 | 74.24 138 | 82.85 190 | 88.85 235 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
114514_t | | | 80.68 125 | 79.51 131 | 84.20 108 | 94.09 38 | 67.27 139 | 89.64 83 | 91.11 118 | 58.75 323 | 74.08 240 | 90.72 114 | 58.10 188 | 95.04 84 | 69.70 181 | 89.42 109 | 90.30 179 |
|
iter_conf_final | | | 80.63 126 | 79.35 136 | 84.46 98 | 89.36 126 | 67.70 129 | 89.85 74 | 84.49 261 | 73.19 141 | 78.30 147 | 88.94 155 | 45.98 298 | 94.56 101 | 79.59 86 | 84.48 166 | 91.11 146 |
|
CANet_DTU | | | 80.61 127 | 79.87 124 | 82.83 164 | 85.60 229 | 63.17 227 | 87.36 152 | 88.65 196 | 76.37 75 | 75.88 204 | 88.44 172 | 53.51 226 | 93.07 171 | 73.30 147 | 89.74 106 | 92.25 115 |
|
VPA-MVSNet | | | 80.60 128 | 80.55 111 | 80.76 216 | 88.07 176 | 60.80 255 | 86.86 167 | 91.58 105 | 75.67 89 | 80.24 115 | 89.45 145 | 63.34 122 | 90.25 249 | 70.51 172 | 79.22 235 | 91.23 143 |
|
PVSNet_BlendedMVS | | | 80.60 128 | 80.02 120 | 82.36 179 | 88.85 145 | 65.40 176 | 86.16 189 | 92.00 87 | 69.34 205 | 78.11 153 | 86.09 239 | 66.02 102 | 94.27 112 | 71.52 161 | 82.06 199 | 87.39 264 |
|
AdaColmap |  | | 80.58 130 | 79.42 133 | 84.06 116 | 93.09 54 | 68.91 100 | 89.36 87 | 88.97 184 | 69.27 206 | 75.70 207 | 89.69 133 | 57.20 199 | 95.77 53 | 63.06 235 | 88.41 121 | 87.50 263 |
|
EI-MVSNet | | | 80.52 131 | 79.98 121 | 82.12 180 | 84.28 248 | 63.19 226 | 86.41 181 | 88.95 185 | 74.18 119 | 78.69 135 | 87.54 196 | 66.62 92 | 92.43 189 | 72.57 156 | 80.57 218 | 90.74 162 |
|
XVG-OURS | | | 80.41 132 | 79.23 140 | 83.97 124 | 85.64 228 | 69.02 97 | 83.03 260 | 90.39 134 | 71.09 172 | 77.63 163 | 91.49 94 | 54.62 216 | 91.35 227 | 75.71 124 | 83.47 183 | 91.54 132 |
|
SDMVSNet | | | 80.38 133 | 80.18 119 | 80.99 210 | 89.03 143 | 64.94 187 | 80.45 286 | 89.40 162 | 75.19 97 | 76.61 188 | 89.98 127 | 60.61 173 | 87.69 287 | 76.83 113 | 83.55 180 | 90.33 177 |
|
PCF-MVS | | 73.52 7 | 80.38 133 | 78.84 149 | 85.01 78 | 87.71 189 | 68.99 98 | 83.65 245 | 91.46 111 | 63.00 285 | 77.77 161 | 90.28 121 | 66.10 99 | 95.09 83 | 61.40 253 | 88.22 123 | 90.94 155 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
X-MVStestdata | | | 80.37 135 | 77.83 172 | 88.00 16 | 94.42 20 | 73.33 18 | 92.78 18 | 92.99 45 | 79.14 20 | 83.67 75 | 12.47 381 | 67.45 86 | 96.60 32 | 83.06 53 | 94.50 49 | 94.07 46 |
|
RRT_MVS | | | 80.35 136 | 79.22 141 | 83.74 130 | 87.63 193 | 65.46 175 | 91.08 53 | 88.92 187 | 73.82 126 | 76.44 193 | 90.03 126 | 49.05 279 | 94.25 116 | 76.84 111 | 79.20 236 | 91.51 133 |
|
test_djsdf | | | 80.30 137 | 79.32 137 | 83.27 143 | 83.98 256 | 65.37 179 | 90.50 61 | 90.38 135 | 68.55 225 | 76.19 198 | 88.70 162 | 56.44 203 | 93.46 152 | 78.98 89 | 80.14 224 | 90.97 154 |
|
v2v482 | | | 80.23 138 | 79.29 138 | 83.05 155 | 83.62 261 | 64.14 203 | 87.04 161 | 89.97 149 | 73.61 131 | 78.18 152 | 87.22 204 | 61.10 164 | 93.82 133 | 76.11 119 | 76.78 261 | 91.18 144 |
|
NR-MVSNet | | | 80.23 138 | 79.38 134 | 82.78 170 | 87.80 185 | 63.34 221 | 86.31 184 | 91.09 119 | 79.01 25 | 72.17 259 | 89.07 152 | 67.20 89 | 92.81 181 | 66.08 215 | 75.65 275 | 92.20 117 |
|
Anonymous20240529 | | | 80.19 140 | 78.89 148 | 84.10 111 | 90.60 91 | 64.75 191 | 88.95 99 | 90.90 122 | 65.97 254 | 80.59 112 | 91.17 103 | 49.97 264 | 93.73 141 | 69.16 187 | 82.70 194 | 93.81 57 |
|
IterMVS-LS | | | 80.06 141 | 79.38 134 | 82.11 181 | 85.89 224 | 63.20 225 | 86.79 170 | 89.34 164 | 74.19 118 | 75.45 213 | 86.72 216 | 66.62 92 | 92.39 191 | 72.58 155 | 76.86 258 | 90.75 161 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
Effi-MVS+-dtu | | | 80.03 142 | 78.57 154 | 84.42 100 | 85.13 238 | 68.74 105 | 88.77 106 | 88.10 204 | 74.99 101 | 74.97 230 | 83.49 285 | 57.27 198 | 93.36 155 | 73.53 143 | 80.88 212 | 91.18 144 |
|
v1144 | | | 80.03 142 | 79.03 145 | 83.01 157 | 83.78 259 | 64.51 194 | 87.11 160 | 90.57 131 | 71.96 156 | 78.08 155 | 86.20 236 | 61.41 156 | 93.94 126 | 74.93 131 | 77.23 252 | 90.60 167 |
|
iter_conf05 | | | 80.00 144 | 78.70 150 | 83.91 127 | 87.84 183 | 65.83 165 | 88.84 104 | 84.92 256 | 71.61 162 | 78.70 134 | 88.94 155 | 43.88 313 | 94.56 101 | 79.28 87 | 84.28 169 | 91.33 139 |
|
v8 | | | 79.97 145 | 79.02 146 | 82.80 167 | 84.09 253 | 64.50 196 | 87.96 135 | 90.29 142 | 74.13 121 | 75.24 223 | 86.81 213 | 62.88 133 | 93.89 132 | 74.39 136 | 75.40 283 | 90.00 195 |
|
OpenMVS |  | 72.83 10 | 79.77 146 | 78.33 161 | 84.09 113 | 85.17 234 | 69.91 83 | 90.57 59 | 90.97 120 | 66.70 242 | 72.17 259 | 91.91 81 | 54.70 214 | 93.96 123 | 61.81 250 | 90.95 90 | 88.41 247 |
|
v10 | | | 79.74 147 | 78.67 151 | 82.97 160 | 84.06 254 | 64.95 186 | 87.88 141 | 90.62 129 | 73.11 142 | 75.11 226 | 86.56 227 | 61.46 155 | 94.05 122 | 73.68 141 | 75.55 277 | 89.90 201 |
|
ECVR-MVS |  | | 79.61 148 | 79.26 139 | 80.67 218 | 90.08 102 | 54.69 326 | 87.89 140 | 77.44 333 | 74.88 103 | 80.27 114 | 92.79 69 | 48.96 281 | 92.45 188 | 68.55 193 | 92.50 71 | 94.86 16 |
|
BH-RMVSNet | | | 79.61 148 | 78.44 157 | 83.14 150 | 89.38 125 | 65.93 162 | 84.95 217 | 87.15 227 | 73.56 133 | 78.19 151 | 89.79 131 | 56.67 202 | 93.36 155 | 59.53 267 | 86.74 139 | 90.13 185 |
|
v1192 | | | 79.59 150 | 78.43 158 | 83.07 154 | 83.55 263 | 64.52 193 | 86.93 165 | 90.58 130 | 70.83 175 | 77.78 160 | 85.90 240 | 59.15 182 | 93.94 126 | 73.96 140 | 77.19 254 | 90.76 160 |
|
ab-mvs | | | 79.51 151 | 78.97 147 | 81.14 206 | 88.46 163 | 60.91 253 | 83.84 242 | 89.24 171 | 70.36 184 | 79.03 128 | 88.87 159 | 63.23 126 | 90.21 250 | 65.12 222 | 82.57 195 | 92.28 114 |
|
WR-MVS | | | 79.49 152 | 79.22 141 | 80.27 226 | 88.79 151 | 58.35 277 | 85.06 214 | 88.61 198 | 78.56 29 | 77.65 162 | 88.34 174 | 63.81 121 | 90.66 245 | 64.98 224 | 77.22 253 | 91.80 128 |
|
v144192 | | | 79.47 153 | 78.37 159 | 82.78 170 | 83.35 266 | 63.96 206 | 86.96 163 | 90.36 138 | 69.99 191 | 77.50 164 | 85.67 247 | 60.66 171 | 93.77 137 | 74.27 137 | 76.58 262 | 90.62 165 |
|
BH-untuned | | | 79.47 153 | 78.60 153 | 82.05 182 | 89.19 136 | 65.91 163 | 86.07 191 | 88.52 199 | 72.18 153 | 75.42 214 | 87.69 190 | 61.15 163 | 93.54 147 | 60.38 260 | 86.83 138 | 86.70 283 |
|
test1111 | | | 79.43 155 | 79.18 143 | 80.15 228 | 89.99 107 | 53.31 339 | 87.33 154 | 77.05 336 | 75.04 100 | 80.23 116 | 92.77 71 | 48.97 280 | 92.33 196 | 68.87 190 | 92.40 73 | 94.81 19 |
|
mvs_anonymous | | | 79.42 156 | 79.11 144 | 80.34 224 | 84.45 247 | 57.97 284 | 82.59 262 | 87.62 217 | 67.40 238 | 76.17 201 | 88.56 169 | 68.47 79 | 89.59 258 | 70.65 171 | 86.05 150 | 93.47 74 |
|
thisisatest0530 | | | 79.40 157 | 77.76 177 | 84.31 105 | 87.69 191 | 65.10 184 | 87.36 152 | 84.26 267 | 70.04 189 | 77.42 166 | 88.26 178 | 49.94 265 | 94.79 96 | 70.20 174 | 84.70 163 | 93.03 89 |
|
tttt0517 | | | 79.40 157 | 77.91 169 | 83.90 128 | 88.10 174 | 63.84 208 | 88.37 122 | 84.05 269 | 71.45 166 | 76.78 182 | 89.12 151 | 49.93 267 | 94.89 91 | 70.18 175 | 83.18 187 | 92.96 93 |
|
V42 | | | 79.38 159 | 78.24 163 | 82.83 164 | 81.10 311 | 65.50 173 | 85.55 205 | 89.82 152 | 71.57 164 | 78.21 150 | 86.12 238 | 60.66 171 | 93.18 165 | 75.64 125 | 75.46 281 | 89.81 206 |
|
jajsoiax | | | 79.29 160 | 77.96 167 | 83.27 143 | 84.68 244 | 66.57 152 | 89.25 89 | 90.16 144 | 69.20 210 | 75.46 212 | 89.49 140 | 45.75 303 | 93.13 168 | 76.84 111 | 80.80 214 | 90.11 187 |
|
v1921920 | | | 79.22 161 | 78.03 166 | 82.80 167 | 83.30 268 | 63.94 207 | 86.80 169 | 90.33 139 | 69.91 194 | 77.48 165 | 85.53 250 | 58.44 186 | 93.75 139 | 73.60 142 | 76.85 259 | 90.71 163 |
|
AUN-MVS | | | 79.21 162 | 77.60 182 | 84.05 118 | 88.71 155 | 67.61 131 | 85.84 198 | 87.26 225 | 69.08 214 | 77.23 172 | 88.14 184 | 53.20 229 | 93.47 151 | 75.50 129 | 73.45 305 | 91.06 149 |
|
TAPA-MVS | | 73.13 9 | 79.15 163 | 77.94 168 | 82.79 169 | 89.59 115 | 62.99 231 | 88.16 129 | 91.51 107 | 65.77 255 | 77.14 177 | 91.09 105 | 60.91 167 | 93.21 159 | 50.26 327 | 87.05 134 | 92.17 119 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
mvs_tets | | | 79.13 164 | 77.77 176 | 83.22 147 | 84.70 243 | 66.37 154 | 89.17 90 | 90.19 143 | 69.38 204 | 75.40 215 | 89.46 143 | 44.17 311 | 93.15 166 | 76.78 114 | 80.70 216 | 90.14 184 |
|
UniMVSNet_ETH3D | | | 79.10 165 | 78.24 163 | 81.70 189 | 86.85 212 | 60.24 264 | 87.28 156 | 88.79 189 | 74.25 117 | 76.84 179 | 90.53 119 | 49.48 270 | 91.56 219 | 67.98 197 | 82.15 198 | 93.29 79 |
|
CDS-MVSNet | | | 79.07 166 | 77.70 179 | 83.17 149 | 87.60 194 | 68.23 119 | 84.40 234 | 86.20 240 | 67.49 237 | 76.36 194 | 86.54 228 | 61.54 152 | 90.79 242 | 61.86 249 | 87.33 130 | 90.49 171 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
MVSTER | | | 79.01 167 | 77.88 171 | 82.38 178 | 83.07 275 | 64.80 190 | 84.08 241 | 88.95 185 | 69.01 218 | 78.69 135 | 87.17 207 | 54.70 214 | 92.43 189 | 74.69 132 | 80.57 218 | 89.89 202 |
|
v1240 | | | 78.99 168 | 77.78 175 | 82.64 173 | 83.21 270 | 63.54 215 | 86.62 176 | 90.30 141 | 69.74 200 | 77.33 168 | 85.68 246 | 57.04 200 | 93.76 138 | 73.13 150 | 76.92 256 | 90.62 165 |
|
Anonymous20231211 | | | 78.97 169 | 77.69 180 | 82.81 166 | 90.54 93 | 64.29 201 | 90.11 71 | 91.51 107 | 65.01 264 | 76.16 202 | 88.13 185 | 50.56 258 | 93.03 175 | 69.68 182 | 77.56 251 | 91.11 146 |
|
v7n | | | 78.97 169 | 77.58 183 | 83.14 150 | 83.45 265 | 65.51 172 | 88.32 123 | 91.21 114 | 73.69 129 | 72.41 256 | 86.32 234 | 57.93 189 | 93.81 134 | 69.18 186 | 75.65 275 | 90.11 187 |
|
TAMVS | | | 78.89 171 | 77.51 184 | 83.03 156 | 87.80 185 | 67.79 127 | 84.72 221 | 85.05 254 | 67.63 234 | 76.75 183 | 87.70 189 | 62.25 142 | 90.82 241 | 58.53 278 | 87.13 133 | 90.49 171 |
|
c3_l | | | 78.75 172 | 77.91 169 | 81.26 201 | 82.89 281 | 61.56 247 | 84.09 240 | 89.13 177 | 69.97 192 | 75.56 208 | 84.29 273 | 66.36 96 | 92.09 203 | 73.47 145 | 75.48 279 | 90.12 186 |
|
tt0805 | | | 78.73 173 | 77.83 172 | 81.43 195 | 85.17 234 | 60.30 263 | 89.41 86 | 90.90 122 | 71.21 169 | 77.17 176 | 88.73 161 | 46.38 293 | 93.21 159 | 72.57 156 | 78.96 237 | 90.79 158 |
|
v148 | | | 78.72 174 | 77.80 174 | 81.47 194 | 82.73 284 | 61.96 242 | 86.30 185 | 88.08 205 | 73.26 139 | 76.18 199 | 85.47 252 | 62.46 138 | 92.36 193 | 71.92 160 | 73.82 302 | 90.09 189 |
|
VPNet | | | 78.69 175 | 78.66 152 | 78.76 251 | 88.31 168 | 55.72 317 | 84.45 231 | 86.63 234 | 76.79 63 | 78.26 148 | 90.55 118 | 59.30 181 | 89.70 257 | 66.63 210 | 77.05 255 | 90.88 156 |
|
ET-MVSNet_ETH3D | | | 78.63 176 | 76.63 205 | 84.64 91 | 86.73 216 | 69.47 90 | 85.01 215 | 84.61 259 | 69.54 201 | 66.51 317 | 86.59 224 | 50.16 262 | 91.75 214 | 76.26 118 | 84.24 170 | 92.69 99 |
|
anonymousdsp | | | 78.60 177 | 77.15 190 | 82.98 159 | 80.51 317 | 67.08 143 | 87.24 157 | 89.53 159 | 65.66 257 | 75.16 224 | 87.19 206 | 52.52 230 | 92.25 198 | 77.17 108 | 79.34 233 | 89.61 211 |
|
miper_ehance_all_eth | | | 78.59 178 | 77.76 177 | 81.08 208 | 82.66 286 | 61.56 247 | 83.65 245 | 89.15 175 | 68.87 220 | 75.55 209 | 83.79 281 | 66.49 94 | 92.03 204 | 73.25 148 | 76.39 266 | 89.64 210 |
|
WR-MVS_H | | | 78.51 179 | 78.49 155 | 78.56 255 | 88.02 178 | 56.38 310 | 88.43 117 | 92.67 61 | 77.14 53 | 73.89 241 | 87.55 195 | 66.25 98 | 89.24 264 | 58.92 273 | 73.55 304 | 90.06 193 |
|
GBi-Net | | | 78.40 180 | 77.40 185 | 81.40 197 | 87.60 194 | 63.01 228 | 88.39 119 | 89.28 166 | 71.63 159 | 75.34 217 | 87.28 200 | 54.80 210 | 91.11 232 | 62.72 237 | 79.57 228 | 90.09 189 |
|
test1 | | | 78.40 180 | 77.40 185 | 81.40 197 | 87.60 194 | 63.01 228 | 88.39 119 | 89.28 166 | 71.63 159 | 75.34 217 | 87.28 200 | 54.80 210 | 91.11 232 | 62.72 237 | 79.57 228 | 90.09 189 |
|
Vis-MVSNet (Re-imp) | | | 78.36 182 | 78.45 156 | 78.07 263 | 88.64 157 | 51.78 346 | 86.70 174 | 79.63 319 | 74.14 120 | 75.11 226 | 90.83 113 | 61.29 160 | 89.75 255 | 58.10 282 | 91.60 81 | 92.69 99 |
|
Anonymous202405211 | | | 78.25 183 | 77.01 192 | 81.99 184 | 91.03 82 | 60.67 257 | 84.77 220 | 83.90 271 | 70.65 181 | 80.00 118 | 91.20 101 | 41.08 330 | 91.43 225 | 65.21 221 | 85.26 157 | 93.85 54 |
|
CP-MVSNet | | | 78.22 184 | 78.34 160 | 77.84 265 | 87.83 184 | 54.54 328 | 87.94 137 | 91.17 116 | 77.65 37 | 73.48 244 | 88.49 170 | 62.24 143 | 88.43 278 | 62.19 244 | 74.07 297 | 90.55 169 |
|
BH-w/o | | | 78.21 185 | 77.33 188 | 80.84 214 | 88.81 149 | 65.13 183 | 84.87 218 | 87.85 213 | 69.75 198 | 74.52 236 | 84.74 267 | 61.34 158 | 93.11 169 | 58.24 281 | 85.84 154 | 84.27 316 |
|
FMVSNet2 | | | 78.20 186 | 77.21 189 | 81.20 204 | 87.60 194 | 62.89 232 | 87.47 150 | 89.02 180 | 71.63 159 | 75.29 222 | 87.28 200 | 54.80 210 | 91.10 235 | 62.38 242 | 79.38 232 | 89.61 211 |
|
MVS | | | 78.19 187 | 76.99 194 | 81.78 187 | 85.66 227 | 66.99 144 | 84.66 222 | 90.47 133 | 55.08 342 | 72.02 261 | 85.27 255 | 63.83 120 | 94.11 121 | 66.10 214 | 89.80 105 | 84.24 317 |
|
Baseline_NR-MVSNet | | | 78.15 188 | 78.33 161 | 77.61 270 | 85.79 225 | 56.21 313 | 86.78 171 | 85.76 247 | 73.60 132 | 77.93 158 | 87.57 193 | 65.02 111 | 88.99 268 | 67.14 207 | 75.33 285 | 87.63 258 |
|
CNLPA | | | 78.08 189 | 76.79 199 | 81.97 185 | 90.40 96 | 71.07 61 | 87.59 147 | 84.55 260 | 66.03 253 | 72.38 257 | 89.64 135 | 57.56 194 | 86.04 297 | 59.61 266 | 83.35 184 | 88.79 238 |
|
cl22 | | | 78.07 190 | 77.01 192 | 81.23 202 | 82.37 293 | 61.83 244 | 83.55 249 | 87.98 207 | 68.96 219 | 75.06 228 | 83.87 277 | 61.40 157 | 91.88 211 | 73.53 143 | 76.39 266 | 89.98 198 |
|
PLC |  | 70.83 11 | 78.05 191 | 76.37 210 | 83.08 153 | 91.88 74 | 67.80 126 | 88.19 127 | 89.46 161 | 64.33 272 | 69.87 284 | 88.38 173 | 53.66 224 | 93.58 143 | 58.86 274 | 82.73 192 | 87.86 254 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
Fast-Effi-MVS+-dtu | | | 78.02 192 | 76.49 206 | 82.62 174 | 83.16 274 | 66.96 147 | 86.94 164 | 87.45 222 | 72.45 148 | 71.49 266 | 84.17 274 | 54.79 213 | 91.58 218 | 67.61 200 | 80.31 221 | 89.30 218 |
|
PS-CasMVS | | | 78.01 193 | 78.09 165 | 77.77 267 | 87.71 189 | 54.39 330 | 88.02 133 | 91.22 113 | 77.50 45 | 73.26 246 | 88.64 165 | 60.73 168 | 88.41 279 | 61.88 248 | 73.88 301 | 90.53 170 |
|
HY-MVS | | 69.67 12 | 77.95 194 | 77.15 190 | 80.36 223 | 87.57 198 | 60.21 265 | 83.37 252 | 87.78 215 | 66.11 250 | 75.37 216 | 87.06 211 | 63.27 124 | 90.48 247 | 61.38 254 | 82.43 196 | 90.40 175 |
|
eth_miper_zixun_eth | | | 77.92 195 | 76.69 203 | 81.61 192 | 83.00 278 | 61.98 241 | 83.15 255 | 89.20 173 | 69.52 202 | 74.86 232 | 84.35 272 | 61.76 148 | 92.56 185 | 71.50 163 | 72.89 310 | 90.28 180 |
|
FMVSNet3 | | | 77.88 196 | 76.85 197 | 80.97 212 | 86.84 213 | 62.36 235 | 86.52 179 | 88.77 190 | 71.13 170 | 75.34 217 | 86.66 222 | 54.07 221 | 91.10 235 | 62.72 237 | 79.57 228 | 89.45 214 |
|
miper_enhance_ethall | | | 77.87 197 | 76.86 196 | 80.92 213 | 81.65 300 | 61.38 249 | 82.68 261 | 88.98 182 | 65.52 259 | 75.47 210 | 82.30 300 | 65.76 106 | 92.00 206 | 72.95 151 | 76.39 266 | 89.39 215 |
|
FE-MVS | | | 77.78 198 | 75.68 216 | 84.08 114 | 88.09 175 | 66.00 160 | 83.13 256 | 87.79 214 | 68.42 229 | 78.01 156 | 85.23 257 | 45.50 305 | 95.12 77 | 59.11 271 | 85.83 155 | 91.11 146 |
|
PEN-MVS | | | 77.73 199 | 77.69 180 | 77.84 265 | 87.07 210 | 53.91 333 | 87.91 139 | 91.18 115 | 77.56 42 | 73.14 248 | 88.82 160 | 61.23 161 | 89.17 265 | 59.95 263 | 72.37 312 | 90.43 173 |
|
cl____ | | | 77.72 200 | 76.76 200 | 80.58 219 | 82.49 290 | 60.48 260 | 83.09 257 | 87.87 211 | 69.22 208 | 74.38 238 | 85.22 258 | 62.10 145 | 91.53 221 | 71.09 166 | 75.41 282 | 89.73 209 |
|
DIV-MVS_self_test | | | 77.72 200 | 76.76 200 | 80.58 219 | 82.48 291 | 60.48 260 | 83.09 257 | 87.86 212 | 69.22 208 | 74.38 238 | 85.24 256 | 62.10 145 | 91.53 221 | 71.09 166 | 75.40 283 | 89.74 208 |
|
sd_testset | | | 77.70 202 | 77.40 185 | 78.60 254 | 89.03 143 | 60.02 266 | 79.00 303 | 85.83 246 | 75.19 97 | 76.61 188 | 89.98 127 | 54.81 209 | 85.46 302 | 62.63 241 | 83.55 180 | 90.33 177 |
|
PAPM | | | 77.68 203 | 76.40 209 | 81.51 193 | 87.29 206 | 61.85 243 | 83.78 243 | 89.59 158 | 64.74 266 | 71.23 267 | 88.70 162 | 62.59 135 | 93.66 142 | 52.66 313 | 87.03 135 | 89.01 227 |
|
CHOSEN 1792x2688 | | | 77.63 204 | 75.69 215 | 83.44 136 | 89.98 108 | 68.58 113 | 78.70 307 | 87.50 220 | 56.38 337 | 75.80 206 | 86.84 212 | 58.67 184 | 91.40 226 | 61.58 252 | 85.75 156 | 90.34 176 |
|
HyFIR lowres test | | | 77.53 205 | 75.40 222 | 83.94 126 | 89.59 115 | 66.62 150 | 80.36 287 | 88.64 197 | 56.29 338 | 76.45 190 | 85.17 259 | 57.64 193 | 93.28 157 | 61.34 255 | 83.10 188 | 91.91 125 |
|
FMVSNet1 | | | 77.44 206 | 76.12 212 | 81.40 197 | 86.81 214 | 63.01 228 | 88.39 119 | 89.28 166 | 70.49 183 | 74.39 237 | 87.28 200 | 49.06 278 | 91.11 232 | 60.91 257 | 78.52 240 | 90.09 189 |
|
TR-MVS | | | 77.44 206 | 76.18 211 | 81.20 204 | 88.24 170 | 63.24 223 | 84.61 225 | 86.40 237 | 67.55 236 | 77.81 159 | 86.48 230 | 54.10 220 | 93.15 166 | 57.75 285 | 82.72 193 | 87.20 269 |
|
1112_ss | | | 77.40 208 | 76.43 208 | 80.32 225 | 89.11 142 | 60.41 262 | 83.65 245 | 87.72 216 | 62.13 297 | 73.05 249 | 86.72 216 | 62.58 136 | 89.97 252 | 62.11 247 | 80.80 214 | 90.59 168 |
|
thisisatest0515 | | | 77.33 209 | 75.38 223 | 83.18 148 | 85.27 233 | 63.80 209 | 82.11 266 | 83.27 281 | 65.06 262 | 75.91 203 | 83.84 279 | 49.54 269 | 94.27 112 | 67.24 205 | 86.19 148 | 91.48 137 |
|
test2506 | | | 77.30 210 | 76.49 206 | 79.74 236 | 90.08 102 | 52.02 342 | 87.86 142 | 63.10 371 | 74.88 103 | 80.16 117 | 92.79 69 | 38.29 340 | 92.35 194 | 68.74 192 | 92.50 71 | 94.86 16 |
|
bld_raw_dy_0_64 | | | 77.29 211 | 75.98 213 | 81.22 203 | 85.04 240 | 65.47 174 | 88.14 132 | 77.56 330 | 69.20 210 | 73.77 242 | 89.40 149 | 42.24 324 | 88.85 274 | 76.78 114 | 81.64 204 | 89.33 217 |
|
pm-mvs1 | | | 77.25 212 | 76.68 204 | 78.93 249 | 84.22 250 | 58.62 276 | 86.41 181 | 88.36 201 | 71.37 167 | 73.31 245 | 88.01 186 | 61.22 162 | 89.15 266 | 64.24 228 | 73.01 309 | 89.03 226 |
|
LCM-MVSNet-Re | | | 77.05 213 | 76.94 195 | 77.36 273 | 87.20 207 | 51.60 347 | 80.06 290 | 80.46 310 | 75.20 96 | 67.69 301 | 86.72 216 | 62.48 137 | 88.98 269 | 63.44 232 | 89.25 110 | 91.51 133 |
|
DTE-MVSNet | | | 76.99 214 | 76.80 198 | 77.54 272 | 86.24 220 | 53.06 341 | 87.52 148 | 90.66 128 | 77.08 56 | 72.50 254 | 88.67 164 | 60.48 175 | 89.52 259 | 57.33 289 | 70.74 323 | 90.05 194 |
|
baseline1 | | | 76.98 215 | 76.75 202 | 77.66 268 | 88.13 172 | 55.66 318 | 85.12 213 | 81.89 295 | 73.04 144 | 76.79 181 | 88.90 157 | 62.43 139 | 87.78 286 | 63.30 234 | 71.18 321 | 89.55 213 |
|
LS3D | | | 76.95 216 | 74.82 229 | 83.37 140 | 90.45 94 | 67.36 138 | 89.15 94 | 86.94 230 | 61.87 299 | 69.52 287 | 90.61 116 | 51.71 247 | 94.53 104 | 46.38 347 | 86.71 140 | 88.21 249 |
|
GA-MVS | | | 76.87 217 | 75.17 227 | 81.97 185 | 82.75 283 | 62.58 233 | 81.44 275 | 86.35 239 | 72.16 155 | 74.74 233 | 82.89 292 | 46.20 297 | 92.02 205 | 68.85 191 | 81.09 210 | 91.30 142 |
|
DP-MVS | | | 76.78 218 | 74.57 231 | 83.42 137 | 93.29 48 | 69.46 92 | 88.55 116 | 83.70 273 | 63.98 278 | 70.20 275 | 88.89 158 | 54.01 222 | 94.80 95 | 46.66 344 | 81.88 202 | 86.01 295 |
|
cascas | | | 76.72 219 | 74.64 230 | 82.99 158 | 85.78 226 | 65.88 164 | 82.33 264 | 89.21 172 | 60.85 305 | 72.74 251 | 81.02 311 | 47.28 288 | 93.75 139 | 67.48 202 | 85.02 158 | 89.34 216 |
|
1314 | | | 76.53 220 | 75.30 226 | 80.21 227 | 83.93 257 | 62.32 237 | 84.66 222 | 88.81 188 | 60.23 309 | 70.16 278 | 84.07 276 | 55.30 207 | 90.73 244 | 67.37 203 | 83.21 186 | 87.59 261 |
|
thres100view900 | | | 76.50 221 | 75.55 219 | 79.33 244 | 89.52 118 | 56.99 299 | 85.83 199 | 83.23 282 | 73.94 123 | 76.32 195 | 87.12 208 | 51.89 244 | 91.95 207 | 48.33 335 | 83.75 175 | 89.07 220 |
|
thres600view7 | | | 76.50 221 | 75.44 220 | 79.68 238 | 89.40 123 | 57.16 296 | 85.53 207 | 83.23 282 | 73.79 128 | 76.26 196 | 87.09 209 | 51.89 244 | 91.89 210 | 48.05 340 | 83.72 178 | 90.00 195 |
|
thres400 | | | 76.50 221 | 75.37 224 | 79.86 233 | 89.13 138 | 57.65 290 | 85.17 210 | 83.60 274 | 73.41 137 | 76.45 190 | 86.39 232 | 52.12 237 | 91.95 207 | 48.33 335 | 83.75 175 | 90.00 195 |
|
tfpn200view9 | | | 76.42 224 | 75.37 224 | 79.55 243 | 89.13 138 | 57.65 290 | 85.17 210 | 83.60 274 | 73.41 137 | 76.45 190 | 86.39 232 | 52.12 237 | 91.95 207 | 48.33 335 | 83.75 175 | 89.07 220 |
|
Test_1112_low_res | | | 76.40 225 | 75.44 220 | 79.27 245 | 89.28 132 | 58.09 280 | 81.69 270 | 87.07 228 | 59.53 316 | 72.48 255 | 86.67 221 | 61.30 159 | 89.33 262 | 60.81 259 | 80.15 223 | 90.41 174 |
|
F-COLMAP | | | 76.38 226 | 74.33 236 | 82.50 176 | 89.28 132 | 66.95 148 | 88.41 118 | 89.03 179 | 64.05 276 | 66.83 311 | 88.61 166 | 46.78 291 | 92.89 177 | 57.48 286 | 78.55 239 | 87.67 257 |
|
LTVRE_ROB | | 69.57 13 | 76.25 227 | 74.54 233 | 81.41 196 | 88.60 158 | 64.38 200 | 79.24 299 | 89.12 178 | 70.76 178 | 69.79 286 | 87.86 187 | 49.09 277 | 93.20 162 | 56.21 299 | 80.16 222 | 86.65 284 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
MVP-Stereo | | | 76.12 228 | 74.46 235 | 81.13 207 | 85.37 232 | 69.79 85 | 84.42 233 | 87.95 209 | 65.03 263 | 67.46 304 | 85.33 254 | 53.28 228 | 91.73 216 | 58.01 283 | 83.27 185 | 81.85 339 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
XVG-ACMP-BASELINE | | | 76.11 229 | 74.27 237 | 81.62 190 | 83.20 271 | 64.67 192 | 83.60 248 | 89.75 155 | 69.75 198 | 71.85 262 | 87.09 209 | 32.78 352 | 92.11 202 | 69.99 178 | 80.43 220 | 88.09 250 |
|
ACMH+ | | 68.96 14 | 76.01 230 | 74.01 238 | 82.03 183 | 88.60 158 | 65.31 180 | 88.86 102 | 87.55 218 | 70.25 187 | 67.75 300 | 87.47 198 | 41.27 328 | 93.19 164 | 58.37 279 | 75.94 272 | 87.60 259 |
|
ACMH | | 67.68 16 | 75.89 231 | 73.93 239 | 81.77 188 | 88.71 155 | 66.61 151 | 88.62 114 | 89.01 181 | 69.81 195 | 66.78 312 | 86.70 220 | 41.95 327 | 91.51 223 | 55.64 300 | 78.14 246 | 87.17 270 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
IB-MVS | | 68.01 15 | 75.85 232 | 73.36 246 | 83.31 141 | 84.76 242 | 66.03 158 | 83.38 251 | 85.06 253 | 70.21 188 | 69.40 288 | 81.05 310 | 45.76 302 | 94.66 100 | 65.10 223 | 75.49 278 | 89.25 219 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
baseline2 | | | 75.70 233 | 73.83 242 | 81.30 200 | 83.26 269 | 61.79 245 | 82.57 263 | 80.65 306 | 66.81 239 | 66.88 310 | 83.42 286 | 57.86 191 | 92.19 200 | 63.47 231 | 79.57 228 | 89.91 200 |
|
WTY-MVS | | | 75.65 234 | 75.68 216 | 75.57 288 | 86.40 219 | 56.82 301 | 77.92 315 | 82.40 291 | 65.10 261 | 76.18 199 | 87.72 188 | 63.13 131 | 80.90 328 | 60.31 261 | 81.96 200 | 89.00 229 |
|
thres200 | | | 75.55 235 | 74.47 234 | 78.82 250 | 87.78 188 | 57.85 287 | 83.07 259 | 83.51 277 | 72.44 150 | 75.84 205 | 84.42 269 | 52.08 239 | 91.75 214 | 47.41 342 | 83.64 179 | 86.86 279 |
|
test_vis1_n_1920 | | | 75.52 236 | 75.78 214 | 74.75 298 | 79.84 324 | 57.44 294 | 83.26 253 | 85.52 249 | 62.83 289 | 79.34 126 | 86.17 237 | 45.10 307 | 79.71 332 | 78.75 91 | 81.21 209 | 87.10 276 |
|
EPNet_dtu | | | 75.46 237 | 74.86 228 | 77.23 276 | 82.57 288 | 54.60 327 | 86.89 166 | 83.09 285 | 71.64 158 | 66.25 319 | 85.86 242 | 55.99 204 | 88.04 283 | 54.92 302 | 86.55 142 | 89.05 225 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
IterMVS-SCA-FT | | | 75.43 238 | 73.87 241 | 80.11 229 | 82.69 285 | 64.85 189 | 81.57 272 | 83.47 278 | 69.16 212 | 70.49 272 | 84.15 275 | 51.95 242 | 88.15 281 | 69.23 185 | 72.14 315 | 87.34 266 |
|
XXY-MVS | | | 75.41 239 | 75.56 218 | 74.96 294 | 83.59 262 | 57.82 288 | 80.59 283 | 83.87 272 | 66.54 247 | 74.93 231 | 88.31 175 | 63.24 125 | 80.09 331 | 62.16 245 | 76.85 259 | 86.97 277 |
|
TransMVSNet (Re) | | | 75.39 240 | 74.56 232 | 77.86 264 | 85.50 231 | 57.10 298 | 86.78 171 | 86.09 243 | 72.17 154 | 71.53 265 | 87.34 199 | 63.01 132 | 89.31 263 | 56.84 294 | 61.83 349 | 87.17 270 |
|
CostFormer | | | 75.24 241 | 73.90 240 | 79.27 245 | 82.65 287 | 58.27 279 | 80.80 278 | 82.73 289 | 61.57 300 | 75.33 220 | 83.13 290 | 55.52 205 | 91.07 238 | 64.98 224 | 78.34 245 | 88.45 245 |
|
D2MVS | | | 74.82 242 | 73.21 247 | 79.64 240 | 79.81 325 | 62.56 234 | 80.34 288 | 87.35 223 | 64.37 271 | 68.86 292 | 82.66 296 | 46.37 294 | 90.10 251 | 67.91 198 | 81.24 208 | 86.25 288 |
|
pmmvs6 | | | 74.69 243 | 73.39 245 | 78.61 253 | 81.38 306 | 57.48 293 | 86.64 175 | 87.95 209 | 64.99 265 | 70.18 276 | 86.61 223 | 50.43 260 | 89.52 259 | 62.12 246 | 70.18 325 | 88.83 236 |
|
tfpnnormal | | | 74.39 244 | 73.16 248 | 78.08 262 | 86.10 223 | 58.05 281 | 84.65 224 | 87.53 219 | 70.32 185 | 71.22 268 | 85.63 248 | 54.97 208 | 89.86 253 | 43.03 356 | 75.02 290 | 86.32 287 |
|
IterMVS | | | 74.29 245 | 72.94 250 | 78.35 259 | 81.53 303 | 63.49 217 | 81.58 271 | 82.49 290 | 68.06 232 | 69.99 281 | 83.69 283 | 51.66 248 | 85.54 300 | 65.85 217 | 71.64 318 | 86.01 295 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
OurMVSNet-221017-0 | | | 74.26 246 | 72.42 254 | 79.80 235 | 83.76 260 | 59.59 271 | 85.92 195 | 86.64 233 | 66.39 248 | 66.96 309 | 87.58 192 | 39.46 334 | 91.60 217 | 65.76 218 | 69.27 328 | 88.22 248 |
|
SCA | | | 74.22 247 | 72.33 255 | 79.91 232 | 84.05 255 | 62.17 239 | 79.96 293 | 79.29 322 | 66.30 249 | 72.38 257 | 80.13 320 | 51.95 242 | 88.60 276 | 59.25 269 | 77.67 250 | 88.96 231 |
|
miper_lstm_enhance | | | 74.11 248 | 73.11 249 | 77.13 277 | 80.11 320 | 59.62 270 | 72.23 340 | 86.92 231 | 66.76 241 | 70.40 273 | 82.92 291 | 56.93 201 | 82.92 320 | 69.06 188 | 72.63 311 | 88.87 234 |
|
EG-PatchMatch MVS | | | 74.04 249 | 71.82 258 | 80.71 217 | 84.92 241 | 67.42 135 | 85.86 197 | 88.08 205 | 66.04 252 | 64.22 331 | 83.85 278 | 35.10 349 | 92.56 185 | 57.44 287 | 80.83 213 | 82.16 338 |
|
pmmvs4 | | | 74.03 250 | 71.91 257 | 80.39 222 | 81.96 296 | 68.32 116 | 81.45 274 | 82.14 293 | 59.32 317 | 69.87 284 | 85.13 260 | 52.40 233 | 88.13 282 | 60.21 262 | 74.74 293 | 84.73 313 |
|
MS-PatchMatch | | | 73.83 251 | 72.67 251 | 77.30 275 | 83.87 258 | 66.02 159 | 81.82 267 | 84.66 258 | 61.37 303 | 68.61 295 | 82.82 294 | 47.29 287 | 88.21 280 | 59.27 268 | 84.32 168 | 77.68 353 |
|
test_cas_vis1_n_1920 | | | 73.76 252 | 73.74 243 | 73.81 305 | 75.90 345 | 59.77 268 | 80.51 284 | 82.40 291 | 58.30 325 | 81.62 100 | 85.69 245 | 44.35 310 | 76.41 350 | 76.29 117 | 78.61 238 | 85.23 305 |
|
sss | | | 73.60 253 | 73.64 244 | 73.51 307 | 82.80 282 | 55.01 324 | 76.12 322 | 81.69 298 | 62.47 294 | 74.68 234 | 85.85 243 | 57.32 197 | 78.11 339 | 60.86 258 | 80.93 211 | 87.39 264 |
|
RPMNet | | | 73.51 254 | 70.49 271 | 82.58 175 | 81.32 309 | 65.19 181 | 75.92 324 | 92.27 76 | 57.60 331 | 72.73 252 | 76.45 345 | 52.30 234 | 95.43 64 | 48.14 339 | 77.71 248 | 87.11 274 |
|
SixPastTwentyTwo | | | 73.37 255 | 71.26 265 | 79.70 237 | 85.08 239 | 57.89 286 | 85.57 201 | 83.56 276 | 71.03 173 | 65.66 321 | 85.88 241 | 42.10 325 | 92.57 184 | 59.11 271 | 63.34 347 | 88.65 242 |
|
CR-MVSNet | | | 73.37 255 | 71.27 264 | 79.67 239 | 81.32 309 | 65.19 181 | 75.92 324 | 80.30 312 | 59.92 312 | 72.73 252 | 81.19 308 | 52.50 231 | 86.69 292 | 59.84 264 | 77.71 248 | 87.11 274 |
|
MSDG | | | 73.36 257 | 70.99 266 | 80.49 221 | 84.51 246 | 65.80 167 | 80.71 281 | 86.13 242 | 65.70 256 | 65.46 322 | 83.74 282 | 44.60 308 | 90.91 240 | 51.13 320 | 76.89 257 | 84.74 312 |
|
tpm2 | | | 73.26 258 | 71.46 260 | 78.63 252 | 83.34 267 | 56.71 304 | 80.65 282 | 80.40 311 | 56.63 336 | 73.55 243 | 82.02 305 | 51.80 246 | 91.24 230 | 56.35 298 | 78.42 243 | 87.95 251 |
|
RPSCF | | | 73.23 259 | 71.46 260 | 78.54 256 | 82.50 289 | 59.85 267 | 82.18 265 | 82.84 288 | 58.96 320 | 71.15 269 | 89.41 147 | 45.48 306 | 84.77 308 | 58.82 275 | 71.83 317 | 91.02 153 |
|
PatchmatchNet |  | | 73.12 260 | 71.33 263 | 78.49 258 | 83.18 272 | 60.85 254 | 79.63 295 | 78.57 325 | 64.13 273 | 71.73 263 | 79.81 325 | 51.20 251 | 85.97 298 | 57.40 288 | 76.36 269 | 88.66 241 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
COLMAP_ROB |  | 66.92 17 | 73.01 261 | 70.41 273 | 80.81 215 | 87.13 209 | 65.63 170 | 88.30 124 | 84.19 268 | 62.96 286 | 63.80 335 | 87.69 190 | 38.04 341 | 92.56 185 | 46.66 344 | 74.91 291 | 84.24 317 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
CVMVSNet | | | 72.99 262 | 72.58 252 | 74.25 302 | 84.28 248 | 50.85 352 | 86.41 181 | 83.45 279 | 44.56 359 | 73.23 247 | 87.54 196 | 49.38 272 | 85.70 299 | 65.90 216 | 78.44 242 | 86.19 290 |
|
test-LLR | | | 72.94 263 | 72.43 253 | 74.48 299 | 81.35 307 | 58.04 282 | 78.38 308 | 77.46 331 | 66.66 243 | 69.95 282 | 79.00 329 | 48.06 284 | 79.24 333 | 66.13 212 | 84.83 160 | 86.15 291 |
|
test_0402 | | | 72.79 264 | 70.44 272 | 79.84 234 | 88.13 172 | 65.99 161 | 85.93 194 | 84.29 265 | 65.57 258 | 67.40 306 | 85.49 251 | 46.92 290 | 92.61 183 | 35.88 365 | 74.38 296 | 80.94 344 |
|
tpmrst | | | 72.39 265 | 72.13 256 | 73.18 311 | 80.54 316 | 49.91 356 | 79.91 294 | 79.08 323 | 63.11 283 | 71.69 264 | 79.95 322 | 55.32 206 | 82.77 321 | 65.66 219 | 73.89 300 | 86.87 278 |
|
PatchMatch-RL | | | 72.38 266 | 70.90 267 | 76.80 280 | 88.60 158 | 67.38 137 | 79.53 296 | 76.17 341 | 62.75 291 | 69.36 289 | 82.00 306 | 45.51 304 | 84.89 307 | 53.62 308 | 80.58 217 | 78.12 352 |
|
CL-MVSNet_self_test | | | 72.37 267 | 71.46 260 | 75.09 293 | 79.49 331 | 53.53 335 | 80.76 280 | 85.01 255 | 69.12 213 | 70.51 271 | 82.05 304 | 57.92 190 | 84.13 311 | 52.27 315 | 66.00 341 | 87.60 259 |
|
tpm | | | 72.37 267 | 71.71 259 | 74.35 301 | 82.19 294 | 52.00 343 | 79.22 300 | 77.29 334 | 64.56 268 | 72.95 250 | 83.68 284 | 51.35 249 | 83.26 319 | 58.33 280 | 75.80 273 | 87.81 255 |
|
PVSNet | | 64.34 18 | 72.08 269 | 70.87 268 | 75.69 286 | 86.21 221 | 56.44 308 | 74.37 336 | 80.73 305 | 62.06 298 | 70.17 277 | 82.23 302 | 42.86 318 | 83.31 318 | 54.77 303 | 84.45 167 | 87.32 267 |
|
pmmvs5 | | | 71.55 270 | 70.20 276 | 75.61 287 | 77.83 338 | 56.39 309 | 81.74 269 | 80.89 302 | 57.76 329 | 67.46 304 | 84.49 268 | 49.26 275 | 85.32 304 | 57.08 291 | 75.29 286 | 85.11 309 |
|
test-mter | | | 71.41 271 | 70.39 274 | 74.48 299 | 81.35 307 | 58.04 282 | 78.38 308 | 77.46 331 | 60.32 308 | 69.95 282 | 79.00 329 | 36.08 347 | 79.24 333 | 66.13 212 | 84.83 160 | 86.15 291 |
|
K. test v3 | | | 71.19 272 | 68.51 284 | 79.21 247 | 83.04 277 | 57.78 289 | 84.35 235 | 76.91 337 | 72.90 147 | 62.99 338 | 82.86 293 | 39.27 335 | 91.09 237 | 61.65 251 | 52.66 365 | 88.75 239 |
|
dmvs_re | | | 71.14 273 | 70.58 269 | 72.80 312 | 81.96 296 | 59.68 269 | 75.60 328 | 79.34 321 | 68.55 225 | 69.27 291 | 80.72 316 | 49.42 271 | 76.54 347 | 52.56 314 | 77.79 247 | 82.19 337 |
|
tpmvs | | | 71.09 274 | 69.29 279 | 76.49 281 | 82.04 295 | 56.04 314 | 78.92 305 | 81.37 301 | 64.05 276 | 67.18 308 | 78.28 335 | 49.74 268 | 89.77 254 | 49.67 330 | 72.37 312 | 83.67 324 |
|
AllTest | | | 70.96 275 | 68.09 290 | 79.58 241 | 85.15 236 | 63.62 211 | 84.58 226 | 79.83 316 | 62.31 295 | 60.32 346 | 86.73 214 | 32.02 353 | 88.96 271 | 50.28 325 | 71.57 319 | 86.15 291 |
|
test_fmvs1 | | | 70.93 276 | 70.52 270 | 72.16 316 | 73.71 355 | 55.05 323 | 80.82 277 | 78.77 324 | 51.21 353 | 78.58 139 | 84.41 270 | 31.20 356 | 76.94 345 | 75.88 123 | 80.12 225 | 84.47 315 |
|
test_fmvs1_n | | | 70.86 277 | 70.24 275 | 72.73 313 | 72.51 363 | 55.28 321 | 81.27 276 | 79.71 318 | 51.49 352 | 78.73 133 | 84.87 264 | 27.54 360 | 77.02 344 | 76.06 120 | 79.97 226 | 85.88 298 |
|
Patchmtry | | | 70.74 278 | 69.16 281 | 75.49 290 | 80.72 313 | 54.07 332 | 74.94 335 | 80.30 312 | 58.34 324 | 70.01 279 | 81.19 308 | 52.50 231 | 86.54 293 | 53.37 310 | 71.09 322 | 85.87 299 |
|
MIMVSNet | | | 70.69 279 | 69.30 278 | 74.88 295 | 84.52 245 | 56.35 311 | 75.87 326 | 79.42 320 | 64.59 267 | 67.76 299 | 82.41 298 | 41.10 329 | 81.54 325 | 46.64 346 | 81.34 206 | 86.75 282 |
|
tpm cat1 | | | 70.57 280 | 68.31 286 | 77.35 274 | 82.41 292 | 57.95 285 | 78.08 312 | 80.22 314 | 52.04 348 | 68.54 296 | 77.66 340 | 52.00 241 | 87.84 285 | 51.77 316 | 72.07 316 | 86.25 288 |
|
OpenMVS_ROB |  | 64.09 19 | 70.56 281 | 68.19 287 | 77.65 269 | 80.26 318 | 59.41 273 | 85.01 215 | 82.96 287 | 58.76 322 | 65.43 323 | 82.33 299 | 37.63 343 | 91.23 231 | 45.34 352 | 76.03 271 | 82.32 335 |
|
pmmvs-eth3d | | | 70.50 282 | 67.83 294 | 78.52 257 | 77.37 341 | 66.18 157 | 81.82 267 | 81.51 299 | 58.90 321 | 63.90 334 | 80.42 318 | 42.69 319 | 86.28 296 | 58.56 277 | 65.30 343 | 83.11 330 |
|
USDC | | | 70.33 283 | 68.37 285 | 76.21 283 | 80.60 315 | 56.23 312 | 79.19 301 | 86.49 235 | 60.89 304 | 61.29 342 | 85.47 252 | 31.78 355 | 89.47 261 | 53.37 310 | 76.21 270 | 82.94 334 |
|
Patchmatch-RL test | | | 70.24 284 | 67.78 296 | 77.61 270 | 77.43 340 | 59.57 272 | 71.16 343 | 70.33 354 | 62.94 287 | 68.65 294 | 72.77 355 | 50.62 257 | 85.49 301 | 69.58 183 | 66.58 338 | 87.77 256 |
|
CMPMVS |  | 51.72 21 | 70.19 285 | 68.16 288 | 76.28 282 | 73.15 360 | 57.55 292 | 79.47 297 | 83.92 270 | 48.02 356 | 56.48 359 | 84.81 265 | 43.13 316 | 86.42 295 | 62.67 240 | 81.81 203 | 84.89 310 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
ppachtmachnet_test | | | 70.04 286 | 67.34 301 | 78.14 261 | 79.80 326 | 61.13 250 | 79.19 301 | 80.59 307 | 59.16 319 | 65.27 324 | 79.29 326 | 46.75 292 | 87.29 289 | 49.33 331 | 66.72 336 | 86.00 297 |
|
gg-mvs-nofinetune | | | 69.95 287 | 67.96 291 | 75.94 284 | 83.07 275 | 54.51 329 | 77.23 319 | 70.29 355 | 63.11 283 | 70.32 274 | 62.33 364 | 43.62 314 | 88.69 275 | 53.88 307 | 87.76 125 | 84.62 314 |
|
TESTMET0.1,1 | | | 69.89 288 | 69.00 282 | 72.55 314 | 79.27 334 | 56.85 300 | 78.38 308 | 74.71 347 | 57.64 330 | 68.09 298 | 77.19 342 | 37.75 342 | 76.70 346 | 63.92 229 | 84.09 171 | 84.10 320 |
|
test_vis1_n | | | 69.85 289 | 69.21 280 | 71.77 318 | 72.66 362 | 55.27 322 | 81.48 273 | 76.21 340 | 52.03 349 | 75.30 221 | 83.20 289 | 28.97 358 | 76.22 352 | 74.60 133 | 78.41 244 | 83.81 323 |
|
FMVSNet5 | | | 69.50 290 | 67.96 291 | 74.15 303 | 82.97 280 | 55.35 320 | 80.01 292 | 82.12 294 | 62.56 293 | 63.02 336 | 81.53 307 | 36.92 344 | 81.92 323 | 48.42 334 | 74.06 298 | 85.17 308 |
|
PMMVS | | | 69.34 291 | 68.67 283 | 71.35 323 | 75.67 347 | 62.03 240 | 75.17 330 | 73.46 350 | 50.00 354 | 68.68 293 | 79.05 327 | 52.07 240 | 78.13 338 | 61.16 256 | 82.77 191 | 73.90 359 |
|
our_test_3 | | | 69.14 292 | 67.00 303 | 75.57 288 | 79.80 326 | 58.80 274 | 77.96 313 | 77.81 328 | 59.55 315 | 62.90 339 | 78.25 336 | 47.43 286 | 83.97 312 | 51.71 317 | 67.58 335 | 83.93 322 |
|
EPMVS | | | 69.02 293 | 68.16 288 | 71.59 319 | 79.61 329 | 49.80 358 | 77.40 317 | 66.93 363 | 62.82 290 | 70.01 279 | 79.05 327 | 45.79 301 | 77.86 341 | 56.58 296 | 75.26 287 | 87.13 273 |
|
KD-MVS_self_test | | | 68.81 294 | 67.59 299 | 72.46 315 | 74.29 353 | 45.45 364 | 77.93 314 | 87.00 229 | 63.12 282 | 63.99 333 | 78.99 331 | 42.32 321 | 84.77 308 | 56.55 297 | 64.09 346 | 87.16 272 |
|
Anonymous20240521 | | | 68.80 295 | 67.22 302 | 73.55 306 | 74.33 352 | 54.11 331 | 83.18 254 | 85.61 248 | 58.15 326 | 61.68 341 | 80.94 313 | 30.71 357 | 81.27 327 | 57.00 292 | 73.34 308 | 85.28 304 |
|
Anonymous20231206 | | | 68.60 296 | 67.80 295 | 71.02 325 | 80.23 319 | 50.75 353 | 78.30 311 | 80.47 309 | 56.79 335 | 66.11 320 | 82.63 297 | 46.35 295 | 78.95 335 | 43.62 355 | 75.70 274 | 83.36 327 |
|
MIMVSNet1 | | | 68.58 297 | 66.78 305 | 73.98 304 | 80.07 321 | 51.82 345 | 80.77 279 | 84.37 262 | 64.40 270 | 59.75 349 | 82.16 303 | 36.47 345 | 83.63 315 | 42.73 357 | 70.33 324 | 86.48 286 |
|
EU-MVSNet | | | 68.53 298 | 67.61 298 | 71.31 324 | 78.51 337 | 47.01 362 | 84.47 228 | 84.27 266 | 42.27 362 | 66.44 318 | 84.79 266 | 40.44 332 | 83.76 313 | 58.76 276 | 68.54 333 | 83.17 328 |
|
PatchT | | | 68.46 299 | 67.85 293 | 70.29 328 | 80.70 314 | 43.93 371 | 72.47 339 | 74.88 344 | 60.15 310 | 70.55 270 | 76.57 344 | 49.94 265 | 81.59 324 | 50.58 321 | 74.83 292 | 85.34 303 |
|
test_fmvs2 | | | 68.35 300 | 67.48 300 | 70.98 326 | 69.50 366 | 51.95 344 | 80.05 291 | 76.38 339 | 49.33 355 | 74.65 235 | 84.38 271 | 23.30 366 | 75.40 357 | 74.51 134 | 75.17 289 | 85.60 300 |
|
test0.0.03 1 | | | 68.00 301 | 67.69 297 | 68.90 333 | 77.55 339 | 47.43 360 | 75.70 327 | 72.95 352 | 66.66 243 | 66.56 313 | 82.29 301 | 48.06 284 | 75.87 354 | 44.97 353 | 74.51 295 | 83.41 326 |
|
TDRefinement | | | 67.49 302 | 64.34 311 | 76.92 278 | 73.47 358 | 61.07 251 | 84.86 219 | 82.98 286 | 59.77 313 | 58.30 353 | 85.13 260 | 26.06 361 | 87.89 284 | 47.92 341 | 60.59 354 | 81.81 340 |
|
test20.03 | | | 67.45 303 | 66.95 304 | 68.94 332 | 75.48 349 | 44.84 369 | 77.50 316 | 77.67 329 | 66.66 243 | 63.01 337 | 83.80 280 | 47.02 289 | 78.40 337 | 42.53 358 | 68.86 332 | 83.58 325 |
|
UnsupCasMVSNet_eth | | | 67.33 304 | 65.99 307 | 71.37 321 | 73.48 357 | 51.47 349 | 75.16 331 | 85.19 252 | 65.20 260 | 60.78 344 | 80.93 315 | 42.35 320 | 77.20 343 | 57.12 290 | 53.69 364 | 85.44 302 |
|
TinyColmap | | | 67.30 305 | 64.81 309 | 74.76 297 | 81.92 298 | 56.68 305 | 80.29 289 | 81.49 300 | 60.33 307 | 56.27 360 | 83.22 287 | 24.77 363 | 87.66 288 | 45.52 350 | 69.47 327 | 79.95 348 |
|
dp | | | 66.80 306 | 65.43 308 | 70.90 327 | 79.74 328 | 48.82 359 | 75.12 333 | 74.77 345 | 59.61 314 | 64.08 332 | 77.23 341 | 42.89 317 | 80.72 329 | 48.86 333 | 66.58 338 | 83.16 329 |
|
MDA-MVSNet-bldmvs | | | 66.68 307 | 63.66 316 | 75.75 285 | 79.28 333 | 60.56 259 | 73.92 337 | 78.35 326 | 64.43 269 | 50.13 366 | 79.87 324 | 44.02 312 | 83.67 314 | 46.10 348 | 56.86 357 | 83.03 332 |
|
testgi | | | 66.67 308 | 66.53 306 | 67.08 340 | 75.62 348 | 41.69 375 | 75.93 323 | 76.50 338 | 66.11 250 | 65.20 327 | 86.59 224 | 35.72 348 | 74.71 359 | 43.71 354 | 73.38 307 | 84.84 311 |
|
CHOSEN 280x420 | | | 66.51 309 | 64.71 310 | 71.90 317 | 81.45 304 | 63.52 216 | 57.98 371 | 68.95 361 | 53.57 344 | 62.59 340 | 76.70 343 | 46.22 296 | 75.29 358 | 55.25 301 | 79.68 227 | 76.88 355 |
|
PM-MVS | | | 66.41 310 | 64.14 312 | 73.20 310 | 73.92 354 | 56.45 307 | 78.97 304 | 64.96 369 | 63.88 280 | 64.72 328 | 80.24 319 | 19.84 369 | 83.44 317 | 66.24 211 | 64.52 345 | 79.71 349 |
|
JIA-IIPM | | | 66.32 311 | 62.82 322 | 76.82 279 | 77.09 342 | 61.72 246 | 65.34 364 | 75.38 342 | 58.04 328 | 64.51 329 | 62.32 365 | 42.05 326 | 86.51 294 | 51.45 319 | 69.22 329 | 82.21 336 |
|
KD-MVS_2432*1600 | | | 66.22 312 | 63.89 314 | 73.21 308 | 75.47 350 | 53.42 337 | 70.76 346 | 84.35 263 | 64.10 274 | 66.52 315 | 78.52 333 | 34.55 350 | 84.98 305 | 50.40 323 | 50.33 368 | 81.23 342 |
|
miper_refine_blended | | | 66.22 312 | 63.89 314 | 73.21 308 | 75.47 350 | 53.42 337 | 70.76 346 | 84.35 263 | 64.10 274 | 66.52 315 | 78.52 333 | 34.55 350 | 84.98 305 | 50.40 323 | 50.33 368 | 81.23 342 |
|
ADS-MVSNet2 | | | 66.20 314 | 63.33 317 | 74.82 296 | 79.92 322 | 58.75 275 | 67.55 357 | 75.19 343 | 53.37 345 | 65.25 325 | 75.86 348 | 42.32 321 | 80.53 330 | 41.57 359 | 68.91 330 | 85.18 306 |
|
YYNet1 | | | 65.03 315 | 62.91 320 | 71.38 320 | 75.85 346 | 56.60 306 | 69.12 354 | 74.66 348 | 57.28 333 | 54.12 362 | 77.87 338 | 45.85 300 | 74.48 360 | 49.95 328 | 61.52 351 | 83.05 331 |
|
MDA-MVSNet_test_wron | | | 65.03 315 | 62.92 319 | 71.37 321 | 75.93 344 | 56.73 302 | 69.09 355 | 74.73 346 | 57.28 333 | 54.03 363 | 77.89 337 | 45.88 299 | 74.39 361 | 49.89 329 | 61.55 350 | 82.99 333 |
|
Patchmatch-test | | | 64.82 317 | 63.24 318 | 69.57 330 | 79.42 332 | 49.82 357 | 63.49 368 | 69.05 360 | 51.98 350 | 59.95 348 | 80.13 320 | 50.91 253 | 70.98 366 | 40.66 361 | 73.57 303 | 87.90 253 |
|
ADS-MVSNet | | | 64.36 318 | 62.88 321 | 68.78 335 | 79.92 322 | 47.17 361 | 67.55 357 | 71.18 353 | 53.37 345 | 65.25 325 | 75.86 348 | 42.32 321 | 73.99 362 | 41.57 359 | 68.91 330 | 85.18 306 |
|
LF4IMVS | | | 64.02 319 | 62.19 323 | 69.50 331 | 70.90 364 | 53.29 340 | 76.13 321 | 77.18 335 | 52.65 347 | 58.59 351 | 80.98 312 | 23.55 365 | 76.52 348 | 53.06 312 | 66.66 337 | 78.68 351 |
|
UnsupCasMVSNet_bld | | | 63.70 320 | 61.53 326 | 70.21 329 | 73.69 356 | 51.39 350 | 72.82 338 | 81.89 295 | 55.63 340 | 57.81 355 | 71.80 357 | 38.67 337 | 78.61 336 | 49.26 332 | 52.21 366 | 80.63 345 |
|
test_fmvs3 | | | 63.36 321 | 61.82 324 | 67.98 337 | 62.51 373 | 46.96 363 | 77.37 318 | 74.03 349 | 45.24 358 | 67.50 303 | 78.79 332 | 12.16 377 | 72.98 365 | 72.77 154 | 66.02 340 | 83.99 321 |
|
dmvs_testset | | | 62.63 322 | 64.11 313 | 58.19 350 | 78.55 336 | 24.76 385 | 75.28 329 | 65.94 366 | 67.91 233 | 60.34 345 | 76.01 347 | 53.56 225 | 73.94 363 | 31.79 368 | 67.65 334 | 75.88 357 |
|
mvsany_test1 | | | 62.30 323 | 61.26 327 | 65.41 342 | 69.52 365 | 54.86 325 | 66.86 359 | 49.78 380 | 46.65 357 | 68.50 297 | 83.21 288 | 49.15 276 | 66.28 372 | 56.93 293 | 60.77 352 | 75.11 358 |
|
new-patchmatchnet | | | 61.73 324 | 61.73 325 | 61.70 346 | 72.74 361 | 24.50 386 | 69.16 353 | 78.03 327 | 61.40 301 | 56.72 358 | 75.53 351 | 38.42 338 | 76.48 349 | 45.95 349 | 57.67 356 | 84.13 319 |
|
PVSNet_0 | | 57.27 20 | 61.67 325 | 59.27 328 | 68.85 334 | 79.61 329 | 57.44 294 | 68.01 356 | 73.44 351 | 55.93 339 | 58.54 352 | 70.41 360 | 44.58 309 | 77.55 342 | 47.01 343 | 35.91 374 | 71.55 362 |
|
test_vis1_rt | | | 60.28 326 | 58.42 329 | 65.84 341 | 67.25 369 | 55.60 319 | 70.44 348 | 60.94 373 | 44.33 360 | 59.00 350 | 66.64 362 | 24.91 362 | 68.67 370 | 62.80 236 | 69.48 326 | 73.25 360 |
|
MVS-HIRNet | | | 59.14 327 | 57.67 330 | 63.57 344 | 81.65 300 | 43.50 372 | 71.73 341 | 65.06 368 | 39.59 366 | 51.43 365 | 57.73 370 | 38.34 339 | 82.58 322 | 39.53 362 | 73.95 299 | 64.62 366 |
|
pmmvs3 | | | 57.79 328 | 54.26 332 | 68.37 336 | 64.02 372 | 56.72 303 | 75.12 333 | 65.17 367 | 40.20 364 | 52.93 364 | 69.86 361 | 20.36 368 | 75.48 356 | 45.45 351 | 55.25 363 | 72.90 361 |
|
DSMNet-mixed | | | 57.77 329 | 56.90 331 | 60.38 348 | 67.70 368 | 35.61 378 | 69.18 352 | 53.97 378 | 32.30 374 | 57.49 356 | 79.88 323 | 40.39 333 | 68.57 371 | 38.78 363 | 72.37 312 | 76.97 354 |
|
LCM-MVSNet | | | 54.25 330 | 49.68 339 | 67.97 338 | 53.73 381 | 45.28 367 | 66.85 360 | 80.78 304 | 35.96 370 | 39.45 371 | 62.23 366 | 8.70 381 | 78.06 340 | 48.24 338 | 51.20 367 | 80.57 346 |
|
mvsany_test3 | | | 53.99 331 | 51.45 335 | 61.61 347 | 55.51 377 | 44.74 370 | 63.52 367 | 45.41 384 | 43.69 361 | 58.11 354 | 76.45 345 | 17.99 370 | 63.76 375 | 54.77 303 | 47.59 370 | 76.34 356 |
|
FPMVS | | | 53.68 332 | 51.64 334 | 59.81 349 | 65.08 371 | 51.03 351 | 69.48 351 | 69.58 358 | 41.46 363 | 40.67 369 | 72.32 356 | 16.46 373 | 70.00 369 | 24.24 376 | 65.42 342 | 58.40 371 |
|
APD_test1 | | | 53.31 333 | 49.93 338 | 63.42 345 | 65.68 370 | 50.13 355 | 71.59 342 | 66.90 364 | 34.43 371 | 40.58 370 | 71.56 358 | 8.65 382 | 76.27 351 | 34.64 367 | 55.36 362 | 63.86 367 |
|
N_pmnet | | | 52.79 334 | 53.26 333 | 51.40 358 | 78.99 335 | 7.68 389 | 69.52 350 | 3.89 389 | 51.63 351 | 57.01 357 | 74.98 352 | 40.83 331 | 65.96 373 | 37.78 364 | 64.67 344 | 80.56 347 |
|
test_f | | | 52.09 335 | 50.82 336 | 55.90 354 | 53.82 380 | 42.31 374 | 59.42 370 | 58.31 376 | 36.45 369 | 56.12 361 | 70.96 359 | 12.18 376 | 57.79 377 | 53.51 309 | 56.57 359 | 67.60 363 |
|
EGC-MVSNET | | | 52.07 336 | 47.05 340 | 67.14 339 | 83.51 264 | 60.71 256 | 80.50 285 | 67.75 362 | 0.07 384 | 0.43 385 | 75.85 350 | 24.26 364 | 81.54 325 | 28.82 370 | 62.25 348 | 59.16 369 |
|
new_pmnet | | | 50.91 337 | 50.29 337 | 52.78 357 | 68.58 367 | 34.94 380 | 63.71 366 | 56.63 377 | 39.73 365 | 44.95 367 | 65.47 363 | 21.93 367 | 58.48 376 | 34.98 366 | 56.62 358 | 64.92 365 |
|
ANet_high | | | 50.57 338 | 46.10 342 | 63.99 343 | 48.67 384 | 39.13 376 | 70.99 345 | 80.85 303 | 61.39 302 | 31.18 373 | 57.70 371 | 17.02 372 | 73.65 364 | 31.22 369 | 15.89 381 | 79.18 350 |
|
test_vis3_rt | | | 49.26 339 | 47.02 341 | 56.00 353 | 54.30 378 | 45.27 368 | 66.76 361 | 48.08 381 | 36.83 368 | 44.38 368 | 53.20 373 | 7.17 384 | 64.07 374 | 56.77 295 | 55.66 360 | 58.65 370 |
|
testf1 | | | 45.72 340 | 41.96 343 | 57.00 351 | 56.90 375 | 45.32 365 | 66.14 362 | 59.26 374 | 26.19 375 | 30.89 374 | 60.96 368 | 4.14 385 | 70.64 367 | 26.39 374 | 46.73 372 | 55.04 372 |
|
APD_test2 | | | 45.72 340 | 41.96 343 | 57.00 351 | 56.90 375 | 45.32 365 | 66.14 362 | 59.26 374 | 26.19 375 | 30.89 374 | 60.96 368 | 4.14 385 | 70.64 367 | 26.39 374 | 46.73 372 | 55.04 372 |
|
Gipuma |  | | 45.18 342 | 41.86 345 | 55.16 356 | 77.03 343 | 51.52 348 | 32.50 377 | 80.52 308 | 32.46 373 | 27.12 376 | 35.02 377 | 9.52 380 | 75.50 355 | 22.31 377 | 60.21 355 | 38.45 376 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
PMVS |  | 37.38 22 | 44.16 343 | 40.28 346 | 55.82 355 | 40.82 386 | 42.54 373 | 65.12 365 | 63.99 370 | 34.43 371 | 24.48 377 | 57.12 372 | 3.92 387 | 76.17 353 | 17.10 379 | 55.52 361 | 48.75 374 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
PMMVS2 | | | 40.82 344 | 38.86 347 | 46.69 359 | 53.84 379 | 16.45 387 | 48.61 374 | 49.92 379 | 37.49 367 | 31.67 372 | 60.97 367 | 8.14 383 | 56.42 378 | 28.42 371 | 30.72 376 | 67.19 364 |
|
E-PMN | | | 31.77 345 | 30.64 348 | 35.15 362 | 52.87 382 | 27.67 382 | 57.09 372 | 47.86 382 | 24.64 377 | 16.40 382 | 33.05 378 | 11.23 378 | 54.90 379 | 14.46 381 | 18.15 379 | 22.87 378 |
|
test_method | | | 31.52 346 | 29.28 350 | 38.23 361 | 27.03 388 | 6.50 390 | 20.94 379 | 62.21 372 | 4.05 382 | 22.35 380 | 52.50 374 | 13.33 374 | 47.58 381 | 27.04 373 | 34.04 375 | 60.62 368 |
|
EMVS | | | 30.81 347 | 29.65 349 | 34.27 363 | 50.96 383 | 25.95 384 | 56.58 373 | 46.80 383 | 24.01 378 | 15.53 383 | 30.68 379 | 12.47 375 | 54.43 380 | 12.81 382 | 17.05 380 | 22.43 379 |
|
MVE |  | 26.22 23 | 30.37 348 | 25.89 352 | 43.81 360 | 44.55 385 | 35.46 379 | 28.87 378 | 39.07 385 | 18.20 379 | 18.58 381 | 40.18 376 | 2.68 388 | 47.37 382 | 17.07 380 | 23.78 378 | 48.60 375 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
cdsmvs_eth3d_5k | | | 19.96 349 | 26.61 351 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 89.26 169 | 0.00 387 | 0.00 388 | 88.61 166 | 61.62 151 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
tmp_tt | | | 18.61 350 | 21.40 353 | 10.23 366 | 4.82 389 | 10.11 388 | 34.70 376 | 30.74 387 | 1.48 383 | 23.91 379 | 26.07 380 | 28.42 359 | 13.41 385 | 27.12 372 | 15.35 382 | 7.17 380 |
|
wuyk23d | | | 16.82 351 | 15.94 354 | 19.46 365 | 58.74 374 | 31.45 381 | 39.22 375 | 3.74 390 | 6.84 381 | 6.04 384 | 2.70 384 | 1.27 389 | 24.29 384 | 10.54 383 | 14.40 383 | 2.63 381 |
|
ab-mvs-re | | | 7.23 352 | 9.64 355 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 86.72 216 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
test123 | | | 6.12 353 | 8.11 356 | 0.14 367 | 0.06 391 | 0.09 391 | 71.05 344 | 0.03 392 | 0.04 386 | 0.25 387 | 1.30 386 | 0.05 390 | 0.03 387 | 0.21 385 | 0.01 385 | 0.29 382 |
|
testmvs | | | 6.04 354 | 8.02 357 | 0.10 368 | 0.08 390 | 0.03 392 | 69.74 349 | 0.04 391 | 0.05 385 | 0.31 386 | 1.68 385 | 0.02 391 | 0.04 386 | 0.24 384 | 0.02 384 | 0.25 383 |
|
pcd_1.5k_mvsjas | | | 5.26 355 | 7.02 358 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 63.15 128 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
test_blank | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
uanet_test | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
DCPMVS | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
sosnet-low-res | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
sosnet | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
uncertanet | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
Regformer | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
uanet | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
FOURS1 | | | | | | 95.00 10 | 72.39 38 | 95.06 1 | 93.84 15 | 74.49 112 | 91.30 15 | | | | | | |
|
MSC_two_6792asdad | | | | | 89.16 1 | 94.34 27 | 75.53 2 | | 92.99 45 | | | | | 97.53 1 | 89.67 2 | 96.44 9 | 94.41 31 |
|
PC_three_1452 | | | | | | | | | | 68.21 231 | 92.02 12 | 94.00 41 | 82.09 5 | 95.98 50 | 84.58 38 | 96.68 2 | 94.95 9 |
|
No_MVS | | | | | 89.16 1 | 94.34 27 | 75.53 2 | | 92.99 45 | | | | | 97.53 1 | 89.67 2 | 96.44 9 | 94.41 31 |
|
test_one_0601 | | | | | | 95.07 7 | 71.46 54 | | 94.14 5 | 78.27 34 | 92.05 11 | 95.74 6 | 80.83 11 | | | | |
|
eth-test2 | | | | | | 0.00 392 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 392 | | | | | | | | | | | |
|
ZD-MVS | | | | | | 94.38 25 | 72.22 43 | | 92.67 61 | 70.98 174 | 87.75 29 | 94.07 38 | 74.01 32 | 96.70 26 | 84.66 37 | 94.84 42 | |
|
RE-MVS-def | | | | 85.48 50 | | 93.06 55 | 70.63 72 | 91.88 38 | 92.27 76 | 73.53 135 | 85.69 39 | 94.45 25 | 63.87 119 | | 82.75 58 | 91.87 78 | 92.50 106 |
|
IU-MVS | | | | | | 95.30 2 | 71.25 56 | | 92.95 51 | 66.81 239 | 92.39 6 | | | | 88.94 12 | 96.63 4 | 94.85 18 |
|
OPU-MVS | | | | | 89.06 3 | 94.62 15 | 75.42 4 | 93.57 7 | | | | 94.02 40 | 82.45 3 | 96.87 19 | 83.77 48 | 96.48 8 | 94.88 13 |
|
test_241102_TWO | | | | | | | | | 94.06 10 | 77.24 49 | 92.78 4 | 95.72 8 | 81.26 8 | 97.44 5 | 89.07 10 | 96.58 6 | 94.26 40 |
|
test_241102_ONE | | | | | | 95.30 2 | 70.98 62 | | 94.06 10 | 77.17 52 | 93.10 1 | 95.39 11 | 82.99 1 | 97.27 10 | | | |
|
9.14 | | | | 88.26 14 | | 92.84 60 | | 91.52 45 | 94.75 1 | 73.93 124 | 88.57 22 | 94.67 18 | 75.57 22 | 95.79 52 | 86.77 25 | 95.76 23 | |
|
save fliter | | | | | | 93.80 40 | 72.35 41 | 90.47 63 | 91.17 116 | 74.31 115 | | | | | | | |
|
test_0728_THIRD | | | | | | | | | | 78.38 32 | 92.12 9 | 95.78 4 | 81.46 7 | 97.40 7 | 89.42 5 | 96.57 7 | 94.67 23 |
|
test_0728_SECOND | | | | | 87.71 31 | 95.34 1 | 71.43 55 | 93.49 9 | 94.23 3 | | | | | 97.49 3 | 89.08 8 | 96.41 12 | 94.21 41 |
|
test0726 | | | | | | 95.27 5 | 71.25 56 | 93.60 6 | 94.11 6 | 77.33 47 | 92.81 3 | 95.79 3 | 80.98 9 | | | | |
|
GSMVS | | | | | | | | | | | | | | | | | 88.96 231 |
|
test_part2 | | | | | | 95.06 8 | 72.65 31 | | | | 91.80 13 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 51.32 250 | | | | 88.96 231 |
|
sam_mvs | | | | | | | | | | | | | 50.01 263 | | | | |
|
ambc | | | | | 75.24 292 | 73.16 359 | 50.51 354 | 63.05 369 | 87.47 221 | | 64.28 330 | 77.81 339 | 17.80 371 | 89.73 256 | 57.88 284 | 60.64 353 | 85.49 301 |
|
MTGPA |  | | | | | | | | 92.02 85 | | | | | | | | |
|
test_post1 | | | | | | | | 78.90 306 | | | | 5.43 383 | 48.81 283 | 85.44 303 | 59.25 269 | | |
|
test_post | | | | | | | | | | | | 5.46 382 | 50.36 261 | 84.24 310 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 74.00 353 | 51.12 252 | 88.60 276 | | | |
|
GG-mvs-BLEND | | | | | 75.38 291 | 81.59 302 | 55.80 316 | 79.32 298 | 69.63 357 | | 67.19 307 | 73.67 354 | 43.24 315 | 88.90 273 | 50.41 322 | 84.50 164 | 81.45 341 |
|
MTMP | | | | | | | | 92.18 34 | 32.83 386 | | | | | | | | |
|
gm-plane-assit | | | | | | 81.40 305 | 53.83 334 | | | 62.72 292 | | 80.94 313 | | 92.39 191 | 63.40 233 | | |
|
test9_res | | | | | | | | | | | | | | | 84.90 32 | 95.70 26 | 92.87 94 |
|
TEST9 | | | | | | 93.26 50 | 72.96 24 | 88.75 107 | 91.89 93 | 68.44 228 | 85.00 47 | 93.10 57 | 74.36 28 | 95.41 66 | | | |
|
test_8 | | | | | | 93.13 52 | 72.57 34 | 88.68 112 | 91.84 97 | 68.69 223 | 84.87 51 | 93.10 57 | 74.43 26 | 95.16 75 | | | |
|
agg_prior2 | | | | | | | | | | | | | | | 82.91 56 | 95.45 29 | 92.70 97 |
|
agg_prior | | | | | | 92.85 59 | 71.94 50 | | 91.78 100 | | 84.41 61 | | | 94.93 86 | | | |
|
TestCases | | | | | 79.58 241 | 85.15 236 | 63.62 211 | | 79.83 316 | 62.31 295 | 60.32 346 | 86.73 214 | 32.02 353 | 88.96 271 | 50.28 325 | 71.57 319 | 86.15 291 |
|
test_prior4 | | | | | | | 72.60 33 | 89.01 97 | | | | | | | | | |
|
test_prior2 | | | | | | | | 88.85 103 | | 75.41 92 | 84.91 49 | 93.54 48 | 74.28 29 | | 83.31 51 | 95.86 20 | |
|
test_prior | | | | | 86.33 53 | 92.61 65 | 69.59 87 | | 92.97 50 | | | | | 95.48 61 | | | 93.91 51 |
|
旧先验2 | | | | | | | | 86.56 178 | | 58.10 327 | 87.04 31 | | | 88.98 269 | 74.07 139 | | |
|
æ–°å‡ ä½•2 | | | | | | | | 86.29 186 | | | | | | | | | |
|
æ–°å‡ ä½•1 | | | | | 83.42 137 | 93.13 52 | 70.71 70 | | 85.48 250 | 57.43 332 | 81.80 97 | 91.98 80 | 63.28 123 | 92.27 197 | 64.60 227 | 92.99 64 | 87.27 268 |
|
旧先验1 | | | | | | 91.96 71 | 65.79 168 | | 86.37 238 | | | 93.08 61 | 69.31 72 | | | 92.74 67 | 88.74 240 |
|
æ— å…ˆéªŒ | | | | | | | | 87.48 149 | 88.98 182 | 60.00 311 | | | | 94.12 120 | 67.28 204 | | 88.97 230 |
|
原ACMM2 | | | | | | | | 86.86 167 | | | | | | | | | |
|
原ACMM1 | | | | | 84.35 103 | 93.01 57 | 68.79 101 | | 92.44 69 | 63.96 279 | 81.09 107 | 91.57 91 | 66.06 101 | 95.45 62 | 67.19 206 | 94.82 44 | 88.81 237 |
|
test222 | | | | | | 91.50 77 | 68.26 118 | 84.16 238 | 83.20 284 | 54.63 343 | 79.74 119 | 91.63 89 | 58.97 183 | | | 91.42 84 | 86.77 281 |
|
testdata2 | | | | | | | | | | | | | | 91.01 239 | 62.37 243 | | |
|
segment_acmp | | | | | | | | | | | | | 73.08 37 | | | | |
|
testdata | | | | | 79.97 231 | 90.90 86 | 64.21 202 | | 84.71 257 | 59.27 318 | 85.40 41 | 92.91 63 | 62.02 147 | 89.08 267 | 68.95 189 | 91.37 85 | 86.63 285 |
|
testdata1 | | | | | | | | 84.14 239 | | 75.71 86 | | | | | | | |
|
test12 | | | | | 86.80 48 | 92.63 64 | 70.70 71 | | 91.79 99 | | 82.71 88 | | 71.67 47 | 96.16 43 | | 94.50 49 | 93.54 72 |
|
plane_prior7 | | | | | | 90.08 102 | 68.51 114 | | | | | | | | | | |
|
plane_prior6 | | | | | | 89.84 111 | 68.70 109 | | | | | | 60.42 176 | | | | |
|
plane_prior5 | | | | | | | | | 92.44 69 | | | | | 95.38 68 | 78.71 92 | 86.32 145 | 91.33 139 |
|
plane_prior4 | | | | | | | | | | | | 91.00 110 | | | | | |
|
plane_prior3 | | | | | | | 68.60 112 | | | 78.44 30 | 78.92 131 | | | | | | |
|
plane_prior2 | | | | | | | | 91.25 49 | | 79.12 22 | | | | | | | |
|
plane_prior1 | | | | | | 89.90 110 | | | | | | | | | | | |
|
plane_prior | | | | | | | 68.71 107 | 90.38 66 | | 77.62 38 | | | | | | 86.16 149 | |
|
n2 | | | | | | | | | 0.00 393 | | | | | | | | |
|
nn | | | | | | | | | 0.00 393 | | | | | | | | |
|
door-mid | | | | | | | | | 69.98 356 | | | | | | | | |
|
lessismore_v0 | | | | | 78.97 248 | 81.01 312 | 57.15 297 | | 65.99 365 | | 61.16 343 | 82.82 294 | 39.12 336 | 91.34 228 | 59.67 265 | 46.92 371 | 88.43 246 |
|
LGP-MVS_train | | | | | 84.50 95 | 89.23 134 | 68.76 103 | | 91.94 91 | 75.37 93 | 76.64 186 | 91.51 92 | 54.29 218 | 94.91 87 | 78.44 94 | 83.78 173 | 89.83 204 |
|
test11 | | | | | | | | | 92.23 79 | | | | | | | | |
|
door | | | | | | | | | 69.44 359 | | | | | | | | |
|
HQP5-MVS | | | | | | | 66.98 145 | | | | | | | | | | |
|
HQP-NCC | | | | | | 89.33 127 | | 89.17 90 | | 76.41 71 | 77.23 172 | | | | | | |
|
ACMP_Plane | | | | | | 89.33 127 | | 89.17 90 | | 76.41 71 | 77.23 172 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 77.47 104 | | |
|
HQP4-MVS | | | | | | | | | | | 77.24 171 | | | 95.11 79 | | | 91.03 151 |
|
HQP3-MVS | | | | | | | | | 92.19 82 | | | | | | | 85.99 152 | |
|
HQP2-MVS | | | | | | | | | | | | | 60.17 179 | | | | |
|
NP-MVS | | | | | | 89.62 114 | 68.32 116 | | | | | 90.24 122 | | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 37.79 377 | 75.16 331 | | 55.10 341 | 66.53 314 | | 49.34 273 | | 53.98 306 | | 87.94 252 |
|
MDTV_nov1_ep13 | | | | 69.97 277 | | 83.18 272 | 53.48 336 | 77.10 320 | 80.18 315 | 60.45 306 | 69.33 290 | 80.44 317 | 48.89 282 | 86.90 291 | 51.60 318 | 78.51 241 | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 81.95 201 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 81.25 207 | |
|
Test By Simon | | | | | | | | | | | | | 64.33 115 | | | | |
|
ITE_SJBPF | | | | | 78.22 260 | 81.77 299 | 60.57 258 | | 83.30 280 | 69.25 207 | 67.54 302 | 87.20 205 | 36.33 346 | 87.28 290 | 54.34 305 | 74.62 294 | 86.80 280 |
|
DeepMVS_CX |  | | | | 27.40 364 | 40.17 387 | 26.90 383 | | 24.59 388 | 17.44 380 | 23.95 378 | 48.61 375 | 9.77 379 | 26.48 383 | 18.06 378 | 24.47 377 | 28.83 377 |
|