| DVP-MVS++ | | | 90.23 1 | 91.01 1 | 87.89 24 | 94.34 27 | 71.25 59 | 95.06 1 | 94.23 3 | 78.38 33 | 92.78 4 | 95.74 6 | 82.45 3 | 97.49 4 | 89.42 10 | 96.68 2 | 94.95 11 |
|
| SED-MVS | | | 90.08 2 | 90.85 2 | 87.77 26 | 95.30 2 | 70.98 66 | 93.57 7 | 94.06 10 | 77.24 53 | 93.10 1 | 95.72 8 | 82.99 1 | 97.44 7 | 89.07 15 | 96.63 4 | 94.88 15 |
|
| DVP-MVS |  | | 89.60 3 | 90.35 3 | 87.33 40 | 95.27 5 | 71.25 59 | 93.49 9 | 92.73 64 | 77.33 50 | 92.12 9 | 95.78 4 | 80.98 9 | 97.40 9 | 89.08 13 | 96.41 12 | 93.33 92 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| MSP-MVS | | | 89.51 4 | 89.91 5 | 88.30 10 | 94.28 30 | 73.46 17 | 92.90 16 | 94.11 6 | 80.27 10 | 91.35 14 | 94.16 41 | 78.35 13 | 96.77 24 | 89.59 9 | 94.22 60 | 94.67 28 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| DPE-MVS |  | | 89.48 5 | 89.98 4 | 88.01 16 | 94.80 11 | 72.69 31 | 91.59 43 | 94.10 8 | 75.90 90 | 92.29 7 | 95.66 10 | 81.67 6 | 97.38 11 | 87.44 34 | 96.34 15 | 93.95 60 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| MM | | | 89.16 6 | 89.23 7 | 88.97 4 | 90.79 95 | 73.65 10 | 92.66 23 | 91.17 125 | 86.57 1 | 87.39 42 | 94.97 18 | 71.70 53 | 97.68 1 | 92.19 1 | 95.63 28 | 95.57 1 |
|
| APDe-MVS |  | | 89.15 7 | 89.63 6 | 87.73 28 | 94.49 18 | 71.69 52 | 93.83 4 | 93.96 13 | 75.70 94 | 91.06 16 | 96.03 1 | 76.84 14 | 97.03 17 | 89.09 12 | 95.65 27 | 94.47 38 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| SMA-MVS |  | | 89.08 8 | 89.23 7 | 88.61 6 | 94.25 31 | 73.73 9 | 92.40 24 | 93.63 21 | 74.77 115 | 92.29 7 | 95.97 2 | 74.28 29 | 97.24 13 | 88.58 22 | 96.91 1 | 94.87 17 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| HPM-MVS++ |  | | 89.02 9 | 89.15 9 | 88.63 5 | 95.01 9 | 76.03 1 | 92.38 27 | 92.85 59 | 80.26 11 | 87.78 34 | 94.27 36 | 75.89 19 | 96.81 23 | 87.45 33 | 96.44 9 | 93.05 107 |
|
| CNVR-MVS | | | 88.93 10 | 89.13 10 | 88.33 8 | 94.77 12 | 73.82 8 | 90.51 62 | 93.00 46 | 80.90 7 | 88.06 29 | 94.06 46 | 76.43 16 | 96.84 21 | 88.48 25 | 95.99 18 | 94.34 44 |
|
| SteuartSystems-ACMMP | | | 88.72 11 | 88.86 11 | 88.32 9 | 92.14 72 | 72.96 25 | 93.73 5 | 93.67 20 | 80.19 12 | 88.10 28 | 94.80 19 | 73.76 33 | 97.11 15 | 87.51 32 | 95.82 21 | 94.90 14 |
| Skip Steuart: Steuart Systems R&D Blog. |
| SF-MVS | | | 88.46 12 | 88.74 12 | 87.64 35 | 92.78 64 | 71.95 49 | 92.40 24 | 94.74 2 | 75.71 92 | 89.16 19 | 95.10 16 | 75.65 21 | 96.19 46 | 87.07 35 | 96.01 17 | 94.79 22 |
|
| DeepPCF-MVS | | 80.84 1 | 88.10 13 | 88.56 13 | 86.73 53 | 92.24 71 | 69.03 103 | 89.57 90 | 93.39 30 | 77.53 46 | 89.79 18 | 94.12 43 | 78.98 12 | 96.58 35 | 85.66 41 | 95.72 24 | 94.58 33 |
|
| SD-MVS | | | 88.06 14 | 88.50 14 | 86.71 54 | 92.60 69 | 72.71 29 | 91.81 41 | 93.19 35 | 77.87 36 | 90.32 17 | 94.00 50 | 74.83 23 | 93.78 141 | 87.63 31 | 94.27 59 | 93.65 77 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| NCCC | | | 88.06 14 | 88.01 18 | 88.24 11 | 94.41 22 | 73.62 11 | 91.22 54 | 92.83 60 | 81.50 5 | 85.79 56 | 93.47 64 | 73.02 40 | 97.00 18 | 84.90 47 | 94.94 40 | 94.10 52 |
|
| ACMMP_NAP | | | 88.05 16 | 88.08 17 | 87.94 19 | 93.70 41 | 73.05 22 | 90.86 57 | 93.59 23 | 76.27 84 | 88.14 27 | 95.09 17 | 71.06 63 | 96.67 29 | 87.67 30 | 96.37 14 | 94.09 53 |
|
| TSAR-MVS + MP. | | | 88.02 17 | 88.11 16 | 87.72 30 | 93.68 43 | 72.13 46 | 91.41 50 | 92.35 82 | 74.62 119 | 88.90 22 | 93.85 56 | 75.75 20 | 96.00 54 | 87.80 29 | 94.63 48 | 95.04 9 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| ZNCC-MVS | | | 87.94 18 | 87.85 19 | 88.20 12 | 94.39 24 | 73.33 19 | 93.03 14 | 93.81 17 | 76.81 66 | 85.24 61 | 94.32 34 | 71.76 51 | 96.93 19 | 85.53 44 | 95.79 22 | 94.32 45 |
|
| MP-MVS |  | | 87.71 19 | 87.64 21 | 87.93 21 | 94.36 26 | 73.88 6 | 92.71 22 | 92.65 70 | 77.57 42 | 83.84 91 | 94.40 32 | 72.24 45 | 96.28 43 | 85.65 42 | 95.30 35 | 93.62 80 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| MVS_0304 | | | 87.69 20 | 87.55 24 | 88.12 13 | 89.45 129 | 71.76 51 | 91.47 49 | 89.54 173 | 82.14 3 | 86.65 50 | 94.28 35 | 68.28 95 | 97.46 6 | 90.81 2 | 95.31 34 | 95.15 7 |
|
| MP-MVS-pluss | | | 87.67 21 | 87.72 20 | 87.54 36 | 93.64 44 | 72.04 48 | 89.80 81 | 93.50 25 | 75.17 105 | 86.34 52 | 95.29 15 | 70.86 65 | 96.00 54 | 88.78 20 | 96.04 16 | 94.58 33 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| HFP-MVS | | | 87.58 22 | 87.47 26 | 87.94 19 | 94.58 16 | 73.54 15 | 93.04 12 | 93.24 33 | 76.78 68 | 84.91 66 | 94.44 30 | 70.78 66 | 96.61 32 | 84.53 55 | 94.89 42 | 93.66 73 |
|
| reproduce-ours | | | 87.47 23 | 87.61 22 | 87.07 45 | 93.27 50 | 71.60 53 | 91.56 46 | 93.19 35 | 74.98 108 | 88.96 20 | 95.54 12 | 71.20 61 | 96.54 36 | 86.28 38 | 93.49 65 | 93.06 105 |
|
| our_new_method | | | 87.47 23 | 87.61 22 | 87.07 45 | 93.27 50 | 71.60 53 | 91.56 46 | 93.19 35 | 74.98 108 | 88.96 20 | 95.54 12 | 71.20 61 | 96.54 36 | 86.28 38 | 93.49 65 | 93.06 105 |
|
| ACMMPR | | | 87.44 25 | 87.23 30 | 88.08 15 | 94.64 13 | 73.59 12 | 93.04 12 | 93.20 34 | 76.78 68 | 84.66 73 | 94.52 23 | 68.81 90 | 96.65 30 | 84.53 55 | 94.90 41 | 94.00 57 |
|
| APD-MVS |  | | 87.44 25 | 87.52 25 | 87.19 42 | 94.24 32 | 72.39 39 | 91.86 40 | 92.83 60 | 73.01 159 | 88.58 24 | 94.52 23 | 73.36 34 | 96.49 38 | 84.26 58 | 95.01 37 | 92.70 117 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| GST-MVS | | | 87.42 27 | 87.26 28 | 87.89 24 | 94.12 36 | 72.97 24 | 92.39 26 | 93.43 28 | 76.89 64 | 84.68 70 | 93.99 52 | 70.67 68 | 96.82 22 | 84.18 62 | 95.01 37 | 93.90 63 |
|
| region2R | | | 87.42 27 | 87.20 31 | 88.09 14 | 94.63 14 | 73.55 13 | 93.03 14 | 93.12 40 | 76.73 71 | 84.45 78 | 94.52 23 | 69.09 84 | 96.70 27 | 84.37 57 | 94.83 45 | 94.03 56 |
|
| MCST-MVS | | | 87.37 29 | 87.25 29 | 87.73 28 | 94.53 17 | 72.46 38 | 89.82 79 | 93.82 16 | 73.07 157 | 84.86 69 | 92.89 78 | 76.22 17 | 96.33 41 | 84.89 49 | 95.13 36 | 94.40 41 |
|
| reproduce_model | | | 87.28 30 | 87.39 27 | 86.95 48 | 93.10 56 | 71.24 63 | 91.60 42 | 93.19 35 | 74.69 116 | 88.80 23 | 95.61 11 | 70.29 72 | 96.44 39 | 86.20 40 | 93.08 69 | 93.16 100 |
|
| MTAPA | | | 87.23 31 | 87.00 32 | 87.90 22 | 94.18 35 | 74.25 5 | 86.58 194 | 92.02 93 | 79.45 19 | 85.88 54 | 94.80 19 | 68.07 96 | 96.21 45 | 86.69 37 | 95.34 32 | 93.23 95 |
|
| XVS | | | 87.18 32 | 86.91 37 | 88.00 17 | 94.42 20 | 73.33 19 | 92.78 18 | 92.99 49 | 79.14 21 | 83.67 95 | 94.17 40 | 67.45 103 | 96.60 33 | 83.06 70 | 94.50 51 | 94.07 54 |
|
| HPM-MVS |  | | 87.11 33 | 86.98 34 | 87.50 38 | 93.88 39 | 72.16 45 | 92.19 33 | 93.33 31 | 76.07 87 | 83.81 92 | 93.95 55 | 69.77 78 | 96.01 53 | 85.15 45 | 94.66 47 | 94.32 45 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| CP-MVS | | | 87.11 33 | 86.92 36 | 87.68 34 | 94.20 34 | 73.86 7 | 93.98 3 | 92.82 63 | 76.62 74 | 83.68 94 | 94.46 27 | 67.93 98 | 95.95 57 | 84.20 61 | 94.39 55 | 93.23 95 |
|
| DeepC-MVS | | 79.81 2 | 87.08 35 | 86.88 38 | 87.69 33 | 91.16 84 | 72.32 43 | 90.31 71 | 93.94 14 | 77.12 58 | 82.82 106 | 94.23 39 | 72.13 47 | 97.09 16 | 84.83 50 | 95.37 31 | 93.65 77 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| DeepC-MVS_fast | | 79.65 3 | 86.91 36 | 86.62 40 | 87.76 27 | 93.52 46 | 72.37 41 | 91.26 51 | 93.04 41 | 76.62 74 | 84.22 82 | 93.36 67 | 71.44 57 | 96.76 25 | 80.82 95 | 95.33 33 | 94.16 50 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| balanced_conf03 | | | 86.78 37 | 86.99 33 | 86.15 63 | 91.24 83 | 67.61 145 | 90.51 62 | 92.90 56 | 77.26 52 | 87.44 41 | 91.63 106 | 71.27 60 | 96.06 49 | 85.62 43 | 95.01 37 | 94.78 23 |
|
| SR-MVS | | | 86.73 38 | 86.67 39 | 86.91 49 | 94.11 37 | 72.11 47 | 92.37 28 | 92.56 75 | 74.50 120 | 86.84 49 | 94.65 22 | 67.31 105 | 95.77 59 | 84.80 51 | 92.85 72 | 92.84 115 |
|
| CS-MVS | | | 86.69 39 | 86.95 35 | 85.90 71 | 90.76 96 | 67.57 147 | 92.83 17 | 93.30 32 | 79.67 17 | 84.57 77 | 92.27 90 | 71.47 56 | 95.02 93 | 84.24 60 | 93.46 67 | 95.13 8 |
|
| PGM-MVS | | | 86.68 40 | 86.27 44 | 87.90 22 | 94.22 33 | 73.38 18 | 90.22 73 | 93.04 41 | 75.53 96 | 83.86 90 | 94.42 31 | 67.87 100 | 96.64 31 | 82.70 80 | 94.57 50 | 93.66 73 |
|
| mPP-MVS | | | 86.67 41 | 86.32 43 | 87.72 30 | 94.41 22 | 73.55 13 | 92.74 20 | 92.22 88 | 76.87 65 | 82.81 107 | 94.25 38 | 66.44 113 | 96.24 44 | 82.88 75 | 94.28 58 | 93.38 89 |
|
| CANet | | | 86.45 42 | 86.10 49 | 87.51 37 | 90.09 107 | 70.94 70 | 89.70 85 | 92.59 74 | 81.78 4 | 81.32 122 | 91.43 114 | 70.34 70 | 97.23 14 | 84.26 58 | 93.36 68 | 94.37 42 |
|
| train_agg | | | 86.43 43 | 86.20 45 | 87.13 44 | 93.26 52 | 72.96 25 | 88.75 120 | 91.89 101 | 68.69 247 | 85.00 64 | 93.10 71 | 74.43 26 | 95.41 73 | 84.97 46 | 95.71 25 | 93.02 109 |
|
| PHI-MVS | | | 86.43 43 | 86.17 47 | 87.24 41 | 90.88 92 | 70.96 68 | 92.27 32 | 94.07 9 | 72.45 164 | 85.22 62 | 91.90 97 | 69.47 80 | 96.42 40 | 83.28 69 | 95.94 19 | 94.35 43 |
|
| CSCG | | | 86.41 45 | 86.19 46 | 87.07 45 | 92.91 61 | 72.48 37 | 90.81 58 | 93.56 24 | 73.95 132 | 83.16 101 | 91.07 126 | 75.94 18 | 95.19 82 | 79.94 104 | 94.38 56 | 93.55 84 |
|
| SPE-MVS-test | | | 86.29 46 | 86.48 41 | 85.71 73 | 91.02 88 | 67.21 160 | 92.36 29 | 93.78 18 | 78.97 28 | 83.51 98 | 91.20 121 | 70.65 69 | 95.15 84 | 81.96 84 | 94.89 42 | 94.77 24 |
|
| EC-MVSNet | | | 86.01 47 | 86.38 42 | 84.91 96 | 89.31 138 | 66.27 173 | 92.32 30 | 93.63 21 | 79.37 20 | 84.17 84 | 91.88 98 | 69.04 88 | 95.43 70 | 83.93 64 | 93.77 63 | 93.01 110 |
|
| MVSMamba_PlusPlus | | | 85.99 48 | 85.96 52 | 86.05 66 | 91.09 85 | 67.64 144 | 89.63 88 | 92.65 70 | 72.89 162 | 84.64 74 | 91.71 102 | 71.85 49 | 96.03 50 | 84.77 52 | 94.45 54 | 94.49 37 |
|
| casdiffmvs_mvg |  | | 85.99 48 | 86.09 50 | 85.70 74 | 87.65 209 | 67.22 159 | 88.69 124 | 93.04 41 | 79.64 18 | 85.33 60 | 92.54 87 | 73.30 35 | 94.50 112 | 83.49 66 | 91.14 95 | 95.37 2 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| APD-MVS_3200maxsize | | | 85.97 50 | 85.88 53 | 86.22 60 | 92.69 66 | 69.53 92 | 91.93 37 | 92.99 49 | 73.54 144 | 85.94 53 | 94.51 26 | 65.80 123 | 95.61 62 | 83.04 72 | 92.51 76 | 93.53 86 |
|
| test_fmvsmconf_n | | | 85.92 51 | 86.04 51 | 85.57 76 | 85.03 263 | 69.51 93 | 89.62 89 | 90.58 140 | 73.42 148 | 87.75 36 | 94.02 48 | 72.85 41 | 93.24 166 | 90.37 3 | 90.75 99 | 93.96 58 |
|
| sasdasda | | | 85.91 52 | 85.87 54 | 86.04 67 | 89.84 117 | 69.44 98 | 90.45 68 | 93.00 46 | 76.70 72 | 88.01 31 | 91.23 118 | 73.28 36 | 93.91 135 | 81.50 87 | 88.80 128 | 94.77 24 |
|
| canonicalmvs | | | 85.91 52 | 85.87 54 | 86.04 67 | 89.84 117 | 69.44 98 | 90.45 68 | 93.00 46 | 76.70 72 | 88.01 31 | 91.23 118 | 73.28 36 | 93.91 135 | 81.50 87 | 88.80 128 | 94.77 24 |
|
| ACMMP |  | | 85.89 54 | 85.39 61 | 87.38 39 | 93.59 45 | 72.63 33 | 92.74 20 | 93.18 39 | 76.78 68 | 80.73 131 | 93.82 57 | 64.33 133 | 96.29 42 | 82.67 81 | 90.69 100 | 93.23 95 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| SR-MVS-dyc-post | | | 85.77 55 | 85.61 58 | 86.23 59 | 93.06 58 | 70.63 76 | 91.88 38 | 92.27 84 | 73.53 145 | 85.69 57 | 94.45 28 | 65.00 131 | 95.56 63 | 82.75 76 | 91.87 84 | 92.50 126 |
|
| CDPH-MVS | | | 85.76 56 | 85.29 66 | 87.17 43 | 93.49 47 | 71.08 64 | 88.58 128 | 92.42 80 | 68.32 254 | 84.61 75 | 93.48 62 | 72.32 44 | 96.15 48 | 79.00 107 | 95.43 30 | 94.28 47 |
|
| TSAR-MVS + GP. | | | 85.71 57 | 85.33 63 | 86.84 50 | 91.34 81 | 72.50 36 | 89.07 110 | 87.28 237 | 76.41 77 | 85.80 55 | 90.22 145 | 74.15 31 | 95.37 78 | 81.82 85 | 91.88 83 | 92.65 121 |
|
| dcpmvs_2 | | | 85.63 58 | 86.15 48 | 84.06 133 | 91.71 78 | 64.94 202 | 86.47 197 | 91.87 103 | 73.63 140 | 86.60 51 | 93.02 76 | 76.57 15 | 91.87 224 | 83.36 67 | 92.15 80 | 95.35 3 |
|
| test_fmvsmconf0.1_n | | | 85.61 59 | 85.65 57 | 85.50 77 | 82.99 310 | 69.39 100 | 89.65 86 | 90.29 153 | 73.31 151 | 87.77 35 | 94.15 42 | 71.72 52 | 93.23 167 | 90.31 4 | 90.67 101 | 93.89 64 |
|
| alignmvs | | | 85.48 60 | 85.32 64 | 85.96 70 | 89.51 126 | 69.47 95 | 89.74 83 | 92.47 76 | 76.17 85 | 87.73 38 | 91.46 113 | 70.32 71 | 93.78 141 | 81.51 86 | 88.95 125 | 94.63 32 |
|
| 3Dnovator+ | | 77.84 4 | 85.48 60 | 84.47 76 | 88.51 7 | 91.08 86 | 73.49 16 | 93.18 11 | 93.78 18 | 80.79 8 | 76.66 204 | 93.37 66 | 60.40 197 | 96.75 26 | 77.20 126 | 93.73 64 | 95.29 5 |
|
| MSLP-MVS++ | | | 85.43 62 | 85.76 56 | 84.45 109 | 91.93 75 | 70.24 79 | 90.71 59 | 92.86 58 | 77.46 48 | 84.22 82 | 92.81 82 | 67.16 107 | 92.94 186 | 80.36 99 | 94.35 57 | 90.16 204 |
|
| DELS-MVS | | | 85.41 63 | 85.30 65 | 85.77 72 | 88.49 169 | 67.93 137 | 85.52 227 | 93.44 27 | 78.70 29 | 83.63 97 | 89.03 173 | 74.57 24 | 95.71 61 | 80.26 101 | 94.04 61 | 93.66 73 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| HPM-MVS_fast | | | 85.35 64 | 84.95 70 | 86.57 56 | 93.69 42 | 70.58 78 | 92.15 35 | 91.62 111 | 73.89 135 | 82.67 109 | 94.09 44 | 62.60 152 | 95.54 65 | 80.93 93 | 92.93 71 | 93.57 82 |
|
| test_fmvsm_n_1920 | | | 85.29 65 | 85.34 62 | 85.13 87 | 86.12 241 | 69.93 86 | 88.65 126 | 90.78 136 | 69.97 215 | 88.27 26 | 93.98 53 | 71.39 58 | 91.54 236 | 88.49 24 | 90.45 103 | 93.91 61 |
|
| MVS_111021_HR | | | 85.14 66 | 84.75 71 | 86.32 58 | 91.65 79 | 72.70 30 | 85.98 210 | 90.33 150 | 76.11 86 | 82.08 112 | 91.61 108 | 71.36 59 | 94.17 124 | 81.02 92 | 92.58 75 | 92.08 143 |
|
| casdiffmvs |  | | 85.11 67 | 85.14 67 | 85.01 90 | 87.20 223 | 65.77 185 | 87.75 157 | 92.83 60 | 77.84 37 | 84.36 81 | 92.38 89 | 72.15 46 | 93.93 134 | 81.27 91 | 90.48 102 | 95.33 4 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| UA-Net | | | 85.08 68 | 84.96 69 | 85.45 78 | 92.07 73 | 68.07 134 | 89.78 82 | 90.86 135 | 82.48 2 | 84.60 76 | 93.20 70 | 69.35 81 | 95.22 81 | 71.39 184 | 90.88 98 | 93.07 104 |
|
| MGCFI-Net | | | 85.06 69 | 85.51 59 | 83.70 148 | 89.42 130 | 63.01 244 | 89.43 93 | 92.62 73 | 76.43 76 | 87.53 39 | 91.34 116 | 72.82 42 | 93.42 161 | 81.28 90 | 88.74 131 | 94.66 31 |
|
| DPM-MVS | | | 84.93 70 | 84.29 77 | 86.84 50 | 90.20 105 | 73.04 23 | 87.12 175 | 93.04 41 | 69.80 219 | 82.85 105 | 91.22 120 | 73.06 39 | 96.02 52 | 76.72 134 | 94.63 48 | 91.46 160 |
|
| baseline | | | 84.93 70 | 84.98 68 | 84.80 100 | 87.30 221 | 65.39 193 | 87.30 171 | 92.88 57 | 77.62 40 | 84.04 87 | 92.26 91 | 71.81 50 | 93.96 128 | 81.31 89 | 90.30 105 | 95.03 10 |
|
| ETV-MVS | | | 84.90 72 | 84.67 72 | 85.59 75 | 89.39 133 | 68.66 120 | 88.74 122 | 92.64 72 | 79.97 15 | 84.10 85 | 85.71 262 | 69.32 82 | 95.38 75 | 80.82 95 | 91.37 92 | 92.72 116 |
|
| test_fmvsmconf0.01_n | | | 84.73 73 | 84.52 75 | 85.34 80 | 80.25 351 | 69.03 103 | 89.47 91 | 89.65 170 | 73.24 155 | 86.98 47 | 94.27 36 | 66.62 109 | 93.23 167 | 90.26 5 | 89.95 113 | 93.78 70 |
|
| fmvsm_l_conf0.5_n | | | 84.47 74 | 84.54 73 | 84.27 119 | 85.42 253 | 68.81 109 | 88.49 130 | 87.26 238 | 68.08 256 | 88.03 30 | 93.49 61 | 72.04 48 | 91.77 226 | 88.90 18 | 89.14 124 | 92.24 137 |
|
| BP-MVS1 | | | 84.32 75 | 83.71 82 | 86.17 61 | 87.84 199 | 67.85 138 | 89.38 98 | 89.64 171 | 77.73 38 | 83.98 88 | 92.12 94 | 56.89 221 | 95.43 70 | 84.03 63 | 91.75 87 | 95.24 6 |
|
| EI-MVSNet-Vis-set | | | 84.19 76 | 83.81 80 | 85.31 81 | 88.18 180 | 67.85 138 | 87.66 159 | 89.73 168 | 80.05 14 | 82.95 102 | 89.59 158 | 70.74 67 | 94.82 101 | 80.66 98 | 84.72 182 | 93.28 94 |
|
| fmvsm_l_conf0.5_n_a | | | 84.13 77 | 84.16 78 | 84.06 133 | 85.38 254 | 68.40 125 | 88.34 137 | 86.85 248 | 67.48 263 | 87.48 40 | 93.40 65 | 70.89 64 | 91.61 230 | 88.38 26 | 89.22 122 | 92.16 141 |
|
| test_fmvsmvis_n_1920 | | | 84.02 78 | 83.87 79 | 84.49 108 | 84.12 279 | 69.37 101 | 88.15 145 | 87.96 221 | 70.01 213 | 83.95 89 | 93.23 69 | 68.80 91 | 91.51 239 | 88.61 21 | 89.96 112 | 92.57 122 |
|
| nrg030 | | | 83.88 79 | 83.53 84 | 84.96 92 | 86.77 231 | 69.28 102 | 90.46 67 | 92.67 67 | 74.79 114 | 82.95 102 | 91.33 117 | 72.70 43 | 93.09 180 | 80.79 97 | 79.28 260 | 92.50 126 |
|
| EI-MVSNet-UG-set | | | 83.81 80 | 83.38 87 | 85.09 88 | 87.87 197 | 67.53 148 | 87.44 167 | 89.66 169 | 79.74 16 | 82.23 111 | 89.41 167 | 70.24 73 | 94.74 104 | 79.95 103 | 83.92 196 | 92.99 112 |
|
| fmvsm_s_conf0.1_n_2 | | | 83.80 81 | 83.79 81 | 83.83 146 | 85.62 249 | 64.94 202 | 87.03 178 | 86.62 252 | 74.32 124 | 87.97 33 | 94.33 33 | 60.67 189 | 92.60 194 | 89.72 6 | 87.79 142 | 93.96 58 |
|
| fmvsm_s_conf0.5_n | | | 83.80 81 | 83.71 82 | 84.07 131 | 86.69 233 | 67.31 154 | 89.46 92 | 83.07 304 | 71.09 189 | 86.96 48 | 93.70 59 | 69.02 89 | 91.47 241 | 88.79 19 | 84.62 184 | 93.44 88 |
|
| CPTT-MVS | | | 83.73 83 | 83.33 89 | 84.92 95 | 93.28 49 | 70.86 72 | 92.09 36 | 90.38 146 | 68.75 246 | 79.57 143 | 92.83 80 | 60.60 193 | 93.04 184 | 80.92 94 | 91.56 90 | 90.86 177 |
|
| EPNet | | | 83.72 84 | 82.92 96 | 86.14 65 | 84.22 277 | 69.48 94 | 91.05 56 | 85.27 269 | 81.30 6 | 76.83 199 | 91.65 104 | 66.09 118 | 95.56 63 | 76.00 140 | 93.85 62 | 93.38 89 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| patch_mono-2 | | | 83.65 85 | 84.54 73 | 80.99 227 | 90.06 112 | 65.83 182 | 84.21 256 | 88.74 207 | 71.60 179 | 85.01 63 | 92.44 88 | 74.51 25 | 83.50 346 | 82.15 83 | 92.15 80 | 93.64 79 |
|
| HQP_MVS | | | 83.64 86 | 83.14 90 | 85.14 85 | 90.08 108 | 68.71 116 | 91.25 52 | 92.44 77 | 79.12 23 | 78.92 152 | 91.00 131 | 60.42 195 | 95.38 75 | 78.71 111 | 86.32 163 | 91.33 161 |
|
| fmvsm_s_conf0.5_n_a | | | 83.63 87 | 83.41 86 | 84.28 117 | 86.14 240 | 68.12 132 | 89.43 93 | 82.87 309 | 70.27 208 | 87.27 44 | 93.80 58 | 69.09 84 | 91.58 232 | 88.21 27 | 83.65 204 | 93.14 102 |
|
| Effi-MVS+ | | | 83.62 88 | 83.08 91 | 85.24 83 | 88.38 175 | 67.45 149 | 88.89 115 | 89.15 189 | 75.50 97 | 82.27 110 | 88.28 194 | 69.61 79 | 94.45 114 | 77.81 120 | 87.84 141 | 93.84 67 |
|
| fmvsm_s_conf0.1_n | | | 83.56 89 | 83.38 87 | 84.10 125 | 84.86 265 | 67.28 155 | 89.40 97 | 83.01 305 | 70.67 197 | 87.08 45 | 93.96 54 | 68.38 93 | 91.45 242 | 88.56 23 | 84.50 185 | 93.56 83 |
|
| GDP-MVS | | | 83.52 90 | 82.64 100 | 86.16 62 | 88.14 183 | 68.45 124 | 89.13 108 | 92.69 65 | 72.82 163 | 83.71 93 | 91.86 100 | 55.69 226 | 95.35 79 | 80.03 102 | 89.74 116 | 94.69 27 |
|
| OPM-MVS | | | 83.50 91 | 82.95 95 | 85.14 85 | 88.79 159 | 70.95 69 | 89.13 108 | 91.52 114 | 77.55 45 | 80.96 129 | 91.75 101 | 60.71 187 | 94.50 112 | 79.67 106 | 86.51 161 | 89.97 220 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| Vis-MVSNet |  | | 83.46 92 | 82.80 98 | 85.43 79 | 90.25 104 | 68.74 114 | 90.30 72 | 90.13 157 | 76.33 83 | 80.87 130 | 92.89 78 | 61.00 184 | 94.20 122 | 72.45 178 | 90.97 96 | 93.35 91 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| MG-MVS | | | 83.41 93 | 83.45 85 | 83.28 160 | 92.74 65 | 62.28 256 | 88.17 143 | 89.50 175 | 75.22 101 | 81.49 121 | 92.74 86 | 66.75 108 | 95.11 87 | 72.85 172 | 91.58 89 | 92.45 129 |
|
| EPP-MVSNet | | | 83.40 94 | 83.02 93 | 84.57 104 | 90.13 106 | 64.47 213 | 92.32 30 | 90.73 137 | 74.45 123 | 79.35 146 | 91.10 124 | 69.05 87 | 95.12 85 | 72.78 173 | 87.22 150 | 94.13 51 |
|
| 3Dnovator | | 76.31 5 | 83.38 95 | 82.31 105 | 86.59 55 | 87.94 194 | 72.94 28 | 90.64 60 | 92.14 92 | 77.21 55 | 75.47 229 | 92.83 80 | 58.56 204 | 94.72 105 | 73.24 169 | 92.71 74 | 92.13 142 |
|
| fmvsm_s_conf0.1_n_a | | | 83.32 96 | 82.99 94 | 84.28 117 | 83.79 287 | 68.07 134 | 89.34 100 | 82.85 310 | 69.80 219 | 87.36 43 | 94.06 46 | 68.34 94 | 91.56 234 | 87.95 28 | 83.46 209 | 93.21 98 |
|
| EIA-MVS | | | 83.31 97 | 82.80 98 | 84.82 98 | 89.59 122 | 65.59 188 | 88.21 141 | 92.68 66 | 74.66 118 | 78.96 150 | 86.42 249 | 69.06 86 | 95.26 80 | 75.54 146 | 90.09 109 | 93.62 80 |
|
| h-mvs33 | | | 83.15 98 | 82.19 106 | 86.02 69 | 90.56 98 | 70.85 73 | 88.15 145 | 89.16 188 | 76.02 88 | 84.67 71 | 91.39 115 | 61.54 170 | 95.50 66 | 82.71 78 | 75.48 308 | 91.72 150 |
|
| MVS_Test | | | 83.15 98 | 83.06 92 | 83.41 157 | 86.86 227 | 63.21 240 | 86.11 208 | 92.00 95 | 74.31 125 | 82.87 104 | 89.44 166 | 70.03 74 | 93.21 169 | 77.39 125 | 88.50 136 | 93.81 68 |
|
| IS-MVSNet | | | 83.15 98 | 82.81 97 | 84.18 123 | 89.94 115 | 63.30 238 | 91.59 43 | 88.46 213 | 79.04 25 | 79.49 144 | 92.16 92 | 65.10 128 | 94.28 117 | 67.71 220 | 91.86 86 | 94.95 11 |
|
| DP-MVS Recon | | | 83.11 101 | 82.09 109 | 86.15 63 | 94.44 19 | 70.92 71 | 88.79 118 | 92.20 89 | 70.53 202 | 79.17 148 | 91.03 129 | 64.12 135 | 96.03 50 | 68.39 217 | 90.14 108 | 91.50 156 |
|
| PAPM_NR | | | 83.02 102 | 82.41 102 | 84.82 98 | 92.47 70 | 66.37 171 | 87.93 152 | 91.80 106 | 73.82 136 | 77.32 187 | 90.66 136 | 67.90 99 | 94.90 97 | 70.37 194 | 89.48 119 | 93.19 99 |
|
| VDD-MVS | | | 83.01 103 | 82.36 104 | 84.96 92 | 91.02 88 | 66.40 170 | 88.91 114 | 88.11 216 | 77.57 42 | 84.39 80 | 93.29 68 | 52.19 258 | 93.91 135 | 77.05 129 | 88.70 132 | 94.57 35 |
|
| MVSFormer | | | 82.85 104 | 82.05 110 | 85.24 83 | 87.35 215 | 70.21 80 | 90.50 64 | 90.38 146 | 68.55 249 | 81.32 122 | 89.47 161 | 61.68 167 | 93.46 158 | 78.98 108 | 90.26 106 | 92.05 144 |
|
| OMC-MVS | | | 82.69 105 | 81.97 113 | 84.85 97 | 88.75 161 | 67.42 150 | 87.98 148 | 90.87 134 | 74.92 110 | 79.72 141 | 91.65 104 | 62.19 162 | 93.96 128 | 75.26 150 | 86.42 162 | 93.16 100 |
|
| PVSNet_Blended_VisFu | | | 82.62 106 | 81.83 115 | 84.96 92 | 90.80 94 | 69.76 90 | 88.74 122 | 91.70 110 | 69.39 227 | 78.96 150 | 88.46 189 | 65.47 125 | 94.87 100 | 74.42 155 | 88.57 133 | 90.24 202 |
|
| MVS_111021_LR | | | 82.61 107 | 82.11 107 | 84.11 124 | 88.82 156 | 71.58 55 | 85.15 230 | 86.16 260 | 74.69 116 | 80.47 133 | 91.04 127 | 62.29 159 | 90.55 264 | 80.33 100 | 90.08 110 | 90.20 203 |
|
| HQP-MVS | | | 82.61 107 | 82.02 111 | 84.37 111 | 89.33 135 | 66.98 163 | 89.17 103 | 92.19 90 | 76.41 77 | 77.23 190 | 90.23 144 | 60.17 198 | 95.11 87 | 77.47 123 | 85.99 171 | 91.03 171 |
|
| RRT-MVS | | | 82.60 109 | 82.10 108 | 84.10 125 | 87.98 193 | 62.94 249 | 87.45 166 | 91.27 121 | 77.42 49 | 79.85 139 | 90.28 141 | 56.62 223 | 94.70 107 | 79.87 105 | 88.15 140 | 94.67 28 |
|
| CLD-MVS | | | 82.31 110 | 81.65 116 | 84.29 116 | 88.47 170 | 67.73 142 | 85.81 218 | 92.35 82 | 75.78 91 | 78.33 166 | 86.58 244 | 64.01 136 | 94.35 115 | 76.05 139 | 87.48 147 | 90.79 178 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| VNet | | | 82.21 111 | 82.41 102 | 81.62 208 | 90.82 93 | 60.93 271 | 84.47 247 | 89.78 165 | 76.36 82 | 84.07 86 | 91.88 98 | 64.71 132 | 90.26 266 | 70.68 191 | 88.89 126 | 93.66 73 |
|
| diffmvs |  | | 82.10 112 | 81.88 114 | 82.76 190 | 83.00 308 | 63.78 226 | 83.68 264 | 89.76 166 | 72.94 160 | 82.02 113 | 89.85 150 | 65.96 122 | 90.79 260 | 82.38 82 | 87.30 149 | 93.71 72 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| LPG-MVS_test | | | 82.08 113 | 81.27 119 | 84.50 106 | 89.23 142 | 68.76 112 | 90.22 73 | 91.94 99 | 75.37 99 | 76.64 205 | 91.51 110 | 54.29 239 | 94.91 95 | 78.44 113 | 83.78 197 | 89.83 225 |
|
| FIs | | | 82.07 114 | 82.42 101 | 81.04 226 | 88.80 158 | 58.34 298 | 88.26 140 | 93.49 26 | 76.93 63 | 78.47 163 | 91.04 127 | 69.92 76 | 92.34 207 | 69.87 201 | 84.97 179 | 92.44 130 |
|
| PS-MVSNAJss | | | 82.07 114 | 81.31 118 | 84.34 114 | 86.51 236 | 67.27 156 | 89.27 101 | 91.51 115 | 71.75 174 | 79.37 145 | 90.22 145 | 63.15 146 | 94.27 118 | 77.69 121 | 82.36 223 | 91.49 157 |
|
| API-MVS | | | 81.99 116 | 81.23 120 | 84.26 121 | 90.94 90 | 70.18 85 | 91.10 55 | 89.32 180 | 71.51 181 | 78.66 157 | 88.28 194 | 65.26 126 | 95.10 90 | 64.74 247 | 91.23 94 | 87.51 289 |
|
| UniMVSNet_NR-MVSNet | | | 81.88 117 | 81.54 117 | 82.92 179 | 88.46 171 | 63.46 234 | 87.13 174 | 92.37 81 | 80.19 12 | 78.38 164 | 89.14 169 | 71.66 55 | 93.05 182 | 70.05 197 | 76.46 291 | 92.25 135 |
|
| MAR-MVS | | | 81.84 118 | 80.70 128 | 85.27 82 | 91.32 82 | 71.53 56 | 89.82 79 | 90.92 131 | 69.77 221 | 78.50 161 | 86.21 253 | 62.36 158 | 94.52 111 | 65.36 241 | 92.05 82 | 89.77 228 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| LFMVS | | | 81.82 119 | 81.23 120 | 83.57 152 | 91.89 76 | 63.43 236 | 89.84 78 | 81.85 321 | 77.04 61 | 83.21 99 | 93.10 71 | 52.26 257 | 93.43 160 | 71.98 179 | 89.95 113 | 93.85 65 |
|
| hse-mvs2 | | | 81.72 120 | 80.94 126 | 84.07 131 | 88.72 162 | 67.68 143 | 85.87 214 | 87.26 238 | 76.02 88 | 84.67 71 | 88.22 197 | 61.54 170 | 93.48 156 | 82.71 78 | 73.44 336 | 91.06 169 |
|
| GeoE | | | 81.71 121 | 81.01 125 | 83.80 147 | 89.51 126 | 64.45 214 | 88.97 112 | 88.73 208 | 71.27 185 | 78.63 158 | 89.76 152 | 66.32 115 | 93.20 172 | 69.89 200 | 86.02 170 | 93.74 71 |
|
| xiu_mvs_v2_base | | | 81.69 122 | 81.05 123 | 83.60 150 | 89.15 145 | 68.03 136 | 84.46 249 | 90.02 159 | 70.67 197 | 81.30 125 | 86.53 247 | 63.17 145 | 94.19 123 | 75.60 145 | 88.54 134 | 88.57 268 |
|
| PS-MVSNAJ | | | 81.69 122 | 81.02 124 | 83.70 148 | 89.51 126 | 68.21 131 | 84.28 255 | 90.09 158 | 70.79 194 | 81.26 126 | 85.62 267 | 63.15 146 | 94.29 116 | 75.62 144 | 88.87 127 | 88.59 267 |
|
| PAPR | | | 81.66 124 | 80.89 127 | 83.99 141 | 90.27 103 | 64.00 221 | 86.76 190 | 91.77 109 | 68.84 245 | 77.13 197 | 89.50 159 | 67.63 101 | 94.88 99 | 67.55 222 | 88.52 135 | 93.09 103 |
|
| UniMVSNet (Re) | | | 81.60 125 | 81.11 122 | 83.09 170 | 88.38 175 | 64.41 215 | 87.60 160 | 93.02 45 | 78.42 32 | 78.56 160 | 88.16 198 | 69.78 77 | 93.26 165 | 69.58 204 | 76.49 290 | 91.60 151 |
|
| FC-MVSNet-test | | | 81.52 126 | 82.02 111 | 80.03 247 | 88.42 174 | 55.97 337 | 87.95 150 | 93.42 29 | 77.10 59 | 77.38 185 | 90.98 133 | 69.96 75 | 91.79 225 | 68.46 216 | 84.50 185 | 92.33 131 |
|
| VDDNet | | | 81.52 126 | 80.67 129 | 84.05 136 | 90.44 101 | 64.13 220 | 89.73 84 | 85.91 263 | 71.11 188 | 83.18 100 | 93.48 62 | 50.54 284 | 93.49 155 | 73.40 166 | 88.25 138 | 94.54 36 |
|
| ACMP | | 74.13 6 | 81.51 128 | 80.57 130 | 84.36 112 | 89.42 130 | 68.69 119 | 89.97 77 | 91.50 118 | 74.46 122 | 75.04 251 | 90.41 140 | 53.82 244 | 94.54 109 | 77.56 122 | 82.91 215 | 89.86 224 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| jason | | | 81.39 129 | 80.29 137 | 84.70 102 | 86.63 235 | 69.90 88 | 85.95 211 | 86.77 249 | 63.24 314 | 81.07 128 | 89.47 161 | 61.08 183 | 92.15 213 | 78.33 116 | 90.07 111 | 92.05 144 |
| jason: jason. |
| lupinMVS | | | 81.39 129 | 80.27 138 | 84.76 101 | 87.35 215 | 70.21 80 | 85.55 223 | 86.41 254 | 62.85 321 | 81.32 122 | 88.61 184 | 61.68 167 | 92.24 211 | 78.41 115 | 90.26 106 | 91.83 147 |
|
| test_yl | | | 81.17 131 | 80.47 133 | 83.24 163 | 89.13 146 | 63.62 227 | 86.21 205 | 89.95 162 | 72.43 167 | 81.78 118 | 89.61 156 | 57.50 214 | 93.58 149 | 70.75 189 | 86.90 154 | 92.52 124 |
|
| DCV-MVSNet | | | 81.17 131 | 80.47 133 | 83.24 163 | 89.13 146 | 63.62 227 | 86.21 205 | 89.95 162 | 72.43 167 | 81.78 118 | 89.61 156 | 57.50 214 | 93.58 149 | 70.75 189 | 86.90 154 | 92.52 124 |
|
| DU-MVS | | | 81.12 133 | 80.52 132 | 82.90 180 | 87.80 201 | 63.46 234 | 87.02 179 | 91.87 103 | 79.01 26 | 78.38 164 | 89.07 171 | 65.02 129 | 93.05 182 | 70.05 197 | 76.46 291 | 92.20 138 |
|
| PVSNet_Blended | | | 80.98 134 | 80.34 135 | 82.90 180 | 88.85 153 | 65.40 191 | 84.43 251 | 92.00 95 | 67.62 260 | 78.11 171 | 85.05 281 | 66.02 120 | 94.27 118 | 71.52 181 | 89.50 118 | 89.01 249 |
|
| FA-MVS(test-final) | | | 80.96 135 | 79.91 143 | 84.10 125 | 88.30 178 | 65.01 200 | 84.55 246 | 90.01 160 | 73.25 154 | 79.61 142 | 87.57 211 | 58.35 206 | 94.72 105 | 71.29 185 | 86.25 165 | 92.56 123 |
|
| QAPM | | | 80.88 136 | 79.50 152 | 85.03 89 | 88.01 192 | 68.97 107 | 91.59 43 | 92.00 95 | 66.63 275 | 75.15 247 | 92.16 92 | 57.70 211 | 95.45 68 | 63.52 253 | 88.76 130 | 90.66 184 |
|
| TranMVSNet+NR-MVSNet | | | 80.84 137 | 80.31 136 | 82.42 195 | 87.85 198 | 62.33 254 | 87.74 158 | 91.33 120 | 80.55 9 | 77.99 175 | 89.86 149 | 65.23 127 | 92.62 192 | 67.05 229 | 75.24 318 | 92.30 133 |
|
| UGNet | | | 80.83 138 | 79.59 150 | 84.54 105 | 88.04 189 | 68.09 133 | 89.42 95 | 88.16 215 | 76.95 62 | 76.22 215 | 89.46 163 | 49.30 299 | 93.94 131 | 68.48 215 | 90.31 104 | 91.60 151 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| Fast-Effi-MVS+ | | | 80.81 139 | 79.92 142 | 83.47 153 | 88.85 153 | 64.51 210 | 85.53 225 | 89.39 178 | 70.79 194 | 78.49 162 | 85.06 280 | 67.54 102 | 93.58 149 | 67.03 230 | 86.58 159 | 92.32 132 |
|
| XVG-OURS-SEG-HR | | | 80.81 139 | 79.76 146 | 83.96 143 | 85.60 250 | 68.78 111 | 83.54 270 | 90.50 143 | 70.66 200 | 76.71 203 | 91.66 103 | 60.69 188 | 91.26 247 | 76.94 130 | 81.58 231 | 91.83 147 |
|
| xiu_mvs_v1_base_debu | | | 80.80 141 | 79.72 147 | 84.03 138 | 87.35 215 | 70.19 82 | 85.56 220 | 88.77 203 | 69.06 239 | 81.83 114 | 88.16 198 | 50.91 278 | 92.85 188 | 78.29 117 | 87.56 144 | 89.06 244 |
|
| xiu_mvs_v1_base | | | 80.80 141 | 79.72 147 | 84.03 138 | 87.35 215 | 70.19 82 | 85.56 220 | 88.77 203 | 69.06 239 | 81.83 114 | 88.16 198 | 50.91 278 | 92.85 188 | 78.29 117 | 87.56 144 | 89.06 244 |
|
| xiu_mvs_v1_base_debi | | | 80.80 141 | 79.72 147 | 84.03 138 | 87.35 215 | 70.19 82 | 85.56 220 | 88.77 203 | 69.06 239 | 81.83 114 | 88.16 198 | 50.91 278 | 92.85 188 | 78.29 117 | 87.56 144 | 89.06 244 |
|
| ACMM | | 73.20 8 | 80.78 144 | 79.84 145 | 83.58 151 | 89.31 138 | 68.37 126 | 89.99 76 | 91.60 112 | 70.28 207 | 77.25 188 | 89.66 154 | 53.37 249 | 93.53 154 | 74.24 158 | 82.85 216 | 88.85 257 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| 114514_t | | | 80.68 145 | 79.51 151 | 84.20 122 | 94.09 38 | 67.27 156 | 89.64 87 | 91.11 128 | 58.75 358 | 74.08 265 | 90.72 135 | 58.10 207 | 95.04 92 | 69.70 202 | 89.42 120 | 90.30 200 |
|
| CANet_DTU | | | 80.61 146 | 79.87 144 | 82.83 182 | 85.60 250 | 63.17 243 | 87.36 168 | 88.65 209 | 76.37 81 | 75.88 222 | 88.44 190 | 53.51 247 | 93.07 181 | 73.30 167 | 89.74 116 | 92.25 135 |
|
| VPA-MVSNet | | | 80.60 147 | 80.55 131 | 80.76 233 | 88.07 188 | 60.80 274 | 86.86 184 | 91.58 113 | 75.67 95 | 80.24 135 | 89.45 165 | 63.34 140 | 90.25 267 | 70.51 193 | 79.22 261 | 91.23 164 |
|
| mvsmamba | | | 80.60 147 | 79.38 154 | 84.27 119 | 89.74 120 | 67.24 158 | 87.47 164 | 86.95 244 | 70.02 212 | 75.38 235 | 88.93 174 | 51.24 275 | 92.56 196 | 75.47 148 | 89.22 122 | 93.00 111 |
|
| PVSNet_BlendedMVS | | | 80.60 147 | 80.02 140 | 82.36 197 | 88.85 153 | 65.40 191 | 86.16 207 | 92.00 95 | 69.34 229 | 78.11 171 | 86.09 257 | 66.02 120 | 94.27 118 | 71.52 181 | 82.06 226 | 87.39 291 |
|
| AdaColmap |  | | 80.58 150 | 79.42 153 | 84.06 133 | 93.09 57 | 68.91 108 | 89.36 99 | 88.97 198 | 69.27 230 | 75.70 225 | 89.69 153 | 57.20 218 | 95.77 59 | 63.06 258 | 88.41 137 | 87.50 290 |
|
| EI-MVSNet | | | 80.52 151 | 79.98 141 | 82.12 198 | 84.28 275 | 63.19 242 | 86.41 198 | 88.95 199 | 74.18 129 | 78.69 155 | 87.54 214 | 66.62 109 | 92.43 201 | 72.57 176 | 80.57 244 | 90.74 182 |
|
| XVG-OURS | | | 80.41 152 | 79.23 160 | 83.97 142 | 85.64 248 | 69.02 105 | 83.03 281 | 90.39 145 | 71.09 189 | 77.63 181 | 91.49 112 | 54.62 238 | 91.35 245 | 75.71 142 | 83.47 208 | 91.54 154 |
|
| SDMVSNet | | | 80.38 153 | 80.18 139 | 80.99 227 | 89.03 151 | 64.94 202 | 80.45 313 | 89.40 177 | 75.19 103 | 76.61 207 | 89.98 147 | 60.61 192 | 87.69 310 | 76.83 132 | 83.55 206 | 90.33 198 |
|
| PCF-MVS | | 73.52 7 | 80.38 153 | 78.84 168 | 85.01 90 | 87.71 206 | 68.99 106 | 83.65 265 | 91.46 119 | 63.00 318 | 77.77 179 | 90.28 141 | 66.10 117 | 95.09 91 | 61.40 277 | 88.22 139 | 90.94 175 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| X-MVStestdata | | | 80.37 155 | 77.83 191 | 88.00 17 | 94.42 20 | 73.33 19 | 92.78 18 | 92.99 49 | 79.14 21 | 83.67 95 | 12.47 421 | 67.45 103 | 96.60 33 | 83.06 70 | 94.50 51 | 94.07 54 |
|
| test_djsdf | | | 80.30 156 | 79.32 157 | 83.27 161 | 83.98 283 | 65.37 194 | 90.50 64 | 90.38 146 | 68.55 249 | 76.19 216 | 88.70 180 | 56.44 224 | 93.46 158 | 78.98 108 | 80.14 250 | 90.97 174 |
|
| v2v482 | | | 80.23 157 | 79.29 158 | 83.05 173 | 83.62 291 | 64.14 219 | 87.04 177 | 89.97 161 | 73.61 141 | 78.18 170 | 87.22 222 | 61.10 182 | 93.82 139 | 76.11 137 | 76.78 288 | 91.18 165 |
|
| NR-MVSNet | | | 80.23 157 | 79.38 154 | 82.78 188 | 87.80 201 | 63.34 237 | 86.31 202 | 91.09 129 | 79.01 26 | 72.17 289 | 89.07 171 | 67.20 106 | 92.81 191 | 66.08 236 | 75.65 304 | 92.20 138 |
|
| Anonymous20240529 | | | 80.19 159 | 78.89 167 | 84.10 125 | 90.60 97 | 64.75 207 | 88.95 113 | 90.90 132 | 65.97 283 | 80.59 132 | 91.17 123 | 49.97 289 | 93.73 147 | 69.16 208 | 82.70 220 | 93.81 68 |
|
| IterMVS-LS | | | 80.06 160 | 79.38 154 | 82.11 199 | 85.89 244 | 63.20 241 | 86.79 187 | 89.34 179 | 74.19 128 | 75.45 232 | 86.72 234 | 66.62 109 | 92.39 203 | 72.58 175 | 76.86 285 | 90.75 181 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| Effi-MVS+-dtu | | | 80.03 161 | 78.57 172 | 84.42 110 | 85.13 261 | 68.74 114 | 88.77 119 | 88.10 217 | 74.99 107 | 74.97 252 | 83.49 313 | 57.27 217 | 93.36 162 | 73.53 163 | 80.88 238 | 91.18 165 |
|
| v1144 | | | 80.03 161 | 79.03 164 | 83.01 175 | 83.78 288 | 64.51 210 | 87.11 176 | 90.57 142 | 71.96 173 | 78.08 173 | 86.20 254 | 61.41 174 | 93.94 131 | 74.93 151 | 77.23 279 | 90.60 187 |
|
| v8 | | | 79.97 163 | 79.02 165 | 82.80 185 | 84.09 280 | 64.50 212 | 87.96 149 | 90.29 153 | 74.13 131 | 75.24 244 | 86.81 231 | 62.88 151 | 93.89 138 | 74.39 156 | 75.40 313 | 90.00 216 |
|
| OpenMVS |  | 72.83 10 | 79.77 164 | 78.33 179 | 84.09 129 | 85.17 257 | 69.91 87 | 90.57 61 | 90.97 130 | 66.70 269 | 72.17 289 | 91.91 96 | 54.70 236 | 93.96 128 | 61.81 274 | 90.95 97 | 88.41 272 |
|
| v10 | | | 79.74 165 | 78.67 169 | 82.97 178 | 84.06 281 | 64.95 201 | 87.88 155 | 90.62 139 | 73.11 156 | 75.11 248 | 86.56 245 | 61.46 173 | 94.05 127 | 73.68 161 | 75.55 306 | 89.90 222 |
|
| ECVR-MVS |  | | 79.61 166 | 79.26 159 | 80.67 235 | 90.08 108 | 54.69 352 | 87.89 154 | 77.44 361 | 74.88 111 | 80.27 134 | 92.79 83 | 48.96 305 | 92.45 200 | 68.55 214 | 92.50 77 | 94.86 18 |
|
| BH-RMVSNet | | | 79.61 166 | 78.44 175 | 83.14 168 | 89.38 134 | 65.93 179 | 84.95 236 | 87.15 241 | 73.56 143 | 78.19 169 | 89.79 151 | 56.67 222 | 93.36 162 | 59.53 292 | 86.74 157 | 90.13 206 |
|
| v1192 | | | 79.59 168 | 78.43 176 | 83.07 172 | 83.55 293 | 64.52 209 | 86.93 182 | 90.58 140 | 70.83 193 | 77.78 178 | 85.90 258 | 59.15 201 | 93.94 131 | 73.96 160 | 77.19 281 | 90.76 180 |
|
| ab-mvs | | | 79.51 169 | 78.97 166 | 81.14 223 | 88.46 171 | 60.91 272 | 83.84 261 | 89.24 185 | 70.36 204 | 79.03 149 | 88.87 177 | 63.23 144 | 90.21 268 | 65.12 243 | 82.57 221 | 92.28 134 |
|
| WR-MVS | | | 79.49 170 | 79.22 161 | 80.27 243 | 88.79 159 | 58.35 297 | 85.06 233 | 88.61 211 | 78.56 30 | 77.65 180 | 88.34 192 | 63.81 139 | 90.66 263 | 64.98 245 | 77.22 280 | 91.80 149 |
|
| v144192 | | | 79.47 171 | 78.37 177 | 82.78 188 | 83.35 296 | 63.96 222 | 86.96 180 | 90.36 149 | 69.99 214 | 77.50 182 | 85.67 265 | 60.66 190 | 93.77 143 | 74.27 157 | 76.58 289 | 90.62 185 |
|
| BH-untuned | | | 79.47 171 | 78.60 171 | 82.05 200 | 89.19 144 | 65.91 180 | 86.07 209 | 88.52 212 | 72.18 169 | 75.42 233 | 87.69 208 | 61.15 181 | 93.54 153 | 60.38 284 | 86.83 156 | 86.70 310 |
|
| test1111 | | | 79.43 173 | 79.18 162 | 80.15 245 | 89.99 113 | 53.31 365 | 87.33 170 | 77.05 365 | 75.04 106 | 80.23 136 | 92.77 85 | 48.97 304 | 92.33 208 | 68.87 211 | 92.40 79 | 94.81 21 |
|
| mvs_anonymous | | | 79.42 174 | 79.11 163 | 80.34 241 | 84.45 274 | 57.97 304 | 82.59 283 | 87.62 230 | 67.40 264 | 76.17 219 | 88.56 187 | 68.47 92 | 89.59 279 | 70.65 192 | 86.05 169 | 93.47 87 |
|
| thisisatest0530 | | | 79.40 175 | 77.76 196 | 84.31 115 | 87.69 208 | 65.10 199 | 87.36 168 | 84.26 284 | 70.04 211 | 77.42 184 | 88.26 196 | 49.94 290 | 94.79 103 | 70.20 195 | 84.70 183 | 93.03 108 |
|
| tttt0517 | | | 79.40 175 | 77.91 188 | 83.90 145 | 88.10 186 | 63.84 224 | 88.37 136 | 84.05 286 | 71.45 182 | 76.78 201 | 89.12 170 | 49.93 292 | 94.89 98 | 70.18 196 | 83.18 213 | 92.96 113 |
|
| V42 | | | 79.38 177 | 78.24 181 | 82.83 182 | 81.10 343 | 65.50 190 | 85.55 223 | 89.82 164 | 71.57 180 | 78.21 168 | 86.12 256 | 60.66 190 | 93.18 175 | 75.64 143 | 75.46 310 | 89.81 227 |
|
| jajsoiax | | | 79.29 178 | 77.96 186 | 83.27 161 | 84.68 268 | 66.57 169 | 89.25 102 | 90.16 156 | 69.20 235 | 75.46 231 | 89.49 160 | 45.75 330 | 93.13 178 | 76.84 131 | 80.80 240 | 90.11 208 |
|
| v1921920 | | | 79.22 179 | 78.03 185 | 82.80 185 | 83.30 298 | 63.94 223 | 86.80 186 | 90.33 150 | 69.91 217 | 77.48 183 | 85.53 268 | 58.44 205 | 93.75 145 | 73.60 162 | 76.85 286 | 90.71 183 |
|
| AUN-MVS | | | 79.21 180 | 77.60 201 | 84.05 136 | 88.71 163 | 67.61 145 | 85.84 216 | 87.26 238 | 69.08 238 | 77.23 190 | 88.14 202 | 53.20 251 | 93.47 157 | 75.50 147 | 73.45 335 | 91.06 169 |
|
| TAPA-MVS | | 73.13 9 | 79.15 181 | 77.94 187 | 82.79 187 | 89.59 122 | 62.99 248 | 88.16 144 | 91.51 115 | 65.77 284 | 77.14 196 | 91.09 125 | 60.91 185 | 93.21 169 | 50.26 355 | 87.05 152 | 92.17 140 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| mvs_tets | | | 79.13 182 | 77.77 195 | 83.22 165 | 84.70 267 | 66.37 171 | 89.17 103 | 90.19 155 | 69.38 228 | 75.40 234 | 89.46 163 | 44.17 340 | 93.15 176 | 76.78 133 | 80.70 242 | 90.14 205 |
|
| UniMVSNet_ETH3D | | | 79.10 183 | 78.24 181 | 81.70 207 | 86.85 228 | 60.24 283 | 87.28 172 | 88.79 202 | 74.25 127 | 76.84 198 | 90.53 139 | 49.48 295 | 91.56 234 | 67.98 218 | 82.15 224 | 93.29 93 |
|
| CDS-MVSNet | | | 79.07 184 | 77.70 198 | 83.17 167 | 87.60 210 | 68.23 130 | 84.40 253 | 86.20 259 | 67.49 262 | 76.36 212 | 86.54 246 | 61.54 170 | 90.79 260 | 61.86 273 | 87.33 148 | 90.49 192 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| MVSTER | | | 79.01 185 | 77.88 190 | 82.38 196 | 83.07 305 | 64.80 206 | 84.08 260 | 88.95 199 | 69.01 242 | 78.69 155 | 87.17 225 | 54.70 236 | 92.43 201 | 74.69 152 | 80.57 244 | 89.89 223 |
|
| v1240 | | | 78.99 186 | 77.78 194 | 82.64 191 | 83.21 300 | 63.54 231 | 86.62 193 | 90.30 152 | 69.74 224 | 77.33 186 | 85.68 264 | 57.04 219 | 93.76 144 | 73.13 170 | 76.92 283 | 90.62 185 |
|
| Anonymous20231211 | | | 78.97 187 | 77.69 199 | 82.81 184 | 90.54 99 | 64.29 217 | 90.11 75 | 91.51 115 | 65.01 295 | 76.16 220 | 88.13 203 | 50.56 283 | 93.03 185 | 69.68 203 | 77.56 278 | 91.11 167 |
|
| v7n | | | 78.97 187 | 77.58 202 | 83.14 168 | 83.45 295 | 65.51 189 | 88.32 138 | 91.21 123 | 73.69 139 | 72.41 285 | 86.32 252 | 57.93 208 | 93.81 140 | 69.18 207 | 75.65 304 | 90.11 208 |
|
| TAMVS | | | 78.89 189 | 77.51 203 | 83.03 174 | 87.80 201 | 67.79 141 | 84.72 240 | 85.05 273 | 67.63 259 | 76.75 202 | 87.70 207 | 62.25 160 | 90.82 259 | 58.53 303 | 87.13 151 | 90.49 192 |
|
| c3_l | | | 78.75 190 | 77.91 188 | 81.26 219 | 82.89 312 | 61.56 265 | 84.09 259 | 89.13 191 | 69.97 215 | 75.56 227 | 84.29 295 | 66.36 114 | 92.09 215 | 73.47 165 | 75.48 308 | 90.12 207 |
|
| tt0805 | | | 78.73 191 | 77.83 191 | 81.43 213 | 85.17 257 | 60.30 282 | 89.41 96 | 90.90 132 | 71.21 186 | 77.17 195 | 88.73 179 | 46.38 319 | 93.21 169 | 72.57 176 | 78.96 262 | 90.79 178 |
|
| v148 | | | 78.72 192 | 77.80 193 | 81.47 212 | 82.73 315 | 61.96 260 | 86.30 203 | 88.08 218 | 73.26 153 | 76.18 217 | 85.47 270 | 62.46 156 | 92.36 205 | 71.92 180 | 73.82 332 | 90.09 210 |
|
| VPNet | | | 78.69 193 | 78.66 170 | 78.76 270 | 88.31 177 | 55.72 341 | 84.45 250 | 86.63 251 | 76.79 67 | 78.26 167 | 90.55 138 | 59.30 200 | 89.70 278 | 66.63 231 | 77.05 282 | 90.88 176 |
|
| ET-MVSNet_ETH3D | | | 78.63 194 | 76.63 224 | 84.64 103 | 86.73 232 | 69.47 95 | 85.01 234 | 84.61 277 | 69.54 225 | 66.51 351 | 86.59 242 | 50.16 287 | 91.75 227 | 76.26 136 | 84.24 193 | 92.69 119 |
|
| anonymousdsp | | | 78.60 195 | 77.15 209 | 82.98 177 | 80.51 349 | 67.08 161 | 87.24 173 | 89.53 174 | 65.66 286 | 75.16 246 | 87.19 224 | 52.52 252 | 92.25 210 | 77.17 127 | 79.34 259 | 89.61 232 |
|
| miper_ehance_all_eth | | | 78.59 196 | 77.76 196 | 81.08 225 | 82.66 317 | 61.56 265 | 83.65 265 | 89.15 189 | 68.87 244 | 75.55 228 | 83.79 306 | 66.49 112 | 92.03 216 | 73.25 168 | 76.39 293 | 89.64 231 |
|
| WR-MVS_H | | | 78.51 197 | 78.49 173 | 78.56 275 | 88.02 190 | 56.38 331 | 88.43 131 | 92.67 67 | 77.14 57 | 73.89 266 | 87.55 213 | 66.25 116 | 89.24 286 | 58.92 298 | 73.55 334 | 90.06 214 |
|
| GBi-Net | | | 78.40 198 | 77.40 204 | 81.40 215 | 87.60 210 | 63.01 244 | 88.39 133 | 89.28 181 | 71.63 176 | 75.34 237 | 87.28 218 | 54.80 232 | 91.11 250 | 62.72 260 | 79.57 254 | 90.09 210 |
|
| test1 | | | 78.40 198 | 77.40 204 | 81.40 215 | 87.60 210 | 63.01 244 | 88.39 133 | 89.28 181 | 71.63 176 | 75.34 237 | 87.28 218 | 54.80 232 | 91.11 250 | 62.72 260 | 79.57 254 | 90.09 210 |
|
| Vis-MVSNet (Re-imp) | | | 78.36 200 | 78.45 174 | 78.07 286 | 88.64 165 | 51.78 375 | 86.70 191 | 79.63 346 | 74.14 130 | 75.11 248 | 90.83 134 | 61.29 178 | 89.75 276 | 58.10 308 | 91.60 88 | 92.69 119 |
|
| Anonymous202405211 | | | 78.25 201 | 77.01 211 | 81.99 202 | 91.03 87 | 60.67 276 | 84.77 239 | 83.90 288 | 70.65 201 | 80.00 138 | 91.20 121 | 41.08 359 | 91.43 243 | 65.21 242 | 85.26 177 | 93.85 65 |
|
| CP-MVSNet | | | 78.22 202 | 78.34 178 | 77.84 288 | 87.83 200 | 54.54 354 | 87.94 151 | 91.17 125 | 77.65 39 | 73.48 271 | 88.49 188 | 62.24 161 | 88.43 301 | 62.19 268 | 74.07 327 | 90.55 189 |
|
| BH-w/o | | | 78.21 203 | 77.33 207 | 80.84 231 | 88.81 157 | 65.13 198 | 84.87 237 | 87.85 226 | 69.75 222 | 74.52 260 | 84.74 287 | 61.34 176 | 93.11 179 | 58.24 307 | 85.84 173 | 84.27 347 |
|
| FMVSNet2 | | | 78.20 204 | 77.21 208 | 81.20 221 | 87.60 210 | 62.89 250 | 87.47 164 | 89.02 194 | 71.63 176 | 75.29 243 | 87.28 218 | 54.80 232 | 91.10 253 | 62.38 265 | 79.38 258 | 89.61 232 |
|
| MVS | | | 78.19 205 | 76.99 213 | 81.78 205 | 85.66 247 | 66.99 162 | 84.66 241 | 90.47 144 | 55.08 378 | 72.02 291 | 85.27 273 | 63.83 138 | 94.11 126 | 66.10 235 | 89.80 115 | 84.24 348 |
|
| Baseline_NR-MVSNet | | | 78.15 206 | 78.33 179 | 77.61 293 | 85.79 245 | 56.21 335 | 86.78 188 | 85.76 265 | 73.60 142 | 77.93 176 | 87.57 211 | 65.02 129 | 88.99 290 | 67.14 228 | 75.33 315 | 87.63 285 |
|
| CNLPA | | | 78.08 207 | 76.79 218 | 81.97 203 | 90.40 102 | 71.07 65 | 87.59 161 | 84.55 278 | 66.03 282 | 72.38 286 | 89.64 155 | 57.56 213 | 86.04 323 | 59.61 291 | 83.35 210 | 88.79 260 |
|
| cl22 | | | 78.07 208 | 77.01 211 | 81.23 220 | 82.37 324 | 61.83 262 | 83.55 269 | 87.98 220 | 68.96 243 | 75.06 250 | 83.87 302 | 61.40 175 | 91.88 223 | 73.53 163 | 76.39 293 | 89.98 219 |
|
| PLC |  | 70.83 11 | 78.05 209 | 76.37 229 | 83.08 171 | 91.88 77 | 67.80 140 | 88.19 142 | 89.46 176 | 64.33 303 | 69.87 315 | 88.38 191 | 53.66 245 | 93.58 149 | 58.86 299 | 82.73 218 | 87.86 281 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| Fast-Effi-MVS+-dtu | | | 78.02 210 | 76.49 225 | 82.62 192 | 83.16 304 | 66.96 165 | 86.94 181 | 87.45 235 | 72.45 164 | 71.49 297 | 84.17 299 | 54.79 235 | 91.58 232 | 67.61 221 | 80.31 247 | 89.30 240 |
|
| PS-CasMVS | | | 78.01 211 | 78.09 184 | 77.77 290 | 87.71 206 | 54.39 356 | 88.02 147 | 91.22 122 | 77.50 47 | 73.26 273 | 88.64 183 | 60.73 186 | 88.41 302 | 61.88 272 | 73.88 331 | 90.53 190 |
|
| HY-MVS | | 69.67 12 | 77.95 212 | 77.15 209 | 80.36 240 | 87.57 214 | 60.21 284 | 83.37 272 | 87.78 228 | 66.11 279 | 75.37 236 | 87.06 229 | 63.27 142 | 90.48 265 | 61.38 278 | 82.43 222 | 90.40 196 |
|
| eth_miper_zixun_eth | | | 77.92 213 | 76.69 222 | 81.61 210 | 83.00 308 | 61.98 259 | 83.15 275 | 89.20 187 | 69.52 226 | 74.86 254 | 84.35 294 | 61.76 166 | 92.56 196 | 71.50 183 | 72.89 340 | 90.28 201 |
|
| FMVSNet3 | | | 77.88 214 | 76.85 216 | 80.97 229 | 86.84 229 | 62.36 253 | 86.52 196 | 88.77 203 | 71.13 187 | 75.34 237 | 86.66 240 | 54.07 242 | 91.10 253 | 62.72 260 | 79.57 254 | 89.45 236 |
|
| miper_enhance_ethall | | | 77.87 215 | 76.86 215 | 80.92 230 | 81.65 331 | 61.38 267 | 82.68 282 | 88.98 196 | 65.52 288 | 75.47 229 | 82.30 333 | 65.76 124 | 92.00 218 | 72.95 171 | 76.39 293 | 89.39 237 |
|
| FE-MVS | | | 77.78 216 | 75.68 235 | 84.08 130 | 88.09 187 | 66.00 177 | 83.13 276 | 87.79 227 | 68.42 253 | 78.01 174 | 85.23 275 | 45.50 333 | 95.12 85 | 59.11 296 | 85.83 174 | 91.11 167 |
|
| PEN-MVS | | | 77.73 217 | 77.69 199 | 77.84 288 | 87.07 226 | 53.91 359 | 87.91 153 | 91.18 124 | 77.56 44 | 73.14 275 | 88.82 178 | 61.23 179 | 89.17 287 | 59.95 287 | 72.37 342 | 90.43 194 |
|
| cl____ | | | 77.72 218 | 76.76 219 | 80.58 236 | 82.49 321 | 60.48 279 | 83.09 277 | 87.87 224 | 69.22 233 | 74.38 263 | 85.22 276 | 62.10 163 | 91.53 237 | 71.09 186 | 75.41 312 | 89.73 230 |
|
| DIV-MVS_self_test | | | 77.72 218 | 76.76 219 | 80.58 236 | 82.48 322 | 60.48 279 | 83.09 277 | 87.86 225 | 69.22 233 | 74.38 263 | 85.24 274 | 62.10 163 | 91.53 237 | 71.09 186 | 75.40 313 | 89.74 229 |
|
| sd_testset | | | 77.70 220 | 77.40 204 | 78.60 273 | 89.03 151 | 60.02 285 | 79.00 332 | 85.83 264 | 75.19 103 | 76.61 207 | 89.98 147 | 54.81 231 | 85.46 331 | 62.63 264 | 83.55 206 | 90.33 198 |
|
| PAPM | | | 77.68 221 | 76.40 228 | 81.51 211 | 87.29 222 | 61.85 261 | 83.78 262 | 89.59 172 | 64.74 297 | 71.23 298 | 88.70 180 | 62.59 153 | 93.66 148 | 52.66 340 | 87.03 153 | 89.01 249 |
|
| CHOSEN 1792x2688 | | | 77.63 222 | 75.69 234 | 83.44 154 | 89.98 114 | 68.58 122 | 78.70 337 | 87.50 233 | 56.38 373 | 75.80 224 | 86.84 230 | 58.67 203 | 91.40 244 | 61.58 276 | 85.75 175 | 90.34 197 |
|
| HyFIR lowres test | | | 77.53 223 | 75.40 242 | 83.94 144 | 89.59 122 | 66.62 167 | 80.36 314 | 88.64 210 | 56.29 374 | 76.45 209 | 85.17 277 | 57.64 212 | 93.28 164 | 61.34 279 | 83.10 214 | 91.91 146 |
|
| FMVSNet1 | | | 77.44 224 | 76.12 231 | 81.40 215 | 86.81 230 | 63.01 244 | 88.39 133 | 89.28 181 | 70.49 203 | 74.39 262 | 87.28 218 | 49.06 303 | 91.11 250 | 60.91 281 | 78.52 265 | 90.09 210 |
|
| TR-MVS | | | 77.44 224 | 76.18 230 | 81.20 221 | 88.24 179 | 63.24 239 | 84.61 244 | 86.40 255 | 67.55 261 | 77.81 177 | 86.48 248 | 54.10 241 | 93.15 176 | 57.75 311 | 82.72 219 | 87.20 296 |
|
| 1112_ss | | | 77.40 226 | 76.43 227 | 80.32 242 | 89.11 150 | 60.41 281 | 83.65 265 | 87.72 229 | 62.13 331 | 73.05 276 | 86.72 234 | 62.58 154 | 89.97 272 | 62.11 271 | 80.80 240 | 90.59 188 |
|
| thisisatest0515 | | | 77.33 227 | 75.38 243 | 83.18 166 | 85.27 256 | 63.80 225 | 82.11 288 | 83.27 298 | 65.06 293 | 75.91 221 | 83.84 304 | 49.54 294 | 94.27 118 | 67.24 226 | 86.19 166 | 91.48 158 |
|
| test2506 | | | 77.30 228 | 76.49 225 | 79.74 253 | 90.08 108 | 52.02 369 | 87.86 156 | 63.10 407 | 74.88 111 | 80.16 137 | 92.79 83 | 38.29 373 | 92.35 206 | 68.74 213 | 92.50 77 | 94.86 18 |
|
| pm-mvs1 | | | 77.25 229 | 76.68 223 | 78.93 268 | 84.22 277 | 58.62 295 | 86.41 198 | 88.36 214 | 71.37 183 | 73.31 272 | 88.01 204 | 61.22 180 | 89.15 288 | 64.24 251 | 73.01 339 | 89.03 248 |
|
| LCM-MVSNet-Re | | | 77.05 230 | 76.94 214 | 77.36 297 | 87.20 223 | 51.60 376 | 80.06 317 | 80.46 336 | 75.20 102 | 67.69 333 | 86.72 234 | 62.48 155 | 88.98 291 | 63.44 255 | 89.25 121 | 91.51 155 |
|
| DTE-MVSNet | | | 76.99 231 | 76.80 217 | 77.54 296 | 86.24 238 | 53.06 368 | 87.52 162 | 90.66 138 | 77.08 60 | 72.50 283 | 88.67 182 | 60.48 194 | 89.52 280 | 57.33 315 | 70.74 354 | 90.05 215 |
|
| baseline1 | | | 76.98 232 | 76.75 221 | 77.66 291 | 88.13 184 | 55.66 342 | 85.12 231 | 81.89 319 | 73.04 158 | 76.79 200 | 88.90 175 | 62.43 157 | 87.78 309 | 63.30 257 | 71.18 352 | 89.55 234 |
|
| LS3D | | | 76.95 233 | 74.82 250 | 83.37 158 | 90.45 100 | 67.36 153 | 89.15 107 | 86.94 245 | 61.87 333 | 69.52 318 | 90.61 137 | 51.71 271 | 94.53 110 | 46.38 376 | 86.71 158 | 88.21 275 |
|
| GA-MVS | | | 76.87 234 | 75.17 247 | 81.97 203 | 82.75 314 | 62.58 251 | 81.44 297 | 86.35 257 | 72.16 171 | 74.74 255 | 82.89 324 | 46.20 324 | 92.02 217 | 68.85 212 | 81.09 236 | 91.30 163 |
|
| mamv4 | | | 76.81 235 | 78.23 183 | 72.54 345 | 86.12 241 | 65.75 186 | 78.76 336 | 82.07 318 | 64.12 305 | 72.97 277 | 91.02 130 | 67.97 97 | 68.08 409 | 83.04 72 | 78.02 272 | 83.80 355 |
|
| DP-MVS | | | 76.78 236 | 74.57 252 | 83.42 155 | 93.29 48 | 69.46 97 | 88.55 129 | 83.70 290 | 63.98 310 | 70.20 306 | 88.89 176 | 54.01 243 | 94.80 102 | 46.66 373 | 81.88 229 | 86.01 322 |
|
| cascas | | | 76.72 237 | 74.64 251 | 82.99 176 | 85.78 246 | 65.88 181 | 82.33 285 | 89.21 186 | 60.85 339 | 72.74 279 | 81.02 344 | 47.28 312 | 93.75 145 | 67.48 223 | 85.02 178 | 89.34 239 |
|
| testing91 | | | 76.54 238 | 75.66 237 | 79.18 265 | 88.43 173 | 55.89 338 | 81.08 300 | 83.00 306 | 73.76 138 | 75.34 237 | 84.29 295 | 46.20 324 | 90.07 270 | 64.33 249 | 84.50 185 | 91.58 153 |
|
| 1314 | | | 76.53 239 | 75.30 246 | 80.21 244 | 83.93 284 | 62.32 255 | 84.66 241 | 88.81 201 | 60.23 343 | 70.16 309 | 84.07 301 | 55.30 229 | 90.73 262 | 67.37 224 | 83.21 212 | 87.59 288 |
|
| thres100view900 | | | 76.50 240 | 75.55 239 | 79.33 261 | 89.52 125 | 56.99 320 | 85.83 217 | 83.23 299 | 73.94 133 | 76.32 213 | 87.12 226 | 51.89 267 | 91.95 219 | 48.33 364 | 83.75 200 | 89.07 242 |
|
| thres600view7 | | | 76.50 240 | 75.44 240 | 79.68 255 | 89.40 132 | 57.16 317 | 85.53 225 | 83.23 299 | 73.79 137 | 76.26 214 | 87.09 227 | 51.89 267 | 91.89 222 | 48.05 369 | 83.72 203 | 90.00 216 |
|
| thres400 | | | 76.50 240 | 75.37 244 | 79.86 250 | 89.13 146 | 57.65 311 | 85.17 228 | 83.60 291 | 73.41 149 | 76.45 209 | 86.39 250 | 52.12 259 | 91.95 219 | 48.33 364 | 83.75 200 | 90.00 216 |
|
| MonoMVSNet | | | 76.49 243 | 75.80 232 | 78.58 274 | 81.55 334 | 58.45 296 | 86.36 201 | 86.22 258 | 74.87 113 | 74.73 256 | 83.73 308 | 51.79 270 | 88.73 296 | 70.78 188 | 72.15 345 | 88.55 269 |
|
| tfpn200view9 | | | 76.42 244 | 75.37 244 | 79.55 260 | 89.13 146 | 57.65 311 | 85.17 228 | 83.60 291 | 73.41 149 | 76.45 209 | 86.39 250 | 52.12 259 | 91.95 219 | 48.33 364 | 83.75 200 | 89.07 242 |
|
| Test_1112_low_res | | | 76.40 245 | 75.44 240 | 79.27 262 | 89.28 140 | 58.09 300 | 81.69 292 | 87.07 242 | 59.53 350 | 72.48 284 | 86.67 239 | 61.30 177 | 89.33 283 | 60.81 283 | 80.15 249 | 90.41 195 |
|
| F-COLMAP | | | 76.38 246 | 74.33 258 | 82.50 194 | 89.28 140 | 66.95 166 | 88.41 132 | 89.03 193 | 64.05 308 | 66.83 343 | 88.61 184 | 46.78 316 | 92.89 187 | 57.48 312 | 78.55 264 | 87.67 284 |
|
| LTVRE_ROB | | 69.57 13 | 76.25 247 | 74.54 254 | 81.41 214 | 88.60 166 | 64.38 216 | 79.24 327 | 89.12 192 | 70.76 196 | 69.79 317 | 87.86 205 | 49.09 302 | 93.20 172 | 56.21 325 | 80.16 248 | 86.65 311 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| MVP-Stereo | | | 76.12 248 | 74.46 256 | 81.13 224 | 85.37 255 | 69.79 89 | 84.42 252 | 87.95 222 | 65.03 294 | 67.46 336 | 85.33 272 | 53.28 250 | 91.73 229 | 58.01 309 | 83.27 211 | 81.85 374 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| XVG-ACMP-BASELINE | | | 76.11 249 | 74.27 259 | 81.62 208 | 83.20 301 | 64.67 208 | 83.60 268 | 89.75 167 | 69.75 222 | 71.85 292 | 87.09 227 | 32.78 386 | 92.11 214 | 69.99 199 | 80.43 246 | 88.09 277 |
|
| testing99 | | | 76.09 250 | 75.12 248 | 79.00 266 | 88.16 181 | 55.50 344 | 80.79 304 | 81.40 325 | 73.30 152 | 75.17 245 | 84.27 297 | 44.48 338 | 90.02 271 | 64.28 250 | 84.22 194 | 91.48 158 |
|
| ACMH+ | | 68.96 14 | 76.01 251 | 74.01 260 | 82.03 201 | 88.60 166 | 65.31 195 | 88.86 116 | 87.55 231 | 70.25 209 | 67.75 332 | 87.47 216 | 41.27 357 | 93.19 174 | 58.37 305 | 75.94 301 | 87.60 286 |
|
| ACMH | | 67.68 16 | 75.89 252 | 73.93 262 | 81.77 206 | 88.71 163 | 66.61 168 | 88.62 127 | 89.01 195 | 69.81 218 | 66.78 344 | 86.70 238 | 41.95 356 | 91.51 239 | 55.64 326 | 78.14 271 | 87.17 297 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| IB-MVS | | 68.01 15 | 75.85 253 | 73.36 269 | 83.31 159 | 84.76 266 | 66.03 175 | 83.38 271 | 85.06 272 | 70.21 210 | 69.40 319 | 81.05 343 | 45.76 329 | 94.66 108 | 65.10 244 | 75.49 307 | 89.25 241 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| baseline2 | | | 75.70 254 | 73.83 265 | 81.30 218 | 83.26 299 | 61.79 263 | 82.57 284 | 80.65 332 | 66.81 266 | 66.88 342 | 83.42 314 | 57.86 210 | 92.19 212 | 63.47 254 | 79.57 254 | 89.91 221 |
|
| WTY-MVS | | | 75.65 255 | 75.68 235 | 75.57 313 | 86.40 237 | 56.82 322 | 77.92 349 | 82.40 314 | 65.10 292 | 76.18 217 | 87.72 206 | 63.13 149 | 80.90 361 | 60.31 285 | 81.96 227 | 89.00 251 |
|
| thres200 | | | 75.55 256 | 74.47 255 | 78.82 269 | 87.78 204 | 57.85 307 | 83.07 279 | 83.51 294 | 72.44 166 | 75.84 223 | 84.42 290 | 52.08 262 | 91.75 227 | 47.41 371 | 83.64 205 | 86.86 306 |
|
| test_vis1_n_1920 | | | 75.52 257 | 75.78 233 | 74.75 326 | 79.84 357 | 57.44 315 | 83.26 273 | 85.52 267 | 62.83 322 | 79.34 147 | 86.17 255 | 45.10 335 | 79.71 365 | 78.75 110 | 81.21 235 | 87.10 303 |
|
| EPNet_dtu | | | 75.46 258 | 74.86 249 | 77.23 300 | 82.57 319 | 54.60 353 | 86.89 183 | 83.09 303 | 71.64 175 | 66.25 353 | 85.86 260 | 55.99 225 | 88.04 306 | 54.92 329 | 86.55 160 | 89.05 247 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| IterMVS-SCA-FT | | | 75.43 259 | 73.87 264 | 80.11 246 | 82.69 316 | 64.85 205 | 81.57 294 | 83.47 295 | 69.16 236 | 70.49 303 | 84.15 300 | 51.95 265 | 88.15 304 | 69.23 206 | 72.14 346 | 87.34 293 |
|
| XXY-MVS | | | 75.41 260 | 75.56 238 | 74.96 322 | 83.59 292 | 57.82 308 | 80.59 310 | 83.87 289 | 66.54 276 | 74.93 253 | 88.31 193 | 63.24 143 | 80.09 364 | 62.16 269 | 76.85 286 | 86.97 304 |
|
| reproduce_monomvs | | | 75.40 261 | 74.38 257 | 78.46 280 | 83.92 285 | 57.80 309 | 83.78 262 | 86.94 245 | 73.47 147 | 72.25 288 | 84.47 289 | 38.74 369 | 89.27 285 | 75.32 149 | 70.53 355 | 88.31 273 |
|
| TransMVSNet (Re) | | | 75.39 262 | 74.56 253 | 77.86 287 | 85.50 252 | 57.10 319 | 86.78 188 | 86.09 262 | 72.17 170 | 71.53 296 | 87.34 217 | 63.01 150 | 89.31 284 | 56.84 320 | 61.83 381 | 87.17 297 |
|
| CostFormer | | | 75.24 263 | 73.90 263 | 79.27 262 | 82.65 318 | 58.27 299 | 80.80 303 | 82.73 312 | 61.57 334 | 75.33 241 | 83.13 319 | 55.52 227 | 91.07 256 | 64.98 245 | 78.34 270 | 88.45 270 |
|
| testing11 | | | 75.14 264 | 74.01 260 | 78.53 277 | 88.16 181 | 56.38 331 | 80.74 307 | 80.42 337 | 70.67 197 | 72.69 282 | 83.72 309 | 43.61 344 | 89.86 273 | 62.29 267 | 83.76 199 | 89.36 238 |
|
| D2MVS | | | 74.82 265 | 73.21 270 | 79.64 257 | 79.81 358 | 62.56 252 | 80.34 315 | 87.35 236 | 64.37 302 | 68.86 324 | 82.66 328 | 46.37 320 | 90.10 269 | 67.91 219 | 81.24 234 | 86.25 315 |
|
| pmmvs6 | | | 74.69 266 | 73.39 268 | 78.61 272 | 81.38 338 | 57.48 314 | 86.64 192 | 87.95 222 | 64.99 296 | 70.18 307 | 86.61 241 | 50.43 285 | 89.52 280 | 62.12 270 | 70.18 357 | 88.83 258 |
|
| tfpnnormal | | | 74.39 267 | 73.16 271 | 78.08 285 | 86.10 243 | 58.05 301 | 84.65 243 | 87.53 232 | 70.32 206 | 71.22 299 | 85.63 266 | 54.97 230 | 89.86 273 | 43.03 387 | 75.02 320 | 86.32 314 |
|
| IterMVS | | | 74.29 268 | 72.94 274 | 78.35 281 | 81.53 335 | 63.49 233 | 81.58 293 | 82.49 313 | 68.06 257 | 69.99 312 | 83.69 310 | 51.66 272 | 85.54 329 | 65.85 238 | 71.64 349 | 86.01 322 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| OurMVSNet-221017-0 | | | 74.26 269 | 72.42 280 | 79.80 252 | 83.76 289 | 59.59 290 | 85.92 213 | 86.64 250 | 66.39 277 | 66.96 341 | 87.58 210 | 39.46 365 | 91.60 231 | 65.76 239 | 69.27 360 | 88.22 274 |
|
| SCA | | | 74.22 270 | 72.33 281 | 79.91 249 | 84.05 282 | 62.17 257 | 79.96 320 | 79.29 349 | 66.30 278 | 72.38 286 | 80.13 354 | 51.95 265 | 88.60 299 | 59.25 294 | 77.67 277 | 88.96 253 |
|
| mmtdpeth | | | 74.16 271 | 73.01 273 | 77.60 295 | 83.72 290 | 61.13 268 | 85.10 232 | 85.10 271 | 72.06 172 | 77.21 194 | 80.33 352 | 43.84 342 | 85.75 325 | 77.14 128 | 52.61 399 | 85.91 325 |
|
| miper_lstm_enhance | | | 74.11 272 | 73.11 272 | 77.13 301 | 80.11 353 | 59.62 289 | 72.23 377 | 86.92 247 | 66.76 268 | 70.40 304 | 82.92 323 | 56.93 220 | 82.92 350 | 69.06 209 | 72.63 341 | 88.87 256 |
|
| testing222 | | | 74.04 273 | 72.66 277 | 78.19 283 | 87.89 196 | 55.36 345 | 81.06 301 | 79.20 350 | 71.30 184 | 74.65 258 | 83.57 312 | 39.11 368 | 88.67 298 | 51.43 347 | 85.75 175 | 90.53 190 |
|
| EG-PatchMatch MVS | | | 74.04 273 | 71.82 285 | 80.71 234 | 84.92 264 | 67.42 150 | 85.86 215 | 88.08 218 | 66.04 281 | 64.22 365 | 83.85 303 | 35.10 382 | 92.56 196 | 57.44 313 | 80.83 239 | 82.16 373 |
|
| pmmvs4 | | | 74.03 275 | 71.91 284 | 80.39 239 | 81.96 327 | 68.32 127 | 81.45 296 | 82.14 316 | 59.32 351 | 69.87 315 | 85.13 278 | 52.40 255 | 88.13 305 | 60.21 286 | 74.74 323 | 84.73 344 |
|
| MS-PatchMatch | | | 73.83 276 | 72.67 276 | 77.30 299 | 83.87 286 | 66.02 176 | 81.82 289 | 84.66 276 | 61.37 337 | 68.61 327 | 82.82 326 | 47.29 311 | 88.21 303 | 59.27 293 | 84.32 192 | 77.68 389 |
|
| test_cas_vis1_n_1920 | | | 73.76 277 | 73.74 266 | 73.81 334 | 75.90 378 | 59.77 287 | 80.51 311 | 82.40 314 | 58.30 360 | 81.62 120 | 85.69 263 | 44.35 339 | 76.41 383 | 76.29 135 | 78.61 263 | 85.23 335 |
|
| sss | | | 73.60 278 | 73.64 267 | 73.51 336 | 82.80 313 | 55.01 350 | 76.12 356 | 81.69 322 | 62.47 327 | 74.68 257 | 85.85 261 | 57.32 216 | 78.11 372 | 60.86 282 | 80.93 237 | 87.39 291 |
|
| RPMNet | | | 73.51 279 | 70.49 301 | 82.58 193 | 81.32 341 | 65.19 196 | 75.92 358 | 92.27 84 | 57.60 366 | 72.73 280 | 76.45 381 | 52.30 256 | 95.43 70 | 48.14 368 | 77.71 275 | 87.11 301 |
|
| WBMVS | | | 73.43 280 | 72.81 275 | 75.28 319 | 87.91 195 | 50.99 382 | 78.59 340 | 81.31 327 | 65.51 290 | 74.47 261 | 84.83 284 | 46.39 318 | 86.68 316 | 58.41 304 | 77.86 273 | 88.17 276 |
|
| SixPastTwentyTwo | | | 73.37 281 | 71.26 294 | 79.70 254 | 85.08 262 | 57.89 306 | 85.57 219 | 83.56 293 | 71.03 191 | 65.66 355 | 85.88 259 | 42.10 354 | 92.57 195 | 59.11 296 | 63.34 379 | 88.65 266 |
|
| CR-MVSNet | | | 73.37 281 | 71.27 293 | 79.67 256 | 81.32 341 | 65.19 196 | 75.92 358 | 80.30 339 | 59.92 346 | 72.73 280 | 81.19 341 | 52.50 253 | 86.69 315 | 59.84 288 | 77.71 275 | 87.11 301 |
|
| MSDG | | | 73.36 283 | 70.99 296 | 80.49 238 | 84.51 273 | 65.80 183 | 80.71 308 | 86.13 261 | 65.70 285 | 65.46 356 | 83.74 307 | 44.60 336 | 90.91 258 | 51.13 348 | 76.89 284 | 84.74 343 |
|
| tpm2 | | | 73.26 284 | 71.46 289 | 78.63 271 | 83.34 297 | 56.71 325 | 80.65 309 | 80.40 338 | 56.63 372 | 73.55 270 | 82.02 338 | 51.80 269 | 91.24 248 | 56.35 324 | 78.42 268 | 87.95 278 |
|
| RPSCF | | | 73.23 285 | 71.46 289 | 78.54 276 | 82.50 320 | 59.85 286 | 82.18 287 | 82.84 311 | 58.96 355 | 71.15 300 | 89.41 167 | 45.48 334 | 84.77 338 | 58.82 300 | 71.83 348 | 91.02 173 |
|
| PatchmatchNet |  | | 73.12 286 | 71.33 292 | 78.49 279 | 83.18 302 | 60.85 273 | 79.63 322 | 78.57 353 | 64.13 304 | 71.73 293 | 79.81 359 | 51.20 276 | 85.97 324 | 57.40 314 | 76.36 298 | 88.66 265 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| UBG | | | 73.08 287 | 72.27 282 | 75.51 315 | 88.02 190 | 51.29 380 | 78.35 344 | 77.38 362 | 65.52 288 | 73.87 267 | 82.36 331 | 45.55 331 | 86.48 319 | 55.02 328 | 84.39 191 | 88.75 262 |
|
| COLMAP_ROB |  | 66.92 17 | 73.01 288 | 70.41 303 | 80.81 232 | 87.13 225 | 65.63 187 | 88.30 139 | 84.19 285 | 62.96 319 | 63.80 369 | 87.69 208 | 38.04 374 | 92.56 196 | 46.66 373 | 74.91 321 | 84.24 348 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| CVMVSNet | | | 72.99 289 | 72.58 278 | 74.25 330 | 84.28 275 | 50.85 383 | 86.41 198 | 83.45 296 | 44.56 398 | 73.23 274 | 87.54 214 | 49.38 297 | 85.70 326 | 65.90 237 | 78.44 267 | 86.19 317 |
|
| test-LLR | | | 72.94 290 | 72.43 279 | 74.48 327 | 81.35 339 | 58.04 302 | 78.38 341 | 77.46 359 | 66.66 270 | 69.95 313 | 79.00 365 | 48.06 308 | 79.24 366 | 66.13 233 | 84.83 180 | 86.15 318 |
|
| test_0402 | | | 72.79 291 | 70.44 302 | 79.84 251 | 88.13 184 | 65.99 178 | 85.93 212 | 84.29 282 | 65.57 287 | 67.40 338 | 85.49 269 | 46.92 315 | 92.61 193 | 35.88 401 | 74.38 326 | 80.94 379 |
|
| tpmrst | | | 72.39 292 | 72.13 283 | 73.18 340 | 80.54 348 | 49.91 387 | 79.91 321 | 79.08 351 | 63.11 316 | 71.69 294 | 79.95 356 | 55.32 228 | 82.77 351 | 65.66 240 | 73.89 330 | 86.87 305 |
|
| PatchMatch-RL | | | 72.38 293 | 70.90 297 | 76.80 304 | 88.60 166 | 67.38 152 | 79.53 323 | 76.17 371 | 62.75 324 | 69.36 320 | 82.00 339 | 45.51 332 | 84.89 337 | 53.62 335 | 80.58 243 | 78.12 388 |
|
| CL-MVSNet_self_test | | | 72.37 294 | 71.46 289 | 75.09 321 | 79.49 364 | 53.53 361 | 80.76 306 | 85.01 274 | 69.12 237 | 70.51 302 | 82.05 337 | 57.92 209 | 84.13 341 | 52.27 342 | 66.00 373 | 87.60 286 |
|
| tpm | | | 72.37 294 | 71.71 286 | 74.35 329 | 82.19 325 | 52.00 370 | 79.22 328 | 77.29 363 | 64.56 299 | 72.95 278 | 83.68 311 | 51.35 273 | 83.26 349 | 58.33 306 | 75.80 302 | 87.81 282 |
|
| ETVMVS | | | 72.25 296 | 71.05 295 | 75.84 309 | 87.77 205 | 51.91 372 | 79.39 325 | 74.98 374 | 69.26 231 | 73.71 268 | 82.95 322 | 40.82 361 | 86.14 322 | 46.17 377 | 84.43 190 | 89.47 235 |
|
| UWE-MVS | | | 72.13 297 | 71.49 288 | 74.03 332 | 86.66 234 | 47.70 391 | 81.40 298 | 76.89 367 | 63.60 313 | 75.59 226 | 84.22 298 | 39.94 364 | 85.62 328 | 48.98 361 | 86.13 168 | 88.77 261 |
|
| PVSNet | | 64.34 18 | 72.08 298 | 70.87 298 | 75.69 311 | 86.21 239 | 56.44 329 | 74.37 371 | 80.73 331 | 62.06 332 | 70.17 308 | 82.23 335 | 42.86 348 | 83.31 348 | 54.77 330 | 84.45 189 | 87.32 294 |
|
| WB-MVSnew | | | 71.96 299 | 71.65 287 | 72.89 341 | 84.67 271 | 51.88 373 | 82.29 286 | 77.57 358 | 62.31 328 | 73.67 269 | 83.00 321 | 53.49 248 | 81.10 360 | 45.75 380 | 82.13 225 | 85.70 328 |
|
| pmmvs5 | | | 71.55 300 | 70.20 306 | 75.61 312 | 77.83 371 | 56.39 330 | 81.74 291 | 80.89 328 | 57.76 364 | 67.46 336 | 84.49 288 | 49.26 300 | 85.32 333 | 57.08 317 | 75.29 316 | 85.11 339 |
|
| test-mter | | | 71.41 301 | 70.39 304 | 74.48 327 | 81.35 339 | 58.04 302 | 78.38 341 | 77.46 359 | 60.32 342 | 69.95 313 | 79.00 365 | 36.08 380 | 79.24 366 | 66.13 233 | 84.83 180 | 86.15 318 |
|
| K. test v3 | | | 71.19 302 | 68.51 314 | 79.21 264 | 83.04 307 | 57.78 310 | 84.35 254 | 76.91 366 | 72.90 161 | 62.99 372 | 82.86 325 | 39.27 366 | 91.09 255 | 61.65 275 | 52.66 398 | 88.75 262 |
|
| dmvs_re | | | 71.14 303 | 70.58 299 | 72.80 342 | 81.96 327 | 59.68 288 | 75.60 362 | 79.34 348 | 68.55 249 | 69.27 322 | 80.72 349 | 49.42 296 | 76.54 380 | 52.56 341 | 77.79 274 | 82.19 372 |
|
| tpmvs | | | 71.09 304 | 69.29 309 | 76.49 305 | 82.04 326 | 56.04 336 | 78.92 334 | 81.37 326 | 64.05 308 | 67.18 340 | 78.28 371 | 49.74 293 | 89.77 275 | 49.67 358 | 72.37 342 | 83.67 356 |
|
| AllTest | | | 70.96 305 | 68.09 320 | 79.58 258 | 85.15 259 | 63.62 227 | 84.58 245 | 79.83 343 | 62.31 328 | 60.32 381 | 86.73 232 | 32.02 387 | 88.96 293 | 50.28 353 | 71.57 350 | 86.15 318 |
|
| test_fmvs1 | | | 70.93 306 | 70.52 300 | 72.16 347 | 73.71 389 | 55.05 349 | 80.82 302 | 78.77 352 | 51.21 390 | 78.58 159 | 84.41 291 | 31.20 391 | 76.94 378 | 75.88 141 | 80.12 251 | 84.47 346 |
|
| test_fmvs1_n | | | 70.86 307 | 70.24 305 | 72.73 343 | 72.51 400 | 55.28 347 | 81.27 299 | 79.71 345 | 51.49 389 | 78.73 154 | 84.87 283 | 27.54 396 | 77.02 377 | 76.06 138 | 79.97 252 | 85.88 326 |
|
| Patchmtry | | | 70.74 308 | 69.16 311 | 75.49 316 | 80.72 345 | 54.07 358 | 74.94 369 | 80.30 339 | 58.34 359 | 70.01 310 | 81.19 341 | 52.50 253 | 86.54 317 | 53.37 337 | 71.09 353 | 85.87 327 |
|
| MIMVSNet | | | 70.69 309 | 69.30 308 | 74.88 323 | 84.52 272 | 56.35 333 | 75.87 360 | 79.42 347 | 64.59 298 | 67.76 331 | 82.41 330 | 41.10 358 | 81.54 357 | 46.64 375 | 81.34 232 | 86.75 309 |
|
| tpm cat1 | | | 70.57 310 | 68.31 316 | 77.35 298 | 82.41 323 | 57.95 305 | 78.08 346 | 80.22 341 | 52.04 385 | 68.54 328 | 77.66 376 | 52.00 264 | 87.84 308 | 51.77 343 | 72.07 347 | 86.25 315 |
|
| OpenMVS_ROB |  | 64.09 19 | 70.56 311 | 68.19 317 | 77.65 292 | 80.26 350 | 59.41 292 | 85.01 234 | 82.96 308 | 58.76 357 | 65.43 357 | 82.33 332 | 37.63 376 | 91.23 249 | 45.34 383 | 76.03 300 | 82.32 370 |
|
| pmmvs-eth3d | | | 70.50 312 | 67.83 325 | 78.52 278 | 77.37 374 | 66.18 174 | 81.82 289 | 81.51 323 | 58.90 356 | 63.90 368 | 80.42 351 | 42.69 349 | 86.28 321 | 58.56 302 | 65.30 375 | 83.11 362 |
|
| USDC | | | 70.33 313 | 68.37 315 | 76.21 307 | 80.60 347 | 56.23 334 | 79.19 329 | 86.49 253 | 60.89 338 | 61.29 377 | 85.47 270 | 31.78 389 | 89.47 282 | 53.37 337 | 76.21 299 | 82.94 366 |
|
| Patchmatch-RL test | | | 70.24 314 | 67.78 327 | 77.61 293 | 77.43 373 | 59.57 291 | 71.16 381 | 70.33 388 | 62.94 320 | 68.65 326 | 72.77 393 | 50.62 282 | 85.49 330 | 69.58 204 | 66.58 370 | 87.77 283 |
|
| CMPMVS |  | 51.72 21 | 70.19 315 | 68.16 318 | 76.28 306 | 73.15 396 | 57.55 313 | 79.47 324 | 83.92 287 | 48.02 394 | 56.48 394 | 84.81 285 | 43.13 346 | 86.42 320 | 62.67 263 | 81.81 230 | 84.89 341 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| ppachtmachnet_test | | | 70.04 316 | 67.34 334 | 78.14 284 | 79.80 359 | 61.13 268 | 79.19 329 | 80.59 333 | 59.16 353 | 65.27 358 | 79.29 362 | 46.75 317 | 87.29 312 | 49.33 359 | 66.72 368 | 86.00 324 |
|
| gg-mvs-nofinetune | | | 69.95 317 | 67.96 321 | 75.94 308 | 83.07 305 | 54.51 355 | 77.23 353 | 70.29 389 | 63.11 316 | 70.32 305 | 62.33 402 | 43.62 343 | 88.69 297 | 53.88 334 | 87.76 143 | 84.62 345 |
|
| TESTMET0.1,1 | | | 69.89 318 | 69.00 312 | 72.55 344 | 79.27 367 | 56.85 321 | 78.38 341 | 74.71 378 | 57.64 365 | 68.09 330 | 77.19 378 | 37.75 375 | 76.70 379 | 63.92 252 | 84.09 195 | 84.10 351 |
|
| test_vis1_n | | | 69.85 319 | 69.21 310 | 71.77 349 | 72.66 399 | 55.27 348 | 81.48 295 | 76.21 370 | 52.03 386 | 75.30 242 | 83.20 318 | 28.97 394 | 76.22 385 | 74.60 153 | 78.41 269 | 83.81 354 |
|
| FMVSNet5 | | | 69.50 320 | 67.96 321 | 74.15 331 | 82.97 311 | 55.35 346 | 80.01 319 | 82.12 317 | 62.56 326 | 63.02 370 | 81.53 340 | 36.92 377 | 81.92 355 | 48.42 363 | 74.06 328 | 85.17 338 |
|
| mvs5depth | | | 69.45 321 | 67.45 333 | 75.46 317 | 73.93 387 | 55.83 339 | 79.19 329 | 83.23 299 | 66.89 265 | 71.63 295 | 83.32 315 | 33.69 385 | 85.09 334 | 59.81 289 | 55.34 395 | 85.46 331 |
|
| PMMVS | | | 69.34 322 | 68.67 313 | 71.35 354 | 75.67 380 | 62.03 258 | 75.17 364 | 73.46 381 | 50.00 391 | 68.68 325 | 79.05 363 | 52.07 263 | 78.13 371 | 61.16 280 | 82.77 217 | 73.90 395 |
|
| our_test_3 | | | 69.14 323 | 67.00 336 | 75.57 313 | 79.80 359 | 58.80 293 | 77.96 347 | 77.81 356 | 59.55 349 | 62.90 373 | 78.25 372 | 47.43 310 | 83.97 342 | 51.71 344 | 67.58 367 | 83.93 353 |
|
| EPMVS | | | 69.02 324 | 68.16 318 | 71.59 350 | 79.61 362 | 49.80 389 | 77.40 351 | 66.93 399 | 62.82 323 | 70.01 310 | 79.05 363 | 45.79 328 | 77.86 374 | 56.58 322 | 75.26 317 | 87.13 300 |
|
| KD-MVS_self_test | | | 68.81 325 | 67.59 331 | 72.46 346 | 74.29 386 | 45.45 397 | 77.93 348 | 87.00 243 | 63.12 315 | 63.99 367 | 78.99 367 | 42.32 351 | 84.77 338 | 56.55 323 | 64.09 378 | 87.16 299 |
|
| Anonymous20240521 | | | 68.80 326 | 67.22 335 | 73.55 335 | 74.33 385 | 54.11 357 | 83.18 274 | 85.61 266 | 58.15 361 | 61.68 376 | 80.94 346 | 30.71 392 | 81.27 359 | 57.00 318 | 73.34 338 | 85.28 334 |
|
| Anonymous20231206 | | | 68.60 327 | 67.80 326 | 71.02 357 | 80.23 352 | 50.75 384 | 78.30 345 | 80.47 335 | 56.79 371 | 66.11 354 | 82.63 329 | 46.35 321 | 78.95 368 | 43.62 386 | 75.70 303 | 83.36 359 |
|
| MIMVSNet1 | | | 68.58 328 | 66.78 338 | 73.98 333 | 80.07 354 | 51.82 374 | 80.77 305 | 84.37 279 | 64.40 301 | 59.75 384 | 82.16 336 | 36.47 378 | 83.63 345 | 42.73 388 | 70.33 356 | 86.48 313 |
|
| testing3 | | | 68.56 329 | 67.67 329 | 71.22 356 | 87.33 220 | 42.87 406 | 83.06 280 | 71.54 386 | 70.36 204 | 69.08 323 | 84.38 292 | 30.33 393 | 85.69 327 | 37.50 399 | 75.45 311 | 85.09 340 |
|
| EU-MVSNet | | | 68.53 330 | 67.61 330 | 71.31 355 | 78.51 370 | 47.01 394 | 84.47 247 | 84.27 283 | 42.27 401 | 66.44 352 | 84.79 286 | 40.44 362 | 83.76 343 | 58.76 301 | 68.54 365 | 83.17 360 |
|
| PatchT | | | 68.46 331 | 67.85 323 | 70.29 360 | 80.70 346 | 43.93 404 | 72.47 376 | 74.88 375 | 60.15 344 | 70.55 301 | 76.57 380 | 49.94 290 | 81.59 356 | 50.58 349 | 74.83 322 | 85.34 333 |
|
| test_fmvs2 | | | 68.35 332 | 67.48 332 | 70.98 358 | 69.50 403 | 51.95 371 | 80.05 318 | 76.38 369 | 49.33 392 | 74.65 258 | 84.38 292 | 23.30 405 | 75.40 393 | 74.51 154 | 75.17 319 | 85.60 329 |
|
| Syy-MVS | | | 68.05 333 | 67.85 323 | 68.67 369 | 84.68 268 | 40.97 412 | 78.62 338 | 73.08 383 | 66.65 273 | 66.74 345 | 79.46 360 | 52.11 261 | 82.30 353 | 32.89 404 | 76.38 296 | 82.75 367 |
|
| test0.0.03 1 | | | 68.00 334 | 67.69 328 | 68.90 366 | 77.55 372 | 47.43 392 | 75.70 361 | 72.95 385 | 66.66 270 | 66.56 347 | 82.29 334 | 48.06 308 | 75.87 388 | 44.97 384 | 74.51 325 | 83.41 358 |
|
| TDRefinement | | | 67.49 335 | 64.34 345 | 76.92 302 | 73.47 393 | 61.07 270 | 84.86 238 | 82.98 307 | 59.77 347 | 58.30 388 | 85.13 278 | 26.06 397 | 87.89 307 | 47.92 370 | 60.59 386 | 81.81 375 |
|
| test20.03 | | | 67.45 336 | 66.95 337 | 68.94 365 | 75.48 382 | 44.84 402 | 77.50 350 | 77.67 357 | 66.66 270 | 63.01 371 | 83.80 305 | 47.02 314 | 78.40 370 | 42.53 390 | 68.86 364 | 83.58 357 |
|
| UnsupCasMVSNet_eth | | | 67.33 337 | 65.99 341 | 71.37 352 | 73.48 392 | 51.47 378 | 75.16 365 | 85.19 270 | 65.20 291 | 60.78 379 | 80.93 348 | 42.35 350 | 77.20 376 | 57.12 316 | 53.69 397 | 85.44 332 |
|
| TinyColmap | | | 67.30 338 | 64.81 343 | 74.76 325 | 81.92 329 | 56.68 326 | 80.29 316 | 81.49 324 | 60.33 341 | 56.27 395 | 83.22 316 | 24.77 401 | 87.66 311 | 45.52 381 | 69.47 359 | 79.95 384 |
|
| myMVS_eth3d | | | 67.02 339 | 66.29 340 | 69.21 364 | 84.68 268 | 42.58 407 | 78.62 338 | 73.08 383 | 66.65 273 | 66.74 345 | 79.46 360 | 31.53 390 | 82.30 353 | 39.43 396 | 76.38 296 | 82.75 367 |
|
| dp | | | 66.80 340 | 65.43 342 | 70.90 359 | 79.74 361 | 48.82 390 | 75.12 367 | 74.77 376 | 59.61 348 | 64.08 366 | 77.23 377 | 42.89 347 | 80.72 362 | 48.86 362 | 66.58 370 | 83.16 361 |
|
| MDA-MVSNet-bldmvs | | | 66.68 341 | 63.66 350 | 75.75 310 | 79.28 366 | 60.56 278 | 73.92 373 | 78.35 354 | 64.43 300 | 50.13 403 | 79.87 358 | 44.02 341 | 83.67 344 | 46.10 378 | 56.86 389 | 83.03 364 |
|
| testgi | | | 66.67 342 | 66.53 339 | 67.08 376 | 75.62 381 | 41.69 411 | 75.93 357 | 76.50 368 | 66.11 279 | 65.20 361 | 86.59 242 | 35.72 381 | 74.71 395 | 43.71 385 | 73.38 337 | 84.84 342 |
|
| CHOSEN 280x420 | | | 66.51 343 | 64.71 344 | 71.90 348 | 81.45 336 | 63.52 232 | 57.98 411 | 68.95 395 | 53.57 381 | 62.59 374 | 76.70 379 | 46.22 323 | 75.29 394 | 55.25 327 | 79.68 253 | 76.88 391 |
|
| PM-MVS | | | 66.41 344 | 64.14 346 | 73.20 339 | 73.92 388 | 56.45 328 | 78.97 333 | 64.96 405 | 63.88 312 | 64.72 362 | 80.24 353 | 19.84 409 | 83.44 347 | 66.24 232 | 64.52 377 | 79.71 385 |
|
| JIA-IIPM | | | 66.32 345 | 62.82 356 | 76.82 303 | 77.09 375 | 61.72 264 | 65.34 404 | 75.38 372 | 58.04 363 | 64.51 363 | 62.32 403 | 42.05 355 | 86.51 318 | 51.45 346 | 69.22 361 | 82.21 371 |
|
| KD-MVS_2432*1600 | | | 66.22 346 | 63.89 348 | 73.21 337 | 75.47 383 | 53.42 363 | 70.76 384 | 84.35 280 | 64.10 306 | 66.52 349 | 78.52 369 | 34.55 383 | 84.98 335 | 50.40 351 | 50.33 402 | 81.23 377 |
|
| miper_refine_blended | | | 66.22 346 | 63.89 348 | 73.21 337 | 75.47 383 | 53.42 363 | 70.76 384 | 84.35 280 | 64.10 306 | 66.52 349 | 78.52 369 | 34.55 383 | 84.98 335 | 50.40 351 | 50.33 402 | 81.23 377 |
|
| ADS-MVSNet2 | | | 66.20 348 | 63.33 351 | 74.82 324 | 79.92 355 | 58.75 294 | 67.55 396 | 75.19 373 | 53.37 382 | 65.25 359 | 75.86 384 | 42.32 351 | 80.53 363 | 41.57 391 | 68.91 362 | 85.18 336 |
|
| YYNet1 | | | 65.03 349 | 62.91 354 | 71.38 351 | 75.85 379 | 56.60 327 | 69.12 392 | 74.66 379 | 57.28 369 | 54.12 397 | 77.87 374 | 45.85 327 | 74.48 396 | 49.95 356 | 61.52 383 | 83.05 363 |
|
| MDA-MVSNet_test_wron | | | 65.03 349 | 62.92 353 | 71.37 352 | 75.93 377 | 56.73 323 | 69.09 393 | 74.73 377 | 57.28 369 | 54.03 398 | 77.89 373 | 45.88 326 | 74.39 397 | 49.89 357 | 61.55 382 | 82.99 365 |
|
| Patchmatch-test | | | 64.82 351 | 63.24 352 | 69.57 362 | 79.42 365 | 49.82 388 | 63.49 408 | 69.05 394 | 51.98 387 | 59.95 383 | 80.13 354 | 50.91 278 | 70.98 402 | 40.66 393 | 73.57 333 | 87.90 280 |
|
| ADS-MVSNet | | | 64.36 352 | 62.88 355 | 68.78 368 | 79.92 355 | 47.17 393 | 67.55 396 | 71.18 387 | 53.37 382 | 65.25 359 | 75.86 384 | 42.32 351 | 73.99 398 | 41.57 391 | 68.91 362 | 85.18 336 |
|
| LF4IMVS | | | 64.02 353 | 62.19 357 | 69.50 363 | 70.90 401 | 53.29 366 | 76.13 355 | 77.18 364 | 52.65 384 | 58.59 386 | 80.98 345 | 23.55 404 | 76.52 381 | 53.06 339 | 66.66 369 | 78.68 387 |
|
| UnsupCasMVSNet_bld | | | 63.70 354 | 61.53 360 | 70.21 361 | 73.69 390 | 51.39 379 | 72.82 375 | 81.89 319 | 55.63 376 | 57.81 390 | 71.80 395 | 38.67 370 | 78.61 369 | 49.26 360 | 52.21 400 | 80.63 381 |
|
| test_fmvs3 | | | 63.36 355 | 61.82 358 | 67.98 373 | 62.51 412 | 46.96 395 | 77.37 352 | 74.03 380 | 45.24 397 | 67.50 335 | 78.79 368 | 12.16 417 | 72.98 401 | 72.77 174 | 66.02 372 | 83.99 352 |
|
| dmvs_testset | | | 62.63 356 | 64.11 347 | 58.19 386 | 78.55 369 | 24.76 424 | 75.28 363 | 65.94 402 | 67.91 258 | 60.34 380 | 76.01 383 | 53.56 246 | 73.94 399 | 31.79 405 | 67.65 366 | 75.88 393 |
|
| mvsany_test1 | | | 62.30 357 | 61.26 361 | 65.41 378 | 69.52 402 | 54.86 351 | 66.86 398 | 49.78 418 | 46.65 395 | 68.50 329 | 83.21 317 | 49.15 301 | 66.28 410 | 56.93 319 | 60.77 384 | 75.11 394 |
|
| new-patchmatchnet | | | 61.73 358 | 61.73 359 | 61.70 382 | 72.74 398 | 24.50 425 | 69.16 391 | 78.03 355 | 61.40 335 | 56.72 393 | 75.53 387 | 38.42 371 | 76.48 382 | 45.95 379 | 57.67 388 | 84.13 350 |
|
| PVSNet_0 | | 57.27 20 | 61.67 359 | 59.27 362 | 68.85 367 | 79.61 362 | 57.44 315 | 68.01 394 | 73.44 382 | 55.93 375 | 58.54 387 | 70.41 398 | 44.58 337 | 77.55 375 | 47.01 372 | 35.91 410 | 71.55 398 |
|
| test_vis1_rt | | | 60.28 360 | 58.42 363 | 65.84 377 | 67.25 406 | 55.60 343 | 70.44 386 | 60.94 410 | 44.33 399 | 59.00 385 | 66.64 400 | 24.91 400 | 68.67 407 | 62.80 259 | 69.48 358 | 73.25 396 |
|
| ttmdpeth | | | 59.91 361 | 57.10 365 | 68.34 371 | 67.13 407 | 46.65 396 | 74.64 370 | 67.41 398 | 48.30 393 | 62.52 375 | 85.04 282 | 20.40 407 | 75.93 387 | 42.55 389 | 45.90 408 | 82.44 369 |
|
| MVS-HIRNet | | | 59.14 362 | 57.67 364 | 63.57 380 | 81.65 331 | 43.50 405 | 71.73 378 | 65.06 404 | 39.59 405 | 51.43 400 | 57.73 408 | 38.34 372 | 82.58 352 | 39.53 394 | 73.95 329 | 64.62 404 |
|
| pmmvs3 | | | 57.79 363 | 54.26 368 | 68.37 370 | 64.02 411 | 56.72 324 | 75.12 367 | 65.17 403 | 40.20 403 | 52.93 399 | 69.86 399 | 20.36 408 | 75.48 391 | 45.45 382 | 55.25 396 | 72.90 397 |
|
| DSMNet-mixed | | | 57.77 364 | 56.90 366 | 60.38 384 | 67.70 405 | 35.61 415 | 69.18 390 | 53.97 416 | 32.30 414 | 57.49 391 | 79.88 357 | 40.39 363 | 68.57 408 | 38.78 397 | 72.37 342 | 76.97 390 |
|
| MVStest1 | | | 56.63 365 | 52.76 371 | 68.25 372 | 61.67 413 | 53.25 367 | 71.67 379 | 68.90 396 | 38.59 406 | 50.59 402 | 83.05 320 | 25.08 399 | 70.66 403 | 36.76 400 | 38.56 409 | 80.83 380 |
|
| WB-MVS | | | 54.94 366 | 54.72 367 | 55.60 392 | 73.50 391 | 20.90 426 | 74.27 372 | 61.19 409 | 59.16 353 | 50.61 401 | 74.15 389 | 47.19 313 | 75.78 389 | 17.31 417 | 35.07 411 | 70.12 399 |
|
| LCM-MVSNet | | | 54.25 367 | 49.68 377 | 67.97 374 | 53.73 421 | 45.28 400 | 66.85 399 | 80.78 330 | 35.96 410 | 39.45 411 | 62.23 404 | 8.70 421 | 78.06 373 | 48.24 367 | 51.20 401 | 80.57 382 |
|
| mvsany_test3 | | | 53.99 368 | 51.45 373 | 61.61 383 | 55.51 417 | 44.74 403 | 63.52 407 | 45.41 422 | 43.69 400 | 58.11 389 | 76.45 381 | 17.99 410 | 63.76 413 | 54.77 330 | 47.59 404 | 76.34 392 |
|
| SSC-MVS | | | 53.88 369 | 53.59 369 | 54.75 394 | 72.87 397 | 19.59 427 | 73.84 374 | 60.53 411 | 57.58 367 | 49.18 405 | 73.45 392 | 46.34 322 | 75.47 392 | 16.20 420 | 32.28 413 | 69.20 400 |
|
| FPMVS | | | 53.68 370 | 51.64 372 | 59.81 385 | 65.08 409 | 51.03 381 | 69.48 389 | 69.58 392 | 41.46 402 | 40.67 409 | 72.32 394 | 16.46 413 | 70.00 406 | 24.24 413 | 65.42 374 | 58.40 409 |
|
| APD_test1 | | | 53.31 371 | 49.93 376 | 63.42 381 | 65.68 408 | 50.13 386 | 71.59 380 | 66.90 400 | 34.43 411 | 40.58 410 | 71.56 396 | 8.65 422 | 76.27 384 | 34.64 403 | 55.36 394 | 63.86 405 |
|
| N_pmnet | | | 52.79 372 | 53.26 370 | 51.40 396 | 78.99 368 | 7.68 430 | 69.52 388 | 3.89 429 | 51.63 388 | 57.01 392 | 74.98 388 | 40.83 360 | 65.96 411 | 37.78 398 | 64.67 376 | 80.56 383 |
|
| test_f | | | 52.09 373 | 50.82 374 | 55.90 390 | 53.82 420 | 42.31 410 | 59.42 410 | 58.31 414 | 36.45 409 | 56.12 396 | 70.96 397 | 12.18 416 | 57.79 416 | 53.51 336 | 56.57 391 | 67.60 401 |
|
| EGC-MVSNET | | | 52.07 374 | 47.05 378 | 67.14 375 | 83.51 294 | 60.71 275 | 80.50 312 | 67.75 397 | 0.07 424 | 0.43 425 | 75.85 386 | 24.26 402 | 81.54 357 | 28.82 407 | 62.25 380 | 59.16 407 |
|
| new_pmnet | | | 50.91 375 | 50.29 375 | 52.78 395 | 68.58 404 | 34.94 417 | 63.71 406 | 56.63 415 | 39.73 404 | 44.95 406 | 65.47 401 | 21.93 406 | 58.48 415 | 34.98 402 | 56.62 390 | 64.92 403 |
|
| ANet_high | | | 50.57 376 | 46.10 380 | 63.99 379 | 48.67 424 | 39.13 413 | 70.99 383 | 80.85 329 | 61.39 336 | 31.18 413 | 57.70 409 | 17.02 412 | 73.65 400 | 31.22 406 | 15.89 421 | 79.18 386 |
|
| test_vis3_rt | | | 49.26 377 | 47.02 379 | 56.00 389 | 54.30 418 | 45.27 401 | 66.76 400 | 48.08 419 | 36.83 408 | 44.38 407 | 53.20 412 | 7.17 424 | 64.07 412 | 56.77 321 | 55.66 392 | 58.65 408 |
|
| testf1 | | | 45.72 378 | 41.96 382 | 57.00 387 | 56.90 415 | 45.32 398 | 66.14 401 | 59.26 412 | 26.19 415 | 30.89 414 | 60.96 406 | 4.14 425 | 70.64 404 | 26.39 411 | 46.73 406 | 55.04 410 |
|
| APD_test2 | | | 45.72 378 | 41.96 382 | 57.00 387 | 56.90 415 | 45.32 398 | 66.14 401 | 59.26 412 | 26.19 415 | 30.89 414 | 60.96 406 | 4.14 425 | 70.64 404 | 26.39 411 | 46.73 406 | 55.04 410 |
|
| dongtai | | | 45.42 380 | 45.38 381 | 45.55 398 | 73.36 394 | 26.85 422 | 67.72 395 | 34.19 424 | 54.15 380 | 49.65 404 | 56.41 411 | 25.43 398 | 62.94 414 | 19.45 415 | 28.09 415 | 46.86 414 |
|
| Gipuma |  | | 45.18 381 | 41.86 384 | 55.16 393 | 77.03 376 | 51.52 377 | 32.50 417 | 80.52 334 | 32.46 413 | 27.12 416 | 35.02 417 | 9.52 420 | 75.50 390 | 22.31 414 | 60.21 387 | 38.45 416 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| PMVS |  | 37.38 22 | 44.16 382 | 40.28 386 | 55.82 391 | 40.82 426 | 42.54 409 | 65.12 405 | 63.99 406 | 34.43 411 | 24.48 417 | 57.12 410 | 3.92 427 | 76.17 386 | 17.10 418 | 55.52 393 | 48.75 412 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| PMMVS2 | | | 40.82 383 | 38.86 387 | 46.69 397 | 53.84 419 | 16.45 428 | 48.61 414 | 49.92 417 | 37.49 407 | 31.67 412 | 60.97 405 | 8.14 423 | 56.42 417 | 28.42 408 | 30.72 414 | 67.19 402 |
|
| kuosan | | | 39.70 384 | 40.40 385 | 37.58 401 | 64.52 410 | 26.98 420 | 65.62 403 | 33.02 425 | 46.12 396 | 42.79 408 | 48.99 414 | 24.10 403 | 46.56 422 | 12.16 423 | 26.30 416 | 39.20 415 |
|
| E-PMN | | | 31.77 385 | 30.64 388 | 35.15 402 | 52.87 422 | 27.67 419 | 57.09 412 | 47.86 420 | 24.64 417 | 16.40 422 | 33.05 418 | 11.23 418 | 54.90 418 | 14.46 421 | 18.15 419 | 22.87 418 |
|
| test_method | | | 31.52 386 | 29.28 390 | 38.23 400 | 27.03 428 | 6.50 431 | 20.94 419 | 62.21 408 | 4.05 422 | 22.35 420 | 52.50 413 | 13.33 414 | 47.58 420 | 27.04 410 | 34.04 412 | 60.62 406 |
|
| EMVS | | | 30.81 387 | 29.65 389 | 34.27 403 | 50.96 423 | 25.95 423 | 56.58 413 | 46.80 421 | 24.01 418 | 15.53 423 | 30.68 419 | 12.47 415 | 54.43 419 | 12.81 422 | 17.05 420 | 22.43 419 |
|
| MVE |  | 26.22 23 | 30.37 388 | 25.89 392 | 43.81 399 | 44.55 425 | 35.46 416 | 28.87 418 | 39.07 423 | 18.20 419 | 18.58 421 | 40.18 416 | 2.68 428 | 47.37 421 | 17.07 419 | 23.78 418 | 48.60 413 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| cdsmvs_eth3d_5k | | | 19.96 389 | 26.61 391 | 0.00 409 | 0.00 432 | 0.00 434 | 0.00 420 | 89.26 184 | 0.00 427 | 0.00 428 | 88.61 184 | 61.62 169 | 0.00 428 | 0.00 427 | 0.00 426 | 0.00 424 |
|
| tmp_tt | | | 18.61 390 | 21.40 393 | 10.23 406 | 4.82 429 | 10.11 429 | 34.70 416 | 30.74 427 | 1.48 423 | 23.91 419 | 26.07 420 | 28.42 395 | 13.41 425 | 27.12 409 | 15.35 422 | 7.17 420 |
|
| wuyk23d | | | 16.82 391 | 15.94 394 | 19.46 405 | 58.74 414 | 31.45 418 | 39.22 415 | 3.74 430 | 6.84 421 | 6.04 424 | 2.70 424 | 1.27 429 | 24.29 424 | 10.54 424 | 14.40 423 | 2.63 421 |
|
| ab-mvs-re | | | 7.23 392 | 9.64 395 | 0.00 409 | 0.00 432 | 0.00 434 | 0.00 420 | 0.00 433 | 0.00 427 | 0.00 428 | 86.72 234 | 0.00 432 | 0.00 428 | 0.00 427 | 0.00 426 | 0.00 424 |
|
| test123 | | | 6.12 393 | 8.11 396 | 0.14 407 | 0.06 431 | 0.09 432 | 71.05 382 | 0.03 432 | 0.04 426 | 0.25 427 | 1.30 426 | 0.05 430 | 0.03 427 | 0.21 426 | 0.01 425 | 0.29 422 |
|
| testmvs | | | 6.04 394 | 8.02 397 | 0.10 408 | 0.08 430 | 0.03 433 | 69.74 387 | 0.04 431 | 0.05 425 | 0.31 426 | 1.68 425 | 0.02 431 | 0.04 426 | 0.24 425 | 0.02 424 | 0.25 423 |
|
| pcd_1.5k_mvsjas | | | 5.26 395 | 7.02 398 | 0.00 409 | 0.00 432 | 0.00 434 | 0.00 420 | 0.00 433 | 0.00 427 | 0.00 428 | 0.00 427 | 63.15 146 | 0.00 428 | 0.00 427 | 0.00 426 | 0.00 424 |
|
| mmdepth | | | 0.00 396 | 0.00 399 | 0.00 409 | 0.00 432 | 0.00 434 | 0.00 420 | 0.00 433 | 0.00 427 | 0.00 428 | 0.00 427 | 0.00 432 | 0.00 428 | 0.00 427 | 0.00 426 | 0.00 424 |
|
| monomultidepth | | | 0.00 396 | 0.00 399 | 0.00 409 | 0.00 432 | 0.00 434 | 0.00 420 | 0.00 433 | 0.00 427 | 0.00 428 | 0.00 427 | 0.00 432 | 0.00 428 | 0.00 427 | 0.00 426 | 0.00 424 |
|
| test_blank | | | 0.00 396 | 0.00 399 | 0.00 409 | 0.00 432 | 0.00 434 | 0.00 420 | 0.00 433 | 0.00 427 | 0.00 428 | 0.00 427 | 0.00 432 | 0.00 428 | 0.00 427 | 0.00 426 | 0.00 424 |
|
| uanet_test | | | 0.00 396 | 0.00 399 | 0.00 409 | 0.00 432 | 0.00 434 | 0.00 420 | 0.00 433 | 0.00 427 | 0.00 428 | 0.00 427 | 0.00 432 | 0.00 428 | 0.00 427 | 0.00 426 | 0.00 424 |
|
| DCPMVS | | | 0.00 396 | 0.00 399 | 0.00 409 | 0.00 432 | 0.00 434 | 0.00 420 | 0.00 433 | 0.00 427 | 0.00 428 | 0.00 427 | 0.00 432 | 0.00 428 | 0.00 427 | 0.00 426 | 0.00 424 |
|
| sosnet-low-res | | | 0.00 396 | 0.00 399 | 0.00 409 | 0.00 432 | 0.00 434 | 0.00 420 | 0.00 433 | 0.00 427 | 0.00 428 | 0.00 427 | 0.00 432 | 0.00 428 | 0.00 427 | 0.00 426 | 0.00 424 |
|
| sosnet | | | 0.00 396 | 0.00 399 | 0.00 409 | 0.00 432 | 0.00 434 | 0.00 420 | 0.00 433 | 0.00 427 | 0.00 428 | 0.00 427 | 0.00 432 | 0.00 428 | 0.00 427 | 0.00 426 | 0.00 424 |
|
| uncertanet | | | 0.00 396 | 0.00 399 | 0.00 409 | 0.00 432 | 0.00 434 | 0.00 420 | 0.00 433 | 0.00 427 | 0.00 428 | 0.00 427 | 0.00 432 | 0.00 428 | 0.00 427 | 0.00 426 | 0.00 424 |
|
| Regformer | | | 0.00 396 | 0.00 399 | 0.00 409 | 0.00 432 | 0.00 434 | 0.00 420 | 0.00 433 | 0.00 427 | 0.00 428 | 0.00 427 | 0.00 432 | 0.00 428 | 0.00 427 | 0.00 426 | 0.00 424 |
|
| uanet | | | 0.00 396 | 0.00 399 | 0.00 409 | 0.00 432 | 0.00 434 | 0.00 420 | 0.00 433 | 0.00 427 | 0.00 428 | 0.00 427 | 0.00 432 | 0.00 428 | 0.00 427 | 0.00 426 | 0.00 424 |
|
| WAC-MVS | | | | | | | 42.58 407 | | | | | | | | 39.46 395 | | |
|
| FOURS1 | | | | | | 95.00 10 | 72.39 39 | 95.06 1 | 93.84 15 | 74.49 121 | 91.30 15 | | | | | | |
|
| MSC_two_6792asdad | | | | | 89.16 1 | 94.34 27 | 75.53 2 | | 92.99 49 | | | | | 97.53 2 | 89.67 7 | 96.44 9 | 94.41 39 |
|
| PC_three_1452 | | | | | | | | | | 68.21 255 | 92.02 12 | 94.00 50 | 82.09 5 | 95.98 56 | 84.58 54 | 96.68 2 | 94.95 11 |
|
| No_MVS | | | | | 89.16 1 | 94.34 27 | 75.53 2 | | 92.99 49 | | | | | 97.53 2 | 89.67 7 | 96.44 9 | 94.41 39 |
|
| test_one_0601 | | | | | | 95.07 7 | 71.46 57 | | 94.14 5 | 78.27 35 | 92.05 11 | 95.74 6 | 80.83 11 | | | | |
|
| eth-test2 | | | | | | 0.00 432 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 432 | | | | | | | | | | | |
|
| ZD-MVS | | | | | | 94.38 25 | 72.22 44 | | 92.67 67 | 70.98 192 | 87.75 36 | 94.07 45 | 74.01 32 | 96.70 27 | 84.66 53 | 94.84 44 | |
|
| RE-MVS-def | | | | 85.48 60 | | 93.06 58 | 70.63 76 | 91.88 38 | 92.27 84 | 73.53 145 | 85.69 57 | 94.45 28 | 63.87 137 | | 82.75 76 | 91.87 84 | 92.50 126 |
|
| IU-MVS | | | | | | 95.30 2 | 71.25 59 | | 92.95 55 | 66.81 266 | 92.39 6 | | | | 88.94 17 | 96.63 4 | 94.85 20 |
|
| OPU-MVS | | | | | 89.06 3 | 94.62 15 | 75.42 4 | 93.57 7 | | | | 94.02 48 | 82.45 3 | 96.87 20 | 83.77 65 | 96.48 8 | 94.88 15 |
|
| test_241102_TWO | | | | | | | | | 94.06 10 | 77.24 53 | 92.78 4 | 95.72 8 | 81.26 8 | 97.44 7 | 89.07 15 | 96.58 6 | 94.26 48 |
|
| test_241102_ONE | | | | | | 95.30 2 | 70.98 66 | | 94.06 10 | 77.17 56 | 93.10 1 | 95.39 14 | 82.99 1 | 97.27 12 | | | |
|
| 9.14 | | | | 88.26 15 | | 92.84 63 | | 91.52 48 | 94.75 1 | 73.93 134 | 88.57 25 | 94.67 21 | 75.57 22 | 95.79 58 | 86.77 36 | 95.76 23 | |
|
| save fliter | | | | | | 93.80 40 | 72.35 42 | 90.47 66 | 91.17 125 | 74.31 125 | | | | | | | |
|
| test_0728_THIRD | | | | | | | | | | 78.38 33 | 92.12 9 | 95.78 4 | 81.46 7 | 97.40 9 | 89.42 10 | 96.57 7 | 94.67 28 |
|
| test_0728_SECOND | | | | | 87.71 32 | 95.34 1 | 71.43 58 | 93.49 9 | 94.23 3 | | | | | 97.49 4 | 89.08 13 | 96.41 12 | 94.21 49 |
|
| test0726 | | | | | | 95.27 5 | 71.25 59 | 93.60 6 | 94.11 6 | 77.33 50 | 92.81 3 | 95.79 3 | 80.98 9 | | | | |
|
| GSMVS | | | | | | | | | | | | | | | | | 88.96 253 |
|
| test_part2 | | | | | | 95.06 8 | 72.65 32 | | | | 91.80 13 | | | | | | |
|
| sam_mvs1 | | | | | | | | | | | | | 51.32 274 | | | | 88.96 253 |
|
| sam_mvs | | | | | | | | | | | | | 50.01 288 | | | | |
|
| ambc | | | | | 75.24 320 | 73.16 395 | 50.51 385 | 63.05 409 | 87.47 234 | | 64.28 364 | 77.81 375 | 17.80 411 | 89.73 277 | 57.88 310 | 60.64 385 | 85.49 330 |
|
| MTGPA |  | | | | | | | | 92.02 93 | | | | | | | | |
|
| test_post1 | | | | | | | | 78.90 335 | | | | 5.43 423 | 48.81 307 | 85.44 332 | 59.25 294 | | |
|
| test_post | | | | | | | | | | | | 5.46 422 | 50.36 286 | 84.24 340 | | | |
|
| patchmatchnet-post | | | | | | | | | | | | 74.00 390 | 51.12 277 | 88.60 299 | | | |
|
| GG-mvs-BLEND | | | | | 75.38 318 | 81.59 333 | 55.80 340 | 79.32 326 | 69.63 391 | | 67.19 339 | 73.67 391 | 43.24 345 | 88.90 295 | 50.41 350 | 84.50 185 | 81.45 376 |
|
| MTMP | | | | | | | | 92.18 34 | 32.83 426 | | | | | | | | |
|
| gm-plane-assit | | | | | | 81.40 337 | 53.83 360 | | | 62.72 325 | | 80.94 346 | | 92.39 203 | 63.40 256 | | |
|
| test9_res | | | | | | | | | | | | | | | 84.90 47 | 95.70 26 | 92.87 114 |
|
| TEST9 | | | | | | 93.26 52 | 72.96 25 | 88.75 120 | 91.89 101 | 68.44 252 | 85.00 64 | 93.10 71 | 74.36 28 | 95.41 73 | | | |
|
| test_8 | | | | | | 93.13 54 | 72.57 35 | 88.68 125 | 91.84 105 | 68.69 247 | 84.87 68 | 93.10 71 | 74.43 26 | 95.16 83 | | | |
|
| agg_prior2 | | | | | | | | | | | | | | | 82.91 74 | 95.45 29 | 92.70 117 |
|
| agg_prior | | | | | | 92.85 62 | 71.94 50 | | 91.78 108 | | 84.41 79 | | | 94.93 94 | | | |
|
| TestCases | | | | | 79.58 258 | 85.15 259 | 63.62 227 | | 79.83 343 | 62.31 328 | 60.32 381 | 86.73 232 | 32.02 387 | 88.96 293 | 50.28 353 | 71.57 350 | 86.15 318 |
|
| test_prior4 | | | | | | | 72.60 34 | 89.01 111 | | | | | | | | | |
|
| test_prior2 | | | | | | | | 88.85 117 | | 75.41 98 | 84.91 66 | 93.54 60 | 74.28 29 | | 83.31 68 | 95.86 20 | |
|
| test_prior | | | | | 86.33 57 | 92.61 68 | 69.59 91 | | 92.97 54 | | | | | 95.48 67 | | | 93.91 61 |
|
| 旧先验2 | | | | | | | | 86.56 195 | | 58.10 362 | 87.04 46 | | | 88.98 291 | 74.07 159 | | |
|
| æ–°å‡ ä½•2 | | | | | | | | 86.29 204 | | | | | | | | | |
|
| æ–°å‡ ä½•1 | | | | | 83.42 155 | 93.13 54 | 70.71 74 | | 85.48 268 | 57.43 368 | 81.80 117 | 91.98 95 | 63.28 141 | 92.27 209 | 64.60 248 | 92.99 70 | 87.27 295 |
|
| 旧先验1 | | | | | | 91.96 74 | 65.79 184 | | 86.37 256 | | | 93.08 75 | 69.31 83 | | | 92.74 73 | 88.74 264 |
|
| æ— å…ˆéªŒ | | | | | | | | 87.48 163 | 88.98 196 | 60.00 345 | | | | 94.12 125 | 67.28 225 | | 88.97 252 |
|
| 原ACMM2 | | | | | | | | 86.86 184 | | | | | | | | | |
|
| 原ACMM1 | | | | | 84.35 113 | 93.01 60 | 68.79 110 | | 92.44 77 | 63.96 311 | 81.09 127 | 91.57 109 | 66.06 119 | 95.45 68 | 67.19 227 | 94.82 46 | 88.81 259 |
|
| test222 | | | | | | 91.50 80 | 68.26 129 | 84.16 257 | 83.20 302 | 54.63 379 | 79.74 140 | 91.63 106 | 58.97 202 | | | 91.42 91 | 86.77 308 |
|
| testdata2 | | | | | | | | | | | | | | 91.01 257 | 62.37 266 | | |
|
| segment_acmp | | | | | | | | | | | | | 73.08 38 | | | | |
|
| testdata | | | | | 79.97 248 | 90.90 91 | 64.21 218 | | 84.71 275 | 59.27 352 | 85.40 59 | 92.91 77 | 62.02 165 | 89.08 289 | 68.95 210 | 91.37 92 | 86.63 312 |
|
| testdata1 | | | | | | | | 84.14 258 | | 75.71 92 | | | | | | | |
|
| test12 | | | | | 86.80 52 | 92.63 67 | 70.70 75 | | 91.79 107 | | 82.71 108 | | 71.67 54 | 96.16 47 | | 94.50 51 | 93.54 85 |
|
| plane_prior7 | | | | | | 90.08 108 | 68.51 123 | | | | | | | | | | |
|
| plane_prior6 | | | | | | 89.84 117 | 68.70 118 | | | | | | 60.42 195 | | | | |
|
| plane_prior5 | | | | | | | | | 92.44 77 | | | | | 95.38 75 | 78.71 111 | 86.32 163 | 91.33 161 |
|
| plane_prior4 | | | | | | | | | | | | 91.00 131 | | | | | |
|
| plane_prior3 | | | | | | | 68.60 121 | | | 78.44 31 | 78.92 152 | | | | | | |
|
| plane_prior2 | | | | | | | | 91.25 52 | | 79.12 23 | | | | | | | |
|
| plane_prior1 | | | | | | 89.90 116 | | | | | | | | | | | |
|
| plane_prior | | | | | | | 68.71 116 | 90.38 70 | | 77.62 40 | | | | | | 86.16 167 | |
|
| n2 | | | | | | | | | 0.00 433 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 433 | | | | | | | | |
|
| door-mid | | | | | | | | | 69.98 390 | | | | | | | | |
|
| lessismore_v0 | | | | | 78.97 267 | 81.01 344 | 57.15 318 | | 65.99 401 | | 61.16 378 | 82.82 326 | 39.12 367 | 91.34 246 | 59.67 290 | 46.92 405 | 88.43 271 |
|
| LGP-MVS_train | | | | | 84.50 106 | 89.23 142 | 68.76 112 | | 91.94 99 | 75.37 99 | 76.64 205 | 91.51 110 | 54.29 239 | 94.91 95 | 78.44 113 | 83.78 197 | 89.83 225 |
|
| test11 | | | | | | | | | 92.23 87 | | | | | | | | |
|
| door | | | | | | | | | 69.44 393 | | | | | | | | |
|
| HQP5-MVS | | | | | | | 66.98 163 | | | | | | | | | | |
|
| HQP-NCC | | | | | | 89.33 135 | | 89.17 103 | | 76.41 77 | 77.23 190 | | | | | | |
|
| ACMP_Plane | | | | | | 89.33 135 | | 89.17 103 | | 76.41 77 | 77.23 190 | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 77.47 123 | | |
|
| HQP4-MVS | | | | | | | | | | | 77.24 189 | | | 95.11 87 | | | 91.03 171 |
|
| HQP3-MVS | | | | | | | | | 92.19 90 | | | | | | | 85.99 171 | |
|
| HQP2-MVS | | | | | | | | | | | | | 60.17 198 | | | | |
|
| NP-MVS | | | | | | 89.62 121 | 68.32 127 | | | | | 90.24 143 | | | | | |
|
| MDTV_nov1_ep13_2view | | | | | | | 37.79 414 | 75.16 365 | | 55.10 377 | 66.53 348 | | 49.34 298 | | 53.98 333 | | 87.94 279 |
|
| MDTV_nov1_ep13 | | | | 69.97 307 | | 83.18 302 | 53.48 362 | 77.10 354 | 80.18 342 | 60.45 340 | 69.33 321 | 80.44 350 | 48.89 306 | 86.90 314 | 51.60 345 | 78.51 266 | |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 81.95 228 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 81.25 233 | |
|
| Test By Simon | | | | | | | | | | | | | 64.33 133 | | | | |
|
| ITE_SJBPF | | | | | 78.22 282 | 81.77 330 | 60.57 277 | | 83.30 297 | 69.25 232 | 67.54 334 | 87.20 223 | 36.33 379 | 87.28 313 | 54.34 332 | 74.62 324 | 86.80 307 |
|
| DeepMVS_CX |  | | | | 27.40 404 | 40.17 427 | 26.90 421 | | 24.59 428 | 17.44 420 | 23.95 418 | 48.61 415 | 9.77 419 | 26.48 423 | 18.06 416 | 24.47 417 | 28.83 417 |
|