| DVP-MVS++ | | | 90.23 1 | 91.01 1 | 87.89 24 | 94.34 27 | 71.25 57 | 95.06 1 | 94.23 3 | 78.38 33 | 92.78 4 | 95.74 6 | 82.45 3 | 97.49 4 | 89.42 9 | 96.68 2 | 94.95 10 |
|
| SED-MVS | | | 90.08 2 | 90.85 2 | 87.77 26 | 95.30 2 | 70.98 63 | 93.57 7 | 94.06 10 | 77.24 50 | 93.10 1 | 95.72 8 | 82.99 1 | 97.44 6 | 89.07 14 | 96.63 4 | 94.88 14 |
|
| DVP-MVS |  | | 89.60 3 | 90.35 3 | 87.33 40 | 95.27 5 | 71.25 57 | 93.49 9 | 92.73 60 | 77.33 48 | 92.12 9 | 95.78 4 | 80.98 9 | 97.40 8 | 89.08 12 | 96.41 12 | 93.33 88 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| MSP-MVS | | | 89.51 4 | 89.91 5 | 88.30 10 | 94.28 30 | 73.46 17 | 92.90 16 | 94.11 6 | 80.27 10 | 91.35 14 | 94.16 37 | 78.35 13 | 96.77 24 | 89.59 8 | 94.22 59 | 94.67 25 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| DPE-MVS |  | | 89.48 5 | 89.98 4 | 88.01 16 | 94.80 11 | 72.69 31 | 91.59 43 | 94.10 8 | 75.90 87 | 92.29 7 | 95.66 10 | 81.67 6 | 97.38 10 | 87.44 33 | 96.34 15 | 93.95 54 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| MM | | | 89.16 6 | 89.23 7 | 88.97 4 | 90.79 90 | 73.65 10 | 92.66 23 | 91.17 118 | 86.57 1 | 87.39 37 | 94.97 16 | 71.70 52 | 97.68 1 | 92.19 1 | 95.63 28 | 95.57 1 |
|
| APDe-MVS |  | | 89.15 7 | 89.63 6 | 87.73 28 | 94.49 18 | 71.69 52 | 93.83 4 | 93.96 13 | 75.70 91 | 91.06 16 | 96.03 1 | 76.84 14 | 97.03 17 | 89.09 11 | 95.65 27 | 94.47 33 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| SMA-MVS |  | | 89.08 8 | 89.23 7 | 88.61 6 | 94.25 31 | 73.73 9 | 92.40 24 | 93.63 21 | 74.77 109 | 92.29 7 | 95.97 2 | 74.28 29 | 97.24 12 | 88.58 21 | 96.91 1 | 94.87 16 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| HPM-MVS++ |  | | 89.02 9 | 89.15 9 | 88.63 5 | 95.01 9 | 76.03 1 | 92.38 27 | 92.85 55 | 80.26 11 | 87.78 30 | 94.27 32 | 75.89 19 | 96.81 23 | 87.45 32 | 96.44 9 | 93.05 100 |
|
| CNVR-MVS | | | 88.93 10 | 89.13 10 | 88.33 8 | 94.77 12 | 73.82 8 | 90.51 61 | 93.00 43 | 80.90 7 | 88.06 26 | 94.06 42 | 76.43 16 | 96.84 21 | 88.48 24 | 95.99 18 | 94.34 39 |
|
| SteuartSystems-ACMMP | | | 88.72 11 | 88.86 11 | 88.32 9 | 92.14 69 | 72.96 25 | 93.73 5 | 93.67 20 | 80.19 12 | 88.10 25 | 94.80 17 | 73.76 33 | 97.11 15 | 87.51 31 | 95.82 21 | 94.90 13 |
| Skip Steuart: Steuart Systems R&D Blog. |
| SF-MVS | | | 88.46 12 | 88.74 12 | 87.64 35 | 92.78 61 | 71.95 50 | 92.40 24 | 94.74 2 | 75.71 89 | 89.16 19 | 95.10 14 | 75.65 21 | 96.19 43 | 87.07 34 | 96.01 17 | 94.79 21 |
|
| DeepPCF-MVS | | 80.84 1 | 88.10 13 | 88.56 13 | 86.73 50 | 92.24 68 | 69.03 100 | 89.57 88 | 93.39 30 | 77.53 45 | 89.79 18 | 94.12 39 | 78.98 12 | 96.58 35 | 85.66 37 | 95.72 24 | 94.58 29 |
|
| MVS_0304 | | | 88.08 14 | 88.08 17 | 88.08 14 | 89.67 115 | 72.04 48 | 92.26 33 | 89.26 175 | 84.19 2 | 85.01 57 | 95.18 13 | 69.93 71 | 97.20 14 | 91.63 2 | 95.60 29 | 94.99 9 |
|
| SD-MVS | | | 88.06 15 | 88.50 14 | 86.71 51 | 92.60 66 | 72.71 29 | 91.81 42 | 93.19 35 | 77.87 36 | 90.32 17 | 94.00 46 | 74.83 23 | 93.78 138 | 87.63 30 | 94.27 58 | 93.65 71 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| NCCC | | | 88.06 15 | 88.01 19 | 88.24 11 | 94.41 22 | 73.62 11 | 91.22 52 | 92.83 56 | 81.50 5 | 85.79 50 | 93.47 60 | 73.02 40 | 97.00 18 | 84.90 42 | 94.94 39 | 94.10 47 |
|
| ACMMP_NAP | | | 88.05 17 | 88.08 17 | 87.94 19 | 93.70 41 | 73.05 22 | 90.86 56 | 93.59 23 | 76.27 81 | 88.14 24 | 95.09 15 | 71.06 59 | 96.67 29 | 87.67 29 | 96.37 14 | 94.09 48 |
|
| TSAR-MVS + MP. | | | 88.02 18 | 88.11 16 | 87.72 30 | 93.68 43 | 72.13 46 | 91.41 47 | 92.35 76 | 74.62 113 | 88.90 20 | 93.85 52 | 75.75 20 | 96.00 49 | 87.80 28 | 94.63 48 | 95.04 7 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| ZNCC-MVS | | | 87.94 19 | 87.85 20 | 88.20 12 | 94.39 24 | 73.33 19 | 93.03 14 | 93.81 17 | 76.81 63 | 85.24 55 | 94.32 31 | 71.76 50 | 96.93 19 | 85.53 39 | 95.79 22 | 94.32 40 |
|
| MP-MVS |  | | 87.71 20 | 87.64 22 | 87.93 21 | 94.36 26 | 73.88 6 | 92.71 22 | 92.65 65 | 77.57 41 | 83.84 84 | 94.40 30 | 72.24 45 | 96.28 40 | 85.65 38 | 95.30 35 | 93.62 74 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| MP-MVS-pluss | | | 87.67 21 | 87.72 21 | 87.54 36 | 93.64 44 | 72.04 48 | 89.80 79 | 93.50 25 | 75.17 102 | 86.34 46 | 95.29 12 | 70.86 61 | 96.00 49 | 88.78 19 | 96.04 16 | 94.58 29 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| HFP-MVS | | | 87.58 22 | 87.47 24 | 87.94 19 | 94.58 16 | 73.54 15 | 93.04 12 | 93.24 33 | 76.78 65 | 84.91 61 | 94.44 28 | 70.78 62 | 96.61 32 | 84.53 49 | 94.89 41 | 93.66 67 |
|
| ACMMPR | | | 87.44 23 | 87.23 27 | 88.08 14 | 94.64 13 | 73.59 12 | 93.04 12 | 93.20 34 | 76.78 65 | 84.66 68 | 94.52 21 | 68.81 86 | 96.65 30 | 84.53 49 | 94.90 40 | 94.00 52 |
|
| APD-MVS |  | | 87.44 23 | 87.52 23 | 87.19 42 | 94.24 32 | 72.39 39 | 91.86 41 | 92.83 56 | 73.01 152 | 88.58 21 | 94.52 21 | 73.36 34 | 96.49 36 | 84.26 52 | 95.01 37 | 92.70 109 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| GST-MVS | | | 87.42 25 | 87.26 25 | 87.89 24 | 94.12 36 | 72.97 24 | 92.39 26 | 93.43 28 | 76.89 61 | 84.68 65 | 93.99 48 | 70.67 64 | 96.82 22 | 84.18 56 | 95.01 37 | 93.90 57 |
|
| region2R | | | 87.42 25 | 87.20 28 | 88.09 13 | 94.63 14 | 73.55 13 | 93.03 14 | 93.12 37 | 76.73 68 | 84.45 72 | 94.52 21 | 69.09 80 | 96.70 27 | 84.37 51 | 94.83 45 | 94.03 51 |
|
| MCST-MVS | | | 87.37 27 | 87.25 26 | 87.73 28 | 94.53 17 | 72.46 38 | 89.82 77 | 93.82 16 | 73.07 150 | 84.86 64 | 92.89 74 | 76.22 17 | 96.33 38 | 84.89 44 | 95.13 36 | 94.40 36 |
|
| MTAPA | | | 87.23 28 | 87.00 29 | 87.90 22 | 94.18 35 | 74.25 5 | 86.58 188 | 92.02 87 | 79.45 19 | 85.88 48 | 94.80 17 | 68.07 91 | 96.21 42 | 86.69 36 | 95.34 33 | 93.23 91 |
|
| XVS | | | 87.18 29 | 86.91 33 | 88.00 17 | 94.42 20 | 73.33 19 | 92.78 18 | 92.99 46 | 79.14 21 | 83.67 87 | 94.17 36 | 67.45 97 | 96.60 33 | 83.06 63 | 94.50 51 | 94.07 49 |
|
| HPM-MVS |  | | 87.11 30 | 86.98 30 | 87.50 38 | 93.88 39 | 72.16 45 | 92.19 34 | 93.33 31 | 76.07 84 | 83.81 85 | 93.95 51 | 69.77 74 | 96.01 48 | 85.15 40 | 94.66 47 | 94.32 40 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| CP-MVS | | | 87.11 30 | 86.92 32 | 87.68 34 | 94.20 34 | 73.86 7 | 93.98 3 | 92.82 59 | 76.62 71 | 83.68 86 | 94.46 25 | 67.93 92 | 95.95 52 | 84.20 55 | 94.39 54 | 93.23 91 |
|
| DeepC-MVS | | 79.81 2 | 87.08 32 | 86.88 34 | 87.69 33 | 91.16 80 | 72.32 43 | 90.31 69 | 93.94 14 | 77.12 55 | 82.82 99 | 94.23 35 | 72.13 47 | 97.09 16 | 84.83 45 | 95.37 32 | 93.65 71 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| DeepC-MVS_fast | | 79.65 3 | 86.91 33 | 86.62 36 | 87.76 27 | 93.52 46 | 72.37 41 | 91.26 48 | 93.04 38 | 76.62 71 | 84.22 76 | 93.36 63 | 71.44 56 | 96.76 25 | 80.82 87 | 95.33 34 | 94.16 45 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| SR-MVS | | | 86.73 34 | 86.67 35 | 86.91 46 | 94.11 37 | 72.11 47 | 92.37 28 | 92.56 69 | 74.50 114 | 86.84 44 | 94.65 20 | 67.31 99 | 95.77 55 | 84.80 46 | 92.85 68 | 92.84 107 |
|
| CS-MVS | | | 86.69 35 | 86.95 31 | 85.90 64 | 90.76 91 | 67.57 140 | 92.83 17 | 93.30 32 | 79.67 17 | 84.57 71 | 92.27 86 | 71.47 55 | 95.02 88 | 84.24 54 | 93.46 64 | 95.13 6 |
|
| PGM-MVS | | | 86.68 36 | 86.27 40 | 87.90 22 | 94.22 33 | 73.38 18 | 90.22 71 | 93.04 38 | 75.53 93 | 83.86 83 | 94.42 29 | 67.87 94 | 96.64 31 | 82.70 72 | 94.57 50 | 93.66 67 |
|
| mPP-MVS | | | 86.67 37 | 86.32 39 | 87.72 30 | 94.41 22 | 73.55 13 | 92.74 20 | 92.22 82 | 76.87 62 | 82.81 100 | 94.25 34 | 66.44 107 | 96.24 41 | 82.88 67 | 94.28 57 | 93.38 85 |
|
| CANet | | | 86.45 38 | 86.10 45 | 87.51 37 | 90.09 102 | 70.94 67 | 89.70 83 | 92.59 68 | 81.78 4 | 81.32 116 | 91.43 106 | 70.34 66 | 97.23 13 | 84.26 52 | 93.36 65 | 94.37 37 |
|
| train_agg | | | 86.43 39 | 86.20 41 | 87.13 44 | 93.26 50 | 72.96 25 | 88.75 117 | 91.89 95 | 68.69 239 | 85.00 59 | 93.10 67 | 74.43 26 | 95.41 69 | 84.97 41 | 95.71 25 | 93.02 102 |
|
| PHI-MVS | | | 86.43 39 | 86.17 43 | 87.24 41 | 90.88 87 | 70.96 65 | 92.27 32 | 94.07 9 | 72.45 155 | 85.22 56 | 91.90 92 | 69.47 76 | 96.42 37 | 83.28 62 | 95.94 19 | 94.35 38 |
|
| CSCG | | | 86.41 41 | 86.19 42 | 87.07 45 | 92.91 58 | 72.48 37 | 90.81 57 | 93.56 24 | 73.95 125 | 83.16 94 | 91.07 118 | 75.94 18 | 95.19 77 | 79.94 96 | 94.38 55 | 93.55 78 |
|
| CS-MVS-test | | | 86.29 42 | 86.48 37 | 85.71 66 | 91.02 83 | 67.21 152 | 92.36 29 | 93.78 18 | 78.97 28 | 83.51 90 | 91.20 113 | 70.65 65 | 95.15 79 | 81.96 76 | 94.89 41 | 94.77 22 |
|
| EC-MVSNet | | | 86.01 43 | 86.38 38 | 84.91 91 | 89.31 134 | 66.27 166 | 92.32 30 | 93.63 21 | 79.37 20 | 84.17 78 | 91.88 93 | 69.04 84 | 95.43 67 | 83.93 57 | 93.77 62 | 93.01 103 |
|
| casdiffmvs_mvg |  | | 85.99 44 | 86.09 46 | 85.70 67 | 87.65 201 | 67.22 151 | 88.69 121 | 93.04 38 | 79.64 18 | 85.33 54 | 92.54 83 | 73.30 35 | 94.50 108 | 83.49 59 | 91.14 90 | 95.37 2 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| APD-MVS_3200maxsize | | | 85.97 45 | 85.88 48 | 86.22 57 | 92.69 63 | 69.53 89 | 91.93 38 | 92.99 46 | 73.54 138 | 85.94 47 | 94.51 24 | 65.80 117 | 95.61 59 | 83.04 65 | 92.51 72 | 93.53 80 |
|
| test_fmvsmconf_n | | | 85.92 46 | 86.04 47 | 85.57 69 | 85.03 255 | 69.51 90 | 89.62 87 | 90.58 133 | 73.42 141 | 87.75 32 | 94.02 44 | 72.85 41 | 93.24 163 | 90.37 3 | 90.75 94 | 93.96 53 |
|
| sasdasda | | | 85.91 47 | 85.87 49 | 86.04 60 | 89.84 112 | 69.44 95 | 90.45 66 | 93.00 43 | 76.70 69 | 88.01 28 | 91.23 110 | 73.28 36 | 93.91 132 | 81.50 79 | 88.80 121 | 94.77 22 |
|
| canonicalmvs | | | 85.91 47 | 85.87 49 | 86.04 60 | 89.84 112 | 69.44 95 | 90.45 66 | 93.00 43 | 76.70 69 | 88.01 28 | 91.23 110 | 73.28 36 | 93.91 132 | 81.50 79 | 88.80 121 | 94.77 22 |
|
| ACMMP |  | | 85.89 49 | 85.39 56 | 87.38 39 | 93.59 45 | 72.63 33 | 92.74 20 | 93.18 36 | 76.78 65 | 80.73 125 | 93.82 53 | 64.33 127 | 96.29 39 | 82.67 73 | 90.69 95 | 93.23 91 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| SR-MVS-dyc-post | | | 85.77 50 | 85.61 53 | 86.23 56 | 93.06 55 | 70.63 73 | 91.88 39 | 92.27 78 | 73.53 139 | 85.69 51 | 94.45 26 | 65.00 125 | 95.56 60 | 82.75 68 | 91.87 80 | 92.50 118 |
|
| CDPH-MVS | | | 85.76 51 | 85.29 61 | 87.17 43 | 93.49 47 | 71.08 61 | 88.58 125 | 92.42 74 | 68.32 246 | 84.61 69 | 93.48 58 | 72.32 44 | 96.15 45 | 79.00 101 | 95.43 31 | 94.28 42 |
|
| TSAR-MVS + GP. | | | 85.71 52 | 85.33 58 | 86.84 47 | 91.34 78 | 72.50 36 | 89.07 106 | 87.28 230 | 76.41 74 | 85.80 49 | 90.22 136 | 74.15 31 | 95.37 74 | 81.82 77 | 91.88 79 | 92.65 113 |
|
| dcpmvs_2 | | | 85.63 53 | 86.15 44 | 84.06 127 | 91.71 75 | 64.94 198 | 86.47 191 | 91.87 97 | 73.63 134 | 86.60 45 | 93.02 72 | 76.57 15 | 91.87 219 | 83.36 60 | 92.15 76 | 95.35 3 |
|
| test_fmvsmconf0.1_n | | | 85.61 54 | 85.65 52 | 85.50 70 | 82.99 300 | 69.39 97 | 89.65 84 | 90.29 146 | 73.31 144 | 87.77 31 | 94.15 38 | 71.72 51 | 93.23 164 | 90.31 4 | 90.67 96 | 93.89 58 |
|
| alignmvs | | | 85.48 55 | 85.32 59 | 85.96 63 | 89.51 121 | 69.47 92 | 89.74 81 | 92.47 70 | 76.17 82 | 87.73 34 | 91.46 105 | 70.32 67 | 93.78 138 | 81.51 78 | 88.95 118 | 94.63 28 |
|
| 3Dnovator+ | | 77.84 4 | 85.48 55 | 84.47 71 | 88.51 7 | 91.08 81 | 73.49 16 | 93.18 11 | 93.78 18 | 80.79 8 | 76.66 198 | 93.37 62 | 60.40 190 | 96.75 26 | 77.20 120 | 93.73 63 | 95.29 5 |
|
| MSLP-MVS++ | | | 85.43 57 | 85.76 51 | 84.45 105 | 91.93 72 | 70.24 76 | 90.71 58 | 92.86 54 | 77.46 47 | 84.22 76 | 92.81 78 | 67.16 101 | 92.94 183 | 80.36 92 | 94.35 56 | 90.16 199 |
|
| DELS-MVS | | | 85.41 58 | 85.30 60 | 85.77 65 | 88.49 165 | 67.93 133 | 85.52 221 | 93.44 27 | 78.70 29 | 83.63 89 | 89.03 166 | 74.57 24 | 95.71 57 | 80.26 94 | 94.04 60 | 93.66 67 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| HPM-MVS_fast | | | 85.35 59 | 84.95 65 | 86.57 53 | 93.69 42 | 70.58 75 | 92.15 36 | 91.62 105 | 73.89 128 | 82.67 102 | 94.09 40 | 62.60 146 | 95.54 62 | 80.93 85 | 92.93 67 | 93.57 76 |
|
| test_fmvsm_n_1920 | | | 85.29 60 | 85.34 57 | 85.13 81 | 86.12 235 | 69.93 83 | 88.65 123 | 90.78 129 | 69.97 206 | 88.27 23 | 93.98 49 | 71.39 57 | 91.54 231 | 88.49 23 | 90.45 98 | 93.91 55 |
|
| MVS_111021_HR | | | 85.14 61 | 84.75 66 | 86.32 55 | 91.65 76 | 72.70 30 | 85.98 204 | 90.33 143 | 76.11 83 | 82.08 105 | 91.61 100 | 71.36 58 | 94.17 121 | 81.02 84 | 92.58 71 | 92.08 135 |
|
| casdiffmvs |  | | 85.11 62 | 85.14 62 | 85.01 85 | 87.20 217 | 65.77 181 | 87.75 154 | 92.83 56 | 77.84 37 | 84.36 75 | 92.38 85 | 72.15 46 | 93.93 131 | 81.27 83 | 90.48 97 | 95.33 4 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| UA-Net | | | 85.08 63 | 84.96 64 | 85.45 71 | 92.07 70 | 68.07 130 | 89.78 80 | 90.86 128 | 82.48 3 | 84.60 70 | 93.20 66 | 69.35 77 | 95.22 76 | 71.39 176 | 90.88 93 | 93.07 99 |
|
| sdadasadasd | | | 85.06 64 | 85.51 54 | 83.70 143 | 89.42 126 | 63.01 239 | 89.43 91 | 92.62 67 | 76.43 73 | 87.53 35 | 91.34 108 | 72.82 42 | 93.42 158 | 81.28 82 | 88.74 124 | 94.66 27 |
|
| DPM-MVS | | | 84.93 65 | 84.29 72 | 86.84 47 | 90.20 100 | 73.04 23 | 87.12 170 | 93.04 38 | 69.80 210 | 82.85 98 | 91.22 112 | 73.06 39 | 96.02 47 | 76.72 128 | 94.63 48 | 91.46 154 |
|
| baseline | | | 84.93 65 | 84.98 63 | 84.80 95 | 87.30 215 | 65.39 189 | 87.30 166 | 92.88 53 | 77.62 39 | 84.04 81 | 92.26 87 | 71.81 49 | 93.96 125 | 81.31 81 | 90.30 100 | 95.03 8 |
|
| ETV-MVS | | | 84.90 67 | 84.67 67 | 85.59 68 | 89.39 129 | 68.66 117 | 88.74 119 | 92.64 66 | 79.97 15 | 84.10 79 | 85.71 256 | 69.32 78 | 95.38 71 | 80.82 87 | 91.37 87 | 92.72 108 |
|
| test_fmvsmconf0.01_n | | | 84.73 68 | 84.52 70 | 85.34 73 | 80.25 340 | 69.03 100 | 89.47 89 | 89.65 163 | 73.24 148 | 86.98 42 | 94.27 32 | 66.62 103 | 93.23 164 | 90.26 5 | 89.95 108 | 93.78 64 |
|
| fmvsm_l_conf0.5_n | | | 84.47 69 | 84.54 68 | 84.27 115 | 85.42 245 | 68.81 106 | 88.49 127 | 87.26 231 | 68.08 248 | 88.03 27 | 93.49 57 | 72.04 48 | 91.77 221 | 88.90 17 | 89.14 117 | 92.24 129 |
|
| EI-MVSNet-Vis-set | | | 84.19 70 | 83.81 75 | 85.31 74 | 88.18 176 | 67.85 134 | 87.66 156 | 89.73 161 | 80.05 14 | 82.95 95 | 89.59 150 | 70.74 63 | 94.82 97 | 80.66 91 | 84.72 174 | 93.28 90 |
|
| fmvsm_l_conf0.5_n_a | | | 84.13 71 | 84.16 73 | 84.06 127 | 85.38 246 | 68.40 121 | 88.34 134 | 86.85 240 | 67.48 255 | 87.48 36 | 93.40 61 | 70.89 60 | 91.61 225 | 88.38 25 | 89.22 116 | 92.16 133 |
|
| test_fmvsmvis_n_1920 | | | 84.02 72 | 83.87 74 | 84.49 104 | 84.12 271 | 69.37 98 | 88.15 142 | 87.96 214 | 70.01 204 | 83.95 82 | 93.23 65 | 68.80 87 | 91.51 234 | 88.61 20 | 89.96 107 | 92.57 114 |
|
| nrg030 | | | 83.88 73 | 83.53 77 | 84.96 87 | 86.77 225 | 69.28 99 | 90.46 65 | 92.67 62 | 74.79 108 | 82.95 95 | 91.33 109 | 72.70 43 | 93.09 177 | 80.79 89 | 79.28 253 | 92.50 118 |
|
| EI-MVSNet-UG-set | | | 83.81 74 | 83.38 80 | 85.09 82 | 87.87 189 | 67.53 141 | 87.44 162 | 89.66 162 | 79.74 16 | 82.23 104 | 89.41 159 | 70.24 68 | 94.74 100 | 79.95 95 | 83.92 188 | 92.99 104 |
|
| fmvsm_s_conf0.5_n | | | 83.80 75 | 83.71 76 | 84.07 125 | 86.69 227 | 67.31 147 | 89.46 90 | 83.07 295 | 71.09 181 | 86.96 43 | 93.70 55 | 69.02 85 | 91.47 236 | 88.79 18 | 84.62 176 | 93.44 84 |
|
| CPTT-MVS | | | 83.73 76 | 83.33 82 | 84.92 90 | 93.28 49 | 70.86 69 | 92.09 37 | 90.38 139 | 68.75 238 | 79.57 136 | 92.83 76 | 60.60 186 | 93.04 181 | 80.92 86 | 91.56 85 | 90.86 172 |
|
| EPNet | | | 83.72 77 | 82.92 89 | 86.14 59 | 84.22 269 | 69.48 91 | 91.05 55 | 85.27 261 | 81.30 6 | 76.83 193 | 91.65 97 | 66.09 112 | 95.56 60 | 76.00 134 | 93.85 61 | 93.38 85 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| patch_mono-2 | | | 83.65 78 | 84.54 68 | 80.99 222 | 90.06 107 | 65.83 177 | 84.21 249 | 88.74 200 | 71.60 170 | 85.01 57 | 92.44 84 | 74.51 25 | 83.50 335 | 82.15 75 | 92.15 76 | 93.64 73 |
|
| HQP_MVS | | | 83.64 79 | 83.14 83 | 85.14 79 | 90.08 103 | 68.71 113 | 91.25 50 | 92.44 71 | 79.12 23 | 78.92 145 | 91.00 122 | 60.42 188 | 95.38 71 | 78.71 105 | 86.32 154 | 91.33 155 |
|
| fmvsm_s_conf0.5_n_a | | | 83.63 80 | 83.41 79 | 84.28 113 | 86.14 234 | 68.12 128 | 89.43 91 | 82.87 300 | 70.27 200 | 87.27 39 | 93.80 54 | 69.09 80 | 91.58 227 | 88.21 26 | 83.65 196 | 93.14 97 |
|
| Effi-MVS+ | | | 83.62 81 | 83.08 84 | 85.24 76 | 88.38 171 | 67.45 142 | 88.89 111 | 89.15 181 | 75.50 94 | 82.27 103 | 88.28 188 | 69.61 75 | 94.45 110 | 77.81 114 | 87.84 133 | 93.84 61 |
|
| fmvsm_s_conf0.1_n | | | 83.56 82 | 83.38 80 | 84.10 120 | 84.86 257 | 67.28 148 | 89.40 95 | 83.01 296 | 70.67 189 | 87.08 40 | 93.96 50 | 68.38 89 | 91.45 237 | 88.56 22 | 84.50 177 | 93.56 77 |
|
| OPM-MVS | | | 83.50 83 | 82.95 88 | 85.14 79 | 88.79 155 | 70.95 66 | 89.13 105 | 91.52 108 | 77.55 44 | 80.96 123 | 91.75 95 | 60.71 181 | 94.50 108 | 79.67 99 | 86.51 152 | 89.97 215 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| Vis-MVSNet |  | | 83.46 84 | 82.80 91 | 85.43 72 | 90.25 99 | 68.74 111 | 90.30 70 | 90.13 150 | 76.33 80 | 80.87 124 | 92.89 74 | 61.00 178 | 94.20 119 | 72.45 170 | 90.97 91 | 93.35 87 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| MG-MVS | | | 83.41 85 | 83.45 78 | 83.28 155 | 92.74 62 | 62.28 250 | 88.17 140 | 89.50 166 | 75.22 98 | 81.49 115 | 92.74 82 | 66.75 102 | 95.11 82 | 72.85 164 | 91.58 84 | 92.45 121 |
|
| EPP-MVSNet | | | 83.40 86 | 83.02 86 | 84.57 99 | 90.13 101 | 64.47 208 | 92.32 30 | 90.73 130 | 74.45 117 | 79.35 139 | 91.10 116 | 69.05 83 | 95.12 80 | 72.78 165 | 87.22 141 | 94.13 46 |
|
| 3Dnovator | | 76.31 5 | 83.38 87 | 82.31 97 | 86.59 52 | 87.94 187 | 72.94 28 | 90.64 59 | 92.14 86 | 77.21 52 | 75.47 224 | 92.83 76 | 58.56 197 | 94.72 101 | 73.24 161 | 92.71 70 | 92.13 134 |
|
| fmvsm_s_conf0.1_n_a | | | 83.32 88 | 82.99 87 | 84.28 113 | 83.79 278 | 68.07 130 | 89.34 97 | 82.85 301 | 69.80 210 | 87.36 38 | 94.06 42 | 68.34 90 | 91.56 229 | 87.95 27 | 83.46 202 | 93.21 94 |
|
| EIA-MVS | | | 83.31 89 | 82.80 91 | 84.82 93 | 89.59 117 | 65.59 183 | 88.21 138 | 92.68 61 | 74.66 111 | 78.96 143 | 86.42 243 | 69.06 82 | 95.26 75 | 75.54 140 | 90.09 104 | 93.62 74 |
|
| h-mvs33 | | | 83.15 90 | 82.19 98 | 86.02 62 | 90.56 93 | 70.85 70 | 88.15 142 | 89.16 180 | 76.02 85 | 84.67 66 | 91.39 107 | 61.54 164 | 95.50 63 | 82.71 70 | 75.48 300 | 91.72 143 |
|
| MVS_Test | | | 83.15 90 | 83.06 85 | 83.41 152 | 86.86 221 | 63.21 235 | 86.11 202 | 92.00 89 | 74.31 118 | 82.87 97 | 89.44 158 | 70.03 69 | 93.21 166 | 77.39 119 | 88.50 129 | 93.81 62 |
|
| IS-MVSNet | | | 83.15 90 | 82.81 90 | 84.18 118 | 89.94 110 | 63.30 233 | 91.59 43 | 88.46 206 | 79.04 25 | 79.49 137 | 92.16 88 | 65.10 122 | 94.28 113 | 67.71 211 | 91.86 82 | 94.95 10 |
|
| DP-MVS Recon | | | 83.11 93 | 82.09 100 | 86.15 58 | 94.44 19 | 70.92 68 | 88.79 115 | 92.20 83 | 70.53 194 | 79.17 141 | 91.03 121 | 64.12 129 | 96.03 46 | 68.39 208 | 90.14 103 | 91.50 150 |
|
| PAPM_NR | | | 83.02 94 | 82.41 94 | 84.82 93 | 92.47 67 | 66.37 164 | 87.93 149 | 91.80 100 | 73.82 129 | 77.32 182 | 90.66 127 | 67.90 93 | 94.90 93 | 70.37 185 | 89.48 113 | 93.19 95 |
|
| VDD-MVS | | | 83.01 95 | 82.36 96 | 84.96 87 | 91.02 83 | 66.40 163 | 88.91 110 | 88.11 209 | 77.57 41 | 84.39 74 | 93.29 64 | 52.19 249 | 93.91 132 | 77.05 122 | 88.70 125 | 94.57 31 |
|
| MVSFormer | | | 82.85 96 | 82.05 101 | 85.24 76 | 87.35 209 | 70.21 77 | 90.50 62 | 90.38 139 | 68.55 241 | 81.32 116 | 89.47 153 | 61.68 161 | 93.46 155 | 78.98 102 | 90.26 101 | 92.05 136 |
|
| OMC-MVS | | | 82.69 97 | 81.97 104 | 84.85 92 | 88.75 157 | 67.42 143 | 87.98 145 | 90.87 127 | 74.92 105 | 79.72 134 | 91.65 97 | 62.19 156 | 93.96 125 | 75.26 142 | 86.42 153 | 93.16 96 |
|
| PVSNet_Blended_VisFu | | | 82.62 98 | 81.83 106 | 84.96 87 | 90.80 89 | 69.76 87 | 88.74 119 | 91.70 104 | 69.39 219 | 78.96 143 | 88.46 183 | 65.47 119 | 94.87 96 | 74.42 147 | 88.57 126 | 90.24 197 |
|
| MVS_111021_LR | | | 82.61 99 | 82.11 99 | 84.11 119 | 88.82 152 | 71.58 53 | 85.15 224 | 86.16 250 | 74.69 110 | 80.47 127 | 91.04 119 | 62.29 153 | 90.55 259 | 80.33 93 | 90.08 105 | 90.20 198 |
|
| HQP-MVS | | | 82.61 99 | 82.02 102 | 84.37 107 | 89.33 131 | 66.98 155 | 89.17 100 | 92.19 84 | 76.41 74 | 77.23 185 | 90.23 135 | 60.17 191 | 95.11 82 | 77.47 117 | 85.99 162 | 91.03 166 |
|
| CLD-MVS | | | 82.31 101 | 81.65 107 | 84.29 112 | 88.47 166 | 67.73 137 | 85.81 212 | 92.35 76 | 75.78 88 | 78.33 160 | 86.58 238 | 64.01 130 | 94.35 111 | 76.05 133 | 87.48 138 | 90.79 173 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| VNet | | | 82.21 102 | 82.41 94 | 81.62 203 | 90.82 88 | 60.93 264 | 84.47 240 | 89.78 158 | 76.36 79 | 84.07 80 | 91.88 93 | 64.71 126 | 90.26 261 | 70.68 182 | 88.89 119 | 93.66 67 |
|
| diffmvs |  | | 82.10 103 | 81.88 105 | 82.76 185 | 83.00 298 | 63.78 221 | 83.68 256 | 89.76 159 | 72.94 153 | 82.02 106 | 89.85 142 | 65.96 116 | 90.79 255 | 82.38 74 | 87.30 140 | 93.71 66 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| LPG-MVS_test | | | 82.08 104 | 81.27 110 | 84.50 102 | 89.23 138 | 68.76 109 | 90.22 71 | 91.94 93 | 75.37 96 | 76.64 199 | 91.51 102 | 54.29 230 | 94.91 90 | 78.44 107 | 83.78 189 | 89.83 220 |
|
| FIs | | | 82.07 105 | 82.42 93 | 81.04 221 | 88.80 154 | 58.34 290 | 88.26 137 | 93.49 26 | 76.93 60 | 78.47 157 | 91.04 119 | 69.92 72 | 92.34 202 | 69.87 192 | 84.97 171 | 92.44 122 |
|
| PS-MVSNAJss | | | 82.07 105 | 81.31 109 | 84.34 110 | 86.51 230 | 67.27 149 | 89.27 98 | 91.51 109 | 71.75 164 | 79.37 138 | 90.22 136 | 63.15 140 | 94.27 114 | 77.69 115 | 82.36 216 | 91.49 151 |
|
| API-MVS | | | 81.99 107 | 81.23 111 | 84.26 116 | 90.94 85 | 70.18 82 | 91.10 53 | 89.32 171 | 71.51 173 | 78.66 151 | 88.28 188 | 65.26 120 | 95.10 85 | 64.74 238 | 91.23 89 | 87.51 280 |
|
| UniMVSNet_NR-MVSNet | | | 81.88 108 | 81.54 108 | 82.92 174 | 88.46 167 | 63.46 229 | 87.13 169 | 92.37 75 | 80.19 12 | 78.38 158 | 89.14 161 | 71.66 54 | 93.05 179 | 70.05 188 | 76.46 283 | 92.25 127 |
|
| MAR-MVS | | | 81.84 109 | 80.70 120 | 85.27 75 | 91.32 79 | 71.53 54 | 89.82 77 | 90.92 124 | 69.77 212 | 78.50 155 | 86.21 247 | 62.36 152 | 94.52 107 | 65.36 232 | 92.05 78 | 89.77 223 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| LFMVS | | | 81.82 110 | 81.23 111 | 83.57 147 | 91.89 73 | 63.43 231 | 89.84 76 | 81.85 311 | 77.04 58 | 83.21 92 | 93.10 67 | 52.26 248 | 93.43 157 | 71.98 171 | 89.95 108 | 93.85 59 |
|
| hse-mvs2 | | | 81.72 111 | 80.94 117 | 84.07 125 | 88.72 158 | 67.68 138 | 85.87 208 | 87.26 231 | 76.02 85 | 84.67 66 | 88.22 191 | 61.54 164 | 93.48 153 | 82.71 70 | 73.44 328 | 91.06 164 |
|
| GeoE | | | 81.71 112 | 81.01 116 | 83.80 141 | 89.51 121 | 64.45 209 | 88.97 108 | 88.73 201 | 71.27 177 | 78.63 152 | 89.76 144 | 66.32 109 | 93.20 169 | 69.89 191 | 86.02 161 | 93.74 65 |
|
| xiu_mvs_v2_base | | | 81.69 113 | 81.05 114 | 83.60 145 | 89.15 141 | 68.03 132 | 84.46 242 | 90.02 152 | 70.67 189 | 81.30 119 | 86.53 241 | 63.17 139 | 94.19 120 | 75.60 139 | 88.54 127 | 88.57 262 |
|
| PS-MVSNAJ | | | 81.69 113 | 81.02 115 | 83.70 143 | 89.51 121 | 68.21 127 | 84.28 248 | 90.09 151 | 70.79 186 | 81.26 120 | 85.62 261 | 63.15 140 | 94.29 112 | 75.62 138 | 88.87 120 | 88.59 261 |
|
| mvsmamba | | | 81.69 113 | 80.74 119 | 84.56 100 | 87.45 208 | 66.72 159 | 91.26 48 | 85.89 254 | 74.66 111 | 78.23 162 | 90.56 129 | 54.33 229 | 94.91 90 | 80.73 90 | 83.54 200 | 92.04 138 |
|
| PAPR | | | 81.66 116 | 80.89 118 | 83.99 135 | 90.27 98 | 64.00 216 | 86.76 184 | 91.77 103 | 68.84 237 | 77.13 191 | 89.50 151 | 67.63 95 | 94.88 95 | 67.55 213 | 88.52 128 | 93.09 98 |
|
| iter_conf05_11 | | | 81.63 117 | 80.44 127 | 85.20 78 | 89.46 124 | 66.20 167 | 86.21 198 | 86.97 237 | 71.53 172 | 83.35 91 | 88.53 181 | 43.22 335 | 95.94 53 | 79.82 97 | 94.85 43 | 93.47 81 |
|
| UniMVSNet (Re) | | | 81.60 118 | 81.11 113 | 83.09 165 | 88.38 171 | 64.41 210 | 87.60 157 | 93.02 42 | 78.42 32 | 78.56 154 | 88.16 192 | 69.78 73 | 93.26 162 | 69.58 195 | 76.49 282 | 91.60 144 |
|
| FC-MVSNet-test | | | 81.52 119 | 82.02 102 | 80.03 242 | 88.42 170 | 55.97 328 | 87.95 147 | 93.42 29 | 77.10 56 | 77.38 180 | 90.98 124 | 69.96 70 | 91.79 220 | 68.46 207 | 84.50 177 | 92.33 123 |
|
| VDDNet | | | 81.52 119 | 80.67 121 | 84.05 130 | 90.44 96 | 64.13 215 | 89.73 82 | 85.91 253 | 71.11 180 | 83.18 93 | 93.48 58 | 50.54 273 | 93.49 152 | 73.40 158 | 88.25 131 | 94.54 32 |
|
| ACMP | | 74.13 6 | 81.51 121 | 80.57 122 | 84.36 108 | 89.42 126 | 68.69 116 | 89.97 75 | 91.50 112 | 74.46 116 | 75.04 245 | 90.41 132 | 53.82 235 | 94.54 105 | 77.56 116 | 82.91 208 | 89.86 219 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| jason | | | 81.39 122 | 80.29 130 | 84.70 97 | 86.63 229 | 69.90 85 | 85.95 205 | 86.77 241 | 63.24 302 | 81.07 122 | 89.47 153 | 61.08 177 | 92.15 208 | 78.33 110 | 90.07 106 | 92.05 136 |
| jason: jason. |
| lupinMVS | | | 81.39 122 | 80.27 131 | 84.76 96 | 87.35 209 | 70.21 77 | 85.55 217 | 86.41 245 | 62.85 309 | 81.32 116 | 88.61 177 | 61.68 161 | 92.24 206 | 78.41 109 | 90.26 101 | 91.83 140 |
|
| test_yl | | | 81.17 124 | 80.47 125 | 83.24 158 | 89.13 142 | 63.62 222 | 86.21 198 | 89.95 155 | 72.43 158 | 81.78 112 | 89.61 148 | 57.50 207 | 93.58 146 | 70.75 180 | 86.90 145 | 92.52 116 |
|
| DCV-MVSNet | | | 81.17 124 | 80.47 125 | 83.24 158 | 89.13 142 | 63.62 222 | 86.21 198 | 89.95 155 | 72.43 158 | 81.78 112 | 89.61 148 | 57.50 207 | 93.58 146 | 70.75 180 | 86.90 145 | 92.52 116 |
|
| DU-MVS | | | 81.12 126 | 80.52 124 | 82.90 175 | 87.80 193 | 63.46 229 | 87.02 173 | 91.87 97 | 79.01 26 | 78.38 158 | 89.07 163 | 65.02 123 | 93.05 179 | 70.05 188 | 76.46 283 | 92.20 130 |
|
| PVSNet_Blended | | | 80.98 127 | 80.34 128 | 82.90 175 | 88.85 149 | 65.40 187 | 84.43 244 | 92.00 89 | 67.62 252 | 78.11 166 | 85.05 275 | 66.02 114 | 94.27 114 | 71.52 173 | 89.50 112 | 89.01 244 |
|
| FA-MVS(test-final) | | | 80.96 128 | 79.91 136 | 84.10 120 | 88.30 174 | 65.01 196 | 84.55 239 | 90.01 153 | 73.25 147 | 79.61 135 | 87.57 205 | 58.35 199 | 94.72 101 | 71.29 177 | 86.25 156 | 92.56 115 |
|
| QAPM | | | 80.88 129 | 79.50 145 | 85.03 84 | 88.01 186 | 68.97 104 | 91.59 43 | 92.00 89 | 66.63 266 | 75.15 241 | 92.16 88 | 57.70 204 | 95.45 65 | 63.52 244 | 88.76 123 | 90.66 179 |
|
| TranMVSNet+NR-MVSNet | | | 80.84 130 | 80.31 129 | 82.42 190 | 87.85 190 | 62.33 248 | 87.74 155 | 91.33 114 | 80.55 9 | 77.99 170 | 89.86 141 | 65.23 121 | 92.62 189 | 67.05 220 | 75.24 310 | 92.30 125 |
|
| UGNet | | | 80.83 131 | 79.59 143 | 84.54 101 | 88.04 184 | 68.09 129 | 89.42 93 | 88.16 208 | 76.95 59 | 76.22 210 | 89.46 155 | 49.30 288 | 93.94 128 | 68.48 206 | 90.31 99 | 91.60 144 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| Fast-Effi-MVS+ | | | 80.81 132 | 79.92 135 | 83.47 148 | 88.85 149 | 64.51 205 | 85.53 219 | 89.39 169 | 70.79 186 | 78.49 156 | 85.06 274 | 67.54 96 | 93.58 146 | 67.03 221 | 86.58 150 | 92.32 124 |
|
| XVG-OURS-SEG-HR | | | 80.81 132 | 79.76 139 | 83.96 137 | 85.60 242 | 68.78 108 | 83.54 262 | 90.50 136 | 70.66 192 | 76.71 197 | 91.66 96 | 60.69 182 | 91.26 242 | 76.94 123 | 81.58 224 | 91.83 140 |
|
| xiu_mvs_v1_base_debu | | | 80.80 134 | 79.72 140 | 84.03 132 | 87.35 209 | 70.19 79 | 85.56 214 | 88.77 196 | 69.06 231 | 81.83 108 | 88.16 192 | 50.91 267 | 92.85 185 | 78.29 111 | 87.56 135 | 89.06 239 |
|
| xiu_mvs_v1_base | | | 80.80 134 | 79.72 140 | 84.03 132 | 87.35 209 | 70.19 79 | 85.56 214 | 88.77 196 | 69.06 231 | 81.83 108 | 88.16 192 | 50.91 267 | 92.85 185 | 78.29 111 | 87.56 135 | 89.06 239 |
|
| xiu_mvs_v1_base_debi | | | 80.80 134 | 79.72 140 | 84.03 132 | 87.35 209 | 70.19 79 | 85.56 214 | 88.77 196 | 69.06 231 | 81.83 108 | 88.16 192 | 50.91 267 | 92.85 185 | 78.29 111 | 87.56 135 | 89.06 239 |
|
| bld_raw_dy_0_64 | | | 80.78 137 | 79.36 149 | 85.06 83 | 89.46 124 | 66.03 169 | 89.63 86 | 85.46 260 | 69.76 213 | 81.88 107 | 89.06 165 | 43.39 333 | 95.70 58 | 79.82 97 | 85.74 168 | 93.47 81 |
|
| ACMM | | 73.20 8 | 80.78 137 | 79.84 138 | 83.58 146 | 89.31 134 | 68.37 122 | 89.99 74 | 91.60 106 | 70.28 199 | 77.25 183 | 89.66 146 | 53.37 240 | 93.53 151 | 74.24 150 | 82.85 209 | 88.85 252 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| 114514_t | | | 80.68 139 | 79.51 144 | 84.20 117 | 94.09 38 | 67.27 149 | 89.64 85 | 91.11 121 | 58.75 346 | 74.08 257 | 90.72 126 | 58.10 200 | 95.04 87 | 69.70 193 | 89.42 114 | 90.30 195 |
|
| CANet_DTU | | | 80.61 140 | 79.87 137 | 82.83 177 | 85.60 242 | 63.17 238 | 87.36 163 | 88.65 202 | 76.37 78 | 75.88 217 | 88.44 184 | 53.51 238 | 93.07 178 | 73.30 159 | 89.74 111 | 92.25 127 |
|
| VPA-MVSNet | | | 80.60 141 | 80.55 123 | 80.76 228 | 88.07 183 | 60.80 267 | 86.86 178 | 91.58 107 | 75.67 92 | 80.24 129 | 89.45 157 | 63.34 134 | 90.25 262 | 70.51 184 | 79.22 254 | 91.23 159 |
|
| PVSNet_BlendedMVS | | | 80.60 141 | 80.02 133 | 82.36 192 | 88.85 149 | 65.40 187 | 86.16 201 | 92.00 89 | 69.34 221 | 78.11 166 | 86.09 251 | 66.02 114 | 94.27 114 | 71.52 173 | 82.06 219 | 87.39 282 |
|
| AdaColmap |  | | 80.58 143 | 79.42 146 | 84.06 127 | 93.09 54 | 68.91 105 | 89.36 96 | 88.97 190 | 69.27 222 | 75.70 220 | 89.69 145 | 57.20 211 | 95.77 55 | 63.06 249 | 88.41 130 | 87.50 281 |
|
| EI-MVSNet | | | 80.52 144 | 79.98 134 | 82.12 193 | 84.28 267 | 63.19 237 | 86.41 192 | 88.95 191 | 74.18 122 | 78.69 149 | 87.54 208 | 66.62 103 | 92.43 196 | 72.57 168 | 80.57 237 | 90.74 177 |
|
| XVG-OURS | | | 80.41 145 | 79.23 153 | 83.97 136 | 85.64 241 | 69.02 102 | 83.03 273 | 90.39 138 | 71.09 181 | 77.63 176 | 91.49 104 | 54.62 228 | 91.35 240 | 75.71 136 | 83.47 201 | 91.54 147 |
|
| SDMVSNet | | | 80.38 146 | 80.18 132 | 80.99 222 | 89.03 147 | 64.94 198 | 80.45 305 | 89.40 168 | 75.19 100 | 76.61 201 | 89.98 139 | 60.61 185 | 87.69 303 | 76.83 126 | 83.55 198 | 90.33 193 |
|
| PCF-MVS | | 73.52 7 | 80.38 146 | 78.84 162 | 85.01 85 | 87.71 198 | 68.99 103 | 83.65 257 | 91.46 113 | 63.00 306 | 77.77 174 | 90.28 133 | 66.10 111 | 95.09 86 | 61.40 268 | 88.22 132 | 90.94 170 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| X-MVStestdata | | | 80.37 148 | 77.83 185 | 88.00 17 | 94.42 20 | 73.33 19 | 92.78 18 | 92.99 46 | 79.14 21 | 83.67 87 | 12.47 405 | 67.45 97 | 96.60 33 | 83.06 63 | 94.50 51 | 94.07 49 |
|
| RRT_MVS | | | 80.35 149 | 79.22 154 | 83.74 142 | 87.63 202 | 65.46 186 | 91.08 54 | 88.92 193 | 73.82 129 | 76.44 206 | 90.03 138 | 49.05 293 | 94.25 118 | 76.84 124 | 79.20 255 | 91.51 148 |
|
| test_djsdf | | | 80.30 150 | 79.32 150 | 83.27 156 | 83.98 275 | 65.37 190 | 90.50 62 | 90.38 139 | 68.55 241 | 76.19 211 | 88.70 173 | 56.44 215 | 93.46 155 | 78.98 102 | 80.14 243 | 90.97 169 |
|
| v2v482 | | | 80.23 151 | 79.29 151 | 83.05 168 | 83.62 281 | 64.14 214 | 87.04 172 | 89.97 154 | 73.61 135 | 78.18 165 | 87.22 216 | 61.10 176 | 93.82 136 | 76.11 131 | 76.78 280 | 91.18 160 |
|
| NR-MVSNet | | | 80.23 151 | 79.38 147 | 82.78 183 | 87.80 193 | 63.34 232 | 86.31 195 | 91.09 122 | 79.01 26 | 72.17 278 | 89.07 163 | 67.20 100 | 92.81 188 | 66.08 227 | 75.65 296 | 92.20 130 |
|
| Anonymous20240529 | | | 80.19 153 | 78.89 161 | 84.10 120 | 90.60 92 | 64.75 202 | 88.95 109 | 90.90 125 | 65.97 274 | 80.59 126 | 91.17 115 | 49.97 278 | 93.73 144 | 69.16 199 | 82.70 213 | 93.81 62 |
|
| IterMVS-LS | | | 80.06 154 | 79.38 147 | 82.11 194 | 85.89 237 | 63.20 236 | 86.79 181 | 89.34 170 | 74.19 121 | 75.45 227 | 86.72 228 | 66.62 103 | 92.39 198 | 72.58 167 | 76.86 277 | 90.75 176 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| Effi-MVS+-dtu | | | 80.03 155 | 78.57 167 | 84.42 106 | 85.13 253 | 68.74 111 | 88.77 116 | 88.10 210 | 74.99 104 | 74.97 246 | 83.49 303 | 57.27 210 | 93.36 159 | 73.53 155 | 80.88 231 | 91.18 160 |
|
| v1144 | | | 80.03 155 | 79.03 158 | 83.01 170 | 83.78 279 | 64.51 205 | 87.11 171 | 90.57 135 | 71.96 163 | 78.08 168 | 86.20 248 | 61.41 168 | 93.94 128 | 74.93 143 | 77.23 271 | 90.60 182 |
|
| iter_conf05 | | | 80.00 157 | 78.70 163 | 83.91 139 | 87.84 191 | 65.83 177 | 88.84 114 | 84.92 266 | 71.61 169 | 78.70 148 | 88.94 167 | 43.88 330 | 94.56 104 | 79.28 100 | 84.28 184 | 91.33 155 |
|
| v8 | | | 79.97 158 | 79.02 159 | 82.80 180 | 84.09 272 | 64.50 207 | 87.96 146 | 90.29 146 | 74.13 124 | 75.24 238 | 86.81 225 | 62.88 145 | 93.89 135 | 74.39 148 | 75.40 305 | 90.00 211 |
|
| OpenMVS |  | 72.83 10 | 79.77 159 | 78.33 174 | 84.09 123 | 85.17 249 | 69.91 84 | 90.57 60 | 90.97 123 | 66.70 260 | 72.17 278 | 91.91 91 | 54.70 226 | 93.96 125 | 61.81 265 | 90.95 92 | 88.41 265 |
|
| v10 | | | 79.74 160 | 78.67 164 | 82.97 173 | 84.06 273 | 64.95 197 | 87.88 152 | 90.62 132 | 73.11 149 | 75.11 242 | 86.56 239 | 61.46 167 | 94.05 124 | 73.68 153 | 75.55 298 | 89.90 217 |
|
| ECVR-MVS |  | | 79.61 161 | 79.26 152 | 80.67 230 | 90.08 103 | 54.69 342 | 87.89 151 | 77.44 350 | 74.88 106 | 80.27 128 | 92.79 79 | 48.96 295 | 92.45 195 | 68.55 205 | 92.50 73 | 94.86 17 |
|
| BH-RMVSNet | | | 79.61 161 | 78.44 170 | 83.14 163 | 89.38 130 | 65.93 174 | 84.95 229 | 87.15 234 | 73.56 137 | 78.19 164 | 89.79 143 | 56.67 214 | 93.36 159 | 59.53 282 | 86.74 148 | 90.13 201 |
|
| v1192 | | | 79.59 163 | 78.43 171 | 83.07 167 | 83.55 283 | 64.52 204 | 86.93 176 | 90.58 133 | 70.83 185 | 77.78 173 | 85.90 252 | 59.15 194 | 93.94 128 | 73.96 152 | 77.19 273 | 90.76 175 |
|
| ab-mvs | | | 79.51 164 | 78.97 160 | 81.14 218 | 88.46 167 | 60.91 265 | 83.84 254 | 89.24 177 | 70.36 196 | 79.03 142 | 88.87 170 | 63.23 138 | 90.21 263 | 65.12 234 | 82.57 214 | 92.28 126 |
|
| WR-MVS | | | 79.49 165 | 79.22 154 | 80.27 238 | 88.79 155 | 58.35 289 | 85.06 226 | 88.61 204 | 78.56 30 | 77.65 175 | 88.34 186 | 63.81 133 | 90.66 258 | 64.98 236 | 77.22 272 | 91.80 142 |
|
| v144192 | | | 79.47 166 | 78.37 172 | 82.78 183 | 83.35 286 | 63.96 217 | 86.96 174 | 90.36 142 | 69.99 205 | 77.50 177 | 85.67 259 | 60.66 183 | 93.77 140 | 74.27 149 | 76.58 281 | 90.62 180 |
|
| BH-untuned | | | 79.47 166 | 78.60 166 | 82.05 195 | 89.19 140 | 65.91 175 | 86.07 203 | 88.52 205 | 72.18 160 | 75.42 228 | 87.69 202 | 61.15 175 | 93.54 150 | 60.38 275 | 86.83 147 | 86.70 301 |
|
| test1111 | | | 79.43 168 | 79.18 156 | 80.15 240 | 89.99 108 | 53.31 355 | 87.33 165 | 77.05 353 | 75.04 103 | 80.23 130 | 92.77 81 | 48.97 294 | 92.33 203 | 68.87 202 | 92.40 75 | 94.81 20 |
|
| mvs_anonymous | | | 79.42 169 | 79.11 157 | 80.34 236 | 84.45 266 | 57.97 296 | 82.59 275 | 87.62 223 | 67.40 256 | 76.17 214 | 88.56 180 | 68.47 88 | 89.59 274 | 70.65 183 | 86.05 160 | 93.47 81 |
|
| thisisatest0530 | | | 79.40 170 | 77.76 190 | 84.31 111 | 87.69 200 | 65.10 195 | 87.36 163 | 84.26 276 | 70.04 203 | 77.42 179 | 88.26 190 | 49.94 279 | 94.79 99 | 70.20 186 | 84.70 175 | 93.03 101 |
|
| tttt0517 | | | 79.40 170 | 77.91 182 | 83.90 140 | 88.10 181 | 63.84 219 | 88.37 133 | 84.05 278 | 71.45 174 | 76.78 195 | 89.12 162 | 49.93 281 | 94.89 94 | 70.18 187 | 83.18 206 | 92.96 105 |
|
| V42 | | | 79.38 172 | 78.24 176 | 82.83 177 | 81.10 332 | 65.50 185 | 85.55 217 | 89.82 157 | 71.57 171 | 78.21 163 | 86.12 250 | 60.66 183 | 93.18 172 | 75.64 137 | 75.46 302 | 89.81 222 |
|
| jajsoiax | | | 79.29 173 | 77.96 180 | 83.27 156 | 84.68 260 | 66.57 162 | 89.25 99 | 90.16 149 | 69.20 227 | 75.46 226 | 89.49 152 | 45.75 319 | 93.13 175 | 76.84 124 | 80.80 233 | 90.11 203 |
|
| v1921920 | | | 79.22 174 | 78.03 179 | 82.80 180 | 83.30 288 | 63.94 218 | 86.80 180 | 90.33 143 | 69.91 208 | 77.48 178 | 85.53 262 | 58.44 198 | 93.75 142 | 73.60 154 | 76.85 278 | 90.71 178 |
|
| AUN-MVS | | | 79.21 175 | 77.60 195 | 84.05 130 | 88.71 159 | 67.61 139 | 85.84 210 | 87.26 231 | 69.08 230 | 77.23 185 | 88.14 196 | 53.20 242 | 93.47 154 | 75.50 141 | 73.45 327 | 91.06 164 |
|
| TAPA-MVS | | 73.13 9 | 79.15 176 | 77.94 181 | 82.79 182 | 89.59 117 | 62.99 243 | 88.16 141 | 91.51 109 | 65.77 275 | 77.14 190 | 91.09 117 | 60.91 179 | 93.21 166 | 50.26 343 | 87.05 143 | 92.17 132 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| mvs_tets | | | 79.13 177 | 77.77 189 | 83.22 160 | 84.70 259 | 66.37 164 | 89.17 100 | 90.19 148 | 69.38 220 | 75.40 229 | 89.46 155 | 44.17 328 | 93.15 173 | 76.78 127 | 80.70 235 | 90.14 200 |
|
| UniMVSNet_ETH3D | | | 79.10 178 | 78.24 176 | 81.70 202 | 86.85 222 | 60.24 276 | 87.28 167 | 88.79 195 | 74.25 120 | 76.84 192 | 90.53 131 | 49.48 284 | 91.56 229 | 67.98 209 | 82.15 217 | 93.29 89 |
|
| CDS-MVSNet | | | 79.07 179 | 77.70 192 | 83.17 162 | 87.60 203 | 68.23 126 | 84.40 246 | 86.20 249 | 67.49 254 | 76.36 207 | 86.54 240 | 61.54 164 | 90.79 255 | 61.86 264 | 87.33 139 | 90.49 187 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| MVSTER | | | 79.01 180 | 77.88 184 | 82.38 191 | 83.07 295 | 64.80 201 | 84.08 253 | 88.95 191 | 69.01 234 | 78.69 149 | 87.17 219 | 54.70 226 | 92.43 196 | 74.69 144 | 80.57 237 | 89.89 218 |
|
| v1240 | | | 78.99 181 | 77.78 188 | 82.64 186 | 83.21 290 | 63.54 226 | 86.62 187 | 90.30 145 | 69.74 216 | 77.33 181 | 85.68 258 | 57.04 212 | 93.76 141 | 73.13 162 | 76.92 275 | 90.62 180 |
|
| Anonymous20231211 | | | 78.97 182 | 77.69 193 | 82.81 179 | 90.54 94 | 64.29 212 | 90.11 73 | 91.51 109 | 65.01 284 | 76.16 215 | 88.13 197 | 50.56 272 | 93.03 182 | 69.68 194 | 77.56 270 | 91.11 162 |
|
| v7n | | | 78.97 182 | 77.58 196 | 83.14 163 | 83.45 285 | 65.51 184 | 88.32 135 | 91.21 116 | 73.69 133 | 72.41 275 | 86.32 246 | 57.93 201 | 93.81 137 | 69.18 198 | 75.65 296 | 90.11 203 |
|
| TAMVS | | | 78.89 184 | 77.51 197 | 83.03 169 | 87.80 193 | 67.79 136 | 84.72 233 | 85.05 264 | 67.63 251 | 76.75 196 | 87.70 201 | 62.25 154 | 90.82 254 | 58.53 293 | 87.13 142 | 90.49 187 |
|
| c3_l | | | 78.75 185 | 77.91 182 | 81.26 214 | 82.89 302 | 61.56 259 | 84.09 252 | 89.13 183 | 69.97 206 | 75.56 222 | 84.29 286 | 66.36 108 | 92.09 210 | 73.47 157 | 75.48 300 | 90.12 202 |
|
| tt0805 | | | 78.73 186 | 77.83 185 | 81.43 208 | 85.17 249 | 60.30 275 | 89.41 94 | 90.90 125 | 71.21 178 | 77.17 189 | 88.73 172 | 46.38 308 | 93.21 166 | 72.57 168 | 78.96 256 | 90.79 173 |
|
| v148 | | | 78.72 187 | 77.80 187 | 81.47 207 | 82.73 305 | 61.96 254 | 86.30 196 | 88.08 211 | 73.26 146 | 76.18 212 | 85.47 264 | 62.46 150 | 92.36 200 | 71.92 172 | 73.82 324 | 90.09 205 |
|
| VPNet | | | 78.69 188 | 78.66 165 | 78.76 265 | 88.31 173 | 55.72 331 | 84.45 243 | 86.63 243 | 76.79 64 | 78.26 161 | 90.55 130 | 59.30 193 | 89.70 273 | 66.63 222 | 77.05 274 | 90.88 171 |
|
| ET-MVSNet_ETH3D | | | 78.63 189 | 76.63 218 | 84.64 98 | 86.73 226 | 69.47 92 | 85.01 227 | 84.61 269 | 69.54 217 | 66.51 339 | 86.59 236 | 50.16 276 | 91.75 222 | 76.26 130 | 84.24 185 | 92.69 111 |
|
| anonymousdsp | | | 78.60 190 | 77.15 203 | 82.98 172 | 80.51 338 | 67.08 153 | 87.24 168 | 89.53 165 | 65.66 277 | 75.16 240 | 87.19 218 | 52.52 243 | 92.25 205 | 77.17 121 | 79.34 252 | 89.61 227 |
|
| miper_ehance_all_eth | | | 78.59 191 | 77.76 190 | 81.08 220 | 82.66 307 | 61.56 259 | 83.65 257 | 89.15 181 | 68.87 236 | 75.55 223 | 83.79 297 | 66.49 106 | 92.03 211 | 73.25 160 | 76.39 285 | 89.64 226 |
|
| WR-MVS_H | | | 78.51 192 | 78.49 168 | 78.56 269 | 88.02 185 | 56.38 322 | 88.43 128 | 92.67 62 | 77.14 54 | 73.89 258 | 87.55 207 | 66.25 110 | 89.24 280 | 58.92 288 | 73.55 326 | 90.06 209 |
|
| GBi-Net | | | 78.40 193 | 77.40 198 | 81.40 210 | 87.60 203 | 63.01 239 | 88.39 130 | 89.28 172 | 71.63 166 | 75.34 231 | 87.28 212 | 54.80 222 | 91.11 245 | 62.72 251 | 79.57 247 | 90.09 205 |
|
| test1 | | | 78.40 193 | 77.40 198 | 81.40 210 | 87.60 203 | 63.01 239 | 88.39 130 | 89.28 172 | 71.63 166 | 75.34 231 | 87.28 212 | 54.80 222 | 91.11 245 | 62.72 251 | 79.57 247 | 90.09 205 |
|
| Vis-MVSNet (Re-imp) | | | 78.36 195 | 78.45 169 | 78.07 279 | 88.64 161 | 51.78 364 | 86.70 185 | 79.63 335 | 74.14 123 | 75.11 242 | 90.83 125 | 61.29 172 | 89.75 271 | 58.10 297 | 91.60 83 | 92.69 111 |
|
| Anonymous202405211 | | | 78.25 196 | 77.01 205 | 81.99 197 | 91.03 82 | 60.67 269 | 84.77 232 | 83.90 280 | 70.65 193 | 80.00 132 | 91.20 113 | 41.08 349 | 91.43 238 | 65.21 233 | 85.26 169 | 93.85 59 |
|
| CP-MVSNet | | | 78.22 197 | 78.34 173 | 77.84 281 | 87.83 192 | 54.54 344 | 87.94 148 | 91.17 118 | 77.65 38 | 73.48 262 | 88.49 182 | 62.24 155 | 88.43 294 | 62.19 259 | 74.07 319 | 90.55 184 |
|
| BH-w/o | | | 78.21 198 | 77.33 201 | 80.84 226 | 88.81 153 | 65.13 194 | 84.87 230 | 87.85 219 | 69.75 214 | 74.52 253 | 84.74 279 | 61.34 170 | 93.11 176 | 58.24 296 | 85.84 164 | 84.27 336 |
|
| FMVSNet2 | | | 78.20 199 | 77.21 202 | 81.20 216 | 87.60 203 | 62.89 244 | 87.47 161 | 89.02 186 | 71.63 166 | 75.29 237 | 87.28 212 | 54.80 222 | 91.10 248 | 62.38 256 | 79.38 251 | 89.61 227 |
|
| MVS | | | 78.19 200 | 76.99 207 | 81.78 200 | 85.66 240 | 66.99 154 | 84.66 234 | 90.47 137 | 55.08 366 | 72.02 280 | 85.27 267 | 63.83 132 | 94.11 123 | 66.10 226 | 89.80 110 | 84.24 337 |
|
| Baseline_NR-MVSNet | | | 78.15 201 | 78.33 174 | 77.61 286 | 85.79 238 | 56.21 326 | 86.78 182 | 85.76 256 | 73.60 136 | 77.93 171 | 87.57 205 | 65.02 123 | 88.99 284 | 67.14 219 | 75.33 307 | 87.63 276 |
|
| CNLPA | | | 78.08 202 | 76.79 212 | 81.97 198 | 90.40 97 | 71.07 62 | 87.59 158 | 84.55 270 | 66.03 273 | 72.38 276 | 89.64 147 | 57.56 206 | 86.04 314 | 59.61 281 | 83.35 203 | 88.79 255 |
|
| cl22 | | | 78.07 203 | 77.01 205 | 81.23 215 | 82.37 314 | 61.83 256 | 83.55 261 | 87.98 213 | 68.96 235 | 75.06 244 | 83.87 293 | 61.40 169 | 91.88 218 | 73.53 155 | 76.39 285 | 89.98 214 |
|
| PLC |  | 70.83 11 | 78.05 204 | 76.37 223 | 83.08 166 | 91.88 74 | 67.80 135 | 88.19 139 | 89.46 167 | 64.33 292 | 69.87 303 | 88.38 185 | 53.66 236 | 93.58 146 | 58.86 289 | 82.73 211 | 87.86 272 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| Fast-Effi-MVS+-dtu | | | 78.02 205 | 76.49 219 | 82.62 187 | 83.16 294 | 66.96 157 | 86.94 175 | 87.45 228 | 72.45 155 | 71.49 285 | 84.17 290 | 54.79 225 | 91.58 227 | 67.61 212 | 80.31 240 | 89.30 235 |
|
| PS-CasMVS | | | 78.01 206 | 78.09 178 | 77.77 283 | 87.71 198 | 54.39 346 | 88.02 144 | 91.22 115 | 77.50 46 | 73.26 264 | 88.64 176 | 60.73 180 | 88.41 295 | 61.88 263 | 73.88 323 | 90.53 185 |
|
| HY-MVS | | 69.67 12 | 77.95 207 | 77.15 203 | 80.36 235 | 87.57 207 | 60.21 277 | 83.37 264 | 87.78 221 | 66.11 270 | 75.37 230 | 87.06 223 | 63.27 136 | 90.48 260 | 61.38 269 | 82.43 215 | 90.40 191 |
|
| eth_miper_zixun_eth | | | 77.92 208 | 76.69 216 | 81.61 205 | 83.00 298 | 61.98 253 | 83.15 267 | 89.20 179 | 69.52 218 | 74.86 248 | 84.35 285 | 61.76 160 | 92.56 192 | 71.50 175 | 72.89 332 | 90.28 196 |
|
| FMVSNet3 | | | 77.88 209 | 76.85 210 | 80.97 224 | 86.84 223 | 62.36 247 | 86.52 190 | 88.77 196 | 71.13 179 | 75.34 231 | 86.66 234 | 54.07 233 | 91.10 248 | 62.72 251 | 79.57 247 | 89.45 231 |
|
| miper_enhance_ethall | | | 77.87 210 | 76.86 209 | 80.92 225 | 81.65 321 | 61.38 261 | 82.68 274 | 88.98 188 | 65.52 279 | 75.47 224 | 82.30 320 | 65.76 118 | 92.00 213 | 72.95 163 | 76.39 285 | 89.39 232 |
|
| FE-MVS | | | 77.78 211 | 75.68 228 | 84.08 124 | 88.09 182 | 66.00 172 | 83.13 268 | 87.79 220 | 68.42 245 | 78.01 169 | 85.23 269 | 45.50 321 | 95.12 80 | 59.11 286 | 85.83 165 | 91.11 162 |
|
| PEN-MVS | | | 77.73 212 | 77.69 193 | 77.84 281 | 87.07 220 | 53.91 349 | 87.91 150 | 91.18 117 | 77.56 43 | 73.14 266 | 88.82 171 | 61.23 173 | 89.17 281 | 59.95 278 | 72.37 334 | 90.43 189 |
|
| cl____ | | | 77.72 213 | 76.76 213 | 80.58 231 | 82.49 311 | 60.48 272 | 83.09 269 | 87.87 217 | 69.22 225 | 74.38 255 | 85.22 270 | 62.10 157 | 91.53 232 | 71.09 178 | 75.41 304 | 89.73 225 |
|
| DIV-MVS_self_test | | | 77.72 213 | 76.76 213 | 80.58 231 | 82.48 312 | 60.48 272 | 83.09 269 | 87.86 218 | 69.22 225 | 74.38 255 | 85.24 268 | 62.10 157 | 91.53 232 | 71.09 178 | 75.40 305 | 89.74 224 |
|
| sd_testset | | | 77.70 215 | 77.40 198 | 78.60 268 | 89.03 147 | 60.02 278 | 79.00 323 | 85.83 255 | 75.19 100 | 76.61 201 | 89.98 139 | 54.81 221 | 85.46 321 | 62.63 255 | 83.55 198 | 90.33 193 |
|
| PAPM | | | 77.68 216 | 76.40 222 | 81.51 206 | 87.29 216 | 61.85 255 | 83.78 255 | 89.59 164 | 64.74 286 | 71.23 286 | 88.70 173 | 62.59 147 | 93.66 145 | 52.66 328 | 87.03 144 | 89.01 244 |
|
| CHOSEN 1792x2688 | | | 77.63 217 | 75.69 227 | 83.44 149 | 89.98 109 | 68.58 119 | 78.70 327 | 87.50 226 | 56.38 361 | 75.80 219 | 86.84 224 | 58.67 196 | 91.40 239 | 61.58 267 | 85.75 166 | 90.34 192 |
|
| HyFIR lowres test | | | 77.53 218 | 75.40 235 | 83.94 138 | 89.59 117 | 66.62 160 | 80.36 306 | 88.64 203 | 56.29 362 | 76.45 203 | 85.17 271 | 57.64 205 | 93.28 161 | 61.34 270 | 83.10 207 | 91.91 139 |
|
| FMVSNet1 | | | 77.44 219 | 76.12 225 | 81.40 210 | 86.81 224 | 63.01 239 | 88.39 130 | 89.28 172 | 70.49 195 | 74.39 254 | 87.28 212 | 49.06 292 | 91.11 245 | 60.91 272 | 78.52 259 | 90.09 205 |
|
| TR-MVS | | | 77.44 219 | 76.18 224 | 81.20 216 | 88.24 175 | 63.24 234 | 84.61 237 | 86.40 246 | 67.55 253 | 77.81 172 | 86.48 242 | 54.10 232 | 93.15 173 | 57.75 300 | 82.72 212 | 87.20 287 |
|
| 1112_ss | | | 77.40 221 | 76.43 221 | 80.32 237 | 89.11 146 | 60.41 274 | 83.65 257 | 87.72 222 | 62.13 319 | 73.05 267 | 86.72 228 | 62.58 148 | 89.97 267 | 62.11 262 | 80.80 233 | 90.59 183 |
|
| thisisatest0515 | | | 77.33 222 | 75.38 236 | 83.18 161 | 85.27 248 | 63.80 220 | 82.11 280 | 83.27 290 | 65.06 282 | 75.91 216 | 83.84 295 | 49.54 283 | 94.27 114 | 67.24 217 | 86.19 157 | 91.48 152 |
|
| test2506 | | | 77.30 223 | 76.49 219 | 79.74 248 | 90.08 103 | 52.02 358 | 87.86 153 | 63.10 393 | 74.88 106 | 80.16 131 | 92.79 79 | 38.29 362 | 92.35 201 | 68.74 204 | 92.50 73 | 94.86 17 |
|
| pm-mvs1 | | | 77.25 224 | 76.68 217 | 78.93 263 | 84.22 269 | 58.62 288 | 86.41 192 | 88.36 207 | 71.37 175 | 73.31 263 | 88.01 198 | 61.22 174 | 89.15 282 | 64.24 242 | 73.01 331 | 89.03 243 |
|
| LCM-MVSNet-Re | | | 77.05 225 | 76.94 208 | 77.36 289 | 87.20 217 | 51.60 365 | 80.06 309 | 80.46 325 | 75.20 99 | 67.69 321 | 86.72 228 | 62.48 149 | 88.98 285 | 63.44 246 | 89.25 115 | 91.51 148 |
|
| DTE-MVSNet | | | 76.99 226 | 76.80 211 | 77.54 288 | 86.24 232 | 53.06 357 | 87.52 159 | 90.66 131 | 77.08 57 | 72.50 273 | 88.67 175 | 60.48 187 | 89.52 275 | 57.33 304 | 70.74 345 | 90.05 210 |
|
| baseline1 | | | 76.98 227 | 76.75 215 | 77.66 284 | 88.13 179 | 55.66 332 | 85.12 225 | 81.89 309 | 73.04 151 | 76.79 194 | 88.90 168 | 62.43 151 | 87.78 302 | 63.30 248 | 71.18 343 | 89.55 229 |
|
| LS3D | | | 76.95 228 | 74.82 243 | 83.37 153 | 90.45 95 | 67.36 146 | 89.15 104 | 86.94 238 | 61.87 321 | 69.52 306 | 90.61 128 | 51.71 261 | 94.53 106 | 46.38 364 | 86.71 149 | 88.21 267 |
|
| GA-MVS | | | 76.87 229 | 75.17 240 | 81.97 198 | 82.75 304 | 62.58 245 | 81.44 289 | 86.35 248 | 72.16 162 | 74.74 249 | 82.89 312 | 46.20 313 | 92.02 212 | 68.85 203 | 81.09 229 | 91.30 158 |
|
| DP-MVS | | | 76.78 230 | 74.57 245 | 83.42 150 | 93.29 48 | 69.46 94 | 88.55 126 | 83.70 282 | 63.98 298 | 70.20 294 | 88.89 169 | 54.01 234 | 94.80 98 | 46.66 361 | 81.88 222 | 86.01 313 |
|
| cascas | | | 76.72 231 | 74.64 244 | 82.99 171 | 85.78 239 | 65.88 176 | 82.33 277 | 89.21 178 | 60.85 327 | 72.74 269 | 81.02 331 | 47.28 302 | 93.75 142 | 67.48 214 | 85.02 170 | 89.34 234 |
|
| testing91 | | | 76.54 232 | 75.66 230 | 79.18 260 | 88.43 169 | 55.89 329 | 81.08 292 | 83.00 297 | 73.76 132 | 75.34 231 | 84.29 286 | 46.20 313 | 90.07 265 | 64.33 240 | 84.50 177 | 91.58 146 |
|
| 1314 | | | 76.53 233 | 75.30 239 | 80.21 239 | 83.93 276 | 62.32 249 | 84.66 234 | 88.81 194 | 60.23 331 | 70.16 297 | 84.07 292 | 55.30 219 | 90.73 257 | 67.37 215 | 83.21 205 | 87.59 279 |
|
| thres100view900 | | | 76.50 234 | 75.55 232 | 79.33 256 | 89.52 120 | 56.99 311 | 85.83 211 | 83.23 291 | 73.94 126 | 76.32 208 | 87.12 220 | 51.89 258 | 91.95 214 | 48.33 352 | 83.75 192 | 89.07 237 |
|
| thres600view7 | | | 76.50 234 | 75.44 233 | 79.68 250 | 89.40 128 | 57.16 308 | 85.53 219 | 83.23 291 | 73.79 131 | 76.26 209 | 87.09 221 | 51.89 258 | 91.89 217 | 48.05 357 | 83.72 195 | 90.00 211 |
|
| thres400 | | | 76.50 234 | 75.37 237 | 79.86 245 | 89.13 142 | 57.65 302 | 85.17 222 | 83.60 283 | 73.41 142 | 76.45 203 | 86.39 244 | 52.12 250 | 91.95 214 | 48.33 352 | 83.75 192 | 90.00 211 |
|
| tfpn200view9 | | | 76.42 237 | 75.37 237 | 79.55 255 | 89.13 142 | 57.65 302 | 85.17 222 | 83.60 283 | 73.41 142 | 76.45 203 | 86.39 244 | 52.12 250 | 91.95 214 | 48.33 352 | 83.75 192 | 89.07 237 |
|
| Test_1112_low_res | | | 76.40 238 | 75.44 233 | 79.27 257 | 89.28 136 | 58.09 292 | 81.69 284 | 87.07 235 | 59.53 338 | 72.48 274 | 86.67 233 | 61.30 171 | 89.33 278 | 60.81 274 | 80.15 242 | 90.41 190 |
|
| F-COLMAP | | | 76.38 239 | 74.33 250 | 82.50 189 | 89.28 136 | 66.95 158 | 88.41 129 | 89.03 185 | 64.05 296 | 66.83 331 | 88.61 177 | 46.78 306 | 92.89 184 | 57.48 301 | 78.55 258 | 87.67 275 |
|
| LTVRE_ROB | | 69.57 13 | 76.25 240 | 74.54 247 | 81.41 209 | 88.60 162 | 64.38 211 | 79.24 319 | 89.12 184 | 70.76 188 | 69.79 305 | 87.86 199 | 49.09 291 | 93.20 169 | 56.21 314 | 80.16 241 | 86.65 302 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| MVP-Stereo | | | 76.12 241 | 74.46 249 | 81.13 219 | 85.37 247 | 69.79 86 | 84.42 245 | 87.95 215 | 65.03 283 | 67.46 324 | 85.33 266 | 53.28 241 | 91.73 224 | 58.01 298 | 83.27 204 | 81.85 361 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| XVG-ACMP-BASELINE | | | 76.11 242 | 74.27 251 | 81.62 203 | 83.20 291 | 64.67 203 | 83.60 260 | 89.75 160 | 69.75 214 | 71.85 281 | 87.09 221 | 32.78 374 | 92.11 209 | 69.99 190 | 80.43 239 | 88.09 268 |
|
| testing99 | | | 76.09 243 | 75.12 241 | 79.00 261 | 88.16 177 | 55.50 334 | 80.79 296 | 81.40 315 | 73.30 145 | 75.17 239 | 84.27 288 | 44.48 326 | 90.02 266 | 64.28 241 | 84.22 186 | 91.48 152 |
|
| ACMH+ | | 68.96 14 | 76.01 244 | 74.01 252 | 82.03 196 | 88.60 162 | 65.31 191 | 88.86 112 | 87.55 224 | 70.25 201 | 67.75 320 | 87.47 210 | 41.27 347 | 93.19 171 | 58.37 294 | 75.94 293 | 87.60 277 |
|
| ACMH | | 67.68 16 | 75.89 245 | 73.93 254 | 81.77 201 | 88.71 159 | 66.61 161 | 88.62 124 | 89.01 187 | 69.81 209 | 66.78 332 | 86.70 232 | 41.95 346 | 91.51 234 | 55.64 315 | 78.14 265 | 87.17 288 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| IB-MVS | | 68.01 15 | 75.85 246 | 73.36 261 | 83.31 154 | 84.76 258 | 66.03 169 | 83.38 263 | 85.06 263 | 70.21 202 | 69.40 307 | 81.05 330 | 45.76 318 | 94.66 103 | 65.10 235 | 75.49 299 | 89.25 236 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| baseline2 | | | 75.70 247 | 73.83 257 | 81.30 213 | 83.26 289 | 61.79 257 | 82.57 276 | 80.65 321 | 66.81 257 | 66.88 330 | 83.42 304 | 57.86 203 | 92.19 207 | 63.47 245 | 79.57 247 | 89.91 216 |
|
| WTY-MVS | | | 75.65 248 | 75.68 228 | 75.57 305 | 86.40 231 | 56.82 313 | 77.92 337 | 82.40 305 | 65.10 281 | 76.18 212 | 87.72 200 | 63.13 143 | 80.90 350 | 60.31 276 | 81.96 220 | 89.00 246 |
|
| thres200 | | | 75.55 249 | 74.47 248 | 78.82 264 | 87.78 196 | 57.85 299 | 83.07 271 | 83.51 286 | 72.44 157 | 75.84 218 | 84.42 281 | 52.08 253 | 91.75 222 | 47.41 359 | 83.64 197 | 86.86 297 |
|
| test_vis1_n_1920 | | | 75.52 250 | 75.78 226 | 74.75 315 | 79.84 346 | 57.44 306 | 83.26 265 | 85.52 258 | 62.83 310 | 79.34 140 | 86.17 249 | 45.10 323 | 79.71 354 | 78.75 104 | 81.21 228 | 87.10 294 |
|
| EPNet_dtu | | | 75.46 251 | 74.86 242 | 77.23 292 | 82.57 309 | 54.60 343 | 86.89 177 | 83.09 294 | 71.64 165 | 66.25 341 | 85.86 254 | 55.99 216 | 88.04 299 | 54.92 317 | 86.55 151 | 89.05 242 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| IterMVS-SCA-FT | | | 75.43 252 | 73.87 256 | 80.11 241 | 82.69 306 | 64.85 200 | 81.57 286 | 83.47 287 | 69.16 228 | 70.49 291 | 84.15 291 | 51.95 256 | 88.15 297 | 69.23 197 | 72.14 337 | 87.34 284 |
|
| XXY-MVS | | | 75.41 253 | 75.56 231 | 74.96 311 | 83.59 282 | 57.82 300 | 80.59 302 | 83.87 281 | 66.54 267 | 74.93 247 | 88.31 187 | 63.24 137 | 80.09 353 | 62.16 260 | 76.85 278 | 86.97 295 |
|
| TransMVSNet (Re) | | | 75.39 254 | 74.56 246 | 77.86 280 | 85.50 244 | 57.10 310 | 86.78 182 | 86.09 252 | 72.17 161 | 71.53 284 | 87.34 211 | 63.01 144 | 89.31 279 | 56.84 309 | 61.83 371 | 87.17 288 |
|
| CostFormer | | | 75.24 255 | 73.90 255 | 79.27 257 | 82.65 308 | 58.27 291 | 80.80 295 | 82.73 303 | 61.57 322 | 75.33 235 | 83.13 308 | 55.52 217 | 91.07 251 | 64.98 236 | 78.34 264 | 88.45 263 |
|
| testing11 | | | 75.14 256 | 74.01 252 | 78.53 271 | 88.16 177 | 56.38 322 | 80.74 299 | 80.42 326 | 70.67 189 | 72.69 272 | 83.72 299 | 43.61 332 | 89.86 268 | 62.29 258 | 83.76 191 | 89.36 233 |
|
| D2MVS | | | 74.82 257 | 73.21 262 | 79.64 252 | 79.81 347 | 62.56 246 | 80.34 307 | 87.35 229 | 64.37 291 | 68.86 312 | 82.66 316 | 46.37 309 | 90.10 264 | 67.91 210 | 81.24 227 | 86.25 306 |
|
| pmmvs6 | | | 74.69 258 | 73.39 260 | 78.61 267 | 81.38 327 | 57.48 305 | 86.64 186 | 87.95 215 | 64.99 285 | 70.18 295 | 86.61 235 | 50.43 274 | 89.52 275 | 62.12 261 | 70.18 347 | 88.83 253 |
|
| tfpnnormal | | | 74.39 259 | 73.16 263 | 78.08 278 | 86.10 236 | 58.05 293 | 84.65 236 | 87.53 225 | 70.32 198 | 71.22 287 | 85.63 260 | 54.97 220 | 89.86 268 | 43.03 375 | 75.02 312 | 86.32 305 |
|
| IterMVS | | | 74.29 260 | 72.94 265 | 78.35 274 | 81.53 324 | 63.49 228 | 81.58 285 | 82.49 304 | 68.06 249 | 69.99 300 | 83.69 300 | 51.66 262 | 85.54 319 | 65.85 229 | 71.64 340 | 86.01 313 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| OurMVSNet-221017-0 | | | 74.26 261 | 72.42 270 | 79.80 247 | 83.76 280 | 59.59 283 | 85.92 207 | 86.64 242 | 66.39 268 | 66.96 329 | 87.58 204 | 39.46 355 | 91.60 226 | 65.76 230 | 69.27 350 | 88.22 266 |
|
| SCA | | | 74.22 262 | 72.33 271 | 79.91 244 | 84.05 274 | 62.17 251 | 79.96 312 | 79.29 338 | 66.30 269 | 72.38 276 | 80.13 340 | 51.95 256 | 88.60 292 | 59.25 284 | 77.67 269 | 88.96 248 |
|
| miper_lstm_enhance | | | 74.11 263 | 73.11 264 | 77.13 293 | 80.11 342 | 59.62 282 | 72.23 364 | 86.92 239 | 66.76 259 | 70.40 292 | 82.92 311 | 56.93 213 | 82.92 339 | 69.06 200 | 72.63 333 | 88.87 251 |
|
| testing222 | | | 74.04 264 | 72.66 267 | 78.19 276 | 87.89 188 | 55.36 335 | 81.06 293 | 79.20 339 | 71.30 176 | 74.65 251 | 83.57 302 | 39.11 358 | 88.67 291 | 51.43 335 | 85.75 166 | 90.53 185 |
|
| EG-PatchMatch MVS | | | 74.04 264 | 71.82 274 | 80.71 229 | 84.92 256 | 67.42 143 | 85.86 209 | 88.08 211 | 66.04 272 | 64.22 353 | 83.85 294 | 35.10 371 | 92.56 192 | 57.44 302 | 80.83 232 | 82.16 360 |
|
| pmmvs4 | | | 74.03 266 | 71.91 273 | 80.39 234 | 81.96 317 | 68.32 123 | 81.45 288 | 82.14 307 | 59.32 339 | 69.87 303 | 85.13 272 | 52.40 246 | 88.13 298 | 60.21 277 | 74.74 315 | 84.73 333 |
|
| MS-PatchMatch | | | 73.83 267 | 72.67 266 | 77.30 291 | 83.87 277 | 66.02 171 | 81.82 281 | 84.66 268 | 61.37 325 | 68.61 315 | 82.82 314 | 47.29 301 | 88.21 296 | 59.27 283 | 84.32 183 | 77.68 375 |
|
| test_cas_vis1_n_1920 | | | 73.76 268 | 73.74 258 | 73.81 323 | 75.90 367 | 59.77 280 | 80.51 303 | 82.40 305 | 58.30 348 | 81.62 114 | 85.69 257 | 44.35 327 | 76.41 372 | 76.29 129 | 78.61 257 | 85.23 324 |
|
| sss | | | 73.60 269 | 73.64 259 | 73.51 325 | 82.80 303 | 55.01 340 | 76.12 344 | 81.69 312 | 62.47 315 | 74.68 250 | 85.85 255 | 57.32 209 | 78.11 361 | 60.86 273 | 80.93 230 | 87.39 282 |
|
| RPMNet | | | 73.51 270 | 70.49 290 | 82.58 188 | 81.32 330 | 65.19 192 | 75.92 346 | 92.27 78 | 57.60 354 | 72.73 270 | 76.45 367 | 52.30 247 | 95.43 67 | 48.14 356 | 77.71 267 | 87.11 292 |
|
| SixPastTwentyTwo | | | 73.37 271 | 71.26 283 | 79.70 249 | 85.08 254 | 57.89 298 | 85.57 213 | 83.56 285 | 71.03 183 | 65.66 343 | 85.88 253 | 42.10 344 | 92.57 191 | 59.11 286 | 63.34 369 | 88.65 260 |
|
| CR-MVSNet | | | 73.37 271 | 71.27 282 | 79.67 251 | 81.32 330 | 65.19 192 | 75.92 346 | 80.30 328 | 59.92 334 | 72.73 270 | 81.19 328 | 52.50 244 | 86.69 308 | 59.84 279 | 77.71 267 | 87.11 292 |
|
| MSDG | | | 73.36 273 | 70.99 285 | 80.49 233 | 84.51 265 | 65.80 179 | 80.71 300 | 86.13 251 | 65.70 276 | 65.46 344 | 83.74 298 | 44.60 324 | 90.91 253 | 51.13 336 | 76.89 276 | 84.74 332 |
|
| tpm2 | | | 73.26 274 | 71.46 278 | 78.63 266 | 83.34 287 | 56.71 316 | 80.65 301 | 80.40 327 | 56.63 360 | 73.55 261 | 82.02 325 | 51.80 260 | 91.24 243 | 56.35 313 | 78.42 262 | 87.95 269 |
|
| RPSCF | | | 73.23 275 | 71.46 278 | 78.54 270 | 82.50 310 | 59.85 279 | 82.18 279 | 82.84 302 | 58.96 343 | 71.15 288 | 89.41 159 | 45.48 322 | 84.77 327 | 58.82 290 | 71.83 339 | 91.02 168 |
|
| PatchmatchNet |  | | 73.12 276 | 71.33 281 | 78.49 273 | 83.18 292 | 60.85 266 | 79.63 314 | 78.57 342 | 64.13 293 | 71.73 282 | 79.81 345 | 51.20 265 | 85.97 315 | 57.40 303 | 76.36 290 | 88.66 259 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| COLMAP_ROB |  | 66.92 17 | 73.01 277 | 70.41 292 | 80.81 227 | 87.13 219 | 65.63 182 | 88.30 136 | 84.19 277 | 62.96 307 | 63.80 357 | 87.69 202 | 38.04 363 | 92.56 192 | 46.66 361 | 74.91 313 | 84.24 337 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| CVMVSNet | | | 72.99 278 | 72.58 268 | 74.25 319 | 84.28 267 | 50.85 370 | 86.41 192 | 83.45 288 | 44.56 383 | 73.23 265 | 87.54 208 | 49.38 286 | 85.70 316 | 65.90 228 | 78.44 261 | 86.19 308 |
|
| test-LLR | | | 72.94 279 | 72.43 269 | 74.48 316 | 81.35 328 | 58.04 294 | 78.38 330 | 77.46 348 | 66.66 261 | 69.95 301 | 79.00 351 | 48.06 298 | 79.24 355 | 66.13 224 | 84.83 172 | 86.15 309 |
|
| test_0402 | | | 72.79 280 | 70.44 291 | 79.84 246 | 88.13 179 | 65.99 173 | 85.93 206 | 84.29 274 | 65.57 278 | 67.40 326 | 85.49 263 | 46.92 305 | 92.61 190 | 35.88 387 | 74.38 318 | 80.94 366 |
|
| tpmrst | | | 72.39 281 | 72.13 272 | 73.18 329 | 80.54 337 | 49.91 374 | 79.91 313 | 79.08 340 | 63.11 304 | 71.69 283 | 79.95 342 | 55.32 218 | 82.77 340 | 65.66 231 | 73.89 322 | 86.87 296 |
|
| PatchMatch-RL | | | 72.38 282 | 70.90 286 | 76.80 296 | 88.60 162 | 67.38 145 | 79.53 315 | 76.17 359 | 62.75 312 | 69.36 308 | 82.00 326 | 45.51 320 | 84.89 326 | 53.62 323 | 80.58 236 | 78.12 374 |
|
| CL-MVSNet_self_test | | | 72.37 283 | 71.46 278 | 75.09 310 | 79.49 353 | 53.53 351 | 80.76 298 | 85.01 265 | 69.12 229 | 70.51 290 | 82.05 324 | 57.92 202 | 84.13 330 | 52.27 330 | 66.00 363 | 87.60 277 |
|
| tpm | | | 72.37 283 | 71.71 275 | 74.35 318 | 82.19 315 | 52.00 359 | 79.22 320 | 77.29 351 | 64.56 288 | 72.95 268 | 83.68 301 | 51.35 263 | 83.26 338 | 58.33 295 | 75.80 294 | 87.81 273 |
|
| ETVMVS | | | 72.25 285 | 71.05 284 | 75.84 301 | 87.77 197 | 51.91 361 | 79.39 317 | 74.98 362 | 69.26 223 | 73.71 259 | 82.95 310 | 40.82 351 | 86.14 313 | 46.17 365 | 84.43 182 | 89.47 230 |
|
| UWE-MVS | | | 72.13 286 | 71.49 277 | 74.03 321 | 86.66 228 | 47.70 378 | 81.40 290 | 76.89 355 | 63.60 301 | 75.59 221 | 84.22 289 | 39.94 354 | 85.62 318 | 48.98 349 | 86.13 159 | 88.77 256 |
|
| PVSNet | | 64.34 18 | 72.08 287 | 70.87 287 | 75.69 303 | 86.21 233 | 56.44 320 | 74.37 358 | 80.73 320 | 62.06 320 | 70.17 296 | 82.23 322 | 42.86 338 | 83.31 337 | 54.77 318 | 84.45 181 | 87.32 285 |
|
| WB-MVSnew | | | 71.96 288 | 71.65 276 | 72.89 330 | 84.67 263 | 51.88 362 | 82.29 278 | 77.57 347 | 62.31 316 | 73.67 260 | 83.00 309 | 53.49 239 | 81.10 349 | 45.75 368 | 82.13 218 | 85.70 318 |
|
| pmmvs5 | | | 71.55 289 | 70.20 295 | 75.61 304 | 77.83 360 | 56.39 321 | 81.74 283 | 80.89 317 | 57.76 352 | 67.46 324 | 84.49 280 | 49.26 289 | 85.32 323 | 57.08 306 | 75.29 308 | 85.11 328 |
|
| test-mter | | | 71.41 290 | 70.39 293 | 74.48 316 | 81.35 328 | 58.04 294 | 78.38 330 | 77.46 348 | 60.32 330 | 69.95 301 | 79.00 351 | 36.08 369 | 79.24 355 | 66.13 224 | 84.83 172 | 86.15 309 |
|
| K. test v3 | | | 71.19 291 | 68.51 303 | 79.21 259 | 83.04 297 | 57.78 301 | 84.35 247 | 76.91 354 | 72.90 154 | 62.99 360 | 82.86 313 | 39.27 356 | 91.09 250 | 61.65 266 | 52.66 387 | 88.75 257 |
|
| dmvs_re | | | 71.14 292 | 70.58 288 | 72.80 331 | 81.96 317 | 59.68 281 | 75.60 350 | 79.34 337 | 68.55 241 | 69.27 310 | 80.72 336 | 49.42 285 | 76.54 369 | 52.56 329 | 77.79 266 | 82.19 359 |
|
| tpmvs | | | 71.09 293 | 69.29 298 | 76.49 297 | 82.04 316 | 56.04 327 | 78.92 325 | 81.37 316 | 64.05 296 | 67.18 328 | 78.28 357 | 49.74 282 | 89.77 270 | 49.67 346 | 72.37 334 | 83.67 344 |
|
| AllTest | | | 70.96 294 | 68.09 309 | 79.58 253 | 85.15 251 | 63.62 222 | 84.58 238 | 79.83 332 | 62.31 316 | 60.32 368 | 86.73 226 | 32.02 375 | 88.96 287 | 50.28 341 | 71.57 341 | 86.15 309 |
|
| test_fmvs1 | | | 70.93 295 | 70.52 289 | 72.16 335 | 73.71 377 | 55.05 339 | 80.82 294 | 78.77 341 | 51.21 377 | 78.58 153 | 84.41 282 | 31.20 379 | 76.94 367 | 75.88 135 | 80.12 244 | 84.47 335 |
|
| test_fmvs1_n | | | 70.86 296 | 70.24 294 | 72.73 332 | 72.51 387 | 55.28 337 | 81.27 291 | 79.71 334 | 51.49 376 | 78.73 147 | 84.87 276 | 27.54 384 | 77.02 366 | 76.06 132 | 79.97 245 | 85.88 316 |
|
| Patchmtry | | | 70.74 297 | 69.16 300 | 75.49 307 | 80.72 334 | 54.07 348 | 74.94 357 | 80.30 328 | 58.34 347 | 70.01 298 | 81.19 328 | 52.50 244 | 86.54 309 | 53.37 325 | 71.09 344 | 85.87 317 |
|
| MIMVSNet | | | 70.69 298 | 69.30 297 | 74.88 312 | 84.52 264 | 56.35 324 | 75.87 348 | 79.42 336 | 64.59 287 | 67.76 319 | 82.41 318 | 41.10 348 | 81.54 346 | 46.64 363 | 81.34 225 | 86.75 300 |
|
| tpm cat1 | | | 70.57 299 | 68.31 305 | 77.35 290 | 82.41 313 | 57.95 297 | 78.08 334 | 80.22 330 | 52.04 372 | 68.54 316 | 77.66 362 | 52.00 255 | 87.84 301 | 51.77 331 | 72.07 338 | 86.25 306 |
|
| OpenMVS_ROB |  | 64.09 19 | 70.56 300 | 68.19 306 | 77.65 285 | 80.26 339 | 59.41 285 | 85.01 227 | 82.96 299 | 58.76 345 | 65.43 345 | 82.33 319 | 37.63 365 | 91.23 244 | 45.34 371 | 76.03 292 | 82.32 357 |
|
| pmmvs-eth3d | | | 70.50 301 | 67.83 314 | 78.52 272 | 77.37 363 | 66.18 168 | 81.82 281 | 81.51 313 | 58.90 344 | 63.90 356 | 80.42 338 | 42.69 339 | 86.28 312 | 58.56 292 | 65.30 365 | 83.11 350 |
|
| USDC | | | 70.33 302 | 68.37 304 | 76.21 299 | 80.60 336 | 56.23 325 | 79.19 321 | 86.49 244 | 60.89 326 | 61.29 364 | 85.47 264 | 31.78 377 | 89.47 277 | 53.37 325 | 76.21 291 | 82.94 354 |
|
| Patchmatch-RL test | | | 70.24 303 | 67.78 316 | 77.61 286 | 77.43 362 | 59.57 284 | 71.16 367 | 70.33 376 | 62.94 308 | 68.65 314 | 72.77 379 | 50.62 271 | 85.49 320 | 69.58 195 | 66.58 360 | 87.77 274 |
|
| CMPMVS |  | 51.72 21 | 70.19 304 | 68.16 307 | 76.28 298 | 73.15 383 | 57.55 304 | 79.47 316 | 83.92 279 | 48.02 380 | 56.48 381 | 84.81 277 | 43.13 336 | 86.42 311 | 62.67 254 | 81.81 223 | 84.89 330 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| ppachtmachnet_test | | | 70.04 305 | 67.34 322 | 78.14 277 | 79.80 348 | 61.13 262 | 79.19 321 | 80.59 322 | 59.16 341 | 65.27 346 | 79.29 348 | 46.75 307 | 87.29 305 | 49.33 347 | 66.72 358 | 86.00 315 |
|
| gg-mvs-nofinetune | | | 69.95 306 | 67.96 310 | 75.94 300 | 83.07 295 | 54.51 345 | 77.23 341 | 70.29 377 | 63.11 304 | 70.32 293 | 62.33 388 | 43.62 331 | 88.69 290 | 53.88 322 | 87.76 134 | 84.62 334 |
|
| TESTMET0.1,1 | | | 69.89 307 | 69.00 301 | 72.55 333 | 79.27 356 | 56.85 312 | 78.38 330 | 74.71 366 | 57.64 353 | 68.09 318 | 77.19 364 | 37.75 364 | 76.70 368 | 63.92 243 | 84.09 187 | 84.10 340 |
|
| test_vis1_n | | | 69.85 308 | 69.21 299 | 71.77 337 | 72.66 386 | 55.27 338 | 81.48 287 | 76.21 358 | 52.03 373 | 75.30 236 | 83.20 307 | 28.97 382 | 76.22 374 | 74.60 145 | 78.41 263 | 83.81 343 |
|
| FMVSNet5 | | | 69.50 309 | 67.96 310 | 74.15 320 | 82.97 301 | 55.35 336 | 80.01 311 | 82.12 308 | 62.56 314 | 63.02 358 | 81.53 327 | 36.92 366 | 81.92 344 | 48.42 351 | 74.06 320 | 85.17 327 |
|
| PMMVS | | | 69.34 310 | 68.67 302 | 71.35 342 | 75.67 369 | 62.03 252 | 75.17 352 | 73.46 369 | 50.00 378 | 68.68 313 | 79.05 349 | 52.07 254 | 78.13 360 | 61.16 271 | 82.77 210 | 73.90 381 |
|
| our_test_3 | | | 69.14 311 | 67.00 324 | 75.57 305 | 79.80 348 | 58.80 286 | 77.96 335 | 77.81 345 | 59.55 337 | 62.90 361 | 78.25 358 | 47.43 300 | 83.97 331 | 51.71 332 | 67.58 357 | 83.93 342 |
|
| EPMVS | | | 69.02 312 | 68.16 307 | 71.59 338 | 79.61 351 | 49.80 376 | 77.40 339 | 66.93 385 | 62.82 311 | 70.01 298 | 79.05 349 | 45.79 317 | 77.86 363 | 56.58 311 | 75.26 309 | 87.13 291 |
|
| KD-MVS_self_test | | | 68.81 313 | 67.59 320 | 72.46 334 | 74.29 375 | 45.45 383 | 77.93 336 | 87.00 236 | 63.12 303 | 63.99 355 | 78.99 353 | 42.32 341 | 84.77 327 | 56.55 312 | 64.09 368 | 87.16 290 |
|
| Anonymous20240521 | | | 68.80 314 | 67.22 323 | 73.55 324 | 74.33 374 | 54.11 347 | 83.18 266 | 85.61 257 | 58.15 349 | 61.68 363 | 80.94 333 | 30.71 380 | 81.27 348 | 57.00 307 | 73.34 330 | 85.28 323 |
|
| Anonymous20231206 | | | 68.60 315 | 67.80 315 | 71.02 345 | 80.23 341 | 50.75 371 | 78.30 333 | 80.47 324 | 56.79 359 | 66.11 342 | 82.63 317 | 46.35 310 | 78.95 357 | 43.62 374 | 75.70 295 | 83.36 347 |
|
| MIMVSNet1 | | | 68.58 316 | 66.78 326 | 73.98 322 | 80.07 343 | 51.82 363 | 80.77 297 | 84.37 271 | 64.40 290 | 59.75 371 | 82.16 323 | 36.47 367 | 83.63 334 | 42.73 376 | 70.33 346 | 86.48 304 |
|
| testing3 | | | 68.56 317 | 67.67 318 | 71.22 344 | 87.33 214 | 42.87 392 | 83.06 272 | 71.54 374 | 70.36 196 | 69.08 311 | 84.38 283 | 30.33 381 | 85.69 317 | 37.50 386 | 75.45 303 | 85.09 329 |
|
| EU-MVSNet | | | 68.53 318 | 67.61 319 | 71.31 343 | 78.51 359 | 47.01 381 | 84.47 240 | 84.27 275 | 42.27 386 | 66.44 340 | 84.79 278 | 40.44 352 | 83.76 332 | 58.76 291 | 68.54 355 | 83.17 348 |
|
| PatchT | | | 68.46 319 | 67.85 312 | 70.29 348 | 80.70 335 | 43.93 390 | 72.47 363 | 74.88 363 | 60.15 332 | 70.55 289 | 76.57 366 | 49.94 279 | 81.59 345 | 50.58 337 | 74.83 314 | 85.34 322 |
|
| test_fmvs2 | | | 68.35 320 | 67.48 321 | 70.98 346 | 69.50 390 | 51.95 360 | 80.05 310 | 76.38 357 | 49.33 379 | 74.65 251 | 84.38 283 | 23.30 390 | 75.40 381 | 74.51 146 | 75.17 311 | 85.60 319 |
|
| Syy-MVS | | | 68.05 321 | 67.85 312 | 68.67 357 | 84.68 260 | 40.97 398 | 78.62 328 | 73.08 371 | 66.65 264 | 66.74 333 | 79.46 346 | 52.11 252 | 82.30 342 | 32.89 390 | 76.38 288 | 82.75 355 |
|
| test0.0.03 1 | | | 68.00 322 | 67.69 317 | 68.90 354 | 77.55 361 | 47.43 379 | 75.70 349 | 72.95 373 | 66.66 261 | 66.56 335 | 82.29 321 | 48.06 298 | 75.87 376 | 44.97 372 | 74.51 317 | 83.41 346 |
|
| TDRefinement | | | 67.49 323 | 64.34 333 | 76.92 294 | 73.47 381 | 61.07 263 | 84.86 231 | 82.98 298 | 59.77 335 | 58.30 375 | 85.13 272 | 26.06 385 | 87.89 300 | 47.92 358 | 60.59 376 | 81.81 362 |
|
| test20.03 | | | 67.45 324 | 66.95 325 | 68.94 353 | 75.48 371 | 44.84 388 | 77.50 338 | 77.67 346 | 66.66 261 | 63.01 359 | 83.80 296 | 47.02 304 | 78.40 359 | 42.53 377 | 68.86 354 | 83.58 345 |
|
| UnsupCasMVSNet_eth | | | 67.33 325 | 65.99 329 | 71.37 340 | 73.48 380 | 51.47 367 | 75.16 353 | 85.19 262 | 65.20 280 | 60.78 366 | 80.93 335 | 42.35 340 | 77.20 365 | 57.12 305 | 53.69 386 | 85.44 321 |
|
| TinyColmap | | | 67.30 326 | 64.81 331 | 74.76 314 | 81.92 319 | 56.68 317 | 80.29 308 | 81.49 314 | 60.33 329 | 56.27 382 | 83.22 305 | 24.77 387 | 87.66 304 | 45.52 369 | 69.47 349 | 79.95 370 |
|
| myMVS_eth3d | | | 67.02 327 | 66.29 328 | 69.21 352 | 84.68 260 | 42.58 393 | 78.62 328 | 73.08 371 | 66.65 264 | 66.74 333 | 79.46 346 | 31.53 378 | 82.30 342 | 39.43 383 | 76.38 288 | 82.75 355 |
|
| dp | | | 66.80 328 | 65.43 330 | 70.90 347 | 79.74 350 | 48.82 377 | 75.12 355 | 74.77 364 | 59.61 336 | 64.08 354 | 77.23 363 | 42.89 337 | 80.72 351 | 48.86 350 | 66.58 360 | 83.16 349 |
|
| MDA-MVSNet-bldmvs | | | 66.68 329 | 63.66 338 | 75.75 302 | 79.28 355 | 60.56 271 | 73.92 360 | 78.35 343 | 64.43 289 | 50.13 389 | 79.87 344 | 44.02 329 | 83.67 333 | 46.10 366 | 56.86 379 | 83.03 352 |
|
| testgi | | | 66.67 330 | 66.53 327 | 67.08 362 | 75.62 370 | 41.69 397 | 75.93 345 | 76.50 356 | 66.11 270 | 65.20 349 | 86.59 236 | 35.72 370 | 74.71 383 | 43.71 373 | 73.38 329 | 84.84 331 |
|
| CHOSEN 280x420 | | | 66.51 331 | 64.71 332 | 71.90 336 | 81.45 325 | 63.52 227 | 57.98 395 | 68.95 383 | 53.57 368 | 62.59 362 | 76.70 365 | 46.22 312 | 75.29 382 | 55.25 316 | 79.68 246 | 76.88 377 |
|
| PM-MVS | | | 66.41 332 | 64.14 334 | 73.20 328 | 73.92 376 | 56.45 319 | 78.97 324 | 64.96 391 | 63.88 300 | 64.72 350 | 80.24 339 | 19.84 393 | 83.44 336 | 66.24 223 | 64.52 367 | 79.71 371 |
|
| JIA-IIPM | | | 66.32 333 | 62.82 344 | 76.82 295 | 77.09 364 | 61.72 258 | 65.34 388 | 75.38 360 | 58.04 351 | 64.51 351 | 62.32 389 | 42.05 345 | 86.51 310 | 51.45 334 | 69.22 351 | 82.21 358 |
|
| KD-MVS_2432*1600 | | | 66.22 334 | 63.89 336 | 73.21 326 | 75.47 372 | 53.42 353 | 70.76 370 | 84.35 272 | 64.10 294 | 66.52 337 | 78.52 355 | 34.55 372 | 84.98 324 | 50.40 339 | 50.33 390 | 81.23 364 |
|
| miper_refine_blended | | | 66.22 334 | 63.89 336 | 73.21 326 | 75.47 372 | 53.42 353 | 70.76 370 | 84.35 272 | 64.10 294 | 66.52 337 | 78.52 355 | 34.55 372 | 84.98 324 | 50.40 339 | 50.33 390 | 81.23 364 |
|
| ADS-MVSNet2 | | | 66.20 336 | 63.33 339 | 74.82 313 | 79.92 344 | 58.75 287 | 67.55 381 | 75.19 361 | 53.37 369 | 65.25 347 | 75.86 370 | 42.32 341 | 80.53 352 | 41.57 378 | 68.91 352 | 85.18 325 |
|
| YYNet1 | | | 65.03 337 | 62.91 342 | 71.38 339 | 75.85 368 | 56.60 318 | 69.12 378 | 74.66 367 | 57.28 357 | 54.12 384 | 77.87 360 | 45.85 316 | 74.48 384 | 49.95 344 | 61.52 373 | 83.05 351 |
|
| MDA-MVSNet_test_wron | | | 65.03 337 | 62.92 341 | 71.37 340 | 75.93 366 | 56.73 314 | 69.09 379 | 74.73 365 | 57.28 357 | 54.03 385 | 77.89 359 | 45.88 315 | 74.39 385 | 49.89 345 | 61.55 372 | 82.99 353 |
|
| Patchmatch-test | | | 64.82 339 | 63.24 340 | 69.57 350 | 79.42 354 | 49.82 375 | 63.49 392 | 69.05 382 | 51.98 374 | 59.95 370 | 80.13 340 | 50.91 267 | 70.98 390 | 40.66 380 | 73.57 325 | 87.90 271 |
|
| ADS-MVSNet | | | 64.36 340 | 62.88 343 | 68.78 356 | 79.92 344 | 47.17 380 | 67.55 381 | 71.18 375 | 53.37 369 | 65.25 347 | 75.86 370 | 42.32 341 | 73.99 386 | 41.57 378 | 68.91 352 | 85.18 325 |
|
| LF4IMVS | | | 64.02 341 | 62.19 345 | 69.50 351 | 70.90 388 | 53.29 356 | 76.13 343 | 77.18 352 | 52.65 371 | 58.59 373 | 80.98 332 | 23.55 389 | 76.52 370 | 53.06 327 | 66.66 359 | 78.68 373 |
|
| UnsupCasMVSNet_bld | | | 63.70 342 | 61.53 348 | 70.21 349 | 73.69 378 | 51.39 368 | 72.82 362 | 81.89 309 | 55.63 364 | 57.81 377 | 71.80 381 | 38.67 359 | 78.61 358 | 49.26 348 | 52.21 388 | 80.63 367 |
|
| test_fmvs3 | | | 63.36 343 | 61.82 346 | 67.98 359 | 62.51 397 | 46.96 382 | 77.37 340 | 74.03 368 | 45.24 382 | 67.50 323 | 78.79 354 | 12.16 401 | 72.98 389 | 72.77 166 | 66.02 362 | 83.99 341 |
|
| dmvs_testset | | | 62.63 344 | 64.11 335 | 58.19 372 | 78.55 358 | 24.76 408 | 75.28 351 | 65.94 388 | 67.91 250 | 60.34 367 | 76.01 369 | 53.56 237 | 73.94 387 | 31.79 391 | 67.65 356 | 75.88 379 |
|
| mvsany_test1 | | | 62.30 345 | 61.26 349 | 65.41 364 | 69.52 389 | 54.86 341 | 66.86 383 | 49.78 404 | 46.65 381 | 68.50 317 | 83.21 306 | 49.15 290 | 66.28 396 | 56.93 308 | 60.77 374 | 75.11 380 |
|
| new-patchmatchnet | | | 61.73 346 | 61.73 347 | 61.70 368 | 72.74 385 | 24.50 409 | 69.16 377 | 78.03 344 | 61.40 323 | 56.72 380 | 75.53 373 | 38.42 360 | 76.48 371 | 45.95 367 | 57.67 378 | 84.13 339 |
|
| PVSNet_0 | | 57.27 20 | 61.67 347 | 59.27 350 | 68.85 355 | 79.61 351 | 57.44 306 | 68.01 380 | 73.44 370 | 55.93 363 | 58.54 374 | 70.41 384 | 44.58 325 | 77.55 364 | 47.01 360 | 35.91 396 | 71.55 384 |
|
| test_vis1_rt | | | 60.28 348 | 58.42 351 | 65.84 363 | 67.25 393 | 55.60 333 | 70.44 372 | 60.94 396 | 44.33 384 | 59.00 372 | 66.64 386 | 24.91 386 | 68.67 394 | 62.80 250 | 69.48 348 | 73.25 382 |
|
| MVS-HIRNet | | | 59.14 349 | 57.67 352 | 63.57 366 | 81.65 321 | 43.50 391 | 71.73 365 | 65.06 390 | 39.59 390 | 51.43 387 | 57.73 394 | 38.34 361 | 82.58 341 | 39.53 381 | 73.95 321 | 64.62 390 |
|
| pmmvs3 | | | 57.79 350 | 54.26 355 | 68.37 358 | 64.02 396 | 56.72 315 | 75.12 355 | 65.17 389 | 40.20 388 | 52.93 386 | 69.86 385 | 20.36 392 | 75.48 379 | 45.45 370 | 55.25 385 | 72.90 383 |
|
| DSMNet-mixed | | | 57.77 351 | 56.90 353 | 60.38 370 | 67.70 392 | 35.61 401 | 69.18 376 | 53.97 402 | 32.30 398 | 57.49 378 | 79.88 343 | 40.39 353 | 68.57 395 | 38.78 384 | 72.37 334 | 76.97 376 |
|
| WB-MVS | | | 54.94 352 | 54.72 354 | 55.60 378 | 73.50 379 | 20.90 410 | 74.27 359 | 61.19 395 | 59.16 341 | 50.61 388 | 74.15 375 | 47.19 303 | 75.78 377 | 17.31 402 | 35.07 397 | 70.12 385 |
|
| LCM-MVSNet | | | 54.25 353 | 49.68 363 | 67.97 360 | 53.73 405 | 45.28 386 | 66.85 384 | 80.78 319 | 35.96 394 | 39.45 395 | 62.23 390 | 8.70 405 | 78.06 362 | 48.24 355 | 51.20 389 | 80.57 368 |
|
| mvsany_test3 | | | 53.99 354 | 51.45 359 | 61.61 369 | 55.51 401 | 44.74 389 | 63.52 391 | 45.41 408 | 43.69 385 | 58.11 376 | 76.45 367 | 17.99 394 | 63.76 399 | 54.77 318 | 47.59 392 | 76.34 378 |
|
| SSC-MVS | | | 53.88 355 | 53.59 356 | 54.75 380 | 72.87 384 | 19.59 411 | 73.84 361 | 60.53 397 | 57.58 355 | 49.18 390 | 73.45 378 | 46.34 311 | 75.47 380 | 16.20 405 | 32.28 399 | 69.20 386 |
|
| FPMVS | | | 53.68 356 | 51.64 358 | 59.81 371 | 65.08 395 | 51.03 369 | 69.48 375 | 69.58 380 | 41.46 387 | 40.67 393 | 72.32 380 | 16.46 397 | 70.00 393 | 24.24 399 | 65.42 364 | 58.40 395 |
|
| APD_test1 | | | 53.31 357 | 49.93 362 | 63.42 367 | 65.68 394 | 50.13 373 | 71.59 366 | 66.90 386 | 34.43 395 | 40.58 394 | 71.56 382 | 8.65 406 | 76.27 373 | 34.64 389 | 55.36 384 | 63.86 391 |
|
| N_pmnet | | | 52.79 358 | 53.26 357 | 51.40 382 | 78.99 357 | 7.68 414 | 69.52 374 | 3.89 413 | 51.63 375 | 57.01 379 | 74.98 374 | 40.83 350 | 65.96 397 | 37.78 385 | 64.67 366 | 80.56 369 |
|
| test_f | | | 52.09 359 | 50.82 360 | 55.90 376 | 53.82 404 | 42.31 396 | 59.42 394 | 58.31 400 | 36.45 393 | 56.12 383 | 70.96 383 | 12.18 400 | 57.79 401 | 53.51 324 | 56.57 381 | 67.60 387 |
|
| EGC-MVSNET | | | 52.07 360 | 47.05 364 | 67.14 361 | 83.51 284 | 60.71 268 | 80.50 304 | 67.75 384 | 0.07 408 | 0.43 409 | 75.85 372 | 24.26 388 | 81.54 346 | 28.82 393 | 62.25 370 | 59.16 393 |
|
| new_pmnet | | | 50.91 361 | 50.29 361 | 52.78 381 | 68.58 391 | 34.94 403 | 63.71 390 | 56.63 401 | 39.73 389 | 44.95 391 | 65.47 387 | 21.93 391 | 58.48 400 | 34.98 388 | 56.62 380 | 64.92 389 |
|
| ANet_high | | | 50.57 362 | 46.10 366 | 63.99 365 | 48.67 408 | 39.13 399 | 70.99 369 | 80.85 318 | 61.39 324 | 31.18 397 | 57.70 395 | 17.02 396 | 73.65 388 | 31.22 392 | 15.89 405 | 79.18 372 |
|
| test_vis3_rt | | | 49.26 363 | 47.02 365 | 56.00 375 | 54.30 402 | 45.27 387 | 66.76 385 | 48.08 405 | 36.83 392 | 44.38 392 | 53.20 397 | 7.17 408 | 64.07 398 | 56.77 310 | 55.66 382 | 58.65 394 |
|
| testf1 | | | 45.72 364 | 41.96 367 | 57.00 373 | 56.90 399 | 45.32 384 | 66.14 386 | 59.26 398 | 26.19 399 | 30.89 398 | 60.96 392 | 4.14 409 | 70.64 391 | 26.39 397 | 46.73 394 | 55.04 396 |
|
| APD_test2 | | | 45.72 364 | 41.96 367 | 57.00 373 | 56.90 399 | 45.32 384 | 66.14 386 | 59.26 398 | 26.19 399 | 30.89 398 | 60.96 392 | 4.14 409 | 70.64 391 | 26.39 397 | 46.73 394 | 55.04 396 |
|
| Gipuma |  | | 45.18 366 | 41.86 369 | 55.16 379 | 77.03 365 | 51.52 366 | 32.50 401 | 80.52 323 | 32.46 397 | 27.12 400 | 35.02 401 | 9.52 404 | 75.50 378 | 22.31 400 | 60.21 377 | 38.45 400 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| PMVS |  | 37.38 22 | 44.16 367 | 40.28 370 | 55.82 377 | 40.82 410 | 42.54 395 | 65.12 389 | 63.99 392 | 34.43 395 | 24.48 401 | 57.12 396 | 3.92 411 | 76.17 375 | 17.10 403 | 55.52 383 | 48.75 398 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| PMMVS2 | | | 40.82 368 | 38.86 371 | 46.69 383 | 53.84 403 | 16.45 412 | 48.61 398 | 49.92 403 | 37.49 391 | 31.67 396 | 60.97 391 | 8.14 407 | 56.42 402 | 28.42 394 | 30.72 400 | 67.19 388 |
|
| E-PMN | | | 31.77 369 | 30.64 372 | 35.15 386 | 52.87 406 | 27.67 405 | 57.09 396 | 47.86 406 | 24.64 401 | 16.40 406 | 33.05 402 | 11.23 402 | 54.90 403 | 14.46 406 | 18.15 403 | 22.87 402 |
|
| test_method | | | 31.52 370 | 29.28 374 | 38.23 385 | 27.03 412 | 6.50 415 | 20.94 403 | 62.21 394 | 4.05 406 | 22.35 404 | 52.50 398 | 13.33 398 | 47.58 405 | 27.04 396 | 34.04 398 | 60.62 392 |
|
| EMVS | | | 30.81 371 | 29.65 373 | 34.27 387 | 50.96 407 | 25.95 407 | 56.58 397 | 46.80 407 | 24.01 402 | 15.53 407 | 30.68 403 | 12.47 399 | 54.43 404 | 12.81 407 | 17.05 404 | 22.43 403 |
|
| MVE |  | 26.22 23 | 30.37 372 | 25.89 376 | 43.81 384 | 44.55 409 | 35.46 402 | 28.87 402 | 39.07 409 | 18.20 403 | 18.58 405 | 40.18 400 | 2.68 412 | 47.37 406 | 17.07 404 | 23.78 402 | 48.60 399 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| cdsmvs_eth3d_5k | | | 19.96 373 | 26.61 375 | 0.00 393 | 0.00 416 | 0.00 418 | 0.00 404 | 89.26 175 | 0.00 411 | 0.00 412 | 88.61 177 | 61.62 163 | 0.00 412 | 0.00 411 | 0.00 410 | 0.00 408 |
|
| tmp_tt | | | 18.61 374 | 21.40 377 | 10.23 390 | 4.82 413 | 10.11 413 | 34.70 400 | 30.74 411 | 1.48 407 | 23.91 403 | 26.07 404 | 28.42 383 | 13.41 409 | 27.12 395 | 15.35 406 | 7.17 404 |
|
| wuyk23d | | | 16.82 375 | 15.94 378 | 19.46 389 | 58.74 398 | 31.45 404 | 39.22 399 | 3.74 414 | 6.84 405 | 6.04 408 | 2.70 408 | 1.27 413 | 24.29 408 | 10.54 408 | 14.40 407 | 2.63 405 |
|
| ab-mvs-re | | | 7.23 376 | 9.64 379 | 0.00 393 | 0.00 416 | 0.00 418 | 0.00 404 | 0.00 417 | 0.00 411 | 0.00 412 | 86.72 228 | 0.00 416 | 0.00 412 | 0.00 411 | 0.00 410 | 0.00 408 |
|
| test123 | | | 6.12 377 | 8.11 380 | 0.14 391 | 0.06 415 | 0.09 416 | 71.05 368 | 0.03 416 | 0.04 410 | 0.25 411 | 1.30 410 | 0.05 414 | 0.03 411 | 0.21 410 | 0.01 409 | 0.29 406 |
|
| testmvs | | | 6.04 378 | 8.02 381 | 0.10 392 | 0.08 414 | 0.03 417 | 69.74 373 | 0.04 415 | 0.05 409 | 0.31 410 | 1.68 409 | 0.02 415 | 0.04 410 | 0.24 409 | 0.02 408 | 0.25 407 |
|
| pcd_1.5k_mvsjas | | | 5.26 379 | 7.02 382 | 0.00 393 | 0.00 416 | 0.00 418 | 0.00 404 | 0.00 417 | 0.00 411 | 0.00 412 | 0.00 411 | 63.15 140 | 0.00 412 | 0.00 411 | 0.00 410 | 0.00 408 |
|
| test_blank | | | 0.00 380 | 0.00 383 | 0.00 393 | 0.00 416 | 0.00 418 | 0.00 404 | 0.00 417 | 0.00 411 | 0.00 412 | 0.00 411 | 0.00 416 | 0.00 412 | 0.00 411 | 0.00 410 | 0.00 408 |
|
| uanet_test | | | 0.00 380 | 0.00 383 | 0.00 393 | 0.00 416 | 0.00 418 | 0.00 404 | 0.00 417 | 0.00 411 | 0.00 412 | 0.00 411 | 0.00 416 | 0.00 412 | 0.00 411 | 0.00 410 | 0.00 408 |
|
| DCPMVS | | | 0.00 380 | 0.00 383 | 0.00 393 | 0.00 416 | 0.00 418 | 0.00 404 | 0.00 417 | 0.00 411 | 0.00 412 | 0.00 411 | 0.00 416 | 0.00 412 | 0.00 411 | 0.00 410 | 0.00 408 |
|
| sosnet-low-res | | | 0.00 380 | 0.00 383 | 0.00 393 | 0.00 416 | 0.00 418 | 0.00 404 | 0.00 417 | 0.00 411 | 0.00 412 | 0.00 411 | 0.00 416 | 0.00 412 | 0.00 411 | 0.00 410 | 0.00 408 |
|
| sosnet | | | 0.00 380 | 0.00 383 | 0.00 393 | 0.00 416 | 0.00 418 | 0.00 404 | 0.00 417 | 0.00 411 | 0.00 412 | 0.00 411 | 0.00 416 | 0.00 412 | 0.00 411 | 0.00 410 | 0.00 408 |
|
| uncertanet | | | 0.00 380 | 0.00 383 | 0.00 393 | 0.00 416 | 0.00 418 | 0.00 404 | 0.00 417 | 0.00 411 | 0.00 412 | 0.00 411 | 0.00 416 | 0.00 412 | 0.00 411 | 0.00 410 | 0.00 408 |
|
| Regformer | | | 0.00 380 | 0.00 383 | 0.00 393 | 0.00 416 | 0.00 418 | 0.00 404 | 0.00 417 | 0.00 411 | 0.00 412 | 0.00 411 | 0.00 416 | 0.00 412 | 0.00 411 | 0.00 410 | 0.00 408 |
|
| uanet | | | 0.00 380 | 0.00 383 | 0.00 393 | 0.00 416 | 0.00 418 | 0.00 404 | 0.00 417 | 0.00 411 | 0.00 412 | 0.00 411 | 0.00 416 | 0.00 412 | 0.00 411 | 0.00 410 | 0.00 408 |
|
| WAC-MVS | | | | | | | 42.58 393 | | | | | | | | 39.46 382 | | |
|
| FOURS1 | | | | | | 95.00 10 | 72.39 39 | 95.06 1 | 93.84 15 | 74.49 115 | 91.30 15 | | | | | | |
|
| MSC_two_6792asdad | | | | | 89.16 1 | 94.34 27 | 75.53 2 | | 92.99 46 | | | | | 97.53 2 | 89.67 6 | 96.44 9 | 94.41 34 |
|
| PC_three_1452 | | | | | | | | | | 68.21 247 | 92.02 12 | 94.00 46 | 82.09 5 | 95.98 51 | 84.58 48 | 96.68 2 | 94.95 10 |
|
| No_MVS | | | | | 89.16 1 | 94.34 27 | 75.53 2 | | 92.99 46 | | | | | 97.53 2 | 89.67 6 | 96.44 9 | 94.41 34 |
|
| test_one_0601 | | | | | | 95.07 7 | 71.46 55 | | 94.14 5 | 78.27 35 | 92.05 11 | 95.74 6 | 80.83 11 | | | | |
|
| eth-test2 | | | | | | 0.00 416 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 416 | | | | | | | | | | | |
|
| ZD-MVS | | | | | | 94.38 25 | 72.22 44 | | 92.67 62 | 70.98 184 | 87.75 32 | 94.07 41 | 74.01 32 | 96.70 27 | 84.66 47 | 94.84 44 | |
|
| RE-MVS-def | | | | 85.48 55 | | 93.06 55 | 70.63 73 | 91.88 39 | 92.27 78 | 73.53 139 | 85.69 51 | 94.45 26 | 63.87 131 | | 82.75 68 | 91.87 80 | 92.50 118 |
|
| IU-MVS | | | | | | 95.30 2 | 71.25 57 | | 92.95 52 | 66.81 257 | 92.39 6 | | | | 88.94 16 | 96.63 4 | 94.85 19 |
|
| OPU-MVS | | | | | 89.06 3 | 94.62 15 | 75.42 4 | 93.57 7 | | | | 94.02 44 | 82.45 3 | 96.87 20 | 83.77 58 | 96.48 8 | 94.88 14 |
|
| test_241102_TWO | | | | | | | | | 94.06 10 | 77.24 50 | 92.78 4 | 95.72 8 | 81.26 8 | 97.44 6 | 89.07 14 | 96.58 6 | 94.26 43 |
|
| test_241102_ONE | | | | | | 95.30 2 | 70.98 63 | | 94.06 10 | 77.17 53 | 93.10 1 | 95.39 11 | 82.99 1 | 97.27 11 | | | |
|
| 9.14 | | | | 88.26 15 | | 92.84 60 | | 91.52 46 | 94.75 1 | 73.93 127 | 88.57 22 | 94.67 19 | 75.57 22 | 95.79 54 | 86.77 35 | 95.76 23 | |
|
| save fliter | | | | | | 93.80 40 | 72.35 42 | 90.47 64 | 91.17 118 | 74.31 118 | | | | | | | |
|
| test_0728_THIRD | | | | | | | | | | 78.38 33 | 92.12 9 | 95.78 4 | 81.46 7 | 97.40 8 | 89.42 9 | 96.57 7 | 94.67 25 |
|
| test_0728_SECOND | | | | | 87.71 32 | 95.34 1 | 71.43 56 | 93.49 9 | 94.23 3 | | | | | 97.49 4 | 89.08 12 | 96.41 12 | 94.21 44 |
|
| test0726 | | | | | | 95.27 5 | 71.25 57 | 93.60 6 | 94.11 6 | 77.33 48 | 92.81 3 | 95.79 3 | 80.98 9 | | | | |
|
| GSMVS | | | | | | | | | | | | | | | | | 88.96 248 |
|
| test_part2 | | | | | | 95.06 8 | 72.65 32 | | | | 91.80 13 | | | | | | |
|
| sam_mvs1 | | | | | | | | | | | | | 51.32 264 | | | | 88.96 248 |
|
| sam_mvs | | | | | | | | | | | | | 50.01 277 | | | | |
|
| ambc | | | | | 75.24 309 | 73.16 382 | 50.51 372 | 63.05 393 | 87.47 227 | | 64.28 352 | 77.81 361 | 17.80 395 | 89.73 272 | 57.88 299 | 60.64 375 | 85.49 320 |
|
| MTGPA |  | | | | | | | | 92.02 87 | | | | | | | | |
|
| test_post1 | | | | | | | | 78.90 326 | | | | 5.43 407 | 48.81 297 | 85.44 322 | 59.25 284 | | |
|
| test_post | | | | | | | | | | | | 5.46 406 | 50.36 275 | 84.24 329 | | | |
|
| patchmatchnet-post | | | | | | | | | | | | 74.00 376 | 51.12 266 | 88.60 292 | | | |
|
| GG-mvs-BLEND | | | | | 75.38 308 | 81.59 323 | 55.80 330 | 79.32 318 | 69.63 379 | | 67.19 327 | 73.67 377 | 43.24 334 | 88.90 289 | 50.41 338 | 84.50 177 | 81.45 363 |
|
| MTMP | | | | | | | | 92.18 35 | 32.83 410 | | | | | | | | |
|
| gm-plane-assit | | | | | | 81.40 326 | 53.83 350 | | | 62.72 313 | | 80.94 333 | | 92.39 198 | 63.40 247 | | |
|
| test9_res | | | | | | | | | | | | | | | 84.90 42 | 95.70 26 | 92.87 106 |
|
| TEST9 | | | | | | 93.26 50 | 72.96 25 | 88.75 117 | 91.89 95 | 68.44 244 | 85.00 59 | 93.10 67 | 74.36 28 | 95.41 69 | | | |
|
| test_8 | | | | | | 93.13 52 | 72.57 35 | 88.68 122 | 91.84 99 | 68.69 239 | 84.87 63 | 93.10 67 | 74.43 26 | 95.16 78 | | | |
|
| agg_prior2 | | | | | | | | | | | | | | | 82.91 66 | 95.45 30 | 92.70 109 |
|
| agg_prior | | | | | | 92.85 59 | 71.94 51 | | 91.78 102 | | 84.41 73 | | | 94.93 89 | | | |
|
| TestCases | | | | | 79.58 253 | 85.15 251 | 63.62 222 | | 79.83 332 | 62.31 316 | 60.32 368 | 86.73 226 | 32.02 375 | 88.96 287 | 50.28 341 | 71.57 341 | 86.15 309 |
|
| test_prior4 | | | | | | | 72.60 34 | 89.01 107 | | | | | | | | | |
|
| test_prior2 | | | | | | | | 88.85 113 | | 75.41 95 | 84.91 61 | 93.54 56 | 74.28 29 | | 83.31 61 | 95.86 20 | |
|
| test_prior | | | | | 86.33 54 | 92.61 65 | 69.59 88 | | 92.97 51 | | | | | 95.48 64 | | | 93.91 55 |
|
| 旧先验2 | | | | | | | | 86.56 189 | | 58.10 350 | 87.04 41 | | | 88.98 285 | 74.07 151 | | |
|
| æ–°å‡ ä½•2 | | | | | | | | 86.29 197 | | | | | | | | | |
|
| æ–°å‡ ä½•1 | | | | | 83.42 150 | 93.13 52 | 70.71 71 | | 85.48 259 | 57.43 356 | 81.80 111 | 91.98 90 | 63.28 135 | 92.27 204 | 64.60 239 | 92.99 66 | 87.27 286 |
|
| 旧先验1 | | | | | | 91.96 71 | 65.79 180 | | 86.37 247 | | | 93.08 71 | 69.31 79 | | | 92.74 69 | 88.74 258 |
|
| æ— å…ˆéªŒ | | | | | | | | 87.48 160 | 88.98 188 | 60.00 333 | | | | 94.12 122 | 67.28 216 | | 88.97 247 |
|
| 原ACMM2 | | | | | | | | 86.86 178 | | | | | | | | | |
|
| 原ACMM1 | | | | | 84.35 109 | 93.01 57 | 68.79 107 | | 92.44 71 | 63.96 299 | 81.09 121 | 91.57 101 | 66.06 113 | 95.45 65 | 67.19 218 | 94.82 46 | 88.81 254 |
|
| test222 | | | | | | 91.50 77 | 68.26 125 | 84.16 250 | 83.20 293 | 54.63 367 | 79.74 133 | 91.63 99 | 58.97 195 | | | 91.42 86 | 86.77 299 |
|
| testdata2 | | | | | | | | | | | | | | 91.01 252 | 62.37 257 | | |
|
| segment_acmp | | | | | | | | | | | | | 73.08 38 | | | | |
|
| testdata | | | | | 79.97 243 | 90.90 86 | 64.21 213 | | 84.71 267 | 59.27 340 | 85.40 53 | 92.91 73 | 62.02 159 | 89.08 283 | 68.95 201 | 91.37 87 | 86.63 303 |
|
| testdata1 | | | | | | | | 84.14 251 | | 75.71 89 | | | | | | | |
|
| test12 | | | | | 86.80 49 | 92.63 64 | 70.70 72 | | 91.79 101 | | 82.71 101 | | 71.67 53 | 96.16 44 | | 94.50 51 | 93.54 79 |
|
| plane_prior7 | | | | | | 90.08 103 | 68.51 120 | | | | | | | | | | |
|
| plane_prior6 | | | | | | 89.84 112 | 68.70 115 | | | | | | 60.42 188 | | | | |
|
| plane_prior5 | | | | | | | | | 92.44 71 | | | | | 95.38 71 | 78.71 105 | 86.32 154 | 91.33 155 |
|
| plane_prior4 | | | | | | | | | | | | 91.00 122 | | | | | |
|
| plane_prior3 | | | | | | | 68.60 118 | | | 78.44 31 | 78.92 145 | | | | | | |
|
| plane_prior2 | | | | | | | | 91.25 50 | | 79.12 23 | | | | | | | |
|
| plane_prior1 | | | | | | 89.90 111 | | | | | | | | | | | |
|
| plane_prior | | | | | | | 68.71 113 | 90.38 68 | | 77.62 39 | | | | | | 86.16 158 | |
|
| n2 | | | | | | | | | 0.00 417 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 417 | | | | | | | | |
|
| door-mid | | | | | | | | | 69.98 378 | | | | | | | | |
|
| lessismore_v0 | | | | | 78.97 262 | 81.01 333 | 57.15 309 | | 65.99 387 | | 61.16 365 | 82.82 314 | 39.12 357 | 91.34 241 | 59.67 280 | 46.92 393 | 88.43 264 |
|
| LGP-MVS_train | | | | | 84.50 102 | 89.23 138 | 68.76 109 | | 91.94 93 | 75.37 96 | 76.64 199 | 91.51 102 | 54.29 230 | 94.91 90 | 78.44 107 | 83.78 189 | 89.83 220 |
|
| test11 | | | | | | | | | 92.23 81 | | | | | | | | |
|
| door | | | | | | | | | 69.44 381 | | | | | | | | |
|
| HQP5-MVS | | | | | | | 66.98 155 | | | | | | | | | | |
|
| HQP-NCC | | | | | | 89.33 131 | | 89.17 100 | | 76.41 74 | 77.23 185 | | | | | | |
|
| ACMP_Plane | | | | | | 89.33 131 | | 89.17 100 | | 76.41 74 | 77.23 185 | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 77.47 117 | | |
|
| HQP4-MVS | | | | | | | | | | | 77.24 184 | | | 95.11 82 | | | 91.03 166 |
|
| HQP3-MVS | | | | | | | | | 92.19 84 | | | | | | | 85.99 162 | |
|
| HQP2-MVS | | | | | | | | | | | | | 60.17 191 | | | | |
|
| NP-MVS | | | | | | 89.62 116 | 68.32 123 | | | | | 90.24 134 | | | | | |
|
| MDTV_nov1_ep13_2view | | | | | | | 37.79 400 | 75.16 353 | | 55.10 365 | 66.53 336 | | 49.34 287 | | 53.98 321 | | 87.94 270 |
|
| MDTV_nov1_ep13 | | | | 69.97 296 | | 83.18 292 | 53.48 352 | 77.10 342 | 80.18 331 | 60.45 328 | 69.33 309 | 80.44 337 | 48.89 296 | 86.90 307 | 51.60 333 | 78.51 260 | |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 81.95 221 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 81.25 226 | |
|
| Test By Simon | | | | | | | | | | | | | 64.33 127 | | | | |
|
| ITE_SJBPF | | | | | 78.22 275 | 81.77 320 | 60.57 270 | | 83.30 289 | 69.25 224 | 67.54 322 | 87.20 217 | 36.33 368 | 87.28 306 | 54.34 320 | 74.62 316 | 86.80 298 |
|
| DeepMVS_CX |  | | | | 27.40 388 | 40.17 411 | 26.90 406 | | 24.59 412 | 17.44 404 | 23.95 402 | 48.61 399 | 9.77 403 | 26.48 407 | 18.06 401 | 24.47 401 | 28.83 401 |
|