This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DVP-MVS++90.23 191.01 187.89 2494.34 2771.25 5995.06 194.23 378.38 3392.78 495.74 682.45 397.49 489.42 1096.68 294.95 11
SED-MVS90.08 290.85 287.77 2695.30 270.98 6693.57 794.06 1077.24 5393.10 195.72 882.99 197.44 789.07 1596.63 494.88 15
DVP-MVScopyleft89.60 390.35 387.33 4095.27 571.25 5993.49 992.73 6477.33 5092.12 995.78 480.98 997.40 989.08 1396.41 1293.33 92
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
MSP-MVS89.51 489.91 588.30 1094.28 3073.46 1792.90 1694.11 680.27 1091.35 1494.16 4178.35 1396.77 2489.59 994.22 6094.67 28
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DPE-MVScopyleft89.48 589.98 488.01 1694.80 1172.69 3191.59 4394.10 875.90 9092.29 795.66 1081.67 697.38 1187.44 3496.34 1593.95 60
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MM89.16 689.23 788.97 490.79 9573.65 1092.66 2391.17 12586.57 187.39 4294.97 1871.70 5397.68 192.19 195.63 2895.57 1
APDe-MVScopyleft89.15 789.63 687.73 2894.49 1871.69 5293.83 493.96 1375.70 9491.06 1696.03 176.84 1497.03 1789.09 1295.65 2794.47 38
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
SMA-MVScopyleft89.08 889.23 788.61 694.25 3173.73 992.40 2493.63 2174.77 11592.29 795.97 274.28 2997.24 1388.58 2296.91 194.87 17
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
HPM-MVS++copyleft89.02 989.15 988.63 595.01 976.03 192.38 2792.85 5980.26 1187.78 3494.27 3675.89 1996.81 2387.45 3396.44 993.05 107
CNVR-MVS88.93 1089.13 1088.33 894.77 1273.82 890.51 6293.00 4680.90 788.06 2994.06 4676.43 1696.84 2188.48 2595.99 1894.34 44
SteuartSystems-ACMMP88.72 1188.86 1188.32 992.14 7272.96 2593.73 593.67 2080.19 1288.10 2894.80 1973.76 3397.11 1587.51 3295.82 2194.90 14
Skip Steuart: Steuart Systems R&D Blog.
SF-MVS88.46 1288.74 1287.64 3592.78 6471.95 4992.40 2494.74 275.71 9289.16 1995.10 1675.65 2196.19 4687.07 3596.01 1794.79 22
DeepPCF-MVS80.84 188.10 1388.56 1386.73 5392.24 7169.03 10389.57 9093.39 3077.53 4689.79 1894.12 4378.98 1296.58 3585.66 4195.72 2494.58 33
SD-MVS88.06 1488.50 1486.71 5492.60 6972.71 2991.81 4193.19 3577.87 3690.32 1794.00 5074.83 2393.78 14187.63 3194.27 5993.65 77
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
NCCC88.06 1488.01 1888.24 1194.41 2273.62 1191.22 5492.83 6081.50 585.79 5693.47 6473.02 4097.00 1884.90 4794.94 4094.10 52
ACMMP_NAP88.05 1688.08 1787.94 1993.70 4173.05 2290.86 5793.59 2376.27 8488.14 2795.09 1771.06 6396.67 2987.67 3096.37 1494.09 53
TSAR-MVS + MP.88.02 1788.11 1687.72 3093.68 4372.13 4691.41 5092.35 8274.62 11988.90 2293.85 5675.75 2096.00 5487.80 2994.63 4895.04 9
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
ZNCC-MVS87.94 1887.85 1988.20 1294.39 2473.33 1993.03 1493.81 1776.81 6685.24 6194.32 3471.76 5196.93 1985.53 4495.79 2294.32 45
MP-MVScopyleft87.71 1987.64 2187.93 2194.36 2673.88 692.71 2292.65 7077.57 4283.84 9194.40 3272.24 4596.28 4385.65 4295.30 3593.62 80
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MVS_030487.69 2087.55 2488.12 1389.45 12971.76 5191.47 4989.54 17382.14 386.65 5094.28 3568.28 9597.46 690.81 295.31 3495.15 7
MP-MVS-pluss87.67 2187.72 2087.54 3693.64 4472.04 4889.80 8193.50 2575.17 10586.34 5295.29 1570.86 6596.00 5488.78 2096.04 1694.58 33
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
HFP-MVS87.58 2287.47 2687.94 1994.58 1673.54 1593.04 1293.24 3376.78 6884.91 6694.44 3070.78 6696.61 3284.53 5594.89 4293.66 73
reproduce-ours87.47 2387.61 2287.07 4593.27 5071.60 5391.56 4693.19 3574.98 10888.96 2095.54 1271.20 6196.54 3686.28 3893.49 6593.06 105
our_new_method87.47 2387.61 2287.07 4593.27 5071.60 5391.56 4693.19 3574.98 10888.96 2095.54 1271.20 6196.54 3686.28 3893.49 6593.06 105
ACMMPR87.44 2587.23 3088.08 1594.64 1373.59 1293.04 1293.20 3476.78 6884.66 7394.52 2368.81 9096.65 3084.53 5594.90 4194.00 57
APD-MVScopyleft87.44 2587.52 2587.19 4294.24 3272.39 3991.86 4092.83 6073.01 15988.58 2494.52 2373.36 3496.49 3884.26 5895.01 3792.70 117
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
GST-MVS87.42 2787.26 2887.89 2494.12 3672.97 2492.39 2693.43 2876.89 6484.68 7093.99 5270.67 6896.82 2284.18 6295.01 3793.90 63
region2R87.42 2787.20 3188.09 1494.63 1473.55 1393.03 1493.12 4076.73 7184.45 7894.52 2369.09 8496.70 2784.37 5794.83 4594.03 56
MCST-MVS87.37 2987.25 2987.73 2894.53 1772.46 3889.82 7993.82 1673.07 15784.86 6992.89 7876.22 1796.33 4184.89 4995.13 3694.40 41
reproduce_model87.28 3087.39 2786.95 4893.10 5671.24 6391.60 4293.19 3574.69 11688.80 2395.61 1170.29 7296.44 3986.20 4093.08 6993.16 100
MTAPA87.23 3187.00 3287.90 2294.18 3574.25 586.58 19492.02 9379.45 1985.88 5494.80 1968.07 9696.21 4586.69 3795.34 3293.23 95
XVS87.18 3286.91 3788.00 1794.42 2073.33 1992.78 1892.99 4979.14 2183.67 9594.17 4067.45 10396.60 3383.06 7094.50 5194.07 54
HPM-MVScopyleft87.11 3386.98 3487.50 3893.88 3972.16 4592.19 3393.33 3176.07 8783.81 9293.95 5569.77 7896.01 5385.15 4594.66 4794.32 45
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CP-MVS87.11 3386.92 3687.68 3494.20 3473.86 793.98 392.82 6376.62 7483.68 9494.46 2767.93 9895.95 5784.20 6194.39 5593.23 95
DeepC-MVS79.81 287.08 3586.88 3887.69 3391.16 8472.32 4390.31 7193.94 1477.12 5882.82 10694.23 3972.13 4797.09 1684.83 5095.37 3193.65 77
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DeepC-MVS_fast79.65 386.91 3686.62 4087.76 2793.52 4672.37 4191.26 5193.04 4176.62 7484.22 8293.36 6771.44 5796.76 2580.82 9595.33 3394.16 50
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
balanced_conf0386.78 3786.99 3386.15 6391.24 8367.61 14590.51 6292.90 5677.26 5287.44 4191.63 10671.27 6096.06 4985.62 4395.01 3794.78 23
SR-MVS86.73 3886.67 3986.91 4994.11 3772.11 4792.37 2892.56 7574.50 12086.84 4994.65 2267.31 10595.77 5984.80 5192.85 7292.84 115
CS-MVS86.69 3986.95 3585.90 7190.76 9667.57 14792.83 1793.30 3279.67 1784.57 7792.27 9071.47 5695.02 9384.24 6093.46 6795.13 8
PGM-MVS86.68 4086.27 4487.90 2294.22 3373.38 1890.22 7393.04 4175.53 9683.86 9094.42 3167.87 10096.64 3182.70 8094.57 5093.66 73
mPP-MVS86.67 4186.32 4387.72 3094.41 2273.55 1392.74 2092.22 8876.87 6582.81 10794.25 3866.44 11396.24 4482.88 7594.28 5893.38 89
CANet86.45 4286.10 4987.51 3790.09 10770.94 7089.70 8592.59 7481.78 481.32 12291.43 11470.34 7097.23 1484.26 5893.36 6894.37 42
train_agg86.43 4386.20 4587.13 4493.26 5272.96 2588.75 12091.89 10168.69 24785.00 6493.10 7174.43 2695.41 7384.97 4695.71 2593.02 109
PHI-MVS86.43 4386.17 4787.24 4190.88 9270.96 6892.27 3294.07 972.45 16485.22 6291.90 9769.47 8096.42 4083.28 6995.94 1994.35 43
CSCG86.41 4586.19 4687.07 4592.91 6172.48 3790.81 5893.56 2473.95 13283.16 10191.07 12675.94 1895.19 8279.94 10494.38 5693.55 84
SPE-MVS-test86.29 4686.48 4185.71 7391.02 8867.21 16092.36 2993.78 1878.97 2883.51 9891.20 12170.65 6995.15 8481.96 8494.89 4294.77 24
EC-MVSNet86.01 4786.38 4284.91 9689.31 13866.27 17392.32 3093.63 2179.37 2084.17 8491.88 9869.04 8895.43 7083.93 6493.77 6393.01 110
MVSMamba_PlusPlus85.99 4885.96 5286.05 6691.09 8567.64 14489.63 8892.65 7072.89 16284.64 7491.71 10271.85 4996.03 5084.77 5294.45 5494.49 37
casdiffmvs_mvgpermissive85.99 4886.09 5085.70 7487.65 20967.22 15988.69 12493.04 4179.64 1885.33 6092.54 8773.30 3594.50 11283.49 6691.14 9595.37 2
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
APD-MVS_3200maxsize85.97 5085.88 5386.22 6092.69 6669.53 9291.93 3792.99 4973.54 14485.94 5394.51 2665.80 12395.61 6283.04 7292.51 7693.53 86
test_fmvsmconf_n85.92 5186.04 5185.57 7685.03 26369.51 9389.62 8990.58 14073.42 14887.75 3694.02 4872.85 4193.24 16690.37 390.75 9993.96 58
sasdasda85.91 5285.87 5486.04 6789.84 11769.44 9890.45 6893.00 4676.70 7288.01 3191.23 11873.28 3693.91 13581.50 8788.80 12894.77 24
canonicalmvs85.91 5285.87 5486.04 6789.84 11769.44 9890.45 6893.00 4676.70 7288.01 3191.23 11873.28 3693.91 13581.50 8788.80 12894.77 24
ACMMPcopyleft85.89 5485.39 6187.38 3993.59 4572.63 3392.74 2093.18 3976.78 6880.73 13193.82 5764.33 13396.29 4282.67 8190.69 10093.23 95
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
SR-MVS-dyc-post85.77 5585.61 5886.23 5993.06 5870.63 7691.88 3892.27 8473.53 14585.69 5794.45 2865.00 13195.56 6382.75 7691.87 8492.50 126
CDPH-MVS85.76 5685.29 6687.17 4393.49 4771.08 6488.58 12892.42 8068.32 25484.61 7593.48 6272.32 4496.15 4879.00 10795.43 3094.28 47
TSAR-MVS + GP.85.71 5785.33 6386.84 5091.34 8172.50 3689.07 11087.28 23776.41 7785.80 5590.22 14574.15 3195.37 7881.82 8591.88 8392.65 121
dcpmvs_285.63 5886.15 4884.06 13391.71 7864.94 20286.47 19791.87 10373.63 14086.60 5193.02 7676.57 1591.87 22483.36 6792.15 8095.35 3
test_fmvsmconf0.1_n85.61 5985.65 5785.50 7782.99 31069.39 10089.65 8690.29 15373.31 15187.77 3594.15 4271.72 5293.23 16790.31 490.67 10193.89 64
alignmvs85.48 6085.32 6485.96 7089.51 12669.47 9589.74 8392.47 7676.17 8587.73 3891.46 11370.32 7193.78 14181.51 8688.95 12594.63 32
3Dnovator+77.84 485.48 6084.47 7688.51 791.08 8673.49 1693.18 1193.78 1880.79 876.66 20493.37 6660.40 19796.75 2677.20 12693.73 6495.29 5
MSLP-MVS++85.43 6285.76 5684.45 10991.93 7570.24 7990.71 5992.86 5877.46 4884.22 8292.81 8267.16 10792.94 18680.36 9994.35 5790.16 204
DELS-MVS85.41 6385.30 6585.77 7288.49 16967.93 13785.52 22793.44 2778.70 2983.63 9789.03 17374.57 2495.71 6180.26 10194.04 6193.66 73
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
HPM-MVS_fast85.35 6484.95 7086.57 5693.69 4270.58 7892.15 3591.62 11173.89 13582.67 10994.09 4462.60 15295.54 6580.93 9392.93 7193.57 82
test_fmvsm_n_192085.29 6585.34 6285.13 8786.12 24169.93 8688.65 12690.78 13669.97 21588.27 2693.98 5371.39 5891.54 23688.49 2490.45 10393.91 61
MVS_111021_HR85.14 6684.75 7186.32 5891.65 7972.70 3085.98 21090.33 15076.11 8682.08 11291.61 10871.36 5994.17 12481.02 9292.58 7592.08 143
casdiffmvspermissive85.11 6785.14 6785.01 9087.20 22365.77 18587.75 15792.83 6077.84 3784.36 8192.38 8972.15 4693.93 13481.27 9190.48 10295.33 4
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
UA-Net85.08 6884.96 6985.45 7892.07 7368.07 13489.78 8290.86 13582.48 284.60 7693.20 7069.35 8195.22 8171.39 18490.88 9893.07 104
MGCFI-Net85.06 6985.51 5983.70 14889.42 13063.01 24489.43 9392.62 7376.43 7687.53 3991.34 11672.82 4293.42 16181.28 9088.74 13194.66 31
DPM-MVS84.93 7084.29 7786.84 5090.20 10573.04 2387.12 17593.04 4169.80 21982.85 10591.22 12073.06 3996.02 5276.72 13494.63 4891.46 160
baseline84.93 7084.98 6884.80 10087.30 22165.39 19387.30 17192.88 5777.62 4084.04 8792.26 9171.81 5093.96 12881.31 8990.30 10595.03 10
ETV-MVS84.90 7284.67 7285.59 7589.39 13368.66 12088.74 12292.64 7279.97 1584.10 8585.71 26269.32 8295.38 7580.82 9591.37 9292.72 116
test_fmvsmconf0.01_n84.73 7384.52 7585.34 8080.25 35169.03 10389.47 9189.65 17073.24 15586.98 4794.27 3666.62 10993.23 16790.26 589.95 11393.78 70
fmvsm_l_conf0.5_n84.47 7484.54 7384.27 11985.42 25368.81 10988.49 13087.26 23868.08 25688.03 3093.49 6172.04 4891.77 22688.90 1889.14 12492.24 137
BP-MVS184.32 7583.71 8286.17 6187.84 19967.85 13889.38 9889.64 17177.73 3883.98 8892.12 9456.89 22195.43 7084.03 6391.75 8795.24 6
EI-MVSNet-Vis-set84.19 7683.81 8085.31 8188.18 18067.85 13887.66 15989.73 16880.05 1482.95 10289.59 15870.74 6794.82 10180.66 9884.72 18293.28 94
fmvsm_l_conf0.5_n_a84.13 7784.16 7884.06 13385.38 25468.40 12588.34 13786.85 24867.48 26387.48 4093.40 6570.89 6491.61 23088.38 2689.22 12292.16 141
test_fmvsmvis_n_192084.02 7883.87 7984.49 10884.12 27969.37 10188.15 14587.96 22170.01 21383.95 8993.23 6968.80 9191.51 23988.61 2189.96 11292.57 122
nrg03083.88 7983.53 8484.96 9286.77 23169.28 10290.46 6792.67 6774.79 11482.95 10291.33 11772.70 4393.09 18080.79 9779.28 26092.50 126
EI-MVSNet-UG-set83.81 8083.38 8785.09 8887.87 19767.53 14887.44 16789.66 16979.74 1682.23 11189.41 16770.24 7394.74 10479.95 10383.92 19692.99 112
fmvsm_s_conf0.1_n_283.80 8183.79 8183.83 14685.62 24964.94 20287.03 17886.62 25274.32 12487.97 3394.33 3360.67 18992.60 19489.72 687.79 14293.96 58
fmvsm_s_conf0.5_n83.80 8183.71 8284.07 13186.69 23367.31 15489.46 9283.07 30471.09 18986.96 4893.70 5969.02 8991.47 24188.79 1984.62 18493.44 88
CPTT-MVS83.73 8383.33 8984.92 9593.28 4970.86 7292.09 3690.38 14668.75 24679.57 14392.83 8060.60 19393.04 18480.92 9491.56 9090.86 177
EPNet83.72 8482.92 9686.14 6584.22 27769.48 9491.05 5685.27 26981.30 676.83 19991.65 10466.09 11895.56 6376.00 14093.85 6293.38 89
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
patch_mono-283.65 8584.54 7380.99 22790.06 11265.83 18284.21 25688.74 20771.60 17985.01 6392.44 8874.51 2583.50 34682.15 8392.15 8093.64 79
HQP_MVS83.64 8683.14 9085.14 8590.08 10868.71 11691.25 5292.44 7779.12 2378.92 15291.00 13160.42 19595.38 7578.71 11186.32 16391.33 161
fmvsm_s_conf0.5_n_a83.63 8783.41 8684.28 11786.14 24068.12 13289.43 9382.87 30970.27 20887.27 4493.80 5869.09 8491.58 23288.21 2783.65 20493.14 102
Effi-MVS+83.62 8883.08 9185.24 8388.38 17567.45 14988.89 11589.15 18975.50 9782.27 11088.28 19469.61 7994.45 11477.81 12087.84 14193.84 67
fmvsm_s_conf0.1_n83.56 8983.38 8784.10 12584.86 26567.28 15589.40 9783.01 30570.67 19787.08 4593.96 5468.38 9391.45 24288.56 2384.50 18593.56 83
GDP-MVS83.52 9082.64 10086.16 6288.14 18368.45 12489.13 10892.69 6572.82 16383.71 9391.86 10055.69 22695.35 7980.03 10289.74 11694.69 27
OPM-MVS83.50 9182.95 9585.14 8588.79 15970.95 6989.13 10891.52 11477.55 4580.96 12991.75 10160.71 18794.50 11279.67 10686.51 16189.97 220
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
Vis-MVSNetpermissive83.46 9282.80 9885.43 7990.25 10468.74 11490.30 7290.13 15776.33 8380.87 13092.89 7861.00 18494.20 12272.45 17890.97 9693.35 91
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MG-MVS83.41 9383.45 8583.28 16092.74 6562.28 25688.17 14389.50 17575.22 10181.49 12192.74 8666.75 10895.11 8772.85 17291.58 8992.45 129
EPP-MVSNet83.40 9483.02 9384.57 10490.13 10664.47 21392.32 3090.73 13774.45 12379.35 14691.10 12469.05 8795.12 8572.78 17387.22 15094.13 51
3Dnovator76.31 583.38 9582.31 10586.59 5587.94 19472.94 2890.64 6092.14 9277.21 5575.47 22992.83 8058.56 20494.72 10573.24 16992.71 7492.13 142
fmvsm_s_conf0.1_n_a83.32 9682.99 9484.28 11783.79 28768.07 13489.34 10082.85 31069.80 21987.36 4394.06 4668.34 9491.56 23487.95 2883.46 20993.21 98
EIA-MVS83.31 9782.80 9884.82 9889.59 12265.59 18888.21 14192.68 6674.66 11878.96 15086.42 24969.06 8695.26 8075.54 14690.09 10993.62 80
h-mvs3383.15 9882.19 10686.02 6990.56 9870.85 7388.15 14589.16 18876.02 8884.67 7191.39 11561.54 17095.50 6682.71 7875.48 30891.72 150
MVS_Test83.15 9883.06 9283.41 15786.86 22763.21 24086.11 20892.00 9574.31 12582.87 10489.44 16670.03 7493.21 16977.39 12588.50 13693.81 68
IS-MVSNet83.15 9882.81 9784.18 12389.94 11563.30 23891.59 4388.46 21379.04 2579.49 14492.16 9265.10 12894.28 11767.71 22091.86 8694.95 11
DP-MVS Recon83.11 10182.09 10986.15 6394.44 1970.92 7188.79 11892.20 8970.53 20279.17 14891.03 12964.12 13596.03 5068.39 21790.14 10891.50 156
PAPM_NR83.02 10282.41 10284.82 9892.47 7066.37 17187.93 15291.80 10673.82 13677.32 18790.66 13667.90 9994.90 9770.37 19489.48 11993.19 99
VDD-MVS83.01 10382.36 10484.96 9291.02 8866.40 17088.91 11488.11 21677.57 4284.39 8093.29 6852.19 25893.91 13577.05 12988.70 13294.57 35
MVSFormer82.85 10482.05 11085.24 8387.35 21570.21 8090.50 6490.38 14668.55 24981.32 12289.47 16161.68 16793.46 15878.98 10890.26 10692.05 144
OMC-MVS82.69 10581.97 11384.85 9788.75 16167.42 15087.98 14890.87 13474.92 11079.72 14191.65 10462.19 16293.96 12875.26 15086.42 16293.16 100
PVSNet_Blended_VisFu82.62 10681.83 11584.96 9290.80 9469.76 9088.74 12291.70 11069.39 22778.96 15088.46 18965.47 12594.87 10074.42 15588.57 13390.24 202
MVS_111021_LR82.61 10782.11 10784.11 12488.82 15671.58 5585.15 23086.16 26074.69 11680.47 13391.04 12762.29 15990.55 26480.33 10090.08 11090.20 203
HQP-MVS82.61 10782.02 11184.37 11189.33 13566.98 16389.17 10392.19 9076.41 7777.23 19090.23 14460.17 19895.11 8777.47 12385.99 17191.03 171
RRT-MVS82.60 10982.10 10884.10 12587.98 19362.94 24987.45 16691.27 12177.42 4979.85 13990.28 14156.62 22394.70 10779.87 10588.15 14094.67 28
CLD-MVS82.31 11081.65 11684.29 11688.47 17067.73 14285.81 21892.35 8275.78 9178.33 16686.58 24464.01 13694.35 11576.05 13987.48 14790.79 178
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
VNet82.21 11182.41 10281.62 20890.82 9360.93 27184.47 24789.78 16576.36 8284.07 8691.88 9864.71 13290.26 26670.68 19188.89 12693.66 73
diffmvspermissive82.10 11281.88 11482.76 19083.00 30863.78 22683.68 26489.76 16672.94 16082.02 11389.85 15065.96 12290.79 26082.38 8287.30 14993.71 72
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
LPG-MVS_test82.08 11381.27 11984.50 10689.23 14268.76 11290.22 7391.94 9975.37 9976.64 20591.51 11054.29 23994.91 9578.44 11383.78 19789.83 225
FIs82.07 11482.42 10181.04 22688.80 15858.34 29888.26 14093.49 2676.93 6378.47 16391.04 12769.92 7692.34 20769.87 20184.97 17992.44 130
PS-MVSNAJss82.07 11481.31 11884.34 11486.51 23667.27 15689.27 10191.51 11571.75 17479.37 14590.22 14563.15 14694.27 11877.69 12182.36 22391.49 157
API-MVS81.99 11681.23 12084.26 12190.94 9070.18 8591.10 5589.32 18071.51 18178.66 15788.28 19465.26 12695.10 9064.74 24791.23 9487.51 289
UniMVSNet_NR-MVSNet81.88 11781.54 11782.92 17988.46 17163.46 23487.13 17492.37 8180.19 1278.38 16489.14 16971.66 5593.05 18270.05 19776.46 29192.25 135
MAR-MVS81.84 11880.70 12885.27 8291.32 8271.53 5689.82 7990.92 13169.77 22178.50 16186.21 25362.36 15894.52 11165.36 24192.05 8289.77 228
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
LFMVS81.82 11981.23 12083.57 15291.89 7663.43 23689.84 7881.85 32177.04 6183.21 9993.10 7152.26 25793.43 16071.98 17989.95 11393.85 65
hse-mvs281.72 12080.94 12684.07 13188.72 16267.68 14385.87 21487.26 23876.02 8884.67 7188.22 19761.54 17093.48 15682.71 7873.44 33691.06 169
GeoE81.71 12181.01 12583.80 14789.51 12664.45 21488.97 11288.73 20871.27 18578.63 15889.76 15266.32 11593.20 17269.89 20086.02 17093.74 71
xiu_mvs_v2_base81.69 12281.05 12383.60 15089.15 14568.03 13684.46 24990.02 15970.67 19781.30 12586.53 24763.17 14594.19 12375.60 14588.54 13488.57 268
PS-MVSNAJ81.69 12281.02 12483.70 14889.51 12668.21 13184.28 25590.09 15870.79 19481.26 12685.62 26763.15 14694.29 11675.62 14488.87 12788.59 267
PAPR81.66 12480.89 12783.99 14190.27 10364.00 22186.76 19091.77 10968.84 24577.13 19789.50 15967.63 10194.88 9967.55 22288.52 13593.09 103
UniMVSNet (Re)81.60 12581.11 12283.09 17088.38 17564.41 21587.60 16093.02 4578.42 3278.56 16088.16 19869.78 7793.26 16569.58 20476.49 29091.60 151
FC-MVSNet-test81.52 12682.02 11180.03 24788.42 17455.97 33787.95 15093.42 2977.10 5977.38 18590.98 13369.96 7591.79 22568.46 21684.50 18592.33 131
VDDNet81.52 12680.67 12984.05 13690.44 10164.13 22089.73 8485.91 26371.11 18883.18 10093.48 6250.54 28493.49 15573.40 16688.25 13894.54 36
ACMP74.13 681.51 12880.57 13084.36 11289.42 13068.69 11989.97 7791.50 11874.46 12275.04 25190.41 14053.82 24494.54 10977.56 12282.91 21589.86 224
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
jason81.39 12980.29 13784.70 10286.63 23569.90 8885.95 21186.77 24963.24 31481.07 12889.47 16161.08 18392.15 21378.33 11690.07 11192.05 144
jason: jason.
lupinMVS81.39 12980.27 13884.76 10187.35 21570.21 8085.55 22386.41 25462.85 32181.32 12288.61 18461.68 16792.24 21178.41 11590.26 10691.83 147
test_yl81.17 13180.47 13383.24 16389.13 14663.62 22786.21 20589.95 16272.43 16781.78 11889.61 15657.50 21493.58 14970.75 18986.90 15492.52 124
DCV-MVSNet81.17 13180.47 13383.24 16389.13 14663.62 22786.21 20589.95 16272.43 16781.78 11889.61 15657.50 21493.58 14970.75 18986.90 15492.52 124
DU-MVS81.12 13380.52 13282.90 18087.80 20163.46 23487.02 17991.87 10379.01 2678.38 16489.07 17165.02 12993.05 18270.05 19776.46 29192.20 138
PVSNet_Blended80.98 13480.34 13582.90 18088.85 15365.40 19184.43 25192.00 9567.62 26078.11 17185.05 28166.02 12094.27 11871.52 18189.50 11889.01 249
FA-MVS(test-final)80.96 13579.91 14384.10 12588.30 17865.01 20084.55 24690.01 16073.25 15479.61 14287.57 21158.35 20694.72 10571.29 18586.25 16592.56 123
QAPM80.88 13679.50 15285.03 8988.01 19268.97 10791.59 4392.00 9566.63 27575.15 24792.16 9257.70 21195.45 6863.52 25388.76 13090.66 184
TranMVSNet+NR-MVSNet80.84 13780.31 13682.42 19587.85 19862.33 25487.74 15891.33 12080.55 977.99 17589.86 14965.23 12792.62 19267.05 22975.24 31892.30 133
UGNet80.83 13879.59 15084.54 10588.04 18968.09 13389.42 9588.16 21576.95 6276.22 21589.46 16349.30 29993.94 13168.48 21590.31 10491.60 151
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Fast-Effi-MVS+80.81 13979.92 14283.47 15388.85 15364.51 21085.53 22589.39 17870.79 19478.49 16285.06 28067.54 10293.58 14967.03 23086.58 15992.32 132
XVG-OURS-SEG-HR80.81 13979.76 14683.96 14385.60 25068.78 11183.54 27090.50 14370.66 20076.71 20391.66 10360.69 18891.26 24776.94 13081.58 23191.83 147
xiu_mvs_v1_base_debu80.80 14179.72 14784.03 13887.35 21570.19 8285.56 22088.77 20369.06 23981.83 11488.16 19850.91 27892.85 18878.29 11787.56 14489.06 244
xiu_mvs_v1_base80.80 14179.72 14784.03 13887.35 21570.19 8285.56 22088.77 20369.06 23981.83 11488.16 19850.91 27892.85 18878.29 11787.56 14489.06 244
xiu_mvs_v1_base_debi80.80 14179.72 14784.03 13887.35 21570.19 8285.56 22088.77 20369.06 23981.83 11488.16 19850.91 27892.85 18878.29 11787.56 14489.06 244
ACMM73.20 880.78 14479.84 14583.58 15189.31 13868.37 12689.99 7691.60 11270.28 20777.25 18889.66 15453.37 24993.53 15474.24 15882.85 21688.85 257
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
114514_t80.68 14579.51 15184.20 12294.09 3867.27 15689.64 8791.11 12858.75 35874.08 26590.72 13558.10 20795.04 9269.70 20289.42 12090.30 200
CANet_DTU80.61 14679.87 14482.83 18285.60 25063.17 24387.36 16888.65 20976.37 8175.88 22288.44 19053.51 24793.07 18173.30 16789.74 11692.25 135
VPA-MVSNet80.60 14780.55 13180.76 23388.07 18860.80 27486.86 18491.58 11375.67 9580.24 13589.45 16563.34 14090.25 26770.51 19379.22 26191.23 164
mvsmamba80.60 14779.38 15484.27 11989.74 12067.24 15887.47 16486.95 24470.02 21275.38 23588.93 17451.24 27592.56 19675.47 14889.22 12293.00 111
PVSNet_BlendedMVS80.60 14780.02 14082.36 19788.85 15365.40 19186.16 20792.00 9569.34 22978.11 17186.09 25766.02 12094.27 11871.52 18182.06 22687.39 291
AdaColmapbinary80.58 15079.42 15384.06 13393.09 5768.91 10889.36 9988.97 19869.27 23075.70 22589.69 15357.20 21895.77 5963.06 25888.41 13787.50 290
EI-MVSNet80.52 15179.98 14182.12 19884.28 27563.19 24286.41 19888.95 19974.18 12978.69 15587.54 21466.62 10992.43 20172.57 17680.57 24490.74 182
XVG-OURS80.41 15279.23 16083.97 14285.64 24869.02 10583.03 28190.39 14571.09 18977.63 18191.49 11254.62 23891.35 24575.71 14283.47 20891.54 154
SDMVSNet80.38 15380.18 13980.99 22789.03 15164.94 20280.45 31389.40 17775.19 10376.61 20789.98 14760.61 19287.69 31076.83 13283.55 20690.33 198
PCF-MVS73.52 780.38 15378.84 16885.01 9087.71 20668.99 10683.65 26591.46 11963.00 31877.77 17990.28 14166.10 11795.09 9161.40 27788.22 13990.94 175
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
X-MVStestdata80.37 15577.83 19188.00 1794.42 2073.33 1992.78 1892.99 4979.14 2183.67 9512.47 42167.45 10396.60 3383.06 7094.50 5194.07 54
test_djsdf80.30 15679.32 15783.27 16183.98 28365.37 19490.50 6490.38 14668.55 24976.19 21688.70 18056.44 22493.46 15878.98 10880.14 25090.97 174
v2v48280.23 15779.29 15883.05 17383.62 29164.14 21987.04 17789.97 16173.61 14178.18 17087.22 22261.10 18293.82 13976.11 13776.78 28891.18 165
NR-MVSNet80.23 15779.38 15482.78 18887.80 20163.34 23786.31 20291.09 12979.01 2672.17 28989.07 17167.20 10692.81 19166.08 23675.65 30492.20 138
Anonymous2024052980.19 15978.89 16784.10 12590.60 9764.75 20788.95 11390.90 13265.97 28380.59 13291.17 12349.97 28993.73 14769.16 20882.70 22093.81 68
IterMVS-LS80.06 16079.38 15482.11 19985.89 24463.20 24186.79 18789.34 17974.19 12875.45 23286.72 23466.62 10992.39 20372.58 17576.86 28590.75 181
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Effi-MVS+-dtu80.03 16178.57 17284.42 11085.13 26168.74 11488.77 11988.10 21774.99 10774.97 25283.49 31357.27 21793.36 16273.53 16380.88 23891.18 165
v114480.03 16179.03 16483.01 17583.78 28864.51 21087.11 17690.57 14271.96 17378.08 17386.20 25461.41 17493.94 13174.93 15177.23 27990.60 187
v879.97 16379.02 16582.80 18584.09 28064.50 21287.96 14990.29 15374.13 13175.24 24486.81 23162.88 15193.89 13874.39 15675.40 31390.00 216
OpenMVScopyleft72.83 1079.77 16478.33 17984.09 12985.17 25769.91 8790.57 6190.97 13066.70 26972.17 28991.91 9654.70 23693.96 12861.81 27490.95 9788.41 272
v1079.74 16578.67 16982.97 17884.06 28164.95 20187.88 15590.62 13973.11 15675.11 24886.56 24561.46 17394.05 12773.68 16175.55 30689.90 222
ECVR-MVScopyleft79.61 16679.26 15980.67 23590.08 10854.69 35287.89 15477.44 36174.88 11180.27 13492.79 8348.96 30592.45 20068.55 21492.50 7794.86 18
BH-RMVSNet79.61 16678.44 17583.14 16889.38 13465.93 17984.95 23687.15 24173.56 14378.19 16989.79 15156.67 22293.36 16259.53 29286.74 15790.13 206
v119279.59 16878.43 17683.07 17283.55 29364.52 20986.93 18290.58 14070.83 19377.78 17885.90 25859.15 20193.94 13173.96 16077.19 28190.76 180
ab-mvs79.51 16978.97 16681.14 22388.46 17160.91 27283.84 26189.24 18570.36 20479.03 14988.87 17763.23 14490.21 26865.12 24382.57 22192.28 134
WR-MVS79.49 17079.22 16180.27 24388.79 15958.35 29785.06 23388.61 21178.56 3077.65 18088.34 19263.81 13990.66 26364.98 24577.22 28091.80 149
v14419279.47 17178.37 17782.78 18883.35 29663.96 22286.96 18090.36 14969.99 21477.50 18285.67 26560.66 19093.77 14374.27 15776.58 28990.62 185
BH-untuned79.47 17178.60 17182.05 20089.19 14465.91 18086.07 20988.52 21272.18 16975.42 23387.69 20861.15 18193.54 15360.38 28486.83 15686.70 310
test111179.43 17379.18 16280.15 24589.99 11353.31 36587.33 17077.05 36575.04 10680.23 13692.77 8548.97 30492.33 20868.87 21192.40 7994.81 21
mvs_anonymous79.42 17479.11 16380.34 24184.45 27457.97 30482.59 28387.62 23067.40 26476.17 21988.56 18768.47 9289.59 27970.65 19286.05 16993.47 87
thisisatest053079.40 17577.76 19684.31 11587.69 20865.10 19987.36 16884.26 28470.04 21177.42 18488.26 19649.94 29094.79 10370.20 19584.70 18393.03 108
tttt051779.40 17577.91 18883.90 14588.10 18663.84 22488.37 13684.05 28671.45 18276.78 20189.12 17049.93 29294.89 9870.18 19683.18 21392.96 113
V4279.38 17778.24 18182.83 18281.10 34365.50 19085.55 22389.82 16471.57 18078.21 16886.12 25660.66 19093.18 17575.64 14375.46 31089.81 227
jajsoiax79.29 17877.96 18683.27 16184.68 26866.57 16989.25 10290.16 15669.20 23575.46 23189.49 16045.75 33093.13 17876.84 13180.80 24090.11 208
v192192079.22 17978.03 18582.80 18583.30 29863.94 22386.80 18690.33 15069.91 21777.48 18385.53 26858.44 20593.75 14573.60 16276.85 28690.71 183
AUN-MVS79.21 18077.60 20184.05 13688.71 16367.61 14585.84 21687.26 23869.08 23877.23 19088.14 20253.20 25193.47 15775.50 14773.45 33591.06 169
TAPA-MVS73.13 979.15 18177.94 18782.79 18789.59 12262.99 24888.16 14491.51 11565.77 28477.14 19691.09 12560.91 18593.21 16950.26 35587.05 15292.17 140
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
mvs_tets79.13 18277.77 19583.22 16584.70 26766.37 17189.17 10390.19 15569.38 22875.40 23489.46 16344.17 34093.15 17676.78 13380.70 24290.14 205
UniMVSNet_ETH3D79.10 18378.24 18181.70 20786.85 22860.24 28387.28 17288.79 20274.25 12776.84 19890.53 13949.48 29591.56 23467.98 21882.15 22493.29 93
CDS-MVSNet79.07 18477.70 19883.17 16787.60 21068.23 13084.40 25386.20 25967.49 26276.36 21286.54 24661.54 17090.79 26061.86 27387.33 14890.49 192
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MVSTER79.01 18577.88 19082.38 19683.07 30564.80 20684.08 26088.95 19969.01 24278.69 15587.17 22554.70 23692.43 20174.69 15280.57 24489.89 223
v124078.99 18677.78 19482.64 19183.21 30063.54 23186.62 19390.30 15269.74 22477.33 18685.68 26457.04 21993.76 14473.13 17076.92 28390.62 185
Anonymous2023121178.97 18777.69 19982.81 18490.54 9964.29 21790.11 7591.51 11565.01 29576.16 22088.13 20350.56 28393.03 18569.68 20377.56 27891.11 167
v7n78.97 18777.58 20283.14 16883.45 29565.51 18988.32 13891.21 12373.69 13972.41 28586.32 25257.93 20893.81 14069.18 20775.65 30490.11 208
TAMVS78.89 18977.51 20383.03 17487.80 20167.79 14184.72 24085.05 27367.63 25976.75 20287.70 20762.25 16090.82 25958.53 30387.13 15190.49 192
c3_l78.75 19077.91 18881.26 21982.89 31261.56 26584.09 25989.13 19169.97 21575.56 22784.29 29566.36 11492.09 21573.47 16575.48 30890.12 207
tt080578.73 19177.83 19181.43 21385.17 25760.30 28289.41 9690.90 13271.21 18677.17 19588.73 17946.38 31993.21 16972.57 17678.96 26290.79 178
v14878.72 19277.80 19381.47 21282.73 31561.96 26086.30 20388.08 21873.26 15376.18 21785.47 27062.46 15692.36 20571.92 18073.82 33290.09 210
VPNet78.69 19378.66 17078.76 27088.31 17755.72 34184.45 25086.63 25176.79 6778.26 16790.55 13859.30 20089.70 27866.63 23177.05 28290.88 176
ET-MVSNet_ETH3D78.63 19476.63 22484.64 10386.73 23269.47 9585.01 23484.61 27769.54 22566.51 35186.59 24250.16 28791.75 22776.26 13684.24 19392.69 119
anonymousdsp78.60 19577.15 20982.98 17780.51 34967.08 16187.24 17389.53 17465.66 28675.16 24687.19 22452.52 25292.25 21077.17 12779.34 25989.61 232
miper_ehance_all_eth78.59 19677.76 19681.08 22582.66 31761.56 26583.65 26589.15 18968.87 24475.55 22883.79 30666.49 11292.03 21673.25 16876.39 29389.64 231
WR-MVS_H78.51 19778.49 17378.56 27588.02 19056.38 33188.43 13192.67 6777.14 5773.89 26687.55 21366.25 11689.24 28658.92 29873.55 33490.06 214
GBi-Net78.40 19877.40 20481.40 21587.60 21063.01 24488.39 13389.28 18171.63 17675.34 23787.28 21854.80 23291.11 25062.72 26079.57 25490.09 210
test178.40 19877.40 20481.40 21587.60 21063.01 24488.39 13389.28 18171.63 17675.34 23787.28 21854.80 23291.11 25062.72 26079.57 25490.09 210
Vis-MVSNet (Re-imp)78.36 20078.45 17478.07 28688.64 16551.78 37586.70 19179.63 34674.14 13075.11 24890.83 13461.29 17889.75 27658.10 30891.60 8892.69 119
Anonymous20240521178.25 20177.01 21181.99 20291.03 8760.67 27684.77 23983.90 28870.65 20180.00 13891.20 12141.08 35991.43 24365.21 24285.26 17793.85 65
CP-MVSNet78.22 20278.34 17877.84 28887.83 20054.54 35487.94 15191.17 12577.65 3973.48 27188.49 18862.24 16188.43 30162.19 26874.07 32790.55 189
BH-w/o78.21 20377.33 20780.84 23188.81 15765.13 19884.87 23787.85 22669.75 22274.52 26084.74 28761.34 17693.11 17958.24 30785.84 17384.27 347
FMVSNet278.20 20477.21 20881.20 22187.60 21062.89 25087.47 16489.02 19471.63 17675.29 24387.28 21854.80 23291.10 25362.38 26579.38 25889.61 232
MVS78.19 20576.99 21381.78 20585.66 24766.99 16284.66 24190.47 14455.08 37872.02 29185.27 27363.83 13894.11 12666.10 23589.80 11584.24 348
Baseline_NR-MVSNet78.15 20678.33 17977.61 29385.79 24556.21 33586.78 18885.76 26573.60 14277.93 17687.57 21165.02 12988.99 29067.14 22875.33 31587.63 285
CNLPA78.08 20776.79 21881.97 20390.40 10271.07 6587.59 16184.55 27866.03 28272.38 28689.64 15557.56 21386.04 32359.61 29183.35 21088.79 260
cl2278.07 20877.01 21181.23 22082.37 32461.83 26283.55 26987.98 22068.96 24375.06 25083.87 30261.40 17591.88 22373.53 16376.39 29389.98 219
PLCcopyleft70.83 1178.05 20976.37 22983.08 17191.88 7767.80 14088.19 14289.46 17664.33 30369.87 31588.38 19153.66 24593.58 14958.86 29982.73 21887.86 281
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
Fast-Effi-MVS+-dtu78.02 21076.49 22582.62 19283.16 30466.96 16586.94 18187.45 23572.45 16471.49 29784.17 29954.79 23591.58 23267.61 22180.31 24789.30 240
PS-CasMVS78.01 21178.09 18477.77 29087.71 20654.39 35688.02 14791.22 12277.50 4773.26 27388.64 18360.73 18688.41 30261.88 27273.88 33190.53 190
HY-MVS69.67 1277.95 21277.15 20980.36 24087.57 21460.21 28483.37 27287.78 22866.11 27975.37 23687.06 22963.27 14290.48 26561.38 27882.43 22290.40 196
eth_miper_zixun_eth77.92 21376.69 22281.61 21083.00 30861.98 25983.15 27589.20 18769.52 22674.86 25484.35 29461.76 16692.56 19671.50 18372.89 34090.28 201
FMVSNet377.88 21476.85 21680.97 22986.84 22962.36 25386.52 19688.77 20371.13 18775.34 23786.66 24054.07 24291.10 25362.72 26079.57 25489.45 236
miper_enhance_ethall77.87 21576.86 21580.92 23081.65 33161.38 26782.68 28288.98 19665.52 28875.47 22982.30 33365.76 12492.00 21872.95 17176.39 29389.39 237
FE-MVS77.78 21675.68 23584.08 13088.09 18766.00 17783.13 27687.79 22768.42 25378.01 17485.23 27545.50 33395.12 8559.11 29685.83 17491.11 167
PEN-MVS77.73 21777.69 19977.84 28887.07 22653.91 35987.91 15391.18 12477.56 4473.14 27588.82 17861.23 17989.17 28759.95 28772.37 34290.43 194
cl____77.72 21876.76 21980.58 23682.49 32160.48 27983.09 27787.87 22469.22 23374.38 26385.22 27662.10 16391.53 23771.09 18675.41 31289.73 230
DIV-MVS_self_test77.72 21876.76 21980.58 23682.48 32260.48 27983.09 27787.86 22569.22 23374.38 26385.24 27462.10 16391.53 23771.09 18675.40 31389.74 229
sd_testset77.70 22077.40 20478.60 27389.03 15160.02 28579.00 33285.83 26475.19 10376.61 20789.98 14754.81 23185.46 33162.63 26483.55 20690.33 198
PAPM77.68 22176.40 22881.51 21187.29 22261.85 26183.78 26289.59 17264.74 29771.23 29888.70 18062.59 15393.66 14852.66 34087.03 15389.01 249
CHOSEN 1792x268877.63 22275.69 23483.44 15489.98 11468.58 12278.70 33787.50 23356.38 37375.80 22486.84 23058.67 20391.40 24461.58 27685.75 17590.34 197
HyFIR lowres test77.53 22375.40 24283.94 14489.59 12266.62 16780.36 31488.64 21056.29 37476.45 20985.17 27757.64 21293.28 16461.34 27983.10 21491.91 146
FMVSNet177.44 22476.12 23181.40 21586.81 23063.01 24488.39 13389.28 18170.49 20374.39 26287.28 21849.06 30391.11 25060.91 28178.52 26590.09 210
TR-MVS77.44 22476.18 23081.20 22188.24 17963.24 23984.61 24486.40 25567.55 26177.81 17786.48 24854.10 24193.15 17657.75 31182.72 21987.20 296
1112_ss77.40 22676.43 22780.32 24289.11 15060.41 28183.65 26587.72 22962.13 33173.05 27686.72 23462.58 15489.97 27262.11 27180.80 24090.59 188
thisisatest051577.33 22775.38 24383.18 16685.27 25663.80 22582.11 28883.27 29865.06 29375.91 22183.84 30449.54 29494.27 11867.24 22686.19 16691.48 158
test250677.30 22876.49 22579.74 25390.08 10852.02 36987.86 15663.10 40774.88 11180.16 13792.79 8338.29 37392.35 20668.74 21392.50 7794.86 18
pm-mvs177.25 22976.68 22378.93 26884.22 27758.62 29586.41 19888.36 21471.37 18373.31 27288.01 20461.22 18089.15 28864.24 25173.01 33989.03 248
LCM-MVSNet-Re77.05 23076.94 21477.36 29787.20 22351.60 37680.06 31780.46 33675.20 10267.69 33386.72 23462.48 15588.98 29163.44 25589.25 12191.51 155
DTE-MVSNet76.99 23176.80 21777.54 29686.24 23853.06 36887.52 16290.66 13877.08 6072.50 28388.67 18260.48 19489.52 28057.33 31570.74 35490.05 215
baseline176.98 23276.75 22177.66 29188.13 18455.66 34285.12 23181.89 31973.04 15876.79 20088.90 17562.43 15787.78 30963.30 25771.18 35289.55 234
LS3D76.95 23374.82 25083.37 15890.45 10067.36 15389.15 10786.94 24561.87 33369.52 31890.61 13751.71 27194.53 11046.38 37686.71 15888.21 275
GA-MVS76.87 23475.17 24781.97 20382.75 31462.58 25181.44 29786.35 25772.16 17174.74 25582.89 32446.20 32492.02 21768.85 21281.09 23691.30 163
mamv476.81 23578.23 18372.54 34586.12 24165.75 18678.76 33682.07 31864.12 30572.97 27791.02 13067.97 9768.08 40983.04 7278.02 27283.80 355
DP-MVS76.78 23674.57 25283.42 15593.29 4869.46 9788.55 12983.70 29063.98 31070.20 30688.89 17654.01 24394.80 10246.66 37381.88 22986.01 322
cascas76.72 23774.64 25182.99 17685.78 24665.88 18182.33 28589.21 18660.85 33972.74 27981.02 34447.28 31293.75 14567.48 22385.02 17889.34 239
testing9176.54 23875.66 23779.18 26588.43 17355.89 33881.08 30083.00 30673.76 13875.34 23784.29 29546.20 32490.07 27064.33 24984.50 18591.58 153
131476.53 23975.30 24680.21 24483.93 28462.32 25584.66 24188.81 20160.23 34370.16 30984.07 30155.30 22990.73 26267.37 22483.21 21287.59 288
thres100view90076.50 24075.55 23979.33 26189.52 12556.99 32085.83 21783.23 29973.94 13376.32 21387.12 22651.89 26791.95 21948.33 36483.75 20089.07 242
thres600view776.50 24075.44 24079.68 25589.40 13257.16 31785.53 22583.23 29973.79 13776.26 21487.09 22751.89 26791.89 22248.05 36983.72 20390.00 216
thres40076.50 24075.37 24479.86 25089.13 14657.65 31185.17 22883.60 29173.41 14976.45 20986.39 25052.12 25991.95 21948.33 36483.75 20090.00 216
MonoMVSNet76.49 24375.80 23278.58 27481.55 33458.45 29686.36 20186.22 25874.87 11374.73 25683.73 30851.79 27088.73 29670.78 18872.15 34588.55 269
tfpn200view976.42 24475.37 24479.55 26089.13 14657.65 31185.17 22883.60 29173.41 14976.45 20986.39 25052.12 25991.95 21948.33 36483.75 20089.07 242
Test_1112_low_res76.40 24575.44 24079.27 26289.28 14058.09 30081.69 29287.07 24259.53 35072.48 28486.67 23961.30 17789.33 28360.81 28380.15 24990.41 195
F-COLMAP76.38 24674.33 25882.50 19489.28 14066.95 16688.41 13289.03 19364.05 30866.83 34388.61 18446.78 31692.89 18757.48 31278.55 26487.67 284
LTVRE_ROB69.57 1376.25 24774.54 25481.41 21488.60 16664.38 21679.24 32789.12 19270.76 19669.79 31787.86 20549.09 30293.20 17256.21 32580.16 24886.65 311
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
MVP-Stereo76.12 24874.46 25681.13 22485.37 25569.79 8984.42 25287.95 22265.03 29467.46 33685.33 27253.28 25091.73 22958.01 30983.27 21181.85 374
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
XVG-ACMP-BASELINE76.11 24974.27 25981.62 20883.20 30164.67 20883.60 26889.75 16769.75 22271.85 29287.09 22732.78 38692.11 21469.99 19980.43 24688.09 277
testing9976.09 25075.12 24879.00 26688.16 18155.50 34480.79 30481.40 32573.30 15275.17 24584.27 29744.48 33890.02 27164.28 25084.22 19491.48 158
ACMH+68.96 1476.01 25174.01 26082.03 20188.60 16665.31 19588.86 11687.55 23170.25 20967.75 33287.47 21641.27 35793.19 17458.37 30575.94 30187.60 286
ACMH67.68 1675.89 25273.93 26281.77 20688.71 16366.61 16888.62 12789.01 19569.81 21866.78 34486.70 23841.95 35691.51 23955.64 32678.14 27187.17 297
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
IB-MVS68.01 1575.85 25373.36 26983.31 15984.76 26666.03 17583.38 27185.06 27270.21 21069.40 31981.05 34345.76 32994.66 10865.10 24475.49 30789.25 241
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
baseline275.70 25473.83 26581.30 21883.26 29961.79 26382.57 28480.65 33266.81 26666.88 34283.42 31457.86 21092.19 21263.47 25479.57 25489.91 221
WTY-MVS75.65 25575.68 23575.57 31386.40 23756.82 32277.92 34982.40 31465.10 29276.18 21787.72 20663.13 14980.90 36160.31 28581.96 22789.00 251
thres20075.55 25674.47 25578.82 26987.78 20457.85 30783.07 27983.51 29472.44 16675.84 22384.42 29052.08 26291.75 22747.41 37183.64 20586.86 306
test_vis1_n_192075.52 25775.78 23374.75 32679.84 35757.44 31583.26 27385.52 26762.83 32279.34 14786.17 25545.10 33579.71 36578.75 11081.21 23587.10 303
EPNet_dtu75.46 25874.86 24977.23 30082.57 31954.60 35386.89 18383.09 30371.64 17566.25 35385.86 26055.99 22588.04 30654.92 32986.55 16089.05 247
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
IterMVS-SCA-FT75.43 25973.87 26480.11 24682.69 31664.85 20581.57 29483.47 29569.16 23670.49 30384.15 30051.95 26588.15 30469.23 20672.14 34687.34 293
XXY-MVS75.41 26075.56 23874.96 32283.59 29257.82 30880.59 31083.87 28966.54 27674.93 25388.31 19363.24 14380.09 36462.16 26976.85 28686.97 304
reproduce_monomvs75.40 26174.38 25778.46 28083.92 28557.80 30983.78 26286.94 24573.47 14772.25 28884.47 28938.74 36989.27 28575.32 14970.53 35588.31 273
TransMVSNet (Re)75.39 26274.56 25377.86 28785.50 25257.10 31986.78 18886.09 26272.17 17071.53 29687.34 21763.01 15089.31 28456.84 32061.83 38187.17 297
CostFormer75.24 26373.90 26379.27 26282.65 31858.27 29980.80 30382.73 31261.57 33475.33 24183.13 31955.52 22791.07 25664.98 24578.34 27088.45 270
testing1175.14 26474.01 26078.53 27788.16 18156.38 33180.74 30780.42 33770.67 19772.69 28283.72 30943.61 34489.86 27362.29 26783.76 19989.36 238
D2MVS74.82 26573.21 27079.64 25779.81 35862.56 25280.34 31587.35 23664.37 30268.86 32482.66 32846.37 32090.10 26967.91 21981.24 23486.25 315
pmmvs674.69 26673.39 26878.61 27281.38 33857.48 31486.64 19287.95 22264.99 29670.18 30786.61 24150.43 28589.52 28062.12 27070.18 35788.83 258
tfpnnormal74.39 26773.16 27178.08 28586.10 24358.05 30184.65 24387.53 23270.32 20671.22 29985.63 26654.97 23089.86 27343.03 38775.02 32086.32 314
IterMVS74.29 26872.94 27478.35 28181.53 33563.49 23381.58 29382.49 31368.06 25769.99 31283.69 31051.66 27285.54 32965.85 23871.64 34986.01 322
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
OurMVSNet-221017-074.26 26972.42 28079.80 25283.76 28959.59 29085.92 21386.64 25066.39 27766.96 34187.58 21039.46 36591.60 23165.76 23969.27 36088.22 274
SCA74.22 27072.33 28179.91 24984.05 28262.17 25779.96 32079.29 34966.30 27872.38 28680.13 35451.95 26588.60 29959.25 29477.67 27788.96 253
mmtdpeth74.16 27173.01 27377.60 29583.72 29061.13 26885.10 23285.10 27172.06 17277.21 19480.33 35243.84 34285.75 32577.14 12852.61 39985.91 325
miper_lstm_enhance74.11 27273.11 27277.13 30180.11 35359.62 28972.23 37786.92 24766.76 26870.40 30482.92 32356.93 22082.92 35069.06 20972.63 34188.87 256
testing22274.04 27372.66 27778.19 28387.89 19655.36 34581.06 30179.20 35071.30 18474.65 25883.57 31239.11 36888.67 29851.43 34785.75 17590.53 190
EG-PatchMatch MVS74.04 27371.82 28580.71 23484.92 26467.42 15085.86 21588.08 21866.04 28164.22 36583.85 30335.10 38292.56 19657.44 31380.83 23982.16 373
pmmvs474.03 27571.91 28480.39 23981.96 32768.32 12781.45 29682.14 31659.32 35169.87 31585.13 27852.40 25588.13 30560.21 28674.74 32384.73 344
MS-PatchMatch73.83 27672.67 27677.30 29983.87 28666.02 17681.82 28984.66 27661.37 33768.61 32782.82 32647.29 31188.21 30359.27 29384.32 19277.68 389
test_cas_vis1_n_192073.76 27773.74 26673.81 33475.90 37859.77 28780.51 31182.40 31458.30 36081.62 12085.69 26344.35 33976.41 38376.29 13578.61 26385.23 335
sss73.60 27873.64 26773.51 33682.80 31355.01 35076.12 35681.69 32262.47 32774.68 25785.85 26157.32 21678.11 37260.86 28280.93 23787.39 291
RPMNet73.51 27970.49 30182.58 19381.32 34165.19 19675.92 35892.27 8457.60 36672.73 28076.45 38152.30 25695.43 7048.14 36877.71 27587.11 301
WBMVS73.43 28072.81 27575.28 31987.91 19550.99 38278.59 34081.31 32765.51 29074.47 26184.83 28446.39 31886.68 31658.41 30477.86 27388.17 276
SixPastTwentyTwo73.37 28171.26 29479.70 25485.08 26257.89 30685.57 21983.56 29371.03 19165.66 35585.88 25942.10 35492.57 19559.11 29663.34 37988.65 266
CR-MVSNet73.37 28171.27 29379.67 25681.32 34165.19 19675.92 35880.30 33959.92 34672.73 28081.19 34152.50 25386.69 31559.84 28877.71 27587.11 301
MSDG73.36 28370.99 29680.49 23884.51 27365.80 18380.71 30886.13 26165.70 28565.46 35683.74 30744.60 33690.91 25851.13 34876.89 28484.74 343
tpm273.26 28471.46 28978.63 27183.34 29756.71 32580.65 30980.40 33856.63 37273.55 27082.02 33851.80 26991.24 24856.35 32478.42 26887.95 278
RPSCF73.23 28571.46 28978.54 27682.50 32059.85 28682.18 28782.84 31158.96 35571.15 30089.41 16745.48 33484.77 33858.82 30071.83 34891.02 173
PatchmatchNetpermissive73.12 28671.33 29278.49 27983.18 30260.85 27379.63 32278.57 35364.13 30471.73 29379.81 35951.20 27685.97 32457.40 31476.36 29888.66 265
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
UBG73.08 28772.27 28275.51 31588.02 19051.29 38078.35 34477.38 36265.52 28873.87 26782.36 33145.55 33186.48 31955.02 32884.39 19188.75 262
COLMAP_ROBcopyleft66.92 1773.01 28870.41 30380.81 23287.13 22565.63 18788.30 13984.19 28562.96 31963.80 36987.69 20838.04 37492.56 19646.66 37374.91 32184.24 348
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
CVMVSNet72.99 28972.58 27874.25 33084.28 27550.85 38386.41 19883.45 29644.56 39873.23 27487.54 21449.38 29785.70 32665.90 23778.44 26786.19 317
test-LLR72.94 29072.43 27974.48 32781.35 33958.04 30278.38 34177.46 35966.66 27069.95 31379.00 36548.06 30879.24 36666.13 23384.83 18086.15 318
test_040272.79 29170.44 30279.84 25188.13 18465.99 17885.93 21284.29 28265.57 28767.40 33885.49 26946.92 31592.61 19335.88 40174.38 32680.94 379
tpmrst72.39 29272.13 28373.18 34080.54 34849.91 38779.91 32179.08 35163.11 31671.69 29479.95 35655.32 22882.77 35165.66 24073.89 33086.87 305
PatchMatch-RL72.38 29370.90 29776.80 30488.60 16667.38 15279.53 32376.17 37162.75 32469.36 32082.00 33945.51 33284.89 33753.62 33580.58 24378.12 388
CL-MVSNet_self_test72.37 29471.46 28975.09 32179.49 36453.53 36180.76 30685.01 27469.12 23770.51 30282.05 33757.92 20984.13 34152.27 34266.00 37387.60 286
tpm72.37 29471.71 28674.35 32982.19 32552.00 37079.22 32877.29 36364.56 29972.95 27883.68 31151.35 27383.26 34958.33 30675.80 30287.81 282
ETVMVS72.25 29671.05 29575.84 30987.77 20551.91 37279.39 32574.98 37469.26 23173.71 26882.95 32240.82 36186.14 32246.17 37784.43 19089.47 235
UWE-MVS72.13 29771.49 28874.03 33286.66 23447.70 39181.40 29876.89 36763.60 31375.59 22684.22 29839.94 36485.62 32848.98 36186.13 16888.77 261
PVSNet64.34 1872.08 29870.87 29875.69 31186.21 23956.44 32974.37 37180.73 33162.06 33270.17 30882.23 33542.86 34883.31 34854.77 33084.45 18987.32 294
WB-MVSnew71.96 29971.65 28772.89 34184.67 27151.88 37382.29 28677.57 35862.31 32873.67 26983.00 32153.49 24881.10 36045.75 38082.13 22585.70 328
pmmvs571.55 30070.20 30675.61 31277.83 37156.39 33081.74 29180.89 32857.76 36467.46 33684.49 28849.26 30085.32 33357.08 31775.29 31685.11 339
test-mter71.41 30170.39 30474.48 32781.35 33958.04 30278.38 34177.46 35960.32 34269.95 31379.00 36536.08 38079.24 36666.13 23384.83 18086.15 318
K. test v371.19 30268.51 31479.21 26483.04 30757.78 31084.35 25476.91 36672.90 16162.99 37282.86 32539.27 36691.09 25561.65 27552.66 39888.75 262
dmvs_re71.14 30370.58 29972.80 34281.96 32759.68 28875.60 36279.34 34868.55 24969.27 32280.72 34949.42 29676.54 38052.56 34177.79 27482.19 372
tpmvs71.09 30469.29 30976.49 30582.04 32656.04 33678.92 33481.37 32664.05 30867.18 34078.28 37149.74 29389.77 27549.67 35872.37 34283.67 356
AllTest70.96 30568.09 32079.58 25885.15 25963.62 22784.58 24579.83 34362.31 32860.32 38186.73 23232.02 38788.96 29350.28 35371.57 35086.15 318
test_fmvs170.93 30670.52 30072.16 34773.71 38955.05 34980.82 30278.77 35251.21 39078.58 15984.41 29131.20 39176.94 37875.88 14180.12 25184.47 346
test_fmvs1_n70.86 30770.24 30572.73 34372.51 40055.28 34781.27 29979.71 34551.49 38978.73 15484.87 28327.54 39677.02 37776.06 13879.97 25285.88 326
Patchmtry70.74 30869.16 31175.49 31680.72 34554.07 35874.94 36980.30 33958.34 35970.01 31081.19 34152.50 25386.54 31753.37 33771.09 35385.87 327
MIMVSNet70.69 30969.30 30874.88 32384.52 27256.35 33375.87 36079.42 34764.59 29867.76 33182.41 33041.10 35881.54 35746.64 37581.34 23286.75 309
tpm cat170.57 31068.31 31677.35 29882.41 32357.95 30578.08 34680.22 34152.04 38568.54 32877.66 37652.00 26487.84 30851.77 34372.07 34786.25 315
OpenMVS_ROBcopyleft64.09 1970.56 31168.19 31777.65 29280.26 35059.41 29285.01 23482.96 30858.76 35765.43 35782.33 33237.63 37691.23 24945.34 38376.03 30082.32 370
pmmvs-eth3d70.50 31267.83 32578.52 27877.37 37466.18 17481.82 28981.51 32358.90 35663.90 36880.42 35142.69 34986.28 32158.56 30265.30 37583.11 362
USDC70.33 31368.37 31576.21 30780.60 34756.23 33479.19 32986.49 25360.89 33861.29 37785.47 27031.78 38989.47 28253.37 33776.21 29982.94 366
Patchmatch-RL test70.24 31467.78 32777.61 29377.43 37359.57 29171.16 38170.33 38862.94 32068.65 32672.77 39350.62 28285.49 33069.58 20466.58 37087.77 283
CMPMVSbinary51.72 2170.19 31568.16 31876.28 30673.15 39657.55 31379.47 32483.92 28748.02 39456.48 39484.81 28543.13 34686.42 32062.67 26381.81 23084.89 341
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
ppachtmachnet_test70.04 31667.34 33478.14 28479.80 35961.13 26879.19 32980.59 33359.16 35365.27 35879.29 36246.75 31787.29 31249.33 35966.72 36886.00 324
gg-mvs-nofinetune69.95 31767.96 32175.94 30883.07 30554.51 35577.23 35370.29 38963.11 31670.32 30562.33 40243.62 34388.69 29753.88 33487.76 14384.62 345
TESTMET0.1,169.89 31869.00 31272.55 34479.27 36756.85 32178.38 34174.71 37857.64 36568.09 33077.19 37837.75 37576.70 37963.92 25284.09 19584.10 351
test_vis1_n69.85 31969.21 31071.77 34972.66 39955.27 34881.48 29576.21 37052.03 38675.30 24283.20 31828.97 39476.22 38574.60 15378.41 26983.81 354
FMVSNet569.50 32067.96 32174.15 33182.97 31155.35 34680.01 31982.12 31762.56 32663.02 37081.53 34036.92 37781.92 35548.42 36374.06 32885.17 338
mvs5depth69.45 32167.45 33375.46 31773.93 38755.83 33979.19 32983.23 29966.89 26571.63 29583.32 31533.69 38585.09 33459.81 28955.34 39585.46 331
PMMVS69.34 32268.67 31371.35 35475.67 38062.03 25875.17 36473.46 38150.00 39168.68 32579.05 36352.07 26378.13 37161.16 28082.77 21773.90 395
our_test_369.14 32367.00 33675.57 31379.80 35958.80 29377.96 34777.81 35659.55 34962.90 37378.25 37247.43 31083.97 34251.71 34467.58 36783.93 353
EPMVS69.02 32468.16 31871.59 35079.61 36249.80 38977.40 35166.93 39962.82 32370.01 31079.05 36345.79 32877.86 37456.58 32275.26 31787.13 300
KD-MVS_self_test68.81 32567.59 33172.46 34674.29 38645.45 39777.93 34887.00 24363.12 31563.99 36778.99 36742.32 35184.77 33856.55 32364.09 37887.16 299
Anonymous2024052168.80 32667.22 33573.55 33574.33 38554.11 35783.18 27485.61 26658.15 36161.68 37680.94 34630.71 39281.27 35957.00 31873.34 33885.28 334
Anonymous2023120668.60 32767.80 32671.02 35780.23 35250.75 38478.30 34580.47 33556.79 37166.11 35482.63 32946.35 32178.95 36843.62 38675.70 30383.36 359
MIMVSNet168.58 32866.78 33873.98 33380.07 35451.82 37480.77 30584.37 27964.40 30159.75 38482.16 33636.47 37883.63 34542.73 38870.33 35686.48 313
testing368.56 32967.67 32971.22 35687.33 22042.87 40683.06 28071.54 38670.36 20469.08 32384.38 29230.33 39385.69 32737.50 39975.45 31185.09 340
EU-MVSNet68.53 33067.61 33071.31 35578.51 37047.01 39484.47 24784.27 28342.27 40166.44 35284.79 28640.44 36283.76 34358.76 30168.54 36583.17 360
PatchT68.46 33167.85 32370.29 36080.70 34643.93 40472.47 37674.88 37560.15 34470.55 30176.57 38049.94 29081.59 35650.58 34974.83 32285.34 333
test_fmvs268.35 33267.48 33270.98 35869.50 40351.95 37180.05 31876.38 36949.33 39274.65 25884.38 29223.30 40575.40 39374.51 15475.17 31985.60 329
Syy-MVS68.05 33367.85 32368.67 36984.68 26840.97 41278.62 33873.08 38366.65 27366.74 34579.46 36052.11 26182.30 35332.89 40476.38 29682.75 367
test0.0.03 168.00 33467.69 32868.90 36677.55 37247.43 39275.70 36172.95 38566.66 27066.56 34782.29 33448.06 30875.87 38844.97 38474.51 32583.41 358
TDRefinement67.49 33564.34 34576.92 30273.47 39361.07 27084.86 23882.98 30759.77 34758.30 38885.13 27826.06 39787.89 30747.92 37060.59 38681.81 375
test20.0367.45 33666.95 33768.94 36575.48 38244.84 40277.50 35077.67 35766.66 27063.01 37183.80 30547.02 31478.40 37042.53 39068.86 36483.58 357
UnsupCasMVSNet_eth67.33 33765.99 34171.37 35273.48 39251.47 37875.16 36585.19 27065.20 29160.78 37980.93 34842.35 35077.20 37657.12 31653.69 39785.44 332
TinyColmap67.30 33864.81 34374.76 32581.92 32956.68 32680.29 31681.49 32460.33 34156.27 39583.22 31624.77 40187.66 31145.52 38169.47 35979.95 384
myMVS_eth3d67.02 33966.29 34069.21 36484.68 26842.58 40778.62 33873.08 38366.65 27366.74 34579.46 36031.53 39082.30 35339.43 39676.38 29682.75 367
dp66.80 34065.43 34270.90 35979.74 36148.82 39075.12 36774.77 37659.61 34864.08 36677.23 37742.89 34780.72 36248.86 36266.58 37083.16 361
MDA-MVSNet-bldmvs66.68 34163.66 35075.75 31079.28 36660.56 27873.92 37378.35 35464.43 30050.13 40379.87 35844.02 34183.67 34446.10 37856.86 38983.03 364
testgi66.67 34266.53 33967.08 37675.62 38141.69 41175.93 35776.50 36866.11 27965.20 36186.59 24235.72 38174.71 39543.71 38573.38 33784.84 342
CHOSEN 280x42066.51 34364.71 34471.90 34881.45 33663.52 23257.98 41168.95 39553.57 38162.59 37476.70 37946.22 32375.29 39455.25 32779.68 25376.88 391
PM-MVS66.41 34464.14 34673.20 33973.92 38856.45 32878.97 33364.96 40563.88 31264.72 36280.24 35319.84 40983.44 34766.24 23264.52 37779.71 385
JIA-IIPM66.32 34562.82 35676.82 30377.09 37561.72 26465.34 40475.38 37258.04 36364.51 36362.32 40342.05 35586.51 31851.45 34669.22 36182.21 371
KD-MVS_2432*160066.22 34663.89 34873.21 33775.47 38353.42 36370.76 38484.35 28064.10 30666.52 34978.52 36934.55 38384.98 33550.40 35150.33 40281.23 377
miper_refine_blended66.22 34663.89 34873.21 33775.47 38353.42 36370.76 38484.35 28064.10 30666.52 34978.52 36934.55 38384.98 33550.40 35150.33 40281.23 377
ADS-MVSNet266.20 34863.33 35174.82 32479.92 35558.75 29467.55 39675.19 37353.37 38265.25 35975.86 38442.32 35180.53 36341.57 39168.91 36285.18 336
YYNet165.03 34962.91 35471.38 35175.85 37956.60 32769.12 39274.66 37957.28 36954.12 39777.87 37445.85 32774.48 39649.95 35661.52 38383.05 363
MDA-MVSNet_test_wron65.03 34962.92 35371.37 35275.93 37756.73 32369.09 39374.73 37757.28 36954.03 39877.89 37345.88 32674.39 39749.89 35761.55 38282.99 365
Patchmatch-test64.82 35163.24 35269.57 36279.42 36549.82 38863.49 40869.05 39451.98 38759.95 38380.13 35450.91 27870.98 40240.66 39373.57 33387.90 280
ADS-MVSNet64.36 35262.88 35568.78 36879.92 35547.17 39367.55 39671.18 38753.37 38265.25 35975.86 38442.32 35173.99 39841.57 39168.91 36285.18 336
LF4IMVS64.02 35362.19 35769.50 36370.90 40153.29 36676.13 35577.18 36452.65 38458.59 38680.98 34523.55 40476.52 38153.06 33966.66 36978.68 387
UnsupCasMVSNet_bld63.70 35461.53 36070.21 36173.69 39051.39 37972.82 37581.89 31955.63 37657.81 39071.80 39538.67 37078.61 36949.26 36052.21 40080.63 381
test_fmvs363.36 35561.82 35867.98 37362.51 41246.96 39577.37 35274.03 38045.24 39767.50 33578.79 36812.16 41772.98 40172.77 17466.02 37283.99 352
dmvs_testset62.63 35664.11 34758.19 38678.55 36924.76 42475.28 36365.94 40267.91 25860.34 38076.01 38353.56 24673.94 39931.79 40567.65 36675.88 393
mvsany_test162.30 35761.26 36165.41 37869.52 40254.86 35166.86 39849.78 41846.65 39568.50 32983.21 31749.15 30166.28 41056.93 31960.77 38475.11 394
new-patchmatchnet61.73 35861.73 35961.70 38272.74 39824.50 42569.16 39178.03 35561.40 33556.72 39375.53 38738.42 37176.48 38245.95 37957.67 38884.13 350
PVSNet_057.27 2061.67 35959.27 36268.85 36779.61 36257.44 31568.01 39473.44 38255.93 37558.54 38770.41 39844.58 33777.55 37547.01 37235.91 41071.55 398
test_vis1_rt60.28 36058.42 36365.84 37767.25 40655.60 34370.44 38660.94 41044.33 39959.00 38566.64 40024.91 40068.67 40762.80 25969.48 35873.25 396
ttmdpeth59.91 36157.10 36568.34 37167.13 40746.65 39674.64 37067.41 39848.30 39362.52 37585.04 28220.40 40775.93 38742.55 38945.90 40882.44 369
MVS-HIRNet59.14 36257.67 36463.57 38081.65 33143.50 40571.73 37865.06 40439.59 40551.43 40057.73 40838.34 37282.58 35239.53 39473.95 32964.62 404
pmmvs357.79 36354.26 36868.37 37064.02 41156.72 32475.12 36765.17 40340.20 40352.93 39969.86 39920.36 40875.48 39145.45 38255.25 39672.90 397
DSMNet-mixed57.77 36456.90 36660.38 38467.70 40535.61 41569.18 39053.97 41632.30 41457.49 39179.88 35740.39 36368.57 40838.78 39772.37 34276.97 390
MVStest156.63 36552.76 37168.25 37261.67 41353.25 36771.67 37968.90 39638.59 40650.59 40283.05 32025.08 39970.66 40336.76 40038.56 40980.83 380
WB-MVS54.94 36654.72 36755.60 39273.50 39120.90 42674.27 37261.19 40959.16 35350.61 40174.15 38947.19 31375.78 38917.31 41735.07 41170.12 399
LCM-MVSNet54.25 36749.68 37767.97 37453.73 42145.28 40066.85 39980.78 33035.96 41039.45 41162.23 4048.70 42178.06 37348.24 36751.20 40180.57 382
mvsany_test353.99 36851.45 37361.61 38355.51 41744.74 40363.52 40745.41 42243.69 40058.11 38976.45 38117.99 41063.76 41354.77 33047.59 40476.34 392
SSC-MVS53.88 36953.59 36954.75 39472.87 39719.59 42773.84 37460.53 41157.58 36749.18 40573.45 39246.34 32275.47 39216.20 42032.28 41369.20 400
FPMVS53.68 37051.64 37259.81 38565.08 40951.03 38169.48 38969.58 39241.46 40240.67 40972.32 39416.46 41370.00 40624.24 41365.42 37458.40 409
APD_test153.31 37149.93 37663.42 38165.68 40850.13 38671.59 38066.90 40034.43 41140.58 41071.56 3968.65 42276.27 38434.64 40355.36 39463.86 405
N_pmnet52.79 37253.26 37051.40 39678.99 3687.68 43069.52 3883.89 42951.63 38857.01 39274.98 38840.83 36065.96 41137.78 39864.67 37680.56 383
test_f52.09 37350.82 37455.90 39053.82 42042.31 41059.42 41058.31 41436.45 40956.12 39670.96 39712.18 41657.79 41653.51 33656.57 39167.60 401
EGC-MVSNET52.07 37447.05 37867.14 37583.51 29460.71 27580.50 31267.75 3970.07 4240.43 42575.85 38624.26 40281.54 35728.82 40762.25 38059.16 407
new_pmnet50.91 37550.29 37552.78 39568.58 40434.94 41763.71 40656.63 41539.73 40444.95 40665.47 40121.93 40658.48 41534.98 40256.62 39064.92 403
ANet_high50.57 37646.10 38063.99 37948.67 42439.13 41370.99 38380.85 32961.39 33631.18 41357.70 40917.02 41273.65 40031.22 40615.89 42179.18 386
test_vis3_rt49.26 37747.02 37956.00 38954.30 41845.27 40166.76 40048.08 41936.83 40844.38 40753.20 4127.17 42464.07 41256.77 32155.66 39258.65 408
testf145.72 37841.96 38257.00 38756.90 41545.32 39866.14 40159.26 41226.19 41530.89 41460.96 4064.14 42570.64 40426.39 41146.73 40655.04 410
APD_test245.72 37841.96 38257.00 38756.90 41545.32 39866.14 40159.26 41226.19 41530.89 41460.96 4064.14 42570.64 40426.39 41146.73 40655.04 410
dongtai45.42 38045.38 38145.55 39873.36 39426.85 42267.72 39534.19 42454.15 38049.65 40456.41 41125.43 39862.94 41419.45 41528.09 41546.86 414
Gipumacopyleft45.18 38141.86 38455.16 39377.03 37651.52 37732.50 41780.52 33432.46 41327.12 41635.02 4179.52 42075.50 39022.31 41460.21 38738.45 416
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft37.38 2244.16 38240.28 38655.82 39140.82 42642.54 40965.12 40563.99 40634.43 41124.48 41757.12 4103.92 42776.17 38617.10 41855.52 39348.75 412
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
PMMVS240.82 38338.86 38746.69 39753.84 41916.45 42848.61 41449.92 41737.49 40731.67 41260.97 4058.14 42356.42 41728.42 40830.72 41467.19 402
kuosan39.70 38440.40 38537.58 40164.52 41026.98 42065.62 40333.02 42546.12 39642.79 40848.99 41424.10 40346.56 42212.16 42326.30 41639.20 415
E-PMN31.77 38530.64 38835.15 40252.87 42227.67 41957.09 41247.86 42024.64 41716.40 42233.05 41811.23 41854.90 41814.46 42118.15 41922.87 418
test_method31.52 38629.28 39038.23 40027.03 4286.50 43120.94 41962.21 4084.05 42222.35 42052.50 41313.33 41447.58 42027.04 41034.04 41260.62 406
EMVS30.81 38729.65 38934.27 40350.96 42325.95 42356.58 41346.80 42124.01 41815.53 42330.68 41912.47 41554.43 41912.81 42217.05 42022.43 419
MVEpermissive26.22 2330.37 38825.89 39243.81 39944.55 42535.46 41628.87 41839.07 42318.20 41918.58 42140.18 4162.68 42847.37 42117.07 41923.78 41848.60 413
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
cdsmvs_eth3d_5k19.96 38926.61 3910.00 4090.00 4320.00 4340.00 42089.26 1840.00 4270.00 42888.61 18461.62 1690.00 4280.00 4270.00 4260.00 424
tmp_tt18.61 39021.40 39310.23 4064.82 42910.11 42934.70 41630.74 4271.48 42323.91 41926.07 42028.42 39513.41 42527.12 40915.35 4227.17 420
wuyk23d16.82 39115.94 39419.46 40558.74 41431.45 41839.22 4153.74 4306.84 4216.04 4242.70 4241.27 42924.29 42410.54 42414.40 4232.63 421
ab-mvs-re7.23 3929.64 3950.00 4090.00 4320.00 4340.00 4200.00 4330.00 4270.00 42886.72 2340.00 4320.00 4280.00 4270.00 4260.00 424
test1236.12 3938.11 3960.14 4070.06 4310.09 43271.05 3820.03 4320.04 4260.25 4271.30 4260.05 4300.03 4270.21 4260.01 4250.29 422
testmvs6.04 3948.02 3970.10 4080.08 4300.03 43369.74 3870.04 4310.05 4250.31 4261.68 4250.02 4310.04 4260.24 4250.02 4240.25 423
pcd_1.5k_mvsjas5.26 3957.02 3980.00 4090.00 4320.00 4340.00 4200.00 4330.00 4270.00 4280.00 42763.15 1460.00 4280.00 4270.00 4260.00 424
mmdepth0.00 3960.00 3990.00 4090.00 4320.00 4340.00 4200.00 4330.00 4270.00 4280.00 4270.00 4320.00 4280.00 4270.00 4260.00 424
monomultidepth0.00 3960.00 3990.00 4090.00 4320.00 4340.00 4200.00 4330.00 4270.00 4280.00 4270.00 4320.00 4280.00 4270.00 4260.00 424
test_blank0.00 3960.00 3990.00 4090.00 4320.00 4340.00 4200.00 4330.00 4270.00 4280.00 4270.00 4320.00 4280.00 4270.00 4260.00 424
uanet_test0.00 3960.00 3990.00 4090.00 4320.00 4340.00 4200.00 4330.00 4270.00 4280.00 4270.00 4320.00 4280.00 4270.00 4260.00 424
DCPMVS0.00 3960.00 3990.00 4090.00 4320.00 4340.00 4200.00 4330.00 4270.00 4280.00 4270.00 4320.00 4280.00 4270.00 4260.00 424
sosnet-low-res0.00 3960.00 3990.00 4090.00 4320.00 4340.00 4200.00 4330.00 4270.00 4280.00 4270.00 4320.00 4280.00 4270.00 4260.00 424
sosnet0.00 3960.00 3990.00 4090.00 4320.00 4340.00 4200.00 4330.00 4270.00 4280.00 4270.00 4320.00 4280.00 4270.00 4260.00 424
uncertanet0.00 3960.00 3990.00 4090.00 4320.00 4340.00 4200.00 4330.00 4270.00 4280.00 4270.00 4320.00 4280.00 4270.00 4260.00 424
Regformer0.00 3960.00 3990.00 4090.00 4320.00 4340.00 4200.00 4330.00 4270.00 4280.00 4270.00 4320.00 4280.00 4270.00 4260.00 424
uanet0.00 3960.00 3990.00 4090.00 4320.00 4340.00 4200.00 4330.00 4270.00 4280.00 4270.00 4320.00 4280.00 4270.00 4260.00 424
WAC-MVS42.58 40739.46 395
FOURS195.00 1072.39 3995.06 193.84 1574.49 12191.30 15
MSC_two_6792asdad89.16 194.34 2775.53 292.99 4997.53 289.67 796.44 994.41 39
PC_three_145268.21 25592.02 1294.00 5082.09 595.98 5684.58 5496.68 294.95 11
No_MVS89.16 194.34 2775.53 292.99 4997.53 289.67 796.44 994.41 39
test_one_060195.07 771.46 5794.14 578.27 3592.05 1195.74 680.83 11
eth-test20.00 432
eth-test0.00 432
ZD-MVS94.38 2572.22 4492.67 6770.98 19287.75 3694.07 4574.01 3296.70 2784.66 5394.84 44
RE-MVS-def85.48 6093.06 5870.63 7691.88 3892.27 8473.53 14585.69 5794.45 2863.87 13782.75 7691.87 8492.50 126
IU-MVS95.30 271.25 5992.95 5566.81 26692.39 688.94 1796.63 494.85 20
OPU-MVS89.06 394.62 1575.42 493.57 794.02 4882.45 396.87 2083.77 6596.48 894.88 15
test_241102_TWO94.06 1077.24 5392.78 495.72 881.26 897.44 789.07 1596.58 694.26 48
test_241102_ONE95.30 270.98 6694.06 1077.17 5693.10 195.39 1482.99 197.27 12
9.1488.26 1592.84 6391.52 4894.75 173.93 13488.57 2594.67 2175.57 2295.79 5886.77 3695.76 23
save fliter93.80 4072.35 4290.47 6691.17 12574.31 125
test_0728_THIRD78.38 3392.12 995.78 481.46 797.40 989.42 1096.57 794.67 28
test_0728_SECOND87.71 3295.34 171.43 5893.49 994.23 397.49 489.08 1396.41 1294.21 49
test072695.27 571.25 5993.60 694.11 677.33 5092.81 395.79 380.98 9
GSMVS88.96 253
test_part295.06 872.65 3291.80 13
sam_mvs151.32 27488.96 253
sam_mvs50.01 288
ambc75.24 32073.16 39550.51 38563.05 40987.47 23464.28 36477.81 37517.80 41189.73 27757.88 31060.64 38585.49 330
MTGPAbinary92.02 93
test_post178.90 3355.43 42348.81 30785.44 33259.25 294
test_post5.46 42250.36 28684.24 340
patchmatchnet-post74.00 39051.12 27788.60 299
GG-mvs-BLEND75.38 31881.59 33355.80 34079.32 32669.63 39167.19 33973.67 39143.24 34588.90 29550.41 35084.50 18581.45 376
MTMP92.18 3432.83 426
gm-plane-assit81.40 33753.83 36062.72 32580.94 34692.39 20363.40 256
test9_res84.90 4795.70 2692.87 114
TEST993.26 5272.96 2588.75 12091.89 10168.44 25285.00 6493.10 7174.36 2895.41 73
test_893.13 5472.57 3588.68 12591.84 10568.69 24784.87 6893.10 7174.43 2695.16 83
agg_prior282.91 7495.45 2992.70 117
agg_prior92.85 6271.94 5091.78 10884.41 7994.93 94
TestCases79.58 25885.15 25963.62 22779.83 34362.31 32860.32 38186.73 23232.02 38788.96 29350.28 35371.57 35086.15 318
test_prior472.60 3489.01 111
test_prior288.85 11775.41 9884.91 6693.54 6074.28 2983.31 6895.86 20
test_prior86.33 5792.61 6869.59 9192.97 5495.48 6793.91 61
旧先验286.56 19558.10 36287.04 4688.98 29174.07 159
新几何286.29 204
新几何183.42 15593.13 5470.71 7485.48 26857.43 36881.80 11791.98 9563.28 14192.27 20964.60 24892.99 7087.27 295
旧先验191.96 7465.79 18486.37 25693.08 7569.31 8392.74 7388.74 264
无先验87.48 16388.98 19660.00 34594.12 12567.28 22588.97 252
原ACMM286.86 184
原ACMM184.35 11393.01 6068.79 11092.44 7763.96 31181.09 12791.57 10966.06 11995.45 6867.19 22794.82 4688.81 259
test22291.50 8068.26 12984.16 25783.20 30254.63 37979.74 14091.63 10658.97 20291.42 9186.77 308
testdata291.01 25762.37 266
segment_acmp73.08 38
testdata79.97 24890.90 9164.21 21884.71 27559.27 35285.40 5992.91 7762.02 16589.08 28968.95 21091.37 9286.63 312
testdata184.14 25875.71 92
test1286.80 5292.63 6770.70 7591.79 10782.71 10871.67 5496.16 4794.50 5193.54 85
plane_prior790.08 10868.51 123
plane_prior689.84 11768.70 11860.42 195
plane_prior592.44 7795.38 7578.71 11186.32 16391.33 161
plane_prior491.00 131
plane_prior368.60 12178.44 3178.92 152
plane_prior291.25 5279.12 23
plane_prior189.90 116
plane_prior68.71 11690.38 7077.62 4086.16 167
n20.00 433
nn0.00 433
door-mid69.98 390
lessismore_v078.97 26781.01 34457.15 31865.99 40161.16 37882.82 32639.12 36791.34 24659.67 29046.92 40588.43 271
LGP-MVS_train84.50 10689.23 14268.76 11291.94 9975.37 9976.64 20591.51 11054.29 23994.91 9578.44 11383.78 19789.83 225
test1192.23 87
door69.44 393
HQP5-MVS66.98 163
HQP-NCC89.33 13589.17 10376.41 7777.23 190
ACMP_Plane89.33 13589.17 10376.41 7777.23 190
BP-MVS77.47 123
HQP4-MVS77.24 18995.11 8791.03 171
HQP3-MVS92.19 9085.99 171
HQP2-MVS60.17 198
NP-MVS89.62 12168.32 12790.24 143
MDTV_nov1_ep13_2view37.79 41475.16 36555.10 37766.53 34849.34 29853.98 33387.94 279
MDTV_nov1_ep1369.97 30783.18 30253.48 36277.10 35480.18 34260.45 34069.33 32180.44 35048.89 30686.90 31451.60 34578.51 266
ACMMP++_ref81.95 228
ACMMP++81.25 233
Test By Simon64.33 133
ITE_SJBPF78.22 28281.77 33060.57 27783.30 29769.25 23267.54 33487.20 22336.33 37987.28 31354.34 33274.62 32486.80 307
DeepMVS_CXcopyleft27.40 40440.17 42726.90 42124.59 42817.44 42023.95 41848.61 4159.77 41926.48 42318.06 41624.47 41728.83 417