| TDRefinement | | | 93.16 1 | 95.57 1 | 90.36 1 | 88.79 52 | 93.57 1 | 97.27 1 | 78.23 21 | 95.55 1 | 93.00 1 | 93.98 18 | 96.01 38 | 87.53 1 | 97.69 1 | 96.81 1 | 97.33 1 | 95.34 4 |
|
| COLMAP_ROB |  | 85.66 2 | 91.85 2 | 95.01 2 | 88.16 11 | 88.98 51 | 92.86 2 | 95.51 19 | 72.17 62 | 94.95 4 | 91.27 3 | 94.11 17 | 97.77 11 | 84.22 8 | 96.49 4 | 95.27 5 | 96.79 2 | 93.60 12 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| LTVRE_ROB | | 86.82 1 | 91.55 3 | 94.43 3 | 88.19 10 | 83.19 112 | 86.35 65 | 93.60 37 | 78.79 18 | 95.48 3 | 91.79 2 | 93.08 27 | 97.21 20 | 86.34 3 | 97.06 2 | 96.27 3 | 95.46 23 | 95.56 3 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| ACMMPR | | | 91.30 4 | 92.88 11 | 89.46 4 | 91.92 11 | 91.61 5 | 96.60 5 | 79.46 14 | 90.08 31 | 88.53 13 | 89.54 66 | 95.57 48 | 84.25 7 | 95.24 20 | 94.27 12 | 95.97 11 | 93.85 8 |
|
| CP-MVS | | | 91.09 5 | 92.33 25 | 89.65 2 | 92.16 10 | 90.41 27 | 96.46 10 | 80.38 8 | 88.26 45 | 89.17 10 | 87.00 98 | 96.34 30 | 83.95 10 | 95.77 11 | 94.72 7 | 95.81 17 | 93.78 10 |
|
| MP-MVS |  | | 90.84 6 | 91.95 34 | 89.55 3 | 92.92 4 | 90.90 19 | 96.56 6 | 79.60 11 | 86.83 59 | 88.75 12 | 89.00 74 | 94.38 78 | 84.01 9 | 94.94 24 | 94.34 10 | 95.45 24 | 93.24 23 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| ACMM | | 80.67 7 | 90.67 7 | 92.46 19 | 88.57 7 | 91.35 22 | 89.93 32 | 96.34 11 | 77.36 30 | 90.17 29 | 86.88 29 | 87.32 93 | 96.63 23 | 83.32 13 | 95.79 10 | 94.49 9 | 96.19 9 | 92.91 26 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| ACMMP |  | | 90.63 8 | 92.40 20 | 88.56 8 | 91.24 28 | 91.60 6 | 96.49 9 | 77.53 26 | 87.89 48 | 86.87 30 | 87.24 95 | 96.46 25 | 82.87 16 | 95.59 15 | 94.50 8 | 96.35 6 | 93.51 18 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| LGP-MVS_train | | | 90.56 9 | 92.38 21 | 88.43 9 | 90.88 32 | 91.15 11 | 95.35 21 | 77.65 25 | 86.26 65 | 87.23 23 | 90.45 56 | 97.35 17 | 83.20 14 | 95.44 16 | 93.41 20 | 96.28 8 | 92.63 27 |
|
| DVP-MVS++ | | | 90.50 10 | 94.18 4 | 86.21 27 | 92.52 7 | 90.29 28 | 95.29 22 | 76.02 41 | 94.24 5 | 82.82 55 | 95.84 5 | 97.56 15 | 76.82 55 | 93.13 38 | 91.20 44 | 93.78 45 | 97.01 1 |
|
| PGM-MVS | | | 90.42 11 | 91.58 37 | 89.05 5 | 91.77 14 | 91.06 13 | 96.51 7 | 78.94 16 | 85.41 73 | 87.67 18 | 87.02 97 | 95.26 57 | 83.62 12 | 95.01 23 | 93.94 15 | 95.79 19 | 93.40 20 |
|
| DeepC-MVS | | 83.59 4 | 90.37 12 | 92.56 18 | 87.82 14 | 91.26 27 | 92.33 3 | 94.72 30 | 80.04 9 | 90.01 32 | 84.61 42 | 93.33 23 | 94.22 79 | 80.59 27 | 92.90 43 | 92.52 28 | 95.69 21 | 92.57 28 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| HFP-MVS | | | 90.32 13 | 92.37 22 | 87.94 13 | 91.46 21 | 90.91 18 | 95.69 17 | 79.49 12 | 89.94 34 | 83.50 50 | 89.06 73 | 94.44 76 | 81.68 22 | 94.17 30 | 94.19 13 | 95.81 17 | 93.87 7 |
|
| PMVS |  | 79.51 9 | 90.23 14 | 92.67 14 | 87.39 20 | 90.16 39 | 88.75 42 | 93.64 36 | 75.78 44 | 90.00 33 | 83.70 47 | 92.97 29 | 92.22 104 | 86.13 4 | 97.01 3 | 96.79 2 | 94.94 28 | 90.96 45 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| SMA-MVS |  | | 90.13 15 | 92.26 27 | 87.64 17 | 91.68 16 | 90.44 26 | 95.22 24 | 77.34 32 | 90.79 23 | 87.80 16 | 90.42 57 | 92.05 109 | 79.05 35 | 93.89 32 | 93.59 18 | 94.77 32 | 94.62 5 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| ACMP | | 80.00 8 | 90.12 16 | 92.30 26 | 87.58 18 | 90.83 34 | 91.10 12 | 94.96 28 | 76.06 40 | 87.47 52 | 85.33 39 | 88.91 77 | 97.65 14 | 82.13 19 | 95.31 17 | 93.44 19 | 96.14 10 | 92.22 33 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| SteuartSystems-ACMMP | | | 90.00 17 | 91.73 35 | 87.97 12 | 91.21 29 | 90.29 28 | 96.51 7 | 78.00 23 | 86.33 62 | 85.32 40 | 88.23 83 | 94.67 70 | 82.08 20 | 95.13 22 | 93.88 16 | 94.72 35 | 93.59 13 |
| Skip Steuart: Steuart Systems R&D Blog. |
| SD-MVS | | | 89.91 18 | 92.23 30 | 87.19 21 | 91.31 24 | 89.79 35 | 94.31 32 | 75.34 47 | 89.26 37 | 81.79 67 | 92.68 32 | 95.08 63 | 83.88 11 | 93.10 39 | 92.69 25 | 96.54 4 | 93.02 24 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| ACMMP_NAP | | | 89.86 19 | 91.96 33 | 87.42 19 | 91.00 30 | 90.08 30 | 96.00 15 | 76.61 36 | 89.28 35 | 87.73 17 | 90.04 59 | 91.80 113 | 78.71 38 | 94.36 28 | 93.82 17 | 94.48 37 | 94.32 6 |
|
| APDe-MVS |  | | 89.85 20 | 92.91 10 | 86.29 26 | 90.47 38 | 91.34 7 | 96.04 14 | 76.41 39 | 91.11 17 | 78.50 89 | 93.44 22 | 95.82 42 | 81.55 23 | 93.16 37 | 91.90 38 | 94.77 32 | 93.58 15 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| OPM-MVS | | | 89.82 21 | 92.24 29 | 86.99 22 | 90.86 33 | 89.35 38 | 95.07 27 | 75.91 43 | 91.16 16 | 86.87 30 | 91.07 52 | 97.29 18 | 79.13 34 | 93.32 35 | 91.99 37 | 94.12 40 | 91.49 40 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| DPE-MVS |  | | 89.81 22 | 92.34 24 | 86.86 23 | 89.69 44 | 91.00 16 | 95.53 18 | 76.91 33 | 88.18 46 | 83.43 53 | 93.48 21 | 95.19 58 | 81.07 26 | 92.75 45 | 92.07 36 | 94.55 36 | 93.74 11 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| WR-MVS | | | 89.79 23 | 93.66 5 | 85.27 37 | 91.32 23 | 88.27 46 | 93.49 38 | 79.86 10 | 92.75 9 | 75.37 102 | 96.86 1 | 98.38 5 | 75.10 71 | 95.93 8 | 94.07 14 | 96.46 5 | 89.39 56 |
|
| TSAR-MVS + MP. | | | 89.67 24 | 92.25 28 | 86.65 25 | 91.53 18 | 90.98 17 | 96.15 13 | 73.30 56 | 87.88 49 | 81.83 66 | 92.92 30 | 95.15 61 | 82.23 18 | 93.58 34 | 92.25 33 | 94.87 29 | 93.01 25 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| CPTT-MVS | | | 89.63 25 | 90.52 47 | 88.59 6 | 90.95 31 | 90.74 21 | 95.71 16 | 79.13 15 | 87.70 50 | 85.68 38 | 80.05 142 | 95.74 46 | 84.77 6 | 94.28 29 | 92.68 26 | 95.28 26 | 92.45 31 |
|
| ACMH+ | | 79.05 11 | 89.62 26 | 93.08 8 | 85.58 32 | 88.58 55 | 89.26 39 | 92.18 45 | 74.23 52 | 93.55 8 | 82.66 58 | 92.32 37 | 98.35 7 | 80.29 29 | 95.28 18 | 92.34 31 | 95.52 22 | 90.43 48 |
|
| DVP-MVS |  | | 89.40 27 | 92.69 13 | 85.56 34 | 89.01 50 | 89.85 33 | 93.72 35 | 75.42 45 | 92.28 11 | 80.49 72 | 94.36 13 | 94.87 66 | 81.46 24 | 92.49 49 | 91.42 41 | 93.27 53 | 93.54 17 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| X-MVS | | | 89.36 28 | 90.73 45 | 87.77 16 | 91.50 20 | 91.23 8 | 96.76 4 | 78.88 17 | 87.29 54 | 87.14 25 | 78.98 147 | 94.53 72 | 76.47 57 | 95.25 19 | 94.28 11 | 95.85 14 | 93.55 16 |
|
| TSAR-MVS + ACMM | | | 89.14 29 | 92.11 32 | 85.67 31 | 89.27 47 | 90.61 24 | 90.98 52 | 79.48 13 | 88.86 40 | 79.80 79 | 93.01 28 | 93.53 88 | 83.17 15 | 92.75 45 | 92.45 29 | 91.32 82 | 93.59 13 |
|
| SixPastTwentyTwo | | | 89.14 29 | 92.19 31 | 85.58 32 | 84.62 89 | 82.56 92 | 90.53 63 | 71.93 64 | 91.95 12 | 85.89 35 | 94.22 14 | 97.25 19 | 85.42 5 | 95.73 12 | 91.71 40 | 95.08 27 | 91.89 36 |
|
| APD-MVS |  | | 89.14 29 | 91.25 42 | 86.67 24 | 91.73 15 | 91.02 15 | 95.50 20 | 77.74 24 | 84.04 85 | 79.47 82 | 91.48 46 | 94.85 67 | 81.14 25 | 92.94 41 | 92.20 35 | 94.47 38 | 92.24 32 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| PS-CasMVS | | | 89.07 32 | 93.23 7 | 84.21 50 | 92.44 8 | 88.23 48 | 90.54 62 | 82.95 3 | 90.50 26 | 75.31 103 | 95.80 6 | 98.37 6 | 71.16 100 | 96.30 5 | 93.32 21 | 92.88 61 | 90.11 50 |
|
| UA-Net | | | 89.02 33 | 91.44 39 | 86.20 28 | 94.88 1 | 89.84 34 | 94.76 29 | 77.45 28 | 85.41 73 | 74.79 106 | 88.83 78 | 88.90 139 | 78.67 40 | 96.06 7 | 95.45 4 | 96.66 3 | 95.58 2 |
|
| LS3D | | | 89.02 33 | 91.69 36 | 85.91 30 | 89.72 43 | 90.81 20 | 92.56 44 | 71.69 66 | 90.83 22 | 87.24 22 | 89.71 64 | 92.07 107 | 78.37 42 | 94.43 27 | 92.59 27 | 95.86 13 | 91.35 41 |
|
| DTE-MVSNet | | | 88.99 35 | 92.77 12 | 84.59 43 | 93.31 2 | 88.10 49 | 90.96 53 | 83.09 2 | 91.38 14 | 76.21 96 | 96.03 2 | 98.04 8 | 70.78 106 | 95.65 14 | 92.32 32 | 93.18 56 | 87.84 73 |
|
| WR-MVS_H | | | 88.99 35 | 93.28 6 | 83.99 53 | 91.92 11 | 89.13 40 | 91.95 46 | 83.23 1 | 90.14 30 | 71.92 125 | 95.85 4 | 98.01 10 | 71.83 97 | 95.82 9 | 93.19 22 | 93.07 59 | 90.83 47 |
|
| SED-MVS | | | 88.96 37 | 92.37 22 | 84.99 40 | 88.64 54 | 89.65 37 | 95.11 25 | 75.98 42 | 90.73 24 | 80.15 77 | 94.21 15 | 94.51 75 | 76.59 56 | 92.94 41 | 91.17 45 | 93.46 50 | 93.37 22 |
|
| ACMH | | 78.40 12 | 88.94 38 | 92.62 16 | 84.65 42 | 86.45 74 | 87.16 59 | 91.47 49 | 68.79 87 | 95.49 2 | 89.74 6 | 93.55 20 | 98.50 2 | 77.96 46 | 94.14 31 | 89.57 61 | 93.49 47 | 89.94 52 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| PEN-MVS | | | 88.86 39 | 92.92 9 | 84.11 52 | 92.92 4 | 88.05 51 | 90.83 55 | 82.67 5 | 91.04 18 | 74.83 105 | 95.97 3 | 98.47 3 | 70.38 107 | 95.70 13 | 92.43 30 | 93.05 60 | 88.78 64 |
|
| HPM-MVS++ |  | | 88.74 40 | 89.54 52 | 87.80 15 | 92.58 6 | 85.69 69 | 95.10 26 | 78.01 22 | 87.08 56 | 87.66 19 | 87.89 86 | 92.07 107 | 80.28 30 | 90.97 69 | 91.41 43 | 93.17 57 | 91.69 37 |
|
| CP-MVSNet | | | 88.71 41 | 92.63 15 | 84.13 51 | 92.39 9 | 88.09 50 | 90.47 66 | 82.86 4 | 88.79 42 | 75.16 104 | 94.87 9 | 97.68 13 | 71.05 102 | 96.16 6 | 93.18 23 | 92.85 62 | 89.64 54 |
|
| MSP-MVS | | | 88.51 42 | 91.36 40 | 85.19 39 | 90.63 36 | 92.01 4 | 95.29 22 | 77.52 27 | 90.48 27 | 80.21 76 | 90.21 58 | 96.08 34 | 76.38 59 | 88.30 97 | 91.42 41 | 91.12 89 | 91.01 44 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| OMC-MVS | | | 88.16 43 | 91.34 41 | 84.46 46 | 86.85 70 | 90.63 23 | 93.01 41 | 67.00 103 | 90.35 28 | 87.40 21 | 86.86 100 | 96.35 29 | 77.66 49 | 92.63 47 | 90.84 46 | 94.84 30 | 91.68 38 |
|
| 3Dnovator+ | | 83.71 3 | 88.13 44 | 90.00 50 | 85.94 29 | 86.82 71 | 91.06 13 | 94.26 33 | 75.39 46 | 88.85 41 | 85.76 37 | 85.74 110 | 86.92 148 | 78.02 45 | 93.03 40 | 92.21 34 | 95.39 25 | 92.21 34 |
|
| CSCG | | | 88.12 45 | 91.45 38 | 84.23 48 | 88.12 61 | 90.59 25 | 90.57 60 | 68.60 89 | 91.37 15 | 83.45 52 | 89.94 60 | 95.14 62 | 78.71 38 | 91.45 58 | 88.21 72 | 95.96 12 | 93.44 19 |
|
| RPSCF | | | 88.05 46 | 92.61 17 | 82.73 65 | 84.24 96 | 88.40 44 | 90.04 72 | 66.29 107 | 91.46 13 | 82.29 60 | 88.93 76 | 96.01 38 | 79.38 32 | 95.15 21 | 94.90 6 | 94.15 39 | 93.40 20 |
|
| DeepPCF-MVS | | 81.61 6 | 87.95 47 | 90.29 49 | 85.22 38 | 87.48 65 | 90.01 31 | 93.79 34 | 73.54 54 | 88.93 39 | 83.89 45 | 89.40 68 | 90.84 124 | 80.26 31 | 90.62 72 | 90.19 53 | 92.36 70 | 92.03 35 |
|
| SF-MVS | | | 87.85 48 | 90.95 44 | 84.22 49 | 88.17 60 | 87.90 53 | 90.80 56 | 71.80 65 | 89.28 35 | 82.70 57 | 89.90 61 | 95.37 55 | 77.91 47 | 91.69 54 | 90.04 54 | 93.95 44 | 92.47 29 |
|
| DeepC-MVS_fast | | 81.78 5 | 87.38 49 | 89.64 51 | 84.75 41 | 89.89 42 | 90.70 22 | 92.74 43 | 74.45 50 | 86.02 66 | 82.16 64 | 86.05 107 | 91.99 111 | 75.84 65 | 91.16 63 | 90.44 49 | 93.41 51 | 91.09 43 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| v7n | | | 87.11 50 | 90.46 48 | 83.19 56 | 85.22 85 | 83.69 80 | 90.03 73 | 68.20 95 | 91.01 19 | 86.71 33 | 94.80 10 | 98.46 4 | 77.69 48 | 91.10 65 | 85.98 93 | 91.30 83 | 88.19 68 |
|
| CNVR-MVS | | | 86.93 51 | 88.98 56 | 84.54 44 | 90.11 40 | 87.41 57 | 93.23 40 | 73.47 55 | 86.31 63 | 82.25 61 | 82.96 130 | 92.15 105 | 76.04 62 | 91.69 54 | 90.69 47 | 92.17 73 | 91.64 39 |
|
| NCCC | | | 86.74 52 | 87.97 68 | 85.31 36 | 90.64 35 | 87.25 58 | 93.27 39 | 74.59 49 | 86.50 60 | 83.72 46 | 75.92 175 | 92.39 101 | 77.08 53 | 91.72 53 | 90.68 48 | 92.57 67 | 91.30 42 |
|
| train_agg | | | 86.67 53 | 87.73 69 | 85.43 35 | 91.51 19 | 82.72 89 | 94.47 31 | 74.22 53 | 81.71 103 | 81.54 70 | 89.20 72 | 92.87 95 | 78.33 43 | 90.12 79 | 88.47 68 | 92.51 69 | 89.04 60 |
|
| CDPH-MVS | | | 86.66 54 | 88.52 59 | 84.48 45 | 89.61 45 | 88.27 46 | 92.86 42 | 72.69 61 | 80.55 121 | 82.71 56 | 86.92 99 | 93.32 90 | 75.55 67 | 91.00 68 | 89.85 56 | 93.47 49 | 89.71 53 |
|
| Gipuma |  | | 86.47 55 | 89.25 54 | 83.23 55 | 83.88 103 | 78.78 126 | 85.35 116 | 68.42 91 | 92.69 10 | 89.03 11 | 91.94 39 | 96.32 32 | 81.80 21 | 94.45 26 | 86.86 82 | 90.91 90 | 83.69 102 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| PHI-MVS | | | 86.37 56 | 88.14 65 | 84.30 47 | 86.65 73 | 87.56 55 | 90.76 57 | 70.16 73 | 82.55 95 | 89.65 7 | 84.89 118 | 92.40 100 | 75.97 63 | 90.88 70 | 89.70 58 | 92.58 65 | 89.03 61 |
|
| MSLP-MVS++ | | | 86.29 57 | 89.10 55 | 83.01 58 | 85.71 82 | 89.79 35 | 87.04 104 | 74.39 51 | 85.17 75 | 78.92 86 | 77.59 158 | 93.57 86 | 82.60 17 | 93.23 36 | 91.88 39 | 89.42 109 | 92.46 30 |
|
| TAPA-MVS | | 78.00 13 | 85.88 58 | 88.37 61 | 82.96 60 | 84.69 87 | 88.62 43 | 90.62 58 | 64.22 131 | 89.15 38 | 88.05 14 | 78.83 149 | 93.71 83 | 76.20 61 | 90.11 80 | 88.22 71 | 94.00 41 | 89.97 51 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| anonymousdsp | | | 85.62 59 | 90.53 46 | 79.88 92 | 64.64 212 | 76.35 145 | 96.28 12 | 53.53 196 | 85.63 70 | 81.59 69 | 92.81 31 | 97.71 12 | 86.88 2 | 94.56 25 | 92.83 24 | 96.35 6 | 93.84 9 |
|
| TSAR-MVS + COLMAP | | | 85.51 60 | 88.36 62 | 82.19 67 | 86.05 79 | 87.69 54 | 90.50 65 | 70.60 72 | 86.40 61 | 82.33 59 | 89.69 65 | 92.52 99 | 74.01 81 | 87.53 102 | 86.84 83 | 89.63 104 | 87.80 74 |
|
| CNLPA | | | 85.50 61 | 88.58 57 | 81.91 71 | 84.55 91 | 87.52 56 | 90.89 54 | 63.56 141 | 88.18 46 | 84.06 44 | 83.85 127 | 91.34 121 | 76.46 58 | 91.27 60 | 89.00 66 | 91.96 74 | 88.88 62 |
|
| UniMVSNet_ETH3D | | | 85.39 62 | 91.12 43 | 78.71 99 | 90.48 37 | 83.72 79 | 81.76 140 | 82.41 6 | 93.84 6 | 64.43 160 | 95.41 7 | 98.76 1 | 63.72 142 | 93.63 33 | 89.74 57 | 89.47 108 | 82.74 114 |
|
| PLC |  | 76.06 15 | 85.38 63 | 87.46 71 | 82.95 61 | 85.79 81 | 88.84 41 | 88.86 83 | 68.70 88 | 87.06 57 | 83.60 48 | 79.02 145 | 90.05 130 | 77.37 52 | 90.88 70 | 89.66 59 | 93.37 52 | 86.74 79 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| TSAR-MVS + GP. | | | 85.32 64 | 87.41 73 | 82.89 62 | 90.07 41 | 85.69 69 | 89.07 81 | 72.99 60 | 82.45 96 | 74.52 109 | 85.09 115 | 87.67 145 | 79.24 33 | 91.11 64 | 90.41 50 | 91.45 79 | 89.45 55 |
|
| TranMVSNet+NR-MVSNet | | | 85.23 65 | 89.38 53 | 80.39 90 | 88.78 53 | 83.77 78 | 87.40 96 | 76.75 34 | 85.47 71 | 68.99 141 | 95.18 8 | 97.55 16 | 67.13 124 | 91.61 56 | 89.13 65 | 93.26 54 | 82.95 111 |
|
| HQP-MVS | | | 85.02 66 | 86.41 79 | 83.40 54 | 89.19 48 | 86.59 63 | 91.28 50 | 71.60 67 | 82.79 92 | 83.48 51 | 78.65 151 | 93.54 87 | 72.55 89 | 86.49 113 | 85.89 96 | 92.28 72 | 90.95 46 |
|
| UniMVSNet (Re) | | | 84.95 67 | 88.53 58 | 80.78 81 | 87.82 63 | 84.21 75 | 88.03 88 | 76.50 37 | 81.18 114 | 69.29 139 | 92.63 35 | 96.83 22 | 69.07 114 | 91.23 62 | 89.60 60 | 93.97 43 | 84.00 100 |
|
| DU-MVS | | | 84.88 68 | 88.27 64 | 80.92 79 | 88.30 57 | 83.59 81 | 87.06 102 | 78.35 19 | 80.64 119 | 70.49 133 | 92.67 33 | 96.91 21 | 68.13 117 | 91.79 51 | 89.29 64 | 93.20 55 | 83.02 108 |
|
| MCST-MVS | | | 84.79 69 | 86.48 77 | 82.83 63 | 87.30 67 | 87.03 61 | 90.46 67 | 69.33 81 | 83.14 89 | 82.21 63 | 81.69 138 | 92.14 106 | 75.09 72 | 87.27 105 | 84.78 107 | 92.58 65 | 89.30 57 |
|
| MVS_0304 | | | 84.73 70 | 86.19 81 | 83.02 57 | 88.32 56 | 86.71 62 | 91.55 48 | 70.87 70 | 73.79 150 | 82.88 54 | 85.13 114 | 93.35 89 | 72.55 89 | 88.62 91 | 87.69 74 | 91.93 75 | 88.05 72 |
|
| UniMVSNet_NR-MVSNet | | | 84.62 71 | 88.00 67 | 80.68 85 | 88.18 59 | 83.83 77 | 87.06 102 | 76.47 38 | 81.46 110 | 70.49 133 | 93.24 24 | 95.56 49 | 68.13 117 | 90.43 73 | 88.47 68 | 93.78 45 | 83.02 108 |
|
| EG-PatchMatch MVS | | | 84.35 72 | 87.55 70 | 80.62 86 | 86.38 75 | 82.24 94 | 86.75 105 | 64.02 136 | 84.24 81 | 78.17 92 | 89.38 69 | 95.03 65 | 78.78 37 | 89.95 81 | 86.33 89 | 89.59 105 | 85.65 87 |
|
| AdaColmap |  | | 84.15 73 | 85.14 97 | 83.00 59 | 89.08 49 | 87.14 60 | 90.56 61 | 70.90 69 | 82.40 97 | 80.41 73 | 73.82 186 | 84.69 159 | 75.19 70 | 91.58 57 | 89.90 55 | 91.87 76 | 86.48 80 |
|
| PCF-MVS | | 76.59 14 | 84.11 74 | 85.27 94 | 82.76 64 | 86.12 78 | 88.30 45 | 91.24 51 | 69.10 82 | 82.36 98 | 84.45 43 | 77.56 159 | 90.40 129 | 72.91 88 | 85.88 118 | 83.88 115 | 92.72 64 | 88.53 65 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| MVS_111021_HR | | | 83.95 75 | 86.10 83 | 81.44 76 | 84.62 89 | 80.29 113 | 90.51 64 | 68.05 96 | 84.07 84 | 80.38 74 | 84.74 121 | 91.37 120 | 74.23 77 | 90.37 75 | 87.25 78 | 90.86 91 | 84.59 92 |
|
| TinyColmap | | | 83.79 76 | 86.12 82 | 81.07 78 | 83.42 109 | 81.44 101 | 85.42 114 | 68.55 90 | 88.71 43 | 89.46 8 | 87.60 88 | 92.72 96 | 70.34 108 | 89.29 86 | 81.94 133 | 89.20 110 | 81.12 127 |
|
| EC-MVSNet | | | 83.70 77 | 84.77 106 | 82.46 66 | 87.47 66 | 82.79 88 | 85.50 112 | 72.00 63 | 69.81 168 | 77.66 93 | 85.02 117 | 89.63 131 | 78.14 44 | 90.40 74 | 87.56 75 | 94.00 41 | 88.16 69 |
|
| v1192 | | | 83.61 78 | 85.23 95 | 81.72 73 | 84.05 98 | 82.15 95 | 89.54 76 | 66.20 108 | 81.38 112 | 86.76 32 | 91.79 43 | 96.03 36 | 74.88 74 | 81.81 155 | 80.92 141 | 88.91 116 | 82.50 116 |
|
| CS-MVS-test | | | 83.59 79 | 84.86 103 | 82.10 69 | 83.04 115 | 81.05 107 | 91.58 47 | 67.48 102 | 72.52 157 | 78.42 90 | 84.75 120 | 91.82 112 | 78.62 41 | 91.98 50 | 87.54 76 | 93.48 48 | 84.35 95 |
|
| CS-MVS | | | 83.57 80 | 84.79 105 | 82.14 68 | 83.83 104 | 81.48 100 | 87.29 97 | 66.54 105 | 72.73 156 | 80.05 78 | 84.04 125 | 93.12 94 | 80.35 28 | 89.50 83 | 86.34 88 | 94.76 34 | 86.32 83 |
|
| v1240 | | | 83.57 80 | 84.94 101 | 81.97 70 | 84.05 98 | 81.27 103 | 89.46 78 | 66.06 110 | 81.31 113 | 87.50 20 | 91.88 42 | 95.46 52 | 76.25 60 | 81.16 160 | 80.51 145 | 88.52 126 | 82.98 110 |
|
| v1921920 | | | 83.49 82 | 84.94 101 | 81.80 72 | 83.78 105 | 81.20 105 | 89.50 77 | 65.91 113 | 81.64 105 | 87.18 24 | 91.70 44 | 95.39 54 | 75.85 64 | 81.56 158 | 80.27 147 | 88.60 121 | 82.80 112 |
|
| v144192 | | | 83.43 83 | 84.97 100 | 81.63 75 | 83.43 108 | 81.23 104 | 89.42 79 | 66.04 112 | 81.45 111 | 86.40 34 | 91.46 47 | 95.70 47 | 75.76 66 | 82.14 151 | 80.23 148 | 88.74 118 | 82.57 115 |
|
| Vis-MVSNet |  | | 83.32 84 | 88.12 66 | 77.71 106 | 77.91 160 | 83.44 83 | 90.58 59 | 69.49 78 | 81.11 115 | 67.10 154 | 89.85 62 | 91.48 118 | 71.71 98 | 91.34 59 | 89.37 62 | 89.48 107 | 90.26 49 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| v1144 | | | 83.22 85 | 85.01 98 | 81.14 77 | 83.76 106 | 81.60 99 | 88.95 82 | 65.58 119 | 81.89 102 | 85.80 36 | 91.68 45 | 95.84 41 | 74.04 80 | 82.12 152 | 80.56 144 | 88.70 120 | 81.41 125 |
|
| MVS_111021_LR | | | 83.20 86 | 85.33 93 | 80.73 84 | 82.88 118 | 78.23 130 | 89.61 75 | 65.23 122 | 82.08 100 | 81.19 71 | 85.31 112 | 92.04 110 | 75.22 69 | 89.50 83 | 85.90 95 | 90.24 94 | 84.23 96 |
|
| v10 | | | 83.17 87 | 85.22 96 | 80.78 81 | 83.26 111 | 82.99 87 | 88.66 85 | 66.49 106 | 79.24 130 | 83.60 48 | 91.46 47 | 95.47 51 | 74.12 78 | 82.60 149 | 80.66 142 | 88.53 125 | 84.11 99 |
|
| PVSNet_Blended_VisFu | | | 83.00 88 | 84.16 117 | 81.65 74 | 82.17 126 | 86.01 66 | 88.03 88 | 71.23 68 | 76.05 143 | 79.54 81 | 83.88 126 | 83.44 161 | 77.49 51 | 87.38 103 | 84.93 105 | 91.41 80 | 87.40 77 |
|
| NR-MVSNet | | | 82.89 89 | 87.43 72 | 77.59 108 | 83.91 102 | 83.59 81 | 87.10 101 | 78.35 19 | 80.64 119 | 68.85 142 | 92.67 33 | 96.50 24 | 54.19 182 | 87.19 108 | 88.68 67 | 93.16 58 | 82.75 113 |
|
| CANet | | | 82.84 90 | 84.60 108 | 80.78 81 | 87.30 67 | 85.20 72 | 90.23 69 | 69.00 83 | 72.16 160 | 78.73 88 | 84.49 123 | 90.70 127 | 69.54 112 | 87.65 101 | 86.17 90 | 89.87 101 | 85.84 85 |
|
| Baseline_NR-MVSNet | | | 82.79 91 | 86.51 76 | 78.44 103 | 88.30 57 | 75.62 153 | 87.81 90 | 74.97 48 | 81.53 107 | 66.84 155 | 94.71 12 | 96.46 25 | 66.90 125 | 91.79 51 | 83.37 124 | 85.83 155 | 82.09 119 |
|
| EPP-MVSNet | | | 82.76 92 | 86.47 78 | 78.45 102 | 86.00 80 | 84.47 74 | 85.39 115 | 68.42 91 | 84.17 82 | 62.97 164 | 89.26 71 | 76.84 187 | 72.13 94 | 92.56 48 | 90.40 51 | 95.76 20 | 87.56 76 |
|
| CLD-MVS | | | 82.75 93 | 87.22 74 | 77.54 109 | 88.01 62 | 85.76 68 | 90.23 69 | 54.52 190 | 82.28 99 | 82.11 65 | 88.48 81 | 95.27 56 | 63.95 140 | 89.41 85 | 88.29 70 | 86.45 146 | 81.01 128 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| Effi-MVS+ | | | 82.33 94 | 83.87 120 | 80.52 88 | 84.51 94 | 81.32 102 | 87.53 94 | 68.05 96 | 74.94 148 | 79.67 80 | 82.37 135 | 92.31 102 | 72.21 91 | 85.06 126 | 86.91 81 | 91.18 85 | 84.20 97 |
|
| 3Dnovator | | 79.41 10 | 82.21 95 | 86.07 84 | 77.71 106 | 79.31 145 | 84.61 73 | 87.18 99 | 61.02 163 | 85.65 69 | 76.11 97 | 85.07 116 | 85.38 157 | 70.96 104 | 87.22 106 | 86.47 85 | 91.66 77 | 88.12 71 |
|
| v8 | | | 82.20 96 | 84.56 109 | 79.45 95 | 82.42 123 | 81.65 98 | 87.26 98 | 64.27 130 | 79.36 129 | 81.70 68 | 91.04 53 | 95.75 45 | 73.30 87 | 82.82 145 | 79.18 155 | 87.74 133 | 82.09 119 |
|
| v2v482 | | | 82.20 96 | 84.26 113 | 79.81 93 | 82.67 122 | 80.18 114 | 87.67 92 | 63.96 138 | 81.69 104 | 84.73 41 | 91.27 50 | 96.33 31 | 72.05 95 | 81.94 154 | 79.56 152 | 87.79 132 | 78.84 145 |
|
| Effi-MVS+-dtu | | | 82.04 98 | 83.39 127 | 80.48 89 | 85.48 83 | 86.57 64 | 88.40 86 | 68.28 93 | 69.04 175 | 73.13 118 | 76.26 170 | 91.11 123 | 74.74 75 | 88.40 95 | 87.76 73 | 92.84 63 | 84.57 93 |
|
| MAR-MVS | | | 81.98 99 | 82.92 130 | 80.88 80 | 85.18 86 | 85.85 67 | 89.13 80 | 69.52 76 | 71.21 164 | 82.25 61 | 71.28 196 | 88.89 140 | 69.69 109 | 88.71 89 | 86.96 79 | 89.52 106 | 87.57 75 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| GeoE | | | 81.92 100 | 83.87 120 | 79.66 94 | 84.64 88 | 79.87 115 | 89.75 74 | 65.90 114 | 76.12 142 | 75.87 99 | 84.62 122 | 92.23 103 | 71.96 96 | 86.83 110 | 83.60 118 | 89.83 102 | 83.81 101 |
|
| IS_MVSNet | | | 81.72 101 | 85.01 98 | 77.90 105 | 86.19 76 | 82.64 91 | 85.56 111 | 70.02 74 | 80.11 124 | 63.52 162 | 87.28 94 | 81.18 171 | 67.26 122 | 91.08 67 | 89.33 63 | 94.82 31 | 83.42 105 |
|
| FPMVS | | | 81.56 102 | 84.04 119 | 78.66 100 | 82.92 116 | 75.96 149 | 86.48 108 | 65.66 118 | 84.67 79 | 71.47 128 | 77.78 155 | 83.22 164 | 77.57 50 | 91.24 61 | 90.21 52 | 87.84 131 | 85.21 89 |
|
| casdiffmvs_mvg |  | | 81.50 103 | 85.70 89 | 76.60 115 | 82.68 121 | 80.54 110 | 83.50 127 | 64.49 129 | 83.40 86 | 72.53 119 | 92.15 38 | 95.40 53 | 65.84 132 | 84.69 133 | 81.89 134 | 90.59 92 | 81.86 123 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| DPM-MVS | | | 81.42 104 | 82.11 134 | 80.62 86 | 87.54 64 | 85.30 71 | 90.18 71 | 68.96 84 | 81.00 117 | 79.15 84 | 70.45 202 | 83.29 163 | 67.67 121 | 82.81 146 | 83.46 119 | 90.19 95 | 88.48 66 |
|
| Fast-Effi-MVS+ | | | 81.42 104 | 83.82 122 | 78.62 101 | 82.24 125 | 80.62 109 | 87.72 91 | 63.51 142 | 73.01 152 | 74.75 107 | 83.80 128 | 92.70 97 | 73.44 86 | 88.15 100 | 85.26 101 | 90.05 96 | 83.17 106 |
|
| USDC | | | 81.39 106 | 83.07 128 | 79.43 96 | 81.48 130 | 78.95 125 | 82.62 135 | 66.17 109 | 87.45 53 | 90.73 4 | 82.40 134 | 93.65 85 | 66.57 127 | 83.63 141 | 77.97 158 | 89.00 114 | 77.45 153 |
|
| MSDG | | | 81.39 106 | 84.23 115 | 78.09 104 | 82.40 124 | 82.47 93 | 85.31 118 | 60.91 164 | 79.73 127 | 80.26 75 | 86.30 103 | 88.27 143 | 69.67 110 | 87.20 107 | 84.98 104 | 89.97 98 | 80.67 130 |
|
| sasdasda | | | 81.22 108 | 86.04 85 | 75.60 119 | 83.17 113 | 83.18 85 | 80.29 150 | 65.82 116 | 85.97 67 | 67.98 149 | 77.74 156 | 91.51 116 | 65.17 135 | 88.62 91 | 86.15 91 | 91.17 86 | 89.09 58 |
|
| canonicalmvs | | | 81.22 108 | 86.04 85 | 75.60 119 | 83.17 113 | 83.18 85 | 80.29 150 | 65.82 116 | 85.97 67 | 67.98 149 | 77.74 156 | 91.51 116 | 65.17 135 | 88.62 91 | 86.15 91 | 91.17 86 | 89.09 58 |
|
| thisisatest0515 | | | 81.18 110 | 84.32 112 | 77.52 110 | 76.73 172 | 74.84 160 | 85.06 119 | 61.37 160 | 81.05 116 | 73.95 111 | 88.79 79 | 89.25 136 | 75.49 68 | 85.98 117 | 84.78 107 | 92.53 68 | 85.56 88 |
|
| pmmvs6 | | | 80.46 111 | 88.34 63 | 71.26 148 | 81.96 127 | 77.51 134 | 77.54 168 | 68.83 86 | 93.72 7 | 55.92 182 | 93.94 19 | 98.03 9 | 55.94 172 | 89.21 87 | 85.61 97 | 87.36 137 | 80.38 132 |
|
| QAPM | | | 80.43 112 | 84.34 111 | 75.86 117 | 79.40 144 | 82.06 97 | 79.86 156 | 61.94 156 | 83.28 88 | 74.73 108 | 81.74 137 | 85.44 156 | 70.97 103 | 84.99 131 | 84.71 109 | 88.29 127 | 88.14 70 |
|
| PM-MVS | | | 80.42 113 | 83.63 124 | 76.67 113 | 78.04 157 | 72.37 171 | 87.14 100 | 60.18 169 | 80.13 123 | 71.75 126 | 86.12 106 | 93.92 82 | 77.08 53 | 86.56 112 | 85.12 103 | 85.83 155 | 81.18 126 |
|
| DCV-MVSNet | | | 80.04 114 | 85.67 91 | 73.48 138 | 82.91 117 | 81.11 106 | 80.44 149 | 66.06 110 | 85.01 76 | 62.53 167 | 78.84 148 | 94.43 77 | 58.51 163 | 88.66 90 | 85.91 94 | 90.41 93 | 85.73 86 |
|
| casdiffmvs |  | | 79.93 115 | 84.11 118 | 75.05 125 | 81.41 132 | 78.99 124 | 82.95 132 | 62.90 149 | 81.53 107 | 68.60 146 | 91.94 39 | 96.03 36 | 65.84 132 | 82.89 144 | 77.07 166 | 88.59 122 | 80.34 136 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| IterMVS-LS | | | 79.79 116 | 82.56 132 | 76.56 116 | 81.83 128 | 77.85 132 | 79.90 155 | 69.42 80 | 78.93 132 | 71.21 129 | 90.47 55 | 85.20 158 | 70.86 105 | 80.54 165 | 80.57 143 | 86.15 148 | 84.36 94 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| DELS-MVS | | | 79.71 117 | 83.74 123 | 75.01 127 | 79.31 145 | 82.68 90 | 84.79 121 | 60.06 170 | 75.43 146 | 69.09 140 | 86.13 105 | 89.38 134 | 67.16 123 | 85.12 125 | 83.87 116 | 89.65 103 | 83.57 103 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| test1111 | | | 79.67 118 | 84.40 110 | 74.16 133 | 85.29 84 | 79.56 120 | 81.16 144 | 73.13 59 | 84.65 80 | 56.08 180 | 88.38 82 | 86.14 152 | 60.49 153 | 89.78 82 | 85.59 98 | 88.79 117 | 76.68 154 |
|
| pmmvs-eth3d | | | 79.64 119 | 82.06 135 | 76.83 112 | 80.05 138 | 72.64 169 | 87.47 95 | 66.59 104 | 80.83 118 | 73.50 114 | 89.32 70 | 93.20 91 | 67.78 119 | 80.78 163 | 81.64 137 | 85.58 158 | 76.01 156 |
|
| UGNet | | | 79.62 120 | 85.91 87 | 72.28 144 | 73.52 182 | 83.91 76 | 86.64 106 | 69.51 77 | 79.85 126 | 62.57 166 | 85.82 109 | 89.63 131 | 53.18 186 | 88.39 96 | 87.35 77 | 88.28 128 | 86.43 81 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| V42 | | | 79.59 121 | 83.59 125 | 74.93 130 | 69.61 195 | 77.05 141 | 86.59 107 | 55.84 185 | 78.42 134 | 77.29 94 | 89.84 63 | 95.08 63 | 74.12 78 | 83.05 142 | 80.11 150 | 86.12 149 | 81.59 124 |
|
| MGCFI-Net | | | 79.42 122 | 85.64 92 | 72.15 145 | 82.80 120 | 82.09 96 | 76.92 174 | 65.46 120 | 86.31 63 | 57.48 175 | 78.15 153 | 91.38 119 | 59.10 160 | 88.23 99 | 84.47 111 | 91.14 88 | 88.88 62 |
|
| Anonymous20231211 | | | 79.37 123 | 85.78 88 | 71.89 146 | 82.87 119 | 79.66 119 | 78.77 165 | 63.93 139 | 83.36 87 | 59.39 171 | 90.54 54 | 94.66 71 | 56.46 170 | 87.38 103 | 84.12 113 | 89.92 99 | 80.74 129 |
|
| EPNet | | | 79.36 124 | 79.44 144 | 79.27 98 | 89.51 46 | 77.20 139 | 88.35 87 | 77.35 31 | 68.27 177 | 74.29 110 | 76.31 168 | 79.22 177 | 59.63 156 | 85.02 130 | 85.45 100 | 86.49 145 | 84.61 91 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| v148 | | | 79.33 125 | 82.32 133 | 75.84 118 | 80.14 137 | 75.74 150 | 81.98 139 | 57.06 182 | 81.51 109 | 79.36 83 | 89.42 67 | 96.42 27 | 71.32 99 | 81.54 159 | 75.29 177 | 85.20 160 | 76.32 155 |
|
| ECVR-MVS |  | | 79.31 126 | 84.20 116 | 73.60 135 | 84.55 91 | 80.37 111 | 79.63 159 | 73.23 57 | 82.64 93 | 55.98 181 | 87.50 89 | 86.85 149 | 59.61 157 | 90.35 76 | 86.46 86 | 88.58 123 | 75.26 164 |
|
| FC-MVSNet-train | | | 79.20 127 | 86.29 80 | 70.94 152 | 84.06 97 | 77.67 133 | 85.68 110 | 64.11 133 | 82.90 91 | 52.22 197 | 92.57 36 | 93.69 84 | 49.52 199 | 88.30 97 | 86.93 80 | 90.03 97 | 81.95 121 |
|
| TransMVSNet (Re) | | | 79.05 128 | 86.66 75 | 70.18 158 | 83.32 110 | 75.99 148 | 77.54 168 | 63.98 137 | 90.68 25 | 55.84 183 | 94.80 10 | 96.06 35 | 53.73 185 | 86.27 115 | 83.22 125 | 86.65 141 | 79.61 142 |
|
| ETV-MVS | | | 79.01 129 | 77.98 151 | 80.22 91 | 86.69 72 | 79.73 118 | 88.80 84 | 68.27 94 | 63.22 198 | 71.56 127 | 70.25 204 | 73.63 197 | 73.66 84 | 90.30 78 | 86.77 84 | 92.33 71 | 81.95 121 |
|
| FA-MVS(training) | | | 78.93 130 | 80.63 140 | 76.93 111 | 79.79 141 | 75.57 154 | 85.44 113 | 61.95 155 | 77.19 138 | 78.97 85 | 84.82 119 | 82.47 166 | 66.43 130 | 84.09 138 | 80.13 149 | 89.02 113 | 80.15 139 |
|
| EIA-MVS | | | 78.57 131 | 77.90 152 | 79.35 97 | 87.24 69 | 80.71 108 | 86.16 109 | 64.03 135 | 62.63 203 | 73.49 115 | 73.60 187 | 76.12 191 | 73.83 82 | 88.49 94 | 84.93 105 | 91.36 81 | 78.78 146 |
|
| OpenMVS |  | 75.38 16 | 78.44 132 | 81.39 138 | 74.99 128 | 80.46 135 | 79.85 116 | 79.99 153 | 58.31 179 | 77.34 137 | 73.85 112 | 77.19 162 | 82.33 169 | 68.60 116 | 84.67 134 | 81.95 132 | 88.72 119 | 86.40 82 |
|
| pm-mvs1 | | | 78.21 133 | 85.68 90 | 69.50 163 | 80.38 136 | 75.73 151 | 76.25 178 | 65.04 123 | 87.59 51 | 54.47 188 | 93.16 26 | 95.99 40 | 54.20 181 | 86.37 114 | 82.98 128 | 86.64 142 | 77.96 151 |
|
| FMVSNet1 | | | 78.20 134 | 84.83 104 | 70.46 156 | 78.62 152 | 79.03 123 | 77.90 167 | 67.53 101 | 83.02 90 | 55.10 186 | 87.19 96 | 93.18 92 | 55.65 175 | 85.57 119 | 83.39 121 | 87.98 130 | 82.40 117 |
|
| DI_MVS_plusplus_trai | | | 77.64 135 | 79.64 143 | 75.31 123 | 79.87 140 | 76.89 142 | 81.55 143 | 63.64 140 | 76.21 141 | 72.03 124 | 85.59 111 | 82.97 165 | 66.63 126 | 79.27 171 | 77.78 160 | 88.14 129 | 78.76 147 |
|
| IterMVS-SCA-FT | | | 77.23 136 | 79.18 146 | 74.96 129 | 76.67 173 | 79.85 116 | 75.58 187 | 61.34 161 | 73.10 151 | 73.79 113 | 86.23 104 | 79.61 176 | 79.00 36 | 80.28 167 | 75.50 176 | 83.41 172 | 79.70 141 |
|
| tfpnnormal | | | 77.16 137 | 84.26 113 | 68.88 166 | 81.02 133 | 75.02 157 | 76.52 177 | 63.30 144 | 87.29 54 | 52.40 195 | 91.24 51 | 93.97 80 | 54.85 179 | 85.46 122 | 81.08 139 | 85.18 161 | 75.76 160 |
|
| Fast-Effi-MVS+-dtu | | | 76.92 138 | 77.18 157 | 76.62 114 | 79.55 142 | 79.17 122 | 84.80 120 | 77.40 29 | 64.46 193 | 68.75 144 | 70.81 200 | 86.57 150 | 63.36 147 | 81.74 156 | 81.76 135 | 85.86 154 | 75.78 159 |
|
| diffmvs |  | | 76.74 139 | 81.61 137 | 71.06 150 | 75.64 177 | 74.45 163 | 80.68 148 | 57.57 181 | 77.48 135 | 67.62 153 | 88.95 75 | 93.94 81 | 61.98 150 | 79.74 168 | 76.18 171 | 82.85 173 | 80.50 131 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| MVS_Test | | | 76.72 140 | 79.40 145 | 73.60 135 | 78.85 151 | 74.99 158 | 79.91 154 | 61.56 158 | 69.67 169 | 72.44 120 | 85.98 108 | 90.78 125 | 63.50 145 | 78.30 173 | 75.74 174 | 85.33 159 | 80.31 137 |
|
| MDA-MVSNet-bldmvs | | | 76.51 141 | 82.87 131 | 69.09 165 | 50.71 223 | 74.72 162 | 84.05 125 | 60.27 168 | 81.62 106 | 71.16 130 | 88.21 84 | 91.58 114 | 69.62 111 | 92.78 44 | 77.48 163 | 78.75 184 | 73.69 170 |
|
| EU-MVSNet | | | 76.48 142 | 80.53 141 | 71.75 147 | 67.62 202 | 70.30 176 | 81.74 141 | 54.06 193 | 75.47 145 | 71.01 131 | 80.10 140 | 93.17 93 | 73.67 83 | 83.73 140 | 77.85 159 | 82.40 174 | 83.07 107 |
|
| PVSNet_BlendedMVS | | | 76.45 143 | 78.12 149 | 74.49 131 | 76.76 166 | 78.46 127 | 79.65 157 | 63.26 145 | 65.42 189 | 73.15 116 | 75.05 180 | 88.96 137 | 66.51 128 | 82.73 147 | 77.66 161 | 87.61 134 | 78.60 148 |
|
| PVSNet_Blended | | | 76.45 143 | 78.12 149 | 74.49 131 | 76.76 166 | 78.46 127 | 79.65 157 | 63.26 145 | 65.42 189 | 73.15 116 | 75.05 180 | 88.96 137 | 66.51 128 | 82.73 147 | 77.66 161 | 87.61 134 | 78.60 148 |
|
| Vis-MVSNet (Re-imp) | | | 76.15 145 | 80.84 139 | 70.68 153 | 83.66 107 | 74.80 161 | 81.66 142 | 69.59 75 | 80.48 122 | 46.94 207 | 87.44 91 | 80.63 173 | 53.14 187 | 86.87 109 | 84.56 110 | 89.12 111 | 71.12 175 |
|
| PatchMatch-RL | | | 76.05 146 | 76.64 162 | 75.36 122 | 77.84 162 | 69.87 179 | 81.09 146 | 63.43 143 | 71.66 162 | 68.34 148 | 71.70 192 | 81.76 170 | 74.98 73 | 84.83 132 | 83.44 120 | 86.45 146 | 73.22 172 |
|
| pmmvs4 | | | 75.92 147 | 77.48 156 | 74.10 134 | 78.21 156 | 70.94 173 | 84.06 124 | 64.78 125 | 75.13 147 | 68.47 147 | 84.12 124 | 83.32 162 | 64.74 139 | 75.93 185 | 79.14 156 | 84.31 165 | 73.77 169 |
|
| FC-MVSNet-test | | | 75.91 148 | 83.59 125 | 66.95 177 | 76.63 174 | 69.07 181 | 85.33 117 | 64.97 124 | 84.87 78 | 41.95 213 | 93.17 25 | 87.04 147 | 47.78 202 | 91.09 66 | 85.56 99 | 85.06 162 | 74.34 165 |
|
| tttt0517 | | | 75.86 149 | 76.23 166 | 75.42 121 | 75.55 178 | 74.06 164 | 82.73 133 | 60.31 166 | 69.24 171 | 70.24 135 | 79.18 144 | 58.79 215 | 72.17 92 | 84.49 135 | 83.08 126 | 91.54 78 | 84.80 90 |
|
| CVMVSNet | | | 75.65 150 | 77.62 155 | 73.35 141 | 71.95 188 | 69.89 178 | 83.04 131 | 60.84 165 | 69.12 173 | 68.76 143 | 79.92 143 | 78.93 179 | 73.64 85 | 81.02 161 | 81.01 140 | 81.86 177 | 83.43 104 |
|
| thisisatest0530 | | | 75.54 151 | 75.95 170 | 75.05 125 | 75.08 179 | 73.56 166 | 82.15 138 | 60.31 166 | 69.17 172 | 69.32 138 | 79.02 145 | 58.78 216 | 72.17 92 | 83.88 139 | 83.08 126 | 91.30 83 | 84.20 97 |
|
| test2506 | | | 75.32 152 | 76.87 161 | 73.50 137 | 84.55 91 | 80.37 111 | 79.63 159 | 73.23 57 | 82.64 93 | 55.41 184 | 76.87 165 | 45.42 229 | 59.61 157 | 90.35 76 | 86.46 86 | 88.58 123 | 75.98 157 |
|
| IB-MVS | | 71.28 17 | 75.21 153 | 77.00 159 | 73.12 142 | 76.76 166 | 77.45 135 | 83.05 130 | 58.92 176 | 63.01 199 | 64.31 161 | 59.99 218 | 87.57 146 | 68.64 115 | 86.26 116 | 82.34 131 | 87.05 140 | 82.36 118 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| CANet_DTU | | | 75.04 154 | 78.45 147 | 71.07 149 | 77.27 163 | 77.96 131 | 83.88 126 | 58.00 180 | 64.11 194 | 68.67 145 | 75.65 177 | 88.37 142 | 53.92 184 | 82.05 153 | 81.11 138 | 84.67 163 | 79.88 140 |
|
| GA-MVS | | | 75.01 155 | 76.39 164 | 73.39 139 | 78.37 153 | 75.66 152 | 80.03 152 | 58.40 178 | 70.51 166 | 75.85 100 | 83.24 129 | 76.14 190 | 63.75 141 | 77.28 177 | 76.62 170 | 83.97 167 | 75.30 163 |
|
| ET-MVSNet_ETH3D | | | 74.71 156 | 74.19 177 | 75.31 123 | 79.22 147 | 75.29 155 | 82.70 134 | 64.05 134 | 65.45 188 | 70.96 132 | 77.15 163 | 57.70 217 | 65.89 131 | 84.40 136 | 81.65 136 | 89.03 112 | 77.67 152 |
|
| FMVSNet2 | | | 74.43 157 | 79.70 142 | 68.27 169 | 76.76 166 | 77.36 136 | 75.77 182 | 65.36 121 | 72.28 158 | 52.97 192 | 81.92 136 | 85.61 155 | 52.73 191 | 80.66 164 | 79.73 151 | 86.04 150 | 80.37 133 |
|
| thres600view7 | | | 74.34 158 | 78.43 148 | 69.56 162 | 80.47 134 | 76.28 146 | 78.65 166 | 62.56 151 | 77.39 136 | 52.53 193 | 74.03 184 | 76.78 188 | 55.90 174 | 85.06 126 | 85.19 102 | 87.25 138 | 74.29 166 |
|
| IterMVS | | | 73.62 159 | 76.53 163 | 70.23 157 | 71.83 189 | 77.18 140 | 80.69 147 | 53.22 197 | 72.23 159 | 66.62 156 | 85.21 113 | 78.96 178 | 69.54 112 | 76.28 184 | 71.63 187 | 79.45 181 | 74.25 167 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| MIMVSNet1 | | | 73.40 160 | 81.85 136 | 63.55 190 | 72.90 185 | 64.37 195 | 84.58 122 | 53.60 195 | 90.84 21 | 53.92 189 | 87.75 87 | 96.10 33 | 45.31 205 | 85.37 124 | 79.32 154 | 70.98 199 | 69.18 184 |
|
| HyFIR lowres test | | | 73.29 161 | 74.14 178 | 72.30 143 | 73.08 184 | 78.33 129 | 83.12 129 | 62.41 153 | 63.81 195 | 62.13 168 | 76.67 167 | 78.50 180 | 71.09 101 | 74.13 189 | 77.47 164 | 81.98 176 | 70.10 179 |
|
| GBi-Net | | | 73.17 162 | 77.64 153 | 67.95 172 | 76.76 166 | 77.36 136 | 75.77 182 | 64.57 126 | 62.99 200 | 51.83 198 | 76.05 171 | 77.76 183 | 52.73 191 | 85.57 119 | 83.39 121 | 86.04 150 | 80.37 133 |
|
| test1 | | | 73.17 162 | 77.64 153 | 67.95 172 | 76.76 166 | 77.36 136 | 75.77 182 | 64.57 126 | 62.99 200 | 51.83 198 | 76.05 171 | 77.76 183 | 52.73 191 | 85.57 119 | 83.39 121 | 86.04 150 | 80.37 133 |
|
| thres400 | | | 73.13 164 | 76.99 160 | 68.62 167 | 79.46 143 | 74.93 159 | 77.23 170 | 61.23 162 | 75.54 144 | 52.31 196 | 72.20 191 | 77.10 186 | 54.89 177 | 82.92 143 | 82.62 130 | 86.57 144 | 73.66 171 |
|
| CDS-MVSNet | | | 73.07 165 | 77.02 158 | 68.46 168 | 81.62 129 | 72.89 168 | 79.56 161 | 70.78 71 | 69.56 170 | 52.52 194 | 77.37 161 | 81.12 172 | 42.60 207 | 84.20 137 | 83.93 114 | 83.65 168 | 70.07 180 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| MDTV_nov1_ep13_2view | | | 72.96 166 | 75.59 171 | 69.88 159 | 71.15 192 | 64.86 194 | 82.31 137 | 54.45 191 | 76.30 140 | 78.32 91 | 86.52 101 | 91.58 114 | 61.35 151 | 76.80 178 | 66.83 198 | 71.70 192 | 66.26 188 |
|
| WB-MVS | | | 72.91 167 | 82.95 129 | 61.21 195 | 68.59 198 | 73.96 165 | 73.65 192 | 61.48 159 | 90.88 20 | 42.55 211 | 94.18 16 | 95.80 43 | 53.02 188 | 85.42 123 | 75.73 175 | 67.97 206 | 64.65 191 |
|
| gg-mvs-nofinetune | | | 72.68 168 | 75.21 174 | 69.73 160 | 81.48 130 | 69.04 182 | 70.48 200 | 76.67 35 | 86.92 58 | 67.80 152 | 88.06 85 | 64.67 205 | 42.12 209 | 77.60 175 | 73.65 180 | 79.81 179 | 66.57 187 |
|
| thres200 | | | 72.41 169 | 76.00 169 | 68.21 170 | 78.28 154 | 76.28 146 | 74.94 188 | 62.56 151 | 72.14 161 | 51.35 201 | 69.59 207 | 76.51 189 | 54.89 177 | 85.06 126 | 80.51 145 | 87.25 138 | 71.92 174 |
|
| tfpn200view9 | | | 72.01 170 | 75.40 172 | 68.06 171 | 77.97 158 | 76.44 144 | 77.04 172 | 62.67 150 | 66.81 180 | 50.82 202 | 67.30 209 | 75.67 193 | 52.46 194 | 85.06 126 | 82.64 129 | 87.41 136 | 73.86 168 |
|
| EPNet_dtu | | | 71.90 171 | 73.03 183 | 70.59 154 | 78.28 154 | 61.64 201 | 82.44 136 | 64.12 132 | 63.26 197 | 69.74 136 | 71.47 194 | 82.41 167 | 51.89 195 | 78.83 172 | 78.01 157 | 77.07 185 | 75.60 161 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| gm-plane-assit | | | 71.56 172 | 69.99 188 | 73.39 139 | 84.43 95 | 73.21 167 | 90.42 68 | 51.36 203 | 84.08 83 | 76.00 98 | 91.30 49 | 37.09 230 | 59.01 161 | 73.65 192 | 70.24 191 | 79.09 183 | 60.37 205 |
|
| CMPMVS |  | 55.74 18 | 71.56 172 | 76.26 165 | 66.08 182 | 68.11 200 | 63.91 197 | 63.17 214 | 50.52 205 | 68.79 176 | 75.49 101 | 70.78 201 | 85.67 154 | 63.54 144 | 81.58 157 | 77.20 165 | 75.63 186 | 85.86 84 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| FMVSNet3 | | | 71.40 174 | 75.20 175 | 66.97 176 | 75.00 180 | 76.59 143 | 74.29 189 | 64.57 126 | 62.99 200 | 51.83 198 | 76.05 171 | 77.76 183 | 51.49 196 | 76.58 181 | 77.03 167 | 84.62 164 | 79.43 143 |
|
| MS-PatchMatch | | | 71.18 175 | 73.99 179 | 67.89 174 | 77.16 164 | 71.76 172 | 77.18 171 | 56.38 184 | 67.35 178 | 55.04 187 | 74.63 182 | 75.70 192 | 62.38 148 | 76.62 180 | 75.97 173 | 79.22 182 | 75.90 158 |
|
| test20.03 | | | 69.91 176 | 76.20 167 | 62.58 191 | 84.01 100 | 67.34 187 | 75.67 186 | 65.88 115 | 79.98 125 | 40.28 217 | 82.65 131 | 89.31 135 | 39.63 212 | 77.41 176 | 73.28 181 | 69.98 200 | 63.40 196 |
|
| thres100view900 | | | 69.86 177 | 72.97 184 | 66.24 179 | 77.97 158 | 72.49 170 | 73.29 193 | 59.12 174 | 66.81 180 | 50.82 202 | 67.30 209 | 75.67 193 | 50.54 197 | 78.24 174 | 79.40 153 | 85.71 157 | 70.88 176 |
|
| baseline1 | | | 69.62 178 | 73.55 181 | 65.02 189 | 78.95 150 | 70.39 175 | 71.38 199 | 62.03 154 | 70.97 165 | 47.95 205 | 78.47 152 | 68.19 203 | 47.77 203 | 79.65 170 | 76.94 169 | 82.05 175 | 70.27 178 |
|
| CR-MVSNet | | | 69.56 179 | 68.34 193 | 70.99 151 | 72.78 187 | 67.63 185 | 64.47 212 | 67.74 99 | 59.93 209 | 72.30 121 | 80.10 140 | 56.77 219 | 65.04 137 | 71.64 197 | 72.91 183 | 83.61 170 | 69.40 182 |
|
| baseline | | | 69.33 180 | 75.37 173 | 62.28 193 | 66.54 208 | 66.67 190 | 73.95 191 | 48.07 206 | 66.10 183 | 59.26 172 | 82.45 132 | 86.30 151 | 54.44 180 | 74.42 188 | 73.25 182 | 71.42 195 | 78.43 150 |
|
| pmmvs5 | | | 68.91 181 | 74.35 176 | 62.56 192 | 67.45 204 | 66.78 189 | 71.70 196 | 51.47 202 | 67.17 179 | 56.25 179 | 82.41 133 | 88.59 141 | 47.21 204 | 73.21 195 | 74.23 178 | 81.30 178 | 68.03 186 |
|
| CHOSEN 1792x2688 | | | 68.80 182 | 71.09 185 | 66.13 181 | 69.11 197 | 68.89 183 | 78.98 164 | 54.68 188 | 61.63 205 | 56.69 177 | 71.56 193 | 78.39 181 | 67.69 120 | 72.13 196 | 72.01 186 | 69.63 202 | 73.02 173 |
|
| baseline2 | | | 68.71 183 | 68.34 193 | 69.14 164 | 75.69 176 | 69.70 180 | 76.60 176 | 55.53 187 | 60.13 208 | 62.07 169 | 66.76 211 | 60.35 210 | 60.77 152 | 76.53 183 | 74.03 179 | 84.19 166 | 70.88 176 |
|
| SCA | | | 68.54 184 | 67.52 195 | 69.73 160 | 67.79 201 | 75.04 156 | 76.96 173 | 68.94 85 | 66.41 182 | 67.86 151 | 74.03 184 | 60.96 208 | 65.55 134 | 68.99 205 | 65.67 199 | 71.30 197 | 61.54 204 |
|
| testgi | | | 68.20 185 | 76.05 168 | 59.04 198 | 79.99 139 | 67.32 188 | 81.16 144 | 51.78 201 | 84.91 77 | 39.36 218 | 73.42 188 | 95.19 58 | 32.79 218 | 76.54 182 | 70.40 190 | 69.14 203 | 64.55 192 |
|
| dmvs_re | | | 68.11 186 | 70.60 187 | 65.21 187 | 77.91 160 | 63.73 198 | 76.72 175 | 59.65 172 | 55.93 215 | 47.79 206 | 59.79 219 | 79.91 175 | 49.72 198 | 82.48 150 | 76.98 168 | 79.48 180 | 75.41 162 |
|
| MVSTER | | | 68.08 187 | 69.73 189 | 66.16 180 | 66.33 210 | 70.06 177 | 75.71 185 | 52.36 199 | 55.18 218 | 58.64 173 | 70.23 205 | 56.72 220 | 57.34 167 | 79.68 169 | 76.03 172 | 86.61 143 | 80.20 138 |
|
| Anonymous20231206 | | | 67.28 188 | 73.41 182 | 60.12 197 | 76.45 175 | 63.61 199 | 74.21 190 | 56.52 183 | 76.35 139 | 42.23 212 | 75.81 176 | 90.47 128 | 41.51 210 | 74.52 186 | 69.97 192 | 69.83 201 | 63.17 197 |
|
| RPMNet | | | 67.02 189 | 63.99 204 | 70.56 155 | 71.55 190 | 67.63 185 | 75.81 180 | 69.44 79 | 59.93 209 | 63.24 163 | 64.32 213 | 47.51 228 | 59.68 155 | 70.37 202 | 69.64 193 | 83.64 169 | 68.49 185 |
|
| CostFormer | | | 66.81 190 | 66.94 196 | 66.67 178 | 72.79 186 | 68.25 184 | 79.55 162 | 55.57 186 | 65.52 187 | 62.77 165 | 76.98 164 | 60.09 211 | 56.73 169 | 65.69 213 | 62.35 202 | 72.59 191 | 69.71 181 |
|
| PatchT | | | 66.25 191 | 66.76 197 | 65.67 185 | 55.87 218 | 60.75 202 | 70.17 201 | 59.00 175 | 59.80 211 | 72.30 121 | 78.68 150 | 54.12 224 | 65.04 137 | 71.64 197 | 72.91 183 | 71.63 194 | 69.40 182 |
|
| dps | | | 65.14 192 | 64.50 202 | 65.89 184 | 71.41 191 | 65.81 193 | 71.44 198 | 61.59 157 | 58.56 212 | 61.43 170 | 75.45 178 | 52.70 226 | 58.06 165 | 69.57 204 | 64.65 200 | 71.39 196 | 64.77 190 |
|
| MDTV_nov1_ep13 | | | 64.96 193 | 64.77 201 | 65.18 188 | 67.08 205 | 62.46 200 | 75.80 181 | 51.10 204 | 62.27 204 | 69.74 136 | 74.12 183 | 62.65 206 | 55.64 176 | 68.19 207 | 62.16 206 | 71.70 192 | 61.57 203 |
|
| PatchmatchNet |  | | 64.81 194 | 63.74 205 | 66.06 183 | 69.21 196 | 58.62 205 | 73.16 194 | 60.01 171 | 65.92 184 | 66.19 158 | 76.27 169 | 59.09 212 | 60.45 154 | 66.58 210 | 61.47 208 | 67.33 207 | 58.24 210 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| tpm cat1 | | | 64.79 195 | 62.74 209 | 67.17 175 | 74.61 181 | 65.91 192 | 76.18 179 | 59.32 173 | 64.88 192 | 66.41 157 | 71.21 197 | 53.56 225 | 59.17 159 | 61.53 217 | 58.16 211 | 67.33 207 | 63.95 193 |
|
| MIMVSNet | | | 63.02 196 | 69.02 191 | 56.01 203 | 68.20 199 | 59.26 204 | 70.01 203 | 53.79 194 | 71.56 163 | 41.26 216 | 71.38 195 | 82.38 168 | 36.38 214 | 71.43 199 | 67.32 197 | 66.45 209 | 59.83 207 |
|
| TAMVS | | | 63.02 196 | 69.30 190 | 55.70 205 | 70.12 193 | 56.89 207 | 69.63 204 | 45.13 209 | 70.23 167 | 38.00 219 | 77.79 154 | 75.15 195 | 42.60 207 | 74.48 187 | 72.81 185 | 68.70 204 | 57.75 212 |
|
| tpm | | | 62.79 198 | 63.25 206 | 62.26 194 | 70.09 194 | 53.78 210 | 71.65 197 | 47.31 207 | 65.72 186 | 76.70 95 | 80.62 139 | 56.40 222 | 48.11 201 | 64.20 215 | 58.54 209 | 59.70 213 | 63.47 195 |
|
| pmmvs3 | | | 62.72 199 | 68.71 192 | 55.74 204 | 50.74 222 | 57.10 206 | 70.05 202 | 28.82 219 | 61.57 207 | 57.39 176 | 71.19 198 | 85.73 153 | 53.96 183 | 73.36 194 | 69.43 194 | 73.47 190 | 62.55 199 |
|
| pmnet_mix02 | | | 62.60 200 | 70.81 186 | 53.02 210 | 66.56 207 | 50.44 217 | 62.81 215 | 46.84 208 | 79.13 131 | 43.76 210 | 87.45 90 | 90.75 126 | 39.85 211 | 70.48 201 | 57.09 212 | 58.27 215 | 60.32 206 |
|
| new-patchmatchnet | | | 62.59 201 | 73.79 180 | 49.53 214 | 76.98 165 | 53.57 211 | 53.46 223 | 54.64 189 | 85.43 72 | 28.81 222 | 91.94 39 | 96.41 28 | 25.28 220 | 76.80 178 | 53.66 218 | 57.99 216 | 58.69 209 |
|
| test-LLR | | | 62.15 202 | 59.46 218 | 65.29 186 | 79.07 148 | 52.66 213 | 69.46 206 | 62.93 147 | 50.76 221 | 53.81 190 | 63.11 215 | 58.91 213 | 52.87 189 | 66.54 211 | 62.34 203 | 73.59 188 | 61.87 201 |
|
| PMMVS | | | 61.98 203 | 65.61 199 | 57.74 200 | 45.03 224 | 51.76 215 | 69.54 205 | 35.05 216 | 55.49 217 | 55.32 185 | 68.23 208 | 78.39 181 | 58.09 164 | 70.21 203 | 71.56 188 | 83.42 171 | 63.66 194 |
|
| test0.0.03 1 | | | 61.79 204 | 65.33 200 | 57.65 201 | 79.07 148 | 64.09 196 | 68.51 209 | 62.93 147 | 61.59 206 | 33.71 221 | 61.58 217 | 71.58 201 | 33.43 217 | 70.95 200 | 68.68 195 | 68.26 205 | 58.82 208 |
|
| MVS-HIRNet | | | 59.74 205 | 58.74 221 | 60.92 196 | 57.74 217 | 45.81 221 | 56.02 221 | 58.69 177 | 55.69 216 | 65.17 159 | 70.86 199 | 71.66 199 | 56.75 168 | 61.11 218 | 53.74 217 | 71.17 198 | 52.28 216 |
|
| tpmrst | | | 59.42 206 | 60.02 216 | 58.71 199 | 67.56 203 | 53.10 212 | 66.99 210 | 51.88 200 | 63.80 196 | 57.68 174 | 76.73 166 | 56.49 221 | 48.73 200 | 56.47 221 | 55.55 214 | 59.43 214 | 58.02 211 |
|
| test-mter | | | 59.39 207 | 61.59 211 | 56.82 202 | 53.21 219 | 54.82 209 | 73.12 195 | 26.57 221 | 53.19 219 | 56.31 178 | 64.71 212 | 60.47 209 | 56.36 171 | 68.69 206 | 64.27 201 | 75.38 187 | 65.00 189 |
|
| E-PMN | | | 59.07 208 | 62.79 208 | 54.72 206 | 67.01 206 | 47.81 220 | 60.44 218 | 43.40 210 | 72.95 153 | 44.63 209 | 70.42 203 | 73.17 198 | 58.73 162 | 80.97 162 | 51.98 219 | 54.14 219 | 42.26 221 |
|
| EMVS | | | 58.97 209 | 62.63 210 | 54.70 207 | 66.26 211 | 48.71 218 | 61.74 216 | 42.71 211 | 72.80 155 | 46.00 208 | 73.01 190 | 71.66 199 | 57.91 166 | 80.41 166 | 50.68 221 | 53.55 220 | 41.11 222 |
|
| TESTMET0.1,1 | | | 57.21 210 | 59.46 218 | 54.60 208 | 50.95 221 | 52.66 213 | 69.46 206 | 26.91 220 | 50.76 221 | 53.81 190 | 63.11 215 | 58.91 213 | 52.87 189 | 66.54 211 | 62.34 203 | 73.59 188 | 61.87 201 |
|
| ADS-MVSNet | | | 56.89 211 | 61.09 212 | 52.00 212 | 59.48 215 | 48.10 219 | 58.02 219 | 54.37 192 | 72.82 154 | 49.19 204 | 75.32 179 | 65.97 204 | 37.96 213 | 59.34 220 | 54.66 216 | 52.99 221 | 51.42 217 |
|
| EPMVS | | | 56.62 212 | 59.77 217 | 52.94 211 | 62.41 213 | 50.55 216 | 60.66 217 | 52.83 198 | 65.15 191 | 41.80 214 | 77.46 160 | 57.28 218 | 42.68 206 | 59.81 219 | 54.82 215 | 57.23 217 | 53.35 215 |
|
| FMVSNet5 | | | 56.37 213 | 60.14 215 | 51.98 213 | 60.83 214 | 59.58 203 | 66.85 211 | 42.37 212 | 52.68 220 | 41.33 215 | 47.09 222 | 54.68 223 | 35.28 215 | 73.88 190 | 70.77 189 | 65.24 210 | 62.26 200 |
|
| CHOSEN 280x420 | | | 56.32 214 | 58.85 220 | 53.36 209 | 51.63 220 | 39.91 224 | 69.12 208 | 38.61 215 | 56.29 214 | 36.79 220 | 48.84 221 | 62.59 207 | 63.39 146 | 73.61 193 | 67.66 196 | 60.61 211 | 63.07 198 |
|
| N_pmnet | | | 54.95 215 | 65.90 198 | 42.18 215 | 66.37 209 | 43.86 223 | 57.92 220 | 39.79 214 | 79.54 128 | 17.24 227 | 86.31 102 | 87.91 144 | 25.44 219 | 64.68 214 | 51.76 220 | 46.33 222 | 47.23 219 |
|
| new_pmnet | | | 52.29 216 | 63.16 207 | 39.61 217 | 58.89 216 | 44.70 222 | 48.78 225 | 34.73 217 | 65.88 185 | 17.85 226 | 73.42 188 | 80.00 174 | 23.06 221 | 67.00 209 | 62.28 205 | 54.36 218 | 48.81 218 |
|
| MVE |  | 41.12 19 | 51.80 217 | 60.92 213 | 41.16 216 | 35.21 226 | 34.14 226 | 48.45 226 | 41.39 213 | 69.11 174 | 19.53 225 | 63.33 214 | 73.80 196 | 63.56 143 | 67.19 208 | 61.51 207 | 38.85 223 | 57.38 213 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| PMMVS2 | | | 48.13 218 | 64.06 203 | 29.55 218 | 44.06 225 | 36.69 225 | 51.95 224 | 29.97 218 | 74.75 149 | 8.90 229 | 76.02 174 | 91.24 122 | 7.53 223 | 73.78 191 | 55.91 213 | 34.87 224 | 40.01 223 |
|
| GG-mvs-BLEND | | | 41.63 219 | 60.36 214 | 19.78 219 | 0.14 231 | 66.04 191 | 55.66 222 | 0.17 227 | 57.64 213 | 2.42 230 | 51.82 220 | 69.42 202 | 0.28 227 | 64.11 216 | 58.29 210 | 60.02 212 | 55.18 214 |
|
| test_method | | | 22.69 220 | 26.99 222 | 17.67 220 | 2.13 228 | 4.31 229 | 27.50 227 | 4.53 223 | 37.94 223 | 24.52 224 | 36.20 224 | 51.40 227 | 15.26 222 | 29.86 223 | 17.09 223 | 32.07 225 | 12.16 224 |
|
| test123 | | | 1.06 221 | 1.41 223 | 0.64 222 | 0.39 229 | 0.48 230 | 0.52 232 | 0.25 226 | 1.11 227 | 1.37 231 | 2.01 227 | 1.98 233 | 0.87 225 | 1.43 225 | 1.27 224 | 0.46 229 | 1.62 226 |
|
| testmvs | | | 0.93 222 | 1.37 224 | 0.41 223 | 0.36 230 | 0.36 231 | 0.62 231 | 0.39 225 | 1.48 226 | 0.18 232 | 2.41 226 | 1.31 234 | 0.41 226 | 1.25 226 | 1.08 225 | 0.48 228 | 1.68 225 |
|
| uanet_test | | | 0.00 223 | 0.00 225 | 0.00 224 | 0.00 232 | 0.00 232 | 0.00 233 | 0.00 228 | 0.00 228 | 0.00 233 | 0.00 228 | 0.00 235 | 0.00 228 | 0.00 227 | 0.00 226 | 0.00 230 | 0.00 227 |
|
| sosnet-low-res | | | 0.00 223 | 0.00 225 | 0.00 224 | 0.00 232 | 0.00 232 | 0.00 233 | 0.00 228 | 0.00 228 | 0.00 233 | 0.00 228 | 0.00 235 | 0.00 228 | 0.00 227 | 0.00 226 | 0.00 230 | 0.00 227 |
|
| sosnet | | | 0.00 223 | 0.00 225 | 0.00 224 | 0.00 232 | 0.00 232 | 0.00 233 | 0.00 228 | 0.00 228 | 0.00 233 | 0.00 228 | 0.00 235 | 0.00 228 | 0.00 227 | 0.00 226 | 0.00 230 | 0.00 227 |
|
| TPM-MVS | | | | | | 86.18 77 | 83.43 84 | 87.57 93 | | | 78.77 87 | 69.75 206 | 84.63 160 | 62.24 149 | | | 89.88 100 | 88.48 66 |
| Ray Leroy Khuboni and Hongjun Xu: Textureless Resilient Propagation Matching in Multiple View Stereosis (TPM-MVS). SATNAC 2025 |
| RE-MVS-def | | | | | | | | | | | 87.10 28 | | | | | | | |
|
| 9.14 | | | | | | | | | | | | | 89.43 133 | | | | | |
|
| SR-MVS | | | | | | 91.82 13 | | | 80.80 7 | | | | 95.53 50 | | | | | |
|
| Anonymous202405211 | | | | 84.68 107 | | 83.92 101 | 79.45 121 | 79.03 163 | 67.79 98 | 82.01 101 | | 88.77 80 | 92.58 98 | 55.93 173 | 86.68 111 | 84.26 112 | 88.92 115 | 78.98 144 |
|
| our_test_3 | | | | | | 73.27 183 | 70.91 174 | 83.26 128 | | | | | | | | | | |
|
| ambc | | | | 88.38 60 | | 91.62 17 | 87.97 52 | 84.48 123 | | 88.64 44 | 87.93 15 | 87.38 92 | 94.82 69 | 74.53 76 | 89.14 88 | 83.86 117 | 85.94 153 | 86.84 78 |
|
| MTAPA | | | | | | | | | | | 89.37 9 | | 94.85 67 | | | | | |
|
| MTMP | | | | | | | | | | | 90.54 5 | | 95.16 60 | | | | | |
|
| Patchmatch-RL test | | | | | | | | 4.13 230 | | | | | | | | | | |
|
| tmp_tt | | | | | 13.54 221 | 16.73 227 | 6.42 228 | 8.49 229 | 2.36 224 | 28.69 225 | 27.44 223 | 18.40 225 | 13.51 232 | 3.70 224 | 33.23 222 | 36.26 222 | 22.54 227 | |
|
| XVS | | | | | | 91.28 25 | 91.23 8 | 96.89 2 | | | 87.14 25 | | 94.53 72 | | | | 95.84 15 | |
|
| X-MVStestdata | | | | | | 91.28 25 | 91.23 8 | 96.89 2 | | | 87.14 25 | | 94.53 72 | | | | 95.84 15 | |
|
| mPP-MVS | | | | | | 93.05 3 | | | | | | | 95.77 44 | | | | | |
|
| NP-MVS | | | | | | | | | | 78.65 133 | | | | | | | | |
|
| Patchmtry | | | | | | | 56.88 208 | 64.47 212 | 67.74 99 | | 72.30 121 | | | | | | | |
|
| DeepMVS_CX |  | | | | | | 17.78 227 | 20.40 228 | 6.69 222 | 31.41 224 | 9.80 228 | 38.61 223 | 34.88 231 | 33.78 216 | 28.41 224 | | 23.59 226 | 45.77 220 |
|