| DPM-MVS | | | 90.70 2 | 90.52 7 | 91.24 1 | 89.68 144 | 76.68 2 | 97.29 1 | 95.35 12 | 82.87 20 | 91.58 12 | 97.22 3 | 79.93 5 | 99.10 9 | 83.12 92 | 97.64 2 | 97.94 1 |
|
| SED-MVS | | | 89.94 8 | 90.36 9 | 88.70 16 | 96.45 12 | 69.38 47 | 96.89 5 | 94.44 40 | 71.65 204 | 92.11 6 | 97.21 4 | 76.79 9 | 99.11 6 | 92.34 21 | 95.36 13 | 97.62 2 |
|
| OPU-MVS | | | | | 89.97 3 | 97.52 3 | 73.15 12 | 96.89 5 | | | | 97.00 9 | 83.82 2 | 99.15 2 | 95.72 5 | 97.63 3 | 97.62 2 |
|
| DVP-MVS++ | | | 90.53 3 | 91.09 4 | 88.87 14 | 97.31 4 | 69.91 37 | 93.96 70 | 94.37 46 | 72.48 175 | 92.07 8 | 96.85 16 | 83.82 2 | 99.15 2 | 91.53 29 | 97.42 4 | 97.55 4 |
|
| PC_three_1452 | | | | | | | | | | 80.91 45 | 94.07 2 | 96.83 18 | 83.57 4 | 99.12 5 | 95.70 7 | 97.42 4 | 97.55 4 |
|
| DeepPCF-MVS | | 81.17 1 | 89.72 9 | 91.38 3 | 84.72 123 | 93.00 69 | 58.16 295 | 96.72 8 | 94.41 42 | 86.50 8 | 90.25 21 | 97.83 1 | 75.46 14 | 98.67 25 | 92.78 18 | 95.49 12 | 97.32 6 |
|
| LFMVS | | | 84.34 73 | 82.73 96 | 89.18 12 | 94.76 33 | 73.25 9 | 94.99 42 | 91.89 137 | 71.90 193 | 82.16 83 | 93.49 108 | 47.98 257 | 97.05 89 | 82.55 96 | 84.82 137 | 97.25 7 |
|
| canonicalmvs | | | 86.85 35 | 86.25 43 | 88.66 18 | 91.80 101 | 71.92 14 | 93.54 94 | 91.71 147 | 80.26 51 | 87.55 37 | 95.25 58 | 63.59 93 | 96.93 105 | 88.18 49 | 84.34 141 | 97.11 8 |
|
| MCST-MVS | | | 91.08 1 | 91.46 2 | 89.94 4 | 97.66 2 | 73.37 8 | 97.13 2 | 95.58 10 | 89.33 1 | 85.77 51 | 96.26 30 | 72.84 26 | 99.38 1 | 92.64 19 | 95.93 9 | 97.08 9 |
|
| DELS-MVS | | | 90.05 6 | 90.09 10 | 89.94 4 | 93.14 66 | 73.88 7 | 97.01 4 | 94.40 44 | 88.32 3 | 85.71 52 | 94.91 68 | 74.11 19 | 98.91 17 | 87.26 59 | 95.94 8 | 97.03 10 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| CSCG | | | 86.87 34 | 86.26 42 | 88.72 15 | 95.05 31 | 70.79 25 | 93.83 82 | 95.33 13 | 68.48 258 | 77.63 130 | 94.35 86 | 73.04 24 | 98.45 30 | 84.92 79 | 93.71 45 | 96.92 11 |
|
| MM | | | | | 88.92 13 | | 71.10 22 | 97.02 3 | 96.04 6 | 88.70 2 | 91.57 13 | 96.19 33 | 70.12 36 | 98.91 17 | 96.83 1 | 95.06 16 | 96.76 12 |
|
| MVS | | | 84.66 68 | 82.86 94 | 90.06 2 | 90.93 120 | 74.56 6 | 87.91 268 | 95.54 11 | 68.55 256 | 72.35 190 | 94.71 73 | 59.78 135 | 98.90 19 | 81.29 108 | 94.69 31 | 96.74 13 |
|
| alignmvs | | | 87.28 30 | 86.97 35 | 88.24 24 | 91.30 114 | 71.14 21 | 95.61 25 | 93.56 71 | 79.30 65 | 87.07 41 | 95.25 58 | 68.43 41 | 96.93 105 | 87.87 51 | 84.33 142 | 96.65 14 |
|
| DeepC-MVS_fast | | 79.48 2 | 87.95 20 | 88.00 23 | 87.79 28 | 95.86 27 | 68.32 72 | 95.74 21 | 94.11 54 | 83.82 15 | 83.49 73 | 96.19 33 | 64.53 79 | 98.44 31 | 83.42 91 | 94.88 24 | 96.61 15 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| test_241102_TWO | | | | | | | | | 94.41 42 | 71.65 204 | 92.07 8 | 97.21 4 | 74.58 17 | 99.11 6 | 92.34 21 | 95.36 13 | 96.59 16 |
|
| TSAR-MVS + GP. | | | 87.96 19 | 88.37 19 | 86.70 57 | 93.51 56 | 65.32 148 | 95.15 36 | 93.84 58 | 78.17 85 | 85.93 50 | 94.80 71 | 75.80 13 | 98.21 34 | 89.38 40 | 88.78 101 | 96.59 16 |
|
| CANet | | | 89.61 11 | 89.99 11 | 88.46 21 | 94.39 39 | 69.71 43 | 96.53 12 | 93.78 59 | 86.89 6 | 89.68 27 | 95.78 40 | 65.94 61 | 99.10 9 | 92.99 16 | 93.91 40 | 96.58 18 |
|
| WTY-MVS | | | 86.32 42 | 85.81 51 | 87.85 26 | 92.82 73 | 69.37 49 | 95.20 34 | 95.25 14 | 82.71 22 | 81.91 84 | 94.73 72 | 67.93 47 | 97.63 56 | 79.55 117 | 82.25 155 | 96.54 19 |
|
| VNet | | | 86.20 44 | 85.65 54 | 87.84 27 | 93.92 46 | 69.99 33 | 95.73 23 | 95.94 7 | 78.43 82 | 86.00 49 | 93.07 114 | 58.22 150 | 97.00 94 | 85.22 74 | 84.33 142 | 96.52 20 |
|
| MSC_two_6792asdad | | | | | 89.60 8 | 97.31 4 | 73.22 10 | | 95.05 21 | | | | | 99.07 13 | 92.01 24 | 94.77 25 | 96.51 21 |
|
| No_MVS | | | | | 89.60 8 | 97.31 4 | 73.22 10 | | 95.05 21 | | | | | 99.07 13 | 92.01 24 | 94.77 25 | 96.51 21 |
|
| test_0728_SECOND | | | | | 88.70 16 | 96.45 12 | 70.43 29 | 96.64 9 | 94.37 46 | | | | | 99.15 2 | 91.91 27 | 94.90 21 | 96.51 21 |
|
| ET-MVSNet_ETH3D | | | 84.01 81 | 83.15 89 | 86.58 61 | 90.78 125 | 70.89 24 | 94.74 47 | 94.62 34 | 81.44 38 | 58.19 320 | 93.64 104 | 73.64 23 | 92.35 273 | 82.66 94 | 78.66 187 | 96.50 24 |
|
| IU-MVS | | | | | | 96.46 11 | 69.91 37 | | 95.18 16 | 80.75 46 | 95.28 1 | | | | 92.34 21 | 95.36 13 | 96.47 25 |
|
| test_0728_THIRD | | | | | | | | | | 72.48 175 | 90.55 19 | 96.93 11 | 76.24 11 | 99.08 11 | 91.53 29 | 94.99 17 | 96.43 26 |
|
| MSP-MVS | | | 90.38 4 | 91.87 1 | 85.88 80 | 92.83 71 | 64.03 183 | 93.06 107 | 94.33 48 | 82.19 28 | 93.65 3 | 96.15 35 | 85.89 1 | 97.19 82 | 91.02 33 | 97.75 1 | 96.43 26 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| HY-MVS | | 76.49 5 | 84.28 74 | 83.36 85 | 87.02 48 | 92.22 87 | 67.74 88 | 84.65 294 | 94.50 37 | 79.15 69 | 82.23 82 | 87.93 203 | 66.88 53 | 96.94 103 | 80.53 112 | 82.20 156 | 96.39 28 |
|
| DPE-MVS |  | | 88.77 15 | 89.21 15 | 87.45 37 | 96.26 20 | 67.56 93 | 94.17 57 | 94.15 53 | 68.77 254 | 90.74 17 | 97.27 2 | 76.09 12 | 98.49 29 | 90.58 37 | 94.91 20 | 96.30 29 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| DVP-MVS |  | | 89.41 12 | 89.73 13 | 88.45 22 | 96.40 15 | 69.99 33 | 96.64 9 | 94.52 36 | 71.92 191 | 90.55 19 | 96.93 11 | 73.77 21 | 99.08 11 | 91.91 27 | 94.90 21 | 96.29 30 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| MSLP-MVS++ | | | 86.27 43 | 85.91 50 | 87.35 39 | 92.01 93 | 68.97 59 | 95.04 40 | 92.70 104 | 79.04 74 | 81.50 87 | 96.50 25 | 58.98 145 | 96.78 110 | 83.49 90 | 93.93 39 | 96.29 30 |
|
| patch_mono-2 | | | 89.71 10 | 90.99 5 | 85.85 83 | 96.04 24 | 63.70 193 | 95.04 40 | 95.19 15 | 86.74 7 | 91.53 14 | 95.15 62 | 73.86 20 | 97.58 59 | 93.38 14 | 92.00 67 | 96.28 32 |
|
| test_yl | | | 84.28 74 | 83.16 87 | 87.64 30 | 94.52 37 | 69.24 51 | 95.78 18 | 95.09 19 | 69.19 248 | 81.09 91 | 92.88 120 | 57.00 163 | 97.44 66 | 81.11 109 | 81.76 160 | 96.23 33 |
|
| DCV-MVSNet | | | 84.28 74 | 83.16 87 | 87.64 30 | 94.52 37 | 69.24 51 | 95.78 18 | 95.09 19 | 69.19 248 | 81.09 91 | 92.88 120 | 57.00 163 | 97.44 66 | 81.11 109 | 81.76 160 | 96.23 33 |
|
| CNVR-MVS | | | 90.32 5 | 90.89 6 | 88.61 19 | 96.76 8 | 70.65 26 | 96.47 13 | 94.83 25 | 84.83 11 | 89.07 31 | 96.80 19 | 70.86 34 | 99.06 15 | 92.64 19 | 95.71 10 | 96.12 35 |
|
| HPM-MVS++ |  | | 89.37 13 | 89.95 12 | 87.64 30 | 95.10 30 | 68.23 77 | 95.24 33 | 94.49 38 | 82.43 25 | 88.90 32 | 96.35 27 | 71.89 33 | 98.63 26 | 88.76 47 | 96.40 6 | 96.06 36 |
|
| SD-MVS | | | 87.49 26 | 87.49 29 | 87.50 36 | 93.60 53 | 68.82 62 | 93.90 74 | 92.63 110 | 76.86 104 | 87.90 35 | 95.76 41 | 66.17 58 | 97.63 56 | 89.06 45 | 91.48 76 | 96.05 37 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| PHI-MVS | | | 86.83 36 | 86.85 39 | 86.78 55 | 93.47 57 | 65.55 144 | 95.39 30 | 95.10 18 | 71.77 201 | 85.69 53 | 96.52 23 | 62.07 110 | 98.77 22 | 86.06 70 | 95.60 11 | 96.03 38 |
|
| APDe-MVS |  | | 87.54 25 | 87.84 24 | 86.65 58 | 96.07 23 | 66.30 126 | 94.84 45 | 93.78 59 | 69.35 245 | 88.39 33 | 96.34 28 | 67.74 48 | 97.66 54 | 90.62 36 | 93.44 49 | 96.01 39 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| lupinMVS | | | 87.74 23 | 87.77 25 | 87.63 34 | 89.24 158 | 71.18 19 | 96.57 11 | 92.90 99 | 82.70 23 | 87.13 39 | 95.27 56 | 64.99 70 | 95.80 140 | 89.34 41 | 91.80 70 | 95.93 40 |
|
| NCCC | | | 89.07 14 | 89.46 14 | 87.91 25 | 96.60 10 | 69.05 56 | 96.38 15 | 94.64 33 | 84.42 12 | 86.74 43 | 96.20 32 | 66.56 57 | 98.76 23 | 89.03 46 | 94.56 32 | 95.92 41 |
|
| MVS_0304 | | | 90.01 7 | 90.50 8 | 88.53 20 | 90.14 135 | 70.94 23 | 96.47 13 | 95.72 9 | 87.33 4 | 89.60 28 | 96.26 30 | 68.44 40 | 98.74 24 | 95.82 4 | 94.72 30 | 95.90 42 |
|
| SMA-MVS |  | | 88.14 16 | 88.29 20 | 87.67 29 | 93.21 63 | 68.72 64 | 93.85 77 | 94.03 55 | 74.18 138 | 91.74 11 | 96.67 21 | 65.61 65 | 98.42 33 | 89.24 43 | 96.08 7 | 95.88 43 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| dcpmvs_2 | | | 87.37 29 | 87.55 28 | 86.85 50 | 95.04 32 | 68.20 78 | 90.36 217 | 90.66 188 | 79.37 64 | 81.20 89 | 93.67 103 | 74.73 15 | 96.55 118 | 90.88 34 | 92.00 67 | 95.82 44 |
|
| Anonymous202405211 | | | 77.96 189 | 75.33 207 | 85.87 81 | 93.73 52 | 64.52 163 | 94.85 44 | 85.36 316 | 62.52 305 | 76.11 145 | 90.18 169 | 29.43 353 | 97.29 76 | 68.51 208 | 77.24 202 | 95.81 45 |
|
| mvs_anonymous | | | 81.36 126 | 79.99 136 | 85.46 94 | 90.39 131 | 68.40 70 | 86.88 284 | 90.61 190 | 74.41 133 | 70.31 213 | 84.67 242 | 63.79 87 | 92.32 274 | 73.13 160 | 85.70 132 | 95.67 46 |
|
| MG-MVS | | | 87.11 32 | 86.27 41 | 89.62 7 | 97.79 1 | 76.27 4 | 94.96 43 | 94.49 38 | 78.74 80 | 83.87 72 | 92.94 117 | 64.34 80 | 96.94 103 | 75.19 147 | 94.09 36 | 95.66 47 |
|
| PAPR | | | 85.15 61 | 84.47 66 | 87.18 42 | 96.02 25 | 68.29 73 | 91.85 160 | 93.00 96 | 76.59 111 | 79.03 114 | 95.00 63 | 61.59 116 | 97.61 58 | 78.16 131 | 89.00 100 | 95.63 48 |
|
| VDD-MVS | | | 83.06 99 | 81.81 110 | 86.81 53 | 90.86 123 | 67.70 89 | 95.40 29 | 91.50 157 | 75.46 121 | 81.78 85 | 92.34 133 | 40.09 298 | 97.13 87 | 86.85 64 | 82.04 157 | 95.60 49 |
|
| casdiffmvs_mvg |  | | 85.66 55 | 85.18 58 | 87.09 45 | 88.22 185 | 69.35 50 | 93.74 86 | 91.89 137 | 81.47 35 | 80.10 101 | 91.45 146 | 64.80 75 | 96.35 121 | 87.23 60 | 87.69 111 | 95.58 50 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| Effi-MVS+ | | | 83.82 85 | 82.76 95 | 86.99 49 | 89.56 147 | 69.40 46 | 91.35 184 | 86.12 310 | 72.59 172 | 83.22 75 | 92.81 123 | 59.60 137 | 96.01 137 | 81.76 101 | 87.80 110 | 95.56 51 |
|
| TSAR-MVS + MP. | | | 88.11 18 | 88.64 16 | 86.54 63 | 91.73 102 | 68.04 81 | 90.36 217 | 93.55 72 | 82.89 19 | 91.29 15 | 92.89 119 | 72.27 30 | 96.03 135 | 87.99 50 | 94.77 25 | 95.54 52 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| SteuartSystems-ACMMP | | | 86.82 37 | 86.90 37 | 86.58 61 | 90.42 129 | 66.38 123 | 96.09 17 | 93.87 57 | 77.73 92 | 84.01 71 | 95.66 43 | 63.39 95 | 97.94 40 | 87.40 57 | 93.55 48 | 95.42 53 |
| Skip Steuart: Steuart Systems R&D Blog. |
| CS-MVS-test | | | 86.14 46 | 87.01 34 | 83.52 161 | 92.63 80 | 59.36 283 | 95.49 27 | 91.92 134 | 80.09 53 | 85.46 56 | 95.53 47 | 61.82 115 | 95.77 143 | 86.77 65 | 93.37 50 | 95.41 54 |
|
| casdiffmvs |  | | 85.37 58 | 84.87 64 | 86.84 51 | 88.25 183 | 69.07 55 | 93.04 109 | 91.76 144 | 81.27 41 | 80.84 96 | 92.07 137 | 64.23 81 | 96.06 133 | 84.98 78 | 87.43 115 | 95.39 55 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| EIA-MVS | | | 84.84 65 | 84.88 63 | 84.69 125 | 91.30 114 | 62.36 226 | 93.85 77 | 92.04 129 | 79.45 61 | 79.33 111 | 94.28 90 | 62.42 106 | 96.35 121 | 80.05 114 | 91.25 81 | 95.38 56 |
|
| CS-MVS | | | 85.80 51 | 86.65 40 | 83.27 169 | 92.00 94 | 58.92 288 | 95.31 31 | 91.86 139 | 79.97 54 | 84.82 62 | 95.40 49 | 62.26 108 | 95.51 161 | 86.11 69 | 92.08 66 | 95.37 57 |
|
| GG-mvs-BLEND | | | | | 86.53 64 | 91.91 98 | 69.67 45 | 75.02 356 | 94.75 28 | | 78.67 122 | 90.85 156 | 77.91 7 | 94.56 194 | 72.25 171 | 93.74 43 | 95.36 58 |
|
| agg_prior2 | | | | | | | | | | | | | | | 86.41 66 | 94.75 29 | 95.33 59 |
|
| 3Dnovator+ | | 73.60 7 | 82.10 116 | 80.60 128 | 86.60 59 | 90.89 122 | 66.80 114 | 95.20 34 | 93.44 78 | 74.05 140 | 67.42 253 | 92.49 128 | 49.46 242 | 97.65 55 | 70.80 184 | 91.68 72 | 95.33 59 |
|
| baseline | | | 85.01 63 | 84.44 67 | 86.71 56 | 88.33 180 | 68.73 63 | 90.24 222 | 91.82 143 | 81.05 44 | 81.18 90 | 92.50 126 | 63.69 89 | 96.08 132 | 84.45 83 | 86.71 125 | 95.32 61 |
|
| ab-mvs | | | 80.18 147 | 78.31 161 | 85.80 85 | 88.44 175 | 65.49 147 | 83.00 311 | 92.67 106 | 71.82 199 | 77.36 134 | 85.01 237 | 54.50 193 | 96.59 114 | 76.35 141 | 75.63 212 | 95.32 61 |
|
| test9_res | | | | | | | | | | | | | | | 89.41 39 | 94.96 18 | 95.29 63 |
|
| EPNet | | | 87.84 22 | 88.38 18 | 86.23 73 | 93.30 60 | 66.05 130 | 95.26 32 | 94.84 24 | 87.09 5 | 88.06 34 | 94.53 77 | 66.79 54 | 97.34 73 | 83.89 88 | 91.68 72 | 95.29 63 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| SF-MVS | | | 87.03 33 | 87.09 33 | 86.84 51 | 92.70 77 | 67.45 98 | 93.64 89 | 93.76 62 | 70.78 228 | 86.25 45 | 96.44 26 | 66.98 52 | 97.79 47 | 88.68 48 | 94.56 32 | 95.28 65 |
|
| VDDNet | | | 80.50 140 | 78.26 162 | 87.21 41 | 86.19 228 | 69.79 40 | 94.48 50 | 91.31 163 | 60.42 320 | 79.34 110 | 90.91 155 | 38.48 307 | 96.56 117 | 82.16 97 | 81.05 166 | 95.27 66 |
|
| MVSFormer | | | 83.75 88 | 82.88 93 | 86.37 69 | 89.24 158 | 71.18 19 | 89.07 250 | 90.69 185 | 65.80 277 | 87.13 39 | 94.34 87 | 64.99 70 | 92.67 259 | 72.83 163 | 91.80 70 | 95.27 66 |
|
| jason | | | 86.40 40 | 86.17 44 | 87.11 44 | 86.16 229 | 70.54 28 | 95.71 24 | 92.19 125 | 82.00 30 | 84.58 64 | 94.34 87 | 61.86 112 | 95.53 160 | 87.76 52 | 90.89 84 | 95.27 66 |
| jason: jason. |
| train_agg | | | 87.21 31 | 87.42 30 | 86.60 59 | 94.18 41 | 67.28 100 | 94.16 58 | 93.51 73 | 71.87 196 | 85.52 54 | 95.33 51 | 68.19 43 | 97.27 80 | 89.09 44 | 94.90 21 | 95.25 69 |
|
| MVS_Test | | | 84.16 79 | 83.20 86 | 87.05 47 | 91.56 107 | 69.82 39 | 89.99 231 | 92.05 128 | 77.77 91 | 82.84 77 | 86.57 221 | 63.93 85 | 96.09 129 | 74.91 152 | 89.18 99 | 95.25 69 |
|
| 3Dnovator | | 73.91 6 | 82.69 107 | 80.82 122 | 88.31 23 | 89.57 146 | 71.26 18 | 92.60 128 | 94.39 45 | 78.84 77 | 67.89 247 | 92.48 129 | 48.42 252 | 98.52 28 | 68.80 206 | 94.40 34 | 95.15 71 |
|
| Patchmatch-test | | | 65.86 310 | 60.94 324 | 80.62 234 | 83.75 269 | 58.83 289 | 58.91 383 | 75.26 359 | 44.50 373 | 50.95 351 | 77.09 328 | 58.81 146 | 87.90 325 | 35.13 366 | 64.03 299 | 95.12 72 |
|
| APD-MVS |  | | 85.93 49 | 85.99 48 | 85.76 87 | 95.98 26 | 65.21 151 | 93.59 92 | 92.58 112 | 66.54 272 | 86.17 47 | 95.88 39 | 63.83 86 | 97.00 94 | 86.39 67 | 92.94 55 | 95.06 73 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| gg-mvs-nofinetune | | | 77.18 200 | 74.31 220 | 85.80 85 | 91.42 111 | 68.36 71 | 71.78 359 | 94.72 29 | 49.61 360 | 77.12 137 | 45.92 383 | 77.41 8 | 93.98 222 | 67.62 216 | 93.16 53 | 95.05 74 |
|
| test_prior | | | | | 86.42 67 | 94.71 35 | 67.35 99 | | 93.10 92 | | | | | 96.84 108 | | | 95.05 74 |
|
| Patchmatch-RL test | | | 68.17 296 | 64.49 306 | 79.19 265 | 71.22 361 | 53.93 328 | 70.07 364 | 71.54 370 | 69.22 247 | 56.79 329 | 62.89 370 | 56.58 172 | 88.61 317 | 69.53 197 | 52.61 353 | 95.03 76 |
|
| CHOSEN 1792x2688 | | | 84.98 64 | 83.45 79 | 89.57 10 | 89.94 139 | 75.14 5 | 92.07 148 | 92.32 117 | 81.87 31 | 75.68 149 | 88.27 194 | 60.18 129 | 98.60 27 | 80.46 113 | 90.27 91 | 94.96 77 |
|
| test_fmvsmconf_n | | | 86.58 39 | 87.17 32 | 84.82 116 | 85.28 244 | 62.55 223 | 94.26 56 | 89.78 221 | 83.81 16 | 87.78 36 | 96.33 29 | 65.33 67 | 96.98 98 | 94.40 11 | 87.55 113 | 94.95 78 |
|
| ACMMP_NAP | | | 86.05 47 | 85.80 52 | 86.80 54 | 91.58 106 | 67.53 95 | 91.79 162 | 93.49 76 | 74.93 129 | 84.61 63 | 95.30 53 | 59.42 139 | 97.92 41 | 86.13 68 | 94.92 19 | 94.94 79 |
|
| test2506 | | | 83.29 94 | 82.92 92 | 84.37 139 | 88.39 178 | 63.18 209 | 92.01 151 | 91.35 162 | 77.66 94 | 78.49 123 | 91.42 147 | 64.58 78 | 95.09 171 | 73.19 159 | 89.23 97 | 94.85 80 |
|
| ECVR-MVS |  | | 81.29 127 | 80.38 132 | 84.01 150 | 88.39 178 | 61.96 235 | 92.56 133 | 86.79 303 | 77.66 94 | 76.63 141 | 91.42 147 | 46.34 270 | 95.24 169 | 74.36 156 | 89.23 97 | 94.85 80 |
|
| PAPM_NR | | | 82.97 101 | 81.84 109 | 86.37 69 | 94.10 44 | 66.76 115 | 87.66 273 | 92.84 100 | 69.96 238 | 74.07 168 | 93.57 106 | 63.10 101 | 97.50 64 | 70.66 187 | 90.58 88 | 94.85 80 |
|
| CDPH-MVS | | | 85.71 53 | 85.46 55 | 86.46 65 | 94.75 34 | 67.19 102 | 93.89 75 | 92.83 101 | 70.90 224 | 83.09 76 | 95.28 54 | 63.62 91 | 97.36 71 | 80.63 111 | 94.18 35 | 94.84 83 |
|
| test12 | | | | | 87.09 45 | 94.60 36 | 68.86 60 | | 92.91 98 | | 82.67 81 | | 65.44 66 | 97.55 62 | | 93.69 46 | 94.84 83 |
|
| PatchmatchNet |  | | 77.46 196 | 74.63 213 | 85.96 78 | 89.55 148 | 70.35 30 | 79.97 337 | 89.55 231 | 72.23 184 | 70.94 203 | 76.91 330 | 57.03 161 | 92.79 254 | 54.27 297 | 81.17 165 | 94.74 85 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| EPMVS | | | 78.49 181 | 75.98 197 | 86.02 76 | 91.21 116 | 69.68 44 | 80.23 332 | 91.20 167 | 75.25 125 | 72.48 186 | 78.11 319 | 54.65 192 | 93.69 231 | 57.66 287 | 83.04 149 | 94.69 86 |
|
| GSMVS | | | | | | | | | | | | | | | | | 94.68 87 |
|
| sam_mvs1 | | | | | | | | | | | | | 57.85 153 | | | | 94.68 87 |
|
| SCA | | | 75.82 224 | 72.76 241 | 85.01 110 | 86.63 220 | 70.08 32 | 81.06 325 | 89.19 245 | 71.60 209 | 70.01 216 | 77.09 328 | 45.53 277 | 90.25 303 | 60.43 273 | 73.27 228 | 94.68 87 |
|
| fmvsm_l_conf0.5_n | | | 87.49 26 | 88.19 21 | 85.39 97 | 86.95 215 | 64.37 173 | 94.30 54 | 88.45 277 | 80.51 48 | 92.70 4 | 96.86 15 | 69.98 37 | 97.15 86 | 95.83 3 | 88.08 108 | 94.65 90 |
|
| Vis-MVSNet |  | | 80.92 135 | 79.98 137 | 83.74 154 | 88.48 173 | 61.80 237 | 93.44 98 | 88.26 285 | 73.96 144 | 77.73 128 | 91.76 141 | 49.94 238 | 94.76 180 | 65.84 235 | 90.37 90 | 94.65 90 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| test_fmvsmconf0.1_n | | | 85.71 53 | 86.08 47 | 84.62 130 | 80.83 297 | 62.33 227 | 93.84 80 | 88.81 264 | 83.50 18 | 87.00 42 | 96.01 37 | 63.36 96 | 96.93 105 | 94.04 12 | 87.29 116 | 94.61 92 |
|
| fmvsm_l_conf0.5_n_a | | | 87.44 28 | 88.15 22 | 85.30 101 | 87.10 212 | 64.19 180 | 94.41 52 | 88.14 286 | 80.24 52 | 92.54 5 | 96.97 10 | 69.52 39 | 97.17 83 | 95.89 2 | 88.51 104 | 94.56 93 |
|
| 旧先验1 | | | | | | 91.94 95 | 60.74 260 | | 91.50 157 | | | 94.36 82 | 65.23 68 | | | 91.84 69 | 94.55 94 |
|
| sss | | | 82.71 106 | 82.38 103 | 83.73 156 | 89.25 155 | 59.58 278 | 92.24 139 | 94.89 23 | 77.96 87 | 79.86 104 | 92.38 131 | 56.70 169 | 97.05 89 | 77.26 136 | 80.86 168 | 94.55 94 |
|
| xiu_mvs_v2_base | | | 87.92 21 | 87.38 31 | 89.55 11 | 91.41 113 | 76.43 3 | 95.74 21 | 93.12 91 | 83.53 17 | 89.55 29 | 95.95 38 | 53.45 210 | 97.68 50 | 91.07 32 | 92.62 58 | 94.54 96 |
|
| PS-MVSNAJ | | | 88.14 16 | 87.61 27 | 89.71 6 | 92.06 90 | 76.72 1 | 95.75 20 | 93.26 83 | 83.86 14 | 89.55 29 | 96.06 36 | 53.55 206 | 97.89 43 | 91.10 31 | 93.31 51 | 94.54 96 |
|
| test1111 | | | 80.84 136 | 80.02 134 | 83.33 167 | 87.87 194 | 60.76 258 | 92.62 127 | 86.86 302 | 77.86 90 | 75.73 148 | 91.39 149 | 46.35 269 | 94.70 186 | 72.79 165 | 88.68 103 | 94.52 98 |
|
| ZNCC-MVS | | | 85.33 59 | 85.08 60 | 86.06 75 | 93.09 68 | 65.65 140 | 93.89 75 | 93.41 80 | 73.75 149 | 79.94 103 | 94.68 74 | 60.61 126 | 98.03 38 | 82.63 95 | 93.72 44 | 94.52 98 |
|
| MAR-MVS | | | 84.18 78 | 83.43 80 | 86.44 66 | 96.25 21 | 65.93 135 | 94.28 55 | 94.27 50 | 74.41 133 | 79.16 113 | 95.61 45 | 53.99 201 | 98.88 21 | 69.62 196 | 93.26 52 | 94.50 100 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| HFP-MVS | | | 84.73 67 | 84.40 68 | 85.72 88 | 93.75 51 | 65.01 157 | 93.50 96 | 93.19 87 | 72.19 185 | 79.22 112 | 94.93 66 | 59.04 144 | 97.67 51 | 81.55 102 | 92.21 62 | 94.49 101 |
|
| ETV-MVS | | | 86.01 48 | 86.11 45 | 85.70 89 | 90.21 134 | 67.02 109 | 93.43 99 | 91.92 134 | 81.21 42 | 84.13 70 | 94.07 96 | 60.93 123 | 95.63 151 | 89.28 42 | 89.81 93 | 94.46 102 |
|
| diffmvs |  | | 84.28 74 | 83.83 72 | 85.61 91 | 87.40 205 | 68.02 82 | 90.88 201 | 89.24 242 | 80.54 47 | 81.64 86 | 92.52 125 | 59.83 134 | 94.52 197 | 87.32 58 | 85.11 135 | 94.29 103 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| test_fmvsm_n_1920 | | | 87.69 24 | 88.50 17 | 85.27 103 | 87.05 214 | 63.55 200 | 93.69 87 | 91.08 176 | 84.18 13 | 90.17 23 | 97.04 8 | 67.58 49 | 97.99 39 | 95.72 5 | 90.03 92 | 94.26 104 |
|
| region2R | | | 84.36 72 | 84.03 71 | 85.36 99 | 93.54 55 | 64.31 176 | 93.43 99 | 92.95 97 | 72.16 188 | 78.86 119 | 94.84 70 | 56.97 165 | 97.53 63 | 81.38 106 | 92.11 65 | 94.24 105 |
|
| test_fmvsmconf0.01_n | | | 83.70 90 | 83.52 74 | 84.25 144 | 75.26 349 | 61.72 241 | 92.17 141 | 87.24 299 | 82.36 26 | 84.91 61 | 95.41 48 | 55.60 182 | 96.83 109 | 92.85 17 | 85.87 131 | 94.21 106 |
|
| MTAPA | | | 83.91 83 | 83.38 84 | 85.50 93 | 91.89 99 | 65.16 153 | 81.75 317 | 92.23 120 | 75.32 124 | 80.53 98 | 95.21 60 | 56.06 178 | 97.16 85 | 84.86 80 | 92.55 60 | 94.18 107 |
|
| PMMVS | | | 81.98 118 | 82.04 106 | 81.78 206 | 89.76 143 | 56.17 315 | 91.13 194 | 90.69 185 | 77.96 87 | 80.09 102 | 93.57 106 | 46.33 271 | 94.99 174 | 81.41 105 | 87.46 114 | 94.17 108 |
|
| CostFormer | | | 82.33 110 | 81.15 115 | 85.86 82 | 89.01 163 | 68.46 69 | 82.39 314 | 93.01 94 | 75.59 119 | 80.25 100 | 81.57 279 | 72.03 32 | 94.96 175 | 79.06 123 | 77.48 198 | 94.16 109 |
|
| MVS_111021_HR | | | 86.19 45 | 85.80 52 | 87.37 38 | 93.17 65 | 69.79 40 | 93.99 69 | 93.76 62 | 79.08 72 | 78.88 118 | 93.99 97 | 62.25 109 | 98.15 36 | 85.93 71 | 91.15 82 | 94.15 110 |
|
| PVSNet_Blended | | | 86.73 38 | 86.86 38 | 86.31 72 | 93.76 49 | 67.53 95 | 96.33 16 | 93.61 69 | 82.34 27 | 81.00 94 | 93.08 113 | 63.19 99 | 97.29 76 | 87.08 61 | 91.38 78 | 94.13 111 |
|
| 1112_ss | | | 80.56 139 | 79.83 139 | 82.77 177 | 88.65 170 | 60.78 256 | 92.29 137 | 88.36 279 | 72.58 173 | 72.46 187 | 94.95 64 | 65.09 69 | 93.42 237 | 66.38 229 | 77.71 192 | 94.10 112 |
|
| IB-MVS | | 77.80 4 | 82.18 112 | 80.46 131 | 87.35 39 | 89.14 160 | 70.28 31 | 95.59 26 | 95.17 17 | 78.85 76 | 70.19 214 | 85.82 231 | 70.66 35 | 97.67 51 | 72.19 174 | 66.52 277 | 94.09 113 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| PAPM | | | 85.89 50 | 85.46 55 | 87.18 42 | 88.20 186 | 72.42 13 | 92.41 135 | 92.77 102 | 82.11 29 | 80.34 99 | 93.07 114 | 68.27 42 | 95.02 172 | 78.39 130 | 93.59 47 | 94.09 113 |
|
| MP-MVS-pluss | | | 85.24 60 | 85.13 59 | 85.56 92 | 91.42 111 | 65.59 142 | 91.54 172 | 92.51 114 | 74.56 132 | 80.62 97 | 95.64 44 | 59.15 143 | 97.00 94 | 86.94 63 | 93.80 41 | 94.07 115 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| MP-MVS |  | | 85.02 62 | 84.97 62 | 85.17 107 | 92.60 81 | 64.27 178 | 93.24 102 | 92.27 119 | 73.13 160 | 79.63 107 | 94.43 80 | 61.90 111 | 97.17 83 | 85.00 77 | 92.56 59 | 94.06 116 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| DeepC-MVS | | 77.85 3 | 85.52 57 | 85.24 57 | 86.37 69 | 88.80 168 | 66.64 117 | 92.15 142 | 93.68 67 | 81.07 43 | 76.91 140 | 93.64 104 | 62.59 105 | 98.44 31 | 85.50 72 | 92.84 57 | 94.03 117 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| ACMMPR | | | 84.37 71 | 84.06 70 | 85.28 102 | 93.56 54 | 64.37 173 | 93.50 96 | 93.15 89 | 72.19 185 | 78.85 120 | 94.86 69 | 56.69 170 | 97.45 65 | 81.55 102 | 92.20 63 | 94.02 118 |
|
| æ— å…ˆéªŒ | | | | | | | | 92.71 121 | 92.61 111 | 62.03 309 | | | | 97.01 93 | 66.63 224 | | 93.97 119 |
|
| XVS | | | 83.87 84 | 83.47 78 | 85.05 108 | 93.22 61 | 63.78 187 | 92.92 114 | 92.66 107 | 73.99 141 | 78.18 124 | 94.31 89 | 55.25 184 | 97.41 68 | 79.16 121 | 91.58 74 | 93.95 120 |
|
| X-MVStestdata | | | 76.86 204 | 74.13 224 | 85.05 108 | 93.22 61 | 63.78 187 | 92.92 114 | 92.66 107 | 73.99 141 | 78.18 124 | 10.19 398 | 55.25 184 | 97.41 68 | 79.16 121 | 91.58 74 | 93.95 120 |
|
| h-mvs33 | | | 83.01 100 | 82.56 100 | 84.35 140 | 89.34 151 | 62.02 233 | 92.72 120 | 93.76 62 | 81.45 36 | 82.73 79 | 92.25 135 | 60.11 130 | 97.13 87 | 87.69 53 | 62.96 304 | 93.91 122 |
|
| CP-MVS | | | 83.71 89 | 83.40 83 | 84.65 127 | 93.14 66 | 63.84 185 | 94.59 49 | 92.28 118 | 71.03 222 | 77.41 133 | 94.92 67 | 55.21 187 | 96.19 125 | 81.32 107 | 90.70 86 | 93.91 122 |
|
| PVSNet | | 73.49 8 | 80.05 150 | 78.63 157 | 84.31 141 | 90.92 121 | 64.97 158 | 92.47 134 | 91.05 179 | 79.18 68 | 72.43 188 | 90.51 161 | 37.05 324 | 94.06 215 | 68.06 210 | 86.00 130 | 93.90 124 |
|
| GST-MVS | | | 84.63 69 | 84.29 69 | 85.66 90 | 92.82 73 | 65.27 149 | 93.04 109 | 93.13 90 | 73.20 158 | 78.89 115 | 94.18 93 | 59.41 140 | 97.85 45 | 81.45 104 | 92.48 61 | 93.86 125 |
|
| Test_1112_low_res | | | 79.56 158 | 78.60 158 | 82.43 185 | 88.24 184 | 60.39 267 | 92.09 146 | 87.99 290 | 72.10 189 | 71.84 194 | 87.42 211 | 64.62 77 | 93.04 241 | 65.80 236 | 77.30 200 | 93.85 126 |
|
| GeoE | | | 78.90 170 | 77.43 175 | 83.29 168 | 88.95 164 | 62.02 233 | 92.31 136 | 86.23 308 | 70.24 235 | 71.34 202 | 89.27 180 | 54.43 197 | 94.04 218 | 63.31 255 | 80.81 170 | 93.81 127 |
|
| thisisatest0515 | | | 83.41 92 | 82.49 101 | 86.16 74 | 89.46 150 | 68.26 75 | 93.54 94 | 94.70 30 | 74.31 136 | 75.75 147 | 90.92 154 | 72.62 28 | 96.52 119 | 69.64 194 | 81.50 163 | 93.71 128 |
|
| HyFIR lowres test | | | 81.03 133 | 79.56 143 | 85.43 95 | 87.81 197 | 68.11 80 | 90.18 223 | 90.01 216 | 70.65 230 | 72.95 177 | 86.06 229 | 63.61 92 | 94.50 198 | 75.01 150 | 79.75 177 | 93.67 129 |
|
| CANet_DTU | | | 84.09 80 | 83.52 74 | 85.81 84 | 90.30 132 | 66.82 112 | 91.87 158 | 89.01 256 | 85.27 9 | 86.09 48 | 93.74 101 | 47.71 261 | 96.98 98 | 77.90 133 | 89.78 95 | 93.65 130 |
|
| mPP-MVS | | | 82.96 102 | 82.44 102 | 84.52 133 | 92.83 71 | 62.92 216 | 92.76 118 | 91.85 141 | 71.52 212 | 75.61 152 | 94.24 91 | 53.48 209 | 96.99 97 | 78.97 124 | 90.73 85 | 93.64 131 |
|
| tpmrst | | | 80.57 138 | 79.14 153 | 84.84 115 | 90.10 136 | 68.28 74 | 81.70 318 | 89.72 228 | 77.63 96 | 75.96 146 | 79.54 311 | 64.94 72 | 92.71 256 | 75.43 145 | 77.28 201 | 93.55 132 |
|
| tpm2 | | | 79.80 155 | 77.95 168 | 85.34 100 | 88.28 181 | 68.26 75 | 81.56 320 | 91.42 160 | 70.11 236 | 77.59 132 | 80.50 297 | 67.40 50 | 94.26 207 | 67.34 218 | 77.35 199 | 93.51 133 |
|
| SR-MVS | | | 82.81 103 | 82.58 99 | 83.50 164 | 93.35 58 | 61.16 250 | 92.23 140 | 91.28 166 | 64.48 286 | 81.27 88 | 95.28 54 | 53.71 205 | 95.86 139 | 82.87 93 | 88.77 102 | 93.49 134 |
|
| FA-MVS(test-final) | | | 79.12 165 | 77.23 181 | 84.81 119 | 90.54 127 | 63.98 184 | 81.35 323 | 91.71 147 | 71.09 221 | 74.85 159 | 82.94 260 | 52.85 213 | 97.05 89 | 67.97 211 | 81.73 162 | 93.41 135 |
|
| PGM-MVS | | | 83.25 96 | 82.70 97 | 84.92 112 | 92.81 75 | 64.07 182 | 90.44 213 | 92.20 124 | 71.28 216 | 77.23 136 | 94.43 80 | 55.17 188 | 97.31 75 | 79.33 120 | 91.38 78 | 93.37 136 |
|
| æ–°å‡ ä½•1 | | | | | 84.73 122 | 92.32 84 | 64.28 177 | | 91.46 159 | 59.56 327 | 79.77 105 | 92.90 118 | 56.95 166 | 96.57 116 | 63.40 253 | 92.91 56 | 93.34 137 |
|
| HPM-MVS |  | | 83.25 96 | 82.95 91 | 84.17 146 | 92.25 86 | 62.88 218 | 90.91 198 | 91.86 139 | 70.30 234 | 77.12 137 | 93.96 98 | 56.75 168 | 96.28 123 | 82.04 99 | 91.34 80 | 93.34 137 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| TESTMET0.1,1 | | | 82.41 109 | 81.98 108 | 83.72 157 | 88.08 187 | 63.74 189 | 92.70 122 | 93.77 61 | 79.30 65 | 77.61 131 | 87.57 209 | 58.19 151 | 94.08 213 | 73.91 158 | 86.68 126 | 93.33 139 |
|
| IS-MVSNet | | | 80.14 148 | 79.41 147 | 82.33 189 | 87.91 192 | 60.08 272 | 91.97 155 | 88.27 283 | 72.90 168 | 71.44 201 | 91.73 143 | 61.44 117 | 93.66 232 | 62.47 263 | 86.53 127 | 93.24 140 |
|
| 1314 | | | 80.70 137 | 78.95 154 | 85.94 79 | 87.77 199 | 67.56 93 | 87.91 268 | 92.55 113 | 72.17 187 | 67.44 252 | 93.09 112 | 50.27 235 | 97.04 92 | 71.68 179 | 87.64 112 | 93.23 141 |
|
| CDS-MVSNet | | | 81.43 125 | 80.74 123 | 83.52 161 | 86.26 227 | 64.45 167 | 92.09 146 | 90.65 189 | 75.83 118 | 73.95 170 | 89.81 176 | 63.97 84 | 92.91 249 | 71.27 180 | 82.82 151 | 93.20 142 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| Fast-Effi-MVS+ | | | 81.14 129 | 80.01 135 | 84.51 134 | 90.24 133 | 65.86 136 | 94.12 62 | 89.15 248 | 73.81 148 | 75.37 155 | 88.26 195 | 57.26 158 | 94.53 196 | 66.97 223 | 84.92 136 | 93.15 143 |
|
| API-MVS | | | 82.28 111 | 80.53 129 | 87.54 35 | 96.13 22 | 70.59 27 | 93.63 90 | 91.04 180 | 65.72 279 | 75.45 154 | 92.83 122 | 56.11 177 | 98.89 20 | 64.10 249 | 89.75 96 | 93.15 143 |
|
| test222 | | | | | | 89.77 142 | 61.60 243 | 89.55 238 | 89.42 236 | 56.83 340 | 77.28 135 | 92.43 130 | 52.76 214 | | | 91.14 83 | 93.09 145 |
|
| TAMVS | | | 80.37 143 | 79.45 146 | 83.13 172 | 85.14 247 | 63.37 204 | 91.23 189 | 90.76 184 | 74.81 131 | 72.65 181 | 88.49 187 | 60.63 125 | 92.95 244 | 69.41 198 | 81.95 159 | 93.08 146 |
|
| fmvsm_s_conf0.5_n | | | 86.39 41 | 86.91 36 | 84.82 116 | 87.36 207 | 63.54 201 | 94.74 47 | 90.02 215 | 82.52 24 | 90.14 24 | 96.92 13 | 62.93 103 | 97.84 46 | 95.28 8 | 82.26 154 | 93.07 147 |
|
| testdata | | | | | 81.34 216 | 89.02 162 | 57.72 300 | | 89.84 220 | 58.65 331 | 85.32 58 | 94.09 94 | 57.03 161 | 93.28 238 | 69.34 199 | 90.56 89 | 93.03 148 |
|
| tpm | | | 78.58 179 | 77.03 183 | 83.22 170 | 85.94 234 | 64.56 162 | 83.21 308 | 91.14 172 | 78.31 83 | 73.67 172 | 79.68 309 | 64.01 83 | 92.09 279 | 66.07 233 | 71.26 246 | 93.03 148 |
|
| test_fmvsmvis_n_1920 | | | 83.80 86 | 83.48 77 | 84.77 120 | 82.51 283 | 63.72 191 | 91.37 182 | 83.99 330 | 81.42 39 | 77.68 129 | 95.74 42 | 58.37 148 | 97.58 59 | 93.38 14 | 86.87 119 | 93.00 150 |
|
| GA-MVS | | | 78.33 184 | 76.23 194 | 84.65 127 | 83.65 271 | 66.30 126 | 91.44 173 | 90.14 209 | 76.01 116 | 70.32 212 | 84.02 250 | 42.50 290 | 94.72 183 | 70.98 182 | 77.00 203 | 92.94 151 |
|
| BH-RMVSNet | | | 79.46 161 | 77.65 171 | 84.89 113 | 91.68 104 | 65.66 139 | 93.55 93 | 88.09 288 | 72.93 165 | 73.37 173 | 91.12 153 | 46.20 273 | 96.12 128 | 56.28 290 | 85.61 134 | 92.91 152 |
|
| fmvsm_s_conf0.5_n_a | | | 85.75 52 | 86.09 46 | 84.72 123 | 85.73 238 | 63.58 198 | 93.79 83 | 89.32 239 | 81.42 39 | 90.21 22 | 96.91 14 | 62.41 107 | 97.67 51 | 94.48 10 | 80.56 171 | 92.90 153 |
|
| APD-MVS_3200maxsize | | | 81.64 123 | 81.32 114 | 82.59 183 | 92.36 83 | 58.74 290 | 91.39 179 | 91.01 181 | 63.35 295 | 79.72 106 | 94.62 76 | 51.82 220 | 96.14 127 | 79.71 115 | 87.93 109 | 92.89 154 |
|
| fmvsm_s_conf0.1_n | | | 85.61 56 | 85.93 49 | 84.68 126 | 82.95 281 | 63.48 203 | 94.03 68 | 89.46 233 | 81.69 33 | 89.86 25 | 96.74 20 | 61.85 113 | 97.75 49 | 94.74 9 | 82.01 158 | 92.81 155 |
|
| DP-MVS Recon | | | 82.73 104 | 81.65 111 | 85.98 77 | 97.31 4 | 67.06 106 | 95.15 36 | 91.99 131 | 69.08 251 | 76.50 144 | 93.89 99 | 54.48 196 | 98.20 35 | 70.76 185 | 85.66 133 | 92.69 156 |
|
| UGNet | | | 79.87 154 | 78.68 156 | 83.45 166 | 89.96 138 | 61.51 244 | 92.13 143 | 90.79 183 | 76.83 106 | 78.85 120 | 86.33 225 | 38.16 310 | 96.17 126 | 67.93 213 | 87.17 117 | 92.67 157 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| EPP-MVSNet | | | 81.79 120 | 81.52 112 | 82.61 182 | 88.77 169 | 60.21 270 | 93.02 111 | 93.66 68 | 68.52 257 | 72.90 178 | 90.39 164 | 72.19 31 | 94.96 175 | 74.93 151 | 79.29 181 | 92.67 157 |
|
| PVSNet_Blended_VisFu | | | 83.97 82 | 83.50 76 | 85.39 97 | 90.02 137 | 66.59 120 | 93.77 84 | 91.73 145 | 77.43 100 | 77.08 139 | 89.81 176 | 63.77 88 | 96.97 100 | 79.67 116 | 88.21 106 | 92.60 159 |
|
| MDTV_nov1_ep13_2view | | | | | | | 59.90 274 | 80.13 334 | | 67.65 264 | 72.79 179 | | 54.33 199 | | 59.83 277 | | 92.58 160 |
|
| QAPM | | | 79.95 153 | 77.39 179 | 87.64 30 | 89.63 145 | 71.41 17 | 93.30 101 | 93.70 66 | 65.34 282 | 67.39 255 | 91.75 142 | 47.83 259 | 98.96 16 | 57.71 286 | 89.81 93 | 92.54 161 |
|
| fmvsm_s_conf0.1_n_a | | | 84.76 66 | 84.84 65 | 84.53 132 | 80.23 307 | 63.50 202 | 92.79 117 | 88.73 268 | 80.46 49 | 89.84 26 | 96.65 22 | 60.96 122 | 97.57 61 | 93.80 13 | 80.14 173 | 92.53 162 |
|
| dp | | | 75.01 235 | 72.09 251 | 83.76 153 | 89.28 154 | 66.22 129 | 79.96 338 | 89.75 223 | 71.16 218 | 67.80 249 | 77.19 327 | 51.81 221 | 92.54 265 | 50.39 308 | 71.44 245 | 92.51 163 |
|
| EPNet_dtu | | | 78.80 173 | 79.26 151 | 77.43 286 | 88.06 188 | 49.71 347 | 91.96 156 | 91.95 133 | 77.67 93 | 76.56 143 | 91.28 151 | 58.51 147 | 90.20 308 | 56.37 289 | 80.95 167 | 92.39 164 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| Anonymous20240529 | | | 76.84 207 | 74.15 223 | 84.88 114 | 91.02 118 | 64.95 159 | 93.84 80 | 91.09 174 | 53.57 349 | 73.00 175 | 87.42 211 | 35.91 328 | 97.32 74 | 69.14 202 | 72.41 238 | 92.36 165 |
|
| Vis-MVSNet (Re-imp) | | | 79.24 163 | 79.57 142 | 78.24 278 | 88.46 174 | 52.29 334 | 90.41 215 | 89.12 250 | 74.24 137 | 69.13 224 | 91.91 139 | 65.77 63 | 90.09 310 | 59.00 282 | 88.09 107 | 92.33 166 |
|
| 原ACMM1 | | | | | 84.42 136 | 93.21 63 | 64.27 178 | | 93.40 81 | 65.39 280 | 79.51 108 | 92.50 126 | 58.11 152 | 96.69 112 | 65.27 243 | 93.96 38 | 92.32 167 |
|
| TR-MVS | | | 78.77 175 | 77.37 180 | 82.95 174 | 90.49 128 | 60.88 254 | 93.67 88 | 90.07 211 | 70.08 237 | 74.51 162 | 91.37 150 | 45.69 276 | 95.70 150 | 60.12 276 | 80.32 172 | 92.29 168 |
|
| SR-MVS-dyc-post | | | 81.06 132 | 80.70 124 | 82.15 197 | 92.02 91 | 58.56 292 | 90.90 199 | 90.45 192 | 62.76 302 | 78.89 115 | 94.46 78 | 51.26 228 | 95.61 153 | 78.77 127 | 86.77 123 | 92.28 169 |
|
| RE-MVS-def | | | | 80.48 130 | | 92.02 91 | 58.56 292 | 90.90 199 | 90.45 192 | 62.76 302 | 78.89 115 | 94.46 78 | 49.30 244 | | 78.77 127 | 86.77 123 | 92.28 169 |
|
| LCM-MVSNet-Re | | | 72.93 255 | 71.84 254 | 76.18 301 | 88.49 172 | 48.02 354 | 80.07 335 | 70.17 371 | 73.96 144 | 52.25 344 | 80.09 305 | 49.98 237 | 88.24 323 | 67.35 217 | 84.23 145 | 92.28 169 |
|
| EC-MVSNet | | | 84.53 70 | 85.04 61 | 83.01 173 | 89.34 151 | 61.37 247 | 94.42 51 | 91.09 174 | 77.91 89 | 83.24 74 | 94.20 92 | 58.37 148 | 95.40 162 | 85.35 73 | 91.41 77 | 92.27 172 |
|
| MVS_111021_LR | | | 82.02 117 | 81.52 112 | 83.51 163 | 88.42 176 | 62.88 218 | 89.77 235 | 88.93 260 | 76.78 107 | 75.55 153 | 93.10 111 | 50.31 234 | 95.38 164 | 83.82 89 | 87.02 118 | 92.26 173 |
|
| FE-MVS | | | 75.97 221 | 73.02 237 | 84.82 116 | 89.78 141 | 65.56 143 | 77.44 348 | 91.07 177 | 64.55 285 | 72.66 180 | 79.85 307 | 46.05 275 | 96.69 112 | 54.97 294 | 80.82 169 | 92.21 174 |
|
| BH-w/o | | | 80.49 141 | 79.30 150 | 84.05 149 | 90.83 124 | 64.36 175 | 93.60 91 | 89.42 236 | 74.35 135 | 69.09 225 | 90.15 171 | 55.23 186 | 95.61 153 | 64.61 246 | 86.43 129 | 92.17 175 |
|
| test_vis1_n_1920 | | | 81.66 122 | 82.01 107 | 80.64 233 | 82.24 286 | 55.09 323 | 94.76 46 | 86.87 301 | 81.67 34 | 84.40 66 | 94.63 75 | 38.17 309 | 94.67 187 | 91.98 26 | 83.34 148 | 92.16 176 |
|
| CVMVSNet | | | 74.04 244 | 74.27 221 | 73.33 320 | 85.33 242 | 43.94 370 | 89.53 240 | 88.39 278 | 54.33 348 | 70.37 211 | 90.13 172 | 49.17 247 | 84.05 350 | 61.83 267 | 79.36 179 | 91.99 177 |
|
| tpm cat1 | | | 75.30 231 | 72.21 250 | 84.58 131 | 88.52 171 | 67.77 87 | 78.16 346 | 88.02 289 | 61.88 312 | 68.45 239 | 76.37 334 | 60.65 124 | 94.03 220 | 53.77 300 | 74.11 222 | 91.93 178 |
|
| ACMMP |  | | 81.49 124 | 80.67 125 | 83.93 151 | 91.71 103 | 62.90 217 | 92.13 143 | 92.22 123 | 71.79 200 | 71.68 198 | 93.49 108 | 50.32 233 | 96.96 101 | 78.47 129 | 84.22 146 | 91.93 178 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| test-LLR | | | 80.10 149 | 79.56 143 | 81.72 208 | 86.93 218 | 61.17 248 | 92.70 122 | 91.54 154 | 71.51 213 | 75.62 150 | 86.94 217 | 53.83 202 | 92.38 270 | 72.21 172 | 84.76 139 | 91.60 180 |
|
| test-mter | | | 79.96 152 | 79.38 149 | 81.72 208 | 86.93 218 | 61.17 248 | 92.70 122 | 91.54 154 | 73.85 146 | 75.62 150 | 86.94 217 | 49.84 240 | 92.38 270 | 72.21 172 | 84.76 139 | 91.60 180 |
|
| thisisatest0530 | | | 81.15 128 | 80.07 133 | 84.39 138 | 88.26 182 | 65.63 141 | 91.40 177 | 94.62 34 | 71.27 217 | 70.93 204 | 89.18 181 | 72.47 29 | 96.04 134 | 65.62 238 | 76.89 204 | 91.49 182 |
|
| AUN-MVS | | | 78.37 182 | 77.43 175 | 81.17 219 | 86.60 221 | 57.45 306 | 89.46 242 | 91.16 169 | 74.11 139 | 74.40 163 | 90.49 162 | 55.52 183 | 94.57 192 | 74.73 155 | 60.43 330 | 91.48 183 |
|
| MIMVSNet | | | 71.64 267 | 68.44 281 | 81.23 218 | 81.97 290 | 64.44 168 | 73.05 358 | 88.80 265 | 69.67 242 | 64.59 275 | 74.79 342 | 32.79 339 | 87.82 327 | 53.99 298 | 76.35 208 | 91.42 184 |
|
| hse-mvs2 | | | 81.12 131 | 81.11 119 | 81.16 220 | 86.52 222 | 57.48 305 | 89.40 243 | 91.16 169 | 81.45 36 | 82.73 79 | 90.49 162 | 60.11 130 | 94.58 190 | 87.69 53 | 60.41 331 | 91.41 185 |
|
| xiu_mvs_v1_base_debu | | | 82.16 113 | 81.12 116 | 85.26 104 | 86.42 223 | 68.72 64 | 92.59 130 | 90.44 195 | 73.12 161 | 84.20 67 | 94.36 82 | 38.04 312 | 95.73 145 | 84.12 85 | 86.81 120 | 91.33 186 |
|
| xiu_mvs_v1_base | | | 82.16 113 | 81.12 116 | 85.26 104 | 86.42 223 | 68.72 64 | 92.59 130 | 90.44 195 | 73.12 161 | 84.20 67 | 94.36 82 | 38.04 312 | 95.73 145 | 84.12 85 | 86.81 120 | 91.33 186 |
|
| xiu_mvs_v1_base_debi | | | 82.16 113 | 81.12 116 | 85.26 104 | 86.42 223 | 68.72 64 | 92.59 130 | 90.44 195 | 73.12 161 | 84.20 67 | 94.36 82 | 38.04 312 | 95.73 145 | 84.12 85 | 86.81 120 | 91.33 186 |
|
| BH-untuned | | | 78.68 176 | 77.08 182 | 83.48 165 | 89.84 140 | 63.74 189 | 92.70 122 | 88.59 274 | 71.57 210 | 66.83 262 | 88.65 186 | 51.75 222 | 95.39 163 | 59.03 281 | 84.77 138 | 91.32 189 |
|
| HPM-MVS_fast | | | 80.25 146 | 79.55 145 | 82.33 189 | 91.55 108 | 59.95 273 | 91.32 186 | 89.16 247 | 65.23 283 | 74.71 161 | 93.07 114 | 47.81 260 | 95.74 144 | 74.87 154 | 88.23 105 | 91.31 190 |
|
| baseline1 | | | 81.84 119 | 81.03 120 | 84.28 143 | 91.60 105 | 66.62 118 | 91.08 195 | 91.66 151 | 81.87 31 | 74.86 158 | 91.67 144 | 69.98 37 | 94.92 178 | 71.76 177 | 64.75 292 | 91.29 191 |
|
| test_cas_vis1_n_1920 | | | 80.45 142 | 80.61 127 | 79.97 250 | 78.25 333 | 57.01 311 | 94.04 67 | 88.33 280 | 79.06 73 | 82.81 78 | 93.70 102 | 38.65 304 | 91.63 288 | 90.82 35 | 79.81 175 | 91.27 192 |
|
| baseline2 | | | 83.68 91 | 83.42 82 | 84.48 135 | 87.37 206 | 66.00 132 | 90.06 226 | 95.93 8 | 79.71 59 | 69.08 226 | 90.39 164 | 77.92 6 | 96.28 123 | 78.91 125 | 81.38 164 | 91.16 193 |
|
| TAPA-MVS | | 70.22 12 | 74.94 236 | 73.53 232 | 79.17 266 | 90.40 130 | 52.07 335 | 89.19 248 | 89.61 230 | 62.69 304 | 70.07 215 | 92.67 124 | 48.89 251 | 94.32 201 | 38.26 360 | 79.97 174 | 91.12 194 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| AdaColmap |  | | 78.94 169 | 77.00 185 | 84.76 121 | 96.34 17 | 65.86 136 | 92.66 126 | 87.97 292 | 62.18 307 | 70.56 207 | 92.37 132 | 43.53 286 | 97.35 72 | 64.50 247 | 82.86 150 | 91.05 195 |
|
| OMC-MVS | | | 78.67 178 | 77.91 169 | 80.95 229 | 85.76 237 | 57.40 307 | 88.49 259 | 88.67 271 | 73.85 146 | 72.43 188 | 92.10 136 | 49.29 245 | 94.55 195 | 72.73 166 | 77.89 191 | 90.91 196 |
|
| EI-MVSNet-Vis-set | | | 83.77 87 | 83.67 73 | 84.06 148 | 92.79 76 | 63.56 199 | 91.76 165 | 94.81 26 | 79.65 60 | 77.87 127 | 94.09 94 | 63.35 97 | 97.90 42 | 79.35 119 | 79.36 179 | 90.74 197 |
|
| cascas | | | 78.18 185 | 75.77 200 | 85.41 96 | 87.14 211 | 69.11 53 | 92.96 112 | 91.15 171 | 66.71 271 | 70.47 208 | 86.07 228 | 37.49 318 | 96.48 120 | 70.15 190 | 79.80 176 | 90.65 198 |
|
| CR-MVSNet | | | 73.79 248 | 70.82 263 | 82.70 179 | 83.15 276 | 67.96 83 | 70.25 362 | 84.00 328 | 73.67 153 | 69.97 218 | 72.41 348 | 57.82 154 | 89.48 314 | 52.99 303 | 73.13 229 | 90.64 199 |
|
| RPMNet | | | 70.42 276 | 65.68 295 | 84.63 129 | 83.15 276 | 67.96 83 | 70.25 362 | 90.45 192 | 46.83 368 | 69.97 218 | 65.10 367 | 56.48 174 | 95.30 168 | 35.79 365 | 73.13 229 | 90.64 199 |
|
| test_fmvs1 | | | 74.07 243 | 73.69 230 | 75.22 305 | 78.91 325 | 47.34 359 | 89.06 252 | 74.69 360 | 63.68 292 | 79.41 109 | 91.59 145 | 24.36 362 | 87.77 329 | 85.22 74 | 76.26 209 | 90.55 201 |
|
| PCF-MVS | | 73.15 9 | 79.29 162 | 77.63 172 | 84.29 142 | 86.06 230 | 65.96 134 | 87.03 280 | 91.10 173 | 69.86 240 | 69.79 221 | 90.64 157 | 57.54 157 | 96.59 114 | 64.37 248 | 82.29 153 | 90.32 202 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| PVSNet_0 | | 68.08 15 | 71.81 266 | 68.32 283 | 82.27 191 | 84.68 253 | 62.31 229 | 88.68 256 | 90.31 201 | 75.84 117 | 57.93 325 | 80.65 296 | 37.85 315 | 94.19 209 | 69.94 192 | 29.05 388 | 90.31 203 |
|
| tttt0517 | | | 79.50 159 | 78.53 159 | 82.41 188 | 87.22 209 | 61.43 246 | 89.75 236 | 94.76 27 | 69.29 246 | 67.91 245 | 88.06 202 | 72.92 25 | 95.63 151 | 62.91 259 | 73.90 226 | 90.16 204 |
|
| CPTT-MVS | | | 79.59 157 | 79.16 152 | 80.89 231 | 91.54 109 | 59.80 275 | 92.10 145 | 88.54 276 | 60.42 320 | 72.96 176 | 93.28 110 | 48.27 253 | 92.80 253 | 78.89 126 | 86.50 128 | 90.06 205 |
|
| EI-MVSNet-UG-set | | | 83.14 98 | 82.96 90 | 83.67 159 | 92.28 85 | 63.19 208 | 91.38 181 | 94.68 31 | 79.22 67 | 76.60 142 | 93.75 100 | 62.64 104 | 97.76 48 | 78.07 132 | 78.01 190 | 90.05 206 |
|
| test_fmvs1_n | | | 72.69 262 | 71.92 253 | 74.99 308 | 71.15 362 | 47.08 361 | 87.34 278 | 75.67 355 | 63.48 294 | 78.08 126 | 91.17 152 | 20.16 373 | 87.87 326 | 84.65 81 | 75.57 213 | 90.01 207 |
|
| test_vis1_n | | | 71.63 268 | 70.73 264 | 74.31 315 | 69.63 368 | 47.29 360 | 86.91 282 | 72.11 366 | 63.21 298 | 75.18 156 | 90.17 170 | 20.40 371 | 85.76 341 | 84.59 82 | 74.42 220 | 89.87 208 |
|
| dmvs_re | | | 76.93 203 | 75.36 206 | 81.61 210 | 87.78 198 | 60.71 261 | 80.00 336 | 87.99 290 | 79.42 62 | 69.02 228 | 89.47 179 | 46.77 264 | 94.32 201 | 63.38 254 | 74.45 219 | 89.81 209 |
|
| XVG-OURS-SEG-HR | | | 74.70 238 | 73.08 236 | 79.57 260 | 78.25 333 | 57.33 308 | 80.49 328 | 87.32 296 | 63.22 297 | 68.76 234 | 90.12 174 | 44.89 282 | 91.59 289 | 70.55 188 | 74.09 223 | 89.79 210 |
|
| 114514_t | | | 79.17 164 | 77.67 170 | 83.68 158 | 95.32 29 | 65.53 145 | 92.85 116 | 91.60 153 | 63.49 293 | 67.92 244 | 90.63 159 | 46.65 266 | 95.72 149 | 67.01 222 | 83.54 147 | 89.79 210 |
|
| UA-Net | | | 80.02 151 | 79.65 141 | 81.11 222 | 89.33 153 | 57.72 300 | 86.33 287 | 89.00 259 | 77.44 99 | 81.01 93 | 89.15 182 | 59.33 141 | 95.90 138 | 61.01 270 | 84.28 144 | 89.73 212 |
|
| XVG-OURS | | | 74.25 242 | 72.46 248 | 79.63 258 | 78.45 331 | 57.59 304 | 80.33 330 | 87.39 295 | 63.86 290 | 68.76 234 | 89.62 178 | 40.50 297 | 91.72 286 | 69.00 203 | 74.25 221 | 89.58 213 |
|
| UniMVSNet_ETH3D | | | 72.74 259 | 70.53 266 | 79.36 263 | 78.62 330 | 56.64 313 | 85.01 292 | 89.20 244 | 63.77 291 | 64.84 274 | 84.44 246 | 34.05 335 | 91.86 283 | 63.94 250 | 70.89 248 | 89.57 214 |
|
| thres200 | | | 79.66 156 | 78.33 160 | 83.66 160 | 92.54 82 | 65.82 138 | 93.06 107 | 96.31 3 | 74.90 130 | 73.30 174 | 88.66 185 | 59.67 136 | 95.61 153 | 47.84 323 | 78.67 186 | 89.56 215 |
|
| SDMVSNet | | | 80.26 145 | 78.88 155 | 84.40 137 | 89.25 155 | 67.63 92 | 85.35 290 | 93.02 93 | 76.77 108 | 70.84 205 | 87.12 215 | 47.95 258 | 96.09 129 | 85.04 76 | 74.55 216 | 89.48 216 |
|
| sd_testset | | | 77.08 202 | 75.37 205 | 82.20 195 | 89.25 155 | 62.11 232 | 82.06 315 | 89.09 252 | 76.77 108 | 70.84 205 | 87.12 215 | 41.43 294 | 95.01 173 | 67.23 220 | 74.55 216 | 89.48 216 |
|
| OpenMVS |  | 70.45 11 | 78.54 180 | 75.92 198 | 86.41 68 | 85.93 235 | 71.68 16 | 92.74 119 | 92.51 114 | 66.49 273 | 64.56 277 | 91.96 138 | 43.88 285 | 98.10 37 | 54.61 295 | 90.65 87 | 89.44 218 |
|
| CHOSEN 280x420 | | | 77.35 198 | 76.95 186 | 78.55 273 | 87.07 213 | 62.68 222 | 69.71 365 | 82.95 337 | 68.80 253 | 71.48 200 | 87.27 214 | 66.03 60 | 84.00 352 | 76.47 140 | 82.81 152 | 88.95 219 |
|
| iter_conf_final | | | 81.74 121 | 80.93 121 | 84.18 145 | 92.66 79 | 69.10 54 | 92.94 113 | 82.80 339 | 79.01 75 | 74.85 159 | 88.40 190 | 61.83 114 | 94.61 188 | 79.36 118 | 76.52 207 | 88.83 220 |
|
| thres100view900 | | | 78.37 182 | 77.01 184 | 82.46 184 | 91.89 99 | 63.21 207 | 91.19 193 | 96.33 1 | 72.28 183 | 70.45 210 | 87.89 204 | 60.31 127 | 95.32 165 | 45.16 334 | 77.58 195 | 88.83 220 |
|
| tfpn200view9 | | | 78.79 174 | 77.43 175 | 82.88 175 | 92.21 88 | 64.49 164 | 92.05 149 | 96.28 4 | 73.48 155 | 71.75 196 | 88.26 195 | 60.07 132 | 95.32 165 | 45.16 334 | 77.58 195 | 88.83 220 |
|
| nrg030 | | | 80.93 134 | 79.86 138 | 84.13 147 | 83.69 270 | 68.83 61 | 93.23 103 | 91.20 167 | 75.55 120 | 75.06 157 | 88.22 198 | 63.04 102 | 94.74 182 | 81.88 100 | 66.88 274 | 88.82 223 |
|
| PatchT | | | 69.11 287 | 65.37 299 | 80.32 237 | 82.07 289 | 63.68 195 | 67.96 371 | 87.62 294 | 50.86 357 | 69.37 222 | 65.18 366 | 57.09 160 | 88.53 320 | 41.59 349 | 66.60 276 | 88.74 224 |
|
| HQP4-MVS | | | | | | | | | | | 74.18 164 | | | 95.61 153 | | | 88.63 225 |
|
| HQP-MVS | | | 81.14 129 | 80.64 126 | 82.64 181 | 87.54 201 | 63.66 196 | 94.06 63 | 91.70 149 | 79.80 56 | 74.18 164 | 90.30 166 | 51.63 224 | 95.61 153 | 77.63 134 | 78.90 183 | 88.63 225 |
|
| tt0805 | | | 73.07 252 | 70.73 264 | 80.07 245 | 78.37 332 | 57.05 310 | 87.78 270 | 92.18 126 | 61.23 316 | 67.04 258 | 86.49 222 | 31.35 347 | 94.58 190 | 65.06 244 | 67.12 272 | 88.57 227 |
|
| VPNet | | | 78.82 172 | 77.53 174 | 82.70 179 | 84.52 257 | 66.44 122 | 93.93 72 | 92.23 120 | 80.46 49 | 72.60 182 | 88.38 192 | 49.18 246 | 93.13 240 | 72.47 170 | 63.97 301 | 88.55 228 |
|
| Effi-MVS+-dtu | | | 76.14 214 | 75.28 208 | 78.72 272 | 83.22 275 | 55.17 322 | 89.87 232 | 87.78 293 | 75.42 122 | 67.98 242 | 81.43 281 | 45.08 281 | 92.52 266 | 75.08 149 | 71.63 241 | 88.48 229 |
|
| iter_conf05 | | | 83.27 95 | 82.70 97 | 84.98 111 | 93.32 59 | 71.84 15 | 94.16 58 | 81.76 341 | 82.74 21 | 73.83 171 | 88.40 190 | 72.77 27 | 94.61 188 | 82.10 98 | 75.21 214 | 88.48 229 |
|
| CNLPA | | | 74.31 241 | 72.30 249 | 80.32 237 | 91.49 110 | 61.66 242 | 90.85 202 | 80.72 345 | 56.67 341 | 63.85 285 | 90.64 157 | 46.75 265 | 90.84 298 | 53.79 299 | 75.99 211 | 88.47 231 |
|
| HQP_MVS | | | 80.34 144 | 79.75 140 | 82.12 199 | 86.94 216 | 62.42 224 | 93.13 105 | 91.31 163 | 78.81 78 | 72.53 184 | 89.14 183 | 50.66 231 | 95.55 158 | 76.74 137 | 78.53 188 | 88.39 232 |
|
| plane_prior5 | | | | | | | | | 91.31 163 | | | | | 95.55 158 | 76.74 137 | 78.53 188 | 88.39 232 |
|
| VPA-MVSNet | | | 79.03 166 | 78.00 166 | 82.11 202 | 85.95 232 | 64.48 166 | 93.22 104 | 94.66 32 | 75.05 128 | 74.04 169 | 84.95 238 | 52.17 219 | 93.52 234 | 74.90 153 | 67.04 273 | 88.32 234 |
|
| CLD-MVS | | | 82.73 104 | 82.35 104 | 83.86 152 | 87.90 193 | 67.65 91 | 95.45 28 | 92.18 126 | 85.06 10 | 72.58 183 | 92.27 134 | 52.46 217 | 95.78 141 | 84.18 84 | 79.06 182 | 88.16 235 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| XXY-MVS | | | 77.94 190 | 76.44 191 | 82.43 185 | 82.60 282 | 64.44 168 | 92.01 151 | 91.83 142 | 73.59 154 | 70.00 217 | 85.82 231 | 54.43 197 | 94.76 180 | 69.63 195 | 68.02 267 | 88.10 236 |
|
| FIs | | | 79.47 160 | 79.41 147 | 79.67 257 | 85.95 232 | 59.40 280 | 91.68 169 | 93.94 56 | 78.06 86 | 68.96 230 | 88.28 193 | 66.61 56 | 91.77 285 | 66.20 232 | 74.99 215 | 87.82 237 |
|
| Fast-Effi-MVS+-dtu | | | 75.04 234 | 73.37 234 | 80.07 245 | 80.86 296 | 59.52 279 | 91.20 192 | 85.38 315 | 71.90 193 | 65.20 270 | 84.84 240 | 41.46 293 | 92.97 243 | 66.50 228 | 72.96 231 | 87.73 238 |
|
| UniMVSNet_NR-MVSNet | | | 78.15 186 | 77.55 173 | 79.98 248 | 84.46 259 | 60.26 268 | 92.25 138 | 93.20 86 | 77.50 98 | 68.88 231 | 86.61 220 | 66.10 59 | 92.13 277 | 66.38 229 | 62.55 308 | 87.54 239 |
|
| MVSTER | | | 82.47 108 | 82.05 105 | 83.74 154 | 92.68 78 | 69.01 57 | 91.90 157 | 93.21 84 | 79.83 55 | 72.14 191 | 85.71 233 | 74.72 16 | 94.72 183 | 75.72 143 | 72.49 236 | 87.50 240 |
|
| thres600view7 | | | 78.00 187 | 76.66 189 | 82.03 204 | 91.93 96 | 63.69 194 | 91.30 187 | 96.33 1 | 72.43 178 | 70.46 209 | 87.89 204 | 60.31 127 | 94.92 178 | 42.64 346 | 76.64 205 | 87.48 241 |
|
| thres400 | | | 78.68 176 | 77.43 175 | 82.43 185 | 92.21 88 | 64.49 164 | 92.05 149 | 96.28 4 | 73.48 155 | 71.75 196 | 88.26 195 | 60.07 132 | 95.32 165 | 45.16 334 | 77.58 195 | 87.48 241 |
|
| TranMVSNet+NR-MVSNet | | | 75.86 223 | 74.52 217 | 79.89 252 | 82.44 284 | 60.64 264 | 91.37 182 | 91.37 161 | 76.63 110 | 67.65 250 | 86.21 227 | 52.37 218 | 91.55 290 | 61.84 266 | 60.81 326 | 87.48 241 |
|
| FC-MVSNet-test | | | 77.99 188 | 78.08 165 | 77.70 281 | 84.89 252 | 55.51 320 | 90.27 220 | 93.75 65 | 76.87 103 | 66.80 263 | 87.59 208 | 65.71 64 | 90.23 307 | 62.89 260 | 73.94 224 | 87.37 244 |
|
| mvsmamba | | | 76.85 206 | 75.71 202 | 80.25 241 | 83.07 278 | 59.16 285 | 91.44 173 | 80.64 346 | 76.84 105 | 67.95 243 | 86.33 225 | 46.17 274 | 94.24 208 | 76.06 142 | 72.92 232 | 87.36 245 |
|
| DU-MVS | | | 76.86 204 | 75.84 199 | 79.91 251 | 82.96 279 | 60.26 268 | 91.26 188 | 91.54 154 | 76.46 113 | 68.88 231 | 86.35 223 | 56.16 175 | 92.13 277 | 66.38 229 | 62.55 308 | 87.35 246 |
|
| NR-MVSNet | | | 76.05 218 | 74.59 214 | 80.44 235 | 82.96 279 | 62.18 231 | 90.83 203 | 91.73 145 | 77.12 102 | 60.96 305 | 86.35 223 | 59.28 142 | 91.80 284 | 60.74 271 | 61.34 323 | 87.35 246 |
|
| FMVSNet3 | | | 77.73 193 | 76.04 196 | 82.80 176 | 91.20 117 | 68.99 58 | 91.87 158 | 91.99 131 | 73.35 157 | 67.04 258 | 83.19 259 | 56.62 171 | 92.14 276 | 59.80 278 | 69.34 254 | 87.28 248 |
|
| PS-MVSNAJss | | | 77.26 199 | 76.31 193 | 80.13 244 | 80.64 301 | 59.16 285 | 90.63 212 | 91.06 178 | 72.80 169 | 68.58 237 | 84.57 244 | 53.55 206 | 93.96 223 | 72.97 161 | 71.96 240 | 87.27 249 |
|
| mvsany_test1 | | | 68.77 290 | 68.56 279 | 69.39 341 | 73.57 355 | 45.88 366 | 80.93 326 | 60.88 384 | 59.65 326 | 71.56 199 | 90.26 168 | 43.22 288 | 75.05 374 | 74.26 157 | 62.70 307 | 87.25 250 |
|
| FMVSNet2 | | | 76.07 215 | 74.01 226 | 82.26 193 | 88.85 165 | 67.66 90 | 91.33 185 | 91.61 152 | 70.84 225 | 65.98 265 | 82.25 268 | 48.03 254 | 92.00 281 | 58.46 283 | 68.73 262 | 87.10 251 |
|
| ADS-MVSNet2 | | | 66.90 305 | 63.44 312 | 77.26 290 | 88.06 188 | 60.70 262 | 68.01 369 | 75.56 357 | 57.57 333 | 64.48 278 | 69.87 358 | 38.68 302 | 84.10 349 | 40.87 351 | 67.89 268 | 86.97 252 |
|
| ADS-MVSNet | | | 68.54 293 | 64.38 308 | 81.03 227 | 88.06 188 | 66.90 111 | 68.01 369 | 84.02 327 | 57.57 333 | 64.48 278 | 69.87 358 | 38.68 302 | 89.21 316 | 40.87 351 | 67.89 268 | 86.97 252 |
|
| WR-MVS | | | 76.76 209 | 75.74 201 | 79.82 254 | 84.60 255 | 62.27 230 | 92.60 128 | 92.51 114 | 76.06 115 | 67.87 248 | 85.34 234 | 56.76 167 | 90.24 306 | 62.20 264 | 63.69 303 | 86.94 254 |
|
| DSMNet-mixed | | | 56.78 338 | 54.44 341 | 63.79 354 | 63.21 377 | 29.44 393 | 64.43 375 | 64.10 380 | 42.12 378 | 51.32 348 | 71.60 353 | 31.76 344 | 75.04 375 | 36.23 362 | 65.20 287 | 86.87 255 |
|
| UniMVSNet (Re) | | | 77.58 195 | 76.78 187 | 79.98 248 | 84.11 265 | 60.80 255 | 91.76 165 | 93.17 88 | 76.56 112 | 69.93 220 | 84.78 241 | 63.32 98 | 92.36 272 | 64.89 245 | 62.51 310 | 86.78 256 |
|
| GBi-Net | | | 75.65 226 | 73.83 228 | 81.10 223 | 88.85 165 | 65.11 154 | 90.01 228 | 90.32 198 | 70.84 225 | 67.04 258 | 80.25 302 | 48.03 254 | 91.54 291 | 59.80 278 | 69.34 254 | 86.64 257 |
|
| test1 | | | 75.65 226 | 73.83 228 | 81.10 223 | 88.85 165 | 65.11 154 | 90.01 228 | 90.32 198 | 70.84 225 | 67.04 258 | 80.25 302 | 48.03 254 | 91.54 291 | 59.80 278 | 69.34 254 | 86.64 257 |
|
| FMVSNet1 | | | 72.71 260 | 69.91 271 | 81.10 223 | 83.60 272 | 65.11 154 | 90.01 228 | 90.32 198 | 63.92 289 | 63.56 287 | 80.25 302 | 36.35 327 | 91.54 291 | 54.46 296 | 66.75 275 | 86.64 257 |
|
| v2v482 | | | 77.42 197 | 75.65 203 | 82.73 178 | 80.38 303 | 67.13 105 | 91.85 160 | 90.23 206 | 75.09 127 | 69.37 222 | 83.39 257 | 53.79 204 | 94.44 199 | 71.77 176 | 65.00 289 | 86.63 260 |
|
| miper_enhance_ethall | | | 78.86 171 | 77.97 167 | 81.54 212 | 88.00 191 | 65.17 152 | 91.41 175 | 89.15 248 | 75.19 126 | 68.79 233 | 83.98 251 | 67.17 51 | 92.82 251 | 72.73 166 | 65.30 283 | 86.62 261 |
|
| cl22 | | | 77.94 190 | 76.78 187 | 81.42 214 | 87.57 200 | 64.93 160 | 90.67 208 | 88.86 263 | 72.45 177 | 67.63 251 | 82.68 264 | 64.07 82 | 92.91 249 | 71.79 175 | 65.30 283 | 86.44 262 |
|
| PLC |  | 68.80 14 | 75.23 232 | 73.68 231 | 79.86 253 | 92.93 70 | 58.68 291 | 90.64 210 | 88.30 281 | 60.90 317 | 64.43 281 | 90.53 160 | 42.38 291 | 94.57 192 | 56.52 288 | 76.54 206 | 86.33 263 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| EI-MVSNet | | | 78.97 168 | 78.22 163 | 81.25 217 | 85.33 242 | 62.73 221 | 89.53 240 | 93.21 84 | 72.39 180 | 72.14 191 | 90.13 172 | 60.99 120 | 94.72 183 | 67.73 215 | 72.49 236 | 86.29 264 |
|
| IterMVS-LS | | | 76.49 211 | 75.18 209 | 80.43 236 | 84.49 258 | 62.74 220 | 90.64 210 | 88.80 265 | 72.40 179 | 65.16 271 | 81.72 275 | 60.98 121 | 92.27 275 | 67.74 214 | 64.65 294 | 86.29 264 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| miper_ehance_all_eth | | | 77.60 194 | 76.44 191 | 81.09 226 | 85.70 239 | 64.41 171 | 90.65 209 | 88.64 273 | 72.31 181 | 67.37 256 | 82.52 265 | 64.77 76 | 92.64 263 | 70.67 186 | 65.30 283 | 86.24 266 |
|
| RRT_MVS | | | 74.44 239 | 72.97 239 | 78.84 271 | 82.36 285 | 57.66 302 | 89.83 234 | 88.79 267 | 70.61 231 | 64.58 276 | 84.89 239 | 39.24 300 | 92.65 262 | 70.11 191 | 66.34 278 | 86.21 267 |
|
| OPM-MVS | | | 79.00 167 | 78.09 164 | 81.73 207 | 83.52 273 | 63.83 186 | 91.64 171 | 90.30 202 | 76.36 114 | 71.97 193 | 89.93 175 | 46.30 272 | 95.17 170 | 75.10 148 | 77.70 193 | 86.19 268 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| DIV-MVS_self_test | | | 76.07 215 | 74.67 211 | 80.28 239 | 85.14 247 | 61.75 240 | 90.12 224 | 88.73 268 | 71.16 218 | 65.42 269 | 81.60 278 | 61.15 118 | 92.94 248 | 66.54 226 | 62.16 314 | 86.14 269 |
|
| eth_miper_zixun_eth | | | 75.96 222 | 74.40 219 | 80.66 232 | 84.66 254 | 63.02 211 | 89.28 245 | 88.27 283 | 71.88 195 | 65.73 266 | 81.65 276 | 59.45 138 | 92.81 252 | 68.13 209 | 60.53 328 | 86.14 269 |
|
| cl____ | | | 76.07 215 | 74.67 211 | 80.28 239 | 85.15 246 | 61.76 239 | 90.12 224 | 88.73 268 | 71.16 218 | 65.43 268 | 81.57 279 | 61.15 118 | 92.95 244 | 66.54 226 | 62.17 312 | 86.13 271 |
|
| PatchMatch-RL | | | 72.06 265 | 69.98 268 | 78.28 276 | 89.51 149 | 55.70 319 | 83.49 301 | 83.39 335 | 61.24 315 | 63.72 286 | 82.76 262 | 34.77 332 | 93.03 242 | 53.37 302 | 77.59 194 | 86.12 272 |
|
| c3_l | | | 76.83 208 | 75.47 204 | 80.93 230 | 85.02 250 | 64.18 181 | 90.39 216 | 88.11 287 | 71.66 203 | 66.65 264 | 81.64 277 | 63.58 94 | 92.56 264 | 69.31 200 | 62.86 305 | 86.04 273 |
|
| RPSCF | | | 64.24 319 | 61.98 321 | 71.01 337 | 76.10 347 | 45.00 367 | 75.83 354 | 75.94 354 | 46.94 367 | 58.96 317 | 84.59 243 | 31.40 346 | 82.00 366 | 47.76 324 | 60.33 332 | 86.04 273 |
|
| Anonymous20231211 | | | 73.08 251 | 70.39 267 | 81.13 221 | 90.62 126 | 63.33 205 | 91.40 177 | 90.06 213 | 51.84 354 | 64.46 280 | 80.67 295 | 36.49 326 | 94.07 214 | 63.83 251 | 64.17 297 | 85.98 275 |
|
| v1192 | | | 75.98 220 | 73.92 227 | 82.15 197 | 79.73 311 | 66.24 128 | 91.22 190 | 89.75 223 | 72.67 171 | 68.49 238 | 81.42 282 | 49.86 239 | 94.27 205 | 67.08 221 | 65.02 288 | 85.95 276 |
|
| JIA-IIPM | | | 66.06 309 | 62.45 318 | 76.88 296 | 81.42 294 | 54.45 327 | 57.49 384 | 88.67 271 | 49.36 361 | 63.86 284 | 46.86 382 | 56.06 178 | 90.25 303 | 49.53 313 | 68.83 260 | 85.95 276 |
|
| v1921920 | | | 75.63 228 | 73.49 233 | 82.06 203 | 79.38 316 | 66.35 124 | 91.07 197 | 89.48 232 | 71.98 190 | 67.99 241 | 81.22 287 | 49.16 248 | 93.90 226 | 66.56 225 | 64.56 295 | 85.92 278 |
|
| v1144 | | | 76.73 210 | 74.88 210 | 82.27 191 | 80.23 307 | 66.60 119 | 91.68 169 | 90.21 208 | 73.69 151 | 69.06 227 | 81.89 272 | 52.73 215 | 94.40 200 | 69.21 201 | 65.23 286 | 85.80 279 |
|
| v144192 | | | 76.05 218 | 74.03 225 | 82.12 199 | 79.50 315 | 66.55 121 | 91.39 179 | 89.71 229 | 72.30 182 | 68.17 240 | 81.33 284 | 51.75 222 | 94.03 220 | 67.94 212 | 64.19 296 | 85.77 280 |
|
| v1240 | | | 75.21 233 | 72.98 238 | 81.88 205 | 79.20 318 | 66.00 132 | 90.75 206 | 89.11 251 | 71.63 208 | 67.41 254 | 81.22 287 | 47.36 262 | 93.87 227 | 65.46 241 | 64.72 293 | 85.77 280 |
|
| v148 | | | 76.19 213 | 74.47 218 | 81.36 215 | 80.05 309 | 64.44 168 | 91.75 167 | 90.23 206 | 73.68 152 | 67.13 257 | 80.84 292 | 55.92 180 | 93.86 229 | 68.95 204 | 61.73 319 | 85.76 282 |
|
| test0.0.03 1 | | | 72.76 258 | 72.71 244 | 72.88 324 | 80.25 306 | 47.99 355 | 91.22 190 | 89.45 234 | 71.51 213 | 62.51 299 | 87.66 207 | 53.83 202 | 85.06 346 | 50.16 310 | 67.84 270 | 85.58 283 |
|
| test_djsdf | | | 73.76 249 | 72.56 246 | 77.39 287 | 77.00 343 | 53.93 328 | 89.07 250 | 90.69 185 | 65.80 277 | 63.92 283 | 82.03 271 | 43.14 289 | 92.67 259 | 72.83 163 | 68.53 263 | 85.57 284 |
|
| dmvs_testset | | | 65.55 313 | 66.45 289 | 62.86 355 | 79.87 310 | 22.35 398 | 76.55 350 | 71.74 368 | 77.42 101 | 55.85 331 | 87.77 206 | 51.39 226 | 80.69 370 | 31.51 380 | 65.92 281 | 85.55 285 |
|
| ACMM | | 69.62 13 | 74.34 240 | 72.73 243 | 79.17 266 | 84.25 264 | 57.87 298 | 90.36 217 | 89.93 217 | 63.17 299 | 65.64 267 | 86.04 230 | 37.79 316 | 94.10 211 | 65.89 234 | 71.52 243 | 85.55 285 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| pmmvs5 | | | 73.35 250 | 71.52 257 | 78.86 270 | 78.64 329 | 60.61 265 | 91.08 195 | 86.90 300 | 67.69 262 | 63.32 289 | 83.64 253 | 44.33 284 | 90.53 300 | 62.04 265 | 66.02 280 | 85.46 287 |
|
| jajsoiax | | | 73.05 253 | 71.51 258 | 77.67 282 | 77.46 340 | 54.83 324 | 88.81 254 | 90.04 214 | 69.13 250 | 62.85 296 | 83.51 255 | 31.16 348 | 92.75 255 | 70.83 183 | 69.80 250 | 85.43 288 |
|
| ACMP | | 71.68 10 | 75.58 229 | 74.23 222 | 79.62 259 | 84.97 251 | 59.64 276 | 90.80 204 | 89.07 254 | 70.39 233 | 62.95 294 | 87.30 213 | 38.28 308 | 93.87 227 | 72.89 162 | 71.45 244 | 85.36 289 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| mvs_tets | | | 72.71 260 | 71.11 259 | 77.52 283 | 77.41 341 | 54.52 326 | 88.45 260 | 89.76 222 | 68.76 255 | 62.70 297 | 83.26 258 | 29.49 352 | 92.71 256 | 70.51 189 | 69.62 252 | 85.34 290 |
|
| tpmvs | | | 72.88 257 | 69.76 273 | 82.22 194 | 90.98 119 | 67.05 107 | 78.22 345 | 88.30 281 | 63.10 300 | 64.35 282 | 74.98 341 | 55.09 189 | 94.27 205 | 43.25 340 | 69.57 253 | 85.34 290 |
|
| miper_lstm_enhance | | | 73.05 253 | 71.73 256 | 77.03 292 | 83.80 268 | 58.32 294 | 81.76 316 | 88.88 261 | 69.80 241 | 61.01 304 | 78.23 318 | 57.19 159 | 87.51 333 | 65.34 242 | 59.53 333 | 85.27 292 |
|
| bld_raw_dy_0_64 | | | 71.59 269 | 69.71 274 | 77.22 291 | 77.82 339 | 58.12 296 | 87.71 272 | 73.66 362 | 68.01 260 | 61.90 303 | 84.29 248 | 33.68 336 | 88.43 321 | 69.91 193 | 70.43 249 | 85.11 293 |
|
| LPG-MVS_test | | | 75.82 224 | 74.58 215 | 79.56 261 | 84.31 262 | 59.37 281 | 90.44 213 | 89.73 226 | 69.49 243 | 64.86 272 | 88.42 188 | 38.65 304 | 94.30 203 | 72.56 168 | 72.76 233 | 85.01 294 |
|
| LGP-MVS_train | | | | | 79.56 261 | 84.31 262 | 59.37 281 | | 89.73 226 | 69.49 243 | 64.86 272 | 88.42 188 | 38.65 304 | 94.30 203 | 72.56 168 | 72.76 233 | 85.01 294 |
|
| PVSNet_BlendedMVS | | | 83.38 93 | 83.43 80 | 83.22 170 | 93.76 49 | 67.53 95 | 94.06 63 | 93.61 69 | 79.13 70 | 81.00 94 | 85.14 236 | 63.19 99 | 97.29 76 | 87.08 61 | 73.91 225 | 84.83 296 |
|
| V42 | | | 76.46 212 | 74.55 216 | 82.19 196 | 79.14 321 | 67.82 86 | 90.26 221 | 89.42 236 | 73.75 149 | 68.63 236 | 81.89 272 | 51.31 227 | 94.09 212 | 71.69 178 | 64.84 290 | 84.66 297 |
|
| IterMVS | | | 72.65 263 | 70.83 261 | 78.09 279 | 82.17 287 | 62.96 213 | 87.64 274 | 86.28 306 | 71.56 211 | 60.44 307 | 78.85 314 | 45.42 279 | 86.66 337 | 63.30 256 | 61.83 316 | 84.65 298 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| IterMVS-SCA-FT | | | 71.55 270 | 69.97 269 | 76.32 299 | 81.48 292 | 60.67 263 | 87.64 274 | 85.99 311 | 66.17 275 | 59.50 312 | 78.88 313 | 45.53 277 | 83.65 354 | 62.58 262 | 61.93 315 | 84.63 299 |
|
| pm-mvs1 | | | 72.89 256 | 71.09 260 | 78.26 277 | 79.10 322 | 57.62 303 | 90.80 204 | 89.30 240 | 67.66 263 | 62.91 295 | 81.78 274 | 49.11 249 | 92.95 244 | 60.29 275 | 58.89 336 | 84.22 300 |
|
| pmmvs4 | | | 73.92 246 | 71.81 255 | 80.25 241 | 79.17 319 | 65.24 150 | 87.43 276 | 87.26 298 | 67.64 265 | 63.46 288 | 83.91 252 | 48.96 250 | 91.53 294 | 62.94 258 | 65.49 282 | 83.96 301 |
|
| v8 | | | 75.35 230 | 73.26 235 | 81.61 210 | 80.67 300 | 66.82 112 | 89.54 239 | 89.27 241 | 71.65 204 | 63.30 290 | 80.30 301 | 54.99 190 | 94.06 215 | 67.33 219 | 62.33 311 | 83.94 302 |
|
| UnsupCasMVSNet_eth | | | 65.79 311 | 63.10 313 | 73.88 316 | 70.71 364 | 50.29 345 | 81.09 324 | 89.88 219 | 72.58 173 | 49.25 357 | 74.77 343 | 32.57 341 | 87.43 334 | 55.96 291 | 41.04 373 | 83.90 303 |
|
| v10 | | | 74.77 237 | 72.54 247 | 81.46 213 | 80.33 305 | 66.71 116 | 89.15 249 | 89.08 253 | 70.94 223 | 63.08 293 | 79.86 306 | 52.52 216 | 94.04 218 | 65.70 237 | 62.17 312 | 83.64 304 |
|
| F-COLMAP | | | 70.66 273 | 68.44 281 | 77.32 288 | 86.37 226 | 55.91 317 | 88.00 266 | 86.32 305 | 56.94 339 | 57.28 328 | 88.07 201 | 33.58 337 | 92.49 267 | 51.02 306 | 68.37 264 | 83.55 305 |
|
| lessismore_v0 | | | | | 73.72 318 | 72.93 358 | 47.83 356 | | 61.72 383 | | 45.86 365 | 73.76 344 | 28.63 356 | 89.81 311 | 47.75 325 | 31.37 385 | 83.53 306 |
|
| v7n | | | 71.31 271 | 68.65 278 | 79.28 264 | 76.40 345 | 60.77 257 | 86.71 285 | 89.45 234 | 64.17 288 | 58.77 319 | 78.24 317 | 44.59 283 | 93.54 233 | 57.76 285 | 61.75 318 | 83.52 307 |
|
| Anonymous20231206 | | | 67.53 302 | 65.78 293 | 72.79 325 | 74.95 350 | 47.59 357 | 88.23 262 | 87.32 296 | 61.75 314 | 58.07 322 | 77.29 325 | 37.79 316 | 87.29 335 | 42.91 342 | 63.71 302 | 83.48 308 |
|
| CP-MVSNet | | | 70.50 275 | 69.91 271 | 72.26 329 | 80.71 299 | 51.00 341 | 87.23 279 | 90.30 202 | 67.84 261 | 59.64 311 | 82.69 263 | 50.23 236 | 82.30 364 | 51.28 305 | 59.28 334 | 83.46 309 |
|
| K. test v3 | | | 63.09 324 | 59.61 328 | 73.53 319 | 76.26 346 | 49.38 351 | 83.27 305 | 77.15 352 | 64.35 287 | 47.77 361 | 72.32 350 | 28.73 354 | 87.79 328 | 49.93 312 | 36.69 379 | 83.41 310 |
|
| PS-CasMVS | | | 69.86 282 | 69.13 277 | 72.07 333 | 80.35 304 | 50.57 343 | 87.02 281 | 89.75 223 | 67.27 267 | 59.19 315 | 82.28 267 | 46.58 267 | 82.24 365 | 50.69 307 | 59.02 335 | 83.39 311 |
|
| PEN-MVS | | | 69.46 285 | 68.56 279 | 72.17 331 | 79.27 317 | 49.71 347 | 86.90 283 | 89.24 242 | 67.24 270 | 59.08 316 | 82.51 266 | 47.23 263 | 83.54 355 | 48.42 318 | 57.12 339 | 83.25 312 |
|
| anonymousdsp | | | 71.14 272 | 69.37 276 | 76.45 298 | 72.95 357 | 54.71 325 | 84.19 296 | 88.88 261 | 61.92 311 | 62.15 300 | 79.77 308 | 38.14 311 | 91.44 296 | 68.90 205 | 67.45 271 | 83.21 313 |
|
| XVG-ACMP-BASELINE | | | 68.04 297 | 65.53 297 | 75.56 303 | 74.06 354 | 52.37 333 | 78.43 342 | 85.88 312 | 62.03 309 | 58.91 318 | 81.21 289 | 20.38 372 | 91.15 297 | 60.69 272 | 68.18 265 | 83.16 314 |
|
| MSDG | | | 69.54 284 | 65.73 294 | 80.96 228 | 85.11 249 | 63.71 192 | 84.19 296 | 83.28 336 | 56.95 338 | 54.50 335 | 84.03 249 | 31.50 345 | 96.03 135 | 42.87 344 | 69.13 259 | 83.14 315 |
|
| test_fmvs2 | | | 65.78 312 | 64.84 300 | 68.60 345 | 66.54 373 | 41.71 374 | 83.27 305 | 69.81 372 | 54.38 347 | 67.91 245 | 84.54 245 | 15.35 378 | 81.22 369 | 75.65 144 | 66.16 279 | 82.88 316 |
|
| SixPastTwentyTwo | | | 64.92 315 | 61.78 322 | 74.34 314 | 78.74 327 | 49.76 346 | 83.42 304 | 79.51 350 | 62.86 301 | 50.27 352 | 77.35 323 | 30.92 350 | 90.49 301 | 45.89 332 | 47.06 363 | 82.78 317 |
|
| testgi | | | 64.48 318 | 62.87 316 | 69.31 342 | 71.24 360 | 40.62 377 | 85.49 289 | 79.92 348 | 65.36 281 | 54.18 337 | 83.49 256 | 23.74 365 | 84.55 347 | 41.60 348 | 60.79 327 | 82.77 318 |
|
| DTE-MVSNet | | | 68.46 294 | 67.33 287 | 71.87 335 | 77.94 337 | 49.00 352 | 86.16 288 | 88.58 275 | 66.36 274 | 58.19 320 | 82.21 269 | 46.36 268 | 83.87 353 | 44.97 337 | 55.17 346 | 82.73 319 |
|
| WR-MVS_H | | | 70.59 274 | 69.94 270 | 72.53 326 | 81.03 295 | 51.43 338 | 87.35 277 | 92.03 130 | 67.38 266 | 60.23 309 | 80.70 293 | 55.84 181 | 83.45 356 | 46.33 330 | 58.58 338 | 82.72 320 |
|
| ppachtmachnet_test | | | 67.72 299 | 63.70 310 | 79.77 256 | 78.92 323 | 66.04 131 | 88.68 256 | 82.90 338 | 60.11 324 | 55.45 332 | 75.96 337 | 39.19 301 | 90.55 299 | 39.53 355 | 52.55 354 | 82.71 321 |
|
| CL-MVSNet_self_test | | | 69.92 280 | 68.09 284 | 75.41 304 | 73.25 356 | 55.90 318 | 90.05 227 | 89.90 218 | 69.96 238 | 61.96 302 | 76.54 331 | 51.05 229 | 87.64 330 | 49.51 314 | 50.59 358 | 82.70 322 |
|
| LS3D | | | 69.17 286 | 66.40 290 | 77.50 284 | 91.92 97 | 56.12 316 | 85.12 291 | 80.37 347 | 46.96 366 | 56.50 330 | 87.51 210 | 37.25 319 | 93.71 230 | 32.52 376 | 79.40 178 | 82.68 323 |
|
| our_test_3 | | | 68.29 295 | 64.69 303 | 79.11 269 | 78.92 323 | 64.85 161 | 88.40 261 | 85.06 318 | 60.32 322 | 52.68 342 | 76.12 336 | 40.81 296 | 89.80 313 | 44.25 339 | 55.65 344 | 82.67 324 |
|
| FMVSNet5 | | | 68.04 297 | 65.66 296 | 75.18 307 | 84.43 260 | 57.89 297 | 83.54 300 | 86.26 307 | 61.83 313 | 53.64 340 | 73.30 345 | 37.15 322 | 85.08 345 | 48.99 315 | 61.77 317 | 82.56 325 |
|
| KD-MVS_2432*1600 | | | 69.03 288 | 66.37 291 | 77.01 293 | 85.56 240 | 61.06 251 | 81.44 321 | 90.25 204 | 67.27 267 | 58.00 323 | 76.53 332 | 54.49 194 | 87.63 331 | 48.04 320 | 35.77 380 | 82.34 326 |
|
| miper_refine_blended | | | 69.03 288 | 66.37 291 | 77.01 293 | 85.56 240 | 61.06 251 | 81.44 321 | 90.25 204 | 67.27 267 | 58.00 323 | 76.53 332 | 54.49 194 | 87.63 331 | 48.04 320 | 35.77 380 | 82.34 326 |
|
| pmmvs6 | | | 67.57 301 | 64.76 302 | 76.00 302 | 72.82 359 | 53.37 330 | 88.71 255 | 86.78 304 | 53.19 350 | 57.58 327 | 78.03 320 | 35.33 331 | 92.41 269 | 55.56 292 | 54.88 348 | 82.21 328 |
|
| EU-MVSNet | | | 64.01 320 | 63.01 314 | 67.02 351 | 74.40 353 | 38.86 382 | 83.27 305 | 86.19 309 | 45.11 371 | 54.27 336 | 81.15 290 | 36.91 325 | 80.01 372 | 48.79 317 | 57.02 340 | 82.19 329 |
|
| ACMH | | 63.93 17 | 68.62 291 | 64.81 301 | 80.03 247 | 85.22 245 | 63.25 206 | 87.72 271 | 84.66 322 | 60.83 318 | 51.57 347 | 79.43 312 | 27.29 358 | 94.96 175 | 41.76 347 | 64.84 290 | 81.88 330 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| D2MVS | | | 73.80 247 | 72.02 252 | 79.15 268 | 79.15 320 | 62.97 212 | 88.58 258 | 90.07 211 | 72.94 164 | 59.22 314 | 78.30 316 | 42.31 292 | 92.70 258 | 65.59 239 | 72.00 239 | 81.79 331 |
|
| DP-MVS | | | 69.90 281 | 66.48 288 | 80.14 243 | 95.36 28 | 62.93 214 | 89.56 237 | 76.11 353 | 50.27 359 | 57.69 326 | 85.23 235 | 39.68 299 | 95.73 145 | 33.35 370 | 71.05 247 | 81.78 332 |
|
| Patchmtry | | | 67.53 302 | 63.93 309 | 78.34 274 | 82.12 288 | 64.38 172 | 68.72 366 | 84.00 328 | 48.23 365 | 59.24 313 | 72.41 348 | 57.82 154 | 89.27 315 | 46.10 331 | 56.68 343 | 81.36 333 |
|
| Syy-MVS | | | 69.65 283 | 69.52 275 | 70.03 339 | 87.87 194 | 43.21 372 | 88.07 264 | 89.01 256 | 72.91 166 | 63.11 291 | 88.10 199 | 45.28 280 | 85.54 342 | 22.07 385 | 69.23 257 | 81.32 334 |
|
| myMVS_eth3d | | | 72.58 264 | 72.74 242 | 72.10 332 | 87.87 194 | 49.45 349 | 88.07 264 | 89.01 256 | 72.91 166 | 63.11 291 | 88.10 199 | 63.63 90 | 85.54 342 | 32.73 374 | 69.23 257 | 81.32 334 |
|
| Baseline_NR-MVSNet | | | 73.99 245 | 72.83 240 | 77.48 285 | 80.78 298 | 59.29 284 | 91.79 162 | 84.55 323 | 68.85 252 | 68.99 229 | 80.70 293 | 56.16 175 | 92.04 280 | 62.67 261 | 60.98 325 | 81.11 336 |
|
| CMPMVS |  | 48.56 21 | 66.77 306 | 64.41 307 | 73.84 317 | 70.65 365 | 50.31 344 | 77.79 347 | 85.73 314 | 45.54 370 | 44.76 369 | 82.14 270 | 35.40 330 | 90.14 309 | 63.18 257 | 74.54 218 | 81.07 337 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| TransMVSNet (Re) | | | 70.07 279 | 67.66 285 | 77.31 289 | 80.62 302 | 59.13 287 | 91.78 164 | 84.94 320 | 65.97 276 | 60.08 310 | 80.44 298 | 50.78 230 | 91.87 282 | 48.84 316 | 45.46 366 | 80.94 338 |
|
| ACMH+ | | 65.35 16 | 67.65 300 | 64.55 304 | 76.96 295 | 84.59 256 | 57.10 309 | 88.08 263 | 80.79 344 | 58.59 332 | 53.00 341 | 81.09 291 | 26.63 360 | 92.95 244 | 46.51 328 | 61.69 321 | 80.82 339 |
|
| USDC | | | 67.43 304 | 64.51 305 | 76.19 300 | 77.94 337 | 55.29 321 | 78.38 343 | 85.00 319 | 73.17 159 | 48.36 359 | 80.37 299 | 21.23 369 | 92.48 268 | 52.15 304 | 64.02 300 | 80.81 340 |
|
| OurMVSNet-221017-0 | | | 64.68 316 | 62.17 320 | 72.21 330 | 76.08 348 | 47.35 358 | 80.67 327 | 81.02 343 | 56.19 342 | 51.60 346 | 79.66 310 | 27.05 359 | 88.56 319 | 53.60 301 | 53.63 351 | 80.71 341 |
|
| MS-PatchMatch | | | 77.90 192 | 76.50 190 | 82.12 199 | 85.99 231 | 69.95 36 | 91.75 167 | 92.70 104 | 73.97 143 | 62.58 298 | 84.44 246 | 41.11 295 | 95.78 141 | 63.76 252 | 92.17 64 | 80.62 342 |
|
| tfpnnormal | | | 70.10 278 | 67.36 286 | 78.32 275 | 83.45 274 | 60.97 253 | 88.85 253 | 92.77 102 | 64.85 284 | 60.83 306 | 78.53 315 | 43.52 287 | 93.48 235 | 31.73 377 | 61.70 320 | 80.52 343 |
|
| MIMVSNet1 | | | 60.16 333 | 57.33 334 | 68.67 344 | 69.71 367 | 44.13 369 | 78.92 340 | 84.21 324 | 55.05 346 | 44.63 370 | 71.85 352 | 23.91 364 | 81.54 368 | 32.63 375 | 55.03 347 | 80.35 344 |
|
| YYNet1 | | | 63.76 323 | 60.14 326 | 74.62 311 | 78.06 336 | 60.19 271 | 83.46 303 | 83.99 330 | 56.18 343 | 39.25 377 | 71.56 355 | 37.18 321 | 83.34 357 | 42.90 343 | 48.70 361 | 80.32 345 |
|
| MDA-MVSNet_test_wron | | | 63.78 322 | 60.16 325 | 74.64 310 | 78.15 335 | 60.41 266 | 83.49 301 | 84.03 326 | 56.17 344 | 39.17 378 | 71.59 354 | 37.22 320 | 83.24 359 | 42.87 344 | 48.73 360 | 80.26 346 |
|
| KD-MVS_self_test | | | 60.87 330 | 58.60 330 | 67.68 348 | 66.13 374 | 39.93 379 | 75.63 355 | 84.70 321 | 57.32 336 | 49.57 355 | 68.45 361 | 29.55 351 | 82.87 360 | 48.09 319 | 47.94 362 | 80.25 347 |
|
| ITE_SJBPF | | | | | 70.43 338 | 74.44 352 | 47.06 362 | | 77.32 351 | 60.16 323 | 54.04 338 | 83.53 254 | 23.30 366 | 84.01 351 | 43.07 341 | 61.58 322 | 80.21 348 |
|
| test20.03 | | | 63.83 321 | 62.65 317 | 67.38 350 | 70.58 366 | 39.94 378 | 86.57 286 | 84.17 325 | 63.29 296 | 51.86 345 | 77.30 324 | 37.09 323 | 82.47 362 | 38.87 359 | 54.13 350 | 79.73 349 |
|
| UnsupCasMVSNet_bld | | | 61.60 328 | 57.71 332 | 73.29 321 | 68.73 370 | 51.64 336 | 78.61 341 | 89.05 255 | 57.20 337 | 46.11 362 | 61.96 373 | 28.70 355 | 88.60 318 | 50.08 311 | 38.90 377 | 79.63 350 |
|
| AllTest | | | 61.66 327 | 58.06 331 | 72.46 327 | 79.57 312 | 51.42 339 | 80.17 333 | 68.61 374 | 51.25 355 | 45.88 363 | 81.23 285 | 19.86 374 | 86.58 338 | 38.98 357 | 57.01 341 | 79.39 351 |
|
| TestCases | | | | | 72.46 327 | 79.57 312 | 51.42 339 | | 68.61 374 | 51.25 355 | 45.88 363 | 81.23 285 | 19.86 374 | 86.58 338 | 38.98 357 | 57.01 341 | 79.39 351 |
|
| ambc | | | | | 69.61 340 | 61.38 381 | 41.35 375 | 49.07 389 | 85.86 313 | | 50.18 354 | 66.40 364 | 10.16 386 | 88.14 324 | 45.73 333 | 44.20 367 | 79.32 353 |
|
| Anonymous20240521 | | | 62.09 326 | 59.08 329 | 71.10 336 | 67.19 372 | 48.72 353 | 83.91 298 | 85.23 317 | 50.38 358 | 47.84 360 | 71.22 357 | 20.74 370 | 85.51 344 | 46.47 329 | 58.75 337 | 79.06 354 |
|
| testing3 | | | 70.38 277 | 70.83 261 | 69.03 343 | 85.82 236 | 43.93 371 | 90.72 207 | 90.56 191 | 68.06 259 | 60.24 308 | 86.82 219 | 64.83 74 | 84.12 348 | 26.33 381 | 64.10 298 | 79.04 355 |
|
| MVP-Stereo | | | 77.12 201 | 76.23 194 | 79.79 255 | 81.72 291 | 66.34 125 | 89.29 244 | 90.88 182 | 70.56 232 | 62.01 301 | 82.88 261 | 49.34 243 | 94.13 210 | 65.55 240 | 93.80 41 | 78.88 356 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| pmmvs-eth3d | | | 65.53 314 | 62.32 319 | 75.19 306 | 69.39 369 | 59.59 277 | 82.80 312 | 83.43 333 | 62.52 305 | 51.30 349 | 72.49 346 | 32.86 338 | 87.16 336 | 55.32 293 | 50.73 357 | 78.83 357 |
|
| OpenMVS_ROB |  | 61.12 18 | 66.39 307 | 62.92 315 | 76.80 297 | 76.51 344 | 57.77 299 | 89.22 246 | 83.41 334 | 55.48 345 | 53.86 339 | 77.84 321 | 26.28 361 | 93.95 224 | 34.90 367 | 68.76 261 | 78.68 358 |
|
| LTVRE_ROB | | 59.60 19 | 66.27 308 | 63.54 311 | 74.45 312 | 84.00 267 | 51.55 337 | 67.08 372 | 83.53 332 | 58.78 330 | 54.94 334 | 80.31 300 | 34.54 333 | 93.23 239 | 40.64 353 | 68.03 266 | 78.58 359 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| PM-MVS | | | 59.40 334 | 56.59 336 | 67.84 346 | 63.63 376 | 41.86 373 | 76.76 349 | 63.22 381 | 59.01 329 | 51.07 350 | 72.27 351 | 11.72 384 | 83.25 358 | 61.34 268 | 50.28 359 | 78.39 360 |
|
| test_fmvs3 | | | 56.82 337 | 54.86 340 | 62.69 356 | 53.59 386 | 35.47 384 | 75.87 353 | 65.64 379 | 43.91 374 | 55.10 333 | 71.43 356 | 6.91 392 | 74.40 377 | 68.64 207 | 52.63 352 | 78.20 361 |
|
| N_pmnet | | | 50.55 342 | 49.11 345 | 54.88 363 | 77.17 342 | 4.02 406 | 84.36 295 | 2.00 404 | 48.59 362 | 45.86 365 | 68.82 360 | 32.22 342 | 82.80 361 | 31.58 378 | 51.38 356 | 77.81 362 |
|
| new-patchmatchnet | | | 59.30 335 | 56.48 337 | 67.79 347 | 65.86 375 | 44.19 368 | 82.47 313 | 81.77 340 | 59.94 325 | 43.65 373 | 66.20 365 | 27.67 357 | 81.68 367 | 39.34 356 | 41.40 372 | 77.50 363 |
|
| EG-PatchMatch MVS | | | 68.55 292 | 65.41 298 | 77.96 280 | 78.69 328 | 62.93 214 | 89.86 233 | 89.17 246 | 60.55 319 | 50.27 352 | 77.73 322 | 22.60 367 | 94.06 215 | 47.18 326 | 72.65 235 | 76.88 364 |
|
| MVS-HIRNet | | | 60.25 332 | 55.55 339 | 74.35 313 | 84.37 261 | 56.57 314 | 71.64 360 | 74.11 361 | 34.44 381 | 45.54 367 | 42.24 388 | 31.11 349 | 89.81 311 | 40.36 354 | 76.10 210 | 76.67 365 |
|
| MDA-MVSNet-bldmvs | | | 61.54 329 | 57.70 333 | 73.05 322 | 79.53 314 | 57.00 312 | 83.08 309 | 81.23 342 | 57.57 333 | 34.91 381 | 72.45 347 | 32.79 339 | 86.26 340 | 35.81 364 | 41.95 371 | 75.89 366 |
|
| COLMAP_ROB |  | 57.96 20 | 62.98 325 | 59.65 327 | 72.98 323 | 81.44 293 | 53.00 332 | 83.75 299 | 75.53 358 | 48.34 364 | 48.81 358 | 81.40 283 | 24.14 363 | 90.30 302 | 32.95 372 | 60.52 329 | 75.65 367 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| TinyColmap | | | 60.32 331 | 56.42 338 | 72.00 334 | 78.78 326 | 53.18 331 | 78.36 344 | 75.64 356 | 52.30 351 | 41.59 376 | 75.82 339 | 14.76 381 | 88.35 322 | 35.84 363 | 54.71 349 | 74.46 368 |
|
| mvsany_test3 | | | 48.86 344 | 46.35 347 | 56.41 359 | 46.00 392 | 31.67 389 | 62.26 377 | 47.25 394 | 43.71 375 | 45.54 367 | 68.15 362 | 10.84 385 | 64.44 391 | 57.95 284 | 35.44 382 | 73.13 369 |
|
| pmmvs3 | | | 55.51 339 | 51.50 344 | 67.53 349 | 57.90 384 | 50.93 342 | 80.37 329 | 73.66 362 | 40.63 379 | 44.15 372 | 64.75 368 | 16.30 376 | 78.97 373 | 44.77 338 | 40.98 375 | 72.69 370 |
|
| test_method | | | 38.59 354 | 35.16 357 | 48.89 369 | 54.33 385 | 21.35 399 | 45.32 390 | 53.71 388 | 7.41 396 | 28.74 384 | 51.62 380 | 8.70 389 | 52.87 394 | 33.73 368 | 32.89 384 | 72.47 371 |
|
| test_0402 | | | 64.54 317 | 61.09 323 | 74.92 309 | 84.10 266 | 60.75 259 | 87.95 267 | 79.71 349 | 52.03 352 | 52.41 343 | 77.20 326 | 32.21 343 | 91.64 287 | 23.14 383 | 61.03 324 | 72.36 372 |
|
| LF4IMVS | | | 54.01 341 | 52.12 342 | 59.69 357 | 62.41 379 | 39.91 380 | 68.59 367 | 68.28 376 | 42.96 377 | 44.55 371 | 75.18 340 | 14.09 383 | 68.39 383 | 41.36 350 | 51.68 355 | 70.78 373 |
|
| TDRefinement | | | 55.28 340 | 51.58 343 | 66.39 352 | 59.53 383 | 46.15 364 | 76.23 352 | 72.80 364 | 44.60 372 | 42.49 374 | 76.28 335 | 15.29 379 | 82.39 363 | 33.20 371 | 43.75 368 | 70.62 374 |
|
| test_f | | | 46.58 345 | 43.45 349 | 55.96 360 | 45.18 393 | 32.05 388 | 61.18 378 | 49.49 392 | 33.39 382 | 42.05 375 | 62.48 372 | 7.00 391 | 65.56 387 | 47.08 327 | 43.21 370 | 70.27 375 |
|
| LCM-MVSNet | | | 40.54 350 | 35.79 355 | 54.76 364 | 36.92 399 | 30.81 390 | 51.41 387 | 69.02 373 | 22.07 387 | 24.63 387 | 45.37 384 | 4.56 396 | 65.81 386 | 33.67 369 | 34.50 383 | 67.67 376 |
|
| ANet_high | | | 40.27 353 | 35.20 356 | 55.47 361 | 34.74 400 | 34.47 386 | 63.84 376 | 71.56 369 | 48.42 363 | 18.80 390 | 41.08 389 | 9.52 388 | 64.45 390 | 20.18 386 | 8.66 397 | 67.49 377 |
|
| test_vis1_rt | | | 59.09 336 | 57.31 335 | 64.43 353 | 68.44 371 | 46.02 365 | 83.05 310 | 48.63 393 | 51.96 353 | 49.57 355 | 63.86 369 | 16.30 376 | 80.20 371 | 71.21 181 | 62.79 306 | 67.07 378 |
|
| PMMVS2 | | | 37.93 355 | 33.61 358 | 50.92 366 | 46.31 391 | 24.76 396 | 60.55 381 | 50.05 390 | 28.94 386 | 20.93 388 | 47.59 381 | 4.41 398 | 65.13 388 | 25.14 382 | 18.55 392 | 62.87 379 |
|
| new_pmnet | | | 49.31 343 | 46.44 346 | 57.93 358 | 62.84 378 | 40.74 376 | 68.47 368 | 62.96 382 | 36.48 380 | 35.09 380 | 57.81 377 | 14.97 380 | 72.18 379 | 32.86 373 | 46.44 364 | 60.88 380 |
|
| FPMVS | | | 45.64 347 | 43.10 351 | 53.23 365 | 51.42 389 | 36.46 383 | 64.97 374 | 71.91 367 | 29.13 385 | 27.53 385 | 61.55 374 | 9.83 387 | 65.01 389 | 16.00 391 | 55.58 345 | 58.22 381 |
|
| WB-MVS | | | 46.23 346 | 44.94 348 | 50.11 367 | 62.13 380 | 21.23 400 | 76.48 351 | 55.49 386 | 45.89 369 | 35.78 379 | 61.44 375 | 35.54 329 | 72.83 378 | 9.96 394 | 21.75 389 | 56.27 382 |
|
| SSC-MVS | | | 44.51 348 | 43.35 350 | 47.99 371 | 61.01 382 | 18.90 402 | 74.12 357 | 54.36 387 | 43.42 376 | 34.10 382 | 60.02 376 | 34.42 334 | 70.39 381 | 9.14 396 | 19.57 390 | 54.68 383 |
|
| APD_test1 | | | 40.50 351 | 37.31 354 | 50.09 368 | 51.88 387 | 35.27 385 | 59.45 382 | 52.59 389 | 21.64 388 | 26.12 386 | 57.80 378 | 4.56 396 | 66.56 385 | 22.64 384 | 39.09 376 | 48.43 384 |
|
| EGC-MVSNET | | | 42.35 349 | 38.09 352 | 55.11 362 | 74.57 351 | 46.62 363 | 71.63 361 | 55.77 385 | 0.04 399 | 0.24 400 | 62.70 371 | 14.24 382 | 74.91 376 | 17.59 388 | 46.06 365 | 43.80 385 |
|
| test_vis3_rt | | | 40.46 352 | 37.79 353 | 48.47 370 | 44.49 394 | 33.35 387 | 66.56 373 | 32.84 401 | 32.39 383 | 29.65 383 | 39.13 391 | 3.91 399 | 68.65 382 | 50.17 309 | 40.99 374 | 43.40 386 |
|
| testf1 | | | 32.77 357 | 29.47 360 | 42.67 374 | 41.89 396 | 30.81 390 | 52.07 385 | 43.45 395 | 15.45 391 | 18.52 391 | 44.82 385 | 2.12 400 | 58.38 392 | 16.05 389 | 30.87 386 | 38.83 387 |
|
| APD_test2 | | | 32.77 357 | 29.47 360 | 42.67 374 | 41.89 396 | 30.81 390 | 52.07 385 | 43.45 395 | 15.45 391 | 18.52 391 | 44.82 385 | 2.12 400 | 58.38 392 | 16.05 389 | 30.87 386 | 38.83 387 |
|
| MVE |  | 24.84 23 | 24.35 361 | 19.77 367 | 38.09 376 | 34.56 401 | 26.92 395 | 26.57 392 | 38.87 399 | 11.73 395 | 11.37 396 | 27.44 392 | 1.37 403 | 50.42 395 | 11.41 393 | 14.60 393 | 36.93 389 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| DeepMVS_CX |  | | | | 34.71 377 | 51.45 388 | 24.73 397 | | 28.48 403 | 31.46 384 | 17.49 393 | 52.75 379 | 5.80 394 | 42.60 398 | 18.18 387 | 19.42 391 | 36.81 390 |
|
| PMVS |  | 26.43 22 | 31.84 359 | 28.16 362 | 42.89 373 | 25.87 402 | 27.58 394 | 50.92 388 | 49.78 391 | 21.37 389 | 14.17 395 | 40.81 390 | 2.01 402 | 66.62 384 | 9.61 395 | 38.88 378 | 34.49 391 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| Gipuma |  | | 34.91 356 | 31.44 359 | 45.30 372 | 70.99 363 | 39.64 381 | 19.85 394 | 72.56 365 | 20.10 390 | 16.16 394 | 21.47 395 | 5.08 395 | 71.16 380 | 13.07 392 | 43.70 369 | 25.08 392 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| tmp_tt | | | 22.26 363 | 23.75 365 | 17.80 380 | 5.23 403 | 12.06 405 | 35.26 391 | 39.48 398 | 2.82 398 | 18.94 389 | 44.20 387 | 22.23 368 | 24.64 399 | 36.30 361 | 9.31 396 | 16.69 393 |
|
| E-PMN | | | 24.61 360 | 24.00 364 | 26.45 378 | 43.74 395 | 18.44 403 | 60.86 379 | 39.66 397 | 15.11 393 | 9.53 397 | 22.10 394 | 6.52 393 | 46.94 396 | 8.31 397 | 10.14 394 | 13.98 394 |
|
| EMVS | | | 23.76 362 | 23.20 366 | 25.46 379 | 41.52 398 | 16.90 404 | 60.56 380 | 38.79 400 | 14.62 394 | 8.99 398 | 20.24 397 | 7.35 390 | 45.82 397 | 7.25 398 | 9.46 395 | 13.64 395 |
|
| wuyk23d | | | 11.30 365 | 10.95 368 | 12.33 381 | 48.05 390 | 19.89 401 | 25.89 393 | 1.92 405 | 3.58 397 | 3.12 399 | 1.37 399 | 0.64 404 | 15.77 400 | 6.23 399 | 7.77 398 | 1.35 396 |
|
| test123 | | | 6.92 368 | 9.21 371 | 0.08 382 | 0.03 405 | 0.05 407 | 81.65 319 | 0.01 407 | 0.02 401 | 0.14 402 | 0.85 401 | 0.03 405 | 0.02 401 | 0.12 401 | 0.00 400 | 0.16 397 |
|
| testmvs | | | 7.23 367 | 9.62 370 | 0.06 383 | 0.04 404 | 0.02 408 | 84.98 293 | 0.02 406 | 0.03 400 | 0.18 401 | 1.21 400 | 0.01 406 | 0.02 401 | 0.14 400 | 0.01 399 | 0.13 398 |
|
| test_blank | | | 0.00 370 | 0.00 373 | 0.00 384 | 0.00 406 | 0.00 409 | 0.00 395 | 0.00 408 | 0.00 402 | 0.00 403 | 0.00 402 | 0.00 407 | 0.00 403 | 0.00 402 | 0.00 400 | 0.00 399 |
|
| uanet_test | | | 0.00 370 | 0.00 373 | 0.00 384 | 0.00 406 | 0.00 409 | 0.00 395 | 0.00 408 | 0.00 402 | 0.00 403 | 0.00 402 | 0.00 407 | 0.00 403 | 0.00 402 | 0.00 400 | 0.00 399 |
|
| DCPMVS | | | 0.00 370 | 0.00 373 | 0.00 384 | 0.00 406 | 0.00 409 | 0.00 395 | 0.00 408 | 0.00 402 | 0.00 403 | 0.00 402 | 0.00 407 | 0.00 403 | 0.00 402 | 0.00 400 | 0.00 399 |
|
| cdsmvs_eth3d_5k | | | 19.86 364 | 26.47 363 | 0.00 384 | 0.00 406 | 0.00 409 | 0.00 395 | 93.45 77 | 0.00 402 | 0.00 403 | 95.27 56 | 49.56 241 | 0.00 403 | 0.00 402 | 0.00 400 | 0.00 399 |
|
| pcd_1.5k_mvsjas | | | 4.46 369 | 5.95 372 | 0.00 384 | 0.00 406 | 0.00 409 | 0.00 395 | 0.00 408 | 0.00 402 | 0.00 403 | 0.00 402 | 53.55 206 | 0.00 403 | 0.00 402 | 0.00 400 | 0.00 399 |
|
| sosnet-low-res | | | 0.00 370 | 0.00 373 | 0.00 384 | 0.00 406 | 0.00 409 | 0.00 395 | 0.00 408 | 0.00 402 | 0.00 403 | 0.00 402 | 0.00 407 | 0.00 403 | 0.00 402 | 0.00 400 | 0.00 399 |
|
| sosnet | | | 0.00 370 | 0.00 373 | 0.00 384 | 0.00 406 | 0.00 409 | 0.00 395 | 0.00 408 | 0.00 402 | 0.00 403 | 0.00 402 | 0.00 407 | 0.00 403 | 0.00 402 | 0.00 400 | 0.00 399 |
|
| uncertanet | | | 0.00 370 | 0.00 373 | 0.00 384 | 0.00 406 | 0.00 409 | 0.00 395 | 0.00 408 | 0.00 402 | 0.00 403 | 0.00 402 | 0.00 407 | 0.00 403 | 0.00 402 | 0.00 400 | 0.00 399 |
|
| Regformer | | | 0.00 370 | 0.00 373 | 0.00 384 | 0.00 406 | 0.00 409 | 0.00 395 | 0.00 408 | 0.00 402 | 0.00 403 | 0.00 402 | 0.00 407 | 0.00 403 | 0.00 402 | 0.00 400 | 0.00 399 |
|
| ab-mvs-re | | | 7.91 366 | 10.55 369 | 0.00 384 | 0.00 406 | 0.00 409 | 0.00 395 | 0.00 408 | 0.00 402 | 0.00 403 | 94.95 64 | 0.00 407 | 0.00 403 | 0.00 402 | 0.00 400 | 0.00 399 |
|
| uanet | | | 0.00 370 | 0.00 373 | 0.00 384 | 0.00 406 | 0.00 409 | 0.00 395 | 0.00 408 | 0.00 402 | 0.00 403 | 0.00 402 | 0.00 407 | 0.00 403 | 0.00 402 | 0.00 400 | 0.00 399 |
|
| WAC-MVS | | | | | | | 49.45 349 | | | | | | | | 31.56 379 | | |
|
| FOURS1 | | | | | | 93.95 45 | 61.77 238 | 93.96 70 | 91.92 134 | 62.14 308 | 86.57 44 | | | | | | |
|
| test_one_0601 | | | | | | 96.32 18 | 69.74 42 | | 94.18 51 | 71.42 215 | 90.67 18 | 96.85 16 | 74.45 18 | | | | |
|
| eth-test2 | | | | | | 0.00 406 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 406 | | | | | | | | | | | |
|
| ZD-MVS | | | | | | 96.63 9 | 65.50 146 | | 93.50 75 | 70.74 229 | 85.26 59 | 95.19 61 | 64.92 73 | 97.29 76 | 87.51 55 | 93.01 54 | |
|
| test_241102_ONE | | | | | | 96.45 12 | 69.38 47 | | 94.44 40 | 71.65 204 | 92.11 6 | 97.05 7 | 76.79 9 | 99.11 6 | | | |
|
| 9.14 | | | | 87.63 26 | | 93.86 47 | | 94.41 52 | 94.18 51 | 72.76 170 | 86.21 46 | 96.51 24 | 66.64 55 | 97.88 44 | 90.08 38 | 94.04 37 | |
|
| save fliter | | | | | | 93.84 48 | 67.89 85 | 95.05 39 | 92.66 107 | 78.19 84 | | | | | | | |
|
| test0726 | | | | | | 96.40 15 | 69.99 33 | 96.76 7 | 94.33 48 | 71.92 191 | 91.89 10 | 97.11 6 | 73.77 21 | | | | |
|
| test_part2 | | | | | | 96.29 19 | 68.16 79 | | | | 90.78 16 | | | | | | |
|
| sam_mvs | | | | | | | | | | | | | 54.91 191 | | | | |
|
| MTGPA |  | | | | | | | | 92.23 120 | | | | | | | | |
|
| test_post1 | | | | | | | | 78.95 339 | | | | 20.70 396 | 53.05 211 | 91.50 295 | 60.43 273 | | |
|
| test_post | | | | | | | | | | | | 23.01 393 | 56.49 173 | 92.67 259 | | | |
|
| patchmatchnet-post | | | | | | | | | | | | 67.62 363 | 57.62 156 | 90.25 303 | | | |
|
| MTMP | | | | | | | | 93.77 84 | 32.52 402 | | | | | | | | |
|
| gm-plane-assit | | | | | | 88.42 176 | 67.04 108 | | | 78.62 81 | | 91.83 140 | | 97.37 70 | 76.57 139 | | |
|
| TEST9 | | | | | | 94.18 41 | 67.28 100 | 94.16 58 | 93.51 73 | 71.75 202 | 85.52 54 | 95.33 51 | 68.01 45 | 97.27 80 | | | |
|
| test_8 | | | | | | 94.19 40 | 67.19 102 | 94.15 61 | 93.42 79 | 71.87 196 | 85.38 57 | 95.35 50 | 68.19 43 | 96.95 102 | | | |
|
| agg_prior | | | | | | 94.16 43 | 66.97 110 | | 93.31 82 | | 84.49 65 | | | 96.75 111 | | | |
|
| test_prior4 | | | | | | | 67.18 104 | 93.92 73 | | | | | | | | | |
|
| test_prior2 | | | | | | | | 95.10 38 | | 75.40 123 | 85.25 60 | 95.61 45 | 67.94 46 | | 87.47 56 | 94.77 25 | |
|
| 旧先验2 | | | | | | | | 92.00 154 | | 59.37 328 | 87.54 38 | | | 93.47 236 | 75.39 146 | | |
|
| æ–°å‡ ä½•2 | | | | | | | | 91.41 175 | | | | | | | | | |
|
| 原ACMM2 | | | | | | | | 92.01 151 | | | | | | | | | |
|
| testdata2 | | | | | | | | | | | | | | 96.09 129 | 61.26 269 | | |
|
| segment_acmp | | | | | | | | | | | | | 65.94 61 | | | | |
|
| testdata1 | | | | | | | | 89.21 247 | | 77.55 97 | | | | | | | |
|
| plane_prior7 | | | | | | 86.94 216 | 61.51 244 | | | | | | | | | | |
|
| plane_prior6 | | | | | | 87.23 208 | 62.32 228 | | | | | | 50.66 231 | | | | |
|
| plane_prior4 | | | | | | | | | | | | 89.14 183 | | | | | |
|
| plane_prior3 | | | | | | | 61.95 236 | | | 79.09 71 | 72.53 184 | | | | | | |
|
| plane_prior2 | | | | | | | | 93.13 105 | | 78.81 78 | | | | | | | |
|
| plane_prior1 | | | | | | 87.15 210 | | | | | | | | | | | |
|
| plane_prior | | | | | | | 62.42 224 | 93.85 77 | | 79.38 63 | | | | | | 78.80 185 | |
|
| n2 | | | | | | | | | 0.00 408 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 408 | | | | | | | | |
|
| door-mid | | | | | | | | | 66.01 378 | | | | | | | | |
|
| test11 | | | | | | | | | 93.01 94 | | | | | | | | |
|
| door | | | | | | | | | 66.57 377 | | | | | | | | |
|
| HQP5-MVS | | | | | | | 63.66 196 | | | | | | | | | | |
|
| HQP-NCC | | | | | | 87.54 201 | | 94.06 63 | | 79.80 56 | 74.18 164 | | | | | | |
|
| ACMP_Plane | | | | | | 87.54 201 | | 94.06 63 | | 79.80 56 | 74.18 164 | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 77.63 134 | | |
|
| HQP3-MVS | | | | | | | | | 91.70 149 | | | | | | | 78.90 183 | |
|
| HQP2-MVS | | | | | | | | | | | | | 51.63 224 | | | | |
|
| NP-MVS | | | | | | 87.41 204 | 63.04 210 | | | | | 90.30 166 | | | | | |
|
| MDTV_nov1_ep13 | | | | 72.61 245 | | 89.06 161 | 68.48 68 | 80.33 330 | 90.11 210 | 71.84 198 | 71.81 195 | 75.92 338 | 53.01 212 | 93.92 225 | 48.04 320 | 73.38 227 | |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 71.63 241 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 69.72 251 | |
|
| Test By Simon | | | | | | | | | | | | | 54.21 200 | | | | |
|