This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted by
fmvsm_l_conf0.5_n_a99.63 5199.55 5699.86 8399.83 12099.58 113100.00 199.36 21298.98 30100.00 1100.00 197.85 15199.99 94100.00 199.94 119100.00 1
fmvsm_l_conf0.5_n99.63 5199.56 5499.86 8399.81 12799.59 112100.00 199.36 21298.98 30100.00 1100.00 197.92 14899.99 94100.00 199.95 117100.00 1
MM99.63 5199.52 6199.94 6399.99 4999.82 86100.00 199.97 1799.11 7100.00 1100.00 196.65 197100.00 1100.00 199.97 111100.00 1
test_fmvsmconf_n99.56 6499.46 7099.86 8399.68 16199.58 113100.00 199.31 23898.92 3999.88 162100.00 197.35 17599.99 9499.98 7399.99 98100.00 1
test_fmvsmvis_n_192099.46 7699.37 7799.73 11898.88 30199.18 166100.00 199.26 26898.85 4999.79 180100.00 197.70 158100.00 199.98 7399.86 133100.00 1
test_fmvsm_n_192099.55 6599.49 6699.73 11899.85 11699.19 164100.00 199.41 18498.87 47100.00 1100.00 197.34 176100.00 199.98 7399.90 126100.00 1
test_cas_vis1_n_192098.63 17098.25 18699.77 11299.69 15799.32 148100.00 199.31 23898.84 5199.96 121100.00 187.42 32699.99 9499.14 20099.86 133100.00 1
test_vis1_n_192097.77 21697.24 23899.34 17699.79 14298.04 247100.00 199.25 27098.88 44100.00 1100.00 177.52 379100.00 199.88 10399.85 136100.00 1
test_vis1_n96.69 26895.81 29199.32 18199.14 26997.98 25099.97 24398.98 35898.45 77100.00 1100.00 166.44 39599.99 9499.78 12599.57 157100.00 1
test_fmvs1_n97.43 23496.86 24799.15 19599.68 16197.48 27499.99 21398.98 35898.82 55100.00 1100.00 174.85 38499.96 13899.67 15299.70 147100.00 1
mvsany_test199.57 6399.48 6999.85 8799.86 11599.54 118100.00 199.36 21298.94 37100.00 1100.00 197.97 145100.00 199.88 10399.28 160100.00 1
test_fmvs198.37 19298.04 20399.34 17699.84 11798.07 243100.00 199.00 35598.85 49100.00 1100.00 185.11 34699.96 13899.69 14899.88 129100.00 1
iter_conf05_1198.21 20197.74 21599.65 13299.67 16699.06 174100.00 198.87 36697.84 12699.96 121100.00 183.57 35699.88 17899.72 133100.00 1100.00 1
bld_raw_dy_0_6497.64 22196.98 24399.63 13499.67 16698.94 188100.00 197.98 38597.85 12598.93 239100.00 183.23 36099.96 13899.72 13395.41 263100.00 1
DVP-MVS++99.81 1199.75 14100.00 1100.00 199.99 5100.00 199.42 13898.79 60100.00 1100.00 199.54 26100.00 1100.00 1100.00 1100.00 1
MSC_two_6792asdad100.00 1100.00 1100.00 199.42 138100.00 1100.00 1100.00 1100.00 1
PC_three_145298.80 57100.00 1100.00 199.54 26100.00 1100.00 1100.00 1100.00 1
No_MVS100.00 1100.00 1100.00 199.42 138100.00 1100.00 1100.00 1100.00 1
SR-MVS-dyc-post99.63 5199.52 6199.97 3199.99 4999.91 53100.00 199.42 13897.62 147100.00 1100.00 198.65 12599.99 9499.99 61100.00 1100.00 1
RE-MVS-def99.55 5699.99 4999.91 53100.00 199.42 13897.62 147100.00 1100.00 198.94 10599.99 61100.00 1100.00 1
SED-MVS99.83 799.77 9100.00 1100.00 199.99 5100.00 199.42 13899.03 20100.00 1100.00 199.50 37100.00 1100.00 1100.00 1100.00 1
IU-MVS100.00 199.99 599.42 13899.12 6100.00 1100.00 1100.00 1100.00 1
OPU-MVS100.00 1100.00 1100.00 1100.00 1100.00 199.54 26100.00 1100.00 1100.00 1100.00 1
test_241102_TWO99.42 13899.03 20100.00 1100.00 199.56 23100.00 1100.00 1100.00 1100.00 1
SF-MVS99.66 4599.57 4999.95 5199.99 4999.85 82100.00 199.42 13897.67 140100.00 1100.00 199.05 9199.99 94100.00 1100.00 1100.00 1
ZNCC-MVS99.71 2999.62 4199.97 3199.99 4999.90 60100.00 199.79 4597.97 11499.97 116100.00 198.97 99100.00 199.94 93100.00 1100.00 1
DVP-MVScopyleft99.83 799.78 7100.00 1100.00 199.99 5100.00 199.42 13899.04 15100.00 1100.00 199.53 29100.00 1100.00 1100.00 1100.00 1
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD98.79 60100.00 1100.00 199.61 16100.00 1100.00 1100.00 1100.00 1
test_0728_SECOND100.00 199.99 4999.99 5100.00 199.42 138100.00 1100.00 1100.00 1100.00 1
SR-MVS99.68 4099.58 4699.98 23100.00 199.95 32100.00 199.64 6497.59 155100.00 1100.00 198.99 9799.99 94100.00 1100.00 1100.00 1
DPM-MVS99.63 5199.51 63100.00 199.90 108100.00 1100.00 199.43 12299.00 27100.00 1100.00 199.58 22100.00 197.64 268100.00 1100.00 1
GST-MVS99.64 4899.53 5999.95 51100.00 199.86 79100.00 199.79 4597.72 13599.95 145100.00 198.39 136100.00 199.96 8599.99 98100.00 1
Anonymous20240521197.87 21197.53 22398.90 21099.81 12796.70 30299.35 34599.46 9492.98 34898.83 25199.99 18690.63 284100.00 199.70 14197.03 244100.00 1
SMA-MVScopyleft99.69 3599.59 4499.98 2399.99 4999.93 45100.00 199.43 12297.50 166100.00 1100.00 199.43 50100.00 1100.00 1100.00 1100.00 1
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DPE-MVScopyleft99.79 1499.73 1799.99 1299.99 4999.98 17100.00 199.42 13898.91 41100.00 1100.00 199.22 76100.00 1100.00 1100.00 1100.00 1
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
CHOSEN 280x42099.85 399.87 199.80 10399.99 4999.97 2199.97 24399.98 1698.96 32100.00 1100.00 199.96 499.42 257100.00 1100.00 1100.00 1
MVS_030499.69 3599.63 3799.86 8399.96 9499.63 109100.00 199.92 3499.03 2099.97 116100.00 197.87 14999.96 138100.00 199.96 114100.00 1
MSP-MVS99.81 1199.77 999.94 63100.00 199.86 79100.00 199.42 13898.87 47100.00 1100.00 199.65 1599.96 138100.00 1100.00 1100.00 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
TSAR-MVS + MP.99.82 999.77 999.99 12100.00 199.96 24100.00 199.43 12299.05 14100.00 1100.00 199.45 4599.99 94100.00 1100.00 1100.00 1
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
ACMMP_NAP99.67 4399.57 4999.97 3199.98 8599.92 50100.00 199.42 13897.83 127100.00 1100.00 198.89 111100.00 199.98 73100.00 1100.00 1
MTAPA99.68 4099.59 4499.97 3199.99 4999.91 53100.00 199.42 13898.32 8899.94 147100.00 198.65 125100.00 199.96 85100.00 1100.00 1
test9_res100.00 1100.00 1100.00 1
train_agg99.71 2999.63 3799.97 31100.00 199.95 32100.00 199.42 13897.70 137100.00 1100.00 199.51 3399.97 125100.00 1100.00 1100.00 1
agg_prior2100.00 1100.00 1100.00 1
HFP-MVS99.74 2299.67 2799.96 42100.00 199.89 67100.00 199.76 4997.95 118100.00 1100.00 199.31 64100.00 199.99 61100.00 1100.00 1
region2R99.72 2699.64 3399.97 31100.00 199.90 60100.00 199.74 5597.86 124100.00 1100.00 199.19 79100.00 199.99 61100.00 1100.00 1
EI-MVSNet-UG-set99.69 3599.63 3799.87 8099.99 4999.64 10799.95 25499.44 11698.35 86100.00 1100.00 198.98 9899.97 12599.98 73100.00 1100.00 1
EI-MVSNet-Vis-set99.70 3299.64 3399.87 80100.00 199.64 10799.98 23799.44 11698.35 8699.99 105100.00 199.04 9499.96 13899.98 73100.00 1100.00 1
XVS99.79 1499.73 1799.98 23100.00 199.94 41100.00 199.75 5298.67 67100.00 1100.00 199.16 81100.00 1100.00 1100.00 1100.00 1
X-MVStestdata97.04 25296.06 28199.98 23100.00 199.94 41100.00 199.75 5298.67 67100.00 166.97 40999.16 81100.00 1100.00 1100.00 1100.00 1
test_prior99.90 73100.00 199.75 9399.73 5699.97 125100.00 1
新几何199.99 12100.00 199.96 2499.81 4297.89 121100.00 1100.00 199.20 78100.00 197.91 260100.00 1100.00 1
旧先验199.99 4999.88 7499.82 40100.00 199.27 73100.00 1100.00 1
无先验100.00 199.80 4397.98 112100.00 199.33 187100.00 1
原ACMM199.93 67100.00 199.80 8999.66 6398.18 95100.00 1100.00 199.43 50100.00 199.50 178100.00 1100.00 1
test22299.99 4999.90 60100.00 199.69 6297.66 141100.00 1100.00 199.30 69100.00 1100.00 1
testdata99.66 13099.99 4998.97 18799.73 5697.96 117100.00 1100.00 199.42 53100.00 199.28 192100.00 1100.00 1
131499.38 8299.19 10099.96 4298.88 30199.89 6799.24 35599.93 3098.88 4498.79 254100.00 197.02 182100.00 1100.00 1100.00 1100.00 1
MVS99.22 10998.96 12399.98 2399.00 28899.95 3299.24 35599.94 2298.14 9998.88 244100.00 195.63 215100.00 199.85 109100.00 1100.00 1
SD-MVS99.81 1199.75 1499.99 1299.99 4999.96 24100.00 199.42 13899.01 26100.00 1100.00 199.33 59100.00 1100.00 1100.00 1100.00 1
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MSLP-MVS++99.89 199.85 299.99 12100.00 199.96 24100.00 199.95 1999.11 7100.00 1100.00 199.60 17100.00 1100.00 1100.00 1100.00 1
APDe-MVScopyleft99.84 699.78 799.99 12100.00 199.98 17100.00 199.44 11699.06 12100.00 1100.00 199.56 2399.99 94100.00 1100.00 1100.00 1
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
APD-MVS_3200maxsize99.65 4699.55 5699.97 3199.99 4999.91 53100.00 199.48 7897.54 159100.00 1100.00 198.97 9999.99 9499.98 73100.00 1100.00 1
ACMMPR99.74 2299.67 2799.96 42100.00 199.89 67100.00 199.76 4997.95 118100.00 1100.00 199.29 70100.00 199.99 61100.00 1100.00 1
MP-MVScopyleft99.61 5899.49 6699.98 2399.99 4999.94 41100.00 199.42 13897.82 12899.99 105100.00 198.20 139100.00 199.99 61100.00 1100.00 1
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PGM-MVS99.69 3599.61 4299.95 5199.99 4999.85 82100.00 199.58 6797.69 139100.00 1100.00 199.44 46100.00 199.79 119100.00 1100.00 1
MCST-MVS99.85 399.80 4100.00 1100.00 199.99 5100.00 199.73 5699.19 5100.00 1100.00 199.31 64100.00 1100.00 1100.00 1100.00 1
CDPH-MVS99.73 2599.64 3399.99 12100.00 199.97 21100.00 199.42 13898.02 108100.00 1100.00 199.32 6299.99 94100.00 1100.00 1100.00 1
test1299.95 5199.99 4999.89 6799.42 138100.00 199.24 7599.97 125100.00 1100.00 1
TSAR-MVS + GP.99.61 5899.69 2299.35 17599.99 4998.06 245100.00 199.36 21299.83 2100.00 1100.00 198.95 10399.99 94100.00 199.11 163100.00 1
mPP-MVS99.69 3599.60 4399.97 31100.00 199.91 53100.00 199.42 13897.91 120100.00 1100.00 199.04 94100.00 1100.00 1100.00 1100.00 1
HPM-MVS_fast99.60 6199.49 6699.91 7099.99 4999.78 90100.00 199.42 13897.09 196100.00 1100.00 198.95 10399.96 13899.98 73100.00 1100.00 1
HPM-MVScopyleft99.59 6299.50 6499.89 75100.00 199.70 102100.00 199.42 13897.46 170100.00 1100.00 198.60 12899.96 13899.99 61100.00 1100.00 1
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
EPNet_dtu98.53 17898.23 19199.43 16299.92 10499.01 18199.96 24899.47 7998.80 5799.96 12199.96 21198.56 13099.30 26587.78 37899.68 148100.00 1
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CHOSEN 1792x268899.00 13598.91 13299.25 19099.90 10897.79 265100.00 199.99 1398.79 6098.28 284100.00 193.63 24399.95 15299.66 15699.95 117100.00 1
APD-MVScopyleft99.68 4099.58 4699.97 3199.99 4999.96 24100.00 199.42 13897.53 161100.00 1100.00 199.27 7399.97 125100.00 1100.00 1100.00 1
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CNVR-MVS99.85 399.80 4100.00 1100.00 199.99 5100.00 199.77 4899.07 10100.00 1100.00 199.39 57100.00 1100.00 1100.00 1100.00 1
NCCC99.86 299.82 3100.00 1100.00 199.99 5100.00 199.71 6199.07 10100.00 1100.00 199.59 20100.00 1100.00 1100.00 1100.00 1
114514_t99.39 8199.25 9099.81 9899.97 8999.48 133100.00 199.42 13895.53 283100.00 1100.00 198.37 13799.95 15299.97 83100.00 1100.00 1
CP-MVS99.67 4399.58 4699.95 51100.00 199.84 84100.00 199.42 13897.77 132100.00 1100.00 199.07 88100.00 1100.00 1100.00 1100.00 1
SteuartSystems-ACMMP99.78 1699.71 2099.98 2399.76 14899.95 32100.00 199.42 13898.69 65100.00 1100.00 199.52 3299.99 94100.00 1100.00 1100.00 1
Skip Steuart: Steuart Systems R&D Blog.
DELS-MVS99.62 5699.56 5499.82 9399.92 10499.45 135100.00 199.78 4798.92 3999.73 188100.00 197.70 158100.00 199.93 95100.00 1100.00 1
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CPTT-MVS99.49 7299.38 7499.85 87100.00 199.54 118100.00 199.42 13897.58 15699.98 111100.00 197.43 173100.00 199.99 61100.00 1100.00 1
DP-MVS Recon99.76 1899.69 2299.98 23100.00 199.95 32100.00 199.52 7297.99 11099.99 105100.00 199.72 12100.00 199.96 85100.00 1100.00 1
MVS_111021_LR99.70 3299.65 3199.88 7999.96 9499.70 102100.00 199.97 1798.96 32100.00 1100.00 197.93 14799.95 15299.99 61100.00 1100.00 1
DP-MVS98.86 15198.54 16799.81 9899.97 8999.45 13599.52 32899.40 18894.35 31798.36 277100.00 196.13 20599.97 12599.12 203100.00 1100.00 1
QAPM98.99 13898.66 15699.96 4299.01 28499.87 7699.88 27099.93 3097.99 11098.68 258100.00 193.17 251100.00 199.32 188100.00 1100.00 1
HyFIR lowres test99.32 9299.24 9299.58 14599.95 9699.26 154100.00 199.99 1396.72 22799.29 21699.91 23199.49 3999.47 24999.74 12998.08 209100.00 1
PAPM_NR99.74 2299.66 3099.99 12100.00 199.96 24100.00 199.47 7997.87 123100.00 1100.00 199.60 17100.00 1100.00 1100.00 1100.00 1
PAPR99.76 1899.68 2599.99 12100.00 199.96 24100.00 199.47 7998.16 96100.00 1100.00 199.51 33100.00 1100.00 1100.00 1100.00 1
IB-MVS96.24 1297.54 22996.95 24499.33 17999.67 16698.10 242100.00 199.47 7997.42 17499.26 21799.69 27198.83 11699.89 17499.43 18078.77 390100.00 1
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MVS_111021_HR99.71 2999.63 3799.93 6799.95 9699.83 85100.00 1100.00 198.89 43100.00 1100.00 197.85 15199.95 152100.00 1100.00 1100.00 1
CSCG99.28 9899.35 8299.05 19999.99 4997.15 289100.00 199.47 7997.44 17299.42 204100.00 197.83 154100.00 199.99 61100.00 1100.00 1
API-MVS99.72 2699.70 2199.79 10599.97 8999.37 14599.96 24899.94 2298.48 75100.00 1100.00 198.92 108100.00 1100.00 1100.00 1100.00 1
PAPM99.78 1699.76 1299.85 8799.01 28499.95 32100.00 199.75 5299.37 399.99 105100.00 199.76 1199.60 217100.00 1100.00 1100.00 1
ACMMPcopyleft99.65 4699.57 4999.89 7599.99 4999.66 10599.75 29599.73 5698.16 9699.75 186100.00 198.90 110100.00 199.96 8599.88 129100.00 1
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CNLPA99.72 2699.65 3199.91 7099.97 8999.72 97100.00 199.47 7998.43 7899.88 162100.00 199.14 84100.00 199.97 83100.00 1100.00 1
PHI-MVS99.50 7099.39 7399.82 93100.00 199.45 135100.00 199.94 2296.38 252100.00 1100.00 198.18 140100.00 1100.00 1100.00 1100.00 1
PVSNet94.91 1899.30 9699.25 9099.44 160100.00 198.32 227100.00 199.86 3898.04 107100.00 1100.00 196.10 206100.00 199.55 17199.73 145100.00 1
PVSNet_093.57 1996.41 28195.74 29798.41 23599.84 11795.22 318100.00 1100.00 198.08 10597.55 32299.78 25984.40 349100.00 1100.00 181.99 383100.00 1
DeepPCF-MVS98.03 498.54 17799.72 1994.98 34799.99 4984.94 386100.00 199.42 13899.98 1100.00 1100.00 198.11 142100.00 1100.00 1100.00 1100.00 1
DeepC-MVS_fast98.92 199.75 2099.67 2799.99 1299.99 4999.96 2499.73 30199.52 7299.06 12100.00 1100.00 198.80 119100.00 199.95 91100.00 1100.00 1
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MG-MVS99.75 2099.68 2599.97 31100.00 199.91 5399.98 23799.47 7999.09 9100.00 1100.00 198.59 129100.00 199.95 91100.00 1100.00 1
AdaColmapbinary99.44 7899.26 8999.95 51100.00 199.86 7999.70 30699.99 1398.53 7399.90 157100.00 195.34 217100.00 199.92 96100.00 1100.00 1
MAR-MVS99.49 7299.36 8099.89 7599.97 8999.66 10599.74 29699.95 1997.89 121100.00 1100.00 196.71 196100.00 1100.00 1100.00 1100.00 1
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
3Dnovator+95.58 1599.03 12798.71 15399.96 4298.99 29199.89 67100.00 199.51 7698.96 3298.32 281100.00 192.78 257100.00 199.87 106100.00 1100.00 1
3Dnovator95.63 1499.06 12398.76 14699.96 4298.86 30599.90 6099.98 23799.93 3098.95 3598.49 273100.00 192.91 255100.00 199.71 138100.00 1100.00 1
TAPA-MVS96.40 1097.64 22197.37 23098.45 23399.94 9995.70 313100.00 199.40 18897.65 14299.53 196100.00 199.31 6499.66 21480.48 393100.00 1100.00 1
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
MP-MVS-pluss99.61 5899.50 6499.97 3199.98 8599.92 50100.00 199.42 13897.53 16199.77 183100.00 198.77 120100.00 199.99 61100.00 199.99 109
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
HPM-MVS++copyleft99.82 999.76 1299.99 1299.99 4999.98 17100.00 199.83 3998.88 4499.96 121100.00 199.21 77100.00 1100.00 1100.00 199.99 109
fmvsm_s_conf0.5_n_a99.32 9299.15 10599.81 9899.80 13899.47 134100.00 199.35 22398.22 91100.00 1100.00 195.21 22299.99 9499.96 8599.86 13399.98 111
fmvsm_s_conf0.5_n99.21 11099.01 11699.83 9199.84 11799.53 120100.00 199.38 20398.29 90100.00 1100.00 193.62 24499.99 9499.99 6199.93 12299.98 111
thres100view90099.25 10599.01 11699.95 5199.81 12799.87 76100.00 199.94 2297.13 19499.83 16999.96 21197.01 183100.00 199.59 16697.85 22199.98 111
tfpn200view999.26 10199.03 11499.96 4299.81 12799.89 67100.00 199.94 2297.23 18999.83 16999.96 21197.04 179100.00 199.59 16697.85 22199.98 111
thres20099.27 9999.04 11399.96 4299.81 12799.90 60100.00 199.94 2297.31 18499.83 16999.96 21197.04 179100.00 199.62 16297.88 21999.98 111
LCM-MVSNet-Re96.52 27497.21 24094.44 35199.27 26385.80 38499.85 27496.61 40195.98 26792.75 37598.48 36293.97 24097.55 37099.58 16998.43 18499.98 111
JIA-IIPM97.09 24896.34 27099.36 17498.88 30198.59 20899.81 28099.43 12284.81 38899.96 12190.34 39898.55 13199.52 24297.00 28898.28 19999.98 111
fmvsm_s_conf0.1_n_a98.71 16198.36 18299.78 10999.09 27499.42 139100.00 199.26 26897.42 174100.00 1100.00 189.78 29699.96 13899.82 11899.85 13699.97 118
fmvsm_s_conf0.1_n98.77 15698.42 17499.82 9399.47 23799.52 123100.00 199.27 26297.53 161100.00 1100.00 189.73 29899.96 13899.84 11299.93 12299.97 118
test_fmvsmconf0.1_n99.25 10599.05 11299.82 9398.92 29799.55 116100.00 199.23 27998.91 4199.75 18699.97 19994.79 23099.94 16499.94 9399.99 9899.97 118
thres600view799.24 10899.00 11899.95 5199.81 12799.87 76100.00 199.94 2297.13 19499.83 16999.96 21197.01 183100.00 199.54 17497.77 22999.97 118
thres40099.26 10199.03 11499.95 5199.81 12799.89 67100.00 199.94 2297.23 18999.83 16999.96 21197.04 179100.00 199.59 16697.85 22199.97 118
OMC-MVS99.27 9999.38 7498.96 20799.95 9697.06 293100.00 199.40 18898.83 5399.88 162100.00 197.01 18399.86 18099.47 17999.84 13899.97 118
dmvs_re97.54 22997.88 20996.54 32999.55 20890.35 37399.86 27299.46 9497.00 20299.41 209100.00 190.78 28299.30 26599.60 16595.24 27399.96 124
CANet99.40 8099.24 9299.89 7599.99 4999.76 92100.00 199.73 5698.40 7999.78 182100.00 195.28 21899.96 138100.00 199.99 9899.96 124
GG-mvs-BLEND99.59 14199.54 20999.49 12999.17 36899.52 7299.96 12199.68 275100.00 199.33 26499.71 13899.99 9899.96 124
gg-mvs-nofinetune96.95 25796.10 27999.50 15399.41 24799.36 14699.07 38199.52 7283.69 39099.96 12183.60 406100.00 199.20 26999.68 14999.99 9899.96 124
VNet99.04 12598.75 14799.90 7399.81 12799.75 9399.50 33099.47 7998.36 84100.00 199.99 18694.66 232100.00 199.90 9997.09 24399.96 124
BH-w/o98.82 15498.81 14198.88 21299.62 18996.71 301100.00 199.28 25497.09 19698.81 252100.00 194.91 22899.96 13899.54 174100.00 199.96 124
patch_mono-299.04 12599.79 696.81 32499.92 10490.47 372100.00 199.41 18498.95 35100.00 1100.00 199.78 8100.00 1100.00 1100.00 199.95 130
dcpmvs_298.87 15099.53 5996.90 31899.87 11490.88 37199.94 25899.07 33698.20 94100.00 1100.00 198.69 12499.86 180100.00 1100.00 199.95 130
Patchmatch-test97.83 21397.42 22699.06 19799.08 27597.66 26998.66 38999.21 29093.65 33298.25 28899.58 29899.47 4399.57 22490.25 36698.59 17699.95 130
HY-MVS96.53 999.50 7099.35 8299.96 4299.81 12799.93 4599.64 313100.00 197.97 11499.84 16699.85 24498.94 10599.99 9499.86 10798.23 20199.95 130
PatchMatch-RL99.02 13298.78 14399.74 11599.99 4999.29 151100.00 1100.00 198.38 8099.89 16099.81 25393.14 25399.99 9497.85 26299.98 10899.95 130
test250699.48 7499.38 7499.75 11499.89 11099.51 12499.45 334100.00 198.38 8099.83 169100.00 198.86 11299.81 19599.25 19398.78 17199.94 135
test111198.42 18798.12 19599.29 18499.88 11298.15 23799.46 332100.00 198.36 8499.42 204100.00 187.91 31999.79 19799.31 18998.78 17199.94 135
ECVR-MVScopyleft98.43 18598.14 19499.32 18199.89 11098.21 23599.46 332100.00 198.38 8099.47 203100.00 187.91 31999.80 19699.35 18598.78 17199.94 135
test_yl99.51 6799.37 7799.95 5199.82 12199.90 60100.00 199.47 7997.48 168100.00 1100.00 199.80 5100.00 199.98 7397.75 23099.94 135
DCV-MVSNet99.51 6799.37 7799.95 5199.82 12199.90 60100.00 199.47 7997.48 168100.00 1100.00 199.80 5100.00 199.98 7397.75 23099.94 135
LFMVS97.42 23596.62 25699.81 9899.80 13899.50 12699.16 36999.56 7094.48 313100.00 1100.00 179.35 374100.00 199.89 10197.37 23999.94 135
WTY-MVS99.54 6699.40 7299.95 5199.81 12799.93 45100.00 1100.00 197.98 11299.84 166100.00 198.94 10599.98 11899.86 10798.21 20299.94 135
PMMVS99.12 11898.97 12299.58 14599.57 20598.98 185100.00 199.30 24297.14 19399.96 121100.00 196.53 20299.82 19299.70 14198.49 18099.94 135
F-COLMAP99.64 4899.64 3399.67 12799.99 4999.07 172100.00 199.44 11698.30 8999.90 157100.00 199.18 8099.99 9499.91 98100.00 199.94 135
PLCcopyleft98.56 299.70 3299.74 1699.58 145100.00 198.79 194100.00 199.54 7198.58 7299.96 121100.00 199.59 20100.00 1100.00 1100.00 199.94 135
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
TR-MVS98.14 20297.74 21599.33 17999.59 19798.28 23099.27 35299.21 29096.42 24899.15 22499.94 22488.87 31199.79 19798.88 21398.29 19899.93 145
PatchmatchNetpermissive99.03 12798.96 12399.26 18999.49 23298.33 22599.38 34299.45 10296.64 23699.96 12199.58 29899.49 3999.50 24597.63 26999.00 16799.93 145
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
ET-MVSNet_ETH3D96.41 28195.48 31199.20 19399.81 12799.75 93100.00 199.02 35297.30 18678.33 398100.00 197.73 15697.94 36099.70 14187.41 36599.92 147
LS3D99.31 9499.13 10699.87 8099.99 4999.71 9899.55 32499.46 9497.32 18299.82 177100.00 196.85 19399.97 12599.14 200100.00 199.92 147
MGCFI-Net99.01 13498.70 15599.93 6799.74 15299.94 41100.00 199.29 24797.60 154100.00 1100.00 195.10 22499.96 13899.74 12996.85 25099.91 149
sasdasda99.03 12798.73 14999.94 6399.75 15099.95 32100.00 199.30 24297.64 144100.00 1100.00 195.22 22099.97 12599.76 12696.90 24899.91 149
GSMVS99.91 149
sam_mvs199.29 7099.91 149
SCA98.30 19497.98 20799.23 19199.41 24798.25 23299.99 21399.45 10296.91 20999.76 18599.58 29889.65 30099.54 23698.31 24398.79 17099.91 149
Patchmatch-RL test93.49 33193.63 33093.05 36291.78 39383.41 38898.21 39396.95 39891.58 36091.05 37897.64 37899.40 5695.83 38794.11 33681.95 38499.91 149
canonicalmvs99.03 12798.73 14999.94 6399.75 15099.95 32100.00 199.30 24297.64 144100.00 1100.00 195.22 22099.97 12599.76 12696.90 24899.91 149
test-LLR99.03 12798.91 13299.40 16999.40 25299.28 152100.00 199.45 10296.70 22999.42 20499.12 32599.31 6499.01 27796.82 29499.99 9899.91 149
TESTMET0.1,199.08 12198.96 12399.44 16099.63 18499.38 142100.00 199.45 10295.53 28399.48 200100.00 199.71 1399.02 27696.84 29399.99 9899.91 149
test-mter98.96 14298.82 13999.40 16999.40 25299.28 152100.00 199.45 10295.44 29299.42 20499.12 32599.70 1499.01 27796.82 29499.99 9899.91 149
MSDG98.90 14998.63 15999.70 12399.92 10499.25 156100.00 199.37 20695.71 27799.40 210100.00 196.58 19899.95 15296.80 29699.94 11999.91 149
test_fmvsmconf0.01_n98.60 17198.24 18899.67 12796.90 37199.21 16299.99 21399.04 34998.80 5799.57 19599.96 21190.12 29099.91 17199.89 10199.89 12799.90 160
alignmvs99.38 8299.21 9699.91 7099.73 15399.92 50100.00 199.51 7697.61 151100.00 1100.00 199.06 8999.93 16899.83 11397.12 24299.90 160
PVSNet_Blended99.48 7499.36 8099.83 9199.98 8599.60 110100.00 1100.00 197.79 130100.00 1100.00 196.57 19999.99 94100.00 199.88 12999.90 160
EPMVS99.25 10599.13 10699.60 13999.60 19399.20 16399.60 319100.00 196.93 20699.92 15299.36 31699.05 9199.71 21198.77 22098.94 16899.90 160
PCF-MVS98.23 398.69 16498.37 18099.62 13699.78 14599.02 17999.23 36099.06 34496.43 24698.08 293100.00 194.72 23199.95 15298.16 25099.91 12599.90 160
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
GA-MVS97.72 21997.27 23699.06 19799.24 26697.93 256100.00 199.24 27595.80 27598.99 23699.64 28489.77 29799.36 26095.12 32397.62 23899.89 165
baseline198.91 14798.61 16199.81 9899.71 15499.77 9199.78 28699.44 11697.51 16598.81 25299.99 18698.25 13899.76 20498.60 23295.41 26399.89 165
tpmvs98.59 17298.38 17899.23 19199.69 15797.90 25799.31 35099.47 7994.52 31199.68 19199.28 32097.64 16199.89 17497.71 26698.17 20699.89 165
EPNet99.62 5699.69 2299.42 16499.99 4998.37 221100.00 199.89 3798.83 53100.00 1100.00 198.97 99100.00 199.90 9999.61 15599.89 165
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PVSNet_Blended_VisFu99.33 9099.18 10399.78 10999.82 12199.49 129100.00 199.95 1997.36 17799.63 193100.00 196.45 20399.95 15299.79 11999.65 15299.89 165
dp98.72 16098.61 16199.03 20299.53 21297.39 27799.45 33499.39 20195.62 28099.94 14799.52 30698.83 11699.82 19296.77 29998.42 18599.89 165
sss99.45 7799.34 8499.80 10399.76 14899.50 126100.00 199.91 3697.72 13599.98 11199.94 22498.45 134100.00 199.53 17698.75 17499.89 165
Test_1112_low_res98.83 15398.60 16399.51 15099.69 15798.75 19699.99 21399.14 31396.81 21698.84 24999.06 32997.45 17099.89 17498.66 22597.75 23099.89 165
1112_ss98.91 14798.71 15399.51 15099.69 15798.75 19699.99 21399.15 30896.82 21598.84 249100.00 197.45 17099.89 17498.66 22597.75 23099.89 165
MDTV_nov1_ep13_2view99.24 15899.56 32396.31 25799.96 12198.86 11298.92 21199.89 165
Vis-MVSNet (Re-imp)98.99 13898.89 13699.29 18499.64 18298.89 19099.98 23799.31 23896.74 22499.48 200100.00 198.11 14299.10 27298.39 23998.34 19399.89 165
ETVMVS99.16 11598.98 12199.69 12499.67 16699.56 115100.00 199.45 10296.36 25399.98 11199.95 21998.65 12599.64 21599.11 20497.63 23799.88 176
GeoE98.06 20597.65 22199.29 18499.47 23798.41 215100.00 199.19 29494.85 30098.88 244100.00 191.21 27499.59 21997.02 28798.19 20499.88 176
UA-Net99.06 12398.83 13899.74 11599.52 21999.40 14199.08 37999.45 10297.64 14499.83 169100.00 195.80 21099.94 16498.35 24199.80 14399.88 176
ADS-MVSNet298.28 19798.51 16997.62 29099.51 22495.03 32199.24 35599.41 18495.52 28599.96 12199.70 26897.57 16397.94 36097.11 28598.54 17799.88 176
ADS-MVSNet98.70 16398.51 16999.28 18799.51 22498.39 21899.24 35599.44 11695.52 28599.96 12199.70 26897.57 16399.58 22397.11 28598.54 17799.88 176
mvs_anonymous98.80 15598.60 16399.38 17399.57 20599.24 158100.00 199.21 29095.87 26998.92 24099.82 25096.39 20499.03 27599.13 20298.50 17999.88 176
tpm98.24 19998.22 19298.32 24299.13 27095.79 31299.53 32799.12 32395.20 29499.96 12199.36 31697.58 16299.28 26797.41 27796.67 25199.88 176
EC-MVSNet99.19 11199.09 11099.48 15699.42 24599.07 172100.00 199.21 29096.95 20499.96 121100.00 196.88 19299.48 24799.64 15899.79 14499.88 176
IS-MVSNet99.08 12198.91 13299.59 14199.65 17699.38 14299.78 28699.24 27596.70 22999.51 198100.00 198.44 13599.52 24298.47 23798.39 18899.88 176
CS-MVS99.33 9099.27 8699.50 15399.99 4999.00 183100.00 199.13 31797.26 18799.96 121100.00 197.79 15599.64 21599.64 15899.67 15099.87 185
Fast-Effi-MVS+98.40 19098.02 20599.55 14999.63 18499.06 174100.00 199.15 30895.07 29599.42 20499.95 21993.26 25099.73 20997.44 27598.24 20099.87 185
dmvs_testset93.27 33495.48 31186.65 37498.74 30968.42 40399.92 26198.91 36396.19 26393.28 372100.00 191.06 27991.67 39989.64 37091.54 32799.86 187
MVS-HIRNet94.12 32892.73 34198.29 24499.33 25895.95 30899.38 34299.19 29474.54 39898.26 28786.34 40286.07 33899.06 27491.60 35599.87 13299.85 188
CR-MVSNet98.02 20897.71 21998.93 20899.31 25998.86 19199.13 37399.00 35596.53 24299.96 12198.98 33896.94 18998.10 35091.18 35798.40 18699.84 189
RPMNet95.26 31993.82 32799.56 14899.31 25998.86 19199.13 37399.42 13879.82 39599.96 12195.13 38895.69 21399.98 11877.54 39898.40 18699.84 189
ab-mvs98.42 18798.02 20599.61 13799.71 15499.00 18399.10 37699.64 6496.70 22999.04 23499.81 25390.64 28399.98 11899.64 15897.93 21699.84 189
FE-MVS99.16 11598.99 12099.66 13099.65 17699.18 16699.58 32199.43 12295.24 29399.91 15599.59 29699.37 5899.97 12598.31 24399.81 14199.83 192
Anonymous2024052996.93 25896.22 27599.05 19999.79 14297.30 28499.16 36999.47 7988.51 37898.69 257100.00 183.50 358100.00 199.83 11397.02 24599.83 192
CVMVSNet98.56 17598.47 17298.82 21499.11 27197.67 26899.74 29699.47 7997.57 15799.06 232100.00 195.72 21298.97 28298.21 24997.33 24099.83 192
tpm298.64 16798.58 16598.81 21699.42 24597.12 29099.69 30899.37 20693.63 33399.94 14799.67 27698.96 10299.47 24998.62 23197.95 21599.83 192
DeepC-MVS97.84 599.00 13598.80 14299.60 13999.93 10199.03 178100.00 199.40 18898.61 7199.33 214100.00 192.23 26699.95 15299.74 12999.96 11499.83 192
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
testing1199.26 10199.19 10099.46 15799.64 18298.61 206100.00 199.43 12296.94 20599.92 15299.94 22499.43 5099.97 12599.67 15297.79 22899.82 197
Syy-MVS96.17 29796.57 25895.00 34599.50 22887.37 382100.00 199.57 6896.23 25998.07 294100.00 192.41 26597.81 36385.34 38397.96 21399.82 197
myMVS_eth3d98.52 17998.51 16998.53 22999.50 22897.98 250100.00 199.57 6896.23 25998.07 294100.00 199.09 8797.81 36396.17 30697.96 21399.82 197
testing398.44 18498.37 18098.65 22299.51 22498.32 227100.00 199.62 6696.43 24697.93 30499.99 18699.11 8597.81 36394.88 32697.80 22699.82 197
EIA-MVS99.26 10199.19 10099.45 15999.63 18498.75 196100.00 199.27 26296.93 20699.95 145100.00 197.47 16999.79 19799.74 12999.72 14699.82 197
CS-MVS-test99.31 9499.27 8699.43 16299.99 4998.77 195100.00 199.19 29497.24 18899.96 121100.00 197.56 16599.70 21299.68 14999.81 14199.82 197
MVS_Test98.93 14698.65 15799.77 11299.62 18999.50 12699.99 21399.19 29495.52 28599.96 12199.86 23996.54 20199.98 11898.65 22798.48 18199.82 197
diffmvspermissive98.96 14298.73 14999.63 13499.54 20999.16 168100.00 199.18 30197.33 18199.96 121100.00 194.60 23399.91 17199.66 15698.33 19699.82 197
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
tpmrst98.98 14198.93 13099.14 19699.61 19197.74 26699.52 32899.36 21296.05 26699.98 11199.64 28499.04 9499.86 18098.94 20998.19 20499.82 197
testing9199.18 11299.10 10899.41 16599.60 19398.43 213100.00 199.43 12296.76 22099.82 17799.92 22999.05 9199.98 11899.62 16297.67 23499.81 206
testing9999.18 11299.10 10899.41 16599.60 19398.43 213100.00 199.43 12296.76 22099.84 16699.92 22999.06 8999.98 11899.62 16297.67 23499.81 206
testing22299.14 11798.94 12899.73 11899.67 16699.51 124100.00 199.43 12296.90 21199.99 10599.90 23398.55 13199.86 18098.85 21597.18 24199.81 206
ETV-MVS99.34 8899.24 9299.64 13399.58 20299.33 147100.00 199.25 27097.57 15799.96 121100.00 197.44 17299.79 19799.70 14199.65 15299.81 206
thisisatest051599.42 7999.31 8599.74 11599.59 19799.55 116100.00 199.46 9496.65 23599.92 152100.00 199.44 4699.85 18699.09 20599.63 15499.81 206
Effi-MVS+98.58 17398.24 18899.61 13799.60 19399.26 15497.85 39599.10 32696.22 26199.97 11699.89 23493.75 24199.77 20299.43 18098.34 19399.81 206
casdiffmvspermissive98.65 16698.38 17899.46 15799.52 21998.74 199100.00 199.15 30896.91 20999.05 233100.00 192.75 25899.83 18999.70 14198.38 19099.81 206
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
lupinMVS99.29 9799.16 10499.69 12499.45 24199.49 129100.00 199.15 30897.45 17199.97 116100.00 196.76 19499.76 20499.67 152100.00 199.81 206
casdiffmvs_mvgpermissive98.64 16798.39 17799.40 16999.50 22898.60 207100.00 199.22 28296.85 21399.10 227100.00 192.75 25899.78 20199.71 13898.35 19299.81 206
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline98.69 16498.45 17399.41 16599.52 21998.67 203100.00 199.17 30697.03 20199.13 225100.00 193.17 25199.74 20799.70 14198.34 19399.81 206
tpm cat198.05 20697.76 21398.92 20999.50 22897.10 29299.77 29199.30 24290.20 37299.72 18998.71 35397.71 15799.86 18096.75 30098.20 20399.81 206
CostFormer98.84 15298.77 14499.04 20199.41 24797.58 27199.67 31199.35 22394.66 30699.96 12199.36 31699.28 7299.74 20799.41 18297.81 22599.81 206
PatchT95.90 30994.95 32398.75 21999.03 28298.39 21899.08 37999.32 23385.52 38699.96 12194.99 39097.94 14698.05 35680.20 39498.47 18299.81 206
BH-untuned98.64 16798.65 15798.60 22599.59 19796.17 307100.00 199.28 25496.67 23498.41 276100.00 194.52 23499.83 18999.41 182100.00 199.81 206
UWE-MVS99.18 11299.06 11199.51 15099.67 16698.80 193100.00 199.43 12296.80 21799.93 15199.86 23999.79 799.94 16497.78 26498.33 19699.80 220
thisisatest053099.37 8499.27 8699.69 12499.59 19799.41 140100.00 199.46 9496.46 24599.90 157100.00 199.44 4699.85 18698.97 20899.58 15699.80 220
MIMVSNet97.06 25196.73 25298.05 27099.38 25696.64 30498.47 39199.35 22393.41 33899.48 20098.53 36089.66 29997.70 36994.16 33598.11 20899.80 220
SDMVSNet98.49 18298.08 19899.73 11899.82 12199.53 12099.99 21399.45 10297.62 14799.38 21199.86 23990.06 29399.88 17899.92 9696.61 25399.79 223
sd_testset97.81 21497.48 22498.79 21799.82 12196.80 29999.32 34799.45 10297.62 14799.38 21199.86 23985.56 34499.77 20299.72 13396.61 25399.79 223
FA-MVS(test-final)99.00 13598.75 14799.73 11899.63 18499.43 13899.83 27699.43 12295.84 27499.52 19799.37 31597.84 15399.96 13897.63 26999.68 14899.79 223
tttt051799.34 8899.23 9599.67 12799.57 20599.38 142100.00 199.46 9496.33 25699.89 160100.00 199.44 4699.84 18898.93 21099.46 15999.78 226
BH-RMVSNet98.46 18398.08 19899.59 14199.61 19199.19 164100.00 199.28 25497.06 20098.95 238100.00 188.99 30899.82 19298.83 218100.00 199.77 227
CDS-MVSNet98.96 14298.95 12799.01 20399.48 23498.36 22399.93 26099.37 20696.79 21899.31 21599.83 24799.77 1098.91 28698.07 25397.98 21199.77 227
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Vis-MVSNetpermissive98.52 17998.25 18699.34 17699.68 16198.55 20999.68 31099.41 18497.34 18099.94 147100.00 190.38 28999.70 21299.03 20798.84 16999.76 229
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
EPP-MVSNet99.10 12099.00 11899.40 16999.51 22498.68 20299.92 26199.43 12295.47 28999.65 192100.00 199.51 3399.76 20499.53 17698.00 21099.75 230
xiu_mvs_v2_base99.51 6799.41 7199.82 9399.70 15699.73 9699.92 26199.40 18898.15 98100.00 1100.00 198.50 133100.00 199.85 10999.13 16299.74 231
PS-MVSNAJ99.64 4899.57 4999.85 8799.78 14599.81 8799.95 25499.42 13898.38 80100.00 1100.00 198.75 121100.00 199.88 10399.99 9899.74 231
MVSFormer98.94 14598.82 13999.28 18799.45 24199.49 129100.00 199.13 31795.46 29099.97 116100.00 196.76 19498.59 31698.63 229100.00 199.74 231
jason99.11 11998.96 12399.59 14199.17 26899.31 150100.00 199.13 31797.38 17699.83 169100.00 195.54 21699.72 21099.57 17099.97 11199.74 231
jason: jason.
TAMVS98.76 15798.73 14998.86 21399.44 24397.69 26799.57 32299.34 22996.57 23999.12 22699.81 25398.83 11699.16 27097.97 25997.91 21799.73 235
VDD-MVS96.58 27395.99 28498.34 24099.52 21995.33 31699.18 36399.38 20396.64 23699.77 183100.00 172.51 389100.00 1100.00 196.94 24799.70 236
RPSCF97.37 23798.24 18894.76 35099.80 13884.57 38799.99 21399.05 34694.95 29899.82 177100.00 194.03 238100.00 198.15 25198.38 19099.70 236
AllTest98.55 17698.40 17698.99 20499.93 10197.35 280100.00 199.40 18897.08 19899.09 22899.98 19193.37 24799.95 15296.94 28999.84 13899.68 238
TestCases98.99 20499.93 10197.35 28099.40 18897.08 19899.09 22899.98 19193.37 24799.95 15296.94 28999.84 13899.68 238
xiu_mvs_v1_base_debu99.35 8599.21 9699.79 10599.67 16699.71 9899.78 28699.36 21298.13 100100.00 1100.00 197.00 186100.00 199.83 11399.07 16499.66 240
xiu_mvs_v1_base99.35 8599.21 9699.79 10599.67 16699.71 9899.78 28699.36 21298.13 100100.00 1100.00 197.00 186100.00 199.83 11399.07 16499.66 240
xiu_mvs_v1_base_debi99.35 8599.21 9699.79 10599.67 16699.71 9899.78 28699.36 21298.13 100100.00 1100.00 197.00 186100.00 199.83 11399.07 16499.66 240
h-mvs3397.03 25396.53 25998.51 23099.79 14295.90 31199.45 33499.45 10298.21 92100.00 199.78 25997.49 16799.99 9499.72 13374.92 39299.65 243
OpenMVScopyleft95.20 1798.76 15798.41 17599.78 10998.89 30099.81 8799.99 21399.76 4998.02 10898.02 299100.00 191.44 272100.00 199.63 16199.97 11199.55 244
cascas98.43 18598.07 20099.50 15399.65 17699.02 179100.00 199.22 28294.21 32099.72 18999.98 19192.03 26999.93 16899.68 14998.12 20799.54 245
CANet_DTU99.02 13298.90 13599.41 16599.88 11298.71 200100.00 199.29 24798.84 51100.00 1100.00 194.02 239100.00 198.08 25299.96 11499.52 246
DSMNet-mixed95.18 32095.21 31895.08 34296.03 37790.21 37499.65 31293.64 40792.91 34998.34 27997.40 37990.05 29495.51 38991.02 35997.86 22099.51 247
Fast-Effi-MVS+-dtu98.38 19198.56 16697.82 28499.58 20294.44 341100.00 199.16 30796.75 22299.51 19899.63 28895.03 22699.60 21797.71 26699.67 15099.42 248
UGNet98.41 18998.11 19699.31 18399.54 20998.55 20999.18 363100.00 198.64 7099.79 18099.04 33287.61 324100.00 199.30 19099.89 12799.40 249
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
VDDNet96.39 28595.55 30698.90 21099.27 26397.45 27599.15 37199.92 3491.28 36199.98 111100.00 173.55 385100.00 199.85 10996.98 24699.24 250
UniMVSNet_ETH3D95.28 31894.41 32497.89 28298.91 29895.14 31999.13 37399.35 22392.11 35697.17 33199.66 27870.28 39299.36 26097.88 26195.18 27799.16 251
baseline298.99 13898.93 13099.18 19499.26 26599.15 169100.00 199.46 9496.71 22896.79 340100.00 199.42 5399.25 26898.75 22299.94 11999.15 252
hse-mvs296.79 26196.38 26798.04 27299.68 16195.54 31599.81 28099.42 13898.21 92100.00 199.80 25697.49 16799.46 25399.72 13373.27 39599.12 253
AUN-MVS96.26 29295.67 30398.06 26699.68 16195.60 31499.82 27999.42 13896.78 21999.88 16299.80 25694.84 22999.47 24997.48 27473.29 39499.12 253
tt080596.52 27496.23 27497.40 29599.30 26293.55 34999.32 34799.45 10296.75 22297.88 30799.99 18679.99 37299.59 21997.39 27995.98 25699.06 255
test0.0.03 198.12 20498.03 20498.39 23699.11 27198.07 243100.00 199.93 3096.70 22996.91 33699.95 21999.31 6498.19 34091.93 35298.44 18398.91 256
testgi96.18 29595.93 28796.93 31798.98 29294.20 345100.00 199.07 33697.16 19296.06 35399.86 23984.08 35497.79 36690.38 36597.80 22698.81 257
Effi-MVS+-dtu98.51 18198.86 13797.47 29499.77 14794.21 344100.00 198.94 36097.61 15199.91 15598.75 35295.89 20899.51 24499.36 18499.48 15898.68 258
DeepMVS_CXcopyleft89.98 36798.90 29971.46 39899.18 30197.61 15196.92 33499.83 24786.07 33899.83 18996.02 30797.65 23698.65 259
COLMAP_ROBcopyleft97.10 798.29 19698.17 19398.65 22299.94 9997.39 27799.30 35199.40 18895.64 27897.75 313100.00 192.69 26299.95 15298.89 21299.92 12498.62 260
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
XVG-OURS-SEG-HR98.27 19898.31 18498.14 25699.59 19795.92 309100.00 199.36 21298.48 7599.21 219100.00 189.27 30599.94 16499.76 12699.17 16198.56 261
XVG-OURS98.30 19498.36 18298.13 25999.58 20295.91 310100.00 199.36 21298.69 6599.23 218100.00 191.20 27599.92 17099.34 18697.82 22498.56 261
HQP4-MVS99.17 22099.57 22497.77 263
HQP-MVS97.73 21897.85 21097.39 29699.07 27694.82 325100.00 199.40 18899.04 1599.17 22099.97 19988.61 31499.57 22499.79 11995.58 25797.77 263
cl2298.23 20098.11 19698.58 22899.82 12199.01 181100.00 199.28 25496.92 20898.33 28099.21 32298.09 14498.97 28298.72 22392.61 31097.76 265
miper_ehance_all_eth97.81 21497.66 22098.23 24899.49 23298.37 22199.99 21399.11 32494.78 30198.25 28899.21 32298.18 14098.57 31997.35 28192.61 31097.76 265
miper_enhance_ethall98.33 19398.27 18598.51 23099.66 17599.04 177100.00 199.22 28297.53 16198.51 27199.38 31499.49 3998.75 30398.02 25592.61 31097.76 265
cl____97.54 22997.32 23298.18 25299.47 23798.14 239100.00 199.10 32694.16 32397.60 32099.63 28897.52 16698.65 31096.47 30191.97 32297.76 265
DIV-MVS_self_test97.52 23297.35 23198.05 27099.46 24098.11 240100.00 199.10 32694.21 32097.62 31899.63 28897.65 16098.29 33696.47 30191.98 32197.76 265
miper_lstm_enhance97.40 23697.28 23497.75 28799.48 23497.52 272100.00 199.07 33694.08 32498.01 30099.61 29497.38 17497.98 35896.44 30491.47 33197.76 265
VPNet96.41 28195.76 29698.33 24198.61 31398.30 22999.48 33199.45 10296.98 20398.87 24699.88 23681.57 36698.93 28499.22 19887.82 36397.76 265
VPA-MVSNet97.03 25396.43 26598.82 21498.64 31299.32 14899.38 34299.47 7996.73 22698.91 24298.94 34387.00 33199.40 25899.23 19689.59 34797.76 265
HQP_MVS97.71 22097.82 21297.37 29799.00 28894.80 328100.00 199.40 18899.00 2799.08 23099.97 19988.58 31699.55 23399.79 11995.57 26197.76 265
plane_prior599.40 18899.55 23399.79 11995.57 26197.76 265
our_test_396.51 27696.35 26996.98 31497.61 35495.05 32099.98 23799.01 35494.68 30596.77 34299.06 32995.87 20998.14 34391.81 35392.37 31597.75 275
ppachtmachnet_test96.17 29795.89 28897.02 31197.61 35495.24 31799.99 21399.24 27593.31 34296.71 34399.62 29294.34 23698.07 35289.87 36792.30 31797.75 275
c3_l97.58 22697.42 22698.06 26699.48 23498.16 23699.96 24899.10 32694.54 31098.13 29299.20 32497.87 14998.25 33997.28 28291.20 33497.75 275
nrg03097.64 22197.27 23698.75 21998.34 32299.53 120100.00 199.22 28296.21 26298.27 28699.95 21994.40 23598.98 28099.23 19689.78 34697.75 275
v14419296.40 28495.81 29198.17 25497.89 34598.11 24099.99 21399.06 34493.39 33998.75 25599.09 32790.43 28898.66 30993.10 34490.55 34197.75 275
v192192096.16 29995.50 30798.14 25697.88 34797.96 25399.99 21399.07 33693.33 34198.60 26399.24 32189.37 30498.71 30691.28 35690.74 33997.75 275
v119296.18 29595.49 30998.26 24798.01 34098.15 23799.99 21399.08 33293.36 34098.54 26798.97 34189.47 30398.89 28991.15 35890.82 33797.75 275
v14896.29 29095.84 29097.63 28897.74 34996.53 305100.00 199.07 33693.52 33698.01 30099.42 31391.22 27398.60 31496.37 30587.22 36797.75 275
iter_conf0598.73 15998.77 14498.60 22599.65 17699.22 161100.00 199.22 28296.68 23398.98 23799.97 19999.99 398.84 29499.29 19195.11 28297.75 275
v124095.96 30795.25 31698.07 26297.91 34497.87 26199.96 24899.07 33693.24 34498.64 26198.96 34288.98 30998.61 31289.58 37190.92 33697.75 275
v2v48296.70 26796.18 27698.27 24598.04 33998.39 218100.00 199.13 31794.19 32298.58 26499.08 32890.48 28798.67 30895.69 31290.44 34297.75 275
EI-MVSNet97.98 20997.93 20898.16 25599.11 27197.84 26299.74 29699.29 24794.39 31698.65 259100.00 197.21 17798.88 29297.62 27195.31 26897.75 275
MDA-MVSNet-bldmvs91.65 34689.94 35496.79 32596.72 37296.70 30299.42 33998.94 36088.89 37666.97 40698.37 36681.43 36795.91 38689.24 37489.46 35097.75 275
UniMVSNet_NR-MVSNet97.16 24596.80 24998.22 24998.38 32198.41 215100.00 199.45 10296.14 26497.76 31099.64 28495.05 22598.50 32597.98 25686.84 36897.75 275
DU-MVS96.93 25896.49 26298.22 24998.31 32598.41 215100.00 199.37 20696.41 24997.76 31099.65 28092.14 26798.50 32597.98 25686.84 36897.75 275
UniMVSNet (Re)97.29 24196.85 24898.59 22798.49 31899.13 170100.00 199.42 13896.52 24398.24 29098.90 34694.93 22798.89 28997.54 27287.61 36497.75 275
NR-MVSNet96.63 27096.04 28298.38 23798.31 32598.98 18599.22 36299.35 22395.87 26994.43 36899.65 28092.73 26098.40 33296.78 29788.05 36197.75 275
TranMVSNet+NR-MVSNet96.45 28096.01 28397.79 28598.00 34197.62 270100.00 199.35 22395.98 26797.31 32799.64 28490.09 29298.00 35796.89 29286.80 37197.75 275
Patchmtry96.81 26096.37 26898.14 25699.31 25998.55 20998.91 38499.00 35590.45 36897.92 30598.98 33896.94 18998.12 34594.27 33291.53 32897.75 275
N_pmnet91.88 34493.37 33387.40 37397.24 36966.33 40699.90 26591.05 40989.77 37495.65 35798.58 35990.05 29498.11 34785.39 38292.72 30997.75 275
XXY-MVS97.14 24796.63 25598.67 22198.65 31198.92 18999.54 32699.29 24795.57 28297.63 31699.83 24787.79 32399.35 26298.39 23992.95 30797.75 275
IterMVS-LS97.56 22797.44 22597.92 28199.38 25697.90 25799.89 26899.10 32694.41 31598.32 28199.54 30597.21 17798.11 34797.50 27391.62 32697.75 275
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CLD-MVS97.64 22197.74 21597.36 29899.01 28494.76 333100.00 199.34 22999.30 499.00 23599.97 19987.49 32599.57 22499.96 8595.58 25797.75 275
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
eth_miper_zixun_eth97.47 23397.28 23498.06 26699.41 24797.94 25599.62 31799.08 33294.46 31498.19 29199.56 30296.91 19198.50 32596.78 29791.49 32997.74 298
FIs97.95 21097.73 21898.62 22498.53 31799.24 158100.00 199.43 12296.74 22497.87 30899.82 25095.27 21998.89 28998.78 21993.07 30597.74 298
v114496.51 27695.97 28698.13 25997.98 34298.04 24799.99 21399.08 33293.51 33798.62 26298.98 33890.98 28198.62 31193.79 33990.79 33897.74 298
YYNet192.44 34090.92 34897.03 31096.20 37597.06 29399.99 21399.14 31388.21 38067.93 40398.43 36588.63 31396.28 38290.64 36089.08 35497.74 298
MDA-MVSNet_test_wron92.61 33991.09 34797.19 30796.71 37397.26 286100.00 199.14 31388.61 37767.90 40498.32 36889.03 30796.57 37890.47 36489.59 34797.74 298
WR-MVS97.09 24896.64 25498.46 23298.43 31999.09 17199.97 24399.33 23195.62 28097.76 31099.67 27691.17 27698.56 32198.49 23689.28 35297.74 298
IterMVS-SCA-FT96.72 26696.42 26697.62 29099.40 25296.83 29899.99 21399.14 31394.65 30797.55 32299.72 26389.65 30098.31 33595.62 31592.05 31997.73 304
Anonymous2023121196.29 29095.70 29998.07 26299.80 13897.49 27399.15 37199.40 18889.11 37597.75 31399.45 31188.93 31098.98 28098.26 24889.47 34997.73 304
FC-MVSNet-test97.84 21297.63 22298.45 23398.30 32799.05 176100.00 199.43 12296.63 23897.61 31999.82 25095.19 22398.57 31998.64 22893.05 30697.73 304
mvsmamba98.13 20398.06 20198.32 24298.22 33298.50 212100.00 199.22 28296.41 24998.91 24299.96 21195.69 21398.73 30599.19 19994.95 28997.73 304
MVSTER98.58 17398.52 16898.77 21899.65 17699.68 104100.00 199.29 24795.63 27998.65 25999.80 25699.78 898.88 29298.59 23395.31 26897.73 304
FMVSNet397.30 24096.95 24498.37 23899.65 17699.25 15699.71 30499.28 25494.23 31898.53 26898.91 34593.30 24998.11 34795.31 31993.60 29997.73 304
FMVSNet296.22 29395.60 30598.06 26699.53 21298.33 22599.45 33499.27 26293.71 32898.03 29798.84 34884.23 35198.10 35093.97 33793.40 30297.73 304
OPM-MVS97.21 24297.18 24197.32 30198.08 33894.66 334100.00 199.28 25498.65 6998.92 24099.98 19186.03 34099.56 22898.28 24795.41 26397.72 311
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
pmmvs595.94 30895.61 30496.95 31597.42 36594.66 334100.00 198.08 38193.60 33497.05 33299.43 31287.02 33098.46 32995.76 30992.12 31897.72 311
RRT_MVS97.77 21697.76 21397.78 28697.89 34597.06 293100.00 199.29 24795.74 27698.00 30299.97 19995.94 20798.55 32298.87 21494.18 29697.72 311
pm-mvs195.76 31195.01 32198.00 27498.23 33197.45 27599.24 35599.04 34993.13 34795.93 35599.72 26386.28 33698.84 29495.62 31587.92 36297.72 311
GBi-Net96.07 30395.80 29396.89 31999.53 21294.87 32299.18 36399.27 26293.71 32898.53 26898.81 34984.23 35198.07 35295.31 31993.60 29997.72 311
test196.07 30395.80 29396.89 31999.53 21294.87 32299.18 36399.27 26293.71 32898.53 26898.81 34984.23 35198.07 35295.31 31993.60 29997.72 311
FMVSNet194.45 32393.63 33096.89 31998.87 30494.87 32299.18 36399.27 26290.95 36597.31 32798.81 34972.89 38898.07 35292.61 34692.81 30897.72 311
IterMVS96.76 26396.46 26497.63 28899.41 24796.89 29699.99 21399.13 31794.74 30497.59 32199.66 27889.63 30298.28 33795.71 31192.31 31697.72 311
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
pmmvs497.17 24496.80 24998.27 24597.68 35198.64 205100.00 199.18 30194.22 31998.55 26699.71 26593.67 24298.47 32895.66 31392.57 31397.71 319
v7n96.06 30595.42 31597.99 27697.58 35797.35 28099.86 27299.11 32492.81 35397.91 30699.49 30890.99 28098.92 28592.51 34888.49 35997.70 320
PS-MVSNAJss98.03 20798.06 20197.94 27897.63 35297.33 28399.89 26899.23 27996.27 25898.03 29799.59 29698.75 12198.78 29898.52 23594.61 29397.70 320
LPG-MVS_test97.31 23997.32 23297.28 30398.85 30694.60 337100.00 199.37 20697.35 17898.85 24799.98 19186.66 33399.56 22899.55 17195.26 27097.70 320
LGP-MVS_train97.28 30398.85 30694.60 33799.37 20697.35 17898.85 24799.98 19186.66 33399.56 22899.55 17195.26 27097.70 320
SixPastTwentyTwo95.71 31295.49 30996.38 33297.42 36593.01 35499.84 27598.23 37694.75 30295.98 35499.97 19985.35 34598.43 33094.71 32793.17 30497.69 324
ACMM97.17 697.37 23797.40 22897.29 30299.01 28494.64 336100.00 199.25 27098.07 10698.44 27599.98 19187.38 32799.55 23399.25 19395.19 27697.69 324
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
EU-MVSNet96.63 27096.53 25996.94 31697.59 35696.87 29799.76 29399.47 7996.35 25496.85 33899.78 25992.57 26396.27 38395.33 31891.08 33597.68 326
K. test v395.46 31695.14 31996.40 33197.53 35993.40 35299.99 21399.23 27995.49 28892.70 37699.73 26284.26 35098.12 34593.94 33893.38 30397.68 326
lessismore_v096.05 33797.55 35891.80 36599.22 28291.87 37799.91 23183.50 35898.68 30792.48 34990.42 34397.68 326
XVG-ACMP-BASELINE96.60 27296.52 26196.84 32298.41 32093.29 35399.99 21399.32 23397.76 13498.51 27199.29 31981.95 36599.54 23698.40 23895.03 28497.68 326
ACMP97.00 897.19 24397.16 24297.27 30598.97 29394.58 340100.00 199.32 23397.97 11497.45 32499.98 19185.79 34299.56 22899.70 14195.24 27397.67 330
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
jajsoiax97.07 25096.79 25197.89 28297.28 36897.12 29099.95 25499.19 29496.55 24097.31 32799.69 27187.35 32998.91 28698.70 22495.12 28197.66 331
PS-CasMVS96.34 28895.78 29598.03 27398.18 33598.27 23199.71 30499.32 23394.75 30296.82 33999.65 28086.98 33298.15 34297.74 26588.85 35697.66 331
CP-MVSNet96.73 26496.25 27398.18 25298.21 33398.67 20399.77 29199.32 23395.06 29697.20 33099.65 28090.10 29198.19 34098.06 25488.90 35597.66 331
ACMH96.25 1196.77 26296.62 25697.21 30698.96 29494.43 34299.64 31399.33 23197.43 17396.55 34599.97 19983.52 35799.54 23699.07 20695.13 28097.66 331
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
mvs_tets97.00 25696.69 25397.94 27897.41 36797.27 28599.60 31999.18 30196.51 24497.35 32699.69 27186.53 33598.91 28698.84 21695.09 28397.65 335
PEN-MVS96.01 30695.48 31197.58 29297.74 34997.26 28699.90 26599.29 24794.55 30996.79 34099.55 30387.38 32797.84 36296.92 29187.24 36697.65 335
ACMH+96.20 1396.49 27996.33 27197.00 31299.06 28093.80 34799.81 28099.31 23897.32 18295.89 35699.97 19982.62 36399.54 23698.34 24294.63 29297.65 335
OurMVSNet-221017-096.14 30195.98 28596.62 32797.49 36293.44 35199.92 26198.16 37795.86 27197.65 31599.95 21985.71 34398.78 29894.93 32594.18 29697.64 338
pmmvs693.64 33092.87 33895.94 33997.47 36491.41 36898.92 38399.02 35287.84 38295.01 36199.61 29477.24 38098.77 30194.33 33186.41 37297.63 339
v1096.14 30195.50 30798.07 26298.19 33497.96 25399.83 27699.07 33692.10 35798.07 29498.94 34391.07 27898.61 31292.41 35189.82 34597.63 339
v896.35 28795.73 29898.21 25198.11 33798.23 23399.94 25899.07 33692.66 35498.29 28399.00 33791.46 27198.77 30194.17 33388.83 35797.62 341
DTE-MVSNet95.52 31494.99 32297.08 30897.49 36296.45 306100.00 199.25 27093.82 32796.17 35199.57 30187.81 32297.18 37194.57 32886.26 37397.62 341
test_djsdf97.55 22897.38 22998.07 26297.50 36097.99 249100.00 199.13 31795.46 29098.47 27499.85 24492.01 27098.59 31698.63 22995.36 26697.62 341
MIMVSNet191.96 34191.20 34494.23 35694.94 38891.69 36699.34 34699.22 28288.23 37994.18 36998.45 36375.52 38393.41 39679.37 39591.49 32997.60 344
FMVSNet595.32 31795.43 31494.99 34699.39 25592.99 35699.25 35499.24 27590.45 36897.44 32598.45 36395.78 21194.39 39287.02 37991.88 32397.59 345
LTVRE_ROB95.29 1696.32 28996.10 27996.99 31398.55 31593.88 34699.45 33499.28 25494.50 31296.46 34699.52 30684.86 34799.48 24797.26 28395.03 28497.59 345
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
TransMVSNet (Re)94.78 32293.72 32897.93 28098.34 32297.88 25999.23 36097.98 38591.60 35994.55 36599.71 26587.89 32198.36 33389.30 37384.92 37497.56 347
Baseline_NR-MVSNet96.16 29995.70 29997.56 29398.28 32896.79 300100.00 197.86 38991.93 35897.63 31699.47 31092.14 26798.35 33497.13 28486.83 37097.54 348
KD-MVS_2432*160094.15 32693.08 33597.35 29999.53 21297.83 26399.63 31599.19 29492.88 35096.29 34897.68 37698.84 11496.70 37589.73 36863.92 39997.53 349
miper_refine_blended94.15 32693.08 33597.35 29999.53 21297.83 26399.63 31599.19 29492.88 35096.29 34897.68 37698.84 11496.70 37589.73 36863.92 39997.53 349
USDC95.90 30995.70 29996.50 33098.60 31492.56 361100.00 198.30 37597.77 13296.92 33499.94 22481.25 36999.45 25493.54 34194.96 28897.49 351
ITE_SJBPF96.84 32298.96 29493.49 35098.12 37998.12 10398.35 27899.97 19984.45 34899.56 22895.63 31495.25 27297.49 351
Anonymous2023120693.45 33293.17 33494.30 35495.00 38789.69 37599.98 23798.43 37493.30 34394.50 36798.59 35890.52 28595.73 38877.46 39990.73 34097.48 353
WR-MVS_H96.73 26496.32 27297.95 27798.26 32997.88 25999.72 30399.43 12295.06 29696.99 33398.68 35593.02 25498.53 32397.43 27688.33 36097.43 354
tfpnnormal96.36 28695.69 30298.37 23898.55 31598.71 20099.69 30899.45 10293.16 34696.69 34499.71 26588.44 31898.99 27994.17 33391.38 33297.41 355
TinyColmap95.50 31595.12 32096.64 32698.69 31093.00 35599.40 34097.75 39196.40 25196.14 35299.87 23779.47 37399.50 24593.62 34094.72 29197.40 356
UnsupCasMVSNet_eth94.25 32593.89 32695.34 34197.63 35292.13 36299.73 30199.36 21294.88 29992.78 37398.63 35782.72 36196.53 37994.57 32884.73 37597.36 357
PVSNet_BlendedMVS98.71 16198.62 16098.98 20699.98 8599.60 110100.00 1100.00 197.23 189100.00 199.03 33496.57 19999.99 94100.00 194.75 29097.35 358
anonymousdsp97.16 24596.88 24698.00 27497.08 37098.06 24599.81 28099.15 30894.58 30897.84 30999.62 29290.49 28698.60 31497.98 25695.32 26797.33 359
V4296.65 26996.16 27898.11 26198.17 33698.23 23399.99 21399.09 33193.97 32598.74 25699.05 33191.09 27798.82 29695.46 31789.90 34497.27 360
LF4IMVS96.19 29496.18 27696.23 33698.26 32992.09 363100.00 197.89 38897.82 12897.94 30399.87 23782.71 36299.38 25997.41 27793.71 29897.20 361
new_pmnet94.11 32993.47 33296.04 33896.60 37492.82 35799.97 24398.91 36390.21 37195.26 35898.05 37485.89 34198.14 34384.28 38592.01 32097.16 362
APD_test193.07 33794.14 32589.85 36899.18 26772.49 39699.76 29398.90 36592.86 35296.35 34799.94 22475.56 38299.91 17186.73 38097.98 21197.15 363
D2MVS97.63 22597.83 21197.05 30998.83 30894.60 337100.00 199.82 4096.89 21298.28 28499.03 33494.05 23799.47 24998.58 23494.97 28797.09 364
test20.0393.11 33592.85 33993.88 35995.19 38691.83 364100.00 198.87 36693.68 33192.76 37498.88 34789.20 30692.71 39777.88 39789.19 35397.09 364
KD-MVS_self_test91.16 34790.09 35294.35 35394.44 38991.27 36999.74 29699.08 33290.82 36694.53 36694.91 39186.11 33794.78 39182.67 38868.52 39796.99 366
CL-MVSNet_self_test91.07 34890.35 35193.24 36193.27 39089.16 37799.55 32499.25 27092.34 35595.23 35997.05 38188.86 31293.59 39580.67 39266.95 39896.96 367
test_method91.04 34991.10 34690.85 36598.34 32277.63 392100.00 198.93 36276.69 39696.25 35098.52 36170.44 39197.98 35889.02 37691.74 32496.92 368
pmmvs390.62 35189.36 35794.40 35290.53 40091.49 367100.00 196.73 39984.21 38993.65 37196.65 38382.56 36494.83 39082.28 38977.62 39196.89 369
test_040294.35 32493.70 32996.32 33497.92 34393.60 34899.61 31898.85 36888.19 38194.68 36499.48 30980.01 37198.58 31889.39 37295.15 27996.77 370
EG-PatchMatch MVS92.94 33892.49 34294.29 35595.87 37987.07 38399.07 38198.11 38093.19 34588.98 38598.66 35670.89 39099.08 27392.43 35095.21 27596.72 371
test_fmvs295.17 32195.23 31795.01 34498.95 29688.99 37899.99 21397.77 39097.79 13098.58 26499.70 26873.36 38699.34 26395.88 30895.03 28496.70 372
Anonymous2024052193.29 33392.76 34094.90 34995.64 38391.27 36999.97 24398.82 36987.04 38394.71 36398.19 36983.86 35596.80 37484.04 38692.56 31496.64 373
TDRefinement91.93 34290.48 35096.27 33581.60 40692.65 36099.10 37697.61 39493.96 32693.77 37099.85 24480.03 37099.53 24197.82 26370.59 39696.63 374
MS-PatchMatch95.66 31395.87 28995.05 34397.80 34889.25 37698.88 38599.30 24296.35 25496.86 33799.01 33681.35 36899.43 25593.30 34399.98 10896.46 375
MVP-Stereo96.51 27696.48 26396.60 32895.65 38294.25 34398.84 38698.16 37795.85 27395.23 35999.04 33292.54 26499.13 27192.98 34599.98 10896.43 376
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
UnsupCasMVSNet_bld89.50 35388.00 35993.99 35895.30 38588.86 37998.52 39099.28 25485.50 38787.80 38994.11 39261.63 39696.96 37390.63 36179.26 38796.15 377
OpenMVS_ROBcopyleft88.34 2091.89 34391.12 34594.19 35795.55 38487.63 38199.26 35398.03 38286.61 38590.65 38396.82 38270.14 39398.78 29886.54 38196.50 25596.15 377
ambc88.45 37086.84 40270.76 39997.79 39698.02 38490.91 38095.14 38738.69 40598.51 32494.97 32484.23 37696.09 379
PM-MVS88.39 35587.41 36091.31 36491.73 39482.02 39099.79 28596.62 40091.06 36490.71 38295.73 38548.60 40195.96 38590.56 36281.91 38595.97 380
pmmvs-eth3d91.73 34590.67 34994.92 34891.63 39592.71 35999.90 26598.54 37391.19 36288.08 38795.50 38679.31 37596.13 38490.55 36381.32 38695.91 381
test_vis1_rt93.10 33692.93 33793.58 36099.63 18485.07 38599.99 21393.71 40697.49 16790.96 37997.10 38060.40 39799.95 15299.24 19597.90 21895.72 382
EGC-MVSNET79.46 36574.04 37395.72 34096.00 37892.73 35899.09 37899.04 3495.08 41016.72 41098.71 35373.03 38798.74 30482.05 39096.64 25295.69 383
new-patchmatchnet90.30 35289.46 35692.84 36390.77 39888.55 38099.83 27698.80 37090.07 37387.86 38895.00 38978.77 37694.30 39384.86 38479.15 38895.68 384
mvsany_test389.36 35488.96 35890.56 36691.95 39278.97 39199.74 29696.59 40296.84 21489.25 38496.07 38452.59 39997.11 37295.17 32282.44 38295.58 385
test_f86.87 35986.06 36289.28 36991.45 39776.37 39499.87 27197.11 39691.10 36388.46 38693.05 39538.31 40696.66 37791.77 35483.46 38094.82 386
test_fmvs387.19 35887.02 36187.71 37292.69 39176.64 39399.96 24897.27 39593.55 33590.82 38194.03 39338.00 40792.19 39893.49 34283.35 38194.32 387
test12379.44 36679.23 36880.05 38480.03 40771.72 397100.00 177.93 41562.52 40194.81 36299.69 27178.21 37774.53 40892.57 34727.33 40893.90 388
LCM-MVSNet79.01 36876.93 37185.27 37678.28 40868.01 40496.57 39798.03 38255.10 40482.03 39793.27 39431.99 41093.95 39482.72 38774.37 39393.84 389
CMPMVSbinary66.12 2290.65 35092.04 34386.46 37596.18 37666.87 40598.03 39499.38 20383.38 39185.49 39399.55 30377.59 37898.80 29794.44 33094.31 29593.72 390
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
WB-MVS88.24 35690.09 35282.68 38191.56 39669.51 401100.00 198.73 37190.72 36787.29 39098.12 37092.87 25685.01 40362.19 40489.34 35193.54 391
WB-MVSnew97.02 25597.24 23896.37 33399.44 24397.36 279100.00 199.43 12296.12 26599.35 21399.89 23493.60 24598.42 33188.91 37798.39 18893.33 392
testf184.40 36184.79 36383.23 37995.71 38058.71 41298.79 38797.75 39181.58 39284.94 39498.07 37245.33 40397.73 36777.09 40083.85 37793.24 393
APD_test284.40 36184.79 36383.23 37995.71 38058.71 41298.79 38797.75 39181.58 39284.94 39498.07 37245.33 40397.73 36777.09 40083.85 37793.24 393
SSC-MVS87.61 35789.47 35582.04 38290.63 39968.77 40299.99 21398.66 37290.34 37086.70 39198.08 37192.72 26184.12 40459.41 40788.71 35893.22 395
PMMVS279.15 36777.28 37084.76 37782.34 40572.66 39599.70 30695.11 40571.68 39984.78 39690.87 39632.05 40989.99 40075.53 40263.45 40191.64 396
tmp_tt75.80 37074.26 37280.43 38352.91 41553.67 41487.42 40297.98 38561.80 40267.04 405100.00 176.43 38196.40 38096.47 30128.26 40791.23 397
testmvs80.17 36381.95 36674.80 38658.54 41359.58 411100.00 187.14 41276.09 39799.61 194100.00 167.06 39474.19 40998.84 21650.30 40390.64 398
Gipumacopyleft84.73 36083.50 36588.40 37197.50 36082.21 38988.87 40099.05 34665.81 40085.71 39290.49 39753.70 39896.31 38178.64 39691.74 32486.67 399
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
FPMVS77.92 36979.45 36773.34 38876.87 40946.81 41598.24 39299.05 34659.89 40373.55 39998.34 36736.81 40886.55 40180.96 39191.35 33386.65 400
ANet_high66.05 37463.44 37873.88 38761.14 41263.45 40995.68 39987.18 41179.93 39447.35 40880.68 40822.35 41272.33 41061.24 40535.42 40685.88 401
test_vis3_rt79.61 36478.19 36983.86 37888.68 40169.56 40099.81 28082.19 41486.78 38468.57 40284.51 40525.06 41198.26 33889.18 37578.94 38983.75 402
MVEpermissive68.59 2167.22 37364.68 37774.84 38574.67 41162.32 41095.84 39890.87 41050.98 40558.72 40781.05 40712.20 41578.95 40561.06 40656.75 40283.24 403
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMVScopyleft60.66 2365.98 37565.05 37668.75 39155.06 41438.40 41688.19 40196.98 39748.30 40844.82 40988.52 40012.22 41486.49 40267.58 40383.79 37981.35 404
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
EMVS69.88 37269.09 37572.24 39084.70 40365.82 40799.96 24887.08 41349.82 40771.51 40184.74 40449.30 40075.32 40750.97 40943.71 40575.59 405
E-PMN70.72 37170.06 37472.69 38983.92 40465.48 40899.95 25492.72 40849.88 40672.30 40086.26 40347.17 40277.43 40653.83 40844.49 40475.17 406
wuyk23d28.28 37629.73 38023.92 39275.89 41032.61 41766.50 40312.88 41616.09 40914.59 41116.59 41012.35 41332.36 41139.36 41013.36 4096.79 407
test_blank0.07 3800.09 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.79 4110.00 4160.00 4120.00 4110.00 4100.00 408
uanet_test0.01 3810.02 3840.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.14 4120.00 4160.00 4120.00 4110.00 4100.00 408
DCPMVS0.01 3810.02 3840.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.14 4120.00 4160.00 4120.00 4110.00 4100.00 408
cdsmvs_eth3d_5k24.41 37732.55 3790.00 3930.00 4160.00 4180.00 40499.39 2010.00 4110.00 412100.00 193.55 2460.00 4120.00 4110.00 4100.00 408
pcd_1.5k_mvsjas8.24 37910.99 3820.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.14 41298.75 1210.00 4120.00 4110.00 4100.00 408
sosnet-low-res0.01 3810.02 3840.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.14 4120.00 4160.00 4120.00 4110.00 4100.00 408
sosnet0.01 3810.02 3840.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.14 4120.00 4160.00 4120.00 4110.00 4100.00 408
uncertanet0.01 3810.02 3840.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.14 4120.00 4160.00 4120.00 4110.00 4100.00 408
Regformer0.01 3810.02 3840.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.14 4120.00 4160.00 4120.00 4110.00 4100.00 408
ab-mvs-re8.33 37811.11 3810.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 412100.00 10.00 4160.00 4120.00 4110.00 4100.00 408
uanet0.01 3810.02 3840.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.14 4120.00 4160.00 4120.00 4110.00 4100.00 408
WAC-MVS97.98 25095.74 310
FOURS1100.00 199.97 21100.00 199.42 13898.52 74100.00 1
test_one_0601100.00 199.99 599.42 13898.72 64100.00 1100.00 199.60 17
eth-test20.00 416
eth-test0.00 416
ZD-MVS100.00 199.98 1799.80 4397.31 184100.00 1100.00 199.32 6299.99 94100.00 1100.00 1
test_241102_ONE100.00 199.99 599.42 13899.03 20100.00 1100.00 199.50 37100.00 1
9.1499.57 4999.99 49100.00 199.42 13897.54 159100.00 1100.00 199.15 8399.99 94100.00 1100.00 1
save fliter99.99 4999.93 45100.00 199.42 13898.93 38
test0726100.00 199.99 5100.00 199.42 13899.04 15100.00 1100.00 199.53 29
test_part2100.00 199.99 5100.00 1
sam_mvs99.33 59
MTGPAbinary99.42 138
test_post199.32 34788.24 40199.33 5999.59 21998.31 243
test_post89.05 39999.49 3999.59 219
patchmatchnet-post97.79 37599.41 5599.54 236
MTMP100.00 199.18 301
gm-plane-assit99.52 21997.26 28695.86 271100.00 199.43 25598.76 221
TEST9100.00 199.95 32100.00 199.42 13897.65 142100.00 1100.00 199.53 2999.97 125
test_8100.00 199.91 53100.00 199.42 13897.70 137100.00 1100.00 199.51 3399.98 118
agg_prior100.00 199.88 7499.42 138100.00 199.97 125
test_prior499.93 45100.00 1
test_prior2100.00 198.82 55100.00 1100.00 199.47 43100.00 1100.00 1
旧先验2100.00 198.11 104100.00 1100.00 199.67 152
新几何2100.00 1
原ACMM2100.00 1
testdata2100.00 197.36 280
segment_acmp99.55 25
testdata1100.00 198.77 63
plane_prior799.00 28894.78 332
plane_prior699.06 28094.80 32888.58 316
plane_prior499.97 199
plane_prior394.79 33199.03 2099.08 230
plane_prior2100.00 199.00 27
plane_prior199.02 283
plane_prior94.80 328100.00 199.03 2095.58 257
n20.00 417
nn0.00 417
door-mid96.32 403
test1199.42 138
door96.13 404
HQP5-MVS94.82 325
HQP-NCC99.07 276100.00 199.04 1599.17 220
ACMP_Plane99.07 276100.00 199.04 1599.17 220
BP-MVS99.79 119
HQP3-MVS99.40 18895.58 257
HQP2-MVS88.61 314
NP-MVS99.07 27694.81 32799.97 199
MDTV_nov1_ep1398.94 12899.53 21298.36 22399.39 34199.46 9496.54 24199.99 10599.63 28898.92 10899.86 18098.30 24698.71 175
ACMMP++_ref94.58 294
ACMMP++95.17 278
Test By Simon99.10 86