This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
PS-MVSNAJ88.14 1887.61 2989.71 792.06 10176.72 195.75 2093.26 9483.86 1589.55 2996.06 3653.55 22597.89 4391.10 3293.31 5394.54 109
DPM-MVS90.70 390.52 991.24 189.68 16076.68 297.29 195.35 1682.87 2291.58 1397.22 379.93 599.10 983.12 10297.64 297.94 1
xiu_mvs_v2_base87.92 2387.38 3389.55 1291.41 12776.43 395.74 2193.12 10283.53 1889.55 2995.95 3853.45 22997.68 5091.07 3392.62 6094.54 109
MG-MVS87.11 3486.27 4689.62 897.79 176.27 494.96 4394.49 4578.74 9083.87 7592.94 12464.34 9196.94 10775.19 16394.09 3895.66 52
balanced_conf0389.08 1588.84 1789.81 693.66 5475.15 590.61 22693.43 8884.06 1486.20 4990.17 18372.42 3396.98 10193.09 1695.92 1097.29 7
CHOSEN 1792x268884.98 7583.45 9289.57 1189.94 15575.14 692.07 15792.32 13181.87 3275.68 16488.27 20760.18 14298.60 2780.46 12590.27 9494.96 86
MVS84.66 8082.86 11090.06 290.93 13674.56 787.91 28295.54 1468.55 27072.35 20694.71 7859.78 14898.90 2081.29 11994.69 3296.74 16
MVSMamba_PlusPlus84.97 7683.65 8688.93 1490.17 15174.04 887.84 28492.69 11862.18 32481.47 9787.64 22171.47 4096.28 13484.69 8694.74 3196.47 28
DELS-MVS90.05 890.09 1189.94 493.14 7073.88 997.01 494.40 5188.32 385.71 5594.91 7374.11 2198.91 1887.26 6295.94 897.03 12
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MCST-MVS91.08 191.46 389.94 497.66 273.37 1097.13 295.58 1189.33 185.77 5496.26 3072.84 2999.38 192.64 2095.93 997.08 11
LFMVS84.34 8582.73 11289.18 1394.76 3373.25 1194.99 4291.89 15571.90 20782.16 9193.49 11547.98 27997.05 9282.55 10884.82 14797.25 8
MSC_two_6792asdad89.60 997.31 473.22 1295.05 2799.07 1392.01 2594.77 2696.51 24
No_MVS89.60 997.31 473.22 1295.05 2799.07 1392.01 2594.77 2696.51 24
OPU-MVS89.97 397.52 373.15 1496.89 697.00 983.82 299.15 295.72 597.63 397.62 2
PAPM85.89 5885.46 6387.18 4988.20 20372.42 1592.41 14492.77 11482.11 3080.34 11393.07 12168.27 5195.02 18778.39 14593.59 4994.09 130
sasdasda86.85 3786.25 4888.66 2091.80 11371.92 1693.54 9591.71 16580.26 5687.55 3795.25 6163.59 10496.93 10988.18 5084.34 15197.11 9
canonicalmvs86.85 3786.25 4888.66 2091.80 11371.92 1693.54 9591.71 16580.26 5687.55 3795.25 6163.59 10496.93 10988.18 5084.34 15197.11 9
OpenMVScopyleft70.45 1178.54 19975.92 21886.41 7785.93 25571.68 1892.74 12692.51 12766.49 28764.56 29591.96 14843.88 30798.10 3754.61 31490.65 8989.44 237
testing9185.93 5685.31 6687.78 3293.59 5771.47 1993.50 9895.08 2680.26 5680.53 11091.93 15070.43 4396.51 12580.32 12782.13 17495.37 63
QAPM79.95 17177.39 19887.64 3489.63 16171.41 2093.30 10693.70 7565.34 29667.39 27391.75 15447.83 28198.96 1657.71 30489.81 9692.54 179
testing1186.71 4386.44 4587.55 4093.54 5971.35 2193.65 8995.58 1181.36 4380.69 10792.21 14472.30 3496.46 12885.18 8083.43 16094.82 95
3Dnovator73.91 682.69 12280.82 13988.31 2689.57 16271.26 2292.60 13694.39 5278.84 8767.89 26492.48 13648.42 27498.52 2868.80 22394.40 3695.15 78
testing9986.01 5485.47 6287.63 3893.62 5571.25 2393.47 10195.23 1980.42 5480.60 10991.95 14971.73 3996.50 12680.02 12982.22 17295.13 79
MVSFormer83.75 10182.88 10986.37 7889.24 17571.18 2489.07 26490.69 20565.80 29187.13 4094.34 9264.99 8192.67 27572.83 18091.80 7295.27 73
lupinMVS87.74 2587.77 2787.63 3889.24 17571.18 2496.57 1292.90 11182.70 2487.13 4095.27 5964.99 8195.80 15489.34 4291.80 7295.93 45
alignmvs87.28 3286.97 3788.24 2791.30 12971.14 2695.61 2593.56 8079.30 7587.07 4295.25 6168.43 5096.93 10987.87 5384.33 15396.65 17
MM90.87 291.52 288.92 1592.12 10071.10 2797.02 396.04 688.70 291.57 1496.19 3270.12 4598.91 1896.83 195.06 1796.76 15
ET-MVSNet_ETH3D84.01 9483.15 10486.58 7090.78 14170.89 2894.74 4794.62 4181.44 4058.19 33993.64 11173.64 2592.35 28882.66 10678.66 20696.50 27
CSCG86.87 3686.26 4788.72 1795.05 3170.79 2993.83 8295.33 1768.48 27277.63 14594.35 9173.04 2798.45 3084.92 8493.71 4796.92 14
CNVR-MVS90.32 690.89 888.61 2296.76 870.65 3096.47 1494.83 3184.83 1189.07 3196.80 1970.86 4199.06 1592.64 2095.71 1196.12 40
API-MVS82.28 12780.53 14787.54 4196.13 2270.59 3193.63 9191.04 20065.72 29375.45 16992.83 12956.11 19698.89 2164.10 26789.75 9993.15 161
jason86.40 4686.17 5087.11 5186.16 24970.54 3295.71 2492.19 14082.00 3184.58 6794.34 9261.86 12695.53 17487.76 5490.89 8695.27 73
jason: jason.
test_0728_SECOND88.70 1896.45 1270.43 3396.64 1094.37 5399.15 291.91 2894.90 2296.51 24
PatchmatchNetpermissive77.46 21574.63 23385.96 8989.55 16470.35 3479.97 35589.55 25172.23 19870.94 22176.91 34957.03 17992.79 27054.27 31681.17 18394.74 97
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
IB-MVS77.80 482.18 12880.46 14987.35 4589.14 17770.28 3595.59 2695.17 2278.85 8670.19 23285.82 24770.66 4297.67 5172.19 19266.52 29394.09 130
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MVS_030490.32 690.90 788.55 2394.05 4570.23 3697.00 593.73 7487.30 492.15 696.15 3466.38 6798.94 1796.71 294.67 3396.47 28
SCA75.82 24472.76 26085.01 12386.63 23970.08 3781.06 34389.19 26571.60 22470.01 23477.09 34745.53 29890.25 32160.43 29173.27 24594.68 100
DVP-MVScopyleft89.41 1389.73 1488.45 2596.40 1569.99 3896.64 1094.52 4371.92 20590.55 2096.93 1173.77 2399.08 1191.91 2894.90 2296.29 35
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072696.40 1569.99 3896.76 894.33 5571.92 20591.89 1197.11 673.77 23
VNet86.20 5085.65 6187.84 3093.92 4769.99 3895.73 2395.94 778.43 9386.00 5293.07 12158.22 16897.00 9785.22 7884.33 15396.52 23
MS-PatchMatch77.90 21176.50 20982.12 21685.99 25169.95 4191.75 17792.70 11673.97 15762.58 31784.44 26241.11 31795.78 15563.76 27092.17 6680.62 359
testing22285.18 7184.69 7686.63 6792.91 7769.91 4292.61 13595.80 980.31 5580.38 11292.27 14168.73 4995.19 18475.94 15783.27 16294.81 96
DVP-MVS++90.53 491.09 588.87 1697.31 469.91 4293.96 7094.37 5372.48 18992.07 996.85 1683.82 299.15 291.53 3097.42 497.55 4
IU-MVS96.46 1169.91 4295.18 2180.75 4995.28 192.34 2295.36 1496.47 28
MVS_Test84.16 9283.20 10187.05 5491.56 12069.82 4589.99 24692.05 14477.77 10382.84 8486.57 23863.93 9696.09 14374.91 16889.18 10295.25 76
UBG86.83 3986.70 4287.20 4893.07 7369.81 4693.43 10395.56 1381.52 3681.50 9592.12 14573.58 2696.28 13484.37 9085.20 14495.51 58
VDDNet80.50 15878.26 18187.21 4786.19 24769.79 4794.48 5091.31 18260.42 33879.34 12590.91 16838.48 32896.56 12282.16 10981.05 18495.27 73
MVS_111021_HR86.19 5185.80 5887.37 4493.17 6969.79 4793.99 6993.76 7079.08 8278.88 13393.99 10462.25 12398.15 3685.93 7591.15 8494.15 127
test_one_060196.32 1869.74 4994.18 5871.42 23090.67 1996.85 1674.45 20
CANet89.61 1289.99 1288.46 2494.39 3969.71 5096.53 1393.78 6786.89 689.68 2895.78 4065.94 7299.10 992.99 1793.91 4296.58 21
EPMVS78.49 20075.98 21786.02 8791.21 13169.68 5180.23 35091.20 18775.25 13972.48 20278.11 33754.65 21193.69 24657.66 30583.04 16394.69 99
GG-mvs-BLEND86.53 7391.91 11069.67 5275.02 37694.75 3478.67 13790.85 16977.91 794.56 20872.25 18993.74 4595.36 65
WBMVS81.67 13780.98 13883.72 17293.07 7369.40 5394.33 5493.05 10476.84 11872.05 20984.14 26474.49 1993.88 24172.76 18368.09 28187.88 254
Effi-MVS+83.82 9882.76 11186.99 5689.56 16369.40 5391.35 19386.12 33172.59 18683.22 8192.81 13059.60 15096.01 15181.76 11287.80 11895.56 56
SED-MVS89.94 990.36 1088.70 1896.45 1269.38 5596.89 694.44 4771.65 21992.11 797.21 476.79 999.11 692.34 2295.36 1497.62 2
test_241102_ONE96.45 1269.38 5594.44 4771.65 21992.11 797.05 776.79 999.11 6
WTY-MVS86.32 4885.81 5787.85 2992.82 8169.37 5795.20 3495.25 1882.71 2381.91 9294.73 7767.93 5697.63 5679.55 13282.25 17196.54 22
casdiffmvs_mvgpermissive85.66 6385.18 6887.09 5288.22 20269.35 5893.74 8691.89 15581.47 3780.10 11591.45 15964.80 8696.35 13287.23 6387.69 11995.58 55
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_yl84.28 8683.16 10287.64 3494.52 3769.24 5995.78 1895.09 2469.19 26281.09 10192.88 12757.00 18197.44 6681.11 12181.76 17896.23 38
DCV-MVSNet84.28 8683.16 10287.64 3494.52 3769.24 5995.78 1895.09 2469.19 26281.09 10192.88 12757.00 18197.44 6681.11 12181.76 17896.23 38
cascas78.18 20475.77 22085.41 10887.14 23069.11 6192.96 11891.15 19166.71 28570.47 22686.07 24437.49 33996.48 12770.15 20879.80 19490.65 217
casdiffmvspermissive85.37 6884.87 7486.84 5988.25 20069.07 6293.04 11491.76 16281.27 4480.84 10692.07 14764.23 9296.06 14784.98 8387.43 12395.39 61
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
NCCC89.07 1689.46 1587.91 2896.60 1069.05 6396.38 1594.64 4084.42 1286.74 4596.20 3166.56 6698.76 2489.03 4794.56 3495.92 46
MVSTER82.47 12482.05 12083.74 16892.68 8669.01 6491.90 16793.21 9579.83 6372.14 20785.71 24974.72 1794.72 19875.72 15972.49 25287.50 258
FMVSNet377.73 21276.04 21682.80 19291.20 13268.99 6591.87 16891.99 14973.35 17167.04 27683.19 27556.62 18992.14 29259.80 29669.34 26987.28 265
MSLP-MVS++86.27 4985.91 5687.35 4592.01 10568.97 6695.04 4092.70 11679.04 8581.50 9596.50 2558.98 16196.78 11583.49 10093.93 4196.29 35
test1287.09 5294.60 3668.86 6792.91 11082.67 8965.44 7797.55 6293.69 4894.84 92
nrg03080.93 15179.86 15684.13 15883.69 29068.83 6893.23 10891.20 18775.55 13475.06 17288.22 21163.04 11594.74 19781.88 11166.88 29088.82 241
SD-MVS87.49 2887.49 3187.50 4293.60 5668.82 6993.90 7492.63 12376.86 11787.90 3595.76 4166.17 6997.63 5689.06 4691.48 7896.05 42
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
RRT-MVS82.61 12381.16 13086.96 5791.10 13368.75 7087.70 28792.20 13876.97 11572.68 19587.10 23251.30 24896.41 13083.56 9987.84 11795.74 50
baseline85.01 7484.44 7886.71 6488.33 19768.73 7190.24 23791.82 16181.05 4781.18 10092.50 13363.69 10096.08 14684.45 8986.71 13395.32 68
SMA-MVScopyleft88.14 1888.29 2287.67 3393.21 6768.72 7293.85 7794.03 6374.18 15291.74 1296.67 2165.61 7698.42 3389.24 4496.08 795.88 47
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
xiu_mvs_v1_base_debu82.16 12981.12 13285.26 11686.42 24268.72 7292.59 13890.44 21573.12 17584.20 7094.36 8738.04 33395.73 15984.12 9286.81 12891.33 205
xiu_mvs_v1_base82.16 12981.12 13285.26 11686.42 24268.72 7292.59 13890.44 21573.12 17584.20 7094.36 8738.04 33395.73 15984.12 9286.81 12891.33 205
xiu_mvs_v1_base_debi82.16 12981.12 13285.26 11686.42 24268.72 7292.59 13890.44 21573.12 17584.20 7094.36 8738.04 33395.73 15984.12 9286.81 12891.33 205
MDTV_nov1_ep1372.61 26489.06 17868.48 7680.33 34890.11 23071.84 21271.81 21275.92 35753.01 23193.92 23948.04 34073.38 244
CostFormer82.33 12681.15 13185.86 9389.01 18068.46 7782.39 33293.01 10675.59 13380.25 11481.57 29672.03 3794.96 19079.06 13877.48 21794.16 126
mvs_anonymous81.36 14379.99 15485.46 10690.39 14768.40 7886.88 29990.61 21074.41 14770.31 23184.67 25863.79 9892.32 29073.13 17785.70 14195.67 51
gg-mvs-nofinetune77.18 21974.31 24085.80 9691.42 12468.36 7971.78 38194.72 3549.61 38177.12 15245.92 40777.41 893.98 23667.62 23393.16 5595.05 83
DeepC-MVS_fast79.48 287.95 2288.00 2587.79 3195.86 2768.32 8095.74 2194.11 6183.82 1683.49 7796.19 3264.53 9098.44 3183.42 10194.88 2596.61 18
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PAPR85.15 7284.47 7787.18 4996.02 2568.29 8191.85 17093.00 10876.59 12479.03 12995.00 6861.59 12997.61 5878.16 14689.00 10595.63 53
tpmrst80.57 15679.14 17184.84 12790.10 15268.28 8281.70 33689.72 24877.63 10875.96 16179.54 32864.94 8392.71 27275.43 16177.28 22093.55 149
thisisatest051583.41 10782.49 11686.16 8489.46 16668.26 8393.54 9594.70 3774.31 15075.75 16290.92 16772.62 3196.52 12469.64 21081.50 18193.71 145
tpm279.80 17377.95 18785.34 11288.28 19868.26 8381.56 33891.42 17970.11 25077.59 14780.50 31467.40 5994.26 22167.34 23577.35 21893.51 150
ETVMVS84.22 9083.71 8485.76 9892.58 8968.25 8592.45 14395.53 1579.54 7079.46 12391.64 15770.29 4494.18 22369.16 21882.76 16894.84 92
HPM-MVS++copyleft89.37 1489.95 1387.64 3495.10 3068.23 8695.24 3394.49 4582.43 2688.90 3296.35 2771.89 3898.63 2688.76 4896.40 696.06 41
dcpmvs_287.37 3187.55 3086.85 5895.04 3268.20 8790.36 23290.66 20879.37 7481.20 9993.67 11074.73 1696.55 12390.88 3592.00 6995.82 48
test_part296.29 1968.16 8890.78 17
HyFIR lowres test81.03 15079.56 16185.43 10787.81 21468.11 8990.18 23890.01 23670.65 24572.95 19286.06 24563.61 10394.50 21275.01 16679.75 19593.67 146
TSAR-MVS + MP.88.11 2088.64 1886.54 7291.73 11568.04 9090.36 23293.55 8182.89 2191.29 1692.89 12672.27 3596.03 14987.99 5294.77 2695.54 57
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
diffmvspermissive84.28 8683.83 8385.61 10387.40 22468.02 9190.88 21289.24 26280.54 5081.64 9492.52 13259.83 14794.52 21187.32 6185.11 14594.29 118
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CR-MVSNet73.79 26770.82 28282.70 19683.15 29767.96 9270.25 38484.00 35173.67 16769.97 23672.41 36957.82 17289.48 33352.99 32273.13 24690.64 218
RPMNet70.42 29465.68 31584.63 14183.15 29767.96 9270.25 38490.45 21246.83 39069.97 23665.10 39056.48 19395.30 18235.79 38573.13 24690.64 218
GDP-MVS85.54 6685.32 6586.18 8387.64 21867.95 9492.91 12192.36 13077.81 10283.69 7694.31 9472.84 2996.41 13080.39 12685.95 13994.19 123
save fliter93.84 4967.89 9595.05 3992.66 12078.19 95
V4276.46 23274.55 23682.19 21379.14 34267.82 9690.26 23689.42 25673.75 16368.63 25481.89 28951.31 24794.09 22671.69 19664.84 30684.66 313
tpm cat175.30 25172.21 26984.58 14388.52 18867.77 9778.16 36488.02 30961.88 33068.45 25776.37 35360.65 13794.03 23453.77 31974.11 23991.93 197
HY-MVS76.49 584.28 8683.36 9887.02 5592.22 9567.74 9884.65 31094.50 4479.15 7982.23 9087.93 21666.88 6296.94 10780.53 12482.20 17396.39 33
VDD-MVS83.06 11481.81 12586.81 6190.86 13967.70 9995.40 2991.50 17675.46 13581.78 9392.34 14040.09 32097.13 9086.85 6882.04 17595.60 54
FMVSNet276.07 23574.01 24682.26 21088.85 18267.66 10091.33 19491.61 17170.84 24065.98 28482.25 28548.03 27692.00 29758.46 30168.73 27787.10 268
CLD-MVS82.73 11982.35 11983.86 16687.90 21067.65 10195.45 2892.18 14185.06 1072.58 19992.27 14152.46 23695.78 15584.18 9179.06 20188.16 252
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
SDMVSNet80.26 16378.88 17484.40 14989.25 17267.63 10285.35 30693.02 10576.77 12170.84 22387.12 23047.95 28096.09 14385.04 8174.55 23389.48 235
DPE-MVScopyleft88.77 1789.21 1687.45 4396.26 2067.56 10394.17 5894.15 6068.77 26890.74 1897.27 276.09 1298.49 2990.58 3894.91 2196.30 34
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
131480.70 15578.95 17385.94 9087.77 21767.56 10387.91 28292.55 12672.17 20167.44 27093.09 11950.27 25697.04 9571.68 19787.64 12093.23 158
ACMMP_NAP86.05 5385.80 5886.80 6291.58 11967.53 10591.79 17293.49 8574.93 14384.61 6695.30 5659.42 15297.92 4186.13 7294.92 2094.94 88
PVSNet_BlendedMVS83.38 10883.43 9383.22 18693.76 5067.53 10594.06 6393.61 7879.13 8081.00 10485.14 25363.19 11197.29 7687.08 6573.91 24284.83 312
PVSNet_Blended86.73 4286.86 4086.31 8193.76 5067.53 10596.33 1693.61 7882.34 2881.00 10493.08 12063.19 11197.29 7687.08 6591.38 8094.13 128
SF-MVS87.03 3587.09 3586.84 5992.70 8567.45 10893.64 9093.76 7070.78 24386.25 4796.44 2666.98 6197.79 4788.68 4994.56 3495.28 72
test_prior86.42 7694.71 3567.35 10993.10 10396.84 11395.05 83
TEST994.18 4167.28 11094.16 5993.51 8271.75 21685.52 5795.33 5468.01 5497.27 80
train_agg87.21 3387.42 3286.60 6894.18 4167.28 11094.16 5993.51 8271.87 21085.52 5795.33 5468.19 5297.27 8089.09 4594.90 2295.25 76
test_894.19 4067.19 11294.15 6193.42 8971.87 21085.38 6095.35 5368.19 5296.95 106
CDPH-MVS85.71 6185.46 6386.46 7494.75 3467.19 11293.89 7592.83 11370.90 23983.09 8295.28 5763.62 10297.36 7180.63 12394.18 3794.84 92
BP-MVS186.54 4586.68 4386.13 8587.80 21567.18 11492.97 11795.62 1079.92 6282.84 8494.14 10074.95 1596.46 12882.91 10488.96 10694.74 97
test_prior467.18 11493.92 73
v2v48277.42 21675.65 22282.73 19480.38 32467.13 11691.85 17090.23 22675.09 14169.37 24083.39 27353.79 22394.44 21371.77 19465.00 30586.63 277
DP-MVS Recon82.73 11981.65 12685.98 8897.31 467.06 11795.15 3691.99 14969.08 26576.50 15993.89 10654.48 21598.20 3570.76 20385.66 14292.69 174
tpmvs72.88 27669.76 29282.22 21190.98 13567.05 11878.22 36388.30 30163.10 31764.35 30074.98 36055.09 20894.27 21943.25 36069.57 26885.34 307
gm-plane-assit88.42 19367.04 11978.62 9191.83 15297.37 7076.57 154
ETV-MVS86.01 5486.11 5185.70 10190.21 15067.02 12093.43 10391.92 15281.21 4584.13 7394.07 10360.93 13695.63 16589.28 4389.81 9694.46 115
agg_prior94.16 4366.97 12193.31 9284.49 6896.75 116
mvsmamba81.55 14080.72 14184.03 16391.42 12466.93 12283.08 32689.13 27078.55 9267.50 26987.02 23351.79 24190.07 32987.48 5890.49 9295.10 81
ADS-MVSNet68.54 31164.38 32881.03 24488.06 20566.90 12368.01 39284.02 35057.57 35264.48 29669.87 37938.68 32389.21 33540.87 37167.89 28486.97 269
CANet_DTU84.09 9383.52 8785.81 9590.30 14866.82 12491.87 16889.01 27785.27 986.09 5193.74 10847.71 28396.98 10177.90 14889.78 9893.65 147
v875.35 25073.26 25581.61 22780.67 32166.82 12489.54 25389.27 26171.65 21963.30 30980.30 31854.99 20994.06 22967.33 23662.33 32883.94 318
3Dnovator+73.60 782.10 13280.60 14686.60 6890.89 13866.80 12695.20 3493.44 8774.05 15467.42 27192.49 13549.46 26497.65 5570.80 20291.68 7495.33 66
PAPM_NR82.97 11681.84 12486.37 7894.10 4466.76 12787.66 28892.84 11269.96 25274.07 18393.57 11363.10 11497.50 6470.66 20590.58 9094.85 89
v1074.77 25772.54 26681.46 23080.33 32666.71 12889.15 26389.08 27470.94 23863.08 31279.86 32352.52 23594.04 23265.70 25562.17 32983.64 321
DeepC-MVS77.85 385.52 6785.24 6786.37 7888.80 18566.64 12992.15 15193.68 7681.07 4676.91 15593.64 11162.59 11998.44 3185.50 7692.84 5994.03 134
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
baseline181.84 13581.03 13684.28 15591.60 11866.62 13091.08 20691.66 17081.87 3274.86 17491.67 15669.98 4694.92 19371.76 19564.75 30891.29 210
v114476.73 23074.88 23082.27 20880.23 32866.60 13191.68 17990.21 22873.69 16569.06 24581.89 28952.73 23494.40 21469.21 21765.23 30285.80 296
PVSNet_Blended_VisFu83.97 9583.50 8985.39 10990.02 15366.59 13293.77 8491.73 16377.43 11277.08 15489.81 19063.77 9996.97 10479.67 13188.21 11392.60 177
v14419276.05 23874.03 24582.12 21679.50 33666.55 13391.39 18889.71 24972.30 19668.17 25881.33 30151.75 24294.03 23467.94 22964.19 31385.77 297
VPNet78.82 19177.53 19382.70 19684.52 27766.44 13493.93 7292.23 13480.46 5272.60 19888.38 20549.18 26893.13 25572.47 18863.97 31888.55 246
SteuartSystems-ACMMP86.82 4186.90 3986.58 7090.42 14566.38 13596.09 1793.87 6577.73 10484.01 7495.66 4363.39 10797.94 4087.40 6093.55 5095.42 59
Skip Steuart: Steuart Systems R&D Blog.
v192192075.63 24873.49 25382.06 22079.38 33766.35 13691.07 20889.48 25271.98 20467.99 25981.22 30449.16 27093.90 24066.56 24364.56 31185.92 294
MVP-Stereo77.12 22176.23 21379.79 27481.72 31166.34 13789.29 25890.88 20270.56 24662.01 32082.88 27749.34 26594.13 22465.55 25893.80 4378.88 373
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
GA-MVS78.33 20376.23 21384.65 13983.65 29166.30 13891.44 18390.14 22976.01 12970.32 23084.02 26642.50 31294.72 19870.98 20077.00 22292.94 169
APDe-MVScopyleft87.54 2787.84 2686.65 6696.07 2366.30 13894.84 4593.78 6769.35 25988.39 3396.34 2867.74 5797.66 5490.62 3793.44 5196.01 44
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
v119275.98 24073.92 24782.15 21479.73 33266.24 14091.22 20089.75 24372.67 18568.49 25681.42 29949.86 26094.27 21967.08 23965.02 30485.95 292
dp75.01 25572.09 27083.76 16789.28 17166.22 14179.96 35689.75 24371.16 23367.80 26677.19 34651.81 24092.54 28050.39 32771.44 26192.51 181
EPNet87.84 2488.38 2086.23 8293.30 6466.05 14295.26 3294.84 3087.09 588.06 3494.53 8266.79 6397.34 7383.89 9591.68 7495.29 70
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
ppachtmachnet_test67.72 31863.70 33079.77 27578.92 34466.04 14388.68 27082.90 36160.11 34255.45 35275.96 35639.19 32290.55 31739.53 37552.55 37282.71 338
v124075.21 25372.98 25881.88 22279.20 33966.00 14490.75 21789.11 27271.63 22367.41 27281.22 30447.36 28493.87 24265.46 25964.72 30985.77 297
baseline283.68 10483.42 9584.48 14787.37 22566.00 14490.06 24195.93 879.71 6769.08 24490.39 17777.92 696.28 13478.91 14081.38 18291.16 212
PCF-MVS73.15 979.29 18177.63 19184.29 15486.06 25065.96 14687.03 29591.10 19369.86 25469.79 23990.64 17057.54 17596.59 11964.37 26682.29 16990.32 221
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MAR-MVS84.18 9183.43 9386.44 7596.25 2165.93 14794.28 5694.27 5774.41 14779.16 12895.61 4553.99 22098.88 2269.62 21293.26 5494.50 113
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
Fast-Effi-MVS+81.14 14680.01 15384.51 14690.24 14965.86 14894.12 6289.15 26873.81 16275.37 17088.26 20857.26 17694.53 21066.97 24184.92 14693.15 161
AdaColmapbinary78.94 18877.00 20484.76 13396.34 1765.86 14892.66 13387.97 31262.18 32470.56 22592.37 13943.53 30897.35 7264.50 26582.86 16491.05 214
thres20079.66 17478.33 17983.66 17692.54 9065.82 15093.06 11296.31 374.90 14473.30 18988.66 20059.67 14995.61 16747.84 34378.67 20589.56 234
BH-RMVSNet79.46 18077.65 19084.89 12591.68 11765.66 15193.55 9488.09 30872.93 17973.37 18891.12 16646.20 29596.12 14156.28 30985.61 14392.91 170
ZNCC-MVS85.33 6985.08 7086.06 8693.09 7265.65 15293.89 7593.41 9073.75 16379.94 11794.68 7960.61 13998.03 3882.63 10793.72 4694.52 111
thisisatest053081.15 14580.07 15184.39 15088.26 19965.63 15391.40 18694.62 4171.27 23270.93 22289.18 19672.47 3296.04 14865.62 25676.89 22391.49 201
MP-MVS-pluss85.24 7085.13 6985.56 10491.42 12465.59 15491.54 18292.51 12774.56 14680.62 10895.64 4459.15 15697.00 9786.94 6793.80 4394.07 132
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
FE-MVS75.97 24173.02 25784.82 12889.78 15765.56 15577.44 36691.07 19764.55 29972.66 19679.85 32446.05 29696.69 11754.97 31380.82 18792.21 192
PHI-MVS86.83 3986.85 4186.78 6393.47 6265.55 15695.39 3095.10 2371.77 21585.69 5696.52 2362.07 12498.77 2386.06 7495.60 1296.03 43
114514_t79.17 18377.67 18983.68 17495.32 2965.53 15792.85 12391.60 17263.49 31067.92 26190.63 17246.65 28895.72 16367.01 24083.54 15989.79 229
ZD-MVS96.63 965.50 15893.50 8470.74 24485.26 6295.19 6564.92 8497.29 7687.51 5793.01 56
ab-mvs80.18 16578.31 18085.80 9688.44 19265.49 15983.00 32992.67 11971.82 21377.36 14985.01 25454.50 21296.59 11976.35 15675.63 23095.32 68
TSAR-MVS + GP.87.96 2188.37 2186.70 6593.51 6165.32 16095.15 3693.84 6678.17 9685.93 5394.80 7675.80 1398.21 3489.38 4188.78 10796.59 19
GST-MVS84.63 8184.29 8085.66 10292.82 8165.27 16193.04 11493.13 10173.20 17278.89 13094.18 9959.41 15397.85 4581.45 11592.48 6393.86 142
pmmvs473.92 26571.81 27480.25 25979.17 34065.24 16287.43 29187.26 31867.64 27863.46 30783.91 26848.96 27291.53 31162.94 27665.49 29883.96 317
APD-MVScopyleft85.93 5685.99 5485.76 9895.98 2665.21 16393.59 9392.58 12566.54 28686.17 5095.88 3963.83 9797.00 9786.39 7192.94 5795.06 82
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
miper_enhance_ethall78.86 19077.97 18681.54 22988.00 20865.17 16491.41 18489.15 26875.19 14068.79 25183.98 26767.17 6092.82 26772.73 18465.30 29986.62 278
MTAPA83.91 9683.38 9785.50 10591.89 11165.16 16581.75 33592.23 13475.32 13880.53 11095.21 6456.06 19797.16 8884.86 8592.55 6294.18 124
GBi-Net75.65 24673.83 24881.10 24088.85 18265.11 16690.01 24390.32 21870.84 24067.04 27680.25 31948.03 27691.54 30859.80 29669.34 26986.64 274
test175.65 24673.83 24881.10 24088.85 18265.11 16690.01 24390.32 21870.84 24067.04 27680.25 31948.03 27691.54 30859.80 29669.34 26986.64 274
FMVSNet172.71 27969.91 29081.10 24083.60 29265.11 16690.01 24390.32 21863.92 30563.56 30680.25 31936.35 34891.54 30854.46 31566.75 29186.64 274
HFP-MVS84.73 7984.40 7985.72 10093.75 5265.01 16993.50 9893.19 9872.19 19979.22 12794.93 7159.04 15997.67 5181.55 11392.21 6494.49 114
PVSNet73.49 880.05 16878.63 17684.31 15390.92 13764.97 17092.47 14291.05 19979.18 7872.43 20490.51 17437.05 34594.06 22968.06 22786.00 13893.90 141
Anonymous2024052976.84 22774.15 24384.88 12691.02 13464.95 17193.84 8091.09 19453.57 36973.00 19087.42 22535.91 34997.32 7469.14 21972.41 25492.36 183
cl2277.94 20976.78 20681.42 23187.57 21964.93 17290.67 22188.86 28472.45 19167.63 26882.68 28064.07 9392.91 26571.79 19365.30 29986.44 279
our_test_368.29 31464.69 32379.11 28878.92 34464.85 17388.40 27585.06 34060.32 34052.68 36276.12 35540.81 31889.80 33244.25 35955.65 36282.67 341
tpm78.58 19877.03 20283.22 18685.94 25464.56 17483.21 32591.14 19278.31 9473.67 18679.68 32664.01 9492.09 29566.07 25171.26 26293.03 166
Anonymous20240521177.96 20875.33 22685.87 9293.73 5364.52 17594.85 4485.36 33862.52 32276.11 16090.18 18229.43 37497.29 7668.51 22577.24 22195.81 49
tfpn200view978.79 19377.43 19482.88 19192.21 9664.49 17692.05 15896.28 473.48 16971.75 21388.26 20860.07 14595.32 17945.16 35477.58 21488.83 239
thres40078.68 19577.43 19482.43 20292.21 9664.49 17692.05 15896.28 473.48 16971.75 21388.26 20860.07 14595.32 17945.16 35477.58 21487.48 259
VPA-MVSNet79.03 18578.00 18582.11 21985.95 25264.48 17893.22 10994.66 3975.05 14274.04 18484.95 25552.17 23893.52 24974.90 16967.04 28988.32 251
CDS-MVSNet81.43 14280.74 14083.52 17786.26 24664.45 17992.09 15590.65 20975.83 13173.95 18589.81 19063.97 9592.91 26571.27 19882.82 16593.20 160
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
v14876.19 23374.47 23881.36 23280.05 33064.44 18091.75 17790.23 22673.68 16667.13 27580.84 30955.92 19993.86 24468.95 22161.73 33685.76 299
XXY-MVS77.94 20976.44 21082.43 20282.60 30364.44 18092.01 16091.83 16073.59 16870.00 23585.82 24754.43 21694.76 19569.63 21168.02 28388.10 253
MIMVSNet71.64 28668.44 29981.23 23581.97 31064.44 18073.05 37888.80 28669.67 25664.59 29474.79 36232.79 35987.82 34653.99 31776.35 22691.42 203
miper_ehance_all_eth77.60 21376.44 21081.09 24385.70 25964.41 18390.65 22288.64 29372.31 19567.37 27482.52 28164.77 8792.64 27870.67 20465.30 29986.24 283
Patchmtry67.53 32163.93 32978.34 29282.12 30864.38 18468.72 38984.00 35148.23 38759.24 33272.41 36957.82 17289.27 33446.10 35156.68 36181.36 350
fmvsm_l_conf0.5_n87.49 2888.19 2385.39 10986.95 23464.37 18594.30 5588.45 29780.51 5192.70 496.86 1569.98 4697.15 8995.83 488.08 11594.65 103
ACMMPR84.37 8384.06 8185.28 11493.56 5864.37 18593.50 9893.15 10072.19 19978.85 13594.86 7456.69 18897.45 6581.55 11392.20 6594.02 135
BH-w/o80.49 15979.30 16884.05 16290.83 14064.36 18793.60 9289.42 25674.35 14969.09 24390.15 18555.23 20595.61 16764.61 26486.43 13792.17 193
region2R84.36 8484.03 8285.36 11193.54 5964.31 18893.43 10392.95 10972.16 20278.86 13494.84 7556.97 18397.53 6381.38 11792.11 6794.24 121
新几何184.73 13492.32 9264.28 18991.46 17859.56 34579.77 11992.90 12556.95 18496.57 12163.40 27192.91 5893.34 154
原ACMM184.42 14893.21 6764.27 19093.40 9165.39 29479.51 12292.50 13358.11 17096.69 11765.27 26193.96 4092.32 185
MP-MVScopyleft85.02 7384.97 7285.17 11992.60 8864.27 19093.24 10792.27 13373.13 17479.63 12194.43 8561.90 12597.17 8585.00 8292.56 6194.06 133
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
fmvsm_l_conf0.5_n_a87.44 3088.15 2485.30 11387.10 23164.19 19294.41 5288.14 30680.24 5992.54 596.97 1069.52 4897.17 8595.89 388.51 11094.56 106
c3_l76.83 22875.47 22380.93 24785.02 27064.18 19390.39 23088.11 30771.66 21866.65 28281.64 29463.58 10692.56 27969.31 21662.86 32286.04 289
PGM-MVS83.25 11082.70 11384.92 12492.81 8364.07 19490.44 22792.20 13871.28 23177.23 15194.43 8555.17 20797.31 7579.33 13591.38 8093.37 153
MSP-MVS90.38 591.87 185.88 9192.83 7964.03 19593.06 11294.33 5582.19 2993.65 396.15 3485.89 197.19 8491.02 3497.75 196.43 31
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
FA-MVS(test-final)79.12 18477.23 20084.81 13190.54 14363.98 19681.35 34191.71 16571.09 23674.85 17582.94 27652.85 23297.05 9267.97 22881.73 18093.41 152
CP-MVS83.71 10283.40 9684.65 13993.14 7063.84 19794.59 4992.28 13271.03 23777.41 14894.92 7255.21 20696.19 13881.32 11890.70 8893.91 139
OPM-MVS79.00 18678.09 18381.73 22483.52 29363.83 19891.64 18190.30 22276.36 12771.97 21089.93 18946.30 29495.17 18575.10 16477.70 21286.19 284
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
XVS83.87 9783.47 9185.05 12193.22 6563.78 19992.92 11992.66 12073.99 15578.18 13994.31 9455.25 20397.41 6879.16 13691.58 7693.95 137
X-MVStestdata76.86 22574.13 24485.05 12193.22 6563.78 19992.92 11992.66 12073.99 15578.18 13910.19 42255.25 20397.41 6879.16 13691.58 7693.95 137
TESTMET0.1,182.41 12581.98 12383.72 17288.08 20463.74 20192.70 12993.77 6979.30 7577.61 14687.57 22358.19 16994.08 22773.91 17486.68 13493.33 156
BH-untuned78.68 19577.08 20183.48 18189.84 15663.74 20192.70 12988.59 29471.57 22566.83 28088.65 20151.75 24295.39 17759.03 29984.77 14891.32 208
test_fmvsmvis_n_192083.80 9983.48 9084.77 13282.51 30463.72 20391.37 19183.99 35381.42 4177.68 14495.74 4258.37 16697.58 5993.38 1486.87 12793.00 168
MSDG69.54 30265.73 31480.96 24585.11 26963.71 20484.19 31383.28 35956.95 35854.50 35584.03 26531.50 36596.03 14942.87 36469.13 27483.14 332
patch_mono-289.71 1190.99 685.85 9496.04 2463.70 20595.04 4095.19 2086.74 791.53 1595.15 6673.86 2297.58 5993.38 1492.00 6996.28 37
thres600view778.00 20676.66 20882.03 22191.93 10863.69 20691.30 19696.33 172.43 19270.46 22787.89 21760.31 14094.92 19342.64 36676.64 22487.48 259
PatchT69.11 30565.37 31980.32 25582.07 30963.68 20767.96 39487.62 31450.86 37869.37 24065.18 38957.09 17888.53 33941.59 36966.60 29288.74 242
HQP5-MVS63.66 208
HQP-MVS81.14 14680.64 14482.64 19887.54 22063.66 20894.06 6391.70 16879.80 6474.18 17990.30 17951.63 24495.61 16777.63 14978.90 20288.63 243
fmvsm_s_conf0.5_n_a85.75 6086.09 5284.72 13585.73 25863.58 21093.79 8389.32 25981.42 4190.21 2396.91 1462.41 12197.67 5194.48 1080.56 18992.90 171
EI-MVSNet-Vis-set83.77 10083.67 8584.06 15992.79 8463.56 21191.76 17594.81 3279.65 6877.87 14294.09 10163.35 10997.90 4279.35 13479.36 19890.74 216
test_fmvsm_n_192087.69 2688.50 1985.27 11587.05 23363.55 21293.69 8791.08 19684.18 1390.17 2497.04 867.58 5897.99 3995.72 590.03 9594.26 119
fmvsm_s_conf0.5_n86.39 4786.91 3884.82 12887.36 22663.54 21394.74 4790.02 23582.52 2590.14 2596.92 1362.93 11697.84 4695.28 882.26 17093.07 165
fmvsm_s_conf0.1_n_a84.76 7884.84 7584.53 14480.23 32863.50 21492.79 12488.73 28880.46 5289.84 2796.65 2260.96 13597.57 6193.80 1380.14 19192.53 180
fmvsm_s_conf0.1_n85.61 6485.93 5584.68 13882.95 30163.48 21594.03 6889.46 25381.69 3489.86 2696.74 2061.85 12797.75 4994.74 982.01 17692.81 173
TAMVS80.37 16179.45 16483.13 18885.14 26763.37 21691.23 19990.76 20474.81 14572.65 19788.49 20260.63 13892.95 26069.41 21481.95 17793.08 164
Anonymous2023121173.08 27070.39 28681.13 23890.62 14263.33 21791.40 18690.06 23351.84 37464.46 29880.67 31236.49 34794.07 22863.83 26964.17 31485.98 291
ACMH63.93 1768.62 30964.81 32180.03 26585.22 26563.25 21887.72 28684.66 34460.83 33651.57 36879.43 32927.29 38094.96 19041.76 36764.84 30681.88 347
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
WB-MVSnew77.14 22076.18 21580.01 26686.18 24863.24 21991.26 19794.11 6171.72 21773.52 18787.29 22845.14 30293.00 25856.98 30679.42 19683.80 320
MonoMVSNet76.99 22375.08 22982.73 19483.32 29563.24 21986.47 30286.37 32579.08 8266.31 28379.30 33049.80 26291.72 30279.37 13365.70 29793.23 158
thres100view90078.37 20177.01 20382.46 20191.89 11163.21 22191.19 20396.33 172.28 19770.45 22887.89 21760.31 14095.32 17945.16 35477.58 21488.83 239
EI-MVSNet-UG-set83.14 11382.96 10583.67 17592.28 9363.19 22291.38 19094.68 3879.22 7776.60 15793.75 10762.64 11897.76 4878.07 14778.01 20990.05 225
test250683.29 10982.92 10884.37 15188.39 19563.18 22392.01 16091.35 18177.66 10678.49 13891.42 16064.58 8995.09 18673.19 17689.23 10094.85 89
NP-MVS87.41 22363.04 22490.30 179
eth_miper_zixun_eth75.96 24274.40 23980.66 24984.66 27463.02 22589.28 25988.27 30371.88 20965.73 28581.65 29359.45 15192.81 26868.13 22660.53 34586.14 285
D2MVS73.80 26672.02 27179.15 28779.15 34162.97 22688.58 27290.07 23172.94 17859.22 33378.30 33442.31 31492.70 27465.59 25772.00 25581.79 348
IterMVS72.65 28270.83 28078.09 29782.17 30762.96 22787.64 28986.28 32771.56 22660.44 32678.85 33245.42 30086.66 35663.30 27461.83 33384.65 314
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EG-PatchMatch MVS68.55 31065.41 31877.96 29878.69 34962.93 22889.86 24889.17 26660.55 33750.27 37377.73 34122.60 39094.06 22947.18 34672.65 25176.88 383
DP-MVS69.90 29966.48 30780.14 26195.36 2862.93 22889.56 25176.11 37550.27 38057.69 34685.23 25239.68 32195.73 15933.35 39071.05 26381.78 349
mPP-MVS82.96 11782.44 11784.52 14592.83 7962.92 23092.76 12591.85 15971.52 22775.61 16794.24 9753.48 22896.99 10078.97 13990.73 8793.64 148
ACMMPcopyleft81.49 14180.67 14383.93 16591.71 11662.90 23192.13 15292.22 13771.79 21471.68 21593.49 11550.32 25496.96 10578.47 14484.22 15791.93 197
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
HPM-MVScopyleft83.25 11082.95 10784.17 15792.25 9462.88 23290.91 20991.86 15770.30 24877.12 15293.96 10556.75 18696.28 13482.04 11091.34 8293.34 154
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
MVS_111021_LR82.02 13381.52 12783.51 17988.42 19362.88 23289.77 24988.93 28176.78 12075.55 16893.10 11850.31 25595.38 17883.82 9687.02 12692.26 191
IterMVS-LS76.49 23175.18 22880.43 25484.49 27862.74 23490.64 22388.80 28672.40 19365.16 29081.72 29260.98 13492.27 29167.74 23164.65 31086.29 281
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet78.97 18778.22 18281.25 23485.33 26262.73 23589.53 25493.21 9572.39 19472.14 20790.13 18660.99 13394.72 19867.73 23272.49 25286.29 281
CHOSEN 280x42077.35 21776.95 20578.55 29187.07 23262.68 23669.71 38782.95 36068.80 26771.48 21887.27 22966.03 7184.00 37176.47 15582.81 16688.95 238
test_fmvsmconf_n86.58 4487.17 3484.82 12885.28 26462.55 23794.26 5789.78 24183.81 1787.78 3696.33 2965.33 7896.98 10194.40 1187.55 12194.95 87
MGCFI-Net85.59 6585.73 6085.17 11991.41 12762.44 23892.87 12291.31 18279.65 6886.99 4495.14 6762.90 11796.12 14187.13 6484.13 15896.96 13
HQP_MVS80.34 16279.75 15882.12 21686.94 23562.42 23993.13 11091.31 18278.81 8872.53 20089.14 19850.66 25295.55 17276.74 15278.53 20788.39 249
plane_prior62.42 23993.85 7779.38 7378.80 204
EIA-MVS84.84 7784.88 7384.69 13791.30 12962.36 24193.85 7792.04 14579.45 7179.33 12694.28 9662.42 12096.35 13280.05 12891.25 8395.38 62
test_fmvsmconf0.1_n85.71 6186.08 5384.62 14280.83 31862.33 24293.84 8088.81 28583.50 1987.00 4396.01 3763.36 10896.93 10994.04 1287.29 12494.61 105
plane_prior687.23 22762.32 24350.66 252
PVSNet_068.08 1571.81 28568.32 30182.27 20884.68 27362.31 24488.68 27090.31 22175.84 13057.93 34480.65 31337.85 33694.19 22269.94 20929.05 41090.31 222
WR-MVS76.76 22975.74 22179.82 27384.60 27562.27 24592.60 13692.51 12776.06 12867.87 26585.34 25156.76 18590.24 32462.20 28263.69 32086.94 271
NR-MVSNet76.05 23874.59 23480.44 25382.96 29962.18 24690.83 21491.73 16377.12 11460.96 32386.35 24059.28 15591.80 30060.74 28961.34 34087.35 263
sd_testset77.08 22275.37 22482.20 21289.25 17262.11 24782.06 33389.09 27376.77 12170.84 22387.12 23041.43 31695.01 18867.23 23774.55 23389.48 235
GeoE78.90 18977.43 19483.29 18488.95 18162.02 24892.31 14586.23 32970.24 24971.34 22089.27 19554.43 21694.04 23263.31 27380.81 18893.81 144
h-mvs3383.01 11582.56 11584.35 15289.34 16762.02 24892.72 12793.76 7081.45 3882.73 8792.25 14360.11 14397.13 9087.69 5562.96 32193.91 139
ECVR-MVScopyleft81.29 14480.38 15084.01 16488.39 19561.96 25092.56 14186.79 32377.66 10676.63 15691.42 16046.34 29295.24 18374.36 17289.23 10094.85 89
plane_prior361.95 25179.09 8172.53 200
Vis-MVSNetpermissive80.92 15279.98 15583.74 16888.48 19061.80 25293.44 10288.26 30573.96 15877.73 14391.76 15349.94 25994.76 19565.84 25390.37 9394.65 103
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
FOURS193.95 4661.77 25393.96 7091.92 15262.14 32686.57 46
cl____76.07 23574.67 23180.28 25785.15 26661.76 25490.12 23988.73 28871.16 23365.43 28781.57 29661.15 13192.95 26066.54 24462.17 32986.13 287
DIV-MVS_self_test76.07 23574.67 23180.28 25785.14 26761.75 25590.12 23988.73 28871.16 23365.42 28881.60 29561.15 13192.94 26466.54 24462.16 33186.14 285
test_fmvsmconf0.01_n83.70 10383.52 8784.25 15675.26 37161.72 25692.17 15087.24 31982.36 2784.91 6495.41 5155.60 20196.83 11492.85 1885.87 14094.21 122
CNLPA74.31 26072.30 26880.32 25591.49 12361.66 25790.85 21380.72 36656.67 36163.85 30490.64 17046.75 28790.84 31653.79 31875.99 22988.47 248
test22289.77 15861.60 25889.55 25289.42 25656.83 36077.28 15092.43 13752.76 23391.14 8593.09 163
plane_prior786.94 23561.51 259
UGNet79.87 17278.68 17583.45 18289.96 15461.51 25992.13 15290.79 20376.83 11978.85 13586.33 24238.16 33196.17 13967.93 23087.17 12592.67 175
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
reproduce_monomvs79.49 17879.11 17280.64 25092.91 7761.47 26191.17 20493.28 9383.09 2064.04 30182.38 28366.19 6894.57 20581.19 12057.71 35685.88 295
tttt051779.50 17778.53 17882.41 20587.22 22861.43 26289.75 25094.76 3369.29 26067.91 26288.06 21572.92 2895.63 16562.91 27773.90 24390.16 223
EC-MVSNet84.53 8285.04 7183.01 18989.34 16761.37 26394.42 5191.09 19477.91 10083.24 7894.20 9858.37 16695.40 17685.35 7791.41 7992.27 190
test-LLR80.10 16779.56 16181.72 22586.93 23761.17 26492.70 12991.54 17371.51 22875.62 16586.94 23453.83 22192.38 28572.21 19084.76 14991.60 199
test-mter79.96 17079.38 16781.72 22586.93 23761.17 26492.70 12991.54 17373.85 16075.62 16586.94 23449.84 26192.38 28572.21 19084.76 14991.60 199
SR-MVS82.81 11882.58 11483.50 18093.35 6361.16 26692.23 14991.28 18664.48 30081.27 9895.28 5753.71 22495.86 15382.87 10588.77 10893.49 151
KD-MVS_2432*160069.03 30666.37 31077.01 31085.56 26061.06 26781.44 33990.25 22467.27 28058.00 34276.53 35154.49 21387.63 35048.04 34035.77 40182.34 343
miper_refine_blended69.03 30666.37 31077.01 31085.56 26061.06 26781.44 33990.25 22467.27 28058.00 34276.53 35154.49 21387.63 35048.04 34035.77 40182.34 343
tfpnnormal70.10 29667.36 30578.32 29383.45 29460.97 26988.85 26792.77 11464.85 29860.83 32478.53 33343.52 30993.48 25031.73 39861.70 33780.52 360
TR-MVS78.77 19477.37 19982.95 19090.49 14460.88 27093.67 8890.07 23170.08 25174.51 17791.37 16345.69 29795.70 16460.12 29480.32 19092.29 186
UniMVSNet (Re)77.58 21476.78 20679.98 26784.11 28560.80 27191.76 17593.17 9976.56 12569.93 23884.78 25763.32 11092.36 28764.89 26362.51 32786.78 273
1112_ss80.56 15779.83 15782.77 19388.65 18760.78 27292.29 14688.36 29972.58 18772.46 20394.95 6965.09 8093.42 25266.38 24777.71 21194.10 129
v7n71.31 28968.65 29679.28 28376.40 36660.77 27386.71 30089.45 25464.17 30458.77 33878.24 33544.59 30593.54 24857.76 30361.75 33583.52 324
test111180.84 15380.02 15283.33 18387.87 21160.76 27492.62 13486.86 32277.86 10175.73 16391.39 16246.35 29194.70 20172.79 18288.68 10994.52 111
test_040264.54 33761.09 34374.92 32684.10 28660.75 27587.95 28179.71 37052.03 37252.41 36377.20 34532.21 36391.64 30423.14 40661.03 34172.36 394
旧先验191.94 10760.74 27691.50 17694.36 8765.23 7991.84 7194.55 107
dmvs_re76.93 22475.36 22581.61 22787.78 21660.71 27780.00 35487.99 31079.42 7269.02 24689.47 19346.77 28694.32 21563.38 27274.45 23689.81 228
ADS-MVSNet266.90 32463.44 33277.26 30888.06 20560.70 27868.01 39275.56 37957.57 35264.48 29669.87 37938.68 32384.10 36840.87 37167.89 28486.97 269
IterMVS-SCA-FT71.55 28869.97 28876.32 31681.48 31360.67 27987.64 28985.99 33266.17 28959.50 33178.88 33145.53 29883.65 37362.58 28061.93 33284.63 315
TranMVSNet+NR-MVSNet75.86 24374.52 23779.89 27182.44 30560.64 28091.37 19191.37 18076.63 12367.65 26786.21 24352.37 23791.55 30761.84 28460.81 34387.48 259
pmmvs573.35 26971.52 27678.86 28978.64 35060.61 28191.08 20686.90 32067.69 27563.32 30883.64 26944.33 30690.53 31862.04 28366.02 29585.46 304
reproduce-ours83.51 10583.33 9984.06 15992.18 9860.49 28290.74 21892.04 14564.35 30183.24 7895.59 4759.05 15797.27 8083.61 9789.17 10394.41 116
our_new_method83.51 10583.33 9984.06 15992.18 9860.49 28290.74 21892.04 14564.35 30183.24 7895.59 4759.05 15797.27 8083.61 9789.17 10394.41 116
MDA-MVSNet_test_wron63.78 34260.16 34674.64 32778.15 35660.41 28483.49 31884.03 34956.17 36439.17 40171.59 37537.22 34183.24 37842.87 36448.73 37880.26 363
Test_1112_low_res79.56 17678.60 17782.43 20288.24 20160.39 28592.09 15587.99 31072.10 20371.84 21187.42 22564.62 8893.04 25665.80 25477.30 21993.85 143
UniMVSNet_NR-MVSNet78.15 20577.55 19279.98 26784.46 27960.26 28692.25 14793.20 9777.50 11068.88 24986.61 23766.10 7092.13 29366.38 24762.55 32587.54 257
DU-MVS76.86 22575.84 21979.91 27082.96 29960.26 28691.26 19791.54 17376.46 12668.88 24986.35 24056.16 19492.13 29366.38 24762.55 32587.35 263
EPP-MVSNet81.79 13681.52 12782.61 19988.77 18660.21 28893.02 11693.66 7768.52 27172.90 19390.39 17772.19 3694.96 19074.93 16779.29 20092.67 175
YYNet163.76 34360.14 34774.62 32878.06 35760.19 28983.46 32083.99 35356.18 36339.25 40071.56 37637.18 34283.34 37642.90 36348.70 37980.32 362
IS-MVSNet80.14 16679.41 16582.33 20687.91 20960.08 29091.97 16488.27 30372.90 18271.44 21991.73 15561.44 13093.66 24762.47 28186.53 13593.24 157
HPM-MVS_fast80.25 16479.55 16382.33 20691.55 12159.95 29191.32 19589.16 26765.23 29774.71 17693.07 12147.81 28295.74 15874.87 17088.23 11291.31 209
MDTV_nov1_ep13_2view59.90 29280.13 35267.65 27772.79 19454.33 21859.83 29592.58 178
CPTT-MVS79.59 17579.16 17080.89 24891.54 12259.80 29392.10 15488.54 29660.42 33872.96 19193.28 11748.27 27592.80 26978.89 14186.50 13690.06 224
reproduce_model83.15 11282.96 10583.73 17092.02 10259.74 29490.37 23192.08 14363.70 30882.86 8395.48 5058.62 16397.17 8583.06 10388.42 11194.26 119
ACMP71.68 1075.58 24974.23 24279.62 27884.97 27159.64 29590.80 21589.07 27570.39 24762.95 31387.30 22738.28 32993.87 24272.89 17971.45 26085.36 306
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
pmmvs-eth3d65.53 33362.32 33975.19 32369.39 39159.59 29682.80 33083.43 35662.52 32251.30 37072.49 36732.86 35887.16 35555.32 31250.73 37578.83 374
sss82.71 12182.38 11883.73 17089.25 17259.58 29792.24 14894.89 2977.96 9879.86 11892.38 13856.70 18797.05 9277.26 15180.86 18694.55 107
Fast-Effi-MVS+-dtu75.04 25473.37 25480.07 26380.86 31759.52 29891.20 20285.38 33771.90 20765.20 28984.84 25641.46 31592.97 25966.50 24672.96 24887.73 256
FIs79.47 17979.41 16579.67 27685.95 25259.40 29991.68 17993.94 6478.06 9768.96 24888.28 20666.61 6591.77 30166.20 25074.99 23287.82 255
LPG-MVS_test75.82 24474.58 23579.56 28084.31 28259.37 30090.44 22789.73 24669.49 25764.86 29188.42 20338.65 32594.30 21772.56 18672.76 24985.01 310
LGP-MVS_train79.56 28084.31 28259.37 30089.73 24669.49 25764.86 29188.42 20338.65 32594.30 21772.56 18672.76 24985.01 310
SPE-MVS-test86.14 5287.01 3683.52 17792.63 8759.36 30295.49 2791.92 15280.09 6085.46 5995.53 4961.82 12895.77 15786.77 6993.37 5295.41 60
Baseline_NR-MVSNet73.99 26472.83 25977.48 30380.78 31959.29 30391.79 17284.55 34668.85 26668.99 24780.70 31056.16 19492.04 29662.67 27960.98 34281.11 353
PS-MVSNAJss77.26 21876.31 21280.13 26280.64 32259.16 30490.63 22591.06 19872.80 18368.58 25584.57 26053.55 22593.96 23772.97 17871.96 25687.27 266
TransMVSNet (Re)70.07 29767.66 30377.31 30780.62 32359.13 30591.78 17484.94 34265.97 29060.08 32980.44 31550.78 25191.87 29848.84 33645.46 38480.94 355
CS-MVS85.80 5986.65 4483.27 18592.00 10658.92 30695.31 3191.86 15779.97 6184.82 6595.40 5262.26 12295.51 17586.11 7392.08 6895.37 63
Patchmatch-test65.86 32960.94 34480.62 25283.75 28958.83 30758.91 40775.26 38144.50 39550.95 37277.09 34758.81 16287.90 34435.13 38664.03 31695.12 80
APD-MVS_3200maxsize81.64 13981.32 12982.59 20092.36 9158.74 30891.39 18891.01 20163.35 31279.72 12094.62 8151.82 23996.14 14079.71 13087.93 11692.89 172
PLCcopyleft68.80 1475.23 25273.68 25179.86 27292.93 7658.68 30990.64 22388.30 30160.90 33564.43 29990.53 17342.38 31394.57 20556.52 30776.54 22586.33 280
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
SR-MVS-dyc-post81.06 14980.70 14282.15 21492.02 10258.56 31090.90 21090.45 21262.76 31978.89 13094.46 8351.26 24995.61 16778.77 14286.77 13192.28 187
RE-MVS-def80.48 14892.02 10258.56 31090.90 21090.45 21262.76 31978.89 13094.46 8349.30 26678.77 14286.77 13192.28 187
miper_lstm_enhance73.05 27271.73 27577.03 30983.80 28858.32 31281.76 33488.88 28269.80 25561.01 32278.23 33657.19 17787.51 35265.34 26059.53 35085.27 309
DeepPCF-MVS81.17 189.72 1091.38 484.72 13593.00 7558.16 31396.72 994.41 4986.50 890.25 2297.83 175.46 1498.67 2592.78 1995.49 1397.32 6
FMVSNet568.04 31665.66 31675.18 32484.43 28057.89 31483.54 31786.26 32861.83 33153.64 36073.30 36537.15 34385.08 36448.99 33561.77 33482.56 342
ACMM69.62 1374.34 25972.73 26279.17 28584.25 28457.87 31590.36 23289.93 23763.17 31665.64 28686.04 24637.79 33794.10 22565.89 25271.52 25985.55 302
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
OpenMVS_ROBcopyleft61.12 1866.39 32662.92 33576.80 31476.51 36557.77 31689.22 26083.41 35755.48 36553.86 35977.84 33926.28 38393.95 23834.90 38768.76 27678.68 375
UA-Net80.02 16979.65 15981.11 23989.33 16957.72 31786.33 30389.00 28077.44 11181.01 10389.15 19759.33 15495.90 15261.01 28884.28 15589.73 231
testdata81.34 23389.02 17957.72 31789.84 24058.65 34985.32 6194.09 10157.03 17993.28 25369.34 21590.56 9193.03 166
pm-mvs172.89 27571.09 27978.26 29579.10 34357.62 31990.80 21589.30 26067.66 27662.91 31481.78 29149.11 27192.95 26060.29 29358.89 35384.22 316
XVG-OURS74.25 26172.46 26779.63 27778.45 35257.59 32080.33 34887.39 31563.86 30668.76 25289.62 19240.50 31991.72 30269.00 22074.25 23889.58 232
hse-mvs281.12 14881.11 13581.16 23786.52 24157.48 32189.40 25791.16 18981.45 3882.73 8790.49 17560.11 14394.58 20387.69 5560.41 34891.41 204
AUN-MVS78.37 20177.43 19481.17 23686.60 24057.45 32289.46 25691.16 18974.11 15374.40 17890.49 17555.52 20294.57 20574.73 17160.43 34791.48 202
OMC-MVS78.67 19777.91 18880.95 24685.76 25757.40 32388.49 27388.67 29173.85 16072.43 20492.10 14649.29 26794.55 20972.73 18477.89 21090.91 215
XVG-OURS-SEG-HR74.70 25873.08 25679.57 27978.25 35457.33 32480.49 34687.32 31663.22 31468.76 25290.12 18844.89 30491.59 30670.55 20674.09 24089.79 229
ACMH+65.35 1667.65 31964.55 32476.96 31284.59 27657.10 32588.08 27780.79 36558.59 35053.00 36181.09 30826.63 38292.95 26046.51 34861.69 33880.82 356
UWE-MVS80.81 15481.01 13780.20 26089.33 16957.05 32691.91 16694.71 3675.67 13275.01 17389.37 19463.13 11391.44 31367.19 23882.80 16792.12 195
tt080573.07 27170.73 28380.07 26378.37 35357.05 32687.78 28592.18 14161.23 33467.04 27686.49 23931.35 36794.58 20365.06 26267.12 28888.57 245
test_cas_vis1_n_192080.45 16080.61 14579.97 26978.25 35457.01 32894.04 6788.33 30079.06 8482.81 8693.70 10938.65 32591.63 30590.82 3679.81 19391.27 211
MDA-MVSNet-bldmvs61.54 34957.70 35473.05 34079.53 33557.00 32983.08 32681.23 36357.57 35234.91 40572.45 36832.79 35986.26 35935.81 38441.95 38975.89 385
UniMVSNet_ETH3D72.74 27870.53 28579.36 28278.62 35156.64 33085.01 30889.20 26463.77 30764.84 29384.44 26234.05 35691.86 29963.94 26870.89 26489.57 233
MVS-HIRNet60.25 35455.55 36174.35 33084.37 28156.57 33171.64 38274.11 38334.44 40445.54 38942.24 41231.11 36989.81 33040.36 37476.10 22876.67 384
PMMVS81.98 13482.04 12181.78 22389.76 15956.17 33291.13 20590.69 20577.96 9880.09 11693.57 11346.33 29394.99 18981.41 11687.46 12294.17 125
LS3D69.17 30466.40 30977.50 30291.92 10956.12 33385.12 30780.37 36846.96 38856.50 35087.51 22437.25 34093.71 24532.52 39779.40 19782.68 340
F-COLMAP70.66 29168.44 29977.32 30686.37 24555.91 33488.00 28086.32 32656.94 35957.28 34888.07 21433.58 35792.49 28251.02 32568.37 27983.55 322
CL-MVSNet_self_test69.92 29868.09 30275.41 32173.25 37855.90 33590.05 24289.90 23869.96 25261.96 32176.54 35051.05 25087.64 34949.51 33350.59 37682.70 339
PatchMatch-RL72.06 28469.98 28778.28 29489.51 16555.70 33683.49 31883.39 35861.24 33363.72 30582.76 27834.77 35393.03 25753.37 32177.59 21386.12 288
FC-MVSNet-test77.99 20778.08 18477.70 29984.89 27255.51 33790.27 23593.75 7376.87 11666.80 28187.59 22265.71 7590.23 32562.89 27873.94 24187.37 262
USDC67.43 32364.51 32576.19 31777.94 35855.29 33878.38 36185.00 34173.17 17348.36 38180.37 31621.23 39292.48 28352.15 32364.02 31780.81 357
Effi-MVS+-dtu76.14 23475.28 22778.72 29083.22 29655.17 33989.87 24787.78 31375.42 13667.98 26081.43 29845.08 30392.52 28175.08 16571.63 25788.48 247
test_vis1_n_192081.66 13882.01 12280.64 25082.24 30655.09 34094.76 4686.87 32181.67 3584.40 6994.63 8038.17 33094.67 20291.98 2783.34 16192.16 194
jajsoiax73.05 27271.51 27777.67 30077.46 36154.83 34188.81 26890.04 23469.13 26462.85 31583.51 27131.16 36892.75 27170.83 20169.80 26585.43 305
anonymousdsp71.14 29069.37 29476.45 31572.95 37954.71 34284.19 31388.88 28261.92 32962.15 31979.77 32538.14 33291.44 31368.90 22267.45 28783.21 330
mvs_tets72.71 27971.11 27877.52 30177.41 36254.52 34388.45 27489.76 24268.76 26962.70 31683.26 27429.49 37392.71 27270.51 20769.62 26785.34 307
JIA-IIPM66.06 32862.45 33876.88 31381.42 31554.45 34457.49 40888.67 29149.36 38263.86 30346.86 40656.06 19790.25 32149.53 33268.83 27585.95 292
Patchmatch-RL test68.17 31564.49 32679.19 28471.22 38353.93 34570.07 38671.54 39269.22 26156.79 34962.89 39456.58 19088.61 33669.53 21352.61 37195.03 85
test_djsdf73.76 26872.56 26577.39 30577.00 36453.93 34589.07 26490.69 20565.80 29163.92 30282.03 28843.14 31192.67 27572.83 18068.53 27885.57 301
pmmvs667.57 32064.76 32276.00 31972.82 38153.37 34788.71 26986.78 32453.19 37057.58 34778.03 33835.33 35292.41 28455.56 31154.88 36682.21 345
TinyColmap60.32 35356.42 36072.00 35278.78 34753.18 34878.36 36275.64 37852.30 37141.59 39975.82 35814.76 40488.35 34135.84 38354.71 36774.46 387
COLMAP_ROBcopyleft57.96 2062.98 34559.65 34872.98 34181.44 31453.00 34983.75 31675.53 38048.34 38548.81 38081.40 30024.14 38590.30 32032.95 39260.52 34675.65 386
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
XVG-ACMP-BASELINE68.04 31665.53 31775.56 32074.06 37652.37 35078.43 36085.88 33362.03 32758.91 33781.21 30620.38 39591.15 31560.69 29068.18 28083.16 331
Vis-MVSNet (Re-imp)79.24 18279.57 16078.24 29688.46 19152.29 35190.41 22989.12 27174.24 15169.13 24291.91 15165.77 7490.09 32859.00 30088.09 11492.33 184
TAPA-MVS70.22 1274.94 25673.53 25279.17 28590.40 14652.07 35289.19 26289.61 25062.69 32170.07 23392.67 13148.89 27394.32 21538.26 38079.97 19291.12 213
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
mmtdpeth68.33 31366.37 31074.21 33382.81 30251.73 35384.34 31280.42 36767.01 28471.56 21668.58 38330.52 37192.35 28875.89 15836.21 39978.56 377
UnsupCasMVSNet_bld61.60 34857.71 35373.29 33968.73 39251.64 35478.61 35989.05 27657.20 35746.11 38461.96 39728.70 37688.60 33750.08 33038.90 39679.63 367
LTVRE_ROB59.60 1966.27 32763.54 33174.45 32984.00 28751.55 35567.08 39683.53 35558.78 34854.94 35480.31 31734.54 35493.23 25440.64 37368.03 28278.58 376
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
WR-MVS_H70.59 29269.94 28972.53 34481.03 31651.43 35687.35 29292.03 14867.38 27960.23 32880.70 31055.84 20083.45 37546.33 35058.58 35582.72 337
AllTest61.66 34758.06 35272.46 34579.57 33351.42 35780.17 35168.61 39751.25 37645.88 38581.23 30219.86 39786.58 35738.98 37757.01 35979.39 368
TestCases72.46 34579.57 33351.42 35768.61 39751.25 37645.88 38581.23 30219.86 39786.58 35738.98 37757.01 35979.39 368
MVStest151.35 36646.89 37064.74 37265.06 39951.10 35967.33 39572.58 38630.20 40835.30 40374.82 36127.70 37869.89 40324.44 40524.57 41273.22 390
CP-MVSNet70.50 29369.91 29072.26 34780.71 32051.00 36087.23 29490.30 22267.84 27459.64 33082.69 27950.23 25782.30 38351.28 32459.28 35183.46 326
pmmvs355.51 36151.50 36767.53 36857.90 40950.93 36180.37 34773.66 38440.63 40244.15 39464.75 39116.30 39978.97 39244.77 35840.98 39372.69 392
PS-CasMVS69.86 30069.13 29572.07 35180.35 32550.57 36287.02 29689.75 24367.27 28059.19 33482.28 28446.58 28982.24 38450.69 32659.02 35283.39 328
CMPMVSbinary48.56 2166.77 32564.41 32773.84 33570.65 38750.31 36377.79 36585.73 33645.54 39244.76 39182.14 28735.40 35190.14 32763.18 27574.54 23581.07 354
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
UnsupCasMVSNet_eth65.79 33063.10 33373.88 33470.71 38650.29 36481.09 34289.88 23972.58 18749.25 37874.77 36332.57 36187.43 35355.96 31041.04 39183.90 319
SixPastTwentyTwo64.92 33561.78 34274.34 33178.74 34849.76 36583.42 32179.51 37162.86 31850.27 37377.35 34230.92 37090.49 31945.89 35247.06 38182.78 334
PEN-MVS69.46 30368.56 29772.17 34979.27 33849.71 36686.90 29889.24 26267.24 28359.08 33582.51 28247.23 28583.54 37448.42 33857.12 35783.25 329
EPNet_dtu78.80 19279.26 16977.43 30488.06 20549.71 36691.96 16591.95 15177.67 10576.56 15891.28 16458.51 16490.20 32656.37 30880.95 18592.39 182
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
WAC-MVS49.45 36831.56 400
myMVS_eth3d72.58 28372.74 26172.10 35087.87 21149.45 36888.07 27889.01 27772.91 18063.11 31088.10 21263.63 10185.54 36132.73 39569.23 27281.32 351
K. test v363.09 34459.61 34973.53 33776.26 36749.38 37083.27 32277.15 37464.35 30147.77 38372.32 37128.73 37587.79 34749.93 33136.69 39883.41 327
mamv465.18 33467.43 30458.44 38077.88 36049.36 37169.40 38870.99 39348.31 38657.78 34585.53 25059.01 16051.88 41873.67 17564.32 31274.07 388
DTE-MVSNet68.46 31267.33 30671.87 35377.94 35849.00 37286.16 30488.58 29566.36 28858.19 33982.21 28646.36 29083.87 37244.97 35755.17 36482.73 336
Anonymous2024052162.09 34659.08 35071.10 35567.19 39448.72 37383.91 31585.23 33950.38 37947.84 38271.22 37820.74 39385.51 36346.47 34958.75 35479.06 371
LCM-MVSNet-Re72.93 27471.84 27376.18 31888.49 18948.02 37480.07 35370.17 39473.96 15852.25 36480.09 32249.98 25888.24 34267.35 23484.23 15692.28 187
test0.0.03 172.76 27772.71 26372.88 34280.25 32747.99 37591.22 20089.45 25471.51 22862.51 31887.66 22053.83 22185.06 36550.16 32967.84 28685.58 300
lessismore_v073.72 33672.93 38047.83 37661.72 40745.86 38773.76 36428.63 37789.81 33047.75 34531.37 40683.53 323
Anonymous2023120667.53 32165.78 31372.79 34374.95 37247.59 37788.23 27687.32 31661.75 33258.07 34177.29 34437.79 33787.29 35442.91 36263.71 31983.48 325
OurMVSNet-221017-064.68 33662.17 34072.21 34876.08 36947.35 37880.67 34581.02 36456.19 36251.60 36779.66 32727.05 38188.56 33853.60 32053.63 36980.71 358
test_fmvs174.07 26273.69 25075.22 32278.91 34647.34 37989.06 26674.69 38263.68 30979.41 12491.59 15824.36 38487.77 34885.22 7876.26 22790.55 220
test_vis1_n71.63 28770.73 28374.31 33269.63 39047.29 38086.91 29772.11 38863.21 31575.18 17190.17 18320.40 39485.76 36084.59 8874.42 23789.87 227
test_fmvs1_n72.69 28171.92 27274.99 32571.15 38447.08 38187.34 29375.67 37763.48 31178.08 14191.17 16520.16 39687.87 34584.65 8775.57 23190.01 226
ITE_SJBPF70.43 35774.44 37447.06 38277.32 37360.16 34154.04 35883.53 27023.30 38884.01 37043.07 36161.58 33980.21 365
mvs5depth61.03 35057.65 35571.18 35467.16 39547.04 38372.74 37977.49 37257.47 35560.52 32572.53 36622.84 38988.38 34049.15 33438.94 39578.11 380
EGC-MVSNET42.35 37438.09 37755.11 38574.57 37346.62 38471.63 38355.77 4090.04 4230.24 42462.70 39514.24 40574.91 39717.59 41246.06 38343.80 409
kuosan60.86 35260.24 34562.71 37781.57 31246.43 38575.70 37485.88 33357.98 35148.95 37969.53 38158.42 16576.53 39328.25 40235.87 40065.15 401
TDRefinement55.28 36251.58 36666.39 37159.53 40846.15 38676.23 37072.80 38544.60 39442.49 39776.28 35415.29 40282.39 38233.20 39143.75 38670.62 396
test_vis1_rt59.09 35857.31 35764.43 37368.44 39346.02 38783.05 32848.63 41751.96 37349.57 37663.86 39316.30 39980.20 39071.21 19962.79 32367.07 400
mvsany_test168.77 30868.56 29769.39 36073.57 37745.88 38880.93 34460.88 40859.65 34471.56 21690.26 18143.22 31075.05 39574.26 17362.70 32487.25 267
RPSCF64.24 33961.98 34171.01 35676.10 36845.00 38975.83 37375.94 37646.94 38958.96 33684.59 25931.40 36682.00 38547.76 34460.33 34986.04 289
new-patchmatchnet59.30 35756.48 35967.79 36665.86 39844.19 39082.47 33181.77 36259.94 34343.65 39566.20 38827.67 37981.68 38639.34 37641.40 39077.50 382
MIMVSNet160.16 35557.33 35668.67 36369.71 38944.13 39178.92 35884.21 34755.05 36644.63 39271.85 37323.91 38681.54 38732.63 39655.03 36580.35 361
CVMVSNet74.04 26374.27 24173.33 33885.33 26243.94 39289.53 25488.39 29854.33 36870.37 22990.13 18649.17 26984.05 36961.83 28579.36 19891.99 196
testing370.38 29570.83 28069.03 36285.82 25643.93 39390.72 22090.56 21168.06 27360.24 32786.82 23664.83 8584.12 36726.33 40364.10 31579.04 372
Syy-MVS69.65 30169.52 29370.03 35887.87 21143.21 39488.07 27889.01 27772.91 18063.11 31088.10 21245.28 30185.54 36122.07 40869.23 27281.32 351
PM-MVS59.40 35656.59 35867.84 36563.63 40041.86 39576.76 36763.22 40559.01 34751.07 37172.27 37211.72 40883.25 37761.34 28650.28 37778.39 378
test_fmvs265.78 33164.84 32068.60 36466.54 39641.71 39683.27 32269.81 39554.38 36767.91 26284.54 26115.35 40181.22 38875.65 16066.16 29482.88 333
ambc69.61 35961.38 40641.35 39749.07 41385.86 33550.18 37566.40 38710.16 41088.14 34345.73 35344.20 38579.32 370
new_pmnet49.31 36846.44 37157.93 38162.84 40240.74 39868.47 39162.96 40636.48 40335.09 40457.81 40114.97 40372.18 40032.86 39446.44 38260.88 403
testgi64.48 33862.87 33669.31 36171.24 38240.62 39985.49 30579.92 36965.36 29554.18 35783.49 27223.74 38784.55 36641.60 36860.79 34482.77 335
ttmdpeth53.34 36549.96 36863.45 37562.07 40540.04 40072.06 38065.64 40242.54 40051.88 36577.79 34013.94 40776.48 39432.93 39330.82 40973.84 389
test20.0363.83 34162.65 33767.38 36970.58 38839.94 40186.57 30184.17 34863.29 31351.86 36677.30 34337.09 34482.47 38138.87 37954.13 36879.73 366
KD-MVS_self_test60.87 35158.60 35167.68 36766.13 39739.93 40275.63 37584.70 34357.32 35649.57 37668.45 38429.55 37282.87 37948.09 33947.94 38080.25 364
LF4IMVS54.01 36452.12 36559.69 37962.41 40339.91 40368.59 39068.28 39942.96 39944.55 39375.18 35914.09 40668.39 40541.36 37051.68 37370.78 395
Gipumacopyleft34.91 38131.44 38445.30 39670.99 38539.64 40419.85 41872.56 38720.10 41416.16 41821.47 4195.08 41971.16 40113.07 41643.70 38725.08 416
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
EU-MVSNet64.01 34063.01 33467.02 37074.40 37538.86 40583.27 32286.19 33045.11 39354.27 35681.15 30736.91 34680.01 39148.79 33757.02 35882.19 346
dongtai55.18 36355.46 36254.34 38876.03 37036.88 40676.07 37184.61 34551.28 37543.41 39664.61 39256.56 19167.81 40618.09 41128.50 41158.32 404
FPMVS45.64 37243.10 37653.23 38951.42 41436.46 40764.97 39871.91 38929.13 40927.53 40961.55 3989.83 41165.01 41216.00 41555.58 36358.22 405
test_fmvs356.82 35954.86 36362.69 37853.59 41135.47 40875.87 37265.64 40243.91 39655.10 35371.43 3776.91 41674.40 39868.64 22452.63 37078.20 379
APD_test140.50 37637.31 37950.09 39251.88 41235.27 40959.45 40652.59 41321.64 41226.12 41057.80 4024.56 42066.56 40822.64 40739.09 39448.43 408
ANet_high40.27 37835.20 38155.47 38434.74 42534.47 41063.84 40071.56 39148.42 38418.80 41441.08 4139.52 41264.45 41320.18 4098.66 42167.49 399
test_vis3_rt40.46 37737.79 37848.47 39444.49 41933.35 41166.56 39732.84 42532.39 40629.65 40739.13 4153.91 42368.65 40450.17 32840.99 39243.40 410
test_f46.58 37043.45 37455.96 38345.18 41832.05 41261.18 40249.49 41633.39 40542.05 39862.48 3967.00 41565.56 41047.08 34743.21 38870.27 397
mvsany_test348.86 36946.35 37256.41 38246.00 41731.67 41362.26 40147.25 41843.71 39745.54 38968.15 38510.84 40964.44 41457.95 30235.44 40373.13 391
testf132.77 38229.47 38542.67 39841.89 42130.81 41452.07 40943.45 41915.45 41518.52 41544.82 4092.12 42458.38 41516.05 41330.87 40738.83 411
APD_test232.77 38229.47 38542.67 39841.89 42130.81 41452.07 40943.45 41915.45 41518.52 41544.82 4092.12 42458.38 41516.05 41330.87 40738.83 411
LCM-MVSNet40.54 37535.79 38054.76 38736.92 42430.81 41451.41 41169.02 39622.07 41124.63 41145.37 4084.56 42065.81 40933.67 38934.50 40467.67 398
DSMNet-mixed56.78 36054.44 36463.79 37463.21 40129.44 41764.43 39964.10 40442.12 40151.32 36971.60 37431.76 36475.04 39636.23 38265.20 30386.87 272
PMVScopyleft26.43 2231.84 38428.16 38742.89 39725.87 42727.58 41850.92 41249.78 41521.37 41314.17 41940.81 4142.01 42666.62 4079.61 41938.88 39734.49 415
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive24.84 2324.35 38619.77 39238.09 40034.56 42626.92 41926.57 41638.87 42311.73 41911.37 42027.44 4161.37 42750.42 41911.41 41714.60 41736.93 413
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMMVS237.93 38033.61 38350.92 39046.31 41624.76 42060.55 40550.05 41428.94 41020.93 41247.59 4054.41 42265.13 41125.14 40418.55 41662.87 402
DeepMVS_CXcopyleft34.71 40151.45 41324.73 42128.48 42731.46 40717.49 41752.75 4035.80 41842.60 42218.18 41019.42 41536.81 414
dmvs_testset65.55 33266.45 30862.86 37679.87 33122.35 42276.55 36871.74 39077.42 11355.85 35187.77 21951.39 24680.69 38931.51 40165.92 29685.55 302
test_method38.59 37935.16 38248.89 39354.33 41021.35 42345.32 41453.71 4127.41 42028.74 40851.62 4048.70 41352.87 41733.73 38832.89 40572.47 393
WB-MVS46.23 37144.94 37350.11 39162.13 40421.23 42476.48 36955.49 41045.89 39135.78 40261.44 39935.54 35072.83 3999.96 41821.75 41356.27 406
wuyk23d11.30 39010.95 39312.33 40548.05 41519.89 42525.89 4171.92 4293.58 4213.12 4231.37 4230.64 42815.77 4246.23 4237.77 4221.35 420
SSC-MVS44.51 37343.35 37547.99 39561.01 40718.90 42674.12 37754.36 41143.42 39834.10 40660.02 40034.42 35570.39 4029.14 42019.57 41454.68 407
E-PMN24.61 38524.00 38926.45 40243.74 42018.44 42760.86 40339.66 42115.11 4179.53 42122.10 4186.52 41746.94 4208.31 42110.14 41813.98 418
EMVS23.76 38723.20 39125.46 40341.52 42316.90 42860.56 40438.79 42414.62 4188.99 42220.24 4217.35 41445.82 4217.25 4229.46 41913.64 419
tmp_tt22.26 38823.75 39017.80 4045.23 42812.06 42935.26 41539.48 4222.82 42218.94 41344.20 41122.23 39124.64 42336.30 3819.31 42016.69 417
N_pmnet50.55 36749.11 36954.88 38677.17 3634.02 43084.36 3112.00 42848.59 38345.86 38768.82 38232.22 36282.80 38031.58 39951.38 37477.81 381
test1236.92 3939.21 3960.08 4060.03 4300.05 43181.65 3370.01 4310.02 4250.14 4260.85 4250.03 4290.02 4250.12 4250.00 4240.16 421
testmvs7.23 3929.62 3950.06 4070.04 4290.02 43284.98 3090.02 4300.03 4240.18 4251.21 4240.01 4300.02 4250.14 4240.01 4230.13 422
mmdepth0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4240.00 423
monomultidepth0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4240.00 423
test_blank0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4240.00 423
uanet_test0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4240.00 423
DCPMVS0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4240.00 423
cdsmvs_eth3d_5k19.86 38926.47 3880.00 4080.00 4310.00 4330.00 41993.45 860.00 4260.00 42795.27 5949.56 2630.00 4270.00 4260.00 4240.00 423
pcd_1.5k_mvsjas4.46 3945.95 3970.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 42653.55 2250.00 4270.00 4260.00 4240.00 423
sosnet-low-res0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4240.00 423
sosnet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4240.00 423
uncertanet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4240.00 423
Regformer0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4240.00 423
ab-mvs-re7.91 39110.55 3940.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 42794.95 690.00 4310.00 4270.00 4260.00 4240.00 423
uanet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4240.00 423
PC_three_145280.91 4894.07 296.83 1883.57 499.12 595.70 797.42 497.55 4
eth-test20.00 431
eth-test0.00 431
test_241102_TWO94.41 4971.65 21992.07 997.21 474.58 1899.11 692.34 2295.36 1496.59 19
9.1487.63 2893.86 4894.41 5294.18 5872.76 18486.21 4896.51 2466.64 6497.88 4490.08 3994.04 39
test_0728_THIRD72.48 18990.55 2096.93 1176.24 1199.08 1191.53 3094.99 1896.43 31
GSMVS94.68 100
sam_mvs157.85 17194.68 100
sam_mvs54.91 210
MTGPAbinary92.23 134
test_post178.95 35720.70 42053.05 23091.50 31260.43 291
test_post23.01 41756.49 19292.67 275
patchmatchnet-post67.62 38657.62 17490.25 321
MTMP93.77 8432.52 426
test9_res89.41 4094.96 1995.29 70
agg_prior286.41 7094.75 3095.33 66
test_prior295.10 3875.40 13785.25 6395.61 4567.94 5587.47 5994.77 26
旧先验292.00 16359.37 34687.54 3993.47 25175.39 162
新几何291.41 184
无先验92.71 12892.61 12462.03 32797.01 9666.63 24293.97 136
原ACMM292.01 160
testdata296.09 14361.26 287
segment_acmp65.94 72
testdata189.21 26177.55 109
plane_prior591.31 18295.55 17276.74 15278.53 20788.39 249
plane_prior489.14 198
plane_prior293.13 11078.81 88
plane_prior187.15 229
n20.00 432
nn0.00 432
door-mid66.01 401
test1193.01 106
door66.57 400
HQP-NCC87.54 22094.06 6379.80 6474.18 179
ACMP_Plane87.54 22094.06 6379.80 6474.18 179
BP-MVS77.63 149
HQP4-MVS74.18 17995.61 16788.63 243
HQP3-MVS91.70 16878.90 202
HQP2-MVS51.63 244
ACMMP++_ref71.63 257
ACMMP++69.72 266
Test By Simon54.21 219