This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort by
MSP-MVS90.38 491.87 185.88 7892.83 7164.03 17893.06 9694.33 4682.19 2193.65 396.15 2585.89 197.19 7491.02 2097.75 196.43 25
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DVP-MVS++90.53 391.09 488.87 1397.31 469.91 3593.96 6294.37 4472.48 15592.07 696.85 1183.82 299.15 291.53 1697.42 497.55 4
OPU-MVS89.97 397.52 373.15 1296.89 497.00 883.82 299.15 295.72 197.63 397.62 2
PC_three_145280.91 3594.07 296.83 1383.57 499.12 595.70 297.42 497.55 4
DPM-MVS90.70 290.52 791.24 189.68 14376.68 297.29 195.35 1082.87 1591.58 1097.22 379.93 599.10 983.12 7797.64 297.94 1
baseline283.68 7983.42 7084.48 12387.37 20066.00 12990.06 21195.93 779.71 4669.08 21090.39 15077.92 696.28 11078.91 11081.38 15391.16 179
GG-mvs-BLEND86.53 6291.91 9869.67 4375.02 33594.75 2678.67 10990.85 14277.91 794.56 17972.25 15693.74 4195.36 56
gg-mvs-nofinetune77.18 18674.31 20485.80 8391.42 11168.36 6971.78 33794.72 2749.61 34077.12 12345.92 36177.41 893.98 20667.62 20193.16 5195.05 72
SED-MVS89.94 790.36 888.70 1596.45 1269.38 4596.89 494.44 3871.65 18492.11 497.21 476.79 999.11 692.34 895.36 1397.62 2
test_241102_ONE96.45 1269.38 4594.44 3871.65 18492.11 497.05 776.79 999.11 6
test_0728_THIRD72.48 15590.55 1696.93 976.24 1199.08 1191.53 1694.99 1696.43 25
DPE-MVScopyleft88.77 1489.21 1487.45 3596.26 2067.56 9094.17 5194.15 5168.77 23490.74 1497.27 276.09 1298.49 2790.58 2394.91 1996.30 28
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
TSAR-MVS + GP.87.96 1888.37 1786.70 5593.51 5665.32 14595.15 3493.84 5678.17 7085.93 3994.80 5875.80 1398.21 3289.38 2688.78 9896.59 15
DeepPCF-MVS81.17 189.72 891.38 384.72 11593.00 6958.16 27996.72 794.41 4086.50 690.25 1897.83 175.46 1498.67 2392.78 595.49 1297.32 6
dcpmvs_287.37 2587.55 2486.85 4895.04 3268.20 7690.36 20290.66 18479.37 5081.20 7693.67 8974.73 1596.55 10590.88 2192.00 6595.82 42
MVSTER82.47 9682.05 9383.74 14092.68 7869.01 5591.90 14493.21 8279.83 4272.14 17785.71 21274.72 1694.72 16875.72 12872.49 21987.50 223
test_241102_TWO94.41 4071.65 18492.07 697.21 474.58 1799.11 692.34 895.36 1396.59 15
test_one_060196.32 1869.74 4094.18 4971.42 19590.67 1596.85 1174.45 18
DELS-MVS90.05 690.09 989.94 493.14 6673.88 797.01 394.40 4288.32 285.71 4194.91 5574.11 1998.91 1787.26 4595.94 897.03 10
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
patch_mono-289.71 990.99 585.85 8196.04 2463.70 18795.04 3895.19 1386.74 591.53 1195.15 4973.86 2097.58 5393.38 392.00 6596.28 31
DVP-MVScopyleft89.41 1189.73 1288.45 2096.40 1569.99 3196.64 894.52 3471.92 17190.55 1696.93 973.77 2199.08 1191.91 1494.90 2096.29 29
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072696.40 1569.99 3196.76 694.33 4671.92 17191.89 897.11 673.77 21
ET-MVSNet_ETH3D84.01 7183.15 7786.58 5990.78 12570.89 2294.74 4594.62 3281.44 3058.19 30193.64 9073.64 2392.35 25782.66 7978.66 17396.50 23
CSCG86.87 3086.26 3688.72 1495.05 3170.79 2393.83 7395.33 1168.48 23877.63 11694.35 7373.04 2498.45 2884.92 6493.71 4396.92 11
tttt051779.50 14578.53 14582.41 17487.22 20261.43 23189.75 22194.76 2569.29 22667.91 22888.06 18572.92 2595.63 13762.91 24273.90 20990.16 190
MCST-MVS91.08 191.46 289.94 497.66 273.37 897.13 295.58 889.33 185.77 4096.26 2272.84 2699.38 192.64 695.93 997.08 9
iter_conf0583.27 8382.70 8584.98 10693.32 5971.84 1594.16 5281.76 32282.74 1673.83 15788.40 17572.77 2794.61 17382.10 8375.21 20088.48 212
thisisatest051583.41 8082.49 8986.16 7289.46 14968.26 7393.54 8394.70 2874.31 11875.75 13390.92 14072.62 2896.52 10669.64 17981.50 15293.71 120
thisisatest053081.15 11680.07 12084.39 12588.26 17965.63 13891.40 16494.62 3271.27 19770.93 19089.18 16672.47 2996.04 12065.62 22276.89 19091.49 169
TSAR-MVS + MP.88.11 1788.64 1586.54 6191.73 10268.04 7990.36 20293.55 7082.89 1491.29 1292.89 10572.27 3096.03 12187.99 3694.77 2495.54 50
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
EPP-MVSNet81.79 10881.52 10082.61 16888.77 16660.21 25493.02 10093.66 6668.52 23772.90 16490.39 15072.19 3194.96 16074.93 13679.29 16792.67 145
CostFormer82.33 9881.15 10385.86 8089.01 16068.46 6782.39 29793.01 9175.59 10180.25 8781.57 25872.03 3294.96 16079.06 10877.48 18494.16 101
HPM-MVS++copyleft89.37 1289.95 1187.64 2895.10 3068.23 7595.24 3194.49 3682.43 1988.90 2396.35 2071.89 3398.63 2488.76 3396.40 696.06 35
CNVR-MVS90.32 590.89 688.61 1896.76 870.65 2496.47 1294.83 2384.83 989.07 2296.80 1470.86 3499.06 1592.64 695.71 1096.12 34
IB-MVS77.80 482.18 10080.46 11887.35 3789.14 15770.28 2995.59 2495.17 1578.85 6170.19 19885.82 21070.66 3597.67 4672.19 15966.52 25994.09 105
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
baseline181.84 10781.03 10884.28 13091.60 10566.62 11591.08 18191.66 14881.87 2474.86 14491.67 13069.98 3694.92 16371.76 16264.75 27391.29 178
alignmvs87.28 2686.97 3088.24 2291.30 11471.14 2195.61 2393.56 6979.30 5187.07 3195.25 4568.43 3796.93 9487.87 3784.33 13396.65 13
PAPM85.89 4485.46 4687.18 4088.20 18372.42 1392.41 12392.77 9982.11 2280.34 8693.07 10068.27 3895.02 15878.39 11593.59 4594.09 105
train_agg87.21 2787.42 2686.60 5794.18 4167.28 9794.16 5293.51 7171.87 17685.52 4395.33 3868.19 3997.27 7289.09 3094.90 2095.25 67
test_894.19 4067.19 9994.15 5593.42 7771.87 17685.38 4695.35 3768.19 3996.95 91
TEST994.18 4167.28 9794.16 5293.51 7171.75 18285.52 4395.33 3868.01 4197.27 72
test_prior295.10 3675.40 10585.25 4995.61 3367.94 4287.47 4294.77 24
WTY-MVS86.32 3685.81 4287.85 2492.82 7369.37 4795.20 3295.25 1282.71 1781.91 7194.73 5967.93 4397.63 5079.55 10282.25 14596.54 18
APDe-MVS87.54 2387.84 2086.65 5696.07 2366.30 12394.84 4393.78 5769.35 22588.39 2496.34 2167.74 4497.66 4890.62 2293.44 4796.01 38
tpm279.80 14177.95 15485.34 9788.28 17868.26 7381.56 30291.42 15770.11 21677.59 11880.50 27667.40 4594.26 19167.34 20377.35 18593.51 125
miper_enhance_ethall78.86 15777.97 15381.54 19688.00 18865.17 14991.41 16289.15 23975.19 10868.79 21683.98 23067.17 4692.82 23572.73 15165.30 26486.62 244
SF-MVS87.03 2987.09 2886.84 4992.70 7767.45 9593.64 7893.76 6070.78 20886.25 3496.44 1966.98 4797.79 4388.68 3494.56 3095.28 63
HY-MVS76.49 584.28 6483.36 7387.02 4692.22 8767.74 8684.65 27794.50 3579.15 5582.23 6987.93 18666.88 4896.94 9280.53 9782.20 14696.39 27
EPNet87.84 2188.38 1686.23 7193.30 6066.05 12795.26 3094.84 2287.09 388.06 2594.53 6466.79 4997.34 6583.89 7391.68 7095.29 61
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
9.1487.63 2293.86 4794.41 4994.18 4972.76 15086.21 3596.51 1766.64 5097.88 4190.08 2494.04 35
FIs79.47 14679.41 13479.67 24085.95 22259.40 26491.68 15693.94 5478.06 7168.96 21388.28 17866.61 5191.77 26966.20 21674.99 20187.82 220
NCCC89.07 1389.46 1387.91 2396.60 1069.05 5496.38 1394.64 3184.42 1086.74 3296.20 2366.56 5298.76 2289.03 3294.56 3095.92 40
SD-MVS87.49 2487.49 2587.50 3493.60 5368.82 6093.90 6692.63 10776.86 8887.90 2695.76 3066.17 5397.63 5089.06 3191.48 7496.05 36
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
UniMVSNet_NR-MVSNet78.15 17277.55 15979.98 23284.46 24660.26 25292.25 12693.20 8477.50 8368.88 21486.61 19966.10 5492.13 26166.38 21362.55 28887.54 222
CHOSEN 280x42077.35 18476.95 17278.55 25687.07 20562.68 21169.71 34382.95 31868.80 23371.48 18687.27 19666.03 5584.00 33376.47 12582.81 14388.95 202
CANet89.61 1089.99 1088.46 1994.39 3969.71 4196.53 1193.78 5786.89 489.68 1995.78 2965.94 5699.10 992.99 493.91 3896.58 17
segment_acmp65.94 56
Vis-MVSNet (Re-imp)79.24 14979.57 12978.24 26188.46 17152.29 31890.41 20089.12 24174.24 11969.13 20891.91 12565.77 5890.09 29359.00 26588.09 10392.33 153
FC-MVSNet-test77.99 17478.08 15177.70 26484.89 23955.51 30390.27 20593.75 6376.87 8766.80 24687.59 19065.71 5990.23 29062.89 24373.94 20787.37 227
SMA-MVScopyleft88.14 1588.29 1887.67 2793.21 6368.72 6293.85 6994.03 5374.18 12091.74 996.67 1565.61 6098.42 3189.24 2996.08 795.88 41
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
test1287.09 4394.60 3668.86 5892.91 9582.67 6865.44 6197.55 5493.69 4494.84 80
旧先验191.94 9560.74 24591.50 15494.36 6965.23 6291.84 6794.55 88
1112_ss80.56 12779.83 12682.77 16388.65 16760.78 24192.29 12588.36 26472.58 15372.46 17394.95 5165.09 6393.42 22166.38 21377.71 17894.10 104
MVSFormer83.75 7782.88 8186.37 6789.24 15571.18 1989.07 23590.69 18165.80 25687.13 2994.34 7464.99 6492.67 24372.83 14891.80 6895.27 64
lupinMVS87.74 2287.77 2187.63 3289.24 15571.18 1996.57 1092.90 9682.70 1887.13 2995.27 4364.99 6495.80 12689.34 2791.80 6895.93 39
tpmrst80.57 12679.14 14084.84 11090.10 13568.28 7281.70 30089.72 22177.63 8175.96 13279.54 29064.94 6692.71 24075.43 13077.28 18793.55 124
ZD-MVS96.63 965.50 14393.50 7370.74 20985.26 4895.19 4864.92 6797.29 6887.51 4193.01 52
casdiffmvs_mvgpermissive85.66 4785.18 4987.09 4388.22 18269.35 4893.74 7691.89 13481.47 2780.10 8891.45 13264.80 6896.35 10887.23 4687.69 10695.58 48
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
miper_ehance_all_eth77.60 18076.44 17781.09 21085.70 22764.41 16890.65 19488.64 25972.31 16167.37 23982.52 24464.77 6992.64 24770.67 17165.30 26486.24 249
Test_1112_low_res79.56 14478.60 14482.43 17188.24 18160.39 25192.09 13387.99 27372.10 16971.84 18087.42 19364.62 7093.04 22565.80 22077.30 18693.85 118
test250683.29 8282.92 8084.37 12688.39 17563.18 19892.01 13891.35 15977.66 7978.49 11091.42 13364.58 7195.09 15773.19 14489.23 9494.85 77
DeepC-MVS_fast79.48 287.95 1988.00 1987.79 2695.86 2768.32 7095.74 1994.11 5283.82 1283.49 6196.19 2464.53 7298.44 2983.42 7694.88 2396.61 14
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MG-MVS87.11 2886.27 3589.62 797.79 176.27 494.96 4194.49 3678.74 6583.87 6092.94 10364.34 7396.94 9275.19 13294.09 3495.66 45
casdiffmvspermissive85.37 4984.87 5586.84 4988.25 18069.07 5393.04 9891.76 14181.27 3180.84 8392.07 12364.23 7496.06 11984.98 6387.43 10995.39 53
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
cl2277.94 17676.78 17381.42 19887.57 19464.93 15790.67 19388.86 25172.45 15767.63 23482.68 24364.07 7592.91 23371.79 16065.30 26486.44 245
tpm78.58 16577.03 16983.22 15685.94 22464.56 15983.21 29191.14 16978.31 6873.67 15879.68 28864.01 7692.09 26366.07 21771.26 22993.03 139
CDS-MVSNet81.43 11380.74 11183.52 14786.26 21764.45 16492.09 13390.65 18575.83 10073.95 15689.81 16263.97 7792.91 23371.27 16582.82 14293.20 134
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MVS_Test84.16 6983.20 7487.05 4591.56 10769.82 3789.99 21692.05 12577.77 7682.84 6586.57 20063.93 7896.09 11674.91 13789.18 9695.25 67
APD-MVScopyleft85.93 4385.99 4085.76 8595.98 2665.21 14893.59 8192.58 10966.54 25186.17 3695.88 2863.83 7997.00 8486.39 5392.94 5395.06 71
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
mvs_anonymous81.36 11479.99 12385.46 9290.39 13168.40 6886.88 26890.61 18674.41 11570.31 19784.67 22163.79 8092.32 25873.13 14585.70 12395.67 44
PVSNet_Blended_VisFu83.97 7283.50 6585.39 9590.02 13666.59 11793.77 7491.73 14277.43 8577.08 12589.81 16263.77 8196.97 8979.67 10188.21 10292.60 147
baseline85.01 5484.44 5786.71 5488.33 17768.73 6190.24 20791.82 14081.05 3481.18 7792.50 11263.69 8296.08 11884.45 6886.71 11795.32 59
CDPH-MVS85.71 4685.46 4686.46 6394.75 3467.19 9993.89 6792.83 9870.90 20483.09 6495.28 4163.62 8397.36 6380.63 9694.18 3394.84 80
HyFIR lowres test81.03 12179.56 13085.43 9387.81 19268.11 7890.18 20890.01 21070.65 21072.95 16386.06 20863.61 8494.50 18375.01 13579.75 16393.67 121
canonicalmvs86.85 3186.25 3788.66 1791.80 10171.92 1493.54 8391.71 14480.26 3987.55 2795.25 4563.59 8596.93 9488.18 3584.34 13297.11 8
c3_l76.83 19275.47 19080.93 21485.02 23764.18 17690.39 20188.11 27071.66 18366.65 24781.64 25663.58 8692.56 24869.31 18562.86 28586.04 256
SteuartSystems-ACMMP86.82 3386.90 3186.58 5990.42 12966.38 12096.09 1593.87 5577.73 7784.01 5995.66 3163.39 8797.94 3787.40 4393.55 4695.42 51
Skip Steuart: Steuart Systems R&D Blog.
EI-MVSNet-Vis-set83.77 7683.67 6384.06 13492.79 7663.56 19291.76 15294.81 2479.65 4777.87 11494.09 8163.35 8897.90 3979.35 10479.36 16590.74 183
UniMVSNet (Re)77.58 18176.78 17379.98 23284.11 25260.80 24091.76 15293.17 8676.56 9469.93 20484.78 22063.32 8992.36 25664.89 22962.51 29086.78 239
PVSNet_BlendedMVS83.38 8183.43 6883.22 15693.76 4967.53 9294.06 5793.61 6779.13 5681.00 8185.14 21563.19 9097.29 6887.08 4773.91 20884.83 278
PVSNet_Blended86.73 3486.86 3286.31 7093.76 4967.53 9296.33 1493.61 6782.34 2081.00 8193.08 9963.19 9097.29 6887.08 4791.38 7694.13 103
PAPM_NR82.97 8981.84 9786.37 6794.10 4466.76 11287.66 25692.84 9769.96 21874.07 15493.57 9263.10 9297.50 5670.66 17290.58 8694.85 77
nrg03080.93 12279.86 12584.13 13383.69 25768.83 5993.23 9291.20 16475.55 10275.06 14388.22 18363.04 9394.74 16781.88 8566.88 25688.82 206
EI-MVSNet-UG-set83.14 8682.96 7883.67 14592.28 8563.19 19791.38 16894.68 2979.22 5376.60 12893.75 8762.64 9497.76 4478.07 11778.01 17690.05 192
DeepC-MVS77.85 385.52 4885.24 4886.37 6788.80 16566.64 11492.15 12993.68 6581.07 3376.91 12693.64 9062.59 9598.44 2985.50 5892.84 5594.03 109
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
EIA-MVS84.84 5684.88 5484.69 11691.30 11462.36 21493.85 6992.04 12679.45 4879.33 9894.28 7762.42 9696.35 10880.05 9991.25 7995.38 54
CS-MVS85.80 4586.65 3483.27 15592.00 9458.92 27295.31 2991.86 13679.97 4184.82 5095.40 3662.26 9795.51 14786.11 5592.08 6495.37 55
MVS_111021_HR86.19 3985.80 4387.37 3693.17 6569.79 3893.99 6193.76 6079.08 5878.88 10593.99 8462.25 9898.15 3485.93 5791.15 8094.15 102
PHI-MVS86.83 3286.85 3386.78 5393.47 5765.55 14195.39 2895.10 1671.77 18185.69 4296.52 1662.07 9998.77 2186.06 5695.60 1196.03 37
MP-MVScopyleft85.02 5384.97 5385.17 10292.60 8164.27 17493.24 9192.27 11673.13 14279.63 9494.43 6761.90 10097.17 7585.00 6292.56 5794.06 108
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
jason86.40 3586.17 3887.11 4286.16 21970.54 2695.71 2292.19 12282.00 2384.58 5294.34 7461.86 10195.53 14687.76 3890.89 8295.27 64
jason: jason.
iter_conf_final81.74 10980.93 10984.18 13192.66 7969.10 5292.94 10282.80 32079.01 6074.85 14588.40 17561.83 10294.61 17379.36 10376.52 19388.83 203
CS-MVS-test86.14 4087.01 2983.52 14792.63 8059.36 26795.49 2591.92 13180.09 4085.46 4595.53 3561.82 10395.77 12986.77 5193.37 4895.41 52
PAPR85.15 5284.47 5687.18 4096.02 2568.29 7191.85 14793.00 9376.59 9379.03 10195.00 5061.59 10497.61 5278.16 11689.00 9795.63 46
IS-MVSNet80.14 13479.41 13482.33 17587.91 18960.08 25691.97 14288.27 26772.90 14871.44 18791.73 12961.44 10593.66 21662.47 24686.53 11993.24 132
cl____76.07 19974.67 19580.28 22385.15 23361.76 22590.12 20988.73 25571.16 19865.43 25281.57 25861.15 10692.95 22866.54 21062.17 29286.13 254
DIV-MVS_self_test76.07 19974.67 19580.28 22385.14 23461.75 22690.12 20988.73 25571.16 19865.42 25381.60 25761.15 10692.94 23266.54 21062.16 29486.14 252
EI-MVSNet78.97 15478.22 14981.25 20185.33 23062.73 21089.53 22593.21 8272.39 16072.14 17790.13 15860.99 10894.72 16867.73 20072.49 21986.29 247
IterMVS-LS76.49 19575.18 19380.43 22084.49 24562.74 20990.64 19588.80 25272.40 15965.16 25581.72 25460.98 10992.27 25967.74 19964.65 27586.29 247
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
ETV-MVS86.01 4286.11 3985.70 8790.21 13467.02 10693.43 8891.92 13181.21 3284.13 5894.07 8360.93 11095.63 13789.28 2889.81 9094.46 96
tpm cat175.30 21572.21 23384.58 12088.52 16867.77 8578.16 32788.02 27261.88 29168.45 22276.37 31360.65 11194.03 20453.77 28474.11 20591.93 165
TAMVS80.37 13079.45 13383.13 15885.14 23463.37 19391.23 17590.76 18074.81 11372.65 16788.49 17260.63 11292.95 22869.41 18381.95 14893.08 138
ZNCC-MVS85.33 5085.08 5186.06 7393.09 6865.65 13793.89 6793.41 7873.75 13179.94 9094.68 6160.61 11398.03 3682.63 8093.72 4294.52 92
thres100view90078.37 16877.01 17082.46 17091.89 9963.21 19691.19 17996.33 172.28 16370.45 19487.89 18760.31 11495.32 15145.16 31877.58 18188.83 203
thres600view778.00 17376.66 17582.03 18991.93 9663.69 18891.30 17396.33 172.43 15870.46 19387.89 18760.31 11494.92 16342.64 33076.64 19187.48 224
CHOSEN 1792x268884.98 5583.45 6789.57 1089.94 13875.14 592.07 13592.32 11481.87 2475.68 13588.27 17960.18 11698.60 2580.46 9890.27 8994.96 75
h-mvs3383.01 8882.56 8884.35 12789.34 15062.02 21992.72 10893.76 6081.45 2882.73 6692.25 12160.11 11797.13 7787.69 3962.96 28493.91 114
hse-mvs281.12 11981.11 10781.16 20486.52 21257.48 28989.40 22891.16 16681.45 2882.73 6690.49 14860.11 11794.58 17587.69 3960.41 31191.41 172
tfpn200view978.79 16077.43 16182.88 16192.21 8864.49 16192.05 13696.28 473.48 13771.75 18288.26 18060.07 11995.32 15145.16 31877.58 18188.83 203
thres40078.68 16277.43 16182.43 17192.21 8864.49 16192.05 13696.28 473.48 13771.75 18288.26 18060.07 11995.32 15145.16 31877.58 18187.48 224
diffmvspermissive84.28 6483.83 6285.61 8987.40 19968.02 8090.88 18789.24 23380.54 3781.64 7392.52 11159.83 12194.52 18287.32 4485.11 12694.29 97
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVS84.66 5882.86 8290.06 290.93 12074.56 687.91 25195.54 968.55 23672.35 17694.71 6059.78 12298.90 1881.29 9394.69 2996.74 12
thres20079.66 14278.33 14683.66 14692.54 8265.82 13593.06 9696.31 374.90 11273.30 16088.66 17059.67 12395.61 13947.84 30778.67 17289.56 200
Effi-MVS+83.82 7582.76 8386.99 4789.56 14669.40 4491.35 17086.12 29272.59 15283.22 6392.81 10959.60 12496.01 12381.76 8687.80 10595.56 49
eth_miper_zixun_eth75.96 20674.40 20380.66 21684.66 24163.02 20089.28 23088.27 26771.88 17565.73 25081.65 25559.45 12592.81 23668.13 19460.53 30886.14 252
ACMMP_NAP86.05 4185.80 4386.80 5291.58 10667.53 9291.79 14993.49 7474.93 11184.61 5195.30 4059.42 12697.92 3886.13 5494.92 1894.94 76
GST-MVS84.63 5984.29 5985.66 8892.82 7365.27 14693.04 9893.13 8873.20 14078.89 10294.18 8059.41 12797.85 4281.45 8992.48 5993.86 117
UA-Net80.02 13779.65 12881.11 20689.33 15257.72 28486.33 27189.00 24777.44 8481.01 8089.15 16759.33 12895.90 12461.01 25384.28 13589.73 197
NR-MVSNet76.05 20274.59 19880.44 21982.96 26662.18 21890.83 18991.73 14277.12 8660.96 28786.35 20259.28 12991.80 26860.74 25461.34 30387.35 229
MP-MVS-pluss85.24 5185.13 5085.56 9091.42 11165.59 13991.54 15992.51 11174.56 11480.62 8495.64 3259.15 13097.00 8486.94 4993.80 3994.07 107
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
HFP-MVS84.73 5784.40 5885.72 8693.75 5165.01 15493.50 8593.19 8572.19 16579.22 9994.93 5359.04 13197.67 4681.55 8792.21 6094.49 95
MSLP-MVS++86.27 3785.91 4187.35 3792.01 9368.97 5795.04 3892.70 10179.04 5981.50 7496.50 1858.98 13296.78 9783.49 7593.93 3796.29 29
Patchmatch-test65.86 29260.94 30580.62 21883.75 25658.83 27358.91 36175.26 34044.50 35250.95 33177.09 30758.81 13387.90 30935.13 35064.03 27995.12 70
EPNet_dtu78.80 15979.26 13877.43 26988.06 18549.71 33191.96 14391.95 13077.67 7876.56 12991.28 13758.51 13490.20 29156.37 27380.95 15692.39 151
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DROMVSNet84.53 6085.04 5283.01 15989.34 15061.37 23294.42 4891.09 17177.91 7483.24 6294.20 7958.37 13595.40 14885.35 5991.41 7592.27 159
VNet86.20 3885.65 4587.84 2593.92 4669.99 3195.73 2195.94 678.43 6786.00 3893.07 10058.22 13697.00 8485.22 6084.33 13396.52 19
TESTMET0.1,182.41 9781.98 9683.72 14388.08 18463.74 18492.70 11093.77 5979.30 5177.61 11787.57 19158.19 13794.08 19773.91 14386.68 11893.33 131
原ACMM184.42 12493.21 6364.27 17493.40 7965.39 25979.51 9592.50 11258.11 13896.69 9965.27 22793.96 3692.32 154
sam_mvs157.85 13994.68 84
CR-MVSNet73.79 23270.82 24582.70 16583.15 26367.96 8170.25 34084.00 31073.67 13569.97 20272.41 32857.82 14089.48 29752.99 28773.13 21290.64 185
Patchmtry67.53 28463.93 29078.34 25782.12 27364.38 16968.72 34484.00 31048.23 34559.24 29472.41 32857.82 14089.27 29846.10 31556.68 32381.36 316
patchmatchnet-post67.62 34357.62 14290.25 286
PCF-MVS73.15 979.29 14877.63 15884.29 12986.06 22065.96 13187.03 26391.10 17069.86 22069.79 20590.64 14357.54 14396.59 10164.37 23282.29 14490.32 188
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
Fast-Effi-MVS+81.14 11780.01 12284.51 12290.24 13365.86 13394.12 5689.15 23973.81 13075.37 14188.26 18057.26 14494.53 18166.97 20784.92 12793.15 135
miper_lstm_enhance73.05 23771.73 23977.03 27583.80 25558.32 27881.76 29888.88 24969.80 22161.01 28678.23 29757.19 14587.51 31765.34 22659.53 31385.27 274
PatchT69.11 26865.37 28080.32 22182.07 27463.68 18967.96 34987.62 27650.86 33769.37 20665.18 34657.09 14688.53 30341.59 33366.60 25888.74 207
testdata81.34 20089.02 15957.72 28489.84 21458.65 31185.32 4794.09 8157.03 14793.28 22269.34 18490.56 8793.03 139
PatchmatchNetpermissive77.46 18274.63 19785.96 7689.55 14770.35 2879.97 31889.55 22472.23 16470.94 18976.91 30957.03 14792.79 23854.27 28181.17 15494.74 82
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
test_yl84.28 6483.16 7587.64 2894.52 3769.24 4995.78 1695.09 1769.19 22881.09 7892.88 10657.00 14997.44 5881.11 9481.76 14996.23 32
DCV-MVSNet84.28 6483.16 7587.64 2894.52 3769.24 4995.78 1695.09 1769.19 22881.09 7892.88 10657.00 14997.44 5881.11 9481.76 14996.23 32
region2R84.36 6284.03 6185.36 9693.54 5564.31 17293.43 8892.95 9472.16 16878.86 10694.84 5756.97 15197.53 5581.38 9192.11 6394.24 98
新几何184.73 11492.32 8464.28 17391.46 15659.56 30779.77 9292.90 10456.95 15296.57 10363.40 23792.91 5493.34 129
WR-MVS76.76 19375.74 18779.82 23784.60 24262.27 21792.60 11692.51 11176.06 9767.87 23185.34 21356.76 15390.24 28962.20 24763.69 28386.94 237
HPM-MVScopyleft83.25 8482.95 7984.17 13292.25 8662.88 20790.91 18491.86 13670.30 21477.12 12393.96 8556.75 15496.28 11082.04 8491.34 7893.34 129
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
sss82.71 9482.38 9183.73 14289.25 15459.58 26292.24 12794.89 2177.96 7279.86 9192.38 11756.70 15597.05 7977.26 12180.86 15794.55 88
ACMMPR84.37 6184.06 6085.28 9893.56 5464.37 17093.50 8593.15 8772.19 16578.85 10794.86 5656.69 15697.45 5781.55 8792.20 6194.02 110
FMVSNet377.73 17976.04 18282.80 16291.20 11768.99 5691.87 14591.99 12873.35 13967.04 24183.19 23856.62 15792.14 26059.80 26169.34 23887.28 231
Patchmatch-RL test68.17 27864.49 28779.19 24871.22 34253.93 31170.07 34271.54 35069.22 22756.79 31062.89 35056.58 15888.61 30069.53 18252.61 33395.03 74
test_post23.01 37156.49 15992.67 243
RPMNet70.42 25965.68 27684.63 11983.15 26367.96 8170.25 34090.45 18746.83 34869.97 20265.10 34756.48 16095.30 15435.79 34973.13 21290.64 185
DU-MVS76.86 18875.84 18579.91 23482.96 26660.26 25291.26 17491.54 15176.46 9568.88 21486.35 20256.16 16192.13 26166.38 21362.55 28887.35 229
Baseline_NR-MVSNet73.99 22972.83 22477.48 26880.78 28259.29 26891.79 14984.55 30568.85 23268.99 21280.70 27256.16 16192.04 26462.67 24460.98 30581.11 317
API-MVS82.28 9980.53 11687.54 3396.13 2270.59 2593.63 7991.04 17665.72 25875.45 14092.83 10856.11 16398.89 1964.10 23389.75 9393.15 135
MTAPA83.91 7383.38 7285.50 9191.89 9965.16 15081.75 29992.23 11775.32 10680.53 8595.21 4756.06 16497.16 7684.86 6592.55 5894.18 99
JIA-IIPM66.06 29162.45 29976.88 27981.42 27954.45 31057.49 36288.67 25749.36 34163.86 26846.86 36056.06 16490.25 28649.53 29768.83 24285.95 259
v14876.19 19774.47 20281.36 19980.05 29364.44 16591.75 15490.23 20173.68 13467.13 24080.84 27155.92 16693.86 21368.95 18961.73 29985.76 265
WR-MVS_H70.59 25769.94 25272.53 31081.03 28051.43 32287.35 26092.03 12767.38 24560.23 29080.70 27255.84 16783.45 33746.33 31458.58 31882.72 302
AUN-MVS78.37 16877.43 16181.17 20386.60 21157.45 29089.46 22791.16 16674.11 12174.40 14990.49 14855.52 16894.57 17774.73 14060.43 31091.48 170
XVS83.87 7483.47 6685.05 10393.22 6163.78 18292.92 10392.66 10473.99 12378.18 11194.31 7655.25 16997.41 6079.16 10691.58 7293.95 112
X-MVStestdata76.86 18874.13 20885.05 10393.22 6163.78 18292.92 10392.66 10473.99 12378.18 11110.19 37655.25 16997.41 6079.16 10691.58 7293.95 112
BH-w/o80.49 12979.30 13784.05 13590.83 12464.36 17193.60 8089.42 22874.35 11769.09 20990.15 15755.23 17195.61 13964.61 23086.43 12192.17 162
CP-MVS83.71 7883.40 7184.65 11793.14 6663.84 18094.59 4692.28 11571.03 20277.41 11994.92 5455.21 17296.19 11281.32 9290.70 8493.91 114
PGM-MVS83.25 8482.70 8584.92 10792.81 7564.07 17790.44 19892.20 12171.28 19677.23 12294.43 6755.17 17397.31 6779.33 10591.38 7693.37 128
tpmvs72.88 24169.76 25582.22 18090.98 11967.05 10478.22 32688.30 26563.10 27964.35 26674.98 32055.09 17494.27 18943.25 32469.57 23785.34 272
v875.35 21473.26 21981.61 19580.67 28466.82 10989.54 22489.27 23271.65 18463.30 27480.30 28054.99 17594.06 19967.33 20462.33 29183.94 284
sam_mvs54.91 176
EPMVS78.49 16775.98 18386.02 7491.21 11669.68 4280.23 31491.20 16475.25 10772.48 17278.11 29854.65 17793.69 21557.66 27083.04 14094.69 83
ab-mvs80.18 13378.31 14785.80 8388.44 17265.49 14483.00 29492.67 10371.82 17977.36 12085.01 21654.50 17896.59 10176.35 12675.63 19895.32 59
KD-MVS_2432*160069.03 26966.37 27277.01 27685.56 22861.06 23681.44 30390.25 19967.27 24658.00 30476.53 31154.49 17987.63 31548.04 30435.77 36082.34 308
miper_refine_blended69.03 26966.37 27277.01 27685.56 22861.06 23681.44 30390.25 19967.27 24658.00 30476.53 31154.49 17987.63 31548.04 30435.77 36082.34 308
DP-MVS Recon82.73 9281.65 9985.98 7597.31 467.06 10395.15 3491.99 12869.08 23176.50 13093.89 8654.48 18198.20 3370.76 17085.66 12492.69 144
GeoE78.90 15677.43 16183.29 15488.95 16162.02 21992.31 12486.23 29070.24 21571.34 18889.27 16554.43 18294.04 20263.31 23880.81 15993.81 119
XXY-MVS77.94 17676.44 17782.43 17182.60 26864.44 16592.01 13891.83 13973.59 13670.00 20185.82 21054.43 18294.76 16569.63 18068.02 24988.10 219
MDTV_nov1_ep13_2view59.90 25880.13 31667.65 24372.79 16554.33 18459.83 26092.58 148
Test By Simon54.21 185
MAR-MVS84.18 6883.43 6886.44 6496.25 2165.93 13294.28 5094.27 4874.41 11579.16 10095.61 3353.99 18698.88 2069.62 18193.26 5094.50 94
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
test-LLR80.10 13579.56 13081.72 19386.93 20861.17 23392.70 11091.54 15171.51 19375.62 13686.94 19753.83 18792.38 25472.21 15784.76 13091.60 167
test0.0.03 172.76 24272.71 22772.88 30880.25 29147.99 33791.22 17689.45 22671.51 19362.51 28187.66 18953.83 18785.06 32850.16 29467.84 25285.58 266
v2v48277.42 18375.65 18982.73 16480.38 28767.13 10291.85 14790.23 20175.09 10969.37 20683.39 23653.79 18994.44 18471.77 16165.00 27086.63 243
SR-MVS82.81 9182.58 8783.50 15093.35 5861.16 23592.23 12891.28 16364.48 26581.27 7595.28 4153.71 19095.86 12582.87 7888.77 9993.49 126
pcd_1.5k_mvsjas4.46 3485.95 3510.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 38053.55 1910.00 3810.00 3790.00 3780.00 377
PS-MVSNAJss77.26 18576.31 17980.13 22880.64 28559.16 26990.63 19791.06 17472.80 14968.58 22084.57 22353.55 19193.96 20772.97 14671.96 22387.27 232
PS-MVSNAJ88.14 1587.61 2389.71 692.06 9076.72 195.75 1893.26 8183.86 1189.55 2096.06 2653.55 19197.89 4091.10 1893.31 4994.54 90
mPP-MVS82.96 9082.44 9084.52 12192.83 7162.92 20592.76 10691.85 13871.52 19275.61 13894.24 7853.48 19496.99 8778.97 10990.73 8393.64 123
xiu_mvs_v2_base87.92 2087.38 2789.55 1191.41 11376.43 395.74 1993.12 8983.53 1389.55 2095.95 2753.45 19597.68 4591.07 1992.62 5694.54 90
test_post178.95 32020.70 37453.05 19691.50 27860.43 256
MDTV_nov1_ep1372.61 22889.06 15868.48 6680.33 31290.11 20571.84 17871.81 18175.92 31753.01 19793.92 20948.04 30473.38 210
FA-MVS(test-final)79.12 15177.23 16784.81 11290.54 12763.98 17981.35 30591.71 14471.09 20174.85 14582.94 23952.85 19897.05 7967.97 19681.73 15193.41 127
test22289.77 14161.60 22889.55 22389.42 22856.83 32077.28 12192.43 11652.76 19991.14 8193.09 137
v114476.73 19474.88 19482.27 17780.23 29266.60 11691.68 15690.21 20373.69 13369.06 21181.89 25152.73 20094.40 18569.21 18665.23 26785.80 262
v1074.77 22172.54 23081.46 19780.33 29066.71 11389.15 23489.08 24370.94 20363.08 27579.86 28552.52 20194.04 20265.70 22162.17 29283.64 286
CLD-MVS82.73 9282.35 9283.86 13887.90 19067.65 8995.45 2692.18 12385.06 872.58 16992.27 12052.46 20295.78 12784.18 6979.06 16888.16 218
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
TranMVSNet+NR-MVSNet75.86 20774.52 20179.89 23582.44 26960.64 24891.37 16991.37 15876.63 9267.65 23386.21 20652.37 20391.55 27361.84 24960.81 30687.48 224
VPA-MVSNet79.03 15278.00 15282.11 18785.95 22264.48 16393.22 9394.66 3075.05 11074.04 15584.95 21752.17 20493.52 21874.90 13867.04 25588.32 217
APD-MVS_3200maxsize81.64 11181.32 10282.59 16992.36 8358.74 27491.39 16691.01 17763.35 27479.72 9394.62 6351.82 20596.14 11479.71 10087.93 10492.89 143
dp75.01 21972.09 23483.76 13989.28 15366.22 12679.96 31989.75 21671.16 19867.80 23277.19 30651.81 20692.54 24950.39 29271.44 22892.51 150
v14419276.05 20274.03 20982.12 18479.50 29866.55 11891.39 16689.71 22272.30 16268.17 22381.33 26351.75 20794.03 20467.94 19764.19 27785.77 263
BH-untuned78.68 16277.08 16883.48 15189.84 13963.74 18492.70 11088.59 26071.57 19066.83 24588.65 17151.75 20795.39 14959.03 26484.77 12991.32 176
HQP2-MVS51.63 209
HQP-MVS81.14 11780.64 11482.64 16787.54 19563.66 19094.06 5791.70 14679.80 4374.18 15090.30 15251.63 20995.61 13977.63 11978.90 16988.63 208
V4276.46 19674.55 20082.19 18179.14 30467.82 8490.26 20689.42 22873.75 13168.63 21981.89 25151.31 21194.09 19671.69 16364.84 27184.66 279
SR-MVS-dyc-post81.06 12080.70 11282.15 18292.02 9158.56 27690.90 18590.45 18762.76 28178.89 10294.46 6551.26 21295.61 13978.77 11286.77 11592.28 156
CL-MVSNet_self_test69.92 26268.09 26575.41 28773.25 33755.90 30190.05 21289.90 21269.96 21861.96 28476.54 31051.05 21387.64 31449.51 29850.59 33882.70 304
TransMVSNet (Re)70.07 26167.66 26677.31 27280.62 28659.13 27191.78 15184.94 30265.97 25560.08 29180.44 27750.78 21491.87 26648.84 30045.46 34680.94 319
HQP_MVS80.34 13179.75 12782.12 18486.94 20662.42 21293.13 9491.31 16078.81 6372.53 17089.14 16850.66 21595.55 14476.74 12278.53 17488.39 215
plane_prior687.23 20162.32 21550.66 215
ACMMPcopyleft81.49 11280.67 11383.93 13791.71 10362.90 20692.13 13092.22 12071.79 18071.68 18493.49 9450.32 21796.96 9078.47 11484.22 13791.93 165
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
MVS_111021_LR82.02 10581.52 10083.51 14988.42 17362.88 20789.77 22088.93 24876.78 9175.55 13993.10 9750.31 21895.38 15083.82 7487.02 11192.26 160
131480.70 12578.95 14185.94 7787.77 19367.56 9087.91 25192.55 11072.17 16767.44 23593.09 9850.27 21997.04 8271.68 16487.64 10793.23 133
CP-MVSNet70.50 25869.91 25372.26 31380.71 28351.00 32587.23 26290.30 19767.84 24059.64 29282.69 24250.23 22082.30 34551.28 28959.28 31483.46 291
LCM-MVSNet-Re72.93 23971.84 23776.18 28488.49 16948.02 33680.07 31770.17 35173.96 12652.25 32480.09 28449.98 22188.24 30667.35 20284.23 13692.28 156
Vis-MVSNetpermissive80.92 12379.98 12483.74 14088.48 17061.80 22393.44 8788.26 26973.96 12677.73 11591.76 12749.94 22294.76 16565.84 21990.37 8894.65 87
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
v119275.98 20473.92 21182.15 18279.73 29466.24 12591.22 17689.75 21672.67 15168.49 22181.42 26149.86 22394.27 18967.08 20565.02 26985.95 259
test-mter79.96 13879.38 13681.72 19386.93 20861.17 23392.70 11091.54 15173.85 12875.62 13686.94 19749.84 22492.38 25472.21 15784.76 13091.60 167
cdsmvs_eth3d_5k19.86 34326.47 3420.00 3620.00 3850.00 3860.00 37393.45 750.00 3800.00 38195.27 4349.56 2250.00 3810.00 3790.00 3780.00 377
3Dnovator+73.60 782.10 10480.60 11586.60 5790.89 12266.80 11195.20 3293.44 7674.05 12267.42 23692.49 11449.46 22697.65 4970.80 16991.68 7095.33 57
MVP-Stereo77.12 18776.23 18079.79 23881.72 27666.34 12289.29 22990.88 17870.56 21262.01 28382.88 24049.34 22794.13 19465.55 22493.80 3978.88 336
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
RE-MVS-def80.48 11792.02 9158.56 27690.90 18590.45 18762.76 28178.89 10294.46 6549.30 22878.77 11286.77 11592.28 156
OMC-MVS78.67 16477.91 15580.95 21385.76 22657.40 29188.49 24488.67 25773.85 12872.43 17492.10 12249.29 22994.55 18072.73 15177.89 17790.91 182
VPNet78.82 15877.53 16082.70 16584.52 24466.44 11993.93 6492.23 11780.46 3872.60 16888.38 17749.18 23093.13 22472.47 15563.97 28188.55 211
CVMVSNet74.04 22874.27 20573.33 30485.33 23043.94 35289.53 22588.39 26354.33 32870.37 19590.13 15849.17 23184.05 33161.83 25079.36 16591.99 164
v192192075.63 21273.49 21782.06 18879.38 29966.35 12191.07 18389.48 22571.98 17067.99 22481.22 26649.16 23293.90 21066.56 20964.56 27685.92 261
pm-mvs172.89 24071.09 24378.26 26079.10 30557.62 28790.80 19089.30 23167.66 24262.91 27781.78 25349.11 23392.95 22860.29 25858.89 31684.22 282
pmmvs473.92 23071.81 23880.25 22579.17 30265.24 14787.43 25987.26 28067.64 24463.46 27283.91 23148.96 23491.53 27762.94 24165.49 26383.96 283
TAPA-MVS70.22 1274.94 22073.53 21679.17 24990.40 13052.07 31989.19 23389.61 22362.69 28370.07 19992.67 11048.89 23594.32 18638.26 34479.97 16191.12 180
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
3Dnovator73.91 682.69 9580.82 11088.31 2189.57 14571.26 1892.60 11694.39 4378.84 6267.89 23092.48 11548.42 23698.52 2668.80 19194.40 3295.15 69
CPTT-MVS79.59 14379.16 13980.89 21591.54 10959.80 25992.10 13288.54 26260.42 29972.96 16293.28 9648.27 23792.80 23778.89 11186.50 12090.06 191
GBi-Net75.65 21073.83 21281.10 20788.85 16265.11 15190.01 21390.32 19370.84 20567.04 24180.25 28148.03 23891.54 27459.80 26169.34 23886.64 240
test175.65 21073.83 21281.10 20788.85 16265.11 15190.01 21390.32 19370.84 20567.04 24180.25 28148.03 23891.54 27459.80 26169.34 23886.64 240
FMVSNet276.07 19974.01 21082.26 17988.85 16267.66 8891.33 17191.61 14970.84 20565.98 24982.25 24748.03 23892.00 26558.46 26668.73 24487.10 234
LFMVS84.34 6382.73 8489.18 1294.76 3373.25 994.99 4091.89 13471.90 17382.16 7093.49 9447.98 24197.05 7982.55 8184.82 12897.25 7
QAPM79.95 13977.39 16587.64 2889.63 14471.41 1793.30 9093.70 6465.34 26167.39 23891.75 12847.83 24298.96 1657.71 26989.81 9092.54 149
HPM-MVS_fast80.25 13279.55 13282.33 17591.55 10859.95 25791.32 17289.16 23865.23 26274.71 14793.07 10047.81 24395.74 13074.87 13988.23 10191.31 177
CANet_DTU84.09 7083.52 6485.81 8290.30 13266.82 10991.87 14589.01 24685.27 786.09 3793.74 8847.71 24496.98 8877.90 11889.78 9293.65 122
v124075.21 21772.98 22281.88 19079.20 30166.00 12990.75 19289.11 24271.63 18867.41 23781.22 26647.36 24593.87 21165.46 22564.72 27485.77 263
PEN-MVS69.46 26668.56 26072.17 31579.27 30049.71 33186.90 26789.24 23367.24 24959.08 29782.51 24547.23 24683.54 33648.42 30257.12 31983.25 294
CNLPA74.31 22572.30 23280.32 22191.49 11061.66 22790.85 18880.72 32656.67 32163.85 26990.64 14346.75 24790.84 28153.79 28375.99 19788.47 214
114514_t79.17 15077.67 15683.68 14495.32 2965.53 14292.85 10591.60 15063.49 27267.92 22790.63 14546.65 24895.72 13567.01 20683.54 13889.79 195
PS-CasMVS69.86 26469.13 25872.07 31680.35 28950.57 32787.02 26489.75 21667.27 24659.19 29682.28 24646.58 24982.24 34650.69 29159.02 31583.39 293
DTE-MVSNet68.46 27667.33 26871.87 31877.94 31949.00 33486.16 27288.58 26166.36 25358.19 30182.21 24846.36 25083.87 33444.97 32155.17 32682.73 301
test111180.84 12480.02 12183.33 15387.87 19160.76 24392.62 11586.86 28377.86 7575.73 13491.39 13546.35 25194.70 17172.79 15088.68 10094.52 92
ECVR-MVScopyleft81.29 11580.38 11984.01 13688.39 17561.96 22192.56 12186.79 28477.66 7976.63 12791.42 13346.34 25295.24 15574.36 14189.23 9494.85 77
PMMVS81.98 10682.04 9481.78 19189.76 14256.17 29891.13 18090.69 18177.96 7280.09 8993.57 9246.33 25394.99 15981.41 9087.46 10894.17 100
OPM-MVS79.00 15378.09 15081.73 19283.52 26063.83 18191.64 15890.30 19776.36 9671.97 17989.93 16146.30 25495.17 15675.10 13377.70 17986.19 251
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
BH-RMVSNet79.46 14777.65 15784.89 10891.68 10465.66 13693.55 8288.09 27172.93 14773.37 15991.12 13946.20 25596.12 11556.28 27485.61 12592.91 142
mvsmamba76.85 19075.71 18880.25 22583.07 26559.16 26991.44 16080.64 32776.84 8967.95 22686.33 20446.17 25694.24 19276.06 12772.92 21587.36 228
FE-MVS75.97 20573.02 22184.82 11189.78 14065.56 14077.44 32991.07 17364.55 26472.66 16679.85 28646.05 25796.69 9954.97 27880.82 15892.21 161
TR-MVS78.77 16177.37 16682.95 16090.49 12860.88 23993.67 7790.07 20670.08 21774.51 14891.37 13645.69 25895.70 13660.12 25980.32 16092.29 155
IterMVS-SCA-FT71.55 25369.97 25176.32 28281.48 27760.67 24787.64 25785.99 29366.17 25459.50 29378.88 29245.53 25983.65 33562.58 24561.93 29584.63 281
SCA75.82 20872.76 22585.01 10586.63 21070.08 3081.06 30789.19 23671.60 18970.01 20077.09 30745.53 25990.25 28660.43 25673.27 21194.68 84
IterMVS72.65 24770.83 24478.09 26282.17 27262.96 20287.64 25786.28 28871.56 19160.44 28978.85 29345.42 26186.66 32163.30 23961.83 29684.65 280
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Effi-MVS+-dtu76.14 19875.28 19278.72 25583.22 26255.17 30589.87 21787.78 27575.42 10467.98 22581.43 26045.08 26292.52 25075.08 13471.63 22488.48 212
XVG-OURS-SEG-HR74.70 22273.08 22079.57 24378.25 31657.33 29280.49 31087.32 27863.22 27668.76 21790.12 16044.89 26391.59 27270.55 17374.09 20689.79 195
v7n71.31 25468.65 25979.28 24776.40 32760.77 24286.71 26989.45 22664.17 26758.77 30078.24 29644.59 26493.54 21757.76 26861.75 29883.52 289
pmmvs573.35 23471.52 24078.86 25378.64 31260.61 24991.08 18186.90 28167.69 24163.32 27383.64 23244.33 26590.53 28362.04 24866.02 26285.46 269
OpenMVScopyleft70.45 1178.54 16675.92 18486.41 6685.93 22571.68 1692.74 10792.51 11166.49 25264.56 26191.96 12443.88 26698.10 3554.61 27990.65 8589.44 201
AdaColmapbinary78.94 15577.00 17184.76 11396.34 1765.86 13392.66 11487.97 27462.18 28670.56 19192.37 11843.53 26797.35 6464.50 23182.86 14191.05 181
tfpnnormal70.10 26067.36 26778.32 25883.45 26160.97 23888.85 23892.77 9964.85 26360.83 28878.53 29443.52 26893.48 21931.73 36061.70 30080.52 324
mvsany_test168.77 27268.56 26069.39 32373.57 33645.88 34880.93 30860.88 36459.65 30671.56 18590.26 15443.22 26975.05 35474.26 14262.70 28787.25 233
test_djsdf73.76 23372.56 22977.39 27077.00 32553.93 31189.07 23590.69 18165.80 25663.92 26782.03 25043.14 27092.67 24372.83 14868.53 24585.57 267
GA-MVS78.33 17076.23 18084.65 11783.65 25866.30 12391.44 16090.14 20476.01 9870.32 19684.02 22942.50 27194.72 16870.98 16777.00 18992.94 141
PLCcopyleft68.80 1475.23 21673.68 21579.86 23692.93 7058.68 27590.64 19588.30 26560.90 29664.43 26590.53 14642.38 27294.57 17756.52 27276.54 19286.33 246
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
D2MVS73.80 23172.02 23579.15 25179.15 30362.97 20188.58 24390.07 20672.94 14659.22 29578.30 29542.31 27392.70 24265.59 22372.00 22281.79 314
Fast-Effi-MVS+-dtu75.04 21873.37 21880.07 22980.86 28159.52 26391.20 17885.38 29771.90 17365.20 25484.84 21941.46 27492.97 22766.50 21272.96 21487.73 221
MS-PatchMatch77.90 17876.50 17682.12 18485.99 22169.95 3491.75 15492.70 10173.97 12562.58 28084.44 22541.11 27595.78 12763.76 23692.17 6280.62 323
our_test_368.29 27764.69 28479.11 25278.92 30664.85 15888.40 24685.06 30060.32 30152.68 32276.12 31540.81 27689.80 29644.25 32355.65 32482.67 306
XVG-OURS74.25 22672.46 23179.63 24178.45 31457.59 28880.33 31287.39 27763.86 26968.76 21789.62 16440.50 27791.72 27069.00 18874.25 20489.58 198
VDD-MVS83.06 8781.81 9886.81 5190.86 12367.70 8795.40 2791.50 15475.46 10381.78 7292.34 11940.09 27897.13 7786.85 5082.04 14795.60 47
DP-MVS69.90 26366.48 27080.14 22795.36 2862.93 20389.56 22276.11 33450.27 33957.69 30785.23 21439.68 27995.73 13133.35 35471.05 23081.78 315
RRT_MVS74.44 22372.97 22378.84 25482.36 27057.66 28689.83 21988.79 25470.61 21164.58 26084.89 21839.24 28092.65 24670.11 17666.34 26086.21 250
ppachtmachnet_test67.72 28163.70 29179.77 23978.92 30666.04 12888.68 24182.90 31960.11 30355.45 31275.96 31639.19 28190.55 28239.53 33952.55 33482.71 303
ADS-MVSNet266.90 28763.44 29377.26 27388.06 18560.70 24668.01 34775.56 33857.57 31364.48 26269.87 33838.68 28284.10 33040.87 33567.89 25086.97 235
ADS-MVSNet68.54 27564.38 28981.03 21188.06 18566.90 10868.01 34784.02 30957.57 31364.48 26269.87 33838.68 28289.21 29940.87 33567.89 25086.97 235
LPG-MVS_test75.82 20874.58 19979.56 24484.31 24959.37 26590.44 19889.73 21969.49 22364.86 25688.42 17338.65 28494.30 18772.56 15372.76 21685.01 276
LGP-MVS_train79.56 24484.31 24959.37 26589.73 21969.49 22364.86 25688.42 17338.65 28494.30 18772.56 15372.76 21685.01 276
VDDNet80.50 12878.26 14887.21 3986.19 21869.79 3894.48 4791.31 16060.42 29979.34 9790.91 14138.48 28696.56 10482.16 8281.05 15595.27 64
ACMP71.68 1075.58 21374.23 20679.62 24284.97 23859.64 26090.80 19089.07 24470.39 21362.95 27687.30 19538.28 28793.87 21172.89 14771.45 22785.36 271
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
test_vis1_n_192081.66 11082.01 9580.64 21782.24 27155.09 30694.76 4486.87 28281.67 2684.40 5494.63 6238.17 28894.67 17291.98 1383.34 13992.16 163
UGNet79.87 14078.68 14283.45 15289.96 13761.51 22992.13 13090.79 17976.83 9078.85 10786.33 20438.16 28996.17 11367.93 19887.17 11092.67 145
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
anonymousdsp71.14 25569.37 25776.45 28172.95 33854.71 30884.19 27988.88 24961.92 29062.15 28279.77 28738.14 29091.44 27968.90 19067.45 25383.21 295
xiu_mvs_v1_base_debu82.16 10181.12 10485.26 9986.42 21368.72 6292.59 11890.44 19073.12 14384.20 5594.36 6938.04 29195.73 13184.12 7086.81 11291.33 173
xiu_mvs_v1_base82.16 10181.12 10485.26 9986.42 21368.72 6292.59 11890.44 19073.12 14384.20 5594.36 6938.04 29195.73 13184.12 7086.81 11291.33 173
xiu_mvs_v1_base_debi82.16 10181.12 10485.26 9986.42 21368.72 6292.59 11890.44 19073.12 14384.20 5594.36 6938.04 29195.73 13184.12 7086.81 11291.33 173
PVSNet_068.08 1571.81 24968.32 26482.27 17784.68 24062.31 21688.68 24190.31 19675.84 9957.93 30680.65 27537.85 29494.19 19369.94 17729.05 36890.31 189
Anonymous2023120667.53 28465.78 27472.79 30974.95 33147.59 33988.23 24787.32 27861.75 29358.07 30377.29 30437.79 29587.29 31942.91 32663.71 28283.48 290
ACMM69.62 1374.34 22472.73 22679.17 24984.25 25157.87 28290.36 20289.93 21163.17 27865.64 25186.04 20937.79 29594.10 19565.89 21871.52 22685.55 268
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
cascas78.18 17175.77 18685.41 9487.14 20469.11 5192.96 10191.15 16866.71 25070.47 19286.07 20737.49 29796.48 10770.15 17579.80 16290.65 184
LS3D69.17 26766.40 27177.50 26791.92 9756.12 29985.12 27480.37 32846.96 34656.50 31187.51 19237.25 29893.71 21432.52 35979.40 16482.68 305
MDA-MVSNet_test_wron63.78 30360.16 30674.64 29378.15 31760.41 25083.49 28484.03 30856.17 32439.17 35871.59 33437.22 29983.24 34042.87 32848.73 34080.26 327
YYNet163.76 30460.14 30774.62 29478.06 31860.19 25583.46 28683.99 31256.18 32339.25 35771.56 33537.18 30083.34 33842.90 32748.70 34180.32 326
FMVSNet568.04 27965.66 27775.18 29084.43 24757.89 28183.54 28386.26 28961.83 29253.64 32073.30 32537.15 30185.08 32748.99 29961.77 29782.56 307
test20.0363.83 30262.65 29867.38 33170.58 34739.94 35886.57 27084.17 30763.29 27551.86 32577.30 30337.09 30282.47 34338.87 34354.13 33079.73 330
PVSNet73.49 880.05 13678.63 14384.31 12890.92 12164.97 15592.47 12291.05 17579.18 5472.43 17490.51 14737.05 30394.06 19968.06 19586.00 12293.90 116
EU-MVSNet64.01 30163.01 29567.02 33274.40 33438.86 36283.27 28886.19 29145.11 35054.27 31681.15 26936.91 30480.01 35248.79 30157.02 32082.19 312
Anonymous2023121173.08 23570.39 24981.13 20590.62 12663.33 19491.40 16490.06 20851.84 33464.46 26480.67 27436.49 30594.07 19863.83 23564.17 27885.98 258
FMVSNet172.71 24469.91 25381.10 20783.60 25965.11 15190.01 21390.32 19363.92 26863.56 27180.25 28136.35 30691.54 27454.46 28066.75 25786.64 240
Anonymous2024052976.84 19174.15 20784.88 10991.02 11864.95 15693.84 7291.09 17153.57 32973.00 16187.42 19335.91 30797.32 6669.14 18772.41 22192.36 152
CMPMVSbinary48.56 2166.77 28864.41 28873.84 30170.65 34650.31 32877.79 32885.73 29645.54 34944.76 34982.14 24935.40 30890.14 29263.18 24074.54 20281.07 318
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
pmmvs667.57 28364.76 28376.00 28572.82 34053.37 31388.71 24086.78 28553.19 33057.58 30878.03 29935.33 30992.41 25355.56 27654.88 32882.21 311
PatchMatch-RL72.06 24869.98 25078.28 25989.51 14855.70 30283.49 28483.39 31661.24 29463.72 27082.76 24134.77 31093.03 22653.37 28677.59 18086.12 255
LTVRE_ROB59.60 1966.27 29063.54 29274.45 29584.00 25451.55 32167.08 35083.53 31358.78 31054.94 31480.31 27934.54 31193.23 22340.64 33768.03 24878.58 339
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
UniMVSNet_ETH3D72.74 24370.53 24879.36 24678.62 31356.64 29685.01 27589.20 23563.77 27064.84 25884.44 22534.05 31291.86 26763.94 23470.89 23189.57 199
bld_raw_dy_0_6471.59 25269.71 25677.22 27477.82 32158.12 28087.71 25573.66 34368.01 23961.90 28584.29 22733.68 31388.43 30469.91 17870.43 23285.11 275
F-COLMAP70.66 25668.44 26277.32 27186.37 21655.91 30088.00 24986.32 28756.94 31957.28 30988.07 18433.58 31492.49 25151.02 29068.37 24683.55 287
pmmvs-eth3d65.53 29562.32 30075.19 28969.39 35059.59 26182.80 29583.43 31462.52 28451.30 32972.49 32632.86 31587.16 32055.32 27750.73 33778.83 337
MDA-MVSNet-bldmvs61.54 31057.70 31473.05 30679.53 29757.00 29583.08 29281.23 32357.57 31334.91 36072.45 32732.79 31686.26 32435.81 34841.95 35175.89 346
MIMVSNet71.64 25068.44 26281.23 20281.97 27564.44 16573.05 33688.80 25269.67 22264.59 25974.79 32132.79 31687.82 31153.99 28276.35 19491.42 171
UnsupCasMVSNet_eth65.79 29363.10 29473.88 30070.71 34550.29 32981.09 30689.88 21372.58 15349.25 33774.77 32232.57 31887.43 31855.96 27541.04 35383.90 285
N_pmnet50.55 32349.11 32654.88 34377.17 3244.02 38384.36 2782.00 38248.59 34245.86 34568.82 34032.22 31982.80 34231.58 36151.38 33677.81 342
test_040264.54 29861.09 30474.92 29284.10 25360.75 24487.95 25079.71 33052.03 33252.41 32377.20 30532.21 32091.64 27123.14 36361.03 30472.36 352
DSMNet-mixed56.78 31954.44 32263.79 33563.21 35829.44 37364.43 35364.10 36042.12 35651.32 32871.60 33331.76 32175.04 35536.23 34665.20 26886.87 238
MSDG69.54 26565.73 27580.96 21285.11 23663.71 18684.19 27983.28 31756.95 31854.50 31584.03 22831.50 32296.03 12142.87 32869.13 24183.14 297
RPSCF64.24 30061.98 30271.01 32076.10 32945.00 34975.83 33375.94 33546.94 34758.96 29884.59 22231.40 32382.00 34747.76 30860.33 31286.04 256
tt080573.07 23670.73 24680.07 22978.37 31557.05 29487.78 25392.18 12361.23 29567.04 24186.49 20131.35 32494.58 17565.06 22867.12 25488.57 210
jajsoiax73.05 23771.51 24177.67 26577.46 32254.83 30788.81 23990.04 20969.13 23062.85 27883.51 23431.16 32592.75 23970.83 16869.80 23485.43 270
MVS-HIRNet60.25 31355.55 32074.35 29684.37 24856.57 29771.64 33874.11 34234.44 35945.54 34742.24 36631.11 32689.81 29440.36 33876.10 19676.67 345
SixPastTwentyTwo64.92 29661.78 30374.34 29778.74 31049.76 33083.42 28779.51 33162.86 28050.27 33277.35 30230.92 32790.49 28445.89 31647.06 34382.78 299
KD-MVS_self_test60.87 31158.60 31167.68 32966.13 35539.93 35975.63 33484.70 30357.32 31649.57 33568.45 34129.55 32882.87 34148.09 30347.94 34280.25 328
mvs_tets72.71 24471.11 24277.52 26677.41 32354.52 30988.45 24589.76 21568.76 23562.70 27983.26 23729.49 32992.71 24070.51 17469.62 23685.34 272
Anonymous20240521177.96 17575.33 19185.87 7993.73 5264.52 16094.85 4285.36 29862.52 28476.11 13190.18 15529.43 33097.29 6868.51 19377.24 18895.81 43
K. test v363.09 30559.61 30973.53 30376.26 32849.38 33383.27 28877.15 33364.35 26647.77 34172.32 33028.73 33187.79 31249.93 29636.69 35983.41 292
UnsupCasMVSNet_bld61.60 30957.71 31373.29 30568.73 35151.64 32078.61 32289.05 24557.20 31746.11 34261.96 35328.70 33288.60 30150.08 29538.90 35779.63 331
lessismore_v073.72 30272.93 33947.83 33861.72 36345.86 34573.76 32328.63 33389.81 29447.75 30931.37 36583.53 288
new-patchmatchnet59.30 31656.48 31867.79 32865.86 35644.19 35082.47 29681.77 32159.94 30443.65 35366.20 34527.67 33481.68 34839.34 34041.40 35277.50 343
ACMH63.93 1768.62 27364.81 28280.03 23185.22 23263.25 19587.72 25484.66 30460.83 29751.57 32779.43 29127.29 33594.96 16041.76 33164.84 27181.88 313
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
OurMVSNet-221017-064.68 29762.17 30172.21 31476.08 33047.35 34080.67 30981.02 32456.19 32251.60 32679.66 28927.05 33688.56 30253.60 28553.63 33180.71 322
ACMH+65.35 1667.65 28264.55 28576.96 27884.59 24357.10 29388.08 24880.79 32558.59 31253.00 32181.09 27026.63 33792.95 22846.51 31261.69 30180.82 320
OpenMVS_ROBcopyleft61.12 1866.39 28962.92 29676.80 28076.51 32657.77 28389.22 23183.41 31555.48 32553.86 31977.84 30026.28 33893.95 20834.90 35168.76 24378.68 338
test_fmvs174.07 22773.69 21475.22 28878.91 30847.34 34189.06 23774.69 34163.68 27179.41 9691.59 13124.36 33987.77 31385.22 6076.26 19590.55 187
MVS_030468.99 27167.23 26974.28 29980.36 28852.54 31687.01 26586.36 28659.89 30566.22 24873.56 32424.25 34088.03 30857.34 27170.11 23382.27 310
COLMAP_ROBcopyleft57.96 2062.98 30659.65 30872.98 30781.44 27853.00 31583.75 28275.53 33948.34 34448.81 33881.40 26224.14 34190.30 28532.95 35660.52 30975.65 347
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
MIMVSNet160.16 31457.33 31568.67 32569.71 34844.13 35178.92 32184.21 30655.05 32644.63 35071.85 33223.91 34281.54 34932.63 35855.03 32780.35 325
testgi64.48 29962.87 29769.31 32471.24 34140.62 35785.49 27379.92 32965.36 26054.18 31783.49 23523.74 34384.55 32941.60 33260.79 30782.77 300
ITE_SJBPF70.43 32174.44 33347.06 34477.32 33260.16 30254.04 31883.53 23323.30 34484.01 33243.07 32561.58 30280.21 329
EG-PatchMatch MVS68.55 27465.41 27977.96 26378.69 31162.93 20389.86 21889.17 23760.55 29850.27 33277.73 30122.60 34594.06 19947.18 31072.65 21876.88 344
tmp_tt22.26 34223.75 34417.80 3585.23 38212.06 38235.26 36939.48 3762.82 37618.94 36744.20 36522.23 34624.64 37736.30 3459.31 37416.69 371
USDC67.43 28664.51 28676.19 28377.94 31955.29 30478.38 32485.00 30173.17 14148.36 33980.37 27821.23 34792.48 25252.15 28864.02 28080.81 321
Anonymous2024052162.09 30759.08 31071.10 31967.19 35348.72 33583.91 28185.23 29950.38 33847.84 34071.22 33720.74 34885.51 32646.47 31358.75 31779.06 335
test_vis1_n71.63 25170.73 24674.31 29869.63 34947.29 34286.91 26672.11 34763.21 27775.18 14290.17 15620.40 34985.76 32584.59 6774.42 20389.87 194
XVG-ACMP-BASELINE68.04 27965.53 27875.56 28674.06 33552.37 31778.43 32385.88 29462.03 28858.91 29981.21 26820.38 35091.15 28060.69 25568.18 24783.16 296
test_fmvs1_n72.69 24671.92 23674.99 29171.15 34347.08 34387.34 26175.67 33663.48 27378.08 11391.17 13820.16 35187.87 31084.65 6675.57 19990.01 193
AllTest61.66 30858.06 31272.46 31179.57 29551.42 32380.17 31568.61 35451.25 33545.88 34381.23 26419.86 35286.58 32238.98 34157.01 32179.39 332
TestCases72.46 31179.57 29551.42 32368.61 35451.25 33545.88 34381.23 26419.86 35286.58 32238.98 34157.01 32179.39 332
test_vis1_rt59.09 31757.31 31664.43 33468.44 35246.02 34783.05 29348.63 37151.96 33349.57 33563.86 34916.30 35480.20 35171.21 16662.79 28667.07 358
pmmvs355.51 32051.50 32567.53 33057.90 36350.93 32680.37 31173.66 34340.63 35744.15 35264.75 34816.30 35478.97 35344.77 32240.98 35572.69 350
test_fmvs265.78 29464.84 28168.60 32666.54 35441.71 35483.27 28869.81 35254.38 32767.91 22884.54 22415.35 35681.22 35075.65 12966.16 26182.88 298
TDRefinement55.28 32151.58 32466.39 33359.53 36246.15 34676.23 33172.80 34544.60 35142.49 35476.28 31415.29 35782.39 34433.20 35543.75 34870.62 354
new_pmnet49.31 32446.44 32757.93 33862.84 35940.74 35668.47 34662.96 36236.48 35835.09 35957.81 35514.97 35872.18 35832.86 35746.44 34460.88 360
TinyColmap60.32 31256.42 31972.00 31778.78 30953.18 31478.36 32575.64 33752.30 33141.59 35675.82 31814.76 35988.35 30535.84 34754.71 32974.46 348
EGC-MVSNET42.35 32838.09 33155.11 34274.57 33246.62 34571.63 33955.77 3650.04 3770.24 37862.70 35114.24 36074.91 35617.59 36746.06 34543.80 363
LF4IMVS54.01 32252.12 32359.69 33762.41 36039.91 36068.59 34568.28 35642.96 35544.55 35175.18 31914.09 36168.39 36141.36 33451.68 33570.78 353
PM-MVS59.40 31556.59 31767.84 32763.63 35741.86 35376.76 33063.22 36159.01 30951.07 33072.27 33111.72 36283.25 33961.34 25150.28 33978.39 340
mvsany_test348.86 32546.35 32856.41 33946.00 37131.67 36962.26 35547.25 37243.71 35445.54 34768.15 34210.84 36364.44 36957.95 26735.44 36273.13 349
ambc69.61 32261.38 36141.35 35549.07 36785.86 29550.18 33466.40 34410.16 36488.14 30745.73 31744.20 34779.32 334
FPMVS45.64 32743.10 33053.23 34551.42 36836.46 36364.97 35271.91 34829.13 36327.53 36361.55 3549.83 36565.01 36716.00 37055.58 32558.22 361
ANet_high40.27 33235.20 33555.47 34134.74 37934.47 36663.84 35471.56 34948.42 34318.80 36841.08 3679.52 36664.45 36820.18 3658.66 37567.49 357
test_method38.59 33335.16 33648.89 34854.33 36421.35 37845.32 36853.71 3667.41 37428.74 36251.62 3588.70 36752.87 37233.73 35232.89 36472.47 351
EMVS23.76 34123.20 34525.46 35741.52 37716.90 38160.56 35838.79 37814.62 3728.99 37620.24 3757.35 36845.82 3757.25 3759.46 37313.64 373
test_f46.58 32643.45 32955.96 34045.18 37232.05 36861.18 35649.49 37033.39 36042.05 35562.48 3527.00 36965.56 36547.08 31143.21 35070.27 355
test_fmvs356.82 31854.86 32162.69 33653.59 36535.47 36475.87 33265.64 35943.91 35355.10 31371.43 3366.91 37074.40 35768.64 19252.63 33278.20 341
E-PMN24.61 33924.00 34326.45 35643.74 37418.44 38060.86 35739.66 37515.11 3719.53 37522.10 3726.52 37146.94 3748.31 37410.14 37213.98 372
DeepMVS_CXcopyleft34.71 35551.45 36724.73 37728.48 38131.46 36217.49 37152.75 3575.80 37242.60 37618.18 36619.42 36936.81 368
Gipumacopyleft34.91 33531.44 33845.30 35070.99 34439.64 36119.85 37272.56 34620.10 36816.16 37221.47 3735.08 37371.16 35913.07 37143.70 34925.08 370
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
APD_test140.50 33037.31 33350.09 34751.88 36635.27 36559.45 36052.59 36721.64 36626.12 36457.80 3564.56 37466.56 36322.64 36439.09 35648.43 362
LCM-MVSNet40.54 32935.79 33454.76 34436.92 37830.81 37051.41 36569.02 35322.07 36524.63 36545.37 3624.56 37465.81 36433.67 35334.50 36367.67 356
PMMVS237.93 33433.61 33750.92 34646.31 37024.76 37660.55 35950.05 36828.94 36420.93 36647.59 3594.41 37665.13 36625.14 36218.55 37062.87 359
test_vis3_rt40.46 33137.79 33248.47 34944.49 37333.35 36766.56 35132.84 37932.39 36129.65 36139.13 3693.91 37768.65 36050.17 29340.99 35443.40 364
testf132.77 33629.47 33942.67 35241.89 37530.81 37052.07 36343.45 37315.45 36918.52 36944.82 3632.12 37858.38 37016.05 36830.87 36638.83 365
APD_test232.77 33629.47 33942.67 35241.89 37530.81 37052.07 36343.45 37315.45 36918.52 36944.82 3632.12 37858.38 37016.05 36830.87 36638.83 365
PMVScopyleft26.43 2231.84 33828.16 34142.89 35125.87 38127.58 37450.92 36649.78 36921.37 36714.17 37340.81 3682.01 38066.62 3629.61 37338.88 35834.49 369
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive24.84 2324.35 34019.77 34638.09 35434.56 38026.92 37526.57 37038.87 37711.73 37311.37 37427.44 3701.37 38150.42 37311.41 37214.60 37136.93 367
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
wuyk23d11.30 34410.95 34712.33 35948.05 36919.89 37925.89 3711.92 3833.58 3753.12 3771.37 3770.64 38215.77 3786.23 3767.77 3761.35 374
test1236.92 3479.21 3500.08 3600.03 3840.05 38481.65 3010.01 3850.02 3790.14 3800.85 3790.03 3830.02 3790.12 3780.00 3780.16 375
testmvs7.23 3469.62 3490.06 3610.04 3830.02 38584.98 2760.02 3840.03 3780.18 3791.21 3780.01 3840.02 3790.14 3770.01 3770.13 376
test_blank0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3780.00 377
uanet_test0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3780.00 377
DCPMVS0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3780.00 377
sosnet-low-res0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3780.00 377
sosnet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3780.00 377
uncertanet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3780.00 377
Regformer0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3780.00 377
ab-mvs-re7.91 34510.55 3480.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 38194.95 510.00 3850.00 3810.00 3790.00 3780.00 377
uanet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3780.00 377
FOURS193.95 4561.77 22493.96 6291.92 13162.14 28786.57 33
MSC_two_6792asdad89.60 897.31 473.22 1095.05 1999.07 1392.01 1194.77 2496.51 20
No_MVS89.60 897.31 473.22 1095.05 1999.07 1392.01 1194.77 2496.51 20
eth-test20.00 385
eth-test0.00 385
IU-MVS96.46 1169.91 3595.18 1480.75 3695.28 192.34 895.36 1396.47 24
save fliter93.84 4867.89 8395.05 3792.66 10478.19 69
test_0728_SECOND88.70 1596.45 1270.43 2796.64 894.37 4499.15 291.91 1494.90 2096.51 20
GSMVS94.68 84
test_part296.29 1968.16 7790.78 13
MTGPAbinary92.23 117
MTMP93.77 7432.52 380
gm-plane-assit88.42 17367.04 10578.62 6691.83 12697.37 6276.57 124
test9_res89.41 2594.96 1795.29 61
agg_prior286.41 5294.75 2895.33 57
agg_prior94.16 4366.97 10793.31 8084.49 5396.75 98
test_prior467.18 10193.92 65
test_prior86.42 6594.71 3567.35 9693.10 9096.84 9695.05 72
旧先验292.00 14159.37 30887.54 2893.47 22075.39 131
新几何291.41 162
无先验92.71 10992.61 10862.03 28897.01 8366.63 20893.97 111
原ACMM292.01 138
testdata296.09 11661.26 252
testdata189.21 23277.55 82
plane_prior786.94 20661.51 229
plane_prior591.31 16095.55 14476.74 12278.53 17488.39 215
plane_prior489.14 168
plane_prior361.95 22279.09 5772.53 170
plane_prior293.13 9478.81 63
plane_prior187.15 203
plane_prior62.42 21293.85 6979.38 4978.80 171
n20.00 386
nn0.00 386
door-mid66.01 358
test1193.01 91
door66.57 357
HQP5-MVS63.66 190
HQP-NCC87.54 19594.06 5779.80 4374.18 150
ACMP_Plane87.54 19594.06 5779.80 4374.18 150
BP-MVS77.63 119
HQP4-MVS74.18 15095.61 13988.63 208
HQP3-MVS91.70 14678.90 169
NP-MVS87.41 19863.04 19990.30 152
ACMMP++_ref71.63 224
ACMMP++69.72 235