| SED-MVS | | | 98.18 2 | 98.10 4 | 98.41 18 | 99.63 18 | 95.24 27 | 99.77 18 | 97.72 83 | 94.17 44 | 99.30 8 | 99.54 3 | 93.32 20 | 99.98 9 | 99.70 5 | 99.81 23 | 99.99 1 |
|
| IU-MVS | | | | | | 99.63 18 | 95.38 24 | | 97.73 82 | 95.54 26 | 99.54 3 | | | | 99.69 7 | 99.81 23 | 99.99 1 |
|
| OPU-MVS | | | | | 99.49 4 | 99.64 17 | 98.51 4 | 99.77 18 | | | | 99.19 33 | 95.12 8 | 99.97 21 | 99.90 1 | 99.92 3 | 99.99 1 |
|
| test_241102_TWO | | | | | | | | | 97.72 83 | 94.17 44 | 99.23 10 | 99.54 3 | 93.14 25 | 99.98 9 | 99.70 5 | 99.82 19 | 99.99 1 |
|
| DeepPCF-MVS | | 93.56 1 | 96.55 45 | 97.84 10 | 92.68 238 | 98.71 89 | 78.11 360 | 99.70 27 | 97.71 87 | 98.18 1 | 97.36 65 | 99.76 1 | 90.37 52 | 99.94 35 | 99.27 16 | 99.54 54 | 99.99 1 |
|
| MCST-MVS | | | 98.18 2 | 97.95 9 | 98.86 5 | 99.85 3 | 96.60 10 | 99.70 27 | 97.98 53 | 97.18 4 | 95.96 101 | 99.33 22 | 92.62 27 | 100.00 1 | 98.99 25 | 99.93 1 | 99.98 6 |
|
| DVP-MVS++ | | | 98.18 2 | 98.09 5 | 98.44 16 | 99.61 24 | 95.38 24 | 99.55 44 | 97.68 92 | 93.01 74 | 99.23 10 | 99.45 14 | 95.12 8 | 99.98 9 | 99.25 18 | 99.92 3 | 99.97 7 |
|
| PC_three_1452 | | | | | | | | | | 94.60 37 | 99.41 4 | 99.12 49 | 95.50 7 | 99.96 28 | 99.84 2 | 99.92 3 | 99.97 7 |
|
| MG-MVS | | | 97.24 20 | 96.83 31 | 98.47 15 | 99.79 5 | 95.71 19 | 99.07 115 | 99.06 10 | 94.45 41 | 96.42 94 | 98.70 98 | 88.81 73 | 99.74 91 | 95.35 114 | 99.86 12 | 99.97 7 |
|
| MSC_two_6792asdad | | | | | 99.51 2 | 99.61 24 | 98.60 2 | | 97.69 90 | | | | | 99.98 9 | 99.55 13 | 99.83 15 | 99.96 10 |
|
| No_MVS | | | | | 99.51 2 | 99.61 24 | 98.60 2 | | 97.69 90 | | | | | 99.98 9 | 99.55 13 | 99.83 15 | 99.96 10 |
|
| test_0728_SECOND | | | | | 98.77 8 | 99.66 12 | 96.37 14 | 99.72 24 | 97.68 92 | | | | | 99.98 9 | 99.64 8 | 99.82 19 | 99.96 10 |
|
| CNVR-MVS | | | 98.46 1 | 98.38 1 | 98.72 10 | 99.80 4 | 96.19 15 | 99.80 16 | 97.99 52 | 97.05 6 | 99.41 4 | 99.59 2 | 92.89 26 | 100.00 1 | 98.99 25 | 99.90 7 | 99.96 10 |
|
| DeepC-MVS_fast | | 93.52 2 | 97.16 24 | 96.84 29 | 98.13 25 | 99.61 24 | 94.45 54 | 98.85 137 | 97.64 105 | 96.51 16 | 95.88 104 | 99.39 18 | 87.35 101 | 99.99 5 | 96.61 85 | 99.69 38 | 99.96 10 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| test_0728_THIRD | | | | | | | | | | 93.01 74 | 99.07 15 | 99.46 10 | 94.66 13 | 99.97 21 | 99.25 18 | 99.82 19 | 99.95 15 |
|
| DPE-MVS |  | | 98.11 6 | 98.00 6 | 98.44 16 | 99.50 42 | 95.39 23 | 99.29 82 | 97.72 83 | 94.50 38 | 98.64 30 | 99.54 3 | 93.32 20 | 99.97 21 | 99.58 11 | 99.90 7 | 99.95 15 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| MSP-MVS | | | 97.77 10 | 98.18 2 | 96.53 99 | 99.54 36 | 90.14 148 | 99.41 69 | 97.70 88 | 95.46 28 | 98.60 31 | 99.19 33 | 95.71 5 | 99.49 115 | 98.15 52 | 99.85 13 | 99.95 15 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| DPM-MVS | | | 97.86 8 | 97.25 22 | 99.68 1 | 98.25 98 | 99.10 1 | 99.76 21 | 97.78 75 | 96.61 12 | 98.15 43 | 99.53 7 | 93.62 17 | 100.00 1 | 91.79 173 | 99.80 26 | 99.94 18 |
|
| NCCC | | | 98.12 5 | 98.11 3 | 98.13 25 | 99.76 6 | 94.46 53 | 99.81 12 | 97.88 58 | 96.54 13 | 98.84 24 | 99.46 10 | 92.55 28 | 99.98 9 | 98.25 50 | 99.93 1 | 99.94 18 |
|
| APDe-MVS |  | | 97.53 15 | 97.47 16 | 97.70 39 | 99.58 30 | 93.63 69 | 99.56 43 | 97.52 133 | 93.59 64 | 98.01 52 | 99.12 49 | 90.80 44 | 99.55 109 | 99.26 17 | 99.79 27 | 99.93 20 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| agg_prior2 | | | | | | | | | | | | | | | 97.84 59 | 99.87 9 | 99.91 21 |
|
| test9_res | | | | | | | | | | | | | | | 98.60 33 | 99.87 9 | 99.90 22 |
|
| SteuartSystems-ACMMP | | | 97.25 19 | 97.34 21 | 97.01 66 | 97.38 132 | 91.46 113 | 99.75 22 | 97.66 97 | 94.14 48 | 98.13 44 | 99.26 24 | 92.16 32 | 99.66 97 | 97.91 56 | 99.64 42 | 99.90 22 |
| Skip Steuart: Steuart Systems R&D Blog. |
| PHI-MVS | | | 96.65 40 | 96.46 42 | 97.21 60 | 99.34 50 | 91.77 106 | 99.70 27 | 98.05 46 | 86.48 256 | 98.05 49 | 99.20 32 | 89.33 65 | 99.96 28 | 98.38 43 | 99.62 46 | 99.90 22 |
|
| ACMMP_NAP | | | 96.59 41 | 96.18 50 | 97.81 36 | 98.82 85 | 93.55 71 | 98.88 136 | 97.59 118 | 90.66 127 | 97.98 53 | 99.14 45 | 86.59 119 | 100.00 1 | 96.47 89 | 99.46 57 | 99.89 25 |
|
| train_agg | | | 97.20 23 | 97.08 23 | 97.57 45 | 99.57 33 | 93.17 80 | 99.38 72 | 97.66 97 | 90.18 144 | 98.39 37 | 99.18 36 | 90.94 39 | 99.66 97 | 98.58 36 | 99.85 13 | 99.88 26 |
|
| MSLP-MVS++ | | | 97.50 17 | 97.45 18 | 97.63 41 | 99.65 16 | 93.21 79 | 99.70 27 | 98.13 42 | 94.61 36 | 97.78 58 | 99.46 10 | 89.85 59 | 99.81 79 | 97.97 54 | 99.91 6 | 99.88 26 |
|
| APD-MVS |  | | 96.95 29 | 96.72 35 | 97.63 41 | 99.51 41 | 93.58 70 | 99.16 98 | 97.44 150 | 90.08 149 | 98.59 32 | 99.07 54 | 89.06 67 | 99.42 126 | 97.92 55 | 99.66 39 | 99.88 26 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| MVS | | | 93.92 128 | 92.28 158 | 98.83 7 | 95.69 210 | 96.82 8 | 96.22 314 | 98.17 36 | 84.89 282 | 84.34 259 | 98.61 106 | 79.32 227 | 99.83 73 | 93.88 144 | 99.43 61 | 99.86 29 |
|
| MM | | | 97.76 11 | 97.39 20 | 98.86 5 | 98.30 97 | 96.83 7 | 99.81 12 | 99.13 9 | 97.66 2 | 98.29 41 | 98.96 70 | 85.84 136 | 99.90 50 | 99.72 3 | 98.80 96 | 99.85 30 |
|
| æ— å…ˆéªŒ | | | | | | | | 98.52 179 | 97.82 66 | 87.20 237 | | | | 99.90 50 | 87.64 222 | | 99.85 30 |
|
| reproduce-ours | | | 96.66 37 | 96.80 32 | 96.22 113 | 98.95 77 | 89.03 178 | 98.62 165 | 97.38 157 | 93.42 66 | 96.80 85 | 99.36 19 | 88.92 70 | 99.80 81 | 98.51 38 | 99.26 71 | 99.82 32 |
|
| our_new_method | | | 96.66 37 | 96.80 32 | 96.22 113 | 98.95 77 | 89.03 178 | 98.62 165 | 97.38 157 | 93.42 66 | 96.80 85 | 99.36 19 | 88.92 70 | 99.80 81 | 98.51 38 | 99.26 71 | 99.82 32 |
|
| SMA-MVS |  | | 97.24 20 | 96.99 24 | 98.00 31 | 99.30 54 | 94.20 61 | 99.16 98 | 97.65 104 | 89.55 166 | 99.22 12 | 99.52 8 | 90.34 53 | 99.99 5 | 98.32 47 | 99.83 15 | 99.82 32 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| region2R | | | 96.30 51 | 96.17 53 | 96.70 87 | 99.70 7 | 90.31 142 | 99.46 59 | 97.66 97 | 90.55 134 | 97.07 73 | 99.07 54 | 86.85 111 | 99.97 21 | 95.43 112 | 99.74 29 | 99.81 35 |
|
| test222 | | | | | | 98.32 96 | 91.21 116 | 98.08 232 | 97.58 120 | 83.74 298 | 95.87 105 | 99.02 61 | 86.74 114 | | | 99.64 42 | 99.81 35 |
|
| TSAR-MVS + GP. | | | 96.95 29 | 96.91 26 | 97.07 63 | 98.88 83 | 91.62 109 | 99.58 41 | 96.54 225 | 95.09 32 | 96.84 80 | 98.63 104 | 91.16 34 | 99.77 88 | 99.04 24 | 96.42 154 | 99.81 35 |
|
| reproduce_model | | | 96.57 43 | 96.75 34 | 96.02 126 | 98.93 80 | 88.46 200 | 98.56 176 | 97.34 163 | 93.18 72 | 96.96 76 | 99.35 21 | 88.69 75 | 99.80 81 | 98.53 37 | 99.21 77 | 99.79 38 |
|
| test_prior | | | | | 97.01 66 | 99.58 30 | 91.77 106 | | 97.57 123 | | | | | 99.49 115 | | | 99.79 38 |
|
| æ–°å‡ ä½•1 | | | | | 97.40 51 | 98.92 81 | 92.51 98 | | 97.77 77 | 85.52 269 | 96.69 89 | 99.06 56 | 88.08 86 | 99.89 53 | 84.88 253 | 99.62 46 | 99.79 38 |
|
| patch_mono-2 | | | 97.10 26 | 97.97 8 | 94.49 185 | 99.21 61 | 83.73 301 | 99.62 38 | 98.25 31 | 95.28 30 | 99.38 6 | 98.91 78 | 92.28 31 | 99.94 35 | 99.61 10 | 99.22 74 | 99.78 41 |
|
| HFP-MVS | | | 96.42 47 | 96.26 47 | 96.90 75 | 99.69 8 | 90.96 128 | 99.47 55 | 97.81 69 | 90.54 135 | 96.88 77 | 99.05 57 | 87.57 92 | 99.96 28 | 95.65 104 | 99.72 32 | 99.78 41 |
|
| XVS | | | 96.47 46 | 96.37 44 | 96.77 80 | 99.62 22 | 90.66 136 | 99.43 66 | 97.58 120 | 92.41 91 | 96.86 78 | 98.96 70 | 87.37 97 | 99.87 58 | 95.65 104 | 99.43 61 | 99.78 41 |
|
| X-MVStestdata | | | 90.69 208 | 88.66 231 | 96.77 80 | 99.62 22 | 90.66 136 | 99.43 66 | 97.58 120 | 92.41 91 | 96.86 78 | 29.59 424 | 87.37 97 | 99.87 58 | 95.65 104 | 99.43 61 | 99.78 41 |
|
| testdata | | | | | 95.26 158 | 98.20 101 | 87.28 228 | | 97.60 114 | 85.21 273 | 98.48 35 | 99.15 42 | 88.15 84 | 98.72 169 | 90.29 190 | 99.45 59 | 99.78 41 |
|
| SF-MVS | | | 97.22 22 | 96.92 25 | 98.12 27 | 99.11 66 | 94.88 38 | 99.44 62 | 97.45 146 | 89.60 162 | 98.70 27 | 99.42 17 | 90.42 50 | 99.72 92 | 98.47 41 | 99.65 40 | 99.77 46 |
|
| SD-MVS | | | 97.51 16 | 97.40 19 | 97.81 36 | 99.01 72 | 93.79 68 | 99.33 80 | 97.38 157 | 93.73 60 | 98.83 25 | 99.02 61 | 90.87 43 | 99.88 54 | 98.69 30 | 99.74 29 | 99.77 46 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| SR-MVS | | | 96.13 55 | 96.16 55 | 96.07 123 | 99.42 47 | 89.04 176 | 98.59 173 | 97.33 164 | 90.44 138 | 96.84 80 | 99.12 49 | 86.75 113 | 99.41 129 | 97.47 63 | 99.44 60 | 99.76 48 |
|
| ACMMPR | | | 96.28 52 | 96.14 57 | 96.73 84 | 99.68 9 | 90.47 140 | 99.47 55 | 97.80 71 | 90.54 135 | 96.83 82 | 99.03 59 | 86.51 123 | 99.95 32 | 95.65 104 | 99.72 32 | 99.75 49 |
|
| mPP-MVS | | | 95.90 67 | 95.75 68 | 96.38 107 | 99.58 30 | 89.41 170 | 99.26 87 | 97.41 154 | 90.66 127 | 94.82 126 | 98.95 73 | 86.15 131 | 99.98 9 | 95.24 119 | 99.64 42 | 99.74 50 |
|
| PAPR | | | 96.35 48 | 95.82 63 | 97.94 33 | 99.63 18 | 94.19 62 | 99.42 68 | 97.55 125 | 92.43 88 | 93.82 149 | 99.12 49 | 87.30 102 | 99.91 46 | 94.02 141 | 99.06 80 | 99.74 50 |
|
| API-MVS | | | 94.78 103 | 94.18 106 | 96.59 94 | 99.21 61 | 90.06 155 | 98.80 143 | 97.78 75 | 83.59 302 | 93.85 147 | 99.21 31 | 83.79 163 | 99.97 21 | 92.37 168 | 99.00 84 | 99.74 50 |
|
| CSCG | | | 94.87 100 | 94.71 93 | 95.36 151 | 99.54 36 | 86.49 241 | 99.34 79 | 98.15 40 | 82.71 320 | 90.15 206 | 99.25 26 | 89.48 64 | 99.86 63 | 94.97 126 | 98.82 95 | 99.72 53 |
|
| MTAPA | | | 96.09 56 | 95.80 66 | 96.96 73 | 99.29 55 | 91.19 117 | 97.23 276 | 97.45 146 | 92.58 85 | 94.39 136 | 99.24 28 | 86.43 125 | 99.99 5 | 96.22 92 | 99.40 64 | 99.71 54 |
|
| test_fmvsmconf_n | | | 96.78 35 | 96.84 29 | 96.61 92 | 95.99 200 | 90.25 143 | 99.90 3 | 98.13 42 | 96.68 11 | 98.42 36 | 98.92 77 | 85.34 146 | 99.88 54 | 99.12 22 | 99.08 78 | 99.70 55 |
|
| APD-MVS_3200maxsize | | | 95.64 79 | 95.65 73 | 95.62 144 | 99.24 58 | 87.80 211 | 98.42 192 | 97.22 172 | 88.93 184 | 96.64 92 | 98.98 64 | 85.49 141 | 99.36 133 | 96.68 82 | 99.27 70 | 99.70 55 |
|
| CP-MVS | | | 96.22 53 | 96.15 56 | 96.42 104 | 99.67 10 | 89.62 166 | 99.70 27 | 97.61 112 | 90.07 150 | 96.00 100 | 99.16 39 | 87.43 95 | 99.92 41 | 96.03 99 | 99.72 32 | 99.70 55 |
|
| DVP-MVS |  | | 98.07 7 | 98.00 6 | 98.29 19 | 99.66 12 | 95.20 32 | 99.72 24 | 97.47 143 | 93.95 49 | 99.07 15 | 99.46 10 | 93.18 23 | 99.97 21 | 99.64 8 | 99.82 19 | 99.69 58 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| MVS_0304 | | | 97.81 9 | 97.51 15 | 98.74 9 | 98.97 73 | 96.57 11 | 99.91 2 | 98.17 36 | 97.45 3 | 98.76 26 | 98.97 65 | 86.69 116 | 99.96 28 | 99.72 3 | 98.92 90 | 99.69 58 |
|
| ZNCC-MVS | | | 96.09 56 | 95.81 65 | 96.95 74 | 99.42 47 | 91.19 117 | 99.55 44 | 97.53 129 | 89.72 157 | 95.86 106 | 98.94 76 | 86.59 119 | 99.97 21 | 95.13 120 | 99.56 52 | 99.68 60 |
|
| HPM-MVS++ |  | | 97.72 12 | 97.59 13 | 98.14 24 | 99.53 40 | 94.76 45 | 99.19 92 | 97.75 78 | 95.66 24 | 98.21 42 | 99.29 23 | 91.10 36 | 99.99 5 | 97.68 60 | 99.87 9 | 99.68 60 |
|
| CDPH-MVS | | | 96.56 44 | 96.18 50 | 97.70 39 | 99.59 28 | 93.92 65 | 99.13 109 | 97.44 150 | 89.02 179 | 97.90 55 | 99.22 30 | 88.90 72 | 99.49 115 | 94.63 133 | 99.79 27 | 99.68 60 |
|
| PAPM_NR | | | 95.43 82 | 95.05 89 | 96.57 97 | 99.42 47 | 90.14 148 | 98.58 175 | 97.51 135 | 90.65 129 | 92.44 167 | 98.90 79 | 87.77 91 | 99.90 50 | 90.88 182 | 99.32 66 | 99.68 60 |
|
| sasdasda | | | 95.02 94 | 93.96 115 | 98.20 21 | 97.53 126 | 95.92 17 | 98.71 151 | 96.19 248 | 91.78 102 | 95.86 106 | 98.49 115 | 79.53 224 | 99.03 152 | 96.12 95 | 91.42 229 | 99.66 64 |
|
| canonicalmvs | | | 95.02 94 | 93.96 115 | 98.20 21 | 97.53 126 | 95.92 17 | 98.71 151 | 96.19 248 | 91.78 102 | 95.86 106 | 98.49 115 | 79.53 224 | 99.03 152 | 96.12 95 | 91.42 229 | 99.66 64 |
|
| PGM-MVS | | | 95.85 68 | 95.65 73 | 96.45 102 | 99.50 42 | 89.77 163 | 98.22 215 | 98.90 13 | 89.19 174 | 96.74 87 | 98.95 73 | 85.91 135 | 99.92 41 | 93.94 142 | 99.46 57 | 99.66 64 |
|
| MGCFI-Net | | | 94.89 96 | 93.84 122 | 98.06 29 | 97.49 129 | 95.55 21 | 98.64 162 | 96.10 255 | 91.60 107 | 95.75 110 | 98.46 121 | 79.31 228 | 98.98 156 | 95.95 101 | 91.24 233 | 99.65 67 |
|
| DELS-MVS | | | 97.12 25 | 96.60 38 | 98.68 11 | 98.03 108 | 96.57 11 | 99.84 9 | 97.84 62 | 96.36 18 | 95.20 121 | 98.24 128 | 88.17 82 | 99.83 73 | 96.11 97 | 99.60 50 | 99.64 68 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| 3Dnovator+ | | 87.72 8 | 93.43 144 | 91.84 169 | 98.17 23 | 95.73 209 | 95.08 35 | 98.92 133 | 97.04 192 | 91.42 113 | 81.48 304 | 97.60 151 | 74.60 254 | 99.79 85 | 90.84 183 | 98.97 86 | 99.64 68 |
|
| CANet | | | 97.00 28 | 96.49 40 | 98.55 12 | 98.86 84 | 96.10 16 | 99.83 10 | 97.52 133 | 95.90 19 | 97.21 69 | 98.90 79 | 82.66 188 | 99.93 39 | 98.71 29 | 98.80 96 | 99.63 70 |
|
| 114514_t | | | 94.06 123 | 93.05 142 | 97.06 64 | 99.08 69 | 92.26 101 | 98.97 129 | 97.01 197 | 82.58 322 | 92.57 165 | 98.22 129 | 80.68 216 | 99.30 139 | 89.34 203 | 99.02 83 | 99.63 70 |
|
| PAPM | | | 96.35 48 | 95.94 59 | 97.58 43 | 94.10 271 | 95.25 26 | 98.93 131 | 98.17 36 | 94.26 43 | 93.94 145 | 98.72 94 | 89.68 62 | 97.88 214 | 96.36 90 | 99.29 69 | 99.62 72 |
|
| SR-MVS-dyc-post | | | 95.75 74 | 95.86 62 | 95.41 150 | 99.22 59 | 87.26 231 | 98.40 197 | 97.21 173 | 89.63 160 | 96.67 90 | 98.97 65 | 86.73 115 | 99.36 133 | 96.62 83 | 99.31 67 | 99.60 73 |
|
| RE-MVS-def | | | | 95.70 69 | | 99.22 59 | 87.26 231 | 98.40 197 | 97.21 173 | 89.63 160 | 96.67 90 | 98.97 65 | 85.24 147 | | 96.62 83 | 99.31 67 | 99.60 73 |
|
| TSAR-MVS + MP. | | | 97.44 18 | 97.46 17 | 97.39 52 | 99.12 65 | 93.49 74 | 98.52 179 | 97.50 138 | 94.46 39 | 98.99 17 | 98.64 102 | 91.58 33 | 99.08 151 | 98.49 40 | 99.83 15 | 99.60 73 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| 旧先验1 | | | | | | 98.97 73 | 92.90 91 | | 97.74 79 | | | 99.15 42 | 91.05 38 | | | 99.33 65 | 99.60 73 |
|
| fmvsm_l_conf0.5_n | | | 97.65 14 | 97.72 12 | 97.41 50 | 97.51 128 | 92.78 92 | 99.85 8 | 98.05 46 | 96.78 8 | 99.60 1 | 99.23 29 | 90.42 50 | 99.92 41 | 99.55 13 | 98.50 108 | 99.55 77 |
|
| test12 | | | | | 97.83 35 | 99.33 53 | 94.45 54 | | 97.55 125 | | 97.56 59 | | 88.60 76 | 99.50 114 | | 99.71 36 | 99.55 77 |
|
| HY-MVS | | 88.56 7 | 95.29 87 | 94.23 102 | 98.48 14 | 97.72 115 | 96.41 13 | 94.03 351 | 98.74 15 | 92.42 90 | 95.65 113 | 94.76 246 | 86.52 122 | 99.49 115 | 95.29 117 | 92.97 194 | 99.53 79 |
|
| GST-MVS | | | 95.97 62 | 95.66 71 | 96.90 75 | 99.49 45 | 91.22 115 | 99.45 61 | 97.48 141 | 89.69 158 | 95.89 103 | 98.72 94 | 86.37 126 | 99.95 32 | 94.62 134 | 99.22 74 | 99.52 80 |
|
| MP-MVS |  | | 96.00 59 | 95.82 63 | 96.54 98 | 99.47 46 | 90.13 150 | 99.36 76 | 97.41 154 | 90.64 130 | 95.49 116 | 98.95 73 | 85.51 140 | 99.98 9 | 96.00 100 | 99.59 51 | 99.52 80 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| balanced_conf03 | | | 96.83 32 | 96.51 39 | 97.81 36 | 97.60 122 | 95.15 34 | 98.40 197 | 96.77 209 | 93.00 76 | 98.69 28 | 96.19 216 | 89.75 61 | 98.76 165 | 98.45 42 | 99.72 32 | 99.51 82 |
|
| alignmvs | | | 95.77 72 | 95.00 90 | 98.06 29 | 97.35 134 | 95.68 20 | 99.71 26 | 97.50 138 | 91.50 109 | 96.16 99 | 98.61 106 | 86.28 127 | 99.00 154 | 96.19 93 | 91.74 217 | 99.51 82 |
|
| WTY-MVS | | | 95.97 62 | 95.11 87 | 98.54 13 | 97.62 119 | 96.65 9 | 99.44 62 | 98.74 15 | 92.25 94 | 95.21 120 | 98.46 121 | 86.56 121 | 99.46 121 | 95.00 125 | 92.69 198 | 99.50 84 |
|
| MVSMamba_PlusPlus | | | 95.73 76 | 95.15 84 | 97.44 47 | 97.28 139 | 94.35 59 | 98.26 212 | 96.75 210 | 83.09 310 | 97.84 56 | 95.97 224 | 89.59 63 | 98.48 182 | 97.86 57 | 99.73 31 | 99.49 85 |
|
| mvsmamba | | | 94.27 120 | 93.91 119 | 95.35 152 | 96.42 177 | 88.61 195 | 97.77 249 | 96.38 234 | 91.17 119 | 94.05 143 | 95.27 238 | 78.41 237 | 97.96 210 | 97.36 66 | 98.40 112 | 99.48 86 |
|
| DP-MVS Recon | | | 95.85 68 | 95.15 84 | 97.95 32 | 99.87 2 | 94.38 57 | 99.60 39 | 97.48 141 | 86.58 251 | 94.42 134 | 99.13 47 | 87.36 100 | 99.98 9 | 93.64 149 | 98.33 114 | 99.48 86 |
|
| HPM-MVS |  | | 95.41 84 | 95.22 82 | 95.99 129 | 99.29 55 | 89.14 173 | 99.17 97 | 97.09 189 | 87.28 236 | 95.40 117 | 98.48 118 | 84.93 150 | 99.38 131 | 95.64 108 | 99.65 40 | 99.47 88 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| dcpmvs_2 | | | 95.67 78 | 96.18 50 | 94.12 201 | 98.82 85 | 84.22 294 | 97.37 269 | 95.45 309 | 90.70 126 | 95.77 109 | 98.63 104 | 90.47 48 | 98.68 171 | 99.20 20 | 99.22 74 | 99.45 89 |
|
| test_yl | | | 95.27 88 | 94.60 95 | 97.28 57 | 98.53 93 | 92.98 86 | 99.05 119 | 98.70 18 | 86.76 248 | 94.65 131 | 97.74 144 | 87.78 89 | 99.44 122 | 95.57 110 | 92.61 199 | 99.44 90 |
|
| DCV-MVSNet | | | 95.27 88 | 94.60 95 | 97.28 57 | 98.53 93 | 92.98 86 | 99.05 119 | 98.70 18 | 86.76 248 | 94.65 131 | 97.74 144 | 87.78 89 | 99.44 122 | 95.57 110 | 92.61 199 | 99.44 90 |
|
| test_fmvsmconf0.1_n | | | 95.94 65 | 95.79 67 | 96.40 106 | 92.42 309 | 89.92 159 | 99.79 17 | 96.85 204 | 96.53 15 | 97.22 68 | 98.67 100 | 82.71 187 | 99.84 69 | 98.92 27 | 98.98 85 | 99.43 92 |
|
| fmvsm_l_conf0.5_n_a | | | 97.70 13 | 97.80 11 | 97.42 49 | 97.59 123 | 92.91 90 | 99.86 5 | 98.04 48 | 96.70 10 | 99.58 2 | 99.26 24 | 90.90 41 | 99.94 35 | 99.57 12 | 98.66 103 | 99.40 93 |
|
| MVS_111021_HR | | | 96.69 36 | 96.69 36 | 96.72 86 | 98.58 92 | 91.00 127 | 99.14 106 | 99.45 1 | 93.86 55 | 95.15 122 | 98.73 92 | 88.48 77 | 99.76 89 | 97.23 70 | 99.56 52 | 99.40 93 |
|
| CS-MVS | | | 95.75 74 | 96.19 48 | 94.40 189 | 97.88 112 | 86.22 251 | 99.66 35 | 96.12 254 | 92.69 84 | 98.07 48 | 98.89 81 | 87.09 105 | 97.59 238 | 96.71 80 | 98.62 104 | 99.39 95 |
|
| SPE-MVS-test | | | 95.98 61 | 96.34 46 | 94.90 170 | 98.06 107 | 87.66 215 | 99.69 34 | 96.10 255 | 93.66 61 | 98.35 40 | 99.05 57 | 86.28 127 | 97.66 232 | 96.96 76 | 98.90 92 | 99.37 96 |
|
| RRT-MVS | | | 93.39 146 | 92.64 152 | 95.64 142 | 96.11 198 | 88.75 192 | 97.40 265 | 95.77 290 | 89.46 169 | 92.70 164 | 95.42 235 | 72.98 271 | 98.81 161 | 96.91 78 | 96.97 144 | 99.37 96 |
|
| lupinMVS | | | 96.32 50 | 95.94 59 | 97.44 47 | 95.05 243 | 94.87 39 | 99.86 5 | 96.50 227 | 93.82 58 | 98.04 50 | 98.77 88 | 85.52 138 | 98.09 201 | 96.98 75 | 98.97 86 | 99.37 96 |
|
| mvs_anonymous | | | 92.50 169 | 91.65 174 | 95.06 164 | 96.60 168 | 89.64 165 | 97.06 282 | 96.44 231 | 86.64 250 | 84.14 260 | 93.93 259 | 82.49 190 | 96.17 312 | 91.47 175 | 96.08 163 | 99.35 99 |
|
| HPM-MVS_fast | | | 94.89 96 | 94.62 94 | 95.70 139 | 99.11 66 | 88.44 201 | 99.14 106 | 97.11 185 | 85.82 264 | 95.69 112 | 98.47 119 | 83.46 168 | 99.32 138 | 93.16 159 | 99.63 45 | 99.35 99 |
|
| 1314 | | | 93.44 143 | 91.98 166 | 97.84 34 | 95.24 225 | 94.38 57 | 96.22 314 | 97.92 56 | 90.18 144 | 82.28 287 | 97.71 146 | 77.63 242 | 99.80 81 | 91.94 172 | 98.67 102 | 99.34 101 |
|
| LFMVS | | | 92.23 176 | 90.84 191 | 96.42 104 | 98.24 100 | 91.08 124 | 98.24 214 | 96.22 245 | 83.39 305 | 94.74 129 | 98.31 125 | 61.12 351 | 98.85 159 | 94.45 136 | 92.82 195 | 99.32 102 |
|
| Effi-MVS+ | | | 93.87 131 | 93.15 140 | 96.02 126 | 95.79 206 | 90.76 132 | 96.70 298 | 95.78 288 | 86.98 242 | 95.71 111 | 97.17 175 | 79.58 222 | 98.01 208 | 94.57 135 | 96.09 162 | 99.31 103 |
|
| CHOSEN 1792x2688 | | | 94.35 118 | 93.82 123 | 95.95 131 | 97.40 131 | 88.74 193 | 98.41 194 | 98.27 30 | 92.18 96 | 91.43 184 | 96.40 209 | 78.88 230 | 99.81 79 | 93.59 150 | 97.81 123 | 99.30 104 |
|
| ACMMP |  | | 94.67 109 | 94.30 100 | 95.79 136 | 99.25 57 | 88.13 205 | 98.41 194 | 98.67 21 | 90.38 140 | 91.43 184 | 98.72 94 | 82.22 198 | 99.95 32 | 93.83 146 | 95.76 167 | 99.29 105 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| MP-MVS-pluss | | | 95.80 70 | 95.30 79 | 97.29 55 | 98.95 77 | 92.66 93 | 98.59 173 | 97.14 181 | 88.95 182 | 93.12 158 | 99.25 26 | 85.62 137 | 99.94 35 | 96.56 87 | 99.48 56 | 99.28 106 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| EPMVS | | | 92.59 167 | 91.59 175 | 95.59 146 | 97.22 140 | 90.03 156 | 91.78 372 | 98.04 48 | 90.42 139 | 91.66 178 | 90.65 330 | 86.49 124 | 97.46 245 | 81.78 290 | 96.31 157 | 99.28 106 |
|
| AdaColmap |  | | 93.82 133 | 93.06 141 | 96.10 122 | 99.88 1 | 89.07 175 | 98.33 206 | 97.55 125 | 86.81 247 | 90.39 203 | 98.65 101 | 75.09 251 | 99.98 9 | 93.32 157 | 97.53 132 | 99.26 108 |
|
| ET-MVSNet_ETH3D | | | 92.56 168 | 91.45 178 | 95.88 133 | 96.39 180 | 94.13 63 | 99.46 59 | 96.97 200 | 92.18 96 | 66.94 392 | 98.29 127 | 94.65 14 | 94.28 362 | 94.34 137 | 83.82 280 | 99.24 109 |
|
| VNet | | | 95.08 93 | 94.26 101 | 97.55 46 | 98.07 106 | 93.88 66 | 98.68 156 | 98.73 17 | 90.33 141 | 97.16 72 | 97.43 160 | 79.19 229 | 99.53 112 | 96.91 78 | 91.85 215 | 99.24 109 |
|
| CNLPA | | | 93.64 140 | 92.74 149 | 96.36 109 | 98.96 76 | 90.01 158 | 99.19 92 | 95.89 282 | 86.22 259 | 89.40 215 | 98.85 84 | 80.66 217 | 99.84 69 | 88.57 211 | 96.92 146 | 99.24 109 |
|
| 3Dnovator | | 87.35 11 | 93.17 156 | 91.77 172 | 97.37 53 | 95.41 220 | 93.07 83 | 98.82 140 | 97.85 61 | 91.53 108 | 82.56 280 | 97.58 153 | 71.97 281 | 99.82 76 | 91.01 180 | 99.23 73 | 99.22 112 |
|
| GG-mvs-BLEND | | | | | 96.98 71 | 96.53 171 | 94.81 44 | 87.20 392 | 97.74 79 | | 93.91 146 | 96.40 209 | 96.56 2 | 96.94 267 | 95.08 121 | 98.95 89 | 99.20 113 |
|
| EIA-MVS | | | 95.11 91 | 95.27 81 | 94.64 182 | 96.34 182 | 86.51 240 | 99.59 40 | 96.62 216 | 92.51 86 | 94.08 142 | 98.64 102 | 86.05 132 | 98.24 193 | 95.07 122 | 98.50 108 | 99.18 114 |
|
| Patchmatch-test | | | 86.25 288 | 84.06 305 | 92.82 232 | 94.42 261 | 82.88 314 | 82.88 408 | 94.23 353 | 71.58 385 | 79.39 327 | 90.62 332 | 89.00 69 | 96.42 292 | 63.03 388 | 91.37 231 | 99.16 115 |
|
| test_fmvsmconf0.01_n | | | 94.14 122 | 93.51 130 | 96.04 124 | 86.79 381 | 89.19 171 | 99.28 85 | 95.94 269 | 95.70 21 | 95.50 115 | 98.49 115 | 73.27 269 | 99.79 85 | 98.28 49 | 98.32 116 | 99.15 116 |
|
| gg-mvs-nofinetune | | | 90.00 223 | 87.71 248 | 96.89 79 | 96.15 192 | 94.69 49 | 85.15 399 | 97.74 79 | 68.32 398 | 92.97 161 | 60.16 412 | 96.10 4 | 96.84 270 | 93.89 143 | 98.87 93 | 99.14 117 |
|
| MVS_Test | | | 93.67 139 | 92.67 151 | 96.69 88 | 96.72 166 | 92.66 93 | 97.22 277 | 96.03 261 | 87.69 228 | 95.12 123 | 94.03 254 | 81.55 205 | 98.28 190 | 89.17 207 | 96.46 152 | 99.14 117 |
|
| casdiffmvs_mvg |  | | 94.00 125 | 93.33 135 | 96.03 125 | 95.22 227 | 90.90 130 | 99.09 113 | 95.99 262 | 90.58 132 | 91.55 182 | 97.37 162 | 79.91 220 | 98.06 203 | 95.01 124 | 95.22 174 | 99.13 119 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| test2506 | | | 94.80 102 | 94.21 103 | 96.58 95 | 96.41 178 | 92.18 102 | 98.01 235 | 98.96 11 | 90.82 124 | 93.46 154 | 97.28 164 | 85.92 133 | 98.45 183 | 89.82 195 | 97.19 140 | 99.12 120 |
|
| ECVR-MVS |  | | 92.29 173 | 91.33 180 | 95.15 161 | 96.41 178 | 87.84 210 | 98.10 228 | 94.84 333 | 90.82 124 | 91.42 186 | 97.28 164 | 65.61 330 | 98.49 181 | 90.33 189 | 97.19 140 | 99.12 120 |
|
| MonoMVSNet | | | 90.69 208 | 89.78 208 | 93.45 219 | 91.78 322 | 84.97 285 | 96.51 302 | 94.44 345 | 90.56 133 | 85.96 244 | 90.97 319 | 78.61 236 | 96.27 308 | 95.35 114 | 83.79 281 | 99.11 122 |
|
| HyFIR lowres test | | | 93.68 138 | 93.29 137 | 94.87 171 | 97.57 125 | 88.04 207 | 98.18 219 | 98.47 24 | 87.57 230 | 91.24 189 | 95.05 242 | 85.49 141 | 97.46 245 | 93.22 158 | 92.82 195 | 99.10 123 |
|
| Anonymous202405211 | | | 88.84 240 | 87.03 259 | 94.27 194 | 98.14 105 | 84.18 295 | 98.44 190 | 95.58 302 | 76.79 368 | 89.34 216 | 96.88 192 | 53.42 380 | 99.54 111 | 87.53 223 | 87.12 253 | 99.09 124 |
|
| baseline | | | 93.91 129 | 93.30 136 | 95.72 138 | 95.10 240 | 90.07 152 | 97.48 264 | 95.91 279 | 91.03 120 | 93.54 153 | 97.68 147 | 79.58 222 | 98.02 207 | 94.27 138 | 95.14 175 | 99.08 125 |
|
| Vis-MVSNet (Re-imp) | | | 93.26 153 | 93.00 145 | 94.06 204 | 96.14 194 | 86.71 239 | 98.68 156 | 96.70 212 | 88.30 205 | 89.71 214 | 97.64 150 | 85.43 144 | 96.39 293 | 88.06 218 | 96.32 156 | 99.08 125 |
|
| test1111 | | | 92.12 178 | 91.19 183 | 94.94 169 | 96.15 192 | 87.36 225 | 98.12 225 | 94.84 333 | 90.85 123 | 90.97 191 | 97.26 166 | 65.60 331 | 98.37 185 | 89.74 198 | 97.14 143 | 99.07 127 |
|
| PatchmatchNet |  | | 92.05 182 | 91.04 186 | 95.06 164 | 96.17 191 | 89.04 176 | 91.26 380 | 97.26 166 | 89.56 165 | 90.64 197 | 90.56 336 | 88.35 79 | 97.11 259 | 79.53 303 | 96.07 164 | 99.03 128 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| EPNet | | | 96.82 33 | 96.68 37 | 97.25 59 | 98.65 90 | 93.10 82 | 99.48 53 | 98.76 14 | 96.54 13 | 97.84 56 | 98.22 129 | 87.49 94 | 99.66 97 | 95.35 114 | 97.78 126 | 99.00 129 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| sss | | | 94.85 101 | 93.94 117 | 97.58 43 | 96.43 176 | 94.09 64 | 98.93 131 | 99.16 8 | 89.50 167 | 95.27 119 | 97.85 136 | 81.50 207 | 99.65 101 | 92.79 165 | 94.02 184 | 98.99 130 |
|
| Patchmatch-RL test | | | 81.90 334 | 80.13 338 | 87.23 341 | 80.71 401 | 70.12 394 | 84.07 405 | 88.19 406 | 83.16 309 | 70.57 376 | 82.18 393 | 87.18 103 | 92.59 378 | 82.28 285 | 62.78 388 | 98.98 131 |
|
| PVSNet | | 87.13 12 | 93.69 136 | 92.83 148 | 96.28 112 | 97.99 109 | 90.22 146 | 99.38 72 | 98.93 12 | 91.42 113 | 93.66 151 | 97.68 147 | 71.29 289 | 99.64 103 | 87.94 219 | 97.20 139 | 98.98 131 |
|
| MVSFormer | | | 94.71 108 | 94.08 109 | 96.61 92 | 95.05 243 | 94.87 39 | 97.77 249 | 96.17 251 | 86.84 245 | 98.04 50 | 98.52 110 | 85.52 138 | 95.99 318 | 89.83 193 | 98.97 86 | 98.96 133 |
|
| jason | | | 95.40 85 | 94.86 92 | 97.03 65 | 92.91 303 | 94.23 60 | 99.70 27 | 96.30 239 | 93.56 65 | 96.73 88 | 98.52 110 | 81.46 209 | 97.91 211 | 96.08 98 | 98.47 111 | 98.96 133 |
| jason: jason. |
| CostFormer | | | 92.89 160 | 92.48 156 | 94.12 201 | 94.99 246 | 85.89 264 | 92.89 361 | 97.00 198 | 86.98 242 | 95.00 125 | 90.78 323 | 90.05 58 | 97.51 243 | 92.92 163 | 91.73 218 | 98.96 133 |
|
| MAR-MVS | | | 94.43 117 | 94.09 108 | 95.45 148 | 99.10 68 | 87.47 221 | 98.39 201 | 97.79 73 | 88.37 201 | 94.02 144 | 99.17 38 | 78.64 235 | 99.91 46 | 92.48 167 | 98.85 94 | 98.96 133 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| MDTV_nov1_ep13_2view | | | | | | | 91.17 119 | 91.38 378 | | 87.45 233 | 93.08 159 | | 86.67 117 | | 87.02 225 | | 98.95 137 |
|
| EC-MVSNet | | | 95.09 92 | 95.17 83 | 94.84 173 | 95.42 219 | 88.17 203 | 99.48 53 | 95.92 274 | 91.47 110 | 97.34 66 | 98.36 123 | 82.77 183 | 97.41 249 | 97.24 69 | 98.58 105 | 98.94 138 |
|
| FA-MVS(test-final) | | | 92.22 177 | 91.08 185 | 95.64 142 | 96.05 199 | 88.98 181 | 91.60 375 | 97.25 167 | 86.99 239 | 91.84 173 | 92.12 292 | 83.03 178 | 99.00 154 | 86.91 229 | 93.91 185 | 98.93 139 |
|
| CVMVSNet | | | 90.30 215 | 90.91 189 | 88.46 330 | 94.32 265 | 73.58 380 | 97.61 261 | 97.59 118 | 90.16 147 | 88.43 223 | 97.10 177 | 76.83 246 | 92.86 373 | 82.64 281 | 93.54 189 | 98.93 139 |
|
| ab-mvs | | | 91.05 201 | 89.17 219 | 96.69 88 | 95.96 201 | 91.72 108 | 92.62 365 | 97.23 171 | 85.61 268 | 89.74 212 | 93.89 261 | 68.55 304 | 99.42 126 | 91.09 178 | 87.84 249 | 98.92 141 |
|
| IS-MVSNet | | | 93.00 159 | 92.51 155 | 94.49 185 | 96.14 194 | 87.36 225 | 98.31 209 | 95.70 294 | 88.58 192 | 90.17 205 | 97.50 156 | 83.02 179 | 97.22 255 | 87.06 224 | 96.07 164 | 98.90 142 |
|
| CPTT-MVS | | | 94.60 111 | 94.43 99 | 95.09 163 | 99.66 12 | 86.85 236 | 99.44 62 | 97.47 143 | 83.22 307 | 94.34 138 | 98.96 70 | 82.50 189 | 99.55 109 | 94.81 128 | 99.50 55 | 98.88 143 |
|
| Vis-MVSNet |  | | 92.64 164 | 91.85 168 | 95.03 167 | 95.12 236 | 88.23 202 | 98.48 187 | 96.81 205 | 91.61 105 | 92.16 172 | 97.22 170 | 71.58 287 | 98.00 209 | 85.85 244 | 97.81 123 | 98.88 143 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| casdiffmvs |  | | 93.98 127 | 93.43 131 | 95.61 145 | 95.07 242 | 89.86 161 | 98.80 143 | 95.84 287 | 90.98 121 | 92.74 163 | 97.66 149 | 79.71 221 | 98.10 200 | 94.72 131 | 95.37 173 | 98.87 145 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| GSMVS | | | | | | | | | | | | | | | | | 98.84 146 |
|
| sam_mvs1 | | | | | | | | | | | | | 88.39 78 | | | | 98.84 146 |
|
| SCA | | | 90.64 210 | 89.25 218 | 94.83 174 | 94.95 248 | 88.83 188 | 96.26 311 | 97.21 173 | 90.06 151 | 90.03 207 | 90.62 332 | 66.61 322 | 96.81 272 | 83.16 275 | 94.36 181 | 98.84 146 |
|
| PMMVS | | | 93.62 141 | 93.90 120 | 92.79 233 | 96.79 164 | 81.40 329 | 98.85 137 | 96.81 205 | 91.25 117 | 96.82 83 | 98.15 133 | 77.02 245 | 98.13 198 | 93.15 160 | 96.30 158 | 98.83 149 |
|
| ETV-MVS | | | 96.00 59 | 96.00 58 | 96.00 128 | 96.56 169 | 91.05 125 | 99.63 37 | 96.61 217 | 93.26 71 | 97.39 64 | 98.30 126 | 86.62 118 | 98.13 198 | 98.07 53 | 97.57 129 | 98.82 150 |
|
| 1112_ss | | | 92.71 162 | 91.55 176 | 96.20 116 | 95.56 214 | 91.12 120 | 98.48 187 | 94.69 340 | 88.29 206 | 86.89 238 | 98.50 112 | 87.02 108 | 98.66 172 | 84.75 254 | 89.77 244 | 98.81 151 |
|
| Test_1112_low_res | | | 92.27 175 | 90.97 187 | 96.18 117 | 95.53 216 | 91.10 122 | 98.47 189 | 94.66 341 | 88.28 207 | 86.83 239 | 93.50 272 | 87.00 109 | 98.65 173 | 84.69 255 | 89.74 245 | 98.80 152 |
|
| PatchT | | | 85.44 301 | 83.19 311 | 92.22 244 | 93.13 301 | 83.00 309 | 83.80 407 | 96.37 235 | 70.62 388 | 90.55 198 | 79.63 402 | 84.81 153 | 94.87 352 | 58.18 400 | 91.59 220 | 98.79 153 |
|
| PVSNet_Blended | | | 95.94 65 | 95.66 71 | 96.75 82 | 98.77 87 | 91.61 110 | 99.88 4 | 98.04 48 | 93.64 63 | 94.21 139 | 97.76 142 | 83.50 166 | 99.87 58 | 97.41 64 | 97.75 127 | 98.79 153 |
|
| GDP-MVS | | | 96.05 58 | 95.63 75 | 97.31 54 | 95.37 223 | 94.65 50 | 99.36 76 | 96.42 232 | 92.14 98 | 97.07 73 | 98.53 108 | 93.33 19 | 98.50 177 | 91.76 174 | 96.66 151 | 98.78 155 |
|
| DeepC-MVS | | 91.02 4 | 94.56 114 | 93.92 118 | 96.46 101 | 97.16 146 | 90.76 132 | 98.39 201 | 97.11 185 | 93.92 51 | 88.66 220 | 98.33 124 | 78.14 239 | 99.85 67 | 95.02 123 | 98.57 106 | 98.78 155 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| tpmrst | | | 92.78 161 | 92.16 161 | 94.65 180 | 96.27 185 | 87.45 222 | 91.83 371 | 97.10 188 | 89.10 178 | 94.68 130 | 90.69 327 | 88.22 81 | 97.73 230 | 89.78 196 | 91.80 216 | 98.77 157 |
|
| 原ACMM1 | | | | | 96.18 117 | 99.03 71 | 90.08 151 | | 97.63 109 | 88.98 180 | 97.00 75 | 98.97 65 | 88.14 85 | 99.71 93 | 88.23 215 | 99.62 46 | 98.76 158 |
|
| tpm2 | | | 91.77 184 | 91.09 184 | 93.82 214 | 94.83 253 | 85.56 272 | 92.51 366 | 97.16 180 | 84.00 293 | 93.83 148 | 90.66 329 | 87.54 93 | 97.17 256 | 87.73 221 | 91.55 222 | 98.72 159 |
|
| TAPA-MVS | | 87.50 9 | 90.35 213 | 89.05 222 | 94.25 196 | 98.48 95 | 85.17 280 | 98.42 192 | 96.58 222 | 82.44 327 | 87.24 233 | 98.53 108 | 82.77 183 | 98.84 160 | 59.09 398 | 97.88 122 | 98.72 159 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| EI-MVSNet-Vis-set | | | 95.76 73 | 95.63 75 | 96.17 119 | 99.14 64 | 90.33 141 | 98.49 185 | 97.82 66 | 91.92 100 | 94.75 128 | 98.88 83 | 87.06 107 | 99.48 119 | 95.40 113 | 97.17 142 | 98.70 161 |
|
| FE-MVS | | | 91.38 192 | 90.16 204 | 95.05 166 | 96.46 175 | 87.53 219 | 89.69 389 | 97.84 62 | 82.97 313 | 92.18 171 | 92.00 298 | 84.07 161 | 98.93 158 | 80.71 297 | 95.52 171 | 98.68 162 |
|
| GeoE | | | 90.60 211 | 89.56 211 | 93.72 217 | 95.10 240 | 85.43 273 | 99.41 69 | 94.94 331 | 83.96 295 | 87.21 234 | 96.83 196 | 74.37 258 | 97.05 263 | 80.50 301 | 93.73 188 | 98.67 163 |
|
| diffmvs |  | | 94.59 112 | 94.19 104 | 95.81 135 | 95.54 215 | 90.69 134 | 98.70 154 | 95.68 296 | 91.61 105 | 95.96 101 | 97.81 138 | 80.11 218 | 98.06 203 | 96.52 88 | 95.76 167 | 98.67 163 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| DP-MVS | | | 88.75 246 | 86.56 265 | 95.34 153 | 98.92 81 | 87.45 222 | 97.64 260 | 93.52 365 | 70.55 389 | 81.49 303 | 97.25 168 | 74.43 257 | 99.88 54 | 71.14 360 | 94.09 183 | 98.67 163 |
|
| BP-MVS1 | | | 96.59 41 | 96.36 45 | 97.29 55 | 95.05 243 | 94.72 47 | 99.44 62 | 97.45 146 | 92.71 83 | 96.41 95 | 98.50 112 | 94.11 16 | 98.50 177 | 95.61 109 | 97.97 120 | 98.66 166 |
|
| ETVMVS | | | 94.50 115 | 93.90 120 | 96.31 111 | 97.48 130 | 92.98 86 | 99.07 115 | 97.86 60 | 88.09 212 | 94.40 135 | 96.90 189 | 88.35 79 | 97.28 254 | 90.72 187 | 92.25 209 | 98.66 166 |
|
| TESTMET0.1,1 | | | 93.82 133 | 93.26 138 | 95.49 147 | 95.21 228 | 90.25 143 | 99.15 103 | 97.54 128 | 89.18 175 | 91.79 174 | 94.87 244 | 89.13 66 | 97.63 235 | 86.21 237 | 96.29 159 | 98.60 168 |
|
| dp | | | 90.16 220 | 88.83 227 | 94.14 200 | 96.38 181 | 86.42 243 | 91.57 376 | 97.06 191 | 84.76 284 | 88.81 219 | 90.19 348 | 84.29 158 | 97.43 248 | 75.05 335 | 91.35 232 | 98.56 169 |
|
| EPP-MVSNet | | | 93.75 135 | 93.67 126 | 94.01 207 | 95.86 204 | 85.70 269 | 98.67 158 | 97.66 97 | 84.46 287 | 91.36 187 | 97.18 174 | 91.16 34 | 97.79 220 | 92.93 162 | 93.75 187 | 98.53 170 |
|
| Fast-Effi-MVS+ | | | 91.72 185 | 90.79 194 | 94.49 185 | 95.89 202 | 87.40 224 | 99.54 49 | 95.70 294 | 85.01 280 | 89.28 217 | 95.68 230 | 77.75 241 | 97.57 242 | 83.22 274 | 95.06 176 | 98.51 171 |
|
| CDS-MVSNet | | | 93.47 142 | 93.04 143 | 94.76 175 | 94.75 255 | 89.45 169 | 98.82 140 | 97.03 194 | 87.91 219 | 90.97 191 | 96.48 207 | 89.06 67 | 96.36 295 | 89.50 199 | 92.81 197 | 98.49 172 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| LCM-MVSNet-Re | | | 88.59 251 | 88.61 232 | 88.51 329 | 95.53 216 | 72.68 385 | 96.85 290 | 88.43 405 | 88.45 196 | 73.14 368 | 90.63 331 | 75.82 247 | 94.38 361 | 92.95 161 | 95.71 169 | 98.48 173 |
|
| TAMVS | | | 92.62 165 | 92.09 164 | 94.20 198 | 94.10 271 | 87.68 213 | 98.41 194 | 96.97 200 | 87.53 232 | 89.74 212 | 96.04 222 | 84.77 155 | 96.49 288 | 88.97 209 | 92.31 206 | 98.42 174 |
|
| CR-MVSNet | | | 88.83 242 | 87.38 253 | 93.16 225 | 93.47 292 | 86.24 249 | 84.97 401 | 94.20 354 | 88.92 185 | 90.76 195 | 86.88 377 | 84.43 156 | 94.82 354 | 70.64 361 | 92.17 211 | 98.41 175 |
|
| RPMNet | | | 85.07 305 | 81.88 324 | 94.64 182 | 93.47 292 | 86.24 249 | 84.97 401 | 97.21 173 | 64.85 405 | 90.76 195 | 78.80 403 | 80.95 215 | 99.27 140 | 53.76 404 | 92.17 211 | 98.41 175 |
|
| BH-RMVSNet | | | 91.25 196 | 89.99 205 | 95.03 167 | 96.75 165 | 88.55 197 | 98.65 160 | 94.95 330 | 87.74 225 | 87.74 227 | 97.80 139 | 68.27 307 | 98.14 197 | 80.53 300 | 97.49 133 | 98.41 175 |
|
| UA-Net | | | 93.30 150 | 92.62 153 | 95.34 153 | 96.27 185 | 88.53 199 | 95.88 325 | 96.97 200 | 90.90 122 | 95.37 118 | 97.07 179 | 82.38 196 | 99.10 150 | 83.91 269 | 94.86 178 | 98.38 178 |
|
| mamv4 | | | 91.41 190 | 93.57 128 | 84.91 360 | 97.11 150 | 58.11 407 | 95.68 333 | 95.93 272 | 82.09 332 | 89.78 211 | 95.71 229 | 90.09 57 | 98.24 193 | 97.26 68 | 98.50 108 | 98.38 178 |
|
| tpm | | | 89.67 227 | 88.95 224 | 91.82 255 | 92.54 307 | 81.43 328 | 92.95 360 | 95.92 274 | 87.81 221 | 90.50 200 | 89.44 356 | 84.99 149 | 95.65 334 | 83.67 272 | 82.71 290 | 98.38 178 |
|
| MVS_111021_LR | | | 95.78 71 | 95.94 59 | 95.28 157 | 98.19 103 | 87.69 212 | 98.80 143 | 99.26 7 | 93.39 68 | 95.04 124 | 98.69 99 | 84.09 160 | 99.76 89 | 96.96 76 | 99.06 80 | 98.38 178 |
|
| test-LLR | | | 93.11 157 | 92.68 150 | 94.40 189 | 94.94 249 | 87.27 229 | 99.15 103 | 97.25 167 | 90.21 142 | 91.57 179 | 94.04 252 | 84.89 151 | 97.58 239 | 85.94 241 | 96.13 160 | 98.36 182 |
|
| test-mter | | | 93.27 152 | 92.89 147 | 94.40 189 | 94.94 249 | 87.27 229 | 99.15 103 | 97.25 167 | 88.95 182 | 91.57 179 | 94.04 252 | 88.03 87 | 97.58 239 | 85.94 241 | 96.13 160 | 98.36 182 |
|
| IB-MVS | | 89.43 6 | 92.12 178 | 90.83 193 | 95.98 130 | 95.40 221 | 90.78 131 | 99.81 12 | 98.06 45 | 91.23 118 | 85.63 248 | 93.66 267 | 90.63 46 | 98.78 162 | 91.22 177 | 71.85 363 | 98.36 182 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| VDD-MVS | | | 91.24 197 | 90.18 203 | 94.45 188 | 97.08 152 | 85.84 267 | 98.40 197 | 96.10 255 | 86.99 239 | 93.36 155 | 98.16 132 | 54.27 376 | 99.20 141 | 96.59 86 | 90.63 239 | 98.31 185 |
|
| UBG | | | 95.73 76 | 95.41 77 | 96.69 88 | 96.97 156 | 93.23 78 | 99.13 109 | 97.79 73 | 91.28 116 | 94.38 137 | 96.78 197 | 92.37 30 | 98.56 176 | 96.17 94 | 93.84 186 | 98.26 186 |
|
| testing91 | | | 94.88 98 | 94.44 98 | 96.21 115 | 97.19 143 | 91.90 105 | 99.23 89 | 97.66 97 | 89.91 153 | 93.66 151 | 97.05 182 | 90.21 55 | 98.50 177 | 93.52 151 | 91.53 226 | 98.25 187 |
|
| testing222 | | | 94.48 116 | 94.00 111 | 95.95 131 | 97.30 136 | 92.27 100 | 98.82 140 | 97.92 56 | 89.20 173 | 94.82 126 | 97.26 166 | 87.13 104 | 97.32 253 | 91.95 171 | 91.56 221 | 98.25 187 |
|
| PVSNet_Blended_VisFu | | | 94.67 109 | 94.11 107 | 96.34 110 | 97.14 147 | 91.10 122 | 99.32 81 | 97.43 152 | 92.10 99 | 91.53 183 | 96.38 212 | 83.29 172 | 99.68 95 | 93.42 156 | 96.37 155 | 98.25 187 |
|
| thisisatest0515 | | | 94.75 104 | 94.19 104 | 96.43 103 | 96.13 197 | 92.64 96 | 99.47 55 | 97.60 114 | 87.55 231 | 93.17 157 | 97.59 152 | 94.71 12 | 98.42 184 | 88.28 214 | 93.20 191 | 98.24 190 |
|
| EI-MVSNet-UG-set | | | 95.43 82 | 95.29 80 | 95.86 134 | 99.07 70 | 89.87 160 | 98.43 191 | 97.80 71 | 91.78 102 | 94.11 141 | 98.77 88 | 86.25 129 | 99.48 119 | 94.95 127 | 96.45 153 | 98.22 191 |
|
| QAPM | | | 91.41 190 | 89.49 213 | 97.17 62 | 95.66 212 | 93.42 75 | 98.60 171 | 97.51 135 | 80.92 346 | 81.39 305 | 97.41 161 | 72.89 274 | 99.87 58 | 82.33 284 | 98.68 101 | 98.21 192 |
|
| CHOSEN 280x420 | | | 96.80 34 | 96.85 28 | 96.66 91 | 97.85 113 | 94.42 56 | 94.76 342 | 98.36 28 | 92.50 87 | 95.62 114 | 97.52 155 | 97.92 1 | 97.38 250 | 98.31 48 | 98.80 96 | 98.20 193 |
|
| testing11 | | | 95.33 86 | 94.98 91 | 96.37 108 | 97.20 141 | 92.31 99 | 99.29 82 | 97.68 92 | 90.59 131 | 94.43 133 | 97.20 171 | 90.79 45 | 98.60 174 | 95.25 118 | 92.38 203 | 98.18 194 |
|
| TR-MVS | | | 90.77 205 | 89.44 214 | 94.76 175 | 96.31 183 | 88.02 208 | 97.92 239 | 95.96 266 | 85.52 269 | 88.22 224 | 97.23 169 | 66.80 321 | 98.09 201 | 84.58 257 | 92.38 203 | 98.17 195 |
|
| testing99 | | | 94.88 98 | 94.45 97 | 96.17 119 | 97.20 141 | 91.91 104 | 99.20 91 | 97.66 97 | 89.95 152 | 93.68 150 | 97.06 180 | 90.28 54 | 98.50 177 | 93.52 151 | 91.54 223 | 98.12 196 |
|
| GA-MVS | | | 90.10 221 | 88.69 230 | 94.33 192 | 92.44 308 | 87.97 209 | 99.08 114 | 96.26 243 | 89.65 159 | 86.92 237 | 93.11 280 | 68.09 309 | 96.96 265 | 82.54 283 | 90.15 241 | 98.05 197 |
|
| OMC-MVS | | | 93.90 130 | 93.62 127 | 94.73 178 | 98.63 91 | 87.00 234 | 98.04 234 | 96.56 223 | 92.19 95 | 92.46 166 | 98.73 92 | 79.49 226 | 99.14 148 | 92.16 170 | 94.34 182 | 98.03 198 |
|
| xiu_mvs_v2_base | | | 96.66 37 | 96.17 53 | 98.11 28 | 97.11 150 | 96.96 6 | 99.01 124 | 97.04 192 | 95.51 27 | 98.86 23 | 99.11 53 | 82.19 199 | 99.36 133 | 98.59 35 | 98.14 118 | 98.00 199 |
|
| PS-MVSNAJ | | | 96.87 31 | 96.40 43 | 98.29 19 | 97.35 134 | 97.29 5 | 99.03 121 | 97.11 185 | 95.83 20 | 98.97 19 | 99.14 45 | 82.48 191 | 99.60 106 | 98.60 33 | 99.08 78 | 98.00 199 |
|
| thisisatest0530 | | | 94.00 125 | 93.52 129 | 95.43 149 | 95.76 208 | 90.02 157 | 98.99 126 | 97.60 114 | 86.58 251 | 91.74 175 | 97.36 163 | 94.78 11 | 98.34 186 | 86.37 235 | 92.48 202 | 97.94 201 |
|
| tpm cat1 | | | 88.89 238 | 87.27 255 | 93.76 215 | 95.79 206 | 85.32 277 | 90.76 385 | 97.09 189 | 76.14 371 | 85.72 247 | 88.59 362 | 82.92 180 | 98.04 206 | 76.96 322 | 91.43 228 | 97.90 202 |
|
| tttt0517 | | | 93.30 150 | 93.01 144 | 94.17 199 | 95.57 213 | 86.47 242 | 98.51 182 | 97.60 114 | 85.99 262 | 90.55 198 | 97.19 173 | 94.80 10 | 98.31 187 | 85.06 250 | 91.86 214 | 97.74 203 |
|
| mvsany_test1 | | | 94.57 113 | 95.09 88 | 92.98 228 | 95.84 205 | 82.07 323 | 98.76 149 | 95.24 322 | 92.87 82 | 96.45 93 | 98.71 97 | 84.81 153 | 99.15 144 | 97.68 60 | 95.49 172 | 97.73 204 |
|
| h-mvs33 | | | 92.47 170 | 91.95 167 | 94.05 205 | 97.13 148 | 85.01 283 | 98.36 204 | 98.08 44 | 93.85 56 | 96.27 97 | 96.73 200 | 83.19 175 | 99.43 125 | 95.81 102 | 68.09 374 | 97.70 205 |
|
| ADS-MVSNet2 | | | 87.62 267 | 86.88 261 | 89.86 303 | 96.21 188 | 79.14 350 | 87.15 393 | 92.99 368 | 83.01 311 | 89.91 209 | 87.27 373 | 78.87 231 | 92.80 376 | 74.20 343 | 92.27 207 | 97.64 206 |
|
| ADS-MVSNet | | | 88.99 235 | 87.30 254 | 94.07 203 | 96.21 188 | 87.56 218 | 87.15 393 | 96.78 208 | 83.01 311 | 89.91 209 | 87.27 373 | 78.87 231 | 97.01 264 | 74.20 343 | 92.27 207 | 97.64 206 |
|
| BH-w/o | | | 92.32 172 | 91.79 171 | 93.91 211 | 96.85 159 | 86.18 253 | 99.11 112 | 95.74 292 | 88.13 210 | 84.81 253 | 97.00 184 | 77.26 244 | 97.91 211 | 89.16 208 | 98.03 119 | 97.64 206 |
|
| LS3D | | | 90.19 218 | 88.72 229 | 94.59 184 | 98.97 73 | 86.33 248 | 96.90 288 | 96.60 218 | 74.96 376 | 84.06 262 | 98.74 91 | 75.78 248 | 99.83 73 | 74.93 336 | 97.57 129 | 97.62 209 |
|
| VDDNet | | | 90.08 222 | 88.54 236 | 94.69 179 | 94.41 262 | 87.68 213 | 98.21 217 | 96.40 233 | 76.21 370 | 93.33 156 | 97.75 143 | 54.93 374 | 98.77 163 | 94.71 132 | 90.96 234 | 97.61 210 |
|
| EPNet_dtu | | | 92.28 174 | 92.15 162 | 92.70 237 | 97.29 137 | 84.84 286 | 98.64 162 | 97.82 66 | 92.91 80 | 93.02 160 | 97.02 183 | 85.48 143 | 95.70 333 | 72.25 357 | 94.89 177 | 97.55 211 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| test_fmvsm_n_1920 | | | 97.08 27 | 97.55 14 | 95.67 141 | 97.94 110 | 89.61 167 | 99.93 1 | 98.48 23 | 97.08 5 | 99.08 14 | 99.13 47 | 88.17 82 | 99.93 39 | 99.11 23 | 99.06 80 | 97.47 212 |
|
| BH-untuned | | | 91.46 189 | 90.84 191 | 93.33 222 | 96.51 173 | 84.83 287 | 98.84 139 | 95.50 306 | 86.44 258 | 83.50 264 | 96.70 201 | 75.49 250 | 97.77 222 | 86.78 232 | 97.81 123 | 97.40 213 |
|
| thres200 | | | 93.69 136 | 92.59 154 | 96.97 72 | 97.76 114 | 94.74 46 | 99.35 78 | 99.36 2 | 89.23 172 | 91.21 190 | 96.97 185 | 83.42 169 | 98.77 163 | 85.08 249 | 90.96 234 | 97.39 214 |
|
| JIA-IIPM | | | 85.97 291 | 84.85 291 | 89.33 318 | 93.23 299 | 73.68 379 | 85.05 400 | 97.13 183 | 69.62 394 | 91.56 181 | 68.03 410 | 88.03 87 | 96.96 265 | 77.89 317 | 93.12 192 | 97.34 215 |
|
| baseline1 | | | 92.61 166 | 91.28 181 | 96.58 95 | 97.05 154 | 94.63 51 | 97.72 254 | 96.20 246 | 89.82 155 | 88.56 221 | 96.85 193 | 86.85 111 | 97.82 218 | 88.42 212 | 80.10 302 | 97.30 216 |
|
| PVSNet_0 | | 83.28 16 | 87.31 270 | 85.16 285 | 93.74 216 | 94.78 254 | 84.59 289 | 98.91 134 | 98.69 20 | 89.81 156 | 78.59 336 | 93.23 277 | 61.95 347 | 99.34 137 | 94.75 129 | 55.72 403 | 97.30 216 |
|
| UWE-MVS | | | 93.18 154 | 93.40 133 | 92.50 241 | 96.56 169 | 83.55 303 | 98.09 231 | 97.84 62 | 89.50 167 | 91.72 176 | 96.23 215 | 91.08 37 | 96.70 276 | 86.28 236 | 93.33 190 | 97.26 218 |
|
| PLC |  | 91.07 3 | 94.23 121 | 94.01 110 | 94.87 171 | 99.17 63 | 87.49 220 | 99.25 88 | 96.55 224 | 88.43 199 | 91.26 188 | 98.21 131 | 85.92 133 | 99.86 63 | 89.77 197 | 97.57 129 | 97.24 219 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| Anonymous20240529 | | | 87.66 266 | 85.58 279 | 93.92 210 | 97.59 123 | 85.01 283 | 98.13 223 | 97.13 183 | 66.69 403 | 88.47 222 | 96.01 223 | 55.09 372 | 99.51 113 | 87.00 226 | 84.12 276 | 97.23 220 |
|
| thres100view900 | | | 93.34 149 | 92.15 162 | 96.90 75 | 97.62 119 | 94.84 41 | 99.06 118 | 99.36 2 | 87.96 217 | 90.47 201 | 96.78 197 | 83.29 172 | 98.75 166 | 84.11 265 | 90.69 236 | 97.12 221 |
|
| tfpn200view9 | | | 93.43 144 | 92.27 159 | 96.90 75 | 97.68 117 | 94.84 41 | 99.18 94 | 99.36 2 | 88.45 196 | 90.79 193 | 96.90 189 | 83.31 170 | 98.75 166 | 84.11 265 | 90.69 236 | 97.12 221 |
|
| tpmvs | | | 89.16 233 | 87.76 246 | 93.35 221 | 97.19 143 | 84.75 288 | 90.58 387 | 97.36 161 | 81.99 333 | 84.56 255 | 89.31 359 | 83.98 162 | 98.17 196 | 74.85 338 | 90.00 243 | 97.12 221 |
|
| PCF-MVS | | 89.78 5 | 91.26 194 | 89.63 210 | 96.16 121 | 95.44 218 | 91.58 112 | 95.29 337 | 96.10 255 | 85.07 277 | 82.75 274 | 97.45 159 | 78.28 238 | 99.78 87 | 80.60 299 | 95.65 170 | 97.12 221 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| MIMVSNet | | | 84.48 313 | 81.83 325 | 92.42 242 | 91.73 324 | 87.36 225 | 85.52 396 | 94.42 349 | 81.40 339 | 81.91 296 | 87.58 367 | 51.92 383 | 92.81 375 | 73.84 346 | 88.15 248 | 97.08 225 |
|
| CANet_DTU | | | 94.31 119 | 93.35 134 | 97.20 61 | 97.03 155 | 94.71 48 | 98.62 165 | 95.54 304 | 95.61 25 | 97.21 69 | 98.47 119 | 71.88 282 | 99.84 69 | 88.38 213 | 97.46 134 | 97.04 226 |
|
| PatchMatch-RL | | | 91.47 188 | 90.54 198 | 94.26 195 | 98.20 101 | 86.36 247 | 96.94 286 | 97.14 181 | 87.75 224 | 88.98 218 | 95.75 228 | 71.80 284 | 99.40 130 | 80.92 295 | 97.39 136 | 97.02 227 |
|
| fmvsm_s_conf0.5_n_a | | | 95.97 62 | 96.19 48 | 95.31 155 | 96.51 173 | 89.01 180 | 99.81 12 | 98.39 26 | 95.46 28 | 99.19 13 | 99.16 39 | 81.44 210 | 99.91 46 | 98.83 28 | 96.97 144 | 97.01 228 |
|
| test_fmvsmvis_n_1920 | | | 95.47 81 | 95.40 78 | 95.70 139 | 94.33 264 | 90.22 146 | 99.70 27 | 96.98 199 | 96.80 7 | 92.75 162 | 98.89 81 | 82.46 194 | 99.92 41 | 98.36 44 | 98.33 114 | 96.97 229 |
|
| UGNet | | | 91.91 183 | 90.85 190 | 95.10 162 | 97.06 153 | 88.69 194 | 98.01 235 | 98.24 33 | 92.41 91 | 92.39 169 | 93.61 268 | 60.52 353 | 99.68 95 | 88.14 216 | 97.25 138 | 96.92 230 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| test_vis1_n_1920 | | | 93.08 158 | 93.42 132 | 92.04 251 | 96.31 183 | 79.36 347 | 99.83 10 | 96.06 260 | 96.72 9 | 98.53 34 | 98.10 134 | 58.57 358 | 99.91 46 | 97.86 57 | 98.79 99 | 96.85 231 |
|
| fmvsm_s_conf0.5_n | | | 96.19 54 | 96.49 40 | 95.30 156 | 97.37 133 | 89.16 172 | 99.86 5 | 98.47 24 | 95.68 23 | 98.87 22 | 99.15 42 | 82.44 195 | 99.92 41 | 99.14 21 | 97.43 135 | 96.83 232 |
|
| fmvsm_s_conf0.1_n_a | | | 95.16 90 | 95.15 84 | 95.18 160 | 92.06 315 | 88.94 184 | 99.29 82 | 97.53 129 | 94.46 39 | 98.98 18 | 98.99 63 | 79.99 219 | 99.85 67 | 98.24 51 | 96.86 147 | 96.73 233 |
|
| test_cas_vis1_n_1920 | | | 93.86 132 | 93.74 125 | 94.22 197 | 95.39 222 | 86.08 257 | 99.73 23 | 96.07 259 | 96.38 17 | 97.19 71 | 97.78 141 | 65.46 333 | 99.86 63 | 96.71 80 | 98.92 90 | 96.73 233 |
|
| fmvsm_s_conf0.1_n | | | 95.56 80 | 95.68 70 | 95.20 159 | 94.35 263 | 89.10 174 | 99.50 51 | 97.67 96 | 94.76 35 | 98.68 29 | 99.03 59 | 81.13 213 | 99.86 63 | 98.63 32 | 97.36 137 | 96.63 235 |
|
| thres600view7 | | | 93.18 154 | 92.00 165 | 96.75 82 | 97.62 119 | 94.92 36 | 99.07 115 | 99.36 2 | 87.96 217 | 90.47 201 | 96.78 197 | 83.29 172 | 98.71 170 | 82.93 279 | 90.47 240 | 96.61 236 |
|
| thres400 | | | 93.39 146 | 92.27 159 | 96.73 84 | 97.68 117 | 94.84 41 | 99.18 94 | 99.36 2 | 88.45 196 | 90.79 193 | 96.90 189 | 83.31 170 | 98.75 166 | 84.11 265 | 90.69 236 | 96.61 236 |
|
| xiu_mvs_v1_base_debu | | | 94.73 105 | 93.98 112 | 96.99 68 | 95.19 229 | 95.24 27 | 98.62 165 | 96.50 227 | 92.99 77 | 97.52 60 | 98.83 85 | 72.37 277 | 99.15 144 | 97.03 72 | 96.74 148 | 96.58 238 |
|
| xiu_mvs_v1_base | | | 94.73 105 | 93.98 112 | 96.99 68 | 95.19 229 | 95.24 27 | 98.62 165 | 96.50 227 | 92.99 77 | 97.52 60 | 98.83 85 | 72.37 277 | 99.15 144 | 97.03 72 | 96.74 148 | 96.58 238 |
|
| xiu_mvs_v1_base_debi | | | 94.73 105 | 93.98 112 | 96.99 68 | 95.19 229 | 95.24 27 | 98.62 165 | 96.50 227 | 92.99 77 | 97.52 60 | 98.83 85 | 72.37 277 | 99.15 144 | 97.03 72 | 96.74 148 | 96.58 238 |
|
| F-COLMAP | | | 92.07 181 | 91.75 173 | 93.02 227 | 98.16 104 | 82.89 313 | 98.79 147 | 95.97 264 | 86.54 253 | 87.92 225 | 97.80 139 | 78.69 234 | 99.65 101 | 85.97 239 | 95.93 166 | 96.53 241 |
|
| test_vis1_n | | | 90.40 212 | 90.27 202 | 90.79 278 | 91.55 326 | 76.48 366 | 99.12 111 | 94.44 345 | 94.31 42 | 97.34 66 | 96.95 186 | 43.60 400 | 99.42 126 | 97.57 62 | 97.60 128 | 96.47 242 |
|
| test_fmvs1 | | | 92.35 171 | 92.94 146 | 90.57 283 | 97.19 143 | 75.43 372 | 99.55 44 | 94.97 329 | 95.20 31 | 96.82 83 | 97.57 154 | 59.59 356 | 99.84 69 | 97.30 67 | 98.29 117 | 96.46 243 |
|
| AUN-MVS | | | 90.17 219 | 89.50 212 | 92.19 246 | 96.21 188 | 82.67 317 | 97.76 252 | 97.53 129 | 88.05 213 | 91.67 177 | 96.15 217 | 83.10 177 | 97.47 244 | 88.11 217 | 66.91 380 | 96.43 244 |
|
| hse-mvs2 | | | 91.67 186 | 91.51 177 | 92.15 248 | 96.22 187 | 82.61 319 | 97.74 253 | 97.53 129 | 93.85 56 | 96.27 97 | 96.15 217 | 83.19 175 | 97.44 247 | 95.81 102 | 66.86 381 | 96.40 245 |
|
| MSDG | | | 88.29 255 | 86.37 267 | 94.04 206 | 96.90 158 | 86.15 255 | 96.52 301 | 94.36 351 | 77.89 363 | 79.22 329 | 96.95 186 | 69.72 296 | 99.59 107 | 73.20 351 | 92.58 201 | 96.37 246 |
|
| UniMVSNet_ETH3D | | | 85.65 300 | 83.79 308 | 91.21 266 | 90.41 341 | 80.75 341 | 95.36 335 | 95.78 288 | 78.76 357 | 81.83 301 | 94.33 250 | 49.86 391 | 96.66 277 | 84.30 260 | 83.52 284 | 96.22 247 |
|
| dmvs_re | | | 88.69 248 | 88.06 244 | 90.59 282 | 93.83 285 | 78.68 354 | 95.75 331 | 96.18 250 | 87.99 216 | 84.48 258 | 96.32 213 | 67.52 315 | 96.94 267 | 84.98 252 | 85.49 266 | 96.14 248 |
|
| OpenMVS |  | 85.28 14 | 90.75 206 | 88.84 226 | 96.48 100 | 93.58 290 | 93.51 73 | 98.80 143 | 97.41 154 | 82.59 321 | 78.62 334 | 97.49 157 | 68.00 311 | 99.82 76 | 84.52 259 | 98.55 107 | 96.11 249 |
|
| test_fmvs1_n | | | 91.07 199 | 91.41 179 | 90.06 297 | 94.10 271 | 74.31 376 | 99.18 94 | 94.84 333 | 94.81 33 | 96.37 96 | 97.46 158 | 50.86 389 | 99.82 76 | 97.14 71 | 97.90 121 | 96.04 250 |
|
| baseline2 | | | 94.04 124 | 93.80 124 | 94.74 177 | 93.07 302 | 90.25 143 | 98.12 225 | 98.16 39 | 89.86 154 | 86.53 241 | 96.95 186 | 95.56 6 | 98.05 205 | 91.44 176 | 94.53 179 | 95.93 251 |
|
| DSMNet-mixed | | | 81.60 335 | 81.43 329 | 82.10 375 | 84.36 390 | 60.79 403 | 93.63 355 | 86.74 408 | 79.00 353 | 79.32 328 | 87.15 375 | 63.87 339 | 89.78 397 | 66.89 377 | 91.92 213 | 95.73 252 |
|
| cascas | | | 90.93 203 | 89.33 217 | 95.76 137 | 95.69 210 | 93.03 85 | 98.99 126 | 96.59 219 | 80.49 348 | 86.79 240 | 94.45 249 | 65.23 334 | 98.60 174 | 93.52 151 | 92.18 210 | 95.66 253 |
|
| SDMVSNet | | | 91.09 198 | 89.91 206 | 94.65 180 | 96.80 162 | 90.54 139 | 97.78 247 | 97.81 69 | 88.34 203 | 85.73 245 | 95.26 239 | 66.44 325 | 98.26 191 | 94.25 139 | 86.75 254 | 95.14 254 |
|
| sd_testset | | | 89.23 232 | 88.05 245 | 92.74 236 | 96.80 162 | 85.33 276 | 95.85 328 | 97.03 194 | 88.34 203 | 85.73 245 | 95.26 239 | 61.12 351 | 97.76 227 | 85.61 245 | 86.75 254 | 95.14 254 |
|
| tt0805 | | | 86.50 284 | 84.79 293 | 91.63 261 | 91.97 316 | 81.49 327 | 96.49 303 | 97.38 157 | 82.24 329 | 82.44 282 | 95.82 227 | 51.22 386 | 98.25 192 | 84.55 258 | 80.96 298 | 95.13 256 |
|
| XVG-OURS-SEG-HR | | | 90.95 202 | 90.66 197 | 91.83 254 | 95.18 232 | 81.14 336 | 95.92 322 | 95.92 274 | 88.40 200 | 90.33 204 | 97.85 136 | 70.66 292 | 99.38 131 | 92.83 164 | 88.83 246 | 94.98 257 |
|
| XVG-OURS | | | 90.83 204 | 90.49 199 | 91.86 253 | 95.23 226 | 81.25 333 | 95.79 330 | 95.92 274 | 88.96 181 | 90.02 208 | 98.03 135 | 71.60 286 | 99.35 136 | 91.06 179 | 87.78 250 | 94.98 257 |
|
| Effi-MVS+-dtu | | | 89.97 224 | 90.68 196 | 87.81 334 | 95.15 233 | 71.98 387 | 97.87 243 | 95.40 313 | 91.92 100 | 87.57 228 | 91.44 310 | 74.27 260 | 96.84 270 | 89.45 200 | 93.10 193 | 94.60 259 |
|
| Fast-Effi-MVS+-dtu | | | 88.84 240 | 88.59 234 | 89.58 312 | 93.44 295 | 78.18 358 | 98.65 160 | 94.62 342 | 88.46 195 | 84.12 261 | 95.37 237 | 68.91 301 | 96.52 285 | 82.06 287 | 91.70 219 | 94.06 260 |
|
| test0.0.03 1 | | | 88.96 236 | 88.61 232 | 90.03 301 | 91.09 333 | 84.43 291 | 98.97 129 | 97.02 196 | 90.21 142 | 80.29 315 | 96.31 214 | 84.89 151 | 91.93 387 | 72.98 352 | 85.70 265 | 93.73 261 |
|
| MVS-HIRNet | | | 79.01 348 | 75.13 361 | 90.66 281 | 93.82 286 | 81.69 326 | 85.16 398 | 93.75 360 | 54.54 408 | 74.17 360 | 59.15 414 | 57.46 362 | 96.58 281 | 63.74 385 | 94.38 180 | 93.72 262 |
|
| AllTest | | | 84.97 306 | 83.12 312 | 90.52 286 | 96.82 160 | 78.84 352 | 95.89 323 | 92.17 378 | 77.96 361 | 75.94 349 | 95.50 232 | 55.48 368 | 99.18 142 | 71.15 358 | 87.14 251 | 93.55 263 |
|
| TestCases | | | | | 90.52 286 | 96.82 160 | 78.84 352 | | 92.17 378 | 77.96 361 | 75.94 349 | 95.50 232 | 55.48 368 | 99.18 142 | 71.15 358 | 87.14 251 | 93.55 263 |
|
| RPSCF | | | 85.33 302 | 85.55 280 | 84.67 363 | 94.63 259 | 62.28 402 | 93.73 353 | 93.76 359 | 74.38 379 | 85.23 252 | 97.06 180 | 64.09 337 | 98.31 187 | 80.98 293 | 86.08 262 | 93.41 265 |
|
| kuosan | | | 84.40 316 | 83.34 310 | 87.60 336 | 95.87 203 | 79.21 348 | 92.39 367 | 96.87 203 | 76.12 372 | 73.79 362 | 93.98 257 | 81.51 206 | 90.63 391 | 64.13 384 | 75.42 325 | 92.95 266 |
|
| Syy-MVS | | | 84.10 321 | 84.53 299 | 82.83 372 | 95.14 234 | 65.71 399 | 97.68 257 | 96.66 214 | 86.52 254 | 82.63 277 | 96.84 194 | 68.15 308 | 89.89 395 | 45.62 410 | 91.54 223 | 92.87 267 |
|
| myMVS_eth3d | | | 88.68 250 | 89.07 221 | 87.50 338 | 95.14 234 | 79.74 345 | 97.68 257 | 96.66 214 | 86.52 254 | 82.63 277 | 96.84 194 | 85.22 148 | 89.89 395 | 69.43 366 | 91.54 223 | 92.87 267 |
|
| HQP4-MVS | | | | | | | | | | | 87.57 228 | | | 97.77 222 | | | 92.72 269 |
|
| HQP-MVS | | | 91.50 187 | 91.23 182 | 92.29 243 | 93.95 276 | 86.39 245 | 99.16 98 | 96.37 235 | 93.92 51 | 87.57 228 | 96.67 203 | 73.34 266 | 97.77 222 | 93.82 147 | 86.29 257 | 92.72 269 |
|
| HQP_MVS | | | 91.26 194 | 90.95 188 | 92.16 247 | 93.84 283 | 86.07 259 | 99.02 122 | 96.30 239 | 93.38 69 | 86.99 235 | 96.52 205 | 72.92 272 | 97.75 228 | 93.46 154 | 86.17 260 | 92.67 271 |
|
| plane_prior5 | | | | | | | | | 96.30 239 | | | | | 97.75 228 | 93.46 154 | 86.17 260 | 92.67 271 |
|
| nrg030 | | | 90.23 216 | 88.87 225 | 94.32 193 | 91.53 327 | 93.54 72 | 98.79 147 | 95.89 282 | 88.12 211 | 84.55 256 | 94.61 248 | 78.80 233 | 96.88 269 | 92.35 169 | 75.21 327 | 92.53 273 |
|
| CLD-MVS | | | 91.06 200 | 90.71 195 | 92.10 249 | 94.05 275 | 86.10 256 | 99.55 44 | 96.29 242 | 94.16 46 | 84.70 254 | 97.17 175 | 69.62 298 | 97.82 218 | 94.74 130 | 86.08 262 | 92.39 274 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| VPNet | | | 88.30 254 | 86.57 264 | 93.49 218 | 91.95 318 | 91.35 114 | 98.18 219 | 97.20 177 | 88.61 190 | 84.52 257 | 94.89 243 | 62.21 346 | 96.76 275 | 89.34 203 | 72.26 360 | 92.36 275 |
|
| DU-MVS | | | 88.83 242 | 87.51 250 | 92.79 233 | 91.46 328 | 90.07 152 | 98.71 151 | 97.62 111 | 88.87 186 | 83.21 267 | 93.68 265 | 74.63 252 | 95.93 322 | 86.95 227 | 72.47 357 | 92.36 275 |
|
| NR-MVSNet | | | 87.74 265 | 86.00 273 | 92.96 230 | 91.46 328 | 90.68 135 | 96.65 299 | 97.42 153 | 88.02 215 | 73.42 365 | 93.68 265 | 77.31 243 | 95.83 328 | 84.26 261 | 71.82 364 | 92.36 275 |
|
| testing3 | | | 87.75 262 | 88.22 241 | 86.36 347 | 94.66 258 | 77.41 363 | 99.52 50 | 97.95 54 | 86.05 261 | 81.12 306 | 96.69 202 | 86.18 130 | 89.31 399 | 61.65 392 | 90.12 242 | 92.35 278 |
|
| FIs | | | 90.70 207 | 89.87 207 | 93.18 224 | 92.29 310 | 91.12 120 | 98.17 221 | 98.25 31 | 89.11 177 | 83.44 265 | 94.82 245 | 82.26 197 | 96.17 312 | 87.76 220 | 82.76 289 | 92.25 279 |
|
| UniMVSNet_NR-MVSNet | | | 89.60 228 | 88.55 235 | 92.75 235 | 92.17 313 | 90.07 152 | 98.74 150 | 98.15 40 | 88.37 201 | 83.21 267 | 93.98 257 | 82.86 181 | 95.93 322 | 86.95 227 | 72.47 357 | 92.25 279 |
|
| VPA-MVSNet | | | 89.10 234 | 87.66 249 | 93.45 219 | 92.56 306 | 91.02 126 | 97.97 238 | 98.32 29 | 86.92 244 | 86.03 243 | 92.01 296 | 68.84 303 | 97.10 261 | 90.92 181 | 75.34 326 | 92.23 281 |
|
| TranMVSNet+NR-MVSNet | | | 87.75 262 | 86.31 268 | 92.07 250 | 90.81 336 | 88.56 196 | 98.33 206 | 97.18 178 | 87.76 223 | 81.87 298 | 93.90 260 | 72.45 276 | 95.43 340 | 83.13 277 | 71.30 367 | 92.23 281 |
|
| dmvs_testset | | | 77.17 359 | 78.99 344 | 71.71 388 | 87.25 377 | 38.55 425 | 91.44 377 | 81.76 416 | 85.77 265 | 69.49 381 | 95.94 225 | 69.71 297 | 84.37 408 | 52.71 406 | 76.82 321 | 92.21 283 |
|
| FC-MVSNet-test | | | 90.22 217 | 89.40 215 | 92.67 239 | 91.78 322 | 89.86 161 | 97.89 240 | 98.22 34 | 88.81 187 | 82.96 273 | 94.66 247 | 81.90 203 | 95.96 320 | 85.89 243 | 82.52 292 | 92.20 284 |
|
| WBMVS | | | 91.35 193 | 90.49 199 | 93.94 209 | 96.97 156 | 93.40 76 | 99.27 86 | 96.71 211 | 87.40 234 | 83.10 272 | 91.76 304 | 92.38 29 | 96.23 309 | 88.95 210 | 77.89 311 | 92.17 285 |
|
| PS-MVSNAJss | | | 89.54 230 | 89.05 222 | 91.00 271 | 88.77 361 | 84.36 292 | 97.39 266 | 95.97 264 | 88.47 193 | 81.88 297 | 93.80 263 | 82.48 191 | 96.50 286 | 89.34 203 | 83.34 286 | 92.15 286 |
|
| testgi | | | 82.29 330 | 81.00 333 | 86.17 349 | 87.24 378 | 74.84 375 | 97.39 266 | 91.62 388 | 88.63 189 | 75.85 352 | 95.42 235 | 46.07 397 | 91.55 388 | 66.87 378 | 79.94 303 | 92.12 287 |
|
| WR-MVS | | | 88.54 252 | 87.22 257 | 92.52 240 | 91.93 320 | 89.50 168 | 98.56 176 | 97.84 62 | 86.99 239 | 81.87 298 | 93.81 262 | 74.25 261 | 95.92 324 | 85.29 247 | 74.43 336 | 92.12 287 |
|
| MVSTER | | | 92.71 162 | 92.32 157 | 93.86 212 | 97.29 137 | 92.95 89 | 99.01 124 | 96.59 219 | 90.09 148 | 85.51 249 | 94.00 256 | 94.61 15 | 96.56 282 | 90.77 186 | 83.03 287 | 92.08 289 |
|
| ACMM | | 86.95 13 | 88.77 245 | 88.22 241 | 90.43 288 | 93.61 289 | 81.34 331 | 98.50 183 | 95.92 274 | 87.88 220 | 83.85 263 | 95.20 241 | 67.20 318 | 97.89 213 | 86.90 230 | 84.90 269 | 92.06 290 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| XXY-MVS | | | 87.75 262 | 86.02 272 | 92.95 231 | 90.46 340 | 89.70 164 | 97.71 256 | 95.90 280 | 84.02 292 | 80.95 307 | 94.05 251 | 67.51 316 | 97.10 261 | 85.16 248 | 78.41 308 | 92.04 291 |
|
| FMVSNet3 | | | 88.81 244 | 87.08 258 | 93.99 208 | 96.52 172 | 94.59 52 | 98.08 232 | 96.20 246 | 85.85 263 | 82.12 290 | 91.60 307 | 74.05 262 | 95.40 342 | 79.04 307 | 80.24 299 | 91.99 292 |
|
| FMVSNet2 | | | 86.90 274 | 84.79 293 | 93.24 223 | 95.11 237 | 92.54 97 | 97.67 259 | 95.86 286 | 82.94 314 | 80.55 311 | 91.17 316 | 62.89 343 | 95.29 344 | 77.23 319 | 79.71 305 | 91.90 293 |
|
| UniMVSNet (Re) | | | 89.50 231 | 88.32 239 | 93.03 226 | 92.21 312 | 90.96 128 | 98.90 135 | 98.39 26 | 89.13 176 | 83.22 266 | 92.03 294 | 81.69 204 | 96.34 301 | 86.79 231 | 72.53 356 | 91.81 294 |
|
| EU-MVSNet | | | 84.19 318 | 84.42 302 | 83.52 370 | 88.64 364 | 67.37 398 | 96.04 320 | 95.76 291 | 85.29 272 | 78.44 337 | 93.18 278 | 70.67 291 | 91.48 389 | 75.79 332 | 75.98 322 | 91.70 295 |
|
| EI-MVSNet | | | 89.87 225 | 89.38 216 | 91.36 265 | 94.32 265 | 85.87 265 | 97.61 261 | 96.59 219 | 85.10 275 | 85.51 249 | 97.10 177 | 81.30 212 | 96.56 282 | 83.85 271 | 83.03 287 | 91.64 296 |
|
| IterMVS-LS | | | 88.34 253 | 87.44 251 | 91.04 270 | 94.10 271 | 85.85 266 | 98.10 228 | 95.48 307 | 85.12 274 | 82.03 294 | 91.21 315 | 81.35 211 | 95.63 335 | 83.86 270 | 75.73 324 | 91.63 297 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| GBi-Net | | | 86.67 279 | 84.96 287 | 91.80 256 | 95.11 237 | 88.81 189 | 96.77 292 | 95.25 319 | 82.94 314 | 82.12 290 | 90.25 343 | 62.89 343 | 94.97 349 | 79.04 307 | 80.24 299 | 91.62 298 |
|
| test1 | | | 86.67 279 | 84.96 287 | 91.80 256 | 95.11 237 | 88.81 189 | 96.77 292 | 95.25 319 | 82.94 314 | 82.12 290 | 90.25 343 | 62.89 343 | 94.97 349 | 79.04 307 | 80.24 299 | 91.62 298 |
|
| FMVSNet1 | | | 83.94 322 | 81.32 331 | 91.80 256 | 91.94 319 | 88.81 189 | 96.77 292 | 95.25 319 | 77.98 359 | 78.25 339 | 90.25 343 | 50.37 390 | 94.97 349 | 73.27 350 | 77.81 316 | 91.62 298 |
|
| cl22 | | | 89.57 229 | 88.79 228 | 91.91 252 | 97.94 110 | 87.62 216 | 97.98 237 | 96.51 226 | 85.03 278 | 82.37 286 | 91.79 301 | 83.65 164 | 96.50 286 | 85.96 240 | 77.89 311 | 91.61 301 |
|
| eth_miper_zixun_eth | | | 87.76 261 | 87.00 260 | 90.06 297 | 94.67 257 | 82.65 318 | 97.02 285 | 95.37 315 | 84.19 290 | 81.86 300 | 91.58 308 | 81.47 208 | 95.90 326 | 83.24 273 | 73.61 345 | 91.61 301 |
|
| Anonymous20231211 | | | 84.72 308 | 82.65 320 | 90.91 273 | 97.71 116 | 84.55 290 | 97.28 272 | 96.67 213 | 66.88 402 | 79.18 330 | 90.87 322 | 58.47 359 | 96.60 279 | 82.61 282 | 74.20 340 | 91.59 303 |
|
| miper_enhance_ethall | | | 90.33 214 | 89.70 209 | 92.22 244 | 97.12 149 | 88.93 186 | 98.35 205 | 95.96 266 | 88.60 191 | 83.14 271 | 92.33 291 | 87.38 96 | 96.18 311 | 86.49 234 | 77.89 311 | 91.55 304 |
|
| jajsoiax | | | 87.35 269 | 86.51 266 | 89.87 302 | 87.75 375 | 81.74 325 | 97.03 283 | 95.98 263 | 88.47 193 | 80.15 317 | 93.80 263 | 61.47 348 | 96.36 295 | 89.44 201 | 84.47 273 | 91.50 305 |
|
| ACMP | | 87.39 10 | 88.71 247 | 88.24 240 | 90.12 296 | 93.91 281 | 81.06 337 | 98.50 183 | 95.67 297 | 89.43 170 | 80.37 314 | 95.55 231 | 65.67 328 | 97.83 217 | 90.55 188 | 84.51 271 | 91.47 306 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| LPG-MVS_test | | | 88.86 239 | 88.47 237 | 90.06 297 | 93.35 297 | 80.95 338 | 98.22 215 | 95.94 269 | 87.73 226 | 83.17 269 | 96.11 219 | 66.28 326 | 97.77 222 | 90.19 191 | 85.19 267 | 91.46 307 |
|
| LGP-MVS_train | | | | | 90.06 297 | 93.35 297 | 80.95 338 | | 95.94 269 | 87.73 226 | 83.17 269 | 96.11 219 | 66.28 326 | 97.77 222 | 90.19 191 | 85.19 267 | 91.46 307 |
|
| mvs_tets | | | 87.09 272 | 86.22 269 | 89.71 308 | 87.87 371 | 81.39 330 | 96.73 297 | 95.90 280 | 88.19 209 | 79.99 319 | 93.61 268 | 59.96 355 | 96.31 303 | 89.40 202 | 84.34 274 | 91.43 309 |
|
| DIV-MVS_self_test | | | 87.82 259 | 86.81 262 | 90.87 276 | 94.87 252 | 85.39 275 | 97.81 245 | 95.22 327 | 82.92 317 | 80.76 309 | 91.31 313 | 81.99 200 | 95.81 329 | 81.36 291 | 75.04 329 | 91.42 310 |
|
| cl____ | | | 87.82 259 | 86.79 263 | 90.89 275 | 94.88 251 | 85.43 273 | 97.81 245 | 95.24 322 | 82.91 318 | 80.71 310 | 91.22 314 | 81.97 202 | 95.84 327 | 81.34 292 | 75.06 328 | 91.40 311 |
|
| miper_ehance_all_eth | | | 88.94 237 | 88.12 243 | 91.40 263 | 95.32 224 | 86.93 235 | 97.85 244 | 95.55 303 | 84.19 290 | 81.97 295 | 91.50 309 | 84.16 159 | 95.91 325 | 84.69 255 | 77.89 311 | 91.36 312 |
|
| CP-MVSNet | | | 86.54 282 | 85.45 282 | 89.79 306 | 91.02 335 | 82.78 316 | 97.38 268 | 97.56 124 | 85.37 271 | 79.53 326 | 93.03 281 | 71.86 283 | 95.25 345 | 79.92 302 | 73.43 351 | 91.34 313 |
|
| test_djsdf | | | 88.26 256 | 87.73 247 | 89.84 304 | 88.05 370 | 82.21 321 | 97.77 249 | 96.17 251 | 86.84 245 | 82.41 285 | 91.95 300 | 72.07 280 | 95.99 318 | 89.83 193 | 84.50 272 | 91.32 314 |
|
| v2v482 | | | 87.27 271 | 85.76 276 | 91.78 260 | 89.59 350 | 87.58 217 | 98.56 176 | 95.54 304 | 84.53 286 | 82.51 281 | 91.78 302 | 73.11 270 | 96.47 289 | 82.07 286 | 74.14 342 | 91.30 315 |
|
| c3_l | | | 88.19 257 | 87.23 256 | 91.06 269 | 94.97 247 | 86.17 254 | 97.72 254 | 95.38 314 | 83.43 304 | 81.68 302 | 91.37 311 | 82.81 182 | 95.72 332 | 84.04 268 | 73.70 344 | 91.29 316 |
|
| OPM-MVS | | | 89.76 226 | 89.15 220 | 91.57 262 | 90.53 339 | 85.58 271 | 98.11 227 | 95.93 272 | 92.88 81 | 86.05 242 | 96.47 208 | 67.06 320 | 97.87 215 | 89.29 206 | 86.08 262 | 91.26 317 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| reproduce_monomvs | | | 92.11 180 | 91.82 170 | 92.98 228 | 98.25 98 | 90.55 138 | 98.38 203 | 97.93 55 | 94.81 33 | 80.46 313 | 92.37 290 | 96.46 3 | 97.17 256 | 94.06 140 | 73.61 345 | 91.23 318 |
|
| PS-CasMVS | | | 85.81 295 | 84.58 298 | 89.49 316 | 90.77 337 | 82.11 322 | 97.20 278 | 97.36 161 | 84.83 283 | 79.12 331 | 92.84 284 | 67.42 317 | 95.16 347 | 78.39 315 | 73.25 352 | 91.21 319 |
|
| pmmvs5 | | | 85.87 292 | 84.40 303 | 90.30 293 | 88.53 365 | 84.23 293 | 98.60 171 | 93.71 361 | 81.53 338 | 80.29 315 | 92.02 295 | 64.51 336 | 95.52 337 | 82.04 288 | 78.34 309 | 91.15 320 |
|
| miper_lstm_enhance | | | 86.90 274 | 86.20 270 | 89.00 324 | 94.53 260 | 81.19 334 | 96.74 296 | 95.24 322 | 82.33 328 | 80.15 317 | 90.51 339 | 81.99 200 | 94.68 358 | 80.71 297 | 73.58 347 | 91.12 321 |
|
| COLMAP_ROB |  | 82.69 18 | 84.54 312 | 82.82 314 | 89.70 309 | 96.72 166 | 78.85 351 | 95.89 323 | 92.83 371 | 71.55 386 | 77.54 344 | 95.89 226 | 59.40 357 | 99.14 148 | 67.26 375 | 88.26 247 | 91.11 322 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| PEN-MVS | | | 85.21 303 | 83.93 307 | 89.07 323 | 89.89 346 | 81.31 332 | 97.09 281 | 97.24 170 | 84.45 288 | 78.66 333 | 92.68 287 | 68.44 306 | 94.87 352 | 75.98 330 | 70.92 368 | 91.04 323 |
|
| ACMH | | 83.09 17 | 84.60 310 | 82.61 321 | 90.57 283 | 93.18 300 | 82.94 310 | 96.27 309 | 94.92 332 | 81.01 344 | 72.61 374 | 93.61 268 | 56.54 364 | 97.79 220 | 74.31 341 | 81.07 297 | 90.99 324 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| OurMVSNet-221017-0 | | | 84.13 320 | 83.59 309 | 85.77 354 | 87.81 372 | 70.24 392 | 94.89 341 | 93.65 363 | 86.08 260 | 76.53 345 | 93.28 276 | 61.41 349 | 96.14 314 | 80.95 294 | 77.69 317 | 90.93 325 |
|
| XVG-ACMP-BASELINE | | | 85.86 293 | 84.95 289 | 88.57 328 | 89.90 345 | 77.12 364 | 94.30 346 | 95.60 301 | 87.40 234 | 82.12 290 | 92.99 283 | 53.42 380 | 97.66 232 | 85.02 251 | 83.83 278 | 90.92 326 |
|
| Patchmtry | | | 83.61 326 | 81.64 326 | 89.50 314 | 93.36 296 | 82.84 315 | 84.10 404 | 94.20 354 | 69.47 395 | 79.57 325 | 86.88 377 | 84.43 156 | 94.78 355 | 68.48 371 | 74.30 338 | 90.88 327 |
|
| IterMVS | | | 85.81 295 | 84.67 296 | 89.22 319 | 93.51 291 | 83.67 302 | 96.32 308 | 94.80 336 | 85.09 276 | 78.69 332 | 90.17 349 | 66.57 324 | 93.17 372 | 79.48 305 | 77.42 318 | 90.81 328 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| v1921920 | | | 86.02 290 | 84.44 301 | 90.77 279 | 89.32 356 | 85.20 278 | 98.10 228 | 95.35 317 | 82.19 330 | 82.25 288 | 90.71 325 | 70.73 290 | 96.30 306 | 76.85 324 | 74.49 335 | 90.80 329 |
|
| v144192 | | | 86.40 285 | 84.89 290 | 90.91 273 | 89.48 354 | 85.59 270 | 98.21 217 | 95.43 312 | 82.45 326 | 82.62 279 | 90.58 335 | 72.79 275 | 96.36 295 | 78.45 314 | 74.04 343 | 90.79 330 |
|
| v1192 | | | 86.32 287 | 84.71 295 | 91.17 267 | 89.53 353 | 86.40 244 | 98.13 223 | 95.44 311 | 82.52 324 | 82.42 284 | 90.62 332 | 71.58 287 | 96.33 302 | 77.23 319 | 74.88 330 | 90.79 330 |
|
| IterMVS-SCA-FT | | | 85.73 298 | 84.64 297 | 89.00 324 | 93.46 294 | 82.90 312 | 96.27 309 | 94.70 339 | 85.02 279 | 78.62 334 | 90.35 341 | 66.61 322 | 93.33 369 | 79.38 306 | 77.36 319 | 90.76 332 |
|
| dongtai | | | 81.36 336 | 80.61 334 | 83.62 369 | 94.25 270 | 73.32 381 | 95.15 339 | 96.81 205 | 73.56 382 | 69.79 379 | 92.81 285 | 81.00 214 | 86.80 406 | 52.08 407 | 70.06 370 | 90.75 333 |
|
| SixPastTwentyTwo | | | 82.63 329 | 81.58 327 | 85.79 353 | 88.12 369 | 71.01 390 | 95.17 338 | 92.54 374 | 84.33 289 | 72.93 372 | 92.08 293 | 60.41 354 | 95.61 336 | 74.47 340 | 74.15 341 | 90.75 333 |
|
| v1240 | | | 85.77 297 | 84.11 304 | 90.73 280 | 89.26 357 | 85.15 281 | 97.88 242 | 95.23 326 | 81.89 336 | 82.16 289 | 90.55 337 | 69.60 299 | 96.31 303 | 75.59 333 | 74.87 331 | 90.72 335 |
|
| v148 | | | 86.38 286 | 85.06 286 | 90.37 292 | 89.47 355 | 84.10 296 | 98.52 179 | 95.48 307 | 83.80 297 | 80.93 308 | 90.22 346 | 74.60 254 | 96.31 303 | 80.92 295 | 71.55 365 | 90.69 336 |
|
| K. test v3 | | | 81.04 338 | 79.77 341 | 84.83 361 | 87.41 376 | 70.23 393 | 95.60 334 | 93.93 358 | 83.70 300 | 67.51 390 | 89.35 358 | 55.76 366 | 93.58 368 | 76.67 326 | 68.03 375 | 90.67 337 |
|
| v1144 | | | 86.83 276 | 85.31 284 | 91.40 263 | 89.75 348 | 87.21 233 | 98.31 209 | 95.45 309 | 83.22 307 | 82.70 276 | 90.78 323 | 73.36 265 | 96.36 295 | 79.49 304 | 74.69 333 | 90.63 338 |
|
| ACMH+ | | 83.78 15 | 84.21 317 | 82.56 323 | 89.15 321 | 93.73 288 | 79.16 349 | 96.43 304 | 94.28 352 | 81.09 343 | 74.00 361 | 94.03 254 | 54.58 375 | 97.67 231 | 76.10 329 | 78.81 307 | 90.63 338 |
|
| lessismore_v0 | | | | | 85.08 358 | 85.59 387 | 69.28 395 | | 90.56 396 | | 67.68 389 | 90.21 347 | 54.21 377 | 95.46 339 | 73.88 345 | 62.64 389 | 90.50 340 |
|
| pmmvs4 | | | 87.58 268 | 86.17 271 | 91.80 256 | 89.58 351 | 88.92 187 | 97.25 274 | 95.28 318 | 82.54 323 | 80.49 312 | 93.17 279 | 75.62 249 | 96.05 317 | 82.75 280 | 78.90 306 | 90.42 341 |
|
| WR-MVS_H | | | 86.53 283 | 85.49 281 | 89.66 311 | 91.04 334 | 83.31 307 | 97.53 263 | 98.20 35 | 84.95 281 | 79.64 323 | 90.90 321 | 78.01 240 | 95.33 343 | 76.29 328 | 72.81 353 | 90.35 342 |
|
| V42 | | | 87.00 273 | 85.68 278 | 90.98 272 | 89.91 344 | 86.08 257 | 98.32 208 | 95.61 300 | 83.67 301 | 82.72 275 | 90.67 328 | 74.00 263 | 96.53 284 | 81.94 289 | 74.28 339 | 90.32 343 |
|
| DTE-MVSNet | | | 84.14 319 | 82.80 315 | 88.14 331 | 88.95 360 | 79.87 344 | 96.81 291 | 96.24 244 | 83.50 303 | 77.60 343 | 92.52 289 | 67.89 313 | 94.24 363 | 72.64 355 | 69.05 372 | 90.32 343 |
|
| YYNet1 | | | 79.64 347 | 77.04 352 | 87.43 340 | 87.80 373 | 79.98 343 | 96.23 313 | 94.44 345 | 73.83 381 | 51.83 407 | 87.53 368 | 67.96 312 | 92.07 386 | 66.00 380 | 67.75 378 | 90.23 345 |
|
| MDA-MVSNet_test_wron | | | 79.65 346 | 77.05 351 | 87.45 339 | 87.79 374 | 80.13 342 | 96.25 312 | 94.44 345 | 73.87 380 | 51.80 408 | 87.47 372 | 68.04 310 | 92.12 385 | 66.02 379 | 67.79 377 | 90.09 346 |
|
| MDA-MVSNet-bldmvs | | | 77.82 357 | 74.75 363 | 87.03 342 | 88.33 366 | 78.52 356 | 96.34 307 | 92.85 370 | 75.57 373 | 48.87 410 | 87.89 365 | 57.32 363 | 92.49 381 | 60.79 393 | 64.80 386 | 90.08 347 |
|
| our_test_3 | | | 84.47 314 | 82.80 315 | 89.50 314 | 89.01 358 | 83.90 299 | 97.03 283 | 94.56 343 | 81.33 340 | 75.36 355 | 90.52 338 | 71.69 285 | 94.54 360 | 68.81 369 | 76.84 320 | 90.07 348 |
|
| v7n | | | 84.42 315 | 82.75 318 | 89.43 317 | 88.15 368 | 81.86 324 | 96.75 295 | 95.67 297 | 80.53 347 | 78.38 338 | 89.43 357 | 69.89 294 | 96.35 300 | 73.83 347 | 72.13 361 | 90.07 348 |
|
| v8 | | | 86.11 289 | 84.45 300 | 91.10 268 | 89.99 343 | 86.85 236 | 97.24 275 | 95.36 316 | 81.99 333 | 79.89 321 | 89.86 352 | 74.53 256 | 96.39 293 | 78.83 311 | 72.32 359 | 90.05 350 |
|
| PVSNet_BlendedMVS | | | 93.36 148 | 93.20 139 | 93.84 213 | 98.77 87 | 91.61 110 | 99.47 55 | 98.04 48 | 91.44 111 | 94.21 139 | 92.63 288 | 83.50 166 | 99.87 58 | 97.41 64 | 83.37 285 | 90.05 350 |
|
| ITE_SJBPF | | | | | 87.93 332 | 92.26 311 | 76.44 367 | | 93.47 366 | 87.67 229 | 79.95 320 | 95.49 234 | 56.50 365 | 97.38 250 | 75.24 334 | 82.33 293 | 89.98 352 |
|
| pm-mvs1 | | | 84.68 309 | 82.78 317 | 90.40 289 | 89.58 351 | 85.18 279 | 97.31 270 | 94.73 338 | 81.93 335 | 76.05 348 | 92.01 296 | 65.48 332 | 96.11 315 | 78.75 312 | 69.14 371 | 89.91 353 |
|
| test_fmvs2 | | | 85.10 304 | 85.45 282 | 84.02 366 | 89.85 347 | 65.63 400 | 98.49 185 | 92.59 373 | 90.45 137 | 85.43 251 | 93.32 273 | 43.94 398 | 96.59 280 | 90.81 184 | 84.19 275 | 89.85 354 |
|
| LTVRE_ROB | | 81.71 19 | 84.59 311 | 82.72 319 | 90.18 294 | 92.89 304 | 83.18 308 | 93.15 358 | 94.74 337 | 78.99 354 | 75.14 356 | 92.69 286 | 65.64 329 | 97.63 235 | 69.46 365 | 81.82 295 | 89.74 355 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| anonymousdsp | | | 86.69 278 | 85.75 277 | 89.53 313 | 86.46 383 | 82.94 310 | 96.39 305 | 95.71 293 | 83.97 294 | 79.63 324 | 90.70 326 | 68.85 302 | 95.94 321 | 86.01 238 | 84.02 277 | 89.72 356 |
|
| ppachtmachnet_test | | | 83.63 325 | 81.57 328 | 89.80 305 | 89.01 358 | 85.09 282 | 97.13 280 | 94.50 344 | 78.84 355 | 76.14 347 | 91.00 318 | 69.78 295 | 94.61 359 | 63.40 386 | 74.36 337 | 89.71 357 |
|
| v10 | | | 85.73 298 | 84.01 306 | 90.87 276 | 90.03 342 | 86.73 238 | 97.20 278 | 95.22 327 | 81.25 341 | 79.85 322 | 89.75 353 | 73.30 268 | 96.28 307 | 76.87 323 | 72.64 355 | 89.61 358 |
|
| UnsupCasMVSNet_eth | | | 78.90 349 | 76.67 354 | 85.58 355 | 82.81 397 | 74.94 374 | 91.98 370 | 96.31 238 | 84.64 285 | 65.84 396 | 87.71 366 | 51.33 385 | 92.23 383 | 72.89 353 | 56.50 402 | 89.56 359 |
|
| test_method | | | 70.10 371 | 68.66 374 | 74.41 387 | 86.30 385 | 55.84 409 | 94.47 343 | 89.82 399 | 35.18 416 | 66.15 395 | 84.75 385 | 30.54 410 | 77.96 417 | 70.40 364 | 60.33 395 | 89.44 360 |
|
| USDC | | | 84.74 307 | 82.93 313 | 90.16 295 | 91.73 324 | 83.54 304 | 95.00 340 | 93.30 367 | 88.77 188 | 73.19 367 | 93.30 275 | 53.62 379 | 97.65 234 | 75.88 331 | 81.54 296 | 89.30 361 |
|
| FMVSNet5 | | | 82.29 330 | 80.54 335 | 87.52 337 | 93.79 287 | 84.01 297 | 93.73 353 | 92.47 375 | 76.92 366 | 74.27 359 | 86.15 381 | 63.69 341 | 89.24 400 | 69.07 368 | 74.79 332 | 89.29 362 |
|
| Anonymous20231206 | | | 80.76 339 | 79.42 343 | 84.79 362 | 84.78 389 | 72.98 382 | 96.53 300 | 92.97 369 | 79.56 352 | 74.33 358 | 88.83 360 | 61.27 350 | 92.15 384 | 60.59 394 | 75.92 323 | 89.24 363 |
|
| pmmvs6 | | | 79.90 343 | 77.31 350 | 87.67 335 | 84.17 391 | 78.13 359 | 95.86 327 | 93.68 362 | 67.94 399 | 72.67 373 | 89.62 355 | 50.98 388 | 95.75 330 | 74.80 339 | 66.04 382 | 89.14 364 |
|
| N_pmnet | | | 70.19 370 | 69.87 372 | 71.12 390 | 88.24 367 | 30.63 429 | 95.85 328 | 28.70 428 | 70.18 391 | 68.73 384 | 86.55 379 | 64.04 338 | 93.81 365 | 53.12 405 | 73.46 349 | 88.94 365 |
|
| D2MVS | | | 87.96 258 | 87.39 252 | 89.70 309 | 91.84 321 | 83.40 305 | 98.31 209 | 98.49 22 | 88.04 214 | 78.23 340 | 90.26 342 | 73.57 264 | 96.79 274 | 84.21 262 | 83.53 283 | 88.90 366 |
|
| KD-MVS_2432*1600 | | | 82.98 327 | 80.52 336 | 90.38 290 | 94.32 265 | 88.98 181 | 92.87 362 | 95.87 284 | 80.46 349 | 73.79 362 | 87.49 370 | 82.76 185 | 93.29 370 | 70.56 362 | 46.53 414 | 88.87 367 |
|
| miper_refine_blended | | | 82.98 327 | 80.52 336 | 90.38 290 | 94.32 265 | 88.98 181 | 92.87 362 | 95.87 284 | 80.46 349 | 73.79 362 | 87.49 370 | 82.76 185 | 93.29 370 | 70.56 362 | 46.53 414 | 88.87 367 |
|
| CL-MVSNet_self_test | | | 79.89 344 | 78.34 345 | 84.54 364 | 81.56 399 | 75.01 373 | 96.88 289 | 95.62 299 | 81.10 342 | 75.86 351 | 85.81 382 | 68.49 305 | 90.26 393 | 63.21 387 | 56.51 401 | 88.35 369 |
|
| MIMVSNet1 | | | 75.92 362 | 73.30 367 | 83.81 368 | 81.29 400 | 75.57 371 | 92.26 368 | 92.05 381 | 73.09 384 | 67.48 391 | 86.18 380 | 40.87 404 | 87.64 404 | 55.78 402 | 70.68 369 | 88.21 370 |
|
| TransMVSNet (Re) | | | 81.97 332 | 79.61 342 | 89.08 322 | 89.70 349 | 84.01 297 | 97.26 273 | 91.85 384 | 78.84 355 | 73.07 371 | 91.62 306 | 67.17 319 | 95.21 346 | 67.50 374 | 59.46 397 | 88.02 371 |
|
| MS-PatchMatch | | | 86.75 277 | 85.92 274 | 89.22 319 | 91.97 316 | 82.47 320 | 96.91 287 | 96.14 253 | 83.74 298 | 77.73 342 | 93.53 271 | 58.19 360 | 97.37 252 | 76.75 325 | 98.35 113 | 87.84 372 |
|
| Baseline_NR-MVSNet | | | 85.83 294 | 84.82 292 | 88.87 327 | 88.73 362 | 83.34 306 | 98.63 164 | 91.66 386 | 80.41 351 | 82.44 282 | 91.35 312 | 74.63 252 | 95.42 341 | 84.13 264 | 71.39 366 | 87.84 372 |
|
| WB-MVSnew | | | 88.69 248 | 88.34 238 | 89.77 307 | 94.30 269 | 85.99 262 | 98.14 222 | 97.31 165 | 87.15 238 | 87.85 226 | 96.07 221 | 69.91 293 | 95.52 337 | 72.83 354 | 91.47 227 | 87.80 374 |
|
| ambc | | | | | 79.60 381 | 72.76 414 | 56.61 408 | 76.20 412 | 92.01 382 | | 68.25 386 | 80.23 400 | 23.34 413 | 94.73 356 | 73.78 348 | 60.81 394 | 87.48 375 |
|
| KD-MVS_self_test | | | 77.47 358 | 75.88 357 | 82.24 373 | 81.59 398 | 68.93 396 | 92.83 364 | 94.02 357 | 77.03 365 | 73.14 368 | 83.39 387 | 55.44 370 | 90.42 392 | 67.95 372 | 57.53 400 | 87.38 376 |
|
| TinyColmap | | | 80.42 341 | 77.94 346 | 87.85 333 | 92.09 314 | 78.58 355 | 93.74 352 | 89.94 398 | 74.99 375 | 69.77 380 | 91.78 302 | 46.09 396 | 97.58 239 | 65.17 383 | 77.89 311 | 87.38 376 |
|
| TDRefinement | | | 78.01 355 | 75.31 359 | 86.10 350 | 70.06 415 | 73.84 378 | 93.59 356 | 91.58 389 | 74.51 378 | 73.08 370 | 91.04 317 | 49.63 393 | 97.12 258 | 74.88 337 | 59.47 396 | 87.33 378 |
|
| CMPMVS |  | 58.40 21 | 80.48 340 | 80.11 339 | 81.59 378 | 85.10 388 | 59.56 405 | 94.14 350 | 95.95 268 | 68.54 397 | 60.71 401 | 93.31 274 | 55.35 371 | 97.87 215 | 83.06 278 | 84.85 270 | 87.33 378 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| LF4IMVS | | | 81.94 333 | 81.17 332 | 84.25 365 | 87.23 379 | 68.87 397 | 93.35 357 | 91.93 383 | 83.35 306 | 75.40 354 | 93.00 282 | 49.25 394 | 96.65 278 | 78.88 310 | 78.11 310 | 87.22 380 |
|
| tfpnnormal | | | 83.65 324 | 81.35 330 | 90.56 285 | 91.37 330 | 88.06 206 | 97.29 271 | 97.87 59 | 78.51 358 | 76.20 346 | 90.91 320 | 64.78 335 | 96.47 289 | 61.71 391 | 73.50 348 | 87.13 381 |
|
| EG-PatchMatch MVS | | | 79.92 342 | 77.59 348 | 86.90 344 | 87.06 380 | 77.90 362 | 96.20 316 | 94.06 356 | 74.61 377 | 66.53 394 | 88.76 361 | 40.40 405 | 96.20 310 | 67.02 376 | 83.66 282 | 86.61 382 |
|
| test20.03 | | | 78.51 353 | 77.48 349 | 81.62 377 | 83.07 395 | 71.03 389 | 96.11 318 | 92.83 371 | 81.66 337 | 69.31 382 | 89.68 354 | 57.53 361 | 87.29 405 | 58.65 399 | 68.47 373 | 86.53 383 |
|
| ttmdpeth | | | 79.80 345 | 77.91 347 | 85.47 356 | 83.34 394 | 75.75 369 | 95.32 336 | 91.45 391 | 76.84 367 | 74.81 357 | 91.71 305 | 53.98 378 | 94.13 364 | 72.42 356 | 61.29 392 | 86.51 384 |
|
| MVP-Stereo | | | 86.61 281 | 85.83 275 | 88.93 326 | 88.70 363 | 83.85 300 | 96.07 319 | 94.41 350 | 82.15 331 | 75.64 353 | 91.96 299 | 67.65 314 | 96.45 291 | 77.20 321 | 98.72 100 | 86.51 384 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| OpenMVS_ROB |  | 73.86 20 | 77.99 356 | 75.06 362 | 86.77 345 | 83.81 393 | 77.94 361 | 96.38 306 | 91.53 390 | 67.54 400 | 68.38 385 | 87.13 376 | 43.94 398 | 96.08 316 | 55.03 403 | 81.83 294 | 86.29 386 |
|
| Anonymous20240521 | | | 78.63 352 | 76.90 353 | 83.82 367 | 82.82 396 | 72.86 383 | 95.72 332 | 93.57 364 | 73.55 383 | 72.17 375 | 84.79 384 | 49.69 392 | 92.51 380 | 65.29 382 | 74.50 334 | 86.09 387 |
|
| mmtdpeth | | | 83.69 323 | 82.59 322 | 86.99 343 | 92.82 305 | 76.98 365 | 96.16 317 | 91.63 387 | 82.89 319 | 92.41 168 | 82.90 388 | 54.95 373 | 98.19 195 | 96.27 91 | 53.27 406 | 85.81 388 |
|
| mvs5depth | | | 78.17 354 | 75.56 358 | 85.97 351 | 80.43 403 | 76.44 367 | 85.46 397 | 89.24 403 | 76.39 369 | 78.17 341 | 88.26 363 | 51.73 384 | 95.73 331 | 69.31 367 | 61.09 393 | 85.73 389 |
|
| UnsupCasMVSNet_bld | | | 73.85 367 | 70.14 371 | 84.99 359 | 79.44 405 | 75.73 370 | 88.53 390 | 95.24 322 | 70.12 392 | 61.94 400 | 74.81 407 | 41.41 403 | 93.62 367 | 68.65 370 | 51.13 410 | 85.62 390 |
|
| MVStest1 | | | 76.56 360 | 73.43 366 | 85.96 352 | 86.30 385 | 80.88 340 | 94.26 347 | 91.74 385 | 61.98 407 | 58.53 403 | 89.96 350 | 69.30 300 | 91.47 390 | 59.26 397 | 49.56 412 | 85.52 391 |
|
| pmmvs-eth3d | | | 78.71 351 | 76.16 356 | 86.38 346 | 80.25 404 | 81.19 334 | 94.17 349 | 92.13 380 | 77.97 360 | 66.90 393 | 82.31 392 | 55.76 366 | 92.56 379 | 73.63 349 | 62.31 391 | 85.38 392 |
|
| PM-MVS | | | 74.88 365 | 72.85 368 | 80.98 379 | 78.98 406 | 64.75 401 | 90.81 384 | 85.77 409 | 80.95 345 | 68.23 387 | 82.81 389 | 29.08 411 | 92.84 374 | 76.54 327 | 62.46 390 | 85.36 393 |
|
| test_0402 | | | 78.81 350 | 76.33 355 | 86.26 348 | 91.18 332 | 78.44 357 | 95.88 325 | 91.34 392 | 68.55 396 | 70.51 378 | 89.91 351 | 52.65 382 | 94.99 348 | 47.14 409 | 79.78 304 | 85.34 394 |
|
| test_vis1_rt | | | 81.31 337 | 80.05 340 | 85.11 357 | 91.29 331 | 70.66 391 | 98.98 128 | 77.39 420 | 85.76 266 | 68.80 383 | 82.40 391 | 36.56 407 | 99.44 122 | 92.67 166 | 86.55 256 | 85.24 395 |
|
| mvsany_test3 | | | 75.85 363 | 74.52 364 | 79.83 380 | 73.53 412 | 60.64 404 | 91.73 373 | 87.87 407 | 83.91 296 | 70.55 377 | 82.52 390 | 31.12 409 | 93.66 366 | 86.66 233 | 62.83 387 | 85.19 396 |
|
| new-patchmatchnet | | | 74.80 366 | 72.40 369 | 81.99 376 | 78.36 407 | 72.20 386 | 94.44 344 | 92.36 376 | 77.06 364 | 63.47 398 | 79.98 401 | 51.04 387 | 88.85 401 | 60.53 395 | 54.35 404 | 84.92 397 |
|
| test_fmvs3 | | | 75.09 364 | 75.19 360 | 74.81 385 | 77.45 408 | 54.08 411 | 95.93 321 | 90.64 395 | 82.51 325 | 73.29 366 | 81.19 396 | 22.29 414 | 86.29 407 | 85.50 246 | 67.89 376 | 84.06 398 |
|
| DeepMVS_CX |  | | | | 76.08 383 | 90.74 338 | 51.65 416 | | 90.84 394 | 86.47 257 | 57.89 404 | 87.98 364 | 35.88 408 | 92.60 377 | 65.77 381 | 65.06 385 | 83.97 399 |
|
| pmmvs3 | | | 72.86 368 | 69.76 373 | 82.17 374 | 73.86 411 | 74.19 377 | 94.20 348 | 89.01 404 | 64.23 406 | 67.72 388 | 80.91 399 | 41.48 402 | 88.65 402 | 62.40 389 | 54.02 405 | 83.68 400 |
|
| new_pmnet | | | 76.02 361 | 73.71 365 | 82.95 371 | 83.88 392 | 72.85 384 | 91.26 380 | 92.26 377 | 70.44 390 | 62.60 399 | 81.37 395 | 47.64 395 | 92.32 382 | 61.85 390 | 72.10 362 | 83.68 400 |
|
| LCM-MVSNet | | | 60.07 378 | 56.37 380 | 71.18 389 | 54.81 424 | 48.67 417 | 82.17 409 | 89.48 402 | 37.95 414 | 49.13 409 | 69.12 408 | 13.75 422 | 81.76 409 | 59.28 396 | 51.63 409 | 83.10 402 |
|
| test_f | | | 71.94 369 | 70.82 370 | 75.30 384 | 72.77 413 | 53.28 412 | 91.62 374 | 89.66 401 | 75.44 374 | 64.47 397 | 78.31 404 | 20.48 415 | 89.56 398 | 78.63 313 | 66.02 383 | 83.05 403 |
|
| APD_test1 | | | 68.93 372 | 66.98 375 | 74.77 386 | 80.62 402 | 53.15 413 | 87.97 391 | 85.01 411 | 53.76 409 | 59.26 402 | 87.52 369 | 25.19 412 | 89.95 394 | 56.20 401 | 67.33 379 | 81.19 404 |
|
| PMMVS2 | | | 58.97 379 | 55.07 382 | 70.69 391 | 62.72 419 | 55.37 410 | 85.97 395 | 80.52 417 | 49.48 410 | 45.94 411 | 68.31 409 | 15.73 420 | 80.78 413 | 49.79 408 | 37.12 416 | 75.91 405 |
|
| WB-MVS | | | 66.44 373 | 66.29 376 | 66.89 393 | 74.84 409 | 44.93 420 | 93.00 359 | 84.09 414 | 71.15 387 | 55.82 405 | 81.63 394 | 63.79 340 | 80.31 415 | 21.85 419 | 50.47 411 | 75.43 406 |
|
| SSC-MVS | | | 65.42 374 | 65.20 377 | 66.06 394 | 73.96 410 | 43.83 421 | 92.08 369 | 83.54 415 | 69.77 393 | 54.73 406 | 80.92 398 | 63.30 342 | 79.92 416 | 20.48 420 | 48.02 413 | 74.44 407 |
|
| FPMVS | | | 61.57 375 | 60.32 378 | 65.34 395 | 60.14 422 | 42.44 423 | 91.02 383 | 89.72 400 | 44.15 411 | 42.63 414 | 80.93 397 | 19.02 416 | 80.59 414 | 42.50 411 | 72.76 354 | 73.00 408 |
|
| ANet_high | | | 50.71 384 | 46.17 387 | 64.33 396 | 44.27 426 | 52.30 415 | 76.13 413 | 78.73 418 | 64.95 404 | 27.37 419 | 55.23 416 | 14.61 421 | 67.74 419 | 36.01 415 | 18.23 419 | 72.95 409 |
|
| EGC-MVSNET | | | 60.70 377 | 55.37 381 | 76.72 382 | 86.35 384 | 71.08 388 | 89.96 388 | 84.44 413 | 0.38 425 | 1.50 426 | 84.09 386 | 37.30 406 | 88.10 403 | 40.85 414 | 73.44 350 | 70.97 410 |
|
| testf1 | | | 56.38 380 | 53.73 383 | 64.31 397 | 64.84 417 | 45.11 418 | 80.50 410 | 75.94 422 | 38.87 412 | 42.74 412 | 75.07 405 | 11.26 424 | 81.19 411 | 41.11 412 | 53.27 406 | 66.63 411 |
|
| APD_test2 | | | 56.38 380 | 53.73 383 | 64.31 397 | 64.84 417 | 45.11 418 | 80.50 410 | 75.94 422 | 38.87 412 | 42.74 412 | 75.07 405 | 11.26 424 | 81.19 411 | 41.11 412 | 53.27 406 | 66.63 411 |
|
| tmp_tt | | | 53.66 383 | 52.86 385 | 56.05 400 | 32.75 428 | 41.97 424 | 73.42 414 | 76.12 421 | 21.91 421 | 39.68 417 | 96.39 211 | 42.59 401 | 65.10 420 | 78.00 316 | 14.92 421 | 61.08 413 |
|
| test_vis3_rt | | | 61.29 376 | 58.75 379 | 68.92 392 | 67.41 416 | 52.84 414 | 91.18 382 | 59.23 427 | 66.96 401 | 41.96 415 | 58.44 415 | 11.37 423 | 94.72 357 | 74.25 342 | 57.97 399 | 59.20 414 |
|
| PMVS |  | 41.42 23 | 45.67 385 | 42.50 388 | 55.17 401 | 34.28 427 | 32.37 427 | 66.24 415 | 78.71 419 | 30.72 417 | 22.04 422 | 59.59 413 | 4.59 426 | 77.85 418 | 27.49 417 | 58.84 398 | 55.29 415 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| MVE |  | 44.00 22 | 41.70 386 | 37.64 391 | 53.90 402 | 49.46 425 | 43.37 422 | 65.09 416 | 66.66 424 | 26.19 420 | 25.77 421 | 48.53 418 | 3.58 428 | 63.35 421 | 26.15 418 | 27.28 417 | 54.97 416 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| Gipuma |  | | 54.77 382 | 52.22 386 | 62.40 399 | 86.50 382 | 59.37 406 | 50.20 417 | 90.35 397 | 36.52 415 | 41.20 416 | 49.49 417 | 18.33 418 | 81.29 410 | 32.10 416 | 65.34 384 | 46.54 417 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| E-PMN | | | 41.02 387 | 40.93 389 | 41.29 403 | 61.97 420 | 33.83 426 | 84.00 406 | 65.17 425 | 27.17 418 | 27.56 418 | 46.72 419 | 17.63 419 | 60.41 422 | 19.32 421 | 18.82 418 | 29.61 418 |
|
| EMVS | | | 39.96 388 | 39.88 390 | 40.18 404 | 59.57 423 | 32.12 428 | 84.79 403 | 64.57 426 | 26.27 419 | 26.14 420 | 44.18 422 | 18.73 417 | 59.29 423 | 17.03 422 | 17.67 420 | 29.12 419 |
|
| test123 | | | 16.58 392 | 19.47 394 | 7.91 406 | 3.59 430 | 5.37 431 | 94.32 345 | 1.39 431 | 2.49 424 | 13.98 424 | 44.60 421 | 2.91 429 | 2.65 425 | 11.35 425 | 0.57 424 | 15.70 420 |
|
| testmvs | | | 18.81 390 | 23.05 393 | 6.10 407 | 4.48 429 | 2.29 432 | 97.78 247 | 3.00 430 | 3.27 423 | 18.60 423 | 62.71 411 | 1.53 430 | 2.49 426 | 14.26 424 | 1.80 423 | 13.50 421 |
|
| wuyk23d | | | 16.71 391 | 16.73 395 | 16.65 405 | 60.15 421 | 25.22 430 | 41.24 418 | 5.17 429 | 6.56 422 | 5.48 425 | 3.61 425 | 3.64 427 | 22.72 424 | 15.20 423 | 9.52 422 | 1.99 422 |
|
| mmdepth | | | 0.00 395 | 0.00 398 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 0.00 426 | 0.00 431 | 0.00 427 | 0.00 426 | 0.00 425 | 0.00 423 |
|
| monomultidepth | | | 0.00 395 | 0.00 398 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 0.00 426 | 0.00 431 | 0.00 427 | 0.00 426 | 0.00 425 | 0.00 423 |
|
| test_blank | | | 0.00 395 | 0.00 398 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 0.00 426 | 0.00 431 | 0.00 427 | 0.00 426 | 0.00 425 | 0.00 423 |
|
| uanet_test | | | 0.00 395 | 0.00 398 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 0.00 426 | 0.00 431 | 0.00 427 | 0.00 426 | 0.00 425 | 0.00 423 |
|
| DCPMVS | | | 0.00 395 | 0.00 398 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 0.00 426 | 0.00 431 | 0.00 427 | 0.00 426 | 0.00 425 | 0.00 423 |
|
| cdsmvs_eth3d_5k | | | 22.52 389 | 30.03 392 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 97.17 179 | 0.00 426 | 0.00 427 | 98.77 88 | 74.35 259 | 0.00 427 | 0.00 426 | 0.00 425 | 0.00 423 |
|
| pcd_1.5k_mvsjas | | | 6.87 394 | 9.16 397 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 0.00 426 | 82.48 191 | 0.00 427 | 0.00 426 | 0.00 425 | 0.00 423 |
|
| sosnet-low-res | | | 0.00 395 | 0.00 398 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 0.00 426 | 0.00 431 | 0.00 427 | 0.00 426 | 0.00 425 | 0.00 423 |
|
| sosnet | | | 0.00 395 | 0.00 398 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 0.00 426 | 0.00 431 | 0.00 427 | 0.00 426 | 0.00 425 | 0.00 423 |
|
| uncertanet | | | 0.00 395 | 0.00 398 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 0.00 426 | 0.00 431 | 0.00 427 | 0.00 426 | 0.00 425 | 0.00 423 |
|
| Regformer | | | 0.00 395 | 0.00 398 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 0.00 426 | 0.00 431 | 0.00 427 | 0.00 426 | 0.00 425 | 0.00 423 |
|
| ab-mvs-re | | | 8.21 393 | 10.94 396 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 98.50 112 | 0.00 431 | 0.00 427 | 0.00 426 | 0.00 425 | 0.00 423 |
|
| uanet | | | 0.00 395 | 0.00 398 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 0.00 426 | 0.00 431 | 0.00 427 | 0.00 426 | 0.00 425 | 0.00 423 |
|
| WAC-MVS | | | | | | | 79.74 345 | | | | | | | | 67.75 373 | | |
|
| FOURS1 | | | | | | 99.50 42 | 88.94 184 | 99.55 44 | 97.47 143 | 91.32 115 | 98.12 46 | | | | | | |
|
| test_one_0601 | | | | | | 99.59 28 | 94.89 37 | | 97.64 105 | 93.14 73 | 98.93 21 | 99.45 14 | 93.45 18 | | | | |
|
| eth-test2 | | | | | | 0.00 431 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 431 | | | | | | | | | | | |
|
| ZD-MVS | | | | | | 99.67 10 | 93.28 77 | | 97.61 112 | 87.78 222 | 97.41 63 | 99.16 39 | 90.15 56 | 99.56 108 | 98.35 45 | 99.70 37 | |
|
| test_241102_ONE | | | | | | 99.63 18 | 95.24 27 | | 97.72 83 | 94.16 46 | 99.30 8 | 99.49 9 | 93.32 20 | 99.98 9 | | | |
|
| 9.14 | | | | 96.87 27 | | 99.34 50 | | 99.50 51 | 97.49 140 | 89.41 171 | 98.59 32 | 99.43 16 | 89.78 60 | 99.69 94 | 98.69 30 | 99.62 46 | |
|
| save fliter | | | | | | 99.34 50 | 93.85 67 | 99.65 36 | 97.63 109 | 95.69 22 | | | | | | | |
|
| test0726 | | | | | | 99.66 12 | 95.20 32 | 99.77 18 | 97.70 88 | 93.95 49 | 99.35 7 | 99.54 3 | 93.18 23 | | | | |
|
| test_part2 | | | | | | 99.54 36 | 95.42 22 | | | | 98.13 44 | | | | | | |
|
| sam_mvs | | | | | | | | | | | | | 87.08 106 | | | | |
|
| MTGPA |  | | | | | | | | 97.45 146 | | | | | | | | |
|
| test_post1 | | | | | | | | 90.74 386 | | | | 41.37 423 | 85.38 145 | 96.36 295 | 83.16 275 | | |
|
| test_post | | | | | | | | | | | | 46.00 420 | 87.37 97 | 97.11 259 | | | |
|
| patchmatchnet-post | | | | | | | | | | | | 84.86 383 | 88.73 74 | 96.81 272 | | | |
|
| MTMP | | | | | | | | 99.21 90 | 91.09 393 | | | | | | | | |
|
| gm-plane-assit | | | | | | 94.69 256 | 88.14 204 | | | 88.22 208 | | 97.20 171 | | 98.29 189 | 90.79 185 | | |
|
| TEST9 | | | | | | 99.57 33 | 93.17 80 | 99.38 72 | 97.66 97 | 89.57 164 | 98.39 37 | 99.18 36 | 90.88 42 | 99.66 97 | | | |
|
| test_8 | | | | | | 99.55 35 | 93.07 83 | 99.37 75 | 97.64 105 | 90.18 144 | 98.36 39 | 99.19 33 | 90.94 39 | 99.64 103 | | | |
|
| agg_prior | | | | | | 99.54 36 | 92.66 93 | | 97.64 105 | | 97.98 53 | | | 99.61 105 | | | |
|
| test_prior4 | | | | | | | 92.00 103 | 99.41 69 | | | | | | | | | |
|
| test_prior2 | | | | | | | | 99.57 42 | | 91.43 112 | 98.12 46 | 98.97 65 | 90.43 49 | | 98.33 46 | 99.81 23 | |
|
| 旧先验2 | | | | | | | | 98.67 158 | | 85.75 267 | 98.96 20 | | | 98.97 157 | 93.84 145 | | |
|
| æ–°å‡ ä½•2 | | | | | | | | 98.26 212 | | | | | | | | | |
|
| 原ACMM2 | | | | | | | | 98.69 155 | | | | | | | | | |
|
| testdata2 | | | | | | | | | | | | | | 99.88 54 | 84.16 263 | | |
|
| segment_acmp | | | | | | | | | | | | | 90.56 47 | | | | |
|
| testdata1 | | | | | | | | 97.89 240 | | 92.43 88 | | | | | | | |
|
| plane_prior7 | | | | | | 93.84 283 | 85.73 268 | | | | | | | | | | |
|
| plane_prior6 | | | | | | 93.92 280 | 86.02 261 | | | | | | 72.92 272 | | | | |
|
| plane_prior4 | | | | | | | | | | | | 96.52 205 | | | | | |
|
| plane_prior3 | | | | | | | 85.91 263 | | | 93.65 62 | 86.99 235 | | | | | | |
|
| plane_prior2 | | | | | | | | 99.02 122 | | 93.38 69 | | | | | | | |
|
| plane_prior1 | | | | | | 93.90 282 | | | | | | | | | | | |
|
| plane_prior | | | | | | | 86.07 259 | 99.14 106 | | 93.81 59 | | | | | | 86.26 259 | |
|
| n2 | | | | | | | | | 0.00 432 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 432 | | | | | | | | |
|
| door-mid | | | | | | | | | 84.90 412 | | | | | | | | |
|
| test11 | | | | | | | | | 97.68 92 | | | | | | | | |
|
| door | | | | | | | | | 85.30 410 | | | | | | | | |
|
| HQP5-MVS | | | | | | | 86.39 245 | | | | | | | | | | |
|
| HQP-NCC | | | | | | 93.95 276 | | 99.16 98 | | 93.92 51 | 87.57 228 | | | | | | |
|
| ACMP_Plane | | | | | | 93.95 276 | | 99.16 98 | | 93.92 51 | 87.57 228 | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 93.82 147 | | |
|
| HQP3-MVS | | | | | | | | | 96.37 235 | | | | | | | 86.29 257 | |
|
| HQP2-MVS | | | | | | | | | | | | | 73.34 266 | | | | |
|
| NP-MVS | | | | | | 93.94 279 | 86.22 251 | | | | | 96.67 203 | | | | | |
|
| MDTV_nov1_ep13 | | | | 90.47 201 | | 96.14 194 | 88.55 197 | 91.34 379 | 97.51 135 | 89.58 163 | 92.24 170 | 90.50 340 | 86.99 110 | 97.61 237 | 77.64 318 | 92.34 205 | |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 82.64 291 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 83.83 278 | |
|
| Test By Simon | | | | | | | | | | | | | 83.62 165 | | | | |
|