| DVP-MVS++ | | | 99.26 6 | 99.09 9 | 99.77 8 | 99.91 39 | 99.31 10 | 99.95 52 | 98.43 127 | 96.48 59 | 99.80 17 | 99.93 11 | 97.44 14 | 100.00 1 | 99.92 12 | 99.98 32 | 100.00 1 |
|
| MSC_two_6792asdad | | | | | 99.93 2 | 99.91 39 | 99.80 2 | | 98.41 142 | | | | | 100.00 1 | 99.96 9 | 100.00 1 | 100.00 1 |
|
| PC_three_1452 | | | | | | | | | | 96.96 44 | 99.80 17 | 99.79 55 | 97.49 10 | 100.00 1 | 99.99 5 | 99.98 32 | 100.00 1 |
|
| No_MVS | | | | | 99.93 2 | 99.91 39 | 99.80 2 | | 98.41 142 | | | | | 100.00 1 | 99.96 9 | 100.00 1 | 100.00 1 |
|
| SED-MVS | | | 99.28 5 | 99.11 7 | 99.77 8 | 99.93 24 | 99.30 12 | 99.96 34 | 98.43 127 | 97.27 34 | 99.80 17 | 99.94 4 | 96.71 24 | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
|
| IU-MVS | | | | | | 99.93 24 | 99.31 10 | | 98.41 142 | 97.71 19 | 99.84 12 | | | | 100.00 1 | 100.00 1 | 100.00 1 |
|
| OPU-MVS | | | | | 99.93 2 | 99.89 45 | 99.80 2 | 99.96 34 | | | | 99.80 51 | 97.44 14 | 100.00 1 | 100.00 1 | 99.98 32 | 100.00 1 |
|
| test_241102_TWO | | | | | | | | | 98.43 127 | 97.27 34 | 99.80 17 | 99.94 4 | 97.18 21 | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
|
| test_0728_THIRD | | | | | | | | | | 96.48 59 | 99.83 13 | 99.91 14 | 97.87 6 | 100.00 1 | 99.92 12 | 100.00 1 | 100.00 1 |
|
| test_0728_SECOND | | | | | 99.82 7 | 99.94 13 | 99.47 7 | 99.95 52 | 98.43 127 | | | | | 100.00 1 | 99.99 5 | 100.00 1 | 100.00 1 |
|
| SMA-MVS |  | | 98.76 23 | 98.48 28 | 99.62 20 | 99.87 51 | 98.87 32 | 99.86 113 | 98.38 153 | 93.19 168 | 99.77 27 | 99.94 4 | 95.54 42 | 100.00 1 | 99.74 30 | 99.99 21 | 100.00 1 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| MSP-MVS | | | 99.09 9 | 99.12 5 | 98.98 73 | 99.93 24 | 97.24 98 | 99.95 52 | 98.42 138 | 97.50 26 | 99.52 59 | 99.88 21 | 97.43 16 | 99.71 138 | 99.50 41 | 99.98 32 | 100.00 1 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| test9_res | | | | | | | | | | | | | | | 99.71 33 | 99.99 21 | 100.00 1 |
|
| agg_prior2 | | | | | | | | | | | | | | | 99.48 43 | 100.00 1 | 100.00 1 |
|
| testdata | | | | | 98.42 113 | 99.47 91 | 95.33 170 | | 98.56 89 | 93.78 151 | 99.79 25 | 99.85 30 | 93.64 95 | 99.94 77 | 94.97 178 | 99.94 54 | 100.00 1 |
|
| MSLP-MVS++ | | | 99.13 8 | 99.01 11 | 99.49 32 | 99.94 13 | 98.46 59 | 99.98 14 | 98.86 53 | 97.10 40 | 99.80 17 | 99.94 4 | 95.92 36 | 100.00 1 | 99.51 40 | 100.00 1 | 100.00 1 |
|
| MCST-MVS | | | 99.32 3 | 99.14 4 | 99.86 5 | 99.97 3 | 99.59 5 | 99.97 27 | 98.64 76 | 98.47 2 | 99.13 85 | 99.92 13 | 96.38 30 | 100.00 1 | 99.74 30 | 100.00 1 | 100.00 1 |
|
| NCCC | | | 99.37 2 | 99.25 2 | 99.71 14 | 99.96 8 | 99.15 21 | 99.97 27 | 98.62 81 | 98.02 13 | 99.90 3 | 99.95 3 | 97.33 17 | 100.00 1 | 99.54 39 | 100.00 1 | 100.00 1 |
|
| API-MVS | | | 97.86 67 | 97.66 72 | 98.47 108 | 99.52 87 | 95.41 167 | 99.47 204 | 98.87 52 | 91.68 223 | 98.84 96 | 99.85 30 | 92.34 132 | 99.99 36 | 98.44 96 | 99.96 46 | 100.00 1 |
|
| DeepPCF-MVS | | 95.94 2 | 97.71 81 | 98.98 12 | 93.92 281 | 99.63 79 | 81.76 363 | 99.96 34 | 98.56 89 | 99.47 1 | 99.19 83 | 99.99 1 | 94.16 81 | 100.00 1 | 99.92 12 | 99.93 60 | 100.00 1 |
|
| DeepC-MVS_fast | | 96.59 1 | 98.81 22 | 98.54 26 | 99.62 20 | 99.90 42 | 98.85 34 | 99.24 233 | 98.47 112 | 98.14 10 | 99.08 86 | 99.91 14 | 93.09 108 | 100.00 1 | 99.04 63 | 99.99 21 | 100.00 1 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| MG-MVS | | | 98.91 18 | 98.65 20 | 99.68 15 | 99.94 13 | 99.07 24 | 99.64 177 | 99.44 20 | 97.33 31 | 99.00 90 | 99.72 81 | 94.03 84 | 99.98 43 | 98.73 83 | 100.00 1 | 100.00 1 |
|
| DPE-MVS |  | | 99.26 6 | 99.10 8 | 99.74 11 | 99.89 45 | 99.24 19 | 99.87 100 | 98.44 119 | 97.48 27 | 99.64 42 | 99.94 4 | 96.68 26 | 99.99 36 | 99.99 5 | 100.00 1 | 99.99 23 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| ACMMP_NAP | | | 98.49 36 | 98.14 49 | 99.54 27 | 99.66 78 | 98.62 53 | 99.85 116 | 98.37 156 | 94.68 110 | 99.53 57 | 99.83 43 | 92.87 114 | 100.00 1 | 98.66 88 | 99.84 71 | 99.99 23 |
|
| MTAPA | | | 98.29 50 | 97.96 61 | 99.30 42 | 99.85 54 | 97.93 73 | 99.39 214 | 98.28 173 | 95.76 80 | 97.18 151 | 99.88 21 | 92.74 119 | 100.00 1 | 98.67 86 | 99.88 68 | 99.99 23 |
|
| train_agg | | | 98.88 19 | 98.65 20 | 99.59 23 | 99.92 31 | 98.92 28 | 99.96 34 | 98.43 127 | 94.35 122 | 99.71 34 | 99.86 26 | 95.94 34 | 99.85 108 | 99.69 35 | 99.98 32 | 99.99 23 |
|
| XVS | | | 98.70 25 | 98.55 25 | 99.15 57 | 99.94 13 | 97.50 90 | 99.94 68 | 98.42 138 | 96.22 71 | 99.41 68 | 99.78 59 | 94.34 73 | 99.96 61 | 98.92 70 | 99.95 49 | 99.99 23 |
|
| X-MVStestdata | | | 93.83 203 | 92.06 235 | 99.15 57 | 99.94 13 | 97.50 90 | 99.94 68 | 98.42 138 | 96.22 71 | 99.41 68 | 41.37 400 | 94.34 73 | 99.96 61 | 98.92 70 | 99.95 49 | 99.99 23 |
|
| test_prior | | | | | 99.43 35 | 99.94 13 | 98.49 58 | | 98.65 74 | | | | | 99.80 121 | | | 99.99 23 |
|
| æ–°å‡ ä½•1 | | | | | 99.42 37 | 99.75 68 | 98.27 61 | | 98.63 80 | 92.69 185 | 99.55 54 | 99.82 46 | 94.40 68 | 100.00 1 | 91.21 244 | 99.94 54 | 99.99 23 |
|
| 旧先验1 | | | | | | 99.76 66 | 97.52 87 | | 98.64 76 | | | 99.85 30 | 95.63 41 | | | 99.94 54 | 99.99 23 |
|
| æ— å…ˆéªŒ | | | | | | | | 99.49 201 | 98.71 66 | 93.46 160 | | | | 100.00 1 | 94.36 195 | | 99.99 23 |
|
| test222 | | | | | | 99.55 85 | 97.41 96 | 99.34 220 | 98.55 95 | 91.86 217 | 99.27 80 | 99.83 43 | 93.84 90 | | | 99.95 49 | 99.99 23 |
|
| MVS | | | 96.60 124 | 95.56 148 | 99.72 13 | 96.85 245 | 99.22 20 | 98.31 311 | 98.94 41 | 91.57 225 | 90.90 244 | 99.61 103 | 86.66 210 | 99.96 61 | 97.36 138 | 99.88 68 | 99.99 23 |
|
| APDe-MVS |  | | 99.06 11 | 98.91 14 | 99.51 29 | 99.94 13 | 98.76 43 | 99.91 82 | 98.39 149 | 97.20 38 | 99.46 63 | 99.85 30 | 95.53 44 | 99.79 123 | 99.86 21 | 100.00 1 | 99.99 23 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| test12 | | | | | 99.43 35 | 99.74 69 | 98.56 55 | | 98.40 146 | | 99.65 40 | | 94.76 60 | 99.75 132 | | 99.98 32 | 99.99 23 |
|
| TSAR-MVS + GP. | | | 98.60 29 | 98.51 27 | 98.86 80 | 99.73 72 | 96.63 119 | 99.97 27 | 97.92 212 | 98.07 11 | 98.76 102 | 99.55 108 | 95.00 56 | 99.94 77 | 99.91 15 | 97.68 162 | 99.99 23 |
|
| HPM-MVS_fast | | | 97.80 73 | 97.50 78 | 98.68 88 | 99.79 62 | 96.42 125 | 99.88 97 | 98.16 189 | 91.75 222 | 98.94 92 | 99.54 110 | 91.82 144 | 99.65 147 | 97.62 135 | 99.99 21 | 99.99 23 |
|
| HPM-MVS |  | | 97.96 62 | 97.72 70 | 98.68 88 | 99.84 56 | 96.39 129 | 99.90 87 | 98.17 185 | 92.61 190 | 98.62 110 | 99.57 107 | 91.87 142 | 99.67 145 | 98.87 75 | 99.99 21 | 99.99 23 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| APD-MVS |  | | 98.62 28 | 98.35 38 | 99.41 38 | 99.90 42 | 98.51 57 | 99.87 100 | 98.36 157 | 94.08 135 | 99.74 31 | 99.73 78 | 94.08 82 | 99.74 134 | 99.42 47 | 99.99 21 | 99.99 23 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| CNVR-MVS | | | 99.40 1 | 99.26 1 | 99.84 6 | 99.98 2 | 99.51 6 | 99.98 14 | 98.69 68 | 98.20 7 | 99.93 1 | 99.98 2 | 96.82 23 | 100.00 1 | 99.75 28 | 100.00 1 | 99.99 23 |
|
| CP-MVS | | | 98.45 39 | 98.32 39 | 98.87 79 | 99.96 8 | 96.62 120 | 99.97 27 | 98.39 149 | 94.43 117 | 98.90 94 | 99.87 24 | 94.30 75 | 100.00 1 | 99.04 63 | 99.99 21 | 99.99 23 |
|
| SteuartSystems-ACMMP | | | 99.02 12 | 98.97 13 | 99.18 50 | 98.72 139 | 97.71 79 | 99.98 14 | 98.44 119 | 96.85 46 | 99.80 17 | 99.91 14 | 97.57 8 | 99.85 108 | 99.44 46 | 99.99 21 | 99.99 23 |
| Skip Steuart: Steuart Systems R&D Blog. |
| CPTT-MVS | | | 97.64 83 | 97.32 86 | 98.58 98 | 99.97 3 | 95.77 151 | 99.96 34 | 98.35 159 | 89.90 265 | 98.36 121 | 99.79 55 | 91.18 152 | 99.99 36 | 98.37 99 | 99.99 21 | 99.99 23 |
|
| PAPM_NR | | | 98.12 59 | 97.93 63 | 98.70 87 | 99.94 13 | 96.13 142 | 99.82 130 | 98.43 127 | 94.56 113 | 97.52 143 | 99.70 85 | 94.40 68 | 99.98 43 | 97.00 149 | 99.98 32 | 99.99 23 |
|
| PAPR | | | 98.52 34 | 98.16 48 | 99.58 24 | 99.97 3 | 98.77 40 | 99.95 52 | 98.43 127 | 95.35 91 | 98.03 131 | 99.75 69 | 94.03 84 | 99.98 43 | 98.11 110 | 99.83 72 | 99.99 23 |
|
| PHI-MVS | | | 98.41 44 | 98.21 44 | 99.03 68 | 99.86 53 | 97.10 105 | 99.98 14 | 98.80 62 | 90.78 251 | 99.62 46 | 99.78 59 | 95.30 47 | 100.00 1 | 99.80 25 | 99.93 60 | 99.99 23 |
|
| fmvsm_l_conf0.5_n | | | 98.94 15 | 98.84 17 | 99.25 44 | 99.17 105 | 97.81 77 | 99.98 14 | 98.86 53 | 98.25 4 | 99.90 3 | 99.76 63 | 94.21 79 | 99.97 53 | 99.87 19 | 99.52 99 | 99.98 48 |
|
| MM | | | | | 99.76 10 | | 99.33 8 | 99.99 4 | 99.76 6 | 98.39 3 | 99.39 72 | 99.80 51 | 90.49 166 | 99.96 61 | 99.89 16 | 99.43 110 | 99.98 48 |
|
| test_fmvsmconf_n | | | 98.43 42 | 98.32 39 | 98.78 82 | 98.12 175 | 96.41 126 | 99.99 4 | 98.83 59 | 98.22 6 | 99.67 38 | 99.64 99 | 91.11 153 | 99.94 77 | 99.67 36 | 99.62 89 | 99.98 48 |
|
| DPM-MVS | | | 98.83 21 | 98.46 29 | 99.97 1 | 99.33 97 | 99.92 1 | 99.96 34 | 98.44 119 | 97.96 14 | 99.55 54 | 99.94 4 | 97.18 21 | 100.00 1 | 93.81 209 | 99.94 54 | 99.98 48 |
|
| HFP-MVS | | | 98.56 31 | 98.37 35 | 99.14 59 | 99.96 8 | 97.43 94 | 99.95 52 | 98.61 82 | 94.77 105 | 99.31 76 | 99.85 30 | 94.22 77 | 100.00 1 | 98.70 84 | 99.98 32 | 99.98 48 |
|
| region2R | | | 98.54 32 | 98.37 35 | 99.05 66 | 99.96 8 | 97.18 101 | 99.96 34 | 98.55 95 | 94.87 103 | 99.45 64 | 99.85 30 | 94.07 83 | 100.00 1 | 98.67 86 | 100.00 1 | 99.98 48 |
|
| ACMMPR | | | 98.50 35 | 98.32 39 | 99.05 66 | 99.96 8 | 97.18 101 | 99.95 52 | 98.60 83 | 94.77 105 | 99.31 76 | 99.84 41 | 93.73 92 | 100.00 1 | 98.70 84 | 99.98 32 | 99.98 48 |
|
| PGM-MVS | | | 98.34 47 | 98.13 50 | 98.99 72 | 99.92 31 | 97.00 108 | 99.75 150 | 99.50 18 | 93.90 148 | 99.37 73 | 99.76 63 | 93.24 105 | 100.00 1 | 97.75 132 | 99.96 46 | 99.98 48 |
|
| CDPH-MVS | | | 98.65 27 | 98.36 37 | 99.49 32 | 99.94 13 | 98.73 44 | 99.87 100 | 98.33 164 | 93.97 143 | 99.76 28 | 99.87 24 | 94.99 57 | 99.75 132 | 98.55 93 | 100.00 1 | 99.98 48 |
|
| mPP-MVS | | | 98.39 46 | 98.20 45 | 98.97 74 | 99.97 3 | 96.92 112 | 99.95 52 | 98.38 153 | 95.04 97 | 98.61 111 | 99.80 51 | 93.39 97 | 100.00 1 | 98.64 89 | 100.00 1 | 99.98 48 |
|
| SR-MVS-dyc-post | | | 98.31 48 | 98.17 47 | 98.71 86 | 99.79 62 | 96.37 130 | 99.76 147 | 98.31 168 | 94.43 117 | 99.40 70 | 99.75 69 | 93.28 103 | 99.78 125 | 98.90 73 | 99.92 63 | 99.97 58 |
|
| RE-MVS-def | | | | 98.13 50 | | 99.79 62 | 96.37 130 | 99.76 147 | 98.31 168 | 94.43 117 | 99.40 70 | 99.75 69 | 92.95 112 | | 98.90 73 | 99.92 63 | 99.97 58 |
|
| TSAR-MVS + MP. | | | 98.93 16 | 98.77 18 | 99.41 38 | 99.74 69 | 98.67 47 | 99.77 142 | 98.38 153 | 96.73 53 | 99.88 6 | 99.74 76 | 94.89 59 | 99.59 149 | 99.80 25 | 99.98 32 | 99.97 58 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| SD-MVS | | | 98.92 17 | 98.70 19 | 99.56 25 | 99.70 76 | 98.73 44 | 99.94 68 | 98.34 163 | 96.38 65 | 99.81 15 | 99.76 63 | 94.59 64 | 99.98 43 | 99.84 22 | 99.96 46 | 99.97 58 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| APD-MVS_3200maxsize | | | 98.25 54 | 98.08 54 | 98.78 82 | 99.81 60 | 96.60 121 | 99.82 130 | 98.30 171 | 93.95 145 | 99.37 73 | 99.77 61 | 92.84 115 | 99.76 131 | 98.95 67 | 99.92 63 | 99.97 58 |
|
| DP-MVS Recon | | | 98.41 44 | 98.02 56 | 99.56 25 | 99.97 3 | 98.70 46 | 99.92 78 | 98.44 119 | 92.06 212 | 98.40 120 | 99.84 41 | 95.68 40 | 100.00 1 | 98.19 105 | 99.71 83 | 99.97 58 |
|
| SF-MVS | | | 98.67 26 | 98.40 31 | 99.50 30 | 99.77 65 | 98.67 47 | 99.90 87 | 98.21 180 | 93.53 158 | 99.81 15 | 99.89 19 | 94.70 63 | 99.86 107 | 99.84 22 | 99.93 60 | 99.96 64 |
|
| SR-MVS | | | 98.46 38 | 98.30 42 | 98.93 77 | 99.88 49 | 97.04 106 | 99.84 120 | 98.35 159 | 94.92 101 | 99.32 75 | 99.80 51 | 93.35 98 | 99.78 125 | 99.30 52 | 99.95 49 | 99.96 64 |
|
| 1314 | | | 96.84 112 | 95.96 131 | 99.48 34 | 96.74 252 | 98.52 56 | 98.31 311 | 98.86 53 | 95.82 78 | 89.91 256 | 98.98 157 | 87.49 199 | 99.96 61 | 97.80 125 | 99.73 82 | 99.96 64 |
|
| 114514_t | | | 97.41 92 | 96.83 102 | 99.14 59 | 99.51 89 | 97.83 75 | 99.89 95 | 98.27 175 | 88.48 292 | 99.06 87 | 99.66 96 | 90.30 168 | 99.64 148 | 96.32 160 | 99.97 42 | 99.96 64 |
|
| MVS_111021_HR | | | 98.72 24 | 98.62 22 | 99.01 71 | 99.36 96 | 97.18 101 | 99.93 75 | 99.90 1 | 96.81 51 | 98.67 107 | 99.77 61 | 93.92 86 | 99.89 96 | 99.27 53 | 99.94 54 | 99.96 64 |
|
| PAPM | | | 98.60 29 | 98.42 30 | 99.14 59 | 96.05 265 | 98.96 26 | 99.90 87 | 99.35 25 | 96.68 55 | 98.35 122 | 99.66 96 | 96.45 29 | 98.51 202 | 99.45 45 | 99.89 66 | 99.96 64 |
|
| 3Dnovator+ | | 91.53 11 | 96.31 137 | 95.24 156 | 99.52 28 | 96.88 244 | 98.64 52 | 99.72 161 | 98.24 177 | 95.27 94 | 88.42 295 | 98.98 157 | 82.76 243 | 99.94 77 | 97.10 146 | 99.83 72 | 99.96 64 |
|
| fmvsm_l_conf0.5_n_a | | | 99.00 14 | 98.91 14 | 99.28 43 | 99.21 101 | 97.91 74 | 99.98 14 | 98.85 56 | 98.25 4 | 99.92 2 | 99.75 69 | 94.72 61 | 99.97 53 | 99.87 19 | 99.64 87 | 99.95 71 |
|
| EI-MVSNet-Vis-set | | | 98.27 51 | 98.11 52 | 98.75 85 | 99.83 57 | 96.59 122 | 99.40 210 | 98.51 104 | 95.29 93 | 98.51 114 | 99.76 63 | 93.60 96 | 99.71 138 | 98.53 94 | 99.52 99 | 99.95 71 |
|
| CHOSEN 1792x2688 | | | 96.81 113 | 96.53 112 | 97.64 152 | 98.91 128 | 93.07 229 | 99.65 173 | 99.80 3 | 95.64 83 | 95.39 191 | 98.86 177 | 84.35 234 | 99.90 91 | 96.98 150 | 99.16 122 | 99.95 71 |
|
| MVS_0304 | | | 98.87 20 | 98.61 23 | 99.67 16 | 99.18 102 | 99.13 22 | 99.87 100 | 99.65 12 | 98.17 8 | 98.75 104 | 99.75 69 | 92.76 118 | 99.94 77 | 99.88 18 | 99.44 108 | 99.94 74 |
|
| AdaColmap |  | | 97.23 99 | 96.80 104 | 98.51 106 | 99.99 1 | 95.60 160 | 99.09 244 | 98.84 58 | 93.32 164 | 96.74 162 | 99.72 81 | 86.04 216 | 100.00 1 | 98.01 115 | 99.43 110 | 99.94 74 |
|
| ZNCC-MVS | | | 98.31 48 | 98.03 55 | 99.17 53 | 99.88 49 | 97.59 84 | 99.94 68 | 98.44 119 | 94.31 125 | 98.50 115 | 99.82 46 | 93.06 109 | 99.99 36 | 98.30 103 | 99.99 21 | 99.93 76 |
|
| GST-MVS | | | 98.27 51 | 97.97 58 | 99.17 53 | 99.92 31 | 97.57 85 | 99.93 75 | 98.39 149 | 94.04 141 | 98.80 98 | 99.74 76 | 92.98 111 | 100.00 1 | 98.16 107 | 99.76 80 | 99.93 76 |
|
| MP-MVS |  | | 98.23 56 | 97.97 58 | 99.03 68 | 99.94 13 | 97.17 104 | 99.95 52 | 98.39 149 | 94.70 109 | 98.26 127 | 99.81 50 | 91.84 143 | 100.00 1 | 98.85 76 | 99.97 42 | 99.93 76 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| HyFIR lowres test | | | 96.66 123 | 96.43 115 | 97.36 170 | 99.05 111 | 93.91 211 | 99.70 165 | 99.80 3 | 90.54 254 | 96.26 175 | 98.08 214 | 92.15 136 | 98.23 233 | 96.84 155 | 95.46 209 | 99.93 76 |
|
| CNLPA | | | 97.76 77 | 97.38 82 | 98.92 78 | 99.53 86 | 96.84 114 | 99.87 100 | 98.14 192 | 93.78 151 | 96.55 167 | 99.69 87 | 92.28 133 | 99.98 43 | 97.13 144 | 99.44 108 | 99.93 76 |
|
| 原ACMM1 | | | | | 98.96 75 | 99.73 72 | 96.99 109 | | 98.51 104 | 94.06 138 | 99.62 46 | 99.85 30 | 94.97 58 | 99.96 61 | 95.11 174 | 99.95 49 | 99.92 81 |
|
| DELS-MVS | | | 98.54 32 | 98.22 43 | 99.50 30 | 99.15 107 | 98.65 51 | 100.00 1 | 98.58 85 | 97.70 20 | 98.21 129 | 99.24 137 | 92.58 124 | 99.94 77 | 98.63 91 | 99.94 54 | 99.92 81 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| CSCG | | | 97.10 102 | 97.04 96 | 97.27 174 | 99.89 45 | 91.92 258 | 99.90 87 | 99.07 34 | 88.67 288 | 95.26 194 | 99.82 46 | 93.17 107 | 99.98 43 | 98.15 108 | 99.47 104 | 99.90 83 |
|
| DVP-MVS |  | | 99.30 4 | 99.16 3 | 99.73 12 | 99.93 24 | 99.29 15 | 99.95 52 | 98.32 166 | 97.28 32 | 99.83 13 | 99.91 14 | 97.22 19 | 100.00 1 | 99.99 5 | 100.00 1 | 99.89 84 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| patch_mono-2 | | | 98.24 55 | 99.12 5 | 95.59 217 | 99.67 77 | 86.91 336 | 99.95 52 | 98.89 49 | 97.60 22 | 99.90 3 | 99.76 63 | 96.54 28 | 99.98 43 | 99.94 11 | 99.82 76 | 99.88 85 |
|
| MVS_111021_LR | | | 98.42 43 | 98.38 33 | 98.53 105 | 99.39 94 | 95.79 150 | 99.87 100 | 99.86 2 | 96.70 54 | 98.78 99 | 99.79 55 | 92.03 139 | 99.90 91 | 99.17 57 | 99.86 70 | 99.88 85 |
|
| HPM-MVS++ |  | | 99.07 10 | 98.88 16 | 99.63 17 | 99.90 42 | 99.02 25 | 99.95 52 | 98.56 89 | 97.56 25 | 99.44 65 | 99.85 30 | 95.38 46 | 100.00 1 | 99.31 51 | 99.99 21 | 99.87 87 |
|
| ACMMP |  | | 97.74 78 | 97.44 80 | 98.66 90 | 99.92 31 | 96.13 142 | 99.18 238 | 99.45 19 | 94.84 104 | 96.41 172 | 99.71 83 | 91.40 146 | 99.99 36 | 97.99 117 | 98.03 157 | 99.87 87 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| dcpmvs_2 | | | 97.42 91 | 98.09 53 | 95.42 222 | 99.58 84 | 87.24 332 | 99.23 234 | 96.95 306 | 94.28 127 | 98.93 93 | 99.73 78 | 94.39 71 | 99.16 170 | 99.89 16 | 99.82 76 | 99.86 89 |
|
| 3Dnovator | | 91.47 12 | 96.28 140 | 95.34 153 | 99.08 65 | 96.82 247 | 97.47 93 | 99.45 207 | 98.81 60 | 95.52 88 | 89.39 270 | 99.00 154 | 81.97 247 | 99.95 69 | 97.27 140 | 99.83 72 | 99.84 90 |
|
| CANet | | | 98.27 51 | 97.82 68 | 99.63 17 | 99.72 74 | 99.10 23 | 99.98 14 | 98.51 104 | 97.00 43 | 98.52 113 | 99.71 83 | 87.80 195 | 99.95 69 | 99.75 28 | 99.38 112 | 99.83 91 |
|
| test_fmvsmconf0.1_n | | | 97.74 78 | 97.44 80 | 98.64 92 | 95.76 276 | 96.20 138 | 99.94 68 | 98.05 199 | 98.17 8 | 98.89 95 | 99.42 118 | 87.65 197 | 99.90 91 | 99.50 41 | 99.60 95 | 99.82 92 |
|
| Patchmatch-test | | | 92.65 237 | 91.50 247 | 96.10 207 | 96.85 245 | 90.49 290 | 91.50 381 | 97.19 278 | 82.76 353 | 90.23 250 | 95.59 293 | 95.02 54 | 98.00 244 | 77.41 358 | 96.98 180 | 99.82 92 |
|
| EI-MVSNet-UG-set | | | 98.14 58 | 97.99 57 | 98.60 95 | 99.80 61 | 96.27 132 | 99.36 219 | 98.50 109 | 95.21 95 | 98.30 124 | 99.75 69 | 93.29 102 | 99.73 137 | 98.37 99 | 99.30 116 | 99.81 94 |
|
| HY-MVS | | 92.50 7 | 97.79 75 | 97.17 92 | 99.63 17 | 98.98 117 | 99.32 9 | 97.49 332 | 99.52 15 | 95.69 82 | 98.32 123 | 97.41 235 | 93.32 100 | 99.77 128 | 98.08 113 | 95.75 205 | 99.81 94 |
|
| mvsany_test1 | | | 97.82 71 | 97.90 65 | 97.55 157 | 98.77 137 | 93.04 232 | 99.80 136 | 97.93 209 | 96.95 45 | 99.61 52 | 99.68 93 | 90.92 157 | 99.83 118 | 99.18 56 | 98.29 148 | 99.80 96 |
|
| test_yl | | | 97.83 69 | 97.37 83 | 99.21 47 | 99.18 102 | 97.98 70 | 99.64 177 | 99.27 27 | 91.43 231 | 97.88 137 | 98.99 155 | 95.84 38 | 99.84 116 | 98.82 77 | 95.32 213 | 99.79 97 |
|
| DCV-MVSNet | | | 97.83 69 | 97.37 83 | 99.21 47 | 99.18 102 | 97.98 70 | 99.64 177 | 99.27 27 | 91.43 231 | 97.88 137 | 98.99 155 | 95.84 38 | 99.84 116 | 98.82 77 | 95.32 213 | 99.79 97 |
|
| Patchmatch-RL test | | | 86.90 316 | 85.98 320 | 89.67 337 | 84.45 379 | 75.59 376 | 89.71 386 | 92.43 384 | 86.89 315 | 77.83 365 | 90.94 364 | 94.22 77 | 93.63 366 | 87.75 293 | 69.61 369 | 99.79 97 |
|
| WTY-MVS | | | 98.10 60 | 97.60 75 | 99.60 22 | 98.92 124 | 99.28 17 | 99.89 95 | 99.52 15 | 95.58 85 | 98.24 128 | 99.39 123 | 93.33 99 | 99.74 134 | 97.98 119 | 95.58 208 | 99.78 100 |
|
| CHOSEN 280x420 | | | 99.01 13 | 99.03 10 | 98.95 76 | 99.38 95 | 98.87 32 | 98.46 303 | 99.42 22 | 97.03 42 | 99.02 89 | 99.09 145 | 99.35 1 | 98.21 234 | 99.73 32 | 99.78 79 | 99.77 101 |
|
| MP-MVS-pluss | | | 98.07 61 | 97.64 73 | 99.38 41 | 99.74 69 | 98.41 60 | 99.74 153 | 98.18 184 | 93.35 162 | 96.45 169 | 99.85 30 | 92.64 121 | 99.97 53 | 98.91 72 | 99.89 66 | 99.77 101 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| EPMVS | | | 96.53 127 | 96.01 124 | 98.09 128 | 98.43 154 | 96.12 144 | 96.36 353 | 99.43 21 | 93.53 158 | 97.64 141 | 95.04 319 | 94.41 67 | 98.38 218 | 91.13 246 | 98.11 153 | 99.75 103 |
|
| Vis-MVSNet (Re-imp) | | | 96.32 136 | 95.98 127 | 97.35 171 | 97.93 183 | 94.82 186 | 99.47 204 | 98.15 191 | 91.83 218 | 95.09 195 | 99.11 144 | 91.37 147 | 97.47 265 | 93.47 217 | 97.43 166 | 99.74 104 |
|
| DP-MVS | | | 94.54 185 | 93.42 204 | 97.91 136 | 99.46 93 | 94.04 206 | 98.93 267 | 97.48 252 | 81.15 359 | 90.04 253 | 99.55 108 | 87.02 206 | 99.95 69 | 88.97 278 | 98.11 153 | 99.73 105 |
|
| TAPA-MVS | | 92.12 8 | 94.42 190 | 93.60 197 | 96.90 182 | 99.33 97 | 91.78 262 | 99.78 139 | 98.00 201 | 89.89 266 | 94.52 200 | 99.47 114 | 91.97 140 | 99.18 168 | 69.90 373 | 99.52 99 | 99.73 105 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| canonicalmvs | | | 97.09 104 | 96.32 117 | 99.39 40 | 98.93 122 | 98.95 27 | 99.72 161 | 97.35 263 | 94.45 115 | 97.88 137 | 99.42 118 | 86.71 209 | 99.52 151 | 98.48 95 | 93.97 226 | 99.72 107 |
|
| TESTMET0.1,1 | | | 96.74 118 | 96.26 118 | 98.16 123 | 97.36 221 | 96.48 123 | 99.96 34 | 98.29 172 | 91.93 215 | 95.77 186 | 98.07 215 | 95.54 42 | 98.29 226 | 90.55 260 | 98.89 130 | 99.70 108 |
|
| PatchmatchNet |  | | 95.94 148 | 95.45 149 | 97.39 167 | 97.83 189 | 94.41 195 | 96.05 360 | 98.40 146 | 92.86 174 | 97.09 152 | 95.28 314 | 94.21 79 | 98.07 241 | 89.26 276 | 98.11 153 | 99.70 108 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| VNet | | | 97.21 100 | 96.57 111 | 99.13 63 | 98.97 118 | 97.82 76 | 99.03 258 | 99.21 29 | 94.31 125 | 99.18 84 | 98.88 172 | 86.26 215 | 99.89 96 | 98.93 69 | 94.32 221 | 99.69 110 |
|
| Anonymous202405211 | | | 93.10 225 | 91.99 237 | 96.40 198 | 99.10 108 | 89.65 307 | 98.88 272 | 97.93 209 | 83.71 346 | 94.00 208 | 98.75 183 | 68.79 341 | 99.88 102 | 95.08 176 | 91.71 236 | 99.68 111 |
|
| mvs_anonymous | | | 95.65 159 | 95.03 164 | 97.53 158 | 98.19 169 | 95.74 153 | 99.33 221 | 97.49 251 | 90.87 246 | 90.47 248 | 97.10 244 | 88.23 193 | 97.16 282 | 95.92 166 | 97.66 163 | 99.68 111 |
|
| GG-mvs-BLEND | | | | | 98.54 103 | 98.21 167 | 98.01 68 | 93.87 372 | 98.52 101 | | 97.92 134 | 97.92 223 | 99.02 2 | 97.94 250 | 98.17 106 | 99.58 96 | 99.67 113 |
|
| gg-mvs-nofinetune | | | 93.51 215 | 91.86 241 | 98.47 108 | 97.72 200 | 97.96 72 | 92.62 376 | 98.51 104 | 74.70 378 | 97.33 148 | 69.59 391 | 98.91 3 | 97.79 254 | 97.77 130 | 99.56 97 | 99.67 113 |
|
| alignmvs | | | 97.81 72 | 97.33 85 | 99.25 44 | 98.77 137 | 98.66 49 | 99.99 4 | 98.44 119 | 94.40 121 | 98.41 118 | 99.47 114 | 93.65 94 | 99.42 162 | 98.57 92 | 94.26 222 | 99.67 113 |
|
| LFMVS | | | 94.75 179 | 93.56 200 | 98.30 119 | 99.03 112 | 95.70 156 | 98.74 286 | 97.98 204 | 87.81 302 | 98.47 116 | 99.39 123 | 67.43 349 | 99.53 150 | 98.01 115 | 95.20 215 | 99.67 113 |
|
| MDTV_nov1_ep13_2view | | | | | | | 96.26 133 | 96.11 359 | | 91.89 216 | 98.06 130 | | 94.40 68 | | 94.30 197 | | 99.67 113 |
|
| MAR-MVS | | | 97.43 87 | 97.19 90 | 98.15 126 | 99.47 91 | 94.79 188 | 99.05 255 | 98.76 63 | 92.65 188 | 98.66 108 | 99.82 46 | 88.52 192 | 99.98 43 | 98.12 109 | 99.63 88 | 99.67 113 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| test2506 | | | 97.53 85 | 97.19 90 | 98.58 98 | 98.66 142 | 96.90 113 | 98.81 281 | 99.77 5 | 94.93 99 | 97.95 133 | 98.96 161 | 92.51 126 | 99.20 166 | 94.93 179 | 98.15 150 | 99.64 119 |
|
| test1111 | | | 95.57 160 | 94.98 166 | 97.37 168 | 98.56 145 | 93.37 226 | 98.86 276 | 98.45 115 | 94.95 98 | 96.63 164 | 98.95 166 | 75.21 315 | 99.11 171 | 95.02 177 | 98.14 152 | 99.64 119 |
|
| ECVR-MVS |  | | 95.66 158 | 95.05 163 | 97.51 160 | 98.66 142 | 93.71 215 | 98.85 278 | 98.45 115 | 94.93 99 | 96.86 158 | 98.96 161 | 75.22 314 | 99.20 166 | 95.34 171 | 98.15 150 | 99.64 119 |
|
| test-LLR | | | 96.47 128 | 96.04 123 | 97.78 142 | 97.02 235 | 95.44 164 | 99.96 34 | 98.21 180 | 94.07 136 | 95.55 188 | 96.38 269 | 93.90 88 | 98.27 230 | 90.42 263 | 98.83 134 | 99.64 119 |
|
| test-mter | | | 96.39 133 | 95.93 135 | 97.78 142 | 97.02 235 | 95.44 164 | 99.96 34 | 98.21 180 | 91.81 220 | 95.55 188 | 96.38 269 | 95.17 48 | 98.27 230 | 90.42 263 | 98.83 134 | 99.64 119 |
|
| EC-MVSNet | | | 97.38 94 | 97.24 87 | 97.80 139 | 97.41 217 | 95.64 158 | 99.99 4 | 97.06 294 | 94.59 112 | 99.63 43 | 99.32 128 | 89.20 185 | 98.14 236 | 98.76 81 | 99.23 120 | 99.62 124 |
|
| sss | | | 97.57 84 | 97.03 97 | 99.18 50 | 98.37 157 | 98.04 67 | 99.73 158 | 99.38 23 | 93.46 160 | 98.76 102 | 99.06 148 | 91.21 148 | 99.89 96 | 96.33 159 | 97.01 179 | 99.62 124 |
|
| QAPM | | | 95.40 164 | 94.17 183 | 99.10 64 | 96.92 239 | 97.71 79 | 99.40 210 | 98.68 70 | 89.31 271 | 88.94 283 | 98.89 171 | 82.48 244 | 99.96 61 | 93.12 225 | 99.83 72 | 99.62 124 |
|
| MVS_Test | | | 96.46 129 | 95.74 142 | 98.61 94 | 98.18 170 | 97.23 99 | 99.31 224 | 97.15 284 | 91.07 242 | 98.84 96 | 97.05 248 | 88.17 194 | 98.97 175 | 94.39 194 | 97.50 165 | 99.61 127 |
|
| EPNet | | | 98.49 36 | 98.40 31 | 98.77 84 | 99.62 80 | 96.80 116 | 99.90 87 | 99.51 17 | 97.60 22 | 99.20 81 | 99.36 126 | 93.71 93 | 99.91 89 | 97.99 117 | 98.71 137 | 99.61 127 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| IB-MVS | | 92.85 6 | 94.99 172 | 93.94 189 | 98.16 123 | 97.72 200 | 95.69 157 | 99.99 4 | 98.81 60 | 94.28 127 | 92.70 223 | 96.90 252 | 95.08 51 | 99.17 169 | 96.07 163 | 73.88 362 | 99.60 129 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| ET-MVSNet_ETH3D | | | 94.37 192 | 93.28 210 | 97.64 152 | 98.30 159 | 97.99 69 | 99.99 4 | 97.61 236 | 94.35 122 | 71.57 378 | 99.45 117 | 96.23 31 | 95.34 348 | 96.91 154 | 85.14 293 | 99.59 130 |
|
| EIA-MVS | | | 97.53 85 | 97.46 79 | 97.76 146 | 98.04 178 | 94.84 185 | 99.98 14 | 97.61 236 | 94.41 120 | 97.90 135 | 99.59 104 | 92.40 130 | 98.87 179 | 98.04 114 | 99.13 124 | 99.59 130 |
|
| GSMVS | | | | | | | | | | | | | | | | | 99.59 130 |
|
| sam_mvs1 | | | | | | | | | | | | | 94.72 61 | | | | 99.59 130 |
|
| Fast-Effi-MVS+ | | | 95.02 171 | 94.19 182 | 97.52 159 | 97.88 185 | 94.55 191 | 99.97 27 | 97.08 292 | 88.85 285 | 94.47 202 | 97.96 222 | 84.59 230 | 98.41 210 | 89.84 272 | 97.10 174 | 99.59 130 |
|
| SCA | | | 94.69 180 | 93.81 193 | 97.33 172 | 97.10 231 | 94.44 192 | 98.86 276 | 98.32 166 | 93.30 165 | 96.17 178 | 95.59 293 | 76.48 301 | 97.95 248 | 91.06 248 | 97.43 166 | 99.59 130 |
|
| PVSNet | | 91.05 13 | 97.13 101 | 96.69 107 | 98.45 110 | 99.52 87 | 95.81 149 | 99.95 52 | 99.65 12 | 94.73 107 | 99.04 88 | 99.21 139 | 84.48 231 | 99.95 69 | 94.92 180 | 98.74 136 | 99.58 136 |
|
| PVSNet_Blended | | | 97.94 63 | 97.64 73 | 98.83 81 | 99.59 81 | 96.99 109 | 100.00 1 | 99.10 31 | 95.38 90 | 98.27 125 | 99.08 146 | 89.00 187 | 99.95 69 | 99.12 58 | 99.25 118 | 99.57 137 |
|
| ab-mvs | | | 94.69 180 | 93.42 204 | 98.51 106 | 98.07 176 | 96.26 133 | 96.49 351 | 98.68 70 | 90.31 259 | 94.54 199 | 97.00 250 | 76.30 303 | 99.71 138 | 95.98 165 | 93.38 231 | 99.56 138 |
|
| test_fmvsmconf0.01_n | | | 96.39 133 | 95.74 142 | 98.32 118 | 91.47 356 | 95.56 161 | 99.84 120 | 97.30 269 | 97.74 18 | 97.89 136 | 99.35 127 | 79.62 272 | 99.85 108 | 99.25 54 | 99.24 119 | 99.55 139 |
|
| Test_1112_low_res | | | 95.72 153 | 94.83 169 | 98.42 113 | 97.79 192 | 96.41 126 | 99.65 173 | 96.65 330 | 92.70 184 | 92.86 222 | 96.13 278 | 92.15 136 | 99.30 163 | 91.88 238 | 93.64 228 | 99.55 139 |
|
| 1112_ss | | | 96.01 146 | 95.20 158 | 98.42 113 | 97.80 191 | 96.41 126 | 99.65 173 | 96.66 329 | 92.71 183 | 92.88 221 | 99.40 121 | 92.16 135 | 99.30 163 | 91.92 237 | 93.66 227 | 99.55 139 |
|
| DeepC-MVS | | 94.51 4 | 96.92 110 | 96.40 116 | 98.45 110 | 99.16 106 | 95.90 147 | 99.66 171 | 98.06 197 | 96.37 68 | 94.37 203 | 99.49 113 | 83.29 241 | 99.90 91 | 97.63 134 | 99.61 93 | 99.55 139 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| CS-MVS | | | 97.79 75 | 97.91 64 | 97.43 164 | 99.10 108 | 94.42 194 | 99.99 4 | 97.10 289 | 95.07 96 | 99.68 37 | 99.75 69 | 92.95 112 | 98.34 222 | 98.38 98 | 99.14 123 | 99.54 143 |
|
| LCM-MVSNet-Re | | | 92.31 243 | 92.60 223 | 91.43 323 | 97.53 211 | 79.27 373 | 99.02 259 | 91.83 387 | 92.07 210 | 80.31 353 | 94.38 340 | 83.50 239 | 95.48 345 | 97.22 143 | 97.58 164 | 99.54 143 |
|
| casdiffmvs |  | | 96.42 132 | 95.97 130 | 97.77 144 | 97.30 226 | 94.98 181 | 99.84 120 | 97.09 291 | 93.75 153 | 96.58 166 | 99.26 135 | 85.07 225 | 98.78 184 | 97.77 130 | 97.04 177 | 99.54 143 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| dp | | | 95.05 170 | 94.43 176 | 96.91 181 | 97.99 180 | 92.73 239 | 96.29 356 | 97.98 204 | 89.70 268 | 95.93 182 | 94.67 332 | 93.83 91 | 98.45 207 | 86.91 308 | 96.53 186 | 99.54 143 |
|
| CS-MVS-test | | | 97.88 66 | 97.94 62 | 97.70 149 | 99.28 99 | 95.20 177 | 99.98 14 | 97.15 284 | 95.53 87 | 99.62 46 | 99.79 55 | 92.08 138 | 98.38 218 | 98.75 82 | 99.28 117 | 99.52 147 |
|
| Effi-MVS+ | | | 96.30 138 | 95.69 144 | 98.16 123 | 97.85 188 | 96.26 133 | 97.41 334 | 97.21 277 | 90.37 257 | 98.65 109 | 98.58 195 | 86.61 211 | 98.70 192 | 97.11 145 | 97.37 170 | 99.52 147 |
|
| PatchT | | | 90.38 282 | 88.75 298 | 95.25 229 | 95.99 267 | 90.16 297 | 91.22 383 | 97.54 244 | 76.80 370 | 97.26 149 | 86.01 382 | 91.88 141 | 96.07 337 | 66.16 381 | 95.91 200 | 99.51 149 |
|
| tpm | | | 93.70 211 | 93.41 206 | 94.58 253 | 95.36 291 | 87.41 331 | 97.01 343 | 96.90 313 | 90.85 247 | 96.72 163 | 94.14 342 | 90.40 167 | 96.84 306 | 90.75 257 | 88.54 260 | 99.51 149 |
|
| CostFormer | | | 96.10 142 | 95.88 139 | 96.78 185 | 97.03 234 | 92.55 245 | 97.08 342 | 97.83 221 | 90.04 264 | 98.72 105 | 94.89 326 | 95.01 55 | 98.29 226 | 96.54 158 | 95.77 203 | 99.50 151 |
|
| tpmrst | | | 96.27 141 | 95.98 127 | 97.13 176 | 97.96 181 | 93.15 228 | 96.34 354 | 98.17 185 | 92.07 210 | 98.71 106 | 95.12 317 | 93.91 87 | 98.73 188 | 94.91 182 | 96.62 184 | 99.50 151 |
|
| casdiffmvs_mvg |  | | 96.43 130 | 95.94 134 | 97.89 138 | 97.44 216 | 95.47 163 | 99.86 113 | 97.29 271 | 93.35 162 | 96.03 179 | 99.19 140 | 85.39 222 | 98.72 190 | 97.89 124 | 97.04 177 | 99.49 153 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| IS-MVSNet | | | 96.29 139 | 95.90 138 | 97.45 162 | 98.13 174 | 94.80 187 | 99.08 246 | 97.61 236 | 92.02 214 | 95.54 190 | 98.96 161 | 90.64 163 | 98.08 239 | 93.73 214 | 97.41 169 | 99.47 154 |
|
| ETV-MVS | | | 97.92 65 | 97.80 69 | 98.25 121 | 98.14 173 | 96.48 123 | 99.98 14 | 97.63 231 | 95.61 84 | 99.29 79 | 99.46 116 | 92.55 125 | 98.82 181 | 99.02 66 | 98.54 139 | 99.46 155 |
|
| baseline | | | 96.43 130 | 95.98 127 | 97.76 146 | 97.34 222 | 95.17 179 | 99.51 197 | 97.17 281 | 93.92 147 | 96.90 157 | 99.28 129 | 85.37 223 | 98.64 196 | 97.50 136 | 96.86 183 | 99.46 155 |
|
| lupinMVS | | | 97.85 68 | 97.60 75 | 98.62 93 | 97.28 228 | 97.70 81 | 99.99 4 | 97.55 242 | 95.50 89 | 99.43 66 | 99.67 94 | 90.92 157 | 98.71 191 | 98.40 97 | 99.62 89 | 99.45 157 |
|
| PMMVS | | | 96.76 116 | 96.76 105 | 96.76 186 | 98.28 162 | 92.10 253 | 99.91 82 | 97.98 204 | 94.12 133 | 99.53 57 | 99.39 123 | 86.93 208 | 98.73 188 | 96.95 152 | 97.73 160 | 99.45 157 |
|
| UA-Net | | | 96.54 126 | 95.96 131 | 98.27 120 | 98.23 165 | 95.71 155 | 98.00 325 | 98.45 115 | 93.72 154 | 98.41 118 | 99.27 132 | 88.71 191 | 99.66 146 | 91.19 245 | 97.69 161 | 99.44 159 |
|
| CVMVSNet | | | 94.68 182 | 94.94 167 | 93.89 284 | 96.80 248 | 86.92 335 | 99.06 251 | 98.98 38 | 94.45 115 | 94.23 206 | 99.02 150 | 85.60 218 | 95.31 349 | 90.91 253 | 95.39 211 | 99.43 160 |
|
| PVSNet_Blended_VisFu | | | 97.27 97 | 96.81 103 | 98.66 90 | 98.81 134 | 96.67 118 | 99.92 78 | 98.64 76 | 94.51 114 | 96.38 173 | 98.49 201 | 89.05 186 | 99.88 102 | 97.10 146 | 98.34 143 | 99.43 160 |
|
| PLC |  | 95.54 3 | 97.93 64 | 97.89 66 | 98.05 130 | 99.82 58 | 94.77 189 | 99.92 78 | 98.46 114 | 93.93 146 | 97.20 150 | 99.27 132 | 95.44 45 | 99.97 53 | 97.41 137 | 99.51 102 | 99.41 162 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| PCF-MVS | | 94.20 5 | 95.18 167 | 94.10 184 | 98.43 112 | 98.55 147 | 95.99 145 | 97.91 327 | 97.31 268 | 90.35 258 | 89.48 269 | 99.22 138 | 85.19 224 | 99.89 96 | 90.40 265 | 98.47 141 | 99.41 162 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| tpm2 | | | 95.47 162 | 95.18 159 | 96.35 201 | 96.91 240 | 91.70 267 | 96.96 345 | 97.93 209 | 88.04 299 | 98.44 117 | 95.40 303 | 93.32 100 | 97.97 245 | 94.00 201 | 95.61 207 | 99.38 164 |
|
| OMC-MVS | | | 97.28 96 | 97.23 88 | 97.41 165 | 99.76 66 | 93.36 227 | 99.65 173 | 97.95 207 | 96.03 75 | 97.41 147 | 99.70 85 | 89.61 176 | 99.51 152 | 96.73 156 | 98.25 149 | 99.38 164 |
|
| GeoE | | | 94.36 194 | 93.48 202 | 96.99 179 | 97.29 227 | 93.54 219 | 99.96 34 | 96.72 327 | 88.35 295 | 93.43 212 | 98.94 168 | 82.05 246 | 98.05 242 | 88.12 290 | 96.48 188 | 99.37 166 |
|
| ADS-MVSNet2 | | | 93.80 206 | 93.88 191 | 93.55 295 | 97.87 186 | 85.94 339 | 94.24 368 | 96.84 318 | 90.07 262 | 96.43 170 | 94.48 337 | 90.29 169 | 95.37 347 | 87.44 295 | 97.23 171 | 99.36 167 |
|
| ADS-MVSNet | | | 94.79 176 | 94.02 186 | 97.11 178 | 97.87 186 | 93.79 212 | 94.24 368 | 98.16 189 | 90.07 262 | 96.43 170 | 94.48 337 | 90.29 169 | 98.19 235 | 87.44 295 | 97.23 171 | 99.36 167 |
|
| FA-MVS(test-final) | | | 95.86 149 | 95.09 162 | 98.15 126 | 97.74 195 | 95.62 159 | 96.31 355 | 98.17 185 | 91.42 233 | 96.26 175 | 96.13 278 | 90.56 164 | 99.47 160 | 92.18 234 | 97.07 175 | 99.35 169 |
|
| BH-RMVSNet | | | 95.18 167 | 94.31 180 | 97.80 139 | 98.17 171 | 95.23 175 | 99.76 147 | 97.53 246 | 92.52 197 | 94.27 205 | 99.25 136 | 76.84 296 | 98.80 182 | 90.89 254 | 99.54 98 | 99.35 169 |
|
| TR-MVS | | | 94.54 185 | 93.56 200 | 97.49 161 | 97.96 181 | 94.34 198 | 98.71 289 | 97.51 249 | 90.30 260 | 94.51 201 | 98.69 184 | 75.56 309 | 98.77 185 | 92.82 228 | 95.99 195 | 99.35 169 |
|
| diffmvs |  | | 97.00 106 | 96.64 108 | 98.09 128 | 97.64 206 | 96.17 141 | 99.81 132 | 97.19 278 | 94.67 111 | 98.95 91 | 99.28 129 | 86.43 212 | 98.76 186 | 98.37 99 | 97.42 168 | 99.33 172 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| JIA-IIPM | | | 91.76 257 | 90.70 257 | 94.94 238 | 96.11 263 | 87.51 330 | 93.16 375 | 98.13 193 | 75.79 374 | 97.58 142 | 77.68 388 | 92.84 115 | 97.97 245 | 88.47 285 | 96.54 185 | 99.33 172 |
|
| FE-MVS | | | 95.70 157 | 95.01 165 | 97.79 141 | 98.21 167 | 94.57 190 | 95.03 367 | 98.69 68 | 88.90 283 | 97.50 145 | 96.19 275 | 92.60 123 | 99.49 158 | 89.99 270 | 97.94 159 | 99.31 174 |
|
| thres200 | | | 96.96 107 | 96.21 120 | 99.22 46 | 98.97 118 | 98.84 35 | 99.85 116 | 99.71 7 | 93.17 169 | 96.26 175 | 98.88 172 | 89.87 173 | 99.51 152 | 94.26 198 | 94.91 216 | 99.31 174 |
|
| CDS-MVSNet | | | 96.34 135 | 96.07 122 | 97.13 176 | 97.37 220 | 94.96 182 | 99.53 194 | 97.91 213 | 91.55 226 | 95.37 192 | 98.32 210 | 95.05 53 | 97.13 285 | 93.80 210 | 95.75 205 | 99.30 176 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| Vis-MVSNet |  | | 95.72 153 | 95.15 160 | 97.45 162 | 97.62 207 | 94.28 199 | 99.28 230 | 98.24 177 | 94.27 129 | 96.84 159 | 98.94 168 | 79.39 274 | 98.76 186 | 93.25 219 | 98.49 140 | 99.30 176 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| test_vis1_n | | | 93.61 213 | 93.03 214 | 95.35 224 | 95.86 271 | 86.94 334 | 99.87 100 | 96.36 340 | 96.85 46 | 99.54 56 | 98.79 181 | 52.41 380 | 99.83 118 | 98.64 89 | 98.97 129 | 99.29 178 |
|
| thres100view900 | | | 96.74 118 | 95.92 137 | 99.18 50 | 98.90 129 | 98.77 40 | 99.74 153 | 99.71 7 | 92.59 192 | 95.84 183 | 98.86 177 | 89.25 182 | 99.50 154 | 93.84 206 | 94.57 217 | 99.27 179 |
|
| tfpn200view9 | | | 96.79 114 | 95.99 125 | 99.19 49 | 98.94 120 | 98.82 36 | 99.78 139 | 99.71 7 | 92.86 174 | 96.02 180 | 98.87 175 | 89.33 180 | 99.50 154 | 93.84 206 | 94.57 217 | 99.27 179 |
|
| MVSFormer | | | 96.94 108 | 96.60 109 | 97.95 132 | 97.28 228 | 97.70 81 | 99.55 191 | 97.27 273 | 91.17 238 | 99.43 66 | 99.54 110 | 90.92 157 | 96.89 303 | 94.67 190 | 99.62 89 | 99.25 181 |
|
| jason | | | 97.24 98 | 96.86 101 | 98.38 116 | 95.73 279 | 97.32 97 | 99.97 27 | 97.40 260 | 95.34 92 | 98.60 112 | 99.54 110 | 87.70 196 | 98.56 199 | 97.94 120 | 99.47 104 | 99.25 181 |
| jason: jason. |
| EPP-MVSNet | | | 96.69 121 | 96.60 109 | 96.96 180 | 97.74 195 | 93.05 231 | 99.37 217 | 98.56 89 | 88.75 286 | 95.83 185 | 99.01 152 | 96.01 32 | 98.56 199 | 96.92 153 | 97.20 173 | 99.25 181 |
|
| EPNet_dtu | | | 95.71 155 | 95.39 151 | 96.66 190 | 98.92 124 | 93.41 224 | 99.57 187 | 98.90 47 | 96.19 73 | 97.52 143 | 98.56 197 | 92.65 120 | 97.36 267 | 77.89 356 | 98.33 144 | 99.20 184 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| GA-MVS | | | 93.83 203 | 92.84 217 | 96.80 184 | 95.73 279 | 93.57 217 | 99.88 97 | 97.24 276 | 92.57 194 | 92.92 219 | 96.66 261 | 78.73 282 | 97.67 259 | 87.75 293 | 94.06 225 | 99.17 185 |
|
| thisisatest0515 | | | 97.41 92 | 97.02 98 | 98.59 97 | 97.71 202 | 97.52 87 | 99.97 27 | 98.54 98 | 91.83 218 | 97.45 146 | 99.04 149 | 97.50 9 | 99.10 172 | 94.75 187 | 96.37 190 | 99.16 186 |
|
| thres600view7 | | | 96.69 121 | 95.87 140 | 99.14 59 | 98.90 129 | 98.78 39 | 99.74 153 | 99.71 7 | 92.59 192 | 95.84 183 | 98.86 177 | 89.25 182 | 99.50 154 | 93.44 218 | 94.50 220 | 99.16 186 |
|
| thres400 | | | 96.78 115 | 95.99 125 | 99.16 55 | 98.94 120 | 98.82 36 | 99.78 139 | 99.71 7 | 92.86 174 | 96.02 180 | 98.87 175 | 89.33 180 | 99.50 154 | 93.84 206 | 94.57 217 | 99.16 186 |
|
| TAMVS | | | 95.85 150 | 95.58 147 | 96.65 191 | 97.07 232 | 93.50 220 | 99.17 239 | 97.82 222 | 91.39 235 | 95.02 196 | 98.01 216 | 92.20 134 | 97.30 274 | 93.75 213 | 95.83 202 | 99.14 189 |
|
| CR-MVSNet | | | 93.45 218 | 92.62 222 | 95.94 209 | 96.29 258 | 92.66 241 | 92.01 379 | 96.23 342 | 92.62 189 | 96.94 155 | 93.31 350 | 91.04 154 | 96.03 338 | 79.23 349 | 95.96 196 | 99.13 190 |
|
| RPMNet | | | 89.76 297 | 87.28 312 | 97.19 175 | 96.29 258 | 92.66 241 | 92.01 379 | 98.31 168 | 70.19 384 | 96.94 155 | 85.87 383 | 87.25 203 | 99.78 125 | 62.69 385 | 95.96 196 | 99.13 190 |
|
| tpm cat1 | | | 93.51 215 | 92.52 228 | 96.47 193 | 97.77 193 | 91.47 273 | 96.13 358 | 98.06 197 | 80.98 360 | 92.91 220 | 93.78 345 | 89.66 174 | 98.87 179 | 87.03 304 | 96.39 189 | 99.09 192 |
|
| BH-w/o | | | 95.71 155 | 95.38 152 | 96.68 189 | 98.49 152 | 92.28 249 | 99.84 120 | 97.50 250 | 92.12 209 | 92.06 233 | 98.79 181 | 84.69 229 | 98.67 195 | 95.29 173 | 99.66 86 | 99.09 192 |
|
| fmvsm_s_conf0.5_n_a | | | 97.73 80 | 97.72 70 | 97.77 144 | 98.63 144 | 94.26 200 | 99.96 34 | 98.92 46 | 97.18 39 | 99.75 29 | 99.69 87 | 87.00 207 | 99.97 53 | 99.46 44 | 98.89 130 | 99.08 194 |
|
| LS3D | | | 95.84 151 | 95.11 161 | 98.02 131 | 99.85 54 | 95.10 180 | 98.74 286 | 98.50 109 | 87.22 309 | 93.66 211 | 99.86 26 | 87.45 200 | 99.95 69 | 90.94 252 | 99.81 78 | 99.02 195 |
|
| MIMVSNet | | | 90.30 285 | 88.67 299 | 95.17 232 | 96.45 257 | 91.64 269 | 92.39 377 | 97.15 284 | 85.99 324 | 90.50 247 | 93.19 352 | 66.95 350 | 94.86 355 | 82.01 338 | 93.43 229 | 99.01 196 |
|
| thisisatest0530 | | | 97.10 102 | 96.72 106 | 98.22 122 | 97.60 208 | 96.70 117 | 99.92 78 | 98.54 98 | 91.11 241 | 97.07 153 | 98.97 159 | 97.47 12 | 99.03 173 | 93.73 214 | 96.09 193 | 98.92 197 |
|
| BH-untuned | | | 95.18 167 | 94.83 169 | 96.22 204 | 98.36 158 | 91.22 275 | 99.80 136 | 97.32 267 | 90.91 245 | 91.08 241 | 98.67 185 | 83.51 238 | 98.54 201 | 94.23 199 | 99.61 93 | 98.92 197 |
|
| F-COLMAP | | | 96.93 109 | 96.95 99 | 96.87 183 | 99.71 75 | 91.74 263 | 99.85 116 | 97.95 207 | 93.11 171 | 95.72 187 | 99.16 143 | 92.35 131 | 99.94 77 | 95.32 172 | 99.35 114 | 98.92 197 |
|
| Anonymous20240529 | | | 92.10 247 | 90.65 258 | 96.47 193 | 98.82 133 | 90.61 287 | 98.72 288 | 98.67 73 | 75.54 375 | 93.90 210 | 98.58 195 | 66.23 353 | 99.90 91 | 94.70 189 | 90.67 239 | 98.90 200 |
|
| tttt0517 | | | 96.85 111 | 96.49 113 | 97.92 134 | 97.48 215 | 95.89 148 | 99.85 116 | 98.54 98 | 90.72 252 | 96.63 164 | 98.93 170 | 97.47 12 | 99.02 174 | 93.03 226 | 95.76 204 | 98.85 201 |
|
| baseline1 | | | 95.78 152 | 94.86 168 | 98.54 103 | 98.47 153 | 98.07 65 | 99.06 251 | 97.99 202 | 92.68 186 | 94.13 207 | 98.62 192 | 93.28 103 | 98.69 193 | 93.79 211 | 85.76 286 | 98.84 202 |
|
| VDD-MVS | | | 93.77 207 | 92.94 215 | 96.27 203 | 98.55 147 | 90.22 296 | 98.77 285 | 97.79 223 | 90.85 247 | 96.82 160 | 99.42 118 | 61.18 370 | 99.77 128 | 98.95 67 | 94.13 223 | 98.82 203 |
|
| PatchMatch-RL | | | 96.04 145 | 95.40 150 | 97.95 132 | 99.59 81 | 95.22 176 | 99.52 195 | 99.07 34 | 93.96 144 | 96.49 168 | 98.35 209 | 82.28 245 | 99.82 120 | 90.15 268 | 99.22 121 | 98.81 204 |
|
| PVSNet_0 | | 88.03 19 | 91.80 254 | 90.27 267 | 96.38 200 | 98.27 163 | 90.46 291 | 99.94 68 | 99.61 14 | 93.99 142 | 86.26 324 | 97.39 237 | 71.13 335 | 99.89 96 | 98.77 80 | 67.05 378 | 98.79 205 |
|
| test_vis1_n_1920 | | | 95.44 163 | 95.31 154 | 95.82 213 | 98.50 151 | 88.74 315 | 99.98 14 | 97.30 269 | 97.84 16 | 99.85 9 | 99.19 140 | 66.82 351 | 99.97 53 | 98.82 77 | 99.46 106 | 98.76 206 |
|
| tpmvs | | | 94.28 196 | 93.57 199 | 96.40 198 | 98.55 147 | 91.50 272 | 95.70 366 | 98.55 95 | 87.47 304 | 92.15 230 | 94.26 341 | 91.42 145 | 98.95 177 | 88.15 288 | 95.85 201 | 98.76 206 |
|
| fmvsm_s_conf0.1_n_a | | | 97.09 104 | 96.90 100 | 97.63 154 | 95.65 285 | 94.21 202 | 99.83 127 | 98.50 109 | 96.27 70 | 99.65 40 | 99.64 99 | 84.72 228 | 99.93 85 | 99.04 63 | 98.84 133 | 98.74 208 |
|
| test_cas_vis1_n_1920 | | | 96.59 125 | 96.23 119 | 97.65 151 | 98.22 166 | 94.23 201 | 99.99 4 | 97.25 275 | 97.77 17 | 99.58 53 | 99.08 146 | 77.10 291 | 99.97 53 | 97.64 133 | 99.45 107 | 98.74 208 |
|
| h-mvs33 | | | 94.92 173 | 94.36 177 | 96.59 192 | 98.85 132 | 91.29 274 | 98.93 267 | 98.94 41 | 95.90 76 | 98.77 100 | 98.42 208 | 90.89 160 | 99.77 128 | 97.80 125 | 70.76 367 | 98.72 210 |
|
| xiu_mvs_v2_base | | | 98.23 56 | 97.97 58 | 99.02 70 | 98.69 140 | 98.66 49 | 99.52 195 | 98.08 196 | 97.05 41 | 99.86 7 | 99.86 26 | 90.65 162 | 99.71 138 | 99.39 50 | 98.63 138 | 98.69 211 |
|
| PS-MVSNAJ | | | 98.44 40 | 98.20 45 | 99.16 55 | 98.80 135 | 98.92 28 | 99.54 193 | 98.17 185 | 97.34 29 | 99.85 9 | 99.85 30 | 91.20 149 | 99.89 96 | 99.41 48 | 99.67 85 | 98.69 211 |
|
| fmvsm_s_conf0.5_n | | | 97.80 73 | 97.85 67 | 97.67 150 | 99.06 110 | 94.41 195 | 99.98 14 | 98.97 40 | 97.34 29 | 99.63 43 | 99.69 87 | 87.27 202 | 99.97 53 | 99.62 37 | 99.06 127 | 98.62 213 |
|
| test_fmvsm_n_1920 | | | 98.44 40 | 98.61 23 | 97.92 134 | 99.27 100 | 95.18 178 | 100.00 1 | 98.90 47 | 98.05 12 | 99.80 17 | 99.73 78 | 92.64 121 | 99.99 36 | 99.58 38 | 99.51 102 | 98.59 214 |
|
| fmvsm_s_conf0.1_n | | | 97.30 95 | 97.21 89 | 97.60 156 | 97.38 219 | 94.40 197 | 99.90 87 | 98.64 76 | 96.47 61 | 99.51 61 | 99.65 98 | 84.99 227 | 99.93 85 | 99.22 55 | 99.09 126 | 98.46 215 |
|
| test_fmvsmvis_n_1920 | | | 97.67 82 | 97.59 77 | 97.91 136 | 97.02 235 | 95.34 169 | 99.95 52 | 98.45 115 | 97.87 15 | 97.02 154 | 99.59 104 | 89.64 175 | 99.98 43 | 99.41 48 | 99.34 115 | 98.42 216 |
|
| dmvs_re | | | 93.20 221 | 93.15 212 | 93.34 298 | 96.54 256 | 83.81 350 | 98.71 289 | 98.51 104 | 91.39 235 | 92.37 229 | 98.56 197 | 78.66 283 | 97.83 253 | 93.89 204 | 89.74 240 | 98.38 217 |
|
| MSDG | | | 94.37 192 | 93.36 208 | 97.40 166 | 98.88 131 | 93.95 210 | 99.37 217 | 97.38 261 | 85.75 329 | 90.80 245 | 99.17 142 | 84.11 236 | 99.88 102 | 86.35 309 | 98.43 142 | 98.36 218 |
|
| CANet_DTU | | | 96.76 116 | 96.15 121 | 98.60 95 | 98.78 136 | 97.53 86 | 99.84 120 | 97.63 231 | 97.25 37 | 99.20 81 | 99.64 99 | 81.36 254 | 99.98 43 | 92.77 229 | 98.89 130 | 98.28 219 |
|
| test_fmvs1 | | | 95.35 165 | 95.68 146 | 94.36 266 | 98.99 116 | 84.98 345 | 99.96 34 | 96.65 330 | 97.60 22 | 99.73 32 | 98.96 161 | 71.58 331 | 99.93 85 | 98.31 102 | 99.37 113 | 98.17 220 |
|
| VDDNet | | | 93.12 224 | 91.91 239 | 96.76 186 | 96.67 255 | 92.65 243 | 98.69 292 | 98.21 180 | 82.81 352 | 97.75 140 | 99.28 129 | 61.57 368 | 99.48 159 | 98.09 112 | 94.09 224 | 98.15 221 |
|
| MVS-HIRNet | | | 86.22 319 | 83.19 332 | 95.31 227 | 96.71 254 | 90.29 294 | 92.12 378 | 97.33 266 | 62.85 385 | 86.82 313 | 70.37 390 | 69.37 340 | 97.49 264 | 75.12 365 | 97.99 158 | 98.15 221 |
|
| test_fmvs1_n | | | 94.25 197 | 94.36 177 | 93.92 281 | 97.68 203 | 83.70 351 | 99.90 87 | 96.57 333 | 97.40 28 | 99.67 38 | 98.88 172 | 61.82 367 | 99.92 88 | 98.23 104 | 99.13 124 | 98.14 223 |
|
| UGNet | | | 95.33 166 | 94.57 174 | 97.62 155 | 98.55 147 | 94.85 184 | 98.67 294 | 99.32 26 | 95.75 81 | 96.80 161 | 96.27 273 | 72.18 328 | 99.96 61 | 94.58 192 | 99.05 128 | 98.04 224 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| DSMNet-mixed | | | 88.28 310 | 88.24 305 | 88.42 348 | 89.64 369 | 75.38 377 | 98.06 323 | 89.86 391 | 85.59 331 | 88.20 297 | 92.14 360 | 76.15 306 | 91.95 377 | 78.46 354 | 96.05 194 | 97.92 225 |
|
| xiu_mvs_v1_base_debu | | | 97.43 87 | 97.06 93 | 98.55 100 | 97.74 195 | 98.14 62 | 99.31 224 | 97.86 218 | 96.43 62 | 99.62 46 | 99.69 87 | 85.56 219 | 99.68 142 | 99.05 60 | 98.31 145 | 97.83 226 |
|
| xiu_mvs_v1_base | | | 97.43 87 | 97.06 93 | 98.55 100 | 97.74 195 | 98.14 62 | 99.31 224 | 97.86 218 | 96.43 62 | 99.62 46 | 99.69 87 | 85.56 219 | 99.68 142 | 99.05 60 | 98.31 145 | 97.83 226 |
|
| xiu_mvs_v1_base_debi | | | 97.43 87 | 97.06 93 | 98.55 100 | 97.74 195 | 98.14 62 | 99.31 224 | 97.86 218 | 96.43 62 | 99.62 46 | 99.69 87 | 85.56 219 | 99.68 142 | 99.05 60 | 98.31 145 | 97.83 226 |
|
| UniMVSNet_ETH3D | | | 90.06 292 | 88.58 300 | 94.49 259 | 94.67 301 | 88.09 326 | 97.81 330 | 97.57 241 | 83.91 345 | 88.44 291 | 97.41 235 | 57.44 374 | 97.62 261 | 91.41 242 | 88.59 259 | 97.77 229 |
|
| cascas | | | 94.64 183 | 93.61 195 | 97.74 148 | 97.82 190 | 96.26 133 | 99.96 34 | 97.78 224 | 85.76 327 | 94.00 208 | 97.54 231 | 76.95 295 | 99.21 165 | 97.23 142 | 95.43 210 | 97.76 230 |
|
| SDMVSNet | | | 94.80 175 | 93.96 188 | 97.33 172 | 98.92 124 | 95.42 166 | 99.59 183 | 98.99 37 | 92.41 201 | 92.55 226 | 97.85 224 | 75.81 308 | 98.93 178 | 97.90 123 | 91.62 237 | 97.64 231 |
|
| sd_testset | | | 93.55 214 | 92.83 218 | 95.74 215 | 98.92 124 | 90.89 282 | 98.24 314 | 98.85 56 | 92.41 201 | 92.55 226 | 97.85 224 | 71.07 336 | 98.68 194 | 93.93 203 | 91.62 237 | 97.64 231 |
|
| hse-mvs2 | | | 94.38 191 | 94.08 185 | 95.31 227 | 98.27 163 | 90.02 301 | 99.29 229 | 98.56 89 | 95.90 76 | 98.77 100 | 98.00 217 | 90.89 160 | 98.26 232 | 97.80 125 | 69.20 373 | 97.64 231 |
|
| AUN-MVS | | | 93.28 219 | 92.60 223 | 95.34 225 | 98.29 160 | 90.09 299 | 99.31 224 | 98.56 89 | 91.80 221 | 96.35 174 | 98.00 217 | 89.38 179 | 98.28 228 | 92.46 230 | 69.22 372 | 97.64 231 |
|
| OpenMVS |  | 90.15 15 | 94.77 178 | 93.59 198 | 98.33 117 | 96.07 264 | 97.48 92 | 99.56 189 | 98.57 87 | 90.46 255 | 86.51 318 | 98.95 166 | 78.57 284 | 99.94 77 | 93.86 205 | 99.74 81 | 97.57 235 |
|
| baseline2 | | | 96.71 120 | 96.49 113 | 97.37 168 | 95.63 287 | 95.96 146 | 99.74 153 | 98.88 51 | 92.94 173 | 91.61 235 | 98.97 159 | 97.72 7 | 98.62 197 | 94.83 184 | 98.08 156 | 97.53 236 |
|
| tt0805 | | | 91.28 262 | 90.18 270 | 94.60 251 | 96.26 260 | 87.55 329 | 98.39 309 | 98.72 65 | 89.00 277 | 89.22 276 | 98.47 205 | 62.98 364 | 98.96 176 | 90.57 259 | 88.00 270 | 97.28 237 |
|
| RPSCF | | | 91.80 254 | 92.79 220 | 88.83 343 | 98.15 172 | 69.87 381 | 98.11 321 | 96.60 332 | 83.93 344 | 94.33 204 | 99.27 132 | 79.60 273 | 99.46 161 | 91.99 235 | 93.16 233 | 97.18 238 |
|
| test0.0.03 1 | | | 93.86 202 | 93.61 195 | 94.64 249 | 95.02 296 | 92.18 252 | 99.93 75 | 98.58 85 | 94.07 136 | 87.96 299 | 98.50 200 | 93.90 88 | 94.96 353 | 81.33 341 | 93.17 232 | 96.78 239 |
|
| AllTest | | | 92.48 239 | 91.64 242 | 95.00 236 | 99.01 113 | 88.43 321 | 98.94 266 | 96.82 321 | 86.50 318 | 88.71 286 | 98.47 205 | 74.73 318 | 99.88 102 | 85.39 316 | 96.18 191 | 96.71 240 |
|
| TestCases | | | | | 95.00 236 | 99.01 113 | 88.43 321 | | 96.82 321 | 86.50 318 | 88.71 286 | 98.47 205 | 74.73 318 | 99.88 102 | 85.39 316 | 96.18 191 | 96.71 240 |
|
| Syy-MVS | | | 90.00 293 | 90.63 259 | 88.11 350 | 97.68 203 | 74.66 378 | 99.71 163 | 98.35 159 | 90.79 249 | 92.10 231 | 98.67 185 | 79.10 279 | 93.09 370 | 63.35 384 | 95.95 198 | 96.59 242 |
|
| myMVS_eth3d | | | 94.46 189 | 94.76 171 | 93.55 295 | 97.68 203 | 90.97 277 | 99.71 163 | 98.35 159 | 90.79 249 | 92.10 231 | 98.67 185 | 92.46 129 | 93.09 370 | 87.13 301 | 95.95 198 | 96.59 242 |
|
| XVG-OURS-SEG-HR | | | 94.79 176 | 94.70 173 | 95.08 233 | 98.05 177 | 89.19 310 | 99.08 246 | 97.54 244 | 93.66 155 | 94.87 197 | 99.58 106 | 78.78 281 | 99.79 123 | 97.31 139 | 93.40 230 | 96.25 244 |
|
| XVG-OURS | | | 94.82 174 | 94.74 172 | 95.06 234 | 98.00 179 | 89.19 310 | 99.08 246 | 97.55 242 | 94.10 134 | 94.71 198 | 99.62 102 | 80.51 265 | 99.74 134 | 96.04 164 | 93.06 235 | 96.25 244 |
|
| Effi-MVS+-dtu | | | 94.53 187 | 95.30 155 | 92.22 316 | 97.77 193 | 82.54 356 | 99.59 183 | 97.06 294 | 94.92 101 | 95.29 193 | 95.37 307 | 85.81 217 | 97.89 251 | 94.80 185 | 97.07 175 | 96.23 246 |
|
| testing3 | | | 93.92 201 | 94.23 181 | 92.99 308 | 97.54 210 | 90.23 295 | 99.99 4 | 99.16 30 | 90.57 253 | 91.33 240 | 98.63 191 | 92.99 110 | 92.52 374 | 82.46 334 | 95.39 211 | 96.22 247 |
|
| testgi | | | 89.01 306 | 88.04 307 | 91.90 320 | 93.49 321 | 84.89 346 | 99.73 158 | 95.66 354 | 93.89 150 | 85.14 331 | 98.17 212 | 59.68 371 | 94.66 357 | 77.73 357 | 88.88 251 | 96.16 248 |
|
| Fast-Effi-MVS+-dtu | | | 93.72 210 | 93.86 192 | 93.29 300 | 97.06 233 | 86.16 337 | 99.80 136 | 96.83 319 | 92.66 187 | 92.58 225 | 97.83 226 | 81.39 253 | 97.67 259 | 89.75 273 | 96.87 182 | 96.05 249 |
|
| dmvs_testset | | | 83.79 334 | 86.07 318 | 76.94 365 | 92.14 346 | 48.60 400 | 96.75 348 | 90.27 390 | 89.48 269 | 78.65 360 | 98.55 199 | 79.25 275 | 86.65 388 | 66.85 379 | 82.69 308 | 95.57 250 |
|
| COLMAP_ROB |  | 90.47 14 | 92.18 246 | 91.49 248 | 94.25 269 | 99.00 115 | 88.04 327 | 98.42 308 | 96.70 328 | 82.30 355 | 88.43 293 | 99.01 152 | 76.97 294 | 99.85 108 | 86.11 312 | 96.50 187 | 94.86 251 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| HQP4-MVS | | | | | | | | | | | 93.37 213 | | | 98.39 214 | | | 94.53 252 |
|
| HQP-MVS | | | 94.61 184 | 94.50 175 | 94.92 239 | 95.78 272 | 91.85 259 | 99.87 100 | 97.89 214 | 96.82 48 | 93.37 213 | 98.65 188 | 80.65 263 | 98.39 214 | 97.92 121 | 89.60 241 | 94.53 252 |
|
| HQP_MVS | | | 94.49 188 | 94.36 177 | 94.87 240 | 95.71 282 | 91.74 263 | 99.84 120 | 97.87 216 | 96.38 65 | 93.01 217 | 98.59 193 | 80.47 267 | 98.37 220 | 97.79 128 | 89.55 244 | 94.52 254 |
|
| plane_prior5 | | | | | | | | | 97.87 216 | | | | | 98.37 220 | 97.79 128 | 89.55 244 | 94.52 254 |
|
| CLD-MVS | | | 94.06 200 | 93.90 190 | 94.55 255 | 96.02 266 | 90.69 284 | 99.98 14 | 97.72 225 | 96.62 58 | 91.05 243 | 98.85 180 | 77.21 290 | 98.47 203 | 98.11 110 | 89.51 246 | 94.48 256 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| iter_conf_final | | | 96.01 146 | 95.93 135 | 96.28 202 | 98.38 156 | 97.03 107 | 99.87 100 | 97.03 297 | 94.05 140 | 92.61 224 | 97.98 220 | 98.01 5 | 97.34 269 | 97.02 148 | 88.39 263 | 94.47 257 |
|
| nrg030 | | | 93.51 215 | 92.53 227 | 96.45 195 | 94.36 305 | 97.20 100 | 99.81 132 | 97.16 283 | 91.60 224 | 89.86 258 | 97.46 233 | 86.37 213 | 97.68 258 | 95.88 167 | 80.31 332 | 94.46 258 |
|
| VPNet | | | 91.81 251 | 90.46 261 | 95.85 212 | 94.74 299 | 95.54 162 | 98.98 261 | 98.59 84 | 92.14 208 | 90.77 246 | 97.44 234 | 68.73 343 | 97.54 263 | 94.89 183 | 77.89 345 | 94.46 258 |
|
| UniMVSNet_NR-MVSNet | | | 92.95 228 | 92.11 233 | 95.49 218 | 94.61 302 | 95.28 172 | 99.83 127 | 99.08 33 | 91.49 227 | 89.21 277 | 96.86 255 | 87.14 204 | 96.73 311 | 93.20 220 | 77.52 348 | 94.46 258 |
|
| DU-MVS | | | 92.46 240 | 91.45 249 | 95.49 218 | 94.05 310 | 95.28 172 | 99.81 132 | 98.74 64 | 92.25 207 | 89.21 277 | 96.64 263 | 81.66 250 | 96.73 311 | 93.20 220 | 77.52 348 | 94.46 258 |
|
| NR-MVSNet | | | 91.56 259 | 90.22 268 | 95.60 216 | 94.05 310 | 95.76 152 | 98.25 313 | 98.70 67 | 91.16 240 | 80.78 352 | 96.64 263 | 83.23 242 | 96.57 317 | 91.41 242 | 77.73 347 | 94.46 258 |
|
| iter_conf05 | | | 96.07 143 | 95.95 133 | 96.44 197 | 98.43 154 | 97.52 87 | 99.91 82 | 96.85 317 | 94.16 131 | 92.49 228 | 97.98 220 | 98.20 4 | 97.34 269 | 97.26 141 | 88.29 264 | 94.45 263 |
|
| TranMVSNet+NR-MVSNet | | | 91.68 258 | 90.61 260 | 94.87 240 | 93.69 317 | 93.98 209 | 99.69 166 | 98.65 74 | 91.03 243 | 88.44 291 | 96.83 259 | 80.05 270 | 96.18 331 | 90.26 267 | 76.89 356 | 94.45 263 |
|
| FIs | | | 94.10 198 | 93.43 203 | 96.11 206 | 94.70 300 | 96.82 115 | 99.58 185 | 98.93 45 | 92.54 195 | 89.34 272 | 97.31 238 | 87.62 198 | 97.10 288 | 94.22 200 | 86.58 282 | 94.40 265 |
|
| mvsmamba | | | 94.10 198 | 93.72 194 | 95.25 229 | 93.57 318 | 94.13 204 | 99.67 170 | 96.45 338 | 93.63 157 | 91.34 239 | 97.77 227 | 86.29 214 | 97.22 280 | 96.65 157 | 88.10 268 | 94.40 265 |
|
| ACMM | | 91.95 10 | 92.88 229 | 92.52 228 | 93.98 280 | 95.75 278 | 89.08 313 | 99.77 142 | 97.52 248 | 93.00 172 | 89.95 255 | 97.99 219 | 76.17 305 | 98.46 206 | 93.63 216 | 88.87 252 | 94.39 267 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| RRT_MVS | | | 93.14 223 | 92.92 216 | 93.78 286 | 93.31 325 | 90.04 300 | 99.66 171 | 97.69 227 | 92.53 196 | 88.91 284 | 97.76 228 | 84.36 232 | 96.93 301 | 95.10 175 | 86.99 280 | 94.37 268 |
|
| FC-MVSNet-test | | | 93.81 205 | 93.15 212 | 95.80 214 | 94.30 307 | 96.20 138 | 99.42 209 | 98.89 49 | 92.33 205 | 89.03 282 | 97.27 240 | 87.39 201 | 96.83 307 | 93.20 220 | 86.48 283 | 94.36 269 |
|
| PS-MVSNAJss | | | 93.64 212 | 93.31 209 | 94.61 250 | 92.11 347 | 92.19 251 | 99.12 241 | 97.38 261 | 92.51 198 | 88.45 290 | 96.99 251 | 91.20 149 | 97.29 277 | 94.36 195 | 87.71 274 | 94.36 269 |
|
| WR-MVS | | | 92.31 243 | 91.25 251 | 95.48 221 | 94.45 304 | 95.29 171 | 99.60 182 | 98.68 70 | 90.10 261 | 88.07 298 | 96.89 253 | 80.68 262 | 96.80 309 | 93.14 223 | 79.67 336 | 94.36 269 |
|
| XXY-MVS | | | 91.82 250 | 90.46 261 | 95.88 210 | 93.91 313 | 95.40 168 | 98.87 275 | 97.69 227 | 88.63 290 | 87.87 300 | 97.08 245 | 74.38 321 | 97.89 251 | 91.66 240 | 84.07 302 | 94.35 272 |
|
| MVSTER | | | 95.53 161 | 95.22 157 | 96.45 195 | 98.56 145 | 97.72 78 | 99.91 82 | 97.67 229 | 92.38 203 | 91.39 237 | 97.14 242 | 97.24 18 | 97.30 274 | 94.80 185 | 87.85 271 | 94.34 273 |
|
| VPA-MVSNet | | | 92.70 234 | 91.55 246 | 96.16 205 | 95.09 293 | 96.20 138 | 98.88 272 | 99.00 36 | 91.02 244 | 91.82 234 | 95.29 313 | 76.05 307 | 97.96 247 | 95.62 170 | 81.19 320 | 94.30 274 |
|
| FMVSNet3 | | | 92.69 235 | 91.58 244 | 95.99 208 | 98.29 160 | 97.42 95 | 99.26 232 | 97.62 233 | 89.80 267 | 89.68 262 | 95.32 309 | 81.62 252 | 96.27 328 | 87.01 305 | 85.65 287 | 94.29 275 |
|
| EU-MVSNet | | | 90.14 291 | 90.34 265 | 89.54 338 | 92.55 341 | 81.06 367 | 98.69 292 | 98.04 200 | 91.41 234 | 86.59 317 | 96.84 258 | 80.83 260 | 93.31 369 | 86.20 310 | 81.91 315 | 94.26 276 |
|
| UniMVSNet (Re) | | | 93.07 226 | 92.13 232 | 95.88 210 | 94.84 297 | 96.24 137 | 99.88 97 | 98.98 38 | 92.49 199 | 89.25 274 | 95.40 303 | 87.09 205 | 97.14 284 | 93.13 224 | 78.16 343 | 94.26 276 |
|
| FMVSNet2 | | | 91.02 267 | 89.56 281 | 95.41 223 | 97.53 211 | 95.74 153 | 98.98 261 | 97.41 259 | 87.05 310 | 88.43 293 | 95.00 322 | 71.34 332 | 96.24 330 | 85.12 318 | 85.21 292 | 94.25 278 |
|
| EI-MVSNet | | | 93.73 209 | 93.40 207 | 94.74 245 | 96.80 248 | 92.69 240 | 99.06 251 | 97.67 229 | 88.96 280 | 91.39 237 | 99.02 150 | 88.75 190 | 97.30 274 | 91.07 247 | 87.85 271 | 94.22 279 |
|
| IterMVS-LS | | | 92.69 235 | 92.11 233 | 94.43 264 | 96.80 248 | 92.74 237 | 99.45 207 | 96.89 314 | 88.98 278 | 89.65 265 | 95.38 306 | 88.77 189 | 96.34 325 | 90.98 251 | 82.04 314 | 94.22 279 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| cl22 | | | 93.77 207 | 93.25 211 | 95.33 226 | 99.49 90 | 94.43 193 | 99.61 181 | 98.09 194 | 90.38 256 | 89.16 280 | 95.61 291 | 90.56 164 | 97.34 269 | 91.93 236 | 84.45 298 | 94.21 281 |
|
| miper_enhance_ethall | | | 94.36 194 | 93.98 187 | 95.49 218 | 98.68 141 | 95.24 174 | 99.73 158 | 97.29 271 | 93.28 166 | 89.86 258 | 95.97 282 | 94.37 72 | 97.05 291 | 92.20 233 | 84.45 298 | 94.19 282 |
|
| miper_ehance_all_eth | | | 93.16 222 | 92.60 223 | 94.82 244 | 97.57 209 | 93.56 218 | 99.50 199 | 97.07 293 | 88.75 286 | 88.85 285 | 95.52 297 | 90.97 156 | 96.74 310 | 90.77 256 | 84.45 298 | 94.17 283 |
|
| DIV-MVS_self_test | | | 92.32 242 | 91.60 243 | 94.47 260 | 97.31 225 | 92.74 237 | 99.58 185 | 96.75 325 | 86.99 313 | 87.64 302 | 95.54 295 | 89.55 177 | 96.50 319 | 88.58 282 | 82.44 311 | 94.17 283 |
|
| GBi-Net | | | 90.88 270 | 89.82 276 | 94.08 273 | 97.53 211 | 91.97 254 | 98.43 305 | 96.95 306 | 87.05 310 | 89.68 262 | 94.72 328 | 71.34 332 | 96.11 333 | 87.01 305 | 85.65 287 | 94.17 283 |
|
| test1 | | | 90.88 270 | 89.82 276 | 94.08 273 | 97.53 211 | 91.97 254 | 98.43 305 | 96.95 306 | 87.05 310 | 89.68 262 | 94.72 328 | 71.34 332 | 96.11 333 | 87.01 305 | 85.65 287 | 94.17 283 |
|
| FMVSNet1 | | | 88.50 308 | 86.64 314 | 94.08 273 | 95.62 288 | 91.97 254 | 98.43 305 | 96.95 306 | 83.00 350 | 86.08 326 | 94.72 328 | 59.09 372 | 96.11 333 | 81.82 340 | 84.07 302 | 94.17 283 |
|
| cl____ | | | 92.31 243 | 91.58 244 | 94.52 256 | 97.33 224 | 92.77 235 | 99.57 187 | 96.78 324 | 86.97 314 | 87.56 304 | 95.51 298 | 89.43 178 | 96.62 315 | 88.60 281 | 82.44 311 | 94.16 288 |
|
| eth_miper_zixun_eth | | | 92.41 241 | 91.93 238 | 93.84 285 | 97.28 228 | 90.68 285 | 98.83 279 | 96.97 305 | 88.57 291 | 89.19 279 | 95.73 288 | 89.24 184 | 96.69 313 | 89.97 271 | 81.55 317 | 94.15 289 |
|
| miper_lstm_enhance | | | 91.81 251 | 91.39 250 | 93.06 307 | 97.34 222 | 89.18 312 | 99.38 215 | 96.79 323 | 86.70 317 | 87.47 306 | 95.22 315 | 90.00 171 | 95.86 342 | 88.26 286 | 81.37 319 | 94.15 289 |
|
| Anonymous20231211 | | | 89.86 295 | 88.44 302 | 94.13 272 | 98.93 122 | 90.68 285 | 98.54 300 | 98.26 176 | 76.28 371 | 86.73 314 | 95.54 295 | 70.60 337 | 97.56 262 | 90.82 255 | 80.27 333 | 94.15 289 |
|
| c3_l | | | 92.53 238 | 91.87 240 | 94.52 256 | 97.40 218 | 92.99 233 | 99.40 210 | 96.93 311 | 87.86 300 | 88.69 288 | 95.44 301 | 89.95 172 | 96.44 321 | 90.45 262 | 80.69 329 | 94.14 292 |
|
| jajsoiax | | | 91.92 249 | 91.18 252 | 94.15 270 | 91.35 357 | 90.95 280 | 99.00 260 | 97.42 257 | 92.61 190 | 87.38 308 | 97.08 245 | 72.46 327 | 97.36 267 | 94.53 193 | 88.77 254 | 94.13 293 |
|
| bld_raw_dy_0_64 | | | 92.74 232 | 92.03 236 | 94.87 240 | 93.09 331 | 93.46 221 | 99.12 241 | 95.41 359 | 92.84 177 | 90.44 249 | 97.54 231 | 78.08 288 | 97.04 293 | 93.94 202 | 87.77 273 | 94.11 294 |
|
| mvs_tets | | | 91.81 251 | 91.08 253 | 94.00 278 | 91.63 354 | 90.58 288 | 98.67 294 | 97.43 255 | 92.43 200 | 87.37 309 | 97.05 248 | 71.76 329 | 97.32 273 | 94.75 187 | 88.68 256 | 94.11 294 |
|
| v2v482 | | | 91.30 260 | 90.07 274 | 95.01 235 | 93.13 327 | 93.79 212 | 99.77 142 | 97.02 298 | 88.05 298 | 89.25 274 | 95.37 307 | 80.73 261 | 97.15 283 | 87.28 299 | 80.04 335 | 94.09 296 |
|
| LPG-MVS_test | | | 92.96 227 | 92.71 221 | 93.71 289 | 95.43 289 | 88.67 317 | 99.75 150 | 97.62 233 | 92.81 178 | 90.05 251 | 98.49 201 | 75.24 312 | 98.40 212 | 95.84 168 | 89.12 248 | 94.07 297 |
|
| LGP-MVS_train | | | | | 93.71 289 | 95.43 289 | 88.67 317 | | 97.62 233 | 92.81 178 | 90.05 251 | 98.49 201 | 75.24 312 | 98.40 212 | 95.84 168 | 89.12 248 | 94.07 297 |
|
| test_djsdf | | | 92.83 230 | 92.29 231 | 94.47 260 | 91.90 350 | 92.46 246 | 99.55 191 | 97.27 273 | 91.17 238 | 89.96 254 | 96.07 281 | 81.10 256 | 96.89 303 | 94.67 190 | 88.91 250 | 94.05 299 |
|
| CP-MVSNet | | | 91.23 264 | 90.22 268 | 94.26 268 | 93.96 312 | 92.39 248 | 99.09 244 | 98.57 87 | 88.95 281 | 86.42 321 | 96.57 266 | 79.19 277 | 96.37 323 | 90.29 266 | 78.95 338 | 94.02 300 |
|
| Patchmtry | | | 89.70 298 | 88.49 301 | 93.33 299 | 96.24 261 | 89.94 305 | 91.37 382 | 96.23 342 | 78.22 368 | 87.69 301 | 93.31 350 | 91.04 154 | 96.03 338 | 80.18 348 | 82.10 313 | 94.02 300 |
|
| v1921920 | | | 90.46 280 | 89.12 290 | 94.50 258 | 92.96 335 | 92.46 246 | 99.49 201 | 96.98 303 | 86.10 323 | 89.61 267 | 95.30 310 | 78.55 285 | 97.03 296 | 82.17 337 | 80.89 328 | 94.01 302 |
|
| v1192 | | | 90.62 278 | 89.25 288 | 94.72 247 | 93.13 327 | 93.07 229 | 99.50 199 | 97.02 298 | 86.33 321 | 89.56 268 | 95.01 320 | 79.22 276 | 97.09 290 | 82.34 336 | 81.16 321 | 94.01 302 |
|
| v1240 | | | 90.20 288 | 88.79 297 | 94.44 262 | 93.05 333 | 92.27 250 | 99.38 215 | 96.92 312 | 85.89 325 | 89.36 271 | 94.87 327 | 77.89 289 | 97.03 296 | 80.66 344 | 81.08 324 | 94.01 302 |
|
| OPM-MVS | | | 93.21 220 | 92.80 219 | 94.44 262 | 93.12 329 | 90.85 283 | 99.77 142 | 97.61 236 | 96.19 73 | 91.56 236 | 98.65 188 | 75.16 316 | 98.47 203 | 93.78 212 | 89.39 247 | 93.99 305 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| ACMP | | 92.05 9 | 92.74 232 | 92.42 230 | 93.73 287 | 95.91 270 | 88.72 316 | 99.81 132 | 97.53 246 | 94.13 132 | 87.00 312 | 98.23 211 | 74.07 322 | 98.47 203 | 96.22 162 | 88.86 253 | 93.99 305 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| OurMVSNet-221017-0 | | | 89.81 296 | 89.48 286 | 90.83 328 | 91.64 353 | 81.21 365 | 98.17 319 | 95.38 361 | 91.48 228 | 85.65 329 | 97.31 238 | 72.66 326 | 97.29 277 | 88.15 288 | 84.83 295 | 93.97 307 |
|
| pmmvs5 | | | 90.17 290 | 89.09 291 | 93.40 297 | 92.10 348 | 89.77 306 | 99.74 153 | 95.58 356 | 85.88 326 | 87.24 311 | 95.74 286 | 73.41 325 | 96.48 320 | 88.54 283 | 83.56 305 | 93.95 308 |
|
| PS-CasMVS | | | 90.63 277 | 89.51 284 | 93.99 279 | 93.83 314 | 91.70 267 | 98.98 261 | 98.52 101 | 88.48 292 | 86.15 325 | 96.53 268 | 75.46 310 | 96.31 327 | 88.83 279 | 78.86 340 | 93.95 308 |
|
| IterMVS | | | 90.91 269 | 90.17 271 | 93.12 304 | 96.78 251 | 90.42 293 | 98.89 270 | 97.05 296 | 89.03 275 | 86.49 319 | 95.42 302 | 76.59 299 | 95.02 351 | 87.22 300 | 84.09 301 | 93.93 310 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| ACMH | | 89.72 17 | 90.64 276 | 89.63 279 | 93.66 293 | 95.64 286 | 88.64 319 | 98.55 298 | 97.45 253 | 89.03 275 | 81.62 347 | 97.61 230 | 69.75 339 | 98.41 210 | 89.37 274 | 87.62 276 | 93.92 311 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| v144192 | | | 90.79 273 | 89.52 283 | 94.59 252 | 93.11 330 | 92.77 235 | 99.56 189 | 96.99 301 | 86.38 320 | 89.82 261 | 94.95 325 | 80.50 266 | 97.10 288 | 83.98 325 | 80.41 330 | 93.90 312 |
|
| PEN-MVS | | | 90.19 289 | 89.06 292 | 93.57 294 | 93.06 332 | 90.90 281 | 99.06 251 | 98.47 112 | 88.11 297 | 85.91 327 | 96.30 272 | 76.67 297 | 95.94 341 | 87.07 302 | 76.91 355 | 93.89 313 |
|
| XVG-ACMP-BASELINE | | | 91.22 265 | 90.75 256 | 92.63 313 | 93.73 316 | 85.61 340 | 98.52 302 | 97.44 254 | 92.77 181 | 89.90 257 | 96.85 256 | 66.64 352 | 98.39 214 | 92.29 232 | 88.61 257 | 93.89 313 |
|
| v1144 | | | 91.09 266 | 89.83 275 | 94.87 240 | 93.25 326 | 93.69 216 | 99.62 180 | 96.98 303 | 86.83 316 | 89.64 266 | 94.99 323 | 80.94 258 | 97.05 291 | 85.08 319 | 81.16 321 | 93.87 315 |
|
| MDA-MVSNet_test_wron | | | 85.51 323 | 83.32 331 | 92.10 317 | 90.96 360 | 88.58 320 | 99.20 236 | 96.52 335 | 79.70 365 | 57.12 390 | 92.69 354 | 79.11 278 | 93.86 364 | 77.10 360 | 77.46 350 | 93.86 316 |
|
| IterMVS-SCA-FT | | | 90.85 272 | 90.16 272 | 92.93 309 | 96.72 253 | 89.96 302 | 98.89 270 | 96.99 301 | 88.95 281 | 86.63 316 | 95.67 289 | 76.48 301 | 95.00 352 | 87.04 303 | 84.04 304 | 93.84 317 |
|
| YYNet1 | | | 85.50 324 | 83.33 330 | 92.00 318 | 90.89 361 | 88.38 324 | 99.22 235 | 96.55 334 | 79.60 366 | 57.26 389 | 92.72 353 | 79.09 280 | 93.78 365 | 77.25 359 | 77.37 351 | 93.84 317 |
|
| MDA-MVSNet-bldmvs | | | 84.09 332 | 81.52 339 | 91.81 321 | 91.32 358 | 88.00 328 | 98.67 294 | 95.92 349 | 80.22 363 | 55.60 391 | 93.32 349 | 68.29 346 | 93.60 367 | 73.76 366 | 76.61 357 | 93.82 319 |
|
| ACMH+ | | 89.98 16 | 90.35 283 | 89.54 282 | 92.78 312 | 95.99 267 | 86.12 338 | 98.81 281 | 97.18 280 | 89.38 270 | 83.14 340 | 97.76 228 | 68.42 345 | 98.43 208 | 89.11 277 | 86.05 285 | 93.78 320 |
|
| v148 | | | 90.70 274 | 89.63 279 | 93.92 281 | 92.97 334 | 90.97 277 | 99.75 150 | 96.89 314 | 87.51 303 | 88.27 296 | 95.01 320 | 81.67 249 | 97.04 293 | 87.40 297 | 77.17 353 | 93.75 321 |
|
| pmmvs4 | | | 92.10 247 | 91.07 254 | 95.18 231 | 92.82 338 | 94.96 182 | 99.48 203 | 96.83 319 | 87.45 305 | 88.66 289 | 96.56 267 | 83.78 237 | 96.83 307 | 89.29 275 | 84.77 296 | 93.75 321 |
|
| K. test v3 | | | 88.05 311 | 87.24 313 | 90.47 331 | 91.82 352 | 82.23 359 | 98.96 264 | 97.42 257 | 89.05 274 | 76.93 368 | 95.60 292 | 68.49 344 | 95.42 346 | 85.87 315 | 81.01 326 | 93.75 321 |
|
| lessismore_v0 | | | | | 90.53 329 | 90.58 363 | 80.90 368 | | 95.80 350 | | 77.01 367 | 95.84 283 | 66.15 354 | 96.95 299 | 83.03 331 | 75.05 361 | 93.74 324 |
|
| SixPastTwentyTwo | | | 88.73 307 | 88.01 308 | 90.88 326 | 91.85 351 | 82.24 358 | 98.22 317 | 95.18 366 | 88.97 279 | 82.26 343 | 96.89 253 | 71.75 330 | 96.67 314 | 84.00 324 | 82.98 306 | 93.72 325 |
|
| our_test_3 | | | 90.39 281 | 89.48 286 | 93.12 304 | 92.40 343 | 89.57 308 | 99.33 221 | 96.35 341 | 87.84 301 | 85.30 330 | 94.99 323 | 84.14 235 | 96.09 336 | 80.38 345 | 84.56 297 | 93.71 326 |
|
| LTVRE_ROB | | 88.28 18 | 90.29 286 | 89.05 293 | 94.02 276 | 95.08 294 | 90.15 298 | 97.19 338 | 97.43 255 | 84.91 339 | 83.99 336 | 97.06 247 | 74.00 323 | 98.28 228 | 84.08 323 | 87.71 274 | 93.62 327 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| ITE_SJBPF | | | | | 92.38 314 | 95.69 284 | 85.14 343 | | 95.71 352 | 92.81 178 | 89.33 273 | 98.11 213 | 70.23 338 | 98.42 209 | 85.91 314 | 88.16 267 | 93.59 328 |
|
| v7n | | | 89.65 299 | 88.29 304 | 93.72 288 | 92.22 345 | 90.56 289 | 99.07 250 | 97.10 289 | 85.42 334 | 86.73 314 | 94.72 328 | 80.06 269 | 97.13 285 | 81.14 342 | 78.12 344 | 93.49 329 |
|
| DTE-MVSNet | | | 89.40 302 | 88.24 305 | 92.88 310 | 92.66 340 | 89.95 303 | 99.10 243 | 98.22 179 | 87.29 307 | 85.12 332 | 96.22 274 | 76.27 304 | 95.30 350 | 83.56 329 | 75.74 359 | 93.41 330 |
|
| V42 | | | 91.28 262 | 90.12 273 | 94.74 245 | 93.42 323 | 93.46 221 | 99.68 168 | 97.02 298 | 87.36 306 | 89.85 260 | 95.05 318 | 81.31 255 | 97.34 269 | 87.34 298 | 80.07 334 | 93.40 331 |
|
| anonymousdsp | | | 91.79 256 | 90.92 255 | 94.41 265 | 90.76 362 | 92.93 234 | 98.93 267 | 97.17 281 | 89.08 273 | 87.46 307 | 95.30 310 | 78.43 287 | 96.92 302 | 92.38 231 | 88.73 255 | 93.39 332 |
|
| v8 | | | 90.54 279 | 89.17 289 | 94.66 248 | 93.43 322 | 93.40 225 | 99.20 236 | 96.94 310 | 85.76 327 | 87.56 304 | 94.51 335 | 81.96 248 | 97.19 281 | 84.94 320 | 78.25 342 | 93.38 333 |
|
| ppachtmachnet_test | | | 89.58 300 | 88.35 303 | 93.25 302 | 92.40 343 | 90.44 292 | 99.33 221 | 96.73 326 | 85.49 332 | 85.90 328 | 95.77 285 | 81.09 257 | 96.00 340 | 76.00 364 | 82.49 310 | 93.30 334 |
|
| v10 | | | 90.25 287 | 88.82 296 | 94.57 254 | 93.53 320 | 93.43 223 | 99.08 246 | 96.87 316 | 85.00 336 | 87.34 310 | 94.51 335 | 80.93 259 | 97.02 298 | 82.85 332 | 79.23 337 | 93.26 335 |
|
| PVSNet_BlendedMVS | | | 96.05 144 | 95.82 141 | 96.72 188 | 99.59 81 | 96.99 109 | 99.95 52 | 99.10 31 | 94.06 138 | 98.27 125 | 95.80 284 | 89.00 187 | 99.95 69 | 99.12 58 | 87.53 277 | 93.24 336 |
|
| WR-MVS_H | | | 91.30 260 | 90.35 264 | 94.15 270 | 94.17 309 | 92.62 244 | 99.17 239 | 98.94 41 | 88.87 284 | 86.48 320 | 94.46 339 | 84.36 232 | 96.61 316 | 88.19 287 | 78.51 341 | 93.21 337 |
|
| FMVSNet5 | | | 88.32 309 | 87.47 311 | 90.88 326 | 96.90 243 | 88.39 323 | 97.28 336 | 95.68 353 | 82.60 354 | 84.67 333 | 92.40 358 | 79.83 271 | 91.16 379 | 76.39 363 | 81.51 318 | 93.09 338 |
|
| Anonymous20231206 | | | 86.32 318 | 85.42 321 | 89.02 342 | 89.11 371 | 80.53 371 | 99.05 255 | 95.28 362 | 85.43 333 | 82.82 341 | 93.92 343 | 74.40 320 | 93.44 368 | 66.99 378 | 81.83 316 | 93.08 339 |
|
| pm-mvs1 | | | 89.36 303 | 87.81 309 | 94.01 277 | 93.40 324 | 91.93 257 | 98.62 297 | 96.48 337 | 86.25 322 | 83.86 337 | 96.14 277 | 73.68 324 | 97.04 293 | 86.16 311 | 75.73 360 | 93.04 340 |
|
| test_method | | | 80.79 341 | 79.70 345 | 84.08 357 | 92.83 337 | 67.06 383 | 99.51 197 | 95.42 358 | 54.34 389 | 81.07 351 | 93.53 347 | 44.48 385 | 92.22 376 | 78.90 353 | 77.23 352 | 92.94 341 |
|
| UnsupCasMVSNet_eth | | | 85.52 322 | 83.99 324 | 90.10 334 | 89.36 370 | 83.51 352 | 96.65 349 | 97.99 202 | 89.14 272 | 75.89 372 | 93.83 344 | 63.25 363 | 93.92 362 | 81.92 339 | 67.90 377 | 92.88 342 |
|
| USDC | | | 90.00 293 | 88.96 294 | 93.10 306 | 94.81 298 | 88.16 325 | 98.71 289 | 95.54 357 | 93.66 155 | 83.75 338 | 97.20 241 | 65.58 355 | 98.31 225 | 83.96 326 | 87.49 278 | 92.85 343 |
|
| test_fmvs2 | | | 89.47 301 | 89.70 278 | 88.77 346 | 94.54 303 | 75.74 375 | 99.83 127 | 94.70 371 | 94.71 108 | 91.08 241 | 96.82 260 | 54.46 377 | 97.78 256 | 92.87 227 | 88.27 265 | 92.80 344 |
|
| N_pmnet | | | 80.06 344 | 80.78 342 | 77.89 364 | 91.94 349 | 45.28 402 | 98.80 283 | 56.82 404 | 78.10 369 | 80.08 355 | 93.33 348 | 77.03 292 | 95.76 343 | 68.14 377 | 82.81 307 | 92.64 345 |
|
| KD-MVS_2432*1600 | | | 88.00 312 | 86.10 316 | 93.70 291 | 96.91 240 | 94.04 206 | 97.17 339 | 97.12 287 | 84.93 337 | 81.96 344 | 92.41 356 | 92.48 127 | 94.51 358 | 79.23 349 | 52.68 390 | 92.56 346 |
|
| miper_refine_blended | | | 88.00 312 | 86.10 316 | 93.70 291 | 96.91 240 | 94.04 206 | 97.17 339 | 97.12 287 | 84.93 337 | 81.96 344 | 92.41 356 | 92.48 127 | 94.51 358 | 79.23 349 | 52.68 390 | 92.56 346 |
|
| pmmvs6 | | | 85.69 320 | 83.84 327 | 91.26 325 | 90.00 368 | 84.41 348 | 97.82 329 | 96.15 345 | 75.86 373 | 81.29 349 | 95.39 305 | 61.21 369 | 96.87 305 | 83.52 330 | 73.29 363 | 92.50 348 |
|
| D2MVS | | | 92.76 231 | 92.59 226 | 93.27 301 | 95.13 292 | 89.54 309 | 99.69 166 | 99.38 23 | 92.26 206 | 87.59 303 | 94.61 334 | 85.05 226 | 97.79 254 | 91.59 241 | 88.01 269 | 92.47 349 |
|
| CL-MVSNet_self_test | | | 84.50 330 | 83.15 333 | 88.53 347 | 86.00 377 | 81.79 362 | 98.82 280 | 97.35 263 | 85.12 335 | 83.62 339 | 90.91 365 | 76.66 298 | 91.40 378 | 69.53 374 | 60.36 387 | 92.40 350 |
|
| MIMVSNet1 | | | 82.58 337 | 80.51 343 | 88.78 344 | 86.68 376 | 84.20 349 | 96.65 349 | 95.41 359 | 78.75 367 | 78.59 361 | 92.44 355 | 51.88 381 | 89.76 382 | 65.26 383 | 78.95 338 | 92.38 351 |
|
| LF4IMVS | | | 89.25 305 | 88.85 295 | 90.45 332 | 92.81 339 | 81.19 366 | 98.12 320 | 94.79 368 | 91.44 230 | 86.29 323 | 97.11 243 | 65.30 358 | 98.11 238 | 88.53 284 | 85.25 291 | 92.07 352 |
|
| TransMVSNet (Re) | | | 87.25 315 | 85.28 322 | 93.16 303 | 93.56 319 | 91.03 276 | 98.54 300 | 94.05 377 | 83.69 347 | 81.09 350 | 96.16 276 | 75.32 311 | 96.40 322 | 76.69 362 | 68.41 374 | 92.06 353 |
|
| DeepMVS_CX |  | | | | 82.92 360 | 95.98 269 | 58.66 391 | | 96.01 347 | 92.72 182 | 78.34 362 | 95.51 298 | 58.29 373 | 98.08 239 | 82.57 333 | 85.29 290 | 92.03 354 |
|
| Baseline_NR-MVSNet | | | 90.33 284 | 89.51 284 | 92.81 311 | 92.84 336 | 89.95 303 | 99.77 142 | 93.94 378 | 84.69 341 | 89.04 281 | 95.66 290 | 81.66 250 | 96.52 318 | 90.99 250 | 76.98 354 | 91.97 355 |
|
| TinyColmap | | | 87.87 314 | 86.51 315 | 91.94 319 | 95.05 295 | 85.57 341 | 97.65 331 | 94.08 375 | 84.40 342 | 81.82 346 | 96.85 256 | 62.14 366 | 98.33 223 | 80.25 347 | 86.37 284 | 91.91 356 |
|
| MS-PatchMatch | | | 90.65 275 | 90.30 266 | 91.71 322 | 94.22 308 | 85.50 342 | 98.24 314 | 97.70 226 | 88.67 288 | 86.42 321 | 96.37 271 | 67.82 347 | 98.03 243 | 83.62 328 | 99.62 89 | 91.60 357 |
|
| KD-MVS_self_test | | | 83.59 336 | 82.06 336 | 88.20 349 | 86.93 375 | 80.70 369 | 97.21 337 | 96.38 339 | 82.87 351 | 82.49 342 | 88.97 371 | 67.63 348 | 92.32 375 | 73.75 367 | 62.30 386 | 91.58 358 |
|
| tfpnnormal | | | 89.29 304 | 87.61 310 | 94.34 267 | 94.35 306 | 94.13 204 | 98.95 265 | 98.94 41 | 83.94 343 | 84.47 334 | 95.51 298 | 74.84 317 | 97.39 266 | 77.05 361 | 80.41 330 | 91.48 359 |
|
| MVP-Stereo | | | 90.93 268 | 90.45 263 | 92.37 315 | 91.25 359 | 88.76 314 | 98.05 324 | 96.17 344 | 87.27 308 | 84.04 335 | 95.30 310 | 78.46 286 | 97.27 279 | 83.78 327 | 99.70 84 | 91.09 360 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| test20.03 | | | 84.72 329 | 83.99 324 | 86.91 352 | 88.19 374 | 80.62 370 | 98.88 272 | 95.94 348 | 88.36 294 | 78.87 358 | 94.62 333 | 68.75 342 | 89.11 383 | 66.52 380 | 75.82 358 | 91.00 361 |
|
| EG-PatchMatch MVS | | | 85.35 325 | 83.81 328 | 89.99 336 | 90.39 364 | 81.89 361 | 98.21 318 | 96.09 346 | 81.78 357 | 74.73 374 | 93.72 346 | 51.56 382 | 97.12 287 | 79.16 352 | 88.61 257 | 90.96 362 |
|
| TDRefinement | | | 84.76 327 | 82.56 335 | 91.38 324 | 74.58 393 | 84.80 347 | 97.36 335 | 94.56 372 | 84.73 340 | 80.21 354 | 96.12 280 | 63.56 362 | 98.39 214 | 87.92 291 | 63.97 383 | 90.95 363 |
|
| ambc | | | | | 83.23 359 | 77.17 391 | 62.61 385 | 87.38 388 | 94.55 373 | | 76.72 369 | 86.65 380 | 30.16 389 | 96.36 324 | 84.85 321 | 69.86 368 | 90.73 364 |
|
| Anonymous20240521 | | | 85.15 326 | 83.81 328 | 89.16 341 | 88.32 372 | 82.69 354 | 98.80 283 | 95.74 351 | 79.72 364 | 81.53 348 | 90.99 363 | 65.38 357 | 94.16 360 | 72.69 368 | 81.11 323 | 90.63 365 |
|
| OpenMVS_ROB |  | 79.82 20 | 83.77 335 | 81.68 338 | 90.03 335 | 88.30 373 | 82.82 353 | 98.46 303 | 95.22 364 | 73.92 380 | 76.00 371 | 91.29 362 | 55.00 376 | 96.94 300 | 68.40 376 | 88.51 261 | 90.34 366 |
|
| new_pmnet | | | 84.49 331 | 82.92 334 | 89.21 340 | 90.03 367 | 82.60 355 | 96.89 347 | 95.62 355 | 80.59 361 | 75.77 373 | 89.17 370 | 65.04 359 | 94.79 356 | 72.12 370 | 81.02 325 | 90.23 367 |
|
| test_0402 | | | 85.58 321 | 83.94 326 | 90.50 330 | 93.81 315 | 85.04 344 | 98.55 298 | 95.20 365 | 76.01 372 | 79.72 357 | 95.13 316 | 64.15 361 | 96.26 329 | 66.04 382 | 86.88 281 | 90.21 368 |
|
| test_vis1_rt | | | 86.87 317 | 86.05 319 | 89.34 339 | 96.12 262 | 78.07 374 | 99.87 100 | 83.54 398 | 92.03 213 | 78.21 363 | 89.51 369 | 45.80 384 | 99.91 89 | 96.25 161 | 93.11 234 | 90.03 369 |
|
| pmmvs3 | | | 80.27 343 | 77.77 348 | 87.76 351 | 80.32 388 | 82.43 357 | 98.23 316 | 91.97 386 | 72.74 382 | 78.75 359 | 87.97 376 | 57.30 375 | 90.99 380 | 70.31 372 | 62.37 385 | 89.87 370 |
|
| CMPMVS |  | 61.59 21 | 84.75 328 | 85.14 323 | 83.57 358 | 90.32 365 | 62.54 386 | 96.98 344 | 97.59 240 | 74.33 379 | 69.95 380 | 96.66 261 | 64.17 360 | 98.32 224 | 87.88 292 | 88.41 262 | 89.84 371 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| APD_test1 | | | 81.15 340 | 80.92 341 | 81.86 361 | 92.45 342 | 59.76 390 | 96.04 361 | 93.61 381 | 73.29 381 | 77.06 366 | 96.64 263 | 44.28 386 | 96.16 332 | 72.35 369 | 82.52 309 | 89.67 372 |
|
| PM-MVS | | | 80.47 342 | 78.88 347 | 85.26 355 | 83.79 382 | 72.22 379 | 95.89 364 | 91.08 388 | 85.71 330 | 76.56 370 | 88.30 373 | 36.64 388 | 93.90 363 | 82.39 335 | 69.57 370 | 89.66 373 |
|
| pmmvs-eth3d | | | 84.03 333 | 81.97 337 | 90.20 333 | 84.15 380 | 87.09 333 | 98.10 322 | 94.73 370 | 83.05 349 | 74.10 376 | 87.77 377 | 65.56 356 | 94.01 361 | 81.08 343 | 69.24 371 | 89.49 374 |
|
| UnsupCasMVSNet_bld | | | 79.97 346 | 77.03 351 | 88.78 344 | 85.62 378 | 81.98 360 | 93.66 373 | 97.35 263 | 75.51 376 | 70.79 379 | 83.05 385 | 48.70 383 | 94.91 354 | 78.31 355 | 60.29 388 | 89.46 375 |
|
| mvsany_test3 | | | 82.12 338 | 81.14 340 | 85.06 356 | 81.87 384 | 70.41 380 | 97.09 341 | 92.14 385 | 91.27 237 | 77.84 364 | 88.73 372 | 39.31 387 | 95.49 344 | 90.75 257 | 71.24 366 | 89.29 376 |
|
| new-patchmatchnet | | | 81.19 339 | 79.34 346 | 86.76 353 | 82.86 383 | 80.36 372 | 97.92 326 | 95.27 363 | 82.09 356 | 72.02 377 | 86.87 379 | 62.81 365 | 90.74 381 | 71.10 371 | 63.08 384 | 89.19 377 |
|
| LCM-MVSNet | | | 67.77 355 | 64.73 358 | 76.87 366 | 62.95 399 | 56.25 393 | 89.37 387 | 93.74 380 | 44.53 392 | 61.99 384 | 80.74 386 | 20.42 399 | 86.53 389 | 69.37 375 | 59.50 389 | 87.84 378 |
|
| tmp_tt | | | 65.23 358 | 62.94 361 | 72.13 374 | 44.90 402 | 50.03 399 | 81.05 390 | 89.42 394 | 38.45 393 | 48.51 395 | 99.90 18 | 54.09 378 | 78.70 395 | 91.84 239 | 18.26 397 | 87.64 379 |
|
| test_fmvs3 | | | 79.99 345 | 80.17 344 | 79.45 363 | 84.02 381 | 62.83 384 | 99.05 255 | 93.49 382 | 88.29 296 | 80.06 356 | 86.65 380 | 28.09 392 | 88.00 384 | 88.63 280 | 73.27 364 | 87.54 380 |
|
| test_f | | | 78.40 347 | 77.59 349 | 80.81 362 | 80.82 386 | 62.48 387 | 96.96 345 | 93.08 383 | 83.44 348 | 74.57 375 | 84.57 384 | 27.95 393 | 92.63 373 | 84.15 322 | 72.79 365 | 87.32 381 |
|
| EGC-MVSNET | | | 69.38 350 | 63.76 360 | 86.26 354 | 90.32 365 | 81.66 364 | 96.24 357 | 93.85 379 | 0.99 401 | 3.22 402 | 92.33 359 | 52.44 379 | 92.92 372 | 59.53 388 | 84.90 294 | 84.21 382 |
|
| WB-MVS | | | 76.28 348 | 77.28 350 | 73.29 369 | 81.18 385 | 54.68 394 | 97.87 328 | 94.19 374 | 81.30 358 | 69.43 381 | 90.70 366 | 77.02 293 | 82.06 392 | 35.71 397 | 68.11 376 | 83.13 383 |
|
| SSC-MVS | | | 75.42 349 | 76.40 352 | 72.49 373 | 80.68 387 | 53.62 395 | 97.42 333 | 94.06 376 | 80.42 362 | 68.75 382 | 90.14 368 | 76.54 300 | 81.66 393 | 33.25 398 | 66.34 380 | 82.19 384 |
|
| PMMVS2 | | | 67.15 356 | 64.15 359 | 76.14 367 | 70.56 396 | 62.07 388 | 93.89 371 | 87.52 395 | 58.09 386 | 60.02 385 | 78.32 387 | 22.38 396 | 84.54 390 | 59.56 387 | 47.03 392 | 81.80 385 |
|
| testf1 | | | 68.38 353 | 66.92 354 | 72.78 371 | 78.80 389 | 50.36 397 | 90.95 384 | 87.35 396 | 55.47 387 | 58.95 386 | 88.14 374 | 20.64 397 | 87.60 385 | 57.28 389 | 64.69 381 | 80.39 386 |
|
| APD_test2 | | | 68.38 353 | 66.92 354 | 72.78 371 | 78.80 389 | 50.36 397 | 90.95 384 | 87.35 396 | 55.47 387 | 58.95 386 | 88.14 374 | 20.64 397 | 87.60 385 | 57.28 389 | 64.69 381 | 80.39 386 |
|
| FPMVS | | | 68.72 352 | 68.72 353 | 68.71 375 | 65.95 397 | 44.27 404 | 95.97 363 | 94.74 369 | 51.13 390 | 53.26 392 | 90.50 367 | 25.11 395 | 83.00 391 | 60.80 386 | 80.97 327 | 78.87 388 |
|
| ANet_high | | | 56.10 359 | 52.24 362 | 67.66 376 | 49.27 401 | 56.82 392 | 83.94 389 | 82.02 399 | 70.47 383 | 33.28 399 | 64.54 394 | 17.23 401 | 69.16 397 | 45.59 394 | 23.85 396 | 77.02 389 |
|
| test_vis3_rt | | | 68.82 351 | 66.69 356 | 75.21 368 | 76.24 392 | 60.41 389 | 96.44 352 | 68.71 403 | 75.13 377 | 50.54 394 | 69.52 392 | 16.42 402 | 96.32 326 | 80.27 346 | 66.92 379 | 68.89 390 |
|
| MVE |  | 53.74 22 | 51.54 362 | 47.86 366 | 62.60 377 | 59.56 400 | 50.93 396 | 79.41 391 | 77.69 400 | 35.69 396 | 36.27 398 | 61.76 397 | 5.79 406 | 69.63 396 | 37.97 396 | 36.61 393 | 67.24 391 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| PMVS |  | 49.05 23 | 53.75 360 | 51.34 364 | 60.97 378 | 40.80 403 | 34.68 405 | 74.82 392 | 89.62 393 | 37.55 394 | 28.67 400 | 72.12 389 | 7.09 404 | 81.63 394 | 43.17 395 | 68.21 375 | 66.59 392 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| Gipuma |  | | 66.95 357 | 65.00 357 | 72.79 370 | 91.52 355 | 67.96 382 | 66.16 393 | 95.15 367 | 47.89 391 | 58.54 388 | 67.99 393 | 29.74 390 | 87.54 387 | 50.20 392 | 77.83 346 | 62.87 393 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| test123 | | | 37.68 365 | 39.14 368 | 33.31 381 | 19.94 404 | 24.83 407 | 98.36 310 | 9.75 406 | 15.53 399 | 51.31 393 | 87.14 378 | 19.62 400 | 17.74 401 | 47.10 393 | 3.47 400 | 57.36 394 |
|
| testmvs | | | 40.60 364 | 44.45 367 | 29.05 382 | 19.49 405 | 14.11 408 | 99.68 168 | 18.47 405 | 20.74 398 | 64.59 383 | 98.48 204 | 10.95 403 | 17.09 402 | 56.66 391 | 11.01 398 | 55.94 395 |
|
| EMVS | | | 51.44 363 | 51.22 365 | 52.11 380 | 70.71 395 | 44.97 403 | 94.04 370 | 75.66 402 | 35.34 397 | 42.40 397 | 61.56 398 | 28.93 391 | 65.87 399 | 27.64 400 | 24.73 395 | 45.49 396 |
|
| E-PMN | | | 52.30 361 | 52.18 363 | 52.67 379 | 71.51 394 | 45.40 401 | 93.62 374 | 76.60 401 | 36.01 395 | 43.50 396 | 64.13 395 | 27.11 394 | 67.31 398 | 31.06 399 | 26.06 394 | 45.30 397 |
|
| wuyk23d | | | 20.37 367 | 20.84 370 | 18.99 383 | 65.34 398 | 27.73 406 | 50.43 394 | 7.67 407 | 9.50 400 | 8.01 401 | 6.34 401 | 6.13 405 | 26.24 400 | 23.40 401 | 10.69 399 | 2.99 398 |
|
| test_blank | | | 0.00 370 | 0.00 373 | 0.00 384 | 0.00 406 | 0.00 409 | 0.00 395 | 0.00 408 | 0.00 402 | 0.00 403 | 0.02 402 | 0.00 407 | 0.00 403 | 0.00 402 | 0.00 401 | 0.00 399 |
|
| uanet_test | | | 0.00 370 | 0.00 373 | 0.00 384 | 0.00 406 | 0.00 409 | 0.00 395 | 0.00 408 | 0.00 402 | 0.00 403 | 0.00 403 | 0.00 407 | 0.00 403 | 0.00 402 | 0.00 401 | 0.00 399 |
|
| DCPMVS | | | 0.00 370 | 0.00 373 | 0.00 384 | 0.00 406 | 0.00 409 | 0.00 395 | 0.00 408 | 0.00 402 | 0.00 403 | 0.00 403 | 0.00 407 | 0.00 403 | 0.00 402 | 0.00 401 | 0.00 399 |
|
| cdsmvs_eth3d_5k | | | 23.43 366 | 31.24 369 | 0.00 384 | 0.00 406 | 0.00 409 | 0.00 395 | 98.09 194 | 0.00 402 | 0.00 403 | 99.67 94 | 83.37 240 | 0.00 403 | 0.00 402 | 0.00 401 | 0.00 399 |
|
| pcd_1.5k_mvsjas | | | 7.60 369 | 10.13 372 | 0.00 384 | 0.00 406 | 0.00 409 | 0.00 395 | 0.00 408 | 0.00 402 | 0.00 403 | 0.00 403 | 91.20 149 | 0.00 403 | 0.00 402 | 0.00 401 | 0.00 399 |
|
| sosnet-low-res | | | 0.00 370 | 0.00 373 | 0.00 384 | 0.00 406 | 0.00 409 | 0.00 395 | 0.00 408 | 0.00 402 | 0.00 403 | 0.00 403 | 0.00 407 | 0.00 403 | 0.00 402 | 0.00 401 | 0.00 399 |
|
| sosnet | | | 0.00 370 | 0.00 373 | 0.00 384 | 0.00 406 | 0.00 409 | 0.00 395 | 0.00 408 | 0.00 402 | 0.00 403 | 0.00 403 | 0.00 407 | 0.00 403 | 0.00 402 | 0.00 401 | 0.00 399 |
|
| uncertanet | | | 0.00 370 | 0.00 373 | 0.00 384 | 0.00 406 | 0.00 409 | 0.00 395 | 0.00 408 | 0.00 402 | 0.00 403 | 0.00 403 | 0.00 407 | 0.00 403 | 0.00 402 | 0.00 401 | 0.00 399 |
|
| Regformer | | | 0.00 370 | 0.00 373 | 0.00 384 | 0.00 406 | 0.00 409 | 0.00 395 | 0.00 408 | 0.00 402 | 0.00 403 | 0.00 403 | 0.00 407 | 0.00 403 | 0.00 402 | 0.00 401 | 0.00 399 |
|
| ab-mvs-re | | | 8.28 368 | 11.04 371 | 0.00 384 | 0.00 406 | 0.00 409 | 0.00 395 | 0.00 408 | 0.00 402 | 0.00 403 | 99.40 121 | 0.00 407 | 0.00 403 | 0.00 402 | 0.00 401 | 0.00 399 |
|
| uanet | | | 0.00 370 | 0.00 373 | 0.00 384 | 0.00 406 | 0.00 409 | 0.00 395 | 0.00 408 | 0.00 402 | 0.00 403 | 0.00 403 | 0.00 407 | 0.00 403 | 0.00 402 | 0.00 401 | 0.00 399 |
|
| WAC-MVS | | | | | | | 90.97 277 | | | | | | | | 86.10 313 | | |
|
| FOURS1 | | | | | | 99.92 31 | 97.66 83 | 99.95 52 | 98.36 157 | 95.58 85 | 99.52 59 | | | | | | |
|
| test_one_0601 | | | | | | 99.94 13 | 99.30 12 | | 98.41 142 | 96.63 56 | 99.75 29 | 99.93 11 | 97.49 10 | | | | |
|
| eth-test2 | | | | | | 0.00 406 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 406 | | | | | | | | | | | |
|
| ZD-MVS | | | | | | 99.92 31 | 98.57 54 | | 98.52 101 | 92.34 204 | 99.31 76 | 99.83 43 | 95.06 52 | 99.80 121 | 99.70 34 | 99.97 42 | |
|
| test_241102_ONE | | | | | | 99.93 24 | 99.30 12 | | 98.43 127 | 97.26 36 | 99.80 17 | 99.88 21 | 96.71 24 | 100.00 1 | | | |
|
| 9.14 | | | | 98.38 33 | | 99.87 51 | | 99.91 82 | 98.33 164 | 93.22 167 | 99.78 26 | 99.89 19 | 94.57 65 | 99.85 108 | 99.84 22 | 99.97 42 | |
|
| save fliter | | | | | | 99.82 58 | 98.79 38 | 99.96 34 | 98.40 146 | 97.66 21 | | | | | | | |
|
| test0726 | | | | | | 99.93 24 | 99.29 15 | 99.96 34 | 98.42 138 | 97.28 32 | 99.86 7 | 99.94 4 | 97.22 19 | | | | |
|
| test_part2 | | | | | | 99.89 45 | 99.25 18 | | | | 99.49 62 | | | | | | |
|
| sam_mvs | | | | | | | | | | | | | 94.25 76 | | | | |
|
| MTGPA |  | | | | | | | | 98.28 173 | | | | | | | | |
|
| test_post1 | | | | | | | | 95.78 365 | | | | 59.23 399 | 93.20 106 | 97.74 257 | 91.06 248 | | |
|
| test_post | | | | | | | | | | | | 63.35 396 | 94.43 66 | 98.13 237 | | | |
|
| patchmatchnet-post | | | | | | | | | | | | 91.70 361 | 95.12 49 | 97.95 248 | | | |
|
| MTMP | | | | | | | | 99.87 100 | 96.49 336 | | | | | | | | |
|
| gm-plane-assit | | | | | | 96.97 238 | 93.76 214 | | | 91.47 229 | | 98.96 161 | | 98.79 183 | 94.92 180 | | |
|
| TEST9 | | | | | | 99.92 31 | 98.92 28 | 99.96 34 | 98.43 127 | 93.90 148 | 99.71 34 | 99.86 26 | 95.88 37 | 99.85 108 | | | |
|
| test_8 | | | | | | 99.92 31 | 98.88 31 | 99.96 34 | 98.43 127 | 94.35 122 | 99.69 36 | 99.85 30 | 95.94 34 | 99.85 108 | | | |
|
| agg_prior | | | | | | 99.93 24 | 98.77 40 | | 98.43 127 | | 99.63 43 | | | 99.85 108 | | | |
|
| test_prior4 | | | | | | | 98.05 66 | 99.94 68 | | | | | | | | | |
|
| test_prior2 | | | | | | | | 99.95 52 | | 95.78 79 | 99.73 32 | 99.76 63 | 96.00 33 | | 99.78 27 | 100.00 1 | |
|
| 旧先验2 | | | | | | | | 99.46 206 | | 94.21 130 | 99.85 9 | | | 99.95 69 | 96.96 151 | | |
|
| æ–°å‡ ä½•2 | | | | | | | | 99.40 210 | | | | | | | | | |
|
| 原ACMM2 | | | | | | | | 99.90 87 | | | | | | | | | |
|
| testdata2 | | | | | | | | | | | | | | 99.99 36 | 90.54 261 | | |
|
| segment_acmp | | | | | | | | | | | | | 96.68 26 | | | | |
|
| testdata1 | | | | | | | | 99.28 230 | | 96.35 69 | | | | | | | |
|
| plane_prior7 | | | | | | 95.71 282 | 91.59 271 | | | | | | | | | | |
|
| plane_prior6 | | | | | | 95.76 276 | 91.72 266 | | | | | | 80.47 267 | | | | |
|
| plane_prior4 | | | | | | | | | | | | 98.59 193 | | | | | |
|
| plane_prior3 | | | | | | | 91.64 269 | | | 96.63 56 | 93.01 217 | | | | | | |
|
| plane_prior2 | | | | | | | | 99.84 120 | | 96.38 65 | | | | | | | |
|
| plane_prior1 | | | | | | 95.73 279 | | | | | | | | | | | |
|
| plane_prior | | | | | | | 91.74 263 | 99.86 113 | | 96.76 52 | | | | | | 89.59 243 | |
|
| n2 | | | | | | | | | 0.00 408 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 408 | | | | | | | | |
|
| door-mid | | | | | | | | | 89.69 392 | | | | | | | | |
|
| test11 | | | | | | | | | 98.44 119 | | | | | | | | |
|
| door | | | | | | | | | 90.31 389 | | | | | | | | |
|
| HQP5-MVS | | | | | | | 91.85 259 | | | | | | | | | | |
|
| HQP-NCC | | | | | | 95.78 272 | | 99.87 100 | | 96.82 48 | 93.37 213 | | | | | | |
|
| ACMP_Plane | | | | | | 95.78 272 | | 99.87 100 | | 96.82 48 | 93.37 213 | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 97.92 121 | | |
|
| HQP3-MVS | | | | | | | | | 97.89 214 | | | | | | | 89.60 241 | |
|
| HQP2-MVS | | | | | | | | | | | | | 80.65 263 | | | | |
|
| NP-MVS | | | | | | 95.77 275 | 91.79 261 | | | | | 98.65 188 | | | | | |
|
| MDTV_nov1_ep13 | | | | 95.69 144 | | 97.90 184 | 94.15 203 | 95.98 362 | 98.44 119 | 93.12 170 | 97.98 132 | 95.74 286 | 95.10 50 | 98.58 198 | 90.02 269 | 96.92 181 | |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 87.04 279 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 88.23 266 | |
|
| Test By Simon | | | | | | | | | | | | | 92.82 117 | | | | |
|