This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted by
DVP-MVS++99.26 699.09 999.77 899.91 3999.31 1099.95 5398.43 13196.48 6199.80 1899.93 1197.44 13100.00 199.92 1299.98 32100.00 1
MSC_two_6792asdad99.93 299.91 3999.80 298.41 148100.00 199.96 9100.00 1100.00 1
PC_three_145296.96 4499.80 1899.79 5797.49 9100.00 199.99 599.98 32100.00 1
No_MVS99.93 299.91 3999.80 298.41 148100.00 199.96 9100.00 1100.00 1
SED-MVS99.28 599.11 799.77 899.93 2499.30 1299.96 3598.43 13197.27 3499.80 1899.94 496.71 23100.00 1100.00 1100.00 1100.00 1
IU-MVS99.93 2499.31 1098.41 14897.71 1999.84 12100.00 1100.00 1100.00 1
OPU-MVS99.93 299.89 4599.80 299.96 3599.80 5197.44 13100.00 1100.00 199.98 32100.00 1
test_241102_TWO98.43 13197.27 3499.80 1899.94 497.18 20100.00 1100.00 1100.00 1100.00 1
test_0728_THIRD96.48 6199.83 1399.91 1497.87 5100.00 199.92 12100.00 1100.00 1
test_0728_SECOND99.82 799.94 1399.47 799.95 5398.43 131100.00 199.99 5100.00 1100.00 1
SMA-MVScopyleft98.76 2498.48 2999.62 2099.87 5198.87 3399.86 11898.38 15993.19 17299.77 2899.94 495.54 42100.00 199.74 3099.99 21100.00 1
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MSP-MVS99.09 999.12 598.98 7599.93 2497.24 10099.95 5398.42 14397.50 2699.52 6099.88 2197.43 1599.71 13899.50 4199.98 32100.00 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
test9_res99.71 3399.99 21100.00 1
agg_prior299.48 43100.00 1100.00 1
testdata98.42 11599.47 9295.33 17798.56 9293.78 15499.79 2699.85 3093.64 9999.94 7794.97 18699.94 54100.00 1
MSLP-MVS++99.13 899.01 1199.49 3299.94 1398.46 6199.98 1598.86 5397.10 4099.80 1899.94 495.92 36100.00 199.51 40100.00 1100.00 1
MCST-MVS99.32 399.14 499.86 599.97 399.59 599.97 2898.64 7698.47 299.13 8699.92 1396.38 30100.00 199.74 30100.00 1100.00 1
NCCC99.37 299.25 299.71 1499.96 899.15 2199.97 2898.62 8198.02 1399.90 399.95 397.33 16100.00 199.54 39100.00 1100.00 1
API-MVS97.86 6897.66 7398.47 11099.52 8895.41 17499.47 21498.87 5291.68 23098.84 9799.85 3092.34 13799.99 3698.44 9999.96 46100.00 1
DeepPCF-MVS95.94 297.71 8298.98 1293.92 28999.63 7981.76 37299.96 3598.56 9299.47 199.19 8499.99 194.16 84100.00 199.92 1299.93 60100.00 1
DeepC-MVS_fast96.59 198.81 2398.54 2699.62 2099.90 4298.85 3599.24 24398.47 11598.14 1099.08 8799.91 1493.09 113100.00 199.04 6399.99 21100.00 1
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MG-MVS98.91 1898.65 2099.68 1599.94 1399.07 2499.64 18799.44 2097.33 3199.00 9199.72 8394.03 8799.98 4398.73 85100.00 1100.00 1
DPE-MVScopyleft99.26 699.10 899.74 1199.89 4599.24 1999.87 10698.44 12397.48 2799.64 4399.94 496.68 2599.99 3699.99 5100.00 199.99 23
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
ACMMP_NAP98.49 3798.14 5099.54 2799.66 7898.62 5599.85 12198.37 16294.68 11299.53 5899.83 4392.87 119100.00 198.66 9099.84 7299.99 23
MTAPA98.29 5197.96 6299.30 4499.85 5497.93 7599.39 22498.28 17995.76 8297.18 15999.88 2192.74 124100.00 198.67 8899.88 6999.99 23
train_agg98.88 1998.65 2099.59 2399.92 3198.92 2999.96 3598.43 13194.35 12599.71 3599.86 2695.94 3499.85 10899.69 3599.98 3299.99 23
XVS98.70 2698.55 2599.15 5999.94 1397.50 9299.94 6998.42 14396.22 7399.41 6999.78 6194.34 7699.96 6198.92 7099.95 4999.99 23
X-MVStestdata93.83 21392.06 24699.15 5999.94 1397.50 9299.94 6998.42 14396.22 7399.41 6941.37 40994.34 7699.96 6198.92 7099.95 4999.99 23
test_prior99.43 3599.94 1398.49 6098.65 7499.80 12199.99 23
新几何199.42 3799.75 6898.27 6398.63 8092.69 19199.55 5599.82 4694.40 71100.00 191.21 25299.94 5499.99 23
旧先验199.76 6697.52 8998.64 7699.85 3095.63 4199.94 5499.99 23
无先验99.49 21198.71 6693.46 163100.00 194.36 20399.99 23
test22299.55 8697.41 9899.34 23098.55 9891.86 22499.27 8199.83 4393.84 9499.95 4999.99 23
MVS96.60 13395.56 15699.72 1396.85 25699.22 2098.31 32098.94 4191.57 23290.90 25499.61 10586.66 21699.96 6197.36 14399.88 6999.99 23
APDe-MVScopyleft99.06 1198.91 1499.51 2999.94 1398.76 4599.91 8498.39 15597.20 3899.46 6499.85 3095.53 4499.79 12399.86 21100.00 199.99 23
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
test1299.43 3599.74 6998.56 5798.40 15299.65 4194.76 6399.75 13299.98 3299.99 23
TSAR-MVS + GP.98.60 3098.51 2898.86 8299.73 7296.63 12299.97 2897.92 21998.07 1198.76 10499.55 11095.00 5799.94 7799.91 1597.68 16399.99 23
HPM-MVS_fast97.80 7497.50 7998.68 9099.79 6296.42 12899.88 10398.16 19591.75 22998.94 9399.54 11291.82 14999.65 14797.62 14099.99 2199.99 23
HPM-MVScopyleft97.96 6397.72 7198.68 9099.84 5696.39 13299.90 9198.17 19192.61 19698.62 11299.57 10991.87 14799.67 14598.87 7799.99 2199.99 23
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
APD-MVScopyleft98.62 2998.35 3999.41 3899.90 4298.51 5999.87 10698.36 16394.08 13999.74 3299.73 8094.08 8599.74 13499.42 4799.99 2199.99 23
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CNVR-MVS99.40 199.26 199.84 699.98 299.51 699.98 1598.69 6898.20 799.93 199.98 296.82 22100.00 199.75 28100.00 199.99 23
CP-MVS98.45 4098.32 4098.87 8199.96 896.62 12399.97 2898.39 15594.43 12098.90 9599.87 2494.30 78100.00 199.04 6399.99 2199.99 23
SteuartSystems-ACMMP99.02 1298.97 1399.18 5298.72 14297.71 8199.98 1598.44 12396.85 4699.80 1899.91 1497.57 799.85 10899.44 4699.99 2199.99 23
Skip Steuart: Steuart Systems R&D Blog.
CPTT-MVS97.64 8497.32 8798.58 10099.97 395.77 15599.96 3598.35 16589.90 27498.36 12399.79 5791.18 15799.99 3698.37 10399.99 2199.99 23
PAPM_NR98.12 6097.93 6498.70 8999.94 1396.13 14599.82 13698.43 13194.56 11597.52 14999.70 8794.40 7199.98 4397.00 15399.98 3299.99 23
PAPR98.52 3598.16 4999.58 2499.97 398.77 4299.95 5398.43 13195.35 9398.03 13599.75 7194.03 8799.98 4398.11 11499.83 7399.99 23
PHI-MVS98.41 4598.21 4599.03 7099.86 5397.10 10899.98 1598.80 6290.78 26099.62 4799.78 6195.30 48100.00 199.80 2599.93 6099.99 23
fmvsm_l_conf0.5_n98.94 1598.84 1799.25 4699.17 10697.81 7999.98 1598.86 5398.25 499.90 399.76 6594.21 8299.97 5399.87 1999.52 10099.98 48
MM98.83 2198.53 2799.76 1099.59 8199.33 899.99 599.76 698.39 399.39 7399.80 5190.49 17199.96 6199.89 1699.43 11199.98 48
test_fmvsmconf_n98.43 4398.32 4098.78 8498.12 18596.41 12999.99 598.83 5998.22 699.67 3999.64 10191.11 15899.94 7799.67 3699.62 9099.98 48
DPM-MVS98.83 2198.46 3099.97 199.33 9899.92 199.96 3598.44 12397.96 1499.55 5599.94 497.18 20100.00 193.81 21699.94 5499.98 48
HFP-MVS98.56 3298.37 3699.14 6199.96 897.43 9699.95 5398.61 8294.77 10799.31 7799.85 3094.22 80100.00 198.70 8699.98 3299.98 48
region2R98.54 3398.37 3699.05 6899.96 897.18 10399.96 3598.55 9894.87 10599.45 6599.85 3094.07 86100.00 198.67 88100.00 199.98 48
ACMMPR98.50 3698.32 4099.05 6899.96 897.18 10399.95 5398.60 8494.77 10799.31 7799.84 4193.73 96100.00 198.70 8699.98 3299.98 48
PGM-MVS98.34 4898.13 5198.99 7499.92 3197.00 11099.75 15699.50 1893.90 15199.37 7499.76 6593.24 110100.00 197.75 13799.96 4699.98 48
CDPH-MVS98.65 2898.36 3899.49 3299.94 1398.73 4699.87 10698.33 17093.97 14699.76 2999.87 2494.99 5899.75 13298.55 95100.00 199.98 48
mPP-MVS98.39 4798.20 4698.97 7699.97 396.92 11499.95 5398.38 15995.04 9998.61 11399.80 5193.39 101100.00 198.64 91100.00 199.98 48
SR-MVS-dyc-post98.31 4998.17 4898.71 8899.79 6296.37 13399.76 15398.31 17494.43 12099.40 7199.75 7193.28 10899.78 12598.90 7599.92 6399.97 58
RE-MVS-def98.13 5199.79 6296.37 13399.76 15398.31 17494.43 12099.40 7199.75 7192.95 11798.90 7599.92 6399.97 58
TSAR-MVS + MP.98.93 1698.77 1899.41 3899.74 6998.67 4999.77 14898.38 15996.73 5399.88 699.74 7894.89 6099.59 14999.80 2599.98 3299.97 58
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SD-MVS98.92 1798.70 1999.56 2599.70 7698.73 4699.94 6998.34 16996.38 6799.81 1599.76 6594.59 6799.98 4399.84 2299.96 4699.97 58
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
APD-MVS_3200maxsize98.25 5598.08 5598.78 8499.81 6096.60 12499.82 13698.30 17793.95 14899.37 7499.77 6392.84 12099.76 13198.95 6799.92 6399.97 58
DP-MVS Recon98.41 4598.02 5799.56 2599.97 398.70 4899.92 7998.44 12392.06 21998.40 12299.84 4195.68 40100.00 198.19 10999.71 8499.97 58
SF-MVS98.67 2798.40 3299.50 3099.77 6598.67 4999.90 9198.21 18693.53 16199.81 1599.89 1994.70 6699.86 10799.84 2299.93 6099.96 64
SR-MVS98.46 3998.30 4398.93 7999.88 4997.04 10999.84 12698.35 16594.92 10399.32 7699.80 5193.35 10399.78 12599.30 5299.95 4999.96 64
131496.84 12095.96 14099.48 3496.74 26398.52 5898.31 32098.86 5395.82 8089.91 26598.98 16187.49 20499.96 6197.80 13099.73 8399.96 64
114514_t97.41 9496.83 10699.14 6199.51 9097.83 7799.89 9998.27 18188.48 30199.06 8899.66 9890.30 17399.64 14896.32 16699.97 4299.96 64
MVS_111021_HR98.72 2598.62 2299.01 7399.36 9797.18 10399.93 7699.90 196.81 5198.67 10999.77 6393.92 8999.89 9699.27 5399.94 5499.96 64
PAPM98.60 3098.42 3199.14 6196.05 27698.96 2699.90 9199.35 2596.68 5598.35 12499.66 9896.45 2998.51 21099.45 4599.89 6799.96 64
3Dnovator+91.53 1196.31 14695.24 16599.52 2896.88 25598.64 5499.72 16798.24 18395.27 9688.42 30498.98 16182.76 25099.94 7797.10 15199.83 7399.96 64
fmvsm_l_conf0.5_n_a99.00 1498.91 1499.28 4599.21 10297.91 7699.98 1598.85 5698.25 499.92 299.75 7194.72 6499.97 5399.87 1999.64 8899.95 71
EI-MVSNet-Vis-set98.27 5298.11 5398.75 8799.83 5796.59 12599.40 22098.51 10795.29 9598.51 11699.76 6593.60 10099.71 13898.53 9699.52 10099.95 71
CHOSEN 1792x268896.81 12196.53 11997.64 16198.91 13093.07 23899.65 18399.80 395.64 8595.39 20098.86 18184.35 24199.90 9196.98 15599.16 12399.95 71
MVS_030498.87 2098.61 2399.67 1699.18 10399.13 2299.87 10699.65 1298.17 898.75 10699.75 7192.76 12399.94 7799.88 1899.44 10999.94 74
AdaColmapbinary97.23 10196.80 10898.51 10899.99 195.60 16699.09 25398.84 5893.32 16896.74 17199.72 8386.04 223100.00 198.01 11999.43 11199.94 74
ZNCC-MVS98.31 4998.03 5699.17 5599.88 4997.59 8699.94 6998.44 12394.31 12898.50 11799.82 4693.06 11499.99 3698.30 10799.99 2199.93 76
GST-MVS98.27 5297.97 5999.17 5599.92 3197.57 8799.93 7698.39 15594.04 14498.80 10099.74 7892.98 116100.00 198.16 11199.76 8199.93 76
MP-MVScopyleft98.23 5797.97 5999.03 7099.94 1397.17 10699.95 5398.39 15594.70 11198.26 12999.81 5091.84 148100.00 198.85 7899.97 4299.93 76
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
HyFIR lowres test96.66 13296.43 12297.36 17999.05 11293.91 21999.70 17499.80 390.54 26396.26 18498.08 22592.15 14198.23 24296.84 16195.46 21199.93 76
CNLPA97.76 7897.38 8398.92 8099.53 8796.84 11699.87 10698.14 19993.78 15496.55 17699.69 8992.28 13899.98 4397.13 14999.44 10999.93 76
原ACMM198.96 7799.73 7296.99 11198.51 10794.06 14299.62 4799.85 3094.97 5999.96 6195.11 18299.95 4999.92 81
DELS-MVS98.54 3398.22 4499.50 3099.15 10898.65 53100.00 198.58 8797.70 2098.21 13199.24 14192.58 12999.94 7798.63 9399.94 5499.92 81
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CSCG97.10 10697.04 9897.27 18399.89 4591.92 26799.90 9199.07 3488.67 29795.26 20399.82 4693.17 11299.98 4398.15 11299.47 10599.90 83
DVP-MVScopyleft99.30 499.16 399.73 1299.93 2499.29 1599.95 5398.32 17297.28 3299.83 1399.91 1497.22 18100.00 199.99 5100.00 199.89 84
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
patch_mono-298.24 5699.12 595.59 22699.67 7786.91 34599.95 5398.89 4997.60 2299.90 399.76 6596.54 2899.98 4399.94 1199.82 7799.88 85
MVS_111021_LR98.42 4498.38 3498.53 10799.39 9595.79 15499.87 10699.86 296.70 5498.78 10199.79 5792.03 14499.90 9199.17 5799.86 7199.88 85
HPM-MVS++copyleft99.07 1098.88 1699.63 1799.90 4299.02 2599.95 5398.56 9297.56 2599.44 6699.85 3095.38 47100.00 199.31 5199.99 2199.87 87
ACMMPcopyleft97.74 7997.44 8198.66 9299.92 3196.13 14599.18 24899.45 1994.84 10696.41 18199.71 8591.40 15199.99 3697.99 12198.03 15899.87 87
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
dcpmvs_297.42 9398.09 5495.42 23199.58 8587.24 34199.23 24496.95 31494.28 13198.93 9499.73 8094.39 7499.16 17699.89 1699.82 7799.86 89
3Dnovator91.47 1296.28 14995.34 16299.08 6796.82 25897.47 9599.45 21798.81 6095.52 9089.39 27999.00 15881.97 25499.95 6997.27 14599.83 7399.84 90
CANet98.27 5297.82 6999.63 1799.72 7499.10 2399.98 1598.51 10797.00 4398.52 11599.71 8587.80 20099.95 6999.75 2899.38 11399.83 91
test_fmvsmconf0.1_n97.74 7997.44 8198.64 9495.76 28796.20 14199.94 6998.05 20698.17 898.89 9699.42 12087.65 20299.90 9199.50 4199.60 9699.82 92
Patchmatch-test92.65 24791.50 25796.10 21696.85 25690.49 29991.50 39097.19 28782.76 36290.23 25995.59 30295.02 5598.00 25477.41 36796.98 18199.82 92
EI-MVSNet-UG-set98.14 5997.99 5898.60 9799.80 6196.27 13599.36 22998.50 11295.21 9798.30 12699.75 7193.29 10799.73 13798.37 10399.30 11799.81 94
HY-MVS92.50 797.79 7697.17 9499.63 1798.98 11899.32 997.49 34199.52 1595.69 8498.32 12597.41 24493.32 10599.77 12898.08 11795.75 20799.81 94
mvsany_test197.82 7297.90 6697.55 16698.77 14093.04 24199.80 14297.93 21696.95 4599.61 5399.68 9590.92 16299.83 11899.18 5698.29 14999.80 96
test_yl97.83 7097.37 8499.21 4999.18 10397.98 7299.64 18799.27 2791.43 23997.88 14198.99 15995.84 3899.84 11698.82 7995.32 21699.79 97
DCV-MVSNet97.83 7097.37 8499.21 4999.18 10397.98 7299.64 18799.27 2791.43 23997.88 14198.99 15995.84 3899.84 11698.82 7995.32 21699.79 97
Patchmatch-RL test86.90 32685.98 33089.67 34684.45 38975.59 38589.71 39592.43 39386.89 32477.83 37490.94 37394.22 8093.63 37587.75 30169.61 37899.79 97
WTY-MVS98.10 6197.60 7699.60 2298.92 12699.28 1799.89 9999.52 1595.58 8798.24 13099.39 12793.33 10499.74 13497.98 12395.58 21099.78 100
CHOSEN 280x42099.01 1399.03 1098.95 7899.38 9698.87 3398.46 31299.42 2297.03 4299.02 9099.09 14999.35 198.21 24399.73 3299.78 8099.77 101
MP-MVS-pluss98.07 6297.64 7499.38 4299.74 6998.41 6299.74 15998.18 19093.35 16696.45 17899.85 3092.64 12699.97 5398.91 7499.89 6799.77 101
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
EPMVS96.53 13696.01 13398.09 13398.43 16296.12 14796.36 36299.43 2193.53 16197.64 14795.04 32894.41 7098.38 22691.13 25498.11 15499.75 103
Vis-MVSNet (Re-imp)96.32 14595.98 13697.35 18097.93 19394.82 19499.47 21498.15 19891.83 22595.09 20499.11 14891.37 15297.47 27593.47 22497.43 16799.74 104
DP-MVS94.54 19493.42 21397.91 14599.46 9494.04 21498.93 27697.48 25981.15 36890.04 26299.55 11087.02 21199.95 6988.97 28698.11 15499.73 105
TAPA-MVS92.12 894.42 19993.60 20696.90 19299.33 9891.78 27199.78 14598.00 20889.89 27594.52 20999.47 11691.97 14599.18 17469.90 38299.52 10099.73 105
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
MGCFI-Net97.00 11396.22 12899.34 4398.86 13498.80 3999.67 17997.30 27794.31 12897.77 14599.41 12486.36 22099.50 15598.38 10193.90 23699.72 107
sasdasda97.09 10896.32 12499.39 4098.93 12398.95 2799.72 16797.35 27094.45 11797.88 14199.42 12086.71 21499.52 15198.48 9793.97 23499.72 107
canonicalmvs97.09 10896.32 12499.39 4098.93 12398.95 2799.72 16797.35 27094.45 11797.88 14199.42 12086.71 21499.52 15198.48 9793.97 23499.72 107
TESTMET0.1,196.74 12796.26 12698.16 12697.36 23196.48 12699.96 3598.29 17891.93 22295.77 19598.07 22695.54 4298.29 23590.55 26898.89 13199.70 110
PatchmatchNetpermissive95.94 15795.45 15897.39 17697.83 19994.41 20396.05 36998.40 15292.86 18197.09 16095.28 32394.21 8298.07 25189.26 28498.11 15499.70 110
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
VNet97.21 10296.57 11899.13 6598.97 11997.82 7899.03 26799.21 2994.31 12899.18 8598.88 17686.26 22299.89 9698.93 6994.32 22899.69 112
iter_conf05_1196.12 15195.46 15798.10 13198.62 14995.52 169100.00 196.30 35096.54 6099.81 1599.80 5169.19 34899.10 17898.92 7099.91 6699.68 113
bld_raw_dy_0_6494.22 20792.97 22497.98 13898.62 14995.09 18899.89 9993.09 39196.55 5992.59 23499.80 5168.57 35299.19 17398.92 7088.69 26699.68 113
Anonymous20240521193.10 23591.99 24796.40 20899.10 10989.65 31698.88 28197.93 21683.71 35594.00 21898.75 18868.79 34999.88 10295.08 18491.71 24699.68 113
mvs_anonymous95.65 16895.03 17397.53 16798.19 17995.74 15799.33 23197.49 25890.87 25590.47 25897.10 25388.23 19897.16 29195.92 17297.66 16499.68 113
GG-mvs-BLEND98.54 10598.21 17798.01 7093.87 38198.52 10497.92 13897.92 23399.02 297.94 26098.17 11099.58 9799.67 117
gg-mvs-nofinetune93.51 22591.86 25198.47 11097.72 21097.96 7492.62 38598.51 10774.70 38797.33 15569.59 40098.91 397.79 26497.77 13599.56 9899.67 117
alignmvs97.81 7397.33 8699.25 4698.77 14098.66 5199.99 598.44 12394.40 12498.41 12099.47 11693.65 9899.42 16498.57 9494.26 23099.67 117
LFMVS94.75 18893.56 20998.30 12199.03 11395.70 16098.74 29597.98 21187.81 31198.47 11899.39 12767.43 35899.53 15098.01 11995.20 21999.67 117
MDTV_nov1_ep13_2view96.26 13696.11 36891.89 22398.06 13494.40 7194.30 20599.67 117
MAR-MVS97.43 8997.19 9298.15 12999.47 9294.79 19699.05 26498.76 6392.65 19498.66 11099.82 4688.52 19799.98 4398.12 11399.63 8999.67 117
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
test250697.53 8697.19 9298.58 10098.66 14696.90 11598.81 29099.77 594.93 10197.95 13798.96 16592.51 13199.20 17194.93 18798.15 15199.64 123
test111195.57 16994.98 17597.37 17798.56 15193.37 23598.86 28598.45 11894.95 10096.63 17398.95 17075.21 32299.11 17795.02 18598.14 15399.64 123
ECVR-MVScopyleft95.66 16795.05 17297.51 16998.66 14693.71 22398.85 28798.45 11894.93 10196.86 16798.96 16575.22 32199.20 17195.34 17998.15 15199.64 123
test-LLR96.47 13796.04 13297.78 15197.02 24595.44 17199.96 3598.21 18694.07 14095.55 19796.38 27893.90 9198.27 23990.42 27198.83 13599.64 123
test-mter96.39 14295.93 14497.78 15197.02 24595.44 17199.96 3598.21 18691.81 22795.55 19796.38 27895.17 4998.27 23990.42 27198.83 13599.64 123
EC-MVSNet97.38 9697.24 8997.80 14897.41 22795.64 16499.99 597.06 30394.59 11499.63 4499.32 13289.20 19098.14 24698.76 8399.23 12199.62 128
sss97.57 8597.03 9999.18 5298.37 16498.04 6999.73 16499.38 2393.46 16398.76 10499.06 15291.21 15399.89 9696.33 16597.01 18099.62 128
QAPM95.40 17394.17 19299.10 6696.92 25097.71 8199.40 22098.68 7089.31 28088.94 29298.89 17582.48 25199.96 6193.12 23299.83 7399.62 128
MVS_Test96.46 13895.74 15098.61 9698.18 18097.23 10199.31 23497.15 29391.07 25198.84 9797.05 25788.17 19998.97 18294.39 20297.50 16699.61 131
EPNet98.49 3798.40 3298.77 8699.62 8096.80 11999.90 9199.51 1797.60 2299.20 8299.36 13093.71 9799.91 8997.99 12198.71 13899.61 131
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
IB-MVS92.85 694.99 18193.94 19898.16 12697.72 21095.69 16299.99 598.81 6094.28 13192.70 23396.90 26195.08 5299.17 17596.07 16973.88 37199.60 133
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
ET-MVSNet_ETH3D94.37 20193.28 21997.64 16198.30 16997.99 7199.99 597.61 24394.35 12571.57 38799.45 11996.23 3195.34 35796.91 16085.14 30299.59 134
EIA-MVS97.53 8697.46 8097.76 15598.04 18894.84 19399.98 1597.61 24394.41 12397.90 13999.59 10692.40 13598.87 18698.04 11899.13 12599.59 134
GSMVS99.59 134
sam_mvs194.72 6499.59 134
Fast-Effi-MVS+95.02 18094.19 19197.52 16897.88 19594.55 19999.97 2897.08 30188.85 29494.47 21197.96 23284.59 23798.41 21889.84 28097.10 17599.59 134
SCA94.69 18993.81 20297.33 18197.10 24194.44 20098.86 28598.32 17293.30 16996.17 18795.59 30276.48 30897.95 25891.06 25697.43 16799.59 134
PVSNet91.05 1397.13 10596.69 11398.45 11299.52 8895.81 15399.95 5399.65 1294.73 10999.04 8999.21 14384.48 23899.95 6994.92 18898.74 13799.58 140
PVSNet_Blended97.94 6497.64 7498.83 8399.59 8196.99 111100.00 199.10 3195.38 9298.27 12799.08 15089.00 19299.95 6999.12 5899.25 11999.57 141
ab-mvs94.69 18993.42 21398.51 10898.07 18696.26 13696.49 36098.68 7090.31 26894.54 20897.00 25976.30 31099.71 13895.98 17193.38 24199.56 142
test_fmvsmconf0.01_n96.39 14295.74 15098.32 12091.47 36695.56 16799.84 12697.30 27797.74 1897.89 14099.35 13179.62 28099.85 10899.25 5499.24 12099.55 143
Test_1112_low_res95.72 16294.83 17898.42 11597.79 20296.41 12999.65 18396.65 33892.70 19092.86 23296.13 28792.15 14199.30 16591.88 24693.64 23899.55 143
1112_ss96.01 15695.20 16798.42 11597.80 20196.41 12999.65 18396.66 33792.71 18992.88 23199.40 12592.16 14099.30 16591.92 24593.66 23799.55 143
DeepC-MVS94.51 496.92 11896.40 12398.45 11299.16 10795.90 15199.66 18198.06 20496.37 7094.37 21299.49 11583.29 24899.90 9197.63 13999.61 9499.55 143
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CS-MVS97.79 7697.91 6597.43 17399.10 10994.42 20299.99 597.10 29895.07 9899.68 3899.75 7192.95 11798.34 23098.38 10199.14 12499.54 147
LCM-MVSNet-Re92.31 25392.60 23491.43 33297.53 22179.27 38299.02 26891.83 39692.07 21780.31 36294.38 34983.50 24695.48 35497.22 14897.58 16599.54 147
casdiffmvspermissive96.42 14195.97 13997.77 15397.30 23694.98 18999.84 12697.09 30093.75 15696.58 17599.26 13985.07 23298.78 19297.77 13597.04 17899.54 147
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
dp95.05 17994.43 18596.91 19197.99 19092.73 24896.29 36597.98 21189.70 27795.93 19194.67 34193.83 9598.45 21586.91 31696.53 18799.54 147
CS-MVS-test97.88 6797.94 6397.70 15899.28 10095.20 18499.98 1597.15 29395.53 8999.62 4799.79 5792.08 14398.38 22698.75 8499.28 11899.52 151
Effi-MVS+96.30 14795.69 15298.16 12697.85 19896.26 13697.41 34397.21 28690.37 26698.65 11198.58 20486.61 21798.70 20097.11 15097.37 17199.52 151
PatchT90.38 29288.75 30895.25 23895.99 27890.16 30691.22 39297.54 25176.80 37997.26 15786.01 39191.88 14696.07 34666.16 39095.91 20299.51 153
tpm93.70 22193.41 21594.58 26195.36 30287.41 34097.01 35296.90 32190.85 25696.72 17294.14 35190.40 17296.84 31490.75 26588.54 27199.51 153
CostFormer96.10 15295.88 14796.78 19597.03 24492.55 25497.08 35197.83 22890.04 27398.72 10794.89 33595.01 5698.29 23596.54 16495.77 20599.50 155
tpmrst96.27 15095.98 13697.13 18597.96 19193.15 23796.34 36398.17 19192.07 21798.71 10895.12 32693.91 9098.73 19694.91 19096.62 18599.50 155
casdiffmvs_mvgpermissive96.43 13995.94 14397.89 14797.44 22695.47 17099.86 11897.29 28093.35 16696.03 18899.19 14485.39 22998.72 19897.89 12897.04 17899.49 157
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
IS-MVSNet96.29 14895.90 14697.45 17198.13 18494.80 19599.08 25597.61 24392.02 22195.54 19998.96 16590.64 16898.08 24993.73 22197.41 17099.47 158
ETV-MVS97.92 6697.80 7098.25 12398.14 18396.48 12699.98 1597.63 23895.61 8699.29 8099.46 11892.55 13098.82 18999.02 6698.54 14099.46 159
baseline96.43 13995.98 13697.76 15597.34 23295.17 18699.51 20797.17 29093.92 15096.90 16699.28 13385.37 23098.64 20497.50 14196.86 18499.46 159
lupinMVS97.85 6997.60 7698.62 9597.28 23897.70 8399.99 597.55 24995.50 9199.43 6799.67 9690.92 16298.71 19998.40 10099.62 9099.45 161
PMMVS96.76 12596.76 10996.76 19698.28 17292.10 26299.91 8497.98 21194.12 13799.53 5899.39 12786.93 21398.73 19696.95 15897.73 16199.45 161
UA-Net96.54 13595.96 14098.27 12298.23 17595.71 15998.00 33498.45 11893.72 15798.41 12099.27 13688.71 19699.66 14691.19 25397.69 16299.44 163
CVMVSNet94.68 19194.94 17693.89 29296.80 25986.92 34499.06 26098.98 3894.45 11794.23 21699.02 15485.60 22595.31 35890.91 26195.39 21499.43 164
PVSNet_Blended_VisFu97.27 9996.81 10798.66 9298.81 13796.67 12199.92 7998.64 7694.51 11696.38 18298.49 21089.05 19199.88 10297.10 15198.34 14499.43 164
PLCcopyleft95.54 397.93 6597.89 6798.05 13699.82 5894.77 19799.92 7998.46 11793.93 14997.20 15899.27 13695.44 4699.97 5397.41 14299.51 10399.41 166
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
PCF-MVS94.20 595.18 17694.10 19398.43 11498.55 15495.99 14997.91 33697.31 27690.35 26789.48 27899.22 14285.19 23199.89 9690.40 27398.47 14299.41 166
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
tpm295.47 17195.18 16896.35 21196.91 25191.70 27696.96 35497.93 21688.04 30898.44 11995.40 31293.32 10597.97 25594.00 20995.61 20999.38 168
OMC-MVS97.28 9897.23 9097.41 17499.76 6693.36 23699.65 18397.95 21496.03 7797.41 15399.70 8789.61 18199.51 15396.73 16298.25 15099.38 168
GeoE94.36 20393.48 21196.99 18997.29 23793.54 22999.96 3596.72 33588.35 30493.43 22298.94 17282.05 25398.05 25288.12 29896.48 19099.37 170
ADS-MVSNet293.80 21693.88 20093.55 30397.87 19685.94 34894.24 37796.84 32690.07 27196.43 17994.48 34690.29 17495.37 35687.44 30397.23 17299.36 171
ADS-MVSNet94.79 18594.02 19597.11 18797.87 19693.79 22094.24 37798.16 19590.07 27196.43 17994.48 34690.29 17498.19 24487.44 30397.23 17299.36 171
FA-MVS(test-final)95.86 15895.09 17198.15 12997.74 20595.62 16596.31 36498.17 19191.42 24196.26 18496.13 28790.56 16999.47 16292.18 24197.07 17699.35 173
BH-RMVSNet95.18 17694.31 18997.80 14898.17 18195.23 18299.76 15397.53 25392.52 20494.27 21599.25 14076.84 30398.80 19090.89 26299.54 9999.35 173
TR-MVS94.54 19493.56 20997.49 17097.96 19194.34 20698.71 29897.51 25690.30 26994.51 21098.69 19275.56 31698.77 19392.82 23595.99 19799.35 173
diffmvspermissive97.00 11396.64 11498.09 13397.64 21696.17 14499.81 13897.19 28794.67 11398.95 9299.28 13386.43 21898.76 19498.37 10397.42 16999.33 176
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
JIA-IIPM91.76 26790.70 26794.94 24796.11 27487.51 33993.16 38498.13 20075.79 38397.58 14877.68 39792.84 12097.97 25588.47 29396.54 18699.33 176
FE-MVS95.70 16695.01 17497.79 15098.21 17794.57 19895.03 37698.69 6888.90 29297.50 15196.19 28492.60 12899.49 16089.99 27897.94 16099.31 178
thres20096.96 11596.21 12999.22 4898.97 11998.84 3699.85 12199.71 793.17 17396.26 18498.88 17689.87 17899.51 15394.26 20694.91 22199.31 178
CDS-MVSNet96.34 14496.07 13197.13 18597.37 23094.96 19099.53 20497.91 22091.55 23395.37 20198.32 22095.05 5497.13 29493.80 21795.75 20799.30 180
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Vis-MVSNetpermissive95.72 16295.15 16997.45 17197.62 21794.28 20799.28 24098.24 18394.27 13396.84 16898.94 17279.39 28298.76 19493.25 22698.49 14199.30 180
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test_vis1_n93.61 22393.03 22395.35 23395.86 28286.94 34399.87 10696.36 34896.85 4699.54 5798.79 18652.41 38999.83 11898.64 9198.97 13099.29 182
ETVMVS97.03 11296.64 11498.20 12598.67 14597.12 10799.89 9998.57 8991.10 25098.17 13298.59 20193.86 9398.19 24495.64 17795.24 21899.28 183
thres100view90096.74 12795.92 14599.18 5298.90 13198.77 4299.74 15999.71 792.59 19895.84 19298.86 18189.25 18799.50 15593.84 21394.57 22499.27 184
tfpn200view996.79 12295.99 13499.19 5198.94 12198.82 3799.78 14599.71 792.86 18196.02 18998.87 17989.33 18599.50 15593.84 21394.57 22499.27 184
MVSFormer96.94 11696.60 11697.95 14097.28 23897.70 8399.55 20197.27 28291.17 24699.43 6799.54 11290.92 16296.89 31194.67 19899.62 9099.25 186
jason97.24 10096.86 10598.38 11895.73 29097.32 9999.97 2897.40 26795.34 9498.60 11499.54 11287.70 20198.56 20797.94 12499.47 10599.25 186
jason: jason.
EPP-MVSNet96.69 13096.60 11696.96 19097.74 20593.05 24099.37 22798.56 9288.75 29595.83 19499.01 15696.01 3298.56 20796.92 15997.20 17499.25 186
EPNet_dtu95.71 16495.39 16096.66 20098.92 12693.41 23399.57 19798.90 4796.19 7597.52 14998.56 20692.65 12597.36 27777.89 36598.33 14599.20 189
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
GA-MVS93.83 21392.84 22796.80 19495.73 29093.57 22799.88 10397.24 28592.57 20092.92 22996.66 27078.73 29097.67 26987.75 30194.06 23399.17 190
thisisatest051597.41 9497.02 10098.59 9997.71 21297.52 8999.97 2898.54 10191.83 22597.45 15299.04 15397.50 899.10 17894.75 19596.37 19299.16 191
thres600view796.69 13095.87 14899.14 6198.90 13198.78 4199.74 15999.71 792.59 19895.84 19298.86 18189.25 18799.50 15593.44 22594.50 22799.16 191
thres40096.78 12495.99 13499.16 5798.94 12198.82 3799.78 14599.71 792.86 18196.02 18998.87 17989.33 18599.50 15593.84 21394.57 22499.16 191
TAMVS95.85 15995.58 15596.65 20197.07 24293.50 23099.17 24997.82 22991.39 24395.02 20598.01 22792.20 13997.30 28393.75 22095.83 20499.14 194
CR-MVSNet93.45 22892.62 23395.94 21896.29 26992.66 25092.01 38896.23 35192.62 19596.94 16493.31 35991.04 15996.03 34779.23 35895.96 19899.13 195
RPMNet89.76 30787.28 32297.19 18496.29 26992.66 25092.01 38898.31 17470.19 39396.94 16485.87 39287.25 20899.78 12562.69 39495.96 19899.13 195
tpm cat193.51 22592.52 23996.47 20397.77 20391.47 28296.13 36798.06 20480.98 36992.91 23093.78 35489.66 17998.87 18687.03 31296.39 19199.09 197
BH-w/o95.71 16495.38 16196.68 19998.49 16092.28 25899.84 12697.50 25792.12 21692.06 24398.79 18684.69 23698.67 20395.29 18199.66 8799.09 197
fmvsm_s_conf0.5_n_a97.73 8197.72 7197.77 15398.63 14894.26 20899.96 3598.92 4697.18 3999.75 3099.69 8987.00 21299.97 5399.46 4498.89 13199.08 199
testing1197.48 8897.27 8898.10 13198.36 16596.02 14899.92 7998.45 11893.45 16598.15 13398.70 19195.48 4599.22 16797.85 12995.05 22099.07 200
testing22297.08 11196.75 11098.06 13598.56 15196.82 11799.85 12198.61 8292.53 20298.84 9798.84 18593.36 10298.30 23495.84 17494.30 22999.05 201
testing9197.16 10496.90 10397.97 13998.35 16795.67 16399.91 8498.42 14392.91 18097.33 15598.72 18994.81 6299.21 16896.98 15594.63 22399.03 202
LS3D95.84 16095.11 17098.02 13799.85 5495.10 18798.74 29598.50 11287.22 31893.66 22199.86 2687.45 20599.95 6990.94 26099.81 7999.02 203
MIMVSNet90.30 29588.67 30995.17 24196.45 26891.64 27892.39 38697.15 29385.99 33390.50 25793.19 36166.95 35994.86 36482.01 34693.43 23999.01 204
testing9997.17 10396.91 10297.95 14098.35 16795.70 16099.91 8498.43 13192.94 17897.36 15498.72 18994.83 6199.21 16897.00 15394.64 22298.95 205
thisisatest053097.10 10696.72 11198.22 12497.60 21896.70 12099.92 7998.54 10191.11 24997.07 16298.97 16397.47 1199.03 18093.73 22196.09 19598.92 206
BH-untuned95.18 17694.83 17896.22 21398.36 16591.22 28499.80 14297.32 27590.91 25491.08 25198.67 19383.51 24598.54 20994.23 20799.61 9498.92 206
F-COLMAP96.93 11796.95 10196.87 19399.71 7591.74 27299.85 12197.95 21493.11 17595.72 19699.16 14792.35 13699.94 7795.32 18099.35 11598.92 206
Anonymous2024052992.10 25790.65 26896.47 20398.82 13690.61 29698.72 29798.67 7375.54 38493.90 22098.58 20466.23 36299.90 9194.70 19790.67 24998.90 209
tttt051796.85 11996.49 12097.92 14397.48 22595.89 15299.85 12198.54 10190.72 26196.63 17398.93 17497.47 1199.02 18193.03 23395.76 20698.85 210
baseline195.78 16194.86 17798.54 10598.47 16198.07 6799.06 26097.99 20992.68 19294.13 21798.62 20093.28 10898.69 20193.79 21885.76 29598.84 211
VDD-MVS93.77 21792.94 22596.27 21298.55 15490.22 30598.77 29497.79 23090.85 25696.82 16999.42 12061.18 37999.77 12898.95 6794.13 23198.82 212
PatchMatch-RL96.04 15595.40 15997.95 14099.59 8195.22 18399.52 20599.07 3493.96 14796.49 17798.35 21882.28 25299.82 12090.15 27699.22 12298.81 213
PVSNet_088.03 1991.80 26490.27 27796.38 21098.27 17390.46 30099.94 6999.61 1493.99 14586.26 33397.39 24671.13 34299.89 9698.77 8267.05 38798.79 214
test_vis1_n_192095.44 17295.31 16395.82 22298.50 15988.74 32499.98 1597.30 27797.84 1699.85 999.19 14466.82 36099.97 5398.82 7999.46 10798.76 215
tpmvs94.28 20593.57 20896.40 20898.55 15491.50 28195.70 37598.55 9887.47 31392.15 24094.26 35091.42 15098.95 18488.15 29695.85 20398.76 215
fmvsm_s_conf0.1_n_a97.09 10896.90 10397.63 16395.65 29694.21 21099.83 13398.50 11296.27 7299.65 4199.64 10184.72 23599.93 8599.04 6398.84 13498.74 217
test_cas_vis1_n_192096.59 13496.23 12797.65 16098.22 17694.23 20999.99 597.25 28497.77 1799.58 5499.08 15077.10 29899.97 5397.64 13899.45 10898.74 217
h-mvs3394.92 18294.36 18696.59 20298.85 13591.29 28398.93 27698.94 4195.90 7898.77 10298.42 21790.89 16599.77 12897.80 13070.76 37698.72 219
xiu_mvs_v2_base98.23 5797.97 5999.02 7298.69 14398.66 5199.52 20598.08 20397.05 4199.86 799.86 2690.65 16799.71 13899.39 5098.63 13998.69 220
PS-MVSNAJ98.44 4198.20 4699.16 5798.80 13898.92 2999.54 20398.17 19197.34 2999.85 999.85 3091.20 15499.89 9699.41 4899.67 8698.69 220
fmvsm_s_conf0.5_n97.80 7497.85 6897.67 15999.06 11194.41 20399.98 1598.97 4097.34 2999.63 4499.69 8987.27 20799.97 5399.62 3799.06 12898.62 222
test_fmvsm_n_192098.44 4198.61 2397.92 14399.27 10195.18 185100.00 198.90 4798.05 1299.80 1899.73 8092.64 12699.99 3699.58 3899.51 10398.59 223
fmvsm_s_conf0.1_n97.30 9797.21 9197.60 16597.38 22994.40 20599.90 9198.64 7696.47 6399.51 6299.65 10084.99 23499.93 8599.22 5599.09 12798.46 224
UWE-MVS96.79 12296.72 11197.00 18898.51 15893.70 22499.71 17098.60 8492.96 17797.09 16098.34 21996.67 2798.85 18892.11 24296.50 18898.44 225
test_fmvsmvis_n_192097.67 8397.59 7897.91 14597.02 24595.34 17699.95 5398.45 11897.87 1597.02 16399.59 10689.64 18099.98 4399.41 4899.34 11698.42 226
dmvs_re93.20 23193.15 22193.34 30696.54 26783.81 35998.71 29898.51 10791.39 24392.37 23998.56 20678.66 29197.83 26393.89 21189.74 25098.38 227
MSDG94.37 20193.36 21797.40 17598.88 13393.95 21899.37 22797.38 26885.75 33890.80 25599.17 14684.11 24399.88 10286.35 31798.43 14398.36 228
CANet_DTU96.76 12596.15 13098.60 9798.78 13997.53 8899.84 12697.63 23897.25 3799.20 8299.64 10181.36 26199.98 4392.77 23698.89 13198.28 229
test_fmvs195.35 17495.68 15494.36 27498.99 11784.98 35499.96 3596.65 33897.60 2299.73 3398.96 16571.58 33899.93 8598.31 10699.37 11498.17 230
VDDNet93.12 23491.91 24996.76 19696.67 26692.65 25298.69 30198.21 18682.81 36197.75 14699.28 13361.57 37799.48 16198.09 11694.09 23298.15 231
MVS-HIRNet86.22 32983.19 34295.31 23696.71 26590.29 30392.12 38797.33 27462.85 39486.82 32270.37 39969.37 34797.49 27475.12 37497.99 15998.15 231
test_fmvs1_n94.25 20694.36 18693.92 28997.68 21383.70 36099.90 9196.57 34197.40 2899.67 3998.88 17661.82 37699.92 8898.23 10899.13 12598.14 233
UGNet95.33 17594.57 18397.62 16498.55 15494.85 19298.67 30399.32 2695.75 8396.80 17096.27 28272.18 33599.96 6194.58 20099.05 12998.04 234
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
DSMNet-mixed88.28 32088.24 31588.42 35789.64 37975.38 38698.06 33289.86 40085.59 34088.20 30692.14 36976.15 31391.95 38678.46 36396.05 19697.92 235
xiu_mvs_v1_base_debu97.43 8997.06 9598.55 10297.74 20598.14 6499.31 23497.86 22596.43 6499.62 4799.69 8985.56 22699.68 14299.05 6098.31 14697.83 236
xiu_mvs_v1_base97.43 8997.06 9598.55 10297.74 20598.14 6499.31 23497.86 22596.43 6499.62 4799.69 8985.56 22699.68 14299.05 6098.31 14697.83 236
xiu_mvs_v1_base_debi97.43 8997.06 9598.55 10297.74 20598.14 6499.31 23497.86 22596.43 6499.62 4799.69 8985.56 22699.68 14299.05 6098.31 14697.83 236
UniMVSNet_ETH3D90.06 30288.58 31094.49 26794.67 31288.09 33597.81 33997.57 24883.91 35488.44 30097.41 24457.44 38397.62 27191.41 25088.59 27097.77 239
cascas94.64 19293.61 20497.74 15797.82 20096.26 13699.96 3597.78 23185.76 33694.00 21897.54 24176.95 30299.21 16897.23 14795.43 21397.76 240
SDMVSNet94.80 18493.96 19797.33 18198.92 12695.42 17399.59 19398.99 3792.41 20892.55 23697.85 23475.81 31598.93 18597.90 12791.62 24797.64 241
sd_testset93.55 22492.83 22895.74 22498.92 12690.89 29198.24 32398.85 5692.41 20892.55 23697.85 23471.07 34398.68 20293.93 21091.62 24797.64 241
hse-mvs294.38 20094.08 19495.31 23698.27 17390.02 31099.29 23998.56 9295.90 7898.77 10298.00 22890.89 16598.26 24197.80 13069.20 38297.64 241
AUN-MVS93.28 22992.60 23495.34 23498.29 17090.09 30899.31 23498.56 9291.80 22896.35 18398.00 22889.38 18498.28 23792.46 23769.22 38197.64 241
OpenMVScopyleft90.15 1594.77 18793.59 20798.33 11996.07 27597.48 9499.56 19998.57 8990.46 26486.51 32798.95 17078.57 29299.94 7793.86 21299.74 8297.57 245
baseline296.71 12996.49 12097.37 17795.63 29895.96 15099.74 15998.88 5192.94 17891.61 24598.97 16397.72 698.62 20594.83 19298.08 15797.53 246
tt080591.28 27290.18 28094.60 25996.26 27187.55 33898.39 31898.72 6589.00 28689.22 28598.47 21462.98 37398.96 18390.57 26788.00 28097.28 247
RPSCF91.80 26492.79 23088.83 35298.15 18269.87 39098.11 33096.60 34083.93 35394.33 21399.27 13679.60 28199.46 16391.99 24393.16 24397.18 248
test0.0.03 193.86 21293.61 20494.64 25795.02 30792.18 26199.93 7698.58 8794.07 14087.96 30898.50 20993.90 9194.96 36281.33 34993.17 24296.78 249
AllTest92.48 24991.64 25295.00 24599.01 11488.43 33098.94 27596.82 32986.50 32788.71 29598.47 21474.73 32599.88 10285.39 32496.18 19396.71 250
TestCases95.00 24599.01 11488.43 33096.82 32986.50 32788.71 29598.47 21474.73 32599.88 10285.39 32496.18 19396.71 250
Syy-MVS90.00 30390.63 26988.11 35997.68 21374.66 38799.71 17098.35 16590.79 25892.10 24198.67 19379.10 28793.09 37963.35 39395.95 20096.59 252
myMVS_eth3d94.46 19894.76 18093.55 30397.68 21390.97 28699.71 17098.35 16590.79 25892.10 24198.67 19392.46 13493.09 37987.13 30995.95 20096.59 252
XVG-OURS-SEG-HR94.79 18594.70 18295.08 24298.05 18789.19 31999.08 25597.54 25193.66 15894.87 20699.58 10878.78 28999.79 12397.31 14493.40 24096.25 254
XVG-OURS94.82 18394.74 18195.06 24398.00 18989.19 31999.08 25597.55 24994.10 13894.71 20799.62 10480.51 27399.74 13496.04 17093.06 24596.25 254
Effi-MVS+-dtu94.53 19695.30 16492.22 32597.77 20382.54 36599.59 19397.06 30394.92 10395.29 20295.37 31685.81 22497.89 26194.80 19397.07 17696.23 256
testing393.92 21194.23 19092.99 31797.54 22090.23 30499.99 599.16 3090.57 26291.33 25098.63 19992.99 11592.52 38382.46 34295.39 21496.22 257
testgi89.01 31688.04 31791.90 32993.49 33284.89 35599.73 16495.66 36393.89 15385.14 34098.17 22259.68 38094.66 36677.73 36688.88 26196.16 258
Fast-Effi-MVS+-dtu93.72 22093.86 20193.29 30897.06 24386.16 34699.80 14296.83 32792.66 19392.58 23597.83 23681.39 26097.67 26989.75 28196.87 18396.05 259
dmvs_testset83.79 34486.07 32876.94 37492.14 35648.60 40996.75 35790.27 39989.48 27878.65 36998.55 20879.25 28386.65 39766.85 38882.69 31795.57 260
COLMAP_ROBcopyleft90.47 1492.18 25691.49 25894.25 27799.00 11688.04 33698.42 31796.70 33682.30 36488.43 30299.01 15676.97 30199.85 10886.11 32096.50 18894.86 261
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
HQP4-MVS93.37 22398.39 22294.53 262
HQP-MVS94.61 19394.50 18494.92 24895.78 28391.85 26899.87 10697.89 22196.82 4893.37 22398.65 19680.65 27198.39 22297.92 12589.60 25194.53 262
HQP_MVS94.49 19794.36 18694.87 24995.71 29391.74 27299.84 12697.87 22396.38 6793.01 22798.59 20180.47 27598.37 22897.79 13389.55 25494.52 264
plane_prior597.87 22398.37 22897.79 13389.55 25494.52 264
CLD-MVS94.06 21093.90 19994.55 26396.02 27790.69 29399.98 1597.72 23296.62 5891.05 25398.85 18477.21 29798.47 21198.11 11489.51 25694.48 266
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
nrg03093.51 22592.53 23896.45 20594.36 31697.20 10299.81 13897.16 29291.60 23189.86 26797.46 24286.37 21997.68 26895.88 17380.31 34194.46 267
VPNet91.81 26190.46 27195.85 22194.74 31095.54 16898.98 27098.59 8692.14 21590.77 25697.44 24368.73 35197.54 27394.89 19177.89 35494.46 267
UniMVSNet_NR-MVSNet92.95 23892.11 24495.49 22794.61 31395.28 17999.83 13399.08 3391.49 23489.21 28696.86 26487.14 20996.73 31993.20 22777.52 35794.46 267
DU-MVS92.46 25091.45 25995.49 22794.05 32195.28 17999.81 13898.74 6492.25 21489.21 28696.64 27281.66 25796.73 31993.20 22777.52 35794.46 267
NR-MVSNet91.56 26990.22 27895.60 22594.05 32195.76 15698.25 32298.70 6791.16 24880.78 36196.64 27283.23 24996.57 32591.41 25077.73 35694.46 267
iter_conf0596.07 15395.95 14296.44 20798.43 16297.52 8999.91 8496.85 32594.16 13592.49 23897.98 23198.20 497.34 27997.26 14688.29 27494.45 272
TranMVSNet+NR-MVSNet91.68 26890.61 27094.87 24993.69 32893.98 21799.69 17598.65 7491.03 25288.44 30096.83 26880.05 27896.18 34090.26 27576.89 36594.45 272
FIs94.10 20893.43 21296.11 21594.70 31196.82 11799.58 19598.93 4592.54 20189.34 28197.31 24787.62 20397.10 29794.22 20886.58 29194.40 274
mvsmamba94.10 20893.72 20395.25 23893.57 32994.13 21299.67 17996.45 34693.63 16091.34 24997.77 23786.29 22197.22 28996.65 16388.10 27894.40 274
ACMM91.95 1092.88 24092.52 23993.98 28895.75 28989.08 32299.77 14897.52 25593.00 17689.95 26497.99 23076.17 31298.46 21493.63 22388.87 26294.39 276
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
RRT_MVS93.14 23392.92 22693.78 29493.31 33690.04 30999.66 18197.69 23492.53 20288.91 29397.76 23884.36 23996.93 30995.10 18386.99 28994.37 277
FC-MVSNet-test93.81 21593.15 22195.80 22394.30 31896.20 14199.42 21998.89 4992.33 21289.03 29197.27 24987.39 20696.83 31593.20 22786.48 29294.36 278
PS-MVSNAJss93.64 22293.31 21894.61 25892.11 35792.19 26099.12 25197.38 26892.51 20588.45 29996.99 26091.20 15497.29 28694.36 20387.71 28394.36 278
WR-MVS92.31 25391.25 26195.48 23094.45 31595.29 17899.60 19298.68 7090.10 27088.07 30796.89 26280.68 27096.80 31793.14 23079.67 34594.36 278
XXY-MVS91.82 26090.46 27195.88 21993.91 32495.40 17598.87 28497.69 23488.63 29987.87 30997.08 25474.38 32897.89 26191.66 24884.07 31194.35 281
MVSTER95.53 17095.22 16696.45 20598.56 15197.72 8099.91 8497.67 23692.38 21091.39 24797.14 25197.24 1797.30 28394.80 19387.85 28194.34 282
VPA-MVSNet92.70 24491.55 25696.16 21495.09 30496.20 14198.88 28199.00 3691.02 25391.82 24495.29 32276.05 31497.96 25795.62 17881.19 32994.30 283
FMVSNet392.69 24591.58 25495.99 21798.29 17097.42 9799.26 24297.62 24089.80 27689.68 27195.32 31881.62 25996.27 33787.01 31385.65 29694.29 284
EU-MVSNet90.14 30190.34 27589.54 34792.55 35181.06 37698.69 30198.04 20791.41 24286.59 32696.84 26780.83 26893.31 37886.20 31881.91 32494.26 285
UniMVSNet (Re)93.07 23692.13 24395.88 21994.84 30896.24 14099.88 10398.98 3892.49 20689.25 28395.40 31287.09 21097.14 29393.13 23178.16 35294.26 285
FMVSNet291.02 27789.56 29195.41 23297.53 22195.74 15798.98 27097.41 26687.05 31988.43 30295.00 33171.34 33996.24 33985.12 32685.21 30194.25 287
EI-MVSNet93.73 21993.40 21694.74 25396.80 25992.69 24999.06 26097.67 23688.96 28991.39 24799.02 15488.75 19597.30 28391.07 25587.85 28194.22 288
IterMVS-LS92.69 24592.11 24494.43 27296.80 25992.74 24699.45 21796.89 32288.98 28789.65 27495.38 31588.77 19496.34 33490.98 25982.04 32394.22 288
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
cl2293.77 21793.25 22095.33 23599.49 9194.43 20199.61 19198.09 20190.38 26589.16 28995.61 30090.56 16997.34 27991.93 24484.45 30794.21 290
miper_enhance_ethall94.36 20393.98 19695.49 22798.68 14495.24 18199.73 16497.29 28093.28 17089.86 26795.97 29194.37 7597.05 30092.20 24084.45 30794.19 291
miper_ehance_all_eth93.16 23292.60 23494.82 25297.57 21993.56 22899.50 20997.07 30288.75 29588.85 29495.52 30690.97 16196.74 31890.77 26484.45 30794.17 292
DIV-MVS_self_test92.32 25291.60 25394.47 26897.31 23592.74 24699.58 19596.75 33386.99 32287.64 31195.54 30489.55 18296.50 32788.58 29082.44 32094.17 292
GBi-Net90.88 28089.82 28694.08 28197.53 22191.97 26398.43 31496.95 31487.05 31989.68 27194.72 33771.34 33996.11 34287.01 31385.65 29694.17 292
test190.88 28089.82 28694.08 28197.53 22191.97 26398.43 31496.95 31487.05 31989.68 27194.72 33771.34 33996.11 34287.01 31385.65 29694.17 292
FMVSNet188.50 31886.64 32494.08 28195.62 29991.97 26398.43 31496.95 31483.00 35986.08 33594.72 33759.09 38196.11 34281.82 34884.07 31194.17 292
cl____92.31 25391.58 25494.52 26497.33 23492.77 24499.57 19796.78 33286.97 32387.56 31395.51 30789.43 18396.62 32388.60 28982.44 32094.16 297
eth_miper_zixun_eth92.41 25191.93 24893.84 29397.28 23890.68 29498.83 28896.97 31388.57 30089.19 28895.73 29789.24 18996.69 32189.97 27981.55 32694.15 298
miper_lstm_enhance91.81 26191.39 26093.06 31697.34 23289.18 32199.38 22596.79 33186.70 32687.47 31595.22 32490.00 17695.86 35188.26 29481.37 32894.15 298
Anonymous2023121189.86 30588.44 31294.13 28098.93 12390.68 29498.54 30998.26 18276.28 38086.73 32395.54 30470.60 34497.56 27290.82 26380.27 34294.15 298
c3_l92.53 24891.87 25094.52 26497.40 22892.99 24299.40 22096.93 31987.86 30988.69 29795.44 31089.95 17796.44 33090.45 27080.69 33894.14 301
jajsoiax91.92 25991.18 26294.15 27891.35 36790.95 28999.00 26997.42 26492.61 19687.38 31797.08 25472.46 33497.36 27794.53 20188.77 26494.13 302
mvs_tets91.81 26191.08 26394.00 28691.63 36490.58 29798.67 30397.43 26292.43 20787.37 31897.05 25771.76 33697.32 28294.75 19588.68 26794.11 303
v2v48291.30 27090.07 28495.01 24493.13 33893.79 22099.77 14897.02 30688.05 30789.25 28395.37 31680.73 26997.15 29287.28 30780.04 34494.09 304
LPG-MVS_test92.96 23792.71 23293.71 29795.43 30088.67 32699.75 15697.62 24092.81 18490.05 26098.49 21075.24 31998.40 22095.84 17489.12 25894.07 305
LGP-MVS_train93.71 29795.43 30088.67 32697.62 24092.81 18490.05 26098.49 21075.24 31998.40 22095.84 17489.12 25894.07 305
test_djsdf92.83 24192.29 24294.47 26891.90 36092.46 25599.55 20197.27 28291.17 24689.96 26396.07 29081.10 26496.89 31194.67 19888.91 26094.05 307
CP-MVSNet91.23 27490.22 27894.26 27693.96 32392.39 25799.09 25398.57 8988.95 29086.42 33096.57 27579.19 28596.37 33290.29 27478.95 34794.02 308
Patchmtry89.70 30888.49 31193.33 30796.24 27289.94 31491.37 39196.23 35178.22 37787.69 31093.31 35991.04 15996.03 34780.18 35682.10 32294.02 308
v192192090.46 29089.12 30094.50 26692.96 34592.46 25599.49 21196.98 31186.10 33289.61 27695.30 31978.55 29397.03 30482.17 34580.89 33794.01 310
v119290.62 28889.25 29894.72 25593.13 33893.07 23899.50 20997.02 30686.33 33089.56 27795.01 32979.22 28497.09 29982.34 34481.16 33094.01 310
v124090.20 29888.79 30794.44 27093.05 34392.27 25999.38 22596.92 32085.89 33489.36 28094.87 33677.89 29697.03 30480.66 35281.08 33394.01 310
OPM-MVS93.21 23092.80 22994.44 27093.12 34090.85 29299.77 14897.61 24396.19 7591.56 24698.65 19675.16 32398.47 21193.78 21989.39 25793.99 313
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ACMP92.05 992.74 24392.42 24193.73 29595.91 28188.72 32599.81 13897.53 25394.13 13687.00 32198.23 22174.07 32998.47 21196.22 16888.86 26393.99 313
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
OurMVSNet-221017-089.81 30689.48 29690.83 33791.64 36381.21 37498.17 32895.38 36991.48 23685.65 33897.31 24772.66 33397.29 28688.15 29684.83 30493.97 315
pmmvs590.17 30089.09 30193.40 30592.10 35889.77 31599.74 15995.58 36585.88 33587.24 32095.74 29573.41 33296.48 32888.54 29183.56 31493.95 316
PS-CasMVS90.63 28789.51 29493.99 28793.83 32591.70 27698.98 27098.52 10488.48 30186.15 33496.53 27775.46 31796.31 33688.83 28778.86 34993.95 316
IterMVS90.91 27990.17 28193.12 31396.78 26290.42 30298.89 27997.05 30589.03 28486.49 32895.42 31176.59 30695.02 36087.22 30884.09 31093.93 318
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
ACMH89.72 1790.64 28689.63 28993.66 30195.64 29788.64 32898.55 30797.45 26089.03 28481.62 35697.61 24069.75 34698.41 21889.37 28287.62 28593.92 319
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
v14419290.79 28389.52 29394.59 26093.11 34192.77 24499.56 19996.99 30986.38 32989.82 27094.95 33480.50 27497.10 29783.98 33380.41 33993.90 320
PEN-MVS90.19 29989.06 30293.57 30293.06 34290.90 29099.06 26098.47 11588.11 30685.91 33696.30 28176.67 30495.94 35087.07 31076.91 36493.89 321
XVG-ACMP-BASELINE91.22 27590.75 26692.63 32293.73 32785.61 34998.52 31197.44 26192.77 18789.90 26696.85 26566.64 36198.39 22292.29 23988.61 26893.89 321
v114491.09 27689.83 28594.87 24993.25 33793.69 22599.62 19096.98 31186.83 32589.64 27594.99 33280.94 26697.05 30085.08 32781.16 33093.87 323
MDA-MVSNet_test_wron85.51 33383.32 34192.10 32690.96 37088.58 32999.20 24696.52 34379.70 37457.12 39992.69 36379.11 28693.86 37377.10 36977.46 35993.86 324
IterMVS-SCA-FT90.85 28290.16 28292.93 31896.72 26489.96 31198.89 27996.99 30988.95 29086.63 32595.67 29876.48 30895.00 36187.04 31184.04 31393.84 325
YYNet185.50 33483.33 34092.00 32790.89 37188.38 33399.22 24596.55 34279.60 37557.26 39892.72 36279.09 28893.78 37477.25 36877.37 36093.84 325
MDA-MVSNet-bldmvs84.09 34281.52 34991.81 33091.32 36888.00 33798.67 30395.92 35880.22 37255.60 40093.32 35868.29 35593.60 37673.76 37576.61 36693.82 327
ACMH+89.98 1690.35 29389.54 29292.78 32195.99 27886.12 34798.81 29097.18 28989.38 27983.14 34997.76 23868.42 35498.43 21689.11 28586.05 29493.78 328
v14890.70 28489.63 28993.92 28992.97 34490.97 28699.75 15696.89 32287.51 31288.27 30595.01 32981.67 25697.04 30287.40 30577.17 36293.75 329
pmmvs492.10 25791.07 26495.18 24092.82 34894.96 19099.48 21396.83 32787.45 31488.66 29896.56 27683.78 24496.83 31589.29 28384.77 30593.75 329
K. test v388.05 32187.24 32390.47 34091.82 36282.23 36898.96 27397.42 26489.05 28376.93 37795.60 30168.49 35395.42 35585.87 32381.01 33593.75 329
lessismore_v090.53 33890.58 37380.90 37795.80 35977.01 37695.84 29266.15 36396.95 30783.03 33975.05 37093.74 332
SixPastTwentyTwo88.73 31788.01 31890.88 33591.85 36182.24 36798.22 32695.18 37488.97 28882.26 35296.89 26271.75 33796.67 32284.00 33282.98 31593.72 333
our_test_390.39 29189.48 29693.12 31392.40 35389.57 31799.33 23196.35 34987.84 31085.30 33994.99 33284.14 24296.09 34580.38 35384.56 30693.71 334
LTVRE_ROB88.28 1890.29 29689.05 30394.02 28495.08 30590.15 30797.19 34797.43 26284.91 34883.99 34597.06 25674.00 33098.28 23784.08 33187.71 28393.62 335
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
ITE_SJBPF92.38 32395.69 29585.14 35295.71 36192.81 18489.33 28298.11 22470.23 34598.42 21785.91 32288.16 27793.59 336
v7n89.65 30988.29 31493.72 29692.22 35590.56 29899.07 25997.10 29885.42 34386.73 32394.72 33780.06 27797.13 29481.14 35078.12 35393.49 337
DTE-MVSNet89.40 31288.24 31592.88 31992.66 35089.95 31299.10 25298.22 18587.29 31685.12 34196.22 28376.27 31195.30 35983.56 33775.74 36893.41 338
V4291.28 27290.12 28394.74 25393.42 33493.46 23199.68 17797.02 30687.36 31589.85 26995.05 32781.31 26397.34 27987.34 30680.07 34393.40 339
anonymousdsp91.79 26690.92 26594.41 27390.76 37292.93 24398.93 27697.17 29089.08 28287.46 31695.30 31978.43 29596.92 31092.38 23888.73 26593.39 340
v890.54 28989.17 29994.66 25693.43 33393.40 23499.20 24696.94 31885.76 33687.56 31394.51 34481.96 25597.19 29084.94 32878.25 35193.38 341
ppachtmachnet_test89.58 31088.35 31393.25 31192.40 35390.44 30199.33 23196.73 33485.49 34185.90 33795.77 29481.09 26596.00 34976.00 37382.49 31993.30 342
v1090.25 29788.82 30694.57 26293.53 33193.43 23299.08 25596.87 32485.00 34587.34 31994.51 34480.93 26797.02 30682.85 34079.23 34693.26 343
PVSNet_BlendedMVS96.05 15495.82 14996.72 19899.59 8196.99 11199.95 5399.10 3194.06 14298.27 12795.80 29389.00 19299.95 6999.12 5887.53 28693.24 344
WR-MVS_H91.30 27090.35 27494.15 27894.17 32092.62 25399.17 24998.94 4188.87 29386.48 32994.46 34884.36 23996.61 32488.19 29578.51 35093.21 345
FMVSNet588.32 31987.47 32190.88 33596.90 25488.39 33297.28 34595.68 36282.60 36384.67 34292.40 36779.83 27991.16 38876.39 37281.51 32793.09 346
Anonymous2023120686.32 32885.42 33189.02 35189.11 38180.53 38099.05 26495.28 37085.43 34282.82 35093.92 35274.40 32793.44 37766.99 38781.83 32593.08 347
pm-mvs189.36 31387.81 31994.01 28593.40 33591.93 26698.62 30696.48 34586.25 33183.86 34696.14 28673.68 33197.04 30286.16 31975.73 36993.04 348
test_method80.79 35179.70 35584.08 36692.83 34767.06 39299.51 20795.42 36754.34 39881.07 36093.53 35644.48 39492.22 38578.90 36277.23 36192.94 349
UnsupCasMVSNet_eth85.52 33283.99 33490.10 34389.36 38083.51 36196.65 35897.99 20989.14 28175.89 38193.83 35363.25 37293.92 37181.92 34767.90 38692.88 350
USDC90.00 30388.96 30493.10 31594.81 30988.16 33498.71 29895.54 36693.66 15883.75 34797.20 25065.58 36498.31 23383.96 33487.49 28792.85 351
test_fmvs289.47 31189.70 28888.77 35594.54 31475.74 38499.83 13394.70 37994.71 11091.08 25196.82 26954.46 38697.78 26692.87 23488.27 27592.80 352
N_pmnet80.06 35480.78 35277.89 37391.94 35945.28 41198.80 29256.82 41378.10 37880.08 36493.33 35777.03 29995.76 35268.14 38682.81 31692.64 353
KD-MVS_2432*160088.00 32286.10 32693.70 29996.91 25194.04 21497.17 34897.12 29684.93 34681.96 35392.41 36592.48 13294.51 36779.23 35852.68 39992.56 354
miper_refine_blended88.00 32286.10 32693.70 29996.91 25194.04 21497.17 34897.12 29684.93 34681.96 35392.41 36592.48 13294.51 36779.23 35852.68 39992.56 354
pmmvs685.69 33083.84 33791.26 33490.00 37884.41 35797.82 33896.15 35475.86 38281.29 35895.39 31461.21 37896.87 31383.52 33873.29 37292.50 356
D2MVS92.76 24292.59 23793.27 30995.13 30389.54 31899.69 17599.38 2392.26 21387.59 31294.61 34385.05 23397.79 26491.59 24988.01 27992.47 357
CL-MVSNet_self_test84.50 34083.15 34388.53 35686.00 38781.79 37198.82 28997.35 27085.12 34483.62 34890.91 37476.66 30591.40 38769.53 38360.36 39692.40 358
MIMVSNet182.58 34780.51 35388.78 35386.68 38684.20 35896.65 35895.41 36878.75 37678.59 37092.44 36451.88 39089.76 39165.26 39278.95 34792.38 359
LF4IMVS89.25 31588.85 30590.45 34192.81 34981.19 37598.12 32994.79 37691.44 23886.29 33297.11 25265.30 36798.11 24888.53 29285.25 30092.07 360
TransMVSNet (Re)87.25 32585.28 33293.16 31293.56 33091.03 28598.54 30994.05 38583.69 35681.09 35996.16 28575.32 31896.40 33176.69 37168.41 38392.06 361
DeepMVS_CXcopyleft82.92 36995.98 28058.66 40096.01 35692.72 18878.34 37195.51 30758.29 38298.08 24982.57 34185.29 29992.03 362
Baseline_NR-MVSNet90.33 29489.51 29492.81 32092.84 34689.95 31299.77 14893.94 38684.69 35089.04 29095.66 29981.66 25796.52 32690.99 25876.98 36391.97 363
TinyColmap87.87 32486.51 32591.94 32895.05 30685.57 35097.65 34094.08 38384.40 35181.82 35596.85 26562.14 37598.33 23180.25 35586.37 29391.91 364
MS-PatchMatch90.65 28590.30 27691.71 33194.22 31985.50 35198.24 32397.70 23388.67 29786.42 33096.37 28067.82 35698.03 25383.62 33699.62 9091.60 365
KD-MVS_self_test83.59 34682.06 34688.20 35886.93 38580.70 37897.21 34696.38 34782.87 36082.49 35188.97 38067.63 35792.32 38473.75 37662.30 39591.58 366
tfpnnormal89.29 31487.61 32094.34 27594.35 31794.13 21298.95 27498.94 4183.94 35284.47 34395.51 30774.84 32497.39 27677.05 37080.41 33991.48 367
MVP-Stereo90.93 27890.45 27392.37 32491.25 36988.76 32398.05 33396.17 35387.27 31784.04 34495.30 31978.46 29497.27 28883.78 33599.70 8591.09 368
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
test20.0384.72 33983.99 33486.91 36188.19 38480.62 37998.88 28195.94 35788.36 30378.87 36794.62 34268.75 35089.11 39266.52 38975.82 36791.00 369
EG-PatchMatch MVS85.35 33583.81 33889.99 34590.39 37481.89 37098.21 32796.09 35581.78 36674.73 38393.72 35551.56 39197.12 29679.16 36188.61 26890.96 370
TDRefinement84.76 33782.56 34591.38 33374.58 40384.80 35697.36 34494.56 38084.73 34980.21 36396.12 28963.56 37198.39 22287.92 29963.97 39290.95 371
ambc83.23 36877.17 40162.61 39487.38 39794.55 38176.72 37886.65 38930.16 39896.36 33384.85 32969.86 37790.73 372
Anonymous2024052185.15 33683.81 33889.16 35088.32 38282.69 36398.80 29295.74 36079.72 37381.53 35790.99 37265.38 36694.16 36972.69 37781.11 33290.63 373
OpenMVS_ROBcopyleft79.82 2083.77 34581.68 34890.03 34488.30 38382.82 36298.46 31295.22 37273.92 38976.00 38091.29 37155.00 38596.94 30868.40 38588.51 27290.34 374
new_pmnet84.49 34182.92 34489.21 34990.03 37782.60 36496.89 35695.62 36480.59 37075.77 38289.17 37965.04 36894.79 36572.12 37981.02 33490.23 375
test_040285.58 33183.94 33690.50 33993.81 32685.04 35398.55 30795.20 37376.01 38179.72 36695.13 32564.15 37096.26 33866.04 39186.88 29090.21 376
test_vis1_rt86.87 32786.05 32989.34 34896.12 27378.07 38399.87 10683.54 40792.03 22078.21 37289.51 37845.80 39399.91 8996.25 16793.11 24490.03 377
pmmvs380.27 35377.77 35887.76 36080.32 39882.43 36698.23 32591.97 39572.74 39178.75 36887.97 38557.30 38490.99 38970.31 38162.37 39489.87 378
CMPMVSbinary61.59 2184.75 33885.14 33383.57 36790.32 37562.54 39596.98 35397.59 24774.33 38869.95 38996.66 27064.17 36998.32 23287.88 30088.41 27389.84 379
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
WB-MVSnew92.90 23992.77 23193.26 31096.95 24993.63 22699.71 17098.16 19591.49 23494.28 21498.14 22381.33 26296.48 32879.47 35795.46 21189.68 380
APD_test181.15 35080.92 35181.86 37092.45 35259.76 39996.04 37093.61 38973.29 39077.06 37596.64 27244.28 39596.16 34172.35 37882.52 31889.67 381
PM-MVS80.47 35278.88 35785.26 36483.79 39272.22 38895.89 37391.08 39785.71 33976.56 37988.30 38236.64 39793.90 37282.39 34369.57 37989.66 382
pmmvs-eth3d84.03 34381.97 34790.20 34284.15 39087.09 34298.10 33194.73 37883.05 35874.10 38587.77 38665.56 36594.01 37081.08 35169.24 38089.49 383
UnsupCasMVSNet_bld79.97 35677.03 36188.78 35385.62 38881.98 36993.66 38297.35 27075.51 38570.79 38883.05 39448.70 39294.91 36378.31 36460.29 39789.46 384
mvsany_test382.12 34881.14 35085.06 36581.87 39470.41 38997.09 35092.14 39491.27 24577.84 37388.73 38139.31 39695.49 35390.75 26571.24 37589.29 385
new-patchmatchnet81.19 34979.34 35686.76 36282.86 39380.36 38197.92 33595.27 37182.09 36572.02 38686.87 38862.81 37490.74 39071.10 38063.08 39389.19 386
LCM-MVSNet67.77 36564.73 36876.87 37562.95 40956.25 40289.37 39693.74 38844.53 40161.99 39380.74 39520.42 40886.53 39869.37 38459.50 39887.84 387
tmp_tt65.23 36862.94 37172.13 38344.90 41250.03 40881.05 39989.42 40338.45 40248.51 40499.90 1854.09 38778.70 40491.84 24718.26 40687.64 388
test_fmvs379.99 35580.17 35479.45 37284.02 39162.83 39399.05 26493.49 39088.29 30580.06 36586.65 38928.09 40188.00 39388.63 28873.27 37387.54 389
test_f78.40 35777.59 35980.81 37180.82 39662.48 39696.96 35493.08 39283.44 35774.57 38484.57 39327.95 40292.63 38284.15 33072.79 37487.32 390
EGC-MVSNET69.38 36063.76 37086.26 36390.32 37581.66 37396.24 36693.85 3870.99 4103.22 41192.33 36852.44 38892.92 38159.53 39784.90 30384.21 391
WB-MVS76.28 35877.28 36073.29 37881.18 39554.68 40397.87 33794.19 38281.30 36769.43 39090.70 37577.02 30082.06 40135.71 40668.11 38583.13 392
SSC-MVS75.42 35976.40 36272.49 38280.68 39753.62 40497.42 34294.06 38480.42 37168.75 39190.14 37776.54 30781.66 40233.25 40766.34 38982.19 393
PMMVS267.15 36664.15 36976.14 37670.56 40662.07 39793.89 38087.52 40458.09 39560.02 39478.32 39622.38 40584.54 39959.56 39647.03 40181.80 394
testf168.38 36366.92 36472.78 38078.80 39950.36 40690.95 39387.35 40555.47 39658.95 39588.14 38320.64 40687.60 39457.28 39864.69 39080.39 395
APD_test268.38 36366.92 36472.78 38078.80 39950.36 40690.95 39387.35 40555.47 39658.95 39588.14 38320.64 40687.60 39457.28 39864.69 39080.39 395
FPMVS68.72 36268.72 36368.71 38465.95 40744.27 41395.97 37294.74 37751.13 39953.26 40190.50 37625.11 40483.00 40060.80 39580.97 33678.87 397
ANet_high56.10 36952.24 37267.66 38549.27 41156.82 40183.94 39882.02 40870.47 39233.28 40864.54 40317.23 41069.16 40645.59 40323.85 40577.02 398
test_vis3_rt68.82 36166.69 36675.21 37776.24 40260.41 39896.44 36168.71 41275.13 38650.54 40369.52 40116.42 41196.32 33580.27 35466.92 38868.89 399
MVEpermissive53.74 2251.54 37247.86 37662.60 38659.56 41050.93 40579.41 40077.69 40935.69 40536.27 40761.76 4065.79 41569.63 40537.97 40536.61 40267.24 400
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMVScopyleft49.05 2353.75 37051.34 37460.97 38740.80 41334.68 41474.82 40189.62 40237.55 40328.67 40972.12 3987.09 41381.63 40343.17 40468.21 38466.59 401
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
Gipumacopyleft66.95 36765.00 36772.79 37991.52 36567.96 39166.16 40295.15 37547.89 40058.54 39767.99 40229.74 39987.54 39650.20 40177.83 35562.87 402
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test12337.68 37539.14 37833.31 39019.94 41424.83 41698.36 3199.75 41515.53 40851.31 40287.14 38719.62 40917.74 41047.10 4023.47 40957.36 403
testmvs40.60 37444.45 37729.05 39119.49 41514.11 41799.68 17718.47 41420.74 40764.59 39298.48 21310.95 41217.09 41156.66 40011.01 40755.94 404
EMVS51.44 37351.22 37552.11 38970.71 40544.97 41294.04 37975.66 41135.34 40642.40 40661.56 40728.93 40065.87 40827.64 40924.73 40445.49 405
E-PMN52.30 37152.18 37352.67 38871.51 40445.40 41093.62 38376.60 41036.01 40443.50 40564.13 40427.11 40367.31 40731.06 40826.06 40345.30 406
wuyk23d20.37 37720.84 38018.99 39265.34 40827.73 41550.43 4037.67 4169.50 4098.01 4106.34 4106.13 41426.24 40923.40 41010.69 4082.99 407
test_blank0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.02 4110.00 4160.00 4120.00 4110.00 4100.00 408
uanet_test0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4120.00 4160.00 4120.00 4110.00 4100.00 408
DCPMVS0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4120.00 4160.00 4120.00 4110.00 4100.00 408
cdsmvs_eth3d_5k23.43 37631.24 3790.00 3930.00 4160.00 4180.00 40498.09 2010.00 4110.00 41299.67 9683.37 2470.00 4120.00 4110.00 4100.00 408
pcd_1.5k_mvsjas7.60 37910.13 3820.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 41291.20 1540.00 4120.00 4110.00 4100.00 408
sosnet-low-res0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4120.00 4160.00 4120.00 4110.00 4100.00 408
sosnet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4120.00 4160.00 4120.00 4110.00 4100.00 408
uncertanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4120.00 4160.00 4120.00 4110.00 4100.00 408
Regformer0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4120.00 4160.00 4120.00 4110.00 4100.00 408
ab-mvs-re8.28 37811.04 3810.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 41299.40 1250.00 4160.00 4120.00 4110.00 4100.00 408
uanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4120.00 4160.00 4120.00 4110.00 4100.00 408
WAC-MVS90.97 28686.10 321
FOURS199.92 3197.66 8599.95 5398.36 16395.58 8799.52 60
test_one_060199.94 1399.30 1298.41 14896.63 5699.75 3099.93 1197.49 9
eth-test20.00 416
eth-test0.00 416
ZD-MVS99.92 3198.57 5698.52 10492.34 21199.31 7799.83 4395.06 5399.80 12199.70 3499.97 42
test_241102_ONE99.93 2499.30 1298.43 13197.26 3699.80 1899.88 2196.71 23100.00 1
9.1498.38 3499.87 5199.91 8498.33 17093.22 17199.78 2799.89 1994.57 6899.85 10899.84 2299.97 42
save fliter99.82 5898.79 4099.96 3598.40 15297.66 21
test072699.93 2499.29 1599.96 3598.42 14397.28 3299.86 799.94 497.22 18
test_part299.89 4599.25 1899.49 63
sam_mvs94.25 79
MTGPAbinary98.28 179
test_post195.78 37459.23 40893.20 11197.74 26791.06 256
test_post63.35 40594.43 6998.13 247
patchmatchnet-post91.70 37095.12 5097.95 258
MTMP99.87 10696.49 344
gm-plane-assit96.97 24893.76 22291.47 23798.96 16598.79 19194.92 188
TEST999.92 3198.92 2999.96 3598.43 13193.90 15199.71 3599.86 2695.88 3799.85 108
test_899.92 3198.88 3299.96 3598.43 13194.35 12599.69 3799.85 3095.94 3499.85 108
agg_prior99.93 2498.77 4298.43 13199.63 4499.85 108
test_prior498.05 6899.94 69
test_prior299.95 5395.78 8199.73 3399.76 6596.00 3399.78 27100.00 1
旧先验299.46 21694.21 13499.85 999.95 6996.96 157
新几何299.40 220
原ACMM299.90 91
testdata299.99 3690.54 269
segment_acmp96.68 25
testdata199.28 24096.35 71
plane_prior795.71 29391.59 280
plane_prior695.76 28791.72 27580.47 275
plane_prior498.59 201
plane_prior391.64 27896.63 5693.01 227
plane_prior299.84 12696.38 67
plane_prior195.73 290
plane_prior91.74 27299.86 11896.76 5289.59 253
n20.00 417
nn0.00 417
door-mid89.69 401
test1198.44 123
door90.31 398
HQP5-MVS91.85 268
HQP-NCC95.78 28399.87 10696.82 4893.37 223
ACMP_Plane95.78 28399.87 10696.82 4893.37 223
BP-MVS97.92 125
HQP3-MVS97.89 22189.60 251
HQP2-MVS80.65 271
NP-MVS95.77 28691.79 27098.65 196
MDTV_nov1_ep1395.69 15297.90 19494.15 21195.98 37198.44 12393.12 17497.98 13695.74 29595.10 5198.58 20690.02 27796.92 182
ACMMP++_ref87.04 288
ACMMP++88.23 276
Test By Simon92.82 122