This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort by
thres100view90078.37 20177.01 20382.46 20191.89 11163.21 22191.19 20396.33 172.28 19770.45 22887.89 21760.31 14095.32 17945.16 35477.58 21488.83 239
thres600view778.00 20676.66 20882.03 22191.93 10863.69 20691.30 19696.33 172.43 19270.46 22787.89 21760.31 14094.92 19342.64 36676.64 22487.48 259
thres20079.66 17478.33 17983.66 17692.54 9065.82 15093.06 11296.31 374.90 14473.30 18988.66 20059.67 14995.61 16747.84 34378.67 20589.56 234
tfpn200view978.79 19377.43 19482.88 19192.21 9664.49 17692.05 15896.28 473.48 16971.75 21388.26 20860.07 14595.32 17945.16 35477.58 21488.83 239
thres40078.68 19577.43 19482.43 20292.21 9664.49 17692.05 15896.28 473.48 16971.75 21388.26 20860.07 14595.32 17945.16 35477.58 21487.48 259
MM90.87 291.52 288.92 1592.12 10071.10 2797.02 396.04 688.70 291.57 1496.19 3270.12 4598.91 1896.83 195.06 1796.76 15
VNet86.20 5085.65 6187.84 3093.92 4769.99 3895.73 2395.94 778.43 9386.00 5293.07 12158.22 16897.00 9785.22 7884.33 15396.52 23
baseline283.68 10483.42 9584.48 14787.37 22566.00 14490.06 24195.93 879.71 6769.08 24490.39 17777.92 696.28 13478.91 14081.38 18291.16 212
testing22285.18 7184.69 7686.63 6792.91 7769.91 4292.61 13595.80 980.31 5580.38 11292.27 14168.73 4995.19 18475.94 15783.27 16294.81 96
BP-MVS186.54 4586.68 4386.13 8587.80 21567.18 11492.97 11795.62 1079.92 6282.84 8494.14 10074.95 1596.46 12882.91 10488.96 10694.74 97
testing1186.71 4386.44 4587.55 4093.54 5971.35 2193.65 8995.58 1181.36 4380.69 10792.21 14472.30 3496.46 12885.18 8083.43 16094.82 95
MCST-MVS91.08 191.46 389.94 497.66 273.37 1097.13 295.58 1189.33 185.77 5496.26 3072.84 2999.38 192.64 2095.93 997.08 11
UBG86.83 3986.70 4287.20 4893.07 7369.81 4693.43 10395.56 1381.52 3681.50 9592.12 14573.58 2696.28 13484.37 9085.20 14495.51 58
MVS84.66 8082.86 11090.06 290.93 13674.56 787.91 28295.54 1468.55 27072.35 20694.71 7859.78 14898.90 2081.29 11994.69 3296.74 16
ETVMVS84.22 9083.71 8485.76 9892.58 8968.25 8592.45 14395.53 1579.54 7079.46 12391.64 15770.29 4494.18 22369.16 21882.76 16894.84 92
DPM-MVS90.70 390.52 991.24 189.68 16076.68 297.29 195.35 1682.87 2291.58 1397.22 379.93 599.10 983.12 10297.64 297.94 1
CSCG86.87 3686.26 4788.72 1795.05 3170.79 2993.83 8295.33 1768.48 27277.63 14594.35 9173.04 2798.45 3084.92 8493.71 4796.92 14
WTY-MVS86.32 4885.81 5787.85 2992.82 8169.37 5795.20 3495.25 1882.71 2381.91 9294.73 7767.93 5697.63 5679.55 13282.25 17196.54 22
testing9986.01 5485.47 6287.63 3893.62 5571.25 2393.47 10195.23 1980.42 5480.60 10991.95 14971.73 3996.50 12680.02 12982.22 17295.13 79
patch_mono-289.71 1190.99 685.85 9496.04 2463.70 20595.04 4095.19 2086.74 791.53 1595.15 6673.86 2297.58 5993.38 1492.00 6996.28 37
IU-MVS96.46 1169.91 4295.18 2180.75 4995.28 192.34 2295.36 1496.47 28
IB-MVS77.80 482.18 12880.46 14987.35 4589.14 17770.28 3595.59 2695.17 2278.85 8670.19 23285.82 24770.66 4297.67 5172.19 19266.52 29394.09 130
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
PHI-MVS86.83 3986.85 4186.78 6393.47 6265.55 15695.39 3095.10 2371.77 21585.69 5696.52 2362.07 12498.77 2386.06 7495.60 1296.03 43
test_yl84.28 8683.16 10287.64 3494.52 3769.24 5995.78 1895.09 2469.19 26281.09 10192.88 12757.00 18197.44 6681.11 12181.76 17896.23 38
DCV-MVSNet84.28 8683.16 10287.64 3494.52 3769.24 5995.78 1895.09 2469.19 26281.09 10192.88 12757.00 18197.44 6681.11 12181.76 17896.23 38
testing9185.93 5685.31 6687.78 3293.59 5771.47 1993.50 9895.08 2680.26 5680.53 11091.93 15070.43 4396.51 12580.32 12782.13 17495.37 63
MSC_two_6792asdad89.60 997.31 473.22 1295.05 2799.07 1392.01 2594.77 2696.51 24
No_MVS89.60 997.31 473.22 1295.05 2799.07 1392.01 2594.77 2696.51 24
sss82.71 12182.38 11883.73 17089.25 17259.58 29792.24 14894.89 2977.96 9879.86 11892.38 13856.70 18797.05 9277.26 15180.86 18694.55 107
EPNet87.84 2488.38 2086.23 8293.30 6466.05 14295.26 3294.84 3087.09 588.06 3494.53 8266.79 6397.34 7383.89 9591.68 7495.29 70
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CNVR-MVS90.32 690.89 888.61 2296.76 870.65 3096.47 1494.83 3184.83 1189.07 3196.80 1970.86 4199.06 1592.64 2095.71 1196.12 40
EI-MVSNet-Vis-set83.77 10083.67 8584.06 15992.79 8463.56 21191.76 17594.81 3279.65 6877.87 14294.09 10163.35 10997.90 4279.35 13479.36 19890.74 216
tttt051779.50 17778.53 17882.41 20587.22 22861.43 26289.75 25094.76 3369.29 26067.91 26288.06 21572.92 2895.63 16562.91 27773.90 24390.16 223
GG-mvs-BLEND86.53 7391.91 11069.67 5275.02 37694.75 3478.67 13790.85 16977.91 794.56 20872.25 18993.74 4595.36 65
gg-mvs-nofinetune77.18 21974.31 24085.80 9691.42 12468.36 7971.78 38194.72 3549.61 38177.12 15245.92 40777.41 893.98 23667.62 23393.16 5595.05 83
UWE-MVS80.81 15481.01 13780.20 26089.33 16957.05 32691.91 16694.71 3675.67 13275.01 17389.37 19463.13 11391.44 31367.19 23882.80 16792.12 195
thisisatest051583.41 10782.49 11686.16 8489.46 16668.26 8393.54 9594.70 3774.31 15075.75 16290.92 16772.62 3196.52 12469.64 21081.50 18193.71 145
EI-MVSNet-UG-set83.14 11382.96 10583.67 17592.28 9363.19 22291.38 19094.68 3879.22 7776.60 15793.75 10762.64 11897.76 4878.07 14778.01 20990.05 225
VPA-MVSNet79.03 18578.00 18582.11 21985.95 25264.48 17893.22 10994.66 3975.05 14274.04 18484.95 25552.17 23893.52 24974.90 16967.04 28988.32 251
NCCC89.07 1689.46 1587.91 2896.60 1069.05 6396.38 1594.64 4084.42 1286.74 4596.20 3166.56 6698.76 2489.03 4794.56 3495.92 46
ET-MVSNet_ETH3D84.01 9483.15 10486.58 7090.78 14170.89 2894.74 4794.62 4181.44 4058.19 33993.64 11173.64 2592.35 28882.66 10678.66 20696.50 27
thisisatest053081.15 14580.07 15184.39 15088.26 19965.63 15391.40 18694.62 4171.27 23270.93 22289.18 19672.47 3296.04 14865.62 25676.89 22391.49 201
DVP-MVScopyleft89.41 1389.73 1488.45 2596.40 1569.99 3896.64 1094.52 4371.92 20590.55 2096.93 1173.77 2399.08 1191.91 2894.90 2296.29 35
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
HY-MVS76.49 584.28 8683.36 9887.02 5592.22 9567.74 9884.65 31094.50 4479.15 7982.23 9087.93 21666.88 6296.94 10780.53 12482.20 17396.39 33
HPM-MVS++copyleft89.37 1489.95 1387.64 3495.10 3068.23 8695.24 3394.49 4582.43 2688.90 3296.35 2771.89 3898.63 2688.76 4896.40 696.06 41
MG-MVS87.11 3486.27 4689.62 897.79 176.27 494.96 4394.49 4578.74 9083.87 7592.94 12464.34 9196.94 10775.19 16394.09 3895.66 52
SED-MVS89.94 990.36 1088.70 1896.45 1269.38 5596.89 694.44 4771.65 21992.11 797.21 476.79 999.11 692.34 2295.36 1497.62 2
test_241102_ONE96.45 1269.38 5594.44 4771.65 21992.11 797.05 776.79 999.11 6
test_241102_TWO94.41 4971.65 21992.07 997.21 474.58 1899.11 692.34 2295.36 1496.59 19
DeepPCF-MVS81.17 189.72 1091.38 484.72 13593.00 7558.16 31396.72 994.41 4986.50 890.25 2297.83 175.46 1498.67 2592.78 1995.49 1397.32 6
DELS-MVS90.05 890.09 1189.94 493.14 7073.88 997.01 494.40 5188.32 385.71 5594.91 7374.11 2198.91 1887.26 6295.94 897.03 12
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
3Dnovator73.91 682.69 12280.82 13988.31 2689.57 16271.26 2292.60 13694.39 5278.84 8767.89 26492.48 13648.42 27498.52 2868.80 22394.40 3695.15 78
DVP-MVS++90.53 491.09 588.87 1697.31 469.91 4293.96 7094.37 5372.48 18992.07 996.85 1683.82 299.15 291.53 3097.42 497.55 4
test_0728_SECOND88.70 1896.45 1270.43 3396.64 1094.37 5399.15 291.91 2894.90 2296.51 24
test072696.40 1569.99 3896.76 894.33 5571.92 20591.89 1197.11 673.77 23
MSP-MVS90.38 591.87 185.88 9192.83 7964.03 19593.06 11294.33 5582.19 2993.65 396.15 3485.89 197.19 8491.02 3497.75 196.43 31
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MAR-MVS84.18 9183.43 9386.44 7596.25 2165.93 14794.28 5694.27 5774.41 14779.16 12895.61 4553.99 22098.88 2269.62 21293.26 5494.50 113
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
test_one_060196.32 1869.74 4994.18 5871.42 23090.67 1996.85 1674.45 20
9.1487.63 2893.86 4894.41 5294.18 5872.76 18486.21 4896.51 2466.64 6497.88 4490.08 3994.04 39
DPE-MVScopyleft88.77 1789.21 1687.45 4396.26 2067.56 10394.17 5894.15 6068.77 26890.74 1897.27 276.09 1298.49 2990.58 3894.91 2196.30 34
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
WB-MVSnew77.14 22076.18 21580.01 26686.18 24863.24 21991.26 19794.11 6171.72 21773.52 18787.29 22845.14 30293.00 25856.98 30679.42 19683.80 320
DeepC-MVS_fast79.48 287.95 2288.00 2587.79 3195.86 2768.32 8095.74 2194.11 6183.82 1683.49 7796.19 3264.53 9098.44 3183.42 10194.88 2596.61 18
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SMA-MVScopyleft88.14 1888.29 2287.67 3393.21 6768.72 7293.85 7794.03 6374.18 15291.74 1296.67 2165.61 7698.42 3389.24 4496.08 795.88 47
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
FIs79.47 17979.41 16579.67 27685.95 25259.40 29991.68 17993.94 6478.06 9768.96 24888.28 20666.61 6591.77 30166.20 25074.99 23287.82 255
SteuartSystems-ACMMP86.82 4186.90 3986.58 7090.42 14566.38 13596.09 1793.87 6577.73 10484.01 7495.66 4363.39 10797.94 4087.40 6093.55 5095.42 59
Skip Steuart: Steuart Systems R&D Blog.
TSAR-MVS + GP.87.96 2188.37 2186.70 6593.51 6165.32 16095.15 3693.84 6678.17 9685.93 5394.80 7675.80 1398.21 3489.38 4188.78 10796.59 19
CANet89.61 1289.99 1288.46 2494.39 3969.71 5096.53 1393.78 6786.89 689.68 2895.78 4065.94 7299.10 992.99 1793.91 4296.58 21
APDe-MVScopyleft87.54 2787.84 2686.65 6696.07 2366.30 13894.84 4593.78 6769.35 25988.39 3396.34 2867.74 5797.66 5490.62 3793.44 5196.01 44
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
TESTMET0.1,182.41 12581.98 12383.72 17288.08 20463.74 20192.70 12993.77 6979.30 7577.61 14687.57 22358.19 16994.08 22773.91 17486.68 13493.33 156
h-mvs3383.01 11582.56 11584.35 15289.34 16762.02 24892.72 12793.76 7081.45 3882.73 8792.25 14360.11 14397.13 9087.69 5562.96 32193.91 139
SF-MVS87.03 3587.09 3586.84 5992.70 8567.45 10893.64 9093.76 7070.78 24386.25 4796.44 2666.98 6197.79 4788.68 4994.56 3495.28 72
MVS_111021_HR86.19 5185.80 5887.37 4493.17 6969.79 4793.99 6993.76 7079.08 8278.88 13393.99 10462.25 12398.15 3685.93 7591.15 8494.15 127
FC-MVSNet-test77.99 20778.08 18477.70 29984.89 27255.51 33790.27 23593.75 7376.87 11666.80 28187.59 22265.71 7590.23 32562.89 27873.94 24187.37 262
MVS_030490.32 690.90 788.55 2394.05 4570.23 3697.00 593.73 7487.30 492.15 696.15 3466.38 6798.94 1796.71 294.67 3396.47 28
QAPM79.95 17177.39 19887.64 3489.63 16171.41 2093.30 10693.70 7565.34 29667.39 27391.75 15447.83 28198.96 1657.71 30489.81 9692.54 179
DeepC-MVS77.85 385.52 6785.24 6786.37 7888.80 18566.64 12992.15 15193.68 7681.07 4676.91 15593.64 11162.59 11998.44 3185.50 7692.84 5994.03 134
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
EPP-MVSNet81.79 13681.52 12782.61 19988.77 18660.21 28893.02 11693.66 7768.52 27172.90 19390.39 17772.19 3694.96 19074.93 16779.29 20092.67 175
PVSNet_BlendedMVS83.38 10883.43 9383.22 18693.76 5067.53 10594.06 6393.61 7879.13 8081.00 10485.14 25363.19 11197.29 7687.08 6573.91 24284.83 312
PVSNet_Blended86.73 4286.86 4086.31 8193.76 5067.53 10596.33 1693.61 7882.34 2881.00 10493.08 12063.19 11197.29 7687.08 6591.38 8094.13 128
alignmvs87.28 3286.97 3788.24 2791.30 12971.14 2695.61 2593.56 8079.30 7587.07 4295.25 6168.43 5096.93 10987.87 5384.33 15396.65 17
TSAR-MVS + MP.88.11 2088.64 1886.54 7291.73 11568.04 9090.36 23293.55 8182.89 2191.29 1692.89 12672.27 3596.03 14987.99 5294.77 2695.54 57
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
TEST994.18 4167.28 11094.16 5993.51 8271.75 21685.52 5795.33 5468.01 5497.27 80
train_agg87.21 3387.42 3286.60 6894.18 4167.28 11094.16 5993.51 8271.87 21085.52 5795.33 5468.19 5297.27 8089.09 4594.90 2295.25 76
ZD-MVS96.63 965.50 15893.50 8470.74 24485.26 6295.19 6564.92 8497.29 7687.51 5793.01 56
ACMMP_NAP86.05 5385.80 5886.80 6291.58 11967.53 10591.79 17293.49 8574.93 14384.61 6695.30 5659.42 15297.92 4186.13 7294.92 2094.94 88
cdsmvs_eth3d_5k19.86 38926.47 3880.00 4080.00 4310.00 4330.00 41993.45 860.00 4260.00 42795.27 5949.56 2630.00 4270.00 4260.00 4240.00 423
3Dnovator+73.60 782.10 13280.60 14686.60 6890.89 13866.80 12695.20 3493.44 8774.05 15467.42 27192.49 13549.46 26497.65 5570.80 20291.68 7495.33 66
balanced_conf0389.08 1588.84 1789.81 693.66 5475.15 590.61 22693.43 8884.06 1486.20 4990.17 18372.42 3396.98 10193.09 1695.92 1097.29 7
test_894.19 4067.19 11294.15 6193.42 8971.87 21085.38 6095.35 5368.19 5296.95 106
ZNCC-MVS85.33 6985.08 7086.06 8693.09 7265.65 15293.89 7593.41 9073.75 16379.94 11794.68 7960.61 13998.03 3882.63 10793.72 4694.52 111
原ACMM184.42 14893.21 6764.27 19093.40 9165.39 29479.51 12292.50 13358.11 17096.69 11765.27 26193.96 4092.32 185
agg_prior94.16 4366.97 12193.31 9284.49 6896.75 116
reproduce_monomvs79.49 17879.11 17280.64 25092.91 7761.47 26191.17 20493.28 9383.09 2064.04 30182.38 28366.19 6894.57 20581.19 12057.71 35685.88 295
PS-MVSNAJ88.14 1887.61 2989.71 792.06 10176.72 195.75 2093.26 9483.86 1589.55 2996.06 3653.55 22597.89 4391.10 3293.31 5394.54 109
EI-MVSNet78.97 18778.22 18281.25 23485.33 26262.73 23589.53 25493.21 9572.39 19472.14 20790.13 18660.99 13394.72 19867.73 23272.49 25286.29 281
MVSTER82.47 12482.05 12083.74 16892.68 8669.01 6491.90 16793.21 9579.83 6372.14 20785.71 24974.72 1794.72 19875.72 15972.49 25287.50 258
UniMVSNet_NR-MVSNet78.15 20577.55 19279.98 26784.46 27960.26 28692.25 14793.20 9777.50 11068.88 24986.61 23766.10 7092.13 29366.38 24762.55 32587.54 257
HFP-MVS84.73 7984.40 7985.72 10093.75 5265.01 16993.50 9893.19 9872.19 19979.22 12794.93 7159.04 15997.67 5181.55 11392.21 6494.49 114
UniMVSNet (Re)77.58 21476.78 20679.98 26784.11 28560.80 27191.76 17593.17 9976.56 12569.93 23884.78 25763.32 11092.36 28764.89 26362.51 32786.78 273
ACMMPR84.37 8384.06 8185.28 11493.56 5864.37 18593.50 9893.15 10072.19 19978.85 13594.86 7456.69 18897.45 6581.55 11392.20 6594.02 135
GST-MVS84.63 8184.29 8085.66 10292.82 8165.27 16193.04 11493.13 10173.20 17278.89 13094.18 9959.41 15397.85 4581.45 11592.48 6393.86 142
xiu_mvs_v2_base87.92 2387.38 3389.55 1291.41 12776.43 395.74 2193.12 10283.53 1889.55 2995.95 3853.45 22997.68 5091.07 3392.62 6094.54 109
test_prior86.42 7694.71 3567.35 10993.10 10396.84 11395.05 83
WBMVS81.67 13780.98 13883.72 17293.07 7369.40 5394.33 5493.05 10476.84 11872.05 20984.14 26474.49 1993.88 24172.76 18368.09 28187.88 254
SDMVSNet80.26 16378.88 17484.40 14989.25 17267.63 10285.35 30693.02 10576.77 12170.84 22387.12 23047.95 28096.09 14385.04 8174.55 23389.48 235
test1193.01 106
CostFormer82.33 12681.15 13185.86 9389.01 18068.46 7782.39 33293.01 10675.59 13380.25 11481.57 29672.03 3794.96 19079.06 13877.48 21794.16 126
PAPR85.15 7284.47 7787.18 4996.02 2568.29 8191.85 17093.00 10876.59 12479.03 12995.00 6861.59 12997.61 5878.16 14689.00 10595.63 53
region2R84.36 8484.03 8285.36 11193.54 5964.31 18893.43 10392.95 10972.16 20278.86 13494.84 7556.97 18397.53 6381.38 11792.11 6794.24 121
test1287.09 5294.60 3668.86 6792.91 11082.67 8965.44 7797.55 6293.69 4894.84 92
lupinMVS87.74 2587.77 2787.63 3889.24 17571.18 2496.57 1292.90 11182.70 2487.13 4095.27 5964.99 8195.80 15489.34 4291.80 7295.93 45
PAPM_NR82.97 11681.84 12486.37 7894.10 4466.76 12787.66 28892.84 11269.96 25274.07 18393.57 11363.10 11497.50 6470.66 20590.58 9094.85 89
CDPH-MVS85.71 6185.46 6386.46 7494.75 3467.19 11293.89 7592.83 11370.90 23983.09 8295.28 5763.62 10297.36 7180.63 12394.18 3794.84 92
tfpnnormal70.10 29667.36 30578.32 29383.45 29460.97 26988.85 26792.77 11464.85 29860.83 32478.53 33343.52 30993.48 25031.73 39861.70 33780.52 360
PAPM85.89 5885.46 6387.18 4988.20 20372.42 1592.41 14492.77 11482.11 3080.34 11393.07 12168.27 5195.02 18778.39 14593.59 4994.09 130
MS-PatchMatch77.90 21176.50 20982.12 21685.99 25169.95 4191.75 17792.70 11673.97 15762.58 31784.44 26241.11 31795.78 15563.76 27092.17 6680.62 359
MSLP-MVS++86.27 4985.91 5687.35 4592.01 10568.97 6695.04 4092.70 11679.04 8581.50 9596.50 2558.98 16196.78 11583.49 10093.93 4196.29 35
MVSMamba_PlusPlus84.97 7683.65 8688.93 1490.17 15174.04 887.84 28492.69 11862.18 32481.47 9787.64 22171.47 4096.28 13484.69 8694.74 3196.47 28
ab-mvs80.18 16578.31 18085.80 9688.44 19265.49 15983.00 32992.67 11971.82 21377.36 14985.01 25454.50 21296.59 11976.35 15675.63 23095.32 68
save fliter93.84 4967.89 9595.05 3992.66 12078.19 95
XVS83.87 9783.47 9185.05 12193.22 6563.78 19992.92 11992.66 12073.99 15578.18 13994.31 9455.25 20397.41 6879.16 13691.58 7693.95 137
X-MVStestdata76.86 22574.13 24485.05 12193.22 6563.78 19992.92 11992.66 12073.99 15578.18 13910.19 42255.25 20397.41 6879.16 13691.58 7693.95 137
SD-MVS87.49 2887.49 3187.50 4293.60 5668.82 6993.90 7492.63 12376.86 11787.90 3595.76 4166.17 6997.63 5689.06 4691.48 7896.05 42
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
无先验92.71 12892.61 12462.03 32797.01 9666.63 24293.97 136
APD-MVScopyleft85.93 5685.99 5485.76 9895.98 2665.21 16393.59 9392.58 12566.54 28686.17 5095.88 3963.83 9797.00 9786.39 7192.94 5795.06 82
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
131480.70 15578.95 17385.94 9087.77 21767.56 10387.91 28292.55 12672.17 20167.44 27093.09 11950.27 25697.04 9571.68 19787.64 12093.23 158
MP-MVS-pluss85.24 7085.13 6985.56 10491.42 12465.59 15491.54 18292.51 12774.56 14680.62 10895.64 4459.15 15697.00 9786.94 6793.80 4394.07 132
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
WR-MVS76.76 22975.74 22179.82 27384.60 27562.27 24592.60 13692.51 12776.06 12867.87 26585.34 25156.76 18590.24 32462.20 28263.69 32086.94 271
OpenMVScopyleft70.45 1178.54 19975.92 21886.41 7785.93 25571.68 1892.74 12692.51 12766.49 28764.56 29591.96 14843.88 30798.10 3754.61 31490.65 8989.44 237
GDP-MVS85.54 6685.32 6586.18 8387.64 21867.95 9492.91 12192.36 13077.81 10283.69 7694.31 9472.84 2996.41 13080.39 12685.95 13994.19 123
CHOSEN 1792x268884.98 7583.45 9289.57 1189.94 15575.14 692.07 15792.32 13181.87 3275.68 16488.27 20760.18 14298.60 2780.46 12590.27 9494.96 86
CP-MVS83.71 10283.40 9684.65 13993.14 7063.84 19794.59 4992.28 13271.03 23777.41 14894.92 7255.21 20696.19 13881.32 11890.70 8893.91 139
MP-MVScopyleft85.02 7384.97 7285.17 11992.60 8864.27 19093.24 10792.27 13373.13 17479.63 12194.43 8561.90 12597.17 8585.00 8292.56 6194.06 133
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MTGPAbinary92.23 134
MTAPA83.91 9683.38 9785.50 10591.89 11165.16 16581.75 33592.23 13475.32 13880.53 11095.21 6456.06 19797.16 8884.86 8592.55 6294.18 124
VPNet78.82 19177.53 19382.70 19684.52 27766.44 13493.93 7292.23 13480.46 5272.60 19888.38 20549.18 26893.13 25572.47 18863.97 31888.55 246
ACMMPcopyleft81.49 14180.67 14383.93 16591.71 11662.90 23192.13 15292.22 13771.79 21471.68 21593.49 11550.32 25496.96 10578.47 14484.22 15791.93 197
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
RRT-MVS82.61 12381.16 13086.96 5791.10 13368.75 7087.70 28792.20 13876.97 11572.68 19587.10 23251.30 24896.41 13083.56 9987.84 11795.74 50
PGM-MVS83.25 11082.70 11384.92 12492.81 8364.07 19490.44 22792.20 13871.28 23177.23 15194.43 8555.17 20797.31 7579.33 13591.38 8093.37 153
jason86.40 4686.17 5087.11 5186.16 24970.54 3295.71 2492.19 14082.00 3184.58 6794.34 9261.86 12695.53 17487.76 5490.89 8695.27 73
jason: jason.
tt080573.07 27170.73 28380.07 26378.37 35357.05 32687.78 28592.18 14161.23 33467.04 27686.49 23931.35 36794.58 20365.06 26267.12 28888.57 245
CLD-MVS82.73 11982.35 11983.86 16687.90 21067.65 10195.45 2892.18 14185.06 1072.58 19992.27 14152.46 23695.78 15584.18 9179.06 20188.16 252
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
reproduce_model83.15 11282.96 10583.73 17092.02 10259.74 29490.37 23192.08 14363.70 30882.86 8395.48 5058.62 16397.17 8583.06 10388.42 11194.26 119
MVS_Test84.16 9283.20 10187.05 5491.56 12069.82 4589.99 24692.05 14477.77 10382.84 8486.57 23863.93 9696.09 14374.91 16889.18 10295.25 76
reproduce-ours83.51 10583.33 9984.06 15992.18 9860.49 28290.74 21892.04 14564.35 30183.24 7895.59 4759.05 15797.27 8083.61 9789.17 10394.41 116
our_new_method83.51 10583.33 9984.06 15992.18 9860.49 28290.74 21892.04 14564.35 30183.24 7895.59 4759.05 15797.27 8083.61 9789.17 10394.41 116
EIA-MVS84.84 7784.88 7384.69 13791.30 12962.36 24193.85 7792.04 14579.45 7179.33 12694.28 9662.42 12096.35 13280.05 12891.25 8395.38 62
WR-MVS_H70.59 29269.94 28972.53 34481.03 31651.43 35687.35 29292.03 14867.38 27960.23 32880.70 31055.84 20083.45 37546.33 35058.58 35582.72 337
FMVSNet377.73 21276.04 21682.80 19291.20 13268.99 6591.87 16891.99 14973.35 17167.04 27683.19 27556.62 18992.14 29259.80 29669.34 26987.28 265
DP-MVS Recon82.73 11981.65 12685.98 8897.31 467.06 11795.15 3691.99 14969.08 26576.50 15993.89 10654.48 21598.20 3570.76 20385.66 14292.69 174
EPNet_dtu78.80 19279.26 16977.43 30488.06 20549.71 36691.96 16591.95 15177.67 10576.56 15891.28 16458.51 16490.20 32656.37 30880.95 18592.39 182
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
FOURS193.95 4661.77 25393.96 7091.92 15262.14 32686.57 46
ETV-MVS86.01 5486.11 5185.70 10190.21 15067.02 12093.43 10391.92 15281.21 4584.13 7394.07 10360.93 13695.63 16589.28 4389.81 9694.46 115
SPE-MVS-test86.14 5287.01 3683.52 17792.63 8759.36 30295.49 2791.92 15280.09 6085.46 5995.53 4961.82 12895.77 15786.77 6993.37 5295.41 60
LFMVS84.34 8582.73 11289.18 1394.76 3373.25 1194.99 4291.89 15571.90 20782.16 9193.49 11547.98 27997.05 9282.55 10884.82 14797.25 8
casdiffmvs_mvgpermissive85.66 6385.18 6887.09 5288.22 20269.35 5893.74 8691.89 15581.47 3780.10 11591.45 15964.80 8696.35 13287.23 6387.69 11995.58 55
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CS-MVS85.80 5986.65 4483.27 18592.00 10658.92 30695.31 3191.86 15779.97 6184.82 6595.40 5262.26 12295.51 17586.11 7392.08 6895.37 63
HPM-MVScopyleft83.25 11082.95 10784.17 15792.25 9462.88 23290.91 20991.86 15770.30 24877.12 15293.96 10556.75 18696.28 13482.04 11091.34 8293.34 154
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
mPP-MVS82.96 11782.44 11784.52 14592.83 7962.92 23092.76 12591.85 15971.52 22775.61 16794.24 9753.48 22896.99 10078.97 13990.73 8793.64 148
XXY-MVS77.94 20976.44 21082.43 20282.60 30364.44 18092.01 16091.83 16073.59 16870.00 23585.82 24754.43 21694.76 19569.63 21168.02 28388.10 253
baseline85.01 7484.44 7886.71 6488.33 19768.73 7190.24 23791.82 16181.05 4781.18 10092.50 13363.69 10096.08 14684.45 8986.71 13395.32 68
casdiffmvspermissive85.37 6884.87 7486.84 5988.25 20069.07 6293.04 11491.76 16281.27 4480.84 10692.07 14764.23 9296.06 14784.98 8387.43 12395.39 61
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
NR-MVSNet76.05 23874.59 23480.44 25382.96 29962.18 24690.83 21491.73 16377.12 11460.96 32386.35 24059.28 15591.80 30060.74 28961.34 34087.35 263
PVSNet_Blended_VisFu83.97 9583.50 8985.39 10990.02 15366.59 13293.77 8491.73 16377.43 11277.08 15489.81 19063.77 9996.97 10479.67 13188.21 11392.60 177
sasdasda86.85 3786.25 4888.66 2091.80 11371.92 1693.54 9591.71 16580.26 5687.55 3795.25 6163.59 10496.93 10988.18 5084.34 15197.11 9
FA-MVS(test-final)79.12 18477.23 20084.81 13190.54 14363.98 19681.35 34191.71 16571.09 23674.85 17582.94 27652.85 23297.05 9267.97 22881.73 18093.41 152
canonicalmvs86.85 3786.25 4888.66 2091.80 11371.92 1693.54 9591.71 16580.26 5687.55 3795.25 6163.59 10496.93 10988.18 5084.34 15197.11 9
HQP3-MVS91.70 16878.90 202
HQP-MVS81.14 14680.64 14482.64 19887.54 22063.66 20894.06 6391.70 16879.80 6474.18 17990.30 17951.63 24495.61 16777.63 14978.90 20288.63 243
baseline181.84 13581.03 13684.28 15591.60 11866.62 13091.08 20691.66 17081.87 3274.86 17491.67 15669.98 4694.92 19371.76 19564.75 30891.29 210
FMVSNet276.07 23574.01 24682.26 21088.85 18267.66 10091.33 19491.61 17170.84 24065.98 28482.25 28548.03 27692.00 29758.46 30168.73 27787.10 268
114514_t79.17 18377.67 18983.68 17495.32 2965.53 15792.85 12391.60 17263.49 31067.92 26190.63 17246.65 28895.72 16367.01 24083.54 15989.79 229
test-LLR80.10 16779.56 16181.72 22586.93 23761.17 26492.70 12991.54 17371.51 22875.62 16586.94 23453.83 22192.38 28572.21 19084.76 14991.60 199
test-mter79.96 17079.38 16781.72 22586.93 23761.17 26492.70 12991.54 17373.85 16075.62 16586.94 23449.84 26192.38 28572.21 19084.76 14991.60 199
DU-MVS76.86 22575.84 21979.91 27082.96 29960.26 28691.26 19791.54 17376.46 12668.88 24986.35 24056.16 19492.13 29366.38 24762.55 32587.35 263
旧先验191.94 10760.74 27691.50 17694.36 8765.23 7991.84 7194.55 107
VDD-MVS83.06 11481.81 12586.81 6190.86 13967.70 9995.40 2991.50 17675.46 13581.78 9392.34 14040.09 32097.13 9086.85 6882.04 17595.60 54
新几何184.73 13492.32 9264.28 18991.46 17859.56 34579.77 11992.90 12556.95 18496.57 12163.40 27192.91 5893.34 154
tpm279.80 17377.95 18785.34 11288.28 19868.26 8381.56 33891.42 17970.11 25077.59 14780.50 31467.40 5994.26 22167.34 23577.35 21893.51 150
TranMVSNet+NR-MVSNet75.86 24374.52 23779.89 27182.44 30560.64 28091.37 19191.37 18076.63 12367.65 26786.21 24352.37 23791.55 30761.84 28460.81 34387.48 259
test250683.29 10982.92 10884.37 15188.39 19563.18 22392.01 16091.35 18177.66 10678.49 13891.42 16064.58 8995.09 18673.19 17689.23 10094.85 89
MGCFI-Net85.59 6585.73 6085.17 11991.41 12762.44 23892.87 12291.31 18279.65 6886.99 4495.14 6762.90 11796.12 14187.13 6484.13 15896.96 13
VDDNet80.50 15878.26 18187.21 4786.19 24769.79 4794.48 5091.31 18260.42 33879.34 12590.91 16838.48 32896.56 12282.16 10981.05 18495.27 73
HQP_MVS80.34 16279.75 15882.12 21686.94 23562.42 23993.13 11091.31 18278.81 8872.53 20089.14 19850.66 25295.55 17276.74 15278.53 20788.39 249
plane_prior591.31 18295.55 17276.74 15278.53 20788.39 249
SR-MVS82.81 11882.58 11483.50 18093.35 6361.16 26692.23 14991.28 18664.48 30081.27 9895.28 5753.71 22495.86 15382.87 10588.77 10893.49 151
nrg03080.93 15179.86 15684.13 15883.69 29068.83 6893.23 10891.20 18775.55 13475.06 17288.22 21163.04 11594.74 19781.88 11166.88 29088.82 241
EPMVS78.49 20075.98 21786.02 8791.21 13169.68 5180.23 35091.20 18775.25 13972.48 20278.11 33754.65 21193.69 24657.66 30583.04 16394.69 99
hse-mvs281.12 14881.11 13581.16 23786.52 24157.48 32189.40 25791.16 18981.45 3882.73 8790.49 17560.11 14394.58 20387.69 5560.41 34891.41 204
AUN-MVS78.37 20177.43 19481.17 23686.60 24057.45 32289.46 25691.16 18974.11 15374.40 17890.49 17555.52 20294.57 20574.73 17160.43 34791.48 202
cascas78.18 20475.77 22085.41 10887.14 23069.11 6192.96 11891.15 19166.71 28570.47 22686.07 24437.49 33996.48 12770.15 20879.80 19490.65 217
tpm78.58 19877.03 20283.22 18685.94 25464.56 17483.21 32591.14 19278.31 9473.67 18679.68 32664.01 9492.09 29566.07 25171.26 26293.03 166
PCF-MVS73.15 979.29 18177.63 19184.29 15486.06 25065.96 14687.03 29591.10 19369.86 25469.79 23990.64 17057.54 17596.59 11964.37 26682.29 16990.32 221
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
Anonymous2024052976.84 22774.15 24384.88 12691.02 13464.95 17193.84 8091.09 19453.57 36973.00 19087.42 22535.91 34997.32 7469.14 21972.41 25492.36 183
EC-MVSNet84.53 8285.04 7183.01 18989.34 16761.37 26394.42 5191.09 19477.91 10083.24 7894.20 9858.37 16695.40 17685.35 7791.41 7992.27 190
test_fmvsm_n_192087.69 2688.50 1985.27 11587.05 23363.55 21293.69 8791.08 19684.18 1390.17 2497.04 867.58 5897.99 3995.72 590.03 9594.26 119
FE-MVS75.97 24173.02 25784.82 12889.78 15765.56 15577.44 36691.07 19764.55 29972.66 19679.85 32446.05 29696.69 11754.97 31380.82 18792.21 192
PS-MVSNAJss77.26 21876.31 21280.13 26280.64 32259.16 30490.63 22591.06 19872.80 18368.58 25584.57 26053.55 22593.96 23772.97 17871.96 25687.27 266
PVSNet73.49 880.05 16878.63 17684.31 15390.92 13764.97 17092.47 14291.05 19979.18 7872.43 20490.51 17437.05 34594.06 22968.06 22786.00 13893.90 141
API-MVS82.28 12780.53 14787.54 4196.13 2270.59 3193.63 9191.04 20065.72 29375.45 16992.83 12956.11 19698.89 2164.10 26789.75 9993.15 161
APD-MVS_3200maxsize81.64 13981.32 12982.59 20092.36 9158.74 30891.39 18891.01 20163.35 31279.72 12094.62 8151.82 23996.14 14079.71 13087.93 11692.89 172
MVP-Stereo77.12 22176.23 21379.79 27481.72 31166.34 13789.29 25890.88 20270.56 24662.01 32082.88 27749.34 26594.13 22465.55 25893.80 4378.88 373
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
UGNet79.87 17278.68 17583.45 18289.96 15461.51 25992.13 15290.79 20376.83 11978.85 13586.33 24238.16 33196.17 13967.93 23087.17 12592.67 175
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
TAMVS80.37 16179.45 16483.13 18885.14 26763.37 21691.23 19990.76 20474.81 14572.65 19788.49 20260.63 13892.95 26069.41 21481.95 17793.08 164
MVSFormer83.75 10182.88 10986.37 7889.24 17571.18 2489.07 26490.69 20565.80 29187.13 4094.34 9264.99 8192.67 27572.83 18091.80 7295.27 73
test_djsdf73.76 26872.56 26577.39 30577.00 36453.93 34589.07 26490.69 20565.80 29163.92 30282.03 28843.14 31192.67 27572.83 18068.53 27885.57 301
PMMVS81.98 13482.04 12181.78 22389.76 15956.17 33291.13 20590.69 20577.96 9880.09 11693.57 11346.33 29394.99 18981.41 11687.46 12294.17 125
dcpmvs_287.37 3187.55 3086.85 5895.04 3268.20 8790.36 23290.66 20879.37 7481.20 9993.67 11074.73 1696.55 12390.88 3592.00 6995.82 48
CDS-MVSNet81.43 14280.74 14083.52 17786.26 24664.45 17992.09 15590.65 20975.83 13173.95 18589.81 19063.97 9592.91 26571.27 19882.82 16593.20 160
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
mvs_anonymous81.36 14379.99 15485.46 10690.39 14768.40 7886.88 29990.61 21074.41 14770.31 23184.67 25863.79 9892.32 29073.13 17785.70 14195.67 51
testing370.38 29570.83 28069.03 36285.82 25643.93 39390.72 22090.56 21168.06 27360.24 32786.82 23664.83 8584.12 36726.33 40364.10 31579.04 372
SR-MVS-dyc-post81.06 14980.70 14282.15 21492.02 10258.56 31090.90 21090.45 21262.76 31978.89 13094.46 8351.26 24995.61 16778.77 14286.77 13192.28 187
RE-MVS-def80.48 14892.02 10258.56 31090.90 21090.45 21262.76 31978.89 13094.46 8349.30 26678.77 14286.77 13192.28 187
RPMNet70.42 29465.68 31584.63 14183.15 29767.96 9270.25 38490.45 21246.83 39069.97 23665.10 39056.48 19395.30 18235.79 38573.13 24690.64 218
xiu_mvs_v1_base_debu82.16 12981.12 13285.26 11686.42 24268.72 7292.59 13890.44 21573.12 17584.20 7094.36 8738.04 33395.73 15984.12 9286.81 12891.33 205
xiu_mvs_v1_base82.16 12981.12 13285.26 11686.42 24268.72 7292.59 13890.44 21573.12 17584.20 7094.36 8738.04 33395.73 15984.12 9286.81 12891.33 205
xiu_mvs_v1_base_debi82.16 12981.12 13285.26 11686.42 24268.72 7292.59 13890.44 21573.12 17584.20 7094.36 8738.04 33395.73 15984.12 9286.81 12891.33 205
GBi-Net75.65 24673.83 24881.10 24088.85 18265.11 16690.01 24390.32 21870.84 24067.04 27680.25 31948.03 27691.54 30859.80 29669.34 26986.64 274
test175.65 24673.83 24881.10 24088.85 18265.11 16690.01 24390.32 21870.84 24067.04 27680.25 31948.03 27691.54 30859.80 29669.34 26986.64 274
FMVSNet172.71 27969.91 29081.10 24083.60 29265.11 16690.01 24390.32 21863.92 30563.56 30680.25 31936.35 34891.54 30854.46 31566.75 29186.64 274
PVSNet_068.08 1571.81 28568.32 30182.27 20884.68 27362.31 24488.68 27090.31 22175.84 13057.93 34480.65 31337.85 33694.19 22269.94 20929.05 41090.31 222
OPM-MVS79.00 18678.09 18381.73 22483.52 29363.83 19891.64 18190.30 22276.36 12771.97 21089.93 18946.30 29495.17 18575.10 16477.70 21286.19 284
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
CP-MVSNet70.50 29369.91 29072.26 34780.71 32051.00 36087.23 29490.30 22267.84 27459.64 33082.69 27950.23 25782.30 38351.28 32459.28 35183.46 326
KD-MVS_2432*160069.03 30666.37 31077.01 31085.56 26061.06 26781.44 33990.25 22467.27 28058.00 34276.53 35154.49 21387.63 35048.04 34035.77 40182.34 343
miper_refine_blended69.03 30666.37 31077.01 31085.56 26061.06 26781.44 33990.25 22467.27 28058.00 34276.53 35154.49 21387.63 35048.04 34035.77 40182.34 343
v14876.19 23374.47 23881.36 23280.05 33064.44 18091.75 17790.23 22673.68 16667.13 27580.84 30955.92 19993.86 24468.95 22161.73 33685.76 299
v2v48277.42 21675.65 22282.73 19480.38 32467.13 11691.85 17090.23 22675.09 14169.37 24083.39 27353.79 22394.44 21371.77 19465.00 30586.63 277
v114476.73 23074.88 23082.27 20880.23 32866.60 13191.68 17990.21 22873.69 16569.06 24581.89 28952.73 23494.40 21469.21 21765.23 30285.80 296
GA-MVS78.33 20376.23 21384.65 13983.65 29166.30 13891.44 18390.14 22976.01 12970.32 23084.02 26642.50 31294.72 19870.98 20077.00 22292.94 169
MDTV_nov1_ep1372.61 26489.06 17868.48 7680.33 34890.11 23071.84 21271.81 21275.92 35753.01 23193.92 23948.04 34073.38 244
D2MVS73.80 26672.02 27179.15 28779.15 34162.97 22688.58 27290.07 23172.94 17859.22 33378.30 33442.31 31492.70 27465.59 25772.00 25581.79 348
TR-MVS78.77 19477.37 19982.95 19090.49 14460.88 27093.67 8890.07 23170.08 25174.51 17791.37 16345.69 29795.70 16460.12 29480.32 19092.29 186
Anonymous2023121173.08 27070.39 28681.13 23890.62 14263.33 21791.40 18690.06 23351.84 37464.46 29880.67 31236.49 34794.07 22863.83 26964.17 31485.98 291
jajsoiax73.05 27271.51 27777.67 30077.46 36154.83 34188.81 26890.04 23469.13 26462.85 31583.51 27131.16 36892.75 27170.83 20169.80 26585.43 305
fmvsm_s_conf0.5_n86.39 4786.91 3884.82 12887.36 22663.54 21394.74 4790.02 23582.52 2590.14 2596.92 1362.93 11697.84 4695.28 882.26 17093.07 165
HyFIR lowres test81.03 15079.56 16185.43 10787.81 21468.11 8990.18 23890.01 23670.65 24572.95 19286.06 24563.61 10394.50 21275.01 16679.75 19593.67 146
ACMM69.62 1374.34 25972.73 26279.17 28584.25 28457.87 31590.36 23289.93 23763.17 31665.64 28686.04 24637.79 33794.10 22565.89 25271.52 25985.55 302
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CL-MVSNet_self_test69.92 29868.09 30275.41 32173.25 37855.90 33590.05 24289.90 23869.96 25261.96 32176.54 35051.05 25087.64 34949.51 33350.59 37682.70 339
UnsupCasMVSNet_eth65.79 33063.10 33373.88 33470.71 38650.29 36481.09 34289.88 23972.58 18749.25 37874.77 36332.57 36187.43 35355.96 31041.04 39183.90 319
testdata81.34 23389.02 17957.72 31789.84 24058.65 34985.32 6194.09 10157.03 17993.28 25369.34 21590.56 9193.03 166
test_fmvsmconf_n86.58 4487.17 3484.82 12885.28 26462.55 23794.26 5789.78 24183.81 1787.78 3696.33 2965.33 7896.98 10194.40 1187.55 12194.95 87
mvs_tets72.71 27971.11 27877.52 30177.41 36254.52 34388.45 27489.76 24268.76 26962.70 31683.26 27429.49 37392.71 27270.51 20769.62 26785.34 307
v119275.98 24073.92 24782.15 21479.73 33266.24 14091.22 20089.75 24372.67 18568.49 25681.42 29949.86 26094.27 21967.08 23965.02 30485.95 292
PS-CasMVS69.86 30069.13 29572.07 35180.35 32550.57 36287.02 29689.75 24367.27 28059.19 33482.28 28446.58 28982.24 38450.69 32659.02 35283.39 328
dp75.01 25572.09 27083.76 16789.28 17166.22 14179.96 35689.75 24371.16 23367.80 26677.19 34651.81 24092.54 28050.39 32771.44 26192.51 181
LPG-MVS_test75.82 24474.58 23579.56 28084.31 28259.37 30090.44 22789.73 24669.49 25764.86 29188.42 20338.65 32594.30 21772.56 18672.76 24985.01 310
LGP-MVS_train79.56 28084.31 28259.37 30089.73 24669.49 25764.86 29188.42 20338.65 32594.30 21772.56 18672.76 24985.01 310
tpmrst80.57 15679.14 17184.84 12790.10 15268.28 8281.70 33689.72 24877.63 10875.96 16179.54 32864.94 8392.71 27275.43 16177.28 22093.55 149
v14419276.05 23874.03 24582.12 21679.50 33666.55 13391.39 18889.71 24972.30 19668.17 25881.33 30151.75 24294.03 23467.94 22964.19 31385.77 297
TAPA-MVS70.22 1274.94 25673.53 25279.17 28590.40 14652.07 35289.19 26289.61 25062.69 32170.07 23392.67 13148.89 27394.32 21538.26 38079.97 19291.12 213
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PatchmatchNetpermissive77.46 21574.63 23385.96 8989.55 16470.35 3479.97 35589.55 25172.23 19870.94 22176.91 34957.03 17992.79 27054.27 31681.17 18394.74 97
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
v192192075.63 24873.49 25382.06 22079.38 33766.35 13691.07 20889.48 25271.98 20467.99 25981.22 30449.16 27093.90 24066.56 24364.56 31185.92 294
fmvsm_s_conf0.1_n85.61 6485.93 5584.68 13882.95 30163.48 21594.03 6889.46 25381.69 3489.86 2696.74 2061.85 12797.75 4994.74 982.01 17692.81 173
v7n71.31 28968.65 29679.28 28376.40 36660.77 27386.71 30089.45 25464.17 30458.77 33878.24 33544.59 30593.54 24857.76 30361.75 33583.52 324
test0.0.03 172.76 27772.71 26372.88 34280.25 32747.99 37591.22 20089.45 25471.51 22862.51 31887.66 22053.83 22185.06 36550.16 32967.84 28685.58 300
test22289.77 15861.60 25889.55 25289.42 25656.83 36077.28 15092.43 13752.76 23391.14 8593.09 163
V4276.46 23274.55 23682.19 21379.14 34267.82 9690.26 23689.42 25673.75 16368.63 25481.89 28951.31 24794.09 22671.69 19664.84 30684.66 313
BH-w/o80.49 15979.30 16884.05 16290.83 14064.36 18793.60 9289.42 25674.35 14969.09 24390.15 18555.23 20595.61 16764.61 26486.43 13792.17 193
fmvsm_s_conf0.5_n_a85.75 6086.09 5284.72 13585.73 25863.58 21093.79 8389.32 25981.42 4190.21 2396.91 1462.41 12197.67 5194.48 1080.56 18992.90 171
pm-mvs172.89 27571.09 27978.26 29579.10 34357.62 31990.80 21589.30 26067.66 27662.91 31481.78 29149.11 27192.95 26060.29 29358.89 35384.22 316
v875.35 25073.26 25581.61 22780.67 32166.82 12489.54 25389.27 26171.65 21963.30 30980.30 31854.99 20994.06 22967.33 23662.33 32883.94 318
diffmvspermissive84.28 8683.83 8385.61 10387.40 22468.02 9190.88 21289.24 26280.54 5081.64 9492.52 13259.83 14794.52 21187.32 6185.11 14594.29 118
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PEN-MVS69.46 30368.56 29772.17 34979.27 33849.71 36686.90 29889.24 26267.24 28359.08 33582.51 28247.23 28583.54 37448.42 33857.12 35783.25 329
UniMVSNet_ETH3D72.74 27870.53 28579.36 28278.62 35156.64 33085.01 30889.20 26463.77 30764.84 29384.44 26234.05 35691.86 29963.94 26870.89 26489.57 233
SCA75.82 24472.76 26085.01 12386.63 23970.08 3781.06 34389.19 26571.60 22470.01 23477.09 34745.53 29890.25 32160.43 29173.27 24594.68 100
EG-PatchMatch MVS68.55 31065.41 31877.96 29878.69 34962.93 22889.86 24889.17 26660.55 33750.27 37377.73 34122.60 39094.06 22947.18 34672.65 25176.88 383
HPM-MVS_fast80.25 16479.55 16382.33 20691.55 12159.95 29191.32 19589.16 26765.23 29774.71 17693.07 12147.81 28295.74 15874.87 17088.23 11291.31 209
miper_enhance_ethall78.86 19077.97 18681.54 22988.00 20865.17 16491.41 18489.15 26875.19 14068.79 25183.98 26767.17 6092.82 26772.73 18465.30 29986.62 278
Fast-Effi-MVS+81.14 14680.01 15384.51 14690.24 14965.86 14894.12 6289.15 26873.81 16275.37 17088.26 20857.26 17694.53 21066.97 24184.92 14693.15 161
mvsmamba81.55 14080.72 14184.03 16391.42 12466.93 12283.08 32689.13 27078.55 9267.50 26987.02 23351.79 24190.07 32987.48 5890.49 9295.10 81
Vis-MVSNet (Re-imp)79.24 18279.57 16078.24 29688.46 19152.29 35190.41 22989.12 27174.24 15169.13 24291.91 15165.77 7490.09 32859.00 30088.09 11492.33 184
v124075.21 25372.98 25881.88 22279.20 33966.00 14490.75 21789.11 27271.63 22367.41 27281.22 30447.36 28493.87 24265.46 25964.72 30985.77 297
sd_testset77.08 22275.37 22482.20 21289.25 17262.11 24782.06 33389.09 27376.77 12170.84 22387.12 23041.43 31695.01 18867.23 23774.55 23389.48 235
v1074.77 25772.54 26681.46 23080.33 32666.71 12889.15 26389.08 27470.94 23863.08 31279.86 32352.52 23594.04 23265.70 25562.17 32983.64 321
ACMP71.68 1075.58 24974.23 24279.62 27884.97 27159.64 29590.80 21589.07 27570.39 24762.95 31387.30 22738.28 32993.87 24272.89 17971.45 26085.36 306
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
UnsupCasMVSNet_bld61.60 34857.71 35373.29 33968.73 39251.64 35478.61 35989.05 27657.20 35746.11 38461.96 39728.70 37688.60 33750.08 33038.90 39679.63 367
Syy-MVS69.65 30169.52 29370.03 35887.87 21143.21 39488.07 27889.01 27772.91 18063.11 31088.10 21245.28 30185.54 36122.07 40869.23 27281.32 351
myMVS_eth3d72.58 28372.74 26172.10 35087.87 21149.45 36888.07 27889.01 27772.91 18063.11 31088.10 21263.63 10185.54 36132.73 39569.23 27281.32 351
CANet_DTU84.09 9383.52 8785.81 9590.30 14866.82 12491.87 16889.01 27785.27 986.09 5193.74 10847.71 28396.98 10177.90 14889.78 9893.65 147
UA-Net80.02 16979.65 15981.11 23989.33 16957.72 31786.33 30389.00 28077.44 11181.01 10389.15 19759.33 15495.90 15261.01 28884.28 15589.73 231
MVS_111021_LR82.02 13381.52 12783.51 17988.42 19362.88 23289.77 24988.93 28176.78 12075.55 16893.10 11850.31 25595.38 17883.82 9687.02 12692.26 191
miper_lstm_enhance73.05 27271.73 27577.03 30983.80 28858.32 31281.76 33488.88 28269.80 25561.01 32278.23 33657.19 17787.51 35265.34 26059.53 35085.27 309
anonymousdsp71.14 29069.37 29476.45 31572.95 37954.71 34284.19 31388.88 28261.92 32962.15 31979.77 32538.14 33291.44 31368.90 22267.45 28783.21 330
cl2277.94 20976.78 20681.42 23187.57 21964.93 17290.67 22188.86 28472.45 19167.63 26882.68 28064.07 9392.91 26571.79 19365.30 29986.44 279
test_fmvsmconf0.1_n85.71 6186.08 5384.62 14280.83 31862.33 24293.84 8088.81 28583.50 1987.00 4396.01 3763.36 10896.93 10994.04 1287.29 12494.61 105
MIMVSNet71.64 28668.44 29981.23 23581.97 31064.44 18073.05 37888.80 28669.67 25664.59 29474.79 36232.79 35987.82 34653.99 31776.35 22691.42 203
IterMVS-LS76.49 23175.18 22880.43 25484.49 27862.74 23490.64 22388.80 28672.40 19365.16 29081.72 29260.98 13492.27 29167.74 23164.65 31086.29 281
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
fmvsm_s_conf0.1_n_a84.76 7884.84 7584.53 14480.23 32863.50 21492.79 12488.73 28880.46 5289.84 2796.65 2260.96 13597.57 6193.80 1380.14 19192.53 180
cl____76.07 23574.67 23180.28 25785.15 26661.76 25490.12 23988.73 28871.16 23365.43 28781.57 29661.15 13192.95 26066.54 24462.17 32986.13 287
DIV-MVS_self_test76.07 23574.67 23180.28 25785.14 26761.75 25590.12 23988.73 28871.16 23365.42 28881.60 29561.15 13192.94 26466.54 24462.16 33186.14 285
JIA-IIPM66.06 32862.45 33876.88 31381.42 31554.45 34457.49 40888.67 29149.36 38263.86 30346.86 40656.06 19790.25 32149.53 33268.83 27585.95 292
OMC-MVS78.67 19777.91 18880.95 24685.76 25757.40 32388.49 27388.67 29173.85 16072.43 20492.10 14649.29 26794.55 20972.73 18477.89 21090.91 215
miper_ehance_all_eth77.60 21376.44 21081.09 24385.70 25964.41 18390.65 22288.64 29372.31 19567.37 27482.52 28164.77 8792.64 27870.67 20465.30 29986.24 283
BH-untuned78.68 19577.08 20183.48 18189.84 15663.74 20192.70 12988.59 29471.57 22566.83 28088.65 20151.75 24295.39 17759.03 29984.77 14891.32 208
DTE-MVSNet68.46 31267.33 30671.87 35377.94 35849.00 37286.16 30488.58 29566.36 28858.19 33982.21 28646.36 29083.87 37244.97 35755.17 36482.73 336
CPTT-MVS79.59 17579.16 17080.89 24891.54 12259.80 29392.10 15488.54 29660.42 33872.96 19193.28 11748.27 27592.80 26978.89 14186.50 13690.06 224
fmvsm_l_conf0.5_n87.49 2888.19 2385.39 10986.95 23464.37 18594.30 5588.45 29780.51 5192.70 496.86 1569.98 4697.15 8995.83 488.08 11594.65 103
CVMVSNet74.04 26374.27 24173.33 33885.33 26243.94 39289.53 25488.39 29854.33 36870.37 22990.13 18649.17 26984.05 36961.83 28579.36 19891.99 196
1112_ss80.56 15779.83 15782.77 19388.65 18760.78 27292.29 14688.36 29972.58 18772.46 20394.95 6965.09 8093.42 25266.38 24777.71 21194.10 129
test_cas_vis1_n_192080.45 16080.61 14579.97 26978.25 35457.01 32894.04 6788.33 30079.06 8482.81 8693.70 10938.65 32591.63 30590.82 3679.81 19391.27 211
tpmvs72.88 27669.76 29282.22 21190.98 13567.05 11878.22 36388.30 30163.10 31764.35 30074.98 36055.09 20894.27 21943.25 36069.57 26885.34 307
PLCcopyleft68.80 1475.23 25273.68 25179.86 27292.93 7658.68 30990.64 22388.30 30160.90 33564.43 29990.53 17342.38 31394.57 20556.52 30776.54 22586.33 280
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
eth_miper_zixun_eth75.96 24274.40 23980.66 24984.66 27463.02 22589.28 25988.27 30371.88 20965.73 28581.65 29359.45 15192.81 26868.13 22660.53 34586.14 285
IS-MVSNet80.14 16679.41 16582.33 20687.91 20960.08 29091.97 16488.27 30372.90 18271.44 21991.73 15561.44 13093.66 24762.47 28186.53 13593.24 157
Vis-MVSNetpermissive80.92 15279.98 15583.74 16888.48 19061.80 25293.44 10288.26 30573.96 15877.73 14391.76 15349.94 25994.76 19565.84 25390.37 9394.65 103
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
fmvsm_l_conf0.5_n_a87.44 3088.15 2485.30 11387.10 23164.19 19294.41 5288.14 30680.24 5992.54 596.97 1069.52 4897.17 8595.89 388.51 11094.56 106
c3_l76.83 22875.47 22380.93 24785.02 27064.18 19390.39 23088.11 30771.66 21866.65 28281.64 29463.58 10692.56 27969.31 21662.86 32286.04 289
BH-RMVSNet79.46 18077.65 19084.89 12591.68 11765.66 15193.55 9488.09 30872.93 17973.37 18891.12 16646.20 29596.12 14156.28 30985.61 14392.91 170
tpm cat175.30 25172.21 26984.58 14388.52 18867.77 9778.16 36488.02 30961.88 33068.45 25776.37 35360.65 13794.03 23453.77 31974.11 23991.93 197
dmvs_re76.93 22475.36 22581.61 22787.78 21660.71 27780.00 35487.99 31079.42 7269.02 24689.47 19346.77 28694.32 21563.38 27274.45 23689.81 228
Test_1112_low_res79.56 17678.60 17782.43 20288.24 20160.39 28592.09 15587.99 31072.10 20371.84 21187.42 22564.62 8893.04 25665.80 25477.30 21993.85 143
AdaColmapbinary78.94 18877.00 20484.76 13396.34 1765.86 14892.66 13387.97 31262.18 32470.56 22592.37 13943.53 30897.35 7264.50 26582.86 16491.05 214
Effi-MVS+-dtu76.14 23475.28 22778.72 29083.22 29655.17 33989.87 24787.78 31375.42 13667.98 26081.43 29845.08 30392.52 28175.08 16571.63 25788.48 247
PatchT69.11 30565.37 31980.32 25582.07 30963.68 20767.96 39487.62 31450.86 37869.37 24065.18 38957.09 17888.53 33941.59 36966.60 29288.74 242
XVG-OURS74.25 26172.46 26779.63 27778.45 35257.59 32080.33 34887.39 31563.86 30668.76 25289.62 19240.50 31991.72 30269.00 22074.25 23889.58 232
Anonymous2023120667.53 32165.78 31372.79 34374.95 37247.59 37788.23 27687.32 31661.75 33258.07 34177.29 34437.79 33787.29 35442.91 36263.71 31983.48 325
XVG-OURS-SEG-HR74.70 25873.08 25679.57 27978.25 35457.33 32480.49 34687.32 31663.22 31468.76 25290.12 18844.89 30491.59 30670.55 20674.09 24089.79 229
pmmvs473.92 26571.81 27480.25 25979.17 34065.24 16287.43 29187.26 31867.64 27863.46 30783.91 26848.96 27291.53 31162.94 27665.49 29883.96 317
test_fmvsmconf0.01_n83.70 10383.52 8784.25 15675.26 37161.72 25692.17 15087.24 31982.36 2784.91 6495.41 5155.60 20196.83 11492.85 1885.87 14094.21 122
pmmvs573.35 26971.52 27678.86 28978.64 35060.61 28191.08 20686.90 32067.69 27563.32 30883.64 26944.33 30690.53 31862.04 28366.02 29585.46 304
test_vis1_n_192081.66 13882.01 12280.64 25082.24 30655.09 34094.76 4686.87 32181.67 3584.40 6994.63 8038.17 33094.67 20291.98 2783.34 16192.16 194
test111180.84 15380.02 15283.33 18387.87 21160.76 27492.62 13486.86 32277.86 10175.73 16391.39 16246.35 29194.70 20172.79 18288.68 10994.52 111
ECVR-MVScopyleft81.29 14480.38 15084.01 16488.39 19561.96 25092.56 14186.79 32377.66 10676.63 15691.42 16046.34 29295.24 18374.36 17289.23 10094.85 89
pmmvs667.57 32064.76 32276.00 31972.82 38153.37 34788.71 26986.78 32453.19 37057.58 34778.03 33835.33 35292.41 28455.56 31154.88 36682.21 345
MonoMVSNet76.99 22375.08 22982.73 19483.32 29563.24 21986.47 30286.37 32579.08 8266.31 28379.30 33049.80 26291.72 30279.37 13365.70 29793.23 158
F-COLMAP70.66 29168.44 29977.32 30686.37 24555.91 33488.00 28086.32 32656.94 35957.28 34888.07 21433.58 35792.49 28251.02 32568.37 27983.55 322
IterMVS72.65 28270.83 28078.09 29782.17 30762.96 22787.64 28986.28 32771.56 22660.44 32678.85 33245.42 30086.66 35663.30 27461.83 33384.65 314
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
FMVSNet568.04 31665.66 31675.18 32484.43 28057.89 31483.54 31786.26 32861.83 33153.64 36073.30 36537.15 34385.08 36448.99 33561.77 33482.56 342
GeoE78.90 18977.43 19483.29 18488.95 18162.02 24892.31 14586.23 32970.24 24971.34 22089.27 19554.43 21694.04 23263.31 27380.81 18893.81 144
EU-MVSNet64.01 34063.01 33467.02 37074.40 37538.86 40583.27 32286.19 33045.11 39354.27 35681.15 30736.91 34680.01 39148.79 33757.02 35882.19 346
Effi-MVS+83.82 9882.76 11186.99 5689.56 16369.40 5391.35 19386.12 33172.59 18683.22 8192.81 13059.60 15096.01 15181.76 11287.80 11895.56 56
IterMVS-SCA-FT71.55 28869.97 28876.32 31681.48 31360.67 27987.64 28985.99 33266.17 28959.50 33178.88 33145.53 29883.65 37362.58 28061.93 33284.63 315
kuosan60.86 35260.24 34562.71 37781.57 31246.43 38575.70 37485.88 33357.98 35148.95 37969.53 38158.42 16576.53 39328.25 40235.87 40065.15 401
XVG-ACMP-BASELINE68.04 31665.53 31775.56 32074.06 37652.37 35078.43 36085.88 33362.03 32758.91 33781.21 30620.38 39591.15 31560.69 29068.18 28083.16 331
ambc69.61 35961.38 40641.35 39749.07 41385.86 33550.18 37566.40 38710.16 41088.14 34345.73 35344.20 38579.32 370
CMPMVSbinary48.56 2166.77 32564.41 32773.84 33570.65 38750.31 36377.79 36585.73 33645.54 39244.76 39182.14 28735.40 35190.14 32763.18 27574.54 23581.07 354
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
Fast-Effi-MVS+-dtu75.04 25473.37 25480.07 26380.86 31759.52 29891.20 20285.38 33771.90 20765.20 28984.84 25641.46 31592.97 25966.50 24672.96 24887.73 256
Anonymous20240521177.96 20875.33 22685.87 9293.73 5364.52 17594.85 4485.36 33862.52 32276.11 16090.18 18229.43 37497.29 7668.51 22577.24 22195.81 49
Anonymous2024052162.09 34659.08 35071.10 35567.19 39448.72 37383.91 31585.23 33950.38 37947.84 38271.22 37820.74 39385.51 36346.47 34958.75 35479.06 371
our_test_368.29 31464.69 32379.11 28878.92 34464.85 17388.40 27585.06 34060.32 34052.68 36276.12 35540.81 31889.80 33244.25 35955.65 36282.67 341
USDC67.43 32364.51 32576.19 31777.94 35855.29 33878.38 36185.00 34173.17 17348.36 38180.37 31621.23 39292.48 28352.15 32364.02 31780.81 357
TransMVSNet (Re)70.07 29767.66 30377.31 30780.62 32359.13 30591.78 17484.94 34265.97 29060.08 32980.44 31550.78 25191.87 29848.84 33645.46 38480.94 355
KD-MVS_self_test60.87 35158.60 35167.68 36766.13 39739.93 40275.63 37584.70 34357.32 35649.57 37668.45 38429.55 37282.87 37948.09 33947.94 38080.25 364
ACMH63.93 1768.62 30964.81 32180.03 26585.22 26563.25 21887.72 28684.66 34460.83 33651.57 36879.43 32927.29 38094.96 19041.76 36764.84 30681.88 347
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
dongtai55.18 36355.46 36254.34 38876.03 37036.88 40676.07 37184.61 34551.28 37543.41 39664.61 39256.56 19167.81 40618.09 41128.50 41158.32 404
Baseline_NR-MVSNet73.99 26472.83 25977.48 30380.78 31959.29 30391.79 17284.55 34668.85 26668.99 24780.70 31056.16 19492.04 29662.67 27960.98 34281.11 353
MIMVSNet160.16 35557.33 35668.67 36369.71 38944.13 39178.92 35884.21 34755.05 36644.63 39271.85 37323.91 38681.54 38732.63 39655.03 36580.35 361
test20.0363.83 34162.65 33767.38 36970.58 38839.94 40186.57 30184.17 34863.29 31351.86 36677.30 34337.09 34482.47 38138.87 37954.13 36879.73 366
MDA-MVSNet_test_wron63.78 34260.16 34674.64 32778.15 35660.41 28483.49 31884.03 34956.17 36439.17 40171.59 37537.22 34183.24 37842.87 36448.73 37880.26 363
ADS-MVSNet68.54 31164.38 32881.03 24488.06 20566.90 12368.01 39284.02 35057.57 35264.48 29669.87 37938.68 32389.21 33540.87 37167.89 28486.97 269
CR-MVSNet73.79 26770.82 28282.70 19683.15 29767.96 9270.25 38484.00 35173.67 16769.97 23672.41 36957.82 17289.48 33352.99 32273.13 24690.64 218
Patchmtry67.53 32163.93 32978.34 29282.12 30864.38 18468.72 38984.00 35148.23 38759.24 33272.41 36957.82 17289.27 33446.10 35156.68 36181.36 350
test_fmvsmvis_n_192083.80 9983.48 9084.77 13282.51 30463.72 20391.37 19183.99 35381.42 4177.68 14495.74 4258.37 16697.58 5993.38 1486.87 12793.00 168
YYNet163.76 34360.14 34774.62 32878.06 35760.19 28983.46 32083.99 35356.18 36339.25 40071.56 37637.18 34283.34 37642.90 36348.70 37980.32 362
LTVRE_ROB59.60 1966.27 32763.54 33174.45 32984.00 28751.55 35567.08 39683.53 35558.78 34854.94 35480.31 31734.54 35493.23 25440.64 37368.03 28278.58 376
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
pmmvs-eth3d65.53 33362.32 33975.19 32369.39 39159.59 29682.80 33083.43 35662.52 32251.30 37072.49 36732.86 35887.16 35555.32 31250.73 37578.83 374
OpenMVS_ROBcopyleft61.12 1866.39 32662.92 33576.80 31476.51 36557.77 31689.22 26083.41 35755.48 36553.86 35977.84 33926.28 38393.95 23834.90 38768.76 27678.68 375
PatchMatch-RL72.06 28469.98 28778.28 29489.51 16555.70 33683.49 31883.39 35861.24 33363.72 30582.76 27834.77 35393.03 25753.37 32177.59 21386.12 288
MSDG69.54 30265.73 31480.96 24585.11 26963.71 20484.19 31383.28 35956.95 35854.50 35584.03 26531.50 36596.03 14942.87 36469.13 27483.14 332
CHOSEN 280x42077.35 21776.95 20578.55 29187.07 23262.68 23669.71 38782.95 36068.80 26771.48 21887.27 22966.03 7184.00 37176.47 15582.81 16688.95 238
ppachtmachnet_test67.72 31863.70 33079.77 27578.92 34466.04 14388.68 27082.90 36160.11 34255.45 35275.96 35639.19 32290.55 31739.53 37552.55 37282.71 338
new-patchmatchnet59.30 35756.48 35967.79 36665.86 39844.19 39082.47 33181.77 36259.94 34343.65 39566.20 38827.67 37981.68 38639.34 37641.40 39077.50 382
MDA-MVSNet-bldmvs61.54 34957.70 35473.05 34079.53 33557.00 32983.08 32681.23 36357.57 35234.91 40572.45 36832.79 35986.26 35935.81 38441.95 38975.89 385
OurMVSNet-221017-064.68 33662.17 34072.21 34876.08 36947.35 37880.67 34581.02 36456.19 36251.60 36779.66 32727.05 38188.56 33853.60 32053.63 36980.71 358
ACMH+65.35 1667.65 31964.55 32476.96 31284.59 27657.10 32588.08 27780.79 36558.59 35053.00 36181.09 30826.63 38292.95 26046.51 34861.69 33880.82 356
CNLPA74.31 26072.30 26880.32 25591.49 12361.66 25790.85 21380.72 36656.67 36163.85 30490.64 17046.75 28790.84 31653.79 31875.99 22988.47 248
mmtdpeth68.33 31366.37 31074.21 33382.81 30251.73 35384.34 31280.42 36767.01 28471.56 21668.58 38330.52 37192.35 28875.89 15836.21 39978.56 377
LS3D69.17 30466.40 30977.50 30291.92 10956.12 33385.12 30780.37 36846.96 38856.50 35087.51 22437.25 34093.71 24532.52 39779.40 19782.68 340
testgi64.48 33862.87 33669.31 36171.24 38240.62 39985.49 30579.92 36965.36 29554.18 35783.49 27223.74 38784.55 36641.60 36860.79 34482.77 335
test_040264.54 33761.09 34374.92 32684.10 28660.75 27587.95 28179.71 37052.03 37252.41 36377.20 34532.21 36391.64 30423.14 40661.03 34172.36 394
SixPastTwentyTwo64.92 33561.78 34274.34 33178.74 34849.76 36583.42 32179.51 37162.86 31850.27 37377.35 34230.92 37090.49 31945.89 35247.06 38182.78 334
mvs5depth61.03 35057.65 35571.18 35467.16 39547.04 38372.74 37977.49 37257.47 35560.52 32572.53 36622.84 38988.38 34049.15 33438.94 39578.11 380
ITE_SJBPF70.43 35774.44 37447.06 38277.32 37360.16 34154.04 35883.53 27023.30 38884.01 37043.07 36161.58 33980.21 365
K. test v363.09 34459.61 34973.53 33776.26 36749.38 37083.27 32277.15 37464.35 30147.77 38372.32 37128.73 37587.79 34749.93 33136.69 39883.41 327
DP-MVS69.90 29966.48 30780.14 26195.36 2862.93 22889.56 25176.11 37550.27 38057.69 34685.23 25239.68 32195.73 15933.35 39071.05 26381.78 349
RPSCF64.24 33961.98 34171.01 35676.10 36845.00 38975.83 37375.94 37646.94 38958.96 33684.59 25931.40 36682.00 38547.76 34460.33 34986.04 289
test_fmvs1_n72.69 28171.92 27274.99 32571.15 38447.08 38187.34 29375.67 37763.48 31178.08 14191.17 16520.16 39687.87 34584.65 8775.57 23190.01 226
TinyColmap60.32 35356.42 36072.00 35278.78 34753.18 34878.36 36275.64 37852.30 37141.59 39975.82 35814.76 40488.35 34135.84 38354.71 36774.46 387
ADS-MVSNet266.90 32463.44 33277.26 30888.06 20560.70 27868.01 39275.56 37957.57 35264.48 29669.87 37938.68 32384.10 36840.87 37167.89 28486.97 269
COLMAP_ROBcopyleft57.96 2062.98 34559.65 34872.98 34181.44 31453.00 34983.75 31675.53 38048.34 38548.81 38081.40 30024.14 38590.30 32032.95 39260.52 34675.65 386
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
Patchmatch-test65.86 32960.94 34480.62 25283.75 28958.83 30758.91 40775.26 38144.50 39550.95 37277.09 34758.81 16287.90 34435.13 38664.03 31695.12 80
test_fmvs174.07 26273.69 25075.22 32278.91 34647.34 37989.06 26674.69 38263.68 30979.41 12491.59 15824.36 38487.77 34885.22 7876.26 22790.55 220
MVS-HIRNet60.25 35455.55 36174.35 33084.37 28156.57 33171.64 38274.11 38334.44 40445.54 38942.24 41231.11 36989.81 33040.36 37476.10 22876.67 384
pmmvs355.51 36151.50 36767.53 36857.90 40950.93 36180.37 34773.66 38440.63 40244.15 39464.75 39116.30 39978.97 39244.77 35840.98 39372.69 392
TDRefinement55.28 36251.58 36666.39 37159.53 40846.15 38676.23 37072.80 38544.60 39442.49 39776.28 35415.29 40282.39 38233.20 39143.75 38670.62 396
MVStest151.35 36646.89 37064.74 37265.06 39951.10 35967.33 39572.58 38630.20 40835.30 40374.82 36127.70 37869.89 40324.44 40524.57 41273.22 390
Gipumacopyleft34.91 38131.44 38445.30 39670.99 38539.64 40419.85 41872.56 38720.10 41416.16 41821.47 4195.08 41971.16 40113.07 41643.70 38725.08 416
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_vis1_n71.63 28770.73 28374.31 33269.63 39047.29 38086.91 29772.11 38863.21 31575.18 17190.17 18320.40 39485.76 36084.59 8874.42 23789.87 227
FPMVS45.64 37243.10 37653.23 38951.42 41436.46 40764.97 39871.91 38929.13 40927.53 40961.55 3989.83 41165.01 41216.00 41555.58 36358.22 405
dmvs_testset65.55 33266.45 30862.86 37679.87 33122.35 42276.55 36871.74 39077.42 11355.85 35187.77 21951.39 24680.69 38931.51 40165.92 29685.55 302
ANet_high40.27 37835.20 38155.47 38434.74 42534.47 41063.84 40071.56 39148.42 38418.80 41441.08 4139.52 41264.45 41320.18 4098.66 42167.49 399
Patchmatch-RL test68.17 31564.49 32679.19 28471.22 38353.93 34570.07 38671.54 39269.22 26156.79 34962.89 39456.58 19088.61 33669.53 21352.61 37195.03 85
mamv465.18 33467.43 30458.44 38077.88 36049.36 37169.40 38870.99 39348.31 38657.78 34585.53 25059.01 16051.88 41873.67 17564.32 31274.07 388
LCM-MVSNet-Re72.93 27471.84 27376.18 31888.49 18948.02 37480.07 35370.17 39473.96 15852.25 36480.09 32249.98 25888.24 34267.35 23484.23 15692.28 187
test_fmvs265.78 33164.84 32068.60 36466.54 39641.71 39683.27 32269.81 39554.38 36767.91 26284.54 26115.35 40181.22 38875.65 16066.16 29482.88 333
LCM-MVSNet40.54 37535.79 38054.76 38736.92 42430.81 41451.41 41169.02 39622.07 41124.63 41145.37 4084.56 42065.81 40933.67 38934.50 40467.67 398
AllTest61.66 34758.06 35272.46 34579.57 33351.42 35780.17 35168.61 39751.25 37645.88 38581.23 30219.86 39786.58 35738.98 37757.01 35979.39 368
TestCases72.46 34579.57 33351.42 35768.61 39751.25 37645.88 38581.23 30219.86 39786.58 35738.98 37757.01 35979.39 368
LF4IMVS54.01 36452.12 36559.69 37962.41 40339.91 40368.59 39068.28 39942.96 39944.55 39375.18 35914.09 40668.39 40541.36 37051.68 37370.78 395
door66.57 400
door-mid66.01 401
ttmdpeth53.34 36549.96 36863.45 37562.07 40540.04 40072.06 38065.64 40242.54 40051.88 36577.79 34013.94 40776.48 39432.93 39330.82 40973.84 389
test_fmvs356.82 35954.86 36362.69 37853.59 41135.47 40875.87 37265.64 40243.91 39655.10 35371.43 3776.91 41674.40 39868.64 22452.63 37078.20 379
DSMNet-mixed56.78 36054.44 36463.79 37463.21 40129.44 41764.43 39964.10 40442.12 40151.32 36971.60 37431.76 36475.04 39636.23 38265.20 30386.87 272
PM-MVS59.40 35656.59 35867.84 36563.63 40041.86 39576.76 36763.22 40559.01 34751.07 37172.27 37211.72 40883.25 37761.34 28650.28 37778.39 378
new_pmnet49.31 36846.44 37157.93 38162.84 40240.74 39868.47 39162.96 40636.48 40335.09 40457.81 40114.97 40372.18 40032.86 39446.44 38260.88 403
lessismore_v073.72 33672.93 38047.83 37661.72 40745.86 38773.76 36428.63 37789.81 33047.75 34531.37 40683.53 323
mvsany_test168.77 30868.56 29769.39 36073.57 37745.88 38880.93 34460.88 40859.65 34471.56 21690.26 18143.22 31075.05 39574.26 17362.70 32487.25 267
EGC-MVSNET42.35 37438.09 37755.11 38574.57 37346.62 38471.63 38355.77 4090.04 4230.24 42462.70 39514.24 40574.91 39717.59 41246.06 38343.80 409
WB-MVS46.23 37144.94 37350.11 39162.13 40421.23 42476.48 36955.49 41045.89 39135.78 40261.44 39935.54 35072.83 3999.96 41821.75 41356.27 406
SSC-MVS44.51 37343.35 37547.99 39561.01 40718.90 42674.12 37754.36 41143.42 39834.10 40660.02 40034.42 35570.39 4029.14 42019.57 41454.68 407
test_method38.59 37935.16 38248.89 39354.33 41021.35 42345.32 41453.71 4127.41 42028.74 40851.62 4048.70 41352.87 41733.73 38832.89 40572.47 393
APD_test140.50 37637.31 37950.09 39251.88 41235.27 40959.45 40652.59 41321.64 41226.12 41057.80 4024.56 42066.56 40822.64 40739.09 39448.43 408
PMMVS237.93 38033.61 38350.92 39046.31 41624.76 42060.55 40550.05 41428.94 41020.93 41247.59 4054.41 42265.13 41125.14 40418.55 41662.87 402
PMVScopyleft26.43 2231.84 38428.16 38742.89 39725.87 42727.58 41850.92 41249.78 41521.37 41314.17 41940.81 4142.01 42666.62 4079.61 41938.88 39734.49 415
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test_f46.58 37043.45 37455.96 38345.18 41832.05 41261.18 40249.49 41633.39 40542.05 39862.48 3967.00 41565.56 41047.08 34743.21 38870.27 397
test_vis1_rt59.09 35857.31 35764.43 37368.44 39346.02 38783.05 32848.63 41751.96 37349.57 37663.86 39316.30 39980.20 39071.21 19962.79 32367.07 400
mvsany_test348.86 36946.35 37256.41 38246.00 41731.67 41362.26 40147.25 41843.71 39745.54 38968.15 38510.84 40964.44 41457.95 30235.44 40373.13 391
testf132.77 38229.47 38542.67 39841.89 42130.81 41452.07 40943.45 41915.45 41518.52 41544.82 4092.12 42458.38 41516.05 41330.87 40738.83 411
APD_test232.77 38229.47 38542.67 39841.89 42130.81 41452.07 40943.45 41915.45 41518.52 41544.82 4092.12 42458.38 41516.05 41330.87 40738.83 411
E-PMN24.61 38524.00 38926.45 40243.74 42018.44 42760.86 40339.66 42115.11 4179.53 42122.10 4186.52 41746.94 4208.31 42110.14 41813.98 418
tmp_tt22.26 38823.75 39017.80 4045.23 42812.06 42935.26 41539.48 4222.82 42218.94 41344.20 41122.23 39124.64 42336.30 3819.31 42016.69 417
MVEpermissive24.84 2324.35 38619.77 39238.09 40034.56 42626.92 41926.57 41638.87 42311.73 41911.37 42027.44 4161.37 42750.42 41911.41 41714.60 41736.93 413
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
EMVS23.76 38723.20 39125.46 40341.52 42316.90 42860.56 40438.79 42414.62 4188.99 42220.24 4217.35 41445.82 4217.25 4229.46 41913.64 419
test_vis3_rt40.46 37737.79 37848.47 39444.49 41933.35 41166.56 39732.84 42532.39 40629.65 40739.13 4153.91 42368.65 40450.17 32840.99 39243.40 410
MTMP93.77 8432.52 426
DeepMVS_CXcopyleft34.71 40151.45 41324.73 42128.48 42731.46 40717.49 41752.75 4035.80 41842.60 42218.18 41019.42 41536.81 414
N_pmnet50.55 36749.11 36954.88 38677.17 3634.02 43084.36 3112.00 42848.59 38345.86 38768.82 38232.22 36282.80 38031.58 39951.38 37477.81 381
wuyk23d11.30 39010.95 39312.33 40548.05 41519.89 42525.89 4171.92 4293.58 4213.12 4231.37 4230.64 42815.77 4246.23 4237.77 4221.35 420
testmvs7.23 3929.62 3950.06 4070.04 4290.02 43284.98 3090.02 4300.03 4240.18 4251.21 4240.01 4300.02 4250.14 4240.01 4230.13 422
test1236.92 3939.21 3960.08 4060.03 4300.05 43181.65 3370.01 4310.02 4250.14 4260.85 4250.03 4290.02 4250.12 4250.00 4240.16 421
mmdepth0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4240.00 423
monomultidepth0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4240.00 423
test_blank0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4240.00 423
uanet_test0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4240.00 423
DCPMVS0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4240.00 423
pcd_1.5k_mvsjas4.46 3945.95 3970.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 42653.55 2250.00 4270.00 4260.00 4240.00 423
sosnet-low-res0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4240.00 423
sosnet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4240.00 423
uncertanet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4240.00 423
Regformer0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4240.00 423
n20.00 432
nn0.00 432
ab-mvs-re7.91 39110.55 3940.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 42794.95 690.00 4310.00 4270.00 4260.00 4240.00 423
uanet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4240.00 423
WAC-MVS49.45 36831.56 400
PC_three_145280.91 4894.07 296.83 1883.57 499.12 595.70 797.42 497.55 4
eth-test20.00 431
eth-test0.00 431
OPU-MVS89.97 397.52 373.15 1496.89 697.00 983.82 299.15 295.72 597.63 397.62 2
test_0728_THIRD72.48 18990.55 2096.93 1176.24 1199.08 1191.53 3094.99 1896.43 31
GSMVS94.68 100
test_part296.29 1968.16 8890.78 17
sam_mvs157.85 17194.68 100
sam_mvs54.91 210
test_post178.95 35720.70 42053.05 23091.50 31260.43 291
test_post23.01 41756.49 19292.67 275
patchmatchnet-post67.62 38657.62 17490.25 321
gm-plane-assit88.42 19367.04 11978.62 9191.83 15297.37 7076.57 154
test9_res89.41 4094.96 1995.29 70
agg_prior286.41 7094.75 3095.33 66
test_prior467.18 11493.92 73
test_prior295.10 3875.40 13785.25 6395.61 4567.94 5587.47 5994.77 26
旧先验292.00 16359.37 34687.54 3993.47 25175.39 162
新几何291.41 184
原ACMM292.01 160
testdata296.09 14361.26 287
segment_acmp65.94 72
testdata189.21 26177.55 109
plane_prior786.94 23561.51 259
plane_prior687.23 22762.32 24350.66 252
plane_prior489.14 198
plane_prior361.95 25179.09 8172.53 200
plane_prior293.13 11078.81 88
plane_prior187.15 229
plane_prior62.42 23993.85 7779.38 7378.80 204
HQP5-MVS63.66 208
HQP-NCC87.54 22094.06 6379.80 6474.18 179
ACMP_Plane87.54 22094.06 6379.80 6474.18 179
BP-MVS77.63 149
HQP4-MVS74.18 17995.61 16788.63 243
HQP2-MVS51.63 244
NP-MVS87.41 22363.04 22490.30 179
MDTV_nov1_ep13_2view59.90 29280.13 35267.65 27772.79 19454.33 21859.83 29592.58 178
ACMMP++_ref71.63 257
ACMMP++69.72 266
Test By Simon54.21 219