This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort by
IU-MVS96.46 1169.91 4395.18 2080.75 4995.28 192.34 2195.36 1496.47 29
PC_three_145280.91 4894.07 296.83 1883.57 499.12 595.70 797.42 497.55 4
MSP-MVS90.38 591.87 185.88 8792.83 7764.03 19093.06 11394.33 5482.19 3093.65 396.15 3785.89 197.19 8491.02 3597.75 196.43 30
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
fmvsm_l_conf0.5_n87.49 2788.19 2285.39 10586.95 22564.37 18094.30 5588.45 28680.51 5192.70 496.86 1569.98 4197.15 8895.83 388.08 10994.65 99
iter_conf05_1186.99 3586.27 4389.15 1393.74 5272.45 1397.56 187.04 30988.32 492.60 596.57 2332.61 34897.45 6692.21 2495.80 1097.53 6
fmvsm_l_conf0.5_n_a87.44 2988.15 2385.30 10987.10 22264.19 18794.41 5388.14 29580.24 5992.54 696.97 1069.52 4397.17 8595.89 288.51 10594.56 102
SED-MVS89.94 990.36 1088.70 1896.45 1269.38 5496.89 694.44 4671.65 21492.11 797.21 476.79 999.11 692.34 2195.36 1497.62 2
test_241102_ONE96.45 1269.38 5494.44 4671.65 21492.11 797.05 776.79 999.11 6
DVP-MVS++90.53 491.09 588.87 1697.31 469.91 4393.96 7194.37 5272.48 18492.07 996.85 1683.82 299.15 291.53 3197.42 497.55 4
test_241102_TWO94.41 4871.65 21492.07 997.21 474.58 1799.11 692.34 2195.36 1496.59 20
test072696.40 1569.99 3996.76 894.33 5471.92 20091.89 1197.11 673.77 21
SMA-MVScopyleft88.14 1788.29 2187.67 3393.21 6868.72 7093.85 7894.03 6274.18 14791.74 1296.67 2165.61 7098.42 3389.24 4596.08 795.88 47
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DPM-MVS90.70 390.52 891.24 189.68 15376.68 297.29 295.35 1582.87 2291.58 1397.22 379.93 599.10 983.12 9797.64 297.94 1
MM90.87 291.52 288.92 1592.12 9671.10 2897.02 496.04 688.70 391.57 1496.19 3570.12 4098.91 1796.83 195.06 1796.76 16
patch_mono-289.71 1190.99 685.85 9096.04 2463.70 20095.04 4195.19 1986.74 991.53 1595.15 6573.86 2097.58 5993.38 1492.00 6896.28 36
TSAR-MVS + MP.88.11 1988.64 1786.54 7091.73 11068.04 8890.36 22793.55 7982.89 2191.29 1692.89 12372.27 3196.03 14287.99 5394.77 2695.54 56
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
test_part296.29 1968.16 8690.78 17
DPE-MVScopyleft88.77 1689.21 1687.45 4396.26 2067.56 10094.17 5894.15 5968.77 26490.74 1897.27 276.09 1298.49 2990.58 3994.91 2196.30 33
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_one_060196.32 1869.74 4994.18 5771.42 22590.67 1996.85 1674.45 18
DVP-MVScopyleft89.41 1389.73 1488.45 2596.40 1569.99 3996.64 1094.52 4271.92 20090.55 2096.93 1173.77 2199.08 1191.91 2994.90 2296.29 34
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD72.48 18490.55 2096.93 1176.24 1199.08 1191.53 3194.99 1896.43 30
DeepPCF-MVS81.17 189.72 1091.38 484.72 13293.00 7458.16 30496.72 994.41 4886.50 1090.25 2297.83 175.46 1498.67 2592.78 1895.49 1397.32 8
fmvsm_s_conf0.5_n_a85.75 5886.09 5084.72 13285.73 24963.58 20593.79 8489.32 24881.42 4190.21 2396.91 1462.41 11597.67 5194.48 1080.56 18092.90 162
test_fmvsm_n_192087.69 2588.50 1885.27 11187.05 22463.55 20793.69 8891.08 18584.18 1590.17 2497.04 867.58 5497.99 3995.72 590.03 9394.26 113
fmvsm_s_conf0.5_n86.39 4586.91 3784.82 12587.36 21763.54 20894.74 4890.02 22482.52 2690.14 2596.92 1362.93 11097.84 4695.28 882.26 16193.07 156
fmvsm_s_conf0.1_n85.61 6285.93 5384.68 13582.95 29263.48 21094.03 6989.46 24281.69 3589.86 2696.74 2061.85 12197.75 4994.74 982.01 16792.81 164
fmvsm_s_conf0.1_n_a84.76 7484.84 7284.53 14180.23 31863.50 20992.79 12388.73 27780.46 5289.84 2796.65 2260.96 12997.57 6193.80 1380.14 18292.53 171
CANet89.61 1289.99 1288.46 2494.39 3969.71 5096.53 1393.78 6686.89 889.68 2895.78 4265.94 6699.10 992.99 1693.91 4196.58 22
MVS_030490.01 890.50 988.53 2390.14 14470.94 2996.47 1495.72 1087.33 689.60 2996.26 3268.44 4598.74 2495.82 494.72 3195.90 46
xiu_mvs_v2_base87.92 2287.38 3289.55 1191.41 12176.43 395.74 2293.12 9883.53 1989.55 3095.95 4053.45 21797.68 5091.07 3492.62 5994.54 105
PS-MVSNAJ88.14 1787.61 2889.71 692.06 9776.72 195.75 2193.26 9083.86 1689.55 3096.06 3853.55 21397.89 4391.10 3393.31 5294.54 105
CNVR-MVS90.32 690.89 788.61 2296.76 870.65 3296.47 1494.83 3084.83 1389.07 3296.80 1970.86 3699.06 1592.64 1995.71 1196.12 39
HPM-MVS++copyleft89.37 1489.95 1387.64 3495.10 3068.23 8495.24 3494.49 4482.43 2788.90 3396.35 2971.89 3498.63 2688.76 4996.40 696.06 40
APDe-MVScopyleft87.54 2687.84 2586.65 6496.07 2366.30 13394.84 4693.78 6669.35 25588.39 3496.34 3067.74 5397.66 5490.62 3893.44 5096.01 43
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
EPNet87.84 2388.38 1986.23 8093.30 6566.05 13795.26 3394.84 2987.09 788.06 3594.53 8166.79 5997.34 7583.89 9391.68 7395.29 68
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
SD-MVS87.49 2787.49 3087.50 4293.60 5668.82 6893.90 7592.63 11776.86 11287.90 3695.76 4366.17 6397.63 5689.06 4791.48 7796.05 41
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
test_fmvsmconf_n86.58 4387.17 3384.82 12585.28 25562.55 23194.26 5789.78 23083.81 1887.78 3796.33 3165.33 7296.98 10094.40 1187.55 11494.95 84
sasdasda86.85 3786.25 4688.66 2091.80 10871.92 1693.54 9691.71 15480.26 5687.55 3895.25 6063.59 9896.93 10788.18 5184.34 14297.11 10
canonicalmvs86.85 3786.25 4688.66 2091.80 10871.92 1693.54 9691.71 15480.26 5687.55 3895.25 6063.59 9896.93 10788.18 5184.34 14297.11 10
旧先验292.00 16259.37 33787.54 4093.47 24475.39 153
MVSFormer83.75 9782.88 10286.37 7689.24 16871.18 2589.07 26090.69 19465.80 28687.13 4194.34 9164.99 7592.67 26872.83 17091.80 7195.27 71
lupinMVS87.74 2487.77 2687.63 3889.24 16871.18 2596.57 1292.90 10682.70 2587.13 4195.27 5864.99 7595.80 14789.34 4391.80 7195.93 44
alignmvs87.28 3186.97 3688.24 2791.30 12371.14 2795.61 2693.56 7879.30 7487.07 4395.25 6068.43 4696.93 10787.87 5484.33 14496.65 18
test_fmvsmconf0.1_n85.71 5986.08 5184.62 13980.83 30862.33 23693.84 8188.81 27383.50 2087.00 4496.01 3963.36 10296.93 10794.04 1287.29 11794.61 101
MGCFI-Net85.59 6385.73 5885.17 11591.41 12162.44 23292.87 12191.31 17179.65 6786.99 4595.14 6662.90 11196.12 13487.13 6484.13 14996.96 14
NCCC89.07 1589.46 1587.91 2896.60 1069.05 6296.38 1694.64 3984.42 1486.74 4696.20 3466.56 6298.76 2389.03 4894.56 3395.92 45
FOURS193.95 4561.77 24793.96 7191.92 14162.14 31786.57 47
SF-MVS87.03 3487.09 3486.84 5792.70 8367.45 10593.64 9193.76 6970.78 23886.25 4896.44 2866.98 5797.79 4788.68 5094.56 3395.28 70
9.1487.63 2793.86 4794.41 5394.18 5772.76 17986.21 4996.51 2566.64 6097.88 4490.08 4094.04 38
APD-MVScopyleft85.93 5485.99 5285.76 9495.98 2665.21 15893.59 9492.58 11966.54 28186.17 5095.88 4163.83 9197.00 9686.39 7192.94 5695.06 79
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CANet_DTU84.09 8983.52 8385.81 9190.30 14166.82 11991.87 16789.01 26585.27 1186.09 5193.74 10547.71 26896.98 10077.90 13989.78 9693.65 139
VNet86.20 4885.65 5987.84 3093.92 4669.99 3995.73 2495.94 778.43 9086.00 5293.07 11858.22 15797.00 9685.22 7884.33 14496.52 24
TSAR-MVS + GP.87.96 2088.37 2086.70 6393.51 6165.32 15595.15 3793.84 6578.17 9385.93 5394.80 7575.80 1398.21 3489.38 4288.78 10296.59 20
MCST-MVS91.08 191.46 389.94 497.66 273.37 897.13 395.58 1189.33 285.77 5496.26 3272.84 2699.38 192.64 1995.93 997.08 12
DELS-MVS90.05 790.09 1189.94 493.14 7173.88 797.01 594.40 5088.32 485.71 5594.91 7274.11 1998.91 1787.26 6295.94 897.03 13
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PHI-MVS86.83 3986.85 4086.78 6193.47 6265.55 15195.39 3195.10 2271.77 21085.69 5696.52 2462.07 11898.77 2286.06 7495.60 1296.03 42
TEST994.18 4167.28 10794.16 5993.51 8071.75 21185.52 5795.33 5368.01 5097.27 82
train_agg87.21 3287.42 3186.60 6694.18 4167.28 10794.16 5993.51 8071.87 20585.52 5795.33 5368.19 4897.27 8289.09 4694.90 2295.25 74
CS-MVS-test86.14 5087.01 3583.52 16992.63 8559.36 29295.49 2891.92 14180.09 6085.46 5995.53 4961.82 12295.77 15086.77 6993.37 5195.41 58
test_894.19 4067.19 10994.15 6293.42 8671.87 20585.38 6095.35 5268.19 4896.95 104
testdata81.34 22489.02 17257.72 30889.84 22958.65 34085.32 6194.09 9857.03 16893.28 24669.34 20590.56 9093.03 157
ZD-MVS96.63 965.50 15393.50 8270.74 23985.26 6295.19 6464.92 7897.29 7887.51 5893.01 55
test_prior295.10 3975.40 13285.25 6395.61 4767.94 5187.47 5994.77 26
test_fmvsmconf0.01_n83.70 9983.52 8384.25 15375.26 35961.72 25092.17 14987.24 30882.36 2884.91 6495.41 5055.60 18996.83 11292.85 1785.87 13294.21 115
CS-MVS85.80 5786.65 4183.27 17792.00 10158.92 29795.31 3291.86 14679.97 6184.82 6595.40 5162.26 11695.51 16886.11 7392.08 6795.37 61
ACMMP_NAP86.05 5185.80 5686.80 6091.58 11467.53 10291.79 17193.49 8374.93 13884.61 6695.30 5559.42 14697.92 4186.13 7294.92 2094.94 85
jason86.40 4486.17 4887.11 5086.16 24070.54 3495.71 2592.19 13282.00 3284.58 6794.34 9161.86 12095.53 16787.76 5590.89 8595.27 71
jason: jason.
agg_prior94.16 4366.97 11793.31 8984.49 6896.75 114
test_vis1_n_192081.66 13182.01 11680.64 24182.24 29755.09 33294.76 4786.87 31181.67 3684.40 6994.63 7938.17 31794.67 19591.98 2883.34 15292.16 185
xiu_mvs_v1_base_debu82.16 12381.12 12585.26 11286.42 23368.72 7092.59 13790.44 20473.12 17084.20 7094.36 8638.04 32095.73 15284.12 9086.81 12191.33 196
xiu_mvs_v1_base82.16 12381.12 12585.26 11286.42 23368.72 7092.59 13790.44 20473.12 17084.20 7094.36 8638.04 32095.73 15284.12 9086.81 12191.33 196
xiu_mvs_v1_base_debi82.16 12381.12 12585.26 11286.42 23368.72 7092.59 13790.44 20473.12 17084.20 7094.36 8638.04 32095.73 15284.12 9086.81 12191.33 196
ETV-MVS86.01 5286.11 4985.70 9790.21 14367.02 11693.43 10491.92 14181.21 4584.13 7394.07 10060.93 13095.63 15889.28 4489.81 9494.46 111
SteuartSystems-ACMMP86.82 4086.90 3886.58 6890.42 13866.38 13096.09 1893.87 6477.73 10084.01 7495.66 4563.39 10197.94 4087.40 6093.55 4995.42 57
Skip Steuart: Steuart Systems R&D Blog.
MG-MVS87.11 3386.27 4389.62 797.79 176.27 494.96 4494.49 4478.74 8883.87 7592.94 12164.34 8596.94 10575.19 15494.09 3795.66 51
DeepC-MVS_fast79.48 287.95 2188.00 2487.79 3195.86 2768.32 7895.74 2294.11 6083.82 1783.49 7696.19 3564.53 8498.44 3183.42 9694.88 2596.61 19
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
EC-MVSNet84.53 7885.04 6883.01 18189.34 16061.37 25694.42 5291.09 18377.91 9783.24 7794.20 9658.37 15595.40 16985.35 7791.41 7892.27 181
Effi-MVS+83.82 9482.76 10486.99 5589.56 15669.40 5391.35 19386.12 32072.59 18183.22 7892.81 12759.60 14496.01 14481.76 10687.80 11195.56 55
CDPH-MVS85.71 5985.46 6186.46 7294.75 3467.19 10993.89 7692.83 10870.90 23483.09 7995.28 5663.62 9697.36 7380.63 11694.18 3694.84 89
MVS_Test84.16 8883.20 9587.05 5391.56 11569.82 4689.99 24192.05 13577.77 9982.84 8086.57 23163.93 9096.09 13674.91 15989.18 10095.25 74
test_cas_vis1_n_192080.45 15280.61 13779.97 26078.25 34457.01 32094.04 6888.33 28979.06 8282.81 8193.70 10638.65 31291.63 29790.82 3779.81 18491.27 202
h-mvs3383.01 10982.56 10984.35 14989.34 16062.02 24292.72 12693.76 6981.45 3882.73 8292.25 14060.11 13797.13 8987.69 5662.96 31393.91 131
hse-mvs281.12 14081.11 12881.16 22886.52 23257.48 31389.40 25391.16 17881.45 3882.73 8290.49 17160.11 13794.58 19787.69 5660.41 34091.41 195
test1287.09 5194.60 3668.86 6692.91 10582.67 8465.44 7197.55 6393.69 4794.84 89
HY-MVS76.49 584.28 8283.36 9487.02 5492.22 9367.74 9584.65 30394.50 4379.15 7882.23 8587.93 21266.88 5896.94 10580.53 11782.20 16496.39 32
LFMVS84.34 8182.73 10589.18 1294.76 3373.25 994.99 4391.89 14471.90 20282.16 8693.49 11247.98 26497.05 9182.55 10184.82 13897.25 9
WTY-MVS86.32 4685.81 5587.85 2992.82 7969.37 5695.20 3595.25 1782.71 2481.91 8794.73 7667.93 5297.63 5679.55 12482.25 16296.54 23
VDD-MVS83.06 10881.81 11986.81 5990.86 13267.70 9695.40 3091.50 16575.46 13081.78 8892.34 13740.09 30697.13 8986.85 6882.04 16695.60 53
diffmvspermissive84.28 8283.83 8085.61 9987.40 21568.02 8990.88 21189.24 25180.54 5081.64 8992.52 12959.83 14194.52 20487.32 6185.11 13694.29 112
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MSLP-MVS++86.27 4785.91 5487.35 4592.01 10068.97 6595.04 4192.70 11179.04 8381.50 9096.50 2658.98 15296.78 11383.49 9593.93 4096.29 34
SR-MVS82.81 11382.58 10883.50 17293.35 6361.16 25992.23 14891.28 17564.48 29581.27 9195.28 5653.71 21295.86 14682.87 9888.77 10393.49 143
dcpmvs_287.37 3087.55 2986.85 5695.04 3268.20 8590.36 22790.66 19779.37 7381.20 9293.67 10774.73 1596.55 12190.88 3692.00 6895.82 48
baseline85.01 7184.44 7586.71 6288.33 19068.73 6990.24 23291.82 15081.05 4781.18 9392.50 13063.69 9496.08 13984.45 8886.71 12695.32 66
test_yl84.28 8283.16 9687.64 3494.52 3769.24 5895.78 1995.09 2369.19 25881.09 9492.88 12457.00 17097.44 6881.11 11481.76 16996.23 37
DCV-MVSNet84.28 8283.16 9687.64 3494.52 3769.24 5895.78 1995.09 2369.19 25881.09 9492.88 12457.00 17097.44 6881.11 11481.76 16996.23 37
UA-Net80.02 16179.65 15181.11 23089.33 16257.72 30886.33 29689.00 26877.44 10781.01 9689.15 19259.33 14895.90 14561.01 27884.28 14689.73 222
PVSNet_BlendedMVS83.38 10283.43 8983.22 17893.76 4967.53 10294.06 6493.61 7679.13 7981.00 9785.14 24663.19 10597.29 7887.08 6573.91 23584.83 304
PVSNet_Blended86.73 4186.86 3986.31 7993.76 4967.53 10296.33 1793.61 7682.34 2981.00 9793.08 11763.19 10597.29 7887.08 6591.38 7994.13 120
casdiffmvspermissive85.37 6584.87 7186.84 5788.25 19369.07 6193.04 11591.76 15181.27 4480.84 9992.07 14364.23 8696.06 14084.98 8387.43 11695.39 59
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
testing1186.71 4286.44 4287.55 4093.54 5971.35 2293.65 9095.58 1181.36 4380.69 10092.21 14172.30 3096.46 12685.18 8083.43 15194.82 92
MP-MVS-pluss85.24 6785.13 6685.56 10091.42 11965.59 14991.54 18192.51 12174.56 14180.62 10195.64 4659.15 15097.00 9686.94 6793.80 4294.07 124
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
testing9986.01 5285.47 6087.63 3893.62 5571.25 2493.47 10295.23 1880.42 5480.60 10291.95 14571.73 3596.50 12480.02 12182.22 16395.13 77
testing9185.93 5485.31 6387.78 3293.59 5771.47 2093.50 9995.08 2580.26 5680.53 10391.93 14670.43 3896.51 12380.32 11982.13 16595.37 61
MTAPA83.91 9283.38 9385.50 10191.89 10665.16 16081.75 32692.23 12775.32 13380.53 10395.21 6356.06 18597.16 8784.86 8592.55 6194.18 116
testing22285.18 6884.69 7386.63 6592.91 7669.91 4392.61 13495.80 980.31 5580.38 10592.27 13868.73 4495.19 17775.94 14983.27 15394.81 93
PAPM85.89 5685.46 6187.18 4888.20 19672.42 1492.41 14392.77 10982.11 3180.34 10693.07 11868.27 4795.02 18078.39 13693.59 4894.09 122
CostFormer82.33 12081.15 12485.86 8989.01 17368.46 7582.39 32393.01 10175.59 12880.25 10781.57 28872.03 3394.96 18379.06 12977.48 20894.16 118
casdiffmvs_mvgpermissive85.66 6185.18 6587.09 5188.22 19569.35 5793.74 8791.89 14481.47 3780.10 10891.45 15564.80 8096.35 12787.23 6387.69 11295.58 54
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PMMVS81.98 12882.04 11581.78 21489.76 15256.17 32491.13 20490.69 19477.96 9580.09 10993.57 11046.33 27894.99 18281.41 11087.46 11594.17 117
ZNCC-MVS85.33 6685.08 6786.06 8293.09 7365.65 14793.89 7693.41 8773.75 15879.94 11094.68 7860.61 13398.03 3882.63 10093.72 4594.52 107
sss82.71 11682.38 11283.73 16489.25 16559.58 28792.24 14794.89 2877.96 9579.86 11192.38 13556.70 17697.05 9177.26 14280.86 17794.55 103
新几何184.73 13192.32 9064.28 18491.46 16759.56 33679.77 11292.90 12256.95 17396.57 11963.40 26192.91 5793.34 146
APD-MVS_3200maxsize81.64 13281.32 12382.59 19192.36 8958.74 29991.39 18891.01 19063.35 30479.72 11394.62 8051.82 22796.14 13379.71 12287.93 11092.89 163
MP-MVScopyleft85.02 7084.97 6985.17 11592.60 8664.27 18593.24 10792.27 12673.13 16979.63 11494.43 8461.90 11997.17 8585.00 8292.56 6094.06 125
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
原ACMM184.42 14593.21 6864.27 18593.40 8865.39 28979.51 11592.50 13058.11 15996.69 11565.27 25193.96 3992.32 176
ETVMVS84.22 8683.71 8185.76 9492.58 8768.25 8392.45 14295.53 1479.54 6979.46 11691.64 15370.29 3994.18 21769.16 20882.76 15994.84 89
test_fmvs174.07 25473.69 24175.22 31478.91 33647.34 36889.06 26274.69 37063.68 30179.41 11791.59 15424.36 37187.77 33885.22 7876.26 21990.55 211
VDDNet80.50 15078.26 17287.21 4786.19 23869.79 4794.48 5191.31 17160.42 32979.34 11890.91 16438.48 31596.56 12082.16 10281.05 17595.27 71
EIA-MVS84.84 7384.88 7084.69 13491.30 12362.36 23593.85 7892.04 13679.45 7079.33 11994.28 9462.42 11496.35 12780.05 12091.25 8295.38 60
HFP-MVS84.73 7584.40 7685.72 9693.75 5165.01 16493.50 9993.19 9472.19 19479.22 12094.93 7059.04 15197.67 5181.55 10792.21 6394.49 110
MAR-MVS84.18 8783.43 8986.44 7396.25 2165.93 14294.28 5694.27 5674.41 14279.16 12195.61 4753.99 20898.88 2169.62 20293.26 5394.50 109
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PAPR85.15 6984.47 7487.18 4896.02 2568.29 7991.85 16993.00 10376.59 11979.03 12295.00 6761.59 12397.61 5878.16 13789.00 10195.63 52
SR-MVS-dyc-post81.06 14180.70 13482.15 20592.02 9858.56 30190.90 20990.45 20162.76 31178.89 12394.46 8251.26 23595.61 16078.77 13386.77 12492.28 178
RE-MVS-def80.48 14092.02 9858.56 30190.90 20990.45 20162.76 31178.89 12394.46 8249.30 25178.77 13386.77 12492.28 178
GST-MVS84.63 7784.29 7785.66 9892.82 7965.27 15693.04 11593.13 9773.20 16778.89 12394.18 9759.41 14797.85 4581.45 10992.48 6293.86 134
MVS_111021_HR86.19 4985.80 5687.37 4493.17 7069.79 4793.99 7093.76 6979.08 8178.88 12693.99 10162.25 11798.15 3685.93 7591.15 8394.15 119
region2R84.36 8084.03 7985.36 10793.54 5964.31 18393.43 10492.95 10472.16 19778.86 12794.84 7456.97 17297.53 6481.38 11192.11 6694.24 114
ACMMPR84.37 7984.06 7885.28 11093.56 5864.37 18093.50 9993.15 9672.19 19478.85 12894.86 7356.69 17797.45 6681.55 10792.20 6494.02 127
UGNet79.87 16478.68 16683.45 17489.96 14761.51 25392.13 15190.79 19276.83 11478.85 12886.33 23538.16 31896.17 13267.93 22087.17 11892.67 166
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
GG-mvs-BLEND86.53 7191.91 10569.67 5275.02 36594.75 3378.67 13090.85 16577.91 794.56 20172.25 17893.74 4495.36 63
test250683.29 10382.92 10184.37 14888.39 18863.18 21792.01 15991.35 17077.66 10278.49 13191.42 15664.58 8395.09 17973.19 16689.23 9894.85 86
XVS83.87 9383.47 8785.05 11793.22 6663.78 19492.92 11992.66 11473.99 15078.18 13294.31 9355.25 19197.41 7079.16 12791.58 7593.95 129
X-MVStestdata76.86 21574.13 23585.05 11793.22 6663.78 19492.92 11992.66 11473.99 15078.18 13210.19 40755.25 19197.41 7079.16 12791.58 7593.95 129
test_fmvs1_n72.69 27371.92 26474.99 31771.15 37247.08 37087.34 28775.67 36563.48 30378.08 13491.17 16120.16 38287.87 33584.65 8675.57 22390.01 217
EI-MVSNet-Vis-set83.77 9683.67 8284.06 15692.79 8263.56 20691.76 17494.81 3179.65 6777.87 13594.09 9863.35 10397.90 4279.35 12579.36 18990.74 207
Vis-MVSNetpermissive80.92 14479.98 14783.74 16288.48 18361.80 24693.44 10388.26 29473.96 15377.73 13691.76 14949.94 24594.76 18865.84 24390.37 9194.65 99
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test_fmvsmvis_n_192083.80 9583.48 8684.77 12982.51 29463.72 19891.37 19183.99 34081.42 4177.68 13795.74 4458.37 15597.58 5993.38 1486.87 12093.00 159
CSCG86.87 3686.26 4588.72 1795.05 3170.79 3193.83 8395.33 1668.48 26877.63 13894.35 9073.04 2498.45 3084.92 8493.71 4696.92 15
TESTMET0.1,182.41 11981.98 11783.72 16588.08 19763.74 19692.70 12893.77 6879.30 7477.61 13987.57 21858.19 15894.08 22173.91 16586.68 12793.33 148
tpm279.80 16577.95 17885.34 10888.28 19168.26 8181.56 32991.42 16870.11 24677.59 14080.50 30667.40 5594.26 21467.34 22577.35 20993.51 142
CP-MVS83.71 9883.40 9284.65 13693.14 7163.84 19294.59 5092.28 12571.03 23277.41 14194.92 7155.21 19496.19 13181.32 11290.70 8793.91 131
ab-mvs80.18 15778.31 17185.80 9288.44 18565.49 15483.00 32092.67 11371.82 20877.36 14285.01 24754.50 20096.59 11776.35 14775.63 22295.32 66
test22289.77 15161.60 25289.55 24889.42 24556.83 34977.28 14392.43 13452.76 22191.14 8493.09 154
PGM-MVS83.25 10582.70 10684.92 12192.81 8164.07 18990.44 22392.20 13171.28 22677.23 14494.43 8455.17 19597.31 7779.33 12691.38 7993.37 145
gg-mvs-nofinetune77.18 21074.31 23185.80 9291.42 11968.36 7771.78 36894.72 3449.61 36977.12 14545.92 39277.41 893.98 23067.62 22393.16 5495.05 80
HPM-MVScopyleft83.25 10582.95 10084.17 15492.25 9262.88 22690.91 20891.86 14670.30 24477.12 14593.96 10256.75 17596.28 12982.04 10491.34 8193.34 146
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
PVSNet_Blended_VisFu83.97 9183.50 8585.39 10590.02 14666.59 12793.77 8591.73 15277.43 10877.08 14789.81 18563.77 9396.97 10279.67 12388.21 10792.60 168
DeepC-MVS77.85 385.52 6485.24 6486.37 7688.80 17866.64 12492.15 15093.68 7481.07 4676.91 14893.64 10862.59 11398.44 3185.50 7692.84 5894.03 126
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ECVR-MVScopyleft81.29 13680.38 14284.01 15888.39 18861.96 24492.56 14086.79 31377.66 10276.63 14991.42 15646.34 27795.24 17674.36 16389.23 9894.85 86
EI-MVSNet-UG-set83.14 10782.96 9983.67 16792.28 9163.19 21691.38 19094.68 3779.22 7676.60 15093.75 10462.64 11297.76 4878.07 13878.01 20090.05 216
EPNet_dtu78.80 18379.26 16177.43 29688.06 19849.71 35691.96 16491.95 14077.67 10176.56 15191.28 16058.51 15490.20 31856.37 29880.95 17692.39 173
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DP-MVS Recon82.73 11481.65 12085.98 8497.31 467.06 11395.15 3791.99 13869.08 26176.50 15293.89 10354.48 20398.20 3570.76 19285.66 13492.69 165
Anonymous20240521177.96 19975.33 21885.87 8893.73 5464.52 17094.85 4585.36 32662.52 31476.11 15390.18 17829.43 36297.29 7868.51 21577.24 21295.81 49
tpmrst80.57 14879.14 16384.84 12490.10 14568.28 8081.70 32789.72 23777.63 10475.96 15479.54 32064.94 7792.71 26575.43 15277.28 21193.55 141
thisisatest051583.41 10182.49 11086.16 8189.46 15968.26 8193.54 9694.70 3674.31 14575.75 15590.92 16372.62 2896.52 12269.64 20081.50 17293.71 137
test111180.84 14580.02 14483.33 17587.87 20460.76 26792.62 13386.86 31277.86 9875.73 15691.39 15846.35 27694.70 19472.79 17288.68 10494.52 107
CHOSEN 1792x268884.98 7283.45 8889.57 1089.94 14875.14 592.07 15692.32 12481.87 3375.68 15788.27 20360.18 13698.60 2780.46 11890.27 9294.96 83
test-LLR80.10 15979.56 15381.72 21686.93 22861.17 25792.70 12891.54 16271.51 22375.62 15886.94 22753.83 20992.38 27972.21 17984.76 14091.60 190
test-mter79.96 16279.38 15981.72 21686.93 22861.17 25792.70 12891.54 16273.85 15575.62 15886.94 22749.84 24792.38 27972.21 17984.76 14091.60 190
mPP-MVS82.96 11182.44 11184.52 14292.83 7762.92 22492.76 12491.85 14871.52 22275.61 16094.24 9553.48 21696.99 9978.97 13090.73 8693.64 140
MVS_111021_LR82.02 12781.52 12183.51 17188.42 18662.88 22689.77 24588.93 26976.78 11575.55 16193.10 11550.31 24195.38 17183.82 9487.02 11992.26 182
API-MVS82.28 12180.53 13987.54 4196.13 2270.59 3393.63 9291.04 18965.72 28875.45 16292.83 12656.11 18498.89 2064.10 25789.75 9793.15 152
Fast-Effi-MVS+81.14 13880.01 14584.51 14390.24 14265.86 14394.12 6389.15 25773.81 15775.37 16388.26 20457.26 16594.53 20366.97 23184.92 13793.15 152
test_vis1_n71.63 27970.73 27574.31 32469.63 37847.29 36986.91 29172.11 37563.21 30775.18 16490.17 17920.40 38085.76 35084.59 8774.42 23089.87 218
nrg03080.93 14379.86 14884.13 15583.69 28168.83 6793.23 10891.20 17675.55 12975.06 16588.22 20763.04 10994.74 19081.88 10566.88 28388.82 232
UWE-MVS80.81 14681.01 13080.20 25189.33 16257.05 31891.91 16594.71 3575.67 12775.01 16689.37 18963.13 10791.44 30567.19 22882.80 15892.12 186
baseline181.84 12981.03 12984.28 15291.60 11366.62 12591.08 20591.66 15981.87 3374.86 16791.67 15269.98 4194.92 18671.76 18464.75 30191.29 201
FA-MVS(test-final)79.12 17577.23 19184.81 12890.54 13663.98 19181.35 33291.71 15471.09 23174.85 16882.94 26952.85 22097.05 9167.97 21881.73 17193.41 144
HPM-MVS_fast80.25 15679.55 15582.33 19791.55 11659.95 28291.32 19589.16 25665.23 29274.71 16993.07 11847.81 26795.74 15174.87 16188.23 10691.31 200
bld_raw_dy_0_6482.84 11280.75 13289.09 1493.74 5272.16 1593.16 11077.36 36089.69 174.55 17096.48 2732.35 35097.56 6292.21 2477.24 21297.53 6
TR-MVS78.77 18577.37 19082.95 18290.49 13760.88 26393.67 8990.07 22070.08 24774.51 17191.37 15945.69 28395.70 15760.12 28480.32 18192.29 177
AUN-MVS78.37 19277.43 18581.17 22786.60 23157.45 31489.46 25291.16 17874.11 14874.40 17290.49 17155.52 19094.57 19974.73 16260.43 33991.48 193
HQP-NCC87.54 21194.06 6479.80 6374.18 173
ACMP_Plane87.54 21194.06 6479.80 6374.18 173
HQP4-MVS74.18 17395.61 16088.63 234
HQP-MVS81.14 13880.64 13682.64 18987.54 21163.66 20394.06 6491.70 15779.80 6374.18 17390.30 17551.63 23195.61 16077.63 14078.90 19388.63 234
PAPM_NR82.97 11081.84 11886.37 7694.10 4466.76 12287.66 28292.84 10769.96 24874.07 17793.57 11063.10 10897.50 6570.66 19490.58 8994.85 86
VPA-MVSNet79.03 17678.00 17682.11 21085.95 24364.48 17393.22 10994.66 3875.05 13774.04 17884.95 24852.17 22693.52 24274.90 16067.04 28288.32 243
CDS-MVSNet81.43 13480.74 13383.52 16986.26 23764.45 17492.09 15490.65 19875.83 12673.95 17989.81 18563.97 8992.91 25871.27 18782.82 15693.20 151
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
iter_conf0583.27 10482.70 10684.98 12093.32 6471.84 1894.16 5981.76 35082.74 2373.83 18088.40 20072.77 2794.61 19682.10 10375.21 22488.48 238
tpm78.58 18977.03 19383.22 17885.94 24564.56 16983.21 31791.14 18178.31 9173.67 18179.68 31864.01 8892.09 28866.07 24171.26 25693.03 157
WB-MVSnew77.14 21176.18 20680.01 25786.18 23963.24 21491.26 19794.11 6071.72 21273.52 18287.29 22345.14 28893.00 25156.98 29679.42 18783.80 312
BH-RMVSNet79.46 17177.65 18184.89 12291.68 11265.66 14693.55 9588.09 29772.93 17473.37 18391.12 16246.20 28096.12 13456.28 29985.61 13592.91 161
thres20079.66 16678.33 17083.66 16892.54 8865.82 14593.06 11396.31 374.90 13973.30 18488.66 19559.67 14395.61 16047.84 33278.67 19689.56 225
Anonymous2024052976.84 21874.15 23484.88 12391.02 12764.95 16693.84 8191.09 18353.57 35873.00 18587.42 22035.91 33697.32 7669.14 20972.41 24892.36 174
CPTT-MVS79.59 16779.16 16280.89 23991.54 11759.80 28492.10 15388.54 28560.42 32972.96 18693.28 11448.27 26092.80 26278.89 13286.50 12990.06 215
HyFIR lowres test81.03 14279.56 15385.43 10387.81 20768.11 8790.18 23390.01 22570.65 24072.95 18786.06 23963.61 9794.50 20575.01 15779.75 18693.67 138
EPP-MVSNet81.79 13081.52 12182.61 19088.77 17960.21 27993.02 11793.66 7568.52 26772.90 18890.39 17372.19 3294.96 18374.93 15879.29 19192.67 166
MDTV_nov1_ep13_2view59.90 28380.13 34367.65 27372.79 18954.33 20659.83 28592.58 169
FE-MVS75.97 23273.02 24884.82 12589.78 15065.56 15077.44 35791.07 18664.55 29472.66 19079.85 31646.05 28296.69 11554.97 30380.82 17892.21 183
TAMVS80.37 15379.45 15683.13 18085.14 25863.37 21191.23 19990.76 19374.81 14072.65 19188.49 19760.63 13292.95 25369.41 20481.95 16893.08 155
VPNet78.82 18277.53 18482.70 18784.52 26866.44 12993.93 7392.23 12780.46 5272.60 19288.38 20149.18 25393.13 24872.47 17763.97 31088.55 237
CLD-MVS82.73 11482.35 11383.86 16087.90 20367.65 9895.45 2992.18 13385.06 1272.58 19392.27 13852.46 22495.78 14884.18 8979.06 19288.16 244
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
HQP_MVS80.34 15479.75 15082.12 20786.94 22662.42 23393.13 11191.31 17178.81 8672.53 19489.14 19350.66 23895.55 16576.74 14378.53 19888.39 241
plane_prior361.95 24579.09 8072.53 194
EPMVS78.49 19175.98 20886.02 8391.21 12569.68 5180.23 34191.20 17675.25 13472.48 19678.11 32854.65 19993.69 23957.66 29583.04 15494.69 95
1112_ss80.56 14979.83 14982.77 18588.65 18060.78 26592.29 14588.36 28872.58 18272.46 19794.95 6865.09 7493.42 24566.38 23777.71 20294.10 121
PVSNet73.49 880.05 16078.63 16784.31 15090.92 13064.97 16592.47 14191.05 18879.18 7772.43 19890.51 17037.05 33294.06 22368.06 21786.00 13193.90 133
OMC-MVS78.67 18877.91 17980.95 23785.76 24857.40 31588.49 26988.67 28073.85 15572.43 19892.10 14249.29 25294.55 20272.73 17377.89 20190.91 206
MVS84.66 7682.86 10390.06 290.93 12974.56 687.91 27895.54 1368.55 26672.35 20094.71 7759.78 14298.90 1981.29 11394.69 3296.74 17
EI-MVSNet78.97 17878.22 17381.25 22585.33 25362.73 22989.53 25093.21 9172.39 18972.14 20190.13 18160.99 12794.72 19167.73 22272.49 24686.29 273
MVSTER82.47 11882.05 11483.74 16292.68 8469.01 6391.90 16693.21 9179.83 6272.14 20185.71 24374.72 1694.72 19175.72 15072.49 24687.50 249
OPM-MVS79.00 17778.09 17481.73 21583.52 28463.83 19391.64 18090.30 21176.36 12271.97 20389.93 18446.30 27995.17 17875.10 15577.70 20386.19 277
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
Test_1112_low_res79.56 16878.60 16882.43 19388.24 19460.39 27692.09 15487.99 29972.10 19871.84 20487.42 22064.62 8293.04 24965.80 24477.30 21093.85 135
MDTV_nov1_ep1372.61 25689.06 17168.48 7480.33 33990.11 21971.84 20771.81 20575.92 34753.01 21993.92 23348.04 32973.38 237
tfpn200view978.79 18477.43 18582.88 18392.21 9464.49 17192.05 15796.28 473.48 16471.75 20688.26 20460.07 13995.32 17245.16 34377.58 20588.83 230
thres40078.68 18677.43 18582.43 19392.21 9464.49 17192.05 15796.28 473.48 16471.75 20688.26 20460.07 13995.32 17245.16 34377.58 20587.48 250
ACMMPcopyleft81.49 13380.67 13583.93 15991.71 11162.90 22592.13 15192.22 13071.79 20971.68 20893.49 11250.32 24096.96 10378.47 13584.22 14891.93 188
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
mvsany_test168.77 30068.56 28969.39 35073.57 36545.88 37580.93 33560.88 39359.65 33571.56 20990.26 17743.22 29675.05 38374.26 16462.70 31687.25 259
CHOSEN 280x42077.35 20876.95 19678.55 28387.07 22362.68 23069.71 37482.95 34768.80 26371.48 21087.27 22466.03 6584.00 36176.47 14682.81 15788.95 229
IS-MVSNet80.14 15879.41 15782.33 19787.91 20260.08 28191.97 16388.27 29272.90 17771.44 21191.73 15161.44 12493.66 24062.47 27186.53 12893.24 149
GeoE78.90 18077.43 18583.29 17688.95 17462.02 24292.31 14486.23 31870.24 24571.34 21289.27 19054.43 20494.04 22663.31 26380.81 17993.81 136
PatchmatchNetpermissive77.46 20674.63 22485.96 8589.55 15770.35 3679.97 34689.55 24072.23 19370.94 21376.91 33957.03 16892.79 26354.27 30681.17 17494.74 94
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
thisisatest053081.15 13780.07 14384.39 14788.26 19265.63 14891.40 18694.62 4071.27 22770.93 21489.18 19172.47 2996.04 14165.62 24676.89 21591.49 192
SDMVSNet80.26 15578.88 16584.40 14689.25 16567.63 9985.35 29993.02 10076.77 11670.84 21587.12 22547.95 26596.09 13685.04 8174.55 22689.48 226
sd_testset77.08 21375.37 21682.20 20389.25 16562.11 24182.06 32489.09 26176.77 11670.84 21587.12 22541.43 30295.01 18167.23 22774.55 22689.48 226
AdaColmapbinary78.94 17977.00 19584.76 13096.34 1765.86 14392.66 13287.97 30162.18 31670.56 21792.37 13643.53 29497.35 7464.50 25582.86 15591.05 205
cascas78.18 19575.77 21185.41 10487.14 22169.11 6092.96 11891.15 18066.71 28070.47 21886.07 23837.49 32696.48 12570.15 19779.80 18590.65 208
thres600view778.00 19776.66 19982.03 21291.93 10363.69 20191.30 19696.33 172.43 18770.46 21987.89 21360.31 13494.92 18642.64 35576.64 21687.48 250
thres100view90078.37 19277.01 19482.46 19291.89 10663.21 21591.19 20396.33 172.28 19270.45 22087.89 21360.31 13495.32 17245.16 34377.58 20588.83 230
CVMVSNet74.04 25574.27 23273.33 32985.33 25343.94 37989.53 25088.39 28754.33 35770.37 22190.13 18149.17 25484.05 35961.83 27579.36 18991.99 187
GA-MVS78.33 19476.23 20484.65 13683.65 28266.30 13391.44 18290.14 21876.01 12470.32 22284.02 25942.50 29894.72 19170.98 18977.00 21492.94 160
mvs_anonymous81.36 13579.99 14685.46 10290.39 14068.40 7686.88 29390.61 19974.41 14270.31 22384.67 25263.79 9292.32 28373.13 16785.70 13395.67 50
IB-MVS77.80 482.18 12280.46 14187.35 4589.14 17070.28 3795.59 2795.17 2178.85 8470.19 22485.82 24170.66 3797.67 5172.19 18166.52 28694.09 122
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
TAPA-MVS70.22 1274.94 24773.53 24379.17 27690.40 13952.07 34489.19 25889.61 23962.69 31370.07 22592.67 12848.89 25894.32 20838.26 36979.97 18391.12 204
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
SCA75.82 23572.76 25285.01 11986.63 23070.08 3881.06 33489.19 25471.60 21970.01 22677.09 33745.53 28490.25 31360.43 28173.27 23894.68 96
XXY-MVS77.94 20076.44 20182.43 19382.60 29364.44 17592.01 15991.83 14973.59 16370.00 22785.82 24154.43 20494.76 18869.63 20168.02 27688.10 245
CR-MVSNet73.79 25970.82 27482.70 18783.15 28767.96 9070.25 37184.00 33873.67 16269.97 22872.41 35757.82 16189.48 32452.99 31273.13 23990.64 209
RPMNet70.42 28665.68 30584.63 13883.15 28767.96 9070.25 37190.45 20146.83 37769.97 22865.10 37656.48 18195.30 17535.79 37473.13 23990.64 209
UniMVSNet (Re)77.58 20576.78 19779.98 25884.11 27660.80 26491.76 17493.17 9576.56 12069.93 23084.78 25163.32 10492.36 28164.89 25362.51 31986.78 265
PCF-MVS73.15 979.29 17277.63 18284.29 15186.06 24165.96 14187.03 28991.10 18269.86 25069.79 23190.64 16657.54 16496.59 11764.37 25682.29 16090.32 212
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
v2v48277.42 20775.65 21482.73 18680.38 31467.13 11291.85 16990.23 21575.09 13669.37 23283.39 26653.79 21194.44 20671.77 18365.00 29886.63 269
PatchT69.11 29765.37 30980.32 24582.07 30063.68 20267.96 38087.62 30350.86 36669.37 23265.18 37557.09 16788.53 33041.59 35866.60 28588.74 233
Vis-MVSNet (Re-imp)79.24 17379.57 15278.24 28888.46 18452.29 34390.41 22589.12 25974.24 14669.13 23491.91 14765.77 6890.09 32059.00 29088.09 10892.33 175
BH-w/o80.49 15179.30 16084.05 15790.83 13364.36 18293.60 9389.42 24574.35 14469.09 23590.15 18055.23 19395.61 16064.61 25486.43 13092.17 184
baseline283.68 10083.42 9184.48 14487.37 21666.00 13990.06 23695.93 879.71 6669.08 23690.39 17377.92 696.28 12978.91 13181.38 17391.16 203
v114476.73 22174.88 22182.27 19980.23 31866.60 12691.68 17890.21 21773.69 16069.06 23781.89 28152.73 22294.40 20769.21 20765.23 29585.80 288
dmvs_re76.93 21475.36 21781.61 21887.78 20860.71 27080.00 34587.99 29979.42 7169.02 23889.47 18846.77 27194.32 20863.38 26274.45 22989.81 219
Baseline_NR-MVSNet73.99 25672.83 25177.48 29580.78 30959.29 29391.79 17184.55 33368.85 26268.99 23980.70 30256.16 18292.04 28962.67 26960.98 33481.11 345
FIs79.47 17079.41 15779.67 26785.95 24359.40 28991.68 17893.94 6378.06 9468.96 24088.28 20266.61 6191.77 29466.20 24074.99 22587.82 246
UniMVSNet_NR-MVSNet78.15 19677.55 18379.98 25884.46 27060.26 27792.25 14693.20 9377.50 10668.88 24186.61 23066.10 6492.13 28666.38 23762.55 31787.54 248
DU-MVS76.86 21575.84 21079.91 26182.96 29060.26 27791.26 19791.54 16276.46 12168.88 24186.35 23356.16 18292.13 28666.38 23762.55 31787.35 255
miper_enhance_ethall78.86 18177.97 17781.54 22088.00 20165.17 15991.41 18489.15 25775.19 13568.79 24383.98 26067.17 5692.82 26072.73 17365.30 29286.62 270
XVG-OURS-SEG-HR74.70 24973.08 24779.57 27078.25 34457.33 31680.49 33787.32 30563.22 30668.76 24490.12 18344.89 29091.59 29870.55 19574.09 23389.79 220
XVG-OURS74.25 25372.46 25979.63 26878.45 34257.59 31280.33 33987.39 30463.86 29968.76 24489.62 18740.50 30591.72 29569.00 21074.25 23189.58 223
V4276.46 22374.55 22782.19 20479.14 33267.82 9390.26 23189.42 24573.75 15868.63 24681.89 28151.31 23494.09 22071.69 18564.84 29984.66 305
PS-MVSNAJss77.26 20976.31 20380.13 25380.64 31259.16 29490.63 22291.06 18772.80 17868.58 24784.57 25453.55 21393.96 23172.97 16871.96 25087.27 258
v119275.98 23173.92 23882.15 20579.73 32266.24 13591.22 20089.75 23272.67 18068.49 24881.42 29149.86 24694.27 21267.08 22965.02 29785.95 285
tpm cat175.30 24272.21 26184.58 14088.52 18167.77 9478.16 35588.02 29861.88 32168.45 24976.37 34360.65 13194.03 22853.77 30974.11 23291.93 188
v14419276.05 22974.03 23682.12 20779.50 32666.55 12891.39 18889.71 23872.30 19168.17 25081.33 29351.75 22994.03 22867.94 21964.19 30585.77 289
v192192075.63 23973.49 24482.06 21179.38 32766.35 13191.07 20789.48 24171.98 19967.99 25181.22 29649.16 25593.90 23466.56 23364.56 30485.92 287
Effi-MVS+-dtu76.14 22575.28 21978.72 28283.22 28655.17 33189.87 24287.78 30275.42 13167.98 25281.43 29045.08 28992.52 27575.08 15671.63 25188.48 238
mvsmamba76.85 21775.71 21380.25 24983.07 28959.16 29491.44 18280.64 35576.84 11367.95 25386.33 23546.17 28194.24 21576.06 14872.92 24287.36 254
114514_t79.17 17477.67 18083.68 16695.32 2965.53 15292.85 12291.60 16163.49 30267.92 25490.63 16846.65 27395.72 15667.01 23083.54 15089.79 220
test_fmvs265.78 32264.84 31068.60 35466.54 38341.71 38383.27 31469.81 38154.38 35667.91 25584.54 25515.35 38781.22 37875.65 15166.16 28882.88 325
tttt051779.50 16978.53 16982.41 19687.22 21961.43 25589.75 24694.76 3269.29 25667.91 25588.06 21172.92 2595.63 15862.91 26773.90 23690.16 214
3Dnovator73.91 682.69 11780.82 13188.31 2689.57 15571.26 2392.60 13594.39 5178.84 8567.89 25792.48 13348.42 25998.52 2868.80 21394.40 3595.15 76
WR-MVS76.76 22075.74 21279.82 26484.60 26662.27 23992.60 13592.51 12176.06 12367.87 25885.34 24456.76 17490.24 31662.20 27263.69 31286.94 263
dp75.01 24672.09 26283.76 16189.28 16466.22 13679.96 34789.75 23271.16 22867.80 25977.19 33651.81 22892.54 27450.39 31771.44 25592.51 172
TranMVSNet+NR-MVSNet75.86 23474.52 22879.89 26282.44 29560.64 27391.37 19191.37 16976.63 11867.65 26086.21 23752.37 22591.55 29961.84 27460.81 33587.48 250
cl2277.94 20076.78 19781.42 22287.57 21064.93 16790.67 21888.86 27272.45 18667.63 26182.68 27364.07 8792.91 25871.79 18265.30 29286.44 271
131480.70 14778.95 16485.94 8687.77 20967.56 10087.91 27892.55 12072.17 19667.44 26293.09 11650.27 24297.04 9471.68 18687.64 11393.23 150
3Dnovator+73.60 782.10 12680.60 13886.60 6690.89 13166.80 12195.20 3593.44 8574.05 14967.42 26392.49 13249.46 24997.65 5570.80 19191.68 7395.33 64
v124075.21 24472.98 24981.88 21379.20 32966.00 13990.75 21689.11 26071.63 21867.41 26481.22 29647.36 26993.87 23565.46 24964.72 30285.77 289
QAPM79.95 16377.39 18987.64 3489.63 15471.41 2193.30 10693.70 7365.34 29167.39 26591.75 15047.83 26698.96 1657.71 29489.81 9492.54 170
miper_ehance_all_eth77.60 20476.44 20181.09 23485.70 25064.41 17890.65 21988.64 28272.31 19067.37 26682.52 27464.77 8192.64 27270.67 19365.30 29286.24 275
v14876.19 22474.47 22981.36 22380.05 32064.44 17591.75 17690.23 21573.68 16167.13 26780.84 30155.92 18793.86 23768.95 21161.73 32885.76 291
tt080573.07 26370.73 27580.07 25478.37 34357.05 31887.78 28092.18 13361.23 32567.04 26886.49 23231.35 35694.58 19765.06 25267.12 28188.57 236
GBi-Net75.65 23773.83 23981.10 23188.85 17565.11 16190.01 23890.32 20770.84 23567.04 26880.25 31148.03 26191.54 30059.80 28669.34 26386.64 266
test175.65 23773.83 23981.10 23188.85 17565.11 16190.01 23890.32 20770.84 23567.04 26880.25 31148.03 26191.54 30059.80 28669.34 26386.64 266
FMVSNet377.73 20376.04 20782.80 18491.20 12668.99 6491.87 16791.99 13873.35 16667.04 26883.19 26856.62 17892.14 28559.80 28669.34 26387.28 257
BH-untuned78.68 18677.08 19283.48 17389.84 14963.74 19692.70 12888.59 28371.57 22066.83 27288.65 19651.75 22995.39 17059.03 28984.77 13991.32 199
FC-MVSNet-test77.99 19878.08 17577.70 29184.89 26355.51 32990.27 23093.75 7276.87 11166.80 27387.59 21765.71 6990.23 31762.89 26873.94 23487.37 253
c3_l76.83 21975.47 21580.93 23885.02 26164.18 18890.39 22688.11 29671.66 21366.65 27481.64 28663.58 10092.56 27369.31 20662.86 31486.04 282
FMVSNet276.07 22674.01 23782.26 20188.85 17567.66 9791.33 19491.61 16070.84 23565.98 27582.25 27748.03 26192.00 29058.46 29168.73 27187.10 260
eth_miper_zixun_eth75.96 23374.40 23080.66 24084.66 26563.02 21989.28 25588.27 29271.88 20465.73 27681.65 28559.45 14592.81 26168.13 21660.53 33786.14 278
ACMM69.62 1374.34 25172.73 25479.17 27684.25 27557.87 30690.36 22789.93 22663.17 30865.64 27786.04 24037.79 32494.10 21965.89 24271.52 25385.55 294
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
cl____76.07 22674.67 22280.28 24785.15 25761.76 24890.12 23488.73 27771.16 22865.43 27881.57 28861.15 12592.95 25366.54 23462.17 32186.13 280
DIV-MVS_self_test76.07 22674.67 22280.28 24785.14 25861.75 24990.12 23488.73 27771.16 22865.42 27981.60 28761.15 12592.94 25766.54 23462.16 32386.14 278
Fast-Effi-MVS+-dtu75.04 24573.37 24580.07 25480.86 30759.52 28891.20 20285.38 32571.90 20265.20 28084.84 25041.46 30192.97 25266.50 23672.96 24187.73 247
IterMVS-LS76.49 22275.18 22080.43 24484.49 26962.74 22890.64 22088.80 27472.40 18865.16 28181.72 28460.98 12892.27 28467.74 22164.65 30386.29 273
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
LPG-MVS_test75.82 23574.58 22679.56 27184.31 27359.37 29090.44 22389.73 23569.49 25364.86 28288.42 19838.65 31294.30 21072.56 17572.76 24385.01 302
LGP-MVS_train79.56 27184.31 27359.37 29089.73 23569.49 25364.86 28288.42 19838.65 31294.30 21072.56 17572.76 24385.01 302
UniMVSNet_ETH3D72.74 27070.53 27779.36 27378.62 34156.64 32285.01 30189.20 25363.77 30064.84 28484.44 25634.05 34391.86 29263.94 25870.89 25889.57 224
MIMVSNet71.64 27868.44 29181.23 22681.97 30164.44 17573.05 36788.80 27469.67 25264.59 28574.79 35132.79 34687.82 33653.99 30776.35 21891.42 194
RRT_MVS74.44 25072.97 25078.84 28182.36 29657.66 31089.83 24488.79 27670.61 24164.58 28684.89 24939.24 30892.65 27170.11 19866.34 28786.21 276
OpenMVScopyleft70.45 1178.54 19075.92 20986.41 7585.93 24671.68 1992.74 12592.51 12166.49 28264.56 28791.96 14443.88 29398.10 3754.61 30490.65 8889.44 228
ADS-MVSNet266.90 31563.44 32277.26 30088.06 19860.70 27168.01 37875.56 36757.57 34264.48 28869.87 36738.68 31084.10 35840.87 36067.89 27786.97 261
ADS-MVSNet68.54 30364.38 31881.03 23588.06 19866.90 11868.01 37884.02 33757.57 34264.48 28869.87 36738.68 31089.21 32640.87 36067.89 27786.97 261
Anonymous2023121173.08 26270.39 27881.13 22990.62 13563.33 21291.40 18690.06 22251.84 36364.46 29080.67 30436.49 33494.07 22263.83 25964.17 30685.98 284
PLCcopyleft68.80 1475.23 24373.68 24279.86 26392.93 7558.68 30090.64 22088.30 29060.90 32664.43 29190.53 16942.38 29994.57 19956.52 29776.54 21786.33 272
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
tpmvs72.88 26869.76 28482.22 20290.98 12867.05 11478.22 35488.30 29063.10 30964.35 29274.98 35055.09 19694.27 21243.25 34969.57 26285.34 299
test_djsdf73.76 26072.56 25777.39 29777.00 35353.93 33789.07 26090.69 19465.80 28663.92 29382.03 28043.14 29792.67 26872.83 17068.53 27285.57 293
JIA-IIPM66.06 31962.45 32876.88 30581.42 30554.45 33657.49 39388.67 28049.36 37063.86 29446.86 39156.06 18590.25 31349.53 32268.83 26985.95 285
CNLPA74.31 25272.30 26080.32 24591.49 11861.66 25190.85 21280.72 35456.67 35063.85 29590.64 16646.75 27290.84 30853.79 30875.99 22188.47 240
PatchMatch-RL72.06 27669.98 27978.28 28689.51 15855.70 32883.49 31083.39 34561.24 32463.72 29682.76 27134.77 34093.03 25053.37 31177.59 20486.12 281
FMVSNet172.71 27169.91 28281.10 23183.60 28365.11 16190.01 23890.32 20763.92 29863.56 29780.25 31136.35 33591.54 30054.46 30566.75 28486.64 266
pmmvs473.92 25771.81 26680.25 24979.17 33065.24 15787.43 28587.26 30767.64 27463.46 29883.91 26148.96 25791.53 30362.94 26665.49 29183.96 309
pmmvs573.35 26171.52 26878.86 28078.64 34060.61 27491.08 20586.90 31067.69 27163.32 29983.64 26244.33 29290.53 31062.04 27366.02 28985.46 296
v875.35 24173.26 24681.61 21880.67 31166.82 11989.54 24989.27 25071.65 21463.30 30080.30 31054.99 19794.06 22367.33 22662.33 32083.94 310
Syy-MVS69.65 29369.52 28570.03 34887.87 20443.21 38188.07 27489.01 26572.91 17563.11 30188.10 20845.28 28785.54 35122.07 39469.23 26681.32 343
myMVS_eth3d72.58 27572.74 25372.10 34187.87 20449.45 35888.07 27489.01 26572.91 17563.11 30188.10 20863.63 9585.54 35132.73 38369.23 26681.32 343
v1074.77 24872.54 25881.46 22180.33 31666.71 12389.15 25989.08 26270.94 23363.08 30379.86 31552.52 22394.04 22665.70 24562.17 32183.64 313
ACMP71.68 1075.58 24074.23 23379.62 26984.97 26259.64 28590.80 21489.07 26370.39 24362.95 30487.30 22238.28 31693.87 23572.89 16971.45 25485.36 298
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
pm-mvs172.89 26771.09 27178.26 28779.10 33357.62 31190.80 21489.30 24967.66 27262.91 30581.78 28349.11 25692.95 25360.29 28358.89 34584.22 308
jajsoiax73.05 26471.51 26977.67 29277.46 35054.83 33388.81 26490.04 22369.13 26062.85 30683.51 26431.16 35792.75 26470.83 19069.80 25985.43 297
mvs_tets72.71 27171.11 27077.52 29377.41 35154.52 33588.45 27089.76 23168.76 26562.70 30783.26 26729.49 36192.71 26570.51 19669.62 26185.34 299
MS-PatchMatch77.90 20276.50 20082.12 20785.99 24269.95 4291.75 17692.70 11173.97 15262.58 30884.44 25641.11 30395.78 14863.76 26092.17 6580.62 351
test0.0.03 172.76 26972.71 25572.88 33380.25 31747.99 36491.22 20089.45 24371.51 22362.51 30987.66 21653.83 20985.06 35550.16 31967.84 27985.58 292
anonymousdsp71.14 28269.37 28676.45 30772.95 36754.71 33484.19 30588.88 27061.92 32062.15 31079.77 31738.14 31991.44 30568.90 21267.45 28083.21 322
MVP-Stereo77.12 21276.23 20479.79 26581.72 30266.34 13289.29 25490.88 19170.56 24262.01 31182.88 27049.34 25094.13 21865.55 24893.80 4278.88 365
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
CL-MVSNet_self_test69.92 29068.09 29475.41 31373.25 36655.90 32790.05 23789.90 22769.96 24861.96 31276.54 34051.05 23687.64 33949.51 32350.59 36782.70 331
miper_lstm_enhance73.05 26471.73 26777.03 30183.80 27958.32 30381.76 32588.88 27069.80 25161.01 31378.23 32757.19 16687.51 34265.34 25059.53 34285.27 301
NR-MVSNet76.05 22974.59 22580.44 24382.96 29062.18 24090.83 21391.73 15277.12 11060.96 31486.35 23359.28 14991.80 29360.74 27961.34 33287.35 255
tfpnnormal70.10 28867.36 29678.32 28583.45 28560.97 26288.85 26392.77 10964.85 29360.83 31578.53 32443.52 29593.48 24331.73 38661.70 32980.52 352
IterMVS72.65 27470.83 27278.09 28982.17 29862.96 22187.64 28386.28 31671.56 22160.44 31678.85 32345.42 28686.66 34663.30 26461.83 32584.65 306
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
testing370.38 28770.83 27269.03 35285.82 24743.93 38090.72 21790.56 20068.06 26960.24 31786.82 22964.83 7984.12 35726.33 39064.10 30779.04 364
WR-MVS_H70.59 28469.94 28172.53 33581.03 30651.43 34787.35 28692.03 13767.38 27560.23 31880.70 30255.84 18883.45 36546.33 33958.58 34782.72 329
TransMVSNet (Re)70.07 28967.66 29577.31 29980.62 31359.13 29691.78 17384.94 33065.97 28560.08 31980.44 30750.78 23791.87 29148.84 32545.46 37580.94 347
CP-MVSNet70.50 28569.91 28272.26 33880.71 31051.00 35087.23 28890.30 21167.84 27059.64 32082.69 27250.23 24382.30 37351.28 31459.28 34383.46 318
IterMVS-SCA-FT71.55 28069.97 28076.32 30881.48 30360.67 27287.64 28385.99 32166.17 28459.50 32178.88 32245.53 28483.65 36362.58 27061.93 32484.63 307
Patchmtry67.53 31263.93 31978.34 28482.12 29964.38 17968.72 37584.00 33848.23 37459.24 32272.41 35757.82 16189.27 32546.10 34056.68 35281.36 342
D2MVS73.80 25872.02 26379.15 27879.15 33162.97 22088.58 26890.07 22072.94 17359.22 32378.30 32542.31 30092.70 26765.59 24772.00 24981.79 340
PS-CasMVS69.86 29269.13 28772.07 34280.35 31550.57 35287.02 29089.75 23267.27 27659.19 32482.28 27646.58 27482.24 37450.69 31659.02 34483.39 320
PEN-MVS69.46 29568.56 28972.17 34079.27 32849.71 35686.90 29289.24 25167.24 27959.08 32582.51 27547.23 27083.54 36448.42 32757.12 34883.25 321
RPSCF64.24 32961.98 33171.01 34676.10 35745.00 37675.83 36375.94 36446.94 37658.96 32684.59 25331.40 35582.00 37547.76 33360.33 34186.04 282
XVG-ACMP-BASELINE68.04 30765.53 30775.56 31274.06 36452.37 34278.43 35185.88 32262.03 31858.91 32781.21 29820.38 38191.15 30760.69 28068.18 27483.16 323
v7n71.31 28168.65 28879.28 27476.40 35560.77 26686.71 29489.45 24364.17 29758.77 32878.24 32644.59 29193.54 24157.76 29361.75 32783.52 316
ET-MVSNet_ETH3D84.01 9083.15 9886.58 6890.78 13470.89 3094.74 4894.62 4081.44 4058.19 32993.64 10873.64 2392.35 28282.66 9978.66 19796.50 28
DTE-MVSNet68.46 30467.33 29771.87 34477.94 34849.00 36186.16 29788.58 28466.36 28358.19 32982.21 27846.36 27583.87 36244.97 34655.17 35582.73 328
Anonymous2023120667.53 31265.78 30372.79 33474.95 36047.59 36688.23 27287.32 30561.75 32358.07 33177.29 33437.79 32487.29 34442.91 35163.71 31183.48 317
KD-MVS_2432*160069.03 29866.37 30177.01 30285.56 25161.06 26081.44 33090.25 21367.27 27658.00 33276.53 34154.49 20187.63 34048.04 32935.77 38982.34 335
miper_refine_blended69.03 29866.37 30177.01 30285.56 25161.06 26081.44 33090.25 21367.27 27658.00 33276.53 34154.49 20187.63 34048.04 32935.77 38982.34 335
PVSNet_068.08 1571.81 27768.32 29382.27 19984.68 26462.31 23888.68 26690.31 21075.84 12557.93 33480.65 30537.85 32394.19 21669.94 19929.05 39790.31 213
DP-MVS69.90 29166.48 29880.14 25295.36 2862.93 22289.56 24776.11 36350.27 36857.69 33585.23 24539.68 30795.73 15233.35 37971.05 25781.78 341
pmmvs667.57 31164.76 31276.00 31172.82 36953.37 33988.71 26586.78 31453.19 35957.58 33678.03 32935.33 33992.41 27855.56 30154.88 35782.21 337
F-COLMAP70.66 28368.44 29177.32 29886.37 23655.91 32688.00 27686.32 31556.94 34857.28 33788.07 21033.58 34492.49 27651.02 31568.37 27383.55 314
Patchmatch-RL test68.17 30664.49 31679.19 27571.22 37153.93 33770.07 37371.54 37969.22 25756.79 33862.89 37956.58 17988.61 32769.53 20352.61 36295.03 82
LS3D69.17 29666.40 30077.50 29491.92 10456.12 32585.12 30080.37 35646.96 37556.50 33987.51 21937.25 32793.71 23832.52 38579.40 18882.68 332
dmvs_testset65.55 32366.45 29962.86 36479.87 32122.35 40776.55 35971.74 37777.42 10955.85 34087.77 21551.39 23380.69 37931.51 38965.92 29085.55 294
ppachtmachnet_test67.72 30963.70 32079.77 26678.92 33466.04 13888.68 26682.90 34860.11 33355.45 34175.96 34639.19 30990.55 30939.53 36452.55 36382.71 330
test_fmvs356.82 34754.86 35062.69 36553.59 39635.47 39375.87 36265.64 38843.91 38355.10 34271.43 3656.91 40174.40 38668.64 21452.63 36178.20 370
LTVRE_ROB59.60 1966.27 31863.54 32174.45 32184.00 27851.55 34667.08 38183.53 34258.78 33954.94 34380.31 30934.54 34193.23 24740.64 36268.03 27578.58 368
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
MSDG69.54 29465.73 30480.96 23685.11 26063.71 19984.19 30583.28 34656.95 34754.50 34484.03 25831.50 35496.03 14242.87 35369.13 26883.14 324
EU-MVSNet64.01 33063.01 32467.02 36074.40 36338.86 39183.27 31486.19 31945.11 38054.27 34581.15 29936.91 33380.01 38148.79 32657.02 34982.19 338
testgi64.48 32862.87 32669.31 35171.24 37040.62 38685.49 29879.92 35765.36 29054.18 34683.49 26523.74 37484.55 35641.60 35760.79 33682.77 327
ITE_SJBPF70.43 34774.44 36247.06 37177.32 36160.16 33254.04 34783.53 26323.30 37584.01 36043.07 35061.58 33180.21 357
OpenMVS_ROBcopyleft61.12 1866.39 31762.92 32576.80 30676.51 35457.77 30789.22 25683.41 34455.48 35453.86 34877.84 33026.28 37093.95 23234.90 37668.76 27078.68 367
FMVSNet568.04 30765.66 30675.18 31684.43 27157.89 30583.54 30986.26 31761.83 32253.64 34973.30 35437.15 33085.08 35448.99 32461.77 32682.56 334
ACMH+65.35 1667.65 31064.55 31476.96 30484.59 26757.10 31788.08 27380.79 35358.59 34153.00 35081.09 30026.63 36992.95 25346.51 33761.69 33080.82 348
our_test_368.29 30564.69 31379.11 27978.92 33464.85 16888.40 27185.06 32860.32 33152.68 35176.12 34540.81 30489.80 32344.25 34855.65 35382.67 333
test_040264.54 32761.09 33374.92 31884.10 27760.75 26887.95 27779.71 35852.03 36152.41 35277.20 33532.21 35291.64 29623.14 39261.03 33372.36 381
LCM-MVSNet-Re72.93 26671.84 26576.18 31088.49 18248.02 36380.07 34470.17 38073.96 15352.25 35380.09 31449.98 24488.24 33267.35 22484.23 14792.28 178
test20.0363.83 33162.65 32767.38 35970.58 37639.94 38786.57 29584.17 33563.29 30551.86 35477.30 33337.09 33182.47 37138.87 36854.13 35979.73 358
OurMVSNet-221017-064.68 32662.17 33072.21 33976.08 35847.35 36780.67 33681.02 35256.19 35151.60 35579.66 31927.05 36888.56 32953.60 31053.63 36080.71 350
ACMH63.93 1768.62 30164.81 31180.03 25685.22 25663.25 21387.72 28184.66 33260.83 32751.57 35679.43 32127.29 36794.96 18341.76 35664.84 29981.88 339
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
DSMNet-mixed56.78 34854.44 35163.79 36363.21 38729.44 40264.43 38464.10 38942.12 38751.32 35771.60 36231.76 35375.04 38436.23 37165.20 29686.87 264
pmmvs-eth3d65.53 32462.32 32975.19 31569.39 37959.59 28682.80 32183.43 34362.52 31451.30 35872.49 35532.86 34587.16 34555.32 30250.73 36678.83 366
PM-MVS59.40 34456.59 34667.84 35563.63 38641.86 38276.76 35863.22 39059.01 33851.07 35972.27 36011.72 39383.25 36761.34 27650.28 36878.39 369
Patchmatch-test65.86 32060.94 33480.62 24283.75 28058.83 29858.91 39275.26 36944.50 38250.95 36077.09 33758.81 15387.90 33435.13 37564.03 30895.12 78
SixPastTwentyTwo64.92 32561.78 33274.34 32378.74 33849.76 35583.42 31379.51 35962.86 31050.27 36177.35 33230.92 35990.49 31145.89 34147.06 37282.78 326
EG-PatchMatch MVS68.55 30265.41 30877.96 29078.69 33962.93 22289.86 24389.17 25560.55 32850.27 36177.73 33122.60 37694.06 22347.18 33572.65 24576.88 373
ambc69.61 34961.38 39141.35 38449.07 39885.86 32350.18 36366.40 37310.16 39588.14 33345.73 34244.20 37679.32 362
test_vis1_rt59.09 34657.31 34564.43 36268.44 38146.02 37483.05 31948.63 40251.96 36249.57 36463.86 37816.30 38580.20 38071.21 18862.79 31567.07 387
KD-MVS_self_test60.87 34058.60 34067.68 35766.13 38439.93 38875.63 36484.70 33157.32 34549.57 36468.45 37029.55 36082.87 36948.09 32847.94 37180.25 356
UnsupCasMVSNet_eth65.79 32163.10 32373.88 32570.71 37450.29 35481.09 33389.88 22872.58 18249.25 36674.77 35232.57 34987.43 34355.96 30041.04 38283.90 311
COLMAP_ROBcopyleft57.96 2062.98 33559.65 33772.98 33281.44 30453.00 34183.75 30875.53 36848.34 37348.81 36781.40 29224.14 37290.30 31232.95 38160.52 33875.65 376
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
USDC67.43 31464.51 31576.19 30977.94 34855.29 33078.38 35285.00 32973.17 16848.36 36880.37 30821.23 37892.48 27752.15 31364.02 30980.81 349
Anonymous2024052162.09 33659.08 33971.10 34567.19 38248.72 36283.91 30785.23 32750.38 36747.84 36971.22 36620.74 37985.51 35346.47 33858.75 34679.06 363
K. test v363.09 33459.61 33873.53 32876.26 35649.38 36083.27 31477.15 36264.35 29647.77 37072.32 35928.73 36387.79 33749.93 32136.69 38883.41 319
UnsupCasMVSNet_bld61.60 33857.71 34273.29 33068.73 38051.64 34578.61 35089.05 26457.20 34646.11 37161.96 38228.70 36488.60 32850.08 32038.90 38679.63 359
AllTest61.66 33758.06 34172.46 33679.57 32351.42 34880.17 34268.61 38351.25 36445.88 37281.23 29419.86 38386.58 34738.98 36657.01 35079.39 360
TestCases72.46 33679.57 32351.42 34868.61 38351.25 36445.88 37281.23 29419.86 38386.58 34738.98 36657.01 35079.39 360
lessismore_v073.72 32772.93 36847.83 36561.72 39245.86 37473.76 35328.63 36589.81 32147.75 33431.37 39483.53 315
N_pmnet50.55 35249.11 35554.88 37277.17 3524.02 41584.36 3042.00 41348.59 37145.86 37468.82 36932.22 35182.80 37031.58 38751.38 36577.81 371
mvsany_test348.86 35446.35 35756.41 36846.00 40231.67 39862.26 38647.25 40343.71 38445.54 37668.15 37110.84 39464.44 40057.95 29235.44 39173.13 378
MVS-HIRNet60.25 34255.55 34974.35 32284.37 27256.57 32371.64 36974.11 37134.44 39045.54 37642.24 39731.11 35889.81 32140.36 36376.10 22076.67 374
CMPMVSbinary48.56 2166.77 31664.41 31773.84 32670.65 37550.31 35377.79 35685.73 32445.54 37944.76 37882.14 27935.40 33890.14 31963.18 26574.54 22881.07 346
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MIMVSNet160.16 34357.33 34468.67 35369.71 37744.13 37878.92 34984.21 33455.05 35544.63 37971.85 36123.91 37381.54 37732.63 38455.03 35680.35 353
LF4IMVS54.01 35152.12 35259.69 36662.41 38939.91 38968.59 37668.28 38542.96 38644.55 38075.18 34914.09 39268.39 39241.36 35951.68 36470.78 382
pmmvs355.51 34951.50 35467.53 35857.90 39450.93 35180.37 33873.66 37240.63 38844.15 38164.75 37716.30 38578.97 38244.77 34740.98 38472.69 379
new-patchmatchnet59.30 34556.48 34767.79 35665.86 38544.19 37782.47 32281.77 34959.94 33443.65 38266.20 37427.67 36681.68 37639.34 36541.40 38177.50 372
TDRefinement55.28 35051.58 35366.39 36159.53 39346.15 37376.23 36172.80 37344.60 38142.49 38376.28 34415.29 38882.39 37233.20 38043.75 37770.62 383
test_f46.58 35543.45 35955.96 36945.18 40332.05 39761.18 38749.49 40133.39 39142.05 38462.48 3817.00 40065.56 39647.08 33643.21 37970.27 384
TinyColmap60.32 34156.42 34872.00 34378.78 33753.18 34078.36 35375.64 36652.30 36041.59 38575.82 34814.76 39088.35 33135.84 37254.71 35874.46 377
YYNet163.76 33360.14 33674.62 32078.06 34760.19 28083.46 31283.99 34056.18 35239.25 38671.56 36437.18 32983.34 36642.90 35248.70 37080.32 354
MDA-MVSNet_test_wron63.78 33260.16 33574.64 31978.15 34660.41 27583.49 31084.03 33656.17 35339.17 38771.59 36337.22 32883.24 36842.87 35348.73 36980.26 355
WB-MVS46.23 35644.94 35850.11 37662.13 39021.23 40976.48 36055.49 39545.89 37835.78 38861.44 38435.54 33772.83 3879.96 40321.75 39856.27 391
new_pmnet49.31 35346.44 35657.93 36762.84 38840.74 38568.47 37762.96 39136.48 38935.09 38957.81 38614.97 38972.18 38832.86 38246.44 37360.88 389
MDA-MVSNet-bldmvs61.54 33957.70 34373.05 33179.53 32557.00 32183.08 31881.23 35157.57 34234.91 39072.45 35632.79 34686.26 34935.81 37341.95 38075.89 375
SSC-MVS44.51 35843.35 36047.99 38061.01 39218.90 41174.12 36654.36 39643.42 38534.10 39160.02 38534.42 34270.39 3909.14 40519.57 39954.68 392
test_vis3_rt40.46 36237.79 36348.47 37944.49 40433.35 39666.56 38232.84 41032.39 39229.65 39239.13 4003.91 40868.65 39150.17 31840.99 38343.40 395
test_method38.59 36435.16 36748.89 37854.33 39521.35 40845.32 39953.71 3977.41 40528.74 39351.62 3898.70 39852.87 40333.73 37732.89 39372.47 380
FPMVS45.64 35743.10 36153.23 37451.42 39936.46 39264.97 38371.91 37629.13 39427.53 39461.55 3839.83 39665.01 39816.00 40055.58 35458.22 390
APD_test140.50 36137.31 36450.09 37751.88 39735.27 39459.45 39152.59 39821.64 39726.12 39557.80 3874.56 40566.56 39422.64 39339.09 38548.43 393
LCM-MVSNet40.54 36035.79 36554.76 37336.92 40930.81 39951.41 39669.02 38222.07 39624.63 39645.37 3934.56 40565.81 39533.67 37834.50 39267.67 385
PMMVS237.93 36533.61 36850.92 37546.31 40124.76 40560.55 39050.05 39928.94 39520.93 39747.59 3904.41 40765.13 39725.14 39118.55 40162.87 388
tmp_tt22.26 37323.75 37517.80 3895.23 41312.06 41435.26 40039.48 4072.82 40718.94 39844.20 39622.23 37724.64 40836.30 3709.31 40516.69 402
ANet_high40.27 36335.20 36655.47 37034.74 41034.47 39563.84 38571.56 37848.42 37218.80 39941.08 3989.52 39764.45 39920.18 3958.66 40667.49 386
testf132.77 36729.47 37042.67 38341.89 40630.81 39952.07 39443.45 40415.45 40018.52 40044.82 3942.12 40958.38 40116.05 39830.87 39538.83 396
APD_test232.77 36729.47 37042.67 38341.89 40630.81 39952.07 39443.45 40415.45 40018.52 40044.82 3942.12 40958.38 40116.05 39830.87 39538.83 396
DeepMVS_CXcopyleft34.71 38651.45 39824.73 40628.48 41231.46 39317.49 40252.75 3885.80 40342.60 40718.18 39619.42 40036.81 399
Gipumacopyleft34.91 36631.44 36945.30 38170.99 37339.64 39019.85 40372.56 37420.10 39916.16 40321.47 4045.08 40471.16 38913.07 40143.70 37825.08 401
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft26.43 2231.84 36928.16 37242.89 38225.87 41227.58 40350.92 39749.78 40021.37 39814.17 40440.81 3992.01 41166.62 3939.61 40438.88 38734.49 400
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive24.84 2324.35 37119.77 37738.09 38534.56 41126.92 40426.57 40138.87 40811.73 40411.37 40527.44 4011.37 41250.42 40411.41 40214.60 40236.93 398
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN24.61 37024.00 37426.45 38743.74 40518.44 41260.86 38839.66 40615.11 4029.53 40622.10 4036.52 40246.94 4058.31 40610.14 40313.98 403
EMVS23.76 37223.20 37625.46 38841.52 40816.90 41360.56 38938.79 40914.62 4038.99 40720.24 4067.35 39945.82 4067.25 4079.46 40413.64 404
wuyk23d11.30 37510.95 37812.33 39048.05 40019.89 41025.89 4021.92 4143.58 4063.12 4081.37 4080.64 41315.77 4096.23 4087.77 4071.35 405
EGC-MVSNET42.35 35938.09 36255.11 37174.57 36146.62 37271.63 37055.77 3940.04 4080.24 40962.70 38014.24 39174.91 38517.59 39746.06 37443.80 394
testmvs7.23 3779.62 3800.06 3920.04 4140.02 41784.98 3020.02 4150.03 4090.18 4101.21 4090.01 4150.02 4100.14 4090.01 4080.13 407
test1236.92 3789.21 3810.08 3910.03 4150.05 41681.65 3280.01 4160.02 4100.14 4110.85 4100.03 4140.02 4100.12 4100.00 4090.16 406
test_blank0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4090.00 408
uanet_test0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4090.00 408
DCPMVS0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4090.00 408
cdsmvs_eth3d_5k19.86 37426.47 3730.00 3930.00 4160.00 4180.00 40493.45 840.00 4110.00 41295.27 5849.56 2480.00 4120.00 4110.00 4090.00 408
pcd_1.5k_mvsjas4.46 3795.95 3820.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 41153.55 2130.00 4120.00 4110.00 4090.00 408
sosnet-low-res0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4090.00 408
sosnet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4090.00 408
uncertanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4090.00 408
Regformer0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4090.00 408
ab-mvs-re7.91 37610.55 3790.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 41294.95 680.00 4160.00 4120.00 4110.00 4090.00 408
uanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4090.00 408
WAC-MVS49.45 35831.56 388
MSC_two_6792asdad89.60 897.31 473.22 1095.05 2699.07 1392.01 2694.77 2696.51 25
No_MVS89.60 897.31 473.22 1095.05 2699.07 1392.01 2694.77 2696.51 25
eth-test20.00 416
eth-test0.00 416
OPU-MVS89.97 397.52 373.15 1296.89 697.00 983.82 299.15 295.72 597.63 397.62 2
save fliter93.84 4867.89 9295.05 4092.66 11478.19 92
test_0728_SECOND88.70 1896.45 1270.43 3596.64 1094.37 5299.15 291.91 2994.90 2296.51 25
GSMVS94.68 96
sam_mvs157.85 16094.68 96
sam_mvs54.91 198
MTGPAbinary92.23 127
test_post178.95 34820.70 40553.05 21891.50 30460.43 281
test_post23.01 40256.49 18092.67 268
patchmatchnet-post67.62 37257.62 16390.25 313
MTMP93.77 8532.52 411
gm-plane-assit88.42 18667.04 11578.62 8991.83 14897.37 7276.57 145
test9_res89.41 4194.96 1995.29 68
agg_prior286.41 7094.75 3095.33 64
test_prior467.18 11193.92 74
test_prior86.42 7494.71 3567.35 10693.10 9996.84 11195.05 80
新几何291.41 184
旧先验191.94 10260.74 26991.50 16594.36 8665.23 7391.84 7094.55 103
无先验92.71 12792.61 11862.03 31897.01 9566.63 23293.97 128
原ACMM292.01 159
testdata296.09 13661.26 277
segment_acmp65.94 66
testdata189.21 25777.55 105
plane_prior786.94 22661.51 253
plane_prior687.23 21862.32 23750.66 238
plane_prior591.31 17195.55 16576.74 14378.53 19888.39 241
plane_prior489.14 193
plane_prior293.13 11178.81 86
plane_prior187.15 220
plane_prior62.42 23393.85 7879.38 7278.80 195
n20.00 417
nn0.00 417
door-mid66.01 387
test1193.01 101
door66.57 386
HQP5-MVS63.66 203
BP-MVS77.63 140
HQP3-MVS91.70 15778.90 193
HQP2-MVS51.63 231
NP-MVS87.41 21463.04 21890.30 175
ACMMP++_ref71.63 251
ACMMP++69.72 260
Test By Simon54.21 207