This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort by
IU-MVS96.46 1169.91 3795.18 1680.75 4695.28 192.34 2195.36 1396.47 25
PC_three_145280.91 4594.07 296.83 1883.57 499.12 595.70 797.42 497.55 4
MSP-MVS90.38 491.87 185.88 8092.83 7164.03 18393.06 10794.33 4882.19 2893.65 396.15 3585.89 197.19 8291.02 3397.75 196.43 26
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
fmvsm_l_conf0.5_n87.49 2688.19 2185.39 9786.95 21564.37 17394.30 5488.45 27780.51 4892.70 496.86 1569.98 3797.15 8695.83 388.08 10894.65 90
fmvsm_l_conf0.5_n_a87.44 2888.15 2285.30 10187.10 21264.19 18094.41 5288.14 28680.24 5292.54 596.97 1069.52 3997.17 8395.89 288.51 10494.56 93
SED-MVS89.94 890.36 988.70 1696.45 1269.38 4796.89 594.44 4071.65 20492.11 697.21 476.79 999.11 692.34 2195.36 1397.62 2
test_241102_ONE96.45 1269.38 4794.44 4071.65 20492.11 697.05 776.79 999.11 6
DVP-MVS++90.53 391.09 488.87 1497.31 469.91 3793.96 7094.37 4672.48 17592.07 896.85 1683.82 299.15 291.53 2997.42 497.55 4
test_241102_TWO94.41 4271.65 20492.07 897.21 474.58 1799.11 692.34 2195.36 1396.59 16
test072696.40 1569.99 3396.76 794.33 4871.92 19191.89 1097.11 673.77 21
SMA-MVScopyleft88.14 1688.29 2087.67 2993.21 6368.72 6493.85 7794.03 5574.18 13891.74 1196.67 2165.61 6598.42 3389.24 4396.08 795.88 43
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DPM-MVS90.70 290.52 791.24 189.68 14476.68 297.29 195.35 1282.87 2091.58 1297.22 379.93 599.10 983.12 9297.64 297.94 1
MM88.92 1371.10 2297.02 396.04 688.70 291.57 1396.19 3370.12 3698.91 1796.83 195.06 1696.76 12
patch_mono-289.71 1090.99 585.85 8396.04 2463.70 19395.04 4095.19 1586.74 791.53 1495.15 6273.86 2097.58 5993.38 1492.00 6796.28 32
TSAR-MVS + MP.88.11 1888.64 1686.54 6391.73 10268.04 8190.36 21793.55 7282.89 1991.29 1592.89 11972.27 3096.03 13587.99 5094.77 2595.54 52
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
test_part296.29 1968.16 7990.78 16
DPE-MVScopyleft88.77 1589.21 1587.45 3796.26 2067.56 9394.17 5794.15 5368.77 25490.74 1797.27 276.09 1298.49 2990.58 3794.91 2096.30 29
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_one_060196.32 1869.74 4294.18 5171.42 21590.67 1896.85 1674.45 18
DVP-MVScopyleft89.41 1289.73 1388.45 2296.40 1569.99 3396.64 994.52 3671.92 19190.55 1996.93 1173.77 2199.08 1191.91 2794.90 2196.29 30
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD72.48 17590.55 1996.93 1176.24 1199.08 1191.53 2994.99 1796.43 26
DeepPCF-MVS81.17 189.72 991.38 384.72 12393.00 6958.16 29596.72 894.41 4286.50 890.25 2197.83 175.46 1498.67 2592.78 1895.49 1297.32 6
fmvsm_s_conf0.5_n_a85.75 5286.09 4684.72 12385.73 23863.58 19893.79 8389.32 23981.42 3990.21 2296.91 1462.41 10797.67 5194.48 1080.56 17192.90 153
test_fmvsm_n_192087.69 2488.50 1785.27 10387.05 21463.55 20093.69 8791.08 17684.18 1390.17 2397.04 867.58 4997.99 3995.72 590.03 9294.26 104
fmvsm_s_conf0.5_n86.39 4186.91 3684.82 11687.36 20763.54 20194.74 4790.02 21582.52 2490.14 2496.92 1362.93 10397.84 4695.28 882.26 15493.07 147
fmvsm_s_conf0.1_n85.61 5685.93 4984.68 12682.95 28163.48 20394.03 6889.46 23381.69 3389.86 2596.74 2061.85 11397.75 4994.74 982.01 15892.81 155
fmvsm_s_conf0.1_n_a84.76 6684.84 6584.53 13280.23 30763.50 20292.79 11788.73 26880.46 4989.84 2696.65 2260.96 12297.57 6193.80 1380.14 17392.53 162
CANet89.61 1189.99 1188.46 2194.39 3969.71 4396.53 1293.78 5986.89 689.68 2795.78 4065.94 6199.10 992.99 1693.91 4096.58 18
MVS_030490.01 790.50 888.53 2090.14 13570.94 2396.47 1395.72 987.33 489.60 2896.26 3068.44 4098.74 2495.82 494.72 3095.90 42
xiu_mvs_v2_base87.92 2187.38 3189.55 1191.41 11376.43 395.74 2193.12 9183.53 1789.55 2995.95 3853.45 21097.68 5091.07 3292.62 5894.54 96
PS-MVSNAJ88.14 1687.61 2789.71 692.06 9076.72 195.75 2093.26 8383.86 1489.55 2996.06 3653.55 20697.89 4391.10 3193.31 5194.54 96
CNVR-MVS90.32 590.89 688.61 1996.76 870.65 2696.47 1394.83 2584.83 1189.07 3196.80 1970.86 3499.06 1592.64 1995.71 1096.12 35
HPM-MVS++copyleft89.37 1389.95 1287.64 3095.10 3068.23 7795.24 3394.49 3882.43 2588.90 3296.35 2771.89 3398.63 2688.76 4796.40 696.06 36
APDe-MVScopyleft87.54 2587.84 2486.65 5896.07 2366.30 12694.84 4593.78 5969.35 24588.39 3396.34 2867.74 4897.66 5490.62 3693.44 4996.01 39
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
EPNet87.84 2288.38 1886.23 7393.30 6066.05 13095.26 3294.84 2487.09 588.06 3494.53 7766.79 5497.34 7383.89 8891.68 7295.29 63
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
SD-MVS87.49 2687.49 2987.50 3693.60 5368.82 6293.90 7492.63 11076.86 10487.90 3595.76 4166.17 5897.63 5689.06 4591.48 7696.05 37
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
test_fmvsmconf_n86.58 3987.17 3284.82 11685.28 24462.55 22394.26 5689.78 22183.81 1687.78 3696.33 2965.33 6796.98 9894.40 1187.55 11394.95 78
canonicalmvs86.85 3586.25 4388.66 1891.80 10171.92 1493.54 9491.71 14780.26 5187.55 3795.25 5863.59 9396.93 10588.18 4984.34 14197.11 8
旧先验292.00 15459.37 32887.54 3893.47 23675.39 146
MVSFormer83.75 8882.88 9386.37 6989.24 15871.18 1989.07 25090.69 18565.80 27787.13 3994.34 8764.99 7092.67 25972.83 16391.80 7095.27 66
lupinMVS87.74 2387.77 2587.63 3489.24 15871.18 1996.57 1192.90 9982.70 2387.13 3995.27 5664.99 7095.80 14089.34 4191.80 7095.93 40
alignmvs87.28 3086.97 3588.24 2491.30 11471.14 2195.61 2593.56 7179.30 6587.07 4195.25 5868.43 4196.93 10587.87 5184.33 14296.65 14
test_fmvsmconf0.1_n85.71 5386.08 4784.62 13080.83 29762.33 22793.84 8088.81 26483.50 1887.00 4296.01 3763.36 9696.93 10594.04 1287.29 11694.61 92
NCCC89.07 1489.46 1487.91 2596.60 1069.05 5696.38 1594.64 3384.42 1286.74 4396.20 3266.56 5798.76 2389.03 4694.56 3295.92 41
FOURS193.95 4561.77 23893.96 7091.92 13462.14 30886.57 44
SF-MVS87.03 3387.09 3386.84 5192.70 7767.45 9893.64 8993.76 6270.78 22886.25 4596.44 2666.98 5297.79 4788.68 4894.56 3295.28 65
9.1487.63 2693.86 4794.41 5294.18 5172.76 17086.21 4696.51 2466.64 5597.88 4490.08 3894.04 37
APD-MVScopyleft85.93 4985.99 4885.76 8795.98 2665.21 15193.59 9292.58 11266.54 27286.17 4795.88 3963.83 8697.00 9486.39 6792.94 5595.06 73
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CANet_DTU84.09 8083.52 7485.81 8490.30 13266.82 11291.87 15889.01 25685.27 986.09 4893.74 10147.71 26196.98 9877.90 13389.78 9593.65 130
VNet86.20 4485.65 5487.84 2793.92 4669.99 3395.73 2395.94 778.43 8286.00 4993.07 11458.22 15097.00 9485.22 7484.33 14296.52 20
TSAR-MVS + GP.87.96 1988.37 1986.70 5793.51 5665.32 14895.15 3693.84 5878.17 8585.93 5094.80 7175.80 1398.21 3489.38 4088.78 10196.59 16
MCST-MVS91.08 191.46 289.94 497.66 273.37 897.13 295.58 1089.33 185.77 5196.26 3072.84 2699.38 192.64 1995.93 997.08 9
DELS-MVS90.05 690.09 1089.94 493.14 6673.88 797.01 494.40 4488.32 385.71 5294.91 6874.11 1998.91 1787.26 5995.94 897.03 10
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PHI-MVS86.83 3686.85 3986.78 5593.47 5765.55 14495.39 3095.10 1871.77 20185.69 5396.52 2362.07 11098.77 2286.06 7095.60 1196.03 38
TEST994.18 4167.28 10094.16 5893.51 7371.75 20285.52 5495.33 5168.01 4597.27 80
train_agg87.21 3187.42 3086.60 5994.18 4167.28 10094.16 5893.51 7371.87 19685.52 5495.33 5168.19 4397.27 8089.09 4494.90 2195.25 69
CS-MVS-test86.14 4687.01 3483.52 16192.63 8059.36 28395.49 2791.92 13480.09 5385.46 5695.53 4761.82 11595.77 14386.77 6593.37 5095.41 54
test_894.19 4067.19 10294.15 6193.42 7971.87 19685.38 5795.35 5068.19 4396.95 102
testdata81.34 21689.02 16257.72 30089.84 22058.65 33185.32 5894.09 9457.03 16193.28 23869.34 19990.56 8993.03 148
ZD-MVS96.63 965.50 14693.50 7570.74 22985.26 5995.19 6164.92 7397.29 7687.51 5593.01 54
test_prior295.10 3875.40 12385.25 6095.61 4567.94 4687.47 5694.77 25
test_fmvsmconf0.01_n83.70 9083.52 7484.25 14475.26 34961.72 24192.17 14187.24 29982.36 2684.91 6195.41 4855.60 18296.83 10992.85 1785.87 13194.21 106
CS-MVS85.80 5186.65 4083.27 16992.00 9458.92 28895.31 3191.86 13979.97 5484.82 6295.40 4962.26 10895.51 16186.11 6992.08 6695.37 57
ACMMP_NAP86.05 4785.80 5286.80 5491.58 10667.53 9591.79 16293.49 7674.93 12984.61 6395.30 5359.42 13997.92 4186.13 6894.92 1994.94 79
jason86.40 4086.17 4487.11 4486.16 22970.54 2895.71 2492.19 12582.00 3084.58 6494.34 8761.86 11295.53 16087.76 5290.89 8495.27 66
jason: jason.
agg_prior94.16 4366.97 11093.31 8284.49 6596.75 111
test_vis1_n_192081.66 12282.01 10780.64 23382.24 28655.09 32394.76 4686.87 30181.67 3484.40 6694.63 7538.17 30994.67 18791.98 2683.34 14892.16 176
xiu_mvs_v1_base_debu82.16 11381.12 11685.26 10486.42 22368.72 6492.59 13090.44 19573.12 16184.20 6794.36 8238.04 31295.73 14584.12 8586.81 12091.33 186
xiu_mvs_v1_base82.16 11381.12 11685.26 10486.42 22368.72 6492.59 13090.44 19573.12 16184.20 6794.36 8238.04 31295.73 14584.12 8586.81 12091.33 186
xiu_mvs_v1_base_debi82.16 11381.12 11685.26 10486.42 22368.72 6492.59 13090.44 19573.12 16184.20 6794.36 8238.04 31295.73 14584.12 8586.81 12091.33 186
ETV-MVS86.01 4886.11 4585.70 8990.21 13467.02 10993.43 9991.92 13481.21 4284.13 7094.07 9660.93 12395.63 15189.28 4289.81 9394.46 102
SteuartSystems-ACMMP86.82 3786.90 3786.58 6190.42 12966.38 12396.09 1793.87 5777.73 9284.01 7195.66 4363.39 9597.94 4087.40 5793.55 4895.42 53
Skip Steuart: Steuart Systems R&D Blog.
MG-MVS87.11 3286.27 4189.62 797.79 176.27 494.96 4394.49 3878.74 8083.87 7292.94 11764.34 8096.94 10375.19 14794.09 3695.66 47
DeepC-MVS_fast79.48 287.95 2088.00 2387.79 2895.86 2768.32 7295.74 2194.11 5483.82 1583.49 7396.19 3364.53 7998.44 3183.42 9194.88 2496.61 15
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
EC-MVSNet84.53 7085.04 6183.01 17389.34 15161.37 24794.42 5191.09 17477.91 8983.24 7494.20 9258.37 14895.40 16285.35 7391.41 7792.27 172
Effi-MVS+83.82 8582.76 9586.99 4989.56 14769.40 4691.35 18486.12 31072.59 17283.22 7592.81 12359.60 13796.01 13781.76 10187.80 11095.56 51
CDPH-MVS85.71 5385.46 5586.46 6594.75 3467.19 10293.89 7592.83 10170.90 22483.09 7695.28 5463.62 9197.36 7180.63 11194.18 3594.84 83
MVS_Test84.16 7983.20 8687.05 4791.56 10769.82 3989.99 23192.05 12877.77 9182.84 7786.57 22163.93 8596.09 12974.91 15289.18 9995.25 69
test_cas_vis1_n_192080.45 14280.61 12779.97 25078.25 33357.01 31194.04 6788.33 28079.06 7382.81 7893.70 10238.65 30491.63 28890.82 3579.81 17591.27 192
h-mvs3383.01 10082.56 10084.35 14089.34 15162.02 23392.72 12093.76 6281.45 3682.73 7992.25 13560.11 13097.13 8787.69 5362.96 30493.91 122
hse-mvs281.12 13181.11 11981.16 22086.52 22257.48 30589.40 24391.16 16981.45 3682.73 7990.49 16260.11 13094.58 19087.69 5360.41 33191.41 185
test1287.09 4594.60 3668.86 6092.91 9882.67 8165.44 6697.55 6293.69 4694.84 83
HY-MVS76.49 584.28 7483.36 8587.02 4892.22 8767.74 8884.65 29494.50 3779.15 6982.23 8287.93 20366.88 5396.94 10380.53 11282.20 15696.39 28
LFMVS84.34 7382.73 9689.18 1294.76 3373.25 994.99 4291.89 13771.90 19382.16 8393.49 10847.98 25797.05 8982.55 9684.82 13797.25 7
WTY-MVS86.32 4285.81 5187.85 2692.82 7369.37 4995.20 3495.25 1482.71 2281.91 8494.73 7267.93 4797.63 5679.55 11782.25 15596.54 19
VDD-MVS83.06 9981.81 11086.81 5390.86 12367.70 8995.40 2991.50 15775.46 12181.78 8592.34 13340.09 29897.13 8786.85 6482.04 15795.60 49
diffmvspermissive84.28 7483.83 7285.61 9187.40 20568.02 8290.88 20189.24 24280.54 4781.64 8692.52 12559.83 13494.52 19787.32 5885.11 13594.29 103
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MSLP-MVS++86.27 4385.91 5087.35 3992.01 9368.97 5995.04 4092.70 10479.04 7481.50 8796.50 2558.98 14596.78 11083.49 9093.93 3996.29 30
SR-MVS82.81 10382.58 9983.50 16493.35 5861.16 25092.23 14091.28 16664.48 28681.27 8895.28 5453.71 20595.86 13982.87 9388.77 10293.49 134
dcpmvs_287.37 2987.55 2886.85 5095.04 3268.20 7890.36 21790.66 18879.37 6481.20 8993.67 10374.73 1596.55 11890.88 3492.00 6795.82 44
baseline85.01 6384.44 6786.71 5688.33 18068.73 6390.24 22291.82 14381.05 4481.18 9092.50 12663.69 8996.08 13284.45 8386.71 12595.32 61
test_yl84.28 7483.16 8787.64 3094.52 3769.24 5195.78 1895.09 1969.19 24881.09 9192.88 12057.00 16397.44 6681.11 10981.76 16096.23 33
DCV-MVSNet84.28 7483.16 8787.64 3094.52 3769.24 5195.78 1895.09 1969.19 24881.09 9192.88 12057.00 16397.44 6681.11 10981.76 16096.23 33
UA-Net80.02 15179.65 14181.11 22289.33 15357.72 30086.33 28789.00 25977.44 9981.01 9389.15 18259.33 14195.90 13861.01 27084.28 14489.73 212
PVSNet_BlendedMVS83.38 9383.43 8083.22 17093.76 4967.53 9594.06 6393.61 6979.13 7081.00 9485.14 23663.19 9997.29 7687.08 6173.91 22584.83 296
PVSNet_Blended86.73 3886.86 3886.31 7293.76 4967.53 9596.33 1693.61 6982.34 2781.00 9493.08 11363.19 9997.29 7687.08 6191.38 7894.13 111
casdiffmvspermissive85.37 5884.87 6486.84 5188.25 18369.07 5593.04 10991.76 14481.27 4180.84 9692.07 13764.23 8196.06 13384.98 7887.43 11595.39 55
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MP-MVS-pluss85.24 6085.13 5985.56 9291.42 11165.59 14291.54 17292.51 11474.56 13280.62 9795.64 4459.15 14397.00 9486.94 6393.80 4194.07 115
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MTAPA83.91 8383.38 8485.50 9391.89 9965.16 15381.75 31792.23 12075.32 12480.53 9895.21 6056.06 17897.16 8584.86 8092.55 6094.18 107
PAPM85.89 5085.46 5587.18 4288.20 18672.42 1392.41 13592.77 10282.11 2980.34 9993.07 11468.27 4295.02 17278.39 13093.59 4794.09 113
CostFormer82.33 11081.15 11585.86 8289.01 16368.46 6982.39 31493.01 9475.59 11980.25 10081.57 27972.03 3294.96 17579.06 12377.48 19894.16 109
casdiffmvs_mvgpermissive85.66 5585.18 5887.09 4588.22 18569.35 5093.74 8691.89 13781.47 3580.10 10191.45 14664.80 7596.35 12187.23 6087.69 11195.58 50
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PMMVS81.98 11882.04 10681.78 20689.76 14356.17 31591.13 19490.69 18577.96 8780.09 10293.57 10646.33 27194.99 17481.41 10587.46 11494.17 108
ZNCC-MVS85.33 5985.08 6086.06 7593.09 6865.65 14093.89 7593.41 8073.75 14979.94 10394.68 7460.61 12698.03 3882.63 9593.72 4494.52 98
sss82.71 10682.38 10383.73 15689.25 15559.58 27892.24 13994.89 2377.96 8779.86 10492.38 13156.70 16997.05 8977.26 13680.86 16894.55 94
新几何184.73 12292.32 8464.28 17791.46 15959.56 32779.77 10592.90 11856.95 16696.57 11663.40 25392.91 5693.34 137
APD-MVS_3200maxsize81.64 12381.32 11482.59 18392.36 8358.74 29091.39 17991.01 18163.35 29579.72 10694.62 7651.82 22096.14 12779.71 11587.93 10992.89 154
MP-MVScopyleft85.02 6284.97 6285.17 10792.60 8164.27 17893.24 10292.27 11973.13 16079.63 10794.43 8061.90 11197.17 8385.00 7792.56 5994.06 116
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
原ACMM184.42 13693.21 6364.27 17893.40 8165.39 28079.51 10892.50 12658.11 15296.69 11265.27 24393.96 3892.32 167
test_fmvs174.07 24373.69 23075.22 30578.91 32547.34 35989.06 25274.69 36063.68 29279.41 10991.59 14524.36 36287.77 32985.22 7476.26 20990.55 201
VDDNet80.50 14078.26 16287.21 4186.19 22869.79 4094.48 5091.31 16360.42 32079.34 11090.91 15538.48 30796.56 11782.16 9781.05 16695.27 66
EIA-MVS84.84 6584.88 6384.69 12591.30 11462.36 22693.85 7792.04 12979.45 6179.33 11194.28 9062.42 10696.35 12180.05 11491.25 8195.38 56
HFP-MVS84.73 6784.40 6885.72 8893.75 5165.01 15793.50 9693.19 8772.19 18579.22 11294.93 6659.04 14497.67 5181.55 10292.21 6294.49 101
MAR-MVS84.18 7883.43 8086.44 6696.25 2165.93 13594.28 5594.27 5074.41 13379.16 11395.61 4553.99 20198.88 2169.62 19693.26 5294.50 100
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PAPR85.15 6184.47 6687.18 4296.02 2568.29 7391.85 16093.00 9676.59 11179.03 11495.00 6361.59 11697.61 5878.16 13189.00 10095.63 48
SR-MVS-dyc-post81.06 13280.70 12482.15 19792.02 9158.56 29290.90 19990.45 19262.76 30278.89 11594.46 7851.26 22895.61 15378.77 12786.77 12392.28 169
RE-MVS-def80.48 13092.02 9158.56 29290.90 19990.45 19262.76 30278.89 11594.46 7849.30 24478.77 12786.77 12392.28 169
GST-MVS84.63 6984.29 6985.66 9092.82 7365.27 14993.04 10993.13 9073.20 15878.89 11594.18 9359.41 14097.85 4581.45 10492.48 6193.86 125
MVS_111021_HR86.19 4585.80 5287.37 3893.17 6569.79 4093.99 6993.76 6279.08 7278.88 11893.99 9762.25 10998.15 3685.93 7191.15 8294.15 110
region2R84.36 7284.03 7185.36 9993.54 5564.31 17693.43 9992.95 9772.16 18878.86 11994.84 7056.97 16597.53 6381.38 10692.11 6594.24 105
ACMMPR84.37 7184.06 7085.28 10293.56 5464.37 17393.50 9693.15 8972.19 18578.85 12094.86 6956.69 17097.45 6581.55 10292.20 6394.02 118
UGNet79.87 15478.68 15683.45 16689.96 13861.51 24492.13 14390.79 18376.83 10678.85 12086.33 22538.16 31096.17 12667.93 21387.17 11792.67 157
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
GG-mvs-BLEND86.53 6491.91 9869.67 4575.02 35694.75 2878.67 12290.85 15677.91 794.56 19472.25 17193.74 4395.36 58
test250683.29 9482.92 9284.37 13988.39 17863.18 20992.01 15191.35 16277.66 9478.49 12391.42 14764.58 7895.09 17173.19 15989.23 9794.85 80
XVS83.87 8483.47 7885.05 10893.22 6163.78 18792.92 11492.66 10773.99 14178.18 12494.31 8955.25 18497.41 6879.16 12191.58 7493.95 120
X-MVStestdata76.86 20474.13 22485.05 10893.22 6163.78 18792.92 11492.66 10773.99 14178.18 12410.19 39855.25 18497.41 6879.16 12191.58 7493.95 120
test_fmvs1_n72.69 26271.92 25374.99 30871.15 36247.08 36187.34 27875.67 35563.48 29478.08 12691.17 15220.16 37387.87 32684.65 8175.57 21390.01 207
EI-MVSNet-Vis-set83.77 8783.67 7384.06 14892.79 7663.56 19991.76 16594.81 2679.65 6077.87 12794.09 9463.35 9797.90 4279.35 11979.36 17990.74 197
Vis-MVSNetpermissive80.92 13579.98 13783.74 15488.48 17361.80 23793.44 9888.26 28573.96 14477.73 12891.76 14149.94 23894.76 18065.84 23590.37 9094.65 90
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test_fmvsmvis_n_192083.80 8683.48 7784.77 12082.51 28363.72 19191.37 18283.99 33081.42 3977.68 12995.74 4258.37 14897.58 5993.38 1486.87 11993.00 150
CSCG86.87 3486.26 4288.72 1595.05 3170.79 2593.83 8295.33 1368.48 25877.63 13094.35 8673.04 2498.45 3084.92 7993.71 4596.92 11
TESTMET0.1,182.41 10981.98 10883.72 15788.08 18763.74 18992.70 12293.77 6179.30 6577.61 13187.57 20958.19 15194.08 21373.91 15886.68 12693.33 139
tpm279.80 15577.95 16885.34 10088.28 18168.26 7581.56 32091.42 16070.11 23677.59 13280.50 29767.40 5094.26 20767.34 21877.35 19993.51 133
CP-MVS83.71 8983.40 8384.65 12793.14 6663.84 18594.59 4992.28 11871.03 22277.41 13394.92 6755.21 18796.19 12581.32 10790.70 8693.91 122
ab-mvs80.18 14778.31 16185.80 8588.44 17565.49 14783.00 31192.67 10671.82 19977.36 13485.01 23754.50 19396.59 11476.35 14175.63 21295.32 61
test22289.77 14261.60 24389.55 23889.42 23656.83 34077.28 13592.43 13052.76 21491.14 8393.09 145
PGM-MVS83.25 9682.70 9784.92 11292.81 7564.07 18290.44 21392.20 12471.28 21677.23 13694.43 8055.17 18897.31 7579.33 12091.38 7893.37 136
gg-mvs-nofinetune77.18 20074.31 22085.80 8591.42 11168.36 7171.78 35994.72 2949.61 36077.12 13745.92 38377.41 893.98 22267.62 21693.16 5395.05 74
HPM-MVScopyleft83.25 9682.95 9184.17 14692.25 8662.88 21890.91 19891.86 13970.30 23477.12 13793.96 9856.75 16896.28 12382.04 9991.34 8093.34 137
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
PVSNet_Blended_VisFu83.97 8283.50 7685.39 9790.02 13766.59 12093.77 8491.73 14577.43 10077.08 13989.81 17663.77 8896.97 10079.67 11688.21 10692.60 159
DeepC-MVS77.85 385.52 5785.24 5786.37 6988.80 16866.64 11792.15 14293.68 6781.07 4376.91 14093.64 10462.59 10598.44 3185.50 7292.84 5794.03 117
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ECVR-MVScopyleft81.29 12780.38 13284.01 15088.39 17861.96 23592.56 13386.79 30377.66 9476.63 14191.42 14746.34 27095.24 16974.36 15689.23 9794.85 80
EI-MVSNet-UG-set83.14 9882.96 9083.67 15992.28 8563.19 20891.38 18194.68 3179.22 6776.60 14293.75 10062.64 10497.76 4878.07 13278.01 19090.05 206
EPNet_dtu78.80 17379.26 15177.43 28688.06 18849.71 34791.96 15691.95 13377.67 9376.56 14391.28 15158.51 14790.20 30856.37 28980.95 16792.39 164
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DP-MVS Recon82.73 10481.65 11185.98 7797.31 467.06 10695.15 3691.99 13169.08 25176.50 14493.89 9954.48 19698.20 3570.76 18585.66 13392.69 156
Anonymous20240521177.96 18975.33 20785.87 8193.73 5264.52 16394.85 4485.36 31662.52 30576.11 14590.18 16929.43 35397.29 7668.51 20877.24 20295.81 45
tpmrst80.57 13879.14 15384.84 11590.10 13668.28 7481.70 31889.72 22877.63 9675.96 14679.54 31164.94 7292.71 25675.43 14577.28 20193.55 132
thisisatest051583.41 9282.49 10186.16 7489.46 15068.26 7593.54 9494.70 3074.31 13675.75 14790.92 15472.62 2896.52 11969.64 19481.50 16393.71 128
test111180.84 13680.02 13483.33 16787.87 19460.76 25892.62 12786.86 30277.86 9075.73 14891.39 14946.35 26994.70 18672.79 16588.68 10394.52 98
CHOSEN 1792x268884.98 6483.45 7989.57 1089.94 13975.14 592.07 14892.32 11781.87 3175.68 14988.27 19460.18 12998.60 2780.46 11390.27 9194.96 77
test-LLR80.10 14979.56 14381.72 20886.93 21861.17 24892.70 12291.54 15471.51 21375.62 15086.94 21753.83 20292.38 27072.21 17284.76 13991.60 180
test-mter79.96 15279.38 14981.72 20886.93 21861.17 24892.70 12291.54 15473.85 14675.62 15086.94 21749.84 24092.38 27072.21 17284.76 13991.60 180
mPP-MVS82.96 10282.44 10284.52 13392.83 7162.92 21692.76 11891.85 14171.52 21275.61 15294.24 9153.48 20996.99 9778.97 12490.73 8593.64 131
MVS_111021_LR82.02 11781.52 11283.51 16388.42 17662.88 21889.77 23588.93 26076.78 10775.55 15393.10 11150.31 23495.38 16483.82 8987.02 11892.26 173
API-MVS82.28 11180.53 12987.54 3596.13 2270.59 2793.63 9091.04 18065.72 27975.45 15492.83 12256.11 17798.89 2064.10 24989.75 9693.15 143
Fast-Effi-MVS+81.14 12980.01 13584.51 13490.24 13365.86 13694.12 6289.15 24873.81 14875.37 15588.26 19557.26 15894.53 19666.97 22384.92 13693.15 143
test_vis1_n71.63 26870.73 26474.31 31569.63 36847.29 36086.91 28272.11 36663.21 29875.18 15690.17 17020.40 37185.76 34184.59 8274.42 22089.87 208
nrg03080.93 13479.86 13884.13 14783.69 27068.83 6193.23 10391.20 16775.55 12075.06 15788.22 19863.04 10294.74 18281.88 10066.88 27488.82 223
baseline181.84 11981.03 12084.28 14391.60 10566.62 11891.08 19591.66 15181.87 3174.86 15891.67 14469.98 3794.92 17871.76 17764.75 29291.29 191
FA-MVS(test-final)79.12 16577.23 18184.81 11990.54 12763.98 18481.35 32391.71 14771.09 22174.85 15982.94 26052.85 21397.05 8967.97 21181.73 16293.41 135
iter_conf_final81.74 12180.93 12184.18 14592.66 7969.10 5492.94 11382.80 33979.01 7574.85 15988.40 19061.83 11494.61 18879.36 11876.52 20788.83 220
HPM-MVS_fast80.25 14679.55 14582.33 18991.55 10859.95 27391.32 18689.16 24765.23 28374.71 16193.07 11447.81 26095.74 14474.87 15488.23 10591.31 190
TR-MVS78.77 17577.37 18082.95 17490.49 12860.88 25493.67 8890.07 21170.08 23774.51 16291.37 15045.69 27695.70 15060.12 27680.32 17292.29 168
AUN-MVS78.37 18277.43 17581.17 21986.60 22157.45 30689.46 24291.16 16974.11 13974.40 16390.49 16255.52 18394.57 19274.73 15560.43 33091.48 183
HQP-NCC87.54 20194.06 6379.80 5674.18 164
ACMP_Plane87.54 20194.06 6379.80 5674.18 164
HQP4-MVS74.18 16495.61 15388.63 225
HQP-MVS81.14 12980.64 12682.64 18187.54 20163.66 19694.06 6391.70 14979.80 5674.18 16490.30 16651.63 22495.61 15377.63 13478.90 18388.63 225
PAPM_NR82.97 10181.84 10986.37 6994.10 4466.76 11587.66 27392.84 10069.96 23874.07 16893.57 10663.10 10197.50 6470.66 18790.58 8894.85 80
VPA-MVSNet79.03 16678.00 16682.11 20285.95 23264.48 16693.22 10494.66 3275.05 12874.04 16984.95 23852.17 21993.52 23474.90 15367.04 27388.32 234
CDS-MVSNet81.43 12580.74 12383.52 16186.26 22764.45 16792.09 14690.65 18975.83 11873.95 17089.81 17663.97 8492.91 24971.27 18082.82 15193.20 142
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
iter_conf0583.27 9582.70 9784.98 11193.32 5971.84 1594.16 5881.76 34182.74 2173.83 17188.40 19072.77 2794.61 18882.10 9875.21 21488.48 229
tpm78.58 17977.03 18383.22 17085.94 23464.56 16283.21 30891.14 17278.31 8373.67 17279.68 30964.01 8392.09 27966.07 23371.26 24693.03 148
BH-RMVSNet79.46 16177.65 17184.89 11391.68 10465.66 13993.55 9388.09 28872.93 16573.37 17391.12 15346.20 27396.12 12856.28 29085.61 13492.91 152
thres20079.66 15678.33 16083.66 16092.54 8265.82 13893.06 10796.31 374.90 13073.30 17488.66 18559.67 13695.61 15347.84 32378.67 18689.56 215
Anonymous2024052976.84 20774.15 22384.88 11491.02 11864.95 15993.84 8091.09 17453.57 34973.00 17587.42 21135.91 32897.32 7469.14 20272.41 23892.36 165
CPTT-MVS79.59 15779.16 15280.89 23191.54 10959.80 27592.10 14588.54 27660.42 32072.96 17693.28 11048.27 25392.80 25378.89 12686.50 12890.06 205
HyFIR lowres test81.03 13379.56 14385.43 9587.81 19768.11 8090.18 22390.01 21670.65 23072.95 17786.06 22963.61 9294.50 19875.01 15079.75 17793.67 129
EPP-MVSNet81.79 12081.52 11282.61 18288.77 16960.21 27093.02 11193.66 6868.52 25772.90 17890.39 16472.19 3194.96 17574.93 15179.29 18192.67 157
MDTV_nov1_ep13_2view59.90 27480.13 33467.65 26472.79 17954.33 19959.83 27792.58 160
FE-MVS75.97 22173.02 23784.82 11689.78 14165.56 14377.44 34891.07 17764.55 28572.66 18079.85 30746.05 27596.69 11254.97 29480.82 16992.21 174
TAMVS80.37 14379.45 14683.13 17285.14 24763.37 20491.23 18990.76 18474.81 13172.65 18188.49 18760.63 12592.95 24469.41 19881.95 15993.08 146
VPNet78.82 17277.53 17482.70 17984.52 25766.44 12293.93 7292.23 12080.46 4972.60 18288.38 19249.18 24693.13 24072.47 17063.97 30188.55 228
CLD-MVS82.73 10482.35 10483.86 15287.90 19367.65 9195.45 2892.18 12685.06 1072.58 18392.27 13452.46 21795.78 14184.18 8479.06 18288.16 235
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
HQP_MVS80.34 14479.75 14082.12 19986.94 21662.42 22493.13 10591.31 16378.81 7872.53 18489.14 18350.66 23195.55 15876.74 13778.53 18888.39 232
plane_prior361.95 23679.09 7172.53 184
EPMVS78.49 18175.98 19786.02 7691.21 11669.68 4480.23 33291.20 16775.25 12572.48 18678.11 31954.65 19293.69 23157.66 28783.04 14994.69 86
1112_ss80.56 13979.83 13982.77 17788.65 17060.78 25692.29 13788.36 27972.58 17372.46 18794.95 6465.09 6993.42 23766.38 22977.71 19294.10 112
PVSNet73.49 880.05 15078.63 15784.31 14190.92 12164.97 15892.47 13491.05 17979.18 6872.43 18890.51 16137.05 32494.06 21568.06 21086.00 13093.90 124
OMC-MVS78.67 17877.91 16980.95 22985.76 23757.40 30788.49 25988.67 27173.85 14672.43 18892.10 13649.29 24594.55 19572.73 16677.89 19190.91 196
MVS84.66 6882.86 9490.06 290.93 12074.56 687.91 26895.54 1168.55 25672.35 19094.71 7359.78 13598.90 1981.29 10894.69 3196.74 13
EI-MVSNet78.97 16878.22 16381.25 21785.33 24262.73 22189.53 24093.21 8472.39 18072.14 19190.13 17260.99 12094.72 18367.73 21572.49 23686.29 264
MVSTER82.47 10882.05 10583.74 15492.68 7869.01 5791.90 15793.21 8479.83 5572.14 19185.71 23374.72 1694.72 18375.72 14372.49 23687.50 240
OPM-MVS79.00 16778.09 16481.73 20783.52 27363.83 18691.64 17190.30 20276.36 11471.97 19389.93 17546.30 27295.17 17075.10 14877.70 19386.19 268
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
Test_1112_low_res79.56 15878.60 15882.43 18588.24 18460.39 26792.09 14687.99 29072.10 18971.84 19487.42 21164.62 7793.04 24165.80 23677.30 20093.85 126
MDTV_nov1_ep1372.61 24589.06 16168.48 6880.33 33090.11 21071.84 19871.81 19575.92 33853.01 21293.92 22548.04 32073.38 227
tfpn200view978.79 17477.43 17582.88 17592.21 8864.49 16492.05 14996.28 473.48 15571.75 19688.26 19560.07 13295.32 16545.16 33477.58 19588.83 220
thres40078.68 17677.43 17582.43 18592.21 8864.49 16492.05 14996.28 473.48 15571.75 19688.26 19560.07 13295.32 16545.16 33477.58 19587.48 241
ACMMPcopyleft81.49 12480.67 12583.93 15191.71 10362.90 21792.13 14392.22 12371.79 20071.68 19893.49 10850.32 23396.96 10178.47 12984.22 14691.93 178
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
mvsany_test168.77 29068.56 27969.39 34173.57 35545.88 36680.93 32660.88 38459.65 32671.56 19990.26 16843.22 28875.05 37474.26 15762.70 30787.25 250
CHOSEN 280x42077.35 19876.95 18678.55 27387.07 21362.68 22269.71 36582.95 33768.80 25371.48 20087.27 21466.03 6084.00 35276.47 14082.81 15288.95 219
IS-MVSNet80.14 14879.41 14782.33 18987.91 19260.08 27291.97 15588.27 28372.90 16871.44 20191.73 14361.44 11793.66 23262.47 26386.53 12793.24 140
GeoE78.90 17077.43 17583.29 16888.95 16462.02 23392.31 13686.23 30870.24 23571.34 20289.27 18054.43 19794.04 21863.31 25580.81 17093.81 127
PatchmatchNetpermissive77.46 19674.63 21385.96 7889.55 14870.35 3079.97 33789.55 23172.23 18470.94 20376.91 33057.03 16192.79 25454.27 29781.17 16594.74 85
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
thisisatest053081.15 12880.07 13384.39 13888.26 18265.63 14191.40 17794.62 3471.27 21770.93 20489.18 18172.47 2996.04 13465.62 23876.89 20491.49 182
SDMVSNet80.26 14578.88 15584.40 13789.25 15567.63 9285.35 29093.02 9376.77 10870.84 20587.12 21547.95 25896.09 12985.04 7674.55 21689.48 216
sd_testset77.08 20275.37 20582.20 19589.25 15562.11 23282.06 31589.09 25276.77 10870.84 20587.12 21541.43 29495.01 17367.23 22074.55 21689.48 216
AdaColmapbinary78.94 16977.00 18584.76 12196.34 1765.86 13692.66 12687.97 29262.18 30770.56 20792.37 13243.53 28697.35 7264.50 24782.86 15091.05 195
cascas78.18 18575.77 20085.41 9687.14 21169.11 5392.96 11291.15 17166.71 27170.47 20886.07 22837.49 31896.48 12070.15 19079.80 17690.65 198
thres600view778.00 18776.66 18982.03 20491.93 9663.69 19491.30 18796.33 172.43 17870.46 20987.89 20460.31 12794.92 17842.64 34676.64 20587.48 241
thres100view90078.37 18277.01 18482.46 18491.89 9963.21 20791.19 19396.33 172.28 18370.45 21087.89 20460.31 12795.32 16545.16 33477.58 19588.83 220
CVMVSNet74.04 24474.27 22173.33 32085.33 24243.94 37089.53 24088.39 27854.33 34870.37 21190.13 17249.17 24784.05 35061.83 26779.36 17991.99 177
GA-MVS78.33 18476.23 19484.65 12783.65 27166.30 12691.44 17390.14 20976.01 11670.32 21284.02 25042.50 29094.72 18370.98 18277.00 20392.94 151
mvs_anonymous81.36 12679.99 13685.46 9490.39 13168.40 7086.88 28490.61 19074.41 13370.31 21384.67 24263.79 8792.32 27473.13 16085.70 13295.67 46
IB-MVS77.80 482.18 11280.46 13187.35 3989.14 16070.28 3195.59 2695.17 1778.85 7670.19 21485.82 23170.66 3597.67 5172.19 17466.52 27794.09 113
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
TAPA-MVS70.22 1274.94 23673.53 23279.17 26690.40 13052.07 33589.19 24889.61 23062.69 30470.07 21592.67 12448.89 25194.32 20138.26 36079.97 17491.12 194
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
SCA75.82 22472.76 24185.01 11086.63 22070.08 3281.06 32589.19 24571.60 20970.01 21677.09 32845.53 27790.25 30360.43 27373.27 22894.68 87
XXY-MVS77.94 19076.44 19182.43 18582.60 28264.44 16892.01 15191.83 14273.59 15470.00 21785.82 23154.43 19794.76 18069.63 19568.02 26788.10 236
CR-MVSNet73.79 24870.82 26382.70 17983.15 27667.96 8370.25 36284.00 32873.67 15369.97 21872.41 34857.82 15489.48 31452.99 30373.13 22990.64 199
RPMNet70.42 27665.68 29584.63 12983.15 27667.96 8370.25 36290.45 19246.83 36869.97 21865.10 36756.48 17495.30 16835.79 36573.13 22990.64 199
UniMVSNet (Re)77.58 19576.78 18779.98 24884.11 26560.80 25591.76 16593.17 8876.56 11269.93 22084.78 24163.32 9892.36 27264.89 24562.51 31086.78 256
PCF-MVS73.15 979.29 16277.63 17284.29 14286.06 23065.96 13487.03 28091.10 17369.86 24069.79 22190.64 15757.54 15796.59 11464.37 24882.29 15390.32 202
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
v2v48277.42 19775.65 20382.73 17880.38 30367.13 10591.85 16090.23 20675.09 12769.37 22283.39 25753.79 20494.44 19971.77 17665.00 28986.63 260
PatchT69.11 28765.37 29980.32 23782.07 28963.68 19567.96 37187.62 29450.86 35769.37 22265.18 36657.09 16088.53 32041.59 34966.60 27688.74 224
Vis-MVSNet (Re-imp)79.24 16379.57 14278.24 27888.46 17452.29 33490.41 21589.12 25074.24 13769.13 22491.91 13965.77 6390.09 31059.00 28288.09 10792.33 166
BH-w/o80.49 14179.30 15084.05 14990.83 12464.36 17593.60 9189.42 23674.35 13569.09 22590.15 17155.23 18695.61 15364.61 24686.43 12992.17 175
baseline283.68 9183.42 8284.48 13587.37 20666.00 13290.06 22695.93 879.71 5969.08 22690.39 16477.92 696.28 12378.91 12581.38 16491.16 193
v114476.73 21074.88 21082.27 19180.23 30766.60 11991.68 16990.21 20873.69 15169.06 22781.89 27252.73 21594.40 20069.21 20165.23 28685.80 279
dmvs_re76.93 20375.36 20681.61 21087.78 19860.71 26180.00 33687.99 29079.42 6269.02 22889.47 17946.77 26494.32 20163.38 25474.45 21989.81 209
Baseline_NR-MVSNet73.99 24572.83 24077.48 28580.78 29859.29 28491.79 16284.55 32368.85 25268.99 22980.70 29356.16 17592.04 28062.67 26160.98 32581.11 336
FIs79.47 16079.41 14779.67 25785.95 23259.40 28091.68 16993.94 5678.06 8668.96 23088.28 19366.61 5691.77 28566.20 23274.99 21587.82 237
UniMVSNet_NR-MVSNet78.15 18677.55 17379.98 24884.46 25960.26 26892.25 13893.20 8677.50 9868.88 23186.61 22066.10 5992.13 27766.38 22962.55 30887.54 239
DU-MVS76.86 20475.84 19979.91 25182.96 27960.26 26891.26 18891.54 15476.46 11368.88 23186.35 22356.16 17592.13 27766.38 22962.55 30887.35 246
miper_enhance_ethall78.86 17177.97 16781.54 21288.00 19165.17 15291.41 17589.15 24875.19 12668.79 23383.98 25167.17 5192.82 25172.73 16665.30 28386.62 261
XVG-OURS-SEG-HR74.70 23873.08 23679.57 26078.25 33357.33 30880.49 32887.32 29663.22 29768.76 23490.12 17444.89 28291.59 28970.55 18874.09 22389.79 210
XVG-OURS74.25 24272.46 24879.63 25878.45 33157.59 30480.33 33087.39 29563.86 29068.76 23489.62 17840.50 29791.72 28669.00 20374.25 22189.58 213
V4276.46 21274.55 21682.19 19679.14 32167.82 8690.26 22189.42 23673.75 14968.63 23681.89 27251.31 22794.09 21271.69 17864.84 29084.66 297
PS-MVSNAJss77.26 19976.31 19380.13 24480.64 30159.16 28590.63 21291.06 17872.80 16968.58 23784.57 24453.55 20693.96 22372.97 16171.96 24087.27 249
v119275.98 22073.92 22782.15 19779.73 31166.24 12891.22 19089.75 22372.67 17168.49 23881.42 28249.86 23994.27 20567.08 22165.02 28885.95 276
tpm cat175.30 23172.21 25084.58 13188.52 17167.77 8778.16 34688.02 28961.88 31268.45 23976.37 33460.65 12494.03 22053.77 30074.11 22291.93 178
v14419276.05 21874.03 22582.12 19979.50 31566.55 12191.39 17989.71 22972.30 18268.17 24081.33 28451.75 22294.03 22067.94 21264.19 29685.77 280
v192192075.63 22873.49 23382.06 20379.38 31666.35 12491.07 19789.48 23271.98 19067.99 24181.22 28749.16 24893.90 22666.56 22564.56 29585.92 278
Effi-MVS+-dtu76.14 21475.28 20878.72 27283.22 27555.17 32289.87 23287.78 29375.42 12267.98 24281.43 28145.08 28192.52 26675.08 14971.63 24188.48 229
mvsmamba76.85 20675.71 20280.25 24183.07 27859.16 28591.44 17380.64 34676.84 10567.95 24386.33 22546.17 27494.24 20876.06 14272.92 23287.36 245
114514_t79.17 16477.67 17083.68 15895.32 2965.53 14592.85 11691.60 15363.49 29367.92 24490.63 15946.65 26695.72 14967.01 22283.54 14789.79 210
test_fmvs265.78 31264.84 30068.60 34566.54 37341.71 37483.27 30569.81 37254.38 34767.91 24584.54 24515.35 37881.22 36975.65 14466.16 27982.88 316
tttt051779.50 15978.53 15982.41 18887.22 20961.43 24689.75 23694.76 2769.29 24667.91 24588.06 20272.92 2595.63 15162.91 25973.90 22690.16 204
3Dnovator73.91 682.69 10780.82 12288.31 2389.57 14671.26 1892.60 12894.39 4578.84 7767.89 24792.48 12948.42 25298.52 2868.80 20694.40 3495.15 71
WR-MVS76.76 20975.74 20179.82 25484.60 25562.27 23092.60 12892.51 11476.06 11567.87 24885.34 23456.76 16790.24 30662.20 26463.69 30386.94 254
dp75.01 23572.09 25183.76 15389.28 15466.22 12979.96 33889.75 22371.16 21867.80 24977.19 32751.81 22192.54 26550.39 30871.44 24592.51 163
TranMVSNet+NR-MVSNet75.86 22374.52 21779.89 25282.44 28460.64 26491.37 18291.37 16176.63 11067.65 25086.21 22752.37 21891.55 29061.84 26660.81 32687.48 241
cl2277.94 19076.78 18781.42 21487.57 20064.93 16090.67 20888.86 26372.45 17767.63 25182.68 26464.07 8292.91 24971.79 17565.30 28386.44 262
131480.70 13778.95 15485.94 7987.77 19967.56 9387.91 26892.55 11372.17 18767.44 25293.09 11250.27 23597.04 9271.68 17987.64 11293.23 141
3Dnovator+73.60 782.10 11680.60 12886.60 5990.89 12266.80 11495.20 3493.44 7874.05 14067.42 25392.49 12849.46 24297.65 5570.80 18491.68 7295.33 59
v124075.21 23372.98 23881.88 20579.20 31866.00 13290.75 20689.11 25171.63 20867.41 25481.22 28747.36 26293.87 22765.46 24164.72 29385.77 280
QAPM79.95 15377.39 17987.64 3089.63 14571.41 1793.30 10193.70 6665.34 28267.39 25591.75 14247.83 25998.96 1657.71 28689.81 9392.54 161
miper_ehance_all_eth77.60 19476.44 19181.09 22685.70 23964.41 17190.65 20988.64 27372.31 18167.37 25682.52 26564.77 7692.64 26370.67 18665.30 28386.24 266
v14876.19 21374.47 21881.36 21580.05 30964.44 16891.75 16790.23 20673.68 15267.13 25780.84 29255.92 18093.86 22968.95 20461.73 31985.76 282
tt080573.07 25270.73 26480.07 24578.37 33257.05 31087.78 27092.18 12661.23 31667.04 25886.49 22231.35 34794.58 19065.06 24467.12 27288.57 227
GBi-Net75.65 22673.83 22881.10 22388.85 16565.11 15490.01 22890.32 19870.84 22567.04 25880.25 30248.03 25491.54 29159.80 27869.34 25486.64 257
test175.65 22673.83 22881.10 22388.85 16565.11 15490.01 22890.32 19870.84 22567.04 25880.25 30248.03 25491.54 29159.80 27869.34 25486.64 257
FMVSNet377.73 19376.04 19682.80 17691.20 11768.99 5891.87 15891.99 13173.35 15767.04 25883.19 25956.62 17192.14 27659.80 27869.34 25487.28 248
BH-untuned78.68 17677.08 18283.48 16589.84 14063.74 18992.70 12288.59 27471.57 21066.83 26288.65 18651.75 22295.39 16359.03 28184.77 13891.32 189
FC-MVSNet-test77.99 18878.08 16577.70 28184.89 25255.51 32090.27 22093.75 6576.87 10366.80 26387.59 20865.71 6490.23 30762.89 26073.94 22487.37 244
c3_l76.83 20875.47 20480.93 23085.02 25064.18 18190.39 21688.11 28771.66 20366.65 26481.64 27763.58 9492.56 26469.31 20062.86 30586.04 273
FMVSNet276.07 21574.01 22682.26 19388.85 16567.66 9091.33 18591.61 15270.84 22565.98 26582.25 26848.03 25492.00 28158.46 28368.73 26287.10 251
eth_miper_zixun_eth75.96 22274.40 21980.66 23284.66 25463.02 21189.28 24588.27 28371.88 19565.73 26681.65 27659.45 13892.81 25268.13 20960.53 32886.14 269
ACMM69.62 1374.34 24072.73 24379.17 26684.25 26457.87 29890.36 21789.93 21763.17 29965.64 26786.04 23037.79 31694.10 21165.89 23471.52 24385.55 285
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
cl____76.07 21574.67 21180.28 23985.15 24661.76 23990.12 22488.73 26871.16 21865.43 26881.57 27961.15 11892.95 24466.54 22662.17 31286.13 271
DIV-MVS_self_test76.07 21574.67 21180.28 23985.14 24761.75 24090.12 22488.73 26871.16 21865.42 26981.60 27861.15 11892.94 24866.54 22662.16 31486.14 269
Fast-Effi-MVS+-dtu75.04 23473.37 23480.07 24580.86 29659.52 27991.20 19285.38 31571.90 19365.20 27084.84 24041.46 29392.97 24366.50 22872.96 23187.73 238
IterMVS-LS76.49 21175.18 20980.43 23684.49 25862.74 22090.64 21088.80 26572.40 17965.16 27181.72 27560.98 12192.27 27567.74 21464.65 29486.29 264
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
LPG-MVS_test75.82 22474.58 21579.56 26184.31 26259.37 28190.44 21389.73 22669.49 24364.86 27288.42 18838.65 30494.30 20372.56 16872.76 23385.01 294
LGP-MVS_train79.56 26184.31 26259.37 28189.73 22669.49 24364.86 27288.42 18838.65 30494.30 20372.56 16872.76 23385.01 294
UniMVSNet_ETH3D72.74 25970.53 26679.36 26378.62 33056.64 31385.01 29289.20 24463.77 29164.84 27484.44 24634.05 33591.86 28363.94 25070.89 24889.57 214
MIMVSNet71.64 26768.44 28181.23 21881.97 29064.44 16873.05 35888.80 26569.67 24264.59 27574.79 34232.79 33987.82 32753.99 29876.35 20891.42 184
RRT_MVS74.44 23972.97 23978.84 27182.36 28557.66 30289.83 23488.79 26770.61 23164.58 27684.89 23939.24 30092.65 26270.11 19166.34 27886.21 267
OpenMVScopyleft70.45 1178.54 18075.92 19886.41 6885.93 23571.68 1692.74 11992.51 11466.49 27364.56 27791.96 13843.88 28598.10 3754.61 29590.65 8789.44 218
ADS-MVSNet266.90 30563.44 31277.26 29088.06 18860.70 26268.01 36975.56 35757.57 33364.48 27869.87 35838.68 30284.10 34940.87 35167.89 26886.97 252
ADS-MVSNet68.54 29364.38 30881.03 22788.06 18866.90 11168.01 36984.02 32757.57 33364.48 27869.87 35838.68 30289.21 31640.87 35167.89 26886.97 252
Anonymous2023121173.08 25170.39 26781.13 22190.62 12663.33 20591.40 17790.06 21351.84 35464.46 28080.67 29536.49 32694.07 21463.83 25164.17 29785.98 275
PLCcopyleft68.80 1475.23 23273.68 23179.86 25392.93 7058.68 29190.64 21088.30 28160.90 31764.43 28190.53 16042.38 29194.57 19256.52 28876.54 20686.33 263
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
tpmvs72.88 25769.76 27382.22 19490.98 11967.05 10778.22 34588.30 28163.10 30064.35 28274.98 34155.09 18994.27 20543.25 34069.57 25385.34 290
test_djsdf73.76 24972.56 24677.39 28777.00 34353.93 32889.07 25090.69 18565.80 27763.92 28382.03 27143.14 28992.67 25972.83 16368.53 26385.57 284
JIA-IIPM66.06 30962.45 31876.88 29681.42 29454.45 32757.49 38488.67 27149.36 36163.86 28446.86 38256.06 17890.25 30349.53 31368.83 26085.95 276
CNLPA74.31 24172.30 24980.32 23791.49 11061.66 24290.85 20280.72 34556.67 34163.85 28590.64 15746.75 26590.84 29853.79 29975.99 21188.47 231
PatchMatch-RL72.06 26569.98 26878.28 27689.51 14955.70 31983.49 30183.39 33561.24 31563.72 28682.76 26234.77 33293.03 24253.37 30277.59 19486.12 272
FMVSNet172.71 26069.91 27181.10 22383.60 27265.11 15490.01 22890.32 19863.92 28963.56 28780.25 30236.35 32791.54 29154.46 29666.75 27586.64 257
pmmvs473.92 24671.81 25580.25 24179.17 31965.24 15087.43 27687.26 29867.64 26563.46 28883.91 25248.96 25091.53 29462.94 25865.49 28283.96 301
pmmvs573.35 25071.52 25778.86 27078.64 32960.61 26591.08 19586.90 30067.69 26263.32 28983.64 25344.33 28490.53 30062.04 26566.02 28085.46 287
v875.35 23073.26 23581.61 21080.67 30066.82 11289.54 23989.27 24171.65 20463.30 29080.30 30154.99 19094.06 21567.33 21962.33 31183.94 302
Syy-MVS69.65 28369.52 27570.03 33987.87 19443.21 37288.07 26489.01 25672.91 16663.11 29188.10 19945.28 28085.54 34222.07 38569.23 25781.32 334
myMVS_eth3d72.58 26472.74 24272.10 33287.87 19449.45 34988.07 26489.01 25672.91 16663.11 29188.10 19963.63 9085.54 34232.73 37469.23 25781.32 334
v1074.77 23772.54 24781.46 21380.33 30566.71 11689.15 24989.08 25370.94 22363.08 29379.86 30652.52 21694.04 21865.70 23762.17 31283.64 304
ACMP71.68 1075.58 22974.23 22279.62 25984.97 25159.64 27690.80 20489.07 25470.39 23362.95 29487.30 21338.28 30893.87 22772.89 16271.45 24485.36 289
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
pm-mvs172.89 25671.09 26078.26 27779.10 32257.62 30390.80 20489.30 24067.66 26362.91 29581.78 27449.11 24992.95 24460.29 27558.89 33684.22 300
jajsoiax73.05 25371.51 25877.67 28277.46 34054.83 32488.81 25490.04 21469.13 25062.85 29683.51 25531.16 34892.75 25570.83 18369.80 25085.43 288
mvs_tets72.71 26071.11 25977.52 28377.41 34154.52 32688.45 26089.76 22268.76 25562.70 29783.26 25829.49 35292.71 25670.51 18969.62 25285.34 290
MS-PatchMatch77.90 19276.50 19082.12 19985.99 23169.95 3691.75 16792.70 10473.97 14362.58 29884.44 24641.11 29595.78 14163.76 25292.17 6480.62 342
test0.0.03 172.76 25872.71 24472.88 32480.25 30647.99 35591.22 19089.45 23471.51 21362.51 29987.66 20753.83 20285.06 34650.16 31067.84 27085.58 283
anonymousdsp71.14 27269.37 27676.45 29872.95 35754.71 32584.19 29688.88 26161.92 31162.15 30079.77 30838.14 31191.44 29668.90 20567.45 27183.21 313
MVP-Stereo77.12 20176.23 19479.79 25581.72 29166.34 12589.29 24490.88 18270.56 23262.01 30182.88 26149.34 24394.13 21065.55 24093.80 4178.88 356
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
CL-MVSNet_self_test69.92 28068.09 28475.41 30473.25 35655.90 31890.05 22789.90 21869.96 23861.96 30276.54 33151.05 22987.64 33049.51 31450.59 35882.70 322
bld_raw_dy_0_6471.59 26969.71 27477.22 29177.82 33958.12 29687.71 27273.66 36268.01 26061.90 30384.29 24833.68 33688.43 32169.91 19370.43 24985.11 293
miper_lstm_enhance73.05 25371.73 25677.03 29283.80 26858.32 29481.76 31688.88 26169.80 24161.01 30478.23 31857.19 15987.51 33365.34 24259.53 33385.27 292
NR-MVSNet76.05 21874.59 21480.44 23582.96 27962.18 23190.83 20391.73 14577.12 10260.96 30586.35 22359.28 14291.80 28460.74 27161.34 32387.35 246
tfpnnormal70.10 27867.36 28678.32 27583.45 27460.97 25388.85 25392.77 10264.85 28460.83 30678.53 31543.52 28793.48 23531.73 37761.70 32080.52 343
IterMVS72.65 26370.83 26178.09 27982.17 28762.96 21387.64 27486.28 30671.56 21160.44 30778.85 31445.42 27986.66 33763.30 25661.83 31684.65 298
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
testing370.38 27770.83 26169.03 34385.82 23643.93 37190.72 20790.56 19168.06 25960.24 30886.82 21964.83 7484.12 34826.33 38164.10 29879.04 355
WR-MVS_H70.59 27469.94 27072.53 32681.03 29551.43 33887.35 27792.03 13067.38 26660.23 30980.70 29355.84 18183.45 35646.33 33058.58 33882.72 320
TransMVSNet (Re)70.07 27967.66 28577.31 28980.62 30259.13 28791.78 16484.94 32065.97 27660.08 31080.44 29850.78 23091.87 28248.84 31645.46 36680.94 338
CP-MVSNet70.50 27569.91 27172.26 32980.71 29951.00 34187.23 27990.30 20267.84 26159.64 31182.69 26350.23 23682.30 36451.28 30559.28 33483.46 309
IterMVS-SCA-FT71.55 27069.97 26976.32 29981.48 29260.67 26387.64 27485.99 31166.17 27559.50 31278.88 31345.53 27783.65 35462.58 26261.93 31584.63 299
Patchmtry67.53 30263.93 30978.34 27482.12 28864.38 17268.72 36684.00 32848.23 36559.24 31372.41 34857.82 15489.27 31546.10 33156.68 34381.36 333
D2MVS73.80 24772.02 25279.15 26879.15 32062.97 21288.58 25890.07 21172.94 16459.22 31478.30 31642.31 29292.70 25865.59 23972.00 23981.79 331
PS-CasMVS69.86 28269.13 27772.07 33380.35 30450.57 34387.02 28189.75 22367.27 26759.19 31582.28 26746.58 26782.24 36550.69 30759.02 33583.39 311
PEN-MVS69.46 28568.56 27972.17 33179.27 31749.71 34786.90 28389.24 24267.24 27059.08 31682.51 26647.23 26383.54 35548.42 31857.12 33983.25 312
RPSCF64.24 31961.98 32171.01 33776.10 34745.00 36775.83 35475.94 35446.94 36758.96 31784.59 24331.40 34682.00 36647.76 32460.33 33286.04 273
XVG-ACMP-BASELINE68.04 29765.53 29775.56 30374.06 35452.37 33378.43 34285.88 31262.03 30958.91 31881.21 28920.38 37291.15 29760.69 27268.18 26583.16 314
v7n71.31 27168.65 27879.28 26476.40 34560.77 25786.71 28589.45 23464.17 28858.77 31978.24 31744.59 28393.54 23357.76 28561.75 31883.52 307
ET-MVSNet_ETH3D84.01 8183.15 8986.58 6190.78 12570.89 2494.74 4794.62 3481.44 3858.19 32093.64 10473.64 2392.35 27382.66 9478.66 18796.50 24
DTE-MVSNet68.46 29467.33 28771.87 33577.94 33749.00 35286.16 28888.58 27566.36 27458.19 32082.21 26946.36 26883.87 35344.97 33755.17 34682.73 319
Anonymous2023120667.53 30265.78 29372.79 32574.95 35047.59 35788.23 26287.32 29661.75 31458.07 32277.29 32537.79 31687.29 33542.91 34263.71 30283.48 308
KD-MVS_2432*160069.03 28866.37 29177.01 29385.56 24061.06 25181.44 32190.25 20467.27 26758.00 32376.53 33254.49 19487.63 33148.04 32035.77 38082.34 326
miper_refine_blended69.03 28866.37 29177.01 29385.56 24061.06 25181.44 32190.25 20467.27 26758.00 32376.53 33254.49 19487.63 33148.04 32035.77 38082.34 326
PVSNet_068.08 1571.81 26668.32 28382.27 19184.68 25362.31 22988.68 25690.31 20175.84 11757.93 32580.65 29637.85 31594.19 20969.94 19229.05 38890.31 203
DP-MVS69.90 28166.48 28880.14 24395.36 2862.93 21489.56 23776.11 35350.27 35957.69 32685.23 23539.68 29995.73 14533.35 37071.05 24781.78 332
pmmvs667.57 30164.76 30276.00 30272.82 35953.37 33088.71 25586.78 30453.19 35057.58 32778.03 32035.33 33192.41 26955.56 29254.88 34882.21 328
F-COLMAP70.66 27368.44 28177.32 28886.37 22655.91 31788.00 26686.32 30556.94 33957.28 32888.07 20133.58 33792.49 26751.02 30668.37 26483.55 305
Patchmatch-RL test68.17 29664.49 30679.19 26571.22 36153.93 32870.07 36471.54 37069.22 24756.79 32962.89 37056.58 17288.61 31769.53 19752.61 35395.03 76
LS3D69.17 28666.40 29077.50 28491.92 9756.12 31685.12 29180.37 34746.96 36656.50 33087.51 21037.25 31993.71 23032.52 37679.40 17882.68 323
dmvs_testset65.55 31366.45 28962.86 35579.87 31022.35 39876.55 35071.74 36877.42 10155.85 33187.77 20651.39 22680.69 37031.51 38065.92 28185.55 285
ppachtmachnet_test67.72 29963.70 31079.77 25678.92 32366.04 13188.68 25682.90 33860.11 32455.45 33275.96 33739.19 30190.55 29939.53 35552.55 35482.71 321
test_fmvs356.82 33754.86 34062.69 35653.59 38635.47 38475.87 35365.64 37943.91 37455.10 33371.43 3566.91 39274.40 37768.64 20752.63 35278.20 361
LTVRE_ROB59.60 1966.27 30863.54 31174.45 31284.00 26751.55 33767.08 37283.53 33258.78 33054.94 33480.31 30034.54 33393.23 23940.64 35368.03 26678.58 359
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
MSDG69.54 28465.73 29480.96 22885.11 24963.71 19284.19 29683.28 33656.95 33854.50 33584.03 24931.50 34596.03 13542.87 34469.13 25983.14 315
EU-MVSNet64.01 32063.01 31467.02 35174.40 35338.86 38283.27 30586.19 30945.11 37154.27 33681.15 29036.91 32580.01 37248.79 31757.02 34082.19 329
testgi64.48 31862.87 31669.31 34271.24 36040.62 37785.49 28979.92 34865.36 28154.18 33783.49 25623.74 36584.55 34741.60 34860.79 32782.77 318
ITE_SJBPF70.43 33874.44 35247.06 36277.32 35160.16 32354.04 33883.53 25423.30 36684.01 35143.07 34161.58 32280.21 348
OpenMVS_ROBcopyleft61.12 1866.39 30762.92 31576.80 29776.51 34457.77 29989.22 24683.41 33455.48 34553.86 33977.84 32126.28 36193.95 22434.90 36768.76 26178.68 358
FMVSNet568.04 29765.66 29675.18 30784.43 26057.89 29783.54 30086.26 30761.83 31353.64 34073.30 34537.15 32285.08 34548.99 31561.77 31782.56 325
ACMH+65.35 1667.65 30064.55 30476.96 29584.59 25657.10 30988.08 26380.79 34458.59 33253.00 34181.09 29126.63 36092.95 24446.51 32861.69 32180.82 339
our_test_368.29 29564.69 30379.11 26978.92 32364.85 16188.40 26185.06 31860.32 32252.68 34276.12 33640.81 29689.80 31344.25 33955.65 34482.67 324
test_040264.54 31761.09 32374.92 30984.10 26660.75 25987.95 26779.71 34952.03 35252.41 34377.20 32632.21 34391.64 28723.14 38361.03 32472.36 372
LCM-MVSNet-Re72.93 25571.84 25476.18 30188.49 17248.02 35480.07 33570.17 37173.96 14452.25 34480.09 30549.98 23788.24 32367.35 21784.23 14592.28 169
test20.0363.83 32162.65 31767.38 35070.58 36639.94 37886.57 28684.17 32563.29 29651.86 34577.30 32437.09 32382.47 36238.87 35954.13 35079.73 349
OurMVSNet-221017-064.68 31662.17 32072.21 33076.08 34847.35 35880.67 32781.02 34356.19 34251.60 34679.66 31027.05 35988.56 31953.60 30153.63 35180.71 341
ACMH63.93 1768.62 29164.81 30180.03 24785.22 24563.25 20687.72 27184.66 32260.83 31851.57 34779.43 31227.29 35894.96 17541.76 34764.84 29081.88 330
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
DSMNet-mixed56.78 33854.44 34163.79 35463.21 37729.44 39364.43 37564.10 38042.12 37851.32 34871.60 35331.76 34475.04 37536.23 36265.20 28786.87 255
pmmvs-eth3d65.53 31462.32 31975.19 30669.39 36959.59 27782.80 31283.43 33362.52 30551.30 34972.49 34632.86 33887.16 33655.32 29350.73 35778.83 357
PM-MVS59.40 33456.59 33667.84 34663.63 37641.86 37376.76 34963.22 38159.01 32951.07 35072.27 35111.72 38483.25 35861.34 26850.28 35978.39 360
Patchmatch-test65.86 31060.94 32480.62 23483.75 26958.83 28958.91 38375.26 35944.50 37350.95 35177.09 32858.81 14687.90 32535.13 36664.03 29995.12 72
SixPastTwentyTwo64.92 31561.78 32274.34 31478.74 32749.76 34683.42 30479.51 35062.86 30150.27 35277.35 32330.92 35090.49 30145.89 33247.06 36382.78 317
EG-PatchMatch MVS68.55 29265.41 29877.96 28078.69 32862.93 21489.86 23389.17 24660.55 31950.27 35277.73 32222.60 36794.06 21547.18 32672.65 23576.88 364
ambc69.61 34061.38 38141.35 37549.07 38985.86 31350.18 35466.40 36410.16 38688.14 32445.73 33344.20 36779.32 353
test_vis1_rt59.09 33657.31 33564.43 35368.44 37146.02 36583.05 31048.63 39351.96 35349.57 35563.86 36916.30 37680.20 37171.21 18162.79 30667.07 378
KD-MVS_self_test60.87 33058.60 33067.68 34866.13 37439.93 37975.63 35584.70 32157.32 33649.57 35568.45 36129.55 35182.87 36048.09 31947.94 36280.25 347
UnsupCasMVSNet_eth65.79 31163.10 31373.88 31670.71 36450.29 34581.09 32489.88 21972.58 17349.25 35774.77 34332.57 34187.43 33455.96 29141.04 37383.90 303
COLMAP_ROBcopyleft57.96 2062.98 32559.65 32772.98 32381.44 29353.00 33283.75 29975.53 35848.34 36448.81 35881.40 28324.14 36390.30 30232.95 37260.52 32975.65 367
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
USDC67.43 30464.51 30576.19 30077.94 33755.29 32178.38 34385.00 31973.17 15948.36 35980.37 29921.23 36992.48 26852.15 30464.02 30080.81 340
Anonymous2024052162.09 32659.08 32971.10 33667.19 37248.72 35383.91 29885.23 31750.38 35847.84 36071.22 35720.74 37085.51 34446.47 32958.75 33779.06 354
K. test v363.09 32459.61 32873.53 31976.26 34649.38 35183.27 30577.15 35264.35 28747.77 36172.32 35028.73 35487.79 32849.93 31236.69 37983.41 310
UnsupCasMVSNet_bld61.60 32857.71 33273.29 32168.73 37051.64 33678.61 34189.05 25557.20 33746.11 36261.96 37328.70 35588.60 31850.08 31138.90 37779.63 350
AllTest61.66 32758.06 33172.46 32779.57 31251.42 33980.17 33368.61 37451.25 35545.88 36381.23 28519.86 37486.58 33838.98 35757.01 34179.39 351
TestCases72.46 32779.57 31251.42 33968.61 37451.25 35545.88 36381.23 28519.86 37486.58 33838.98 35757.01 34179.39 351
lessismore_v073.72 31872.93 35847.83 35661.72 38345.86 36573.76 34428.63 35689.81 31147.75 32531.37 38583.53 306
N_pmnet50.55 34249.11 34554.88 36377.17 3424.02 40684.36 2952.00 40448.59 36245.86 36568.82 36032.22 34282.80 36131.58 37851.38 35677.81 362
mvsany_test348.86 34446.35 34756.41 35946.00 39231.67 38962.26 37747.25 39443.71 37545.54 36768.15 36210.84 38564.44 39157.95 28435.44 38273.13 369
MVS-HIRNet60.25 33255.55 33974.35 31384.37 26156.57 31471.64 36074.11 36134.44 38145.54 36742.24 38831.11 34989.81 31140.36 35476.10 21076.67 365
CMPMVSbinary48.56 2166.77 30664.41 30773.84 31770.65 36550.31 34477.79 34785.73 31445.54 37044.76 36982.14 27035.40 33090.14 30963.18 25774.54 21881.07 337
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MIMVSNet160.16 33357.33 33468.67 34469.71 36744.13 36978.92 34084.21 32455.05 34644.63 37071.85 35223.91 36481.54 36832.63 37555.03 34780.35 344
LF4IMVS54.01 34152.12 34259.69 35762.41 37939.91 38068.59 36768.28 37642.96 37744.55 37175.18 34014.09 38368.39 38341.36 35051.68 35570.78 373
pmmvs355.51 33951.50 34467.53 34957.90 38450.93 34280.37 32973.66 36240.63 37944.15 37264.75 36816.30 37678.97 37344.77 33840.98 37572.69 370
new-patchmatchnet59.30 33556.48 33767.79 34765.86 37544.19 36882.47 31381.77 34059.94 32543.65 37366.20 36527.67 35781.68 36739.34 35641.40 37277.50 363
TDRefinement55.28 34051.58 34366.39 35259.53 38346.15 36476.23 35272.80 36444.60 37242.49 37476.28 33515.29 37982.39 36333.20 37143.75 36870.62 374
test_f46.58 34543.45 34955.96 36045.18 39332.05 38861.18 37849.49 39233.39 38242.05 37562.48 3727.00 39165.56 38747.08 32743.21 37070.27 375
TinyColmap60.32 33156.42 33872.00 33478.78 32653.18 33178.36 34475.64 35652.30 35141.59 37675.82 33914.76 38188.35 32235.84 36354.71 34974.46 368
YYNet163.76 32360.14 32674.62 31178.06 33660.19 27183.46 30383.99 33056.18 34339.25 37771.56 35537.18 32183.34 35742.90 34348.70 36180.32 345
MDA-MVSNet_test_wron63.78 32260.16 32574.64 31078.15 33560.41 26683.49 30184.03 32656.17 34439.17 37871.59 35437.22 32083.24 35942.87 34448.73 36080.26 346
WB-MVS46.23 34644.94 34850.11 36762.13 38021.23 40076.48 35155.49 38645.89 36935.78 37961.44 37535.54 32972.83 3789.96 39421.75 38956.27 382
new_pmnet49.31 34346.44 34657.93 35862.84 37840.74 37668.47 36862.96 38236.48 38035.09 38057.81 37714.97 38072.18 37932.86 37346.44 36460.88 380
MDA-MVSNet-bldmvs61.54 32957.70 33373.05 32279.53 31457.00 31283.08 30981.23 34257.57 33334.91 38172.45 34732.79 33986.26 34035.81 36441.95 37175.89 366
SSC-MVS44.51 34843.35 35047.99 37161.01 38218.90 40274.12 35754.36 38743.42 37634.10 38260.02 37634.42 33470.39 3819.14 39619.57 39054.68 383
test_vis3_rt40.46 35237.79 35348.47 37044.49 39433.35 38766.56 37332.84 40132.39 38329.65 38339.13 3913.91 39968.65 38250.17 30940.99 37443.40 386
test_method38.59 35435.16 35748.89 36954.33 38521.35 39945.32 39053.71 3887.41 39628.74 38451.62 3808.70 38952.87 39433.73 36832.89 38472.47 371
FPMVS45.64 34743.10 35153.23 36551.42 38936.46 38364.97 37471.91 36729.13 38527.53 38561.55 3749.83 38765.01 38916.00 39155.58 34558.22 381
APD_test140.50 35137.31 35450.09 36851.88 38735.27 38559.45 38252.59 38921.64 38826.12 38657.80 3784.56 39666.56 38522.64 38439.09 37648.43 384
LCM-MVSNet40.54 35035.79 35554.76 36436.92 39930.81 39051.41 38769.02 37322.07 38724.63 38745.37 3844.56 39665.81 38633.67 36934.50 38367.67 376
PMMVS237.93 35533.61 35850.92 36646.31 39124.76 39660.55 38150.05 39028.94 38620.93 38847.59 3814.41 39865.13 38825.14 38218.55 39262.87 379
tmp_tt22.26 36323.75 36517.80 3805.23 40312.06 40535.26 39139.48 3982.82 39818.94 38944.20 38722.23 36824.64 39936.30 3619.31 39616.69 393
ANet_high40.27 35335.20 35655.47 36134.74 40034.47 38663.84 37671.56 36948.42 36318.80 39041.08 3899.52 38864.45 39020.18 3868.66 39767.49 377
testf132.77 35729.47 36042.67 37441.89 39630.81 39052.07 38543.45 39515.45 39118.52 39144.82 3852.12 40058.38 39216.05 38930.87 38638.83 387
APD_test232.77 35729.47 36042.67 37441.89 39630.81 39052.07 38543.45 39515.45 39118.52 39144.82 3852.12 40058.38 39216.05 38930.87 38638.83 387
DeepMVS_CXcopyleft34.71 37751.45 38824.73 39728.48 40331.46 38417.49 39352.75 3795.80 39442.60 39818.18 38719.42 39136.81 390
Gipumacopyleft34.91 35631.44 35945.30 37270.99 36339.64 38119.85 39472.56 36520.10 39016.16 39421.47 3955.08 39571.16 38013.07 39243.70 36925.08 392
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft26.43 2231.84 35928.16 36242.89 37325.87 40227.58 39450.92 38849.78 39121.37 38914.17 39540.81 3902.01 40266.62 3849.61 39538.88 37834.49 391
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive24.84 2324.35 36119.77 36738.09 37634.56 40126.92 39526.57 39238.87 39911.73 39511.37 39627.44 3921.37 40350.42 39511.41 39314.60 39336.93 389
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN24.61 36024.00 36426.45 37843.74 39518.44 40360.86 37939.66 39715.11 3939.53 39722.10 3946.52 39346.94 3968.31 39710.14 39413.98 394
EMVS23.76 36223.20 36625.46 37941.52 39816.90 40460.56 38038.79 40014.62 3948.99 39820.24 3977.35 39045.82 3977.25 3989.46 39513.64 395
wuyk23d11.30 36510.95 36812.33 38148.05 39019.89 40125.89 3931.92 4053.58 3973.12 3991.37 3990.64 40415.77 4006.23 3997.77 3981.35 396
EGC-MVSNET42.35 34938.09 35255.11 36274.57 35146.62 36371.63 36155.77 3850.04 3990.24 40062.70 37114.24 38274.91 37617.59 38846.06 36543.80 385
testmvs7.23 3679.62 3700.06 3830.04 4040.02 40884.98 2930.02 4060.03 4000.18 4011.21 4000.01 4060.02 4010.14 4000.01 3990.13 398
test1236.92 3689.21 3710.08 3820.03 4050.05 40781.65 3190.01 4070.02 4010.14 4020.85 4010.03 4050.02 4010.12 4010.00 4000.16 397
test_blank0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4000.00 399
uanet_test0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4000.00 399
DCPMVS0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4000.00 399
cdsmvs_eth3d_5k19.86 36426.47 3630.00 3840.00 4060.00 4090.00 39593.45 770.00 4020.00 40395.27 5649.56 2410.00 4030.00 4020.00 4000.00 399
pcd_1.5k_mvsjas4.46 3695.95 3720.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 40253.55 2060.00 4030.00 4020.00 4000.00 399
sosnet-low-res0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4000.00 399
sosnet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4000.00 399
uncertanet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4000.00 399
Regformer0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4000.00 399
ab-mvs-re7.91 36610.55 3690.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 40394.95 640.00 4070.00 4030.00 4020.00 4000.00 399
uanet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4000.00 399
WAC-MVS49.45 34931.56 379
MSC_two_6792asdad89.60 897.31 473.22 1095.05 2199.07 1392.01 2494.77 2596.51 21
No_MVS89.60 897.31 473.22 1095.05 2199.07 1392.01 2494.77 2596.51 21
eth-test20.00 406
eth-test0.00 406
OPU-MVS89.97 397.52 373.15 1296.89 597.00 983.82 299.15 295.72 597.63 397.62 2
save fliter93.84 4867.89 8595.05 3992.66 10778.19 84
test_0728_SECOND88.70 1696.45 1270.43 2996.64 994.37 4699.15 291.91 2794.90 2196.51 21
GSMVS94.68 87
sam_mvs157.85 15394.68 87
sam_mvs54.91 191
MTGPAbinary92.23 120
test_post178.95 33920.70 39653.05 21191.50 29560.43 273
test_post23.01 39356.49 17392.67 259
patchmatchnet-post67.62 36357.62 15690.25 303
MTMP93.77 8432.52 402
gm-plane-assit88.42 17667.04 10878.62 8191.83 14097.37 7076.57 139
test9_res89.41 3994.96 1895.29 63
agg_prior286.41 6694.75 2995.33 59
test_prior467.18 10493.92 73
test_prior86.42 6794.71 3567.35 9993.10 9296.84 10895.05 74
新几何291.41 175
旧先验191.94 9560.74 26091.50 15794.36 8265.23 6891.84 6994.55 94
无先验92.71 12192.61 11162.03 30997.01 9366.63 22493.97 119
原ACMM292.01 151
testdata296.09 12961.26 269
segment_acmp65.94 61
testdata189.21 24777.55 97
plane_prior786.94 21661.51 244
plane_prior687.23 20862.32 22850.66 231
plane_prior591.31 16395.55 15876.74 13778.53 18888.39 232
plane_prior489.14 183
plane_prior293.13 10578.81 78
plane_prior187.15 210
plane_prior62.42 22493.85 7779.38 6378.80 185
n20.00 408
nn0.00 408
door-mid66.01 378
test1193.01 94
door66.57 377
HQP5-MVS63.66 196
BP-MVS77.63 134
HQP3-MVS91.70 14978.90 183
HQP2-MVS51.63 224
NP-MVS87.41 20463.04 21090.30 166
ACMMP++_ref71.63 241
ACMMP++69.72 251
Test By Simon54.21 200