This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
MG-MVS87.11 3386.27 4389.62 797.79 176.27 494.96 4494.49 4478.74 8883.87 7592.94 12164.34 8596.94 10575.19 15494.09 3795.66 51
MCST-MVS91.08 191.46 389.94 497.66 273.37 897.13 395.58 1189.33 285.77 5496.26 3272.84 2699.38 192.64 1995.93 997.08 12
OPU-MVS89.97 397.52 373.15 1296.89 697.00 983.82 299.15 295.72 597.63 397.62 2
DVP-MVS++90.53 491.09 588.87 1697.31 469.91 4393.96 7194.37 5272.48 18492.07 996.85 1683.82 299.15 291.53 3197.42 497.55 4
MSC_two_6792asdad89.60 897.31 473.22 1095.05 2699.07 1392.01 2694.77 2696.51 25
No_MVS89.60 897.31 473.22 1095.05 2699.07 1392.01 2694.77 2696.51 25
DP-MVS Recon82.73 11481.65 12085.98 8497.31 467.06 11395.15 3791.99 13869.08 26176.50 15293.89 10354.48 20398.20 3570.76 19285.66 13492.69 165
CNVR-MVS90.32 690.89 788.61 2296.76 870.65 3296.47 1494.83 3084.83 1389.07 3296.80 1970.86 3699.06 1592.64 1995.71 1196.12 39
ZD-MVS96.63 965.50 15393.50 8270.74 23985.26 6295.19 6464.92 7897.29 7887.51 5893.01 55
NCCC89.07 1589.46 1587.91 2896.60 1069.05 6296.38 1694.64 3984.42 1486.74 4696.20 3466.56 6298.76 2389.03 4894.56 3395.92 45
IU-MVS96.46 1169.91 4395.18 2080.75 4995.28 192.34 2195.36 1496.47 29
SED-MVS89.94 990.36 1088.70 1896.45 1269.38 5496.89 694.44 4671.65 21492.11 797.21 476.79 999.11 692.34 2195.36 1497.62 2
test_241102_ONE96.45 1269.38 5494.44 4671.65 21492.11 797.05 776.79 999.11 6
test_0728_SECOND88.70 1896.45 1270.43 3596.64 1094.37 5299.15 291.91 2994.90 2296.51 25
DVP-MVScopyleft89.41 1389.73 1488.45 2596.40 1569.99 3996.64 1094.52 4271.92 20090.55 2096.93 1173.77 2199.08 1191.91 2994.90 2296.29 34
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072696.40 1569.99 3996.76 894.33 5471.92 20091.89 1197.11 673.77 21
AdaColmapbinary78.94 17977.00 19584.76 13096.34 1765.86 14392.66 13287.97 30162.18 31670.56 21792.37 13643.53 29497.35 7464.50 25582.86 15591.05 205
test_one_060196.32 1869.74 4994.18 5771.42 22590.67 1996.85 1674.45 18
test_part296.29 1968.16 8690.78 17
DPE-MVScopyleft88.77 1689.21 1687.45 4396.26 2067.56 10094.17 5894.15 5968.77 26490.74 1897.27 276.09 1298.49 2990.58 3994.91 2196.30 33
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MAR-MVS84.18 8783.43 8986.44 7396.25 2165.93 14294.28 5694.27 5674.41 14279.16 12195.61 4753.99 20898.88 2169.62 20293.26 5394.50 109
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
API-MVS82.28 12180.53 13987.54 4196.13 2270.59 3393.63 9291.04 18965.72 28875.45 16292.83 12656.11 18498.89 2064.10 25789.75 9793.15 152
APDe-MVScopyleft87.54 2687.84 2586.65 6496.07 2366.30 13394.84 4693.78 6669.35 25588.39 3496.34 3067.74 5397.66 5490.62 3893.44 5096.01 43
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
patch_mono-289.71 1190.99 685.85 9096.04 2463.70 20095.04 4195.19 1986.74 991.53 1595.15 6573.86 2097.58 5993.38 1492.00 6896.28 36
PAPR85.15 6984.47 7487.18 4896.02 2568.29 7991.85 16993.00 10376.59 11979.03 12295.00 6761.59 12397.61 5878.16 13789.00 10195.63 52
APD-MVScopyleft85.93 5485.99 5285.76 9495.98 2665.21 15893.59 9492.58 11966.54 28186.17 5095.88 4163.83 9197.00 9686.39 7192.94 5695.06 79
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
DeepC-MVS_fast79.48 287.95 2188.00 2487.79 3195.86 2768.32 7895.74 2294.11 6083.82 1783.49 7696.19 3564.53 8498.44 3183.42 9694.88 2596.61 19
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DP-MVS69.90 29166.48 29880.14 25295.36 2862.93 22289.56 24776.11 36350.27 36857.69 33585.23 24539.68 30795.73 15233.35 37971.05 25781.78 341
114514_t79.17 17477.67 18083.68 16695.32 2965.53 15292.85 12291.60 16163.49 30267.92 25490.63 16846.65 27395.72 15667.01 23083.54 15089.79 220
HPM-MVS++copyleft89.37 1489.95 1387.64 3495.10 3068.23 8495.24 3494.49 4482.43 2788.90 3396.35 2971.89 3498.63 2688.76 4996.40 696.06 40
CSCG86.87 3686.26 4588.72 1795.05 3170.79 3193.83 8395.33 1668.48 26877.63 13894.35 9073.04 2498.45 3084.92 8493.71 4696.92 15
dcpmvs_287.37 3087.55 2986.85 5695.04 3268.20 8590.36 22790.66 19779.37 7381.20 9293.67 10774.73 1596.55 12190.88 3692.00 6895.82 48
LFMVS84.34 8182.73 10589.18 1294.76 3373.25 994.99 4391.89 14471.90 20282.16 8693.49 11247.98 26497.05 9182.55 10184.82 13897.25 9
CDPH-MVS85.71 5985.46 6186.46 7294.75 3467.19 10993.89 7692.83 10870.90 23483.09 7995.28 5663.62 9697.36 7380.63 11694.18 3694.84 89
test_prior86.42 7494.71 3567.35 10693.10 9996.84 11195.05 80
test1287.09 5194.60 3668.86 6692.91 10582.67 8465.44 7197.55 6393.69 4794.84 89
test_yl84.28 8283.16 9687.64 3494.52 3769.24 5895.78 1995.09 2369.19 25881.09 9492.88 12457.00 17097.44 6881.11 11481.76 16996.23 37
DCV-MVSNet84.28 8283.16 9687.64 3494.52 3769.24 5895.78 1995.09 2369.19 25881.09 9492.88 12457.00 17097.44 6881.11 11481.76 16996.23 37
CANet89.61 1289.99 1288.46 2494.39 3969.71 5096.53 1393.78 6686.89 889.68 2895.78 4265.94 6699.10 992.99 1693.91 4196.58 22
test_894.19 4067.19 10994.15 6293.42 8671.87 20585.38 6095.35 5268.19 4896.95 104
TEST994.18 4167.28 10794.16 5993.51 8071.75 21185.52 5795.33 5368.01 5097.27 82
train_agg87.21 3287.42 3186.60 6694.18 4167.28 10794.16 5993.51 8071.87 20585.52 5795.33 5368.19 4897.27 8289.09 4694.90 2295.25 74
agg_prior94.16 4366.97 11793.31 8984.49 6896.75 114
PAPM_NR82.97 11081.84 11886.37 7694.10 4466.76 12287.66 28292.84 10769.96 24874.07 17793.57 11063.10 10897.50 6570.66 19490.58 8994.85 86
FOURS193.95 4561.77 24793.96 7191.92 14162.14 31786.57 47
VNet86.20 4885.65 5987.84 3093.92 4669.99 3995.73 2495.94 778.43 9086.00 5293.07 11858.22 15797.00 9685.22 7884.33 14496.52 24
9.1487.63 2793.86 4794.41 5394.18 5772.76 17986.21 4996.51 2566.64 6097.88 4490.08 4094.04 38
save fliter93.84 4867.89 9295.05 4092.66 11478.19 92
PVSNet_BlendedMVS83.38 10283.43 8983.22 17893.76 4967.53 10294.06 6493.61 7679.13 7981.00 9785.14 24663.19 10597.29 7887.08 6573.91 23584.83 304
PVSNet_Blended86.73 4186.86 3986.31 7993.76 4967.53 10296.33 1793.61 7682.34 2981.00 9793.08 11763.19 10597.29 7887.08 6591.38 7994.13 120
HFP-MVS84.73 7584.40 7685.72 9693.75 5165.01 16493.50 9993.19 9472.19 19479.22 12094.93 7059.04 15197.67 5181.55 10792.21 6394.49 110
iter_conf05_1186.99 3586.27 4389.15 1393.74 5272.45 1397.56 187.04 30988.32 492.60 596.57 2332.61 34897.45 6692.21 2495.80 1097.53 6
bld_raw_dy_0_6482.84 11280.75 13289.09 1493.74 5272.16 1593.16 11077.36 36089.69 174.55 17096.48 2732.35 35097.56 6292.21 2477.24 21297.53 6
Anonymous20240521177.96 19975.33 21885.87 8893.73 5464.52 17094.85 4585.36 32662.52 31476.11 15390.18 17829.43 36297.29 7868.51 21577.24 21295.81 49
testing9986.01 5285.47 6087.63 3893.62 5571.25 2493.47 10295.23 1880.42 5480.60 10291.95 14571.73 3596.50 12480.02 12182.22 16395.13 77
SD-MVS87.49 2787.49 3087.50 4293.60 5668.82 6893.90 7592.63 11776.86 11287.90 3695.76 4366.17 6397.63 5689.06 4791.48 7796.05 41
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
testing9185.93 5485.31 6387.78 3293.59 5771.47 2093.50 9995.08 2580.26 5680.53 10391.93 14670.43 3896.51 12380.32 11982.13 16595.37 61
ACMMPR84.37 7984.06 7885.28 11093.56 5864.37 18093.50 9993.15 9672.19 19478.85 12894.86 7356.69 17797.45 6681.55 10792.20 6494.02 127
testing1186.71 4286.44 4287.55 4093.54 5971.35 2293.65 9095.58 1181.36 4380.69 10092.21 14172.30 3096.46 12685.18 8083.43 15194.82 92
region2R84.36 8084.03 7985.36 10793.54 5964.31 18393.43 10492.95 10472.16 19778.86 12794.84 7456.97 17297.53 6481.38 11192.11 6694.24 114
TSAR-MVS + GP.87.96 2088.37 2086.70 6393.51 6165.32 15595.15 3793.84 6578.17 9385.93 5394.80 7575.80 1398.21 3489.38 4288.78 10296.59 20
PHI-MVS86.83 3986.85 4086.78 6193.47 6265.55 15195.39 3195.10 2271.77 21085.69 5696.52 2462.07 11898.77 2286.06 7495.60 1296.03 42
SR-MVS82.81 11382.58 10883.50 17293.35 6361.16 25992.23 14891.28 17564.48 29581.27 9195.28 5653.71 21295.86 14682.87 9888.77 10393.49 143
iter_conf0583.27 10482.70 10684.98 12093.32 6471.84 1894.16 5981.76 35082.74 2373.83 18088.40 20072.77 2794.61 19682.10 10375.21 22488.48 238
EPNet87.84 2388.38 1986.23 8093.30 6566.05 13795.26 3394.84 2987.09 788.06 3594.53 8166.79 5997.34 7583.89 9391.68 7395.29 68
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
XVS83.87 9383.47 8785.05 11793.22 6663.78 19492.92 11992.66 11473.99 15078.18 13294.31 9355.25 19197.41 7079.16 12791.58 7593.95 129
X-MVStestdata76.86 21574.13 23585.05 11793.22 6663.78 19492.92 11992.66 11473.99 15078.18 13210.19 40755.25 19197.41 7079.16 12791.58 7593.95 129
SMA-MVScopyleft88.14 1788.29 2187.67 3393.21 6868.72 7093.85 7894.03 6274.18 14791.74 1296.67 2165.61 7098.42 3389.24 4596.08 795.88 47
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
原ACMM184.42 14593.21 6864.27 18593.40 8865.39 28979.51 11592.50 13058.11 15996.69 11565.27 25193.96 3992.32 176
MVS_111021_HR86.19 4985.80 5687.37 4493.17 7069.79 4793.99 7093.76 6979.08 8178.88 12693.99 10162.25 11798.15 3685.93 7591.15 8394.15 119
CP-MVS83.71 9883.40 9284.65 13693.14 7163.84 19294.59 5092.28 12571.03 23277.41 14194.92 7155.21 19496.19 13181.32 11290.70 8793.91 131
DELS-MVS90.05 790.09 1189.94 493.14 7173.88 797.01 594.40 5088.32 485.71 5594.91 7274.11 1998.91 1787.26 6295.94 897.03 13
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
ZNCC-MVS85.33 6685.08 6786.06 8293.09 7365.65 14793.89 7693.41 8773.75 15879.94 11094.68 7860.61 13398.03 3882.63 10093.72 4594.52 107
DeepPCF-MVS81.17 189.72 1091.38 484.72 13293.00 7458.16 30496.72 994.41 4886.50 1090.25 2297.83 175.46 1498.67 2592.78 1895.49 1397.32 8
PLCcopyleft68.80 1475.23 24373.68 24279.86 26392.93 7558.68 30090.64 22088.30 29060.90 32664.43 29190.53 16942.38 29994.57 19956.52 29776.54 21786.33 272
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
testing22285.18 6884.69 7386.63 6592.91 7669.91 4392.61 13495.80 980.31 5580.38 10592.27 13868.73 4495.19 17775.94 14983.27 15394.81 93
MSP-MVS90.38 591.87 185.88 8792.83 7764.03 19093.06 11394.33 5482.19 3093.65 396.15 3785.89 197.19 8491.02 3597.75 196.43 30
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
mPP-MVS82.96 11182.44 11184.52 14292.83 7762.92 22492.76 12491.85 14871.52 22275.61 16094.24 9553.48 21696.99 9978.97 13090.73 8693.64 140
GST-MVS84.63 7784.29 7785.66 9892.82 7965.27 15693.04 11593.13 9773.20 16778.89 12394.18 9759.41 14797.85 4581.45 10992.48 6293.86 134
WTY-MVS86.32 4685.81 5587.85 2992.82 7969.37 5695.20 3595.25 1782.71 2481.91 8794.73 7667.93 5297.63 5679.55 12482.25 16296.54 23
PGM-MVS83.25 10582.70 10684.92 12192.81 8164.07 18990.44 22392.20 13171.28 22677.23 14494.43 8455.17 19597.31 7779.33 12691.38 7993.37 145
EI-MVSNet-Vis-set83.77 9683.67 8284.06 15692.79 8263.56 20691.76 17494.81 3179.65 6777.87 13594.09 9863.35 10397.90 4279.35 12579.36 18990.74 207
SF-MVS87.03 3487.09 3486.84 5792.70 8367.45 10593.64 9193.76 6970.78 23886.25 4896.44 2866.98 5797.79 4788.68 5094.56 3395.28 70
MVSTER82.47 11882.05 11483.74 16292.68 8469.01 6391.90 16693.21 9179.83 6272.14 20185.71 24374.72 1694.72 19175.72 15072.49 24687.50 249
CS-MVS-test86.14 5087.01 3583.52 16992.63 8559.36 29295.49 2891.92 14180.09 6085.46 5995.53 4961.82 12295.77 15086.77 6993.37 5195.41 58
MP-MVScopyleft85.02 7084.97 6985.17 11592.60 8664.27 18593.24 10792.27 12673.13 16979.63 11494.43 8461.90 11997.17 8585.00 8292.56 6094.06 125
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ETVMVS84.22 8683.71 8185.76 9492.58 8768.25 8392.45 14295.53 1479.54 6979.46 11691.64 15370.29 3994.18 21769.16 20882.76 15994.84 89
thres20079.66 16678.33 17083.66 16892.54 8865.82 14593.06 11396.31 374.90 13973.30 18488.66 19559.67 14395.61 16047.84 33278.67 19689.56 225
APD-MVS_3200maxsize81.64 13281.32 12382.59 19192.36 8958.74 29991.39 18891.01 19063.35 30479.72 11394.62 8051.82 22796.14 13379.71 12287.93 11092.89 163
新几何184.73 13192.32 9064.28 18491.46 16759.56 33679.77 11292.90 12256.95 17396.57 11963.40 26192.91 5793.34 146
EI-MVSNet-UG-set83.14 10782.96 9983.67 16792.28 9163.19 21691.38 19094.68 3779.22 7676.60 15093.75 10462.64 11297.76 4878.07 13878.01 20090.05 216
HPM-MVScopyleft83.25 10582.95 10084.17 15492.25 9262.88 22690.91 20891.86 14670.30 24477.12 14593.96 10256.75 17596.28 12982.04 10491.34 8193.34 146
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
HY-MVS76.49 584.28 8283.36 9487.02 5492.22 9367.74 9584.65 30394.50 4379.15 7882.23 8587.93 21266.88 5896.94 10580.53 11782.20 16496.39 32
tfpn200view978.79 18477.43 18582.88 18392.21 9464.49 17192.05 15796.28 473.48 16471.75 20688.26 20460.07 13995.32 17245.16 34377.58 20588.83 230
thres40078.68 18677.43 18582.43 19392.21 9464.49 17192.05 15796.28 473.48 16471.75 20688.26 20460.07 13995.32 17245.16 34377.58 20587.48 250
MM90.87 291.52 288.92 1592.12 9671.10 2897.02 496.04 688.70 391.57 1496.19 3570.12 4098.91 1796.83 195.06 1796.76 16
PS-MVSNAJ88.14 1787.61 2889.71 692.06 9776.72 195.75 2193.26 9083.86 1689.55 3096.06 3853.55 21397.89 4391.10 3393.31 5294.54 105
SR-MVS-dyc-post81.06 14180.70 13482.15 20592.02 9858.56 30190.90 20990.45 20162.76 31178.89 12394.46 8251.26 23595.61 16078.77 13386.77 12492.28 178
RE-MVS-def80.48 14092.02 9858.56 30190.90 20990.45 20162.76 31178.89 12394.46 8249.30 25178.77 13386.77 12492.28 178
MSLP-MVS++86.27 4785.91 5487.35 4592.01 10068.97 6595.04 4192.70 11179.04 8381.50 9096.50 2658.98 15296.78 11383.49 9593.93 4096.29 34
CS-MVS85.80 5786.65 4183.27 17792.00 10158.92 29795.31 3291.86 14679.97 6184.82 6595.40 5162.26 11695.51 16886.11 7392.08 6795.37 61
旧先验191.94 10260.74 26991.50 16594.36 8665.23 7391.84 7094.55 103
thres600view778.00 19776.66 19982.03 21291.93 10363.69 20191.30 19696.33 172.43 18770.46 21987.89 21360.31 13494.92 18642.64 35576.64 21687.48 250
LS3D69.17 29666.40 30077.50 29491.92 10456.12 32585.12 30080.37 35646.96 37556.50 33987.51 21937.25 32793.71 23832.52 38579.40 18882.68 332
GG-mvs-BLEND86.53 7191.91 10569.67 5275.02 36594.75 3378.67 13090.85 16577.91 794.56 20172.25 17893.74 4495.36 63
thres100view90078.37 19277.01 19482.46 19291.89 10663.21 21591.19 20396.33 172.28 19270.45 22087.89 21360.31 13495.32 17245.16 34377.58 20588.83 230
MTAPA83.91 9283.38 9385.50 10191.89 10665.16 16081.75 32692.23 12775.32 13380.53 10395.21 6356.06 18597.16 8784.86 8592.55 6194.18 116
sasdasda86.85 3786.25 4688.66 2091.80 10871.92 1693.54 9691.71 15480.26 5687.55 3895.25 6063.59 9896.93 10788.18 5184.34 14297.11 10
canonicalmvs86.85 3786.25 4688.66 2091.80 10871.92 1693.54 9691.71 15480.26 5687.55 3895.25 6063.59 9896.93 10788.18 5184.34 14297.11 10
TSAR-MVS + MP.88.11 1988.64 1786.54 7091.73 11068.04 8890.36 22793.55 7982.89 2191.29 1692.89 12372.27 3196.03 14287.99 5394.77 2695.54 56
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
ACMMPcopyleft81.49 13380.67 13583.93 15991.71 11162.90 22592.13 15192.22 13071.79 20971.68 20893.49 11250.32 24096.96 10378.47 13584.22 14891.93 188
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
BH-RMVSNet79.46 17177.65 18184.89 12291.68 11265.66 14693.55 9588.09 29772.93 17473.37 18391.12 16246.20 28096.12 13456.28 29985.61 13592.91 161
baseline181.84 12981.03 12984.28 15291.60 11366.62 12591.08 20591.66 15981.87 3374.86 16791.67 15269.98 4194.92 18671.76 18464.75 30191.29 201
ACMMP_NAP86.05 5185.80 5686.80 6091.58 11467.53 10291.79 17193.49 8374.93 13884.61 6695.30 5559.42 14697.92 4186.13 7294.92 2094.94 85
MVS_Test84.16 8883.20 9587.05 5391.56 11569.82 4689.99 24192.05 13577.77 9982.84 8086.57 23163.93 9096.09 13674.91 15989.18 10095.25 74
HPM-MVS_fast80.25 15679.55 15582.33 19791.55 11659.95 28291.32 19589.16 25665.23 29274.71 16993.07 11847.81 26795.74 15174.87 16188.23 10691.31 200
CPTT-MVS79.59 16779.16 16280.89 23991.54 11759.80 28492.10 15388.54 28560.42 32972.96 18693.28 11448.27 26092.80 26278.89 13286.50 12990.06 215
CNLPA74.31 25272.30 26080.32 24591.49 11861.66 25190.85 21280.72 35456.67 35063.85 29590.64 16646.75 27290.84 30853.79 30875.99 22188.47 240
MP-MVS-pluss85.24 6785.13 6685.56 10091.42 11965.59 14991.54 18192.51 12174.56 14180.62 10195.64 4659.15 15097.00 9686.94 6793.80 4294.07 124
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
gg-mvs-nofinetune77.18 21074.31 23185.80 9291.42 11968.36 7771.78 36894.72 3449.61 36977.12 14545.92 39277.41 893.98 23067.62 22393.16 5495.05 80
MGCFI-Net85.59 6385.73 5885.17 11591.41 12162.44 23292.87 12191.31 17179.65 6786.99 4595.14 6662.90 11196.12 13487.13 6484.13 14996.96 14
xiu_mvs_v2_base87.92 2287.38 3289.55 1191.41 12176.43 395.74 2293.12 9883.53 1989.55 3095.95 4053.45 21797.68 5091.07 3492.62 5994.54 105
EIA-MVS84.84 7384.88 7084.69 13491.30 12362.36 23593.85 7892.04 13679.45 7079.33 11994.28 9462.42 11496.35 12780.05 12091.25 8295.38 60
alignmvs87.28 3186.97 3688.24 2791.30 12371.14 2795.61 2693.56 7879.30 7487.07 4395.25 6068.43 4696.93 10787.87 5484.33 14496.65 18
EPMVS78.49 19175.98 20886.02 8391.21 12569.68 5180.23 34191.20 17675.25 13472.48 19678.11 32854.65 19993.69 23957.66 29583.04 15494.69 95
FMVSNet377.73 20376.04 20782.80 18491.20 12668.99 6491.87 16791.99 13873.35 16667.04 26883.19 26856.62 17892.14 28559.80 28669.34 26387.28 257
Anonymous2024052976.84 21874.15 23484.88 12391.02 12764.95 16693.84 8191.09 18353.57 35873.00 18587.42 22035.91 33697.32 7669.14 20972.41 24892.36 174
tpmvs72.88 26869.76 28482.22 20290.98 12867.05 11478.22 35488.30 29063.10 30964.35 29274.98 35055.09 19694.27 21243.25 34969.57 26285.34 299
MVS84.66 7682.86 10390.06 290.93 12974.56 687.91 27895.54 1368.55 26672.35 20094.71 7759.78 14298.90 1981.29 11394.69 3296.74 17
PVSNet73.49 880.05 16078.63 16784.31 15090.92 13064.97 16592.47 14191.05 18879.18 7772.43 19890.51 17037.05 33294.06 22368.06 21786.00 13193.90 133
3Dnovator+73.60 782.10 12680.60 13886.60 6690.89 13166.80 12195.20 3593.44 8574.05 14967.42 26392.49 13249.46 24997.65 5570.80 19191.68 7395.33 64
VDD-MVS83.06 10881.81 11986.81 5990.86 13267.70 9695.40 3091.50 16575.46 13081.78 8892.34 13740.09 30697.13 8986.85 6882.04 16695.60 53
BH-w/o80.49 15179.30 16084.05 15790.83 13364.36 18293.60 9389.42 24574.35 14469.09 23590.15 18055.23 19395.61 16064.61 25486.43 13092.17 184
ET-MVSNet_ETH3D84.01 9083.15 9886.58 6890.78 13470.89 3094.74 4894.62 4081.44 4058.19 32993.64 10873.64 2392.35 28282.66 9978.66 19796.50 28
Anonymous2023121173.08 26270.39 27881.13 22990.62 13563.33 21291.40 18690.06 22251.84 36364.46 29080.67 30436.49 33494.07 22263.83 25964.17 30685.98 284
FA-MVS(test-final)79.12 17577.23 19184.81 12890.54 13663.98 19181.35 33291.71 15471.09 23174.85 16882.94 26952.85 22097.05 9167.97 21881.73 17193.41 144
TR-MVS78.77 18577.37 19082.95 18290.49 13760.88 26393.67 8990.07 22070.08 24774.51 17191.37 15945.69 28395.70 15760.12 28480.32 18192.29 177
SteuartSystems-ACMMP86.82 4086.90 3886.58 6890.42 13866.38 13096.09 1893.87 6477.73 10084.01 7495.66 4563.39 10197.94 4087.40 6093.55 4995.42 57
Skip Steuart: Steuart Systems R&D Blog.
TAPA-MVS70.22 1274.94 24773.53 24379.17 27690.40 13952.07 34489.19 25889.61 23962.69 31370.07 22592.67 12848.89 25894.32 20838.26 36979.97 18391.12 204
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
mvs_anonymous81.36 13579.99 14685.46 10290.39 14068.40 7686.88 29390.61 19974.41 14270.31 22384.67 25263.79 9292.32 28373.13 16785.70 13395.67 50
CANet_DTU84.09 8983.52 8385.81 9190.30 14166.82 11991.87 16789.01 26585.27 1186.09 5193.74 10547.71 26896.98 10077.90 13989.78 9693.65 139
Fast-Effi-MVS+81.14 13880.01 14584.51 14390.24 14265.86 14394.12 6389.15 25773.81 15775.37 16388.26 20457.26 16594.53 20366.97 23184.92 13793.15 152
ETV-MVS86.01 5286.11 4985.70 9790.21 14367.02 11693.43 10491.92 14181.21 4584.13 7394.07 10060.93 13095.63 15889.28 4489.81 9494.46 111
MVS_030490.01 890.50 988.53 2390.14 14470.94 2996.47 1495.72 1087.33 689.60 2996.26 3268.44 4598.74 2495.82 494.72 3195.90 46
tpmrst80.57 14879.14 16384.84 12490.10 14568.28 8081.70 32789.72 23777.63 10475.96 15479.54 32064.94 7792.71 26575.43 15277.28 21193.55 141
PVSNet_Blended_VisFu83.97 9183.50 8585.39 10590.02 14666.59 12793.77 8591.73 15277.43 10877.08 14789.81 18563.77 9396.97 10279.67 12388.21 10792.60 168
UGNet79.87 16478.68 16683.45 17489.96 14761.51 25392.13 15190.79 19276.83 11478.85 12886.33 23538.16 31896.17 13267.93 22087.17 11892.67 166
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
CHOSEN 1792x268884.98 7283.45 8889.57 1089.94 14875.14 592.07 15692.32 12481.87 3375.68 15788.27 20360.18 13698.60 2780.46 11890.27 9294.96 83
BH-untuned78.68 18677.08 19283.48 17389.84 14963.74 19692.70 12888.59 28371.57 22066.83 27288.65 19651.75 22995.39 17059.03 28984.77 13991.32 199
FE-MVS75.97 23273.02 24884.82 12589.78 15065.56 15077.44 35791.07 18664.55 29472.66 19079.85 31646.05 28296.69 11554.97 30380.82 17892.21 183
test22289.77 15161.60 25289.55 24889.42 24556.83 34977.28 14392.43 13452.76 22191.14 8493.09 154
PMMVS81.98 12882.04 11581.78 21489.76 15256.17 32491.13 20490.69 19477.96 9580.09 10993.57 11046.33 27894.99 18281.41 11087.46 11594.17 117
DPM-MVS90.70 390.52 891.24 189.68 15376.68 297.29 295.35 1582.87 2291.58 1397.22 379.93 599.10 983.12 9797.64 297.94 1
QAPM79.95 16377.39 18987.64 3489.63 15471.41 2193.30 10693.70 7365.34 29167.39 26591.75 15047.83 26698.96 1657.71 29489.81 9492.54 170
3Dnovator73.91 682.69 11780.82 13188.31 2689.57 15571.26 2392.60 13594.39 5178.84 8567.89 25792.48 13348.42 25998.52 2868.80 21394.40 3595.15 76
Effi-MVS+83.82 9482.76 10486.99 5589.56 15669.40 5391.35 19386.12 32072.59 18183.22 7892.81 12759.60 14496.01 14481.76 10687.80 11195.56 55
PatchmatchNetpermissive77.46 20674.63 22485.96 8589.55 15770.35 3679.97 34689.55 24072.23 19370.94 21376.91 33957.03 16892.79 26354.27 30681.17 17494.74 94
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PatchMatch-RL72.06 27669.98 27978.28 28689.51 15855.70 32883.49 31083.39 34561.24 32463.72 29682.76 27134.77 34093.03 25053.37 31177.59 20486.12 281
thisisatest051583.41 10182.49 11086.16 8189.46 15968.26 8193.54 9694.70 3674.31 14575.75 15590.92 16372.62 2896.52 12269.64 20081.50 17293.71 137
h-mvs3383.01 10982.56 10984.35 14989.34 16062.02 24292.72 12693.76 6981.45 3882.73 8292.25 14060.11 13797.13 8987.69 5662.96 31393.91 131
EC-MVSNet84.53 7885.04 6883.01 18189.34 16061.37 25694.42 5291.09 18377.91 9783.24 7794.20 9658.37 15595.40 16985.35 7791.41 7892.27 181
UWE-MVS80.81 14681.01 13080.20 25189.33 16257.05 31891.91 16594.71 3575.67 12775.01 16689.37 18963.13 10791.44 30567.19 22882.80 15892.12 186
UA-Net80.02 16179.65 15181.11 23089.33 16257.72 30886.33 29689.00 26877.44 10781.01 9689.15 19259.33 14895.90 14561.01 27884.28 14689.73 222
dp75.01 24672.09 26283.76 16189.28 16466.22 13679.96 34789.75 23271.16 22867.80 25977.19 33651.81 22892.54 27450.39 31771.44 25592.51 172
SDMVSNet80.26 15578.88 16584.40 14689.25 16567.63 9985.35 29993.02 10076.77 11670.84 21587.12 22547.95 26596.09 13685.04 8174.55 22689.48 226
sd_testset77.08 21375.37 21682.20 20389.25 16562.11 24182.06 32489.09 26176.77 11670.84 21587.12 22541.43 30295.01 18167.23 22774.55 22689.48 226
sss82.71 11682.38 11283.73 16489.25 16559.58 28792.24 14794.89 2877.96 9579.86 11192.38 13556.70 17697.05 9177.26 14280.86 17794.55 103
MVSFormer83.75 9782.88 10286.37 7689.24 16871.18 2589.07 26090.69 19465.80 28687.13 4194.34 9164.99 7592.67 26872.83 17091.80 7195.27 71
lupinMVS87.74 2487.77 2687.63 3889.24 16871.18 2596.57 1292.90 10682.70 2587.13 4195.27 5864.99 7595.80 14789.34 4391.80 7195.93 44
IB-MVS77.80 482.18 12280.46 14187.35 4589.14 17070.28 3795.59 2795.17 2178.85 8470.19 22485.82 24170.66 3797.67 5172.19 18166.52 28694.09 122
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MDTV_nov1_ep1372.61 25689.06 17168.48 7480.33 33990.11 21971.84 20771.81 20575.92 34753.01 21993.92 23348.04 32973.38 237
testdata81.34 22489.02 17257.72 30889.84 22958.65 34085.32 6194.09 9857.03 16893.28 24669.34 20590.56 9093.03 157
CostFormer82.33 12081.15 12485.86 8989.01 17368.46 7582.39 32393.01 10175.59 12880.25 10781.57 28872.03 3394.96 18379.06 12977.48 20894.16 118
GeoE78.90 18077.43 18583.29 17688.95 17462.02 24292.31 14486.23 31870.24 24571.34 21289.27 19054.43 20494.04 22663.31 26380.81 17993.81 136
GBi-Net75.65 23773.83 23981.10 23188.85 17565.11 16190.01 23890.32 20770.84 23567.04 26880.25 31148.03 26191.54 30059.80 28669.34 26386.64 266
test175.65 23773.83 23981.10 23188.85 17565.11 16190.01 23890.32 20770.84 23567.04 26880.25 31148.03 26191.54 30059.80 28669.34 26386.64 266
FMVSNet276.07 22674.01 23782.26 20188.85 17567.66 9791.33 19491.61 16070.84 23565.98 27582.25 27748.03 26192.00 29058.46 29168.73 27187.10 260
DeepC-MVS77.85 385.52 6485.24 6486.37 7688.80 17866.64 12492.15 15093.68 7481.07 4676.91 14893.64 10862.59 11398.44 3185.50 7692.84 5894.03 126
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
EPP-MVSNet81.79 13081.52 12182.61 19088.77 17960.21 27993.02 11793.66 7568.52 26772.90 18890.39 17372.19 3294.96 18374.93 15879.29 19192.67 166
1112_ss80.56 14979.83 14982.77 18588.65 18060.78 26592.29 14588.36 28872.58 18272.46 19794.95 6865.09 7493.42 24566.38 23777.71 20294.10 121
tpm cat175.30 24272.21 26184.58 14088.52 18167.77 9478.16 35588.02 29861.88 32168.45 24976.37 34360.65 13194.03 22853.77 30974.11 23291.93 188
LCM-MVSNet-Re72.93 26671.84 26576.18 31088.49 18248.02 36380.07 34470.17 38073.96 15352.25 35380.09 31449.98 24488.24 33267.35 22484.23 14792.28 178
Vis-MVSNetpermissive80.92 14479.98 14783.74 16288.48 18361.80 24693.44 10388.26 29473.96 15377.73 13691.76 14949.94 24594.76 18865.84 24390.37 9194.65 99
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
Vis-MVSNet (Re-imp)79.24 17379.57 15278.24 28888.46 18452.29 34390.41 22589.12 25974.24 14669.13 23491.91 14765.77 6890.09 32059.00 29088.09 10892.33 175
ab-mvs80.18 15778.31 17185.80 9288.44 18565.49 15483.00 32092.67 11371.82 20877.36 14285.01 24754.50 20096.59 11776.35 14775.63 22295.32 66
gm-plane-assit88.42 18667.04 11578.62 8991.83 14897.37 7276.57 145
MVS_111021_LR82.02 12781.52 12183.51 17188.42 18662.88 22689.77 24588.93 26976.78 11575.55 16193.10 11550.31 24195.38 17183.82 9487.02 11992.26 182
test250683.29 10382.92 10184.37 14888.39 18863.18 21792.01 15991.35 17077.66 10278.49 13191.42 15664.58 8395.09 17973.19 16689.23 9894.85 86
ECVR-MVScopyleft81.29 13680.38 14284.01 15888.39 18861.96 24492.56 14086.79 31377.66 10276.63 14991.42 15646.34 27795.24 17674.36 16389.23 9894.85 86
baseline85.01 7184.44 7586.71 6288.33 19068.73 6990.24 23291.82 15081.05 4781.18 9392.50 13063.69 9496.08 13984.45 8886.71 12695.32 66
tpm279.80 16577.95 17885.34 10888.28 19168.26 8181.56 32991.42 16870.11 24677.59 14080.50 30667.40 5594.26 21467.34 22577.35 20993.51 142
thisisatest053081.15 13780.07 14384.39 14788.26 19265.63 14891.40 18694.62 4071.27 22770.93 21489.18 19172.47 2996.04 14165.62 24676.89 21591.49 192
casdiffmvspermissive85.37 6584.87 7186.84 5788.25 19369.07 6193.04 11591.76 15181.27 4480.84 9992.07 14364.23 8696.06 14084.98 8387.43 11695.39 59
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Test_1112_low_res79.56 16878.60 16882.43 19388.24 19460.39 27692.09 15487.99 29972.10 19871.84 20487.42 22064.62 8293.04 24965.80 24477.30 21093.85 135
casdiffmvs_mvgpermissive85.66 6185.18 6587.09 5188.22 19569.35 5793.74 8791.89 14481.47 3780.10 10891.45 15564.80 8096.35 12787.23 6387.69 11295.58 54
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PAPM85.89 5685.46 6187.18 4888.20 19672.42 1492.41 14392.77 10982.11 3180.34 10693.07 11868.27 4795.02 18078.39 13693.59 4894.09 122
TESTMET0.1,182.41 11981.98 11783.72 16588.08 19763.74 19692.70 12893.77 6879.30 7477.61 13987.57 21858.19 15894.08 22173.91 16586.68 12793.33 148
ADS-MVSNet266.90 31563.44 32277.26 30088.06 19860.70 27168.01 37875.56 36757.57 34264.48 28869.87 36738.68 31084.10 35840.87 36067.89 27786.97 261
ADS-MVSNet68.54 30364.38 31881.03 23588.06 19866.90 11868.01 37884.02 33757.57 34264.48 28869.87 36738.68 31089.21 32640.87 36067.89 27786.97 261
EPNet_dtu78.80 18379.26 16177.43 29688.06 19849.71 35691.96 16491.95 14077.67 10176.56 15191.28 16058.51 15490.20 31856.37 29880.95 17692.39 173
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
miper_enhance_ethall78.86 18177.97 17781.54 22088.00 20165.17 15991.41 18489.15 25775.19 13568.79 24383.98 26067.17 5692.82 26072.73 17365.30 29286.62 270
IS-MVSNet80.14 15879.41 15782.33 19787.91 20260.08 28191.97 16388.27 29272.90 17771.44 21191.73 15161.44 12493.66 24062.47 27186.53 12893.24 149
CLD-MVS82.73 11482.35 11383.86 16087.90 20367.65 9895.45 2992.18 13385.06 1272.58 19392.27 13852.46 22495.78 14884.18 8979.06 19288.16 244
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
Syy-MVS69.65 29369.52 28570.03 34887.87 20443.21 38188.07 27489.01 26572.91 17563.11 30188.10 20845.28 28785.54 35122.07 39469.23 26681.32 343
myMVS_eth3d72.58 27572.74 25372.10 34187.87 20449.45 35888.07 27489.01 26572.91 17563.11 30188.10 20863.63 9585.54 35132.73 38369.23 26681.32 343
test111180.84 14580.02 14483.33 17587.87 20460.76 26792.62 13386.86 31277.86 9875.73 15691.39 15846.35 27694.70 19472.79 17288.68 10494.52 107
HyFIR lowres test81.03 14279.56 15385.43 10387.81 20768.11 8790.18 23390.01 22570.65 24072.95 18786.06 23963.61 9794.50 20575.01 15779.75 18693.67 138
dmvs_re76.93 21475.36 21781.61 21887.78 20860.71 27080.00 34587.99 29979.42 7169.02 23889.47 18846.77 27194.32 20863.38 26274.45 22989.81 219
131480.70 14778.95 16485.94 8687.77 20967.56 10087.91 27892.55 12072.17 19667.44 26293.09 11650.27 24297.04 9471.68 18687.64 11393.23 150
cl2277.94 20076.78 19781.42 22287.57 21064.93 16790.67 21888.86 27272.45 18667.63 26182.68 27364.07 8792.91 25871.79 18265.30 29286.44 271
HQP-NCC87.54 21194.06 6479.80 6374.18 173
ACMP_Plane87.54 21194.06 6479.80 6374.18 173
HQP-MVS81.14 13880.64 13682.64 18987.54 21163.66 20394.06 6491.70 15779.80 6374.18 17390.30 17551.63 23195.61 16077.63 14078.90 19388.63 234
NP-MVS87.41 21463.04 21890.30 175
diffmvspermissive84.28 8283.83 8085.61 9987.40 21568.02 8990.88 21189.24 25180.54 5081.64 8992.52 12959.83 14194.52 20487.32 6185.11 13694.29 112
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline283.68 10083.42 9184.48 14487.37 21666.00 13990.06 23695.93 879.71 6669.08 23690.39 17377.92 696.28 12978.91 13181.38 17391.16 203
fmvsm_s_conf0.5_n86.39 4586.91 3784.82 12587.36 21763.54 20894.74 4890.02 22482.52 2690.14 2596.92 1362.93 11097.84 4695.28 882.26 16193.07 156
plane_prior687.23 21862.32 23750.66 238
tttt051779.50 16978.53 16982.41 19687.22 21961.43 25589.75 24694.76 3269.29 25667.91 25588.06 21172.92 2595.63 15862.91 26773.90 23690.16 214
plane_prior187.15 220
cascas78.18 19575.77 21185.41 10487.14 22169.11 6092.96 11891.15 18066.71 28070.47 21886.07 23837.49 32696.48 12570.15 19779.80 18590.65 208
fmvsm_l_conf0.5_n_a87.44 2988.15 2385.30 10987.10 22264.19 18794.41 5388.14 29580.24 5992.54 696.97 1069.52 4397.17 8595.89 288.51 10594.56 102
CHOSEN 280x42077.35 20876.95 19678.55 28387.07 22362.68 23069.71 37482.95 34768.80 26371.48 21087.27 22466.03 6584.00 36176.47 14682.81 15788.95 229
test_fmvsm_n_192087.69 2588.50 1885.27 11187.05 22463.55 20793.69 8891.08 18584.18 1590.17 2497.04 867.58 5497.99 3995.72 590.03 9394.26 113
fmvsm_l_conf0.5_n87.49 2788.19 2285.39 10586.95 22564.37 18094.30 5588.45 28680.51 5192.70 496.86 1569.98 4197.15 8895.83 388.08 10994.65 99
HQP_MVS80.34 15479.75 15082.12 20786.94 22662.42 23393.13 11191.31 17178.81 8672.53 19489.14 19350.66 23895.55 16576.74 14378.53 19888.39 241
plane_prior786.94 22661.51 253
test-LLR80.10 15979.56 15381.72 21686.93 22861.17 25792.70 12891.54 16271.51 22375.62 15886.94 22753.83 20992.38 27972.21 17984.76 14091.60 190
test-mter79.96 16279.38 15981.72 21686.93 22861.17 25792.70 12891.54 16273.85 15575.62 15886.94 22749.84 24792.38 27972.21 17984.76 14091.60 190
SCA75.82 23572.76 25285.01 11986.63 23070.08 3881.06 33489.19 25471.60 21970.01 22677.09 33745.53 28490.25 31360.43 28173.27 23894.68 96
AUN-MVS78.37 19277.43 18581.17 22786.60 23157.45 31489.46 25291.16 17874.11 14874.40 17290.49 17155.52 19094.57 19974.73 16260.43 33991.48 193
hse-mvs281.12 14081.11 12881.16 22886.52 23257.48 31389.40 25391.16 17881.45 3882.73 8290.49 17160.11 13794.58 19787.69 5660.41 34091.41 195
xiu_mvs_v1_base_debu82.16 12381.12 12585.26 11286.42 23368.72 7092.59 13790.44 20473.12 17084.20 7094.36 8638.04 32095.73 15284.12 9086.81 12191.33 196
xiu_mvs_v1_base82.16 12381.12 12585.26 11286.42 23368.72 7092.59 13790.44 20473.12 17084.20 7094.36 8638.04 32095.73 15284.12 9086.81 12191.33 196
xiu_mvs_v1_base_debi82.16 12381.12 12585.26 11286.42 23368.72 7092.59 13790.44 20473.12 17084.20 7094.36 8638.04 32095.73 15284.12 9086.81 12191.33 196
F-COLMAP70.66 28368.44 29177.32 29886.37 23655.91 32688.00 27686.32 31556.94 34857.28 33788.07 21033.58 34492.49 27651.02 31568.37 27383.55 314
CDS-MVSNet81.43 13480.74 13383.52 16986.26 23764.45 17492.09 15490.65 19875.83 12673.95 17989.81 18563.97 8992.91 25871.27 18782.82 15693.20 151
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
VDDNet80.50 15078.26 17287.21 4786.19 23869.79 4794.48 5191.31 17160.42 32979.34 11890.91 16438.48 31596.56 12082.16 10281.05 17595.27 71
WB-MVSnew77.14 21176.18 20680.01 25786.18 23963.24 21491.26 19794.11 6071.72 21273.52 18287.29 22345.14 28893.00 25156.98 29679.42 18783.80 312
jason86.40 4486.17 4887.11 5086.16 24070.54 3495.71 2592.19 13282.00 3284.58 6794.34 9161.86 12095.53 16787.76 5590.89 8595.27 71
jason: jason.
PCF-MVS73.15 979.29 17277.63 18284.29 15186.06 24165.96 14187.03 28991.10 18269.86 25069.79 23190.64 16657.54 16496.59 11764.37 25682.29 16090.32 212
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MS-PatchMatch77.90 20276.50 20082.12 20785.99 24269.95 4291.75 17692.70 11173.97 15262.58 30884.44 25641.11 30395.78 14863.76 26092.17 6580.62 351
FIs79.47 17079.41 15779.67 26785.95 24359.40 28991.68 17893.94 6378.06 9468.96 24088.28 20266.61 6191.77 29466.20 24074.99 22587.82 246
VPA-MVSNet79.03 17678.00 17682.11 21085.95 24364.48 17393.22 10994.66 3875.05 13774.04 17884.95 24852.17 22693.52 24274.90 16067.04 28288.32 243
tpm78.58 18977.03 19383.22 17885.94 24564.56 16983.21 31791.14 18178.31 9173.67 18179.68 31864.01 8892.09 28866.07 24171.26 25693.03 157
OpenMVScopyleft70.45 1178.54 19075.92 20986.41 7585.93 24671.68 1992.74 12592.51 12166.49 28264.56 28791.96 14443.88 29398.10 3754.61 30490.65 8889.44 228
testing370.38 28770.83 27269.03 35285.82 24743.93 38090.72 21790.56 20068.06 26960.24 31786.82 22964.83 7984.12 35726.33 39064.10 30779.04 364
OMC-MVS78.67 18877.91 17980.95 23785.76 24857.40 31588.49 26988.67 28073.85 15572.43 19892.10 14249.29 25294.55 20272.73 17377.89 20190.91 206
fmvsm_s_conf0.5_n_a85.75 5886.09 5084.72 13285.73 24963.58 20593.79 8489.32 24881.42 4190.21 2396.91 1462.41 11597.67 5194.48 1080.56 18092.90 162
miper_ehance_all_eth77.60 20476.44 20181.09 23485.70 25064.41 17890.65 21988.64 28272.31 19067.37 26682.52 27464.77 8192.64 27270.67 19365.30 29286.24 275
KD-MVS_2432*160069.03 29866.37 30177.01 30285.56 25161.06 26081.44 33090.25 21367.27 27658.00 33276.53 34154.49 20187.63 34048.04 32935.77 38982.34 335
miper_refine_blended69.03 29866.37 30177.01 30285.56 25161.06 26081.44 33090.25 21367.27 27658.00 33276.53 34154.49 20187.63 34048.04 32935.77 38982.34 335
EI-MVSNet78.97 17878.22 17381.25 22585.33 25362.73 22989.53 25093.21 9172.39 18972.14 20190.13 18160.99 12794.72 19167.73 22272.49 24686.29 273
CVMVSNet74.04 25574.27 23273.33 32985.33 25343.94 37989.53 25088.39 28754.33 35770.37 22190.13 18149.17 25484.05 35961.83 27579.36 18991.99 187
test_fmvsmconf_n86.58 4387.17 3384.82 12585.28 25562.55 23194.26 5789.78 23083.81 1887.78 3796.33 3165.33 7296.98 10094.40 1187.55 11494.95 84
ACMH63.93 1768.62 30164.81 31180.03 25685.22 25663.25 21387.72 28184.66 33260.83 32751.57 35679.43 32127.29 36794.96 18341.76 35664.84 29981.88 339
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
cl____76.07 22674.67 22280.28 24785.15 25761.76 24890.12 23488.73 27771.16 22865.43 27881.57 28861.15 12592.95 25366.54 23462.17 32186.13 280
DIV-MVS_self_test76.07 22674.67 22280.28 24785.14 25861.75 24990.12 23488.73 27771.16 22865.42 27981.60 28761.15 12592.94 25766.54 23462.16 32386.14 278
TAMVS80.37 15379.45 15683.13 18085.14 25863.37 21191.23 19990.76 19374.81 14072.65 19188.49 19760.63 13292.95 25369.41 20481.95 16893.08 155
MSDG69.54 29465.73 30480.96 23685.11 26063.71 19984.19 30583.28 34656.95 34754.50 34484.03 25831.50 35496.03 14242.87 35369.13 26883.14 324
c3_l76.83 21975.47 21580.93 23885.02 26164.18 18890.39 22688.11 29671.66 21366.65 27481.64 28663.58 10092.56 27369.31 20662.86 31486.04 282
ACMP71.68 1075.58 24074.23 23379.62 26984.97 26259.64 28590.80 21489.07 26370.39 24362.95 30487.30 22238.28 31693.87 23572.89 16971.45 25485.36 298
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
FC-MVSNet-test77.99 19878.08 17577.70 29184.89 26355.51 32990.27 23093.75 7276.87 11166.80 27387.59 21765.71 6990.23 31762.89 26873.94 23487.37 253
PVSNet_068.08 1571.81 27768.32 29382.27 19984.68 26462.31 23888.68 26690.31 21075.84 12557.93 33480.65 30537.85 32394.19 21669.94 19929.05 39790.31 213
eth_miper_zixun_eth75.96 23374.40 23080.66 24084.66 26563.02 21989.28 25588.27 29271.88 20465.73 27681.65 28559.45 14592.81 26168.13 21660.53 33786.14 278
WR-MVS76.76 22075.74 21279.82 26484.60 26662.27 23992.60 13592.51 12176.06 12367.87 25885.34 24456.76 17490.24 31662.20 27263.69 31286.94 263
ACMH+65.35 1667.65 31064.55 31476.96 30484.59 26757.10 31788.08 27380.79 35358.59 34153.00 35081.09 30026.63 36992.95 25346.51 33761.69 33080.82 348
VPNet78.82 18277.53 18482.70 18784.52 26866.44 12993.93 7392.23 12780.46 5272.60 19288.38 20149.18 25393.13 24872.47 17763.97 31088.55 237
IterMVS-LS76.49 22275.18 22080.43 24484.49 26962.74 22890.64 22088.80 27472.40 18865.16 28181.72 28460.98 12892.27 28467.74 22164.65 30386.29 273
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
UniMVSNet_NR-MVSNet78.15 19677.55 18379.98 25884.46 27060.26 27792.25 14693.20 9377.50 10668.88 24186.61 23066.10 6492.13 28666.38 23762.55 31787.54 248
FMVSNet568.04 30765.66 30675.18 31684.43 27157.89 30583.54 30986.26 31761.83 32253.64 34973.30 35437.15 33085.08 35448.99 32461.77 32682.56 334
MVS-HIRNet60.25 34255.55 34974.35 32284.37 27256.57 32371.64 36974.11 37134.44 39045.54 37642.24 39731.11 35889.81 32140.36 36376.10 22076.67 374
LPG-MVS_test75.82 23574.58 22679.56 27184.31 27359.37 29090.44 22389.73 23569.49 25364.86 28288.42 19838.65 31294.30 21072.56 17572.76 24385.01 302
LGP-MVS_train79.56 27184.31 27359.37 29089.73 23569.49 25364.86 28288.42 19838.65 31294.30 21072.56 17572.76 24385.01 302
ACMM69.62 1374.34 25172.73 25479.17 27684.25 27557.87 30690.36 22789.93 22663.17 30865.64 27786.04 24037.79 32494.10 21965.89 24271.52 25385.55 294
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
UniMVSNet (Re)77.58 20576.78 19779.98 25884.11 27660.80 26491.76 17493.17 9576.56 12069.93 23084.78 25163.32 10492.36 28164.89 25362.51 31986.78 265
test_040264.54 32761.09 33374.92 31884.10 27760.75 26887.95 27779.71 35852.03 36152.41 35277.20 33532.21 35291.64 29623.14 39261.03 33372.36 381
LTVRE_ROB59.60 1966.27 31863.54 32174.45 32184.00 27851.55 34667.08 38183.53 34258.78 33954.94 34380.31 30934.54 34193.23 24740.64 36268.03 27578.58 368
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
miper_lstm_enhance73.05 26471.73 26777.03 30183.80 27958.32 30381.76 32588.88 27069.80 25161.01 31378.23 32757.19 16687.51 34265.34 25059.53 34285.27 301
Patchmatch-test65.86 32060.94 33480.62 24283.75 28058.83 29858.91 39275.26 36944.50 38250.95 36077.09 33758.81 15387.90 33435.13 37564.03 30895.12 78
nrg03080.93 14379.86 14884.13 15583.69 28168.83 6793.23 10891.20 17675.55 12975.06 16588.22 20763.04 10994.74 19081.88 10566.88 28388.82 232
GA-MVS78.33 19476.23 20484.65 13683.65 28266.30 13391.44 18290.14 21876.01 12470.32 22284.02 25942.50 29894.72 19170.98 18977.00 21492.94 160
FMVSNet172.71 27169.91 28281.10 23183.60 28365.11 16190.01 23890.32 20763.92 29863.56 29780.25 31136.35 33591.54 30054.46 30566.75 28486.64 266
OPM-MVS79.00 17778.09 17481.73 21583.52 28463.83 19391.64 18090.30 21176.36 12271.97 20389.93 18446.30 27995.17 17875.10 15577.70 20386.19 277
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
tfpnnormal70.10 28867.36 29678.32 28583.45 28560.97 26288.85 26392.77 10964.85 29360.83 31578.53 32443.52 29593.48 24331.73 38661.70 32980.52 352
Effi-MVS+-dtu76.14 22575.28 21978.72 28283.22 28655.17 33189.87 24287.78 30275.42 13167.98 25281.43 29045.08 28992.52 27575.08 15671.63 25188.48 238
CR-MVSNet73.79 25970.82 27482.70 18783.15 28767.96 9070.25 37184.00 33873.67 16269.97 22872.41 35757.82 16189.48 32452.99 31273.13 23990.64 209
RPMNet70.42 28665.68 30584.63 13883.15 28767.96 9070.25 37190.45 20146.83 37769.97 22865.10 37656.48 18195.30 17535.79 37473.13 23990.64 209
mvsmamba76.85 21775.71 21380.25 24983.07 28959.16 29491.44 18280.64 35576.84 11367.95 25386.33 23546.17 28194.24 21576.06 14872.92 24287.36 254
DU-MVS76.86 21575.84 21079.91 26182.96 29060.26 27791.26 19791.54 16276.46 12168.88 24186.35 23356.16 18292.13 28666.38 23762.55 31787.35 255
NR-MVSNet76.05 22974.59 22580.44 24382.96 29062.18 24090.83 21391.73 15277.12 11060.96 31486.35 23359.28 14991.80 29360.74 27961.34 33287.35 255
fmvsm_s_conf0.1_n85.61 6285.93 5384.68 13582.95 29263.48 21094.03 6989.46 24281.69 3589.86 2696.74 2061.85 12197.75 4994.74 982.01 16792.81 164
XXY-MVS77.94 20076.44 20182.43 19382.60 29364.44 17592.01 15991.83 14973.59 16370.00 22785.82 24154.43 20494.76 18869.63 20168.02 27688.10 245
test_fmvsmvis_n_192083.80 9583.48 8684.77 12982.51 29463.72 19891.37 19183.99 34081.42 4177.68 13795.74 4458.37 15597.58 5993.38 1486.87 12093.00 159
TranMVSNet+NR-MVSNet75.86 23474.52 22879.89 26282.44 29560.64 27391.37 19191.37 16976.63 11867.65 26086.21 23752.37 22591.55 29961.84 27460.81 33587.48 250
RRT_MVS74.44 25072.97 25078.84 28182.36 29657.66 31089.83 24488.79 27670.61 24164.58 28684.89 24939.24 30892.65 27170.11 19866.34 28786.21 276
test_vis1_n_192081.66 13182.01 11680.64 24182.24 29755.09 33294.76 4786.87 31181.67 3684.40 6994.63 7938.17 31794.67 19591.98 2883.34 15292.16 185
IterMVS72.65 27470.83 27278.09 28982.17 29862.96 22187.64 28386.28 31671.56 22160.44 31678.85 32345.42 28686.66 34663.30 26461.83 32584.65 306
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Patchmtry67.53 31263.93 31978.34 28482.12 29964.38 17968.72 37584.00 33848.23 37459.24 32272.41 35757.82 16189.27 32546.10 34056.68 35281.36 342
PatchT69.11 29765.37 30980.32 24582.07 30063.68 20267.96 38087.62 30350.86 36669.37 23265.18 37557.09 16788.53 33041.59 35866.60 28588.74 233
MIMVSNet71.64 27868.44 29181.23 22681.97 30164.44 17573.05 36788.80 27469.67 25264.59 28574.79 35132.79 34687.82 33653.99 30776.35 21891.42 194
MVP-Stereo77.12 21276.23 20479.79 26581.72 30266.34 13289.29 25490.88 19170.56 24262.01 31182.88 27049.34 25094.13 21865.55 24893.80 4278.88 365
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
IterMVS-SCA-FT71.55 28069.97 28076.32 30881.48 30360.67 27287.64 28385.99 32166.17 28459.50 32178.88 32245.53 28483.65 36362.58 27061.93 32484.63 307
COLMAP_ROBcopyleft57.96 2062.98 33559.65 33772.98 33281.44 30453.00 34183.75 30875.53 36848.34 37348.81 36781.40 29224.14 37290.30 31232.95 38160.52 33875.65 376
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
JIA-IIPM66.06 31962.45 32876.88 30581.42 30554.45 33657.49 39388.67 28049.36 37063.86 29446.86 39156.06 18590.25 31349.53 32268.83 26985.95 285
WR-MVS_H70.59 28469.94 28172.53 33581.03 30651.43 34787.35 28692.03 13767.38 27560.23 31880.70 30255.84 18883.45 36546.33 33958.58 34782.72 329
Fast-Effi-MVS+-dtu75.04 24573.37 24580.07 25480.86 30759.52 28891.20 20285.38 32571.90 20265.20 28084.84 25041.46 30192.97 25266.50 23672.96 24187.73 247
test_fmvsmconf0.1_n85.71 5986.08 5184.62 13980.83 30862.33 23693.84 8188.81 27383.50 2087.00 4496.01 3963.36 10296.93 10794.04 1287.29 11794.61 101
Baseline_NR-MVSNet73.99 25672.83 25177.48 29580.78 30959.29 29391.79 17184.55 33368.85 26268.99 23980.70 30256.16 18292.04 28962.67 26960.98 33481.11 345
CP-MVSNet70.50 28569.91 28272.26 33880.71 31051.00 35087.23 28890.30 21167.84 27059.64 32082.69 27250.23 24382.30 37351.28 31459.28 34383.46 318
v875.35 24173.26 24681.61 21880.67 31166.82 11989.54 24989.27 25071.65 21463.30 30080.30 31054.99 19794.06 22367.33 22662.33 32083.94 310
PS-MVSNAJss77.26 20976.31 20380.13 25380.64 31259.16 29490.63 22291.06 18772.80 17868.58 24784.57 25453.55 21393.96 23172.97 16871.96 25087.27 258
TransMVSNet (Re)70.07 28967.66 29577.31 29980.62 31359.13 29691.78 17384.94 33065.97 28560.08 31980.44 30750.78 23791.87 29148.84 32545.46 37580.94 347
v2v48277.42 20775.65 21482.73 18680.38 31467.13 11291.85 16990.23 21575.09 13669.37 23283.39 26653.79 21194.44 20671.77 18365.00 29886.63 269
PS-CasMVS69.86 29269.13 28772.07 34280.35 31550.57 35287.02 29089.75 23267.27 27659.19 32482.28 27646.58 27482.24 37450.69 31659.02 34483.39 320
v1074.77 24872.54 25881.46 22180.33 31666.71 12389.15 25989.08 26270.94 23363.08 30379.86 31552.52 22394.04 22665.70 24562.17 32183.64 313
test0.0.03 172.76 26972.71 25572.88 33380.25 31747.99 36491.22 20089.45 24371.51 22362.51 30987.66 21653.83 20985.06 35550.16 31967.84 27985.58 292
fmvsm_s_conf0.1_n_a84.76 7484.84 7284.53 14180.23 31863.50 20992.79 12388.73 27780.46 5289.84 2796.65 2260.96 12997.57 6193.80 1380.14 18292.53 171
v114476.73 22174.88 22182.27 19980.23 31866.60 12691.68 17890.21 21773.69 16069.06 23781.89 28152.73 22294.40 20769.21 20765.23 29585.80 288
v14876.19 22474.47 22981.36 22380.05 32064.44 17591.75 17690.23 21573.68 16167.13 26780.84 30155.92 18793.86 23768.95 21161.73 32885.76 291
dmvs_testset65.55 32366.45 29962.86 36479.87 32122.35 40776.55 35971.74 37777.42 10955.85 34087.77 21551.39 23380.69 37931.51 38965.92 29085.55 294
v119275.98 23173.92 23882.15 20579.73 32266.24 13591.22 20089.75 23272.67 18068.49 24881.42 29149.86 24694.27 21267.08 22965.02 29785.95 285
AllTest61.66 33758.06 34172.46 33679.57 32351.42 34880.17 34268.61 38351.25 36445.88 37281.23 29419.86 38386.58 34738.98 36657.01 35079.39 360
TestCases72.46 33679.57 32351.42 34868.61 38351.25 36445.88 37281.23 29419.86 38386.58 34738.98 36657.01 35079.39 360
MDA-MVSNet-bldmvs61.54 33957.70 34373.05 33179.53 32557.00 32183.08 31881.23 35157.57 34234.91 39072.45 35632.79 34686.26 34935.81 37341.95 38075.89 375
v14419276.05 22974.03 23682.12 20779.50 32666.55 12891.39 18889.71 23872.30 19168.17 25081.33 29351.75 22994.03 22867.94 21964.19 30585.77 289
v192192075.63 23973.49 24482.06 21179.38 32766.35 13191.07 20789.48 24171.98 19967.99 25181.22 29649.16 25593.90 23466.56 23364.56 30485.92 287
PEN-MVS69.46 29568.56 28972.17 34079.27 32849.71 35686.90 29289.24 25167.24 27959.08 32582.51 27547.23 27083.54 36448.42 32757.12 34883.25 321
v124075.21 24472.98 24981.88 21379.20 32966.00 13990.75 21689.11 26071.63 21867.41 26481.22 29647.36 26993.87 23565.46 24964.72 30285.77 289
pmmvs473.92 25771.81 26680.25 24979.17 33065.24 15787.43 28587.26 30767.64 27463.46 29883.91 26148.96 25791.53 30362.94 26665.49 29183.96 309
D2MVS73.80 25872.02 26379.15 27879.15 33162.97 22088.58 26890.07 22072.94 17359.22 32378.30 32542.31 30092.70 26765.59 24772.00 24981.79 340
V4276.46 22374.55 22782.19 20479.14 33267.82 9390.26 23189.42 24573.75 15868.63 24681.89 28151.31 23494.09 22071.69 18564.84 29984.66 305
pm-mvs172.89 26771.09 27178.26 28779.10 33357.62 31190.80 21489.30 24967.66 27262.91 30581.78 28349.11 25692.95 25360.29 28358.89 34584.22 308
our_test_368.29 30564.69 31379.11 27978.92 33464.85 16888.40 27185.06 32860.32 33152.68 35176.12 34540.81 30489.80 32344.25 34855.65 35382.67 333
ppachtmachnet_test67.72 30963.70 32079.77 26678.92 33466.04 13888.68 26682.90 34860.11 33355.45 34175.96 34639.19 30990.55 30939.53 36452.55 36382.71 330
test_fmvs174.07 25473.69 24175.22 31478.91 33647.34 36889.06 26274.69 37063.68 30179.41 11791.59 15424.36 37187.77 33885.22 7876.26 21990.55 211
TinyColmap60.32 34156.42 34872.00 34378.78 33753.18 34078.36 35375.64 36652.30 36041.59 38575.82 34814.76 39088.35 33135.84 37254.71 35874.46 377
SixPastTwentyTwo64.92 32561.78 33274.34 32378.74 33849.76 35583.42 31379.51 35962.86 31050.27 36177.35 33230.92 35990.49 31145.89 34147.06 37282.78 326
EG-PatchMatch MVS68.55 30265.41 30877.96 29078.69 33962.93 22289.86 24389.17 25560.55 32850.27 36177.73 33122.60 37694.06 22347.18 33572.65 24576.88 373
pmmvs573.35 26171.52 26878.86 28078.64 34060.61 27491.08 20586.90 31067.69 27163.32 29983.64 26244.33 29290.53 31062.04 27366.02 28985.46 296
UniMVSNet_ETH3D72.74 27070.53 27779.36 27378.62 34156.64 32285.01 30189.20 25363.77 30064.84 28484.44 25634.05 34391.86 29263.94 25870.89 25889.57 224
XVG-OURS74.25 25372.46 25979.63 26878.45 34257.59 31280.33 33987.39 30463.86 29968.76 24489.62 18740.50 30591.72 29569.00 21074.25 23189.58 223
tt080573.07 26370.73 27580.07 25478.37 34357.05 31887.78 28092.18 13361.23 32567.04 26886.49 23231.35 35694.58 19765.06 25267.12 28188.57 236
test_cas_vis1_n_192080.45 15280.61 13779.97 26078.25 34457.01 32094.04 6888.33 28979.06 8282.81 8193.70 10638.65 31291.63 29790.82 3779.81 18491.27 202
XVG-OURS-SEG-HR74.70 24973.08 24779.57 27078.25 34457.33 31680.49 33787.32 30563.22 30668.76 24490.12 18344.89 29091.59 29870.55 19574.09 23389.79 220
MDA-MVSNet_test_wron63.78 33260.16 33574.64 31978.15 34660.41 27583.49 31084.03 33656.17 35339.17 38771.59 36337.22 32883.24 36842.87 35348.73 36980.26 355
YYNet163.76 33360.14 33674.62 32078.06 34760.19 28083.46 31283.99 34056.18 35239.25 38671.56 36437.18 32983.34 36642.90 35248.70 37080.32 354
DTE-MVSNet68.46 30467.33 29771.87 34477.94 34849.00 36186.16 29788.58 28466.36 28358.19 32982.21 27846.36 27583.87 36244.97 34655.17 35582.73 328
USDC67.43 31464.51 31576.19 30977.94 34855.29 33078.38 35285.00 32973.17 16848.36 36880.37 30821.23 37892.48 27752.15 31364.02 30980.81 349
jajsoiax73.05 26471.51 26977.67 29277.46 35054.83 33388.81 26490.04 22369.13 26062.85 30683.51 26431.16 35792.75 26470.83 19069.80 25985.43 297
mvs_tets72.71 27171.11 27077.52 29377.41 35154.52 33588.45 27089.76 23168.76 26562.70 30783.26 26729.49 36192.71 26570.51 19669.62 26185.34 299
N_pmnet50.55 35249.11 35554.88 37277.17 3524.02 41584.36 3042.00 41348.59 37145.86 37468.82 36932.22 35182.80 37031.58 38751.38 36577.81 371
test_djsdf73.76 26072.56 25777.39 29777.00 35353.93 33789.07 26090.69 19465.80 28663.92 29382.03 28043.14 29792.67 26872.83 17068.53 27285.57 293
OpenMVS_ROBcopyleft61.12 1866.39 31762.92 32576.80 30676.51 35457.77 30789.22 25683.41 34455.48 35453.86 34877.84 33026.28 37093.95 23234.90 37668.76 27078.68 367
v7n71.31 28168.65 28879.28 27476.40 35560.77 26686.71 29489.45 24364.17 29758.77 32878.24 32644.59 29193.54 24157.76 29361.75 32783.52 316
K. test v363.09 33459.61 33873.53 32876.26 35649.38 36083.27 31477.15 36264.35 29647.77 37072.32 35928.73 36387.79 33749.93 32136.69 38883.41 319
RPSCF64.24 32961.98 33171.01 34676.10 35745.00 37675.83 36375.94 36446.94 37658.96 32684.59 25331.40 35582.00 37547.76 33360.33 34186.04 282
OurMVSNet-221017-064.68 32662.17 33072.21 33976.08 35847.35 36780.67 33681.02 35256.19 35151.60 35579.66 31927.05 36888.56 32953.60 31053.63 36080.71 350
test_fmvsmconf0.01_n83.70 9983.52 8384.25 15375.26 35961.72 25092.17 14987.24 30882.36 2884.91 6495.41 5055.60 18996.83 11292.85 1785.87 13294.21 115
Anonymous2023120667.53 31265.78 30372.79 33474.95 36047.59 36688.23 27287.32 30561.75 32358.07 33177.29 33437.79 32487.29 34442.91 35163.71 31183.48 317
EGC-MVSNET42.35 35938.09 36255.11 37174.57 36146.62 37271.63 37055.77 3940.04 4080.24 40962.70 38014.24 39174.91 38517.59 39746.06 37443.80 394
ITE_SJBPF70.43 34774.44 36247.06 37177.32 36160.16 33254.04 34783.53 26323.30 37584.01 36043.07 35061.58 33180.21 357
EU-MVSNet64.01 33063.01 32467.02 36074.40 36338.86 39183.27 31486.19 31945.11 38054.27 34581.15 29936.91 33380.01 38148.79 32657.02 34982.19 338
XVG-ACMP-BASELINE68.04 30765.53 30775.56 31274.06 36452.37 34278.43 35185.88 32262.03 31858.91 32781.21 29820.38 38191.15 30760.69 28068.18 27483.16 323
mvsany_test168.77 30068.56 28969.39 35073.57 36545.88 37580.93 33560.88 39359.65 33571.56 20990.26 17743.22 29675.05 38374.26 16462.70 31687.25 259
CL-MVSNet_self_test69.92 29068.09 29475.41 31373.25 36655.90 32790.05 23789.90 22769.96 24861.96 31276.54 34051.05 23687.64 33949.51 32350.59 36782.70 331
anonymousdsp71.14 28269.37 28676.45 30772.95 36754.71 33484.19 30588.88 27061.92 32062.15 31079.77 31738.14 31991.44 30568.90 21267.45 28083.21 322
lessismore_v073.72 32772.93 36847.83 36561.72 39245.86 37473.76 35328.63 36589.81 32147.75 33431.37 39483.53 315
pmmvs667.57 31164.76 31276.00 31172.82 36953.37 33988.71 26586.78 31453.19 35957.58 33678.03 32935.33 33992.41 27855.56 30154.88 35782.21 337
testgi64.48 32862.87 32669.31 35171.24 37040.62 38685.49 29879.92 35765.36 29054.18 34683.49 26523.74 37484.55 35641.60 35760.79 33682.77 327
Patchmatch-RL test68.17 30664.49 31679.19 27571.22 37153.93 33770.07 37371.54 37969.22 25756.79 33862.89 37956.58 17988.61 32769.53 20352.61 36295.03 82
test_fmvs1_n72.69 27371.92 26474.99 31771.15 37247.08 37087.34 28775.67 36563.48 30378.08 13491.17 16120.16 38287.87 33584.65 8675.57 22390.01 217
Gipumacopyleft34.91 36631.44 36945.30 38170.99 37339.64 39019.85 40372.56 37420.10 39916.16 40321.47 4045.08 40471.16 38913.07 40143.70 37825.08 401
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
UnsupCasMVSNet_eth65.79 32163.10 32373.88 32570.71 37450.29 35481.09 33389.88 22872.58 18249.25 36674.77 35232.57 34987.43 34355.96 30041.04 38283.90 311
CMPMVSbinary48.56 2166.77 31664.41 31773.84 32670.65 37550.31 35377.79 35685.73 32445.54 37944.76 37882.14 27935.40 33890.14 31963.18 26574.54 22881.07 346
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test20.0363.83 33162.65 32767.38 35970.58 37639.94 38786.57 29584.17 33563.29 30551.86 35477.30 33337.09 33182.47 37138.87 36854.13 35979.73 358
MIMVSNet160.16 34357.33 34468.67 35369.71 37744.13 37878.92 34984.21 33455.05 35544.63 37971.85 36123.91 37381.54 37732.63 38455.03 35680.35 353
test_vis1_n71.63 27970.73 27574.31 32469.63 37847.29 36986.91 29172.11 37563.21 30775.18 16490.17 17920.40 38085.76 35084.59 8774.42 23089.87 218
pmmvs-eth3d65.53 32462.32 32975.19 31569.39 37959.59 28682.80 32183.43 34362.52 31451.30 35872.49 35532.86 34587.16 34555.32 30250.73 36678.83 366
UnsupCasMVSNet_bld61.60 33857.71 34273.29 33068.73 38051.64 34578.61 35089.05 26457.20 34646.11 37161.96 38228.70 36488.60 32850.08 32038.90 38679.63 359
test_vis1_rt59.09 34657.31 34564.43 36268.44 38146.02 37483.05 31948.63 40251.96 36249.57 36463.86 37816.30 38580.20 38071.21 18862.79 31567.07 387
Anonymous2024052162.09 33659.08 33971.10 34567.19 38248.72 36283.91 30785.23 32750.38 36747.84 36971.22 36620.74 37985.51 35346.47 33858.75 34679.06 363
test_fmvs265.78 32264.84 31068.60 35466.54 38341.71 38383.27 31469.81 38154.38 35667.91 25584.54 25515.35 38781.22 37875.65 15166.16 28882.88 325
KD-MVS_self_test60.87 34058.60 34067.68 35766.13 38439.93 38875.63 36484.70 33157.32 34549.57 36468.45 37029.55 36082.87 36948.09 32847.94 37180.25 356
new-patchmatchnet59.30 34556.48 34767.79 35665.86 38544.19 37782.47 32281.77 34959.94 33443.65 38266.20 37427.67 36681.68 37639.34 36541.40 38177.50 372
PM-MVS59.40 34456.59 34667.84 35563.63 38641.86 38276.76 35863.22 39059.01 33851.07 35972.27 36011.72 39383.25 36761.34 27650.28 36878.39 369
DSMNet-mixed56.78 34854.44 35163.79 36363.21 38729.44 40264.43 38464.10 38942.12 38751.32 35771.60 36231.76 35375.04 38436.23 37165.20 29686.87 264
new_pmnet49.31 35346.44 35657.93 36762.84 38840.74 38568.47 37762.96 39136.48 38935.09 38957.81 38614.97 38972.18 38832.86 38246.44 37360.88 389
LF4IMVS54.01 35152.12 35259.69 36662.41 38939.91 38968.59 37668.28 38542.96 38644.55 38075.18 34914.09 39268.39 39241.36 35951.68 36470.78 382
WB-MVS46.23 35644.94 35850.11 37662.13 39021.23 40976.48 36055.49 39545.89 37835.78 38861.44 38435.54 33772.83 3879.96 40321.75 39856.27 391
ambc69.61 34961.38 39141.35 38449.07 39885.86 32350.18 36366.40 37310.16 39588.14 33345.73 34244.20 37679.32 362
SSC-MVS44.51 35843.35 36047.99 38061.01 39218.90 41174.12 36654.36 39643.42 38534.10 39160.02 38534.42 34270.39 3909.14 40519.57 39954.68 392
TDRefinement55.28 35051.58 35366.39 36159.53 39346.15 37376.23 36172.80 37344.60 38142.49 38376.28 34415.29 38882.39 37233.20 38043.75 37770.62 383
pmmvs355.51 34951.50 35467.53 35857.90 39450.93 35180.37 33873.66 37240.63 38844.15 38164.75 37716.30 38578.97 38244.77 34740.98 38472.69 379
test_method38.59 36435.16 36748.89 37854.33 39521.35 40845.32 39953.71 3977.41 40528.74 39351.62 3898.70 39852.87 40333.73 37732.89 39372.47 380
test_fmvs356.82 34754.86 35062.69 36553.59 39635.47 39375.87 36265.64 38843.91 38355.10 34271.43 3656.91 40174.40 38668.64 21452.63 36178.20 370
APD_test140.50 36137.31 36450.09 37751.88 39735.27 39459.45 39152.59 39821.64 39726.12 39557.80 3874.56 40566.56 39422.64 39339.09 38548.43 393
DeepMVS_CXcopyleft34.71 38651.45 39824.73 40628.48 41231.46 39317.49 40252.75 3885.80 40342.60 40718.18 39619.42 40036.81 399
FPMVS45.64 35743.10 36153.23 37451.42 39936.46 39264.97 38371.91 37629.13 39427.53 39461.55 3839.83 39665.01 39816.00 40055.58 35458.22 390
wuyk23d11.30 37510.95 37812.33 39048.05 40019.89 41025.89 4021.92 4143.58 4063.12 4081.37 4080.64 41315.77 4096.23 4087.77 4071.35 405
PMMVS237.93 36533.61 36850.92 37546.31 40124.76 40560.55 39050.05 39928.94 39520.93 39747.59 3904.41 40765.13 39725.14 39118.55 40162.87 388
mvsany_test348.86 35446.35 35756.41 36846.00 40231.67 39862.26 38647.25 40343.71 38445.54 37668.15 37110.84 39464.44 40057.95 29235.44 39173.13 378
test_f46.58 35543.45 35955.96 36945.18 40332.05 39761.18 38749.49 40133.39 39142.05 38462.48 3817.00 40065.56 39647.08 33643.21 37970.27 384
test_vis3_rt40.46 36237.79 36348.47 37944.49 40433.35 39666.56 38232.84 41032.39 39229.65 39239.13 4003.91 40868.65 39150.17 31840.99 38343.40 395
E-PMN24.61 37024.00 37426.45 38743.74 40518.44 41260.86 38839.66 40615.11 4029.53 40622.10 4036.52 40246.94 4058.31 40610.14 40313.98 403
testf132.77 36729.47 37042.67 38341.89 40630.81 39952.07 39443.45 40415.45 40018.52 40044.82 3942.12 40958.38 40116.05 39830.87 39538.83 396
APD_test232.77 36729.47 37042.67 38341.89 40630.81 39952.07 39443.45 40415.45 40018.52 40044.82 3942.12 40958.38 40116.05 39830.87 39538.83 396
EMVS23.76 37223.20 37625.46 38841.52 40816.90 41360.56 38938.79 40914.62 4038.99 40720.24 4067.35 39945.82 4067.25 4079.46 40413.64 404
LCM-MVSNet40.54 36035.79 36554.76 37336.92 40930.81 39951.41 39669.02 38222.07 39624.63 39645.37 3934.56 40565.81 39533.67 37834.50 39267.67 385
ANet_high40.27 36335.20 36655.47 37034.74 41034.47 39563.84 38571.56 37848.42 37218.80 39941.08 3989.52 39764.45 39920.18 3958.66 40667.49 386
MVEpermissive24.84 2324.35 37119.77 37738.09 38534.56 41126.92 40426.57 40138.87 40811.73 40411.37 40527.44 4011.37 41250.42 40411.41 40214.60 40236.93 398
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMVScopyleft26.43 2231.84 36928.16 37242.89 38225.87 41227.58 40350.92 39749.78 40021.37 39814.17 40440.81 3992.01 41166.62 3939.61 40438.88 38734.49 400
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
tmp_tt22.26 37323.75 37517.80 3895.23 41312.06 41435.26 40039.48 4072.82 40718.94 39844.20 39622.23 37724.64 40836.30 3709.31 40516.69 402
testmvs7.23 3779.62 3800.06 3920.04 4140.02 41784.98 3020.02 4150.03 4090.18 4101.21 4090.01 4150.02 4100.14 4090.01 4080.13 407
test1236.92 3789.21 3810.08 3910.03 4150.05 41681.65 3280.01 4160.02 4100.14 4110.85 4100.03 4140.02 4100.12 4100.00 4090.16 406
test_blank0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4090.00 408
eth-test20.00 416
eth-test0.00 416
uanet_test0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4090.00 408
DCPMVS0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4090.00 408
cdsmvs_eth3d_5k19.86 37426.47 3730.00 3930.00 4160.00 4180.00 40493.45 840.00 4110.00 41295.27 5849.56 2480.00 4120.00 4110.00 4090.00 408
pcd_1.5k_mvsjas4.46 3795.95 3820.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 41153.55 2130.00 4120.00 4110.00 4090.00 408
sosnet-low-res0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4090.00 408
sosnet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4090.00 408
uncertanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4090.00 408
Regformer0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4090.00 408
ab-mvs-re7.91 37610.55 3790.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 41294.95 680.00 4160.00 4120.00 4110.00 4090.00 408
uanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4090.00 408
WAC-MVS49.45 35831.56 388
PC_three_145280.91 4894.07 296.83 1883.57 499.12 595.70 797.42 497.55 4
test_241102_TWO94.41 4871.65 21492.07 997.21 474.58 1799.11 692.34 2195.36 1496.59 20
test_0728_THIRD72.48 18490.55 2096.93 1176.24 1199.08 1191.53 3194.99 1896.43 30
GSMVS94.68 96
sam_mvs157.85 16094.68 96
sam_mvs54.91 198
MTGPAbinary92.23 127
test_post178.95 34820.70 40553.05 21891.50 30460.43 281
test_post23.01 40256.49 18092.67 268
patchmatchnet-post67.62 37257.62 16390.25 313
MTMP93.77 8532.52 411
test9_res89.41 4194.96 1995.29 68
agg_prior286.41 7094.75 3095.33 64
test_prior467.18 11193.92 74
test_prior295.10 3975.40 13285.25 6395.61 4767.94 5187.47 5994.77 26
旧先验292.00 16259.37 33787.54 4093.47 24475.39 153
新几何291.41 184
无先验92.71 12792.61 11862.03 31897.01 9566.63 23293.97 128
原ACMM292.01 159
testdata296.09 13661.26 277
segment_acmp65.94 66
testdata189.21 25777.55 105
plane_prior591.31 17195.55 16576.74 14378.53 19888.39 241
plane_prior489.14 193
plane_prior361.95 24579.09 8072.53 194
plane_prior293.13 11178.81 86
plane_prior62.42 23393.85 7879.38 7278.80 195
n20.00 417
nn0.00 417
door-mid66.01 387
test1193.01 101
door66.57 386
HQP5-MVS63.66 203
BP-MVS77.63 140
HQP4-MVS74.18 17395.61 16088.63 234
HQP3-MVS91.70 15778.90 193
HQP2-MVS51.63 231
MDTV_nov1_ep13_2view59.90 28380.13 34367.65 27372.79 18954.33 20659.83 28592.58 169
ACMMP++_ref71.63 251
ACMMP++69.72 260
Test By Simon54.21 207