This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
MG-MVS87.11 3286.27 4189.62 797.79 176.27 494.96 4394.49 3878.74 8083.87 7292.94 11764.34 8096.94 10375.19 14794.09 3695.66 47
MCST-MVS91.08 191.46 289.94 497.66 273.37 897.13 295.58 1089.33 185.77 5196.26 3072.84 2699.38 192.64 1995.93 997.08 9
OPU-MVS89.97 397.52 373.15 1296.89 597.00 983.82 299.15 295.72 597.63 397.62 2
DVP-MVS++90.53 391.09 488.87 1497.31 469.91 3793.96 7094.37 4672.48 17592.07 896.85 1683.82 299.15 291.53 2997.42 497.55 4
MSC_two_6792asdad89.60 897.31 473.22 1095.05 2199.07 1392.01 2494.77 2596.51 21
No_MVS89.60 897.31 473.22 1095.05 2199.07 1392.01 2494.77 2596.51 21
DP-MVS Recon82.73 10481.65 11185.98 7797.31 467.06 10695.15 3691.99 13169.08 25176.50 14493.89 9954.48 19698.20 3570.76 18585.66 13392.69 156
CNVR-MVS90.32 590.89 688.61 1996.76 870.65 2696.47 1394.83 2584.83 1189.07 3196.80 1970.86 3499.06 1592.64 1995.71 1096.12 35
ZD-MVS96.63 965.50 14693.50 7570.74 22985.26 5995.19 6164.92 7397.29 7687.51 5593.01 54
NCCC89.07 1489.46 1487.91 2596.60 1069.05 5696.38 1594.64 3384.42 1286.74 4396.20 3266.56 5798.76 2389.03 4694.56 3295.92 41
IU-MVS96.46 1169.91 3795.18 1680.75 4695.28 192.34 2195.36 1396.47 25
SED-MVS89.94 890.36 988.70 1696.45 1269.38 4796.89 594.44 4071.65 20492.11 697.21 476.79 999.11 692.34 2195.36 1397.62 2
test_241102_ONE96.45 1269.38 4794.44 4071.65 20492.11 697.05 776.79 999.11 6
test_0728_SECOND88.70 1696.45 1270.43 2996.64 994.37 4699.15 291.91 2794.90 2196.51 21
DVP-MVScopyleft89.41 1289.73 1388.45 2296.40 1569.99 3396.64 994.52 3671.92 19190.55 1996.93 1173.77 2199.08 1191.91 2794.90 2196.29 30
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072696.40 1569.99 3396.76 794.33 4871.92 19191.89 1097.11 673.77 21
AdaColmapbinary78.94 16977.00 18584.76 12196.34 1765.86 13692.66 12687.97 29262.18 30770.56 20792.37 13243.53 28697.35 7264.50 24782.86 15091.05 195
test_one_060196.32 1869.74 4294.18 5171.42 21590.67 1896.85 1674.45 18
test_part296.29 1968.16 7990.78 16
DPE-MVScopyleft88.77 1589.21 1587.45 3796.26 2067.56 9394.17 5794.15 5368.77 25490.74 1797.27 276.09 1298.49 2990.58 3794.91 2096.30 29
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MAR-MVS84.18 7883.43 8086.44 6696.25 2165.93 13594.28 5594.27 5074.41 13379.16 11395.61 4553.99 20198.88 2169.62 19693.26 5294.50 100
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
API-MVS82.28 11180.53 12987.54 3596.13 2270.59 2793.63 9091.04 18065.72 27975.45 15492.83 12256.11 17798.89 2064.10 24989.75 9693.15 143
APDe-MVScopyleft87.54 2587.84 2486.65 5896.07 2366.30 12694.84 4593.78 5969.35 24588.39 3396.34 2867.74 4897.66 5490.62 3693.44 4996.01 39
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
patch_mono-289.71 1090.99 585.85 8396.04 2463.70 19395.04 4095.19 1586.74 791.53 1495.15 6273.86 2097.58 5993.38 1492.00 6796.28 32
PAPR85.15 6184.47 6687.18 4296.02 2568.29 7391.85 16093.00 9676.59 11179.03 11495.00 6361.59 11697.61 5878.16 13189.00 10095.63 48
APD-MVScopyleft85.93 4985.99 4885.76 8795.98 2665.21 15193.59 9292.58 11266.54 27286.17 4795.88 3963.83 8697.00 9486.39 6792.94 5595.06 73
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
DeepC-MVS_fast79.48 287.95 2088.00 2387.79 2895.86 2768.32 7295.74 2194.11 5483.82 1583.49 7396.19 3364.53 7998.44 3183.42 9194.88 2496.61 15
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DP-MVS69.90 28166.48 28880.14 24395.36 2862.93 21489.56 23776.11 35350.27 35957.69 32685.23 23539.68 29995.73 14533.35 37071.05 24781.78 332
114514_t79.17 16477.67 17083.68 15895.32 2965.53 14592.85 11691.60 15363.49 29367.92 24490.63 15946.65 26695.72 14967.01 22283.54 14789.79 210
HPM-MVS++copyleft89.37 1389.95 1287.64 3095.10 3068.23 7795.24 3394.49 3882.43 2588.90 3296.35 2771.89 3398.63 2688.76 4796.40 696.06 36
CSCG86.87 3486.26 4288.72 1595.05 3170.79 2593.83 8295.33 1368.48 25877.63 13094.35 8673.04 2498.45 3084.92 7993.71 4596.92 11
dcpmvs_287.37 2987.55 2886.85 5095.04 3268.20 7890.36 21790.66 18879.37 6481.20 8993.67 10374.73 1596.55 11890.88 3492.00 6795.82 44
LFMVS84.34 7382.73 9689.18 1294.76 3373.25 994.99 4291.89 13771.90 19382.16 8393.49 10847.98 25797.05 8982.55 9684.82 13797.25 7
CDPH-MVS85.71 5385.46 5586.46 6594.75 3467.19 10293.89 7592.83 10170.90 22483.09 7695.28 5463.62 9197.36 7180.63 11194.18 3594.84 83
test_prior86.42 6794.71 3567.35 9993.10 9296.84 10895.05 74
test1287.09 4594.60 3668.86 6092.91 9882.67 8165.44 6697.55 6293.69 4694.84 83
test_yl84.28 7483.16 8787.64 3094.52 3769.24 5195.78 1895.09 1969.19 24881.09 9192.88 12057.00 16397.44 6681.11 10981.76 16096.23 33
DCV-MVSNet84.28 7483.16 8787.64 3094.52 3769.24 5195.78 1895.09 1969.19 24881.09 9192.88 12057.00 16397.44 6681.11 10981.76 16096.23 33
CANet89.61 1189.99 1188.46 2194.39 3969.71 4396.53 1293.78 5986.89 689.68 2795.78 4065.94 6199.10 992.99 1693.91 4096.58 18
test_894.19 4067.19 10294.15 6193.42 7971.87 19685.38 5795.35 5068.19 4396.95 102
TEST994.18 4167.28 10094.16 5893.51 7371.75 20285.52 5495.33 5168.01 4597.27 80
train_agg87.21 3187.42 3086.60 5994.18 4167.28 10094.16 5893.51 7371.87 19685.52 5495.33 5168.19 4397.27 8089.09 4494.90 2195.25 69
agg_prior94.16 4366.97 11093.31 8284.49 6596.75 111
PAPM_NR82.97 10181.84 10986.37 6994.10 4466.76 11587.66 27392.84 10069.96 23874.07 16893.57 10663.10 10197.50 6470.66 18790.58 8894.85 80
FOURS193.95 4561.77 23893.96 7091.92 13462.14 30886.57 44
VNet86.20 4485.65 5487.84 2793.92 4669.99 3395.73 2395.94 778.43 8286.00 4993.07 11458.22 15097.00 9485.22 7484.33 14296.52 20
9.1487.63 2693.86 4794.41 5294.18 5172.76 17086.21 4696.51 2466.64 5597.88 4490.08 3894.04 37
save fliter93.84 4867.89 8595.05 3992.66 10778.19 84
PVSNet_BlendedMVS83.38 9383.43 8083.22 17093.76 4967.53 9594.06 6393.61 6979.13 7081.00 9485.14 23663.19 9997.29 7687.08 6173.91 22584.83 296
PVSNet_Blended86.73 3886.86 3886.31 7293.76 4967.53 9596.33 1693.61 6982.34 2781.00 9493.08 11363.19 9997.29 7687.08 6191.38 7894.13 111
HFP-MVS84.73 6784.40 6885.72 8893.75 5165.01 15793.50 9693.19 8772.19 18579.22 11294.93 6659.04 14497.67 5181.55 10292.21 6294.49 101
Anonymous20240521177.96 18975.33 20785.87 8193.73 5264.52 16394.85 4485.36 31662.52 30576.11 14590.18 16929.43 35397.29 7668.51 20877.24 20295.81 45
SD-MVS87.49 2687.49 2987.50 3693.60 5368.82 6293.90 7492.63 11076.86 10487.90 3595.76 4166.17 5897.63 5689.06 4591.48 7696.05 37
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
ACMMPR84.37 7184.06 7085.28 10293.56 5464.37 17393.50 9693.15 8972.19 18578.85 12094.86 6956.69 17097.45 6581.55 10292.20 6394.02 118
region2R84.36 7284.03 7185.36 9993.54 5564.31 17693.43 9992.95 9772.16 18878.86 11994.84 7056.97 16597.53 6381.38 10692.11 6594.24 105
TSAR-MVS + GP.87.96 1988.37 1986.70 5793.51 5665.32 14895.15 3693.84 5878.17 8585.93 5094.80 7175.80 1398.21 3489.38 4088.78 10196.59 16
PHI-MVS86.83 3686.85 3986.78 5593.47 5765.55 14495.39 3095.10 1871.77 20185.69 5396.52 2362.07 11098.77 2286.06 7095.60 1196.03 38
SR-MVS82.81 10382.58 9983.50 16493.35 5861.16 25092.23 14091.28 16664.48 28681.27 8895.28 5453.71 20595.86 13982.87 9388.77 10293.49 134
iter_conf0583.27 9582.70 9784.98 11193.32 5971.84 1594.16 5881.76 34182.74 2173.83 17188.40 19072.77 2794.61 18882.10 9875.21 21488.48 229
EPNet87.84 2288.38 1886.23 7393.30 6066.05 13095.26 3294.84 2487.09 588.06 3494.53 7766.79 5497.34 7383.89 8891.68 7295.29 63
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
XVS83.87 8483.47 7885.05 10893.22 6163.78 18792.92 11492.66 10773.99 14178.18 12494.31 8955.25 18497.41 6879.16 12191.58 7493.95 120
X-MVStestdata76.86 20474.13 22485.05 10893.22 6163.78 18792.92 11492.66 10773.99 14178.18 12410.19 39855.25 18497.41 6879.16 12191.58 7493.95 120
SMA-MVScopyleft88.14 1688.29 2087.67 2993.21 6368.72 6493.85 7794.03 5574.18 13891.74 1196.67 2165.61 6598.42 3389.24 4396.08 795.88 43
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
原ACMM184.42 13693.21 6364.27 17893.40 8165.39 28079.51 10892.50 12658.11 15296.69 11265.27 24393.96 3892.32 167
MVS_111021_HR86.19 4585.80 5287.37 3893.17 6569.79 4093.99 6993.76 6279.08 7278.88 11893.99 9762.25 10998.15 3685.93 7191.15 8294.15 110
CP-MVS83.71 8983.40 8384.65 12793.14 6663.84 18594.59 4992.28 11871.03 22277.41 13394.92 6755.21 18796.19 12581.32 10790.70 8693.91 122
DELS-MVS90.05 690.09 1089.94 493.14 6673.88 797.01 494.40 4488.32 385.71 5294.91 6874.11 1998.91 1787.26 5995.94 897.03 10
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
ZNCC-MVS85.33 5985.08 6086.06 7593.09 6865.65 14093.89 7593.41 8073.75 14979.94 10394.68 7460.61 12698.03 3882.63 9593.72 4494.52 98
DeepPCF-MVS81.17 189.72 991.38 384.72 12393.00 6958.16 29596.72 894.41 4286.50 890.25 2197.83 175.46 1498.67 2592.78 1895.49 1297.32 6
PLCcopyleft68.80 1475.23 23273.68 23179.86 25392.93 7058.68 29190.64 21088.30 28160.90 31764.43 28190.53 16042.38 29194.57 19256.52 28876.54 20686.33 263
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
MSP-MVS90.38 491.87 185.88 8092.83 7164.03 18393.06 10794.33 4882.19 2893.65 396.15 3585.89 197.19 8291.02 3397.75 196.43 26
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
mPP-MVS82.96 10282.44 10284.52 13392.83 7162.92 21692.76 11891.85 14171.52 21275.61 15294.24 9153.48 20996.99 9778.97 12490.73 8593.64 131
GST-MVS84.63 6984.29 6985.66 9092.82 7365.27 14993.04 10993.13 9073.20 15878.89 11594.18 9359.41 14097.85 4581.45 10492.48 6193.86 125
WTY-MVS86.32 4285.81 5187.85 2692.82 7369.37 4995.20 3495.25 1482.71 2281.91 8494.73 7267.93 4797.63 5679.55 11782.25 15596.54 19
PGM-MVS83.25 9682.70 9784.92 11292.81 7564.07 18290.44 21392.20 12471.28 21677.23 13694.43 8055.17 18897.31 7579.33 12091.38 7893.37 136
EI-MVSNet-Vis-set83.77 8783.67 7384.06 14892.79 7663.56 19991.76 16594.81 2679.65 6077.87 12794.09 9463.35 9797.90 4279.35 11979.36 17990.74 197
SF-MVS87.03 3387.09 3386.84 5192.70 7767.45 9893.64 8993.76 6270.78 22886.25 4596.44 2666.98 5297.79 4788.68 4894.56 3295.28 65
MVSTER82.47 10882.05 10583.74 15492.68 7869.01 5791.90 15793.21 8479.83 5572.14 19185.71 23374.72 1694.72 18375.72 14372.49 23687.50 240
iter_conf_final81.74 12180.93 12184.18 14592.66 7969.10 5492.94 11382.80 33979.01 7574.85 15988.40 19061.83 11494.61 18879.36 11876.52 20788.83 220
CS-MVS-test86.14 4687.01 3483.52 16192.63 8059.36 28395.49 2791.92 13480.09 5385.46 5695.53 4761.82 11595.77 14386.77 6593.37 5095.41 54
MP-MVScopyleft85.02 6284.97 6285.17 10792.60 8164.27 17893.24 10292.27 11973.13 16079.63 10794.43 8061.90 11197.17 8385.00 7792.56 5994.06 116
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
thres20079.66 15678.33 16083.66 16092.54 8265.82 13893.06 10796.31 374.90 13073.30 17488.66 18559.67 13695.61 15347.84 32378.67 18689.56 215
APD-MVS_3200maxsize81.64 12381.32 11482.59 18392.36 8358.74 29091.39 17991.01 18163.35 29579.72 10694.62 7651.82 22096.14 12779.71 11587.93 10992.89 154
新几何184.73 12292.32 8464.28 17791.46 15959.56 32779.77 10592.90 11856.95 16696.57 11663.40 25392.91 5693.34 137
EI-MVSNet-UG-set83.14 9882.96 9083.67 15992.28 8563.19 20891.38 18194.68 3179.22 6776.60 14293.75 10062.64 10497.76 4878.07 13278.01 19090.05 206
HPM-MVScopyleft83.25 9682.95 9184.17 14692.25 8662.88 21890.91 19891.86 13970.30 23477.12 13793.96 9856.75 16896.28 12382.04 9991.34 8093.34 137
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
HY-MVS76.49 584.28 7483.36 8587.02 4892.22 8767.74 8884.65 29494.50 3779.15 6982.23 8287.93 20366.88 5396.94 10380.53 11282.20 15696.39 28
tfpn200view978.79 17477.43 17582.88 17592.21 8864.49 16492.05 14996.28 473.48 15571.75 19688.26 19560.07 13295.32 16545.16 33477.58 19588.83 220
thres40078.68 17677.43 17582.43 18592.21 8864.49 16492.05 14996.28 473.48 15571.75 19688.26 19560.07 13295.32 16545.16 33477.58 19587.48 241
PS-MVSNAJ88.14 1687.61 2789.71 692.06 9076.72 195.75 2093.26 8383.86 1489.55 2996.06 3653.55 20697.89 4391.10 3193.31 5194.54 96
SR-MVS-dyc-post81.06 13280.70 12482.15 19792.02 9158.56 29290.90 19990.45 19262.76 30278.89 11594.46 7851.26 22895.61 15378.77 12786.77 12392.28 169
RE-MVS-def80.48 13092.02 9158.56 29290.90 19990.45 19262.76 30278.89 11594.46 7849.30 24478.77 12786.77 12392.28 169
MSLP-MVS++86.27 4385.91 5087.35 3992.01 9368.97 5995.04 4092.70 10479.04 7481.50 8796.50 2558.98 14596.78 11083.49 9093.93 3996.29 30
CS-MVS85.80 5186.65 4083.27 16992.00 9458.92 28895.31 3191.86 13979.97 5484.82 6295.40 4962.26 10895.51 16186.11 6992.08 6695.37 57
旧先验191.94 9560.74 26091.50 15794.36 8265.23 6891.84 6994.55 94
thres600view778.00 18776.66 18982.03 20491.93 9663.69 19491.30 18796.33 172.43 17870.46 20987.89 20460.31 12794.92 17842.64 34676.64 20587.48 241
LS3D69.17 28666.40 29077.50 28491.92 9756.12 31685.12 29180.37 34746.96 36656.50 33087.51 21037.25 31993.71 23032.52 37679.40 17882.68 323
GG-mvs-BLEND86.53 6491.91 9869.67 4575.02 35694.75 2878.67 12290.85 15677.91 794.56 19472.25 17193.74 4395.36 58
thres100view90078.37 18277.01 18482.46 18491.89 9963.21 20791.19 19396.33 172.28 18370.45 21087.89 20460.31 12795.32 16545.16 33477.58 19588.83 220
MTAPA83.91 8383.38 8485.50 9391.89 9965.16 15381.75 31792.23 12075.32 12480.53 9895.21 6056.06 17897.16 8584.86 8092.55 6094.18 107
canonicalmvs86.85 3586.25 4388.66 1891.80 10171.92 1493.54 9491.71 14780.26 5187.55 3795.25 5863.59 9396.93 10588.18 4984.34 14197.11 8
TSAR-MVS + MP.88.11 1888.64 1686.54 6391.73 10268.04 8190.36 21793.55 7282.89 1991.29 1592.89 11972.27 3096.03 13587.99 5094.77 2595.54 52
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
ACMMPcopyleft81.49 12480.67 12583.93 15191.71 10362.90 21792.13 14392.22 12371.79 20071.68 19893.49 10850.32 23396.96 10178.47 12984.22 14691.93 178
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
BH-RMVSNet79.46 16177.65 17184.89 11391.68 10465.66 13993.55 9388.09 28872.93 16573.37 17391.12 15346.20 27396.12 12856.28 29085.61 13492.91 152
baseline181.84 11981.03 12084.28 14391.60 10566.62 11891.08 19591.66 15181.87 3174.86 15891.67 14469.98 3794.92 17871.76 17764.75 29291.29 191
ACMMP_NAP86.05 4785.80 5286.80 5491.58 10667.53 9591.79 16293.49 7674.93 12984.61 6395.30 5359.42 13997.92 4186.13 6894.92 1994.94 79
MVS_Test84.16 7983.20 8687.05 4791.56 10769.82 3989.99 23192.05 12877.77 9182.84 7786.57 22163.93 8596.09 12974.91 15289.18 9995.25 69
HPM-MVS_fast80.25 14679.55 14582.33 18991.55 10859.95 27391.32 18689.16 24765.23 28374.71 16193.07 11447.81 26095.74 14474.87 15488.23 10591.31 190
CPTT-MVS79.59 15779.16 15280.89 23191.54 10959.80 27592.10 14588.54 27660.42 32072.96 17693.28 11048.27 25392.80 25378.89 12686.50 12890.06 205
CNLPA74.31 24172.30 24980.32 23791.49 11061.66 24290.85 20280.72 34556.67 34163.85 28590.64 15746.75 26590.84 29853.79 29975.99 21188.47 231
MP-MVS-pluss85.24 6085.13 5985.56 9291.42 11165.59 14291.54 17292.51 11474.56 13280.62 9795.64 4459.15 14397.00 9486.94 6393.80 4194.07 115
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
gg-mvs-nofinetune77.18 20074.31 22085.80 8591.42 11168.36 7171.78 35994.72 2949.61 36077.12 13745.92 38377.41 893.98 22267.62 21693.16 5395.05 74
xiu_mvs_v2_base87.92 2187.38 3189.55 1191.41 11376.43 395.74 2193.12 9183.53 1789.55 2995.95 3853.45 21097.68 5091.07 3292.62 5894.54 96
EIA-MVS84.84 6584.88 6384.69 12591.30 11462.36 22693.85 7792.04 12979.45 6179.33 11194.28 9062.42 10696.35 12180.05 11491.25 8195.38 56
alignmvs87.28 3086.97 3588.24 2491.30 11471.14 2195.61 2593.56 7179.30 6587.07 4195.25 5868.43 4196.93 10587.87 5184.33 14296.65 14
EPMVS78.49 18175.98 19786.02 7691.21 11669.68 4480.23 33291.20 16775.25 12572.48 18678.11 31954.65 19293.69 23157.66 28783.04 14994.69 86
FMVSNet377.73 19376.04 19682.80 17691.20 11768.99 5891.87 15891.99 13173.35 15767.04 25883.19 25956.62 17192.14 27659.80 27869.34 25487.28 248
Anonymous2024052976.84 20774.15 22384.88 11491.02 11864.95 15993.84 8091.09 17453.57 34973.00 17587.42 21135.91 32897.32 7469.14 20272.41 23892.36 165
tpmvs72.88 25769.76 27382.22 19490.98 11967.05 10778.22 34588.30 28163.10 30064.35 28274.98 34155.09 18994.27 20543.25 34069.57 25385.34 290
MVS84.66 6882.86 9490.06 290.93 12074.56 687.91 26895.54 1168.55 25672.35 19094.71 7359.78 13598.90 1981.29 10894.69 3196.74 13
PVSNet73.49 880.05 15078.63 15784.31 14190.92 12164.97 15892.47 13491.05 17979.18 6872.43 18890.51 16137.05 32494.06 21568.06 21086.00 13093.90 124
3Dnovator+73.60 782.10 11680.60 12886.60 5990.89 12266.80 11495.20 3493.44 7874.05 14067.42 25392.49 12849.46 24297.65 5570.80 18491.68 7295.33 59
VDD-MVS83.06 9981.81 11086.81 5390.86 12367.70 8995.40 2991.50 15775.46 12181.78 8592.34 13340.09 29897.13 8786.85 6482.04 15795.60 49
BH-w/o80.49 14179.30 15084.05 14990.83 12464.36 17593.60 9189.42 23674.35 13569.09 22590.15 17155.23 18695.61 15364.61 24686.43 12992.17 175
ET-MVSNet_ETH3D84.01 8183.15 8986.58 6190.78 12570.89 2494.74 4794.62 3481.44 3858.19 32093.64 10473.64 2392.35 27382.66 9478.66 18796.50 24
Anonymous2023121173.08 25170.39 26781.13 22190.62 12663.33 20591.40 17790.06 21351.84 35464.46 28080.67 29536.49 32694.07 21463.83 25164.17 29785.98 275
FA-MVS(test-final)79.12 16577.23 18184.81 11990.54 12763.98 18481.35 32391.71 14771.09 22174.85 15982.94 26052.85 21397.05 8967.97 21181.73 16293.41 135
TR-MVS78.77 17577.37 18082.95 17490.49 12860.88 25493.67 8890.07 21170.08 23774.51 16291.37 15045.69 27695.70 15060.12 27680.32 17292.29 168
SteuartSystems-ACMMP86.82 3786.90 3786.58 6190.42 12966.38 12396.09 1793.87 5777.73 9284.01 7195.66 4363.39 9597.94 4087.40 5793.55 4895.42 53
Skip Steuart: Steuart Systems R&D Blog.
TAPA-MVS70.22 1274.94 23673.53 23279.17 26690.40 13052.07 33589.19 24889.61 23062.69 30470.07 21592.67 12448.89 25194.32 20138.26 36079.97 17491.12 194
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
mvs_anonymous81.36 12679.99 13685.46 9490.39 13168.40 7086.88 28490.61 19074.41 13370.31 21384.67 24263.79 8792.32 27473.13 16085.70 13295.67 46
CANet_DTU84.09 8083.52 7485.81 8490.30 13266.82 11291.87 15889.01 25685.27 986.09 4893.74 10147.71 26196.98 9877.90 13389.78 9593.65 130
Fast-Effi-MVS+81.14 12980.01 13584.51 13490.24 13365.86 13694.12 6289.15 24873.81 14875.37 15588.26 19557.26 15894.53 19666.97 22384.92 13693.15 143
ETV-MVS86.01 4886.11 4585.70 8990.21 13467.02 10993.43 9991.92 13481.21 4284.13 7094.07 9660.93 12395.63 15189.28 4289.81 9394.46 102
MVS_030490.01 790.50 888.53 2090.14 13570.94 2396.47 1395.72 987.33 489.60 2896.26 3068.44 4098.74 2495.82 494.72 3095.90 42
tpmrst80.57 13879.14 15384.84 11590.10 13668.28 7481.70 31889.72 22877.63 9675.96 14679.54 31164.94 7292.71 25675.43 14577.28 20193.55 132
PVSNet_Blended_VisFu83.97 8283.50 7685.39 9790.02 13766.59 12093.77 8491.73 14577.43 10077.08 13989.81 17663.77 8896.97 10079.67 11688.21 10692.60 159
UGNet79.87 15478.68 15683.45 16689.96 13861.51 24492.13 14390.79 18376.83 10678.85 12086.33 22538.16 31096.17 12667.93 21387.17 11792.67 157
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
CHOSEN 1792x268884.98 6483.45 7989.57 1089.94 13975.14 592.07 14892.32 11781.87 3175.68 14988.27 19460.18 12998.60 2780.46 11390.27 9194.96 77
BH-untuned78.68 17677.08 18283.48 16589.84 14063.74 18992.70 12288.59 27471.57 21066.83 26288.65 18651.75 22295.39 16359.03 28184.77 13891.32 189
FE-MVS75.97 22173.02 23784.82 11689.78 14165.56 14377.44 34891.07 17764.55 28572.66 18079.85 30746.05 27596.69 11254.97 29480.82 16992.21 174
test22289.77 14261.60 24389.55 23889.42 23656.83 34077.28 13592.43 13052.76 21491.14 8393.09 145
PMMVS81.98 11882.04 10681.78 20689.76 14356.17 31591.13 19490.69 18577.96 8780.09 10293.57 10646.33 27194.99 17481.41 10587.46 11494.17 108
DPM-MVS90.70 290.52 791.24 189.68 14476.68 297.29 195.35 1282.87 2091.58 1297.22 379.93 599.10 983.12 9297.64 297.94 1
QAPM79.95 15377.39 17987.64 3089.63 14571.41 1793.30 10193.70 6665.34 28267.39 25591.75 14247.83 25998.96 1657.71 28689.81 9392.54 161
3Dnovator73.91 682.69 10780.82 12288.31 2389.57 14671.26 1892.60 12894.39 4578.84 7767.89 24792.48 12948.42 25298.52 2868.80 20694.40 3495.15 71
Effi-MVS+83.82 8582.76 9586.99 4989.56 14769.40 4691.35 18486.12 31072.59 17283.22 7592.81 12359.60 13796.01 13781.76 10187.80 11095.56 51
PatchmatchNetpermissive77.46 19674.63 21385.96 7889.55 14870.35 3079.97 33789.55 23172.23 18470.94 20376.91 33057.03 16192.79 25454.27 29781.17 16594.74 85
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PatchMatch-RL72.06 26569.98 26878.28 27689.51 14955.70 31983.49 30183.39 33561.24 31563.72 28682.76 26234.77 33293.03 24253.37 30277.59 19486.12 272
thisisatest051583.41 9282.49 10186.16 7489.46 15068.26 7593.54 9494.70 3074.31 13675.75 14790.92 15472.62 2896.52 11969.64 19481.50 16393.71 128
h-mvs3383.01 10082.56 10084.35 14089.34 15162.02 23392.72 12093.76 6281.45 3682.73 7992.25 13560.11 13097.13 8787.69 5362.96 30493.91 122
EC-MVSNet84.53 7085.04 6183.01 17389.34 15161.37 24794.42 5191.09 17477.91 8983.24 7494.20 9258.37 14895.40 16285.35 7391.41 7792.27 172
UA-Net80.02 15179.65 14181.11 22289.33 15357.72 30086.33 28789.00 25977.44 9981.01 9389.15 18259.33 14195.90 13861.01 27084.28 14489.73 212
dp75.01 23572.09 25183.76 15389.28 15466.22 12979.96 33889.75 22371.16 21867.80 24977.19 32751.81 22192.54 26550.39 30871.44 24592.51 163
SDMVSNet80.26 14578.88 15584.40 13789.25 15567.63 9285.35 29093.02 9376.77 10870.84 20587.12 21547.95 25896.09 12985.04 7674.55 21689.48 216
sd_testset77.08 20275.37 20582.20 19589.25 15562.11 23282.06 31589.09 25276.77 10870.84 20587.12 21541.43 29495.01 17367.23 22074.55 21689.48 216
sss82.71 10682.38 10383.73 15689.25 15559.58 27892.24 13994.89 2377.96 8779.86 10492.38 13156.70 16997.05 8977.26 13680.86 16894.55 94
MVSFormer83.75 8882.88 9386.37 6989.24 15871.18 1989.07 25090.69 18565.80 27787.13 3994.34 8764.99 7092.67 25972.83 16391.80 7095.27 66
lupinMVS87.74 2387.77 2587.63 3489.24 15871.18 1996.57 1192.90 9982.70 2387.13 3995.27 5664.99 7095.80 14089.34 4191.80 7095.93 40
IB-MVS77.80 482.18 11280.46 13187.35 3989.14 16070.28 3195.59 2695.17 1778.85 7670.19 21485.82 23170.66 3597.67 5172.19 17466.52 27794.09 113
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MDTV_nov1_ep1372.61 24589.06 16168.48 6880.33 33090.11 21071.84 19871.81 19575.92 33853.01 21293.92 22548.04 32073.38 227
testdata81.34 21689.02 16257.72 30089.84 22058.65 33185.32 5894.09 9457.03 16193.28 23869.34 19990.56 8993.03 148
CostFormer82.33 11081.15 11585.86 8289.01 16368.46 6982.39 31493.01 9475.59 11980.25 10081.57 27972.03 3294.96 17579.06 12377.48 19894.16 109
GeoE78.90 17077.43 17583.29 16888.95 16462.02 23392.31 13686.23 30870.24 23571.34 20289.27 18054.43 19794.04 21863.31 25580.81 17093.81 127
GBi-Net75.65 22673.83 22881.10 22388.85 16565.11 15490.01 22890.32 19870.84 22567.04 25880.25 30248.03 25491.54 29159.80 27869.34 25486.64 257
test175.65 22673.83 22881.10 22388.85 16565.11 15490.01 22890.32 19870.84 22567.04 25880.25 30248.03 25491.54 29159.80 27869.34 25486.64 257
FMVSNet276.07 21574.01 22682.26 19388.85 16567.66 9091.33 18591.61 15270.84 22565.98 26582.25 26848.03 25492.00 28158.46 28368.73 26287.10 251
DeepC-MVS77.85 385.52 5785.24 5786.37 6988.80 16866.64 11792.15 14293.68 6781.07 4376.91 14093.64 10462.59 10598.44 3185.50 7292.84 5794.03 117
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
EPP-MVSNet81.79 12081.52 11282.61 18288.77 16960.21 27093.02 11193.66 6868.52 25772.90 17890.39 16472.19 3194.96 17574.93 15179.29 18192.67 157
1112_ss80.56 13979.83 13982.77 17788.65 17060.78 25692.29 13788.36 27972.58 17372.46 18794.95 6465.09 6993.42 23766.38 22977.71 19294.10 112
tpm cat175.30 23172.21 25084.58 13188.52 17167.77 8778.16 34688.02 28961.88 31268.45 23976.37 33460.65 12494.03 22053.77 30074.11 22291.93 178
LCM-MVSNet-Re72.93 25571.84 25476.18 30188.49 17248.02 35480.07 33570.17 37173.96 14452.25 34480.09 30549.98 23788.24 32367.35 21784.23 14592.28 169
Vis-MVSNetpermissive80.92 13579.98 13783.74 15488.48 17361.80 23793.44 9888.26 28573.96 14477.73 12891.76 14149.94 23894.76 18065.84 23590.37 9094.65 90
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
Vis-MVSNet (Re-imp)79.24 16379.57 14278.24 27888.46 17452.29 33490.41 21589.12 25074.24 13769.13 22491.91 13965.77 6390.09 31059.00 28288.09 10792.33 166
ab-mvs80.18 14778.31 16185.80 8588.44 17565.49 14783.00 31192.67 10671.82 19977.36 13485.01 23754.50 19396.59 11476.35 14175.63 21295.32 61
gm-plane-assit88.42 17667.04 10878.62 8191.83 14097.37 7076.57 139
MVS_111021_LR82.02 11781.52 11283.51 16388.42 17662.88 21889.77 23588.93 26076.78 10775.55 15393.10 11150.31 23495.38 16483.82 8987.02 11892.26 173
test250683.29 9482.92 9284.37 13988.39 17863.18 20992.01 15191.35 16277.66 9478.49 12391.42 14764.58 7895.09 17173.19 15989.23 9794.85 80
ECVR-MVScopyleft81.29 12780.38 13284.01 15088.39 17861.96 23592.56 13386.79 30377.66 9476.63 14191.42 14746.34 27095.24 16974.36 15689.23 9794.85 80
baseline85.01 6384.44 6786.71 5688.33 18068.73 6390.24 22291.82 14381.05 4481.18 9092.50 12663.69 8996.08 13284.45 8386.71 12595.32 61
tpm279.80 15577.95 16885.34 10088.28 18168.26 7581.56 32091.42 16070.11 23677.59 13280.50 29767.40 5094.26 20767.34 21877.35 19993.51 133
thisisatest053081.15 12880.07 13384.39 13888.26 18265.63 14191.40 17794.62 3471.27 21770.93 20489.18 18172.47 2996.04 13465.62 23876.89 20491.49 182
casdiffmvspermissive85.37 5884.87 6486.84 5188.25 18369.07 5593.04 10991.76 14481.27 4180.84 9692.07 13764.23 8196.06 13384.98 7887.43 11595.39 55
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Test_1112_low_res79.56 15878.60 15882.43 18588.24 18460.39 26792.09 14687.99 29072.10 18971.84 19487.42 21164.62 7793.04 24165.80 23677.30 20093.85 126
casdiffmvs_mvgpermissive85.66 5585.18 5887.09 4588.22 18569.35 5093.74 8691.89 13781.47 3580.10 10191.45 14664.80 7596.35 12187.23 6087.69 11195.58 50
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PAPM85.89 5085.46 5587.18 4288.20 18672.42 1392.41 13592.77 10282.11 2980.34 9993.07 11468.27 4295.02 17278.39 13093.59 4794.09 113
TESTMET0.1,182.41 10981.98 10883.72 15788.08 18763.74 18992.70 12293.77 6179.30 6577.61 13187.57 20958.19 15194.08 21373.91 15886.68 12693.33 139
ADS-MVSNet266.90 30563.44 31277.26 29088.06 18860.70 26268.01 36975.56 35757.57 33364.48 27869.87 35838.68 30284.10 34940.87 35167.89 26886.97 252
ADS-MVSNet68.54 29364.38 30881.03 22788.06 18866.90 11168.01 36984.02 32757.57 33364.48 27869.87 35838.68 30289.21 31640.87 35167.89 26886.97 252
EPNet_dtu78.80 17379.26 15177.43 28688.06 18849.71 34791.96 15691.95 13377.67 9376.56 14391.28 15158.51 14790.20 30856.37 28980.95 16792.39 164
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
miper_enhance_ethall78.86 17177.97 16781.54 21288.00 19165.17 15291.41 17589.15 24875.19 12668.79 23383.98 25167.17 5192.82 25172.73 16665.30 28386.62 261
IS-MVSNet80.14 14879.41 14782.33 18987.91 19260.08 27291.97 15588.27 28372.90 16871.44 20191.73 14361.44 11793.66 23262.47 26386.53 12793.24 140
CLD-MVS82.73 10482.35 10483.86 15287.90 19367.65 9195.45 2892.18 12685.06 1072.58 18392.27 13452.46 21795.78 14184.18 8479.06 18288.16 235
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
Syy-MVS69.65 28369.52 27570.03 33987.87 19443.21 37288.07 26489.01 25672.91 16663.11 29188.10 19945.28 28085.54 34222.07 38569.23 25781.32 334
myMVS_eth3d72.58 26472.74 24272.10 33287.87 19449.45 34988.07 26489.01 25672.91 16663.11 29188.10 19963.63 9085.54 34232.73 37469.23 25781.32 334
test111180.84 13680.02 13483.33 16787.87 19460.76 25892.62 12786.86 30277.86 9075.73 14891.39 14946.35 26994.70 18672.79 16588.68 10394.52 98
HyFIR lowres test81.03 13379.56 14385.43 9587.81 19768.11 8090.18 22390.01 21670.65 23072.95 17786.06 22963.61 9294.50 19875.01 15079.75 17793.67 129
dmvs_re76.93 20375.36 20681.61 21087.78 19860.71 26180.00 33687.99 29079.42 6269.02 22889.47 17946.77 26494.32 20163.38 25474.45 21989.81 209
131480.70 13778.95 15485.94 7987.77 19967.56 9387.91 26892.55 11372.17 18767.44 25293.09 11250.27 23597.04 9271.68 17987.64 11293.23 141
cl2277.94 19076.78 18781.42 21487.57 20064.93 16090.67 20888.86 26372.45 17767.63 25182.68 26464.07 8292.91 24971.79 17565.30 28386.44 262
HQP-NCC87.54 20194.06 6379.80 5674.18 164
ACMP_Plane87.54 20194.06 6379.80 5674.18 164
HQP-MVS81.14 12980.64 12682.64 18187.54 20163.66 19694.06 6391.70 14979.80 5674.18 16490.30 16651.63 22495.61 15377.63 13478.90 18388.63 225
NP-MVS87.41 20463.04 21090.30 166
diffmvspermissive84.28 7483.83 7285.61 9187.40 20568.02 8290.88 20189.24 24280.54 4781.64 8692.52 12559.83 13494.52 19787.32 5885.11 13594.29 103
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline283.68 9183.42 8284.48 13587.37 20666.00 13290.06 22695.93 879.71 5969.08 22690.39 16477.92 696.28 12378.91 12581.38 16491.16 193
fmvsm_s_conf0.5_n86.39 4186.91 3684.82 11687.36 20763.54 20194.74 4790.02 21582.52 2490.14 2496.92 1362.93 10397.84 4695.28 882.26 15493.07 147
plane_prior687.23 20862.32 22850.66 231
tttt051779.50 15978.53 15982.41 18887.22 20961.43 24689.75 23694.76 2769.29 24667.91 24588.06 20272.92 2595.63 15162.91 25973.90 22690.16 204
plane_prior187.15 210
cascas78.18 18575.77 20085.41 9687.14 21169.11 5392.96 11291.15 17166.71 27170.47 20886.07 22837.49 31896.48 12070.15 19079.80 17690.65 198
fmvsm_l_conf0.5_n_a87.44 2888.15 2285.30 10187.10 21264.19 18094.41 5288.14 28680.24 5292.54 596.97 1069.52 3997.17 8395.89 288.51 10494.56 93
CHOSEN 280x42077.35 19876.95 18678.55 27387.07 21362.68 22269.71 36582.95 33768.80 25371.48 20087.27 21466.03 6084.00 35276.47 14082.81 15288.95 219
test_fmvsm_n_192087.69 2488.50 1785.27 10387.05 21463.55 20093.69 8791.08 17684.18 1390.17 2397.04 867.58 4997.99 3995.72 590.03 9294.26 104
fmvsm_l_conf0.5_n87.49 2688.19 2185.39 9786.95 21564.37 17394.30 5488.45 27780.51 4892.70 496.86 1569.98 3797.15 8695.83 388.08 10894.65 90
HQP_MVS80.34 14479.75 14082.12 19986.94 21662.42 22493.13 10591.31 16378.81 7872.53 18489.14 18350.66 23195.55 15876.74 13778.53 18888.39 232
plane_prior786.94 21661.51 244
test-LLR80.10 14979.56 14381.72 20886.93 21861.17 24892.70 12291.54 15471.51 21375.62 15086.94 21753.83 20292.38 27072.21 17284.76 13991.60 180
test-mter79.96 15279.38 14981.72 20886.93 21861.17 24892.70 12291.54 15473.85 14675.62 15086.94 21749.84 24092.38 27072.21 17284.76 13991.60 180
SCA75.82 22472.76 24185.01 11086.63 22070.08 3281.06 32589.19 24571.60 20970.01 21677.09 32845.53 27790.25 30360.43 27373.27 22894.68 87
AUN-MVS78.37 18277.43 17581.17 21986.60 22157.45 30689.46 24291.16 16974.11 13974.40 16390.49 16255.52 18394.57 19274.73 15560.43 33091.48 183
hse-mvs281.12 13181.11 11981.16 22086.52 22257.48 30589.40 24391.16 16981.45 3682.73 7990.49 16260.11 13094.58 19087.69 5360.41 33191.41 185
xiu_mvs_v1_base_debu82.16 11381.12 11685.26 10486.42 22368.72 6492.59 13090.44 19573.12 16184.20 6794.36 8238.04 31295.73 14584.12 8586.81 12091.33 186
xiu_mvs_v1_base82.16 11381.12 11685.26 10486.42 22368.72 6492.59 13090.44 19573.12 16184.20 6794.36 8238.04 31295.73 14584.12 8586.81 12091.33 186
xiu_mvs_v1_base_debi82.16 11381.12 11685.26 10486.42 22368.72 6492.59 13090.44 19573.12 16184.20 6794.36 8238.04 31295.73 14584.12 8586.81 12091.33 186
F-COLMAP70.66 27368.44 28177.32 28886.37 22655.91 31788.00 26686.32 30556.94 33957.28 32888.07 20133.58 33792.49 26751.02 30668.37 26483.55 305
CDS-MVSNet81.43 12580.74 12383.52 16186.26 22764.45 16792.09 14690.65 18975.83 11873.95 17089.81 17663.97 8492.91 24971.27 18082.82 15193.20 142
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
VDDNet80.50 14078.26 16287.21 4186.19 22869.79 4094.48 5091.31 16360.42 32079.34 11090.91 15538.48 30796.56 11782.16 9781.05 16695.27 66
jason86.40 4086.17 4487.11 4486.16 22970.54 2895.71 2492.19 12582.00 3084.58 6494.34 8761.86 11295.53 16087.76 5290.89 8495.27 66
jason: jason.
PCF-MVS73.15 979.29 16277.63 17284.29 14286.06 23065.96 13487.03 28091.10 17369.86 24069.79 22190.64 15757.54 15796.59 11464.37 24882.29 15390.32 202
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MS-PatchMatch77.90 19276.50 19082.12 19985.99 23169.95 3691.75 16792.70 10473.97 14362.58 29884.44 24641.11 29595.78 14163.76 25292.17 6480.62 342
FIs79.47 16079.41 14779.67 25785.95 23259.40 28091.68 16993.94 5678.06 8668.96 23088.28 19366.61 5691.77 28566.20 23274.99 21587.82 237
VPA-MVSNet79.03 16678.00 16682.11 20285.95 23264.48 16693.22 10494.66 3275.05 12874.04 16984.95 23852.17 21993.52 23474.90 15367.04 27388.32 234
tpm78.58 17977.03 18383.22 17085.94 23464.56 16283.21 30891.14 17278.31 8373.67 17279.68 30964.01 8392.09 27966.07 23371.26 24693.03 148
OpenMVScopyleft70.45 1178.54 18075.92 19886.41 6885.93 23571.68 1692.74 11992.51 11466.49 27364.56 27791.96 13843.88 28598.10 3754.61 29590.65 8789.44 218
testing370.38 27770.83 26169.03 34385.82 23643.93 37190.72 20790.56 19168.06 25960.24 30886.82 21964.83 7484.12 34826.33 38164.10 29879.04 355
OMC-MVS78.67 17877.91 16980.95 22985.76 23757.40 30788.49 25988.67 27173.85 14672.43 18892.10 13649.29 24594.55 19572.73 16677.89 19190.91 196
fmvsm_s_conf0.5_n_a85.75 5286.09 4684.72 12385.73 23863.58 19893.79 8389.32 23981.42 3990.21 2296.91 1462.41 10797.67 5194.48 1080.56 17192.90 153
miper_ehance_all_eth77.60 19476.44 19181.09 22685.70 23964.41 17190.65 20988.64 27372.31 18167.37 25682.52 26564.77 7692.64 26370.67 18665.30 28386.24 266
KD-MVS_2432*160069.03 28866.37 29177.01 29385.56 24061.06 25181.44 32190.25 20467.27 26758.00 32376.53 33254.49 19487.63 33148.04 32035.77 38082.34 326
miper_refine_blended69.03 28866.37 29177.01 29385.56 24061.06 25181.44 32190.25 20467.27 26758.00 32376.53 33254.49 19487.63 33148.04 32035.77 38082.34 326
EI-MVSNet78.97 16878.22 16381.25 21785.33 24262.73 22189.53 24093.21 8472.39 18072.14 19190.13 17260.99 12094.72 18367.73 21572.49 23686.29 264
CVMVSNet74.04 24474.27 22173.33 32085.33 24243.94 37089.53 24088.39 27854.33 34870.37 21190.13 17249.17 24784.05 35061.83 26779.36 17991.99 177
test_fmvsmconf_n86.58 3987.17 3284.82 11685.28 24462.55 22394.26 5689.78 22183.81 1687.78 3696.33 2965.33 6796.98 9894.40 1187.55 11394.95 78
ACMH63.93 1768.62 29164.81 30180.03 24785.22 24563.25 20687.72 27184.66 32260.83 31851.57 34779.43 31227.29 35894.96 17541.76 34764.84 29081.88 330
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
cl____76.07 21574.67 21180.28 23985.15 24661.76 23990.12 22488.73 26871.16 21865.43 26881.57 27961.15 11892.95 24466.54 22662.17 31286.13 271
DIV-MVS_self_test76.07 21574.67 21180.28 23985.14 24761.75 24090.12 22488.73 26871.16 21865.42 26981.60 27861.15 11892.94 24866.54 22662.16 31486.14 269
TAMVS80.37 14379.45 14683.13 17285.14 24763.37 20491.23 18990.76 18474.81 13172.65 18188.49 18760.63 12592.95 24469.41 19881.95 15993.08 146
MSDG69.54 28465.73 29480.96 22885.11 24963.71 19284.19 29683.28 33656.95 33854.50 33584.03 24931.50 34596.03 13542.87 34469.13 25983.14 315
c3_l76.83 20875.47 20480.93 23085.02 25064.18 18190.39 21688.11 28771.66 20366.65 26481.64 27763.58 9492.56 26469.31 20062.86 30586.04 273
ACMP71.68 1075.58 22974.23 22279.62 25984.97 25159.64 27690.80 20489.07 25470.39 23362.95 29487.30 21338.28 30893.87 22772.89 16271.45 24485.36 289
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
FC-MVSNet-test77.99 18878.08 16577.70 28184.89 25255.51 32090.27 22093.75 6576.87 10366.80 26387.59 20865.71 6490.23 30762.89 26073.94 22487.37 244
PVSNet_068.08 1571.81 26668.32 28382.27 19184.68 25362.31 22988.68 25690.31 20175.84 11757.93 32580.65 29637.85 31594.19 20969.94 19229.05 38890.31 203
eth_miper_zixun_eth75.96 22274.40 21980.66 23284.66 25463.02 21189.28 24588.27 28371.88 19565.73 26681.65 27659.45 13892.81 25268.13 20960.53 32886.14 269
WR-MVS76.76 20975.74 20179.82 25484.60 25562.27 23092.60 12892.51 11476.06 11567.87 24885.34 23456.76 16790.24 30662.20 26463.69 30386.94 254
ACMH+65.35 1667.65 30064.55 30476.96 29584.59 25657.10 30988.08 26380.79 34458.59 33253.00 34181.09 29126.63 36092.95 24446.51 32861.69 32180.82 339
VPNet78.82 17277.53 17482.70 17984.52 25766.44 12293.93 7292.23 12080.46 4972.60 18288.38 19249.18 24693.13 24072.47 17063.97 30188.55 228
IterMVS-LS76.49 21175.18 20980.43 23684.49 25862.74 22090.64 21088.80 26572.40 17965.16 27181.72 27560.98 12192.27 27567.74 21464.65 29486.29 264
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
UniMVSNet_NR-MVSNet78.15 18677.55 17379.98 24884.46 25960.26 26892.25 13893.20 8677.50 9868.88 23186.61 22066.10 5992.13 27766.38 22962.55 30887.54 239
FMVSNet568.04 29765.66 29675.18 30784.43 26057.89 29783.54 30086.26 30761.83 31353.64 34073.30 34537.15 32285.08 34548.99 31561.77 31782.56 325
MVS-HIRNet60.25 33255.55 33974.35 31384.37 26156.57 31471.64 36074.11 36134.44 38145.54 36742.24 38831.11 34989.81 31140.36 35476.10 21076.67 365
LPG-MVS_test75.82 22474.58 21579.56 26184.31 26259.37 28190.44 21389.73 22669.49 24364.86 27288.42 18838.65 30494.30 20372.56 16872.76 23385.01 294
LGP-MVS_train79.56 26184.31 26259.37 28189.73 22669.49 24364.86 27288.42 18838.65 30494.30 20372.56 16872.76 23385.01 294
ACMM69.62 1374.34 24072.73 24379.17 26684.25 26457.87 29890.36 21789.93 21763.17 29965.64 26786.04 23037.79 31694.10 21165.89 23471.52 24385.55 285
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
UniMVSNet (Re)77.58 19576.78 18779.98 24884.11 26560.80 25591.76 16593.17 8876.56 11269.93 22084.78 24163.32 9892.36 27264.89 24562.51 31086.78 256
test_040264.54 31761.09 32374.92 30984.10 26660.75 25987.95 26779.71 34952.03 35252.41 34377.20 32632.21 34391.64 28723.14 38361.03 32472.36 372
LTVRE_ROB59.60 1966.27 30863.54 31174.45 31284.00 26751.55 33767.08 37283.53 33258.78 33054.94 33480.31 30034.54 33393.23 23940.64 35368.03 26678.58 359
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
miper_lstm_enhance73.05 25371.73 25677.03 29283.80 26858.32 29481.76 31688.88 26169.80 24161.01 30478.23 31857.19 15987.51 33365.34 24259.53 33385.27 292
Patchmatch-test65.86 31060.94 32480.62 23483.75 26958.83 28958.91 38375.26 35944.50 37350.95 35177.09 32858.81 14687.90 32535.13 36664.03 29995.12 72
nrg03080.93 13479.86 13884.13 14783.69 27068.83 6193.23 10391.20 16775.55 12075.06 15788.22 19863.04 10294.74 18281.88 10066.88 27488.82 223
GA-MVS78.33 18476.23 19484.65 12783.65 27166.30 12691.44 17390.14 20976.01 11670.32 21284.02 25042.50 29094.72 18370.98 18277.00 20392.94 151
FMVSNet172.71 26069.91 27181.10 22383.60 27265.11 15490.01 22890.32 19863.92 28963.56 28780.25 30236.35 32791.54 29154.46 29666.75 27586.64 257
OPM-MVS79.00 16778.09 16481.73 20783.52 27363.83 18691.64 17190.30 20276.36 11471.97 19389.93 17546.30 27295.17 17075.10 14877.70 19386.19 268
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
tfpnnormal70.10 27867.36 28678.32 27583.45 27460.97 25388.85 25392.77 10264.85 28460.83 30678.53 31543.52 28793.48 23531.73 37761.70 32080.52 343
Effi-MVS+-dtu76.14 21475.28 20878.72 27283.22 27555.17 32289.87 23287.78 29375.42 12267.98 24281.43 28145.08 28192.52 26675.08 14971.63 24188.48 229
CR-MVSNet73.79 24870.82 26382.70 17983.15 27667.96 8370.25 36284.00 32873.67 15369.97 21872.41 34857.82 15489.48 31452.99 30373.13 22990.64 199
RPMNet70.42 27665.68 29584.63 12983.15 27667.96 8370.25 36290.45 19246.83 36869.97 21865.10 36756.48 17495.30 16835.79 36573.13 22990.64 199
mvsmamba76.85 20675.71 20280.25 24183.07 27859.16 28591.44 17380.64 34676.84 10567.95 24386.33 22546.17 27494.24 20876.06 14272.92 23287.36 245
DU-MVS76.86 20475.84 19979.91 25182.96 27960.26 26891.26 18891.54 15476.46 11368.88 23186.35 22356.16 17592.13 27766.38 22962.55 30887.35 246
NR-MVSNet76.05 21874.59 21480.44 23582.96 27962.18 23190.83 20391.73 14577.12 10260.96 30586.35 22359.28 14291.80 28460.74 27161.34 32387.35 246
fmvsm_s_conf0.1_n85.61 5685.93 4984.68 12682.95 28163.48 20394.03 6889.46 23381.69 3389.86 2596.74 2061.85 11397.75 4994.74 982.01 15892.81 155
XXY-MVS77.94 19076.44 19182.43 18582.60 28264.44 16892.01 15191.83 14273.59 15470.00 21785.82 23154.43 19794.76 18069.63 19568.02 26788.10 236
test_fmvsmvis_n_192083.80 8683.48 7784.77 12082.51 28363.72 19191.37 18283.99 33081.42 3977.68 12995.74 4258.37 14897.58 5993.38 1486.87 11993.00 150
TranMVSNet+NR-MVSNet75.86 22374.52 21779.89 25282.44 28460.64 26491.37 18291.37 16176.63 11067.65 25086.21 22752.37 21891.55 29061.84 26660.81 32687.48 241
RRT_MVS74.44 23972.97 23978.84 27182.36 28557.66 30289.83 23488.79 26770.61 23164.58 27684.89 23939.24 30092.65 26270.11 19166.34 27886.21 267
test_vis1_n_192081.66 12282.01 10780.64 23382.24 28655.09 32394.76 4686.87 30181.67 3484.40 6694.63 7538.17 30994.67 18791.98 2683.34 14892.16 176
IterMVS72.65 26370.83 26178.09 27982.17 28762.96 21387.64 27486.28 30671.56 21160.44 30778.85 31445.42 27986.66 33763.30 25661.83 31684.65 298
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Patchmtry67.53 30263.93 30978.34 27482.12 28864.38 17268.72 36684.00 32848.23 36559.24 31372.41 34857.82 15489.27 31546.10 33156.68 34381.36 333
PatchT69.11 28765.37 29980.32 23782.07 28963.68 19567.96 37187.62 29450.86 35769.37 22265.18 36657.09 16088.53 32041.59 34966.60 27688.74 224
MIMVSNet71.64 26768.44 28181.23 21881.97 29064.44 16873.05 35888.80 26569.67 24264.59 27574.79 34232.79 33987.82 32753.99 29876.35 20891.42 184
MVP-Stereo77.12 20176.23 19479.79 25581.72 29166.34 12589.29 24490.88 18270.56 23262.01 30182.88 26149.34 24394.13 21065.55 24093.80 4178.88 356
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
IterMVS-SCA-FT71.55 27069.97 26976.32 29981.48 29260.67 26387.64 27485.99 31166.17 27559.50 31278.88 31345.53 27783.65 35462.58 26261.93 31584.63 299
COLMAP_ROBcopyleft57.96 2062.98 32559.65 32772.98 32381.44 29353.00 33283.75 29975.53 35848.34 36448.81 35881.40 28324.14 36390.30 30232.95 37260.52 32975.65 367
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
JIA-IIPM66.06 30962.45 31876.88 29681.42 29454.45 32757.49 38488.67 27149.36 36163.86 28446.86 38256.06 17890.25 30349.53 31368.83 26085.95 276
WR-MVS_H70.59 27469.94 27072.53 32681.03 29551.43 33887.35 27792.03 13067.38 26660.23 30980.70 29355.84 18183.45 35646.33 33058.58 33882.72 320
Fast-Effi-MVS+-dtu75.04 23473.37 23480.07 24580.86 29659.52 27991.20 19285.38 31571.90 19365.20 27084.84 24041.46 29392.97 24366.50 22872.96 23187.73 238
test_fmvsmconf0.1_n85.71 5386.08 4784.62 13080.83 29762.33 22793.84 8088.81 26483.50 1887.00 4296.01 3763.36 9696.93 10594.04 1287.29 11694.61 92
Baseline_NR-MVSNet73.99 24572.83 24077.48 28580.78 29859.29 28491.79 16284.55 32368.85 25268.99 22980.70 29356.16 17592.04 28062.67 26160.98 32581.11 336
CP-MVSNet70.50 27569.91 27172.26 32980.71 29951.00 34187.23 27990.30 20267.84 26159.64 31182.69 26350.23 23682.30 36451.28 30559.28 33483.46 309
v875.35 23073.26 23581.61 21080.67 30066.82 11289.54 23989.27 24171.65 20463.30 29080.30 30154.99 19094.06 21567.33 21962.33 31183.94 302
PS-MVSNAJss77.26 19976.31 19380.13 24480.64 30159.16 28590.63 21291.06 17872.80 16968.58 23784.57 24453.55 20693.96 22372.97 16171.96 24087.27 249
TransMVSNet (Re)70.07 27967.66 28577.31 28980.62 30259.13 28791.78 16484.94 32065.97 27660.08 31080.44 29850.78 23091.87 28248.84 31645.46 36680.94 338
v2v48277.42 19775.65 20382.73 17880.38 30367.13 10591.85 16090.23 20675.09 12769.37 22283.39 25753.79 20494.44 19971.77 17665.00 28986.63 260
PS-CasMVS69.86 28269.13 27772.07 33380.35 30450.57 34387.02 28189.75 22367.27 26759.19 31582.28 26746.58 26782.24 36550.69 30759.02 33583.39 311
v1074.77 23772.54 24781.46 21380.33 30566.71 11689.15 24989.08 25370.94 22363.08 29379.86 30652.52 21694.04 21865.70 23762.17 31283.64 304
test0.0.03 172.76 25872.71 24472.88 32480.25 30647.99 35591.22 19089.45 23471.51 21362.51 29987.66 20753.83 20285.06 34650.16 31067.84 27085.58 283
fmvsm_s_conf0.1_n_a84.76 6684.84 6584.53 13280.23 30763.50 20292.79 11788.73 26880.46 4989.84 2696.65 2260.96 12297.57 6193.80 1380.14 17392.53 162
v114476.73 21074.88 21082.27 19180.23 30766.60 11991.68 16990.21 20873.69 15169.06 22781.89 27252.73 21594.40 20069.21 20165.23 28685.80 279
v14876.19 21374.47 21881.36 21580.05 30964.44 16891.75 16790.23 20673.68 15267.13 25780.84 29255.92 18093.86 22968.95 20461.73 31985.76 282
dmvs_testset65.55 31366.45 28962.86 35579.87 31022.35 39876.55 35071.74 36877.42 10155.85 33187.77 20651.39 22680.69 37031.51 38065.92 28185.55 285
v119275.98 22073.92 22782.15 19779.73 31166.24 12891.22 19089.75 22372.67 17168.49 23881.42 28249.86 23994.27 20567.08 22165.02 28885.95 276
AllTest61.66 32758.06 33172.46 32779.57 31251.42 33980.17 33368.61 37451.25 35545.88 36381.23 28519.86 37486.58 33838.98 35757.01 34179.39 351
TestCases72.46 32779.57 31251.42 33968.61 37451.25 35545.88 36381.23 28519.86 37486.58 33838.98 35757.01 34179.39 351
MDA-MVSNet-bldmvs61.54 32957.70 33373.05 32279.53 31457.00 31283.08 30981.23 34257.57 33334.91 38172.45 34732.79 33986.26 34035.81 36441.95 37175.89 366
v14419276.05 21874.03 22582.12 19979.50 31566.55 12191.39 17989.71 22972.30 18268.17 24081.33 28451.75 22294.03 22067.94 21264.19 29685.77 280
v192192075.63 22873.49 23382.06 20379.38 31666.35 12491.07 19789.48 23271.98 19067.99 24181.22 28749.16 24893.90 22666.56 22564.56 29585.92 278
PEN-MVS69.46 28568.56 27972.17 33179.27 31749.71 34786.90 28389.24 24267.24 27059.08 31682.51 26647.23 26383.54 35548.42 31857.12 33983.25 312
v124075.21 23372.98 23881.88 20579.20 31866.00 13290.75 20689.11 25171.63 20867.41 25481.22 28747.36 26293.87 22765.46 24164.72 29385.77 280
pmmvs473.92 24671.81 25580.25 24179.17 31965.24 15087.43 27687.26 29867.64 26563.46 28883.91 25248.96 25091.53 29462.94 25865.49 28283.96 301
D2MVS73.80 24772.02 25279.15 26879.15 32062.97 21288.58 25890.07 21172.94 16459.22 31478.30 31642.31 29292.70 25865.59 23972.00 23981.79 331
V4276.46 21274.55 21682.19 19679.14 32167.82 8690.26 22189.42 23673.75 14968.63 23681.89 27251.31 22794.09 21271.69 17864.84 29084.66 297
pm-mvs172.89 25671.09 26078.26 27779.10 32257.62 30390.80 20489.30 24067.66 26362.91 29581.78 27449.11 24992.95 24460.29 27558.89 33684.22 300
our_test_368.29 29564.69 30379.11 26978.92 32364.85 16188.40 26185.06 31860.32 32252.68 34276.12 33640.81 29689.80 31344.25 33955.65 34482.67 324
ppachtmachnet_test67.72 29963.70 31079.77 25678.92 32366.04 13188.68 25682.90 33860.11 32455.45 33275.96 33739.19 30190.55 29939.53 35552.55 35482.71 321
test_fmvs174.07 24373.69 23075.22 30578.91 32547.34 35989.06 25274.69 36063.68 29279.41 10991.59 14524.36 36287.77 32985.22 7476.26 20990.55 201
TinyColmap60.32 33156.42 33872.00 33478.78 32653.18 33178.36 34475.64 35652.30 35141.59 37675.82 33914.76 38188.35 32235.84 36354.71 34974.46 368
SixPastTwentyTwo64.92 31561.78 32274.34 31478.74 32749.76 34683.42 30479.51 35062.86 30150.27 35277.35 32330.92 35090.49 30145.89 33247.06 36382.78 317
EG-PatchMatch MVS68.55 29265.41 29877.96 28078.69 32862.93 21489.86 23389.17 24660.55 31950.27 35277.73 32222.60 36794.06 21547.18 32672.65 23576.88 364
pmmvs573.35 25071.52 25778.86 27078.64 32960.61 26591.08 19586.90 30067.69 26263.32 28983.64 25344.33 28490.53 30062.04 26566.02 28085.46 287
UniMVSNet_ETH3D72.74 25970.53 26679.36 26378.62 33056.64 31385.01 29289.20 24463.77 29164.84 27484.44 24634.05 33591.86 28363.94 25070.89 24889.57 214
XVG-OURS74.25 24272.46 24879.63 25878.45 33157.59 30480.33 33087.39 29563.86 29068.76 23489.62 17840.50 29791.72 28669.00 20374.25 22189.58 213
tt080573.07 25270.73 26480.07 24578.37 33257.05 31087.78 27092.18 12661.23 31667.04 25886.49 22231.35 34794.58 19065.06 24467.12 27288.57 227
test_cas_vis1_n_192080.45 14280.61 12779.97 25078.25 33357.01 31194.04 6788.33 28079.06 7382.81 7893.70 10238.65 30491.63 28890.82 3579.81 17591.27 192
XVG-OURS-SEG-HR74.70 23873.08 23679.57 26078.25 33357.33 30880.49 32887.32 29663.22 29768.76 23490.12 17444.89 28291.59 28970.55 18874.09 22389.79 210
MDA-MVSNet_test_wron63.78 32260.16 32574.64 31078.15 33560.41 26683.49 30184.03 32656.17 34439.17 37871.59 35437.22 32083.24 35942.87 34448.73 36080.26 346
YYNet163.76 32360.14 32674.62 31178.06 33660.19 27183.46 30383.99 33056.18 34339.25 37771.56 35537.18 32183.34 35742.90 34348.70 36180.32 345
DTE-MVSNet68.46 29467.33 28771.87 33577.94 33749.00 35286.16 28888.58 27566.36 27458.19 32082.21 26946.36 26883.87 35344.97 33755.17 34682.73 319
USDC67.43 30464.51 30576.19 30077.94 33755.29 32178.38 34385.00 31973.17 15948.36 35980.37 29921.23 36992.48 26852.15 30464.02 30080.81 340
bld_raw_dy_0_6471.59 26969.71 27477.22 29177.82 33958.12 29687.71 27273.66 36268.01 26061.90 30384.29 24833.68 33688.43 32169.91 19370.43 24985.11 293
jajsoiax73.05 25371.51 25877.67 28277.46 34054.83 32488.81 25490.04 21469.13 25062.85 29683.51 25531.16 34892.75 25570.83 18369.80 25085.43 288
mvs_tets72.71 26071.11 25977.52 28377.41 34154.52 32688.45 26089.76 22268.76 25562.70 29783.26 25829.49 35292.71 25670.51 18969.62 25285.34 290
N_pmnet50.55 34249.11 34554.88 36377.17 3424.02 40684.36 2952.00 40448.59 36245.86 36568.82 36032.22 34282.80 36131.58 37851.38 35677.81 362
test_djsdf73.76 24972.56 24677.39 28777.00 34353.93 32889.07 25090.69 18565.80 27763.92 28382.03 27143.14 28992.67 25972.83 16368.53 26385.57 284
OpenMVS_ROBcopyleft61.12 1866.39 30762.92 31576.80 29776.51 34457.77 29989.22 24683.41 33455.48 34553.86 33977.84 32126.28 36193.95 22434.90 36768.76 26178.68 358
v7n71.31 27168.65 27879.28 26476.40 34560.77 25786.71 28589.45 23464.17 28858.77 31978.24 31744.59 28393.54 23357.76 28561.75 31883.52 307
K. test v363.09 32459.61 32873.53 31976.26 34649.38 35183.27 30577.15 35264.35 28747.77 36172.32 35028.73 35487.79 32849.93 31236.69 37983.41 310
RPSCF64.24 31961.98 32171.01 33776.10 34745.00 36775.83 35475.94 35446.94 36758.96 31784.59 24331.40 34682.00 36647.76 32460.33 33286.04 273
OurMVSNet-221017-064.68 31662.17 32072.21 33076.08 34847.35 35880.67 32781.02 34356.19 34251.60 34679.66 31027.05 35988.56 31953.60 30153.63 35180.71 341
test_fmvsmconf0.01_n83.70 9083.52 7484.25 14475.26 34961.72 24192.17 14187.24 29982.36 2684.91 6195.41 4855.60 18296.83 10992.85 1785.87 13194.21 106
Anonymous2023120667.53 30265.78 29372.79 32574.95 35047.59 35788.23 26287.32 29661.75 31458.07 32277.29 32537.79 31687.29 33542.91 34263.71 30283.48 308
EGC-MVSNET42.35 34938.09 35255.11 36274.57 35146.62 36371.63 36155.77 3850.04 3990.24 40062.70 37114.24 38274.91 37617.59 38846.06 36543.80 385
ITE_SJBPF70.43 33874.44 35247.06 36277.32 35160.16 32354.04 33883.53 25423.30 36684.01 35143.07 34161.58 32280.21 348
EU-MVSNet64.01 32063.01 31467.02 35174.40 35338.86 38283.27 30586.19 30945.11 37154.27 33681.15 29036.91 32580.01 37248.79 31757.02 34082.19 329
XVG-ACMP-BASELINE68.04 29765.53 29775.56 30374.06 35452.37 33378.43 34285.88 31262.03 30958.91 31881.21 28920.38 37291.15 29760.69 27268.18 26583.16 314
mvsany_test168.77 29068.56 27969.39 34173.57 35545.88 36680.93 32660.88 38459.65 32671.56 19990.26 16843.22 28875.05 37474.26 15762.70 30787.25 250
CL-MVSNet_self_test69.92 28068.09 28475.41 30473.25 35655.90 31890.05 22789.90 21869.96 23861.96 30276.54 33151.05 22987.64 33049.51 31450.59 35882.70 322
anonymousdsp71.14 27269.37 27676.45 29872.95 35754.71 32584.19 29688.88 26161.92 31162.15 30079.77 30838.14 31191.44 29668.90 20567.45 27183.21 313
lessismore_v073.72 31872.93 35847.83 35661.72 38345.86 36573.76 34428.63 35689.81 31147.75 32531.37 38583.53 306
pmmvs667.57 30164.76 30276.00 30272.82 35953.37 33088.71 25586.78 30453.19 35057.58 32778.03 32035.33 33192.41 26955.56 29254.88 34882.21 328
testgi64.48 31862.87 31669.31 34271.24 36040.62 37785.49 28979.92 34865.36 28154.18 33783.49 25623.74 36584.55 34741.60 34860.79 32782.77 318
Patchmatch-RL test68.17 29664.49 30679.19 26571.22 36153.93 32870.07 36471.54 37069.22 24756.79 32962.89 37056.58 17288.61 31769.53 19752.61 35395.03 76
test_fmvs1_n72.69 26271.92 25374.99 30871.15 36247.08 36187.34 27875.67 35563.48 29478.08 12691.17 15220.16 37387.87 32684.65 8175.57 21390.01 207
Gipumacopyleft34.91 35631.44 35945.30 37270.99 36339.64 38119.85 39472.56 36520.10 39016.16 39421.47 3955.08 39571.16 38013.07 39243.70 36925.08 392
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
UnsupCasMVSNet_eth65.79 31163.10 31373.88 31670.71 36450.29 34581.09 32489.88 21972.58 17349.25 35774.77 34332.57 34187.43 33455.96 29141.04 37383.90 303
CMPMVSbinary48.56 2166.77 30664.41 30773.84 31770.65 36550.31 34477.79 34785.73 31445.54 37044.76 36982.14 27035.40 33090.14 30963.18 25774.54 21881.07 337
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test20.0363.83 32162.65 31767.38 35070.58 36639.94 37886.57 28684.17 32563.29 29651.86 34577.30 32437.09 32382.47 36238.87 35954.13 35079.73 349
MIMVSNet160.16 33357.33 33468.67 34469.71 36744.13 36978.92 34084.21 32455.05 34644.63 37071.85 35223.91 36481.54 36832.63 37555.03 34780.35 344
test_vis1_n71.63 26870.73 26474.31 31569.63 36847.29 36086.91 28272.11 36663.21 29875.18 15690.17 17020.40 37185.76 34184.59 8274.42 22089.87 208
pmmvs-eth3d65.53 31462.32 31975.19 30669.39 36959.59 27782.80 31283.43 33362.52 30551.30 34972.49 34632.86 33887.16 33655.32 29350.73 35778.83 357
UnsupCasMVSNet_bld61.60 32857.71 33273.29 32168.73 37051.64 33678.61 34189.05 25557.20 33746.11 36261.96 37328.70 35588.60 31850.08 31138.90 37779.63 350
test_vis1_rt59.09 33657.31 33564.43 35368.44 37146.02 36583.05 31048.63 39351.96 35349.57 35563.86 36916.30 37680.20 37171.21 18162.79 30667.07 378
Anonymous2024052162.09 32659.08 32971.10 33667.19 37248.72 35383.91 29885.23 31750.38 35847.84 36071.22 35720.74 37085.51 34446.47 32958.75 33779.06 354
test_fmvs265.78 31264.84 30068.60 34566.54 37341.71 37483.27 30569.81 37254.38 34767.91 24584.54 24515.35 37881.22 36975.65 14466.16 27982.88 316
KD-MVS_self_test60.87 33058.60 33067.68 34866.13 37439.93 37975.63 35584.70 32157.32 33649.57 35568.45 36129.55 35182.87 36048.09 31947.94 36280.25 347
new-patchmatchnet59.30 33556.48 33767.79 34765.86 37544.19 36882.47 31381.77 34059.94 32543.65 37366.20 36527.67 35781.68 36739.34 35641.40 37277.50 363
PM-MVS59.40 33456.59 33667.84 34663.63 37641.86 37376.76 34963.22 38159.01 32951.07 35072.27 35111.72 38483.25 35861.34 26850.28 35978.39 360
DSMNet-mixed56.78 33854.44 34163.79 35463.21 37729.44 39364.43 37564.10 38042.12 37851.32 34871.60 35331.76 34475.04 37536.23 36265.20 28786.87 255
new_pmnet49.31 34346.44 34657.93 35862.84 37840.74 37668.47 36862.96 38236.48 38035.09 38057.81 37714.97 38072.18 37932.86 37346.44 36460.88 380
LF4IMVS54.01 34152.12 34259.69 35762.41 37939.91 38068.59 36768.28 37642.96 37744.55 37175.18 34014.09 38368.39 38341.36 35051.68 35570.78 373
WB-MVS46.23 34644.94 34850.11 36762.13 38021.23 40076.48 35155.49 38645.89 36935.78 37961.44 37535.54 32972.83 3789.96 39421.75 38956.27 382
ambc69.61 34061.38 38141.35 37549.07 38985.86 31350.18 35466.40 36410.16 38688.14 32445.73 33344.20 36779.32 353
SSC-MVS44.51 34843.35 35047.99 37161.01 38218.90 40274.12 35754.36 38743.42 37634.10 38260.02 37634.42 33470.39 3819.14 39619.57 39054.68 383
TDRefinement55.28 34051.58 34366.39 35259.53 38346.15 36476.23 35272.80 36444.60 37242.49 37476.28 33515.29 37982.39 36333.20 37143.75 36870.62 374
pmmvs355.51 33951.50 34467.53 34957.90 38450.93 34280.37 32973.66 36240.63 37944.15 37264.75 36816.30 37678.97 37344.77 33840.98 37572.69 370
test_method38.59 35435.16 35748.89 36954.33 38521.35 39945.32 39053.71 3887.41 39628.74 38451.62 3808.70 38952.87 39433.73 36832.89 38472.47 371
test_fmvs356.82 33754.86 34062.69 35653.59 38635.47 38475.87 35365.64 37943.91 37455.10 33371.43 3566.91 39274.40 37768.64 20752.63 35278.20 361
APD_test140.50 35137.31 35450.09 36851.88 38735.27 38559.45 38252.59 38921.64 38826.12 38657.80 3784.56 39666.56 38522.64 38439.09 37648.43 384
DeepMVS_CXcopyleft34.71 37751.45 38824.73 39728.48 40331.46 38417.49 39352.75 3795.80 39442.60 39818.18 38719.42 39136.81 390
FPMVS45.64 34743.10 35153.23 36551.42 38936.46 38364.97 37471.91 36729.13 38527.53 38561.55 3749.83 38765.01 38916.00 39155.58 34558.22 381
wuyk23d11.30 36510.95 36812.33 38148.05 39019.89 40125.89 3931.92 4053.58 3973.12 3991.37 3990.64 40415.77 4006.23 3997.77 3981.35 396
PMMVS237.93 35533.61 35850.92 36646.31 39124.76 39660.55 38150.05 39028.94 38620.93 38847.59 3814.41 39865.13 38825.14 38218.55 39262.87 379
mvsany_test348.86 34446.35 34756.41 35946.00 39231.67 38962.26 37747.25 39443.71 37545.54 36768.15 36210.84 38564.44 39157.95 28435.44 38273.13 369
test_f46.58 34543.45 34955.96 36045.18 39332.05 38861.18 37849.49 39233.39 38242.05 37562.48 3727.00 39165.56 38747.08 32743.21 37070.27 375
test_vis3_rt40.46 35237.79 35348.47 37044.49 39433.35 38766.56 37332.84 40132.39 38329.65 38339.13 3913.91 39968.65 38250.17 30940.99 37443.40 386
E-PMN24.61 36024.00 36426.45 37843.74 39518.44 40360.86 37939.66 39715.11 3939.53 39722.10 3946.52 39346.94 3968.31 39710.14 39413.98 394
testf132.77 35729.47 36042.67 37441.89 39630.81 39052.07 38543.45 39515.45 39118.52 39144.82 3852.12 40058.38 39216.05 38930.87 38638.83 387
APD_test232.77 35729.47 36042.67 37441.89 39630.81 39052.07 38543.45 39515.45 39118.52 39144.82 3852.12 40058.38 39216.05 38930.87 38638.83 387
EMVS23.76 36223.20 36625.46 37941.52 39816.90 40460.56 38038.79 40014.62 3948.99 39820.24 3977.35 39045.82 3977.25 3989.46 39513.64 395
LCM-MVSNet40.54 35035.79 35554.76 36436.92 39930.81 39051.41 38769.02 37322.07 38724.63 38745.37 3844.56 39665.81 38633.67 36934.50 38367.67 376
ANet_high40.27 35335.20 35655.47 36134.74 40034.47 38663.84 37671.56 36948.42 36318.80 39041.08 3899.52 38864.45 39020.18 3868.66 39767.49 377
MVEpermissive24.84 2324.35 36119.77 36738.09 37634.56 40126.92 39526.57 39238.87 39911.73 39511.37 39627.44 3921.37 40350.42 39511.41 39314.60 39336.93 389
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMVScopyleft26.43 2231.84 35928.16 36242.89 37325.87 40227.58 39450.92 38849.78 39121.37 38914.17 39540.81 3902.01 40266.62 3849.61 39538.88 37834.49 391
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
tmp_tt22.26 36323.75 36517.80 3805.23 40312.06 40535.26 39139.48 3982.82 39818.94 38944.20 38722.23 36824.64 39936.30 3619.31 39616.69 393
testmvs7.23 3679.62 3700.06 3830.04 4040.02 40884.98 2930.02 4060.03 4000.18 4011.21 4000.01 4060.02 4010.14 4000.01 3990.13 398
test1236.92 3689.21 3710.08 3820.03 4050.05 40781.65 3190.01 4070.02 4010.14 4020.85 4010.03 4050.02 4010.12 4010.00 4000.16 397
test_blank0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4000.00 399
eth-test20.00 406
eth-test0.00 406
uanet_test0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4000.00 399
DCPMVS0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4000.00 399
cdsmvs_eth3d_5k19.86 36426.47 3630.00 3840.00 4060.00 4090.00 39593.45 770.00 4020.00 40395.27 5649.56 2410.00 4030.00 4020.00 4000.00 399
pcd_1.5k_mvsjas4.46 3695.95 3720.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 40253.55 2060.00 4030.00 4020.00 4000.00 399
sosnet-low-res0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4000.00 399
sosnet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4000.00 399
uncertanet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4000.00 399
Regformer0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4000.00 399
ab-mvs-re7.91 36610.55 3690.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 40394.95 640.00 4070.00 4030.00 4020.00 4000.00 399
uanet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4000.00 399
MM88.92 1371.10 2297.02 396.04 688.70 291.57 1396.19 3370.12 3698.91 1796.83 195.06 1696.76 12
WAC-MVS49.45 34931.56 379
PC_three_145280.91 4594.07 296.83 1883.57 499.12 595.70 797.42 497.55 4
test_241102_TWO94.41 4271.65 20492.07 897.21 474.58 1799.11 692.34 2195.36 1396.59 16
test_0728_THIRD72.48 17590.55 1996.93 1176.24 1199.08 1191.53 2994.99 1796.43 26
GSMVS94.68 87
sam_mvs157.85 15394.68 87
sam_mvs54.91 191
MTGPAbinary92.23 120
test_post178.95 33920.70 39653.05 21191.50 29560.43 273
test_post23.01 39356.49 17392.67 259
patchmatchnet-post67.62 36357.62 15690.25 303
MTMP93.77 8432.52 402
test9_res89.41 3994.96 1895.29 63
agg_prior286.41 6694.75 2995.33 59
test_prior467.18 10493.92 73
test_prior295.10 3875.40 12385.25 6095.61 4567.94 4687.47 5694.77 25
旧先验292.00 15459.37 32887.54 3893.47 23675.39 146
新几何291.41 175
无先验92.71 12192.61 11162.03 30997.01 9366.63 22493.97 119
原ACMM292.01 151
testdata296.09 12961.26 269
segment_acmp65.94 61
testdata189.21 24777.55 97
plane_prior591.31 16395.55 15876.74 13778.53 18888.39 232
plane_prior489.14 183
plane_prior361.95 23679.09 7172.53 184
plane_prior293.13 10578.81 78
plane_prior62.42 22493.85 7779.38 6378.80 185
n20.00 408
nn0.00 408
door-mid66.01 378
test1193.01 94
door66.57 377
HQP5-MVS63.66 196
BP-MVS77.63 134
HQP4-MVS74.18 16495.61 15388.63 225
HQP3-MVS91.70 14978.90 183
HQP2-MVS51.63 224
MDTV_nov1_ep13_2view59.90 27480.13 33467.65 26472.79 17954.33 19959.83 27792.58 160
ACMMP++_ref71.63 241
ACMMP++69.72 251
Test By Simon54.21 200