This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted by
LCM-MVSNet95.70 196.40 193.61 298.67 185.39 3395.54 597.36 196.97 199.04 199.05 196.61 195.92 1385.07 5099.27 199.54 1
PS-CasMVS90.06 3991.92 1184.47 14096.56 658.83 28989.04 8392.74 9091.40 596.12 496.06 2287.23 4595.57 3679.42 10798.74 599.00 2
PEN-MVS90.03 4191.88 1484.48 13996.57 558.88 28688.95 8493.19 6991.62 496.01 696.16 2087.02 4795.60 3478.69 11298.72 898.97 3
CP-MVSNet89.27 5890.91 4084.37 14196.34 858.61 29188.66 9192.06 10490.78 695.67 795.17 4381.80 10595.54 3979.00 11098.69 998.95 4
WR-MVS_H89.91 4691.31 2985.71 11996.32 962.39 24389.54 7493.31 6490.21 1095.57 995.66 2981.42 10995.90 1480.94 8798.80 298.84 5
DTE-MVSNet89.98 4391.91 1384.21 14896.51 757.84 29488.93 8592.84 8791.92 396.16 396.23 1886.95 4895.99 979.05 10998.57 1498.80 6
FC-MVSNet-test85.93 10387.05 9082.58 18792.25 10056.44 30585.75 13193.09 7577.33 11991.94 6694.65 5774.78 17193.41 12375.11 15798.58 1397.88 7
v7n90.13 3690.96 3887.65 8791.95 11071.06 15889.99 5993.05 7786.53 2694.29 1896.27 1782.69 8694.08 9386.25 3797.63 6197.82 8
TranMVSNet+NR-MVSNet87.86 7988.76 6985.18 12794.02 5464.13 22284.38 15191.29 12784.88 3892.06 6393.84 10086.45 5493.73 10473.22 18098.66 1097.69 9
DU-MVS86.80 9086.99 9186.21 10893.24 7467.02 19483.16 18392.21 10081.73 6690.92 8291.97 14777.20 14593.99 9574.16 16398.35 2197.61 10
NR-MVSNet86.00 10186.22 10285.34 12593.24 7464.56 21882.21 21190.46 14880.99 7488.42 12991.97 14777.56 14193.85 10072.46 19098.65 1197.61 10
FIs85.35 10986.27 10182.60 18691.86 11457.31 29885.10 13993.05 7775.83 13691.02 8193.97 9173.57 18492.91 14073.97 16898.02 3997.58 12
RRT_MVS88.30 7087.83 7789.70 5293.62 6475.70 11592.36 2689.06 18377.34 11893.63 3595.83 2565.40 23695.90 1485.01 5398.23 2797.49 13
UniMVSNet_NR-MVSNet86.84 8987.06 8986.17 11092.86 8467.02 19482.55 19991.56 11883.08 5490.92 8291.82 15378.25 13593.99 9574.16 16398.35 2197.49 13
UniMVSNet_ETH3D89.12 6190.72 4384.31 14697.00 264.33 22189.67 6988.38 19188.84 1394.29 1897.57 390.48 1391.26 18172.57 18997.65 6097.34 15
OurMVSNet-221017-090.01 4289.74 5290.83 3293.16 7680.37 6891.91 3393.11 7381.10 7395.32 1097.24 572.94 19494.85 6585.07 5097.78 5397.26 16
mvsmamba87.87 7887.23 8689.78 5192.31 9976.51 10891.09 4291.87 11172.61 18092.16 6095.23 4166.01 23295.59 3586.02 4397.78 5397.24 17
WR-MVS83.56 14984.40 13681.06 21293.43 6854.88 31678.67 26185.02 24481.24 7190.74 8891.56 15972.85 19591.08 18768.00 23098.04 3697.23 18
TDRefinement93.52 293.39 393.88 195.94 1490.26 395.70 496.46 290.58 892.86 4796.29 1688.16 3394.17 9086.07 4098.48 1797.22 19
v1086.54 9387.10 8884.84 13188.16 20063.28 23186.64 12292.20 10175.42 14392.81 5094.50 6374.05 17994.06 9483.88 6296.28 10797.17 20
anonymousdsp89.73 4988.88 6692.27 789.82 16786.67 1490.51 5090.20 16169.87 21395.06 1196.14 2184.28 7293.07 13487.68 1296.34 10597.09 21
test_djsdf89.62 5089.01 6391.45 2292.36 9582.98 5391.98 3190.08 16471.54 19394.28 2096.54 1381.57 10794.27 8286.26 3596.49 9997.09 21
v886.22 9886.83 9584.36 14387.82 20462.35 24586.42 12591.33 12676.78 12492.73 5294.48 6573.41 18893.72 10583.10 6695.41 14297.01 23
UniMVSNet (Re)86.87 8786.98 9286.55 9993.11 7768.48 18283.80 16692.87 8580.37 7989.61 11191.81 15477.72 13994.18 8875.00 15898.53 1596.99 24
Anonymous2023121188.40 6789.62 5584.73 13590.46 15565.27 21188.86 8693.02 8187.15 2393.05 4397.10 682.28 9592.02 16276.70 13997.99 4096.88 25
IS-MVSNet86.66 9286.82 9686.17 11092.05 10866.87 19791.21 3988.64 18886.30 2889.60 11292.59 13169.22 21694.91 6473.89 16997.89 4996.72 26
UA-Net91.49 1591.53 2091.39 2394.98 3482.95 5493.52 792.79 8888.22 1888.53 12697.64 283.45 8094.55 7686.02 4398.60 1296.67 27
pmmvs686.52 9488.06 7481.90 19692.22 10262.28 24684.66 14489.15 18183.54 5089.85 10297.32 488.08 3686.80 26970.43 20597.30 7696.62 28
RPSCF88.00 7686.93 9391.22 2790.08 16189.30 489.68 6891.11 13279.26 9589.68 10694.81 5582.44 8987.74 25676.54 14288.74 27496.61 29
LTVRE_ROB86.10 193.04 393.44 291.82 2093.73 6085.72 3096.79 195.51 888.86 1295.63 896.99 884.81 6793.16 13091.10 197.53 7096.58 30
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
nrg03087.85 8088.49 7085.91 11490.07 16369.73 16887.86 10194.20 2574.04 15592.70 5394.66 5685.88 6191.50 17379.72 10297.32 7596.50 31
v2v48284.09 13784.24 13983.62 16187.13 21961.40 25382.71 19489.71 17172.19 18989.55 11391.41 16270.70 21293.20 12881.02 8693.76 19096.25 32
PS-MVSNAJss88.31 6987.90 7689.56 5793.31 7177.96 8987.94 10091.97 10770.73 20294.19 2196.67 1176.94 15194.57 7483.07 6796.28 10796.15 33
v119284.57 12384.69 12884.21 14887.75 20662.88 23583.02 18691.43 12269.08 21989.98 10090.89 17872.70 19893.62 11182.41 7594.97 16096.13 34
EI-MVSNet-UG-set85.04 11484.44 13386.85 9483.87 27472.52 14083.82 16485.15 24080.27 8288.75 12385.45 27479.95 12491.90 16581.92 8190.80 25296.13 34
v192192084.23 13484.37 13783.79 15687.64 21061.71 25182.91 18991.20 13067.94 23490.06 9590.34 19272.04 20593.59 11382.32 7694.91 16196.07 36
v124084.30 13084.51 13283.65 16087.65 20961.26 25682.85 19191.54 11967.94 23490.68 8990.65 18771.71 20893.64 10782.84 7194.78 16896.07 36
v14419284.24 13384.41 13583.71 15987.59 21161.57 25282.95 18891.03 13467.82 23789.80 10390.49 19073.28 19193.51 11881.88 8294.89 16396.04 38
v114484.54 12584.72 12684.00 15187.67 20862.55 24182.97 18790.93 13870.32 20889.80 10390.99 17373.50 18593.48 11981.69 8394.65 17395.97 39
EI-MVSNet-Vis-set85.12 11384.53 13186.88 9384.01 27172.76 13183.91 16285.18 23980.44 7888.75 12385.49 27280.08 12291.92 16482.02 7990.85 25195.97 39
HPM-MVS_fast92.50 492.54 592.37 595.93 1585.81 2992.99 1294.23 2285.21 3492.51 5595.13 4490.65 995.34 5088.06 898.15 3495.95 41
tttt051781.07 18379.58 20385.52 12288.99 18266.45 20187.03 11275.51 31173.76 15988.32 13390.20 19637.96 36494.16 9279.36 10895.13 15395.93 42
ANet_high83.17 15785.68 11275.65 28781.24 29645.26 36379.94 23992.91 8483.83 4491.33 7496.88 1080.25 12185.92 28268.89 22095.89 12795.76 43
IterMVS-LS84.73 12084.98 12183.96 15387.35 21463.66 22683.25 17989.88 16876.06 12989.62 10992.37 14073.40 19092.52 14778.16 12094.77 17095.69 44
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet82.61 16282.42 16783.20 17283.25 27863.66 22683.50 17385.07 24176.06 12986.55 16485.10 28073.41 18890.25 20978.15 12290.67 25595.68 45
EPP-MVSNet85.47 10785.04 12086.77 9691.52 13069.37 17291.63 3687.98 20181.51 6987.05 15491.83 15266.18 23195.29 5170.75 20096.89 8595.64 46
V4283.47 15283.37 15083.75 15883.16 28063.33 23081.31 22290.23 16069.51 21590.91 8490.81 18174.16 17792.29 15680.06 9690.22 25995.62 47
ACMH+77.89 1190.73 2791.50 2188.44 7593.00 7976.26 11189.65 7095.55 787.72 2193.89 2694.94 4891.62 393.44 12178.35 11598.76 395.61 48
mvs_tets89.78 4889.27 5991.30 2593.51 6584.79 4089.89 6390.63 14570.00 21294.55 1596.67 1187.94 3793.59 11384.27 5995.97 12195.52 49
OMC-MVS88.19 7187.52 8190.19 4491.94 11281.68 6187.49 10693.17 7076.02 13188.64 12591.22 16684.24 7393.37 12477.97 12597.03 8395.52 49
SixPastTwentyTwo87.20 8587.45 8386.45 10192.52 9169.19 17787.84 10288.05 19981.66 6794.64 1496.53 1465.94 23394.75 6783.02 6996.83 8895.41 51
KD-MVS_self_test81.93 17583.14 15478.30 25384.75 25952.75 32880.37 23489.42 17970.24 21090.26 9393.39 11074.55 17686.77 27068.61 22596.64 9395.38 52
jajsoiax89.41 5388.81 6891.19 2893.38 6984.72 4189.70 6690.29 15869.27 21694.39 1696.38 1586.02 6093.52 11783.96 6195.92 12695.34 53
HPM-MVScopyleft92.13 792.20 991.91 1595.58 2584.67 4293.51 894.85 1482.88 5691.77 6893.94 9790.55 1295.73 3088.50 698.23 2795.33 54
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
Anonymous2024052986.20 9987.13 8783.42 16690.19 15964.55 21984.55 14690.71 14285.85 3189.94 10195.24 4082.13 9790.40 20869.19 21696.40 10495.31 55
Baseline_NR-MVSNet84.00 14185.90 10778.29 25491.47 13253.44 32482.29 20787.00 21979.06 9889.55 11395.72 2877.20 14586.14 28072.30 19198.51 1695.28 56
casdiffmvspermissive85.21 11085.85 10883.31 16986.17 24462.77 23783.03 18593.93 4074.69 15088.21 13492.68 13082.29 9491.89 16677.87 12693.75 19295.27 57
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
3Dnovator+83.92 289.97 4589.66 5390.92 3191.27 13681.66 6291.25 3894.13 3288.89 1188.83 12294.26 7777.55 14295.86 2184.88 5495.87 12895.24 58
LPG-MVS_test91.47 1791.68 1690.82 3394.75 4081.69 5990.00 5794.27 1982.35 6093.67 3394.82 5291.18 495.52 4085.36 4798.73 695.23 59
LGP-MVS_train90.82 3394.75 4081.69 5994.27 1982.35 6093.67 3394.82 5291.18 495.52 4085.36 4798.73 695.23 59
casdiffmvs_mvgpermissive86.72 9187.51 8284.36 14387.09 22365.22 21284.16 15394.23 2277.89 11291.28 7693.66 10684.35 7192.71 14280.07 9594.87 16695.16 61
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test111178.53 22078.85 21177.56 26592.22 10247.49 35682.61 19569.24 34872.43 18185.28 18794.20 8051.91 30790.07 22165.36 24996.45 10295.11 62
MP-MVS-pluss90.81 2691.08 3389.99 4695.97 1379.88 7188.13 9794.51 1775.79 13792.94 4494.96 4788.36 2895.01 6190.70 298.40 1995.09 63
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
COLMAP_ROBcopyleft83.01 391.97 991.95 1092.04 1093.68 6286.15 2093.37 1095.10 1290.28 992.11 6195.03 4689.75 2094.93 6379.95 9898.27 2595.04 64
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
dcpmvs_284.23 13485.14 11881.50 20488.61 18961.98 25082.90 19093.11 7368.66 22592.77 5192.39 13678.50 13287.63 25876.99 13892.30 21894.90 65
CS-MVS88.14 7287.67 8089.54 5889.56 16979.18 7890.47 5194.77 1579.37 9484.32 20589.33 21283.87 7494.53 7782.45 7494.89 16394.90 65
test250674.12 26673.39 26676.28 28291.85 11544.20 36684.06 15648.20 37672.30 18781.90 24394.20 8027.22 37989.77 22664.81 25396.02 11994.87 67
ECVR-MVScopyleft78.44 22178.63 21577.88 26191.85 11548.95 35083.68 16969.91 34672.30 18784.26 21194.20 8051.89 30889.82 22563.58 26196.02 11994.87 67
v14882.31 16682.48 16681.81 20185.59 25059.66 27681.47 22086.02 22872.85 17588.05 13690.65 18770.73 21190.91 19375.15 15691.79 23194.87 67
ACMP79.16 1090.54 3190.60 4590.35 4194.36 4380.98 6589.16 8194.05 3679.03 9992.87 4693.74 10490.60 1195.21 5682.87 7098.76 394.87 67
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
eth_miper_zixun_eth80.84 18680.22 19682.71 18481.41 29460.98 26277.81 27190.14 16367.31 24086.95 15687.24 24864.26 24092.31 15475.23 15591.61 23494.85 71
K. test v385.14 11284.73 12486.37 10291.13 14169.63 17085.45 13576.68 30384.06 4392.44 5796.99 862.03 25494.65 7080.58 9393.24 20194.83 72
baseline85.20 11185.93 10683.02 17586.30 23862.37 24484.55 14693.96 3974.48 15287.12 14892.03 14682.30 9391.94 16378.39 11394.21 18294.74 73
thisisatest053079.07 21077.33 22984.26 14787.13 21964.58 21783.66 17075.95 30668.86 22285.22 18887.36 24538.10 36293.57 11675.47 15294.28 18194.62 74
c3_l81.64 17781.59 17781.79 20280.86 30259.15 28378.61 26290.18 16268.36 22687.20 14687.11 25169.39 21491.62 17178.16 12094.43 17894.60 75
TSAR-MVS + MP.88.14 7287.82 7889.09 6595.72 2176.74 10492.49 2491.19 13167.85 23686.63 16394.84 5179.58 12695.96 1287.62 1394.50 17594.56 76
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
ACMMPcopyleft91.91 1091.87 1592.03 1195.53 2685.91 2493.35 1194.16 2782.52 5992.39 5894.14 8489.15 2395.62 3387.35 2198.24 2694.56 76
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
ITE_SJBPF90.11 4590.72 15084.97 3790.30 15681.56 6890.02 9791.20 16882.40 9190.81 19773.58 17594.66 17294.56 76
LS3D90.60 3090.34 4791.38 2489.03 18084.23 4593.58 694.68 1690.65 790.33 9293.95 9684.50 6995.37 4980.87 8895.50 14194.53 79
HQP_MVS87.75 8287.43 8488.70 7293.45 6676.42 10989.45 7793.61 5379.44 9286.55 16492.95 12074.84 16995.22 5480.78 9095.83 13094.46 80
plane_prior593.61 5395.22 5480.78 9095.83 13094.46 80
testf189.30 5689.12 6089.84 4888.67 18685.64 3190.61 4693.17 7086.02 2993.12 4195.30 3684.94 6489.44 23374.12 16596.10 11694.45 82
APD_test289.30 5689.12 6089.84 4888.67 18685.64 3190.61 4693.17 7086.02 2993.12 4195.30 3684.94 6489.44 23374.12 16596.10 11694.45 82
TransMVSNet (Re)84.02 14085.74 11178.85 24291.00 14455.20 31582.29 20787.26 20779.65 8988.38 13195.52 3383.00 8386.88 26767.97 23196.60 9594.45 82
pm-mvs183.69 14684.95 12279.91 22990.04 16559.66 27682.43 20387.44 20475.52 14187.85 13995.26 3981.25 11185.65 28668.74 22396.04 11894.42 85
SteuartSystems-ACMMP91.16 2391.36 2490.55 3793.91 5680.97 6691.49 3793.48 5782.82 5792.60 5493.97 9188.19 3196.29 487.61 1498.20 3194.39 86
Skip Steuart: Steuart Systems R&D Blog.
iter_conf0578.81 21577.35 22883.21 17182.98 28460.75 26684.09 15588.34 19363.12 26784.25 21289.48 20831.41 37294.51 7976.64 14095.83 13094.38 87
VPA-MVSNet83.47 15284.73 12479.69 23390.29 15757.52 29781.30 22488.69 18776.29 12687.58 14394.44 6680.60 11887.20 26266.60 23996.82 8994.34 88
SF-MVS90.27 3590.80 4288.68 7392.86 8477.09 10091.19 4095.74 581.38 7092.28 5993.80 10186.89 4994.64 7185.52 4697.51 7194.30 89
XVS91.54 1391.36 2492.08 895.64 2386.25 1892.64 1893.33 6185.07 3589.99 9894.03 8886.57 5295.80 2487.35 2197.62 6294.20 90
X-MVStestdata85.04 11482.70 16092.08 895.64 2386.25 1892.64 1893.33 6185.07 3589.99 9816.05 37586.57 5295.80 2487.35 2197.62 6294.20 90
APD-MVS_3200maxsize92.05 892.24 891.48 2193.02 7885.17 3592.47 2595.05 1387.65 2293.21 4094.39 7290.09 1795.08 5986.67 3097.60 6494.18 92
AllTest87.97 7787.40 8589.68 5391.59 12283.40 4889.50 7595.44 979.47 9088.00 13793.03 11582.66 8791.47 17470.81 19796.14 11394.16 93
TestCases89.68 5391.59 12283.40 4895.44 979.47 9088.00 13793.03 11582.66 8791.47 17470.81 19796.14 11394.16 93
CS-MVS-test87.00 8686.43 9988.71 7189.46 17177.46 9489.42 7995.73 677.87 11381.64 25187.25 24782.43 9094.53 7777.65 12796.46 10194.14 95
ZNCC-MVS91.26 2091.34 2791.01 3095.73 2083.05 5292.18 2894.22 2480.14 8491.29 7593.97 9187.93 3895.87 1888.65 497.96 4594.12 96
OPM-MVS89.80 4789.97 4889.27 6194.76 3979.86 7286.76 11992.78 8978.78 10292.51 5593.64 10788.13 3493.84 10284.83 5597.55 6794.10 97
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
Effi-MVS+-dtu85.82 10483.38 14993.14 387.13 21991.15 287.70 10388.42 19074.57 15183.56 22085.65 27078.49 13394.21 8672.04 19292.88 21094.05 98
bld_raw_dy_0_6484.85 11884.44 13386.07 11293.73 6074.93 11988.57 9281.90 27370.44 20491.28 7695.18 4256.62 28989.28 23885.15 4997.09 8193.99 99
ACMMPR91.49 1591.35 2691.92 1495.74 1985.88 2692.58 2193.25 6781.99 6291.40 7294.17 8387.51 4295.87 1887.74 1097.76 5593.99 99
XVG-OURS-SEG-HR89.59 5189.37 5790.28 4294.47 4285.95 2386.84 11593.91 4180.07 8586.75 15993.26 11193.64 290.93 19184.60 5790.75 25393.97 101
PGM-MVS91.20 2290.95 3991.93 1395.67 2285.85 2790.00 5793.90 4280.32 8191.74 6994.41 7088.17 3295.98 1086.37 3397.99 4093.96 102
GST-MVS90.96 2591.01 3690.82 3395.45 2782.73 5591.75 3593.74 4880.98 7591.38 7393.80 10187.20 4695.80 2487.10 2897.69 5993.93 103
lessismore_v085.95 11391.10 14270.99 15970.91 34291.79 6794.42 6961.76 25592.93 13879.52 10693.03 20693.93 103
SMA-MVScopyleft90.31 3490.48 4689.83 5095.31 2979.52 7790.98 4393.24 6875.37 14492.84 4895.28 3885.58 6296.09 687.92 997.76 5593.88 105
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
cl2278.97 21178.21 22181.24 20977.74 32659.01 28477.46 27987.13 21165.79 24984.32 20585.10 28058.96 27490.88 19575.36 15492.03 22693.84 106
region2R91.44 1891.30 3091.87 1795.75 1885.90 2592.63 2093.30 6581.91 6490.88 8694.21 7987.75 3995.87 1887.60 1597.71 5893.83 107
GBi-Net82.02 17282.07 16981.85 19886.38 23361.05 25986.83 11688.27 19672.43 18186.00 17595.64 3063.78 24490.68 20165.95 24293.34 19893.82 108
test182.02 17282.07 16981.85 19886.38 23361.05 25986.83 11688.27 19672.43 18186.00 17595.64 3063.78 24490.68 20165.95 24293.34 19893.82 108
FMVSNet184.55 12485.45 11581.85 19890.27 15861.05 25986.83 11688.27 19678.57 10689.66 10895.64 3075.43 16290.68 20169.09 21795.33 14593.82 108
VDDNet84.35 12885.39 11681.25 20795.13 3159.32 27985.42 13681.11 27886.41 2787.41 14596.21 1973.61 18390.61 20466.33 24096.85 8693.81 111
DROMVSNet88.01 7588.32 7287.09 9089.28 17572.03 14890.31 5496.31 380.88 7685.12 18989.67 20684.47 7095.46 4582.56 7396.26 11093.77 112
CDPH-MVS86.17 10085.54 11488.05 8392.25 10075.45 11683.85 16392.01 10565.91 24886.19 17191.75 15683.77 7794.98 6277.43 13296.71 9293.73 113
APD_test188.40 6787.91 7589.88 4789.50 17086.65 1689.98 6091.91 11084.26 4090.87 8793.92 9882.18 9689.29 23773.75 17294.81 16793.70 114
GeoE85.45 10885.81 10984.37 14190.08 16167.07 19385.86 13091.39 12572.33 18687.59 14290.25 19584.85 6692.37 15278.00 12391.94 23093.66 115
DIV-MVS_self_test80.43 19380.23 19481.02 21379.99 31059.25 28077.07 28287.02 21667.38 23886.19 17189.22 21363.09 24890.16 21476.32 14395.80 13393.66 115
cl____80.42 19480.23 19481.02 21379.99 31059.25 28077.07 28287.02 21667.37 23986.18 17389.21 21463.08 24990.16 21476.31 14495.80 13393.65 117
XVG-ACMP-BASELINE89.98 4389.84 5090.41 3994.91 3684.50 4489.49 7693.98 3879.68 8892.09 6293.89 9983.80 7693.10 13382.67 7298.04 3693.64 118
MIMVSNet183.63 14884.59 12980.74 21794.06 5362.77 23782.72 19384.53 25277.57 11790.34 9195.92 2476.88 15785.83 28461.88 27597.42 7293.62 119
XVG-OURS89.18 5988.83 6790.23 4394.28 4486.11 2285.91 12893.60 5580.16 8389.13 11993.44 10983.82 7590.98 18983.86 6395.30 14993.60 120
CLD-MVS83.18 15682.64 16284.79 13289.05 17967.82 19077.93 26992.52 9468.33 22785.07 19081.54 32182.06 9892.96 13669.35 21297.91 4893.57 121
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
HQP4-MVS80.56 26394.61 7293.56 122
HQP-MVS84.61 12284.06 14186.27 10591.19 13770.66 16084.77 14092.68 9173.30 16780.55 26490.17 19972.10 20294.61 7277.30 13494.47 17693.56 122
VDD-MVS84.23 13484.58 13083.20 17291.17 14065.16 21483.25 17984.97 24779.79 8687.18 14794.27 7474.77 17290.89 19469.24 21396.54 9793.55 124
iter_conf_final80.36 19778.88 20984.79 13286.29 23966.36 20386.95 11386.25 22468.16 23082.09 24089.48 20836.59 36794.51 7979.83 10094.30 18093.50 125
miper_ehance_all_eth80.34 19880.04 20181.24 20979.82 31258.95 28577.66 27389.66 17265.75 25285.99 17885.11 27968.29 22191.42 17876.03 14792.03 22693.33 126
VPNet80.25 20081.68 17475.94 28592.46 9347.98 35476.70 28781.67 27573.45 16284.87 19592.82 12474.66 17486.51 27461.66 27896.85 8693.33 126
IU-MVS94.18 4672.64 13490.82 14056.98 30989.67 10785.78 4597.92 4693.28 128
ACMMP_NAP90.65 2891.07 3589.42 5995.93 1579.54 7689.95 6193.68 5277.65 11591.97 6594.89 4988.38 2795.45 4689.27 397.87 5093.27 129
DeepC-MVS82.31 489.15 6089.08 6289.37 6093.64 6379.07 7988.54 9394.20 2573.53 16189.71 10594.82 5285.09 6395.77 2984.17 6098.03 3893.26 130
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
TAPA-MVS77.73 1285.71 10584.83 12388.37 7788.78 18579.72 7387.15 11093.50 5669.17 21785.80 18089.56 20780.76 11592.13 15873.21 18595.51 14093.25 131
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ACMH76.49 1489.34 5591.14 3183.96 15392.50 9270.36 16489.55 7293.84 4681.89 6594.70 1395.44 3490.69 888.31 25283.33 6598.30 2493.20 132
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MP-MVScopyleft91.14 2490.91 4091.83 1896.18 1086.88 1392.20 2793.03 8082.59 5888.52 12794.37 7386.74 5095.41 4886.32 3498.21 2993.19 133
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
tt080588.09 7489.79 5182.98 17693.26 7363.94 22591.10 4189.64 17385.07 3590.91 8491.09 17089.16 2291.87 16782.03 7895.87 12893.13 134
diffmvspermissive80.40 19580.48 19180.17 22779.02 32260.04 27177.54 27690.28 15966.65 24582.40 23487.33 24673.50 18587.35 26177.98 12489.62 26393.13 134
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CL-MVSNet_self_test76.81 23877.38 22775.12 29086.90 22751.34 33973.20 32180.63 28468.30 22881.80 24888.40 22666.92 22780.90 31355.35 31494.90 16293.12 136
mPP-MVS91.69 1191.47 2292.37 596.04 1288.48 792.72 1792.60 9383.09 5391.54 7094.25 7887.67 4195.51 4287.21 2598.11 3593.12 136
Vis-MVSNet (Re-imp)77.82 22777.79 22477.92 26088.82 18451.29 34183.28 17771.97 33574.04 15582.23 23789.78 20457.38 28489.41 23557.22 30195.41 14293.05 138
tfpnnormal81.79 17682.95 15778.31 25288.93 18355.40 31180.83 23182.85 26576.81 12385.90 17994.14 8474.58 17586.51 27466.82 23795.68 13993.01 139
test_0728_THIRD85.33 3293.75 3094.65 5787.44 4395.78 2787.41 1998.21 2992.98 140
MSP-MVS89.08 6288.16 7391.83 1895.76 1786.14 2192.75 1693.90 4278.43 10789.16 11892.25 14372.03 20696.36 288.21 790.93 24892.98 140
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
APDe-MVS91.22 2191.92 1189.14 6492.97 8078.04 8692.84 1594.14 3183.33 5193.90 2495.73 2788.77 2596.41 187.60 1597.98 4292.98 140
HFP-MVS91.30 1991.39 2391.02 2995.43 2884.66 4392.58 2193.29 6681.99 6291.47 7193.96 9488.35 2995.56 3787.74 1097.74 5792.85 143
test_prior86.32 10390.59 15371.99 14992.85 8694.17 9092.80 144
miper_lstm_enhance76.45 24476.10 24177.51 26676.72 33560.97 26364.69 34985.04 24363.98 26483.20 22488.22 22856.67 28878.79 32173.22 18093.12 20492.78 145
SR-MVS-dyc-post92.41 592.41 692.39 494.13 5188.95 592.87 1394.16 2788.75 1493.79 2894.43 6788.83 2495.51 4287.16 2697.60 6492.73 146
RE-MVS-def92.61 494.13 5188.95 592.87 1394.16 2788.75 1493.79 2894.43 6790.64 1087.16 2697.60 6492.73 146
PHI-MVS86.38 9585.81 10988.08 8188.44 19477.34 9789.35 8093.05 7773.15 17284.76 19787.70 23878.87 13094.18 8880.67 9296.29 10692.73 146
ambc82.98 17690.55 15464.86 21588.20 9589.15 18189.40 11693.96 9471.67 20991.38 18078.83 11196.55 9692.71 149
alignmvs83.94 14383.98 14383.80 15587.80 20567.88 18984.54 14891.42 12473.27 17088.41 13087.96 23272.33 20190.83 19676.02 14894.11 18492.69 150
thres600view775.97 24775.35 24977.85 26387.01 22551.84 33780.45 23373.26 32775.20 14583.10 22686.31 26245.54 33689.05 23955.03 31792.24 22292.66 151
thres40075.14 25374.23 25877.86 26286.24 24152.12 33379.24 25173.87 32173.34 16581.82 24684.60 28946.02 33088.80 24351.98 33290.99 24492.66 151
CNVR-MVS87.81 8187.68 7988.21 8092.87 8277.30 9985.25 13791.23 12977.31 12087.07 15391.47 16182.94 8494.71 6884.67 5696.27 10992.62 153
Anonymous2024052180.18 20381.25 18076.95 27283.15 28160.84 26482.46 20285.99 22968.76 22386.78 15793.73 10559.13 27277.44 32373.71 17397.55 6792.56 154
CP-MVS91.67 1291.58 1991.96 1295.29 3087.62 993.38 993.36 5983.16 5291.06 8094.00 9088.26 3095.71 3187.28 2498.39 2092.55 155
canonicalmvs85.50 10686.14 10483.58 16287.97 20167.13 19287.55 10494.32 1873.44 16388.47 12887.54 24186.45 5491.06 18875.76 15093.76 19092.54 156
DVP-MVS++90.07 3891.09 3287.00 9191.55 12772.64 13496.19 294.10 3485.33 3293.49 3694.64 6081.12 11295.88 1687.41 1995.94 12492.48 157
PC_three_145258.96 29590.06 9591.33 16480.66 11793.03 13575.78 14995.94 12492.48 157
MVSTER77.09 23475.70 24581.25 20775.27 34861.08 25877.49 27885.07 24160.78 28786.55 16488.68 22343.14 35490.25 20973.69 17490.67 25592.42 159
ACMM79.39 990.65 2890.99 3789.63 5595.03 3383.53 4789.62 7193.35 6079.20 9693.83 2793.60 10890.81 792.96 13685.02 5298.45 1892.41 160
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MSC_two_6792asdad88.81 6891.55 12777.99 8791.01 13596.05 787.45 1798.17 3292.40 161
No_MVS88.81 6891.55 12777.99 8791.01 13596.05 787.45 1798.17 3292.40 161
MVS_Test82.47 16583.22 15180.22 22682.62 28657.75 29682.54 20091.96 10871.16 19982.89 22892.52 13577.41 14390.50 20680.04 9787.84 28692.40 161
NCCC87.36 8386.87 9488.83 6792.32 9878.84 8286.58 12391.09 13378.77 10384.85 19690.89 17880.85 11495.29 5181.14 8595.32 14692.34 164
miper_enhance_ethall77.83 22676.93 23380.51 22176.15 34058.01 29375.47 30488.82 18458.05 30183.59 21980.69 32564.41 23991.20 18273.16 18692.03 22692.33 165
MTAPA91.52 1491.60 1891.29 2696.59 486.29 1792.02 3091.81 11584.07 4292.00 6494.40 7186.63 5195.28 5388.59 598.31 2392.30 166
SED-MVS90.46 3391.64 1786.93 9294.18 4672.65 13290.47 5193.69 5083.77 4594.11 2294.27 7490.28 1495.84 2286.03 4197.92 4692.29 167
OPU-MVS88.27 7991.89 11377.83 9090.47 5191.22 16681.12 11294.68 6974.48 16095.35 14492.29 167
test1286.57 9890.74 14972.63 13690.69 14382.76 23079.20 12794.80 6695.32 14692.27 169
FMVSNet281.31 18081.61 17680.41 22386.38 23358.75 29083.93 16186.58 22172.43 18187.65 14192.98 11763.78 24490.22 21266.86 23493.92 18892.27 169
CANet83.79 14582.85 15886.63 9786.17 24472.21 14783.76 16791.43 12277.24 12174.39 31987.45 24375.36 16395.42 4777.03 13792.83 21192.25 171
F-COLMAP84.97 11783.42 14889.63 5592.39 9483.40 4888.83 8791.92 10973.19 17180.18 27189.15 21677.04 14993.28 12665.82 24692.28 22192.21 172
SR-MVS92.23 692.34 791.91 1594.89 3787.85 892.51 2393.87 4588.20 1993.24 3994.02 8990.15 1695.67 3286.82 2997.34 7492.19 173
Effi-MVS+83.90 14484.01 14283.57 16387.22 21765.61 21086.55 12492.40 9678.64 10581.34 25684.18 29383.65 7892.93 13874.22 16287.87 28592.17 174
Vis-MVSNetpermissive86.86 8886.58 9787.72 8592.09 10677.43 9687.35 10792.09 10378.87 10184.27 21094.05 8778.35 13493.65 10680.54 9491.58 23692.08 175
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test_241102_TWO93.71 4983.77 4593.49 3694.27 7489.27 2195.84 2286.03 4197.82 5192.04 176
test_0728_SECOND86.79 9594.25 4572.45 14290.54 4894.10 3495.88 1686.42 3197.97 4392.02 177
new-patchmatchnet70.10 29973.37 26760.29 34981.23 29716.95 38059.54 35874.62 31462.93 26880.97 25787.93 23462.83 25371.90 33755.24 31595.01 15992.00 178
DeepPCF-MVS81.24 587.28 8486.21 10390.49 3891.48 13184.90 3883.41 17592.38 9870.25 20989.35 11790.68 18582.85 8594.57 7479.55 10495.95 12392.00 178
Anonymous20240521180.51 19281.19 18378.49 24988.48 19257.26 29976.63 28982.49 26781.21 7284.30 20892.24 14467.99 22286.24 27862.22 27095.13 15391.98 180
EIA-MVS82.19 16981.23 18285.10 12887.95 20269.17 17883.22 18293.33 6170.42 20578.58 28479.77 33777.29 14494.20 8771.51 19488.96 27091.93 181
MCST-MVS84.36 12783.93 14485.63 12091.59 12271.58 15583.52 17292.13 10261.82 27683.96 21589.75 20579.93 12593.46 12078.33 11694.34 17991.87 182
test_040288.65 6589.58 5685.88 11692.55 9072.22 14684.01 15789.44 17888.63 1694.38 1795.77 2686.38 5693.59 11379.84 9995.21 15091.82 183
DeepC-MVS_fast80.27 886.23 9785.65 11387.96 8491.30 13476.92 10287.19 10891.99 10670.56 20384.96 19290.69 18480.01 12395.14 5778.37 11495.78 13591.82 183
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
FA-MVS(test-final)83.13 15883.02 15683.43 16586.16 24666.08 20588.00 9888.36 19275.55 14085.02 19192.75 12865.12 23792.50 14874.94 15991.30 24091.72 185
FMVSNet378.80 21678.55 21679.57 23582.89 28556.89 30381.76 21585.77 23169.04 22086.00 17590.44 19151.75 30990.09 22065.95 24293.34 19891.72 185
DPE-MVScopyleft90.53 3291.08 3388.88 6693.38 6978.65 8389.15 8294.05 3684.68 3993.90 2494.11 8688.13 3496.30 384.51 5897.81 5291.70 187
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
CPTT-MVS89.39 5488.98 6590.63 3695.09 3286.95 1292.09 2992.30 9979.74 8787.50 14492.38 13781.42 10993.28 12683.07 6797.24 7791.67 188
MDA-MVSNet-bldmvs77.47 23076.90 23479.16 24079.03 32164.59 21666.58 34575.67 30973.15 17288.86 12088.99 21966.94 22681.23 31264.71 25488.22 28291.64 189
PAPM_NR83.23 15583.19 15383.33 16890.90 14665.98 20688.19 9690.78 14178.13 11180.87 26087.92 23573.49 18792.42 14970.07 20788.40 27691.60 190
PCF-MVS74.62 1582.15 17080.92 18685.84 11789.43 17272.30 14480.53 23291.82 11457.36 30787.81 14089.92 20277.67 14093.63 10858.69 29395.08 15691.58 191
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
EPNet80.37 19678.41 21986.23 10676.75 33473.28 12787.18 10977.45 29876.24 12868.14 34388.93 22065.41 23593.85 10069.47 21196.12 11591.55 192
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Fast-Effi-MVS+81.04 18480.57 18782.46 19187.50 21263.22 23278.37 26589.63 17468.01 23181.87 24482.08 31682.31 9292.65 14567.10 23388.30 28191.51 193
mvs_anonymous78.13 22478.76 21376.23 28479.24 31950.31 34778.69 26084.82 24961.60 28083.09 22792.82 12473.89 18187.01 26368.33 22986.41 29991.37 194
SD-MVS88.96 6389.88 4986.22 10791.63 12177.07 10189.82 6493.77 4778.90 10092.88 4592.29 14186.11 5890.22 21286.24 3897.24 7791.36 195
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
D2MVS76.84 23775.67 24680.34 22480.48 30862.16 24973.50 31884.80 25057.61 30582.24 23687.54 24151.31 31087.65 25770.40 20693.19 20391.23 196
patch_mono-278.89 21279.39 20577.41 26884.78 25868.11 18675.60 30083.11 26260.96 28579.36 27789.89 20375.18 16572.97 33473.32 17992.30 21891.15 197
EGC-MVSNET74.79 26169.99 29989.19 6394.89 3787.00 1191.89 3486.28 2231.09 3762.23 37895.98 2381.87 10489.48 22979.76 10195.96 12291.10 198
ETV-MVS84.31 12983.91 14585.52 12288.58 19070.40 16384.50 15093.37 5878.76 10484.07 21478.72 34280.39 11995.13 5873.82 17192.98 20891.04 199
VNet79.31 20980.27 19376.44 27987.92 20353.95 32075.58 30284.35 25374.39 15382.23 23790.72 18372.84 19684.39 29660.38 28793.98 18790.97 200
Fast-Effi-MVS+-dtu82.54 16481.41 17985.90 11585.60 24976.53 10783.07 18489.62 17573.02 17479.11 28183.51 29880.74 11690.24 21168.76 22289.29 26590.94 201
Patchmtry76.56 24277.46 22573.83 29679.37 31846.60 36082.41 20476.90 30073.81 15885.56 18492.38 13748.07 32283.98 29963.36 26495.31 14890.92 202
CANet_DTU77.81 22877.05 23180.09 22881.37 29559.90 27483.26 17888.29 19569.16 21867.83 34683.72 29660.93 25789.47 23069.22 21589.70 26290.88 203
train_agg85.98 10285.28 11788.07 8292.34 9679.70 7483.94 15990.32 15365.79 24984.49 20090.97 17481.93 10193.63 10881.21 8496.54 9790.88 203
114514_t83.10 15982.54 16584.77 13492.90 8169.10 17986.65 12190.62 14654.66 31781.46 25390.81 18176.98 15094.38 8172.62 18896.18 11190.82 205
LCM-MVSNet-Re83.48 15185.06 11978.75 24485.94 24855.75 31080.05 23794.27 1976.47 12596.09 594.54 6283.31 8289.75 22859.95 28894.89 16390.75 206
test_fmvs375.72 25075.20 25077.27 26975.01 35169.47 17178.93 25584.88 24846.67 34987.08 15287.84 23650.44 31571.62 33877.42 13388.53 27590.72 207
hse-mvs283.47 15281.81 17388.47 7491.03 14382.27 5782.61 19583.69 25771.27 19586.70 16086.05 26663.04 25092.41 15078.26 11893.62 19690.71 208
DP-MVS88.60 6689.01 6387.36 8991.30 13477.50 9387.55 10492.97 8387.95 2089.62 10992.87 12384.56 6893.89 9977.65 12796.62 9490.70 209
LFMVS80.15 20480.56 18878.89 24189.19 17855.93 30785.22 13873.78 32382.96 5584.28 20992.72 12957.38 28490.07 22163.80 26095.75 13690.68 210
PAPR78.84 21478.10 22281.07 21185.17 25460.22 27082.21 21190.57 14762.51 27175.32 31384.61 28874.99 16792.30 15559.48 29188.04 28390.68 210
AUN-MVS81.18 18278.78 21288.39 7690.93 14582.14 5882.51 20183.67 25864.69 26280.29 26785.91 26951.07 31192.38 15176.29 14593.63 19590.65 212
test9_res80.83 8996.45 10290.57 213
UGNet82.78 16081.64 17586.21 10886.20 24376.24 11286.86 11485.68 23277.07 12273.76 32292.82 12469.64 21391.82 16969.04 21993.69 19390.56 214
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
DVP-MVScopyleft90.06 3991.32 2886.29 10494.16 4972.56 13890.54 4891.01 13583.61 4893.75 3094.65 5789.76 1895.78 2786.42 3197.97 4390.55 215
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
DELS-MVS81.44 17981.25 18082.03 19484.27 26862.87 23676.47 29292.49 9570.97 20081.64 25183.83 29575.03 16692.70 14374.29 16192.22 22490.51 216
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
APD-MVScopyleft89.54 5289.63 5489.26 6292.57 8981.34 6490.19 5693.08 7680.87 7791.13 7893.19 11286.22 5795.97 1182.23 7797.18 7990.45 217
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CSCG86.26 9686.47 9885.60 12190.87 14774.26 12387.98 9991.85 11280.35 8089.54 11588.01 23179.09 12892.13 15875.51 15195.06 15790.41 218
test_vis3_rt71.42 28870.67 29073.64 29769.66 36870.46 16266.97 34489.73 16942.68 36488.20 13583.04 30343.77 34960.07 36665.35 25086.66 29690.39 219
DP-MVS Recon84.05 13983.22 15186.52 10091.73 12075.27 11783.23 18192.40 9672.04 19082.04 24188.33 22777.91 13893.95 9766.17 24195.12 15590.34 220
IterMVS-SCA-FT80.64 19079.41 20484.34 14583.93 27269.66 16976.28 29481.09 27972.43 18186.47 17090.19 19760.46 26093.15 13177.45 13186.39 30090.22 221
agg_prior279.68 10396.16 11290.22 221
HPM-MVS++copyleft88.93 6488.45 7190.38 4094.92 3585.85 2789.70 6691.27 12878.20 10986.69 16292.28 14280.36 12095.06 6086.17 3996.49 9990.22 221
HyFIR lowres test75.12 25572.66 27582.50 19091.44 13365.19 21372.47 32387.31 20646.79 34880.29 26784.30 29152.70 30692.10 16151.88 33686.73 29590.22 221
PVSNet_BlendedMVS78.80 21677.84 22381.65 20384.43 26263.41 22879.49 24790.44 14961.70 27975.43 31087.07 25269.11 21791.44 17660.68 28592.24 22290.11 225
MVS_111021_HR84.63 12184.34 13885.49 12490.18 16075.86 11479.23 25387.13 21173.35 16485.56 18489.34 21183.60 7990.50 20676.64 14094.05 18690.09 226
FE-MVS79.98 20778.86 21083.36 16786.47 23066.45 20189.73 6584.74 25172.80 17684.22 21391.38 16344.95 34593.60 11263.93 25991.50 23790.04 227
GA-MVS75.83 24874.61 25379.48 23781.87 28959.25 28073.42 31982.88 26468.68 22479.75 27281.80 31850.62 31389.46 23166.85 23585.64 30589.72 228
h-mvs3384.25 13282.76 15988.72 7091.82 11982.60 5684.00 15884.98 24671.27 19586.70 16090.55 18963.04 25093.92 9878.26 11894.20 18389.63 229
ppachtmachnet_test74.73 26274.00 26076.90 27480.71 30556.89 30371.53 32778.42 29358.24 29979.32 27982.92 30757.91 28184.26 29765.60 24791.36 23989.56 230
MG-MVS80.32 19980.94 18578.47 25088.18 19852.62 33182.29 20785.01 24572.01 19179.24 28092.54 13469.36 21593.36 12570.65 20289.19 26889.45 231
PLCcopyleft73.85 1682.09 17180.31 19287.45 8890.86 14880.29 6985.88 12990.65 14468.17 22976.32 30086.33 26073.12 19392.61 14661.40 28090.02 26189.44 232
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
ab-mvs79.67 20880.56 18876.99 27188.48 19256.93 30184.70 14386.06 22768.95 22180.78 26193.08 11475.30 16484.62 29456.78 30290.90 24989.43 233
thisisatest051573.00 27670.52 29280.46 22281.45 29359.90 27473.16 32274.31 31857.86 30276.08 30477.78 34637.60 36592.12 16065.00 25191.45 23889.35 234
thres100view90075.45 25175.05 25176.66 27887.27 21551.88 33681.07 22773.26 32775.68 13883.25 22386.37 25945.54 33688.80 24351.98 33290.99 24489.31 235
tfpn200view974.86 25974.23 25876.74 27786.24 24152.12 33379.24 25173.87 32173.34 16581.82 24684.60 28946.02 33088.80 24351.98 33290.99 24489.31 235
3Dnovator80.37 784.80 11984.71 12785.06 12986.36 23674.71 12088.77 8990.00 16675.65 13984.96 19293.17 11374.06 17891.19 18378.28 11791.09 24289.29 237
ET-MVSNet_ETH3D75.28 25272.77 27382.81 18383.03 28368.11 18677.09 28176.51 30460.67 28977.60 29480.52 32938.04 36391.15 18570.78 19990.68 25489.17 238
CNLPA83.55 15083.10 15584.90 13089.34 17483.87 4684.54 14888.77 18579.09 9783.54 22188.66 22474.87 16881.73 31066.84 23692.29 22089.11 239
test_yl78.71 21878.51 21779.32 23884.32 26658.84 28778.38 26385.33 23675.99 13282.49 23286.57 25658.01 27890.02 22362.74 26792.73 21389.10 240
DCV-MVSNet78.71 21878.51 21779.32 23884.32 26658.84 28778.38 26385.33 23675.99 13282.49 23286.57 25658.01 27890.02 22362.74 26792.73 21389.10 240
CMPMVSbinary59.41 2075.12 25573.57 26379.77 23075.84 34367.22 19181.21 22582.18 26950.78 34076.50 29787.66 23955.20 29882.99 30462.17 27390.64 25889.09 242
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MVSFormer82.23 16881.57 17884.19 15085.54 25169.26 17491.98 3190.08 16471.54 19376.23 30185.07 28358.69 27594.27 8286.26 3588.77 27289.03 243
jason77.42 23175.75 24482.43 19287.10 22269.27 17377.99 26881.94 27251.47 33577.84 28985.07 28360.32 26289.00 24070.74 20189.27 26789.03 243
jason: jason.
TSAR-MVS + GP.83.95 14282.69 16187.72 8589.27 17681.45 6383.72 16881.58 27774.73 14985.66 18186.06 26572.56 20092.69 14475.44 15395.21 15089.01 245
QAPM82.59 16382.59 16482.58 18786.44 23166.69 19889.94 6290.36 15267.97 23384.94 19492.58 13372.71 19792.18 15770.63 20387.73 28788.85 246
baseline269.77 30366.89 31478.41 25179.51 31558.09 29276.23 29569.57 34757.50 30664.82 35977.45 34946.02 33088.44 24953.08 32577.83 35188.70 247
LF4IMVS82.75 16181.93 17285.19 12682.08 28780.15 7085.53 13488.76 18668.01 23185.58 18387.75 23771.80 20786.85 26874.02 16793.87 18988.58 248
test_fmvs273.57 27072.80 27275.90 28672.74 36268.84 18177.07 28284.32 25445.14 35482.89 22884.22 29248.37 32070.36 34173.40 17887.03 29388.52 249
MVS_111021_LR84.28 13183.76 14685.83 11889.23 17783.07 5180.99 22883.56 25972.71 17886.07 17489.07 21881.75 10686.19 27977.11 13693.36 19788.24 250
EG-PatchMatch MVS84.08 13884.11 14083.98 15292.22 10272.61 13782.20 21387.02 21672.63 17988.86 12091.02 17278.52 13191.11 18673.41 17791.09 24288.21 251
lupinMVS76.37 24574.46 25682.09 19385.54 25169.26 17476.79 28580.77 28350.68 34276.23 30182.82 30858.69 27588.94 24169.85 20888.77 27288.07 252
cascas76.29 24674.81 25280.72 21984.47 26162.94 23473.89 31687.34 20555.94 31275.16 31576.53 35663.97 24291.16 18465.00 25190.97 24788.06 253
TAMVS78.08 22576.36 23883.23 17090.62 15272.87 13079.08 25480.01 28761.72 27881.35 25586.92 25463.96 24388.78 24650.61 33793.01 20788.04 254
PVSNet_Blended_VisFu81.55 17880.49 19084.70 13791.58 12573.24 12984.21 15291.67 11762.86 26980.94 25887.16 24967.27 22592.87 14169.82 20988.94 27187.99 255
FMVSNet572.10 28371.69 28373.32 29881.57 29253.02 32776.77 28678.37 29463.31 26576.37 29891.85 15036.68 36678.98 31947.87 34992.45 21687.95 256
CDS-MVSNet77.32 23275.40 24783.06 17489.00 18172.48 14177.90 27082.17 27060.81 28678.94 28283.49 29959.30 27088.76 24754.64 32092.37 21787.93 257
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
pmmvs-eth3d78.42 22277.04 23282.57 18987.44 21374.41 12280.86 23079.67 28855.68 31384.69 19890.31 19460.91 25885.42 28762.20 27191.59 23587.88 258
baseline173.26 27273.54 26472.43 30784.92 25647.79 35579.89 24074.00 31965.93 24778.81 28386.28 26356.36 29181.63 31156.63 30379.04 34987.87 259
test20.0373.75 26974.59 25571.22 31181.11 29851.12 34370.15 33272.10 33470.42 20580.28 26991.50 16064.21 24174.72 33346.96 35394.58 17487.82 260
BH-RMVSNet80.53 19180.22 19681.49 20587.19 21866.21 20477.79 27286.23 22574.21 15483.69 21788.50 22573.25 19290.75 19863.18 26687.90 28487.52 261
IterMVS76.91 23676.34 23978.64 24680.91 30064.03 22376.30 29379.03 29164.88 26183.11 22589.16 21559.90 26684.46 29568.61 22585.15 31087.42 262
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
OpenMVScopyleft76.72 1381.98 17482.00 17181.93 19584.42 26468.22 18488.50 9489.48 17766.92 24281.80 24891.86 14972.59 19990.16 21471.19 19691.25 24187.40 263
1112_ss74.82 26073.74 26178.04 25889.57 16860.04 27176.49 29187.09 21554.31 31873.66 32379.80 33560.25 26386.76 27258.37 29484.15 32287.32 264
Test_1112_low_res73.90 26873.08 26976.35 28090.35 15655.95 30673.40 32086.17 22650.70 34173.14 32485.94 26758.31 27785.90 28356.51 30483.22 32687.20 265
MVS_030478.17 22377.23 23080.99 21584.13 27069.07 18081.39 22180.81 28176.28 12767.53 34889.11 21762.87 25286.77 27060.90 28492.01 22987.13 266
UnsupCasMVSNet_eth71.63 28772.30 28069.62 32076.47 33752.70 33070.03 33380.97 28059.18 29479.36 27788.21 22960.50 25969.12 34558.33 29677.62 35487.04 267
testgi72.36 28074.61 25365.59 33580.56 30742.82 37068.29 33773.35 32666.87 24381.84 24589.93 20172.08 20466.92 35646.05 35692.54 21587.01 268
xiu_mvs_v1_base_debu80.84 18680.14 19882.93 17988.31 19571.73 15179.53 24487.17 20865.43 25579.59 27382.73 31076.94 15190.14 21773.22 18088.33 27786.90 269
xiu_mvs_v1_base80.84 18680.14 19882.93 17988.31 19571.73 15179.53 24487.17 20865.43 25579.59 27382.73 31076.94 15190.14 21773.22 18088.33 27786.90 269
xiu_mvs_v1_base_debi80.84 18680.14 19882.93 17988.31 19571.73 15179.53 24487.17 20865.43 25579.59 27382.73 31076.94 15190.14 21773.22 18088.33 27786.90 269
MSDG80.06 20679.99 20280.25 22583.91 27368.04 18877.51 27789.19 18077.65 11581.94 24283.45 30076.37 15986.31 27763.31 26586.59 29786.41 272
OpenMVS_ROBcopyleft70.19 1777.77 22977.46 22578.71 24584.39 26561.15 25781.18 22682.52 26662.45 27383.34 22287.37 24466.20 23088.66 24864.69 25585.02 31186.32 273
TinyColmap81.25 18182.34 16877.99 25985.33 25360.68 26782.32 20688.33 19471.26 19786.97 15592.22 14577.10 14886.98 26662.37 26995.17 15286.31 274
CHOSEN 1792x268872.45 27970.56 29178.13 25690.02 16663.08 23368.72 33683.16 26142.99 36275.92 30585.46 27357.22 28685.18 29049.87 34181.67 33686.14 275
YYNet170.06 30070.44 29368.90 32373.76 35553.42 32558.99 36167.20 35258.42 29887.10 15085.39 27659.82 26767.32 35359.79 28983.50 32585.96 276
EPNet_dtu72.87 27771.33 28977.49 26777.72 32760.55 26882.35 20575.79 30766.49 24658.39 37181.06 32453.68 30285.98 28153.55 32392.97 20985.95 277
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MDA-MVSNet_test_wron70.05 30170.44 29368.88 32473.84 35453.47 32358.93 36267.28 35158.43 29787.09 15185.40 27559.80 26867.25 35459.66 29083.54 32485.92 278
XXY-MVS74.44 26576.19 24069.21 32284.61 26052.43 33271.70 32677.18 29960.73 28880.60 26290.96 17675.44 16169.35 34456.13 30788.33 27785.86 279
DPM-MVS80.10 20579.18 20782.88 18290.71 15169.74 16778.87 25890.84 13960.29 29175.64 30985.92 26867.28 22493.11 13271.24 19591.79 23185.77 280
原ACMM184.60 13892.81 8774.01 12491.50 12062.59 27082.73 23190.67 18676.53 15894.25 8469.24 21395.69 13885.55 281
pmmvs474.92 25872.98 27180.73 21884.95 25571.71 15476.23 29577.59 29752.83 32577.73 29386.38 25856.35 29284.97 29157.72 30087.05 29285.51 282
MAR-MVS80.24 20178.74 21484.73 13586.87 22978.18 8585.75 13187.81 20265.67 25477.84 28978.50 34373.79 18290.53 20561.59 27990.87 25085.49 283
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
our_test_371.85 28471.59 28472.62 30480.71 30553.78 32169.72 33471.71 33958.80 29678.03 28680.51 33056.61 29078.84 32062.20 27186.04 30385.23 284
USDC76.63 24076.73 23676.34 28183.46 27657.20 30080.02 23888.04 20052.14 33183.65 21891.25 16563.24 24786.65 27354.66 31994.11 18485.17 285
HY-MVS64.64 1873.03 27572.47 27974.71 29283.36 27754.19 31882.14 21481.96 27156.76 31169.57 34086.21 26460.03 26484.83 29349.58 34282.65 33285.11 286
MVP-Stereo75.81 24973.51 26582.71 18489.35 17373.62 12580.06 23685.20 23860.30 29073.96 32187.94 23357.89 28289.45 23252.02 33174.87 35985.06 287
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
IB-MVS62.13 1971.64 28668.97 30579.66 23480.80 30462.26 24773.94 31576.90 30063.27 26668.63 34276.79 35433.83 37091.84 16859.28 29287.26 29084.88 288
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
pmmvs570.73 29470.07 29772.72 30377.03 33352.73 32974.14 31275.65 31050.36 34472.17 33085.37 27755.42 29780.67 31552.86 32987.59 28984.77 289
MSLP-MVS++85.00 11686.03 10581.90 19691.84 11771.56 15686.75 12093.02 8175.95 13487.12 14889.39 21077.98 13689.40 23677.46 13094.78 16884.75 290
无先验82.81 19285.62 23358.09 30091.41 17967.95 23284.48 291
PAPM71.77 28570.06 29876.92 27386.39 23253.97 31976.62 29086.62 22053.44 32263.97 36184.73 28757.79 28392.34 15339.65 36681.33 33984.45 292
PVSNet_Blended76.49 24375.40 24779.76 23184.43 26263.41 22875.14 30690.44 14957.36 30775.43 31078.30 34469.11 21791.44 17660.68 28587.70 28884.42 293
thres20072.34 28171.55 28774.70 29383.48 27551.60 33875.02 30773.71 32470.14 21178.56 28580.57 32846.20 32888.20 25346.99 35289.29 26584.32 294
AdaColmapbinary83.66 14783.69 14783.57 16390.05 16472.26 14586.29 12790.00 16678.19 11081.65 25087.16 24983.40 8194.24 8561.69 27794.76 17184.21 295
EU-MVSNet75.12 25574.43 25777.18 27083.11 28259.48 27885.71 13382.43 26839.76 36885.64 18288.76 22144.71 34787.88 25573.86 17085.88 30484.16 296
GSMVS83.88 297
sam_mvs146.11 32983.88 297
SCA73.32 27172.57 27775.58 28881.62 29155.86 30878.89 25771.37 34061.73 27774.93 31683.42 30160.46 26087.01 26358.11 29882.63 33483.88 297
CR-MVSNet74.00 26773.04 27076.85 27679.58 31362.64 23982.58 19776.90 30050.50 34375.72 30792.38 13748.07 32284.07 29868.72 22482.91 32983.85 300
RPMNet78.88 21378.28 22080.68 22079.58 31362.64 23982.58 19794.16 2774.80 14875.72 30792.59 13148.69 31995.56 3773.48 17682.91 32983.85 300
MDTV_nov1_ep13_2view27.60 37970.76 32946.47 35161.27 36345.20 34249.18 34383.75 302
旧先验191.97 10971.77 15081.78 27491.84 15173.92 18093.65 19483.61 303
N_pmnet70.20 29768.80 30774.38 29480.91 30084.81 3959.12 36076.45 30555.06 31575.31 31482.36 31355.74 29454.82 37047.02 35187.24 29183.52 304
ADS-MVSNet265.87 32063.64 32772.55 30573.16 35856.92 30267.10 34274.81 31349.74 34566.04 35182.97 30446.71 32577.26 32442.29 36169.96 36683.46 305
ADS-MVSNet61.90 32862.19 33161.03 34873.16 35836.42 37467.10 34261.75 36349.74 34566.04 35182.97 30446.71 32563.21 36342.29 36169.96 36683.46 305
CostFormer69.98 30268.68 30873.87 29577.14 33150.72 34579.26 25074.51 31651.94 33370.97 33684.75 28645.16 34487.49 25955.16 31679.23 34683.40 307
PS-MVSNAJ77.04 23576.53 23778.56 24787.09 22361.40 25375.26 30587.13 21161.25 28174.38 32077.22 35276.94 15190.94 19064.63 25684.83 31783.35 308
xiu_mvs_v2_base77.19 23376.75 23578.52 24887.01 22561.30 25575.55 30387.12 21461.24 28274.45 31878.79 34177.20 14590.93 19164.62 25784.80 31883.32 309
PatchmatchNetpermissive69.71 30468.83 30672.33 30877.66 32853.60 32279.29 24969.99 34557.66 30472.53 32882.93 30646.45 32780.08 31860.91 28372.09 36283.31 310
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
Anonymous2023120671.38 28971.88 28269.88 31886.31 23754.37 31770.39 33174.62 31452.57 32776.73 29688.76 22159.94 26572.06 33644.35 35993.23 20283.23 311
tpm67.95 31068.08 31167.55 33078.74 32443.53 36875.60 30067.10 35554.92 31672.23 32988.10 23042.87 35575.97 32852.21 33080.95 34283.15 312
PMVScopyleft80.48 690.08 3790.66 4488.34 7896.71 392.97 190.31 5489.57 17688.51 1790.11 9495.12 4590.98 688.92 24277.55 12997.07 8283.13 313
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
tpm268.45 30966.83 31573.30 29978.93 32348.50 35179.76 24171.76 33747.50 34769.92 33983.60 29742.07 35688.40 25048.44 34779.51 34383.01 314
TR-MVS76.77 23975.79 24379.72 23286.10 24765.79 20877.14 28083.02 26365.20 25981.40 25482.10 31466.30 22990.73 20055.57 31185.27 30882.65 315
131473.22 27372.56 27875.20 28980.41 30957.84 29481.64 21885.36 23551.68 33473.10 32576.65 35561.45 25685.19 28963.54 26279.21 34782.59 316
test_vis1_n_192071.30 29071.58 28670.47 31477.58 32959.99 27374.25 31184.22 25551.06 33774.85 31779.10 33955.10 29968.83 34768.86 22179.20 34882.58 317
WTY-MVS67.91 31168.35 30966.58 33380.82 30348.12 35365.96 34672.60 33053.67 32171.20 33481.68 32058.97 27369.06 34648.57 34581.67 33682.55 318
MIMVSNet71.09 29171.59 28469.57 32187.23 21650.07 34878.91 25671.83 33660.20 29271.26 33391.76 15555.08 30076.09 32741.06 36487.02 29482.54 319
BH-untuned80.96 18580.99 18480.84 21688.55 19168.23 18380.33 23588.46 18972.79 17786.55 16486.76 25574.72 17391.77 17061.79 27688.99 26982.52 320
API-MVS82.28 16782.61 16381.30 20686.29 23969.79 16688.71 9087.67 20378.42 10882.15 23984.15 29477.98 13691.59 17265.39 24892.75 21282.51 321
Gipumacopyleft84.44 12686.33 10078.78 24384.20 26973.57 12689.55 7290.44 14984.24 4184.38 20294.89 4976.35 16080.40 31676.14 14696.80 9082.36 322
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PatchT70.52 29572.76 27463.79 34179.38 31733.53 37677.63 27465.37 35873.61 16071.77 33192.79 12744.38 34875.65 33064.53 25885.37 30782.18 323
test_fmvs1_n70.94 29270.41 29572.53 30673.92 35366.93 19675.99 29784.21 25643.31 36179.40 27679.39 33843.47 35068.55 34969.05 21884.91 31482.10 324
tpmvs70.16 29869.56 30271.96 30974.71 35248.13 35279.63 24275.45 31265.02 26070.26 33781.88 31745.34 34185.68 28558.34 29575.39 35882.08 325
新几何182.95 17893.96 5578.56 8480.24 28555.45 31483.93 21691.08 17171.19 21088.33 25165.84 24593.07 20581.95 326
Patchmatch-test65.91 31967.38 31261.48 34775.51 34543.21 36968.84 33563.79 36062.48 27272.80 32783.42 30144.89 34659.52 36848.27 34886.45 29881.70 327
UnsupCasMVSNet_bld69.21 30769.68 30167.82 32979.42 31651.15 34267.82 34175.79 30754.15 31977.47 29585.36 27859.26 27170.64 34048.46 34679.35 34581.66 328
PVSNet58.17 2166.41 31765.63 32268.75 32581.96 28849.88 34962.19 35572.51 33251.03 33868.04 34475.34 35950.84 31274.77 33145.82 35782.96 32781.60 329
Patchmatch-RL test74.48 26373.68 26276.89 27584.83 25766.54 19972.29 32469.16 34957.70 30386.76 15886.33 26045.79 33582.59 30569.63 21090.65 25781.54 330
test0.0.03 164.66 32464.36 32465.57 33675.03 35046.89 35964.69 34961.58 36562.43 27471.18 33577.54 34743.41 35168.47 35140.75 36582.65 33281.35 331
test-LLR67.21 31266.74 31668.63 32676.45 33855.21 31367.89 33867.14 35362.43 27465.08 35672.39 36143.41 35169.37 34261.00 28184.89 31581.31 332
test-mter65.00 32363.79 32668.63 32676.45 33855.21 31367.89 33867.14 35350.98 33965.08 35672.39 36128.27 37769.37 34261.00 28184.89 31581.31 332
test22293.31 7176.54 10579.38 24877.79 29652.59 32682.36 23590.84 18066.83 22891.69 23381.25 334
sss66.92 31367.26 31365.90 33477.23 33051.10 34464.79 34871.72 33852.12 33270.13 33880.18 33257.96 28065.36 36150.21 33881.01 34181.25 334
tpm cat166.76 31665.21 32371.42 31077.09 33250.62 34678.01 26773.68 32544.89 35568.64 34179.00 34045.51 33882.42 30849.91 34070.15 36581.23 336
CVMVSNet72.62 27871.41 28876.28 28283.25 27860.34 26983.50 17379.02 29237.77 37176.33 29985.10 28049.60 31887.41 26070.54 20477.54 35581.08 337
tpmrst66.28 31866.69 31765.05 33872.82 36139.33 37178.20 26670.69 34353.16 32467.88 34580.36 33148.18 32174.75 33258.13 29770.79 36481.08 337
testdata79.54 23692.87 8272.34 14380.14 28659.91 29385.47 18691.75 15667.96 22385.24 28868.57 22792.18 22581.06 339
PM-MVS80.20 20279.00 20883.78 15788.17 19986.66 1581.31 22266.81 35669.64 21488.33 13290.19 19764.58 23883.63 30271.99 19390.03 26081.06 339
test_vis1_rt65.64 32164.09 32570.31 31566.09 37470.20 16561.16 35681.60 27638.65 36972.87 32669.66 36452.84 30460.04 36756.16 30677.77 35280.68 341
EPMVS62.47 32662.63 33062.01 34370.63 36638.74 37274.76 30852.86 37353.91 32067.71 34780.01 33339.40 36066.60 35755.54 31268.81 36980.68 341
KD-MVS_2432*160066.87 31465.81 32070.04 31667.50 37047.49 35662.56 35379.16 28961.21 28377.98 28780.61 32625.29 38182.48 30653.02 32684.92 31280.16 343
miper_refine_blended66.87 31465.81 32070.04 31667.50 37047.49 35662.56 35379.16 28961.21 28377.98 28780.61 32625.29 38182.48 30653.02 32684.92 31280.16 343
mvsany_test365.48 32262.97 32873.03 30269.99 36776.17 11364.83 34743.71 37843.68 35980.25 27087.05 25352.83 30563.09 36551.92 33572.44 36179.84 345
test_fmvs169.57 30569.05 30471.14 31369.15 36965.77 20973.98 31483.32 26042.83 36377.77 29278.27 34543.39 35368.50 35068.39 22884.38 32179.15 346
JIA-IIPM69.41 30666.64 31877.70 26473.19 35771.24 15775.67 29965.56 35770.42 20565.18 35592.97 11933.64 37183.06 30353.52 32469.61 36878.79 347
test_vis1_n70.29 29669.99 29971.20 31275.97 34266.50 20076.69 28880.81 28144.22 35775.43 31077.23 35150.00 31668.59 34866.71 23882.85 33178.52 348
BH-w/o76.57 24176.07 24278.10 25786.88 22865.92 20777.63 27486.33 22265.69 25380.89 25979.95 33468.97 21990.74 19953.01 32885.25 30977.62 349
TESTMET0.1,161.29 33160.32 33664.19 34072.06 36351.30 34067.89 33862.09 36145.27 35360.65 36569.01 36527.93 37864.74 36256.31 30581.65 33876.53 350
gg-mvs-nofinetune68.96 30869.11 30368.52 32876.12 34145.32 36283.59 17155.88 37186.68 2464.62 36097.01 730.36 37483.97 30044.78 35882.94 32876.26 351
dp60.70 33560.29 33761.92 34572.04 36438.67 37370.83 32864.08 35951.28 33660.75 36477.28 35036.59 36771.58 33947.41 35062.34 37175.52 352
MS-PatchMatch70.93 29370.22 29673.06 30181.85 29062.50 24273.82 31777.90 29552.44 32875.92 30581.27 32255.67 29581.75 30955.37 31377.70 35374.94 353
MVS73.21 27472.59 27675.06 29180.97 29960.81 26581.64 21885.92 23046.03 35271.68 33277.54 34768.47 22089.77 22655.70 31085.39 30674.60 354
pmmvs362.47 32660.02 33869.80 31971.58 36564.00 22470.52 33058.44 36939.77 36766.05 35075.84 35727.10 38072.28 33546.15 35584.77 31973.11 355
PMMVS255.64 34059.27 33944.74 35664.30 37812.32 38140.60 36949.79 37553.19 32365.06 35884.81 28553.60 30349.76 37332.68 37389.41 26472.15 356
PatchMatch-RL74.48 26373.22 26878.27 25587.70 20785.26 3475.92 29870.09 34464.34 26376.09 30381.25 32365.87 23478.07 32253.86 32283.82 32371.48 357
GG-mvs-BLEND67.16 33173.36 35646.54 36184.15 15455.04 37258.64 37061.95 37129.93 37583.87 30138.71 36876.92 35671.07 358
MVEpermissive40.22 2351.82 34150.47 34455.87 35362.66 37951.91 33531.61 37139.28 38040.65 36550.76 37474.98 36056.24 29344.67 37533.94 37264.11 37071.04 359
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
new_pmnet55.69 33957.66 34049.76 35575.47 34630.59 37759.56 35751.45 37443.62 36062.49 36275.48 35840.96 35849.15 37437.39 36972.52 36069.55 360
DSMNet-mixed60.98 33461.61 33359.09 35272.88 36045.05 36474.70 30946.61 37726.20 37365.34 35490.32 19355.46 29663.12 36441.72 36381.30 34069.09 361
CHOSEN 280x42059.08 33656.52 34166.76 33276.51 33664.39 22049.62 36859.00 36743.86 35855.66 37368.41 36735.55 36968.21 35243.25 36076.78 35767.69 362
mvsany_test158.48 33756.47 34264.50 33965.90 37668.21 18556.95 36442.11 37938.30 37065.69 35377.19 35356.96 28759.35 36946.16 35458.96 37265.93 363
test_f64.31 32565.85 31959.67 35066.54 37362.24 24857.76 36370.96 34140.13 36684.36 20382.09 31546.93 32451.67 37261.99 27481.89 33565.12 364
EMVS61.10 33360.81 33461.99 34465.96 37555.86 30853.10 36758.97 36867.06 24156.89 37263.33 36940.98 35767.03 35554.79 31886.18 30263.08 365
E-PMN61.59 33061.62 33261.49 34666.81 37255.40 31153.77 36660.34 36666.80 24458.90 36965.50 36840.48 35966.12 35955.72 30986.25 30162.95 366
PMMVS61.65 32960.38 33565.47 33765.40 37769.26 17463.97 35161.73 36436.80 37260.11 36668.43 36659.42 26966.35 35848.97 34478.57 35060.81 367
wuyk23d75.13 25479.30 20662.63 34275.56 34475.18 11880.89 22973.10 32975.06 14794.76 1295.32 3587.73 4052.85 37134.16 37197.11 8059.85 368
PVSNet_051.08 2256.10 33854.97 34359.48 35175.12 34953.28 32655.16 36561.89 36244.30 35659.16 36762.48 37054.22 30165.91 36035.40 37047.01 37359.25 369
FPMVS72.29 28272.00 28173.14 30088.63 18885.00 3674.65 31067.39 35071.94 19277.80 29187.66 23950.48 31475.83 32949.95 33979.51 34358.58 370
MVS-HIRNet61.16 33262.92 32955.87 35379.09 32035.34 37571.83 32557.98 37046.56 35059.05 36891.14 16949.95 31776.43 32638.74 36771.92 36355.84 371
test_method30.46 34229.60 34533.06 35717.99 3813.84 38313.62 37273.92 3202.79 37518.29 37753.41 37228.53 37643.25 37622.56 37435.27 37552.11 372
DeepMVS_CXcopyleft24.13 35832.95 38029.49 37821.63 38312.07 37437.95 37545.07 37330.84 37319.21 37717.94 37633.06 37623.69 373
tmp_tt20.25 34424.50 3477.49 3594.47 3828.70 38234.17 37025.16 3821.00 37732.43 37618.49 37439.37 3619.21 37821.64 37543.75 3744.57 374
test1236.27 3478.08 3500.84 3601.11 3840.57 38462.90 3520.82 3840.54 3781.07 3802.75 3791.26 3830.30 3791.04 3771.26 3781.66 375
testmvs5.91 3487.65 3510.72 3611.20 3830.37 38559.14 3590.67 3850.49 3791.11 3792.76 3780.94 3840.24 3801.02 3781.47 3771.55 376
test_blank0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
uanet_test0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
DCPMVS0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
cdsmvs_eth3d_5k20.81 34327.75 3460.00 3620.00 3850.00 3860.00 37385.44 2340.00 3800.00 38182.82 30881.46 1080.00 3810.00 3790.00 3790.00 377
pcd_1.5k_mvsjas6.41 3468.55 3490.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 38076.94 1510.00 3810.00 3790.00 3790.00 377
sosnet-low-res0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
sosnet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
uncertanet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
Regformer0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
ab-mvs-re6.65 3458.87 3480.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 38179.80 3350.00 3850.00 3810.00 3790.00 3790.00 377
uanet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
FOURS196.08 1187.41 1096.19 295.83 492.95 296.57 2
test_one_060193.85 5873.27 12894.11 3386.57 2593.47 3894.64 6088.42 26
eth-test20.00 385
eth-test0.00 385
ZD-MVS92.22 10280.48 6791.85 11271.22 19890.38 9092.98 11786.06 5996.11 581.99 8096.75 91
test_241102_ONE94.18 4672.65 13293.69 5083.62 4794.11 2293.78 10390.28 1495.50 44
9.1489.29 5891.84 11788.80 8895.32 1175.14 14691.07 7992.89 12287.27 4493.78 10383.69 6497.55 67
save fliter93.75 5977.44 9586.31 12689.72 17070.80 201
test072694.16 4972.56 13890.63 4593.90 4283.61 4893.75 3094.49 6489.76 18
test_part293.86 5777.77 9192.84 48
sam_mvs45.92 334
MTGPAbinary91.81 115
test_post178.85 2593.13 37645.19 34380.13 31758.11 298
test_post3.10 37745.43 33977.22 325
patchmatchnet-post81.71 31945.93 33387.01 263
MTMP90.66 4433.14 381
gm-plane-assit75.42 34744.97 36552.17 32972.36 36387.90 25454.10 321
TEST992.34 9679.70 7483.94 15990.32 15365.41 25884.49 20090.97 17482.03 9993.63 108
test_892.09 10678.87 8183.82 16490.31 15565.79 24984.36 20390.96 17681.93 10193.44 121
agg_prior91.58 12577.69 9290.30 15684.32 20593.18 129
test_prior478.97 8084.59 145
test_prior283.37 17675.43 14284.58 19991.57 15881.92 10379.54 10596.97 84
旧先验281.73 21656.88 31086.54 16984.90 29272.81 187
新几何281.72 217
原ACMM282.26 210
testdata286.43 27663.52 263
segment_acmp81.94 100
testdata179.62 24373.95 157
plane_prior793.45 6677.31 98
plane_prior692.61 8876.54 10574.84 169
plane_prior492.95 120
plane_prior376.85 10377.79 11486.55 164
plane_prior289.45 7779.44 92
plane_prior192.83 86
plane_prior76.42 10987.15 11075.94 13595.03 158
n20.00 386
nn0.00 386
door-mid74.45 317
test1191.46 121
door72.57 331
HQP5-MVS70.66 160
HQP-NCC91.19 13784.77 14073.30 16780.55 264
ACMP_Plane91.19 13784.77 14073.30 16780.55 264
BP-MVS77.30 134
HQP3-MVS92.68 9194.47 176
HQP2-MVS72.10 202
NP-MVS91.95 11074.55 12190.17 199
MDTV_nov1_ep1368.29 31078.03 32543.87 36774.12 31372.22 33352.17 32967.02 34985.54 27145.36 34080.85 31455.73 30884.42 320
ACMMP++_ref95.74 137
ACMMP++97.35 73
Test By Simon79.09 128