This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted by
LCM-MVSNet95.70 196.40 193.61 298.67 185.39 3395.54 597.36 196.97 199.04 199.05 196.61 195.92 1485.07 5599.27 199.54 1
PS-CasMVS90.06 3991.92 1184.47 14896.56 658.83 30389.04 8392.74 9091.40 596.12 496.06 2287.23 4595.57 3879.42 12098.74 599.00 2
PEN-MVS90.03 4191.88 1484.48 14796.57 558.88 30088.95 8493.19 6991.62 496.01 696.16 2087.02 4795.60 3678.69 12598.72 898.97 3
CP-MVSNet89.27 5890.91 4084.37 14996.34 858.61 30688.66 9292.06 10690.78 695.67 795.17 4381.80 11095.54 4179.00 12398.69 998.95 4
WR-MVS_H89.91 4691.31 2985.71 12596.32 962.39 25789.54 7493.31 6490.21 1095.57 995.66 2981.42 11495.90 1580.94 10098.80 298.84 5
DTE-MVSNet89.98 4391.91 1384.21 15796.51 757.84 31088.93 8592.84 8791.92 396.16 396.23 1886.95 4895.99 1079.05 12298.57 1498.80 6
FC-MVSNet-test85.93 10687.05 9082.58 20092.25 10056.44 32185.75 13693.09 7577.33 12391.94 6694.65 5774.78 18293.41 12575.11 17098.58 1397.88 7
v7n90.13 3690.96 3887.65 8991.95 11071.06 17189.99 5993.05 7786.53 2694.29 1896.27 1782.69 8894.08 9586.25 4297.63 6197.82 8
TranMVSNet+NR-MVSNet87.86 7988.76 6985.18 13394.02 5464.13 23484.38 16191.29 13184.88 3992.06 6393.84 10286.45 5493.73 10673.22 19398.66 1097.69 9
DU-MVS86.80 9086.99 9186.21 11393.24 7467.02 20683.16 19592.21 10181.73 6990.92 8391.97 15577.20 15393.99 9774.16 17698.35 2197.61 10
NR-MVSNet86.00 10486.22 10385.34 13193.24 7464.56 23082.21 22490.46 15380.99 7888.42 13291.97 15577.56 14893.85 10272.46 20398.65 1197.61 10
FIs85.35 11386.27 10282.60 19991.86 11457.31 31485.10 14893.05 7775.83 13991.02 8293.97 9373.57 19692.91 14273.97 18198.02 3997.58 12
RRT_MVS88.30 7087.83 7789.70 5293.62 6475.70 12192.36 2689.06 18877.34 12293.63 3595.83 2565.40 25395.90 1585.01 5898.23 2797.49 13
UniMVSNet_NR-MVSNet86.84 8987.06 8986.17 11592.86 8467.02 20682.55 21291.56 12183.08 5790.92 8391.82 16178.25 14193.99 9774.16 17698.35 2197.49 13
UniMVSNet_ETH3D89.12 6190.72 4384.31 15597.00 264.33 23389.67 6988.38 19688.84 1394.29 1897.57 390.48 1391.26 18372.57 20297.65 6097.34 15
OurMVSNet-221017-090.01 4289.74 5290.83 3293.16 7680.37 6891.91 3393.11 7381.10 7795.32 1097.24 572.94 20794.85 6785.07 5597.78 5397.26 16
mvsmamba87.87 7887.23 8689.78 5192.31 9976.51 11291.09 4291.87 11372.61 18692.16 6095.23 4166.01 24995.59 3786.02 4897.78 5397.24 17
WR-MVS83.56 15584.40 14181.06 22593.43 6854.88 33278.67 27385.02 25381.24 7590.74 8991.56 16972.85 20891.08 18968.00 24598.04 3697.23 18
TDRefinement93.52 293.39 393.88 195.94 1490.26 395.70 496.46 290.58 892.86 4796.29 1688.16 3394.17 9286.07 4598.48 1797.22 19
v1086.54 9487.10 8884.84 13788.16 20663.28 24386.64 12592.20 10275.42 14692.81 5094.50 6474.05 19194.06 9683.88 6896.28 10897.17 20
anonymousdsp89.73 4988.88 6692.27 789.82 16986.67 1490.51 5090.20 16669.87 21995.06 1196.14 2184.28 7293.07 13687.68 1596.34 10697.09 21
test_djsdf89.62 5089.01 6391.45 2292.36 9582.98 5391.98 3190.08 16971.54 19994.28 2096.54 1381.57 11294.27 8486.26 4096.49 10097.09 21
v886.22 10086.83 9584.36 15187.82 21062.35 25986.42 12891.33 13076.78 12892.73 5294.48 6673.41 20093.72 10783.10 7495.41 14497.01 23
UniMVSNet (Re)86.87 8786.98 9286.55 10493.11 7768.48 19483.80 17792.87 8580.37 8389.61 11291.81 16277.72 14694.18 9075.00 17198.53 1596.99 24
Anonymous2023121188.40 6789.62 5584.73 14290.46 15565.27 22388.86 8693.02 8187.15 2393.05 4397.10 682.28 10092.02 16476.70 15297.99 4096.88 25
IS-MVSNet86.66 9386.82 9686.17 11592.05 10866.87 20991.21 3988.64 19386.30 2889.60 11392.59 13869.22 23394.91 6673.89 18297.89 4996.72 26
UA-Net91.49 1591.53 2091.39 2394.98 3482.95 5493.52 792.79 8888.22 1888.53 12997.64 283.45 8194.55 7886.02 4898.60 1296.67 27
pmmvs686.52 9588.06 7481.90 20992.22 10262.28 26084.66 15489.15 18683.54 5289.85 10397.32 488.08 3686.80 27670.43 21997.30 7696.62 28
RPSCF88.00 7686.93 9391.22 2790.08 16289.30 489.68 6891.11 13679.26 9989.68 10794.81 5582.44 9287.74 26176.54 15588.74 28796.61 29
LTVRE_ROB86.10 193.04 393.44 291.82 2093.73 6085.72 3096.79 195.51 888.86 1295.63 896.99 884.81 6793.16 13291.10 197.53 7096.58 30
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
nrg03087.85 8088.49 7085.91 11990.07 16469.73 18187.86 10394.20 2574.04 15892.70 5394.66 5685.88 6191.50 17579.72 11597.32 7596.50 31
v2v48284.09 14284.24 14483.62 17287.13 22661.40 26782.71 20789.71 17672.19 19589.55 11491.41 17270.70 22893.20 13081.02 9993.76 19796.25 32
PS-MVSNAJss88.31 6987.90 7689.56 5793.31 7177.96 9287.94 10291.97 10970.73 20894.19 2196.67 1176.94 15994.57 7683.07 7596.28 10896.15 33
v119284.57 12884.69 13384.21 15787.75 21262.88 24783.02 19891.43 12569.08 22589.98 10190.89 19072.70 21193.62 11382.41 8694.97 16496.13 34
EI-MVSNet-UG-set85.04 11984.44 13886.85 9983.87 28972.52 15183.82 17585.15 24980.27 8688.75 12585.45 29079.95 13091.90 16781.92 9490.80 26296.13 34
v192192084.23 13984.37 14283.79 16687.64 21761.71 26582.91 20291.20 13467.94 24090.06 9690.34 20872.04 21993.59 11582.32 8794.91 16596.07 36
v124084.30 13584.51 13783.65 17187.65 21661.26 27082.85 20491.54 12267.94 24090.68 9090.65 20271.71 22293.64 10982.84 8094.78 17296.07 36
v14419284.24 13884.41 14083.71 17087.59 21861.57 26682.95 20191.03 13867.82 24389.80 10490.49 20573.28 20493.51 12081.88 9594.89 16796.04 38
v114484.54 13084.72 13184.00 16087.67 21562.55 25482.97 20090.93 14270.32 21489.80 10490.99 18573.50 19793.48 12181.69 9694.65 17795.97 39
EI-MVSNet-Vis-set85.12 11884.53 13686.88 9884.01 28572.76 14283.91 17385.18 24880.44 8288.75 12585.49 28880.08 12891.92 16682.02 9190.85 26195.97 39
HPM-MVS_fast92.50 492.54 592.37 595.93 1585.81 2992.99 1294.23 2285.21 3592.51 5595.13 4490.65 995.34 5288.06 898.15 3495.95 41
tttt051781.07 19679.58 21985.52 12888.99 18566.45 21387.03 11475.51 32673.76 16288.32 13690.20 21237.96 38494.16 9479.36 12195.13 15595.93 42
ANet_high83.17 16385.68 11575.65 30081.24 31445.26 37979.94 25192.91 8483.83 4691.33 7496.88 1080.25 12785.92 29268.89 23595.89 12995.76 43
IterMVS-LS84.73 12584.98 12683.96 16287.35 22163.66 23883.25 19189.88 17376.06 13289.62 11092.37 14773.40 20292.52 14978.16 13394.77 17495.69 44
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet82.61 16882.42 17483.20 18583.25 29463.66 23883.50 18485.07 25076.06 13286.55 16985.10 29673.41 20090.25 21178.15 13590.67 26595.68 45
EPP-MVSNet85.47 11185.04 12586.77 10191.52 13069.37 18591.63 3687.98 20681.51 7287.05 15991.83 16066.18 24895.29 5370.75 21496.89 8595.64 46
V4283.47 15883.37 15583.75 16883.16 29663.33 24281.31 23490.23 16569.51 22190.91 8590.81 19574.16 18992.29 15880.06 10990.22 27095.62 47
ACMH+77.89 1190.73 2791.50 2188.44 7693.00 7976.26 11689.65 7095.55 787.72 2193.89 2694.94 4891.62 393.44 12378.35 12898.76 395.61 48
mvs_tets89.78 4889.27 5991.30 2593.51 6584.79 4089.89 6390.63 14970.00 21894.55 1596.67 1187.94 3793.59 11584.27 6595.97 12395.52 49
OMC-MVS88.19 7187.52 8190.19 4491.94 11281.68 6187.49 10893.17 7076.02 13488.64 12791.22 17784.24 7393.37 12677.97 13897.03 8395.52 49
SixPastTwentyTwo87.20 8587.45 8386.45 10692.52 9169.19 19087.84 10488.05 20481.66 7094.64 1496.53 1465.94 25094.75 6983.02 7796.83 8895.41 51
KD-MVS_self_test81.93 18583.14 16078.30 26584.75 27452.75 34480.37 24689.42 18470.24 21690.26 9493.39 11474.55 18786.77 27768.61 24096.64 9395.38 52
jajsoiax89.41 5388.81 6891.19 2893.38 6984.72 4189.70 6690.29 16369.27 22294.39 1696.38 1586.02 6093.52 11983.96 6795.92 12895.34 53
HPM-MVScopyleft92.13 792.20 991.91 1595.58 2584.67 4293.51 894.85 1482.88 5991.77 6893.94 9990.55 1295.73 3188.50 698.23 2795.33 54
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
Anonymous2024052986.20 10187.13 8783.42 17890.19 16064.55 23184.55 15690.71 14685.85 3189.94 10295.24 4082.13 10290.40 21069.19 23196.40 10595.31 55
Baseline_NR-MVSNet84.00 14685.90 10978.29 26691.47 13253.44 34082.29 22087.00 22479.06 10289.55 11495.72 2877.20 15386.14 29072.30 20498.51 1695.28 56
casdiffmvspermissive85.21 11585.85 11183.31 18186.17 25362.77 25083.03 19793.93 4074.69 15388.21 13792.68 13782.29 9991.89 16877.87 13993.75 19995.27 57
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
3Dnovator+83.92 289.97 4589.66 5390.92 3191.27 13681.66 6291.25 3894.13 3288.89 1188.83 12494.26 7877.55 14995.86 2284.88 5995.87 13095.24 58
LPG-MVS_test91.47 1791.68 1690.82 3394.75 4081.69 5990.00 5794.27 1982.35 6393.67 3394.82 5291.18 495.52 4285.36 5298.73 695.23 59
LGP-MVS_train90.82 3394.75 4081.69 5994.27 1982.35 6393.67 3394.82 5291.18 495.52 4285.36 5298.73 695.23 59
casdiffmvs_mvgpermissive86.72 9187.51 8284.36 15187.09 23065.22 22484.16 16394.23 2277.89 11691.28 7793.66 10984.35 7192.71 14480.07 10894.87 17095.16 61
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test111178.53 23478.85 22777.56 27892.22 10247.49 37282.61 20869.24 36472.43 18785.28 19494.20 8151.91 32790.07 22365.36 26696.45 10395.11 62
MP-MVS-pluss90.81 2691.08 3389.99 4695.97 1379.88 7188.13 9994.51 1775.79 14092.94 4494.96 4788.36 2895.01 6390.70 298.40 1995.09 63
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
COLMAP_ROBcopyleft83.01 391.97 991.95 1092.04 1093.68 6286.15 2093.37 1095.10 1290.28 992.11 6195.03 4689.75 2094.93 6579.95 11198.27 2595.04 64
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
dcpmvs_284.23 13985.14 12381.50 21788.61 19561.98 26482.90 20393.11 7368.66 23192.77 5192.39 14378.50 13887.63 26376.99 15192.30 22694.90 65
CS-MVS88.14 7287.67 8089.54 5889.56 17179.18 7890.47 5194.77 1579.37 9884.32 21589.33 22983.87 7494.53 7982.45 8594.89 16794.90 65
test250674.12 28173.39 28176.28 29591.85 11544.20 38284.06 16748.20 39872.30 19381.90 25994.20 8127.22 39989.77 23164.81 27196.02 12194.87 67
ECVR-MVScopyleft78.44 23578.63 23177.88 27491.85 11548.95 36683.68 18069.91 36272.30 19384.26 22194.20 8151.89 32889.82 22863.58 28096.02 12194.87 67
v14882.31 17382.48 17381.81 21485.59 26259.66 29081.47 23386.02 23672.85 18088.05 14090.65 20270.73 22790.91 19575.15 16991.79 23994.87 67
ACMP79.16 1090.54 3190.60 4590.35 4194.36 4380.98 6589.16 8194.05 3679.03 10392.87 4693.74 10790.60 1195.21 5882.87 7998.76 394.87 67
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
eth_miper_zixun_eth80.84 19980.22 21182.71 19781.41 31260.98 27677.81 28390.14 16867.31 24686.95 16187.24 26464.26 25792.31 15675.23 16891.61 24394.85 71
K. test v385.14 11784.73 12986.37 10791.13 14169.63 18385.45 14176.68 31884.06 4592.44 5796.99 862.03 27094.65 7280.58 10693.24 20994.83 72
baseline85.20 11685.93 10783.02 18886.30 24762.37 25884.55 15693.96 3974.48 15587.12 15392.03 15482.30 9891.94 16578.39 12694.21 18894.74 73
thisisatest053079.07 22477.33 24584.26 15687.13 22664.58 22983.66 18175.95 32168.86 22885.22 19587.36 26138.10 38293.57 11875.47 16594.28 18794.62 74
c3_l81.64 18981.59 18681.79 21580.86 32059.15 29778.61 27490.18 16768.36 23287.20 15187.11 26769.39 23191.62 17378.16 13394.43 18294.60 75
TSAR-MVS + MP.88.14 7287.82 7889.09 6595.72 2176.74 10892.49 2491.19 13567.85 24286.63 16894.84 5179.58 13295.96 1387.62 1694.50 17994.56 76
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
ACMMPcopyleft91.91 1091.87 1592.03 1195.53 2685.91 2493.35 1194.16 2782.52 6292.39 5894.14 8589.15 2395.62 3587.35 2498.24 2694.56 76
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
ITE_SJBPF90.11 4590.72 15084.97 3790.30 16181.56 7190.02 9891.20 17982.40 9490.81 19973.58 18894.66 17694.56 76
LS3D90.60 3090.34 4791.38 2489.03 18384.23 4593.58 694.68 1690.65 790.33 9393.95 9884.50 6995.37 5180.87 10195.50 14394.53 79
HQP_MVS87.75 8287.43 8488.70 7393.45 6676.42 11389.45 7793.61 5379.44 9686.55 16992.95 12774.84 18095.22 5680.78 10395.83 13294.46 80
plane_prior593.61 5395.22 5680.78 10395.83 13294.46 80
testf189.30 5689.12 6089.84 4888.67 19285.64 3190.61 4693.17 7086.02 2993.12 4195.30 3684.94 6489.44 23874.12 17896.10 11894.45 82
APD_test289.30 5689.12 6089.84 4888.67 19285.64 3190.61 4693.17 7086.02 2993.12 4195.30 3684.94 6489.44 23874.12 17896.10 11894.45 82
TransMVSNet (Re)84.02 14585.74 11478.85 25491.00 14455.20 33182.29 22087.26 21279.65 9388.38 13495.52 3383.00 8586.88 27467.97 24696.60 9594.45 82
pm-mvs183.69 15184.95 12779.91 24190.04 16659.66 29082.43 21687.44 20975.52 14487.85 14395.26 3981.25 11685.65 29968.74 23896.04 12094.42 85
MM89.09 6576.39 11588.68 9186.76 22584.54 4183.58 23293.78 10573.36 20396.48 187.98 996.21 11294.41 86
SteuartSystems-ACMMP91.16 2391.36 2490.55 3793.91 5680.97 6691.49 3793.48 5782.82 6092.60 5493.97 9388.19 3196.29 587.61 1798.20 3194.39 87
Skip Steuart: Steuart Systems R&D Blog.
iter_conf0578.81 22977.35 24483.21 18482.98 30060.75 28084.09 16688.34 19863.12 27684.25 22289.48 22531.41 39294.51 8176.64 15395.83 13294.38 88
VPA-MVSNet83.47 15884.73 12979.69 24590.29 15857.52 31381.30 23688.69 19276.29 13087.58 14894.44 6780.60 12487.20 26866.60 25496.82 8994.34 89
fmvsm_s_conf0.1_n82.17 17881.59 18683.94 16486.87 23671.57 16785.19 14677.42 31062.27 28684.47 21191.33 17476.43 16785.91 29383.14 7287.14 30594.33 90
SF-MVS90.27 3590.80 4288.68 7492.86 8477.09 10491.19 4095.74 581.38 7392.28 5993.80 10386.89 4994.64 7385.52 5197.51 7194.30 91
SSC-MVS77.55 24381.64 18365.29 35790.46 15520.33 40273.56 33468.28 36685.44 3288.18 13994.64 6070.93 22681.33 32571.25 20892.03 23494.20 92
XVS91.54 1391.36 2492.08 895.64 2386.25 1892.64 1893.33 6185.07 3689.99 9994.03 9086.57 5295.80 2587.35 2497.62 6294.20 92
X-MVStestdata85.04 11982.70 16792.08 895.64 2386.25 1892.64 1893.33 6185.07 3689.99 9916.05 39786.57 5295.80 2587.35 2497.62 6294.20 92
APD-MVS_3200maxsize92.05 892.24 891.48 2193.02 7885.17 3592.47 2595.05 1387.65 2293.21 4094.39 7390.09 1795.08 6186.67 3597.60 6494.18 95
AllTest87.97 7787.40 8589.68 5391.59 12283.40 4889.50 7595.44 979.47 9488.00 14193.03 12282.66 8991.47 17670.81 21196.14 11594.16 96
TestCases89.68 5391.59 12283.40 4895.44 979.47 9488.00 14193.03 12282.66 8991.47 17670.81 21196.14 11594.16 96
CS-MVS-test87.00 8686.43 10088.71 7289.46 17377.46 9889.42 7995.73 677.87 11781.64 26787.25 26382.43 9394.53 7977.65 14096.46 10294.14 98
ZNCC-MVS91.26 2091.34 2791.01 3095.73 2083.05 5292.18 2894.22 2480.14 8891.29 7693.97 9387.93 3895.87 1988.65 497.96 4594.12 99
MVS_030486.35 9785.92 10887.66 8889.21 18073.16 14088.40 9683.63 26881.27 7480.87 27794.12 8771.49 22495.71 3287.79 1296.50 9994.11 100
OPM-MVS89.80 4789.97 4889.27 6194.76 3979.86 7286.76 12292.78 8978.78 10692.51 5593.64 11088.13 3493.84 10484.83 6097.55 6794.10 101
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
Effi-MVS+-dtu85.82 10883.38 15493.14 387.13 22691.15 287.70 10588.42 19574.57 15483.56 23385.65 28678.49 13994.21 8872.04 20592.88 21894.05 102
bld_raw_dy_0_6484.85 12384.44 13886.07 11793.73 6074.93 12588.57 9381.90 28470.44 21091.28 7795.18 4256.62 30689.28 24385.15 5497.09 8193.99 103
ACMMPR91.49 1591.35 2691.92 1495.74 1985.88 2692.58 2193.25 6781.99 6591.40 7294.17 8487.51 4295.87 1987.74 1397.76 5593.99 103
XVG-OURS-SEG-HR89.59 5189.37 5790.28 4294.47 4285.95 2386.84 11893.91 4180.07 8986.75 16493.26 11593.64 290.93 19384.60 6290.75 26393.97 105
PGM-MVS91.20 2290.95 3991.93 1395.67 2285.85 2790.00 5793.90 4280.32 8591.74 6994.41 7188.17 3295.98 1186.37 3897.99 4093.96 106
GST-MVS90.96 2591.01 3690.82 3395.45 2782.73 5591.75 3593.74 4880.98 7991.38 7393.80 10387.20 4695.80 2587.10 3197.69 5993.93 107
lessismore_v085.95 11891.10 14270.99 17270.91 35891.79 6794.42 7061.76 27192.93 14079.52 11993.03 21493.93 107
fmvsm_s_conf0.1_n_a82.58 17081.93 17984.50 14687.68 21473.35 13486.14 13177.70 30761.64 29285.02 19891.62 16777.75 14586.24 28582.79 8187.07 30793.91 109
SMA-MVScopyleft90.31 3490.48 4689.83 5095.31 2979.52 7790.98 4393.24 6875.37 14792.84 4895.28 3885.58 6296.09 787.92 1097.76 5593.88 110
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
cl2278.97 22578.21 23781.24 22277.74 34459.01 29877.46 29187.13 21665.79 25684.32 21585.10 29658.96 29190.88 19775.36 16792.03 23493.84 111
region2R91.44 1891.30 3091.87 1795.75 1885.90 2592.63 2093.30 6581.91 6790.88 8794.21 8087.75 3995.87 1987.60 1897.71 5893.83 112
GBi-Net82.02 18282.07 17681.85 21186.38 24261.05 27386.83 11988.27 20172.43 18786.00 18295.64 3063.78 26190.68 20365.95 25893.34 20593.82 113
test182.02 18282.07 17681.85 21186.38 24261.05 27386.83 11988.27 20172.43 18786.00 18295.64 3063.78 26190.68 20365.95 25893.34 20593.82 113
FMVSNet184.55 12985.45 11981.85 21190.27 15961.05 27386.83 11988.27 20178.57 11089.66 10995.64 3075.43 17390.68 20369.09 23295.33 14793.82 113
fmvsm_s_conf0.5_n81.91 18681.30 19383.75 16886.02 25771.56 16884.73 15277.11 31462.44 28384.00 22590.68 19976.42 16885.89 29583.14 7287.11 30693.81 116
VDDNet84.35 13385.39 12081.25 22095.13 3159.32 29385.42 14281.11 28986.41 2787.41 15096.21 1973.61 19590.61 20666.33 25596.85 8693.81 116
EC-MVSNet88.01 7588.32 7287.09 9389.28 17772.03 15990.31 5496.31 380.88 8085.12 19689.67 22384.47 7095.46 4782.56 8496.26 11193.77 118
CDPH-MVS86.17 10385.54 11788.05 8492.25 10075.45 12283.85 17492.01 10765.91 25586.19 17891.75 16583.77 7794.98 6477.43 14596.71 9293.73 119
APD_test188.40 6787.91 7589.88 4789.50 17286.65 1689.98 6091.91 11284.26 4290.87 8893.92 10082.18 10189.29 24273.75 18594.81 17193.70 120
GeoE85.45 11285.81 11284.37 14990.08 16267.07 20585.86 13491.39 12872.33 19287.59 14790.25 21184.85 6692.37 15478.00 13691.94 23893.66 121
DIV-MVS_self_test80.43 20680.23 20981.02 22679.99 32859.25 29477.07 29487.02 22167.38 24486.19 17889.22 23063.09 26590.16 21676.32 15695.80 13593.66 121
cl____80.42 20780.23 20981.02 22679.99 32859.25 29477.07 29487.02 22167.37 24586.18 18089.21 23163.08 26690.16 21676.31 15795.80 13593.65 123
XVG-ACMP-BASELINE89.98 4389.84 5090.41 3994.91 3684.50 4489.49 7693.98 3879.68 9292.09 6293.89 10183.80 7693.10 13582.67 8398.04 3693.64 124
MIMVSNet183.63 15384.59 13480.74 22994.06 5362.77 25082.72 20684.53 26177.57 12190.34 9295.92 2476.88 16585.83 29761.88 29497.42 7293.62 125
XVG-OURS89.18 5988.83 6790.23 4394.28 4486.11 2285.91 13293.60 5580.16 8789.13 12193.44 11383.82 7590.98 19183.86 6995.30 15193.60 126
test_fmvsm_n_192083.60 15482.89 16485.74 12485.22 26777.74 9584.12 16590.48 15259.87 31286.45 17791.12 18175.65 17185.89 29582.28 8890.87 25993.58 127
CLD-MVS83.18 16282.64 16984.79 13989.05 18267.82 20277.93 28192.52 9468.33 23385.07 19781.54 33882.06 10392.96 13869.35 22797.91 4893.57 128
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
HQP4-MVS80.56 28194.61 7493.56 129
HQP-MVS84.61 12784.06 14686.27 11091.19 13770.66 17384.77 14992.68 9173.30 17280.55 28290.17 21572.10 21694.61 7477.30 14794.47 18093.56 129
VDD-MVS84.23 13984.58 13583.20 18591.17 14065.16 22683.25 19184.97 25679.79 9087.18 15294.27 7574.77 18390.89 19669.24 22896.54 9793.55 131
iter_conf_final80.36 21078.88 22584.79 13986.29 24866.36 21586.95 11586.25 23068.16 23682.09 25689.48 22536.59 38794.51 8179.83 11394.30 18693.50 132
fmvsm_s_conf0.5_n_a82.21 17681.51 19084.32 15486.56 23873.35 13485.46 14077.30 31161.81 28884.51 20890.88 19277.36 15186.21 28782.72 8286.97 31193.38 133
test_fmvsmconf0.01_n86.68 9286.52 9887.18 9285.94 25878.30 8586.93 11692.20 10265.94 25389.16 11993.16 11883.10 8489.89 22787.81 1194.43 18293.35 134
miper_ehance_all_eth80.34 21180.04 21681.24 22279.82 33058.95 29977.66 28589.66 17765.75 25985.99 18585.11 29568.29 23891.42 18076.03 16092.03 23493.33 135
VPNet80.25 21381.68 18275.94 29892.46 9347.98 37076.70 29981.67 28673.45 16784.87 20392.82 13174.66 18586.51 28161.66 29796.85 8693.33 135
IU-MVS94.18 4672.64 14590.82 14456.98 33089.67 10885.78 5097.92 4693.28 137
ACMMP_NAP90.65 2891.07 3589.42 5995.93 1579.54 7689.95 6193.68 5277.65 11991.97 6594.89 4988.38 2795.45 4889.27 397.87 5093.27 138
DeepC-MVS82.31 489.15 6089.08 6289.37 6093.64 6379.07 7988.54 9494.20 2573.53 16689.71 10694.82 5285.09 6395.77 3084.17 6698.03 3893.26 139
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
TAPA-MVS77.73 1285.71 10984.83 12888.37 7888.78 19179.72 7387.15 11293.50 5669.17 22385.80 18789.56 22480.76 12192.13 16073.21 19895.51 14293.25 140
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ACMH76.49 1489.34 5591.14 3183.96 16292.50 9270.36 17789.55 7293.84 4681.89 6894.70 1395.44 3490.69 888.31 25783.33 7198.30 2493.20 141
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MP-MVScopyleft91.14 2490.91 4091.83 1896.18 1086.88 1392.20 2793.03 8082.59 6188.52 13094.37 7486.74 5095.41 5086.32 3998.21 2993.19 142
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
test_fmvsmconf0.1_n86.18 10285.88 11087.08 9485.26 26678.25 8685.82 13591.82 11665.33 26688.55 12892.35 14882.62 9189.80 22986.87 3294.32 18593.18 143
tt080588.09 7489.79 5182.98 18993.26 7363.94 23791.10 4189.64 17885.07 3690.91 8591.09 18289.16 2291.87 16982.03 9095.87 13093.13 144
diffmvspermissive80.40 20880.48 20680.17 23979.02 34060.04 28577.54 28890.28 16466.65 25182.40 25087.33 26273.50 19787.35 26677.98 13789.62 27693.13 144
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CL-MVSNet_self_test76.81 25277.38 24375.12 30486.90 23451.34 35573.20 33880.63 29468.30 23481.80 26488.40 24266.92 24480.90 32755.35 33394.90 16693.12 146
mPP-MVS91.69 1191.47 2292.37 596.04 1288.48 792.72 1792.60 9383.09 5691.54 7094.25 7987.67 4195.51 4487.21 2898.11 3593.12 146
Vis-MVSNet (Re-imp)77.82 24077.79 24077.92 27388.82 18851.29 35783.28 18971.97 35174.04 15882.23 25389.78 22157.38 30189.41 24057.22 32095.41 14493.05 148
WB-MVS76.06 26180.01 21764.19 36089.96 16820.58 40172.18 34268.19 36783.21 5486.46 17693.49 11270.19 22978.97 33765.96 25790.46 26993.02 149
tfpnnormal81.79 18882.95 16378.31 26488.93 18655.40 32780.83 24382.85 27576.81 12785.90 18694.14 8574.58 18686.51 28166.82 25295.68 14193.01 150
test_fmvsmconf_n85.88 10785.51 11886.99 9684.77 27378.21 8785.40 14391.39 12865.32 26787.72 14591.81 16282.33 9689.78 23086.68 3494.20 18992.99 151
test_0728_THIRD85.33 3393.75 3094.65 5787.44 4395.78 2887.41 2298.21 2992.98 152
MSP-MVS89.08 6288.16 7391.83 1895.76 1786.14 2192.75 1693.90 4278.43 11189.16 11992.25 15172.03 22096.36 388.21 790.93 25792.98 152
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
APDe-MVScopyleft91.22 2191.92 1189.14 6492.97 8078.04 8992.84 1594.14 3183.33 5393.90 2495.73 2788.77 2596.41 287.60 1897.98 4292.98 152
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
HFP-MVS91.30 1991.39 2391.02 2995.43 2884.66 4392.58 2193.29 6681.99 6591.47 7193.96 9688.35 2995.56 3987.74 1397.74 5792.85 155
test_prior86.32 10890.59 15371.99 16092.85 8694.17 9292.80 156
miper_lstm_enhance76.45 25876.10 25677.51 27976.72 35560.97 27764.69 37185.04 25263.98 27383.20 23988.22 24456.67 30578.79 33973.22 19393.12 21292.78 157
SR-MVS-dyc-post92.41 592.41 692.39 494.13 5188.95 592.87 1394.16 2788.75 1493.79 2894.43 6888.83 2495.51 4487.16 2997.60 6492.73 158
RE-MVS-def92.61 494.13 5188.95 592.87 1394.16 2788.75 1493.79 2894.43 6890.64 1087.16 2997.60 6492.73 158
PHI-MVS86.38 9685.81 11288.08 8288.44 20077.34 10189.35 8093.05 7773.15 17784.76 20587.70 25478.87 13694.18 9080.67 10596.29 10792.73 158
ambc82.98 18990.55 15464.86 22788.20 9789.15 18689.40 11793.96 9671.67 22391.38 18278.83 12496.55 9692.71 161
alignmvs83.94 14883.98 14883.80 16587.80 21167.88 20184.54 15891.42 12773.27 17588.41 13387.96 24872.33 21490.83 19876.02 16194.11 19192.69 162
thres600view775.97 26275.35 26477.85 27687.01 23251.84 35380.45 24573.26 34275.20 14883.10 24186.31 27845.54 35689.05 24455.03 33692.24 23092.66 163
thres40075.14 26874.23 27377.86 27586.24 25052.12 34979.24 26373.87 33673.34 17081.82 26284.60 30546.02 35088.80 24851.98 35290.99 25392.66 163
CNVR-MVS87.81 8187.68 7988.21 8192.87 8277.30 10385.25 14491.23 13377.31 12487.07 15891.47 17182.94 8694.71 7084.67 6196.27 11092.62 165
Anonymous2024052180.18 21681.25 19476.95 28583.15 29760.84 27882.46 21585.99 23768.76 22986.78 16293.73 10859.13 28977.44 34273.71 18697.55 6792.56 166
CP-MVS91.67 1291.58 1991.96 1295.29 3087.62 993.38 993.36 5983.16 5591.06 8194.00 9288.26 3095.71 3287.28 2798.39 2092.55 167
canonicalmvs85.50 11086.14 10583.58 17487.97 20767.13 20487.55 10694.32 1873.44 16888.47 13187.54 25786.45 5491.06 19075.76 16393.76 19792.54 168
DVP-MVS++90.07 3891.09 3287.00 9591.55 12772.64 14596.19 294.10 3485.33 3393.49 3694.64 6081.12 11795.88 1787.41 2295.94 12692.48 169
PC_three_145258.96 31590.06 9691.33 17480.66 12393.03 13775.78 16295.94 12692.48 169
MVSTER77.09 24875.70 26081.25 22075.27 36861.08 27277.49 29085.07 25060.78 30386.55 16988.68 23943.14 37490.25 21173.69 18790.67 26592.42 171
ACMM79.39 990.65 2890.99 3789.63 5595.03 3383.53 4789.62 7193.35 6079.20 10093.83 2793.60 11190.81 792.96 13885.02 5798.45 1892.41 172
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MSC_two_6792asdad88.81 6991.55 12777.99 9091.01 13996.05 887.45 2098.17 3292.40 173
No_MVS88.81 6991.55 12777.99 9091.01 13996.05 887.45 2098.17 3292.40 173
MVS_Test82.47 17283.22 15680.22 23882.62 30257.75 31282.54 21391.96 11071.16 20582.89 24492.52 14277.41 15090.50 20880.04 11087.84 29992.40 173
NCCC87.36 8386.87 9488.83 6892.32 9878.84 8286.58 12691.09 13778.77 10784.85 20490.89 19080.85 12095.29 5381.14 9895.32 14892.34 176
miper_enhance_ethall77.83 23976.93 24880.51 23376.15 36058.01 30975.47 31988.82 18958.05 32283.59 23180.69 34264.41 25691.20 18473.16 19992.03 23492.33 177
MTAPA91.52 1491.60 1891.29 2696.59 486.29 1792.02 3091.81 11884.07 4492.00 6494.40 7286.63 5195.28 5588.59 598.31 2392.30 178
SED-MVS90.46 3391.64 1786.93 9794.18 4672.65 14390.47 5193.69 5083.77 4794.11 2294.27 7590.28 1495.84 2386.03 4697.92 4692.29 179
OPU-MVS88.27 8091.89 11377.83 9390.47 5191.22 17781.12 11794.68 7174.48 17395.35 14692.29 179
test1286.57 10390.74 14972.63 14790.69 14782.76 24679.20 13394.80 6895.32 14892.27 181
FMVSNet281.31 19381.61 18580.41 23586.38 24258.75 30483.93 17286.58 22772.43 18787.65 14692.98 12463.78 26190.22 21466.86 24993.92 19592.27 181
CANet83.79 15082.85 16586.63 10286.17 25372.21 15883.76 17891.43 12577.24 12574.39 33887.45 25975.36 17495.42 4977.03 15092.83 21992.25 183
F-COLMAP84.97 12283.42 15389.63 5592.39 9483.40 4888.83 8791.92 11173.19 17680.18 29089.15 23377.04 15793.28 12865.82 26292.28 22992.21 184
SR-MVS92.23 692.34 791.91 1594.89 3787.85 892.51 2393.87 4588.20 1993.24 3994.02 9190.15 1695.67 3486.82 3397.34 7492.19 185
Effi-MVS+83.90 14984.01 14783.57 17587.22 22465.61 22286.55 12792.40 9678.64 10981.34 27284.18 30983.65 7992.93 14074.22 17587.87 29892.17 186
test_fmvsmvis_n_192085.22 11485.36 12184.81 13885.80 26076.13 11985.15 14792.32 9961.40 29491.33 7490.85 19383.76 7886.16 28984.31 6493.28 20892.15 187
testing371.53 30370.79 30573.77 31188.89 18741.86 38776.60 30359.12 38872.83 18180.97 27382.08 33219.80 40487.33 26765.12 26891.68 24292.13 188
Vis-MVSNetpermissive86.86 8886.58 9787.72 8692.09 10677.43 10087.35 10992.09 10578.87 10584.27 22094.05 8978.35 14093.65 10880.54 10791.58 24592.08 189
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test_241102_TWO93.71 4983.77 4793.49 3694.27 7589.27 2195.84 2386.03 4697.82 5192.04 190
test_0728_SECOND86.79 10094.25 4572.45 15390.54 4894.10 3495.88 1786.42 3697.97 4392.02 191
new-patchmatchnet70.10 31573.37 28260.29 37081.23 31516.95 40359.54 38074.62 32962.93 27780.97 27387.93 25062.83 26971.90 35655.24 33495.01 16392.00 192
DeepPCF-MVS81.24 587.28 8486.21 10490.49 3891.48 13184.90 3883.41 18692.38 9870.25 21589.35 11890.68 19982.85 8794.57 7679.55 11795.95 12592.00 192
Anonymous20240521180.51 20581.19 19778.49 26188.48 19857.26 31576.63 30182.49 27881.21 7684.30 21892.24 15267.99 23986.24 28562.22 28995.13 15591.98 194
EIA-MVS82.19 17781.23 19685.10 13487.95 20869.17 19183.22 19493.33 6170.42 21178.58 30379.77 35477.29 15294.20 8971.51 20788.96 28391.93 195
MCST-MVS84.36 13283.93 14985.63 12691.59 12271.58 16683.52 18392.13 10461.82 28783.96 22689.75 22279.93 13193.46 12278.33 12994.34 18491.87 196
test_040288.65 6589.58 5685.88 12192.55 9072.22 15784.01 16889.44 18388.63 1694.38 1795.77 2686.38 5693.59 11579.84 11295.21 15291.82 197
DeepC-MVS_fast80.27 886.23 9985.65 11687.96 8591.30 13476.92 10687.19 11091.99 10870.56 20984.96 20090.69 19880.01 12995.14 5978.37 12795.78 13791.82 197
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
FA-MVS(test-final)83.13 16483.02 16283.43 17786.16 25566.08 21788.00 10088.36 19775.55 14385.02 19892.75 13565.12 25492.50 15074.94 17291.30 24991.72 199
FMVSNet378.80 23078.55 23279.57 24782.89 30156.89 31981.76 22885.77 23969.04 22686.00 18290.44 20651.75 32990.09 22265.95 25893.34 20591.72 199
DPE-MVScopyleft90.53 3291.08 3388.88 6793.38 6978.65 8389.15 8294.05 3684.68 4093.90 2494.11 8888.13 3496.30 484.51 6397.81 5291.70 201
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
CPTT-MVS89.39 5488.98 6590.63 3695.09 3286.95 1292.09 2992.30 10079.74 9187.50 14992.38 14481.42 11493.28 12883.07 7597.24 7791.67 202
MDA-MVSNet-bldmvs77.47 24476.90 24979.16 25279.03 33964.59 22866.58 36775.67 32473.15 17788.86 12288.99 23566.94 24381.23 32664.71 27288.22 29591.64 203
PAPM_NR83.23 16183.19 15883.33 18090.90 14665.98 21888.19 9890.78 14578.13 11580.87 27787.92 25173.49 19992.42 15170.07 22188.40 28991.60 204
PCF-MVS74.62 1582.15 17980.92 20085.84 12289.43 17472.30 15580.53 24491.82 11657.36 32887.81 14489.92 21977.67 14793.63 11058.69 31195.08 15891.58 205
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
EPNet80.37 20978.41 23586.23 11176.75 35473.28 13687.18 11177.45 30976.24 13168.14 36588.93 23665.41 25293.85 10269.47 22696.12 11791.55 206
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Fast-Effi-MVS+81.04 19780.57 20282.46 20487.50 21963.22 24478.37 27789.63 17968.01 23781.87 26082.08 33282.31 9792.65 14767.10 24888.30 29491.51 207
mvs_anonymous78.13 23778.76 22976.23 29779.24 33750.31 36378.69 27284.82 25861.60 29383.09 24292.82 13173.89 19387.01 26968.33 24486.41 31691.37 208
SD-MVS88.96 6389.88 4986.22 11291.63 12177.07 10589.82 6493.77 4778.90 10492.88 4592.29 14986.11 5890.22 21486.24 4397.24 7791.36 209
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
D2MVS76.84 25175.67 26180.34 23680.48 32662.16 26373.50 33584.80 25957.61 32682.24 25287.54 25751.31 33087.65 26270.40 22093.19 21191.23 210
SDMVSNet81.90 18783.17 15978.10 26988.81 18962.45 25676.08 31186.05 23573.67 16383.41 23593.04 12082.35 9580.65 33070.06 22295.03 16091.21 211
sd_testset79.95 22181.39 19275.64 30188.81 18958.07 30876.16 31082.81 27673.67 16383.41 23593.04 12080.96 11977.65 34158.62 31295.03 16091.21 211
patch_mono-278.89 22679.39 22177.41 28184.78 27268.11 19875.60 31583.11 27260.96 30179.36 29689.89 22075.18 17672.97 35373.32 19292.30 22691.15 213
EGC-MVSNET74.79 27669.99 31689.19 6394.89 3787.00 1191.89 3486.28 2291.09 3982.23 40095.98 2381.87 10989.48 23479.76 11495.96 12491.10 214
ETV-MVS84.31 13483.91 15085.52 12888.58 19670.40 17684.50 16093.37 5878.76 10884.07 22478.72 36080.39 12595.13 6073.82 18492.98 21691.04 215
VNet79.31 22380.27 20876.44 29287.92 20953.95 33675.58 31784.35 26274.39 15682.23 25390.72 19772.84 20984.39 30960.38 30593.98 19490.97 216
Fast-Effi-MVS+-dtu82.54 17181.41 19185.90 12085.60 26176.53 11183.07 19689.62 18073.02 17979.11 30083.51 31480.74 12290.24 21368.76 23789.29 27890.94 217
Patchmtry76.56 25677.46 24173.83 31079.37 33646.60 37682.41 21776.90 31573.81 16185.56 19192.38 14448.07 34283.98 31263.36 28395.31 15090.92 218
CANet_DTU77.81 24177.05 24680.09 24081.37 31359.90 28883.26 19088.29 20069.16 22467.83 36883.72 31260.93 27489.47 23569.22 23089.70 27590.88 219
train_agg85.98 10585.28 12288.07 8392.34 9679.70 7483.94 17090.32 15865.79 25684.49 20990.97 18681.93 10693.63 11081.21 9796.54 9790.88 219
114514_t83.10 16582.54 17284.77 14192.90 8169.10 19286.65 12490.62 15054.66 33881.46 26990.81 19576.98 15894.38 8372.62 20196.18 11390.82 221
LCM-MVSNet-Re83.48 15785.06 12478.75 25685.94 25855.75 32680.05 24994.27 1976.47 12996.09 594.54 6383.31 8389.75 23359.95 30694.89 16790.75 222
test_fmvs375.72 26575.20 26577.27 28275.01 37169.47 18478.93 26784.88 25746.67 37087.08 15787.84 25250.44 33571.62 35777.42 14688.53 28890.72 223
hse-mvs283.47 15881.81 18188.47 7591.03 14382.27 5782.61 20883.69 26671.27 20186.70 16586.05 28263.04 26792.41 15278.26 13193.62 20390.71 224
DP-MVS88.60 6689.01 6387.36 9191.30 13477.50 9787.55 10692.97 8387.95 2089.62 11092.87 13084.56 6893.89 10177.65 14096.62 9490.70 225
LFMVS80.15 21780.56 20378.89 25389.19 18155.93 32385.22 14573.78 33882.96 5884.28 21992.72 13657.38 30190.07 22363.80 27995.75 13890.68 226
PAPR78.84 22878.10 23881.07 22485.17 26860.22 28482.21 22490.57 15162.51 28075.32 33284.61 30474.99 17892.30 15759.48 30988.04 29690.68 226
AUN-MVS81.18 19578.78 22888.39 7790.93 14582.14 5882.51 21483.67 26764.69 27180.29 28685.91 28551.07 33192.38 15376.29 15893.63 20290.65 228
test9_res80.83 10296.45 10390.57 229
UGNet82.78 16681.64 18386.21 11386.20 25276.24 11786.86 11785.68 24077.07 12673.76 34192.82 13169.64 23091.82 17169.04 23493.69 20090.56 230
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
DVP-MVScopyleft90.06 3991.32 2886.29 10994.16 4972.56 14990.54 4891.01 13983.61 5093.75 3094.65 5789.76 1895.78 2886.42 3697.97 4390.55 231
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
DELS-MVS81.44 19281.25 19482.03 20784.27 28362.87 24876.47 30592.49 9570.97 20681.64 26783.83 31175.03 17792.70 14574.29 17492.22 23290.51 232
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
APD-MVScopyleft89.54 5289.63 5489.26 6292.57 8981.34 6490.19 5693.08 7680.87 8191.13 7993.19 11686.22 5795.97 1282.23 8997.18 7990.45 233
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CSCG86.26 9886.47 9985.60 12790.87 14774.26 12987.98 10191.85 11480.35 8489.54 11688.01 24779.09 13492.13 16075.51 16495.06 15990.41 234
test_vis3_rt71.42 30470.67 30673.64 31269.66 38970.46 17566.97 36689.73 17442.68 38688.20 13883.04 31943.77 36960.07 38865.35 26786.66 31390.39 235
DP-MVS Recon84.05 14483.22 15686.52 10591.73 12075.27 12383.23 19392.40 9672.04 19682.04 25788.33 24377.91 14493.95 9966.17 25695.12 15790.34 236
IterMVS-SCA-FT80.64 20379.41 22084.34 15383.93 28769.66 18276.28 30781.09 29072.43 18786.47 17590.19 21360.46 27793.15 13377.45 14486.39 31790.22 237
agg_prior279.68 11696.16 11490.22 237
HPM-MVS++copyleft88.93 6488.45 7190.38 4094.92 3585.85 2789.70 6691.27 13278.20 11386.69 16792.28 15080.36 12695.06 6286.17 4496.49 10090.22 237
HyFIR lowres test75.12 27072.66 29082.50 20391.44 13365.19 22572.47 34087.31 21146.79 36980.29 28684.30 30752.70 32492.10 16351.88 35686.73 31290.22 237
PVSNet_BlendedMVS78.80 23077.84 23981.65 21684.43 27763.41 24079.49 25990.44 15461.70 29175.43 32987.07 26869.11 23491.44 17860.68 30392.24 23090.11 241
MVS_111021_HR84.63 12684.34 14385.49 13090.18 16175.86 12079.23 26587.13 21673.35 16985.56 19189.34 22883.60 8090.50 20876.64 15394.05 19390.09 242
FE-MVS79.98 22078.86 22683.36 17986.47 23966.45 21389.73 6584.74 26072.80 18284.22 22391.38 17344.95 36593.60 11463.93 27891.50 24690.04 243
fmvsm_l_conf0.5_n82.06 18181.54 18983.60 17383.94 28673.90 13183.35 18886.10 23358.97 31483.80 22890.36 20774.23 18886.94 27382.90 7890.22 27089.94 244
fmvsm_l_conf0.5_n_a81.46 19180.87 20183.25 18283.73 29073.21 13983.00 19985.59 24258.22 32082.96 24390.09 21772.30 21586.65 27981.97 9389.95 27489.88 245
GA-MVS75.83 26374.61 26879.48 24981.87 30559.25 29473.42 33682.88 27468.68 23079.75 29181.80 33550.62 33389.46 23666.85 25085.64 32289.72 246
h-mvs3384.25 13782.76 16688.72 7191.82 11982.60 5684.00 16984.98 25571.27 20186.70 16590.55 20463.04 26793.92 10078.26 13194.20 18989.63 247
ppachtmachnet_test74.73 27774.00 27576.90 28780.71 32356.89 31971.53 34678.42 30358.24 31979.32 29882.92 32357.91 29884.26 31065.60 26491.36 24889.56 248
MG-MVS80.32 21280.94 19978.47 26288.18 20452.62 34782.29 22085.01 25472.01 19779.24 29992.54 14169.36 23293.36 12770.65 21689.19 28189.45 249
PLCcopyleft73.85 1682.09 18080.31 20787.45 9090.86 14880.29 6985.88 13390.65 14868.17 23576.32 31986.33 27673.12 20692.61 14861.40 29990.02 27389.44 250
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
ab-mvs79.67 22280.56 20376.99 28488.48 19856.93 31784.70 15386.06 23468.95 22780.78 27993.08 11975.30 17584.62 30756.78 32190.90 25889.43 251
thisisatest051573.00 29170.52 30880.46 23481.45 31159.90 28873.16 33974.31 33357.86 32376.08 32377.78 36437.60 38592.12 16265.00 26991.45 24789.35 252
thres100view90075.45 26675.05 26676.66 29187.27 22251.88 35281.07 23973.26 34275.68 14183.25 23886.37 27545.54 35688.80 24851.98 35290.99 25389.31 253
tfpn200view974.86 27474.23 27376.74 29086.24 25052.12 34979.24 26373.87 33673.34 17081.82 26284.60 30546.02 35088.80 24851.98 35290.99 25389.31 253
3Dnovator80.37 784.80 12484.71 13285.06 13586.36 24574.71 12688.77 8990.00 17175.65 14284.96 20093.17 11774.06 19091.19 18578.28 13091.09 25189.29 255
ET-MVSNet_ETH3D75.28 26772.77 28882.81 19683.03 29968.11 19877.09 29376.51 31960.67 30577.60 31380.52 34638.04 38391.15 18770.78 21390.68 26489.17 256
CNLPA83.55 15683.10 16184.90 13689.34 17683.87 4684.54 15888.77 19079.09 10183.54 23488.66 24074.87 17981.73 32366.84 25192.29 22889.11 257
test_yl78.71 23278.51 23379.32 25084.32 28158.84 30178.38 27585.33 24575.99 13582.49 24886.57 27258.01 29590.02 22562.74 28692.73 22189.10 258
DCV-MVSNet78.71 23278.51 23379.32 25084.32 28158.84 30178.38 27585.33 24575.99 13582.49 24886.57 27258.01 29590.02 22562.74 28692.73 22189.10 258
CMPMVSbinary59.41 2075.12 27073.57 27879.77 24275.84 36367.22 20381.21 23782.18 28050.78 36176.50 31687.66 25555.20 31682.99 31762.17 29290.64 26889.09 260
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MVSFormer82.23 17581.57 18884.19 15985.54 26369.26 18791.98 3190.08 16971.54 19976.23 32085.07 29958.69 29294.27 8486.26 4088.77 28589.03 261
jason77.42 24575.75 25982.43 20587.10 22969.27 18677.99 28081.94 28351.47 35677.84 30885.07 29960.32 27989.00 24570.74 21589.27 28089.03 261
jason: jason.
TSAR-MVS + GP.83.95 14782.69 16887.72 8689.27 17881.45 6383.72 17981.58 28874.73 15285.66 18886.06 28172.56 21392.69 14675.44 16695.21 15289.01 263
QAPM82.59 16982.59 17182.58 20086.44 24066.69 21089.94 6290.36 15767.97 23984.94 20292.58 14072.71 21092.18 15970.63 21787.73 30088.85 264
baseline269.77 31966.89 33378.41 26379.51 33358.09 30776.23 30869.57 36357.50 32764.82 38177.45 36746.02 35088.44 25453.08 34477.83 37188.70 265
LF4IMVS82.75 16781.93 17985.19 13282.08 30380.15 7085.53 13988.76 19168.01 23785.58 19087.75 25371.80 22186.85 27574.02 18093.87 19688.58 266
test_fmvs273.57 28572.80 28775.90 29972.74 38368.84 19377.07 29484.32 26345.14 37682.89 24484.22 30848.37 34070.36 36073.40 19187.03 30988.52 267
MVS_111021_LR84.28 13683.76 15185.83 12389.23 17983.07 5180.99 24083.56 26972.71 18486.07 18189.07 23481.75 11186.19 28877.11 14993.36 20488.24 268
EG-PatchMatch MVS84.08 14384.11 14583.98 16192.22 10272.61 14882.20 22687.02 22172.63 18588.86 12291.02 18478.52 13791.11 18873.41 19091.09 25188.21 269
lupinMVS76.37 25974.46 27182.09 20685.54 26369.26 18776.79 29780.77 29350.68 36376.23 32082.82 32458.69 29288.94 24669.85 22388.77 28588.07 270
cascas76.29 26074.81 26780.72 23184.47 27662.94 24673.89 33287.34 21055.94 33375.16 33476.53 37463.97 25991.16 18665.00 26990.97 25688.06 271
TAMVS78.08 23876.36 25383.23 18390.62 15272.87 14179.08 26680.01 29761.72 29081.35 27186.92 27063.96 26088.78 25150.61 35793.01 21588.04 272
PVSNet_Blended_VisFu81.55 19080.49 20584.70 14491.58 12573.24 13884.21 16291.67 12062.86 27880.94 27587.16 26567.27 24292.87 14369.82 22488.94 28487.99 273
FMVSNet572.10 29871.69 29873.32 31381.57 31053.02 34376.77 29878.37 30463.31 27476.37 31791.85 15836.68 38678.98 33647.87 37092.45 22487.95 274
CDS-MVSNet77.32 24675.40 26283.06 18789.00 18472.48 15277.90 28282.17 28160.81 30278.94 30183.49 31559.30 28788.76 25254.64 33992.37 22587.93 275
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
pmmvs-eth3d78.42 23677.04 24782.57 20287.44 22074.41 12880.86 24279.67 29855.68 33484.69 20690.31 21060.91 27585.42 30062.20 29091.59 24487.88 276
baseline173.26 28773.54 27972.43 32284.92 27047.79 37179.89 25274.00 33465.93 25478.81 30286.28 27956.36 30881.63 32456.63 32279.04 36987.87 277
test20.0373.75 28474.59 27071.22 32681.11 31651.12 35970.15 35472.10 35070.42 21180.28 28891.50 17064.21 25874.72 35246.96 37494.58 17887.82 278
BH-RMVSNet80.53 20480.22 21181.49 21887.19 22566.21 21677.79 28486.23 23174.21 15783.69 22988.50 24173.25 20590.75 20063.18 28587.90 29787.52 279
IterMVS76.91 25076.34 25478.64 25880.91 31864.03 23576.30 30679.03 30164.88 27083.11 24089.16 23259.90 28384.46 30868.61 24085.15 32987.42 280
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
OpenMVScopyleft76.72 1381.98 18482.00 17881.93 20884.42 27968.22 19688.50 9589.48 18266.92 24881.80 26491.86 15772.59 21290.16 21671.19 21091.25 25087.40 281
1112_ss74.82 27573.74 27678.04 27189.57 17060.04 28576.49 30487.09 22054.31 33973.66 34279.80 35260.25 28086.76 27858.37 31384.15 34187.32 282
Test_1112_low_res73.90 28373.08 28476.35 29390.35 15755.95 32273.40 33786.17 23250.70 36273.14 34385.94 28358.31 29485.90 29456.51 32383.22 34587.20 283
UnsupCasMVSNet_eth71.63 30272.30 29569.62 33576.47 35752.70 34670.03 35580.97 29159.18 31379.36 29688.21 24560.50 27669.12 36458.33 31577.62 37487.04 284
testgi72.36 29574.61 26865.59 35480.56 32542.82 38668.29 35973.35 34166.87 24981.84 26189.93 21872.08 21866.92 37646.05 37792.54 22387.01 285
xiu_mvs_v1_base_debu80.84 19980.14 21382.93 19288.31 20171.73 16279.53 25687.17 21365.43 26279.59 29282.73 32676.94 15990.14 21973.22 19388.33 29086.90 286
xiu_mvs_v1_base80.84 19980.14 21382.93 19288.31 20171.73 16279.53 25687.17 21365.43 26279.59 29282.73 32676.94 15990.14 21973.22 19388.33 29086.90 286
xiu_mvs_v1_base_debi80.84 19980.14 21382.93 19288.31 20171.73 16279.53 25687.17 21365.43 26279.59 29282.73 32676.94 15990.14 21973.22 19388.33 29086.90 286
MSDG80.06 21979.99 21880.25 23783.91 28868.04 20077.51 28989.19 18577.65 11981.94 25883.45 31676.37 16986.31 28463.31 28486.59 31486.41 289
OpenMVS_ROBcopyleft70.19 1777.77 24277.46 24178.71 25784.39 28061.15 27181.18 23882.52 27762.45 28283.34 23787.37 26066.20 24788.66 25364.69 27385.02 33086.32 290
TinyColmap81.25 19482.34 17577.99 27285.33 26560.68 28182.32 21988.33 19971.26 20386.97 16092.22 15377.10 15686.98 27262.37 28895.17 15486.31 291
CHOSEN 1792x268872.45 29470.56 30778.13 26890.02 16763.08 24568.72 35883.16 27142.99 38475.92 32485.46 28957.22 30385.18 30349.87 36181.67 35586.14 292
YYNet170.06 31670.44 30968.90 33973.76 37553.42 34158.99 38367.20 37058.42 31887.10 15585.39 29259.82 28467.32 37359.79 30783.50 34485.96 293
EPNet_dtu72.87 29271.33 30477.49 28077.72 34560.55 28282.35 21875.79 32266.49 25258.39 39381.06 34153.68 32085.98 29153.55 34292.97 21785.95 294
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MDA-MVSNet_test_wron70.05 31770.44 30968.88 34073.84 37453.47 33958.93 38467.28 36958.43 31787.09 15685.40 29159.80 28567.25 37459.66 30883.54 34385.92 295
XXY-MVS74.44 28076.19 25569.21 33884.61 27552.43 34871.70 34477.18 31360.73 30480.60 28090.96 18875.44 17269.35 36356.13 32688.33 29085.86 296
DPM-MVS80.10 21879.18 22382.88 19590.71 15169.74 18078.87 27090.84 14360.29 30875.64 32885.92 28467.28 24193.11 13471.24 20991.79 23985.77 297
原ACMM184.60 14592.81 8774.01 13091.50 12362.59 27982.73 24790.67 20176.53 16694.25 8669.24 22895.69 14085.55 298
pmmvs474.92 27372.98 28680.73 23084.95 26971.71 16576.23 30877.59 30852.83 34677.73 31286.38 27456.35 30984.97 30457.72 31987.05 30885.51 299
MAR-MVS80.24 21478.74 23084.73 14286.87 23678.18 8885.75 13687.81 20765.67 26177.84 30878.50 36173.79 19490.53 20761.59 29890.87 25985.49 300
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
our_test_371.85 29971.59 29972.62 31980.71 32353.78 33769.72 35671.71 35558.80 31678.03 30580.51 34756.61 30778.84 33862.20 29086.04 32085.23 301
USDC76.63 25476.73 25176.34 29483.46 29257.20 31680.02 25088.04 20552.14 35283.65 23091.25 17663.24 26486.65 27954.66 33894.11 19185.17 302
HY-MVS64.64 1873.03 29072.47 29474.71 30683.36 29354.19 33482.14 22781.96 28256.76 33269.57 36186.21 28060.03 28184.83 30649.58 36382.65 35185.11 303
MVP-Stereo75.81 26473.51 28082.71 19789.35 17573.62 13280.06 24885.20 24760.30 30773.96 34087.94 24957.89 29989.45 23752.02 35174.87 38085.06 304
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
IB-MVS62.13 1971.64 30168.97 32379.66 24680.80 32262.26 26173.94 33176.90 31563.27 27568.63 36476.79 37233.83 39091.84 17059.28 31087.26 30384.88 305
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
pmmvs570.73 31070.07 31372.72 31877.03 35252.73 34574.14 32775.65 32550.36 36572.17 34985.37 29355.42 31580.67 32952.86 34887.59 30284.77 306
MSLP-MVS++85.00 12186.03 10681.90 20991.84 11771.56 16886.75 12393.02 8175.95 13787.12 15389.39 22777.98 14289.40 24177.46 14394.78 17284.75 307
无先验82.81 20585.62 24158.09 32191.41 18167.95 24784.48 308
PAPM71.77 30070.06 31476.92 28686.39 24153.97 33576.62 30286.62 22653.44 34363.97 38384.73 30357.79 30092.34 15539.65 38881.33 35984.45 309
PVSNet_Blended76.49 25775.40 26279.76 24384.43 27763.41 24075.14 32190.44 15457.36 32875.43 32978.30 36269.11 23491.44 17860.68 30387.70 30184.42 310
thres20072.34 29671.55 30274.70 30783.48 29151.60 35475.02 32273.71 33970.14 21778.56 30480.57 34546.20 34888.20 25846.99 37389.29 27884.32 311
Syy-MVS69.40 32370.03 31567.49 34781.72 30738.94 38971.00 34761.99 38061.38 29570.81 35672.36 38261.37 27379.30 33464.50 27785.18 32784.22 312
myMVS_eth3d64.66 34363.89 34566.97 34981.72 30737.39 39271.00 34761.99 38061.38 29570.81 35672.36 38220.96 40379.30 33449.59 36285.18 32784.22 312
AdaColmapbinary83.66 15283.69 15283.57 17590.05 16572.26 15686.29 13090.00 17178.19 11481.65 26687.16 26583.40 8294.24 8761.69 29694.76 17584.21 314
EU-MVSNet75.12 27074.43 27277.18 28383.11 29859.48 29285.71 13882.43 27939.76 39085.64 18988.76 23744.71 36787.88 26073.86 18385.88 32184.16 315
GSMVS83.88 316
sam_mvs146.11 34983.88 316
SCA73.32 28672.57 29275.58 30281.62 30955.86 32478.89 26971.37 35661.73 28974.93 33583.42 31760.46 27787.01 26958.11 31782.63 35383.88 316
CR-MVSNet74.00 28273.04 28576.85 28979.58 33162.64 25282.58 21076.90 31550.50 36475.72 32692.38 14448.07 34284.07 31168.72 23982.91 34883.85 319
RPMNet78.88 22778.28 23680.68 23279.58 33162.64 25282.58 21094.16 2774.80 15175.72 32692.59 13848.69 33995.56 3973.48 18982.91 34883.85 319
MDTV_nov1_ep13_2view27.60 40070.76 35046.47 37261.27 38545.20 36249.18 36483.75 321
旧先验191.97 10971.77 16181.78 28591.84 15973.92 19293.65 20183.61 322
N_pmnet70.20 31368.80 32574.38 30880.91 31884.81 3959.12 38276.45 32055.06 33675.31 33382.36 32955.74 31254.82 39247.02 37287.24 30483.52 323
ADS-MVSNet265.87 33963.64 34772.55 32073.16 37956.92 31867.10 36474.81 32849.74 36666.04 37282.97 32046.71 34577.26 34342.29 38369.96 38783.46 324
ADS-MVSNet61.90 34862.19 35261.03 36973.16 37936.42 39467.10 36461.75 38349.74 36666.04 37282.97 32046.71 34563.21 38542.29 38369.96 38783.46 324
CostFormer69.98 31868.68 32673.87 30977.14 35050.72 36179.26 26274.51 33151.94 35470.97 35584.75 30245.16 36487.49 26455.16 33579.23 36683.40 326
PS-MVSNAJ77.04 24976.53 25278.56 25987.09 23061.40 26775.26 32087.13 21661.25 29774.38 33977.22 37076.94 15990.94 19264.63 27484.83 33683.35 327
xiu_mvs_v2_base77.19 24776.75 25078.52 26087.01 23261.30 26975.55 31887.12 21961.24 29874.45 33778.79 35977.20 15390.93 19364.62 27584.80 33783.32 328
PatchmatchNetpermissive69.71 32068.83 32472.33 32377.66 34653.60 33879.29 26169.99 36157.66 32572.53 34782.93 32246.45 34780.08 33360.91 30272.09 38383.31 329
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
Anonymous2023120671.38 30571.88 29769.88 33386.31 24654.37 33370.39 35274.62 32952.57 34876.73 31588.76 23759.94 28272.06 35544.35 38193.23 21083.23 330
tpm67.95 32868.08 32967.55 34678.74 34243.53 38475.60 31567.10 37354.92 33772.23 34888.10 24642.87 37575.97 34752.21 35080.95 36283.15 331
PMVScopyleft80.48 690.08 3790.66 4488.34 7996.71 392.97 190.31 5489.57 18188.51 1790.11 9595.12 4590.98 688.92 24777.55 14297.07 8283.13 332
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
tpm268.45 32766.83 33473.30 31478.93 34148.50 36779.76 25371.76 35347.50 36869.92 36083.60 31342.07 37688.40 25548.44 36879.51 36383.01 333
TR-MVS76.77 25375.79 25879.72 24486.10 25665.79 22077.14 29283.02 27365.20 26881.40 27082.10 33066.30 24690.73 20255.57 33085.27 32582.65 334
131473.22 28872.56 29375.20 30380.41 32757.84 31081.64 23185.36 24451.68 35573.10 34476.65 37361.45 27285.19 30263.54 28179.21 36782.59 335
test_vis1_n_192071.30 30671.58 30170.47 32977.58 34759.99 28774.25 32684.22 26451.06 35874.85 33679.10 35655.10 31768.83 36668.86 23679.20 36882.58 336
WTY-MVS67.91 32968.35 32766.58 35180.82 32148.12 36965.96 36872.60 34553.67 34271.20 35381.68 33758.97 29069.06 36548.57 36681.67 35582.55 337
MIMVSNet71.09 30771.59 29969.57 33687.23 22350.07 36478.91 26871.83 35260.20 31071.26 35291.76 16455.08 31876.09 34641.06 38687.02 31082.54 338
BH-untuned80.96 19880.99 19880.84 22888.55 19768.23 19580.33 24788.46 19472.79 18386.55 16986.76 27174.72 18491.77 17261.79 29588.99 28282.52 339
API-MVS82.28 17482.61 17081.30 21986.29 24869.79 17988.71 9087.67 20878.42 11282.15 25584.15 31077.98 14291.59 17465.39 26592.75 22082.51 340
Gipumacopyleft84.44 13186.33 10178.78 25584.20 28473.57 13389.55 7290.44 15484.24 4384.38 21294.89 4976.35 17080.40 33176.14 15996.80 9082.36 341
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PatchT70.52 31172.76 28963.79 36279.38 33533.53 39677.63 28665.37 37673.61 16571.77 35092.79 13444.38 36875.65 34964.53 27685.37 32482.18 342
test_fmvs1_n70.94 30870.41 31172.53 32173.92 37366.93 20875.99 31284.21 26543.31 38379.40 29579.39 35543.47 37068.55 36869.05 23384.91 33382.10 343
tpmvs70.16 31469.56 31971.96 32474.71 37248.13 36879.63 25475.45 32765.02 26970.26 35881.88 33445.34 36185.68 29858.34 31475.39 37982.08 344
新几何182.95 19193.96 5578.56 8480.24 29555.45 33583.93 22791.08 18371.19 22588.33 25665.84 26193.07 21381.95 345
Patchmatch-test65.91 33867.38 33061.48 36875.51 36543.21 38568.84 35763.79 37862.48 28172.80 34683.42 31744.89 36659.52 39048.27 36986.45 31581.70 346
UnsupCasMVSNet_bld69.21 32469.68 31867.82 34579.42 33451.15 35867.82 36375.79 32254.15 34077.47 31485.36 29459.26 28870.64 35948.46 36779.35 36581.66 347
PVSNet58.17 2166.41 33665.63 34168.75 34181.96 30449.88 36562.19 37772.51 34751.03 35968.04 36675.34 37750.84 33274.77 35045.82 37882.96 34681.60 348
Patchmatch-RL test74.48 27873.68 27776.89 28884.83 27166.54 21172.29 34169.16 36557.70 32486.76 16386.33 27645.79 35582.59 31869.63 22590.65 26781.54 349
test0.0.03 164.66 34364.36 34365.57 35575.03 37046.89 37564.69 37161.58 38562.43 28471.18 35477.54 36543.41 37168.47 37040.75 38782.65 35181.35 350
test-LLR67.21 33066.74 33568.63 34276.45 35855.21 32967.89 36067.14 37162.43 28465.08 37872.39 38043.41 37169.37 36161.00 30084.89 33481.31 351
test-mter65.00 34263.79 34668.63 34276.45 35855.21 32967.89 36067.14 37150.98 36065.08 37872.39 38028.27 39769.37 36161.00 30084.89 33481.31 351
test22293.31 7176.54 10979.38 26077.79 30652.59 34782.36 25190.84 19466.83 24591.69 24181.25 353
sss66.92 33167.26 33165.90 35377.23 34951.10 36064.79 37071.72 35452.12 35370.13 35980.18 34957.96 29765.36 38250.21 35881.01 36181.25 353
tpm cat166.76 33565.21 34271.42 32577.09 35150.62 36278.01 27973.68 34044.89 37768.64 36379.00 35745.51 35882.42 32149.91 36070.15 38681.23 355
CVMVSNet72.62 29371.41 30376.28 29583.25 29460.34 28383.50 18479.02 30237.77 39376.33 31885.10 29649.60 33887.41 26570.54 21877.54 37581.08 356
tpmrst66.28 33766.69 33665.05 35872.82 38239.33 38878.20 27870.69 35953.16 34567.88 36780.36 34848.18 34174.75 35158.13 31670.79 38581.08 356
testdata79.54 24892.87 8272.34 15480.14 29659.91 31185.47 19391.75 16567.96 24085.24 30168.57 24292.18 23381.06 358
PM-MVS80.20 21579.00 22483.78 16788.17 20586.66 1581.31 23466.81 37469.64 22088.33 13590.19 21364.58 25583.63 31571.99 20690.03 27281.06 358
test_vis1_rt65.64 34064.09 34470.31 33066.09 39570.20 17861.16 37881.60 28738.65 39172.87 34569.66 38552.84 32260.04 38956.16 32577.77 37280.68 360
EPMVS62.47 34662.63 35062.01 36470.63 38738.74 39074.76 32352.86 39553.91 34167.71 36980.01 35039.40 38066.60 37755.54 33168.81 39180.68 360
KD-MVS_2432*160066.87 33265.81 33970.04 33167.50 39147.49 37262.56 37579.16 29961.21 29977.98 30680.61 34325.29 40182.48 31953.02 34584.92 33180.16 362
miper_refine_blended66.87 33265.81 33970.04 33167.50 39147.49 37262.56 37579.16 29961.21 29977.98 30680.61 34325.29 40182.48 31953.02 34584.92 33180.16 362
test_cas_vis1_n_192069.20 32569.12 32069.43 33773.68 37662.82 24970.38 35377.21 31246.18 37380.46 28578.95 35852.03 32665.53 38165.77 26377.45 37679.95 364
mvsany_test365.48 34162.97 34873.03 31769.99 38876.17 11864.83 36943.71 40043.68 38180.25 28987.05 26952.83 32363.09 38751.92 35572.44 38279.84 365
test_fmvs169.57 32169.05 32271.14 32869.15 39065.77 22173.98 33083.32 27042.83 38577.77 31178.27 36343.39 37368.50 36968.39 24384.38 34079.15 366
JIA-IIPM69.41 32266.64 33777.70 27773.19 37871.24 17075.67 31465.56 37570.42 21165.18 37792.97 12633.64 39183.06 31653.52 34369.61 38978.79 367
test_vis1_n70.29 31269.99 31671.20 32775.97 36266.50 21276.69 30080.81 29244.22 37975.43 32977.23 36950.00 33668.59 36766.71 25382.85 35078.52 368
BH-w/o76.57 25576.07 25778.10 26986.88 23565.92 21977.63 28686.33 22865.69 26080.89 27679.95 35168.97 23690.74 20153.01 34785.25 32677.62 369
TESTMET0.1,161.29 35160.32 35764.19 36072.06 38451.30 35667.89 36062.09 37945.27 37560.65 38769.01 38627.93 39864.74 38356.31 32481.65 35776.53 370
gg-mvs-nofinetune68.96 32669.11 32168.52 34476.12 36145.32 37883.59 18255.88 39386.68 2464.62 38297.01 730.36 39483.97 31344.78 38082.94 34776.26 371
dmvs_re66.81 33466.98 33266.28 35276.87 35358.68 30571.66 34572.24 34860.29 30869.52 36273.53 37952.38 32564.40 38444.90 37981.44 35875.76 372
dp60.70 35560.29 35861.92 36672.04 38538.67 39170.83 34964.08 37751.28 35760.75 38677.28 36836.59 38771.58 35847.41 37162.34 39375.52 373
MS-PatchMatch70.93 30970.22 31273.06 31681.85 30662.50 25573.82 33377.90 30552.44 34975.92 32481.27 33955.67 31381.75 32255.37 33277.70 37374.94 374
MVS73.21 28972.59 29175.06 30580.97 31760.81 27981.64 23185.92 23846.03 37471.68 35177.54 36568.47 23789.77 23155.70 32985.39 32374.60 375
pmmvs362.47 34660.02 35969.80 33471.58 38664.00 23670.52 35158.44 39139.77 38966.05 37175.84 37527.10 40072.28 35446.15 37684.77 33873.11 376
PMMVS255.64 36159.27 36044.74 37864.30 39912.32 40440.60 39149.79 39753.19 34465.06 38084.81 30153.60 32149.76 39532.68 39589.41 27772.15 377
PatchMatch-RL74.48 27873.22 28378.27 26787.70 21385.26 3475.92 31370.09 36064.34 27276.09 32281.25 34065.87 25178.07 34053.86 34183.82 34271.48 378
GG-mvs-BLEND67.16 34873.36 37746.54 37784.15 16455.04 39458.64 39261.95 39329.93 39583.87 31438.71 39076.92 37771.07 379
MVEpermissive40.22 2351.82 36250.47 36555.87 37462.66 40051.91 35131.61 39339.28 40240.65 38750.76 39674.98 37856.24 31044.67 39733.94 39464.11 39271.04 380
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
new_pmnet55.69 36057.66 36149.76 37775.47 36630.59 39759.56 37951.45 39643.62 38262.49 38475.48 37640.96 37849.15 39637.39 39172.52 38169.55 381
DSMNet-mixed60.98 35461.61 35459.09 37372.88 38145.05 38074.70 32446.61 39926.20 39565.34 37690.32 20955.46 31463.12 38641.72 38581.30 36069.09 382
dmvs_testset60.59 35662.54 35154.72 37677.26 34827.74 39974.05 32961.00 38660.48 30665.62 37567.03 38955.93 31168.23 37132.07 39669.46 39068.17 383
CHOSEN 280x42059.08 35756.52 36266.76 35076.51 35664.39 23249.62 39059.00 38943.86 38055.66 39568.41 38835.55 38968.21 37243.25 38276.78 37867.69 384
mvsany_test158.48 35856.47 36364.50 35965.90 39768.21 19756.95 38642.11 40138.30 39265.69 37477.19 37156.96 30459.35 39146.16 37558.96 39465.93 385
test_f64.31 34565.85 33859.67 37166.54 39462.24 26257.76 38570.96 35740.13 38884.36 21382.09 33146.93 34451.67 39461.99 29381.89 35465.12 386
EMVS61.10 35360.81 35561.99 36565.96 39655.86 32453.10 38958.97 39067.06 24756.89 39463.33 39140.98 37767.03 37554.79 33786.18 31963.08 387
E-PMN61.59 35061.62 35361.49 36766.81 39355.40 32753.77 38860.34 38766.80 25058.90 39165.50 39040.48 37966.12 37955.72 32886.25 31862.95 388
PMMVS61.65 34960.38 35665.47 35665.40 39869.26 18763.97 37361.73 38436.80 39460.11 38868.43 38759.42 28666.35 37848.97 36578.57 37060.81 389
wuyk23d75.13 26979.30 22262.63 36375.56 36475.18 12480.89 24173.10 34475.06 15094.76 1295.32 3587.73 4052.85 39334.16 39397.11 8059.85 390
PVSNet_051.08 2256.10 35954.97 36459.48 37275.12 36953.28 34255.16 38761.89 38244.30 37859.16 38962.48 39254.22 31965.91 38035.40 39247.01 39559.25 391
FPMVS72.29 29772.00 29673.14 31588.63 19485.00 3674.65 32567.39 36871.94 19877.80 31087.66 25550.48 33475.83 34849.95 35979.51 36358.58 392
MVS-HIRNet61.16 35262.92 34955.87 37479.09 33835.34 39571.83 34357.98 39246.56 37159.05 39091.14 18049.95 33776.43 34538.74 38971.92 38455.84 393
test_method30.46 36329.60 36633.06 37917.99 4023.84 40613.62 39473.92 3352.79 39718.29 39953.41 39428.53 39643.25 39822.56 39735.27 39752.11 394
DeepMVS_CXcopyleft24.13 38032.95 40129.49 39821.63 40512.07 39637.95 39745.07 39530.84 39319.21 39917.94 39933.06 39823.69 395
tmp_tt20.25 36524.50 3687.49 3814.47 4038.70 40534.17 39225.16 4041.00 39932.43 39818.49 39639.37 3819.21 40021.64 39843.75 3964.57 396
test1236.27 3688.08 3710.84 3821.11 4050.57 40762.90 3740.82 4060.54 4001.07 4022.75 4011.26 4050.30 4011.04 4001.26 4001.66 397
testmvs5.91 3697.65 3720.72 3831.20 4040.37 40859.14 3810.67 4070.49 4011.11 4012.76 4000.94 4060.24 4021.02 4011.47 3991.55 398
test_blank0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
uanet_test0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
DCPMVS0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
cdsmvs_eth3d_5k20.81 36427.75 3670.00 3840.00 4060.00 4090.00 39585.44 2430.00 4020.00 40382.82 32481.46 1130.00 4030.00 4020.00 4010.00 399
pcd_1.5k_mvsjas6.41 3678.55 3700.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 40276.94 1590.00 4030.00 4020.00 4010.00 399
sosnet-low-res0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
sosnet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
uncertanet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
Regformer0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
ab-mvs-re6.65 3668.87 3690.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 40379.80 3520.00 4070.00 4030.00 4020.00 4010.00 399
uanet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
WAC-MVS37.39 39252.61 349
FOURS196.08 1187.41 1096.19 295.83 492.95 296.57 2
test_one_060193.85 5873.27 13794.11 3386.57 2593.47 3894.64 6088.42 26
eth-test20.00 406
eth-test0.00 406
ZD-MVS92.22 10280.48 6791.85 11471.22 20490.38 9192.98 12486.06 5996.11 681.99 9296.75 91
test_241102_ONE94.18 4672.65 14393.69 5083.62 4994.11 2293.78 10590.28 1495.50 46
9.1489.29 5891.84 11788.80 8895.32 1175.14 14991.07 8092.89 12987.27 4493.78 10583.69 7097.55 67
save fliter93.75 5977.44 9986.31 12989.72 17570.80 207
test072694.16 4972.56 14990.63 4593.90 4283.61 5093.75 3094.49 6589.76 18
test_part293.86 5777.77 9492.84 48
sam_mvs45.92 354
MTGPAbinary91.81 118
test_post178.85 2713.13 39845.19 36380.13 33258.11 317
test_post3.10 39945.43 35977.22 344
patchmatchnet-post81.71 33645.93 35387.01 269
MTMP90.66 4433.14 403
gm-plane-assit75.42 36744.97 38152.17 35072.36 38287.90 25954.10 340
TEST992.34 9679.70 7483.94 17090.32 15865.41 26584.49 20990.97 18682.03 10493.63 110
test_892.09 10678.87 8183.82 17590.31 16065.79 25684.36 21390.96 18881.93 10693.44 123
agg_prior91.58 12577.69 9690.30 16184.32 21593.18 131
test_prior478.97 8084.59 155
test_prior283.37 18775.43 14584.58 20791.57 16881.92 10879.54 11896.97 84
旧先验281.73 22956.88 33186.54 17484.90 30572.81 200
新几何281.72 230
原ACMM282.26 223
testdata286.43 28363.52 282
segment_acmp81.94 105
testdata179.62 25573.95 160
plane_prior793.45 6677.31 102
plane_prior692.61 8876.54 10974.84 180
plane_prior492.95 127
plane_prior376.85 10777.79 11886.55 169
plane_prior289.45 7779.44 96
plane_prior192.83 86
plane_prior76.42 11387.15 11275.94 13895.03 160
n20.00 408
nn0.00 408
door-mid74.45 332
test1191.46 124
door72.57 346
HQP5-MVS70.66 173
HQP-NCC91.19 13784.77 14973.30 17280.55 282
ACMP_Plane91.19 13784.77 14973.30 17280.55 282
BP-MVS77.30 147
HQP3-MVS92.68 9194.47 180
HQP2-MVS72.10 216
NP-MVS91.95 11074.55 12790.17 215
MDTV_nov1_ep1368.29 32878.03 34343.87 38374.12 32872.22 34952.17 35067.02 37085.54 28745.36 36080.85 32855.73 32784.42 339
ACMMP++_ref95.74 139
ACMMP++97.35 73
Test By Simon79.09 134