This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort by
MM90.87 291.52 288.92 1592.12 9671.10 2897.02 496.04 688.70 391.57 1496.19 3570.12 4098.91 1796.83 195.06 1796.76 16
fmvsm_l_conf0.5_n_a87.44 2988.15 2385.30 10987.10 22264.19 18794.41 5388.14 29580.24 5992.54 696.97 1069.52 4397.17 8595.89 288.51 10594.56 102
fmvsm_l_conf0.5_n87.49 2788.19 2285.39 10586.95 22564.37 18094.30 5588.45 28680.51 5192.70 496.86 1569.98 4197.15 8895.83 388.08 10994.65 99
MVS_030490.01 890.50 988.53 2390.14 14470.94 2996.47 1495.72 1087.33 689.60 2996.26 3268.44 4598.74 2495.82 494.72 3195.90 46
test_fmvsm_n_192087.69 2588.50 1885.27 11187.05 22463.55 20793.69 8891.08 18584.18 1590.17 2497.04 867.58 5497.99 3995.72 590.03 9394.26 113
OPU-MVS89.97 397.52 373.15 1296.89 697.00 983.82 299.15 295.72 597.63 397.62 2
PC_three_145280.91 4894.07 296.83 1883.57 499.12 595.70 797.42 497.55 4
fmvsm_s_conf0.5_n86.39 4586.91 3784.82 12587.36 21763.54 20894.74 4890.02 22482.52 2690.14 2596.92 1362.93 11097.84 4695.28 882.26 16193.07 156
fmvsm_s_conf0.1_n85.61 6285.93 5384.68 13582.95 29263.48 21094.03 6989.46 24281.69 3589.86 2696.74 2061.85 12197.75 4994.74 982.01 16792.81 164
fmvsm_s_conf0.5_n_a85.75 5886.09 5084.72 13285.73 24963.58 20593.79 8489.32 24881.42 4190.21 2396.91 1462.41 11597.67 5194.48 1080.56 18092.90 162
test_fmvsmconf_n86.58 4387.17 3384.82 12585.28 25562.55 23194.26 5789.78 23083.81 1887.78 3796.33 3165.33 7296.98 10094.40 1187.55 11494.95 84
test_fmvsmconf0.1_n85.71 5986.08 5184.62 13980.83 30862.33 23693.84 8188.81 27383.50 2087.00 4496.01 3963.36 10296.93 10794.04 1287.29 11794.61 101
fmvsm_s_conf0.1_n_a84.76 7484.84 7284.53 14180.23 31863.50 20992.79 12388.73 27780.46 5289.84 2796.65 2260.96 12997.57 6193.80 1380.14 18292.53 171
test_fmvsmvis_n_192083.80 9583.48 8684.77 12982.51 29463.72 19891.37 19183.99 34081.42 4177.68 13795.74 4458.37 15597.58 5993.38 1486.87 12093.00 159
patch_mono-289.71 1190.99 685.85 9096.04 2463.70 20095.04 4195.19 1986.74 991.53 1595.15 6573.86 2097.58 5993.38 1492.00 6896.28 36
CANet89.61 1289.99 1288.46 2494.39 3969.71 5096.53 1393.78 6686.89 889.68 2895.78 4265.94 6699.10 992.99 1693.91 4196.58 22
test_fmvsmconf0.01_n83.70 9983.52 8384.25 15375.26 35961.72 25092.17 14987.24 30882.36 2884.91 6495.41 5055.60 18996.83 11292.85 1785.87 13294.21 115
DeepPCF-MVS81.17 189.72 1091.38 484.72 13293.00 7458.16 30496.72 994.41 4886.50 1090.25 2297.83 175.46 1498.67 2592.78 1895.49 1397.32 8
MCST-MVS91.08 191.46 389.94 497.66 273.37 897.13 395.58 1189.33 285.77 5496.26 3272.84 2699.38 192.64 1995.93 997.08 12
CNVR-MVS90.32 690.89 788.61 2296.76 870.65 3296.47 1494.83 3084.83 1389.07 3296.80 1970.86 3699.06 1592.64 1995.71 1196.12 39
SED-MVS89.94 990.36 1088.70 1896.45 1269.38 5496.89 694.44 4671.65 21492.11 797.21 476.79 999.11 692.34 2195.36 1497.62 2
IU-MVS96.46 1169.91 4395.18 2080.75 4995.28 192.34 2195.36 1496.47 29
test_241102_TWO94.41 4871.65 21492.07 997.21 474.58 1799.11 692.34 2195.36 1496.59 20
iter_conf05_1186.99 3586.27 4389.15 1393.74 5272.45 1397.56 187.04 30988.32 492.60 596.57 2332.61 34897.45 6692.21 2495.80 1097.53 6
bld_raw_dy_0_6482.84 11280.75 13289.09 1493.74 5272.16 1593.16 11077.36 36089.69 174.55 17096.48 2732.35 35097.56 6292.21 2477.24 21297.53 6
MSC_two_6792asdad89.60 897.31 473.22 1095.05 2699.07 1392.01 2694.77 2696.51 25
No_MVS89.60 897.31 473.22 1095.05 2699.07 1392.01 2694.77 2696.51 25
test_vis1_n_192081.66 13182.01 11680.64 24182.24 29755.09 33294.76 4786.87 31181.67 3684.40 6994.63 7938.17 31794.67 19591.98 2883.34 15292.16 185
DVP-MVScopyleft89.41 1389.73 1488.45 2596.40 1569.99 3996.64 1094.52 4271.92 20090.55 2096.93 1173.77 2199.08 1191.91 2994.90 2296.29 34
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND88.70 1896.45 1270.43 3596.64 1094.37 5299.15 291.91 2994.90 2296.51 25
DVP-MVS++90.53 491.09 588.87 1697.31 469.91 4393.96 7194.37 5272.48 18492.07 996.85 1683.82 299.15 291.53 3197.42 497.55 4
test_0728_THIRD72.48 18490.55 2096.93 1176.24 1199.08 1191.53 3194.99 1896.43 30
PS-MVSNAJ88.14 1787.61 2889.71 692.06 9776.72 195.75 2193.26 9083.86 1689.55 3096.06 3853.55 21397.89 4391.10 3393.31 5294.54 105
xiu_mvs_v2_base87.92 2287.38 3289.55 1191.41 12176.43 395.74 2293.12 9883.53 1989.55 3095.95 4053.45 21797.68 5091.07 3492.62 5994.54 105
MSP-MVS90.38 591.87 185.88 8792.83 7764.03 19093.06 11394.33 5482.19 3093.65 396.15 3785.89 197.19 8491.02 3597.75 196.43 30
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
dcpmvs_287.37 3087.55 2986.85 5695.04 3268.20 8590.36 22790.66 19779.37 7381.20 9293.67 10774.73 1596.55 12190.88 3692.00 6895.82 48
test_cas_vis1_n_192080.45 15280.61 13779.97 26078.25 34457.01 32094.04 6888.33 28979.06 8282.81 8193.70 10638.65 31291.63 29790.82 3779.81 18491.27 202
APDe-MVScopyleft87.54 2687.84 2586.65 6496.07 2366.30 13394.84 4693.78 6669.35 25588.39 3496.34 3067.74 5397.66 5490.62 3893.44 5096.01 43
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
DPE-MVScopyleft88.77 1689.21 1687.45 4396.26 2067.56 10094.17 5894.15 5968.77 26490.74 1897.27 276.09 1298.49 2990.58 3994.91 2196.30 33
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
9.1487.63 2793.86 4794.41 5394.18 5772.76 17986.21 4996.51 2566.64 6097.88 4490.08 4094.04 38
test9_res89.41 4194.96 1995.29 68
TSAR-MVS + GP.87.96 2088.37 2086.70 6393.51 6165.32 15595.15 3793.84 6578.17 9385.93 5394.80 7575.80 1398.21 3489.38 4288.78 10296.59 20
lupinMVS87.74 2487.77 2687.63 3889.24 16871.18 2596.57 1292.90 10682.70 2587.13 4195.27 5864.99 7595.80 14789.34 4391.80 7195.93 44
ETV-MVS86.01 5286.11 4985.70 9790.21 14367.02 11693.43 10491.92 14181.21 4584.13 7394.07 10060.93 13095.63 15889.28 4489.81 9494.46 111
SMA-MVScopyleft88.14 1788.29 2187.67 3393.21 6868.72 7093.85 7894.03 6274.18 14791.74 1296.67 2165.61 7098.42 3389.24 4596.08 795.88 47
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
train_agg87.21 3287.42 3186.60 6694.18 4167.28 10794.16 5993.51 8071.87 20585.52 5795.33 5368.19 4897.27 8289.09 4694.90 2295.25 74
SD-MVS87.49 2787.49 3087.50 4293.60 5668.82 6893.90 7592.63 11776.86 11287.90 3695.76 4366.17 6397.63 5689.06 4791.48 7796.05 41
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
NCCC89.07 1589.46 1587.91 2896.60 1069.05 6296.38 1694.64 3984.42 1486.74 4696.20 3466.56 6298.76 2389.03 4894.56 3395.92 45
HPM-MVS++copyleft89.37 1489.95 1387.64 3495.10 3068.23 8495.24 3494.49 4482.43 2788.90 3396.35 2971.89 3498.63 2688.76 4996.40 696.06 40
SF-MVS87.03 3487.09 3486.84 5792.70 8367.45 10593.64 9193.76 6970.78 23886.25 4896.44 2866.98 5797.79 4788.68 5094.56 3395.28 70
sasdasda86.85 3786.25 4688.66 2091.80 10871.92 1693.54 9691.71 15480.26 5687.55 3895.25 6063.59 9896.93 10788.18 5184.34 14297.11 10
canonicalmvs86.85 3786.25 4688.66 2091.80 10871.92 1693.54 9691.71 15480.26 5687.55 3895.25 6063.59 9896.93 10788.18 5184.34 14297.11 10
TSAR-MVS + MP.88.11 1988.64 1786.54 7091.73 11068.04 8890.36 22793.55 7982.89 2191.29 1692.89 12372.27 3196.03 14287.99 5394.77 2695.54 56
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
alignmvs87.28 3186.97 3688.24 2791.30 12371.14 2795.61 2693.56 7879.30 7487.07 4395.25 6068.43 4696.93 10787.87 5484.33 14496.65 18
jason86.40 4486.17 4887.11 5086.16 24070.54 3495.71 2592.19 13282.00 3284.58 6794.34 9161.86 12095.53 16787.76 5590.89 8595.27 71
jason: jason.
h-mvs3383.01 10982.56 10984.35 14989.34 16062.02 24292.72 12693.76 6981.45 3882.73 8292.25 14060.11 13797.13 8987.69 5662.96 31393.91 131
hse-mvs281.12 14081.11 12881.16 22886.52 23257.48 31389.40 25391.16 17881.45 3882.73 8290.49 17160.11 13794.58 19787.69 5660.41 34091.41 195
ZD-MVS96.63 965.50 15393.50 8270.74 23985.26 6295.19 6464.92 7897.29 7887.51 5893.01 55
test_prior295.10 3975.40 13285.25 6395.61 4767.94 5187.47 5994.77 26
SteuartSystems-ACMMP86.82 4086.90 3886.58 6890.42 13866.38 13096.09 1893.87 6477.73 10084.01 7495.66 4563.39 10197.94 4087.40 6093.55 4995.42 57
Skip Steuart: Steuart Systems R&D Blog.
diffmvspermissive84.28 8283.83 8085.61 9987.40 21568.02 8990.88 21189.24 25180.54 5081.64 8992.52 12959.83 14194.52 20487.32 6185.11 13694.29 112
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DELS-MVS90.05 790.09 1189.94 493.14 7173.88 797.01 594.40 5088.32 485.71 5594.91 7274.11 1998.91 1787.26 6295.94 897.03 13
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
casdiffmvs_mvgpermissive85.66 6185.18 6587.09 5188.22 19569.35 5793.74 8791.89 14481.47 3780.10 10891.45 15564.80 8096.35 12787.23 6387.69 11295.58 54
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MGCFI-Net85.59 6385.73 5885.17 11591.41 12162.44 23292.87 12191.31 17179.65 6786.99 4595.14 6662.90 11196.12 13487.13 6484.13 14996.96 14
PVSNet_BlendedMVS83.38 10283.43 8983.22 17893.76 4967.53 10294.06 6493.61 7679.13 7981.00 9785.14 24663.19 10597.29 7887.08 6573.91 23584.83 304
PVSNet_Blended86.73 4186.86 3986.31 7993.76 4967.53 10296.33 1793.61 7682.34 2981.00 9793.08 11763.19 10597.29 7887.08 6591.38 7994.13 120
MP-MVS-pluss85.24 6785.13 6685.56 10091.42 11965.59 14991.54 18192.51 12174.56 14180.62 10195.64 4659.15 15097.00 9686.94 6793.80 4294.07 124
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
VDD-MVS83.06 10881.81 11986.81 5990.86 13267.70 9695.40 3091.50 16575.46 13081.78 8892.34 13740.09 30697.13 8986.85 6882.04 16695.60 53
CS-MVS-test86.14 5087.01 3583.52 16992.63 8559.36 29295.49 2891.92 14180.09 6085.46 5995.53 4961.82 12295.77 15086.77 6993.37 5195.41 58
agg_prior286.41 7094.75 3095.33 64
APD-MVScopyleft85.93 5485.99 5285.76 9495.98 2665.21 15893.59 9492.58 11966.54 28186.17 5095.88 4163.83 9197.00 9686.39 7192.94 5695.06 79
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ACMMP_NAP86.05 5185.80 5686.80 6091.58 11467.53 10291.79 17193.49 8374.93 13884.61 6695.30 5559.42 14697.92 4186.13 7294.92 2094.94 85
CS-MVS85.80 5786.65 4183.27 17792.00 10158.92 29795.31 3291.86 14679.97 6184.82 6595.40 5162.26 11695.51 16886.11 7392.08 6795.37 61
PHI-MVS86.83 3986.85 4086.78 6193.47 6265.55 15195.39 3195.10 2271.77 21085.69 5696.52 2462.07 11898.77 2286.06 7495.60 1296.03 42
MVS_111021_HR86.19 4985.80 5687.37 4493.17 7069.79 4793.99 7093.76 6979.08 8178.88 12693.99 10162.25 11798.15 3685.93 7591.15 8394.15 119
DeepC-MVS77.85 385.52 6485.24 6486.37 7688.80 17866.64 12492.15 15093.68 7481.07 4676.91 14893.64 10862.59 11398.44 3185.50 7692.84 5894.03 126
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
EC-MVSNet84.53 7885.04 6883.01 18189.34 16061.37 25694.42 5291.09 18377.91 9783.24 7794.20 9658.37 15595.40 16985.35 7791.41 7892.27 181
test_fmvs174.07 25473.69 24175.22 31478.91 33647.34 36889.06 26274.69 37063.68 30179.41 11791.59 15424.36 37187.77 33885.22 7876.26 21990.55 211
VNet86.20 4885.65 5987.84 3093.92 4669.99 3995.73 2495.94 778.43 9086.00 5293.07 11858.22 15797.00 9685.22 7884.33 14496.52 24
testing1186.71 4286.44 4287.55 4093.54 5971.35 2293.65 9095.58 1181.36 4380.69 10092.21 14172.30 3096.46 12685.18 8083.43 15194.82 92
SDMVSNet80.26 15578.88 16584.40 14689.25 16567.63 9985.35 29993.02 10076.77 11670.84 21587.12 22547.95 26596.09 13685.04 8174.55 22689.48 226
MP-MVScopyleft85.02 7084.97 6985.17 11592.60 8664.27 18593.24 10792.27 12673.13 16979.63 11494.43 8461.90 11997.17 8585.00 8292.56 6094.06 125
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
casdiffmvspermissive85.37 6584.87 7186.84 5788.25 19369.07 6193.04 11591.76 15181.27 4480.84 9992.07 14364.23 8696.06 14084.98 8387.43 11695.39 59
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CSCG86.87 3686.26 4588.72 1795.05 3170.79 3193.83 8395.33 1668.48 26877.63 13894.35 9073.04 2498.45 3084.92 8493.71 4696.92 15
MTAPA83.91 9283.38 9385.50 10191.89 10665.16 16081.75 32692.23 12775.32 13380.53 10395.21 6356.06 18597.16 8784.86 8592.55 6194.18 116
test_fmvs1_n72.69 27371.92 26474.99 31771.15 37247.08 37087.34 28775.67 36563.48 30378.08 13491.17 16120.16 38287.87 33584.65 8675.57 22390.01 217
test_vis1_n71.63 27970.73 27574.31 32469.63 37847.29 36986.91 29172.11 37563.21 30775.18 16490.17 17920.40 38085.76 35084.59 8774.42 23089.87 218
baseline85.01 7184.44 7586.71 6288.33 19068.73 6990.24 23291.82 15081.05 4781.18 9392.50 13063.69 9496.08 13984.45 8886.71 12695.32 66
CLD-MVS82.73 11482.35 11383.86 16087.90 20367.65 9895.45 2992.18 13385.06 1272.58 19392.27 13852.46 22495.78 14884.18 8979.06 19288.16 244
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
xiu_mvs_v1_base_debu82.16 12381.12 12585.26 11286.42 23368.72 7092.59 13790.44 20473.12 17084.20 7094.36 8638.04 32095.73 15284.12 9086.81 12191.33 196
xiu_mvs_v1_base82.16 12381.12 12585.26 11286.42 23368.72 7092.59 13790.44 20473.12 17084.20 7094.36 8638.04 32095.73 15284.12 9086.81 12191.33 196
xiu_mvs_v1_base_debi82.16 12381.12 12585.26 11286.42 23368.72 7092.59 13790.44 20473.12 17084.20 7094.36 8638.04 32095.73 15284.12 9086.81 12191.33 196
EPNet87.84 2388.38 1986.23 8093.30 6566.05 13795.26 3394.84 2987.09 788.06 3594.53 8166.79 5997.34 7583.89 9391.68 7395.29 68
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MVS_111021_LR82.02 12781.52 12183.51 17188.42 18662.88 22689.77 24588.93 26976.78 11575.55 16193.10 11550.31 24195.38 17183.82 9487.02 11992.26 182
MSLP-MVS++86.27 4785.91 5487.35 4592.01 10068.97 6595.04 4192.70 11179.04 8381.50 9096.50 2658.98 15296.78 11383.49 9593.93 4096.29 34
DeepC-MVS_fast79.48 287.95 2188.00 2487.79 3195.86 2768.32 7895.74 2294.11 6083.82 1783.49 7696.19 3564.53 8498.44 3183.42 9694.88 2596.61 19
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DPM-MVS90.70 390.52 891.24 189.68 15376.68 297.29 295.35 1582.87 2291.58 1397.22 379.93 599.10 983.12 9797.64 297.94 1
SR-MVS82.81 11382.58 10883.50 17293.35 6361.16 25992.23 14891.28 17564.48 29581.27 9195.28 5653.71 21295.86 14682.87 9888.77 10393.49 143
ET-MVSNet_ETH3D84.01 9083.15 9886.58 6890.78 13470.89 3094.74 4894.62 4081.44 4058.19 32993.64 10873.64 2392.35 28282.66 9978.66 19796.50 28
ZNCC-MVS85.33 6685.08 6786.06 8293.09 7365.65 14793.89 7693.41 8773.75 15879.94 11094.68 7860.61 13398.03 3882.63 10093.72 4594.52 107
LFMVS84.34 8182.73 10589.18 1294.76 3373.25 994.99 4391.89 14471.90 20282.16 8693.49 11247.98 26497.05 9182.55 10184.82 13897.25 9
VDDNet80.50 15078.26 17287.21 4786.19 23869.79 4794.48 5191.31 17160.42 32979.34 11890.91 16438.48 31596.56 12082.16 10281.05 17595.27 71
iter_conf0583.27 10482.70 10684.98 12093.32 6471.84 1894.16 5981.76 35082.74 2373.83 18088.40 20072.77 2794.61 19682.10 10375.21 22488.48 238
HPM-MVScopyleft83.25 10582.95 10084.17 15492.25 9262.88 22690.91 20891.86 14670.30 24477.12 14593.96 10256.75 17596.28 12982.04 10491.34 8193.34 146
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
nrg03080.93 14379.86 14884.13 15583.69 28168.83 6793.23 10891.20 17675.55 12975.06 16588.22 20763.04 10994.74 19081.88 10566.88 28388.82 232
Effi-MVS+83.82 9482.76 10486.99 5589.56 15669.40 5391.35 19386.12 32072.59 18183.22 7892.81 12759.60 14496.01 14481.76 10687.80 11195.56 55
HFP-MVS84.73 7584.40 7685.72 9693.75 5165.01 16493.50 9993.19 9472.19 19479.22 12094.93 7059.04 15197.67 5181.55 10792.21 6394.49 110
ACMMPR84.37 7984.06 7885.28 11093.56 5864.37 18093.50 9993.15 9672.19 19478.85 12894.86 7356.69 17797.45 6681.55 10792.20 6494.02 127
GST-MVS84.63 7784.29 7785.66 9892.82 7965.27 15693.04 11593.13 9773.20 16778.89 12394.18 9759.41 14797.85 4581.45 10992.48 6293.86 134
PMMVS81.98 12882.04 11581.78 21489.76 15256.17 32491.13 20490.69 19477.96 9580.09 10993.57 11046.33 27894.99 18281.41 11087.46 11594.17 117
region2R84.36 8084.03 7985.36 10793.54 5964.31 18393.43 10492.95 10472.16 19778.86 12794.84 7456.97 17297.53 6481.38 11192.11 6694.24 114
CP-MVS83.71 9883.40 9284.65 13693.14 7163.84 19294.59 5092.28 12571.03 23277.41 14194.92 7155.21 19496.19 13181.32 11290.70 8793.91 131
MVS84.66 7682.86 10390.06 290.93 12974.56 687.91 27895.54 1368.55 26672.35 20094.71 7759.78 14298.90 1981.29 11394.69 3296.74 17
test_yl84.28 8283.16 9687.64 3494.52 3769.24 5895.78 1995.09 2369.19 25881.09 9492.88 12457.00 17097.44 6881.11 11481.76 16996.23 37
DCV-MVSNet84.28 8283.16 9687.64 3494.52 3769.24 5895.78 1995.09 2369.19 25881.09 9492.88 12457.00 17097.44 6881.11 11481.76 16996.23 37
CDPH-MVS85.71 5985.46 6186.46 7294.75 3467.19 10993.89 7692.83 10870.90 23483.09 7995.28 5663.62 9697.36 7380.63 11694.18 3694.84 89
HY-MVS76.49 584.28 8283.36 9487.02 5492.22 9367.74 9584.65 30394.50 4379.15 7882.23 8587.93 21266.88 5896.94 10580.53 11782.20 16496.39 32
CHOSEN 1792x268884.98 7283.45 8889.57 1089.94 14875.14 592.07 15692.32 12481.87 3375.68 15788.27 20360.18 13698.60 2780.46 11890.27 9294.96 83
testing9185.93 5485.31 6387.78 3293.59 5771.47 2093.50 9995.08 2580.26 5680.53 10391.93 14670.43 3896.51 12380.32 11982.13 16595.37 61
EIA-MVS84.84 7384.88 7084.69 13491.30 12362.36 23593.85 7892.04 13679.45 7079.33 11994.28 9462.42 11496.35 12780.05 12091.25 8295.38 60
testing9986.01 5285.47 6087.63 3893.62 5571.25 2493.47 10295.23 1880.42 5480.60 10291.95 14571.73 3596.50 12480.02 12182.22 16395.13 77
APD-MVS_3200maxsize81.64 13281.32 12382.59 19192.36 8958.74 29991.39 18891.01 19063.35 30479.72 11394.62 8051.82 22796.14 13379.71 12287.93 11092.89 163
PVSNet_Blended_VisFu83.97 9183.50 8585.39 10590.02 14666.59 12793.77 8591.73 15277.43 10877.08 14789.81 18563.77 9396.97 10279.67 12388.21 10792.60 168
WTY-MVS86.32 4685.81 5587.85 2992.82 7969.37 5695.20 3595.25 1782.71 2481.91 8794.73 7667.93 5297.63 5679.55 12482.25 16296.54 23
EI-MVSNet-Vis-set83.77 9683.67 8284.06 15692.79 8263.56 20691.76 17494.81 3179.65 6777.87 13594.09 9863.35 10397.90 4279.35 12579.36 18990.74 207
PGM-MVS83.25 10582.70 10684.92 12192.81 8164.07 18990.44 22392.20 13171.28 22677.23 14494.43 8455.17 19597.31 7779.33 12691.38 7993.37 145
XVS83.87 9383.47 8785.05 11793.22 6663.78 19492.92 11992.66 11473.99 15078.18 13294.31 9355.25 19197.41 7079.16 12791.58 7593.95 129
X-MVStestdata76.86 21574.13 23585.05 11793.22 6663.78 19492.92 11992.66 11473.99 15078.18 13210.19 40755.25 19197.41 7079.16 12791.58 7593.95 129
CostFormer82.33 12081.15 12485.86 8989.01 17368.46 7582.39 32393.01 10175.59 12880.25 10781.57 28872.03 3394.96 18379.06 12977.48 20894.16 118
mPP-MVS82.96 11182.44 11184.52 14292.83 7762.92 22492.76 12491.85 14871.52 22275.61 16094.24 9553.48 21696.99 9978.97 13090.73 8693.64 140
baseline283.68 10083.42 9184.48 14487.37 21666.00 13990.06 23695.93 879.71 6669.08 23690.39 17377.92 696.28 12978.91 13181.38 17391.16 203
CPTT-MVS79.59 16779.16 16280.89 23991.54 11759.80 28492.10 15388.54 28560.42 32972.96 18693.28 11448.27 26092.80 26278.89 13286.50 12990.06 215
SR-MVS-dyc-post81.06 14180.70 13482.15 20592.02 9858.56 30190.90 20990.45 20162.76 31178.89 12394.46 8251.26 23595.61 16078.77 13386.77 12492.28 178
RE-MVS-def80.48 14092.02 9858.56 30190.90 20990.45 20162.76 31178.89 12394.46 8249.30 25178.77 13386.77 12492.28 178
ACMMPcopyleft81.49 13380.67 13583.93 15991.71 11162.90 22592.13 15192.22 13071.79 20971.68 20893.49 11250.32 24096.96 10378.47 13584.22 14891.93 188
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
PAPM85.89 5685.46 6187.18 4888.20 19672.42 1492.41 14392.77 10982.11 3180.34 10693.07 11868.27 4795.02 18078.39 13693.59 4894.09 122
PAPR85.15 6984.47 7487.18 4896.02 2568.29 7991.85 16993.00 10376.59 11979.03 12295.00 6761.59 12397.61 5878.16 13789.00 10195.63 52
EI-MVSNet-UG-set83.14 10782.96 9983.67 16792.28 9163.19 21691.38 19094.68 3779.22 7676.60 15093.75 10462.64 11297.76 4878.07 13878.01 20090.05 216
CANet_DTU84.09 8983.52 8385.81 9190.30 14166.82 11991.87 16789.01 26585.27 1186.09 5193.74 10547.71 26896.98 10077.90 13989.78 9693.65 139
BP-MVS77.63 140
HQP-MVS81.14 13880.64 13682.64 18987.54 21163.66 20394.06 6491.70 15779.80 6374.18 17390.30 17551.63 23195.61 16077.63 14078.90 19388.63 234
sss82.71 11682.38 11283.73 16489.25 16559.58 28792.24 14794.89 2877.96 9579.86 11192.38 13556.70 17697.05 9177.26 14280.86 17794.55 103
HQP_MVS80.34 15479.75 15082.12 20786.94 22662.42 23393.13 11191.31 17178.81 8672.53 19489.14 19350.66 23895.55 16576.74 14378.53 19888.39 241
plane_prior591.31 17195.55 16576.74 14378.53 19888.39 241
gm-plane-assit88.42 18667.04 11578.62 8991.83 14897.37 7276.57 145
CHOSEN 280x42077.35 20876.95 19678.55 28387.07 22362.68 23069.71 37482.95 34768.80 26371.48 21087.27 22466.03 6584.00 36176.47 14682.81 15788.95 229
ab-mvs80.18 15778.31 17185.80 9288.44 18565.49 15483.00 32092.67 11371.82 20877.36 14285.01 24754.50 20096.59 11776.35 14775.63 22295.32 66
mvsmamba76.85 21775.71 21380.25 24983.07 28959.16 29491.44 18280.64 35576.84 11367.95 25386.33 23546.17 28194.24 21576.06 14872.92 24287.36 254
testing22285.18 6884.69 7386.63 6592.91 7669.91 4392.61 13495.80 980.31 5580.38 10592.27 13868.73 4495.19 17775.94 14983.27 15394.81 93
MVSTER82.47 11882.05 11483.74 16292.68 8469.01 6391.90 16693.21 9179.83 6272.14 20185.71 24374.72 1694.72 19175.72 15072.49 24687.50 249
test_fmvs265.78 32264.84 31068.60 35466.54 38341.71 38383.27 31469.81 38154.38 35667.91 25584.54 25515.35 38781.22 37875.65 15166.16 28882.88 325
tpmrst80.57 14879.14 16384.84 12490.10 14568.28 8081.70 32789.72 23777.63 10475.96 15479.54 32064.94 7792.71 26575.43 15277.28 21193.55 141
旧先验292.00 16259.37 33787.54 4093.47 24475.39 153
MG-MVS87.11 3386.27 4389.62 797.79 176.27 494.96 4494.49 4478.74 8883.87 7592.94 12164.34 8596.94 10575.19 15494.09 3795.66 51
OPM-MVS79.00 17778.09 17481.73 21583.52 28463.83 19391.64 18090.30 21176.36 12271.97 20389.93 18446.30 27995.17 17875.10 15577.70 20386.19 277
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
Effi-MVS+-dtu76.14 22575.28 21978.72 28283.22 28655.17 33189.87 24287.78 30275.42 13167.98 25281.43 29045.08 28992.52 27575.08 15671.63 25188.48 238
HyFIR lowres test81.03 14279.56 15385.43 10387.81 20768.11 8790.18 23390.01 22570.65 24072.95 18786.06 23963.61 9794.50 20575.01 15779.75 18693.67 138
EPP-MVSNet81.79 13081.52 12182.61 19088.77 17960.21 27993.02 11793.66 7568.52 26772.90 18890.39 17372.19 3294.96 18374.93 15879.29 19192.67 166
MVS_Test84.16 8883.20 9587.05 5391.56 11569.82 4689.99 24192.05 13577.77 9982.84 8086.57 23163.93 9096.09 13674.91 15989.18 10095.25 74
VPA-MVSNet79.03 17678.00 17682.11 21085.95 24364.48 17393.22 10994.66 3875.05 13774.04 17884.95 24852.17 22693.52 24274.90 16067.04 28288.32 243
HPM-MVS_fast80.25 15679.55 15582.33 19791.55 11659.95 28291.32 19589.16 25665.23 29274.71 16993.07 11847.81 26795.74 15174.87 16188.23 10691.31 200
AUN-MVS78.37 19277.43 18581.17 22786.60 23157.45 31489.46 25291.16 17874.11 14874.40 17290.49 17155.52 19094.57 19974.73 16260.43 33991.48 193
ECVR-MVScopyleft81.29 13680.38 14284.01 15888.39 18861.96 24492.56 14086.79 31377.66 10276.63 14991.42 15646.34 27795.24 17674.36 16389.23 9894.85 86
mvsany_test168.77 30068.56 28969.39 35073.57 36545.88 37580.93 33560.88 39359.65 33571.56 20990.26 17743.22 29675.05 38374.26 16462.70 31687.25 259
TESTMET0.1,182.41 11981.98 11783.72 16588.08 19763.74 19692.70 12893.77 6879.30 7477.61 13987.57 21858.19 15894.08 22173.91 16586.68 12793.33 148
test250683.29 10382.92 10184.37 14888.39 18863.18 21792.01 15991.35 17077.66 10278.49 13191.42 15664.58 8395.09 17973.19 16689.23 9894.85 86
mvs_anonymous81.36 13579.99 14685.46 10290.39 14068.40 7686.88 29390.61 19974.41 14270.31 22384.67 25263.79 9292.32 28373.13 16785.70 13395.67 50
PS-MVSNAJss77.26 20976.31 20380.13 25380.64 31259.16 29490.63 22291.06 18772.80 17868.58 24784.57 25453.55 21393.96 23172.97 16871.96 25087.27 258
ACMP71.68 1075.58 24074.23 23379.62 26984.97 26259.64 28590.80 21489.07 26370.39 24362.95 30487.30 22238.28 31693.87 23572.89 16971.45 25485.36 298
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MVSFormer83.75 9782.88 10286.37 7689.24 16871.18 2589.07 26090.69 19465.80 28687.13 4194.34 9164.99 7592.67 26872.83 17091.80 7195.27 71
test_djsdf73.76 26072.56 25777.39 29777.00 35353.93 33789.07 26090.69 19465.80 28663.92 29382.03 28043.14 29792.67 26872.83 17068.53 27285.57 293
test111180.84 14580.02 14483.33 17587.87 20460.76 26792.62 13386.86 31277.86 9875.73 15691.39 15846.35 27694.70 19472.79 17288.68 10494.52 107
miper_enhance_ethall78.86 18177.97 17781.54 22088.00 20165.17 15991.41 18489.15 25775.19 13568.79 24383.98 26067.17 5692.82 26072.73 17365.30 29286.62 270
OMC-MVS78.67 18877.91 17980.95 23785.76 24857.40 31588.49 26988.67 28073.85 15572.43 19892.10 14249.29 25294.55 20272.73 17377.89 20190.91 206
LPG-MVS_test75.82 23574.58 22679.56 27184.31 27359.37 29090.44 22389.73 23569.49 25364.86 28288.42 19838.65 31294.30 21072.56 17572.76 24385.01 302
LGP-MVS_train79.56 27184.31 27359.37 29089.73 23569.49 25364.86 28288.42 19838.65 31294.30 21072.56 17572.76 24385.01 302
VPNet78.82 18277.53 18482.70 18784.52 26866.44 12993.93 7392.23 12780.46 5272.60 19288.38 20149.18 25393.13 24872.47 17763.97 31088.55 237
GG-mvs-BLEND86.53 7191.91 10569.67 5275.02 36594.75 3378.67 13090.85 16577.91 794.56 20172.25 17893.74 4495.36 63
test-LLR80.10 15979.56 15381.72 21686.93 22861.17 25792.70 12891.54 16271.51 22375.62 15886.94 22753.83 20992.38 27972.21 17984.76 14091.60 190
test-mter79.96 16279.38 15981.72 21686.93 22861.17 25792.70 12891.54 16273.85 15575.62 15886.94 22749.84 24792.38 27972.21 17984.76 14091.60 190
IB-MVS77.80 482.18 12280.46 14187.35 4589.14 17070.28 3795.59 2795.17 2178.85 8470.19 22485.82 24170.66 3797.67 5172.19 18166.52 28694.09 122
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
cl2277.94 20076.78 19781.42 22287.57 21064.93 16790.67 21888.86 27272.45 18667.63 26182.68 27364.07 8792.91 25871.79 18265.30 29286.44 271
v2v48277.42 20775.65 21482.73 18680.38 31467.13 11291.85 16990.23 21575.09 13669.37 23283.39 26653.79 21194.44 20671.77 18365.00 29886.63 269
baseline181.84 12981.03 12984.28 15291.60 11366.62 12591.08 20591.66 15981.87 3374.86 16791.67 15269.98 4194.92 18671.76 18464.75 30191.29 201
V4276.46 22374.55 22782.19 20479.14 33267.82 9390.26 23189.42 24573.75 15868.63 24681.89 28151.31 23494.09 22071.69 18564.84 29984.66 305
131480.70 14778.95 16485.94 8687.77 20967.56 10087.91 27892.55 12072.17 19667.44 26293.09 11650.27 24297.04 9471.68 18687.64 11393.23 150
CDS-MVSNet81.43 13480.74 13383.52 16986.26 23764.45 17492.09 15490.65 19875.83 12673.95 17989.81 18563.97 8992.91 25871.27 18782.82 15693.20 151
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
test_vis1_rt59.09 34657.31 34564.43 36268.44 38146.02 37483.05 31948.63 40251.96 36249.57 36463.86 37816.30 38580.20 38071.21 18862.79 31567.07 387
GA-MVS78.33 19476.23 20484.65 13683.65 28266.30 13391.44 18290.14 21876.01 12470.32 22284.02 25942.50 29894.72 19170.98 18977.00 21492.94 160
jajsoiax73.05 26471.51 26977.67 29277.46 35054.83 33388.81 26490.04 22369.13 26062.85 30683.51 26431.16 35792.75 26470.83 19069.80 25985.43 297
3Dnovator+73.60 782.10 12680.60 13886.60 6690.89 13166.80 12195.20 3593.44 8574.05 14967.42 26392.49 13249.46 24997.65 5570.80 19191.68 7395.33 64
DP-MVS Recon82.73 11481.65 12085.98 8497.31 467.06 11395.15 3791.99 13869.08 26176.50 15293.89 10354.48 20398.20 3570.76 19285.66 13492.69 165
miper_ehance_all_eth77.60 20476.44 20181.09 23485.70 25064.41 17890.65 21988.64 28272.31 19067.37 26682.52 27464.77 8192.64 27270.67 19365.30 29286.24 275
PAPM_NR82.97 11081.84 11886.37 7694.10 4466.76 12287.66 28292.84 10769.96 24874.07 17793.57 11063.10 10897.50 6570.66 19490.58 8994.85 86
XVG-OURS-SEG-HR74.70 24973.08 24779.57 27078.25 34457.33 31680.49 33787.32 30563.22 30668.76 24490.12 18344.89 29091.59 29870.55 19574.09 23389.79 220
mvs_tets72.71 27171.11 27077.52 29377.41 35154.52 33588.45 27089.76 23168.76 26562.70 30783.26 26729.49 36192.71 26570.51 19669.62 26185.34 299
cascas78.18 19575.77 21185.41 10487.14 22169.11 6092.96 11891.15 18066.71 28070.47 21886.07 23837.49 32696.48 12570.15 19779.80 18590.65 208
RRT_MVS74.44 25072.97 25078.84 28182.36 29657.66 31089.83 24488.79 27670.61 24164.58 28684.89 24939.24 30892.65 27170.11 19866.34 28786.21 276
PVSNet_068.08 1571.81 27768.32 29382.27 19984.68 26462.31 23888.68 26690.31 21075.84 12557.93 33480.65 30537.85 32394.19 21669.94 19929.05 39790.31 213
thisisatest051583.41 10182.49 11086.16 8189.46 15968.26 8193.54 9694.70 3674.31 14575.75 15590.92 16372.62 2896.52 12269.64 20081.50 17293.71 137
XXY-MVS77.94 20076.44 20182.43 19382.60 29364.44 17592.01 15991.83 14973.59 16370.00 22785.82 24154.43 20494.76 18869.63 20168.02 27688.10 245
MAR-MVS84.18 8783.43 8986.44 7396.25 2165.93 14294.28 5694.27 5674.41 14279.16 12195.61 4753.99 20898.88 2169.62 20293.26 5394.50 109
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
Patchmatch-RL test68.17 30664.49 31679.19 27571.22 37153.93 33770.07 37371.54 37969.22 25756.79 33862.89 37956.58 17988.61 32769.53 20352.61 36295.03 82
TAMVS80.37 15379.45 15683.13 18085.14 25863.37 21191.23 19990.76 19374.81 14072.65 19188.49 19760.63 13292.95 25369.41 20481.95 16893.08 155
testdata81.34 22489.02 17257.72 30889.84 22958.65 34085.32 6194.09 9857.03 16893.28 24669.34 20590.56 9093.03 157
c3_l76.83 21975.47 21580.93 23885.02 26164.18 18890.39 22688.11 29671.66 21366.65 27481.64 28663.58 10092.56 27369.31 20662.86 31486.04 282
v114476.73 22174.88 22182.27 19980.23 31866.60 12691.68 17890.21 21773.69 16069.06 23781.89 28152.73 22294.40 20769.21 20765.23 29585.80 288
ETVMVS84.22 8683.71 8185.76 9492.58 8768.25 8392.45 14295.53 1479.54 6979.46 11691.64 15370.29 3994.18 21769.16 20882.76 15994.84 89
Anonymous2024052976.84 21874.15 23484.88 12391.02 12764.95 16693.84 8191.09 18353.57 35873.00 18587.42 22035.91 33697.32 7669.14 20972.41 24892.36 174
XVG-OURS74.25 25372.46 25979.63 26878.45 34257.59 31280.33 33987.39 30463.86 29968.76 24489.62 18740.50 30591.72 29569.00 21074.25 23189.58 223
v14876.19 22474.47 22981.36 22380.05 32064.44 17591.75 17690.23 21573.68 16167.13 26780.84 30155.92 18793.86 23768.95 21161.73 32885.76 291
anonymousdsp71.14 28269.37 28676.45 30772.95 36754.71 33484.19 30588.88 27061.92 32062.15 31079.77 31738.14 31991.44 30568.90 21267.45 28083.21 322
3Dnovator73.91 682.69 11780.82 13188.31 2689.57 15571.26 2392.60 13594.39 5178.84 8567.89 25792.48 13348.42 25998.52 2868.80 21394.40 3595.15 76
test_fmvs356.82 34754.86 35062.69 36553.59 39635.47 39375.87 36265.64 38843.91 38355.10 34271.43 3656.91 40174.40 38668.64 21452.63 36178.20 370
Anonymous20240521177.96 19975.33 21885.87 8893.73 5464.52 17094.85 4585.36 32662.52 31476.11 15390.18 17829.43 36297.29 7868.51 21577.24 21295.81 49
eth_miper_zixun_eth75.96 23374.40 23080.66 24084.66 26563.02 21989.28 25588.27 29271.88 20465.73 27681.65 28559.45 14592.81 26168.13 21660.53 33786.14 278
PVSNet73.49 880.05 16078.63 16784.31 15090.92 13064.97 16592.47 14191.05 18879.18 7772.43 19890.51 17037.05 33294.06 22368.06 21786.00 13193.90 133
FA-MVS(test-final)79.12 17577.23 19184.81 12890.54 13663.98 19181.35 33291.71 15471.09 23174.85 16882.94 26952.85 22097.05 9167.97 21881.73 17193.41 144
v14419276.05 22974.03 23682.12 20779.50 32666.55 12891.39 18889.71 23872.30 19168.17 25081.33 29351.75 22994.03 22867.94 21964.19 30585.77 289
UGNet79.87 16478.68 16683.45 17489.96 14761.51 25392.13 15190.79 19276.83 11478.85 12886.33 23538.16 31896.17 13267.93 22087.17 11892.67 166
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
IterMVS-LS76.49 22275.18 22080.43 24484.49 26962.74 22890.64 22088.80 27472.40 18865.16 28181.72 28460.98 12892.27 28467.74 22164.65 30386.29 273
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet78.97 17878.22 17381.25 22585.33 25362.73 22989.53 25093.21 9172.39 18972.14 20190.13 18160.99 12794.72 19167.73 22272.49 24686.29 273
gg-mvs-nofinetune77.18 21074.31 23185.80 9291.42 11968.36 7771.78 36894.72 3449.61 36977.12 14545.92 39277.41 893.98 23067.62 22393.16 5495.05 80
LCM-MVSNet-Re72.93 26671.84 26576.18 31088.49 18248.02 36380.07 34470.17 38073.96 15352.25 35380.09 31449.98 24488.24 33267.35 22484.23 14792.28 178
tpm279.80 16577.95 17885.34 10888.28 19168.26 8181.56 32991.42 16870.11 24677.59 14080.50 30667.40 5594.26 21467.34 22577.35 20993.51 142
v875.35 24173.26 24681.61 21880.67 31166.82 11989.54 24989.27 25071.65 21463.30 30080.30 31054.99 19794.06 22367.33 22662.33 32083.94 310
sd_testset77.08 21375.37 21682.20 20389.25 16562.11 24182.06 32489.09 26176.77 11670.84 21587.12 22541.43 30295.01 18167.23 22774.55 22689.48 226
UWE-MVS80.81 14681.01 13080.20 25189.33 16257.05 31891.91 16594.71 3575.67 12775.01 16689.37 18963.13 10791.44 30567.19 22882.80 15892.12 186
v119275.98 23173.92 23882.15 20579.73 32266.24 13591.22 20089.75 23272.67 18068.49 24881.42 29149.86 24694.27 21267.08 22965.02 29785.95 285
114514_t79.17 17477.67 18083.68 16695.32 2965.53 15292.85 12291.60 16163.49 30267.92 25490.63 16846.65 27395.72 15667.01 23083.54 15089.79 220
Fast-Effi-MVS+81.14 13880.01 14584.51 14390.24 14265.86 14394.12 6389.15 25773.81 15775.37 16388.26 20457.26 16594.53 20366.97 23184.92 13793.15 152
无先验92.71 12792.61 11862.03 31897.01 9566.63 23293.97 128
v192192075.63 23973.49 24482.06 21179.38 32766.35 13191.07 20789.48 24171.98 19967.99 25181.22 29649.16 25593.90 23466.56 23364.56 30485.92 287
cl____76.07 22674.67 22280.28 24785.15 25761.76 24890.12 23488.73 27771.16 22865.43 27881.57 28861.15 12592.95 25366.54 23462.17 32186.13 280
DIV-MVS_self_test76.07 22674.67 22280.28 24785.14 25861.75 24990.12 23488.73 27771.16 22865.42 27981.60 28761.15 12592.94 25766.54 23462.16 32386.14 278
Fast-Effi-MVS+-dtu75.04 24573.37 24580.07 25480.86 30759.52 28891.20 20285.38 32571.90 20265.20 28084.84 25041.46 30192.97 25266.50 23672.96 24187.73 247
UniMVSNet_NR-MVSNet78.15 19677.55 18379.98 25884.46 27060.26 27792.25 14693.20 9377.50 10668.88 24186.61 23066.10 6492.13 28666.38 23762.55 31787.54 248
DU-MVS76.86 21575.84 21079.91 26182.96 29060.26 27791.26 19791.54 16276.46 12168.88 24186.35 23356.16 18292.13 28666.38 23762.55 31787.35 255
1112_ss80.56 14979.83 14982.77 18588.65 18060.78 26592.29 14588.36 28872.58 18272.46 19794.95 6865.09 7493.42 24566.38 23777.71 20294.10 121
FIs79.47 17079.41 15779.67 26785.95 24359.40 28991.68 17893.94 6378.06 9468.96 24088.28 20266.61 6191.77 29466.20 24074.99 22587.82 246
tpm78.58 18977.03 19383.22 17885.94 24564.56 16983.21 31791.14 18178.31 9173.67 18179.68 31864.01 8892.09 28866.07 24171.26 25693.03 157
ACMM69.62 1374.34 25172.73 25479.17 27684.25 27557.87 30690.36 22789.93 22663.17 30865.64 27786.04 24037.79 32494.10 21965.89 24271.52 25385.55 294
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Vis-MVSNetpermissive80.92 14479.98 14783.74 16288.48 18361.80 24693.44 10388.26 29473.96 15377.73 13691.76 14949.94 24594.76 18865.84 24390.37 9194.65 99
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
Test_1112_low_res79.56 16878.60 16882.43 19388.24 19460.39 27692.09 15487.99 29972.10 19871.84 20487.42 22064.62 8293.04 24965.80 24477.30 21093.85 135
v1074.77 24872.54 25881.46 22180.33 31666.71 12389.15 25989.08 26270.94 23363.08 30379.86 31552.52 22394.04 22665.70 24562.17 32183.64 313
thisisatest053081.15 13780.07 14384.39 14788.26 19265.63 14891.40 18694.62 4071.27 22770.93 21489.18 19172.47 2996.04 14165.62 24676.89 21591.49 192
D2MVS73.80 25872.02 26379.15 27879.15 33162.97 22088.58 26890.07 22072.94 17359.22 32378.30 32542.31 30092.70 26765.59 24772.00 24981.79 340
MVP-Stereo77.12 21276.23 20479.79 26581.72 30266.34 13289.29 25490.88 19170.56 24262.01 31182.88 27049.34 25094.13 21865.55 24893.80 4278.88 365
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
v124075.21 24472.98 24981.88 21379.20 32966.00 13990.75 21689.11 26071.63 21867.41 26481.22 29647.36 26993.87 23565.46 24964.72 30285.77 289
miper_lstm_enhance73.05 26471.73 26777.03 30183.80 27958.32 30381.76 32588.88 27069.80 25161.01 31378.23 32757.19 16687.51 34265.34 25059.53 34285.27 301
原ACMM184.42 14593.21 6864.27 18593.40 8865.39 28979.51 11592.50 13058.11 15996.69 11565.27 25193.96 3992.32 176
tt080573.07 26370.73 27580.07 25478.37 34357.05 31887.78 28092.18 13361.23 32567.04 26886.49 23231.35 35694.58 19765.06 25267.12 28188.57 236
UniMVSNet (Re)77.58 20576.78 19779.98 25884.11 27660.80 26491.76 17493.17 9576.56 12069.93 23084.78 25163.32 10492.36 28164.89 25362.51 31986.78 265
BH-w/o80.49 15179.30 16084.05 15790.83 13364.36 18293.60 9389.42 24574.35 14469.09 23590.15 18055.23 19395.61 16064.61 25486.43 13092.17 184
AdaColmapbinary78.94 17977.00 19584.76 13096.34 1765.86 14392.66 13287.97 30162.18 31670.56 21792.37 13643.53 29497.35 7464.50 25582.86 15591.05 205
PCF-MVS73.15 979.29 17277.63 18284.29 15186.06 24165.96 14187.03 28991.10 18269.86 25069.79 23190.64 16657.54 16496.59 11764.37 25682.29 16090.32 212
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
API-MVS82.28 12180.53 13987.54 4196.13 2270.59 3393.63 9291.04 18965.72 28875.45 16292.83 12656.11 18498.89 2064.10 25789.75 9793.15 152
UniMVSNet_ETH3D72.74 27070.53 27779.36 27378.62 34156.64 32285.01 30189.20 25363.77 30064.84 28484.44 25634.05 34391.86 29263.94 25870.89 25889.57 224
Anonymous2023121173.08 26270.39 27881.13 22990.62 13563.33 21291.40 18690.06 22251.84 36364.46 29080.67 30436.49 33494.07 22263.83 25964.17 30685.98 284
MS-PatchMatch77.90 20276.50 20082.12 20785.99 24269.95 4291.75 17692.70 11173.97 15262.58 30884.44 25641.11 30395.78 14863.76 26092.17 6580.62 351
新几何184.73 13192.32 9064.28 18491.46 16759.56 33679.77 11292.90 12256.95 17396.57 11963.40 26192.91 5793.34 146
dmvs_re76.93 21475.36 21781.61 21887.78 20860.71 27080.00 34587.99 29979.42 7169.02 23889.47 18846.77 27194.32 20863.38 26274.45 22989.81 219
GeoE78.90 18077.43 18583.29 17688.95 17462.02 24292.31 14486.23 31870.24 24571.34 21289.27 19054.43 20494.04 22663.31 26380.81 17993.81 136
IterMVS72.65 27470.83 27278.09 28982.17 29862.96 22187.64 28386.28 31671.56 22160.44 31678.85 32345.42 28686.66 34663.30 26461.83 32584.65 306
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CMPMVSbinary48.56 2166.77 31664.41 31773.84 32670.65 37550.31 35377.79 35685.73 32445.54 37944.76 37882.14 27935.40 33890.14 31963.18 26574.54 22881.07 346
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
pmmvs473.92 25771.81 26680.25 24979.17 33065.24 15787.43 28587.26 30767.64 27463.46 29883.91 26148.96 25791.53 30362.94 26665.49 29183.96 309
tttt051779.50 16978.53 16982.41 19687.22 21961.43 25589.75 24694.76 3269.29 25667.91 25588.06 21172.92 2595.63 15862.91 26773.90 23690.16 214
FC-MVSNet-test77.99 19878.08 17577.70 29184.89 26355.51 32990.27 23093.75 7276.87 11166.80 27387.59 21765.71 6990.23 31762.89 26873.94 23487.37 253
Baseline_NR-MVSNet73.99 25672.83 25177.48 29580.78 30959.29 29391.79 17184.55 33368.85 26268.99 23980.70 30256.16 18292.04 28962.67 26960.98 33481.11 345
IterMVS-SCA-FT71.55 28069.97 28076.32 30881.48 30360.67 27287.64 28385.99 32166.17 28459.50 32178.88 32245.53 28483.65 36362.58 27061.93 32484.63 307
IS-MVSNet80.14 15879.41 15782.33 19787.91 20260.08 28191.97 16388.27 29272.90 17771.44 21191.73 15161.44 12493.66 24062.47 27186.53 12893.24 149
WR-MVS76.76 22075.74 21279.82 26484.60 26662.27 23992.60 13592.51 12176.06 12367.87 25885.34 24456.76 17490.24 31662.20 27263.69 31286.94 263
pmmvs573.35 26171.52 26878.86 28078.64 34060.61 27491.08 20586.90 31067.69 27163.32 29983.64 26244.33 29290.53 31062.04 27366.02 28985.46 296
TranMVSNet+NR-MVSNet75.86 23474.52 22879.89 26282.44 29560.64 27391.37 19191.37 16976.63 11867.65 26086.21 23752.37 22591.55 29961.84 27460.81 33587.48 250
CVMVSNet74.04 25574.27 23273.33 32985.33 25343.94 37989.53 25088.39 28754.33 35770.37 22190.13 18149.17 25484.05 35961.83 27579.36 18991.99 187
PM-MVS59.40 34456.59 34667.84 35563.63 38641.86 38276.76 35863.22 39059.01 33851.07 35972.27 36011.72 39383.25 36761.34 27650.28 36878.39 369
testdata296.09 13661.26 277
UA-Net80.02 16179.65 15181.11 23089.33 16257.72 30886.33 29689.00 26877.44 10781.01 9689.15 19259.33 14895.90 14561.01 27884.28 14689.73 222
NR-MVSNet76.05 22974.59 22580.44 24382.96 29062.18 24090.83 21391.73 15277.12 11060.96 31486.35 23359.28 14991.80 29360.74 27961.34 33287.35 255
XVG-ACMP-BASELINE68.04 30765.53 30775.56 31274.06 36452.37 34278.43 35185.88 32262.03 31858.91 32781.21 29820.38 38191.15 30760.69 28068.18 27483.16 323
test_post178.95 34820.70 40553.05 21891.50 30460.43 281
SCA75.82 23572.76 25285.01 11986.63 23070.08 3881.06 33489.19 25471.60 21970.01 22677.09 33745.53 28490.25 31360.43 28173.27 23894.68 96
pm-mvs172.89 26771.09 27178.26 28779.10 33357.62 31190.80 21489.30 24967.66 27262.91 30581.78 28349.11 25692.95 25360.29 28358.89 34584.22 308
TR-MVS78.77 18577.37 19082.95 18290.49 13760.88 26393.67 8990.07 22070.08 24774.51 17191.37 15945.69 28395.70 15760.12 28480.32 18192.29 177
MDTV_nov1_ep13_2view59.90 28380.13 34367.65 27372.79 18954.33 20659.83 28592.58 169
GBi-Net75.65 23773.83 23981.10 23188.85 17565.11 16190.01 23890.32 20770.84 23567.04 26880.25 31148.03 26191.54 30059.80 28669.34 26386.64 266
test175.65 23773.83 23981.10 23188.85 17565.11 16190.01 23890.32 20770.84 23567.04 26880.25 31148.03 26191.54 30059.80 28669.34 26386.64 266
FMVSNet377.73 20376.04 20782.80 18491.20 12668.99 6491.87 16791.99 13873.35 16667.04 26883.19 26856.62 17892.14 28559.80 28669.34 26387.28 257
BH-untuned78.68 18677.08 19283.48 17389.84 14963.74 19692.70 12888.59 28371.57 22066.83 27288.65 19651.75 22995.39 17059.03 28984.77 13991.32 199
Vis-MVSNet (Re-imp)79.24 17379.57 15278.24 28888.46 18452.29 34390.41 22589.12 25974.24 14669.13 23491.91 14765.77 6890.09 32059.00 29088.09 10892.33 175
FMVSNet276.07 22674.01 23782.26 20188.85 17567.66 9791.33 19491.61 16070.84 23565.98 27582.25 27748.03 26192.00 29058.46 29168.73 27187.10 260
mvsany_test348.86 35446.35 35756.41 36846.00 40231.67 39862.26 38647.25 40343.71 38445.54 37668.15 37110.84 39464.44 40057.95 29235.44 39173.13 378
v7n71.31 28168.65 28879.28 27476.40 35560.77 26686.71 29489.45 24364.17 29758.77 32878.24 32644.59 29193.54 24157.76 29361.75 32783.52 316
QAPM79.95 16377.39 18987.64 3489.63 15471.41 2193.30 10693.70 7365.34 29167.39 26591.75 15047.83 26698.96 1657.71 29489.81 9492.54 170
EPMVS78.49 19175.98 20886.02 8391.21 12569.68 5180.23 34191.20 17675.25 13472.48 19678.11 32854.65 19993.69 23957.66 29583.04 15494.69 95
WB-MVSnew77.14 21176.18 20680.01 25786.18 23963.24 21491.26 19794.11 6071.72 21273.52 18287.29 22345.14 28893.00 25156.98 29679.42 18783.80 312
PLCcopyleft68.80 1475.23 24373.68 24279.86 26392.93 7558.68 30090.64 22088.30 29060.90 32664.43 29190.53 16942.38 29994.57 19956.52 29776.54 21786.33 272
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
EPNet_dtu78.80 18379.26 16177.43 29688.06 19849.71 35691.96 16491.95 14077.67 10176.56 15191.28 16058.51 15490.20 31856.37 29880.95 17692.39 173
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
BH-RMVSNet79.46 17177.65 18184.89 12291.68 11265.66 14693.55 9588.09 29772.93 17473.37 18391.12 16246.20 28096.12 13456.28 29985.61 13592.91 161
UnsupCasMVSNet_eth65.79 32163.10 32373.88 32570.71 37450.29 35481.09 33389.88 22872.58 18249.25 36674.77 35232.57 34987.43 34355.96 30041.04 38283.90 311
pmmvs667.57 31164.76 31276.00 31172.82 36953.37 33988.71 26586.78 31453.19 35957.58 33678.03 32935.33 33992.41 27855.56 30154.88 35782.21 337
pmmvs-eth3d65.53 32462.32 32975.19 31569.39 37959.59 28682.80 32183.43 34362.52 31451.30 35872.49 35532.86 34587.16 34555.32 30250.73 36678.83 366
FE-MVS75.97 23273.02 24884.82 12589.78 15065.56 15077.44 35791.07 18664.55 29472.66 19079.85 31646.05 28296.69 11554.97 30380.82 17892.21 183
OpenMVScopyleft70.45 1178.54 19075.92 20986.41 7585.93 24671.68 1992.74 12592.51 12166.49 28264.56 28791.96 14443.88 29398.10 3754.61 30490.65 8889.44 228
FMVSNet172.71 27169.91 28281.10 23183.60 28365.11 16190.01 23890.32 20763.92 29863.56 29780.25 31136.35 33591.54 30054.46 30566.75 28486.64 266
PatchmatchNetpermissive77.46 20674.63 22485.96 8589.55 15770.35 3679.97 34689.55 24072.23 19370.94 21376.91 33957.03 16892.79 26354.27 30681.17 17494.74 94
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MIMVSNet71.64 27868.44 29181.23 22681.97 30164.44 17573.05 36788.80 27469.67 25264.59 28574.79 35132.79 34687.82 33653.99 30776.35 21891.42 194
CNLPA74.31 25272.30 26080.32 24591.49 11861.66 25190.85 21280.72 35456.67 35063.85 29590.64 16646.75 27290.84 30853.79 30875.99 22188.47 240
tpm cat175.30 24272.21 26184.58 14088.52 18167.77 9478.16 35588.02 29861.88 32168.45 24976.37 34360.65 13194.03 22853.77 30974.11 23291.93 188
OurMVSNet-221017-064.68 32662.17 33072.21 33976.08 35847.35 36780.67 33681.02 35256.19 35151.60 35579.66 31927.05 36888.56 32953.60 31053.63 36080.71 350
PatchMatch-RL72.06 27669.98 27978.28 28689.51 15855.70 32883.49 31083.39 34561.24 32463.72 29682.76 27134.77 34093.03 25053.37 31177.59 20486.12 281
CR-MVSNet73.79 25970.82 27482.70 18783.15 28767.96 9070.25 37184.00 33873.67 16269.97 22872.41 35757.82 16189.48 32452.99 31273.13 23990.64 209
USDC67.43 31464.51 31576.19 30977.94 34855.29 33078.38 35285.00 32973.17 16848.36 36880.37 30821.23 37892.48 27752.15 31364.02 30980.81 349
CP-MVSNet70.50 28569.91 28272.26 33880.71 31051.00 35087.23 28890.30 21167.84 27059.64 32082.69 27250.23 24382.30 37351.28 31459.28 34383.46 318
F-COLMAP70.66 28368.44 29177.32 29886.37 23655.91 32688.00 27686.32 31556.94 34857.28 33788.07 21033.58 34492.49 27651.02 31568.37 27383.55 314
PS-CasMVS69.86 29269.13 28772.07 34280.35 31550.57 35287.02 29089.75 23267.27 27659.19 32482.28 27646.58 27482.24 37450.69 31659.02 34483.39 320
dp75.01 24672.09 26283.76 16189.28 16466.22 13679.96 34789.75 23271.16 22867.80 25977.19 33651.81 22892.54 27450.39 31771.44 25592.51 172
test_vis3_rt40.46 36237.79 36348.47 37944.49 40433.35 39666.56 38232.84 41032.39 39229.65 39239.13 4003.91 40868.65 39150.17 31840.99 38343.40 395
test0.0.03 172.76 26972.71 25572.88 33380.25 31747.99 36491.22 20089.45 24371.51 22362.51 30987.66 21653.83 20985.06 35550.16 31967.84 27985.58 292
UnsupCasMVSNet_bld61.60 33857.71 34273.29 33068.73 38051.64 34578.61 35089.05 26457.20 34646.11 37161.96 38228.70 36488.60 32850.08 32038.90 38679.63 359
K. test v363.09 33459.61 33873.53 32876.26 35649.38 36083.27 31477.15 36264.35 29647.77 37072.32 35928.73 36387.79 33749.93 32136.69 38883.41 319
JIA-IIPM66.06 31962.45 32876.88 30581.42 30554.45 33657.49 39388.67 28049.36 37063.86 29446.86 39156.06 18590.25 31349.53 32268.83 26985.95 285
CL-MVSNet_self_test69.92 29068.09 29475.41 31373.25 36655.90 32790.05 23789.90 22769.96 24861.96 31276.54 34051.05 23687.64 33949.51 32350.59 36782.70 331
FMVSNet568.04 30765.66 30675.18 31684.43 27157.89 30583.54 30986.26 31761.83 32253.64 34973.30 35437.15 33085.08 35448.99 32461.77 32682.56 334
TransMVSNet (Re)70.07 28967.66 29577.31 29980.62 31359.13 29691.78 17384.94 33065.97 28560.08 31980.44 30750.78 23791.87 29148.84 32545.46 37580.94 347
EU-MVSNet64.01 33063.01 32467.02 36074.40 36338.86 39183.27 31486.19 31945.11 38054.27 34581.15 29936.91 33380.01 38148.79 32657.02 34982.19 338
PEN-MVS69.46 29568.56 28972.17 34079.27 32849.71 35686.90 29289.24 25167.24 27959.08 32582.51 27547.23 27083.54 36448.42 32757.12 34883.25 321
KD-MVS_self_test60.87 34058.60 34067.68 35766.13 38439.93 38875.63 36484.70 33157.32 34549.57 36468.45 37029.55 36082.87 36948.09 32847.94 37180.25 356
KD-MVS_2432*160069.03 29866.37 30177.01 30285.56 25161.06 26081.44 33090.25 21367.27 27658.00 33276.53 34154.49 20187.63 34048.04 32935.77 38982.34 335
miper_refine_blended69.03 29866.37 30177.01 30285.56 25161.06 26081.44 33090.25 21367.27 27658.00 33276.53 34154.49 20187.63 34048.04 32935.77 38982.34 335
MDTV_nov1_ep1372.61 25689.06 17168.48 7480.33 33990.11 21971.84 20771.81 20575.92 34753.01 21993.92 23348.04 32973.38 237
thres20079.66 16678.33 17083.66 16892.54 8865.82 14593.06 11396.31 374.90 13973.30 18488.66 19559.67 14395.61 16047.84 33278.67 19689.56 225
RPSCF64.24 32961.98 33171.01 34676.10 35745.00 37675.83 36375.94 36446.94 37658.96 32684.59 25331.40 35582.00 37547.76 33360.33 34186.04 282
lessismore_v073.72 32772.93 36847.83 36561.72 39245.86 37473.76 35328.63 36589.81 32147.75 33431.37 39483.53 315
EG-PatchMatch MVS68.55 30265.41 30877.96 29078.69 33962.93 22289.86 24389.17 25560.55 32850.27 36177.73 33122.60 37694.06 22347.18 33572.65 24576.88 373
test_f46.58 35543.45 35955.96 36945.18 40332.05 39761.18 38749.49 40133.39 39142.05 38462.48 3817.00 40065.56 39647.08 33643.21 37970.27 384
ACMH+65.35 1667.65 31064.55 31476.96 30484.59 26757.10 31788.08 27380.79 35358.59 34153.00 35081.09 30026.63 36992.95 25346.51 33761.69 33080.82 348
Anonymous2024052162.09 33659.08 33971.10 34567.19 38248.72 36283.91 30785.23 32750.38 36747.84 36971.22 36620.74 37985.51 35346.47 33858.75 34679.06 363
WR-MVS_H70.59 28469.94 28172.53 33581.03 30651.43 34787.35 28692.03 13767.38 27560.23 31880.70 30255.84 18883.45 36546.33 33958.58 34782.72 329
Patchmtry67.53 31263.93 31978.34 28482.12 29964.38 17968.72 37584.00 33848.23 37459.24 32272.41 35757.82 16189.27 32546.10 34056.68 35281.36 342
SixPastTwentyTwo64.92 32561.78 33274.34 32378.74 33849.76 35583.42 31379.51 35962.86 31050.27 36177.35 33230.92 35990.49 31145.89 34147.06 37282.78 326
ambc69.61 34961.38 39141.35 38449.07 39885.86 32350.18 36366.40 37310.16 39588.14 33345.73 34244.20 37679.32 362
thres100view90078.37 19277.01 19482.46 19291.89 10663.21 21591.19 20396.33 172.28 19270.45 22087.89 21360.31 13495.32 17245.16 34377.58 20588.83 230
tfpn200view978.79 18477.43 18582.88 18392.21 9464.49 17192.05 15796.28 473.48 16471.75 20688.26 20460.07 13995.32 17245.16 34377.58 20588.83 230
thres40078.68 18677.43 18582.43 19392.21 9464.49 17192.05 15796.28 473.48 16471.75 20688.26 20460.07 13995.32 17245.16 34377.58 20587.48 250
DTE-MVSNet68.46 30467.33 29771.87 34477.94 34849.00 36186.16 29788.58 28466.36 28358.19 32982.21 27846.36 27583.87 36244.97 34655.17 35582.73 328
pmmvs355.51 34951.50 35467.53 35857.90 39450.93 35180.37 33873.66 37240.63 38844.15 38164.75 37716.30 38578.97 38244.77 34740.98 38472.69 379
our_test_368.29 30564.69 31379.11 27978.92 33464.85 16888.40 27185.06 32860.32 33152.68 35176.12 34540.81 30489.80 32344.25 34855.65 35382.67 333
tpmvs72.88 26869.76 28482.22 20290.98 12867.05 11478.22 35488.30 29063.10 30964.35 29274.98 35055.09 19694.27 21243.25 34969.57 26285.34 299
ITE_SJBPF70.43 34774.44 36247.06 37177.32 36160.16 33254.04 34783.53 26323.30 37584.01 36043.07 35061.58 33180.21 357
Anonymous2023120667.53 31265.78 30372.79 33474.95 36047.59 36688.23 27287.32 30561.75 32358.07 33177.29 33437.79 32487.29 34442.91 35163.71 31183.48 317
YYNet163.76 33360.14 33674.62 32078.06 34760.19 28083.46 31283.99 34056.18 35239.25 38671.56 36437.18 32983.34 36642.90 35248.70 37080.32 354
MDA-MVSNet_test_wron63.78 33260.16 33574.64 31978.15 34660.41 27583.49 31084.03 33656.17 35339.17 38771.59 36337.22 32883.24 36842.87 35348.73 36980.26 355
MSDG69.54 29465.73 30480.96 23685.11 26063.71 19984.19 30583.28 34656.95 34754.50 34484.03 25831.50 35496.03 14242.87 35369.13 26883.14 324
thres600view778.00 19776.66 19982.03 21291.93 10363.69 20191.30 19696.33 172.43 18770.46 21987.89 21360.31 13494.92 18642.64 35576.64 21687.48 250
ACMH63.93 1768.62 30164.81 31180.03 25685.22 25663.25 21387.72 28184.66 33260.83 32751.57 35679.43 32127.29 36794.96 18341.76 35664.84 29981.88 339
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
testgi64.48 32862.87 32669.31 35171.24 37040.62 38685.49 29879.92 35765.36 29054.18 34683.49 26523.74 37484.55 35641.60 35760.79 33682.77 327
PatchT69.11 29765.37 30980.32 24582.07 30063.68 20267.96 38087.62 30350.86 36669.37 23265.18 37557.09 16788.53 33041.59 35866.60 28588.74 233
LF4IMVS54.01 35152.12 35259.69 36662.41 38939.91 38968.59 37668.28 38542.96 38644.55 38075.18 34914.09 39268.39 39241.36 35951.68 36470.78 382
ADS-MVSNet266.90 31563.44 32277.26 30088.06 19860.70 27168.01 37875.56 36757.57 34264.48 28869.87 36738.68 31084.10 35840.87 36067.89 27786.97 261
ADS-MVSNet68.54 30364.38 31881.03 23588.06 19866.90 11868.01 37884.02 33757.57 34264.48 28869.87 36738.68 31089.21 32640.87 36067.89 27786.97 261
LTVRE_ROB59.60 1966.27 31863.54 32174.45 32184.00 27851.55 34667.08 38183.53 34258.78 33954.94 34380.31 30934.54 34193.23 24740.64 36268.03 27578.58 368
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
MVS-HIRNet60.25 34255.55 34974.35 32284.37 27256.57 32371.64 36974.11 37134.44 39045.54 37642.24 39731.11 35889.81 32140.36 36376.10 22076.67 374
ppachtmachnet_test67.72 30963.70 32079.77 26678.92 33466.04 13888.68 26682.90 34860.11 33355.45 34175.96 34639.19 30990.55 30939.53 36452.55 36382.71 330
new-patchmatchnet59.30 34556.48 34767.79 35665.86 38544.19 37782.47 32281.77 34959.94 33443.65 38266.20 37427.67 36681.68 37639.34 36541.40 38177.50 372
AllTest61.66 33758.06 34172.46 33679.57 32351.42 34880.17 34268.61 38351.25 36445.88 37281.23 29419.86 38386.58 34738.98 36657.01 35079.39 360
TestCases72.46 33679.57 32351.42 34868.61 38351.25 36445.88 37281.23 29419.86 38386.58 34738.98 36657.01 35079.39 360
test20.0363.83 33162.65 32767.38 35970.58 37639.94 38786.57 29584.17 33563.29 30551.86 35477.30 33337.09 33182.47 37138.87 36854.13 35979.73 358
TAPA-MVS70.22 1274.94 24773.53 24379.17 27690.40 13952.07 34489.19 25889.61 23962.69 31370.07 22592.67 12848.89 25894.32 20838.26 36979.97 18391.12 204
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
tmp_tt22.26 37323.75 37517.80 3895.23 41312.06 41435.26 40039.48 4072.82 40718.94 39844.20 39622.23 37724.64 40836.30 3709.31 40516.69 402
DSMNet-mixed56.78 34854.44 35163.79 36363.21 38729.44 40264.43 38464.10 38942.12 38751.32 35771.60 36231.76 35375.04 38436.23 37165.20 29686.87 264
TinyColmap60.32 34156.42 34872.00 34378.78 33753.18 34078.36 35375.64 36652.30 36041.59 38575.82 34814.76 39088.35 33135.84 37254.71 35874.46 377
MDA-MVSNet-bldmvs61.54 33957.70 34373.05 33179.53 32557.00 32183.08 31881.23 35157.57 34234.91 39072.45 35632.79 34686.26 34935.81 37341.95 38075.89 375
RPMNet70.42 28665.68 30584.63 13883.15 28767.96 9070.25 37190.45 20146.83 37769.97 22865.10 37656.48 18195.30 17535.79 37473.13 23990.64 209
Patchmatch-test65.86 32060.94 33480.62 24283.75 28058.83 29858.91 39275.26 36944.50 38250.95 36077.09 33758.81 15387.90 33435.13 37564.03 30895.12 78
OpenMVS_ROBcopyleft61.12 1866.39 31762.92 32576.80 30676.51 35457.77 30789.22 25683.41 34455.48 35453.86 34877.84 33026.28 37093.95 23234.90 37668.76 27078.68 367
test_method38.59 36435.16 36748.89 37854.33 39521.35 40845.32 39953.71 3977.41 40528.74 39351.62 3898.70 39852.87 40333.73 37732.89 39372.47 380
LCM-MVSNet40.54 36035.79 36554.76 37336.92 40930.81 39951.41 39669.02 38222.07 39624.63 39645.37 3934.56 40565.81 39533.67 37834.50 39267.67 385
DP-MVS69.90 29166.48 29880.14 25295.36 2862.93 22289.56 24776.11 36350.27 36857.69 33585.23 24539.68 30795.73 15233.35 37971.05 25781.78 341
TDRefinement55.28 35051.58 35366.39 36159.53 39346.15 37376.23 36172.80 37344.60 38142.49 38376.28 34415.29 38882.39 37233.20 38043.75 37770.62 383
COLMAP_ROBcopyleft57.96 2062.98 33559.65 33772.98 33281.44 30453.00 34183.75 30875.53 36848.34 37348.81 36781.40 29224.14 37290.30 31232.95 38160.52 33875.65 376
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
new_pmnet49.31 35346.44 35657.93 36762.84 38840.74 38568.47 37762.96 39136.48 38935.09 38957.81 38614.97 38972.18 38832.86 38246.44 37360.88 389
myMVS_eth3d72.58 27572.74 25372.10 34187.87 20449.45 35888.07 27489.01 26572.91 17563.11 30188.10 20863.63 9585.54 35132.73 38369.23 26681.32 343
MIMVSNet160.16 34357.33 34468.67 35369.71 37744.13 37878.92 34984.21 33455.05 35544.63 37971.85 36123.91 37381.54 37732.63 38455.03 35680.35 353
LS3D69.17 29666.40 30077.50 29491.92 10456.12 32585.12 30080.37 35646.96 37556.50 33987.51 21937.25 32793.71 23832.52 38579.40 18882.68 332
tfpnnormal70.10 28867.36 29678.32 28583.45 28560.97 26288.85 26392.77 10964.85 29360.83 31578.53 32443.52 29593.48 24331.73 38661.70 32980.52 352
N_pmnet50.55 35249.11 35554.88 37277.17 3524.02 41584.36 3042.00 41348.59 37145.86 37468.82 36932.22 35182.80 37031.58 38751.38 36577.81 371
WAC-MVS49.45 35831.56 388
dmvs_testset65.55 32366.45 29962.86 36479.87 32122.35 40776.55 35971.74 37777.42 10955.85 34087.77 21551.39 23380.69 37931.51 38965.92 29085.55 294
testing370.38 28770.83 27269.03 35285.82 24743.93 38090.72 21790.56 20068.06 26960.24 31786.82 22964.83 7984.12 35726.33 39064.10 30779.04 364
PMMVS237.93 36533.61 36850.92 37546.31 40124.76 40560.55 39050.05 39928.94 39520.93 39747.59 3904.41 40765.13 39725.14 39118.55 40162.87 388
test_040264.54 32761.09 33374.92 31884.10 27760.75 26887.95 27779.71 35852.03 36152.41 35277.20 33532.21 35291.64 29623.14 39261.03 33372.36 381
APD_test140.50 36137.31 36450.09 37751.88 39735.27 39459.45 39152.59 39821.64 39726.12 39557.80 3874.56 40566.56 39422.64 39339.09 38548.43 393
Syy-MVS69.65 29369.52 28570.03 34887.87 20443.21 38188.07 27489.01 26572.91 17563.11 30188.10 20845.28 28785.54 35122.07 39469.23 26681.32 343
ANet_high40.27 36335.20 36655.47 37034.74 41034.47 39563.84 38571.56 37848.42 37218.80 39941.08 3989.52 39764.45 39920.18 3958.66 40667.49 386
DeepMVS_CXcopyleft34.71 38651.45 39824.73 40628.48 41231.46 39317.49 40252.75 3885.80 40342.60 40718.18 39619.42 40036.81 399
EGC-MVSNET42.35 35938.09 36255.11 37174.57 36146.62 37271.63 37055.77 3940.04 4080.24 40962.70 38014.24 39174.91 38517.59 39746.06 37443.80 394
testf132.77 36729.47 37042.67 38341.89 40630.81 39952.07 39443.45 40415.45 40018.52 40044.82 3942.12 40958.38 40116.05 39830.87 39538.83 396
APD_test232.77 36729.47 37042.67 38341.89 40630.81 39952.07 39443.45 40415.45 40018.52 40044.82 3942.12 40958.38 40116.05 39830.87 39538.83 396
FPMVS45.64 35743.10 36153.23 37451.42 39936.46 39264.97 38371.91 37629.13 39427.53 39461.55 3839.83 39665.01 39816.00 40055.58 35458.22 390
Gipumacopyleft34.91 36631.44 36945.30 38170.99 37339.64 39019.85 40372.56 37420.10 39916.16 40321.47 4045.08 40471.16 38913.07 40143.70 37825.08 401
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
MVEpermissive24.84 2324.35 37119.77 37738.09 38534.56 41126.92 40426.57 40138.87 40811.73 40411.37 40527.44 4011.37 41250.42 40411.41 40214.60 40236.93 398
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
WB-MVS46.23 35644.94 35850.11 37662.13 39021.23 40976.48 36055.49 39545.89 37835.78 38861.44 38435.54 33772.83 3879.96 40321.75 39856.27 391
PMVScopyleft26.43 2231.84 36928.16 37242.89 38225.87 41227.58 40350.92 39749.78 40021.37 39814.17 40440.81 3992.01 41166.62 3939.61 40438.88 38734.49 400
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
SSC-MVS44.51 35843.35 36047.99 38061.01 39218.90 41174.12 36654.36 39643.42 38534.10 39160.02 38534.42 34270.39 3909.14 40519.57 39954.68 392
E-PMN24.61 37024.00 37426.45 38743.74 40518.44 41260.86 38839.66 40615.11 4029.53 40622.10 4036.52 40246.94 4058.31 40610.14 40313.98 403
EMVS23.76 37223.20 37625.46 38841.52 40816.90 41360.56 38938.79 40914.62 4038.99 40720.24 4067.35 39945.82 4067.25 4079.46 40413.64 404
wuyk23d11.30 37510.95 37812.33 39048.05 40019.89 41025.89 4021.92 4143.58 4063.12 4081.37 4080.64 41315.77 4096.23 4087.77 4071.35 405
testmvs7.23 3779.62 3800.06 3920.04 4140.02 41784.98 3020.02 4150.03 4090.18 4101.21 4090.01 4150.02 4100.14 4090.01 4080.13 407
test1236.92 3789.21 3810.08 3910.03 4150.05 41681.65 3280.01 4160.02 4100.14 4110.85 4100.03 4140.02 4100.12 4100.00 4090.16 406
test_blank0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4090.00 408
uanet_test0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4090.00 408
DCPMVS0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4090.00 408
cdsmvs_eth3d_5k19.86 37426.47 3730.00 3930.00 4160.00 4180.00 40493.45 840.00 4110.00 41295.27 5849.56 2480.00 4120.00 4110.00 4090.00 408
pcd_1.5k_mvsjas4.46 3795.95 3820.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 41153.55 2130.00 4120.00 4110.00 4090.00 408
sosnet-low-res0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4090.00 408
sosnet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4090.00 408
uncertanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4090.00 408
Regformer0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4090.00 408
ab-mvs-re7.91 37610.55 3790.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 41294.95 680.00 4160.00 4120.00 4110.00 4090.00 408
uanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4090.00 408
FOURS193.95 4561.77 24793.96 7191.92 14162.14 31786.57 47
test_one_060196.32 1869.74 4994.18 5771.42 22590.67 1996.85 1674.45 18
eth-test20.00 416
eth-test0.00 416
test_241102_ONE96.45 1269.38 5494.44 4671.65 21492.11 797.05 776.79 999.11 6
save fliter93.84 4867.89 9295.05 4092.66 11478.19 92
test072696.40 1569.99 3996.76 894.33 5471.92 20091.89 1197.11 673.77 21
GSMVS94.68 96
test_part296.29 1968.16 8690.78 17
sam_mvs157.85 16094.68 96
sam_mvs54.91 198
MTGPAbinary92.23 127
test_post23.01 40256.49 18092.67 268
patchmatchnet-post67.62 37257.62 16390.25 313
MTMP93.77 8532.52 411
TEST994.18 4167.28 10794.16 5993.51 8071.75 21185.52 5795.33 5368.01 5097.27 82
test_894.19 4067.19 10994.15 6293.42 8671.87 20585.38 6095.35 5268.19 4896.95 104
agg_prior94.16 4366.97 11793.31 8984.49 6896.75 114
test_prior467.18 11193.92 74
test_prior86.42 7494.71 3567.35 10693.10 9996.84 11195.05 80
新几何291.41 184
旧先验191.94 10260.74 26991.50 16594.36 8665.23 7391.84 7094.55 103
原ACMM292.01 159
test22289.77 15161.60 25289.55 24889.42 24556.83 34977.28 14392.43 13452.76 22191.14 8493.09 154
segment_acmp65.94 66
testdata189.21 25777.55 105
test1287.09 5194.60 3668.86 6692.91 10582.67 8465.44 7197.55 6393.69 4794.84 89
plane_prior786.94 22661.51 253
plane_prior687.23 21862.32 23750.66 238
plane_prior489.14 193
plane_prior361.95 24579.09 8072.53 194
plane_prior293.13 11178.81 86
plane_prior187.15 220
plane_prior62.42 23393.85 7879.38 7278.80 195
n20.00 417
nn0.00 417
door-mid66.01 387
test1193.01 101
door66.57 386
HQP5-MVS63.66 203
HQP-NCC87.54 21194.06 6479.80 6374.18 173
ACMP_Plane87.54 21194.06 6479.80 6374.18 173
HQP4-MVS74.18 17395.61 16088.63 234
HQP3-MVS91.70 15778.90 193
HQP2-MVS51.63 231
NP-MVS87.41 21463.04 21890.30 175
ACMMP++_ref71.63 251
ACMMP++69.72 260
Test By Simon54.21 207