This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted by
SED-MVS95.88 596.22 494.87 2599.03 1585.03 7399.12 1296.78 5688.72 6797.79 698.91 288.48 1799.82 1998.15 1198.97 1799.74 1
OPU-MVS97.30 299.19 792.31 399.12 1298.54 2092.06 399.84 1399.11 399.37 199.74 1
DVP-MVS++96.05 496.41 394.96 2499.05 985.34 6098.13 4996.77 6288.38 7597.70 898.77 1092.06 399.84 1397.47 2499.37 199.70 3
PC_three_145291.12 3698.33 298.42 3092.51 299.81 2298.96 499.37 199.70 3
DPM-MVS96.21 295.53 1398.26 196.26 10595.09 199.15 896.98 3893.39 1496.45 2598.79 890.17 999.99 189.33 13899.25 699.70 3
DeepPCF-MVS89.82 194.61 2296.17 589.91 21197.09 9470.21 34498.99 2396.69 7495.57 295.08 4199.23 186.40 3199.87 897.84 2098.66 3299.65 6
MCST-MVS96.17 396.12 696.32 799.42 289.36 1098.94 2497.10 3195.17 392.11 8698.46 2687.33 2599.97 297.21 2999.31 499.63 7
DeepC-MVS_fast89.06 294.48 2594.30 2995.02 2298.86 2185.68 5098.06 5596.64 8293.64 1291.74 9398.54 2080.17 7999.90 592.28 9398.75 2999.49 8
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_241102_TWO96.78 5688.72 6797.70 898.91 287.86 2299.82 1998.15 1199.00 1599.47 9
test_0728_SECOND95.14 2099.04 1486.14 3899.06 1796.77 6299.84 1397.90 1798.85 2199.45 10
MSC_two_6792asdad97.14 399.05 992.19 496.83 5399.81 2298.08 1498.81 2499.43 11
No_MVS97.14 399.05 992.19 496.83 5399.81 2298.08 1498.81 2499.43 11
IU-MVS99.03 1585.34 6096.86 5192.05 2798.74 198.15 1198.97 1799.42 13
test_0728_THIRD88.38 7596.69 1898.76 1289.64 1299.76 3197.47 2498.84 2399.38 14
MSP-MVS95.62 896.54 192.86 9998.31 4880.10 18397.42 10596.78 5692.20 2297.11 1498.29 3693.46 199.10 10496.01 3999.30 599.38 14
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
sasdasda92.27 7591.22 9195.41 1795.80 12188.31 1597.09 13494.64 23188.49 7292.99 7297.31 9572.68 20098.57 13093.38 7788.58 19399.36 16
canonicalmvs92.27 7591.22 9195.41 1795.80 12188.31 1597.09 13494.64 23188.49 7292.99 7297.31 9572.68 20098.57 13093.38 7788.58 19399.36 16
patch_mono-295.14 1396.08 792.33 12398.44 4377.84 24998.43 3697.21 2292.58 1997.68 1097.65 7986.88 2799.83 1798.25 997.60 6999.33 18
MGCFI-Net91.95 8191.03 9794.72 3195.68 12586.38 3596.93 14994.48 24088.25 8092.78 7597.24 10172.34 20598.46 13893.13 8588.43 19799.32 19
DPE-MVScopyleft95.32 1195.55 1294.64 3398.79 2384.87 7897.77 7396.74 6786.11 12696.54 2498.89 688.39 1999.74 3897.67 2299.05 1299.31 20
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
APDe-MVScopyleft94.56 2494.75 2093.96 5098.84 2283.40 10398.04 5796.41 11085.79 13595.00 4398.28 3784.32 4599.18 9797.35 2698.77 2899.28 21
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
MVS90.60 11788.64 14396.50 594.25 17490.53 893.33 29897.21 2277.59 30578.88 25297.31 9571.52 21799.69 4989.60 13398.03 5699.27 22
balanced_conf0394.60 2394.30 2995.48 1696.45 10088.82 1496.33 19095.58 17491.12 3695.84 3293.87 20283.47 5398.37 14497.26 2798.81 2499.24 23
CSCG92.02 8091.65 8393.12 8898.53 3680.59 16697.47 9897.18 2577.06 31484.64 18797.98 5883.98 4899.52 6990.72 11597.33 7899.23 24
TSAR-MVS + GP.94.35 2694.50 2393.89 5197.38 8883.04 11098.10 5195.29 19791.57 3093.81 5997.45 8886.64 2899.43 7696.28 3794.01 13599.20 25
MG-MVS94.25 2993.72 3595.85 1299.38 389.35 1197.98 5998.09 989.99 5392.34 8296.97 11581.30 6898.99 11088.54 14598.88 2099.20 25
MM95.85 695.74 1096.15 896.34 10289.50 999.18 698.10 895.68 196.64 2197.92 6180.72 7099.80 2599.16 197.96 5899.15 27
MVSMamba_PlusPlus92.37 7491.55 8594.83 2795.37 13587.69 2495.60 23195.42 19074.65 33293.95 5892.81 21983.11 5697.70 17594.49 6398.53 3599.11 28
DELS-MVS94.98 1494.49 2496.44 696.42 10190.59 799.21 597.02 3694.40 891.46 9597.08 11083.32 5499.69 4992.83 8898.70 3199.04 29
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
APD-MVScopyleft93.61 3893.59 3993.69 6498.76 2483.26 10697.21 11696.09 14082.41 22594.65 4998.21 3981.96 6598.81 12294.65 6198.36 4799.01 30
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CNVR-MVS96.30 196.54 195.55 1599.31 587.69 2499.06 1797.12 2994.66 596.79 1798.78 986.42 3099.95 397.59 2399.18 799.00 31
NCCC95.63 795.94 894.69 3299.21 685.15 7099.16 796.96 4194.11 995.59 3498.64 1785.07 3699.91 495.61 4699.10 999.00 31
alignmvs92.97 4992.26 7095.12 2195.54 13087.77 2298.67 2996.38 11588.04 8593.01 7197.45 8879.20 9298.60 12893.25 8188.76 19098.99 33
mvsmamba90.53 12190.08 11991.88 14694.81 15480.93 15793.94 28494.45 24588.24 8187.02 16292.35 22668.04 23795.80 27494.86 5797.03 8798.92 34
MVS_030495.58 995.44 1596.01 1097.63 7089.26 1299.27 396.59 8994.71 497.08 1597.99 5578.69 10199.86 1099.15 297.85 6298.91 35
CANet94.89 1694.64 2295.63 1397.55 7688.12 1899.06 1796.39 11494.07 1095.34 3697.80 7076.83 13299.87 897.08 3197.64 6898.89 36
HY-MVS84.06 691.63 9190.37 11195.39 1996.12 10988.25 1790.22 33897.58 1588.33 7890.50 11291.96 23579.26 9099.06 10790.29 12689.07 18598.88 37
PHI-MVS93.59 3993.63 3893.48 7798.05 5881.76 13698.64 3197.13 2782.60 22194.09 5698.49 2580.35 7499.85 1194.74 6098.62 3398.83 38
SteuartSystems-ACMMP94.13 3294.44 2693.20 8595.41 13381.35 14699.02 2196.59 8989.50 5994.18 5598.36 3383.68 5299.45 7594.77 5898.45 4198.81 39
Skip Steuart: Steuart Systems R&D Blog.
DVP-MVScopyleft95.58 995.91 994.57 3499.05 985.18 6599.06 1796.46 10488.75 6596.69 1898.76 1287.69 2399.76 3197.90 1798.85 2198.77 40
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
RRT-MVS89.67 13488.67 14292.67 10794.44 16981.08 15194.34 27194.45 24586.05 12985.79 17192.39 22563.39 26998.16 15493.22 8293.95 13898.76 41
test_yl91.46 9590.53 10594.24 4297.41 8385.18 6598.08 5297.72 1180.94 24489.85 11796.14 13575.61 15298.81 12290.42 12488.56 19598.74 42
DCV-MVSNet91.46 9590.53 10594.24 4297.41 8385.18 6598.08 5297.72 1180.94 24489.85 11796.14 13575.61 15298.81 12290.42 12488.56 19598.74 42
LFMVS89.27 14287.64 16194.16 4797.16 9285.52 5797.18 12094.66 22879.17 28689.63 12396.57 12955.35 33098.22 15089.52 13689.54 18098.74 42
PAPR92.74 5592.17 7394.45 3698.89 2084.87 7897.20 11896.20 13287.73 9488.40 14598.12 4678.71 10099.76 3187.99 15296.28 10398.74 42
WTY-MVS92.65 6591.68 8295.56 1496.00 11288.90 1398.23 4397.65 1388.57 7089.82 11997.22 10379.29 8999.06 10789.57 13488.73 19198.73 46
3Dnovator+82.88 889.63 13687.85 15694.99 2394.49 16886.76 3397.84 6795.74 16786.10 12775.47 29696.02 13865.00 26199.51 7182.91 20297.07 8698.72 47
SPE-MVS-test92.98 4893.67 3790.90 18096.52 9976.87 27298.68 2894.73 22390.36 5094.84 4697.89 6577.94 11197.15 21494.28 6797.80 6498.70 48
SD-MVS94.84 1895.02 1994.29 4097.87 6484.61 8197.76 7596.19 13489.59 5796.66 2098.17 4484.33 4299.60 5996.09 3898.50 3898.66 49
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
HPM-MVS++copyleft95.32 1195.48 1494.85 2698.62 3486.04 3997.81 7096.93 4492.45 2095.69 3398.50 2485.38 3499.85 1194.75 5999.18 798.65 50
MSLP-MVS++94.28 2794.39 2793.97 4998.30 4984.06 9098.64 3196.93 4490.71 4293.08 7098.70 1579.98 8399.21 9094.12 6899.07 1198.63 51
lupinMVS93.87 3693.58 4094.75 3093.00 21488.08 1999.15 895.50 18191.03 3994.90 4497.66 7578.84 9797.56 18394.64 6297.46 7298.62 52
agg_prior294.30 6499.00 1598.57 53
PAPM_NR91.46 9590.82 9993.37 8098.50 4081.81 13595.03 25796.13 13784.65 16486.10 16997.65 7979.24 9199.75 3683.20 19896.88 9298.56 54
API-MVS90.18 12688.97 13693.80 5498.66 2882.95 11197.50 9795.63 17375.16 32786.31 16697.69 7372.49 20399.90 581.26 21296.07 10898.56 54
mvs_anonymous88.68 15587.62 16391.86 14794.80 15581.69 14093.53 29494.92 21182.03 23278.87 25390.43 25875.77 15095.34 30085.04 17593.16 15198.55 56
CS-MVS92.73 5693.48 4390.48 19396.27 10475.93 29298.55 3494.93 21089.32 6094.54 5197.67 7478.91 9697.02 21893.80 7097.32 7998.49 57
SMA-MVScopyleft94.70 2194.68 2194.76 2998.02 5985.94 4397.47 9896.77 6285.32 14497.92 398.70 1583.09 5799.84 1395.79 4399.08 1098.49 57
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
ET-MVSNet_ETH3D90.01 12889.03 13492.95 9594.38 17186.77 3298.14 4696.31 12389.30 6163.33 37096.72 12790.09 1093.63 34890.70 11782.29 25598.46 59
SR-MVS92.16 7792.27 6991.83 15098.37 4578.41 22796.67 16895.76 16582.19 22991.97 8898.07 5276.44 13898.64 12693.71 7297.27 8098.45 60
无先验96.87 15396.78 5677.39 30799.52 6979.95 22398.43 61
VNet92.11 7991.22 9194.79 2896.91 9586.98 3097.91 6397.96 1086.38 12393.65 6195.74 14370.16 23198.95 11493.39 7588.87 18998.43 61
ACMMP_NAP93.46 4193.23 4794.17 4597.16 9284.28 8796.82 15796.65 7986.24 12494.27 5397.99 5577.94 11199.83 1793.39 7598.57 3498.39 63
casdiffmvs_mvgpermissive91.13 10490.45 10893.17 8792.99 21783.58 9997.46 10094.56 23787.69 9587.19 15994.98 17774.50 18097.60 18091.88 10292.79 15498.34 64
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
TSAR-MVS + MP.94.79 2095.17 1893.64 6697.66 6984.10 8995.85 21996.42 10991.26 3497.49 1296.80 12386.50 2998.49 13595.54 4899.03 1398.33 65
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SF-MVS94.17 3094.05 3494.55 3597.56 7585.95 4197.73 7796.43 10884.02 18495.07 4298.74 1482.93 5899.38 7895.42 5098.51 3698.32 66
Effi-MVS+90.70 11589.90 12693.09 9093.61 19283.48 10195.20 24792.79 32483.22 20491.82 9195.70 14571.82 21397.48 19391.25 10693.67 14398.32 66
test9_res96.00 4099.03 1398.31 68
test22296.15 10878.41 22795.87 21796.46 10471.97 35389.66 12297.45 8876.33 14298.24 5198.30 69
test_prior93.09 9098.68 2681.91 12996.40 11299.06 10798.29 70
testdata90.13 20295.92 11774.17 30796.49 10373.49 34294.82 4897.99 5578.80 9997.93 16283.53 19597.52 7198.29 70
dcpmvs_293.10 4693.46 4492.02 14197.77 6579.73 19394.82 26193.86 27986.91 11591.33 9996.76 12485.20 3598.06 15696.90 3397.60 6998.27 72
新几何193.12 8897.44 8181.60 14396.71 7174.54 33391.22 10297.57 8379.13 9399.51 7177.40 25198.46 4098.26 73
reproduce-ours92.70 6093.02 5091.75 15297.45 7977.77 25396.16 20095.94 15484.12 18092.45 7798.43 2880.06 8199.24 8695.35 5197.18 8298.24 74
our_new_method92.70 6093.02 5091.75 15297.45 7977.77 25396.16 20095.94 15484.12 18092.45 7798.43 2880.06 8199.24 8695.35 5197.18 8298.24 74
EIA-MVS91.73 8792.05 7690.78 18594.52 16376.40 28198.06 5595.34 19589.19 6288.90 13697.28 10077.56 11897.73 17490.77 11496.86 9498.20 76
region2R92.72 5892.70 5892.79 10298.68 2680.53 17197.53 9396.51 9885.22 14791.94 9097.98 5877.26 12299.67 5390.83 11398.37 4698.18 77
Anonymous20240521184.41 23681.93 25791.85 14996.78 9778.41 22797.44 10191.34 34670.29 36184.06 19094.26 19141.09 38398.96 11279.46 22782.65 25198.17 78
train_agg94.28 2794.45 2593.74 5898.64 3183.71 9597.82 6896.65 7984.50 16895.16 3798.09 4884.33 4299.36 8195.91 4298.96 1998.16 79
baseline90.76 11490.10 11892.74 10492.90 22082.56 11594.60 26594.56 23787.69 9589.06 13495.67 14773.76 18997.51 19090.43 12392.23 16398.16 79
reproduce_model92.53 6992.87 5491.50 16297.41 8377.14 27096.02 20795.91 15783.65 19892.45 7798.39 3179.75 8699.21 9095.27 5496.98 8898.14 81
CDPH-MVS93.12 4592.91 5393.74 5898.65 3083.88 9197.67 8196.26 12683.00 21193.22 6798.24 3881.31 6799.21 9089.12 13998.74 3098.14 81
DP-MVS Recon91.72 8990.85 9894.34 3899.50 185.00 7598.51 3595.96 15180.57 25388.08 15097.63 8176.84 13099.89 785.67 17094.88 12398.13 83
HFP-MVS92.89 5192.86 5692.98 9498.71 2581.12 14997.58 8896.70 7285.20 14991.75 9297.97 6078.47 10399.71 4590.95 10898.41 4398.12 84
MVS_Test90.29 12589.18 13393.62 6895.23 13984.93 7694.41 26894.66 22884.31 17390.37 11591.02 24875.13 16997.82 17183.11 20094.42 13098.12 84
ZNCC-MVS92.75 5492.60 6193.23 8498.24 5181.82 13497.63 8296.50 10085.00 15591.05 10497.74 7278.38 10499.80 2590.48 11998.34 4898.07 86
EPMVS87.47 18785.90 19492.18 13295.41 13382.26 12387.00 36596.28 12485.88 13484.23 18985.57 33275.07 17196.26 25271.14 30592.50 15898.03 87
XVS92.69 6292.71 5792.63 11198.52 3780.29 17497.37 10996.44 10687.04 11391.38 9697.83 6977.24 12499.59 6090.46 12198.07 5498.02 88
X-MVStestdata86.26 20484.14 22492.63 11198.52 3780.29 17497.37 10996.44 10687.04 11391.38 9620.73 42277.24 12499.59 6090.46 12198.07 5498.02 88
MVSFormer91.36 9890.57 10493.73 6093.00 21488.08 1994.80 26394.48 24080.74 24994.90 4497.13 10678.84 9795.10 31483.77 18797.46 7298.02 88
jason92.73 5692.23 7194.21 4490.50 28687.30 2998.65 3095.09 20390.61 4492.76 7697.13 10675.28 16797.30 20393.32 7996.75 9798.02 88
jason: jason.
MVS_111021_HR93.41 4293.39 4593.47 7997.34 8982.83 11297.56 9098.27 689.16 6389.71 12097.14 10579.77 8599.56 6693.65 7397.94 5998.02 88
GG-mvs-BLEND93.49 7694.94 15086.26 3681.62 39097.00 3788.32 14794.30 19091.23 596.21 25688.49 14797.43 7598.00 93
ACMMPR92.69 6292.67 5992.75 10398.66 2880.57 16797.58 8896.69 7485.20 14991.57 9497.92 6177.01 12799.67 5390.95 10898.41 4398.00 93
test250690.96 11090.39 10992.65 10993.54 19582.46 11996.37 18697.35 1786.78 11987.55 15395.25 15877.83 11597.50 19184.07 18294.80 12497.98 95
ECVR-MVScopyleft88.35 16787.25 17491.65 15693.54 19579.40 20096.56 17390.78 35686.78 11985.57 17395.25 15857.25 31797.56 18384.73 17894.80 12497.98 95
test1294.25 4198.34 4685.55 5696.35 11992.36 8180.84 6999.22 8998.31 4997.98 95
MTAPA92.45 7192.31 6892.86 9997.90 6180.85 16092.88 31096.33 12087.92 8890.20 11698.18 4176.71 13599.76 3192.57 9298.09 5397.96 98
CP-MVS92.54 6892.60 6192.34 12198.50 4079.90 18698.40 3896.40 11284.75 15990.48 11398.09 4877.40 12199.21 9091.15 10798.23 5297.92 99
mPP-MVS91.88 8591.82 7992.07 13798.38 4478.63 22197.29 11396.09 14085.12 15188.45 14497.66 7575.53 15699.68 5189.83 13098.02 5797.88 100
3Dnovator82.32 1089.33 14087.64 16194.42 3793.73 19185.70 4897.73 7796.75 6686.73 12276.21 28595.93 13962.17 27599.68 5181.67 21097.81 6397.88 100
test111188.11 17287.04 18091.35 16593.15 20978.79 21896.57 17190.78 35686.88 11685.04 17895.20 16457.23 31897.39 19883.88 18494.59 12797.87 102
Patchmatch-test78.25 31174.72 32688.83 23191.20 26974.10 30873.91 40888.70 37559.89 39866.82 35385.12 34278.38 10494.54 32948.84 39479.58 26997.86 103
MP-MVScopyleft92.61 6692.67 5992.42 11998.13 5679.73 19397.33 11196.20 13285.63 13790.53 11197.66 7578.14 10999.70 4892.12 9698.30 5097.85 104
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ab-mvs87.08 18984.94 21093.48 7793.34 20483.67 9788.82 34795.70 16981.18 24184.55 18890.14 26462.72 27298.94 11685.49 17282.54 25297.85 104
test_fmvsmconf_n93.99 3494.36 2892.86 9992.82 22181.12 14999.26 496.37 11893.47 1395.16 3798.21 3979.00 9499.64 5598.21 1096.73 9897.83 106
casdiffmvspermissive90.95 11190.39 10992.63 11192.82 22182.53 11696.83 15594.47 24387.69 9588.47 14395.56 15274.04 18697.54 18790.90 11192.74 15597.83 106
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EPNet94.06 3394.15 3293.76 5697.27 9184.35 8498.29 4197.64 1494.57 695.36 3596.88 11879.96 8499.12 10391.30 10596.11 10797.82 108
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
gg-mvs-nofinetune85.48 22082.90 24293.24 8394.51 16685.82 4579.22 39596.97 4061.19 39287.33 15653.01 41190.58 696.07 25986.07 16797.23 8197.81 109
CHOSEN 1792x268891.07 10790.21 11593.64 6695.18 14283.53 10096.26 19496.13 13788.92 6484.90 18193.10 21772.86 19899.62 5888.86 14195.67 11797.79 110
APD-MVS_3200maxsize91.23 10291.35 8890.89 18197.89 6276.35 28296.30 19295.52 17979.82 27291.03 10597.88 6674.70 17598.54 13292.11 9796.89 9197.77 111
SR-MVS-dyc-post91.29 10091.45 8790.80 18397.76 6776.03 28796.20 19895.44 18680.56 25490.72 10997.84 6775.76 15198.61 12791.99 9996.79 9597.75 112
RE-MVS-def91.18 9597.76 6776.03 28796.20 19895.44 18680.56 25490.72 10997.84 6773.36 19591.99 9996.79 9597.75 112
GST-MVS92.43 7292.22 7293.04 9298.17 5481.64 14197.40 10796.38 11584.71 16290.90 10797.40 9377.55 11999.76 3189.75 13297.74 6597.72 114
Patchmatch-RL test76.65 32774.01 33484.55 31777.37 39564.23 37378.49 39982.84 40178.48 29664.63 36573.40 39676.05 14691.70 36976.99 25357.84 38097.72 114
PVSNet82.34 989.02 14587.79 15892.71 10695.49 13181.50 14497.70 7997.29 1887.76 9385.47 17595.12 17056.90 31998.90 11880.33 21794.02 13497.71 116
BP-MVS193.55 4093.50 4293.71 6292.64 22885.39 5997.78 7296.84 5289.52 5892.00 8797.06 11288.21 2098.03 15791.45 10496.00 11297.70 117
Vis-MVSNetpermissive88.67 15687.82 15791.24 17092.68 22478.82 21596.95 14793.85 28087.55 9887.07 16195.13 16963.43 26897.21 20877.58 24796.15 10697.70 117
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
PAPM92.87 5292.40 6594.30 3992.25 24187.85 2196.40 18596.38 11591.07 3888.72 14196.90 11682.11 6397.37 20090.05 12997.70 6697.67 119
PGM-MVS91.93 8291.80 8092.32 12598.27 5079.74 19295.28 24197.27 2083.83 19290.89 10897.78 7176.12 14599.56 6688.82 14297.93 6197.66 120
sss90.87 11389.96 12393.60 6994.15 17883.84 9497.14 12798.13 785.93 13389.68 12196.09 13771.67 21499.30 8387.69 15689.16 18497.66 120
PatchmatchNetpermissive86.83 19585.12 20791.95 14394.12 18182.27 12286.55 36995.64 17284.59 16682.98 20784.99 34477.26 12295.96 26668.61 31891.34 17097.64 122
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MAR-MVS90.63 11690.22 11491.86 14798.47 4278.20 23797.18 12096.61 8583.87 19188.18 14998.18 4168.71 23599.75 3683.66 19297.15 8497.63 123
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
旧先验197.39 8679.58 19796.54 9598.08 5184.00 4797.42 7697.62 124
Vis-MVSNet (Re-imp)88.88 15088.87 14188.91 22993.89 18774.43 30596.93 14994.19 26184.39 17183.22 20395.67 14778.24 10694.70 32578.88 23594.40 13197.61 125
MP-MVS-pluss92.58 6792.35 6693.29 8197.30 9082.53 11696.44 18196.04 14584.68 16389.12 13298.37 3277.48 12099.74 3893.31 8098.38 4597.59 126
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ETVMVS90.99 10890.26 11293.19 8695.81 12085.64 5496.97 14497.18 2585.43 14188.77 14094.86 17982.00 6496.37 24882.70 20388.60 19297.57 127
test_fmvsmconf0.1_n93.08 4793.22 4892.65 10988.45 31980.81 16199.00 2295.11 20293.21 1594.00 5797.91 6376.84 13099.59 6097.91 1696.55 10197.54 128
GSMVS97.54 128
sam_mvs177.59 11797.54 128
SCA85.63 21583.64 23091.60 16092.30 23781.86 13292.88 31095.56 17684.85 15782.52 20885.12 34258.04 30695.39 29773.89 28587.58 20897.54 128
HPM-MVScopyleft91.62 9291.53 8691.89 14597.88 6379.22 20596.99 13995.73 16882.07 23189.50 12797.19 10475.59 15498.93 11790.91 11097.94 5997.54 128
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
VDD-MVS88.28 16987.02 18192.06 13895.09 14480.18 18197.55 9294.45 24583.09 20789.10 13395.92 14147.97 35898.49 13593.08 8786.91 21297.52 133
AdaColmapbinary88.81 15287.61 16492.39 12099.33 479.95 18496.70 16795.58 17477.51 30683.05 20696.69 12861.90 28199.72 4384.29 18093.47 14697.50 134
IS-MVSNet88.67 15688.16 15290.20 20193.61 19276.86 27396.77 16293.07 31984.02 18483.62 19995.60 15074.69 17896.24 25578.43 23993.66 14497.49 135
FA-MVS(test-final)87.71 18386.23 19192.17 13394.19 17680.55 16887.16 36496.07 14382.12 23085.98 17088.35 28672.04 21198.49 13580.26 21989.87 17897.48 136
GDP-MVS92.85 5392.55 6393.75 5792.82 22185.76 4697.63 8295.05 20688.34 7793.15 6897.10 10986.92 2698.01 15987.95 15394.00 13697.47 137
MonoMVSNet85.68 21484.22 22190.03 20488.43 32077.83 25092.95 30991.46 34287.28 10678.11 25985.96 32766.31 25294.81 32290.71 11676.81 28897.46 138
ETV-MVS92.72 5892.87 5492.28 12794.54 16281.89 13097.98 5995.21 20089.77 5693.11 6996.83 12077.23 12697.50 19195.74 4495.38 12097.44 139
CostFormer89.08 14488.39 14891.15 17393.13 21179.15 20888.61 35096.11 13983.14 20689.58 12486.93 30883.83 5196.87 22988.22 15185.92 22397.42 140
testing9191.90 8491.31 9093.66 6595.99 11385.68 5097.39 10896.89 4786.75 12188.85 13795.23 16183.93 4997.90 16888.91 14087.89 20497.41 141
diffmvspermissive91.17 10390.74 10192.44 11893.11 21382.50 11896.25 19593.62 29487.79 9290.40 11495.93 13973.44 19497.42 19593.62 7492.55 15797.41 141
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
1112_ss88.60 15987.47 17092.00 14293.21 20680.97 15596.47 17892.46 32783.64 19980.86 23097.30 9880.24 7797.62 17977.60 24685.49 22897.40 143
131488.94 14787.20 17594.17 4593.21 20685.73 4793.33 29896.64 8282.89 21375.98 28896.36 13166.83 24899.39 7783.52 19696.02 11197.39 144
UBG92.68 6492.35 6693.70 6395.61 12785.65 5397.25 11497.06 3487.92 8889.28 12995.03 17386.06 3398.07 15592.24 9490.69 17597.37 145
Test_1112_low_res88.03 17486.73 18691.94 14493.15 20980.88 15996.44 18192.41 32983.59 20180.74 23291.16 24680.18 7897.59 18177.48 24985.40 22997.36 146
testing1192.48 7092.04 7793.78 5595.94 11686.00 4097.56 9097.08 3287.52 9989.32 12895.40 15584.60 3998.02 15891.93 10189.04 18697.32 147
HyFIR lowres test89.36 13988.60 14491.63 15994.91 15280.76 16395.60 23195.53 17782.56 22284.03 19191.24 24578.03 11096.81 23387.07 16388.41 19897.32 147
CVMVSNet84.83 22885.57 19782.63 33991.55 26360.38 38995.13 25195.03 20780.60 25282.10 21894.71 18266.40 25190.19 38174.30 28290.32 17697.31 149
tpmrst88.36 16687.38 17291.31 16694.36 17279.92 18587.32 36295.26 19985.32 14488.34 14686.13 32580.60 7396.70 23783.78 18685.34 23197.30 150
PVSNet_Blended93.13 4492.98 5293.57 7197.47 7783.86 9299.32 196.73 6891.02 4089.53 12596.21 13476.42 13999.57 6494.29 6595.81 11697.29 151
PMMVS89.46 13889.92 12588.06 24994.64 15769.57 35096.22 19694.95 20987.27 10791.37 9896.54 13065.88 25397.39 19888.54 14593.89 13997.23 152
fmvsm_l_conf0.5_n94.89 1695.24 1793.86 5294.42 17084.61 8199.13 1196.15 13692.06 2597.92 398.52 2384.52 4099.74 3898.76 695.67 11797.22 153
DeepC-MVS86.58 391.53 9491.06 9692.94 9694.52 16381.89 13095.95 21195.98 14990.76 4183.76 19896.76 12473.24 19699.71 4591.67 10396.96 8997.22 153
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
testing9991.91 8391.35 8893.60 6995.98 11485.70 4897.31 11296.92 4686.82 11788.91 13595.25 15884.26 4697.89 16988.80 14387.94 20397.21 155
test_fmvsmconf0.01_n91.08 10690.68 10292.29 12682.43 37880.12 18297.94 6293.93 27292.07 2491.97 8897.60 8267.56 24099.53 6897.09 3095.56 11997.21 155
GeoE86.36 20185.20 20389.83 21493.17 20876.13 28497.53 9392.11 33279.58 27780.99 22894.01 19866.60 25096.17 25873.48 28989.30 18297.20 157
FE-MVS86.06 20784.15 22391.78 15194.33 17379.81 18784.58 38296.61 8576.69 31785.00 17987.38 29970.71 22798.37 14470.39 31091.70 16897.17 158
EC-MVSNet91.73 8792.11 7490.58 18993.54 19577.77 25398.07 5494.40 25087.44 10192.99 7297.11 10874.59 17996.87 22993.75 7197.08 8597.11 159
114514_t88.79 15487.57 16692.45 11698.21 5381.74 13796.99 13995.45 18575.16 32782.48 20995.69 14668.59 23698.50 13480.33 21795.18 12197.10 160
fmvsm_l_conf0.5_n_a94.91 1595.30 1693.72 6194.50 16784.30 8699.14 1096.00 14791.94 2897.91 598.60 1884.78 3899.77 2998.84 596.03 11097.08 161
ACMMPcopyleft90.39 12289.97 12291.64 15797.58 7478.21 23696.78 16096.72 7084.73 16184.72 18597.23 10271.22 21999.63 5788.37 15092.41 16097.08 161
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
MDTV_nov1_ep13_2view81.74 13786.80 36680.65 25185.65 17274.26 18276.52 25996.98 163
testing22291.09 10590.49 10792.87 9895.82 11985.04 7296.51 17697.28 1986.05 12989.13 13195.34 15780.16 8096.62 24185.82 16888.31 19996.96 164
HPM-MVS_fast90.38 12490.17 11791.03 17697.61 7177.35 26497.15 12695.48 18279.51 27888.79 13896.90 11671.64 21698.81 12287.01 16497.44 7496.94 165
Fast-Effi-MVS+87.93 17786.94 18390.92 17994.04 18479.16 20798.26 4293.72 29081.29 24083.94 19592.90 21869.83 23296.68 23876.70 25791.74 16796.93 166
IB-MVS85.34 488.67 15687.14 17893.26 8293.12 21284.32 8598.76 2697.27 2087.19 11179.36 24890.45 25783.92 5098.53 13384.41 17969.79 32896.93 166
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
thisisatest051590.95 11190.26 11293.01 9394.03 18684.27 8897.91 6396.67 7683.18 20586.87 16395.51 15388.66 1597.85 17080.46 21689.01 18796.92 168
VDDNet86.44 20084.51 21492.22 13091.56 26281.83 13397.10 13394.64 23169.50 36687.84 15195.19 16548.01 35797.92 16789.82 13186.92 21196.89 169
CNLPA86.96 19185.37 20191.72 15597.59 7379.34 20397.21 11691.05 35174.22 33478.90 25196.75 12667.21 24598.95 11474.68 27790.77 17396.88 170
CDS-MVSNet89.50 13788.96 13791.14 17491.94 25880.93 15797.09 13495.81 16384.26 17884.72 18594.20 19480.31 7595.64 28783.37 19788.96 18896.85 171
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
PS-MVSNAJ94.17 3093.52 4196.10 995.65 12692.35 298.21 4495.79 16492.42 2196.24 2798.18 4171.04 22299.17 9896.77 3497.39 7796.79 172
tpm287.35 18886.26 19090.62 18892.93 21978.67 22088.06 35795.99 14879.33 28187.40 15486.43 31980.28 7696.40 24680.23 22085.73 22796.79 172
TESTMET0.1,189.83 13189.34 13291.31 16692.54 23180.19 18097.11 13096.57 9286.15 12586.85 16491.83 23979.32 8896.95 22381.30 21192.35 16196.77 174
xiu_mvs_v2_base93.92 3593.26 4695.91 1195.07 14692.02 698.19 4595.68 17092.06 2596.01 3198.14 4570.83 22698.96 11296.74 3696.57 10096.76 175
CR-MVSNet83.53 24981.36 26690.06 20390.16 29279.75 19079.02 39791.12 34884.24 17982.27 21680.35 37475.45 15893.67 34763.37 34586.25 21896.75 176
RPMNet79.85 29875.92 31891.64 15790.16 29279.75 19079.02 39795.44 18658.43 40282.27 21672.55 40073.03 19798.41 14346.10 39886.25 21896.75 176
TAMVS88.48 16287.79 15890.56 19091.09 27379.18 20696.45 18095.88 15983.64 19983.12 20493.33 21275.94 14895.74 28282.40 20588.27 20096.75 176
test_fmvsm_n_192094.81 1995.60 1192.45 11695.29 13880.96 15699.29 297.21 2294.50 797.29 1398.44 2782.15 6299.78 2898.56 797.68 6796.61 179
原ACMM191.22 17297.77 6578.10 23996.61 8581.05 24391.28 10197.42 9277.92 11398.98 11179.85 22598.51 3696.59 180
BH-RMVSNet86.84 19485.28 20291.49 16395.35 13680.26 17796.95 14792.21 33182.86 21581.77 22495.46 15459.34 29597.64 17869.79 31393.81 14196.57 181
EPP-MVSNet89.76 13289.72 12889.87 21293.78 18876.02 28997.22 11596.51 9879.35 28085.11 17795.01 17584.82 3797.10 21687.46 15988.21 20196.50 182
dp84.30 23882.31 25190.28 19894.24 17577.97 24286.57 36895.53 17779.94 27180.75 23185.16 34071.49 21896.39 24763.73 34283.36 24196.48 183
MVS_111021_LR91.60 9391.64 8491.47 16495.74 12378.79 21896.15 20296.77 6288.49 7288.64 14297.07 11172.33 20699.19 9693.13 8596.48 10296.43 184
PatchT79.75 29976.85 31188.42 23789.55 30675.49 29677.37 40194.61 23463.07 38282.46 21073.32 39775.52 15793.41 35251.36 38584.43 23496.36 185
LCM-MVSNet-Re83.75 24683.54 23384.39 32293.54 19564.14 37492.51 31384.03 39783.90 19066.14 35886.59 31367.36 24392.68 35584.89 17792.87 15396.35 186
GA-MVS85.79 21284.04 22591.02 17789.47 30880.27 17696.90 15294.84 21785.57 13880.88 22989.08 27256.56 32396.47 24577.72 24385.35 23096.34 187
tpm85.55 21784.47 21788.80 23290.19 29175.39 29788.79 34894.69 22484.83 15883.96 19485.21 33878.22 10794.68 32776.32 26378.02 28596.34 187
CPTT-MVS89.72 13389.87 12789.29 22298.33 4773.30 31397.70 7995.35 19475.68 32387.40 15497.44 9170.43 22898.25 14989.56 13596.90 9096.33 189
PVSNet_Blended_VisFu91.24 10190.77 10092.66 10895.09 14482.40 12097.77 7395.87 16188.26 7986.39 16593.94 20076.77 13399.27 8488.80 14394.00 13696.31 190
QAPM86.88 19384.51 21493.98 4894.04 18485.89 4497.19 11996.05 14473.62 33975.12 29995.62 14962.02 27899.74 3870.88 30696.06 10996.30 191
h-mvs3389.30 14188.95 13890.36 19695.07 14676.04 28696.96 14697.11 3090.39 4892.22 8495.10 17174.70 17598.86 11993.14 8365.89 36196.16 192
thisisatest053089.65 13589.02 13591.53 16193.46 20180.78 16296.52 17496.67 7681.69 23783.79 19794.90 17888.85 1497.68 17677.80 24087.49 20996.14 193
TR-MVS86.30 20384.93 21190.42 19494.63 15877.58 25996.57 17193.82 28180.30 26282.42 21195.16 16758.74 29997.55 18574.88 27587.82 20596.13 194
mamv485.50 21886.76 18581.72 34693.23 20554.93 40389.95 34092.94 32169.96 36379.00 25092.20 22980.69 7294.22 33692.06 9890.77 17396.01 195
tpm cat183.63 24881.38 26590.39 19593.53 20078.19 23885.56 37695.09 20370.78 35978.51 25483.28 35974.80 17497.03 21766.77 32584.05 23695.95 196
test-LLR88.48 16287.98 15489.98 20792.26 23977.23 26697.11 13095.96 15183.76 19586.30 16791.38 24272.30 20796.78 23580.82 21391.92 16595.94 197
test-mter88.95 14688.60 14489.98 20792.26 23977.23 26697.11 13095.96 15185.32 14486.30 16791.38 24276.37 14196.78 23580.82 21391.92 16595.94 197
BH-w/o88.24 17087.47 17090.54 19295.03 14978.54 22297.41 10693.82 28184.08 18278.23 25894.51 18769.34 23497.21 20880.21 22194.58 12895.87 199
EI-MVSNet-Vis-set91.84 8691.77 8192.04 14097.60 7281.17 14896.61 16996.87 4988.20 8289.19 13097.55 8778.69 10199.14 10090.29 12690.94 17295.80 200
CANet_DTU90.98 10990.04 12093.83 5394.76 15686.23 3796.32 19193.12 31893.11 1693.71 6096.82 12263.08 27199.48 7384.29 18095.12 12295.77 201
test_fmvsmvis_n_192092.12 7892.10 7592.17 13390.87 27881.04 15298.34 4093.90 27692.71 1887.24 15897.90 6474.83 17399.72 4396.96 3296.20 10495.76 202
TAPA-MVS81.61 1285.02 22583.67 22889.06 22596.79 9673.27 31695.92 21394.79 22174.81 33080.47 23496.83 12071.07 22198.19 15249.82 39192.57 15695.71 203
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
OMC-MVS88.80 15388.16 15290.72 18695.30 13777.92 24694.81 26294.51 23986.80 11884.97 18096.85 11967.53 24198.60 12885.08 17487.62 20695.63 204
UGNet87.73 18186.55 18991.27 16995.16 14379.11 20996.35 18896.23 12988.14 8387.83 15290.48 25650.65 34799.09 10580.13 22294.03 13395.60 205
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
UWE-MVS88.56 16188.91 14087.50 26594.17 17772.19 32495.82 22197.05 3584.96 15684.78 18393.51 21181.33 6694.75 32379.43 22889.17 18395.57 206
tttt051788.57 16088.19 15189.71 21893.00 21475.99 29095.67 22696.67 7680.78 24881.82 22294.40 18888.97 1397.58 18276.05 26586.31 21795.57 206
test_vis1_n_192089.95 12990.59 10388.03 25192.36 23368.98 35399.12 1294.34 25393.86 1193.64 6297.01 11451.54 34499.59 6096.76 3596.71 9995.53 208
CHOSEN 280x42091.71 9091.85 7891.29 16894.94 15082.69 11387.89 35896.17 13585.94 13287.27 15794.31 18990.27 895.65 28694.04 6995.86 11495.53 208
BH-untuned86.95 19285.94 19389.99 20694.52 16377.46 26196.78 16093.37 30781.80 23476.62 27693.81 20566.64 24997.02 21876.06 26493.88 14095.48 210
EPNet_dtu87.65 18487.89 15586.93 27894.57 15971.37 33896.72 16396.50 10088.56 7187.12 16095.02 17475.91 14994.01 34066.62 32790.00 17795.42 211
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
EI-MVSNet-UG-set91.35 9991.22 9191.73 15497.39 8680.68 16496.47 17896.83 5387.92 8888.30 14897.36 9477.84 11499.13 10289.43 13789.45 18195.37 212
UA-Net88.92 14888.48 14790.24 19994.06 18377.18 26893.04 30694.66 22887.39 10391.09 10393.89 20174.92 17298.18 15375.83 26791.43 16995.35 213
Anonymous2024052983.15 25680.60 27690.80 18395.74 12378.27 23196.81 15894.92 21160.10 39781.89 22192.54 22345.82 36798.82 12179.25 23178.32 28395.31 214
mvsany_test187.58 18588.22 14985.67 29889.78 29867.18 36095.25 24487.93 37783.96 18788.79 13897.06 11272.52 20294.53 33092.21 9586.45 21695.30 215
DP-MVS81.47 28278.28 29991.04 17598.14 5578.48 22395.09 25686.97 38161.14 39371.12 33292.78 22259.59 29199.38 7853.11 38286.61 21495.27 216
fmvsm_s_conf0.5_n93.69 3794.13 3392.34 12194.56 16082.01 12499.07 1697.13 2792.09 2396.25 2698.53 2276.47 13799.80 2598.39 894.71 12695.22 217
fmvsm_s_conf0.5_n_a93.34 4393.71 3692.22 13093.38 20381.71 13998.86 2596.98 3891.64 2996.85 1698.55 1975.58 15599.77 2997.88 1993.68 14295.18 218
fmvsm_s_conf0.1_n92.93 5093.16 4992.24 12890.52 28581.92 12898.42 3796.24 12891.17 3596.02 3098.35 3475.34 16699.74 3897.84 2094.58 12895.05 219
baseline188.85 15187.49 16892.93 9795.21 14186.85 3195.47 23694.61 23487.29 10583.11 20594.99 17680.70 7196.89 22782.28 20673.72 30195.05 219
test_cas_vis1_n_192089.90 13090.02 12189.54 21990.14 29474.63 30298.71 2794.43 24893.04 1792.40 8096.35 13253.41 34099.08 10695.59 4796.16 10594.90 221
PVSNet_077.72 1581.70 27978.95 29689.94 21090.77 28276.72 27695.96 21096.95 4285.01 15470.24 33988.53 28252.32 34198.20 15186.68 16644.08 40794.89 222
fmvsm_s_conf0.1_n_a92.38 7392.49 6492.06 13888.08 32481.62 14297.97 6196.01 14690.62 4396.58 2298.33 3574.09 18599.71 4597.23 2893.46 14794.86 223
ADS-MVSNet279.57 30277.53 30585.71 29793.78 18872.13 32579.48 39386.11 38873.09 34580.14 23979.99 37762.15 27690.14 38259.49 35883.52 23894.85 224
ADS-MVSNet81.26 28578.36 29889.96 20993.78 18879.78 18879.48 39393.60 29573.09 34580.14 23979.99 37762.15 27695.24 30659.49 35883.52 23894.85 224
MIMVSNet79.18 30775.99 31788.72 23487.37 33280.66 16579.96 39191.82 33677.38 30874.33 30481.87 36541.78 37990.74 37766.36 33283.10 24394.76 226
xiu_mvs_v1_base_debu90.54 11889.54 12993.55 7292.31 23487.58 2696.99 13994.87 21487.23 10893.27 6497.56 8457.43 31398.32 14692.72 8993.46 14794.74 227
xiu_mvs_v1_base90.54 11889.54 12993.55 7292.31 23487.58 2696.99 13994.87 21487.23 10893.27 6497.56 8457.43 31398.32 14692.72 8993.46 14794.74 227
xiu_mvs_v1_base_debi90.54 11889.54 12993.55 7292.31 23487.58 2696.99 13994.87 21487.23 10893.27 6497.56 8457.43 31398.32 14692.72 8993.46 14794.74 227
AUN-MVS86.25 20585.57 19788.26 24493.57 19473.38 31195.45 23795.88 15983.94 18885.47 17594.21 19373.70 19296.67 23983.54 19464.41 36594.73 230
hse-mvs288.22 17188.21 15088.25 24593.54 19573.41 31095.41 23995.89 15890.39 4892.22 8494.22 19274.70 17596.66 24093.14 8364.37 36694.69 231
thres20088.92 14887.65 16092.73 10596.30 10385.62 5597.85 6698.86 184.38 17284.82 18293.99 19975.12 17098.01 15970.86 30786.67 21394.56 232
baseline290.39 12290.21 11590.93 17890.86 27980.99 15495.20 24797.41 1686.03 13180.07 24294.61 18490.58 697.47 19487.29 16089.86 17994.35 233
thres100view90088.30 16886.95 18292.33 12396.10 11084.90 7797.14 12798.85 282.69 21983.41 20093.66 20775.43 16097.93 16269.04 31586.24 22094.17 234
tfpn200view988.48 16287.15 17692.47 11596.21 10685.30 6397.44 10198.85 283.37 20283.99 19293.82 20375.36 16397.93 16269.04 31586.24 22094.17 234
tpmvs83.04 25980.77 27289.84 21395.43 13277.96 24385.59 37595.32 19675.31 32676.27 28383.70 35573.89 18797.41 19659.53 35781.93 25894.14 236
OpenMVScopyleft79.58 1486.09 20683.62 23193.50 7590.95 27586.71 3497.44 10195.83 16275.35 32472.64 32195.72 14457.42 31699.64 5571.41 30095.85 11594.13 237
test_fmvs187.79 18088.52 14685.62 30092.98 21864.31 37297.88 6592.42 32887.95 8792.24 8395.82 14247.94 35998.44 14295.31 5394.09 13294.09 238
PatchMatch-RL85.00 22683.66 22989.02 22795.86 11874.55 30492.49 31493.60 29579.30 28379.29 24991.47 24058.53 30198.45 14070.22 31192.17 16494.07 239
UniMVSNet_ETH3D80.86 29178.75 29787.22 27486.31 34172.02 32791.95 32093.76 28973.51 34075.06 30090.16 26343.04 37695.66 28476.37 26278.55 28093.98 240
PCF-MVS84.09 586.77 19785.00 20992.08 13692.06 25383.07 10992.14 31994.47 24379.63 27676.90 27294.78 18171.15 22099.20 9572.87 29191.05 17193.98 240
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
LS3D82.22 27379.94 28789.06 22597.43 8274.06 30993.20 30492.05 33361.90 38773.33 31495.21 16359.35 29499.21 9054.54 37892.48 15993.90 242
test_vis1_n85.60 21685.70 19585.33 30484.79 36264.98 37096.83 15591.61 34187.36 10491.00 10694.84 18036.14 39397.18 21095.66 4593.03 15293.82 243
PLCcopyleft83.97 788.00 17587.38 17289.83 21498.02 5976.46 27997.16 12494.43 24879.26 28581.98 21996.28 13369.36 23399.27 8477.71 24492.25 16293.77 244
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
cascas86.50 19984.48 21692.55 11492.64 22885.95 4197.04 13895.07 20575.32 32580.50 23391.02 24854.33 33797.98 16186.79 16587.62 20693.71 245
dmvs_re84.10 24082.90 24287.70 25691.41 26773.28 31490.59 33693.19 31285.02 15377.96 26293.68 20657.92 31196.18 25775.50 27080.87 26093.63 246
JIA-IIPM79.00 30877.20 30784.40 32189.74 30164.06 37575.30 40595.44 18662.15 38681.90 22059.08 40978.92 9595.59 29166.51 33085.78 22693.54 247
XVG-OURS-SEG-HR85.74 21385.16 20687.49 26790.22 29071.45 33691.29 33094.09 26781.37 23983.90 19695.22 16260.30 28897.53 18985.58 17184.42 23593.50 248
XVG-OURS85.18 22384.38 21887.59 26190.42 28871.73 33391.06 33394.07 26882.00 23383.29 20295.08 17256.42 32497.55 18583.70 19183.42 24093.49 249
thres600view788.06 17386.70 18892.15 13596.10 11085.17 6997.14 12798.85 282.70 21883.41 20093.66 20775.43 16097.82 17167.13 32485.88 22493.45 250
thres40088.42 16587.15 17692.23 12996.21 10685.30 6397.44 10198.85 283.37 20283.99 19293.82 20375.36 16397.93 16269.04 31586.24 22093.45 250
test_fmvs1_n86.34 20286.72 18785.17 30787.54 33163.64 37796.91 15192.37 33087.49 10091.33 9995.58 15140.81 38698.46 13895.00 5693.49 14593.41 252
SDMVSNet87.02 19085.61 19691.24 17094.14 17983.30 10593.88 28695.98 14984.30 17579.63 24592.01 23158.23 30397.68 17690.28 12882.02 25692.75 253
sd_testset84.62 23183.11 23989.17 22394.14 17977.78 25291.54 32994.38 25184.30 17579.63 24592.01 23152.28 34296.98 22177.67 24582.02 25692.75 253
DSMNet-mixed73.13 34572.45 34075.19 37877.51 39446.82 40985.09 38082.01 40267.61 37569.27 34481.33 36950.89 34686.28 39654.54 37883.80 23792.46 255
tt080581.20 28779.06 29587.61 25986.50 33872.97 31993.66 28995.48 18274.11 33576.23 28491.99 23341.36 38297.40 19777.44 25074.78 29792.45 256
Effi-MVS+-dtu84.61 23284.90 21283.72 32991.96 25663.14 38094.95 25893.34 30885.57 13879.79 24387.12 30561.99 27995.61 29083.55 19385.83 22592.41 257
F-COLMAP84.50 23583.44 23687.67 25795.22 14072.22 32295.95 21193.78 28675.74 32276.30 28295.18 16659.50 29398.45 14072.67 29386.59 21592.35 258
Fast-Effi-MVS+-dtu83.33 25282.60 24885.50 30289.55 30669.38 35196.09 20691.38 34382.30 22675.96 28991.41 24156.71 32095.58 29275.13 27484.90 23391.54 259
MSDG80.62 29477.77 30489.14 22493.43 20277.24 26591.89 32290.18 36069.86 36568.02 34691.94 23752.21 34398.84 12059.32 36083.12 24291.35 260
HQP4-MVS82.30 21297.32 20191.13 261
HQP-MVS87.91 17887.55 16788.98 22892.08 25078.48 22397.63 8294.80 21990.52 4582.30 21294.56 18565.40 25797.32 20187.67 15783.01 24491.13 261
HQP_MVS87.50 18687.09 17988.74 23391.86 25977.96 24397.18 12094.69 22489.89 5481.33 22594.15 19564.77 26297.30 20387.08 16182.82 24890.96 263
plane_prior594.69 22497.30 20387.08 16182.82 24890.96 263
nrg03086.79 19685.43 19990.87 18288.76 31385.34 6097.06 13794.33 25484.31 17380.45 23591.98 23472.36 20496.36 24988.48 14871.13 31590.93 265
RPSCF77.73 31876.63 31381.06 35088.66 31755.76 40187.77 35987.88 37864.82 38074.14 30592.79 22149.22 35496.81 23367.47 32276.88 28790.62 266
VPNet84.69 23082.92 24190.01 20589.01 31283.45 10296.71 16595.46 18485.71 13679.65 24492.18 23056.66 32296.01 26283.05 20167.84 34890.56 267
CLD-MVS87.97 17687.48 16989.44 22092.16 24680.54 17098.14 4694.92 21191.41 3279.43 24795.40 15562.34 27497.27 20690.60 11882.90 24790.50 268
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
VPA-MVSNet85.32 22183.83 22689.77 21790.25 28982.63 11496.36 18797.07 3383.03 21081.21 22789.02 27461.58 28296.31 25185.02 17670.95 31790.36 269
FIs86.73 19886.10 19288.61 23590.05 29580.21 17996.14 20396.95 4285.56 14078.37 25692.30 22776.73 13495.28 30479.51 22679.27 27190.35 270
DU-MVS84.57 23383.33 23788.28 24388.76 31379.36 20196.43 18395.41 19185.42 14278.11 25990.82 25167.61 23895.14 31179.14 23268.30 34290.33 271
NR-MVSNet83.35 25181.52 26488.84 23088.76 31381.31 14794.45 26795.16 20184.65 16467.81 34790.82 25170.36 22994.87 31974.75 27666.89 35890.33 271
WBMVS87.73 18186.79 18490.56 19095.61 12785.68 5097.63 8295.52 17983.77 19478.30 25788.44 28486.14 3295.78 27682.54 20473.15 30790.21 273
FC-MVSNet-test85.96 20885.39 20087.66 25889.38 31078.02 24095.65 22896.87 4985.12 15177.34 26591.94 23776.28 14394.74 32477.09 25278.82 27590.21 273
XXY-MVS83.84 24482.00 25689.35 22187.13 33381.38 14595.72 22494.26 25680.15 26675.92 29090.63 25461.96 28096.52 24378.98 23473.28 30690.14 275
test0.0.03 182.79 26382.48 24983.74 32886.81 33672.22 32296.52 17495.03 20783.76 19573.00 31793.20 21372.30 20788.88 38464.15 34077.52 28690.12 276
UniMVSNet_NR-MVSNet85.49 21984.59 21388.21 24789.44 30979.36 20196.71 16596.41 11085.22 14778.11 25990.98 25076.97 12995.14 31179.14 23268.30 34290.12 276
TranMVSNet+NR-MVSNet83.24 25581.71 26087.83 25387.71 32878.81 21796.13 20594.82 21884.52 16776.18 28690.78 25364.07 26594.60 32874.60 28066.59 36090.09 278
MVSTER89.25 14388.92 13990.24 19995.98 11484.66 8096.79 15995.36 19287.19 11180.33 23790.61 25590.02 1195.97 26385.38 17378.64 27790.09 278
PS-MVSNAJss84.91 22784.30 21986.74 27985.89 35074.40 30694.95 25894.16 26383.93 18976.45 27890.11 26571.04 22295.77 27783.16 19979.02 27490.06 280
WR-MVS84.32 23782.96 24088.41 23889.38 31080.32 17396.59 17096.25 12783.97 18676.63 27590.36 25967.53 24194.86 32075.82 26870.09 32690.06 280
FMVSNet384.71 22982.71 24690.70 18794.55 16187.71 2395.92 21394.67 22781.73 23675.82 29188.08 29166.99 24694.47 33171.23 30275.38 29489.91 282
FMVSNet282.79 26380.44 27889.83 21492.66 22585.43 5895.42 23894.35 25279.06 28974.46 30387.28 30056.38 32594.31 33469.72 31474.68 29889.76 283
ACMM80.70 1383.72 24782.85 24486.31 28891.19 27072.12 32695.88 21694.29 25580.44 25777.02 27091.96 23555.24 33197.14 21579.30 23080.38 26389.67 284
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
UniMVSNet (Re)85.31 22284.23 22088.55 23689.75 29980.55 16896.72 16396.89 4785.42 14278.40 25588.93 27575.38 16295.52 29478.58 23768.02 34589.57 285
EI-MVSNet85.80 21185.20 20387.59 26191.55 26377.41 26295.13 25195.36 19280.43 25980.33 23794.71 18273.72 19095.97 26376.96 25578.64 27789.39 286
IterMVS-LS83.93 24382.80 24587.31 27191.46 26677.39 26395.66 22793.43 30280.44 25775.51 29587.26 30273.72 19095.16 31076.99 25370.72 31989.39 286
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
GBi-Net82.42 26980.43 27988.39 24092.66 22581.95 12594.30 27493.38 30479.06 28975.82 29185.66 32856.38 32593.84 34371.23 30275.38 29489.38 288
test182.42 26980.43 27988.39 24092.66 22581.95 12594.30 27493.38 30479.06 28975.82 29185.66 32856.38 32593.84 34371.23 30275.38 29489.38 288
FMVSNet179.50 30376.54 31488.39 24088.47 31881.95 12594.30 27493.38 30473.14 34472.04 32685.66 32843.86 37093.84 34365.48 33472.53 30889.38 288
miper_enhance_ethall85.95 20985.20 20388.19 24894.85 15379.76 18996.00 20894.06 26982.98 21277.74 26388.76 27779.42 8795.46 29680.58 21572.42 30989.36 291
dmvs_testset72.00 35273.36 33767.91 38483.83 37331.90 42485.30 37877.12 40982.80 21663.05 37392.46 22461.54 28382.55 40642.22 40571.89 31389.29 292
cl2285.11 22484.17 22287.92 25295.06 14878.82 21595.51 23494.22 25979.74 27476.77 27387.92 29375.96 14795.68 28379.93 22472.42 30989.27 293
eth_miper_zixun_eth83.12 25782.01 25586.47 28491.85 26174.80 30094.33 27293.18 31479.11 28775.74 29487.25 30372.71 19995.32 30276.78 25667.13 35589.27 293
Anonymous2023121179.72 30077.19 30887.33 26995.59 12977.16 26995.18 25094.18 26259.31 40072.57 32286.20 32447.89 36095.66 28474.53 28169.24 33489.18 295
ACMP81.66 1184.00 24283.22 23886.33 28591.53 26572.95 32095.91 21593.79 28583.70 19773.79 30692.22 22854.31 33896.89 22783.98 18379.74 26689.16 296
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
DIV-MVS_self_test83.27 25382.12 25386.74 27992.19 24375.92 29395.11 25393.26 31178.44 29874.81 30287.08 30674.19 18395.19 30874.66 27969.30 33389.11 297
cl____83.27 25382.12 25386.74 27992.20 24275.95 29195.11 25393.27 31078.44 29874.82 30187.02 30774.19 18395.19 30874.67 27869.32 33289.09 298
OPM-MVS85.84 21085.10 20888.06 24988.34 32177.83 25095.72 22494.20 26087.89 9180.45 23594.05 19758.57 30097.26 20783.88 18482.76 25089.09 298
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
v2v48283.46 25081.86 25888.25 24586.19 34479.65 19596.34 18994.02 27081.56 23877.32 26688.23 28865.62 25496.03 26077.77 24169.72 33089.09 298
test_djsdf83.00 26182.45 25084.64 31584.07 37069.78 34794.80 26394.48 24080.74 24975.41 29787.70 29561.32 28595.10 31483.77 18779.76 26489.04 301
jajsoiax82.12 27481.15 26985.03 30984.19 36870.70 34094.22 27893.95 27183.07 20873.48 30989.75 26749.66 35395.37 29982.24 20779.76 26489.02 302
miper_ehance_all_eth84.57 23383.60 23287.50 26592.64 22878.25 23295.40 24093.47 29979.28 28476.41 27987.64 29676.53 13695.24 30678.58 23772.42 30989.01 303
LPG-MVS_test84.20 23983.49 23586.33 28590.88 27673.06 31795.28 24194.13 26482.20 22776.31 28093.20 21354.83 33596.95 22383.72 18980.83 26188.98 304
LGP-MVS_train86.33 28590.88 27673.06 31794.13 26482.20 22776.31 28093.20 21354.83 33596.95 22383.72 18980.83 26188.98 304
AllTest75.92 33073.06 33884.47 31892.18 24467.29 35891.07 33284.43 39467.63 37163.48 36790.18 26138.20 38997.16 21157.04 36873.37 30388.97 306
TestCases84.47 31892.18 24467.29 35884.43 39467.63 37163.48 36790.18 26138.20 38997.16 21157.04 36873.37 30388.97 306
mvs_tets81.74 27880.71 27484.84 31084.22 36770.29 34393.91 28593.78 28682.77 21773.37 31289.46 27047.36 36395.31 30381.99 20879.55 27088.92 308
c3_l83.80 24582.65 24787.25 27392.10 24977.74 25795.25 24493.04 32078.58 29576.01 28787.21 30475.25 16895.11 31377.54 24868.89 33688.91 309
pmmvs581.34 28479.54 29086.73 28285.02 36076.91 27196.22 19691.65 33977.65 30473.55 30888.61 27955.70 32894.43 33274.12 28473.35 30588.86 310
reproduce_monomvs87.80 17987.60 16588.40 23996.56 9880.26 17795.80 22296.32 12291.56 3173.60 30788.36 28588.53 1696.25 25490.47 12067.23 35488.67 311
miper_lstm_enhance81.66 28180.66 27584.67 31491.19 27071.97 32991.94 32193.19 31277.86 30272.27 32485.26 33673.46 19393.42 35173.71 28867.05 35688.61 312
CP-MVSNet81.01 28980.08 28383.79 32687.91 32670.51 34194.29 27795.65 17180.83 24672.54 32388.84 27663.71 26692.32 35968.58 31968.36 34188.55 313
Syy-MVS77.97 31678.05 30177.74 36792.13 24756.85 39693.97 28294.23 25782.43 22373.39 31093.57 20957.95 30987.86 38932.40 41082.34 25388.51 314
myMVS_eth3d81.93 27682.18 25281.18 34992.13 24767.18 36093.97 28294.23 25782.43 22373.39 31093.57 20976.98 12887.86 38950.53 38982.34 25388.51 314
v14419282.43 26880.73 27387.54 26485.81 35178.22 23395.98 20993.78 28679.09 28877.11 26986.49 31564.66 26495.91 26974.20 28369.42 33188.49 316
v192192082.02 27580.23 28187.41 26885.62 35277.92 24695.79 22393.69 29178.86 29276.67 27486.44 31762.50 27395.83 27272.69 29269.77 32988.47 317
v119282.31 27280.55 27787.60 26085.94 34878.47 22695.85 21993.80 28479.33 28176.97 27186.51 31463.33 27095.87 27073.11 29070.13 32388.46 318
PS-CasMVS80.27 29679.18 29283.52 33287.56 33069.88 34694.08 28095.29 19780.27 26472.08 32588.51 28359.22 29792.23 36167.49 32168.15 34488.45 319
v14882.41 27180.89 27086.99 27786.18 34576.81 27496.27 19393.82 28180.49 25675.28 29886.11 32667.32 24495.75 27975.48 27167.03 35788.42 320
v124081.70 27979.83 28987.30 27285.50 35377.70 25895.48 23593.44 30078.46 29776.53 27786.44 31760.85 28695.84 27171.59 29970.17 32188.35 321
v114482.90 26281.27 26787.78 25586.29 34279.07 21296.14 20393.93 27280.05 26877.38 26486.80 31065.50 25595.93 26875.21 27370.13 32388.33 322
EU-MVSNet76.92 32676.95 31076.83 37284.10 36954.73 40491.77 32492.71 32572.74 34869.57 34288.69 27858.03 30887.43 39364.91 33770.00 32788.33 322
PEN-MVS79.47 30478.26 30083.08 33586.36 34068.58 35493.85 28794.77 22279.76 27371.37 32888.55 28059.79 28992.46 35764.50 33865.40 36288.19 324
IterMVS80.67 29379.16 29385.20 30689.79 29776.08 28592.97 30891.86 33580.28 26371.20 33185.14 34157.93 31091.34 37172.52 29470.74 31888.18 325
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT80.51 29579.10 29484.73 31289.63 30474.66 30192.98 30791.81 33780.05 26871.06 33385.18 33958.04 30691.40 37072.48 29570.70 32088.12 326
XVG-ACMP-BASELINE79.38 30577.90 30383.81 32584.98 36167.14 36489.03 34693.18 31480.26 26572.87 31988.15 29038.55 38896.26 25276.05 26578.05 28488.02 327
MVS-HIRNet71.36 35567.00 36184.46 32090.58 28469.74 34879.15 39687.74 37946.09 40861.96 37850.50 41245.14 36895.64 28753.74 38088.11 20288.00 328
SixPastTwentyTwo76.04 32974.32 33081.22 34884.54 36461.43 38791.16 33189.30 36877.89 30064.04 36686.31 32148.23 35594.29 33563.54 34463.84 36987.93 329
pmmvs482.54 26780.79 27187.79 25486.11 34680.49 17293.55 29393.18 31477.29 30973.35 31389.40 27165.26 26095.05 31775.32 27273.61 30287.83 330
lessismore_v079.98 35680.59 38358.34 39580.87 40358.49 38983.46 35743.10 37593.89 34263.11 34648.68 39787.72 331
ACMH75.40 1777.99 31474.96 32287.10 27690.67 28376.41 28093.19 30591.64 34072.47 35163.44 36987.61 29743.34 37397.16 21158.34 36273.94 30087.72 331
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Patchmtry77.36 32274.59 32785.67 29889.75 29975.75 29577.85 40091.12 34860.28 39571.23 33080.35 37475.45 15893.56 34957.94 36367.34 35387.68 333
OurMVSNet-221017-077.18 32476.06 31680.55 35383.78 37460.00 39190.35 33791.05 35177.01 31566.62 35687.92 29347.73 36194.03 33971.63 29868.44 34087.62 334
V4283.04 25981.53 26387.57 26386.27 34379.09 21195.87 21794.11 26680.35 26177.22 26886.79 31165.32 25996.02 26177.74 24270.14 32287.61 335
PVSNet_BlendedMVS90.05 12789.96 12390.33 19797.47 7783.86 9298.02 5896.73 6887.98 8689.53 12589.61 26976.42 13999.57 6494.29 6579.59 26887.57 336
testgi74.88 33673.40 33679.32 36080.13 38561.75 38493.21 30386.64 38679.49 27966.56 35791.06 24735.51 39688.67 38556.79 37171.25 31487.56 337
DTE-MVSNet78.37 31077.06 30982.32 34285.22 35967.17 36393.40 29593.66 29278.71 29470.53 33688.29 28759.06 29892.23 36161.38 35263.28 37187.56 337
testing380.74 29281.17 26879.44 35991.15 27263.48 37897.16 12495.76 16580.83 24671.36 32993.15 21678.22 10787.30 39443.19 40279.67 26787.55 339
K. test v373.62 33971.59 34579.69 35782.98 37659.85 39290.85 33588.83 37177.13 31158.90 38782.11 36343.62 37191.72 36865.83 33354.10 38787.50 340
WR-MVS_H81.02 28880.09 28283.79 32688.08 32471.26 33994.46 26696.54 9580.08 26772.81 32086.82 30970.36 22992.65 35664.18 33967.50 35187.46 341
pm-mvs180.05 29778.02 30286.15 29085.42 35475.81 29495.11 25392.69 32677.13 31170.36 33787.43 29858.44 30295.27 30571.36 30164.25 36787.36 342
v7n79.32 30677.34 30685.28 30584.05 37172.89 32193.38 29693.87 27875.02 32970.68 33484.37 34859.58 29295.62 28967.60 32067.50 35187.32 343
v881.88 27780.06 28587.32 27086.63 33779.04 21394.41 26893.65 29378.77 29373.19 31685.57 33266.87 24795.81 27373.84 28767.61 35087.11 344
ACMH+76.62 1677.47 32174.94 32385.05 30891.07 27471.58 33593.26 30290.01 36171.80 35464.76 36488.55 28041.62 38096.48 24462.35 34871.00 31687.09 345
UnsupCasMVSNet_eth73.25 34470.57 34981.30 34777.53 39366.33 36687.24 36393.89 27780.38 26057.90 39281.59 36642.91 37790.56 37865.18 33648.51 39887.01 346
ppachtmachnet_test77.19 32374.22 33186.13 29185.39 35578.22 23393.98 28191.36 34571.74 35567.11 35084.87 34556.67 32193.37 35352.21 38364.59 36486.80 347
v1081.43 28379.53 29187.11 27586.38 33978.87 21494.31 27393.43 30277.88 30173.24 31585.26 33665.44 25695.75 27972.14 29667.71 34986.72 348
test_fmvs279.59 30179.90 28878.67 36382.86 37755.82 40095.20 24789.55 36481.09 24280.12 24189.80 26634.31 39893.51 35087.82 15478.36 28286.69 349
anonymousdsp80.98 29079.97 28684.01 32381.73 38070.44 34292.49 31493.58 29777.10 31372.98 31886.31 32157.58 31294.90 31879.32 22978.63 27986.69 349
our_test_377.90 31775.37 32185.48 30385.39 35576.74 27593.63 29091.67 33873.39 34365.72 36084.65 34758.20 30593.13 35457.82 36467.87 34686.57 351
Anonymous2023120675.29 33473.64 33580.22 35580.75 38163.38 37993.36 29790.71 35873.09 34567.12 34983.70 35550.33 35090.85 37653.63 38170.10 32586.44 352
YYNet173.53 34370.43 35082.85 33784.52 36571.73 33391.69 32691.37 34467.63 37146.79 40381.21 37055.04 33390.43 37955.93 37359.70 37886.38 353
MDA-MVSNet_test_wron73.54 34270.43 35082.86 33684.55 36371.85 33091.74 32591.32 34767.63 37146.73 40481.09 37155.11 33290.42 38055.91 37459.76 37786.31 354
ITE_SJBPF82.38 34087.00 33465.59 36889.55 36479.99 27069.37 34391.30 24441.60 38195.33 30162.86 34774.63 29986.24 355
FMVSNet576.46 32874.16 33283.35 33490.05 29576.17 28389.58 34289.85 36271.39 35765.29 36380.42 37350.61 34887.70 39261.05 35469.24 33486.18 356
MDA-MVSNet-bldmvs71.45 35367.94 36081.98 34485.33 35768.50 35592.35 31788.76 37370.40 36042.99 40781.96 36446.57 36591.31 37248.75 39554.39 38686.11 357
USDC78.65 30976.25 31585.85 29387.58 32974.60 30389.58 34290.58 35984.05 18363.13 37188.23 28840.69 38796.86 23166.57 32975.81 29286.09 358
pmmvs674.65 33771.67 34483.60 33179.13 38869.94 34593.31 30190.88 35561.05 39465.83 35984.15 35143.43 37294.83 32166.62 32760.63 37686.02 359
WB-MVSnew84.08 24183.51 23485.80 29491.34 26876.69 27795.62 23096.27 12581.77 23581.81 22392.81 21958.23 30394.70 32566.66 32687.06 21085.99 360
KD-MVS_2432*160077.63 31974.92 32485.77 29590.86 27979.44 19888.08 35593.92 27476.26 31967.05 35182.78 36172.15 20991.92 36461.53 34941.62 41085.94 361
miper_refine_blended77.63 31974.92 32485.77 29590.86 27979.44 19888.08 35593.92 27476.26 31967.05 35182.78 36172.15 20991.92 36461.53 34941.62 41085.94 361
D2MVS82.67 26581.55 26286.04 29287.77 32776.47 27895.21 24696.58 9182.66 22070.26 33885.46 33560.39 28795.80 27476.40 26179.18 27285.83 363
COLMAP_ROBcopyleft73.24 1975.74 33273.00 33983.94 32492.38 23269.08 35291.85 32386.93 38261.48 39065.32 36290.27 26042.27 37896.93 22650.91 38775.63 29385.80 364
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
CL-MVSNet_self_test75.81 33174.14 33380.83 35278.33 39167.79 35794.22 27893.52 29877.28 31069.82 34081.54 36861.47 28489.22 38357.59 36653.51 38885.48 365
CMPMVSbinary54.94 2175.71 33374.56 32879.17 36179.69 38655.98 39889.59 34193.30 30960.28 39553.85 39989.07 27347.68 36296.33 25076.55 25881.02 25985.22 366
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
LTVRE_ROB73.68 1877.99 31475.74 31984.74 31190.45 28772.02 32786.41 37091.12 34872.57 35066.63 35587.27 30154.95 33496.98 22156.29 37275.98 28985.21 367
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
N_pmnet61.30 37060.20 37364.60 38984.32 36617.00 43091.67 32710.98 42861.77 38858.45 39078.55 38149.89 35291.83 36742.27 40463.94 36884.97 368
MIMVSNet169.44 36066.65 36477.84 36676.48 39862.84 38187.42 36188.97 37066.96 37657.75 39379.72 37932.77 40185.83 39846.32 39763.42 37084.85 369
Baseline_NR-MVSNet81.22 28680.07 28484.68 31385.32 35875.12 29996.48 17788.80 37276.24 32177.28 26786.40 32067.61 23894.39 33375.73 26966.73 35984.54 370
TransMVSNet (Re)76.94 32574.38 32984.62 31685.92 34975.25 29895.28 24189.18 36973.88 33867.22 34886.46 31659.64 29094.10 33859.24 36152.57 39284.50 371
KD-MVS_self_test70.97 35669.31 35575.95 37776.24 40155.39 40287.45 36090.94 35470.20 36262.96 37477.48 38444.01 36988.09 38761.25 35353.26 38984.37 372
MS-PatchMatch83.05 25881.82 25986.72 28389.64 30379.10 21094.88 26094.59 23679.70 27570.67 33589.65 26850.43 34996.82 23270.82 30995.99 11384.25 373
ambc76.02 37568.11 41051.43 40564.97 41389.59 36360.49 38374.49 39317.17 41292.46 35761.50 35152.85 39184.17 374
test_method56.77 37254.53 37663.49 39176.49 39740.70 41775.68 40474.24 41119.47 41948.73 40171.89 40219.31 41065.80 41957.46 36747.51 40283.97 375
tfpnnormal78.14 31275.42 32086.31 28888.33 32279.24 20494.41 26896.22 13073.51 34069.81 34185.52 33455.43 32995.75 27947.65 39667.86 34783.95 376
test20.0372.36 34971.15 34675.98 37677.79 39259.16 39392.40 31689.35 36774.09 33661.50 37984.32 34948.09 35685.54 39950.63 38862.15 37483.24 377
Anonymous2024052172.06 35169.91 35278.50 36577.11 39661.67 38691.62 32890.97 35365.52 37862.37 37579.05 38036.32 39290.96 37557.75 36568.52 33982.87 378
OpenMVS_ROBcopyleft68.52 2073.02 34669.57 35383.37 33380.54 38471.82 33193.60 29288.22 37662.37 38561.98 37783.15 36035.31 39795.47 29545.08 40075.88 29182.82 379
UnsupCasMVSNet_bld68.60 36464.50 36880.92 35174.63 40467.80 35683.97 38492.94 32165.12 37954.63 39868.23 40535.97 39492.17 36360.13 35644.83 40582.78 380
MVP-Stereo82.65 26681.67 26185.59 30186.10 34778.29 23093.33 29892.82 32377.75 30369.17 34587.98 29259.28 29695.76 27871.77 29796.88 9282.73 381
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
pmmvs-eth3d73.59 34070.66 34882.38 34076.40 39973.38 31189.39 34589.43 36672.69 34960.34 38477.79 38346.43 36691.26 37366.42 33157.06 38182.51 382
PM-MVS69.32 36166.93 36276.49 37373.60 40555.84 39985.91 37379.32 40774.72 33161.09 38178.18 38221.76 40991.10 37470.86 30756.90 38282.51 382
TinyColmap72.41 34868.99 35782.68 33888.11 32369.59 34988.41 35185.20 39065.55 37757.91 39184.82 34630.80 40495.94 26751.38 38468.70 33782.49 384
mmtdpeth78.04 31376.76 31281.86 34589.60 30566.12 36792.34 31887.18 38076.83 31685.55 17476.49 38846.77 36497.02 21890.85 11245.24 40482.43 385
LF4IMVS72.36 34970.82 34776.95 37179.18 38756.33 39786.12 37286.11 38869.30 36763.06 37286.66 31233.03 40092.25 36065.33 33568.64 33882.28 386
mvs5depth71.40 35468.36 35980.54 35475.31 40365.56 36979.94 39285.14 39169.11 36871.75 32781.59 36641.02 38493.94 34160.90 35550.46 39482.10 387
TDRefinement69.20 36265.78 36679.48 35866.04 41362.21 38388.21 35286.12 38762.92 38361.03 38285.61 33133.23 39994.16 33755.82 37553.02 39082.08 388
EG-PatchMatch MVS74.92 33572.02 34383.62 33083.76 37573.28 31493.62 29192.04 33468.57 36958.88 38883.80 35431.87 40295.57 29356.97 37078.67 27682.00 389
mvsany_test367.19 36565.34 36772.72 38063.08 41448.57 40783.12 38778.09 40872.07 35261.21 38077.11 38622.94 40887.78 39178.59 23651.88 39381.80 390
test_fmvs369.56 35869.19 35670.67 38269.01 40847.05 40890.87 33486.81 38371.31 35866.79 35477.15 38516.40 41383.17 40481.84 20962.51 37381.79 391
ttmdpeth69.58 35766.92 36377.54 36975.95 40262.40 38288.09 35484.32 39662.87 38465.70 36186.25 32336.53 39188.53 38655.65 37646.96 40381.70 392
new-patchmatchnet68.85 36365.93 36577.61 36873.57 40663.94 37690.11 33988.73 37471.62 35655.08 39773.60 39540.84 38587.22 39551.35 38648.49 39981.67 393
MVStest166.93 36663.01 37078.69 36278.56 38971.43 33785.51 37786.81 38349.79 40748.57 40284.15 35153.46 33983.31 40243.14 40337.15 41381.34 394
test_040272.68 34769.54 35482.09 34388.67 31671.81 33292.72 31286.77 38561.52 38962.21 37683.91 35343.22 37493.76 34634.60 40872.23 31280.72 395
kuosan73.55 34172.39 34277.01 37089.68 30266.72 36585.24 37993.44 30067.76 37060.04 38683.40 35871.90 21284.25 40145.34 39954.75 38380.06 396
test_f64.01 36962.13 37269.65 38363.00 41545.30 41483.66 38680.68 40461.30 39155.70 39672.62 39914.23 41584.64 40069.84 31258.11 37979.00 397
pmmvs365.75 36862.18 37176.45 37467.12 41264.54 37188.68 34985.05 39254.77 40657.54 39473.79 39429.40 40586.21 39755.49 37747.77 40178.62 398
LCM-MVSNet52.52 37748.24 38065.35 38747.63 42441.45 41672.55 40983.62 39931.75 41237.66 41057.92 4109.19 42276.76 41249.26 39244.60 40677.84 399
test_vis1_rt73.96 33872.40 34178.64 36483.91 37261.16 38895.63 22968.18 41776.32 31860.09 38574.77 39129.01 40697.54 18787.74 15575.94 29077.22 400
new_pmnet66.18 36763.18 36975.18 37976.27 40061.74 38583.79 38584.66 39356.64 40451.57 40071.85 40331.29 40387.93 38849.98 39062.55 37275.86 401
dongtai69.47 35968.98 35870.93 38186.87 33558.45 39488.19 35393.18 31463.98 38156.04 39580.17 37670.97 22579.24 40833.46 40947.94 40075.09 402
PMMVS250.90 37946.31 38264.67 38855.53 41846.67 41077.30 40271.02 41440.89 40934.16 41359.32 4089.83 42176.14 41440.09 40728.63 41671.21 403
ANet_high46.22 38041.28 38761.04 39439.91 42646.25 41270.59 41076.18 41058.87 40123.09 41848.00 41512.58 41866.54 41828.65 41313.62 41970.35 404
DeepMVS_CXcopyleft64.06 39078.53 39043.26 41568.11 41969.94 36438.55 40976.14 38918.53 41179.34 40743.72 40141.62 41069.57 405
FPMVS55.09 37552.93 37861.57 39355.98 41740.51 41883.11 38883.41 40037.61 41134.95 41271.95 40114.40 41476.95 41129.81 41165.16 36367.25 406
APD_test156.56 37353.58 37765.50 38667.93 41146.51 41177.24 40372.95 41238.09 41042.75 40875.17 39013.38 41682.78 40540.19 40654.53 38567.23 407
WB-MVS57.26 37156.22 37460.39 39569.29 40735.91 42286.39 37170.06 41559.84 39946.46 40572.71 39851.18 34578.11 40915.19 41934.89 41467.14 408
SSC-MVS56.01 37454.96 37559.17 39668.42 40934.13 42384.98 38169.23 41658.08 40345.36 40671.67 40450.30 35177.46 41014.28 42032.33 41565.91 409
EGC-MVSNET52.46 37847.56 38167.15 38581.98 37960.11 39082.54 38972.44 4130.11 4250.70 42674.59 39225.11 40783.26 40329.04 41261.51 37558.09 410
testf145.70 38142.41 38355.58 39753.29 42140.02 41968.96 41162.67 42127.45 41429.85 41461.58 4065.98 42473.83 41628.49 41443.46 40852.90 411
APD_test245.70 38142.41 38355.58 39753.29 42140.02 41968.96 41162.67 42127.45 41429.85 41461.58 4065.98 42473.83 41628.49 41443.46 40852.90 411
test_vis3_rt54.10 37651.04 37963.27 39258.16 41646.08 41384.17 38349.32 42756.48 40536.56 41149.48 4148.03 42391.91 36667.29 32349.87 39551.82 413
PMVScopyleft34.80 2339.19 38535.53 38850.18 40029.72 42730.30 42559.60 41566.20 42026.06 41617.91 42049.53 4133.12 42674.09 41518.19 41849.40 39646.14 414
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive35.65 2233.85 38629.49 39146.92 40141.86 42536.28 42150.45 41656.52 42418.75 42018.28 41937.84 4162.41 42758.41 42018.71 41720.62 41746.06 415
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
tmp_tt41.54 38441.93 38640.38 40220.10 42826.84 42661.93 41459.09 42314.81 42128.51 41680.58 37235.53 39548.33 42363.70 34313.11 42045.96 416
Gipumacopyleft45.11 38342.05 38554.30 39980.69 38251.30 40635.80 41783.81 39828.13 41327.94 41734.53 41711.41 42076.70 41321.45 41654.65 38434.90 417
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
E-PMN32.70 38732.39 38933.65 40353.35 42025.70 42774.07 40753.33 42521.08 41717.17 42133.63 41911.85 41954.84 42112.98 42114.04 41820.42 418
EMVS31.70 38831.45 39032.48 40450.72 42323.95 42874.78 40652.30 42620.36 41816.08 42231.48 42012.80 41753.60 42211.39 42213.10 42119.88 419
test1239.07 39211.73 3951.11 4060.50 4300.77 43189.44 3440.20 4310.34 4242.15 42510.72 4240.34 4290.32 4251.79 4250.08 4242.23 420
testmvs9.92 39112.94 3940.84 4070.65 4290.29 43293.78 2880.39 4300.42 4232.85 42415.84 4230.17 4300.30 4262.18 4240.21 4231.91 421
wuyk23d14.10 39013.89 39314.72 40555.23 41922.91 42933.83 4183.56 4294.94 4224.11 4232.28 4252.06 42819.66 42410.23 4238.74 4221.59 422
mmdepth0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
monomultidepth0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
test_blank0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
uanet_test0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
DCPMVS0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
cdsmvs_eth3d_5k21.43 38928.57 3920.00 4080.00 4310.00 4330.00 41995.93 1560.00 4260.00 42797.66 7563.57 2670.00 4270.00 4260.00 4250.00 423
pcd_1.5k_mvsjas5.92 3947.89 3970.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 42671.04 2220.00 4270.00 4260.00 4250.00 423
sosnet-low-res0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
sosnet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
uncertanet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
Regformer0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
ab-mvs-re8.11 39310.81 3960.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 42797.30 980.00 4310.00 4270.00 4260.00 4250.00 423
uanet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
WAC-MVS67.18 36049.00 393
FOURS198.51 3978.01 24198.13 4996.21 13183.04 20994.39 52
test_one_060198.91 1884.56 8396.70 7288.06 8496.57 2398.77 1088.04 21
eth-test20.00 431
eth-test0.00 431
ZD-MVS99.09 883.22 10796.60 8882.88 21493.61 6398.06 5382.93 5899.14 10095.51 4998.49 39
test_241102_ONE99.03 1585.03 7396.78 5688.72 6797.79 698.90 588.48 1799.82 19
9.1494.26 3198.10 5798.14 4696.52 9784.74 16094.83 4798.80 782.80 6099.37 8095.95 4198.42 42
save fliter98.24 5183.34 10498.61 3396.57 9291.32 33
test072699.05 985.18 6599.11 1596.78 5688.75 6597.65 1198.91 287.69 23
test_part298.90 1985.14 7196.07 29
sam_mvs75.35 165
MTGPAbinary96.33 120
test_post185.88 37430.24 42173.77 18895.07 31673.89 285
test_post33.80 41876.17 14495.97 263
patchmatchnet-post77.09 38777.78 11695.39 297
MTMP97.53 9368.16 418
gm-plane-assit92.27 23879.64 19684.47 17095.15 16897.93 16285.81 169
TEST998.64 3183.71 9597.82 6896.65 7984.29 17795.16 3798.09 4884.39 4199.36 81
test_898.63 3383.64 9897.81 7096.63 8484.50 16895.10 4098.11 4784.33 4299.23 88
agg_prior98.59 3583.13 10896.56 9494.19 5499.16 99
test_prior482.34 12197.75 76
test_prior298.37 3986.08 12894.57 5098.02 5483.14 5595.05 5598.79 27
旧先验296.97 14474.06 33796.10 2897.76 17388.38 149
新几何296.42 184
原ACMM296.84 154
testdata299.48 7376.45 260
segment_acmp82.69 61
testdata195.57 23387.44 101
plane_prior791.86 25977.55 260
plane_prior691.98 25577.92 24664.77 262
plane_prior494.15 195
plane_prior377.75 25690.17 5281.33 225
plane_prior297.18 12089.89 54
plane_prior191.95 257
plane_prior77.96 24397.52 9690.36 5082.96 246
n20.00 432
nn0.00 432
door-mid79.75 406
test1196.50 100
door80.13 405
HQP5-MVS78.48 223
HQP-NCC92.08 25097.63 8290.52 4582.30 212
ACMP_Plane92.08 25097.63 8290.52 4582.30 212
BP-MVS87.67 157
HQP3-MVS94.80 21983.01 244
HQP2-MVS65.40 257
NP-MVS92.04 25478.22 23394.56 185
MDTV_nov1_ep1383.69 22794.09 18281.01 15386.78 36796.09 14083.81 19384.75 18484.32 34974.44 18196.54 24263.88 34185.07 232
ACMMP++_ref78.45 281
ACMMP++79.05 273
Test By Simon71.65 215