| SED-MVS | | | 95.88 5 | 96.22 4 | 94.87 24 | 99.03 15 | 85.03 69 | 99.12 12 | 96.78 55 | 88.72 67 | 97.79 7 | 98.91 2 | 88.48 17 | 99.82 18 | 98.15 11 | 98.97 17 | 99.74 1 |
|
| OPU-MVS | | | | | 97.30 2 | 99.19 7 | 92.31 3 | 99.12 12 | | | | 98.54 20 | 92.06 3 | 99.84 12 | 99.11 2 | 99.37 1 | 99.74 1 |
|
| DVP-MVS++ | | | 96.05 4 | 96.41 3 | 94.96 23 | 99.05 9 | 85.34 56 | 98.13 50 | 96.77 61 | 88.38 75 | 97.70 9 | 98.77 10 | 92.06 3 | 99.84 12 | 97.47 24 | 99.37 1 | 99.70 3 |
|
| PC_three_1452 | | | | | | | | | | 91.12 37 | 98.33 2 | 98.42 30 | 92.51 2 | 99.81 21 | 98.96 3 | 99.37 1 | 99.70 3 |
|
| DPM-MVS | | | 96.21 2 | 95.53 13 | 98.26 1 | 96.26 101 | 95.09 1 | 99.15 8 | 96.98 38 | 93.39 16 | 96.45 25 | 98.79 8 | 90.17 10 | 99.99 1 | 89.33 128 | 99.25 6 | 99.70 3 |
|
| DeepPCF-MVS | | 89.82 1 | 94.61 22 | 96.17 5 | 89.91 202 | 97.09 90 | 70.21 335 | 98.99 23 | 96.69 73 | 95.57 2 | 95.08 41 | 99.23 1 | 86.40 29 | 99.87 8 | 97.84 20 | 98.66 32 | 99.65 6 |
|
| MCST-MVS | | | 96.17 3 | 96.12 6 | 96.32 7 | 99.42 2 | 89.36 10 | 98.94 24 | 97.10 32 | 95.17 3 | 92.11 81 | 98.46 28 | 87.33 24 | 99.97 2 | 97.21 28 | 99.31 4 | 99.63 7 |
|
| DeepC-MVS_fast | | 89.06 2 | 94.48 24 | 94.30 29 | 95.02 21 | 98.86 21 | 85.68 48 | 98.06 56 | 96.64 81 | 93.64 14 | 91.74 87 | 98.54 20 | 80.17 73 | 99.90 5 | 92.28 88 | 98.75 28 | 99.49 8 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| test_241102_TWO | | | | | | | | | 96.78 55 | 88.72 67 | 97.70 9 | 98.91 2 | 87.86 21 | 99.82 18 | 98.15 11 | 99.00 15 | 99.47 9 |
|
| test_0728_SECOND | | | | | 95.14 19 | 99.04 14 | 86.14 37 | 99.06 17 | 96.77 61 | | | | | 99.84 12 | 97.90 17 | 98.85 21 | 99.45 10 |
|
| MSC_two_6792asdad | | | | | 97.14 3 | 99.05 9 | 92.19 4 | | 96.83 52 | | | | | 99.81 21 | 98.08 14 | 98.81 24 | 99.43 11 |
|
| No_MVS | | | | | 97.14 3 | 99.05 9 | 92.19 4 | | 96.83 52 | | | | | 99.81 21 | 98.08 14 | 98.81 24 | 99.43 11 |
|
| IU-MVS | | | | | | 99.03 15 | 85.34 56 | | 96.86 51 | 92.05 29 | 98.74 1 | | | | 98.15 11 | 98.97 17 | 99.42 13 |
|
| test_0728_THIRD | | | | | | | | | | 88.38 75 | 96.69 18 | 98.76 12 | 89.64 13 | 99.76 31 | 97.47 24 | 98.84 23 | 99.38 14 |
|
| MSP-MVS | | | 95.62 8 | 96.54 1 | 92.86 96 | 98.31 48 | 80.10 177 | 97.42 104 | 96.78 55 | 92.20 24 | 97.11 15 | 98.29 35 | 93.46 1 | 99.10 101 | 96.01 40 | 99.30 5 | 99.38 14 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| sasdasda | | | 92.27 67 | 91.22 83 | 95.41 16 | 95.80 118 | 88.31 14 | 97.09 133 | 94.64 221 | 88.49 72 | 92.99 70 | 97.31 94 | 72.68 190 | 98.57 127 | 93.38 73 | 88.58 183 | 99.36 16 |
|
| canonicalmvs | | | 92.27 67 | 91.22 83 | 95.41 16 | 95.80 118 | 88.31 14 | 97.09 133 | 94.64 221 | 88.49 72 | 92.99 70 | 97.31 94 | 72.68 190 | 98.57 127 | 93.38 73 | 88.58 183 | 99.36 16 |
|
| patch_mono-2 | | | 95.14 13 | 96.08 7 | 92.33 119 | 98.44 43 | 77.84 243 | 98.43 37 | 97.21 23 | 92.58 21 | 97.68 11 | 97.65 78 | 86.88 25 | 99.83 16 | 98.25 9 | 97.60 68 | 99.33 18 |
|
| MGCFI-Net | | | 91.95 73 | 91.03 90 | 94.72 29 | 95.68 122 | 86.38 34 | 96.93 148 | 94.48 230 | 88.25 79 | 92.78 73 | 97.24 100 | 72.34 195 | 98.46 135 | 93.13 80 | 88.43 187 | 99.32 19 |
|
| DPE-MVS |  | | 95.32 11 | 95.55 12 | 94.64 31 | 98.79 23 | 84.87 74 | 97.77 73 | 96.74 66 | 86.11 123 | 96.54 24 | 98.89 6 | 88.39 19 | 99.74 38 | 97.67 22 | 99.05 12 | 99.31 20 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| APDe-MVS |  | | 94.56 23 | 94.75 20 | 93.96 50 | 98.84 22 | 83.40 100 | 98.04 58 | 96.41 108 | 85.79 131 | 95.00 43 | 98.28 36 | 84.32 41 | 99.18 94 | 97.35 26 | 98.77 27 | 99.28 21 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| MVS | | | 90.60 110 | 88.64 135 | 96.50 5 | 94.25 167 | 90.53 8 | 93.33 291 | 97.21 23 | 77.59 298 | 78.88 243 | 97.31 94 | 71.52 206 | 99.69 49 | 89.60 123 | 98.03 55 | 99.27 22 |
|
| CSCG | | | 92.02 72 | 91.65 76 | 93.12 85 | 98.53 36 | 80.59 161 | 97.47 97 | 97.18 26 | 77.06 307 | 84.64 177 | 97.98 57 | 83.98 44 | 99.52 69 | 90.72 106 | 97.33 77 | 99.23 23 |
|
| TSAR-MVS + GP. | | | 94.35 25 | 94.50 23 | 93.89 51 | 97.38 84 | 83.04 107 | 98.10 52 | 95.29 188 | 91.57 32 | 93.81 58 | 97.45 87 | 86.64 26 | 99.43 76 | 96.28 38 | 94.01 129 | 99.20 24 |
|
| MG-MVS | | | 94.25 28 | 93.72 34 | 95.85 11 | 99.38 3 | 89.35 11 | 97.98 60 | 98.09 9 | 89.99 53 | 92.34 77 | 96.97 112 | 81.30 62 | 98.99 107 | 88.54 135 | 98.88 20 | 99.20 24 |
|
| MM | | | 95.85 6 | 95.74 10 | 96.15 8 | 96.34 96 | 89.50 9 | 99.18 6 | 98.10 8 | 95.68 1 | 96.64 21 | 97.92 60 | 80.72 65 | 99.80 25 | 99.16 1 | 97.96 57 | 99.15 26 |
|
| iter_conf05_11 | | | 91.95 73 | 91.17 88 | 94.29 38 | 96.33 97 | 85.50 54 | 99.61 1 | 91.84 322 | 94.36 10 | 97.89 6 | 98.51 24 | 46.72 350 | 98.24 147 | 96.54 36 | 98.75 28 | 99.13 27 |
|
| bld_raw_dy_0_64 | | | 88.31 160 | 86.38 179 | 94.07 47 | 96.33 97 | 84.79 76 | 97.19 117 | 84.75 378 | 94.48 8 | 82.36 202 | 98.47 27 | 46.18 353 | 98.30 145 | 96.54 36 | 81.13 249 | 99.13 27 |
|
| DELS-MVS | | | 94.98 14 | 94.49 24 | 96.44 6 | 96.42 95 | 90.59 7 | 99.21 5 | 97.02 36 | 94.40 9 | 91.46 89 | 97.08 108 | 83.32 49 | 99.69 49 | 92.83 83 | 98.70 31 | 99.04 29 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| APD-MVS |  | | 93.61 37 | 93.59 38 | 93.69 61 | 98.76 24 | 83.26 103 | 97.21 114 | 96.09 137 | 82.41 218 | 94.65 49 | 98.21 38 | 81.96 59 | 98.81 119 | 94.65 58 | 98.36 46 | 99.01 30 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| CNVR-MVS | | | 96.30 1 | 96.54 1 | 95.55 15 | 99.31 5 | 87.69 23 | 99.06 17 | 97.12 30 | 94.66 5 | 96.79 17 | 98.78 9 | 86.42 28 | 99.95 3 | 97.59 23 | 99.18 7 | 99.00 31 |
|
| NCCC | | | 95.63 7 | 95.94 8 | 94.69 30 | 99.21 6 | 85.15 66 | 99.16 7 | 96.96 41 | 94.11 11 | 95.59 33 | 98.64 17 | 85.07 32 | 99.91 4 | 95.61 47 | 99.10 9 | 99.00 31 |
|
| alignmvs | | | 92.97 47 | 92.26 63 | 95.12 20 | 95.54 125 | 87.77 21 | 98.67 30 | 96.38 113 | 88.04 83 | 93.01 69 | 97.45 87 | 79.20 83 | 98.60 125 | 93.25 77 | 88.76 180 | 98.99 33 |
|
| CANet | | | 94.89 16 | 94.64 22 | 95.63 13 | 97.55 75 | 88.12 17 | 99.06 17 | 96.39 112 | 94.07 12 | 95.34 35 | 97.80 69 | 76.83 122 | 99.87 8 | 97.08 30 | 97.64 67 | 98.89 34 |
|
| HY-MVS | | 84.06 6 | 91.63 84 | 90.37 104 | 95.39 18 | 96.12 105 | 88.25 16 | 90.22 329 | 97.58 16 | 88.33 77 | 90.50 106 | 91.96 227 | 79.26 81 | 99.06 104 | 90.29 116 | 89.07 175 | 98.88 35 |
|
| PHI-MVS | | | 93.59 38 | 93.63 37 | 93.48 74 | 98.05 58 | 81.76 133 | 98.64 32 | 97.13 28 | 82.60 214 | 94.09 56 | 98.49 26 | 80.35 68 | 99.85 10 | 94.74 57 | 98.62 33 | 98.83 36 |
|
| SteuartSystems-ACMMP | | | 94.13 31 | 94.44 26 | 93.20 82 | 95.41 128 | 81.35 143 | 99.02 21 | 96.59 88 | 89.50 59 | 94.18 55 | 98.36 32 | 83.68 48 | 99.45 75 | 94.77 55 | 98.45 40 | 98.81 37 |
| Skip Steuart: Steuart Systems R&D Blog. |
| DVP-MVS |  | | 95.58 9 | 95.91 9 | 94.57 32 | 99.05 9 | 85.18 61 | 99.06 17 | 96.46 102 | 88.75 65 | 96.69 18 | 98.76 12 | 87.69 22 | 99.76 31 | 97.90 17 | 98.85 21 | 98.77 38 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| test_yl | | | 91.46 88 | 90.53 98 | 94.24 41 | 97.41 80 | 85.18 61 | 98.08 53 | 97.72 12 | 80.94 237 | 89.85 111 | 96.14 132 | 75.61 142 | 98.81 119 | 90.42 114 | 88.56 185 | 98.74 39 |
|
| DCV-MVSNet | | | 91.46 88 | 90.53 98 | 94.24 41 | 97.41 80 | 85.18 61 | 98.08 53 | 97.72 12 | 80.94 237 | 89.85 111 | 96.14 132 | 75.61 142 | 98.81 119 | 90.42 114 | 88.56 185 | 98.74 39 |
|
| LFMVS | | | 89.27 134 | 87.64 153 | 94.16 46 | 97.16 88 | 85.52 53 | 97.18 119 | 94.66 218 | 79.17 279 | 89.63 117 | 96.57 126 | 55.35 317 | 98.22 148 | 89.52 126 | 89.54 170 | 98.74 39 |
|
| PAPR | | | 92.74 52 | 92.17 66 | 94.45 34 | 98.89 20 | 84.87 74 | 97.20 116 | 96.20 129 | 87.73 91 | 88.40 138 | 98.12 45 | 78.71 91 | 99.76 31 | 87.99 142 | 96.28 98 | 98.74 39 |
|
| WTY-MVS | | | 92.65 59 | 91.68 75 | 95.56 14 | 96.00 108 | 88.90 13 | 98.23 44 | 97.65 14 | 88.57 70 | 89.82 113 | 97.22 102 | 79.29 80 | 99.06 104 | 89.57 124 | 88.73 181 | 98.73 43 |
|
| 3Dnovator+ | | 82.88 8 | 89.63 128 | 87.85 148 | 94.99 22 | 94.49 162 | 86.76 32 | 97.84 68 | 95.74 161 | 86.10 124 | 75.47 287 | 96.02 135 | 65.00 247 | 99.51 71 | 82.91 193 | 97.07 83 | 98.72 44 |
|
| CS-MVS-test | | | 92.98 46 | 93.67 36 | 90.90 173 | 96.52 94 | 76.87 262 | 98.68 29 | 94.73 213 | 90.36 50 | 94.84 46 | 97.89 64 | 77.94 101 | 97.15 207 | 94.28 63 | 97.80 63 | 98.70 45 |
|
| SD-MVS | | | 94.84 18 | 95.02 19 | 94.29 38 | 97.87 64 | 84.61 78 | 97.76 75 | 96.19 131 | 89.59 58 | 96.66 20 | 98.17 43 | 84.33 38 | 99.60 59 | 96.09 39 | 98.50 37 | 98.66 46 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| HPM-MVS++ |  | | 95.32 11 | 95.48 14 | 94.85 25 | 98.62 34 | 86.04 38 | 97.81 71 | 96.93 44 | 92.45 22 | 95.69 32 | 98.50 25 | 85.38 30 | 99.85 10 | 94.75 56 | 99.18 7 | 98.65 47 |
|
| MSLP-MVS++ | | | 94.28 26 | 94.39 27 | 93.97 49 | 98.30 49 | 84.06 87 | 98.64 32 | 96.93 44 | 90.71 42 | 93.08 68 | 98.70 15 | 79.98 75 | 99.21 88 | 94.12 64 | 99.07 11 | 98.63 48 |
|
| lupinMVS | | | 93.87 35 | 93.58 39 | 94.75 28 | 93.00 206 | 88.08 18 | 99.15 8 | 95.50 173 | 91.03 39 | 94.90 44 | 97.66 74 | 78.84 88 | 97.56 176 | 94.64 59 | 97.46 71 | 98.62 49 |
|
| agg_prior2 | | | | | | | | | | | | | | | 94.30 60 | 99.00 15 | 98.57 50 |
|
| PAPM_NR | | | 91.46 88 | 90.82 92 | 93.37 77 | 98.50 40 | 81.81 132 | 95.03 252 | 96.13 134 | 84.65 160 | 86.10 161 | 97.65 78 | 79.24 82 | 99.75 36 | 83.20 189 | 96.88 87 | 98.56 51 |
|
| API-MVS | | | 90.18 118 | 88.97 129 | 93.80 54 | 98.66 28 | 82.95 108 | 97.50 96 | 95.63 167 | 75.16 319 | 86.31 158 | 97.69 72 | 72.49 193 | 99.90 5 | 81.26 202 | 96.07 103 | 98.56 51 |
|
| mvs_anonymous | | | 88.68 147 | 87.62 155 | 91.86 142 | 94.80 149 | 81.69 137 | 93.53 287 | 94.92 201 | 82.03 225 | 78.87 244 | 90.43 252 | 75.77 140 | 95.34 291 | 85.04 165 | 93.16 143 | 98.55 53 |
|
| MVS_0304 | | | 95.36 10 | 95.20 17 | 95.85 11 | 94.89 147 | 89.22 12 | 98.83 26 | 97.88 11 | 94.68 4 | 95.14 39 | 97.99 54 | 80.80 64 | 99.81 21 | 98.60 6 | 97.95 58 | 98.50 54 |
|
| CS-MVS | | | 92.73 53 | 93.48 41 | 90.48 185 | 96.27 100 | 75.93 282 | 98.55 35 | 94.93 200 | 89.32 60 | 94.54 51 | 97.67 73 | 78.91 87 | 97.02 211 | 93.80 66 | 97.32 78 | 98.49 55 |
|
| SMA-MVS |  | | 94.70 21 | 94.68 21 | 94.76 27 | 98.02 59 | 85.94 42 | 97.47 97 | 96.77 61 | 85.32 140 | 97.92 3 | 98.70 15 | 83.09 51 | 99.84 12 | 95.79 44 | 99.08 10 | 98.49 55 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| ET-MVSNet_ETH3D | | | 90.01 121 | 89.03 127 | 92.95 92 | 94.38 164 | 86.77 31 | 98.14 47 | 96.31 120 | 89.30 61 | 63.33 358 | 96.72 124 | 90.09 11 | 93.63 337 | 90.70 107 | 82.29 245 | 98.46 57 |
|
| SR-MVS | | | 92.16 69 | 92.27 62 | 91.83 145 | 98.37 45 | 78.41 221 | 96.67 167 | 95.76 159 | 82.19 222 | 91.97 82 | 98.07 51 | 76.44 128 | 98.64 123 | 93.71 68 | 97.27 79 | 98.45 58 |
|
| æ— å…ˆéªŒ | | | | | | | | 96.87 152 | 96.78 55 | 77.39 300 | | | | 99.52 69 | 79.95 213 | | 98.43 59 |
|
| VNet | | | 92.11 71 | 91.22 83 | 94.79 26 | 96.91 91 | 86.98 28 | 97.91 64 | 97.96 10 | 86.38 120 | 93.65 60 | 95.74 140 | 70.16 219 | 98.95 111 | 93.39 71 | 88.87 179 | 98.43 59 |
|
| ACMMP_NAP | | | 93.46 39 | 93.23 45 | 94.17 44 | 97.16 88 | 84.28 84 | 96.82 156 | 96.65 78 | 86.24 121 | 94.27 53 | 97.99 54 | 77.94 101 | 99.83 16 | 93.39 71 | 98.57 34 | 98.39 61 |
|
| casdiffmvs_mvg |  | | 91.13 97 | 90.45 101 | 93.17 84 | 92.99 209 | 83.58 96 | 97.46 99 | 94.56 227 | 87.69 92 | 87.19 152 | 94.98 173 | 74.50 170 | 97.60 173 | 91.88 95 | 92.79 146 | 98.34 62 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| TSAR-MVS + MP. | | | 94.79 20 | 95.17 18 | 93.64 63 | 97.66 69 | 84.10 86 | 95.85 215 | 96.42 107 | 91.26 35 | 97.49 13 | 96.80 120 | 86.50 27 | 98.49 132 | 95.54 49 | 99.03 13 | 98.33 63 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| SF-MVS | | | 94.17 29 | 94.05 33 | 94.55 33 | 97.56 74 | 85.95 40 | 97.73 77 | 96.43 106 | 84.02 178 | 95.07 42 | 98.74 14 | 82.93 52 | 99.38 78 | 95.42 51 | 98.51 35 | 98.32 64 |
|
| Effi-MVS+ | | | 90.70 108 | 89.90 118 | 93.09 87 | 93.61 185 | 83.48 98 | 95.20 242 | 92.79 310 | 83.22 197 | 91.82 85 | 95.70 142 | 71.82 202 | 97.48 186 | 91.25 98 | 93.67 135 | 98.32 64 |
|
| test9_res | | | | | | | | | | | | | | | 96.00 41 | 99.03 13 | 98.31 66 |
|
| test222 | | | | | | 96.15 104 | 78.41 221 | 95.87 213 | 96.46 102 | 71.97 344 | 89.66 116 | 97.45 87 | 76.33 132 | | | 98.24 50 | 98.30 67 |
|
| test_prior | | | | | 93.09 87 | 98.68 26 | 81.91 126 | | 96.40 110 | | | | | 99.06 104 | | | 98.29 68 |
|
| testdata | | | | | 90.13 194 | 95.92 113 | 74.17 298 | | 96.49 101 | 73.49 333 | 94.82 48 | 97.99 54 | 78.80 90 | 97.93 156 | 83.53 186 | 97.52 70 | 98.29 68 |
|
| dcpmvs_2 | | | 93.10 44 | 93.46 42 | 92.02 137 | 97.77 65 | 79.73 187 | 94.82 256 | 93.86 268 | 86.91 111 | 91.33 93 | 96.76 121 | 85.20 31 | 98.06 152 | 96.90 32 | 97.60 68 | 98.27 70 |
|
| æ–°å‡ ä½•1 | | | | | 93.12 85 | 97.44 78 | 81.60 140 | | 96.71 70 | 74.54 324 | 91.22 96 | 97.57 82 | 79.13 84 | 99.51 71 | 77.40 241 | 98.46 39 | 98.26 71 |
|
| EIA-MVS | | | 91.73 80 | 92.05 69 | 90.78 178 | 94.52 157 | 76.40 271 | 98.06 56 | 95.34 186 | 89.19 62 | 88.90 129 | 97.28 99 | 77.56 108 | 97.73 168 | 90.77 105 | 96.86 89 | 98.20 72 |
|
| region2R | | | 92.72 55 | 92.70 53 | 92.79 99 | 98.68 26 | 80.53 166 | 97.53 92 | 96.51 96 | 85.22 143 | 91.94 84 | 97.98 57 | 77.26 112 | 99.67 53 | 90.83 104 | 98.37 45 | 98.18 73 |
|
| Anonymous202405211 | | | 84.41 226 | 81.93 248 | 91.85 144 | 96.78 93 | 78.41 221 | 97.44 100 | 91.34 332 | 70.29 352 | 84.06 180 | 94.26 187 | 41.09 370 | 98.96 109 | 79.46 217 | 82.65 241 | 98.17 74 |
|
| train_agg | | | 94.28 26 | 94.45 25 | 93.74 57 | 98.64 31 | 83.71 92 | 97.82 69 | 96.65 78 | 84.50 164 | 95.16 36 | 98.09 47 | 84.33 38 | 99.36 81 | 95.91 43 | 98.96 19 | 98.16 75 |
|
| baseline | | | 90.76 107 | 90.10 111 | 92.74 101 | 92.90 212 | 82.56 112 | 94.60 260 | 94.56 227 | 87.69 92 | 89.06 127 | 95.67 144 | 73.76 179 | 97.51 183 | 90.43 113 | 92.23 155 | 98.16 75 |
|
| CDPH-MVS | | | 93.12 43 | 92.91 49 | 93.74 57 | 98.65 30 | 83.88 88 | 97.67 82 | 96.26 123 | 83.00 204 | 93.22 66 | 98.24 37 | 81.31 61 | 99.21 88 | 89.12 129 | 98.74 30 | 98.14 77 |
|
| DP-MVS Recon | | | 91.72 82 | 90.85 91 | 94.34 36 | 99.50 1 | 85.00 71 | 98.51 36 | 95.96 148 | 80.57 246 | 88.08 143 | 97.63 80 | 76.84 120 | 99.89 7 | 85.67 160 | 94.88 117 | 98.13 78 |
|
| HFP-MVS | | | 92.89 49 | 92.86 51 | 92.98 91 | 98.71 25 | 81.12 146 | 97.58 87 | 96.70 71 | 85.20 145 | 91.75 86 | 97.97 59 | 78.47 93 | 99.71 45 | 90.95 100 | 98.41 42 | 98.12 79 |
|
| MVS_Test | | | 90.29 117 | 89.18 126 | 93.62 65 | 95.23 133 | 84.93 72 | 94.41 263 | 94.66 218 | 84.31 169 | 90.37 109 | 91.02 242 | 75.13 159 | 97.82 165 | 83.11 191 | 94.42 124 | 98.12 79 |
|
| ZNCC-MVS | | | 92.75 51 | 92.60 56 | 93.23 81 | 98.24 51 | 81.82 131 | 97.63 83 | 96.50 98 | 85.00 151 | 91.05 98 | 97.74 71 | 78.38 94 | 99.80 25 | 90.48 109 | 98.34 47 | 98.07 81 |
|
| EPMVS | | | 87.47 178 | 85.90 184 | 92.18 128 | 95.41 128 | 82.26 120 | 87.00 353 | 96.28 121 | 85.88 130 | 84.23 179 | 85.57 322 | 75.07 161 | 96.26 244 | 71.14 295 | 92.50 150 | 98.03 82 |
|
| XVS | | | 92.69 57 | 92.71 52 | 92.63 107 | 98.52 37 | 80.29 169 | 97.37 108 | 96.44 104 | 87.04 109 | 91.38 90 | 97.83 68 | 77.24 114 | 99.59 60 | 90.46 110 | 98.07 53 | 98.02 83 |
|
| X-MVStestdata | | | 86.26 195 | 84.14 214 | 92.63 107 | 98.52 37 | 80.29 169 | 97.37 108 | 96.44 104 | 87.04 109 | 91.38 90 | 20.73 407 | 77.24 114 | 99.59 60 | 90.46 110 | 98.07 53 | 98.02 83 |
|
| MVSFormer | | | 91.36 91 | 90.57 97 | 93.73 59 | 93.00 206 | 88.08 18 | 94.80 258 | 94.48 230 | 80.74 242 | 94.90 44 | 97.13 105 | 78.84 88 | 95.10 305 | 83.77 178 | 97.46 71 | 98.02 83 |
|
| jason | | | 92.73 53 | 92.23 64 | 94.21 43 | 90.50 276 | 87.30 27 | 98.65 31 | 95.09 194 | 90.61 44 | 92.76 74 | 97.13 105 | 75.28 157 | 97.30 196 | 93.32 75 | 96.75 92 | 98.02 83 |
| jason: jason. |
| MVS_111021_HR | | | 93.41 40 | 93.39 43 | 93.47 76 | 97.34 85 | 82.83 109 | 97.56 89 | 98.27 6 | 89.16 63 | 89.71 114 | 97.14 104 | 79.77 77 | 99.56 66 | 93.65 69 | 97.94 59 | 98.02 83 |
|
| GG-mvs-BLEND | | | | | 93.49 73 | 94.94 144 | 86.26 35 | 81.62 376 | 97.00 37 | | 88.32 140 | 94.30 186 | 91.23 5 | 96.21 247 | 88.49 137 | 97.43 74 | 98.00 88 |
|
| ACMMPR | | | 92.69 57 | 92.67 54 | 92.75 100 | 98.66 28 | 80.57 162 | 97.58 87 | 96.69 73 | 85.20 145 | 91.57 88 | 97.92 60 | 77.01 117 | 99.67 53 | 90.95 100 | 98.41 42 | 98.00 88 |
|
| test2506 | | | 90.96 103 | 90.39 102 | 92.65 105 | 93.54 188 | 82.46 116 | 96.37 185 | 97.35 18 | 86.78 116 | 87.55 146 | 95.25 155 | 77.83 105 | 97.50 184 | 84.07 172 | 94.80 118 | 97.98 90 |
|
| ECVR-MVS |  | | 88.35 159 | 87.25 165 | 91.65 149 | 93.54 188 | 79.40 194 | 96.56 172 | 90.78 342 | 86.78 116 | 85.57 164 | 95.25 155 | 57.25 304 | 97.56 176 | 84.73 168 | 94.80 118 | 97.98 90 |
|
| test12 | | | | | 94.25 40 | 98.34 46 | 85.55 52 | | 96.35 117 | | 92.36 76 | | 80.84 63 | 99.22 87 | | 98.31 48 | 97.98 90 |
|
| MTAPA | | | 92.45 64 | 92.31 61 | 92.86 96 | 97.90 61 | 80.85 155 | 92.88 302 | 96.33 118 | 87.92 86 | 90.20 110 | 98.18 40 | 76.71 125 | 99.76 31 | 92.57 87 | 98.09 52 | 97.96 93 |
|
| CP-MVS | | | 92.54 62 | 92.60 56 | 92.34 117 | 98.50 40 | 79.90 180 | 98.40 39 | 96.40 110 | 84.75 155 | 90.48 107 | 98.09 47 | 77.40 111 | 99.21 88 | 91.15 99 | 98.23 51 | 97.92 94 |
|
| mPP-MVS | | | 91.88 78 | 91.82 72 | 92.07 133 | 98.38 44 | 78.63 215 | 97.29 112 | 96.09 137 | 85.12 147 | 88.45 137 | 97.66 74 | 75.53 146 | 99.68 51 | 89.83 120 | 98.02 56 | 97.88 95 |
|
| 3Dnovator | | 82.32 10 | 89.33 132 | 87.64 153 | 94.42 35 | 93.73 184 | 85.70 46 | 97.73 77 | 96.75 65 | 86.73 119 | 76.21 275 | 95.93 136 | 62.17 261 | 99.68 51 | 81.67 200 | 97.81 62 | 97.88 95 |
|
| test1111 | | | 88.11 165 | 87.04 171 | 91.35 157 | 93.15 201 | 78.79 212 | 96.57 170 | 90.78 342 | 86.88 113 | 85.04 168 | 95.20 161 | 57.23 305 | 97.39 191 | 83.88 175 | 94.59 121 | 97.87 97 |
|
| Patchmatch-test | | | 78.25 302 | 74.72 316 | 88.83 222 | 91.20 259 | 74.10 299 | 73.91 393 | 88.70 361 | 59.89 384 | 66.82 342 | 85.12 332 | 78.38 94 | 94.54 320 | 48.84 382 | 79.58 262 | 97.86 98 |
|
| MP-MVS |  | | 92.61 60 | 92.67 54 | 92.42 115 | 98.13 56 | 79.73 187 | 97.33 110 | 96.20 129 | 85.63 133 | 90.53 105 | 97.66 74 | 78.14 99 | 99.70 48 | 92.12 90 | 98.30 49 | 97.85 99 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| ab-mvs | | | 87.08 180 | 84.94 200 | 93.48 74 | 93.34 197 | 83.67 94 | 88.82 337 | 95.70 163 | 81.18 234 | 84.55 178 | 90.14 258 | 62.72 258 | 98.94 113 | 85.49 162 | 82.54 242 | 97.85 99 |
|
| test_fmvsmconf_n | | | 93.99 33 | 94.36 28 | 92.86 96 | 92.82 213 | 81.12 146 | 99.26 4 | 96.37 116 | 93.47 15 | 95.16 36 | 98.21 38 | 79.00 85 | 99.64 55 | 98.21 10 | 96.73 93 | 97.83 101 |
|
| casdiffmvs |  | | 90.95 104 | 90.39 102 | 92.63 107 | 92.82 213 | 82.53 113 | 96.83 154 | 94.47 233 | 87.69 92 | 88.47 136 | 95.56 149 | 74.04 176 | 97.54 180 | 90.90 103 | 92.74 147 | 97.83 101 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| EPNet | | | 94.06 32 | 94.15 31 | 93.76 56 | 97.27 87 | 84.35 81 | 98.29 42 | 97.64 15 | 94.57 6 | 95.36 34 | 96.88 115 | 79.96 76 | 99.12 100 | 91.30 97 | 96.11 102 | 97.82 103 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| gg-mvs-nofinetune | | | 85.48 209 | 82.90 233 | 93.24 80 | 94.51 160 | 85.82 44 | 79.22 380 | 96.97 40 | 61.19 378 | 87.33 149 | 53.01 396 | 90.58 6 | 96.07 250 | 86.07 157 | 97.23 80 | 97.81 104 |
|
| CHOSEN 1792x2688 | | | 91.07 100 | 90.21 108 | 93.64 63 | 95.18 136 | 83.53 97 | 96.26 192 | 96.13 134 | 88.92 64 | 84.90 171 | 93.10 212 | 72.86 188 | 99.62 58 | 88.86 131 | 95.67 111 | 97.79 105 |
|
| APD-MVS_3200maxsize | | | 91.23 95 | 91.35 80 | 90.89 174 | 97.89 62 | 76.35 272 | 96.30 190 | 95.52 172 | 79.82 265 | 91.03 99 | 97.88 65 | 74.70 165 | 98.54 129 | 92.11 91 | 96.89 86 | 97.77 106 |
|
| SR-MVS-dyc-post | | | 91.29 93 | 91.45 79 | 90.80 176 | 97.76 67 | 76.03 277 | 96.20 197 | 95.44 178 | 80.56 247 | 90.72 103 | 97.84 66 | 75.76 141 | 98.61 124 | 91.99 92 | 96.79 90 | 97.75 107 |
|
| RE-MVS-def | | | | 91.18 87 | | 97.76 67 | 76.03 277 | 96.20 197 | 95.44 178 | 80.56 247 | 90.72 103 | 97.84 66 | 73.36 185 | | 91.99 92 | 96.79 90 | 97.75 107 |
|
| GST-MVS | | | 92.43 65 | 92.22 65 | 93.04 89 | 98.17 54 | 81.64 138 | 97.40 106 | 96.38 113 | 84.71 158 | 90.90 101 | 97.40 92 | 77.55 109 | 99.76 31 | 89.75 122 | 97.74 64 | 97.72 109 |
|
| Patchmatch-RL test | | | 76.65 317 | 74.01 324 | 84.55 309 | 77.37 382 | 64.23 361 | 78.49 384 | 82.84 386 | 78.48 289 | 64.63 353 | 73.40 381 | 76.05 136 | 91.70 358 | 76.99 243 | 57.84 371 | 97.72 109 |
|
| PVSNet | | 82.34 9 | 89.02 137 | 87.79 150 | 92.71 103 | 95.49 126 | 81.50 141 | 97.70 79 | 97.29 19 | 87.76 90 | 85.47 165 | 95.12 167 | 56.90 306 | 98.90 115 | 80.33 207 | 94.02 128 | 97.71 111 |
|
| Vis-MVSNet |  | | 88.67 148 | 87.82 149 | 91.24 162 | 92.68 215 | 78.82 209 | 96.95 146 | 93.85 269 | 87.55 95 | 87.07 154 | 95.13 166 | 63.43 255 | 97.21 201 | 77.58 237 | 96.15 101 | 97.70 112 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| PAPM | | | 92.87 50 | 92.40 59 | 94.30 37 | 92.25 231 | 87.85 20 | 96.40 184 | 96.38 113 | 91.07 38 | 88.72 134 | 96.90 113 | 82.11 57 | 97.37 193 | 90.05 119 | 97.70 65 | 97.67 113 |
|
| PGM-MVS | | | 91.93 75 | 91.80 73 | 92.32 121 | 98.27 50 | 79.74 186 | 95.28 236 | 97.27 21 | 83.83 186 | 90.89 102 | 97.78 70 | 76.12 135 | 99.56 66 | 88.82 132 | 97.93 61 | 97.66 114 |
|
| sss | | | 90.87 106 | 89.96 115 | 93.60 66 | 94.15 171 | 83.84 91 | 97.14 126 | 98.13 7 | 85.93 129 | 89.68 115 | 96.09 134 | 71.67 203 | 99.30 83 | 87.69 145 | 89.16 174 | 97.66 114 |
|
| PatchmatchNet |  | | 86.83 186 | 85.12 197 | 91.95 139 | 94.12 174 | 82.27 119 | 86.55 357 | 95.64 166 | 84.59 162 | 82.98 197 | 84.99 334 | 77.26 112 | 95.96 258 | 68.61 308 | 91.34 162 | 97.64 116 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| MAR-MVS | | | 90.63 109 | 90.22 107 | 91.86 142 | 98.47 42 | 78.20 231 | 97.18 119 | 96.61 84 | 83.87 185 | 88.18 142 | 98.18 40 | 68.71 223 | 99.75 36 | 83.66 183 | 97.15 81 | 97.63 117 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| 旧先验1 | | | | | | 97.39 82 | 79.58 191 | | 96.54 93 | | | 98.08 50 | 84.00 43 | | | 97.42 75 | 97.62 118 |
|
| Vis-MVSNet (Re-imp) | | | 88.88 142 | 88.87 134 | 88.91 220 | 93.89 180 | 74.43 296 | 96.93 148 | 94.19 250 | 84.39 167 | 83.22 193 | 95.67 144 | 78.24 96 | 94.70 316 | 78.88 225 | 94.40 125 | 97.61 119 |
|
| MP-MVS-pluss | | | 92.58 61 | 92.35 60 | 93.29 78 | 97.30 86 | 82.53 113 | 96.44 180 | 96.04 142 | 84.68 159 | 89.12 125 | 98.37 31 | 77.48 110 | 99.74 38 | 93.31 76 | 98.38 44 | 97.59 120 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| ETVMVS | | | 90.99 101 | 90.26 105 | 93.19 83 | 95.81 117 | 85.64 50 | 96.97 143 | 97.18 26 | 85.43 137 | 88.77 133 | 94.86 175 | 82.00 58 | 96.37 240 | 82.70 194 | 88.60 182 | 97.57 121 |
|
| test_fmvsmconf0.1_n | | | 93.08 45 | 93.22 46 | 92.65 105 | 88.45 307 | 80.81 156 | 99.00 22 | 95.11 193 | 93.21 17 | 94.00 57 | 97.91 62 | 76.84 120 | 99.59 60 | 97.91 16 | 96.55 96 | 97.54 122 |
|
| GSMVS | | | | | | | | | | | | | | | | | 97.54 122 |
|
| sam_mvs1 | | | | | | | | | | | | | 77.59 107 | | | | 97.54 122 |
|
| SCA | | | 85.63 205 | 83.64 220 | 91.60 153 | 92.30 227 | 81.86 129 | 92.88 302 | 95.56 169 | 84.85 153 | 82.52 198 | 85.12 332 | 58.04 293 | 95.39 288 | 73.89 275 | 87.58 198 | 97.54 122 |
|
| HPM-MVS |  | | 91.62 85 | 91.53 78 | 91.89 141 | 97.88 63 | 79.22 199 | 96.99 138 | 95.73 162 | 82.07 224 | 89.50 121 | 97.19 103 | 75.59 144 | 98.93 114 | 90.91 102 | 97.94 59 | 97.54 122 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| VDD-MVS | | | 88.28 162 | 87.02 172 | 92.06 134 | 95.09 138 | 80.18 175 | 97.55 91 | 94.45 235 | 83.09 200 | 89.10 126 | 95.92 138 | 47.97 344 | 98.49 132 | 93.08 82 | 86.91 202 | 97.52 127 |
|
| AdaColmap |  | | 88.81 144 | 87.61 156 | 92.39 116 | 99.33 4 | 79.95 178 | 96.70 166 | 95.58 168 | 77.51 299 | 83.05 196 | 96.69 125 | 61.90 267 | 99.72 43 | 84.29 170 | 93.47 138 | 97.50 128 |
|
| IS-MVSNet | | | 88.67 148 | 88.16 144 | 90.20 193 | 93.61 185 | 76.86 263 | 96.77 161 | 93.07 306 | 84.02 178 | 83.62 189 | 95.60 147 | 74.69 168 | 96.24 246 | 78.43 229 | 93.66 136 | 97.49 129 |
|
| FA-MVS(test-final) | | | 87.71 174 | 86.23 181 | 92.17 129 | 94.19 169 | 80.55 163 | 87.16 352 | 96.07 140 | 82.12 223 | 85.98 162 | 88.35 278 | 72.04 201 | 98.49 132 | 80.26 209 | 89.87 168 | 97.48 130 |
|
| ETV-MVS | | | 92.72 55 | 92.87 50 | 92.28 123 | 94.54 156 | 81.89 127 | 97.98 60 | 95.21 191 | 89.77 57 | 93.11 67 | 96.83 117 | 77.23 116 | 97.50 184 | 95.74 45 | 95.38 114 | 97.44 131 |
|
| CostFormer | | | 89.08 136 | 88.39 140 | 91.15 166 | 93.13 203 | 79.15 202 | 88.61 340 | 96.11 136 | 83.14 199 | 89.58 118 | 86.93 300 | 83.83 47 | 96.87 221 | 88.22 141 | 85.92 213 | 97.42 132 |
|
| testing91 | | | 91.90 77 | 91.31 82 | 93.66 62 | 95.99 109 | 85.68 48 | 97.39 107 | 96.89 47 | 86.75 118 | 88.85 130 | 95.23 158 | 83.93 45 | 97.90 162 | 88.91 130 | 87.89 194 | 97.41 133 |
|
| diffmvs |  | | 91.17 96 | 90.74 94 | 92.44 114 | 93.11 205 | 82.50 115 | 96.25 193 | 93.62 283 | 87.79 89 | 90.40 108 | 95.93 136 | 73.44 184 | 97.42 188 | 93.62 70 | 92.55 149 | 97.41 133 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| 1112_ss | | | 88.60 151 | 87.47 161 | 92.00 138 | 93.21 198 | 80.97 151 | 96.47 177 | 92.46 313 | 83.64 192 | 80.86 222 | 97.30 97 | 80.24 71 | 97.62 172 | 77.60 236 | 85.49 218 | 97.40 135 |
|
| 1314 | | | 88.94 139 | 87.20 166 | 94.17 44 | 93.21 198 | 85.73 45 | 93.33 291 | 96.64 81 | 82.89 206 | 75.98 278 | 96.36 128 | 66.83 235 | 99.39 77 | 83.52 187 | 96.02 106 | 97.39 136 |
|
| Test_1112_low_res | | | 88.03 167 | 86.73 175 | 91.94 140 | 93.15 201 | 80.88 154 | 96.44 180 | 92.41 315 | 83.59 194 | 80.74 224 | 91.16 240 | 80.18 72 | 97.59 174 | 77.48 239 | 85.40 219 | 97.36 137 |
|
| testing11 | | | 92.48 63 | 92.04 70 | 93.78 55 | 95.94 112 | 86.00 39 | 97.56 89 | 97.08 33 | 87.52 96 | 89.32 122 | 95.40 152 | 84.60 35 | 98.02 153 | 91.93 94 | 89.04 176 | 97.32 138 |
|
| HyFIR lowres test | | | 89.36 131 | 88.60 136 | 91.63 152 | 94.91 146 | 80.76 158 | 95.60 226 | 95.53 170 | 82.56 215 | 84.03 181 | 91.24 239 | 78.03 100 | 96.81 225 | 87.07 152 | 88.41 188 | 97.32 138 |
|
| CVMVSNet | | | 84.83 218 | 85.57 187 | 82.63 331 | 91.55 253 | 60.38 376 | 95.13 246 | 95.03 197 | 80.60 245 | 82.10 209 | 94.71 178 | 66.40 238 | 90.19 370 | 74.30 272 | 90.32 166 | 97.31 140 |
|
| tpmrst | | | 88.36 158 | 87.38 163 | 91.31 158 | 94.36 165 | 79.92 179 | 87.32 350 | 95.26 190 | 85.32 140 | 88.34 139 | 86.13 316 | 80.60 67 | 96.70 229 | 83.78 177 | 85.34 221 | 97.30 141 |
|
| PVSNet_Blended | | | 93.13 42 | 92.98 48 | 93.57 68 | 97.47 76 | 83.86 89 | 99.32 2 | 96.73 67 | 91.02 40 | 89.53 119 | 96.21 131 | 76.42 129 | 99.57 64 | 94.29 61 | 95.81 110 | 97.29 142 |
|
| PMMVS | | | 89.46 130 | 89.92 117 | 88.06 239 | 94.64 151 | 69.57 341 | 96.22 194 | 94.95 199 | 87.27 103 | 91.37 92 | 96.54 127 | 65.88 239 | 97.39 191 | 88.54 135 | 93.89 131 | 97.23 143 |
|
| fmvsm_l_conf0.5_n | | | 94.89 16 | 95.24 16 | 93.86 52 | 94.42 163 | 84.61 78 | 99.13 11 | 96.15 133 | 92.06 27 | 97.92 3 | 98.52 23 | 84.52 36 | 99.74 38 | 98.76 5 | 95.67 111 | 97.22 144 |
|
| DeepC-MVS | | 86.58 3 | 91.53 87 | 91.06 89 | 92.94 93 | 94.52 157 | 81.89 127 | 95.95 207 | 95.98 146 | 90.76 41 | 83.76 188 | 96.76 121 | 73.24 186 | 99.71 45 | 91.67 96 | 96.96 84 | 97.22 144 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| testing99 | | | 91.91 76 | 91.35 80 | 93.60 66 | 95.98 110 | 85.70 46 | 97.31 111 | 96.92 46 | 86.82 114 | 88.91 128 | 95.25 155 | 84.26 42 | 97.89 163 | 88.80 133 | 87.94 193 | 97.21 146 |
|
| test_fmvsmconf0.01_n | | | 91.08 99 | 90.68 95 | 92.29 122 | 82.43 366 | 80.12 176 | 97.94 63 | 93.93 261 | 92.07 26 | 91.97 82 | 97.60 81 | 67.56 227 | 99.53 68 | 97.09 29 | 95.56 113 | 97.21 146 |
|
| GeoE | | | 86.36 192 | 85.20 193 | 89.83 205 | 93.17 200 | 76.13 274 | 97.53 92 | 92.11 318 | 79.58 270 | 80.99 220 | 94.01 194 | 66.60 237 | 96.17 249 | 73.48 279 | 89.30 172 | 97.20 148 |
|
| FE-MVS | | | 86.06 198 | 84.15 213 | 91.78 146 | 94.33 166 | 79.81 181 | 84.58 368 | 96.61 84 | 76.69 309 | 85.00 169 | 87.38 291 | 70.71 215 | 98.37 141 | 70.39 300 | 91.70 160 | 97.17 149 |
|
| EC-MVSNet | | | 91.73 80 | 92.11 67 | 90.58 182 | 93.54 188 | 77.77 246 | 98.07 55 | 94.40 238 | 87.44 98 | 92.99 70 | 97.11 107 | 74.59 169 | 96.87 221 | 93.75 67 | 97.08 82 | 97.11 150 |
|
| 114514_t | | | 88.79 146 | 87.57 157 | 92.45 112 | 98.21 53 | 81.74 134 | 96.99 138 | 95.45 177 | 75.16 319 | 82.48 199 | 95.69 143 | 68.59 224 | 98.50 131 | 80.33 207 | 95.18 115 | 97.10 151 |
|
| fmvsm_l_conf0.5_n_a | | | 94.91 15 | 95.30 15 | 93.72 60 | 94.50 161 | 84.30 83 | 99.14 10 | 96.00 144 | 91.94 30 | 97.91 5 | 98.60 18 | 84.78 34 | 99.77 29 | 98.84 4 | 96.03 105 | 97.08 152 |
|
| ACMMP |  | | 90.39 114 | 89.97 114 | 91.64 150 | 97.58 73 | 78.21 230 | 96.78 159 | 96.72 69 | 84.73 157 | 84.72 175 | 97.23 101 | 71.22 208 | 99.63 57 | 88.37 140 | 92.41 152 | 97.08 152 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| MDTV_nov1_ep13_2view | | | | | | | 81.74 134 | 86.80 354 | | 80.65 244 | 85.65 163 | | 74.26 172 | | 76.52 249 | | 96.98 154 |
|
| testing222 | | | 91.09 98 | 90.49 100 | 92.87 95 | 95.82 116 | 85.04 68 | 96.51 175 | 97.28 20 | 86.05 126 | 89.13 124 | 95.34 154 | 80.16 74 | 96.62 233 | 85.82 158 | 88.31 189 | 96.96 155 |
|
| HPM-MVS_fast | | | 90.38 116 | 90.17 110 | 91.03 169 | 97.61 70 | 77.35 255 | 97.15 125 | 95.48 174 | 79.51 271 | 88.79 131 | 96.90 113 | 71.64 205 | 98.81 119 | 87.01 153 | 97.44 73 | 96.94 156 |
|
| Fast-Effi-MVS+ | | | 87.93 170 | 86.94 174 | 90.92 172 | 94.04 177 | 79.16 201 | 98.26 43 | 93.72 279 | 81.29 233 | 83.94 185 | 92.90 213 | 69.83 220 | 96.68 230 | 76.70 247 | 91.74 159 | 96.93 157 |
|
| IB-MVS | | 85.34 4 | 88.67 148 | 87.14 169 | 93.26 79 | 93.12 204 | 84.32 82 | 98.76 27 | 97.27 21 | 87.19 107 | 79.36 240 | 90.45 251 | 83.92 46 | 98.53 130 | 84.41 169 | 69.79 320 | 96.93 157 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| thisisatest0515 | | | 90.95 104 | 90.26 105 | 93.01 90 | 94.03 179 | 84.27 85 | 97.91 64 | 96.67 75 | 83.18 198 | 86.87 155 | 95.51 150 | 88.66 16 | 97.85 164 | 80.46 206 | 89.01 177 | 96.92 159 |
|
| VDDNet | | | 86.44 191 | 84.51 205 | 92.22 126 | 91.56 252 | 81.83 130 | 97.10 132 | 94.64 221 | 69.50 356 | 87.84 144 | 95.19 162 | 48.01 343 | 97.92 161 | 89.82 121 | 86.92 201 | 96.89 160 |
|
| CNLPA | | | 86.96 182 | 85.37 191 | 91.72 148 | 97.59 72 | 79.34 197 | 97.21 114 | 91.05 337 | 74.22 325 | 78.90 242 | 96.75 123 | 67.21 232 | 98.95 111 | 74.68 267 | 90.77 165 | 96.88 161 |
|
| CDS-MVSNet | | | 89.50 129 | 88.96 130 | 91.14 167 | 91.94 248 | 80.93 153 | 97.09 133 | 95.81 157 | 84.26 174 | 84.72 175 | 94.20 190 | 80.31 69 | 95.64 278 | 83.37 188 | 88.96 178 | 96.85 162 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| PS-MVSNAJ | | | 94.17 29 | 93.52 40 | 96.10 9 | 95.65 123 | 92.35 2 | 98.21 45 | 95.79 158 | 92.42 23 | 96.24 27 | 98.18 40 | 71.04 211 | 99.17 95 | 96.77 33 | 97.39 76 | 96.79 163 |
|
| tpm2 | | | 87.35 179 | 86.26 180 | 90.62 181 | 92.93 211 | 78.67 214 | 88.06 345 | 95.99 145 | 79.33 274 | 87.40 147 | 86.43 311 | 80.28 70 | 96.40 238 | 80.23 210 | 85.73 217 | 96.79 163 |
|
| TESTMET0.1,1 | | | 89.83 124 | 89.34 125 | 91.31 158 | 92.54 221 | 80.19 174 | 97.11 129 | 96.57 90 | 86.15 122 | 86.85 156 | 91.83 231 | 79.32 79 | 96.95 215 | 81.30 201 | 92.35 153 | 96.77 165 |
|
| xiu_mvs_v2_base | | | 93.92 34 | 93.26 44 | 95.91 10 | 95.07 140 | 92.02 6 | 98.19 46 | 95.68 164 | 92.06 27 | 96.01 31 | 98.14 44 | 70.83 214 | 98.96 109 | 96.74 35 | 96.57 95 | 96.76 166 |
|
| CR-MVSNet | | | 83.53 240 | 81.36 257 | 90.06 195 | 90.16 282 | 79.75 184 | 79.02 382 | 91.12 334 | 84.24 175 | 82.27 207 | 80.35 361 | 75.45 148 | 93.67 336 | 63.37 335 | 86.25 208 | 96.75 167 |
|
| RPMNet | | | 79.85 289 | 75.92 308 | 91.64 150 | 90.16 282 | 79.75 184 | 79.02 382 | 95.44 178 | 58.43 388 | 82.27 207 | 72.55 385 | 73.03 187 | 98.41 140 | 46.10 386 | 86.25 208 | 96.75 167 |
|
| TAMVS | | | 88.48 154 | 87.79 150 | 90.56 183 | 91.09 263 | 79.18 200 | 96.45 179 | 95.88 153 | 83.64 192 | 83.12 194 | 93.33 207 | 75.94 138 | 95.74 273 | 82.40 195 | 88.27 190 | 96.75 167 |
|
| test_fmvsm_n_1920 | | | 94.81 19 | 95.60 11 | 92.45 112 | 95.29 132 | 80.96 152 | 99.29 3 | 97.21 23 | 94.50 7 | 97.29 14 | 98.44 29 | 82.15 56 | 99.78 28 | 98.56 7 | 97.68 66 | 96.61 170 |
|
| 原ACMM1 | | | | | 91.22 164 | 97.77 65 | 78.10 233 | | 96.61 84 | 81.05 236 | 91.28 95 | 97.42 91 | 77.92 103 | 98.98 108 | 79.85 215 | 98.51 35 | 96.59 171 |
|
| BH-RMVSNet | | | 86.84 185 | 85.28 192 | 91.49 155 | 95.35 130 | 80.26 172 | 96.95 146 | 92.21 317 | 82.86 208 | 81.77 215 | 95.46 151 | 59.34 282 | 97.64 171 | 69.79 303 | 93.81 133 | 96.57 172 |
|
| EPP-MVSNet | | | 89.76 125 | 89.72 121 | 89.87 203 | 93.78 181 | 76.02 279 | 97.22 113 | 96.51 96 | 79.35 273 | 85.11 167 | 95.01 171 | 84.82 33 | 97.10 209 | 87.46 148 | 88.21 191 | 96.50 173 |
|
| dp | | | 84.30 228 | 82.31 242 | 90.28 190 | 94.24 168 | 77.97 236 | 86.57 356 | 95.53 170 | 79.94 264 | 80.75 223 | 85.16 330 | 71.49 207 | 96.39 239 | 63.73 332 | 83.36 231 | 96.48 174 |
|
| MVS_111021_LR | | | 91.60 86 | 91.64 77 | 91.47 156 | 95.74 120 | 78.79 212 | 96.15 199 | 96.77 61 | 88.49 72 | 88.64 135 | 97.07 109 | 72.33 196 | 99.19 93 | 93.13 80 | 96.48 97 | 96.43 175 |
|
| PatchT | | | 79.75 290 | 76.85 302 | 88.42 228 | 89.55 294 | 75.49 286 | 77.37 386 | 94.61 224 | 63.07 369 | 82.46 200 | 73.32 382 | 75.52 147 | 93.41 341 | 51.36 373 | 84.43 224 | 96.36 176 |
|
| LCM-MVSNet-Re | | | 83.75 237 | 83.54 223 | 84.39 314 | 93.54 188 | 64.14 362 | 92.51 305 | 84.03 382 | 83.90 184 | 66.14 347 | 86.59 305 | 67.36 230 | 92.68 344 | 84.89 167 | 92.87 145 | 96.35 177 |
|
| GA-MVS | | | 85.79 203 | 84.04 215 | 91.02 170 | 89.47 296 | 80.27 171 | 96.90 151 | 94.84 207 | 85.57 134 | 80.88 221 | 89.08 266 | 56.56 310 | 96.47 237 | 77.72 233 | 85.35 220 | 96.34 178 |
|
| tpm | | | 85.55 207 | 84.47 208 | 88.80 223 | 90.19 281 | 75.39 287 | 88.79 338 | 94.69 214 | 84.83 154 | 83.96 184 | 85.21 328 | 78.22 97 | 94.68 318 | 76.32 253 | 78.02 278 | 96.34 178 |
|
| CPTT-MVS | | | 89.72 126 | 89.87 119 | 89.29 213 | 98.33 47 | 73.30 304 | 97.70 79 | 95.35 185 | 75.68 315 | 87.40 147 | 97.44 90 | 70.43 216 | 98.25 146 | 89.56 125 | 96.90 85 | 96.33 180 |
|
| PVSNet_Blended_VisFu | | | 91.24 94 | 90.77 93 | 92.66 104 | 95.09 138 | 82.40 117 | 97.77 73 | 95.87 155 | 88.26 78 | 86.39 157 | 93.94 196 | 76.77 123 | 99.27 84 | 88.80 133 | 94.00 130 | 96.31 181 |
|
| QAPM | | | 86.88 184 | 84.51 205 | 93.98 48 | 94.04 177 | 85.89 43 | 97.19 117 | 96.05 141 | 73.62 330 | 75.12 290 | 95.62 146 | 62.02 264 | 99.74 38 | 70.88 296 | 96.06 104 | 96.30 182 |
|
| h-mvs33 | | | 89.30 133 | 88.95 131 | 90.36 188 | 95.07 140 | 76.04 276 | 96.96 145 | 97.11 31 | 90.39 48 | 92.22 79 | 95.10 168 | 74.70 165 | 98.86 116 | 93.14 78 | 65.89 352 | 96.16 183 |
|
| thisisatest0530 | | | 89.65 127 | 89.02 128 | 91.53 154 | 93.46 194 | 80.78 157 | 96.52 173 | 96.67 75 | 81.69 230 | 83.79 187 | 94.90 174 | 88.85 15 | 97.68 169 | 77.80 230 | 87.49 199 | 96.14 184 |
|
| TR-MVS | | | 86.30 194 | 84.93 201 | 90.42 186 | 94.63 152 | 77.58 250 | 96.57 170 | 93.82 270 | 80.30 255 | 82.42 201 | 95.16 164 | 58.74 286 | 97.55 178 | 74.88 265 | 87.82 195 | 96.13 185 |
|
| tpm cat1 | | | 83.63 239 | 81.38 256 | 90.39 187 | 93.53 193 | 78.19 232 | 85.56 364 | 95.09 194 | 70.78 350 | 78.51 246 | 83.28 347 | 74.80 164 | 97.03 210 | 66.77 315 | 84.05 226 | 95.95 186 |
|
| test-LLR | | | 88.48 154 | 87.98 146 | 89.98 198 | 92.26 229 | 77.23 257 | 97.11 129 | 95.96 148 | 83.76 189 | 86.30 159 | 91.38 235 | 72.30 197 | 96.78 227 | 80.82 203 | 91.92 157 | 95.94 187 |
|
| test-mter | | | 88.95 138 | 88.60 136 | 89.98 198 | 92.26 229 | 77.23 257 | 97.11 129 | 95.96 148 | 85.32 140 | 86.30 159 | 91.38 235 | 76.37 131 | 96.78 227 | 80.82 203 | 91.92 157 | 95.94 187 |
|
| BH-w/o | | | 88.24 163 | 87.47 161 | 90.54 184 | 95.03 143 | 78.54 216 | 97.41 105 | 93.82 270 | 84.08 176 | 78.23 249 | 94.51 183 | 69.34 222 | 97.21 201 | 80.21 211 | 94.58 122 | 95.87 189 |
|
| EI-MVSNet-Vis-set | | | 91.84 79 | 91.77 74 | 92.04 136 | 97.60 71 | 81.17 145 | 96.61 168 | 96.87 49 | 88.20 80 | 89.19 123 | 97.55 86 | 78.69 92 | 99.14 97 | 90.29 116 | 90.94 164 | 95.80 190 |
|
| CANet_DTU | | | 90.98 102 | 90.04 112 | 93.83 53 | 94.76 150 | 86.23 36 | 96.32 189 | 93.12 305 | 93.11 18 | 93.71 59 | 96.82 119 | 63.08 257 | 99.48 73 | 84.29 170 | 95.12 116 | 95.77 191 |
|
| test_fmvsmvis_n_1920 | | | 92.12 70 | 92.10 68 | 92.17 129 | 90.87 268 | 81.04 148 | 98.34 41 | 93.90 265 | 92.71 20 | 87.24 151 | 97.90 63 | 74.83 163 | 99.72 43 | 96.96 31 | 96.20 99 | 95.76 192 |
|
| TAPA-MVS | | 81.61 12 | 85.02 215 | 83.67 218 | 89.06 216 | 96.79 92 | 73.27 307 | 95.92 209 | 94.79 211 | 74.81 322 | 80.47 226 | 96.83 117 | 71.07 210 | 98.19 150 | 49.82 379 | 92.57 148 | 95.71 193 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| OMC-MVS | | | 88.80 145 | 88.16 144 | 90.72 179 | 95.30 131 | 77.92 240 | 94.81 257 | 94.51 229 | 86.80 115 | 84.97 170 | 96.85 116 | 67.53 228 | 98.60 125 | 85.08 164 | 87.62 196 | 95.63 194 |
|
| UGNet | | | 87.73 173 | 86.55 178 | 91.27 161 | 95.16 137 | 79.11 203 | 96.35 187 | 96.23 126 | 88.14 81 | 87.83 145 | 90.48 250 | 50.65 333 | 99.09 102 | 80.13 212 | 94.03 127 | 95.60 195 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| UWE-MVS | | | 88.56 153 | 88.91 133 | 87.50 255 | 94.17 170 | 72.19 315 | 95.82 217 | 97.05 35 | 84.96 152 | 84.78 173 | 93.51 206 | 81.33 60 | 94.75 314 | 79.43 218 | 89.17 173 | 95.57 196 |
|
| tttt0517 | | | 88.57 152 | 88.19 143 | 89.71 209 | 93.00 206 | 75.99 280 | 95.67 221 | 96.67 75 | 80.78 241 | 81.82 213 | 94.40 184 | 88.97 14 | 97.58 175 | 76.05 255 | 86.31 207 | 95.57 196 |
|
| test_vis1_n_1920 | | | 89.95 122 | 90.59 96 | 88.03 241 | 92.36 223 | 68.98 344 | 99.12 12 | 94.34 241 | 93.86 13 | 93.64 61 | 97.01 111 | 51.54 330 | 99.59 60 | 96.76 34 | 96.71 94 | 95.53 198 |
|
| CHOSEN 280x420 | | | 91.71 83 | 91.85 71 | 91.29 160 | 94.94 144 | 82.69 110 | 87.89 346 | 96.17 132 | 85.94 128 | 87.27 150 | 94.31 185 | 90.27 9 | 95.65 277 | 94.04 65 | 95.86 108 | 95.53 198 |
|
| BH-untuned | | | 86.95 183 | 85.94 183 | 89.99 197 | 94.52 157 | 77.46 252 | 96.78 159 | 93.37 295 | 81.80 227 | 76.62 266 | 93.81 200 | 66.64 236 | 97.02 211 | 76.06 254 | 93.88 132 | 95.48 200 |
|
| EPNet_dtu | | | 87.65 175 | 87.89 147 | 86.93 269 | 94.57 153 | 71.37 329 | 96.72 162 | 96.50 98 | 88.56 71 | 87.12 153 | 95.02 170 | 75.91 139 | 94.01 330 | 66.62 317 | 90.00 167 | 95.42 201 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| EI-MVSNet-UG-set | | | 91.35 92 | 91.22 83 | 91.73 147 | 97.39 82 | 80.68 159 | 96.47 177 | 96.83 52 | 87.92 86 | 88.30 141 | 97.36 93 | 77.84 104 | 99.13 99 | 89.43 127 | 89.45 171 | 95.37 202 |
|
| UA-Net | | | 88.92 140 | 88.48 139 | 90.24 191 | 94.06 176 | 77.18 259 | 93.04 299 | 94.66 218 | 87.39 100 | 91.09 97 | 93.89 197 | 74.92 162 | 98.18 151 | 75.83 257 | 91.43 161 | 95.35 203 |
|
| Anonymous20240529 | | | 83.15 247 | 80.60 267 | 90.80 176 | 95.74 120 | 78.27 225 | 96.81 157 | 94.92 201 | 60.10 383 | 81.89 212 | 92.54 218 | 45.82 354 | 98.82 118 | 79.25 221 | 78.32 276 | 95.31 204 |
|
| mvsany_test1 | | | 87.58 176 | 88.22 141 | 85.67 290 | 89.78 288 | 67.18 351 | 95.25 239 | 87.93 364 | 83.96 181 | 88.79 131 | 97.06 110 | 72.52 192 | 94.53 321 | 92.21 89 | 86.45 206 | 95.30 205 |
|
| DP-MVS | | | 81.47 273 | 78.28 290 | 91.04 168 | 98.14 55 | 78.48 217 | 95.09 251 | 86.97 368 | 61.14 379 | 71.12 321 | 92.78 217 | 59.59 278 | 99.38 78 | 53.11 370 | 86.61 204 | 95.27 206 |
|
| fmvsm_s_conf0.5_n | | | 93.69 36 | 94.13 32 | 92.34 117 | 94.56 154 | 82.01 121 | 99.07 16 | 97.13 28 | 92.09 25 | 96.25 26 | 98.53 22 | 76.47 127 | 99.80 25 | 98.39 8 | 94.71 120 | 95.22 207 |
|
| fmvsm_s_conf0.5_n_a | | | 93.34 41 | 93.71 35 | 92.22 126 | 93.38 196 | 81.71 136 | 98.86 25 | 96.98 38 | 91.64 31 | 96.85 16 | 98.55 19 | 75.58 145 | 99.77 29 | 97.88 19 | 93.68 134 | 95.18 208 |
|
| fmvsm_s_conf0.1_n | | | 92.93 48 | 93.16 47 | 92.24 124 | 90.52 275 | 81.92 125 | 98.42 38 | 96.24 125 | 91.17 36 | 96.02 30 | 98.35 33 | 75.34 156 | 99.74 38 | 97.84 20 | 94.58 122 | 95.05 209 |
|
| baseline1 | | | 88.85 143 | 87.49 159 | 92.93 94 | 95.21 135 | 86.85 30 | 95.47 230 | 94.61 224 | 87.29 102 | 83.11 195 | 94.99 172 | 80.70 66 | 96.89 219 | 82.28 196 | 73.72 294 | 95.05 209 |
|
| test_cas_vis1_n_1920 | | | 89.90 123 | 90.02 113 | 89.54 210 | 90.14 284 | 74.63 293 | 98.71 28 | 94.43 236 | 93.04 19 | 92.40 75 | 96.35 129 | 53.41 326 | 99.08 103 | 95.59 48 | 96.16 100 | 94.90 211 |
|
| PVSNet_0 | | 77.72 15 | 81.70 270 | 78.95 287 | 89.94 201 | 90.77 272 | 76.72 266 | 95.96 206 | 96.95 42 | 85.01 150 | 70.24 328 | 88.53 276 | 52.32 327 | 98.20 149 | 86.68 156 | 44.08 393 | 94.89 212 |
|
| fmvsm_s_conf0.1_n_a | | | 92.38 66 | 92.49 58 | 92.06 134 | 88.08 311 | 81.62 139 | 97.97 62 | 96.01 143 | 90.62 43 | 96.58 22 | 98.33 34 | 74.09 175 | 99.71 45 | 97.23 27 | 93.46 139 | 94.86 213 |
|
| ADS-MVSNet2 | | | 79.57 293 | 77.53 296 | 85.71 288 | 93.78 181 | 72.13 316 | 79.48 378 | 86.11 374 | 73.09 336 | 80.14 231 | 79.99 363 | 62.15 262 | 90.14 371 | 59.49 347 | 83.52 228 | 94.85 214 |
|
| ADS-MVSNet | | | 81.26 276 | 78.36 289 | 89.96 200 | 93.78 181 | 79.78 182 | 79.48 378 | 93.60 284 | 73.09 336 | 80.14 231 | 79.99 363 | 62.15 262 | 95.24 297 | 59.49 347 | 83.52 228 | 94.85 214 |
|
| MIMVSNet | | | 79.18 298 | 75.99 307 | 88.72 225 | 87.37 321 | 80.66 160 | 79.96 377 | 91.82 323 | 77.38 301 | 74.33 295 | 81.87 353 | 41.78 366 | 90.74 366 | 66.36 322 | 83.10 233 | 94.76 216 |
|
| xiu_mvs_v1_base_debu | | | 90.54 111 | 89.54 122 | 93.55 69 | 92.31 224 | 87.58 24 | 96.99 138 | 94.87 204 | 87.23 104 | 93.27 63 | 97.56 83 | 57.43 300 | 98.32 142 | 92.72 84 | 93.46 139 | 94.74 217 |
|
| xiu_mvs_v1_base | | | 90.54 111 | 89.54 122 | 93.55 69 | 92.31 224 | 87.58 24 | 96.99 138 | 94.87 204 | 87.23 104 | 93.27 63 | 97.56 83 | 57.43 300 | 98.32 142 | 92.72 84 | 93.46 139 | 94.74 217 |
|
| xiu_mvs_v1_base_debi | | | 90.54 111 | 89.54 122 | 93.55 69 | 92.31 224 | 87.58 24 | 96.99 138 | 94.87 204 | 87.23 104 | 93.27 63 | 97.56 83 | 57.43 300 | 98.32 142 | 92.72 84 | 93.46 139 | 94.74 217 |
|
| AUN-MVS | | | 86.25 196 | 85.57 187 | 88.26 234 | 93.57 187 | 73.38 302 | 95.45 231 | 95.88 153 | 83.94 182 | 85.47 165 | 94.21 189 | 73.70 182 | 96.67 231 | 83.54 185 | 64.41 356 | 94.73 220 |
|
| hse-mvs2 | | | 88.22 164 | 88.21 142 | 88.25 235 | 93.54 188 | 73.41 301 | 95.41 233 | 95.89 152 | 90.39 48 | 92.22 79 | 94.22 188 | 74.70 165 | 96.66 232 | 93.14 78 | 64.37 357 | 94.69 221 |
|
| thres200 | | | 88.92 140 | 87.65 152 | 92.73 102 | 96.30 99 | 85.62 51 | 97.85 67 | 98.86 1 | 84.38 168 | 84.82 172 | 93.99 195 | 75.12 160 | 98.01 154 | 70.86 297 | 86.67 203 | 94.56 222 |
|
| baseline2 | | | 90.39 114 | 90.21 108 | 90.93 171 | 90.86 269 | 80.99 150 | 95.20 242 | 97.41 17 | 86.03 127 | 80.07 234 | 94.61 180 | 90.58 6 | 97.47 187 | 87.29 149 | 89.86 169 | 94.35 223 |
|
| thres100view900 | | | 88.30 161 | 86.95 173 | 92.33 119 | 96.10 106 | 84.90 73 | 97.14 126 | 98.85 2 | 82.69 212 | 83.41 190 | 93.66 202 | 75.43 150 | 97.93 156 | 69.04 305 | 86.24 210 | 94.17 224 |
|
| tfpn200view9 | | | 88.48 154 | 87.15 167 | 92.47 111 | 96.21 102 | 85.30 59 | 97.44 100 | 98.85 2 | 83.37 195 | 83.99 182 | 93.82 198 | 75.36 153 | 97.93 156 | 69.04 305 | 86.24 210 | 94.17 224 |
|
| tpmvs | | | 83.04 250 | 80.77 263 | 89.84 204 | 95.43 127 | 77.96 237 | 85.59 363 | 95.32 187 | 75.31 318 | 76.27 273 | 83.70 344 | 73.89 177 | 97.41 189 | 59.53 346 | 81.93 248 | 94.14 226 |
|
| OpenMVS |  | 79.58 14 | 86.09 197 | 83.62 221 | 93.50 72 | 90.95 265 | 86.71 33 | 97.44 100 | 95.83 156 | 75.35 316 | 72.64 311 | 95.72 141 | 57.42 303 | 99.64 55 | 71.41 290 | 95.85 109 | 94.13 227 |
|
| test_fmvs1 | | | 87.79 172 | 88.52 138 | 85.62 292 | 92.98 210 | 64.31 360 | 97.88 66 | 92.42 314 | 87.95 85 | 92.24 78 | 95.82 139 | 47.94 345 | 98.44 139 | 95.31 52 | 94.09 126 | 94.09 228 |
|
| PatchMatch-RL | | | 85.00 216 | 83.66 219 | 89.02 218 | 95.86 114 | 74.55 295 | 92.49 306 | 93.60 284 | 79.30 276 | 79.29 241 | 91.47 233 | 58.53 288 | 98.45 137 | 70.22 301 | 92.17 156 | 94.07 229 |
|
| UniMVSNet_ETH3D | | | 80.86 282 | 78.75 288 | 87.22 264 | 86.31 329 | 72.02 319 | 91.95 311 | 93.76 278 | 73.51 331 | 75.06 291 | 90.16 257 | 43.04 363 | 95.66 275 | 76.37 252 | 78.55 273 | 93.98 230 |
|
| PCF-MVS | | 84.09 5 | 86.77 188 | 85.00 199 | 92.08 132 | 92.06 243 | 83.07 106 | 92.14 310 | 94.47 233 | 79.63 269 | 76.90 262 | 94.78 177 | 71.15 209 | 99.20 92 | 72.87 281 | 91.05 163 | 93.98 230 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| LS3D | | | 82.22 264 | 79.94 278 | 89.06 216 | 97.43 79 | 74.06 300 | 93.20 297 | 92.05 319 | 61.90 373 | 73.33 304 | 95.21 160 | 59.35 281 | 99.21 88 | 54.54 366 | 92.48 151 | 93.90 232 |
|
| test_vis1_n | | | 85.60 206 | 85.70 185 | 85.33 296 | 84.79 350 | 64.98 358 | 96.83 154 | 91.61 328 | 87.36 101 | 91.00 100 | 94.84 176 | 36.14 378 | 97.18 203 | 95.66 46 | 93.03 144 | 93.82 233 |
|
| PLC |  | 83.97 7 | 88.00 168 | 87.38 163 | 89.83 205 | 98.02 59 | 76.46 269 | 97.16 123 | 94.43 236 | 79.26 278 | 81.98 210 | 96.28 130 | 69.36 221 | 99.27 84 | 77.71 234 | 92.25 154 | 93.77 234 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| cascas | | | 86.50 190 | 84.48 207 | 92.55 110 | 92.64 219 | 85.95 40 | 97.04 137 | 95.07 196 | 75.32 317 | 80.50 225 | 91.02 242 | 54.33 324 | 97.98 155 | 86.79 155 | 87.62 196 | 93.71 235 |
|
| dmvs_re | | | 84.10 230 | 82.90 233 | 87.70 246 | 91.41 257 | 73.28 305 | 90.59 327 | 93.19 300 | 85.02 149 | 77.96 252 | 93.68 201 | 57.92 298 | 96.18 248 | 75.50 260 | 80.87 251 | 93.63 236 |
|
| JIA-IIPM | | | 79.00 299 | 77.20 298 | 84.40 313 | 89.74 291 | 64.06 363 | 75.30 390 | 95.44 178 | 62.15 372 | 81.90 211 | 59.08 394 | 78.92 86 | 95.59 282 | 66.51 320 | 85.78 216 | 93.54 237 |
|
| XVG-OURS-SEG-HR | | | 85.74 204 | 85.16 196 | 87.49 257 | 90.22 280 | 71.45 328 | 91.29 321 | 94.09 256 | 81.37 232 | 83.90 186 | 95.22 159 | 60.30 275 | 97.53 182 | 85.58 161 | 84.42 225 | 93.50 238 |
|
| XVG-OURS | | | 85.18 212 | 84.38 209 | 87.59 251 | 90.42 278 | 71.73 325 | 91.06 324 | 94.07 257 | 82.00 226 | 83.29 192 | 95.08 169 | 56.42 311 | 97.55 178 | 83.70 182 | 83.42 230 | 93.49 239 |
|
| thres600view7 | | | 88.06 166 | 86.70 177 | 92.15 131 | 96.10 106 | 85.17 65 | 97.14 126 | 98.85 2 | 82.70 211 | 83.41 190 | 93.66 202 | 75.43 150 | 97.82 165 | 67.13 314 | 85.88 214 | 93.45 240 |
|
| thres400 | | | 88.42 157 | 87.15 167 | 92.23 125 | 96.21 102 | 85.30 59 | 97.44 100 | 98.85 2 | 83.37 195 | 83.99 182 | 93.82 198 | 75.36 153 | 97.93 156 | 69.04 305 | 86.24 210 | 93.45 240 |
|
| test_fmvs1_n | | | 86.34 193 | 86.72 176 | 85.17 299 | 87.54 319 | 63.64 365 | 96.91 150 | 92.37 316 | 87.49 97 | 91.33 93 | 95.58 148 | 40.81 372 | 98.46 135 | 95.00 54 | 93.49 137 | 93.41 242 |
|
| SDMVSNet | | | 87.02 181 | 85.61 186 | 91.24 162 | 94.14 172 | 83.30 102 | 93.88 279 | 95.98 146 | 84.30 171 | 79.63 237 | 92.01 223 | 58.23 290 | 97.68 169 | 90.28 118 | 82.02 246 | 92.75 243 |
|
| sd_testset | | | 84.62 221 | 83.11 230 | 89.17 214 | 94.14 172 | 77.78 245 | 91.54 320 | 94.38 239 | 84.30 171 | 79.63 237 | 92.01 223 | 52.28 328 | 96.98 213 | 77.67 235 | 82.02 246 | 92.75 243 |
|
| DSMNet-mixed | | | 73.13 334 | 72.45 330 | 75.19 364 | 77.51 381 | 46.82 394 | 85.09 366 | 82.01 387 | 67.61 363 | 69.27 333 | 81.33 356 | 50.89 332 | 86.28 384 | 54.54 366 | 83.80 227 | 92.46 245 |
|
| tt0805 | | | 81.20 278 | 79.06 286 | 87.61 249 | 86.50 326 | 72.97 310 | 93.66 282 | 95.48 174 | 74.11 326 | 76.23 274 | 91.99 225 | 41.36 369 | 97.40 190 | 77.44 240 | 74.78 290 | 92.45 246 |
|
| Effi-MVS+-dtu | | | 84.61 222 | 84.90 202 | 83.72 321 | 91.96 246 | 63.14 368 | 94.95 253 | 93.34 296 | 85.57 134 | 79.79 235 | 87.12 297 | 61.99 265 | 95.61 281 | 83.55 184 | 85.83 215 | 92.41 247 |
|
| F-COLMAP | | | 84.50 225 | 83.44 226 | 87.67 247 | 95.22 134 | 72.22 313 | 95.95 207 | 93.78 275 | 75.74 314 | 76.30 272 | 95.18 163 | 59.50 280 | 98.45 137 | 72.67 283 | 86.59 205 | 92.35 248 |
|
| Fast-Effi-MVS+-dtu | | | 83.33 243 | 82.60 239 | 85.50 294 | 89.55 294 | 69.38 342 | 96.09 203 | 91.38 329 | 82.30 219 | 75.96 279 | 91.41 234 | 56.71 307 | 95.58 283 | 75.13 264 | 84.90 223 | 91.54 249 |
|
| MSDG | | | 80.62 285 | 77.77 295 | 89.14 215 | 93.43 195 | 77.24 256 | 91.89 313 | 90.18 346 | 69.86 355 | 68.02 335 | 91.94 229 | 52.21 329 | 98.84 117 | 59.32 349 | 83.12 232 | 91.35 250 |
|
| HQP4-MVS | | | | | | | | | | | 82.30 203 | | | 97.32 194 | | | 91.13 251 |
|
| HQP-MVS | | | 87.91 171 | 87.55 158 | 88.98 219 | 92.08 240 | 78.48 217 | 97.63 83 | 94.80 209 | 90.52 45 | 82.30 203 | 94.56 181 | 65.40 243 | 97.32 194 | 87.67 146 | 83.01 234 | 91.13 251 |
|
| HQP_MVS | | | 87.50 177 | 87.09 170 | 88.74 224 | 91.86 249 | 77.96 237 | 97.18 119 | 94.69 214 | 89.89 55 | 81.33 217 | 94.15 191 | 64.77 249 | 97.30 196 | 87.08 150 | 82.82 238 | 90.96 253 |
|
| plane_prior5 | | | | | | | | | 94.69 214 | | | | | 97.30 196 | 87.08 150 | 82.82 238 | 90.96 253 |
|
| nrg030 | | | 86.79 187 | 85.43 189 | 90.87 175 | 88.76 301 | 85.34 56 | 97.06 136 | 94.33 242 | 84.31 169 | 80.45 227 | 91.98 226 | 72.36 194 | 96.36 241 | 88.48 138 | 71.13 307 | 90.93 255 |
|
| RPSCF | | | 77.73 308 | 76.63 303 | 81.06 340 | 88.66 305 | 55.76 387 | 87.77 347 | 87.88 365 | 64.82 368 | 74.14 296 | 92.79 216 | 49.22 340 | 96.81 225 | 67.47 312 | 76.88 280 | 90.62 256 |
|
| iter_conf05 | | | 90.14 119 | 89.79 120 | 91.17 165 | 95.85 115 | 86.93 29 | 97.68 81 | 88.67 362 | 89.93 54 | 81.73 216 | 92.80 215 | 90.37 8 | 96.03 251 | 90.44 112 | 80.65 254 | 90.56 257 |
|
| VPNet | | | 84.69 220 | 82.92 232 | 90.01 196 | 89.01 300 | 83.45 99 | 96.71 164 | 95.46 176 | 85.71 132 | 79.65 236 | 92.18 222 | 56.66 309 | 96.01 254 | 83.05 192 | 67.84 340 | 90.56 257 |
|
| CLD-MVS | | | 87.97 169 | 87.48 160 | 89.44 211 | 92.16 236 | 80.54 165 | 98.14 47 | 94.92 201 | 91.41 33 | 79.43 239 | 95.40 152 | 62.34 260 | 97.27 199 | 90.60 108 | 82.90 237 | 90.50 259 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| VPA-MVSNet | | | 85.32 210 | 83.83 216 | 89.77 208 | 90.25 279 | 82.63 111 | 96.36 186 | 97.07 34 | 83.03 203 | 81.21 219 | 89.02 268 | 61.58 268 | 96.31 243 | 85.02 166 | 70.95 309 | 90.36 260 |
|
| FIs | | | 86.73 189 | 86.10 182 | 88.61 226 | 90.05 285 | 80.21 173 | 96.14 200 | 96.95 42 | 85.56 136 | 78.37 248 | 92.30 220 | 76.73 124 | 95.28 295 | 79.51 216 | 79.27 264 | 90.35 261 |
|
| DU-MVS | | | 84.57 223 | 83.33 227 | 88.28 233 | 88.76 301 | 79.36 195 | 96.43 182 | 95.41 182 | 85.42 138 | 78.11 250 | 90.82 245 | 67.61 225 | 95.14 302 | 79.14 222 | 68.30 334 | 90.33 262 |
|
| NR-MVSNet | | | 83.35 242 | 81.52 255 | 88.84 221 | 88.76 301 | 81.31 144 | 94.45 262 | 95.16 192 | 84.65 160 | 67.81 336 | 90.82 245 | 70.36 217 | 94.87 311 | 74.75 266 | 66.89 349 | 90.33 262 |
|
| FC-MVSNet-test | | | 85.96 199 | 85.39 190 | 87.66 248 | 89.38 298 | 78.02 234 | 95.65 223 | 96.87 49 | 85.12 147 | 77.34 255 | 91.94 229 | 76.28 133 | 94.74 315 | 77.09 242 | 78.82 268 | 90.21 264 |
|
| XXY-MVS | | | 83.84 235 | 82.00 247 | 89.35 212 | 87.13 322 | 81.38 142 | 95.72 219 | 94.26 245 | 80.15 259 | 75.92 280 | 90.63 248 | 61.96 266 | 96.52 235 | 78.98 224 | 73.28 299 | 90.14 265 |
|
| test0.0.03 1 | | | 82.79 254 | 82.48 240 | 83.74 320 | 86.81 324 | 72.22 313 | 96.52 173 | 95.03 197 | 83.76 189 | 73.00 307 | 93.20 208 | 72.30 197 | 88.88 373 | 64.15 330 | 77.52 279 | 90.12 266 |
|
| UniMVSNet_NR-MVSNet | | | 85.49 208 | 84.59 203 | 88.21 237 | 89.44 297 | 79.36 195 | 96.71 164 | 96.41 108 | 85.22 143 | 78.11 250 | 90.98 244 | 76.97 119 | 95.14 302 | 79.14 222 | 68.30 334 | 90.12 266 |
|
| mvsmamba | | | 85.17 213 | 84.54 204 | 87.05 267 | 87.94 313 | 75.11 290 | 96.22 194 | 87.79 366 | 86.91 111 | 78.55 245 | 91.77 232 | 64.93 248 | 95.91 261 | 86.94 154 | 79.80 256 | 90.12 266 |
|
| TranMVSNet+NR-MVSNet | | | 83.24 246 | 81.71 251 | 87.83 243 | 87.71 316 | 78.81 211 | 96.13 202 | 94.82 208 | 84.52 163 | 76.18 276 | 90.78 247 | 64.07 252 | 94.60 319 | 74.60 270 | 66.59 351 | 90.09 269 |
|
| MVSTER | | | 89.25 135 | 88.92 132 | 90.24 191 | 95.98 110 | 84.66 77 | 96.79 158 | 95.36 183 | 87.19 107 | 80.33 229 | 90.61 249 | 90.02 12 | 95.97 255 | 85.38 163 | 78.64 270 | 90.09 269 |
|
| PS-MVSNAJss | | | 84.91 217 | 84.30 210 | 86.74 270 | 85.89 338 | 74.40 297 | 94.95 253 | 94.16 252 | 83.93 183 | 76.45 268 | 90.11 259 | 71.04 211 | 95.77 268 | 83.16 190 | 79.02 267 | 90.06 271 |
|
| WR-MVS | | | 84.32 227 | 82.96 231 | 88.41 229 | 89.38 298 | 80.32 168 | 96.59 169 | 96.25 124 | 83.97 180 | 76.63 265 | 90.36 253 | 67.53 228 | 94.86 312 | 75.82 258 | 70.09 318 | 90.06 271 |
|
| FMVSNet3 | | | 84.71 219 | 82.71 237 | 90.70 180 | 94.55 155 | 87.71 22 | 95.92 209 | 94.67 217 | 81.73 229 | 75.82 282 | 88.08 283 | 66.99 233 | 94.47 322 | 71.23 292 | 75.38 287 | 89.91 273 |
|
| RRT_MVS | | | 83.88 234 | 83.27 228 | 85.71 288 | 87.53 320 | 72.12 317 | 95.35 235 | 94.33 242 | 83.81 187 | 75.86 281 | 91.28 238 | 60.55 273 | 95.09 307 | 83.93 174 | 76.76 281 | 89.90 274 |
|
| FMVSNet2 | | | 82.79 254 | 80.44 269 | 89.83 205 | 92.66 216 | 85.43 55 | 95.42 232 | 94.35 240 | 79.06 282 | 74.46 294 | 87.28 292 | 56.38 312 | 94.31 325 | 69.72 304 | 74.68 291 | 89.76 275 |
|
| ACMM | | 80.70 13 | 83.72 238 | 82.85 235 | 86.31 279 | 91.19 260 | 72.12 317 | 95.88 212 | 94.29 244 | 80.44 250 | 77.02 260 | 91.96 227 | 55.24 318 | 97.14 208 | 79.30 220 | 80.38 255 | 89.67 276 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| UniMVSNet (Re) | | | 85.31 211 | 84.23 211 | 88.55 227 | 89.75 289 | 80.55 163 | 96.72 162 | 96.89 47 | 85.42 138 | 78.40 247 | 88.93 269 | 75.38 152 | 95.52 285 | 78.58 227 | 68.02 337 | 89.57 277 |
|
| EI-MVSNet | | | 85.80 202 | 85.20 193 | 87.59 251 | 91.55 253 | 77.41 253 | 95.13 246 | 95.36 183 | 80.43 252 | 80.33 229 | 94.71 178 | 73.72 180 | 95.97 255 | 76.96 245 | 78.64 270 | 89.39 278 |
|
| IterMVS-LS | | | 83.93 233 | 82.80 236 | 87.31 261 | 91.46 256 | 77.39 254 | 95.66 222 | 93.43 290 | 80.44 250 | 75.51 286 | 87.26 294 | 73.72 180 | 95.16 301 | 76.99 243 | 70.72 311 | 89.39 278 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| GBi-Net | | | 82.42 260 | 80.43 270 | 88.39 230 | 92.66 216 | 81.95 122 | 94.30 268 | 93.38 292 | 79.06 282 | 75.82 282 | 85.66 318 | 56.38 312 | 93.84 332 | 71.23 292 | 75.38 287 | 89.38 280 |
|
| test1 | | | 82.42 260 | 80.43 270 | 88.39 230 | 92.66 216 | 81.95 122 | 94.30 268 | 93.38 292 | 79.06 282 | 75.82 282 | 85.66 318 | 56.38 312 | 93.84 332 | 71.23 292 | 75.38 287 | 89.38 280 |
|
| FMVSNet1 | | | 79.50 294 | 76.54 304 | 88.39 230 | 88.47 306 | 81.95 122 | 94.30 268 | 93.38 292 | 73.14 335 | 72.04 316 | 85.66 318 | 43.86 357 | 93.84 332 | 65.48 324 | 72.53 300 | 89.38 280 |
|
| miper_enhance_ethall | | | 85.95 200 | 85.20 193 | 88.19 238 | 94.85 148 | 79.76 183 | 96.00 204 | 94.06 258 | 82.98 205 | 77.74 253 | 88.76 271 | 79.42 78 | 95.46 287 | 80.58 205 | 72.42 301 | 89.36 283 |
|
| dmvs_testset | | | 72.00 341 | 73.36 327 | 67.91 369 | 83.83 361 | 31.90 409 | 85.30 365 | 77.12 394 | 82.80 209 | 63.05 361 | 92.46 219 | 61.54 269 | 82.55 392 | 42.22 391 | 71.89 305 | 89.29 284 |
|
| cl22 | | | 85.11 214 | 84.17 212 | 87.92 242 | 95.06 142 | 78.82 209 | 95.51 228 | 94.22 248 | 79.74 267 | 76.77 263 | 87.92 285 | 75.96 137 | 95.68 274 | 79.93 214 | 72.42 301 | 89.27 285 |
|
| eth_miper_zixun_eth | | | 83.12 248 | 82.01 246 | 86.47 275 | 91.85 251 | 74.80 291 | 94.33 266 | 93.18 302 | 79.11 280 | 75.74 285 | 87.25 295 | 72.71 189 | 95.32 293 | 76.78 246 | 67.13 346 | 89.27 285 |
|
| Anonymous20231211 | | | 79.72 291 | 77.19 299 | 87.33 259 | 95.59 124 | 77.16 260 | 95.18 245 | 94.18 251 | 59.31 386 | 72.57 312 | 86.20 315 | 47.89 346 | 95.66 275 | 74.53 271 | 69.24 326 | 89.18 287 |
|
| ACMP | | 81.66 11 | 84.00 232 | 83.22 229 | 86.33 276 | 91.53 255 | 72.95 311 | 95.91 211 | 93.79 274 | 83.70 191 | 73.79 297 | 92.22 221 | 54.31 325 | 96.89 219 | 83.98 173 | 79.74 259 | 89.16 288 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| DIV-MVS_self_test | | | 83.27 244 | 82.12 244 | 86.74 270 | 92.19 233 | 75.92 283 | 95.11 248 | 93.26 299 | 78.44 291 | 74.81 293 | 87.08 298 | 74.19 173 | 95.19 299 | 74.66 269 | 69.30 325 | 89.11 289 |
|
| cl____ | | | 83.27 244 | 82.12 244 | 86.74 270 | 92.20 232 | 75.95 281 | 95.11 248 | 93.27 298 | 78.44 291 | 74.82 292 | 87.02 299 | 74.19 173 | 95.19 299 | 74.67 268 | 69.32 324 | 89.09 290 |
|
| OPM-MVS | | | 85.84 201 | 85.10 198 | 88.06 239 | 88.34 308 | 77.83 244 | 95.72 219 | 94.20 249 | 87.89 88 | 80.45 227 | 94.05 193 | 58.57 287 | 97.26 200 | 83.88 175 | 82.76 240 | 89.09 290 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| v2v482 | | | 83.46 241 | 81.86 249 | 88.25 235 | 86.19 332 | 79.65 189 | 96.34 188 | 94.02 259 | 81.56 231 | 77.32 256 | 88.23 280 | 65.62 240 | 96.03 251 | 77.77 231 | 69.72 322 | 89.09 290 |
|
| test_djsdf | | | 83.00 252 | 82.45 241 | 84.64 307 | 84.07 358 | 69.78 338 | 94.80 258 | 94.48 230 | 80.74 242 | 75.41 288 | 87.70 287 | 61.32 271 | 95.10 305 | 83.77 178 | 79.76 257 | 89.04 293 |
|
| jajsoiax | | | 82.12 265 | 81.15 260 | 85.03 301 | 84.19 356 | 70.70 331 | 94.22 272 | 93.95 260 | 83.07 201 | 73.48 299 | 89.75 261 | 49.66 339 | 95.37 290 | 82.24 197 | 79.76 257 | 89.02 294 |
|
| miper_ehance_all_eth | | | 84.57 223 | 83.60 222 | 87.50 255 | 92.64 219 | 78.25 226 | 95.40 234 | 93.47 288 | 79.28 277 | 76.41 269 | 87.64 288 | 76.53 126 | 95.24 297 | 78.58 227 | 72.42 301 | 89.01 295 |
|
| LPG-MVS_test | | | 84.20 229 | 83.49 225 | 86.33 276 | 90.88 266 | 73.06 308 | 95.28 236 | 94.13 253 | 82.20 220 | 76.31 270 | 93.20 208 | 54.83 322 | 96.95 215 | 83.72 180 | 80.83 252 | 88.98 296 |
|
| LGP-MVS_train | | | | | 86.33 276 | 90.88 266 | 73.06 308 | | 94.13 253 | 82.20 220 | 76.31 270 | 93.20 208 | 54.83 322 | 96.95 215 | 83.72 180 | 80.83 252 | 88.98 296 |
|
| AllTest | | | 75.92 320 | 73.06 328 | 84.47 310 | 92.18 234 | 67.29 349 | 91.07 323 | 84.43 380 | 67.63 359 | 63.48 355 | 90.18 255 | 38.20 375 | 97.16 204 | 57.04 357 | 73.37 296 | 88.97 298 |
|
| TestCases | | | | | 84.47 310 | 92.18 234 | 67.29 349 | | 84.43 380 | 67.63 359 | 63.48 355 | 90.18 255 | 38.20 375 | 97.16 204 | 57.04 357 | 73.37 296 | 88.97 298 |
|
| mvs_tets | | | 81.74 269 | 80.71 265 | 84.84 302 | 84.22 355 | 70.29 334 | 93.91 278 | 93.78 275 | 82.77 210 | 73.37 302 | 89.46 264 | 47.36 349 | 95.31 294 | 81.99 198 | 79.55 263 | 88.92 300 |
|
| c3_l | | | 83.80 236 | 82.65 238 | 87.25 263 | 92.10 239 | 77.74 248 | 95.25 239 | 93.04 307 | 78.58 288 | 76.01 277 | 87.21 296 | 75.25 158 | 95.11 304 | 77.54 238 | 68.89 328 | 88.91 301 |
|
| pmmvs5 | | | 81.34 275 | 79.54 281 | 86.73 273 | 85.02 348 | 76.91 261 | 96.22 194 | 91.65 326 | 77.65 297 | 73.55 298 | 88.61 273 | 55.70 315 | 94.43 323 | 74.12 274 | 73.35 298 | 88.86 302 |
|
| miper_lstm_enhance | | | 81.66 272 | 80.66 266 | 84.67 306 | 91.19 260 | 71.97 321 | 91.94 312 | 93.19 300 | 77.86 295 | 72.27 314 | 85.26 326 | 73.46 183 | 93.42 340 | 73.71 278 | 67.05 347 | 88.61 303 |
|
| CP-MVSNet | | | 81.01 280 | 80.08 274 | 83.79 318 | 87.91 314 | 70.51 332 | 94.29 271 | 95.65 165 | 80.83 239 | 72.54 313 | 88.84 270 | 63.71 253 | 92.32 348 | 68.58 309 | 68.36 333 | 88.55 304 |
|
| Syy-MVS | | | 77.97 306 | 78.05 292 | 77.74 355 | 92.13 237 | 56.85 382 | 93.97 276 | 94.23 246 | 82.43 216 | 73.39 300 | 93.57 204 | 57.95 296 | 87.86 377 | 32.40 395 | 82.34 243 | 88.51 305 |
|
| myMVS_eth3d | | | 81.93 267 | 82.18 243 | 81.18 339 | 92.13 237 | 67.18 351 | 93.97 276 | 94.23 246 | 82.43 216 | 73.39 300 | 93.57 204 | 76.98 118 | 87.86 377 | 50.53 377 | 82.34 243 | 88.51 305 |
|
| v144192 | | | 82.43 259 | 80.73 264 | 87.54 254 | 85.81 339 | 78.22 227 | 95.98 205 | 93.78 275 | 79.09 281 | 77.11 259 | 86.49 307 | 64.66 251 | 95.91 261 | 74.20 273 | 69.42 323 | 88.49 307 |
|
| v1921920 | | | 82.02 266 | 80.23 272 | 87.41 258 | 85.62 340 | 77.92 240 | 95.79 218 | 93.69 280 | 78.86 285 | 76.67 264 | 86.44 309 | 62.50 259 | 95.83 265 | 72.69 282 | 69.77 321 | 88.47 308 |
|
| v1192 | | | 82.31 263 | 80.55 268 | 87.60 250 | 85.94 336 | 78.47 220 | 95.85 215 | 93.80 273 | 79.33 274 | 76.97 261 | 86.51 306 | 63.33 256 | 95.87 263 | 73.11 280 | 70.13 315 | 88.46 309 |
|
| PS-CasMVS | | | 80.27 287 | 79.18 283 | 83.52 324 | 87.56 318 | 69.88 337 | 94.08 274 | 95.29 188 | 80.27 257 | 72.08 315 | 88.51 277 | 59.22 284 | 92.23 350 | 67.49 311 | 68.15 336 | 88.45 310 |
|
| v148 | | | 82.41 262 | 80.89 261 | 86.99 268 | 86.18 333 | 76.81 264 | 96.27 191 | 93.82 270 | 80.49 249 | 75.28 289 | 86.11 317 | 67.32 231 | 95.75 270 | 75.48 261 | 67.03 348 | 88.42 311 |
|
| v1240 | | | 81.70 270 | 79.83 280 | 87.30 262 | 85.50 341 | 77.70 249 | 95.48 229 | 93.44 289 | 78.46 290 | 76.53 267 | 86.44 309 | 60.85 272 | 95.84 264 | 71.59 289 | 70.17 313 | 88.35 312 |
|
| v1144 | | | 82.90 253 | 81.27 258 | 87.78 245 | 86.29 330 | 79.07 206 | 96.14 200 | 93.93 261 | 80.05 261 | 77.38 254 | 86.80 302 | 65.50 241 | 95.93 260 | 75.21 263 | 70.13 315 | 88.33 313 |
|
| EU-MVSNet | | | 76.92 316 | 76.95 301 | 76.83 358 | 84.10 357 | 54.73 389 | 91.77 315 | 92.71 311 | 72.74 339 | 69.57 331 | 88.69 272 | 58.03 295 | 87.43 381 | 64.91 327 | 70.00 319 | 88.33 313 |
|
| PEN-MVS | | | 79.47 295 | 78.26 291 | 83.08 327 | 86.36 328 | 68.58 345 | 93.85 280 | 94.77 212 | 79.76 266 | 71.37 317 | 88.55 274 | 59.79 276 | 92.46 346 | 64.50 328 | 65.40 353 | 88.19 315 |
|
| IterMVS | | | 80.67 284 | 79.16 284 | 85.20 298 | 89.79 287 | 76.08 275 | 92.97 301 | 91.86 321 | 80.28 256 | 71.20 320 | 85.14 331 | 57.93 297 | 91.34 360 | 72.52 284 | 70.74 310 | 88.18 316 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| IterMVS-SCA-FT | | | 80.51 286 | 79.10 285 | 84.73 304 | 89.63 293 | 74.66 292 | 92.98 300 | 91.81 324 | 80.05 261 | 71.06 322 | 85.18 329 | 58.04 293 | 91.40 359 | 72.48 285 | 70.70 312 | 88.12 317 |
|
| XVG-ACMP-BASELINE | | | 79.38 296 | 77.90 294 | 83.81 317 | 84.98 349 | 67.14 355 | 89.03 336 | 93.18 302 | 80.26 258 | 72.87 309 | 88.15 282 | 38.55 374 | 96.26 244 | 76.05 255 | 78.05 277 | 88.02 318 |
|
| MVS-HIRNet | | | 71.36 343 | 67.00 348 | 84.46 312 | 90.58 274 | 69.74 339 | 79.15 381 | 87.74 367 | 46.09 393 | 61.96 366 | 50.50 397 | 45.14 355 | 95.64 278 | 53.74 368 | 88.11 192 | 88.00 319 |
|
| SixPastTwentyTwo | | | 76.04 319 | 74.32 320 | 81.22 338 | 84.54 352 | 61.43 374 | 91.16 322 | 89.30 354 | 77.89 293 | 64.04 354 | 86.31 313 | 48.23 341 | 94.29 326 | 63.54 334 | 63.84 360 | 87.93 320 |
|
| pmmvs4 | | | 82.54 258 | 80.79 262 | 87.79 244 | 86.11 334 | 80.49 167 | 93.55 286 | 93.18 302 | 77.29 302 | 73.35 303 | 89.40 265 | 65.26 246 | 95.05 309 | 75.32 262 | 73.61 295 | 87.83 321 |
|
| lessismore_v0 | | | | | 79.98 345 | 80.59 371 | 58.34 381 | | 80.87 388 | | 58.49 376 | 83.46 346 | 43.10 362 | 93.89 331 | 63.11 336 | 48.68 386 | 87.72 322 |
|
| ACMH | | 75.40 17 | 77.99 304 | 74.96 312 | 87.10 266 | 90.67 273 | 76.41 270 | 93.19 298 | 91.64 327 | 72.47 342 | 63.44 357 | 87.61 289 | 43.34 360 | 97.16 204 | 58.34 351 | 73.94 293 | 87.72 322 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| Patchmtry | | | 77.36 312 | 74.59 317 | 85.67 290 | 89.75 289 | 75.75 285 | 77.85 385 | 91.12 334 | 60.28 381 | 71.23 319 | 80.35 361 | 75.45 148 | 93.56 338 | 57.94 352 | 67.34 345 | 87.68 324 |
|
| OurMVSNet-221017-0 | | | 77.18 314 | 76.06 306 | 80.55 343 | 83.78 362 | 60.00 378 | 90.35 328 | 91.05 337 | 77.01 308 | 66.62 345 | 87.92 285 | 47.73 347 | 94.03 329 | 71.63 288 | 68.44 332 | 87.62 325 |
|
| V42 | | | 83.04 250 | 81.53 254 | 87.57 253 | 86.27 331 | 79.09 205 | 95.87 213 | 94.11 255 | 80.35 254 | 77.22 258 | 86.79 303 | 65.32 245 | 96.02 253 | 77.74 232 | 70.14 314 | 87.61 326 |
|
| PVSNet_BlendedMVS | | | 90.05 120 | 89.96 115 | 90.33 189 | 97.47 76 | 83.86 89 | 98.02 59 | 96.73 67 | 87.98 84 | 89.53 119 | 89.61 263 | 76.42 129 | 99.57 64 | 94.29 61 | 79.59 261 | 87.57 327 |
|
| testgi | | | 74.88 326 | 73.40 326 | 79.32 349 | 80.13 373 | 61.75 371 | 93.21 296 | 86.64 372 | 79.49 272 | 66.56 346 | 91.06 241 | 35.51 381 | 88.67 374 | 56.79 360 | 71.25 306 | 87.56 328 |
|
| DTE-MVSNet | | | 78.37 301 | 77.06 300 | 82.32 334 | 85.22 347 | 67.17 354 | 93.40 288 | 93.66 281 | 78.71 287 | 70.53 325 | 88.29 279 | 59.06 285 | 92.23 350 | 61.38 342 | 63.28 362 | 87.56 328 |
|
| testing3 | | | 80.74 283 | 81.17 259 | 79.44 348 | 91.15 262 | 63.48 366 | 97.16 123 | 95.76 159 | 80.83 239 | 71.36 318 | 93.15 211 | 78.22 97 | 87.30 382 | 43.19 389 | 79.67 260 | 87.55 330 |
|
| K. test v3 | | | 73.62 329 | 71.59 334 | 79.69 346 | 82.98 364 | 59.85 379 | 90.85 326 | 88.83 357 | 77.13 304 | 58.90 374 | 82.11 351 | 43.62 358 | 91.72 357 | 65.83 323 | 54.10 377 | 87.50 331 |
|
| WR-MVS_H | | | 81.02 279 | 80.09 273 | 83.79 318 | 88.08 311 | 71.26 330 | 94.46 261 | 96.54 93 | 80.08 260 | 72.81 310 | 86.82 301 | 70.36 217 | 92.65 345 | 64.18 329 | 67.50 343 | 87.46 332 |
|
| pm-mvs1 | | | 80.05 288 | 78.02 293 | 86.15 281 | 85.42 342 | 75.81 284 | 95.11 248 | 92.69 312 | 77.13 304 | 70.36 326 | 87.43 290 | 58.44 289 | 95.27 296 | 71.36 291 | 64.25 358 | 87.36 333 |
|
| v7n | | | 79.32 297 | 77.34 297 | 85.28 297 | 84.05 359 | 72.89 312 | 93.38 289 | 93.87 267 | 75.02 321 | 70.68 323 | 84.37 338 | 59.58 279 | 95.62 280 | 67.60 310 | 67.50 343 | 87.32 334 |
|
| v8 | | | 81.88 268 | 80.06 276 | 87.32 260 | 86.63 325 | 79.04 207 | 94.41 263 | 93.65 282 | 78.77 286 | 73.19 306 | 85.57 322 | 66.87 234 | 95.81 266 | 73.84 277 | 67.61 342 | 87.11 335 |
|
| ACMH+ | | 76.62 16 | 77.47 311 | 74.94 313 | 85.05 300 | 91.07 264 | 71.58 327 | 93.26 295 | 90.01 347 | 71.80 345 | 64.76 352 | 88.55 274 | 41.62 367 | 96.48 236 | 62.35 338 | 71.00 308 | 87.09 336 |
|
| UnsupCasMVSNet_eth | | | 73.25 333 | 70.57 338 | 81.30 337 | 77.53 380 | 66.33 356 | 87.24 351 | 93.89 266 | 80.38 253 | 57.90 379 | 81.59 354 | 42.91 364 | 90.56 367 | 65.18 326 | 48.51 387 | 87.01 337 |
|
| ppachtmachnet_test | | | 77.19 313 | 74.22 321 | 86.13 282 | 85.39 343 | 78.22 227 | 93.98 275 | 91.36 331 | 71.74 346 | 67.11 339 | 84.87 335 | 56.67 308 | 93.37 342 | 52.21 371 | 64.59 355 | 86.80 338 |
|
| v10 | | | 81.43 274 | 79.53 282 | 87.11 265 | 86.38 327 | 78.87 208 | 94.31 267 | 93.43 290 | 77.88 294 | 73.24 305 | 85.26 326 | 65.44 242 | 95.75 270 | 72.14 286 | 67.71 341 | 86.72 339 |
|
| test_fmvs2 | | | 79.59 292 | 79.90 279 | 78.67 351 | 82.86 365 | 55.82 386 | 95.20 242 | 89.55 350 | 81.09 235 | 80.12 233 | 89.80 260 | 34.31 383 | 93.51 339 | 87.82 143 | 78.36 275 | 86.69 340 |
|
| anonymousdsp | | | 80.98 281 | 79.97 277 | 84.01 315 | 81.73 368 | 70.44 333 | 92.49 306 | 93.58 286 | 77.10 306 | 72.98 308 | 86.31 313 | 57.58 299 | 94.90 310 | 79.32 219 | 78.63 272 | 86.69 340 |
|
| our_test_3 | | | 77.90 307 | 75.37 311 | 85.48 295 | 85.39 343 | 76.74 265 | 93.63 283 | 91.67 325 | 73.39 334 | 65.72 349 | 84.65 337 | 58.20 292 | 93.13 343 | 57.82 353 | 67.87 338 | 86.57 342 |
|
| Anonymous20231206 | | | 75.29 324 | 73.64 325 | 80.22 344 | 80.75 369 | 63.38 367 | 93.36 290 | 90.71 344 | 73.09 336 | 67.12 338 | 83.70 344 | 50.33 336 | 90.85 365 | 53.63 369 | 70.10 317 | 86.44 343 |
|
| YYNet1 | | | 73.53 332 | 70.43 339 | 82.85 329 | 84.52 353 | 71.73 325 | 91.69 317 | 91.37 330 | 67.63 359 | 46.79 388 | 81.21 357 | 55.04 320 | 90.43 368 | 55.93 362 | 59.70 369 | 86.38 344 |
|
| MDA-MVSNet_test_wron | | | 73.54 331 | 70.43 339 | 82.86 328 | 84.55 351 | 71.85 322 | 91.74 316 | 91.32 333 | 67.63 359 | 46.73 389 | 81.09 358 | 55.11 319 | 90.42 369 | 55.91 363 | 59.76 368 | 86.31 345 |
|
| ITE_SJBPF | | | | | 82.38 332 | 87.00 323 | 65.59 357 | | 89.55 350 | 79.99 263 | 69.37 332 | 91.30 237 | 41.60 368 | 95.33 292 | 62.86 337 | 74.63 292 | 86.24 346 |
|
| FMVSNet5 | | | 76.46 318 | 74.16 322 | 83.35 326 | 90.05 285 | 76.17 273 | 89.58 332 | 89.85 348 | 71.39 348 | 65.29 351 | 80.42 360 | 50.61 334 | 87.70 380 | 61.05 344 | 69.24 326 | 86.18 347 |
|
| MDA-MVSNet-bldmvs | | | 71.45 342 | 67.94 347 | 81.98 336 | 85.33 345 | 68.50 346 | 92.35 309 | 88.76 359 | 70.40 351 | 42.99 392 | 81.96 352 | 46.57 351 | 91.31 361 | 48.75 383 | 54.39 376 | 86.11 348 |
|
| USDC | | | 78.65 300 | 76.25 305 | 85.85 284 | 87.58 317 | 74.60 294 | 89.58 332 | 90.58 345 | 84.05 177 | 63.13 359 | 88.23 280 | 40.69 373 | 96.86 223 | 66.57 319 | 75.81 285 | 86.09 349 |
|
| pmmvs6 | | | 74.65 327 | 71.67 333 | 83.60 323 | 79.13 376 | 69.94 336 | 93.31 294 | 90.88 341 | 61.05 380 | 65.83 348 | 84.15 341 | 43.43 359 | 94.83 313 | 66.62 317 | 60.63 367 | 86.02 350 |
|
| WB-MVSnew | | | 84.08 231 | 83.51 224 | 85.80 285 | 91.34 258 | 76.69 267 | 95.62 225 | 96.27 122 | 81.77 228 | 81.81 214 | 92.81 214 | 58.23 290 | 94.70 316 | 66.66 316 | 87.06 200 | 85.99 351 |
|
| KD-MVS_2432*1600 | | | 77.63 309 | 74.92 314 | 85.77 286 | 90.86 269 | 79.44 192 | 88.08 343 | 93.92 263 | 76.26 311 | 67.05 340 | 82.78 349 | 72.15 199 | 91.92 353 | 61.53 339 | 41.62 396 | 85.94 352 |
|
| miper_refine_blended | | | 77.63 309 | 74.92 314 | 85.77 286 | 90.86 269 | 79.44 192 | 88.08 343 | 93.92 263 | 76.26 311 | 67.05 340 | 82.78 349 | 72.15 199 | 91.92 353 | 61.53 339 | 41.62 396 | 85.94 352 |
|
| D2MVS | | | 82.67 256 | 81.55 253 | 86.04 283 | 87.77 315 | 76.47 268 | 95.21 241 | 96.58 89 | 82.66 213 | 70.26 327 | 85.46 325 | 60.39 274 | 95.80 267 | 76.40 251 | 79.18 265 | 85.83 354 |
|
| COLMAP_ROB |  | 73.24 19 | 75.74 322 | 73.00 329 | 83.94 316 | 92.38 222 | 69.08 343 | 91.85 314 | 86.93 369 | 61.48 376 | 65.32 350 | 90.27 254 | 42.27 365 | 96.93 218 | 50.91 375 | 75.63 286 | 85.80 355 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| CL-MVSNet_self_test | | | 75.81 321 | 74.14 323 | 80.83 342 | 78.33 378 | 67.79 348 | 94.22 272 | 93.52 287 | 77.28 303 | 69.82 329 | 81.54 355 | 61.47 270 | 89.22 372 | 57.59 355 | 53.51 378 | 85.48 356 |
|
| CMPMVS |  | 54.94 21 | 75.71 323 | 74.56 318 | 79.17 350 | 79.69 374 | 55.98 384 | 89.59 331 | 93.30 297 | 60.28 381 | 53.85 385 | 89.07 267 | 47.68 348 | 96.33 242 | 76.55 248 | 81.02 250 | 85.22 357 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| LTVRE_ROB | | 73.68 18 | 77.99 304 | 75.74 309 | 84.74 303 | 90.45 277 | 72.02 319 | 86.41 358 | 91.12 334 | 72.57 341 | 66.63 344 | 87.27 293 | 54.95 321 | 96.98 213 | 56.29 361 | 75.98 282 | 85.21 358 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| N_pmnet | | | 61.30 355 | 60.20 358 | 64.60 374 | 84.32 354 | 17.00 415 | 91.67 318 | 10.98 413 | 61.77 374 | 58.45 377 | 78.55 367 | 49.89 338 | 91.83 356 | 42.27 390 | 63.94 359 | 84.97 359 |
|
| MIMVSNet1 | | | 69.44 346 | 66.65 350 | 77.84 354 | 76.48 385 | 62.84 369 | 87.42 349 | 88.97 356 | 66.96 364 | 57.75 380 | 79.72 365 | 32.77 386 | 85.83 386 | 46.32 385 | 63.42 361 | 84.85 360 |
|
| Baseline_NR-MVSNet | | | 81.22 277 | 80.07 275 | 84.68 305 | 85.32 346 | 75.12 289 | 96.48 176 | 88.80 358 | 76.24 313 | 77.28 257 | 86.40 312 | 67.61 225 | 94.39 324 | 75.73 259 | 66.73 350 | 84.54 361 |
|
| TransMVSNet (Re) | | | 76.94 315 | 74.38 319 | 84.62 308 | 85.92 337 | 75.25 288 | 95.28 236 | 89.18 355 | 73.88 329 | 67.22 337 | 86.46 308 | 59.64 277 | 94.10 328 | 59.24 350 | 52.57 382 | 84.50 362 |
|
| KD-MVS_self_test | | | 70.97 344 | 69.31 344 | 75.95 363 | 76.24 388 | 55.39 388 | 87.45 348 | 90.94 340 | 70.20 353 | 62.96 362 | 77.48 370 | 44.01 356 | 88.09 375 | 61.25 343 | 53.26 379 | 84.37 363 |
|
| MS-PatchMatch | | | 83.05 249 | 81.82 250 | 86.72 274 | 89.64 292 | 79.10 204 | 94.88 255 | 94.59 226 | 79.70 268 | 70.67 324 | 89.65 262 | 50.43 335 | 96.82 224 | 70.82 299 | 95.99 107 | 84.25 364 |
|
| ambc | | | | | 76.02 361 | 68.11 395 | 51.43 390 | 64.97 398 | 89.59 349 | | 60.49 371 | 74.49 378 | 17.17 397 | 92.46 346 | 61.50 341 | 52.85 381 | 84.17 365 |
|
| test_method | | | 56.77 357 | 54.53 361 | 63.49 376 | 76.49 384 | 40.70 402 | 75.68 389 | 74.24 396 | 19.47 404 | 48.73 387 | 71.89 387 | 19.31 395 | 65.80 404 | 57.46 356 | 47.51 390 | 83.97 366 |
|
| tfpnnormal | | | 78.14 303 | 75.42 310 | 86.31 279 | 88.33 309 | 79.24 198 | 94.41 263 | 96.22 127 | 73.51 331 | 69.81 330 | 85.52 324 | 55.43 316 | 95.75 270 | 47.65 384 | 67.86 339 | 83.95 367 |
|
| test20.03 | | | 72.36 338 | 71.15 335 | 75.98 362 | 77.79 379 | 59.16 380 | 92.40 308 | 89.35 353 | 74.09 327 | 61.50 367 | 84.32 339 | 48.09 342 | 85.54 387 | 50.63 376 | 62.15 365 | 83.24 368 |
|
| Anonymous20240521 | | | 72.06 340 | 69.91 341 | 78.50 353 | 77.11 383 | 61.67 373 | 91.62 319 | 90.97 339 | 65.52 366 | 62.37 363 | 79.05 366 | 36.32 377 | 90.96 364 | 57.75 354 | 68.52 331 | 82.87 369 |
|
| OpenMVS_ROB |  | 68.52 20 | 73.02 335 | 69.57 342 | 83.37 325 | 80.54 372 | 71.82 323 | 93.60 285 | 88.22 363 | 62.37 371 | 61.98 365 | 83.15 348 | 35.31 382 | 95.47 286 | 45.08 387 | 75.88 284 | 82.82 370 |
|
| UnsupCasMVSNet_bld | | | 68.60 350 | 64.50 354 | 80.92 341 | 74.63 389 | 67.80 347 | 83.97 370 | 92.94 308 | 65.12 367 | 54.63 384 | 68.23 390 | 35.97 379 | 92.17 352 | 60.13 345 | 44.83 391 | 82.78 371 |
|
| MVP-Stereo | | | 82.65 257 | 81.67 252 | 85.59 293 | 86.10 335 | 78.29 224 | 93.33 291 | 92.82 309 | 77.75 296 | 69.17 334 | 87.98 284 | 59.28 283 | 95.76 269 | 71.77 287 | 96.88 87 | 82.73 372 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| pmmvs-eth3d | | | 73.59 330 | 70.66 337 | 82.38 332 | 76.40 386 | 73.38 302 | 89.39 335 | 89.43 352 | 72.69 340 | 60.34 372 | 77.79 369 | 46.43 352 | 91.26 362 | 66.42 321 | 57.06 372 | 82.51 373 |
|
| PM-MVS | | | 69.32 347 | 66.93 349 | 76.49 359 | 73.60 390 | 55.84 385 | 85.91 361 | 79.32 392 | 74.72 323 | 61.09 369 | 78.18 368 | 21.76 394 | 91.10 363 | 70.86 297 | 56.90 373 | 82.51 373 |
|
| TinyColmap | | | 72.41 337 | 68.99 346 | 82.68 330 | 88.11 310 | 69.59 340 | 88.41 341 | 85.20 376 | 65.55 365 | 57.91 378 | 84.82 336 | 30.80 389 | 95.94 259 | 51.38 372 | 68.70 329 | 82.49 375 |
|
| LF4IMVS | | | 72.36 338 | 70.82 336 | 76.95 357 | 79.18 375 | 56.33 383 | 86.12 360 | 86.11 374 | 69.30 357 | 63.06 360 | 86.66 304 | 33.03 385 | 92.25 349 | 65.33 325 | 68.64 330 | 82.28 376 |
|
| TDRefinement | | | 69.20 348 | 65.78 352 | 79.48 347 | 66.04 398 | 62.21 370 | 88.21 342 | 86.12 373 | 62.92 370 | 61.03 370 | 85.61 321 | 33.23 384 | 94.16 327 | 55.82 364 | 53.02 380 | 82.08 377 |
|
| EG-PatchMatch MVS | | | 74.92 325 | 72.02 332 | 83.62 322 | 83.76 363 | 73.28 305 | 93.62 284 | 92.04 320 | 68.57 358 | 58.88 375 | 83.80 343 | 31.87 387 | 95.57 284 | 56.97 359 | 78.67 269 | 82.00 378 |
|
| mvsany_test3 | | | 67.19 351 | 65.34 353 | 72.72 366 | 63.08 399 | 48.57 392 | 83.12 373 | 78.09 393 | 72.07 343 | 61.21 368 | 77.11 372 | 22.94 393 | 87.78 379 | 78.59 226 | 51.88 383 | 81.80 379 |
|
| test_fmvs3 | | | 69.56 345 | 69.19 345 | 70.67 367 | 69.01 393 | 47.05 393 | 90.87 325 | 86.81 370 | 71.31 349 | 66.79 343 | 77.15 371 | 16.40 398 | 83.17 390 | 81.84 199 | 62.51 364 | 81.79 380 |
|
| new-patchmatchnet | | | 68.85 349 | 65.93 351 | 77.61 356 | 73.57 391 | 63.94 364 | 90.11 330 | 88.73 360 | 71.62 347 | 55.08 383 | 73.60 380 | 40.84 371 | 87.22 383 | 51.35 374 | 48.49 388 | 81.67 381 |
|
| test_0402 | | | 72.68 336 | 69.54 343 | 82.09 335 | 88.67 304 | 71.81 324 | 92.72 304 | 86.77 371 | 61.52 375 | 62.21 364 | 83.91 342 | 43.22 361 | 93.76 335 | 34.60 394 | 72.23 304 | 80.72 382 |
|
| test_f | | | 64.01 354 | 62.13 357 | 69.65 368 | 63.00 400 | 45.30 399 | 83.66 372 | 80.68 389 | 61.30 377 | 55.70 382 | 72.62 384 | 14.23 400 | 84.64 388 | 69.84 302 | 58.11 370 | 79.00 383 |
|
| pmmvs3 | | | 65.75 353 | 62.18 356 | 76.45 360 | 67.12 397 | 64.54 359 | 88.68 339 | 85.05 377 | 54.77 392 | 57.54 381 | 73.79 379 | 29.40 390 | 86.21 385 | 55.49 365 | 47.77 389 | 78.62 384 |
|
| LCM-MVSNet | | | 52.52 362 | 48.24 365 | 65.35 372 | 47.63 409 | 41.45 401 | 72.55 394 | 83.62 384 | 31.75 397 | 37.66 395 | 57.92 395 | 9.19 407 | 76.76 397 | 49.26 380 | 44.60 392 | 77.84 385 |
|
| test_vis1_rt | | | 73.96 328 | 72.40 331 | 78.64 352 | 83.91 360 | 61.16 375 | 95.63 224 | 68.18 402 | 76.32 310 | 60.09 373 | 74.77 376 | 29.01 391 | 97.54 180 | 87.74 144 | 75.94 283 | 77.22 386 |
|
| new_pmnet | | | 66.18 352 | 63.18 355 | 75.18 365 | 76.27 387 | 61.74 372 | 83.79 371 | 84.66 379 | 56.64 390 | 51.57 386 | 71.85 388 | 31.29 388 | 87.93 376 | 49.98 378 | 62.55 363 | 75.86 387 |
|
| PMMVS2 | | | 50.90 364 | 46.31 367 | 64.67 373 | 55.53 403 | 46.67 395 | 77.30 387 | 71.02 399 | 40.89 394 | 34.16 398 | 59.32 393 | 9.83 406 | 76.14 399 | 40.09 393 | 28.63 401 | 71.21 388 |
|
| ANet_high | | | 46.22 365 | 41.28 372 | 61.04 379 | 39.91 411 | 46.25 397 | 70.59 395 | 76.18 395 | 58.87 387 | 23.09 403 | 48.00 400 | 12.58 403 | 66.54 403 | 28.65 398 | 13.62 404 | 70.35 389 |
|
| DeepMVS_CX |  | | | | 64.06 375 | 78.53 377 | 43.26 400 | | 68.11 404 | 69.94 354 | 38.55 394 | 76.14 374 | 18.53 396 | 79.34 393 | 43.72 388 | 41.62 396 | 69.57 390 |
|
| FPMVS | | | 55.09 360 | 52.93 363 | 61.57 378 | 55.98 402 | 40.51 403 | 83.11 374 | 83.41 385 | 37.61 396 | 34.95 397 | 71.95 386 | 14.40 399 | 76.95 396 | 29.81 396 | 65.16 354 | 67.25 391 |
|
| APD_test1 | | | 56.56 358 | 53.58 362 | 65.50 371 | 67.93 396 | 46.51 396 | 77.24 388 | 72.95 397 | 38.09 395 | 42.75 393 | 75.17 375 | 13.38 401 | 82.78 391 | 40.19 392 | 54.53 375 | 67.23 392 |
|
| WB-MVS | | | 57.26 356 | 56.22 359 | 60.39 380 | 69.29 392 | 35.91 407 | 86.39 359 | 70.06 400 | 59.84 385 | 46.46 390 | 72.71 383 | 51.18 331 | 78.11 394 | 15.19 404 | 34.89 399 | 67.14 393 |
|
| SSC-MVS | | | 56.01 359 | 54.96 360 | 59.17 381 | 68.42 394 | 34.13 408 | 84.98 367 | 69.23 401 | 58.08 389 | 45.36 391 | 71.67 389 | 50.30 337 | 77.46 395 | 14.28 405 | 32.33 400 | 65.91 394 |
|
| EGC-MVSNET | | | 52.46 363 | 47.56 366 | 67.15 370 | 81.98 367 | 60.11 377 | 82.54 375 | 72.44 398 | 0.11 410 | 0.70 411 | 74.59 377 | 25.11 392 | 83.26 389 | 29.04 397 | 61.51 366 | 58.09 395 |
|
| testf1 | | | 45.70 366 | 42.41 368 | 55.58 382 | 53.29 406 | 40.02 404 | 68.96 396 | 62.67 406 | 27.45 399 | 29.85 399 | 61.58 391 | 5.98 409 | 73.83 401 | 28.49 399 | 43.46 394 | 52.90 396 |
|
| APD_test2 | | | 45.70 366 | 42.41 368 | 55.58 382 | 53.29 406 | 40.02 404 | 68.96 396 | 62.67 406 | 27.45 399 | 29.85 399 | 61.58 391 | 5.98 409 | 73.83 401 | 28.49 399 | 43.46 394 | 52.90 396 |
|
| test_vis3_rt | | | 54.10 361 | 51.04 364 | 63.27 377 | 58.16 401 | 46.08 398 | 84.17 369 | 49.32 412 | 56.48 391 | 36.56 396 | 49.48 399 | 8.03 408 | 91.91 355 | 67.29 313 | 49.87 384 | 51.82 398 |
|
| PMVS |  | 34.80 23 | 39.19 370 | 35.53 373 | 50.18 385 | 29.72 412 | 30.30 410 | 59.60 400 | 66.20 405 | 26.06 401 | 17.91 405 | 49.53 398 | 3.12 411 | 74.09 400 | 18.19 403 | 49.40 385 | 46.14 399 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| MVE |  | 35.65 22 | 33.85 371 | 29.49 376 | 46.92 386 | 41.86 410 | 36.28 406 | 50.45 401 | 56.52 409 | 18.75 405 | 18.28 404 | 37.84 401 | 2.41 412 | 58.41 405 | 18.71 402 | 20.62 402 | 46.06 400 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| tmp_tt | | | 41.54 369 | 41.93 371 | 40.38 387 | 20.10 413 | 26.84 411 | 61.93 399 | 59.09 408 | 14.81 406 | 28.51 401 | 80.58 359 | 35.53 380 | 48.33 408 | 63.70 333 | 13.11 405 | 45.96 401 |
|
| Gipuma |  | | 45.11 368 | 42.05 370 | 54.30 384 | 80.69 370 | 51.30 391 | 35.80 402 | 83.81 383 | 28.13 398 | 27.94 402 | 34.53 402 | 11.41 405 | 76.70 398 | 21.45 401 | 54.65 374 | 34.90 402 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| E-PMN | | | 32.70 372 | 32.39 374 | 33.65 388 | 53.35 405 | 25.70 412 | 74.07 392 | 53.33 410 | 21.08 402 | 17.17 406 | 33.63 404 | 11.85 404 | 54.84 406 | 12.98 406 | 14.04 403 | 20.42 403 |
|
| EMVS | | | 31.70 373 | 31.45 375 | 32.48 389 | 50.72 408 | 23.95 413 | 74.78 391 | 52.30 411 | 20.36 403 | 16.08 407 | 31.48 405 | 12.80 402 | 53.60 407 | 11.39 407 | 13.10 406 | 19.88 404 |
|
| test123 | | | 9.07 377 | 11.73 380 | 1.11 391 | 0.50 415 | 0.77 416 | 89.44 334 | 0.20 416 | 0.34 409 | 2.15 410 | 10.72 409 | 0.34 414 | 0.32 410 | 1.79 410 | 0.08 409 | 2.23 405 |
|
| testmvs | | | 9.92 376 | 12.94 379 | 0.84 392 | 0.65 414 | 0.29 417 | 93.78 281 | 0.39 415 | 0.42 408 | 2.85 409 | 15.84 408 | 0.17 415 | 0.30 411 | 2.18 409 | 0.21 408 | 1.91 406 |
|
| wuyk23d | | | 14.10 375 | 13.89 378 | 14.72 390 | 55.23 404 | 22.91 414 | 33.83 403 | 3.56 414 | 4.94 407 | 4.11 408 | 2.28 410 | 2.06 413 | 19.66 409 | 10.23 408 | 8.74 407 | 1.59 407 |
|
| test_blank | | | 0.00 380 | 0.00 383 | 0.00 393 | 0.00 416 | 0.00 418 | 0.00 404 | 0.00 417 | 0.00 411 | 0.00 412 | 0.00 411 | 0.00 416 | 0.00 412 | 0.00 411 | 0.00 410 | 0.00 408 |
|
| uanet_test | | | 0.00 380 | 0.00 383 | 0.00 393 | 0.00 416 | 0.00 418 | 0.00 404 | 0.00 417 | 0.00 411 | 0.00 412 | 0.00 411 | 0.00 416 | 0.00 412 | 0.00 411 | 0.00 410 | 0.00 408 |
|
| DCPMVS | | | 0.00 380 | 0.00 383 | 0.00 393 | 0.00 416 | 0.00 418 | 0.00 404 | 0.00 417 | 0.00 411 | 0.00 412 | 0.00 411 | 0.00 416 | 0.00 412 | 0.00 411 | 0.00 410 | 0.00 408 |
|
| cdsmvs_eth3d_5k | | | 21.43 374 | 28.57 377 | 0.00 393 | 0.00 416 | 0.00 418 | 0.00 404 | 95.93 151 | 0.00 411 | 0.00 412 | 97.66 74 | 63.57 254 | 0.00 412 | 0.00 411 | 0.00 410 | 0.00 408 |
|
| pcd_1.5k_mvsjas | | | 5.92 379 | 7.89 382 | 0.00 393 | 0.00 416 | 0.00 418 | 0.00 404 | 0.00 417 | 0.00 411 | 0.00 412 | 0.00 411 | 71.04 211 | 0.00 412 | 0.00 411 | 0.00 410 | 0.00 408 |
|
| sosnet-low-res | | | 0.00 380 | 0.00 383 | 0.00 393 | 0.00 416 | 0.00 418 | 0.00 404 | 0.00 417 | 0.00 411 | 0.00 412 | 0.00 411 | 0.00 416 | 0.00 412 | 0.00 411 | 0.00 410 | 0.00 408 |
|
| sosnet | | | 0.00 380 | 0.00 383 | 0.00 393 | 0.00 416 | 0.00 418 | 0.00 404 | 0.00 417 | 0.00 411 | 0.00 412 | 0.00 411 | 0.00 416 | 0.00 412 | 0.00 411 | 0.00 410 | 0.00 408 |
|
| uncertanet | | | 0.00 380 | 0.00 383 | 0.00 393 | 0.00 416 | 0.00 418 | 0.00 404 | 0.00 417 | 0.00 411 | 0.00 412 | 0.00 411 | 0.00 416 | 0.00 412 | 0.00 411 | 0.00 410 | 0.00 408 |
|
| Regformer | | | 0.00 380 | 0.00 383 | 0.00 393 | 0.00 416 | 0.00 418 | 0.00 404 | 0.00 417 | 0.00 411 | 0.00 412 | 0.00 411 | 0.00 416 | 0.00 412 | 0.00 411 | 0.00 410 | 0.00 408 |
|
| ab-mvs-re | | | 8.11 378 | 10.81 381 | 0.00 393 | 0.00 416 | 0.00 418 | 0.00 404 | 0.00 417 | 0.00 411 | 0.00 412 | 97.30 97 | 0.00 416 | 0.00 412 | 0.00 411 | 0.00 410 | 0.00 408 |
|
| uanet | | | 0.00 380 | 0.00 383 | 0.00 393 | 0.00 416 | 0.00 418 | 0.00 404 | 0.00 417 | 0.00 411 | 0.00 412 | 0.00 411 | 0.00 416 | 0.00 412 | 0.00 411 | 0.00 410 | 0.00 408 |
|
| WAC-MVS | | | | | | | 67.18 351 | | | | | | | | 49.00 381 | | |
|
| FOURS1 | | | | | | 98.51 39 | 78.01 235 | 98.13 50 | 96.21 128 | 83.04 202 | 94.39 52 | | | | | | |
|
| test_one_0601 | | | | | | 98.91 18 | 84.56 80 | | 96.70 71 | 88.06 82 | 96.57 23 | 98.77 10 | 88.04 20 | | | | |
|
| eth-test2 | | | | | | 0.00 416 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 416 | | | | | | | | | | | |
|
| ZD-MVS | | | | | | 99.09 8 | 83.22 104 | | 96.60 87 | 82.88 207 | 93.61 62 | 98.06 52 | 82.93 52 | 99.14 97 | 95.51 50 | 98.49 38 | |
|
| test_241102_ONE | | | | | | 99.03 15 | 85.03 69 | | 96.78 55 | 88.72 67 | 97.79 7 | 98.90 5 | 88.48 17 | 99.82 18 | | | |
|
| 9.14 | | | | 94.26 30 | | 98.10 57 | | 98.14 47 | 96.52 95 | 84.74 156 | 94.83 47 | 98.80 7 | 82.80 54 | 99.37 80 | 95.95 42 | 98.42 41 | |
|
| save fliter | | | | | | 98.24 51 | 83.34 101 | 98.61 34 | 96.57 90 | 91.32 34 | | | | | | | |
|
| test0726 | | | | | | 99.05 9 | 85.18 61 | 99.11 15 | 96.78 55 | 88.75 65 | 97.65 12 | 98.91 2 | 87.69 22 | | | | |
|
| test_part2 | | | | | | 98.90 19 | 85.14 67 | | | | 96.07 29 | | | | | | |
|
| sam_mvs | | | | | | | | | | | | | 75.35 155 | | | | |
|
| MTGPA |  | | | | | | | | 96.33 118 | | | | | | | | |
|
| test_post1 | | | | | | | | 85.88 362 | | | | 30.24 406 | 73.77 178 | 95.07 308 | 73.89 275 | | |
|
| test_post | | | | | | | | | | | | 33.80 403 | 76.17 134 | 95.97 255 | | | |
|
| patchmatchnet-post | | | | | | | | | | | | 77.09 373 | 77.78 106 | 95.39 288 | | | |
|
| MTMP | | | | | | | | 97.53 92 | 68.16 403 | | | | | | | | |
|
| gm-plane-assit | | | | | | 92.27 228 | 79.64 190 | | | 84.47 166 | | 95.15 165 | | 97.93 156 | 85.81 159 | | |
|
| TEST9 | | | | | | 98.64 31 | 83.71 92 | 97.82 69 | 96.65 78 | 84.29 173 | 95.16 36 | 98.09 47 | 84.39 37 | 99.36 81 | | | |
|
| test_8 | | | | | | 98.63 33 | 83.64 95 | 97.81 71 | 96.63 83 | 84.50 164 | 95.10 40 | 98.11 46 | 84.33 38 | 99.23 86 | | | |
|
| agg_prior | | | | | | 98.59 35 | 83.13 105 | | 96.56 92 | | 94.19 54 | | | 99.16 96 | | | |
|
| test_prior4 | | | | | | | 82.34 118 | 97.75 76 | | | | | | | | | |
|
| test_prior2 | | | | | | | | 98.37 40 | | 86.08 125 | 94.57 50 | 98.02 53 | 83.14 50 | | 95.05 53 | 98.79 26 | |
|
| 旧先验2 | | | | | | | | 96.97 143 | | 74.06 328 | 96.10 28 | | | 97.76 167 | 88.38 139 | | |
|
| æ–°å‡ ä½•2 | | | | | | | | 96.42 183 | | | | | | | | | |
|
| 原ACMM2 | | | | | | | | 96.84 153 | | | | | | | | | |
|
| testdata2 | | | | | | | | | | | | | | 99.48 73 | 76.45 250 | | |
|
| segment_acmp | | | | | | | | | | | | | 82.69 55 | | | | |
|
| testdata1 | | | | | | | | 95.57 227 | | 87.44 98 | | | | | | | |
|
| plane_prior7 | | | | | | 91.86 249 | 77.55 251 | | | | | | | | | | |
|
| plane_prior6 | | | | | | 91.98 245 | 77.92 240 | | | | | | 64.77 249 | | | | |
|
| plane_prior4 | | | | | | | | | | | | 94.15 191 | | | | | |
|
| plane_prior3 | | | | | | | 77.75 247 | | | 90.17 52 | 81.33 217 | | | | | | |
|
| plane_prior2 | | | | | | | | 97.18 119 | | 89.89 55 | | | | | | | |
|
| plane_prior1 | | | | | | 91.95 247 | | | | | | | | | | | |
|
| plane_prior | | | | | | | 77.96 237 | 97.52 95 | | 90.36 50 | | | | | | 82.96 236 | |
|
| n2 | | | | | | | | | 0.00 417 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 417 | | | | | | | | |
|
| door-mid | | | | | | | | | 79.75 391 | | | | | | | | |
|
| test11 | | | | | | | | | 96.50 98 | | | | | | | | |
|
| door | | | | | | | | | 80.13 390 | | | | | | | | |
|
| HQP5-MVS | | | | | | | 78.48 217 | | | | | | | | | | |
|
| HQP-NCC | | | | | | 92.08 240 | | 97.63 83 | | 90.52 45 | 82.30 203 | | | | | | |
|
| ACMP_Plane | | | | | | 92.08 240 | | 97.63 83 | | 90.52 45 | 82.30 203 | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 87.67 146 | | |
|
| HQP3-MVS | | | | | | | | | 94.80 209 | | | | | | | 83.01 234 | |
|
| HQP2-MVS | | | | | | | | | | | | | 65.40 243 | | | | |
|
| NP-MVS | | | | | | 92.04 244 | 78.22 227 | | | | | 94.56 181 | | | | | |
|
| MDTV_nov1_ep13 | | | | 83.69 217 | | 94.09 175 | 81.01 149 | 86.78 355 | 96.09 137 | 83.81 187 | 84.75 174 | 84.32 339 | 74.44 171 | 96.54 234 | 63.88 331 | 85.07 222 | |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 78.45 274 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 79.05 266 | |
|
| Test By Simon | | | | | | | | | | | | | 71.65 204 | | | | |
|