This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted by
SED-MVS95.88 596.22 494.87 2499.03 1585.03 6999.12 1296.78 5588.72 6797.79 798.91 288.48 1799.82 1898.15 1198.97 1799.74 1
OPU-MVS97.30 299.19 792.31 399.12 1298.54 2092.06 399.84 1299.11 299.37 199.74 1
DVP-MVS++96.05 496.41 394.96 2399.05 985.34 5698.13 5096.77 6188.38 7597.70 998.77 1092.06 399.84 1297.47 2499.37 199.70 3
PC_three_145291.12 3798.33 298.42 3092.51 299.81 2198.96 399.37 199.70 3
DPM-MVS96.21 295.53 1398.26 196.26 10195.09 199.15 896.98 3893.39 1696.45 2598.79 890.17 1099.99 189.33 12899.25 699.70 3
DeepPCF-MVS89.82 194.61 2296.17 589.91 20297.09 9070.21 33598.99 2396.69 7395.57 295.08 4199.23 186.40 2999.87 897.84 2098.66 3299.65 6
MCST-MVS96.17 396.12 696.32 799.42 289.36 1098.94 2497.10 3295.17 392.11 8198.46 2887.33 2499.97 297.21 2899.31 499.63 7
DeepC-MVS_fast89.06 294.48 2494.30 2995.02 2198.86 2185.68 4898.06 5696.64 8193.64 1491.74 8798.54 2080.17 7399.90 592.28 8898.75 2899.49 8
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_241102_TWO96.78 5588.72 6797.70 998.91 287.86 2199.82 1898.15 1199.00 1599.47 9
test_0728_SECOND95.14 1999.04 1486.14 3799.06 1796.77 6199.84 1297.90 1798.85 2199.45 10
MSC_two_6792asdad97.14 399.05 992.19 496.83 5299.81 2198.08 1498.81 2499.43 11
No_MVS97.14 399.05 992.19 496.83 5299.81 2198.08 1498.81 2499.43 11
IU-MVS99.03 1585.34 5696.86 5192.05 2998.74 198.15 1198.97 1799.42 13
test_0728_THIRD88.38 7596.69 1898.76 1289.64 1399.76 3197.47 2498.84 2399.38 14
MSP-MVS95.62 896.54 192.86 9698.31 4880.10 17797.42 10496.78 5592.20 2497.11 1598.29 3593.46 199.10 10196.01 4099.30 599.38 14
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
sasdasda92.27 6791.22 8395.41 1695.80 11888.31 1497.09 13394.64 22188.49 7292.99 7097.31 9472.68 19098.57 12793.38 7388.58 18399.36 16
canonicalmvs92.27 6791.22 8395.41 1695.80 11888.31 1497.09 13394.64 22188.49 7292.99 7097.31 9472.68 19098.57 12793.38 7388.58 18399.36 16
patch_mono-295.14 1396.08 792.33 11998.44 4377.84 24398.43 3797.21 2392.58 2197.68 1197.65 7886.88 2599.83 1698.25 997.60 6899.33 18
MGCFI-Net91.95 7391.03 9094.72 2995.68 12286.38 3496.93 14894.48 23088.25 7992.78 7397.24 10072.34 19598.46 13593.13 8088.43 18799.32 19
DPE-MVScopyleft95.32 1195.55 1294.64 3198.79 2384.87 7497.77 7396.74 6686.11 12396.54 2498.89 688.39 1999.74 3897.67 2299.05 1299.31 20
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
APDe-MVScopyleft94.56 2394.75 2093.96 5098.84 2283.40 10098.04 5896.41 10885.79 13195.00 4398.28 3684.32 4199.18 9497.35 2698.77 2799.28 21
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
MVS90.60 11088.64 13596.50 594.25 16790.53 893.33 29197.21 2377.59 29878.88 24397.31 9471.52 20699.69 4989.60 12398.03 5599.27 22
CSCG92.02 7291.65 7693.12 8598.53 3680.59 16197.47 9797.18 2677.06 30784.64 17797.98 5783.98 4499.52 6990.72 10697.33 7799.23 23
TSAR-MVS + GP.94.35 2594.50 2393.89 5197.38 8483.04 10798.10 5295.29 18891.57 3293.81 5897.45 8786.64 2699.43 7696.28 3894.01 12999.20 24
MG-MVS94.25 2893.72 3495.85 1199.38 389.35 1197.98 6098.09 989.99 5392.34 7796.97 11281.30 6298.99 10788.54 13598.88 2099.20 24
MM95.85 695.74 1096.15 896.34 9689.50 999.18 698.10 895.68 196.64 2197.92 6080.72 6599.80 2599.16 197.96 5799.15 26
iter_conf05_1191.95 7391.17 8894.29 3896.33 9785.50 5499.61 191.84 32294.36 1097.89 698.51 2446.72 35098.24 14796.54 3698.75 2899.13 27
bld_raw_dy_0_6488.31 16086.38 17994.07 4796.33 9784.79 7697.19 11784.75 37894.48 882.36 20298.47 2746.18 35398.30 14596.54 3681.13 24999.13 27
DELS-MVS94.98 1494.49 2496.44 696.42 9590.59 799.21 597.02 3694.40 991.46 8997.08 10883.32 4999.69 4992.83 8398.70 3199.04 29
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
APD-MVScopyleft93.61 3793.59 3893.69 6198.76 2483.26 10397.21 11496.09 13782.41 21894.65 4998.21 3881.96 5998.81 11994.65 5898.36 4699.01 30
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CNVR-MVS96.30 196.54 195.55 1599.31 587.69 2399.06 1797.12 3094.66 596.79 1798.78 986.42 2899.95 397.59 2399.18 799.00 31
NCCC95.63 795.94 894.69 3099.21 685.15 6699.16 796.96 4194.11 1195.59 3398.64 1785.07 3299.91 495.61 4799.10 999.00 31
alignmvs92.97 4792.26 6395.12 2095.54 12587.77 2198.67 3096.38 11388.04 8393.01 6997.45 8779.20 8398.60 12593.25 7788.76 18098.99 33
CANet94.89 1694.64 2295.63 1397.55 7588.12 1799.06 1796.39 11294.07 1295.34 3597.80 6976.83 12299.87 897.08 3097.64 6798.89 34
HY-MVS84.06 691.63 8490.37 10495.39 1896.12 10588.25 1690.22 32997.58 1688.33 7790.50 10691.96 22779.26 8199.06 10490.29 11689.07 17598.88 35
PHI-MVS93.59 3893.63 3793.48 7498.05 5881.76 13398.64 3297.13 2882.60 21494.09 5698.49 2680.35 6899.85 1094.74 5798.62 3398.83 36
SteuartSystems-ACMMP94.13 3194.44 2693.20 8295.41 12881.35 14399.02 2196.59 8889.50 5994.18 5598.36 3283.68 4899.45 7594.77 5598.45 4098.81 37
Skip Steuart: Steuart Systems R&D Blog.
DVP-MVScopyleft95.58 995.91 994.57 3299.05 985.18 6199.06 1796.46 10288.75 6596.69 1898.76 1287.69 2299.76 3197.90 1798.85 2198.77 38
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_yl91.46 8890.53 9894.24 4197.41 8085.18 6198.08 5397.72 1280.94 23789.85 11196.14 13275.61 14298.81 11990.42 11488.56 18598.74 39
DCV-MVSNet91.46 8890.53 9894.24 4197.41 8085.18 6198.08 5397.72 1280.94 23789.85 11196.14 13275.61 14298.81 11990.42 11488.56 18598.74 39
LFMVS89.27 13487.64 15394.16 4697.16 8885.52 5397.18 11994.66 21879.17 27989.63 11796.57 12655.35 31798.22 14889.52 12689.54 17098.74 39
PAPR92.74 5292.17 6694.45 3498.89 2084.87 7497.20 11696.20 12987.73 9188.40 13898.12 4578.71 9199.76 3187.99 14296.28 9898.74 39
WTY-MVS92.65 5991.68 7595.56 1496.00 10888.90 1398.23 4497.65 1488.57 7089.82 11397.22 10279.29 8099.06 10489.57 12488.73 18198.73 43
3Dnovator+82.88 889.63 12887.85 14894.99 2294.49 16286.76 3297.84 6895.74 16186.10 12475.47 28796.02 13565.00 24799.51 7182.91 19397.07 8398.72 44
CS-MVS-test92.98 4693.67 3690.90 17396.52 9476.87 26298.68 2994.73 21390.36 5094.84 4697.89 6477.94 10197.15 20794.28 6397.80 6398.70 45
SD-MVS94.84 1895.02 1994.29 3897.87 6484.61 7897.76 7596.19 13189.59 5896.66 2098.17 4384.33 3899.60 5996.09 3998.50 3798.66 46
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
HPM-MVS++copyleft95.32 1195.48 1494.85 2598.62 3486.04 3897.81 7196.93 4492.45 2295.69 3298.50 2585.38 3099.85 1094.75 5699.18 798.65 47
MSLP-MVS++94.28 2694.39 2793.97 4998.30 4984.06 8798.64 3296.93 4490.71 4293.08 6898.70 1579.98 7599.21 8894.12 6499.07 1198.63 48
lupinMVS93.87 3593.58 3994.75 2893.00 20688.08 1899.15 895.50 17391.03 3994.90 4497.66 7478.84 8897.56 17694.64 5997.46 7198.62 49
agg_prior294.30 6099.00 1598.57 50
PAPM_NR91.46 8890.82 9293.37 7798.50 4081.81 13295.03 25296.13 13484.65 16086.10 16197.65 7879.24 8299.75 3683.20 18996.88 8798.56 51
API-MVS90.18 11888.97 12993.80 5498.66 2882.95 10897.50 9695.63 16775.16 31986.31 15897.69 7272.49 19399.90 581.26 20296.07 10398.56 51
mvs_anonymous88.68 14787.62 15591.86 14294.80 14981.69 13793.53 28794.92 20182.03 22578.87 24490.43 25275.77 14095.34 29185.04 16593.16 14398.55 53
MVS_030495.36 1095.20 1795.85 1194.89 14789.22 1298.83 2697.88 1194.68 495.14 3997.99 5480.80 6499.81 2198.60 697.95 5898.50 54
CS-MVS92.73 5393.48 4190.48 18596.27 10075.93 28298.55 3594.93 20089.32 6094.54 5197.67 7378.91 8797.02 21193.80 6697.32 7898.49 55
SMA-MVScopyleft94.70 2194.68 2194.76 2798.02 5985.94 4297.47 9796.77 6185.32 14097.92 398.70 1583.09 5199.84 1295.79 4499.08 1098.49 55
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
ET-MVSNet_ETH3D90.01 12189.03 12792.95 9294.38 16486.77 3198.14 4796.31 12089.30 6163.33 35896.72 12490.09 1193.63 33790.70 10782.29 24598.46 57
SR-MVS92.16 6992.27 6291.83 14598.37 4578.41 22196.67 16795.76 15982.19 22291.97 8298.07 5176.44 12898.64 12393.71 6897.27 7998.45 58
无先验96.87 15296.78 5577.39 30099.52 6979.95 21398.43 59
VNet92.11 7191.22 8394.79 2696.91 9186.98 2897.91 6497.96 1086.38 12093.65 6095.74 14070.16 21998.95 11193.39 7188.87 17998.43 59
ACMMP_NAP93.46 3993.23 4594.17 4497.16 8884.28 8496.82 15696.65 7886.24 12194.27 5397.99 5477.94 10199.83 1693.39 7198.57 3498.39 61
casdiffmvs_mvgpermissive91.13 9790.45 10193.17 8492.99 20983.58 9697.46 9994.56 22787.69 9287.19 15294.98 17374.50 17097.60 17391.88 9592.79 14698.34 62
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
TSAR-MVS + MP.94.79 2095.17 1893.64 6397.66 6984.10 8695.85 21596.42 10791.26 3597.49 1396.80 12086.50 2798.49 13295.54 4999.03 1398.33 63
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SF-MVS94.17 2994.05 3394.55 3397.56 7485.95 4097.73 7796.43 10684.02 17895.07 4298.74 1482.93 5299.38 7895.42 5198.51 3598.32 64
Effi-MVS+90.70 10889.90 11893.09 8793.61 18583.48 9895.20 24292.79 31083.22 19791.82 8595.70 14271.82 20297.48 18691.25 9893.67 13598.32 64
test9_res96.00 4199.03 1398.31 66
test22296.15 10478.41 22195.87 21396.46 10271.97 34489.66 11697.45 8776.33 13298.24 5098.30 67
test_prior93.09 8798.68 2681.91 12696.40 11099.06 10498.29 68
testdata90.13 19495.92 11374.17 29896.49 10173.49 33394.82 4897.99 5478.80 9097.93 15683.53 18697.52 7098.29 68
dcpmvs_293.10 4493.46 4292.02 13797.77 6579.73 18794.82 25693.86 26886.91 11191.33 9396.76 12185.20 3198.06 15296.90 3297.60 6898.27 70
新几何193.12 8597.44 7881.60 14096.71 7074.54 32491.22 9697.57 8279.13 8499.51 7177.40 24198.46 3998.26 71
EIA-MVS91.73 8092.05 6990.78 17894.52 15776.40 27198.06 5695.34 18689.19 6288.90 12997.28 9977.56 10897.73 16890.77 10596.86 8998.20 72
region2R92.72 5592.70 5392.79 9998.68 2680.53 16697.53 9296.51 9685.22 14391.94 8497.98 5777.26 11299.67 5390.83 10498.37 4598.18 73
Anonymous20240521184.41 22681.93 24891.85 14496.78 9378.41 22197.44 10091.34 33270.29 35284.06 18094.26 18741.09 37098.96 10979.46 21782.65 24198.17 74
train_agg94.28 2694.45 2593.74 5798.64 3183.71 9297.82 6996.65 7884.50 16495.16 3698.09 4784.33 3899.36 8195.91 4398.96 1998.16 75
baseline90.76 10790.10 11192.74 10192.90 21282.56 11294.60 26094.56 22787.69 9289.06 12795.67 14473.76 17997.51 18390.43 11392.23 15598.16 75
CDPH-MVS93.12 4392.91 4993.74 5798.65 3083.88 8897.67 8296.26 12383.00 20493.22 6698.24 3781.31 6199.21 8889.12 12998.74 3098.14 77
DP-MVS Recon91.72 8290.85 9194.34 3699.50 185.00 7198.51 3695.96 14880.57 24688.08 14397.63 8076.84 12099.89 785.67 16094.88 11798.13 78
HFP-MVS92.89 4992.86 5192.98 9198.71 2581.12 14697.58 8796.70 7185.20 14591.75 8697.97 5978.47 9399.71 4590.95 10098.41 4298.12 79
MVS_Test90.29 11789.18 12693.62 6595.23 13384.93 7294.41 26394.66 21884.31 16990.37 10991.02 24275.13 15997.82 16583.11 19194.42 12498.12 79
ZNCC-MVS92.75 5192.60 5693.23 8198.24 5181.82 13197.63 8396.50 9885.00 15191.05 9897.74 7178.38 9499.80 2590.48 10998.34 4798.07 81
EPMVS87.47 17885.90 18492.18 12895.41 12882.26 12087.00 35396.28 12185.88 13084.23 17985.57 32275.07 16196.26 24471.14 29592.50 15098.03 82
XVS92.69 5792.71 5292.63 10798.52 3780.29 16997.37 10896.44 10487.04 10991.38 9097.83 6877.24 11499.59 6090.46 11098.07 5398.02 83
X-MVStestdata86.26 19584.14 21492.63 10798.52 3780.29 16997.37 10896.44 10487.04 10991.38 9020.73 40777.24 11499.59 6090.46 11098.07 5398.02 83
MVSFormer91.36 9190.57 9793.73 5993.00 20688.08 1894.80 25894.48 23080.74 24294.90 4497.13 10578.84 8895.10 30583.77 17897.46 7198.02 83
jason92.73 5392.23 6494.21 4390.50 27687.30 2798.65 3195.09 19490.61 4492.76 7497.13 10575.28 15797.30 19693.32 7596.75 9298.02 83
jason: jason.
MVS_111021_HR93.41 4093.39 4393.47 7697.34 8582.83 10997.56 8998.27 689.16 6389.71 11497.14 10479.77 7799.56 6693.65 6997.94 5998.02 83
GG-mvs-BLEND93.49 7394.94 14486.26 3581.62 37697.00 3788.32 14094.30 18691.23 596.21 24788.49 13797.43 7498.00 88
ACMMPR92.69 5792.67 5492.75 10098.66 2880.57 16297.58 8796.69 7385.20 14591.57 8897.92 6077.01 11799.67 5390.95 10098.41 4298.00 88
test250690.96 10390.39 10292.65 10593.54 18882.46 11696.37 18597.35 1886.78 11687.55 14695.25 15577.83 10597.50 18484.07 17294.80 11897.98 90
ECVR-MVScopyleft88.35 15987.25 16591.65 14993.54 18879.40 19496.56 17290.78 34286.78 11685.57 16495.25 15557.25 30497.56 17684.73 16894.80 11897.98 90
test1294.25 4098.34 4685.55 5296.35 11792.36 7680.84 6399.22 8798.31 4897.98 90
MTAPA92.45 6492.31 6192.86 9697.90 6180.85 15592.88 30296.33 11887.92 8690.20 11098.18 4076.71 12599.76 3192.57 8798.09 5297.96 93
CP-MVS92.54 6292.60 5692.34 11798.50 4079.90 18098.40 3996.40 11084.75 15590.48 10798.09 4777.40 11199.21 8891.15 9998.23 5197.92 94
mPP-MVS91.88 7891.82 7292.07 13398.38 4478.63 21597.29 11296.09 13785.12 14788.45 13797.66 7475.53 14699.68 5189.83 12098.02 5697.88 95
3Dnovator82.32 1089.33 13287.64 15394.42 3593.73 18485.70 4697.73 7796.75 6586.73 11976.21 27595.93 13662.17 26199.68 5181.67 20097.81 6297.88 95
test111188.11 16587.04 17191.35 15793.15 20178.79 21296.57 17090.78 34286.88 11385.04 16895.20 16157.23 30597.39 19183.88 17594.59 12197.87 97
Patchmatch-test78.25 30274.72 31688.83 22291.20 25974.10 29973.91 39388.70 36159.89 38466.82 34285.12 33278.38 9494.54 32048.84 38279.58 26297.86 98
MP-MVScopyleft92.61 6092.67 5492.42 11598.13 5679.73 18797.33 11096.20 12985.63 13390.53 10597.66 7478.14 9999.70 4892.12 9098.30 4997.85 99
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ab-mvs87.08 18084.94 20093.48 7493.34 19783.67 9488.82 33795.70 16381.18 23484.55 17890.14 25862.72 25898.94 11385.49 16282.54 24297.85 99
test_fmvsmconf_n93.99 3394.36 2892.86 9692.82 21381.12 14699.26 496.37 11693.47 1595.16 3698.21 3879.00 8599.64 5598.21 1096.73 9397.83 101
casdiffmvspermissive90.95 10490.39 10292.63 10792.82 21382.53 11396.83 15494.47 23387.69 9288.47 13695.56 14974.04 17697.54 18090.90 10392.74 14797.83 101
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EPNet94.06 3294.15 3193.76 5697.27 8784.35 8198.29 4297.64 1594.57 695.36 3496.88 11579.96 7699.12 10091.30 9796.11 10297.82 103
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
gg-mvs-nofinetune85.48 20982.90 23393.24 8094.51 16085.82 4479.22 38096.97 4061.19 37887.33 14953.01 39690.58 696.07 25086.07 15797.23 8097.81 104
CHOSEN 1792x268891.07 10090.21 10893.64 6395.18 13683.53 9796.26 19296.13 13488.92 6484.90 17193.10 21272.86 18899.62 5888.86 13195.67 11197.79 105
APD-MVS_3200maxsize91.23 9591.35 8090.89 17497.89 6276.35 27296.30 19095.52 17279.82 26591.03 9997.88 6574.70 16598.54 12992.11 9196.89 8697.77 106
SR-MVS-dyc-post91.29 9391.45 7990.80 17697.76 6776.03 27796.20 19795.44 17880.56 24790.72 10397.84 6675.76 14198.61 12491.99 9296.79 9097.75 107
RE-MVS-def91.18 8797.76 6776.03 27796.20 19795.44 17880.56 24790.72 10397.84 6673.36 18591.99 9296.79 9097.75 107
GST-MVS92.43 6592.22 6593.04 8998.17 5481.64 13897.40 10696.38 11384.71 15890.90 10197.40 9277.55 10999.76 3189.75 12297.74 6497.72 109
Patchmatch-RL test76.65 31774.01 32484.55 30977.37 38264.23 36178.49 38482.84 38678.48 28964.63 35373.40 38176.05 13691.70 35876.99 24357.84 37197.72 109
PVSNet82.34 989.02 13787.79 15092.71 10395.49 12681.50 14197.70 7997.29 1987.76 9085.47 16595.12 16756.90 30698.90 11580.33 20794.02 12897.71 111
Vis-MVSNetpermissive88.67 14887.82 14991.24 16292.68 21578.82 20996.95 14693.85 26987.55 9587.07 15495.13 16663.43 25597.21 20177.58 23796.15 10197.70 112
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
PAPM92.87 5092.40 5994.30 3792.25 23187.85 2096.40 18496.38 11391.07 3888.72 13496.90 11382.11 5797.37 19390.05 11997.70 6597.67 113
PGM-MVS91.93 7591.80 7392.32 12198.27 5079.74 18695.28 23697.27 2183.83 18690.89 10297.78 7076.12 13599.56 6688.82 13297.93 6197.66 114
sss90.87 10689.96 11593.60 6694.15 17183.84 9197.14 12698.13 785.93 12989.68 11596.09 13471.67 20399.30 8387.69 14589.16 17497.66 114
PatchmatchNetpermissive86.83 18685.12 19791.95 13994.12 17482.27 11986.55 35795.64 16684.59 16282.98 19784.99 33477.26 11295.96 25868.61 30891.34 16297.64 116
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MAR-MVS90.63 10990.22 10791.86 14298.47 4278.20 23197.18 11996.61 8483.87 18588.18 14298.18 4068.71 22399.75 3683.66 18397.15 8197.63 117
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
旧先验197.39 8279.58 19196.54 9398.08 5084.00 4397.42 7597.62 118
Vis-MVSNet (Re-imp)88.88 14288.87 13488.91 22093.89 18074.43 29696.93 14894.19 25084.39 16783.22 19395.67 14478.24 9694.70 31678.88 22594.40 12597.61 119
MP-MVS-pluss92.58 6192.35 6093.29 7897.30 8682.53 11396.44 18096.04 14284.68 15989.12 12598.37 3177.48 11099.74 3893.31 7698.38 4497.59 120
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ETVMVS90.99 10190.26 10593.19 8395.81 11785.64 5096.97 14397.18 2685.43 13788.77 13394.86 17582.00 5896.37 24082.70 19488.60 18297.57 121
test_fmvsmconf0.1_n93.08 4593.22 4692.65 10588.45 30780.81 15699.00 2295.11 19393.21 1794.00 5797.91 6276.84 12099.59 6097.91 1696.55 9697.54 122
GSMVS97.54 122
sam_mvs177.59 10797.54 122
SCA85.63 20583.64 22091.60 15392.30 22781.86 12992.88 30295.56 16984.85 15382.52 19885.12 33258.04 29395.39 28873.89 27587.58 19897.54 122
HPM-MVScopyleft91.62 8591.53 7891.89 14197.88 6379.22 19996.99 13895.73 16282.07 22489.50 12197.19 10375.59 14498.93 11490.91 10297.94 5997.54 122
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
VDD-MVS88.28 16287.02 17292.06 13495.09 13880.18 17597.55 9194.45 23583.09 20089.10 12695.92 13847.97 34498.49 13293.08 8286.91 20297.52 127
AdaColmapbinary88.81 14487.61 15692.39 11699.33 479.95 17896.70 16695.58 16877.51 29983.05 19696.69 12561.90 26799.72 4384.29 17093.47 13897.50 128
IS-MVSNet88.67 14888.16 14490.20 19393.61 18576.86 26396.77 16193.07 30684.02 17883.62 18995.60 14774.69 16896.24 24678.43 22993.66 13697.49 129
FA-MVS(test-final)87.71 17486.23 18192.17 12994.19 16980.55 16387.16 35296.07 14082.12 22385.98 16288.35 27872.04 20198.49 13280.26 20989.87 16897.48 130
ETV-MVS92.72 5592.87 5092.28 12394.54 15681.89 12797.98 6095.21 19189.77 5793.11 6796.83 11777.23 11697.50 18495.74 4595.38 11497.44 131
CostFormer89.08 13688.39 14091.15 16693.13 20379.15 20288.61 34096.11 13683.14 19989.58 11886.93 30083.83 4796.87 22188.22 14185.92 21397.42 132
testing9191.90 7791.31 8293.66 6295.99 10985.68 4897.39 10796.89 4786.75 11888.85 13095.23 15883.93 4597.90 16288.91 13087.89 19497.41 133
diffmvspermissive91.17 9690.74 9492.44 11493.11 20582.50 11596.25 19393.62 28387.79 8990.40 10895.93 13673.44 18497.42 18893.62 7092.55 14997.41 133
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
1112_ss88.60 15187.47 16192.00 13893.21 19880.97 15196.47 17792.46 31383.64 19280.86 22297.30 9780.24 7197.62 17277.60 23685.49 21897.40 135
131488.94 13987.20 16694.17 4493.21 19885.73 4593.33 29196.64 8182.89 20675.98 27896.36 12866.83 23599.39 7783.52 18796.02 10697.39 136
Test_1112_low_res88.03 16786.73 17591.94 14093.15 20180.88 15496.44 18092.41 31583.59 19480.74 22491.16 24080.18 7297.59 17477.48 23985.40 21997.36 137
testing1192.48 6392.04 7093.78 5595.94 11286.00 3997.56 8997.08 3387.52 9689.32 12295.40 15284.60 3598.02 15391.93 9489.04 17697.32 138
HyFIR lowres test89.36 13188.60 13691.63 15294.91 14680.76 15895.60 22695.53 17082.56 21584.03 18191.24 23978.03 10096.81 22587.07 15288.41 18897.32 138
CVMVSNet84.83 21885.57 18782.63 33191.55 25360.38 37695.13 24695.03 19780.60 24582.10 20994.71 17866.40 23890.19 37074.30 27290.32 16697.31 140
tpmrst88.36 15887.38 16391.31 15894.36 16579.92 17987.32 35095.26 19085.32 14088.34 13986.13 31680.60 6796.70 22983.78 17785.34 22197.30 141
PVSNet_Blended93.13 4292.98 4893.57 6897.47 7683.86 8999.32 296.73 6791.02 4089.53 11996.21 13176.42 12999.57 6494.29 6195.81 11097.29 142
PMMVS89.46 13089.92 11788.06 23994.64 15169.57 34196.22 19494.95 19987.27 10391.37 9296.54 12765.88 23997.39 19188.54 13593.89 13197.23 143
fmvsm_l_conf0.5_n94.89 1695.24 1693.86 5294.42 16384.61 7899.13 1196.15 13392.06 2797.92 398.52 2384.52 3699.74 3898.76 595.67 11197.22 144
DeepC-MVS86.58 391.53 8791.06 8992.94 9394.52 15781.89 12795.95 20795.98 14690.76 4183.76 18896.76 12173.24 18699.71 4591.67 9696.96 8497.22 144
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
testing9991.91 7691.35 8093.60 6695.98 11085.70 4697.31 11196.92 4686.82 11488.91 12895.25 15584.26 4297.89 16388.80 13387.94 19397.21 146
test_fmvsmconf0.01_n91.08 9990.68 9592.29 12282.43 36680.12 17697.94 6393.93 26192.07 2691.97 8297.60 8167.56 22799.53 6897.09 2995.56 11397.21 146
GeoE86.36 19285.20 19389.83 20593.17 20076.13 27497.53 9292.11 31879.58 27080.99 22094.01 19466.60 23796.17 24973.48 27989.30 17297.20 148
FE-MVS86.06 19884.15 21391.78 14694.33 16679.81 18184.58 36896.61 8476.69 30985.00 16987.38 29170.71 21598.37 14170.39 30091.70 16097.17 149
EC-MVSNet91.73 8092.11 6790.58 18293.54 18877.77 24698.07 5594.40 23887.44 9892.99 7097.11 10774.59 16996.87 22193.75 6797.08 8297.11 150
114514_t88.79 14687.57 15792.45 11298.21 5381.74 13496.99 13895.45 17775.16 31982.48 19995.69 14368.59 22498.50 13180.33 20795.18 11597.10 151
fmvsm_l_conf0.5_n_a94.91 1595.30 1593.72 6094.50 16184.30 8399.14 1096.00 14491.94 3097.91 598.60 1884.78 3499.77 2998.84 496.03 10597.08 152
ACMMPcopyleft90.39 11489.97 11491.64 15097.58 7378.21 23096.78 15996.72 6984.73 15784.72 17597.23 10171.22 20899.63 5788.37 14092.41 15297.08 152
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
MDTV_nov1_ep13_2view81.74 13486.80 35480.65 24485.65 16374.26 17276.52 24996.98 154
testing22291.09 9890.49 10092.87 9595.82 11685.04 6896.51 17597.28 2086.05 12689.13 12495.34 15480.16 7496.62 23385.82 15888.31 18996.96 155
HPM-MVS_fast90.38 11690.17 11091.03 16997.61 7077.35 25597.15 12595.48 17479.51 27188.79 13196.90 11371.64 20598.81 11987.01 15397.44 7396.94 156
Fast-Effi-MVS+87.93 17086.94 17490.92 17294.04 17779.16 20198.26 4393.72 27981.29 23383.94 18592.90 21369.83 22096.68 23076.70 24791.74 15996.93 157
IB-MVS85.34 488.67 14887.14 16993.26 7993.12 20484.32 8298.76 2797.27 2187.19 10779.36 24090.45 25183.92 4698.53 13084.41 16969.79 32096.93 157
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
thisisatest051590.95 10490.26 10593.01 9094.03 17984.27 8597.91 6496.67 7583.18 19886.87 15595.51 15088.66 1697.85 16480.46 20689.01 17796.92 159
VDDNet86.44 19184.51 20592.22 12691.56 25281.83 13097.10 13294.64 22169.50 35687.84 14495.19 16248.01 34397.92 16189.82 12186.92 20196.89 160
CNLPA86.96 18285.37 19191.72 14897.59 7279.34 19797.21 11491.05 33774.22 32578.90 24296.75 12367.21 23298.95 11174.68 26790.77 16596.88 161
CDS-MVSNet89.50 12988.96 13091.14 16791.94 24880.93 15397.09 13395.81 15784.26 17484.72 17594.20 19080.31 6995.64 27883.37 18888.96 17896.85 162
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
PS-MVSNAJ94.17 2993.52 4096.10 995.65 12392.35 298.21 4595.79 15892.42 2396.24 2798.18 4071.04 21199.17 9596.77 3397.39 7696.79 163
tpm287.35 17986.26 18090.62 18192.93 21178.67 21488.06 34595.99 14579.33 27487.40 14786.43 31180.28 7096.40 23880.23 21085.73 21796.79 163
TESTMET0.1,189.83 12489.34 12591.31 15892.54 22180.19 17497.11 12996.57 9086.15 12286.85 15691.83 23179.32 7996.95 21581.30 20192.35 15396.77 165
xiu_mvs_v2_base93.92 3493.26 4495.91 1095.07 14092.02 698.19 4695.68 16492.06 2796.01 3198.14 4470.83 21498.96 10996.74 3596.57 9596.76 166
CR-MVSNet83.53 24081.36 25790.06 19590.16 28279.75 18479.02 38291.12 33484.24 17582.27 20780.35 36175.45 14893.67 33663.37 33586.25 20896.75 167
RPMNet79.85 28975.92 30891.64 15090.16 28279.75 18479.02 38295.44 17858.43 38882.27 20772.55 38573.03 18798.41 14046.10 38686.25 20896.75 167
TAMVS88.48 15487.79 15090.56 18391.09 26379.18 20096.45 17995.88 15383.64 19283.12 19493.33 20775.94 13895.74 27382.40 19588.27 19096.75 167
test_fmvsm_n_192094.81 1995.60 1192.45 11295.29 13280.96 15299.29 397.21 2394.50 797.29 1498.44 2982.15 5699.78 2898.56 797.68 6696.61 170
原ACMM191.22 16497.77 6578.10 23396.61 8481.05 23691.28 9597.42 9177.92 10398.98 10879.85 21598.51 3596.59 171
BH-RMVSNet86.84 18585.28 19291.49 15595.35 13080.26 17296.95 14692.21 31782.86 20881.77 21595.46 15159.34 28297.64 17169.79 30393.81 13396.57 172
EPP-MVSNet89.76 12589.72 12189.87 20393.78 18176.02 27997.22 11396.51 9679.35 27385.11 16795.01 17184.82 3397.10 20987.46 14888.21 19196.50 173
dp84.30 22882.31 24290.28 19094.24 16877.97 23686.57 35695.53 17079.94 26480.75 22385.16 33071.49 20796.39 23963.73 33283.36 23196.48 174
MVS_111021_LR91.60 8691.64 7791.47 15695.74 12078.79 21296.15 19996.77 6188.49 7288.64 13597.07 10972.33 19699.19 9393.13 8096.48 9796.43 175
PatchT79.75 29076.85 30288.42 22889.55 29475.49 28677.37 38694.61 22463.07 36982.46 20073.32 38275.52 14793.41 34151.36 37384.43 22496.36 176
LCM-MVSNet-Re83.75 23783.54 22384.39 31493.54 18864.14 36292.51 30584.03 38283.90 18466.14 34786.59 30567.36 23092.68 34484.89 16792.87 14596.35 177
GA-MVS85.79 20384.04 21591.02 17089.47 29680.27 17196.90 15194.84 20785.57 13480.88 22189.08 26656.56 31096.47 23777.72 23385.35 22096.34 178
tpm85.55 20784.47 20888.80 22390.19 28175.39 28788.79 33894.69 21484.83 15483.96 18485.21 32878.22 9794.68 31876.32 25378.02 27896.34 178
CPTT-MVS89.72 12689.87 11989.29 21398.33 4773.30 30497.70 7995.35 18575.68 31587.40 14797.44 9070.43 21698.25 14689.56 12596.90 8596.33 180
PVSNet_Blended_VisFu91.24 9490.77 9392.66 10495.09 13882.40 11797.77 7395.87 15588.26 7886.39 15793.94 19676.77 12399.27 8488.80 13394.00 13096.31 181
QAPM86.88 18484.51 20593.98 4894.04 17785.89 4397.19 11796.05 14173.62 33075.12 29095.62 14662.02 26499.74 3870.88 29696.06 10496.30 182
h-mvs3389.30 13388.95 13190.36 18895.07 14076.04 27696.96 14597.11 3190.39 4892.22 7995.10 16874.70 16598.86 11693.14 7865.89 35296.16 183
thisisatest053089.65 12789.02 12891.53 15493.46 19480.78 15796.52 17396.67 7581.69 23083.79 18794.90 17488.85 1597.68 16977.80 23087.49 19996.14 184
TR-MVS86.30 19484.93 20190.42 18694.63 15277.58 25096.57 17093.82 27080.30 25582.42 20195.16 16458.74 28697.55 17874.88 26587.82 19596.13 185
tpm cat183.63 23981.38 25690.39 18793.53 19378.19 23285.56 36495.09 19470.78 35078.51 24683.28 34774.80 16497.03 21066.77 31584.05 22695.95 186
test-LLR88.48 15487.98 14689.98 19892.26 22977.23 25797.11 12995.96 14883.76 18986.30 15991.38 23572.30 19796.78 22780.82 20391.92 15795.94 187
test-mter88.95 13888.60 13689.98 19892.26 22977.23 25797.11 12995.96 14885.32 14086.30 15991.38 23576.37 13196.78 22780.82 20391.92 15795.94 187
BH-w/o88.24 16387.47 16190.54 18495.03 14378.54 21697.41 10593.82 27084.08 17678.23 24994.51 18369.34 22297.21 20180.21 21194.58 12295.87 189
EI-MVSNet-Vis-set91.84 7991.77 7492.04 13697.60 7181.17 14596.61 16896.87 4988.20 8089.19 12397.55 8678.69 9299.14 9790.29 11690.94 16495.80 190
CANet_DTU90.98 10290.04 11293.83 5394.76 15086.23 3696.32 18993.12 30593.11 1893.71 5996.82 11963.08 25799.48 7384.29 17095.12 11695.77 191
test_fmvsmvis_n_192092.12 7092.10 6892.17 12990.87 26881.04 14898.34 4193.90 26592.71 2087.24 15197.90 6374.83 16399.72 4396.96 3196.20 9995.76 192
TAPA-MVS81.61 1285.02 21583.67 21889.06 21696.79 9273.27 30795.92 20994.79 21174.81 32280.47 22696.83 11771.07 21098.19 15049.82 37992.57 14895.71 193
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
OMC-MVS88.80 14588.16 14490.72 17995.30 13177.92 24094.81 25794.51 22986.80 11584.97 17096.85 11667.53 22898.60 12585.08 16487.62 19695.63 194
UGNet87.73 17386.55 17891.27 16195.16 13779.11 20396.35 18796.23 12688.14 8187.83 14590.48 25050.65 33399.09 10280.13 21294.03 12795.60 195
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
UWE-MVS88.56 15388.91 13387.50 25594.17 17072.19 31595.82 21797.05 3584.96 15284.78 17393.51 20681.33 6094.75 31479.43 21889.17 17395.57 196
tttt051788.57 15288.19 14389.71 20993.00 20675.99 28095.67 22196.67 7580.78 24181.82 21394.40 18488.97 1497.58 17576.05 25586.31 20795.57 196
test_vis1_n_192089.95 12290.59 9688.03 24192.36 22368.98 34499.12 1294.34 24193.86 1393.64 6197.01 11151.54 33099.59 6096.76 3496.71 9495.53 198
CHOSEN 280x42091.71 8391.85 7191.29 16094.94 14482.69 11087.89 34696.17 13285.94 12887.27 15094.31 18590.27 995.65 27794.04 6595.86 10895.53 198
BH-untuned86.95 18385.94 18389.99 19794.52 15777.46 25296.78 15993.37 29581.80 22776.62 26693.81 20066.64 23697.02 21176.06 25493.88 13295.48 200
EPNet_dtu87.65 17587.89 14786.93 26994.57 15371.37 32996.72 16296.50 9888.56 7187.12 15395.02 17075.91 13994.01 33066.62 31790.00 16795.42 201
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
EI-MVSNet-UG-set91.35 9291.22 8391.73 14797.39 8280.68 15996.47 17796.83 5287.92 8688.30 14197.36 9377.84 10499.13 9989.43 12789.45 17195.37 202
UA-Net88.92 14088.48 13990.24 19194.06 17677.18 25993.04 29994.66 21887.39 10091.09 9793.89 19774.92 16298.18 15175.83 25791.43 16195.35 203
Anonymous2024052983.15 24780.60 26790.80 17695.74 12078.27 22596.81 15794.92 20160.10 38381.89 21292.54 21845.82 35498.82 11879.25 22178.32 27695.31 204
mvsany_test187.58 17688.22 14185.67 29089.78 28867.18 35195.25 23987.93 36483.96 18188.79 13197.06 11072.52 19294.53 32192.21 8986.45 20695.30 205
DP-MVS81.47 27378.28 29091.04 16898.14 5578.48 21795.09 25186.97 36861.14 37971.12 32192.78 21759.59 27899.38 7853.11 37086.61 20495.27 206
fmvsm_s_conf0.5_n93.69 3694.13 3292.34 11794.56 15482.01 12199.07 1697.13 2892.09 2596.25 2698.53 2276.47 12799.80 2598.39 894.71 12095.22 207
fmvsm_s_conf0.5_n_a93.34 4193.71 3592.22 12693.38 19681.71 13698.86 2596.98 3891.64 3196.85 1698.55 1975.58 14599.77 2997.88 1993.68 13495.18 208
fmvsm_s_conf0.1_n92.93 4893.16 4792.24 12490.52 27581.92 12598.42 3896.24 12591.17 3696.02 3098.35 3375.34 15699.74 3897.84 2094.58 12295.05 209
baseline188.85 14387.49 15992.93 9495.21 13586.85 3095.47 23094.61 22487.29 10283.11 19594.99 17280.70 6696.89 21982.28 19673.72 29495.05 209
test_cas_vis1_n_192089.90 12390.02 11389.54 21090.14 28474.63 29398.71 2894.43 23693.04 1992.40 7596.35 12953.41 32699.08 10395.59 4896.16 10094.90 211
PVSNet_077.72 1581.70 27078.95 28789.94 20190.77 27276.72 26695.96 20696.95 4285.01 15070.24 32888.53 27652.32 32798.20 14986.68 15644.08 39394.89 212
fmvsm_s_conf0.1_n_a92.38 6692.49 5892.06 13488.08 31181.62 13997.97 6296.01 14390.62 4396.58 2298.33 3474.09 17599.71 4597.23 2793.46 13994.86 213
ADS-MVSNet279.57 29377.53 29685.71 28893.78 18172.13 31679.48 37886.11 37473.09 33680.14 23179.99 36362.15 26290.14 37159.49 34783.52 22894.85 214
ADS-MVSNet81.26 27678.36 28989.96 20093.78 18179.78 18279.48 37893.60 28473.09 33680.14 23179.99 36362.15 26295.24 29759.49 34783.52 22894.85 214
MIMVSNet79.18 29875.99 30788.72 22587.37 32180.66 16079.96 37791.82 32377.38 30174.33 29581.87 35341.78 36690.74 36666.36 32283.10 23394.76 216
xiu_mvs_v1_base_debu90.54 11189.54 12293.55 6992.31 22487.58 2496.99 13894.87 20487.23 10493.27 6397.56 8357.43 30098.32 14292.72 8493.46 13994.74 217
xiu_mvs_v1_base90.54 11189.54 12293.55 6992.31 22487.58 2496.99 13894.87 20487.23 10493.27 6397.56 8357.43 30098.32 14292.72 8493.46 13994.74 217
xiu_mvs_v1_base_debi90.54 11189.54 12293.55 6992.31 22487.58 2496.99 13894.87 20487.23 10493.27 6397.56 8357.43 30098.32 14292.72 8493.46 13994.74 217
AUN-MVS86.25 19685.57 18788.26 23493.57 18773.38 30295.45 23195.88 15383.94 18285.47 16594.21 18973.70 18296.67 23183.54 18564.41 35694.73 220
hse-mvs288.22 16488.21 14288.25 23593.54 18873.41 30195.41 23395.89 15290.39 4892.22 7994.22 18874.70 16596.66 23293.14 7864.37 35794.69 221
thres20088.92 14087.65 15292.73 10296.30 9985.62 5197.85 6798.86 184.38 16884.82 17293.99 19575.12 16098.01 15470.86 29786.67 20394.56 222
baseline290.39 11490.21 10890.93 17190.86 26980.99 15095.20 24297.41 1786.03 12780.07 23494.61 18090.58 697.47 18787.29 14989.86 16994.35 223
thres100view90088.30 16186.95 17392.33 11996.10 10684.90 7397.14 12698.85 282.69 21283.41 19093.66 20275.43 15097.93 15669.04 30586.24 21094.17 224
tfpn200view988.48 15487.15 16792.47 11196.21 10285.30 5997.44 10098.85 283.37 19583.99 18293.82 19875.36 15397.93 15669.04 30586.24 21094.17 224
tpmvs83.04 25080.77 26389.84 20495.43 12777.96 23785.59 36395.32 18775.31 31876.27 27383.70 34473.89 17797.41 18959.53 34681.93 24894.14 226
OpenMVScopyleft79.58 1486.09 19783.62 22193.50 7290.95 26586.71 3397.44 10095.83 15675.35 31672.64 31195.72 14157.42 30399.64 5571.41 29095.85 10994.13 227
test_fmvs187.79 17288.52 13885.62 29292.98 21064.31 36097.88 6692.42 31487.95 8592.24 7895.82 13947.94 34598.44 13995.31 5294.09 12694.09 228
PatchMatch-RL85.00 21683.66 21989.02 21895.86 11474.55 29592.49 30693.60 28479.30 27679.29 24191.47 23358.53 28898.45 13770.22 30192.17 15694.07 229
UniMVSNet_ETH3D80.86 28278.75 28887.22 26486.31 32972.02 31991.95 31193.76 27873.51 33175.06 29190.16 25743.04 36395.66 27576.37 25278.55 27393.98 230
PCF-MVS84.09 586.77 18885.00 19992.08 13292.06 24383.07 10692.14 31094.47 23379.63 26976.90 26294.78 17771.15 20999.20 9272.87 28191.05 16393.98 230
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
LS3D82.22 26479.94 27889.06 21697.43 7974.06 30093.20 29792.05 31961.90 37373.33 30495.21 16059.35 28199.21 8854.54 36692.48 15193.90 232
test_vis1_n85.60 20685.70 18585.33 29684.79 35064.98 35896.83 15491.61 32887.36 10191.00 10094.84 17636.14 37897.18 20395.66 4693.03 14493.82 233
PLCcopyleft83.97 788.00 16887.38 16389.83 20598.02 5976.46 26997.16 12394.43 23679.26 27881.98 21096.28 13069.36 22199.27 8477.71 23492.25 15493.77 234
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
cascas86.50 19084.48 20792.55 11092.64 21985.95 4097.04 13795.07 19675.32 31780.50 22591.02 24254.33 32497.98 15586.79 15587.62 19693.71 235
dmvs_re84.10 23082.90 23387.70 24691.41 25773.28 30590.59 32793.19 30085.02 14977.96 25293.68 20157.92 29896.18 24875.50 26080.87 25193.63 236
JIA-IIPM79.00 29977.20 29884.40 31389.74 29164.06 36375.30 39095.44 17862.15 37281.90 21159.08 39478.92 8695.59 28266.51 32085.78 21693.54 237
XVG-OURS-SEG-HR85.74 20485.16 19687.49 25790.22 28071.45 32891.29 32194.09 25681.37 23283.90 18695.22 15960.30 27597.53 18285.58 16184.42 22593.50 238
XVG-OURS85.18 21284.38 20987.59 25190.42 27871.73 32591.06 32494.07 25782.00 22683.29 19295.08 16956.42 31197.55 17883.70 18283.42 23093.49 239
thres600view788.06 16686.70 17792.15 13196.10 10685.17 6597.14 12698.85 282.70 21183.41 19093.66 20275.43 15097.82 16567.13 31485.88 21493.45 240
thres40088.42 15787.15 16792.23 12596.21 10285.30 5997.44 10098.85 283.37 19583.99 18293.82 19875.36 15397.93 15669.04 30586.24 21093.45 240
test_fmvs1_n86.34 19386.72 17685.17 29987.54 31963.64 36596.91 15092.37 31687.49 9791.33 9395.58 14840.81 37298.46 13595.00 5493.49 13793.41 242
SDMVSNet87.02 18185.61 18691.24 16294.14 17283.30 10293.88 27995.98 14684.30 17179.63 23792.01 22358.23 29097.68 16990.28 11882.02 24692.75 243
sd_testset84.62 22183.11 23089.17 21494.14 17277.78 24591.54 32094.38 23984.30 17179.63 23792.01 22352.28 32896.98 21377.67 23582.02 24692.75 243
DSMNet-mixed73.13 33472.45 33075.19 36477.51 38146.82 39485.09 36682.01 38767.61 36369.27 33381.33 35650.89 33286.28 38454.54 36683.80 22792.46 245
tt080581.20 27879.06 28687.61 24986.50 32672.97 31093.66 28295.48 17474.11 32676.23 27491.99 22541.36 36997.40 19077.44 24074.78 29092.45 246
Effi-MVS+-dtu84.61 22284.90 20283.72 32191.96 24663.14 36894.95 25393.34 29685.57 13479.79 23587.12 29761.99 26595.61 28183.55 18485.83 21592.41 247
F-COLMAP84.50 22583.44 22687.67 24795.22 13472.22 31395.95 20793.78 27575.74 31476.30 27295.18 16359.50 28098.45 13772.67 28386.59 20592.35 248
Fast-Effi-MVS+-dtu83.33 24382.60 23985.50 29489.55 29469.38 34296.09 20391.38 32982.30 21975.96 27991.41 23456.71 30795.58 28375.13 26484.90 22391.54 249
MSDG80.62 28577.77 29589.14 21593.43 19577.24 25691.89 31390.18 34669.86 35568.02 33591.94 22952.21 32998.84 11759.32 34983.12 23291.35 250
HQP4-MVS82.30 20397.32 19491.13 251
HQP-MVS87.91 17187.55 15888.98 21992.08 24078.48 21797.63 8394.80 20990.52 4582.30 20394.56 18165.40 24397.32 19487.67 14683.01 23491.13 251
HQP_MVS87.50 17787.09 17088.74 22491.86 24977.96 23797.18 11994.69 21489.89 5581.33 21794.15 19164.77 24997.30 19687.08 15082.82 23890.96 253
plane_prior594.69 21497.30 19687.08 15082.82 23890.96 253
nrg03086.79 18785.43 18990.87 17588.76 30185.34 5697.06 13694.33 24284.31 16980.45 22791.98 22672.36 19496.36 24188.48 13871.13 30790.93 255
RPSCF77.73 30876.63 30381.06 34088.66 30555.76 38787.77 34787.88 36564.82 36874.14 29692.79 21649.22 34096.81 22567.47 31276.88 28090.62 256
iter_conf0590.14 11989.79 12091.17 16595.85 11586.93 2997.68 8188.67 36289.93 5481.73 21692.80 21590.37 896.03 25190.44 11280.65 25490.56 257
VPNet84.69 22082.92 23290.01 19689.01 30083.45 9996.71 16495.46 17685.71 13279.65 23692.18 22256.66 30996.01 25483.05 19267.84 34090.56 257
CLD-MVS87.97 16987.48 16089.44 21192.16 23680.54 16598.14 4794.92 20191.41 3379.43 23995.40 15262.34 26097.27 19990.60 10882.90 23790.50 259
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
VPA-MVSNet85.32 21083.83 21689.77 20890.25 27982.63 11196.36 18697.07 3483.03 20381.21 21989.02 26861.58 26896.31 24385.02 16670.95 30990.36 260
FIs86.73 18986.10 18288.61 22690.05 28580.21 17396.14 20096.95 4285.56 13678.37 24892.30 22076.73 12495.28 29579.51 21679.27 26490.35 261
DU-MVS84.57 22383.33 22788.28 23388.76 30179.36 19596.43 18295.41 18285.42 13878.11 25090.82 24567.61 22595.14 30279.14 22268.30 33490.33 262
NR-MVSNet83.35 24281.52 25588.84 22188.76 30181.31 14494.45 26295.16 19284.65 16067.81 33690.82 24570.36 21794.87 31174.75 26666.89 34990.33 262
FC-MVSNet-test85.96 19985.39 19087.66 24889.38 29878.02 23495.65 22396.87 4985.12 14777.34 25591.94 22976.28 13394.74 31577.09 24278.82 26890.21 264
XXY-MVS83.84 23582.00 24789.35 21287.13 32281.38 14295.72 21994.26 24580.15 25975.92 28090.63 24861.96 26696.52 23578.98 22473.28 29990.14 265
test0.0.03 182.79 25482.48 24083.74 32086.81 32472.22 31396.52 17395.03 19783.76 18973.00 30793.20 20872.30 19788.88 37364.15 33077.52 27990.12 266
UniMVSNet_NR-MVSNet85.49 20884.59 20388.21 23789.44 29779.36 19596.71 16496.41 10885.22 14378.11 25090.98 24476.97 11995.14 30279.14 22268.30 33490.12 266
mvsmamba85.17 21384.54 20487.05 26787.94 31375.11 29096.22 19487.79 36686.91 11178.55 24591.77 23264.93 24895.91 26186.94 15479.80 25690.12 266
TranMVSNet+NR-MVSNet83.24 24681.71 25187.83 24387.71 31678.81 21196.13 20294.82 20884.52 16376.18 27690.78 24764.07 25294.60 31974.60 27066.59 35190.09 269
MVSTER89.25 13588.92 13290.24 19195.98 11084.66 7796.79 15895.36 18387.19 10780.33 22990.61 24990.02 1295.97 25585.38 16378.64 27090.09 269
PS-MVSNAJss84.91 21784.30 21086.74 27085.89 33874.40 29794.95 25394.16 25283.93 18376.45 26890.11 25971.04 21195.77 26883.16 19079.02 26790.06 271
WR-MVS84.32 22782.96 23188.41 22989.38 29880.32 16896.59 16996.25 12483.97 18076.63 26590.36 25367.53 22894.86 31275.82 25870.09 31890.06 271
FMVSNet384.71 21982.71 23790.70 18094.55 15587.71 2295.92 20994.67 21781.73 22975.82 28288.08 28366.99 23394.47 32271.23 29275.38 28789.91 273
RRT_MVS83.88 23483.27 22885.71 28887.53 32072.12 31795.35 23594.33 24283.81 18775.86 28191.28 23860.55 27395.09 30783.93 17476.76 28189.90 274
FMVSNet282.79 25480.44 26989.83 20592.66 21685.43 5595.42 23294.35 24079.06 28274.46 29487.28 29256.38 31294.31 32569.72 30474.68 29189.76 275
ACMM80.70 1383.72 23882.85 23586.31 27991.19 26072.12 31795.88 21294.29 24480.44 25077.02 26091.96 22755.24 31897.14 20879.30 22080.38 25589.67 276
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
UniMVSNet (Re)85.31 21184.23 21188.55 22789.75 28980.55 16396.72 16296.89 4785.42 13878.40 24788.93 26975.38 15295.52 28578.58 22768.02 33789.57 277
EI-MVSNet85.80 20285.20 19387.59 25191.55 25377.41 25395.13 24695.36 18380.43 25280.33 22994.71 17873.72 18095.97 25576.96 24578.64 27089.39 278
IterMVS-LS83.93 23382.80 23687.31 26191.46 25677.39 25495.66 22293.43 29080.44 25075.51 28687.26 29473.72 18095.16 30176.99 24370.72 31189.39 278
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
GBi-Net82.42 26080.43 27088.39 23092.66 21681.95 12294.30 26893.38 29279.06 28275.82 28285.66 31856.38 31293.84 33271.23 29275.38 28789.38 280
test182.42 26080.43 27088.39 23092.66 21681.95 12294.30 26893.38 29279.06 28275.82 28285.66 31856.38 31293.84 33271.23 29275.38 28789.38 280
FMVSNet179.50 29476.54 30488.39 23088.47 30681.95 12294.30 26893.38 29273.14 33572.04 31685.66 31843.86 35793.84 33265.48 32472.53 30089.38 280
miper_enhance_ethall85.95 20085.20 19388.19 23894.85 14879.76 18396.00 20494.06 25882.98 20577.74 25388.76 27179.42 7895.46 28780.58 20572.42 30189.36 283
dmvs_testset72.00 34173.36 32767.91 36983.83 36131.90 40985.30 36577.12 39482.80 20963.05 36192.46 21961.54 26982.55 39242.22 39171.89 30589.29 284
cl2285.11 21484.17 21287.92 24295.06 14278.82 20995.51 22894.22 24879.74 26776.77 26387.92 28575.96 13795.68 27479.93 21472.42 30189.27 285
eth_miper_zixun_eth83.12 24882.01 24686.47 27591.85 25174.80 29194.33 26693.18 30279.11 28075.74 28587.25 29572.71 18995.32 29376.78 24667.13 34689.27 285
Anonymous2023121179.72 29177.19 29987.33 25995.59 12477.16 26095.18 24594.18 25159.31 38672.57 31286.20 31547.89 34695.66 27574.53 27169.24 32689.18 287
ACMP81.66 1184.00 23283.22 22986.33 27691.53 25572.95 31195.91 21193.79 27483.70 19173.79 29792.22 22154.31 32596.89 21983.98 17379.74 25989.16 288
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
DIV-MVS_self_test83.27 24482.12 24486.74 27092.19 23375.92 28395.11 24893.26 29978.44 29174.81 29387.08 29874.19 17395.19 29974.66 26969.30 32589.11 289
cl____83.27 24482.12 24486.74 27092.20 23275.95 28195.11 24893.27 29878.44 29174.82 29287.02 29974.19 17395.19 29974.67 26869.32 32489.09 290
OPM-MVS85.84 20185.10 19888.06 23988.34 30877.83 24495.72 21994.20 24987.89 8880.45 22794.05 19358.57 28797.26 20083.88 17582.76 24089.09 290
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
v2v48283.46 24181.86 24988.25 23586.19 33279.65 18996.34 18894.02 25981.56 23177.32 25688.23 28065.62 24096.03 25177.77 23169.72 32289.09 290
test_djsdf83.00 25282.45 24184.64 30784.07 35869.78 33894.80 25894.48 23080.74 24275.41 28887.70 28761.32 27195.10 30583.77 17879.76 25789.04 293
jajsoiax82.12 26581.15 26085.03 30184.19 35670.70 33194.22 27293.95 26083.07 20173.48 29989.75 26149.66 33995.37 29082.24 19779.76 25789.02 294
miper_ehance_all_eth84.57 22383.60 22287.50 25592.64 21978.25 22695.40 23493.47 28879.28 27776.41 26987.64 28876.53 12695.24 29778.58 22772.42 30189.01 295
LPG-MVS_test84.20 22983.49 22586.33 27690.88 26673.06 30895.28 23694.13 25382.20 22076.31 27093.20 20854.83 32296.95 21583.72 18080.83 25288.98 296
LGP-MVS_train86.33 27690.88 26673.06 30894.13 25382.20 22076.31 27093.20 20854.83 32296.95 21583.72 18080.83 25288.98 296
AllTest75.92 32073.06 32884.47 31092.18 23467.29 34991.07 32384.43 38067.63 35963.48 35590.18 25538.20 37597.16 20457.04 35773.37 29688.97 298
TestCases84.47 31092.18 23467.29 34984.43 38067.63 35963.48 35590.18 25538.20 37597.16 20457.04 35773.37 29688.97 298
mvs_tets81.74 26980.71 26584.84 30284.22 35570.29 33493.91 27893.78 27582.77 21073.37 30289.46 26447.36 34995.31 29481.99 19879.55 26388.92 300
c3_l83.80 23682.65 23887.25 26392.10 23977.74 24895.25 23993.04 30778.58 28876.01 27787.21 29675.25 15895.11 30477.54 23868.89 32888.91 301
pmmvs581.34 27579.54 28186.73 27385.02 34876.91 26196.22 19491.65 32677.65 29773.55 29888.61 27355.70 31594.43 32374.12 27473.35 29888.86 302
miper_lstm_enhance81.66 27280.66 26684.67 30691.19 26071.97 32191.94 31293.19 30077.86 29572.27 31485.26 32673.46 18393.42 34073.71 27867.05 34788.61 303
CP-MVSNet81.01 28080.08 27483.79 31887.91 31470.51 33294.29 27195.65 16580.83 23972.54 31388.84 27063.71 25392.32 34868.58 30968.36 33388.55 304
Syy-MVS77.97 30678.05 29277.74 35592.13 23756.85 38293.97 27694.23 24682.43 21673.39 30093.57 20457.95 29687.86 37732.40 39582.34 24388.51 305
myMVS_eth3d81.93 26782.18 24381.18 33992.13 23767.18 35193.97 27694.23 24682.43 21673.39 30093.57 20476.98 11887.86 37750.53 37782.34 24388.51 305
v14419282.43 25980.73 26487.54 25485.81 33978.22 22795.98 20593.78 27579.09 28177.11 25986.49 30764.66 25195.91 26174.20 27369.42 32388.49 307
v192192082.02 26680.23 27287.41 25885.62 34077.92 24095.79 21893.69 28078.86 28576.67 26486.44 30962.50 25995.83 26572.69 28269.77 32188.47 308
v119282.31 26380.55 26887.60 25085.94 33678.47 22095.85 21593.80 27379.33 27476.97 26186.51 30663.33 25695.87 26373.11 28070.13 31588.46 309
PS-CasMVS80.27 28779.18 28383.52 32487.56 31869.88 33794.08 27495.29 18880.27 25772.08 31588.51 27759.22 28492.23 35067.49 31168.15 33688.45 310
v14882.41 26280.89 26186.99 26886.18 33376.81 26496.27 19193.82 27080.49 24975.28 28986.11 31767.32 23195.75 27075.48 26167.03 34888.42 311
v124081.70 27079.83 28087.30 26285.50 34177.70 24995.48 22993.44 28978.46 29076.53 26786.44 30960.85 27295.84 26471.59 28970.17 31388.35 312
v114482.90 25381.27 25887.78 24586.29 33079.07 20696.14 20093.93 26180.05 26177.38 25486.80 30265.50 24195.93 26075.21 26370.13 31588.33 313
EU-MVSNet76.92 31676.95 30176.83 35884.10 35754.73 38991.77 31592.71 31172.74 33969.57 33188.69 27258.03 29587.43 38164.91 32770.00 31988.33 313
PEN-MVS79.47 29578.26 29183.08 32786.36 32868.58 34593.85 28094.77 21279.76 26671.37 31788.55 27459.79 27692.46 34664.50 32865.40 35388.19 315
IterMVS80.67 28479.16 28485.20 29889.79 28776.08 27592.97 30191.86 32180.28 25671.20 32085.14 33157.93 29791.34 36072.52 28470.74 31088.18 316
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT80.51 28679.10 28584.73 30489.63 29374.66 29292.98 30091.81 32480.05 26171.06 32285.18 32958.04 29391.40 35972.48 28570.70 31288.12 317
XVG-ACMP-BASELINE79.38 29677.90 29483.81 31784.98 34967.14 35589.03 33693.18 30280.26 25872.87 30988.15 28238.55 37496.26 24476.05 25578.05 27788.02 318
MVS-HIRNet71.36 34367.00 34884.46 31290.58 27469.74 33979.15 38187.74 36746.09 39361.96 36650.50 39745.14 35595.64 27853.74 36888.11 19288.00 319
SixPastTwentyTwo76.04 31974.32 32081.22 33884.54 35261.43 37491.16 32289.30 35477.89 29364.04 35486.31 31348.23 34194.29 32663.54 33463.84 36087.93 320
pmmvs482.54 25880.79 26287.79 24486.11 33480.49 16793.55 28693.18 30277.29 30273.35 30389.40 26565.26 24695.05 30975.32 26273.61 29587.83 321
lessismore_v079.98 34580.59 37158.34 38180.87 38858.49 37683.46 34643.10 36293.89 33163.11 33648.68 38687.72 322
ACMH75.40 1777.99 30474.96 31287.10 26690.67 27376.41 27093.19 29891.64 32772.47 34263.44 35787.61 28943.34 36097.16 20458.34 35173.94 29387.72 322
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Patchmtry77.36 31274.59 31785.67 29089.75 28975.75 28577.85 38591.12 33460.28 38171.23 31980.35 36175.45 14893.56 33857.94 35267.34 34587.68 324
OurMVSNet-221017-077.18 31476.06 30680.55 34383.78 36260.00 37890.35 32891.05 33777.01 30866.62 34587.92 28547.73 34794.03 32971.63 28868.44 33287.62 325
V4283.04 25081.53 25487.57 25386.27 33179.09 20595.87 21394.11 25580.35 25477.22 25886.79 30365.32 24596.02 25377.74 23270.14 31487.61 326
PVSNet_BlendedMVS90.05 12089.96 11590.33 18997.47 7683.86 8998.02 5996.73 6787.98 8489.53 11989.61 26376.42 12999.57 6494.29 6179.59 26187.57 327
testgi74.88 32673.40 32679.32 34980.13 37361.75 37193.21 29686.64 37279.49 27266.56 34691.06 24135.51 38188.67 37456.79 36071.25 30687.56 328
DTE-MVSNet78.37 30177.06 30082.32 33485.22 34767.17 35493.40 28893.66 28178.71 28770.53 32588.29 27959.06 28592.23 35061.38 34263.28 36287.56 328
testing380.74 28381.17 25979.44 34891.15 26263.48 36697.16 12395.76 15980.83 23971.36 31893.15 21178.22 9787.30 38243.19 38979.67 26087.55 330
K. test v373.62 32971.59 33479.69 34682.98 36459.85 37990.85 32688.83 35777.13 30458.90 37482.11 35143.62 35891.72 35765.83 32354.10 37787.50 331
WR-MVS_H81.02 27980.09 27383.79 31888.08 31171.26 33094.46 26196.54 9380.08 26072.81 31086.82 30170.36 21792.65 34564.18 32967.50 34387.46 332
pm-mvs180.05 28878.02 29386.15 28185.42 34275.81 28495.11 24892.69 31277.13 30470.36 32687.43 29058.44 28995.27 29671.36 29164.25 35887.36 333
v7n79.32 29777.34 29785.28 29784.05 35972.89 31293.38 28993.87 26775.02 32170.68 32384.37 33859.58 27995.62 28067.60 31067.50 34387.32 334
v881.88 26880.06 27687.32 26086.63 32579.04 20794.41 26393.65 28278.77 28673.19 30685.57 32266.87 23495.81 26673.84 27767.61 34287.11 335
ACMH+76.62 1677.47 31174.94 31385.05 30091.07 26471.58 32793.26 29590.01 34771.80 34564.76 35288.55 27441.62 36796.48 23662.35 33871.00 30887.09 336
UnsupCasMVSNet_eth73.25 33370.57 33881.30 33777.53 38066.33 35687.24 35193.89 26680.38 25357.90 37981.59 35442.91 36490.56 36765.18 32648.51 38787.01 337
ppachtmachnet_test77.19 31374.22 32186.13 28285.39 34378.22 22793.98 27591.36 33171.74 34667.11 33984.87 33556.67 30893.37 34252.21 37164.59 35586.80 338
v1081.43 27479.53 28287.11 26586.38 32778.87 20894.31 26793.43 29077.88 29473.24 30585.26 32665.44 24295.75 27072.14 28667.71 34186.72 339
test_fmvs279.59 29279.90 27978.67 35182.86 36555.82 38695.20 24289.55 35081.09 23580.12 23389.80 26034.31 38393.51 33987.82 14378.36 27586.69 340
anonymousdsp80.98 28179.97 27784.01 31581.73 36870.44 33392.49 30693.58 28677.10 30672.98 30886.31 31357.58 29994.90 31079.32 21978.63 27286.69 340
our_test_377.90 30775.37 31185.48 29585.39 34376.74 26593.63 28391.67 32573.39 33465.72 34984.65 33758.20 29293.13 34357.82 35367.87 33886.57 342
Anonymous2023120675.29 32473.64 32580.22 34480.75 36963.38 36793.36 29090.71 34473.09 33667.12 33883.70 34450.33 33690.85 36553.63 36970.10 31786.44 343
YYNet173.53 33270.43 33982.85 32984.52 35371.73 32591.69 31791.37 33067.63 35946.79 38881.21 35755.04 32090.43 36855.93 36259.70 36986.38 344
MDA-MVSNet_test_wron73.54 33170.43 33982.86 32884.55 35171.85 32291.74 31691.32 33367.63 35946.73 38981.09 35855.11 31990.42 36955.91 36359.76 36886.31 345
ITE_SJBPF82.38 33287.00 32365.59 35789.55 35079.99 26369.37 33291.30 23741.60 36895.33 29262.86 33774.63 29286.24 346
FMVSNet576.46 31874.16 32283.35 32690.05 28576.17 27389.58 33289.85 34871.39 34865.29 35180.42 36050.61 33487.70 38061.05 34469.24 32686.18 347
MDA-MVSNet-bldmvs71.45 34267.94 34781.98 33685.33 34568.50 34692.35 30988.76 35970.40 35142.99 39281.96 35246.57 35191.31 36148.75 38354.39 37686.11 348
USDC78.65 30076.25 30585.85 28487.58 31774.60 29489.58 33290.58 34584.05 17763.13 35988.23 28040.69 37396.86 22366.57 31975.81 28586.09 349
pmmvs674.65 32771.67 33383.60 32379.13 37669.94 33693.31 29490.88 34161.05 38065.83 34884.15 34143.43 35994.83 31366.62 31760.63 36786.02 350
WB-MVSnew84.08 23183.51 22485.80 28591.34 25876.69 26795.62 22596.27 12281.77 22881.81 21492.81 21458.23 29094.70 31666.66 31687.06 20085.99 351
KD-MVS_2432*160077.63 30974.92 31485.77 28690.86 26979.44 19288.08 34393.92 26376.26 31167.05 34082.78 34972.15 19991.92 35361.53 33941.62 39685.94 352
miper_refine_blended77.63 30974.92 31485.77 28690.86 26979.44 19288.08 34393.92 26376.26 31167.05 34082.78 34972.15 19991.92 35361.53 33941.62 39685.94 352
D2MVS82.67 25681.55 25386.04 28387.77 31576.47 26895.21 24196.58 8982.66 21370.26 32785.46 32560.39 27495.80 26776.40 25179.18 26585.83 354
COLMAP_ROBcopyleft73.24 1975.74 32273.00 32983.94 31692.38 22269.08 34391.85 31486.93 36961.48 37665.32 35090.27 25442.27 36596.93 21850.91 37575.63 28685.80 355
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
CL-MVSNet_self_test75.81 32174.14 32380.83 34278.33 37867.79 34894.22 27293.52 28777.28 30369.82 32981.54 35561.47 27089.22 37257.59 35553.51 37885.48 356
CMPMVSbinary54.94 2175.71 32374.56 31879.17 35079.69 37455.98 38489.59 33193.30 29760.28 38153.85 38589.07 26747.68 34896.33 24276.55 24881.02 25085.22 357
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
LTVRE_ROB73.68 1877.99 30475.74 30984.74 30390.45 27772.02 31986.41 35891.12 33472.57 34166.63 34487.27 29354.95 32196.98 21356.29 36175.98 28285.21 358
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
N_pmnet61.30 35560.20 35864.60 37484.32 35417.00 41591.67 31810.98 41361.77 37458.45 37778.55 36749.89 33891.83 35642.27 39063.94 35984.97 359
MIMVSNet169.44 34666.65 35077.84 35476.48 38562.84 36987.42 34988.97 35666.96 36457.75 38079.72 36532.77 38685.83 38646.32 38563.42 36184.85 360
Baseline_NR-MVSNet81.22 27780.07 27584.68 30585.32 34675.12 28996.48 17688.80 35876.24 31377.28 25786.40 31267.61 22594.39 32475.73 25966.73 35084.54 361
TransMVSNet (Re)76.94 31574.38 31984.62 30885.92 33775.25 28895.28 23689.18 35573.88 32967.22 33786.46 30859.64 27794.10 32859.24 35052.57 38284.50 362
KD-MVS_self_test70.97 34469.31 34475.95 36376.24 38855.39 38887.45 34890.94 34070.20 35362.96 36277.48 37044.01 35688.09 37561.25 34353.26 37984.37 363
MS-PatchMatch83.05 24981.82 25086.72 27489.64 29279.10 20494.88 25594.59 22679.70 26870.67 32489.65 26250.43 33596.82 22470.82 29995.99 10784.25 364
ambc76.02 36168.11 39551.43 39064.97 39889.59 34960.49 37174.49 37817.17 39792.46 34661.50 34152.85 38184.17 365
test_method56.77 35754.53 36163.49 37676.49 38440.70 40275.68 38974.24 39619.47 40448.73 38771.89 38719.31 39565.80 40457.46 35647.51 39083.97 366
tfpnnormal78.14 30375.42 31086.31 27988.33 30979.24 19894.41 26396.22 12773.51 33169.81 33085.52 32455.43 31695.75 27047.65 38467.86 33983.95 367
test20.0372.36 33871.15 33575.98 36277.79 37959.16 38092.40 30889.35 35374.09 32761.50 36784.32 33948.09 34285.54 38750.63 37662.15 36583.24 368
Anonymous2024052172.06 34069.91 34178.50 35377.11 38361.67 37391.62 31990.97 33965.52 36662.37 36379.05 36636.32 37790.96 36457.75 35468.52 33182.87 369
OpenMVS_ROBcopyleft68.52 2073.02 33569.57 34283.37 32580.54 37271.82 32393.60 28588.22 36362.37 37161.98 36583.15 34835.31 38295.47 28645.08 38775.88 28482.82 370
UnsupCasMVSNet_bld68.60 35064.50 35480.92 34174.63 38967.80 34783.97 37092.94 30865.12 36754.63 38468.23 39035.97 37992.17 35260.13 34544.83 39182.78 371
MVP-Stereo82.65 25781.67 25285.59 29386.10 33578.29 22493.33 29192.82 30977.75 29669.17 33487.98 28459.28 28395.76 26971.77 28796.88 8782.73 372
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
pmmvs-eth3d73.59 33070.66 33782.38 33276.40 38673.38 30289.39 33589.43 35272.69 34060.34 37277.79 36946.43 35291.26 36266.42 32157.06 37282.51 373
PM-MVS69.32 34766.93 34976.49 35973.60 39055.84 38585.91 36179.32 39274.72 32361.09 36978.18 36821.76 39491.10 36370.86 29756.90 37382.51 373
TinyColmap72.41 33768.99 34682.68 33088.11 31069.59 34088.41 34185.20 37665.55 36557.91 37884.82 33630.80 38995.94 25951.38 37268.70 32982.49 375
LF4IMVS72.36 33870.82 33676.95 35779.18 37556.33 38386.12 36086.11 37469.30 35763.06 36086.66 30433.03 38592.25 34965.33 32568.64 33082.28 376
TDRefinement69.20 34865.78 35279.48 34766.04 39862.21 37088.21 34286.12 37362.92 37061.03 37085.61 32133.23 38494.16 32755.82 36453.02 38082.08 377
EG-PatchMatch MVS74.92 32572.02 33283.62 32283.76 36373.28 30593.62 28492.04 32068.57 35858.88 37583.80 34331.87 38795.57 28456.97 35978.67 26982.00 378
mvsany_test367.19 35165.34 35372.72 36663.08 39948.57 39283.12 37378.09 39372.07 34361.21 36877.11 37222.94 39387.78 37978.59 22651.88 38381.80 379
test_fmvs369.56 34569.19 34570.67 36769.01 39347.05 39390.87 32586.81 37071.31 34966.79 34377.15 37116.40 39883.17 39081.84 19962.51 36481.79 380
new-patchmatchnet68.85 34965.93 35177.61 35673.57 39163.94 36490.11 33088.73 36071.62 34755.08 38373.60 38040.84 37187.22 38351.35 37448.49 38881.67 381
test_040272.68 33669.54 34382.09 33588.67 30471.81 32492.72 30486.77 37161.52 37562.21 36483.91 34243.22 36193.76 33534.60 39472.23 30480.72 382
test_f64.01 35462.13 35769.65 36863.00 40045.30 39983.66 37280.68 38961.30 37755.70 38272.62 38414.23 40084.64 38869.84 30258.11 37079.00 383
pmmvs365.75 35362.18 35676.45 36067.12 39764.54 35988.68 33985.05 37754.77 39257.54 38173.79 37929.40 39086.21 38555.49 36547.77 38978.62 384
LCM-MVSNet52.52 36248.24 36565.35 37247.63 40941.45 40172.55 39483.62 38431.75 39737.66 39557.92 3959.19 40776.76 39749.26 38044.60 39277.84 385
test_vis1_rt73.96 32872.40 33178.64 35283.91 36061.16 37595.63 22468.18 40276.32 31060.09 37374.77 37629.01 39197.54 18087.74 14475.94 28377.22 386
new_pmnet66.18 35263.18 35575.18 36576.27 38761.74 37283.79 37184.66 37956.64 39051.57 38671.85 38831.29 38887.93 37649.98 37862.55 36375.86 387
PMMVS250.90 36446.31 36764.67 37355.53 40346.67 39577.30 38771.02 39940.89 39434.16 39859.32 3939.83 40676.14 39940.09 39328.63 40171.21 388
ANet_high46.22 36541.28 37261.04 37939.91 41146.25 39770.59 39576.18 39558.87 38723.09 40348.00 40012.58 40366.54 40328.65 39813.62 40470.35 389
DeepMVS_CXcopyleft64.06 37578.53 37743.26 40068.11 40469.94 35438.55 39476.14 37418.53 39679.34 39343.72 38841.62 39669.57 390
FPMVS55.09 36052.93 36361.57 37855.98 40240.51 40383.11 37483.41 38537.61 39634.95 39771.95 38614.40 39976.95 39629.81 39665.16 35467.25 391
APD_test156.56 35853.58 36265.50 37167.93 39646.51 39677.24 38872.95 39738.09 39542.75 39375.17 37513.38 40182.78 39140.19 39254.53 37567.23 392
WB-MVS57.26 35656.22 35960.39 38069.29 39235.91 40786.39 35970.06 40059.84 38546.46 39072.71 38351.18 33178.11 39415.19 40434.89 39967.14 393
SSC-MVS56.01 35954.96 36059.17 38168.42 39434.13 40884.98 36769.23 40158.08 38945.36 39171.67 38950.30 33777.46 39514.28 40532.33 40065.91 394
EGC-MVSNET52.46 36347.56 36667.15 37081.98 36760.11 37782.54 37572.44 3980.11 4100.70 41174.59 37725.11 39283.26 38929.04 39761.51 36658.09 395
testf145.70 36642.41 36855.58 38253.29 40640.02 40468.96 39662.67 40627.45 39929.85 39961.58 3915.98 40973.83 40128.49 39943.46 39452.90 396
APD_test245.70 36642.41 36855.58 38253.29 40640.02 40468.96 39662.67 40627.45 39929.85 39961.58 3915.98 40973.83 40128.49 39943.46 39452.90 396
test_vis3_rt54.10 36151.04 36463.27 37758.16 40146.08 39884.17 36949.32 41256.48 39136.56 39649.48 3998.03 40891.91 35567.29 31349.87 38451.82 398
PMVScopyleft34.80 2339.19 37035.53 37350.18 38529.72 41230.30 41059.60 40066.20 40526.06 40117.91 40549.53 3983.12 41174.09 40018.19 40349.40 38546.14 399
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive35.65 2233.85 37129.49 37646.92 38641.86 41036.28 40650.45 40156.52 40918.75 40518.28 40437.84 4012.41 41258.41 40518.71 40220.62 40246.06 400
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
tmp_tt41.54 36941.93 37140.38 38720.10 41326.84 41161.93 39959.09 40814.81 40628.51 40180.58 35935.53 38048.33 40863.70 33313.11 40545.96 401
Gipumacopyleft45.11 36842.05 37054.30 38480.69 37051.30 39135.80 40283.81 38328.13 39827.94 40234.53 40211.41 40576.70 39821.45 40154.65 37434.90 402
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
E-PMN32.70 37232.39 37433.65 38853.35 40525.70 41274.07 39253.33 41021.08 40217.17 40633.63 40411.85 40454.84 40612.98 40614.04 40320.42 403
EMVS31.70 37331.45 37532.48 38950.72 40823.95 41374.78 39152.30 41120.36 40316.08 40731.48 40512.80 40253.60 40711.39 40713.10 40619.88 404
test1239.07 37711.73 3801.11 3910.50 4150.77 41689.44 3340.20 4160.34 4092.15 41010.72 4090.34 4140.32 4101.79 4100.08 4092.23 405
testmvs9.92 37612.94 3790.84 3920.65 4140.29 41793.78 2810.39 4150.42 4082.85 40915.84 4080.17 4150.30 4112.18 4090.21 4081.91 406
wuyk23d14.10 37513.89 37814.72 39055.23 40422.91 41433.83 4033.56 4144.94 4074.11 4082.28 4102.06 41319.66 40910.23 4088.74 4071.59 407
test_blank0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
uanet_test0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
DCPMVS0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
cdsmvs_eth3d_5k21.43 37428.57 3770.00 3930.00 4160.00 4180.00 40495.93 1510.00 4110.00 41297.66 7463.57 2540.00 4120.00 4110.00 4100.00 408
pcd_1.5k_mvsjas5.92 3797.89 3820.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 41171.04 2110.00 4120.00 4110.00 4100.00 408
sosnet-low-res0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
sosnet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
uncertanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
Regformer0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
ab-mvs-re8.11 37810.81 3810.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 41297.30 970.00 4160.00 4120.00 4110.00 4100.00 408
uanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
WAC-MVS67.18 35149.00 381
FOURS198.51 3978.01 23598.13 5096.21 12883.04 20294.39 52
test_one_060198.91 1884.56 8096.70 7188.06 8296.57 2398.77 1088.04 20
eth-test20.00 416
eth-test0.00 416
ZD-MVS99.09 883.22 10496.60 8782.88 20793.61 6298.06 5282.93 5299.14 9795.51 5098.49 38
test_241102_ONE99.03 1585.03 6996.78 5588.72 6797.79 798.90 588.48 1799.82 18
9.1494.26 3098.10 5798.14 4796.52 9584.74 15694.83 4798.80 782.80 5499.37 8095.95 4298.42 41
save fliter98.24 5183.34 10198.61 3496.57 9091.32 34
test072699.05 985.18 6199.11 1596.78 5588.75 6597.65 1298.91 287.69 22
test_part298.90 1985.14 6796.07 29
sam_mvs75.35 155
MTGPAbinary96.33 118
test_post185.88 36230.24 40673.77 17895.07 30873.89 275
test_post33.80 40376.17 13495.97 255
patchmatchnet-post77.09 37377.78 10695.39 288
MTMP97.53 9268.16 403
gm-plane-assit92.27 22879.64 19084.47 16695.15 16597.93 15685.81 159
TEST998.64 3183.71 9297.82 6996.65 7884.29 17395.16 3698.09 4784.39 3799.36 81
test_898.63 3383.64 9597.81 7196.63 8384.50 16495.10 4098.11 4684.33 3899.23 86
agg_prior98.59 3583.13 10596.56 9294.19 5499.16 96
test_prior482.34 11897.75 76
test_prior298.37 4086.08 12594.57 5098.02 5383.14 5095.05 5398.79 26
旧先验296.97 14374.06 32896.10 2897.76 16788.38 139
新几何296.42 183
原ACMM296.84 153
testdata299.48 7376.45 250
segment_acmp82.69 55
testdata195.57 22787.44 98
plane_prior791.86 24977.55 251
plane_prior691.98 24577.92 24064.77 249
plane_prior494.15 191
plane_prior377.75 24790.17 5281.33 217
plane_prior297.18 11989.89 55
plane_prior191.95 247
plane_prior77.96 23797.52 9590.36 5082.96 236
n20.00 417
nn0.00 417
door-mid79.75 391
test1196.50 98
door80.13 390
HQP5-MVS78.48 217
HQP-NCC92.08 24097.63 8390.52 4582.30 203
ACMP_Plane92.08 24097.63 8390.52 4582.30 203
BP-MVS87.67 146
HQP3-MVS94.80 20983.01 234
HQP2-MVS65.40 243
NP-MVS92.04 24478.22 22794.56 181
MDTV_nov1_ep1383.69 21794.09 17581.01 14986.78 35596.09 13783.81 18784.75 17484.32 33974.44 17196.54 23463.88 33185.07 222
ACMMP++_ref78.45 274
ACMMP++79.05 266
Test By Simon71.65 204