This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted by
SED-MVS95.88 596.22 494.87 2199.03 1585.03 5999.12 696.78 4488.72 5297.79 498.91 288.48 1799.82 1898.15 498.97 1799.74 1
OPU-MVS97.30 299.19 792.31 399.12 698.54 1892.06 399.84 1299.11 199.37 199.74 1
DVP-MVS++96.05 496.41 394.96 2099.05 985.34 4798.13 3796.77 5088.38 5997.70 698.77 1092.06 399.84 1297.47 1499.37 199.70 3
PC_three_145291.12 2298.33 298.42 2392.51 299.81 2198.96 299.37 199.70 3
DPM-MVS96.21 295.53 1198.26 196.26 9895.09 199.15 496.98 3093.39 1096.45 1898.79 890.17 1099.99 189.33 10899.25 699.70 3
DeepPCF-MVS89.82 194.61 1796.17 589.91 18097.09 9070.21 30998.99 1596.69 6295.57 195.08 3099.23 186.40 3099.87 897.84 1198.66 3199.65 6
MCST-MVS96.17 396.12 696.32 799.42 289.36 998.94 1697.10 2695.17 292.11 6698.46 2287.33 2499.97 297.21 1799.31 499.63 7
DeepC-MVS_fast89.06 294.48 1994.30 2395.02 1898.86 2185.68 4298.06 4396.64 7093.64 991.74 7198.54 1880.17 6499.90 592.28 7098.75 2899.49 8
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_241102_TWO96.78 4488.72 5297.70 698.91 287.86 2199.82 1898.15 499.00 1599.47 9
test_0728_SECOND95.14 1699.04 1486.14 3399.06 1096.77 5099.84 1297.90 998.85 2199.45 10
MSC_two_6792asdad97.14 399.05 992.19 496.83 4199.81 2198.08 798.81 2499.43 11
No_MVS97.14 399.05 992.19 496.83 4199.81 2198.08 798.81 2499.43 11
IU-MVS99.03 1585.34 4796.86 4092.05 1798.74 198.15 498.97 1799.42 13
test_0728_THIRD88.38 5996.69 1398.76 1289.64 1399.76 2597.47 1498.84 2399.38 14
MSP-MVS95.62 796.54 192.86 8398.31 4880.10 15597.42 8896.78 4492.20 1597.11 1198.29 2693.46 199.10 8896.01 2599.30 599.38 14
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
canonicalmvs92.27 5591.22 6895.41 1495.80 11088.31 1297.09 11494.64 20288.49 5792.99 5897.31 7972.68 17198.57 11393.38 5788.58 16599.36 16
patch_mono-295.14 1196.08 792.33 10298.44 4377.84 22198.43 2697.21 2092.58 1297.68 897.65 6486.88 2699.83 1698.25 397.60 6499.33 17
DPE-MVScopyleft95.32 995.55 1094.64 2798.79 2384.87 6497.77 5896.74 5586.11 10396.54 1798.89 688.39 1999.74 3297.67 1299.05 1299.31 18
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
APDe-MVS94.56 1894.75 1593.96 4498.84 2283.40 8898.04 4596.41 9785.79 11095.00 3298.28 2784.32 3999.18 8197.35 1698.77 2799.28 19
MVS90.60 8988.64 11396.50 594.25 15390.53 893.33 26497.21 2077.59 26878.88 21797.31 7971.52 18599.69 3989.60 10398.03 5499.27 20
CSCG92.02 5891.65 6393.12 7398.53 3680.59 14097.47 8197.18 2277.06 27784.64 15497.98 4683.98 4199.52 5690.72 8797.33 7399.23 21
TSAR-MVS + GP.94.35 2094.50 1893.89 4597.38 8483.04 9498.10 3995.29 16991.57 1893.81 4697.45 7286.64 2799.43 6396.28 2394.01 11699.20 22
MG-MVS94.25 2393.72 2795.85 1099.38 389.35 1097.98 4798.09 889.99 3792.34 6296.97 9581.30 5598.99 9388.54 11498.88 2099.20 22
DELS-MVS94.98 1294.49 1996.44 696.42 9590.59 799.21 297.02 2894.40 591.46 7397.08 9183.32 4599.69 3992.83 6598.70 3099.04 24
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
APD-MVScopyleft93.61 3093.59 3093.69 5298.76 2483.26 9097.21 9796.09 12282.41 19094.65 3898.21 2981.96 5398.81 10594.65 4298.36 4599.01 25
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CNVR-MVS96.30 196.54 195.55 1399.31 587.69 2099.06 1097.12 2494.66 396.79 1298.78 986.42 2999.95 397.59 1399.18 799.00 26
NCCC95.63 695.94 894.69 2699.21 685.15 5799.16 396.96 3294.11 695.59 2498.64 1785.07 3399.91 495.61 3299.10 999.00 26
alignmvs92.97 3892.26 5295.12 1795.54 11687.77 1898.67 1996.38 10288.04 6693.01 5797.45 7279.20 7398.60 11193.25 6088.76 16398.99 28
CANet94.89 1394.64 1795.63 1197.55 7588.12 1499.06 1096.39 10194.07 795.34 2697.80 5576.83 10899.87 897.08 1897.64 6398.89 29
HY-MVS84.06 691.63 6690.37 8495.39 1596.12 10288.25 1390.22 30197.58 1488.33 6190.50 9091.96 19679.26 7199.06 9090.29 9789.07 15998.88 30
PHI-MVS93.59 3193.63 2993.48 6398.05 5881.76 11898.64 2197.13 2382.60 18894.09 4598.49 2180.35 5999.85 1094.74 4198.62 3298.83 31
SteuartSystems-ACMMP94.13 2694.44 2193.20 7195.41 11981.35 12699.02 1496.59 7789.50 4394.18 4498.36 2583.68 4499.45 6294.77 3998.45 3998.81 32
Skip Steuart: Steuart Systems R&D Blog.
DVP-MVScopyleft95.58 895.91 994.57 2899.05 985.18 5299.06 1096.46 9188.75 5096.69 1398.76 1287.69 2299.76 2597.90 998.85 2198.77 33
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_yl91.46 7090.53 7994.24 3697.41 8085.18 5298.08 4097.72 1080.94 20889.85 9596.14 11475.61 12798.81 10590.42 9588.56 16698.74 34
DCV-MVSNet91.46 7090.53 7994.24 3697.41 8085.18 5298.08 4097.72 1080.94 20889.85 9596.14 11475.61 12798.81 10590.42 9588.56 16698.74 34
LFMVS89.27 11387.64 13194.16 4197.16 8885.52 4597.18 10194.66 19979.17 24989.63 10196.57 10955.35 29098.22 13089.52 10689.54 15598.74 34
PAPR92.74 4292.17 5594.45 3098.89 2084.87 6497.20 9996.20 11587.73 7488.40 11798.12 3578.71 8099.76 2587.99 12196.28 9298.74 34
WTY-MVS92.65 4991.68 6295.56 1296.00 10588.90 1198.23 3197.65 1288.57 5589.82 9797.22 8579.29 7099.06 9089.57 10488.73 16498.73 38
3Dnovator+82.88 889.63 10687.85 12694.99 1994.49 14986.76 2997.84 5395.74 14286.10 10475.47 26296.02 11765.00 22599.51 5882.91 17197.07 7998.72 39
CS-MVS-test92.98 3793.67 2890.90 15096.52 9476.87 23998.68 1894.73 19490.36 3494.84 3597.89 5077.94 8997.15 18594.28 4797.80 6098.70 40
SD-MVS94.84 1495.02 1494.29 3497.87 6484.61 6797.76 6096.19 11789.59 4296.66 1598.17 3384.33 3699.60 4896.09 2498.50 3698.66 41
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
HPM-MVS++copyleft95.32 995.48 1294.85 2298.62 3486.04 3497.81 5696.93 3592.45 1395.69 2398.50 2085.38 3199.85 1094.75 4099.18 798.65 42
MSLP-MVS++94.28 2194.39 2293.97 4398.30 4984.06 7598.64 2196.93 3590.71 2793.08 5698.70 1579.98 6599.21 7594.12 4899.07 1198.63 43
lupinMVS93.87 2993.58 3194.75 2593.00 18888.08 1599.15 495.50 15491.03 2494.90 3397.66 6078.84 7797.56 15494.64 4397.46 6798.62 44
agg_prior294.30 4499.00 1598.57 45
PAPM_NR91.46 7090.82 7493.37 6698.50 4081.81 11795.03 22796.13 11984.65 13686.10 13997.65 6479.24 7299.75 3083.20 16796.88 8398.56 46
API-MVS90.18 9788.97 10893.80 4798.66 2882.95 9597.50 8095.63 14875.16 28986.31 13697.69 5872.49 17399.90 581.26 17996.07 9598.56 46
mvs_anonymous88.68 12687.62 13391.86 12094.80 13881.69 12193.53 26094.92 18282.03 19778.87 21890.43 22275.77 12595.34 26685.04 14393.16 12898.55 48
CS-MVS92.73 4393.48 3390.48 16296.27 9775.93 25898.55 2494.93 18189.32 4494.54 4097.67 5978.91 7697.02 18993.80 5097.32 7498.49 49
SMA-MVScopyleft94.70 1694.68 1694.76 2498.02 5985.94 3797.47 8196.77 5085.32 11897.92 398.70 1583.09 4799.84 1295.79 2999.08 1098.49 49
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
ET-MVSNet_ETH3D90.01 10089.03 10692.95 8094.38 15086.77 2898.14 3496.31 10889.30 4563.33 33096.72 10790.09 1193.63 31190.70 8882.29 21998.46 51
SR-MVS92.16 5692.27 5191.83 12398.37 4578.41 19996.67 14595.76 14182.19 19491.97 6798.07 4176.44 11398.64 10993.71 5297.27 7598.45 52
无先验96.87 13096.78 4477.39 27099.52 5679.95 19198.43 53
VNet92.11 5791.22 6894.79 2396.91 9186.98 2597.91 4997.96 986.38 10093.65 4895.74 12270.16 19898.95 9793.39 5588.87 16298.43 53
ACMMP_NAP93.46 3293.23 3794.17 3997.16 8884.28 7296.82 13496.65 6786.24 10194.27 4297.99 4477.94 8999.83 1693.39 5598.57 3398.39 55
casdiffmvs_mvgpermissive91.13 7990.45 8193.17 7292.99 19183.58 8497.46 8394.56 20787.69 7587.19 13094.98 15174.50 15297.60 15191.88 7692.79 13198.34 56
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
TSAR-MVS + MP.94.79 1595.17 1393.64 5397.66 6984.10 7495.85 19296.42 9691.26 2197.49 1096.80 10386.50 2898.49 11795.54 3399.03 1398.33 57
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SF-MVS94.17 2494.05 2694.55 2997.56 7485.95 3597.73 6296.43 9584.02 15295.07 3198.74 1482.93 4899.38 6595.42 3598.51 3498.32 58
Effi-MVS+90.70 8789.90 9693.09 7593.61 16883.48 8695.20 21792.79 28283.22 17191.82 6995.70 12471.82 18197.48 16491.25 7993.67 12198.32 58
test9_res96.00 2699.03 1398.31 60
test22296.15 10178.41 19995.87 19096.46 9171.97 31589.66 10097.45 7276.33 11798.24 4998.30 61
test_prior93.09 7598.68 2681.91 11196.40 9999.06 9098.29 62
testdata90.13 17295.92 10774.17 27496.49 9073.49 30394.82 3797.99 4478.80 7997.93 13783.53 16497.52 6698.29 62
dcpmvs_293.10 3693.46 3492.02 11597.77 6579.73 16594.82 23193.86 24186.91 9391.33 7796.76 10485.20 3298.06 13496.90 1997.60 6498.27 64
新几何193.12 7397.44 7881.60 12396.71 5974.54 29491.22 8097.57 6779.13 7499.51 5877.40 21798.46 3898.26 65
EIA-MVS91.73 6292.05 5790.78 15594.52 14576.40 24798.06 4395.34 16789.19 4688.90 11097.28 8377.56 9697.73 14790.77 8696.86 8598.20 66
region2R92.72 4592.70 4392.79 8598.68 2680.53 14597.53 7696.51 8585.22 12191.94 6897.98 4677.26 10099.67 4390.83 8598.37 4498.18 67
Anonymous20240521184.41 20181.93 22091.85 12296.78 9378.41 19997.44 8491.34 30370.29 32384.06 15794.26 16441.09 33898.96 9579.46 19582.65 21798.17 68
train_agg94.28 2194.45 2093.74 4998.64 3183.71 8097.82 5496.65 6784.50 14095.16 2798.09 3784.33 3699.36 6895.91 2898.96 1998.16 69
baseline90.76 8690.10 9092.74 8792.90 19482.56 9994.60 23594.56 20787.69 7589.06 10995.67 12673.76 16097.51 16190.43 9492.23 14098.16 69
CDPH-MVS93.12 3592.91 3993.74 4998.65 3083.88 7697.67 6796.26 11083.00 17993.22 5498.24 2881.31 5499.21 7589.12 10998.74 2998.14 71
DP-MVS Recon91.72 6490.85 7394.34 3299.50 185.00 6198.51 2595.96 13080.57 21688.08 12297.63 6676.84 10799.89 785.67 13894.88 10698.13 72
HFP-MVS92.89 3992.86 4192.98 7998.71 2581.12 12997.58 7296.70 6085.20 12391.75 7097.97 4878.47 8299.71 3690.95 8198.41 4198.12 73
MVS_Test90.29 9689.18 10593.62 5595.23 12384.93 6294.41 23894.66 19984.31 14590.37 9391.02 21175.13 14297.82 14483.11 16994.42 11198.12 73
ZNCC-MVS92.75 4192.60 4693.23 7098.24 5181.82 11697.63 6896.50 8785.00 12891.05 8297.74 5778.38 8399.80 2490.48 9098.34 4698.07 75
EPMVS87.47 15585.90 16192.18 10895.41 11982.26 10787.00 32596.28 10985.88 10984.23 15685.57 29275.07 14496.26 21971.14 27092.50 13598.03 76
XVS92.69 4792.71 4292.63 9298.52 3780.29 14897.37 9196.44 9387.04 9191.38 7497.83 5477.24 10299.59 4990.46 9198.07 5298.02 77
X-MVStestdata86.26 17184.14 19092.63 9298.52 3780.29 14897.37 9196.44 9387.04 9191.38 7420.73 37677.24 10299.59 4990.46 9198.07 5298.02 77
MVSFormer91.36 7390.57 7893.73 5193.00 18888.08 1594.80 23394.48 21080.74 21294.90 3397.13 8878.84 7795.10 28083.77 15697.46 6798.02 77
jason92.73 4392.23 5394.21 3890.50 25087.30 2498.65 2095.09 17590.61 2892.76 6097.13 8875.28 14097.30 17493.32 5896.75 8898.02 77
jason: jason.
MVS_111021_HR93.41 3393.39 3593.47 6597.34 8582.83 9697.56 7498.27 689.16 4789.71 9897.14 8779.77 6799.56 5493.65 5397.94 5698.02 77
GG-mvs-BLEND93.49 6294.94 13486.26 3181.62 34597.00 2988.32 11994.30 16391.23 596.21 22288.49 11697.43 7098.00 82
ACMMPR92.69 4792.67 4492.75 8698.66 2880.57 14197.58 7296.69 6285.20 12391.57 7297.92 4977.01 10599.67 4390.95 8198.41 4198.00 82
test250690.96 8290.39 8292.65 9193.54 17182.46 10396.37 16297.35 1686.78 9787.55 12595.25 13577.83 9397.50 16284.07 15094.80 10797.98 84
ECVR-MVScopyleft88.35 13787.25 14391.65 12793.54 17179.40 17296.56 15090.78 31386.78 9785.57 14295.25 13557.25 27797.56 15484.73 14694.80 10797.98 84
test1294.25 3598.34 4685.55 4496.35 10592.36 6180.84 5699.22 7498.31 4797.98 84
MTAPA92.45 5392.31 5092.86 8397.90 6180.85 13592.88 27696.33 10687.92 6990.20 9498.18 3076.71 11199.76 2592.57 6998.09 5197.96 87
CP-MVS92.54 5292.60 4692.34 10198.50 4079.90 15898.40 2796.40 9984.75 13190.48 9198.09 3777.40 9999.21 7591.15 8098.23 5097.92 88
mPP-MVS91.88 6091.82 5992.07 11298.38 4478.63 19397.29 9496.09 12285.12 12588.45 11697.66 6075.53 13099.68 4189.83 10098.02 5597.88 89
3Dnovator82.32 1089.33 11187.64 13194.42 3193.73 16785.70 4197.73 6296.75 5486.73 9976.21 25095.93 11862.17 23999.68 4181.67 17797.81 5997.88 89
test111188.11 14287.04 14991.35 13593.15 18378.79 19096.57 14890.78 31386.88 9585.04 14695.20 13957.23 27897.39 16983.88 15394.59 10997.87 91
Patchmatch-test78.25 27574.72 28888.83 19891.20 23674.10 27573.91 36288.70 33359.89 35566.82 31485.12 30278.38 8394.54 29448.84 35579.58 23397.86 92
MP-MVScopyleft92.61 5092.67 4492.42 9998.13 5679.73 16597.33 9396.20 11585.63 11290.53 8997.66 6078.14 8799.70 3892.12 7298.30 4897.85 93
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ab-mvs87.08 15784.94 17693.48 6393.34 17983.67 8288.82 30995.70 14481.18 20584.55 15590.14 22862.72 23698.94 9985.49 14082.54 21897.85 93
casdiffmvspermissive90.95 8390.39 8292.63 9292.82 19582.53 10096.83 13294.47 21287.69 7588.47 11595.56 13174.04 15797.54 15890.90 8492.74 13297.83 95
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EPNet94.06 2794.15 2593.76 4897.27 8784.35 7098.29 2997.64 1394.57 495.36 2596.88 9879.96 6699.12 8791.30 7896.11 9497.82 96
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
gg-mvs-nofinetune85.48 18582.90 20793.24 6994.51 14885.82 3979.22 34996.97 3161.19 34987.33 12853.01 36590.58 696.07 22486.07 13697.23 7697.81 97
CHOSEN 1792x268891.07 8090.21 8793.64 5395.18 12683.53 8596.26 16996.13 11988.92 4984.90 14993.10 18472.86 16999.62 4788.86 11195.67 10297.79 98
APD-MVS_3200maxsize91.23 7791.35 6790.89 15197.89 6276.35 24896.30 16795.52 15379.82 23591.03 8397.88 5174.70 14798.54 11492.11 7396.89 8297.77 99
SR-MVS-dyc-post91.29 7591.45 6690.80 15397.76 6776.03 25396.20 17495.44 15980.56 21790.72 8797.84 5275.76 12698.61 11091.99 7496.79 8697.75 100
RE-MVS-def91.18 7197.76 6776.03 25396.20 17495.44 15980.56 21790.72 8797.84 5273.36 16691.99 7496.79 8697.75 100
GST-MVS92.43 5492.22 5493.04 7798.17 5481.64 12297.40 9096.38 10284.71 13490.90 8597.40 7777.55 9799.76 2589.75 10297.74 6197.72 102
Patchmatch-RL test76.65 28974.01 29684.55 28377.37 35364.23 33478.49 35382.84 35778.48 25964.63 32573.40 35276.05 12191.70 33376.99 21957.84 34297.72 102
PVSNet82.34 989.02 11687.79 12892.71 8995.49 11781.50 12497.70 6497.29 1787.76 7385.47 14395.12 14556.90 27998.90 10180.33 18594.02 11597.71 104
Vis-MVSNetpermissive88.67 12787.82 12791.24 14092.68 19678.82 18796.95 12593.85 24287.55 7887.07 13295.13 14463.43 23397.21 17977.58 21396.15 9397.70 105
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
PAPM92.87 4092.40 4894.30 3392.25 21287.85 1796.40 16196.38 10291.07 2388.72 11396.90 9682.11 5297.37 17190.05 9997.70 6297.67 106
PGM-MVS91.93 5991.80 6092.32 10498.27 5079.74 16495.28 21197.27 1883.83 16090.89 8697.78 5676.12 12099.56 5488.82 11297.93 5897.66 107
sss90.87 8589.96 9393.60 5694.15 15683.84 7997.14 10798.13 785.93 10889.68 9996.09 11671.67 18299.30 7087.69 12489.16 15897.66 107
PatchmatchNetpermissive86.83 16285.12 17391.95 11794.12 15782.27 10686.55 32995.64 14784.59 13882.98 17484.99 30477.26 10095.96 23368.61 28491.34 14797.64 109
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MAR-MVS90.63 8890.22 8691.86 12098.47 4278.20 20997.18 10196.61 7383.87 15988.18 12198.18 3068.71 20299.75 3083.66 16197.15 7797.63 110
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
旧先验197.39 8279.58 16996.54 8298.08 4084.00 4097.42 7197.62 111
Vis-MVSNet (Re-imp)88.88 12188.87 11288.91 19693.89 16374.43 27296.93 12794.19 22584.39 14383.22 17095.67 12678.24 8594.70 29078.88 20294.40 11297.61 112
MP-MVS-pluss92.58 5192.35 4993.29 6797.30 8682.53 10096.44 15796.04 12784.68 13589.12 10798.37 2477.48 9899.74 3293.31 5998.38 4397.59 113
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
GSMVS97.54 114
sam_mvs177.59 9597.54 114
SCA85.63 18183.64 19691.60 13192.30 20881.86 11492.88 27695.56 15084.85 12982.52 17585.12 30258.04 26895.39 26373.89 25087.58 17597.54 114
HPM-MVScopyleft91.62 6791.53 6591.89 11997.88 6379.22 17796.99 11895.73 14382.07 19689.50 10597.19 8675.59 12998.93 10090.91 8397.94 5697.54 114
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
VDD-MVS88.28 13987.02 15092.06 11395.09 12880.18 15497.55 7594.45 21483.09 17589.10 10895.92 12047.97 31498.49 11793.08 6486.91 17897.52 118
AdaColmapbinary88.81 12387.61 13492.39 10099.33 479.95 15696.70 14495.58 14977.51 26983.05 17396.69 10861.90 24599.72 3584.29 14893.47 12497.50 119
IS-MVSNet88.67 12788.16 12290.20 17193.61 16876.86 24096.77 13993.07 27884.02 15283.62 16695.60 12974.69 15096.24 22178.43 20693.66 12297.49 120
FA-MVS(test-final)87.71 15186.23 15892.17 10994.19 15580.55 14287.16 32496.07 12582.12 19585.98 14088.35 24872.04 18098.49 11780.26 18789.87 15397.48 121
ETV-MVS92.72 4592.87 4092.28 10594.54 14481.89 11297.98 4795.21 17289.77 4193.11 5596.83 10077.23 10497.50 16295.74 3095.38 10397.44 122
CostFormer89.08 11588.39 11891.15 14393.13 18579.15 18088.61 31296.11 12183.14 17389.58 10286.93 27083.83 4396.87 19888.22 12085.92 18997.42 123
diffmvspermissive91.17 7890.74 7692.44 9893.11 18782.50 10296.25 17093.62 25687.79 7290.40 9295.93 11873.44 16597.42 16693.62 5492.55 13497.41 124
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
1112_ss88.60 13087.47 13992.00 11693.21 18080.97 13296.47 15492.46 28583.64 16680.86 19897.30 8180.24 6297.62 15077.60 21285.49 19497.40 125
131488.94 11887.20 14494.17 3993.21 18085.73 4093.33 26496.64 7082.89 18175.98 25396.36 11166.83 21399.39 6483.52 16596.02 9797.39 126
Test_1112_low_res88.03 14486.73 15391.94 11893.15 18380.88 13496.44 15792.41 28783.59 16880.74 20091.16 20980.18 6397.59 15277.48 21585.40 19597.36 127
HyFIR lowres test89.36 11088.60 11491.63 13094.91 13680.76 13795.60 20195.53 15182.56 18984.03 15891.24 20878.03 8896.81 20287.07 13188.41 16897.32 128
CVMVSNet84.83 19485.57 16382.63 30691.55 23260.38 34895.13 22195.03 17880.60 21582.10 18594.71 15566.40 21690.19 34574.30 24790.32 15197.31 129
tpmrst88.36 13687.38 14191.31 13694.36 15179.92 15787.32 32295.26 17185.32 11888.34 11886.13 28680.60 5896.70 20683.78 15585.34 19797.30 130
PVSNet_Blended93.13 3492.98 3893.57 5797.47 7683.86 7799.32 196.73 5691.02 2589.53 10396.21 11376.42 11499.57 5294.29 4595.81 10197.29 131
PMMVS89.46 10989.92 9588.06 21594.64 14069.57 31696.22 17194.95 18087.27 8591.37 7696.54 11065.88 21797.39 16988.54 11493.89 11897.23 132
DeepC-MVS86.58 391.53 6991.06 7292.94 8194.52 14581.89 11295.95 18495.98 12990.76 2683.76 16596.76 10473.24 16799.71 3691.67 7796.96 8097.22 133
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
GeoE86.36 16885.20 16989.83 18393.17 18276.13 25097.53 7692.11 29079.58 24080.99 19694.01 17166.60 21596.17 22373.48 25489.30 15797.20 134
FE-MVS86.06 17484.15 18991.78 12494.33 15279.81 15984.58 33796.61 7376.69 27985.00 14787.38 26170.71 19498.37 12570.39 27591.70 14597.17 135
DROMVSNet91.73 6292.11 5690.58 15993.54 17177.77 22398.07 4294.40 21687.44 8092.99 5897.11 9074.59 15196.87 19893.75 5197.08 7897.11 136
114514_t88.79 12587.57 13592.45 9798.21 5381.74 11996.99 11895.45 15875.16 28982.48 17695.69 12568.59 20398.50 11680.33 18595.18 10497.10 137
ACMMPcopyleft90.39 9389.97 9291.64 12897.58 7378.21 20896.78 13796.72 5884.73 13384.72 15297.23 8471.22 18799.63 4688.37 11992.41 13797.08 138
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
MDTV_nov1_ep13_2view81.74 11986.80 32680.65 21485.65 14174.26 15476.52 22596.98 139
HPM-MVS_fast90.38 9590.17 8991.03 14697.61 7077.35 23297.15 10695.48 15579.51 24188.79 11196.90 9671.64 18498.81 10587.01 13297.44 6996.94 140
Fast-Effi-MVS+87.93 14786.94 15290.92 14994.04 16079.16 17998.26 3093.72 25281.29 20483.94 16292.90 18569.83 19996.68 20776.70 22391.74 14496.93 141
IB-MVS85.34 488.67 12787.14 14793.26 6893.12 18684.32 7198.76 1797.27 1887.19 8979.36 21490.45 22183.92 4298.53 11584.41 14769.79 29196.93 141
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
thisisatest051590.95 8390.26 8593.01 7894.03 16284.27 7397.91 4996.67 6483.18 17286.87 13395.51 13288.66 1697.85 14380.46 18489.01 16096.92 143
VDDNet86.44 16784.51 18192.22 10791.56 23181.83 11597.10 11394.64 20269.50 32787.84 12395.19 14048.01 31397.92 14289.82 10186.92 17796.89 144
CNLPA86.96 15885.37 16791.72 12697.59 7279.34 17597.21 9791.05 30874.22 29578.90 21696.75 10667.21 21098.95 9774.68 24290.77 15096.88 145
CDS-MVSNet89.50 10888.96 10991.14 14491.94 22780.93 13397.09 11495.81 13984.26 14884.72 15294.20 16780.31 6095.64 25383.37 16688.96 16196.85 146
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
PS-MVSNAJ94.17 2493.52 3296.10 895.65 11392.35 298.21 3295.79 14092.42 1496.24 1998.18 3071.04 19099.17 8296.77 2097.39 7296.79 147
tpm287.35 15686.26 15790.62 15892.93 19378.67 19288.06 31795.99 12879.33 24487.40 12686.43 28180.28 6196.40 21480.23 18885.73 19396.79 147
TESTMET0.1,189.83 10289.34 10391.31 13692.54 20280.19 15397.11 11096.57 7986.15 10286.85 13491.83 20079.32 6996.95 19281.30 17892.35 13896.77 149
xiu_mvs_v2_base93.92 2893.26 3695.91 995.07 13092.02 698.19 3395.68 14592.06 1696.01 2298.14 3470.83 19398.96 9596.74 2296.57 9096.76 150
CR-MVSNet83.53 21381.36 22990.06 17390.16 25679.75 16279.02 35191.12 30584.24 14982.27 18380.35 33175.45 13293.67 31063.37 31086.25 18496.75 151
RPMNet79.85 26175.92 28091.64 12890.16 25679.75 16279.02 35195.44 15958.43 35882.27 18372.55 35573.03 16898.41 12446.10 35986.25 18496.75 151
TAMVS88.48 13287.79 12890.56 16091.09 23979.18 17896.45 15695.88 13583.64 16683.12 17193.33 18075.94 12395.74 24882.40 17288.27 16996.75 151
原ACMM191.22 14197.77 6578.10 21196.61 7381.05 20791.28 7997.42 7677.92 9198.98 9479.85 19398.51 3496.59 154
BH-RMVSNet86.84 16185.28 16891.49 13395.35 12180.26 15196.95 12592.21 28982.86 18381.77 19195.46 13359.34 25997.64 14969.79 27893.81 12096.57 155
EPP-MVSNet89.76 10389.72 9989.87 18193.78 16476.02 25597.22 9596.51 8579.35 24385.11 14595.01 14984.82 3497.10 18787.46 12788.21 17096.50 156
dp84.30 20382.31 21590.28 16894.24 15477.97 21486.57 32895.53 15179.94 23480.75 19985.16 30071.49 18696.39 21563.73 30783.36 20796.48 157
MVS_111021_LR91.60 6891.64 6491.47 13495.74 11178.79 19096.15 17696.77 5088.49 5788.64 11497.07 9272.33 17599.19 8093.13 6396.48 9196.43 158
PatchT79.75 26276.85 27388.42 20489.55 26775.49 26277.37 35594.61 20463.07 34082.46 17773.32 35375.52 13193.41 31551.36 34884.43 20096.36 159
LCM-MVSNet-Re83.75 21083.54 19984.39 28893.54 17164.14 33592.51 27984.03 35383.90 15866.14 31986.59 27567.36 20892.68 31984.89 14592.87 13096.35 160
GA-MVS85.79 17984.04 19191.02 14789.47 26980.27 15096.90 12994.84 18885.57 11380.88 19789.08 23656.56 28396.47 21377.72 21085.35 19696.34 161
tpm85.55 18384.47 18488.80 19990.19 25575.39 26388.79 31094.69 19584.83 13083.96 16185.21 29878.22 8694.68 29176.32 22978.02 25096.34 161
CPTT-MVS89.72 10489.87 9789.29 19098.33 4773.30 28097.70 6495.35 16675.68 28587.40 12697.44 7570.43 19598.25 12989.56 10596.90 8196.33 163
PVSNet_Blended_VisFu91.24 7690.77 7592.66 9095.09 12882.40 10497.77 5895.87 13788.26 6286.39 13593.94 17376.77 10999.27 7188.80 11394.00 11796.31 164
QAPM86.88 16084.51 18193.98 4294.04 16085.89 3897.19 10096.05 12673.62 30075.12 26595.62 12862.02 24299.74 3270.88 27196.06 9696.30 165
h-mvs3389.30 11288.95 11090.36 16695.07 13076.04 25296.96 12497.11 2590.39 3292.22 6495.10 14674.70 14798.86 10293.14 6165.89 32396.16 166
thisisatest053089.65 10589.02 10791.53 13293.46 17780.78 13696.52 15196.67 6481.69 20183.79 16494.90 15288.85 1597.68 14877.80 20787.49 17696.14 167
TR-MVS86.30 17084.93 17790.42 16394.63 14177.58 22796.57 14893.82 24380.30 22582.42 17895.16 14258.74 26397.55 15674.88 24087.82 17296.13 168
tpm cat183.63 21281.38 22890.39 16493.53 17678.19 21085.56 33595.09 17570.78 32178.51 22183.28 31774.80 14697.03 18866.77 29184.05 20295.95 169
test-LLR88.48 13287.98 12489.98 17692.26 21077.23 23497.11 11095.96 13083.76 16386.30 13791.38 20472.30 17696.78 20480.82 18191.92 14295.94 170
test-mter88.95 11788.60 11489.98 17692.26 21077.23 23497.11 11095.96 13085.32 11886.30 13791.38 20476.37 11696.78 20480.82 18191.92 14295.94 170
BH-w/o88.24 14087.47 13990.54 16195.03 13378.54 19497.41 8993.82 24384.08 15078.23 22494.51 16069.34 20197.21 17980.21 18994.58 11095.87 172
EI-MVSNet-Vis-set91.84 6191.77 6192.04 11497.60 7181.17 12896.61 14696.87 3888.20 6389.19 10697.55 7178.69 8199.14 8490.29 9790.94 14995.80 173
CANet_DTU90.98 8190.04 9193.83 4694.76 13986.23 3296.32 16693.12 27793.11 1193.71 4796.82 10263.08 23599.48 6084.29 14895.12 10595.77 174
TAPA-MVS81.61 1285.02 19183.67 19489.06 19296.79 9273.27 28295.92 18694.79 19274.81 29280.47 20296.83 10071.07 18998.19 13249.82 35392.57 13395.71 175
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
OMC-MVS88.80 12488.16 12290.72 15695.30 12277.92 21894.81 23294.51 20986.80 9684.97 14896.85 9967.53 20698.60 11185.08 14287.62 17395.63 176
UGNet87.73 15086.55 15691.27 13995.16 12779.11 18196.35 16496.23 11288.14 6487.83 12490.48 22050.65 30499.09 8980.13 19094.03 11495.60 177
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
tttt051788.57 13188.19 12189.71 18793.00 18875.99 25695.67 19796.67 6480.78 21181.82 19094.40 16188.97 1497.58 15376.05 23186.31 18395.57 178
test_vis1_n_192089.95 10190.59 7788.03 21792.36 20468.98 31999.12 694.34 21893.86 893.64 4997.01 9451.54 30299.59 4996.76 2196.71 8995.53 179
CHOSEN 280x42091.71 6591.85 5891.29 13894.94 13482.69 9787.89 31896.17 11885.94 10787.27 12994.31 16290.27 995.65 25294.04 4995.86 9995.53 179
BH-untuned86.95 15985.94 16089.99 17594.52 14577.46 22996.78 13793.37 26881.80 19976.62 24093.81 17766.64 21497.02 18976.06 23093.88 11995.48 181
EPNet_dtu87.65 15287.89 12586.93 24394.57 14271.37 30396.72 14096.50 8788.56 5687.12 13195.02 14875.91 12494.01 30466.62 29290.00 15295.42 182
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
EI-MVSNet-UG-set91.35 7491.22 6891.73 12597.39 8280.68 13896.47 15496.83 4187.92 6988.30 12097.36 7877.84 9299.13 8689.43 10789.45 15695.37 183
UA-Net88.92 11988.48 11790.24 16994.06 15977.18 23693.04 27294.66 19987.39 8291.09 8193.89 17474.92 14598.18 13375.83 23391.43 14695.35 184
Anonymous2024052983.15 22080.60 23990.80 15395.74 11178.27 20396.81 13594.92 18260.10 35481.89 18992.54 19045.82 32298.82 10479.25 19878.32 24895.31 185
mvsany_test187.58 15388.22 11985.67 26489.78 26167.18 32695.25 21487.93 33683.96 15588.79 11197.06 9372.52 17294.53 29592.21 7186.45 18295.30 186
DP-MVS81.47 24678.28 26291.04 14598.14 5578.48 19595.09 22686.97 34061.14 35071.12 29392.78 18959.59 25599.38 6553.11 34586.61 18095.27 187
baseline188.85 12287.49 13792.93 8295.21 12586.85 2795.47 20594.61 20487.29 8483.11 17294.99 15080.70 5796.89 19682.28 17373.72 26695.05 188
PVSNet_077.72 1581.70 24378.95 25989.94 17990.77 24776.72 24395.96 18396.95 3385.01 12770.24 30088.53 24652.32 30098.20 13186.68 13544.08 36494.89 189
ADS-MVSNet279.57 26577.53 26785.71 26293.78 16472.13 29079.48 34786.11 34673.09 30680.14 20779.99 33462.15 24090.14 34659.49 32283.52 20494.85 190
ADS-MVSNet81.26 24978.36 26189.96 17893.78 16479.78 16079.48 34793.60 25773.09 30680.14 20779.99 33462.15 24095.24 27259.49 32283.52 20494.85 190
MIMVSNet79.18 27075.99 27988.72 20187.37 29380.66 13979.96 34691.82 29477.38 27174.33 27081.87 32341.78 33490.74 34166.36 29783.10 20994.76 192
xiu_mvs_v1_base_debu90.54 9089.54 10093.55 5892.31 20587.58 2196.99 11894.87 18587.23 8693.27 5197.56 6857.43 27398.32 12692.72 6693.46 12594.74 193
xiu_mvs_v1_base90.54 9089.54 10093.55 5892.31 20587.58 2196.99 11894.87 18587.23 8693.27 5197.56 6857.43 27398.32 12692.72 6693.46 12594.74 193
xiu_mvs_v1_base_debi90.54 9089.54 10093.55 5892.31 20587.58 2196.99 11894.87 18587.23 8693.27 5197.56 6857.43 27398.32 12692.72 6693.46 12594.74 193
AUN-MVS86.25 17285.57 16388.26 21093.57 17073.38 27895.45 20695.88 13583.94 15685.47 14394.21 16673.70 16396.67 20883.54 16364.41 32794.73 196
hse-mvs288.22 14188.21 12088.25 21193.54 17173.41 27795.41 20895.89 13490.39 3292.22 6494.22 16574.70 14796.66 20993.14 6164.37 32894.69 197
thres20088.92 11987.65 13092.73 8896.30 9685.62 4397.85 5298.86 184.38 14484.82 15093.99 17275.12 14398.01 13570.86 27286.67 17994.56 198
baseline290.39 9390.21 8790.93 14890.86 24480.99 13195.20 21797.41 1586.03 10680.07 21094.61 15790.58 697.47 16587.29 12889.86 15494.35 199
thres100view90088.30 13886.95 15192.33 10296.10 10384.90 6397.14 10798.85 282.69 18683.41 16793.66 17875.43 13497.93 13769.04 28086.24 18694.17 200
tfpn200view988.48 13287.15 14592.47 9696.21 9985.30 5097.44 8498.85 283.37 16983.99 15993.82 17575.36 13797.93 13769.04 28086.24 18694.17 200
tpmvs83.04 22380.77 23489.84 18295.43 11877.96 21585.59 33495.32 16875.31 28876.27 24883.70 31473.89 15897.41 16759.53 32181.93 22094.14 202
OpenMVScopyleft79.58 1486.09 17383.62 19793.50 6190.95 24186.71 3097.44 8495.83 13875.35 28672.64 28495.72 12357.42 27699.64 4571.41 26595.85 10094.13 203
test_fmvs187.79 14988.52 11685.62 26692.98 19264.31 33397.88 5192.42 28687.95 6892.24 6395.82 12147.94 31598.44 12395.31 3694.09 11394.09 204
PatchMatch-RL85.00 19283.66 19589.02 19495.86 10874.55 27192.49 28093.60 25779.30 24679.29 21591.47 20258.53 26598.45 12170.22 27692.17 14194.07 205
UniMVSNet_ETH3D80.86 25578.75 26087.22 23886.31 30172.02 29391.95 28593.76 25173.51 30175.06 26690.16 22743.04 33195.66 25076.37 22878.55 24593.98 206
PCF-MVS84.09 586.77 16485.00 17592.08 11192.06 22283.07 9392.14 28494.47 21279.63 23976.90 23694.78 15471.15 18899.20 7972.87 25691.05 14893.98 206
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
LS3D82.22 23779.94 25089.06 19297.43 7974.06 27693.20 27092.05 29161.90 34473.33 27795.21 13859.35 25899.21 7554.54 34192.48 13693.90 208
test_vis1_n85.60 18285.70 16285.33 27084.79 32364.98 33196.83 13291.61 29987.36 8391.00 8494.84 15336.14 34697.18 18195.66 3193.03 12993.82 209
PLCcopyleft83.97 788.00 14587.38 14189.83 18398.02 5976.46 24597.16 10594.43 21579.26 24881.98 18796.28 11269.36 20099.27 7177.71 21192.25 13993.77 210
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
cascas86.50 16684.48 18392.55 9592.64 20085.95 3597.04 11795.07 17775.32 28780.50 20191.02 21154.33 29797.98 13686.79 13487.62 17393.71 211
JIA-IIPM79.00 27177.20 26984.40 28789.74 26464.06 33675.30 35995.44 15962.15 34381.90 18859.08 36378.92 7595.59 25766.51 29585.78 19293.54 212
XVG-OURS-SEG-HR85.74 18085.16 17287.49 23190.22 25471.45 30291.29 29494.09 23181.37 20383.90 16395.22 13760.30 25297.53 16085.58 13984.42 20193.50 213
XVG-OURS85.18 18884.38 18587.59 22690.42 25271.73 29991.06 29794.07 23282.00 19883.29 16995.08 14756.42 28497.55 15683.70 16083.42 20693.49 214
thres600view788.06 14386.70 15592.15 11096.10 10385.17 5697.14 10798.85 282.70 18583.41 16793.66 17875.43 13497.82 14467.13 29085.88 19093.45 215
thres40088.42 13587.15 14592.23 10696.21 9985.30 5097.44 8498.85 283.37 16983.99 15993.82 17575.36 13797.93 13769.04 28086.24 18693.45 215
test_fmvs1_n86.34 16986.72 15485.17 27387.54 29163.64 33896.91 12892.37 28887.49 7991.33 7795.58 13040.81 34098.46 12095.00 3893.49 12393.41 217
DSMNet-mixed73.13 30672.45 30175.19 33677.51 35246.82 36585.09 33682.01 35967.61 33469.27 30581.33 32650.89 30386.28 35654.54 34183.80 20392.46 218
tt080581.20 25179.06 25887.61 22486.50 29872.97 28593.66 25595.48 15574.11 29676.23 24991.99 19441.36 33797.40 16877.44 21674.78 26292.45 219
Effi-MVS+-dtu84.61 19784.90 17883.72 29591.96 22563.14 34094.95 22893.34 26985.57 11379.79 21187.12 26761.99 24395.61 25683.55 16285.83 19192.41 220
F-COLMAP84.50 20083.44 20187.67 22295.22 12472.22 28895.95 18493.78 24875.74 28476.30 24795.18 14159.50 25798.45 12172.67 25886.59 18192.35 221
Fast-Effi-MVS+-dtu83.33 21682.60 21285.50 26889.55 26769.38 31796.09 18091.38 30082.30 19175.96 25491.41 20356.71 28095.58 25875.13 23984.90 19991.54 222
MSDG80.62 25777.77 26689.14 19193.43 17877.24 23391.89 28790.18 31769.86 32668.02 30791.94 19852.21 30198.84 10359.32 32483.12 20891.35 223
HQP4-MVS82.30 17997.32 17291.13 224
HQP-MVS87.91 14887.55 13688.98 19592.08 21978.48 19597.63 6894.80 19090.52 2982.30 17994.56 15865.40 22197.32 17287.67 12583.01 21091.13 224
HQP_MVS87.50 15487.09 14888.74 20091.86 22877.96 21597.18 10194.69 19589.89 3981.33 19394.15 16864.77 22797.30 17487.08 12982.82 21490.96 226
plane_prior594.69 19597.30 17487.08 12982.82 21490.96 226
nrg03086.79 16385.43 16590.87 15288.76 27485.34 4797.06 11694.33 21984.31 14580.45 20391.98 19572.36 17496.36 21688.48 11771.13 27890.93 228
iter_conf_final89.51 10789.21 10490.39 16495.60 11484.44 6997.22 9589.09 32789.11 4882.07 18692.80 18687.03 2596.03 22589.10 11080.89 22290.70 229
RPSCF77.73 28076.63 27581.06 31488.66 27855.76 35887.77 31987.88 33764.82 33974.14 27192.79 18849.22 31096.81 20267.47 28876.88 25290.62 230
iter_conf0590.14 9889.79 9891.17 14295.85 10986.93 2697.68 6688.67 33489.93 3881.73 19292.80 18690.37 896.03 22590.44 9380.65 22590.56 231
VPNet84.69 19682.92 20690.01 17489.01 27383.45 8796.71 14295.46 15785.71 11179.65 21292.18 19356.66 28296.01 22983.05 17067.84 31190.56 231
CLD-MVS87.97 14687.48 13889.44 18892.16 21780.54 14498.14 3494.92 18291.41 1979.43 21395.40 13462.34 23897.27 17790.60 8982.90 21390.50 233
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
VPA-MVSNet85.32 18683.83 19289.77 18690.25 25382.63 9896.36 16397.07 2783.03 17881.21 19589.02 23861.58 24696.31 21885.02 14470.95 28090.36 234
FIs86.73 16586.10 15988.61 20290.05 25880.21 15296.14 17796.95 3385.56 11578.37 22392.30 19176.73 11095.28 27079.51 19479.27 23590.35 235
DU-MVS84.57 19883.33 20288.28 20988.76 27479.36 17396.43 15995.41 16385.42 11678.11 22590.82 21567.61 20495.14 27779.14 19968.30 30590.33 236
NR-MVSNet83.35 21581.52 22788.84 19788.76 27481.31 12794.45 23795.16 17384.65 13667.81 30890.82 21570.36 19694.87 28674.75 24166.89 32090.33 236
FC-MVSNet-test85.96 17585.39 16687.66 22389.38 27178.02 21295.65 19996.87 3885.12 12577.34 22991.94 19876.28 11894.74 28977.09 21878.82 23990.21 238
XXY-MVS83.84 20882.00 21989.35 18987.13 29481.38 12595.72 19594.26 22280.15 22975.92 25590.63 21861.96 24496.52 21178.98 20173.28 27190.14 239
test0.0.03 182.79 22782.48 21383.74 29486.81 29672.22 28896.52 15195.03 17883.76 16373.00 28093.20 18172.30 17688.88 34864.15 30577.52 25190.12 240
UniMVSNet_NR-MVSNet85.49 18484.59 17988.21 21389.44 27079.36 17396.71 14296.41 9785.22 12178.11 22590.98 21376.97 10695.14 27779.14 19968.30 30590.12 240
mvsmamba85.17 18984.54 18087.05 24187.94 28575.11 26696.22 17187.79 33886.91 9378.55 22091.77 20164.93 22695.91 23686.94 13379.80 22890.12 240
TranMVSNet+NR-MVSNet83.24 21981.71 22387.83 21987.71 28878.81 18996.13 17994.82 18984.52 13976.18 25190.78 21764.07 23094.60 29274.60 24566.59 32290.09 243
MVSTER89.25 11488.92 11190.24 16995.98 10684.66 6696.79 13695.36 16487.19 8980.33 20590.61 21990.02 1295.97 23085.38 14178.64 24190.09 243
PS-MVSNAJss84.91 19384.30 18686.74 24485.89 31074.40 27394.95 22894.16 22783.93 15776.45 24390.11 22971.04 19095.77 24383.16 16879.02 23890.06 245
WR-MVS84.32 20282.96 20588.41 20589.38 27180.32 14796.59 14796.25 11183.97 15476.63 23990.36 22367.53 20694.86 28775.82 23470.09 28990.06 245
FMVSNet384.71 19582.71 21090.70 15794.55 14387.71 1995.92 18694.67 19881.73 20075.82 25788.08 25366.99 21194.47 29671.23 26775.38 25989.91 247
RRT_MVS83.88 20783.27 20385.71 26287.53 29272.12 29195.35 21094.33 21983.81 16175.86 25691.28 20760.55 25095.09 28283.93 15276.76 25389.90 248
FMVSNet282.79 22780.44 24189.83 18392.66 19785.43 4695.42 20794.35 21779.06 25274.46 26987.28 26256.38 28594.31 29969.72 27974.68 26389.76 249
ACMM80.70 1383.72 21182.85 20886.31 25391.19 23772.12 29195.88 18994.29 22180.44 22077.02 23491.96 19655.24 29197.14 18679.30 19780.38 22689.67 250
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
UniMVSNet (Re)85.31 18784.23 18788.55 20389.75 26280.55 14296.72 14096.89 3785.42 11678.40 22288.93 23975.38 13695.52 26078.58 20468.02 30889.57 251
EI-MVSNet85.80 17885.20 16987.59 22691.55 23277.41 23095.13 22195.36 16480.43 22280.33 20594.71 15573.72 16195.97 23076.96 22178.64 24189.39 252
IterMVS-LS83.93 20682.80 20987.31 23591.46 23577.39 23195.66 19893.43 26380.44 22075.51 26187.26 26473.72 16195.16 27676.99 21970.72 28289.39 252
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
GBi-Net82.42 23380.43 24288.39 20692.66 19781.95 10894.30 24493.38 26579.06 25275.82 25785.66 28856.38 28593.84 30671.23 26775.38 25989.38 254
test182.42 23380.43 24288.39 20692.66 19781.95 10894.30 24493.38 26579.06 25275.82 25785.66 28856.38 28593.84 30671.23 26775.38 25989.38 254
FMVSNet179.50 26676.54 27688.39 20688.47 27981.95 10894.30 24493.38 26573.14 30572.04 28985.66 28843.86 32593.84 30665.48 29972.53 27289.38 254
miper_enhance_ethall85.95 17685.20 16988.19 21494.85 13779.76 16196.00 18194.06 23382.98 18077.74 22788.76 24179.42 6895.46 26280.58 18372.42 27389.36 257
cl2285.11 19084.17 18887.92 21895.06 13278.82 18795.51 20394.22 22379.74 23776.77 23787.92 25575.96 12295.68 24979.93 19272.42 27389.27 258
eth_miper_zixun_eth83.12 22182.01 21886.47 24991.85 23074.80 26894.33 24293.18 27479.11 25075.74 26087.25 26572.71 17095.32 26876.78 22267.13 31789.27 258
Anonymous2023121179.72 26377.19 27087.33 23395.59 11577.16 23795.18 22094.18 22659.31 35672.57 28586.20 28547.89 31695.66 25074.53 24669.24 29789.18 260
ACMP81.66 1184.00 20583.22 20486.33 25091.53 23472.95 28695.91 18893.79 24783.70 16573.79 27292.22 19254.31 29896.89 19683.98 15179.74 23189.16 261
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
bld_raw_dy_0_6482.13 23880.76 23586.24 25585.78 31275.03 26794.40 24182.62 35883.12 17476.46 24290.96 21453.83 29994.55 29381.04 18078.60 24489.14 262
DIV-MVS_self_test83.27 21782.12 21686.74 24492.19 21475.92 25995.11 22393.26 27278.44 26174.81 26887.08 26874.19 15595.19 27474.66 24469.30 29689.11 263
cl____83.27 21782.12 21686.74 24492.20 21375.95 25795.11 22393.27 27178.44 26174.82 26787.02 26974.19 15595.19 27474.67 24369.32 29589.09 264
OPM-MVS85.84 17785.10 17488.06 21588.34 28077.83 22295.72 19594.20 22487.89 7180.45 20394.05 17058.57 26497.26 17883.88 15382.76 21689.09 264
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
v2v48283.46 21481.86 22188.25 21186.19 30479.65 16796.34 16594.02 23481.56 20277.32 23088.23 25065.62 21896.03 22577.77 20869.72 29389.09 264
test_djsdf83.00 22582.45 21484.64 28184.07 33169.78 31394.80 23394.48 21080.74 21275.41 26387.70 25761.32 24895.10 28083.77 15679.76 22989.04 267
jajsoiax82.12 23981.15 23185.03 27584.19 32970.70 30594.22 24893.95 23583.07 17673.48 27489.75 23149.66 30995.37 26582.24 17479.76 22989.02 268
miper_ehance_all_eth84.57 19883.60 19887.50 23092.64 20078.25 20495.40 20993.47 26179.28 24776.41 24487.64 25876.53 11295.24 27278.58 20472.42 27389.01 269
LPG-MVS_test84.20 20483.49 20086.33 25090.88 24273.06 28395.28 21194.13 22882.20 19276.31 24593.20 18154.83 29596.95 19283.72 15880.83 22388.98 270
LGP-MVS_train86.33 25090.88 24273.06 28394.13 22882.20 19276.31 24593.20 18154.83 29596.95 19283.72 15880.83 22388.98 270
AllTest75.92 29273.06 29984.47 28492.18 21567.29 32491.07 29684.43 35167.63 33063.48 32790.18 22538.20 34397.16 18257.04 33273.37 26888.97 272
TestCases84.47 28492.18 21567.29 32484.43 35167.63 33063.48 32790.18 22538.20 34397.16 18257.04 33273.37 26888.97 272
mvs_tets81.74 24280.71 23784.84 27684.22 32870.29 30893.91 25293.78 24882.77 18473.37 27589.46 23447.36 31995.31 26981.99 17579.55 23488.92 274
c3_l83.80 20982.65 21187.25 23792.10 21877.74 22595.25 21493.04 27978.58 25876.01 25287.21 26675.25 14195.11 27977.54 21468.89 29988.91 275
pmmvs581.34 24879.54 25386.73 24785.02 32176.91 23896.22 17191.65 29777.65 26773.55 27388.61 24355.70 28894.43 29774.12 24973.35 27088.86 276
miper_lstm_enhance81.66 24580.66 23884.67 28091.19 23771.97 29591.94 28693.19 27377.86 26572.27 28785.26 29673.46 16493.42 31473.71 25367.05 31888.61 277
CP-MVSNet81.01 25380.08 24683.79 29287.91 28670.51 30694.29 24795.65 14680.83 21072.54 28688.84 24063.71 23192.32 32368.58 28568.36 30488.55 278
v14419282.43 23280.73 23687.54 22985.81 31178.22 20595.98 18293.78 24879.09 25177.11 23386.49 27764.66 22995.91 23674.20 24869.42 29488.49 279
v192192082.02 24080.23 24487.41 23285.62 31377.92 21895.79 19493.69 25378.86 25576.67 23886.44 27962.50 23795.83 24072.69 25769.77 29288.47 280
v119282.31 23680.55 24087.60 22585.94 30878.47 19895.85 19293.80 24679.33 24476.97 23586.51 27663.33 23495.87 23873.11 25570.13 28688.46 281
PS-CasMVS80.27 25979.18 25583.52 29987.56 29069.88 31194.08 25095.29 16980.27 22772.08 28888.51 24759.22 26192.23 32567.49 28768.15 30788.45 282
v14882.41 23580.89 23286.99 24286.18 30576.81 24196.27 16893.82 24380.49 21975.28 26486.11 28767.32 20995.75 24575.48 23667.03 31988.42 283
v124081.70 24379.83 25287.30 23685.50 31477.70 22695.48 20493.44 26278.46 26076.53 24186.44 27960.85 24995.84 23971.59 26470.17 28488.35 284
v114482.90 22681.27 23087.78 22186.29 30279.07 18496.14 17793.93 23680.05 23177.38 22886.80 27265.50 21995.93 23575.21 23870.13 28688.33 285
EU-MVSNet76.92 28876.95 27276.83 33084.10 33054.73 36091.77 28992.71 28372.74 30969.57 30388.69 24258.03 27087.43 35464.91 30270.00 29088.33 285
PEN-MVS79.47 26778.26 26383.08 30286.36 30068.58 32093.85 25394.77 19379.76 23671.37 29088.55 24459.79 25392.46 32164.50 30365.40 32488.19 287
IterMVS80.67 25679.16 25685.20 27289.79 26076.08 25192.97 27491.86 29380.28 22671.20 29285.14 30157.93 27191.34 33572.52 25970.74 28188.18 288
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT80.51 25879.10 25784.73 27889.63 26674.66 26992.98 27391.81 29580.05 23171.06 29485.18 29958.04 26891.40 33472.48 26070.70 28388.12 289
XVG-ACMP-BASELINE79.38 26877.90 26583.81 29184.98 32267.14 32889.03 30893.18 27480.26 22872.87 28288.15 25238.55 34296.26 21976.05 23178.05 24988.02 290
MVS-HIRNet71.36 31467.00 31984.46 28690.58 24969.74 31479.15 35087.74 33946.09 36261.96 33750.50 36645.14 32395.64 25353.74 34388.11 17188.00 291
SixPastTwentyTwo76.04 29174.32 29281.22 31384.54 32561.43 34691.16 29589.30 32577.89 26364.04 32686.31 28348.23 31194.29 30063.54 30963.84 33187.93 292
pmmvs482.54 23180.79 23387.79 22086.11 30680.49 14693.55 25993.18 27477.29 27273.35 27689.40 23565.26 22495.05 28475.32 23773.61 26787.83 293
lessismore_v079.98 31980.59 34258.34 35380.87 36058.49 34783.46 31643.10 33093.89 30563.11 31148.68 35787.72 294
ACMH75.40 1777.99 27774.96 28487.10 24090.67 24876.41 24693.19 27191.64 29872.47 31263.44 32987.61 25943.34 32897.16 18258.34 32673.94 26587.72 294
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Patchmtry77.36 28474.59 28985.67 26489.75 26275.75 26177.85 35491.12 30560.28 35271.23 29180.35 33175.45 13293.56 31257.94 32767.34 31687.68 296
MVS_030478.43 27376.70 27483.60 29788.22 28269.81 31292.91 27595.10 17472.32 31378.71 21980.29 33333.78 35293.37 31668.77 28380.23 22787.63 297
OurMVSNet-221017-077.18 28676.06 27880.55 31783.78 33460.00 35090.35 30091.05 30877.01 27866.62 31787.92 25547.73 31794.03 30371.63 26368.44 30387.62 298
V4283.04 22381.53 22687.57 22886.27 30379.09 18395.87 19094.11 23080.35 22477.22 23286.79 27365.32 22396.02 22877.74 20970.14 28587.61 299
PVSNet_BlendedMVS90.05 9989.96 9390.33 16797.47 7683.86 7798.02 4696.73 5687.98 6789.53 10389.61 23376.42 11499.57 5294.29 4579.59 23287.57 300
testgi74.88 29873.40 29879.32 32280.13 34461.75 34393.21 26986.64 34479.49 24266.56 31891.06 21035.51 34988.67 34956.79 33571.25 27787.56 301
DTE-MVSNet78.37 27477.06 27182.32 30985.22 32067.17 32793.40 26193.66 25478.71 25770.53 29788.29 24959.06 26292.23 32561.38 31763.28 33387.56 301
K. test v373.62 30171.59 30579.69 32082.98 33659.85 35190.85 29988.83 32977.13 27458.90 34582.11 32143.62 32691.72 33265.83 29854.10 34887.50 303
WR-MVS_H81.02 25280.09 24583.79 29288.08 28471.26 30494.46 23696.54 8280.08 23072.81 28386.82 27170.36 19692.65 32064.18 30467.50 31487.46 304
pm-mvs180.05 26078.02 26486.15 25685.42 31575.81 26095.11 22392.69 28477.13 27470.36 29887.43 26058.44 26695.27 27171.36 26664.25 32987.36 305
v7n79.32 26977.34 26885.28 27184.05 33272.89 28793.38 26293.87 24075.02 29170.68 29584.37 30859.58 25695.62 25567.60 28667.50 31487.32 306
v881.88 24180.06 24887.32 23486.63 29779.04 18594.41 23893.65 25578.77 25673.19 27985.57 29266.87 21295.81 24173.84 25267.61 31387.11 307
ACMH+76.62 1677.47 28374.94 28585.05 27491.07 24071.58 30193.26 26890.01 31871.80 31664.76 32488.55 24441.62 33596.48 21262.35 31371.00 27987.09 308
UnsupCasMVSNet_eth73.25 30570.57 30981.30 31277.53 35166.33 32987.24 32393.89 23980.38 22357.90 35081.59 32442.91 33290.56 34265.18 30148.51 35887.01 309
ppachtmachnet_test77.19 28574.22 29386.13 25785.39 31678.22 20593.98 25191.36 30271.74 31767.11 31184.87 30556.67 28193.37 31652.21 34664.59 32686.80 310
v1081.43 24779.53 25487.11 23986.38 29978.87 18694.31 24393.43 26377.88 26473.24 27885.26 29665.44 22095.75 24572.14 26167.71 31286.72 311
test_fmvs279.59 26479.90 25178.67 32482.86 33755.82 35795.20 21789.55 32181.09 20680.12 20989.80 23034.31 35193.51 31387.82 12278.36 24786.69 312
anonymousdsp80.98 25479.97 24984.01 28981.73 33970.44 30792.49 28093.58 25977.10 27672.98 28186.31 28357.58 27294.90 28579.32 19678.63 24386.69 312
our_test_377.90 27975.37 28385.48 26985.39 31676.74 24293.63 25691.67 29673.39 30465.72 32184.65 30758.20 26793.13 31857.82 32867.87 30986.57 314
Anonymous2023120675.29 29673.64 29780.22 31880.75 34063.38 33993.36 26390.71 31573.09 30667.12 31083.70 31450.33 30790.85 34053.63 34470.10 28886.44 315
YYNet173.53 30470.43 31082.85 30484.52 32671.73 29991.69 29191.37 30167.63 33046.79 35981.21 32755.04 29390.43 34355.93 33759.70 34086.38 316
MDA-MVSNet_test_wron73.54 30370.43 31082.86 30384.55 32471.85 29691.74 29091.32 30467.63 33046.73 36081.09 32855.11 29290.42 34455.91 33859.76 33986.31 317
ITE_SJBPF82.38 30787.00 29565.59 33089.55 32179.99 23369.37 30491.30 20641.60 33695.33 26762.86 31274.63 26486.24 318
FMVSNet576.46 29074.16 29483.35 30190.05 25876.17 24989.58 30489.85 31971.39 31965.29 32380.42 33050.61 30587.70 35361.05 31969.24 29786.18 319
MDA-MVSNet-bldmvs71.45 31367.94 31881.98 31185.33 31868.50 32192.35 28388.76 33170.40 32242.99 36181.96 32246.57 32091.31 33648.75 35654.39 34786.11 320
USDC78.65 27276.25 27785.85 25987.58 28974.60 27089.58 30490.58 31684.05 15163.13 33188.23 25040.69 34196.86 20066.57 29475.81 25786.09 321
pmmvs674.65 29971.67 30483.60 29779.13 34769.94 31093.31 26790.88 31261.05 35165.83 32084.15 31143.43 32794.83 28866.62 29260.63 33886.02 322
KD-MVS_2432*160077.63 28174.92 28685.77 26090.86 24479.44 17088.08 31593.92 23776.26 28167.05 31282.78 31972.15 17891.92 32861.53 31441.62 36785.94 323
miper_refine_blended77.63 28174.92 28685.77 26090.86 24479.44 17088.08 31593.92 23776.26 28167.05 31282.78 31972.15 17891.92 32861.53 31441.62 36785.94 323
D2MVS82.67 22981.55 22586.04 25887.77 28776.47 24495.21 21696.58 7882.66 18770.26 29985.46 29560.39 25195.80 24276.40 22779.18 23685.83 325
COLMAP_ROBcopyleft73.24 1975.74 29473.00 30083.94 29092.38 20369.08 31891.85 28886.93 34161.48 34765.32 32290.27 22442.27 33396.93 19550.91 35075.63 25885.80 326
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
CL-MVSNet_self_test75.81 29374.14 29580.83 31678.33 34967.79 32394.22 24893.52 26077.28 27369.82 30181.54 32561.47 24789.22 34757.59 33053.51 34985.48 327
CMPMVSbinary54.94 2175.71 29574.56 29079.17 32379.69 34555.98 35589.59 30393.30 27060.28 35253.85 35689.07 23747.68 31896.33 21776.55 22481.02 22185.22 328
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
LTVRE_ROB73.68 1877.99 27775.74 28184.74 27790.45 25172.02 29386.41 33091.12 30572.57 31166.63 31687.27 26354.95 29496.98 19156.29 33675.98 25485.21 329
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
N_pmnet61.30 32660.20 32964.60 34584.32 32717.00 38391.67 29210.98 38261.77 34558.45 34878.55 33849.89 30891.83 33142.27 36263.94 33084.97 330
MIMVSNet169.44 31766.65 32177.84 32776.48 35662.84 34187.42 32188.97 32866.96 33557.75 35179.72 33632.77 35585.83 35846.32 35863.42 33284.85 331
Baseline_NR-MVSNet81.22 25080.07 24784.68 27985.32 31975.12 26596.48 15388.80 33076.24 28377.28 23186.40 28267.61 20494.39 29875.73 23566.73 32184.54 332
TransMVSNet (Re)76.94 28774.38 29184.62 28285.92 30975.25 26495.28 21189.18 32673.88 29967.22 30986.46 27859.64 25494.10 30259.24 32552.57 35384.50 333
KD-MVS_self_test70.97 31569.31 31575.95 33576.24 35955.39 35987.45 32090.94 31170.20 32462.96 33377.48 34144.01 32488.09 35061.25 31853.26 35084.37 334
MS-PatchMatch83.05 22281.82 22286.72 24889.64 26579.10 18294.88 23094.59 20679.70 23870.67 29689.65 23250.43 30696.82 20170.82 27495.99 9884.25 335
ambc76.02 33368.11 36451.43 36164.97 36789.59 32060.49 34274.49 34917.17 36692.46 32161.50 31652.85 35284.17 336
test_method56.77 32754.53 33063.49 34776.49 35540.70 37375.68 35874.24 36719.47 37348.73 35871.89 35719.31 36465.80 37357.46 33147.51 36183.97 337
tfpnnormal78.14 27675.42 28286.31 25388.33 28179.24 17694.41 23896.22 11373.51 30169.81 30285.52 29455.43 28995.75 24547.65 35767.86 31083.95 338
test20.0372.36 31071.15 30675.98 33477.79 35059.16 35292.40 28289.35 32474.09 29761.50 33884.32 30948.09 31285.54 35950.63 35162.15 33683.24 339
Anonymous2024052172.06 31269.91 31278.50 32677.11 35461.67 34591.62 29390.97 31065.52 33762.37 33479.05 33736.32 34590.96 33957.75 32968.52 30282.87 340
OpenMVS_ROBcopyleft68.52 2073.02 30769.57 31383.37 30080.54 34371.82 29793.60 25888.22 33562.37 34261.98 33683.15 31835.31 35095.47 26145.08 36075.88 25682.82 341
UnsupCasMVSNet_bld68.60 32164.50 32580.92 31574.63 36067.80 32283.97 33992.94 28065.12 33854.63 35568.23 35935.97 34792.17 32760.13 32044.83 36282.78 342
MVP-Stereo82.65 23081.67 22485.59 26786.10 30778.29 20293.33 26492.82 28177.75 26669.17 30687.98 25459.28 26095.76 24471.77 26296.88 8382.73 343
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
pmmvs-eth3d73.59 30270.66 30882.38 30776.40 35773.38 27889.39 30789.43 32372.69 31060.34 34377.79 34046.43 32191.26 33766.42 29657.06 34382.51 344
PM-MVS69.32 31866.93 32076.49 33173.60 36155.84 35685.91 33279.32 36474.72 29361.09 34078.18 33921.76 36391.10 33870.86 27256.90 34482.51 344
TinyColmap72.41 30968.99 31782.68 30588.11 28369.59 31588.41 31385.20 34865.55 33657.91 34984.82 30630.80 35895.94 23451.38 34768.70 30082.49 346
LF4IMVS72.36 31070.82 30776.95 32979.18 34656.33 35486.12 33186.11 34669.30 32863.06 33286.66 27433.03 35492.25 32465.33 30068.64 30182.28 347
TDRefinement69.20 31965.78 32379.48 32166.04 36762.21 34288.21 31486.12 34562.92 34161.03 34185.61 29133.23 35394.16 30155.82 33953.02 35182.08 348
EG-PatchMatch MVS74.92 29772.02 30383.62 29683.76 33573.28 28193.62 25792.04 29268.57 32958.88 34683.80 31331.87 35695.57 25956.97 33478.67 24082.00 349
mvsany_test367.19 32265.34 32472.72 33863.08 36848.57 36383.12 34278.09 36572.07 31461.21 33977.11 34322.94 36287.78 35278.59 20351.88 35481.80 350
test_fmvs369.56 31669.19 31670.67 33969.01 36347.05 36490.87 29886.81 34271.31 32066.79 31577.15 34216.40 36783.17 36281.84 17662.51 33581.79 351
new-patchmatchnet68.85 32065.93 32277.61 32873.57 36263.94 33790.11 30288.73 33271.62 31855.08 35473.60 35140.84 33987.22 35551.35 34948.49 35981.67 352
test_040272.68 30869.54 31482.09 31088.67 27771.81 29892.72 27886.77 34361.52 34662.21 33583.91 31243.22 32993.76 30934.60 36572.23 27680.72 353
test_f64.01 32562.13 32869.65 34063.00 36945.30 37083.66 34180.68 36161.30 34855.70 35372.62 35414.23 36984.64 36069.84 27758.11 34179.00 354
pmmvs365.75 32462.18 32776.45 33267.12 36664.54 33288.68 31185.05 34954.77 36157.54 35273.79 35029.40 35986.21 35755.49 34047.77 36078.62 355
LCM-MVSNet52.52 33148.24 33465.35 34347.63 37841.45 37272.55 36383.62 35531.75 36637.66 36457.92 3649.19 37676.76 36649.26 35444.60 36377.84 356
test_vis1_rt73.96 30072.40 30278.64 32583.91 33361.16 34795.63 20068.18 37176.32 28060.09 34474.77 34729.01 36097.54 15887.74 12375.94 25577.22 357
new_pmnet66.18 32363.18 32675.18 33776.27 35861.74 34483.79 34084.66 35056.64 35951.57 35771.85 35831.29 35787.93 35149.98 35262.55 33475.86 358
PMMVS250.90 33346.31 33664.67 34455.53 37246.67 36677.30 35671.02 37040.89 36334.16 36759.32 3629.83 37576.14 36840.09 36428.63 37071.21 359
ANet_high46.22 33441.28 34161.04 35039.91 38046.25 36870.59 36476.18 36658.87 35723.09 37248.00 36912.58 37266.54 37228.65 36813.62 37370.35 360
DeepMVS_CXcopyleft64.06 34678.53 34843.26 37168.11 37369.94 32538.55 36376.14 34518.53 36579.34 36443.72 36141.62 36769.57 361
FPMVS55.09 32952.93 33261.57 34955.98 37140.51 37483.11 34383.41 35637.61 36534.95 36671.95 35614.40 36876.95 36529.81 36665.16 32567.25 362
APD_test156.56 32853.58 33165.50 34267.93 36546.51 36777.24 35772.95 36838.09 36442.75 36275.17 34613.38 37082.78 36340.19 36354.53 34667.23 363
EGC-MVSNET52.46 33247.56 33567.15 34181.98 33860.11 34982.54 34472.44 3690.11 3790.70 38074.59 34825.11 36183.26 36129.04 36761.51 33758.09 364
testf145.70 33542.41 33755.58 35153.29 37540.02 37568.96 36562.67 37527.45 36829.85 36861.58 3605.98 37873.83 37028.49 36943.46 36552.90 365
APD_test245.70 33542.41 33755.58 35153.29 37540.02 37568.96 36562.67 37527.45 36829.85 36861.58 3605.98 37873.83 37028.49 36943.46 36552.90 365
test_vis3_rt54.10 33051.04 33363.27 34858.16 37046.08 36984.17 33849.32 38156.48 36036.56 36549.48 3688.03 37791.91 33067.29 28949.87 35551.82 367
PMVScopyleft34.80 2339.19 33935.53 34250.18 35429.72 38130.30 37859.60 36966.20 37426.06 37017.91 37449.53 3673.12 38074.09 36918.19 37349.40 35646.14 368
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive35.65 2233.85 34029.49 34546.92 35541.86 37936.28 37750.45 37056.52 37818.75 37418.28 37337.84 3702.41 38158.41 37418.71 37220.62 37146.06 369
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
tmp_tt41.54 33841.93 34040.38 35620.10 38226.84 37961.93 36859.09 37714.81 37528.51 37080.58 32935.53 34848.33 37763.70 30813.11 37445.96 370
Gipumacopyleft45.11 33742.05 33954.30 35380.69 34151.30 36235.80 37183.81 35428.13 36727.94 37134.53 37111.41 37476.70 36721.45 37154.65 34534.90 371
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
E-PMN32.70 34132.39 34333.65 35753.35 37425.70 38074.07 36153.33 37921.08 37117.17 37533.63 37311.85 37354.84 37512.98 37414.04 37220.42 372
EMVS31.70 34231.45 34432.48 35850.72 37723.95 38174.78 36052.30 38020.36 37216.08 37631.48 37412.80 37153.60 37611.39 37513.10 37519.88 373
test1239.07 34611.73 3491.11 3600.50 3840.77 38489.44 3060.20 3850.34 3782.15 37910.72 3780.34 3830.32 3791.79 3780.08 3782.23 374
testmvs9.92 34512.94 3480.84 3610.65 3830.29 38593.78 2540.39 3840.42 3772.85 37815.84 3770.17 3840.30 3802.18 3770.21 3771.91 375
wuyk23d14.10 34413.89 34714.72 35955.23 37322.91 38233.83 3723.56 3834.94 3764.11 3772.28 3792.06 38219.66 37810.23 3768.74 3761.59 376
test_blank0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
uanet_test0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
DCPMVS0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
cdsmvs_eth3d_5k21.43 34328.57 3460.00 3620.00 3850.00 3860.00 37395.93 1330.00 3800.00 38197.66 6063.57 2320.00 3810.00 3790.00 3790.00 377
pcd_1.5k_mvsjas5.92 3487.89 3510.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 38071.04 1900.00 3810.00 3790.00 3790.00 377
sosnet-low-res0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
sosnet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
uncertanet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
Regformer0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
ab-mvs-re8.11 34710.81 3500.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 38197.30 810.00 3850.00 3810.00 3790.00 3790.00 377
uanet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
FOURS198.51 3978.01 21398.13 3796.21 11483.04 17794.39 41
test_one_060198.91 1884.56 6896.70 6088.06 6596.57 1698.77 1088.04 20
eth-test20.00 385
eth-test0.00 385
ZD-MVS99.09 883.22 9196.60 7682.88 18293.61 5098.06 4282.93 4899.14 8495.51 3498.49 37
test_241102_ONE99.03 1585.03 5996.78 4488.72 5297.79 498.90 588.48 1799.82 18
9.1494.26 2498.10 5798.14 3496.52 8484.74 13294.83 3698.80 782.80 5099.37 6795.95 2798.42 40
save fliter98.24 5183.34 8998.61 2396.57 7991.32 20
test072699.05 985.18 5299.11 996.78 4488.75 5097.65 998.91 287.69 22
test_part298.90 1985.14 5896.07 21
sam_mvs75.35 139
MTGPAbinary96.33 106
test_post185.88 33330.24 37573.77 15995.07 28373.89 250
test_post33.80 37276.17 11995.97 230
patchmatchnet-post77.09 34477.78 9495.39 263
MTMP97.53 7668.16 372
gm-plane-assit92.27 20979.64 16884.47 14295.15 14397.93 13785.81 137
TEST998.64 3183.71 8097.82 5496.65 6784.29 14795.16 2798.09 3784.39 3599.36 68
test_898.63 3383.64 8397.81 5696.63 7284.50 14095.10 2998.11 3684.33 3699.23 73
agg_prior98.59 3583.13 9296.56 8194.19 4399.16 83
test_prior482.34 10597.75 61
test_prior298.37 2886.08 10594.57 3998.02 4383.14 4695.05 3798.79 26
旧先验296.97 12374.06 29896.10 2097.76 14688.38 118
新几何296.42 160
原ACMM296.84 131
testdata299.48 6076.45 226
segment_acmp82.69 51
testdata195.57 20287.44 80
plane_prior791.86 22877.55 228
plane_prior691.98 22477.92 21864.77 227
plane_prior494.15 168
plane_prior377.75 22490.17 3681.33 193
plane_prior297.18 10189.89 39
plane_prior191.95 226
plane_prior77.96 21597.52 7990.36 3482.96 212
n20.00 386
nn0.00 386
door-mid79.75 363
test1196.50 87
door80.13 362
HQP5-MVS78.48 195
HQP-NCC92.08 21997.63 6890.52 2982.30 179
ACMP_Plane92.08 21997.63 6890.52 2982.30 179
BP-MVS87.67 125
HQP3-MVS94.80 19083.01 210
HQP2-MVS65.40 221
NP-MVS92.04 22378.22 20594.56 158
MDTV_nov1_ep1383.69 19394.09 15881.01 13086.78 32796.09 12283.81 16184.75 15184.32 30974.44 15396.54 21063.88 30685.07 198
ACMMP++_ref78.45 246
ACMMP++79.05 237
Test By Simon71.65 183