This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort by
bld_raw_dy_0_6482.84 11280.75 13289.09 1493.74 5272.16 1593.16 11077.36 36089.69 174.55 17096.48 2732.35 35097.56 6292.21 2477.24 21297.53 6
MCST-MVS91.08 191.46 389.94 497.66 273.37 897.13 395.58 1189.33 285.77 5496.26 3272.84 2699.38 192.64 1995.93 997.08 12
MM90.87 291.52 288.92 1592.12 9671.10 2897.02 496.04 688.70 391.57 1496.19 3570.12 4098.91 1796.83 195.06 1796.76 16
iter_conf05_1186.99 3586.27 4389.15 1393.74 5272.45 1397.56 187.04 30988.32 492.60 596.57 2332.61 34897.45 6692.21 2495.80 1097.53 6
DELS-MVS90.05 790.09 1189.94 493.14 7173.88 797.01 594.40 5088.32 485.71 5594.91 7274.11 1998.91 1787.26 6295.94 897.03 13
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MVS_030490.01 890.50 988.53 2390.14 14470.94 2996.47 1495.72 1087.33 689.60 2996.26 3268.44 4598.74 2495.82 494.72 3195.90 46
EPNet87.84 2388.38 1986.23 8093.30 6566.05 13795.26 3394.84 2987.09 788.06 3594.53 8166.79 5997.34 7583.89 9391.68 7395.29 68
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CANet89.61 1289.99 1288.46 2494.39 3969.71 5096.53 1393.78 6686.89 889.68 2895.78 4265.94 6699.10 992.99 1693.91 4196.58 22
patch_mono-289.71 1190.99 685.85 9096.04 2463.70 20095.04 4195.19 1986.74 991.53 1595.15 6573.86 2097.58 5993.38 1492.00 6896.28 36
DeepPCF-MVS81.17 189.72 1091.38 484.72 13293.00 7458.16 30496.72 994.41 4886.50 1090.25 2297.83 175.46 1498.67 2592.78 1895.49 1397.32 8
CANet_DTU84.09 8983.52 8385.81 9190.30 14166.82 11991.87 16789.01 26585.27 1186.09 5193.74 10547.71 26896.98 10077.90 13989.78 9693.65 139
CLD-MVS82.73 11482.35 11383.86 16087.90 20367.65 9895.45 2992.18 13385.06 1272.58 19392.27 13852.46 22495.78 14884.18 8979.06 19288.16 244
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CNVR-MVS90.32 690.89 788.61 2296.76 870.65 3296.47 1494.83 3084.83 1389.07 3296.80 1970.86 3699.06 1592.64 1995.71 1196.12 39
NCCC89.07 1589.46 1587.91 2896.60 1069.05 6296.38 1694.64 3984.42 1486.74 4696.20 3466.56 6298.76 2389.03 4894.56 3395.92 45
test_fmvsm_n_192087.69 2588.50 1885.27 11187.05 22463.55 20793.69 8891.08 18584.18 1590.17 2497.04 867.58 5497.99 3995.72 590.03 9394.26 113
PS-MVSNAJ88.14 1787.61 2889.71 692.06 9776.72 195.75 2193.26 9083.86 1689.55 3096.06 3853.55 21397.89 4391.10 3393.31 5294.54 105
DeepC-MVS_fast79.48 287.95 2188.00 2487.79 3195.86 2768.32 7895.74 2294.11 6083.82 1783.49 7696.19 3564.53 8498.44 3183.42 9694.88 2596.61 19
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_fmvsmconf_n86.58 4387.17 3384.82 12585.28 25562.55 23194.26 5789.78 23083.81 1887.78 3796.33 3165.33 7296.98 10094.40 1187.55 11494.95 84
xiu_mvs_v2_base87.92 2287.38 3289.55 1191.41 12176.43 395.74 2293.12 9883.53 1989.55 3095.95 4053.45 21797.68 5091.07 3492.62 5994.54 105
test_fmvsmconf0.1_n85.71 5986.08 5184.62 13980.83 30862.33 23693.84 8188.81 27383.50 2087.00 4496.01 3963.36 10296.93 10794.04 1287.29 11794.61 101
TSAR-MVS + MP.88.11 1988.64 1786.54 7091.73 11068.04 8890.36 22793.55 7982.89 2191.29 1692.89 12372.27 3196.03 14287.99 5394.77 2695.54 56
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
DPM-MVS90.70 390.52 891.24 189.68 15376.68 297.29 295.35 1582.87 2291.58 1397.22 379.93 599.10 983.12 9797.64 297.94 1
iter_conf0583.27 10482.70 10684.98 12093.32 6471.84 1894.16 5981.76 35082.74 2373.83 18088.40 20072.77 2794.61 19682.10 10375.21 22488.48 238
WTY-MVS86.32 4685.81 5587.85 2992.82 7969.37 5695.20 3595.25 1782.71 2481.91 8794.73 7667.93 5297.63 5679.55 12482.25 16296.54 23
lupinMVS87.74 2487.77 2687.63 3889.24 16871.18 2596.57 1292.90 10682.70 2587.13 4195.27 5864.99 7595.80 14789.34 4391.80 7195.93 44
fmvsm_s_conf0.5_n86.39 4586.91 3784.82 12587.36 21763.54 20894.74 4890.02 22482.52 2690.14 2596.92 1362.93 11097.84 4695.28 882.26 16193.07 156
HPM-MVS++copyleft89.37 1489.95 1387.64 3495.10 3068.23 8495.24 3494.49 4482.43 2788.90 3396.35 2971.89 3498.63 2688.76 4996.40 696.06 40
test_fmvsmconf0.01_n83.70 9983.52 8384.25 15375.26 35961.72 25092.17 14987.24 30882.36 2884.91 6495.41 5055.60 18996.83 11292.85 1785.87 13294.21 115
PVSNet_Blended86.73 4186.86 3986.31 7993.76 4967.53 10296.33 1793.61 7682.34 2981.00 9793.08 11763.19 10597.29 7887.08 6591.38 7994.13 120
MSP-MVS90.38 591.87 185.88 8792.83 7764.03 19093.06 11394.33 5482.19 3093.65 396.15 3785.89 197.19 8491.02 3597.75 196.43 30
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
PAPM85.89 5685.46 6187.18 4888.20 19672.42 1492.41 14392.77 10982.11 3180.34 10693.07 11868.27 4795.02 18078.39 13693.59 4894.09 122
jason86.40 4486.17 4887.11 5086.16 24070.54 3495.71 2592.19 13282.00 3284.58 6794.34 9161.86 12095.53 16787.76 5590.89 8595.27 71
jason: jason.
baseline181.84 12981.03 12984.28 15291.60 11366.62 12591.08 20591.66 15981.87 3374.86 16791.67 15269.98 4194.92 18671.76 18464.75 30191.29 201
CHOSEN 1792x268884.98 7283.45 8889.57 1089.94 14875.14 592.07 15692.32 12481.87 3375.68 15788.27 20360.18 13698.60 2780.46 11890.27 9294.96 83
fmvsm_s_conf0.1_n85.61 6285.93 5384.68 13582.95 29263.48 21094.03 6989.46 24281.69 3589.86 2696.74 2061.85 12197.75 4994.74 982.01 16792.81 164
test_vis1_n_192081.66 13182.01 11680.64 24182.24 29755.09 33294.76 4786.87 31181.67 3684.40 6994.63 7938.17 31794.67 19591.98 2883.34 15292.16 185
casdiffmvs_mvgpermissive85.66 6185.18 6587.09 5188.22 19569.35 5793.74 8791.89 14481.47 3780.10 10891.45 15564.80 8096.35 12787.23 6387.69 11295.58 54
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
h-mvs3383.01 10982.56 10984.35 14989.34 16062.02 24292.72 12693.76 6981.45 3882.73 8292.25 14060.11 13797.13 8987.69 5662.96 31393.91 131
hse-mvs281.12 14081.11 12881.16 22886.52 23257.48 31389.40 25391.16 17881.45 3882.73 8290.49 17160.11 13794.58 19787.69 5660.41 34091.41 195
ET-MVSNet_ETH3D84.01 9083.15 9886.58 6890.78 13470.89 3094.74 4894.62 4081.44 4058.19 32993.64 10873.64 2392.35 28282.66 9978.66 19796.50 28
fmvsm_s_conf0.5_n_a85.75 5886.09 5084.72 13285.73 24963.58 20593.79 8489.32 24881.42 4190.21 2396.91 1462.41 11597.67 5194.48 1080.56 18092.90 162
test_fmvsmvis_n_192083.80 9583.48 8684.77 12982.51 29463.72 19891.37 19183.99 34081.42 4177.68 13795.74 4458.37 15597.58 5993.38 1486.87 12093.00 159
testing1186.71 4286.44 4287.55 4093.54 5971.35 2293.65 9095.58 1181.36 4380.69 10092.21 14172.30 3096.46 12685.18 8083.43 15194.82 92
casdiffmvspermissive85.37 6584.87 7186.84 5788.25 19369.07 6193.04 11591.76 15181.27 4480.84 9992.07 14364.23 8696.06 14084.98 8387.43 11695.39 59
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ETV-MVS86.01 5286.11 4985.70 9790.21 14367.02 11693.43 10491.92 14181.21 4584.13 7394.07 10060.93 13095.63 15889.28 4489.81 9494.46 111
DeepC-MVS77.85 385.52 6485.24 6486.37 7688.80 17866.64 12492.15 15093.68 7481.07 4676.91 14893.64 10862.59 11398.44 3185.50 7692.84 5894.03 126
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
baseline85.01 7184.44 7586.71 6288.33 19068.73 6990.24 23291.82 15081.05 4781.18 9392.50 13063.69 9496.08 13984.45 8886.71 12695.32 66
PC_three_145280.91 4894.07 296.83 1883.57 499.12 595.70 797.42 497.55 4
IU-MVS96.46 1169.91 4395.18 2080.75 4995.28 192.34 2195.36 1496.47 29
diffmvspermissive84.28 8283.83 8085.61 9987.40 21568.02 8990.88 21189.24 25180.54 5081.64 8992.52 12959.83 14194.52 20487.32 6185.11 13694.29 112
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
fmvsm_l_conf0.5_n87.49 2788.19 2285.39 10586.95 22564.37 18094.30 5588.45 28680.51 5192.70 496.86 1569.98 4197.15 8895.83 388.08 10994.65 99
fmvsm_s_conf0.1_n_a84.76 7484.84 7284.53 14180.23 31863.50 20992.79 12388.73 27780.46 5289.84 2796.65 2260.96 12997.57 6193.80 1380.14 18292.53 171
VPNet78.82 18277.53 18482.70 18784.52 26866.44 12993.93 7392.23 12780.46 5272.60 19288.38 20149.18 25393.13 24872.47 17763.97 31088.55 237
testing9986.01 5285.47 6087.63 3893.62 5571.25 2493.47 10295.23 1880.42 5480.60 10291.95 14571.73 3596.50 12480.02 12182.22 16395.13 77
testing22285.18 6884.69 7386.63 6592.91 7669.91 4392.61 13495.80 980.31 5580.38 10592.27 13868.73 4495.19 17775.94 14983.27 15394.81 93
testing9185.93 5485.31 6387.78 3293.59 5771.47 2093.50 9995.08 2580.26 5680.53 10391.93 14670.43 3896.51 12380.32 11982.13 16595.37 61
sasdasda86.85 3786.25 4688.66 2091.80 10871.92 1693.54 9691.71 15480.26 5687.55 3895.25 6063.59 9896.93 10788.18 5184.34 14297.11 10
canonicalmvs86.85 3786.25 4688.66 2091.80 10871.92 1693.54 9691.71 15480.26 5687.55 3895.25 6063.59 9896.93 10788.18 5184.34 14297.11 10
fmvsm_l_conf0.5_n_a87.44 2988.15 2385.30 10987.10 22264.19 18794.41 5388.14 29580.24 5992.54 696.97 1069.52 4397.17 8595.89 288.51 10594.56 102
CS-MVS-test86.14 5087.01 3583.52 16992.63 8559.36 29295.49 2891.92 14180.09 6085.46 5995.53 4961.82 12295.77 15086.77 6993.37 5195.41 58
CS-MVS85.80 5786.65 4183.27 17792.00 10158.92 29795.31 3291.86 14679.97 6184.82 6595.40 5162.26 11695.51 16886.11 7392.08 6795.37 61
MVSTER82.47 11882.05 11483.74 16292.68 8469.01 6391.90 16693.21 9179.83 6272.14 20185.71 24374.72 1694.72 19175.72 15072.49 24687.50 249
HQP-NCC87.54 21194.06 6479.80 6374.18 173
ACMP_Plane87.54 21194.06 6479.80 6374.18 173
HQP-MVS81.14 13880.64 13682.64 18987.54 21163.66 20394.06 6491.70 15779.80 6374.18 17390.30 17551.63 23195.61 16077.63 14078.90 19388.63 234
baseline283.68 10083.42 9184.48 14487.37 21666.00 13990.06 23695.93 879.71 6669.08 23690.39 17377.92 696.28 12978.91 13181.38 17391.16 203
MGCFI-Net85.59 6385.73 5885.17 11591.41 12162.44 23292.87 12191.31 17179.65 6786.99 4595.14 6662.90 11196.12 13487.13 6484.13 14996.96 14
EI-MVSNet-Vis-set83.77 9683.67 8284.06 15692.79 8263.56 20691.76 17494.81 3179.65 6777.87 13594.09 9863.35 10397.90 4279.35 12579.36 18990.74 207
ETVMVS84.22 8683.71 8185.76 9492.58 8768.25 8392.45 14295.53 1479.54 6979.46 11691.64 15370.29 3994.18 21769.16 20882.76 15994.84 89
EIA-MVS84.84 7384.88 7084.69 13491.30 12362.36 23593.85 7892.04 13679.45 7079.33 11994.28 9462.42 11496.35 12780.05 12091.25 8295.38 60
dmvs_re76.93 21475.36 21781.61 21887.78 20860.71 27080.00 34587.99 29979.42 7169.02 23889.47 18846.77 27194.32 20863.38 26274.45 22989.81 219
plane_prior62.42 23393.85 7879.38 7278.80 195
dcpmvs_287.37 3087.55 2986.85 5695.04 3268.20 8590.36 22790.66 19779.37 7381.20 9293.67 10774.73 1596.55 12190.88 3692.00 6895.82 48
alignmvs87.28 3186.97 3688.24 2791.30 12371.14 2795.61 2693.56 7879.30 7487.07 4395.25 6068.43 4696.93 10787.87 5484.33 14496.65 18
TESTMET0.1,182.41 11981.98 11783.72 16588.08 19763.74 19692.70 12893.77 6879.30 7477.61 13987.57 21858.19 15894.08 22173.91 16586.68 12793.33 148
EI-MVSNet-UG-set83.14 10782.96 9983.67 16792.28 9163.19 21691.38 19094.68 3779.22 7676.60 15093.75 10462.64 11297.76 4878.07 13878.01 20090.05 216
PVSNet73.49 880.05 16078.63 16784.31 15090.92 13064.97 16592.47 14191.05 18879.18 7772.43 19890.51 17037.05 33294.06 22368.06 21786.00 13193.90 133
HY-MVS76.49 584.28 8283.36 9487.02 5492.22 9367.74 9584.65 30394.50 4379.15 7882.23 8587.93 21266.88 5896.94 10580.53 11782.20 16496.39 32
PVSNet_BlendedMVS83.38 10283.43 8983.22 17893.76 4967.53 10294.06 6493.61 7679.13 7981.00 9785.14 24663.19 10597.29 7887.08 6573.91 23584.83 304
plane_prior361.95 24579.09 8072.53 194
MVS_111021_HR86.19 4985.80 5687.37 4493.17 7069.79 4793.99 7093.76 6979.08 8178.88 12693.99 10162.25 11798.15 3685.93 7591.15 8394.15 119
test_cas_vis1_n_192080.45 15280.61 13779.97 26078.25 34457.01 32094.04 6888.33 28979.06 8282.81 8193.70 10638.65 31291.63 29790.82 3779.81 18491.27 202
MSLP-MVS++86.27 4785.91 5487.35 4592.01 10068.97 6595.04 4192.70 11179.04 8381.50 9096.50 2658.98 15296.78 11383.49 9593.93 4096.29 34
IB-MVS77.80 482.18 12280.46 14187.35 4589.14 17070.28 3795.59 2795.17 2178.85 8470.19 22485.82 24170.66 3797.67 5172.19 18166.52 28694.09 122
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
3Dnovator73.91 682.69 11780.82 13188.31 2689.57 15571.26 2392.60 13594.39 5178.84 8567.89 25792.48 13348.42 25998.52 2868.80 21394.40 3595.15 76
HQP_MVS80.34 15479.75 15082.12 20786.94 22662.42 23393.13 11191.31 17178.81 8672.53 19489.14 19350.66 23895.55 16576.74 14378.53 19888.39 241
plane_prior293.13 11178.81 86
MG-MVS87.11 3386.27 4389.62 797.79 176.27 494.96 4494.49 4478.74 8883.87 7592.94 12164.34 8596.94 10575.19 15494.09 3795.66 51
gm-plane-assit88.42 18667.04 11578.62 8991.83 14897.37 7276.57 145
VNet86.20 4885.65 5987.84 3093.92 4669.99 3995.73 2495.94 778.43 9086.00 5293.07 11858.22 15797.00 9685.22 7884.33 14496.52 24
tpm78.58 18977.03 19383.22 17885.94 24564.56 16983.21 31791.14 18178.31 9173.67 18179.68 31864.01 8892.09 28866.07 24171.26 25693.03 157
save fliter93.84 4867.89 9295.05 4092.66 11478.19 92
TSAR-MVS + GP.87.96 2088.37 2086.70 6393.51 6165.32 15595.15 3793.84 6578.17 9385.93 5394.80 7575.80 1398.21 3489.38 4288.78 10296.59 20
FIs79.47 17079.41 15779.67 26785.95 24359.40 28991.68 17893.94 6378.06 9468.96 24088.28 20266.61 6191.77 29466.20 24074.99 22587.82 246
sss82.71 11682.38 11283.73 16489.25 16559.58 28792.24 14794.89 2877.96 9579.86 11192.38 13556.70 17697.05 9177.26 14280.86 17794.55 103
PMMVS81.98 12882.04 11581.78 21489.76 15256.17 32491.13 20490.69 19477.96 9580.09 10993.57 11046.33 27894.99 18281.41 11087.46 11594.17 117
EC-MVSNet84.53 7885.04 6883.01 18189.34 16061.37 25694.42 5291.09 18377.91 9783.24 7794.20 9658.37 15595.40 16985.35 7791.41 7892.27 181
test111180.84 14580.02 14483.33 17587.87 20460.76 26792.62 13386.86 31277.86 9875.73 15691.39 15846.35 27694.70 19472.79 17288.68 10494.52 107
MVS_Test84.16 8883.20 9587.05 5391.56 11569.82 4689.99 24192.05 13577.77 9982.84 8086.57 23163.93 9096.09 13674.91 15989.18 10095.25 74
SteuartSystems-ACMMP86.82 4086.90 3886.58 6890.42 13866.38 13096.09 1893.87 6477.73 10084.01 7495.66 4563.39 10197.94 4087.40 6093.55 4995.42 57
Skip Steuart: Steuart Systems R&D Blog.
EPNet_dtu78.80 18379.26 16177.43 29688.06 19849.71 35691.96 16491.95 14077.67 10176.56 15191.28 16058.51 15490.20 31856.37 29880.95 17692.39 173
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test250683.29 10382.92 10184.37 14888.39 18863.18 21792.01 15991.35 17077.66 10278.49 13191.42 15664.58 8395.09 17973.19 16689.23 9894.85 86
ECVR-MVScopyleft81.29 13680.38 14284.01 15888.39 18861.96 24492.56 14086.79 31377.66 10276.63 14991.42 15646.34 27795.24 17674.36 16389.23 9894.85 86
tpmrst80.57 14879.14 16384.84 12490.10 14568.28 8081.70 32789.72 23777.63 10475.96 15479.54 32064.94 7792.71 26575.43 15277.28 21193.55 141
testdata189.21 25777.55 105
UniMVSNet_NR-MVSNet78.15 19677.55 18379.98 25884.46 27060.26 27792.25 14693.20 9377.50 10668.88 24186.61 23066.10 6492.13 28666.38 23762.55 31787.54 248
UA-Net80.02 16179.65 15181.11 23089.33 16257.72 30886.33 29689.00 26877.44 10781.01 9689.15 19259.33 14895.90 14561.01 27884.28 14689.73 222
PVSNet_Blended_VisFu83.97 9183.50 8585.39 10590.02 14666.59 12793.77 8591.73 15277.43 10877.08 14789.81 18563.77 9396.97 10279.67 12388.21 10792.60 168
dmvs_testset65.55 32366.45 29962.86 36479.87 32122.35 40776.55 35971.74 37777.42 10955.85 34087.77 21551.39 23380.69 37931.51 38965.92 29085.55 294
NR-MVSNet76.05 22974.59 22580.44 24382.96 29062.18 24090.83 21391.73 15277.12 11060.96 31486.35 23359.28 14991.80 29360.74 27961.34 33287.35 255
FC-MVSNet-test77.99 19878.08 17577.70 29184.89 26355.51 32990.27 23093.75 7276.87 11166.80 27387.59 21765.71 6990.23 31762.89 26873.94 23487.37 253
SD-MVS87.49 2787.49 3087.50 4293.60 5668.82 6893.90 7592.63 11776.86 11287.90 3695.76 4366.17 6397.63 5689.06 4791.48 7796.05 41
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
mvsmamba76.85 21775.71 21380.25 24983.07 28959.16 29491.44 18280.64 35576.84 11367.95 25386.33 23546.17 28194.24 21576.06 14872.92 24287.36 254
UGNet79.87 16478.68 16683.45 17489.96 14761.51 25392.13 15190.79 19276.83 11478.85 12886.33 23538.16 31896.17 13267.93 22087.17 11892.67 166
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
MVS_111021_LR82.02 12781.52 12183.51 17188.42 18662.88 22689.77 24588.93 26976.78 11575.55 16193.10 11550.31 24195.38 17183.82 9487.02 11992.26 182
SDMVSNet80.26 15578.88 16584.40 14689.25 16567.63 9985.35 29993.02 10076.77 11670.84 21587.12 22547.95 26596.09 13685.04 8174.55 22689.48 226
sd_testset77.08 21375.37 21682.20 20389.25 16562.11 24182.06 32489.09 26176.77 11670.84 21587.12 22541.43 30295.01 18167.23 22774.55 22689.48 226
TranMVSNet+NR-MVSNet75.86 23474.52 22879.89 26282.44 29560.64 27391.37 19191.37 16976.63 11867.65 26086.21 23752.37 22591.55 29961.84 27460.81 33587.48 250
PAPR85.15 6984.47 7487.18 4896.02 2568.29 7991.85 16993.00 10376.59 11979.03 12295.00 6761.59 12397.61 5878.16 13789.00 10195.63 52
UniMVSNet (Re)77.58 20576.78 19779.98 25884.11 27660.80 26491.76 17493.17 9576.56 12069.93 23084.78 25163.32 10492.36 28164.89 25362.51 31986.78 265
DU-MVS76.86 21575.84 21079.91 26182.96 29060.26 27791.26 19791.54 16276.46 12168.88 24186.35 23356.16 18292.13 28666.38 23762.55 31787.35 255
OPM-MVS79.00 17778.09 17481.73 21583.52 28463.83 19391.64 18090.30 21176.36 12271.97 20389.93 18446.30 27995.17 17875.10 15577.70 20386.19 277
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
WR-MVS76.76 22075.74 21279.82 26484.60 26662.27 23992.60 13592.51 12176.06 12367.87 25885.34 24456.76 17490.24 31662.20 27263.69 31286.94 263
GA-MVS78.33 19476.23 20484.65 13683.65 28266.30 13391.44 18290.14 21876.01 12470.32 22284.02 25942.50 29894.72 19170.98 18977.00 21492.94 160
PVSNet_068.08 1571.81 27768.32 29382.27 19984.68 26462.31 23888.68 26690.31 21075.84 12557.93 33480.65 30537.85 32394.19 21669.94 19929.05 39790.31 213
CDS-MVSNet81.43 13480.74 13383.52 16986.26 23764.45 17492.09 15490.65 19875.83 12673.95 17989.81 18563.97 8992.91 25871.27 18782.82 15693.20 151
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
UWE-MVS80.81 14681.01 13080.20 25189.33 16257.05 31891.91 16594.71 3575.67 12775.01 16689.37 18963.13 10791.44 30567.19 22882.80 15892.12 186
CostFormer82.33 12081.15 12485.86 8989.01 17368.46 7582.39 32393.01 10175.59 12880.25 10781.57 28872.03 3394.96 18379.06 12977.48 20894.16 118
nrg03080.93 14379.86 14884.13 15583.69 28168.83 6793.23 10891.20 17675.55 12975.06 16588.22 20763.04 10994.74 19081.88 10566.88 28388.82 232
VDD-MVS83.06 10881.81 11986.81 5990.86 13267.70 9695.40 3091.50 16575.46 13081.78 8892.34 13740.09 30697.13 8986.85 6882.04 16695.60 53
Effi-MVS+-dtu76.14 22575.28 21978.72 28283.22 28655.17 33189.87 24287.78 30275.42 13167.98 25281.43 29045.08 28992.52 27575.08 15671.63 25188.48 238
test_prior295.10 3975.40 13285.25 6395.61 4767.94 5187.47 5994.77 26
MTAPA83.91 9283.38 9385.50 10191.89 10665.16 16081.75 32692.23 12775.32 13380.53 10395.21 6356.06 18597.16 8784.86 8592.55 6194.18 116
EPMVS78.49 19175.98 20886.02 8391.21 12569.68 5180.23 34191.20 17675.25 13472.48 19678.11 32854.65 19993.69 23957.66 29583.04 15494.69 95
miper_enhance_ethall78.86 18177.97 17781.54 22088.00 20165.17 15991.41 18489.15 25775.19 13568.79 24383.98 26067.17 5692.82 26072.73 17365.30 29286.62 270
v2v48277.42 20775.65 21482.73 18680.38 31467.13 11291.85 16990.23 21575.09 13669.37 23283.39 26653.79 21194.44 20671.77 18365.00 29886.63 269
VPA-MVSNet79.03 17678.00 17682.11 21085.95 24364.48 17393.22 10994.66 3875.05 13774.04 17884.95 24852.17 22693.52 24274.90 16067.04 28288.32 243
ACMMP_NAP86.05 5185.80 5686.80 6091.58 11467.53 10291.79 17193.49 8374.93 13884.61 6695.30 5559.42 14697.92 4186.13 7294.92 2094.94 85
thres20079.66 16678.33 17083.66 16892.54 8865.82 14593.06 11396.31 374.90 13973.30 18488.66 19559.67 14395.61 16047.84 33278.67 19689.56 225
TAMVS80.37 15379.45 15683.13 18085.14 25863.37 21191.23 19990.76 19374.81 14072.65 19188.49 19760.63 13292.95 25369.41 20481.95 16893.08 155
MP-MVS-pluss85.24 6785.13 6685.56 10091.42 11965.59 14991.54 18192.51 12174.56 14180.62 10195.64 4659.15 15097.00 9686.94 6793.80 4294.07 124
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
mvs_anonymous81.36 13579.99 14685.46 10290.39 14068.40 7686.88 29390.61 19974.41 14270.31 22384.67 25263.79 9292.32 28373.13 16785.70 13395.67 50
MAR-MVS84.18 8783.43 8986.44 7396.25 2165.93 14294.28 5694.27 5674.41 14279.16 12195.61 4753.99 20898.88 2169.62 20293.26 5394.50 109
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
BH-w/o80.49 15179.30 16084.05 15790.83 13364.36 18293.60 9389.42 24574.35 14469.09 23590.15 18055.23 19395.61 16064.61 25486.43 13092.17 184
thisisatest051583.41 10182.49 11086.16 8189.46 15968.26 8193.54 9694.70 3674.31 14575.75 15590.92 16372.62 2896.52 12269.64 20081.50 17293.71 137
Vis-MVSNet (Re-imp)79.24 17379.57 15278.24 28888.46 18452.29 34390.41 22589.12 25974.24 14669.13 23491.91 14765.77 6890.09 32059.00 29088.09 10892.33 175
SMA-MVScopyleft88.14 1788.29 2187.67 3393.21 6868.72 7093.85 7894.03 6274.18 14791.74 1296.67 2165.61 7098.42 3389.24 4596.08 795.88 47
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
AUN-MVS78.37 19277.43 18581.17 22786.60 23157.45 31489.46 25291.16 17874.11 14874.40 17290.49 17155.52 19094.57 19974.73 16260.43 33991.48 193
3Dnovator+73.60 782.10 12680.60 13886.60 6690.89 13166.80 12195.20 3593.44 8574.05 14967.42 26392.49 13249.46 24997.65 5570.80 19191.68 7395.33 64
XVS83.87 9383.47 8785.05 11793.22 6663.78 19492.92 11992.66 11473.99 15078.18 13294.31 9355.25 19197.41 7079.16 12791.58 7593.95 129
X-MVStestdata76.86 21574.13 23585.05 11793.22 6663.78 19492.92 11992.66 11473.99 15078.18 13210.19 40755.25 19197.41 7079.16 12791.58 7593.95 129
MS-PatchMatch77.90 20276.50 20082.12 20785.99 24269.95 4291.75 17692.70 11173.97 15262.58 30884.44 25641.11 30395.78 14863.76 26092.17 6580.62 351
LCM-MVSNet-Re72.93 26671.84 26576.18 31088.49 18248.02 36380.07 34470.17 38073.96 15352.25 35380.09 31449.98 24488.24 33267.35 22484.23 14792.28 178
Vis-MVSNetpermissive80.92 14479.98 14783.74 16288.48 18361.80 24693.44 10388.26 29473.96 15377.73 13691.76 14949.94 24594.76 18865.84 24390.37 9194.65 99
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test-mter79.96 16279.38 15981.72 21686.93 22861.17 25792.70 12891.54 16273.85 15575.62 15886.94 22749.84 24792.38 27972.21 17984.76 14091.60 190
OMC-MVS78.67 18877.91 17980.95 23785.76 24857.40 31588.49 26988.67 28073.85 15572.43 19892.10 14249.29 25294.55 20272.73 17377.89 20190.91 206
Fast-Effi-MVS+81.14 13880.01 14584.51 14390.24 14265.86 14394.12 6389.15 25773.81 15775.37 16388.26 20457.26 16594.53 20366.97 23184.92 13793.15 152
ZNCC-MVS85.33 6685.08 6786.06 8293.09 7365.65 14793.89 7693.41 8773.75 15879.94 11094.68 7860.61 13398.03 3882.63 10093.72 4594.52 107
V4276.46 22374.55 22782.19 20479.14 33267.82 9390.26 23189.42 24573.75 15868.63 24681.89 28151.31 23494.09 22071.69 18564.84 29984.66 305
v114476.73 22174.88 22182.27 19980.23 31866.60 12691.68 17890.21 21773.69 16069.06 23781.89 28152.73 22294.40 20769.21 20765.23 29585.80 288
v14876.19 22474.47 22981.36 22380.05 32064.44 17591.75 17690.23 21573.68 16167.13 26780.84 30155.92 18793.86 23768.95 21161.73 32885.76 291
CR-MVSNet73.79 25970.82 27482.70 18783.15 28767.96 9070.25 37184.00 33873.67 16269.97 22872.41 35757.82 16189.48 32452.99 31273.13 23990.64 209
XXY-MVS77.94 20076.44 20182.43 19382.60 29364.44 17592.01 15991.83 14973.59 16370.00 22785.82 24154.43 20494.76 18869.63 20168.02 27688.10 245
tfpn200view978.79 18477.43 18582.88 18392.21 9464.49 17192.05 15796.28 473.48 16471.75 20688.26 20460.07 13995.32 17245.16 34377.58 20588.83 230
thres40078.68 18677.43 18582.43 19392.21 9464.49 17192.05 15796.28 473.48 16471.75 20688.26 20460.07 13995.32 17245.16 34377.58 20587.48 250
FMVSNet377.73 20376.04 20782.80 18491.20 12668.99 6491.87 16791.99 13873.35 16667.04 26883.19 26856.62 17892.14 28559.80 28669.34 26387.28 257
GST-MVS84.63 7784.29 7785.66 9892.82 7965.27 15693.04 11593.13 9773.20 16778.89 12394.18 9759.41 14797.85 4581.45 10992.48 6293.86 134
USDC67.43 31464.51 31576.19 30977.94 34855.29 33078.38 35285.00 32973.17 16848.36 36880.37 30821.23 37892.48 27752.15 31364.02 30980.81 349
MP-MVScopyleft85.02 7084.97 6985.17 11592.60 8664.27 18593.24 10792.27 12673.13 16979.63 11494.43 8461.90 11997.17 8585.00 8292.56 6094.06 125
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
xiu_mvs_v1_base_debu82.16 12381.12 12585.26 11286.42 23368.72 7092.59 13790.44 20473.12 17084.20 7094.36 8638.04 32095.73 15284.12 9086.81 12191.33 196
xiu_mvs_v1_base82.16 12381.12 12585.26 11286.42 23368.72 7092.59 13790.44 20473.12 17084.20 7094.36 8638.04 32095.73 15284.12 9086.81 12191.33 196
xiu_mvs_v1_base_debi82.16 12381.12 12585.26 11286.42 23368.72 7092.59 13790.44 20473.12 17084.20 7094.36 8638.04 32095.73 15284.12 9086.81 12191.33 196
D2MVS73.80 25872.02 26379.15 27879.15 33162.97 22088.58 26890.07 22072.94 17359.22 32378.30 32542.31 30092.70 26765.59 24772.00 24981.79 340
BH-RMVSNet79.46 17177.65 18184.89 12291.68 11265.66 14693.55 9588.09 29772.93 17473.37 18391.12 16246.20 28096.12 13456.28 29985.61 13592.91 161
Syy-MVS69.65 29369.52 28570.03 34887.87 20443.21 38188.07 27489.01 26572.91 17563.11 30188.10 20845.28 28785.54 35122.07 39469.23 26681.32 343
myMVS_eth3d72.58 27572.74 25372.10 34187.87 20449.45 35888.07 27489.01 26572.91 17563.11 30188.10 20863.63 9585.54 35132.73 38369.23 26681.32 343
IS-MVSNet80.14 15879.41 15782.33 19787.91 20260.08 28191.97 16388.27 29272.90 17771.44 21191.73 15161.44 12493.66 24062.47 27186.53 12893.24 149
PS-MVSNAJss77.26 20976.31 20380.13 25380.64 31259.16 29490.63 22291.06 18772.80 17868.58 24784.57 25453.55 21393.96 23172.97 16871.96 25087.27 258
9.1487.63 2793.86 4794.41 5394.18 5772.76 17986.21 4996.51 2566.64 6097.88 4490.08 4094.04 38
v119275.98 23173.92 23882.15 20579.73 32266.24 13591.22 20089.75 23272.67 18068.49 24881.42 29149.86 24694.27 21267.08 22965.02 29785.95 285
Effi-MVS+83.82 9482.76 10486.99 5589.56 15669.40 5391.35 19386.12 32072.59 18183.22 7892.81 12759.60 14496.01 14481.76 10687.80 11195.56 55
UnsupCasMVSNet_eth65.79 32163.10 32373.88 32570.71 37450.29 35481.09 33389.88 22872.58 18249.25 36674.77 35232.57 34987.43 34355.96 30041.04 38283.90 311
1112_ss80.56 14979.83 14982.77 18588.65 18060.78 26592.29 14588.36 28872.58 18272.46 19794.95 6865.09 7493.42 24566.38 23777.71 20294.10 121
DVP-MVS++90.53 491.09 588.87 1697.31 469.91 4393.96 7194.37 5272.48 18492.07 996.85 1683.82 299.15 291.53 3197.42 497.55 4
test_0728_THIRD72.48 18490.55 2096.93 1176.24 1199.08 1191.53 3194.99 1896.43 30
cl2277.94 20076.78 19781.42 22287.57 21064.93 16790.67 21888.86 27272.45 18667.63 26182.68 27364.07 8792.91 25871.79 18265.30 29286.44 271
thres600view778.00 19776.66 19982.03 21291.93 10363.69 20191.30 19696.33 172.43 18770.46 21987.89 21360.31 13494.92 18642.64 35576.64 21687.48 250
IterMVS-LS76.49 22275.18 22080.43 24484.49 26962.74 22890.64 22088.80 27472.40 18865.16 28181.72 28460.98 12892.27 28467.74 22164.65 30386.29 273
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet78.97 17878.22 17381.25 22585.33 25362.73 22989.53 25093.21 9172.39 18972.14 20190.13 18160.99 12794.72 19167.73 22272.49 24686.29 273
miper_ehance_all_eth77.60 20476.44 20181.09 23485.70 25064.41 17890.65 21988.64 28272.31 19067.37 26682.52 27464.77 8192.64 27270.67 19365.30 29286.24 275
v14419276.05 22974.03 23682.12 20779.50 32666.55 12891.39 18889.71 23872.30 19168.17 25081.33 29351.75 22994.03 22867.94 21964.19 30585.77 289
thres100view90078.37 19277.01 19482.46 19291.89 10663.21 21591.19 20396.33 172.28 19270.45 22087.89 21360.31 13495.32 17245.16 34377.58 20588.83 230
PatchmatchNetpermissive77.46 20674.63 22485.96 8589.55 15770.35 3679.97 34689.55 24072.23 19370.94 21376.91 33957.03 16892.79 26354.27 30681.17 17494.74 94
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
HFP-MVS84.73 7584.40 7685.72 9693.75 5165.01 16493.50 9993.19 9472.19 19479.22 12094.93 7059.04 15197.67 5181.55 10792.21 6394.49 110
ACMMPR84.37 7984.06 7885.28 11093.56 5864.37 18093.50 9993.15 9672.19 19478.85 12894.86 7356.69 17797.45 6681.55 10792.20 6494.02 127
131480.70 14778.95 16485.94 8687.77 20967.56 10087.91 27892.55 12072.17 19667.44 26293.09 11650.27 24297.04 9471.68 18687.64 11393.23 150
region2R84.36 8084.03 7985.36 10793.54 5964.31 18393.43 10492.95 10472.16 19778.86 12794.84 7456.97 17297.53 6481.38 11192.11 6694.24 114
Test_1112_low_res79.56 16878.60 16882.43 19388.24 19460.39 27692.09 15487.99 29972.10 19871.84 20487.42 22064.62 8293.04 24965.80 24477.30 21093.85 135
v192192075.63 23973.49 24482.06 21179.38 32766.35 13191.07 20789.48 24171.98 19967.99 25181.22 29649.16 25593.90 23466.56 23364.56 30485.92 287
DVP-MVScopyleft89.41 1389.73 1488.45 2596.40 1569.99 3996.64 1094.52 4271.92 20090.55 2096.93 1173.77 2199.08 1191.91 2994.90 2296.29 34
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072696.40 1569.99 3996.76 894.33 5471.92 20091.89 1197.11 673.77 21
Fast-Effi-MVS+-dtu75.04 24573.37 24580.07 25480.86 30759.52 28891.20 20285.38 32571.90 20265.20 28084.84 25041.46 30192.97 25266.50 23672.96 24187.73 247
LFMVS84.34 8182.73 10589.18 1294.76 3373.25 994.99 4391.89 14471.90 20282.16 8693.49 11247.98 26497.05 9182.55 10184.82 13897.25 9
eth_miper_zixun_eth75.96 23374.40 23080.66 24084.66 26563.02 21989.28 25588.27 29271.88 20465.73 27681.65 28559.45 14592.81 26168.13 21660.53 33786.14 278
train_agg87.21 3287.42 3186.60 6694.18 4167.28 10794.16 5993.51 8071.87 20585.52 5795.33 5368.19 4897.27 8289.09 4694.90 2295.25 74
test_894.19 4067.19 10994.15 6293.42 8671.87 20585.38 6095.35 5268.19 4896.95 104
MDTV_nov1_ep1372.61 25689.06 17168.48 7480.33 33990.11 21971.84 20771.81 20575.92 34753.01 21993.92 23348.04 32973.38 237
ab-mvs80.18 15778.31 17185.80 9288.44 18565.49 15483.00 32092.67 11371.82 20877.36 14285.01 24754.50 20096.59 11776.35 14775.63 22295.32 66
ACMMPcopyleft81.49 13380.67 13583.93 15991.71 11162.90 22592.13 15192.22 13071.79 20971.68 20893.49 11250.32 24096.96 10378.47 13584.22 14891.93 188
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
PHI-MVS86.83 3986.85 4086.78 6193.47 6265.55 15195.39 3195.10 2271.77 21085.69 5696.52 2462.07 11898.77 2286.06 7495.60 1296.03 42
TEST994.18 4167.28 10794.16 5993.51 8071.75 21185.52 5795.33 5368.01 5097.27 82
WB-MVSnew77.14 21176.18 20680.01 25786.18 23963.24 21491.26 19794.11 6071.72 21273.52 18287.29 22345.14 28893.00 25156.98 29679.42 18783.80 312
c3_l76.83 21975.47 21580.93 23885.02 26164.18 18890.39 22688.11 29671.66 21366.65 27481.64 28663.58 10092.56 27369.31 20662.86 31486.04 282
SED-MVS89.94 990.36 1088.70 1896.45 1269.38 5496.89 694.44 4671.65 21492.11 797.21 476.79 999.11 692.34 2195.36 1497.62 2
test_241102_TWO94.41 4871.65 21492.07 997.21 474.58 1799.11 692.34 2195.36 1496.59 20
test_241102_ONE96.45 1269.38 5494.44 4671.65 21492.11 797.05 776.79 999.11 6
v875.35 24173.26 24681.61 21880.67 31166.82 11989.54 24989.27 25071.65 21463.30 30080.30 31054.99 19794.06 22367.33 22662.33 32083.94 310
v124075.21 24472.98 24981.88 21379.20 32966.00 13990.75 21689.11 26071.63 21867.41 26481.22 29647.36 26993.87 23565.46 24964.72 30285.77 289
SCA75.82 23572.76 25285.01 11986.63 23070.08 3881.06 33489.19 25471.60 21970.01 22677.09 33745.53 28490.25 31360.43 28173.27 23894.68 96
BH-untuned78.68 18677.08 19283.48 17389.84 14963.74 19692.70 12888.59 28371.57 22066.83 27288.65 19651.75 22995.39 17059.03 28984.77 13991.32 199
IterMVS72.65 27470.83 27278.09 28982.17 29862.96 22187.64 28386.28 31671.56 22160.44 31678.85 32345.42 28686.66 34663.30 26461.83 32584.65 306
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
mPP-MVS82.96 11182.44 11184.52 14292.83 7762.92 22492.76 12491.85 14871.52 22275.61 16094.24 9553.48 21696.99 9978.97 13090.73 8693.64 140
test-LLR80.10 15979.56 15381.72 21686.93 22861.17 25792.70 12891.54 16271.51 22375.62 15886.94 22753.83 20992.38 27972.21 17984.76 14091.60 190
test0.0.03 172.76 26972.71 25572.88 33380.25 31747.99 36491.22 20089.45 24371.51 22362.51 30987.66 21653.83 20985.06 35550.16 31967.84 27985.58 292
test_one_060196.32 1869.74 4994.18 5771.42 22590.67 1996.85 1674.45 18
PGM-MVS83.25 10582.70 10684.92 12192.81 8164.07 18990.44 22392.20 13171.28 22677.23 14494.43 8455.17 19597.31 7779.33 12691.38 7993.37 145
thisisatest053081.15 13780.07 14384.39 14788.26 19265.63 14891.40 18694.62 4071.27 22770.93 21489.18 19172.47 2996.04 14165.62 24676.89 21591.49 192
cl____76.07 22674.67 22280.28 24785.15 25761.76 24890.12 23488.73 27771.16 22865.43 27881.57 28861.15 12592.95 25366.54 23462.17 32186.13 280
DIV-MVS_self_test76.07 22674.67 22280.28 24785.14 25861.75 24990.12 23488.73 27771.16 22865.42 27981.60 28761.15 12592.94 25766.54 23462.16 32386.14 278
dp75.01 24672.09 26283.76 16189.28 16466.22 13679.96 34789.75 23271.16 22867.80 25977.19 33651.81 22892.54 27450.39 31771.44 25592.51 172
FA-MVS(test-final)79.12 17577.23 19184.81 12890.54 13663.98 19181.35 33291.71 15471.09 23174.85 16882.94 26952.85 22097.05 9167.97 21881.73 17193.41 144
CP-MVS83.71 9883.40 9284.65 13693.14 7163.84 19294.59 5092.28 12571.03 23277.41 14194.92 7155.21 19496.19 13181.32 11290.70 8793.91 131
v1074.77 24872.54 25881.46 22180.33 31666.71 12389.15 25989.08 26270.94 23363.08 30379.86 31552.52 22394.04 22665.70 24562.17 32183.64 313
CDPH-MVS85.71 5985.46 6186.46 7294.75 3467.19 10993.89 7692.83 10870.90 23483.09 7995.28 5663.62 9697.36 7380.63 11694.18 3694.84 89
GBi-Net75.65 23773.83 23981.10 23188.85 17565.11 16190.01 23890.32 20770.84 23567.04 26880.25 31148.03 26191.54 30059.80 28669.34 26386.64 266
test175.65 23773.83 23981.10 23188.85 17565.11 16190.01 23890.32 20770.84 23567.04 26880.25 31148.03 26191.54 30059.80 28669.34 26386.64 266
FMVSNet276.07 22674.01 23782.26 20188.85 17567.66 9791.33 19491.61 16070.84 23565.98 27582.25 27748.03 26192.00 29058.46 29168.73 27187.10 260
SF-MVS87.03 3487.09 3486.84 5792.70 8367.45 10593.64 9193.76 6970.78 23886.25 4896.44 2866.98 5797.79 4788.68 5094.56 3395.28 70
ZD-MVS96.63 965.50 15393.50 8270.74 23985.26 6295.19 6464.92 7897.29 7887.51 5893.01 55
HyFIR lowres test81.03 14279.56 15385.43 10387.81 20768.11 8790.18 23390.01 22570.65 24072.95 18786.06 23963.61 9794.50 20575.01 15779.75 18693.67 138
RRT_MVS74.44 25072.97 25078.84 28182.36 29657.66 31089.83 24488.79 27670.61 24164.58 28684.89 24939.24 30892.65 27170.11 19866.34 28786.21 276
MVP-Stereo77.12 21276.23 20479.79 26581.72 30266.34 13289.29 25490.88 19170.56 24262.01 31182.88 27049.34 25094.13 21865.55 24893.80 4278.88 365
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
ACMP71.68 1075.58 24074.23 23379.62 26984.97 26259.64 28590.80 21489.07 26370.39 24362.95 30487.30 22238.28 31693.87 23572.89 16971.45 25485.36 298
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
HPM-MVScopyleft83.25 10582.95 10084.17 15492.25 9262.88 22690.91 20891.86 14670.30 24477.12 14593.96 10256.75 17596.28 12982.04 10491.34 8193.34 146
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
GeoE78.90 18077.43 18583.29 17688.95 17462.02 24292.31 14486.23 31870.24 24571.34 21289.27 19054.43 20494.04 22663.31 26380.81 17993.81 136
tpm279.80 16577.95 17885.34 10888.28 19168.26 8181.56 32991.42 16870.11 24677.59 14080.50 30667.40 5594.26 21467.34 22577.35 20993.51 142
TR-MVS78.77 18577.37 19082.95 18290.49 13760.88 26393.67 8990.07 22070.08 24774.51 17191.37 15945.69 28395.70 15760.12 28480.32 18192.29 177
CL-MVSNet_self_test69.92 29068.09 29475.41 31373.25 36655.90 32790.05 23789.90 22769.96 24861.96 31276.54 34051.05 23687.64 33949.51 32350.59 36782.70 331
PAPM_NR82.97 11081.84 11886.37 7694.10 4466.76 12287.66 28292.84 10769.96 24874.07 17793.57 11063.10 10897.50 6570.66 19490.58 8994.85 86
PCF-MVS73.15 979.29 17277.63 18284.29 15186.06 24165.96 14187.03 28991.10 18269.86 25069.79 23190.64 16657.54 16496.59 11764.37 25682.29 16090.32 212
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
miper_lstm_enhance73.05 26471.73 26777.03 30183.80 27958.32 30381.76 32588.88 27069.80 25161.01 31378.23 32757.19 16687.51 34265.34 25059.53 34285.27 301
MIMVSNet71.64 27868.44 29181.23 22681.97 30164.44 17573.05 36788.80 27469.67 25264.59 28574.79 35132.79 34687.82 33653.99 30776.35 21891.42 194
LPG-MVS_test75.82 23574.58 22679.56 27184.31 27359.37 29090.44 22389.73 23569.49 25364.86 28288.42 19838.65 31294.30 21072.56 17572.76 24385.01 302
LGP-MVS_train79.56 27184.31 27359.37 29089.73 23569.49 25364.86 28288.42 19838.65 31294.30 21072.56 17572.76 24385.01 302
APDe-MVScopyleft87.54 2687.84 2586.65 6496.07 2366.30 13394.84 4693.78 6669.35 25588.39 3496.34 3067.74 5397.66 5490.62 3893.44 5096.01 43
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
tttt051779.50 16978.53 16982.41 19687.22 21961.43 25589.75 24694.76 3269.29 25667.91 25588.06 21172.92 2595.63 15862.91 26773.90 23690.16 214
Patchmatch-RL test68.17 30664.49 31679.19 27571.22 37153.93 33770.07 37371.54 37969.22 25756.79 33862.89 37956.58 17988.61 32769.53 20352.61 36295.03 82
test_yl84.28 8283.16 9687.64 3494.52 3769.24 5895.78 1995.09 2369.19 25881.09 9492.88 12457.00 17097.44 6881.11 11481.76 16996.23 37
DCV-MVSNet84.28 8283.16 9687.64 3494.52 3769.24 5895.78 1995.09 2369.19 25881.09 9492.88 12457.00 17097.44 6881.11 11481.76 16996.23 37
jajsoiax73.05 26471.51 26977.67 29277.46 35054.83 33388.81 26490.04 22369.13 26062.85 30683.51 26431.16 35792.75 26470.83 19069.80 25985.43 297
DP-MVS Recon82.73 11481.65 12085.98 8497.31 467.06 11395.15 3791.99 13869.08 26176.50 15293.89 10354.48 20398.20 3570.76 19285.66 13492.69 165
Baseline_NR-MVSNet73.99 25672.83 25177.48 29580.78 30959.29 29391.79 17184.55 33368.85 26268.99 23980.70 30256.16 18292.04 28962.67 26960.98 33481.11 345
CHOSEN 280x42077.35 20876.95 19678.55 28387.07 22362.68 23069.71 37482.95 34768.80 26371.48 21087.27 22466.03 6584.00 36176.47 14682.81 15788.95 229
DPE-MVScopyleft88.77 1689.21 1687.45 4396.26 2067.56 10094.17 5894.15 5968.77 26490.74 1897.27 276.09 1298.49 2990.58 3994.91 2196.30 33
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
mvs_tets72.71 27171.11 27077.52 29377.41 35154.52 33588.45 27089.76 23168.76 26562.70 30783.26 26729.49 36192.71 26570.51 19669.62 26185.34 299
MVS84.66 7682.86 10390.06 290.93 12974.56 687.91 27895.54 1368.55 26672.35 20094.71 7759.78 14298.90 1981.29 11394.69 3296.74 17
EPP-MVSNet81.79 13081.52 12182.61 19088.77 17960.21 27993.02 11793.66 7568.52 26772.90 18890.39 17372.19 3294.96 18374.93 15879.29 19192.67 166
CSCG86.87 3686.26 4588.72 1795.05 3170.79 3193.83 8395.33 1668.48 26877.63 13894.35 9073.04 2498.45 3084.92 8493.71 4696.92 15
testing370.38 28770.83 27269.03 35285.82 24743.93 38090.72 21790.56 20068.06 26960.24 31786.82 22964.83 7984.12 35726.33 39064.10 30779.04 364
CP-MVSNet70.50 28569.91 28272.26 33880.71 31051.00 35087.23 28890.30 21167.84 27059.64 32082.69 27250.23 24382.30 37351.28 31459.28 34383.46 318
pmmvs573.35 26171.52 26878.86 28078.64 34060.61 27491.08 20586.90 31067.69 27163.32 29983.64 26244.33 29290.53 31062.04 27366.02 28985.46 296
pm-mvs172.89 26771.09 27178.26 28779.10 33357.62 31190.80 21489.30 24967.66 27262.91 30581.78 28349.11 25692.95 25360.29 28358.89 34584.22 308
MDTV_nov1_ep13_2view59.90 28380.13 34367.65 27372.79 18954.33 20659.83 28592.58 169
pmmvs473.92 25771.81 26680.25 24979.17 33065.24 15787.43 28587.26 30767.64 27463.46 29883.91 26148.96 25791.53 30362.94 26665.49 29183.96 309
WR-MVS_H70.59 28469.94 28172.53 33581.03 30651.43 34787.35 28692.03 13767.38 27560.23 31880.70 30255.84 18883.45 36546.33 33958.58 34782.72 329
KD-MVS_2432*160069.03 29866.37 30177.01 30285.56 25161.06 26081.44 33090.25 21367.27 27658.00 33276.53 34154.49 20187.63 34048.04 32935.77 38982.34 335
miper_refine_blended69.03 29866.37 30177.01 30285.56 25161.06 26081.44 33090.25 21367.27 27658.00 33276.53 34154.49 20187.63 34048.04 32935.77 38982.34 335
PS-CasMVS69.86 29269.13 28772.07 34280.35 31550.57 35287.02 29089.75 23267.27 27659.19 32482.28 27646.58 27482.24 37450.69 31659.02 34483.39 320
PEN-MVS69.46 29568.56 28972.17 34079.27 32849.71 35686.90 29289.24 25167.24 27959.08 32582.51 27547.23 27083.54 36448.42 32757.12 34883.25 321
cascas78.18 19575.77 21185.41 10487.14 22169.11 6092.96 11891.15 18066.71 28070.47 21886.07 23837.49 32696.48 12570.15 19779.80 18590.65 208
APD-MVScopyleft85.93 5485.99 5285.76 9495.98 2665.21 15893.59 9492.58 11966.54 28186.17 5095.88 4163.83 9197.00 9686.39 7192.94 5695.06 79
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
OpenMVScopyleft70.45 1178.54 19075.92 20986.41 7585.93 24671.68 1992.74 12592.51 12166.49 28264.56 28791.96 14443.88 29398.10 3754.61 30490.65 8889.44 228
DTE-MVSNet68.46 30467.33 29771.87 34477.94 34849.00 36186.16 29788.58 28466.36 28358.19 32982.21 27846.36 27583.87 36244.97 34655.17 35582.73 328
IterMVS-SCA-FT71.55 28069.97 28076.32 30881.48 30360.67 27287.64 28385.99 32166.17 28459.50 32178.88 32245.53 28483.65 36362.58 27061.93 32484.63 307
TransMVSNet (Re)70.07 28967.66 29577.31 29980.62 31359.13 29691.78 17384.94 33065.97 28560.08 31980.44 30750.78 23791.87 29148.84 32545.46 37580.94 347
MVSFormer83.75 9782.88 10286.37 7689.24 16871.18 2589.07 26090.69 19465.80 28687.13 4194.34 9164.99 7592.67 26872.83 17091.80 7195.27 71
test_djsdf73.76 26072.56 25777.39 29777.00 35353.93 33789.07 26090.69 19465.80 28663.92 29382.03 28043.14 29792.67 26872.83 17068.53 27285.57 293
API-MVS82.28 12180.53 13987.54 4196.13 2270.59 3393.63 9291.04 18965.72 28875.45 16292.83 12656.11 18498.89 2064.10 25789.75 9793.15 152
原ACMM184.42 14593.21 6864.27 18593.40 8865.39 28979.51 11592.50 13058.11 15996.69 11565.27 25193.96 3992.32 176
testgi64.48 32862.87 32669.31 35171.24 37040.62 38685.49 29879.92 35765.36 29054.18 34683.49 26523.74 37484.55 35641.60 35760.79 33682.77 327
QAPM79.95 16377.39 18987.64 3489.63 15471.41 2193.30 10693.70 7365.34 29167.39 26591.75 15047.83 26698.96 1657.71 29489.81 9492.54 170
HPM-MVS_fast80.25 15679.55 15582.33 19791.55 11659.95 28291.32 19589.16 25665.23 29274.71 16993.07 11847.81 26795.74 15174.87 16188.23 10691.31 200
tfpnnormal70.10 28867.36 29678.32 28583.45 28560.97 26288.85 26392.77 10964.85 29360.83 31578.53 32443.52 29593.48 24331.73 38661.70 32980.52 352
FE-MVS75.97 23273.02 24884.82 12589.78 15065.56 15077.44 35791.07 18664.55 29472.66 19079.85 31646.05 28296.69 11554.97 30380.82 17892.21 183
SR-MVS82.81 11382.58 10883.50 17293.35 6361.16 25992.23 14891.28 17564.48 29581.27 9195.28 5653.71 21295.86 14682.87 9888.77 10393.49 143
K. test v363.09 33459.61 33873.53 32876.26 35649.38 36083.27 31477.15 36264.35 29647.77 37072.32 35928.73 36387.79 33749.93 32136.69 38883.41 319
v7n71.31 28168.65 28879.28 27476.40 35560.77 26686.71 29489.45 24364.17 29758.77 32878.24 32644.59 29193.54 24157.76 29361.75 32783.52 316
FMVSNet172.71 27169.91 28281.10 23183.60 28365.11 16190.01 23890.32 20763.92 29863.56 29780.25 31136.35 33591.54 30054.46 30566.75 28486.64 266
XVG-OURS74.25 25372.46 25979.63 26878.45 34257.59 31280.33 33987.39 30463.86 29968.76 24489.62 18740.50 30591.72 29569.00 21074.25 23189.58 223
UniMVSNet_ETH3D72.74 27070.53 27779.36 27378.62 34156.64 32285.01 30189.20 25363.77 30064.84 28484.44 25634.05 34391.86 29263.94 25870.89 25889.57 224
test_fmvs174.07 25473.69 24175.22 31478.91 33647.34 36889.06 26274.69 37063.68 30179.41 11791.59 15424.36 37187.77 33885.22 7876.26 21990.55 211
114514_t79.17 17477.67 18083.68 16695.32 2965.53 15292.85 12291.60 16163.49 30267.92 25490.63 16846.65 27395.72 15667.01 23083.54 15089.79 220
test_fmvs1_n72.69 27371.92 26474.99 31771.15 37247.08 37087.34 28775.67 36563.48 30378.08 13491.17 16120.16 38287.87 33584.65 8675.57 22390.01 217
APD-MVS_3200maxsize81.64 13281.32 12382.59 19192.36 8958.74 29991.39 18891.01 19063.35 30479.72 11394.62 8051.82 22796.14 13379.71 12287.93 11092.89 163
test20.0363.83 33162.65 32767.38 35970.58 37639.94 38786.57 29584.17 33563.29 30551.86 35477.30 33337.09 33182.47 37138.87 36854.13 35979.73 358
XVG-OURS-SEG-HR74.70 24973.08 24779.57 27078.25 34457.33 31680.49 33787.32 30563.22 30668.76 24490.12 18344.89 29091.59 29870.55 19574.09 23389.79 220
test_vis1_n71.63 27970.73 27574.31 32469.63 37847.29 36986.91 29172.11 37563.21 30775.18 16490.17 17920.40 38085.76 35084.59 8774.42 23089.87 218
ACMM69.62 1374.34 25172.73 25479.17 27684.25 27557.87 30690.36 22789.93 22663.17 30865.64 27786.04 24037.79 32494.10 21965.89 24271.52 25385.55 294
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
tpmvs72.88 26869.76 28482.22 20290.98 12867.05 11478.22 35488.30 29063.10 30964.35 29274.98 35055.09 19694.27 21243.25 34969.57 26285.34 299
SixPastTwentyTwo64.92 32561.78 33274.34 32378.74 33849.76 35583.42 31379.51 35962.86 31050.27 36177.35 33230.92 35990.49 31145.89 34147.06 37282.78 326
SR-MVS-dyc-post81.06 14180.70 13482.15 20592.02 9858.56 30190.90 20990.45 20162.76 31178.89 12394.46 8251.26 23595.61 16078.77 13386.77 12492.28 178
RE-MVS-def80.48 14092.02 9858.56 30190.90 20990.45 20162.76 31178.89 12394.46 8249.30 25178.77 13386.77 12492.28 178
TAPA-MVS70.22 1274.94 24773.53 24379.17 27690.40 13952.07 34489.19 25889.61 23962.69 31370.07 22592.67 12848.89 25894.32 20838.26 36979.97 18391.12 204
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
Anonymous20240521177.96 19975.33 21885.87 8893.73 5464.52 17094.85 4585.36 32662.52 31476.11 15390.18 17829.43 36297.29 7868.51 21577.24 21295.81 49
pmmvs-eth3d65.53 32462.32 32975.19 31569.39 37959.59 28682.80 32183.43 34362.52 31451.30 35872.49 35532.86 34587.16 34555.32 30250.73 36678.83 366
AdaColmapbinary78.94 17977.00 19584.76 13096.34 1765.86 14392.66 13287.97 30162.18 31670.56 21792.37 13643.53 29497.35 7464.50 25582.86 15591.05 205
FOURS193.95 4561.77 24793.96 7191.92 14162.14 31786.57 47
无先验92.71 12792.61 11862.03 31897.01 9566.63 23293.97 128
XVG-ACMP-BASELINE68.04 30765.53 30775.56 31274.06 36452.37 34278.43 35185.88 32262.03 31858.91 32781.21 29820.38 38191.15 30760.69 28068.18 27483.16 323
anonymousdsp71.14 28269.37 28676.45 30772.95 36754.71 33484.19 30588.88 27061.92 32062.15 31079.77 31738.14 31991.44 30568.90 21267.45 28083.21 322
tpm cat175.30 24272.21 26184.58 14088.52 18167.77 9478.16 35588.02 29861.88 32168.45 24976.37 34360.65 13194.03 22853.77 30974.11 23291.93 188
FMVSNet568.04 30765.66 30675.18 31684.43 27157.89 30583.54 30986.26 31761.83 32253.64 34973.30 35437.15 33085.08 35448.99 32461.77 32682.56 334
Anonymous2023120667.53 31265.78 30372.79 33474.95 36047.59 36688.23 27287.32 30561.75 32358.07 33177.29 33437.79 32487.29 34442.91 35163.71 31183.48 317
PatchMatch-RL72.06 27669.98 27978.28 28689.51 15855.70 32883.49 31083.39 34561.24 32463.72 29682.76 27134.77 34093.03 25053.37 31177.59 20486.12 281
tt080573.07 26370.73 27580.07 25478.37 34357.05 31887.78 28092.18 13361.23 32567.04 26886.49 23231.35 35694.58 19765.06 25267.12 28188.57 236
PLCcopyleft68.80 1475.23 24373.68 24279.86 26392.93 7558.68 30090.64 22088.30 29060.90 32664.43 29190.53 16942.38 29994.57 19956.52 29776.54 21786.33 272
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
ACMH63.93 1768.62 30164.81 31180.03 25685.22 25663.25 21387.72 28184.66 33260.83 32751.57 35679.43 32127.29 36794.96 18341.76 35664.84 29981.88 339
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
EG-PatchMatch MVS68.55 30265.41 30877.96 29078.69 33962.93 22289.86 24389.17 25560.55 32850.27 36177.73 33122.60 37694.06 22347.18 33572.65 24576.88 373
VDDNet80.50 15078.26 17287.21 4786.19 23869.79 4794.48 5191.31 17160.42 32979.34 11890.91 16438.48 31596.56 12082.16 10281.05 17595.27 71
CPTT-MVS79.59 16779.16 16280.89 23991.54 11759.80 28492.10 15388.54 28560.42 32972.96 18693.28 11448.27 26092.80 26278.89 13286.50 12990.06 215
our_test_368.29 30564.69 31379.11 27978.92 33464.85 16888.40 27185.06 32860.32 33152.68 35176.12 34540.81 30489.80 32344.25 34855.65 35382.67 333
ITE_SJBPF70.43 34774.44 36247.06 37177.32 36160.16 33254.04 34783.53 26323.30 37584.01 36043.07 35061.58 33180.21 357
ppachtmachnet_test67.72 30963.70 32079.77 26678.92 33466.04 13888.68 26682.90 34860.11 33355.45 34175.96 34639.19 30990.55 30939.53 36452.55 36382.71 330
new-patchmatchnet59.30 34556.48 34767.79 35665.86 38544.19 37782.47 32281.77 34959.94 33443.65 38266.20 37427.67 36681.68 37639.34 36541.40 38177.50 372
mvsany_test168.77 30068.56 28969.39 35073.57 36545.88 37580.93 33560.88 39359.65 33571.56 20990.26 17743.22 29675.05 38374.26 16462.70 31687.25 259
新几何184.73 13192.32 9064.28 18491.46 16759.56 33679.77 11292.90 12256.95 17396.57 11963.40 26192.91 5793.34 146
旧先验292.00 16259.37 33787.54 4093.47 24475.39 153
PM-MVS59.40 34456.59 34667.84 35563.63 38641.86 38276.76 35863.22 39059.01 33851.07 35972.27 36011.72 39383.25 36761.34 27650.28 36878.39 369
LTVRE_ROB59.60 1966.27 31863.54 32174.45 32184.00 27851.55 34667.08 38183.53 34258.78 33954.94 34380.31 30934.54 34193.23 24740.64 36268.03 27578.58 368
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
testdata81.34 22489.02 17257.72 30889.84 22958.65 34085.32 6194.09 9857.03 16893.28 24669.34 20590.56 9093.03 157
ACMH+65.35 1667.65 31064.55 31476.96 30484.59 26757.10 31788.08 27380.79 35358.59 34153.00 35081.09 30026.63 36992.95 25346.51 33761.69 33080.82 348
ADS-MVSNet266.90 31563.44 32277.26 30088.06 19860.70 27168.01 37875.56 36757.57 34264.48 28869.87 36738.68 31084.10 35840.87 36067.89 27786.97 261
ADS-MVSNet68.54 30364.38 31881.03 23588.06 19866.90 11868.01 37884.02 33757.57 34264.48 28869.87 36738.68 31089.21 32640.87 36067.89 27786.97 261
MDA-MVSNet-bldmvs61.54 33957.70 34373.05 33179.53 32557.00 32183.08 31881.23 35157.57 34234.91 39072.45 35632.79 34686.26 34935.81 37341.95 38075.89 375
KD-MVS_self_test60.87 34058.60 34067.68 35766.13 38439.93 38875.63 36484.70 33157.32 34549.57 36468.45 37029.55 36082.87 36948.09 32847.94 37180.25 356
UnsupCasMVSNet_bld61.60 33857.71 34273.29 33068.73 38051.64 34578.61 35089.05 26457.20 34646.11 37161.96 38228.70 36488.60 32850.08 32038.90 38679.63 359
MSDG69.54 29465.73 30480.96 23685.11 26063.71 19984.19 30583.28 34656.95 34754.50 34484.03 25831.50 35496.03 14242.87 35369.13 26883.14 324
F-COLMAP70.66 28368.44 29177.32 29886.37 23655.91 32688.00 27686.32 31556.94 34857.28 33788.07 21033.58 34492.49 27651.02 31568.37 27383.55 314
test22289.77 15161.60 25289.55 24889.42 24556.83 34977.28 14392.43 13452.76 22191.14 8493.09 154
CNLPA74.31 25272.30 26080.32 24591.49 11861.66 25190.85 21280.72 35456.67 35063.85 29590.64 16646.75 27290.84 30853.79 30875.99 22188.47 240
OurMVSNet-221017-064.68 32662.17 33072.21 33976.08 35847.35 36780.67 33681.02 35256.19 35151.60 35579.66 31927.05 36888.56 32953.60 31053.63 36080.71 350
YYNet163.76 33360.14 33674.62 32078.06 34760.19 28083.46 31283.99 34056.18 35239.25 38671.56 36437.18 32983.34 36642.90 35248.70 37080.32 354
MDA-MVSNet_test_wron63.78 33260.16 33574.64 31978.15 34660.41 27583.49 31084.03 33656.17 35339.17 38771.59 36337.22 32883.24 36842.87 35348.73 36980.26 355
OpenMVS_ROBcopyleft61.12 1866.39 31762.92 32576.80 30676.51 35457.77 30789.22 25683.41 34455.48 35453.86 34877.84 33026.28 37093.95 23234.90 37668.76 27078.68 367
MIMVSNet160.16 34357.33 34468.67 35369.71 37744.13 37878.92 34984.21 33455.05 35544.63 37971.85 36123.91 37381.54 37732.63 38455.03 35680.35 353
test_fmvs265.78 32264.84 31068.60 35466.54 38341.71 38383.27 31469.81 38154.38 35667.91 25584.54 25515.35 38781.22 37875.65 15166.16 28882.88 325
CVMVSNet74.04 25574.27 23273.33 32985.33 25343.94 37989.53 25088.39 28754.33 35770.37 22190.13 18149.17 25484.05 35961.83 27579.36 18991.99 187
Anonymous2024052976.84 21874.15 23484.88 12391.02 12764.95 16693.84 8191.09 18353.57 35873.00 18587.42 22035.91 33697.32 7669.14 20972.41 24892.36 174
pmmvs667.57 31164.76 31276.00 31172.82 36953.37 33988.71 26586.78 31453.19 35957.58 33678.03 32935.33 33992.41 27855.56 30154.88 35782.21 337
TinyColmap60.32 34156.42 34872.00 34378.78 33753.18 34078.36 35375.64 36652.30 36041.59 38575.82 34814.76 39088.35 33135.84 37254.71 35874.46 377
test_040264.54 32761.09 33374.92 31884.10 27760.75 26887.95 27779.71 35852.03 36152.41 35277.20 33532.21 35291.64 29623.14 39261.03 33372.36 381
test_vis1_rt59.09 34657.31 34564.43 36268.44 38146.02 37483.05 31948.63 40251.96 36249.57 36463.86 37816.30 38580.20 38071.21 18862.79 31567.07 387
Anonymous2023121173.08 26270.39 27881.13 22990.62 13563.33 21291.40 18690.06 22251.84 36364.46 29080.67 30436.49 33494.07 22263.83 25964.17 30685.98 284
AllTest61.66 33758.06 34172.46 33679.57 32351.42 34880.17 34268.61 38351.25 36445.88 37281.23 29419.86 38386.58 34738.98 36657.01 35079.39 360
TestCases72.46 33679.57 32351.42 34868.61 38351.25 36445.88 37281.23 29419.86 38386.58 34738.98 36657.01 35079.39 360
PatchT69.11 29765.37 30980.32 24582.07 30063.68 20267.96 38087.62 30350.86 36669.37 23265.18 37557.09 16788.53 33041.59 35866.60 28588.74 233
Anonymous2024052162.09 33659.08 33971.10 34567.19 38248.72 36283.91 30785.23 32750.38 36747.84 36971.22 36620.74 37985.51 35346.47 33858.75 34679.06 363
DP-MVS69.90 29166.48 29880.14 25295.36 2862.93 22289.56 24776.11 36350.27 36857.69 33585.23 24539.68 30795.73 15233.35 37971.05 25781.78 341
gg-mvs-nofinetune77.18 21074.31 23185.80 9291.42 11968.36 7771.78 36894.72 3449.61 36977.12 14545.92 39277.41 893.98 23067.62 22393.16 5495.05 80
JIA-IIPM66.06 31962.45 32876.88 30581.42 30554.45 33657.49 39388.67 28049.36 37063.86 29446.86 39156.06 18590.25 31349.53 32268.83 26985.95 285
N_pmnet50.55 35249.11 35554.88 37277.17 3524.02 41584.36 3042.00 41348.59 37145.86 37468.82 36932.22 35182.80 37031.58 38751.38 36577.81 371
ANet_high40.27 36335.20 36655.47 37034.74 41034.47 39563.84 38571.56 37848.42 37218.80 39941.08 3989.52 39764.45 39920.18 3958.66 40667.49 386
COLMAP_ROBcopyleft57.96 2062.98 33559.65 33772.98 33281.44 30453.00 34183.75 30875.53 36848.34 37348.81 36781.40 29224.14 37290.30 31232.95 38160.52 33875.65 376
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
Patchmtry67.53 31263.93 31978.34 28482.12 29964.38 17968.72 37584.00 33848.23 37459.24 32272.41 35757.82 16189.27 32546.10 34056.68 35281.36 342
LS3D69.17 29666.40 30077.50 29491.92 10456.12 32585.12 30080.37 35646.96 37556.50 33987.51 21937.25 32793.71 23832.52 38579.40 18882.68 332
RPSCF64.24 32961.98 33171.01 34676.10 35745.00 37675.83 36375.94 36446.94 37658.96 32684.59 25331.40 35582.00 37547.76 33360.33 34186.04 282
RPMNet70.42 28665.68 30584.63 13883.15 28767.96 9070.25 37190.45 20146.83 37769.97 22865.10 37656.48 18195.30 17535.79 37473.13 23990.64 209
WB-MVS46.23 35644.94 35850.11 37662.13 39021.23 40976.48 36055.49 39545.89 37835.78 38861.44 38435.54 33772.83 3879.96 40321.75 39856.27 391
CMPMVSbinary48.56 2166.77 31664.41 31773.84 32670.65 37550.31 35377.79 35685.73 32445.54 37944.76 37882.14 27935.40 33890.14 31963.18 26574.54 22881.07 346
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
EU-MVSNet64.01 33063.01 32467.02 36074.40 36338.86 39183.27 31486.19 31945.11 38054.27 34581.15 29936.91 33380.01 38148.79 32657.02 34982.19 338
TDRefinement55.28 35051.58 35366.39 36159.53 39346.15 37376.23 36172.80 37344.60 38142.49 38376.28 34415.29 38882.39 37233.20 38043.75 37770.62 383
Patchmatch-test65.86 32060.94 33480.62 24283.75 28058.83 29858.91 39275.26 36944.50 38250.95 36077.09 33758.81 15387.90 33435.13 37564.03 30895.12 78
test_fmvs356.82 34754.86 35062.69 36553.59 39635.47 39375.87 36265.64 38843.91 38355.10 34271.43 3656.91 40174.40 38668.64 21452.63 36178.20 370
mvsany_test348.86 35446.35 35756.41 36846.00 40231.67 39862.26 38647.25 40343.71 38445.54 37668.15 37110.84 39464.44 40057.95 29235.44 39173.13 378
SSC-MVS44.51 35843.35 36047.99 38061.01 39218.90 41174.12 36654.36 39643.42 38534.10 39160.02 38534.42 34270.39 3909.14 40519.57 39954.68 392
LF4IMVS54.01 35152.12 35259.69 36662.41 38939.91 38968.59 37668.28 38542.96 38644.55 38075.18 34914.09 39268.39 39241.36 35951.68 36470.78 382
DSMNet-mixed56.78 34854.44 35163.79 36363.21 38729.44 40264.43 38464.10 38942.12 38751.32 35771.60 36231.76 35375.04 38436.23 37165.20 29686.87 264
pmmvs355.51 34951.50 35467.53 35857.90 39450.93 35180.37 33873.66 37240.63 38844.15 38164.75 37716.30 38578.97 38244.77 34740.98 38472.69 379
new_pmnet49.31 35346.44 35657.93 36762.84 38840.74 38568.47 37762.96 39136.48 38935.09 38957.81 38614.97 38972.18 38832.86 38246.44 37360.88 389
MVS-HIRNet60.25 34255.55 34974.35 32284.37 27256.57 32371.64 36974.11 37134.44 39045.54 37642.24 39731.11 35889.81 32140.36 36376.10 22076.67 374
test_f46.58 35543.45 35955.96 36945.18 40332.05 39761.18 38749.49 40133.39 39142.05 38462.48 3817.00 40065.56 39647.08 33643.21 37970.27 384
test_vis3_rt40.46 36237.79 36348.47 37944.49 40433.35 39666.56 38232.84 41032.39 39229.65 39239.13 4003.91 40868.65 39150.17 31840.99 38343.40 395
DeepMVS_CXcopyleft34.71 38651.45 39824.73 40628.48 41231.46 39317.49 40252.75 3885.80 40342.60 40718.18 39619.42 40036.81 399
FPMVS45.64 35743.10 36153.23 37451.42 39936.46 39264.97 38371.91 37629.13 39427.53 39461.55 3839.83 39665.01 39816.00 40055.58 35458.22 390
PMMVS237.93 36533.61 36850.92 37546.31 40124.76 40560.55 39050.05 39928.94 39520.93 39747.59 3904.41 40765.13 39725.14 39118.55 40162.87 388
LCM-MVSNet40.54 36035.79 36554.76 37336.92 40930.81 39951.41 39669.02 38222.07 39624.63 39645.37 3934.56 40565.81 39533.67 37834.50 39267.67 385
APD_test140.50 36137.31 36450.09 37751.88 39735.27 39459.45 39152.59 39821.64 39726.12 39557.80 3874.56 40566.56 39422.64 39339.09 38548.43 393
PMVScopyleft26.43 2231.84 36928.16 37242.89 38225.87 41227.58 40350.92 39749.78 40021.37 39814.17 40440.81 3992.01 41166.62 3939.61 40438.88 38734.49 400
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
Gipumacopyleft34.91 36631.44 36945.30 38170.99 37339.64 39019.85 40372.56 37420.10 39916.16 40321.47 4045.08 40471.16 38913.07 40143.70 37825.08 401
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
testf132.77 36729.47 37042.67 38341.89 40630.81 39952.07 39443.45 40415.45 40018.52 40044.82 3942.12 40958.38 40116.05 39830.87 39538.83 396
APD_test232.77 36729.47 37042.67 38341.89 40630.81 39952.07 39443.45 40415.45 40018.52 40044.82 3942.12 40958.38 40116.05 39830.87 39538.83 396
E-PMN24.61 37024.00 37426.45 38743.74 40518.44 41260.86 38839.66 40615.11 4029.53 40622.10 4036.52 40246.94 4058.31 40610.14 40313.98 403
EMVS23.76 37223.20 37625.46 38841.52 40816.90 41360.56 38938.79 40914.62 4038.99 40720.24 4067.35 39945.82 4067.25 4079.46 40413.64 404
MVEpermissive24.84 2324.35 37119.77 37738.09 38534.56 41126.92 40426.57 40138.87 40811.73 40411.37 40527.44 4011.37 41250.42 40411.41 40214.60 40236.93 398
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method38.59 36435.16 36748.89 37854.33 39521.35 40845.32 39953.71 3977.41 40528.74 39351.62 3898.70 39852.87 40333.73 37732.89 39372.47 380
wuyk23d11.30 37510.95 37812.33 39048.05 40019.89 41025.89 4021.92 4143.58 4063.12 4081.37 4080.64 41315.77 4096.23 4087.77 4071.35 405
tmp_tt22.26 37323.75 37517.80 3895.23 41312.06 41435.26 40039.48 4072.82 40718.94 39844.20 39622.23 37724.64 40836.30 3709.31 40516.69 402
EGC-MVSNET42.35 35938.09 36255.11 37174.57 36146.62 37271.63 37055.77 3940.04 4080.24 40962.70 38014.24 39174.91 38517.59 39746.06 37443.80 394
testmvs7.23 3779.62 3800.06 3920.04 4140.02 41784.98 3020.02 4150.03 4090.18 4101.21 4090.01 4150.02 4100.14 4090.01 4080.13 407
test1236.92 3789.21 3810.08 3910.03 4150.05 41681.65 3280.01 4160.02 4100.14 4110.85 4100.03 4140.02 4100.12 4100.00 4090.16 406
test_blank0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4090.00 408
uanet_test0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4090.00 408
DCPMVS0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4090.00 408
cdsmvs_eth3d_5k19.86 37426.47 3730.00 3930.00 4160.00 4180.00 40493.45 840.00 4110.00 41295.27 5849.56 2480.00 4120.00 4110.00 4090.00 408
pcd_1.5k_mvsjas4.46 3795.95 3820.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 41153.55 2130.00 4120.00 4110.00 4090.00 408
sosnet-low-res0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4090.00 408
sosnet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4090.00 408
uncertanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4090.00 408
Regformer0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4090.00 408
ab-mvs-re7.91 37610.55 3790.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 41294.95 680.00 4160.00 4120.00 4110.00 4090.00 408
uanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4090.00 408
WAC-MVS49.45 35831.56 388
MSC_two_6792asdad89.60 897.31 473.22 1095.05 2699.07 1392.01 2694.77 2696.51 25
No_MVS89.60 897.31 473.22 1095.05 2699.07 1392.01 2694.77 2696.51 25
eth-test20.00 416
eth-test0.00 416
OPU-MVS89.97 397.52 373.15 1296.89 697.00 983.82 299.15 295.72 597.63 397.62 2
test_0728_SECOND88.70 1896.45 1270.43 3596.64 1094.37 5299.15 291.91 2994.90 2296.51 25
GSMVS94.68 96
test_part296.29 1968.16 8690.78 17
sam_mvs157.85 16094.68 96
sam_mvs54.91 198
ambc69.61 34961.38 39141.35 38449.07 39885.86 32350.18 36366.40 37310.16 39588.14 33345.73 34244.20 37679.32 362
MTGPAbinary92.23 127
test_post178.95 34820.70 40553.05 21891.50 30460.43 281
test_post23.01 40256.49 18092.67 268
patchmatchnet-post67.62 37257.62 16390.25 313
GG-mvs-BLEND86.53 7191.91 10569.67 5275.02 36594.75 3378.67 13090.85 16577.91 794.56 20172.25 17893.74 4495.36 63
MTMP93.77 8532.52 411
test9_res89.41 4194.96 1995.29 68
agg_prior286.41 7094.75 3095.33 64
agg_prior94.16 4366.97 11793.31 8984.49 6896.75 114
test_prior467.18 11193.92 74
test_prior86.42 7494.71 3567.35 10693.10 9996.84 11195.05 80
新几何291.41 184
旧先验191.94 10260.74 26991.50 16594.36 8665.23 7391.84 7094.55 103
原ACMM292.01 159
testdata296.09 13661.26 277
segment_acmp65.94 66
test1287.09 5194.60 3668.86 6692.91 10582.67 8465.44 7197.55 6393.69 4794.84 89
plane_prior786.94 22661.51 253
plane_prior687.23 21862.32 23750.66 238
plane_prior591.31 17195.55 16576.74 14378.53 19888.39 241
plane_prior489.14 193
plane_prior187.15 220
n20.00 417
nn0.00 417
door-mid66.01 387
lessismore_v073.72 32772.93 36847.83 36561.72 39245.86 37473.76 35328.63 36589.81 32147.75 33431.37 39483.53 315
test1193.01 101
door66.57 386
HQP5-MVS63.66 203
BP-MVS77.63 140
HQP4-MVS74.18 17395.61 16088.63 234
HQP3-MVS91.70 15778.90 193
HQP2-MVS51.63 231
NP-MVS87.41 21463.04 21890.30 175
ACMMP++_ref71.63 251
ACMMP++69.72 260
Test By Simon54.21 207