This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort by
MCST-MVS91.08 191.46 289.94 497.66 273.37 897.13 295.58 1089.33 185.77 5196.26 3072.84 2699.38 192.64 1995.93 997.08 9
MM88.92 1371.10 2297.02 396.04 688.70 291.57 1396.19 3370.12 3698.91 1796.83 195.06 1696.76 12
DELS-MVS90.05 690.09 1089.94 493.14 6673.88 797.01 494.40 4488.32 385.71 5294.91 6874.11 1998.91 1787.26 5995.94 897.03 10
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MVS_030490.01 790.50 888.53 2090.14 13570.94 2396.47 1395.72 987.33 489.60 2896.26 3068.44 4098.74 2495.82 494.72 3095.90 42
EPNet87.84 2288.38 1886.23 7393.30 6066.05 13095.26 3294.84 2487.09 588.06 3494.53 7766.79 5497.34 7383.89 8891.68 7295.29 63
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CANet89.61 1189.99 1188.46 2194.39 3969.71 4396.53 1293.78 5986.89 689.68 2795.78 4065.94 6199.10 992.99 1693.91 4096.58 18
patch_mono-289.71 1090.99 585.85 8396.04 2463.70 19395.04 4095.19 1586.74 791.53 1495.15 6273.86 2097.58 5993.38 1492.00 6796.28 32
DeepPCF-MVS81.17 189.72 991.38 384.72 12393.00 6958.16 29596.72 894.41 4286.50 890.25 2197.83 175.46 1498.67 2592.78 1895.49 1297.32 6
CANet_DTU84.09 8083.52 7485.81 8490.30 13266.82 11291.87 15889.01 25685.27 986.09 4893.74 10147.71 26196.98 9877.90 13389.78 9593.65 130
CLD-MVS82.73 10482.35 10483.86 15287.90 19367.65 9195.45 2892.18 12685.06 1072.58 18392.27 13452.46 21795.78 14184.18 8479.06 18288.16 235
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CNVR-MVS90.32 590.89 688.61 1996.76 870.65 2696.47 1394.83 2584.83 1189.07 3196.80 1970.86 3499.06 1592.64 1995.71 1096.12 35
NCCC89.07 1489.46 1487.91 2596.60 1069.05 5696.38 1594.64 3384.42 1286.74 4396.20 3266.56 5798.76 2389.03 4694.56 3295.92 41
test_fmvsm_n_192087.69 2488.50 1785.27 10387.05 21463.55 20093.69 8791.08 17684.18 1390.17 2397.04 867.58 4997.99 3995.72 590.03 9294.26 104
PS-MVSNAJ88.14 1687.61 2789.71 692.06 9076.72 195.75 2093.26 8383.86 1489.55 2996.06 3653.55 20697.89 4391.10 3193.31 5194.54 96
DeepC-MVS_fast79.48 287.95 2088.00 2387.79 2895.86 2768.32 7295.74 2194.11 5483.82 1583.49 7396.19 3364.53 7998.44 3183.42 9194.88 2496.61 15
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_fmvsmconf_n86.58 3987.17 3284.82 11685.28 24462.55 22394.26 5689.78 22183.81 1687.78 3696.33 2965.33 6796.98 9894.40 1187.55 11394.95 78
xiu_mvs_v2_base87.92 2187.38 3189.55 1191.41 11376.43 395.74 2193.12 9183.53 1789.55 2995.95 3853.45 21097.68 5091.07 3292.62 5894.54 96
test_fmvsmconf0.1_n85.71 5386.08 4784.62 13080.83 29762.33 22793.84 8088.81 26483.50 1887.00 4296.01 3763.36 9696.93 10594.04 1287.29 11694.61 92
TSAR-MVS + MP.88.11 1888.64 1686.54 6391.73 10268.04 8190.36 21793.55 7282.89 1991.29 1592.89 11972.27 3096.03 13587.99 5094.77 2595.54 52
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
DPM-MVS90.70 290.52 791.24 189.68 14476.68 297.29 195.35 1282.87 2091.58 1297.22 379.93 599.10 983.12 9297.64 297.94 1
iter_conf0583.27 9582.70 9784.98 11193.32 5971.84 1594.16 5881.76 34182.74 2173.83 17188.40 19072.77 2794.61 18882.10 9875.21 21488.48 229
WTY-MVS86.32 4285.81 5187.85 2692.82 7369.37 4995.20 3495.25 1482.71 2281.91 8494.73 7267.93 4797.63 5679.55 11782.25 15596.54 19
lupinMVS87.74 2387.77 2587.63 3489.24 15871.18 1996.57 1192.90 9982.70 2387.13 3995.27 5664.99 7095.80 14089.34 4191.80 7095.93 40
fmvsm_s_conf0.5_n86.39 4186.91 3684.82 11687.36 20763.54 20194.74 4790.02 21582.52 2490.14 2496.92 1362.93 10397.84 4695.28 882.26 15493.07 147
HPM-MVS++copyleft89.37 1389.95 1287.64 3095.10 3068.23 7795.24 3394.49 3882.43 2588.90 3296.35 2771.89 3398.63 2688.76 4796.40 696.06 36
test_fmvsmconf0.01_n83.70 9083.52 7484.25 14475.26 34961.72 24192.17 14187.24 29982.36 2684.91 6195.41 4855.60 18296.83 10992.85 1785.87 13194.21 106
PVSNet_Blended86.73 3886.86 3886.31 7293.76 4967.53 9596.33 1693.61 6982.34 2781.00 9493.08 11363.19 9997.29 7687.08 6191.38 7894.13 111
MSP-MVS90.38 491.87 185.88 8092.83 7164.03 18393.06 10794.33 4882.19 2893.65 396.15 3585.89 197.19 8291.02 3397.75 196.43 26
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
PAPM85.89 5085.46 5587.18 4288.20 18672.42 1392.41 13592.77 10282.11 2980.34 9993.07 11468.27 4295.02 17278.39 13093.59 4794.09 113
jason86.40 4086.17 4487.11 4486.16 22970.54 2895.71 2492.19 12582.00 3084.58 6494.34 8761.86 11295.53 16087.76 5290.89 8495.27 66
jason: jason.
baseline181.84 11981.03 12084.28 14391.60 10566.62 11891.08 19591.66 15181.87 3174.86 15891.67 14469.98 3794.92 17871.76 17764.75 29291.29 191
CHOSEN 1792x268884.98 6483.45 7989.57 1089.94 13975.14 592.07 14892.32 11781.87 3175.68 14988.27 19460.18 12998.60 2780.46 11390.27 9194.96 77
fmvsm_s_conf0.1_n85.61 5685.93 4984.68 12682.95 28163.48 20394.03 6889.46 23381.69 3389.86 2596.74 2061.85 11397.75 4994.74 982.01 15892.81 155
test_vis1_n_192081.66 12282.01 10780.64 23382.24 28655.09 32394.76 4686.87 30181.67 3484.40 6694.63 7538.17 30994.67 18791.98 2683.34 14892.16 176
casdiffmvs_mvgpermissive85.66 5585.18 5887.09 4588.22 18569.35 5093.74 8691.89 13781.47 3580.10 10191.45 14664.80 7596.35 12187.23 6087.69 11195.58 50
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
h-mvs3383.01 10082.56 10084.35 14089.34 15162.02 23392.72 12093.76 6281.45 3682.73 7992.25 13560.11 13097.13 8787.69 5362.96 30493.91 122
hse-mvs281.12 13181.11 11981.16 22086.52 22257.48 30589.40 24391.16 16981.45 3682.73 7990.49 16260.11 13094.58 19087.69 5360.41 33191.41 185
ET-MVSNet_ETH3D84.01 8183.15 8986.58 6190.78 12570.89 2494.74 4794.62 3481.44 3858.19 32093.64 10473.64 2392.35 27382.66 9478.66 18796.50 24
fmvsm_s_conf0.5_n_a85.75 5286.09 4684.72 12385.73 23863.58 19893.79 8389.32 23981.42 3990.21 2296.91 1462.41 10797.67 5194.48 1080.56 17192.90 153
test_fmvsmvis_n_192083.80 8683.48 7784.77 12082.51 28363.72 19191.37 18283.99 33081.42 3977.68 12995.74 4258.37 14897.58 5993.38 1486.87 11993.00 150
casdiffmvspermissive85.37 5884.87 6486.84 5188.25 18369.07 5593.04 10991.76 14481.27 4180.84 9692.07 13764.23 8196.06 13384.98 7887.43 11595.39 55
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ETV-MVS86.01 4886.11 4585.70 8990.21 13467.02 10993.43 9991.92 13481.21 4284.13 7094.07 9660.93 12395.63 15189.28 4289.81 9394.46 102
DeepC-MVS77.85 385.52 5785.24 5786.37 6988.80 16866.64 11792.15 14293.68 6781.07 4376.91 14093.64 10462.59 10598.44 3185.50 7292.84 5794.03 117
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
baseline85.01 6384.44 6786.71 5688.33 18068.73 6390.24 22291.82 14381.05 4481.18 9092.50 12663.69 8996.08 13284.45 8386.71 12595.32 61
PC_three_145280.91 4594.07 296.83 1883.57 499.12 595.70 797.42 497.55 4
IU-MVS96.46 1169.91 3795.18 1680.75 4695.28 192.34 2195.36 1396.47 25
diffmvspermissive84.28 7483.83 7285.61 9187.40 20568.02 8290.88 20189.24 24280.54 4781.64 8692.52 12559.83 13494.52 19787.32 5885.11 13594.29 103
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
fmvsm_l_conf0.5_n87.49 2688.19 2185.39 9786.95 21564.37 17394.30 5488.45 27780.51 4892.70 496.86 1569.98 3797.15 8695.83 388.08 10894.65 90
fmvsm_s_conf0.1_n_a84.76 6684.84 6584.53 13280.23 30763.50 20292.79 11788.73 26880.46 4989.84 2696.65 2260.96 12297.57 6193.80 1380.14 17392.53 162
VPNet78.82 17277.53 17482.70 17984.52 25766.44 12293.93 7292.23 12080.46 4972.60 18288.38 19249.18 24693.13 24072.47 17063.97 30188.55 228
canonicalmvs86.85 3586.25 4388.66 1891.80 10171.92 1493.54 9491.71 14780.26 5187.55 3795.25 5863.59 9396.93 10588.18 4984.34 14197.11 8
fmvsm_l_conf0.5_n_a87.44 2888.15 2285.30 10187.10 21264.19 18094.41 5288.14 28680.24 5292.54 596.97 1069.52 3997.17 8395.89 288.51 10494.56 93
CS-MVS-test86.14 4687.01 3483.52 16192.63 8059.36 28395.49 2791.92 13480.09 5385.46 5695.53 4761.82 11595.77 14386.77 6593.37 5095.41 54
CS-MVS85.80 5186.65 4083.27 16992.00 9458.92 28895.31 3191.86 13979.97 5484.82 6295.40 4962.26 10895.51 16186.11 6992.08 6695.37 57
MVSTER82.47 10882.05 10583.74 15492.68 7869.01 5791.90 15793.21 8479.83 5572.14 19185.71 23374.72 1694.72 18375.72 14372.49 23687.50 240
HQP-NCC87.54 20194.06 6379.80 5674.18 164
ACMP_Plane87.54 20194.06 6379.80 5674.18 164
HQP-MVS81.14 12980.64 12682.64 18187.54 20163.66 19694.06 6391.70 14979.80 5674.18 16490.30 16651.63 22495.61 15377.63 13478.90 18388.63 225
baseline283.68 9183.42 8284.48 13587.37 20666.00 13290.06 22695.93 879.71 5969.08 22690.39 16477.92 696.28 12378.91 12581.38 16491.16 193
EI-MVSNet-Vis-set83.77 8783.67 7384.06 14892.79 7663.56 19991.76 16594.81 2679.65 6077.87 12794.09 9463.35 9797.90 4279.35 11979.36 17990.74 197
EIA-MVS84.84 6584.88 6384.69 12591.30 11462.36 22693.85 7792.04 12979.45 6179.33 11194.28 9062.42 10696.35 12180.05 11491.25 8195.38 56
dmvs_re76.93 20375.36 20681.61 21087.78 19860.71 26180.00 33687.99 29079.42 6269.02 22889.47 17946.77 26494.32 20163.38 25474.45 21989.81 209
plane_prior62.42 22493.85 7779.38 6378.80 185
dcpmvs_287.37 2987.55 2886.85 5095.04 3268.20 7890.36 21790.66 18879.37 6481.20 8993.67 10374.73 1596.55 11890.88 3492.00 6795.82 44
alignmvs87.28 3086.97 3588.24 2491.30 11471.14 2195.61 2593.56 7179.30 6587.07 4195.25 5868.43 4196.93 10587.87 5184.33 14296.65 14
TESTMET0.1,182.41 10981.98 10883.72 15788.08 18763.74 18992.70 12293.77 6179.30 6577.61 13187.57 20958.19 15194.08 21373.91 15886.68 12693.33 139
EI-MVSNet-UG-set83.14 9882.96 9083.67 15992.28 8563.19 20891.38 18194.68 3179.22 6776.60 14293.75 10062.64 10497.76 4878.07 13278.01 19090.05 206
PVSNet73.49 880.05 15078.63 15784.31 14190.92 12164.97 15892.47 13491.05 17979.18 6872.43 18890.51 16137.05 32494.06 21568.06 21086.00 13093.90 124
HY-MVS76.49 584.28 7483.36 8587.02 4892.22 8767.74 8884.65 29494.50 3779.15 6982.23 8287.93 20366.88 5396.94 10380.53 11282.20 15696.39 28
PVSNet_BlendedMVS83.38 9383.43 8083.22 17093.76 4967.53 9594.06 6393.61 6979.13 7081.00 9485.14 23663.19 9997.29 7687.08 6173.91 22584.83 296
plane_prior361.95 23679.09 7172.53 184
MVS_111021_HR86.19 4585.80 5287.37 3893.17 6569.79 4093.99 6993.76 6279.08 7278.88 11893.99 9762.25 10998.15 3685.93 7191.15 8294.15 110
test_cas_vis1_n_192080.45 14280.61 12779.97 25078.25 33357.01 31194.04 6788.33 28079.06 7382.81 7893.70 10238.65 30491.63 28890.82 3579.81 17591.27 192
MSLP-MVS++86.27 4385.91 5087.35 3992.01 9368.97 5995.04 4092.70 10479.04 7481.50 8796.50 2558.98 14596.78 11083.49 9093.93 3996.29 30
iter_conf_final81.74 12180.93 12184.18 14592.66 7969.10 5492.94 11382.80 33979.01 7574.85 15988.40 19061.83 11494.61 18879.36 11876.52 20788.83 220
IB-MVS77.80 482.18 11280.46 13187.35 3989.14 16070.28 3195.59 2695.17 1778.85 7670.19 21485.82 23170.66 3597.67 5172.19 17466.52 27794.09 113
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
3Dnovator73.91 682.69 10780.82 12288.31 2389.57 14671.26 1892.60 12894.39 4578.84 7767.89 24792.48 12948.42 25298.52 2868.80 20694.40 3495.15 71
HQP_MVS80.34 14479.75 14082.12 19986.94 21662.42 22493.13 10591.31 16378.81 7872.53 18489.14 18350.66 23195.55 15876.74 13778.53 18888.39 232
plane_prior293.13 10578.81 78
MG-MVS87.11 3286.27 4189.62 797.79 176.27 494.96 4394.49 3878.74 8083.87 7292.94 11764.34 8096.94 10375.19 14794.09 3695.66 47
gm-plane-assit88.42 17667.04 10878.62 8191.83 14097.37 7076.57 139
VNet86.20 4485.65 5487.84 2793.92 4669.99 3395.73 2395.94 778.43 8286.00 4993.07 11458.22 15097.00 9485.22 7484.33 14296.52 20
tpm78.58 17977.03 18383.22 17085.94 23464.56 16283.21 30891.14 17278.31 8373.67 17279.68 30964.01 8392.09 27966.07 23371.26 24693.03 148
save fliter93.84 4867.89 8595.05 3992.66 10778.19 84
TSAR-MVS + GP.87.96 1988.37 1986.70 5793.51 5665.32 14895.15 3693.84 5878.17 8585.93 5094.80 7175.80 1398.21 3489.38 4088.78 10196.59 16
FIs79.47 16079.41 14779.67 25785.95 23259.40 28091.68 16993.94 5678.06 8668.96 23088.28 19366.61 5691.77 28566.20 23274.99 21587.82 237
sss82.71 10682.38 10383.73 15689.25 15559.58 27892.24 13994.89 2377.96 8779.86 10492.38 13156.70 16997.05 8977.26 13680.86 16894.55 94
PMMVS81.98 11882.04 10681.78 20689.76 14356.17 31591.13 19490.69 18577.96 8780.09 10293.57 10646.33 27194.99 17481.41 10587.46 11494.17 108
EC-MVSNet84.53 7085.04 6183.01 17389.34 15161.37 24794.42 5191.09 17477.91 8983.24 7494.20 9258.37 14895.40 16285.35 7391.41 7792.27 172
test111180.84 13680.02 13483.33 16787.87 19460.76 25892.62 12786.86 30277.86 9075.73 14891.39 14946.35 26994.70 18672.79 16588.68 10394.52 98
MVS_Test84.16 7983.20 8687.05 4791.56 10769.82 3989.99 23192.05 12877.77 9182.84 7786.57 22163.93 8596.09 12974.91 15289.18 9995.25 69
SteuartSystems-ACMMP86.82 3786.90 3786.58 6190.42 12966.38 12396.09 1793.87 5777.73 9284.01 7195.66 4363.39 9597.94 4087.40 5793.55 4895.42 53
Skip Steuart: Steuart Systems R&D Blog.
EPNet_dtu78.80 17379.26 15177.43 28688.06 18849.71 34791.96 15691.95 13377.67 9376.56 14391.28 15158.51 14790.20 30856.37 28980.95 16792.39 164
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test250683.29 9482.92 9284.37 13988.39 17863.18 20992.01 15191.35 16277.66 9478.49 12391.42 14764.58 7895.09 17173.19 15989.23 9794.85 80
ECVR-MVScopyleft81.29 12780.38 13284.01 15088.39 17861.96 23592.56 13386.79 30377.66 9476.63 14191.42 14746.34 27095.24 16974.36 15689.23 9794.85 80
tpmrst80.57 13879.14 15384.84 11590.10 13668.28 7481.70 31889.72 22877.63 9675.96 14679.54 31164.94 7292.71 25675.43 14577.28 20193.55 132
testdata189.21 24777.55 97
UniMVSNet_NR-MVSNet78.15 18677.55 17379.98 24884.46 25960.26 26892.25 13893.20 8677.50 9868.88 23186.61 22066.10 5992.13 27766.38 22962.55 30887.54 239
UA-Net80.02 15179.65 14181.11 22289.33 15357.72 30086.33 28789.00 25977.44 9981.01 9389.15 18259.33 14195.90 13861.01 27084.28 14489.73 212
PVSNet_Blended_VisFu83.97 8283.50 7685.39 9790.02 13766.59 12093.77 8491.73 14577.43 10077.08 13989.81 17663.77 8896.97 10079.67 11688.21 10692.60 159
dmvs_testset65.55 31366.45 28962.86 35579.87 31022.35 39876.55 35071.74 36877.42 10155.85 33187.77 20651.39 22680.69 37031.51 38065.92 28185.55 285
NR-MVSNet76.05 21874.59 21480.44 23582.96 27962.18 23190.83 20391.73 14577.12 10260.96 30586.35 22359.28 14291.80 28460.74 27161.34 32387.35 246
FC-MVSNet-test77.99 18878.08 16577.70 28184.89 25255.51 32090.27 22093.75 6576.87 10366.80 26387.59 20865.71 6490.23 30762.89 26073.94 22487.37 244
SD-MVS87.49 2687.49 2987.50 3693.60 5368.82 6293.90 7492.63 11076.86 10487.90 3595.76 4166.17 5897.63 5689.06 4591.48 7696.05 37
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
mvsmamba76.85 20675.71 20280.25 24183.07 27859.16 28591.44 17380.64 34676.84 10567.95 24386.33 22546.17 27494.24 20876.06 14272.92 23287.36 245
UGNet79.87 15478.68 15683.45 16689.96 13861.51 24492.13 14390.79 18376.83 10678.85 12086.33 22538.16 31096.17 12667.93 21387.17 11792.67 157
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
MVS_111021_LR82.02 11781.52 11283.51 16388.42 17662.88 21889.77 23588.93 26076.78 10775.55 15393.10 11150.31 23495.38 16483.82 8987.02 11892.26 173
SDMVSNet80.26 14578.88 15584.40 13789.25 15567.63 9285.35 29093.02 9376.77 10870.84 20587.12 21547.95 25896.09 12985.04 7674.55 21689.48 216
sd_testset77.08 20275.37 20582.20 19589.25 15562.11 23282.06 31589.09 25276.77 10870.84 20587.12 21541.43 29495.01 17367.23 22074.55 21689.48 216
TranMVSNet+NR-MVSNet75.86 22374.52 21779.89 25282.44 28460.64 26491.37 18291.37 16176.63 11067.65 25086.21 22752.37 21891.55 29061.84 26660.81 32687.48 241
PAPR85.15 6184.47 6687.18 4296.02 2568.29 7391.85 16093.00 9676.59 11179.03 11495.00 6361.59 11697.61 5878.16 13189.00 10095.63 48
UniMVSNet (Re)77.58 19576.78 18779.98 24884.11 26560.80 25591.76 16593.17 8876.56 11269.93 22084.78 24163.32 9892.36 27264.89 24562.51 31086.78 256
DU-MVS76.86 20475.84 19979.91 25182.96 27960.26 26891.26 18891.54 15476.46 11368.88 23186.35 22356.16 17592.13 27766.38 22962.55 30887.35 246
OPM-MVS79.00 16778.09 16481.73 20783.52 27363.83 18691.64 17190.30 20276.36 11471.97 19389.93 17546.30 27295.17 17075.10 14877.70 19386.19 268
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
WR-MVS76.76 20975.74 20179.82 25484.60 25562.27 23092.60 12892.51 11476.06 11567.87 24885.34 23456.76 16790.24 30662.20 26463.69 30386.94 254
GA-MVS78.33 18476.23 19484.65 12783.65 27166.30 12691.44 17390.14 20976.01 11670.32 21284.02 25042.50 29094.72 18370.98 18277.00 20392.94 151
PVSNet_068.08 1571.81 26668.32 28382.27 19184.68 25362.31 22988.68 25690.31 20175.84 11757.93 32580.65 29637.85 31594.19 20969.94 19229.05 38890.31 203
CDS-MVSNet81.43 12580.74 12383.52 16186.26 22764.45 16792.09 14690.65 18975.83 11873.95 17089.81 17663.97 8492.91 24971.27 18082.82 15193.20 142
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
CostFormer82.33 11081.15 11585.86 8289.01 16368.46 6982.39 31493.01 9475.59 11980.25 10081.57 27972.03 3294.96 17579.06 12377.48 19894.16 109
nrg03080.93 13479.86 13884.13 14783.69 27068.83 6193.23 10391.20 16775.55 12075.06 15788.22 19863.04 10294.74 18281.88 10066.88 27488.82 223
VDD-MVS83.06 9981.81 11086.81 5390.86 12367.70 8995.40 2991.50 15775.46 12181.78 8592.34 13340.09 29897.13 8786.85 6482.04 15795.60 49
Effi-MVS+-dtu76.14 21475.28 20878.72 27283.22 27555.17 32289.87 23287.78 29375.42 12267.98 24281.43 28145.08 28192.52 26675.08 14971.63 24188.48 229
test_prior295.10 3875.40 12385.25 6095.61 4567.94 4687.47 5694.77 25
MTAPA83.91 8383.38 8485.50 9391.89 9965.16 15381.75 31792.23 12075.32 12480.53 9895.21 6056.06 17897.16 8584.86 8092.55 6094.18 107
EPMVS78.49 18175.98 19786.02 7691.21 11669.68 4480.23 33291.20 16775.25 12572.48 18678.11 31954.65 19293.69 23157.66 28783.04 14994.69 86
miper_enhance_ethall78.86 17177.97 16781.54 21288.00 19165.17 15291.41 17589.15 24875.19 12668.79 23383.98 25167.17 5192.82 25172.73 16665.30 28386.62 261
v2v48277.42 19775.65 20382.73 17880.38 30367.13 10591.85 16090.23 20675.09 12769.37 22283.39 25753.79 20494.44 19971.77 17665.00 28986.63 260
VPA-MVSNet79.03 16678.00 16682.11 20285.95 23264.48 16693.22 10494.66 3275.05 12874.04 16984.95 23852.17 21993.52 23474.90 15367.04 27388.32 234
ACMMP_NAP86.05 4785.80 5286.80 5491.58 10667.53 9591.79 16293.49 7674.93 12984.61 6395.30 5359.42 13997.92 4186.13 6894.92 1994.94 79
thres20079.66 15678.33 16083.66 16092.54 8265.82 13893.06 10796.31 374.90 13073.30 17488.66 18559.67 13695.61 15347.84 32378.67 18689.56 215
TAMVS80.37 14379.45 14683.13 17285.14 24763.37 20491.23 18990.76 18474.81 13172.65 18188.49 18760.63 12592.95 24469.41 19881.95 15993.08 146
MP-MVS-pluss85.24 6085.13 5985.56 9291.42 11165.59 14291.54 17292.51 11474.56 13280.62 9795.64 4459.15 14397.00 9486.94 6393.80 4194.07 115
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
mvs_anonymous81.36 12679.99 13685.46 9490.39 13168.40 7086.88 28490.61 19074.41 13370.31 21384.67 24263.79 8792.32 27473.13 16085.70 13295.67 46
MAR-MVS84.18 7883.43 8086.44 6696.25 2165.93 13594.28 5594.27 5074.41 13379.16 11395.61 4553.99 20198.88 2169.62 19693.26 5294.50 100
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
BH-w/o80.49 14179.30 15084.05 14990.83 12464.36 17593.60 9189.42 23674.35 13569.09 22590.15 17155.23 18695.61 15364.61 24686.43 12992.17 175
thisisatest051583.41 9282.49 10186.16 7489.46 15068.26 7593.54 9494.70 3074.31 13675.75 14790.92 15472.62 2896.52 11969.64 19481.50 16393.71 128
Vis-MVSNet (Re-imp)79.24 16379.57 14278.24 27888.46 17452.29 33490.41 21589.12 25074.24 13769.13 22491.91 13965.77 6390.09 31059.00 28288.09 10792.33 166
SMA-MVScopyleft88.14 1688.29 2087.67 2993.21 6368.72 6493.85 7794.03 5574.18 13891.74 1196.67 2165.61 6598.42 3389.24 4396.08 795.88 43
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
AUN-MVS78.37 18277.43 17581.17 21986.60 22157.45 30689.46 24291.16 16974.11 13974.40 16390.49 16255.52 18394.57 19274.73 15560.43 33091.48 183
3Dnovator+73.60 782.10 11680.60 12886.60 5990.89 12266.80 11495.20 3493.44 7874.05 14067.42 25392.49 12849.46 24297.65 5570.80 18491.68 7295.33 59
XVS83.87 8483.47 7885.05 10893.22 6163.78 18792.92 11492.66 10773.99 14178.18 12494.31 8955.25 18497.41 6879.16 12191.58 7493.95 120
X-MVStestdata76.86 20474.13 22485.05 10893.22 6163.78 18792.92 11492.66 10773.99 14178.18 12410.19 39855.25 18497.41 6879.16 12191.58 7493.95 120
MS-PatchMatch77.90 19276.50 19082.12 19985.99 23169.95 3691.75 16792.70 10473.97 14362.58 29884.44 24641.11 29595.78 14163.76 25292.17 6480.62 342
LCM-MVSNet-Re72.93 25571.84 25476.18 30188.49 17248.02 35480.07 33570.17 37173.96 14452.25 34480.09 30549.98 23788.24 32367.35 21784.23 14592.28 169
Vis-MVSNetpermissive80.92 13579.98 13783.74 15488.48 17361.80 23793.44 9888.26 28573.96 14477.73 12891.76 14149.94 23894.76 18065.84 23590.37 9094.65 90
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test-mter79.96 15279.38 14981.72 20886.93 21861.17 24892.70 12291.54 15473.85 14675.62 15086.94 21749.84 24092.38 27072.21 17284.76 13991.60 180
OMC-MVS78.67 17877.91 16980.95 22985.76 23757.40 30788.49 25988.67 27173.85 14672.43 18892.10 13649.29 24594.55 19572.73 16677.89 19190.91 196
Fast-Effi-MVS+81.14 12980.01 13584.51 13490.24 13365.86 13694.12 6289.15 24873.81 14875.37 15588.26 19557.26 15894.53 19666.97 22384.92 13693.15 143
ZNCC-MVS85.33 5985.08 6086.06 7593.09 6865.65 14093.89 7593.41 8073.75 14979.94 10394.68 7460.61 12698.03 3882.63 9593.72 4494.52 98
V4276.46 21274.55 21682.19 19679.14 32167.82 8690.26 22189.42 23673.75 14968.63 23681.89 27251.31 22794.09 21271.69 17864.84 29084.66 297
v114476.73 21074.88 21082.27 19180.23 30766.60 11991.68 16990.21 20873.69 15169.06 22781.89 27252.73 21594.40 20069.21 20165.23 28685.80 279
v14876.19 21374.47 21881.36 21580.05 30964.44 16891.75 16790.23 20673.68 15267.13 25780.84 29255.92 18093.86 22968.95 20461.73 31985.76 282
CR-MVSNet73.79 24870.82 26382.70 17983.15 27667.96 8370.25 36284.00 32873.67 15369.97 21872.41 34857.82 15489.48 31452.99 30373.13 22990.64 199
XXY-MVS77.94 19076.44 19182.43 18582.60 28264.44 16892.01 15191.83 14273.59 15470.00 21785.82 23154.43 19794.76 18069.63 19568.02 26788.10 236
tfpn200view978.79 17477.43 17582.88 17592.21 8864.49 16492.05 14996.28 473.48 15571.75 19688.26 19560.07 13295.32 16545.16 33477.58 19588.83 220
thres40078.68 17677.43 17582.43 18592.21 8864.49 16492.05 14996.28 473.48 15571.75 19688.26 19560.07 13295.32 16545.16 33477.58 19587.48 241
FMVSNet377.73 19376.04 19682.80 17691.20 11768.99 5891.87 15891.99 13173.35 15767.04 25883.19 25956.62 17192.14 27659.80 27869.34 25487.28 248
GST-MVS84.63 6984.29 6985.66 9092.82 7365.27 14993.04 10993.13 9073.20 15878.89 11594.18 9359.41 14097.85 4581.45 10492.48 6193.86 125
USDC67.43 30464.51 30576.19 30077.94 33755.29 32178.38 34385.00 31973.17 15948.36 35980.37 29921.23 36992.48 26852.15 30464.02 30080.81 340
MP-MVScopyleft85.02 6284.97 6285.17 10792.60 8164.27 17893.24 10292.27 11973.13 16079.63 10794.43 8061.90 11197.17 8385.00 7792.56 5994.06 116
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
xiu_mvs_v1_base_debu82.16 11381.12 11685.26 10486.42 22368.72 6492.59 13090.44 19573.12 16184.20 6794.36 8238.04 31295.73 14584.12 8586.81 12091.33 186
xiu_mvs_v1_base82.16 11381.12 11685.26 10486.42 22368.72 6492.59 13090.44 19573.12 16184.20 6794.36 8238.04 31295.73 14584.12 8586.81 12091.33 186
xiu_mvs_v1_base_debi82.16 11381.12 11685.26 10486.42 22368.72 6492.59 13090.44 19573.12 16184.20 6794.36 8238.04 31295.73 14584.12 8586.81 12091.33 186
D2MVS73.80 24772.02 25279.15 26879.15 32062.97 21288.58 25890.07 21172.94 16459.22 31478.30 31642.31 29292.70 25865.59 23972.00 23981.79 331
BH-RMVSNet79.46 16177.65 17184.89 11391.68 10465.66 13993.55 9388.09 28872.93 16573.37 17391.12 15346.20 27396.12 12856.28 29085.61 13492.91 152
Syy-MVS69.65 28369.52 27570.03 33987.87 19443.21 37288.07 26489.01 25672.91 16663.11 29188.10 19945.28 28085.54 34222.07 38569.23 25781.32 334
myMVS_eth3d72.58 26472.74 24272.10 33287.87 19449.45 34988.07 26489.01 25672.91 16663.11 29188.10 19963.63 9085.54 34232.73 37469.23 25781.32 334
IS-MVSNet80.14 14879.41 14782.33 18987.91 19260.08 27291.97 15588.27 28372.90 16871.44 20191.73 14361.44 11793.66 23262.47 26386.53 12793.24 140
PS-MVSNAJss77.26 19976.31 19380.13 24480.64 30159.16 28590.63 21291.06 17872.80 16968.58 23784.57 24453.55 20693.96 22372.97 16171.96 24087.27 249
9.1487.63 2693.86 4794.41 5294.18 5172.76 17086.21 4696.51 2466.64 5597.88 4490.08 3894.04 37
v119275.98 22073.92 22782.15 19779.73 31166.24 12891.22 19089.75 22372.67 17168.49 23881.42 28249.86 23994.27 20567.08 22165.02 28885.95 276
Effi-MVS+83.82 8582.76 9586.99 4989.56 14769.40 4691.35 18486.12 31072.59 17283.22 7592.81 12359.60 13796.01 13781.76 10187.80 11095.56 51
UnsupCasMVSNet_eth65.79 31163.10 31373.88 31670.71 36450.29 34581.09 32489.88 21972.58 17349.25 35774.77 34332.57 34187.43 33455.96 29141.04 37383.90 303
1112_ss80.56 13979.83 13982.77 17788.65 17060.78 25692.29 13788.36 27972.58 17372.46 18794.95 6465.09 6993.42 23766.38 22977.71 19294.10 112
DVP-MVS++90.53 391.09 488.87 1497.31 469.91 3793.96 7094.37 4672.48 17592.07 896.85 1683.82 299.15 291.53 2997.42 497.55 4
test_0728_THIRD72.48 17590.55 1996.93 1176.24 1199.08 1191.53 2994.99 1796.43 26
cl2277.94 19076.78 18781.42 21487.57 20064.93 16090.67 20888.86 26372.45 17767.63 25182.68 26464.07 8292.91 24971.79 17565.30 28386.44 262
thres600view778.00 18776.66 18982.03 20491.93 9663.69 19491.30 18796.33 172.43 17870.46 20987.89 20460.31 12794.92 17842.64 34676.64 20587.48 241
IterMVS-LS76.49 21175.18 20980.43 23684.49 25862.74 22090.64 21088.80 26572.40 17965.16 27181.72 27560.98 12192.27 27567.74 21464.65 29486.29 264
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet78.97 16878.22 16381.25 21785.33 24262.73 22189.53 24093.21 8472.39 18072.14 19190.13 17260.99 12094.72 18367.73 21572.49 23686.29 264
miper_ehance_all_eth77.60 19476.44 19181.09 22685.70 23964.41 17190.65 20988.64 27372.31 18167.37 25682.52 26564.77 7692.64 26370.67 18665.30 28386.24 266
v14419276.05 21874.03 22582.12 19979.50 31566.55 12191.39 17989.71 22972.30 18268.17 24081.33 28451.75 22294.03 22067.94 21264.19 29685.77 280
thres100view90078.37 18277.01 18482.46 18491.89 9963.21 20791.19 19396.33 172.28 18370.45 21087.89 20460.31 12795.32 16545.16 33477.58 19588.83 220
PatchmatchNetpermissive77.46 19674.63 21385.96 7889.55 14870.35 3079.97 33789.55 23172.23 18470.94 20376.91 33057.03 16192.79 25454.27 29781.17 16594.74 85
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
HFP-MVS84.73 6784.40 6885.72 8893.75 5165.01 15793.50 9693.19 8772.19 18579.22 11294.93 6659.04 14497.67 5181.55 10292.21 6294.49 101
ACMMPR84.37 7184.06 7085.28 10293.56 5464.37 17393.50 9693.15 8972.19 18578.85 12094.86 6956.69 17097.45 6581.55 10292.20 6394.02 118
131480.70 13778.95 15485.94 7987.77 19967.56 9387.91 26892.55 11372.17 18767.44 25293.09 11250.27 23597.04 9271.68 17987.64 11293.23 141
region2R84.36 7284.03 7185.36 9993.54 5564.31 17693.43 9992.95 9772.16 18878.86 11994.84 7056.97 16597.53 6381.38 10692.11 6594.24 105
Test_1112_low_res79.56 15878.60 15882.43 18588.24 18460.39 26792.09 14687.99 29072.10 18971.84 19487.42 21164.62 7793.04 24165.80 23677.30 20093.85 126
v192192075.63 22873.49 23382.06 20379.38 31666.35 12491.07 19789.48 23271.98 19067.99 24181.22 28749.16 24893.90 22666.56 22564.56 29585.92 278
DVP-MVScopyleft89.41 1289.73 1388.45 2296.40 1569.99 3396.64 994.52 3671.92 19190.55 1996.93 1173.77 2199.08 1191.91 2794.90 2196.29 30
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072696.40 1569.99 3396.76 794.33 4871.92 19191.89 1097.11 673.77 21
Fast-Effi-MVS+-dtu75.04 23473.37 23480.07 24580.86 29659.52 27991.20 19285.38 31571.90 19365.20 27084.84 24041.46 29392.97 24366.50 22872.96 23187.73 238
LFMVS84.34 7382.73 9689.18 1294.76 3373.25 994.99 4291.89 13771.90 19382.16 8393.49 10847.98 25797.05 8982.55 9684.82 13797.25 7
eth_miper_zixun_eth75.96 22274.40 21980.66 23284.66 25463.02 21189.28 24588.27 28371.88 19565.73 26681.65 27659.45 13892.81 25268.13 20960.53 32886.14 269
train_agg87.21 3187.42 3086.60 5994.18 4167.28 10094.16 5893.51 7371.87 19685.52 5495.33 5168.19 4397.27 8089.09 4494.90 2195.25 69
test_894.19 4067.19 10294.15 6193.42 7971.87 19685.38 5795.35 5068.19 4396.95 102
MDTV_nov1_ep1372.61 24589.06 16168.48 6880.33 33090.11 21071.84 19871.81 19575.92 33853.01 21293.92 22548.04 32073.38 227
ab-mvs80.18 14778.31 16185.80 8588.44 17565.49 14783.00 31192.67 10671.82 19977.36 13485.01 23754.50 19396.59 11476.35 14175.63 21295.32 61
ACMMPcopyleft81.49 12480.67 12583.93 15191.71 10362.90 21792.13 14392.22 12371.79 20071.68 19893.49 10850.32 23396.96 10178.47 12984.22 14691.93 178
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
PHI-MVS86.83 3686.85 3986.78 5593.47 5765.55 14495.39 3095.10 1871.77 20185.69 5396.52 2362.07 11098.77 2286.06 7095.60 1196.03 38
TEST994.18 4167.28 10094.16 5893.51 7371.75 20285.52 5495.33 5168.01 4597.27 80
c3_l76.83 20875.47 20480.93 23085.02 25064.18 18190.39 21688.11 28771.66 20366.65 26481.64 27763.58 9492.56 26469.31 20062.86 30586.04 273
SED-MVS89.94 890.36 988.70 1696.45 1269.38 4796.89 594.44 4071.65 20492.11 697.21 476.79 999.11 692.34 2195.36 1397.62 2
test_241102_TWO94.41 4271.65 20492.07 897.21 474.58 1799.11 692.34 2195.36 1396.59 16
test_241102_ONE96.45 1269.38 4794.44 4071.65 20492.11 697.05 776.79 999.11 6
v875.35 23073.26 23581.61 21080.67 30066.82 11289.54 23989.27 24171.65 20463.30 29080.30 30154.99 19094.06 21567.33 21962.33 31183.94 302
v124075.21 23372.98 23881.88 20579.20 31866.00 13290.75 20689.11 25171.63 20867.41 25481.22 28747.36 26293.87 22765.46 24164.72 29385.77 280
SCA75.82 22472.76 24185.01 11086.63 22070.08 3281.06 32589.19 24571.60 20970.01 21677.09 32845.53 27790.25 30360.43 27373.27 22894.68 87
BH-untuned78.68 17677.08 18283.48 16589.84 14063.74 18992.70 12288.59 27471.57 21066.83 26288.65 18651.75 22295.39 16359.03 28184.77 13891.32 189
IterMVS72.65 26370.83 26178.09 27982.17 28762.96 21387.64 27486.28 30671.56 21160.44 30778.85 31445.42 27986.66 33763.30 25661.83 31684.65 298
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
mPP-MVS82.96 10282.44 10284.52 13392.83 7162.92 21692.76 11891.85 14171.52 21275.61 15294.24 9153.48 20996.99 9778.97 12490.73 8593.64 131
test-LLR80.10 14979.56 14381.72 20886.93 21861.17 24892.70 12291.54 15471.51 21375.62 15086.94 21753.83 20292.38 27072.21 17284.76 13991.60 180
test0.0.03 172.76 25872.71 24472.88 32480.25 30647.99 35591.22 19089.45 23471.51 21362.51 29987.66 20753.83 20285.06 34650.16 31067.84 27085.58 283
test_one_060196.32 1869.74 4294.18 5171.42 21590.67 1896.85 1674.45 18
PGM-MVS83.25 9682.70 9784.92 11292.81 7564.07 18290.44 21392.20 12471.28 21677.23 13694.43 8055.17 18897.31 7579.33 12091.38 7893.37 136
thisisatest053081.15 12880.07 13384.39 13888.26 18265.63 14191.40 17794.62 3471.27 21770.93 20489.18 18172.47 2996.04 13465.62 23876.89 20491.49 182
cl____76.07 21574.67 21180.28 23985.15 24661.76 23990.12 22488.73 26871.16 21865.43 26881.57 27961.15 11892.95 24466.54 22662.17 31286.13 271
DIV-MVS_self_test76.07 21574.67 21180.28 23985.14 24761.75 24090.12 22488.73 26871.16 21865.42 26981.60 27861.15 11892.94 24866.54 22662.16 31486.14 269
dp75.01 23572.09 25183.76 15389.28 15466.22 12979.96 33889.75 22371.16 21867.80 24977.19 32751.81 22192.54 26550.39 30871.44 24592.51 163
FA-MVS(test-final)79.12 16577.23 18184.81 11990.54 12763.98 18481.35 32391.71 14771.09 22174.85 15982.94 26052.85 21397.05 8967.97 21181.73 16293.41 135
CP-MVS83.71 8983.40 8384.65 12793.14 6663.84 18594.59 4992.28 11871.03 22277.41 13394.92 6755.21 18796.19 12581.32 10790.70 8693.91 122
v1074.77 23772.54 24781.46 21380.33 30566.71 11689.15 24989.08 25370.94 22363.08 29379.86 30652.52 21694.04 21865.70 23762.17 31283.64 304
CDPH-MVS85.71 5385.46 5586.46 6594.75 3467.19 10293.89 7592.83 10170.90 22483.09 7695.28 5463.62 9197.36 7180.63 11194.18 3594.84 83
GBi-Net75.65 22673.83 22881.10 22388.85 16565.11 15490.01 22890.32 19870.84 22567.04 25880.25 30248.03 25491.54 29159.80 27869.34 25486.64 257
test175.65 22673.83 22881.10 22388.85 16565.11 15490.01 22890.32 19870.84 22567.04 25880.25 30248.03 25491.54 29159.80 27869.34 25486.64 257
FMVSNet276.07 21574.01 22682.26 19388.85 16567.66 9091.33 18591.61 15270.84 22565.98 26582.25 26848.03 25492.00 28158.46 28368.73 26287.10 251
SF-MVS87.03 3387.09 3386.84 5192.70 7767.45 9893.64 8993.76 6270.78 22886.25 4596.44 2666.98 5297.79 4788.68 4894.56 3295.28 65
ZD-MVS96.63 965.50 14693.50 7570.74 22985.26 5995.19 6164.92 7397.29 7687.51 5593.01 54
HyFIR lowres test81.03 13379.56 14385.43 9587.81 19768.11 8090.18 22390.01 21670.65 23072.95 17786.06 22963.61 9294.50 19875.01 15079.75 17793.67 129
RRT_MVS74.44 23972.97 23978.84 27182.36 28557.66 30289.83 23488.79 26770.61 23164.58 27684.89 23939.24 30092.65 26270.11 19166.34 27886.21 267
MVP-Stereo77.12 20176.23 19479.79 25581.72 29166.34 12589.29 24490.88 18270.56 23262.01 30182.88 26149.34 24394.13 21065.55 24093.80 4178.88 356
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
ACMP71.68 1075.58 22974.23 22279.62 25984.97 25159.64 27690.80 20489.07 25470.39 23362.95 29487.30 21338.28 30893.87 22772.89 16271.45 24485.36 289
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
HPM-MVScopyleft83.25 9682.95 9184.17 14692.25 8662.88 21890.91 19891.86 13970.30 23477.12 13793.96 9856.75 16896.28 12382.04 9991.34 8093.34 137
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
GeoE78.90 17077.43 17583.29 16888.95 16462.02 23392.31 13686.23 30870.24 23571.34 20289.27 18054.43 19794.04 21863.31 25580.81 17093.81 127
tpm279.80 15577.95 16885.34 10088.28 18168.26 7581.56 32091.42 16070.11 23677.59 13280.50 29767.40 5094.26 20767.34 21877.35 19993.51 133
TR-MVS78.77 17577.37 18082.95 17490.49 12860.88 25493.67 8890.07 21170.08 23774.51 16291.37 15045.69 27695.70 15060.12 27680.32 17292.29 168
CL-MVSNet_self_test69.92 28068.09 28475.41 30473.25 35655.90 31890.05 22789.90 21869.96 23861.96 30276.54 33151.05 22987.64 33049.51 31450.59 35882.70 322
PAPM_NR82.97 10181.84 10986.37 6994.10 4466.76 11587.66 27392.84 10069.96 23874.07 16893.57 10663.10 10197.50 6470.66 18790.58 8894.85 80
PCF-MVS73.15 979.29 16277.63 17284.29 14286.06 23065.96 13487.03 28091.10 17369.86 24069.79 22190.64 15757.54 15796.59 11464.37 24882.29 15390.32 202
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
miper_lstm_enhance73.05 25371.73 25677.03 29283.80 26858.32 29481.76 31688.88 26169.80 24161.01 30478.23 31857.19 15987.51 33365.34 24259.53 33385.27 292
MIMVSNet71.64 26768.44 28181.23 21881.97 29064.44 16873.05 35888.80 26569.67 24264.59 27574.79 34232.79 33987.82 32753.99 29876.35 20891.42 184
LPG-MVS_test75.82 22474.58 21579.56 26184.31 26259.37 28190.44 21389.73 22669.49 24364.86 27288.42 18838.65 30494.30 20372.56 16872.76 23385.01 294
LGP-MVS_train79.56 26184.31 26259.37 28189.73 22669.49 24364.86 27288.42 18838.65 30494.30 20372.56 16872.76 23385.01 294
APDe-MVScopyleft87.54 2587.84 2486.65 5896.07 2366.30 12694.84 4593.78 5969.35 24588.39 3396.34 2867.74 4897.66 5490.62 3693.44 4996.01 39
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
tttt051779.50 15978.53 15982.41 18887.22 20961.43 24689.75 23694.76 2769.29 24667.91 24588.06 20272.92 2595.63 15162.91 25973.90 22690.16 204
Patchmatch-RL test68.17 29664.49 30679.19 26571.22 36153.93 32870.07 36471.54 37069.22 24756.79 32962.89 37056.58 17288.61 31769.53 19752.61 35395.03 76
test_yl84.28 7483.16 8787.64 3094.52 3769.24 5195.78 1895.09 1969.19 24881.09 9192.88 12057.00 16397.44 6681.11 10981.76 16096.23 33
DCV-MVSNet84.28 7483.16 8787.64 3094.52 3769.24 5195.78 1895.09 1969.19 24881.09 9192.88 12057.00 16397.44 6681.11 10981.76 16096.23 33
jajsoiax73.05 25371.51 25877.67 28277.46 34054.83 32488.81 25490.04 21469.13 25062.85 29683.51 25531.16 34892.75 25570.83 18369.80 25085.43 288
DP-MVS Recon82.73 10481.65 11185.98 7797.31 467.06 10695.15 3691.99 13169.08 25176.50 14493.89 9954.48 19698.20 3570.76 18585.66 13392.69 156
Baseline_NR-MVSNet73.99 24572.83 24077.48 28580.78 29859.29 28491.79 16284.55 32368.85 25268.99 22980.70 29356.16 17592.04 28062.67 26160.98 32581.11 336
CHOSEN 280x42077.35 19876.95 18678.55 27387.07 21362.68 22269.71 36582.95 33768.80 25371.48 20087.27 21466.03 6084.00 35276.47 14082.81 15288.95 219
DPE-MVScopyleft88.77 1589.21 1587.45 3796.26 2067.56 9394.17 5794.15 5368.77 25490.74 1797.27 276.09 1298.49 2990.58 3794.91 2096.30 29
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
mvs_tets72.71 26071.11 25977.52 28377.41 34154.52 32688.45 26089.76 22268.76 25562.70 29783.26 25829.49 35292.71 25670.51 18969.62 25285.34 290
MVS84.66 6882.86 9490.06 290.93 12074.56 687.91 26895.54 1168.55 25672.35 19094.71 7359.78 13598.90 1981.29 10894.69 3196.74 13
EPP-MVSNet81.79 12081.52 11282.61 18288.77 16960.21 27093.02 11193.66 6868.52 25772.90 17890.39 16472.19 3194.96 17574.93 15179.29 18192.67 157
CSCG86.87 3486.26 4288.72 1595.05 3170.79 2593.83 8295.33 1368.48 25877.63 13094.35 8673.04 2498.45 3084.92 7993.71 4596.92 11
testing370.38 27770.83 26169.03 34385.82 23643.93 37190.72 20790.56 19168.06 25960.24 30886.82 21964.83 7484.12 34826.33 38164.10 29879.04 355
bld_raw_dy_0_6471.59 26969.71 27477.22 29177.82 33958.12 29687.71 27273.66 36268.01 26061.90 30384.29 24833.68 33688.43 32169.91 19370.43 24985.11 293
CP-MVSNet70.50 27569.91 27172.26 32980.71 29951.00 34187.23 27990.30 20267.84 26159.64 31182.69 26350.23 23682.30 36451.28 30559.28 33483.46 309
pmmvs573.35 25071.52 25778.86 27078.64 32960.61 26591.08 19586.90 30067.69 26263.32 28983.64 25344.33 28490.53 30062.04 26566.02 28085.46 287
pm-mvs172.89 25671.09 26078.26 27779.10 32257.62 30390.80 20489.30 24067.66 26362.91 29581.78 27449.11 24992.95 24460.29 27558.89 33684.22 300
MDTV_nov1_ep13_2view59.90 27480.13 33467.65 26472.79 17954.33 19959.83 27792.58 160
pmmvs473.92 24671.81 25580.25 24179.17 31965.24 15087.43 27687.26 29867.64 26563.46 28883.91 25248.96 25091.53 29462.94 25865.49 28283.96 301
WR-MVS_H70.59 27469.94 27072.53 32681.03 29551.43 33887.35 27792.03 13067.38 26660.23 30980.70 29355.84 18183.45 35646.33 33058.58 33882.72 320
KD-MVS_2432*160069.03 28866.37 29177.01 29385.56 24061.06 25181.44 32190.25 20467.27 26758.00 32376.53 33254.49 19487.63 33148.04 32035.77 38082.34 326
miper_refine_blended69.03 28866.37 29177.01 29385.56 24061.06 25181.44 32190.25 20467.27 26758.00 32376.53 33254.49 19487.63 33148.04 32035.77 38082.34 326
PS-CasMVS69.86 28269.13 27772.07 33380.35 30450.57 34387.02 28189.75 22367.27 26759.19 31582.28 26746.58 26782.24 36550.69 30759.02 33583.39 311
PEN-MVS69.46 28568.56 27972.17 33179.27 31749.71 34786.90 28389.24 24267.24 27059.08 31682.51 26647.23 26383.54 35548.42 31857.12 33983.25 312
cascas78.18 18575.77 20085.41 9687.14 21169.11 5392.96 11291.15 17166.71 27170.47 20886.07 22837.49 31896.48 12070.15 19079.80 17690.65 198
APD-MVScopyleft85.93 4985.99 4885.76 8795.98 2665.21 15193.59 9292.58 11266.54 27286.17 4795.88 3963.83 8697.00 9486.39 6792.94 5595.06 73
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
OpenMVScopyleft70.45 1178.54 18075.92 19886.41 6885.93 23571.68 1692.74 11992.51 11466.49 27364.56 27791.96 13843.88 28598.10 3754.61 29590.65 8789.44 218
DTE-MVSNet68.46 29467.33 28771.87 33577.94 33749.00 35286.16 28888.58 27566.36 27458.19 32082.21 26946.36 26883.87 35344.97 33755.17 34682.73 319
IterMVS-SCA-FT71.55 27069.97 26976.32 29981.48 29260.67 26387.64 27485.99 31166.17 27559.50 31278.88 31345.53 27783.65 35462.58 26261.93 31584.63 299
TransMVSNet (Re)70.07 27967.66 28577.31 28980.62 30259.13 28791.78 16484.94 32065.97 27660.08 31080.44 29850.78 23091.87 28248.84 31645.46 36680.94 338
MVSFormer83.75 8882.88 9386.37 6989.24 15871.18 1989.07 25090.69 18565.80 27787.13 3994.34 8764.99 7092.67 25972.83 16391.80 7095.27 66
test_djsdf73.76 24972.56 24677.39 28777.00 34353.93 32889.07 25090.69 18565.80 27763.92 28382.03 27143.14 28992.67 25972.83 16368.53 26385.57 284
API-MVS82.28 11180.53 12987.54 3596.13 2270.59 2793.63 9091.04 18065.72 27975.45 15492.83 12256.11 17798.89 2064.10 24989.75 9693.15 143
原ACMM184.42 13693.21 6364.27 17893.40 8165.39 28079.51 10892.50 12658.11 15296.69 11265.27 24393.96 3892.32 167
testgi64.48 31862.87 31669.31 34271.24 36040.62 37785.49 28979.92 34865.36 28154.18 33783.49 25623.74 36584.55 34741.60 34860.79 32782.77 318
QAPM79.95 15377.39 17987.64 3089.63 14571.41 1793.30 10193.70 6665.34 28267.39 25591.75 14247.83 25998.96 1657.71 28689.81 9392.54 161
HPM-MVS_fast80.25 14679.55 14582.33 18991.55 10859.95 27391.32 18689.16 24765.23 28374.71 16193.07 11447.81 26095.74 14474.87 15488.23 10591.31 190
tfpnnormal70.10 27867.36 28678.32 27583.45 27460.97 25388.85 25392.77 10264.85 28460.83 30678.53 31543.52 28793.48 23531.73 37761.70 32080.52 343
FE-MVS75.97 22173.02 23784.82 11689.78 14165.56 14377.44 34891.07 17764.55 28572.66 18079.85 30746.05 27596.69 11254.97 29480.82 16992.21 174
SR-MVS82.81 10382.58 9983.50 16493.35 5861.16 25092.23 14091.28 16664.48 28681.27 8895.28 5453.71 20595.86 13982.87 9388.77 10293.49 134
K. test v363.09 32459.61 32873.53 31976.26 34649.38 35183.27 30577.15 35264.35 28747.77 36172.32 35028.73 35487.79 32849.93 31236.69 37983.41 310
v7n71.31 27168.65 27879.28 26476.40 34560.77 25786.71 28589.45 23464.17 28858.77 31978.24 31744.59 28393.54 23357.76 28561.75 31883.52 307
FMVSNet172.71 26069.91 27181.10 22383.60 27265.11 15490.01 22890.32 19863.92 28963.56 28780.25 30236.35 32791.54 29154.46 29666.75 27586.64 257
XVG-OURS74.25 24272.46 24879.63 25878.45 33157.59 30480.33 33087.39 29563.86 29068.76 23489.62 17840.50 29791.72 28669.00 20374.25 22189.58 213
UniMVSNet_ETH3D72.74 25970.53 26679.36 26378.62 33056.64 31385.01 29289.20 24463.77 29164.84 27484.44 24634.05 33591.86 28363.94 25070.89 24889.57 214
test_fmvs174.07 24373.69 23075.22 30578.91 32547.34 35989.06 25274.69 36063.68 29279.41 10991.59 14524.36 36287.77 32985.22 7476.26 20990.55 201
114514_t79.17 16477.67 17083.68 15895.32 2965.53 14592.85 11691.60 15363.49 29367.92 24490.63 15946.65 26695.72 14967.01 22283.54 14789.79 210
test_fmvs1_n72.69 26271.92 25374.99 30871.15 36247.08 36187.34 27875.67 35563.48 29478.08 12691.17 15220.16 37387.87 32684.65 8175.57 21390.01 207
APD-MVS_3200maxsize81.64 12381.32 11482.59 18392.36 8358.74 29091.39 17991.01 18163.35 29579.72 10694.62 7651.82 22096.14 12779.71 11587.93 10992.89 154
test20.0363.83 32162.65 31767.38 35070.58 36639.94 37886.57 28684.17 32563.29 29651.86 34577.30 32437.09 32382.47 36238.87 35954.13 35079.73 349
XVG-OURS-SEG-HR74.70 23873.08 23679.57 26078.25 33357.33 30880.49 32887.32 29663.22 29768.76 23490.12 17444.89 28291.59 28970.55 18874.09 22389.79 210
test_vis1_n71.63 26870.73 26474.31 31569.63 36847.29 36086.91 28272.11 36663.21 29875.18 15690.17 17020.40 37185.76 34184.59 8274.42 22089.87 208
ACMM69.62 1374.34 24072.73 24379.17 26684.25 26457.87 29890.36 21789.93 21763.17 29965.64 26786.04 23037.79 31694.10 21165.89 23471.52 24385.55 285
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
tpmvs72.88 25769.76 27382.22 19490.98 11967.05 10778.22 34588.30 28163.10 30064.35 28274.98 34155.09 18994.27 20543.25 34069.57 25385.34 290
SixPastTwentyTwo64.92 31561.78 32274.34 31478.74 32749.76 34683.42 30479.51 35062.86 30150.27 35277.35 32330.92 35090.49 30145.89 33247.06 36382.78 317
SR-MVS-dyc-post81.06 13280.70 12482.15 19792.02 9158.56 29290.90 19990.45 19262.76 30278.89 11594.46 7851.26 22895.61 15378.77 12786.77 12392.28 169
RE-MVS-def80.48 13092.02 9158.56 29290.90 19990.45 19262.76 30278.89 11594.46 7849.30 24478.77 12786.77 12392.28 169
TAPA-MVS70.22 1274.94 23673.53 23279.17 26690.40 13052.07 33589.19 24889.61 23062.69 30470.07 21592.67 12448.89 25194.32 20138.26 36079.97 17491.12 194
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
Anonymous20240521177.96 18975.33 20785.87 8193.73 5264.52 16394.85 4485.36 31662.52 30576.11 14590.18 16929.43 35397.29 7668.51 20877.24 20295.81 45
pmmvs-eth3d65.53 31462.32 31975.19 30669.39 36959.59 27782.80 31283.43 33362.52 30551.30 34972.49 34632.86 33887.16 33655.32 29350.73 35778.83 357
AdaColmapbinary78.94 16977.00 18584.76 12196.34 1765.86 13692.66 12687.97 29262.18 30770.56 20792.37 13243.53 28697.35 7264.50 24782.86 15091.05 195
FOURS193.95 4561.77 23893.96 7091.92 13462.14 30886.57 44
无先验92.71 12192.61 11162.03 30997.01 9366.63 22493.97 119
XVG-ACMP-BASELINE68.04 29765.53 29775.56 30374.06 35452.37 33378.43 34285.88 31262.03 30958.91 31881.21 28920.38 37291.15 29760.69 27268.18 26583.16 314
anonymousdsp71.14 27269.37 27676.45 29872.95 35754.71 32584.19 29688.88 26161.92 31162.15 30079.77 30838.14 31191.44 29668.90 20567.45 27183.21 313
tpm cat175.30 23172.21 25084.58 13188.52 17167.77 8778.16 34688.02 28961.88 31268.45 23976.37 33460.65 12494.03 22053.77 30074.11 22291.93 178
FMVSNet568.04 29765.66 29675.18 30784.43 26057.89 29783.54 30086.26 30761.83 31353.64 34073.30 34537.15 32285.08 34548.99 31561.77 31782.56 325
Anonymous2023120667.53 30265.78 29372.79 32574.95 35047.59 35788.23 26287.32 29661.75 31458.07 32277.29 32537.79 31687.29 33542.91 34263.71 30283.48 308
PatchMatch-RL72.06 26569.98 26878.28 27689.51 14955.70 31983.49 30183.39 33561.24 31563.72 28682.76 26234.77 33293.03 24253.37 30277.59 19486.12 272
tt080573.07 25270.73 26480.07 24578.37 33257.05 31087.78 27092.18 12661.23 31667.04 25886.49 22231.35 34794.58 19065.06 24467.12 27288.57 227
PLCcopyleft68.80 1475.23 23273.68 23179.86 25392.93 7058.68 29190.64 21088.30 28160.90 31764.43 28190.53 16042.38 29194.57 19256.52 28876.54 20686.33 263
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
ACMH63.93 1768.62 29164.81 30180.03 24785.22 24563.25 20687.72 27184.66 32260.83 31851.57 34779.43 31227.29 35894.96 17541.76 34764.84 29081.88 330
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
EG-PatchMatch MVS68.55 29265.41 29877.96 28078.69 32862.93 21489.86 23389.17 24660.55 31950.27 35277.73 32222.60 36794.06 21547.18 32672.65 23576.88 364
VDDNet80.50 14078.26 16287.21 4186.19 22869.79 4094.48 5091.31 16360.42 32079.34 11090.91 15538.48 30796.56 11782.16 9781.05 16695.27 66
CPTT-MVS79.59 15779.16 15280.89 23191.54 10959.80 27592.10 14588.54 27660.42 32072.96 17693.28 11048.27 25392.80 25378.89 12686.50 12890.06 205
our_test_368.29 29564.69 30379.11 26978.92 32364.85 16188.40 26185.06 31860.32 32252.68 34276.12 33640.81 29689.80 31344.25 33955.65 34482.67 324
ITE_SJBPF70.43 33874.44 35247.06 36277.32 35160.16 32354.04 33883.53 25423.30 36684.01 35143.07 34161.58 32280.21 348
ppachtmachnet_test67.72 29963.70 31079.77 25678.92 32366.04 13188.68 25682.90 33860.11 32455.45 33275.96 33739.19 30190.55 29939.53 35552.55 35482.71 321
new-patchmatchnet59.30 33556.48 33767.79 34765.86 37544.19 36882.47 31381.77 34059.94 32543.65 37366.20 36527.67 35781.68 36739.34 35641.40 37277.50 363
mvsany_test168.77 29068.56 27969.39 34173.57 35545.88 36680.93 32660.88 38459.65 32671.56 19990.26 16843.22 28875.05 37474.26 15762.70 30787.25 250
新几何184.73 12292.32 8464.28 17791.46 15959.56 32779.77 10592.90 11856.95 16696.57 11663.40 25392.91 5693.34 137
旧先验292.00 15459.37 32887.54 3893.47 23675.39 146
PM-MVS59.40 33456.59 33667.84 34663.63 37641.86 37376.76 34963.22 38159.01 32951.07 35072.27 35111.72 38483.25 35861.34 26850.28 35978.39 360
LTVRE_ROB59.60 1966.27 30863.54 31174.45 31284.00 26751.55 33767.08 37283.53 33258.78 33054.94 33480.31 30034.54 33393.23 23940.64 35368.03 26678.58 359
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
testdata81.34 21689.02 16257.72 30089.84 22058.65 33185.32 5894.09 9457.03 16193.28 23869.34 19990.56 8993.03 148
ACMH+65.35 1667.65 30064.55 30476.96 29584.59 25657.10 30988.08 26380.79 34458.59 33253.00 34181.09 29126.63 36092.95 24446.51 32861.69 32180.82 339
ADS-MVSNet266.90 30563.44 31277.26 29088.06 18860.70 26268.01 36975.56 35757.57 33364.48 27869.87 35838.68 30284.10 34940.87 35167.89 26886.97 252
ADS-MVSNet68.54 29364.38 30881.03 22788.06 18866.90 11168.01 36984.02 32757.57 33364.48 27869.87 35838.68 30289.21 31640.87 35167.89 26886.97 252
MDA-MVSNet-bldmvs61.54 32957.70 33373.05 32279.53 31457.00 31283.08 30981.23 34257.57 33334.91 38172.45 34732.79 33986.26 34035.81 36441.95 37175.89 366
KD-MVS_self_test60.87 33058.60 33067.68 34866.13 37439.93 37975.63 35584.70 32157.32 33649.57 35568.45 36129.55 35182.87 36048.09 31947.94 36280.25 347
UnsupCasMVSNet_bld61.60 32857.71 33273.29 32168.73 37051.64 33678.61 34189.05 25557.20 33746.11 36261.96 37328.70 35588.60 31850.08 31138.90 37779.63 350
MSDG69.54 28465.73 29480.96 22885.11 24963.71 19284.19 29683.28 33656.95 33854.50 33584.03 24931.50 34596.03 13542.87 34469.13 25983.14 315
F-COLMAP70.66 27368.44 28177.32 28886.37 22655.91 31788.00 26686.32 30556.94 33957.28 32888.07 20133.58 33792.49 26751.02 30668.37 26483.55 305
test22289.77 14261.60 24389.55 23889.42 23656.83 34077.28 13592.43 13052.76 21491.14 8393.09 145
CNLPA74.31 24172.30 24980.32 23791.49 11061.66 24290.85 20280.72 34556.67 34163.85 28590.64 15746.75 26590.84 29853.79 29975.99 21188.47 231
OurMVSNet-221017-064.68 31662.17 32072.21 33076.08 34847.35 35880.67 32781.02 34356.19 34251.60 34679.66 31027.05 35988.56 31953.60 30153.63 35180.71 341
YYNet163.76 32360.14 32674.62 31178.06 33660.19 27183.46 30383.99 33056.18 34339.25 37771.56 35537.18 32183.34 35742.90 34348.70 36180.32 345
MDA-MVSNet_test_wron63.78 32260.16 32574.64 31078.15 33560.41 26683.49 30184.03 32656.17 34439.17 37871.59 35437.22 32083.24 35942.87 34448.73 36080.26 346
OpenMVS_ROBcopyleft61.12 1866.39 30762.92 31576.80 29776.51 34457.77 29989.22 24683.41 33455.48 34553.86 33977.84 32126.28 36193.95 22434.90 36768.76 26178.68 358
MIMVSNet160.16 33357.33 33468.67 34469.71 36744.13 36978.92 34084.21 32455.05 34644.63 37071.85 35223.91 36481.54 36832.63 37555.03 34780.35 344
test_fmvs265.78 31264.84 30068.60 34566.54 37341.71 37483.27 30569.81 37254.38 34767.91 24584.54 24515.35 37881.22 36975.65 14466.16 27982.88 316
CVMVSNet74.04 24474.27 22173.33 32085.33 24243.94 37089.53 24088.39 27854.33 34870.37 21190.13 17249.17 24784.05 35061.83 26779.36 17991.99 177
Anonymous2024052976.84 20774.15 22384.88 11491.02 11864.95 15993.84 8091.09 17453.57 34973.00 17587.42 21135.91 32897.32 7469.14 20272.41 23892.36 165
pmmvs667.57 30164.76 30276.00 30272.82 35953.37 33088.71 25586.78 30453.19 35057.58 32778.03 32035.33 33192.41 26955.56 29254.88 34882.21 328
TinyColmap60.32 33156.42 33872.00 33478.78 32653.18 33178.36 34475.64 35652.30 35141.59 37675.82 33914.76 38188.35 32235.84 36354.71 34974.46 368
test_040264.54 31761.09 32374.92 30984.10 26660.75 25987.95 26779.71 34952.03 35252.41 34377.20 32632.21 34391.64 28723.14 38361.03 32472.36 372
test_vis1_rt59.09 33657.31 33564.43 35368.44 37146.02 36583.05 31048.63 39351.96 35349.57 35563.86 36916.30 37680.20 37171.21 18162.79 30667.07 378
Anonymous2023121173.08 25170.39 26781.13 22190.62 12663.33 20591.40 17790.06 21351.84 35464.46 28080.67 29536.49 32694.07 21463.83 25164.17 29785.98 275
AllTest61.66 32758.06 33172.46 32779.57 31251.42 33980.17 33368.61 37451.25 35545.88 36381.23 28519.86 37486.58 33838.98 35757.01 34179.39 351
TestCases72.46 32779.57 31251.42 33968.61 37451.25 35545.88 36381.23 28519.86 37486.58 33838.98 35757.01 34179.39 351
PatchT69.11 28765.37 29980.32 23782.07 28963.68 19567.96 37187.62 29450.86 35769.37 22265.18 36657.09 16088.53 32041.59 34966.60 27688.74 224
Anonymous2024052162.09 32659.08 32971.10 33667.19 37248.72 35383.91 29885.23 31750.38 35847.84 36071.22 35720.74 37085.51 34446.47 32958.75 33779.06 354
DP-MVS69.90 28166.48 28880.14 24395.36 2862.93 21489.56 23776.11 35350.27 35957.69 32685.23 23539.68 29995.73 14533.35 37071.05 24781.78 332
gg-mvs-nofinetune77.18 20074.31 22085.80 8591.42 11168.36 7171.78 35994.72 2949.61 36077.12 13745.92 38377.41 893.98 22267.62 21693.16 5395.05 74
JIA-IIPM66.06 30962.45 31876.88 29681.42 29454.45 32757.49 38488.67 27149.36 36163.86 28446.86 38256.06 17890.25 30349.53 31368.83 26085.95 276
N_pmnet50.55 34249.11 34554.88 36377.17 3424.02 40684.36 2952.00 40448.59 36245.86 36568.82 36032.22 34282.80 36131.58 37851.38 35677.81 362
ANet_high40.27 35335.20 35655.47 36134.74 40034.47 38663.84 37671.56 36948.42 36318.80 39041.08 3899.52 38864.45 39020.18 3868.66 39767.49 377
COLMAP_ROBcopyleft57.96 2062.98 32559.65 32772.98 32381.44 29353.00 33283.75 29975.53 35848.34 36448.81 35881.40 28324.14 36390.30 30232.95 37260.52 32975.65 367
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
Patchmtry67.53 30263.93 30978.34 27482.12 28864.38 17268.72 36684.00 32848.23 36559.24 31372.41 34857.82 15489.27 31546.10 33156.68 34381.36 333
LS3D69.17 28666.40 29077.50 28491.92 9756.12 31685.12 29180.37 34746.96 36656.50 33087.51 21037.25 31993.71 23032.52 37679.40 17882.68 323
RPSCF64.24 31961.98 32171.01 33776.10 34745.00 36775.83 35475.94 35446.94 36758.96 31784.59 24331.40 34682.00 36647.76 32460.33 33286.04 273
RPMNet70.42 27665.68 29584.63 12983.15 27667.96 8370.25 36290.45 19246.83 36869.97 21865.10 36756.48 17495.30 16835.79 36573.13 22990.64 199
WB-MVS46.23 34644.94 34850.11 36762.13 38021.23 40076.48 35155.49 38645.89 36935.78 37961.44 37535.54 32972.83 3789.96 39421.75 38956.27 382
CMPMVSbinary48.56 2166.77 30664.41 30773.84 31770.65 36550.31 34477.79 34785.73 31445.54 37044.76 36982.14 27035.40 33090.14 30963.18 25774.54 21881.07 337
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
EU-MVSNet64.01 32063.01 31467.02 35174.40 35338.86 38283.27 30586.19 30945.11 37154.27 33681.15 29036.91 32580.01 37248.79 31757.02 34082.19 329
TDRefinement55.28 34051.58 34366.39 35259.53 38346.15 36476.23 35272.80 36444.60 37242.49 37476.28 33515.29 37982.39 36333.20 37143.75 36870.62 374
Patchmatch-test65.86 31060.94 32480.62 23483.75 26958.83 28958.91 38375.26 35944.50 37350.95 35177.09 32858.81 14687.90 32535.13 36664.03 29995.12 72
test_fmvs356.82 33754.86 34062.69 35653.59 38635.47 38475.87 35365.64 37943.91 37455.10 33371.43 3566.91 39274.40 37768.64 20752.63 35278.20 361
mvsany_test348.86 34446.35 34756.41 35946.00 39231.67 38962.26 37747.25 39443.71 37545.54 36768.15 36210.84 38564.44 39157.95 28435.44 38273.13 369
SSC-MVS44.51 34843.35 35047.99 37161.01 38218.90 40274.12 35754.36 38743.42 37634.10 38260.02 37634.42 33470.39 3819.14 39619.57 39054.68 383
LF4IMVS54.01 34152.12 34259.69 35762.41 37939.91 38068.59 36768.28 37642.96 37744.55 37175.18 34014.09 38368.39 38341.36 35051.68 35570.78 373
DSMNet-mixed56.78 33854.44 34163.79 35463.21 37729.44 39364.43 37564.10 38042.12 37851.32 34871.60 35331.76 34475.04 37536.23 36265.20 28786.87 255
pmmvs355.51 33951.50 34467.53 34957.90 38450.93 34280.37 32973.66 36240.63 37944.15 37264.75 36816.30 37678.97 37344.77 33840.98 37572.69 370
new_pmnet49.31 34346.44 34657.93 35862.84 37840.74 37668.47 36862.96 38236.48 38035.09 38057.81 37714.97 38072.18 37932.86 37346.44 36460.88 380
MVS-HIRNet60.25 33255.55 33974.35 31384.37 26156.57 31471.64 36074.11 36134.44 38145.54 36742.24 38831.11 34989.81 31140.36 35476.10 21076.67 365
test_f46.58 34543.45 34955.96 36045.18 39332.05 38861.18 37849.49 39233.39 38242.05 37562.48 3727.00 39165.56 38747.08 32743.21 37070.27 375
test_vis3_rt40.46 35237.79 35348.47 37044.49 39433.35 38766.56 37332.84 40132.39 38329.65 38339.13 3913.91 39968.65 38250.17 30940.99 37443.40 386
DeepMVS_CXcopyleft34.71 37751.45 38824.73 39728.48 40331.46 38417.49 39352.75 3795.80 39442.60 39818.18 38719.42 39136.81 390
FPMVS45.64 34743.10 35153.23 36551.42 38936.46 38364.97 37471.91 36729.13 38527.53 38561.55 3749.83 38765.01 38916.00 39155.58 34558.22 381
PMMVS237.93 35533.61 35850.92 36646.31 39124.76 39660.55 38150.05 39028.94 38620.93 38847.59 3814.41 39865.13 38825.14 38218.55 39262.87 379
LCM-MVSNet40.54 35035.79 35554.76 36436.92 39930.81 39051.41 38769.02 37322.07 38724.63 38745.37 3844.56 39665.81 38633.67 36934.50 38367.67 376
APD_test140.50 35137.31 35450.09 36851.88 38735.27 38559.45 38252.59 38921.64 38826.12 38657.80 3784.56 39666.56 38522.64 38439.09 37648.43 384
PMVScopyleft26.43 2231.84 35928.16 36242.89 37325.87 40227.58 39450.92 38849.78 39121.37 38914.17 39540.81 3902.01 40266.62 3849.61 39538.88 37834.49 391
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
Gipumacopyleft34.91 35631.44 35945.30 37270.99 36339.64 38119.85 39472.56 36520.10 39016.16 39421.47 3955.08 39571.16 38013.07 39243.70 36925.08 392
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
testf132.77 35729.47 36042.67 37441.89 39630.81 39052.07 38543.45 39515.45 39118.52 39144.82 3852.12 40058.38 39216.05 38930.87 38638.83 387
APD_test232.77 35729.47 36042.67 37441.89 39630.81 39052.07 38543.45 39515.45 39118.52 39144.82 3852.12 40058.38 39216.05 38930.87 38638.83 387
E-PMN24.61 36024.00 36426.45 37843.74 39518.44 40360.86 37939.66 39715.11 3939.53 39722.10 3946.52 39346.94 3968.31 39710.14 39413.98 394
EMVS23.76 36223.20 36625.46 37941.52 39816.90 40460.56 38038.79 40014.62 3948.99 39820.24 3977.35 39045.82 3977.25 3989.46 39513.64 395
MVEpermissive24.84 2324.35 36119.77 36738.09 37634.56 40126.92 39526.57 39238.87 39911.73 39511.37 39627.44 3921.37 40350.42 39511.41 39314.60 39336.93 389
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method38.59 35435.16 35748.89 36954.33 38521.35 39945.32 39053.71 3887.41 39628.74 38451.62 3808.70 38952.87 39433.73 36832.89 38472.47 371
wuyk23d11.30 36510.95 36812.33 38148.05 39019.89 40125.89 3931.92 4053.58 3973.12 3991.37 3990.64 40415.77 4006.23 3997.77 3981.35 396
tmp_tt22.26 36323.75 36517.80 3805.23 40312.06 40535.26 39139.48 3982.82 39818.94 38944.20 38722.23 36824.64 39936.30 3619.31 39616.69 393
EGC-MVSNET42.35 34938.09 35255.11 36274.57 35146.62 36371.63 36155.77 3850.04 3990.24 40062.70 37114.24 38274.91 37617.59 38846.06 36543.80 385
testmvs7.23 3679.62 3700.06 3830.04 4040.02 40884.98 2930.02 4060.03 4000.18 4011.21 4000.01 4060.02 4010.14 4000.01 3990.13 398
test1236.92 3689.21 3710.08 3820.03 4050.05 40781.65 3190.01 4070.02 4010.14 4020.85 4010.03 4050.02 4010.12 4010.00 4000.16 397
test_blank0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4000.00 399
uanet_test0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4000.00 399
DCPMVS0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4000.00 399
cdsmvs_eth3d_5k19.86 36426.47 3630.00 3840.00 4060.00 4090.00 39593.45 770.00 4020.00 40395.27 5649.56 2410.00 4030.00 4020.00 4000.00 399
pcd_1.5k_mvsjas4.46 3695.95 3720.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 40253.55 2060.00 4030.00 4020.00 4000.00 399
sosnet-low-res0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4000.00 399
sosnet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4000.00 399
uncertanet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4000.00 399
Regformer0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4000.00 399
ab-mvs-re7.91 36610.55 3690.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 40394.95 640.00 4070.00 4030.00 4020.00 4000.00 399
uanet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4000.00 399
WAC-MVS49.45 34931.56 379
MSC_two_6792asdad89.60 897.31 473.22 1095.05 2199.07 1392.01 2494.77 2596.51 21
No_MVS89.60 897.31 473.22 1095.05 2199.07 1392.01 2494.77 2596.51 21
eth-test20.00 406
eth-test0.00 406
OPU-MVS89.97 397.52 373.15 1296.89 597.00 983.82 299.15 295.72 597.63 397.62 2
test_0728_SECOND88.70 1696.45 1270.43 2996.64 994.37 4699.15 291.91 2794.90 2196.51 21
GSMVS94.68 87
test_part296.29 1968.16 7990.78 16
sam_mvs157.85 15394.68 87
sam_mvs54.91 191
ambc69.61 34061.38 38141.35 37549.07 38985.86 31350.18 35466.40 36410.16 38688.14 32445.73 33344.20 36779.32 353
MTGPAbinary92.23 120
test_post178.95 33920.70 39653.05 21191.50 29560.43 273
test_post23.01 39356.49 17392.67 259
patchmatchnet-post67.62 36357.62 15690.25 303
GG-mvs-BLEND86.53 6491.91 9869.67 4575.02 35694.75 2878.67 12290.85 15677.91 794.56 19472.25 17193.74 4395.36 58
MTMP93.77 8432.52 402
test9_res89.41 3994.96 1895.29 63
agg_prior286.41 6694.75 2995.33 59
agg_prior94.16 4366.97 11093.31 8284.49 6596.75 111
test_prior467.18 10493.92 73
test_prior86.42 6794.71 3567.35 9993.10 9296.84 10895.05 74
新几何291.41 175
旧先验191.94 9560.74 26091.50 15794.36 8265.23 6891.84 6994.55 94
原ACMM292.01 151
testdata296.09 12961.26 269
segment_acmp65.94 61
test1287.09 4594.60 3668.86 6092.91 9882.67 8165.44 6697.55 6293.69 4694.84 83
plane_prior786.94 21661.51 244
plane_prior687.23 20862.32 22850.66 231
plane_prior591.31 16395.55 15876.74 13778.53 18888.39 232
plane_prior489.14 183
plane_prior187.15 210
n20.00 408
nn0.00 408
door-mid66.01 378
lessismore_v073.72 31872.93 35847.83 35661.72 38345.86 36573.76 34428.63 35689.81 31147.75 32531.37 38583.53 306
test1193.01 94
door66.57 377
HQP5-MVS63.66 196
BP-MVS77.63 134
HQP4-MVS74.18 16495.61 15388.63 225
HQP3-MVS91.70 14978.90 183
HQP2-MVS51.63 224
NP-MVS87.41 20463.04 21090.30 166
ACMMP++_ref71.63 241
ACMMP++69.72 251
Test By Simon54.21 200