This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort by
MCST-MVS91.08 191.46 389.94 497.66 273.37 1097.13 295.58 1189.33 185.77 5496.26 3072.84 2999.38 192.64 2095.93 997.08 11
MM90.87 291.52 288.92 1592.12 10071.10 2797.02 396.04 688.70 291.57 1496.19 3270.12 4598.91 1896.83 195.06 1796.76 15
DELS-MVS90.05 890.09 1189.94 493.14 7073.88 997.01 494.40 5188.32 385.71 5594.91 7374.11 2198.91 1887.26 6295.94 897.03 12
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MVS_030490.32 690.90 788.55 2394.05 4570.23 3697.00 593.73 7487.30 492.15 696.15 3466.38 6798.94 1796.71 294.67 3396.47 28
EPNet87.84 2488.38 2086.23 8293.30 6466.05 14295.26 3294.84 3087.09 588.06 3494.53 8266.79 6397.34 7383.89 9591.68 7495.29 70
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CANet89.61 1289.99 1288.46 2494.39 3969.71 5096.53 1393.78 6786.89 689.68 2895.78 4065.94 7299.10 992.99 1793.91 4296.58 21
patch_mono-289.71 1190.99 685.85 9496.04 2463.70 20595.04 4095.19 2086.74 791.53 1595.15 6673.86 2297.58 5993.38 1492.00 6996.28 37
DeepPCF-MVS81.17 189.72 1091.38 484.72 13593.00 7558.16 31396.72 994.41 4986.50 890.25 2297.83 175.46 1498.67 2592.78 1995.49 1397.32 6
CANet_DTU84.09 9383.52 8785.81 9590.30 14866.82 12491.87 16889.01 27785.27 986.09 5193.74 10847.71 28396.98 10177.90 14889.78 9893.65 147
CLD-MVS82.73 11982.35 11983.86 16687.90 21067.65 10195.45 2892.18 14185.06 1072.58 19992.27 14152.46 23695.78 15584.18 9179.06 20188.16 252
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CNVR-MVS90.32 690.89 888.61 2296.76 870.65 3096.47 1494.83 3184.83 1189.07 3196.80 1970.86 4199.06 1592.64 2095.71 1196.12 40
NCCC89.07 1689.46 1587.91 2896.60 1069.05 6396.38 1594.64 4084.42 1286.74 4596.20 3166.56 6698.76 2489.03 4794.56 3495.92 46
test_fmvsm_n_192087.69 2688.50 1985.27 11587.05 23363.55 21293.69 8791.08 19684.18 1390.17 2497.04 867.58 5897.99 3995.72 590.03 9594.26 119
balanced_conf0389.08 1588.84 1789.81 693.66 5475.15 590.61 22693.43 8884.06 1486.20 4990.17 18372.42 3396.98 10193.09 1695.92 1097.29 7
PS-MVSNAJ88.14 1887.61 2989.71 792.06 10176.72 195.75 2093.26 9483.86 1589.55 2996.06 3653.55 22597.89 4391.10 3293.31 5394.54 109
DeepC-MVS_fast79.48 287.95 2288.00 2587.79 3195.86 2768.32 8095.74 2194.11 6183.82 1683.49 7796.19 3264.53 9098.44 3183.42 10194.88 2596.61 18
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_fmvsmconf_n86.58 4487.17 3484.82 12885.28 26462.55 23794.26 5789.78 24183.81 1787.78 3696.33 2965.33 7896.98 10194.40 1187.55 12194.95 87
xiu_mvs_v2_base87.92 2387.38 3389.55 1291.41 12776.43 395.74 2193.12 10283.53 1889.55 2995.95 3853.45 22997.68 5091.07 3392.62 6094.54 109
test_fmvsmconf0.1_n85.71 6186.08 5384.62 14280.83 31862.33 24293.84 8088.81 28583.50 1987.00 4396.01 3763.36 10896.93 10994.04 1287.29 12494.61 105
reproduce_monomvs79.49 17879.11 17280.64 25092.91 7761.47 26191.17 20493.28 9383.09 2064.04 30182.38 28366.19 6894.57 20581.19 12057.71 35685.88 295
TSAR-MVS + MP.88.11 2088.64 1886.54 7291.73 11568.04 9090.36 23293.55 8182.89 2191.29 1692.89 12672.27 3596.03 14987.99 5294.77 2695.54 57
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
DPM-MVS90.70 390.52 991.24 189.68 16076.68 297.29 195.35 1682.87 2291.58 1397.22 379.93 599.10 983.12 10297.64 297.94 1
WTY-MVS86.32 4885.81 5787.85 2992.82 8169.37 5795.20 3495.25 1882.71 2381.91 9294.73 7767.93 5697.63 5679.55 13282.25 17196.54 22
lupinMVS87.74 2587.77 2787.63 3889.24 17571.18 2496.57 1292.90 11182.70 2487.13 4095.27 5964.99 8195.80 15489.34 4291.80 7295.93 45
fmvsm_s_conf0.5_n86.39 4786.91 3884.82 12887.36 22663.54 21394.74 4790.02 23582.52 2590.14 2596.92 1362.93 11697.84 4695.28 882.26 17093.07 165
HPM-MVS++copyleft89.37 1489.95 1387.64 3495.10 3068.23 8695.24 3394.49 4582.43 2688.90 3296.35 2771.89 3898.63 2688.76 4896.40 696.06 41
test_fmvsmconf0.01_n83.70 10383.52 8784.25 15675.26 37161.72 25692.17 15087.24 31982.36 2784.91 6495.41 5155.60 20196.83 11492.85 1885.87 14094.21 122
PVSNet_Blended86.73 4286.86 4086.31 8193.76 5067.53 10596.33 1693.61 7882.34 2881.00 10493.08 12063.19 11197.29 7687.08 6591.38 8094.13 128
MSP-MVS90.38 591.87 185.88 9192.83 7964.03 19593.06 11294.33 5582.19 2993.65 396.15 3485.89 197.19 8491.02 3497.75 196.43 31
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
PAPM85.89 5885.46 6387.18 4988.20 20372.42 1592.41 14492.77 11482.11 3080.34 11393.07 12168.27 5195.02 18778.39 14593.59 4994.09 130
jason86.40 4686.17 5087.11 5186.16 24970.54 3295.71 2492.19 14082.00 3184.58 6794.34 9261.86 12695.53 17487.76 5490.89 8695.27 73
jason: jason.
baseline181.84 13581.03 13684.28 15591.60 11866.62 13091.08 20691.66 17081.87 3274.86 17491.67 15669.98 4694.92 19371.76 19564.75 30891.29 210
CHOSEN 1792x268884.98 7583.45 9289.57 1189.94 15575.14 692.07 15792.32 13181.87 3275.68 16488.27 20760.18 14298.60 2780.46 12590.27 9494.96 86
fmvsm_s_conf0.1_n85.61 6485.93 5584.68 13882.95 30163.48 21594.03 6889.46 25381.69 3489.86 2696.74 2061.85 12797.75 4994.74 982.01 17692.81 173
test_vis1_n_192081.66 13882.01 12280.64 25082.24 30655.09 34094.76 4686.87 32181.67 3584.40 6994.63 8038.17 33094.67 20291.98 2783.34 16192.16 194
UBG86.83 3986.70 4287.20 4893.07 7369.81 4693.43 10395.56 1381.52 3681.50 9592.12 14573.58 2696.28 13484.37 9085.20 14495.51 58
casdiffmvs_mvgpermissive85.66 6385.18 6887.09 5288.22 20269.35 5893.74 8691.89 15581.47 3780.10 11591.45 15964.80 8696.35 13287.23 6387.69 11995.58 55
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
h-mvs3383.01 11582.56 11584.35 15289.34 16762.02 24892.72 12793.76 7081.45 3882.73 8792.25 14360.11 14397.13 9087.69 5562.96 32193.91 139
hse-mvs281.12 14881.11 13581.16 23786.52 24157.48 32189.40 25791.16 18981.45 3882.73 8790.49 17560.11 14394.58 20387.69 5560.41 34891.41 204
ET-MVSNet_ETH3D84.01 9483.15 10486.58 7090.78 14170.89 2894.74 4794.62 4181.44 4058.19 33993.64 11173.64 2592.35 28882.66 10678.66 20696.50 27
fmvsm_s_conf0.5_n_a85.75 6086.09 5284.72 13585.73 25863.58 21093.79 8389.32 25981.42 4190.21 2396.91 1462.41 12197.67 5194.48 1080.56 18992.90 171
test_fmvsmvis_n_192083.80 9983.48 9084.77 13282.51 30463.72 20391.37 19183.99 35381.42 4177.68 14495.74 4258.37 16697.58 5993.38 1486.87 12793.00 168
testing1186.71 4386.44 4587.55 4093.54 5971.35 2193.65 8995.58 1181.36 4380.69 10792.21 14472.30 3496.46 12885.18 8083.43 16094.82 95
casdiffmvspermissive85.37 6884.87 7486.84 5988.25 20069.07 6293.04 11491.76 16281.27 4480.84 10692.07 14764.23 9296.06 14784.98 8387.43 12395.39 61
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ETV-MVS86.01 5486.11 5185.70 10190.21 15067.02 12093.43 10391.92 15281.21 4584.13 7394.07 10360.93 13695.63 16589.28 4389.81 9694.46 115
DeepC-MVS77.85 385.52 6785.24 6786.37 7888.80 18566.64 12992.15 15193.68 7681.07 4676.91 15593.64 11162.59 11998.44 3185.50 7692.84 5994.03 134
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
baseline85.01 7484.44 7886.71 6488.33 19768.73 7190.24 23791.82 16181.05 4781.18 10092.50 13363.69 10096.08 14684.45 8986.71 13395.32 68
PC_three_145280.91 4894.07 296.83 1883.57 499.12 595.70 797.42 497.55 4
IU-MVS96.46 1169.91 4295.18 2180.75 4995.28 192.34 2295.36 1496.47 28
diffmvspermissive84.28 8683.83 8385.61 10387.40 22468.02 9190.88 21289.24 26280.54 5081.64 9492.52 13259.83 14794.52 21187.32 6185.11 14594.29 118
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
fmvsm_l_conf0.5_n87.49 2888.19 2385.39 10986.95 23464.37 18594.30 5588.45 29780.51 5192.70 496.86 1569.98 4697.15 8995.83 488.08 11594.65 103
fmvsm_s_conf0.1_n_a84.76 7884.84 7584.53 14480.23 32863.50 21492.79 12488.73 28880.46 5289.84 2796.65 2260.96 13597.57 6193.80 1380.14 19192.53 180
VPNet78.82 19177.53 19382.70 19684.52 27766.44 13493.93 7292.23 13480.46 5272.60 19888.38 20549.18 26893.13 25572.47 18863.97 31888.55 246
testing9986.01 5485.47 6287.63 3893.62 5571.25 2393.47 10195.23 1980.42 5480.60 10991.95 14971.73 3996.50 12680.02 12982.22 17295.13 79
testing22285.18 7184.69 7686.63 6792.91 7769.91 4292.61 13595.80 980.31 5580.38 11292.27 14168.73 4995.19 18475.94 15783.27 16294.81 96
testing9185.93 5685.31 6687.78 3293.59 5771.47 1993.50 9895.08 2680.26 5680.53 11091.93 15070.43 4396.51 12580.32 12782.13 17495.37 63
sasdasda86.85 3786.25 4888.66 2091.80 11371.92 1693.54 9591.71 16580.26 5687.55 3795.25 6163.59 10496.93 10988.18 5084.34 15197.11 9
canonicalmvs86.85 3786.25 4888.66 2091.80 11371.92 1693.54 9591.71 16580.26 5687.55 3795.25 6163.59 10496.93 10988.18 5084.34 15197.11 9
fmvsm_l_conf0.5_n_a87.44 3088.15 2485.30 11387.10 23164.19 19294.41 5288.14 30680.24 5992.54 596.97 1069.52 4897.17 8595.89 388.51 11094.56 106
SPE-MVS-test86.14 5287.01 3683.52 17792.63 8759.36 30295.49 2791.92 15280.09 6085.46 5995.53 4961.82 12895.77 15786.77 6993.37 5295.41 60
CS-MVS85.80 5986.65 4483.27 18592.00 10658.92 30695.31 3191.86 15779.97 6184.82 6595.40 5262.26 12295.51 17586.11 7392.08 6895.37 63
BP-MVS186.54 4586.68 4386.13 8587.80 21567.18 11492.97 11795.62 1079.92 6282.84 8494.14 10074.95 1596.46 12882.91 10488.96 10694.74 97
MVSTER82.47 12482.05 12083.74 16892.68 8669.01 6491.90 16793.21 9579.83 6372.14 20785.71 24974.72 1794.72 19875.72 15972.49 25287.50 258
HQP-NCC87.54 22094.06 6379.80 6474.18 179
ACMP_Plane87.54 22094.06 6379.80 6474.18 179
HQP-MVS81.14 14680.64 14482.64 19887.54 22063.66 20894.06 6391.70 16879.80 6474.18 17990.30 17951.63 24495.61 16777.63 14978.90 20288.63 243
baseline283.68 10483.42 9584.48 14787.37 22566.00 14490.06 24195.93 879.71 6769.08 24490.39 17777.92 696.28 13478.91 14081.38 18291.16 212
MGCFI-Net85.59 6585.73 6085.17 11991.41 12762.44 23892.87 12291.31 18279.65 6886.99 4495.14 6762.90 11796.12 14187.13 6484.13 15896.96 13
EI-MVSNet-Vis-set83.77 10083.67 8584.06 15992.79 8463.56 21191.76 17594.81 3279.65 6877.87 14294.09 10163.35 10997.90 4279.35 13479.36 19890.74 216
ETVMVS84.22 9083.71 8485.76 9892.58 8968.25 8592.45 14395.53 1579.54 7079.46 12391.64 15770.29 4494.18 22369.16 21882.76 16894.84 92
EIA-MVS84.84 7784.88 7384.69 13791.30 12962.36 24193.85 7792.04 14579.45 7179.33 12694.28 9662.42 12096.35 13280.05 12891.25 8395.38 62
dmvs_re76.93 22475.36 22581.61 22787.78 21660.71 27780.00 35487.99 31079.42 7269.02 24689.47 19346.77 28694.32 21563.38 27274.45 23689.81 228
plane_prior62.42 23993.85 7779.38 7378.80 204
dcpmvs_287.37 3187.55 3086.85 5895.04 3268.20 8790.36 23290.66 20879.37 7481.20 9993.67 11074.73 1696.55 12390.88 3592.00 6995.82 48
alignmvs87.28 3286.97 3788.24 2791.30 12971.14 2695.61 2593.56 8079.30 7587.07 4295.25 6168.43 5096.93 10987.87 5384.33 15396.65 17
TESTMET0.1,182.41 12581.98 12383.72 17288.08 20463.74 20192.70 12993.77 6979.30 7577.61 14687.57 22358.19 16994.08 22773.91 17486.68 13493.33 156
EI-MVSNet-UG-set83.14 11382.96 10583.67 17592.28 9363.19 22291.38 19094.68 3879.22 7776.60 15793.75 10762.64 11897.76 4878.07 14778.01 20990.05 225
PVSNet73.49 880.05 16878.63 17684.31 15390.92 13764.97 17092.47 14291.05 19979.18 7872.43 20490.51 17437.05 34594.06 22968.06 22786.00 13893.90 141
HY-MVS76.49 584.28 8683.36 9887.02 5592.22 9567.74 9884.65 31094.50 4479.15 7982.23 9087.93 21666.88 6296.94 10780.53 12482.20 17396.39 33
PVSNet_BlendedMVS83.38 10883.43 9383.22 18693.76 5067.53 10594.06 6393.61 7879.13 8081.00 10485.14 25363.19 11197.29 7687.08 6573.91 24284.83 312
plane_prior361.95 25179.09 8172.53 200
MonoMVSNet76.99 22375.08 22982.73 19483.32 29563.24 21986.47 30286.37 32579.08 8266.31 28379.30 33049.80 26291.72 30279.37 13365.70 29793.23 158
MVS_111021_HR86.19 5185.80 5887.37 4493.17 6969.79 4793.99 6993.76 7079.08 8278.88 13393.99 10462.25 12398.15 3685.93 7591.15 8494.15 127
test_cas_vis1_n_192080.45 16080.61 14579.97 26978.25 35457.01 32894.04 6788.33 30079.06 8482.81 8693.70 10938.65 32591.63 30590.82 3679.81 19391.27 211
MSLP-MVS++86.27 4985.91 5687.35 4592.01 10568.97 6695.04 4092.70 11679.04 8581.50 9596.50 2558.98 16196.78 11583.49 10093.93 4196.29 35
IB-MVS77.80 482.18 12880.46 14987.35 4589.14 17770.28 3595.59 2695.17 2278.85 8670.19 23285.82 24770.66 4297.67 5172.19 19266.52 29394.09 130
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
3Dnovator73.91 682.69 12280.82 13988.31 2689.57 16271.26 2292.60 13694.39 5278.84 8767.89 26492.48 13648.42 27498.52 2868.80 22394.40 3695.15 78
HQP_MVS80.34 16279.75 15882.12 21686.94 23562.42 23993.13 11091.31 18278.81 8872.53 20089.14 19850.66 25295.55 17276.74 15278.53 20788.39 249
plane_prior293.13 11078.81 88
MG-MVS87.11 3486.27 4689.62 897.79 176.27 494.96 4394.49 4578.74 9083.87 7592.94 12464.34 9196.94 10775.19 16394.09 3895.66 52
gm-plane-assit88.42 19367.04 11978.62 9191.83 15297.37 7076.57 154
mvsmamba81.55 14080.72 14184.03 16391.42 12466.93 12283.08 32689.13 27078.55 9267.50 26987.02 23351.79 24190.07 32987.48 5890.49 9295.10 81
VNet86.20 5085.65 6187.84 3093.92 4769.99 3895.73 2395.94 778.43 9386.00 5293.07 12158.22 16897.00 9785.22 7884.33 15396.52 23
tpm78.58 19877.03 20283.22 18685.94 25464.56 17483.21 32591.14 19278.31 9473.67 18679.68 32664.01 9492.09 29566.07 25171.26 26293.03 166
save fliter93.84 4967.89 9595.05 3992.66 12078.19 95
TSAR-MVS + GP.87.96 2188.37 2186.70 6593.51 6165.32 16095.15 3693.84 6678.17 9685.93 5394.80 7675.80 1398.21 3489.38 4188.78 10796.59 19
FIs79.47 17979.41 16579.67 27685.95 25259.40 29991.68 17993.94 6478.06 9768.96 24888.28 20666.61 6591.77 30166.20 25074.99 23287.82 255
sss82.71 12182.38 11883.73 17089.25 17259.58 29792.24 14894.89 2977.96 9879.86 11892.38 13856.70 18797.05 9277.26 15180.86 18694.55 107
PMMVS81.98 13482.04 12181.78 22389.76 15956.17 33291.13 20590.69 20577.96 9880.09 11693.57 11346.33 29394.99 18981.41 11687.46 12294.17 125
EC-MVSNet84.53 8285.04 7183.01 18989.34 16761.37 26394.42 5191.09 19477.91 10083.24 7894.20 9858.37 16695.40 17685.35 7791.41 7992.27 190
test111180.84 15380.02 15283.33 18387.87 21160.76 27492.62 13486.86 32277.86 10175.73 16391.39 16246.35 29194.70 20172.79 18288.68 10994.52 111
GDP-MVS85.54 6685.32 6586.18 8387.64 21867.95 9492.91 12192.36 13077.81 10283.69 7694.31 9472.84 2996.41 13080.39 12685.95 13994.19 123
MVS_Test84.16 9283.20 10187.05 5491.56 12069.82 4589.99 24692.05 14477.77 10382.84 8486.57 23863.93 9696.09 14374.91 16889.18 10295.25 76
SteuartSystems-ACMMP86.82 4186.90 3986.58 7090.42 14566.38 13596.09 1793.87 6577.73 10484.01 7495.66 4363.39 10797.94 4087.40 6093.55 5095.42 59
Skip Steuart: Steuart Systems R&D Blog.
EPNet_dtu78.80 19279.26 16977.43 30488.06 20549.71 36691.96 16591.95 15177.67 10576.56 15891.28 16458.51 16490.20 32656.37 30880.95 18592.39 182
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test250683.29 10982.92 10884.37 15188.39 19563.18 22392.01 16091.35 18177.66 10678.49 13891.42 16064.58 8995.09 18673.19 17689.23 10094.85 89
ECVR-MVScopyleft81.29 14480.38 15084.01 16488.39 19561.96 25092.56 14186.79 32377.66 10676.63 15691.42 16046.34 29295.24 18374.36 17289.23 10094.85 89
tpmrst80.57 15679.14 17184.84 12790.10 15268.28 8281.70 33689.72 24877.63 10875.96 16179.54 32864.94 8392.71 27275.43 16177.28 22093.55 149
testdata189.21 26177.55 109
UniMVSNet_NR-MVSNet78.15 20577.55 19279.98 26784.46 27960.26 28692.25 14793.20 9777.50 11068.88 24986.61 23766.10 7092.13 29366.38 24762.55 32587.54 257
UA-Net80.02 16979.65 15981.11 23989.33 16957.72 31786.33 30389.00 28077.44 11181.01 10389.15 19759.33 15495.90 15261.01 28884.28 15589.73 231
PVSNet_Blended_VisFu83.97 9583.50 8985.39 10990.02 15366.59 13293.77 8491.73 16377.43 11277.08 15489.81 19063.77 9996.97 10479.67 13188.21 11392.60 177
dmvs_testset65.55 33266.45 30862.86 37679.87 33122.35 42276.55 36871.74 39077.42 11355.85 35187.77 21951.39 24680.69 38931.51 40165.92 29685.55 302
NR-MVSNet76.05 23874.59 23480.44 25382.96 29962.18 24690.83 21491.73 16377.12 11460.96 32386.35 24059.28 15591.80 30060.74 28961.34 34087.35 263
RRT-MVS82.61 12381.16 13086.96 5791.10 13368.75 7087.70 28792.20 13876.97 11572.68 19587.10 23251.30 24896.41 13083.56 9987.84 11795.74 50
FC-MVSNet-test77.99 20778.08 18477.70 29984.89 27255.51 33790.27 23593.75 7376.87 11666.80 28187.59 22265.71 7590.23 32562.89 27873.94 24187.37 262
SD-MVS87.49 2887.49 3187.50 4293.60 5668.82 6993.90 7492.63 12376.86 11787.90 3595.76 4166.17 6997.63 5689.06 4691.48 7896.05 42
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
WBMVS81.67 13780.98 13883.72 17293.07 7369.40 5394.33 5493.05 10476.84 11872.05 20984.14 26474.49 1993.88 24172.76 18368.09 28187.88 254
UGNet79.87 17278.68 17583.45 18289.96 15461.51 25992.13 15290.79 20376.83 11978.85 13586.33 24238.16 33196.17 13967.93 23087.17 12592.67 175
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
MVS_111021_LR82.02 13381.52 12783.51 17988.42 19362.88 23289.77 24988.93 28176.78 12075.55 16893.10 11850.31 25595.38 17883.82 9687.02 12692.26 191
SDMVSNet80.26 16378.88 17484.40 14989.25 17267.63 10285.35 30693.02 10576.77 12170.84 22387.12 23047.95 28096.09 14385.04 8174.55 23389.48 235
sd_testset77.08 22275.37 22482.20 21289.25 17262.11 24782.06 33389.09 27376.77 12170.84 22387.12 23041.43 31695.01 18867.23 23774.55 23389.48 235
TranMVSNet+NR-MVSNet75.86 24374.52 23779.89 27182.44 30560.64 28091.37 19191.37 18076.63 12367.65 26786.21 24352.37 23791.55 30761.84 28460.81 34387.48 259
PAPR85.15 7284.47 7787.18 4996.02 2568.29 8191.85 17093.00 10876.59 12479.03 12995.00 6861.59 12997.61 5878.16 14689.00 10595.63 53
UniMVSNet (Re)77.58 21476.78 20679.98 26784.11 28560.80 27191.76 17593.17 9976.56 12569.93 23884.78 25763.32 11092.36 28764.89 26362.51 32786.78 273
DU-MVS76.86 22575.84 21979.91 27082.96 29960.26 28691.26 19791.54 17376.46 12668.88 24986.35 24056.16 19492.13 29366.38 24762.55 32587.35 263
OPM-MVS79.00 18678.09 18381.73 22483.52 29363.83 19891.64 18190.30 22276.36 12771.97 21089.93 18946.30 29495.17 18575.10 16477.70 21286.19 284
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
WR-MVS76.76 22975.74 22179.82 27384.60 27562.27 24592.60 13692.51 12776.06 12867.87 26585.34 25156.76 18590.24 32462.20 28263.69 32086.94 271
GA-MVS78.33 20376.23 21384.65 13983.65 29166.30 13891.44 18390.14 22976.01 12970.32 23084.02 26642.50 31294.72 19870.98 20077.00 22292.94 169
PVSNet_068.08 1571.81 28568.32 30182.27 20884.68 27362.31 24488.68 27090.31 22175.84 13057.93 34480.65 31337.85 33694.19 22269.94 20929.05 41090.31 222
CDS-MVSNet81.43 14280.74 14083.52 17786.26 24664.45 17992.09 15590.65 20975.83 13173.95 18589.81 19063.97 9592.91 26571.27 19882.82 16593.20 160
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
UWE-MVS80.81 15481.01 13780.20 26089.33 16957.05 32691.91 16694.71 3675.67 13275.01 17389.37 19463.13 11391.44 31367.19 23882.80 16792.12 195
CostFormer82.33 12681.15 13185.86 9389.01 18068.46 7782.39 33293.01 10675.59 13380.25 11481.57 29672.03 3794.96 19079.06 13877.48 21794.16 126
nrg03080.93 15179.86 15684.13 15883.69 29068.83 6893.23 10891.20 18775.55 13475.06 17288.22 21163.04 11594.74 19781.88 11166.88 29088.82 241
VDD-MVS83.06 11481.81 12586.81 6190.86 13967.70 9995.40 2991.50 17675.46 13581.78 9392.34 14040.09 32097.13 9086.85 6882.04 17595.60 54
Effi-MVS+-dtu76.14 23475.28 22778.72 29083.22 29655.17 33989.87 24787.78 31375.42 13667.98 26081.43 29845.08 30392.52 28175.08 16571.63 25788.48 247
test_prior295.10 3875.40 13785.25 6395.61 4567.94 5587.47 5994.77 26
MTAPA83.91 9683.38 9785.50 10591.89 11165.16 16581.75 33592.23 13475.32 13880.53 11095.21 6456.06 19797.16 8884.86 8592.55 6294.18 124
EPMVS78.49 20075.98 21786.02 8791.21 13169.68 5180.23 35091.20 18775.25 13972.48 20278.11 33754.65 21193.69 24657.66 30583.04 16394.69 99
miper_enhance_ethall78.86 19077.97 18681.54 22988.00 20865.17 16491.41 18489.15 26875.19 14068.79 25183.98 26767.17 6092.82 26772.73 18465.30 29986.62 278
v2v48277.42 21675.65 22282.73 19480.38 32467.13 11691.85 17090.23 22675.09 14169.37 24083.39 27353.79 22394.44 21371.77 19465.00 30586.63 277
VPA-MVSNet79.03 18578.00 18582.11 21985.95 25264.48 17893.22 10994.66 3975.05 14274.04 18484.95 25552.17 23893.52 24974.90 16967.04 28988.32 251
ACMMP_NAP86.05 5385.80 5886.80 6291.58 11967.53 10591.79 17293.49 8574.93 14384.61 6695.30 5659.42 15297.92 4186.13 7294.92 2094.94 88
thres20079.66 17478.33 17983.66 17692.54 9065.82 15093.06 11296.31 374.90 14473.30 18988.66 20059.67 14995.61 16747.84 34378.67 20589.56 234
TAMVS80.37 16179.45 16483.13 18885.14 26763.37 21691.23 19990.76 20474.81 14572.65 19788.49 20260.63 13892.95 26069.41 21481.95 17793.08 164
MP-MVS-pluss85.24 7085.13 6985.56 10491.42 12465.59 15491.54 18292.51 12774.56 14680.62 10895.64 4459.15 15697.00 9786.94 6793.80 4394.07 132
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
mvs_anonymous81.36 14379.99 15485.46 10690.39 14768.40 7886.88 29990.61 21074.41 14770.31 23184.67 25863.79 9892.32 29073.13 17785.70 14195.67 51
MAR-MVS84.18 9183.43 9386.44 7596.25 2165.93 14794.28 5694.27 5774.41 14779.16 12895.61 4553.99 22098.88 2269.62 21293.26 5494.50 113
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
BH-w/o80.49 15979.30 16884.05 16290.83 14064.36 18793.60 9289.42 25674.35 14969.09 24390.15 18555.23 20595.61 16764.61 26486.43 13792.17 193
thisisatest051583.41 10782.49 11686.16 8489.46 16668.26 8393.54 9594.70 3774.31 15075.75 16290.92 16772.62 3196.52 12469.64 21081.50 18193.71 145
Vis-MVSNet (Re-imp)79.24 18279.57 16078.24 29688.46 19152.29 35190.41 22989.12 27174.24 15169.13 24291.91 15165.77 7490.09 32859.00 30088.09 11492.33 184
SMA-MVScopyleft88.14 1888.29 2287.67 3393.21 6768.72 7293.85 7794.03 6374.18 15291.74 1296.67 2165.61 7698.42 3389.24 4496.08 795.88 47
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
AUN-MVS78.37 20177.43 19481.17 23686.60 24057.45 32289.46 25691.16 18974.11 15374.40 17890.49 17555.52 20294.57 20574.73 17160.43 34791.48 202
3Dnovator+73.60 782.10 13280.60 14686.60 6890.89 13866.80 12695.20 3493.44 8774.05 15467.42 27192.49 13549.46 26497.65 5570.80 20291.68 7495.33 66
XVS83.87 9783.47 9185.05 12193.22 6563.78 19992.92 11992.66 12073.99 15578.18 13994.31 9455.25 20397.41 6879.16 13691.58 7693.95 137
X-MVStestdata76.86 22574.13 24485.05 12193.22 6563.78 19992.92 11992.66 12073.99 15578.18 13910.19 42255.25 20397.41 6879.16 13691.58 7693.95 137
MS-PatchMatch77.90 21176.50 20982.12 21685.99 25169.95 4191.75 17792.70 11673.97 15762.58 31784.44 26241.11 31795.78 15563.76 27092.17 6680.62 359
LCM-MVSNet-Re72.93 27471.84 27376.18 31888.49 18948.02 37480.07 35370.17 39473.96 15852.25 36480.09 32249.98 25888.24 34267.35 23484.23 15692.28 187
Vis-MVSNetpermissive80.92 15279.98 15583.74 16888.48 19061.80 25293.44 10288.26 30573.96 15877.73 14391.76 15349.94 25994.76 19565.84 25390.37 9394.65 103
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test-mter79.96 17079.38 16781.72 22586.93 23761.17 26492.70 12991.54 17373.85 16075.62 16586.94 23449.84 26192.38 28572.21 19084.76 14991.60 199
OMC-MVS78.67 19777.91 18880.95 24685.76 25757.40 32388.49 27388.67 29173.85 16072.43 20492.10 14649.29 26794.55 20972.73 18477.89 21090.91 215
Fast-Effi-MVS+81.14 14680.01 15384.51 14690.24 14965.86 14894.12 6289.15 26873.81 16275.37 17088.26 20857.26 17694.53 21066.97 24184.92 14693.15 161
ZNCC-MVS85.33 6985.08 7086.06 8693.09 7265.65 15293.89 7593.41 9073.75 16379.94 11794.68 7960.61 13998.03 3882.63 10793.72 4694.52 111
V4276.46 23274.55 23682.19 21379.14 34267.82 9690.26 23689.42 25673.75 16368.63 25481.89 28951.31 24794.09 22671.69 19664.84 30684.66 313
v114476.73 23074.88 23082.27 20880.23 32866.60 13191.68 17990.21 22873.69 16569.06 24581.89 28952.73 23494.40 21469.21 21765.23 30285.80 296
v14876.19 23374.47 23881.36 23280.05 33064.44 18091.75 17790.23 22673.68 16667.13 27580.84 30955.92 19993.86 24468.95 22161.73 33685.76 299
CR-MVSNet73.79 26770.82 28282.70 19683.15 29767.96 9270.25 38484.00 35173.67 16769.97 23672.41 36957.82 17289.48 33352.99 32273.13 24690.64 218
XXY-MVS77.94 20976.44 21082.43 20282.60 30364.44 18092.01 16091.83 16073.59 16870.00 23585.82 24754.43 21694.76 19569.63 21168.02 28388.10 253
tfpn200view978.79 19377.43 19482.88 19192.21 9664.49 17692.05 15896.28 473.48 16971.75 21388.26 20860.07 14595.32 17945.16 35477.58 21488.83 239
thres40078.68 19577.43 19482.43 20292.21 9664.49 17692.05 15896.28 473.48 16971.75 21388.26 20860.07 14595.32 17945.16 35477.58 21487.48 259
FMVSNet377.73 21276.04 21682.80 19291.20 13268.99 6591.87 16891.99 14973.35 17167.04 27683.19 27556.62 18992.14 29259.80 29669.34 26987.28 265
GST-MVS84.63 8184.29 8085.66 10292.82 8165.27 16193.04 11493.13 10173.20 17278.89 13094.18 9959.41 15397.85 4581.45 11592.48 6393.86 142
USDC67.43 32364.51 32576.19 31777.94 35855.29 33878.38 36185.00 34173.17 17348.36 38180.37 31621.23 39292.48 28352.15 32364.02 31780.81 357
MP-MVScopyleft85.02 7384.97 7285.17 11992.60 8864.27 19093.24 10792.27 13373.13 17479.63 12194.43 8561.90 12597.17 8585.00 8292.56 6194.06 133
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
xiu_mvs_v1_base_debu82.16 12981.12 13285.26 11686.42 24268.72 7292.59 13890.44 21573.12 17584.20 7094.36 8738.04 33395.73 15984.12 9286.81 12891.33 205
xiu_mvs_v1_base82.16 12981.12 13285.26 11686.42 24268.72 7292.59 13890.44 21573.12 17584.20 7094.36 8738.04 33395.73 15984.12 9286.81 12891.33 205
xiu_mvs_v1_base_debi82.16 12981.12 13285.26 11686.42 24268.72 7292.59 13890.44 21573.12 17584.20 7094.36 8738.04 33395.73 15984.12 9286.81 12891.33 205
D2MVS73.80 26672.02 27179.15 28779.15 34162.97 22688.58 27290.07 23172.94 17859.22 33378.30 33442.31 31492.70 27465.59 25772.00 25581.79 348
BH-RMVSNet79.46 18077.65 19084.89 12591.68 11765.66 15193.55 9488.09 30872.93 17973.37 18891.12 16646.20 29596.12 14156.28 30985.61 14392.91 170
Syy-MVS69.65 30169.52 29370.03 35887.87 21143.21 39488.07 27889.01 27772.91 18063.11 31088.10 21245.28 30185.54 36122.07 40869.23 27281.32 351
myMVS_eth3d72.58 28372.74 26172.10 35087.87 21149.45 36888.07 27889.01 27772.91 18063.11 31088.10 21263.63 10185.54 36132.73 39569.23 27281.32 351
IS-MVSNet80.14 16679.41 16582.33 20687.91 20960.08 29091.97 16488.27 30372.90 18271.44 21991.73 15561.44 13093.66 24762.47 28186.53 13593.24 157
PS-MVSNAJss77.26 21876.31 21280.13 26280.64 32259.16 30490.63 22591.06 19872.80 18368.58 25584.57 26053.55 22593.96 23772.97 17871.96 25687.27 266
9.1487.63 2893.86 4894.41 5294.18 5872.76 18486.21 4896.51 2466.64 6497.88 4490.08 3994.04 39
v119275.98 24073.92 24782.15 21479.73 33266.24 14091.22 20089.75 24372.67 18568.49 25681.42 29949.86 26094.27 21967.08 23965.02 30485.95 292
Effi-MVS+83.82 9882.76 11186.99 5689.56 16369.40 5391.35 19386.12 33172.59 18683.22 8192.81 13059.60 15096.01 15181.76 11287.80 11895.56 56
UnsupCasMVSNet_eth65.79 33063.10 33373.88 33470.71 38650.29 36481.09 34289.88 23972.58 18749.25 37874.77 36332.57 36187.43 35355.96 31041.04 39183.90 319
1112_ss80.56 15779.83 15782.77 19388.65 18760.78 27292.29 14688.36 29972.58 18772.46 20394.95 6965.09 8093.42 25266.38 24777.71 21194.10 129
DVP-MVS++90.53 491.09 588.87 1697.31 469.91 4293.96 7094.37 5372.48 18992.07 996.85 1683.82 299.15 291.53 3097.42 497.55 4
test_0728_THIRD72.48 18990.55 2096.93 1176.24 1199.08 1191.53 3094.99 1896.43 31
cl2277.94 20976.78 20681.42 23187.57 21964.93 17290.67 22188.86 28472.45 19167.63 26882.68 28064.07 9392.91 26571.79 19365.30 29986.44 279
thres600view778.00 20676.66 20882.03 22191.93 10863.69 20691.30 19696.33 172.43 19270.46 22787.89 21760.31 14094.92 19342.64 36676.64 22487.48 259
IterMVS-LS76.49 23175.18 22880.43 25484.49 27862.74 23490.64 22388.80 28672.40 19365.16 29081.72 29260.98 13492.27 29167.74 23164.65 31086.29 281
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet78.97 18778.22 18281.25 23485.33 26262.73 23589.53 25493.21 9572.39 19472.14 20790.13 18660.99 13394.72 19867.73 23272.49 25286.29 281
miper_ehance_all_eth77.60 21376.44 21081.09 24385.70 25964.41 18390.65 22288.64 29372.31 19567.37 27482.52 28164.77 8792.64 27870.67 20465.30 29986.24 283
v14419276.05 23874.03 24582.12 21679.50 33666.55 13391.39 18889.71 24972.30 19668.17 25881.33 30151.75 24294.03 23467.94 22964.19 31385.77 297
thres100view90078.37 20177.01 20382.46 20191.89 11163.21 22191.19 20396.33 172.28 19770.45 22887.89 21760.31 14095.32 17945.16 35477.58 21488.83 239
PatchmatchNetpermissive77.46 21574.63 23385.96 8989.55 16470.35 3479.97 35589.55 25172.23 19870.94 22176.91 34957.03 17992.79 27054.27 31681.17 18394.74 97
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
HFP-MVS84.73 7984.40 7985.72 10093.75 5265.01 16993.50 9893.19 9872.19 19979.22 12794.93 7159.04 15997.67 5181.55 11392.21 6494.49 114
ACMMPR84.37 8384.06 8185.28 11493.56 5864.37 18593.50 9893.15 10072.19 19978.85 13594.86 7456.69 18897.45 6581.55 11392.20 6594.02 135
131480.70 15578.95 17385.94 9087.77 21767.56 10387.91 28292.55 12672.17 20167.44 27093.09 11950.27 25697.04 9571.68 19787.64 12093.23 158
region2R84.36 8484.03 8285.36 11193.54 5964.31 18893.43 10392.95 10972.16 20278.86 13494.84 7556.97 18397.53 6381.38 11792.11 6794.24 121
Test_1112_low_res79.56 17678.60 17782.43 20288.24 20160.39 28592.09 15587.99 31072.10 20371.84 21187.42 22564.62 8893.04 25665.80 25477.30 21993.85 143
v192192075.63 24873.49 25382.06 22079.38 33766.35 13691.07 20889.48 25271.98 20467.99 25981.22 30449.16 27093.90 24066.56 24364.56 31185.92 294
DVP-MVScopyleft89.41 1389.73 1488.45 2596.40 1569.99 3896.64 1094.52 4371.92 20590.55 2096.93 1173.77 2399.08 1191.91 2894.90 2296.29 35
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072696.40 1569.99 3896.76 894.33 5571.92 20591.89 1197.11 673.77 23
Fast-Effi-MVS+-dtu75.04 25473.37 25480.07 26380.86 31759.52 29891.20 20285.38 33771.90 20765.20 28984.84 25641.46 31592.97 25966.50 24672.96 24887.73 256
LFMVS84.34 8582.73 11289.18 1394.76 3373.25 1194.99 4291.89 15571.90 20782.16 9193.49 11547.98 27997.05 9282.55 10884.82 14797.25 8
eth_miper_zixun_eth75.96 24274.40 23980.66 24984.66 27463.02 22589.28 25988.27 30371.88 20965.73 28581.65 29359.45 15192.81 26868.13 22660.53 34586.14 285
train_agg87.21 3387.42 3286.60 6894.18 4167.28 11094.16 5993.51 8271.87 21085.52 5795.33 5468.19 5297.27 8089.09 4594.90 2295.25 76
test_894.19 4067.19 11294.15 6193.42 8971.87 21085.38 6095.35 5368.19 5296.95 106
MDTV_nov1_ep1372.61 26489.06 17868.48 7680.33 34890.11 23071.84 21271.81 21275.92 35753.01 23193.92 23948.04 34073.38 244
ab-mvs80.18 16578.31 18085.80 9688.44 19265.49 15983.00 32992.67 11971.82 21377.36 14985.01 25454.50 21296.59 11976.35 15675.63 23095.32 68
ACMMPcopyleft81.49 14180.67 14383.93 16591.71 11662.90 23192.13 15292.22 13771.79 21471.68 21593.49 11550.32 25496.96 10578.47 14484.22 15791.93 197
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
PHI-MVS86.83 3986.85 4186.78 6393.47 6265.55 15695.39 3095.10 2371.77 21585.69 5696.52 2362.07 12498.77 2386.06 7495.60 1296.03 43
TEST994.18 4167.28 11094.16 5993.51 8271.75 21685.52 5795.33 5468.01 5497.27 80
WB-MVSnew77.14 22076.18 21580.01 26686.18 24863.24 21991.26 19794.11 6171.72 21773.52 18787.29 22845.14 30293.00 25856.98 30679.42 19683.80 320
c3_l76.83 22875.47 22380.93 24785.02 27064.18 19390.39 23088.11 30771.66 21866.65 28281.64 29463.58 10692.56 27969.31 21662.86 32286.04 289
SED-MVS89.94 990.36 1088.70 1896.45 1269.38 5596.89 694.44 4771.65 21992.11 797.21 476.79 999.11 692.34 2295.36 1497.62 2
test_241102_TWO94.41 4971.65 21992.07 997.21 474.58 1899.11 692.34 2295.36 1496.59 19
test_241102_ONE96.45 1269.38 5594.44 4771.65 21992.11 797.05 776.79 999.11 6
v875.35 25073.26 25581.61 22780.67 32166.82 12489.54 25389.27 26171.65 21963.30 30980.30 31854.99 20994.06 22967.33 23662.33 32883.94 318
v124075.21 25372.98 25881.88 22279.20 33966.00 14490.75 21789.11 27271.63 22367.41 27281.22 30447.36 28493.87 24265.46 25964.72 30985.77 297
SCA75.82 24472.76 26085.01 12386.63 23970.08 3781.06 34389.19 26571.60 22470.01 23477.09 34745.53 29890.25 32160.43 29173.27 24594.68 100
BH-untuned78.68 19577.08 20183.48 18189.84 15663.74 20192.70 12988.59 29471.57 22566.83 28088.65 20151.75 24295.39 17759.03 29984.77 14891.32 208
IterMVS72.65 28270.83 28078.09 29782.17 30762.96 22787.64 28986.28 32771.56 22660.44 32678.85 33245.42 30086.66 35663.30 27461.83 33384.65 314
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
mPP-MVS82.96 11782.44 11784.52 14592.83 7962.92 23092.76 12591.85 15971.52 22775.61 16794.24 9753.48 22896.99 10078.97 13990.73 8793.64 148
test-LLR80.10 16779.56 16181.72 22586.93 23761.17 26492.70 12991.54 17371.51 22875.62 16586.94 23453.83 22192.38 28572.21 19084.76 14991.60 199
test0.0.03 172.76 27772.71 26372.88 34280.25 32747.99 37591.22 20089.45 25471.51 22862.51 31887.66 22053.83 22185.06 36550.16 32967.84 28685.58 300
test_one_060196.32 1869.74 4994.18 5871.42 23090.67 1996.85 1674.45 20
PGM-MVS83.25 11082.70 11384.92 12492.81 8364.07 19490.44 22792.20 13871.28 23177.23 15194.43 8555.17 20797.31 7579.33 13591.38 8093.37 153
thisisatest053081.15 14580.07 15184.39 15088.26 19965.63 15391.40 18694.62 4171.27 23270.93 22289.18 19672.47 3296.04 14865.62 25676.89 22391.49 201
cl____76.07 23574.67 23180.28 25785.15 26661.76 25490.12 23988.73 28871.16 23365.43 28781.57 29661.15 13192.95 26066.54 24462.17 32986.13 287
DIV-MVS_self_test76.07 23574.67 23180.28 25785.14 26761.75 25590.12 23988.73 28871.16 23365.42 28881.60 29561.15 13192.94 26466.54 24462.16 33186.14 285
dp75.01 25572.09 27083.76 16789.28 17166.22 14179.96 35689.75 24371.16 23367.80 26677.19 34651.81 24092.54 28050.39 32771.44 26192.51 181
FA-MVS(test-final)79.12 18477.23 20084.81 13190.54 14363.98 19681.35 34191.71 16571.09 23674.85 17582.94 27652.85 23297.05 9267.97 22881.73 18093.41 152
CP-MVS83.71 10283.40 9684.65 13993.14 7063.84 19794.59 4992.28 13271.03 23777.41 14894.92 7255.21 20696.19 13881.32 11890.70 8893.91 139
v1074.77 25772.54 26681.46 23080.33 32666.71 12889.15 26389.08 27470.94 23863.08 31279.86 32352.52 23594.04 23265.70 25562.17 32983.64 321
CDPH-MVS85.71 6185.46 6386.46 7494.75 3467.19 11293.89 7592.83 11370.90 23983.09 8295.28 5763.62 10297.36 7180.63 12394.18 3794.84 92
GBi-Net75.65 24673.83 24881.10 24088.85 18265.11 16690.01 24390.32 21870.84 24067.04 27680.25 31948.03 27691.54 30859.80 29669.34 26986.64 274
test175.65 24673.83 24881.10 24088.85 18265.11 16690.01 24390.32 21870.84 24067.04 27680.25 31948.03 27691.54 30859.80 29669.34 26986.64 274
FMVSNet276.07 23574.01 24682.26 21088.85 18267.66 10091.33 19491.61 17170.84 24065.98 28482.25 28548.03 27692.00 29758.46 30168.73 27787.10 268
SF-MVS87.03 3587.09 3586.84 5992.70 8567.45 10893.64 9093.76 7070.78 24386.25 4796.44 2666.98 6197.79 4788.68 4994.56 3495.28 72
ZD-MVS96.63 965.50 15893.50 8470.74 24485.26 6295.19 6564.92 8497.29 7687.51 5793.01 56
HyFIR lowres test81.03 15079.56 16185.43 10787.81 21468.11 8990.18 23890.01 23670.65 24572.95 19286.06 24563.61 10394.50 21275.01 16679.75 19593.67 146
MVP-Stereo77.12 22176.23 21379.79 27481.72 31166.34 13789.29 25890.88 20270.56 24662.01 32082.88 27749.34 26594.13 22465.55 25893.80 4378.88 373
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
ACMP71.68 1075.58 24974.23 24279.62 27884.97 27159.64 29590.80 21589.07 27570.39 24762.95 31387.30 22738.28 32993.87 24272.89 17971.45 26085.36 306
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
HPM-MVScopyleft83.25 11082.95 10784.17 15792.25 9462.88 23290.91 20991.86 15770.30 24877.12 15293.96 10556.75 18696.28 13482.04 11091.34 8293.34 154
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
GeoE78.90 18977.43 19483.29 18488.95 18162.02 24892.31 14586.23 32970.24 24971.34 22089.27 19554.43 21694.04 23263.31 27380.81 18893.81 144
tpm279.80 17377.95 18785.34 11288.28 19868.26 8381.56 33891.42 17970.11 25077.59 14780.50 31467.40 5994.26 22167.34 23577.35 21893.51 150
TR-MVS78.77 19477.37 19982.95 19090.49 14460.88 27093.67 8890.07 23170.08 25174.51 17791.37 16345.69 29795.70 16460.12 29480.32 19092.29 186
CL-MVSNet_self_test69.92 29868.09 30275.41 32173.25 37855.90 33590.05 24289.90 23869.96 25261.96 32176.54 35051.05 25087.64 34949.51 33350.59 37682.70 339
PAPM_NR82.97 11681.84 12486.37 7894.10 4466.76 12787.66 28892.84 11269.96 25274.07 18393.57 11363.10 11497.50 6470.66 20590.58 9094.85 89
PCF-MVS73.15 979.29 18177.63 19184.29 15486.06 25065.96 14687.03 29591.10 19369.86 25469.79 23990.64 17057.54 17596.59 11964.37 26682.29 16990.32 221
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
miper_lstm_enhance73.05 27271.73 27577.03 30983.80 28858.32 31281.76 33488.88 28269.80 25561.01 32278.23 33657.19 17787.51 35265.34 26059.53 35085.27 309
MIMVSNet71.64 28668.44 29981.23 23581.97 31064.44 18073.05 37888.80 28669.67 25664.59 29474.79 36232.79 35987.82 34653.99 31776.35 22691.42 203
LPG-MVS_test75.82 24474.58 23579.56 28084.31 28259.37 30090.44 22789.73 24669.49 25764.86 29188.42 20338.65 32594.30 21772.56 18672.76 24985.01 310
LGP-MVS_train79.56 28084.31 28259.37 30089.73 24669.49 25764.86 29188.42 20338.65 32594.30 21772.56 18672.76 24985.01 310
APDe-MVScopyleft87.54 2787.84 2686.65 6696.07 2366.30 13894.84 4593.78 6769.35 25988.39 3396.34 2867.74 5797.66 5490.62 3793.44 5196.01 44
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
tttt051779.50 17778.53 17882.41 20587.22 22861.43 26289.75 25094.76 3369.29 26067.91 26288.06 21572.92 2895.63 16562.91 27773.90 24390.16 223
Patchmatch-RL test68.17 31564.49 32679.19 28471.22 38353.93 34570.07 38671.54 39269.22 26156.79 34962.89 39456.58 19088.61 33669.53 21352.61 37195.03 85
test_yl84.28 8683.16 10287.64 3494.52 3769.24 5995.78 1895.09 2469.19 26281.09 10192.88 12757.00 18197.44 6681.11 12181.76 17896.23 38
DCV-MVSNet84.28 8683.16 10287.64 3494.52 3769.24 5995.78 1895.09 2469.19 26281.09 10192.88 12757.00 18197.44 6681.11 12181.76 17896.23 38
jajsoiax73.05 27271.51 27777.67 30077.46 36154.83 34188.81 26890.04 23469.13 26462.85 31583.51 27131.16 36892.75 27170.83 20169.80 26585.43 305
DP-MVS Recon82.73 11981.65 12685.98 8897.31 467.06 11795.15 3691.99 14969.08 26576.50 15993.89 10654.48 21598.20 3570.76 20385.66 14292.69 174
Baseline_NR-MVSNet73.99 26472.83 25977.48 30380.78 31959.29 30391.79 17284.55 34668.85 26668.99 24780.70 31056.16 19492.04 29662.67 27960.98 34281.11 353
CHOSEN 280x42077.35 21776.95 20578.55 29187.07 23262.68 23669.71 38782.95 36068.80 26771.48 21887.27 22966.03 7184.00 37176.47 15582.81 16688.95 238
DPE-MVScopyleft88.77 1789.21 1687.45 4396.26 2067.56 10394.17 5894.15 6068.77 26890.74 1897.27 276.09 1298.49 2990.58 3894.91 2196.30 34
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
mvs_tets72.71 27971.11 27877.52 30177.41 36254.52 34388.45 27489.76 24268.76 26962.70 31683.26 27429.49 37392.71 27270.51 20769.62 26785.34 307
MVS84.66 8082.86 11090.06 290.93 13674.56 787.91 28295.54 1468.55 27072.35 20694.71 7859.78 14898.90 2081.29 11994.69 3296.74 16
EPP-MVSNet81.79 13681.52 12782.61 19988.77 18660.21 28893.02 11693.66 7768.52 27172.90 19390.39 17772.19 3694.96 19074.93 16779.29 20092.67 175
CSCG86.87 3686.26 4788.72 1795.05 3170.79 2993.83 8295.33 1768.48 27277.63 14594.35 9173.04 2798.45 3084.92 8493.71 4796.92 14
testing370.38 29570.83 28069.03 36285.82 25643.93 39390.72 22090.56 21168.06 27360.24 32786.82 23664.83 8584.12 36726.33 40364.10 31579.04 372
CP-MVSNet70.50 29369.91 29072.26 34780.71 32051.00 36087.23 29490.30 22267.84 27459.64 33082.69 27950.23 25782.30 38351.28 32459.28 35183.46 326
pmmvs573.35 26971.52 27678.86 28978.64 35060.61 28191.08 20686.90 32067.69 27563.32 30883.64 26944.33 30690.53 31862.04 28366.02 29585.46 304
pm-mvs172.89 27571.09 27978.26 29579.10 34357.62 31990.80 21589.30 26067.66 27662.91 31481.78 29149.11 27192.95 26060.29 29358.89 35384.22 316
MDTV_nov1_ep13_2view59.90 29280.13 35267.65 27772.79 19454.33 21859.83 29592.58 178
pmmvs473.92 26571.81 27480.25 25979.17 34065.24 16287.43 29187.26 31867.64 27863.46 30783.91 26848.96 27291.53 31162.94 27665.49 29883.96 317
WR-MVS_H70.59 29269.94 28972.53 34481.03 31651.43 35687.35 29292.03 14867.38 27960.23 32880.70 31055.84 20083.45 37546.33 35058.58 35582.72 337
KD-MVS_2432*160069.03 30666.37 31077.01 31085.56 26061.06 26781.44 33990.25 22467.27 28058.00 34276.53 35154.49 21387.63 35048.04 34035.77 40182.34 343
miper_refine_blended69.03 30666.37 31077.01 31085.56 26061.06 26781.44 33990.25 22467.27 28058.00 34276.53 35154.49 21387.63 35048.04 34035.77 40182.34 343
PS-CasMVS69.86 30069.13 29572.07 35180.35 32550.57 36287.02 29689.75 24367.27 28059.19 33482.28 28446.58 28982.24 38450.69 32659.02 35283.39 328
PEN-MVS69.46 30368.56 29772.17 34979.27 33849.71 36686.90 29889.24 26267.24 28359.08 33582.51 28247.23 28583.54 37448.42 33857.12 35783.25 329
mmtdpeth68.33 31366.37 31074.21 33382.81 30251.73 35384.34 31280.42 36767.01 28471.56 21668.58 38330.52 37192.35 28875.89 15836.21 39978.56 377
cascas78.18 20475.77 22085.41 10887.14 23069.11 6192.96 11891.15 19166.71 28570.47 22686.07 24437.49 33996.48 12770.15 20879.80 19490.65 217
APD-MVScopyleft85.93 5685.99 5485.76 9895.98 2665.21 16393.59 9392.58 12566.54 28686.17 5095.88 3963.83 9797.00 9786.39 7192.94 5795.06 82
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
OpenMVScopyleft70.45 1178.54 19975.92 21886.41 7785.93 25571.68 1892.74 12692.51 12766.49 28764.56 29591.96 14843.88 30798.10 3754.61 31490.65 8989.44 237
DTE-MVSNet68.46 31267.33 30671.87 35377.94 35849.00 37286.16 30488.58 29566.36 28858.19 33982.21 28646.36 29083.87 37244.97 35755.17 36482.73 336
IterMVS-SCA-FT71.55 28869.97 28876.32 31681.48 31360.67 27987.64 28985.99 33266.17 28959.50 33178.88 33145.53 29883.65 37362.58 28061.93 33284.63 315
TransMVSNet (Re)70.07 29767.66 30377.31 30780.62 32359.13 30591.78 17484.94 34265.97 29060.08 32980.44 31550.78 25191.87 29848.84 33645.46 38480.94 355
MVSFormer83.75 10182.88 10986.37 7889.24 17571.18 2489.07 26490.69 20565.80 29187.13 4094.34 9264.99 8192.67 27572.83 18091.80 7295.27 73
test_djsdf73.76 26872.56 26577.39 30577.00 36453.93 34589.07 26490.69 20565.80 29163.92 30282.03 28843.14 31192.67 27572.83 18068.53 27885.57 301
API-MVS82.28 12780.53 14787.54 4196.13 2270.59 3193.63 9191.04 20065.72 29375.45 16992.83 12956.11 19698.89 2164.10 26789.75 9993.15 161
原ACMM184.42 14893.21 6764.27 19093.40 9165.39 29479.51 12292.50 13358.11 17096.69 11765.27 26193.96 4092.32 185
testgi64.48 33862.87 33669.31 36171.24 38240.62 39985.49 30579.92 36965.36 29554.18 35783.49 27223.74 38784.55 36641.60 36860.79 34482.77 335
QAPM79.95 17177.39 19887.64 3489.63 16171.41 2093.30 10693.70 7565.34 29667.39 27391.75 15447.83 28198.96 1657.71 30489.81 9692.54 179
HPM-MVS_fast80.25 16479.55 16382.33 20691.55 12159.95 29191.32 19589.16 26765.23 29774.71 17693.07 12147.81 28295.74 15874.87 17088.23 11291.31 209
tfpnnormal70.10 29667.36 30578.32 29383.45 29460.97 26988.85 26792.77 11464.85 29860.83 32478.53 33343.52 30993.48 25031.73 39861.70 33780.52 360
FE-MVS75.97 24173.02 25784.82 12889.78 15765.56 15577.44 36691.07 19764.55 29972.66 19679.85 32446.05 29696.69 11754.97 31380.82 18792.21 192
SR-MVS82.81 11882.58 11483.50 18093.35 6361.16 26692.23 14991.28 18664.48 30081.27 9895.28 5753.71 22495.86 15382.87 10588.77 10893.49 151
reproduce-ours83.51 10583.33 9984.06 15992.18 9860.49 28290.74 21892.04 14564.35 30183.24 7895.59 4759.05 15797.27 8083.61 9789.17 10394.41 116
our_new_method83.51 10583.33 9984.06 15992.18 9860.49 28290.74 21892.04 14564.35 30183.24 7895.59 4759.05 15797.27 8083.61 9789.17 10394.41 116
K. test v363.09 34459.61 34973.53 33776.26 36749.38 37083.27 32277.15 37464.35 30147.77 38372.32 37128.73 37587.79 34749.93 33136.69 39883.41 327
v7n71.31 28968.65 29679.28 28376.40 36660.77 27386.71 30089.45 25464.17 30458.77 33878.24 33544.59 30593.54 24857.76 30361.75 33583.52 324
FMVSNet172.71 27969.91 29081.10 24083.60 29265.11 16690.01 24390.32 21863.92 30563.56 30680.25 31936.35 34891.54 30854.46 31566.75 29186.64 274
XVG-OURS74.25 26172.46 26779.63 27778.45 35257.59 32080.33 34887.39 31563.86 30668.76 25289.62 19240.50 31991.72 30269.00 22074.25 23889.58 232
UniMVSNet_ETH3D72.74 27870.53 28579.36 28278.62 35156.64 33085.01 30889.20 26463.77 30764.84 29384.44 26234.05 35691.86 29963.94 26870.89 26489.57 233
reproduce_model83.15 11282.96 10583.73 17092.02 10259.74 29490.37 23192.08 14363.70 30882.86 8395.48 5058.62 16397.17 8583.06 10388.42 11194.26 119
test_fmvs174.07 26273.69 25075.22 32278.91 34647.34 37989.06 26674.69 38263.68 30979.41 12491.59 15824.36 38487.77 34885.22 7876.26 22790.55 220
114514_t79.17 18377.67 18983.68 17495.32 2965.53 15792.85 12391.60 17263.49 31067.92 26190.63 17246.65 28895.72 16367.01 24083.54 15989.79 229
test_fmvs1_n72.69 28171.92 27274.99 32571.15 38447.08 38187.34 29375.67 37763.48 31178.08 14191.17 16520.16 39687.87 34584.65 8775.57 23190.01 226
APD-MVS_3200maxsize81.64 13981.32 12982.59 20092.36 9158.74 30891.39 18891.01 20163.35 31279.72 12094.62 8151.82 23996.14 14079.71 13087.93 11692.89 172
test20.0363.83 34162.65 33767.38 36970.58 38839.94 40186.57 30184.17 34863.29 31351.86 36677.30 34337.09 34482.47 38138.87 37954.13 36879.73 366
XVG-OURS-SEG-HR74.70 25873.08 25679.57 27978.25 35457.33 32480.49 34687.32 31663.22 31468.76 25290.12 18844.89 30491.59 30670.55 20674.09 24089.79 229
test_vis1_n71.63 28770.73 28374.31 33269.63 39047.29 38086.91 29772.11 38863.21 31575.18 17190.17 18320.40 39485.76 36084.59 8874.42 23789.87 227
ACMM69.62 1374.34 25972.73 26279.17 28584.25 28457.87 31590.36 23289.93 23763.17 31665.64 28686.04 24637.79 33794.10 22565.89 25271.52 25985.55 302
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
tpmvs72.88 27669.76 29282.22 21190.98 13567.05 11878.22 36388.30 30163.10 31764.35 30074.98 36055.09 20894.27 21943.25 36069.57 26885.34 307
SixPastTwentyTwo64.92 33561.78 34274.34 33178.74 34849.76 36583.42 32179.51 37162.86 31850.27 37377.35 34230.92 37090.49 31945.89 35247.06 38182.78 334
SR-MVS-dyc-post81.06 14980.70 14282.15 21492.02 10258.56 31090.90 21090.45 21262.76 31978.89 13094.46 8351.26 24995.61 16778.77 14286.77 13192.28 187
RE-MVS-def80.48 14892.02 10258.56 31090.90 21090.45 21262.76 31978.89 13094.46 8349.30 26678.77 14286.77 13192.28 187
TAPA-MVS70.22 1274.94 25673.53 25279.17 28590.40 14652.07 35289.19 26289.61 25062.69 32170.07 23392.67 13148.89 27394.32 21538.26 38079.97 19291.12 213
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
Anonymous20240521177.96 20875.33 22685.87 9293.73 5364.52 17594.85 4485.36 33862.52 32276.11 16090.18 18229.43 37497.29 7668.51 22577.24 22195.81 49
pmmvs-eth3d65.53 33362.32 33975.19 32369.39 39159.59 29682.80 33083.43 35662.52 32251.30 37072.49 36732.86 35887.16 35555.32 31250.73 37578.83 374
MVSMamba_PlusPlus84.97 7683.65 8688.93 1490.17 15174.04 887.84 28492.69 11862.18 32481.47 9787.64 22171.47 4096.28 13484.69 8694.74 3196.47 28
AdaColmapbinary78.94 18877.00 20484.76 13396.34 1765.86 14892.66 13387.97 31262.18 32470.56 22592.37 13943.53 30897.35 7264.50 26582.86 16491.05 214
FOURS193.95 4661.77 25393.96 7091.92 15262.14 32686.57 46
无先验92.71 12892.61 12462.03 32797.01 9666.63 24293.97 136
XVG-ACMP-BASELINE68.04 31665.53 31775.56 32074.06 37652.37 35078.43 36085.88 33362.03 32758.91 33781.21 30620.38 39591.15 31560.69 29068.18 28083.16 331
anonymousdsp71.14 29069.37 29476.45 31572.95 37954.71 34284.19 31388.88 28261.92 32962.15 31979.77 32538.14 33291.44 31368.90 22267.45 28783.21 330
tpm cat175.30 25172.21 26984.58 14388.52 18867.77 9778.16 36488.02 30961.88 33068.45 25776.37 35360.65 13794.03 23453.77 31974.11 23991.93 197
FMVSNet568.04 31665.66 31675.18 32484.43 28057.89 31483.54 31786.26 32861.83 33153.64 36073.30 36537.15 34385.08 36448.99 33561.77 33482.56 342
Anonymous2023120667.53 32165.78 31372.79 34374.95 37247.59 37788.23 27687.32 31661.75 33258.07 34177.29 34437.79 33787.29 35442.91 36263.71 31983.48 325
PatchMatch-RL72.06 28469.98 28778.28 29489.51 16555.70 33683.49 31883.39 35861.24 33363.72 30582.76 27834.77 35393.03 25753.37 32177.59 21386.12 288
tt080573.07 27170.73 28380.07 26378.37 35357.05 32687.78 28592.18 14161.23 33467.04 27686.49 23931.35 36794.58 20365.06 26267.12 28888.57 245
PLCcopyleft68.80 1475.23 25273.68 25179.86 27292.93 7658.68 30990.64 22388.30 30160.90 33564.43 29990.53 17342.38 31394.57 20556.52 30776.54 22586.33 280
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
ACMH63.93 1768.62 30964.81 32180.03 26585.22 26563.25 21887.72 28684.66 34460.83 33651.57 36879.43 32927.29 38094.96 19041.76 36764.84 30681.88 347
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
EG-PatchMatch MVS68.55 31065.41 31877.96 29878.69 34962.93 22889.86 24889.17 26660.55 33750.27 37377.73 34122.60 39094.06 22947.18 34672.65 25176.88 383
VDDNet80.50 15878.26 18187.21 4786.19 24769.79 4794.48 5091.31 18260.42 33879.34 12590.91 16838.48 32896.56 12282.16 10981.05 18495.27 73
CPTT-MVS79.59 17579.16 17080.89 24891.54 12259.80 29392.10 15488.54 29660.42 33872.96 19193.28 11748.27 27592.80 26978.89 14186.50 13690.06 224
our_test_368.29 31464.69 32379.11 28878.92 34464.85 17388.40 27585.06 34060.32 34052.68 36276.12 35540.81 31889.80 33244.25 35955.65 36282.67 341
ITE_SJBPF70.43 35774.44 37447.06 38277.32 37360.16 34154.04 35883.53 27023.30 38884.01 37043.07 36161.58 33980.21 365
ppachtmachnet_test67.72 31863.70 33079.77 27578.92 34466.04 14388.68 27082.90 36160.11 34255.45 35275.96 35639.19 32290.55 31739.53 37552.55 37282.71 338
new-patchmatchnet59.30 35756.48 35967.79 36665.86 39844.19 39082.47 33181.77 36259.94 34343.65 39566.20 38827.67 37981.68 38639.34 37641.40 39077.50 382
mvsany_test168.77 30868.56 29769.39 36073.57 37745.88 38880.93 34460.88 40859.65 34471.56 21690.26 18143.22 31075.05 39574.26 17362.70 32487.25 267
新几何184.73 13492.32 9264.28 18991.46 17859.56 34579.77 11992.90 12556.95 18496.57 12163.40 27192.91 5893.34 154
旧先验292.00 16359.37 34687.54 3993.47 25175.39 162
PM-MVS59.40 35656.59 35867.84 36563.63 40041.86 39576.76 36763.22 40559.01 34751.07 37172.27 37211.72 40883.25 37761.34 28650.28 37778.39 378
LTVRE_ROB59.60 1966.27 32763.54 33174.45 32984.00 28751.55 35567.08 39683.53 35558.78 34854.94 35480.31 31734.54 35493.23 25440.64 37368.03 28278.58 376
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
testdata81.34 23389.02 17957.72 31789.84 24058.65 34985.32 6194.09 10157.03 17993.28 25369.34 21590.56 9193.03 166
ACMH+65.35 1667.65 31964.55 32476.96 31284.59 27657.10 32588.08 27780.79 36558.59 35053.00 36181.09 30826.63 38292.95 26046.51 34861.69 33880.82 356
kuosan60.86 35260.24 34562.71 37781.57 31246.43 38575.70 37485.88 33357.98 35148.95 37969.53 38158.42 16576.53 39328.25 40235.87 40065.15 401
ADS-MVSNet266.90 32463.44 33277.26 30888.06 20560.70 27868.01 39275.56 37957.57 35264.48 29669.87 37938.68 32384.10 36840.87 37167.89 28486.97 269
ADS-MVSNet68.54 31164.38 32881.03 24488.06 20566.90 12368.01 39284.02 35057.57 35264.48 29669.87 37938.68 32389.21 33540.87 37167.89 28486.97 269
MDA-MVSNet-bldmvs61.54 34957.70 35473.05 34079.53 33557.00 32983.08 32681.23 36357.57 35234.91 40572.45 36832.79 35986.26 35935.81 38441.95 38975.89 385
mvs5depth61.03 35057.65 35571.18 35467.16 39547.04 38372.74 37977.49 37257.47 35560.52 32572.53 36622.84 38988.38 34049.15 33438.94 39578.11 380
KD-MVS_self_test60.87 35158.60 35167.68 36766.13 39739.93 40275.63 37584.70 34357.32 35649.57 37668.45 38429.55 37282.87 37948.09 33947.94 38080.25 364
UnsupCasMVSNet_bld61.60 34857.71 35373.29 33968.73 39251.64 35478.61 35989.05 27657.20 35746.11 38461.96 39728.70 37688.60 33750.08 33038.90 39679.63 367
MSDG69.54 30265.73 31480.96 24585.11 26963.71 20484.19 31383.28 35956.95 35854.50 35584.03 26531.50 36596.03 14942.87 36469.13 27483.14 332
F-COLMAP70.66 29168.44 29977.32 30686.37 24555.91 33488.00 28086.32 32656.94 35957.28 34888.07 21433.58 35792.49 28251.02 32568.37 27983.55 322
test22289.77 15861.60 25889.55 25289.42 25656.83 36077.28 15092.43 13752.76 23391.14 8593.09 163
CNLPA74.31 26072.30 26880.32 25591.49 12361.66 25790.85 21380.72 36656.67 36163.85 30490.64 17046.75 28790.84 31653.79 31875.99 22988.47 248
OurMVSNet-221017-064.68 33662.17 34072.21 34876.08 36947.35 37880.67 34581.02 36456.19 36251.60 36779.66 32727.05 38188.56 33853.60 32053.63 36980.71 358
YYNet163.76 34360.14 34774.62 32878.06 35760.19 28983.46 32083.99 35356.18 36339.25 40071.56 37637.18 34283.34 37642.90 36348.70 37980.32 362
MDA-MVSNet_test_wron63.78 34260.16 34674.64 32778.15 35660.41 28483.49 31884.03 34956.17 36439.17 40171.59 37537.22 34183.24 37842.87 36448.73 37880.26 363
OpenMVS_ROBcopyleft61.12 1866.39 32662.92 33576.80 31476.51 36557.77 31689.22 26083.41 35755.48 36553.86 35977.84 33926.28 38393.95 23834.90 38768.76 27678.68 375
MIMVSNet160.16 35557.33 35668.67 36369.71 38944.13 39178.92 35884.21 34755.05 36644.63 39271.85 37323.91 38681.54 38732.63 39655.03 36580.35 361
test_fmvs265.78 33164.84 32068.60 36466.54 39641.71 39683.27 32269.81 39554.38 36767.91 26284.54 26115.35 40181.22 38875.65 16066.16 29482.88 333
CVMVSNet74.04 26374.27 24173.33 33885.33 26243.94 39289.53 25488.39 29854.33 36870.37 22990.13 18649.17 26984.05 36961.83 28579.36 19891.99 196
Anonymous2024052976.84 22774.15 24384.88 12691.02 13464.95 17193.84 8091.09 19453.57 36973.00 19087.42 22535.91 34997.32 7469.14 21972.41 25492.36 183
pmmvs667.57 32064.76 32276.00 31972.82 38153.37 34788.71 26986.78 32453.19 37057.58 34778.03 33835.33 35292.41 28455.56 31154.88 36682.21 345
TinyColmap60.32 35356.42 36072.00 35278.78 34753.18 34878.36 36275.64 37852.30 37141.59 39975.82 35814.76 40488.35 34135.84 38354.71 36774.46 387
test_040264.54 33761.09 34374.92 32684.10 28660.75 27587.95 28179.71 37052.03 37252.41 36377.20 34532.21 36391.64 30423.14 40661.03 34172.36 394
test_vis1_rt59.09 35857.31 35764.43 37368.44 39346.02 38783.05 32848.63 41751.96 37349.57 37663.86 39316.30 39980.20 39071.21 19962.79 32367.07 400
Anonymous2023121173.08 27070.39 28681.13 23890.62 14263.33 21791.40 18690.06 23351.84 37464.46 29880.67 31236.49 34794.07 22863.83 26964.17 31485.98 291
dongtai55.18 36355.46 36254.34 38876.03 37036.88 40676.07 37184.61 34551.28 37543.41 39664.61 39256.56 19167.81 40618.09 41128.50 41158.32 404
AllTest61.66 34758.06 35272.46 34579.57 33351.42 35780.17 35168.61 39751.25 37645.88 38581.23 30219.86 39786.58 35738.98 37757.01 35979.39 368
TestCases72.46 34579.57 33351.42 35768.61 39751.25 37645.88 38581.23 30219.86 39786.58 35738.98 37757.01 35979.39 368
PatchT69.11 30565.37 31980.32 25582.07 30963.68 20767.96 39487.62 31450.86 37869.37 24065.18 38957.09 17888.53 33941.59 36966.60 29288.74 242
Anonymous2024052162.09 34659.08 35071.10 35567.19 39448.72 37383.91 31585.23 33950.38 37947.84 38271.22 37820.74 39385.51 36346.47 34958.75 35479.06 371
DP-MVS69.90 29966.48 30780.14 26195.36 2862.93 22889.56 25176.11 37550.27 38057.69 34685.23 25239.68 32195.73 15933.35 39071.05 26381.78 349
gg-mvs-nofinetune77.18 21974.31 24085.80 9691.42 12468.36 7971.78 38194.72 3549.61 38177.12 15245.92 40777.41 893.98 23667.62 23393.16 5595.05 83
JIA-IIPM66.06 32862.45 33876.88 31381.42 31554.45 34457.49 40888.67 29149.36 38263.86 30346.86 40656.06 19790.25 32149.53 33268.83 27585.95 292
N_pmnet50.55 36749.11 36954.88 38677.17 3634.02 43084.36 3112.00 42848.59 38345.86 38768.82 38232.22 36282.80 38031.58 39951.38 37477.81 381
ANet_high40.27 37835.20 38155.47 38434.74 42534.47 41063.84 40071.56 39148.42 38418.80 41441.08 4139.52 41264.45 41320.18 4098.66 42167.49 399
COLMAP_ROBcopyleft57.96 2062.98 34559.65 34872.98 34181.44 31453.00 34983.75 31675.53 38048.34 38548.81 38081.40 30024.14 38590.30 32032.95 39260.52 34675.65 386
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
mamv465.18 33467.43 30458.44 38077.88 36049.36 37169.40 38870.99 39348.31 38657.78 34585.53 25059.01 16051.88 41873.67 17564.32 31274.07 388
Patchmtry67.53 32163.93 32978.34 29282.12 30864.38 18468.72 38984.00 35148.23 38759.24 33272.41 36957.82 17289.27 33446.10 35156.68 36181.36 350
LS3D69.17 30466.40 30977.50 30291.92 10956.12 33385.12 30780.37 36846.96 38856.50 35087.51 22437.25 34093.71 24532.52 39779.40 19782.68 340
RPSCF64.24 33961.98 34171.01 35676.10 36845.00 38975.83 37375.94 37646.94 38958.96 33684.59 25931.40 36682.00 38547.76 34460.33 34986.04 289
RPMNet70.42 29465.68 31584.63 14183.15 29767.96 9270.25 38490.45 21246.83 39069.97 23665.10 39056.48 19395.30 18235.79 38573.13 24690.64 218
WB-MVS46.23 37144.94 37350.11 39162.13 40421.23 42476.48 36955.49 41045.89 39135.78 40261.44 39935.54 35072.83 3999.96 41821.75 41356.27 406
CMPMVSbinary48.56 2166.77 32564.41 32773.84 33570.65 38750.31 36377.79 36585.73 33645.54 39244.76 39182.14 28735.40 35190.14 32763.18 27574.54 23581.07 354
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
EU-MVSNet64.01 34063.01 33467.02 37074.40 37538.86 40583.27 32286.19 33045.11 39354.27 35681.15 30736.91 34680.01 39148.79 33757.02 35882.19 346
TDRefinement55.28 36251.58 36666.39 37159.53 40846.15 38676.23 37072.80 38544.60 39442.49 39776.28 35415.29 40282.39 38233.20 39143.75 38670.62 396
Patchmatch-test65.86 32960.94 34480.62 25283.75 28958.83 30758.91 40775.26 38144.50 39550.95 37277.09 34758.81 16287.90 34435.13 38664.03 31695.12 80
test_fmvs356.82 35954.86 36362.69 37853.59 41135.47 40875.87 37265.64 40243.91 39655.10 35371.43 3776.91 41674.40 39868.64 22452.63 37078.20 379
mvsany_test348.86 36946.35 37256.41 38246.00 41731.67 41362.26 40147.25 41843.71 39745.54 38968.15 38510.84 40964.44 41457.95 30235.44 40373.13 391
SSC-MVS44.51 37343.35 37547.99 39561.01 40718.90 42674.12 37754.36 41143.42 39834.10 40660.02 40034.42 35570.39 4029.14 42019.57 41454.68 407
LF4IMVS54.01 36452.12 36559.69 37962.41 40339.91 40368.59 39068.28 39942.96 39944.55 39375.18 35914.09 40668.39 40541.36 37051.68 37370.78 395
ttmdpeth53.34 36549.96 36863.45 37562.07 40540.04 40072.06 38065.64 40242.54 40051.88 36577.79 34013.94 40776.48 39432.93 39330.82 40973.84 389
DSMNet-mixed56.78 36054.44 36463.79 37463.21 40129.44 41764.43 39964.10 40442.12 40151.32 36971.60 37431.76 36475.04 39636.23 38265.20 30386.87 272
pmmvs355.51 36151.50 36767.53 36857.90 40950.93 36180.37 34773.66 38440.63 40244.15 39464.75 39116.30 39978.97 39244.77 35840.98 39372.69 392
new_pmnet49.31 36846.44 37157.93 38162.84 40240.74 39868.47 39162.96 40636.48 40335.09 40457.81 40114.97 40372.18 40032.86 39446.44 38260.88 403
MVS-HIRNet60.25 35455.55 36174.35 33084.37 28156.57 33171.64 38274.11 38334.44 40445.54 38942.24 41231.11 36989.81 33040.36 37476.10 22876.67 384
test_f46.58 37043.45 37455.96 38345.18 41832.05 41261.18 40249.49 41633.39 40542.05 39862.48 3967.00 41565.56 41047.08 34743.21 38870.27 397
test_vis3_rt40.46 37737.79 37848.47 39444.49 41933.35 41166.56 39732.84 42532.39 40629.65 40739.13 4153.91 42368.65 40450.17 32840.99 39243.40 410
DeepMVS_CXcopyleft34.71 40151.45 41324.73 42128.48 42731.46 40717.49 41752.75 4035.80 41842.60 42218.18 41019.42 41536.81 414
MVStest151.35 36646.89 37064.74 37265.06 39951.10 35967.33 39572.58 38630.20 40835.30 40374.82 36127.70 37869.89 40324.44 40524.57 41273.22 390
FPMVS45.64 37243.10 37653.23 38951.42 41436.46 40764.97 39871.91 38929.13 40927.53 40961.55 3989.83 41165.01 41216.00 41555.58 36358.22 405
PMMVS237.93 38033.61 38350.92 39046.31 41624.76 42060.55 40550.05 41428.94 41020.93 41247.59 4054.41 42265.13 41125.14 40418.55 41662.87 402
LCM-MVSNet40.54 37535.79 38054.76 38736.92 42430.81 41451.41 41169.02 39622.07 41124.63 41145.37 4084.56 42065.81 40933.67 38934.50 40467.67 398
APD_test140.50 37637.31 37950.09 39251.88 41235.27 40959.45 40652.59 41321.64 41226.12 41057.80 4024.56 42066.56 40822.64 40739.09 39448.43 408
PMVScopyleft26.43 2231.84 38428.16 38742.89 39725.87 42727.58 41850.92 41249.78 41521.37 41314.17 41940.81 4142.01 42666.62 4079.61 41938.88 39734.49 415
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
Gipumacopyleft34.91 38131.44 38445.30 39670.99 38539.64 40419.85 41872.56 38720.10 41416.16 41821.47 4195.08 41971.16 40113.07 41643.70 38725.08 416
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
testf132.77 38229.47 38542.67 39841.89 42130.81 41452.07 40943.45 41915.45 41518.52 41544.82 4092.12 42458.38 41516.05 41330.87 40738.83 411
APD_test232.77 38229.47 38542.67 39841.89 42130.81 41452.07 40943.45 41915.45 41518.52 41544.82 4092.12 42458.38 41516.05 41330.87 40738.83 411
E-PMN24.61 38524.00 38926.45 40243.74 42018.44 42760.86 40339.66 42115.11 4179.53 42122.10 4186.52 41746.94 4208.31 42110.14 41813.98 418
EMVS23.76 38723.20 39125.46 40341.52 42316.90 42860.56 40438.79 42414.62 4188.99 42220.24 4217.35 41445.82 4217.25 4229.46 41913.64 419
MVEpermissive24.84 2324.35 38619.77 39238.09 40034.56 42626.92 41926.57 41638.87 42311.73 41911.37 42027.44 4161.37 42750.42 41911.41 41714.60 41736.93 413
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method38.59 37935.16 38248.89 39354.33 41021.35 42345.32 41453.71 4127.41 42028.74 40851.62 4048.70 41352.87 41733.73 38832.89 40572.47 393
wuyk23d11.30 39010.95 39312.33 40548.05 41519.89 42525.89 4171.92 4293.58 4213.12 4231.37 4230.64 42815.77 4246.23 4237.77 4221.35 420
tmp_tt22.26 38823.75 39017.80 4045.23 42812.06 42935.26 41539.48 4222.82 42218.94 41344.20 41122.23 39124.64 42336.30 3819.31 42016.69 417
EGC-MVSNET42.35 37438.09 37755.11 38574.57 37346.62 38471.63 38355.77 4090.04 4230.24 42462.70 39514.24 40574.91 39717.59 41246.06 38343.80 409
testmvs7.23 3929.62 3950.06 4070.04 4290.02 43284.98 3090.02 4300.03 4240.18 4251.21 4240.01 4300.02 4250.14 4240.01 4230.13 422
test1236.92 3939.21 3960.08 4060.03 4300.05 43181.65 3370.01 4310.02 4250.14 4260.85 4250.03 4290.02 4250.12 4250.00 4240.16 421
mmdepth0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4240.00 423
monomultidepth0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4240.00 423
test_blank0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4240.00 423
uanet_test0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4240.00 423
DCPMVS0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4240.00 423
cdsmvs_eth3d_5k19.86 38926.47 3880.00 4080.00 4310.00 4330.00 41993.45 860.00 4260.00 42795.27 5949.56 2630.00 4270.00 4260.00 4240.00 423
pcd_1.5k_mvsjas4.46 3945.95 3970.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 42653.55 2250.00 4270.00 4260.00 4240.00 423
sosnet-low-res0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4240.00 423
sosnet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4240.00 423
uncertanet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4240.00 423
Regformer0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4240.00 423
ab-mvs-re7.91 39110.55 3940.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 42794.95 690.00 4310.00 4270.00 4260.00 4240.00 423
uanet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4240.00 423
WAC-MVS49.45 36831.56 400
MSC_two_6792asdad89.60 997.31 473.22 1295.05 2799.07 1392.01 2594.77 2696.51 24
No_MVS89.60 997.31 473.22 1295.05 2799.07 1392.01 2594.77 2696.51 24
eth-test20.00 431
eth-test0.00 431
OPU-MVS89.97 397.52 373.15 1496.89 697.00 983.82 299.15 295.72 597.63 397.62 2
test_0728_SECOND88.70 1896.45 1270.43 3396.64 1094.37 5399.15 291.91 2894.90 2296.51 24
GSMVS94.68 100
test_part296.29 1968.16 8890.78 17
sam_mvs157.85 17194.68 100
sam_mvs54.91 210
ambc69.61 35961.38 40641.35 39749.07 41385.86 33550.18 37566.40 38710.16 41088.14 34345.73 35344.20 38579.32 370
MTGPAbinary92.23 134
test_post178.95 35720.70 42053.05 23091.50 31260.43 291
test_post23.01 41756.49 19292.67 275
patchmatchnet-post67.62 38657.62 17490.25 321
GG-mvs-BLEND86.53 7391.91 11069.67 5275.02 37694.75 3478.67 13790.85 16977.91 794.56 20872.25 18993.74 4595.36 65
MTMP93.77 8432.52 426
test9_res89.41 4094.96 1995.29 70
agg_prior286.41 7094.75 3095.33 66
agg_prior94.16 4366.97 12193.31 9284.49 6896.75 116
test_prior467.18 11493.92 73
test_prior86.42 7694.71 3567.35 10993.10 10396.84 11395.05 83
新几何291.41 184
旧先验191.94 10760.74 27691.50 17694.36 8765.23 7991.84 7194.55 107
原ACMM292.01 160
testdata296.09 14361.26 287
segment_acmp65.94 72
test1287.09 5294.60 3668.86 6792.91 11082.67 8965.44 7797.55 6293.69 4894.84 92
plane_prior786.94 23561.51 259
plane_prior687.23 22762.32 24350.66 252
plane_prior591.31 18295.55 17276.74 15278.53 20788.39 249
plane_prior489.14 198
plane_prior187.15 229
n20.00 432
nn0.00 432
door-mid66.01 401
lessismore_v073.72 33672.93 38047.83 37661.72 40745.86 38773.76 36428.63 37789.81 33047.75 34531.37 40683.53 323
test1193.01 106
door66.57 400
HQP5-MVS63.66 208
BP-MVS77.63 149
HQP4-MVS74.18 17995.61 16788.63 243
HQP3-MVS91.70 16878.90 202
HQP2-MVS51.63 244
NP-MVS87.41 22363.04 22490.30 179
ACMMP++_ref71.63 257
ACMMP++69.72 266
Test By Simon54.21 219