This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted by
DPM-MVS82.39 482.36 782.49 580.12 19859.50 592.24 890.72 1569.37 3383.22 894.47 263.81 593.18 3274.02 8493.25 294.80 1
LFMVS78.52 2577.14 4382.67 389.58 1358.90 891.27 1988.05 5663.22 12374.63 4890.83 7541.38 17194.40 2075.42 7279.90 9194.72 2
SED-MVS81.92 881.75 982.44 789.48 1756.89 2992.48 388.94 3257.50 23584.61 494.09 358.81 1296.37 682.28 2687.60 1894.06 3
OPU-MVS81.71 1392.05 355.97 4892.48 394.01 567.21 295.10 1589.82 392.55 394.06 3
DVP-MVS++82.44 382.38 682.62 491.77 457.49 1784.98 13888.88 3458.00 22183.60 693.39 1867.21 296.39 481.64 3191.98 493.98 5
PC_three_145266.58 6187.27 293.70 1066.82 494.95 1789.74 491.98 493.98 5
CSCG80.41 1579.72 1682.49 589.12 2557.67 1589.29 4191.54 559.19 19771.82 8290.05 9759.72 1096.04 1078.37 5088.40 1493.75 7
DELS-MVS82.32 582.50 581.79 1286.80 4756.89 2992.77 286.30 9077.83 177.88 3392.13 4160.24 794.78 1978.97 4489.61 893.69 8
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MVS76.91 4975.48 6381.23 1984.56 8255.21 6580.23 26691.64 458.65 21165.37 14691.48 6245.72 10695.05 1672.11 9889.52 1093.44 9
VNet77.99 3777.92 3178.19 7887.43 4250.12 19390.93 2291.41 867.48 5275.12 4390.15 9546.77 9391.00 8473.52 8978.46 10393.44 9
MCST-MVS83.01 183.30 282.15 1092.84 257.58 1693.77 191.10 1175.95 377.10 3793.09 2754.15 3895.57 1285.80 1085.87 3893.31 11
MM82.69 283.29 380.89 2284.38 8655.40 5992.16 1089.85 2275.28 482.41 1193.86 854.30 3593.98 2390.29 187.13 2193.30 12
WTY-MVS77.47 4377.52 3877.30 9788.33 3046.25 28788.46 5090.32 1871.40 1872.32 7791.72 5453.44 4192.37 4966.28 13375.42 13893.28 13
DeepPCF-MVS69.37 180.65 1381.56 1177.94 8585.46 6649.56 20590.99 2186.66 8270.58 2380.07 2495.30 156.18 2490.97 8782.57 2586.22 3693.28 13
sasdasda78.17 3377.86 3279.12 5084.30 8754.22 9487.71 6284.57 13967.70 4977.70 3492.11 4450.90 5789.95 11378.18 5477.54 11193.20 15
canonicalmvs78.17 3377.86 3279.12 5084.30 8754.22 9487.71 6284.57 13967.70 4977.70 3492.11 4450.90 5789.95 11378.18 5477.54 11193.20 15
MSLP-MVS++74.21 9172.25 10880.11 3681.45 16956.47 3886.32 9679.65 23658.19 21766.36 13492.29 4036.11 24490.66 9367.39 12482.49 6393.18 17
balanced_conf0380.28 1679.73 1581.90 1186.47 5159.34 680.45 26089.51 2469.76 2971.05 9486.66 16458.68 1593.24 3184.64 1490.40 693.14 18
CANet80.90 1181.17 1280.09 3787.62 4154.21 9691.60 1486.47 8673.13 879.89 2593.10 2549.88 7092.98 3384.09 1784.75 5093.08 19
TSAR-MVS + GP.77.82 3877.59 3678.49 6985.25 7150.27 19290.02 2690.57 1656.58 25474.26 5391.60 5954.26 3692.16 5575.87 6679.91 9093.05 20
MVS_030482.10 782.64 480.47 2786.63 4954.69 8492.20 986.66 8274.48 582.63 1093.80 950.83 6193.70 2890.11 286.44 3393.01 21
SD-MVS76.18 6074.85 7480.18 3285.39 6756.90 2885.75 10982.45 18256.79 24974.48 5191.81 5243.72 13790.75 9174.61 7878.65 10192.91 22
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
alignmvs78.08 3577.98 3078.39 7483.53 10353.22 12289.77 3285.45 10666.11 7176.59 4191.99 4854.07 3989.05 13977.34 6077.00 11692.89 23
MGCFI-Net74.07 9374.64 7872.34 23082.90 12643.33 32180.04 26979.96 22765.61 7974.93 4591.85 5148.01 8080.86 30571.41 9977.10 11492.84 24
dcpmvs_279.33 2178.94 2180.49 2589.75 1256.54 3684.83 14583.68 15867.85 4569.36 10790.24 8960.20 892.10 5884.14 1680.40 8292.82 25
ET-MVSNet_ETH3D75.23 8074.08 8478.67 6484.52 8355.59 5188.92 4489.21 2868.06 4253.13 30590.22 9149.71 7187.62 20172.12 9770.82 18492.82 25
VDDNet74.37 8972.13 11281.09 2079.58 20456.52 3790.02 2686.70 8152.61 29271.23 9087.20 15531.75 29193.96 2574.30 8275.77 13492.79 27
DVP-MVScopyleft81.30 1081.00 1382.20 889.40 2057.45 1992.34 589.99 2057.71 22981.91 1493.64 1255.17 2996.44 281.68 2987.13 2192.72 28
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
HPM-MVS++copyleft80.50 1480.71 1479.88 3987.34 4355.20 6789.93 2987.55 6866.04 7679.46 2693.00 3053.10 4391.76 6380.40 3789.56 992.68 29
test_241102_TWO88.76 4157.50 23583.60 694.09 356.14 2596.37 682.28 2687.43 2092.55 30
test_0728_SECOND82.20 889.50 1557.73 1392.34 588.88 3496.39 481.68 2987.13 2192.47 31
IU-MVS89.48 1757.49 1791.38 966.22 6988.26 182.83 2287.60 1892.44 32
CNVR-MVS81.76 981.90 881.33 1890.04 1057.70 1491.71 1188.87 3670.31 2577.64 3693.87 752.58 4693.91 2684.17 1587.92 1692.39 33
PHI-MVS77.49 4277.00 4478.95 5385.33 6950.69 17588.57 4988.59 4858.14 21873.60 5793.31 2143.14 14793.79 2773.81 8788.53 1392.37 34
MSC_two_6792asdad81.53 1591.77 456.03 4691.10 1196.22 881.46 3386.80 2892.34 35
No_MVS81.53 1591.77 456.03 4691.10 1196.22 881.46 3386.80 2892.34 35
test_0728_THIRD58.00 22181.91 1493.64 1256.54 2196.44 281.64 3186.86 2692.23 37
MSP-MVS82.30 683.47 178.80 5982.99 12252.71 13585.04 13588.63 4566.08 7386.77 392.75 3272.05 191.46 7083.35 2093.53 192.23 37
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
VDD-MVS76.08 6374.97 7279.44 4184.27 9053.33 11991.13 2085.88 9865.33 8772.37 7689.34 11032.52 28192.76 4077.90 5775.96 13192.22 39
CHOSEN 1792x268876.24 5974.03 8682.88 183.09 11762.84 285.73 11185.39 10869.79 2864.87 15483.49 20141.52 17093.69 2970.55 10381.82 6992.12 40
UBG78.86 2478.86 2278.86 5787.80 4055.43 5587.67 6491.21 1072.83 972.10 7988.40 12858.53 1689.08 13773.21 9477.98 10792.08 41
SMA-MVScopyleft79.10 2378.76 2480.12 3584.42 8455.87 4987.58 6986.76 7961.48 15480.26 2393.10 2546.53 9692.41 4879.97 3888.77 1192.08 41
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
lupinMVS78.38 2978.11 2979.19 4583.02 12055.24 6391.57 1584.82 13069.12 3476.67 3992.02 4644.82 12390.23 10780.83 3680.09 8692.08 41
testing9178.30 3277.54 3780.61 2388.16 3557.12 2587.94 6091.07 1471.43 1770.75 9788.04 14155.82 2692.65 4269.61 10975.00 14892.05 44
GG-mvs-BLEND77.77 8686.68 4850.61 17668.67 34788.45 5168.73 11487.45 15159.15 1190.67 9254.83 23387.67 1792.03 45
test_yl75.85 6874.83 7578.91 5488.08 3751.94 15191.30 1789.28 2657.91 22371.19 9189.20 11342.03 16292.77 3869.41 11075.07 14692.01 46
DCV-MVSNet75.85 6874.83 7578.91 5488.08 3751.94 15191.30 1789.28 2657.91 22371.19 9189.20 11342.03 16292.77 3869.41 11075.07 14692.01 46
patch_mono-280.84 1281.59 1078.62 6690.34 953.77 10488.08 5488.36 5276.17 279.40 2791.09 6455.43 2790.09 11085.01 1280.40 8291.99 48
testing9978.45 2677.78 3480.45 2888.28 3356.81 3287.95 5991.49 671.72 1470.84 9688.09 13757.29 1992.63 4469.24 11375.13 14491.91 49
DeepC-MVS_fast67.50 378.00 3677.63 3579.13 4988.52 2755.12 6989.95 2885.98 9768.31 3671.33 8992.75 3245.52 10990.37 10071.15 10185.14 4691.91 49
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
HY-MVS67.03 573.90 9773.14 9576.18 12784.70 7947.36 27075.56 29986.36 8966.27 6870.66 10083.91 19351.05 5589.31 13067.10 12772.61 16891.88 51
3Dnovator64.70 674.46 8772.48 10280.41 2982.84 13055.40 5983.08 19988.61 4767.61 5159.85 21388.66 12334.57 26293.97 2458.42 19988.70 1291.85 52
casdiffmvs_mvgpermissive77.75 3977.28 4079.16 4780.42 19454.44 9187.76 6185.46 10571.67 1571.38 8888.35 13151.58 5091.22 7779.02 4379.89 9291.83 53
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVSMamba_PlusPlus75.28 7773.39 8980.96 2180.85 18358.25 1074.47 30987.61 6750.53 30665.24 14783.41 20357.38 1892.83 3673.92 8687.13 2191.80 54
EPNet78.36 3078.49 2577.97 8285.49 6552.04 14989.36 3984.07 15173.22 777.03 3891.72 5449.32 7490.17 10973.46 9082.77 6091.69 55
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MVS_Test75.85 6874.93 7378.62 6684.08 9255.20 6783.99 17085.17 12068.07 4173.38 6182.76 21250.44 6389.00 14265.90 13780.61 7891.64 56
casdiffmvspermissive77.36 4476.85 4678.88 5680.40 19554.66 8787.06 8285.88 9872.11 1371.57 8588.63 12750.89 6090.35 10176.00 6579.11 9891.63 57
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Anonymous20240521170.11 16367.88 18076.79 11687.20 4447.24 27389.49 3577.38 28354.88 27466.14 13586.84 16020.93 36091.54 6856.45 22671.62 17691.59 58
gg-mvs-nofinetune67.43 22164.53 24676.13 12885.95 5547.79 26564.38 36188.28 5339.34 36666.62 12941.27 40358.69 1489.00 14249.64 26986.62 3191.59 58
xiu_mvs_v2_base79.86 1879.31 1981.53 1585.03 7560.73 491.65 1386.86 7770.30 2680.77 2093.07 2937.63 21192.28 5282.73 2485.71 3991.57 60
PS-MVSNAJ80.06 1779.52 1881.68 1485.58 6360.97 391.69 1287.02 7470.62 2280.75 2193.22 2437.77 20692.50 4682.75 2386.25 3591.57 60
MG-MVS78.42 2876.99 4582.73 293.17 164.46 189.93 2988.51 5064.83 9273.52 5988.09 13748.07 7892.19 5462.24 16484.53 5291.53 62
DPE-MVScopyleft79.82 1979.66 1780.29 3089.27 2455.08 7288.70 4787.92 5855.55 26581.21 1993.69 1156.51 2294.27 2278.36 5185.70 4091.51 63
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
NCCC79.57 2079.23 2080.59 2489.50 1556.99 2691.38 1688.17 5467.71 4873.81 5692.75 3246.88 9193.28 3078.79 4784.07 5591.50 64
Effi-MVS+75.24 7973.61 8880.16 3381.92 14857.42 2185.21 12776.71 29660.68 17273.32 6289.34 11047.30 8691.63 6568.28 12079.72 9391.42 65
test9_res78.72 4885.44 4391.39 66
baseline76.86 5276.24 5478.71 6280.47 19354.20 9883.90 17384.88 12971.38 1971.51 8689.15 11550.51 6290.55 9775.71 6778.65 10191.39 66
MVSFormer73.53 10672.19 11077.57 9183.02 12055.24 6381.63 23781.44 19950.28 30776.67 3990.91 7244.82 12386.11 24360.83 17680.09 8691.36 68
jason77.01 4876.45 5078.69 6379.69 20354.74 8090.56 2483.99 15468.26 3774.10 5490.91 7242.14 15989.99 11279.30 4179.12 9791.36 68
jason: jason.
train_agg76.91 4976.40 5178.45 7285.68 5955.42 5687.59 6784.00 15257.84 22672.99 6590.98 6744.99 11788.58 16078.19 5285.32 4491.34 70
testing22277.70 4077.22 4279.14 4886.95 4554.89 7887.18 7991.96 272.29 1271.17 9388.70 12255.19 2891.24 7665.18 14876.32 12791.29 71
CS-MVS76.77 5376.70 4876.99 10883.55 10248.75 23088.60 4885.18 11966.38 6672.47 7591.62 5845.53 10890.99 8674.48 7982.51 6291.23 72
testing1179.18 2278.85 2380.16 3388.33 3056.99 2688.31 5292.06 172.82 1070.62 10288.37 12957.69 1792.30 5075.25 7476.24 12891.20 73
EIA-MVS75.92 6675.18 6978.13 7985.14 7251.60 16087.17 8085.32 11264.69 9368.56 11590.53 8045.79 10591.58 6767.21 12682.18 6691.20 73
SF-MVS77.64 4177.42 3978.32 7683.75 10052.47 14086.63 9287.80 5958.78 20974.63 4892.38 3847.75 8391.35 7278.18 5486.85 2791.15 75
TSAR-MVS + MP.78.31 3178.26 2678.48 7081.33 17256.31 4281.59 24086.41 8769.61 3181.72 1688.16 13655.09 3188.04 18374.12 8386.31 3491.09 76
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
ETVMVS75.80 7275.44 6476.89 11286.23 5450.38 18585.55 11891.42 771.30 2068.80 11387.94 14356.42 2389.24 13256.54 22274.75 15191.07 77
agg_prior275.65 6885.11 4791.01 78
MAR-MVS76.76 5475.60 6080.21 3190.87 754.68 8589.14 4289.11 2962.95 12770.54 10392.33 3941.05 17294.95 1757.90 21086.55 3291.00 79
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
ab-mvs70.65 15769.11 16375.29 15780.87 18246.23 28873.48 31685.24 11859.99 17966.65 12880.94 24443.13 14888.69 15563.58 15668.07 20390.95 80
PMMVS72.98 11272.05 11575.78 13683.57 10148.60 23384.08 16682.85 17761.62 15068.24 11890.33 8728.35 30887.78 19372.71 9576.69 12190.95 80
SPE-MVS-test77.20 4577.25 4177.05 10384.60 8149.04 22089.42 3685.83 10065.90 7772.85 6891.98 5045.10 11491.27 7475.02 7684.56 5190.84 82
RRT-MVS73.29 10971.37 12579.07 5284.63 8054.16 9978.16 28586.64 8461.67 14960.17 21082.35 22840.63 18092.26 5370.19 10677.87 10890.81 83
mvs_anonymous72.29 12670.74 13276.94 11182.85 12954.72 8278.43 28481.54 19763.77 10961.69 19779.32 25851.11 5485.31 26162.15 16675.79 13390.79 84
PAPR75.20 8174.13 8278.41 7388.31 3255.10 7184.31 16085.66 10263.76 11067.55 12290.73 7743.48 14289.40 12766.36 13277.03 11590.73 85
Patchmatch-RL test58.72 30354.32 31671.92 24563.91 37444.25 30961.73 37255.19 38457.38 23749.31 32854.24 39437.60 21380.89 30362.19 16547.28 35590.63 86
Patchmatch-test53.33 33548.17 34568.81 28973.31 30242.38 33342.98 40058.23 38032.53 38438.79 37770.77 34739.66 19173.51 36325.18 38052.06 33990.55 87
test_prior78.39 7486.35 5354.91 7785.45 10689.70 12190.55 87
test1279.24 4486.89 4656.08 4585.16 12172.27 7847.15 8891.10 8285.93 3790.54 89
ACMMP_NAP76.43 5775.66 5978.73 6181.92 14854.67 8684.06 16885.35 11061.10 16172.99 6591.50 6140.25 18291.00 8476.84 6286.98 2590.51 90
APDe-MVScopyleft78.44 2778.20 2779.19 4588.56 2654.55 8989.76 3387.77 6255.91 26078.56 3092.49 3748.20 7792.65 4279.49 3983.04 5990.39 91
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
3Dnovator+62.71 772.29 12670.50 13677.65 9083.40 10851.29 16987.32 7386.40 8859.01 20458.49 24388.32 13332.40 28291.27 7457.04 21982.15 6790.38 92
CostFormer73.89 9872.30 10778.66 6582.36 14156.58 3375.56 29985.30 11366.06 7470.50 10476.88 28957.02 2089.06 13868.27 12168.74 20090.33 93
fmvsm_l_conf0.5_n75.95 6576.16 5575.31 15476.01 27248.44 24184.98 13871.08 34463.50 11781.70 1793.52 1550.00 6687.18 21187.80 576.87 11990.32 94
test_fmvsmconf_n74.41 8874.05 8575.49 14874.16 29648.38 24282.66 20772.57 33167.05 5775.11 4492.88 3146.35 9787.81 18883.93 1871.71 17590.28 95
CDPH-MVS76.05 6475.19 6878.62 6686.51 5054.98 7587.32 7384.59 13858.62 21270.75 9790.85 7443.10 14990.63 9570.50 10484.51 5390.24 96
ETV-MVS77.17 4676.74 4778.48 7081.80 15154.55 8986.13 10085.33 11168.20 3873.10 6490.52 8145.23 11390.66 9379.37 4080.95 7490.22 97
CANet_DTU73.71 10273.14 9575.40 15082.61 13750.05 19484.67 15279.36 24469.72 3075.39 4290.03 9829.41 30485.93 25467.99 12279.11 9890.22 97
fmvsm_l_conf0.5_n_a75.88 6776.07 5675.31 15476.08 26848.34 24485.24 12570.62 34763.13 12581.45 1893.62 1449.98 6887.40 20787.76 676.77 12090.20 99
sss70.49 15970.13 14871.58 25181.59 16239.02 35080.78 25784.71 13559.34 19266.61 13088.09 13737.17 22585.52 25761.82 16971.02 18290.20 99
SteuartSystems-ACMMP77.08 4776.33 5279.34 4380.98 17655.31 6189.76 3386.91 7662.94 12871.65 8391.56 6042.33 15592.56 4577.14 6183.69 5790.15 101
Skip Steuart: Steuart Systems R&D Blog.
PAPM76.76 5476.07 5678.81 5880.20 19659.11 786.86 8886.23 9168.60 3570.18 10588.84 12051.57 5187.16 21265.48 14186.68 3090.15 101
test250672.91 11472.43 10474.32 18080.12 19844.18 31183.19 19684.77 13364.02 10365.97 13887.43 15247.67 8488.72 15459.08 19079.66 9490.08 103
ECVR-MVScopyleft71.81 13571.00 13074.26 18280.12 19843.49 31684.69 14982.16 18364.02 10364.64 15687.43 15235.04 25789.21 13561.24 17379.66 9490.08 103
IB-MVS68.87 274.01 9472.03 11779.94 3883.04 11955.50 5390.24 2588.65 4367.14 5561.38 20081.74 23753.21 4294.28 2160.45 18462.41 25790.03 105
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
test_fmvsmconf0.1_n73.69 10373.15 9375.34 15270.71 33448.26 24782.15 22171.83 33666.75 6074.47 5292.59 3644.89 12087.78 19383.59 1971.35 17989.97 106
diffmvspermissive75.11 8374.65 7776.46 11978.52 23053.35 11783.28 19479.94 22870.51 2471.64 8488.72 12146.02 10286.08 24877.52 5875.75 13589.96 107
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DeepC-MVS67.15 476.90 5176.27 5378.80 5980.70 18755.02 7386.39 9486.71 8066.96 5867.91 12089.97 9948.03 7991.41 7175.60 6984.14 5489.96 107
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
h-mvs3373.95 9572.89 9877.15 10280.17 19750.37 18684.68 15083.33 16468.08 3971.97 8088.65 12642.50 15391.15 8078.82 4557.78 29789.91 109
ZNCC-MVS75.82 7175.02 7178.23 7783.88 9853.80 10386.91 8786.05 9659.71 18367.85 12190.55 7942.23 15791.02 8372.66 9685.29 4589.87 110
HFP-MVS74.37 8973.13 9778.10 8084.30 8753.68 10685.58 11584.36 14356.82 24765.78 14290.56 7840.70 17990.90 8869.18 11480.88 7589.71 111
1112_ss70.05 16669.37 15872.10 23480.77 18642.78 32785.12 13376.75 29359.69 18461.19 20292.12 4247.48 8583.84 28053.04 24668.21 20289.66 112
MVS_111021_HR76.39 5875.38 6679.42 4285.33 6956.47 3888.15 5384.97 12665.15 9066.06 13789.88 10043.79 13492.16 5575.03 7580.03 8989.64 113
test_fmvsmconf0.01_n71.97 13270.95 13175.04 16466.21 35947.87 26280.35 26370.08 35165.85 7872.69 7091.68 5639.99 18887.67 19782.03 2869.66 19489.58 114
fmvsm_s_conf0.5_n74.48 8674.12 8375.56 14376.96 25647.85 26385.32 12369.80 35464.16 10178.74 2893.48 1645.51 11089.29 13186.48 866.62 21589.55 115
PVSNet_Blended76.53 5676.54 4976.50 11885.91 5651.83 15588.89 4584.24 14867.82 4669.09 11189.33 11246.70 9488.13 17975.43 7081.48 7389.55 115
BP-MVS176.09 6275.55 6177.71 8879.49 20552.27 14684.70 14890.49 1764.44 9569.86 10690.31 8855.05 3291.35 7270.07 10775.58 13789.53 117
test111171.06 14970.42 14072.97 21479.48 20641.49 33984.82 14682.74 17864.20 10062.98 18387.43 15235.20 25487.92 18558.54 19678.42 10489.49 118
MP-MVS-pluss75.54 7575.03 7077.04 10481.37 17152.65 13784.34 15984.46 14161.16 15869.14 11091.76 5339.98 18988.99 14478.19 5284.89 4989.48 119
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
GDP-MVS75.27 7874.38 8077.95 8479.04 21652.86 13385.22 12686.19 9362.43 13870.66 10090.40 8653.51 4091.60 6669.25 11272.68 16789.39 120
tpm270.82 15468.44 17077.98 8180.78 18556.11 4474.21 31181.28 20360.24 17768.04 11975.27 30752.26 4888.50 16555.82 23068.03 20489.33 121
fmvsm_s_conf0.1_n73.80 9973.26 9275.43 14973.28 30447.80 26484.57 15569.43 35663.34 12078.40 3193.29 2244.73 12689.22 13485.99 966.28 22289.26 122
PatchmatchNetpermissive67.07 23363.63 25377.40 9583.10 11558.03 1172.11 33177.77 27558.85 20759.37 22370.83 34637.84 20584.93 27042.96 31069.83 19389.26 122
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MTAPA72.73 11771.22 12777.27 9981.54 16553.57 10867.06 35481.31 20159.41 19068.39 11690.96 6936.07 24689.01 14173.80 8882.45 6489.23 124
tpm68.36 20067.48 19270.97 26179.93 20151.34 16776.58 29578.75 25767.73 4763.54 17974.86 30948.33 7672.36 36953.93 24063.71 23989.21 125
PAPM_NR71.80 13669.98 15077.26 10081.54 16553.34 11878.60 28385.25 11753.46 28560.53 20888.66 12345.69 10789.24 13256.49 22379.62 9689.19 126
EPMVS68.45 19965.44 23577.47 9484.91 7656.17 4371.89 33381.91 19161.72 14860.85 20472.49 33336.21 24387.06 21547.32 28571.62 17689.17 127
tpmrst71.04 15069.77 15274.86 16983.19 11455.86 5075.64 29878.73 25867.88 4464.99 15373.73 31949.96 6979.56 32565.92 13667.85 20789.14 128
GST-MVS74.87 8573.90 8777.77 8683.30 11053.45 11285.75 10985.29 11459.22 19666.50 13389.85 10140.94 17490.76 9070.94 10283.35 5889.10 129
TESTMET0.1,172.86 11572.33 10574.46 17481.98 14550.77 17385.13 13085.47 10466.09 7267.30 12383.69 19837.27 22183.57 28565.06 15078.97 10089.05 130
MP-MVScopyleft74.99 8474.33 8176.95 11082.89 12753.05 12885.63 11483.50 16357.86 22567.25 12490.24 8943.38 14488.85 15376.03 6482.23 6588.96 131
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
QAPM71.88 13469.33 16079.52 4082.20 14354.30 9386.30 9788.77 4056.61 25359.72 21587.48 15033.90 26995.36 1347.48 28481.49 7288.90 132
fmvsm_s_conf0.5_n_a73.68 10473.15 9375.29 15775.45 27948.05 25683.88 17468.84 35963.43 11978.60 2993.37 2045.32 11188.92 14985.39 1164.04 23588.89 133
APD-MVScopyleft76.15 6175.68 5877.54 9288.52 2753.44 11387.26 7885.03 12553.79 28274.91 4691.68 5643.80 13390.31 10374.36 8081.82 6988.87 134
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
GeoE69.96 17067.88 18076.22 12381.11 17551.71 15884.15 16476.74 29559.83 18160.91 20384.38 18741.56 16988.10 18151.67 25770.57 18788.84 135
Vis-MVSNetpermissive70.61 15869.34 15974.42 17680.95 18148.49 23886.03 10377.51 28058.74 21065.55 14587.78 14534.37 26485.95 25352.53 25480.61 7888.80 136
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
CDS-MVSNet70.48 16069.43 15673.64 20277.56 24548.83 22783.51 18477.45 28163.27 12262.33 19085.54 17743.85 13183.29 29057.38 21874.00 15488.79 137
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
region2R73.75 10172.55 10177.33 9683.90 9752.98 13085.54 11984.09 15056.83 24665.10 14990.45 8237.34 22090.24 10668.89 11680.83 7788.77 138
旧先验181.57 16447.48 26771.83 33688.66 12336.94 23178.34 10588.67 139
Fast-Effi-MVS+72.73 11771.15 12977.48 9382.75 13254.76 7986.77 9080.64 21463.05 12665.93 13984.01 19144.42 12889.03 14056.45 22676.36 12688.64 140
PVSNet62.49 869.27 18467.81 18473.64 20284.41 8551.85 15484.63 15377.80 27466.42 6559.80 21484.95 18422.14 35580.44 31355.03 23275.11 14588.62 141
ACMMPR73.76 10072.61 9977.24 10183.92 9652.96 13185.58 11584.29 14456.82 24765.12 14890.45 8237.24 22390.18 10869.18 11480.84 7688.58 142
131471.11 14769.41 15776.22 12379.32 20950.49 18080.23 26685.14 12359.44 18958.93 23288.89 11933.83 27189.60 12461.49 17177.42 11388.57 143
fmvsm_s_conf0.1_n_a72.82 11672.05 11575.12 16370.95 33347.97 25982.72 20668.43 36162.52 13578.17 3293.08 2844.21 12988.86 15084.82 1363.54 24188.54 144
Anonymous2024052969.71 17467.28 19577.00 10783.78 9950.36 18788.87 4685.10 12447.22 32964.03 16883.37 20427.93 31292.10 5857.78 21367.44 20988.53 145
mvsmamba69.38 18267.52 19174.95 16882.86 12852.22 14767.36 35276.75 29361.14 15949.43 32682.04 23437.26 22284.14 27773.93 8576.91 11788.50 146
TAMVS69.51 18168.16 17673.56 20576.30 26448.71 23282.57 21077.17 28662.10 14161.32 20184.23 18941.90 16483.46 28754.80 23573.09 16388.50 146
reproduce_model71.07 14869.67 15475.28 15981.51 16848.82 22881.73 23480.57 21747.81 32568.26 11790.78 7636.49 24188.60 15965.12 14974.76 15088.42 148
reproduce-ours71.77 13870.43 13875.78 13681.96 14649.54 20882.54 21381.01 20848.77 31969.21 10890.96 6937.13 22689.40 12766.28 13376.01 12988.39 149
our_new_method71.77 13870.43 13875.78 13681.96 14649.54 20882.54 21381.01 20848.77 31969.21 10890.96 6937.13 22689.40 12766.28 13376.01 12988.39 149
thisisatest051573.64 10572.20 10977.97 8281.63 15953.01 12986.69 9188.81 3962.53 13464.06 16785.65 17452.15 4992.50 4658.43 19769.84 19288.39 149
XVS72.92 11371.62 11976.81 11383.41 10552.48 13884.88 14383.20 17058.03 21963.91 17089.63 10535.50 25189.78 11765.50 13980.50 8088.16 152
X-MVStestdata65.85 25162.20 25976.81 11383.41 10552.48 13884.88 14383.20 17058.03 21963.91 1704.82 42235.50 25189.78 11765.50 13980.50 8088.16 152
Test_1112_low_res67.18 22866.23 21470.02 27778.75 22341.02 34383.43 18773.69 32357.29 23858.45 24582.39 22445.30 11280.88 30450.50 26366.26 22388.16 152
GSMVS88.13 155
sam_mvs138.86 19888.13 155
SCA63.84 26060.01 28175.32 15378.58 22957.92 1261.61 37377.53 27956.71 25057.75 25570.77 34731.97 28779.91 32148.80 27556.36 30388.13 155
EPNet_dtu66.25 24666.71 20364.87 32578.66 22734.12 36982.80 20575.51 30661.75 14764.47 16486.90 15937.06 22872.46 36843.65 30769.63 19688.02 158
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
UWE-MVS72.17 12972.15 11172.21 23282.26 14244.29 30886.83 8989.58 2365.58 8065.82 14185.06 18145.02 11684.35 27654.07 23875.18 14187.99 159
HPM-MVScopyleft72.60 11971.50 12175.89 13482.02 14451.42 16580.70 25883.05 17256.12 25964.03 16889.53 10637.55 21488.37 16870.48 10580.04 8887.88 160
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
PGM-MVS72.60 11971.20 12876.80 11582.95 12352.82 13483.07 20082.14 18456.51 25563.18 18089.81 10235.68 25089.76 11967.30 12580.19 8587.83 161
UGNet68.71 19567.11 19873.50 20680.55 19247.61 26684.08 16678.51 26359.45 18865.68 14482.73 21523.78 34285.08 26852.80 24976.40 12287.80 162
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
mPP-MVS71.79 13770.38 14176.04 13182.65 13652.06 14884.45 15681.78 19455.59 26462.05 19589.68 10433.48 27388.28 17665.45 14478.24 10687.77 163
FA-MVS(test-final)69.00 18866.60 20776.19 12683.48 10447.96 26174.73 30682.07 18657.27 23962.18 19278.47 26736.09 24592.89 3453.76 24271.32 18087.73 164
dp64.41 25561.58 26372.90 21582.40 13954.09 10072.53 32376.59 29960.39 17555.68 28270.39 35035.18 25576.90 34739.34 32061.71 26187.73 164
TR-MVS69.71 17467.85 18375.27 16082.94 12448.48 23987.40 7280.86 21157.15 24264.61 15887.08 15732.67 28089.64 12346.38 29371.55 17887.68 166
test_fmvsm_n_192075.56 7475.54 6275.61 14174.60 29049.51 21081.82 23174.08 31866.52 6480.40 2293.46 1746.95 9089.72 12086.69 775.30 13987.61 167
MIMVSNet63.12 26860.29 27871.61 24875.92 27446.65 27865.15 35781.94 18859.14 20154.65 29169.47 35325.74 32880.63 30941.03 31669.56 19787.55 168
baseline275.15 8274.54 7976.98 10981.67 15851.74 15783.84 17591.94 369.97 2758.98 23086.02 17059.73 991.73 6468.37 11970.40 18987.48 169
GA-MVS69.04 18666.70 20476.06 13075.11 28152.36 14283.12 19880.23 22263.32 12160.65 20779.22 26030.98 29688.37 16861.25 17266.41 21887.46 170
MonoMVSNet66.80 23964.41 24773.96 19076.21 26648.07 25576.56 29678.26 26864.34 9754.32 29574.02 31637.21 22486.36 23864.85 15153.96 32787.45 171
无先验85.19 12878.00 27249.08 31585.13 26752.78 25087.45 171
EPP-MVSNet71.14 14570.07 14974.33 17979.18 21346.52 28083.81 17686.49 8556.32 25857.95 24984.90 18554.23 3789.14 13658.14 20469.65 19587.33 173
MDTV_nov1_ep13_2view43.62 31571.13 33654.95 27359.29 22736.76 23446.33 29487.32 174
BH-RMVSNet70.08 16568.01 17776.27 12184.21 9151.22 17187.29 7679.33 24758.96 20663.63 17686.77 16133.29 27590.30 10544.63 30273.96 15587.30 175
CP-MVS72.59 12171.46 12276.00 13382.93 12552.32 14486.93 8682.48 18155.15 26963.65 17590.44 8535.03 25888.53 16468.69 11777.83 10987.15 176
baseline172.51 12272.12 11373.69 20185.05 7344.46 30483.51 18486.13 9571.61 1664.64 15687.97 14255.00 3389.48 12559.07 19156.05 31087.13 177
API-MVS74.17 9272.07 11480.49 2590.02 1158.55 987.30 7584.27 14557.51 23465.77 14387.77 14641.61 16895.97 1151.71 25682.63 6186.94 178
AUN-MVS68.20 20666.35 21073.76 19876.37 26047.45 26879.52 27579.52 23860.98 16462.34 18986.02 17036.59 24086.94 21962.32 16353.47 33386.89 179
LCM-MVSNet-Re58.82 30256.54 30165.68 31779.31 21029.09 39361.39 37545.79 39360.73 17137.65 38072.47 33431.42 29381.08 30249.66 26870.41 18886.87 180
HyFIR lowres test69.94 17167.58 18777.04 10477.11 25557.29 2281.49 24579.11 25058.27 21658.86 23580.41 24842.33 15586.96 21861.91 16768.68 20186.87 180
xiu_mvs_v1_base_debu71.60 14070.29 14475.55 14477.26 25053.15 12385.34 12079.37 24155.83 26172.54 7190.19 9222.38 35186.66 22773.28 9176.39 12386.85 182
xiu_mvs_v1_base71.60 14070.29 14475.55 14477.26 25053.15 12385.34 12079.37 24155.83 26172.54 7190.19 9222.38 35186.66 22773.28 9176.39 12386.85 182
xiu_mvs_v1_base_debi71.60 14070.29 14475.55 14477.26 25053.15 12385.34 12079.37 24155.83 26172.54 7190.19 9222.38 35186.66 22773.28 9176.39 12386.85 182
hse-mvs271.44 14370.68 13373.73 20076.34 26147.44 26979.45 27679.47 24068.08 3971.97 8086.01 17242.50 15386.93 22078.82 4553.46 33486.83 185
PVSNet_Blended_VisFu73.40 10872.44 10376.30 12081.32 17354.70 8385.81 10578.82 25463.70 11164.53 16085.38 17847.11 8987.38 20867.75 12377.55 11086.81 186
EC-MVSNet75.30 7675.20 6775.62 14080.98 17649.00 22187.43 7084.68 13663.49 11870.97 9590.15 9542.86 15291.14 8174.33 8181.90 6886.71 187
VPNet72.07 13071.42 12474.04 18778.64 22847.17 27489.91 3187.97 5772.56 1164.66 15585.04 18241.83 16688.33 17261.17 17460.97 26486.62 188
MVS_111021_LR69.07 18567.91 17872.54 22377.27 24949.56 20579.77 27173.96 32159.33 19460.73 20687.82 14430.19 30181.53 29869.94 10872.19 17286.53 189
IS-MVSNet68.80 19367.55 18972.54 22378.50 23143.43 31881.03 25079.35 24559.12 20257.27 26686.71 16246.05 10187.70 19644.32 30475.60 13686.49 190
tpm cat166.28 24562.78 25576.77 11781.40 17057.14 2470.03 34077.19 28553.00 28958.76 23870.73 34946.17 9886.73 22543.27 30864.46 23386.44 191
PCF-MVS61.03 1070.10 16468.40 17175.22 16277.15 25451.99 15079.30 27882.12 18556.47 25661.88 19686.48 16843.98 13087.24 21055.37 23172.79 16686.43 192
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
test-LLR69.65 17869.01 16471.60 24978.67 22548.17 25085.13 13079.72 23359.18 19963.13 18182.58 21936.91 23280.24 31560.56 18075.17 14286.39 193
test-mter68.36 20067.29 19471.60 24978.67 22548.17 25085.13 13079.72 23353.38 28663.13 18182.58 21927.23 31880.24 31560.56 18075.17 14286.39 193
test_vis1_n_192068.59 19868.31 17269.44 28269.16 34541.51 33884.63 15368.58 36058.80 20873.26 6388.37 12925.30 33180.60 31079.10 4267.55 20886.23 195
dmvs_re67.61 21566.00 21972.42 22781.86 15043.45 31764.67 36080.00 22569.56 3260.07 21185.00 18334.71 26087.63 19951.48 25866.68 21386.17 196
SDMVSNet71.89 13370.62 13575.70 13981.70 15551.61 15973.89 31288.72 4266.58 6161.64 19882.38 22537.63 21189.48 12577.44 5965.60 22586.01 197
sd_testset67.79 21265.95 22173.32 20781.70 15546.33 28568.99 34580.30 22166.58 6161.64 19882.38 22530.45 29987.63 19955.86 22865.60 22586.01 197
nrg03072.27 12871.56 12074.42 17675.93 27350.60 17786.97 8483.21 16962.75 13067.15 12584.38 18750.07 6586.66 22771.19 10062.37 25885.99 199
BH-w/o70.02 16768.51 16974.56 17282.77 13150.39 18486.60 9378.14 27059.77 18259.65 21685.57 17639.27 19487.30 20949.86 26774.94 14985.99 199
XXY-MVS70.18 16269.28 16272.89 21777.64 24242.88 32685.06 13487.50 6962.58 13362.66 18882.34 22943.64 13989.83 11658.42 19963.70 24085.96 201
SR-MVS70.92 15369.73 15374.50 17383.38 10950.48 18184.27 16179.35 24548.96 31766.57 13290.45 8233.65 27287.11 21366.42 13074.56 15285.91 202
test_cas_vis1_n_192067.10 23066.60 20768.59 29565.17 36743.23 32283.23 19569.84 35355.34 26870.67 9987.71 14724.70 33876.66 34978.57 4964.20 23485.89 203
新几何173.30 20983.10 11553.48 10971.43 34245.55 34166.14 13587.17 15633.88 27080.54 31148.50 27880.33 8485.88 204
CLD-MVS75.60 7375.39 6576.24 12280.69 18852.40 14190.69 2386.20 9274.40 665.01 15288.93 11742.05 16190.58 9676.57 6373.96 15585.73 205
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
ACMMPcopyleft70.81 15569.29 16175.39 15181.52 16751.92 15383.43 18783.03 17356.67 25258.80 23788.91 11831.92 28988.58 16065.89 13873.39 15985.67 206
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
OMC-MVS65.97 25065.06 24168.71 29272.97 30942.58 33178.61 28275.35 30954.72 27559.31 22586.25 16933.30 27477.88 33857.99 20567.05 21185.66 207
APD-MVS_3200maxsize69.62 17968.23 17573.80 19781.58 16348.22 24881.91 22779.50 23948.21 32364.24 16689.75 10331.91 29087.55 20363.08 15873.85 15785.64 208
VPA-MVSNet71.12 14670.66 13472.49 22578.75 22344.43 30687.64 6590.02 1963.97 10665.02 15181.58 24042.14 15987.42 20663.42 15763.38 24585.63 209
thisisatest053070.47 16168.56 16776.20 12579.78 20251.52 16383.49 18688.58 4957.62 23258.60 23982.79 21151.03 5691.48 6952.84 24862.36 25985.59 210
cascas69.01 18766.13 21677.66 8979.36 20755.41 5886.99 8383.75 15756.69 25158.92 23381.35 24124.31 34092.10 5853.23 24370.61 18685.46 211
DP-MVS Recon71.99 13170.31 14377.01 10690.65 853.44 11389.37 3782.97 17556.33 25763.56 17889.47 10734.02 26792.15 5754.05 23972.41 16985.43 212
test22279.36 20750.97 17277.99 28767.84 36242.54 36062.84 18586.53 16630.26 30076.91 11785.23 213
TAPA-MVS56.12 1461.82 28160.18 28066.71 31178.48 23237.97 35775.19 30476.41 30146.82 33257.04 26786.52 16727.67 31677.03 34426.50 37867.02 21285.14 214
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
testdata67.08 30777.59 24445.46 29669.20 35744.47 34971.50 8788.34 13231.21 29470.76 37452.20 25575.88 13285.03 215
OpenMVScopyleft61.00 1169.99 16967.55 18977.30 9778.37 23454.07 10184.36 15885.76 10157.22 24056.71 27287.67 14830.79 29792.83 3643.04 30984.06 5685.01 216
WBMVS73.93 9673.39 8975.55 14487.82 3955.21 6589.37 3787.29 7067.27 5363.70 17480.30 24960.32 686.47 23361.58 17062.85 25484.97 217
PVSNet_057.04 1361.19 28457.24 29773.02 21277.45 24750.31 19079.43 27777.36 28463.96 10747.51 34172.45 33525.03 33483.78 28252.76 25219.22 41084.96 218
HQP4-MVS64.47 16488.61 15884.91 219
HQP-MVS72.34 12471.44 12375.03 16579.02 21751.56 16188.00 5583.68 15865.45 8164.48 16185.13 17937.35 21888.62 15766.70 12873.12 16184.91 219
test_fmvsmvis_n_192071.29 14470.38 14174.00 18971.04 33248.79 22979.19 27964.62 37062.75 13066.73 12691.99 4840.94 17488.35 17083.00 2173.18 16084.85 221
BH-untuned68.28 20366.40 20973.91 19281.62 16050.01 19585.56 11777.39 28257.63 23157.47 26383.69 19836.36 24287.08 21444.81 30073.08 16484.65 222
HQP_MVS70.96 15269.91 15174.12 18577.95 23849.57 20385.76 10782.59 17963.60 11462.15 19383.28 20636.04 24788.30 17465.46 14272.34 17084.49 223
plane_prior582.59 17988.30 17465.46 14272.34 17084.49 223
XVG-OURS-SEG-HR62.02 27959.54 28369.46 28165.30 36545.88 29065.06 35873.57 32546.45 33557.42 26483.35 20526.95 32078.09 33253.77 24164.03 23684.42 225
Vis-MVSNet (Re-imp)65.52 25265.63 22965.17 32377.49 24630.54 38175.49 30277.73 27659.34 19252.26 31286.69 16349.38 7380.53 31237.07 32875.28 14084.42 225
FMVSNet368.84 19067.40 19373.19 21185.05 7348.53 23685.71 11385.36 10960.90 16857.58 25879.15 26142.16 15886.77 22347.25 28663.40 24284.27 227
FE-MVS64.15 25760.43 27775.30 15680.85 18349.86 19968.28 34978.37 26650.26 31059.31 22573.79 31826.19 32591.92 6140.19 31766.67 21484.12 228
原ACMM176.13 12884.89 7754.59 8885.26 11651.98 29666.70 12787.07 15840.15 18589.70 12151.23 26085.06 4884.10 229
FMVSNet267.57 21765.79 22572.90 21582.71 13347.97 25985.15 12984.93 12758.55 21356.71 27278.26 26836.72 23786.67 22646.15 29562.94 25384.07 230
FIs70.00 16870.24 14769.30 28377.93 24038.55 35383.99 17087.72 6466.86 5957.66 25684.17 19052.28 4785.31 26152.72 25368.80 19984.02 231
XVG-OURS61.88 28059.34 28569.49 28065.37 36446.27 28664.80 35973.49 32647.04 33157.41 26582.85 21025.15 33378.18 33053.00 24764.98 22784.01 232
tttt051768.33 20266.29 21274.46 17478.08 23649.06 21780.88 25589.08 3054.40 28054.75 29080.77 24651.31 5390.33 10249.35 27158.01 29183.99 233
114514_t69.87 17267.88 18075.85 13588.38 2952.35 14386.94 8583.68 15853.70 28355.68 28285.60 17530.07 30291.20 7855.84 22971.02 18283.99 233
UA-Net67.32 22566.23 21470.59 26578.85 22141.23 34273.60 31475.45 30861.54 15266.61 13084.53 18638.73 19986.57 23242.48 31474.24 15383.98 235
thres20068.71 19567.27 19673.02 21284.73 7846.76 27785.03 13687.73 6362.34 13959.87 21283.45 20243.15 14688.32 17331.25 35867.91 20683.98 235
UniMVSNet_NR-MVSNet68.82 19168.29 17370.40 26975.71 27642.59 32984.23 16286.78 7866.31 6758.51 24082.45 22251.57 5184.64 27453.11 24455.96 31183.96 237
CVMVSNet60.85 28660.44 27662.07 33875.00 28432.73 37679.54 27373.49 32636.98 37456.28 27883.74 19629.28 30669.53 37746.48 29263.23 24783.94 238
TranMVSNet+NR-MVSNet66.94 23665.61 23070.93 26273.45 30143.38 31983.02 20284.25 14665.31 8858.33 24781.90 23639.92 19085.52 25749.43 27054.89 32083.89 239
MVSTER73.25 11072.33 10576.01 13285.54 6453.76 10583.52 18087.16 7267.06 5663.88 17281.66 23852.77 4490.44 9864.66 15264.69 23183.84 240
UniMVSNet_ETH3D62.51 27460.49 27568.57 29668.30 35340.88 34573.89 31279.93 22951.81 30054.77 28979.61 25524.80 33681.10 30149.93 26661.35 26283.73 241
tt080563.39 26561.31 26869.64 27969.36 34338.87 35178.00 28685.48 10348.82 31855.66 28481.66 23824.38 33986.37 23749.04 27459.36 27583.68 242
PS-MVSNAJss68.78 19467.17 19773.62 20473.01 30848.33 24684.95 14184.81 13159.30 19558.91 23479.84 25437.77 20688.86 15062.83 16063.12 25183.67 243
HPM-MVS_fast67.86 20966.28 21372.61 22180.67 18948.34 24481.18 24875.95 30450.81 30559.55 22088.05 14027.86 31385.98 25058.83 19373.58 15883.51 244
Fast-Effi-MVS+-dtu66.53 24264.10 25173.84 19572.41 31652.30 14584.73 14775.66 30559.51 18756.34 27779.11 26228.11 31085.85 25557.74 21463.29 24683.35 245
GBi-Net67.09 23165.47 23371.96 24082.71 13346.36 28283.52 18083.31 16558.55 21357.58 25876.23 29836.72 23786.20 23947.25 28663.40 24283.32 246
test167.09 23165.47 23371.96 24082.71 13346.36 28283.52 18083.31 16558.55 21357.58 25876.23 29836.72 23786.20 23947.25 28663.40 24283.32 246
FMVSNet164.57 25462.11 26071.96 24077.32 24846.36 28283.52 18083.31 16552.43 29454.42 29376.23 29827.80 31486.20 23942.59 31361.34 26383.32 246
DU-MVS66.84 23865.74 22770.16 27273.27 30542.59 32981.50 24382.92 17663.53 11658.51 24082.11 23240.75 17684.64 27453.11 24455.96 31183.24 249
NR-MVSNet67.25 22665.99 22071.04 26073.27 30543.91 31285.32 12384.75 13466.05 7553.65 30382.11 23245.05 11585.97 25247.55 28356.18 30883.24 249
SR-MVS-dyc-post68.27 20466.87 19972.48 22680.96 17848.14 25281.54 24176.98 28946.42 33662.75 18689.42 10831.17 29586.09 24760.52 18272.06 17383.19 251
RE-MVS-def66.66 20580.96 17848.14 25281.54 24176.98 28946.42 33662.75 18689.42 10829.28 30660.52 18272.06 17383.19 251
UniMVSNet (Re)67.71 21366.80 20170.45 26774.44 29142.93 32582.42 21884.90 12863.69 11259.63 21780.99 24347.18 8785.23 26451.17 26156.75 30283.19 251
WR-MVS67.58 21666.76 20270.04 27675.92 27445.06 30286.23 9885.28 11564.31 9858.50 24281.00 24244.80 12582.00 29749.21 27355.57 31683.06 254
OPM-MVS70.75 15669.58 15574.26 18275.55 27851.34 16786.05 10283.29 16861.94 14562.95 18485.77 17334.15 26688.44 16665.44 14571.07 18182.99 255
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
FC-MVSNet-test67.49 21967.91 17866.21 31576.06 26933.06 37480.82 25687.18 7164.44 9554.81 28882.87 20950.40 6482.60 29248.05 28166.55 21782.98 256
v2v48269.55 18067.64 18675.26 16172.32 31853.83 10284.93 14281.94 18865.37 8660.80 20579.25 25941.62 16788.98 14563.03 15959.51 27282.98 256
EI-MVSNet-Vis-set73.19 11172.60 10074.99 16782.56 13849.80 20182.55 21289.00 3166.17 7065.89 14088.98 11643.83 13292.29 5165.38 14769.01 19882.87 258
reproduce_monomvs69.71 17468.52 16873.29 21086.43 5248.21 24983.91 17286.17 9468.02 4354.91 28777.46 27742.96 15088.86 15068.44 11848.38 34782.80 259
thres100view90066.87 23765.42 23671.24 25583.29 11143.15 32381.67 23687.78 6059.04 20355.92 28082.18 23143.73 13587.80 19028.80 36566.36 21982.78 260
tfpn200view967.57 21766.13 21671.89 24784.05 9345.07 29983.40 18987.71 6560.79 16957.79 25382.76 21243.53 14087.80 19028.80 36566.36 21982.78 260
v14868.24 20566.35 21073.88 19371.76 32251.47 16484.23 16281.90 19263.69 11258.94 23176.44 29443.72 13787.78 19360.63 17855.86 31382.39 262
Anonymous2023121166.08 24963.67 25273.31 20883.07 11848.75 23086.01 10484.67 13745.27 34356.54 27476.67 29228.06 31188.95 14652.78 25059.95 26782.23 263
miper_enhance_ethall69.77 17368.90 16572.38 22878.93 22049.91 19783.29 19378.85 25264.90 9159.37 22379.46 25652.77 4485.16 26663.78 15458.72 27982.08 264
v114468.81 19266.82 20074.80 17072.34 31753.46 11084.68 15081.77 19564.25 9960.28 20977.91 27040.23 18388.95 14660.37 18559.52 27181.97 265
dmvs_testset57.65 31158.21 29255.97 36374.62 2899.82 42463.75 36363.34 37467.23 5448.89 33083.68 20039.12 19576.14 35023.43 38659.80 27081.96 266
cl2268.85 18967.69 18572.35 22978.07 23749.98 19682.45 21778.48 26462.50 13658.46 24477.95 26949.99 6785.17 26562.55 16158.72 27981.90 267
v119267.96 20865.74 22774.63 17171.79 32153.43 11584.06 16880.99 21063.19 12459.56 21977.46 27737.50 21788.65 15658.20 20358.93 27881.79 268
miper_ehance_all_eth68.70 19767.58 18772.08 23576.91 25749.48 21182.47 21678.45 26562.68 13258.28 24877.88 27150.90 5785.01 26961.91 16758.72 27981.75 269
EI-MVSNet-UG-set72.37 12371.73 11874.29 18181.60 16149.29 21581.85 22988.64 4465.29 8965.05 15088.29 13443.18 14591.83 6263.74 15567.97 20581.75 269
test0.0.03 162.54 27362.44 25762.86 33772.28 32029.51 39082.93 20378.78 25559.18 19953.07 30682.41 22336.91 23277.39 34237.45 32458.96 27781.66 271
CPTT-MVS67.15 22965.84 22471.07 25980.96 17850.32 18981.94 22674.10 31746.18 33957.91 25087.64 14929.57 30381.31 30064.10 15370.18 19181.56 272
c3_l67.97 20766.66 20571.91 24676.20 26749.31 21482.13 22378.00 27261.99 14357.64 25776.94 28649.41 7284.93 27060.62 17957.01 30181.49 273
v192192067.45 22065.23 23974.10 18671.51 32652.90 13283.75 17880.44 21862.48 13759.12 22977.13 28236.98 23087.90 18657.53 21558.14 28981.49 273
miper_lstm_enhance63.91 25962.30 25868.75 29175.06 28346.78 27669.02 34481.14 20459.68 18552.76 30772.39 33640.71 17877.99 33656.81 22153.09 33581.48 275
CR-MVSNet62.47 27659.04 28872.77 21873.97 29956.57 3460.52 37671.72 33860.04 17857.49 26165.86 36538.94 19680.31 31442.86 31159.93 26881.42 276
RPMNet59.29 29354.25 31774.42 17673.97 29956.57 3460.52 37676.98 28935.72 37857.49 26158.87 38837.73 20985.26 26327.01 37659.93 26881.42 276
v14419267.86 20965.76 22674.16 18471.68 32353.09 12684.14 16580.83 21262.85 12959.21 22877.28 28139.30 19388.00 18458.67 19557.88 29581.40 278
DIV-MVS_self_test67.43 22165.93 22271.94 24476.33 26248.01 25882.57 21079.11 25061.31 15656.73 27076.92 28746.09 10086.43 23657.98 20656.31 30581.39 279
cl____67.43 22165.93 22271.95 24376.33 26248.02 25782.58 20979.12 24961.30 15756.72 27176.92 28746.12 9986.44 23557.98 20656.31 30581.38 280
v124066.99 23464.68 24473.93 19171.38 32952.66 13683.39 19179.98 22661.97 14458.44 24677.11 28335.25 25387.81 18856.46 22558.15 28781.33 281
PVSNet_BlendedMVS73.42 10773.30 9173.76 19885.91 5651.83 15586.18 9984.24 14865.40 8469.09 11180.86 24546.70 9488.13 17975.43 7065.92 22481.33 281
UnsupCasMVSNet_eth57.56 31255.15 31164.79 32664.57 37233.12 37373.17 31983.87 15658.98 20541.75 36370.03 35122.54 35079.92 31946.12 29635.31 38381.32 283
test_djsdf63.84 26061.56 26470.70 26468.78 34744.69 30381.63 23781.44 19950.28 30752.27 31176.26 29726.72 32186.11 24360.83 17655.84 31481.29 284
WB-MVSnew69.36 18368.24 17472.72 21979.26 21149.40 21285.72 11288.85 3761.33 15564.59 15982.38 22534.57 26287.53 20446.82 29070.63 18581.22 285
AdaColmapbinary67.86 20965.48 23275.00 16688.15 3654.99 7486.10 10176.63 29849.30 31457.80 25286.65 16529.39 30588.94 14845.10 29970.21 19081.06 286
jajsoiax63.21 26760.84 27270.32 27068.33 35244.45 30581.23 24781.05 20553.37 28750.96 32077.81 27317.49 37485.49 25959.31 18958.05 29081.02 287
mvs_tets62.96 27060.55 27470.19 27168.22 35544.24 31080.90 25480.74 21352.99 29050.82 32277.56 27416.74 37885.44 26059.04 19257.94 29280.89 288
ACMP61.11 966.24 24764.33 24872.00 23974.89 28649.12 21683.18 19779.83 23155.41 26752.29 31082.68 21625.83 32786.10 24560.89 17563.94 23880.78 289
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
pm-mvs164.12 25862.56 25668.78 29071.68 32338.87 35182.89 20481.57 19655.54 26653.89 30077.82 27237.73 20986.74 22448.46 27953.49 33280.72 290
thres600view766.46 24365.12 24070.47 26683.41 10543.80 31482.15 22187.78 6059.37 19156.02 27982.21 23043.73 13586.90 22126.51 37764.94 22880.71 291
thres40067.40 22466.13 21671.19 25784.05 9345.07 29983.40 18987.71 6560.79 16957.79 25382.76 21243.53 14087.80 19028.80 36566.36 21980.71 291
LPG-MVS_test66.44 24464.58 24572.02 23774.42 29248.60 23383.07 20080.64 21454.69 27653.75 30183.83 19425.73 32986.98 21660.33 18664.71 22980.48 293
LGP-MVS_train72.02 23774.42 29248.60 23380.64 21454.69 27653.75 30183.83 19425.73 32986.98 21660.33 18664.71 22980.48 293
v867.25 22664.99 24274.04 18772.89 31153.31 12082.37 21980.11 22461.54 15254.29 29676.02 30342.89 15188.41 16758.43 19756.36 30380.39 295
V4267.66 21465.60 23173.86 19470.69 33653.63 10781.50 24378.61 26163.85 10859.49 22277.49 27637.98 20387.65 19862.33 16258.43 28280.29 296
eth_miper_zixun_eth66.98 23565.28 23872.06 23675.61 27750.40 18381.00 25176.97 29262.00 14256.99 26876.97 28544.84 12285.58 25658.75 19454.42 32480.21 297
Anonymous2023120659.08 29857.59 29563.55 33068.77 34832.14 37980.26 26579.78 23250.00 31149.39 32772.39 33626.64 32278.36 32933.12 35157.94 29280.14 298
IterMVS63.77 26261.67 26270.08 27472.68 31351.24 17080.44 26175.51 30660.51 17451.41 31573.70 32232.08 28678.91 32654.30 23754.35 32580.08 299
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
pmmvs562.80 27261.18 26967.66 30169.53 34242.37 33482.65 20875.19 31054.30 28152.03 31378.51 26631.64 29280.67 30848.60 27758.15 28779.95 300
v1066.61 24164.20 25073.83 19672.59 31453.37 11681.88 22879.91 23061.11 16054.09 29875.60 30540.06 18788.26 17756.47 22456.10 30979.86 301
ACMM58.35 1264.35 25662.01 26171.38 25374.21 29548.51 23782.25 22079.66 23547.61 32754.54 29280.11 25025.26 33286.00 24951.26 25963.16 24979.64 302
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test_fmvs153.60 33452.54 32956.78 35958.07 38730.26 38368.95 34642.19 39932.46 38563.59 17782.56 22111.55 38860.81 38658.25 20255.27 31779.28 303
test_vis1_n51.19 34349.66 34155.76 36451.26 40029.85 38867.20 35338.86 40432.12 38759.50 22179.86 2538.78 39858.23 39356.95 22052.46 33779.19 304
test_fmvs1_n52.55 33851.19 33356.65 36051.90 39830.14 38467.66 35042.84 39832.27 38662.30 19182.02 2359.12 39760.84 38557.82 21154.75 32378.99 305
K. test v354.04 33049.42 34267.92 30068.55 34942.57 33275.51 30163.07 37552.07 29539.21 37464.59 37119.34 36582.21 29337.11 32725.31 40178.97 306
v7n62.50 27559.27 28672.20 23367.25 35849.83 20077.87 28880.12 22352.50 29348.80 33173.07 32732.10 28587.90 18646.83 28954.92 31978.86 307
CL-MVSNet_self_test62.98 26961.14 27068.50 29765.86 36242.96 32484.37 15782.98 17460.98 16453.95 29972.70 33240.43 18183.71 28341.10 31547.93 35078.83 308
EI-MVSNet69.70 17768.70 16672.68 22075.00 28448.90 22579.54 27387.16 7261.05 16263.88 17283.74 19645.87 10390.44 9857.42 21764.68 23278.70 309
IterMVS-LS66.63 24065.36 23770.42 26875.10 28248.90 22581.45 24676.69 29761.05 16255.71 28177.10 28445.86 10483.65 28457.44 21657.88 29578.70 309
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
FMVSNet558.61 30456.45 30265.10 32477.20 25339.74 34774.77 30577.12 28750.27 30943.28 35767.71 36026.15 32676.90 34736.78 33154.78 32178.65 311
lessismore_v067.98 29964.76 37141.25 34145.75 39436.03 38465.63 36819.29 36684.11 27835.67 33521.24 40778.59 312
anonymousdsp60.46 28857.65 29468.88 28663.63 37645.09 29872.93 32078.63 26046.52 33451.12 31772.80 33121.46 35883.07 29157.79 21253.97 32678.47 313
CNLPA60.59 28758.44 29167.05 30879.21 21247.26 27279.75 27264.34 37242.46 36151.90 31483.94 19227.79 31575.41 35437.12 32659.49 27378.47 313
IterMVS-SCA-FT59.12 29658.81 29060.08 35070.68 33745.07 29980.42 26274.25 31643.54 35650.02 32473.73 31931.97 28756.74 39651.06 26253.60 33178.42 315
MS-PatchMatch72.34 12471.26 12675.61 14182.38 14055.55 5288.00 5589.95 2165.38 8556.51 27680.74 24732.28 28492.89 3457.95 20888.10 1578.39 316
pmmvs659.64 29157.15 29867.09 30666.01 36036.86 36180.50 25978.64 25945.05 34549.05 32973.94 31727.28 31786.10 24543.96 30649.94 34478.31 317
testgi54.25 32952.57 32859.29 35362.76 37921.65 40872.21 32870.47 34853.25 28841.94 36177.33 28014.28 38477.95 33729.18 36451.72 34078.28 318
Baseline_NR-MVSNet65.49 25364.27 24969.13 28474.37 29441.65 33683.39 19178.85 25259.56 18659.62 21876.88 28940.75 17687.44 20549.99 26555.05 31878.28 318
PatchT56.60 31652.97 32367.48 30272.94 31046.16 28957.30 38473.78 32238.77 36854.37 29457.26 39137.52 21578.06 33332.02 35352.79 33678.23 320
our_test_359.11 29755.08 31371.18 25871.42 32753.29 12181.96 22574.52 31448.32 32142.08 36069.28 35628.14 30982.15 29434.35 34545.68 36478.11 321
pmmvs463.34 26661.07 27170.16 27270.14 33850.53 17979.97 27071.41 34355.08 27054.12 29778.58 26532.79 27982.09 29650.33 26457.22 30077.86 322
TransMVSNet (Re)62.82 27160.76 27369.02 28573.98 29841.61 33786.36 9579.30 24856.90 24452.53 30876.44 29441.85 16587.60 20238.83 32140.61 37477.86 322
PEN-MVS58.35 30857.15 29861.94 34167.55 35734.39 36577.01 29178.35 26751.87 29847.72 33776.73 29133.91 26873.75 36134.03 34647.17 35677.68 324
XVG-ACMP-BASELINE56.03 32152.85 32565.58 31861.91 38140.95 34463.36 36472.43 33245.20 34446.02 34874.09 3149.20 39678.12 33145.13 29858.27 28577.66 325
CP-MVSNet58.54 30757.57 29661.46 34568.50 35033.96 37076.90 29378.60 26251.67 30147.83 33676.60 29334.99 25972.79 36635.45 33647.58 35277.64 326
PS-CasMVS58.12 30957.03 30061.37 34668.24 35433.80 37276.73 29478.01 27151.20 30347.54 34076.20 30132.85 27772.76 36735.17 34147.37 35477.55 327
tfpnnormal61.47 28359.09 28768.62 29476.29 26541.69 33581.14 24985.16 12154.48 27851.32 31673.63 32332.32 28386.89 22221.78 39155.71 31577.29 328
DTE-MVSNet57.03 31455.73 30960.95 34965.94 36132.57 37775.71 29777.09 28851.16 30446.65 34676.34 29632.84 27873.22 36530.94 35944.87 36577.06 329
D2MVS63.49 26461.39 26669.77 27869.29 34448.93 22478.89 28177.71 27760.64 17349.70 32572.10 34127.08 31983.48 28654.48 23662.65 25576.90 330
Effi-MVS+-dtu66.24 24764.96 24370.08 27475.17 28049.64 20282.01 22474.48 31562.15 14057.83 25176.08 30230.59 29883.79 28165.40 14660.93 26576.81 331
KD-MVS_2432*160059.04 29956.44 30366.86 30979.07 21445.87 29172.13 32980.42 21955.03 27148.15 33371.01 34436.73 23578.05 33435.21 33930.18 39676.67 332
miper_refine_blended59.04 29956.44 30366.86 30979.07 21445.87 29172.13 32980.42 21955.03 27148.15 33371.01 34436.73 23578.05 33435.21 33930.18 39676.67 332
RPSCF45.77 35544.13 35750.68 36957.67 39029.66 38954.92 39045.25 39526.69 39545.92 34975.92 30417.43 37545.70 40727.44 37445.95 36376.67 332
WR-MVS_H58.91 30158.04 29361.54 34469.07 34633.83 37176.91 29281.99 18751.40 30248.17 33274.67 31040.23 18374.15 35731.78 35548.10 34876.64 335
UnsupCasMVSNet_bld53.86 33150.53 33563.84 32863.52 37734.75 36471.38 33481.92 19046.53 33338.95 37657.93 38920.55 36180.20 31739.91 31934.09 39076.57 336
PLCcopyleft52.38 1860.89 28558.97 28966.68 31381.77 15245.70 29478.96 28074.04 32043.66 35547.63 33883.19 20823.52 34577.78 34137.47 32360.46 26676.55 337
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
MVP-Stereo70.97 15170.44 13772.59 22276.03 27151.36 16685.02 13786.99 7560.31 17656.53 27578.92 26340.11 18690.00 11160.00 18890.01 776.41 338
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
test20.0355.22 32554.07 31858.68 35563.14 37825.00 39977.69 28974.78 31352.64 29143.43 35572.39 33626.21 32474.76 35629.31 36347.05 35876.28 339
EU-MVSNet52.63 33750.72 33458.37 35662.69 38028.13 39672.60 32275.97 30330.94 38940.76 37072.11 34020.16 36270.80 37335.11 34246.11 36276.19 340
ppachtmachnet_test58.56 30554.34 31571.24 25571.42 32754.74 8081.84 23072.27 33349.02 31645.86 35068.99 35726.27 32383.30 28930.12 36043.23 36975.69 341
CHOSEN 280x42057.53 31356.38 30560.97 34874.01 29748.10 25446.30 39654.31 38648.18 32450.88 32177.43 27938.37 20259.16 39254.83 23363.14 25075.66 342
SixPastTwentyTwo54.37 32750.10 33667.21 30570.70 33541.46 34074.73 30664.69 36947.56 32839.12 37569.49 35218.49 37184.69 27331.87 35434.20 38975.48 343
MSDG59.44 29255.14 31272.32 23174.69 28750.71 17474.39 31073.58 32444.44 35043.40 35677.52 27519.45 36490.87 8931.31 35757.49 29975.38 344
mmtdpeth57.93 31054.78 31467.39 30472.32 31843.38 31972.72 32168.93 35854.45 27956.85 26962.43 37617.02 37683.46 28757.95 20830.31 39575.31 345
KD-MVS_self_test49.24 34846.85 35156.44 36154.32 39322.87 40257.39 38373.36 33044.36 35137.98 37959.30 38718.97 36771.17 37233.48 34742.44 37075.26 346
ACMH53.70 1659.78 29055.94 30871.28 25476.59 25948.35 24380.15 26876.11 30249.74 31241.91 36273.45 32616.50 38090.31 10331.42 35657.63 29875.17 347
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
USDC54.36 32851.23 33263.76 32964.29 37337.71 35862.84 36973.48 32856.85 24535.47 38571.94 3429.23 39578.43 32838.43 32248.57 34675.13 348
Syy-MVS61.51 28261.35 26762.00 34081.73 15330.09 38580.97 25281.02 20660.93 16655.06 28582.64 21735.09 25680.81 30616.40 40458.32 28375.10 349
myMVS_eth3d63.52 26363.56 25463.40 33281.73 15334.28 36680.97 25281.02 20660.93 16655.06 28582.64 21748.00 8280.81 30623.42 38758.32 28375.10 349
MIMVSNet150.35 34647.81 34757.96 35761.53 38227.80 39767.40 35174.06 31943.25 35733.31 39465.38 37016.03 38171.34 37121.80 39047.55 35374.75 351
mvs5depth50.97 34446.98 35062.95 33556.63 39134.23 36862.73 37067.35 36545.03 34648.00 33565.41 36910.40 39279.88 32336.00 33331.27 39474.73 352
ambc62.06 33953.98 39529.38 39135.08 40879.65 23641.37 36459.96 3846.27 40782.15 29435.34 33838.22 37874.65 353
ADS-MVSNet255.21 32651.44 33166.51 31480.60 19049.56 20555.03 38865.44 36744.72 34751.00 31861.19 38022.83 34775.41 35428.54 36853.63 32974.57 354
ADS-MVSNet56.17 32051.95 33068.84 28780.60 19053.07 12755.03 38870.02 35244.72 34751.00 31861.19 38022.83 34778.88 32728.54 36853.63 32974.57 354
DSMNet-mixed38.35 36435.36 36947.33 37648.11 40714.91 42037.87 40636.60 40819.18 40334.37 38759.56 38615.53 38253.01 40020.14 39646.89 35974.07 356
OpenMVS_ROBcopyleft53.19 1759.20 29556.00 30768.83 28871.13 33144.30 30783.64 17975.02 31146.42 33646.48 34773.03 32818.69 36888.14 17827.74 37361.80 26074.05 357
PatchMatch-RL56.66 31553.75 32065.37 32277.91 24145.28 29769.78 34260.38 37841.35 36247.57 33973.73 31916.83 37776.91 34536.99 32959.21 27673.92 358
ACMH+54.58 1558.55 30655.24 31068.50 29774.68 28845.80 29380.27 26470.21 35047.15 33042.77 35975.48 30616.73 37985.98 25035.10 34354.78 32173.72 359
tpmvs62.45 27759.42 28471.53 25283.93 9554.32 9270.03 34077.61 27851.91 29753.48 30468.29 35937.91 20486.66 22733.36 34858.27 28573.62 360
EG-PatchMatch MVS62.40 27859.59 28270.81 26373.29 30349.05 21885.81 10584.78 13251.85 29944.19 35173.48 32515.52 38389.85 11540.16 31867.24 21073.54 361
YYNet153.82 33249.96 33865.41 32170.09 34048.95 22272.30 32671.66 34044.25 35231.89 39563.07 37523.73 34373.95 35933.26 34939.40 37673.34 362
JIA-IIPM52.33 34047.77 34866.03 31671.20 33046.92 27540.00 40576.48 30037.10 37346.73 34437.02 40532.96 27677.88 33835.97 33452.45 33873.29 363
MDA-MVSNet_test_wron53.82 33249.95 33965.43 32070.13 33949.05 21872.30 32671.65 34144.23 35331.85 39663.13 37423.68 34474.01 35833.25 35039.35 37773.23 364
pmmvs-eth3d55.97 32252.78 32665.54 31961.02 38346.44 28175.36 30367.72 36349.61 31343.65 35467.58 36121.63 35777.04 34344.11 30544.33 36673.15 365
test_fmvs245.89 35444.32 35650.62 37045.85 40924.70 40058.87 38237.84 40725.22 39652.46 30974.56 3127.07 40154.69 39749.28 27247.70 35172.48 366
F-COLMAP55.96 32353.65 32162.87 33672.76 31242.77 32874.70 30870.37 34940.03 36441.11 36879.36 25717.77 37373.70 36232.80 35253.96 32772.15 367
Anonymous2024052151.65 34148.42 34461.34 34756.43 39239.65 34973.57 31573.47 32936.64 37636.59 38163.98 37210.75 39172.25 37035.35 33749.01 34572.11 368
ITE_SJBPF51.84 36858.03 38831.94 38053.57 38936.67 37541.32 36675.23 30811.17 39051.57 40125.81 37948.04 34972.02 369
OurMVSNet-221017-052.39 33948.73 34363.35 33365.21 36638.42 35468.54 34864.95 36838.19 36939.57 37371.43 34313.23 38679.92 31937.16 32540.32 37571.72 370
Patchmtry56.56 31752.95 32467.42 30372.53 31550.59 17859.05 38071.72 33837.86 37246.92 34365.86 36538.94 19680.06 31836.94 33046.72 36071.60 371
PM-MVS46.92 35343.76 36056.41 36252.18 39732.26 37863.21 36738.18 40537.99 37140.78 36966.20 3645.09 41065.42 38148.19 28041.99 37171.54 372
new-patchmatchnet48.21 35046.55 35253.18 36757.73 38918.19 41670.24 33871.02 34645.70 34033.70 38960.23 38318.00 37269.86 37627.97 37234.35 38771.49 373
CMPMVSbinary40.41 2155.34 32452.64 32763.46 33160.88 38443.84 31361.58 37471.06 34530.43 39036.33 38274.63 31124.14 34175.44 35348.05 28166.62 21571.12 374
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
testing359.97 28960.19 27959.32 35277.60 24330.01 38781.75 23381.79 19353.54 28450.34 32379.94 25148.99 7576.91 34517.19 40250.59 34271.03 375
AllTest47.32 35244.66 35455.32 36565.08 36837.50 35962.96 36854.25 38735.45 38033.42 39172.82 3299.98 39359.33 38924.13 38343.84 36769.13 376
TestCases55.32 36565.08 36837.50 35954.25 38735.45 38033.42 39172.82 3299.98 39359.33 38924.13 38343.84 36769.13 376
LTVRE_ROB45.45 1952.73 33649.74 34061.69 34369.78 34134.99 36344.52 39767.60 36443.11 35843.79 35374.03 31518.54 37081.45 29928.39 37057.94 29268.62 378
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
N_pmnet41.25 36039.77 36345.66 37868.50 3500.82 43072.51 3240.38 42935.61 37935.26 38661.51 37920.07 36367.74 37823.51 38540.63 37368.42 379
LS3D56.40 31953.82 31964.12 32781.12 17445.69 29573.42 31766.14 36635.30 38243.24 35879.88 25222.18 35479.62 32419.10 39864.00 23767.05 380
DP-MVS59.24 29456.12 30668.63 29388.24 3450.35 18882.51 21564.43 37141.10 36346.70 34578.77 26424.75 33788.57 16322.26 38956.29 30766.96 381
test_fmvs337.95 36635.75 36844.55 38035.50 41518.92 41248.32 39334.00 41218.36 40541.31 36761.58 3782.29 41748.06 40642.72 31237.71 37966.66 382
mvsany_test143.38 35842.57 36145.82 37750.96 40126.10 39855.80 38627.74 41727.15 39447.41 34274.39 31318.67 36944.95 40844.66 30136.31 38166.40 383
TinyColmap48.15 35144.49 35559.13 35465.73 36338.04 35563.34 36562.86 37638.78 36729.48 39867.23 3636.46 40673.30 36424.59 38241.90 37266.04 384
pmmvs345.53 35641.55 36257.44 35848.97 40539.68 34870.06 33957.66 38128.32 39334.06 38857.29 3908.50 39966.85 38034.86 34434.26 38865.80 385
MDA-MVSNet-bldmvs51.56 34247.75 34963.00 33471.60 32547.32 27169.70 34372.12 33443.81 35427.65 40363.38 37321.97 35675.96 35127.30 37532.19 39165.70 386
ttmdpeth40.58 36237.50 36649.85 37249.40 40322.71 40356.65 38546.78 39128.35 39240.29 37269.42 3545.35 40961.86 38420.16 39521.06 40864.96 387
ANet_high34.39 37029.59 37648.78 37430.34 41922.28 40455.53 38763.79 37338.11 37015.47 41136.56 4086.94 40259.98 38813.93 4075.64 42264.08 388
COLMAP_ROBcopyleft43.60 2050.90 34548.05 34659.47 35167.81 35640.57 34671.25 33562.72 37736.49 37736.19 38373.51 32413.48 38573.92 36020.71 39350.26 34363.92 389
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test_040256.45 31853.03 32266.69 31276.78 25850.31 19081.76 23269.61 35542.79 35943.88 35272.13 33922.82 34986.46 23416.57 40350.94 34163.31 390
MVS-HIRNet49.01 34944.71 35361.92 34276.06 26946.61 27963.23 36654.90 38524.77 39833.56 39036.60 40721.28 35975.88 35229.49 36262.54 25663.26 391
MVStest138.35 36434.53 37049.82 37351.43 39930.41 38250.39 39255.25 38317.56 40626.45 40465.85 36711.72 38757.00 39514.79 40517.31 41262.05 392
TDRefinement40.91 36138.37 36548.55 37550.45 40233.03 37558.98 38150.97 39028.50 39129.89 39767.39 3626.21 40854.51 39817.67 40135.25 38458.11 393
test_vis1_rt40.29 36338.64 36445.25 37948.91 40630.09 38559.44 37927.07 41824.52 39938.48 37851.67 3996.71 40449.44 40244.33 30346.59 36156.23 394
test_method24.09 38221.07 38633.16 39427.67 4238.35 42826.63 41435.11 4113.40 42014.35 41236.98 4063.46 41435.31 41519.08 39922.95 40455.81 395
kuosan50.20 34750.09 33750.52 37173.09 30729.09 39365.25 35674.89 31248.27 32241.34 36560.85 38243.45 14367.48 37918.59 40025.07 40255.01 396
LCM-MVSNet28.07 37423.85 38240.71 38327.46 42418.93 41130.82 41246.19 39212.76 41116.40 40934.70 4101.90 42048.69 40520.25 39424.22 40354.51 397
mvsany_test328.00 37525.98 37734.05 39228.97 42015.31 41834.54 40918.17 42316.24 40729.30 39953.37 3972.79 41533.38 41930.01 36120.41 40953.45 398
mamv442.60 35944.05 35938.26 38759.21 38638.00 35644.14 39939.03 40325.03 39740.61 37168.39 35837.01 22924.28 42146.62 29136.43 38052.50 399
test_f27.12 37724.85 37833.93 39326.17 42515.25 41930.24 41322.38 42212.53 41228.23 40049.43 4002.59 41634.34 41825.12 38126.99 39952.20 400
PMMVS226.71 37822.98 38337.87 38936.89 4138.51 42742.51 40129.32 41619.09 40413.01 41337.54 4042.23 41853.11 39914.54 40611.71 41551.99 401
LF4IMVS33.04 37332.55 37334.52 39140.96 41022.03 40544.45 39835.62 40920.42 40128.12 40162.35 3775.03 41131.88 42021.61 39234.42 38649.63 402
FPMVS35.40 36833.67 37240.57 38446.34 40828.74 39541.05 40257.05 38220.37 40222.27 40753.38 3966.87 40344.94 4098.62 41247.11 35748.01 403
WB-MVS37.41 36736.37 36740.54 38554.23 39410.43 42365.29 35543.75 39634.86 38327.81 40254.63 39224.94 33563.21 3826.81 41815.00 41347.98 404
dongtai43.51 35744.07 35841.82 38263.75 37521.90 40663.80 36272.05 33539.59 36533.35 39354.54 39341.04 17357.30 39410.75 41117.77 41146.26 405
new_pmnet33.56 37231.89 37438.59 38649.01 40420.42 40951.01 39137.92 40620.58 40023.45 40646.79 4016.66 40549.28 40420.00 39731.57 39346.09 406
SSC-MVS35.20 36934.30 37137.90 38852.58 3968.65 42661.86 37141.64 40031.81 38825.54 40552.94 39823.39 34659.28 3916.10 41912.86 41445.78 407
test_vis3_rt24.79 38122.95 38430.31 39728.59 42118.92 41237.43 40717.27 42512.90 41021.28 40829.92 4141.02 42436.35 41328.28 37129.82 39835.65 408
EGC-MVSNET33.75 37130.42 37543.75 38164.94 37036.21 36260.47 37840.70 4020.02 4230.10 42453.79 3957.39 40060.26 38711.09 41035.23 38534.79 409
APD_test126.46 37924.41 38032.62 39637.58 41221.74 40740.50 40430.39 41411.45 41316.33 41043.76 4021.63 42241.62 41011.24 40926.82 40034.51 410
MVEpermissive16.60 2317.34 38813.39 39129.16 39828.43 42219.72 41013.73 41623.63 4217.23 4197.96 41921.41 4150.80 42536.08 4146.97 41610.39 41631.69 411
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
testf121.11 38319.08 38727.18 39930.56 41718.28 41433.43 41024.48 4198.02 41712.02 41533.50 4110.75 42635.09 4167.68 41421.32 40528.17 412
APD_test221.11 38319.08 38727.18 39930.56 41718.28 41433.43 41024.48 4198.02 41712.02 41533.50 4110.75 42635.09 4167.68 41421.32 40528.17 412
PMVScopyleft19.57 2225.07 38022.43 38532.99 39523.12 42622.98 40140.98 40335.19 41015.99 40811.95 41735.87 4091.47 42349.29 4035.41 42131.90 39226.70 414
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
Gipumacopyleft27.47 37624.26 38137.12 39060.55 38529.17 39211.68 41760.00 37914.18 40910.52 41815.12 4192.20 41963.01 3838.39 41335.65 38219.18 415
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
DeepMVS_CXcopyleft13.10 40321.34 4278.99 42510.02 42710.59 4157.53 42030.55 4131.82 42114.55 4226.83 4177.52 41815.75 416
E-PMN19.16 38518.40 38921.44 40136.19 41413.63 42147.59 39430.89 41310.73 4145.91 42116.59 4173.66 41339.77 4115.95 4208.14 41710.92 417
EMVS18.42 38617.66 39020.71 40234.13 41612.64 42246.94 39529.94 41510.46 4165.58 42214.93 4204.23 41238.83 4125.24 4227.51 41910.67 418
tmp_tt9.44 38910.68 3925.73 4052.49 4284.21 42910.48 41818.04 4240.34 42212.59 41420.49 41611.39 3897.03 42413.84 4086.46 4215.95 419
wuyk23d9.11 3908.77 39410.15 40440.18 41116.76 41720.28 4151.01 4282.58 4212.66 4230.98 4230.23 42812.49 4234.08 4236.90 4201.19 420
testmvs6.14 3928.18 3950.01 4060.01 4290.00 43273.40 3180.00 4300.00 4240.02 4250.15 4240.00 4290.00 4250.02 4240.00 4230.02 421
test1236.01 3938.01 3960.01 4060.00 4300.01 43171.93 3320.00 4300.00 4240.02 4250.11 4250.00 4290.00 4250.02 4240.00 4230.02 421
mmdepth0.00 3950.00 3980.00 4080.00 4300.00 4320.00 4190.00 4300.00 4240.00 4270.00 4260.00 4290.00 4250.00 4260.00 4230.00 423
monomultidepth0.00 3950.00 3980.00 4080.00 4300.00 4320.00 4190.00 4300.00 4240.00 4270.00 4260.00 4290.00 4250.00 4260.00 4230.00 423
test_blank0.00 3950.00 3980.00 4080.00 4300.00 4320.00 4190.00 4300.00 4240.00 4270.00 4260.00 4290.00 4250.00 4260.00 4230.00 423
uanet_test0.00 3950.00 3980.00 4080.00 4300.00 4320.00 4190.00 4300.00 4240.00 4270.00 4260.00 4290.00 4250.00 4260.00 4230.00 423
DCPMVS0.00 3950.00 3980.00 4080.00 4300.00 4320.00 4190.00 4300.00 4240.00 4270.00 4260.00 4290.00 4250.00 4260.00 4230.00 423
cdsmvs_eth3d_5k18.33 38724.44 3790.00 4080.00 4300.00 4320.00 41989.40 250.00 4240.00 42792.02 4638.55 2000.00 4250.00 4260.00 4230.00 423
pcd_1.5k_mvsjas3.15 3944.20 3970.00 4080.00 4300.00 4320.00 4190.00 4300.00 4240.00 4270.00 42637.77 2060.00 4250.00 4260.00 4230.00 423
sosnet-low-res0.00 3950.00 3980.00 4080.00 4300.00 4320.00 4190.00 4300.00 4240.00 4270.00 4260.00 4290.00 4250.00 4260.00 4230.00 423
sosnet0.00 3950.00 3980.00 4080.00 4300.00 4320.00 4190.00 4300.00 4240.00 4270.00 4260.00 4290.00 4250.00 4260.00 4230.00 423
uncertanet0.00 3950.00 3980.00 4080.00 4300.00 4320.00 4190.00 4300.00 4240.00 4270.00 4260.00 4290.00 4250.00 4260.00 4230.00 423
Regformer0.00 3950.00 3980.00 4080.00 4300.00 4320.00 4190.00 4300.00 4240.00 4270.00 4260.00 4290.00 4250.00 4260.00 4230.00 423
ab-mvs-re7.68 39110.24 3930.00 4080.00 4300.00 4320.00 4190.00 4300.00 4240.00 42792.12 420.00 4290.00 4250.00 4260.00 4230.00 423
uanet0.00 3950.00 3980.00 4080.00 4300.00 4320.00 4190.00 4300.00 4240.00 4270.00 4260.00 4290.00 4250.00 4260.00 4230.00 423
WAC-MVS34.28 36622.56 388
FOURS183.24 11249.90 19884.98 13878.76 25647.71 32673.42 60
test_one_060189.39 2257.29 2288.09 5557.21 24182.06 1393.39 1854.94 34
eth-test20.00 430
eth-test0.00 430
ZD-MVS89.55 1453.46 11084.38 14257.02 24373.97 5591.03 6544.57 12791.17 7975.41 7381.78 71
test_241102_ONE89.48 1756.89 2988.94 3257.53 23384.61 493.29 2258.81 1296.45 1
9.1478.19 2885.67 6188.32 5188.84 3859.89 18074.58 5092.62 3546.80 9292.66 4181.40 3585.62 41
save fliter85.35 6856.34 4189.31 4081.46 19861.55 151
test072689.40 2057.45 1992.32 788.63 4557.71 22983.14 993.96 655.17 29
test_part289.33 2355.48 5482.27 12
sam_mvs35.99 249
MTGPAbinary81.31 201
test_post170.84 33714.72 42134.33 26583.86 27948.80 275
test_post16.22 41837.52 21584.72 272
patchmatchnet-post59.74 38538.41 20179.91 321
MTMP87.27 7715.34 426
gm-plane-assit83.24 11254.21 9670.91 2188.23 13595.25 1466.37 131
TEST985.68 5955.42 5687.59 6784.00 15257.72 22872.99 6590.98 6744.87 12188.58 160
test_885.72 5855.31 6187.60 6683.88 15557.84 22672.84 6990.99 6644.99 11788.34 171
agg_prior85.64 6254.92 7683.61 16272.53 7488.10 181
test_prior456.39 4087.15 81
test_prior289.04 4361.88 14673.55 5891.46 6348.01 8074.73 7785.46 42
旧先验281.73 23445.53 34274.66 4770.48 37558.31 201
新几何281.61 239
原ACMM283.77 177
testdata277.81 34045.64 297
segment_acmp44.97 119
testdata177.55 29064.14 102
plane_prior777.95 23848.46 240
plane_prior678.42 23349.39 21336.04 247
plane_prior483.28 206
plane_prior348.95 22264.01 10562.15 193
plane_prior285.76 10763.60 114
plane_prior178.31 235
plane_prior49.57 20387.43 7064.57 9472.84 165
n20.00 430
nn0.00 430
door-mid41.31 401
test1184.25 146
door43.27 397
HQP5-MVS51.56 161
HQP-NCC79.02 21788.00 5565.45 8164.48 161
ACMP_Plane79.02 21788.00 5565.45 8164.48 161
BP-MVS66.70 128
HQP3-MVS83.68 15873.12 161
HQP2-MVS37.35 218
NP-MVS78.76 22250.43 18285.12 180
MDTV_nov1_ep1361.56 26481.68 15755.12 6972.41 32578.18 26959.19 19758.85 23669.29 35534.69 26186.16 24236.76 33262.96 252
ACMMP++_ref63.20 248
ACMMP++59.38 274
Test By Simon39.38 192