This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort by
MCST-MVS91.08 191.46 289.94 497.66 273.37 897.13 295.58 889.33 185.77 4096.26 2272.84 2699.38 192.64 695.93 997.08 9
DVP-MVS++90.53 391.09 488.87 1397.31 469.91 3593.96 6294.37 4472.48 15592.07 696.85 1183.82 299.15 291.53 1697.42 497.55 4
OPU-MVS89.97 397.52 373.15 1296.89 497.00 883.82 299.15 295.72 197.63 397.62 2
test_0728_SECOND88.70 1596.45 1270.43 2796.64 894.37 4499.15 291.91 1494.90 2096.51 20
PC_three_145280.91 3594.07 296.83 1383.57 499.12 595.70 297.42 497.55 4
SED-MVS89.94 790.36 888.70 1596.45 1269.38 4596.89 494.44 3871.65 18492.11 497.21 476.79 999.11 692.34 895.36 1397.62 2
test_241102_TWO94.41 4071.65 18492.07 697.21 474.58 1799.11 692.34 895.36 1396.59 15
test_241102_ONE96.45 1269.38 4594.44 3871.65 18492.11 497.05 776.79 999.11 6
DPM-MVS90.70 290.52 791.24 189.68 14376.68 297.29 195.35 1082.87 1591.58 1097.22 379.93 599.10 983.12 7797.64 297.94 1
CANet89.61 1089.99 1088.46 1994.39 3969.71 4196.53 1193.78 5786.89 489.68 1995.78 2965.94 5699.10 992.99 493.91 3896.58 17
DVP-MVScopyleft89.41 1189.73 1288.45 2096.40 1569.99 3196.64 894.52 3471.92 17190.55 1696.93 973.77 2199.08 1191.91 1494.90 2096.29 29
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD72.48 15590.55 1696.93 976.24 1199.08 1191.53 1694.99 1696.43 25
MSC_two_6792asdad89.60 897.31 473.22 1095.05 1999.07 1392.01 1194.77 2496.51 20
No_MVS89.60 897.31 473.22 1095.05 1999.07 1392.01 1194.77 2496.51 20
CNVR-MVS90.32 590.89 688.61 1896.76 870.65 2496.47 1294.83 2384.83 989.07 2296.80 1470.86 3499.06 1592.64 695.71 1096.12 34
QAPM79.95 13977.39 16587.64 2889.63 14471.41 1793.30 9093.70 6465.34 26167.39 23891.75 12847.83 24298.96 1657.71 26989.81 9092.54 149
DELS-MVS90.05 690.09 989.94 493.14 6673.88 797.01 394.40 4288.32 285.71 4194.91 5574.11 1998.91 1787.26 4595.94 897.03 10
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MVS84.66 5882.86 8290.06 290.93 12074.56 687.91 25195.54 968.55 23672.35 17694.71 6059.78 12298.90 1881.29 9394.69 2996.74 12
API-MVS82.28 9980.53 11687.54 3396.13 2270.59 2593.63 7991.04 17665.72 25875.45 14092.83 10856.11 16398.89 1964.10 23389.75 9393.15 135
MAR-MVS84.18 6883.43 6886.44 6496.25 2165.93 13294.28 5094.27 4874.41 11579.16 10095.61 3353.99 18698.88 2069.62 18193.26 5094.50 94
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PHI-MVS86.83 3286.85 3386.78 5393.47 5765.55 14195.39 2895.10 1671.77 18185.69 4296.52 1662.07 9998.77 2186.06 5695.60 1196.03 37
NCCC89.07 1389.46 1387.91 2396.60 1069.05 5496.38 1394.64 3184.42 1086.74 3296.20 2366.56 5298.76 2289.03 3294.56 3095.92 40
DeepPCF-MVS81.17 189.72 891.38 384.72 11593.00 6958.16 27996.72 794.41 4086.50 690.25 1897.83 175.46 1498.67 2392.78 595.49 1297.32 6
HPM-MVS++copyleft89.37 1289.95 1187.64 2895.10 3068.23 7595.24 3194.49 3682.43 1988.90 2396.35 2071.89 3398.63 2488.76 3396.40 696.06 35
CHOSEN 1792x268884.98 5583.45 6789.57 1089.94 13875.14 592.07 13592.32 11481.87 2475.68 13588.27 17960.18 11698.60 2580.46 9890.27 8994.96 75
3Dnovator73.91 682.69 9580.82 11088.31 2189.57 14571.26 1892.60 11694.39 4378.84 6267.89 23092.48 11548.42 23698.52 2668.80 19194.40 3295.15 69
DPE-MVScopyleft88.77 1489.21 1487.45 3596.26 2067.56 9094.17 5194.15 5168.77 23490.74 1497.27 276.09 1298.49 2790.58 2394.91 1996.30 28
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
CSCG86.87 3086.26 3688.72 1495.05 3170.79 2393.83 7395.33 1168.48 23877.63 11694.35 7373.04 2498.45 2884.92 6493.71 4396.92 11
DeepC-MVS77.85 385.52 4885.24 4886.37 6788.80 16566.64 11492.15 12993.68 6581.07 3376.91 12693.64 9062.59 9598.44 2985.50 5892.84 5594.03 109
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DeepC-MVS_fast79.48 287.95 1988.00 1987.79 2695.86 2768.32 7095.74 1994.11 5283.82 1283.49 6196.19 2464.53 7298.44 2983.42 7694.88 2396.61 14
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SMA-MVScopyleft88.14 1588.29 1887.67 2793.21 6368.72 6293.85 6994.03 5374.18 12091.74 996.67 1565.61 6098.42 3189.24 2996.08 795.88 41
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
TSAR-MVS + GP.87.96 1888.37 1786.70 5593.51 5665.32 14595.15 3493.84 5678.17 7085.93 3994.80 5875.80 1398.21 3289.38 2688.78 9896.59 15
DP-MVS Recon82.73 9281.65 9985.98 7597.31 467.06 10395.15 3491.99 12869.08 23176.50 13093.89 8654.48 18198.20 3370.76 17085.66 12492.69 144
MVS_111021_HR86.19 3985.80 4387.37 3693.17 6569.79 3893.99 6193.76 6079.08 5878.88 10593.99 8462.25 9898.15 3485.93 5791.15 8094.15 102
OpenMVScopyleft70.45 1178.54 16675.92 18486.41 6685.93 22571.68 1692.74 10792.51 11166.49 25264.56 26191.96 12443.88 26698.10 3554.61 27990.65 8589.44 201
ZNCC-MVS85.33 5085.08 5186.06 7393.09 6865.65 13793.89 6793.41 7873.75 13179.94 9094.68 6160.61 11398.03 3682.63 8093.72 4294.52 92
SteuartSystems-ACMMP86.82 3386.90 3186.58 5990.42 12966.38 12096.09 1593.87 5577.73 7784.01 5995.66 3163.39 8797.94 3787.40 4393.55 4695.42 51
Skip Steuart: Steuart Systems R&D Blog.
ACMMP_NAP86.05 4185.80 4386.80 5291.58 10667.53 9291.79 14993.49 7474.93 11184.61 5195.30 4059.42 12697.92 3886.13 5494.92 1894.94 76
EI-MVSNet-Vis-set83.77 7683.67 6384.06 13492.79 7663.56 19291.76 15294.81 2479.65 4777.87 11494.09 8163.35 8897.90 3979.35 10479.36 16590.74 183
PS-MVSNAJ88.14 1587.61 2389.71 692.06 9076.72 195.75 1893.26 8183.86 1189.55 2096.06 2653.55 19197.89 4091.10 1893.31 4994.54 90
9.1487.63 2293.86 4794.41 4994.18 4972.76 15086.21 3596.51 1766.64 5097.88 4190.08 2494.04 35
GST-MVS84.63 5984.29 5985.66 8892.82 7365.27 14693.04 9893.13 8873.20 14078.89 10294.18 8059.41 12797.85 4281.45 8992.48 5993.86 117
SF-MVS87.03 2987.09 2886.84 4992.70 7767.45 9593.64 7893.76 6070.78 20886.25 3496.44 1966.98 4797.79 4388.68 3494.56 3095.28 63
EI-MVSNet-UG-set83.14 8682.96 7883.67 14592.28 8563.19 19791.38 16894.68 2979.22 5376.60 12893.75 8762.64 9497.76 4478.07 11778.01 17690.05 192
xiu_mvs_v2_base87.92 2087.38 2789.55 1191.41 11376.43 395.74 1993.12 8983.53 1389.55 2095.95 2753.45 19597.68 4591.07 1992.62 5694.54 90
HFP-MVS84.73 5784.40 5885.72 8693.75 5165.01 15493.50 8593.19 8572.19 16579.22 9994.93 5359.04 13197.67 4681.55 8792.21 6094.49 95
IB-MVS77.80 482.18 10080.46 11887.35 3789.14 15770.28 2995.59 2495.17 1578.85 6170.19 19885.82 21070.66 3597.67 4672.19 15966.52 25994.09 105
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
APDe-MVS87.54 2387.84 2086.65 5696.07 2366.30 12394.84 4393.78 5769.35 22588.39 2496.34 2167.74 4497.66 4890.62 2293.44 4796.01 38
3Dnovator+73.60 782.10 10480.60 11586.60 5790.89 12266.80 11195.20 3293.44 7674.05 12267.42 23692.49 11449.46 22697.65 4970.80 16991.68 7095.33 57
SD-MVS87.49 2487.49 2587.50 3493.60 5368.82 6093.90 6692.63 10776.86 8887.90 2695.76 3066.17 5397.63 5089.06 3191.48 7496.05 36
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
WTY-MVS86.32 3685.81 4287.85 2492.82 7369.37 4795.20 3295.25 1282.71 1781.91 7194.73 5967.93 4397.63 5079.55 10282.25 14596.54 18
PAPR85.15 5284.47 5687.18 4096.02 2568.29 7191.85 14793.00 9376.59 9379.03 10195.00 5061.59 10497.61 5278.16 11689.00 9795.63 46
patch_mono-289.71 990.99 585.85 8196.04 2463.70 18795.04 3895.19 1386.74 591.53 1195.15 4973.86 2097.58 5393.38 392.00 6596.28 31
test1287.09 4394.60 3668.86 5892.91 9582.67 6865.44 6197.55 5493.69 4494.84 80
region2R84.36 6284.03 6185.36 9693.54 5564.31 17293.43 8892.95 9472.16 16878.86 10694.84 5756.97 15197.53 5581.38 9192.11 6394.24 98
PAPM_NR82.97 8981.84 9786.37 6794.10 4466.76 11287.66 25692.84 9769.96 21874.07 15493.57 9263.10 9297.50 5670.66 17290.58 8694.85 77
ACMMPR84.37 6184.06 6085.28 9893.56 5464.37 17093.50 8593.15 8772.19 16578.85 10794.86 5656.69 15697.45 5781.55 8792.20 6194.02 110
test_yl84.28 6483.16 7587.64 2894.52 3769.24 4995.78 1695.09 1769.19 22881.09 7892.88 10657.00 14997.44 5881.11 9481.76 14996.23 32
DCV-MVSNet84.28 6483.16 7587.64 2894.52 3769.24 4995.78 1695.09 1769.19 22881.09 7892.88 10657.00 14997.44 5881.11 9481.76 14996.23 32
XVS83.87 7483.47 6685.05 10393.22 6163.78 18292.92 10392.66 10473.99 12378.18 11194.31 7655.25 16997.41 6079.16 10691.58 7293.95 112
X-MVStestdata76.86 18874.13 20885.05 10393.22 6163.78 18292.92 10392.66 10473.99 12378.18 11110.19 37655.25 16997.41 6079.16 10691.58 7293.95 112
gm-plane-assit88.42 17367.04 10578.62 6691.83 12697.37 6276.57 124
CDPH-MVS85.71 4685.46 4686.46 6394.75 3467.19 9993.89 6792.83 9870.90 20483.09 6495.28 4163.62 8397.36 6380.63 9694.18 3394.84 80
AdaColmapbinary78.94 15577.00 17184.76 11396.34 1765.86 13392.66 11487.97 27462.18 28670.56 19192.37 11843.53 26797.35 6464.50 23182.86 14191.05 181
EPNet87.84 2188.38 1686.23 7193.30 6066.05 12795.26 3094.84 2287.09 388.06 2594.53 6466.79 4997.34 6583.89 7391.68 7095.29 61
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Anonymous2024052976.84 19174.15 20784.88 10991.02 11864.95 15693.84 7291.09 17153.57 32973.00 16187.42 19335.91 30797.32 6669.14 18772.41 22192.36 152
PGM-MVS83.25 8482.70 8584.92 10792.81 7564.07 17790.44 19892.20 12171.28 19677.23 12294.43 6755.17 17397.31 6779.33 10591.38 7693.37 128
ZD-MVS96.63 965.50 14393.50 7370.74 20985.26 4895.19 4864.92 6797.29 6887.51 4193.01 52
Anonymous20240521177.96 17575.33 19185.87 7993.73 5264.52 16094.85 4285.36 29862.52 28476.11 13190.18 15529.43 33097.29 6868.51 19377.24 18895.81 43
PVSNet_BlendedMVS83.38 8183.43 6883.22 15693.76 4967.53 9294.06 5793.61 6779.13 5681.00 8185.14 21563.19 9097.29 6887.08 4773.91 20884.83 278
PVSNet_Blended86.73 3486.86 3286.31 7093.76 4967.53 9296.33 1493.61 6782.34 2081.00 8193.08 9963.19 9097.29 6887.08 4791.38 7694.13 103
TEST994.18 4167.28 9794.16 5293.51 7171.75 18285.52 4395.33 3868.01 4197.27 72
train_agg87.21 2787.42 2686.60 5794.18 4167.28 9794.16 5293.51 7171.87 17685.52 4395.33 3868.19 3997.27 7289.09 3094.90 2095.25 67
MSP-MVS90.38 491.87 185.88 7892.83 7164.03 17893.06 9694.33 4682.19 2193.65 396.15 2585.89 197.19 7491.02 2097.75 196.43 25
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MP-MVScopyleft85.02 5384.97 5385.17 10292.60 8164.27 17493.24 9192.27 11673.13 14279.63 9494.43 6761.90 10097.17 7585.00 6292.56 5794.06 108
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MTAPA83.91 7383.38 7285.50 9191.89 9965.16 15081.75 29992.23 11775.32 10680.53 8595.21 4756.06 16497.16 7684.86 6592.55 5894.18 99
h-mvs3383.01 8882.56 8884.35 12789.34 15062.02 21992.72 10893.76 6081.45 2882.73 6692.25 12160.11 11797.13 7787.69 3962.96 28493.91 114
VDD-MVS83.06 8781.81 9886.81 5190.86 12367.70 8795.40 2791.50 15475.46 10381.78 7292.34 11940.09 27897.13 7786.85 5082.04 14795.60 47
FA-MVS(test-final)79.12 15177.23 16784.81 11290.54 12763.98 17981.35 30591.71 14471.09 20174.85 14582.94 23952.85 19897.05 7967.97 19681.73 15193.41 127
LFMVS84.34 6382.73 8489.18 1294.76 3373.25 994.99 4091.89 13471.90 17382.16 7093.49 9447.98 24197.05 7982.55 8184.82 12897.25 7
sss82.71 9482.38 9183.73 14289.25 15459.58 26292.24 12794.89 2177.96 7279.86 9192.38 11756.70 15597.05 7977.26 12180.86 15794.55 88
131480.70 12578.95 14185.94 7787.77 19367.56 9087.91 25192.55 11072.17 16767.44 23593.09 9850.27 21997.04 8271.68 16487.64 10793.23 133
无先验92.71 10992.61 10862.03 28897.01 8366.63 20893.97 111
MP-MVS-pluss85.24 5185.13 5085.56 9091.42 11165.59 13991.54 15992.51 11174.56 11480.62 8495.64 3259.15 13097.00 8486.94 4993.80 3994.07 107
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
VNet86.20 3885.65 4587.84 2593.92 4669.99 3195.73 2195.94 678.43 6786.00 3893.07 10058.22 13697.00 8485.22 6084.33 13396.52 19
APD-MVScopyleft85.93 4385.99 4085.76 8595.98 2665.21 14893.59 8192.58 10966.54 25186.17 3695.88 2863.83 7997.00 8486.39 5392.94 5395.06 71
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
mPP-MVS82.96 9082.44 9084.52 12192.83 7162.92 20592.76 10691.85 13871.52 19275.61 13894.24 7853.48 19496.99 8778.97 10990.73 8393.64 123
CANet_DTU84.09 7083.52 6485.81 8290.30 13266.82 10991.87 14589.01 24685.27 786.09 3793.74 8847.71 24496.98 8877.90 11889.78 9293.65 122
PVSNet_Blended_VisFu83.97 7283.50 6585.39 9590.02 13666.59 11793.77 7491.73 14277.43 8577.08 12589.81 16263.77 8196.97 8979.67 10188.21 10292.60 147
ACMMPcopyleft81.49 11280.67 11383.93 13791.71 10362.90 20692.13 13092.22 12071.79 18071.68 18493.49 9450.32 21796.96 9078.47 11484.22 13791.93 165
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
test_894.19 4067.19 9994.15 5593.42 7771.87 17685.38 4695.35 3768.19 3996.95 91
HY-MVS76.49 584.28 6483.36 7387.02 4692.22 8767.74 8684.65 27794.50 3579.15 5582.23 6987.93 18666.88 4896.94 9280.53 9782.20 14696.39 27
MG-MVS87.11 2886.27 3589.62 797.79 176.27 494.96 4194.49 3678.74 6583.87 6092.94 10364.34 7396.94 9275.19 13294.09 3495.66 45
canonicalmvs86.85 3186.25 3788.66 1791.80 10171.92 1493.54 8391.71 14480.26 3987.55 2795.25 4563.59 8596.93 9488.18 3584.34 13297.11 8
alignmvs87.28 2686.97 3088.24 2291.30 11471.14 2195.61 2393.56 6979.30 5187.07 3195.25 4568.43 3796.93 9487.87 3784.33 13396.65 13
test_prior86.42 6594.71 3567.35 9693.10 9096.84 9695.05 72
MSLP-MVS++86.27 3785.91 4187.35 3792.01 9368.97 5795.04 3892.70 10179.04 5981.50 7496.50 1858.98 13296.78 9783.49 7593.93 3796.29 29
agg_prior94.16 4366.97 10793.31 8084.49 5396.75 98
FE-MVS75.97 20573.02 22184.82 11189.78 14065.56 14077.44 32991.07 17364.55 26472.66 16679.85 28646.05 25796.69 9954.97 27880.82 15892.21 161
原ACMM184.42 12493.21 6364.27 17493.40 7965.39 25979.51 9592.50 11258.11 13896.69 9965.27 22793.96 3692.32 154
ab-mvs80.18 13378.31 14785.80 8388.44 17265.49 14483.00 29492.67 10371.82 17977.36 12085.01 21654.50 17896.59 10176.35 12675.63 19895.32 59
PCF-MVS73.15 979.29 14877.63 15884.29 12986.06 22065.96 13187.03 26391.10 17069.86 22069.79 20590.64 14357.54 14396.59 10164.37 23282.29 14490.32 188
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
新几何184.73 11492.32 8464.28 17391.46 15659.56 30779.77 9292.90 10456.95 15296.57 10363.40 23792.91 5493.34 129
VDDNet80.50 12878.26 14887.21 3986.19 21869.79 3894.48 4791.31 16060.42 29979.34 9790.91 14138.48 28696.56 10482.16 8281.05 15595.27 64
dcpmvs_287.37 2587.55 2486.85 4895.04 3268.20 7690.36 20290.66 18479.37 5081.20 7693.67 8974.73 1596.55 10590.88 2192.00 6595.82 42
thisisatest051583.41 8082.49 8986.16 7289.46 14968.26 7393.54 8394.70 2874.31 11875.75 13390.92 14072.62 2896.52 10669.64 17981.50 15293.71 120
cascas78.18 17175.77 18685.41 9487.14 20469.11 5192.96 10191.15 16866.71 25070.47 19286.07 20737.49 29796.48 10770.15 17579.80 16290.65 184
EIA-MVS84.84 5684.88 5484.69 11691.30 11462.36 21493.85 6992.04 12679.45 4879.33 9894.28 7762.42 9696.35 10880.05 9991.25 7995.38 54
casdiffmvs_mvgpermissive85.66 4785.18 4987.09 4388.22 18269.35 4893.74 7691.89 13481.47 2780.10 8891.45 13264.80 6896.35 10887.23 4687.69 10695.58 48
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline283.68 7983.42 7084.48 12387.37 20066.00 12990.06 21195.93 779.71 4669.08 21090.39 15077.92 696.28 11078.91 11081.38 15391.16 179
HPM-MVScopyleft83.25 8482.95 7984.17 13292.25 8662.88 20790.91 18491.86 13670.30 21477.12 12393.96 8556.75 15496.28 11082.04 8491.34 7893.34 129
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CP-MVS83.71 7883.40 7184.65 11793.14 6663.84 18094.59 4692.28 11571.03 20277.41 11994.92 5455.21 17296.19 11281.32 9290.70 8493.91 114
UGNet79.87 14078.68 14283.45 15289.96 13761.51 22992.13 13090.79 17976.83 9078.85 10786.33 20438.16 28996.17 11367.93 19887.17 11092.67 145
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
APD-MVS_3200maxsize81.64 11181.32 10282.59 16992.36 8358.74 27491.39 16691.01 17763.35 27479.72 9394.62 6351.82 20596.14 11479.71 10087.93 10492.89 143
BH-RMVSNet79.46 14777.65 15784.89 10891.68 10465.66 13693.55 8288.09 27172.93 14773.37 15991.12 13946.20 25596.12 11556.28 27485.61 12592.91 142
testdata296.09 11661.26 252
MVS_Test84.16 6983.20 7487.05 4591.56 10769.82 3789.99 21692.05 12577.77 7682.84 6586.57 20063.93 7896.09 11674.91 13789.18 9695.25 67
baseline85.01 5484.44 5786.71 5488.33 17768.73 6190.24 20791.82 14081.05 3481.18 7792.50 11263.69 8296.08 11884.45 6886.71 11795.32 59
casdiffmvspermissive85.37 4984.87 5586.84 4988.25 18069.07 5393.04 9891.76 14181.27 3180.84 8392.07 12364.23 7496.06 11984.98 6387.43 10995.39 53
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
thisisatest053081.15 11680.07 12084.39 12588.26 17965.63 13891.40 16494.62 3271.27 19770.93 19089.18 16672.47 2996.04 12065.62 22276.89 19091.49 169
TSAR-MVS + MP.88.11 1788.64 1586.54 6191.73 10268.04 7990.36 20293.55 7082.89 1491.29 1292.89 10572.27 3096.03 12187.99 3694.77 2495.54 50
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MSDG69.54 26565.73 27580.96 21285.11 23663.71 18684.19 27983.28 31756.95 31854.50 31584.03 22831.50 32296.03 12142.87 32869.13 24183.14 297
Effi-MVS+83.82 7582.76 8386.99 4789.56 14669.40 4491.35 17086.12 29272.59 15283.22 6392.81 10959.60 12496.01 12381.76 8687.80 10595.56 49
UA-Net80.02 13779.65 12881.11 20689.33 15257.72 28486.33 27189.00 24777.44 8481.01 8089.15 16759.33 12895.90 12461.01 25384.28 13589.73 197
SR-MVS82.81 9182.58 8783.50 15093.35 5861.16 23592.23 12891.28 16364.48 26581.27 7595.28 4153.71 19095.86 12582.87 7888.77 9993.49 126
lupinMVS87.74 2287.77 2187.63 3289.24 15571.18 1996.57 1092.90 9682.70 1887.13 2995.27 4364.99 6495.80 12689.34 2791.80 6895.93 39
MS-PatchMatch77.90 17876.50 17682.12 18485.99 22169.95 3491.75 15492.70 10173.97 12562.58 28084.44 22541.11 27595.78 12763.76 23692.17 6280.62 323
CLD-MVS82.73 9282.35 9283.86 13887.90 19067.65 8995.45 2692.18 12385.06 872.58 16992.27 12052.46 20295.78 12784.18 6979.06 16888.16 218
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CS-MVS-test86.14 4087.01 2983.52 14792.63 8059.36 26795.49 2591.92 13180.09 4085.46 4595.53 3561.82 10395.77 12986.77 5193.37 4895.41 52
HPM-MVS_fast80.25 13279.55 13282.33 17591.55 10859.95 25791.32 17289.16 23865.23 26274.71 14793.07 10047.81 24395.74 13074.87 13988.23 10191.31 177
xiu_mvs_v1_base_debu82.16 10181.12 10485.26 9986.42 21368.72 6292.59 11890.44 19073.12 14384.20 5594.36 6938.04 29195.73 13184.12 7086.81 11291.33 173
xiu_mvs_v1_base82.16 10181.12 10485.26 9986.42 21368.72 6292.59 11890.44 19073.12 14384.20 5594.36 6938.04 29195.73 13184.12 7086.81 11291.33 173
xiu_mvs_v1_base_debi82.16 10181.12 10485.26 9986.42 21368.72 6292.59 11890.44 19073.12 14384.20 5594.36 6938.04 29195.73 13184.12 7086.81 11291.33 173
DP-MVS69.90 26366.48 27080.14 22795.36 2862.93 20389.56 22276.11 33450.27 33957.69 30785.23 21439.68 27995.73 13133.35 35471.05 23081.78 315
114514_t79.17 15077.67 15683.68 14495.32 2965.53 14292.85 10591.60 15063.49 27267.92 22790.63 14546.65 24895.72 13567.01 20683.54 13889.79 195
TR-MVS78.77 16177.37 16682.95 16090.49 12860.88 23993.67 7790.07 20670.08 21774.51 14891.37 13645.69 25895.70 13660.12 25980.32 16092.29 155
ETV-MVS86.01 4286.11 3985.70 8790.21 13467.02 10693.43 8891.92 13181.21 3284.13 5894.07 8360.93 11095.63 13789.28 2889.81 9094.46 96
tttt051779.50 14578.53 14582.41 17487.22 20261.43 23189.75 22194.76 2569.29 22667.91 22888.06 18572.92 2595.63 13762.91 24273.90 20990.16 190
SR-MVS-dyc-post81.06 12080.70 11282.15 18292.02 9158.56 27690.90 18590.45 18762.76 28178.89 10294.46 6551.26 21295.61 13978.77 11286.77 11592.28 156
thres20079.66 14278.33 14683.66 14692.54 8265.82 13593.06 9696.31 374.90 11273.30 16088.66 17059.67 12395.61 13947.84 30778.67 17289.56 200
HQP4-MVS74.18 15095.61 13988.63 208
BH-w/o80.49 12979.30 13784.05 13590.83 12464.36 17193.60 8089.42 22874.35 11769.09 20990.15 15755.23 17195.61 13964.61 23086.43 12192.17 162
HQP-MVS81.14 11780.64 11482.64 16787.54 19563.66 19094.06 5791.70 14679.80 4374.18 15090.30 15251.63 20995.61 13977.63 11978.90 16988.63 208
HQP_MVS80.34 13179.75 12782.12 18486.94 20662.42 21293.13 9491.31 16078.81 6372.53 17089.14 16850.66 21595.55 14476.74 12278.53 17488.39 215
plane_prior591.31 16095.55 14476.74 12278.53 17488.39 215
jason86.40 3586.17 3887.11 4286.16 21970.54 2695.71 2292.19 12282.00 2384.58 5294.34 7461.86 10195.53 14687.76 3890.89 8295.27 64
jason: jason.
CS-MVS85.80 4586.65 3483.27 15592.00 9458.92 27295.31 2991.86 13679.97 4184.82 5095.40 3662.26 9795.51 14786.11 5592.08 6495.37 55
DROMVSNet84.53 6085.04 5283.01 15989.34 15061.37 23294.42 4891.09 17177.91 7483.24 6294.20 7958.37 13595.40 14885.35 5991.41 7592.27 159
BH-untuned78.68 16277.08 16883.48 15189.84 13963.74 18492.70 11088.59 26071.57 19066.83 24588.65 17151.75 20795.39 14959.03 26484.77 12991.32 176
MVS_111021_LR82.02 10581.52 10083.51 14988.42 17362.88 20789.77 22088.93 24876.78 9175.55 13993.10 9750.31 21895.38 15083.82 7487.02 11192.26 160
thres100view90078.37 16877.01 17082.46 17091.89 9963.21 19691.19 17996.33 172.28 16370.45 19487.89 18760.31 11495.32 15145.16 31877.58 18188.83 203
tfpn200view978.79 16077.43 16182.88 16192.21 8864.49 16192.05 13696.28 473.48 13771.75 18288.26 18060.07 11995.32 15145.16 31877.58 18188.83 203
thres40078.68 16277.43 16182.43 17192.21 8864.49 16192.05 13696.28 473.48 13771.75 18288.26 18060.07 11995.32 15145.16 31877.58 18187.48 224
RPMNet70.42 25965.68 27684.63 11983.15 26367.96 8170.25 34090.45 18746.83 34869.97 20265.10 34756.48 16095.30 15435.79 34973.13 21290.64 185
ECVR-MVScopyleft81.29 11580.38 11984.01 13688.39 17561.96 22192.56 12186.79 28477.66 7976.63 12791.42 13346.34 25295.24 15574.36 14189.23 9494.85 77
OPM-MVS79.00 15378.09 15081.73 19283.52 26063.83 18191.64 15890.30 19776.36 9671.97 17989.93 16146.30 25495.17 15675.10 13377.70 17986.19 251
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
test250683.29 8282.92 8084.37 12688.39 17563.18 19892.01 13891.35 15977.66 7978.49 11091.42 13364.58 7195.09 15773.19 14489.23 9494.85 77
PAPM85.89 4485.46 4687.18 4088.20 18372.42 1392.41 12392.77 9982.11 2280.34 8693.07 10068.27 3895.02 15878.39 11593.59 4594.09 105
PMMVS81.98 10682.04 9481.78 19189.76 14256.17 29891.13 18090.69 18177.96 7280.09 8993.57 9246.33 25394.99 15981.41 9087.46 10894.17 100
CostFormer82.33 9881.15 10385.86 8089.01 16068.46 6782.39 29793.01 9175.59 10180.25 8781.57 25872.03 3294.96 16079.06 10877.48 18494.16 101
EPP-MVSNet81.79 10881.52 10082.61 16888.77 16660.21 25493.02 10093.66 6668.52 23772.90 16490.39 15072.19 3194.96 16074.93 13679.29 16792.67 145
ACMH63.93 1768.62 27364.81 28280.03 23185.22 23263.25 19587.72 25484.66 30460.83 29751.57 32779.43 29127.29 33594.96 16041.76 33164.84 27181.88 313
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
thres600view778.00 17376.66 17582.03 18991.93 9663.69 18891.30 17396.33 172.43 15870.46 19387.89 18760.31 11494.92 16342.64 33076.64 19187.48 224
baseline181.84 10781.03 10884.28 13091.60 10566.62 11591.08 18191.66 14881.87 2474.86 14491.67 13069.98 3694.92 16371.76 16264.75 27391.29 178
XXY-MVS77.94 17676.44 17782.43 17182.60 26864.44 16592.01 13891.83 13973.59 13670.00 20185.82 21054.43 18294.76 16569.63 18068.02 24988.10 219
Vis-MVSNetpermissive80.92 12379.98 12483.74 14088.48 17061.80 22393.44 8788.26 26973.96 12677.73 11591.76 12749.94 22294.76 16565.84 21990.37 8894.65 87
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
nrg03080.93 12279.86 12584.13 13383.69 25768.83 5993.23 9291.20 16475.55 10275.06 14388.22 18363.04 9394.74 16781.88 8566.88 25688.82 206
GA-MVS78.33 17076.23 18084.65 11783.65 25866.30 12391.44 16090.14 20476.01 9870.32 19684.02 22942.50 27194.72 16870.98 16777.00 18992.94 141
EI-MVSNet78.97 15478.22 14981.25 20185.33 23062.73 21089.53 22593.21 8272.39 16072.14 17790.13 15860.99 10894.72 16867.73 20072.49 21986.29 247
MVSTER82.47 9682.05 9383.74 14092.68 7869.01 5591.90 14493.21 8279.83 4272.14 17785.71 21274.72 1694.72 16875.72 12872.49 21987.50 223
test111180.84 12480.02 12183.33 15387.87 19160.76 24392.62 11586.86 28377.86 7575.73 13491.39 13546.35 25194.70 17172.79 15088.68 10094.52 92
test_vis1_n_192081.66 11082.01 9580.64 21782.24 27155.09 30694.76 4486.87 28281.67 2684.40 5494.63 6238.17 28894.67 17291.98 1383.34 13992.16 163
iter_conf_final81.74 10980.93 10984.18 13192.66 7969.10 5292.94 10282.80 32079.01 6074.85 14588.40 17561.83 10294.61 17379.36 10376.52 19388.83 203
iter_conf0583.27 8382.70 8584.98 10693.32 5971.84 1594.16 5281.76 32282.74 1673.83 15788.40 17572.77 2794.61 17382.10 8375.21 20088.48 212
tt080573.07 23670.73 24680.07 22978.37 31557.05 29487.78 25392.18 12361.23 29567.04 24186.49 20131.35 32494.58 17565.06 22867.12 25488.57 210
hse-mvs281.12 11981.11 10781.16 20486.52 21257.48 28989.40 22891.16 16681.45 2882.73 6690.49 14860.11 11794.58 17587.69 3960.41 31191.41 172
AUN-MVS78.37 16877.43 16181.17 20386.60 21157.45 29089.46 22791.16 16674.11 12174.40 14990.49 14855.52 16894.57 17774.73 14060.43 31091.48 170
PLCcopyleft68.80 1475.23 21673.68 21579.86 23692.93 7058.68 27590.64 19588.30 26560.90 29664.43 26590.53 14642.38 27294.57 17756.52 27276.54 19286.33 246
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
GG-mvs-BLEND86.53 6291.91 9869.67 4375.02 33594.75 2678.67 10990.85 14277.91 794.56 17972.25 15693.74 4195.36 56
OMC-MVS78.67 16477.91 15580.95 21385.76 22657.40 29188.49 24488.67 25773.85 12872.43 17492.10 12249.29 22994.55 18072.73 15177.89 17790.91 182
Fast-Effi-MVS+81.14 11780.01 12284.51 12290.24 13365.86 13394.12 5689.15 23973.81 13075.37 14188.26 18057.26 14494.53 18166.97 20784.92 12793.15 135
diffmvspermissive84.28 6483.83 6285.61 8987.40 19968.02 8090.88 18789.24 23380.54 3781.64 7392.52 11159.83 12194.52 18287.32 4485.11 12694.29 97
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
HyFIR lowres test81.03 12179.56 13085.43 9387.81 19268.11 7890.18 20890.01 21070.65 21072.95 16386.06 20863.61 8494.50 18375.01 13579.75 16393.67 121
v2v48277.42 18375.65 18982.73 16480.38 28767.13 10291.85 14790.23 20175.09 10969.37 20683.39 23653.79 18994.44 18471.77 16165.00 27086.63 243
v114476.73 19474.88 19482.27 17780.23 29266.60 11691.68 15690.21 20373.69 13369.06 21181.89 25152.73 20094.40 18569.21 18665.23 26785.80 262
TAPA-MVS70.22 1274.94 22073.53 21679.17 24990.40 13052.07 31989.19 23389.61 22362.69 28370.07 19992.67 11048.89 23594.32 18638.26 34479.97 16191.12 180
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
LPG-MVS_test75.82 20874.58 19979.56 24484.31 24959.37 26590.44 19889.73 21969.49 22364.86 25688.42 17338.65 28494.30 18772.56 15372.76 21685.01 276
LGP-MVS_train79.56 24484.31 24959.37 26589.73 21969.49 22364.86 25688.42 17338.65 28494.30 18772.56 15372.76 21685.01 276
v119275.98 20473.92 21182.15 18279.73 29466.24 12591.22 17689.75 21672.67 15168.49 22181.42 26149.86 22394.27 18967.08 20565.02 26985.95 259
tpmvs72.88 24169.76 25582.22 18090.98 11967.05 10478.22 32688.30 26563.10 27964.35 26674.98 32055.09 17494.27 18943.25 32469.57 23785.34 272
tpm279.80 14177.95 15485.34 9788.28 17868.26 7381.56 30291.42 15770.11 21677.59 11880.50 27667.40 4594.26 19167.34 20377.35 18593.51 125
mvsmamba76.85 19075.71 18880.25 22583.07 26559.16 26991.44 16080.64 32776.84 8967.95 22686.33 20446.17 25694.24 19276.06 12772.92 21587.36 228
PVSNet_068.08 1571.81 24968.32 26482.27 17784.68 24062.31 21688.68 24190.31 19675.84 9957.93 30680.65 27537.85 29494.19 19369.94 17729.05 36890.31 189
MVP-Stereo77.12 18776.23 18079.79 23881.72 27666.34 12289.29 22990.88 17870.56 21262.01 28382.88 24049.34 22794.13 19465.55 22493.80 3978.88 336
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
ACMM69.62 1374.34 22472.73 22679.17 24984.25 25157.87 28290.36 20289.93 21163.17 27865.64 25186.04 20937.79 29594.10 19565.89 21871.52 22685.55 268
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
V4276.46 19674.55 20082.19 18179.14 30467.82 8490.26 20689.42 22873.75 13168.63 21981.89 25151.31 21194.09 19671.69 16364.84 27184.66 279
TESTMET0.1,182.41 9781.98 9683.72 14388.08 18463.74 18492.70 11093.77 5979.30 5177.61 11787.57 19158.19 13794.08 19773.91 14386.68 11893.33 131
Anonymous2023121173.08 23570.39 24981.13 20590.62 12663.33 19491.40 16490.06 20851.84 33464.46 26480.67 27436.49 30594.07 19863.83 23564.17 27885.98 258
v875.35 21473.26 21981.61 19580.67 28466.82 10989.54 22489.27 23271.65 18463.30 27480.30 28054.99 17594.06 19967.33 20462.33 29183.94 284
EG-PatchMatch MVS68.55 27465.41 27977.96 26378.69 31162.93 20389.86 21889.17 23760.55 29850.27 33277.73 30122.60 34594.06 19947.18 31072.65 21876.88 344
PVSNet73.49 880.05 13678.63 14384.31 12890.92 12164.97 15592.47 12291.05 17579.18 5472.43 17490.51 14737.05 30394.06 19968.06 19586.00 12293.90 116
GeoE78.90 15677.43 16183.29 15488.95 16162.02 21992.31 12486.23 29070.24 21571.34 18889.27 16554.43 18294.04 20263.31 23880.81 15993.81 119
v1074.77 22172.54 23081.46 19780.33 29066.71 11389.15 23489.08 24370.94 20363.08 27579.86 28552.52 20194.04 20265.70 22162.17 29283.64 286
v14419276.05 20274.03 20982.12 18479.50 29866.55 11891.39 16689.71 22272.30 16268.17 22381.33 26351.75 20794.03 20467.94 19764.19 27785.77 263
tpm cat175.30 21572.21 23384.58 12088.52 16867.77 8578.16 32788.02 27261.88 29168.45 22276.37 31360.65 11194.03 20453.77 28474.11 20591.93 165
gg-mvs-nofinetune77.18 18674.31 20485.80 8391.42 11168.36 6971.78 33794.72 2749.61 34077.12 12345.92 36177.41 893.98 20667.62 20193.16 5195.05 72
PS-MVSNAJss77.26 18576.31 17980.13 22880.64 28559.16 26990.63 19791.06 17472.80 14968.58 22084.57 22353.55 19193.96 20772.97 14671.96 22387.27 232
OpenMVS_ROBcopyleft61.12 1866.39 28962.92 29676.80 28076.51 32657.77 28389.22 23183.41 31555.48 32553.86 31977.84 30026.28 33893.95 20834.90 35168.76 24378.68 338
MDTV_nov1_ep1372.61 22889.06 15868.48 6680.33 31290.11 20571.84 17871.81 18175.92 31753.01 19793.92 20948.04 30473.38 210
v192192075.63 21273.49 21782.06 18879.38 29966.35 12191.07 18389.48 22571.98 17067.99 22481.22 26649.16 23293.90 21066.56 20964.56 27685.92 261
v124075.21 21772.98 22281.88 19079.20 30166.00 12990.75 19289.11 24271.63 18867.41 23781.22 26647.36 24593.87 21165.46 22564.72 27485.77 263
ACMP71.68 1075.58 21374.23 20679.62 24284.97 23859.64 26090.80 19089.07 24470.39 21362.95 27687.30 19538.28 28793.87 21172.89 14771.45 22785.36 271
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
v14876.19 19774.47 20281.36 19980.05 29364.44 16591.75 15490.23 20173.68 13467.13 24080.84 27155.92 16693.86 21368.95 18961.73 29985.76 265
LS3D69.17 26766.40 27177.50 26791.92 9756.12 29985.12 27480.37 32846.96 34656.50 31187.51 19237.25 29893.71 21432.52 35979.40 16482.68 305
EPMVS78.49 16775.98 18386.02 7491.21 11669.68 4280.23 31491.20 16475.25 10772.48 17278.11 29854.65 17793.69 21557.66 27083.04 14094.69 83
IS-MVSNet80.14 13479.41 13482.33 17587.91 18960.08 25691.97 14288.27 26772.90 14871.44 18791.73 12961.44 10593.66 21662.47 24686.53 11993.24 132
v7n71.31 25468.65 25979.28 24776.40 32760.77 24286.71 26989.45 22664.17 26758.77 30078.24 29644.59 26493.54 21757.76 26861.75 29883.52 289
VPA-MVSNet79.03 15278.00 15282.11 18785.95 22264.48 16393.22 9394.66 3075.05 11074.04 15584.95 21752.17 20493.52 21874.90 13867.04 25588.32 217
tfpnnormal70.10 26067.36 26778.32 25883.45 26160.97 23888.85 23892.77 9964.85 26360.83 28878.53 29443.52 26893.48 21931.73 36061.70 30080.52 324
旧先验292.00 14159.37 30887.54 2893.47 22075.39 131
1112_ss80.56 12779.83 12682.77 16388.65 16760.78 24192.29 12588.36 26472.58 15372.46 17394.95 5165.09 6393.42 22166.38 21377.71 17894.10 104
testdata81.34 20089.02 15957.72 28489.84 21458.65 31185.32 4794.09 8157.03 14793.28 22269.34 18490.56 8793.03 139
LTVRE_ROB59.60 1966.27 29063.54 29274.45 29584.00 25451.55 32167.08 35083.53 31358.78 31054.94 31480.31 27934.54 31193.23 22340.64 33768.03 24878.58 339
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
VPNet78.82 15877.53 16082.70 16584.52 24466.44 11993.93 6492.23 11780.46 3872.60 16888.38 17749.18 23093.13 22472.47 15563.97 28188.55 211
Test_1112_low_res79.56 14478.60 14482.43 17188.24 18160.39 25192.09 13387.99 27372.10 16971.84 18087.42 19364.62 7093.04 22565.80 22077.30 18693.85 118
PatchMatch-RL72.06 24869.98 25078.28 25989.51 14855.70 30283.49 28483.39 31661.24 29463.72 27082.76 24134.77 31093.03 22653.37 28677.59 18086.12 255
Fast-Effi-MVS+-dtu75.04 21873.37 21880.07 22980.86 28159.52 26391.20 17885.38 29771.90 17365.20 25484.84 21941.46 27492.97 22766.50 21272.96 21487.73 221
cl____76.07 19974.67 19580.28 22385.15 23361.76 22590.12 20988.73 25571.16 19865.43 25281.57 25861.15 10692.95 22866.54 21062.17 29286.13 254
pm-mvs172.89 24071.09 24378.26 26079.10 30557.62 28790.80 19089.30 23167.66 24262.91 27781.78 25349.11 23392.95 22860.29 25858.89 31684.22 282
TAMVS80.37 13079.45 13383.13 15885.14 23463.37 19391.23 17590.76 18074.81 11372.65 16788.49 17260.63 11292.95 22869.41 18381.95 14893.08 138
ACMH+65.35 1667.65 28264.55 28576.96 27884.59 24357.10 29388.08 24880.79 32558.59 31253.00 32181.09 27026.63 33792.95 22846.51 31261.69 30180.82 320
DIV-MVS_self_test76.07 19974.67 19580.28 22385.14 23461.75 22690.12 20988.73 25571.16 19865.42 25381.60 25761.15 10692.94 23266.54 21062.16 29486.14 252
cl2277.94 17676.78 17381.42 19887.57 19464.93 15790.67 19388.86 25172.45 15767.63 23482.68 24364.07 7592.91 23371.79 16065.30 26486.44 245
CDS-MVSNet81.43 11380.74 11183.52 14786.26 21764.45 16492.09 13390.65 18575.83 10073.95 15689.81 16263.97 7792.91 23371.27 16582.82 14293.20 134
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
miper_enhance_ethall78.86 15777.97 15381.54 19688.00 18865.17 14991.41 16289.15 23975.19 10868.79 21683.98 23067.17 4692.82 23572.73 15165.30 26486.62 244
eth_miper_zixun_eth75.96 20674.40 20380.66 21684.66 24163.02 20089.28 23088.27 26771.88 17565.73 25081.65 25559.45 12592.81 23668.13 19460.53 30886.14 252
CPTT-MVS79.59 14379.16 13980.89 21591.54 10959.80 25992.10 13288.54 26260.42 29972.96 16293.28 9648.27 23792.80 23778.89 11186.50 12090.06 191
PatchmatchNetpermissive77.46 18274.63 19785.96 7689.55 14770.35 2879.97 31889.55 22472.23 16470.94 18976.91 30957.03 14792.79 23854.27 28181.17 15494.74 82
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
jajsoiax73.05 23771.51 24177.67 26577.46 32254.83 30788.81 23990.04 20969.13 23062.85 27883.51 23431.16 32592.75 23970.83 16869.80 23485.43 270
mvs_tets72.71 24471.11 24277.52 26677.41 32354.52 30988.45 24589.76 21568.76 23562.70 27983.26 23729.49 32992.71 24070.51 17469.62 23685.34 272
tpmrst80.57 12679.14 14084.84 11090.10 13568.28 7281.70 30089.72 22177.63 8175.96 13279.54 29064.94 6692.71 24075.43 13077.28 18793.55 124
D2MVS73.80 23172.02 23579.15 25179.15 30362.97 20188.58 24390.07 20672.94 14659.22 29578.30 29542.31 27392.70 24265.59 22372.00 22281.79 314
test_post23.01 37156.49 15992.67 243
MVSFormer83.75 7782.88 8186.37 6789.24 15571.18 1989.07 23590.69 18165.80 25687.13 2994.34 7464.99 6492.67 24372.83 14891.80 6895.27 64
test_djsdf73.76 23372.56 22977.39 27077.00 32553.93 31189.07 23590.69 18165.80 25663.92 26782.03 25043.14 27092.67 24372.83 14868.53 24585.57 267
RRT_MVS74.44 22372.97 22378.84 25482.36 27057.66 28689.83 21988.79 25470.61 21164.58 26084.89 21839.24 28092.65 24670.11 17666.34 26086.21 250
miper_ehance_all_eth77.60 18076.44 17781.09 21085.70 22764.41 16890.65 19488.64 25972.31 16167.37 23982.52 24464.77 6992.64 24770.67 17165.30 26486.24 249
c3_l76.83 19275.47 19080.93 21485.02 23764.18 17690.39 20188.11 27071.66 18366.65 24781.64 25663.58 8692.56 24869.31 18562.86 28586.04 256
dp75.01 21972.09 23483.76 13989.28 15366.22 12679.96 31989.75 21671.16 19867.80 23277.19 30651.81 20692.54 24950.39 29271.44 22892.51 150
Effi-MVS+-dtu76.14 19875.28 19278.72 25583.22 26255.17 30589.87 21787.78 27575.42 10467.98 22581.43 26045.08 26292.52 25075.08 13471.63 22488.48 212
F-COLMAP70.66 25668.44 26277.32 27186.37 21655.91 30088.00 24986.32 28756.94 31957.28 30988.07 18433.58 31492.49 25151.02 29068.37 24683.55 287
USDC67.43 28664.51 28676.19 28377.94 31955.29 30478.38 32485.00 30173.17 14148.36 33980.37 27821.23 34792.48 25252.15 28864.02 28080.81 321
pmmvs667.57 28364.76 28376.00 28572.82 34053.37 31388.71 24086.78 28553.19 33057.58 30878.03 29935.33 30992.41 25355.56 27654.88 32882.21 311
test-LLR80.10 13579.56 13081.72 19386.93 20861.17 23392.70 11091.54 15171.51 19375.62 13686.94 19753.83 18792.38 25472.21 15784.76 13091.60 167
test-mter79.96 13879.38 13681.72 19386.93 20861.17 23392.70 11091.54 15173.85 12875.62 13686.94 19749.84 22492.38 25472.21 15784.76 13091.60 167
UniMVSNet (Re)77.58 18176.78 17379.98 23284.11 25260.80 24091.76 15293.17 8676.56 9469.93 20484.78 22063.32 8992.36 25664.89 22962.51 29086.78 239
ET-MVSNet_ETH3D84.01 7183.15 7786.58 5990.78 12570.89 2294.74 4594.62 3281.44 3058.19 30193.64 9073.64 2392.35 25782.66 7978.66 17396.50 23
mvs_anonymous81.36 11479.99 12385.46 9290.39 13168.40 6886.88 26890.61 18674.41 11570.31 19784.67 22163.79 8092.32 25873.13 14585.70 12395.67 44
IterMVS-LS76.49 19575.18 19380.43 22084.49 24562.74 20990.64 19588.80 25272.40 15965.16 25581.72 25460.98 10992.27 25967.74 19964.65 27586.29 247
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
FMVSNet377.73 17976.04 18282.80 16291.20 11768.99 5691.87 14591.99 12873.35 13967.04 24183.19 23856.62 15792.14 26059.80 26169.34 23887.28 231
UniMVSNet_NR-MVSNet78.15 17277.55 15979.98 23284.46 24660.26 25292.25 12693.20 8477.50 8368.88 21486.61 19966.10 5492.13 26166.38 21362.55 28887.54 222
DU-MVS76.86 18875.84 18579.91 23482.96 26660.26 25291.26 17491.54 15176.46 9568.88 21486.35 20256.16 16192.13 26166.38 21362.55 28887.35 229
tpm78.58 16577.03 16983.22 15685.94 22464.56 15983.21 29191.14 16978.31 6873.67 15879.68 28864.01 7692.09 26366.07 21771.26 22993.03 139
Baseline_NR-MVSNet73.99 22972.83 22477.48 26880.78 28259.29 26891.79 14984.55 30568.85 23268.99 21280.70 27256.16 16192.04 26462.67 24460.98 30581.11 317
FMVSNet276.07 19974.01 21082.26 17988.85 16267.66 8891.33 17191.61 14970.84 20565.98 24982.25 24748.03 23892.00 26558.46 26668.73 24487.10 234
TransMVSNet (Re)70.07 26167.66 26677.31 27280.62 28659.13 27191.78 15184.94 30265.97 25560.08 29180.44 27750.78 21491.87 26648.84 30045.46 34680.94 319
UniMVSNet_ETH3D72.74 24370.53 24879.36 24678.62 31356.64 29685.01 27589.20 23563.77 27064.84 25884.44 22534.05 31291.86 26763.94 23470.89 23189.57 199
NR-MVSNet76.05 20274.59 19880.44 21982.96 26662.18 21890.83 18991.73 14277.12 8660.96 28786.35 20259.28 12991.80 26860.74 25461.34 30387.35 229
FIs79.47 14679.41 13479.67 24085.95 22259.40 26491.68 15693.94 5478.06 7168.96 21388.28 17866.61 5191.77 26966.20 21674.99 20187.82 220
XVG-OURS74.25 22672.46 23179.63 24178.45 31457.59 28880.33 31287.39 27763.86 26968.76 21789.62 16440.50 27791.72 27069.00 18874.25 20489.58 198
test_040264.54 29861.09 30474.92 29284.10 25360.75 24487.95 25079.71 33052.03 33252.41 32377.20 30532.21 32091.64 27123.14 36361.03 30472.36 352
XVG-OURS-SEG-HR74.70 22273.08 22079.57 24378.25 31657.33 29280.49 31087.32 27863.22 27668.76 21790.12 16044.89 26391.59 27270.55 17374.09 20689.79 195
TranMVSNet+NR-MVSNet75.86 20774.52 20179.89 23582.44 26960.64 24891.37 16991.37 15876.63 9267.65 23386.21 20652.37 20391.55 27361.84 24960.81 30687.48 224
GBi-Net75.65 21073.83 21281.10 20788.85 16265.11 15190.01 21390.32 19370.84 20567.04 24180.25 28148.03 23891.54 27459.80 26169.34 23886.64 240
test175.65 21073.83 21281.10 20788.85 16265.11 15190.01 21390.32 19370.84 20567.04 24180.25 28148.03 23891.54 27459.80 26169.34 23886.64 240
FMVSNet172.71 24469.91 25381.10 20783.60 25965.11 15190.01 21390.32 19363.92 26863.56 27180.25 28136.35 30691.54 27454.46 28066.75 25786.64 240
pmmvs473.92 23071.81 23880.25 22579.17 30265.24 14787.43 25987.26 28067.64 24463.46 27283.91 23148.96 23491.53 27762.94 24165.49 26383.96 283
test_post178.95 32020.70 37453.05 19691.50 27860.43 256
anonymousdsp71.14 25569.37 25776.45 28172.95 33854.71 30884.19 27988.88 24961.92 29062.15 28279.77 28738.14 29091.44 27968.90 19067.45 25383.21 295
XVG-ACMP-BASELINE68.04 27965.53 27875.56 28674.06 33552.37 31778.43 32385.88 29462.03 28858.91 29981.21 26820.38 35091.15 28060.69 25568.18 24783.16 296
CNLPA74.31 22572.30 23280.32 22191.49 11061.66 22790.85 18880.72 32656.67 32163.85 26990.64 14346.75 24790.84 28153.79 28375.99 19788.47 214
ppachtmachnet_test67.72 28163.70 29179.77 23978.92 30666.04 12888.68 24182.90 31960.11 30355.45 31275.96 31639.19 28190.55 28239.53 33952.55 33482.71 303
pmmvs573.35 23471.52 24078.86 25378.64 31260.61 24991.08 18186.90 28167.69 24163.32 27383.64 23244.33 26590.53 28362.04 24866.02 26285.46 269
SixPastTwentyTwo64.92 29661.78 30374.34 29778.74 31049.76 33083.42 28779.51 33162.86 28050.27 33277.35 30230.92 32790.49 28445.89 31647.06 34382.78 299
COLMAP_ROBcopyleft57.96 2062.98 30659.65 30872.98 30781.44 27853.00 31583.75 28275.53 33948.34 34448.81 33881.40 26224.14 34190.30 28532.95 35660.52 30975.65 347
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
patchmatchnet-post67.62 34357.62 14290.25 286
SCA75.82 20872.76 22585.01 10586.63 21070.08 3081.06 30789.19 23671.60 18970.01 20077.09 30745.53 25990.25 28660.43 25673.27 21194.68 84
JIA-IIPM66.06 29162.45 29976.88 27981.42 27954.45 31057.49 36288.67 25749.36 34163.86 26846.86 36056.06 16490.25 28649.53 29768.83 24285.95 259
WR-MVS76.76 19375.74 18779.82 23784.60 24262.27 21792.60 11692.51 11176.06 9767.87 23185.34 21356.76 15390.24 28962.20 24763.69 28386.94 237
FC-MVSNet-test77.99 17478.08 15177.70 26484.89 23955.51 30390.27 20593.75 6376.87 8766.80 24687.59 19065.71 5990.23 29062.89 24373.94 20787.37 227
EPNet_dtu78.80 15979.26 13877.43 26988.06 18549.71 33191.96 14391.95 13077.67 7876.56 12991.28 13758.51 13490.20 29156.37 27380.95 15692.39 151
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CMPMVSbinary48.56 2166.77 28864.41 28873.84 30170.65 34650.31 32877.79 32885.73 29645.54 34944.76 34982.14 24935.40 30890.14 29263.18 24074.54 20281.07 318
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
Vis-MVSNet (Re-imp)79.24 14979.57 12978.24 26188.46 17152.29 31890.41 20089.12 24174.24 11969.13 20891.91 12565.77 5890.09 29359.00 26588.09 10392.33 153
lessismore_v073.72 30272.93 33947.83 33861.72 36345.86 34573.76 32328.63 33389.81 29447.75 30931.37 36583.53 288
MVS-HIRNet60.25 31355.55 32074.35 29684.37 24856.57 29771.64 33874.11 34234.44 35945.54 34742.24 36631.11 32689.81 29440.36 33876.10 19676.67 345
our_test_368.29 27764.69 28479.11 25278.92 30664.85 15888.40 24685.06 30060.32 30152.68 32276.12 31540.81 27689.80 29644.25 32355.65 32482.67 306
CR-MVSNet73.79 23270.82 24582.70 16583.15 26367.96 8170.25 34084.00 31073.67 13569.97 20272.41 32857.82 14089.48 29752.99 28773.13 21290.64 185
Patchmtry67.53 28463.93 29078.34 25782.12 27364.38 16968.72 34484.00 31048.23 34559.24 29472.41 32857.82 14089.27 29846.10 31556.68 32381.36 316
ADS-MVSNet68.54 27564.38 28981.03 21188.06 18566.90 10868.01 34784.02 30957.57 31364.48 26269.87 33838.68 28289.21 29940.87 33567.89 25086.97 235
Patchmatch-RL test68.17 27864.49 28779.19 24871.22 34253.93 31170.07 34271.54 35069.22 22756.79 31062.89 35056.58 15888.61 30069.53 18252.61 33395.03 74
UnsupCasMVSNet_bld61.60 30957.71 31373.29 30568.73 35151.64 32078.61 32289.05 24557.20 31746.11 34261.96 35328.70 33288.60 30150.08 29538.90 35779.63 331
OurMVSNet-221017-064.68 29762.17 30172.21 31476.08 33047.35 34080.67 30981.02 32456.19 32251.60 32679.66 28927.05 33688.56 30253.60 28553.63 33180.71 322
PatchT69.11 26865.37 28080.32 22182.07 27463.68 18967.96 34987.62 27650.86 33769.37 20665.18 34657.09 14688.53 30341.59 33366.60 25888.74 207
bld_raw_dy_0_6471.59 25269.71 25677.22 27477.82 32158.12 28087.71 25573.66 34368.01 23961.90 28584.29 22733.68 31388.43 30469.91 17870.43 23285.11 275
TinyColmap60.32 31256.42 31972.00 31778.78 30953.18 31478.36 32575.64 33752.30 33141.59 35675.82 31814.76 35988.35 30535.84 34754.71 32974.46 348
LCM-MVSNet-Re72.93 23971.84 23776.18 28488.49 16948.02 33680.07 31770.17 35173.96 12652.25 32480.09 28449.98 22188.24 30667.35 20284.23 13692.28 156
ambc69.61 32261.38 36141.35 35549.07 36785.86 29550.18 33466.40 34410.16 36488.14 30745.73 31744.20 34779.32 334
MVS_030468.99 27167.23 26974.28 29980.36 28852.54 31687.01 26586.36 28659.89 30566.22 24873.56 32424.25 34088.03 30857.34 27170.11 23382.27 310
Patchmatch-test65.86 29260.94 30580.62 21883.75 25658.83 27358.91 36175.26 34044.50 35250.95 33177.09 30758.81 13387.90 30935.13 35064.03 27995.12 70
test_fmvs1_n72.69 24671.92 23674.99 29171.15 34347.08 34387.34 26175.67 33663.48 27378.08 11391.17 13820.16 35187.87 31084.65 6675.57 19990.01 193
MIMVSNet71.64 25068.44 26281.23 20281.97 27564.44 16573.05 33688.80 25269.67 22264.59 25974.79 32132.79 31687.82 31153.99 28276.35 19491.42 171
K. test v363.09 30559.61 30973.53 30376.26 32849.38 33383.27 28877.15 33364.35 26647.77 34172.32 33028.73 33187.79 31249.93 29636.69 35983.41 292
test_fmvs174.07 22773.69 21475.22 28878.91 30847.34 34189.06 23774.69 34163.68 27179.41 9691.59 13124.36 33987.77 31385.22 6076.26 19590.55 187
CL-MVSNet_self_test69.92 26268.09 26575.41 28773.25 33755.90 30190.05 21289.90 21269.96 21861.96 28476.54 31051.05 21387.64 31449.51 29850.59 33882.70 304
KD-MVS_2432*160069.03 26966.37 27277.01 27685.56 22861.06 23681.44 30390.25 19967.27 24658.00 30476.53 31154.49 17987.63 31548.04 30435.77 36082.34 308
miper_refine_blended69.03 26966.37 27277.01 27685.56 22861.06 23681.44 30390.25 19967.27 24658.00 30476.53 31154.49 17987.63 31548.04 30435.77 36082.34 308
miper_lstm_enhance73.05 23771.73 23977.03 27583.80 25558.32 27881.76 29888.88 24969.80 22161.01 28678.23 29757.19 14587.51 31765.34 22659.53 31385.27 274
UnsupCasMVSNet_eth65.79 29363.10 29473.88 30070.71 34550.29 32981.09 30689.88 21372.58 15349.25 33774.77 32232.57 31887.43 31855.96 27541.04 35383.90 285
Anonymous2023120667.53 28465.78 27472.79 30974.95 33147.59 33988.23 24787.32 27861.75 29358.07 30377.29 30437.79 29587.29 31942.91 32663.71 28283.48 290
pmmvs-eth3d65.53 29562.32 30075.19 28969.39 35059.59 26182.80 29583.43 31462.52 28451.30 32972.49 32632.86 31587.16 32055.32 27750.73 33778.83 337
IterMVS72.65 24770.83 24478.09 26282.17 27262.96 20287.64 25786.28 28871.56 19160.44 28978.85 29345.42 26186.66 32163.30 23961.83 29684.65 280
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
AllTest61.66 30858.06 31272.46 31179.57 29551.42 32380.17 31568.61 35451.25 33545.88 34381.23 26419.86 35286.58 32238.98 34157.01 32179.39 332
TestCases72.46 31179.57 29551.42 32368.61 35451.25 33545.88 34381.23 26419.86 35286.58 32238.98 34157.01 32179.39 332
MDA-MVSNet-bldmvs61.54 31057.70 31473.05 30679.53 29757.00 29583.08 29281.23 32357.57 31334.91 36072.45 32732.79 31686.26 32435.81 34841.95 35175.89 346
test_vis1_n71.63 25170.73 24674.31 29869.63 34947.29 34286.91 26672.11 34763.21 27775.18 14290.17 15620.40 34985.76 32584.59 6774.42 20389.87 194
Anonymous2024052162.09 30759.08 31071.10 31967.19 35348.72 33583.91 28185.23 29950.38 33847.84 34071.22 33720.74 34885.51 32646.47 31358.75 31779.06 335
FMVSNet568.04 27965.66 27775.18 29084.43 24757.89 28183.54 28386.26 28961.83 29253.64 32073.30 32537.15 30185.08 32748.99 29961.77 29782.56 307
test0.0.03 172.76 24272.71 22772.88 30880.25 29147.99 33791.22 17689.45 22671.51 19362.51 28187.66 18953.83 18785.06 32850.16 29467.84 25285.58 266
testgi64.48 29962.87 29769.31 32471.24 34140.62 35785.49 27379.92 32965.36 26054.18 31783.49 23523.74 34384.55 32941.60 33260.79 30782.77 300
ADS-MVSNet266.90 28763.44 29377.26 27388.06 18560.70 24668.01 34775.56 33857.57 31364.48 26269.87 33838.68 28284.10 33040.87 33567.89 25086.97 235
CVMVSNet74.04 22874.27 20573.33 30485.33 23043.94 35289.53 22588.39 26354.33 32870.37 19590.13 15849.17 23184.05 33161.83 25079.36 16591.99 164
ITE_SJBPF70.43 32174.44 33347.06 34477.32 33260.16 30254.04 31883.53 23323.30 34484.01 33243.07 32561.58 30280.21 329
CHOSEN 280x42077.35 18476.95 17278.55 25687.07 20562.68 21169.71 34382.95 31868.80 23371.48 18687.27 19666.03 5584.00 33376.47 12582.81 14388.95 202
DTE-MVSNet68.46 27667.33 26871.87 31877.94 31949.00 33486.16 27288.58 26166.36 25358.19 30182.21 24846.36 25083.87 33444.97 32155.17 32682.73 301
IterMVS-SCA-FT71.55 25369.97 25176.32 28281.48 27760.67 24787.64 25785.99 29366.17 25459.50 29378.88 29245.53 25983.65 33562.58 24561.93 29584.63 281
PEN-MVS69.46 26668.56 26072.17 31579.27 30049.71 33186.90 26789.24 23367.24 24959.08 29782.51 24547.23 24683.54 33648.42 30257.12 31983.25 294
WR-MVS_H70.59 25769.94 25272.53 31081.03 28051.43 32287.35 26092.03 12767.38 24560.23 29080.70 27255.84 16783.45 33746.33 31458.58 31882.72 302
YYNet163.76 30460.14 30774.62 29478.06 31860.19 25583.46 28683.99 31256.18 32339.25 35771.56 33537.18 30083.34 33842.90 32748.70 34180.32 326
PM-MVS59.40 31556.59 31767.84 32763.63 35741.86 35376.76 33063.22 36159.01 30951.07 33072.27 33111.72 36283.25 33961.34 25150.28 33978.39 340
MDA-MVSNet_test_wron63.78 30360.16 30674.64 29378.15 31760.41 25083.49 28484.03 30856.17 32439.17 35871.59 33437.22 29983.24 34042.87 32848.73 34080.26 327
KD-MVS_self_test60.87 31158.60 31167.68 32966.13 35539.93 35975.63 33484.70 30357.32 31649.57 33568.45 34129.55 32882.87 34148.09 30347.94 34280.25 328
N_pmnet50.55 32349.11 32654.88 34377.17 3244.02 38384.36 2782.00 38248.59 34245.86 34568.82 34032.22 31982.80 34231.58 36151.38 33677.81 342
test20.0363.83 30262.65 29867.38 33170.58 34739.94 35886.57 27084.17 30763.29 27551.86 32577.30 30337.09 30282.47 34338.87 34354.13 33079.73 330
TDRefinement55.28 32151.58 32466.39 33359.53 36246.15 34676.23 33172.80 34544.60 35142.49 35476.28 31415.29 35782.39 34433.20 35543.75 34870.62 354
CP-MVSNet70.50 25869.91 25372.26 31380.71 28351.00 32587.23 26290.30 19767.84 24059.64 29282.69 24250.23 22082.30 34551.28 28959.28 31483.46 291
PS-CasMVS69.86 26469.13 25872.07 31680.35 28950.57 32787.02 26489.75 21667.27 24659.19 29682.28 24646.58 24982.24 34650.69 29159.02 31583.39 293
RPSCF64.24 30061.98 30271.01 32076.10 32945.00 34975.83 33375.94 33546.94 34758.96 29884.59 22231.40 32382.00 34747.76 30860.33 31286.04 256
new-patchmatchnet59.30 31656.48 31867.79 32865.86 35644.19 35082.47 29681.77 32159.94 30443.65 35366.20 34527.67 33481.68 34839.34 34041.40 35277.50 343
MIMVSNet160.16 31457.33 31568.67 32569.71 34844.13 35178.92 32184.21 30655.05 32644.63 35071.85 33223.91 34281.54 34932.63 35855.03 32780.35 325
test_fmvs265.78 29464.84 28168.60 32666.54 35441.71 35483.27 28869.81 35254.38 32767.91 22884.54 22415.35 35681.22 35075.65 12966.16 26182.88 298
test_vis1_rt59.09 31757.31 31664.43 33468.44 35246.02 34783.05 29348.63 37151.96 33349.57 33563.86 34916.30 35480.20 35171.21 16662.79 28667.07 358
EU-MVSNet64.01 30163.01 29567.02 33274.40 33438.86 36283.27 28886.19 29145.11 35054.27 31681.15 26936.91 30480.01 35248.79 30157.02 32082.19 312
pmmvs355.51 32051.50 32567.53 33057.90 36350.93 32680.37 31173.66 34340.63 35744.15 35264.75 34816.30 35478.97 35344.77 32240.98 35572.69 350
mvsany_test168.77 27268.56 26069.39 32373.57 33645.88 34880.93 30860.88 36459.65 30671.56 18590.26 15443.22 26975.05 35474.26 14262.70 28787.25 233
DSMNet-mixed56.78 31954.44 32263.79 33563.21 35829.44 37364.43 35364.10 36042.12 35651.32 32871.60 33331.76 32175.04 35536.23 34665.20 26886.87 238
EGC-MVSNET42.35 32838.09 33155.11 34274.57 33246.62 34571.63 33955.77 3650.04 3770.24 37862.70 35114.24 36074.91 35617.59 36746.06 34543.80 363
test_fmvs356.82 31854.86 32162.69 33653.59 36535.47 36475.87 33265.64 35943.91 35355.10 31371.43 3366.91 37074.40 35768.64 19252.63 33278.20 341
new_pmnet49.31 32446.44 32757.93 33862.84 35940.74 35668.47 34662.96 36236.48 35835.09 35957.81 35514.97 35872.18 35832.86 35746.44 34460.88 360
Gipumacopyleft34.91 33531.44 33845.30 35070.99 34439.64 36119.85 37272.56 34620.10 36816.16 37221.47 3735.08 37371.16 35913.07 37143.70 34925.08 370
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_vis3_rt40.46 33137.79 33248.47 34944.49 37333.35 36766.56 35132.84 37932.39 36129.65 36139.13 3693.91 37768.65 36050.17 29340.99 35443.40 364
LF4IMVS54.01 32252.12 32359.69 33762.41 36039.91 36068.59 34568.28 35642.96 35544.55 35175.18 31914.09 36168.39 36141.36 33451.68 33570.78 353
PMVScopyleft26.43 2231.84 33828.16 34142.89 35125.87 38127.58 37450.92 36649.78 36921.37 36714.17 37340.81 3682.01 38066.62 3629.61 37338.88 35834.49 369
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
APD_test140.50 33037.31 33350.09 34751.88 36635.27 36559.45 36052.59 36721.64 36626.12 36457.80 3564.56 37466.56 36322.64 36439.09 35648.43 362
LCM-MVSNet40.54 32935.79 33454.76 34436.92 37830.81 37051.41 36569.02 35322.07 36524.63 36545.37 3624.56 37465.81 36433.67 35334.50 36367.67 356
test_f46.58 32643.45 32955.96 34045.18 37232.05 36861.18 35649.49 37033.39 36042.05 35562.48 3527.00 36965.56 36547.08 31143.21 35070.27 355
PMMVS237.93 33433.61 33750.92 34646.31 37024.76 37660.55 35950.05 36828.94 36420.93 36647.59 3594.41 37665.13 36625.14 36218.55 37062.87 359
FPMVS45.64 32743.10 33053.23 34551.42 36836.46 36364.97 35271.91 34829.13 36327.53 36361.55 3549.83 36565.01 36716.00 37055.58 32558.22 361
ANet_high40.27 33235.20 33555.47 34134.74 37934.47 36663.84 35471.56 34948.42 34318.80 36841.08 3679.52 36664.45 36820.18 3658.66 37567.49 357
mvsany_test348.86 32546.35 32856.41 33946.00 37131.67 36962.26 35547.25 37243.71 35445.54 34768.15 34210.84 36364.44 36957.95 26735.44 36273.13 349
testf132.77 33629.47 33942.67 35241.89 37530.81 37052.07 36343.45 37315.45 36918.52 36944.82 3632.12 37858.38 37016.05 36830.87 36638.83 365
APD_test232.77 33629.47 33942.67 35241.89 37530.81 37052.07 36343.45 37315.45 36918.52 36944.82 3632.12 37858.38 37016.05 36830.87 36638.83 365
test_method38.59 33335.16 33648.89 34854.33 36421.35 37845.32 36853.71 3667.41 37428.74 36251.62 3588.70 36752.87 37233.73 35232.89 36472.47 351
MVEpermissive24.84 2324.35 34019.77 34638.09 35434.56 38026.92 37526.57 37038.87 37711.73 37311.37 37427.44 3701.37 38150.42 37311.41 37214.60 37136.93 367
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN24.61 33924.00 34326.45 35643.74 37418.44 38060.86 35739.66 37515.11 3719.53 37522.10 3726.52 37146.94 3748.31 37410.14 37213.98 372
EMVS23.76 34123.20 34525.46 35741.52 37716.90 38160.56 35838.79 37814.62 3728.99 37620.24 3757.35 36845.82 3757.25 3759.46 37313.64 373
DeepMVS_CXcopyleft34.71 35551.45 36724.73 37728.48 38131.46 36217.49 37152.75 3575.80 37242.60 37618.18 36619.42 36936.81 368
tmp_tt22.26 34223.75 34417.80 3585.23 38212.06 38235.26 36939.48 3762.82 37618.94 36744.20 36522.23 34624.64 37736.30 3459.31 37416.69 371
wuyk23d11.30 34410.95 34712.33 35948.05 36919.89 37925.89 3711.92 3833.58 3753.12 3771.37 3770.64 38215.77 3786.23 3767.77 3761.35 374
testmvs7.23 3469.62 3490.06 3610.04 3830.02 38584.98 2760.02 3840.03 3780.18 3791.21 3780.01 3840.02 3790.14 3770.01 3770.13 376
test1236.92 3479.21 3500.08 3600.03 3840.05 38481.65 3010.01 3850.02 3790.14 3800.85 3790.03 3830.02 3790.12 3780.00 3780.16 375
test_blank0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3780.00 377
uanet_test0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3780.00 377
DCPMVS0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3780.00 377
cdsmvs_eth3d_5k19.86 34326.47 3420.00 3620.00 3850.00 3860.00 37393.45 750.00 3800.00 38195.27 4349.56 2250.00 3810.00 3790.00 3780.00 377
pcd_1.5k_mvsjas4.46 3485.95 3510.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 38053.55 1910.00 3810.00 3790.00 3780.00 377
sosnet-low-res0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3780.00 377
sosnet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3780.00 377
uncertanet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3780.00 377
Regformer0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3780.00 377
ab-mvs-re7.91 34510.55 3480.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 38194.95 510.00 3850.00 3810.00 3790.00 3780.00 377
uanet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3780.00 377
FOURS193.95 4561.77 22493.96 6291.92 13162.14 28786.57 33
test_one_060196.32 1869.74 4094.18 4971.42 19590.67 1596.85 1174.45 18
eth-test20.00 385
eth-test0.00 385
RE-MVS-def80.48 11792.02 9158.56 27690.90 18590.45 18762.76 28178.89 10294.46 6549.30 22878.77 11286.77 11592.28 156
IU-MVS96.46 1169.91 3595.18 1480.75 3695.28 192.34 895.36 1396.47 24
save fliter93.84 4867.89 8395.05 3792.66 10478.19 69
test072696.40 1569.99 3196.76 694.33 4671.92 17191.89 897.11 673.77 21
GSMVS94.68 84
test_part296.29 1968.16 7790.78 13
sam_mvs157.85 13994.68 84
sam_mvs54.91 176
MTGPAbinary92.23 117
MTMP93.77 7432.52 380
test9_res89.41 2594.96 1795.29 61
agg_prior286.41 5294.75 2895.33 57
test_prior467.18 10193.92 65
test_prior295.10 3675.40 10585.25 4995.61 3367.94 4287.47 4294.77 24
新几何291.41 162
旧先验191.94 9560.74 24591.50 15494.36 6965.23 6291.84 6794.55 88
原ACMM292.01 138
test22289.77 14161.60 22889.55 22389.42 22856.83 32077.28 12192.43 11652.76 19991.14 8193.09 137
segment_acmp65.94 56
testdata189.21 23277.55 82
plane_prior786.94 20661.51 229
plane_prior687.23 20162.32 21550.66 215
plane_prior489.14 168
plane_prior361.95 22279.09 5772.53 170
plane_prior293.13 9478.81 63
plane_prior187.15 203
plane_prior62.42 21293.85 6979.38 4978.80 171
n20.00 386
nn0.00 386
door-mid66.01 358
test1193.01 91
door66.57 357
HQP5-MVS63.66 190
HQP-NCC87.54 19594.06 5779.80 4374.18 150
ACMP_Plane87.54 19594.06 5779.80 4374.18 150
BP-MVS77.63 119
HQP3-MVS91.70 14678.90 169
HQP2-MVS51.63 209
NP-MVS87.41 19863.04 19990.30 152
MDTV_nov1_ep13_2view59.90 25880.13 31667.65 24372.79 16554.33 18459.83 26092.58 148
ACMMP++_ref71.63 224
ACMMP++69.72 235
Test By Simon54.21 185