This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort by
MCST-MVS91.08 191.46 289.94 497.66 273.37 897.13 295.58 1089.33 185.77 5196.26 3072.84 2699.38 192.64 1995.93 997.08 9
DVP-MVS++90.53 391.09 488.87 1497.31 469.91 3793.96 7094.37 4672.48 17592.07 896.85 1683.82 299.15 291.53 2997.42 497.55 4
OPU-MVS89.97 397.52 373.15 1296.89 597.00 983.82 299.15 295.72 597.63 397.62 2
test_0728_SECOND88.70 1696.45 1270.43 2996.64 994.37 4699.15 291.91 2794.90 2196.51 21
PC_three_145280.91 4594.07 296.83 1883.57 499.12 595.70 797.42 497.55 4
SED-MVS89.94 890.36 988.70 1696.45 1269.38 4796.89 594.44 4071.65 20492.11 697.21 476.79 999.11 692.34 2195.36 1397.62 2
test_241102_TWO94.41 4271.65 20492.07 897.21 474.58 1799.11 692.34 2195.36 1396.59 16
test_241102_ONE96.45 1269.38 4794.44 4071.65 20492.11 697.05 776.79 999.11 6
DPM-MVS90.70 290.52 791.24 189.68 14476.68 297.29 195.35 1282.87 2091.58 1297.22 379.93 599.10 983.12 9297.64 297.94 1
CANet89.61 1189.99 1188.46 2194.39 3969.71 4396.53 1293.78 5986.89 689.68 2795.78 4065.94 6199.10 992.99 1693.91 4096.58 18
DVP-MVScopyleft89.41 1289.73 1388.45 2296.40 1569.99 3396.64 994.52 3671.92 19190.55 1996.93 1173.77 2199.08 1191.91 2794.90 2196.29 30
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD72.48 17590.55 1996.93 1176.24 1199.08 1191.53 2994.99 1796.43 26
MSC_two_6792asdad89.60 897.31 473.22 1095.05 2199.07 1392.01 2494.77 2596.51 21
No_MVS89.60 897.31 473.22 1095.05 2199.07 1392.01 2494.77 2596.51 21
CNVR-MVS90.32 590.89 688.61 1996.76 870.65 2696.47 1394.83 2584.83 1189.07 3196.80 1970.86 3499.06 1592.64 1995.71 1096.12 35
QAPM79.95 15377.39 17987.64 3089.63 14571.41 1793.30 10193.70 6665.34 28267.39 25591.75 14247.83 25998.96 1657.71 28689.81 9392.54 161
MM88.92 1371.10 2297.02 396.04 688.70 291.57 1396.19 3370.12 3698.91 1796.83 195.06 1696.76 12
DELS-MVS90.05 690.09 1089.94 493.14 6673.88 797.01 494.40 4488.32 385.71 5294.91 6874.11 1998.91 1787.26 5995.94 897.03 10
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MVS84.66 6882.86 9490.06 290.93 12074.56 687.91 26895.54 1168.55 25672.35 19094.71 7359.78 13598.90 1981.29 10894.69 3196.74 13
API-MVS82.28 11180.53 12987.54 3596.13 2270.59 2793.63 9091.04 18065.72 27975.45 15492.83 12256.11 17798.89 2064.10 24989.75 9693.15 143
MAR-MVS84.18 7883.43 8086.44 6696.25 2165.93 13594.28 5594.27 5074.41 13379.16 11395.61 4553.99 20198.88 2169.62 19693.26 5294.50 100
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PHI-MVS86.83 3686.85 3986.78 5593.47 5765.55 14495.39 3095.10 1871.77 20185.69 5396.52 2362.07 11098.77 2286.06 7095.60 1196.03 38
NCCC89.07 1489.46 1487.91 2596.60 1069.05 5696.38 1594.64 3384.42 1286.74 4396.20 3266.56 5798.76 2389.03 4694.56 3295.92 41
MVS_030490.01 790.50 888.53 2090.14 13570.94 2396.47 1395.72 987.33 489.60 2896.26 3068.44 4098.74 2495.82 494.72 3095.90 42
DeepPCF-MVS81.17 189.72 991.38 384.72 12393.00 6958.16 29596.72 894.41 4286.50 890.25 2197.83 175.46 1498.67 2592.78 1895.49 1297.32 6
HPM-MVS++copyleft89.37 1389.95 1287.64 3095.10 3068.23 7795.24 3394.49 3882.43 2588.90 3296.35 2771.89 3398.63 2688.76 4796.40 696.06 36
CHOSEN 1792x268884.98 6483.45 7989.57 1089.94 13975.14 592.07 14892.32 11781.87 3175.68 14988.27 19460.18 12998.60 2780.46 11390.27 9194.96 77
3Dnovator73.91 682.69 10780.82 12288.31 2389.57 14671.26 1892.60 12894.39 4578.84 7767.89 24792.48 12948.42 25298.52 2868.80 20694.40 3495.15 71
DPE-MVScopyleft88.77 1589.21 1587.45 3796.26 2067.56 9394.17 5794.15 5368.77 25490.74 1797.27 276.09 1298.49 2990.58 3794.91 2096.30 29
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
CSCG86.87 3486.26 4288.72 1595.05 3170.79 2593.83 8295.33 1368.48 25877.63 13094.35 8673.04 2498.45 3084.92 7993.71 4596.92 11
DeepC-MVS77.85 385.52 5785.24 5786.37 6988.80 16866.64 11792.15 14293.68 6781.07 4376.91 14093.64 10462.59 10598.44 3185.50 7292.84 5794.03 117
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DeepC-MVS_fast79.48 287.95 2088.00 2387.79 2895.86 2768.32 7295.74 2194.11 5483.82 1583.49 7396.19 3364.53 7998.44 3183.42 9194.88 2496.61 15
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SMA-MVScopyleft88.14 1688.29 2087.67 2993.21 6368.72 6493.85 7794.03 5574.18 13891.74 1196.67 2165.61 6598.42 3389.24 4396.08 795.88 43
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
TSAR-MVS + GP.87.96 1988.37 1986.70 5793.51 5665.32 14895.15 3693.84 5878.17 8585.93 5094.80 7175.80 1398.21 3489.38 4088.78 10196.59 16
DP-MVS Recon82.73 10481.65 11185.98 7797.31 467.06 10695.15 3691.99 13169.08 25176.50 14493.89 9954.48 19698.20 3570.76 18585.66 13392.69 156
MVS_111021_HR86.19 4585.80 5287.37 3893.17 6569.79 4093.99 6993.76 6279.08 7278.88 11893.99 9762.25 10998.15 3685.93 7191.15 8294.15 110
OpenMVScopyleft70.45 1178.54 18075.92 19886.41 6885.93 23571.68 1692.74 11992.51 11466.49 27364.56 27791.96 13843.88 28598.10 3754.61 29590.65 8789.44 218
ZNCC-MVS85.33 5985.08 6086.06 7593.09 6865.65 14093.89 7593.41 8073.75 14979.94 10394.68 7460.61 12698.03 3882.63 9593.72 4494.52 98
test_fmvsm_n_192087.69 2488.50 1785.27 10387.05 21463.55 20093.69 8791.08 17684.18 1390.17 2397.04 867.58 4997.99 3995.72 590.03 9294.26 104
SteuartSystems-ACMMP86.82 3786.90 3786.58 6190.42 12966.38 12396.09 1793.87 5777.73 9284.01 7195.66 4363.39 9597.94 4087.40 5793.55 4895.42 53
Skip Steuart: Steuart Systems R&D Blog.
ACMMP_NAP86.05 4785.80 5286.80 5491.58 10667.53 9591.79 16293.49 7674.93 12984.61 6395.30 5359.42 13997.92 4186.13 6894.92 1994.94 79
EI-MVSNet-Vis-set83.77 8783.67 7384.06 14892.79 7663.56 19991.76 16594.81 2679.65 6077.87 12794.09 9463.35 9797.90 4279.35 11979.36 17990.74 197
PS-MVSNAJ88.14 1687.61 2789.71 692.06 9076.72 195.75 2093.26 8383.86 1489.55 2996.06 3653.55 20697.89 4391.10 3193.31 5194.54 96
9.1487.63 2693.86 4794.41 5294.18 5172.76 17086.21 4696.51 2466.64 5597.88 4490.08 3894.04 37
GST-MVS84.63 6984.29 6985.66 9092.82 7365.27 14993.04 10993.13 9073.20 15878.89 11594.18 9359.41 14097.85 4581.45 10492.48 6193.86 125
fmvsm_s_conf0.5_n86.39 4186.91 3684.82 11687.36 20763.54 20194.74 4790.02 21582.52 2490.14 2496.92 1362.93 10397.84 4695.28 882.26 15493.07 147
SF-MVS87.03 3387.09 3386.84 5192.70 7767.45 9893.64 8993.76 6270.78 22886.25 4596.44 2666.98 5297.79 4788.68 4894.56 3295.28 65
EI-MVSNet-UG-set83.14 9882.96 9083.67 15992.28 8563.19 20891.38 18194.68 3179.22 6776.60 14293.75 10062.64 10497.76 4878.07 13278.01 19090.05 206
fmvsm_s_conf0.1_n85.61 5685.93 4984.68 12682.95 28163.48 20394.03 6889.46 23381.69 3389.86 2596.74 2061.85 11397.75 4994.74 982.01 15892.81 155
xiu_mvs_v2_base87.92 2187.38 3189.55 1191.41 11376.43 395.74 2193.12 9183.53 1789.55 2995.95 3853.45 21097.68 5091.07 3292.62 5894.54 96
fmvsm_s_conf0.5_n_a85.75 5286.09 4684.72 12385.73 23863.58 19893.79 8389.32 23981.42 3990.21 2296.91 1462.41 10797.67 5194.48 1080.56 17192.90 153
HFP-MVS84.73 6784.40 6885.72 8893.75 5165.01 15793.50 9693.19 8772.19 18579.22 11294.93 6659.04 14497.67 5181.55 10292.21 6294.49 101
IB-MVS77.80 482.18 11280.46 13187.35 3989.14 16070.28 3195.59 2695.17 1778.85 7670.19 21485.82 23170.66 3597.67 5172.19 17466.52 27794.09 113
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
APDe-MVScopyleft87.54 2587.84 2486.65 5896.07 2366.30 12694.84 4593.78 5969.35 24588.39 3396.34 2867.74 4897.66 5490.62 3693.44 4996.01 39
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
3Dnovator+73.60 782.10 11680.60 12886.60 5990.89 12266.80 11495.20 3493.44 7874.05 14067.42 25392.49 12849.46 24297.65 5570.80 18491.68 7295.33 59
SD-MVS87.49 2687.49 2987.50 3693.60 5368.82 6293.90 7492.63 11076.86 10487.90 3595.76 4166.17 5897.63 5689.06 4591.48 7696.05 37
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
WTY-MVS86.32 4285.81 5187.85 2692.82 7369.37 4995.20 3495.25 1482.71 2281.91 8494.73 7267.93 4797.63 5679.55 11782.25 15596.54 19
PAPR85.15 6184.47 6687.18 4296.02 2568.29 7391.85 16093.00 9676.59 11179.03 11495.00 6361.59 11697.61 5878.16 13189.00 10095.63 48
test_fmvsmvis_n_192083.80 8683.48 7784.77 12082.51 28363.72 19191.37 18283.99 33081.42 3977.68 12995.74 4258.37 14897.58 5993.38 1486.87 11993.00 150
patch_mono-289.71 1090.99 585.85 8396.04 2463.70 19395.04 4095.19 1586.74 791.53 1495.15 6273.86 2097.58 5993.38 1492.00 6796.28 32
fmvsm_s_conf0.1_n_a84.76 6684.84 6584.53 13280.23 30763.50 20292.79 11788.73 26880.46 4989.84 2696.65 2260.96 12297.57 6193.80 1380.14 17392.53 162
test1287.09 4594.60 3668.86 6092.91 9882.67 8165.44 6697.55 6293.69 4694.84 83
region2R84.36 7284.03 7185.36 9993.54 5564.31 17693.43 9992.95 9772.16 18878.86 11994.84 7056.97 16597.53 6381.38 10692.11 6594.24 105
PAPM_NR82.97 10181.84 10986.37 6994.10 4466.76 11587.66 27392.84 10069.96 23874.07 16893.57 10663.10 10197.50 6470.66 18790.58 8894.85 80
ACMMPR84.37 7184.06 7085.28 10293.56 5464.37 17393.50 9693.15 8972.19 18578.85 12094.86 6956.69 17097.45 6581.55 10292.20 6394.02 118
test_yl84.28 7483.16 8787.64 3094.52 3769.24 5195.78 1895.09 1969.19 24881.09 9192.88 12057.00 16397.44 6681.11 10981.76 16096.23 33
DCV-MVSNet84.28 7483.16 8787.64 3094.52 3769.24 5195.78 1895.09 1969.19 24881.09 9192.88 12057.00 16397.44 6681.11 10981.76 16096.23 33
XVS83.87 8483.47 7885.05 10893.22 6163.78 18792.92 11492.66 10773.99 14178.18 12494.31 8955.25 18497.41 6879.16 12191.58 7493.95 120
X-MVStestdata76.86 20474.13 22485.05 10893.22 6163.78 18792.92 11492.66 10773.99 14178.18 12410.19 39855.25 18497.41 6879.16 12191.58 7493.95 120
gm-plane-assit88.42 17667.04 10878.62 8191.83 14097.37 7076.57 139
CDPH-MVS85.71 5385.46 5586.46 6594.75 3467.19 10293.89 7592.83 10170.90 22483.09 7695.28 5463.62 9197.36 7180.63 11194.18 3594.84 83
AdaColmapbinary78.94 16977.00 18584.76 12196.34 1765.86 13692.66 12687.97 29262.18 30770.56 20792.37 13243.53 28697.35 7264.50 24782.86 15091.05 195
EPNet87.84 2288.38 1886.23 7393.30 6066.05 13095.26 3294.84 2487.09 588.06 3494.53 7766.79 5497.34 7383.89 8891.68 7295.29 63
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Anonymous2024052976.84 20774.15 22384.88 11491.02 11864.95 15993.84 8091.09 17453.57 34973.00 17587.42 21135.91 32897.32 7469.14 20272.41 23892.36 165
PGM-MVS83.25 9682.70 9784.92 11292.81 7564.07 18290.44 21392.20 12471.28 21677.23 13694.43 8055.17 18897.31 7579.33 12091.38 7893.37 136
ZD-MVS96.63 965.50 14693.50 7570.74 22985.26 5995.19 6164.92 7397.29 7687.51 5593.01 54
Anonymous20240521177.96 18975.33 20785.87 8193.73 5264.52 16394.85 4485.36 31662.52 30576.11 14590.18 16929.43 35397.29 7668.51 20877.24 20295.81 45
PVSNet_BlendedMVS83.38 9383.43 8083.22 17093.76 4967.53 9594.06 6393.61 6979.13 7081.00 9485.14 23663.19 9997.29 7687.08 6173.91 22584.83 296
PVSNet_Blended86.73 3886.86 3886.31 7293.76 4967.53 9596.33 1693.61 6982.34 2781.00 9493.08 11363.19 9997.29 7687.08 6191.38 7894.13 111
TEST994.18 4167.28 10094.16 5893.51 7371.75 20285.52 5495.33 5168.01 4597.27 80
train_agg87.21 3187.42 3086.60 5994.18 4167.28 10094.16 5893.51 7371.87 19685.52 5495.33 5168.19 4397.27 8089.09 4494.90 2195.25 69
MSP-MVS90.38 491.87 185.88 8092.83 7164.03 18393.06 10794.33 4882.19 2893.65 396.15 3585.89 197.19 8291.02 3397.75 196.43 26
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
fmvsm_l_conf0.5_n_a87.44 2888.15 2285.30 10187.10 21264.19 18094.41 5288.14 28680.24 5292.54 596.97 1069.52 3997.17 8395.89 288.51 10494.56 93
MP-MVScopyleft85.02 6284.97 6285.17 10792.60 8164.27 17893.24 10292.27 11973.13 16079.63 10794.43 8061.90 11197.17 8385.00 7792.56 5994.06 116
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MTAPA83.91 8383.38 8485.50 9391.89 9965.16 15381.75 31792.23 12075.32 12480.53 9895.21 6056.06 17897.16 8584.86 8092.55 6094.18 107
fmvsm_l_conf0.5_n87.49 2688.19 2185.39 9786.95 21564.37 17394.30 5488.45 27780.51 4892.70 496.86 1569.98 3797.15 8695.83 388.08 10894.65 90
h-mvs3383.01 10082.56 10084.35 14089.34 15162.02 23392.72 12093.76 6281.45 3682.73 7992.25 13560.11 13097.13 8787.69 5362.96 30493.91 122
VDD-MVS83.06 9981.81 11086.81 5390.86 12367.70 8995.40 2991.50 15775.46 12181.78 8592.34 13340.09 29897.13 8786.85 6482.04 15795.60 49
FA-MVS(test-final)79.12 16577.23 18184.81 11990.54 12763.98 18481.35 32391.71 14771.09 22174.85 15982.94 26052.85 21397.05 8967.97 21181.73 16293.41 135
LFMVS84.34 7382.73 9689.18 1294.76 3373.25 994.99 4291.89 13771.90 19382.16 8393.49 10847.98 25797.05 8982.55 9684.82 13797.25 7
sss82.71 10682.38 10383.73 15689.25 15559.58 27892.24 13994.89 2377.96 8779.86 10492.38 13156.70 16997.05 8977.26 13680.86 16894.55 94
131480.70 13778.95 15485.94 7987.77 19967.56 9387.91 26892.55 11372.17 18767.44 25293.09 11250.27 23597.04 9271.68 17987.64 11293.23 141
无先验92.71 12192.61 11162.03 30997.01 9366.63 22493.97 119
MP-MVS-pluss85.24 6085.13 5985.56 9291.42 11165.59 14291.54 17292.51 11474.56 13280.62 9795.64 4459.15 14397.00 9486.94 6393.80 4194.07 115
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
VNet86.20 4485.65 5487.84 2793.92 4669.99 3395.73 2395.94 778.43 8286.00 4993.07 11458.22 15097.00 9485.22 7484.33 14296.52 20
APD-MVScopyleft85.93 4985.99 4885.76 8795.98 2665.21 15193.59 9292.58 11266.54 27286.17 4795.88 3963.83 8697.00 9486.39 6792.94 5595.06 73
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
mPP-MVS82.96 10282.44 10284.52 13392.83 7162.92 21692.76 11891.85 14171.52 21275.61 15294.24 9153.48 20996.99 9778.97 12490.73 8593.64 131
test_fmvsmconf_n86.58 3987.17 3284.82 11685.28 24462.55 22394.26 5689.78 22183.81 1687.78 3696.33 2965.33 6796.98 9894.40 1187.55 11394.95 78
CANet_DTU84.09 8083.52 7485.81 8490.30 13266.82 11291.87 15889.01 25685.27 986.09 4893.74 10147.71 26196.98 9877.90 13389.78 9593.65 130
PVSNet_Blended_VisFu83.97 8283.50 7685.39 9790.02 13766.59 12093.77 8491.73 14577.43 10077.08 13989.81 17663.77 8896.97 10079.67 11688.21 10692.60 159
ACMMPcopyleft81.49 12480.67 12583.93 15191.71 10362.90 21792.13 14392.22 12371.79 20071.68 19893.49 10850.32 23396.96 10178.47 12984.22 14691.93 178
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
test_894.19 4067.19 10294.15 6193.42 7971.87 19685.38 5795.35 5068.19 4396.95 102
HY-MVS76.49 584.28 7483.36 8587.02 4892.22 8767.74 8884.65 29494.50 3779.15 6982.23 8287.93 20366.88 5396.94 10380.53 11282.20 15696.39 28
MG-MVS87.11 3286.27 4189.62 797.79 176.27 494.96 4394.49 3878.74 8083.87 7292.94 11764.34 8096.94 10375.19 14794.09 3695.66 47
test_fmvsmconf0.1_n85.71 5386.08 4784.62 13080.83 29762.33 22793.84 8088.81 26483.50 1887.00 4296.01 3763.36 9696.93 10594.04 1287.29 11694.61 92
canonicalmvs86.85 3586.25 4388.66 1891.80 10171.92 1493.54 9491.71 14780.26 5187.55 3795.25 5863.59 9396.93 10588.18 4984.34 14197.11 8
alignmvs87.28 3086.97 3588.24 2491.30 11471.14 2195.61 2593.56 7179.30 6587.07 4195.25 5868.43 4196.93 10587.87 5184.33 14296.65 14
test_prior86.42 6794.71 3567.35 9993.10 9296.84 10895.05 74
test_fmvsmconf0.01_n83.70 9083.52 7484.25 14475.26 34961.72 24192.17 14187.24 29982.36 2684.91 6195.41 4855.60 18296.83 10992.85 1785.87 13194.21 106
MSLP-MVS++86.27 4385.91 5087.35 3992.01 9368.97 5995.04 4092.70 10479.04 7481.50 8796.50 2558.98 14596.78 11083.49 9093.93 3996.29 30
agg_prior94.16 4366.97 11093.31 8284.49 6596.75 111
FE-MVS75.97 22173.02 23784.82 11689.78 14165.56 14377.44 34891.07 17764.55 28572.66 18079.85 30746.05 27596.69 11254.97 29480.82 16992.21 174
原ACMM184.42 13693.21 6364.27 17893.40 8165.39 28079.51 10892.50 12658.11 15296.69 11265.27 24393.96 3892.32 167
ab-mvs80.18 14778.31 16185.80 8588.44 17565.49 14783.00 31192.67 10671.82 19977.36 13485.01 23754.50 19396.59 11476.35 14175.63 21295.32 61
PCF-MVS73.15 979.29 16277.63 17284.29 14286.06 23065.96 13487.03 28091.10 17369.86 24069.79 22190.64 15757.54 15796.59 11464.37 24882.29 15390.32 202
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
新几何184.73 12292.32 8464.28 17791.46 15959.56 32779.77 10592.90 11856.95 16696.57 11663.40 25392.91 5693.34 137
VDDNet80.50 14078.26 16287.21 4186.19 22869.79 4094.48 5091.31 16360.42 32079.34 11090.91 15538.48 30796.56 11782.16 9781.05 16695.27 66
dcpmvs_287.37 2987.55 2886.85 5095.04 3268.20 7890.36 21790.66 18879.37 6481.20 8993.67 10374.73 1596.55 11890.88 3492.00 6795.82 44
thisisatest051583.41 9282.49 10186.16 7489.46 15068.26 7593.54 9494.70 3074.31 13675.75 14790.92 15472.62 2896.52 11969.64 19481.50 16393.71 128
cascas78.18 18575.77 20085.41 9687.14 21169.11 5392.96 11291.15 17166.71 27170.47 20886.07 22837.49 31896.48 12070.15 19079.80 17690.65 198
EIA-MVS84.84 6584.88 6384.69 12591.30 11462.36 22693.85 7792.04 12979.45 6179.33 11194.28 9062.42 10696.35 12180.05 11491.25 8195.38 56
casdiffmvs_mvgpermissive85.66 5585.18 5887.09 4588.22 18569.35 5093.74 8691.89 13781.47 3580.10 10191.45 14664.80 7596.35 12187.23 6087.69 11195.58 50
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline283.68 9183.42 8284.48 13587.37 20666.00 13290.06 22695.93 879.71 5969.08 22690.39 16477.92 696.28 12378.91 12581.38 16491.16 193
HPM-MVScopyleft83.25 9682.95 9184.17 14692.25 8662.88 21890.91 19891.86 13970.30 23477.12 13793.96 9856.75 16896.28 12382.04 9991.34 8093.34 137
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CP-MVS83.71 8983.40 8384.65 12793.14 6663.84 18594.59 4992.28 11871.03 22277.41 13394.92 6755.21 18796.19 12581.32 10790.70 8693.91 122
UGNet79.87 15478.68 15683.45 16689.96 13861.51 24492.13 14390.79 18376.83 10678.85 12086.33 22538.16 31096.17 12667.93 21387.17 11792.67 157
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
APD-MVS_3200maxsize81.64 12381.32 11482.59 18392.36 8358.74 29091.39 17991.01 18163.35 29579.72 10694.62 7651.82 22096.14 12779.71 11587.93 10992.89 154
BH-RMVSNet79.46 16177.65 17184.89 11391.68 10465.66 13993.55 9388.09 28872.93 16573.37 17391.12 15346.20 27396.12 12856.28 29085.61 13492.91 152
SDMVSNet80.26 14578.88 15584.40 13789.25 15567.63 9285.35 29093.02 9376.77 10870.84 20587.12 21547.95 25896.09 12985.04 7674.55 21689.48 216
testdata296.09 12961.26 269
MVS_Test84.16 7983.20 8687.05 4791.56 10769.82 3989.99 23192.05 12877.77 9182.84 7786.57 22163.93 8596.09 12974.91 15289.18 9995.25 69
baseline85.01 6384.44 6786.71 5688.33 18068.73 6390.24 22291.82 14381.05 4481.18 9092.50 12663.69 8996.08 13284.45 8386.71 12595.32 61
casdiffmvspermissive85.37 5884.87 6486.84 5188.25 18369.07 5593.04 10991.76 14481.27 4180.84 9692.07 13764.23 8196.06 13384.98 7887.43 11595.39 55
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
thisisatest053081.15 12880.07 13384.39 13888.26 18265.63 14191.40 17794.62 3471.27 21770.93 20489.18 18172.47 2996.04 13465.62 23876.89 20491.49 182
TSAR-MVS + MP.88.11 1888.64 1686.54 6391.73 10268.04 8190.36 21793.55 7282.89 1991.29 1592.89 11972.27 3096.03 13587.99 5094.77 2595.54 52
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MSDG69.54 28465.73 29480.96 22885.11 24963.71 19284.19 29683.28 33656.95 33854.50 33584.03 24931.50 34596.03 13542.87 34469.13 25983.14 315
Effi-MVS+83.82 8582.76 9586.99 4989.56 14769.40 4691.35 18486.12 31072.59 17283.22 7592.81 12359.60 13796.01 13781.76 10187.80 11095.56 51
UA-Net80.02 15179.65 14181.11 22289.33 15357.72 30086.33 28789.00 25977.44 9981.01 9389.15 18259.33 14195.90 13861.01 27084.28 14489.73 212
SR-MVS82.81 10382.58 9983.50 16493.35 5861.16 25092.23 14091.28 16664.48 28681.27 8895.28 5453.71 20595.86 13982.87 9388.77 10293.49 134
lupinMVS87.74 2387.77 2587.63 3489.24 15871.18 1996.57 1192.90 9982.70 2387.13 3995.27 5664.99 7095.80 14089.34 4191.80 7095.93 40
MS-PatchMatch77.90 19276.50 19082.12 19985.99 23169.95 3691.75 16792.70 10473.97 14362.58 29884.44 24641.11 29595.78 14163.76 25292.17 6480.62 342
CLD-MVS82.73 10482.35 10483.86 15287.90 19367.65 9195.45 2892.18 12685.06 1072.58 18392.27 13452.46 21795.78 14184.18 8479.06 18288.16 235
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CS-MVS-test86.14 4687.01 3483.52 16192.63 8059.36 28395.49 2791.92 13480.09 5385.46 5695.53 4761.82 11595.77 14386.77 6593.37 5095.41 54
HPM-MVS_fast80.25 14679.55 14582.33 18991.55 10859.95 27391.32 18689.16 24765.23 28374.71 16193.07 11447.81 26095.74 14474.87 15488.23 10591.31 190
xiu_mvs_v1_base_debu82.16 11381.12 11685.26 10486.42 22368.72 6492.59 13090.44 19573.12 16184.20 6794.36 8238.04 31295.73 14584.12 8586.81 12091.33 186
xiu_mvs_v1_base82.16 11381.12 11685.26 10486.42 22368.72 6492.59 13090.44 19573.12 16184.20 6794.36 8238.04 31295.73 14584.12 8586.81 12091.33 186
xiu_mvs_v1_base_debi82.16 11381.12 11685.26 10486.42 22368.72 6492.59 13090.44 19573.12 16184.20 6794.36 8238.04 31295.73 14584.12 8586.81 12091.33 186
DP-MVS69.90 28166.48 28880.14 24395.36 2862.93 21489.56 23776.11 35350.27 35957.69 32685.23 23539.68 29995.73 14533.35 37071.05 24781.78 332
114514_t79.17 16477.67 17083.68 15895.32 2965.53 14592.85 11691.60 15363.49 29367.92 24490.63 15946.65 26695.72 14967.01 22283.54 14789.79 210
TR-MVS78.77 17577.37 18082.95 17490.49 12860.88 25493.67 8890.07 21170.08 23774.51 16291.37 15045.69 27695.70 15060.12 27680.32 17292.29 168
ETV-MVS86.01 4886.11 4585.70 8990.21 13467.02 10993.43 9991.92 13481.21 4284.13 7094.07 9660.93 12395.63 15189.28 4289.81 9394.46 102
tttt051779.50 15978.53 15982.41 18887.22 20961.43 24689.75 23694.76 2769.29 24667.91 24588.06 20272.92 2595.63 15162.91 25973.90 22690.16 204
SR-MVS-dyc-post81.06 13280.70 12482.15 19792.02 9158.56 29290.90 19990.45 19262.76 30278.89 11594.46 7851.26 22895.61 15378.77 12786.77 12392.28 169
thres20079.66 15678.33 16083.66 16092.54 8265.82 13893.06 10796.31 374.90 13073.30 17488.66 18559.67 13695.61 15347.84 32378.67 18689.56 215
HQP4-MVS74.18 16495.61 15388.63 225
BH-w/o80.49 14179.30 15084.05 14990.83 12464.36 17593.60 9189.42 23674.35 13569.09 22590.15 17155.23 18695.61 15364.61 24686.43 12992.17 175
HQP-MVS81.14 12980.64 12682.64 18187.54 20163.66 19694.06 6391.70 14979.80 5674.18 16490.30 16651.63 22495.61 15377.63 13478.90 18388.63 225
HQP_MVS80.34 14479.75 14082.12 19986.94 21662.42 22493.13 10591.31 16378.81 7872.53 18489.14 18350.66 23195.55 15876.74 13778.53 18888.39 232
plane_prior591.31 16395.55 15876.74 13778.53 18888.39 232
jason86.40 4086.17 4487.11 4486.16 22970.54 2895.71 2492.19 12582.00 3084.58 6494.34 8761.86 11295.53 16087.76 5290.89 8495.27 66
jason: jason.
CS-MVS85.80 5186.65 4083.27 16992.00 9458.92 28895.31 3191.86 13979.97 5484.82 6295.40 4962.26 10895.51 16186.11 6992.08 6695.37 57
EC-MVSNet84.53 7085.04 6183.01 17389.34 15161.37 24794.42 5191.09 17477.91 8983.24 7494.20 9258.37 14895.40 16285.35 7391.41 7792.27 172
BH-untuned78.68 17677.08 18283.48 16589.84 14063.74 18992.70 12288.59 27471.57 21066.83 26288.65 18651.75 22295.39 16359.03 28184.77 13891.32 189
MVS_111021_LR82.02 11781.52 11283.51 16388.42 17662.88 21889.77 23588.93 26076.78 10775.55 15393.10 11150.31 23495.38 16483.82 8987.02 11892.26 173
thres100view90078.37 18277.01 18482.46 18491.89 9963.21 20791.19 19396.33 172.28 18370.45 21087.89 20460.31 12795.32 16545.16 33477.58 19588.83 220
tfpn200view978.79 17477.43 17582.88 17592.21 8864.49 16492.05 14996.28 473.48 15571.75 19688.26 19560.07 13295.32 16545.16 33477.58 19588.83 220
thres40078.68 17677.43 17582.43 18592.21 8864.49 16492.05 14996.28 473.48 15571.75 19688.26 19560.07 13295.32 16545.16 33477.58 19587.48 241
RPMNet70.42 27665.68 29584.63 12983.15 27667.96 8370.25 36290.45 19246.83 36869.97 21865.10 36756.48 17495.30 16835.79 36573.13 22990.64 199
ECVR-MVScopyleft81.29 12780.38 13284.01 15088.39 17861.96 23592.56 13386.79 30377.66 9476.63 14191.42 14746.34 27095.24 16974.36 15689.23 9794.85 80
OPM-MVS79.00 16778.09 16481.73 20783.52 27363.83 18691.64 17190.30 20276.36 11471.97 19389.93 17546.30 27295.17 17075.10 14877.70 19386.19 268
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
test250683.29 9482.92 9284.37 13988.39 17863.18 20992.01 15191.35 16277.66 9478.49 12391.42 14764.58 7895.09 17173.19 15989.23 9794.85 80
PAPM85.89 5085.46 5587.18 4288.20 18672.42 1392.41 13592.77 10282.11 2980.34 9993.07 11468.27 4295.02 17278.39 13093.59 4794.09 113
sd_testset77.08 20275.37 20582.20 19589.25 15562.11 23282.06 31589.09 25276.77 10870.84 20587.12 21541.43 29495.01 17367.23 22074.55 21689.48 216
PMMVS81.98 11882.04 10681.78 20689.76 14356.17 31591.13 19490.69 18577.96 8780.09 10293.57 10646.33 27194.99 17481.41 10587.46 11494.17 108
CostFormer82.33 11081.15 11585.86 8289.01 16368.46 6982.39 31493.01 9475.59 11980.25 10081.57 27972.03 3294.96 17579.06 12377.48 19894.16 109
EPP-MVSNet81.79 12081.52 11282.61 18288.77 16960.21 27093.02 11193.66 6868.52 25772.90 17890.39 16472.19 3194.96 17574.93 15179.29 18192.67 157
ACMH63.93 1768.62 29164.81 30180.03 24785.22 24563.25 20687.72 27184.66 32260.83 31851.57 34779.43 31227.29 35894.96 17541.76 34764.84 29081.88 330
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
thres600view778.00 18776.66 18982.03 20491.93 9663.69 19491.30 18796.33 172.43 17870.46 20987.89 20460.31 12794.92 17842.64 34676.64 20587.48 241
baseline181.84 11981.03 12084.28 14391.60 10566.62 11891.08 19591.66 15181.87 3174.86 15891.67 14469.98 3794.92 17871.76 17764.75 29291.29 191
XXY-MVS77.94 19076.44 19182.43 18582.60 28264.44 16892.01 15191.83 14273.59 15470.00 21785.82 23154.43 19794.76 18069.63 19568.02 26788.10 236
Vis-MVSNetpermissive80.92 13579.98 13783.74 15488.48 17361.80 23793.44 9888.26 28573.96 14477.73 12891.76 14149.94 23894.76 18065.84 23590.37 9094.65 90
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
nrg03080.93 13479.86 13884.13 14783.69 27068.83 6193.23 10391.20 16775.55 12075.06 15788.22 19863.04 10294.74 18281.88 10066.88 27488.82 223
GA-MVS78.33 18476.23 19484.65 12783.65 27166.30 12691.44 17390.14 20976.01 11670.32 21284.02 25042.50 29094.72 18370.98 18277.00 20392.94 151
EI-MVSNet78.97 16878.22 16381.25 21785.33 24262.73 22189.53 24093.21 8472.39 18072.14 19190.13 17260.99 12094.72 18367.73 21572.49 23686.29 264
MVSTER82.47 10882.05 10583.74 15492.68 7869.01 5791.90 15793.21 8479.83 5572.14 19185.71 23374.72 1694.72 18375.72 14372.49 23687.50 240
test111180.84 13680.02 13483.33 16787.87 19460.76 25892.62 12786.86 30277.86 9075.73 14891.39 14946.35 26994.70 18672.79 16588.68 10394.52 98
test_vis1_n_192081.66 12282.01 10780.64 23382.24 28655.09 32394.76 4686.87 30181.67 3484.40 6694.63 7538.17 30994.67 18791.98 2683.34 14892.16 176
iter_conf_final81.74 12180.93 12184.18 14592.66 7969.10 5492.94 11382.80 33979.01 7574.85 15988.40 19061.83 11494.61 18879.36 11876.52 20788.83 220
iter_conf0583.27 9582.70 9784.98 11193.32 5971.84 1594.16 5881.76 34182.74 2173.83 17188.40 19072.77 2794.61 18882.10 9875.21 21488.48 229
tt080573.07 25270.73 26480.07 24578.37 33257.05 31087.78 27092.18 12661.23 31667.04 25886.49 22231.35 34794.58 19065.06 24467.12 27288.57 227
hse-mvs281.12 13181.11 11981.16 22086.52 22257.48 30589.40 24391.16 16981.45 3682.73 7990.49 16260.11 13094.58 19087.69 5360.41 33191.41 185
AUN-MVS78.37 18277.43 17581.17 21986.60 22157.45 30689.46 24291.16 16974.11 13974.40 16390.49 16255.52 18394.57 19274.73 15560.43 33091.48 183
PLCcopyleft68.80 1475.23 23273.68 23179.86 25392.93 7058.68 29190.64 21088.30 28160.90 31764.43 28190.53 16042.38 29194.57 19256.52 28876.54 20686.33 263
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
GG-mvs-BLEND86.53 6491.91 9869.67 4575.02 35694.75 2878.67 12290.85 15677.91 794.56 19472.25 17193.74 4395.36 58
OMC-MVS78.67 17877.91 16980.95 22985.76 23757.40 30788.49 25988.67 27173.85 14672.43 18892.10 13649.29 24594.55 19572.73 16677.89 19190.91 196
Fast-Effi-MVS+81.14 12980.01 13584.51 13490.24 13365.86 13694.12 6289.15 24873.81 14875.37 15588.26 19557.26 15894.53 19666.97 22384.92 13693.15 143
diffmvspermissive84.28 7483.83 7285.61 9187.40 20568.02 8290.88 20189.24 24280.54 4781.64 8692.52 12559.83 13494.52 19787.32 5885.11 13594.29 103
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
HyFIR lowres test81.03 13379.56 14385.43 9587.81 19768.11 8090.18 22390.01 21670.65 23072.95 17786.06 22963.61 9294.50 19875.01 15079.75 17793.67 129
v2v48277.42 19775.65 20382.73 17880.38 30367.13 10591.85 16090.23 20675.09 12769.37 22283.39 25753.79 20494.44 19971.77 17665.00 28986.63 260
v114476.73 21074.88 21082.27 19180.23 30766.60 11991.68 16990.21 20873.69 15169.06 22781.89 27252.73 21594.40 20069.21 20165.23 28685.80 279
dmvs_re76.93 20375.36 20681.61 21087.78 19860.71 26180.00 33687.99 29079.42 6269.02 22889.47 17946.77 26494.32 20163.38 25474.45 21989.81 209
TAPA-MVS70.22 1274.94 23673.53 23279.17 26690.40 13052.07 33589.19 24889.61 23062.69 30470.07 21592.67 12448.89 25194.32 20138.26 36079.97 17491.12 194
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
LPG-MVS_test75.82 22474.58 21579.56 26184.31 26259.37 28190.44 21389.73 22669.49 24364.86 27288.42 18838.65 30494.30 20372.56 16872.76 23385.01 294
LGP-MVS_train79.56 26184.31 26259.37 28189.73 22669.49 24364.86 27288.42 18838.65 30494.30 20372.56 16872.76 23385.01 294
v119275.98 22073.92 22782.15 19779.73 31166.24 12891.22 19089.75 22372.67 17168.49 23881.42 28249.86 23994.27 20567.08 22165.02 28885.95 276
tpmvs72.88 25769.76 27382.22 19490.98 11967.05 10778.22 34588.30 28163.10 30064.35 28274.98 34155.09 18994.27 20543.25 34069.57 25385.34 290
tpm279.80 15577.95 16885.34 10088.28 18168.26 7581.56 32091.42 16070.11 23677.59 13280.50 29767.40 5094.26 20767.34 21877.35 19993.51 133
mvsmamba76.85 20675.71 20280.25 24183.07 27859.16 28591.44 17380.64 34676.84 10567.95 24386.33 22546.17 27494.24 20876.06 14272.92 23287.36 245
PVSNet_068.08 1571.81 26668.32 28382.27 19184.68 25362.31 22988.68 25690.31 20175.84 11757.93 32580.65 29637.85 31594.19 20969.94 19229.05 38890.31 203
MVP-Stereo77.12 20176.23 19479.79 25581.72 29166.34 12589.29 24490.88 18270.56 23262.01 30182.88 26149.34 24394.13 21065.55 24093.80 4178.88 356
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
ACMM69.62 1374.34 24072.73 24379.17 26684.25 26457.87 29890.36 21789.93 21763.17 29965.64 26786.04 23037.79 31694.10 21165.89 23471.52 24385.55 285
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
V4276.46 21274.55 21682.19 19679.14 32167.82 8690.26 22189.42 23673.75 14968.63 23681.89 27251.31 22794.09 21271.69 17864.84 29084.66 297
TESTMET0.1,182.41 10981.98 10883.72 15788.08 18763.74 18992.70 12293.77 6179.30 6577.61 13187.57 20958.19 15194.08 21373.91 15886.68 12693.33 139
Anonymous2023121173.08 25170.39 26781.13 22190.62 12663.33 20591.40 17790.06 21351.84 35464.46 28080.67 29536.49 32694.07 21463.83 25164.17 29785.98 275
v875.35 23073.26 23581.61 21080.67 30066.82 11289.54 23989.27 24171.65 20463.30 29080.30 30154.99 19094.06 21567.33 21962.33 31183.94 302
EG-PatchMatch MVS68.55 29265.41 29877.96 28078.69 32862.93 21489.86 23389.17 24660.55 31950.27 35277.73 32222.60 36794.06 21547.18 32672.65 23576.88 364
PVSNet73.49 880.05 15078.63 15784.31 14190.92 12164.97 15892.47 13491.05 17979.18 6872.43 18890.51 16137.05 32494.06 21568.06 21086.00 13093.90 124
GeoE78.90 17077.43 17583.29 16888.95 16462.02 23392.31 13686.23 30870.24 23571.34 20289.27 18054.43 19794.04 21863.31 25580.81 17093.81 127
v1074.77 23772.54 24781.46 21380.33 30566.71 11689.15 24989.08 25370.94 22363.08 29379.86 30652.52 21694.04 21865.70 23762.17 31283.64 304
v14419276.05 21874.03 22582.12 19979.50 31566.55 12191.39 17989.71 22972.30 18268.17 24081.33 28451.75 22294.03 22067.94 21264.19 29685.77 280
tpm cat175.30 23172.21 25084.58 13188.52 17167.77 8778.16 34688.02 28961.88 31268.45 23976.37 33460.65 12494.03 22053.77 30074.11 22291.93 178
gg-mvs-nofinetune77.18 20074.31 22085.80 8591.42 11168.36 7171.78 35994.72 2949.61 36077.12 13745.92 38377.41 893.98 22267.62 21693.16 5395.05 74
PS-MVSNAJss77.26 19976.31 19380.13 24480.64 30159.16 28590.63 21291.06 17872.80 16968.58 23784.57 24453.55 20693.96 22372.97 16171.96 24087.27 249
OpenMVS_ROBcopyleft61.12 1866.39 30762.92 31576.80 29776.51 34457.77 29989.22 24683.41 33455.48 34553.86 33977.84 32126.28 36193.95 22434.90 36768.76 26178.68 358
MDTV_nov1_ep1372.61 24589.06 16168.48 6880.33 33090.11 21071.84 19871.81 19575.92 33853.01 21293.92 22548.04 32073.38 227
v192192075.63 22873.49 23382.06 20379.38 31666.35 12491.07 19789.48 23271.98 19067.99 24181.22 28749.16 24893.90 22666.56 22564.56 29585.92 278
v124075.21 23372.98 23881.88 20579.20 31866.00 13290.75 20689.11 25171.63 20867.41 25481.22 28747.36 26293.87 22765.46 24164.72 29385.77 280
ACMP71.68 1075.58 22974.23 22279.62 25984.97 25159.64 27690.80 20489.07 25470.39 23362.95 29487.30 21338.28 30893.87 22772.89 16271.45 24485.36 289
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
v14876.19 21374.47 21881.36 21580.05 30964.44 16891.75 16790.23 20673.68 15267.13 25780.84 29255.92 18093.86 22968.95 20461.73 31985.76 282
LS3D69.17 28666.40 29077.50 28491.92 9756.12 31685.12 29180.37 34746.96 36656.50 33087.51 21037.25 31993.71 23032.52 37679.40 17882.68 323
EPMVS78.49 18175.98 19786.02 7691.21 11669.68 4480.23 33291.20 16775.25 12572.48 18678.11 31954.65 19293.69 23157.66 28783.04 14994.69 86
IS-MVSNet80.14 14879.41 14782.33 18987.91 19260.08 27291.97 15588.27 28372.90 16871.44 20191.73 14361.44 11793.66 23262.47 26386.53 12793.24 140
v7n71.31 27168.65 27879.28 26476.40 34560.77 25786.71 28589.45 23464.17 28858.77 31978.24 31744.59 28393.54 23357.76 28561.75 31883.52 307
VPA-MVSNet79.03 16678.00 16682.11 20285.95 23264.48 16693.22 10494.66 3275.05 12874.04 16984.95 23852.17 21993.52 23474.90 15367.04 27388.32 234
tfpnnormal70.10 27867.36 28678.32 27583.45 27460.97 25388.85 25392.77 10264.85 28460.83 30678.53 31543.52 28793.48 23531.73 37761.70 32080.52 343
旧先验292.00 15459.37 32887.54 3893.47 23675.39 146
1112_ss80.56 13979.83 13982.77 17788.65 17060.78 25692.29 13788.36 27972.58 17372.46 18794.95 6465.09 6993.42 23766.38 22977.71 19294.10 112
testdata81.34 21689.02 16257.72 30089.84 22058.65 33185.32 5894.09 9457.03 16193.28 23869.34 19990.56 8993.03 148
LTVRE_ROB59.60 1966.27 30863.54 31174.45 31284.00 26751.55 33767.08 37283.53 33258.78 33054.94 33480.31 30034.54 33393.23 23940.64 35368.03 26678.58 359
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
VPNet78.82 17277.53 17482.70 17984.52 25766.44 12293.93 7292.23 12080.46 4972.60 18288.38 19249.18 24693.13 24072.47 17063.97 30188.55 228
Test_1112_low_res79.56 15878.60 15882.43 18588.24 18460.39 26792.09 14687.99 29072.10 18971.84 19487.42 21164.62 7793.04 24165.80 23677.30 20093.85 126
PatchMatch-RL72.06 26569.98 26878.28 27689.51 14955.70 31983.49 30183.39 33561.24 31563.72 28682.76 26234.77 33293.03 24253.37 30277.59 19486.12 272
Fast-Effi-MVS+-dtu75.04 23473.37 23480.07 24580.86 29659.52 27991.20 19285.38 31571.90 19365.20 27084.84 24041.46 29392.97 24366.50 22872.96 23187.73 238
cl____76.07 21574.67 21180.28 23985.15 24661.76 23990.12 22488.73 26871.16 21865.43 26881.57 27961.15 11892.95 24466.54 22662.17 31286.13 271
pm-mvs172.89 25671.09 26078.26 27779.10 32257.62 30390.80 20489.30 24067.66 26362.91 29581.78 27449.11 24992.95 24460.29 27558.89 33684.22 300
TAMVS80.37 14379.45 14683.13 17285.14 24763.37 20491.23 18990.76 18474.81 13172.65 18188.49 18760.63 12592.95 24469.41 19881.95 15993.08 146
ACMH+65.35 1667.65 30064.55 30476.96 29584.59 25657.10 30988.08 26380.79 34458.59 33253.00 34181.09 29126.63 36092.95 24446.51 32861.69 32180.82 339
DIV-MVS_self_test76.07 21574.67 21180.28 23985.14 24761.75 24090.12 22488.73 26871.16 21865.42 26981.60 27861.15 11892.94 24866.54 22662.16 31486.14 269
cl2277.94 19076.78 18781.42 21487.57 20064.93 16090.67 20888.86 26372.45 17767.63 25182.68 26464.07 8292.91 24971.79 17565.30 28386.44 262
CDS-MVSNet81.43 12580.74 12383.52 16186.26 22764.45 16792.09 14690.65 18975.83 11873.95 17089.81 17663.97 8492.91 24971.27 18082.82 15193.20 142
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
miper_enhance_ethall78.86 17177.97 16781.54 21288.00 19165.17 15291.41 17589.15 24875.19 12668.79 23383.98 25167.17 5192.82 25172.73 16665.30 28386.62 261
eth_miper_zixun_eth75.96 22274.40 21980.66 23284.66 25463.02 21189.28 24588.27 28371.88 19565.73 26681.65 27659.45 13892.81 25268.13 20960.53 32886.14 269
CPTT-MVS79.59 15779.16 15280.89 23191.54 10959.80 27592.10 14588.54 27660.42 32072.96 17693.28 11048.27 25392.80 25378.89 12686.50 12890.06 205
PatchmatchNetpermissive77.46 19674.63 21385.96 7889.55 14870.35 3079.97 33789.55 23172.23 18470.94 20376.91 33057.03 16192.79 25454.27 29781.17 16594.74 85
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
jajsoiax73.05 25371.51 25877.67 28277.46 34054.83 32488.81 25490.04 21469.13 25062.85 29683.51 25531.16 34892.75 25570.83 18369.80 25085.43 288
mvs_tets72.71 26071.11 25977.52 28377.41 34154.52 32688.45 26089.76 22268.76 25562.70 29783.26 25829.49 35292.71 25670.51 18969.62 25285.34 290
tpmrst80.57 13879.14 15384.84 11590.10 13668.28 7481.70 31889.72 22877.63 9675.96 14679.54 31164.94 7292.71 25675.43 14577.28 20193.55 132
D2MVS73.80 24772.02 25279.15 26879.15 32062.97 21288.58 25890.07 21172.94 16459.22 31478.30 31642.31 29292.70 25865.59 23972.00 23981.79 331
test_post23.01 39356.49 17392.67 259
MVSFormer83.75 8882.88 9386.37 6989.24 15871.18 1989.07 25090.69 18565.80 27787.13 3994.34 8764.99 7092.67 25972.83 16391.80 7095.27 66
test_djsdf73.76 24972.56 24677.39 28777.00 34353.93 32889.07 25090.69 18565.80 27763.92 28382.03 27143.14 28992.67 25972.83 16368.53 26385.57 284
RRT_MVS74.44 23972.97 23978.84 27182.36 28557.66 30289.83 23488.79 26770.61 23164.58 27684.89 23939.24 30092.65 26270.11 19166.34 27886.21 267
miper_ehance_all_eth77.60 19476.44 19181.09 22685.70 23964.41 17190.65 20988.64 27372.31 18167.37 25682.52 26564.77 7692.64 26370.67 18665.30 28386.24 266
c3_l76.83 20875.47 20480.93 23085.02 25064.18 18190.39 21688.11 28771.66 20366.65 26481.64 27763.58 9492.56 26469.31 20062.86 30586.04 273
dp75.01 23572.09 25183.76 15389.28 15466.22 12979.96 33889.75 22371.16 21867.80 24977.19 32751.81 22192.54 26550.39 30871.44 24592.51 163
Effi-MVS+-dtu76.14 21475.28 20878.72 27283.22 27555.17 32289.87 23287.78 29375.42 12267.98 24281.43 28145.08 28192.52 26675.08 14971.63 24188.48 229
F-COLMAP70.66 27368.44 28177.32 28886.37 22655.91 31788.00 26686.32 30556.94 33957.28 32888.07 20133.58 33792.49 26751.02 30668.37 26483.55 305
USDC67.43 30464.51 30576.19 30077.94 33755.29 32178.38 34385.00 31973.17 15948.36 35980.37 29921.23 36992.48 26852.15 30464.02 30080.81 340
pmmvs667.57 30164.76 30276.00 30272.82 35953.37 33088.71 25586.78 30453.19 35057.58 32778.03 32035.33 33192.41 26955.56 29254.88 34882.21 328
test-LLR80.10 14979.56 14381.72 20886.93 21861.17 24892.70 12291.54 15471.51 21375.62 15086.94 21753.83 20292.38 27072.21 17284.76 13991.60 180
test-mter79.96 15279.38 14981.72 20886.93 21861.17 24892.70 12291.54 15473.85 14675.62 15086.94 21749.84 24092.38 27072.21 17284.76 13991.60 180
UniMVSNet (Re)77.58 19576.78 18779.98 24884.11 26560.80 25591.76 16593.17 8876.56 11269.93 22084.78 24163.32 9892.36 27264.89 24562.51 31086.78 256
ET-MVSNet_ETH3D84.01 8183.15 8986.58 6190.78 12570.89 2494.74 4794.62 3481.44 3858.19 32093.64 10473.64 2392.35 27382.66 9478.66 18796.50 24
mvs_anonymous81.36 12679.99 13685.46 9490.39 13168.40 7086.88 28490.61 19074.41 13370.31 21384.67 24263.79 8792.32 27473.13 16085.70 13295.67 46
IterMVS-LS76.49 21175.18 20980.43 23684.49 25862.74 22090.64 21088.80 26572.40 17965.16 27181.72 27560.98 12192.27 27567.74 21464.65 29486.29 264
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
FMVSNet377.73 19376.04 19682.80 17691.20 11768.99 5891.87 15891.99 13173.35 15767.04 25883.19 25956.62 17192.14 27659.80 27869.34 25487.28 248
UniMVSNet_NR-MVSNet78.15 18677.55 17379.98 24884.46 25960.26 26892.25 13893.20 8677.50 9868.88 23186.61 22066.10 5992.13 27766.38 22962.55 30887.54 239
DU-MVS76.86 20475.84 19979.91 25182.96 27960.26 26891.26 18891.54 15476.46 11368.88 23186.35 22356.16 17592.13 27766.38 22962.55 30887.35 246
tpm78.58 17977.03 18383.22 17085.94 23464.56 16283.21 30891.14 17278.31 8373.67 17279.68 30964.01 8392.09 27966.07 23371.26 24693.03 148
Baseline_NR-MVSNet73.99 24572.83 24077.48 28580.78 29859.29 28491.79 16284.55 32368.85 25268.99 22980.70 29356.16 17592.04 28062.67 26160.98 32581.11 336
FMVSNet276.07 21574.01 22682.26 19388.85 16567.66 9091.33 18591.61 15270.84 22565.98 26582.25 26848.03 25492.00 28158.46 28368.73 26287.10 251
TransMVSNet (Re)70.07 27967.66 28577.31 28980.62 30259.13 28791.78 16484.94 32065.97 27660.08 31080.44 29850.78 23091.87 28248.84 31645.46 36680.94 338
UniMVSNet_ETH3D72.74 25970.53 26679.36 26378.62 33056.64 31385.01 29289.20 24463.77 29164.84 27484.44 24634.05 33591.86 28363.94 25070.89 24889.57 214
NR-MVSNet76.05 21874.59 21480.44 23582.96 27962.18 23190.83 20391.73 14577.12 10260.96 30586.35 22359.28 14291.80 28460.74 27161.34 32387.35 246
FIs79.47 16079.41 14779.67 25785.95 23259.40 28091.68 16993.94 5678.06 8668.96 23088.28 19366.61 5691.77 28566.20 23274.99 21587.82 237
XVG-OURS74.25 24272.46 24879.63 25878.45 33157.59 30480.33 33087.39 29563.86 29068.76 23489.62 17840.50 29791.72 28669.00 20374.25 22189.58 213
test_040264.54 31761.09 32374.92 30984.10 26660.75 25987.95 26779.71 34952.03 35252.41 34377.20 32632.21 34391.64 28723.14 38361.03 32472.36 372
test_cas_vis1_n_192080.45 14280.61 12779.97 25078.25 33357.01 31194.04 6788.33 28079.06 7382.81 7893.70 10238.65 30491.63 28890.82 3579.81 17591.27 192
XVG-OURS-SEG-HR74.70 23873.08 23679.57 26078.25 33357.33 30880.49 32887.32 29663.22 29768.76 23490.12 17444.89 28291.59 28970.55 18874.09 22389.79 210
TranMVSNet+NR-MVSNet75.86 22374.52 21779.89 25282.44 28460.64 26491.37 18291.37 16176.63 11067.65 25086.21 22752.37 21891.55 29061.84 26660.81 32687.48 241
GBi-Net75.65 22673.83 22881.10 22388.85 16565.11 15490.01 22890.32 19870.84 22567.04 25880.25 30248.03 25491.54 29159.80 27869.34 25486.64 257
test175.65 22673.83 22881.10 22388.85 16565.11 15490.01 22890.32 19870.84 22567.04 25880.25 30248.03 25491.54 29159.80 27869.34 25486.64 257
FMVSNet172.71 26069.91 27181.10 22383.60 27265.11 15490.01 22890.32 19863.92 28963.56 28780.25 30236.35 32791.54 29154.46 29666.75 27586.64 257
pmmvs473.92 24671.81 25580.25 24179.17 31965.24 15087.43 27687.26 29867.64 26563.46 28883.91 25248.96 25091.53 29462.94 25865.49 28283.96 301
test_post178.95 33920.70 39653.05 21191.50 29560.43 273
anonymousdsp71.14 27269.37 27676.45 29872.95 35754.71 32584.19 29688.88 26161.92 31162.15 30079.77 30838.14 31191.44 29668.90 20567.45 27183.21 313
XVG-ACMP-BASELINE68.04 29765.53 29775.56 30374.06 35452.37 33378.43 34285.88 31262.03 30958.91 31881.21 28920.38 37291.15 29760.69 27268.18 26583.16 314
CNLPA74.31 24172.30 24980.32 23791.49 11061.66 24290.85 20280.72 34556.67 34163.85 28590.64 15746.75 26590.84 29853.79 29975.99 21188.47 231
ppachtmachnet_test67.72 29963.70 31079.77 25678.92 32366.04 13188.68 25682.90 33860.11 32455.45 33275.96 33739.19 30190.55 29939.53 35552.55 35482.71 321
pmmvs573.35 25071.52 25778.86 27078.64 32960.61 26591.08 19586.90 30067.69 26263.32 28983.64 25344.33 28490.53 30062.04 26566.02 28085.46 287
SixPastTwentyTwo64.92 31561.78 32274.34 31478.74 32749.76 34683.42 30479.51 35062.86 30150.27 35277.35 32330.92 35090.49 30145.89 33247.06 36382.78 317
COLMAP_ROBcopyleft57.96 2062.98 32559.65 32772.98 32381.44 29353.00 33283.75 29975.53 35848.34 36448.81 35881.40 28324.14 36390.30 30232.95 37260.52 32975.65 367
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
patchmatchnet-post67.62 36357.62 15690.25 303
SCA75.82 22472.76 24185.01 11086.63 22070.08 3281.06 32589.19 24571.60 20970.01 21677.09 32845.53 27790.25 30360.43 27373.27 22894.68 87
JIA-IIPM66.06 30962.45 31876.88 29681.42 29454.45 32757.49 38488.67 27149.36 36163.86 28446.86 38256.06 17890.25 30349.53 31368.83 26085.95 276
WR-MVS76.76 20975.74 20179.82 25484.60 25562.27 23092.60 12892.51 11476.06 11567.87 24885.34 23456.76 16790.24 30662.20 26463.69 30386.94 254
FC-MVSNet-test77.99 18878.08 16577.70 28184.89 25255.51 32090.27 22093.75 6576.87 10366.80 26387.59 20865.71 6490.23 30762.89 26073.94 22487.37 244
EPNet_dtu78.80 17379.26 15177.43 28688.06 18849.71 34791.96 15691.95 13377.67 9376.56 14391.28 15158.51 14790.20 30856.37 28980.95 16792.39 164
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CMPMVSbinary48.56 2166.77 30664.41 30773.84 31770.65 36550.31 34477.79 34785.73 31445.54 37044.76 36982.14 27035.40 33090.14 30963.18 25774.54 21881.07 337
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
Vis-MVSNet (Re-imp)79.24 16379.57 14278.24 27888.46 17452.29 33490.41 21589.12 25074.24 13769.13 22491.91 13965.77 6390.09 31059.00 28288.09 10792.33 166
lessismore_v073.72 31872.93 35847.83 35661.72 38345.86 36573.76 34428.63 35689.81 31147.75 32531.37 38583.53 306
MVS-HIRNet60.25 33255.55 33974.35 31384.37 26156.57 31471.64 36074.11 36134.44 38145.54 36742.24 38831.11 34989.81 31140.36 35476.10 21076.67 365
our_test_368.29 29564.69 30379.11 26978.92 32364.85 16188.40 26185.06 31860.32 32252.68 34276.12 33640.81 29689.80 31344.25 33955.65 34482.67 324
CR-MVSNet73.79 24870.82 26382.70 17983.15 27667.96 8370.25 36284.00 32873.67 15369.97 21872.41 34857.82 15489.48 31452.99 30373.13 22990.64 199
Patchmtry67.53 30263.93 30978.34 27482.12 28864.38 17268.72 36684.00 32848.23 36559.24 31372.41 34857.82 15489.27 31546.10 33156.68 34381.36 333
ADS-MVSNet68.54 29364.38 30881.03 22788.06 18866.90 11168.01 36984.02 32757.57 33364.48 27869.87 35838.68 30289.21 31640.87 35167.89 26886.97 252
Patchmatch-RL test68.17 29664.49 30679.19 26571.22 36153.93 32870.07 36471.54 37069.22 24756.79 32962.89 37056.58 17288.61 31769.53 19752.61 35395.03 76
UnsupCasMVSNet_bld61.60 32857.71 33273.29 32168.73 37051.64 33678.61 34189.05 25557.20 33746.11 36261.96 37328.70 35588.60 31850.08 31138.90 37779.63 350
OurMVSNet-221017-064.68 31662.17 32072.21 33076.08 34847.35 35880.67 32781.02 34356.19 34251.60 34679.66 31027.05 35988.56 31953.60 30153.63 35180.71 341
PatchT69.11 28765.37 29980.32 23782.07 28963.68 19567.96 37187.62 29450.86 35769.37 22265.18 36657.09 16088.53 32041.59 34966.60 27688.74 224
bld_raw_dy_0_6471.59 26969.71 27477.22 29177.82 33958.12 29687.71 27273.66 36268.01 26061.90 30384.29 24833.68 33688.43 32169.91 19370.43 24985.11 293
TinyColmap60.32 33156.42 33872.00 33478.78 32653.18 33178.36 34475.64 35652.30 35141.59 37675.82 33914.76 38188.35 32235.84 36354.71 34974.46 368
LCM-MVSNet-Re72.93 25571.84 25476.18 30188.49 17248.02 35480.07 33570.17 37173.96 14452.25 34480.09 30549.98 23788.24 32367.35 21784.23 14592.28 169
ambc69.61 34061.38 38141.35 37549.07 38985.86 31350.18 35466.40 36410.16 38688.14 32445.73 33344.20 36779.32 353
Patchmatch-test65.86 31060.94 32480.62 23483.75 26958.83 28958.91 38375.26 35944.50 37350.95 35177.09 32858.81 14687.90 32535.13 36664.03 29995.12 72
test_fmvs1_n72.69 26271.92 25374.99 30871.15 36247.08 36187.34 27875.67 35563.48 29478.08 12691.17 15220.16 37387.87 32684.65 8175.57 21390.01 207
MIMVSNet71.64 26768.44 28181.23 21881.97 29064.44 16873.05 35888.80 26569.67 24264.59 27574.79 34232.79 33987.82 32753.99 29876.35 20891.42 184
K. test v363.09 32459.61 32873.53 31976.26 34649.38 35183.27 30577.15 35264.35 28747.77 36172.32 35028.73 35487.79 32849.93 31236.69 37983.41 310
test_fmvs174.07 24373.69 23075.22 30578.91 32547.34 35989.06 25274.69 36063.68 29279.41 10991.59 14524.36 36287.77 32985.22 7476.26 20990.55 201
CL-MVSNet_self_test69.92 28068.09 28475.41 30473.25 35655.90 31890.05 22789.90 21869.96 23861.96 30276.54 33151.05 22987.64 33049.51 31450.59 35882.70 322
KD-MVS_2432*160069.03 28866.37 29177.01 29385.56 24061.06 25181.44 32190.25 20467.27 26758.00 32376.53 33254.49 19487.63 33148.04 32035.77 38082.34 326
miper_refine_blended69.03 28866.37 29177.01 29385.56 24061.06 25181.44 32190.25 20467.27 26758.00 32376.53 33254.49 19487.63 33148.04 32035.77 38082.34 326
miper_lstm_enhance73.05 25371.73 25677.03 29283.80 26858.32 29481.76 31688.88 26169.80 24161.01 30478.23 31857.19 15987.51 33365.34 24259.53 33385.27 292
UnsupCasMVSNet_eth65.79 31163.10 31373.88 31670.71 36450.29 34581.09 32489.88 21972.58 17349.25 35774.77 34332.57 34187.43 33455.96 29141.04 37383.90 303
Anonymous2023120667.53 30265.78 29372.79 32574.95 35047.59 35788.23 26287.32 29661.75 31458.07 32277.29 32537.79 31687.29 33542.91 34263.71 30283.48 308
pmmvs-eth3d65.53 31462.32 31975.19 30669.39 36959.59 27782.80 31283.43 33362.52 30551.30 34972.49 34632.86 33887.16 33655.32 29350.73 35778.83 357
IterMVS72.65 26370.83 26178.09 27982.17 28762.96 21387.64 27486.28 30671.56 21160.44 30778.85 31445.42 27986.66 33763.30 25661.83 31684.65 298
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
AllTest61.66 32758.06 33172.46 32779.57 31251.42 33980.17 33368.61 37451.25 35545.88 36381.23 28519.86 37486.58 33838.98 35757.01 34179.39 351
TestCases72.46 32779.57 31251.42 33968.61 37451.25 35545.88 36381.23 28519.86 37486.58 33838.98 35757.01 34179.39 351
MDA-MVSNet-bldmvs61.54 32957.70 33373.05 32279.53 31457.00 31283.08 30981.23 34257.57 33334.91 38172.45 34732.79 33986.26 34035.81 36441.95 37175.89 366
test_vis1_n71.63 26870.73 26474.31 31569.63 36847.29 36086.91 28272.11 36663.21 29875.18 15690.17 17020.40 37185.76 34184.59 8274.42 22089.87 208
Syy-MVS69.65 28369.52 27570.03 33987.87 19443.21 37288.07 26489.01 25672.91 16663.11 29188.10 19945.28 28085.54 34222.07 38569.23 25781.32 334
myMVS_eth3d72.58 26472.74 24272.10 33287.87 19449.45 34988.07 26489.01 25672.91 16663.11 29188.10 19963.63 9085.54 34232.73 37469.23 25781.32 334
Anonymous2024052162.09 32659.08 32971.10 33667.19 37248.72 35383.91 29885.23 31750.38 35847.84 36071.22 35720.74 37085.51 34446.47 32958.75 33779.06 354
FMVSNet568.04 29765.66 29675.18 30784.43 26057.89 29783.54 30086.26 30761.83 31353.64 34073.30 34537.15 32285.08 34548.99 31561.77 31782.56 325
test0.0.03 172.76 25872.71 24472.88 32480.25 30647.99 35591.22 19089.45 23471.51 21362.51 29987.66 20753.83 20285.06 34650.16 31067.84 27085.58 283
testgi64.48 31862.87 31669.31 34271.24 36040.62 37785.49 28979.92 34865.36 28154.18 33783.49 25623.74 36584.55 34741.60 34860.79 32782.77 318
testing370.38 27770.83 26169.03 34385.82 23643.93 37190.72 20790.56 19168.06 25960.24 30886.82 21964.83 7484.12 34826.33 38164.10 29879.04 355
ADS-MVSNet266.90 30563.44 31277.26 29088.06 18860.70 26268.01 36975.56 35757.57 33364.48 27869.87 35838.68 30284.10 34940.87 35167.89 26886.97 252
CVMVSNet74.04 24474.27 22173.33 32085.33 24243.94 37089.53 24088.39 27854.33 34870.37 21190.13 17249.17 24784.05 35061.83 26779.36 17991.99 177
ITE_SJBPF70.43 33874.44 35247.06 36277.32 35160.16 32354.04 33883.53 25423.30 36684.01 35143.07 34161.58 32280.21 348
CHOSEN 280x42077.35 19876.95 18678.55 27387.07 21362.68 22269.71 36582.95 33768.80 25371.48 20087.27 21466.03 6084.00 35276.47 14082.81 15288.95 219
DTE-MVSNet68.46 29467.33 28771.87 33577.94 33749.00 35286.16 28888.58 27566.36 27458.19 32082.21 26946.36 26883.87 35344.97 33755.17 34682.73 319
IterMVS-SCA-FT71.55 27069.97 26976.32 29981.48 29260.67 26387.64 27485.99 31166.17 27559.50 31278.88 31345.53 27783.65 35462.58 26261.93 31584.63 299
PEN-MVS69.46 28568.56 27972.17 33179.27 31749.71 34786.90 28389.24 24267.24 27059.08 31682.51 26647.23 26383.54 35548.42 31857.12 33983.25 312
WR-MVS_H70.59 27469.94 27072.53 32681.03 29551.43 33887.35 27792.03 13067.38 26660.23 30980.70 29355.84 18183.45 35646.33 33058.58 33882.72 320
YYNet163.76 32360.14 32674.62 31178.06 33660.19 27183.46 30383.99 33056.18 34339.25 37771.56 35537.18 32183.34 35742.90 34348.70 36180.32 345
PM-MVS59.40 33456.59 33667.84 34663.63 37641.86 37376.76 34963.22 38159.01 32951.07 35072.27 35111.72 38483.25 35861.34 26850.28 35978.39 360
MDA-MVSNet_test_wron63.78 32260.16 32574.64 31078.15 33560.41 26683.49 30184.03 32656.17 34439.17 37871.59 35437.22 32083.24 35942.87 34448.73 36080.26 346
KD-MVS_self_test60.87 33058.60 33067.68 34866.13 37439.93 37975.63 35584.70 32157.32 33649.57 35568.45 36129.55 35182.87 36048.09 31947.94 36280.25 347
N_pmnet50.55 34249.11 34554.88 36377.17 3424.02 40684.36 2952.00 40448.59 36245.86 36568.82 36032.22 34282.80 36131.58 37851.38 35677.81 362
test20.0363.83 32162.65 31767.38 35070.58 36639.94 37886.57 28684.17 32563.29 29651.86 34577.30 32437.09 32382.47 36238.87 35954.13 35079.73 349
TDRefinement55.28 34051.58 34366.39 35259.53 38346.15 36476.23 35272.80 36444.60 37242.49 37476.28 33515.29 37982.39 36333.20 37143.75 36870.62 374
CP-MVSNet70.50 27569.91 27172.26 32980.71 29951.00 34187.23 27990.30 20267.84 26159.64 31182.69 26350.23 23682.30 36451.28 30559.28 33483.46 309
PS-CasMVS69.86 28269.13 27772.07 33380.35 30450.57 34387.02 28189.75 22367.27 26759.19 31582.28 26746.58 26782.24 36550.69 30759.02 33583.39 311
RPSCF64.24 31961.98 32171.01 33776.10 34745.00 36775.83 35475.94 35446.94 36758.96 31784.59 24331.40 34682.00 36647.76 32460.33 33286.04 273
new-patchmatchnet59.30 33556.48 33767.79 34765.86 37544.19 36882.47 31381.77 34059.94 32543.65 37366.20 36527.67 35781.68 36739.34 35641.40 37277.50 363
MIMVSNet160.16 33357.33 33468.67 34469.71 36744.13 36978.92 34084.21 32455.05 34644.63 37071.85 35223.91 36481.54 36832.63 37555.03 34780.35 344
test_fmvs265.78 31264.84 30068.60 34566.54 37341.71 37483.27 30569.81 37254.38 34767.91 24584.54 24515.35 37881.22 36975.65 14466.16 27982.88 316
dmvs_testset65.55 31366.45 28962.86 35579.87 31022.35 39876.55 35071.74 36877.42 10155.85 33187.77 20651.39 22680.69 37031.51 38065.92 28185.55 285
test_vis1_rt59.09 33657.31 33564.43 35368.44 37146.02 36583.05 31048.63 39351.96 35349.57 35563.86 36916.30 37680.20 37171.21 18162.79 30667.07 378
EU-MVSNet64.01 32063.01 31467.02 35174.40 35338.86 38283.27 30586.19 30945.11 37154.27 33681.15 29036.91 32580.01 37248.79 31757.02 34082.19 329
pmmvs355.51 33951.50 34467.53 34957.90 38450.93 34280.37 32973.66 36240.63 37944.15 37264.75 36816.30 37678.97 37344.77 33840.98 37572.69 370
mvsany_test168.77 29068.56 27969.39 34173.57 35545.88 36680.93 32660.88 38459.65 32671.56 19990.26 16843.22 28875.05 37474.26 15762.70 30787.25 250
DSMNet-mixed56.78 33854.44 34163.79 35463.21 37729.44 39364.43 37564.10 38042.12 37851.32 34871.60 35331.76 34475.04 37536.23 36265.20 28786.87 255
EGC-MVSNET42.35 34938.09 35255.11 36274.57 35146.62 36371.63 36155.77 3850.04 3990.24 40062.70 37114.24 38274.91 37617.59 38846.06 36543.80 385
test_fmvs356.82 33754.86 34062.69 35653.59 38635.47 38475.87 35365.64 37943.91 37455.10 33371.43 3566.91 39274.40 37768.64 20752.63 35278.20 361
WB-MVS46.23 34644.94 34850.11 36762.13 38021.23 40076.48 35155.49 38645.89 36935.78 37961.44 37535.54 32972.83 3789.96 39421.75 38956.27 382
new_pmnet49.31 34346.44 34657.93 35862.84 37840.74 37668.47 36862.96 38236.48 38035.09 38057.81 37714.97 38072.18 37932.86 37346.44 36460.88 380
Gipumacopyleft34.91 35631.44 35945.30 37270.99 36339.64 38119.85 39472.56 36520.10 39016.16 39421.47 3955.08 39571.16 38013.07 39243.70 36925.08 392
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
SSC-MVS44.51 34843.35 35047.99 37161.01 38218.90 40274.12 35754.36 38743.42 37634.10 38260.02 37634.42 33470.39 3819.14 39619.57 39054.68 383
test_vis3_rt40.46 35237.79 35348.47 37044.49 39433.35 38766.56 37332.84 40132.39 38329.65 38339.13 3913.91 39968.65 38250.17 30940.99 37443.40 386
LF4IMVS54.01 34152.12 34259.69 35762.41 37939.91 38068.59 36768.28 37642.96 37744.55 37175.18 34014.09 38368.39 38341.36 35051.68 35570.78 373
PMVScopyleft26.43 2231.84 35928.16 36242.89 37325.87 40227.58 39450.92 38849.78 39121.37 38914.17 39540.81 3902.01 40266.62 3849.61 39538.88 37834.49 391
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
APD_test140.50 35137.31 35450.09 36851.88 38735.27 38559.45 38252.59 38921.64 38826.12 38657.80 3784.56 39666.56 38522.64 38439.09 37648.43 384
LCM-MVSNet40.54 35035.79 35554.76 36436.92 39930.81 39051.41 38769.02 37322.07 38724.63 38745.37 3844.56 39665.81 38633.67 36934.50 38367.67 376
test_f46.58 34543.45 34955.96 36045.18 39332.05 38861.18 37849.49 39233.39 38242.05 37562.48 3727.00 39165.56 38747.08 32743.21 37070.27 375
PMMVS237.93 35533.61 35850.92 36646.31 39124.76 39660.55 38150.05 39028.94 38620.93 38847.59 3814.41 39865.13 38825.14 38218.55 39262.87 379
FPMVS45.64 34743.10 35153.23 36551.42 38936.46 38364.97 37471.91 36729.13 38527.53 38561.55 3749.83 38765.01 38916.00 39155.58 34558.22 381
ANet_high40.27 35335.20 35655.47 36134.74 40034.47 38663.84 37671.56 36948.42 36318.80 39041.08 3899.52 38864.45 39020.18 3868.66 39767.49 377
mvsany_test348.86 34446.35 34756.41 35946.00 39231.67 38962.26 37747.25 39443.71 37545.54 36768.15 36210.84 38564.44 39157.95 28435.44 38273.13 369
testf132.77 35729.47 36042.67 37441.89 39630.81 39052.07 38543.45 39515.45 39118.52 39144.82 3852.12 40058.38 39216.05 38930.87 38638.83 387
APD_test232.77 35729.47 36042.67 37441.89 39630.81 39052.07 38543.45 39515.45 39118.52 39144.82 3852.12 40058.38 39216.05 38930.87 38638.83 387
test_method38.59 35435.16 35748.89 36954.33 38521.35 39945.32 39053.71 3887.41 39628.74 38451.62 3808.70 38952.87 39433.73 36832.89 38472.47 371
MVEpermissive24.84 2324.35 36119.77 36738.09 37634.56 40126.92 39526.57 39238.87 39911.73 39511.37 39627.44 3921.37 40350.42 39511.41 39314.60 39336.93 389
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN24.61 36024.00 36426.45 37843.74 39518.44 40360.86 37939.66 39715.11 3939.53 39722.10 3946.52 39346.94 3968.31 39710.14 39413.98 394
EMVS23.76 36223.20 36625.46 37941.52 39816.90 40460.56 38038.79 40014.62 3948.99 39820.24 3977.35 39045.82 3977.25 3989.46 39513.64 395
DeepMVS_CXcopyleft34.71 37751.45 38824.73 39728.48 40331.46 38417.49 39352.75 3795.80 39442.60 39818.18 38719.42 39136.81 390
tmp_tt22.26 36323.75 36517.80 3805.23 40312.06 40535.26 39139.48 3982.82 39818.94 38944.20 38722.23 36824.64 39936.30 3619.31 39616.69 393
wuyk23d11.30 36510.95 36812.33 38148.05 39019.89 40125.89 3931.92 4053.58 3973.12 3991.37 3990.64 40415.77 4006.23 3997.77 3981.35 396
testmvs7.23 3679.62 3700.06 3830.04 4040.02 40884.98 2930.02 4060.03 4000.18 4011.21 4000.01 4060.02 4010.14 4000.01 3990.13 398
test1236.92 3689.21 3710.08 3820.03 4050.05 40781.65 3190.01 4070.02 4010.14 4020.85 4010.03 4050.02 4010.12 4010.00 4000.16 397
test_blank0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4000.00 399
uanet_test0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4000.00 399
DCPMVS0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4000.00 399
cdsmvs_eth3d_5k19.86 36426.47 3630.00 3840.00 4060.00 4090.00 39593.45 770.00 4020.00 40395.27 5649.56 2410.00 4030.00 4020.00 4000.00 399
pcd_1.5k_mvsjas4.46 3695.95 3720.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 40253.55 2060.00 4030.00 4020.00 4000.00 399
sosnet-low-res0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4000.00 399
sosnet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4000.00 399
uncertanet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4000.00 399
Regformer0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4000.00 399
ab-mvs-re7.91 36610.55 3690.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 40394.95 640.00 4070.00 4030.00 4020.00 4000.00 399
uanet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4000.00 399
WAC-MVS49.45 34931.56 379
FOURS193.95 4561.77 23893.96 7091.92 13462.14 30886.57 44
test_one_060196.32 1869.74 4294.18 5171.42 21590.67 1896.85 1674.45 18
eth-test20.00 406
eth-test0.00 406
RE-MVS-def80.48 13092.02 9158.56 29290.90 19990.45 19262.76 30278.89 11594.46 7849.30 24478.77 12786.77 12392.28 169
IU-MVS96.46 1169.91 3795.18 1680.75 4695.28 192.34 2195.36 1396.47 25
save fliter93.84 4867.89 8595.05 3992.66 10778.19 84
test072696.40 1569.99 3396.76 794.33 4871.92 19191.89 1097.11 673.77 21
GSMVS94.68 87
test_part296.29 1968.16 7990.78 16
sam_mvs157.85 15394.68 87
sam_mvs54.91 191
MTGPAbinary92.23 120
MTMP93.77 8432.52 402
test9_res89.41 3994.96 1895.29 63
agg_prior286.41 6694.75 2995.33 59
test_prior467.18 10493.92 73
test_prior295.10 3875.40 12385.25 6095.61 4567.94 4687.47 5694.77 25
新几何291.41 175
旧先验191.94 9560.74 26091.50 15794.36 8265.23 6891.84 6994.55 94
原ACMM292.01 151
test22289.77 14261.60 24389.55 23889.42 23656.83 34077.28 13592.43 13052.76 21491.14 8393.09 145
segment_acmp65.94 61
testdata189.21 24777.55 97
plane_prior786.94 21661.51 244
plane_prior687.23 20862.32 22850.66 231
plane_prior489.14 183
plane_prior361.95 23679.09 7172.53 184
plane_prior293.13 10578.81 78
plane_prior187.15 210
plane_prior62.42 22493.85 7779.38 6378.80 185
n20.00 408
nn0.00 408
door-mid66.01 378
test1193.01 94
door66.57 377
HQP5-MVS63.66 196
HQP-NCC87.54 20194.06 6379.80 5674.18 164
ACMP_Plane87.54 20194.06 6379.80 5674.18 164
BP-MVS77.63 134
HQP3-MVS91.70 14978.90 183
HQP2-MVS51.63 224
NP-MVS87.41 20463.04 21090.30 166
MDTV_nov1_ep13_2view59.90 27480.13 33467.65 26472.79 17954.33 19959.83 27792.58 160
ACMMP++_ref71.63 241
ACMMP++69.72 251
Test By Simon54.21 200