This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort by
GG-mvs-BLEND99.59 13599.54 19999.49 12599.17 35999.52 7299.96 11799.68 266100.00 199.33 25499.71 13499.99 9799.96 122
gg-mvs-nofinetune96.95 24796.10 26999.50 14699.41 23699.36 14299.07 37299.52 7283.69 38199.96 11783.60 397100.00 199.20 25999.68 14599.99 9799.96 122
iter_conf0598.73 15098.77 13798.60 21599.65 16899.22 157100.00 199.22 27396.68 22498.98 22899.97 19599.99 398.84 28499.29 18495.11 27297.75 266
iter_conf_final98.72 15198.76 13998.59 21799.64 17499.17 164100.00 199.22 27396.63 22999.02 22599.97 19599.98 498.84 28499.22 19195.18 26697.76 255
CHOSEN 280x42099.85 399.87 199.80 10199.99 4999.97 2199.97 23399.98 1698.96 32100.00 1100.00 199.96 599.42 247100.00 1100.00 1100.00 1
test_yl99.51 6699.37 7699.95 5199.82 12099.90 58100.00 199.47 7997.48 164100.00 1100.00 199.80 6100.00 199.98 7397.75 22699.94 133
DCV-MVSNet99.51 6699.37 7699.95 5199.82 12099.90 58100.00 199.47 7997.48 164100.00 1100.00 199.80 6100.00 199.98 7397.75 22699.94 133
patch_mono-299.04 11899.79 696.81 31699.92 10390.47 363100.00 199.41 17798.95 35100.00 1100.00 199.78 8100.00 1100.00 1100.00 199.95 128
MVSTER98.58 16598.52 16098.77 20899.65 16899.68 102100.00 199.29 23995.63 27098.65 25099.80 24799.78 898.88 28298.59 22695.31 25797.73 295
CDS-MVSNet98.96 13398.95 12199.01 19399.48 22498.36 21499.93 25199.37 19996.79 21199.31 20599.83 23899.77 1098.91 27698.07 24697.98 20899.77 217
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
PAPM99.78 1699.76 1299.85 8599.01 27399.95 32100.00 199.75 5299.37 399.99 103100.00 199.76 1199.60 207100.00 1100.00 1100.00 1
DP-MVS Recon99.76 1899.69 2299.98 23100.00 199.95 32100.00 199.52 7297.99 11099.99 103100.00 199.72 12100.00 199.96 85100.00 1100.00 1
TESTMET0.1,199.08 11498.96 11799.44 15299.63 17699.38 138100.00 199.45 10295.53 27499.48 191100.00 199.71 1399.02 26696.84 28599.99 9799.91 147
test-mter98.96 13398.82 13299.40 15999.40 24199.28 148100.00 199.45 10295.44 28399.42 19599.12 31699.70 1499.01 26796.82 28699.99 9799.91 147
MSP-MVS99.81 1199.77 999.94 63100.00 199.86 77100.00 199.42 13198.87 47100.00 1100.00 199.65 1599.96 134100.00 1100.00 1100.00 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
test_0728_THIRD98.79 60100.00 1100.00 199.61 16100.00 1100.00 1100.00 1100.00 1
test_one_0601100.00 199.99 599.42 13198.72 64100.00 1100.00 199.60 17
MSLP-MVS++99.89 199.85 299.99 12100.00 199.96 24100.00 199.95 1999.11 7100.00 1100.00 199.60 17100.00 1100.00 1100.00 1100.00 1
PAPM_NR99.74 2299.66 3099.99 12100.00 199.96 24100.00 199.47 7997.87 123100.00 1100.00 199.60 17100.00 1100.00 1100.00 1100.00 1
NCCC99.86 299.82 3100.00 1100.00 199.99 5100.00 199.71 6199.07 10100.00 1100.00 199.59 20100.00 1100.00 1100.00 1100.00 1
PLCcopyleft98.56 299.70 3299.74 1699.58 139100.00 198.79 188100.00 199.54 7198.58 7299.96 117100.00 199.59 20100.00 1100.00 1100.00 199.94 133
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
DPM-MVS99.63 5199.51 62100.00 199.90 107100.00 1100.00 199.43 12199.00 27100.00 1100.00 199.58 22100.00 197.64 260100.00 1100.00 1
test_241102_TWO99.42 13199.03 20100.00 1100.00 199.56 23100.00 1100.00 1100.00 1100.00 1
APDe-MVScopyleft99.84 699.78 799.99 12100.00 199.98 17100.00 199.44 11599.06 12100.00 1100.00 199.56 2399.99 94100.00 1100.00 1100.00 1
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
segment_acmp99.55 25
DVP-MVS++99.81 1199.75 14100.00 1100.00 199.99 5100.00 199.42 13198.79 60100.00 1100.00 199.54 26100.00 1100.00 1100.00 1100.00 1
PC_three_145298.80 57100.00 1100.00 199.54 26100.00 1100.00 1100.00 1100.00 1
OPU-MVS100.00 1100.00 1100.00 1100.00 1100.00 199.54 26100.00 1100.00 1100.00 1100.00 1
DVP-MVScopyleft99.83 799.78 7100.00 1100.00 199.99 5100.00 199.42 13199.04 15100.00 1100.00 199.53 29100.00 1100.00 1100.00 1100.00 1
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test0726100.00 199.99 5100.00 199.42 13199.04 15100.00 1100.00 199.53 29
TEST9100.00 199.95 32100.00 199.42 13197.65 140100.00 1100.00 199.53 2999.97 123
SteuartSystems-ACMMP99.78 1699.71 2099.98 2399.76 14799.95 32100.00 199.42 13198.69 65100.00 1100.00 199.52 3299.99 94100.00 1100.00 1100.00 1
Skip Steuart: Steuart Systems R&D Blog.
train_agg99.71 2999.63 3799.97 31100.00 199.95 32100.00 199.42 13197.70 135100.00 1100.00 199.51 3399.97 123100.00 1100.00 1100.00 1
test_8100.00 199.91 51100.00 199.42 13197.70 135100.00 1100.00 199.51 3399.98 118
PAPR99.76 1899.68 2599.99 12100.00 199.96 24100.00 199.47 7998.16 96100.00 1100.00 199.51 33100.00 1100.00 1100.00 1100.00 1
EPP-MVSNet99.10 11399.00 11399.40 15999.51 21498.68 19699.92 25299.43 12195.47 28099.65 183100.00 199.51 3399.76 19599.53 16998.00 20799.75 220
SED-MVS99.83 799.77 9100.00 1100.00 199.99 5100.00 199.42 13199.03 20100.00 1100.00 199.50 37100.00 1100.00 1100.00 1100.00 1
test_241102_ONE100.00 199.99 599.42 13199.03 20100.00 1100.00 199.50 37100.00 1
miper_enhance_ethall98.33 18598.27 17798.51 22199.66 16799.04 173100.00 199.22 27397.53 15798.51 26299.38 30599.49 3998.75 29498.02 24892.61 30197.76 255
test_post89.05 39099.49 3999.59 209
HyFIR lowres test99.32 9199.24 9199.58 13999.95 9599.26 150100.00 199.99 1396.72 21899.29 20699.91 22599.49 3999.47 23999.74 12898.08 206100.00 1
PatchmatchNetpermissive99.03 12098.96 11799.26 17999.49 22298.33 21699.38 33399.45 10296.64 22799.96 11799.58 28999.49 3999.50 23597.63 26199.00 16699.93 143
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
Patchmatch-test97.83 20497.42 21899.06 18799.08 26497.66 26198.66 38099.21 28293.65 32398.25 27999.58 28999.47 4399.57 21490.25 35898.59 17599.95 128
test_prior2100.00 198.82 55100.00 1100.00 199.47 43100.00 1100.00 1
TSAR-MVS + MP.99.82 999.77 999.99 12100.00 199.96 24100.00 199.43 12199.05 14100.00 1100.00 199.45 4599.99 94100.00 1100.00 1100.00 1
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
thisisatest053099.37 8399.27 8599.69 12199.59 18799.41 136100.00 199.46 9496.46 23799.90 150100.00 199.44 4699.85 17798.97 20199.58 15599.80 211
tttt051799.34 8799.23 9499.67 12399.57 19599.38 138100.00 199.46 9496.33 24799.89 153100.00 199.44 4699.84 17998.93 20399.46 15899.78 216
thisisatest051599.42 7899.31 8499.74 11399.59 18799.55 113100.00 199.46 9496.65 22699.92 146100.00 199.44 4699.85 17799.09 19899.63 15399.81 200
PGM-MVS99.69 3599.61 4299.95 5199.99 4999.85 80100.00 199.58 6797.69 137100.00 1100.00 199.44 46100.00 199.79 119100.00 1100.00 1
SMA-MVScopyleft99.69 3599.59 4499.98 2399.99 4999.93 43100.00 199.43 12197.50 162100.00 1100.00 199.43 50100.00 1100.00 1100.00 1100.00 1
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
原ACMM199.93 66100.00 199.80 8799.66 6398.18 95100.00 1100.00 199.43 50100.00 199.50 171100.00 1100.00 1
testdata99.66 12699.99 4998.97 18399.73 5697.96 117100.00 1100.00 199.42 52100.00 199.28 185100.00 1100.00 1
baseline298.99 12998.93 12399.18 18499.26 25499.15 166100.00 199.46 9496.71 21996.79 331100.00 199.42 5299.25 25898.75 21499.94 11899.15 242
patchmatchnet-post97.79 36699.41 5499.54 226
Patchmatch-RL test93.49 32193.63 32093.05 35391.78 38383.41 37998.21 38496.95 38991.58 35191.05 36997.64 36999.40 5595.83 37894.11 32881.95 37599.91 147
CNVR-MVS99.85 399.80 4100.00 1100.00 199.99 5100.00 199.77 4899.07 10100.00 1100.00 199.39 56100.00 1100.00 1100.00 1100.00 1
FE-MVS99.16 11098.99 11599.66 12699.65 16899.18 16299.58 31299.43 12195.24 28499.91 14899.59 28799.37 5799.97 12398.31 23699.81 14099.83 187
sam_mvs99.33 58
test_post199.32 33888.24 39299.33 5899.59 20998.31 236
SD-MVS99.81 1199.75 1499.99 1299.99 4999.96 24100.00 199.42 13199.01 26100.00 1100.00 199.33 58100.00 1100.00 1100.00 1100.00 1
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
ZD-MVS100.00 199.98 1799.80 4397.31 180100.00 1100.00 199.32 6199.99 94100.00 1100.00 1
CDPH-MVS99.73 2599.64 3399.99 12100.00 199.97 21100.00 199.42 13198.02 108100.00 1100.00 199.32 6199.99 94100.00 1100.00 1100.00 1
HFP-MVS99.74 2299.67 2799.96 42100.00 199.89 65100.00 199.76 4997.95 118100.00 1100.00 199.31 63100.00 199.99 61100.00 1100.00 1
test-LLR99.03 12098.91 12599.40 15999.40 24199.28 148100.00 199.45 10296.70 22099.42 19599.12 31699.31 6399.01 26796.82 28699.99 9799.91 147
test0.0.03 198.12 19598.03 19698.39 22799.11 26098.07 235100.00 199.93 3096.70 22096.91 32799.95 21799.31 6398.19 33191.93 34498.44 18298.91 246
MCST-MVS99.85 399.80 4100.00 1100.00 199.99 5100.00 199.73 5699.19 5100.00 1100.00 199.31 63100.00 1100.00 1100.00 1100.00 1
TAPA-MVS96.40 1097.64 21397.37 22298.45 22499.94 9895.70 304100.00 199.40 18197.65 14099.53 187100.00 199.31 6399.66 20580.48 384100.00 1100.00 1
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
test22299.99 4999.90 58100.00 199.69 6297.66 139100.00 1100.00 199.30 68100.00 1100.00 1
sam_mvs199.29 6999.91 147
ACMMPR99.74 2299.67 2799.96 42100.00 199.89 65100.00 199.76 4997.95 118100.00 1100.00 199.29 69100.00 199.99 61100.00 1100.00 1
CostFormer98.84 14398.77 13799.04 19199.41 23697.58 26399.67 30299.35 21694.66 29799.96 11799.36 30799.28 7199.74 19899.41 17597.81 22299.81 200
旧先验199.99 4999.88 7299.82 40100.00 199.27 72100.00 1100.00 1
APD-MVScopyleft99.68 4099.58 4699.97 3199.99 4999.96 24100.00 199.42 13197.53 157100.00 1100.00 199.27 7299.97 123100.00 1100.00 1100.00 1
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
test1299.95 5199.99 4999.89 6599.42 131100.00 199.24 7499.97 123100.00 1100.00 1
DPE-MVScopyleft99.79 1499.73 1799.99 1299.99 4999.98 17100.00 199.42 13198.91 41100.00 1100.00 199.22 75100.00 1100.00 1100.00 1100.00 1
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
HPM-MVS++copyleft99.82 999.76 1299.99 1299.99 4999.98 17100.00 199.83 3998.88 4499.96 117100.00 199.21 76100.00 1100.00 1100.00 199.99 107
新几何199.99 12100.00 199.96 2499.81 4297.89 121100.00 1100.00 199.20 77100.00 197.91 253100.00 1100.00 1
region2R99.72 2699.64 3399.97 31100.00 199.90 58100.00 199.74 5597.86 124100.00 1100.00 199.19 78100.00 199.99 61100.00 1100.00 1
F-COLMAP99.64 4899.64 3399.67 12399.99 4999.07 169100.00 199.44 11598.30 8999.90 150100.00 199.18 7999.99 9499.91 98100.00 199.94 133
XVS99.79 1499.73 1799.98 23100.00 199.94 40100.00 199.75 5298.67 67100.00 1100.00 199.16 80100.00 1100.00 1100.00 1100.00 1
X-MVStestdata97.04 24396.06 27199.98 23100.00 199.94 40100.00 199.75 5298.67 67100.00 166.97 40099.16 80100.00 1100.00 1100.00 1100.00 1
9.1499.57 4999.99 49100.00 199.42 13197.54 155100.00 1100.00 199.15 8299.99 94100.00 1100.00 1
CNLPA99.72 2699.65 3199.91 6899.97 8899.72 95100.00 199.47 7998.43 7899.88 155100.00 199.14 83100.00 199.97 83100.00 1100.00 1
testing398.44 17698.37 17298.65 21299.51 21498.32 218100.00 199.62 6696.43 23897.93 29599.99 18299.11 8497.81 35494.88 31897.80 22399.82 192
Test By Simon99.10 85
myMVS_eth3d98.52 17198.51 16198.53 22099.50 21897.98 242100.00 199.57 6896.23 25098.07 285100.00 199.09 8697.81 35496.17 29897.96 21099.82 192
CP-MVS99.67 4399.58 4699.95 51100.00 199.84 82100.00 199.42 13197.77 130100.00 1100.00 199.07 87100.00 1100.00 1100.00 1100.00 1
alignmvs99.38 8199.21 9599.91 6899.73 15099.92 48100.00 199.51 7697.61 148100.00 1100.00 199.06 8899.93 16199.83 11397.12 23499.90 156
SF-MVS99.66 4599.57 4999.95 5199.99 4999.85 80100.00 199.42 13197.67 138100.00 1100.00 199.05 8999.99 94100.00 1100.00 1100.00 1
EPMVS99.25 10399.13 10499.60 13399.60 18599.20 15999.60 310100.00 196.93 20199.92 14699.36 30799.05 8999.71 20298.77 21298.94 16799.90 156
EI-MVSNet-Vis-set99.70 3299.64 3399.87 78100.00 199.64 10599.98 22799.44 11598.35 8699.99 103100.00 199.04 9199.96 13499.98 73100.00 1100.00 1
mPP-MVS99.69 3599.60 4399.97 31100.00 199.91 51100.00 199.42 13197.91 120100.00 1100.00 199.04 91100.00 1100.00 1100.00 1100.00 1
tpmrst98.98 13298.93 12399.14 18699.61 18397.74 25899.52 31999.36 20596.05 25699.98 10899.64 27599.04 9199.86 17298.94 20298.19 20199.82 192
SR-MVS99.68 4099.58 4699.98 23100.00 199.95 32100.00 199.64 6497.59 151100.00 1100.00 198.99 9499.99 94100.00 1100.00 1100.00 1
EI-MVSNet-UG-set99.69 3599.63 3799.87 7899.99 4999.64 10599.95 24499.44 11598.35 86100.00 1100.00 198.98 9599.97 12399.98 73100.00 1100.00 1
ZNCC-MVS99.71 2999.62 4199.97 3199.99 4999.90 58100.00 199.79 4597.97 11499.97 112100.00 198.97 96100.00 199.94 93100.00 1100.00 1
APD-MVS_3200maxsize99.65 4699.55 5699.97 3199.99 4999.91 51100.00 199.48 7897.54 155100.00 1100.00 198.97 9699.99 9499.98 73100.00 1100.00 1
EPNet99.62 5599.69 2299.42 15699.99 4998.37 212100.00 199.89 3798.83 53100.00 1100.00 198.97 96100.00 199.90 9999.61 15499.89 161
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
tpm298.64 15998.58 15798.81 20699.42 23497.12 28199.69 29999.37 19993.63 32499.94 14299.67 26798.96 9999.47 23998.62 22497.95 21299.83 187
TSAR-MVS + GP.99.61 5799.69 2299.35 16599.99 4998.06 237100.00 199.36 20599.83 2100.00 1100.00 198.95 10099.99 94100.00 199.11 162100.00 1
HPM-MVS_fast99.60 6099.49 6599.91 6899.99 4999.78 88100.00 199.42 13197.09 192100.00 1100.00 198.95 10099.96 13499.98 73100.00 1100.00 1
RE-MVS-def99.55 5699.99 4999.91 51100.00 199.42 13197.62 144100.00 1100.00 198.94 10299.99 61100.00 1100.00 1
WTY-MVS99.54 6599.40 7199.95 5199.81 12699.93 43100.00 1100.00 197.98 11299.84 159100.00 198.94 10299.98 11899.86 10798.21 19999.94 133
HY-MVS96.53 999.50 6999.35 8199.96 4299.81 12699.93 4399.64 304100.00 197.97 11499.84 15999.85 23598.94 10299.99 9499.86 10798.23 19899.95 128
MDTV_nov1_ep1398.94 12299.53 20298.36 21499.39 33299.46 9496.54 23399.99 10399.63 27998.92 10599.86 17298.30 23998.71 174
API-MVS99.72 2699.70 2199.79 10399.97 8899.37 14199.96 23899.94 2298.48 75100.00 1100.00 198.92 105100.00 1100.00 1100.00 1100.00 1
ACMMPcopyleft99.65 4699.57 4999.89 7399.99 4999.66 10399.75 28699.73 5698.16 9699.75 177100.00 198.90 107100.00 199.96 8599.88 128100.00 1
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
ACMMP_NAP99.67 4399.57 4999.97 3199.98 8499.92 48100.00 199.42 13197.83 125100.00 1100.00 198.89 108100.00 199.98 73100.00 1100.00 1
test250699.48 7399.38 7399.75 11299.89 10999.51 12199.45 325100.00 198.38 8099.83 161100.00 198.86 10999.81 18699.25 18698.78 17099.94 133
MDTV_nov1_ep13_2view99.24 15499.56 31496.31 24899.96 11798.86 10998.92 20499.89 161
KD-MVS_2432*160094.15 31693.08 32597.35 29199.53 20297.83 25599.63 30699.19 28692.88 34196.29 33997.68 36798.84 11196.70 36689.73 36063.92 39097.53 341
miper_refine_blended94.15 31693.08 32597.35 29199.53 20297.83 25599.63 30699.19 28692.88 34196.29 33997.68 36798.84 11196.70 36689.73 36063.92 39097.53 341
dp98.72 15198.61 15399.03 19299.53 20297.39 26999.45 32599.39 19495.62 27199.94 14299.52 29798.83 11399.82 18396.77 29198.42 18499.89 161
TAMVS98.76 14898.73 14398.86 20399.44 23397.69 25999.57 31399.34 22296.57 23199.12 21699.81 24498.83 11399.16 26097.97 25297.91 21499.73 225
IB-MVS96.24 1297.54 22096.95 23499.33 16999.67 16398.10 234100.00 199.47 7997.42 17099.26 20799.69 26298.83 11399.89 16799.43 17378.77 381100.00 1
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
DeepC-MVS_fast98.92 199.75 2099.67 2799.99 1299.99 4999.96 2499.73 29299.52 7299.06 12100.00 1100.00 198.80 116100.00 199.95 91100.00 1100.00 1
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MP-MVS-pluss99.61 5799.50 6399.97 3199.98 8499.92 48100.00 199.42 13197.53 15799.77 174100.00 198.77 117100.00 199.99 61100.00 199.99 107
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
pcd_1.5k_mvsjas8.24 36910.99 3720.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.14 40398.75 1180.00 4030.00 4020.00 4010.00 399
PS-MVSNAJss98.03 19898.06 19397.94 27097.63 34297.33 27499.89 25999.23 27096.27 24998.03 28899.59 28798.75 11898.78 28998.52 22894.61 28497.70 311
PS-MVSNAJ99.64 4899.57 4999.85 8599.78 14499.81 8599.95 24499.42 13198.38 80100.00 1100.00 198.75 118100.00 199.88 10399.99 9799.74 221
dcpmvs_298.87 14199.53 5996.90 31099.87 11390.88 36299.94 24999.07 32998.20 94100.00 1100.00 198.69 12199.86 172100.00 1100.00 199.95 128
SR-MVS-dyc-post99.63 5199.52 6199.97 3199.99 4999.91 51100.00 199.42 13197.62 144100.00 1100.00 198.65 12299.99 9499.99 61100.00 1100.00 1
MTAPA99.68 4099.59 4499.97 3199.99 4999.91 51100.00 199.42 13198.32 8899.94 142100.00 198.65 122100.00 199.96 85100.00 1100.00 1
HPM-MVScopyleft99.59 6199.50 6399.89 73100.00 199.70 100100.00 199.42 13197.46 166100.00 1100.00 198.60 12499.96 13499.99 61100.00 1100.00 1
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
MG-MVS99.75 2099.68 2599.97 31100.00 199.91 5199.98 22799.47 7999.09 9100.00 1100.00 198.59 125100.00 199.95 91100.00 1100.00 1
EPNet_dtu98.53 17098.23 18399.43 15499.92 10399.01 17799.96 23899.47 7998.80 5799.96 11799.96 20998.56 12699.30 25587.78 36999.68 147100.00 1
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
JIA-IIPM97.09 23996.34 26099.36 16498.88 29098.59 20199.81 27199.43 12184.81 37999.96 11790.34 38998.55 12799.52 23297.00 28098.28 19699.98 109
xiu_mvs_v2_base99.51 6699.41 7099.82 9199.70 15399.73 9499.92 25299.40 18198.15 98100.00 1100.00 198.50 128100.00 199.85 10999.13 16199.74 221
sss99.45 7699.34 8399.80 10199.76 14799.50 122100.00 199.91 3697.72 13399.98 10899.94 22198.45 129100.00 199.53 16998.75 17399.89 161
IS-MVSNet99.08 11498.91 12599.59 13599.65 16899.38 13899.78 27799.24 26696.70 22099.51 189100.00 198.44 13099.52 23298.47 23098.39 18799.88 172
GST-MVS99.64 4899.53 5999.95 51100.00 199.86 77100.00 199.79 4597.72 13399.95 140100.00 198.39 131100.00 199.96 8599.99 97100.00 1
114514_t99.39 8099.25 8999.81 9699.97 8899.48 129100.00 199.42 13195.53 274100.00 1100.00 198.37 13299.95 14699.97 83100.00 1100.00 1
baseline198.91 13898.61 15399.81 9699.71 15199.77 8999.78 27799.44 11597.51 16198.81 24299.99 18298.25 13399.76 19598.60 22595.41 25399.89 161
MP-MVScopyleft99.61 5799.49 6599.98 2399.99 4999.94 40100.00 199.42 13197.82 12699.99 103100.00 198.20 134100.00 199.99 61100.00 1100.00 1
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
miper_ehance_all_eth97.81 20597.66 21198.23 23999.49 22298.37 21299.99 20399.11 31794.78 29298.25 27999.21 31398.18 13598.57 31197.35 27392.61 30197.76 255
PHI-MVS99.50 6999.39 7299.82 91100.00 199.45 131100.00 199.94 2296.38 244100.00 1100.00 198.18 135100.00 1100.00 1100.00 1100.00 1
Vis-MVSNet (Re-imp)98.99 12998.89 12999.29 17499.64 17498.89 18599.98 22799.31 23196.74 21599.48 191100.00 198.11 13799.10 26298.39 23298.34 19199.89 161
DeepPCF-MVS98.03 498.54 16999.72 1994.98 33899.99 4984.94 377100.00 199.42 13199.98 1100.00 1100.00 198.11 137100.00 1100.00 1100.00 1100.00 1
cl2298.23 19298.11 18898.58 21999.82 12099.01 177100.00 199.28 24596.92 20398.33 27199.21 31398.09 13998.97 27298.72 21592.61 30197.76 255
mvsany_test199.57 6299.48 6899.85 8599.86 11499.54 115100.00 199.36 20598.94 37100.00 1100.00 197.97 140100.00 199.88 10399.28 159100.00 1
PatchT95.90 29994.95 31398.75 20999.03 27198.39 20999.08 37099.32 22685.52 37799.96 11794.99 38197.94 14198.05 34780.20 38598.47 18199.81 200
MVS_111021_LR99.70 3299.65 3199.88 7799.96 9399.70 100100.00 199.97 1798.96 32100.00 1100.00 197.93 14299.95 14699.99 61100.00 1100.00 1
fmvsm_l_conf0.5_n99.63 5199.56 5499.86 8199.81 12699.59 110100.00 199.36 20598.98 30100.00 1100.00 197.92 14399.99 94100.00 199.95 116100.00 1
c3_l97.58 21797.42 21898.06 25899.48 22498.16 22799.96 23899.10 31994.54 30198.13 28399.20 31597.87 14498.25 33097.28 27491.20 32597.75 266
MVS_030499.69 3599.63 3799.86 8199.96 9399.63 107100.00 199.92 3499.03 2099.97 112100.00 197.87 14499.96 134100.00 199.96 113100.00 1
fmvsm_l_conf0.5_n_a99.63 5199.55 5699.86 8199.83 11999.58 111100.00 199.36 20598.98 30100.00 1100.00 197.85 14699.99 94100.00 199.94 118100.00 1
MVS_111021_HR99.71 2999.63 3799.93 6699.95 9599.83 83100.00 1100.00 198.89 43100.00 1100.00 197.85 14699.95 146100.00 1100.00 1100.00 1
FA-MVS(test-final)99.00 12698.75 14199.73 11699.63 17699.43 13499.83 26799.43 12195.84 26599.52 18899.37 30697.84 14899.96 13497.63 26199.68 14799.79 213
CSCG99.28 9799.35 8199.05 18999.99 4997.15 280100.00 199.47 7997.44 16899.42 195100.00 197.83 149100.00 199.99 61100.00 1100.00 1
CS-MVS99.33 8999.27 8599.50 14699.99 4999.00 179100.00 199.13 30997.26 18399.96 117100.00 197.79 15099.64 20699.64 15399.67 14999.87 180
ET-MVSNet_ETH3D96.41 27195.48 30199.20 18399.81 12699.75 91100.00 199.02 34597.30 18278.33 389100.00 197.73 15197.94 35199.70 13787.41 35699.92 145
tpm cat198.05 19797.76 20598.92 19999.50 21897.10 28399.77 28299.30 23590.20 36399.72 18098.71 34497.71 15299.86 17296.75 29298.20 20099.81 200
test_fmvsmvis_n_192099.46 7599.37 7699.73 11698.88 29099.18 162100.00 199.26 25998.85 4999.79 171100.00 197.70 153100.00 199.98 7399.86 132100.00 1
DELS-MVS99.62 5599.56 5499.82 9199.92 10399.45 131100.00 199.78 4798.92 3999.73 179100.00 197.70 153100.00 199.93 95100.00 1100.00 1
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
DIV-MVS_self_test97.52 22397.35 22398.05 26299.46 23098.11 232100.00 199.10 31994.21 31197.62 30999.63 27997.65 15598.29 32796.47 29391.98 31297.76 255
tpmvs98.59 16498.38 17099.23 18199.69 15497.90 24999.31 34199.47 7994.52 30299.68 18299.28 31197.64 15699.89 16797.71 25898.17 20399.89 161
tpm98.24 19198.22 18498.32 23399.13 25995.79 30399.53 31899.12 31595.20 28599.96 11799.36 30797.58 15799.28 25797.41 26996.67 24199.88 172
ADS-MVSNet298.28 18998.51 16197.62 28299.51 21495.03 31299.24 34699.41 17795.52 27699.96 11799.70 25997.57 15897.94 35197.11 27798.54 17699.88 172
ADS-MVSNet98.70 15598.51 16199.28 17799.51 21498.39 20999.24 34699.44 11595.52 27699.96 11799.70 25997.57 15899.58 21397.11 27798.54 17699.88 172
CS-MVS-test99.31 9399.27 8599.43 15499.99 4998.77 189100.00 199.19 28697.24 18499.96 117100.00 197.56 16099.70 20399.68 14599.81 14099.82 192
cl____97.54 22097.32 22498.18 24399.47 22798.14 231100.00 199.10 31994.16 31497.60 31199.63 27997.52 16198.65 30196.47 29391.97 31397.76 255
h-mvs3397.03 24496.53 24998.51 22199.79 14195.90 30299.45 32599.45 10298.21 92100.00 199.78 25097.49 16299.99 9499.72 13174.92 38399.65 233
hse-mvs296.79 25196.38 25798.04 26499.68 15895.54 30699.81 27199.42 13198.21 92100.00 199.80 24797.49 16299.46 24399.72 13173.27 38699.12 243
EIA-MVS99.26 10099.19 9999.45 15199.63 17698.75 190100.00 199.27 25396.93 20199.95 140100.00 197.47 16499.79 18899.74 12899.72 14599.82 192
Test_1112_low_res98.83 14498.60 15599.51 14499.69 15498.75 19099.99 20399.14 30596.81 21098.84 23999.06 32097.45 16599.89 16798.66 21797.75 22699.89 161
1112_ss98.91 13898.71 14699.51 14499.69 15498.75 19099.99 20399.15 30096.82 20998.84 239100.00 197.45 16599.89 16798.66 21797.75 22699.89 161
ETV-MVS99.34 8799.24 9199.64 12899.58 19299.33 143100.00 199.25 26197.57 15399.96 117100.00 197.44 16799.79 18899.70 13799.65 15199.81 200
CPTT-MVS99.49 7199.38 7399.85 85100.00 199.54 115100.00 199.42 13197.58 15299.98 108100.00 197.43 168100.00 199.99 61100.00 1100.00 1
miper_lstm_enhance97.40 22797.28 22697.75 27999.48 22497.52 264100.00 199.07 32994.08 31598.01 29199.61 28597.38 16997.98 34996.44 29691.47 32297.76 255
test_fmvsmconf_n99.56 6399.46 6999.86 8199.68 15899.58 111100.00 199.31 23198.92 3999.88 155100.00 197.35 17099.99 9499.98 7399.99 97100.00 1
test_fmvsm_n_192099.55 6499.49 6599.73 11699.85 11599.19 160100.00 199.41 17798.87 47100.00 1100.00 197.34 171100.00 199.98 7399.90 125100.00 1
EI-MVSNet97.98 20097.93 20098.16 24699.11 26097.84 25499.74 28799.29 23994.39 30798.65 250100.00 197.21 17298.88 28297.62 26395.31 25797.75 266
IterMVS-LS97.56 21897.44 21797.92 27399.38 24597.90 24999.89 25999.10 31994.41 30698.32 27299.54 29697.21 17298.11 33897.50 26591.62 31797.75 266
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
tfpn200view999.26 10099.03 10999.96 4299.81 12699.89 65100.00 199.94 2297.23 18599.83 16199.96 20997.04 174100.00 199.59 15997.85 21899.98 109
thres40099.26 10099.03 10999.95 5199.81 12699.89 65100.00 199.94 2297.23 18599.83 16199.96 20997.04 174100.00 199.59 15997.85 21899.97 116
thres20099.27 9899.04 10899.96 4299.81 12699.90 58100.00 199.94 2297.31 18099.83 16199.96 20997.04 174100.00 199.62 15797.88 21699.98 109
131499.38 8199.19 9999.96 4298.88 29099.89 6599.24 34699.93 3098.88 4498.79 244100.00 197.02 177100.00 1100.00 1100.00 1100.00 1
thres100view90099.25 10399.01 11199.95 5199.81 12699.87 74100.00 199.94 2297.13 19099.83 16199.96 20997.01 178100.00 199.59 15997.85 21899.98 109
thres600view799.24 10699.00 11399.95 5199.81 12699.87 74100.00 199.94 2297.13 19099.83 16199.96 20997.01 178100.00 199.54 16797.77 22599.97 116
OMC-MVS99.27 9899.38 7398.96 19799.95 9597.06 284100.00 199.40 18198.83 5399.88 155100.00 197.01 17899.86 17299.47 17299.84 13799.97 116
xiu_mvs_v1_base_debu99.35 8499.21 9599.79 10399.67 16399.71 9699.78 27799.36 20598.13 100100.00 1100.00 197.00 181100.00 199.83 11399.07 16399.66 230
xiu_mvs_v1_base99.35 8499.21 9599.79 10399.67 16399.71 9699.78 27799.36 20598.13 100100.00 1100.00 197.00 181100.00 199.83 11399.07 16399.66 230
xiu_mvs_v1_base_debi99.35 8499.21 9599.79 10399.67 16399.71 9699.78 27799.36 20598.13 100100.00 1100.00 197.00 181100.00 199.83 11399.07 16399.66 230
CR-MVSNet98.02 19997.71 21098.93 19899.31 24898.86 18699.13 36499.00 34896.53 23499.96 11798.98 32996.94 18498.10 34191.18 34998.40 18599.84 184
Patchmtry96.81 25096.37 25898.14 24899.31 24898.55 20298.91 37599.00 34890.45 35997.92 29698.98 32996.94 18498.12 33694.27 32491.53 31997.75 266
eth_miper_zixun_eth97.47 22497.28 22698.06 25899.41 23697.94 24799.62 30899.08 32594.46 30598.19 28299.56 29396.91 18698.50 31796.78 28991.49 32097.74 289
EC-MVSNet99.19 10999.09 10699.48 14999.42 23499.07 169100.00 199.21 28296.95 20099.96 117100.00 196.88 18799.48 23799.64 15399.79 14399.88 172
LS3D99.31 9399.13 10499.87 7899.99 4999.71 9699.55 31599.46 9497.32 17899.82 169100.00 196.85 18899.97 12399.14 194100.00 199.92 145
MVSFormer98.94 13698.82 13299.28 17799.45 23199.49 125100.00 199.13 30995.46 28199.97 112100.00 196.76 18998.59 30898.63 222100.00 199.74 221
lupinMVS99.29 9699.16 10299.69 12199.45 23199.49 125100.00 199.15 30097.45 16799.97 112100.00 196.76 18999.76 19599.67 148100.00 199.81 200
MAR-MVS99.49 7199.36 7999.89 7399.97 8899.66 10399.74 28799.95 1997.89 121100.00 1100.00 196.71 191100.00 1100.00 1100.00 1100.00 1
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MM99.94 6399.82 84100.00 199.97 1799.11 7100.00 1100.00 196.65 192100.00 1100.00 199.97 110100.00 1
MSDG98.90 14098.63 15199.70 12099.92 10399.25 152100.00 199.37 19995.71 26899.40 201100.00 196.58 19399.95 14696.80 28899.94 11899.91 147
PVSNet_BlendedMVS98.71 15398.62 15298.98 19699.98 8499.60 108100.00 1100.00 197.23 185100.00 199.03 32596.57 19499.99 94100.00 194.75 28097.35 350
PVSNet_Blended99.48 7399.36 7999.83 8999.98 8499.60 108100.00 1100.00 197.79 128100.00 1100.00 196.57 19499.99 94100.00 199.88 12899.90 156
MVS_Test98.93 13798.65 14999.77 11099.62 18199.50 12299.99 20399.19 28695.52 27699.96 11799.86 23196.54 19699.98 11898.65 21998.48 18099.82 192
PMMVS99.12 11198.97 11699.58 13999.57 19598.98 181100.00 199.30 23597.14 18999.96 117100.00 196.53 19799.82 18399.70 13798.49 17999.94 133
PVSNet_Blended_VisFu99.33 8999.18 10199.78 10799.82 12099.49 125100.00 199.95 1997.36 17399.63 184100.00 196.45 19899.95 14699.79 11999.65 15199.89 161
mvs_anonymous98.80 14698.60 15599.38 16399.57 19599.24 154100.00 199.21 28295.87 26098.92 23099.82 24196.39 19999.03 26599.13 19698.50 17899.88 172
DP-MVS98.86 14298.54 15999.81 9699.97 8899.45 13199.52 31999.40 18194.35 30898.36 268100.00 196.13 20099.97 12399.12 197100.00 1100.00 1
PVSNet94.91 1899.30 9599.25 8999.44 152100.00 198.32 218100.00 199.86 3898.04 107100.00 1100.00 196.10 201100.00 199.55 16499.73 144100.00 1
RRT_MVS97.77 20797.76 20597.78 27897.89 33497.06 284100.00 199.29 23995.74 26798.00 29399.97 19595.94 20298.55 31498.87 20794.18 28797.72 302
Effi-MVS+-dtu98.51 17398.86 13097.47 28699.77 14694.21 335100.00 198.94 35397.61 14899.91 14898.75 34395.89 20399.51 23499.36 17799.48 15798.68 248
our_test_396.51 26696.35 25996.98 30697.61 34495.05 31199.98 22799.01 34794.68 29696.77 33399.06 32095.87 20498.14 33491.81 34592.37 30697.75 266
UA-Net99.06 11698.83 13199.74 11399.52 20999.40 13799.08 37099.45 10297.64 14299.83 161100.00 195.80 20599.94 15898.35 23499.80 14299.88 172
FMVSNet595.32 30795.43 30494.99 33799.39 24492.99 34799.25 34599.24 26690.45 35997.44 31698.45 35495.78 20694.39 38387.02 37091.88 31497.59 337
CVMVSNet98.56 16798.47 16498.82 20499.11 26097.67 26099.74 28799.47 7997.57 15399.06 222100.00 195.72 20798.97 27298.21 24297.33 23399.83 187
mvsmamba98.13 19498.06 19398.32 23398.22 32198.50 205100.00 199.22 27396.41 24198.91 23299.96 20995.69 20898.73 29699.19 19394.95 27997.73 295
RPMNet95.26 30993.82 31799.56 14299.31 24898.86 18699.13 36499.42 13179.82 38699.96 11795.13 37995.69 20899.98 11877.54 38998.40 18599.84 184
MVS99.22 10798.96 11799.98 2399.00 27799.95 3299.24 34699.94 2298.14 9998.88 234100.00 195.63 210100.00 199.85 109100.00 1100.00 1
jason99.11 11298.96 11799.59 13599.17 25799.31 146100.00 199.13 30997.38 17299.83 161100.00 195.54 21199.72 20199.57 16399.97 11099.74 221
jason: jason.
AdaColmapbinary99.44 7799.26 8899.95 51100.00 199.86 7799.70 29799.99 1398.53 7399.90 150100.00 195.34 212100.00 199.92 96100.00 1100.00 1
CANet99.40 7999.24 9199.89 7399.99 4999.76 90100.00 199.73 5698.40 7999.78 173100.00 195.28 21399.96 134100.00 199.99 9799.96 122
FIs97.95 20197.73 20998.62 21498.53 30699.24 154100.00 199.43 12196.74 21597.87 29999.82 24195.27 21498.89 27998.78 21193.07 29697.74 289
canonicalmvs99.03 12098.73 14399.94 6399.75 14999.95 32100.00 199.30 23597.64 142100.00 1100.00 195.22 21599.97 12399.76 12696.90 24099.91 147
fmvsm_s_conf0.5_n_a99.32 9199.15 10399.81 9699.80 13799.47 130100.00 199.35 21698.22 91100.00 1100.00 195.21 21699.99 9499.96 8599.86 13299.98 109
FC-MVSNet-test97.84 20397.63 21398.45 22498.30 31699.05 172100.00 199.43 12196.63 22997.61 31099.82 24195.19 21798.57 31198.64 22093.05 29797.73 295
UniMVSNet_NR-MVSNet97.16 23696.80 23998.22 24098.38 31098.41 206100.00 199.45 10296.14 25597.76 30199.64 27595.05 21898.50 31797.98 24986.84 35997.75 266
Fast-Effi-MVS+-dtu98.38 18398.56 15897.82 27699.58 19294.44 332100.00 199.16 29996.75 21399.51 18999.63 27995.03 21999.60 20797.71 25899.67 14999.42 238
UniMVSNet (Re)97.29 23296.85 23898.59 21798.49 30799.13 167100.00 199.42 13196.52 23598.24 28198.90 33794.93 22098.89 27997.54 26487.61 35597.75 266
BH-w/o98.82 14598.81 13498.88 20299.62 18196.71 292100.00 199.28 24597.09 19298.81 242100.00 194.91 22199.96 13499.54 167100.00 199.96 122
AUN-MVS96.26 28295.67 29398.06 25899.68 15895.60 30599.82 27099.42 13196.78 21299.88 15599.80 24794.84 22299.47 23997.48 26673.29 38599.12 243
test_fmvsmconf0.1_n99.25 10399.05 10799.82 9198.92 28699.55 113100.00 199.23 27098.91 4199.75 17799.97 19594.79 22399.94 15899.94 9399.99 9799.97 116
PCF-MVS98.23 398.69 15698.37 17299.62 13099.78 14499.02 17599.23 35199.06 33796.43 23898.08 284100.00 194.72 22499.95 14698.16 24399.91 12499.90 156
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
VNet99.04 11898.75 14199.90 7199.81 12699.75 9199.50 32199.47 7998.36 84100.00 199.99 18294.66 225100.00 199.90 9997.09 23599.96 122
diffmvspermissive98.96 13398.73 14399.63 12999.54 19999.16 165100.00 199.18 29397.33 17799.96 117100.00 194.60 22699.91 16499.66 15198.33 19499.82 192
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
BH-untuned98.64 15998.65 14998.60 21599.59 18796.17 298100.00 199.28 24596.67 22598.41 267100.00 194.52 22799.83 18099.41 175100.00 199.81 200
nrg03097.64 21397.27 22898.75 20998.34 31199.53 117100.00 199.22 27396.21 25398.27 27799.95 21794.40 22898.98 27099.23 18989.78 33797.75 266
ppachtmachnet_test96.17 28795.89 27897.02 30397.61 34495.24 30899.99 20399.24 26693.31 33396.71 33499.62 28394.34 22998.07 34389.87 35992.30 30897.75 266
D2MVS97.63 21697.83 20397.05 30198.83 29794.60 328100.00 199.82 4096.89 20698.28 27599.03 32594.05 23099.47 23998.58 22794.97 27797.09 356
RPSCF97.37 22898.24 18094.76 34199.80 13784.57 37899.99 20399.05 33994.95 28999.82 169100.00 194.03 231100.00 198.15 24498.38 18899.70 226
CANet_DTU99.02 12498.90 12899.41 15799.88 11198.71 194100.00 199.29 23998.84 51100.00 1100.00 194.02 232100.00 198.08 24599.96 11399.52 236
LCM-MVSNet-Re96.52 26497.21 23194.44 34299.27 25285.80 37599.85 26596.61 39295.98 25792.75 36698.48 35393.97 23397.55 36199.58 16298.43 18399.98 109
Effi-MVS+98.58 16598.24 18099.61 13199.60 18599.26 15097.85 38699.10 31996.22 25299.97 11299.89 22793.75 23499.77 19399.43 17398.34 19199.81 200
pmmvs497.17 23596.80 23998.27 23697.68 34198.64 199100.00 199.18 29394.22 31098.55 25799.71 25693.67 23598.47 32095.66 30592.57 30497.71 310
CHOSEN 1792x268899.00 12698.91 12599.25 18099.90 10797.79 257100.00 199.99 1398.79 6098.28 275100.00 193.63 23699.95 14699.66 15199.95 116100.00 1
fmvsm_s_conf0.5_n99.21 10899.01 11199.83 8999.84 11699.53 117100.00 199.38 19698.29 90100.00 1100.00 193.62 23799.99 9499.99 6199.93 12199.98 109
cdsmvs_eth3d_5k24.41 36732.55 3690.00 3840.00 4060.00 4090.00 39599.39 1940.00 4020.00 403100.00 193.55 2380.00 4030.00 4020.00 4010.00 399
AllTest98.55 16898.40 16898.99 19499.93 10097.35 271100.00 199.40 18197.08 19499.09 21899.98 18793.37 23999.95 14696.94 28199.84 13799.68 228
TestCases98.99 19499.93 10097.35 27199.40 18197.08 19499.09 21899.98 18793.37 23999.95 14696.94 28199.84 13799.68 228
FMVSNet397.30 23196.95 23498.37 22999.65 16899.25 15299.71 29599.28 24594.23 30998.53 25998.91 33693.30 24198.11 33895.31 31193.60 29097.73 295
Fast-Effi-MVS+98.40 18298.02 19799.55 14399.63 17699.06 171100.00 199.15 30095.07 28699.42 19599.95 21793.26 24299.73 20097.44 26798.24 19799.87 180
bld_raw_dy_0_6497.71 21197.56 21498.15 24797.83 33798.16 22799.95 24499.12 31595.95 25998.73 24799.97 19593.19 24398.63 30298.64 22094.69 28297.66 322
baseline98.69 15698.45 16599.41 15799.52 20998.67 197100.00 199.17 29897.03 19799.13 215100.00 193.17 24499.74 19899.70 13798.34 19199.81 200
QAPM98.99 12998.66 14899.96 4299.01 27399.87 7499.88 26199.93 3097.99 11098.68 249100.00 193.17 244100.00 199.32 181100.00 1100.00 1
PatchMatch-RL99.02 12498.78 13699.74 11399.99 4999.29 147100.00 1100.00 198.38 8099.89 15399.81 24493.14 24699.99 9497.85 25599.98 10799.95 128
WR-MVS_H96.73 25496.32 26297.95 26998.26 31897.88 25199.72 29499.43 12195.06 28796.99 32498.68 34693.02 24798.53 31597.43 26888.33 35197.43 346
3Dnovator95.63 1499.06 11698.76 13999.96 4298.86 29499.90 5899.98 22799.93 3098.95 3598.49 264100.00 192.91 248100.00 199.71 134100.00 1100.00 1
WB-MVS88.24 34690.09 34282.68 37291.56 38669.51 392100.00 198.73 36390.72 35887.29 38198.12 36192.87 24985.01 39462.19 39589.34 34293.54 383
3Dnovator+95.58 1599.03 12098.71 14699.96 4298.99 28099.89 65100.00 199.51 7698.96 3298.32 272100.00 192.78 250100.00 199.87 106100.00 1100.00 1
casdiffmvspermissive98.65 15898.38 17099.46 15099.52 20998.74 193100.00 199.15 30096.91 20499.05 223100.00 192.75 25199.83 18099.70 13798.38 18899.81 200
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
casdiffmvs_mvgpermissive98.64 15998.39 16999.40 15999.50 21898.60 200100.00 199.22 27396.85 20799.10 217100.00 192.75 25199.78 19299.71 13498.35 19099.81 200
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
NR-MVSNet96.63 26096.04 27298.38 22898.31 31498.98 18199.22 35399.35 21695.87 26094.43 35999.65 27192.73 25398.40 32396.78 28988.05 35297.75 266
SSC-MVS87.61 34789.47 34582.04 37390.63 38968.77 39399.99 20398.66 36490.34 36186.70 38298.08 36292.72 25484.12 39559.41 39888.71 34993.22 386
COLMAP_ROBcopyleft97.10 798.29 18898.17 18598.65 21299.94 9897.39 26999.30 34299.40 18195.64 26997.75 304100.00 192.69 25599.95 14698.89 20599.92 12398.62 250
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
EU-MVSNet96.63 26096.53 24996.94 30897.59 34696.87 28899.76 28499.47 7996.35 24596.85 32999.78 25092.57 25696.27 37495.33 31091.08 32697.68 317
MVP-Stereo96.51 26696.48 25396.60 32095.65 37294.25 33498.84 37798.16 36995.85 26495.23 35099.04 32392.54 25799.13 26192.98 33799.98 10796.43 368
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
Syy-MVS96.17 28796.57 24895.00 33699.50 21887.37 373100.00 199.57 6896.23 25098.07 285100.00 192.41 25897.81 35485.34 37497.96 21099.82 192
DeepC-MVS97.84 599.00 12698.80 13599.60 13399.93 10099.03 174100.00 199.40 18198.61 7199.33 204100.00 192.23 25999.95 14699.74 12899.96 11399.83 187
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DU-MVS96.93 24896.49 25298.22 24098.31 31498.41 206100.00 199.37 19996.41 24197.76 30199.65 27192.14 26098.50 31797.98 24986.84 35997.75 266
Baseline_NR-MVSNet96.16 28995.70 28997.56 28598.28 31796.79 291100.00 197.86 38091.93 34997.63 30799.47 30192.14 26098.35 32597.13 27686.83 36197.54 340
cascas98.43 17798.07 19299.50 14699.65 16899.02 175100.00 199.22 27394.21 31199.72 18099.98 18792.03 26299.93 16199.68 14598.12 20499.54 235
test_djsdf97.55 21997.38 22198.07 25497.50 35097.99 241100.00 199.13 30995.46 28198.47 26599.85 23592.01 26398.59 30898.63 22295.36 25597.62 333
v896.35 27795.73 28898.21 24298.11 32698.23 22499.94 24999.07 32992.66 34598.29 27499.00 32891.46 26498.77 29294.17 32588.83 34897.62 333
OpenMVScopyleft95.20 1798.76 14898.41 16799.78 10798.89 28999.81 8599.99 20399.76 4998.02 10898.02 290100.00 191.44 265100.00 199.63 15699.97 11099.55 234
v14896.29 28095.84 28097.63 28097.74 33996.53 296100.00 199.07 32993.52 32798.01 29199.42 30491.22 26698.60 30696.37 29787.22 35897.75 266
GeoE98.06 19697.65 21299.29 17499.47 22798.41 206100.00 199.19 28694.85 29198.88 234100.00 191.21 26799.59 20997.02 27998.19 20199.88 172
XVG-OURS98.30 18698.36 17498.13 25199.58 19295.91 301100.00 199.36 20598.69 6599.23 208100.00 191.20 26899.92 16399.34 17997.82 22198.56 251
WR-MVS97.09 23996.64 24498.46 22398.43 30899.09 16899.97 23399.33 22495.62 27197.76 30199.67 26791.17 26998.56 31398.49 22989.28 34397.74 289
V4296.65 25996.16 26898.11 25398.17 32598.23 22499.99 20399.09 32493.97 31698.74 24699.05 32291.09 27098.82 28795.46 30989.90 33597.27 352
v1096.14 29195.50 29798.07 25498.19 32397.96 24599.83 26799.07 32992.10 34898.07 28598.94 33491.07 27198.61 30492.41 34389.82 33697.63 331
dmvs_testset93.27 32495.48 30186.65 36598.74 29868.42 39499.92 25298.91 35696.19 25493.28 363100.00 191.06 27291.67 39089.64 36291.54 31899.86 182
v7n96.06 29595.42 30597.99 26897.58 34797.35 27199.86 26399.11 31792.81 34497.91 29799.49 29990.99 27398.92 27592.51 34088.49 35097.70 311
v114496.51 26695.97 27698.13 25197.98 33198.04 23999.99 20399.08 32593.51 32898.62 25398.98 32990.98 27498.62 30393.79 33190.79 32997.74 289
dmvs_re97.54 22097.88 20196.54 32199.55 19890.35 36499.86 26399.46 9497.00 19899.41 200100.00 190.78 27599.30 25599.60 15895.24 26299.96 122
ab-mvs98.42 17998.02 19799.61 13199.71 15199.00 17999.10 36799.64 6496.70 22099.04 22499.81 24490.64 27699.98 11899.64 15397.93 21399.84 184
Anonymous20240521197.87 20297.53 21598.90 20099.81 12696.70 29399.35 33699.46 9492.98 33998.83 24199.99 18290.63 277100.00 199.70 13797.03 236100.00 1
Anonymous2023120693.45 32293.17 32494.30 34595.00 37789.69 36699.98 22798.43 36693.30 33494.50 35898.59 34990.52 27895.73 37977.46 39090.73 33197.48 345
anonymousdsp97.16 23696.88 23698.00 26697.08 36098.06 23799.81 27199.15 30094.58 29997.84 30099.62 28390.49 27998.60 30697.98 24995.32 25697.33 351
v2v48296.70 25796.18 26698.27 23698.04 32898.39 209100.00 199.13 30994.19 31398.58 25599.08 31990.48 28098.67 29995.69 30490.44 33397.75 266
v14419296.40 27495.81 28198.17 24597.89 33498.11 23299.99 20399.06 33793.39 33098.75 24599.09 31890.43 28198.66 30093.10 33690.55 33297.75 266
Vis-MVSNetpermissive98.52 17198.25 17899.34 16699.68 15898.55 20299.68 30199.41 17797.34 17699.94 142100.00 190.38 28299.70 20399.03 20098.84 16899.76 219
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test_fmvsmconf0.01_n98.60 16398.24 18099.67 12396.90 36199.21 15899.99 20399.04 34298.80 5799.57 18699.96 20990.12 28399.91 16499.89 10199.89 12699.90 156
CP-MVSNet96.73 25496.25 26398.18 24398.21 32298.67 19799.77 28299.32 22695.06 28797.20 32199.65 27190.10 28498.19 33198.06 24788.90 34697.66 322
TranMVSNet+NR-MVSNet96.45 27096.01 27397.79 27798.00 33097.62 262100.00 199.35 21695.98 25797.31 31899.64 27590.09 28598.00 34896.89 28486.80 36297.75 266
SDMVSNet98.49 17498.08 19099.73 11699.82 12099.53 11799.99 20399.45 10297.62 14499.38 20299.86 23190.06 28699.88 17199.92 9696.61 24399.79 213
DSMNet-mixed95.18 31095.21 30895.08 33396.03 36790.21 36599.65 30393.64 39892.91 34098.34 27097.40 37090.05 28795.51 38091.02 35197.86 21799.51 237
N_pmnet91.88 33493.37 32387.40 36497.24 35966.33 39799.90 25691.05 40089.77 36595.65 34898.58 35090.05 28798.11 33885.39 37392.72 30097.75 266
fmvsm_s_conf0.1_n_a98.71 15398.36 17499.78 10799.09 26399.42 135100.00 199.26 25997.42 170100.00 1100.00 189.78 28999.96 13499.82 11899.85 13599.97 116
GA-MVS97.72 21097.27 22899.06 18799.24 25597.93 248100.00 199.24 26695.80 26698.99 22799.64 27589.77 29099.36 25095.12 31597.62 23199.89 161
fmvsm_s_conf0.1_n98.77 14798.42 16699.82 9199.47 22799.52 120100.00 199.27 25397.53 157100.00 1100.00 189.73 29199.96 13499.84 11299.93 12199.97 116
MIMVSNet97.06 24296.73 24298.05 26299.38 24596.64 29598.47 38299.35 21693.41 32999.48 19198.53 35189.66 29297.70 36094.16 32798.11 20599.80 211
IterMVS-SCA-FT96.72 25696.42 25697.62 28299.40 24196.83 28999.99 20399.14 30594.65 29897.55 31399.72 25489.65 29398.31 32695.62 30792.05 31097.73 295
SCA98.30 18697.98 19999.23 18199.41 23698.25 22399.99 20399.45 10296.91 20499.76 17699.58 28989.65 29399.54 22698.31 23698.79 16999.91 147
IterMVS96.76 25396.46 25497.63 28099.41 23696.89 28799.99 20399.13 30994.74 29597.59 31299.66 26989.63 29598.28 32895.71 30392.31 30797.72 302
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v119296.18 28595.49 29998.26 23898.01 32998.15 22999.99 20399.08 32593.36 33198.54 25898.97 33289.47 29698.89 27991.15 35090.82 32897.75 266
v192192096.16 28995.50 29798.14 24897.88 33697.96 24599.99 20399.07 32993.33 33298.60 25499.24 31289.37 29798.71 29791.28 34890.74 33097.75 266
XVG-OURS-SEG-HR98.27 19098.31 17698.14 24899.59 18795.92 300100.00 199.36 20598.48 7599.21 209100.00 189.27 29899.94 15899.76 12699.17 16098.56 251
test20.0393.11 32592.85 32993.88 35095.19 37691.83 355100.00 198.87 35993.68 32292.76 36598.88 33889.20 29992.71 38877.88 38889.19 34497.09 356
MDA-MVSNet_test_wron92.61 32991.09 33797.19 29996.71 36397.26 277100.00 199.14 30588.61 36867.90 39598.32 35989.03 30096.57 36990.47 35689.59 33897.74 289
BH-RMVSNet98.46 17598.08 19099.59 13599.61 18399.19 160100.00 199.28 24597.06 19698.95 229100.00 188.99 30199.82 18398.83 210100.00 199.77 217
v124095.96 29795.25 30698.07 25497.91 33397.87 25399.96 23899.07 32993.24 33598.64 25298.96 33388.98 30298.61 30489.58 36390.92 32797.75 266
Anonymous2023121196.29 28095.70 28998.07 25499.80 13797.49 26599.15 36299.40 18189.11 36697.75 30499.45 30288.93 30398.98 27098.26 24189.47 34097.73 295
TR-MVS98.14 19397.74 20799.33 16999.59 18798.28 22199.27 34399.21 28296.42 24099.15 21499.94 22188.87 30499.79 18898.88 20698.29 19599.93 143
CL-MVSNet_self_test91.07 33890.35 34193.24 35293.27 38089.16 36899.55 31599.25 26192.34 34695.23 35097.05 37288.86 30593.59 38680.67 38366.95 38996.96 359
YYNet192.44 33090.92 33897.03 30296.20 36597.06 28499.99 20399.14 30588.21 37167.93 39498.43 35688.63 30696.28 37390.64 35289.08 34597.74 289
HQP2-MVS88.61 307
HQP-MVS97.73 20997.85 20297.39 28899.07 26594.82 316100.00 199.40 18199.04 1599.17 21099.97 19588.61 30799.57 21499.79 11995.58 24797.77 253
HQP_MVS97.71 21197.82 20497.37 28999.00 27794.80 319100.00 199.40 18199.00 2799.08 22099.97 19588.58 30999.55 22399.79 11995.57 25197.76 255
plane_prior699.06 26994.80 31988.58 309
tfpnnormal96.36 27695.69 29298.37 22998.55 30498.71 19499.69 29999.45 10293.16 33796.69 33599.71 25688.44 31198.99 26994.17 32591.38 32397.41 347
test111198.42 17998.12 18799.29 17499.88 11198.15 22999.46 323100.00 198.36 8499.42 195100.00 187.91 31299.79 18899.31 18298.78 17099.94 133
ECVR-MVScopyleft98.43 17798.14 18699.32 17199.89 10998.21 22699.46 323100.00 198.38 8099.47 194100.00 187.91 31299.80 18799.35 17898.78 17099.94 133
TransMVSNet (Re)94.78 31293.72 31897.93 27298.34 31197.88 25199.23 35197.98 37791.60 35094.55 35699.71 25687.89 31498.36 32489.30 36584.92 36597.56 339
DTE-MVSNet95.52 30494.99 31297.08 30097.49 35296.45 297100.00 199.25 26193.82 31896.17 34299.57 29287.81 31597.18 36294.57 32086.26 36497.62 333
XXY-MVS97.14 23896.63 24598.67 21198.65 30098.92 18499.54 31799.29 23995.57 27397.63 30799.83 23887.79 31699.35 25298.39 23292.95 29897.75 266
UGNet98.41 18198.11 18899.31 17399.54 19998.55 20299.18 354100.00 198.64 7099.79 17199.04 32387.61 317100.00 199.30 18399.89 12699.40 239
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
CLD-MVS97.64 21397.74 20797.36 29099.01 27394.76 324100.00 199.34 22299.30 499.00 22699.97 19587.49 31899.57 21499.96 8595.58 24797.75 266
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
test_cas_vis1_n_192098.63 16298.25 17899.77 11099.69 15499.32 144100.00 199.31 23198.84 5199.96 117100.00 187.42 31999.99 9499.14 19499.86 132100.00 1
PEN-MVS96.01 29695.48 30197.58 28497.74 33997.26 27799.90 25699.29 23994.55 30096.79 33199.55 29487.38 32097.84 35396.92 28387.24 35797.65 327
ACMM97.17 697.37 22897.40 22097.29 29499.01 27394.64 327100.00 199.25 26198.07 10698.44 26699.98 18787.38 32099.55 22399.25 18695.19 26597.69 315
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
jajsoiax97.07 24196.79 24197.89 27497.28 35897.12 28199.95 24499.19 28696.55 23297.31 31899.69 26287.35 32298.91 27698.70 21695.12 27197.66 322
pmmvs595.94 29895.61 29496.95 30797.42 35594.66 325100.00 198.08 37393.60 32597.05 32399.43 30387.02 32398.46 32195.76 30192.12 30997.72 302
VPA-MVSNet97.03 24496.43 25598.82 20498.64 30199.32 14499.38 33399.47 7996.73 21798.91 23298.94 33487.00 32499.40 24899.23 18989.59 33897.76 255
PS-CasMVS96.34 27895.78 28598.03 26598.18 32498.27 22299.71 29599.32 22694.75 29396.82 33099.65 27186.98 32598.15 33397.74 25788.85 34797.66 322
LPG-MVS_test97.31 23097.32 22497.28 29598.85 29594.60 328100.00 199.37 19997.35 17498.85 23799.98 18786.66 32699.56 21899.55 16495.26 25997.70 311
LGP-MVS_train97.28 29598.85 29594.60 32899.37 19997.35 17498.85 23799.98 18786.66 32699.56 21899.55 16495.26 25997.70 311
mvs_tets97.00 24696.69 24397.94 27097.41 35797.27 27699.60 31099.18 29396.51 23697.35 31799.69 26286.53 32898.91 27698.84 20895.09 27397.65 327
pm-mvs195.76 30195.01 31198.00 26698.23 32097.45 26799.24 34699.04 34293.13 33895.93 34699.72 25486.28 32998.84 28495.62 30787.92 35397.72 302
KD-MVS_self_test91.16 33790.09 34294.35 34494.44 37991.27 36099.74 28799.08 32590.82 35794.53 35794.91 38286.11 33094.78 38282.67 37968.52 38896.99 358
MVS-HIRNet94.12 31892.73 33198.29 23599.33 24795.95 29999.38 33399.19 28674.54 38998.26 27886.34 39386.07 33199.06 26491.60 34799.87 13199.85 183
DeepMVS_CXcopyleft89.98 35898.90 28871.46 38999.18 29397.61 14896.92 32599.83 23886.07 33199.83 18096.02 29997.65 23098.65 249
OPM-MVS97.21 23397.18 23297.32 29398.08 32794.66 325100.00 199.28 24598.65 6998.92 23099.98 18786.03 33399.56 21898.28 24095.41 25397.72 302
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
new_pmnet94.11 31993.47 32296.04 32996.60 36492.82 34899.97 23398.91 35690.21 36295.26 34998.05 36585.89 33498.14 33484.28 37692.01 31197.16 354
ACMP97.00 897.19 23497.16 23397.27 29798.97 28294.58 331100.00 199.32 22697.97 11497.45 31599.98 18785.79 33599.56 21899.70 13795.24 26297.67 321
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
OurMVSNet-221017-096.14 29195.98 27596.62 31997.49 35293.44 34299.92 25298.16 36995.86 26297.65 30699.95 21785.71 33698.78 28994.93 31794.18 28797.64 330
sd_testset97.81 20597.48 21698.79 20799.82 12096.80 29099.32 33899.45 10297.62 14499.38 20299.86 23185.56 33799.77 19399.72 13196.61 24399.79 213
SixPastTwentyTwo95.71 30295.49 29996.38 32497.42 35593.01 34599.84 26698.23 36894.75 29395.98 34599.97 19585.35 33898.43 32294.71 31993.17 29597.69 315
test_fmvs198.37 18498.04 19599.34 16699.84 11698.07 235100.00 199.00 34898.85 49100.00 1100.00 185.11 33999.96 13499.69 14499.88 128100.00 1
LTVRE_ROB95.29 1696.32 27996.10 26996.99 30598.55 30493.88 33799.45 32599.28 24594.50 30396.46 33799.52 29784.86 34099.48 23797.26 27595.03 27497.59 337
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
ITE_SJBPF96.84 31498.96 28393.49 34198.12 37198.12 10398.35 26999.97 19584.45 34199.56 21895.63 30695.25 26197.49 343
PVSNet_093.57 1996.41 27195.74 28798.41 22699.84 11695.22 309100.00 1100.00 198.08 10597.55 31399.78 25084.40 342100.00 1100.00 181.99 374100.00 1
K. test v395.46 30695.14 30996.40 32397.53 34993.40 34399.99 20399.23 27095.49 27992.70 36799.73 25384.26 34398.12 33693.94 33093.38 29497.68 317
GBi-Net96.07 29395.80 28396.89 31199.53 20294.87 31399.18 35499.27 25393.71 31998.53 25998.81 34084.23 34498.07 34395.31 31193.60 29097.72 302
test196.07 29395.80 28396.89 31199.53 20294.87 31399.18 35499.27 25393.71 31998.53 25998.81 34084.23 34498.07 34395.31 31193.60 29097.72 302
FMVSNet296.22 28395.60 29598.06 25899.53 20298.33 21699.45 32599.27 25393.71 31998.03 28898.84 33984.23 34498.10 34193.97 32993.40 29397.73 295
testgi96.18 28595.93 27796.93 30998.98 28194.20 336100.00 199.07 32997.16 18896.06 34499.86 23184.08 34797.79 35790.38 35797.80 22398.81 247
Anonymous2024052193.29 32392.76 33094.90 34095.64 37391.27 36099.97 23398.82 36187.04 37494.71 35498.19 36083.86 34896.80 36584.04 37792.56 30596.64 365
ACMH96.25 1196.77 25296.62 24697.21 29898.96 28394.43 33399.64 30499.33 22497.43 16996.55 33699.97 19583.52 34999.54 22699.07 19995.13 27097.66 322
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Anonymous2024052996.93 24896.22 26599.05 18999.79 14197.30 27599.16 36099.47 7988.51 36998.69 248100.00 183.50 350100.00 199.83 11397.02 23799.83 187
lessismore_v096.05 32897.55 34891.80 35699.22 27391.87 36899.91 22583.50 35098.68 29892.48 34190.42 33497.68 317
UnsupCasMVSNet_eth94.25 31593.89 31695.34 33297.63 34292.13 35399.73 29299.36 20594.88 29092.78 36498.63 34882.72 35296.53 37094.57 32084.73 36697.36 349
LF4IMVS96.19 28496.18 26696.23 32798.26 31892.09 354100.00 197.89 37997.82 12697.94 29499.87 22982.71 35399.38 24997.41 26993.71 28997.20 353
ACMH+96.20 1396.49 26996.33 26197.00 30499.06 26993.80 33899.81 27199.31 23197.32 17895.89 34799.97 19582.62 35499.54 22698.34 23594.63 28397.65 327
pmmvs390.62 34189.36 34794.40 34390.53 39091.49 358100.00 196.73 39084.21 38093.65 36296.65 37482.56 35594.83 38182.28 38077.62 38296.89 361
XVG-ACMP-BASELINE96.60 26296.52 25196.84 31498.41 30993.29 34499.99 20399.32 22697.76 13298.51 26299.29 31081.95 35699.54 22698.40 23195.03 27497.68 317
VPNet96.41 27195.76 28698.33 23298.61 30298.30 22099.48 32299.45 10296.98 19998.87 23699.88 22881.57 35798.93 27499.22 19187.82 35497.76 255
MDA-MVSNet-bldmvs91.65 33689.94 34496.79 31796.72 36296.70 29399.42 33098.94 35388.89 36766.97 39798.37 35781.43 35895.91 37789.24 36689.46 34197.75 266
MS-PatchMatch95.66 30395.87 27995.05 33497.80 33889.25 36798.88 37699.30 23596.35 24596.86 32899.01 32781.35 35999.43 24593.30 33599.98 10796.46 367
USDC95.90 29995.70 28996.50 32298.60 30392.56 352100.00 198.30 36797.77 13096.92 32599.94 22181.25 36099.45 24493.54 33394.96 27897.49 343
TDRefinement91.93 33290.48 34096.27 32681.60 39692.65 35199.10 36797.61 38593.96 31793.77 36199.85 23580.03 36199.53 23197.82 25670.59 38796.63 366
test_040294.35 31493.70 31996.32 32597.92 33293.60 33999.61 30998.85 36088.19 37294.68 35599.48 30080.01 36298.58 31089.39 36495.15 26996.77 362
tt080596.52 26496.23 26497.40 28799.30 25193.55 34099.32 33899.45 10296.75 21397.88 29899.99 18279.99 36399.59 20997.39 27195.98 24699.06 245
TinyColmap95.50 30595.12 31096.64 31898.69 29993.00 34699.40 33197.75 38296.40 24396.14 34399.87 22979.47 36499.50 23593.62 33294.72 28197.40 348
LFMVS97.42 22696.62 24699.81 9699.80 13799.50 12299.16 36099.56 7094.48 304100.00 1100.00 179.35 365100.00 199.89 10197.37 23299.94 133
pmmvs-eth3d91.73 33590.67 33994.92 33991.63 38592.71 35099.90 25698.54 36591.19 35388.08 37895.50 37779.31 36696.13 37590.55 35581.32 37795.91 373
new-patchmatchnet90.30 34289.46 34692.84 35490.77 38888.55 37199.83 26798.80 36290.07 36487.86 37995.00 38078.77 36794.30 38484.86 37579.15 37995.68 376
test12379.44 35679.23 35880.05 37580.03 39771.72 388100.00 177.93 40662.52 39294.81 35399.69 26278.21 36874.53 39992.57 33927.33 39993.90 380
CMPMVSbinary66.12 2290.65 34092.04 33386.46 36696.18 36666.87 39698.03 38599.38 19683.38 38285.49 38499.55 29477.59 36998.80 28894.44 32294.31 28693.72 382
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test_vis1_n_192097.77 20797.24 23099.34 16699.79 14198.04 239100.00 199.25 26198.88 44100.00 1100.00 177.52 370100.00 199.88 10399.85 135100.00 1
pmmvs693.64 32092.87 32895.94 33097.47 35491.41 35998.92 37499.02 34587.84 37395.01 35299.61 28577.24 37198.77 29294.33 32386.41 36397.63 331
tmp_tt75.80 36074.26 36280.43 37452.91 40553.67 40587.42 39397.98 37761.80 39367.04 396100.00 176.43 37296.40 37196.47 29328.26 39891.23 388
APD_test193.07 32794.14 31589.85 35999.18 25672.49 38799.76 28498.90 35892.86 34396.35 33899.94 22175.56 37399.91 16486.73 37197.98 20897.15 355
MIMVSNet191.96 33191.20 33494.23 34794.94 37891.69 35799.34 33799.22 27388.23 37094.18 36098.45 35475.52 37493.41 38779.37 38691.49 32097.60 336
test_fmvs1_n97.43 22596.86 23799.15 18599.68 15897.48 26699.99 20398.98 35198.82 55100.00 1100.00 174.85 37599.96 13499.67 14899.70 146100.00 1
VDDNet96.39 27595.55 29698.90 20099.27 25297.45 26799.15 36299.92 3491.28 35299.98 108100.00 173.55 376100.00 199.85 10996.98 23899.24 240
test_fmvs295.17 31195.23 30795.01 33598.95 28588.99 36999.99 20397.77 38197.79 12898.58 25599.70 25973.36 37799.34 25395.88 30095.03 27496.70 364
EGC-MVSNET79.46 35574.04 36395.72 33196.00 36892.73 34999.09 36999.04 3425.08 40116.72 40198.71 34473.03 37898.74 29582.05 38196.64 24295.69 375
FMVSNet194.45 31393.63 32096.89 31198.87 29394.87 31399.18 35499.27 25390.95 35697.31 31898.81 34072.89 37998.07 34392.61 33892.81 29997.72 302
VDD-MVS96.58 26395.99 27498.34 23199.52 20995.33 30799.18 35499.38 19696.64 22799.77 174100.00 172.51 380100.00 1100.00 196.94 23999.70 226
EG-PatchMatch MVS92.94 32892.49 33294.29 34695.87 36987.07 37499.07 37298.11 37293.19 33688.98 37698.66 34770.89 38199.08 26392.43 34295.21 26496.72 363
test_method91.04 33991.10 33690.85 35698.34 31177.63 383100.00 198.93 35576.69 38796.25 34198.52 35270.44 38297.98 34989.02 36891.74 31596.92 360
UniMVSNet_ETH3D95.28 30894.41 31497.89 27498.91 28795.14 31099.13 36499.35 21692.11 34797.17 32299.66 26970.28 38399.36 25097.88 25495.18 26699.16 241
OpenMVS_ROBcopyleft88.34 2091.89 33391.12 33594.19 34895.55 37487.63 37299.26 34498.03 37486.61 37690.65 37496.82 37370.14 38498.78 28986.54 37296.50 24596.15 369
testmvs80.17 35381.95 35674.80 37758.54 40359.58 402100.00 187.14 40376.09 38899.61 185100.00 167.06 38574.19 40098.84 20850.30 39490.64 389
test_vis1_n96.69 25895.81 28199.32 17199.14 25897.98 24299.97 23398.98 35198.45 77100.00 1100.00 166.44 38699.99 9499.78 12599.57 156100.00 1
UnsupCasMVSNet_bld89.50 34388.00 34993.99 34995.30 37588.86 37098.52 38199.28 24585.50 37887.80 38094.11 38361.63 38796.96 36490.63 35379.26 37896.15 369
test_vis1_rt93.10 32692.93 32793.58 35199.63 17685.07 37699.99 20393.71 39797.49 16390.96 37097.10 37160.40 38899.95 14699.24 18897.90 21595.72 374
Gipumacopyleft84.73 35083.50 35588.40 36297.50 35082.21 38088.87 39199.05 33965.81 39185.71 38390.49 38853.70 38996.31 37278.64 38791.74 31586.67 390
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
mvsany_test389.36 34488.96 34890.56 35791.95 38278.97 38299.74 28796.59 39396.84 20889.25 37596.07 37552.59 39097.11 36395.17 31482.44 37395.58 377
EMVS69.88 36269.09 36572.24 38184.70 39365.82 39899.96 23887.08 40449.82 39871.51 39284.74 39549.30 39175.32 39850.97 40043.71 39675.59 396
PM-MVS88.39 34587.41 35091.31 35591.73 38482.02 38199.79 27696.62 39191.06 35590.71 37395.73 37648.60 39295.96 37690.56 35481.91 37695.97 372
E-PMN70.72 36170.06 36472.69 38083.92 39465.48 39999.95 24492.72 39949.88 39772.30 39186.26 39447.17 39377.43 39753.83 39944.49 39575.17 397
testf184.40 35184.79 35383.23 37095.71 37058.71 40398.79 37897.75 38281.58 38384.94 38598.07 36345.33 39497.73 35877.09 39183.85 36893.24 384
APD_test284.40 35184.79 35383.23 37095.71 37058.71 40398.79 37897.75 38281.58 38384.94 38598.07 36345.33 39497.73 35877.09 39183.85 36893.24 384
ambc88.45 36186.84 39270.76 39097.79 38798.02 37690.91 37195.14 37838.69 39698.51 31694.97 31684.23 36796.09 371
test_f86.87 34986.06 35289.28 36091.45 38776.37 38599.87 26297.11 38791.10 35488.46 37793.05 38638.31 39796.66 36891.77 34683.46 37194.82 378
test_fmvs387.19 34887.02 35187.71 36392.69 38176.64 38499.96 23897.27 38693.55 32690.82 37294.03 38438.00 39892.19 38993.49 33483.35 37294.32 379
FPMVS77.92 35979.45 35773.34 37976.87 39946.81 40698.24 38399.05 33959.89 39473.55 39098.34 35836.81 39986.55 39280.96 38291.35 32486.65 391
PMMVS279.15 35777.28 36084.76 36882.34 39572.66 38699.70 29795.11 39671.68 39084.78 38790.87 38732.05 40089.99 39175.53 39363.45 39291.64 387
LCM-MVSNet79.01 35876.93 36185.27 36778.28 39868.01 39596.57 38898.03 37455.10 39582.03 38893.27 38531.99 40193.95 38582.72 37874.37 38493.84 381
test_vis3_rt79.61 35478.19 35983.86 36988.68 39169.56 39199.81 27182.19 40586.78 37568.57 39384.51 39625.06 40298.26 32989.18 36778.94 38083.75 393
ANet_high66.05 36463.44 36873.88 37861.14 40263.45 40095.68 39087.18 40279.93 38547.35 39980.68 39922.35 40372.33 40161.24 39635.42 39785.88 392
wuyk23d28.28 36629.73 37023.92 38375.89 40032.61 40866.50 39412.88 40716.09 40014.59 40216.59 40112.35 40432.36 40239.36 40113.36 4006.79 398
PMVScopyleft60.66 2365.98 36565.05 36668.75 38255.06 40438.40 40788.19 39296.98 38848.30 39944.82 40088.52 39112.22 40586.49 39367.58 39483.79 37081.35 395
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive68.59 2167.22 36364.68 36774.84 37674.67 40162.32 40195.84 38990.87 40150.98 39658.72 39881.05 39812.20 40678.95 39661.06 39756.75 39383.24 394
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_blank0.07 3700.09 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.79 4020.00 4070.00 4030.00 4020.00 4010.00 399
uanet_test0.01 3710.02 3740.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.14 4030.00 4070.00 4030.00 4020.00 4010.00 399
DCPMVS0.01 3710.02 3740.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.14 4030.00 4070.00 4030.00 4020.00 4010.00 399
sosnet-low-res0.01 3710.02 3740.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.14 4030.00 4070.00 4030.00 4020.00 4010.00 399
sosnet0.01 3710.02 3740.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.14 4030.00 4070.00 4030.00 4020.00 4010.00 399
uncertanet0.01 3710.02 3740.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.14 4030.00 4070.00 4030.00 4020.00 4010.00 399
Regformer0.01 3710.02 3740.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.14 4030.00 4070.00 4030.00 4020.00 4010.00 399
ab-mvs-re8.33 36811.11 3710.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 403100.00 10.00 4070.00 4030.00 4020.00 4010.00 399
uanet0.01 3710.02 3740.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.14 4030.00 4070.00 4030.00 4020.00 4010.00 399
WAC-MVS97.98 24295.74 302
FOURS1100.00 199.97 21100.00 199.42 13198.52 74100.00 1
MSC_two_6792asdad100.00 1100.00 1100.00 199.42 131100.00 1100.00 1100.00 1100.00 1
No_MVS100.00 1100.00 1100.00 199.42 131100.00 1100.00 1100.00 1100.00 1
eth-test20.00 406
eth-test0.00 406
IU-MVS100.00 199.99 599.42 13199.12 6100.00 1100.00 1100.00 1100.00 1
save fliter99.99 4999.93 43100.00 199.42 13198.93 38
test_0728_SECOND100.00 199.99 4999.99 5100.00 199.42 131100.00 1100.00 1100.00 1100.00 1
GSMVS99.91 147
test_part2100.00 199.99 5100.00 1
MTGPAbinary99.42 131
MTMP100.00 199.18 293
gm-plane-assit99.52 20997.26 27795.86 262100.00 199.43 24598.76 213
test9_res100.00 1100.00 1100.00 1
agg_prior2100.00 1100.00 1100.00 1
agg_prior100.00 199.88 7299.42 131100.00 199.97 123
test_prior499.93 43100.00 1
test_prior99.90 71100.00 199.75 9199.73 5699.97 123100.00 1
旧先验2100.00 198.11 104100.00 1100.00 199.67 148
新几何2100.00 1
无先验100.00 199.80 4397.98 112100.00 199.33 180100.00 1
原ACMM2100.00 1
testdata2100.00 197.36 272
testdata1100.00 198.77 63
plane_prior799.00 27794.78 323
plane_prior599.40 18199.55 22399.79 11995.57 25197.76 255
plane_prior499.97 195
plane_prior394.79 32299.03 2099.08 220
plane_prior2100.00 199.00 27
plane_prior199.02 272
plane_prior94.80 319100.00 199.03 2095.58 247
n20.00 408
nn0.00 408
door-mid96.32 394
test1199.42 131
door96.13 395
HQP5-MVS94.82 316
HQP-NCC99.07 265100.00 199.04 1599.17 210
ACMP_Plane99.07 265100.00 199.04 1599.17 210
BP-MVS99.79 119
HQP4-MVS99.17 21099.57 21497.77 253
HQP3-MVS99.40 18195.58 247
NP-MVS99.07 26594.81 31899.97 195
ACMMP++_ref94.58 285
ACMMP++95.17 268