CHOSEN 280x420 | | | 96.80 36 | 96.85 28 | 96.66 94 | 97.85 118 | 94.42 53 | 94.76 304 | 98.36 23 | 92.50 63 | 95.62 101 | 97.52 145 | 97.92 1 | 97.38 220 | 98.31 37 | 98.80 98 | 98.20 178 |
|
GG-mvs-BLEND | | | | | 96.98 71 | 96.53 160 | 94.81 42 | 87.20 342 | 97.74 68 | | 93.91 128 | 96.40 186 | 96.56 2 | 96.94 234 | 95.08 99 | 98.95 92 | 99.20 111 |
|
gg-mvs-nofinetune | | | 90.00 193 | 87.71 214 | 96.89 82 | 96.15 176 | 94.69 47 | 85.15 348 | 97.74 68 | 68.32 351 | 92.97 141 | 60.16 360 | 96.10 3 | 96.84 236 | 93.89 119 | 98.87 93 | 99.14 114 |
|
MSP-MVS | | | 97.77 9 | 98.18 2 | 96.53 100 | 99.54 40 | 90.14 143 | 99.41 58 | 97.70 79 | 95.46 17 | 98.60 24 | 99.19 34 | 95.71 4 | 99.49 108 | 98.15 40 | 99.85 13 | 99.95 15 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
baseline2 | | | 94.04 108 | 93.80 109 | 94.74 159 | 93.07 270 | 90.25 140 | 98.12 200 | 98.16 33 | 89.86 127 | 86.53 212 | 96.95 169 | 95.56 5 | 98.05 177 | 91.44 147 | 94.53 160 | 95.93 221 |
|
PC_three_1452 | | | | | | | | | | 94.60 20 | 99.41 2 | 99.12 48 | 95.50 6 | 99.96 30 | 99.84 2 | 99.92 3 | 99.97 7 |
|
DVP-MVS++. | | | 98.18 2 | 98.09 5 | 98.44 15 | 99.61 27 | 95.38 21 | 99.55 34 | 97.68 83 | 93.01 51 | 99.23 7 | 99.45 16 | 95.12 7 | 99.98 10 | 99.25 14 | 99.92 3 | 99.97 7 |
|
OPU-MVS | | | | | 99.49 4 | 99.64 20 | 98.51 4 | 99.77 9 | | | | 99.19 34 | 95.12 7 | 99.97 23 | 99.90 1 | 99.92 3 | 99.99 1 |
|
tttt0517 | | | 93.30 131 | 93.01 123 | 94.17 178 | 95.57 193 | 86.47 225 | 98.51 161 | 97.60 102 | 85.99 228 | 90.55 170 | 97.19 158 | 94.80 9 | 98.31 162 | 85.06 216 | 91.86 191 | 97.74 186 |
|
thisisatest0530 | | | 94.00 109 | 93.52 112 | 95.43 138 | 95.76 186 | 90.02 152 | 98.99 106 | 97.60 102 | 86.58 220 | 91.74 150 | 97.36 151 | 94.78 10 | 98.34 161 | 86.37 203 | 92.48 181 | 97.94 184 |
|
thisisatest0515 | | | 94.75 91 | 94.19 93 | 96.43 104 | 96.13 180 | 92.64 92 | 99.47 44 | 97.60 102 | 87.55 203 | 93.17 136 | 97.59 143 | 94.71 11 | 98.42 160 | 88.28 183 | 93.20 170 | 98.24 175 |
|
test_0728_THIRD | | | | | | | | | | 93.01 51 | 99.07 10 | 99.46 11 | 94.66 12 | 99.97 23 | 99.25 14 | 99.82 19 | 99.95 15 |
|
ET-MVSNet_ETH3D | | | 92.56 147 | 91.45 155 | 95.88 124 | 96.39 164 | 94.13 59 | 99.46 49 | 96.97 184 | 92.18 74 | 66.94 348 | 98.29 120 | 94.65 13 | 94.28 326 | 94.34 115 | 83.82 244 | 99.24 107 |
|
MVSTER | | | 92.71 141 | 92.32 134 | 93.86 189 | 97.29 135 | 92.95 86 | 99.01 104 | 96.59 196 | 90.09 123 | 85.51 217 | 94.00 222 | 94.61 14 | 96.56 248 | 90.77 157 | 83.03 250 | 92.08 251 |
|
DWT-MVSNet_test | | | 94.36 103 | 93.95 104 | 95.62 131 | 96.99 148 | 89.47 163 | 96.62 268 | 97.38 146 | 90.96 101 | 93.07 139 | 97.27 152 | 93.73 15 | 98.09 172 | 85.86 211 | 93.65 168 | 99.29 101 |
|
DPM-MVS | | | 97.86 8 | 97.25 18 | 99.68 1 | 98.25 107 | 99.10 1 | 99.76 12 | 97.78 63 | 96.61 4 | 98.15 34 | 99.53 7 | 93.62 16 | 100.00 1 | 91.79 145 | 99.80 27 | 99.94 18 |
|
test_one_0601 | | | | | | 99.59 31 | 94.89 35 | | 97.64 92 | 93.14 50 | 98.93 15 | 99.45 16 | 93.45 17 | | | | |
|
SED-MVS | | | 98.18 2 | 98.10 4 | 98.41 17 | 99.63 21 | 95.24 24 | 99.77 9 | 97.72 74 | 94.17 25 | 99.30 5 | 99.54 3 | 93.32 18 | 99.98 10 | 99.70 3 | 99.81 23 | 99.99 1 |
|
test_241102_ONE | | | | | | 99.63 21 | 95.24 24 | | 97.72 74 | 94.16 27 | 99.30 5 | 99.49 10 | 93.32 18 | 99.98 10 | | | |
|
DPE-MVS |  | | 98.11 6 | 98.00 6 | 98.44 15 | 99.50 47 | 95.39 20 | 99.29 71 | 97.72 74 | 94.50 21 | 98.64 23 | 99.54 3 | 93.32 18 | 99.97 23 | 99.58 8 | 99.90 7 | 99.95 15 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
DVP-MVS |  | | 98.07 7 | 98.00 6 | 98.29 18 | 99.66 15 | 95.20 29 | 99.72 14 | 97.47 132 | 93.95 30 | 99.07 10 | 99.46 11 | 93.18 21 | 99.97 23 | 99.64 6 | 99.82 19 | 99.69 64 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
test0726 | | | | | | 99.66 15 | 95.20 29 | 99.77 9 | 97.70 79 | 93.95 30 | 99.35 4 | 99.54 3 | 93.18 21 | | | | |
|
test_241102_TWO | | | | | | | | | 97.72 74 | 94.17 25 | 99.23 7 | 99.54 3 | 93.14 23 | 99.98 10 | 99.70 3 | 99.82 19 | 99.99 1 |
|
CNVR-MVS | | | 98.46 1 | 98.38 1 | 98.72 8 | 99.80 4 | 96.19 14 | 99.80 7 | 97.99 43 | 97.05 3 | 99.41 2 | 99.59 2 | 92.89 24 | 100.00 1 | 98.99 17 | 99.90 7 | 99.96 10 |
|
MCST-MVS | | | 98.18 2 | 97.95 8 | 98.86 5 | 99.85 3 | 96.60 9 | 99.70 17 | 97.98 44 | 97.18 2 | 95.96 90 | 99.33 23 | 92.62 25 | 100.00 1 | 98.99 17 | 99.93 1 | 99.98 6 |
|
NCCC | | | 98.12 5 | 98.11 3 | 98.13 23 | 99.76 6 | 94.46 50 | 99.81 5 | 97.88 49 | 96.54 5 | 98.84 17 | 99.46 11 | 92.55 26 | 99.98 10 | 98.25 38 | 99.93 1 | 99.94 18 |
|
SteuartSystems-ACMMP | | | 97.25 18 | 97.34 16 | 97.01 65 | 97.38 132 | 91.46 108 | 99.75 13 | 97.66 86 | 94.14 29 | 98.13 35 | 99.26 26 | 92.16 27 | 99.66 84 | 97.91 44 | 99.64 47 | 99.90 24 |
Skip Steuart: Steuart Systems R&D Blog. |
TSAR-MVS + MP. | | | 97.44 16 | 97.46 12 | 97.39 52 | 99.12 77 | 93.49 71 | 98.52 158 | 97.50 127 | 94.46 22 | 98.99 12 | 98.64 98 | 91.58 28 | 99.08 143 | 98.49 28 | 99.83 15 | 99.60 77 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
TSAR-MVS + GP. | | | 96.95 30 | 96.91 26 | 97.07 62 | 98.88 91 | 91.62 104 | 99.58 30 | 96.54 203 | 95.09 18 | 96.84 72 | 98.63 100 | 91.16 29 | 99.77 71 | 99.04 16 | 96.42 137 | 99.81 35 |
|
EPP-MVSNet | | | 93.75 117 | 93.67 110 | 94.01 185 | 95.86 183 | 85.70 249 | 98.67 140 | 97.66 86 | 84.46 252 | 91.36 159 | 97.18 159 | 91.16 29 | 97.79 191 | 92.93 136 | 93.75 166 | 98.53 159 |
|
HPM-MVS++ |  | | 97.72 10 | 97.59 10 | 98.14 22 | 99.53 45 | 94.76 43 | 99.19 75 | 97.75 66 | 95.66 13 | 98.21 33 | 99.29 24 | 91.10 31 | 99.99 5 | 97.68 46 | 99.87 9 | 99.68 65 |
|
旧先验1 | | | | | | 98.97 85 | 92.90 87 | | 97.74 68 | | | 99.15 43 | 91.05 32 | | | 99.33 74 | 99.60 77 |
|
train_agg | | | 97.20 23 | 97.08 20 | 97.57 45 | 99.57 37 | 93.17 76 | 99.38 61 | 97.66 86 | 90.18 119 | 98.39 30 | 99.18 37 | 90.94 33 | 99.66 84 | 98.58 26 | 99.85 13 | 99.88 28 |
|
test_8 | | | | | | 99.55 39 | 93.07 80 | 99.37 64 | 97.64 92 | 90.18 119 | 98.36 32 | 99.19 34 | 90.94 33 | 99.64 90 | | | |
|
TEST9 | | | | | | 99.57 37 | 93.17 76 | 99.38 61 | 97.66 86 | 89.57 139 | 98.39 30 | 99.18 37 | 90.88 35 | 99.66 84 | | | |
|
SD-MVS | | | 97.51 13 | 97.40 15 | 97.81 35 | 99.01 84 | 93.79 65 | 99.33 69 | 97.38 146 | 93.73 41 | 98.83 18 | 99.02 60 | 90.87 36 | 99.88 48 | 98.69 21 | 99.74 32 | 99.77 48 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
agg_prior1 | | | 97.12 25 | 97.03 22 | 97.38 53 | 99.54 40 | 92.66 88 | 99.35 66 | 97.64 92 | 90.38 113 | 97.98 44 | 99.17 39 | 90.84 37 | 99.61 93 | 98.57 27 | 99.78 31 | 99.87 31 |
|
APDe-MVS | | | 97.53 12 | 97.47 11 | 97.70 39 | 99.58 33 | 93.63 66 | 99.56 33 | 97.52 121 | 93.59 44 | 98.01 43 | 99.12 48 | 90.80 38 | 99.55 98 | 99.26 13 | 99.79 29 | 99.93 21 |
|
RRT_test8_iter05 | | | 91.04 173 | 90.40 175 | 92.95 206 | 96.20 174 | 89.75 158 | 98.97 108 | 96.38 211 | 88.52 167 | 82.00 259 | 93.51 237 | 90.69 39 | 96.73 242 | 90.43 159 | 76.91 283 | 92.38 239 |
|
IB-MVS | | 89.43 6 | 92.12 154 | 90.83 167 | 95.98 121 | 95.40 201 | 90.78 129 | 99.81 5 | 98.06 38 | 91.23 97 | 85.63 216 | 93.66 232 | 90.63 40 | 98.78 149 | 91.22 149 | 71.85 324 | 98.36 170 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
ETH3 D test6400 | | | 97.67 11 | 97.33 17 | 98.69 9 | 99.69 9 | 96.43 11 | 99.63 25 | 97.73 72 | 91.05 98 | 98.66 22 | 99.53 7 | 90.59 41 | 99.71 77 | 99.32 11 | 99.80 27 | 99.91 22 |
|
segment_acmp | | | | | | | | | | | | | 90.56 42 | | | | |
|
test_prior3 | | | 97.07 27 | 97.09 19 | 97.01 65 | 99.58 33 | 91.77 99 | 99.57 31 | 97.57 111 | 91.43 90 | 98.12 37 | 98.97 66 | 90.43 43 | 99.49 108 | 98.33 34 | 99.81 23 | 99.79 38 |
|
test_prior2 | | | | | | | | 99.57 31 | | 91.43 90 | 98.12 37 | 98.97 66 | 90.43 43 | | 98.33 34 | 99.81 23 | |
|
xxxxxxxxxxxxxcwj | | | 97.51 13 | 97.42 14 | 97.78 37 | 99.34 58 | 93.85 63 | 99.65 23 | 95.45 279 | 95.69 11 | 98.70 20 | 99.42 19 | 90.42 45 | 99.72 75 | 98.47 29 | 99.65 44 | 99.77 48 |
|
SF-MVS | | | 97.22 22 | 96.92 25 | 98.12 25 | 99.11 78 | 94.88 36 | 99.44 52 | 97.45 135 | 89.60 137 | 98.70 20 | 99.42 19 | 90.42 45 | 99.72 75 | 98.47 29 | 99.65 44 | 99.77 48 |
|
ETH3D-3000-0.1 | | | 97.29 17 | 97.01 23 | 98.12 25 | 99.18 74 | 94.97 33 | 99.47 44 | 97.52 121 | 89.85 128 | 98.79 19 | 99.46 11 | 90.41 47 | 99.69 79 | 98.78 19 | 99.67 42 | 99.70 61 |
|
DeepPCF-MVS | | 93.56 1 | 96.55 42 | 97.84 9 | 92.68 214 | 98.71 97 | 78.11 328 | 99.70 17 | 97.71 78 | 98.18 1 | 97.36 58 | 99.76 1 | 90.37 48 | 99.94 37 | 99.27 12 | 99.54 61 | 99.99 1 |
|
SMA-MVS |  | | 97.24 19 | 96.99 24 | 98.00 30 | 99.30 65 | 94.20 57 | 99.16 80 | 97.65 91 | 89.55 141 | 99.22 9 | 99.52 9 | 90.34 49 | 99.99 5 | 98.32 36 | 99.83 15 | 99.82 34 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
ZD-MVS | | | | | | 99.67 13 | 93.28 74 | | 97.61 100 | 87.78 194 | 97.41 56 | 99.16 41 | 90.15 50 | 99.56 97 | 98.35 33 | 99.70 39 | |
|
CostFormer | | | 92.89 139 | 92.48 133 | 94.12 180 | 94.99 221 | 85.89 244 | 92.89 321 | 97.00 183 | 86.98 211 | 95.00 111 | 90.78 283 | 90.05 51 | 97.51 212 | 92.92 137 | 91.73 195 | 98.96 126 |
|
testtj | | | 97.23 21 | 97.05 21 | 97.75 38 | 99.75 7 | 93.34 73 | 99.16 80 | 97.74 68 | 91.28 95 | 98.40 29 | 99.29 24 | 89.95 52 | 99.98 10 | 98.20 39 | 99.70 39 | 99.94 18 |
|
MSLP-MVS++ | | | 97.50 15 | 97.45 13 | 97.63 41 | 99.65 19 | 93.21 75 | 99.70 17 | 98.13 36 | 94.61 19 | 97.78 50 | 99.46 11 | 89.85 53 | 99.81 66 | 97.97 42 | 99.91 6 | 99.88 28 |
|
9.14 | | | | 96.87 27 | | 99.34 58 | | 99.50 41 | 97.49 129 | 89.41 144 | 98.59 25 | 99.43 18 | 89.78 54 | 99.69 79 | 98.69 21 | 99.62 51 | |
|
Regformer-1 | | | 96.97 29 | 96.80 31 | 97.47 47 | 99.46 52 | 93.11 78 | 98.89 116 | 97.94 45 | 92.89 57 | 96.90 65 | 99.02 60 | 89.78 54 | 99.53 101 | 97.06 54 | 99.26 80 | 99.75 52 |
|
Regformer-2 | | | 96.94 32 | 96.78 32 | 97.42 49 | 99.46 52 | 92.97 85 | 98.89 116 | 97.93 46 | 92.86 59 | 96.88 66 | 99.02 60 | 89.74 56 | 99.53 101 | 97.03 55 | 99.26 80 | 99.75 52 |
|
PAPM | | | 96.35 48 | 95.94 56 | 97.58 43 | 94.10 241 | 95.25 23 | 98.93 111 | 98.17 31 | 94.26 24 | 93.94 127 | 98.72 92 | 89.68 57 | 97.88 185 | 96.36 72 | 99.29 78 | 99.62 75 |
|
ETH3D cwj APD-0.16 | | | 96.94 32 | 96.58 37 | 98.01 29 | 98.62 100 | 94.73 45 | 99.13 92 | 97.38 146 | 88.44 174 | 98.53 27 | 99.39 21 | 89.66 58 | 99.69 79 | 98.43 31 | 99.61 55 | 99.61 76 |
|
CSCG | | | 94.87 88 | 94.71 83 | 95.36 140 | 99.54 40 | 86.49 224 | 99.34 68 | 98.15 34 | 82.71 281 | 90.15 178 | 99.25 27 | 89.48 59 | 99.86 56 | 94.97 103 | 98.82 97 | 99.72 58 |
|
PHI-MVS | | | 96.65 39 | 96.46 39 | 97.21 59 | 99.34 58 | 91.77 99 | 99.70 17 | 98.05 39 | 86.48 223 | 98.05 40 | 99.20 33 | 89.33 60 | 99.96 30 | 98.38 32 | 99.62 51 | 99.90 24 |
|
TESTMET0.1,1 | | | 93.82 115 | 93.26 117 | 95.49 135 | 95.21 205 | 90.25 140 | 99.15 86 | 97.54 117 | 89.18 148 | 91.79 149 | 94.87 210 | 89.13 61 | 97.63 204 | 86.21 204 | 96.29 142 | 98.60 157 |
|
APD-MVS |  | | 96.95 30 | 96.72 33 | 97.63 41 | 99.51 46 | 93.58 67 | 99.16 80 | 97.44 139 | 90.08 124 | 98.59 25 | 99.07 54 | 89.06 62 | 99.42 119 | 97.92 43 | 99.66 43 | 99.88 28 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
CDS-MVSNet | | | 93.47 124 | 93.04 122 | 94.76 157 | 94.75 230 | 89.45 164 | 98.82 122 | 97.03 180 | 87.91 191 | 90.97 164 | 96.48 184 | 89.06 62 | 96.36 262 | 89.50 167 | 92.81 176 | 98.49 161 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
Patchmatch-test | | | 86.25 254 | 84.06 269 | 92.82 208 | 94.42 235 | 82.88 289 | 82.88 357 | 94.23 317 | 71.58 340 | 79.39 291 | 90.62 292 | 89.00 64 | 96.42 259 | 63.03 345 | 91.37 201 | 99.16 113 |
|
CDPH-MVS | | | 96.56 41 | 96.18 46 | 97.70 39 | 99.59 31 | 93.92 61 | 99.13 92 | 97.44 139 | 89.02 153 | 97.90 48 | 99.22 31 | 88.90 65 | 99.49 108 | 94.63 110 | 99.79 29 | 99.68 65 |
|
MG-MVS | | | 97.24 19 | 96.83 30 | 98.47 14 | 99.79 5 | 95.71 17 | 99.07 96 | 99.06 9 | 94.45 23 | 96.42 83 | 98.70 95 | 88.81 66 | 99.74 74 | 95.35 94 | 99.86 12 | 99.97 7 |
|
patchmatchnet-post | | | | | | | | | | | | 84.86 341 | 88.73 67 | 96.81 238 | | | |
|
Regformer-3 | | | 96.50 43 | 96.36 42 | 96.91 76 | 99.34 58 | 91.72 102 | 98.71 131 | 97.90 48 | 92.48 64 | 96.00 87 | 98.95 73 | 88.60 68 | 99.52 104 | 96.44 70 | 98.83 95 | 99.49 87 |
|
test12 | | | | | 97.83 34 | 99.33 64 | 94.45 51 | | 97.55 114 | | 97.56 51 | | 88.60 68 | 99.50 107 | | 99.71 38 | 99.55 81 |
|
1121 | | | 95.19 82 | 94.45 88 | 97.42 49 | 98.88 91 | 92.58 93 | 96.22 281 | 97.75 66 | 85.50 235 | 96.86 69 | 99.01 64 | 88.59 70 | 99.90 44 | 87.64 191 | 99.60 56 | 99.79 38 |
|
MVS_111021_HR | | | 96.69 37 | 96.69 34 | 96.72 90 | 98.58 102 | 91.00 125 | 99.14 89 | 99.45 1 | 93.86 36 | 95.15 108 | 98.73 90 | 88.48 71 | 99.76 72 | 97.23 53 | 99.56 59 | 99.40 93 |
|
Regformer-4 | | | 96.45 46 | 96.33 44 | 96.81 83 | 99.34 58 | 91.44 109 | 98.71 131 | 97.88 49 | 92.43 65 | 95.97 89 | 98.95 73 | 88.42 72 | 99.51 105 | 96.40 71 | 98.83 95 | 99.49 87 |
|
sam_mvs1 | | | | | | | | | | | | | 88.39 73 | | | | 98.84 138 |
|
PatchmatchNet |  | | 92.05 156 | 91.04 160 | 95.06 148 | 96.17 175 | 89.04 168 | 91.26 334 | 97.26 152 | 89.56 140 | 90.64 169 | 90.56 296 | 88.35 74 | 97.11 226 | 79.53 267 | 96.07 147 | 99.03 121 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
tpmrst | | | 92.78 140 | 92.16 139 | 94.65 162 | 96.27 168 | 87.45 204 | 91.83 329 | 97.10 174 | 89.10 151 | 94.68 115 | 90.69 287 | 88.22 75 | 97.73 200 | 89.78 165 | 91.80 193 | 98.77 148 |
|
DELS-MVS | | | 97.12 25 | 96.60 36 | 98.68 10 | 98.03 115 | 96.57 10 | 99.84 3 | 97.84 53 | 96.36 8 | 95.20 107 | 98.24 121 | 88.17 76 | 99.83 61 | 96.11 77 | 99.60 56 | 99.64 71 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
testdata | | | | | 95.26 144 | 98.20 109 | 87.28 209 | | 97.60 102 | 85.21 238 | 98.48 28 | 99.15 43 | 88.15 77 | 98.72 155 | 90.29 160 | 99.45 66 | 99.78 42 |
|
原ACMM1 | | | | | 96.18 112 | 99.03 83 | 90.08 146 | | 97.63 97 | 88.98 154 | 97.00 64 | 98.97 66 | 88.14 78 | 99.71 77 | 88.23 184 | 99.62 51 | 98.76 149 |
|
新几何1 | | | | | 97.40 51 | 98.92 89 | 92.51 95 | | 97.77 65 | 85.52 233 | 96.69 78 | 99.06 56 | 88.08 79 | 99.89 47 | 84.88 219 | 99.62 51 | 99.79 38 |
|
test-mter | | | 93.27 133 | 92.89 125 | 94.40 170 | 94.94 224 | 87.27 210 | 99.15 86 | 97.25 153 | 88.95 156 | 91.57 153 | 94.04 218 | 88.03 80 | 97.58 207 | 85.94 208 | 96.13 143 | 98.36 170 |
|
JIA-IIPM | | | 85.97 257 | 84.85 257 | 89.33 287 | 93.23 267 | 73.68 341 | 85.05 349 | 97.13 169 | 69.62 347 | 91.56 155 | 68.03 358 | 88.03 80 | 96.96 232 | 77.89 280 | 93.12 171 | 97.34 196 |
|
test_yl | | | 95.27 79 | 94.60 85 | 97.28 56 | 98.53 103 | 92.98 83 | 99.05 99 | 98.70 16 | 86.76 217 | 94.65 116 | 97.74 135 | 87.78 82 | 99.44 116 | 95.57 90 | 92.61 178 | 99.44 91 |
|
DCV-MVSNet | | | 95.27 79 | 94.60 85 | 97.28 56 | 98.53 103 | 92.98 83 | 99.05 99 | 98.70 16 | 86.76 217 | 94.65 116 | 97.74 135 | 87.78 82 | 99.44 116 | 95.57 90 | 92.61 178 | 99.44 91 |
|
PAPM_NR | | | 95.43 74 | 95.05 80 | 96.57 98 | 99.42 54 | 90.14 143 | 98.58 155 | 97.51 124 | 90.65 106 | 92.44 145 | 98.90 79 | 87.77 84 | 99.90 44 | 90.88 154 | 99.32 75 | 99.68 65 |
|
RRT_MVS | | | 91.95 157 | 91.09 158 | 94.53 166 | 96.71 157 | 95.12 31 | 98.64 144 | 96.23 222 | 89.04 152 | 85.24 219 | 95.06 207 | 87.71 85 | 96.43 258 | 89.10 178 | 82.06 257 | 92.05 253 |
|
HFP-MVS | | | 96.42 47 | 96.26 45 | 96.90 77 | 99.69 9 | 90.96 126 | 99.47 44 | 97.81 58 | 90.54 109 | 96.88 66 | 99.05 57 | 87.57 86 | 99.96 30 | 95.65 85 | 99.72 34 | 99.78 42 |
|
#test# | | | 96.48 44 | 96.34 43 | 96.90 77 | 99.69 9 | 90.96 126 | 99.53 39 | 97.81 58 | 90.94 102 | 96.88 66 | 99.05 57 | 87.57 86 | 99.96 30 | 95.87 81 | 99.72 34 | 99.78 42 |
|
tpm2 | | | 91.77 159 | 91.09 158 | 93.82 191 | 94.83 228 | 85.56 252 | 92.51 326 | 97.16 166 | 84.00 258 | 93.83 130 | 90.66 289 | 87.54 88 | 97.17 224 | 87.73 190 | 91.55 198 | 98.72 150 |
|
EPNet | | | 96.82 35 | 96.68 35 | 97.25 58 | 98.65 98 | 93.10 79 | 99.48 42 | 98.76 12 | 96.54 5 | 97.84 49 | 98.22 122 | 87.49 89 | 99.66 84 | 95.35 94 | 97.78 119 | 99.00 122 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
CP-MVS | | | 96.22 53 | 96.15 51 | 96.42 105 | 99.67 13 | 89.62 161 | 99.70 17 | 97.61 100 | 90.07 125 | 96.00 87 | 99.16 41 | 87.43 90 | 99.92 40 | 96.03 79 | 99.72 34 | 99.70 61 |
|
miper_enhance_ethall | | | 90.33 184 | 89.70 179 | 92.22 219 | 97.12 142 | 88.93 173 | 98.35 182 | 95.96 237 | 88.60 165 | 83.14 239 | 92.33 256 | 87.38 91 | 96.18 276 | 86.49 202 | 77.89 275 | 91.55 269 |
|
test_post | | | | | | | | | | | | 46.00 367 | 87.37 92 | 97.11 226 | | | |
|
XVS | | | 96.47 45 | 96.37 41 | 96.77 84 | 99.62 25 | 90.66 134 | 99.43 55 | 97.58 108 | 92.41 69 | 96.86 69 | 98.96 71 | 87.37 92 | 99.87 51 | 95.65 85 | 99.43 68 | 99.78 42 |
|
X-MVStestdata | | | 90.69 180 | 88.66 200 | 96.77 84 | 99.62 25 | 90.66 134 | 99.43 55 | 97.58 108 | 92.41 69 | 96.86 69 | 29.59 371 | 87.37 92 | 99.87 51 | 95.65 85 | 99.43 68 | 99.78 42 |
|
DP-MVS Recon | | | 95.85 66 | 95.15 78 | 97.95 31 | 99.87 2 | 94.38 54 | 99.60 28 | 97.48 130 | 86.58 220 | 94.42 118 | 99.13 47 | 87.36 95 | 99.98 10 | 93.64 125 | 98.33 111 | 99.48 89 |
|
DeepC-MVS_fast | | 93.52 2 | 97.16 24 | 96.84 29 | 98.13 23 | 99.61 27 | 94.45 51 | 98.85 119 | 97.64 92 | 96.51 7 | 95.88 93 | 99.39 21 | 87.35 96 | 99.99 5 | 96.61 65 | 99.69 41 | 99.96 10 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
PAPR | | | 96.35 48 | 95.82 60 | 97.94 32 | 99.63 21 | 94.19 58 | 99.42 57 | 97.55 114 | 92.43 65 | 93.82 131 | 99.12 48 | 87.30 97 | 99.91 42 | 94.02 117 | 99.06 85 | 99.74 55 |
|
Patchmatch-RL test | | | 81.90 297 | 80.13 300 | 87.23 309 | 80.71 358 | 70.12 353 | 84.07 354 | 88.19 363 | 83.16 273 | 70.57 336 | 82.18 347 | 87.18 98 | 92.59 340 | 82.28 250 | 62.78 344 | 98.98 124 |
|
sam_mvs | | | | | | | | | | | | | 87.08 99 | | | | |
|
EI-MVSNet-Vis-set | | | 95.76 71 | 95.63 71 | 96.17 114 | 99.14 76 | 90.33 138 | 98.49 165 | 97.82 55 | 91.92 78 | 94.75 113 | 98.88 81 | 87.06 100 | 99.48 113 | 95.40 93 | 97.17 130 | 98.70 152 |
|
1112_ss | | | 92.71 141 | 91.55 153 | 96.20 111 | 95.56 194 | 91.12 118 | 98.48 166 | 94.69 306 | 88.29 180 | 86.89 208 | 98.50 107 | 87.02 101 | 98.66 157 | 84.75 220 | 89.77 212 | 98.81 143 |
|
Test_1112_low_res | | | 92.27 152 | 90.97 161 | 96.18 112 | 95.53 196 | 91.10 120 | 98.47 168 | 94.66 307 | 88.28 181 | 86.83 210 | 93.50 238 | 87.00 102 | 98.65 158 | 84.69 221 | 89.74 213 | 98.80 144 |
|
MDTV_nov1_ep13 | | | | 90.47 174 | | 96.14 177 | 88.55 182 | 91.34 333 | 97.51 124 | 89.58 138 | 92.24 147 | 90.50 300 | 86.99 103 | 97.61 206 | 77.64 281 | 92.34 183 | |
|
region2R | | | 96.30 51 | 96.17 48 | 96.70 91 | 99.70 8 | 90.31 139 | 99.46 49 | 97.66 86 | 90.55 108 | 97.07 63 | 99.07 54 | 86.85 104 | 99.97 23 | 95.43 92 | 99.74 32 | 99.81 35 |
|
baseline1 | | | 92.61 145 | 91.28 156 | 96.58 97 | 97.05 146 | 94.63 48 | 97.72 225 | 96.20 224 | 89.82 129 | 88.56 192 | 96.85 174 | 86.85 104 | 97.82 189 | 88.42 181 | 80.10 265 | 97.30 197 |
|
SR-MVS | | | 96.13 55 | 96.16 50 | 96.07 117 | 99.42 54 | 89.04 168 | 98.59 153 | 97.33 151 | 90.44 111 | 96.84 72 | 99.12 48 | 86.75 106 | 99.41 121 | 97.47 48 | 99.44 67 | 99.76 51 |
|
test222 | | | | | | 98.32 106 | 91.21 113 | 98.08 205 | 97.58 108 | 83.74 262 | 95.87 94 | 99.02 60 | 86.74 107 | | | 99.64 47 | 99.81 35 |
|
test1172 | | | 95.92 63 | 96.07 53 | 95.46 136 | 99.42 54 | 87.24 214 | 98.51 161 | 97.24 155 | 90.29 116 | 96.56 82 | 99.12 48 | 86.73 108 | 99.36 125 | 97.33 51 | 99.42 71 | 99.78 42 |
|
SR-MVS-dyc-post | | | 95.75 72 | 95.86 59 | 95.41 139 | 99.22 71 | 87.26 212 | 98.40 176 | 97.21 159 | 89.63 135 | 96.67 79 | 98.97 66 | 86.73 108 | 99.36 125 | 96.62 63 | 99.31 76 | 99.60 77 |
|
MDTV_nov1_ep13_2view | | | | | | | 91.17 117 | 91.38 332 | | 87.45 205 | 93.08 138 | | 86.67 110 | | 87.02 195 | | 98.95 130 |
|
ETV-MVS | | | 96.00 58 | 96.00 54 | 96.00 119 | 96.56 159 | 91.05 123 | 99.63 25 | 96.61 194 | 93.26 49 | 97.39 57 | 98.30 118 | 86.62 111 | 98.13 169 | 98.07 41 | 97.57 121 | 98.82 142 |
|
ZNCC-MVS | | | 96.09 56 | 95.81 62 | 96.95 75 | 99.42 54 | 91.19 114 | 99.55 34 | 97.53 118 | 89.72 132 | 95.86 95 | 98.94 78 | 86.59 112 | 99.97 23 | 95.13 98 | 99.56 59 | 99.68 65 |
|
ACMMP_NAP | | | 96.59 40 | 96.18 46 | 97.81 35 | 98.82 94 | 93.55 68 | 98.88 118 | 97.59 106 | 90.66 104 | 97.98 44 | 99.14 45 | 86.59 112 | 100.00 1 | 96.47 69 | 99.46 64 | 99.89 27 |
|
WTY-MVS | | | 95.97 60 | 95.11 79 | 98.54 12 | 97.62 124 | 96.65 8 | 99.44 52 | 98.74 13 | 92.25 72 | 95.21 106 | 98.46 113 | 86.56 114 | 99.46 115 | 95.00 102 | 92.69 177 | 99.50 86 |
|
HY-MVS | | 88.56 7 | 95.29 78 | 94.23 92 | 98.48 13 | 97.72 120 | 96.41 12 | 94.03 312 | 98.74 13 | 92.42 68 | 95.65 100 | 94.76 212 | 86.52 115 | 99.49 108 | 95.29 96 | 92.97 173 | 99.53 82 |
|
ACMMPR | | | 96.28 52 | 96.14 52 | 96.73 88 | 99.68 12 | 90.47 137 | 99.47 44 | 97.80 60 | 90.54 109 | 96.83 74 | 99.03 59 | 86.51 116 | 99.95 34 | 95.65 85 | 99.72 34 | 99.75 52 |
|
EPMVS | | | 92.59 146 | 91.59 152 | 95.59 134 | 97.22 137 | 90.03 151 | 91.78 330 | 98.04 40 | 90.42 112 | 91.66 152 | 90.65 290 | 86.49 117 | 97.46 215 | 81.78 255 | 96.31 140 | 99.28 103 |
|
zzz-MVS | | | 96.21 54 | 95.96 55 | 96.96 73 | 99.29 66 | 91.19 114 | 98.69 136 | 97.45 135 | 92.58 60 | 94.39 119 | 99.24 29 | 86.43 118 | 99.99 5 | 96.22 73 | 99.40 72 | 99.71 59 |
|
MTAPA | | | 96.09 56 | 95.80 64 | 96.96 73 | 99.29 66 | 91.19 114 | 97.23 244 | 97.45 135 | 92.58 60 | 94.39 119 | 99.24 29 | 86.43 118 | 99.99 5 | 96.22 73 | 99.40 72 | 99.71 59 |
|
GST-MVS | | | 95.97 60 | 95.66 67 | 96.90 77 | 99.49 50 | 91.22 112 | 99.45 51 | 97.48 130 | 89.69 133 | 95.89 92 | 98.72 92 | 86.37 120 | 99.95 34 | 94.62 111 | 99.22 83 | 99.52 83 |
|
alignmvs | | | 95.77 70 | 95.00 81 | 98.06 28 | 97.35 133 | 95.68 18 | 99.71 16 | 97.50 127 | 91.50 87 | 96.16 86 | 98.61 101 | 86.28 121 | 99.00 145 | 96.19 75 | 91.74 194 | 99.51 85 |
|
EI-MVSNet-UG-set | | | 95.43 74 | 95.29 73 | 95.86 125 | 99.07 82 | 89.87 154 | 98.43 170 | 97.80 60 | 91.78 81 | 94.11 124 | 98.77 86 | 86.25 122 | 99.48 113 | 94.95 104 | 96.45 136 | 98.22 176 |
|
mPP-MVS | | | 95.90 64 | 95.75 65 | 96.38 107 | 99.58 33 | 89.41 165 | 99.26 72 | 97.41 143 | 90.66 104 | 94.82 112 | 98.95 73 | 86.15 123 | 99.98 10 | 95.24 97 | 99.64 47 | 99.74 55 |
|
EIA-MVS | | | 95.11 83 | 95.27 74 | 94.64 163 | 96.34 166 | 86.51 223 | 99.59 29 | 96.62 193 | 92.51 62 | 94.08 125 | 98.64 98 | 86.05 124 | 98.24 166 | 95.07 100 | 98.50 108 | 99.18 112 |
|
PLC |  | 91.07 3 | 94.23 106 | 94.01 99 | 94.87 153 | 99.17 75 | 87.49 202 | 99.25 73 | 96.55 201 | 88.43 175 | 91.26 160 | 98.21 124 | 85.92 125 | 99.86 56 | 89.77 166 | 97.57 121 | 97.24 199 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
PGM-MVS | | | 95.85 66 | 95.65 69 | 96.45 103 | 99.50 47 | 89.77 157 | 98.22 191 | 98.90 11 | 89.19 147 | 96.74 76 | 98.95 73 | 85.91 126 | 99.92 40 | 93.94 118 | 99.46 64 | 99.66 69 |
|
CS-MVS | | | 95.86 65 | 95.81 62 | 95.98 121 | 95.62 192 | 91.26 111 | 99.80 7 | 96.12 230 | 92.15 76 | 97.93 47 | 98.45 114 | 85.88 127 | 97.55 211 | 97.56 47 | 98.80 98 | 99.14 114 |
|
MP-MVS-pluss | | | 95.80 68 | 95.30 72 | 97.29 55 | 98.95 88 | 92.66 88 | 98.59 153 | 97.14 167 | 88.95 156 | 93.12 137 | 99.25 27 | 85.62 128 | 99.94 37 | 96.56 67 | 99.48 63 | 99.28 103 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
MVSFormer | | | 94.71 95 | 94.08 98 | 96.61 95 | 95.05 219 | 94.87 37 | 97.77 221 | 96.17 227 | 86.84 214 | 98.04 41 | 98.52 105 | 85.52 129 | 95.99 283 | 89.83 163 | 98.97 89 | 98.96 126 |
|
lupinMVS | | | 96.32 50 | 95.94 56 | 97.44 48 | 95.05 219 | 94.87 37 | 99.86 2 | 96.50 205 | 93.82 39 | 98.04 41 | 98.77 86 | 85.52 129 | 98.09 172 | 96.98 59 | 98.97 89 | 99.37 94 |
|
MP-MVS |  | | 96.00 58 | 95.82 60 | 96.54 99 | 99.47 51 | 90.13 145 | 99.36 65 | 97.41 143 | 90.64 107 | 95.49 102 | 98.95 73 | 85.51 131 | 99.98 10 | 96.00 80 | 99.59 58 | 99.52 83 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
APD-MVS_3200maxsize | | | 95.64 73 | 95.65 69 | 95.62 131 | 99.24 70 | 87.80 195 | 98.42 171 | 97.22 158 | 88.93 158 | 96.64 81 | 98.98 65 | 85.49 132 | 99.36 125 | 96.68 62 | 99.27 79 | 99.70 61 |
|
HyFIR lowres test | | | 93.68 120 | 93.29 116 | 94.87 153 | 97.57 128 | 88.04 192 | 98.18 195 | 98.47 21 | 87.57 202 | 91.24 161 | 95.05 208 | 85.49 132 | 97.46 215 | 93.22 132 | 92.82 174 | 99.10 117 |
|
EPNet_dtu | | | 92.28 151 | 92.15 140 | 92.70 213 | 97.29 135 | 84.84 264 | 98.64 144 | 97.82 55 | 92.91 56 | 93.02 140 | 97.02 166 | 85.48 134 | 95.70 298 | 72.25 318 | 94.89 158 | 97.55 193 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
Vis-MVSNet (Re-imp) | | | 93.26 134 | 93.00 124 | 94.06 182 | 96.14 177 | 86.71 222 | 98.68 138 | 96.70 191 | 88.30 179 | 89.71 185 | 97.64 141 | 85.43 135 | 96.39 260 | 88.06 187 | 96.32 139 | 99.08 119 |
|
test_post1 | | | | | | | | 90.74 339 | | | | 41.37 370 | 85.38 136 | 96.36 262 | 83.16 240 | | |
|
RE-MVS-def | | | | 95.70 66 | | 99.22 71 | 87.26 212 | 98.40 176 | 97.21 159 | 89.63 135 | 96.67 79 | 98.97 66 | 85.24 137 | | 96.62 63 | 99.31 76 | 99.60 77 |
|
CS-MVS-test | | | 95.20 81 | 95.27 74 | 94.98 152 | 95.67 190 | 88.17 187 | 99.62 27 | 95.84 256 | 91.52 86 | 97.42 55 | 98.30 118 | 85.07 138 | 97.51 212 | 95.81 82 | 98.20 112 | 99.26 105 |
|
tpm | | | 89.67 197 | 88.95 193 | 91.82 229 | 92.54 275 | 81.43 301 | 92.95 320 | 95.92 243 | 87.81 193 | 90.50 172 | 89.44 315 | 84.99 139 | 95.65 299 | 83.67 237 | 82.71 253 | 98.38 167 |
|
HPM-MVS |  | | 95.41 76 | 95.22 76 | 95.99 120 | 99.29 66 | 89.14 166 | 99.17 79 | 97.09 175 | 87.28 207 | 95.40 103 | 98.48 110 | 84.93 140 | 99.38 123 | 95.64 89 | 99.65 44 | 99.47 90 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
test-LLR | | | 93.11 137 | 92.68 128 | 94.40 170 | 94.94 224 | 87.27 210 | 99.15 86 | 97.25 153 | 90.21 117 | 91.57 153 | 94.04 218 | 84.89 141 | 97.58 207 | 85.94 208 | 96.13 143 | 98.36 170 |
|
test0.0.03 1 | | | 88.96 206 | 88.61 201 | 90.03 270 | 91.09 295 | 84.43 269 | 98.97 108 | 97.02 181 | 90.21 117 | 80.29 279 | 96.31 190 | 84.89 141 | 91.93 349 | 72.98 315 | 85.70 231 | 93.73 228 |
|
PatchT | | | 85.44 267 | 83.19 274 | 92.22 219 | 93.13 269 | 83.00 284 | 83.80 356 | 96.37 212 | 70.62 342 | 90.55 170 | 79.63 353 | 84.81 143 | 94.87 316 | 58.18 355 | 91.59 197 | 98.79 145 |
|
TAMVS | | | 92.62 144 | 92.09 142 | 94.20 177 | 94.10 241 | 87.68 197 | 98.41 173 | 96.97 184 | 87.53 204 | 89.74 183 | 96.04 195 | 84.77 144 | 96.49 254 | 88.97 179 | 92.31 184 | 98.42 163 |
|
CR-MVSNet | | | 88.83 212 | 87.38 219 | 93.16 202 | 93.47 260 | 86.24 232 | 84.97 350 | 94.20 318 | 88.92 159 | 90.76 167 | 86.88 334 | 84.43 145 | 94.82 318 | 70.64 322 | 92.17 188 | 98.41 164 |
|
Patchmtry | | | 83.61 289 | 81.64 289 | 89.50 283 | 93.36 264 | 82.84 290 | 84.10 353 | 94.20 318 | 69.47 348 | 79.57 289 | 86.88 334 | 84.43 145 | 94.78 319 | 68.48 330 | 74.30 300 | 90.88 291 |
|
dp | | | 90.16 190 | 88.83 196 | 94.14 179 | 96.38 165 | 86.42 226 | 91.57 331 | 97.06 177 | 84.76 249 | 88.81 190 | 90.19 308 | 84.29 147 | 97.43 218 | 75.05 299 | 91.35 202 | 98.56 158 |
|
miper_ehance_all_eth | | | 88.94 207 | 88.12 210 | 91.40 236 | 95.32 202 | 86.93 218 | 97.85 217 | 95.55 273 | 84.19 255 | 81.97 260 | 91.50 270 | 84.16 148 | 95.91 290 | 84.69 221 | 77.89 275 | 91.36 277 |
|
MVS_111021_LR | | | 95.78 69 | 95.94 56 | 95.28 143 | 98.19 111 | 87.69 196 | 98.80 124 | 99.26 7 | 93.39 46 | 95.04 110 | 98.69 96 | 84.09 149 | 99.76 72 | 96.96 60 | 99.06 85 | 98.38 167 |
|
tpmvs | | | 89.16 202 | 87.76 212 | 93.35 198 | 97.19 138 | 84.75 266 | 90.58 340 | 97.36 149 | 81.99 292 | 84.56 223 | 89.31 318 | 83.98 150 | 98.17 167 | 74.85 302 | 90.00 211 | 97.12 201 |
|
API-MVS | | | 94.78 90 | 94.18 95 | 96.59 96 | 99.21 73 | 90.06 150 | 98.80 124 | 97.78 63 | 83.59 266 | 93.85 129 | 99.21 32 | 83.79 151 | 99.97 23 | 92.37 141 | 99.00 88 | 99.74 55 |
|
cl-mvsnet2 | | | 89.57 199 | 88.79 197 | 91.91 226 | 97.94 117 | 87.62 199 | 97.98 210 | 96.51 204 | 85.03 243 | 82.37 250 | 91.79 264 | 83.65 152 | 96.50 252 | 85.96 207 | 77.89 275 | 91.61 266 |
|
Test By Simon | | | | | | | | | | | | | 83.62 153 | | | | |
|
PVSNet_BlendedMVS | | | 93.36 129 | 93.20 118 | 93.84 190 | 98.77 95 | 91.61 105 | 99.47 44 | 98.04 40 | 91.44 89 | 94.21 122 | 92.63 254 | 83.50 154 | 99.87 51 | 97.41 49 | 83.37 248 | 90.05 314 |
|
PVSNet_Blended | | | 95.94 62 | 95.66 67 | 96.75 86 | 98.77 95 | 91.61 105 | 99.88 1 | 98.04 40 | 93.64 43 | 94.21 122 | 97.76 133 | 83.50 154 | 99.87 51 | 97.41 49 | 97.75 120 | 98.79 145 |
|
HPM-MVS_fast | | | 94.89 87 | 94.62 84 | 95.70 130 | 99.11 78 | 88.44 185 | 99.14 89 | 97.11 171 | 85.82 230 | 95.69 99 | 98.47 111 | 83.46 156 | 99.32 131 | 93.16 133 | 99.63 50 | 99.35 95 |
|
thres200 | | | 93.69 118 | 92.59 131 | 96.97 72 | 97.76 119 | 94.74 44 | 99.35 66 | 99.36 2 | 89.23 146 | 91.21 162 | 96.97 168 | 83.42 157 | 98.77 150 | 85.08 215 | 90.96 203 | 97.39 195 |
|
tfpn200view9 | | | 93.43 126 | 92.27 136 | 96.90 77 | 97.68 122 | 94.84 39 | 99.18 77 | 99.36 2 | 88.45 171 | 90.79 165 | 96.90 171 | 83.31 158 | 98.75 152 | 84.11 230 | 90.69 205 | 97.12 201 |
|
thres400 | | | 93.39 128 | 92.27 136 | 96.73 88 | 97.68 122 | 94.84 39 | 99.18 77 | 99.36 2 | 88.45 171 | 90.79 165 | 96.90 171 | 83.31 158 | 98.75 152 | 84.11 230 | 90.69 205 | 96.61 210 |
|
thres100view900 | | | 93.34 130 | 92.15 140 | 96.90 77 | 97.62 124 | 94.84 39 | 99.06 98 | 99.36 2 | 87.96 189 | 90.47 173 | 96.78 176 | 83.29 160 | 98.75 152 | 84.11 230 | 90.69 205 | 97.12 201 |
|
thres600view7 | | | 93.18 135 | 92.00 143 | 96.75 86 | 97.62 124 | 94.92 34 | 99.07 96 | 99.36 2 | 87.96 189 | 90.47 173 | 96.78 176 | 83.29 160 | 98.71 156 | 82.93 244 | 90.47 209 | 96.61 210 |
|
PVSNet_Blended_VisFu | | | 94.67 96 | 94.11 96 | 96.34 109 | 97.14 140 | 91.10 120 | 99.32 70 | 97.43 141 | 92.10 77 | 91.53 156 | 96.38 189 | 83.29 160 | 99.68 82 | 93.42 130 | 96.37 138 | 98.25 174 |
|
hse-mvs3 | | | 92.47 149 | 91.95 145 | 94.05 183 | 97.13 141 | 85.01 262 | 98.36 181 | 98.08 37 | 93.85 37 | 96.27 84 | 96.73 178 | 83.19 163 | 99.43 118 | 95.81 82 | 68.09 334 | 97.70 187 |
|
hse-mvs2 | | | 91.67 161 | 91.51 154 | 92.15 223 | 96.22 170 | 82.61 294 | 97.74 224 | 97.53 118 | 93.85 37 | 96.27 84 | 96.15 191 | 83.19 163 | 97.44 217 | 95.81 82 | 66.86 339 | 96.40 217 |
|
AUN-MVS | | | 90.17 189 | 89.50 182 | 92.19 221 | 96.21 171 | 82.67 292 | 97.76 223 | 97.53 118 | 88.05 186 | 91.67 151 | 96.15 191 | 83.10 165 | 97.47 214 | 88.11 186 | 66.91 338 | 96.43 216 |
|
IS-MVSNet | | | 93.00 138 | 92.51 132 | 94.49 167 | 96.14 177 | 87.36 207 | 98.31 186 | 95.70 263 | 88.58 166 | 90.17 177 | 97.50 146 | 83.02 166 | 97.22 223 | 87.06 194 | 96.07 147 | 98.90 134 |
|
tpm cat1 | | | 88.89 208 | 87.27 221 | 93.76 192 | 95.79 184 | 85.32 256 | 90.76 338 | 97.09 175 | 76.14 329 | 85.72 215 | 88.59 321 | 82.92 167 | 98.04 178 | 76.96 285 | 91.43 199 | 97.90 185 |
|
UniMVSNet_NR-MVSNet | | | 89.60 198 | 88.55 204 | 92.75 212 | 92.17 280 | 90.07 147 | 98.74 130 | 98.15 34 | 88.37 177 | 83.21 235 | 93.98 223 | 82.86 168 | 95.93 287 | 86.95 197 | 72.47 318 | 92.25 243 |
|
cl_fuxian | | | 88.19 225 | 87.23 222 | 91.06 242 | 94.97 222 | 86.17 236 | 97.72 225 | 95.38 285 | 83.43 268 | 81.68 267 | 91.37 272 | 82.81 169 | 95.72 297 | 84.04 233 | 73.70 306 | 91.29 281 |
|
DROMVSNet | | | 95.09 84 | 95.17 77 | 94.84 155 | 95.42 199 | 88.17 187 | 99.48 42 | 95.92 243 | 91.47 88 | 97.34 59 | 98.36 115 | 82.77 170 | 97.41 219 | 97.24 52 | 98.58 105 | 98.94 131 |
|
TAPA-MVS | | 87.50 9 | 90.35 183 | 89.05 191 | 94.25 176 | 98.48 105 | 85.17 259 | 98.42 171 | 96.58 199 | 82.44 287 | 87.24 203 | 98.53 104 | 82.77 170 | 98.84 148 | 59.09 353 | 97.88 115 | 98.72 150 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
KD-MVS_2432*1600 | | | 82.98 290 | 80.52 298 | 90.38 260 | 94.32 237 | 88.98 170 | 92.87 322 | 95.87 253 | 80.46 308 | 73.79 324 | 87.49 327 | 82.76 172 | 93.29 332 | 70.56 323 | 46.53 361 | 88.87 330 |
|
miper_refine_blended | | | 82.98 290 | 80.52 298 | 90.38 260 | 94.32 237 | 88.98 170 | 92.87 322 | 95.87 253 | 80.46 308 | 73.79 324 | 87.49 327 | 82.76 172 | 93.29 332 | 70.56 323 | 46.53 361 | 88.87 330 |
|
CANet | | | 97.00 28 | 96.49 38 | 98.55 11 | 98.86 93 | 96.10 15 | 99.83 4 | 97.52 121 | 95.90 9 | 97.21 60 | 98.90 79 | 82.66 174 | 99.93 39 | 98.71 20 | 98.80 98 | 99.63 73 |
|
CPTT-MVS | | | 94.60 99 | 94.43 89 | 95.09 146 | 99.66 15 | 86.85 219 | 99.44 52 | 97.47 132 | 83.22 271 | 94.34 121 | 98.96 71 | 82.50 175 | 99.55 98 | 94.81 105 | 99.50 62 | 98.88 135 |
|
mvs_anonymous | | | 92.50 148 | 91.65 151 | 95.06 148 | 96.60 158 | 89.64 160 | 97.06 250 | 96.44 209 | 86.64 219 | 84.14 227 | 93.93 224 | 82.49 176 | 96.17 277 | 91.47 146 | 96.08 146 | 99.35 95 |
|
pcd_1.5k_mvsjas | | | 6.87 341 | 9.16 344 | 0.00 355 | 0.00 378 | 0.00 379 | 0.00 366 | 0.00 379 | 0.00 373 | 0.00 374 | 0.00 373 | 82.48 177 | 0.00 374 | 0.00 372 | 0.00 372 | 0.00 370 |
|
PS-MVSNAJss | | | 89.54 200 | 89.05 191 | 91.00 244 | 88.77 322 | 84.36 270 | 97.39 234 | 95.97 235 | 88.47 168 | 81.88 262 | 93.80 228 | 82.48 177 | 96.50 252 | 89.34 172 | 83.34 249 | 92.15 248 |
|
PS-MVSNAJ | | | 96.87 34 | 96.40 40 | 98.29 18 | 97.35 133 | 97.29 5 | 99.03 101 | 97.11 171 | 95.83 10 | 98.97 13 | 99.14 45 | 82.48 177 | 99.60 95 | 98.60 23 | 99.08 84 | 98.00 182 |
|
UA-Net | | | 93.30 131 | 92.62 130 | 95.34 141 | 96.27 168 | 88.53 184 | 95.88 291 | 96.97 184 | 90.90 103 | 95.37 104 | 97.07 164 | 82.38 180 | 99.10 142 | 83.91 234 | 94.86 159 | 98.38 167 |
|
FIs | | | 90.70 179 | 89.87 178 | 93.18 201 | 92.29 277 | 91.12 118 | 98.17 197 | 98.25 26 | 89.11 150 | 83.44 233 | 94.82 211 | 82.26 181 | 96.17 277 | 87.76 189 | 82.76 252 | 92.25 243 |
|
ACMMP |  | | 94.67 96 | 94.30 90 | 95.79 127 | 99.25 69 | 88.13 190 | 98.41 173 | 98.67 19 | 90.38 113 | 91.43 157 | 98.72 92 | 82.22 182 | 99.95 34 | 93.83 122 | 95.76 151 | 99.29 101 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
xiu_mvs_v2_base | | | 96.66 38 | 96.17 48 | 98.11 27 | 97.11 143 | 96.96 6 | 99.01 104 | 97.04 178 | 95.51 16 | 98.86 16 | 99.11 53 | 82.19 183 | 99.36 125 | 98.59 25 | 98.14 113 | 98.00 182 |
|
cl-mvsnet1 | | | 87.82 227 | 86.81 228 | 90.87 249 | 94.87 227 | 85.39 255 | 97.81 218 | 95.22 297 | 82.92 279 | 80.76 273 | 91.31 274 | 81.99 184 | 95.81 295 | 81.36 256 | 75.04 291 | 91.42 275 |
|
miper_lstm_enhance | | | 86.90 241 | 86.20 237 | 89.00 293 | 94.53 234 | 81.19 307 | 96.74 264 | 95.24 293 | 82.33 288 | 80.15 281 | 90.51 299 | 81.99 184 | 94.68 322 | 80.71 262 | 73.58 308 | 91.12 285 |
|
cl-mvsnet____ | | | 87.82 227 | 86.79 229 | 90.89 248 | 94.88 226 | 85.43 253 | 97.81 218 | 95.24 293 | 82.91 280 | 80.71 274 | 91.22 275 | 81.97 186 | 95.84 293 | 81.34 257 | 75.06 290 | 91.40 276 |
|
FC-MVSNet-test | | | 90.22 187 | 89.40 185 | 92.67 215 | 91.78 287 | 89.86 155 | 97.89 213 | 98.22 28 | 88.81 161 | 82.96 240 | 94.66 213 | 81.90 187 | 95.96 285 | 85.89 210 | 82.52 255 | 92.20 247 |
|
UniMVSNet (Re) | | | 89.50 201 | 88.32 207 | 93.03 203 | 92.21 279 | 90.96 126 | 98.90 115 | 98.39 22 | 89.13 149 | 83.22 234 | 92.03 258 | 81.69 188 | 96.34 268 | 86.79 200 | 72.53 317 | 91.81 258 |
|
MVS_Test | | | 93.67 121 | 92.67 129 | 96.69 92 | 96.72 155 | 92.66 88 | 97.22 245 | 96.03 233 | 87.69 200 | 95.12 109 | 94.03 220 | 81.55 189 | 98.28 165 | 89.17 176 | 96.46 135 | 99.14 114 |
|
sss | | | 94.85 89 | 93.94 105 | 97.58 43 | 96.43 163 | 94.09 60 | 98.93 111 | 99.16 8 | 89.50 142 | 95.27 105 | 97.85 128 | 81.50 190 | 99.65 88 | 92.79 139 | 94.02 165 | 98.99 123 |
|
eth_miper_zixun_eth | | | 87.76 229 | 87.00 226 | 90.06 267 | 94.67 232 | 82.65 293 | 97.02 253 | 95.37 286 | 84.19 255 | 81.86 265 | 91.58 269 | 81.47 191 | 95.90 291 | 83.24 238 | 73.61 307 | 91.61 266 |
|
jason | | | 95.40 77 | 94.86 82 | 97.03 64 | 92.91 272 | 94.23 56 | 99.70 17 | 96.30 216 | 93.56 45 | 96.73 77 | 98.52 105 | 81.46 192 | 97.91 182 | 96.08 78 | 98.47 109 | 98.96 126 |
jason: jason. |
IterMVS-LS | | | 88.34 221 | 87.44 217 | 91.04 243 | 94.10 241 | 85.85 246 | 98.10 203 | 95.48 277 | 85.12 239 | 82.03 258 | 91.21 276 | 81.35 193 | 95.63 300 | 83.86 235 | 75.73 287 | 91.63 262 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
EI-MVSNet | | | 89.87 195 | 89.38 186 | 91.36 238 | 94.32 237 | 85.87 245 | 97.61 230 | 96.59 196 | 85.10 240 | 85.51 217 | 97.10 162 | 81.30 194 | 96.56 248 | 83.85 236 | 83.03 250 | 91.64 261 |
|
RPMNet | | | 85.07 270 | 81.88 287 | 94.64 163 | 93.47 260 | 86.24 232 | 84.97 350 | 97.21 159 | 64.85 357 | 90.76 167 | 78.80 354 | 80.95 195 | 99.27 133 | 53.76 358 | 92.17 188 | 98.41 164 |
|
114514_t | | | 94.06 107 | 93.05 121 | 97.06 63 | 99.08 81 | 92.26 97 | 98.97 108 | 97.01 182 | 82.58 283 | 92.57 143 | 98.22 122 | 80.68 196 | 99.30 132 | 89.34 172 | 99.02 87 | 99.63 73 |
|
CNLPA | | | 93.64 122 | 92.74 127 | 96.36 108 | 98.96 87 | 90.01 153 | 99.19 75 | 95.89 251 | 86.22 226 | 89.40 186 | 98.85 82 | 80.66 197 | 99.84 59 | 88.57 180 | 96.92 131 | 99.24 107 |
|
diffmvs | | | 94.59 100 | 94.19 93 | 95.81 126 | 95.54 195 | 90.69 132 | 98.70 135 | 95.68 265 | 91.61 83 | 95.96 90 | 97.81 130 | 80.11 198 | 98.06 176 | 96.52 68 | 95.76 151 | 98.67 153 |
|
abl_6 | | | 94.63 98 | 94.48 87 | 95.09 146 | 98.61 101 | 86.96 217 | 98.06 207 | 96.97 184 | 89.31 145 | 95.86 95 | 98.56 103 | 79.82 199 | 99.64 90 | 94.53 113 | 98.65 104 | 98.66 156 |
|
casdiffmvs | | | 93.98 110 | 93.43 113 | 95.61 133 | 95.07 218 | 89.86 155 | 98.80 124 | 95.84 256 | 90.98 100 | 92.74 142 | 97.66 140 | 79.71 200 | 98.10 171 | 94.72 108 | 95.37 155 | 98.87 137 |
|
Effi-MVS+ | | | 93.87 114 | 93.15 119 | 96.02 118 | 95.79 184 | 90.76 130 | 96.70 266 | 95.78 258 | 86.98 211 | 95.71 98 | 97.17 160 | 79.58 201 | 98.01 180 | 94.57 112 | 96.09 145 | 99.31 99 |
|
baseline | | | 93.91 112 | 93.30 115 | 95.72 129 | 95.10 216 | 90.07 147 | 97.48 233 | 95.91 248 | 91.03 99 | 93.54 133 | 97.68 138 | 79.58 201 | 98.02 179 | 94.27 116 | 95.14 156 | 99.08 119 |
|
canonicalmvs | | | 95.02 86 | 93.96 103 | 98.20 20 | 97.53 130 | 95.92 16 | 98.71 131 | 96.19 226 | 91.78 81 | 95.86 95 | 98.49 109 | 79.53 203 | 99.03 144 | 96.12 76 | 91.42 200 | 99.66 69 |
|
OMC-MVS | | | 93.90 113 | 93.62 111 | 94.73 160 | 98.63 99 | 87.00 216 | 98.04 208 | 96.56 200 | 92.19 73 | 92.46 144 | 98.73 90 | 79.49 204 | 99.14 140 | 92.16 143 | 94.34 163 | 98.03 181 |
|
MVS | | | 93.92 111 | 92.28 135 | 98.83 6 | 95.69 188 | 96.82 7 | 96.22 281 | 98.17 31 | 84.89 247 | 84.34 226 | 98.61 101 | 79.32 205 | 99.83 61 | 93.88 120 | 99.43 68 | 99.86 32 |
|
VNet | | | 95.08 85 | 94.26 91 | 97.55 46 | 98.07 114 | 93.88 62 | 98.68 138 | 98.73 15 | 90.33 115 | 97.16 62 | 97.43 149 | 79.19 206 | 99.53 101 | 96.91 61 | 91.85 192 | 99.24 107 |
|
CHOSEN 1792x2688 | | | 94.35 104 | 93.82 108 | 95.95 123 | 97.40 131 | 88.74 179 | 98.41 173 | 98.27 25 | 92.18 74 | 91.43 157 | 96.40 186 | 78.88 207 | 99.81 66 | 93.59 126 | 97.81 116 | 99.30 100 |
|
ADS-MVSNet2 | | | 87.62 234 | 86.88 227 | 89.86 272 | 96.21 171 | 79.14 319 | 87.15 343 | 92.99 332 | 83.01 274 | 89.91 181 | 87.27 330 | 78.87 208 | 92.80 338 | 74.20 306 | 92.27 185 | 97.64 188 |
|
ADS-MVSNet | | | 88.99 205 | 87.30 220 | 94.07 181 | 96.21 171 | 87.56 201 | 87.15 343 | 96.78 190 | 83.01 274 | 89.91 181 | 87.27 330 | 78.87 208 | 97.01 231 | 74.20 306 | 92.27 185 | 97.64 188 |
|
nrg030 | | | 90.23 186 | 88.87 194 | 94.32 173 | 91.53 290 | 93.54 69 | 98.79 128 | 95.89 251 | 88.12 185 | 84.55 224 | 94.61 214 | 78.80 210 | 96.88 235 | 92.35 142 | 75.21 289 | 92.53 237 |
|
F-COLMAP | | | 92.07 155 | 91.75 150 | 93.02 204 | 98.16 112 | 82.89 288 | 98.79 128 | 95.97 235 | 86.54 222 | 87.92 196 | 97.80 131 | 78.69 211 | 99.65 88 | 85.97 206 | 95.93 149 | 96.53 215 |
|
MAR-MVS | | | 94.43 102 | 94.09 97 | 95.45 137 | 99.10 80 | 87.47 203 | 98.39 179 | 97.79 62 | 88.37 177 | 94.02 126 | 99.17 39 | 78.64 212 | 99.91 42 | 92.48 140 | 98.85 94 | 98.96 126 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
PCF-MVS | | 89.78 5 | 91.26 167 | 89.63 180 | 96.16 115 | 95.44 198 | 91.58 107 | 95.29 300 | 96.10 231 | 85.07 242 | 82.75 241 | 97.45 148 | 78.28 213 | 99.78 70 | 80.60 263 | 95.65 154 | 97.12 201 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
DeepC-MVS | | 91.02 4 | 94.56 101 | 93.92 106 | 96.46 102 | 97.16 139 | 90.76 130 | 98.39 179 | 97.11 171 | 93.92 32 | 88.66 191 | 98.33 116 | 78.14 214 | 99.85 58 | 95.02 101 | 98.57 106 | 98.78 147 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
WR-MVS_H | | | 86.53 250 | 85.49 248 | 89.66 280 | 91.04 296 | 83.31 282 | 97.53 232 | 98.20 30 | 84.95 246 | 79.64 287 | 90.90 281 | 78.01 215 | 95.33 307 | 76.29 292 | 72.81 313 | 90.35 306 |
|
Fast-Effi-MVS+ | | | 91.72 160 | 90.79 168 | 94.49 167 | 95.89 182 | 87.40 206 | 99.54 38 | 95.70 263 | 85.01 245 | 89.28 188 | 95.68 199 | 77.75 216 | 97.57 210 | 83.22 239 | 95.06 157 | 98.51 160 |
|
1314 | | | 93.44 125 | 91.98 144 | 97.84 33 | 95.24 203 | 94.38 54 | 96.22 281 | 97.92 47 | 90.18 119 | 82.28 251 | 97.71 137 | 77.63 217 | 99.80 68 | 91.94 144 | 98.67 103 | 99.34 97 |
|
NR-MVSNet | | | 87.74 232 | 86.00 240 | 92.96 205 | 91.46 291 | 90.68 133 | 96.65 267 | 97.42 142 | 88.02 188 | 73.42 326 | 93.68 230 | 77.31 218 | 95.83 294 | 84.26 226 | 71.82 325 | 92.36 240 |
|
BH-w/o | | | 92.32 150 | 91.79 148 | 93.91 188 | 96.85 150 | 86.18 235 | 99.11 94 | 95.74 261 | 88.13 184 | 84.81 221 | 97.00 167 | 77.26 219 | 97.91 182 | 89.16 177 | 98.03 114 | 97.64 188 |
|
PMMVS | | | 93.62 123 | 93.90 107 | 92.79 209 | 96.79 153 | 81.40 302 | 98.85 119 | 96.81 188 | 91.25 96 | 96.82 75 | 98.15 126 | 77.02 220 | 98.13 169 | 93.15 134 | 96.30 141 | 98.83 141 |
|
CVMVSNet | | | 90.30 185 | 90.91 163 | 88.46 300 | 94.32 237 | 73.58 342 | 97.61 230 | 97.59 106 | 90.16 122 | 88.43 194 | 97.10 162 | 76.83 221 | 92.86 335 | 82.64 246 | 93.54 169 | 98.93 132 |
|
LCM-MVSNet-Re | | | 88.59 218 | 88.61 201 | 88.51 299 | 95.53 196 | 72.68 346 | 96.85 258 | 88.43 362 | 88.45 171 | 73.14 328 | 90.63 291 | 75.82 222 | 94.38 325 | 92.95 135 | 95.71 153 | 98.48 162 |
|
LS3D | | | 90.19 188 | 88.72 198 | 94.59 165 | 98.97 85 | 86.33 231 | 96.90 256 | 96.60 195 | 74.96 332 | 84.06 229 | 98.74 89 | 75.78 223 | 99.83 61 | 74.93 300 | 97.57 121 | 97.62 191 |
|
pmmvs4 | | | 87.58 235 | 86.17 238 | 91.80 230 | 89.58 312 | 88.92 174 | 97.25 242 | 95.28 289 | 82.54 284 | 80.49 276 | 93.17 244 | 75.62 224 | 96.05 282 | 82.75 245 | 78.90 269 | 90.42 305 |
|
BH-untuned | | | 91.46 165 | 90.84 165 | 93.33 199 | 96.51 162 | 84.83 265 | 98.84 121 | 95.50 276 | 86.44 225 | 83.50 232 | 96.70 179 | 75.49 225 | 97.77 193 | 86.78 201 | 97.81 116 | 97.40 194 |
|
AdaColmap |  | | 93.82 115 | 93.06 120 | 96.10 116 | 99.88 1 | 89.07 167 | 98.33 183 | 97.55 114 | 86.81 216 | 90.39 175 | 98.65 97 | 75.09 226 | 99.98 10 | 93.32 131 | 97.53 124 | 99.26 105 |
|
bset_n11_16_dypcd | | | 89.07 204 | 87.85 211 | 92.76 211 | 86.16 344 | 90.66 134 | 97.30 238 | 95.62 268 | 89.78 131 | 83.94 230 | 93.15 246 | 74.85 227 | 95.89 292 | 91.34 148 | 78.48 271 | 91.74 259 |
|
DU-MVS | | | 88.83 212 | 87.51 216 | 92.79 209 | 91.46 291 | 90.07 147 | 98.71 131 | 97.62 99 | 88.87 160 | 83.21 235 | 93.68 230 | 74.63 228 | 95.93 287 | 86.95 197 | 72.47 318 | 92.36 240 |
|
Baseline_NR-MVSNet | | | 85.83 260 | 84.82 258 | 88.87 296 | 88.73 323 | 83.34 281 | 98.63 146 | 91.66 348 | 80.41 310 | 82.44 247 | 91.35 273 | 74.63 228 | 95.42 305 | 84.13 229 | 71.39 327 | 87.84 335 |
|
v148 | | | 86.38 252 | 85.06 252 | 90.37 262 | 89.47 316 | 84.10 273 | 98.52 158 | 95.48 277 | 83.80 261 | 80.93 272 | 90.22 306 | 74.60 230 | 96.31 270 | 80.92 260 | 71.55 326 | 90.69 300 |
|
3Dnovator+ | | 87.72 8 | 93.43 126 | 91.84 147 | 98.17 21 | 95.73 187 | 95.08 32 | 98.92 113 | 97.04 178 | 91.42 92 | 81.48 269 | 97.60 142 | 74.60 230 | 99.79 69 | 90.84 155 | 98.97 89 | 99.64 71 |
|
test_part1 | | | 88.43 220 | 86.68 230 | 93.67 195 | 97.56 129 | 92.40 96 | 98.12 200 | 96.55 201 | 82.26 289 | 80.31 278 | 93.16 245 | 74.59 232 | 96.62 245 | 85.00 218 | 72.61 316 | 91.99 255 |
|
v8 | | | 86.11 255 | 84.45 264 | 91.10 241 | 89.99 305 | 86.85 219 | 97.24 243 | 95.36 287 | 81.99 292 | 79.89 285 | 89.86 311 | 74.53 233 | 96.39 260 | 78.83 275 | 72.32 320 | 90.05 314 |
|
DP-MVS | | | 88.75 216 | 86.56 232 | 95.34 141 | 98.92 89 | 87.45 204 | 97.64 229 | 93.52 329 | 70.55 343 | 81.49 268 | 97.25 153 | 74.43 234 | 99.88 48 | 71.14 321 | 94.09 164 | 98.67 153 |
|
GeoE | | | 90.60 182 | 89.56 181 | 93.72 194 | 95.10 216 | 85.43 253 | 99.41 58 | 94.94 300 | 83.96 260 | 87.21 204 | 96.83 175 | 74.37 235 | 97.05 230 | 80.50 265 | 93.73 167 | 98.67 153 |
|
cdsmvs_eth3d_5k | | | 22.52 336 | 30.03 339 | 0.00 355 | 0.00 378 | 0.00 379 | 0.00 366 | 97.17 165 | 0.00 373 | 0.00 374 | 98.77 86 | 74.35 236 | 0.00 374 | 0.00 372 | 0.00 372 | 0.00 370 |
|
Effi-MVS+-dtu | | | 89.97 194 | 90.68 170 | 87.81 304 | 95.15 210 | 71.98 348 | 97.87 216 | 95.40 283 | 91.92 78 | 87.57 198 | 91.44 271 | 74.27 237 | 96.84 236 | 89.45 168 | 93.10 172 | 94.60 226 |
|
mvs-test1 | | | 91.57 162 | 92.20 138 | 89.70 277 | 95.15 210 | 74.34 338 | 99.51 40 | 95.40 283 | 91.92 78 | 91.02 163 | 97.25 153 | 74.27 237 | 98.08 175 | 89.45 168 | 95.83 150 | 96.67 209 |
|
WR-MVS | | | 88.54 219 | 87.22 223 | 92.52 216 | 91.93 285 | 89.50 162 | 98.56 156 | 97.84 53 | 86.99 209 | 81.87 263 | 93.81 227 | 74.25 239 | 95.92 289 | 85.29 213 | 74.43 298 | 92.12 249 |
|
FMVSNet3 | | | 88.81 214 | 87.08 224 | 93.99 186 | 96.52 161 | 94.59 49 | 98.08 205 | 96.20 224 | 85.85 229 | 82.12 254 | 91.60 268 | 74.05 240 | 95.40 306 | 79.04 271 | 80.24 262 | 91.99 255 |
|
V42 | | | 87.00 240 | 85.68 245 | 90.98 245 | 89.91 306 | 86.08 239 | 98.32 185 | 95.61 270 | 83.67 265 | 82.72 242 | 90.67 288 | 74.00 241 | 96.53 250 | 81.94 254 | 74.28 301 | 90.32 307 |
|
D2MVS | | | 87.96 226 | 87.39 218 | 89.70 277 | 91.84 286 | 83.40 280 | 98.31 186 | 98.49 20 | 88.04 187 | 78.23 304 | 90.26 302 | 73.57 242 | 96.79 240 | 84.21 227 | 83.53 246 | 88.90 329 |
|
v1144 | | | 86.83 243 | 85.31 250 | 91.40 236 | 89.75 309 | 87.21 215 | 98.31 186 | 95.45 279 | 83.22 271 | 82.70 243 | 90.78 283 | 73.36 243 | 96.36 262 | 79.49 268 | 74.69 295 | 90.63 302 |
|
HQP2-MVS | | | | | | | | | | | | | 73.34 244 | | | | |
|
HQP-MVS | | | 91.50 163 | 91.23 157 | 92.29 218 | 93.95 245 | 86.39 228 | 99.16 80 | 96.37 212 | 93.92 32 | 87.57 198 | 96.67 180 | 73.34 244 | 97.77 193 | 93.82 123 | 86.29 223 | 92.72 233 |
|
v10 | | | 85.73 264 | 84.01 270 | 90.87 249 | 90.03 304 | 86.73 221 | 97.20 246 | 95.22 297 | 81.25 300 | 79.85 286 | 89.75 312 | 73.30 246 | 96.28 274 | 76.87 286 | 72.64 315 | 89.61 321 |
|
v2v482 | | | 87.27 238 | 85.76 243 | 91.78 234 | 89.59 311 | 87.58 200 | 98.56 156 | 95.54 274 | 84.53 251 | 82.51 246 | 91.78 265 | 73.11 247 | 96.47 255 | 82.07 251 | 74.14 304 | 91.30 280 |
|
HQP_MVS | | | 91.26 167 | 90.95 162 | 92.16 222 | 93.84 252 | 86.07 240 | 99.02 102 | 96.30 216 | 93.38 47 | 86.99 205 | 96.52 182 | 72.92 248 | 97.75 198 | 93.46 128 | 86.17 226 | 92.67 235 |
|
plane_prior6 | | | | | | 93.92 249 | 86.02 242 | | | | | | 72.92 248 | | | | |
|
QAPM | | | 91.41 166 | 89.49 183 | 97.17 61 | 95.66 191 | 93.42 72 | 98.60 151 | 97.51 124 | 80.92 305 | 81.39 270 | 97.41 150 | 72.89 250 | 99.87 51 | 82.33 249 | 98.68 102 | 98.21 177 |
|
v144192 | | | 86.40 251 | 84.89 256 | 90.91 246 | 89.48 315 | 85.59 250 | 98.21 193 | 95.43 282 | 82.45 286 | 82.62 244 | 90.58 295 | 72.79 251 | 96.36 262 | 78.45 277 | 74.04 305 | 90.79 294 |
|
TranMVSNet+NR-MVSNet | | | 87.75 230 | 86.31 235 | 92.07 225 | 90.81 298 | 88.56 181 | 98.33 183 | 97.18 164 | 87.76 195 | 81.87 263 | 93.90 225 | 72.45 252 | 95.43 304 | 83.13 242 | 71.30 328 | 92.23 245 |
|
xiu_mvs_v1_base_debu | | | 94.73 92 | 93.98 100 | 96.99 68 | 95.19 206 | 95.24 24 | 98.62 147 | 96.50 205 | 92.99 53 | 97.52 52 | 98.83 83 | 72.37 253 | 99.15 137 | 97.03 55 | 96.74 132 | 96.58 212 |
|
xiu_mvs_v1_base | | | 94.73 92 | 93.98 100 | 96.99 68 | 95.19 206 | 95.24 24 | 98.62 147 | 96.50 205 | 92.99 53 | 97.52 52 | 98.83 83 | 72.37 253 | 99.15 137 | 97.03 55 | 96.74 132 | 96.58 212 |
|
xiu_mvs_v1_base_debi | | | 94.73 92 | 93.98 100 | 96.99 68 | 95.19 206 | 95.24 24 | 98.62 147 | 96.50 205 | 92.99 53 | 97.52 52 | 98.83 83 | 72.37 253 | 99.15 137 | 97.03 55 | 96.74 132 | 96.58 212 |
|
test_djsdf | | | 88.26 224 | 87.73 213 | 89.84 273 | 88.05 331 | 82.21 296 | 97.77 221 | 96.17 227 | 86.84 214 | 82.41 249 | 91.95 263 | 72.07 256 | 95.99 283 | 89.83 163 | 84.50 237 | 91.32 279 |
|
3Dnovator | | 87.35 11 | 93.17 136 | 91.77 149 | 97.37 54 | 95.41 200 | 93.07 80 | 98.82 122 | 97.85 52 | 91.53 85 | 82.56 245 | 97.58 144 | 71.97 257 | 99.82 64 | 91.01 152 | 99.23 82 | 99.22 110 |
|
CANet_DTU | | | 94.31 105 | 93.35 114 | 97.20 60 | 97.03 147 | 94.71 46 | 98.62 147 | 95.54 274 | 95.61 14 | 97.21 60 | 98.47 111 | 71.88 258 | 99.84 59 | 88.38 182 | 97.46 126 | 97.04 206 |
|
CP-MVSNet | | | 86.54 249 | 85.45 249 | 89.79 275 | 91.02 297 | 82.78 291 | 97.38 236 | 97.56 113 | 85.37 236 | 79.53 290 | 93.03 248 | 71.86 259 | 95.25 309 | 79.92 266 | 73.43 311 | 91.34 278 |
|
PatchMatch-RL | | | 91.47 164 | 90.54 172 | 94.26 175 | 98.20 109 | 86.36 230 | 96.94 254 | 97.14 167 | 87.75 196 | 88.98 189 | 95.75 198 | 71.80 260 | 99.40 122 | 80.92 260 | 97.39 127 | 97.02 207 |
|
our_test_3 | | | 84.47 279 | 82.80 278 | 89.50 283 | 89.01 319 | 83.90 276 | 97.03 251 | 94.56 309 | 81.33 299 | 75.36 318 | 90.52 298 | 71.69 261 | 94.54 324 | 68.81 328 | 76.84 284 | 90.07 312 |
|
XVG-OURS | | | 90.83 176 | 90.49 173 | 91.86 227 | 95.23 204 | 81.25 306 | 95.79 296 | 95.92 243 | 88.96 155 | 90.02 180 | 98.03 127 | 71.60 262 | 99.35 129 | 91.06 151 | 87.78 218 | 94.98 224 |
|
v1192 | | | 86.32 253 | 84.71 260 | 91.17 240 | 89.53 314 | 86.40 227 | 98.13 198 | 95.44 281 | 82.52 285 | 82.42 248 | 90.62 292 | 71.58 263 | 96.33 269 | 77.23 282 | 74.88 292 | 90.79 294 |
|
Vis-MVSNet |  | | 92.64 143 | 91.85 146 | 95.03 150 | 95.12 212 | 88.23 186 | 98.48 166 | 96.81 188 | 91.61 83 | 92.16 148 | 97.22 156 | 71.58 263 | 98.00 181 | 85.85 212 | 97.81 116 | 98.88 135 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
PVSNet | | 87.13 12 | 93.69 118 | 92.83 126 | 96.28 110 | 97.99 116 | 90.22 142 | 99.38 61 | 98.93 10 | 91.42 92 | 93.66 132 | 97.68 138 | 71.29 265 | 99.64 90 | 87.94 188 | 97.20 129 | 98.98 124 |
|
v1921920 | | | 86.02 256 | 84.44 265 | 90.77 251 | 89.32 317 | 85.20 257 | 98.10 203 | 95.35 288 | 82.19 290 | 82.25 252 | 90.71 285 | 70.73 266 | 96.30 273 | 76.85 287 | 74.49 297 | 90.80 293 |
|
EU-MVSNet | | | 84.19 282 | 84.42 266 | 83.52 329 | 88.64 325 | 67.37 357 | 96.04 287 | 95.76 260 | 85.29 237 | 78.44 301 | 93.18 243 | 70.67 267 | 91.48 351 | 75.79 296 | 75.98 285 | 91.70 260 |
|
XVG-OURS-SEG-HR | | | 90.95 174 | 90.66 171 | 91.83 228 | 95.18 209 | 81.14 309 | 95.92 288 | 95.92 243 | 88.40 176 | 90.33 176 | 97.85 128 | 70.66 268 | 99.38 123 | 92.83 138 | 88.83 214 | 94.98 224 |
|
v7n | | | 84.42 280 | 82.75 281 | 89.43 286 | 88.15 329 | 81.86 298 | 96.75 263 | 95.67 266 | 80.53 306 | 78.38 302 | 89.43 316 | 69.89 269 | 96.35 267 | 73.83 310 | 72.13 322 | 90.07 312 |
|
ppachtmachnet_test | | | 83.63 288 | 81.57 291 | 89.80 274 | 89.01 319 | 85.09 261 | 97.13 248 | 94.50 310 | 78.84 315 | 76.14 310 | 91.00 279 | 69.78 270 | 94.61 323 | 63.40 343 | 74.36 299 | 89.71 320 |
|
MSDG | | | 88.29 223 | 86.37 234 | 94.04 184 | 96.90 149 | 86.15 237 | 96.52 270 | 94.36 315 | 77.89 323 | 79.22 293 | 96.95 169 | 69.72 271 | 99.59 96 | 73.20 314 | 92.58 180 | 96.37 218 |
|
CLD-MVS | | | 91.06 171 | 90.71 169 | 92.10 224 | 94.05 244 | 86.10 238 | 99.55 34 | 96.29 219 | 94.16 27 | 84.70 222 | 97.17 160 | 69.62 272 | 97.82 189 | 94.74 107 | 86.08 228 | 92.39 238 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
v1240 | | | 85.77 263 | 84.11 268 | 90.73 252 | 89.26 318 | 85.15 260 | 97.88 215 | 95.23 296 | 81.89 295 | 82.16 253 | 90.55 297 | 69.60 273 | 96.31 270 | 75.59 297 | 74.87 293 | 90.72 299 |
|
Fast-Effi-MVS+-dtu | | | 88.84 210 | 88.59 203 | 89.58 281 | 93.44 263 | 78.18 326 | 98.65 142 | 94.62 308 | 88.46 170 | 84.12 228 | 95.37 205 | 68.91 274 | 96.52 251 | 82.06 252 | 91.70 196 | 94.06 227 |
|
anonymousdsp | | | 86.69 245 | 85.75 244 | 89.53 282 | 86.46 342 | 82.94 285 | 96.39 272 | 95.71 262 | 83.97 259 | 79.63 288 | 90.70 286 | 68.85 275 | 95.94 286 | 86.01 205 | 84.02 241 | 89.72 319 |
|
VPA-MVSNet | | | 89.10 203 | 87.66 215 | 93.45 197 | 92.56 274 | 91.02 124 | 97.97 211 | 98.32 24 | 86.92 213 | 86.03 214 | 92.01 260 | 68.84 276 | 97.10 228 | 90.92 153 | 75.34 288 | 92.23 245 |
|
ab-mvs | | | 91.05 172 | 89.17 189 | 96.69 92 | 95.96 181 | 91.72 102 | 92.62 325 | 97.23 157 | 85.61 232 | 89.74 183 | 93.89 226 | 68.55 277 | 99.42 119 | 91.09 150 | 87.84 217 | 98.92 133 |
|
CL-MVSNet_2432*1600 | | | 79.89 305 | 78.34 305 | 84.54 325 | 81.56 356 | 75.01 335 | 96.88 257 | 95.62 268 | 81.10 301 | 75.86 314 | 85.81 340 | 68.49 278 | 90.26 353 | 63.21 344 | 56.51 354 | 88.35 332 |
|
PEN-MVS | | | 85.21 269 | 83.93 271 | 89.07 292 | 89.89 308 | 81.31 305 | 97.09 249 | 97.24 155 | 84.45 253 | 78.66 297 | 92.68 253 | 68.44 279 | 94.87 316 | 75.98 294 | 70.92 329 | 91.04 287 |
|
BH-RMVSNet | | | 91.25 169 | 89.99 177 | 95.03 150 | 96.75 154 | 88.55 182 | 98.65 142 | 94.95 299 | 87.74 197 | 87.74 197 | 97.80 131 | 68.27 280 | 98.14 168 | 80.53 264 | 97.49 125 | 98.41 164 |
|
GA-MVS | | | 90.10 191 | 88.69 199 | 94.33 172 | 92.44 276 | 87.97 194 | 99.08 95 | 96.26 220 | 89.65 134 | 86.92 207 | 93.11 247 | 68.09 281 | 96.96 232 | 82.54 248 | 90.15 210 | 98.05 180 |
|
MDA-MVSNet_test_wron | | | 79.65 306 | 77.05 310 | 87.45 307 | 87.79 335 | 80.13 315 | 96.25 279 | 94.44 311 | 73.87 336 | 51.80 359 | 87.47 329 | 68.04 282 | 92.12 347 | 66.02 337 | 67.79 336 | 90.09 310 |
|
OpenMVS |  | 85.28 14 | 90.75 178 | 88.84 195 | 96.48 101 | 93.58 258 | 93.51 70 | 98.80 124 | 97.41 143 | 82.59 282 | 78.62 298 | 97.49 147 | 68.00 283 | 99.82 64 | 84.52 224 | 98.55 107 | 96.11 220 |
|
YYNet1 | | | 79.64 307 | 77.04 311 | 87.43 308 | 87.80 334 | 79.98 316 | 96.23 280 | 94.44 311 | 73.83 337 | 51.83 358 | 87.53 326 | 67.96 284 | 92.07 348 | 66.00 338 | 67.75 337 | 90.23 309 |
|
DTE-MVSNet | | | 84.14 283 | 82.80 278 | 88.14 301 | 88.95 321 | 79.87 317 | 96.81 259 | 96.24 221 | 83.50 267 | 77.60 306 | 92.52 255 | 67.89 285 | 94.24 327 | 72.64 317 | 69.05 332 | 90.32 307 |
|
MVP-Stereo | | | 86.61 248 | 85.83 242 | 88.93 295 | 88.70 324 | 83.85 277 | 96.07 286 | 94.41 314 | 82.15 291 | 75.64 316 | 91.96 262 | 67.65 286 | 96.45 257 | 77.20 284 | 98.72 101 | 86.51 346 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
XXY-MVS | | | 87.75 230 | 86.02 239 | 92.95 206 | 90.46 302 | 89.70 159 | 97.71 227 | 95.90 249 | 84.02 257 | 80.95 271 | 94.05 217 | 67.51 287 | 97.10 228 | 85.16 214 | 78.41 272 | 92.04 254 |
|
PS-CasMVS | | | 85.81 261 | 84.58 263 | 89.49 285 | 90.77 299 | 82.11 297 | 97.20 246 | 97.36 149 | 84.83 248 | 79.12 295 | 92.84 251 | 67.42 288 | 95.16 311 | 78.39 278 | 73.25 312 | 91.21 283 |
|
ACMM | | 86.95 13 | 88.77 215 | 88.22 209 | 90.43 258 | 93.61 257 | 81.34 304 | 98.50 163 | 95.92 243 | 87.88 192 | 83.85 231 | 95.20 206 | 67.20 289 | 97.89 184 | 86.90 199 | 84.90 234 | 92.06 252 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
TransMVSNet (Re) | | | 81.97 295 | 79.61 303 | 89.08 291 | 89.70 310 | 84.01 274 | 97.26 241 | 91.85 347 | 78.84 315 | 73.07 331 | 91.62 267 | 67.17 290 | 95.21 310 | 67.50 332 | 59.46 351 | 88.02 334 |
|
OPM-MVS | | | 89.76 196 | 89.15 190 | 91.57 235 | 90.53 301 | 85.58 251 | 98.11 202 | 95.93 242 | 92.88 58 | 86.05 213 | 96.47 185 | 67.06 291 | 97.87 186 | 89.29 175 | 86.08 228 | 91.26 282 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
TR-MVS | | | 90.77 177 | 89.44 184 | 94.76 157 | 96.31 167 | 88.02 193 | 97.92 212 | 95.96 237 | 85.52 233 | 88.22 195 | 97.23 155 | 66.80 292 | 98.09 172 | 84.58 223 | 92.38 182 | 98.17 179 |
|
IterMVS-SCA-FT | | | 85.73 264 | 84.64 262 | 89.00 293 | 93.46 262 | 82.90 287 | 96.27 276 | 94.70 305 | 85.02 244 | 78.62 298 | 90.35 301 | 66.61 293 | 93.33 331 | 79.38 270 | 77.36 282 | 90.76 296 |
|
SCA | | | 90.64 181 | 89.25 188 | 94.83 156 | 94.95 223 | 88.83 175 | 96.26 278 | 97.21 159 | 90.06 126 | 90.03 179 | 90.62 292 | 66.61 293 | 96.81 238 | 83.16 240 | 94.36 162 | 98.84 138 |
|
IterMVS | | | 85.81 261 | 84.67 261 | 89.22 288 | 93.51 259 | 83.67 278 | 96.32 275 | 94.80 302 | 85.09 241 | 78.69 296 | 90.17 309 | 66.57 295 | 93.17 334 | 79.48 269 | 77.42 281 | 90.81 292 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
LPG-MVS_test | | | 88.86 209 | 88.47 206 | 90.06 267 | 93.35 265 | 80.95 311 | 98.22 191 | 95.94 240 | 87.73 198 | 83.17 237 | 96.11 193 | 66.28 296 | 97.77 193 | 90.19 161 | 85.19 232 | 91.46 272 |
|
LGP-MVS_train | | | | | 90.06 267 | 93.35 265 | 80.95 311 | | 95.94 240 | 87.73 198 | 83.17 237 | 96.11 193 | 66.28 296 | 97.77 193 | 90.19 161 | 85.19 232 | 91.46 272 |
|
ACMP | | 87.39 10 | 88.71 217 | 88.24 208 | 90.12 266 | 93.91 250 | 81.06 310 | 98.50 163 | 95.67 266 | 89.43 143 | 80.37 277 | 95.55 200 | 65.67 298 | 97.83 188 | 90.55 158 | 84.51 236 | 91.47 271 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
LTVRE_ROB | | 81.71 19 | 84.59 276 | 82.72 282 | 90.18 264 | 92.89 273 | 83.18 283 | 93.15 319 | 94.74 303 | 78.99 314 | 75.14 319 | 92.69 252 | 65.64 299 | 97.63 204 | 69.46 326 | 81.82 259 | 89.74 318 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
pm-mvs1 | | | 84.68 274 | 82.78 280 | 90.40 259 | 89.58 312 | 85.18 258 | 97.31 237 | 94.73 304 | 81.93 294 | 76.05 311 | 92.01 260 | 65.48 300 | 96.11 280 | 78.75 276 | 69.14 331 | 89.91 317 |
|
cascas | | | 90.93 175 | 89.33 187 | 95.76 128 | 95.69 188 | 93.03 82 | 98.99 106 | 96.59 196 | 80.49 307 | 86.79 211 | 94.45 215 | 65.23 301 | 98.60 159 | 93.52 127 | 92.18 187 | 95.66 223 |
|
tfpnnormal | | | 83.65 287 | 81.35 293 | 90.56 255 | 91.37 293 | 88.06 191 | 97.29 239 | 97.87 51 | 78.51 318 | 76.20 309 | 90.91 280 | 64.78 302 | 96.47 255 | 61.71 348 | 73.50 309 | 87.13 343 |
|
pmmvs5 | | | 85.87 258 | 84.40 267 | 90.30 263 | 88.53 326 | 84.23 271 | 98.60 151 | 93.71 325 | 81.53 297 | 80.29 279 | 92.02 259 | 64.51 303 | 95.52 302 | 82.04 253 | 78.34 273 | 91.15 284 |
|
RPSCF | | | 85.33 268 | 85.55 247 | 84.67 324 | 94.63 233 | 62.28 359 | 93.73 314 | 93.76 323 | 74.38 335 | 85.23 220 | 97.06 165 | 64.09 304 | 98.31 162 | 80.98 258 | 86.08 228 | 93.41 232 |
|
N_pmnet | | | 70.19 324 | 69.87 326 | 71.12 342 | 88.24 328 | 30.63 375 | 95.85 294 | 28.70 375 | 70.18 345 | 68.73 340 | 86.55 336 | 64.04 305 | 93.81 328 | 53.12 359 | 73.46 310 | 88.94 328 |
|
DSMNet-mixed | | | 81.60 298 | 81.43 292 | 82.10 333 | 84.36 348 | 60.79 360 | 93.63 316 | 86.74 364 | 79.00 313 | 79.32 292 | 87.15 332 | 63.87 306 | 89.78 354 | 66.89 335 | 91.92 190 | 95.73 222 |
|
FMVSNet5 | | | 82.29 293 | 80.54 297 | 87.52 306 | 93.79 255 | 84.01 274 | 93.73 314 | 92.47 338 | 76.92 326 | 74.27 321 | 86.15 339 | 63.69 307 | 89.24 355 | 69.07 327 | 74.79 294 | 89.29 325 |
|
GBi-Net | | | 86.67 246 | 84.96 253 | 91.80 230 | 95.11 213 | 88.81 176 | 96.77 260 | 95.25 290 | 82.94 276 | 82.12 254 | 90.25 303 | 62.89 308 | 94.97 313 | 79.04 271 | 80.24 262 | 91.62 263 |
|
test1 | | | 86.67 246 | 84.96 253 | 91.80 230 | 95.11 213 | 88.81 176 | 96.77 260 | 95.25 290 | 82.94 276 | 82.12 254 | 90.25 303 | 62.89 308 | 94.97 313 | 79.04 271 | 80.24 262 | 91.62 263 |
|
FMVSNet2 | | | 86.90 241 | 84.79 259 | 93.24 200 | 95.11 213 | 92.54 94 | 97.67 228 | 95.86 255 | 82.94 276 | 80.55 275 | 91.17 277 | 62.89 308 | 95.29 308 | 77.23 282 | 79.71 268 | 91.90 257 |
|
VPNet | | | 88.30 222 | 86.57 231 | 93.49 196 | 91.95 283 | 91.35 110 | 98.18 195 | 97.20 163 | 88.61 164 | 84.52 225 | 94.89 209 | 62.21 311 | 96.76 241 | 89.34 172 | 72.26 321 | 92.36 240 |
|
PVSNet_0 | | 83.28 16 | 87.31 237 | 85.16 251 | 93.74 193 | 94.78 229 | 84.59 267 | 98.91 114 | 98.69 18 | 89.81 130 | 78.59 300 | 93.23 242 | 61.95 312 | 99.34 130 | 94.75 106 | 55.72 356 | 97.30 197 |
|
jajsoiax | | | 87.35 236 | 86.51 233 | 89.87 271 | 87.75 336 | 81.74 299 | 97.03 251 | 95.98 234 | 88.47 168 | 80.15 281 | 93.80 228 | 61.47 313 | 96.36 262 | 89.44 170 | 84.47 238 | 91.50 270 |
|
OurMVSNet-221017-0 | | | 84.13 284 | 83.59 273 | 85.77 318 | 87.81 333 | 70.24 351 | 94.89 303 | 93.65 327 | 86.08 227 | 76.53 308 | 93.28 241 | 61.41 314 | 96.14 279 | 80.95 259 | 77.69 280 | 90.93 289 |
|
Anonymous20231206 | | | 80.76 300 | 79.42 304 | 84.79 323 | 84.78 347 | 72.98 343 | 96.53 269 | 92.97 333 | 79.56 311 | 74.33 320 | 88.83 319 | 61.27 315 | 92.15 346 | 60.59 350 | 75.92 286 | 89.24 326 |
|
LFMVS | | | 92.23 153 | 90.84 165 | 96.42 105 | 98.24 108 | 91.08 122 | 98.24 190 | 96.22 223 | 83.39 269 | 94.74 114 | 98.31 117 | 61.12 316 | 98.85 147 | 94.45 114 | 92.82 174 | 99.32 98 |
|
UGNet | | | 91.91 158 | 90.85 164 | 95.10 145 | 97.06 145 | 88.69 180 | 98.01 209 | 98.24 27 | 92.41 69 | 92.39 146 | 93.61 233 | 60.52 317 | 99.68 82 | 88.14 185 | 97.25 128 | 96.92 208 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
SixPastTwentyTwo | | | 82.63 292 | 81.58 290 | 85.79 317 | 88.12 330 | 71.01 350 | 95.17 301 | 92.54 337 | 84.33 254 | 72.93 332 | 92.08 257 | 60.41 318 | 95.61 301 | 74.47 304 | 74.15 303 | 90.75 297 |
|
mvs_tets | | | 87.09 239 | 86.22 236 | 89.71 276 | 87.87 332 | 81.39 303 | 96.73 265 | 95.90 249 | 88.19 183 | 79.99 283 | 93.61 233 | 59.96 319 | 96.31 270 | 89.40 171 | 84.34 239 | 91.43 274 |
|
COLMAP_ROB |  | 82.69 18 | 84.54 277 | 82.82 277 | 89.70 277 | 96.72 155 | 78.85 320 | 95.89 289 | 92.83 335 | 71.55 341 | 77.54 307 | 95.89 197 | 59.40 320 | 99.14 140 | 67.26 333 | 88.26 215 | 91.11 286 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
Anonymous20231211 | | | 84.72 273 | 82.65 284 | 90.91 246 | 97.71 121 | 84.55 268 | 97.28 240 | 96.67 192 | 66.88 354 | 79.18 294 | 90.87 282 | 58.47 321 | 96.60 246 | 82.61 247 | 74.20 302 | 91.59 268 |
|
MS-PatchMatch | | | 86.75 244 | 85.92 241 | 89.22 288 | 91.97 282 | 82.47 295 | 96.91 255 | 96.14 229 | 83.74 262 | 77.73 305 | 93.53 236 | 58.19 322 | 97.37 222 | 76.75 288 | 98.35 110 | 87.84 335 |
|
test20.03 | | | 78.51 313 | 77.48 308 | 81.62 335 | 83.07 352 | 71.03 349 | 96.11 285 | 92.83 335 | 81.66 296 | 69.31 339 | 89.68 313 | 57.53 323 | 87.29 359 | 58.65 354 | 68.47 333 | 86.53 345 |
|
MVS-HIRNet | | | 79.01 308 | 75.13 318 | 90.66 253 | 93.82 254 | 81.69 300 | 85.16 347 | 93.75 324 | 54.54 359 | 74.17 322 | 59.15 362 | 57.46 324 | 96.58 247 | 63.74 342 | 94.38 161 | 93.72 229 |
|
MDA-MVSNet-bldmvs | | | 77.82 316 | 74.75 320 | 87.03 310 | 88.33 327 | 78.52 324 | 96.34 274 | 92.85 334 | 75.57 330 | 48.87 361 | 87.89 323 | 57.32 325 | 92.49 343 | 60.79 349 | 64.80 343 | 90.08 311 |
|
ACMH | | 83.09 17 | 84.60 275 | 82.61 285 | 90.57 254 | 93.18 268 | 82.94 285 | 96.27 276 | 94.92 301 | 81.01 303 | 72.61 334 | 93.61 233 | 56.54 326 | 97.79 191 | 74.31 305 | 81.07 261 | 90.99 288 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
ITE_SJBPF | | | | | 87.93 302 | 92.26 278 | 76.44 332 | | 93.47 330 | 87.67 201 | 79.95 284 | 95.49 203 | 56.50 327 | 97.38 220 | 75.24 298 | 82.33 256 | 89.98 316 |
|
pmmvs-eth3d | | | 78.71 311 | 76.16 315 | 86.38 313 | 80.25 359 | 81.19 307 | 94.17 310 | 92.13 343 | 77.97 320 | 66.90 349 | 82.31 346 | 55.76 328 | 92.56 341 | 73.63 312 | 62.31 347 | 85.38 350 |
|
K. test v3 | | | 81.04 299 | 79.77 302 | 84.83 322 | 87.41 337 | 70.23 352 | 95.60 298 | 93.93 322 | 83.70 264 | 67.51 346 | 89.35 317 | 55.76 328 | 93.58 330 | 76.67 289 | 68.03 335 | 90.67 301 |
|
AllTest | | | 84.97 271 | 83.12 275 | 90.52 256 | 96.82 151 | 78.84 321 | 95.89 289 | 92.17 341 | 77.96 321 | 75.94 312 | 95.50 201 | 55.48 330 | 99.18 135 | 71.15 319 | 87.14 219 | 93.55 230 |
|
TestCases | | | | | 90.52 256 | 96.82 151 | 78.84 321 | | 92.17 341 | 77.96 321 | 75.94 312 | 95.50 201 | 55.48 330 | 99.18 135 | 71.15 319 | 87.14 219 | 93.55 230 |
|
DIV-MVS_2432*1600 | | | 77.47 317 | 75.88 316 | 82.24 331 | 81.59 355 | 68.93 355 | 92.83 324 | 94.02 321 | 77.03 325 | 73.14 328 | 83.39 344 | 55.44 332 | 90.42 352 | 67.95 331 | 57.53 353 | 87.38 338 |
|
CMPMVS |  | 58.40 21 | 80.48 301 | 80.11 301 | 81.59 336 | 85.10 346 | 59.56 361 | 94.14 311 | 95.95 239 | 68.54 350 | 60.71 356 | 93.31 239 | 55.35 333 | 97.87 186 | 83.06 243 | 84.85 235 | 87.33 340 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
Anonymous20240529 | | | 87.66 233 | 85.58 246 | 93.92 187 | 97.59 127 | 85.01 262 | 98.13 198 | 97.13 169 | 66.69 355 | 88.47 193 | 96.01 196 | 55.09 334 | 99.51 105 | 87.00 196 | 84.12 240 | 97.23 200 |
|
VDDNet | | | 90.08 192 | 88.54 205 | 94.69 161 | 94.41 236 | 87.68 197 | 98.21 193 | 96.40 210 | 76.21 328 | 93.33 135 | 97.75 134 | 54.93 335 | 98.77 150 | 94.71 109 | 90.96 203 | 97.61 192 |
|
ACMH+ | | 83.78 15 | 84.21 281 | 82.56 286 | 89.15 290 | 93.73 256 | 79.16 318 | 96.43 271 | 94.28 316 | 81.09 302 | 74.00 323 | 94.03 220 | 54.58 336 | 97.67 201 | 76.10 293 | 78.81 270 | 90.63 302 |
|
VDD-MVS | | | 91.24 170 | 90.18 176 | 94.45 169 | 97.08 144 | 85.84 247 | 98.40 176 | 96.10 231 | 86.99 209 | 93.36 134 | 98.16 125 | 54.27 337 | 99.20 134 | 96.59 66 | 90.63 208 | 98.31 173 |
|
lessismore_v0 | | | | | 85.08 320 | 85.59 345 | 69.28 354 | | 90.56 355 | | 67.68 345 | 90.21 307 | 54.21 338 | 95.46 303 | 73.88 308 | 62.64 345 | 90.50 304 |
|
USDC | | | 84.74 272 | 82.93 276 | 90.16 265 | 91.73 288 | 83.54 279 | 95.00 302 | 93.30 331 | 88.77 162 | 73.19 327 | 93.30 240 | 53.62 339 | 97.65 203 | 75.88 295 | 81.54 260 | 89.30 324 |
|
Anonymous202405211 | | | 88.84 210 | 87.03 225 | 94.27 174 | 98.14 113 | 84.18 272 | 98.44 169 | 95.58 272 | 76.79 327 | 89.34 187 | 96.88 173 | 53.42 340 | 99.54 100 | 87.53 193 | 87.12 221 | 99.09 118 |
|
XVG-ACMP-BASELINE | | | 85.86 259 | 84.95 255 | 88.57 297 | 89.90 307 | 77.12 331 | 94.30 308 | 95.60 271 | 87.40 206 | 82.12 254 | 92.99 250 | 53.42 340 | 97.66 202 | 85.02 217 | 83.83 242 | 90.92 290 |
|
test_0402 | | | 78.81 310 | 76.33 314 | 86.26 314 | 91.18 294 | 78.44 325 | 95.88 291 | 91.34 352 | 68.55 349 | 70.51 337 | 89.91 310 | 52.65 342 | 94.99 312 | 47.14 361 | 79.78 267 | 85.34 352 |
|
MIMVSNet | | | 84.48 278 | 81.83 288 | 92.42 217 | 91.73 288 | 87.36 207 | 85.52 346 | 94.42 313 | 81.40 298 | 81.91 261 | 87.58 325 | 51.92 343 | 92.81 337 | 73.84 309 | 88.15 216 | 97.08 205 |
|
UnsupCasMVSNet_eth | | | 78.90 309 | 76.67 313 | 85.58 319 | 82.81 354 | 74.94 336 | 91.98 328 | 96.31 215 | 84.64 250 | 65.84 352 | 87.71 324 | 51.33 344 | 92.23 345 | 72.89 316 | 56.50 355 | 89.56 322 |
|
new-patchmatchnet | | | 74.80 321 | 72.40 324 | 81.99 334 | 78.36 362 | 72.20 347 | 94.44 306 | 92.36 339 | 77.06 324 | 63.47 353 | 79.98 352 | 51.04 345 | 88.85 356 | 60.53 351 | 54.35 357 | 84.92 353 |
|
pmmvs6 | | | 79.90 304 | 77.31 309 | 87.67 305 | 84.17 349 | 78.13 327 | 95.86 293 | 93.68 326 | 67.94 352 | 72.67 333 | 89.62 314 | 50.98 346 | 95.75 296 | 74.80 303 | 66.04 340 | 89.14 327 |
|
FMVSNet1 | | | 83.94 286 | 81.32 294 | 91.80 230 | 91.94 284 | 88.81 176 | 96.77 260 | 95.25 290 | 77.98 319 | 78.25 303 | 90.25 303 | 50.37 347 | 94.97 313 | 73.27 313 | 77.81 279 | 91.62 263 |
|
UniMVSNet_ETH3D | | | 85.65 266 | 83.79 272 | 91.21 239 | 90.41 303 | 80.75 313 | 95.36 299 | 95.78 258 | 78.76 317 | 81.83 266 | 94.33 216 | 49.86 348 | 96.66 243 | 84.30 225 | 83.52 247 | 96.22 219 |
|
Anonymous20240521 | | | 78.63 312 | 76.90 312 | 83.82 327 | 82.82 353 | 72.86 344 | 95.72 297 | 93.57 328 | 73.55 338 | 72.17 335 | 84.79 342 | 49.69 349 | 92.51 342 | 65.29 340 | 74.50 296 | 86.09 348 |
|
TDRefinement | | | 78.01 314 | 75.31 317 | 86.10 316 | 70.06 365 | 73.84 340 | 93.59 317 | 91.58 350 | 74.51 334 | 73.08 330 | 91.04 278 | 49.63 350 | 97.12 225 | 74.88 301 | 59.47 350 | 87.33 340 |
|
LF4IMVS | | | 81.94 296 | 81.17 295 | 84.25 326 | 87.23 339 | 68.87 356 | 93.35 318 | 91.93 346 | 83.35 270 | 75.40 317 | 93.00 249 | 49.25 351 | 96.65 244 | 78.88 274 | 78.11 274 | 87.22 342 |
|
new_pmnet | | | 76.02 318 | 73.71 321 | 82.95 330 | 83.88 350 | 72.85 345 | 91.26 334 | 92.26 340 | 70.44 344 | 62.60 354 | 81.37 348 | 47.64 352 | 92.32 344 | 61.85 347 | 72.10 323 | 83.68 355 |
|
TinyColmap | | | 80.42 302 | 77.94 306 | 87.85 303 | 92.09 281 | 78.58 323 | 93.74 313 | 89.94 357 | 74.99 331 | 69.77 338 | 91.78 265 | 46.09 353 | 97.58 207 | 65.17 341 | 77.89 275 | 87.38 338 |
|
testgi | | | 82.29 293 | 81.00 296 | 86.17 315 | 87.24 338 | 74.84 337 | 97.39 234 | 91.62 349 | 88.63 163 | 75.85 315 | 95.42 204 | 46.07 354 | 91.55 350 | 66.87 336 | 79.94 266 | 92.12 249 |
|
OpenMVS_ROB |  | 73.86 20 | 77.99 315 | 75.06 319 | 86.77 312 | 83.81 351 | 77.94 329 | 96.38 273 | 91.53 351 | 67.54 353 | 68.38 341 | 87.13 333 | 43.94 355 | 96.08 281 | 55.03 357 | 81.83 258 | 86.29 347 |
|
tmp_tt | | | 53.66 330 | 52.86 332 | 56.05 347 | 32.75 375 | 41.97 371 | 73.42 361 | 76.12 371 | 21.91 369 | 39.68 365 | 96.39 188 | 42.59 356 | 65.10 367 | 78.00 279 | 14.92 368 | 61.08 361 |
|
pmmvs3 | | | 72.86 323 | 69.76 327 | 82.17 332 | 73.86 363 | 74.19 339 | 94.20 309 | 89.01 361 | 64.23 358 | 67.72 344 | 80.91 350 | 41.48 357 | 88.65 357 | 62.40 346 | 54.02 358 | 83.68 355 |
|
UnsupCasMVSNet_bld | | | 73.85 322 | 70.14 325 | 84.99 321 | 79.44 360 | 75.73 333 | 88.53 341 | 95.24 293 | 70.12 346 | 61.94 355 | 74.81 355 | 41.41 358 | 93.62 329 | 68.65 329 | 51.13 360 | 85.62 349 |
|
MVS_0304 | | | 84.13 284 | 82.66 283 | 88.52 298 | 93.07 270 | 80.15 314 | 95.81 295 | 98.21 29 | 79.27 312 | 86.85 209 | 86.40 337 | 41.33 359 | 94.69 321 | 76.36 291 | 86.69 222 | 90.73 298 |
|
MIMVSNet1 | | | 75.92 319 | 73.30 322 | 83.81 328 | 81.29 357 | 75.57 334 | 92.26 327 | 92.05 344 | 73.09 339 | 67.48 347 | 86.18 338 | 40.87 360 | 87.64 358 | 55.78 356 | 70.68 330 | 88.21 333 |
|
EG-PatchMatch MVS | | | 79.92 303 | 77.59 307 | 86.90 311 | 87.06 340 | 77.90 330 | 96.20 284 | 94.06 320 | 74.61 333 | 66.53 350 | 88.76 320 | 40.40 361 | 96.20 275 | 67.02 334 | 83.66 245 | 86.61 344 |
|
DeepMVS_CX |  | | | | 76.08 339 | 90.74 300 | 51.65 367 | | 90.84 354 | 86.47 224 | 57.89 357 | 87.98 322 | 35.88 362 | 92.60 339 | 65.77 339 | 65.06 342 | 83.97 354 |
|
test_method | | | 70.10 325 | 68.66 328 | 74.41 340 | 86.30 343 | 55.84 364 | 94.47 305 | 89.82 358 | 35.18 364 | 66.15 351 | 84.75 343 | 30.54 363 | 77.96 364 | 70.40 325 | 60.33 349 | 89.44 323 |
|
PM-MVS | | | 74.88 320 | 72.85 323 | 80.98 337 | 78.98 361 | 64.75 358 | 90.81 337 | 85.77 365 | 80.95 304 | 68.23 343 | 82.81 345 | 29.08 364 | 92.84 336 | 76.54 290 | 62.46 346 | 85.36 351 |
|
ambc | | | | | 79.60 338 | 72.76 364 | 56.61 363 | 76.20 359 | 92.01 345 | | 68.25 342 | 80.23 351 | 23.34 365 | 94.73 320 | 73.78 311 | 60.81 348 | 87.48 337 |
|
FPMVS | | | 61.57 326 | 60.32 329 | 65.34 344 | 60.14 369 | 42.44 370 | 91.02 336 | 89.72 359 | 44.15 361 | 42.63 363 | 80.93 349 | 19.02 366 | 80.59 363 | 42.50 362 | 72.76 314 | 73.00 359 |
|
EMVS | | | 39.96 335 | 39.88 337 | 40.18 351 | 59.57 370 | 32.12 374 | 84.79 352 | 64.57 374 | 26.27 367 | 26.14 368 | 44.18 369 | 18.73 367 | 59.29 370 | 17.03 368 | 17.67 367 | 29.12 366 |
|
Gipuma |  | | 54.77 329 | 52.22 333 | 62.40 346 | 86.50 341 | 59.37 362 | 50.20 364 | 90.35 356 | 36.52 363 | 41.20 364 | 49.49 364 | 18.33 368 | 81.29 361 | 32.10 364 | 65.34 341 | 46.54 364 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
E-PMN | | | 41.02 334 | 40.93 336 | 41.29 350 | 61.97 367 | 33.83 372 | 84.00 355 | 65.17 373 | 27.17 366 | 27.56 366 | 46.72 366 | 17.63 369 | 60.41 369 | 19.32 367 | 18.82 365 | 29.61 365 |
|
PMMVS2 | | | 58.97 328 | 55.07 331 | 70.69 343 | 62.72 366 | 55.37 365 | 85.97 345 | 80.52 368 | 49.48 360 | 45.94 362 | 68.31 357 | 15.73 370 | 80.78 362 | 49.79 360 | 37.12 363 | 75.91 358 |
|
ANet_high | | | 50.71 331 | 46.17 334 | 64.33 345 | 44.27 373 | 52.30 366 | 76.13 360 | 78.73 369 | 64.95 356 | 27.37 367 | 55.23 363 | 14.61 371 | 67.74 366 | 36.01 363 | 18.23 366 | 72.95 360 |
|
LCM-MVSNet | | | 60.07 327 | 56.37 330 | 71.18 341 | 54.81 371 | 48.67 368 | 82.17 358 | 89.48 360 | 37.95 362 | 49.13 360 | 69.12 356 | 13.75 372 | 81.76 360 | 59.28 352 | 51.63 359 | 83.10 357 |
|
PMVS |  | 41.42 23 | 45.67 332 | 42.50 335 | 55.17 348 | 34.28 374 | 32.37 373 | 66.24 362 | 78.71 370 | 30.72 365 | 22.04 370 | 59.59 361 | 4.59 373 | 77.85 365 | 27.49 365 | 58.84 352 | 55.29 362 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
wuyk23d | | | 16.71 338 | 16.73 342 | 16.65 352 | 60.15 368 | 25.22 376 | 41.24 365 | 5.17 376 | 6.56 370 | 5.48 373 | 3.61 372 | 3.64 374 | 22.72 371 | 15.20 369 | 9.52 369 | 1.99 369 |
|
MVE |  | 44.00 22 | 41.70 333 | 37.64 338 | 53.90 349 | 49.46 372 | 43.37 369 | 65.09 363 | 66.66 372 | 26.19 368 | 25.77 369 | 48.53 365 | 3.58 375 | 63.35 368 | 26.15 366 | 27.28 364 | 54.97 363 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
test123 | | | 16.58 339 | 19.47 341 | 7.91 353 | 3.59 377 | 5.37 377 | 94.32 307 | 1.39 378 | 2.49 372 | 13.98 372 | 44.60 368 | 2.91 376 | 2.65 372 | 11.35 371 | 0.57 371 | 15.70 367 |
|
testmvs | | | 18.81 337 | 23.05 340 | 6.10 354 | 4.48 376 | 2.29 378 | 97.78 220 | 3.00 377 | 3.27 371 | 18.60 371 | 62.71 359 | 1.53 377 | 2.49 373 | 14.26 370 | 1.80 370 | 13.50 368 |
|
uanet_test | | | 0.00 342 | 0.00 345 | 0.00 355 | 0.00 378 | 0.00 379 | 0.00 366 | 0.00 379 | 0.00 373 | 0.00 374 | 0.00 373 | 0.00 378 | 0.00 374 | 0.00 372 | 0.00 372 | 0.00 370 |
|
sosnet-low-res | | | 0.00 342 | 0.00 345 | 0.00 355 | 0.00 378 | 0.00 379 | 0.00 366 | 0.00 379 | 0.00 373 | 0.00 374 | 0.00 373 | 0.00 378 | 0.00 374 | 0.00 372 | 0.00 372 | 0.00 370 |
|
sosnet | | | 0.00 342 | 0.00 345 | 0.00 355 | 0.00 378 | 0.00 379 | 0.00 366 | 0.00 379 | 0.00 373 | 0.00 374 | 0.00 373 | 0.00 378 | 0.00 374 | 0.00 372 | 0.00 372 | 0.00 370 |
|
uncertanet | | | 0.00 342 | 0.00 345 | 0.00 355 | 0.00 378 | 0.00 379 | 0.00 366 | 0.00 379 | 0.00 373 | 0.00 374 | 0.00 373 | 0.00 378 | 0.00 374 | 0.00 372 | 0.00 372 | 0.00 370 |
|
Regformer | | | 0.00 342 | 0.00 345 | 0.00 355 | 0.00 378 | 0.00 379 | 0.00 366 | 0.00 379 | 0.00 373 | 0.00 374 | 0.00 373 | 0.00 378 | 0.00 374 | 0.00 372 | 0.00 372 | 0.00 370 |
|
ab-mvs-re | | | 8.21 340 | 10.94 343 | 0.00 355 | 0.00 378 | 0.00 379 | 0.00 366 | 0.00 379 | 0.00 373 | 0.00 374 | 98.50 107 | 0.00 378 | 0.00 374 | 0.00 372 | 0.00 372 | 0.00 370 |
|
uanet | | | 0.00 342 | 0.00 345 | 0.00 355 | 0.00 378 | 0.00 379 | 0.00 366 | 0.00 379 | 0.00 373 | 0.00 374 | 0.00 373 | 0.00 378 | 0.00 374 | 0.00 372 | 0.00 372 | 0.00 370 |
|
FOURS1 | | | | | | 99.50 47 | 88.94 172 | 99.55 34 | 97.47 132 | 91.32 94 | 98.12 37 | | | | | | |
|
MSC_two_6792asdad | | | | | 99.51 2 | 99.61 27 | 98.60 2 | | 97.69 81 | | | | | 99.98 10 | 99.55 9 | 99.83 15 | 99.96 10 |
|
No_MVS | | | | | 99.51 2 | 99.61 27 | 98.60 2 | | 97.69 81 | | | | | 99.98 10 | 99.55 9 | 99.83 15 | 99.96 10 |
|
eth-test2 | | | | | | 0.00 378 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 378 | | | | | | | | | | | |
|
IU-MVS | | | | | | 99.63 21 | 95.38 21 | | 97.73 72 | 95.54 15 | 99.54 1 | | | | 99.69 5 | 99.81 23 | 99.99 1 |
|
save fliter | | | | | | 99.34 58 | 93.85 63 | 99.65 23 | 97.63 97 | 95.69 11 | | | | | | | |
|
test_0728_SECOND | | | | | 98.77 7 | 99.66 15 | 96.37 13 | 99.72 14 | 97.68 83 | | | | | 99.98 10 | 99.64 6 | 99.82 19 | 99.96 10 |
|
GSMVS | | | | | | | | | | | | | | | | | 98.84 138 |
|
test_part2 | | | | | | 99.54 40 | 95.42 19 | | | | 98.13 35 | | | | | | |
|
MTGPA |  | | | | | | | | 97.45 135 | | | | | | | | |
|
MTMP | | | | | | | | 99.21 74 | 91.09 353 | | | | | | | | |
|
gm-plane-assit | | | | | | 94.69 231 | 88.14 189 | | | 88.22 182 | | 97.20 157 | | 98.29 164 | 90.79 156 | | |
|
test9_res | | | | | | | | | | | | | | | 98.60 23 | 99.87 9 | 99.90 24 |
|
agg_prior2 | | | | | | | | | | | | | | | 97.84 45 | 99.87 9 | 99.91 22 |
|
agg_prior | | | | | | 99.54 40 | 92.66 88 | | 97.64 92 | | 97.98 44 | | | 99.61 93 | | | |
|
test_prior4 | | | | | | | 92.00 98 | 99.41 58 | | | | | | | | | |
|
test_prior | | | | | 97.01 65 | 99.58 33 | 91.77 99 | | 97.57 111 | | | | | 99.49 108 | | | 99.79 38 |
|
旧先验2 | | | | | | | | 98.67 140 | | 85.75 231 | 98.96 14 | | | 98.97 146 | 93.84 121 | | |
|
新几何2 | | | | | | | | 98.26 189 | | | | | | | | | |
|
无先验 | | | | | | | | 98.52 158 | 97.82 55 | 87.20 208 | | | | 99.90 44 | 87.64 191 | | 99.85 33 |
|
原ACMM2 | | | | | | | | 98.69 136 | | | | | | | | | |
|
testdata2 | | | | | | | | | | | | | | 99.88 48 | 84.16 228 | | |
|
testdata1 | | | | | | | | 97.89 213 | | 92.43 65 | | | | | | | |
|
plane_prior7 | | | | | | 93.84 252 | 85.73 248 | | | | | | | | | | |
|
plane_prior5 | | | | | | | | | 96.30 216 | | | | | 97.75 198 | 93.46 128 | 86.17 226 | 92.67 235 |
|
plane_prior4 | | | | | | | | | | | | 96.52 182 | | | | | |
|
plane_prior3 | | | | | | | 85.91 243 | | | 93.65 42 | 86.99 205 | | | | | | |
|
plane_prior2 | | | | | | | | 99.02 102 | | 93.38 47 | | | | | | | |
|
plane_prior1 | | | | | | 93.90 251 | | | | | | | | | | | |
|
plane_prior | | | | | | | 86.07 240 | 99.14 89 | | 93.81 40 | | | | | | 86.26 225 | |
|
n2 | | | | | | | | | 0.00 379 | | | | | | | | |
|
nn | | | | | | | | | 0.00 379 | | | | | | | | |
|
door-mid | | | | | | | | | 84.90 367 | | | | | | | | |
|
test11 | | | | | | | | | 97.68 83 | | | | | | | | |
|
door | | | | | | | | | 85.30 366 | | | | | | | | |
|
HQP5-MVS | | | | | | | 86.39 228 | | | | | | | | | | |
|
HQP-NCC | | | | | | 93.95 245 | | 99.16 80 | | 93.92 32 | 87.57 198 | | | | | | |
|
ACMP_Plane | | | | | | 93.95 245 | | 99.16 80 | | 93.92 32 | 87.57 198 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 93.82 123 | | |
|
HQP4-MVS | | | | | | | | | | | 87.57 198 | | | 97.77 193 | | | 92.72 233 |
|
HQP3-MVS | | | | | | | | | 96.37 212 | | | | | | | 86.29 223 | |
|
NP-MVS | | | | | | 93.94 248 | 86.22 234 | | | | | 96.67 180 | | | | | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 82.64 254 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 83.83 242 | |
|