This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort by
CHOSEN 280x42096.80 3296.85 2796.66 8497.85 10794.42 5194.76 32198.36 2992.50 8195.62 10597.52 14897.92 197.38 23398.31 4498.80 9198.20 176
GG-mvs-BLEND96.98 6596.53 15594.81 4187.20 36997.74 7493.91 13296.40 19696.56 296.94 24795.08 10698.95 8499.20 104
gg-mvs-nofinetune90.00 20287.71 22896.89 7396.15 17594.69 4585.15 37597.74 7468.32 37592.97 14560.16 38896.10 396.84 25093.89 12998.87 8899.14 108
MSP-MVS97.77 998.18 296.53 9299.54 3690.14 13699.41 6897.70 8395.46 2898.60 2999.19 3095.71 499.49 11298.15 4899.85 1399.95 15
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
iter_conf0593.48 12593.18 12194.39 17597.15 13394.17 5799.30 8092.97 34692.38 8886.70 22195.42 21795.67 596.59 25994.67 11884.32 25692.39 254
baseline294.04 10793.80 10794.74 16093.07 27990.25 13198.12 21098.16 3989.86 14286.53 22296.95 17595.56 698.05 18991.44 15994.53 16995.93 231
PC_three_145294.60 3699.41 499.12 4695.50 799.96 2899.84 299.92 399.97 7
DVP-MVS++98.18 298.09 598.44 1699.61 2495.38 2299.55 4497.68 8793.01 7099.23 1099.45 1495.12 899.98 999.25 1899.92 399.97 7
OPU-MVS99.49 499.64 1798.51 499.77 1799.19 3095.12 899.97 2199.90 199.92 399.99 1
iter_conf_final93.22 13793.04 12593.76 19897.03 14192.22 9299.05 11293.31 34392.11 9386.93 21695.42 21795.01 1096.59 25993.98 12784.48 25392.46 253
tttt051793.30 13393.01 12794.17 18395.57 19486.47 22598.51 17097.60 10685.99 24690.55 17997.19 16494.80 1198.31 17385.06 23291.86 20097.74 184
thisisatest053094.00 10893.52 11195.43 13395.76 18990.02 14598.99 12097.60 10686.58 23591.74 15797.36 15694.78 1298.34 17286.37 21892.48 19097.94 182
thisisatest051594.75 9094.19 9296.43 9696.13 18092.64 8899.47 5597.60 10687.55 21793.17 14197.59 14594.71 1398.42 17088.28 19693.20 17998.24 173
test_0728_THIRD93.01 7099.07 1599.46 1094.66 1499.97 2199.25 1899.82 1999.95 15
ET-MVSNet_ETH3D92.56 15191.45 15995.88 11896.39 16394.13 5899.46 5996.97 18792.18 9166.94 36998.29 12094.65 1594.28 34294.34 12383.82 26399.24 100
MVSTER92.71 14592.32 13993.86 19597.29 12792.95 8199.01 11896.59 20190.09 13885.51 22994.00 24194.61 1696.56 26390.77 16983.03 27092.08 271
DPM-MVS97.86 897.25 2099.68 198.25 9399.10 199.76 2097.78 7096.61 1298.15 4199.53 793.62 17100.00 191.79 15799.80 2699.94 18
test_one_060199.59 2894.89 3497.64 9793.14 6998.93 2199.45 1493.45 18
SED-MVS98.18 298.10 498.41 1899.63 1895.24 2599.77 1797.72 7894.17 4399.30 899.54 393.32 1999.98 999.70 499.81 2399.99 1
test_241102_ONE99.63 1895.24 2597.72 7894.16 4599.30 899.49 993.32 1999.98 9
DPE-MVScopyleft98.11 698.00 698.44 1699.50 4295.39 2199.29 8197.72 7894.50 3798.64 2899.54 393.32 1999.97 2199.58 1099.90 799.95 15
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
DVP-MVScopyleft98.07 798.00 698.29 1999.66 1295.20 3099.72 2397.47 13593.95 4899.07 1599.46 1093.18 2299.97 2199.64 799.82 1999.69 55
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.66 1295.20 3099.77 1797.70 8393.95 4899.35 799.54 393.18 22
test_241102_TWO97.72 7894.17 4399.23 1099.54 393.14 2499.98 999.70 499.82 1999.99 1
CNVR-MVS98.46 198.38 198.72 999.80 496.19 1599.80 1597.99 5297.05 699.41 499.59 292.89 25100.00 198.99 2599.90 799.96 10
MCST-MVS98.18 297.95 998.86 599.85 396.60 1099.70 2697.98 5397.18 395.96 9499.33 1992.62 26100.00 198.99 2599.93 199.98 6
NCCC98.12 598.11 398.13 2499.76 694.46 4899.81 1197.88 5696.54 1398.84 2499.46 1092.55 2799.98 998.25 4699.93 199.94 18
patch_mono-297.10 2597.97 894.49 16899.21 6183.73 28499.62 3798.25 3295.28 3099.38 698.91 7592.28 2899.94 3499.61 999.22 7099.78 38
SteuartSystems-ACMMP97.25 1897.34 1997.01 6097.38 12291.46 10299.75 2197.66 9194.14 4798.13 4299.26 2192.16 2999.66 9497.91 5299.64 4099.90 22
Skip Steuart: Steuart Systems R&D Blog.
TSAR-MVS + MP.97.44 1797.46 1697.39 4899.12 6593.49 6998.52 16797.50 13094.46 3898.99 1798.64 9991.58 3099.08 14898.49 3799.83 1599.60 67
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
TSAR-MVS + GP.96.95 2896.91 2597.07 5798.88 7991.62 9899.58 4196.54 20795.09 3296.84 7698.63 10191.16 3199.77 8599.04 2496.42 14499.81 33
EPP-MVSNet93.75 11893.67 10994.01 19195.86 18585.70 25298.67 15097.66 9184.46 27191.36 16897.18 16591.16 3197.79 20392.93 14693.75 17698.53 157
HPM-MVS++copyleft97.72 1097.59 1398.14 2399.53 4094.76 4299.19 8797.75 7395.66 2498.21 4099.29 2091.10 3399.99 597.68 5599.87 999.68 56
旧先验198.97 7392.90 8397.74 7499.15 3991.05 3499.33 6399.60 67
train_agg97.20 2297.08 2297.57 4299.57 3393.17 7399.38 7197.66 9190.18 13498.39 3599.18 3390.94 3599.66 9498.58 3699.85 1399.88 26
test_899.55 3593.07 7699.37 7497.64 9790.18 13498.36 3799.19 3090.94 3599.64 100
fmvsm_l_conf0.5_n_a97.70 1197.80 1197.42 4597.59 11692.91 8299.86 498.04 4896.70 1099.58 299.26 2190.90 3799.94 3499.57 1198.66 9899.40 85
TEST999.57 3393.17 7399.38 7197.66 9189.57 15298.39 3599.18 3390.88 3899.66 94
SD-MVS97.51 1597.40 1897.81 3499.01 7293.79 6399.33 7897.38 14893.73 5998.83 2599.02 5890.87 3999.88 5498.69 3099.74 2999.77 43
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
APDe-MVScopyleft97.53 1397.47 1597.70 3699.58 3093.63 6499.56 4397.52 12593.59 6398.01 5099.12 4690.80 4099.55 10699.26 1799.79 2799.93 20
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
IB-MVS89.43 692.12 16190.83 17495.98 11695.40 20290.78 12099.81 1198.06 4591.23 11085.63 22893.66 25190.63 4198.78 15691.22 16071.85 34498.36 168
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
segment_acmp90.56 42
dcpmvs_295.67 6996.18 4494.12 18598.82 8184.22 27797.37 25295.45 28690.70 11895.77 10198.63 10190.47 4398.68 16499.20 2099.22 7099.45 81
test_prior299.57 4291.43 10598.12 4498.97 6290.43 4498.33 4299.81 23
fmvsm_l_conf0.5_n97.65 1297.72 1297.41 4697.51 12092.78 8499.85 798.05 4696.78 899.60 199.23 2690.42 4599.92 4099.55 1298.50 10399.55 72
SF-MVS97.22 2196.92 2498.12 2699.11 6694.88 3599.44 6297.45 13889.60 15098.70 2699.42 1790.42 4599.72 8998.47 3899.65 3899.77 43
DeepPCF-MVS93.56 196.55 3997.84 1092.68 22098.71 8578.11 34199.70 2697.71 8298.18 197.36 6299.76 190.37 4799.94 3499.27 1699.54 5299.99 1
SMA-MVScopyleft97.24 1996.99 2398.00 2999.30 5494.20 5599.16 9397.65 9689.55 15499.22 1299.52 890.34 4899.99 598.32 4399.83 1599.82 32
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
ZD-MVS99.67 1093.28 7197.61 10487.78 20897.41 6099.16 3690.15 4999.56 10598.35 4199.70 35
CostFormer92.89 14392.48 13894.12 18594.99 22585.89 24792.89 33997.00 18586.98 22695.00 11690.78 30290.05 5097.51 22692.92 14791.73 20498.96 123
MSLP-MVS++97.50 1697.45 1797.63 3899.65 1693.21 7299.70 2698.13 4294.61 3597.78 5599.46 1089.85 5199.81 7997.97 5099.91 699.88 26
9.1496.87 2699.34 5099.50 5197.49 13289.41 15798.59 3099.43 1689.78 5299.69 9198.69 3099.62 44
PAPM96.35 4295.94 5397.58 4094.10 24895.25 2498.93 12598.17 3794.26 4293.94 13198.72 9189.68 5397.88 19796.36 8299.29 6799.62 66
CSCG94.87 8694.71 8395.36 13599.54 3686.49 22499.34 7798.15 4082.71 30290.15 18799.25 2389.48 5499.86 6394.97 11198.82 9099.72 50
PHI-MVS96.65 3696.46 3797.21 5499.34 5091.77 9599.70 2698.05 4686.48 24098.05 4799.20 2989.33 5599.96 2898.38 3999.62 4499.90 22
TESTMET0.1,193.82 11693.26 11995.49 13195.21 20890.25 13199.15 9897.54 12089.18 16291.79 15694.87 22789.13 5697.63 21886.21 21996.29 14998.60 155
APD-MVScopyleft96.95 2896.72 3197.63 3899.51 4193.58 6599.16 9397.44 14190.08 13998.59 3099.07 5189.06 5799.42 12397.92 5199.66 3799.88 26
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CDS-MVSNet93.47 12693.04 12594.76 15894.75 23489.45 15798.82 13497.03 18187.91 20590.97 17296.48 19489.06 5796.36 27789.50 18292.81 18598.49 159
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Patchmatch-test86.25 26984.06 28692.82 21494.42 24082.88 29682.88 38494.23 32971.58 36279.39 30890.62 31189.00 5996.42 27463.03 36691.37 21299.16 106
CDPH-MVS96.56 3896.18 4497.70 3699.59 2893.92 6099.13 10497.44 14189.02 16697.90 5399.22 2788.90 6099.49 11294.63 11999.79 2799.68 56
MG-MVS97.24 1996.83 3098.47 1599.79 595.71 1899.07 10999.06 1094.45 4096.42 8898.70 9588.81 6199.74 8895.35 10199.86 1299.97 7
patchmatchnet-post84.86 36088.73 6296.81 252
test1297.83 3399.33 5394.45 4997.55 11797.56 5688.60 6399.50 11199.71 3499.55 72
MVS_111021_HR96.69 3496.69 3296.72 8098.58 8891.00 11699.14 10199.45 193.86 5495.15 11398.73 8988.48 6499.76 8697.23 6399.56 5099.40 85
sam_mvs188.39 6598.84 136
PatchmatchNetpermissive92.05 16491.04 16795.06 14796.17 17489.04 16491.26 35797.26 15389.56 15390.64 17890.56 31588.35 6697.11 23979.53 28596.07 15499.03 118
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
tpmrst92.78 14492.16 14394.65 16396.27 16887.45 20591.83 34897.10 17589.10 16594.68 12090.69 30688.22 6797.73 21389.78 17991.80 20298.77 146
test_fmvsm_n_192097.08 2697.55 1495.67 12697.94 10489.61 15599.93 198.48 2497.08 599.08 1499.13 4488.17 6899.93 3899.11 2399.06 7597.47 193
DELS-MVS97.12 2496.60 3498.68 1098.03 10296.57 1199.84 897.84 5996.36 1895.20 11298.24 12188.17 6899.83 7396.11 8699.60 4899.64 62
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
testdata95.26 14198.20 9587.28 21197.60 10685.21 25798.48 3399.15 3988.15 7098.72 16290.29 17399.45 5799.78 38
原ACMM196.18 10599.03 7190.08 13997.63 10188.98 16797.00 7298.97 6288.14 7199.71 9088.23 19799.62 4498.76 147
新几何197.40 4798.92 7792.51 9097.77 7285.52 25396.69 8399.06 5388.08 7299.89 5384.88 23599.62 4499.79 36
test-mter93.27 13592.89 13094.40 17294.94 22887.27 21299.15 9897.25 15488.95 16991.57 16094.04 23788.03 7397.58 22285.94 22396.13 15098.36 168
JIA-IIPM85.97 27284.85 27289.33 30193.23 27673.68 35785.05 37697.13 17069.62 37191.56 16268.03 38688.03 7396.96 24577.89 29993.12 18097.34 196
test_yl95.27 7894.60 8597.28 5198.53 8992.98 7999.05 11298.70 1986.76 23294.65 12197.74 13787.78 7599.44 11995.57 9792.61 18799.44 82
DCV-MVSNet95.27 7894.60 8597.28 5198.53 8992.98 7999.05 11298.70 1986.76 23294.65 12197.74 13787.78 7599.44 11995.57 9792.61 18799.44 82
PAPM_NR95.43 7395.05 8096.57 9099.42 4790.14 13698.58 16497.51 12790.65 12192.44 15098.90 7687.77 7799.90 5090.88 16599.32 6499.68 56
HFP-MVS96.42 4196.26 4196.90 6999.69 890.96 11799.47 5597.81 6590.54 12596.88 7399.05 5487.57 7899.96 2895.65 9299.72 3199.78 38
tpm291.77 16691.09 16593.82 19794.83 23285.56 25692.51 34497.16 16784.00 27793.83 13490.66 30887.54 7997.17 23787.73 20491.55 20798.72 148
EPNet96.82 3196.68 3397.25 5398.65 8693.10 7599.48 5398.76 1596.54 1397.84 5498.22 12287.49 8099.66 9495.35 10197.78 11899.00 119
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CP-MVS96.22 4796.15 5096.42 9799.67 1089.62 15499.70 2697.61 10490.07 14096.00 9399.16 3687.43 8199.92 4096.03 8899.72 3199.70 52
miper_enhance_ethall90.33 19389.70 18892.22 22597.12 13688.93 17298.35 19295.96 24588.60 17883.14 25392.33 27387.38 8296.18 29186.49 21777.89 29591.55 287
test_post46.00 39687.37 8397.11 239
XVS96.47 4096.37 3996.77 7499.62 2290.66 12599.43 6597.58 11292.41 8596.86 7498.96 6687.37 8399.87 5895.65 9299.43 5999.78 38
X-MVStestdata90.69 18888.66 21196.77 7499.62 2290.66 12599.43 6597.58 11292.41 8596.86 7429.59 40087.37 8399.87 5895.65 9299.43 5999.78 38
DP-MVS Recon95.85 6195.15 7697.95 3099.87 294.38 5299.60 3897.48 13386.58 23594.42 12399.13 4487.36 8699.98 993.64 13598.33 10799.48 79
DeepC-MVS_fast93.52 297.16 2396.84 2898.13 2499.61 2494.45 4998.85 13197.64 9796.51 1695.88 9799.39 1887.35 8799.99 596.61 7799.69 3699.96 10
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PAPR96.35 4295.82 5797.94 3199.63 1894.19 5699.42 6797.55 11792.43 8293.82 13599.12 4687.30 8899.91 4594.02 12699.06 7599.74 47
Patchmatch-RL test81.90 31380.13 31687.23 32380.71 37770.12 37184.07 38188.19 38283.16 29370.57 35482.18 36987.18 8992.59 35782.28 26762.78 36898.98 121
CS-MVS95.75 6796.19 4294.40 17297.88 10686.22 23599.66 3496.12 23492.69 7898.07 4698.89 7887.09 9097.59 22196.71 7298.62 9999.39 87
sam_mvs87.08 91
EI-MVSNet-Vis-set95.76 6695.63 6996.17 10799.14 6490.33 12998.49 17397.82 6291.92 9594.75 11898.88 8087.06 9299.48 11695.40 10097.17 13498.70 150
1112_ss92.71 14591.55 15796.20 10495.56 19591.12 10998.48 17594.69 31788.29 19386.89 21898.50 10887.02 9398.66 16584.75 23689.77 22498.81 141
Test_1112_low_res92.27 15890.97 16896.18 10595.53 19791.10 11198.47 17794.66 31888.28 19486.83 21993.50 25687.00 9498.65 16684.69 23789.74 22598.80 142
MDTV_nov1_ep1390.47 18196.14 17788.55 18191.34 35697.51 12789.58 15192.24 15290.50 31986.99 9597.61 22077.64 30092.34 192
MVS_030497.53 1397.15 2198.67 1197.30 12696.52 1299.60 3898.88 1497.14 497.21 6698.94 7286.89 9699.91 4599.43 1598.91 8699.59 71
region2R96.30 4596.17 4796.70 8199.70 790.31 13099.46 5997.66 9190.55 12497.07 7199.07 5186.85 9799.97 2195.43 9999.74 2999.81 33
baseline192.61 14991.28 16296.58 8897.05 14094.63 4697.72 23896.20 22789.82 14388.56 20196.85 18186.85 9797.82 20188.42 19480.10 28697.30 197
SR-MVS96.13 4996.16 4996.07 11099.42 4789.04 16498.59 16297.33 15290.44 12896.84 7699.12 4686.75 9999.41 12697.47 5899.44 5899.76 45
test22298.32 9291.21 10598.08 21697.58 11283.74 28295.87 9899.02 5886.74 10099.64 4099.81 33
SR-MVS-dyc-post95.75 6795.86 5695.41 13499.22 5987.26 21498.40 18597.21 16089.63 14896.67 8498.97 6286.73 10199.36 13096.62 7599.31 6599.60 67
MDTV_nov1_ep13_2view91.17 10891.38 35587.45 21993.08 14386.67 10287.02 20898.95 127
ETV-MVS96.00 5296.00 5296.00 11496.56 15491.05 11499.63 3696.61 19993.26 6897.39 6198.30 11986.62 10398.13 18298.07 4997.57 12198.82 140
ZNCC-MVS96.09 5095.81 5996.95 6899.42 4791.19 10699.55 4497.53 12189.72 14595.86 9998.94 7286.59 10499.97 2195.13 10599.56 5099.68 56
ACMMP_NAP96.59 3796.18 4497.81 3498.82 8193.55 6698.88 13097.59 11090.66 11997.98 5199.14 4286.59 104100.00 196.47 8199.46 5599.89 25
WTY-MVS95.97 5595.11 7898.54 1397.62 11396.65 999.44 6298.74 1692.25 8995.21 11198.46 11586.56 10699.46 11895.00 11092.69 18699.50 78
HY-MVS88.56 795.29 7794.23 9098.48 1497.72 10996.41 1394.03 32998.74 1692.42 8495.65 10494.76 23086.52 10799.49 11295.29 10392.97 18299.53 74
ACMMPR96.28 4696.14 5196.73 7899.68 990.47 12899.47 5597.80 6790.54 12596.83 7899.03 5686.51 10899.95 3195.65 9299.72 3199.75 46
EPMVS92.59 15091.59 15695.59 13097.22 12990.03 14491.78 34998.04 4890.42 12991.66 15990.65 30986.49 10997.46 22881.78 27296.31 14799.28 97
MTAPA96.09 5095.80 6096.96 6799.29 5591.19 10697.23 26097.45 13892.58 7994.39 12499.24 2586.43 11099.99 596.22 8399.40 6299.71 51
GST-MVS95.97 5595.66 6596.90 6999.49 4591.22 10499.45 6197.48 13389.69 14695.89 9698.72 9186.37 11199.95 3194.62 12099.22 7099.52 75
CS-MVS-test95.98 5496.34 4094.90 15398.06 10187.66 19899.69 3396.10 23593.66 6098.35 3899.05 5486.28 11297.66 21596.96 6998.90 8799.37 88
alignmvs95.77 6595.00 8198.06 2897.35 12495.68 1999.71 2597.50 13091.50 10296.16 9298.61 10386.28 11299.00 15096.19 8491.74 20399.51 77
EI-MVSNet-UG-set95.43 7395.29 7295.86 11999.07 7089.87 14898.43 17997.80 6791.78 9794.11 12898.77 8586.25 11499.48 11694.95 11296.45 14398.22 174
testing387.75 24388.22 22186.36 32894.66 23777.41 34499.52 5097.95 5486.05 24581.12 28896.69 18986.18 11589.31 37661.65 37090.12 22292.35 259
mPP-MVS95.90 6095.75 6296.38 10099.58 3089.41 15899.26 8497.41 14590.66 11994.82 11798.95 6986.15 11699.98 995.24 10499.64 4099.74 47
EIA-MVS95.11 8195.27 7394.64 16596.34 16586.51 22399.59 4096.62 19892.51 8094.08 12998.64 9986.05 11798.24 17995.07 10798.50 10399.18 105
test250694.80 8894.21 9196.58 8896.41 16192.18 9398.01 22098.96 1190.82 11693.46 13897.28 15785.92 11898.45 16989.82 17897.19 13299.12 111
PLCcopyleft91.07 394.23 10494.01 9894.87 15499.17 6387.49 20399.25 8596.55 20688.43 18691.26 16998.21 12485.92 11899.86 6389.77 18097.57 12197.24 199
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
PGM-MVS95.85 6195.65 6796.45 9599.50 4289.77 15198.22 20198.90 1389.19 16196.74 8198.95 6985.91 12099.92 4093.94 12899.46 5599.66 60
MM98.86 596.83 799.81 1199.13 997.66 298.29 3998.96 6685.84 12199.90 5099.72 398.80 9199.85 30
MP-MVS-pluss95.80 6395.30 7197.29 5098.95 7692.66 8598.59 16297.14 16888.95 16993.12 14299.25 2385.62 12299.94 3496.56 7999.48 5499.28 97
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MVSFormer94.71 9494.08 9796.61 8595.05 22394.87 3697.77 23496.17 23186.84 22998.04 4898.52 10685.52 12395.99 30089.83 17698.97 8198.96 123
lupinMVS96.32 4495.94 5397.44 4495.05 22394.87 3699.86 496.50 20993.82 5798.04 4898.77 8585.52 12398.09 18596.98 6898.97 8199.37 88
MP-MVScopyleft96.00 5295.82 5796.54 9199.47 4690.13 13899.36 7597.41 14590.64 12295.49 10798.95 6985.51 12599.98 996.00 8999.59 4999.52 75
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
APD-MVS_3200maxsize95.64 7095.65 6795.62 12899.24 5887.80 19498.42 18097.22 15988.93 17196.64 8698.98 6185.49 12699.36 13096.68 7499.27 6899.70 52
HyFIR lowres test93.68 12193.29 11894.87 15497.57 11888.04 19098.18 20598.47 2587.57 21691.24 17095.05 22485.49 12697.46 22893.22 14292.82 18399.10 113
EPNet_dtu92.28 15792.15 14492.70 21997.29 12784.84 26998.64 15497.82 6292.91 7593.02 14497.02 17285.48 12895.70 31472.25 33794.89 16797.55 192
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Vis-MVSNet (Re-imp)93.26 13693.00 12894.06 18896.14 17786.71 22298.68 14896.70 19488.30 19289.71 19497.64 14385.43 12996.39 27588.06 20096.32 14699.08 115
test_post190.74 36341.37 39985.38 13096.36 27783.16 257
test_fmvsmconf_n96.78 3396.84 2896.61 8595.99 18290.25 13199.90 298.13 4296.68 1198.42 3498.92 7485.34 13199.88 5499.12 2299.08 7399.70 52
RE-MVS-def95.70 6399.22 5987.26 21498.40 18597.21 16089.63 14896.67 8498.97 6285.24 13296.62 7599.31 6599.60 67
myMVS_eth3d88.68 23089.07 20187.50 32095.14 21479.74 32797.68 24196.66 19686.52 23882.63 25896.84 18285.22 13389.89 37269.43 34691.54 20892.87 246
tpm89.67 20788.95 20491.82 23692.54 28381.43 31192.95 33895.92 25287.81 20790.50 18189.44 33484.99 13495.65 31583.67 25482.71 27398.38 165
HPM-MVScopyleft95.41 7595.22 7495.99 11599.29 5589.14 16199.17 9297.09 17687.28 22195.40 10898.48 11284.93 13599.38 12895.64 9699.65 3899.47 80
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
test-LLR93.11 14092.68 13394.40 17294.94 22887.27 21299.15 9897.25 15490.21 13291.57 16094.04 23784.89 13697.58 22285.94 22396.13 15098.36 168
test0.0.03 188.96 21688.61 21290.03 28491.09 30884.43 27498.97 12397.02 18390.21 13280.29 29696.31 20184.89 13691.93 36672.98 33485.70 24593.73 241
mvsany_test194.57 9995.09 7992.98 21195.84 18682.07 30598.76 14295.24 29992.87 7796.45 8798.71 9484.81 13899.15 14197.68 5595.49 16297.73 185
PatchT85.44 28283.19 29192.22 22593.13 27883.00 29183.80 38396.37 21670.62 36590.55 17979.63 37884.81 13894.87 33258.18 37791.59 20698.79 143
TAMVS92.62 14892.09 14694.20 18294.10 24887.68 19698.41 18296.97 18787.53 21889.74 19296.04 20684.77 14096.49 27088.97 19292.31 19398.42 161
CR-MVSNet88.83 22387.38 23393.16 20893.47 26986.24 23384.97 37794.20 33088.92 17290.76 17686.88 35484.43 14194.82 33470.64 34192.17 19798.41 162
Patchmtry83.61 30581.64 30589.50 29793.36 27382.84 29784.10 38094.20 33069.47 37279.57 30686.88 35484.43 14194.78 33568.48 35074.30 32090.88 309
dp90.16 19988.83 20794.14 18496.38 16486.42 22691.57 35397.06 17884.76 26888.81 19990.19 32784.29 14397.43 23175.05 31791.35 21398.56 156
miper_ehance_all_eth88.94 21788.12 22391.40 24595.32 20486.93 21897.85 22995.55 28084.19 27481.97 27791.50 28984.16 14495.91 30784.69 23777.89 29591.36 295
MVS_111021_LR95.78 6495.94 5395.28 14098.19 9787.69 19598.80 13699.26 793.39 6595.04 11598.69 9684.09 14599.76 8696.96 6999.06 7598.38 165
FE-MVS91.38 17390.16 18495.05 14996.46 15987.53 20289.69 36697.84 5982.97 29692.18 15392.00 28084.07 14698.93 15380.71 27995.52 16198.68 151
tpmvs89.16 21387.76 22693.35 20497.19 13084.75 27190.58 36497.36 15081.99 31484.56 23689.31 33783.98 14798.17 18074.85 32090.00 22397.12 201
API-MVS94.78 8994.18 9496.59 8799.21 6190.06 14398.80 13697.78 7083.59 28693.85 13399.21 2883.79 14899.97 2192.37 15399.00 7999.74 47
cl2289.57 20988.79 20891.91 23397.94 10487.62 19997.98 22296.51 20885.03 26282.37 26891.79 28383.65 14996.50 26885.96 22277.89 29591.61 284
Test By Simon83.62 150
PVSNet_BlendedMVS93.36 13193.20 12093.84 19698.77 8391.61 9999.47 5598.04 4891.44 10494.21 12692.63 27183.50 15199.87 5897.41 5983.37 26790.05 331
PVSNet_Blended95.94 5895.66 6596.75 7698.77 8391.61 9999.88 398.04 4893.64 6294.21 12697.76 13583.50 15199.87 5897.41 5997.75 11998.79 143
HPM-MVS_fast94.89 8594.62 8495.70 12499.11 6688.44 18499.14 10197.11 17285.82 24895.69 10398.47 11383.46 15399.32 13593.16 14399.63 4399.35 90
thres20093.69 11992.59 13696.97 6697.76 10894.74 4399.35 7699.36 289.23 16091.21 17196.97 17483.42 15498.77 15785.08 23190.96 21497.39 195
tfpn200view993.43 12892.27 14196.90 6997.68 11194.84 3899.18 8999.36 288.45 18390.79 17496.90 17883.31 15598.75 15984.11 24790.69 21697.12 201
thres40093.39 13092.27 14196.73 7897.68 11194.84 3899.18 8999.36 288.45 18390.79 17496.90 17883.31 15598.75 15984.11 24790.69 21696.61 216
thres100view90093.34 13292.15 14496.90 6997.62 11394.84 3899.06 11199.36 287.96 20390.47 18296.78 18583.29 15798.75 15984.11 24790.69 21697.12 201
thres600view793.18 13892.00 14796.75 7697.62 11394.92 3399.07 10999.36 287.96 20390.47 18296.78 18583.29 15798.71 16382.93 26190.47 22096.61 216
PVSNet_Blended_VisFu94.67 9594.11 9596.34 10297.14 13491.10 11199.32 7997.43 14392.10 9491.53 16496.38 19983.29 15799.68 9293.42 14096.37 14598.25 172
h-mvs3392.47 15391.95 14994.05 18997.13 13585.01 26798.36 19198.08 4493.85 5596.27 9096.73 18783.19 16099.43 12295.81 9068.09 35497.70 186
hse-mvs291.67 16891.51 15892.15 22996.22 17082.61 30197.74 23797.53 12193.85 5596.27 9096.15 20283.19 16097.44 23095.81 9066.86 36196.40 225
AUN-MVS90.17 19889.50 19192.19 22796.21 17182.67 29997.76 23697.53 12188.05 19991.67 15896.15 20283.10 16297.47 22788.11 19966.91 36096.43 224
FA-MVS(test-final)92.22 16091.08 16695.64 12796.05 18188.98 16791.60 35297.25 15486.99 22391.84 15592.12 27483.03 16399.00 15086.91 21293.91 17598.93 129
IS-MVSNet93.00 14292.51 13794.49 16896.14 17787.36 20898.31 19695.70 27188.58 17990.17 18697.50 14983.02 16497.22 23687.06 20796.07 15498.90 132
tpm cat188.89 21987.27 23593.76 19895.79 18785.32 26190.76 36297.09 17676.14 35085.72 22788.59 34082.92 16598.04 19076.96 30491.43 21097.90 183
UniMVSNet_NR-MVSNet89.60 20888.55 21692.75 21792.17 28990.07 14098.74 14398.15 4088.37 18883.21 24993.98 24282.86 16695.93 30486.95 21072.47 33892.25 260
c3_l88.19 23787.23 23691.06 25294.97 22686.17 23897.72 23895.38 29183.43 28881.68 28491.37 29182.81 16795.72 31384.04 25073.70 32691.29 299
EC-MVSNet95.09 8295.17 7594.84 15695.42 20088.17 18699.48 5395.92 25291.47 10397.34 6398.36 11682.77 16897.41 23297.24 6298.58 10098.94 128
TAPA-MVS87.50 990.35 19289.05 20294.25 18098.48 9185.17 26498.42 18096.58 20482.44 30987.24 21298.53 10582.77 16898.84 15559.09 37597.88 11498.72 148
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
KD-MVS_2432*160082.98 30680.52 31490.38 27394.32 24488.98 16792.87 34095.87 26280.46 33073.79 34187.49 34782.76 17093.29 34970.56 34246.53 39088.87 348
miper_refine_blended82.98 30680.52 31490.38 27394.32 24488.98 16792.87 34095.87 26280.46 33073.79 34187.49 34782.76 17093.29 34970.56 34246.53 39088.87 348
test_fmvsmconf0.1_n95.94 5895.79 6196.40 9992.42 28589.92 14799.79 1696.85 19096.53 1597.22 6598.67 9782.71 17299.84 6998.92 2798.98 8099.43 84
CANet97.00 2796.49 3598.55 1298.86 8096.10 1699.83 997.52 12595.90 1997.21 6698.90 7682.66 17399.93 3898.71 2998.80 9199.63 64
CPTT-MVS94.60 9794.43 8795.09 14699.66 1286.85 21999.44 6297.47 13583.22 29194.34 12598.96 6682.50 17499.55 10694.81 11399.50 5398.88 133
mvs_anonymous92.50 15291.65 15595.06 14796.60 15389.64 15397.06 26696.44 21386.64 23484.14 24193.93 24382.49 17596.17 29391.47 15896.08 15399.35 90
pcd_1.5k_mvsjas6.87 3699.16 3720.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 40282.48 1760.00 4030.00 4020.00 4010.00 399
PS-MVSNAJss89.54 21089.05 20291.00 25488.77 33984.36 27597.39 24995.97 24388.47 18081.88 27993.80 24782.48 17696.50 26889.34 18683.34 26992.15 267
PS-MVSNAJ96.87 3096.40 3898.29 1997.35 12497.29 599.03 11597.11 17295.83 2098.97 1999.14 4282.48 17699.60 10398.60 3399.08 7398.00 180
test_fmvsmvis_n_192095.47 7295.40 7095.70 12494.33 24390.22 13499.70 2696.98 18696.80 792.75 14698.89 7882.46 17999.92 4098.36 4098.33 10796.97 209
fmvsm_s_conf0.5_n96.19 4896.49 3595.30 13997.37 12389.16 16099.86 498.47 2595.68 2398.87 2299.15 3982.44 18099.92 4099.14 2197.43 12796.83 212
UA-Net93.30 13392.62 13595.34 13696.27 16888.53 18395.88 30796.97 18790.90 11495.37 10997.07 17082.38 18199.10 14783.91 25194.86 16898.38 165
FIs90.70 18789.87 18793.18 20792.29 28691.12 10998.17 20798.25 3289.11 16483.44 24694.82 22982.26 18296.17 29387.76 20382.76 27292.25 260
ACMMPcopyleft94.67 9594.30 8895.79 12199.25 5788.13 18898.41 18298.67 2290.38 13091.43 16598.72 9182.22 18399.95 3193.83 13295.76 15799.29 96
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
xiu_mvs_v2_base96.66 3596.17 4798.11 2797.11 13796.96 699.01 11897.04 17995.51 2798.86 2399.11 5082.19 18499.36 13098.59 3598.14 11198.00 180
DIV-MVS_self_test87.82 23986.81 24290.87 25994.87 23185.39 25997.81 23095.22 30482.92 30080.76 29191.31 29381.99 18595.81 31181.36 27375.04 31191.42 293
miper_lstm_enhance86.90 25586.20 25189.00 30794.53 23981.19 31796.74 28095.24 29982.33 31080.15 29890.51 31881.99 18594.68 33880.71 27973.58 32891.12 303
cl____87.82 23986.79 24390.89 25894.88 23085.43 25797.81 23095.24 29982.91 30180.71 29291.22 29481.97 18795.84 30981.34 27475.06 31091.40 294
FC-MVSNet-test90.22 19689.40 19592.67 22191.78 29889.86 14997.89 22598.22 3588.81 17482.96 25494.66 23181.90 18895.96 30285.89 22582.52 27592.20 266
UniMVSNet (Re)89.50 21188.32 21993.03 20992.21 28890.96 11798.90 12998.39 2789.13 16383.22 24892.03 27681.69 18996.34 28386.79 21472.53 33791.81 276
MVS_Test93.67 12292.67 13496.69 8296.72 15192.66 8597.22 26196.03 24087.69 21495.12 11494.03 23981.55 19098.28 17689.17 19096.46 14299.14 108
sss94.85 8793.94 10397.58 4096.43 16094.09 5998.93 12599.16 889.50 15595.27 11097.85 12981.50 19199.65 9892.79 15094.02 17498.99 120
eth_miper_zixun_eth87.76 24287.00 24090.06 28094.67 23682.65 30097.02 26995.37 29284.19 27481.86 28291.58 28881.47 19295.90 30883.24 25573.61 32791.61 284
jason95.40 7694.86 8297.03 5992.91 28094.23 5499.70 2696.30 22093.56 6496.73 8298.52 10681.46 19397.91 19496.08 8798.47 10598.96 123
jason: jason.
fmvsm_s_conf0.5_n_a95.97 5596.19 4295.31 13896.51 15789.01 16699.81 1198.39 2795.46 2899.19 1399.16 3681.44 19499.91 4598.83 2896.97 13697.01 208
IterMVS-LS88.34 23387.44 23191.04 25394.10 24885.85 24998.10 21395.48 28485.12 25882.03 27691.21 29581.35 19595.63 31683.86 25275.73 30791.63 280
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet89.87 20589.38 19691.36 24794.32 24485.87 24897.61 24596.59 20185.10 25985.51 22997.10 16881.30 19696.56 26383.85 25383.03 27091.64 279
fmvsm_s_conf0.1_n95.56 7195.68 6495.20 14294.35 24289.10 16299.50 5197.67 9094.76 3498.68 2799.03 5681.13 19799.86 6398.63 3297.36 12996.63 215
RPMNet85.07 28681.88 30394.64 16593.47 26986.24 23384.97 37797.21 16064.85 38290.76 17678.80 37980.95 19899.27 13753.76 38192.17 19798.41 162
114514_t94.06 10693.05 12497.06 5899.08 6992.26 9198.97 12397.01 18482.58 30492.57 14898.22 12280.68 19999.30 13689.34 18699.02 7899.63 64
CNLPA93.64 12392.74 13296.36 10198.96 7590.01 14699.19 8795.89 26086.22 24389.40 19598.85 8180.66 20099.84 6988.57 19396.92 13799.24 100
diffmvspermissive94.59 9894.19 9295.81 12095.54 19690.69 12398.70 14695.68 27391.61 9995.96 9497.81 13180.11 20198.06 18796.52 8095.76 15798.67 152
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
fmvsm_s_conf0.1_n_a95.16 8095.15 7695.18 14392.06 29188.94 17099.29 8197.53 12194.46 3898.98 1898.99 6079.99 20299.85 6798.24 4796.86 13896.73 213
casdiffmvs_mvgpermissive94.00 10893.33 11696.03 11295.22 20790.90 11999.09 10795.99 24190.58 12391.55 16397.37 15579.91 20398.06 18795.01 10995.22 16499.13 110
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
casdiffmvspermissive93.98 11093.43 11395.61 12995.07 22289.86 14998.80 13695.84 26590.98 11392.74 14797.66 14279.71 20498.10 18494.72 11695.37 16398.87 135
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Effi-MVS+93.87 11493.15 12296.02 11395.79 18790.76 12196.70 28295.78 26686.98 22695.71 10297.17 16679.58 20598.01 19294.57 12196.09 15299.31 94
baseline93.91 11293.30 11795.72 12395.10 22090.07 14097.48 24895.91 25791.03 11193.54 13797.68 14079.58 20598.02 19194.27 12495.14 16599.08 115
canonicalmvs95.02 8493.96 10298.20 2197.53 11995.92 1798.71 14496.19 22991.78 9795.86 9998.49 11079.53 20799.03 14996.12 8591.42 21199.66 60
OMC-MVS93.90 11393.62 11094.73 16198.63 8787.00 21798.04 21996.56 20592.19 9092.46 14998.73 8979.49 20899.14 14592.16 15594.34 17298.03 179
MVS93.92 11192.28 14098.83 795.69 19196.82 896.22 29798.17 3784.89 26684.34 24098.61 10379.32 20999.83 7393.88 13099.43 5999.86 29
VNet95.08 8394.26 8997.55 4398.07 10093.88 6198.68 14898.73 1890.33 13197.16 7097.43 15379.19 21099.53 10996.91 7191.85 20199.24 100
CHOSEN 1792x268894.35 10293.82 10695.95 11797.40 12188.74 17898.41 18298.27 3192.18 9191.43 16596.40 19678.88 21199.81 7993.59 13697.81 11599.30 95
ADS-MVSNet287.62 24886.88 24189.86 28796.21 17179.14 33187.15 37092.99 34583.01 29489.91 19087.27 35078.87 21292.80 35574.20 32592.27 19497.64 187
ADS-MVSNet88.99 21587.30 23494.07 18796.21 17187.56 20187.15 37096.78 19383.01 29489.91 19087.27 35078.87 21297.01 24474.20 32592.27 19497.64 187
nrg03090.23 19588.87 20594.32 17791.53 30293.54 6798.79 14095.89 26088.12 19884.55 23794.61 23278.80 21496.88 24992.35 15475.21 30992.53 252
F-COLMAP92.07 16391.75 15493.02 21098.16 9882.89 29598.79 14095.97 24386.54 23787.92 20597.80 13278.69 21599.65 9885.97 22195.93 15696.53 221
MAR-MVS94.43 10194.09 9695.45 13299.10 6887.47 20498.39 18997.79 6988.37 18894.02 13099.17 3578.64 21699.91 4592.48 15298.85 8998.96 123
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PCF-MVS89.78 591.26 17489.63 18996.16 10895.44 19991.58 10195.29 31796.10 23585.07 26182.75 25597.45 15278.28 21799.78 8480.60 28195.65 16097.12 201
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
DeepC-MVS91.02 494.56 10093.92 10496.46 9497.16 13290.76 12198.39 18997.11 17293.92 5088.66 20098.33 11778.14 21899.85 6795.02 10898.57 10198.78 145
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
WR-MVS_H86.53 26485.49 26289.66 29491.04 30983.31 28997.53 24798.20 3684.95 26579.64 30490.90 30078.01 21995.33 32376.29 31072.81 33490.35 323
Fast-Effi-MVS+91.72 16790.79 17594.49 16895.89 18487.40 20799.54 4995.70 27185.01 26489.28 19795.68 21277.75 22097.57 22583.22 25695.06 16698.51 158
131493.44 12791.98 14897.84 3295.24 20594.38 5296.22 29797.92 5590.18 13482.28 26997.71 13977.63 22199.80 8191.94 15698.67 9799.34 92
NR-MVSNet87.74 24686.00 25492.96 21291.46 30390.68 12496.65 28397.42 14488.02 20173.42 34393.68 24977.31 22295.83 31084.26 24371.82 34592.36 256
BH-w/o92.32 15591.79 15293.91 19496.85 14486.18 23799.11 10695.74 26988.13 19784.81 23397.00 17377.26 22397.91 19489.16 19198.03 11297.64 187
PMMVS93.62 12493.90 10592.79 21596.79 14981.40 31298.85 13196.81 19191.25 10996.82 7998.15 12677.02 22498.13 18293.15 14496.30 14898.83 139
CVMVSNet90.30 19490.91 17088.46 31394.32 24473.58 35897.61 24597.59 11090.16 13788.43 20397.10 16876.83 22592.86 35282.64 26393.54 17898.93 129
mvsmamba89.99 20389.42 19491.69 24290.64 31486.34 23198.40 18592.27 35591.01 11284.80 23494.93 22576.12 22696.51 26792.81 14983.84 26092.21 264
LCM-MVSNet-Re88.59 23188.61 21288.51 31295.53 19772.68 36296.85 27488.43 38188.45 18373.14 34690.63 31075.82 22794.38 34192.95 14595.71 15998.48 160
LS3D90.19 19788.72 20994.59 16798.97 7386.33 23296.90 27296.60 20074.96 35484.06 24398.74 8875.78 22899.83 7374.93 31897.57 12197.62 190
pmmvs487.58 24986.17 25291.80 23789.58 32888.92 17397.25 25895.28 29582.54 30580.49 29493.17 26375.62 22996.05 29882.75 26278.90 29090.42 322
BH-untuned91.46 17190.84 17293.33 20596.51 15784.83 27098.84 13395.50 28386.44 24283.50 24596.70 18875.49 23097.77 20586.78 21597.81 11597.40 194
AdaColmapbinary93.82 11693.06 12396.10 10999.88 189.07 16398.33 19397.55 11786.81 23190.39 18498.65 9875.09 23199.98 993.32 14197.53 12499.26 99
DU-MVS88.83 22387.51 23092.79 21591.46 30390.07 14098.71 14497.62 10388.87 17383.21 24993.68 24974.63 23295.93 30486.95 21072.47 33892.36 256
Baseline_NR-MVSNet85.83 27584.82 27388.87 31088.73 34083.34 28898.63 15591.66 36480.41 33282.44 26391.35 29274.63 23295.42 32184.13 24671.39 34787.84 353
v14886.38 26785.06 26790.37 27589.47 33384.10 27998.52 16795.48 28483.80 28180.93 29090.22 32574.60 23496.31 28580.92 27771.55 34690.69 317
3Dnovator+87.72 893.43 12891.84 15198.17 2295.73 19095.08 3298.92 12797.04 17991.42 10681.48 28697.60 14474.60 23499.79 8290.84 16698.97 8199.64 62
v886.11 27084.45 28191.10 25189.99 32086.85 21997.24 25995.36 29381.99 31479.89 30289.86 33074.53 23696.39 27578.83 29372.32 34090.05 331
DP-MVS88.75 22786.56 24695.34 13698.92 7787.45 20597.64 24493.52 34170.55 36681.49 28597.25 16074.43 23799.88 5471.14 34094.09 17398.67 152
GeoE90.60 19089.56 19093.72 20195.10 22085.43 25799.41 6894.94 30883.96 27987.21 21396.83 18474.37 23897.05 24380.50 28393.73 17798.67 152
cdsmvs_eth3d_5k22.52 36430.03 3670.00 3840.00 4060.00 4090.00 39597.17 1660.00 4020.00 40398.77 8574.35 2390.00 4030.00 4020.00 4010.00 399
Effi-MVS+-dtu89.97 20490.68 17787.81 31795.15 21371.98 36497.87 22895.40 29091.92 9587.57 20791.44 29074.27 24096.84 25089.45 18393.10 18194.60 239
WR-MVS88.54 23287.22 23792.52 22291.93 29689.50 15698.56 16597.84 5986.99 22381.87 28093.81 24674.25 24195.92 30685.29 22974.43 31892.12 269
FMVSNet388.81 22587.08 23893.99 19296.52 15694.59 4798.08 21696.20 22785.85 24782.12 27291.60 28774.05 24295.40 32279.04 28980.24 28391.99 274
V4287.00 25485.68 25990.98 25589.91 32186.08 24198.32 19595.61 27783.67 28582.72 25690.67 30774.00 24396.53 26581.94 27174.28 32190.32 324
D2MVS87.96 23887.39 23289.70 29291.84 29783.40 28798.31 19698.49 2388.04 20078.23 32190.26 32173.57 24496.79 25484.21 24483.53 26588.90 347
v114486.83 25785.31 26591.40 24589.75 32587.21 21698.31 19695.45 28683.22 29182.70 25790.78 30273.36 24596.36 27779.49 28674.69 31590.63 319
HQP2-MVS73.34 246
HQP-MVS91.50 16991.23 16392.29 22493.95 25386.39 22899.16 9396.37 21693.92 5087.57 20796.67 19073.34 24697.77 20593.82 13386.29 23792.72 248
v1085.73 27984.01 28790.87 25990.03 31986.73 22197.20 26295.22 30481.25 32279.85 30389.75 33173.30 24896.28 28976.87 30572.64 33689.61 339
test_fmvsmconf0.01_n94.14 10593.51 11296.04 11186.79 35989.19 15999.28 8395.94 24895.70 2195.50 10698.49 11073.27 24999.79 8298.28 4598.32 10999.15 107
RRT_MVS88.91 21888.56 21589.93 28590.31 31881.61 30998.08 21696.38 21589.30 15882.41 26694.84 22873.15 25096.04 29990.38 17182.23 27792.15 267
v2v48287.27 25285.76 25791.78 24189.59 32787.58 20098.56 16595.54 28184.53 27082.51 26291.78 28473.11 25196.47 27182.07 26874.14 32491.30 298
HQP_MVS91.26 17490.95 16992.16 22893.84 26086.07 24399.02 11696.30 22093.38 6686.99 21496.52 19272.92 25297.75 21193.46 13886.17 24092.67 250
plane_prior693.92 25786.02 24572.92 252
QAPM91.41 17289.49 19297.17 5695.66 19393.42 7098.60 16097.51 12780.92 32781.39 28797.41 15472.89 25499.87 5882.33 26698.68 9698.21 175
v14419286.40 26684.89 27190.91 25689.48 33285.59 25498.21 20395.43 28982.45 30882.62 26090.58 31472.79 25596.36 27778.45 29674.04 32590.79 312
TranMVSNet+NR-MVSNet87.75 24386.31 24992.07 23190.81 31188.56 18098.33 19397.18 16587.76 20981.87 28093.90 24472.45 25695.43 32083.13 25971.30 34892.23 262
xiu_mvs_v1_base_debu94.73 9193.98 9996.99 6295.19 20995.24 2598.62 15696.50 20992.99 7297.52 5798.83 8272.37 25799.15 14197.03 6596.74 13996.58 218
xiu_mvs_v1_base94.73 9193.98 9996.99 6295.19 20995.24 2598.62 15696.50 20992.99 7297.52 5798.83 8272.37 25799.15 14197.03 6596.74 13996.58 218
xiu_mvs_v1_base_debi94.73 9193.98 9996.99 6295.19 20995.24 2598.62 15696.50 20992.99 7297.52 5798.83 8272.37 25799.15 14197.03 6596.74 13996.58 218
test_djsdf88.26 23687.73 22789.84 28888.05 34882.21 30397.77 23496.17 23186.84 22982.41 26691.95 28272.07 26095.99 30089.83 17684.50 25291.32 297
3Dnovator87.35 1193.17 13991.77 15397.37 4995.41 20193.07 7698.82 13497.85 5891.53 10182.56 26197.58 14671.97 26199.82 7691.01 16399.23 6999.22 103
CANet_DTU94.31 10393.35 11597.20 5597.03 14194.71 4498.62 15695.54 28195.61 2597.21 6698.47 11371.88 26299.84 6988.38 19597.46 12697.04 206
CP-MVSNet86.54 26385.45 26389.79 29091.02 31082.78 29897.38 25197.56 11685.37 25579.53 30793.03 26571.86 26395.25 32579.92 28473.43 33291.34 296
PatchMatch-RL91.47 17090.54 17994.26 17998.20 9586.36 23096.94 27097.14 16887.75 21088.98 19895.75 21171.80 26499.40 12780.92 27797.39 12897.02 207
our_test_384.47 29582.80 29589.50 29789.01 33683.90 28297.03 26794.56 32081.33 32175.36 33590.52 31771.69 26594.54 34068.81 34876.84 30390.07 329
XVG-OURS90.83 18490.49 18091.86 23495.23 20681.25 31695.79 31295.92 25288.96 16890.02 18998.03 12871.60 26699.35 13391.06 16287.78 23094.98 237
v119286.32 26884.71 27691.17 24989.53 33186.40 22798.13 20895.44 28882.52 30682.42 26590.62 31171.58 26796.33 28477.23 30174.88 31290.79 312
Vis-MVSNetpermissive92.64 14791.85 15095.03 15095.12 21688.23 18598.48 17596.81 19191.61 9992.16 15497.22 16271.58 26798.00 19385.85 22697.81 11598.88 133
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
PVSNet87.13 1293.69 11992.83 13196.28 10397.99 10390.22 13499.38 7198.93 1291.42 10693.66 13697.68 14071.29 26999.64 10087.94 20297.20 13198.98 121
v192192086.02 27184.44 28290.77 26289.32 33485.20 26298.10 21395.35 29482.19 31282.25 27090.71 30470.73 27096.30 28876.85 30674.49 31790.80 311
EU-MVSNet84.19 29884.42 28383.52 34688.64 34267.37 37596.04 30295.76 26885.29 25678.44 31893.18 26270.67 27191.48 36875.79 31475.98 30591.70 277
XVG-OURS-SEG-HR90.95 18290.66 17891.83 23595.18 21281.14 31995.92 30495.92 25288.40 18790.33 18597.85 12970.66 27299.38 12892.83 14888.83 22694.98 237
v7n84.42 29682.75 29889.43 30088.15 34681.86 30696.75 27995.67 27480.53 32878.38 31989.43 33569.89 27396.35 28273.83 32972.13 34290.07 329
ppachtmachnet_test83.63 30481.57 30789.80 28989.01 33685.09 26697.13 26494.50 32178.84 33676.14 32791.00 29869.78 27494.61 33963.40 36474.36 31989.71 338
MSDG88.29 23586.37 24894.04 19096.90 14386.15 23996.52 28594.36 32777.89 34479.22 31096.95 17569.72 27599.59 10473.20 33392.58 18996.37 226
dmvs_testset77.17 33578.99 32271.71 36487.25 35538.55 40191.44 35481.76 39285.77 24969.49 35895.94 20869.71 27684.37 38452.71 38376.82 30492.21 264
CLD-MVS91.06 18090.71 17692.10 23094.05 25286.10 24099.55 4496.29 22394.16 4584.70 23597.17 16669.62 27797.82 20194.74 11586.08 24292.39 254
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
v124085.77 27884.11 28590.73 26389.26 33585.15 26597.88 22795.23 30381.89 31782.16 27190.55 31669.60 27896.31 28575.59 31574.87 31390.72 316
Fast-Effi-MVS+-dtu88.84 22188.59 21489.58 29593.44 27278.18 33998.65 15294.62 31988.46 18284.12 24295.37 22068.91 27996.52 26682.06 26991.70 20594.06 240
anonymousdsp86.69 25985.75 25889.53 29686.46 36182.94 29296.39 28895.71 27083.97 27879.63 30590.70 30568.85 28095.94 30386.01 22084.02 25989.72 337
VPA-MVSNet89.10 21487.66 22993.45 20392.56 28291.02 11597.97 22398.32 3086.92 22886.03 22492.01 27868.84 28197.10 24190.92 16475.34 30892.23 262
ab-mvs91.05 18189.17 19996.69 8295.96 18391.72 9792.62 34397.23 15885.61 25289.74 19293.89 24568.55 28299.42 12391.09 16187.84 22998.92 131
CL-MVSNet_self_test79.89 32278.34 32384.54 34181.56 37575.01 35196.88 27395.62 27681.10 32375.86 33185.81 35968.49 28390.26 37063.21 36556.51 37988.35 350
PEN-MVS85.21 28483.93 28889.07 30689.89 32381.31 31597.09 26597.24 15784.45 27278.66 31492.68 27068.44 28494.87 33275.98 31270.92 34991.04 305
BH-RMVSNet91.25 17689.99 18595.03 15096.75 15088.55 18198.65 15294.95 30787.74 21187.74 20697.80 13268.27 28598.14 18180.53 28297.49 12598.41 162
Syy-MVS84.10 30184.53 28082.83 34895.14 21465.71 37697.68 24196.66 19686.52 23882.63 25896.84 18268.15 28689.89 37245.62 38691.54 20892.87 246
GA-MVS90.10 20088.69 21094.33 17692.44 28487.97 19299.08 10896.26 22489.65 14786.92 21793.11 26468.09 28796.96 24582.54 26590.15 22198.05 178
MDA-MVSNet_test_wron79.65 32377.05 32887.45 32187.79 35280.13 32496.25 29594.44 32273.87 35851.80 38487.47 34968.04 28892.12 36466.02 35867.79 35790.09 327
OpenMVScopyleft85.28 1490.75 18688.84 20696.48 9393.58 26793.51 6898.80 13697.41 14582.59 30378.62 31597.49 15068.00 28999.82 7684.52 24198.55 10296.11 229
YYNet179.64 32477.04 32987.43 32287.80 35179.98 32596.23 29694.44 32273.83 35951.83 38387.53 34567.96 29092.07 36566.00 35967.75 35890.23 326
DTE-MVSNet84.14 29982.80 29588.14 31488.95 33879.87 32696.81 27596.24 22583.50 28777.60 32392.52 27267.89 29194.24 34372.64 33669.05 35290.32 324
MVP-Stereo86.61 26285.83 25688.93 30988.70 34183.85 28396.07 30194.41 32682.15 31375.64 33391.96 28167.65 29296.45 27377.20 30398.72 9586.51 364
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
dmvs_re88.69 22988.06 22490.59 26593.83 26278.68 33595.75 31396.18 23087.99 20284.48 23996.32 20067.52 29396.94 24784.98 23485.49 24696.14 228
XXY-MVS87.75 24386.02 25392.95 21390.46 31689.70 15297.71 24095.90 25884.02 27680.95 28994.05 23667.51 29497.10 24185.16 23078.41 29292.04 273
PS-CasMVS85.81 27684.58 27989.49 29990.77 31282.11 30497.20 26297.36 15084.83 26779.12 31292.84 26867.42 29595.16 32778.39 29773.25 33391.21 301
ACMM86.95 1388.77 22688.22 22190.43 27193.61 26681.34 31498.50 17195.92 25287.88 20683.85 24495.20 22367.20 29697.89 19686.90 21384.90 24992.06 272
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
TransMVSNet (Re)81.97 31179.61 32089.08 30589.70 32684.01 28097.26 25791.85 36378.84 33673.07 34991.62 28667.17 29795.21 32667.50 35359.46 37588.02 352
OPM-MVS89.76 20689.15 20091.57 24490.53 31585.58 25598.11 21295.93 25192.88 7686.05 22396.47 19567.06 29897.87 19889.29 18986.08 24291.26 300
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
TR-MVS90.77 18589.44 19394.76 15896.31 16688.02 19197.92 22495.96 24585.52 25388.22 20497.23 16166.80 29998.09 18584.58 23992.38 19198.17 177
IterMVS-SCA-FT85.73 27984.64 27889.00 30793.46 27182.90 29496.27 29294.70 31685.02 26378.62 31590.35 32066.61 30093.33 34879.38 28877.36 30290.76 314
SCA90.64 18989.25 19894.83 15794.95 22788.83 17496.26 29497.21 16090.06 14190.03 18890.62 31166.61 30096.81 25283.16 25794.36 17198.84 136
IterMVS85.81 27684.67 27789.22 30293.51 26883.67 28596.32 29194.80 31385.09 26078.69 31390.17 32866.57 30293.17 35179.48 28777.42 30190.81 310
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
SDMVSNet91.09 17889.91 18694.65 16396.80 14790.54 12797.78 23297.81 6588.34 19085.73 22595.26 22166.44 30398.26 17794.25 12586.75 23495.14 234
LPG-MVS_test88.86 22088.47 21890.06 28093.35 27480.95 32198.22 20195.94 24887.73 21283.17 25196.11 20466.28 30497.77 20590.19 17485.19 24791.46 290
LGP-MVS_train90.06 28093.35 27480.95 32195.94 24887.73 21283.17 25196.11 20466.28 30497.77 20590.19 17485.19 24791.46 290
bld_raw_dy_0_6487.82 23986.71 24491.15 25089.54 33085.61 25397.37 25289.16 37989.26 15983.42 24794.50 23365.79 30696.18 29188.00 20183.37 26791.67 278
ACMP87.39 1088.71 22888.24 22090.12 27993.91 25881.06 32098.50 17195.67 27489.43 15680.37 29595.55 21365.67 30797.83 20090.55 17084.51 25191.47 289
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
LTVRE_ROB81.71 1984.59 29282.72 29990.18 27792.89 28183.18 29093.15 33694.74 31478.99 33575.14 33692.69 26965.64 30897.63 21869.46 34581.82 27989.74 336
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
ECVR-MVScopyleft92.29 15691.33 16195.15 14496.41 16187.84 19398.10 21394.84 31090.82 11691.42 16797.28 15765.61 30998.49 16890.33 17297.19 13299.12 111
test111192.12 16191.19 16494.94 15296.15 17587.36 20898.12 21094.84 31090.85 11590.97 17297.26 15965.60 31098.37 17189.74 18197.14 13599.07 117
pm-mvs184.68 29082.78 29790.40 27289.58 32885.18 26397.31 25494.73 31581.93 31676.05 32892.01 27865.48 31196.11 29678.75 29469.14 35189.91 334
test_cas_vis1_n_192093.86 11593.74 10894.22 18195.39 20386.08 24199.73 2296.07 23896.38 1797.19 6997.78 13465.46 31299.86 6396.71 7298.92 8596.73 213
cascas90.93 18389.33 19795.76 12295.69 19193.03 7898.99 12096.59 20180.49 32986.79 22094.45 23465.23 31398.60 16793.52 13792.18 19695.66 233
tfpnnormal83.65 30381.35 30990.56 26891.37 30588.06 18997.29 25597.87 5778.51 33976.20 32690.91 29964.78 31496.47 27161.71 36973.50 32987.13 361
pmmvs585.87 27384.40 28490.30 27688.53 34384.23 27698.60 16093.71 33781.53 31980.29 29692.02 27764.51 31595.52 31882.04 27078.34 29391.15 302
RPSCF85.33 28385.55 26184.67 34094.63 23862.28 37993.73 33193.76 33574.38 35785.23 23297.06 17164.09 31698.31 17380.98 27586.08 24293.41 245
N_pmnet70.19 34569.87 34771.12 36688.24 34530.63 40595.85 31028.70 40470.18 36868.73 36186.55 35664.04 31793.81 34453.12 38273.46 33088.94 346
DSMNet-mixed81.60 31481.43 30882.10 35184.36 36760.79 38093.63 33386.74 38479.00 33479.32 30987.15 35263.87 31889.78 37466.89 35691.92 19995.73 232
WB-MVS66.44 34866.29 35166.89 36974.84 38444.93 39693.00 33784.09 39071.15 36455.82 38181.63 37063.79 31980.31 39121.85 39550.47 38875.43 382
FMVSNet582.29 30980.54 31387.52 31993.79 26484.01 28093.73 33192.47 35376.92 34774.27 33886.15 35863.69 32089.24 37769.07 34774.79 31489.29 343
SSC-MVS65.42 34965.20 35266.06 37073.96 38543.83 39792.08 34683.54 39169.77 37054.73 38280.92 37463.30 32179.92 39220.48 39648.02 38974.44 383
GBi-Net86.67 26084.96 26891.80 23795.11 21788.81 17596.77 27695.25 29682.94 29782.12 27290.25 32262.89 32294.97 32979.04 28980.24 28391.62 281
test186.67 26084.96 26891.80 23795.11 21788.81 17596.77 27695.25 29682.94 29782.12 27290.25 32262.89 32294.97 32979.04 28980.24 28391.62 281
FMVSNet286.90 25584.79 27493.24 20695.11 21792.54 8997.67 24395.86 26482.94 29780.55 29391.17 29662.89 32295.29 32477.23 30179.71 28991.90 275
VPNet88.30 23486.57 24593.49 20291.95 29491.35 10398.18 20597.20 16488.61 17784.52 23894.89 22662.21 32596.76 25589.34 18672.26 34192.36 256
PVSNet_083.28 1687.31 25185.16 26693.74 20094.78 23384.59 27298.91 12898.69 2189.81 14478.59 31793.23 26161.95 32699.34 13494.75 11455.72 38197.30 197
jajsoiax87.35 25086.51 24789.87 28687.75 35381.74 30797.03 26795.98 24288.47 18080.15 29893.80 24761.47 32796.36 27789.44 18484.47 25491.50 288
OurMVSNet-221017-084.13 30083.59 29085.77 33387.81 35070.24 36994.89 32093.65 33986.08 24476.53 32593.28 26061.41 32896.14 29580.95 27677.69 30090.93 307
Anonymous2023120680.76 31779.42 32184.79 33984.78 36672.98 35996.53 28492.97 34679.56 33374.33 33788.83 33861.27 32992.15 36360.59 37275.92 30689.24 344
sd_testset89.23 21288.05 22592.74 21896.80 14785.33 26095.85 31097.03 18188.34 19085.73 22595.26 22161.12 33097.76 21085.61 22786.75 23495.14 234
LFMVS92.23 15990.84 17296.42 9798.24 9491.08 11398.24 20096.22 22683.39 28994.74 11998.31 11861.12 33098.85 15494.45 12292.82 18399.32 93
UGNet91.91 16590.85 17195.10 14597.06 13988.69 17998.01 22098.24 3492.41 8592.39 15193.61 25260.52 33299.68 9288.14 19897.25 13096.92 210
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
SixPastTwentyTwo82.63 30881.58 30685.79 33288.12 34771.01 36795.17 31892.54 35284.33 27372.93 35092.08 27560.41 33395.61 31774.47 32274.15 32390.75 315
mvs_tets87.09 25386.22 25089.71 29187.87 34981.39 31396.73 28195.90 25888.19 19679.99 30093.61 25259.96 33496.31 28589.40 18584.34 25591.43 292
test_fmvs192.35 15492.94 12990.57 26697.19 13075.43 35099.55 4494.97 30695.20 3196.82 7997.57 14759.59 33599.84 6997.30 6198.29 11096.46 223
COLMAP_ROBcopyleft82.69 1884.54 29382.82 29489.70 29296.72 15178.85 33295.89 30592.83 34971.55 36377.54 32495.89 20959.40 33699.14 14567.26 35488.26 22791.11 304
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test_vis1_n_192093.08 14193.42 11492.04 23296.31 16679.36 32999.83 996.06 23996.72 998.53 3298.10 12758.57 33799.91 4597.86 5398.79 9496.85 211
Anonymous2023121184.72 28982.65 30090.91 25697.71 11084.55 27397.28 25696.67 19566.88 37979.18 31190.87 30158.47 33896.60 25882.61 26474.20 32291.59 286
MS-PatchMatch86.75 25885.92 25589.22 30291.97 29282.47 30296.91 27196.14 23383.74 28277.73 32293.53 25558.19 33997.37 23576.75 30798.35 10687.84 353
test20.0378.51 33077.48 32681.62 35383.07 37171.03 36696.11 30092.83 34981.66 31869.31 35989.68 33257.53 34087.29 38258.65 37668.47 35386.53 363
MVS-HIRNet79.01 32575.13 33790.66 26493.82 26381.69 30885.16 37493.75 33654.54 38474.17 33959.15 39057.46 34196.58 26263.74 36394.38 17093.72 242
MDA-MVSNet-bldmvs77.82 33374.75 33987.03 32488.33 34478.52 33796.34 29092.85 34875.57 35148.87 38687.89 34257.32 34292.49 36060.79 37164.80 36690.08 328
ACMH83.09 1784.60 29182.61 30190.57 26693.18 27782.94 29296.27 29294.92 30981.01 32572.61 35293.61 25256.54 34397.79 20374.31 32381.07 28190.99 306
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ITE_SJBPF87.93 31592.26 28776.44 34793.47 34287.67 21579.95 30195.49 21656.50 34497.38 23375.24 31682.33 27689.98 333
pmmvs-eth3d78.71 32876.16 33386.38 32780.25 37981.19 31794.17 32792.13 35977.97 34166.90 37082.31 36855.76 34592.56 35873.63 33162.31 37185.38 368
K. test v381.04 31679.77 31984.83 33887.41 35470.23 37095.60 31593.93 33483.70 28467.51 36789.35 33655.76 34593.58 34776.67 30868.03 35590.67 318
AllTest84.97 28783.12 29290.52 26996.82 14578.84 33395.89 30592.17 35777.96 34275.94 32995.50 21455.48 34799.18 13971.15 33887.14 23193.55 243
TestCases90.52 26996.82 14578.84 33392.17 35777.96 34275.94 32995.50 21455.48 34799.18 13971.15 33887.14 23193.55 243
KD-MVS_self_test77.47 33475.88 33482.24 34981.59 37468.93 37392.83 34294.02 33377.03 34673.14 34683.39 36455.44 34990.42 36967.95 35157.53 37887.38 356
CMPMVSbinary58.40 2180.48 31880.11 31781.59 35485.10 36559.56 38294.14 32895.95 24768.54 37460.71 37893.31 25855.35 35097.87 19883.06 26084.85 25087.33 358
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
Anonymous2024052987.66 24785.58 26093.92 19397.59 11685.01 26798.13 20897.13 17066.69 38088.47 20296.01 20755.09 35199.51 11087.00 20984.12 25897.23 200
VDDNet90.08 20188.54 21794.69 16294.41 24187.68 19698.21 20396.40 21476.21 34993.33 14097.75 13654.93 35298.77 15794.71 11790.96 21497.61 191
ACMH+83.78 1584.21 29782.56 30289.15 30493.73 26579.16 33096.43 28794.28 32881.09 32474.00 34094.03 23954.58 35397.67 21476.10 31178.81 29190.63 319
VDD-MVS91.24 17790.18 18394.45 17197.08 13885.84 25098.40 18596.10 23586.99 22393.36 13998.16 12554.27 35499.20 13896.59 7890.63 21998.31 171
lessismore_v085.08 33685.59 36469.28 37290.56 37267.68 36690.21 32654.21 35595.46 31973.88 32762.64 36990.50 321
USDC84.74 28882.93 29390.16 27891.73 29983.54 28695.00 31993.30 34488.77 17573.19 34593.30 25953.62 35697.65 21775.88 31381.54 28089.30 342
Anonymous20240521188.84 22187.03 23994.27 17898.14 9984.18 27898.44 17895.58 27976.79 34889.34 19696.88 18053.42 35799.54 10887.53 20687.12 23399.09 114
XVG-ACMP-BASELINE85.86 27484.95 27088.57 31189.90 32277.12 34594.30 32595.60 27887.40 22082.12 27292.99 26753.42 35797.66 21585.02 23383.83 26190.92 308
test_040278.81 32776.33 33286.26 32991.18 30778.44 33895.88 30791.34 36868.55 37370.51 35689.91 32952.65 35994.99 32847.14 38579.78 28885.34 370
MIMVSNet84.48 29481.83 30492.42 22391.73 29987.36 20885.52 37394.42 32581.40 32081.91 27887.58 34451.92 36092.81 35473.84 32888.15 22897.08 205
UnsupCasMVSNet_eth78.90 32676.67 33185.58 33482.81 37374.94 35291.98 34796.31 21984.64 26965.84 37387.71 34351.33 36192.23 36272.89 33556.50 38089.56 340
tt080586.50 26584.79 27491.63 24391.97 29281.49 31096.49 28697.38 14882.24 31182.44 26395.82 21051.22 36298.25 17884.55 24080.96 28295.13 236
new-patchmatchnet74.80 34172.40 34481.99 35278.36 38272.20 36394.44 32392.36 35477.06 34563.47 37579.98 37751.04 36388.85 37860.53 37354.35 38284.92 373
pmmvs679.90 32177.31 32787.67 31884.17 36878.13 34095.86 30993.68 33867.94 37672.67 35189.62 33350.98 36495.75 31274.80 32166.04 36289.14 345
test_fmvs1_n91.07 17991.41 16090.06 28094.10 24874.31 35499.18 8994.84 31094.81 3396.37 8997.46 15150.86 36599.82 7697.14 6497.90 11396.04 230
FMVSNet183.94 30281.32 31091.80 23791.94 29588.81 17596.77 27695.25 29677.98 34078.25 32090.25 32250.37 36694.97 32973.27 33277.81 29991.62 281
UniMVSNet_ETH3D85.65 28183.79 28991.21 24890.41 31780.75 32395.36 31695.78 26678.76 33881.83 28394.33 23549.86 36796.66 25684.30 24283.52 26696.22 227
Anonymous2024052178.63 32976.90 33083.82 34482.82 37272.86 36095.72 31493.57 34073.55 36072.17 35384.79 36149.69 36892.51 35965.29 36174.50 31686.09 366
TDRefinement78.01 33175.31 33586.10 33170.06 39073.84 35693.59 33491.58 36674.51 35673.08 34891.04 29749.63 36997.12 23874.88 31959.47 37487.33 358
LF4IMVS81.94 31281.17 31184.25 34287.23 35768.87 37493.35 33591.93 36283.35 29075.40 33493.00 26649.25 37096.65 25778.88 29278.11 29487.22 360
new_pmnet76.02 33673.71 34182.95 34783.88 36972.85 36191.26 35792.26 35670.44 36762.60 37681.37 37147.64 37192.32 36161.85 36872.10 34383.68 376
TinyColmap80.42 31977.94 32487.85 31692.09 29078.58 33693.74 33089.94 37474.99 35369.77 35791.78 28446.09 37297.58 22265.17 36277.89 29587.38 356
testgi82.29 30981.00 31286.17 33087.24 35674.84 35397.39 24991.62 36588.63 17675.85 33295.42 21746.07 37391.55 36766.87 35779.94 28792.12 269
test_fmvs285.10 28585.45 26384.02 34389.85 32465.63 37798.49 17392.59 35190.45 12785.43 23193.32 25743.94 37496.59 25990.81 16784.19 25789.85 335
OpenMVS_ROBcopyleft73.86 2077.99 33275.06 33886.77 32683.81 37077.94 34296.38 28991.53 36767.54 37768.38 36287.13 35343.94 37496.08 29755.03 38081.83 27886.29 365
test_vis1_n90.40 19190.27 18290.79 26191.55 30176.48 34699.12 10594.44 32294.31 4197.34 6396.95 17543.60 37699.42 12397.57 5797.60 12096.47 222
tmp_tt53.66 35852.86 36056.05 37632.75 40341.97 40073.42 39076.12 39721.91 39739.68 39396.39 19842.59 37765.10 39678.00 29814.92 39761.08 389
pmmvs372.86 34369.76 34882.17 35073.86 38674.19 35594.20 32689.01 38064.23 38367.72 36580.91 37541.48 37888.65 37962.40 36754.02 38383.68 376
UnsupCasMVSNet_bld73.85 34270.14 34684.99 33779.44 38075.73 34888.53 36795.24 29970.12 36961.94 37774.81 38341.41 37993.62 34668.65 34951.13 38785.62 367
MIMVSNet175.92 33773.30 34283.81 34581.29 37675.57 34992.26 34592.05 36073.09 36167.48 36886.18 35740.87 38087.64 38155.78 37970.68 35088.21 351
EG-PatchMatch MVS79.92 32077.59 32586.90 32587.06 35877.90 34396.20 29994.06 33274.61 35566.53 37188.76 33940.40 38196.20 29067.02 35583.66 26486.61 362
EGC-MVSNET60.70 35255.37 35676.72 35886.35 36271.08 36589.96 36584.44 3890.38 4011.50 40284.09 36337.30 38288.10 38040.85 39073.44 33170.97 386
test_vis1_rt81.31 31580.05 31885.11 33591.29 30670.66 36898.98 12277.39 39685.76 25068.80 36082.40 36736.56 38399.44 11992.67 15186.55 23685.24 371
DeepMVS_CXcopyleft76.08 35990.74 31351.65 39290.84 37086.47 24157.89 38087.98 34135.88 38492.60 35665.77 36065.06 36583.97 375
mvsany_test375.85 33874.52 34079.83 35673.53 38760.64 38191.73 35087.87 38383.91 28070.55 35582.52 36631.12 38593.66 34586.66 21662.83 36785.19 372
test_method70.10 34668.66 34974.41 36386.30 36355.84 38594.47 32289.82 37535.18 39266.15 37284.75 36230.54 38677.96 39370.40 34460.33 37389.44 341
PM-MVS74.88 34072.85 34380.98 35578.98 38164.75 37890.81 36185.77 38580.95 32668.23 36482.81 36529.08 38792.84 35376.54 30962.46 37085.36 369
APD_test168.93 34766.98 35074.77 36280.62 37853.15 38987.97 36885.01 38753.76 38559.26 37987.52 34625.19 38889.95 37156.20 37867.33 35981.19 380
ambc79.60 35772.76 38956.61 38476.20 38892.01 36168.25 36380.23 37623.34 38994.73 33673.78 33060.81 37287.48 355
test_fmvs375.09 33975.19 33674.81 36177.45 38354.08 38795.93 30390.64 37182.51 30773.29 34481.19 37222.29 39086.29 38385.50 22867.89 35684.06 374
test_f71.94 34470.82 34575.30 36072.77 38853.28 38891.62 35189.66 37775.44 35264.47 37478.31 38020.48 39189.56 37578.63 29566.02 36383.05 379
FPMVS61.57 35060.32 35365.34 37160.14 39742.44 39991.02 36089.72 37644.15 38742.63 39080.93 37319.02 39280.59 39042.50 38772.76 33573.00 384
EMVS39.96 36339.88 36540.18 38059.57 39832.12 40484.79 37964.57 40226.27 39526.14 39644.18 39818.73 39359.29 39917.03 39817.67 39629.12 395
Gipumacopyleft54.77 35752.22 36162.40 37586.50 36059.37 38350.20 39390.35 37336.52 39141.20 39249.49 39318.33 39481.29 38632.10 39265.34 36446.54 393
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
E-PMN41.02 36240.93 36441.29 37961.97 39533.83 40284.00 38265.17 40127.17 39427.56 39446.72 39517.63 39560.41 39819.32 39718.82 39429.61 394
PMMVS258.97 35455.07 35770.69 36762.72 39455.37 38685.97 37280.52 39349.48 38645.94 38768.31 38515.73 39680.78 38949.79 38437.12 39275.91 381
ANet_high50.71 35946.17 36264.33 37244.27 40152.30 39176.13 38978.73 39464.95 38127.37 39555.23 39214.61 39767.74 39536.01 39118.23 39572.95 385
LCM-MVSNet60.07 35356.37 35571.18 36554.81 39948.67 39382.17 38589.48 37837.95 39049.13 38569.12 38413.75 39881.76 38559.28 37451.63 38683.10 378
test_vis3_rt61.29 35158.75 35468.92 36867.41 39152.84 39091.18 35959.23 40366.96 37841.96 39158.44 39111.37 39994.72 33774.25 32457.97 37759.20 390
testf156.38 35553.73 35864.31 37364.84 39245.11 39480.50 38675.94 39838.87 38842.74 38875.07 38111.26 40081.19 38741.11 38853.27 38466.63 387
APD_test256.38 35553.73 35864.31 37364.84 39245.11 39480.50 38675.94 39838.87 38842.74 38875.07 38111.26 40081.19 38741.11 38853.27 38466.63 387
PMVScopyleft41.42 2345.67 36042.50 36355.17 37734.28 40232.37 40366.24 39178.71 39530.72 39322.04 39859.59 3894.59 40277.85 39427.49 39358.84 37655.29 391
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
wuyk23d16.71 36616.73 37016.65 38160.15 39625.22 40641.24 3945.17 4056.56 3985.48 4013.61 4013.64 40322.72 40015.20 3999.52 3981.99 398
MVEpermissive44.00 2241.70 36137.64 36653.90 37849.46 40043.37 39865.09 39266.66 40026.19 39625.77 39748.53 3943.58 40463.35 39726.15 39427.28 39354.97 392
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test12316.58 36719.47 3697.91 3823.59 4055.37 40794.32 3241.39 4072.49 40013.98 40044.60 3972.91 4052.65 40111.35 4010.57 40015.70 396
testmvs18.81 36523.05 3686.10 3834.48 4042.29 40897.78 2323.00 4063.27 39918.60 39962.71 3871.53 4062.49 40214.26 4001.80 39913.50 397
test_blank0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
uanet_test0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
DCPMVS0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
sosnet-low-res0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
sosnet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
uncertanet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
Regformer0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
ab-mvs-re8.21 36810.94 3710.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 40398.50 1080.00 4070.00 4030.00 4020.00 4010.00 399
uanet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
WAC-MVS79.74 32767.75 352
FOURS199.50 4288.94 17099.55 4497.47 13591.32 10898.12 44
MSC_two_6792asdad99.51 299.61 2498.60 297.69 8599.98 999.55 1299.83 1599.96 10
No_MVS99.51 299.61 2498.60 297.69 8599.98 999.55 1299.83 1599.96 10
eth-test20.00 406
eth-test0.00 406
IU-MVS99.63 1895.38 2297.73 7795.54 2699.54 399.69 699.81 2399.99 1
save fliter99.34 5093.85 6299.65 3597.63 10195.69 22
test_0728_SECOND98.77 899.66 1296.37 1499.72 2397.68 8799.98 999.64 799.82 1999.96 10
GSMVS98.84 136
test_part299.54 3695.42 2098.13 42
MTGPAbinary97.45 138
MTMP99.21 8691.09 369
gm-plane-assit94.69 23588.14 18788.22 19597.20 16398.29 17590.79 168
test9_res98.60 3399.87 999.90 22
agg_prior297.84 5499.87 999.91 21
agg_prior99.54 3692.66 8597.64 9797.98 5199.61 102
test_prior492.00 9499.41 68
test_prior97.01 6099.58 3091.77 9597.57 11599.49 11299.79 36
旧先验298.67 15085.75 25198.96 2098.97 15293.84 131
新几何298.26 199
无先验98.52 16797.82 6287.20 22299.90 5087.64 20599.85 30
原ACMM298.69 147
testdata299.88 5484.16 245
testdata197.89 22592.43 82
plane_prior793.84 26085.73 251
plane_prior596.30 22097.75 21193.46 13886.17 24092.67 250
plane_prior496.52 192
plane_prior385.91 24693.65 6186.99 214
plane_prior299.02 11693.38 66
plane_prior193.90 259
plane_prior86.07 24399.14 10193.81 5886.26 239
n20.00 408
nn0.00 408
door-mid84.90 388
test1197.68 87
door85.30 386
HQP5-MVS86.39 228
HQP-NCC93.95 25399.16 9393.92 5087.57 207
ACMP_Plane93.95 25399.16 9393.92 5087.57 207
BP-MVS93.82 133
HQP4-MVS87.57 20797.77 20592.72 248
HQP3-MVS96.37 21686.29 237
NP-MVS93.94 25686.22 23596.67 190
ACMMP++_ref82.64 274
ACMMP++83.83 261