This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort by
CHOSEN 280x42096.80 2896.85 2396.66 8097.85 10694.42 4994.76 30298.36 2492.50 6795.62 9397.52 13497.92 197.38 21798.31 3398.80 8698.20 169
GG-mvs-BLEND96.98 6196.53 14894.81 3987.20 34797.74 6593.91 11996.40 17996.56 296.94 23195.08 9298.95 8199.20 98
gg-mvs-nofinetune90.00 18887.71 21096.89 6996.15 16794.69 4385.15 35397.74 6568.32 35392.97 13260.16 36696.10 396.84 23393.89 11498.87 8399.14 101
MSP-MVS97.77 998.18 296.53 8799.54 3690.14 12999.41 5597.70 7495.46 1798.60 2299.19 2895.71 499.49 9898.15 3599.85 1399.95 15
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
iter_conf0593.48 11293.18 10894.39 16197.15 12894.17 5599.30 6792.97 32792.38 7486.70 20895.42 19895.67 596.59 24294.67 10484.32 23792.39 235
baseline294.04 9593.80 9694.74 14793.07 26390.25 12698.12 19598.16 3589.86 12886.53 20996.95 16195.56 698.05 17491.44 14494.53 15595.93 216
PC_three_145294.60 2399.41 299.12 4195.50 799.96 2899.84 299.92 399.97 7
DVP-MVS++98.18 298.09 598.44 1499.61 2495.38 2099.55 3397.68 7893.01 5699.23 899.45 1495.12 899.98 999.25 1499.92 399.97 7
OPU-MVS99.49 499.64 1798.51 499.77 999.19 2895.12 899.97 2199.90 199.92 399.99 1
iter_conf_final93.22 12493.04 11293.76 18397.03 13692.22 8899.05 9793.31 32492.11 7986.93 20295.42 19895.01 1096.59 24293.98 11284.48 23492.46 234
tttt051793.30 12093.01 11494.17 16895.57 18586.47 21198.51 15597.60 9685.99 22690.55 16597.19 15094.80 1198.31 15985.06 21691.86 18697.74 177
thisisatest053094.00 9693.52 9995.43 12495.76 18090.02 13898.99 10597.60 9686.58 21891.74 14397.36 14294.78 1298.34 15886.37 20392.48 17697.94 175
thisisatest051594.75 7994.19 8196.43 9196.13 17292.64 8499.47 4297.60 9687.55 20093.17 12897.59 13194.71 1398.42 15688.28 18193.20 16598.24 166
test_0728_THIRD93.01 5699.07 1199.46 1094.66 1499.97 2199.25 1499.82 1999.95 15
ET-MVSNet_ETH3D92.56 13891.45 14695.88 11196.39 15594.13 5699.46 4696.97 17492.18 7766.94 34998.29 10794.65 1594.28 32694.34 10983.82 24499.24 94
MVSTER92.71 13292.32 12693.86 18097.29 12292.95 7999.01 10396.59 18590.09 12485.51 21494.00 22094.61 1696.56 24690.77 15483.03 25192.08 250
DPM-MVS97.86 897.25 1799.68 198.25 9399.10 199.76 1297.78 6196.61 598.15 3299.53 793.62 17100.00 191.79 14299.80 2699.94 18
test_one_060199.59 2894.89 3297.64 8793.14 5598.93 1699.45 1493.45 18
SED-MVS98.18 298.10 498.41 1699.63 1895.24 2399.77 997.72 6994.17 2999.30 699.54 393.32 1999.98 999.70 399.81 2399.99 1
test_241102_ONE99.63 1895.24 2397.72 6994.16 3199.30 699.49 993.32 1999.98 9
DPE-MVScopyleft98.11 698.00 698.44 1499.50 4295.39 1999.29 6897.72 6994.50 2498.64 2199.54 393.32 1999.97 2199.58 999.90 799.95 15
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
DVP-MVScopyleft98.07 798.00 698.29 1799.66 1295.20 2899.72 1497.47 12493.95 3499.07 1199.46 1093.18 2299.97 2199.64 699.82 1999.69 53
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.66 1295.20 2899.77 997.70 7493.95 3499.35 599.54 393.18 22
test_241102_TWO97.72 6994.17 2999.23 899.54 393.14 2499.98 999.70 399.82 1999.99 1
CNVR-MVS98.46 198.38 198.72 899.80 496.19 1399.80 897.99 4597.05 399.41 299.59 292.89 25100.00 198.99 1899.90 799.96 10
MCST-MVS98.18 297.95 998.86 599.85 396.60 999.70 1797.98 4697.18 295.96 8299.33 1992.62 26100.00 198.99 1899.93 199.98 6
NCCC98.12 598.11 398.13 2299.76 694.46 4699.81 697.88 4896.54 698.84 1899.46 1092.55 2799.98 998.25 3499.93 199.94 18
patch_mono-297.10 2297.97 894.49 15499.21 6183.73 26899.62 2798.25 2795.28 1899.38 498.91 6592.28 2899.94 3499.61 899.22 7099.78 37
SteuartSystems-ACMMP97.25 1597.34 1697.01 5697.38 11991.46 9899.75 1397.66 8194.14 3398.13 3399.26 2192.16 2999.66 8097.91 3999.64 4099.90 22
Skip Steuart: Steuart Systems R&D Blog.
TSAR-MVS + MP.97.44 1497.46 1397.39 4499.12 6593.49 6798.52 15297.50 11994.46 2598.99 1398.64 8791.58 3099.08 13498.49 2799.83 1599.60 65
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
TSAR-MVS + GP.96.95 2496.91 2197.07 5398.88 7991.62 9499.58 3096.54 19195.09 2096.84 6498.63 8991.16 3199.77 7199.04 1796.42 13099.81 32
EPP-MVSNet93.75 10593.67 9794.01 17695.86 17685.70 23798.67 13597.66 8184.46 25091.36 15497.18 15191.16 3197.79 18892.93 13193.75 16298.53 150
HPM-MVS++copyleft97.72 1097.59 1198.14 2199.53 4094.76 4099.19 7297.75 6495.66 1398.21 3199.29 2091.10 3399.99 597.68 4299.87 999.68 54
旧先验198.97 7392.90 8097.74 6599.15 3691.05 3499.33 6399.60 65
train_agg97.20 1997.08 1897.57 4099.57 3393.17 7199.38 5897.66 8190.18 12098.39 2799.18 3190.94 3599.66 8098.58 2699.85 1399.88 26
test_899.55 3593.07 7499.37 6197.64 8790.18 12098.36 2999.19 2890.94 3599.64 86
TEST999.57 3393.17 7199.38 5897.66 8189.57 13898.39 2799.18 3190.88 3799.66 80
SD-MVS97.51 1297.40 1597.81 3299.01 7293.79 6199.33 6597.38 13793.73 4598.83 1999.02 5290.87 3899.88 4698.69 2199.74 2999.77 42
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
APDe-MVS97.53 1197.47 1297.70 3499.58 3093.63 6299.56 3297.52 11493.59 4998.01 4199.12 4190.80 3999.55 9299.26 1399.79 2799.93 20
IB-MVS89.43 692.12 14890.83 16195.98 10995.40 19390.78 11699.81 698.06 4091.23 9685.63 21393.66 23090.63 4098.78 14291.22 14571.85 32498.36 161
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
segment_acmp90.56 41
dcpmvs_295.67 6196.18 3794.12 17098.82 8184.22 26197.37 23495.45 26790.70 10495.77 8998.63 8990.47 4298.68 15099.20 1699.22 7099.45 77
test_prior299.57 3191.43 9198.12 3598.97 5590.43 4398.33 3199.81 23
SF-MVS97.22 1896.92 2098.12 2499.11 6694.88 3399.44 4997.45 12789.60 13698.70 2099.42 1790.42 4499.72 7598.47 2899.65 3899.77 42
DeepPCF-MVS93.56 196.55 3497.84 1092.68 20498.71 8578.11 32399.70 1797.71 7398.18 197.36 5399.76 190.37 4599.94 3499.27 1299.54 5299.99 1
SMA-MVScopyleft97.24 1696.99 1998.00 2799.30 5494.20 5399.16 7897.65 8689.55 14099.22 1099.52 890.34 4699.99 598.32 3299.83 1599.82 31
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
ZD-MVS99.67 1093.28 6997.61 9487.78 19197.41 5199.16 3490.15 4799.56 9198.35 3099.70 35
CostFormer92.89 13092.48 12594.12 17094.99 21385.89 23292.89 31997.00 17386.98 20995.00 10390.78 28190.05 4897.51 21092.92 13291.73 19098.96 116
MSLP-MVS++97.50 1397.45 1497.63 3699.65 1693.21 7099.70 1798.13 3894.61 2297.78 4699.46 1089.85 4999.81 6697.97 3799.91 699.88 26
9.1496.87 2299.34 5099.50 3997.49 12189.41 14398.59 2399.43 1689.78 5099.69 7798.69 2199.62 44
PAPM96.35 3795.94 4697.58 3894.10 23395.25 2298.93 11098.17 3394.26 2893.94 11898.72 8089.68 5197.88 18296.36 6899.29 6799.62 64
CSCG94.87 7594.71 7295.36 12699.54 3686.49 21099.34 6498.15 3682.71 28190.15 17399.25 2289.48 5299.86 5494.97 9798.82 8599.72 49
PHI-MVS96.65 3196.46 3197.21 5099.34 5091.77 9199.70 1798.05 4186.48 22198.05 3899.20 2789.33 5399.96 2898.38 2999.62 4499.90 22
TESTMET0.1,193.82 10393.26 10695.49 12295.21 19890.25 12699.15 8397.54 11089.18 14891.79 14294.87 20689.13 5497.63 20286.21 20496.29 13598.60 148
APD-MVScopyleft96.95 2496.72 2697.63 3699.51 4193.58 6399.16 7897.44 13090.08 12598.59 2399.07 4689.06 5599.42 10997.92 3899.66 3799.88 26
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CDS-MVSNet93.47 11393.04 11294.76 14594.75 22289.45 14898.82 11997.03 17087.91 18890.97 15896.48 17789.06 5596.36 26089.50 16792.81 17198.49 152
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Patchmatch-test86.25 25184.06 26792.82 19994.42 22782.88 28082.88 36294.23 31071.58 34279.39 28990.62 29089.00 5796.42 25763.03 34891.37 19699.16 100
CDPH-MVS96.56 3396.18 3797.70 3499.59 2893.92 5899.13 8997.44 13089.02 15297.90 4499.22 2588.90 5899.49 9894.63 10599.79 2799.68 54
MG-MVS97.24 1696.83 2598.47 1399.79 595.71 1699.07 9499.06 994.45 2696.42 7698.70 8488.81 5999.74 7495.35 8799.86 1299.97 7
patchmatchnet-post84.86 34088.73 6096.81 235
test1297.83 3199.33 5394.45 4797.55 10797.56 4788.60 6199.50 9799.71 3499.55 69
MVS_111021_HR96.69 2996.69 2796.72 7698.58 8891.00 11299.14 8699.45 193.86 4095.15 10098.73 7888.48 6299.76 7297.23 5099.56 5099.40 80
sam_mvs188.39 6398.84 129
PatchmatchNetpermissive92.05 15191.04 15495.06 13496.17 16689.04 15291.26 33597.26 14289.56 13990.64 16490.56 29488.35 6497.11 22379.53 26896.07 14099.03 111
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
tpmrst92.78 13192.16 13094.65 15096.27 16087.45 19191.83 32797.10 16489.10 15194.68 10790.69 28588.22 6597.73 19789.78 16491.80 18898.77 139
DELS-MVS97.12 2196.60 2998.68 998.03 10296.57 1099.84 397.84 5196.36 995.20 9998.24 10888.17 6699.83 6096.11 7299.60 4899.64 60
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
testdata95.26 13098.20 9587.28 19797.60 9685.21 23698.48 2699.15 3688.15 6798.72 14890.29 15899.45 5799.78 37
原ACMM196.18 9999.03 7190.08 13297.63 9188.98 15397.00 6098.97 5588.14 6899.71 7688.23 18299.62 4498.76 140
新几何197.40 4398.92 7792.51 8697.77 6385.52 23296.69 7199.06 4888.08 6999.89 4584.88 21899.62 4499.79 35
test-mter93.27 12292.89 11794.40 15894.94 21687.27 19899.15 8397.25 14388.95 15591.57 14694.04 21688.03 7097.58 20685.94 20896.13 13698.36 161
JIA-IIPM85.97 25484.85 25489.33 28493.23 26073.68 33885.05 35497.13 15969.62 34991.56 14868.03 36488.03 7096.96 22977.89 28293.12 16697.34 188
test_yl95.27 6894.60 7497.28 4798.53 8992.98 7799.05 9798.70 1786.76 21594.65 10897.74 12387.78 7299.44 10595.57 8392.61 17399.44 78
DCV-MVSNet95.27 6894.60 7497.28 4798.53 8992.98 7799.05 9798.70 1786.76 21594.65 10897.74 12387.78 7299.44 10595.57 8392.61 17399.44 78
PAPM_NR95.43 6395.05 6996.57 8599.42 4790.14 12998.58 14997.51 11690.65 10792.44 13698.90 6687.77 7499.90 4390.88 15099.32 6499.68 54
HFP-MVS96.42 3696.26 3596.90 6599.69 890.96 11399.47 4297.81 5790.54 11196.88 6199.05 4987.57 7599.96 2895.65 7899.72 3199.78 37
tpm291.77 15391.09 15293.82 18294.83 22085.56 24192.51 32497.16 15684.00 25693.83 12190.66 28787.54 7697.17 22187.73 18991.55 19398.72 141
EPNet96.82 2796.68 2897.25 4998.65 8693.10 7399.48 4098.76 1396.54 697.84 4598.22 10987.49 7799.66 8095.35 8797.78 10899.00 112
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CP-MVS96.22 4296.15 4396.42 9299.67 1089.62 14699.70 1797.61 9490.07 12696.00 8199.16 3487.43 7899.92 3896.03 7499.72 3199.70 51
miper_enhance_ethall90.33 17989.70 17492.22 20997.12 13188.93 15898.35 17795.96 22788.60 16483.14 23792.33 25287.38 7996.18 27486.49 20277.89 27691.55 266
test_post46.00 37487.37 8097.11 223
XVS96.47 3596.37 3396.77 7099.62 2290.66 12199.43 5297.58 10292.41 7196.86 6298.96 5987.37 8099.87 4995.65 7899.43 5999.78 37
X-MVStestdata90.69 17488.66 19696.77 7099.62 2290.66 12199.43 5297.58 10292.41 7196.86 6229.59 37887.37 8099.87 4995.65 7899.43 5999.78 37
DP-MVS Recon95.85 5395.15 6697.95 2899.87 294.38 5099.60 2897.48 12286.58 21894.42 11099.13 4087.36 8399.98 993.64 12098.33 9999.48 75
DeepC-MVS_fast93.52 297.16 2096.84 2498.13 2299.61 2494.45 4798.85 11697.64 8796.51 895.88 8599.39 1887.35 8499.99 596.61 6399.69 3699.96 10
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PAPR96.35 3795.82 5097.94 2999.63 1894.19 5499.42 5497.55 10792.43 6893.82 12299.12 4187.30 8599.91 4094.02 11199.06 7499.74 46
Patchmatch-RL test81.90 29580.13 29887.23 30680.71 35870.12 35284.07 35988.19 36383.16 27270.57 33582.18 34987.18 8692.59 34182.28 25062.78 34898.98 114
CS-MVS95.75 5996.19 3694.40 15897.88 10586.22 22199.66 2496.12 21792.69 6498.07 3798.89 6887.09 8797.59 20596.71 5998.62 9299.39 81
sam_mvs87.08 88
EI-MVSNet-Vis-set95.76 5895.63 6096.17 10199.14 6490.33 12498.49 15897.82 5491.92 8194.75 10598.88 6987.06 8999.48 10295.40 8697.17 12298.70 143
1112_ss92.71 13291.55 14496.20 9895.56 18691.12 10598.48 16094.69 29888.29 17786.89 20498.50 9687.02 9098.66 15184.75 21989.77 20798.81 134
Test_1112_low_res92.27 14590.97 15596.18 9995.53 18891.10 10798.47 16294.66 29988.28 17886.83 20693.50 23587.00 9198.65 15284.69 22089.74 20898.80 135
MDTV_nov1_ep1390.47 16896.14 16988.55 16791.34 33497.51 11689.58 13792.24 13890.50 29886.99 9297.61 20477.64 28392.34 178
region2R96.30 4096.17 4096.70 7799.70 790.31 12599.46 4697.66 8190.55 11097.07 5999.07 4686.85 9399.97 2195.43 8599.74 2999.81 32
baseline192.61 13691.28 14996.58 8397.05 13594.63 4497.72 22296.20 21189.82 12988.56 18796.85 16786.85 9397.82 18688.42 17980.10 26797.30 189
SR-MVS96.13 4396.16 4296.07 10499.42 4789.04 15298.59 14797.33 14190.44 11496.84 6499.12 4186.75 9599.41 11297.47 4599.44 5899.76 44
test22298.32 9291.21 10198.08 20197.58 10283.74 26195.87 8699.02 5286.74 9699.64 4099.81 32
SR-MVS-dyc-post95.75 5995.86 4995.41 12599.22 5987.26 20098.40 17097.21 14989.63 13496.67 7298.97 5586.73 9799.36 11696.62 6199.31 6599.60 65
MDTV_nov1_ep13_2view91.17 10491.38 33387.45 20293.08 13086.67 9887.02 19398.95 120
ETV-MVS96.00 4696.00 4596.00 10796.56 14791.05 11099.63 2696.61 18393.26 5497.39 5298.30 10686.62 9998.13 16798.07 3697.57 11198.82 133
ZNCC-MVS96.09 4495.81 5296.95 6499.42 4791.19 10299.55 3397.53 11189.72 13195.86 8798.94 6486.59 10099.97 2195.13 9199.56 5099.68 54
ACMMP_NAP96.59 3296.18 3797.81 3298.82 8193.55 6498.88 11597.59 10090.66 10597.98 4299.14 3886.59 100100.00 196.47 6799.46 5599.89 25
WTY-MVS95.97 4995.11 6798.54 1197.62 11296.65 899.44 4998.74 1492.25 7595.21 9898.46 10286.56 10299.46 10495.00 9692.69 17299.50 74
HY-MVS88.56 795.29 6794.23 7998.48 1297.72 10896.41 1194.03 31098.74 1492.42 7095.65 9294.76 20986.52 10399.49 9895.29 8992.97 16899.53 70
ACMMPR96.28 4196.14 4496.73 7499.68 990.47 12399.47 4297.80 5890.54 11196.83 6699.03 5186.51 10499.95 3195.65 7899.72 3199.75 45
EPMVS92.59 13791.59 14395.59 12197.22 12490.03 13791.78 32898.04 4290.42 11591.66 14590.65 28886.49 10597.46 21281.78 25596.31 13399.28 91
MTAPA96.09 4495.80 5396.96 6399.29 5591.19 10297.23 24297.45 12792.58 6594.39 11199.24 2486.43 10699.99 596.22 6999.40 6299.71 50
GST-MVS95.97 4995.66 5696.90 6599.49 4591.22 10099.45 4897.48 12289.69 13295.89 8498.72 8086.37 10799.95 3194.62 10699.22 7099.52 71
CS-MVS-test95.98 4896.34 3494.90 14098.06 10187.66 18499.69 2396.10 21893.66 4698.35 3099.05 4986.28 10897.66 19996.96 5698.90 8299.37 82
alignmvs95.77 5795.00 7098.06 2697.35 12095.68 1799.71 1697.50 11991.50 8896.16 8098.61 9186.28 10899.00 13696.19 7091.74 18999.51 73
EI-MVSNet-UG-set95.43 6395.29 6295.86 11299.07 7089.87 14098.43 16497.80 5891.78 8394.11 11598.77 7486.25 11099.48 10294.95 9896.45 12998.22 167
mPP-MVS95.90 5295.75 5496.38 9499.58 3089.41 14999.26 6997.41 13490.66 10594.82 10498.95 6186.15 11199.98 995.24 9099.64 4099.74 46
EIA-MVS95.11 7095.27 6394.64 15196.34 15786.51 20999.59 2996.62 18292.51 6694.08 11698.64 8786.05 11298.24 16495.07 9398.50 9699.18 99
test250694.80 7794.21 8096.58 8396.41 15392.18 8998.01 20598.96 1090.82 10293.46 12597.28 14385.92 11398.45 15589.82 16397.19 12099.12 104
PLCcopyleft91.07 394.23 9394.01 8794.87 14199.17 6387.49 18999.25 7096.55 19088.43 17291.26 15598.21 11185.92 11399.86 5489.77 16597.57 11197.24 191
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
PGM-MVS95.85 5395.65 5896.45 9099.50 4289.77 14398.22 18698.90 1289.19 14796.74 6998.95 6185.91 11599.92 3893.94 11399.46 5599.66 58
MP-MVS-pluss95.80 5595.30 6197.29 4698.95 7692.66 8198.59 14797.14 15788.95 15593.12 12999.25 2285.62 11699.94 3496.56 6599.48 5499.28 91
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MVSFormer94.71 8394.08 8696.61 8195.05 21194.87 3497.77 21896.17 21486.84 21298.04 3998.52 9485.52 11795.99 28389.83 16198.97 7898.96 116
lupinMVS96.32 3995.94 4697.44 4295.05 21194.87 3499.86 296.50 19393.82 4398.04 3998.77 7485.52 11798.09 17096.98 5598.97 7899.37 82
MP-MVScopyleft96.00 4695.82 5096.54 8699.47 4690.13 13199.36 6297.41 13490.64 10895.49 9498.95 6185.51 11999.98 996.00 7599.59 4999.52 71
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
APD-MVS_3200maxsize95.64 6295.65 5895.62 11999.24 5887.80 18098.42 16597.22 14888.93 15796.64 7498.98 5485.49 12099.36 11696.68 6099.27 6899.70 51
HyFIR lowres test93.68 10893.29 10594.87 14197.57 11688.04 17698.18 19098.47 2287.57 19991.24 15695.05 20385.49 12097.46 21293.22 12792.82 16999.10 106
EPNet_dtu92.28 14492.15 13192.70 20397.29 12284.84 25398.64 13997.82 5492.91 6193.02 13197.02 15885.48 12295.70 29772.25 32194.89 15397.55 185
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Vis-MVSNet (Re-imp)93.26 12393.00 11594.06 17396.14 16986.71 20898.68 13396.70 18088.30 17689.71 18097.64 12985.43 12396.39 25888.06 18596.32 13299.08 108
test_post190.74 34141.37 37785.38 12496.36 26083.16 240
RE-MVS-def95.70 5599.22 5987.26 20098.40 17097.21 14989.63 13496.67 7298.97 5585.24 12596.62 6199.31 6599.60 65
tpm89.67 19388.95 18991.82 22092.54 26881.43 29592.95 31895.92 23387.81 19090.50 16789.44 31384.99 12695.65 29883.67 23782.71 25498.38 158
HPM-MVScopyleft95.41 6595.22 6495.99 10899.29 5589.14 15099.17 7797.09 16587.28 20495.40 9598.48 9984.93 12799.38 11495.64 8299.65 3899.47 76
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
test-LLR93.11 12792.68 12094.40 15894.94 21687.27 19899.15 8397.25 14390.21 11891.57 14694.04 21684.89 12897.58 20685.94 20896.13 13698.36 161
test0.0.03 188.96 20188.61 19790.03 26791.09 29184.43 25898.97 10897.02 17190.21 11880.29 27796.31 18384.89 12891.93 35072.98 31885.70 22793.73 224
mvsany_test194.57 8895.09 6892.98 19695.84 17782.07 28998.76 12795.24 28092.87 6396.45 7598.71 8384.81 13099.15 12797.68 4295.49 14897.73 178
PatchT85.44 26483.19 27292.22 20993.13 26283.00 27583.80 36196.37 20070.62 34490.55 16579.63 35684.81 13094.87 31558.18 35891.59 19298.79 136
TAMVS92.62 13592.09 13394.20 16794.10 23387.68 18298.41 16796.97 17487.53 20189.74 17896.04 18884.77 13296.49 25388.97 17792.31 17998.42 154
CR-MVSNet88.83 20887.38 21593.16 19393.47 25386.24 21984.97 35594.20 31188.92 15890.76 16286.88 33384.43 13394.82 31770.64 32592.17 18398.41 155
Patchmtry83.61 28781.64 28789.50 28093.36 25782.84 28184.10 35894.20 31169.47 35079.57 28786.88 33384.43 13394.78 31868.48 33374.30 30090.88 288
dp90.16 18588.83 19294.14 16996.38 15686.42 21291.57 33297.06 16784.76 24788.81 18590.19 30684.29 13597.43 21575.05 30191.35 19798.56 149
miper_ehance_all_eth88.94 20288.12 20791.40 22995.32 19486.93 20497.85 21495.55 26184.19 25381.97 25991.50 26884.16 13695.91 29084.69 22077.89 27691.36 274
MVS_111021_LR95.78 5695.94 4695.28 12998.19 9787.69 18198.80 12199.26 793.39 5195.04 10298.69 8584.09 13799.76 7296.96 5699.06 7498.38 158
FE-MVS91.38 16090.16 17195.05 13696.46 15187.53 18889.69 34497.84 5182.97 27592.18 13992.00 25984.07 13898.93 13980.71 26295.52 14798.68 144
tpmvs89.16 19887.76 20893.35 18997.19 12584.75 25590.58 34297.36 13981.99 29384.56 22189.31 31683.98 13998.17 16574.85 30490.00 20697.12 193
API-MVS94.78 7894.18 8396.59 8299.21 6190.06 13698.80 12197.78 6183.59 26593.85 12099.21 2683.79 14099.97 2192.37 13899.00 7799.74 46
cl2289.57 19588.79 19391.91 21797.94 10487.62 18597.98 20796.51 19285.03 24182.37 25091.79 26283.65 14196.50 25185.96 20777.89 27691.61 263
Test By Simon83.62 142
PVSNet_BlendedMVS93.36 11893.20 10793.84 18198.77 8391.61 9599.47 4298.04 4291.44 9094.21 11392.63 25083.50 14399.87 4997.41 4683.37 24890.05 311
PVSNet_Blended95.94 5195.66 5696.75 7298.77 8391.61 9599.88 198.04 4293.64 4894.21 11397.76 12183.50 14399.87 4997.41 4697.75 10998.79 136
HPM-MVS_fast94.89 7494.62 7395.70 11799.11 6688.44 17099.14 8697.11 16185.82 22895.69 9198.47 10083.46 14599.32 12193.16 12899.63 4399.35 84
thres20093.69 10692.59 12396.97 6297.76 10794.74 4199.35 6399.36 289.23 14691.21 15796.97 16083.42 14698.77 14385.08 21590.96 19897.39 187
tfpn200view993.43 11592.27 12896.90 6597.68 11094.84 3699.18 7499.36 288.45 16990.79 16096.90 16483.31 14798.75 14584.11 23090.69 20097.12 193
thres40093.39 11792.27 12896.73 7497.68 11094.84 3699.18 7499.36 288.45 16990.79 16096.90 16483.31 14798.75 14584.11 23090.69 20096.61 202
thres100view90093.34 11992.15 13196.90 6597.62 11294.84 3699.06 9699.36 287.96 18690.47 16896.78 16983.29 14998.75 14584.11 23090.69 20097.12 193
thres600view793.18 12592.00 13496.75 7297.62 11294.92 3199.07 9499.36 287.96 18690.47 16896.78 16983.29 14998.71 14982.93 24490.47 20496.61 202
PVSNet_Blended_VisFu94.67 8494.11 8496.34 9697.14 12991.10 10799.32 6697.43 13292.10 8091.53 15096.38 18283.29 14999.68 7893.42 12596.37 13198.25 165
h-mvs3392.47 14091.95 13694.05 17497.13 13085.01 25198.36 17698.08 3993.85 4196.27 7896.73 17183.19 15299.43 10895.81 7668.09 33497.70 179
hse-mvs291.67 15591.51 14592.15 21396.22 16282.61 28597.74 22197.53 11193.85 4196.27 7896.15 18483.19 15297.44 21495.81 7666.86 34196.40 211
AUN-MVS90.17 18489.50 17792.19 21196.21 16382.67 28397.76 22097.53 11188.05 18391.67 14496.15 18483.10 15497.47 21188.11 18466.91 34096.43 210
FA-MVS(test-final)92.22 14791.08 15395.64 11896.05 17388.98 15491.60 33197.25 14386.99 20691.84 14192.12 25383.03 15599.00 13686.91 19793.91 16198.93 122
IS-MVSNet93.00 12992.51 12494.49 15496.14 16987.36 19498.31 18195.70 25288.58 16590.17 17297.50 13583.02 15697.22 22087.06 19296.07 14098.90 125
tpm cat188.89 20487.27 21793.76 18395.79 17885.32 24590.76 34097.09 16576.14 33085.72 21288.59 31982.92 15798.04 17576.96 28791.43 19497.90 176
UniMVSNet_NR-MVSNet89.60 19488.55 20192.75 20292.17 27390.07 13398.74 12898.15 3688.37 17483.21 23393.98 22182.86 15895.93 28786.95 19572.47 31892.25 240
c3_l88.19 22087.23 21891.06 23694.97 21486.17 22497.72 22295.38 27283.43 26781.68 26691.37 27082.81 15995.72 29684.04 23373.70 30691.29 278
DROMVSNet95.09 7195.17 6594.84 14395.42 19188.17 17299.48 4095.92 23391.47 8997.34 5498.36 10382.77 16097.41 21697.24 4998.58 9398.94 121
TAPA-MVS87.50 990.35 17889.05 18794.25 16698.48 9185.17 24898.42 16596.58 18882.44 28887.24 19898.53 9382.77 16098.84 14159.09 35697.88 10498.72 141
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
KD-MVS_2432*160082.98 28880.52 29690.38 25694.32 22988.98 15492.87 32095.87 24380.46 30973.79 32287.49 32682.76 16293.29 33370.56 32646.53 36888.87 328
miper_refine_blended82.98 28880.52 29690.38 25694.32 22988.98 15492.87 32095.87 24380.46 30973.79 32287.49 32682.76 16293.29 33370.56 32646.53 36888.87 328
CANet97.00 2396.49 3098.55 1098.86 8096.10 1499.83 497.52 11495.90 1097.21 5698.90 6682.66 16499.93 3798.71 2098.80 8699.63 62
CPTT-MVS94.60 8694.43 7695.09 13399.66 1286.85 20599.44 4997.47 12483.22 27094.34 11298.96 5982.50 16599.55 9294.81 9999.50 5398.88 126
mvs_anonymous92.50 13991.65 14295.06 13496.60 14689.64 14597.06 24896.44 19786.64 21784.14 22593.93 22282.49 16696.17 27691.47 14396.08 13999.35 84
pcd_1.5k_mvsjas6.87 3489.16 3510.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 38082.48 1670.00 3810.00 3790.00 3790.00 377
PS-MVSNAJss89.54 19689.05 18791.00 23888.77 32284.36 25997.39 23195.97 22588.47 16681.88 26193.80 22682.48 16796.50 25189.34 17183.34 25092.15 246
PS-MVSNAJ96.87 2696.40 3298.29 1797.35 12097.29 599.03 10097.11 16195.83 1198.97 1499.14 3882.48 16799.60 8998.60 2399.08 7398.00 173
UA-Net93.30 12092.62 12295.34 12796.27 16088.53 16995.88 28996.97 17490.90 10095.37 9697.07 15682.38 17099.10 13383.91 23494.86 15498.38 158
FIs90.70 17389.87 17393.18 19292.29 27091.12 10598.17 19298.25 2789.11 15083.44 23094.82 20882.26 17196.17 27687.76 18882.76 25392.25 240
ACMMPcopyleft94.67 8494.30 7795.79 11499.25 5788.13 17498.41 16798.67 2090.38 11691.43 15198.72 8082.22 17299.95 3193.83 11795.76 14399.29 90
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
xiu_mvs_v2_base96.66 3096.17 4098.11 2597.11 13296.96 699.01 10397.04 16895.51 1698.86 1799.11 4582.19 17399.36 11698.59 2598.14 10198.00 173
DIV-MVS_self_test87.82 22286.81 22490.87 24394.87 21985.39 24497.81 21595.22 28582.92 27980.76 27291.31 27281.99 17495.81 29481.36 25675.04 29191.42 272
miper_lstm_enhance86.90 23786.20 23389.00 29094.53 22681.19 30196.74 26295.24 28082.33 28980.15 27990.51 29781.99 17494.68 32280.71 26273.58 30891.12 282
cl____87.82 22286.79 22590.89 24294.88 21885.43 24297.81 21595.24 28082.91 28080.71 27391.22 27381.97 17695.84 29281.34 25775.06 29091.40 273
FC-MVSNet-test90.22 18289.40 18192.67 20591.78 28189.86 14197.89 21098.22 3088.81 16082.96 23894.66 21081.90 17795.96 28585.89 21082.52 25692.20 245
UniMVSNet (Re)89.50 19788.32 20493.03 19492.21 27290.96 11398.90 11498.39 2389.13 14983.22 23292.03 25581.69 17896.34 26686.79 19972.53 31791.81 255
MVS_Test93.67 10992.67 12196.69 7896.72 14492.66 8197.22 24396.03 22287.69 19795.12 10194.03 21881.55 17998.28 16289.17 17596.46 12899.14 101
sss94.85 7693.94 9297.58 3896.43 15294.09 5798.93 11099.16 889.50 14195.27 9797.85 11681.50 18099.65 8492.79 13594.02 16098.99 113
eth_miper_zixun_eth87.76 22587.00 22290.06 26394.67 22482.65 28497.02 25195.37 27384.19 25381.86 26491.58 26781.47 18195.90 29183.24 23873.61 30791.61 263
jason95.40 6694.86 7197.03 5592.91 26594.23 5299.70 1796.30 20493.56 5096.73 7098.52 9481.46 18297.91 17996.08 7398.47 9798.96 116
jason: jason.
IterMVS-LS88.34 21687.44 21391.04 23794.10 23385.85 23498.10 19895.48 26585.12 23782.03 25891.21 27481.35 18395.63 29983.86 23575.73 28791.63 259
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet89.87 19189.38 18291.36 23194.32 22985.87 23397.61 22796.59 18585.10 23885.51 21497.10 15481.30 18496.56 24683.85 23683.03 25191.64 258
RPMNet85.07 26881.88 28594.64 15193.47 25386.24 21984.97 35597.21 14964.85 36090.76 16278.80 35780.95 18599.27 12353.76 36292.17 18398.41 155
114514_t94.06 9493.05 11197.06 5499.08 6992.26 8798.97 10897.01 17282.58 28392.57 13498.22 10980.68 18699.30 12289.34 17199.02 7699.63 62
CNLPA93.64 11092.74 11996.36 9598.96 7590.01 13999.19 7295.89 24186.22 22489.40 18198.85 7080.66 18799.84 5788.57 17896.92 12499.24 94
diffmvspermissive94.59 8794.19 8195.81 11395.54 18790.69 11998.70 13195.68 25491.61 8595.96 8297.81 11880.11 18898.06 17296.52 6695.76 14398.67 145
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
casdiffmvs_mvgpermissive94.00 9693.33 10396.03 10595.22 19790.90 11599.09 9295.99 22390.58 10991.55 14997.37 14179.91 18998.06 17295.01 9595.22 15099.13 103
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
casdiffmvspermissive93.98 9893.43 10095.61 12095.07 21089.86 14198.80 12195.84 24690.98 9992.74 13397.66 12879.71 19098.10 16994.72 10295.37 14998.87 128
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Effi-MVS+93.87 10293.15 10996.02 10695.79 17890.76 11796.70 26495.78 24786.98 20995.71 9097.17 15279.58 19198.01 17794.57 10796.09 13899.31 88
baseline93.91 10093.30 10495.72 11695.10 20890.07 13397.48 23095.91 23891.03 9793.54 12497.68 12679.58 19198.02 17694.27 11095.14 15199.08 108
canonicalmvs95.02 7393.96 9198.20 1997.53 11795.92 1598.71 12996.19 21391.78 8395.86 8798.49 9879.53 19399.03 13596.12 7191.42 19599.66 58
OMC-MVS93.90 10193.62 9894.73 14898.63 8787.00 20398.04 20496.56 18992.19 7692.46 13598.73 7879.49 19499.14 13192.16 14094.34 15898.03 172
MVS93.92 9992.28 12798.83 695.69 18296.82 796.22 27998.17 3384.89 24584.34 22498.61 9179.32 19599.83 6093.88 11599.43 5999.86 29
VNet95.08 7294.26 7897.55 4198.07 10093.88 5998.68 13398.73 1690.33 11797.16 5897.43 13979.19 19699.53 9596.91 5891.85 18799.24 94
CHOSEN 1792x268894.35 9193.82 9595.95 11097.40 11888.74 16498.41 16798.27 2692.18 7791.43 15196.40 17978.88 19799.81 6693.59 12197.81 10599.30 89
ADS-MVSNet287.62 23086.88 22389.86 27096.21 16379.14 31487.15 34892.99 32683.01 27389.91 17687.27 32978.87 19892.80 33974.20 30992.27 18097.64 180
ADS-MVSNet88.99 20087.30 21694.07 17296.21 16387.56 18787.15 34896.78 17983.01 27389.91 17687.27 32978.87 19897.01 22874.20 30992.27 18097.64 180
nrg03090.23 18188.87 19094.32 16391.53 28593.54 6598.79 12595.89 24188.12 18284.55 22294.61 21178.80 20096.88 23292.35 13975.21 28992.53 233
F-COLMAP92.07 15091.75 14193.02 19598.16 9882.89 27998.79 12595.97 22586.54 22087.92 19197.80 11978.69 20199.65 8485.97 20695.93 14296.53 207
MAR-MVS94.43 9094.09 8595.45 12399.10 6887.47 19098.39 17497.79 6088.37 17494.02 11799.17 3378.64 20299.91 4092.48 13798.85 8498.96 116
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PCF-MVS89.78 591.26 16189.63 17596.16 10295.44 19091.58 9795.29 29896.10 21885.07 24082.75 23997.45 13878.28 20399.78 7080.60 26495.65 14697.12 193
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
DeepC-MVS91.02 494.56 8993.92 9396.46 8997.16 12790.76 11798.39 17497.11 16193.92 3688.66 18698.33 10478.14 20499.85 5695.02 9498.57 9498.78 138
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
WR-MVS_H86.53 24685.49 24489.66 27791.04 29283.31 27397.53 22998.20 3284.95 24479.64 28590.90 27978.01 20595.33 30676.29 29472.81 31490.35 303
Fast-Effi-MVS+91.72 15490.79 16294.49 15495.89 17587.40 19399.54 3895.70 25285.01 24389.28 18395.68 19377.75 20697.57 20983.22 23995.06 15298.51 151
131493.44 11491.98 13597.84 3095.24 19594.38 5096.22 27997.92 4790.18 12082.28 25197.71 12577.63 20799.80 6891.94 14198.67 9199.34 86
NR-MVSNet87.74 22886.00 23692.96 19791.46 28690.68 12096.65 26597.42 13388.02 18573.42 32493.68 22877.31 20895.83 29384.26 22671.82 32592.36 237
BH-w/o92.32 14291.79 13993.91 17996.85 13986.18 22399.11 9195.74 25088.13 18184.81 21897.00 15977.26 20997.91 17989.16 17698.03 10297.64 180
PMMVS93.62 11193.90 9492.79 20096.79 14281.40 29698.85 11696.81 17791.25 9596.82 6798.15 11377.02 21098.13 16793.15 12996.30 13498.83 132
CVMVSNet90.30 18090.91 15788.46 29794.32 22973.58 33997.61 22797.59 10090.16 12388.43 18997.10 15476.83 21192.86 33682.64 24693.54 16498.93 122
mvsmamba89.99 18989.42 18091.69 22690.64 29786.34 21798.40 17092.27 33691.01 9884.80 21994.93 20476.12 21296.51 25092.81 13483.84 24192.21 244
LCM-MVSNet-Re88.59 21488.61 19788.51 29695.53 18872.68 34396.85 25688.43 36288.45 16973.14 32790.63 28975.82 21394.38 32592.95 13095.71 14598.48 153
LS3D90.19 18388.72 19494.59 15398.97 7386.33 21896.90 25496.60 18474.96 33484.06 22798.74 7775.78 21499.83 6074.93 30297.57 11197.62 183
pmmvs487.58 23186.17 23491.80 22189.58 31188.92 15997.25 24095.28 27682.54 28480.49 27593.17 24275.62 21596.05 28182.75 24578.90 27190.42 302
BH-untuned91.46 15890.84 15993.33 19096.51 15084.83 25498.84 11895.50 26486.44 22383.50 22996.70 17275.49 21697.77 19086.78 20097.81 10597.40 186
AdaColmapbinary93.82 10393.06 11096.10 10399.88 189.07 15198.33 17897.55 10786.81 21490.39 17098.65 8675.09 21799.98 993.32 12697.53 11499.26 93
DU-MVS88.83 20887.51 21292.79 20091.46 28690.07 13398.71 12997.62 9388.87 15983.21 23393.68 22874.63 21895.93 28786.95 19572.47 31892.36 237
Baseline_NR-MVSNet85.83 25784.82 25588.87 29388.73 32383.34 27298.63 14091.66 34580.41 31182.44 24591.35 27174.63 21895.42 30484.13 22971.39 32787.84 333
v14886.38 24985.06 24990.37 25889.47 31684.10 26398.52 15295.48 26583.80 26080.93 27190.22 30474.60 22096.31 26880.92 26071.55 32690.69 297
3Dnovator+87.72 893.43 11591.84 13898.17 2095.73 18195.08 3098.92 11297.04 16891.42 9281.48 26897.60 13074.60 22099.79 6990.84 15198.97 7899.64 60
v886.11 25284.45 26291.10 23589.99 30386.85 20597.24 24195.36 27481.99 29379.89 28389.86 30974.53 22296.39 25878.83 27672.32 32090.05 311
DP-MVS88.75 21286.56 22895.34 12798.92 7787.45 19197.64 22693.52 32270.55 34581.49 26797.25 14674.43 22399.88 4671.14 32494.09 15998.67 145
GeoE90.60 17689.56 17693.72 18695.10 20885.43 24299.41 5594.94 28983.96 25887.21 19996.83 16874.37 22497.05 22780.50 26693.73 16398.67 145
cdsmvs_eth3d_5k22.52 34330.03 3460.00 3620.00 3850.00 3860.00 37397.17 1550.00 3800.00 38198.77 7474.35 2250.00 3810.00 3790.00 3790.00 377
Effi-MVS+-dtu89.97 19090.68 16487.81 30195.15 20371.98 34597.87 21395.40 27191.92 8187.57 19391.44 26974.27 22696.84 23389.45 16893.10 16794.60 222
WR-MVS88.54 21587.22 21992.52 20691.93 27989.50 14798.56 15097.84 5186.99 20681.87 26293.81 22574.25 22795.92 28985.29 21374.43 29892.12 248
FMVSNet388.81 21087.08 22093.99 17796.52 14994.59 4598.08 20196.20 21185.85 22782.12 25491.60 26674.05 22895.40 30579.04 27280.24 26491.99 253
V4287.00 23685.68 24190.98 23989.91 30486.08 22798.32 18095.61 25883.67 26482.72 24090.67 28674.00 22996.53 24881.94 25474.28 30190.32 304
D2MVS87.96 22187.39 21489.70 27591.84 28083.40 27198.31 18198.49 2188.04 18478.23 30290.26 30073.57 23096.79 23784.21 22783.53 24688.90 327
v114486.83 23985.31 24791.40 22989.75 30887.21 20298.31 18195.45 26783.22 27082.70 24190.78 28173.36 23196.36 26079.49 26974.69 29590.63 299
HQP2-MVS73.34 232
HQP-MVS91.50 15691.23 15092.29 20893.95 23886.39 21499.16 7896.37 20093.92 3687.57 19396.67 17373.34 23297.77 19093.82 11886.29 21992.72 229
v1085.73 26184.01 26890.87 24390.03 30286.73 20797.20 24495.22 28581.25 30179.85 28489.75 31073.30 23496.28 27276.87 28872.64 31689.61 319
RRT_MVS88.91 20388.56 20089.93 26890.31 30181.61 29398.08 20196.38 19989.30 14482.41 24894.84 20773.15 23596.04 28290.38 15682.23 25892.15 246
v2v48287.27 23485.76 23991.78 22589.59 31087.58 18698.56 15095.54 26284.53 24982.51 24491.78 26373.11 23696.47 25482.07 25174.14 30491.30 277
HQP_MVS91.26 16190.95 15692.16 21293.84 24586.07 22899.02 10196.30 20493.38 5286.99 20096.52 17572.92 23797.75 19593.46 12386.17 22292.67 231
plane_prior693.92 24286.02 23072.92 237
QAPM91.41 15989.49 17897.17 5295.66 18493.42 6898.60 14597.51 11680.92 30681.39 26997.41 14072.89 23999.87 4982.33 24998.68 9098.21 168
v14419286.40 24884.89 25390.91 24089.48 31585.59 23998.21 18895.43 27082.45 28782.62 24290.58 29372.79 24096.36 26078.45 27974.04 30590.79 291
TranMVSNet+NR-MVSNet87.75 22686.31 23192.07 21590.81 29488.56 16698.33 17897.18 15487.76 19281.87 26293.90 22372.45 24195.43 30383.13 24271.30 32892.23 242
xiu_mvs_v1_base_debu94.73 8093.98 8896.99 5895.19 19995.24 2398.62 14196.50 19392.99 5897.52 4898.83 7172.37 24299.15 12797.03 5296.74 12596.58 204
xiu_mvs_v1_base94.73 8093.98 8896.99 5895.19 19995.24 2398.62 14196.50 19392.99 5897.52 4898.83 7172.37 24299.15 12797.03 5296.74 12596.58 204
xiu_mvs_v1_base_debi94.73 8093.98 8896.99 5895.19 19995.24 2398.62 14196.50 19392.99 5897.52 4898.83 7172.37 24299.15 12797.03 5296.74 12596.58 204
test_djsdf88.26 21987.73 20989.84 27188.05 33182.21 28797.77 21896.17 21486.84 21282.41 24891.95 26172.07 24595.99 28389.83 16184.50 23391.32 276
3Dnovator87.35 1193.17 12691.77 14097.37 4595.41 19293.07 7498.82 11997.85 5091.53 8782.56 24397.58 13271.97 24699.82 6391.01 14899.23 6999.22 97
CANet_DTU94.31 9293.35 10297.20 5197.03 13694.71 4298.62 14195.54 26295.61 1497.21 5698.47 10071.88 24799.84 5788.38 18097.46 11697.04 198
CP-MVSNet86.54 24585.45 24589.79 27391.02 29382.78 28297.38 23397.56 10685.37 23479.53 28893.03 24471.86 24895.25 30879.92 26773.43 31291.34 275
PatchMatch-RL91.47 15790.54 16694.26 16598.20 9586.36 21696.94 25297.14 15787.75 19388.98 18495.75 19271.80 24999.40 11380.92 26097.39 11797.02 199
our_test_384.47 27782.80 27689.50 28089.01 31983.90 26697.03 24994.56 30181.33 30075.36 31690.52 29671.69 25094.54 32468.81 33176.84 28490.07 309
XVG-OURS90.83 17090.49 16791.86 21895.23 19681.25 30095.79 29495.92 23388.96 15490.02 17598.03 11571.60 25199.35 11991.06 14787.78 21394.98 220
v119286.32 25084.71 25891.17 23389.53 31486.40 21398.13 19395.44 26982.52 28582.42 24790.62 29071.58 25296.33 26777.23 28474.88 29290.79 291
Vis-MVSNetpermissive92.64 13491.85 13795.03 13795.12 20488.23 17198.48 16096.81 17791.61 8592.16 14097.22 14871.58 25298.00 17885.85 21197.81 10598.88 126
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
PVSNet87.13 1293.69 10692.83 11896.28 9797.99 10390.22 12899.38 5898.93 1191.42 9293.66 12397.68 12671.29 25499.64 8687.94 18797.20 11998.98 114
v192192086.02 25384.44 26390.77 24689.32 31785.20 24698.10 19895.35 27582.19 29182.25 25290.71 28370.73 25596.30 27176.85 28974.49 29790.80 290
EU-MVSNet84.19 28084.42 26483.52 32888.64 32567.37 35696.04 28495.76 24985.29 23578.44 29993.18 24170.67 25691.48 35275.79 29875.98 28591.70 256
XVG-OURS-SEG-HR90.95 16890.66 16591.83 21995.18 20281.14 30395.92 28695.92 23388.40 17390.33 17197.85 11670.66 25799.38 11492.83 13388.83 20994.98 220
v7n84.42 27882.75 27989.43 28388.15 32981.86 29096.75 26195.67 25580.53 30778.38 30089.43 31469.89 25896.35 26573.83 31372.13 32290.07 309
ppachtmachnet_test83.63 28681.57 28989.80 27289.01 31985.09 25097.13 24694.50 30278.84 31676.14 30891.00 27769.78 25994.61 32363.40 34674.36 29989.71 318
MSDG88.29 21886.37 23094.04 17596.90 13886.15 22596.52 26794.36 30877.89 32479.22 29196.95 16169.72 26099.59 9073.20 31792.58 17596.37 212
CLD-MVS91.06 16690.71 16392.10 21494.05 23786.10 22699.55 3396.29 20794.16 3184.70 22097.17 15269.62 26197.82 18694.74 10186.08 22492.39 235
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
v124085.77 26084.11 26690.73 24789.26 31885.15 24997.88 21295.23 28481.89 29682.16 25390.55 29569.60 26296.31 26875.59 29974.87 29390.72 296
Fast-Effi-MVS+-dtu88.84 20688.59 19989.58 27893.44 25678.18 32198.65 13794.62 30088.46 16884.12 22695.37 20168.91 26396.52 24982.06 25291.70 19194.06 223
anonymousdsp86.69 24185.75 24089.53 27986.46 34282.94 27696.39 27095.71 25183.97 25779.63 28690.70 28468.85 26495.94 28686.01 20584.02 24089.72 317
VPA-MVSNet89.10 19987.66 21193.45 18892.56 26791.02 11197.97 20898.32 2586.92 21186.03 21192.01 25768.84 26597.10 22590.92 14975.34 28892.23 242
ab-mvs91.05 16789.17 18596.69 7895.96 17491.72 9392.62 32397.23 14785.61 23189.74 17893.89 22468.55 26699.42 10991.09 14687.84 21298.92 124
CL-MVSNet_self_test79.89 30478.34 30484.54 32381.56 35675.01 33296.88 25595.62 25781.10 30275.86 31285.81 33968.49 26790.26 35463.21 34756.51 35988.35 330
PEN-MVS85.21 26683.93 26989.07 28989.89 30681.31 29997.09 24797.24 14684.45 25178.66 29592.68 24968.44 26894.87 31575.98 29670.92 32991.04 284
BH-RMVSNet91.25 16389.99 17295.03 13796.75 14388.55 16798.65 13794.95 28887.74 19487.74 19297.80 11968.27 26998.14 16680.53 26597.49 11598.41 155
GA-MVS90.10 18688.69 19594.33 16292.44 26987.97 17899.08 9396.26 20889.65 13386.92 20393.11 24368.09 27096.96 22982.54 24890.15 20598.05 171
MDA-MVSNet_test_wron79.65 30577.05 30987.45 30487.79 33580.13 30996.25 27794.44 30373.87 33851.80 36287.47 32868.04 27192.12 34866.02 34067.79 33790.09 307
OpenMVScopyleft85.28 1490.75 17288.84 19196.48 8893.58 25193.51 6698.80 12197.41 13482.59 28278.62 29697.49 13668.00 27299.82 6384.52 22498.55 9596.11 214
YYNet179.64 30677.04 31087.43 30587.80 33479.98 31096.23 27894.44 30373.83 33951.83 36187.53 32467.96 27392.07 34966.00 34167.75 33890.23 306
DTE-MVSNet84.14 28182.80 27688.14 29888.95 32179.87 31196.81 25796.24 20983.50 26677.60 30492.52 25167.89 27494.24 32772.64 32069.05 33290.32 304
MVP-Stereo86.61 24485.83 23888.93 29288.70 32483.85 26796.07 28394.41 30782.15 29275.64 31491.96 26067.65 27596.45 25677.20 28698.72 8986.51 344
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
XXY-MVS87.75 22686.02 23592.95 19890.46 29989.70 14497.71 22495.90 23984.02 25580.95 27094.05 21567.51 27697.10 22585.16 21478.41 27392.04 252
PS-CasMVS85.81 25884.58 26189.49 28290.77 29582.11 28897.20 24497.36 13984.83 24679.12 29392.84 24767.42 27795.16 31078.39 28073.25 31391.21 280
ACMM86.95 1388.77 21188.22 20690.43 25493.61 25081.34 29898.50 15695.92 23387.88 18983.85 22895.20 20267.20 27897.89 18186.90 19884.90 23092.06 251
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
TransMVSNet (Re)81.97 29379.61 30289.08 28889.70 30984.01 26497.26 23991.85 34478.84 31673.07 33091.62 26567.17 27995.21 30967.50 33559.46 35588.02 332
OPM-MVS89.76 19289.15 18691.57 22890.53 29885.58 24098.11 19795.93 23292.88 6286.05 21096.47 17867.06 28097.87 18389.29 17486.08 22491.26 279
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
TR-MVS90.77 17189.44 17994.76 14596.31 15888.02 17797.92 20995.96 22785.52 23288.22 19097.23 14766.80 28198.09 17084.58 22292.38 17798.17 170
IterMVS-SCA-FT85.73 26184.64 26089.00 29093.46 25582.90 27896.27 27494.70 29785.02 24278.62 29690.35 29966.61 28293.33 33279.38 27177.36 28390.76 293
SCA90.64 17589.25 18494.83 14494.95 21588.83 16096.26 27697.21 14990.06 12790.03 17490.62 29066.61 28296.81 23583.16 24094.36 15798.84 129
IterMVS85.81 25884.67 25989.22 28593.51 25283.67 26996.32 27394.80 29485.09 23978.69 29490.17 30766.57 28493.17 33579.48 27077.42 28290.81 289
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
LPG-MVS_test88.86 20588.47 20390.06 26393.35 25880.95 30598.22 18695.94 23087.73 19583.17 23596.11 18666.28 28597.77 19090.19 15985.19 22891.46 269
LGP-MVS_train90.06 26393.35 25880.95 30595.94 23087.73 19583.17 23596.11 18666.28 28597.77 19090.19 15985.19 22891.46 269
bld_raw_dy_0_6487.82 22286.71 22691.15 23489.54 31385.61 23897.37 23489.16 36089.26 14583.42 23194.50 21265.79 28796.18 27488.00 18683.37 24891.67 257
ACMP87.39 1088.71 21388.24 20590.12 26293.91 24381.06 30498.50 15695.67 25589.43 14280.37 27695.55 19465.67 28897.83 18590.55 15584.51 23291.47 268
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
LTVRE_ROB81.71 1984.59 27482.72 28090.18 26092.89 26683.18 27493.15 31794.74 29578.99 31575.14 31792.69 24865.64 28997.63 20269.46 32981.82 26089.74 316
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
ECVR-MVScopyleft92.29 14391.33 14895.15 13196.41 15387.84 17998.10 19894.84 29190.82 10291.42 15397.28 14365.61 29098.49 15490.33 15797.19 12099.12 104
test111192.12 14891.19 15194.94 13996.15 16787.36 19498.12 19594.84 29190.85 10190.97 15897.26 14565.60 29198.37 15789.74 16697.14 12399.07 110
pm-mvs184.68 27282.78 27890.40 25589.58 31185.18 24797.31 23694.73 29681.93 29576.05 30992.01 25765.48 29296.11 27978.75 27769.14 33189.91 314
cascas90.93 16989.33 18395.76 11595.69 18293.03 7698.99 10596.59 18580.49 30886.79 20794.45 21365.23 29398.60 15393.52 12292.18 18295.66 218
tfpnnormal83.65 28581.35 29190.56 25191.37 28888.06 17597.29 23797.87 4978.51 31976.20 30790.91 27864.78 29496.47 25461.71 35173.50 30987.13 341
pmmvs585.87 25584.40 26590.30 25988.53 32684.23 26098.60 14593.71 31881.53 29880.29 27792.02 25664.51 29595.52 30182.04 25378.34 27491.15 281
RPSCF85.33 26585.55 24384.67 32294.63 22562.28 35993.73 31293.76 31674.38 33785.23 21797.06 15764.09 29698.31 15980.98 25886.08 22493.41 228
N_pmnet70.19 32669.87 32871.12 34688.24 32830.63 38295.85 29228.70 38270.18 34768.73 34186.55 33564.04 29793.81 32853.12 36373.46 31088.94 326
DSMNet-mixed81.60 29681.43 29082.10 33284.36 34860.79 36093.63 31486.74 36579.00 31479.32 29087.15 33163.87 29889.78 35666.89 33891.92 18595.73 217
FMVSNet582.29 29180.54 29587.52 30393.79 24884.01 26493.73 31292.47 33476.92 32774.27 31986.15 33863.69 29989.24 35869.07 33074.79 29489.29 323
GBi-Net86.67 24284.96 25091.80 22195.11 20588.81 16196.77 25895.25 27782.94 27682.12 25490.25 30162.89 30094.97 31279.04 27280.24 26491.62 260
test186.67 24284.96 25091.80 22195.11 20588.81 16196.77 25895.25 27782.94 27682.12 25490.25 30162.89 30094.97 31279.04 27280.24 26491.62 260
FMVSNet286.90 23784.79 25693.24 19195.11 20592.54 8597.67 22595.86 24582.94 27680.55 27491.17 27562.89 30095.29 30777.23 28479.71 27091.90 254
VPNet88.30 21786.57 22793.49 18791.95 27791.35 9998.18 19097.20 15388.61 16384.52 22394.89 20562.21 30396.76 23889.34 17172.26 32192.36 237
PVSNet_083.28 1687.31 23385.16 24893.74 18594.78 22184.59 25698.91 11398.69 1989.81 13078.59 29893.23 24061.95 30499.34 12094.75 10055.72 36197.30 189
jajsoiax87.35 23286.51 22989.87 26987.75 33681.74 29197.03 24995.98 22488.47 16680.15 27993.80 22661.47 30596.36 26089.44 16984.47 23591.50 267
OurMVSNet-221017-084.13 28283.59 27185.77 31587.81 33370.24 35094.89 30193.65 32086.08 22576.53 30693.28 23961.41 30696.14 27880.95 25977.69 28190.93 286
Anonymous2023120680.76 29979.42 30384.79 32184.78 34772.98 34096.53 26692.97 32779.56 31274.33 31888.83 31761.27 30792.15 34760.59 35375.92 28689.24 324
LFMVS92.23 14690.84 15996.42 9298.24 9491.08 10998.24 18596.22 21083.39 26894.74 10698.31 10561.12 30898.85 14094.45 10892.82 16999.32 87
UGNet91.91 15290.85 15895.10 13297.06 13488.69 16598.01 20598.24 2992.41 7192.39 13793.61 23160.52 30999.68 7888.14 18397.25 11896.92 200
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
SixPastTwentyTwo82.63 29081.58 28885.79 31488.12 33071.01 34895.17 29992.54 33384.33 25272.93 33192.08 25460.41 31095.61 30074.47 30674.15 30390.75 294
mvs_tets87.09 23586.22 23289.71 27487.87 33281.39 29796.73 26395.90 23988.19 18079.99 28193.61 23159.96 31196.31 26889.40 17084.34 23691.43 271
test_fmvs192.35 14192.94 11690.57 24997.19 12575.43 33199.55 3394.97 28795.20 1996.82 6797.57 13359.59 31299.84 5797.30 4898.29 10096.46 209
COLMAP_ROBcopyleft82.69 1884.54 27582.82 27589.70 27596.72 14478.85 31595.89 28792.83 33071.55 34377.54 30595.89 19059.40 31399.14 13167.26 33688.26 21091.11 283
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test_vis1_n_192093.08 12893.42 10192.04 21696.31 15879.36 31299.83 496.06 22196.72 498.53 2598.10 11458.57 31499.91 4097.86 4098.79 8896.85 201
Anonymous2023121184.72 27182.65 28290.91 24097.71 10984.55 25797.28 23896.67 18166.88 35779.18 29290.87 28058.47 31596.60 24182.61 24774.20 30291.59 265
MS-PatchMatch86.75 24085.92 23789.22 28591.97 27582.47 28696.91 25396.14 21683.74 26177.73 30393.53 23458.19 31697.37 21976.75 29098.35 9887.84 333
test20.0378.51 31277.48 30781.62 33483.07 35271.03 34796.11 28292.83 33081.66 29769.31 33989.68 31157.53 31787.29 36358.65 35768.47 33386.53 343
MVS-HIRNet79.01 30775.13 31890.66 24893.82 24781.69 29285.16 35293.75 31754.54 36274.17 32059.15 36857.46 31896.58 24563.74 34594.38 15693.72 225
MDA-MVSNet-bldmvs77.82 31574.75 32087.03 30788.33 32778.52 31996.34 27292.85 32975.57 33148.87 36487.89 32157.32 31992.49 34460.79 35264.80 34690.08 308
ACMH83.09 1784.60 27382.61 28390.57 24993.18 26182.94 27696.27 27494.92 29081.01 30472.61 33393.61 23156.54 32097.79 18874.31 30781.07 26290.99 285
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ITE_SJBPF87.93 29992.26 27176.44 32893.47 32387.67 19879.95 28295.49 19756.50 32197.38 21775.24 30082.33 25789.98 313
pmmvs-eth3d78.71 31076.16 31486.38 31080.25 36081.19 30194.17 30892.13 34077.97 32166.90 35082.31 34855.76 32292.56 34273.63 31562.31 35185.38 348
K. test v381.04 29879.77 30184.83 32087.41 33770.23 35195.60 29693.93 31583.70 26367.51 34789.35 31555.76 32293.58 33176.67 29168.03 33590.67 298
AllTest84.97 26983.12 27390.52 25296.82 14078.84 31695.89 28792.17 33877.96 32275.94 31095.50 19555.48 32499.18 12571.15 32287.14 21493.55 226
TestCases90.52 25296.82 14078.84 31692.17 33877.96 32275.94 31095.50 19555.48 32499.18 12571.15 32287.14 21493.55 226
KD-MVS_self_test77.47 31675.88 31582.24 33081.59 35568.93 35492.83 32294.02 31477.03 32673.14 32783.39 34455.44 32690.42 35367.95 33457.53 35887.38 336
CMPMVSbinary58.40 2180.48 30080.11 29981.59 33585.10 34659.56 36294.14 30995.95 22968.54 35260.71 35893.31 23755.35 32797.87 18383.06 24384.85 23187.33 338
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
Anonymous2024052987.66 22985.58 24293.92 17897.59 11585.01 25198.13 19397.13 15966.69 35888.47 18896.01 18955.09 32899.51 9687.00 19484.12 23997.23 192
VDDNet90.08 18788.54 20294.69 14994.41 22887.68 18298.21 18896.40 19876.21 32993.33 12797.75 12254.93 32998.77 14394.71 10390.96 19897.61 184
ACMH+83.78 1584.21 27982.56 28489.15 28793.73 24979.16 31396.43 26994.28 30981.09 30374.00 32194.03 21854.58 33097.67 19876.10 29578.81 27290.63 299
VDD-MVS91.24 16490.18 17094.45 15797.08 13385.84 23598.40 17096.10 21886.99 20693.36 12698.16 11254.27 33199.20 12496.59 6490.63 20398.31 164
lessismore_v085.08 31885.59 34569.28 35390.56 35367.68 34690.21 30554.21 33295.46 30273.88 31162.64 34990.50 301
USDC84.74 27082.93 27490.16 26191.73 28283.54 27095.00 30093.30 32588.77 16173.19 32693.30 23853.62 33397.65 20175.88 29781.54 26189.30 322
Anonymous20240521188.84 20687.03 22194.27 16498.14 9984.18 26298.44 16395.58 26076.79 32889.34 18296.88 16653.42 33499.54 9487.53 19187.12 21699.09 107
XVG-ACMP-BASELINE85.86 25684.95 25288.57 29489.90 30577.12 32694.30 30695.60 25987.40 20382.12 25492.99 24653.42 33497.66 19985.02 21783.83 24290.92 287
test_040278.81 30976.33 31386.26 31191.18 29078.44 32095.88 28991.34 34968.55 35170.51 33789.91 30852.65 33694.99 31147.14 36579.78 26985.34 350
MIMVSNet84.48 27681.83 28692.42 20791.73 28287.36 19485.52 35194.42 30681.40 29981.91 26087.58 32351.92 33792.81 33873.84 31288.15 21197.08 197
UnsupCasMVSNet_eth78.90 30876.67 31285.58 31682.81 35474.94 33391.98 32696.31 20384.64 24865.84 35387.71 32251.33 33892.23 34672.89 31956.50 36089.56 320
tt080586.50 24784.79 25691.63 22791.97 27581.49 29496.49 26897.38 13782.24 29082.44 24595.82 19151.22 33998.25 16384.55 22380.96 26395.13 219
new-patchmatchnet74.80 32272.40 32581.99 33378.36 36372.20 34494.44 30492.36 33577.06 32563.47 35579.98 35551.04 34088.85 35960.53 35454.35 36284.92 353
pmmvs679.90 30377.31 30887.67 30284.17 34978.13 32295.86 29193.68 31967.94 35472.67 33289.62 31250.98 34195.75 29574.80 30566.04 34289.14 325
test_fmvs1_n91.07 16591.41 14790.06 26394.10 23374.31 33599.18 7494.84 29194.81 2196.37 7797.46 13750.86 34299.82 6397.14 5197.90 10396.04 215
FMVSNet183.94 28481.32 29291.80 22191.94 27888.81 16196.77 25895.25 27777.98 32078.25 30190.25 30150.37 34394.97 31273.27 31677.81 28091.62 260
UniMVSNet_ETH3D85.65 26383.79 27091.21 23290.41 30080.75 30795.36 29795.78 24778.76 31881.83 26594.33 21449.86 34496.66 23984.30 22583.52 24796.22 213
Anonymous2024052178.63 31176.90 31183.82 32682.82 35372.86 34195.72 29593.57 32173.55 34072.17 33484.79 34149.69 34592.51 34365.29 34374.50 29686.09 346
TDRefinement78.01 31375.31 31686.10 31370.06 36973.84 33793.59 31591.58 34774.51 33673.08 32991.04 27649.63 34697.12 22274.88 30359.47 35487.33 338
LF4IMVS81.94 29481.17 29384.25 32487.23 33968.87 35593.35 31691.93 34383.35 26975.40 31593.00 24549.25 34796.65 24078.88 27578.11 27587.22 340
new_pmnet76.02 31773.71 32282.95 32983.88 35072.85 34291.26 33592.26 33770.44 34662.60 35681.37 35047.64 34892.32 34561.85 35072.10 32383.68 356
TinyColmap80.42 30177.94 30587.85 30092.09 27478.58 31893.74 31189.94 35574.99 33369.77 33891.78 26346.09 34997.58 20665.17 34477.89 27687.38 336
testgi82.29 29181.00 29486.17 31287.24 33874.84 33497.39 23191.62 34688.63 16275.85 31395.42 19846.07 35091.55 35166.87 33979.94 26892.12 248
test_fmvs285.10 26785.45 24584.02 32589.85 30765.63 35798.49 15892.59 33290.45 11385.43 21693.32 23643.94 35196.59 24290.81 15284.19 23889.85 315
OpenMVS_ROBcopyleft73.86 2077.99 31475.06 31986.77 30983.81 35177.94 32496.38 27191.53 34867.54 35568.38 34287.13 33243.94 35196.08 28055.03 36181.83 25986.29 345
test_vis1_n90.40 17790.27 16990.79 24591.55 28476.48 32799.12 9094.44 30394.31 2797.34 5496.95 16143.60 35399.42 10997.57 4497.60 11096.47 208
tmp_tt53.66 33752.86 33956.05 35432.75 38241.97 37873.42 36876.12 37521.91 37539.68 37196.39 18142.59 35465.10 37478.00 28114.92 37561.08 367
pmmvs372.86 32469.76 32982.17 33173.86 36574.19 33694.20 30789.01 36164.23 36167.72 34580.91 35341.48 35588.65 36062.40 34954.02 36383.68 356
UnsupCasMVSNet_bld73.85 32370.14 32784.99 31979.44 36175.73 32988.53 34595.24 28070.12 34861.94 35774.81 36141.41 35693.62 33068.65 33251.13 36785.62 347
MVS_030484.13 28282.66 28188.52 29593.07 26380.15 30895.81 29398.21 3179.27 31386.85 20586.40 33641.33 35794.69 32176.36 29386.69 21790.73 295
MIMVSNet175.92 31873.30 32383.81 32781.29 35775.57 33092.26 32592.05 34173.09 34167.48 34886.18 33740.87 35887.64 36255.78 36070.68 33088.21 331
EG-PatchMatch MVS79.92 30277.59 30686.90 30887.06 34077.90 32596.20 28194.06 31374.61 33566.53 35188.76 31840.40 35996.20 27367.02 33783.66 24586.61 342
EGC-MVSNET60.70 33155.37 33576.72 33986.35 34371.08 34689.96 34384.44 3700.38 3791.50 38084.09 34337.30 36088.10 36140.85 36973.44 31170.97 364
test_vis1_rt81.31 29780.05 30085.11 31791.29 28970.66 34998.98 10777.39 37485.76 22968.80 34082.40 34736.56 36199.44 10592.67 13686.55 21885.24 351
DeepMVS_CXcopyleft76.08 34090.74 29651.65 37290.84 35186.47 22257.89 36087.98 32035.88 36292.60 34065.77 34265.06 34583.97 355
mvsany_test375.85 31974.52 32179.83 33773.53 36660.64 36191.73 32987.87 36483.91 25970.55 33682.52 34631.12 36393.66 32986.66 20162.83 34785.19 352
test_method70.10 32768.66 33074.41 34486.30 34455.84 36594.47 30389.82 35635.18 37066.15 35284.75 34230.54 36477.96 37170.40 32860.33 35389.44 321
PM-MVS74.88 32172.85 32480.98 33678.98 36264.75 35890.81 33985.77 36680.95 30568.23 34482.81 34529.08 36592.84 33776.54 29262.46 35085.36 349
APD_test168.93 32866.98 33174.77 34380.62 35953.15 36987.97 34685.01 36853.76 36359.26 35987.52 32525.19 36689.95 35556.20 35967.33 33981.19 360
ambc79.60 33872.76 36856.61 36476.20 36692.01 34268.25 34380.23 35423.34 36794.73 31973.78 31460.81 35287.48 335
test_fmvs375.09 32075.19 31774.81 34277.45 36454.08 36795.93 28590.64 35282.51 28673.29 32581.19 35122.29 36886.29 36485.50 21267.89 33684.06 354
test_f71.94 32570.82 32675.30 34172.77 36753.28 36891.62 33089.66 35875.44 33264.47 35478.31 35820.48 36989.56 35778.63 27866.02 34383.05 359
FPMVS61.57 32960.32 33265.34 34960.14 37642.44 37791.02 33889.72 35744.15 36542.63 36880.93 35219.02 37080.59 37042.50 36672.76 31573.00 362
EMVS39.96 34239.88 34440.18 35859.57 37732.12 38184.79 35764.57 38026.27 37326.14 37444.18 37618.73 37159.29 37717.03 37517.67 37429.12 373
Gipumacopyleft54.77 33652.22 34062.40 35386.50 34159.37 36350.20 37190.35 35436.52 36941.20 37049.49 37118.33 37281.29 36632.10 37165.34 34446.54 371
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
E-PMN41.02 34140.93 34341.29 35761.97 37433.83 37984.00 36065.17 37927.17 37227.56 37246.72 37317.63 37360.41 37619.32 37418.82 37229.61 372
PMMVS258.97 33355.07 33670.69 34762.72 37355.37 36685.97 35080.52 37149.48 36445.94 36568.31 36315.73 37480.78 36949.79 36437.12 37075.91 361
ANet_high50.71 33846.17 34164.33 35044.27 38052.30 37176.13 36778.73 37264.95 35927.37 37355.23 37014.61 37567.74 37336.01 37018.23 37372.95 363
LCM-MVSNet60.07 33256.37 33471.18 34554.81 37848.67 37382.17 36389.48 35937.95 36849.13 36369.12 36213.75 37681.76 36559.28 35551.63 36683.10 358
test_vis3_rt61.29 33058.75 33368.92 34867.41 37052.84 37091.18 33759.23 38166.96 35641.96 36958.44 36911.37 37794.72 32074.25 30857.97 35759.20 368
testf156.38 33453.73 33764.31 35164.84 37145.11 37480.50 36475.94 37638.87 36642.74 36675.07 35911.26 37881.19 36741.11 36753.27 36466.63 365
APD_test256.38 33453.73 33764.31 35164.84 37145.11 37480.50 36475.94 37638.87 36642.74 36675.07 35911.26 37881.19 36741.11 36753.27 36466.63 365
PMVScopyleft41.42 2345.67 33942.50 34255.17 35534.28 38132.37 38066.24 36978.71 37330.72 37122.04 37659.59 3674.59 38077.85 37227.49 37258.84 35655.29 369
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
wuyk23d16.71 34516.73 34916.65 35960.15 37525.22 38341.24 3725.17 3836.56 3765.48 3793.61 3793.64 38122.72 37815.20 3769.52 3761.99 376
MVEpermissive44.00 2241.70 34037.64 34553.90 35649.46 37943.37 37665.09 37066.66 37826.19 37425.77 37548.53 3723.58 38263.35 37526.15 37327.28 37154.97 370
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test12316.58 34619.47 3487.91 3603.59 3845.37 38494.32 3051.39 3852.49 37813.98 37844.60 3752.91 3832.65 37911.35 3780.57 37815.70 374
testmvs18.81 34423.05 3476.10 3614.48 3832.29 38597.78 2173.00 3843.27 37718.60 37762.71 3651.53 3842.49 38014.26 3771.80 37713.50 375
test_blank0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
uanet_test0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
DCPMVS0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
sosnet-low-res0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
sosnet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
uncertanet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
Regformer0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
ab-mvs-re8.21 34710.94 3500.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 38198.50 960.00 3850.00 3810.00 3790.00 3790.00 377
uanet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
FOURS199.50 4288.94 15799.55 3397.47 12491.32 9498.12 35
MSC_two_6792asdad99.51 299.61 2498.60 297.69 7699.98 999.55 1099.83 1599.96 10
No_MVS99.51 299.61 2498.60 297.69 7699.98 999.55 1099.83 1599.96 10
eth-test20.00 385
eth-test0.00 385
IU-MVS99.63 1895.38 2097.73 6895.54 1599.54 199.69 599.81 2399.99 1
save fliter99.34 5093.85 6099.65 2597.63 9195.69 12
test_0728_SECOND98.77 799.66 1296.37 1299.72 1497.68 7899.98 999.64 699.82 1999.96 10
GSMVS98.84 129
test_part299.54 3695.42 1898.13 33
MTGPAbinary97.45 127
MTMP99.21 7191.09 350
gm-plane-assit94.69 22388.14 17388.22 17997.20 14998.29 16190.79 153
test9_res98.60 2399.87 999.90 22
agg_prior297.84 4199.87 999.91 21
agg_prior99.54 3692.66 8197.64 8797.98 4299.61 88
test_prior492.00 9099.41 55
test_prior97.01 5699.58 3091.77 9197.57 10599.49 9899.79 35
旧先验298.67 13585.75 23098.96 1598.97 13893.84 116
新几何298.26 184
无先验98.52 15297.82 5487.20 20599.90 4387.64 19099.85 30
原ACMM298.69 132
testdata299.88 4684.16 228
testdata197.89 21092.43 68
plane_prior793.84 24585.73 236
plane_prior596.30 20497.75 19593.46 12386.17 22292.67 231
plane_prior496.52 175
plane_prior385.91 23193.65 4786.99 200
plane_prior299.02 10193.38 52
plane_prior193.90 244
plane_prior86.07 22899.14 8693.81 4486.26 221
n20.00 386
nn0.00 386
door-mid84.90 369
test1197.68 78
door85.30 367
HQP5-MVS86.39 214
HQP-NCC93.95 23899.16 7893.92 3687.57 193
ACMP_Plane93.95 23899.16 7893.92 3687.57 193
BP-MVS93.82 118
HQP4-MVS87.57 19397.77 19092.72 229
HQP3-MVS96.37 20086.29 219
NP-MVS93.94 24186.22 22196.67 173
ACMMP++_ref82.64 255
ACMMP++83.83 242