This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort by
MSP-MVS95.62 796.54 192.86 9598.31 5480.10 17197.42 9396.78 4892.20 1397.11 1098.29 3193.46 199.10 9996.01 2499.30 599.38 14
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
PC_three_145291.12 2198.33 298.42 2892.51 299.81 2098.96 299.37 199.70 3
DVP-MVS++96.05 496.41 394.96 2199.05 1085.34 4998.13 3896.77 5488.38 5997.70 698.77 1292.06 399.84 1297.47 1399.37 199.70 3
OPU-MVS97.30 299.19 892.31 399.12 698.54 2292.06 399.84 1299.11 199.37 199.74 1
GG-mvs-BLEND93.49 6994.94 14786.26 3181.62 34597.00 2988.32 12894.30 17391.23 596.21 23088.49 12197.43 7898.00 89
gg-mvs-nofinetune85.48 19382.90 21393.24 7794.51 16185.82 3979.22 34996.97 3361.19 35087.33 13753.01 36390.58 696.07 23286.07 13997.23 8397.81 106
baseline290.39 10690.21 9790.93 15990.86 25680.99 14795.20 22397.41 1586.03 10580.07 21694.61 16790.58 697.47 17387.29 13189.86 16294.35 210
CHOSEN 280x42091.71 7691.85 7091.29 15094.94 14782.69 10687.89 32396.17 13085.94 10687.27 13894.31 17290.27 895.65 25894.04 5095.86 10995.53 191
DPM-MVS96.21 295.53 1098.26 196.26 11095.09 199.15 496.98 3193.39 996.45 1798.79 1090.17 999.99 189.33 11499.25 699.70 3
ET-MVSNet_ETH3D90.01 11289.03 11792.95 9194.38 16486.77 2898.14 3596.31 12089.30 4363.33 33496.72 11990.09 1093.63 31690.70 9482.29 22798.46 51
MVSTER89.25 12588.92 12290.24 17995.98 11884.66 6996.79 14295.36 17587.19 8880.33 21190.61 22490.02 1195.97 23685.38 14478.64 24690.09 249
test_0728_THIRD88.38 5996.69 1298.76 1489.64 1299.76 2497.47 1398.84 2499.38 14
tttt051788.57 14288.19 13089.71 19893.00 20275.99 26995.67 20696.67 6980.78 21681.82 19794.40 17188.97 1397.58 16176.05 23486.31 19195.57 190
thisisatest053089.65 11789.02 11891.53 14393.46 19180.78 15396.52 15896.67 6981.69 20683.79 17294.90 16388.85 1497.68 15777.80 21087.49 18596.14 178
thisisatest051590.95 9490.26 9593.01 8894.03 17484.27 7697.91 5196.67 6983.18 17886.87 14295.51 14288.66 1597.85 15280.46 18789.01 16896.92 154
SED-MVS95.88 596.22 494.87 2299.03 1685.03 6199.12 696.78 4888.72 5197.79 498.91 388.48 1699.82 1798.15 398.97 1799.74 1
test_241102_ONE99.03 1685.03 6196.78 4888.72 5197.79 498.90 688.48 1699.82 17
DPE-MVScopyleft95.32 1095.55 994.64 2898.79 2584.87 6697.77 6096.74 5986.11 10196.54 1698.89 788.39 1899.74 3297.67 1199.05 1299.31 18
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_one_060198.91 2084.56 7196.70 6488.06 6696.57 1598.77 1288.04 19
test_241102_TWO96.78 4888.72 5197.70 698.91 387.86 2099.82 1798.15 399.00 1599.47 9
DVP-MVScopyleft95.58 895.91 894.57 2999.05 1085.18 5499.06 996.46 10088.75 4996.69 1298.76 1487.69 2199.76 2497.90 898.85 2298.77 34
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.05 1085.18 5499.11 896.78 4888.75 4997.65 898.91 387.69 21
MCST-MVS96.17 396.12 696.32 799.42 289.36 1098.94 1597.10 2595.17 292.11 7298.46 2687.33 2399.97 297.21 1699.31 499.63 7
TSAR-MVS + GP.94.35 2294.50 1993.89 4997.38 9683.04 10298.10 4095.29 18191.57 1693.81 5197.45 8486.64 2499.43 6596.28 2194.01 12899.20 22
DWT-MVSNet_test90.52 10589.80 10992.70 10395.73 12482.20 11793.69 26096.55 8988.34 6187.04 14195.34 14586.53 2597.55 16476.32 23188.66 17398.34 56
TSAR-MVS + MP.94.79 1595.17 1393.64 6097.66 8084.10 7895.85 20196.42 10591.26 2097.49 996.80 11686.50 2698.49 13195.54 3299.03 1398.33 57
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CNVR-MVS96.30 196.54 195.55 1499.31 587.69 2199.06 997.12 2394.66 396.79 1198.78 1186.42 2799.95 397.59 1299.18 799.00 27
DeepPCF-MVS89.82 194.61 1796.17 589.91 19197.09 10270.21 31998.99 1496.69 6795.57 195.08 3199.23 186.40 2899.87 897.84 1098.66 3499.65 6
ETH3 D test640095.56 995.41 1296.00 999.02 1989.42 998.75 1896.80 4787.28 8395.88 2298.95 285.92 2999.41 6697.15 1798.95 2099.18 24
HPM-MVS++copyleft95.32 1095.48 1194.85 2398.62 3886.04 3497.81 5896.93 3792.45 1195.69 2398.50 2485.38 3099.85 1094.75 4299.18 798.65 42
NCCC95.63 695.94 794.69 2799.21 785.15 5999.16 396.96 3494.11 695.59 2498.64 2185.07 3199.91 495.61 3199.10 999.00 27
EPP-MVSNet89.76 11589.72 11089.87 19293.78 17876.02 26897.22 10096.51 9479.35 24885.11 15395.01 16184.82 3297.10 19387.46 13088.21 17996.50 167
agg_prior194.10 2994.31 2693.48 7098.59 3983.13 9897.77 6096.56 8784.38 14894.19 4598.13 4184.66 3399.16 9395.74 2998.74 3198.15 74
TEST998.64 3583.71 8597.82 5696.65 7384.29 15295.16 2898.09 4684.39 3499.36 74
train_agg94.28 2394.45 2193.74 5498.64 3583.71 8597.82 5696.65 7384.50 14495.16 2898.09 4684.33 3599.36 7495.91 2798.96 1998.16 72
test_898.63 3783.64 8897.81 5896.63 7884.50 14495.10 3098.11 4584.33 3599.23 80
SD-MVS94.84 1495.02 1494.29 3797.87 7584.61 7097.76 6496.19 12989.59 3996.66 1498.17 3984.33 3599.60 5096.09 2298.50 4198.66 41
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
APDe-MVS94.56 1894.75 1593.96 4898.84 2483.40 9298.04 4696.41 10685.79 10995.00 3498.28 3284.32 3899.18 9197.35 1598.77 2999.28 19
旧先验197.39 9379.58 18496.54 9098.08 4984.00 3997.42 7997.62 121
CSCG92.02 6891.65 7593.12 8298.53 4180.59 15797.47 8597.18 2177.06 28384.64 16197.98 5783.98 4099.52 5790.72 9397.33 8199.23 21
IB-MVS85.34 488.67 13887.14 15793.26 7693.12 20084.32 7398.76 1797.27 1887.19 8879.36 22090.45 22783.92 4198.53 12984.41 15169.79 29496.93 152
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
CostFormer89.08 12688.39 12891.15 15493.13 19979.15 19588.61 31796.11 13383.14 17989.58 11186.93 27583.83 4296.87 20588.22 12585.92 19797.42 133
SteuartSystems-ACMMP94.13 2894.44 2293.20 7995.41 13181.35 14099.02 1396.59 8389.50 4094.18 4898.36 3083.68 4399.45 6494.77 4198.45 4498.81 33
Skip Steuart: Steuart Systems R&D Blog.
RRT_test8_iter0587.14 16586.41 16689.32 20294.41 16381.10 14597.06 12395.33 17984.67 13976.27 25390.48 22583.60 4496.33 22485.10 14570.78 28390.53 238
ETH3D-3000-0.194.43 2094.42 2394.45 3197.78 7685.78 4097.98 4896.53 9285.29 12395.45 2598.81 883.36 4599.38 6896.07 2398.53 3798.19 69
DELS-MVS94.98 1294.49 2096.44 696.42 10890.59 799.21 297.02 2894.40 591.46 8197.08 10483.32 4699.69 4092.83 6898.70 3399.04 25
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
test_prior394.03 3294.34 2593.09 8498.68 2981.91 12398.37 2896.40 10986.08 10394.57 4198.02 5283.14 4799.06 10195.05 3898.79 2798.29 63
test_prior298.37 2886.08 10394.57 4198.02 5283.14 4795.05 3898.79 27
ETH3D cwj APD-0.1693.91 3693.76 3494.36 3496.70 10685.74 4197.22 10096.41 10683.94 16194.13 4998.69 2083.13 4999.37 7295.25 3798.39 5197.97 94
SMA-MVScopyleft94.70 1694.68 1694.76 2598.02 6985.94 3797.47 8596.77 5485.32 12097.92 398.70 1883.09 5099.84 1295.79 2899.08 1098.49 50
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
ZD-MVS99.09 983.22 9796.60 8282.88 18793.61 5498.06 5182.93 5199.14 9595.51 3398.49 42
xxxxxxxxxxxxxcwj94.38 2194.62 1893.68 5898.24 5783.34 9398.61 2392.69 29791.32 1895.07 3298.74 1682.93 5199.38 6895.42 3498.51 3898.32 58
SF-MVS94.17 2694.05 3194.55 3097.56 8585.95 3597.73 6696.43 10484.02 15895.07 3298.74 1682.93 5199.38 6895.42 3498.51 3898.32 58
9.1494.26 2898.10 6598.14 3596.52 9384.74 13594.83 3798.80 982.80 5499.37 7295.95 2698.42 46
testtj94.09 3094.08 3094.09 4599.28 683.32 9597.59 7596.61 7983.60 17394.77 3998.46 2682.72 5599.64 4695.29 3698.42 4699.32 17
segment_acmp82.69 56
Regformer-194.00 3394.04 3293.87 5098.41 4884.29 7497.43 9197.04 2789.50 4092.75 6698.13 4182.60 5799.26 7993.55 5596.99 8898.06 81
Regformer-293.92 3494.01 3393.67 5998.41 4883.75 8497.43 9197.00 2989.43 4292.69 6798.13 4182.48 5899.22 8293.51 5696.99 8898.04 82
PAPM92.87 5092.40 5894.30 3692.25 22387.85 1896.40 17096.38 11391.07 2288.72 12296.90 10982.11 5997.37 17890.05 10497.70 7297.67 116
APD-MVScopyleft93.61 3893.59 3793.69 5798.76 2683.26 9697.21 10296.09 13482.41 19594.65 4098.21 3481.96 6098.81 11894.65 4498.36 5499.01 26
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CDPH-MVS93.12 4492.91 4893.74 5498.65 3483.88 8097.67 7096.26 12283.00 18493.22 5898.24 3381.31 6199.21 8489.12 11598.74 3198.14 75
MG-MVS94.25 2593.72 3595.85 1199.38 389.35 1197.98 4898.09 889.99 3592.34 6996.97 10881.30 6298.99 10588.54 11998.88 2199.20 22
test1294.25 3898.34 5285.55 4696.35 11692.36 6880.84 6399.22 8298.31 5697.98 91
Regformer-393.19 4293.19 4493.19 8098.10 6583.01 10397.08 12196.98 3188.98 4691.35 8697.89 6280.80 6499.23 8092.30 7495.20 11597.32 138
baseline188.85 13387.49 14692.93 9395.21 13786.85 2795.47 21394.61 21787.29 8283.11 18094.99 16280.70 6596.89 20382.28 17873.72 26795.05 198
tpmrst88.36 14787.38 15091.31 14894.36 16579.92 17387.32 32795.26 18385.32 12088.34 12786.13 29180.60 6696.70 21383.78 15885.34 20597.30 141
Regformer-493.06 4693.12 4592.89 9498.10 6582.20 11797.08 12196.92 3988.87 4891.23 8897.89 6280.57 6799.19 8992.21 7695.20 11597.29 142
PHI-MVS93.59 3993.63 3693.48 7098.05 6881.76 13198.64 2197.13 2282.60 19394.09 5098.49 2580.35 6899.85 1094.74 4398.62 3598.83 32
CDS-MVSNet89.50 11988.96 12091.14 15591.94 23980.93 14997.09 11995.81 15084.26 15384.72 15994.20 17780.31 6995.64 25983.37 17088.96 16996.85 157
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
tpm287.35 16486.26 16790.62 16892.93 20578.67 20788.06 32295.99 13979.33 24987.40 13586.43 28680.28 7096.40 22180.23 19085.73 20196.79 158
1112_ss88.60 14187.47 14892.00 12893.21 19480.97 14896.47 16192.46 29983.64 17180.86 20497.30 9480.24 7197.62 15977.60 21585.49 20297.40 135
Test_1112_low_res88.03 15586.73 16391.94 13093.15 19780.88 15096.44 16692.41 30083.59 17480.74 20691.16 21580.18 7297.59 16077.48 21885.40 20397.36 137
DeepC-MVS_fast89.06 294.48 1994.30 2795.02 1998.86 2385.68 4498.06 4496.64 7693.64 891.74 7898.54 2280.17 7399.90 592.28 7598.75 3099.49 8
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MSLP-MVS++94.28 2394.39 2493.97 4798.30 5584.06 7998.64 2196.93 3790.71 2693.08 6098.70 1879.98 7499.21 8494.12 4999.07 1198.63 43
EPNet94.06 3194.15 2993.76 5397.27 9984.35 7298.29 3097.64 1394.57 495.36 2696.88 11179.96 7599.12 9891.30 8496.11 10497.82 105
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MVS_111021_HR93.41 4193.39 4093.47 7397.34 9782.83 10597.56 7898.27 689.16 4589.71 10797.14 10079.77 7699.56 5593.65 5397.94 6698.02 84
miper_enhance_ethall85.95 18585.20 17888.19 22894.85 15079.76 17696.00 19094.06 24582.98 18577.74 23388.76 24879.42 7795.46 26880.58 18672.42 27589.36 264
TESTMET0.1,189.83 11389.34 11591.31 14892.54 21480.19 16997.11 11596.57 8586.15 10086.85 14391.83 20879.32 7896.95 19981.30 18292.35 14796.77 160
WTY-MVS92.65 5991.68 7495.56 1396.00 11788.90 1298.23 3297.65 1288.57 5589.82 10697.22 9879.29 7999.06 10189.57 11088.73 17298.73 39
112190.66 9989.82 10893.16 8197.39 9381.71 13493.33 26996.66 7274.45 29991.38 8297.55 8279.27 8099.52 5779.95 19398.43 4598.26 66
HY-MVS84.06 691.63 7890.37 9495.39 1696.12 11488.25 1490.22 30697.58 1488.33 6290.50 9891.96 20479.26 8199.06 10190.29 10289.07 16798.88 31
PAPM_NR91.46 8290.82 8693.37 7498.50 4581.81 13095.03 23296.13 13184.65 14086.10 14897.65 7679.24 8299.75 3083.20 17296.88 9398.56 46
alignmvs92.97 4892.26 6295.12 1895.54 12887.77 1998.67 1996.38 11388.04 6793.01 6197.45 8479.20 8398.60 12593.25 6288.76 17198.99 29
新几何193.12 8297.44 8981.60 13796.71 6374.54 29891.22 8997.57 7879.13 8499.51 6077.40 21998.46 4398.26 66
CS-MVS93.12 4493.27 4192.64 10693.86 17783.12 10098.85 1694.85 20188.61 5494.19 4597.42 8879.02 8597.02 19594.89 4097.77 7097.78 108
JIA-IIPM79.00 27677.20 27484.40 29389.74 27564.06 34375.30 35895.44 17062.15 34581.90 19559.08 36178.92 8695.59 26366.51 29585.78 20093.54 221
MVSFormer91.36 8590.57 8993.73 5693.00 20288.08 1694.80 23794.48 22280.74 21794.90 3597.13 10178.84 8795.10 28783.77 15997.46 7598.02 84
lupinMVS93.87 3793.58 3894.75 2693.00 20288.08 1699.15 495.50 16691.03 2394.90 3597.66 7278.84 8797.56 16294.64 4597.46 7598.62 44
testdata90.13 18295.92 11974.17 28696.49 9973.49 30794.82 3897.99 5578.80 8997.93 14683.53 16897.52 7498.29 63
PAPR92.74 5292.17 6594.45 3198.89 2284.87 6697.20 10496.20 12787.73 7588.40 12698.12 4478.71 9099.76 2487.99 12696.28 10298.74 35
EI-MVSNet-Vis-set91.84 7291.77 7392.04 12797.60 8281.17 14296.61 15396.87 4188.20 6489.19 11697.55 8278.69 9199.14 9590.29 10290.94 15795.80 184
HFP-MVS92.89 4992.86 5092.98 8998.71 2781.12 14397.58 7696.70 6485.20 12691.75 7697.97 5978.47 9299.71 3690.95 8798.41 4898.12 77
#test#92.99 4792.99 4692.98 8998.71 2781.12 14397.77 6096.70 6485.75 11091.75 7697.97 5978.47 9299.71 3691.36 8398.41 4898.12 77
ZNCC-MVS92.75 5192.60 5693.23 7898.24 5781.82 12997.63 7196.50 9685.00 13191.05 9197.74 7078.38 9499.80 2390.48 9698.34 5598.07 80
Patchmatch-test78.25 28074.72 29388.83 21291.20 24874.10 28773.91 36188.70 34259.89 35666.82 31985.12 30778.38 9494.54 30048.84 35579.58 23897.86 101
Vis-MVSNet (Re-imp)88.88 13288.87 12388.91 20993.89 17674.43 28496.93 13594.19 23684.39 14783.22 17895.67 13778.24 9694.70 29778.88 20694.40 12597.61 122
tpm85.55 19184.47 19288.80 21390.19 26775.39 27688.79 31594.69 20884.83 13383.96 16985.21 30378.22 9794.68 29876.32 23178.02 25396.34 172
MP-MVScopyleft92.61 6092.67 5492.42 11498.13 6479.73 18097.33 9896.20 12785.63 11290.53 9797.66 7278.14 9899.70 3992.12 7798.30 5797.85 102
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
HyFIR lowres test89.36 12188.60 12591.63 14194.91 14980.76 15495.60 20995.53 16382.56 19484.03 16691.24 21478.03 9996.81 20987.07 13488.41 17797.32 138
ACMMP_NAP93.46 4093.23 4394.17 4297.16 10084.28 7596.82 14096.65 7386.24 9994.27 4497.99 5577.94 10099.83 1693.39 5798.57 3698.39 55
原ACMM191.22 15397.77 7778.10 22696.61 7981.05 21291.28 8797.42 8877.92 10198.98 10679.85 19698.51 3896.59 165
EI-MVSNet-UG-set91.35 8691.22 8091.73 13697.39 9380.68 15596.47 16196.83 4487.92 6988.30 12997.36 9177.84 10299.13 9789.43 11389.45 16495.37 194
test250690.96 9390.39 9292.65 10593.54 18582.46 11296.37 17197.35 1686.78 9587.55 13495.25 14677.83 10397.50 17084.07 15494.80 12097.98 91
patchmatchnet-post77.09 34777.78 10495.39 269
sam_mvs177.59 10597.54 124
EIA-MVS91.73 7392.05 6890.78 16594.52 15876.40 26098.06 4495.34 17889.19 4488.90 12097.28 9677.56 10697.73 15690.77 9296.86 9598.20 68
GST-MVS92.43 6492.22 6493.04 8798.17 6281.64 13697.40 9596.38 11384.71 13790.90 9397.40 9077.55 10799.76 2489.75 10897.74 7197.72 112
MP-MVS-pluss92.58 6192.35 5993.29 7597.30 9882.53 10996.44 16696.04 13884.68 13889.12 11798.37 2977.48 10899.74 3293.31 6198.38 5297.59 123
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
CP-MVS92.54 6292.60 5692.34 11698.50 4579.90 17498.40 2696.40 10984.75 13490.48 9998.09 4677.40 10999.21 8491.15 8698.23 5997.92 97
region2R92.72 5592.70 5392.79 9898.68 2980.53 16197.53 8096.51 9485.22 12491.94 7497.98 5777.26 11099.67 4490.83 9198.37 5398.18 70
PatchmatchNetpermissive86.83 17285.12 18291.95 12994.12 16982.27 11586.55 33395.64 15984.59 14282.98 18284.99 30977.26 11095.96 23968.61 28591.34 15597.64 119
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
XVS92.69 5792.71 5192.63 10798.52 4280.29 16497.37 9696.44 10287.04 9191.38 8297.83 6777.24 11299.59 5190.46 9798.07 6298.02 84
X-MVStestdata86.26 18184.14 19792.63 10798.52 4280.29 16497.37 9696.44 10287.04 9191.38 8220.73 37377.24 11299.59 5190.46 9798.07 6298.02 84
ETV-MVS92.72 5592.87 4992.28 11994.54 15781.89 12597.98 4895.21 18489.77 3893.11 5996.83 11377.23 11497.50 17095.74 2995.38 11397.44 132
CS-MVS-test91.92 7092.11 6691.37 14694.00 17579.66 18198.39 2794.38 22987.14 9092.87 6497.05 10677.17 11596.97 19891.44 8296.55 10097.47 131
ACMMPR92.69 5792.67 5492.75 9998.66 3280.57 15897.58 7696.69 6785.20 12691.57 8097.92 6177.01 11699.67 4490.95 8798.41 4898.00 89
UniMVSNet_NR-MVSNet85.49 19284.59 18888.21 22789.44 28179.36 18896.71 14996.41 10685.22 12478.11 23190.98 21976.97 11795.14 28379.14 20368.30 30890.12 247
DP-MVS Recon91.72 7590.85 8594.34 3599.50 185.00 6398.51 2595.96 14180.57 22188.08 13197.63 7776.84 11899.89 785.67 14194.88 11998.13 76
CANet94.89 1394.64 1795.63 1297.55 8688.12 1599.06 996.39 11294.07 795.34 2797.80 6876.83 11999.87 897.08 1897.64 7398.89 30
PVSNet_Blended_VisFu91.24 8890.77 8792.66 10495.09 14082.40 11397.77 6095.87 14888.26 6386.39 14493.94 18376.77 12099.27 7788.80 11894.00 12996.31 175
FIs86.73 17686.10 16888.61 21690.05 27080.21 16896.14 18696.95 3585.56 11678.37 22992.30 19976.73 12195.28 27679.51 19779.27 24090.35 241
zzz-MVS92.74 5292.71 5192.86 9597.90 7180.85 15196.47 16196.33 11787.92 6990.20 10298.18 3576.71 12299.76 2492.57 7298.09 6097.96 95
MTAPA92.45 6392.31 6092.86 9597.90 7180.85 15192.88 28296.33 11787.92 6990.20 10298.18 3576.71 12299.76 2492.57 7298.09 6097.96 95
miper_ehance_all_eth84.57 20683.60 20587.50 24292.64 21278.25 21995.40 21793.47 27279.28 25276.41 24987.64 26476.53 12495.24 27878.58 20772.42 27589.01 275
SR-MVS92.16 6692.27 6191.83 13598.37 5178.41 21496.67 15295.76 15282.19 19991.97 7398.07 5076.44 12598.64 12293.71 5297.27 8298.45 52
PVSNet_BlendedMVS90.05 11189.96 10390.33 17797.47 8783.86 8198.02 4796.73 6087.98 6889.53 11289.61 23876.42 12699.57 5394.29 4779.59 23787.57 306
PVSNet_Blended93.13 4392.98 4793.57 6497.47 8783.86 8199.32 196.73 6091.02 2489.53 11296.21 12576.42 12699.57 5394.29 4795.81 11197.29 142
test-mter88.95 12888.60 12589.98 18792.26 22177.23 24897.11 11595.96 14185.32 12086.30 14691.38 21176.37 12896.78 21180.82 18491.92 15195.94 181
test22296.15 11378.41 21495.87 19996.46 10071.97 31889.66 10997.45 8476.33 12998.24 5898.30 62
FC-MVSNet-test85.96 18485.39 17587.66 23689.38 28278.02 22795.65 20896.87 4185.12 12877.34 23591.94 20676.28 13094.74 29677.09 22078.82 24490.21 245
test_post33.80 36976.17 13195.97 236
PGM-MVS91.93 6991.80 7292.32 11898.27 5679.74 17995.28 21897.27 1883.83 16690.89 9497.78 6976.12 13299.56 5588.82 11797.93 6897.66 117
Patchmatch-RL test76.65 29474.01 30184.55 28977.37 35764.23 34178.49 35382.84 36278.48 26564.63 32973.40 35376.05 13391.70 33676.99 22157.84 34497.72 112
cl2285.11 19784.17 19687.92 23195.06 14478.82 20295.51 21194.22 23479.74 24276.77 24387.92 26175.96 13495.68 25579.93 19572.42 27589.27 265
TAMVS88.48 14387.79 13790.56 17091.09 25179.18 19396.45 16495.88 14683.64 17183.12 17993.33 19075.94 13595.74 25482.40 17788.27 17896.75 162
EPNet_dtu87.65 16187.89 13486.93 25494.57 15571.37 31396.72 14796.50 9688.56 5687.12 13995.02 16075.91 13694.01 30966.62 29290.00 16195.42 193
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
mvs_anonymous88.68 13787.62 14291.86 13294.80 15181.69 13593.53 26594.92 19582.03 20178.87 22490.43 22875.77 13795.34 27285.04 14793.16 13998.55 48
test117291.64 7792.00 6990.54 17198.20 6174.48 28396.45 16495.65 15781.97 20391.63 7998.02 5275.76 13898.61 12393.16 6397.17 8498.52 49
SR-MVS-dyc-post91.29 8791.45 7890.80 16397.76 7876.03 26696.20 18395.44 17080.56 22290.72 9597.84 6575.76 13898.61 12391.99 7996.79 9697.75 110
test_yl91.46 8290.53 9094.24 3997.41 9185.18 5498.08 4197.72 1080.94 21389.85 10496.14 12675.61 14098.81 11890.42 10088.56 17598.74 35
DCV-MVSNet91.46 8290.53 9094.24 3997.41 9185.18 5498.08 4197.72 1080.94 21389.85 10496.14 12675.61 14098.81 11890.42 10088.56 17598.74 35
HPM-MVScopyleft91.62 7991.53 7791.89 13197.88 7479.22 19296.99 12695.73 15482.07 20089.50 11497.19 9975.59 14298.93 11390.91 8997.94 6697.54 124
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
mPP-MVS91.88 7191.82 7192.07 12598.38 5078.63 20897.29 9996.09 13485.12 12888.45 12597.66 7275.53 14399.68 4289.83 10698.02 6597.88 98
PatchT79.75 26876.85 27888.42 21889.55 27875.49 27577.37 35594.61 21763.07 34282.46 18573.32 35475.52 14493.41 31951.36 34884.43 20896.36 170
CR-MVSNet83.53 22181.36 23790.06 18490.16 26879.75 17779.02 35191.12 31684.24 15482.27 19180.35 33675.45 14593.67 31563.37 31086.25 19296.75 162
Patchmtry77.36 28974.59 29485.67 27489.75 27375.75 27377.85 35491.12 31660.28 35371.23 29680.35 33675.45 14593.56 31757.94 32767.34 32087.68 302
thres100view90088.30 14986.95 16192.33 11796.10 11584.90 6597.14 11298.85 282.69 19183.41 17593.66 18875.43 14797.93 14669.04 28186.24 19494.17 211
thres600view788.06 15486.70 16492.15 12396.10 11585.17 5897.14 11298.85 282.70 19083.41 17593.66 18875.43 14797.82 15367.13 29085.88 19893.45 224
UniMVSNet (Re)85.31 19584.23 19588.55 21789.75 27380.55 15996.72 14796.89 4085.42 11778.40 22888.93 24675.38 14995.52 26678.58 20768.02 31189.57 257
tfpn200view988.48 14387.15 15592.47 11196.21 11185.30 5297.44 8798.85 283.37 17583.99 16793.82 18575.36 15097.93 14669.04 28186.24 19494.17 211
thres40088.42 14687.15 15592.23 12096.21 11185.30 5297.44 8798.85 283.37 17583.99 16793.82 18575.36 15097.93 14669.04 28186.24 19493.45 224
sam_mvs75.35 152
jason92.73 5492.23 6394.21 4190.50 26287.30 2598.65 2095.09 18790.61 2792.76 6597.13 10175.28 15397.30 18193.32 6096.75 9898.02 84
jason: jason.
c3_l83.80 21782.65 21987.25 24992.10 22977.74 23995.25 22193.04 29278.58 26476.01 25787.21 27175.25 15495.11 28577.54 21768.89 30288.91 281
MVS_Test90.29 10989.18 11693.62 6295.23 13584.93 6494.41 24394.66 21284.31 15090.37 10191.02 21775.13 15597.82 15383.11 17494.42 12498.12 77
thres20088.92 13087.65 13992.73 10196.30 10985.62 4597.85 5498.86 184.38 14884.82 15793.99 18275.12 15698.01 14470.86 27586.67 18894.56 209
EPMVS87.47 16385.90 17192.18 12295.41 13182.26 11687.00 32996.28 12185.88 10884.23 16485.57 29775.07 15796.26 22771.14 27392.50 14498.03 83
UA-Net88.92 13088.48 12790.24 17994.06 17177.18 25093.04 27894.66 21287.39 8191.09 9093.89 18474.92 15898.18 14375.83 23691.43 15495.35 195
tpm cat183.63 22081.38 23690.39 17493.53 19078.19 22585.56 33995.09 18770.78 32378.51 22783.28 32274.80 15997.03 19466.77 29184.05 21095.95 180
h-mvs3389.30 12388.95 12190.36 17595.07 14276.04 26596.96 13297.11 2490.39 3192.22 7095.10 15874.70 16098.86 11593.14 6465.89 32796.16 177
hse-mvs288.22 15288.21 12988.25 22593.54 18573.41 28995.41 21695.89 14590.39 3192.22 7094.22 17574.70 16096.66 21693.14 6464.37 33294.69 208
APD-MVS_3200maxsize91.23 8991.35 7990.89 16197.89 7376.35 26196.30 17795.52 16579.82 24091.03 9297.88 6474.70 16098.54 12892.11 7896.89 9297.77 109
IS-MVSNet88.67 13888.16 13190.20 18193.61 18276.86 25396.77 14593.07 29184.02 15883.62 17495.60 14074.69 16396.24 22978.43 20993.66 13497.49 130
DROMVSNet91.73 7392.11 6690.58 16993.54 18577.77 23798.07 4394.40 22887.44 7992.99 6297.11 10374.59 16496.87 20593.75 5197.08 8697.11 147
MDTV_nov1_ep1383.69 20094.09 17081.01 14686.78 33196.09 13483.81 16784.75 15884.32 31474.44 16596.54 21763.88 30685.07 206
MDTV_nov1_ep13_2view81.74 13286.80 33080.65 21985.65 14974.26 16676.52 22796.98 150
cl____83.27 22582.12 22486.74 25592.20 22475.95 27095.11 22893.27 28478.44 26774.82 27287.02 27474.19 16795.19 28074.67 24669.32 29889.09 270
DIV-MVS_self_test83.27 22582.12 22486.74 25592.19 22575.92 27195.11 22893.26 28578.44 26774.81 27387.08 27374.19 16795.19 28074.66 24769.30 29989.11 269
casdiffmvs90.95 9490.39 9292.63 10792.82 20782.53 10996.83 13994.47 22487.69 7688.47 12495.56 14174.04 16997.54 16790.90 9092.74 14197.83 104
tpmvs83.04 23180.77 24289.84 19395.43 13077.96 23085.59 33895.32 18075.31 29276.27 25383.70 31973.89 17097.41 17559.53 32181.93 22894.14 213
test_post185.88 33730.24 37273.77 17195.07 28973.89 253
baseline90.76 9790.10 10092.74 10092.90 20682.56 10894.60 23994.56 22087.69 7689.06 11995.67 13773.76 17297.51 16990.43 9992.23 14998.16 72
EI-MVSNet85.80 18785.20 17887.59 23891.55 24477.41 24495.13 22695.36 17580.43 22780.33 21194.71 16573.72 17395.97 23676.96 22378.64 24689.39 259
IterMVS-LS83.93 21582.80 21787.31 24791.46 24777.39 24595.66 20793.43 27580.44 22575.51 26687.26 26973.72 17395.16 28276.99 22170.72 28589.39 259
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
AUN-MVS86.25 18285.57 17288.26 22493.57 18473.38 29095.45 21495.88 14683.94 16185.47 15194.21 17673.70 17596.67 21583.54 16764.41 33194.73 207
miper_lstm_enhance81.66 25280.66 24584.67 28691.19 24971.97 30591.94 29293.19 28677.86 27172.27 29285.26 30173.46 17693.42 31873.71 25667.05 32288.61 283
diffmvs91.17 9090.74 8892.44 11393.11 20182.50 11196.25 18093.62 26787.79 7390.40 10095.93 13073.44 17797.42 17493.62 5492.55 14397.41 134
RE-MVS-def91.18 8397.76 7876.03 26696.20 18395.44 17080.56 22290.72 9597.84 6573.36 17891.99 7996.79 9697.75 110
DeepC-MVS86.58 391.53 8191.06 8492.94 9294.52 15881.89 12595.95 19395.98 14090.76 2583.76 17396.76 11773.24 17999.71 3691.67 8196.96 9097.22 145
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
RPMNet79.85 26775.92 28591.64 13990.16 26879.75 17779.02 35195.44 17058.43 35982.27 19172.55 35573.03 18098.41 13546.10 35986.25 19296.75 162
CHOSEN 1792x268891.07 9190.21 9793.64 6095.18 13883.53 8996.26 17996.13 13188.92 4784.90 15693.10 19472.86 18199.62 4988.86 11695.67 11297.79 107
eth_miper_zixun_eth83.12 22982.01 22686.47 26091.85 24274.80 27994.33 24693.18 28779.11 25575.74 26587.25 27072.71 18295.32 27476.78 22467.13 32189.27 265
canonicalmvs92.27 6591.22 8095.41 1595.80 12188.31 1397.09 11994.64 21588.49 5792.99 6297.31 9272.68 18398.57 12793.38 5988.58 17499.36 16
API-MVS90.18 11088.97 11993.80 5298.66 3282.95 10497.50 8495.63 16075.16 29386.31 14597.69 7172.49 18499.90 581.26 18396.07 10598.56 46
nrg03086.79 17485.43 17490.87 16288.76 28585.34 4997.06 12394.33 23184.31 15080.45 20991.98 20372.36 18596.36 22388.48 12271.13 28090.93 235
MVS_111021_LR91.60 8091.64 7691.47 14595.74 12278.79 20596.15 18596.77 5488.49 5788.64 12397.07 10572.33 18699.19 8993.13 6696.48 10196.43 169
test-LLR88.48 14387.98 13389.98 18792.26 22177.23 24897.11 11595.96 14183.76 16886.30 14691.38 21172.30 18796.78 21180.82 18491.92 15195.94 181
test0.0.03 182.79 23582.48 22183.74 30086.81 30472.22 29996.52 15895.03 19183.76 16873.00 28593.20 19172.30 18788.88 35164.15 30577.52 25490.12 247
KD-MVS_2432*160077.63 28674.92 29185.77 27190.86 25679.44 18588.08 32093.92 24976.26 28567.05 31782.78 32472.15 18991.92 33261.53 31441.62 36485.94 328
miper_refine_blended77.63 28674.92 29185.77 27190.86 25679.44 18588.08 32093.92 24976.26 28567.05 31782.78 32472.15 18991.92 33261.53 31441.62 36485.94 328
Effi-MVS+90.70 9889.90 10693.09 8493.61 18283.48 9095.20 22392.79 29583.22 17791.82 7595.70 13571.82 19197.48 17291.25 8593.67 13398.32 58
sss90.87 9689.96 10393.60 6394.15 16883.84 8397.14 11298.13 785.93 10789.68 10896.09 12871.67 19299.30 7687.69 12789.16 16697.66 117
Test By Simon71.65 193
HPM-MVS_fast90.38 10890.17 9991.03 15797.61 8177.35 24697.15 11195.48 16779.51 24688.79 12196.90 10971.64 19498.81 11887.01 13597.44 7796.94 151
MVS90.60 10188.64 12496.50 594.25 16690.53 893.33 26997.21 2077.59 27478.88 22397.31 9271.52 19599.69 4089.60 10998.03 6499.27 20
dp84.30 21282.31 22390.28 17894.24 16777.97 22986.57 33295.53 16379.94 23980.75 20585.16 30571.49 19696.39 22263.73 30783.36 21596.48 168
ACMMPcopyleft90.39 10689.97 10291.64 13997.58 8478.21 22396.78 14396.72 6284.73 13684.72 15997.23 9771.22 19799.63 4888.37 12492.41 14697.08 149
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
PCF-MVS84.09 586.77 17585.00 18492.08 12492.06 23383.07 10192.14 29094.47 22479.63 24476.90 24294.78 16471.15 19899.20 8872.87 25991.05 15693.98 216
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
TAPA-MVS81.61 1285.02 19883.67 20189.06 20596.79 10473.27 29495.92 19594.79 20674.81 29680.47 20896.83 11371.07 19998.19 14249.82 35392.57 14295.71 187
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
pcd_1.5k_mvsjas5.92 3457.89 3480.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 37771.04 2000.00 3780.00 3760.00 3760.00 374
PS-MVSNAJss84.91 20084.30 19486.74 25585.89 31774.40 28594.95 23394.16 23883.93 16376.45 24890.11 23571.04 20095.77 24983.16 17379.02 24390.06 251
PS-MVSNAJ94.17 2693.52 3996.10 895.65 12692.35 298.21 3395.79 15192.42 1296.24 1898.18 3571.04 20099.17 9296.77 1997.39 8096.79 158
xiu_mvs_v2_base93.92 3493.26 4295.91 1095.07 14292.02 698.19 3495.68 15692.06 1496.01 2198.14 4070.83 20398.96 10796.74 2096.57 9996.76 161
RRT_MVS86.89 16985.96 16989.68 19995.01 14684.13 7796.33 17594.98 19384.20 15580.10 21592.07 20270.52 20495.01 29183.30 17177.14 25589.91 253
CPTT-MVS89.72 11689.87 10789.29 20398.33 5373.30 29297.70 6895.35 17775.68 28987.40 13597.44 8770.43 20598.25 13989.56 11196.90 9196.33 174
WR-MVS_H81.02 25880.09 25283.79 29888.08 29571.26 31494.46 24196.54 9080.08 23572.81 28886.82 27670.36 20692.65 32464.18 30467.50 31787.46 310
NR-MVSNet83.35 22381.52 23588.84 21188.76 28581.31 14194.45 24295.16 18584.65 14067.81 31390.82 22070.36 20694.87 29374.75 24466.89 32490.33 242
VNet92.11 6791.22 8094.79 2496.91 10386.98 2697.91 5197.96 986.38 9893.65 5395.74 13370.16 20898.95 11093.39 5788.87 17098.43 53
Fast-Effi-MVS+87.93 15886.94 16290.92 16094.04 17279.16 19498.26 3193.72 26381.29 20983.94 17092.90 19569.83 20996.68 21476.70 22591.74 15396.93 152
PLCcopyleft83.97 788.00 15687.38 15089.83 19498.02 6976.46 25897.16 11094.43 22779.26 25381.98 19496.28 12469.36 21099.27 7777.71 21492.25 14893.77 219
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
BH-w/o88.24 15187.47 14890.54 17195.03 14578.54 20997.41 9493.82 25484.08 15678.23 23094.51 17069.34 21197.21 18680.21 19194.58 12395.87 183
abl_689.80 11489.71 11190.07 18396.53 10775.52 27494.48 24095.04 19081.12 21189.22 11597.00 10768.83 21298.96 10789.86 10595.27 11495.73 186
MAR-MVS90.63 10090.22 9691.86 13298.47 4778.20 22497.18 10696.61 7983.87 16588.18 13098.18 3568.71 21399.75 3083.66 16497.15 8597.63 120
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
114514_t88.79 13687.57 14492.45 11298.21 6081.74 13296.99 12695.45 16975.16 29382.48 18495.69 13668.59 21498.50 13080.33 18895.18 11797.10 148
test_part184.72 20282.85 21490.34 17695.73 12484.79 6896.75 14694.10 24279.05 26075.97 25989.51 23967.69 21595.94 24079.34 19967.50 31790.30 244
DU-MVS84.57 20683.33 20988.28 22388.76 28579.36 18896.43 16895.41 17485.42 11778.11 23190.82 22067.61 21695.14 28379.14 20368.30 30890.33 242
Baseline_NR-MVSNet81.22 25780.07 25484.68 28585.32 32575.12 27896.48 16088.80 33976.24 28777.28 23786.40 28767.61 21694.39 30375.73 23866.73 32584.54 337
WR-MVS84.32 21182.96 21188.41 21989.38 28280.32 16396.59 15496.25 12383.97 16076.63 24590.36 22967.53 21894.86 29475.82 23770.09 29290.06 251
OMC-MVS88.80 13588.16 13190.72 16695.30 13477.92 23394.81 23694.51 22186.80 9484.97 15596.85 11267.53 21898.60 12585.08 14687.62 18295.63 188
LCM-MVSNet-Re83.75 21883.54 20684.39 29493.54 18564.14 34292.51 28584.03 35883.90 16466.14 32386.59 28067.36 22092.68 32384.89 14992.87 14096.35 171
v14882.41 24380.89 24086.99 25386.18 31276.81 25496.27 17893.82 25480.49 22475.28 26986.11 29267.32 22195.75 25175.48 23967.03 32388.42 289
CNLPA86.96 16785.37 17691.72 13797.59 8379.34 19097.21 10291.05 31974.22 30078.90 22296.75 11867.21 22298.95 11074.68 24590.77 15896.88 156
FMVSNet384.71 20382.71 21890.70 16794.55 15687.71 2095.92 19594.67 21181.73 20575.82 26288.08 25966.99 22394.47 30171.23 27075.38 26189.91 253
v881.88 24880.06 25587.32 24686.63 30579.04 20094.41 24393.65 26678.77 26273.19 28485.57 29766.87 22495.81 24773.84 25567.61 31687.11 313
131488.94 12987.20 15394.17 4293.21 19485.73 4293.33 26996.64 7682.89 18675.98 25896.36 12366.83 22599.39 6783.52 16996.02 10797.39 136
BH-untuned86.95 16885.94 17089.99 18694.52 15877.46 24396.78 14393.37 28081.80 20476.62 24693.81 18766.64 22697.02 19576.06 23393.88 13195.48 192
GeoE86.36 17985.20 17889.83 19493.17 19676.13 26397.53 8092.11 30279.58 24580.99 20294.01 18166.60 22796.17 23173.48 25789.30 16597.20 146
CVMVSNet84.83 20185.57 17282.63 31291.55 24460.38 35395.13 22695.03 19180.60 22082.10 19394.71 16566.40 22890.19 34874.30 25090.32 16097.31 140
PMMVS89.46 12089.92 10588.06 22994.64 15369.57 32696.22 18194.95 19487.27 8491.37 8596.54 12265.88 22997.39 17688.54 11993.89 13097.23 144
v2v48283.46 22281.86 22988.25 22586.19 31179.65 18296.34 17494.02 24681.56 20777.32 23688.23 25665.62 23096.03 23377.77 21169.72 29689.09 270
v114482.90 23481.27 23887.78 23486.29 30979.07 19996.14 18693.93 24880.05 23677.38 23486.80 27765.50 23195.93 24275.21 24170.13 28988.33 291
v1081.43 25479.53 26087.11 25186.38 30678.87 20194.31 24793.43 27577.88 27073.24 28385.26 30165.44 23295.75 25172.14 26467.71 31586.72 317
HQP2-MVS65.40 233
HQP-MVS87.91 15987.55 14588.98 20892.08 23078.48 21097.63 7194.80 20490.52 2882.30 18794.56 16865.40 23397.32 17987.67 12883.01 21891.13 231
V4283.04 23181.53 23487.57 24086.27 31079.09 19895.87 19994.11 24180.35 22977.22 23886.79 27865.32 23596.02 23477.74 21270.14 28887.61 305
pmmvs482.54 23980.79 24187.79 23386.11 31380.49 16293.55 26493.18 28777.29 27873.35 28189.40 24165.26 23695.05 29075.32 24073.61 26887.83 299
3Dnovator+82.88 889.63 11887.85 13594.99 2094.49 16286.76 2997.84 5595.74 15386.10 10275.47 26796.02 12965.00 23799.51 6082.91 17697.07 8798.72 40
HQP_MVS87.50 16287.09 15888.74 21491.86 24077.96 23097.18 10694.69 20889.89 3681.33 19994.15 17864.77 23897.30 18187.08 13282.82 22290.96 233
plane_prior691.98 23577.92 23364.77 238
v14419282.43 24080.73 24387.54 24185.81 31878.22 22095.98 19193.78 25979.09 25677.11 23986.49 28264.66 24095.91 24374.20 25169.42 29788.49 285
TranMVSNet+NR-MVSNet83.24 22781.71 23187.83 23287.71 29878.81 20496.13 18894.82 20384.52 14376.18 25690.78 22264.07 24194.60 29974.60 24866.59 32690.09 249
CP-MVSNet81.01 25980.08 25383.79 29887.91 29670.51 31694.29 25195.65 15780.83 21572.54 29188.84 24763.71 24292.32 32768.58 28668.36 30788.55 284
cdsmvs_eth3d_5k21.43 34028.57 3430.00 3590.00 3820.00 3830.00 37095.93 1440.00 3770.00 37897.66 7263.57 2430.00 3780.00 3760.00 3760.00 374
Vis-MVSNetpermissive88.67 13887.82 13691.24 15292.68 20878.82 20296.95 13393.85 25387.55 7887.07 14095.13 15663.43 24497.21 18677.58 21696.15 10397.70 115
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
v119282.31 24480.55 24787.60 23785.94 31578.47 21395.85 20193.80 25779.33 24976.97 24186.51 28163.33 24595.87 24473.11 25870.13 28988.46 287
CANet_DTU90.98 9290.04 10193.83 5194.76 15286.23 3296.32 17693.12 29093.11 1093.71 5296.82 11563.08 24699.48 6284.29 15295.12 11895.77 185
ab-mvs87.08 16684.94 18593.48 7093.34 19383.67 8788.82 31495.70 15581.18 21084.55 16290.14 23462.72 24798.94 11285.49 14382.54 22697.85 102
v192192082.02 24780.23 25187.41 24485.62 31977.92 23395.79 20393.69 26478.86 26176.67 24486.44 28462.50 24895.83 24672.69 26069.77 29588.47 286
CLD-MVS87.97 15787.48 14789.44 20092.16 22880.54 16098.14 3594.92 19591.41 1779.43 21995.40 14462.34 24997.27 18490.60 9582.90 22190.50 239
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
bset_n11_16_dypcd84.35 21082.83 21688.91 20982.54 34182.07 11994.12 25493.47 27285.39 11978.55 22688.98 24562.23 25095.11 28586.75 13773.42 26989.55 258
3Dnovator82.32 1089.33 12287.64 14094.42 3393.73 18185.70 4397.73 6696.75 5886.73 9776.21 25595.93 13062.17 25199.68 4281.67 18197.81 6997.88 98
ADS-MVSNet279.57 27077.53 27285.71 27393.78 17872.13 30179.48 34786.11 35173.09 31080.14 21379.99 33962.15 25290.14 34959.49 32283.52 21294.85 201
ADS-MVSNet81.26 25678.36 26689.96 18993.78 17879.78 17579.48 34793.60 26873.09 31080.14 21379.99 33962.15 25295.24 27859.49 32283.52 21294.85 201
QAPM86.88 17084.51 18993.98 4694.04 17285.89 3897.19 10596.05 13773.62 30475.12 27095.62 13962.02 25499.74 3270.88 27496.06 10696.30 176
Effi-MVS+-dtu84.61 20584.90 18783.72 30191.96 23663.14 34694.95 23393.34 28185.57 11379.79 21787.12 27261.99 25595.61 26283.55 16585.83 19992.41 227
mvs-test186.83 17287.17 15485.81 27091.96 23665.24 33997.90 5393.34 28185.57 11384.51 16395.14 15561.99 25597.19 18883.55 16590.55 15995.00 199
XXY-MVS83.84 21682.00 22789.35 20187.13 30281.38 13995.72 20494.26 23380.15 23475.92 26190.63 22361.96 25796.52 21878.98 20573.28 27390.14 246
AdaColmapbinary88.81 13487.61 14392.39 11599.33 479.95 17296.70 15195.58 16177.51 27583.05 18196.69 12061.90 25899.72 3584.29 15293.47 13597.50 129
VPA-MVSNet85.32 19483.83 19989.77 19790.25 26582.63 10796.36 17297.07 2683.03 18381.21 20189.02 24461.58 25996.31 22685.02 14870.95 28290.36 240
CL-MVSNet_self_test75.81 29874.14 30080.83 32278.33 35367.79 33294.22 25293.52 27177.28 27969.82 30681.54 33061.47 26089.22 35057.59 33053.51 35085.48 332
test_djsdf83.00 23382.45 22284.64 28784.07 33669.78 32394.80 23794.48 22280.74 21775.41 26887.70 26361.32 26195.10 28783.77 15979.76 23489.04 273
v124081.70 25079.83 25887.30 24885.50 32077.70 24095.48 21293.44 27478.46 26676.53 24786.44 28460.85 26295.84 24571.59 26770.17 28788.35 290
D2MVS82.67 23781.55 23386.04 26887.77 29776.47 25795.21 22296.58 8482.66 19270.26 30485.46 30060.39 26395.80 24876.40 22979.18 24185.83 330
XVG-OURS-SEG-HR85.74 18985.16 18187.49 24390.22 26671.45 31291.29 30094.09 24381.37 20883.90 17195.22 14860.30 26497.53 16885.58 14284.42 20993.50 222
PEN-MVS79.47 27278.26 26883.08 30886.36 30768.58 32993.85 25894.77 20779.76 24171.37 29588.55 25159.79 26592.46 32564.50 30365.40 32888.19 293
TransMVSNet (Re)76.94 29274.38 29684.62 28885.92 31675.25 27795.28 21889.18 33673.88 30367.22 31486.46 28359.64 26694.10 30759.24 32552.57 35484.50 338
DP-MVS81.47 25378.28 26791.04 15698.14 6378.48 21095.09 23186.97 34661.14 35171.12 29892.78 19759.59 26799.38 6853.11 34586.61 18995.27 197
v7n79.32 27477.34 27385.28 27884.05 33772.89 29893.38 26793.87 25275.02 29570.68 30084.37 31359.58 26895.62 26167.60 28767.50 31787.32 312
F-COLMAP84.50 20883.44 20887.67 23595.22 13672.22 29995.95 19393.78 25975.74 28876.30 25295.18 15259.50 26998.45 13372.67 26186.59 19092.35 228
LS3D82.22 24579.94 25789.06 20597.43 9074.06 28893.20 27692.05 30361.90 34673.33 28295.21 14959.35 27099.21 8454.54 34192.48 14593.90 218
BH-RMVSNet86.84 17185.28 17791.49 14495.35 13380.26 16796.95 13392.21 30182.86 18881.77 19895.46 14359.34 27197.64 15869.79 27993.81 13296.57 166
MVP-Stereo82.65 23881.67 23285.59 27586.10 31478.29 21793.33 26992.82 29477.75 27269.17 31187.98 26059.28 27295.76 25071.77 26596.88 9382.73 348
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
PS-CasMVS80.27 26579.18 26183.52 30587.56 30069.88 32194.08 25595.29 18180.27 23272.08 29388.51 25459.22 27392.23 32967.49 28868.15 31088.45 288
DTE-MVSNet78.37 27977.06 27682.32 31585.22 32667.17 33593.40 26693.66 26578.71 26370.53 30288.29 25559.06 27492.23 32961.38 31763.28 33787.56 307
TR-MVS86.30 18084.93 18690.42 17394.63 15477.58 24196.57 15593.82 25480.30 23082.42 18695.16 15358.74 27597.55 16474.88 24387.82 18196.13 179
OPM-MVS85.84 18685.10 18388.06 22988.34 29177.83 23695.72 20494.20 23587.89 7280.45 20994.05 18058.57 27697.26 18583.88 15682.76 22489.09 270
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
PatchMatch-RL85.00 19983.66 20289.02 20795.86 12074.55 28292.49 28693.60 26879.30 25179.29 22191.47 20958.53 27798.45 13370.22 27892.17 15094.07 215
pm-mvs180.05 26678.02 26986.15 26685.42 32175.81 27295.11 22892.69 29777.13 28070.36 30387.43 26658.44 27895.27 27771.36 26964.25 33387.36 311
our_test_377.90 28475.37 28885.48 27785.39 32276.74 25593.63 26191.67 30873.39 30865.72 32584.65 31258.20 27993.13 32257.82 32867.87 31286.57 319
IterMVS-SCA-FT80.51 26479.10 26384.73 28489.63 27774.66 28092.98 27991.81 30780.05 23671.06 29985.18 30458.04 28091.40 33772.48 26370.70 28688.12 295
SCA85.63 19083.64 20391.60 14292.30 21981.86 12792.88 28295.56 16284.85 13282.52 18385.12 30758.04 28095.39 26973.89 25387.58 18497.54 124
EU-MVSNet76.92 29376.95 27776.83 33484.10 33554.73 36491.77 29592.71 29672.74 31369.57 30888.69 24958.03 28287.43 35664.91 30270.00 29388.33 291
IterMVS80.67 26279.16 26285.20 27989.79 27276.08 26492.97 28091.86 30580.28 23171.20 29785.14 30657.93 28391.34 33872.52 26270.74 28488.18 294
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
anonymousdsp80.98 26079.97 25684.01 29581.73 34370.44 31792.49 28693.58 27077.10 28272.98 28686.31 28857.58 28494.90 29279.32 20078.63 24886.69 318
xiu_mvs_v1_base_debu90.54 10289.54 11293.55 6592.31 21687.58 2296.99 12694.87 19887.23 8593.27 5597.56 7957.43 28598.32 13692.72 6993.46 13694.74 204
xiu_mvs_v1_base90.54 10289.54 11293.55 6592.31 21687.58 2296.99 12694.87 19887.23 8593.27 5597.56 7957.43 28598.32 13692.72 6993.46 13694.74 204
xiu_mvs_v1_base_debi90.54 10289.54 11293.55 6592.31 21687.58 2296.99 12694.87 19887.23 8593.27 5597.56 7957.43 28598.32 13692.72 6993.46 13694.74 204
OpenMVScopyleft79.58 1486.09 18383.62 20493.50 6890.95 25386.71 3097.44 8795.83 14975.35 29072.64 28995.72 13457.42 28899.64 4671.41 26895.85 11094.13 214
ECVR-MVScopyleft88.35 14887.25 15291.65 13893.54 18579.40 18796.56 15790.78 32486.78 9585.57 15095.25 14657.25 28997.56 16284.73 15094.80 12097.98 91
test111188.11 15387.04 15991.35 14793.15 19778.79 20596.57 15590.78 32486.88 9385.04 15495.20 15057.23 29097.39 17683.88 15694.59 12297.87 100
PVSNet82.34 989.02 12787.79 13792.71 10295.49 12981.50 13897.70 6897.29 1787.76 7485.47 15195.12 15756.90 29198.90 11480.33 18894.02 12797.71 114
Fast-Effi-MVS+-dtu83.33 22482.60 22085.50 27689.55 27869.38 32796.09 18991.38 31182.30 19675.96 26091.41 21056.71 29295.58 26475.13 24284.90 20791.54 229
ppachtmachnet_test77.19 29074.22 29886.13 26785.39 32278.22 22093.98 25691.36 31371.74 32067.11 31684.87 31056.67 29393.37 32052.21 34664.59 33086.80 316
VPNet84.69 20482.92 21290.01 18589.01 28483.45 9196.71 14995.46 16885.71 11179.65 21892.18 20156.66 29496.01 23583.05 17567.84 31490.56 237
GA-MVS85.79 18884.04 19891.02 15889.47 28080.27 16696.90 13694.84 20285.57 11380.88 20389.08 24256.56 29596.47 22077.72 21385.35 20496.34 172
XVG-OURS85.18 19684.38 19387.59 23890.42 26471.73 30991.06 30394.07 24482.00 20283.29 17795.08 15956.42 29697.55 16483.70 16383.42 21493.49 223
GBi-Net82.42 24180.43 24988.39 22092.66 20981.95 12094.30 24893.38 27779.06 25775.82 26285.66 29356.38 29793.84 31171.23 27075.38 26189.38 261
test182.42 24180.43 24988.39 22092.66 20981.95 12094.30 24893.38 27779.06 25775.82 26285.66 29356.38 29793.84 31171.23 27075.38 26189.38 261
FMVSNet282.79 23580.44 24889.83 19492.66 20985.43 4895.42 21594.35 23079.06 25774.46 27487.28 26756.38 29794.31 30469.72 28074.68 26489.76 255
pmmvs581.34 25579.54 25986.73 25885.02 32776.91 25296.22 18191.65 30977.65 27373.55 27888.61 25055.70 30094.43 30274.12 25273.35 27288.86 282
tfpnnormal78.14 28175.42 28786.31 26488.33 29279.24 19194.41 24396.22 12573.51 30569.81 30785.52 29955.43 30195.75 25147.65 35767.86 31383.95 343
LFMVS89.27 12487.64 14094.16 4497.16 10085.52 4797.18 10694.66 21279.17 25489.63 11096.57 12155.35 30298.22 14089.52 11289.54 16398.74 35
ACMM80.70 1383.72 21982.85 21486.31 26491.19 24972.12 30295.88 19894.29 23280.44 22577.02 24091.96 20455.24 30397.14 19279.30 20180.38 23289.67 256
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MDA-MVSNet_test_wron73.54 30770.43 31482.86 30984.55 32971.85 30691.74 29691.32 31567.63 33246.73 36181.09 33355.11 30490.42 34755.91 33859.76 34286.31 322
YYNet173.53 30870.43 31482.85 31084.52 33171.73 30991.69 29791.37 31267.63 33246.79 36081.21 33255.04 30590.43 34655.93 33759.70 34386.38 321
LTVRE_ROB73.68 1877.99 28275.74 28684.74 28390.45 26372.02 30386.41 33491.12 31672.57 31566.63 32087.27 26854.95 30696.98 19756.29 33675.98 25785.21 334
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
LPG-MVS_test84.20 21383.49 20786.33 26190.88 25473.06 29595.28 21894.13 23982.20 19776.31 25093.20 19154.83 30796.95 19983.72 16180.83 23088.98 276
LGP-MVS_train86.33 26190.88 25473.06 29594.13 23982.20 19776.31 25093.20 19154.83 30796.95 19983.72 16180.83 23088.98 276
cascas86.50 17784.48 19192.55 11092.64 21285.95 3597.04 12595.07 18975.32 29180.50 20791.02 21754.33 30997.98 14586.79 13687.62 18293.71 220
ACMP81.66 1184.00 21483.22 21086.33 26191.53 24672.95 29795.91 19793.79 25883.70 17073.79 27792.22 20054.31 31096.89 20383.98 15579.74 23689.16 268
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
PVSNet_077.72 1581.70 25078.95 26489.94 19090.77 25976.72 25695.96 19296.95 3585.01 13070.24 30588.53 25352.32 31198.20 14186.68 13844.08 36394.89 200
MSDG80.62 26377.77 27189.14 20493.43 19277.24 24791.89 29390.18 32869.86 32868.02 31291.94 20652.21 31298.84 11659.32 32483.12 21691.35 230
DSMNet-mixed73.13 31072.45 30675.19 34077.51 35646.82 36785.09 34082.01 36367.61 33669.27 31081.33 33150.89 31386.28 35854.54 34183.80 21192.46 226
UGNet87.73 16086.55 16591.27 15195.16 13979.11 19696.35 17396.23 12488.14 6587.83 13390.48 22550.65 31499.09 10080.13 19294.03 12695.60 189
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
FMVSNet576.46 29574.16 29983.35 30790.05 27076.17 26289.58 30989.85 33071.39 32265.29 32780.42 33550.61 31587.70 35561.05 31969.24 30086.18 324
MS-PatchMatch83.05 23081.82 23086.72 25989.64 27679.10 19794.88 23594.59 21979.70 24370.67 30189.65 23750.43 31696.82 20870.82 27795.99 10884.25 340
Anonymous2023120675.29 30173.64 30280.22 32480.75 34463.38 34593.36 26890.71 32673.09 31067.12 31583.70 31950.33 31790.85 34353.63 34470.10 29186.44 320
N_pmnet61.30 32760.20 33064.60 34584.32 33217.00 38091.67 29810.98 37961.77 34758.45 35078.55 34349.89 31891.83 33442.27 36263.94 33484.97 335
jajsoiax82.12 24681.15 23985.03 28184.19 33470.70 31594.22 25293.95 24783.07 18173.48 27989.75 23649.66 31995.37 27182.24 17979.76 23489.02 274
RPSCF77.73 28576.63 28081.06 32088.66 28955.76 36287.77 32487.88 34464.82 34174.14 27692.79 19649.22 32096.81 20967.47 28976.88 25690.62 236
SixPastTwentyTwo76.04 29674.32 29781.22 31984.54 33061.43 35291.16 30189.30 33577.89 26964.04 33086.31 28848.23 32194.29 30563.54 30963.84 33587.93 298
test20.0372.36 31471.15 31075.98 33877.79 35459.16 35792.40 28889.35 33474.09 30161.50 34284.32 31448.09 32285.54 36150.63 35162.15 33983.24 344
VDDNet86.44 17884.51 18992.22 12191.56 24381.83 12897.10 11894.64 21569.50 32987.84 13295.19 15148.01 32397.92 15189.82 10786.92 18696.89 155
VDD-MVS88.28 15087.02 16092.06 12695.09 14080.18 17097.55 7994.45 22683.09 18089.10 11895.92 13247.97 32498.49 13193.08 6786.91 18797.52 128
Anonymous2023121179.72 26977.19 27587.33 24595.59 12777.16 25195.18 22594.18 23759.31 35772.57 29086.20 29047.89 32595.66 25674.53 24969.24 30089.18 267
OurMVSNet-221017-077.18 29176.06 28380.55 32383.78 33860.00 35590.35 30591.05 31977.01 28466.62 32187.92 26147.73 32694.03 30871.63 26668.44 30687.62 304
CMPMVSbinary54.94 2175.71 30074.56 29579.17 32979.69 34955.98 36089.59 30893.30 28360.28 35353.85 35789.07 24347.68 32796.33 22476.55 22681.02 22985.22 333
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
mvs_tets81.74 24980.71 24484.84 28284.22 33370.29 31893.91 25793.78 25982.77 18973.37 28089.46 24047.36 32895.31 27581.99 18079.55 23988.92 280
MDA-MVSNet-bldmvs71.45 31767.94 32181.98 31785.33 32468.50 33092.35 28988.76 34070.40 32442.99 36281.96 32746.57 32991.31 33948.75 35654.39 34886.11 325
pmmvs-eth3d73.59 30670.66 31282.38 31376.40 36173.38 29089.39 31289.43 33372.69 31460.34 34677.79 34546.43 33091.26 34066.42 29657.06 34582.51 349
Anonymous2024052983.15 22880.60 24690.80 16395.74 12278.27 21896.81 14194.92 19560.10 35581.89 19692.54 19845.82 33198.82 11779.25 20278.32 25195.31 196
MVS-HIRNet71.36 31867.00 32284.46 29290.58 26169.74 32479.15 35087.74 34546.09 36261.96 34150.50 36445.14 33295.64 25953.74 34388.11 18088.00 297
KD-MVS_self_test70.97 31969.31 31975.95 33976.24 36355.39 36387.45 32590.94 32270.20 32662.96 33777.48 34644.01 33388.09 35361.25 31853.26 35184.37 339
FMVSNet179.50 27176.54 28188.39 22088.47 29081.95 12094.30 24893.38 27773.14 30972.04 29485.66 29343.86 33493.84 31165.48 29972.53 27489.38 261
K. test v373.62 30571.59 30979.69 32682.98 34059.85 35690.85 30488.83 33877.13 28058.90 34782.11 32643.62 33591.72 33565.83 29854.10 34987.50 309
pmmvs674.65 30471.67 30883.60 30379.13 35169.94 32093.31 27390.88 32361.05 35265.83 32484.15 31643.43 33694.83 29566.62 29260.63 34186.02 327
ACMH75.40 1777.99 28274.96 28987.10 25290.67 26076.41 25993.19 27791.64 31072.47 31663.44 33387.61 26543.34 33797.16 18958.34 32673.94 26687.72 300
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test_040272.68 31269.54 31882.09 31688.67 28871.81 30892.72 28486.77 34861.52 34862.21 33983.91 31743.22 33893.76 31434.60 36472.23 27880.72 356
lessismore_v079.98 32580.59 34658.34 35880.87 36458.49 34983.46 32143.10 33993.89 31063.11 31148.68 35687.72 300
UniMVSNet_ETH3D80.86 26178.75 26587.22 25086.31 30872.02 30391.95 29193.76 26273.51 30575.06 27190.16 23343.04 34095.66 25676.37 23078.55 24993.98 216
UnsupCasMVSNet_eth73.25 30970.57 31381.30 31877.53 35566.33 33787.24 32893.89 25180.38 22857.90 35281.59 32942.91 34190.56 34565.18 30148.51 35787.01 315
COLMAP_ROBcopyleft73.24 1975.74 29973.00 30583.94 29692.38 21569.08 32891.85 29486.93 34761.48 34965.32 32690.27 23042.27 34296.93 20250.91 35075.63 26085.80 331
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
MIMVSNet79.18 27575.99 28488.72 21587.37 30180.66 15679.96 34691.82 30677.38 27774.33 27581.87 32841.78 34390.74 34466.36 29783.10 21794.76 203
ACMH+76.62 1677.47 28874.94 29085.05 28091.07 25271.58 31193.26 27490.01 32971.80 31964.76 32888.55 25141.62 34496.48 21962.35 31371.00 28187.09 314
ITE_SJBPF82.38 31387.00 30365.59 33889.55 33279.99 23869.37 30991.30 21341.60 34595.33 27362.86 31274.63 26586.24 323
Anonymous20240521184.41 20981.93 22891.85 13496.78 10578.41 21497.44 8791.34 31470.29 32584.06 16594.26 17441.09 34698.96 10779.46 19882.65 22598.17 71
new-patchmatchnet68.85 32365.93 32577.61 33273.57 36663.94 34490.11 30788.73 34171.62 32155.08 35573.60 35240.84 34787.22 35751.35 34948.49 35881.67 355
USDC78.65 27776.25 28285.85 26987.58 29974.60 28189.58 30990.58 32784.05 15763.13 33588.23 25640.69 34896.86 20766.57 29475.81 25986.09 326
XVG-ACMP-BASELINE79.38 27377.90 27083.81 29784.98 32867.14 33689.03 31393.18 28780.26 23372.87 28788.15 25838.55 34996.26 22776.05 23478.05 25288.02 296
AllTest75.92 29773.06 30484.47 29092.18 22667.29 33391.07 30284.43 35667.63 33263.48 33190.18 23138.20 35097.16 18957.04 33273.37 27088.97 278
TestCases84.47 29092.18 22667.29 33384.43 35667.63 33263.48 33190.18 23138.20 35097.16 18957.04 33273.37 27088.97 278
Anonymous2024052172.06 31669.91 31678.50 33077.11 35861.67 35191.62 29990.97 32165.52 33962.37 33879.05 34236.32 35290.96 34257.75 32968.52 30582.87 345
UnsupCasMVSNet_bld68.60 32464.50 32780.92 32174.63 36467.80 33183.97 34192.94 29365.12 34054.63 35668.23 35935.97 35392.17 33160.13 32044.83 36182.78 347
tmp_tt41.54 33541.93 33740.38 35320.10 37926.84 37661.93 36559.09 37514.81 37228.51 36780.58 33435.53 35448.33 37463.70 30813.11 37145.96 367
testgi74.88 30373.40 30379.32 32880.13 34861.75 34993.21 27586.64 34979.49 24766.56 32291.06 21635.51 35588.67 35256.79 33571.25 27987.56 307
OpenMVS_ROBcopyleft68.52 2073.02 31169.57 31783.37 30680.54 34771.82 30793.60 26388.22 34362.37 34461.98 34083.15 32335.31 35695.47 26745.08 36075.88 25882.82 346
MVS_030478.43 27876.70 27983.60 30388.22 29369.81 32292.91 28195.10 18672.32 31778.71 22580.29 33833.78 35793.37 32068.77 28480.23 23387.63 303
TDRefinement69.20 32265.78 32679.48 32766.04 36962.21 34888.21 31986.12 35062.92 34361.03 34485.61 29633.23 35894.16 30655.82 33953.02 35282.08 353
LF4IMVS72.36 31470.82 31176.95 33379.18 35056.33 35986.12 33586.11 35169.30 33063.06 33686.66 27933.03 35992.25 32865.33 30068.64 30482.28 352
MIMVSNet169.44 32066.65 32477.84 33176.48 36062.84 34787.42 32688.97 33766.96 33757.75 35379.72 34132.77 36085.83 36046.32 35863.42 33684.85 336
EG-PatchMatch MVS74.92 30272.02 30783.62 30283.76 33973.28 29393.62 26292.04 30468.57 33158.88 34883.80 31831.87 36195.57 26556.97 33478.67 24582.00 354
new_pmnet66.18 32563.18 32875.18 34176.27 36261.74 35083.79 34284.66 35556.64 36051.57 35871.85 35831.29 36287.93 35449.98 35262.55 33875.86 359
TinyColmap72.41 31368.99 32082.68 31188.11 29469.59 32588.41 31885.20 35365.55 33857.91 35184.82 31130.80 36395.94 24051.38 34768.70 30382.49 351
pmmvs365.75 32662.18 32976.45 33667.12 36864.54 34088.68 31685.05 35454.77 36157.54 35473.79 35129.40 36486.21 35955.49 34047.77 35978.62 357
EGC-MVSNET52.46 33147.56 33467.15 34281.98 34260.11 35482.54 34472.44 3700.11 3760.70 37774.59 34925.11 36583.26 36229.04 36661.51 34058.09 364
PM-MVS69.32 32166.93 32376.49 33573.60 36555.84 36185.91 33679.32 36774.72 29761.09 34378.18 34421.76 36691.10 34170.86 27556.90 34682.51 349
test_method56.77 32854.53 33163.49 34776.49 35940.70 37275.68 35774.24 36919.47 37048.73 35971.89 35719.31 36765.80 37057.46 33147.51 36083.97 342
DeepMVS_CXcopyleft64.06 34678.53 35243.26 37068.11 37369.94 32738.55 36376.14 34818.53 36879.34 36343.72 36141.62 36469.57 362
ambc76.02 33768.11 36751.43 36564.97 36489.59 33160.49 34574.49 35017.17 36992.46 32561.50 31652.85 35384.17 341
FPMVS55.09 32952.93 33261.57 34855.98 37040.51 37383.11 34383.41 36137.61 36434.95 36571.95 35614.40 37076.95 36429.81 36565.16 32967.25 363
EMVS31.70 33931.45 34132.48 35550.72 37423.95 37874.78 35952.30 37820.36 36916.08 37331.48 37112.80 37153.60 37311.39 37213.10 37219.88 370
ANet_high46.22 33341.28 33861.04 34939.91 37746.25 36970.59 36376.18 36858.87 35823.09 36948.00 36612.58 37266.54 36928.65 36713.62 37070.35 361
E-PMN32.70 33832.39 34033.65 35453.35 37325.70 37774.07 36053.33 37721.08 36817.17 37233.63 37011.85 37354.84 37212.98 37114.04 36920.42 369
Gipumacopyleft45.11 33442.05 33654.30 35080.69 34551.30 36635.80 36883.81 35928.13 36627.94 36834.53 36811.41 37476.70 36621.45 36854.65 34734.90 368
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMMVS250.90 33246.31 33564.67 34455.53 37146.67 36877.30 35671.02 37140.89 36334.16 36659.32 3609.83 37576.14 36740.09 36328.63 36771.21 360
LCM-MVSNet52.52 33048.24 33365.35 34347.63 37541.45 37172.55 36283.62 36031.75 36537.66 36457.92 3629.19 37676.76 36549.26 35444.60 36277.84 358
PMVScopyleft34.80 2339.19 33635.53 33950.18 35129.72 37830.30 37559.60 36666.20 37426.06 36717.91 37149.53 3653.12 37774.09 36818.19 37049.40 35546.14 365
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive35.65 2233.85 33729.49 34246.92 35241.86 37636.28 37450.45 36756.52 37618.75 37118.28 37037.84 3672.41 37858.41 37118.71 36920.62 36846.06 366
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
wuyk23d14.10 34113.89 34414.72 35655.23 37222.91 37933.83 3693.56 3804.94 3734.11 3742.28 3762.06 37919.66 37510.23 3738.74 3731.59 373
test1239.07 34311.73 3461.11 3570.50 3810.77 38189.44 3110.20 3820.34 3752.15 37610.72 3750.34 3800.32 3761.79 3750.08 3752.23 371
testmvs9.92 34212.94 3450.84 3580.65 3800.29 38293.78 2590.39 3810.42 3742.85 37515.84 3740.17 3810.30 3772.18 3740.21 3741.91 372
test_blank0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
uanet_test0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
sosnet-low-res0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
sosnet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
uncertanet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
Regformer0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
ab-mvs-re8.11 34410.81 3470.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 37897.30 940.00 3820.00 3780.00 3760.00 3760.00 374
uanet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
FOURS198.51 4478.01 22898.13 3896.21 12683.04 18294.39 43
MSC_two_6792asdad97.14 399.05 1092.19 496.83 4499.81 2098.08 698.81 2599.43 11
No_MVS97.14 399.05 1092.19 496.83 4499.81 2098.08 698.81 2599.43 11
eth-test20.00 382
eth-test0.00 382
IU-MVS99.03 1685.34 4996.86 4392.05 1598.74 198.15 398.97 1799.42 13
save fliter98.24 5783.34 9398.61 2396.57 8591.32 18
test_0728_SECOND95.14 1799.04 1586.14 3399.06 996.77 5499.84 1297.90 898.85 2299.45 10
GSMVS97.54 124
test_part298.90 2185.14 6096.07 20
MTGPAbinary96.33 117
MTMP97.53 8068.16 372
gm-plane-assit92.27 22079.64 18384.47 14695.15 15497.93 14685.81 140
test9_res96.00 2599.03 1398.31 61
agg_prior294.30 4699.00 1598.57 45
agg_prior98.59 3983.13 9896.56 8794.19 4599.16 93
test_prior482.34 11497.75 65
test_prior93.09 8498.68 2981.91 12396.40 10999.06 10198.29 63
旧先验296.97 13174.06 30296.10 1997.76 15588.38 123
新几何296.42 169
无先验96.87 13796.78 4877.39 27699.52 5779.95 19398.43 53
原ACMM296.84 138
testdata299.48 6276.45 228
testdata195.57 21087.44 79
plane_prior791.86 24077.55 242
plane_prior594.69 20897.30 18187.08 13282.82 22290.96 233
plane_prior494.15 178
plane_prior377.75 23890.17 3481.33 199
plane_prior297.18 10689.89 36
plane_prior191.95 238
plane_prior77.96 23097.52 8390.36 3382.96 220
n20.00 383
nn0.00 383
door-mid79.75 366
test1196.50 96
door80.13 365
HQP5-MVS78.48 210
HQP-NCC92.08 23097.63 7190.52 2882.30 187
ACMP_Plane92.08 23097.63 7190.52 2882.30 187
BP-MVS87.67 128
HQP4-MVS82.30 18797.32 17991.13 231
HQP3-MVS94.80 20483.01 218
NP-MVS92.04 23478.22 22094.56 168
ACMMP++_ref78.45 250
ACMMP++79.05 242