This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort by
LCM-MVSNet95.70 196.40 193.61 398.67 185.39 3795.54 597.36 196.97 199.04 199.05 196.61 195.92 1685.07 5899.27 199.54 1
XVG-OURS-SEG-HR89.59 5589.37 6190.28 4694.47 4385.95 2786.84 12393.91 4780.07 9386.75 17293.26 12193.64 290.93 20084.60 6590.75 27193.97 105
ACMH+77.89 1190.73 3191.50 2588.44 7893.00 8176.26 11989.65 7595.55 887.72 2693.89 3094.94 5291.62 393.44 12878.35 13398.76 495.61 48
LPG-MVS_test91.47 2191.68 2090.82 3794.75 4181.69 6390.00 6294.27 2482.35 6893.67 3794.82 5691.18 495.52 4585.36 5598.73 795.23 59
LGP-MVS_train90.82 3794.75 4181.69 6394.27 2482.35 6893.67 3794.82 5691.18 495.52 4585.36 5598.73 795.23 59
PMVScopyleft80.48 690.08 4190.66 4888.34 8196.71 392.97 290.31 5989.57 19288.51 2190.11 9695.12 4990.98 688.92 25477.55 14797.07 8383.13 353
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
ACMM79.39 990.65 3290.99 4189.63 5795.03 3483.53 5189.62 7693.35 6679.20 10593.83 3193.60 11690.81 792.96 14485.02 6098.45 1992.41 177
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMH76.49 1489.34 5991.14 3583.96 16592.50 9470.36 17989.55 7793.84 5281.89 7394.70 1795.44 4090.69 888.31 26483.33 7498.30 2593.20 143
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
HPM-MVS_fast92.50 892.54 992.37 695.93 1685.81 3392.99 1294.23 2785.21 4092.51 5895.13 4890.65 995.34 5588.06 1298.15 3795.95 40
RE-MVS-def92.61 894.13 5588.95 692.87 1394.16 3288.75 1893.79 3294.43 7290.64 1087.16 3297.60 6692.73 160
ACMP79.16 1090.54 3590.60 4990.35 4594.36 4680.98 6989.16 8694.05 4179.03 10892.87 4993.74 11190.60 1195.21 6182.87 8298.76 494.87 68
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
HPM-MVScopyleft92.13 1192.20 1391.91 1795.58 2684.67 4693.51 894.85 1582.88 6491.77 7093.94 10290.55 1295.73 3588.50 1098.23 3195.33 54
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
UniMVSNet_ETH3D89.12 6590.72 4784.31 15897.00 264.33 23989.67 7488.38 20688.84 1794.29 2297.57 490.48 1391.26 18972.57 21197.65 6297.34 14
SED-MVS90.46 3791.64 2186.93 9994.18 5072.65 14590.47 5593.69 5683.77 5294.11 2694.27 7990.28 1495.84 2486.03 4997.92 4992.29 185
test_241102_ONE94.18 5072.65 14593.69 5683.62 5494.11 2693.78 10890.28 1495.50 49
SR-MVS92.23 1092.34 1191.91 1794.89 3887.85 1092.51 2493.87 5188.20 2393.24 4294.02 9490.15 1695.67 3886.82 3697.34 7692.19 191
APD-MVS_3200maxsize92.05 1292.24 1291.48 2593.02 8085.17 3992.47 2695.05 1487.65 2793.21 4394.39 7790.09 1795.08 6686.67 3897.60 6694.18 97
DVP-MVScopyleft90.06 4391.32 3286.29 11194.16 5372.56 15190.54 5291.01 14783.61 5593.75 3494.65 6189.76 1895.78 3286.42 3997.97 4690.55 242
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072694.16 5372.56 15190.63 4993.90 4883.61 5593.75 3494.49 6989.76 18
COLMAP_ROBcopyleft83.01 391.97 1391.95 1492.04 1193.68 6586.15 2493.37 1095.10 1390.28 1092.11 6395.03 5089.75 2094.93 7079.95 11498.27 2695.04 65
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
reproduce-ours92.86 693.22 591.76 2394.39 4487.71 1192.40 2794.38 1989.82 1395.51 1295.49 3889.64 2195.82 2689.13 698.26 2891.76 206
our_new_method92.86 693.22 591.76 2394.39 4487.71 1192.40 2794.38 1989.82 1395.51 1295.49 3889.64 2195.82 2689.13 698.26 2891.76 206
test_241102_TWO93.71 5583.77 5293.49 3994.27 7989.27 2395.84 2486.03 4997.82 5492.04 197
tt080588.09 7789.79 5582.98 19593.26 7563.94 24391.10 4589.64 18985.07 4190.91 8691.09 19089.16 2491.87 17582.03 9395.87 13293.13 146
ACMMPcopyleft91.91 1491.87 1992.03 1295.53 2785.91 2893.35 1194.16 3282.52 6792.39 6194.14 8989.15 2595.62 3987.35 2798.24 3094.56 78
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
SR-MVS-dyc-post92.41 992.41 1092.39 594.13 5588.95 692.87 1394.16 3288.75 1893.79 3294.43 7288.83 2695.51 4787.16 3297.60 6692.73 160
APDe-MVScopyleft91.22 2591.92 1589.14 6692.97 8278.04 9392.84 1694.14 3683.33 5893.90 2895.73 3188.77 2796.41 387.60 2197.98 4592.98 154
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
test_one_060193.85 6273.27 14094.11 3886.57 3093.47 4194.64 6488.42 28
ACMMP_NAP90.65 3291.07 3989.42 6195.93 1679.54 8089.95 6693.68 5877.65 12691.97 6794.89 5388.38 2995.45 5189.27 597.87 5393.27 140
MP-MVS-pluss90.81 3091.08 3789.99 5095.97 1479.88 7588.13 10294.51 1875.79 14792.94 4794.96 5188.36 3095.01 6890.70 398.40 2095.09 64
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
HFP-MVS91.30 2391.39 2791.02 3395.43 2984.66 4792.58 2293.29 7281.99 7091.47 7393.96 9988.35 3195.56 4287.74 1697.74 5992.85 157
CP-MVS91.67 1691.58 2391.96 1495.29 3187.62 1393.38 993.36 6583.16 6091.06 8294.00 9588.26 3295.71 3787.28 3098.39 2192.55 170
SteuartSystems-ACMMP91.16 2791.36 2890.55 4193.91 6080.97 7091.49 4093.48 6382.82 6592.60 5793.97 9688.19 3396.29 687.61 2098.20 3494.39 89
Skip Steuart: Steuart Systems R&D Blog.
PGM-MVS91.20 2690.95 4391.93 1595.67 2385.85 3190.00 6293.90 4880.32 8991.74 7194.41 7588.17 3495.98 1386.37 4197.99 4393.96 106
TDRefinement93.52 393.39 493.88 295.94 1590.26 495.70 496.46 390.58 992.86 5096.29 1988.16 3594.17 9786.07 4898.48 1897.22 17
DPE-MVScopyleft90.53 3691.08 3788.88 6993.38 7178.65 8789.15 8794.05 4184.68 4593.90 2894.11 9188.13 3696.30 584.51 6697.81 5591.70 210
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
OPM-MVS89.80 5189.97 5289.27 6394.76 4079.86 7686.76 12792.78 9678.78 11192.51 5893.64 11588.13 3693.84 10984.83 6397.55 6994.10 102
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
pmmvs686.52 9988.06 7981.90 21692.22 10362.28 26784.66 16589.15 19783.54 5789.85 10497.32 588.08 3886.80 28370.43 22897.30 7896.62 26
mvs_tets89.78 5289.27 6391.30 2993.51 6784.79 4489.89 6890.63 15770.00 22894.55 1996.67 1487.94 3993.59 12084.27 6895.97 12495.52 49
ZNCC-MVS91.26 2491.34 3191.01 3495.73 2183.05 5692.18 3194.22 2980.14 9291.29 7893.97 9687.93 4095.87 2088.65 897.96 4894.12 101
reproduce_model92.89 593.18 792.01 1394.20 4988.23 992.87 1394.32 2190.25 1195.65 995.74 3087.75 4195.72 3689.60 498.27 2692.08 195
region2R91.44 2291.30 3491.87 1995.75 1985.90 2992.63 2193.30 7181.91 7290.88 8894.21 8487.75 4195.87 2087.60 2197.71 6093.83 113
wuyk23d75.13 28079.30 23362.63 38575.56 38575.18 12680.89 25173.10 35675.06 15894.76 1695.32 4187.73 4352.85 41634.16 41597.11 8259.85 412
mPP-MVS91.69 1591.47 2692.37 696.04 1388.48 892.72 1892.60 10183.09 6191.54 7294.25 8387.67 4495.51 4787.21 3198.11 3893.12 148
ACMMPR91.49 1991.35 3091.92 1695.74 2085.88 3092.58 2293.25 7381.99 7091.40 7494.17 8887.51 4595.87 2087.74 1697.76 5793.99 104
test_0728_THIRD85.33 3893.75 3494.65 6187.44 4695.78 3287.41 2598.21 3292.98 154
9.1489.29 6291.84 11988.80 9395.32 1275.14 15791.07 8192.89 13687.27 4793.78 11083.69 7397.55 69
PS-CasMVS90.06 4391.92 1584.47 15196.56 658.83 31189.04 8892.74 9791.40 696.12 596.06 2687.23 4895.57 4179.42 12398.74 699.00 2
GST-MVS90.96 2991.01 4090.82 3795.45 2882.73 5991.75 3893.74 5480.98 8391.38 7593.80 10687.20 4995.80 2887.10 3497.69 6193.93 107
PEN-MVS90.03 4591.88 1884.48 15096.57 558.88 30888.95 8993.19 7591.62 596.01 796.16 2487.02 5095.60 4078.69 12998.72 998.97 3
DTE-MVSNet89.98 4791.91 1784.21 16096.51 757.84 31988.93 9092.84 9491.92 496.16 496.23 2186.95 5195.99 1279.05 12698.57 1598.80 6
SF-MVS90.27 3990.80 4688.68 7692.86 8677.09 10891.19 4495.74 681.38 7892.28 6293.80 10686.89 5294.64 7885.52 5497.51 7394.30 93
MP-MVScopyleft91.14 2890.91 4491.83 2096.18 1186.88 1792.20 3093.03 8682.59 6688.52 13494.37 7886.74 5395.41 5386.32 4298.21 3293.19 144
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MTAPA91.52 1891.60 2291.29 3096.59 486.29 2192.02 3391.81 12684.07 4992.00 6694.40 7686.63 5495.28 5888.59 998.31 2492.30 184
XVS91.54 1791.36 2892.08 995.64 2486.25 2292.64 1993.33 6785.07 4189.99 10094.03 9386.57 5595.80 2887.35 2797.62 6494.20 94
X-MVStestdata85.04 12582.70 17692.08 995.64 2486.25 2292.64 1993.33 6785.07 4189.99 10016.05 42186.57 5595.80 2887.35 2797.62 6494.20 94
MGCFI-Net85.04 12585.95 11282.31 21287.52 22663.59 24686.23 13893.96 4473.46 17588.07 14587.83 26386.46 5790.87 20576.17 16593.89 20092.47 175
sasdasda85.50 11386.14 10983.58 17787.97 21267.13 21087.55 10994.32 2173.44 17788.47 13587.54 26886.45 5891.06 19675.76 17093.76 20392.54 171
canonicalmvs85.50 11386.14 10983.58 17787.97 21267.13 21087.55 10994.32 2173.44 17788.47 13587.54 26886.45 5891.06 19675.76 17093.76 20392.54 171
TranMVSNet+NR-MVSNet87.86 8188.76 7485.18 13694.02 5864.13 24084.38 17291.29 13984.88 4492.06 6593.84 10586.45 5893.73 11173.22 20298.66 1197.69 9
test_040288.65 6989.58 6085.88 12492.55 9272.22 15984.01 17889.44 19488.63 2094.38 2195.77 2986.38 6193.59 12079.84 11595.21 15491.82 204
APD-MVScopyleft89.54 5689.63 5889.26 6492.57 9181.34 6890.19 6193.08 8280.87 8591.13 8093.19 12286.22 6295.97 1482.23 9297.18 8190.45 244
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
SD-MVS88.96 6789.88 5386.22 11591.63 12377.07 10989.82 6993.77 5378.90 10992.88 4892.29 15786.11 6390.22 22286.24 4697.24 7991.36 218
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
ZD-MVS92.22 10380.48 7191.85 12271.22 21490.38 9292.98 13186.06 6496.11 781.99 9596.75 92
jajsoiax89.41 5788.81 7391.19 3293.38 7184.72 4589.70 7190.29 17369.27 23294.39 2096.38 1886.02 6593.52 12483.96 7095.92 13095.34 53
nrg03087.85 8288.49 7585.91 12290.07 16669.73 18387.86 10694.20 3074.04 16692.70 5694.66 6085.88 6691.50 18179.72 11797.32 7796.50 29
SMA-MVScopyleft90.31 3890.48 5089.83 5495.31 3079.52 8190.98 4793.24 7475.37 15592.84 5195.28 4485.58 6796.09 887.92 1497.76 5793.88 110
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DeepC-MVS82.31 489.15 6489.08 6689.37 6293.64 6679.07 8388.54 9894.20 3073.53 17489.71 10794.82 5685.09 6895.77 3484.17 6998.03 4193.26 141
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
testf189.30 6089.12 6489.84 5288.67 19585.64 3590.61 5093.17 7686.02 3493.12 4495.30 4284.94 6989.44 24674.12 18696.10 11994.45 84
APD_test289.30 6089.12 6489.84 5288.67 19585.64 3590.61 5093.17 7686.02 3493.12 4495.30 4284.94 6989.44 24674.12 18696.10 11994.45 84
GeoE85.45 11685.81 11784.37 15290.08 16467.07 21285.86 14491.39 13672.33 20187.59 15590.25 22084.85 7192.37 16078.00 14191.94 24593.66 122
LTVRE_ROB86.10 193.04 493.44 391.82 2293.73 6485.72 3496.79 195.51 988.86 1695.63 1096.99 1084.81 7293.16 13791.10 297.53 7296.58 28
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
DP-MVS88.60 7089.01 6787.36 9391.30 13677.50 10187.55 10992.97 9087.95 2589.62 11192.87 13784.56 7393.89 10677.65 14596.62 9590.70 236
LS3D90.60 3490.34 5191.38 2889.03 18584.23 4993.58 694.68 1790.65 890.33 9493.95 10184.50 7495.37 5480.87 10495.50 14594.53 81
EC-MVSNet88.01 7888.32 7787.09 9589.28 18072.03 16190.31 5996.31 480.88 8485.12 20789.67 23384.47 7595.46 5082.56 8796.26 11193.77 119
casdiffmvs_mvgpermissive86.72 9587.51 8684.36 15487.09 23865.22 23084.16 17494.23 2777.89 12291.28 7993.66 11484.35 7692.71 15080.07 11194.87 17295.16 62
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
anonymousdsp89.73 5388.88 7092.27 889.82 17186.67 1890.51 5490.20 17669.87 22995.06 1596.14 2584.28 7793.07 14187.68 1896.34 10697.09 19
OMC-MVS88.19 7487.52 8590.19 4891.94 11481.68 6587.49 11293.17 7676.02 14188.64 13091.22 18584.24 7893.37 13177.97 14397.03 8495.52 49
CS-MVS88.14 7587.67 8489.54 6089.56 17379.18 8290.47 5594.77 1679.37 10384.32 22689.33 23883.87 7994.53 8482.45 8894.89 16994.90 66
XVG-OURS89.18 6388.83 7290.23 4794.28 4786.11 2685.91 14193.60 6180.16 9189.13 12393.44 11883.82 8090.98 19883.86 7295.30 15393.60 128
XVG-ACMP-BASELINE89.98 4789.84 5490.41 4394.91 3784.50 4889.49 8193.98 4379.68 9792.09 6493.89 10483.80 8193.10 14082.67 8698.04 3993.64 125
CDPH-MVS86.17 10685.54 12388.05 8692.25 10175.45 12483.85 18492.01 11665.91 26786.19 18691.75 17383.77 8294.98 6977.43 15096.71 9393.73 120
test_fmvsmvis_n_192085.22 11985.36 12884.81 14185.80 26776.13 12285.15 15892.32 10861.40 30991.33 7690.85 20283.76 8386.16 29684.31 6793.28 21592.15 193
Effi-MVS+83.90 15684.01 15583.57 17987.22 23265.61 22886.55 13292.40 10478.64 11481.34 28584.18 32383.65 8492.93 14674.22 18387.87 31392.17 192
MVS_111021_HR84.63 13384.34 15185.49 13390.18 16375.86 12379.23 27587.13 22573.35 17985.56 20089.34 23783.60 8590.50 21676.64 15894.05 19790.09 254
UA-Net91.49 1991.53 2491.39 2794.98 3582.95 5893.52 792.79 9588.22 2288.53 13397.64 383.45 8694.55 8386.02 5198.60 1396.67 25
AdaColmapbinary83.66 16083.69 16083.57 17990.05 16772.26 15886.29 13690.00 18178.19 11981.65 27987.16 27783.40 8794.24 9261.69 30894.76 17784.21 335
LCM-MVSNet-Re83.48 16585.06 13178.75 26585.94 26555.75 33680.05 25994.27 2476.47 13696.09 694.54 6783.31 8889.75 24159.95 31994.89 16990.75 233
test_fmvsmconf0.01_n86.68 9686.52 10287.18 9485.94 26578.30 8986.93 12092.20 11165.94 26589.16 12193.16 12483.10 8989.89 23587.81 1594.43 18593.35 135
TransMVSNet (Re)84.02 15285.74 12078.85 26391.00 14655.20 34282.29 23087.26 22179.65 9888.38 13995.52 3783.00 9086.88 28167.97 25696.60 9694.45 84
CNVR-MVS87.81 8387.68 8388.21 8392.87 8477.30 10785.25 15591.23 14177.31 13187.07 16691.47 17982.94 9194.71 7584.67 6496.27 11092.62 167
DeepPCF-MVS81.24 587.28 8886.21 10890.49 4291.48 13384.90 4283.41 19692.38 10670.25 22589.35 11990.68 20882.85 9294.57 8179.55 12095.95 12792.00 199
v7n90.13 4090.96 4287.65 9191.95 11271.06 17389.99 6493.05 8386.53 3194.29 2296.27 2082.69 9394.08 10086.25 4597.63 6397.82 8
AllTest87.97 8087.40 8989.68 5591.59 12483.40 5289.50 8095.44 1079.47 9988.00 14893.03 12982.66 9491.47 18270.81 22096.14 11694.16 98
TestCases89.68 5591.59 12483.40 5295.44 1079.47 9988.00 14893.03 12982.66 9491.47 18270.81 22096.14 11694.16 98
test_fmvsmconf0.1_n86.18 10585.88 11587.08 9685.26 27478.25 9085.82 14591.82 12465.33 27988.55 13292.35 15682.62 9689.80 23786.87 3594.32 18893.18 145
RPSCF88.00 7986.93 9791.22 3190.08 16489.30 589.68 7391.11 14479.26 10489.68 10894.81 5982.44 9787.74 26876.54 15988.74 29996.61 27
SPE-MVS-test87.00 9086.43 10488.71 7489.46 17677.46 10289.42 8495.73 777.87 12481.64 28087.25 27582.43 9894.53 8477.65 14596.46 10294.14 100
ITE_SJBPF90.11 4990.72 15284.97 4190.30 17181.56 7690.02 9991.20 18782.40 9990.81 20773.58 19794.66 17994.56 78
SDMVSNet81.90 19883.17 16878.10 27888.81 19262.45 26376.08 32486.05 24473.67 17183.41 24793.04 12782.35 10080.65 34470.06 23295.03 16291.21 220
test_fmvsmconf_n85.88 11085.51 12486.99 9884.77 28278.21 9185.40 15491.39 13665.32 28087.72 15391.81 17082.33 10189.78 23886.68 3794.20 19192.99 153
Fast-Effi-MVS+81.04 20880.57 21382.46 21087.50 22763.22 25178.37 28789.63 19068.01 24881.87 27282.08 34682.31 10292.65 15367.10 25888.30 30891.51 216
baseline85.20 12185.93 11383.02 19386.30 25562.37 26584.55 16793.96 4474.48 16387.12 16192.03 16282.30 10391.94 17178.39 13194.21 19094.74 75
casdiffmvspermissive85.21 12085.85 11683.31 18686.17 26062.77 25783.03 20793.93 4674.69 16188.21 14292.68 14482.29 10491.89 17477.87 14493.75 20695.27 57
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Anonymous2023121188.40 7189.62 5984.73 14490.46 15765.27 22988.86 9193.02 8787.15 2893.05 4697.10 882.28 10592.02 17076.70 15797.99 4396.88 23
APD_test188.40 7187.91 8089.88 5189.50 17586.65 2089.98 6591.91 12184.26 4790.87 8993.92 10382.18 10689.29 25073.75 19494.81 17393.70 121
Anonymous2024052986.20 10487.13 9183.42 18390.19 16264.55 23784.55 16790.71 15485.85 3689.94 10395.24 4682.13 10790.40 21869.19 24196.40 10595.31 55
CLD-MVS83.18 17082.64 17884.79 14289.05 18467.82 20777.93 29192.52 10268.33 24485.07 20881.54 35282.06 10892.96 14469.35 23797.91 5193.57 130
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
TEST992.34 9879.70 7883.94 18090.32 16865.41 27884.49 22090.97 19482.03 10993.63 115
segment_acmp81.94 110
train_agg85.98 10885.28 12988.07 8592.34 9879.70 7883.94 18090.32 16865.79 26984.49 22090.97 19481.93 11193.63 11581.21 10096.54 9890.88 230
test_892.09 10778.87 8583.82 18590.31 17065.79 26984.36 22490.96 19681.93 11193.44 128
test_prior283.37 19775.43 15384.58 21891.57 17681.92 11379.54 12196.97 85
EGC-MVSNET74.79 28769.99 32989.19 6594.89 3887.00 1591.89 3786.28 2381.09 4222.23 42495.98 2781.87 11489.48 24279.76 11695.96 12591.10 223
CP-MVSNet89.27 6290.91 4484.37 15296.34 858.61 31488.66 9792.06 11590.78 795.67 895.17 4781.80 11595.54 4479.00 12798.69 1098.95 4
MVS_111021_LR84.28 14383.76 15985.83 12689.23 18283.07 5580.99 25083.56 28072.71 19486.07 18989.07 24381.75 11686.19 29577.11 15493.36 21188.24 281
test_djsdf89.62 5489.01 6791.45 2692.36 9782.98 5791.98 3490.08 17971.54 20894.28 2496.54 1681.57 11794.27 8986.26 4396.49 10097.09 19
cdsmvs_eth3d_5k20.81 38927.75 3920.00 4080.00 4310.00 4330.00 41985.44 2530.00 4260.00 42782.82 33881.46 1180.00 4270.00 4260.00 4250.00 423
WR-MVS_H89.91 5091.31 3385.71 12896.32 962.39 26489.54 7993.31 7090.21 1295.57 1195.66 3381.42 11995.90 1780.94 10398.80 398.84 5
CPTT-MVS89.39 5888.98 6990.63 4095.09 3386.95 1692.09 3292.30 10979.74 9687.50 15792.38 15281.42 11993.28 13383.07 7897.24 7991.67 211
pm-mvs183.69 15984.95 13479.91 25090.04 16859.66 29882.43 22687.44 21875.52 15287.85 15095.26 4581.25 12185.65 30768.74 24896.04 12194.42 87
DVP-MVS++90.07 4291.09 3687.00 9791.55 12972.64 14796.19 294.10 3985.33 3893.49 3994.64 6481.12 12295.88 1887.41 2595.94 12892.48 173
OPU-MVS88.27 8291.89 11577.83 9790.47 5591.22 18581.12 12294.68 7674.48 18195.35 14892.29 185
sd_testset79.95 23281.39 20275.64 31188.81 19258.07 31676.16 32382.81 28773.67 17183.41 24793.04 12780.96 12477.65 36058.62 32595.03 16291.21 220
NCCC87.36 8786.87 9888.83 7092.32 10078.84 8686.58 13191.09 14578.77 11284.85 21590.89 19980.85 12595.29 5681.14 10195.32 15092.34 182
TAPA-MVS77.73 1285.71 11284.83 13588.37 8088.78 19479.72 7787.15 11793.50 6269.17 23385.80 19589.56 23480.76 12692.13 16673.21 20795.51 14493.25 142
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
Fast-Effi-MVS+-dtu82.54 18181.41 20185.90 12385.60 26876.53 11583.07 20689.62 19173.02 18979.11 31283.51 32880.74 12790.24 22168.76 24789.29 29090.94 227
PC_three_145258.96 33190.06 9791.33 18280.66 12893.03 14375.78 16995.94 12892.48 173
VPA-MVSNet83.47 16684.73 13679.69 25490.29 16057.52 32281.30 24688.69 20276.29 13787.58 15694.44 7180.60 12987.20 27566.60 26496.82 9094.34 91
ETV-MVS84.31 14183.91 15885.52 13188.58 20070.40 17884.50 17193.37 6478.76 11384.07 23478.72 37680.39 13095.13 6573.82 19392.98 22391.04 224
HPM-MVS++copyleft88.93 6888.45 7690.38 4494.92 3685.85 3189.70 7191.27 14078.20 11886.69 17592.28 15880.36 13195.06 6786.17 4796.49 10090.22 248
ANet_high83.17 17185.68 12175.65 31081.24 33345.26 39679.94 26192.91 9183.83 5191.33 7696.88 1380.25 13285.92 30068.89 24595.89 13195.76 42
mamv495.37 294.51 297.96 196.31 1098.41 191.05 4697.23 295.32 299.01 297.26 680.16 13398.99 195.15 199.14 296.47 30
EI-MVSNet-Vis-set85.12 12484.53 14586.88 10084.01 29672.76 14483.91 18385.18 25880.44 8688.75 12785.49 30280.08 13491.92 17282.02 9490.85 26995.97 38
DeepC-MVS_fast80.27 886.23 10285.65 12287.96 8791.30 13676.92 11087.19 11591.99 11770.56 22084.96 21190.69 20780.01 13595.14 6478.37 13295.78 13891.82 204
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
EI-MVSNet-UG-set85.04 12584.44 14786.85 10183.87 30072.52 15383.82 18585.15 25980.27 9088.75 12785.45 30479.95 13691.90 17381.92 9790.80 27096.13 33
MCST-MVS84.36 13983.93 15785.63 12991.59 12471.58 16883.52 19392.13 11361.82 30283.96 23689.75 23279.93 13793.46 12778.33 13494.34 18791.87 203
TSAR-MVS + MP.88.14 7587.82 8289.09 6795.72 2276.74 11292.49 2591.19 14367.85 25386.63 17694.84 5579.58 13895.96 1587.62 1994.50 18294.56 78
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
test1286.57 10590.74 15172.63 14990.69 15582.76 25979.20 13994.80 7395.32 15092.27 187
CSCG86.26 10186.47 10385.60 13090.87 14974.26 13187.98 10491.85 12280.35 8889.54 11788.01 25779.09 14092.13 16675.51 17295.06 16190.41 245
Test By Simon79.09 140
PHI-MVS86.38 10085.81 11788.08 8488.44 20477.34 10589.35 8593.05 8373.15 18784.76 21687.70 26578.87 14294.18 9580.67 10896.29 10792.73 160
EG-PatchMatch MVS84.08 15084.11 15383.98 16492.22 10372.61 15082.20 23687.02 23072.63 19588.86 12491.02 19278.52 14391.11 19473.41 19991.09 25888.21 282
dcpmvs_284.23 14685.14 13081.50 22688.61 19961.98 27282.90 21393.11 7968.66 24192.77 5492.39 15178.50 14487.63 27076.99 15692.30 23394.90 66
Effi-MVS+-dtu85.82 11183.38 16393.14 487.13 23491.15 387.70 10888.42 20574.57 16283.56 24585.65 29978.49 14594.21 9372.04 21492.88 22594.05 103
Vis-MVSNetpermissive86.86 9286.58 10187.72 8992.09 10777.43 10487.35 11392.09 11478.87 11084.27 23194.05 9278.35 14693.65 11380.54 11091.58 25292.08 195
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
UniMVSNet_NR-MVSNet86.84 9387.06 9386.17 11892.86 8667.02 21382.55 22291.56 12983.08 6290.92 8491.82 16978.25 14793.99 10274.16 18498.35 2297.49 13
MSLP-MVS++85.00 12886.03 11181.90 21691.84 11971.56 17086.75 12893.02 8775.95 14487.12 16189.39 23677.98 14889.40 24977.46 14894.78 17484.75 325
API-MVS82.28 18482.61 17981.30 22886.29 25669.79 18188.71 9587.67 21778.42 11782.15 26884.15 32477.98 14891.59 18065.39 27692.75 22782.51 362
DP-MVS Recon84.05 15183.22 16586.52 10791.73 12275.27 12583.23 20392.40 10472.04 20582.04 26988.33 25377.91 15093.95 10466.17 26795.12 15990.34 247
mmtdpeth85.13 12385.78 11983.17 19184.65 28474.71 12785.87 14390.35 16777.94 12183.82 23896.96 1277.75 15180.03 35078.44 13096.21 11294.79 74
fmvsm_s_conf0.1_n_a82.58 18081.93 18884.50 14987.68 22173.35 13786.14 13977.70 31861.64 30785.02 20991.62 17577.75 15186.24 29282.79 8487.07 32293.91 109
UniMVSNet (Re)86.87 9186.98 9686.55 10693.11 7968.48 19983.80 18792.87 9280.37 8789.61 11391.81 17077.72 15394.18 9575.00 17998.53 1696.99 22
PCF-MVS74.62 1582.15 19080.92 21085.84 12589.43 17772.30 15780.53 25491.82 12457.36 34487.81 15189.92 22977.67 15493.63 11558.69 32495.08 16091.58 214
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
NR-MVSNet86.00 10786.22 10785.34 13493.24 7664.56 23682.21 23490.46 16180.99 8288.42 13791.97 16377.56 15593.85 10772.46 21298.65 1297.61 10
3Dnovator+83.92 289.97 4989.66 5790.92 3591.27 13881.66 6691.25 4294.13 3788.89 1588.83 12694.26 8277.55 15695.86 2384.88 6195.87 13295.24 58
MVS_Test82.47 18283.22 16580.22 24782.62 32057.75 32182.54 22391.96 11971.16 21582.89 25692.52 14977.41 15790.50 21680.04 11387.84 31492.40 179
fmvsm_s_conf0.5_n_a82.21 18681.51 20084.32 15786.56 24673.35 13785.46 15177.30 32261.81 30384.51 21990.88 20177.36 15886.21 29482.72 8586.97 32793.38 134
EIA-MVS82.19 18781.23 20685.10 13787.95 21469.17 19383.22 20493.33 6770.42 22178.58 31679.77 36877.29 15994.20 9471.51 21688.96 29591.93 202
xiu_mvs_v2_base77.19 25776.75 26178.52 26987.01 24061.30 27875.55 33187.12 22861.24 31474.45 35278.79 37577.20 16090.93 20064.62 28684.80 35683.32 349
DU-MVS86.80 9486.99 9586.21 11693.24 7667.02 21383.16 20592.21 11081.73 7490.92 8491.97 16377.20 16093.99 10274.16 18498.35 2297.61 10
Baseline_NR-MVSNet84.00 15385.90 11478.29 27591.47 13453.44 35382.29 23087.00 23379.06 10789.55 11595.72 3277.20 16086.14 29772.30 21398.51 1795.28 56
TinyColmap81.25 20582.34 18477.99 28185.33 27260.68 28982.32 22988.33 20871.26 21386.97 16892.22 16177.10 16386.98 27962.37 30095.17 15686.31 308
F-COLMAP84.97 12983.42 16289.63 5792.39 9683.40 5288.83 9291.92 12073.19 18680.18 30289.15 24277.04 16493.28 13365.82 27392.28 23692.21 190
114514_t83.10 17382.54 18184.77 14392.90 8369.10 19486.65 12990.62 15854.66 36081.46 28290.81 20476.98 16594.38 8772.62 21096.18 11490.82 232
xiu_mvs_v1_base_debu80.84 21080.14 22482.93 19888.31 20571.73 16479.53 26687.17 22265.43 27579.59 30482.73 34076.94 16690.14 22773.22 20288.33 30486.90 302
xiu_mvs_v1_base80.84 21080.14 22482.93 19888.31 20571.73 16479.53 26687.17 22265.43 27579.59 30482.73 34076.94 16690.14 22773.22 20288.33 30486.90 302
xiu_mvs_v1_base_debi80.84 21080.14 22482.93 19888.31 20571.73 16479.53 26687.17 22265.43 27579.59 30482.73 34076.94 16690.14 22773.22 20288.33 30486.90 302
pcd_1.5k_mvsjas6.41 3928.55 3950.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 42676.94 1660.00 4270.00 4260.00 4250.00 423
PS-MVSNAJss88.31 7387.90 8189.56 5993.31 7377.96 9687.94 10591.97 11870.73 21994.19 2596.67 1476.94 16694.57 8183.07 7896.28 10896.15 32
PS-MVSNAJ77.04 25976.53 26378.56 26887.09 23861.40 27675.26 33387.13 22561.25 31374.38 35477.22 38876.94 16690.94 19964.63 28584.83 35583.35 348
MIMVSNet183.63 16184.59 14180.74 23894.06 5762.77 25782.72 21684.53 27277.57 12890.34 9395.92 2876.88 17285.83 30561.88 30697.42 7493.62 126
原ACMM184.60 14792.81 8974.01 13291.50 13162.59 29382.73 26090.67 21076.53 17394.25 9169.24 23895.69 14185.55 316
fmvsm_s_conf0.1_n82.17 18881.59 19683.94 16786.87 24471.57 16985.19 15777.42 32162.27 30184.47 22291.33 18276.43 17485.91 30183.14 7587.14 32094.33 92
fmvsm_s_conf0.5_n81.91 19781.30 20383.75 17186.02 26471.56 17084.73 16377.11 32562.44 29884.00 23590.68 20876.42 17585.89 30383.14 7587.11 32193.81 117
MSDG80.06 23079.99 22980.25 24683.91 29968.04 20577.51 29989.19 19677.65 12681.94 27083.45 33076.37 17686.31 29163.31 29686.59 33086.41 306
Gipumacopyleft84.44 13886.33 10578.78 26484.20 29473.57 13589.55 7790.44 16284.24 4884.38 22394.89 5376.35 17780.40 34776.14 16696.80 9182.36 363
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_fmvsm_n_192083.60 16282.89 17385.74 12785.22 27577.74 9984.12 17690.48 16059.87 32886.45 18591.12 18975.65 17885.89 30382.28 9190.87 26793.58 129
XXY-MVS74.44 29176.19 26669.21 35684.61 28552.43 36171.70 36077.18 32460.73 32080.60 29290.96 19675.44 17969.35 38556.13 33988.33 30485.86 313
FMVSNet184.55 13685.45 12581.85 21890.27 16161.05 28286.83 12488.27 21078.57 11589.66 11095.64 3475.43 18090.68 21169.09 24295.33 14993.82 114
CANet83.79 15882.85 17486.63 10486.17 26072.21 16083.76 18891.43 13377.24 13274.39 35387.45 27175.36 18195.42 5277.03 15592.83 22692.25 189
ab-mvs79.67 23380.56 21476.99 29388.48 20256.93 32684.70 16486.06 24368.95 23780.78 29193.08 12675.30 18284.62 31556.78 33490.90 26589.43 263
patch_mono-278.89 23779.39 23277.41 29084.78 28168.11 20375.60 32883.11 28360.96 31779.36 30889.89 23075.18 18372.97 37373.32 20192.30 23391.15 222
DELS-MVS81.44 20381.25 20482.03 21484.27 29362.87 25576.47 31892.49 10370.97 21781.64 28083.83 32575.03 18492.70 15174.29 18292.22 23990.51 243
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PAPR78.84 23978.10 24981.07 23385.17 27660.22 29282.21 23490.57 15962.51 29475.32 34784.61 31874.99 18592.30 16359.48 32288.04 31090.68 237
CNLPA83.55 16483.10 17084.90 13989.34 17983.87 5084.54 16988.77 20079.09 10683.54 24688.66 25074.87 18681.73 33766.84 26192.29 23589.11 269
HQP_MVS87.75 8487.43 8888.70 7593.45 6876.42 11689.45 8293.61 5979.44 10186.55 17792.95 13474.84 18795.22 5980.78 10695.83 13494.46 82
plane_prior692.61 9076.54 11374.84 187
FC-MVSNet-test85.93 10987.05 9482.58 20692.25 10156.44 33085.75 14693.09 8177.33 13091.94 6894.65 6174.78 18993.41 13075.11 17898.58 1497.88 7
VDD-MVS84.23 14684.58 14283.20 18991.17 14265.16 23283.25 20184.97 26679.79 9587.18 16094.27 7974.77 19090.89 20369.24 23896.54 9893.55 133
BH-untuned80.96 20980.99 20880.84 23788.55 20168.23 20080.33 25788.46 20472.79 19386.55 17786.76 28374.72 19191.77 17861.79 30788.99 29482.52 361
VPNet80.25 22481.68 19175.94 30892.46 9547.98 38376.70 31181.67 29673.45 17684.87 21492.82 13874.66 19286.51 28861.66 30996.85 8793.33 136
tfpnnormal81.79 19982.95 17278.31 27388.93 18955.40 33880.83 25382.85 28676.81 13485.90 19494.14 8974.58 19386.51 28866.82 26295.68 14293.01 152
KD-MVS_self_test81.93 19683.14 16978.30 27484.75 28352.75 35780.37 25689.42 19570.24 22690.26 9593.39 11974.55 19486.77 28468.61 25096.64 9495.38 52
fmvsm_l_conf0.5_n82.06 19281.54 19983.60 17683.94 29773.90 13383.35 19886.10 24158.97 33083.80 23990.36 21674.23 19586.94 28082.90 8190.22 27989.94 256
V4283.47 16683.37 16483.75 17183.16 31563.33 24981.31 24490.23 17569.51 23190.91 8690.81 20474.16 19692.29 16480.06 11290.22 27995.62 47
3Dnovator80.37 784.80 13084.71 13985.06 13886.36 25374.71 12788.77 9490.00 18175.65 14984.96 21193.17 12374.06 19791.19 19178.28 13591.09 25889.29 267
v1086.54 9887.10 9284.84 14088.16 21063.28 25086.64 13092.20 11175.42 15492.81 5394.50 6874.05 19894.06 10183.88 7196.28 10897.17 18
旧先验191.97 11171.77 16381.78 29591.84 16773.92 19993.65 20883.61 343
mvs_anonymous78.13 24778.76 24076.23 30779.24 35750.31 37678.69 28284.82 26961.60 30883.09 25492.82 13873.89 20087.01 27668.33 25486.41 33291.37 217
MAR-MVS80.24 22578.74 24184.73 14486.87 24478.18 9285.75 14687.81 21665.67 27477.84 32178.50 37773.79 20190.53 21561.59 31090.87 26785.49 318
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
VDDNet84.35 14085.39 12781.25 22995.13 3259.32 30185.42 15381.11 30086.41 3287.41 15896.21 2273.61 20290.61 21466.33 26696.85 8793.81 117
FIs85.35 11886.27 10682.60 20591.86 11657.31 32385.10 15993.05 8375.83 14691.02 8393.97 9673.57 20392.91 14873.97 19098.02 4297.58 12
v114484.54 13784.72 13884.00 16387.67 22262.55 26182.97 21090.93 15070.32 22489.80 10590.99 19373.50 20493.48 12681.69 9994.65 18095.97 38
diffmvspermissive80.40 21980.48 21780.17 24879.02 36060.04 29377.54 29890.28 17466.65 26382.40 26387.33 27473.50 20487.35 27377.98 14289.62 28793.13 146
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PAPM_NR83.23 16983.19 16783.33 18590.90 14865.98 22488.19 10190.78 15378.13 12080.87 29087.92 26173.49 20692.42 15770.07 23188.40 30291.60 213
v886.22 10386.83 9984.36 15487.82 21762.35 26686.42 13491.33 13876.78 13592.73 5594.48 7073.41 20793.72 11283.10 7795.41 14697.01 21
EI-MVSNet82.61 17882.42 18383.20 18983.25 31263.66 24483.50 19485.07 26076.06 13986.55 17785.10 31073.41 20790.25 21978.15 14090.67 27395.68 45
IterMVS-LS84.73 13284.98 13383.96 16587.35 22963.66 24483.25 20189.88 18476.06 13989.62 11192.37 15573.40 20992.52 15578.16 13894.77 17695.69 44
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MM87.64 8587.15 9089.09 6789.51 17476.39 11888.68 9686.76 23484.54 4683.58 24493.78 10873.36 21096.48 287.98 1396.21 11294.41 88
v14419284.24 14584.41 14883.71 17387.59 22561.57 27482.95 21191.03 14667.82 25489.80 10590.49 21473.28 21193.51 12581.88 9894.89 16996.04 37
BH-RMVSNet80.53 21580.22 22281.49 22787.19 23366.21 22277.79 29486.23 23974.21 16583.69 24188.50 25173.25 21290.75 20863.18 29787.90 31287.52 295
PLCcopyleft73.85 1682.09 19180.31 21887.45 9290.86 15080.29 7385.88 14290.65 15668.17 24776.32 33386.33 28973.12 21392.61 15461.40 31190.02 28289.44 262
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
OurMVSNet-221017-090.01 4689.74 5690.83 3693.16 7880.37 7291.91 3693.11 7981.10 8195.32 1497.24 772.94 21494.85 7285.07 5897.78 5697.26 15
WR-MVS83.56 16384.40 14981.06 23493.43 7054.88 34378.67 28385.02 26381.24 7990.74 9091.56 17772.85 21591.08 19568.00 25598.04 3997.23 16
VNet79.31 23480.27 21976.44 30287.92 21553.95 34975.58 33084.35 27474.39 16482.23 26690.72 20672.84 21684.39 31960.38 31793.98 19890.97 226
QAPM82.59 17982.59 18082.58 20686.44 24866.69 21789.94 6790.36 16667.97 25084.94 21392.58 14772.71 21792.18 16570.63 22687.73 31588.85 276
v119284.57 13584.69 14084.21 16087.75 21962.88 25483.02 20891.43 13369.08 23589.98 10290.89 19972.70 21893.62 11882.41 8994.97 16696.13 33
OpenMVScopyleft76.72 1381.98 19582.00 18781.93 21584.42 28968.22 20188.50 9989.48 19366.92 26081.80 27691.86 16572.59 21990.16 22471.19 21991.25 25787.40 297
TSAR-MVS + GP.83.95 15482.69 17787.72 8989.27 18181.45 6783.72 18981.58 29874.73 16085.66 19686.06 29472.56 22092.69 15275.44 17495.21 15489.01 275
alignmvs83.94 15583.98 15683.80 16887.80 21867.88 20684.54 16991.42 13573.27 18588.41 13887.96 25872.33 22190.83 20676.02 16894.11 19492.69 164
fmvsm_l_conf0.5_n_a81.46 20280.87 21183.25 18783.73 30273.21 14283.00 20985.59 25258.22 33682.96 25590.09 22772.30 22286.65 28681.97 9689.95 28389.88 257
MVSMamba_PlusPlus87.53 8688.86 7183.54 18192.03 11062.26 26891.49 4092.62 10088.07 2488.07 14596.17 2372.24 22395.79 3184.85 6294.16 19392.58 168
HQP2-MVS72.10 224
HQP-MVS84.61 13484.06 15486.27 11291.19 13970.66 17584.77 16092.68 9873.30 18280.55 29490.17 22572.10 22494.61 7977.30 15294.47 18393.56 131
testgi72.36 30774.61 27965.59 37680.56 34442.82 40468.29 37973.35 35366.87 26181.84 27389.93 22872.08 22666.92 39846.05 39492.54 23087.01 301
v192192084.23 14684.37 15083.79 16987.64 22461.71 27382.91 21291.20 14267.94 25190.06 9790.34 21772.04 22793.59 12082.32 9094.91 16796.07 35
MSP-MVS89.08 6688.16 7891.83 2095.76 1886.14 2592.75 1793.90 4878.43 11689.16 12192.25 15972.03 22896.36 488.21 1190.93 26492.98 154
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
LF4IMVS82.75 17781.93 18885.19 13582.08 32280.15 7485.53 15088.76 20168.01 24885.58 19987.75 26471.80 22986.85 28274.02 18993.87 20188.58 278
v124084.30 14284.51 14683.65 17487.65 22361.26 27982.85 21491.54 13067.94 25190.68 9190.65 21171.71 23093.64 11482.84 8394.78 17496.07 35
ambc82.98 19590.55 15664.86 23388.20 10089.15 19789.40 11893.96 9971.67 23191.38 18878.83 12896.55 9792.71 163
新几何182.95 19793.96 5978.56 8880.24 30655.45 35483.93 23791.08 19171.19 23288.33 26365.84 27293.07 22081.95 367
SSC-MVS77.55 25381.64 19365.29 37990.46 15720.33 42573.56 34868.28 38285.44 3788.18 14494.64 6470.93 23381.33 33971.25 21792.03 24194.20 94
v14882.31 18382.48 18281.81 22185.59 26959.66 29881.47 24386.02 24572.85 19088.05 14790.65 21170.73 23490.91 20275.15 17791.79 24694.87 68
v2v48284.09 14984.24 15283.62 17587.13 23461.40 27682.71 21789.71 18772.19 20489.55 11591.41 18070.70 23593.20 13581.02 10293.76 20396.25 31
MVS_030485.37 11784.58 14287.75 8885.28 27373.36 13686.54 13385.71 24977.56 12981.78 27892.47 15070.29 23696.02 1185.59 5395.96 12593.87 111
WB-MVS76.06 27280.01 22864.19 38289.96 17020.58 42472.18 35768.19 38383.21 5986.46 18493.49 11770.19 23778.97 35565.96 26890.46 27893.02 151
balanced_conf0384.80 13085.40 12683.00 19488.95 18861.44 27590.42 5892.37 10771.48 21088.72 12993.13 12570.16 23895.15 6379.26 12594.11 19492.41 177
UGNet82.78 17681.64 19386.21 11686.20 25976.24 12086.86 12285.68 25077.07 13373.76 35792.82 13869.64 23991.82 17769.04 24493.69 20790.56 241
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
c3_l81.64 20081.59 19681.79 22280.86 33959.15 30578.61 28490.18 17768.36 24387.20 15987.11 27969.39 24091.62 17978.16 13894.43 18594.60 77
MG-MVS80.32 22280.94 20978.47 27188.18 20852.62 36082.29 23085.01 26472.01 20679.24 31192.54 14869.36 24193.36 13270.65 22589.19 29389.45 261
IS-MVSNet86.66 9786.82 10086.17 11892.05 10966.87 21691.21 4388.64 20386.30 3389.60 11492.59 14569.22 24294.91 7173.89 19197.89 5296.72 24
PVSNet_BlendedMVS78.80 24077.84 25081.65 22484.43 28763.41 24779.49 26990.44 16261.70 30675.43 34487.07 28069.11 24391.44 18460.68 31592.24 23790.11 253
PVSNet_Blended76.49 26875.40 27379.76 25284.43 28763.41 24775.14 33490.44 16257.36 34475.43 34478.30 37869.11 24391.44 18460.68 31587.70 31684.42 330
BH-w/o76.57 26676.07 26878.10 27886.88 24365.92 22577.63 29686.33 23765.69 27380.89 28979.95 36568.97 24590.74 20953.01 36285.25 34477.62 391
MVS73.21 30172.59 30375.06 31580.97 33660.81 28881.64 24185.92 24746.03 39771.68 36777.54 38368.47 24689.77 23955.70 34285.39 34174.60 397
miper_ehance_all_eth80.34 22180.04 22781.24 23179.82 35058.95 30777.66 29589.66 18865.75 27285.99 19385.11 30968.29 24791.42 18676.03 16792.03 24193.33 136
Anonymous20240521180.51 21681.19 20778.49 27088.48 20257.26 32476.63 31382.49 28981.21 8084.30 22992.24 16067.99 24886.24 29262.22 30195.13 15791.98 201
testdata79.54 25792.87 8472.34 15680.14 30759.91 32785.47 20291.75 17367.96 24985.24 30968.57 25292.18 24081.06 380
DPM-MVS80.10 22979.18 23482.88 20190.71 15369.74 18278.87 28090.84 15160.29 32475.64 34385.92 29767.28 25093.11 13971.24 21891.79 24685.77 314
PVSNet_Blended_VisFu81.55 20180.49 21684.70 14691.58 12773.24 14184.21 17391.67 12862.86 29280.94 28887.16 27767.27 25192.87 14969.82 23488.94 29687.99 288
MDA-MVSNet-bldmvs77.47 25476.90 26079.16 26179.03 35964.59 23466.58 38975.67 33573.15 18788.86 12488.99 24466.94 25281.23 34064.71 28388.22 30991.64 212
CL-MVSNet_self_test76.81 26277.38 25475.12 31486.90 24251.34 36873.20 35280.63 30568.30 24581.80 27688.40 25266.92 25380.90 34155.35 34694.90 16893.12 148
test22293.31 7376.54 11379.38 27077.79 31752.59 37082.36 26490.84 20366.83 25491.69 24881.25 375
TR-MVS76.77 26375.79 26979.72 25386.10 26365.79 22677.14 30483.02 28465.20 28181.40 28382.10 34466.30 25590.73 21055.57 34385.27 34382.65 356
OpenMVS_ROBcopyleft70.19 1777.77 25277.46 25278.71 26684.39 29061.15 28081.18 24882.52 28862.45 29783.34 24987.37 27266.20 25688.66 26064.69 28485.02 34986.32 307
EPP-MVSNet85.47 11585.04 13286.77 10391.52 13269.37 18791.63 3987.98 21581.51 7787.05 16791.83 16866.18 25795.29 5670.75 22396.89 8695.64 46
SixPastTwentyTwo87.20 8987.45 8786.45 10892.52 9369.19 19287.84 10788.05 21381.66 7594.64 1896.53 1765.94 25894.75 7483.02 8096.83 8995.41 51
PatchMatch-RL74.48 28973.22 29578.27 27687.70 22085.26 3875.92 32670.09 37464.34 28576.09 33781.25 35465.87 25978.07 35953.86 35483.82 36271.48 400
WB-MVSnew68.72 34469.01 33767.85 36583.22 31443.98 40074.93 33665.98 39255.09 35573.83 35679.11 37165.63 26071.89 37738.21 41185.04 34887.69 294
EPNet80.37 22078.41 24686.23 11376.75 37473.28 13987.18 11677.45 32076.24 13868.14 38588.93 24565.41 26193.85 10769.47 23696.12 11891.55 215
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
FA-MVS(test-final)83.13 17283.02 17183.43 18286.16 26266.08 22388.00 10388.36 20775.55 15185.02 20992.75 14265.12 26292.50 15674.94 18091.30 25691.72 208
PM-MVS80.20 22679.00 23583.78 17088.17 20986.66 1981.31 24466.81 39169.64 23088.33 14090.19 22264.58 26383.63 32771.99 21590.03 28181.06 380
miper_enhance_ethall77.83 24976.93 25980.51 24276.15 38158.01 31875.47 33288.82 19958.05 33883.59 24380.69 35664.41 26491.20 19073.16 20892.03 24192.33 183
eth_miper_zixun_eth80.84 21080.22 22282.71 20381.41 33160.98 28577.81 29390.14 17867.31 25886.95 16987.24 27664.26 26592.31 16275.23 17691.61 25094.85 72
test20.0373.75 29674.59 28171.22 34381.11 33551.12 37270.15 37372.10 36370.42 22180.28 30091.50 17864.21 26674.72 37246.96 39194.58 18187.82 293
mvs5depth83.82 15784.54 14481.68 22382.23 32168.65 19786.89 12189.90 18380.02 9487.74 15297.86 264.19 26782.02 33576.37 16195.63 14394.35 90
cascas76.29 27174.81 27880.72 24084.47 28662.94 25373.89 34687.34 21955.94 35175.16 34976.53 39363.97 26891.16 19265.00 28090.97 26388.06 286
TAMVS78.08 24876.36 26483.23 18890.62 15472.87 14379.08 27680.01 30861.72 30581.35 28486.92 28263.96 26988.78 25850.61 37293.01 22288.04 287
GBi-Net82.02 19382.07 18581.85 21886.38 25061.05 28286.83 12488.27 21072.43 19686.00 19095.64 3463.78 27090.68 21165.95 26993.34 21293.82 114
test182.02 19382.07 18581.85 21886.38 25061.05 28286.83 12488.27 21072.43 19686.00 19095.64 3463.78 27090.68 21165.95 26993.34 21293.82 114
FMVSNet281.31 20481.61 19580.41 24486.38 25058.75 31283.93 18286.58 23672.43 19687.65 15492.98 13163.78 27090.22 22266.86 25993.92 19992.27 187
USDC76.63 26576.73 26276.34 30483.46 30557.20 32580.02 26088.04 21452.14 37583.65 24291.25 18463.24 27386.65 28654.66 35194.11 19485.17 320
RRT-MVS82.97 17483.44 16181.57 22585.06 27758.04 31787.20 11490.37 16577.88 12388.59 13193.70 11363.17 27493.05 14276.49 16088.47 30193.62 126
DIV-MVS_self_test80.43 21780.23 22081.02 23579.99 34759.25 30277.07 30687.02 23067.38 25586.19 18689.22 23963.09 27590.16 22476.32 16295.80 13693.66 122
cl____80.42 21880.23 22081.02 23579.99 34759.25 30277.07 30687.02 23067.37 25686.18 18889.21 24063.08 27690.16 22476.31 16395.80 13693.65 124
h-mvs3384.25 14482.76 17588.72 7391.82 12182.60 6084.00 17984.98 26571.27 21186.70 17390.55 21363.04 27793.92 10578.26 13694.20 19189.63 259
hse-mvs283.47 16681.81 19088.47 7791.03 14582.27 6182.61 21883.69 27871.27 21186.70 17386.05 29563.04 27792.41 15878.26 13693.62 21090.71 235
new-patchmatchnet70.10 32873.37 29360.29 39281.23 33416.95 42759.54 40374.62 34062.93 29180.97 28687.93 26062.83 27971.90 37655.24 34795.01 16592.00 199
K. test v385.14 12284.73 13686.37 10991.13 14369.63 18585.45 15276.68 32984.06 5092.44 6096.99 1062.03 28094.65 7780.58 10993.24 21694.83 73
lessismore_v085.95 12191.10 14470.99 17470.91 37291.79 6994.42 7461.76 28192.93 14679.52 12293.03 22193.93 107
131473.22 30072.56 30575.20 31380.41 34657.84 31981.64 24185.36 25451.68 37873.10 36076.65 39261.45 28285.19 31063.54 29379.21 38982.59 357
Syy-MVS69.40 33870.03 32867.49 36881.72 32638.94 41171.00 36561.99 40161.38 31070.81 37272.36 40461.37 28379.30 35264.50 28885.18 34584.22 333
CANet_DTU77.81 25177.05 25780.09 24981.37 33259.90 29683.26 20088.29 20969.16 23467.83 38883.72 32660.93 28489.47 24369.22 24089.70 28690.88 230
pmmvs-eth3d78.42 24677.04 25882.57 20887.44 22874.41 13080.86 25279.67 30955.68 35384.69 21790.31 21960.91 28585.42 30862.20 30291.59 25187.88 291
UnsupCasMVSNet_eth71.63 31572.30 30769.62 35376.47 37852.70 35970.03 37480.97 30259.18 32979.36 30888.21 25560.50 28669.12 38658.33 32877.62 39687.04 300
IterMVS-SCA-FT80.64 21479.41 23184.34 15683.93 29869.66 18476.28 32081.09 30172.43 19686.47 18390.19 22260.46 28793.15 13877.45 14986.39 33390.22 248
SCA73.32 29872.57 30475.58 31281.62 32855.86 33478.89 27971.37 36961.73 30474.93 35083.42 33160.46 28787.01 27658.11 33082.63 37483.88 337
jason77.42 25575.75 27082.43 21187.10 23769.27 18877.99 29081.94 29451.47 37977.84 32185.07 31360.32 28989.00 25270.74 22489.27 29289.03 273
jason: jason.
1112_ss74.82 28673.74 28778.04 28089.57 17260.04 29376.49 31787.09 22954.31 36173.66 35879.80 36660.25 29086.76 28558.37 32684.15 36087.32 298
HY-MVS64.64 1873.03 30272.47 30674.71 31883.36 30954.19 34782.14 23781.96 29356.76 35069.57 38086.21 29360.03 29184.83 31449.58 37882.65 37285.11 321
Anonymous2023120671.38 31871.88 30969.88 35086.31 25454.37 34570.39 37174.62 34052.57 37176.73 32988.76 24659.94 29272.06 37544.35 39893.23 21783.23 351
IterMVS76.91 26076.34 26578.64 26780.91 33764.03 24176.30 31979.03 31264.88 28383.11 25289.16 24159.90 29384.46 31768.61 25085.15 34787.42 296
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
YYNet170.06 32970.44 32268.90 35873.76 39653.42 35458.99 40667.20 38758.42 33487.10 16385.39 30659.82 29467.32 39559.79 32083.50 36585.96 310
MDA-MVSNet_test_wron70.05 33070.44 32268.88 35973.84 39553.47 35258.93 40767.28 38658.43 33387.09 16485.40 30559.80 29567.25 39659.66 32183.54 36485.92 312
PMMVS61.65 37260.38 37965.47 37865.40 42169.26 18963.97 39561.73 40536.80 41860.11 41068.43 40959.42 29666.35 40048.97 38178.57 39260.81 411
CDS-MVSNet77.32 25675.40 27383.06 19289.00 18672.48 15477.90 29282.17 29260.81 31878.94 31383.49 32959.30 29788.76 25954.64 35292.37 23287.93 290
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
UnsupCasMVSNet_bld69.21 34069.68 33167.82 36679.42 35451.15 37167.82 38375.79 33354.15 36277.47 32785.36 30859.26 29870.64 38148.46 38479.35 38781.66 369
Anonymous2024052180.18 22781.25 20476.95 29483.15 31660.84 28782.46 22585.99 24668.76 23986.78 17093.73 11259.13 29977.44 36173.71 19597.55 6992.56 169
WTY-MVS67.91 34768.35 34466.58 37380.82 34048.12 38265.96 39072.60 35753.67 36471.20 36981.68 35158.97 30069.06 38748.57 38381.67 37682.55 359
cl2278.97 23678.21 24881.24 23177.74 36459.01 30677.46 30287.13 22565.79 26984.32 22685.10 31058.96 30190.88 20475.36 17592.03 24193.84 112
MVSFormer82.23 18581.57 19884.19 16285.54 27069.26 18991.98 3490.08 17971.54 20876.23 33485.07 31358.69 30294.27 8986.26 4388.77 29789.03 273
lupinMVS76.37 27074.46 28282.09 21385.54 27069.26 18976.79 30980.77 30450.68 38676.23 33482.82 33858.69 30288.94 25369.85 23388.77 29788.07 284
Test_1112_low_res73.90 29573.08 29676.35 30390.35 15955.95 33173.40 35186.17 24050.70 38573.14 35985.94 29658.31 30485.90 30256.51 33683.22 36687.20 299
test_yl78.71 24278.51 24479.32 25984.32 29158.84 30978.38 28585.33 25575.99 14282.49 26186.57 28558.01 30590.02 23362.74 29892.73 22889.10 270
DCV-MVSNet78.71 24278.51 24479.32 25984.32 29158.84 30978.38 28585.33 25575.99 14282.49 26186.57 28558.01 30590.02 23362.74 29892.73 22889.10 270
sss66.92 35167.26 34965.90 37577.23 36951.10 37364.79 39271.72 36752.12 37670.13 37780.18 36357.96 30765.36 40450.21 37381.01 38281.25 375
ppachtmachnet_test74.73 28874.00 28676.90 29680.71 34256.89 32871.53 36378.42 31458.24 33579.32 31082.92 33757.91 30884.26 32165.60 27591.36 25589.56 260
MVP-Stereo75.81 27573.51 29182.71 20389.35 17873.62 13480.06 25885.20 25760.30 32373.96 35587.94 25957.89 30989.45 24552.02 36674.87 40285.06 322
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
PAPM71.77 31270.06 32776.92 29586.39 24953.97 34876.62 31486.62 23553.44 36563.97 40584.73 31757.79 31092.34 16139.65 40681.33 38084.45 329
LFMVS80.15 22880.56 21478.89 26289.19 18355.93 33285.22 15673.78 34982.96 6384.28 23092.72 14357.38 31190.07 23163.80 29195.75 13990.68 237
Vis-MVSNet (Re-imp)77.82 25077.79 25177.92 28288.82 19151.29 37083.28 19971.97 36474.04 16682.23 26689.78 23157.38 31189.41 24857.22 33395.41 14693.05 150
CHOSEN 1792x268872.45 30670.56 32078.13 27790.02 16963.08 25268.72 37883.16 28242.99 40775.92 33985.46 30357.22 31385.18 31149.87 37681.67 37686.14 309
mvsany_test158.48 38156.47 38664.50 38165.90 42068.21 20256.95 41042.11 42338.30 41565.69 39677.19 38956.96 31459.35 41346.16 39258.96 41665.93 407
miper_lstm_enhance76.45 26976.10 26777.51 28876.72 37560.97 28664.69 39385.04 26263.98 28783.20 25188.22 25456.67 31578.79 35773.22 20293.12 21992.78 159
our_test_371.85 31171.59 31172.62 33380.71 34253.78 35069.72 37571.71 36858.80 33278.03 31880.51 36156.61 31678.84 35662.20 30286.04 33885.23 319
baseline173.26 29973.54 29072.43 33684.92 27947.79 38479.89 26274.00 34565.93 26678.81 31486.28 29256.36 31781.63 33856.63 33579.04 39187.87 292
pmmvs474.92 28472.98 29880.73 23984.95 27871.71 16776.23 32177.59 31952.83 36977.73 32586.38 28756.35 31884.97 31257.72 33287.05 32385.51 317
MVEpermissive40.22 2351.82 38550.47 38855.87 39662.66 42351.91 36431.61 41739.28 42440.65 41050.76 41974.98 39956.24 31944.67 42033.94 41664.11 41471.04 402
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
dmvs_testset60.59 37962.54 37454.72 39877.26 36827.74 42174.05 34361.00 40860.48 32265.62 39767.03 41155.93 32068.23 39332.07 41869.46 41268.17 405
N_pmnet70.20 32668.80 34174.38 32080.91 33784.81 4359.12 40576.45 33155.06 35675.31 34882.36 34355.74 32154.82 41547.02 38987.24 31983.52 344
MS-PatchMatch70.93 32270.22 32573.06 32881.85 32562.50 26273.82 34777.90 31652.44 37275.92 33981.27 35355.67 32281.75 33655.37 34577.70 39574.94 396
DSMNet-mixed60.98 37761.61 37759.09 39572.88 40345.05 39774.70 33846.61 42126.20 41965.34 39890.32 21855.46 32363.12 40841.72 40281.30 38169.09 404
pmmvs570.73 32370.07 32672.72 33177.03 37252.73 35874.14 34175.65 33650.36 38872.17 36585.37 30755.42 32480.67 34352.86 36387.59 31784.77 324
CMPMVSbinary59.41 2075.12 28173.57 28979.77 25175.84 38467.22 20981.21 24782.18 29150.78 38476.50 33087.66 26655.20 32582.99 33062.17 30490.64 27789.09 272
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test_vis1_n_192071.30 31971.58 31370.47 34677.58 36759.99 29574.25 34084.22 27651.06 38174.85 35179.10 37255.10 32668.83 38868.86 24679.20 39082.58 358
MIMVSNet71.09 32071.59 31169.57 35487.23 23150.07 37778.91 27871.83 36560.20 32671.26 36891.76 17255.08 32776.09 36541.06 40387.02 32582.54 360
PVSNet_051.08 2256.10 38254.97 38759.48 39475.12 39053.28 35555.16 41161.89 40344.30 40159.16 41162.48 41454.22 32865.91 40235.40 41347.01 41759.25 413
MonoMVSNet76.66 26477.26 25674.86 31679.86 34954.34 34686.26 13786.08 24271.08 21685.59 19888.68 24853.95 32985.93 29963.86 29080.02 38484.32 331
EPNet_dtu72.87 30471.33 31677.49 28977.72 36560.55 29082.35 22875.79 33366.49 26458.39 41581.06 35553.68 33085.98 29853.55 35792.97 22485.95 311
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PMMVS255.64 38459.27 38344.74 40064.30 42212.32 42840.60 41549.79 41953.19 36765.06 40284.81 31553.60 33149.76 41832.68 41789.41 28972.15 399
test_vis1_rt65.64 36164.09 36570.31 34766.09 41870.20 18061.16 40081.60 29738.65 41472.87 36169.66 40752.84 33260.04 41156.16 33877.77 39480.68 382
mvsany_test365.48 36262.97 37173.03 32969.99 41176.17 12164.83 39143.71 42243.68 40480.25 30187.05 28152.83 33363.09 40951.92 37072.44 40479.84 387
HyFIR lowres test75.12 28172.66 30282.50 20991.44 13565.19 23172.47 35587.31 22046.79 39280.29 29884.30 32152.70 33492.10 16951.88 37186.73 32890.22 248
dmvs_re66.81 35466.98 35066.28 37476.87 37358.68 31371.66 36172.24 36060.29 32469.52 38173.53 40152.38 33564.40 40644.90 39681.44 37975.76 394
test_cas_vis1_n_192069.20 34169.12 33469.43 35573.68 39762.82 25670.38 37277.21 32346.18 39680.46 29778.95 37452.03 33665.53 40365.77 27477.45 39879.95 386
test111178.53 24478.85 23877.56 28792.22 10347.49 38582.61 21869.24 38072.43 19685.28 20494.20 8551.91 33790.07 23165.36 27796.45 10395.11 63
ECVR-MVScopyleft78.44 24578.63 24277.88 28391.85 11748.95 37983.68 19069.91 37672.30 20284.26 23294.20 8551.89 33889.82 23663.58 29296.02 12294.87 68
FMVSNet378.80 24078.55 24379.57 25682.89 31956.89 32881.76 23885.77 24869.04 23686.00 19090.44 21551.75 33990.09 23065.95 26993.34 21291.72 208
D2MVS76.84 26175.67 27280.34 24580.48 34562.16 27173.50 34984.80 27057.61 34282.24 26587.54 26851.31 34087.65 26970.40 22993.19 21891.23 219
AUN-MVS81.18 20678.78 23988.39 7990.93 14782.14 6282.51 22483.67 27964.69 28480.29 29885.91 29851.07 34192.38 15976.29 16493.63 20990.65 239
PVSNet58.17 2166.41 35765.63 36068.75 36081.96 32349.88 37862.19 39972.51 35951.03 38268.04 38675.34 39850.84 34274.77 37045.82 39582.96 36781.60 370
mvsmamba80.30 22378.87 23684.58 14888.12 21167.55 20892.35 2984.88 26763.15 29085.33 20390.91 19850.71 34395.20 6266.36 26587.98 31190.99 225
GA-MVS75.83 27474.61 27979.48 25881.87 32459.25 30273.42 35082.88 28568.68 24079.75 30381.80 34950.62 34489.46 24466.85 26085.64 34089.72 258
FPMVS72.29 30972.00 30873.14 32788.63 19885.00 4074.65 33967.39 38571.94 20777.80 32387.66 26650.48 34575.83 36749.95 37479.51 38558.58 414
test_fmvs375.72 27675.20 27677.27 29175.01 39269.47 18678.93 27784.88 26746.67 39387.08 16587.84 26250.44 34671.62 37877.42 15188.53 30090.72 234
test_vis1_n70.29 32569.99 32971.20 34475.97 38366.50 21976.69 31280.81 30344.22 40275.43 34477.23 38750.00 34768.59 38966.71 26382.85 37178.52 390
MVS-HIRNet61.16 37562.92 37255.87 39679.09 35835.34 41771.83 35957.98 41446.56 39459.05 41291.14 18849.95 34876.43 36438.74 40871.92 40655.84 415
CVMVSNet72.62 30571.41 31576.28 30583.25 31260.34 29183.50 19479.02 31337.77 41776.33 33285.10 31049.60 34987.41 27270.54 22777.54 39781.08 378
RPMNet78.88 23878.28 24780.68 24179.58 35162.64 25982.58 22094.16 3274.80 15975.72 34192.59 14548.69 35095.56 4273.48 19882.91 36983.85 340
test_fmvs273.57 29772.80 29975.90 30972.74 40568.84 19677.07 30684.32 27545.14 39982.89 25684.22 32248.37 35170.36 38273.40 20087.03 32488.52 279
tpmrst66.28 35866.69 35465.05 38072.82 40439.33 41078.20 28870.69 37353.16 36867.88 38780.36 36248.18 35274.75 37158.13 32970.79 40781.08 378
CR-MVSNet74.00 29473.04 29776.85 29879.58 35162.64 25982.58 22076.90 32650.50 38775.72 34192.38 15248.07 35384.07 32368.72 24982.91 36983.85 340
Patchmtry76.56 26777.46 25273.83 32279.37 35646.60 38982.41 22776.90 32673.81 16985.56 20092.38 15248.07 35383.98 32463.36 29595.31 15290.92 228
test_f64.31 36865.85 35759.67 39366.54 41762.24 27057.76 40970.96 37140.13 41184.36 22482.09 34546.93 35551.67 41761.99 30581.89 37565.12 408
ADS-MVSNet265.87 36063.64 36872.55 33473.16 40056.92 32767.10 38674.81 33949.74 38966.04 39482.97 33446.71 35677.26 36242.29 40069.96 40983.46 345
ADS-MVSNet61.90 37162.19 37561.03 39173.16 40036.42 41667.10 38661.75 40449.74 38966.04 39482.97 33446.71 35663.21 40742.29 40069.96 40983.46 345
PatchmatchNetpermissive69.71 33568.83 34072.33 33877.66 36653.60 35179.29 27169.99 37557.66 34172.53 36382.93 33646.45 35880.08 34960.91 31472.09 40583.31 350
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
thres20072.34 30871.55 31474.70 31983.48 30451.60 36775.02 33573.71 35070.14 22778.56 31780.57 35946.20 35988.20 26546.99 39089.29 29084.32 331
sam_mvs146.11 36083.88 337
tfpn200view974.86 28574.23 28476.74 29986.24 25752.12 36279.24 27373.87 34773.34 18081.82 27484.60 31946.02 36188.80 25551.98 36790.99 26089.31 265
thres40075.14 27974.23 28477.86 28486.24 25752.12 36279.24 27373.87 34773.34 18081.82 27484.60 31946.02 36188.80 25551.98 36790.99 26092.66 165
baseline269.77 33466.89 35178.41 27279.51 35358.09 31576.23 32169.57 37757.50 34364.82 40377.45 38546.02 36188.44 26153.08 35977.83 39388.70 277
patchmatchnet-post81.71 35045.93 36487.01 276
sam_mvs45.92 365
BP-MVS182.81 17581.67 19286.23 11387.88 21668.53 19886.06 14084.36 27375.65 14985.14 20690.19 22245.84 36694.42 8685.18 5794.72 17895.75 43
Patchmatch-RL test74.48 28973.68 28876.89 29784.83 28066.54 21872.29 35669.16 38157.70 34086.76 17186.33 28945.79 36782.59 33169.63 23590.65 27681.54 371
thres100view90075.45 27775.05 27776.66 30087.27 23051.88 36581.07 24973.26 35475.68 14883.25 25086.37 28845.54 36888.80 25551.98 36790.99 26089.31 265
thres600view775.97 27375.35 27577.85 28587.01 24051.84 36680.45 25573.26 35475.20 15683.10 25386.31 29145.54 36889.05 25155.03 34992.24 23792.66 165
tpm cat166.76 35565.21 36371.42 34277.09 37150.62 37578.01 28973.68 35144.89 40068.64 38379.00 37345.51 37082.42 33449.91 37570.15 40881.23 377
test_post3.10 42345.43 37177.22 363
MDTV_nov1_ep1368.29 34578.03 36343.87 40174.12 34272.22 36152.17 37367.02 39185.54 30045.36 37280.85 34255.73 34084.42 358
tpmvs70.16 32769.56 33271.96 33974.71 39348.13 38179.63 26475.45 33865.02 28270.26 37681.88 34845.34 37385.68 30658.34 32775.39 40182.08 366
MDTV_nov1_ep13_2view27.60 42270.76 36946.47 39561.27 40745.20 37449.18 37983.75 342
test_post178.85 2813.13 42245.19 37580.13 34858.11 330
CostFormer69.98 33268.68 34273.87 32177.14 37050.72 37479.26 27274.51 34251.94 37770.97 37184.75 31645.16 37687.49 27155.16 34879.23 38883.40 347
GDP-MVS82.17 18880.85 21286.15 12088.65 19768.95 19585.65 14993.02 8768.42 24283.73 24089.54 23545.07 37794.31 8879.66 11993.87 20195.19 61
FE-MVS79.98 23178.86 23783.36 18486.47 24766.45 22089.73 7084.74 27172.80 19284.22 23391.38 18144.95 37893.60 11963.93 28991.50 25390.04 255
Patchmatch-test65.91 35967.38 34861.48 39075.51 38643.21 40368.84 37763.79 39962.48 29572.80 36283.42 33144.89 37959.52 41248.27 38686.45 33181.70 368
EU-MVSNet75.12 28174.43 28377.18 29283.11 31759.48 30085.71 14882.43 29039.76 41385.64 19788.76 24644.71 38087.88 26773.86 19285.88 33984.16 336
PatchT70.52 32472.76 30163.79 38479.38 35533.53 41877.63 29665.37 39573.61 17371.77 36692.79 14144.38 38175.65 36864.53 28785.37 34282.18 364
test_vis3_rt71.42 31770.67 31873.64 32469.66 41270.46 17766.97 38889.73 18542.68 40988.20 14383.04 33343.77 38260.07 41065.35 27886.66 32990.39 246
test_fmvs1_n70.94 32170.41 32472.53 33573.92 39466.93 21575.99 32584.21 27743.31 40679.40 30779.39 37043.47 38368.55 39069.05 24384.91 35282.10 365
test-LLR67.21 34966.74 35368.63 36276.45 37955.21 34067.89 38067.14 38862.43 29965.08 40072.39 40243.41 38469.37 38361.00 31284.89 35381.31 373
test0.0.03 164.66 36564.36 36465.57 37775.03 39146.89 38864.69 39361.58 40762.43 29971.18 37077.54 38343.41 38468.47 39240.75 40582.65 37281.35 372
test_fmvs169.57 33669.05 33671.14 34569.15 41365.77 22773.98 34483.32 28142.83 40877.77 32478.27 37943.39 38668.50 39168.39 25384.38 35979.15 388
MVSTER77.09 25875.70 27181.25 22975.27 38961.08 28177.49 30185.07 26060.78 31986.55 17788.68 24843.14 38790.25 21973.69 19690.67 27392.42 176
tpm67.95 34668.08 34767.55 36778.74 36243.53 40275.60 32867.10 39054.92 35772.23 36488.10 25642.87 38875.97 36652.21 36580.95 38383.15 352
tpm268.45 34566.83 35273.30 32678.93 36148.50 38079.76 26371.76 36647.50 39169.92 37883.60 32742.07 38988.40 26248.44 38579.51 38583.01 354
EMVS61.10 37660.81 37861.99 38765.96 41955.86 33453.10 41358.97 41267.06 25956.89 41763.33 41340.98 39067.03 39754.79 35086.18 33663.08 409
new_pmnet55.69 38357.66 38449.76 39975.47 38730.59 41959.56 40251.45 41843.62 40562.49 40675.48 39740.96 39149.15 41937.39 41272.52 40369.55 403
E-PMN61.59 37361.62 37661.49 38966.81 41655.40 33853.77 41260.34 40966.80 26258.90 41365.50 41240.48 39266.12 40155.72 34186.25 33562.95 410
EPMVS62.47 36962.63 37362.01 38670.63 41038.74 41274.76 33752.86 41753.91 36367.71 38980.01 36439.40 39366.60 39955.54 34468.81 41380.68 382
tmp_tt20.25 39024.50 3937.49 4054.47 4288.70 42934.17 41625.16 4261.00 42332.43 42218.49 42039.37 3949.21 42421.64 42043.75 4184.57 420
thisisatest053079.07 23577.33 25584.26 15987.13 23464.58 23583.66 19175.95 33268.86 23885.22 20587.36 27338.10 39593.57 12375.47 17394.28 18994.62 76
ET-MVSNet_ETH3D75.28 27872.77 30082.81 20283.03 31868.11 20377.09 30576.51 33060.67 32177.60 32680.52 36038.04 39691.15 19370.78 22290.68 27289.17 268
ttmdpeth71.72 31370.67 31874.86 31673.08 40255.88 33377.41 30369.27 37955.86 35278.66 31593.77 11038.01 39775.39 36960.12 31889.87 28493.31 138
tttt051781.07 20779.58 23085.52 13188.99 18766.45 22087.03 11975.51 33773.76 17088.32 14190.20 22137.96 39894.16 9979.36 12495.13 15795.93 41
thisisatest051573.00 30370.52 32180.46 24381.45 33059.90 29673.16 35374.31 34457.86 33976.08 33877.78 38137.60 39992.12 16865.00 28091.45 25489.35 264
FMVSNet572.10 31071.69 31073.32 32581.57 32953.02 35676.77 31078.37 31563.31 28876.37 33191.85 16636.68 40078.98 35447.87 38792.45 23187.95 289
dp60.70 37860.29 38161.92 38872.04 40738.67 41370.83 36864.08 39851.28 38060.75 40877.28 38636.59 40171.58 37947.41 38862.34 41575.52 395
CHOSEN 280x42059.08 38056.52 38566.76 37276.51 37764.39 23849.62 41459.00 41143.86 40355.66 41868.41 41035.55 40268.21 39443.25 39976.78 40067.69 406
testing9169.94 33368.99 33872.80 33083.81 30145.89 39271.57 36273.64 35268.24 24670.77 37477.82 38034.37 40384.44 31853.64 35687.00 32688.07 284
IB-MVS62.13 1971.64 31468.97 33979.66 25580.80 34162.26 26873.94 34576.90 32663.27 28968.63 38476.79 39033.83 40491.84 17659.28 32387.26 31884.88 323
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
WBMVS68.76 34368.43 34369.75 35283.29 31040.30 40967.36 38572.21 36257.09 34777.05 32885.53 30133.68 40580.51 34548.79 38290.90 26588.45 280
JIA-IIPM69.41 33766.64 35577.70 28673.19 39971.24 17275.67 32765.56 39470.42 22165.18 39992.97 13333.64 40683.06 32853.52 35869.61 41178.79 389
UBG64.34 36763.35 36967.30 36983.50 30340.53 40867.46 38465.02 39654.77 35967.54 39074.47 40032.99 40778.50 35840.82 40483.58 36382.88 355
testing9969.27 33968.15 34672.63 33283.29 31045.45 39471.15 36471.08 37067.34 25770.43 37577.77 38232.24 40884.35 32053.72 35586.33 33488.10 283
testing1167.38 34865.93 35671.73 34183.37 30846.60 38970.95 36769.40 37862.47 29666.14 39276.66 39131.22 40984.10 32249.10 38084.10 36184.49 327
DeepMVS_CXcopyleft24.13 40432.95 42629.49 42021.63 42712.07 42037.95 42145.07 41830.84 41019.21 42317.94 42233.06 42023.69 419
gg-mvs-nofinetune68.96 34269.11 33568.52 36476.12 38245.32 39583.59 19255.88 41586.68 2964.62 40497.01 930.36 41183.97 32544.78 39782.94 36876.26 393
GG-mvs-BLEND67.16 37073.36 39846.54 39184.15 17555.04 41658.64 41461.95 41529.93 41283.87 32638.71 40976.92 39971.07 401
UWE-MVS66.43 35665.56 36169.05 35784.15 29540.98 40773.06 35464.71 39754.84 35876.18 33679.62 36929.21 41380.50 34638.54 41089.75 28585.66 315
ETVMVS64.67 36463.34 37068.64 36183.44 30641.89 40569.56 37661.70 40661.33 31268.74 38275.76 39628.76 41479.35 35134.65 41486.16 33784.67 326
test_method30.46 38829.60 39133.06 40217.99 4273.84 43013.62 41873.92 3462.79 42118.29 42353.41 41628.53 41543.25 42122.56 41935.27 41952.11 416
test-mter65.00 36363.79 36768.63 36276.45 37955.21 34067.89 38067.14 38850.98 38365.08 40072.39 40228.27 41669.37 38361.00 31284.89 35381.31 373
TESTMET0.1,161.29 37460.32 38064.19 38272.06 40651.30 36967.89 38062.09 40045.27 39860.65 40969.01 40827.93 41764.74 40556.31 33781.65 37876.53 392
reproduce_monomvs74.09 29373.23 29476.65 30176.52 37654.54 34477.50 30081.40 29965.85 26882.86 25886.67 28427.38 41884.53 31670.24 23090.66 27590.89 229
testing22266.93 35065.30 36271.81 34083.38 30745.83 39372.06 35867.50 38464.12 28669.68 37976.37 39427.34 41983.00 32938.88 40788.38 30386.62 305
test250674.12 29273.39 29276.28 30591.85 11744.20 39984.06 17748.20 42072.30 20281.90 27194.20 8527.22 42089.77 23964.81 28296.02 12294.87 68
pmmvs362.47 36960.02 38269.80 35171.58 40864.00 24270.52 37058.44 41339.77 41266.05 39375.84 39527.10 42172.28 37446.15 39384.77 35773.11 398
KD-MVS_2432*160066.87 35265.81 35870.04 34867.50 41447.49 38562.56 39779.16 31061.21 31577.98 31980.61 35725.29 42282.48 33253.02 36084.92 35080.16 384
miper_refine_blended66.87 35265.81 35870.04 34867.50 41447.49 38562.56 39779.16 31061.21 31577.98 31980.61 35725.29 42282.48 33253.02 36084.92 35080.16 384
MVStest170.05 33069.26 33372.41 33758.62 42455.59 33776.61 31565.58 39353.44 36589.28 12093.32 12022.91 42471.44 38074.08 18889.52 28890.21 252
myMVS_eth3d64.66 36563.89 36666.97 37181.72 32637.39 41471.00 36561.99 40161.38 31070.81 37272.36 40420.96 42579.30 35249.59 37785.18 34584.22 333
testing371.53 31670.79 31773.77 32388.89 19041.86 40676.60 31659.12 41072.83 19180.97 28682.08 34619.80 42687.33 27465.12 27991.68 24992.13 194
dongtai41.90 38642.65 38939.67 40170.86 40921.11 42361.01 40121.42 42857.36 34457.97 41650.06 41716.40 42758.73 41421.03 42127.69 42139.17 417
kuosan30.83 38732.17 39026.83 40353.36 42519.02 42657.90 40820.44 42938.29 41638.01 42037.82 41915.18 42833.45 4227.74 42320.76 42228.03 418
test1236.27 3938.08 3960.84 4061.11 4300.57 43162.90 3960.82 4300.54 4241.07 4262.75 4251.26 4290.30 4251.04 4241.26 4241.66 421
testmvs5.91 3947.65 3970.72 4071.20 4290.37 43259.14 4040.67 4310.49 4251.11 4252.76 4240.94 4300.24 4261.02 4251.47 4231.55 422
mmdepth0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
monomultidepth0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
test_blank0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
uanet_test0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
DCPMVS0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
sosnet-low-res0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
sosnet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
uncertanet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
Regformer0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
ab-mvs-re6.65 3918.87 3940.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 42779.80 3660.00 4310.00 4270.00 4260.00 4250.00 423
uanet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
WAC-MVS37.39 41452.61 364
FOURS196.08 1287.41 1496.19 295.83 592.95 396.57 3
MSC_two_6792asdad88.81 7191.55 12977.99 9491.01 14796.05 987.45 2398.17 3592.40 179
No_MVS88.81 7191.55 12977.99 9491.01 14796.05 987.45 2398.17 3592.40 179
eth-test20.00 431
eth-test0.00 431
IU-MVS94.18 5072.64 14790.82 15256.98 34889.67 10985.78 5297.92 4993.28 139
save fliter93.75 6377.44 10386.31 13589.72 18670.80 218
test_0728_SECOND86.79 10294.25 4872.45 15590.54 5294.10 3995.88 1886.42 3997.97 4692.02 198
GSMVS83.88 337
test_part293.86 6177.77 9892.84 51
MTGPAbinary91.81 126
MTMP90.66 4833.14 425
gm-plane-assit75.42 38844.97 39852.17 37372.36 40487.90 26654.10 353
test9_res80.83 10596.45 10390.57 240
agg_prior279.68 11896.16 11590.22 248
agg_prior91.58 12777.69 10090.30 17184.32 22693.18 136
test_prior478.97 8484.59 166
test_prior86.32 11090.59 15571.99 16292.85 9394.17 9792.80 158
旧先验281.73 23956.88 34986.54 18284.90 31372.81 209
新几何281.72 240
无先验82.81 21585.62 25158.09 33791.41 18767.95 25784.48 328
原ACMM282.26 233
testdata286.43 29063.52 294
testdata179.62 26573.95 168
plane_prior793.45 6877.31 106
plane_prior593.61 5995.22 5980.78 10695.83 13494.46 82
plane_prior492.95 134
plane_prior376.85 11177.79 12586.55 177
plane_prior289.45 8279.44 101
plane_prior192.83 88
plane_prior76.42 11687.15 11775.94 14595.03 162
n20.00 432
nn0.00 432
door-mid74.45 343
test1191.46 132
door72.57 358
HQP5-MVS70.66 175
HQP-NCC91.19 13984.77 16073.30 18280.55 294
ACMP_Plane91.19 13984.77 16073.30 18280.55 294
BP-MVS77.30 152
HQP4-MVS80.56 29394.61 7993.56 131
HQP3-MVS92.68 9894.47 183
NP-MVS91.95 11274.55 12990.17 225
ACMMP++_ref95.74 140
ACMMP++97.35 75