This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort by
LCM-MVSNet95.70 196.40 193.61 298.67 185.39 3395.54 597.36 196.97 199.04 199.05 196.61 195.92 1385.07 5099.27 199.54 1
XVG-OURS-SEG-HR89.59 5189.37 5790.28 4294.47 4285.95 2386.84 11593.91 4180.07 8586.75 15993.26 11193.64 290.93 19184.60 5790.75 25393.97 101
ACMH+77.89 1190.73 2791.50 2188.44 7593.00 7976.26 11189.65 7095.55 787.72 2193.89 2694.94 4891.62 393.44 12178.35 11598.76 395.61 48
LPG-MVS_test91.47 1791.68 1690.82 3394.75 4081.69 5990.00 5794.27 1982.35 6093.67 3394.82 5291.18 495.52 4085.36 4798.73 695.23 59
LGP-MVS_train90.82 3394.75 4081.69 5994.27 1982.35 6093.67 3394.82 5291.18 495.52 4085.36 4798.73 695.23 59
PMVScopyleft80.48 690.08 3790.66 4488.34 7896.71 392.97 190.31 5489.57 17688.51 1790.11 9495.12 4590.98 688.92 24277.55 12997.07 8283.13 313
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
ACMM79.39 990.65 2890.99 3789.63 5595.03 3383.53 4789.62 7193.35 6079.20 9693.83 2793.60 10890.81 792.96 13685.02 5298.45 1892.41 160
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMH76.49 1489.34 5591.14 3183.96 15392.50 9270.36 16489.55 7293.84 4681.89 6594.70 1395.44 3490.69 888.31 25283.33 6598.30 2493.20 132
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
HPM-MVS_fast92.50 492.54 592.37 595.93 1585.81 2992.99 1294.23 2285.21 3492.51 5595.13 4490.65 995.34 5088.06 898.15 3495.95 41
RE-MVS-def92.61 494.13 5188.95 592.87 1394.16 2788.75 1493.79 2894.43 6790.64 1087.16 2697.60 6492.73 146
ACMP79.16 1090.54 3190.60 4590.35 4194.36 4380.98 6589.16 8194.05 3679.03 9992.87 4693.74 10490.60 1195.21 5682.87 7098.76 394.87 67
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
HPM-MVScopyleft92.13 792.20 991.91 1595.58 2584.67 4293.51 894.85 1482.88 5691.77 6893.94 9790.55 1295.73 3088.50 698.23 2795.33 54
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
UniMVSNet_ETH3D89.12 6190.72 4384.31 14697.00 264.33 22189.67 6988.38 19188.84 1394.29 1897.57 390.48 1391.26 18172.57 18997.65 6097.34 15
SED-MVS90.46 3391.64 1786.93 9294.18 4672.65 13290.47 5193.69 5083.77 4594.11 2294.27 7490.28 1495.84 2286.03 4197.92 4692.29 167
test_241102_ONE94.18 4672.65 13293.69 5083.62 4794.11 2293.78 10390.28 1495.50 44
SR-MVS92.23 692.34 791.91 1594.89 3787.85 892.51 2393.87 4588.20 1993.24 3994.02 8990.15 1695.67 3286.82 2997.34 7492.19 173
APD-MVS_3200maxsize92.05 892.24 891.48 2193.02 7885.17 3592.47 2595.05 1387.65 2293.21 4094.39 7290.09 1795.08 5986.67 3097.60 6494.18 92
DVP-MVScopyleft90.06 3991.32 2886.29 10494.16 4972.56 13890.54 4891.01 13583.61 4893.75 3094.65 5789.76 1895.78 2786.42 3197.97 4390.55 215
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072694.16 4972.56 13890.63 4593.90 4283.61 4893.75 3094.49 6489.76 18
COLMAP_ROBcopyleft83.01 391.97 991.95 1092.04 1093.68 6286.15 2093.37 1095.10 1290.28 992.11 6195.03 4689.75 2094.93 6379.95 9898.27 2595.04 64
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test_241102_TWO93.71 4983.77 4593.49 3694.27 7489.27 2195.84 2286.03 4197.82 5192.04 176
tt080588.09 7489.79 5182.98 17693.26 7363.94 22591.10 4189.64 17385.07 3590.91 8491.09 17089.16 2291.87 16782.03 7895.87 12893.13 134
ACMMPcopyleft91.91 1091.87 1592.03 1195.53 2685.91 2493.35 1194.16 2782.52 5992.39 5894.14 8489.15 2395.62 3387.35 2198.24 2694.56 76
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
SR-MVS-dyc-post92.41 592.41 692.39 494.13 5188.95 592.87 1394.16 2788.75 1493.79 2894.43 6788.83 2495.51 4287.16 2697.60 6492.73 146
APDe-MVS91.22 2191.92 1189.14 6492.97 8078.04 8692.84 1594.14 3183.33 5193.90 2495.73 2788.77 2596.41 187.60 1597.98 4292.98 140
test_one_060193.85 5873.27 12894.11 3386.57 2593.47 3894.64 6088.42 26
ACMMP_NAP90.65 2891.07 3589.42 5995.93 1579.54 7689.95 6193.68 5277.65 11591.97 6594.89 4988.38 2795.45 4689.27 397.87 5093.27 129
MP-MVS-pluss90.81 2691.08 3389.99 4695.97 1379.88 7188.13 9794.51 1775.79 13792.94 4494.96 4788.36 2895.01 6190.70 298.40 1995.09 63
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
HFP-MVS91.30 1991.39 2391.02 2995.43 2884.66 4392.58 2193.29 6681.99 6291.47 7193.96 9488.35 2995.56 3787.74 1097.74 5792.85 143
CP-MVS91.67 1291.58 1991.96 1295.29 3087.62 993.38 993.36 5983.16 5291.06 8094.00 9088.26 3095.71 3187.28 2498.39 2092.55 155
SteuartSystems-ACMMP91.16 2391.36 2490.55 3793.91 5680.97 6691.49 3793.48 5782.82 5792.60 5493.97 9188.19 3196.29 487.61 1498.20 3194.39 86
Skip Steuart: Steuart Systems R&D Blog.
PGM-MVS91.20 2290.95 3991.93 1395.67 2285.85 2790.00 5793.90 4280.32 8191.74 6994.41 7088.17 3295.98 1086.37 3397.99 4093.96 102
TDRefinement93.52 293.39 393.88 195.94 1490.26 395.70 496.46 290.58 892.86 4796.29 1688.16 3394.17 9086.07 4098.48 1797.22 19
DPE-MVScopyleft90.53 3291.08 3388.88 6693.38 6978.65 8389.15 8294.05 3684.68 3993.90 2494.11 8688.13 3496.30 384.51 5897.81 5291.70 187
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
OPM-MVS89.80 4789.97 4889.27 6194.76 3979.86 7286.76 11992.78 8978.78 10292.51 5593.64 10788.13 3493.84 10284.83 5597.55 6794.10 97
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
pmmvs686.52 9488.06 7481.90 19692.22 10262.28 24684.66 14489.15 18183.54 5089.85 10297.32 488.08 3686.80 26970.43 20597.30 7696.62 28
mvs_tets89.78 4889.27 5991.30 2593.51 6584.79 4089.89 6390.63 14570.00 21294.55 1596.67 1187.94 3793.59 11384.27 5995.97 12195.52 49
ZNCC-MVS91.26 2091.34 2791.01 3095.73 2083.05 5292.18 2894.22 2480.14 8491.29 7593.97 9187.93 3895.87 1888.65 497.96 4594.12 96
region2R91.44 1891.30 3091.87 1795.75 1885.90 2592.63 2093.30 6581.91 6490.88 8694.21 7987.75 3995.87 1887.60 1597.71 5893.83 107
wuyk23d75.13 25479.30 20662.63 34275.56 34475.18 11880.89 22973.10 32975.06 14794.76 1295.32 3587.73 4052.85 37134.16 37197.11 8059.85 368
mPP-MVS91.69 1191.47 2292.37 596.04 1288.48 792.72 1792.60 9383.09 5391.54 7094.25 7887.67 4195.51 4287.21 2598.11 3593.12 136
ACMMPR91.49 1591.35 2691.92 1495.74 1985.88 2692.58 2193.25 6781.99 6291.40 7294.17 8387.51 4295.87 1887.74 1097.76 5593.99 99
test_0728_THIRD85.33 3293.75 3094.65 5787.44 4395.78 2787.41 1998.21 2992.98 140
9.1489.29 5891.84 11788.80 8895.32 1175.14 14691.07 7992.89 12287.27 4493.78 10383.69 6497.55 67
PS-CasMVS90.06 3991.92 1184.47 14096.56 658.83 28989.04 8392.74 9091.40 596.12 496.06 2287.23 4595.57 3679.42 10798.74 599.00 2
GST-MVS90.96 2591.01 3690.82 3395.45 2782.73 5591.75 3593.74 4880.98 7591.38 7393.80 10187.20 4695.80 2487.10 2897.69 5993.93 103
PEN-MVS90.03 4191.88 1484.48 13996.57 558.88 28688.95 8493.19 6991.62 496.01 696.16 2087.02 4795.60 3478.69 11298.72 898.97 3
DTE-MVSNet89.98 4391.91 1384.21 14896.51 757.84 29488.93 8592.84 8791.92 396.16 396.23 1886.95 4895.99 979.05 10998.57 1498.80 6
SF-MVS90.27 3590.80 4288.68 7392.86 8477.09 10091.19 4095.74 581.38 7092.28 5993.80 10186.89 4994.64 7185.52 4697.51 7194.30 89
MP-MVScopyleft91.14 2490.91 4091.83 1896.18 1086.88 1392.20 2793.03 8082.59 5888.52 12794.37 7386.74 5095.41 4886.32 3498.21 2993.19 133
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MTAPA91.52 1491.60 1891.29 2696.59 486.29 1792.02 3091.81 11584.07 4292.00 6494.40 7186.63 5195.28 5388.59 598.31 2392.30 166
XVS91.54 1391.36 2492.08 895.64 2386.25 1892.64 1893.33 6185.07 3589.99 9894.03 8886.57 5295.80 2487.35 2197.62 6294.20 90
X-MVStestdata85.04 11482.70 16092.08 895.64 2386.25 1892.64 1893.33 6185.07 3589.99 9816.05 37586.57 5295.80 2487.35 2197.62 6294.20 90
canonicalmvs85.50 10686.14 10483.58 16287.97 20167.13 19287.55 10494.32 1873.44 16388.47 12887.54 24186.45 5491.06 18875.76 15093.76 19092.54 156
TranMVSNet+NR-MVSNet87.86 7988.76 6985.18 12794.02 5464.13 22284.38 15191.29 12784.88 3892.06 6393.84 10086.45 5493.73 10473.22 18098.66 1097.69 9
test_040288.65 6589.58 5685.88 11692.55 9072.22 14684.01 15789.44 17888.63 1694.38 1795.77 2686.38 5693.59 11379.84 9995.21 15091.82 183
APD-MVScopyleft89.54 5289.63 5489.26 6292.57 8981.34 6490.19 5693.08 7680.87 7791.13 7893.19 11286.22 5795.97 1182.23 7797.18 7990.45 217
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
SD-MVS88.96 6389.88 4986.22 10791.63 12177.07 10189.82 6493.77 4778.90 10092.88 4592.29 14186.11 5890.22 21286.24 3897.24 7791.36 195
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
ZD-MVS92.22 10280.48 6791.85 11271.22 19890.38 9092.98 11786.06 5996.11 581.99 8096.75 91
jajsoiax89.41 5388.81 6891.19 2893.38 6984.72 4189.70 6690.29 15869.27 21694.39 1696.38 1586.02 6093.52 11783.96 6195.92 12695.34 53
nrg03087.85 8088.49 7085.91 11490.07 16369.73 16887.86 10194.20 2574.04 15592.70 5394.66 5685.88 6191.50 17379.72 10297.32 7596.50 31
SMA-MVScopyleft90.31 3490.48 4689.83 5095.31 2979.52 7790.98 4393.24 6875.37 14492.84 4895.28 3885.58 6296.09 687.92 997.76 5593.88 105
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DeepC-MVS82.31 489.15 6089.08 6289.37 6093.64 6379.07 7988.54 9394.20 2573.53 16189.71 10594.82 5285.09 6395.77 2984.17 6098.03 3893.26 130
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
testf189.30 5689.12 6089.84 4888.67 18685.64 3190.61 4693.17 7086.02 2993.12 4195.30 3684.94 6489.44 23374.12 16596.10 11694.45 82
APD_test289.30 5689.12 6089.84 4888.67 18685.64 3190.61 4693.17 7086.02 2993.12 4195.30 3684.94 6489.44 23374.12 16596.10 11694.45 82
GeoE85.45 10885.81 10984.37 14190.08 16167.07 19385.86 13091.39 12572.33 18687.59 14290.25 19584.85 6692.37 15278.00 12391.94 23093.66 115
LTVRE_ROB86.10 193.04 393.44 291.82 2093.73 6085.72 3096.79 195.51 888.86 1295.63 896.99 884.81 6793.16 13091.10 197.53 7096.58 30
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
DP-MVS88.60 6689.01 6387.36 8991.30 13477.50 9387.55 10492.97 8387.95 2089.62 10992.87 12384.56 6893.89 9977.65 12796.62 9490.70 209
LS3D90.60 3090.34 4791.38 2489.03 18084.23 4593.58 694.68 1690.65 790.33 9293.95 9684.50 6995.37 4980.87 8895.50 14194.53 79
DROMVSNet88.01 7588.32 7287.09 9089.28 17572.03 14890.31 5496.31 380.88 7685.12 18989.67 20684.47 7095.46 4582.56 7396.26 11093.77 112
casdiffmvs_mvgpermissive86.72 9187.51 8284.36 14387.09 22365.22 21284.16 15394.23 2277.89 11291.28 7693.66 10684.35 7192.71 14280.07 9594.87 16695.16 61
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
anonymousdsp89.73 4988.88 6692.27 789.82 16786.67 1490.51 5090.20 16169.87 21395.06 1196.14 2184.28 7293.07 13487.68 1296.34 10597.09 21
OMC-MVS88.19 7187.52 8190.19 4491.94 11281.68 6187.49 10693.17 7076.02 13188.64 12591.22 16684.24 7393.37 12477.97 12597.03 8395.52 49
CS-MVS88.14 7287.67 8089.54 5889.56 16979.18 7890.47 5194.77 1579.37 9484.32 20589.33 21283.87 7494.53 7782.45 7494.89 16394.90 65
XVG-OURS89.18 5988.83 6790.23 4394.28 4486.11 2285.91 12893.60 5580.16 8389.13 11993.44 10983.82 7590.98 18983.86 6395.30 14993.60 120
XVG-ACMP-BASELINE89.98 4389.84 5090.41 3994.91 3684.50 4489.49 7693.98 3879.68 8892.09 6293.89 9983.80 7693.10 13382.67 7298.04 3693.64 118
CDPH-MVS86.17 10085.54 11488.05 8392.25 10075.45 11683.85 16392.01 10565.91 24886.19 17191.75 15683.77 7794.98 6277.43 13296.71 9293.73 113
Effi-MVS+83.90 14484.01 14283.57 16387.22 21765.61 21086.55 12492.40 9678.64 10581.34 25684.18 29383.65 7892.93 13874.22 16287.87 28592.17 174
MVS_111021_HR84.63 12184.34 13885.49 12490.18 16075.86 11479.23 25387.13 21173.35 16485.56 18489.34 21183.60 7990.50 20676.64 14094.05 18690.09 226
UA-Net91.49 1591.53 2091.39 2394.98 3482.95 5493.52 792.79 8888.22 1888.53 12697.64 283.45 8094.55 7686.02 4398.60 1296.67 27
AdaColmapbinary83.66 14783.69 14783.57 16390.05 16472.26 14586.29 12790.00 16678.19 11081.65 25087.16 24983.40 8194.24 8561.69 27794.76 17184.21 295
LCM-MVSNet-Re83.48 15185.06 11978.75 24485.94 24855.75 31080.05 23794.27 1976.47 12596.09 594.54 6283.31 8289.75 22859.95 28894.89 16390.75 206
TransMVSNet (Re)84.02 14085.74 11178.85 24291.00 14455.20 31582.29 20787.26 20779.65 8988.38 13195.52 3383.00 8386.88 26767.97 23196.60 9594.45 82
CNVR-MVS87.81 8187.68 7988.21 8092.87 8277.30 9985.25 13791.23 12977.31 12087.07 15391.47 16182.94 8494.71 6884.67 5696.27 10992.62 153
DeepPCF-MVS81.24 587.28 8486.21 10390.49 3891.48 13184.90 3883.41 17592.38 9870.25 20989.35 11790.68 18582.85 8594.57 7479.55 10495.95 12392.00 178
v7n90.13 3690.96 3887.65 8791.95 11071.06 15889.99 5993.05 7786.53 2694.29 1896.27 1782.69 8694.08 9386.25 3797.63 6197.82 8
AllTest87.97 7787.40 8589.68 5391.59 12283.40 4889.50 7595.44 979.47 9088.00 13793.03 11582.66 8791.47 17470.81 19796.14 11394.16 93
TestCases89.68 5391.59 12283.40 4895.44 979.47 9088.00 13793.03 11582.66 8791.47 17470.81 19796.14 11394.16 93
RPSCF88.00 7686.93 9391.22 2790.08 16189.30 489.68 6891.11 13279.26 9589.68 10694.81 5582.44 8987.74 25676.54 14288.74 27496.61 29
CS-MVS-test87.00 8686.43 9988.71 7189.46 17177.46 9489.42 7995.73 677.87 11381.64 25187.25 24782.43 9094.53 7777.65 12796.46 10194.14 95
ITE_SJBPF90.11 4590.72 15084.97 3790.30 15681.56 6890.02 9791.20 16882.40 9190.81 19773.58 17594.66 17294.56 76
Fast-Effi-MVS+81.04 18480.57 18782.46 19187.50 21263.22 23278.37 26589.63 17468.01 23181.87 24482.08 31682.31 9292.65 14567.10 23388.30 28191.51 193
baseline85.20 11185.93 10683.02 17586.30 23862.37 24484.55 14693.96 3974.48 15287.12 14892.03 14682.30 9391.94 16378.39 11394.21 18294.74 73
casdiffmvspermissive85.21 11085.85 10883.31 16986.17 24462.77 23783.03 18593.93 4074.69 15088.21 13492.68 13082.29 9491.89 16677.87 12693.75 19295.27 57
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Anonymous2023121188.40 6789.62 5584.73 13590.46 15565.27 21188.86 8693.02 8187.15 2393.05 4397.10 682.28 9592.02 16276.70 13997.99 4096.88 25
APD_test188.40 6787.91 7589.88 4789.50 17086.65 1689.98 6091.91 11084.26 4090.87 8793.92 9882.18 9689.29 23773.75 17294.81 16793.70 114
Anonymous2024052986.20 9987.13 8783.42 16690.19 15964.55 21984.55 14690.71 14285.85 3189.94 10195.24 4082.13 9790.40 20869.19 21696.40 10495.31 55
CLD-MVS83.18 15682.64 16284.79 13289.05 17967.82 19077.93 26992.52 9468.33 22785.07 19081.54 32182.06 9892.96 13669.35 21297.91 4893.57 121
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
TEST992.34 9679.70 7483.94 15990.32 15365.41 25884.49 20090.97 17482.03 9993.63 108
segment_acmp81.94 100
train_agg85.98 10285.28 11788.07 8292.34 9679.70 7483.94 15990.32 15365.79 24984.49 20090.97 17481.93 10193.63 10881.21 8496.54 9790.88 203
test_892.09 10678.87 8183.82 16490.31 15565.79 24984.36 20390.96 17681.93 10193.44 121
test_prior283.37 17675.43 14284.58 19991.57 15881.92 10379.54 10596.97 84
EGC-MVSNET74.79 26169.99 29989.19 6394.89 3787.00 1191.89 3486.28 2231.09 3762.23 37895.98 2381.87 10489.48 22979.76 10195.96 12291.10 198
CP-MVSNet89.27 5890.91 4084.37 14196.34 858.61 29188.66 9192.06 10490.78 695.67 795.17 4381.80 10595.54 3979.00 11098.69 998.95 4
MVS_111021_LR84.28 13183.76 14685.83 11889.23 17783.07 5180.99 22883.56 25972.71 17886.07 17489.07 21881.75 10686.19 27977.11 13693.36 19788.24 250
test_djsdf89.62 5089.01 6391.45 2292.36 9582.98 5391.98 3190.08 16471.54 19394.28 2096.54 1381.57 10794.27 8286.26 3596.49 9997.09 21
cdsmvs_eth3d_5k20.81 34327.75 3460.00 3620.00 3850.00 3860.00 37385.44 2340.00 3800.00 38182.82 30881.46 1080.00 3810.00 3790.00 3790.00 377
WR-MVS_H89.91 4691.31 2985.71 11996.32 962.39 24389.54 7493.31 6490.21 1095.57 995.66 2981.42 10995.90 1480.94 8798.80 298.84 5
CPTT-MVS89.39 5488.98 6590.63 3695.09 3286.95 1292.09 2992.30 9979.74 8787.50 14492.38 13781.42 10993.28 12683.07 6797.24 7791.67 188
pm-mvs183.69 14684.95 12279.91 22990.04 16559.66 27682.43 20387.44 20475.52 14187.85 13995.26 3981.25 11185.65 28668.74 22396.04 11894.42 85
DVP-MVS++90.07 3891.09 3287.00 9191.55 12772.64 13496.19 294.10 3485.33 3293.49 3694.64 6081.12 11295.88 1687.41 1995.94 12492.48 157
OPU-MVS88.27 7991.89 11377.83 9090.47 5191.22 16681.12 11294.68 6974.48 16095.35 14492.29 167
NCCC87.36 8386.87 9488.83 6792.32 9878.84 8286.58 12391.09 13378.77 10384.85 19690.89 17880.85 11495.29 5181.14 8595.32 14692.34 164
TAPA-MVS77.73 1285.71 10584.83 12388.37 7788.78 18579.72 7387.15 11093.50 5669.17 21785.80 18089.56 20780.76 11592.13 15873.21 18595.51 14093.25 131
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
Fast-Effi-MVS+-dtu82.54 16481.41 17985.90 11585.60 24976.53 10783.07 18489.62 17573.02 17479.11 28183.51 29880.74 11690.24 21168.76 22289.29 26590.94 201
PC_three_145258.96 29590.06 9591.33 16480.66 11793.03 13575.78 14995.94 12492.48 157
VPA-MVSNet83.47 15284.73 12479.69 23390.29 15757.52 29781.30 22488.69 18776.29 12687.58 14394.44 6680.60 11887.20 26266.60 23996.82 8994.34 88
ETV-MVS84.31 12983.91 14585.52 12288.58 19070.40 16384.50 15093.37 5878.76 10484.07 21478.72 34280.39 11995.13 5873.82 17192.98 20891.04 199
HPM-MVS++copyleft88.93 6488.45 7190.38 4094.92 3585.85 2789.70 6691.27 12878.20 10986.69 16292.28 14280.36 12095.06 6086.17 3996.49 9990.22 221
ANet_high83.17 15785.68 11275.65 28781.24 29645.26 36379.94 23992.91 8483.83 4491.33 7496.88 1080.25 12185.92 28268.89 22095.89 12795.76 43
EI-MVSNet-Vis-set85.12 11384.53 13186.88 9384.01 27172.76 13183.91 16285.18 23980.44 7888.75 12385.49 27280.08 12291.92 16482.02 7990.85 25195.97 39
DeepC-MVS_fast80.27 886.23 9785.65 11387.96 8491.30 13476.92 10287.19 10891.99 10670.56 20384.96 19290.69 18480.01 12395.14 5778.37 11495.78 13591.82 183
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
EI-MVSNet-UG-set85.04 11484.44 13386.85 9483.87 27472.52 14083.82 16485.15 24080.27 8288.75 12385.45 27479.95 12491.90 16581.92 8190.80 25296.13 34
MCST-MVS84.36 12783.93 14485.63 12091.59 12271.58 15583.52 17292.13 10261.82 27683.96 21589.75 20579.93 12593.46 12078.33 11694.34 17991.87 182
TSAR-MVS + MP.88.14 7287.82 7889.09 6595.72 2176.74 10492.49 2491.19 13167.85 23686.63 16394.84 5179.58 12695.96 1287.62 1394.50 17594.56 76
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
test1286.57 9890.74 14972.63 13690.69 14382.76 23079.20 12794.80 6695.32 14692.27 169
CSCG86.26 9686.47 9885.60 12190.87 14774.26 12387.98 9991.85 11280.35 8089.54 11588.01 23179.09 12892.13 15875.51 15195.06 15790.41 218
Test By Simon79.09 128
PHI-MVS86.38 9585.81 10988.08 8188.44 19477.34 9789.35 8093.05 7773.15 17284.76 19787.70 23878.87 13094.18 8880.67 9296.29 10692.73 146
EG-PatchMatch MVS84.08 13884.11 14083.98 15292.22 10272.61 13782.20 21387.02 21672.63 17988.86 12091.02 17278.52 13191.11 18673.41 17791.09 24288.21 251
dcpmvs_284.23 13485.14 11881.50 20488.61 18961.98 25082.90 19093.11 7368.66 22592.77 5192.39 13678.50 13287.63 25876.99 13892.30 21894.90 65
Effi-MVS+-dtu85.82 10483.38 14993.14 387.13 21991.15 287.70 10388.42 19074.57 15183.56 22085.65 27078.49 13394.21 8672.04 19292.88 21094.05 98
Vis-MVSNetpermissive86.86 8886.58 9787.72 8592.09 10677.43 9687.35 10792.09 10378.87 10184.27 21094.05 8778.35 13493.65 10680.54 9491.58 23692.08 175
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
UniMVSNet_NR-MVSNet86.84 8987.06 8986.17 11092.86 8467.02 19482.55 19991.56 11883.08 5490.92 8291.82 15378.25 13593.99 9574.16 16398.35 2197.49 13
MSLP-MVS++85.00 11686.03 10581.90 19691.84 11771.56 15686.75 12093.02 8175.95 13487.12 14889.39 21077.98 13689.40 23677.46 13094.78 16884.75 290
API-MVS82.28 16782.61 16381.30 20686.29 23969.79 16688.71 9087.67 20378.42 10882.15 23984.15 29477.98 13691.59 17265.39 24892.75 21282.51 321
DP-MVS Recon84.05 13983.22 15186.52 10091.73 12075.27 11783.23 18192.40 9672.04 19082.04 24188.33 22777.91 13893.95 9766.17 24195.12 15590.34 220
UniMVSNet (Re)86.87 8786.98 9286.55 9993.11 7768.48 18283.80 16692.87 8580.37 7989.61 11191.81 15477.72 13994.18 8875.00 15898.53 1596.99 24
PCF-MVS74.62 1582.15 17080.92 18685.84 11789.43 17272.30 14480.53 23291.82 11457.36 30787.81 14089.92 20277.67 14093.63 10858.69 29395.08 15691.58 191
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
NR-MVSNet86.00 10186.22 10285.34 12593.24 7464.56 21882.21 21190.46 14880.99 7488.42 12991.97 14777.56 14193.85 10072.46 19098.65 1197.61 10
3Dnovator+83.92 289.97 4589.66 5390.92 3191.27 13681.66 6291.25 3894.13 3288.89 1188.83 12294.26 7777.55 14295.86 2184.88 5495.87 12895.24 58
MVS_Test82.47 16583.22 15180.22 22682.62 28657.75 29682.54 20091.96 10871.16 19982.89 22892.52 13577.41 14390.50 20680.04 9787.84 28692.40 161
EIA-MVS82.19 16981.23 18285.10 12887.95 20269.17 17883.22 18293.33 6170.42 20578.58 28479.77 33777.29 14494.20 8771.51 19488.96 27091.93 181
xiu_mvs_v2_base77.19 23376.75 23578.52 24887.01 22561.30 25575.55 30387.12 21461.24 28274.45 31878.79 34177.20 14590.93 19164.62 25784.80 31883.32 309
DU-MVS86.80 9086.99 9186.21 10893.24 7467.02 19483.16 18392.21 10081.73 6690.92 8291.97 14777.20 14593.99 9574.16 16398.35 2197.61 10
Baseline_NR-MVSNet84.00 14185.90 10778.29 25491.47 13253.44 32482.29 20787.00 21979.06 9889.55 11395.72 2877.20 14586.14 28072.30 19198.51 1695.28 56
TinyColmap81.25 18182.34 16877.99 25985.33 25360.68 26782.32 20688.33 19471.26 19786.97 15592.22 14577.10 14886.98 26662.37 26995.17 15286.31 274
F-COLMAP84.97 11783.42 14889.63 5592.39 9483.40 4888.83 8791.92 10973.19 17180.18 27189.15 21677.04 14993.28 12665.82 24692.28 22192.21 172
114514_t83.10 15982.54 16584.77 13492.90 8169.10 17986.65 12190.62 14654.66 31781.46 25390.81 18176.98 15094.38 8172.62 18896.18 11190.82 205
xiu_mvs_v1_base_debu80.84 18680.14 19882.93 17988.31 19571.73 15179.53 24487.17 20865.43 25579.59 27382.73 31076.94 15190.14 21773.22 18088.33 27786.90 269
xiu_mvs_v1_base80.84 18680.14 19882.93 17988.31 19571.73 15179.53 24487.17 20865.43 25579.59 27382.73 31076.94 15190.14 21773.22 18088.33 27786.90 269
xiu_mvs_v1_base_debi80.84 18680.14 19882.93 17988.31 19571.73 15179.53 24487.17 20865.43 25579.59 27382.73 31076.94 15190.14 21773.22 18088.33 27786.90 269
pcd_1.5k_mvsjas6.41 3468.55 3490.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 38076.94 1510.00 3810.00 3790.00 3790.00 377
PS-MVSNAJss88.31 6987.90 7689.56 5793.31 7177.96 8987.94 10091.97 10770.73 20294.19 2196.67 1176.94 15194.57 7483.07 6796.28 10796.15 33
PS-MVSNAJ77.04 23576.53 23778.56 24787.09 22361.40 25375.26 30587.13 21161.25 28174.38 32077.22 35276.94 15190.94 19064.63 25684.83 31783.35 308
MIMVSNet183.63 14884.59 12980.74 21794.06 5362.77 23782.72 19384.53 25277.57 11790.34 9195.92 2476.88 15785.83 28461.88 27597.42 7293.62 119
原ACMM184.60 13892.81 8774.01 12491.50 12062.59 27082.73 23190.67 18676.53 15894.25 8469.24 21395.69 13885.55 281
MSDG80.06 20679.99 20280.25 22583.91 27368.04 18877.51 27789.19 18077.65 11581.94 24283.45 30076.37 15986.31 27763.31 26586.59 29786.41 272
Gipumacopyleft84.44 12686.33 10078.78 24384.20 26973.57 12689.55 7290.44 14984.24 4184.38 20294.89 4976.35 16080.40 31676.14 14696.80 9082.36 322
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
XXY-MVS74.44 26576.19 24069.21 32284.61 26052.43 33271.70 32677.18 29960.73 28880.60 26290.96 17675.44 16169.35 34456.13 30788.33 27785.86 279
FMVSNet184.55 12485.45 11581.85 19890.27 15861.05 25986.83 11688.27 19678.57 10689.66 10895.64 3075.43 16290.68 20169.09 21795.33 14593.82 108
CANet83.79 14582.85 15886.63 9786.17 24472.21 14783.76 16791.43 12277.24 12174.39 31987.45 24375.36 16395.42 4777.03 13792.83 21192.25 171
ab-mvs79.67 20880.56 18876.99 27188.48 19256.93 30184.70 14386.06 22768.95 22180.78 26193.08 11475.30 16484.62 29456.78 30290.90 24989.43 233
patch_mono-278.89 21279.39 20577.41 26884.78 25868.11 18675.60 30083.11 26260.96 28579.36 27789.89 20375.18 16572.97 33473.32 17992.30 21891.15 197
DELS-MVS81.44 17981.25 18082.03 19484.27 26862.87 23676.47 29292.49 9570.97 20081.64 25183.83 29575.03 16692.70 14374.29 16192.22 22490.51 216
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PAPR78.84 21478.10 22281.07 21185.17 25460.22 27082.21 21190.57 14762.51 27175.32 31384.61 28874.99 16792.30 15559.48 29188.04 28390.68 210
CNLPA83.55 15083.10 15584.90 13089.34 17483.87 4684.54 14888.77 18579.09 9783.54 22188.66 22474.87 16881.73 31066.84 23692.29 22089.11 239
HQP_MVS87.75 8287.43 8488.70 7293.45 6676.42 10989.45 7793.61 5379.44 9286.55 16492.95 12074.84 16995.22 5480.78 9095.83 13094.46 80
plane_prior692.61 8876.54 10574.84 169
FC-MVSNet-test85.93 10387.05 9082.58 18792.25 10056.44 30585.75 13193.09 7577.33 11991.94 6694.65 5774.78 17193.41 12375.11 15798.58 1397.88 7
VDD-MVS84.23 13484.58 13083.20 17291.17 14065.16 21483.25 17984.97 24779.79 8687.18 14794.27 7474.77 17290.89 19469.24 21396.54 9793.55 124
BH-untuned80.96 18580.99 18480.84 21688.55 19168.23 18380.33 23588.46 18972.79 17786.55 16486.76 25574.72 17391.77 17061.79 27688.99 26982.52 320
VPNet80.25 20081.68 17475.94 28592.46 9347.98 35476.70 28781.67 27573.45 16284.87 19592.82 12474.66 17486.51 27461.66 27896.85 8693.33 126
tfpnnormal81.79 17682.95 15778.31 25288.93 18355.40 31180.83 23182.85 26576.81 12385.90 17994.14 8474.58 17586.51 27466.82 23795.68 13993.01 139
KD-MVS_self_test81.93 17583.14 15478.30 25384.75 25952.75 32880.37 23489.42 17970.24 21090.26 9393.39 11074.55 17686.77 27068.61 22596.64 9395.38 52
V4283.47 15283.37 15083.75 15883.16 28063.33 23081.31 22290.23 16069.51 21590.91 8490.81 18174.16 17792.29 15680.06 9690.22 25995.62 47
3Dnovator80.37 784.80 11984.71 12785.06 12986.36 23674.71 12088.77 8990.00 16675.65 13984.96 19293.17 11374.06 17891.19 18378.28 11791.09 24289.29 237
v1086.54 9387.10 8884.84 13188.16 20063.28 23186.64 12292.20 10175.42 14392.81 5094.50 6374.05 17994.06 9483.88 6296.28 10797.17 20
旧先验191.97 10971.77 15081.78 27491.84 15173.92 18093.65 19483.61 303
mvs_anonymous78.13 22478.76 21376.23 28479.24 31950.31 34778.69 26084.82 24961.60 28083.09 22792.82 12473.89 18187.01 26368.33 22986.41 29991.37 194
MAR-MVS80.24 20178.74 21484.73 13586.87 22978.18 8585.75 13187.81 20265.67 25477.84 28978.50 34373.79 18290.53 20561.59 27990.87 25085.49 283
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
VDDNet84.35 12885.39 11681.25 20795.13 3159.32 27985.42 13681.11 27886.41 2787.41 14596.21 1973.61 18390.61 20466.33 24096.85 8693.81 111
FIs85.35 10986.27 10182.60 18691.86 11457.31 29885.10 13993.05 7775.83 13691.02 8193.97 9173.57 18492.91 14073.97 16898.02 3997.58 12
v114484.54 12584.72 12684.00 15187.67 20862.55 24182.97 18790.93 13870.32 20889.80 10390.99 17373.50 18593.48 11981.69 8394.65 17395.97 39
diffmvspermissive80.40 19580.48 19180.17 22779.02 32260.04 27177.54 27690.28 15966.65 24582.40 23487.33 24673.50 18587.35 26177.98 12489.62 26393.13 134
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PAPM_NR83.23 15583.19 15383.33 16890.90 14665.98 20688.19 9690.78 14178.13 11180.87 26087.92 23573.49 18792.42 14970.07 20788.40 27691.60 190
v886.22 9886.83 9584.36 14387.82 20462.35 24586.42 12591.33 12676.78 12492.73 5294.48 6573.41 18893.72 10583.10 6695.41 14297.01 23
EI-MVSNet82.61 16282.42 16783.20 17283.25 27863.66 22683.50 17385.07 24176.06 12986.55 16485.10 28073.41 18890.25 20978.15 12290.67 25595.68 45
IterMVS-LS84.73 12084.98 12183.96 15387.35 21463.66 22683.25 17989.88 16876.06 12989.62 10992.37 14073.40 19092.52 14778.16 12094.77 17095.69 44
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v14419284.24 13384.41 13583.71 15987.59 21161.57 25282.95 18891.03 13467.82 23789.80 10390.49 19073.28 19193.51 11881.88 8294.89 16396.04 38
BH-RMVSNet80.53 19180.22 19681.49 20587.19 21866.21 20477.79 27286.23 22574.21 15483.69 21788.50 22573.25 19290.75 19863.18 26687.90 28487.52 261
PLCcopyleft73.85 1682.09 17180.31 19287.45 8890.86 14880.29 6985.88 12990.65 14468.17 22976.32 30086.33 26073.12 19392.61 14661.40 28090.02 26189.44 232
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
OurMVSNet-221017-090.01 4289.74 5290.83 3293.16 7680.37 6891.91 3393.11 7381.10 7395.32 1097.24 572.94 19494.85 6585.07 5097.78 5397.26 16
WR-MVS83.56 14984.40 13681.06 21293.43 6854.88 31678.67 26185.02 24481.24 7190.74 8891.56 15972.85 19591.08 18768.00 23098.04 3697.23 18
VNet79.31 20980.27 19376.44 27987.92 20353.95 32075.58 30284.35 25374.39 15382.23 23790.72 18372.84 19684.39 29660.38 28793.98 18790.97 200
QAPM82.59 16382.59 16482.58 18786.44 23166.69 19889.94 6290.36 15267.97 23384.94 19492.58 13372.71 19792.18 15770.63 20387.73 28788.85 246
v119284.57 12384.69 12884.21 14887.75 20662.88 23583.02 18691.43 12269.08 21989.98 10090.89 17872.70 19893.62 11182.41 7594.97 16096.13 34
OpenMVScopyleft76.72 1381.98 17482.00 17181.93 19584.42 26468.22 18488.50 9489.48 17766.92 24281.80 24891.86 14972.59 19990.16 21471.19 19691.25 24187.40 263
TSAR-MVS + GP.83.95 14282.69 16187.72 8589.27 17681.45 6383.72 16881.58 27774.73 14985.66 18186.06 26572.56 20092.69 14475.44 15395.21 15089.01 245
alignmvs83.94 14383.98 14383.80 15587.80 20567.88 18984.54 14891.42 12473.27 17088.41 13087.96 23272.33 20190.83 19676.02 14894.11 18492.69 150
HQP2-MVS72.10 202
HQP-MVS84.61 12284.06 14186.27 10591.19 13770.66 16084.77 14092.68 9173.30 16780.55 26490.17 19972.10 20294.61 7277.30 13494.47 17693.56 122
testgi72.36 28074.61 25365.59 33580.56 30742.82 37068.29 33773.35 32666.87 24381.84 24589.93 20172.08 20466.92 35646.05 35692.54 21587.01 268
v192192084.23 13484.37 13783.79 15687.64 21061.71 25182.91 18991.20 13067.94 23490.06 9590.34 19272.04 20593.59 11382.32 7694.91 16196.07 36
MSP-MVS89.08 6288.16 7391.83 1895.76 1786.14 2192.75 1693.90 4278.43 10789.16 11892.25 14372.03 20696.36 288.21 790.93 24892.98 140
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
LF4IMVS82.75 16181.93 17285.19 12682.08 28780.15 7085.53 13488.76 18668.01 23185.58 18387.75 23771.80 20786.85 26874.02 16793.87 18988.58 248
v124084.30 13084.51 13283.65 16087.65 20961.26 25682.85 19191.54 11967.94 23490.68 8990.65 18771.71 20893.64 10782.84 7194.78 16896.07 36
ambc82.98 17690.55 15464.86 21588.20 9589.15 18189.40 11693.96 9471.67 20991.38 18078.83 11196.55 9692.71 149
新几何182.95 17893.96 5578.56 8480.24 28555.45 31483.93 21691.08 17171.19 21088.33 25165.84 24593.07 20581.95 326
v14882.31 16682.48 16681.81 20185.59 25059.66 27681.47 22086.02 22872.85 17588.05 13690.65 18770.73 21190.91 19375.15 15691.79 23194.87 67
v2v48284.09 13784.24 13983.62 16187.13 21961.40 25382.71 19489.71 17172.19 18989.55 11391.41 16270.70 21293.20 12881.02 8693.76 19096.25 32
UGNet82.78 16081.64 17586.21 10886.20 24376.24 11286.86 11485.68 23277.07 12273.76 32292.82 12469.64 21391.82 16969.04 21993.69 19390.56 214
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
c3_l81.64 17781.59 17781.79 20280.86 30259.15 28378.61 26290.18 16268.36 22687.20 14687.11 25169.39 21491.62 17178.16 12094.43 17894.60 75
MG-MVS80.32 19980.94 18578.47 25088.18 19852.62 33182.29 20785.01 24572.01 19179.24 28092.54 13469.36 21593.36 12570.65 20289.19 26889.45 231
IS-MVSNet86.66 9286.82 9686.17 11092.05 10866.87 19791.21 3988.64 18886.30 2889.60 11292.59 13169.22 21694.91 6473.89 16997.89 4996.72 26
PVSNet_BlendedMVS78.80 21677.84 22381.65 20384.43 26263.41 22879.49 24790.44 14961.70 27975.43 31087.07 25269.11 21791.44 17660.68 28592.24 22290.11 225
PVSNet_Blended76.49 24375.40 24779.76 23184.43 26263.41 22875.14 30690.44 14957.36 30775.43 31078.30 34469.11 21791.44 17660.68 28587.70 28884.42 293
BH-w/o76.57 24176.07 24278.10 25786.88 22865.92 20777.63 27486.33 22265.69 25380.89 25979.95 33468.97 21990.74 19953.01 32885.25 30977.62 349
MVS73.21 27472.59 27675.06 29180.97 29960.81 26581.64 21885.92 23046.03 35271.68 33277.54 34768.47 22089.77 22655.70 31085.39 30674.60 354
miper_ehance_all_eth80.34 19880.04 20181.24 20979.82 31258.95 28577.66 27389.66 17265.75 25285.99 17885.11 27968.29 22191.42 17876.03 14792.03 22693.33 126
Anonymous20240521180.51 19281.19 18378.49 24988.48 19257.26 29976.63 28982.49 26781.21 7284.30 20892.24 14467.99 22286.24 27862.22 27095.13 15391.98 180
testdata79.54 23692.87 8272.34 14380.14 28659.91 29385.47 18691.75 15667.96 22385.24 28868.57 22792.18 22581.06 339
DPM-MVS80.10 20579.18 20782.88 18290.71 15169.74 16778.87 25890.84 13960.29 29175.64 30985.92 26867.28 22493.11 13271.24 19591.79 23185.77 280
PVSNet_Blended_VisFu81.55 17880.49 19084.70 13791.58 12573.24 12984.21 15291.67 11762.86 26980.94 25887.16 24967.27 22592.87 14169.82 20988.94 27187.99 255
MDA-MVSNet-bldmvs77.47 23076.90 23479.16 24079.03 32164.59 21666.58 34575.67 30973.15 17288.86 12088.99 21966.94 22681.23 31264.71 25488.22 28291.64 189
CL-MVSNet_self_test76.81 23877.38 22775.12 29086.90 22751.34 33973.20 32180.63 28468.30 22881.80 24888.40 22666.92 22780.90 31355.35 31494.90 16293.12 136
test22293.31 7176.54 10579.38 24877.79 29652.59 32682.36 23590.84 18066.83 22891.69 23381.25 334
TR-MVS76.77 23975.79 24379.72 23286.10 24765.79 20877.14 28083.02 26365.20 25981.40 25482.10 31466.30 22990.73 20055.57 31185.27 30882.65 315
OpenMVS_ROBcopyleft70.19 1777.77 22977.46 22578.71 24584.39 26561.15 25781.18 22682.52 26662.45 27383.34 22287.37 24466.20 23088.66 24864.69 25585.02 31186.32 273
EPP-MVSNet85.47 10785.04 12086.77 9691.52 13069.37 17291.63 3687.98 20181.51 6987.05 15491.83 15266.18 23195.29 5170.75 20096.89 8595.64 46
mvsmamba87.87 7887.23 8689.78 5192.31 9976.51 10891.09 4291.87 11172.61 18092.16 6095.23 4166.01 23295.59 3586.02 4397.78 5397.24 17
SixPastTwentyTwo87.20 8587.45 8386.45 10192.52 9169.19 17787.84 10288.05 19981.66 6794.64 1496.53 1465.94 23394.75 6783.02 6996.83 8895.41 51
PatchMatch-RL74.48 26373.22 26878.27 25587.70 20785.26 3475.92 29870.09 34464.34 26376.09 30381.25 32365.87 23478.07 32253.86 32283.82 32371.48 357
EPNet80.37 19678.41 21986.23 10676.75 33473.28 12787.18 10977.45 29876.24 12868.14 34388.93 22065.41 23593.85 10069.47 21196.12 11591.55 192
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
RRT_MVS88.30 7087.83 7789.70 5293.62 6475.70 11592.36 2689.06 18377.34 11893.63 3595.83 2565.40 23695.90 1485.01 5398.23 2797.49 13
FA-MVS(test-final)83.13 15883.02 15683.43 16586.16 24666.08 20588.00 9888.36 19275.55 14085.02 19192.75 12865.12 23792.50 14874.94 15991.30 24091.72 185
PM-MVS80.20 20279.00 20883.78 15788.17 19986.66 1581.31 22266.81 35669.64 21488.33 13290.19 19764.58 23883.63 30271.99 19390.03 26081.06 339
miper_enhance_ethall77.83 22676.93 23380.51 22176.15 34058.01 29375.47 30488.82 18458.05 30183.59 21980.69 32564.41 23991.20 18273.16 18692.03 22692.33 165
eth_miper_zixun_eth80.84 18680.22 19682.71 18481.41 29460.98 26277.81 27190.14 16367.31 24086.95 15687.24 24864.26 24092.31 15475.23 15591.61 23494.85 71
test20.0373.75 26974.59 25571.22 31181.11 29851.12 34370.15 33272.10 33470.42 20580.28 26991.50 16064.21 24174.72 33346.96 35394.58 17487.82 260
cascas76.29 24674.81 25280.72 21984.47 26162.94 23473.89 31687.34 20555.94 31275.16 31576.53 35663.97 24291.16 18465.00 25190.97 24788.06 253
TAMVS78.08 22576.36 23883.23 17090.62 15272.87 13079.08 25480.01 28761.72 27881.35 25586.92 25463.96 24388.78 24650.61 33793.01 20788.04 254
GBi-Net82.02 17282.07 16981.85 19886.38 23361.05 25986.83 11688.27 19672.43 18186.00 17595.64 3063.78 24490.68 20165.95 24293.34 19893.82 108
test182.02 17282.07 16981.85 19886.38 23361.05 25986.83 11688.27 19672.43 18186.00 17595.64 3063.78 24490.68 20165.95 24293.34 19893.82 108
FMVSNet281.31 18081.61 17680.41 22386.38 23358.75 29083.93 16186.58 22172.43 18187.65 14192.98 11763.78 24490.22 21266.86 23493.92 18892.27 169
USDC76.63 24076.73 23676.34 28183.46 27657.20 30080.02 23888.04 20052.14 33183.65 21891.25 16563.24 24786.65 27354.66 31994.11 18485.17 285
DIV-MVS_self_test80.43 19380.23 19481.02 21379.99 31059.25 28077.07 28287.02 21667.38 23886.19 17189.22 21363.09 24890.16 21476.32 14395.80 13393.66 115
cl____80.42 19480.23 19481.02 21379.99 31059.25 28077.07 28287.02 21667.37 23986.18 17389.21 21463.08 24990.16 21476.31 14495.80 13393.65 117
h-mvs3384.25 13282.76 15988.72 7091.82 11982.60 5684.00 15884.98 24671.27 19586.70 16090.55 18963.04 25093.92 9878.26 11894.20 18389.63 229
hse-mvs283.47 15281.81 17388.47 7491.03 14382.27 5782.61 19583.69 25771.27 19586.70 16086.05 26663.04 25092.41 15078.26 11893.62 19690.71 208
MVS_030478.17 22377.23 23080.99 21584.13 27069.07 18081.39 22180.81 28176.28 12767.53 34889.11 21762.87 25286.77 27060.90 28492.01 22987.13 266
new-patchmatchnet70.10 29973.37 26760.29 34981.23 29716.95 38059.54 35874.62 31462.93 26880.97 25787.93 23462.83 25371.90 33755.24 31595.01 15992.00 178
K. test v385.14 11284.73 12486.37 10291.13 14169.63 17085.45 13576.68 30384.06 4392.44 5796.99 862.03 25494.65 7080.58 9393.24 20194.83 72
lessismore_v085.95 11391.10 14270.99 15970.91 34291.79 6794.42 6961.76 25592.93 13879.52 10693.03 20693.93 103
131473.22 27372.56 27875.20 28980.41 30957.84 29481.64 21885.36 23551.68 33473.10 32576.65 35561.45 25685.19 28963.54 26279.21 34782.59 316
CANet_DTU77.81 22877.05 23180.09 22881.37 29559.90 27483.26 17888.29 19569.16 21867.83 34683.72 29660.93 25789.47 23069.22 21589.70 26290.88 203
pmmvs-eth3d78.42 22277.04 23282.57 18987.44 21374.41 12280.86 23079.67 28855.68 31384.69 19890.31 19460.91 25885.42 28762.20 27191.59 23587.88 258
UnsupCasMVSNet_eth71.63 28772.30 28069.62 32076.47 33752.70 33070.03 33380.97 28059.18 29479.36 27788.21 22960.50 25969.12 34558.33 29677.62 35487.04 267
IterMVS-SCA-FT80.64 19079.41 20484.34 14583.93 27269.66 16976.28 29481.09 27972.43 18186.47 17090.19 19760.46 26093.15 13177.45 13186.39 30090.22 221
SCA73.32 27172.57 27775.58 28881.62 29155.86 30878.89 25771.37 34061.73 27774.93 31683.42 30160.46 26087.01 26358.11 29882.63 33483.88 297
jason77.42 23175.75 24482.43 19287.10 22269.27 17377.99 26881.94 27251.47 33577.84 28985.07 28360.32 26289.00 24070.74 20189.27 26789.03 243
jason: jason.
1112_ss74.82 26073.74 26178.04 25889.57 16860.04 27176.49 29187.09 21554.31 31873.66 32379.80 33560.25 26386.76 27258.37 29484.15 32287.32 264
HY-MVS64.64 1873.03 27572.47 27974.71 29283.36 27754.19 31882.14 21481.96 27156.76 31169.57 34086.21 26460.03 26484.83 29349.58 34282.65 33285.11 286
Anonymous2023120671.38 28971.88 28269.88 31886.31 23754.37 31770.39 33174.62 31452.57 32776.73 29688.76 22159.94 26572.06 33644.35 35993.23 20283.23 311
IterMVS76.91 23676.34 23978.64 24680.91 30064.03 22376.30 29379.03 29164.88 26183.11 22589.16 21559.90 26684.46 29568.61 22585.15 31087.42 262
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
YYNet170.06 30070.44 29368.90 32373.76 35553.42 32558.99 36167.20 35258.42 29887.10 15085.39 27659.82 26767.32 35359.79 28983.50 32585.96 276
MDA-MVSNet_test_wron70.05 30170.44 29368.88 32473.84 35453.47 32358.93 36267.28 35158.43 29787.09 15185.40 27559.80 26867.25 35459.66 29083.54 32485.92 278
PMMVS61.65 32960.38 33565.47 33765.40 37769.26 17463.97 35161.73 36436.80 37260.11 36668.43 36659.42 26966.35 35848.97 34478.57 35060.81 367
CDS-MVSNet77.32 23275.40 24783.06 17489.00 18172.48 14177.90 27082.17 27060.81 28678.94 28283.49 29959.30 27088.76 24754.64 32092.37 21787.93 257
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
UnsupCasMVSNet_bld69.21 30769.68 30167.82 32979.42 31651.15 34267.82 34175.79 30754.15 31977.47 29585.36 27859.26 27170.64 34048.46 34679.35 34581.66 328
Anonymous2024052180.18 20381.25 18076.95 27283.15 28160.84 26482.46 20285.99 22968.76 22386.78 15793.73 10559.13 27277.44 32373.71 17397.55 6792.56 154
WTY-MVS67.91 31168.35 30966.58 33380.82 30348.12 35365.96 34672.60 33053.67 32171.20 33481.68 32058.97 27369.06 34648.57 34581.67 33682.55 318
cl2278.97 21178.21 22181.24 20977.74 32659.01 28477.46 27987.13 21165.79 24984.32 20585.10 28058.96 27490.88 19575.36 15492.03 22693.84 106
MVSFormer82.23 16881.57 17884.19 15085.54 25169.26 17491.98 3190.08 16471.54 19376.23 30185.07 28358.69 27594.27 8286.26 3588.77 27289.03 243
lupinMVS76.37 24574.46 25682.09 19385.54 25169.26 17476.79 28580.77 28350.68 34276.23 30182.82 30858.69 27588.94 24169.85 20888.77 27288.07 252
Test_1112_low_res73.90 26873.08 26976.35 28090.35 15655.95 30673.40 32086.17 22650.70 34173.14 32485.94 26758.31 27785.90 28356.51 30483.22 32687.20 265
test_yl78.71 21878.51 21779.32 23884.32 26658.84 28778.38 26385.33 23675.99 13282.49 23286.57 25658.01 27890.02 22362.74 26792.73 21389.10 240
DCV-MVSNet78.71 21878.51 21779.32 23884.32 26658.84 28778.38 26385.33 23675.99 13282.49 23286.57 25658.01 27890.02 22362.74 26792.73 21389.10 240
sss66.92 31367.26 31365.90 33477.23 33051.10 34464.79 34871.72 33852.12 33270.13 33880.18 33257.96 28065.36 36150.21 33881.01 34181.25 334
ppachtmachnet_test74.73 26274.00 26076.90 27480.71 30556.89 30371.53 32778.42 29358.24 29979.32 27982.92 30757.91 28184.26 29765.60 24791.36 23989.56 230
MVP-Stereo75.81 24973.51 26582.71 18489.35 17373.62 12580.06 23685.20 23860.30 29073.96 32187.94 23357.89 28289.45 23252.02 33174.87 35985.06 287
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
PAPM71.77 28570.06 29876.92 27386.39 23253.97 31976.62 29086.62 22053.44 32263.97 36184.73 28757.79 28392.34 15339.65 36681.33 33984.45 292
LFMVS80.15 20480.56 18878.89 24189.19 17855.93 30785.22 13873.78 32382.96 5584.28 20992.72 12957.38 28490.07 22163.80 26095.75 13690.68 210
Vis-MVSNet (Re-imp)77.82 22777.79 22477.92 26088.82 18451.29 34183.28 17771.97 33574.04 15582.23 23789.78 20457.38 28489.41 23557.22 30195.41 14293.05 138
CHOSEN 1792x268872.45 27970.56 29178.13 25690.02 16663.08 23368.72 33683.16 26142.99 36275.92 30585.46 27357.22 28685.18 29049.87 34181.67 33686.14 275
mvsany_test158.48 33756.47 34264.50 33965.90 37668.21 18556.95 36442.11 37938.30 37065.69 35377.19 35356.96 28759.35 36946.16 35458.96 37265.93 363
miper_lstm_enhance76.45 24476.10 24177.51 26676.72 33560.97 26364.69 34985.04 24363.98 26483.20 22488.22 22856.67 28878.79 32173.22 18093.12 20492.78 145
bld_raw_dy_0_6484.85 11884.44 13386.07 11293.73 6074.93 11988.57 9281.90 27370.44 20491.28 7695.18 4256.62 28989.28 23885.15 4997.09 8193.99 99
our_test_371.85 28471.59 28472.62 30480.71 30553.78 32169.72 33471.71 33958.80 29678.03 28680.51 33056.61 29078.84 32062.20 27186.04 30385.23 284
baseline173.26 27273.54 26472.43 30784.92 25647.79 35579.89 24074.00 31965.93 24778.81 28386.28 26356.36 29181.63 31156.63 30379.04 34987.87 259
pmmvs474.92 25872.98 27180.73 21884.95 25571.71 15476.23 29577.59 29752.83 32577.73 29386.38 25856.35 29284.97 29157.72 30087.05 29285.51 282
MVEpermissive40.22 2351.82 34150.47 34455.87 35362.66 37951.91 33531.61 37139.28 38040.65 36550.76 37474.98 36056.24 29344.67 37533.94 37264.11 37071.04 359
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
N_pmnet70.20 29768.80 30774.38 29480.91 30084.81 3959.12 36076.45 30555.06 31575.31 31482.36 31355.74 29454.82 37047.02 35187.24 29183.52 304
MS-PatchMatch70.93 29370.22 29673.06 30181.85 29062.50 24273.82 31777.90 29552.44 32875.92 30581.27 32255.67 29581.75 30955.37 31377.70 35374.94 353
DSMNet-mixed60.98 33461.61 33359.09 35272.88 36045.05 36474.70 30946.61 37726.20 37365.34 35490.32 19355.46 29663.12 36441.72 36381.30 34069.09 361
pmmvs570.73 29470.07 29772.72 30377.03 33352.73 32974.14 31275.65 31050.36 34472.17 33085.37 27755.42 29780.67 31552.86 32987.59 28984.77 289
CMPMVSbinary59.41 2075.12 25573.57 26379.77 23075.84 34367.22 19181.21 22582.18 26950.78 34076.50 29787.66 23955.20 29882.99 30462.17 27390.64 25889.09 242
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test_vis1_n_192071.30 29071.58 28670.47 31477.58 32959.99 27374.25 31184.22 25551.06 33774.85 31779.10 33955.10 29968.83 34768.86 22179.20 34882.58 317
MIMVSNet71.09 29171.59 28469.57 32187.23 21650.07 34878.91 25671.83 33660.20 29271.26 33391.76 15555.08 30076.09 32741.06 36487.02 29482.54 319
PVSNet_051.08 2256.10 33854.97 34359.48 35175.12 34953.28 32655.16 36561.89 36244.30 35659.16 36762.48 37054.22 30165.91 36035.40 37047.01 37359.25 369
EPNet_dtu72.87 27771.33 28977.49 26777.72 32760.55 26882.35 20575.79 30766.49 24658.39 37181.06 32453.68 30285.98 28153.55 32392.97 20985.95 277
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PMMVS255.64 34059.27 33944.74 35664.30 37812.32 38140.60 36949.79 37553.19 32365.06 35884.81 28553.60 30349.76 37332.68 37389.41 26472.15 356
test_vis1_rt65.64 32164.09 32570.31 31566.09 37470.20 16561.16 35681.60 27638.65 36972.87 32669.66 36452.84 30460.04 36756.16 30677.77 35280.68 341
mvsany_test365.48 32262.97 32873.03 30269.99 36776.17 11364.83 34743.71 37843.68 35980.25 27087.05 25352.83 30563.09 36551.92 33572.44 36179.84 345
HyFIR lowres test75.12 25572.66 27582.50 19091.44 13365.19 21372.47 32387.31 20646.79 34880.29 26784.30 29152.70 30692.10 16151.88 33686.73 29590.22 221
test111178.53 22078.85 21177.56 26592.22 10247.49 35682.61 19569.24 34872.43 18185.28 18794.20 8051.91 30790.07 22165.36 24996.45 10295.11 62
ECVR-MVScopyleft78.44 22178.63 21577.88 26191.85 11548.95 35083.68 16969.91 34672.30 18784.26 21194.20 8051.89 30889.82 22563.58 26196.02 11994.87 67
FMVSNet378.80 21678.55 21679.57 23582.89 28556.89 30381.76 21585.77 23169.04 22086.00 17590.44 19151.75 30990.09 22065.95 24293.34 19891.72 185
D2MVS76.84 23775.67 24680.34 22480.48 30862.16 24973.50 31884.80 25057.61 30582.24 23687.54 24151.31 31087.65 25770.40 20693.19 20391.23 196
AUN-MVS81.18 18278.78 21288.39 7690.93 14582.14 5882.51 20183.67 25864.69 26280.29 26785.91 26951.07 31192.38 15176.29 14593.63 19590.65 212
PVSNet58.17 2166.41 31765.63 32268.75 32581.96 28849.88 34962.19 35572.51 33251.03 33868.04 34475.34 35950.84 31274.77 33145.82 35782.96 32781.60 329
GA-MVS75.83 24874.61 25379.48 23781.87 28959.25 28073.42 31982.88 26468.68 22479.75 27281.80 31850.62 31389.46 23166.85 23585.64 30589.72 228
FPMVS72.29 28272.00 28173.14 30088.63 18885.00 3674.65 31067.39 35071.94 19277.80 29187.66 23950.48 31475.83 32949.95 33979.51 34358.58 370
test_fmvs375.72 25075.20 25077.27 26975.01 35169.47 17178.93 25584.88 24846.67 34987.08 15287.84 23650.44 31571.62 33877.42 13388.53 27590.72 207
test_vis1_n70.29 29669.99 29971.20 31275.97 34266.50 20076.69 28880.81 28144.22 35775.43 31077.23 35150.00 31668.59 34866.71 23882.85 33178.52 348
MVS-HIRNet61.16 33262.92 32955.87 35379.09 32035.34 37571.83 32557.98 37046.56 35059.05 36891.14 16949.95 31776.43 32638.74 36771.92 36355.84 371
CVMVSNet72.62 27871.41 28876.28 28283.25 27860.34 26983.50 17379.02 29237.77 37176.33 29985.10 28049.60 31887.41 26070.54 20477.54 35581.08 337
RPMNet78.88 21378.28 22080.68 22079.58 31362.64 23982.58 19794.16 2774.80 14875.72 30792.59 13148.69 31995.56 3773.48 17682.91 32983.85 300
test_fmvs273.57 27072.80 27275.90 28672.74 36268.84 18177.07 28284.32 25445.14 35482.89 22884.22 29248.37 32070.36 34173.40 17887.03 29388.52 249
tpmrst66.28 31866.69 31765.05 33872.82 36139.33 37178.20 26670.69 34353.16 32467.88 34580.36 33148.18 32174.75 33258.13 29770.79 36481.08 337
CR-MVSNet74.00 26773.04 27076.85 27679.58 31362.64 23982.58 19776.90 30050.50 34375.72 30792.38 13748.07 32284.07 29868.72 22482.91 32983.85 300
Patchmtry76.56 24277.46 22573.83 29679.37 31846.60 36082.41 20476.90 30073.81 15885.56 18492.38 13748.07 32283.98 29963.36 26495.31 14890.92 202
test_f64.31 32565.85 31959.67 35066.54 37362.24 24857.76 36370.96 34140.13 36684.36 20382.09 31546.93 32451.67 37261.99 27481.89 33565.12 364
ADS-MVSNet265.87 32063.64 32772.55 30573.16 35856.92 30267.10 34274.81 31349.74 34566.04 35182.97 30446.71 32577.26 32442.29 36169.96 36683.46 305
ADS-MVSNet61.90 32862.19 33161.03 34873.16 35836.42 37467.10 34261.75 36349.74 34566.04 35182.97 30446.71 32563.21 36342.29 36169.96 36683.46 305
PatchmatchNetpermissive69.71 30468.83 30672.33 30877.66 32853.60 32279.29 24969.99 34557.66 30472.53 32882.93 30646.45 32780.08 31860.91 28372.09 36283.31 310
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
thres20072.34 28171.55 28774.70 29383.48 27551.60 33875.02 30773.71 32470.14 21178.56 28580.57 32846.20 32888.20 25346.99 35289.29 26584.32 294
sam_mvs146.11 32983.88 297
tfpn200view974.86 25974.23 25876.74 27786.24 24152.12 33379.24 25173.87 32173.34 16581.82 24684.60 28946.02 33088.80 24351.98 33290.99 24489.31 235
thres40075.14 25374.23 25877.86 26286.24 24152.12 33379.24 25173.87 32173.34 16581.82 24684.60 28946.02 33088.80 24351.98 33290.99 24492.66 151
baseline269.77 30366.89 31478.41 25179.51 31558.09 29276.23 29569.57 34757.50 30664.82 35977.45 34946.02 33088.44 24953.08 32577.83 35188.70 247
patchmatchnet-post81.71 31945.93 33387.01 263
sam_mvs45.92 334
Patchmatch-RL test74.48 26373.68 26276.89 27584.83 25766.54 19972.29 32469.16 34957.70 30386.76 15886.33 26045.79 33582.59 30569.63 21090.65 25781.54 330
thres100view90075.45 25175.05 25176.66 27887.27 21551.88 33681.07 22773.26 32775.68 13883.25 22386.37 25945.54 33688.80 24351.98 33290.99 24489.31 235
thres600view775.97 24775.35 24977.85 26387.01 22551.84 33780.45 23373.26 32775.20 14583.10 22686.31 26245.54 33689.05 23955.03 31792.24 22292.66 151
tpm cat166.76 31665.21 32371.42 31077.09 33250.62 34678.01 26773.68 32544.89 35568.64 34179.00 34045.51 33882.42 30849.91 34070.15 36581.23 336
test_post3.10 37745.43 33977.22 325
MDTV_nov1_ep1368.29 31078.03 32543.87 36774.12 31372.22 33352.17 32967.02 34985.54 27145.36 34080.85 31455.73 30884.42 320
tpmvs70.16 29869.56 30271.96 30974.71 35248.13 35279.63 24275.45 31265.02 26070.26 33781.88 31745.34 34185.68 28558.34 29575.39 35882.08 325
MDTV_nov1_ep13_2view27.60 37970.76 32946.47 35161.27 36345.20 34249.18 34383.75 302
test_post178.85 2593.13 37645.19 34380.13 31758.11 298
CostFormer69.98 30268.68 30873.87 29577.14 33150.72 34579.26 25074.51 31651.94 33370.97 33684.75 28645.16 34487.49 25955.16 31679.23 34683.40 307
FE-MVS79.98 20778.86 21083.36 16786.47 23066.45 20189.73 6584.74 25172.80 17684.22 21391.38 16344.95 34593.60 11263.93 25991.50 23790.04 227
Patchmatch-test65.91 31967.38 31261.48 34775.51 34543.21 36968.84 33563.79 36062.48 27272.80 32783.42 30144.89 34659.52 36848.27 34886.45 29881.70 327
EU-MVSNet75.12 25574.43 25777.18 27083.11 28259.48 27885.71 13382.43 26839.76 36885.64 18288.76 22144.71 34787.88 25573.86 17085.88 30484.16 296
PatchT70.52 29572.76 27463.79 34179.38 31733.53 37677.63 27465.37 35873.61 16071.77 33192.79 12744.38 34875.65 33064.53 25885.37 30782.18 323
test_vis3_rt71.42 28870.67 29073.64 29769.66 36870.46 16266.97 34489.73 16942.68 36488.20 13583.04 30343.77 34960.07 36665.35 25086.66 29690.39 219
test_fmvs1_n70.94 29270.41 29572.53 30673.92 35366.93 19675.99 29784.21 25643.31 36179.40 27679.39 33843.47 35068.55 34969.05 21884.91 31482.10 324
test-LLR67.21 31266.74 31668.63 32676.45 33855.21 31367.89 33867.14 35362.43 27465.08 35672.39 36143.41 35169.37 34261.00 28184.89 31581.31 332
test0.0.03 164.66 32464.36 32465.57 33675.03 35046.89 35964.69 34961.58 36562.43 27471.18 33577.54 34743.41 35168.47 35140.75 36582.65 33281.35 331
test_fmvs169.57 30569.05 30471.14 31369.15 36965.77 20973.98 31483.32 26042.83 36377.77 29278.27 34543.39 35368.50 35068.39 22884.38 32179.15 346
MVSTER77.09 23475.70 24581.25 20775.27 34861.08 25877.49 27885.07 24160.78 28786.55 16488.68 22343.14 35490.25 20973.69 17490.67 25592.42 159
tpm67.95 31068.08 31167.55 33078.74 32443.53 36875.60 30067.10 35554.92 31672.23 32988.10 23042.87 35575.97 32852.21 33080.95 34283.15 312
tpm268.45 30966.83 31573.30 29978.93 32348.50 35179.76 24171.76 33747.50 34769.92 33983.60 29742.07 35688.40 25048.44 34779.51 34383.01 314
EMVS61.10 33360.81 33461.99 34465.96 37555.86 30853.10 36758.97 36867.06 24156.89 37263.33 36940.98 35767.03 35554.79 31886.18 30263.08 365
new_pmnet55.69 33957.66 34049.76 35575.47 34630.59 37759.56 35751.45 37443.62 36062.49 36275.48 35840.96 35849.15 37437.39 36972.52 36069.55 360
E-PMN61.59 33061.62 33261.49 34666.81 37255.40 31153.77 36660.34 36666.80 24458.90 36965.50 36840.48 35966.12 35955.72 30986.25 30162.95 366
EPMVS62.47 32662.63 33062.01 34370.63 36638.74 37274.76 30852.86 37353.91 32067.71 34780.01 33339.40 36066.60 35755.54 31268.81 36980.68 341
tmp_tt20.25 34424.50 3477.49 3594.47 3828.70 38234.17 37025.16 3821.00 37732.43 37618.49 37439.37 3619.21 37821.64 37543.75 3744.57 374
thisisatest053079.07 21077.33 22984.26 14787.13 21964.58 21783.66 17075.95 30668.86 22285.22 18887.36 24538.10 36293.57 11675.47 15294.28 18194.62 74
ET-MVSNet_ETH3D75.28 25272.77 27382.81 18383.03 28368.11 18677.09 28176.51 30460.67 28977.60 29480.52 32938.04 36391.15 18570.78 19990.68 25489.17 238
tttt051781.07 18379.58 20385.52 12288.99 18266.45 20187.03 11275.51 31173.76 15988.32 13390.20 19637.96 36494.16 9279.36 10895.13 15395.93 42
thisisatest051573.00 27670.52 29280.46 22281.45 29359.90 27473.16 32274.31 31857.86 30276.08 30477.78 34637.60 36592.12 16065.00 25191.45 23889.35 234
FMVSNet572.10 28371.69 28373.32 29881.57 29253.02 32776.77 28678.37 29463.31 26576.37 29891.85 15036.68 36678.98 31947.87 34992.45 21687.95 256
iter_conf_final80.36 19778.88 20984.79 13286.29 23966.36 20386.95 11386.25 22468.16 23082.09 24089.48 20836.59 36794.51 7979.83 10094.30 18093.50 125
dp60.70 33560.29 33761.92 34572.04 36438.67 37370.83 32864.08 35951.28 33660.75 36477.28 35036.59 36771.58 33947.41 35062.34 37175.52 352
CHOSEN 280x42059.08 33656.52 34166.76 33276.51 33664.39 22049.62 36859.00 36743.86 35855.66 37368.41 36735.55 36968.21 35243.25 36076.78 35767.69 362
IB-MVS62.13 1971.64 28668.97 30579.66 23480.80 30462.26 24773.94 31576.90 30063.27 26668.63 34276.79 35433.83 37091.84 16859.28 29287.26 29084.88 288
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
JIA-IIPM69.41 30666.64 31877.70 26473.19 35771.24 15775.67 29965.56 35770.42 20565.18 35592.97 11933.64 37183.06 30353.52 32469.61 36878.79 347
iter_conf0578.81 21577.35 22883.21 17182.98 28460.75 26684.09 15588.34 19363.12 26784.25 21289.48 20831.41 37294.51 7976.64 14095.83 13094.38 87
DeepMVS_CXcopyleft24.13 35832.95 38029.49 37821.63 38312.07 37437.95 37545.07 37330.84 37319.21 37717.94 37633.06 37623.69 373
gg-mvs-nofinetune68.96 30869.11 30368.52 32876.12 34145.32 36283.59 17155.88 37186.68 2464.62 36097.01 730.36 37483.97 30044.78 35882.94 32876.26 351
GG-mvs-BLEND67.16 33173.36 35646.54 36184.15 15455.04 37258.64 37061.95 37129.93 37583.87 30138.71 36876.92 35671.07 358
test_method30.46 34229.60 34533.06 35717.99 3813.84 38313.62 37273.92 3202.79 37518.29 37753.41 37228.53 37643.25 37622.56 37435.27 37552.11 372
test-mter65.00 32363.79 32668.63 32676.45 33855.21 31367.89 33867.14 35350.98 33965.08 35672.39 36128.27 37769.37 34261.00 28184.89 31581.31 332
TESTMET0.1,161.29 33160.32 33664.19 34072.06 36351.30 34067.89 33862.09 36145.27 35360.65 36569.01 36527.93 37864.74 36256.31 30581.65 33876.53 350
test250674.12 26673.39 26676.28 28291.85 11544.20 36684.06 15648.20 37672.30 18781.90 24394.20 8027.22 37989.77 22664.81 25396.02 11994.87 67
pmmvs362.47 32660.02 33869.80 31971.58 36564.00 22470.52 33058.44 36939.77 36766.05 35075.84 35727.10 38072.28 33546.15 35584.77 31973.11 355
KD-MVS_2432*160066.87 31465.81 32070.04 31667.50 37047.49 35662.56 35379.16 28961.21 28377.98 28780.61 32625.29 38182.48 30653.02 32684.92 31280.16 343
miper_refine_blended66.87 31465.81 32070.04 31667.50 37047.49 35662.56 35379.16 28961.21 28377.98 28780.61 32625.29 38182.48 30653.02 32684.92 31280.16 343
test1236.27 3478.08 3500.84 3601.11 3840.57 38462.90 3520.82 3840.54 3781.07 3802.75 3791.26 3830.30 3791.04 3771.26 3781.66 375
testmvs5.91 3487.65 3510.72 3611.20 3830.37 38559.14 3590.67 3850.49 3791.11 3792.76 3780.94 3840.24 3801.02 3781.47 3771.55 376
test_blank0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
uanet_test0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
DCPMVS0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
sosnet-low-res0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
sosnet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
uncertanet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
Regformer0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
ab-mvs-re6.65 3458.87 3480.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 38179.80 3350.00 3850.00 3810.00 3790.00 3790.00 377
uanet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
FOURS196.08 1187.41 1096.19 295.83 492.95 296.57 2
MSC_two_6792asdad88.81 6891.55 12777.99 8791.01 13596.05 787.45 1798.17 3292.40 161
No_MVS88.81 6891.55 12777.99 8791.01 13596.05 787.45 1798.17 3292.40 161
eth-test20.00 385
eth-test0.00 385
IU-MVS94.18 4672.64 13490.82 14056.98 30989.67 10785.78 4597.92 4693.28 128
save fliter93.75 5977.44 9586.31 12689.72 17070.80 201
test_0728_SECOND86.79 9594.25 4572.45 14290.54 4894.10 3495.88 1686.42 3197.97 4392.02 177
GSMVS83.88 297
test_part293.86 5777.77 9192.84 48
MTGPAbinary91.81 115
MTMP90.66 4433.14 381
gm-plane-assit75.42 34744.97 36552.17 32972.36 36387.90 25454.10 321
test9_res80.83 8996.45 10290.57 213
agg_prior279.68 10396.16 11290.22 221
agg_prior91.58 12577.69 9290.30 15684.32 20593.18 129
test_prior478.97 8084.59 145
test_prior86.32 10390.59 15371.99 14992.85 8694.17 9092.80 144
旧先验281.73 21656.88 31086.54 16984.90 29272.81 187
新几何281.72 217
无先验82.81 19285.62 23358.09 30091.41 17967.95 23284.48 291
原ACMM282.26 210
testdata286.43 27663.52 263
testdata179.62 24373.95 157
plane_prior793.45 6677.31 98
plane_prior593.61 5395.22 5480.78 9095.83 13094.46 80
plane_prior492.95 120
plane_prior376.85 10377.79 11486.55 164
plane_prior289.45 7779.44 92
plane_prior192.83 86
plane_prior76.42 10987.15 11075.94 13595.03 158
n20.00 386
nn0.00 386
door-mid74.45 317
test1191.46 121
door72.57 331
HQP5-MVS70.66 160
HQP-NCC91.19 13784.77 14073.30 16780.55 264
ACMP_Plane91.19 13784.77 14073.30 16780.55 264
BP-MVS77.30 134
HQP4-MVS80.56 26394.61 7293.56 122
HQP3-MVS92.68 9194.47 176
NP-MVS91.95 11074.55 12190.17 199
ACMMP++_ref95.74 137
ACMMP++97.35 73