This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort by
CHOSEN 280x42099.01 1399.03 1098.95 7699.38 9598.87 3298.46 30399.42 2297.03 4299.02 8999.09 14599.35 198.21 23499.73 3299.78 7999.77 101
GG-mvs-BLEND98.54 10398.21 16798.01 6893.87 37298.52 10197.92 13497.92 22399.02 297.94 25098.17 10699.58 9699.67 113
gg-mvs-nofinetune93.51 21591.86 24198.47 10897.72 20097.96 7292.62 37698.51 10474.70 37897.33 14869.59 39198.91 397.79 25497.77 13099.56 9799.67 113
iter_conf0596.07 14395.95 13396.44 19798.43 15497.52 8799.91 8296.85 31794.16 13192.49 22897.98 22098.20 497.34 26997.26 14188.29 26494.45 263
iter_conf_final96.01 14695.93 13596.28 20298.38 15697.03 10799.87 10097.03 29794.05 14092.61 22497.98 22098.01 597.34 26997.02 14888.39 26394.47 257
test_0728_THIRD96.48 5999.83 1399.91 1497.87 6100.00 199.92 12100.00 1100.00 1
baseline296.71 12096.49 11397.37 16895.63 28795.96 14699.74 15398.88 5192.94 17391.61 23598.97 15997.72 798.62 19794.83 18498.08 15697.53 236
SteuartSystems-ACMMP99.02 1298.97 1399.18 5098.72 13997.71 7999.98 1498.44 11996.85 4699.80 1799.91 1497.57 899.85 10899.44 4699.99 2199.99 23
Skip Steuart: Steuart Systems R&D Blog.
thisisatest051597.41 9297.02 9898.59 9797.71 20297.52 8799.97 2798.54 9891.83 21897.45 14699.04 14997.50 999.10 17294.75 18796.37 19099.16 186
PC_three_145296.96 4499.80 1799.79 5597.49 10100.00 199.99 599.98 32100.00 1
test_one_060199.94 1399.30 1298.41 14296.63 5699.75 2999.93 1197.49 10
thisisatest053097.10 10296.72 10698.22 12297.60 20896.70 11799.92 7898.54 9891.11 24197.07 15398.97 15997.47 1299.03 17393.73 21496.09 19398.92 197
tttt051796.85 11196.49 11397.92 13497.48 21595.89 14899.85 11698.54 9890.72 25296.63 16498.93 17097.47 1299.02 17493.03 22695.76 20498.85 201
DVP-MVS++99.26 699.09 999.77 899.91 3999.31 1099.95 5298.43 12796.48 5999.80 1799.93 1197.44 14100.00 199.92 1299.98 32100.00 1
OPU-MVS99.93 299.89 4599.80 299.96 3499.80 5197.44 14100.00 1100.00 199.98 32100.00 1
MSP-MVS99.09 999.12 598.98 7399.93 2497.24 9899.95 5298.42 13897.50 2699.52 5999.88 2197.43 1699.71 13899.50 4199.98 32100.00 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
NCCC99.37 299.25 299.71 1499.96 899.15 2199.97 2798.62 8198.02 1399.90 399.95 397.33 17100.00 199.54 39100.00 1100.00 1
MVSTER95.53 16195.22 15796.45 19598.56 14597.72 7899.91 8297.67 22992.38 20391.39 23797.14 24297.24 1897.30 27494.80 18587.85 27194.34 273
DVP-MVScopyleft99.30 499.16 399.73 1299.93 2499.29 1599.95 5298.32 16697.28 3299.83 1399.91 1497.22 19100.00 199.99 5100.00 199.89 84
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.93 2499.29 1599.96 3498.42 13897.28 3299.86 799.94 497.22 19
test_241102_TWO98.43 12797.27 3499.80 1799.94 497.18 21100.00 1100.00 1100.00 1100.00 1
DPM-MVS98.83 2198.46 2999.97 199.33 9799.92 199.96 3498.44 11997.96 1499.55 5499.94 497.18 21100.00 193.81 20999.94 5499.98 48
CNVR-MVS99.40 199.26 199.84 699.98 299.51 699.98 1498.69 6898.20 799.93 199.98 296.82 23100.00 199.75 28100.00 199.99 23
SED-MVS99.28 599.11 799.77 899.93 2499.30 1299.96 3498.43 12797.27 3499.80 1799.94 496.71 24100.00 1100.00 1100.00 1100.00 1
test_241102_ONE99.93 2499.30 1298.43 12797.26 3699.80 1799.88 2196.71 24100.00 1
DPE-MVScopyleft99.26 699.10 899.74 1199.89 4599.24 1999.87 10098.44 11997.48 2799.64 4299.94 496.68 2699.99 3699.99 5100.00 199.99 23
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
segment_acmp96.68 26
patch_mono-298.24 5599.12 595.59 21799.67 7786.91 33699.95 5298.89 4997.60 2299.90 399.76 6396.54 2899.98 4399.94 1199.82 7699.88 85
PAPM98.60 2998.42 3099.14 5996.05 26598.96 2699.90 8799.35 2596.68 5598.35 12299.66 9696.45 2998.51 20299.45 4599.89 6699.96 64
MCST-MVS99.32 399.14 499.86 599.97 399.59 599.97 2798.64 7698.47 299.13 8599.92 1396.38 30100.00 199.74 30100.00 1100.00 1
ET-MVSNet_ETH3D94.37 19293.28 21097.64 15298.30 15997.99 6999.99 497.61 23694.35 12271.57 37899.45 11796.23 3195.34 34896.91 15485.14 29399.59 130
EPP-MVSNet96.69 12196.60 10996.96 18097.74 19593.05 23199.37 21798.56 8988.75 28695.83 18599.01 15296.01 3298.56 19996.92 15397.20 17399.25 181
test_prior299.95 5295.78 7999.73 3299.76 6396.00 3399.78 27100.00 1
train_agg98.88 1998.65 2099.59 2399.92 3198.92 2899.96 3498.43 12794.35 12299.71 3499.86 2695.94 3499.85 10899.69 3599.98 3299.99 23
test_899.92 3198.88 3199.96 3498.43 12794.35 12299.69 3699.85 3095.94 3499.85 108
MSLP-MVS++99.13 899.01 1199.49 3299.94 1398.46 5999.98 1498.86 5397.10 4099.80 1799.94 495.92 36100.00 199.51 40100.00 1100.00 1
TEST999.92 3198.92 2899.96 3498.43 12793.90 14899.71 3499.86 2695.88 3799.85 108
test_yl97.83 6997.37 8399.21 4799.18 10297.98 7099.64 17799.27 2791.43 23197.88 13798.99 15595.84 3899.84 11698.82 7795.32 21399.79 97
DCV-MVSNet97.83 6997.37 8399.21 4799.18 10297.98 7099.64 17799.27 2791.43 23197.88 13798.99 15595.84 3899.84 11698.82 7795.32 21399.79 97
DP-MVS Recon98.41 4498.02 5699.56 2599.97 398.70 4699.92 7898.44 11992.06 21298.40 12099.84 4195.68 40100.00 198.19 10599.71 8399.97 58
旧先验199.76 6697.52 8798.64 7699.85 3095.63 4199.94 5499.99 23
SMA-MVScopyleft98.76 2398.48 2899.62 2099.87 5198.87 3299.86 11398.38 15393.19 16899.77 2799.94 495.54 42100.00 199.74 3099.99 21100.00 1
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
TESTMET0.1,196.74 11896.26 11898.16 12397.36 22196.48 12399.96 3498.29 17291.93 21595.77 18698.07 21595.54 4298.29 22690.55 26098.89 13099.70 108
APDe-MVScopyleft99.06 1198.91 1499.51 2999.94 1398.76 4399.91 8298.39 14997.20 3899.46 6399.85 3095.53 4499.79 12399.86 21100.00 199.99 23
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
PLCcopyleft95.54 397.93 6497.89 6698.05 13099.82 5894.77 18999.92 7898.46 11493.93 14697.20 15099.27 13295.44 4599.97 5397.41 13799.51 10299.41 162
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
HPM-MVS++copyleft99.07 1098.88 1699.63 1799.90 4299.02 2599.95 5298.56 8997.56 2599.44 6599.85 3095.38 46100.00 199.31 5199.99 2199.87 87
PHI-MVS98.41 4498.21 4499.03 6899.86 5397.10 10599.98 1498.80 6290.78 25199.62 4699.78 5995.30 47100.00 199.80 2599.93 6099.99 23
test-mter96.39 13395.93 13597.78 14297.02 23595.44 16499.96 3498.21 18091.81 22095.55 18896.38 26995.17 4898.27 23090.42 26398.83 13499.64 119
patchmatchnet-post91.70 36195.12 4997.95 248
MDTV_nov1_ep1395.69 14497.90 18494.15 20395.98 36298.44 11993.12 17097.98 13295.74 28695.10 5098.58 19890.02 26996.92 181
IB-MVS92.85 694.99 17293.94 18998.16 12397.72 20095.69 15799.99 498.81 6094.28 12792.70 22396.90 25295.08 5199.17 16996.07 16373.88 36299.60 129
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
ZD-MVS99.92 3198.57 5498.52 10192.34 20499.31 7699.83 4395.06 5299.80 12199.70 3499.97 42
CDS-MVSNet96.34 13596.07 12297.13 17697.37 22094.96 18299.53 19497.91 21391.55 22695.37 19298.32 21095.05 5397.13 28593.80 21095.75 20599.30 176
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Patchmatch-test92.65 23791.50 24796.10 20796.85 24590.49 29091.50 38197.19 27882.76 35390.23 25095.59 29395.02 5498.00 24477.41 35896.98 18099.82 92
CostFormer96.10 14295.88 13996.78 18597.03 23492.55 24597.08 34297.83 22190.04 26498.72 10594.89 32695.01 5598.29 22696.54 15895.77 20399.50 151
TSAR-MVS + GP.98.60 2998.51 2798.86 8099.73 7296.63 11999.97 2797.92 21298.07 1198.76 10299.55 10895.00 5699.94 7799.91 1597.68 16299.99 23
CDPH-MVS98.65 2798.36 3799.49 3299.94 1398.73 4499.87 10098.33 16493.97 14399.76 2899.87 2494.99 5799.75 13298.55 93100.00 199.98 48
原ACMM198.96 7599.73 7296.99 10998.51 10494.06 13899.62 4699.85 3094.97 5899.96 6195.11 17499.95 4999.92 81
TSAR-MVS + MP.98.93 1698.77 1899.41 3899.74 6998.67 4799.77 14298.38 15396.73 5399.88 699.74 7694.89 5999.59 14999.80 2599.98 3299.97 58
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
test1299.43 3599.74 6998.56 5598.40 14699.65 4094.76 6099.75 13299.98 3299.99 23
fmvsm_l_conf0.5_n_a99.00 1498.91 1499.28 4399.21 10197.91 7499.98 1498.85 5698.25 499.92 299.75 6994.72 6199.97 5399.87 1999.64 8799.95 71
sam_mvs194.72 6199.59 130
SF-MVS98.67 2698.40 3199.50 3099.77 6598.67 4799.90 8798.21 18093.53 15899.81 1599.89 1994.70 6399.86 10799.84 2299.93 6099.96 64
SD-MVS98.92 1798.70 1999.56 2599.70 7698.73 4499.94 6898.34 16396.38 6599.81 1599.76 6394.59 6499.98 4399.84 2299.96 4699.97 58
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
9.1498.38 3399.87 5199.91 8298.33 16493.22 16799.78 2699.89 1994.57 6599.85 10899.84 2299.97 42
test_post63.35 39694.43 6698.13 237
EPMVS96.53 12796.01 12498.09 12898.43 15496.12 14496.36 35399.43 2193.53 15897.64 14195.04 31994.41 6798.38 21891.13 24698.11 15399.75 103
新几何199.42 3799.75 6898.27 6198.63 8092.69 18599.55 5499.82 4694.40 68100.00 191.21 24499.94 5499.99 23
MDTV_nov1_ep13_2view96.26 13396.11 35991.89 21698.06 13094.40 6894.30 19799.67 113
PAPM_NR98.12 5997.93 6398.70 8799.94 1396.13 14299.82 13098.43 12794.56 11397.52 14399.70 8594.40 6899.98 4397.00 14999.98 3299.99 23
dcpmvs_297.42 9198.09 5395.42 22299.58 8487.24 33299.23 23496.95 30694.28 12798.93 9399.73 7894.39 7199.16 17099.89 1699.82 7699.86 89
miper_enhance_ethall94.36 19493.98 18795.49 21898.68 14195.24 17499.73 15897.29 27193.28 16689.86 25895.97 28294.37 7297.05 29192.20 23384.45 29894.19 282
XVS98.70 2598.55 2599.15 5799.94 1397.50 9099.94 6898.42 13896.22 7199.41 6899.78 5994.34 7399.96 6198.92 7099.95 4999.99 23
X-MVStestdata93.83 20392.06 23599.15 5799.94 1397.50 9099.94 6898.42 13896.22 7199.41 6841.37 40094.34 7399.96 6198.92 7099.95 4999.99 23
CP-MVS98.45 3998.32 3998.87 7999.96 896.62 12099.97 2798.39 14994.43 11798.90 9499.87 2494.30 75100.00 199.04 6399.99 2199.99 23
sam_mvs94.25 76
Patchmatch-RL test86.90 31685.98 32089.67 33784.45 37975.59 37689.71 38692.43 38486.89 31577.83 36590.94 36494.22 7793.63 36687.75 29369.61 36999.79 97
HFP-MVS98.56 3198.37 3599.14 5999.96 897.43 9499.95 5298.61 8294.77 10599.31 7699.85 3094.22 77100.00 198.70 8499.98 3299.98 48
fmvsm_l_conf0.5_n98.94 1598.84 1799.25 4499.17 10597.81 7799.98 1498.86 5398.25 499.90 399.76 6394.21 7999.97 5399.87 1999.52 9999.98 48
PatchmatchNetpermissive95.94 14895.45 14997.39 16797.83 18994.41 19596.05 36098.40 14692.86 17497.09 15295.28 31494.21 7998.07 24189.26 27698.11 15399.70 108
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
DeepPCF-MVS95.94 297.71 8198.98 1293.92 28199.63 7981.76 36399.96 3498.56 8999.47 199.19 8399.99 194.16 81100.00 199.92 1299.93 60100.00 1
APD-MVScopyleft98.62 2898.35 3899.41 3899.90 4298.51 5799.87 10098.36 15794.08 13599.74 3199.73 7894.08 8299.74 13499.42 4799.99 2199.99 23
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
region2R98.54 3298.37 3599.05 6699.96 897.18 10199.96 3498.55 9594.87 10399.45 6499.85 3094.07 83100.00 198.67 86100.00 199.98 48
PAPR98.52 3498.16 4899.58 2499.97 398.77 4099.95 5298.43 12795.35 9198.03 13199.75 6994.03 8499.98 4398.11 11099.83 7299.99 23
MG-MVS98.91 1898.65 2099.68 1599.94 1399.07 2499.64 17799.44 2097.33 3199.00 9099.72 8194.03 8499.98 4398.73 83100.00 1100.00 1
MVS_111021_HR98.72 2498.62 2299.01 7199.36 9697.18 10199.93 7599.90 196.81 5198.67 10799.77 6193.92 8699.89 9699.27 5399.94 5499.96 64
tpmrst96.27 14195.98 12797.13 17697.96 18193.15 22896.34 35498.17 18592.07 21098.71 10695.12 31793.91 8798.73 18894.91 18296.62 18499.50 151
test-LLR96.47 12896.04 12397.78 14297.02 23595.44 16499.96 3498.21 18094.07 13695.55 18896.38 26993.90 8898.27 23090.42 26398.83 13499.64 119
test0.0.03 193.86 20293.61 19594.64 24995.02 29692.18 25299.93 7598.58 8594.07 13687.96 29998.50 20093.90 8894.96 35381.33 34193.17 23296.78 239
test22299.55 8597.41 9699.34 22098.55 9591.86 21799.27 8099.83 4393.84 9099.95 4999.99 23
dp95.05 17094.43 17696.91 18197.99 18092.73 23996.29 35697.98 20489.70 26895.93 18294.67 33293.83 9198.45 20786.91 30896.53 18699.54 143
ACMMPR98.50 3598.32 3999.05 6699.96 897.18 10199.95 5298.60 8394.77 10599.31 7699.84 4193.73 92100.00 198.70 8499.98 3299.98 48
EPNet98.49 3698.40 3198.77 8499.62 8096.80 11699.90 8799.51 1797.60 2299.20 8199.36 12693.71 9399.91 8997.99 11798.71 13799.61 127
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
alignmvs97.81 7297.33 8599.25 4498.77 13798.66 4999.99 498.44 11994.40 12198.41 11899.47 11493.65 9499.42 16298.57 9294.26 22299.67 113
testdata98.42 11399.47 9195.33 17098.56 8993.78 15199.79 2599.85 3093.64 9599.94 7794.97 17899.94 54100.00 1
EI-MVSNet-Vis-set98.27 5198.11 5298.75 8599.83 5796.59 12299.40 21098.51 10495.29 9398.51 11499.76 6393.60 9699.71 13898.53 9499.52 9999.95 71
mPP-MVS98.39 4698.20 4598.97 7499.97 396.92 11299.95 5298.38 15395.04 9798.61 11199.80 5193.39 97100.00 198.64 89100.00 199.98 48
SR-MVS98.46 3898.30 4298.93 7799.88 4997.04 10699.84 12098.35 15994.92 10199.32 7599.80 5193.35 9899.78 12599.30 5299.95 4999.96 64
WTY-MVS98.10 6097.60 7599.60 2298.92 12499.28 1799.89 9599.52 1595.58 8598.24 12899.39 12393.33 9999.74 13497.98 11995.58 20899.78 100
tpm295.47 16295.18 15996.35 20196.91 24091.70 26796.96 34597.93 20988.04 29998.44 11795.40 30393.32 10097.97 24594.00 20195.61 20799.38 164
HY-MVS92.50 797.79 7597.17 9299.63 1798.98 11799.32 997.49 33299.52 1595.69 8298.32 12397.41 23593.32 10099.77 12898.08 11395.75 20599.81 94
EI-MVSNet-UG-set98.14 5897.99 5798.60 9599.80 6196.27 13299.36 21998.50 10995.21 9598.30 12499.75 6993.29 10299.73 13798.37 9999.30 11699.81 94
SR-MVS-dyc-post98.31 4898.17 4798.71 8699.79 6296.37 13099.76 14798.31 16894.43 11799.40 7099.75 6993.28 10399.78 12598.90 7399.92 6399.97 58
baseline195.78 15294.86 16898.54 10398.47 15398.07 6599.06 25197.99 20292.68 18694.13 20798.62 19293.28 10398.69 19393.79 21185.76 28698.84 202
PGM-MVS98.34 4798.13 5098.99 7299.92 3197.00 10899.75 15099.50 1893.90 14899.37 7399.76 6393.24 105100.00 197.75 13299.96 4699.98 48
test_post195.78 36559.23 39993.20 10697.74 25791.06 248
CSCG97.10 10297.04 9697.27 17499.89 4591.92 25899.90 8799.07 3488.67 28895.26 19499.82 4693.17 10799.98 4398.15 10899.47 10499.90 83
DeepC-MVS_fast96.59 198.81 2298.54 2699.62 2099.90 4298.85 3499.24 23398.47 11298.14 1099.08 8699.91 1493.09 108100.00 199.04 6399.99 21100.00 1
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ZNCC-MVS98.31 4898.03 5599.17 5399.88 4997.59 8499.94 6898.44 11994.31 12598.50 11599.82 4693.06 10999.99 3698.30 10399.99 2199.93 76
testing393.92 20194.23 18192.99 30897.54 21090.23 29599.99 499.16 3090.57 25391.33 24098.63 19192.99 11092.52 37482.46 33495.39 21196.22 247
GST-MVS98.27 5197.97 5899.17 5399.92 3197.57 8599.93 7598.39 14994.04 14198.80 9899.74 7692.98 111100.00 198.16 10799.76 8099.93 76
RE-MVS-def98.13 5099.79 6296.37 13099.76 14798.31 16894.43 11799.40 7099.75 6992.95 11298.90 7399.92 6399.97 58
CS-MVS97.79 7597.91 6497.43 16499.10 10894.42 19499.99 497.10 28995.07 9699.68 3799.75 6992.95 11298.34 22298.38 9899.14 12399.54 143
ACMMP_NAP98.49 3698.14 4999.54 2799.66 7898.62 5399.85 11698.37 15694.68 11099.53 5799.83 4392.87 114100.00 198.66 8899.84 7199.99 23
APD-MVS_3200maxsize98.25 5498.08 5498.78 8299.81 6096.60 12199.82 13098.30 17193.95 14599.37 7399.77 6192.84 11599.76 13198.95 6799.92 6399.97 58
JIA-IIPM91.76 25790.70 25794.94 23896.11 26387.51 33093.16 37598.13 19375.79 37497.58 14277.68 38892.84 11597.97 24588.47 28596.54 18599.33 172
Test By Simon92.82 117
MVS_030498.87 2098.61 2399.67 1699.18 10299.13 2299.87 10099.65 1298.17 898.75 10499.75 6992.76 11899.94 7799.88 1899.44 10899.94 74
MTAPA98.29 5097.96 6199.30 4299.85 5497.93 7399.39 21498.28 17395.76 8097.18 15199.88 2192.74 119100.00 198.67 8699.88 6899.99 23
EPNet_dtu95.71 15595.39 15196.66 19098.92 12493.41 22499.57 18798.90 4796.19 7397.52 14398.56 19792.65 12097.36 26777.89 35698.33 14499.20 184
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_fmvsm_n_192098.44 4098.61 2397.92 13499.27 10095.18 178100.00 198.90 4798.05 1299.80 1799.73 7892.64 12199.99 3699.58 3899.51 10298.59 214
MP-MVS-pluss98.07 6197.64 7399.38 4199.74 6998.41 6099.74 15398.18 18493.35 16296.45 16999.85 3092.64 12199.97 5398.91 7299.89 6699.77 101
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
FE-MVS95.70 15795.01 16597.79 14198.21 16794.57 19095.03 36798.69 6888.90 28397.50 14596.19 27592.60 12399.49 15889.99 27097.94 15999.31 174
DELS-MVS98.54 3298.22 4399.50 3099.15 10798.65 51100.00 198.58 8597.70 2098.21 12999.24 13792.58 12499.94 7798.63 9199.94 5499.92 81
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
ETV-MVS97.92 6597.80 6998.25 12198.14 17396.48 12399.98 1497.63 23195.61 8499.29 7999.46 11692.55 12598.82 18199.02 6698.54 13999.46 155
test250697.53 8597.19 9098.58 9898.66 14296.90 11398.81 28199.77 594.93 9997.95 13398.96 16192.51 12699.20 16694.93 17998.15 15099.64 119
KD-MVS_2432*160088.00 31286.10 31693.70 29196.91 24094.04 20697.17 33997.12 28784.93 33781.96 34492.41 35692.48 12794.51 35879.23 34952.68 39092.56 346
miper_refine_blended88.00 31286.10 31693.70 29196.91 24094.04 20697.17 33997.12 28784.93 33781.96 34492.41 35692.48 12794.51 35879.23 34952.68 39092.56 346
myMVS_eth3d94.46 18994.76 17193.55 29597.68 20390.97 27799.71 16398.35 15990.79 24992.10 23198.67 18592.46 12993.09 37087.13 30195.95 19896.59 242
EIA-MVS97.53 8597.46 7997.76 14698.04 17894.84 18599.98 1497.61 23694.41 12097.90 13599.59 10492.40 13098.87 17998.04 11499.13 12499.59 130
F-COLMAP96.93 10996.95 9996.87 18399.71 7591.74 26399.85 11697.95 20793.11 17195.72 18799.16 14392.35 13199.94 7795.32 17299.35 11498.92 197
API-MVS97.86 6797.66 7298.47 10899.52 8795.41 16799.47 20498.87 5291.68 22398.84 9699.85 3092.34 13299.99 3698.44 9699.96 46100.00 1
CNLPA97.76 7797.38 8298.92 7899.53 8696.84 11499.87 10098.14 19293.78 15196.55 16799.69 8792.28 13399.98 4397.13 14499.44 10899.93 76
TAMVS95.85 15095.58 14796.65 19197.07 23293.50 22099.17 23997.82 22291.39 23595.02 19698.01 21692.20 13497.30 27493.75 21395.83 20299.14 189
1112_ss96.01 14695.20 15898.42 11397.80 19196.41 12699.65 17396.66 32992.71 18392.88 22199.40 12192.16 13599.30 16391.92 23793.66 22799.55 139
Test_1112_low_res95.72 15394.83 16998.42 11397.79 19296.41 12699.65 17396.65 33092.70 18492.86 22296.13 27892.15 13699.30 16391.88 23893.64 22899.55 139
HyFIR lowres test96.66 12396.43 11597.36 17099.05 11193.91 21199.70 16599.80 390.54 25496.26 17598.08 21492.15 13698.23 23396.84 15595.46 20999.93 76
CS-MVS-test97.88 6697.94 6297.70 14999.28 9995.20 17799.98 1497.15 28495.53 8799.62 4699.79 5592.08 13898.38 21898.75 8299.28 11799.52 147
MVS_111021_LR98.42 4398.38 3398.53 10599.39 9495.79 15099.87 10099.86 296.70 5498.78 9999.79 5592.03 13999.90 9199.17 5799.86 7099.88 85
TAPA-MVS92.12 894.42 19093.60 19796.90 18299.33 9791.78 26299.78 13998.00 20189.89 26694.52 20099.47 11491.97 14099.18 16869.90 37399.52 9999.73 105
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PatchT90.38 28288.75 29895.25 22995.99 26790.16 29791.22 38397.54 24476.80 37097.26 14986.01 38291.88 14196.07 33766.16 38195.91 20099.51 149
HPM-MVScopyleft97.96 6297.72 7098.68 8899.84 5696.39 12999.90 8798.17 18592.61 19098.62 11099.57 10791.87 14299.67 14598.87 7599.99 2199.99 23
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
MP-MVScopyleft98.23 5697.97 5899.03 6899.94 1397.17 10499.95 5298.39 14994.70 10998.26 12799.81 5091.84 143100.00 198.85 7699.97 4299.93 76
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
HPM-MVS_fast97.80 7397.50 7898.68 8899.79 6296.42 12599.88 9798.16 18991.75 22298.94 9299.54 11091.82 14499.65 14797.62 13599.99 2199.99 23
tpmvs94.28 19693.57 19996.40 19898.55 14791.50 27295.70 36698.55 9587.47 30492.15 23094.26 34191.42 14598.95 17788.15 28895.85 20198.76 206
ACMMPcopyleft97.74 7897.44 8098.66 9099.92 3196.13 14299.18 23899.45 1994.84 10496.41 17299.71 8391.40 14699.99 3697.99 11798.03 15799.87 87
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
Vis-MVSNet (Re-imp)96.32 13695.98 12797.35 17197.93 18394.82 18699.47 20498.15 19191.83 21895.09 19599.11 14491.37 14797.47 26593.47 21797.43 16699.74 104
sss97.57 8497.03 9799.18 5098.37 15798.04 6799.73 15899.38 2393.46 16098.76 10299.06 14891.21 14899.89 9696.33 15997.01 17999.62 124
pcd_1.5k_mvsjas7.60 36910.13 3720.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 40391.20 1490.00 4030.00 4020.00 4010.00 399
PS-MVSNAJss93.64 21293.31 20994.61 25092.11 34792.19 25199.12 24197.38 26192.51 19888.45 29096.99 25191.20 14997.29 27794.36 19587.71 27494.36 269
PS-MVSNAJ98.44 4098.20 4599.16 5598.80 13598.92 2899.54 19398.17 18597.34 2999.85 999.85 3091.20 14999.89 9699.41 4899.67 8598.69 211
CPTT-MVS97.64 8397.32 8698.58 9899.97 395.77 15199.96 3498.35 15989.90 26598.36 12199.79 5591.18 15299.99 3698.37 9999.99 2199.99 23
test_fmvsmconf_n98.43 4298.32 3998.78 8298.12 17596.41 12699.99 498.83 5998.22 699.67 3899.64 9991.11 15399.94 7799.67 3699.62 8999.98 48
CR-MVSNet93.45 21892.62 22295.94 20996.29 25892.66 24192.01 37996.23 34292.62 18996.94 15593.31 35091.04 15496.03 33879.23 34995.96 19699.13 190
Patchmtry89.70 29888.49 30193.33 29996.24 26189.94 30591.37 38296.23 34278.22 36887.69 30193.31 35091.04 15496.03 33880.18 34882.10 31394.02 300
miper_ehance_all_eth93.16 22292.60 22394.82 24497.57 20993.56 21899.50 19997.07 29388.75 28688.85 28595.52 29790.97 15696.74 31090.77 25684.45 29894.17 283
mvsany_test197.82 7197.90 6597.55 15798.77 13793.04 23299.80 13697.93 20996.95 4599.61 5299.68 9390.92 15799.83 11899.18 5698.29 14899.80 96
MVSFormer96.94 10896.60 10997.95 13297.28 22897.70 8199.55 19197.27 27391.17 23899.43 6699.54 11090.92 15796.89 30394.67 19099.62 8999.25 181
lupinMVS97.85 6897.60 7598.62 9397.28 22897.70 8199.99 497.55 24295.50 8999.43 6699.67 9490.92 15798.71 19198.40 9799.62 8999.45 157
h-mvs3394.92 17394.36 17796.59 19298.85 13291.29 27498.93 26798.94 4195.90 7698.77 10098.42 20890.89 16099.77 12897.80 12570.76 36798.72 210
hse-mvs294.38 19194.08 18595.31 22798.27 16390.02 30199.29 22998.56 8995.90 7698.77 10098.00 21790.89 16098.26 23297.80 12569.20 37397.64 231
xiu_mvs_v2_base98.23 5697.97 5899.02 7098.69 14098.66 4999.52 19598.08 19697.05 4199.86 799.86 2690.65 16299.71 13899.39 5098.63 13898.69 211
IS-MVSNet96.29 13995.90 13897.45 16298.13 17494.80 18799.08 24697.61 23692.02 21495.54 19098.96 16190.64 16398.08 23993.73 21497.41 16999.47 154
FA-MVS(test-final)95.86 14995.09 16298.15 12697.74 19595.62 15996.31 35598.17 18591.42 23396.26 17596.13 27890.56 16499.47 16092.18 23497.07 17599.35 169
cl2293.77 20793.25 21195.33 22699.49 9094.43 19399.61 18198.09 19490.38 25689.16 28095.61 29190.56 16497.34 26991.93 23684.45 29894.21 281
MM99.76 1099.33 899.99 499.76 698.39 399.39 7299.80 5190.49 16699.96 6199.89 1699.43 11099.98 48
tpm93.70 21193.41 20694.58 25395.36 29187.41 33197.01 34396.90 31390.85 24796.72 16394.14 34290.40 16796.84 30690.75 25788.54 26099.51 149
114514_t97.41 9296.83 10299.14 5999.51 8997.83 7599.89 9598.27 17588.48 29299.06 8799.66 9690.30 16899.64 14896.32 16099.97 4299.96 64
ADS-MVSNet293.80 20693.88 19193.55 29597.87 18685.94 33994.24 36896.84 31890.07 26296.43 17094.48 33790.29 16995.37 34787.44 29597.23 17199.36 167
ADS-MVSNet94.79 17694.02 18697.11 17897.87 18693.79 21294.24 36898.16 18990.07 26296.43 17094.48 33790.29 16998.19 23587.44 29597.23 17199.36 167
miper_lstm_enhance91.81 25191.39 25093.06 30797.34 22289.18 31299.38 21596.79 32386.70 31787.47 30695.22 31590.00 17195.86 34288.26 28681.37 31994.15 289
c3_l92.53 23891.87 24094.52 25697.40 21892.99 23399.40 21096.93 31187.86 30088.69 28895.44 30189.95 17296.44 32190.45 26280.69 32994.14 292
thres20096.96 10796.21 12099.22 4698.97 11898.84 3599.85 11699.71 793.17 16996.26 17598.88 17289.87 17399.51 15294.26 19894.91 21699.31 174
tpm cat193.51 21592.52 22896.47 19397.77 19391.47 27396.13 35898.06 19780.98 36092.91 22093.78 34589.66 17498.87 17987.03 30496.39 18999.09 192
test_fmvsmvis_n_192097.67 8297.59 7797.91 13697.02 23595.34 16999.95 5298.45 11597.87 1597.02 15499.59 10489.64 17599.98 4399.41 4899.34 11598.42 216
OMC-MVS97.28 9697.23 8897.41 16599.76 6693.36 22799.65 17397.95 20796.03 7597.41 14799.70 8589.61 17699.51 15296.73 15698.25 14999.38 164
DIV-MVS_self_test92.32 24291.60 24394.47 26097.31 22592.74 23799.58 18596.75 32586.99 31387.64 30295.54 29589.55 17796.50 31988.58 28282.44 31194.17 283
cl____92.31 24391.58 24494.52 25697.33 22492.77 23599.57 18796.78 32486.97 31487.56 30495.51 29889.43 17896.62 31588.60 28182.44 31194.16 288
AUN-MVS93.28 21992.60 22395.34 22598.29 16090.09 29999.31 22498.56 8991.80 22196.35 17498.00 21789.38 17998.28 22892.46 23069.22 37297.64 231
tfpn200view996.79 11495.99 12599.19 4998.94 12098.82 3699.78 13999.71 792.86 17496.02 18098.87 17589.33 18099.50 15493.84 20694.57 21799.27 179
thres40096.78 11595.99 12599.16 5598.94 12098.82 3699.78 13999.71 792.86 17496.02 18098.87 17589.33 18099.50 15493.84 20694.57 21799.16 186
thres100view90096.74 11895.92 13799.18 5098.90 12998.77 4099.74 15399.71 792.59 19295.84 18398.86 17789.25 18299.50 15493.84 20694.57 21799.27 179
thres600view796.69 12195.87 14099.14 5998.90 12998.78 3999.74 15399.71 792.59 19295.84 18398.86 17789.25 18299.50 15493.44 21894.50 22099.16 186
eth_miper_zixun_eth92.41 24191.93 23893.84 28597.28 22890.68 28598.83 27996.97 30588.57 29189.19 27995.73 28889.24 18496.69 31389.97 27181.55 31794.15 289
EC-MVSNet97.38 9497.24 8797.80 13997.41 21795.64 15899.99 497.06 29494.59 11299.63 4399.32 12889.20 18598.14 23698.76 8199.23 12099.62 124
PVSNet_Blended_VisFu97.27 9796.81 10398.66 9098.81 13496.67 11899.92 7898.64 7694.51 11496.38 17398.49 20189.05 18699.88 10297.10 14698.34 14399.43 160
PVSNet_BlendedMVS96.05 14495.82 14196.72 18899.59 8196.99 10999.95 5299.10 3194.06 13898.27 12595.80 28489.00 18799.95 6999.12 5887.53 27793.24 336
PVSNet_Blended97.94 6397.64 7398.83 8199.59 8196.99 109100.00 199.10 3195.38 9098.27 12599.08 14689.00 18799.95 6999.12 5899.25 11899.57 137
IterMVS-LS92.69 23592.11 23394.43 26496.80 24892.74 23799.45 20796.89 31488.98 27889.65 26595.38 30688.77 18996.34 32590.98 25182.04 31494.22 279
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet93.73 20993.40 20794.74 24596.80 24892.69 24099.06 25197.67 22988.96 28091.39 23799.02 15088.75 19097.30 27491.07 24787.85 27194.22 279
UA-Net96.54 12695.96 13198.27 12098.23 16595.71 15598.00 32598.45 11593.72 15498.41 11899.27 13288.71 19199.66 14691.19 24597.69 16199.44 159
MAR-MVS97.43 8797.19 9098.15 12699.47 9194.79 18899.05 25598.76 6392.65 18898.66 10899.82 4688.52 19299.98 4398.12 10999.63 8899.67 113
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
mvs_anonymous95.65 15995.03 16497.53 15898.19 16995.74 15399.33 22197.49 25190.87 24690.47 24897.10 24488.23 19397.16 28295.92 16697.66 16399.68 111
MVS_Test96.46 12995.74 14298.61 9498.18 17097.23 9999.31 22497.15 28491.07 24298.84 9697.05 24888.17 19498.97 17594.39 19497.50 16599.61 127
CANet98.27 5197.82 6899.63 1799.72 7499.10 2399.98 1498.51 10497.00 4398.52 11399.71 8387.80 19599.95 6999.75 2899.38 11299.83 91
jason97.24 9896.86 10198.38 11695.73 27997.32 9799.97 2797.40 26095.34 9298.60 11299.54 11087.70 19698.56 19997.94 12099.47 10499.25 181
jason: jason.
test_fmvsmconf0.1_n97.74 7897.44 8098.64 9295.76 27696.20 13899.94 6898.05 19998.17 898.89 9599.42 11887.65 19799.90 9199.50 4199.60 9599.82 92
FIs94.10 19893.43 20396.11 20694.70 30096.82 11599.58 18598.93 4592.54 19589.34 27297.31 23887.62 19897.10 28894.22 20086.58 28294.40 265
131496.84 11295.96 13199.48 3496.74 25298.52 5698.31 31198.86 5395.82 7889.91 25698.98 15787.49 19999.96 6197.80 12599.73 8299.96 64
LS3D95.84 15195.11 16198.02 13199.85 5495.10 18098.74 28698.50 10987.22 30993.66 21199.86 2687.45 20099.95 6990.94 25299.81 7899.02 195
FC-MVSNet-test93.81 20593.15 21295.80 21494.30 30796.20 13899.42 20998.89 4992.33 20589.03 28297.27 24087.39 20196.83 30793.20 22086.48 28394.36 269
fmvsm_s_conf0.5_n97.80 7397.85 6797.67 15099.06 11094.41 19599.98 1498.97 4097.34 2999.63 4399.69 8787.27 20299.97 5399.62 3799.06 12798.62 213
RPMNet89.76 29787.28 31297.19 17596.29 25892.66 24192.01 37998.31 16870.19 38496.94 15585.87 38387.25 20399.78 12562.69 38595.96 19699.13 190
UniMVSNet_NR-MVSNet92.95 22892.11 23395.49 21894.61 30295.28 17299.83 12799.08 3391.49 22789.21 27796.86 25587.14 20496.73 31193.20 22077.52 34894.46 258
UniMVSNet (Re)93.07 22692.13 23295.88 21094.84 29796.24 13799.88 9798.98 3892.49 19989.25 27495.40 30387.09 20597.14 28493.13 22478.16 34394.26 276
DP-MVS94.54 18593.42 20497.91 13699.46 9394.04 20698.93 26797.48 25281.15 35990.04 25399.55 10887.02 20699.95 6988.97 27898.11 15399.73 105
fmvsm_s_conf0.5_n_a97.73 8097.72 7097.77 14498.63 14494.26 20099.96 3498.92 4697.18 3999.75 2999.69 8787.00 20799.97 5399.46 4498.89 13099.08 194
PMMVS96.76 11696.76 10596.76 18698.28 16292.10 25399.91 8297.98 20494.12 13399.53 5799.39 12386.93 20898.73 18896.95 15297.73 16099.45 157
canonicalmvs97.09 10496.32 11799.39 4098.93 12298.95 2799.72 16197.35 26394.45 11597.88 13799.42 11886.71 20999.52 15198.48 9593.97 22699.72 107
MVS96.60 12495.56 14899.72 1396.85 24599.22 2098.31 31198.94 4191.57 22590.90 24499.61 10386.66 21099.96 6197.36 13899.88 6899.99 23
Effi-MVS+96.30 13895.69 14498.16 12397.85 18896.26 13397.41 33497.21 27790.37 25798.65 10998.58 19586.61 21198.70 19297.11 14597.37 17099.52 147
diffmvspermissive97.00 10696.64 10898.09 12897.64 20696.17 14199.81 13297.19 27894.67 11198.95 9199.28 12986.43 21298.76 18698.37 9997.42 16899.33 172
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
nrg03093.51 21592.53 22796.45 19594.36 30597.20 10099.81 13297.16 28391.60 22489.86 25897.46 23386.37 21397.68 25895.88 16780.31 33294.46 258
mvsmamba94.10 19893.72 19495.25 22993.57 31894.13 20499.67 17096.45 33893.63 15791.34 23997.77 22786.29 21497.22 28096.65 15788.10 26894.40 265
VNet97.21 10096.57 11199.13 6398.97 11897.82 7699.03 25899.21 2994.31 12599.18 8498.88 17286.26 21599.89 9698.93 6994.32 22199.69 110
AdaColmapbinary97.23 9996.80 10498.51 10699.99 195.60 16099.09 24498.84 5893.32 16496.74 16299.72 8186.04 216100.00 198.01 11599.43 11099.94 74
Effi-MVS+-dtu94.53 18795.30 15592.22 31697.77 19382.54 35699.59 18397.06 29494.92 10195.29 19395.37 30785.81 21797.89 25194.80 18597.07 17596.23 246
CVMVSNet94.68 18294.94 16793.89 28496.80 24886.92 33599.06 25198.98 3894.45 11594.23 20699.02 15085.60 21895.31 34990.91 25395.39 21199.43 160
xiu_mvs_v1_base_debu97.43 8797.06 9398.55 10097.74 19598.14 6299.31 22497.86 21896.43 6299.62 4699.69 8785.56 21999.68 14299.05 6098.31 14597.83 226
xiu_mvs_v1_base97.43 8797.06 9398.55 10097.74 19598.14 6299.31 22497.86 21896.43 6299.62 4699.69 8785.56 21999.68 14299.05 6098.31 14597.83 226
xiu_mvs_v1_base_debi97.43 8797.06 9398.55 10097.74 19598.14 6299.31 22497.86 21896.43 6299.62 4699.69 8785.56 21999.68 14299.05 6098.31 14597.83 226
casdiffmvs_mvgpermissive96.43 13095.94 13497.89 13897.44 21695.47 16399.86 11397.29 27193.35 16296.03 17999.19 14085.39 22298.72 19097.89 12497.04 17799.49 153
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline96.43 13095.98 12797.76 14697.34 22295.17 17999.51 19797.17 28193.92 14796.90 15799.28 12985.37 22398.64 19697.50 13696.86 18399.46 155
PCF-MVS94.20 595.18 16794.10 18498.43 11298.55 14795.99 14597.91 32797.31 26890.35 25889.48 26999.22 13885.19 22499.89 9690.40 26598.47 14199.41 162
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
casdiffmvspermissive96.42 13295.97 13097.77 14497.30 22694.98 18199.84 12097.09 29193.75 15396.58 16699.26 13585.07 22598.78 18497.77 13097.04 17799.54 143
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
D2MVS92.76 23192.59 22693.27 30195.13 29289.54 30999.69 16699.38 2392.26 20687.59 30394.61 33485.05 22697.79 25491.59 24188.01 26992.47 349
fmvsm_s_conf0.1_n97.30 9597.21 8997.60 15697.38 21994.40 19799.90 8798.64 7696.47 6199.51 6199.65 9884.99 22799.93 8599.22 5599.09 12698.46 215
fmvsm_s_conf0.1_n_a97.09 10496.90 10097.63 15495.65 28594.21 20299.83 12798.50 10996.27 7099.65 4099.64 9984.72 22899.93 8599.04 6398.84 13398.74 208
BH-w/o95.71 15595.38 15296.68 18998.49 15292.28 24999.84 12097.50 25092.12 20992.06 23398.79 18184.69 22998.67 19595.29 17399.66 8699.09 192
Fast-Effi-MVS+95.02 17194.19 18297.52 15997.88 18594.55 19199.97 2797.08 29288.85 28594.47 20297.96 22284.59 23098.41 21089.84 27297.10 17499.59 130
PVSNet91.05 1397.13 10196.69 10798.45 11099.52 8795.81 14999.95 5299.65 1294.73 10799.04 8899.21 13984.48 23199.95 6994.92 18098.74 13699.58 136
RRT_MVS93.14 22392.92 21693.78 28693.31 32590.04 30099.66 17197.69 22792.53 19688.91 28497.76 22884.36 23296.93 30195.10 17586.99 28094.37 268
WR-MVS_H91.30 26090.35 26494.15 27094.17 30992.62 24499.17 23998.94 4188.87 28486.48 32094.46 33984.36 23296.61 31688.19 28778.51 34193.21 337
CHOSEN 1792x268896.81 11396.53 11297.64 15298.91 12893.07 22999.65 17399.80 395.64 8395.39 19198.86 17784.35 23499.90 9196.98 15099.16 12299.95 71
our_test_390.39 28189.48 28693.12 30492.40 34389.57 30899.33 22196.35 34187.84 30185.30 33094.99 32384.14 23596.09 33680.38 34584.56 29793.71 326
MSDG94.37 19293.36 20897.40 16698.88 13193.95 21099.37 21797.38 26185.75 32990.80 24599.17 14284.11 23699.88 10286.35 30998.43 14298.36 218
pmmvs492.10 24791.07 25495.18 23192.82 33894.96 18299.48 20396.83 31987.45 30588.66 28996.56 26783.78 23796.83 30789.29 27584.77 29693.75 321
BH-untuned95.18 16794.83 16996.22 20498.36 15891.22 27599.80 13697.32 26790.91 24591.08 24198.67 18583.51 23898.54 20194.23 19999.61 9398.92 197
LCM-MVSNet-Re92.31 24392.60 22391.43 32397.53 21179.27 37399.02 25991.83 38792.07 21080.31 35394.38 34083.50 23995.48 34597.22 14397.58 16499.54 143
cdsmvs_eth3d_5k23.43 36631.24 3690.00 3840.00 4060.00 4090.00 39598.09 1940.00 4020.00 40399.67 9483.37 2400.00 4030.00 4020.00 4010.00 399
DeepC-MVS94.51 496.92 11096.40 11698.45 11099.16 10695.90 14799.66 17198.06 19796.37 6894.37 20399.49 11383.29 24199.90 9197.63 13499.61 9399.55 139
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
NR-MVSNet91.56 25990.22 26895.60 21694.05 31095.76 15298.25 31398.70 6791.16 24080.78 35296.64 26383.23 24296.57 31791.41 24277.73 34794.46 258
3Dnovator+91.53 1196.31 13795.24 15699.52 2896.88 24498.64 5299.72 16198.24 17795.27 9488.42 29598.98 15782.76 24399.94 7797.10 14699.83 7299.96 64
QAPM95.40 16494.17 18399.10 6496.92 23997.71 7999.40 21098.68 7089.31 27188.94 28398.89 17182.48 24499.96 6193.12 22599.83 7299.62 124
PatchMatch-RL96.04 14595.40 15097.95 13299.59 8195.22 17699.52 19599.07 3493.96 14496.49 16898.35 20982.28 24599.82 12090.15 26899.22 12198.81 204
GeoE94.36 19493.48 20296.99 17997.29 22793.54 21999.96 3496.72 32788.35 29593.43 21298.94 16882.05 24698.05 24288.12 29096.48 18899.37 166
3Dnovator91.47 1296.28 14095.34 15399.08 6596.82 24797.47 9399.45 20798.81 6095.52 8889.39 27099.00 15481.97 24799.95 6997.27 14099.83 7299.84 90
v890.54 27989.17 28994.66 24893.43 32293.40 22599.20 23696.94 31085.76 32787.56 30494.51 33581.96 24897.19 28184.94 32078.25 34293.38 333
v14890.70 27489.63 27993.92 28192.97 33490.97 27799.75 15096.89 31487.51 30388.27 29695.01 32081.67 24997.04 29387.40 29777.17 35393.75 321
DU-MVS92.46 24091.45 24995.49 21894.05 31095.28 17299.81 13298.74 6492.25 20789.21 27796.64 26381.66 25096.73 31193.20 22077.52 34894.46 258
Baseline_NR-MVSNet90.33 28489.51 28492.81 31192.84 33689.95 30399.77 14293.94 37884.69 34189.04 28195.66 29081.66 25096.52 31890.99 25076.98 35491.97 355
FMVSNet392.69 23591.58 24495.99 20898.29 16097.42 9599.26 23297.62 23389.80 26789.68 26295.32 30981.62 25296.27 32887.01 30585.65 28794.29 275
Fast-Effi-MVS+-dtu93.72 21093.86 19293.29 30097.06 23386.16 33799.80 13696.83 31992.66 18792.58 22597.83 22681.39 25397.67 25989.75 27396.87 18296.05 249
CANet_DTU96.76 11696.15 12198.60 9598.78 13697.53 8699.84 12097.63 23197.25 3799.20 8199.64 9981.36 25499.98 4392.77 22998.89 13098.28 219
V4291.28 26290.12 27394.74 24593.42 32393.46 22199.68 16897.02 29887.36 30689.85 26095.05 31881.31 25597.34 26987.34 29880.07 33493.40 331
test_djsdf92.83 23092.29 23194.47 26091.90 35092.46 24699.55 19197.27 27391.17 23889.96 25496.07 28181.10 25696.89 30394.67 19088.91 25094.05 299
ppachtmachnet_test89.58 30088.35 30393.25 30292.40 34390.44 29299.33 22196.73 32685.49 33285.90 32895.77 28581.09 25796.00 34076.00 36482.49 31093.30 334
v114491.09 26689.83 27594.87 24093.25 32693.69 21699.62 18096.98 30386.83 31689.64 26694.99 32380.94 25897.05 29185.08 31981.16 32193.87 315
v1090.25 28788.82 29694.57 25493.53 32093.43 22399.08 24696.87 31685.00 33687.34 31094.51 33580.93 25997.02 29882.85 33279.23 33793.26 335
EU-MVSNet90.14 29190.34 26589.54 33892.55 34181.06 36798.69 29298.04 20091.41 23486.59 31796.84 25880.83 26093.31 36986.20 31081.91 31594.26 276
v2v48291.30 26090.07 27495.01 23593.13 32793.79 21299.77 14297.02 29888.05 29889.25 27495.37 30780.73 26197.15 28387.28 29980.04 33594.09 296
WR-MVS92.31 24391.25 25195.48 22194.45 30495.29 17199.60 18298.68 7090.10 26188.07 29896.89 25380.68 26296.80 30993.14 22379.67 33694.36 269
HQP2-MVS80.65 263
HQP-MVS94.61 18494.50 17594.92 23995.78 27291.85 25999.87 10097.89 21496.82 4893.37 21398.65 18880.65 26398.39 21497.92 12189.60 24194.53 252
XVG-OURS94.82 17494.74 17295.06 23498.00 17989.19 31099.08 24697.55 24294.10 13494.71 19899.62 10280.51 26599.74 13496.04 16493.06 23596.25 244
v14419290.79 27389.52 28394.59 25293.11 33092.77 23599.56 18996.99 30186.38 32089.82 26194.95 32580.50 26697.10 28883.98 32580.41 33093.90 312
HQP_MVS94.49 18894.36 17794.87 24095.71 28291.74 26399.84 12097.87 21696.38 6593.01 21798.59 19380.47 26798.37 22097.79 12889.55 24494.52 254
plane_prior695.76 27691.72 26680.47 267
v7n89.65 29988.29 30493.72 28892.22 34590.56 28999.07 25097.10 28985.42 33486.73 31494.72 32880.06 26997.13 28581.14 34278.12 34493.49 329
TranMVSNet+NR-MVSNet91.68 25890.61 26094.87 24093.69 31793.98 20999.69 16698.65 7491.03 24388.44 29196.83 25980.05 27096.18 33190.26 26776.89 35694.45 263
FMVSNet588.32 30987.47 31190.88 32696.90 24388.39 32397.28 33695.68 35382.60 35484.67 33392.40 35879.83 27191.16 37976.39 36381.51 31893.09 338
test_fmvsmconf0.01_n96.39 13395.74 14298.32 11891.47 35695.56 16199.84 12097.30 26997.74 1897.89 13699.35 12779.62 27299.85 10899.25 5499.24 11999.55 139
RPSCF91.80 25492.79 22088.83 34398.15 17269.87 38198.11 32196.60 33283.93 34494.33 20499.27 13279.60 27399.46 16191.99 23593.16 23397.18 238
Vis-MVSNetpermissive95.72 15395.15 16097.45 16297.62 20794.28 19999.28 23098.24 17794.27 12996.84 15998.94 16879.39 27498.76 18693.25 21998.49 14099.30 176
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
dmvs_testset83.79 33486.07 31876.94 36592.14 34648.60 40096.75 34890.27 39089.48 26978.65 36098.55 19979.25 27586.65 38866.85 37982.69 30895.57 250
v119290.62 27889.25 28894.72 24793.13 32793.07 22999.50 19997.02 29886.33 32189.56 26895.01 32079.22 27697.09 29082.34 33681.16 32194.01 302
CP-MVSNet91.23 26490.22 26894.26 26893.96 31292.39 24899.09 24498.57 8788.95 28186.42 32196.57 26679.19 27796.37 32390.29 26678.95 33894.02 300
MDA-MVSNet_test_wron85.51 32383.32 33192.10 31790.96 36088.58 32099.20 23696.52 33579.70 36557.12 39092.69 35479.11 27893.86 36477.10 36077.46 35093.86 316
Syy-MVS90.00 29390.63 25988.11 35097.68 20374.66 37899.71 16398.35 15990.79 24992.10 23198.67 18579.10 27993.09 37063.35 38495.95 19896.59 242
YYNet185.50 32483.33 33092.00 31890.89 36188.38 32499.22 23596.55 33479.60 36657.26 38992.72 35379.09 28093.78 36577.25 35977.37 35193.84 317
XVG-OURS-SEG-HR94.79 17694.70 17395.08 23398.05 17789.19 31099.08 24697.54 24493.66 15594.87 19799.58 10678.78 28199.79 12397.31 13993.40 23096.25 244
GA-MVS93.83 20392.84 21796.80 18495.73 27993.57 21799.88 9797.24 27692.57 19492.92 21996.66 26178.73 28297.67 25987.75 29394.06 22599.17 185
dmvs_re93.20 22193.15 21293.34 29896.54 25683.81 35098.71 28998.51 10491.39 23592.37 22998.56 19778.66 28397.83 25393.89 20489.74 24098.38 217
OpenMVScopyleft90.15 1594.77 17893.59 19898.33 11796.07 26497.48 9299.56 18998.57 8790.46 25586.51 31898.95 16678.57 28499.94 7793.86 20599.74 8197.57 235
v192192090.46 28089.12 29094.50 25892.96 33592.46 24699.49 20196.98 30386.10 32389.61 26795.30 31078.55 28597.03 29682.17 33780.89 32894.01 302
MVP-Stereo90.93 26890.45 26392.37 31591.25 35988.76 31498.05 32496.17 34487.27 30884.04 33595.30 31078.46 28697.27 27983.78 32799.70 8491.09 360
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
anonymousdsp91.79 25690.92 25594.41 26590.76 36292.93 23498.93 26797.17 28189.08 27387.46 30795.30 31078.43 28796.92 30292.38 23188.73 25593.39 332
bld_raw_dy_0_6492.74 23292.03 23694.87 24093.09 33193.46 22199.12 24195.41 35992.84 17790.44 24997.54 23178.08 28897.04 29393.94 20287.77 27394.11 294
v124090.20 28888.79 29794.44 26293.05 33392.27 25099.38 21596.92 31285.89 32589.36 27194.87 32777.89 28997.03 29680.66 34481.08 32494.01 302
CLD-MVS94.06 20093.90 19094.55 25596.02 26690.69 28499.98 1497.72 22596.62 5891.05 24398.85 18077.21 29098.47 20398.11 11089.51 24694.48 256
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
test_cas_vis1_n_192096.59 12596.23 11997.65 15198.22 16694.23 20199.99 497.25 27597.77 1799.58 5399.08 14677.10 29199.97 5397.64 13399.45 10798.74 208
N_pmnet80.06 34480.78 34277.89 36491.94 34945.28 40298.80 28356.82 40478.10 36980.08 35593.33 34877.03 29295.76 34368.14 37782.81 30792.64 345
WB-MVS76.28 34877.28 35073.29 36981.18 38554.68 39497.87 32894.19 37481.30 35869.43 38190.70 36677.02 29382.06 39235.71 39768.11 37683.13 383
COLMAP_ROBcopyleft90.47 1492.18 24691.49 24894.25 26999.00 11588.04 32798.42 30896.70 32882.30 35588.43 29399.01 15276.97 29499.85 10886.11 31296.50 18794.86 251
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
cascas94.64 18393.61 19597.74 14897.82 19096.26 13399.96 3497.78 22485.76 32794.00 20897.54 23176.95 29599.21 16597.23 14295.43 21097.76 230
BH-RMVSNet95.18 16794.31 18097.80 13998.17 17195.23 17599.76 14797.53 24692.52 19794.27 20599.25 13676.84 29698.80 18290.89 25499.54 9899.35 169
PEN-MVS90.19 28989.06 29293.57 29493.06 33290.90 28199.06 25198.47 11288.11 29785.91 32796.30 27276.67 29795.94 34187.07 30276.91 35593.89 313
CL-MVSNet_self_test84.50 33083.15 33388.53 34786.00 37781.79 36298.82 28097.35 26385.12 33583.62 33990.91 36576.66 29891.40 37869.53 37460.36 38792.40 350
IterMVS90.91 26990.17 27193.12 30496.78 25190.42 29398.89 27097.05 29689.03 27586.49 31995.42 30276.59 29995.02 35187.22 30084.09 30193.93 310
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
SSC-MVS75.42 34976.40 35272.49 37380.68 38753.62 39597.42 33394.06 37680.42 36268.75 38290.14 36876.54 30081.66 39333.25 39866.34 38082.19 384
IterMVS-SCA-FT90.85 27290.16 27292.93 30996.72 25389.96 30298.89 27096.99 30188.95 28186.63 31695.67 28976.48 30195.00 35287.04 30384.04 30493.84 317
SCA94.69 18093.81 19397.33 17297.10 23194.44 19298.86 27698.32 16693.30 16596.17 17895.59 29376.48 30197.95 24891.06 24897.43 16699.59 130
ab-mvs94.69 18093.42 20498.51 10698.07 17696.26 13396.49 35198.68 7090.31 25994.54 19997.00 25076.30 30399.71 13895.98 16593.38 23199.56 138
DTE-MVSNet89.40 30288.24 30592.88 31092.66 34089.95 30399.10 24398.22 17987.29 30785.12 33296.22 27476.27 30495.30 35083.56 32975.74 35993.41 330
ACMM91.95 1092.88 22992.52 22893.98 28095.75 27889.08 31399.77 14297.52 24893.00 17289.95 25597.99 21976.17 30598.46 20693.63 21688.87 25294.39 267
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
DSMNet-mixed88.28 31088.24 30588.42 34889.64 36975.38 37798.06 32389.86 39185.59 33188.20 29792.14 36076.15 30691.95 37778.46 35496.05 19497.92 225
VPA-MVSNet92.70 23491.55 24696.16 20595.09 29396.20 13898.88 27299.00 3691.02 24491.82 23495.29 31376.05 30797.96 24795.62 17081.19 32094.30 274
SDMVSNet94.80 17593.96 18897.33 17298.92 12495.42 16699.59 18398.99 3792.41 20192.55 22697.85 22475.81 30898.93 17897.90 12391.62 23797.64 231
TR-MVS94.54 18593.56 20097.49 16197.96 18194.34 19898.71 28997.51 24990.30 26094.51 20198.69 18475.56 30998.77 18592.82 22895.99 19599.35 169
PS-CasMVS90.63 27789.51 28493.99 27993.83 31491.70 26798.98 26198.52 10188.48 29286.15 32596.53 26875.46 31096.31 32788.83 27978.86 34093.95 308
TransMVSNet (Re)87.25 31585.28 32293.16 30393.56 31991.03 27698.54 30094.05 37783.69 34781.09 35096.16 27675.32 31196.40 32276.69 36268.41 37492.06 353
LPG-MVS_test92.96 22792.71 22193.71 28995.43 28988.67 31799.75 15097.62 23392.81 17890.05 25198.49 20175.24 31298.40 21295.84 16889.12 24894.07 297
LGP-MVS_train93.71 28995.43 28988.67 31797.62 23392.81 17890.05 25198.49 20175.24 31298.40 21295.84 16889.12 24894.07 297
ECVR-MVScopyleft95.66 15895.05 16397.51 16098.66 14293.71 21598.85 27898.45 11594.93 9996.86 15898.96 16175.22 31499.20 16695.34 17198.15 15099.64 119
test111195.57 16094.98 16697.37 16898.56 14593.37 22698.86 27698.45 11594.95 9896.63 16498.95 16675.21 31599.11 17195.02 17798.14 15299.64 119
OPM-MVS93.21 22092.80 21994.44 26293.12 32990.85 28399.77 14297.61 23696.19 7391.56 23698.65 18875.16 31698.47 20393.78 21289.39 24793.99 305
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
tfpnnormal89.29 30487.61 31094.34 26794.35 30694.13 20498.95 26598.94 4183.94 34384.47 33495.51 29874.84 31797.39 26677.05 36180.41 33091.48 359
AllTest92.48 23991.64 24295.00 23699.01 11388.43 32198.94 26696.82 32186.50 31888.71 28698.47 20574.73 31899.88 10285.39 31696.18 19196.71 240
TestCases95.00 23699.01 11388.43 32196.82 32186.50 31888.71 28698.47 20574.73 31899.88 10285.39 31696.18 19196.71 240
Anonymous2023120686.32 31885.42 32189.02 34289.11 37180.53 37199.05 25595.28 36285.43 33382.82 34193.92 34374.40 32093.44 36866.99 37881.83 31693.08 339
XXY-MVS91.82 25090.46 26195.88 21093.91 31395.40 16898.87 27597.69 22788.63 29087.87 30097.08 24574.38 32197.89 25191.66 24084.07 30294.35 272
ACMP92.05 992.74 23292.42 23093.73 28795.91 27088.72 31699.81 13297.53 24694.13 13287.00 31298.23 21174.07 32298.47 20396.22 16288.86 25393.99 305
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
LTVRE_ROB88.28 1890.29 28689.05 29394.02 27695.08 29490.15 29897.19 33897.43 25584.91 33983.99 33697.06 24774.00 32398.28 22884.08 32387.71 27493.62 327
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
pm-mvs189.36 30387.81 30994.01 27793.40 32491.93 25798.62 29796.48 33786.25 32283.86 33796.14 27773.68 32497.04 29386.16 31175.73 36093.04 340
pmmvs590.17 29089.09 29193.40 29792.10 34889.77 30699.74 15395.58 35685.88 32687.24 31195.74 28673.41 32596.48 32088.54 28383.56 30593.95 308
OurMVSNet-221017-089.81 29689.48 28690.83 32891.64 35381.21 36598.17 31995.38 36191.48 22885.65 32997.31 23872.66 32697.29 27788.15 28884.83 29593.97 307
jajsoiax91.92 24991.18 25294.15 27091.35 35790.95 28099.00 26097.42 25792.61 19087.38 30897.08 24572.46 32797.36 26794.53 19388.77 25494.13 293
UGNet95.33 16694.57 17497.62 15598.55 14794.85 18498.67 29499.32 2695.75 8196.80 16196.27 27372.18 32899.96 6194.58 19299.05 12898.04 224
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
mvs_tets91.81 25191.08 25394.00 27891.63 35490.58 28898.67 29497.43 25592.43 20087.37 30997.05 24871.76 32997.32 27394.75 18788.68 25694.11 294
SixPastTwentyTwo88.73 30788.01 30890.88 32691.85 35182.24 35898.22 31795.18 36688.97 27982.26 34396.89 25371.75 33096.67 31484.00 32482.98 30693.72 325
test_fmvs195.35 16595.68 14694.36 26698.99 11684.98 34599.96 3496.65 33097.60 2299.73 3298.96 16171.58 33199.93 8598.31 10299.37 11398.17 220
GBi-Net90.88 27089.82 27694.08 27397.53 21191.97 25498.43 30596.95 30687.05 31089.68 26294.72 32871.34 33296.11 33387.01 30585.65 28794.17 283
test190.88 27089.82 27694.08 27397.53 21191.97 25498.43 30596.95 30687.05 31089.68 26294.72 32871.34 33296.11 33387.01 30585.65 28794.17 283
FMVSNet291.02 26789.56 28195.41 22397.53 21195.74 15398.98 26197.41 25987.05 31088.43 29395.00 32271.34 33296.24 33085.12 31885.21 29294.25 278
PVSNet_088.03 1991.80 25490.27 26796.38 20098.27 16390.46 29199.94 6899.61 1493.99 14286.26 32497.39 23771.13 33599.89 9698.77 8067.05 37898.79 205
sd_testset93.55 21492.83 21895.74 21598.92 12490.89 28298.24 31498.85 5692.41 20192.55 22697.85 22471.07 33698.68 19493.93 20391.62 23797.64 231
Anonymous2023121189.86 29588.44 30294.13 27298.93 12290.68 28598.54 30098.26 17676.28 37186.73 31495.54 29570.60 33797.56 26290.82 25580.27 33394.15 289
ITE_SJBPF92.38 31495.69 28485.14 34395.71 35292.81 17889.33 27398.11 21370.23 33898.42 20985.91 31488.16 26793.59 328
ACMH89.72 1790.64 27689.63 27993.66 29395.64 28688.64 31998.55 29897.45 25389.03 27581.62 34797.61 23069.75 33998.41 21089.37 27487.62 27693.92 311
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MVS-HIRNet86.22 31983.19 33295.31 22796.71 25490.29 29492.12 37897.33 26662.85 38586.82 31370.37 39069.37 34097.49 26475.12 36597.99 15898.15 221
Anonymous20240521193.10 22591.99 23796.40 19899.10 10889.65 30798.88 27297.93 20983.71 34694.00 20898.75 18368.79 34199.88 10295.08 17691.71 23699.68 111
test20.0384.72 32983.99 32486.91 35288.19 37480.62 37098.88 27295.94 34888.36 29478.87 35894.62 33368.75 34289.11 38366.52 38075.82 35891.00 361
VPNet91.81 25190.46 26195.85 21294.74 29995.54 16298.98 26198.59 8492.14 20890.77 24697.44 23468.73 34397.54 26394.89 18377.89 34594.46 258
K. test v388.05 31187.24 31390.47 33191.82 35282.23 35998.96 26497.42 25789.05 27476.93 36895.60 29268.49 34495.42 34685.87 31581.01 32693.75 321
ACMH+89.98 1690.35 28389.54 28292.78 31295.99 26786.12 33898.81 28197.18 28089.38 27083.14 34097.76 22868.42 34598.43 20889.11 27786.05 28593.78 320
MDA-MVSNet-bldmvs84.09 33281.52 33991.81 32191.32 35888.00 32898.67 29495.92 34980.22 36355.60 39193.32 34968.29 34693.60 36773.76 36676.61 35793.82 319
MS-PatchMatch90.65 27590.30 26691.71 32294.22 30885.50 34298.24 31497.70 22688.67 28886.42 32196.37 27167.82 34798.03 24383.62 32899.62 8991.60 357
KD-MVS_self_test83.59 33682.06 33688.20 34986.93 37580.70 36997.21 33796.38 33982.87 35182.49 34288.97 37167.63 34892.32 37573.75 36762.30 38691.58 358
LFMVS94.75 17993.56 20098.30 11999.03 11295.70 15698.74 28697.98 20487.81 30298.47 11699.39 12367.43 34999.53 15098.01 11595.20 21599.67 113
MIMVSNet90.30 28588.67 29995.17 23296.45 25791.64 26992.39 37797.15 28485.99 32490.50 24793.19 35266.95 35094.86 35582.01 33893.43 22999.01 196
test_vis1_n_192095.44 16395.31 15495.82 21398.50 15188.74 31599.98 1497.30 26997.84 1699.85 999.19 14066.82 35199.97 5398.82 7799.46 10698.76 206
XVG-ACMP-BASELINE91.22 26590.75 25692.63 31393.73 31685.61 34098.52 30297.44 25492.77 18189.90 25796.85 25666.64 35298.39 21492.29 23288.61 25793.89 313
Anonymous2024052992.10 24790.65 25896.47 19398.82 13390.61 28798.72 28898.67 7375.54 37593.90 21098.58 19566.23 35399.90 9194.70 18990.67 23998.90 200
lessismore_v090.53 32990.58 36380.90 36895.80 35077.01 36795.84 28366.15 35496.95 29983.03 33175.05 36193.74 324
USDC90.00 29388.96 29493.10 30694.81 29888.16 32598.71 28995.54 35793.66 15583.75 33897.20 24165.58 35598.31 22583.96 32687.49 27892.85 343
pmmvs-eth3d84.03 33381.97 33790.20 33384.15 38087.09 33398.10 32294.73 37083.05 34974.10 37687.77 37765.56 35694.01 36181.08 34369.24 37189.49 374
Anonymous2024052185.15 32683.81 32889.16 34188.32 37282.69 35498.80 28395.74 35179.72 36481.53 34890.99 36365.38 35794.16 36072.69 36881.11 32390.63 365
LF4IMVS89.25 30588.85 29590.45 33292.81 33981.19 36698.12 32094.79 36891.44 23086.29 32397.11 24365.30 35898.11 23888.53 28485.25 29192.07 352
new_pmnet84.49 33182.92 33489.21 34090.03 36782.60 35596.89 34795.62 35580.59 36175.77 37389.17 37065.04 35994.79 35672.12 37081.02 32590.23 367
CMPMVSbinary61.59 2184.75 32885.14 32383.57 35890.32 36562.54 38696.98 34497.59 24074.33 37969.95 38096.66 26164.17 36098.32 22487.88 29288.41 26289.84 371
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test_040285.58 32183.94 32690.50 33093.81 31585.04 34498.55 29895.20 36576.01 37279.72 35795.13 31664.15 36196.26 32966.04 38286.88 28190.21 368
TDRefinement84.76 32782.56 33591.38 32474.58 39384.80 34797.36 33594.56 37284.73 34080.21 35496.12 28063.56 36298.39 21487.92 29163.97 38390.95 363
UnsupCasMVSNet_eth85.52 32283.99 32490.10 33489.36 37083.51 35296.65 34997.99 20289.14 27275.89 37293.83 34463.25 36393.92 36281.92 33967.90 37792.88 342
tt080591.28 26290.18 27094.60 25196.26 26087.55 32998.39 30998.72 6589.00 27789.22 27698.47 20562.98 36498.96 17690.57 25988.00 27097.28 237
new-patchmatchnet81.19 33979.34 34686.76 35382.86 38380.36 37297.92 32695.27 36382.09 35672.02 37786.87 37962.81 36590.74 38171.10 37163.08 38489.19 377
TinyColmap87.87 31486.51 31591.94 31995.05 29585.57 34197.65 33194.08 37584.40 34281.82 34696.85 25662.14 36698.33 22380.25 34786.37 28491.91 356
test_fmvs1_n94.25 19794.36 17793.92 28197.68 20383.70 35199.90 8796.57 33397.40 2899.67 3898.88 17261.82 36799.92 8898.23 10499.13 12498.14 223
VDDNet93.12 22491.91 23996.76 18696.67 25592.65 24398.69 29298.21 18082.81 35297.75 14099.28 12961.57 36899.48 15998.09 11294.09 22498.15 221
pmmvs685.69 32083.84 32791.26 32590.00 36884.41 34897.82 32996.15 34575.86 37381.29 34995.39 30561.21 36996.87 30583.52 33073.29 36392.50 348
VDD-MVS93.77 20792.94 21596.27 20398.55 14790.22 29698.77 28597.79 22390.85 24796.82 16099.42 11861.18 37099.77 12898.95 6794.13 22398.82 203
testgi89.01 30688.04 30791.90 32093.49 32184.89 34699.73 15895.66 35493.89 15085.14 33198.17 21259.68 37194.66 35777.73 35788.88 25196.16 248
FMVSNet188.50 30886.64 31494.08 27395.62 28891.97 25498.43 30596.95 30683.00 35086.08 32694.72 32859.09 37296.11 33381.82 34084.07 30294.17 283
DeepMVS_CXcopyleft82.92 36095.98 26958.66 39196.01 34792.72 18278.34 36295.51 29858.29 37398.08 23982.57 33385.29 29092.03 354
UniMVSNet_ETH3D90.06 29288.58 30094.49 25994.67 30188.09 32697.81 33097.57 24183.91 34588.44 29197.41 23557.44 37497.62 26191.41 24288.59 25997.77 229
pmmvs380.27 34377.77 34887.76 35180.32 38882.43 35798.23 31691.97 38672.74 38278.75 35987.97 37657.30 37590.99 38070.31 37262.37 38589.87 370
OpenMVS_ROBcopyleft79.82 2083.77 33581.68 33890.03 33588.30 37382.82 35398.46 30395.22 36473.92 38076.00 37191.29 36255.00 37696.94 30068.40 37688.51 26190.34 366
test_fmvs289.47 30189.70 27888.77 34694.54 30375.74 37599.83 12794.70 37194.71 10891.08 24196.82 26054.46 37797.78 25692.87 22788.27 26592.80 344
tmp_tt65.23 35862.94 36172.13 37444.90 40250.03 39981.05 39089.42 39438.45 39348.51 39599.90 1854.09 37878.70 39591.84 23918.26 39787.64 379
EGC-MVSNET69.38 35063.76 36086.26 35490.32 36581.66 36496.24 35793.85 3790.99 4013.22 40292.33 35952.44 37992.92 37259.53 38884.90 29484.21 382
test_vis1_n93.61 21393.03 21495.35 22495.86 27186.94 33499.87 10096.36 34096.85 4699.54 5698.79 18152.41 38099.83 11898.64 8998.97 12999.29 178
MIMVSNet182.58 33780.51 34388.78 34486.68 37684.20 34996.65 34995.41 35978.75 36778.59 36192.44 35551.88 38189.76 38265.26 38378.95 33892.38 351
EG-PatchMatch MVS85.35 32583.81 32889.99 33690.39 36481.89 36198.21 31896.09 34681.78 35774.73 37493.72 34651.56 38297.12 28779.16 35288.61 25790.96 362
UnsupCasMVSNet_bld79.97 34677.03 35188.78 34485.62 37881.98 36093.66 37397.35 26375.51 37670.79 37983.05 38548.70 38394.91 35478.31 35560.29 38889.46 375
test_vis1_rt86.87 31786.05 31989.34 33996.12 26278.07 37499.87 10083.54 39892.03 21378.21 36389.51 36945.80 38499.91 8996.25 16193.11 23490.03 369
test_method80.79 34179.70 34584.08 35792.83 33767.06 38399.51 19795.42 35854.34 38981.07 35193.53 34744.48 38592.22 37678.90 35377.23 35292.94 341
APD_test181.15 34080.92 34181.86 36192.45 34259.76 39096.04 36193.61 38173.29 38177.06 36696.64 26344.28 38696.16 33272.35 36982.52 30989.67 372
mvsany_test382.12 33881.14 34085.06 35681.87 38470.41 38097.09 34192.14 38591.27 23777.84 36488.73 37239.31 38795.49 34490.75 25771.24 36689.29 376
PM-MVS80.47 34278.88 34785.26 35583.79 38272.22 37995.89 36491.08 38885.71 33076.56 37088.30 37336.64 38893.90 36382.39 33569.57 37089.66 373
ambc83.23 35977.17 39162.61 38587.38 38894.55 37376.72 36986.65 38030.16 38996.36 32484.85 32169.86 36890.73 364
Gipumacopyleft66.95 35765.00 35772.79 37091.52 35567.96 38266.16 39395.15 36747.89 39158.54 38867.99 39329.74 39087.54 38750.20 39277.83 34662.87 393
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
EMVS51.44 36351.22 36552.11 38070.71 39544.97 40394.04 37075.66 40235.34 39742.40 39761.56 39828.93 39165.87 39927.64 40024.73 39545.49 396
test_fmvs379.99 34580.17 34479.45 36384.02 38162.83 38499.05 25593.49 38288.29 29680.06 35686.65 38028.09 39288.00 38488.63 28073.27 36487.54 380
test_f78.40 34777.59 34980.81 36280.82 38662.48 38796.96 34593.08 38383.44 34874.57 37584.57 38427.95 39392.63 37384.15 32272.79 36587.32 381
E-PMN52.30 36152.18 36352.67 37971.51 39445.40 40193.62 37476.60 40136.01 39543.50 39664.13 39527.11 39467.31 39831.06 39926.06 39445.30 397
FPMVS68.72 35268.72 35368.71 37565.95 39744.27 40495.97 36394.74 36951.13 39053.26 39290.50 36725.11 39583.00 39160.80 38680.97 32778.87 388
PMMVS267.15 35664.15 35976.14 36770.56 39662.07 38893.89 37187.52 39558.09 38660.02 38578.32 38722.38 39684.54 39059.56 38747.03 39281.80 385
testf168.38 35366.92 35472.78 37178.80 38950.36 39790.95 38487.35 39655.47 38758.95 38688.14 37420.64 39787.60 38557.28 38964.69 38180.39 386
APD_test268.38 35366.92 35472.78 37178.80 38950.36 39790.95 38487.35 39655.47 38758.95 38688.14 37420.64 39787.60 38557.28 38964.69 38180.39 386
LCM-MVSNet67.77 35564.73 35876.87 36662.95 39956.25 39389.37 38793.74 38044.53 39261.99 38480.74 38620.42 39986.53 38969.37 37559.50 38987.84 378
test12337.68 36539.14 36833.31 38119.94 40424.83 40798.36 3109.75 40615.53 39951.31 39387.14 37819.62 40017.74 40147.10 3933.47 40057.36 394
ANet_high56.10 35952.24 36267.66 37649.27 40156.82 39283.94 38982.02 39970.47 38333.28 39964.54 39417.23 40169.16 39745.59 39423.85 39677.02 389
test_vis3_rt68.82 35166.69 35675.21 36876.24 39260.41 38996.44 35268.71 40375.13 37750.54 39469.52 39216.42 40296.32 32680.27 34666.92 37968.89 390
testmvs40.60 36444.45 36729.05 38219.49 40514.11 40899.68 16818.47 40520.74 39864.59 38398.48 20410.95 40317.09 40256.66 39111.01 39855.94 395
PMVScopyleft49.05 2353.75 36051.34 36460.97 37840.80 40334.68 40574.82 39289.62 39337.55 39428.67 40072.12 3897.09 40481.63 39443.17 39568.21 37566.59 392
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
wuyk23d20.37 36720.84 37018.99 38365.34 39827.73 40650.43 3947.67 4079.50 4008.01 4016.34 4016.13 40526.24 40023.40 40110.69 3992.99 398
MVEpermissive53.74 2251.54 36247.86 36662.60 37759.56 40050.93 39679.41 39177.69 40035.69 39636.27 39861.76 3975.79 40669.63 39637.97 39636.61 39367.24 391
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_blank0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.02 4020.00 4070.00 4030.00 4020.00 4010.00 399
uanet_test0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4030.00 4070.00 4030.00 4020.00 4010.00 399
DCPMVS0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4030.00 4070.00 4030.00 4020.00 4010.00 399
sosnet-low-res0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4030.00 4070.00 4030.00 4020.00 4010.00 399
sosnet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4030.00 4070.00 4030.00 4020.00 4010.00 399
uncertanet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4030.00 4070.00 4030.00 4020.00 4010.00 399
Regformer0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4030.00 4070.00 4030.00 4020.00 4010.00 399
ab-mvs-re8.28 36811.04 3710.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 40399.40 1210.00 4070.00 4030.00 4020.00 4010.00 399
uanet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4030.00 4070.00 4030.00 4020.00 4010.00 399
WAC-MVS90.97 27786.10 313
FOURS199.92 3197.66 8399.95 5298.36 15795.58 8599.52 59
MSC_two_6792asdad99.93 299.91 3999.80 298.41 142100.00 199.96 9100.00 1100.00 1
No_MVS99.93 299.91 3999.80 298.41 142100.00 199.96 9100.00 1100.00 1
eth-test20.00 406
eth-test0.00 406
IU-MVS99.93 2499.31 1098.41 14297.71 1999.84 12100.00 1100.00 1100.00 1
save fliter99.82 5898.79 3899.96 3498.40 14697.66 21
test_0728_SECOND99.82 799.94 1399.47 799.95 5298.43 127100.00 199.99 5100.00 1100.00 1
GSMVS99.59 130
test_part299.89 4599.25 1899.49 62
MTGPAbinary98.28 173
MTMP99.87 10096.49 336
gm-plane-assit96.97 23893.76 21491.47 22998.96 16198.79 18394.92 180
test9_res99.71 3399.99 21100.00 1
agg_prior299.48 43100.00 1100.00 1
agg_prior99.93 2498.77 4098.43 12799.63 4399.85 108
test_prior498.05 6699.94 68
test_prior99.43 3599.94 1398.49 5898.65 7499.80 12199.99 23
旧先验299.46 20694.21 13099.85 999.95 6996.96 151
新几何299.40 210
无先验99.49 20198.71 6693.46 160100.00 194.36 19599.99 23
原ACMM299.90 87
testdata299.99 3690.54 261
testdata199.28 23096.35 69
plane_prior795.71 28291.59 271
plane_prior597.87 21698.37 22097.79 12889.55 24494.52 254
plane_prior498.59 193
plane_prior391.64 26996.63 5693.01 217
plane_prior299.84 12096.38 65
plane_prior195.73 279
plane_prior91.74 26399.86 11396.76 5289.59 243
n20.00 408
nn0.00 408
door-mid89.69 392
test1198.44 119
door90.31 389
HQP5-MVS91.85 259
HQP-NCC95.78 27299.87 10096.82 4893.37 213
ACMP_Plane95.78 27299.87 10096.82 4893.37 213
BP-MVS97.92 121
HQP4-MVS93.37 21398.39 21494.53 252
HQP3-MVS97.89 21489.60 241
NP-MVS95.77 27591.79 26198.65 188
ACMMP++_ref87.04 279
ACMMP++88.23 266