This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort by
reproduce_monomvs95.38 18295.07 18196.32 21999.32 10496.60 13199.76 15498.85 5696.65 5987.83 32096.05 30099.52 198.11 25896.58 17281.07 34494.25 297
CHOSEN 280x42099.01 1499.03 1098.95 8399.38 10098.87 3398.46 32499.42 2197.03 4499.02 9699.09 15299.35 298.21 25399.73 3599.78 8499.77 104
GG-mvs-BLEND98.54 11298.21 18498.01 7293.87 39598.52 10797.92 14697.92 24099.02 397.94 27198.17 11999.58 10299.67 118
gg-mvs-nofinetune93.51 23591.86 26198.47 11797.72 21997.96 7792.62 39998.51 11074.70 40197.33 16469.59 41598.91 497.79 27597.77 14599.56 10399.67 118
test_0728_THIRD96.48 6399.83 1399.91 1497.87 5100.00 199.92 13100.00 1100.00 1
baseline296.71 13896.49 13097.37 18595.63 31195.96 15999.74 16198.88 5192.94 18491.61 25598.97 16697.72 698.62 21594.83 20198.08 16697.53 257
BP-MVS198.33 5298.18 5198.81 8997.44 23797.98 7499.96 3598.17 19894.88 10798.77 10899.59 10797.59 799.08 18698.24 11698.93 13799.36 179
SteuartSystems-ACMMP99.02 1398.97 1399.18 5298.72 14697.71 8599.98 1598.44 12796.85 4999.80 1799.91 1497.57 899.85 11199.44 4999.99 2199.99 23
Skip Steuart: Steuart Systems R&D Blog.
thisisatest051597.41 10297.02 10898.59 10697.71 22197.52 9399.97 2898.54 10291.83 23197.45 16099.04 15697.50 999.10 18594.75 20496.37 20199.16 200
PC_three_145296.96 4799.80 1799.79 5897.49 10100.00 199.99 599.98 32100.00 1
test_one_060199.94 1399.30 1298.41 15296.63 6099.75 2999.93 1197.49 10
thisisatest053097.10 11496.72 12198.22 13297.60 22896.70 12699.92 8198.54 10291.11 25597.07 17298.97 16697.47 1299.03 18893.73 23196.09 20598.92 216
tttt051796.85 12896.49 13097.92 15097.48 23695.89 16199.85 12298.54 10290.72 26896.63 18398.93 17797.47 1299.02 18993.03 24395.76 21698.85 220
DVP-MVS++99.26 699.09 999.77 899.91 3999.31 1099.95 5498.43 13596.48 6399.80 1799.93 1197.44 14100.00 199.92 1399.98 32100.00 1
OPU-MVS99.93 299.89 4599.80 299.96 3599.80 5497.44 14100.00 1100.00 199.98 32100.00 1
MSP-MVS99.09 999.12 598.98 8099.93 2497.24 10599.95 5498.42 14797.50 2699.52 6099.88 2497.43 1699.71 14199.50 4499.98 32100.00 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
NCCC99.37 299.25 299.71 1599.96 899.15 2299.97 2898.62 8298.02 1399.90 399.95 397.33 17100.00 199.54 42100.00 1100.00 1
MVSTER95.53 17895.22 17596.45 21398.56 15697.72 8499.91 8797.67 24692.38 21691.39 25797.14 25997.24 1897.30 29594.80 20287.85 29194.34 292
DVP-MVScopyleft99.30 499.16 399.73 1299.93 2499.29 1599.95 5498.32 17697.28 3299.83 1399.91 1497.22 19100.00 199.99 5100.00 199.89 87
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.93 2499.29 1599.96 3598.42 14797.28 3299.86 799.94 497.22 19
test_241102_TWO98.43 13597.27 3499.80 1799.94 497.18 21100.00 1100.00 1100.00 1100.00 1
DPM-MVS98.83 2198.46 3399.97 199.33 10299.92 199.96 3598.44 12797.96 1499.55 5599.94 497.18 21100.00 193.81 22699.94 5599.98 51
GDP-MVS97.88 7297.59 8498.75 9397.59 22997.81 8299.95 5497.37 28294.44 12499.08 9299.58 11097.13 2399.08 18694.99 19498.17 15999.37 177
CNVR-MVS99.40 199.26 199.84 699.98 299.51 699.98 1598.69 6998.20 899.93 199.98 296.82 24100.00 199.75 31100.00 199.99 23
WBMVS94.52 20894.03 20695.98 22698.38 16996.68 12799.92 8197.63 24990.75 26789.64 28495.25 33596.77 2596.90 32294.35 21483.57 32394.35 290
UBG97.84 7697.69 7898.29 12998.38 16996.59 13399.90 9398.53 10593.91 15598.52 12198.42 22096.77 2599.17 18098.54 10196.20 20299.11 206
SED-MVS99.28 599.11 799.77 899.93 2499.30 1299.96 3598.43 13597.27 3499.80 1799.94 496.71 27100.00 1100.00 1100.00 1100.00 1
test_241102_ONE99.93 2499.30 1298.43 13597.26 3699.80 1799.88 2496.71 27100.00 1
DPE-MVScopyleft99.26 699.10 899.74 1199.89 4599.24 1999.87 10898.44 12797.48 2799.64 4399.94 496.68 2999.99 3699.99 5100.00 199.99 23
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
segment_acmp96.68 29
UWE-MVS96.79 13196.72 12197.00 19698.51 16393.70 23299.71 17598.60 8592.96 18397.09 17098.34 22496.67 3198.85 19792.11 25296.50 19798.44 235
patch_mono-298.24 6199.12 595.59 23699.67 8186.91 35699.95 5498.89 4997.60 2299.90 399.76 6696.54 3299.98 4799.94 1199.82 8199.88 88
PAPM98.60 3398.42 3499.14 6196.05 28898.96 2699.90 9399.35 2496.68 5898.35 13299.66 9996.45 3398.51 22099.45 4899.89 7099.96 67
MCST-MVS99.32 399.14 499.86 599.97 399.59 599.97 2898.64 7798.47 399.13 8999.92 1396.38 34100.00 199.74 33100.00 1100.00 1
ET-MVSNet_ETH3D94.37 21393.28 23097.64 16898.30 17697.99 7399.99 497.61 25594.35 13071.57 40199.45 12296.23 3595.34 37196.91 16985.14 31199.59 137
EPP-MVSNet96.69 13996.60 12696.96 19897.74 21493.05 24899.37 23498.56 9388.75 30595.83 20599.01 15996.01 3698.56 21796.92 16897.20 18399.25 195
test_prior299.95 5495.78 8399.73 3399.76 6696.00 3799.78 27100.00 1
train_agg98.88 2098.65 2499.59 2399.92 3198.92 2999.96 3598.43 13594.35 13099.71 3599.86 2995.94 3899.85 11199.69 3899.98 3299.99 23
test_899.92 3198.88 3299.96 3598.43 13594.35 13099.69 3799.85 3395.94 3899.85 111
MSLP-MVS++99.13 899.01 1199.49 3299.94 1398.46 6199.98 1598.86 5397.10 4099.80 1799.94 495.92 40100.00 199.51 43100.00 1100.00 1
TEST999.92 3198.92 2999.96 3598.43 13593.90 15699.71 3599.86 2995.88 4199.85 111
test_yl97.83 7797.37 9299.21 4999.18 10897.98 7499.64 19099.27 2791.43 24597.88 14998.99 16295.84 4299.84 11998.82 8395.32 22699.79 100
DCV-MVSNet97.83 7797.37 9299.21 4999.18 10897.98 7499.64 19099.27 2791.43 24597.88 14998.99 16295.84 4299.84 11998.82 8395.32 22699.79 100
DP-MVS Recon98.41 4898.02 6199.56 2599.97 398.70 4899.92 8198.44 12792.06 22598.40 13099.84 4495.68 44100.00 198.19 11899.71 8899.97 61
旧先验199.76 6697.52 9398.64 7799.85 3395.63 4599.94 5599.99 23
SMA-MVScopyleft98.76 2698.48 3299.62 2099.87 5198.87 3399.86 11998.38 16393.19 17699.77 2799.94 495.54 46100.00 199.74 3399.99 21100.00 1
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
TESTMET0.1,196.74 13696.26 13698.16 13497.36 24396.48 13599.96 3598.29 18291.93 22895.77 20698.07 23395.54 4698.29 24590.55 27898.89 13899.70 113
APDe-MVScopyleft99.06 1198.91 1499.51 2999.94 1398.76 4599.91 8798.39 15997.20 3899.46 6499.85 3395.53 4899.79 12699.86 21100.00 199.99 23
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
testing1197.48 9697.27 9698.10 13998.36 17296.02 15799.92 8198.45 12293.45 16998.15 14198.70 19495.48 4999.22 17397.85 13895.05 23099.07 210
PLCcopyleft95.54 397.93 7097.89 7298.05 14399.82 5894.77 20599.92 8198.46 12193.93 15397.20 16799.27 13995.44 5099.97 5797.41 15299.51 10899.41 173
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
HPM-MVS++copyleft99.07 1098.88 1699.63 1799.90 4299.02 2599.95 5498.56 9397.56 2599.44 6699.85 3395.38 51100.00 199.31 5499.99 2199.87 90
PHI-MVS98.41 4898.21 4899.03 7399.86 5397.10 11399.98 1598.80 6390.78 26699.62 4799.78 6295.30 52100.00 199.80 2599.93 6199.99 23
test-mter96.39 15195.93 15397.78 15897.02 25795.44 17999.96 3598.21 19391.81 23395.55 20896.38 28695.17 5398.27 24990.42 28198.83 14299.64 124
patchmatchnet-post91.70 38495.12 5497.95 269
MDTV_nov1_ep1395.69 16197.90 20394.15 22095.98 38598.44 12793.12 18097.98 14495.74 30595.10 5598.58 21690.02 28796.92 191
IB-MVS92.85 694.99 19193.94 21098.16 13497.72 21995.69 17199.99 498.81 6194.28 13692.70 24596.90 26995.08 5699.17 18096.07 17873.88 38399.60 136
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
ZD-MVS99.92 3198.57 5698.52 10792.34 21799.31 7899.83 4695.06 5799.80 12499.70 3799.97 42
CDS-MVSNet96.34 15396.07 14197.13 19397.37 24294.96 19799.53 20997.91 22891.55 23995.37 21298.32 22595.05 5897.13 30593.80 22795.75 21799.30 189
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Patchmatch-test92.65 25791.50 26796.10 22496.85 26890.49 30891.50 40497.19 30082.76 37690.23 26895.59 31295.02 5998.00 26577.41 38096.98 19099.82 95
CostFormer96.10 16195.88 15696.78 20397.03 25692.55 26297.08 36597.83 23690.04 28198.72 11394.89 34895.01 6098.29 24596.54 17395.77 21599.50 162
TSAR-MVS + GP.98.60 3398.51 3198.86 8799.73 7396.63 12999.97 2897.92 22798.07 1198.76 11199.55 11395.00 6199.94 8199.91 1697.68 17299.99 23
CDPH-MVS98.65 3198.36 4199.49 3299.94 1398.73 4699.87 10898.33 17493.97 15099.76 2899.87 2794.99 6299.75 13598.55 100100.00 199.98 51
原ACMM198.96 8299.73 7396.99 11798.51 11094.06 14699.62 4799.85 3394.97 6399.96 6595.11 19199.95 5099.92 84
TSAR-MVS + MP.98.93 1798.77 1999.41 3899.74 7098.67 4999.77 14998.38 16396.73 5699.88 699.74 7994.89 6499.59 15299.80 2599.98 3299.97 61
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
testing9997.17 11196.91 11097.95 14698.35 17495.70 16999.91 8798.43 13592.94 18497.36 16398.72 19294.83 6599.21 17497.00 16294.64 23298.95 215
testing9197.16 11296.90 11197.97 14598.35 17495.67 17299.91 8798.42 14792.91 18697.33 16498.72 19294.81 6699.21 17496.98 16494.63 23399.03 212
test1299.43 3599.74 7098.56 5798.40 15699.65 4194.76 6799.75 13599.98 3299.99 23
mamv495.24 18596.90 11190.25 35698.65 15272.11 40398.28 33597.64 24889.99 28295.93 20198.25 22794.74 6899.11 18399.01 7299.64 9299.53 155
fmvsm_l_conf0.5_n_a99.00 1598.91 1499.28 4599.21 10797.91 7999.98 1598.85 5698.25 599.92 299.75 7294.72 6999.97 5799.87 1999.64 9299.95 74
sam_mvs194.72 6999.59 137
SF-MVS98.67 3098.40 3599.50 3099.77 6598.67 4999.90 9398.21 19393.53 16599.81 1599.89 2294.70 7199.86 11099.84 2299.93 6199.96 67
reproduce-ours98.78 2498.67 2199.09 6899.70 7897.30 10399.74 16198.25 18797.10 4099.10 9099.90 1894.59 7299.99 3699.77 2899.91 6799.99 23
our_new_method98.78 2498.67 2199.09 6899.70 7897.30 10399.74 16198.25 18797.10 4099.10 9099.90 1894.59 7299.99 3699.77 2899.91 6799.99 23
SD-MVS98.92 1898.70 2099.56 2599.70 7898.73 4699.94 7198.34 17396.38 6999.81 1599.76 6694.59 7299.98 4799.84 2299.96 4699.97 61
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
9.1498.38 3799.87 5199.91 8798.33 17493.22 17599.78 2699.89 2294.57 7599.85 11199.84 2299.97 42
reproduce_model98.75 2798.66 2399.03 7399.71 7697.10 11399.73 16898.23 19197.02 4599.18 8799.90 1894.54 7699.99 3699.77 2899.90 6999.99 23
test_post63.35 42094.43 7798.13 257
EPMVS96.53 14596.01 14398.09 14098.43 16796.12 15696.36 37699.43 2093.53 16597.64 15595.04 34194.41 7898.38 23691.13 26498.11 16399.75 106
新几何199.42 3799.75 6998.27 6498.63 8192.69 19899.55 5599.82 4994.40 79100.00 191.21 26299.94 5599.99 23
MDTV_nov1_ep13_2view96.26 14596.11 38291.89 22998.06 14294.40 7994.30 21599.67 118
PAPM_NR98.12 6597.93 6998.70 9699.94 1396.13 15499.82 13798.43 13594.56 11897.52 15799.70 8894.40 7999.98 4797.00 16299.98 3299.99 23
dcpmvs_297.42 10198.09 5895.42 24199.58 8987.24 35299.23 25296.95 32994.28 13698.93 10099.73 8194.39 8299.16 18299.89 1799.82 8199.86 92
miper_enhance_ethall94.36 21593.98 20895.49 23798.68 14895.24 18999.73 16897.29 29393.28 17489.86 27695.97 30194.37 8397.05 31192.20 25084.45 31694.19 302
XVS98.70 2998.55 2899.15 5999.94 1397.50 9599.94 7198.42 14796.22 7599.41 7099.78 6294.34 8499.96 6598.92 7699.95 5099.99 23
X-MVStestdata93.83 22392.06 25699.15 5999.94 1397.50 9599.94 7198.42 14796.22 7599.41 7041.37 42494.34 8499.96 6598.92 7699.95 5099.99 23
balanced_conf0398.27 5697.99 6299.11 6698.64 15398.43 6299.47 21997.79 23894.56 11899.74 3198.35 22294.33 8699.25 17199.12 6199.96 4699.64 124
CP-MVS98.45 4398.32 4398.87 8699.96 896.62 13099.97 2898.39 15994.43 12598.90 10199.87 2794.30 87100.00 199.04 6799.99 2199.99 23
MVSMamba_PlusPlus97.83 7797.45 8898.99 7898.60 15598.15 6599.58 19997.74 24190.34 27599.26 8398.32 22594.29 8899.23 17299.03 7099.89 7099.58 143
sam_mvs94.25 89
Patchmatch-RL test86.90 33985.98 34389.67 36184.45 40475.59 39989.71 41092.43 40886.89 33577.83 38890.94 38794.22 9093.63 39087.75 31169.61 39199.79 100
HFP-MVS98.56 3598.37 3999.14 6199.96 897.43 9999.95 5498.61 8394.77 11099.31 7899.85 3394.22 90100.00 198.70 9199.98 3299.98 51
fmvsm_l_conf0.5_n98.94 1698.84 1799.25 4699.17 11097.81 8299.98 1598.86 5398.25 599.90 399.76 6694.21 9299.97 5799.87 1999.52 10599.98 51
PatchmatchNetpermissive95.94 16595.45 16797.39 18497.83 20894.41 21196.05 38398.40 15692.86 18797.09 17095.28 33494.21 9298.07 26289.26 29498.11 16399.70 113
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
DeepPCF-MVS95.94 297.71 9098.98 1293.92 29999.63 8381.76 38699.96 3598.56 9399.47 199.19 8699.99 194.16 94100.00 199.92 1399.93 61100.00 1
APD-MVScopyleft98.62 3298.35 4299.41 3899.90 4298.51 5999.87 10898.36 16794.08 14399.74 3199.73 8194.08 9599.74 13799.42 5099.99 2199.99 23
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
region2R98.54 3698.37 3999.05 7199.96 897.18 10899.96 3598.55 9994.87 10899.45 6599.85 3394.07 96100.00 198.67 93100.00 199.98 51
PAPR98.52 3898.16 5399.58 2499.97 398.77 4299.95 5498.43 13595.35 9598.03 14399.75 7294.03 9799.98 4798.11 12399.83 7799.99 23
MG-MVS98.91 1998.65 2499.68 1699.94 1399.07 2499.64 19099.44 1997.33 3199.00 9799.72 8494.03 9799.98 4798.73 90100.00 1100.00 1
MVS_111021_HR98.72 2898.62 2699.01 7799.36 10197.18 10899.93 7899.90 196.81 5498.67 11599.77 6493.92 9999.89 9999.27 5699.94 5599.96 67
tpmrst96.27 15995.98 14697.13 19397.96 20093.15 24596.34 37798.17 19892.07 22398.71 11495.12 33893.91 10098.73 20694.91 19996.62 19499.50 162
test-LLR96.47 14696.04 14297.78 15897.02 25795.44 17999.96 3598.21 19394.07 14495.55 20896.38 28693.90 10198.27 24990.42 28198.83 14299.64 124
test0.0.03 193.86 22293.61 21594.64 26795.02 32092.18 26999.93 7898.58 8894.07 14487.96 31898.50 21293.90 10194.96 37681.33 36193.17 25396.78 261
ETVMVS97.03 12096.64 12498.20 13398.67 14997.12 11299.89 10298.57 9091.10 25698.17 14098.59 20493.86 10398.19 25495.64 18695.24 22899.28 192
test22299.55 9097.41 10199.34 23798.55 9991.86 23099.27 8299.83 4693.84 10499.95 5099.99 23
dp95.05 18994.43 19596.91 19997.99 19892.73 25696.29 37997.98 21989.70 28695.93 20194.67 35493.83 10598.45 22586.91 32696.53 19699.54 151
ACMMPR98.50 3998.32 4399.05 7199.96 897.18 10899.95 5498.60 8594.77 11099.31 7899.84 4493.73 106100.00 198.70 9199.98 3299.98 51
EPNet98.49 4098.40 3598.77 9299.62 8496.80 12599.90 9399.51 1697.60 2299.20 8499.36 13393.71 10799.91 9297.99 13098.71 14599.61 134
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
alignmvs97.81 8197.33 9499.25 4698.77 14498.66 5199.99 498.44 12794.40 12998.41 12899.47 11993.65 10899.42 16798.57 9994.26 24099.67 118
testdata98.42 12299.47 9695.33 18598.56 9393.78 15999.79 2599.85 3393.64 10999.94 8194.97 19599.94 55100.00 1
EI-MVSNet-Vis-set98.27 5698.11 5798.75 9399.83 5796.59 13399.40 22798.51 11095.29 9798.51 12399.76 6693.60 11099.71 14198.53 10399.52 10599.95 74
mPP-MVS98.39 5098.20 4998.97 8199.97 396.92 12099.95 5498.38 16395.04 10198.61 11999.80 5493.39 111100.00 198.64 96100.00 199.98 51
testing22297.08 11996.75 11998.06 14298.56 15696.82 12399.85 12298.61 8392.53 20998.84 10398.84 18893.36 11298.30 24495.84 18394.30 23999.05 211
SR-MVS98.46 4298.30 4698.93 8499.88 4997.04 11599.84 12798.35 16994.92 10599.32 7799.80 5493.35 11399.78 12899.30 5599.95 5099.96 67
WTY-MVS98.10 6697.60 8299.60 2298.92 13099.28 1799.89 10299.52 1495.58 8998.24 13899.39 13093.33 11499.74 13797.98 13295.58 22099.78 103
tpm295.47 17995.18 17796.35 21896.91 26391.70 28496.96 36897.93 22488.04 31898.44 12695.40 32393.32 11597.97 26694.00 21995.61 21999.38 175
HY-MVS92.50 797.79 8497.17 10299.63 1798.98 12299.32 997.49 35599.52 1495.69 8698.32 13397.41 25293.32 11599.77 13198.08 12695.75 21799.81 97
EI-MVSNet-UG-set98.14 6497.99 6298.60 10499.80 6196.27 14499.36 23698.50 11695.21 9998.30 13499.75 7293.29 11799.73 14098.37 11199.30 12299.81 97
SR-MVS-dyc-post98.31 5398.17 5298.71 9599.79 6296.37 14299.76 15498.31 17894.43 12599.40 7299.75 7293.28 11899.78 12898.90 7999.92 6499.97 61
baseline195.78 16994.86 18798.54 11298.47 16698.07 6999.06 26897.99 21792.68 19994.13 22898.62 20393.28 11898.69 21193.79 22885.76 30498.84 221
MVS_030499.06 1198.84 1799.72 1399.76 6699.21 2199.99 499.34 2598.70 299.44 6699.75 7293.24 12099.99 3699.94 1199.41 11799.95 74
PGM-MVS98.34 5198.13 5598.99 7899.92 3197.00 11699.75 15899.50 1793.90 15699.37 7599.76 6693.24 120100.00 197.75 14799.96 4699.98 51
test_post195.78 38859.23 42393.20 12297.74 27891.06 266
CSCG97.10 11497.04 10697.27 19199.89 4591.92 27599.90 9399.07 3488.67 30795.26 21499.82 4993.17 12399.98 4798.15 12199.47 11099.90 86
DeepC-MVS_fast96.59 198.81 2398.54 2999.62 2099.90 4298.85 3599.24 25198.47 11998.14 1099.08 9299.91 1493.09 124100.00 199.04 6799.99 21100.00 1
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ZNCC-MVS98.31 5398.03 6099.17 5599.88 4997.59 9099.94 7198.44 12794.31 13398.50 12499.82 4993.06 12599.99 3698.30 11599.99 2199.93 79
testing393.92 22194.23 20192.99 32697.54 23190.23 31399.99 499.16 3090.57 26991.33 25998.63 20292.99 12692.52 39882.46 35495.39 22496.22 269
GST-MVS98.27 5697.97 6499.17 5599.92 3197.57 9199.93 7898.39 15994.04 14898.80 10699.74 7992.98 127100.00 198.16 12099.76 8599.93 79
RE-MVS-def98.13 5599.79 6296.37 14299.76 15498.31 17894.43 12599.40 7299.75 7292.95 12898.90 7999.92 6499.97 61
CS-MVS97.79 8497.91 7097.43 18199.10 11394.42 21099.99 497.10 31195.07 10099.68 3899.75 7292.95 12898.34 24098.38 10999.14 12999.54 151
ACMMP_NAP98.49 4098.14 5499.54 2799.66 8298.62 5599.85 12298.37 16694.68 11599.53 5899.83 4692.87 130100.00 198.66 9599.84 7699.99 23
APD-MVS_3200maxsize98.25 6098.08 5998.78 9099.81 6096.60 13199.82 13798.30 18193.95 15299.37 7599.77 6492.84 13199.76 13498.95 7399.92 6499.97 61
JIA-IIPM91.76 27790.70 27894.94 25696.11 28687.51 34993.16 39898.13 20875.79 39797.58 15677.68 41292.84 13197.97 26688.47 30396.54 19599.33 185
Test By Simon92.82 133
MTAPA98.29 5597.96 6799.30 4499.85 5497.93 7899.39 23198.28 18395.76 8497.18 16999.88 2492.74 134100.00 198.67 9399.88 7399.99 23
EPNet_dtu95.71 17295.39 16996.66 20898.92 13093.41 24199.57 20298.90 4796.19 7797.52 15798.56 20992.65 13597.36 28977.89 37898.33 15399.20 198
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_fmvsm_n_192098.44 4498.61 2797.92 15099.27 10695.18 193100.00 198.90 4798.05 1299.80 1799.73 8192.64 13699.99 3699.58 4199.51 10898.59 233
MP-MVS-pluss98.07 6797.64 8099.38 4299.74 7098.41 6399.74 16198.18 19793.35 17096.45 18899.85 3392.64 13699.97 5798.91 7899.89 7099.77 104
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
FE-MVS95.70 17495.01 18497.79 15798.21 18494.57 20695.03 39098.69 6988.90 30197.50 15996.19 29392.60 13899.49 16389.99 28897.94 16999.31 187
DELS-MVS98.54 3698.22 4799.50 3099.15 11298.65 53100.00 198.58 8897.70 2098.21 13999.24 14492.58 13999.94 8198.63 9899.94 5599.92 84
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
ETV-MVS97.92 7197.80 7598.25 13198.14 19196.48 13599.98 1597.63 24995.61 8899.29 8199.46 12192.55 14098.82 19899.02 7198.54 14899.46 166
test250697.53 9497.19 10098.58 10798.66 15096.90 12198.81 30199.77 594.93 10397.95 14598.96 16892.51 14199.20 17794.93 19698.15 16099.64 124
KD-MVS_2432*160088.00 33586.10 33993.70 30896.91 26394.04 22297.17 36297.12 30984.93 35781.96 36792.41 37992.48 14294.51 38279.23 37052.68 41492.56 365
miper_refine_blended88.00 33586.10 33993.70 30896.91 26394.04 22297.17 36297.12 30984.93 35781.96 36792.41 37992.48 14294.51 38279.23 37052.68 41492.56 365
myMVS_eth3d94.46 21094.76 19093.55 31297.68 22290.97 29499.71 17598.35 16990.79 26492.10 25198.67 19692.46 14493.09 39487.13 31995.95 21096.59 264
EIA-MVS97.53 9497.46 8797.76 16298.04 19694.84 20199.98 1597.61 25594.41 12897.90 14799.59 10792.40 14598.87 19598.04 12799.13 13099.59 137
F-COLMAP96.93 12696.95 10996.87 20199.71 7691.74 28099.85 12297.95 22293.11 18195.72 20799.16 15092.35 14699.94 8195.32 18999.35 12098.92 216
API-MVS97.86 7497.66 7998.47 11799.52 9295.41 18299.47 21998.87 5291.68 23698.84 10399.85 3392.34 14799.99 3698.44 10799.96 46100.00 1
CNLPA97.76 8697.38 9198.92 8599.53 9196.84 12299.87 10898.14 20793.78 15996.55 18699.69 9092.28 14899.98 4797.13 15899.44 11499.93 79
TAMVS95.85 16795.58 16596.65 20997.07 25493.50 23899.17 25797.82 23791.39 24995.02 21698.01 23492.20 14997.30 29593.75 23095.83 21499.14 203
1112_ss96.01 16495.20 17698.42 12297.80 21096.41 13899.65 18696.66 35192.71 19692.88 24399.40 12892.16 15099.30 16991.92 25593.66 24799.55 147
Test_1112_low_res95.72 17094.83 18898.42 12297.79 21196.41 13899.65 18696.65 35292.70 19792.86 24496.13 29692.15 15199.30 16991.88 25693.64 24899.55 147
HyFIR lowres test96.66 14196.43 13297.36 18799.05 11693.91 22799.70 17999.80 390.54 27096.26 19498.08 23292.15 15198.23 25296.84 17095.46 22199.93 79
SPE-MVS-test97.88 7297.94 6897.70 16599.28 10595.20 19299.98 1597.15 30695.53 9199.62 4799.79 5892.08 15398.38 23698.75 8999.28 12399.52 157
MVS_111021_LR98.42 4798.38 3798.53 11499.39 9995.79 16399.87 10899.86 296.70 5798.78 10799.79 5892.03 15499.90 9499.17 6099.86 7599.88 88
TAPA-MVS92.12 894.42 21193.60 21796.90 20099.33 10291.78 27999.78 14698.00 21689.89 28494.52 22099.47 11991.97 15599.18 17969.90 39799.52 10599.73 108
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PatchT90.38 30388.75 31995.25 24895.99 29090.16 31591.22 40697.54 26376.80 39397.26 16686.01 40691.88 15696.07 35966.16 40595.91 21299.51 160
HPM-MVScopyleft97.96 6897.72 7698.68 9799.84 5696.39 14199.90 9398.17 19892.61 20398.62 11899.57 11291.87 15799.67 14898.87 8199.99 2199.99 23
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
MP-MVScopyleft98.23 6297.97 6499.03 7399.94 1397.17 11199.95 5498.39 15994.70 11498.26 13799.81 5391.84 158100.00 198.85 8299.97 4299.93 79
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
HPM-MVS_fast97.80 8297.50 8698.68 9799.79 6296.42 13799.88 10598.16 20391.75 23598.94 9999.54 11591.82 15999.65 15097.62 15099.99 2199.99 23
tpmvs94.28 21793.57 21996.40 21598.55 15991.50 28995.70 38998.55 9987.47 32492.15 25094.26 36491.42 16098.95 19388.15 30695.85 21398.76 225
ACMMPcopyleft97.74 8797.44 8998.66 9999.92 3196.13 15499.18 25699.45 1894.84 10996.41 19199.71 8691.40 16199.99 3697.99 13098.03 16799.87 90
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
Vis-MVSNet (Re-imp)96.32 15495.98 14697.35 18897.93 20294.82 20299.47 21998.15 20691.83 23195.09 21599.11 15191.37 16297.47 28793.47 23497.43 17699.74 107
sss97.57 9397.03 10799.18 5298.37 17198.04 7199.73 16899.38 2293.46 16798.76 11199.06 15591.21 16399.89 9996.33 17497.01 18999.62 130
pcd_1.5k_mvsjas7.60 39410.13 3970.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 42791.20 1640.00 4270.00 4260.00 4250.00 423
PS-MVSNAJss93.64 23293.31 22994.61 26892.11 37092.19 26899.12 25997.38 28092.51 21188.45 30996.99 26891.20 16497.29 29894.36 21287.71 29394.36 287
PS-MVSNAJ98.44 4498.20 4999.16 5798.80 14298.92 2999.54 20898.17 19897.34 2999.85 999.85 3391.20 16499.89 9999.41 5199.67 9098.69 230
CPTT-MVS97.64 9297.32 9598.58 10799.97 395.77 16499.96 3598.35 16989.90 28398.36 13199.79 5891.18 16799.99 3698.37 11199.99 2199.99 23
test_fmvsmconf_n98.43 4698.32 4398.78 9098.12 19396.41 13899.99 498.83 6098.22 799.67 3999.64 10291.11 16899.94 8199.67 3999.62 9599.98 51
CR-MVSNet93.45 23892.62 24295.94 22896.29 28192.66 25892.01 40296.23 36392.62 20296.94 17493.31 37391.04 16996.03 36079.23 37095.96 20899.13 204
Patchmtry89.70 31988.49 32293.33 31696.24 28489.94 32291.37 40596.23 36378.22 39187.69 32193.31 37391.04 16996.03 36080.18 36882.10 33294.02 319
miper_ehance_all_eth93.16 24392.60 24394.82 26297.57 23093.56 23699.50 21497.07 31688.75 30588.85 30395.52 31690.97 17196.74 33190.77 27484.45 31694.17 303
mvsany_test197.82 8097.90 7197.55 17398.77 14493.04 24999.80 14397.93 22496.95 4899.61 5399.68 9690.92 17299.83 12199.18 5998.29 15799.80 99
MVSFormer96.94 12496.60 12697.95 14697.28 25097.70 8799.55 20697.27 29591.17 25299.43 6899.54 11590.92 17296.89 32394.67 20799.62 9599.25 195
lupinMVS97.85 7597.60 8298.62 10297.28 25097.70 8799.99 497.55 26195.50 9399.43 6899.67 9790.92 17298.71 20998.40 10899.62 9599.45 168
h-mvs3394.92 19294.36 19796.59 21098.85 13991.29 29198.93 28698.94 4195.90 8098.77 10898.42 22090.89 17599.77 13197.80 14070.76 38998.72 229
hse-mvs294.38 21294.08 20595.31 24698.27 18090.02 31899.29 24698.56 9395.90 8098.77 10898.00 23590.89 17598.26 25197.80 14069.20 39597.64 252
xiu_mvs_v2_base98.23 6297.97 6499.02 7698.69 14798.66 5199.52 21098.08 21197.05 4399.86 799.86 2990.65 17799.71 14199.39 5398.63 14698.69 230
IS-MVSNet96.29 15795.90 15597.45 17998.13 19294.80 20399.08 26397.61 25592.02 22795.54 21098.96 16890.64 17898.08 26093.73 23197.41 17999.47 165
kuosan93.17 24292.60 24394.86 26198.40 16889.54 32698.44 32698.53 10584.46 36288.49 30897.92 24090.57 17997.05 31183.10 35093.49 24997.99 245
FA-MVS(test-final)95.86 16695.09 18098.15 13797.74 21495.62 17496.31 37898.17 19891.42 24796.26 19496.13 29690.56 18099.47 16592.18 25197.07 18599.35 182
cl2293.77 22793.25 23195.33 24599.49 9594.43 20999.61 19598.09 20990.38 27289.16 29995.61 31090.56 18097.34 29191.93 25484.45 31694.21 301
MM98.83 2198.53 3099.76 1099.59 8599.33 899.99 499.76 698.39 499.39 7499.80 5490.49 18299.96 6599.89 1799.43 11599.98 51
tpm93.70 23193.41 22694.58 27195.36 31587.41 35097.01 36696.90 33690.85 26296.72 18294.14 36590.40 18396.84 32690.75 27588.54 28399.51 160
dongtai91.55 28091.13 27392.82 32998.16 18986.35 35799.47 21998.51 11083.24 37085.07 35397.56 24890.33 18494.94 37776.09 38691.73 25797.18 259
114514_t97.41 10296.83 11599.14 6199.51 9497.83 8099.89 10298.27 18588.48 31199.06 9499.66 9990.30 18599.64 15196.32 17599.97 4299.96 67
ADS-MVSNet293.80 22693.88 21293.55 31297.87 20585.94 36094.24 39196.84 34090.07 27996.43 18994.48 35990.29 18695.37 37087.44 31397.23 18199.36 179
ADS-MVSNet94.79 19694.02 20797.11 19597.87 20593.79 22894.24 39198.16 20390.07 27996.43 18994.48 35990.29 18698.19 25487.44 31397.23 18199.36 179
miper_lstm_enhance91.81 27191.39 27093.06 32597.34 24489.18 33099.38 23296.79 34586.70 33787.47 32695.22 33690.00 18895.86 36488.26 30481.37 33894.15 309
c3_l92.53 25891.87 26094.52 27497.40 24092.99 25099.40 22796.93 33487.86 32088.69 30695.44 32189.95 18996.44 34390.45 28080.69 34994.14 312
thres20096.96 12396.21 13999.22 4898.97 12398.84 3699.85 12299.71 793.17 17796.26 19498.88 17989.87 19099.51 15694.26 21694.91 23199.31 187
tpm cat193.51 23592.52 24996.47 21197.77 21291.47 29096.13 38198.06 21280.98 38392.91 24293.78 36889.66 19198.87 19587.03 32296.39 20099.09 207
test_fmvsmvis_n_192097.67 9197.59 8497.91 15297.02 25795.34 18499.95 5498.45 12297.87 1597.02 17399.59 10789.64 19299.98 4799.41 5199.34 12198.42 236
OMC-MVS97.28 10697.23 9897.41 18299.76 6693.36 24499.65 18697.95 22296.03 7997.41 16299.70 8889.61 19399.51 15696.73 17198.25 15899.38 175
DIV-MVS_self_test92.32 26291.60 26394.47 27897.31 24792.74 25499.58 19996.75 34786.99 33387.64 32295.54 31489.55 19496.50 34088.58 30082.44 33094.17 303
cl____92.31 26391.58 26494.52 27497.33 24692.77 25299.57 20296.78 34686.97 33487.56 32495.51 31789.43 19596.62 33688.60 29982.44 33094.16 308
AUN-MVS93.28 23992.60 24395.34 24498.29 17790.09 31799.31 24198.56 9391.80 23496.35 19398.00 23589.38 19698.28 24792.46 24769.22 39497.64 252
tfpn200view996.79 13195.99 14499.19 5198.94 12598.82 3799.78 14699.71 792.86 18796.02 19998.87 18289.33 19799.50 15893.84 22394.57 23499.27 193
thres40096.78 13395.99 14499.16 5798.94 12598.82 3799.78 14699.71 792.86 18796.02 19998.87 18289.33 19799.50 15893.84 22394.57 23499.16 200
thres100view90096.74 13695.92 15499.18 5298.90 13598.77 4299.74 16199.71 792.59 20595.84 20398.86 18489.25 19999.50 15893.84 22394.57 23499.27 193
thres600view796.69 13995.87 15799.14 6198.90 13598.78 4199.74 16199.71 792.59 20595.84 20398.86 18489.25 19999.50 15893.44 23594.50 23799.16 200
eth_miper_zixun_eth92.41 26191.93 25893.84 30397.28 25090.68 30398.83 29996.97 32888.57 31089.19 29895.73 30789.24 20196.69 33489.97 28981.55 33694.15 309
EC-MVSNet97.38 10497.24 9797.80 15597.41 23995.64 17399.99 497.06 31794.59 11799.63 4499.32 13589.20 20298.14 25698.76 8899.23 12699.62 130
PVSNet_Blended_VisFu97.27 10796.81 11698.66 9998.81 14196.67 12899.92 8198.64 7794.51 12096.38 19298.49 21389.05 20399.88 10597.10 16098.34 15299.43 171
PVSNet_BlendedMVS96.05 16295.82 15896.72 20699.59 8596.99 11799.95 5499.10 3194.06 14698.27 13595.80 30389.00 20499.95 7399.12 6187.53 29693.24 355
PVSNet_Blended97.94 6997.64 8098.83 8899.59 8596.99 117100.00 199.10 3195.38 9498.27 13599.08 15389.00 20499.95 7399.12 6199.25 12499.57 145
IterMVS-LS92.69 25592.11 25494.43 28296.80 27192.74 25499.45 22496.89 33788.98 29689.65 28395.38 32688.77 20696.34 34790.98 26982.04 33394.22 299
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet93.73 22993.40 22794.74 26396.80 27192.69 25799.06 26897.67 24688.96 29891.39 25799.02 15788.75 20797.30 29591.07 26587.85 29194.22 299
UA-Net96.54 14495.96 15098.27 13098.23 18295.71 16898.00 34898.45 12293.72 16298.41 12899.27 13988.71 20899.66 14991.19 26397.69 17199.44 170
MAR-MVS97.43 9797.19 10098.15 13799.47 9694.79 20499.05 27298.76 6492.65 20198.66 11699.82 4988.52 20999.98 4798.12 12299.63 9499.67 118
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MonoMVSNet94.82 19394.43 19595.98 22694.54 32790.73 30199.03 27597.06 31793.16 17893.15 23895.47 32088.29 21097.57 28397.85 13891.33 26199.62 130
mvs_anonymous95.65 17695.03 18397.53 17598.19 18695.74 16699.33 23897.49 27090.87 26190.47 26797.10 26188.23 21197.16 30295.92 18197.66 17399.68 116
MVS_Test96.46 14795.74 15998.61 10398.18 18797.23 10699.31 24197.15 30691.07 25798.84 10397.05 26588.17 21298.97 19094.39 21197.50 17599.61 134
mvsmamba96.94 12496.73 12097.55 17397.99 19894.37 21499.62 19397.70 24393.13 17998.42 12797.92 24088.02 21398.75 20598.78 8699.01 13599.52 157
CANet98.27 5697.82 7499.63 1799.72 7599.10 2399.98 1598.51 11097.00 4698.52 12199.71 8687.80 21499.95 7399.75 3199.38 11899.83 94
jason97.24 10896.86 11498.38 12595.73 30297.32 10299.97 2897.40 27995.34 9698.60 12099.54 11587.70 21598.56 21797.94 13399.47 11099.25 195
jason: jason.
test_fmvsmconf0.1_n97.74 8797.44 8998.64 10195.76 29996.20 15099.94 7198.05 21498.17 998.89 10299.42 12387.65 21699.90 9499.50 4499.60 10199.82 95
FIs94.10 21993.43 22396.11 22394.70 32496.82 12399.58 19998.93 4592.54 20889.34 29197.31 25587.62 21797.10 30894.22 21886.58 30094.40 285
131496.84 12995.96 15099.48 3496.74 27598.52 5898.31 33398.86 5395.82 8289.91 27498.98 16487.49 21899.96 6597.80 14099.73 8799.96 67
LS3D95.84 16895.11 17998.02 14499.85 5495.10 19598.74 30698.50 11687.22 32993.66 23299.86 2987.45 21999.95 7390.94 27099.81 8399.02 213
FC-MVSNet-test93.81 22593.15 23295.80 23394.30 33296.20 15099.42 22698.89 4992.33 21889.03 30197.27 25787.39 22096.83 32893.20 23786.48 30194.36 287
fmvsm_s_conf0.5_n97.80 8297.85 7397.67 16699.06 11594.41 21199.98 1598.97 4097.34 2999.63 4499.69 9087.27 22199.97 5799.62 4099.06 13398.62 232
RPMNet89.76 31887.28 33497.19 19296.29 28192.66 25892.01 40298.31 17870.19 40896.94 17485.87 40787.25 22299.78 12862.69 40995.96 20899.13 204
UniMVSNet_NR-MVSNet92.95 24892.11 25495.49 23794.61 32695.28 18799.83 13499.08 3391.49 24089.21 29696.86 27287.14 22396.73 33293.20 23777.52 36894.46 279
UniMVSNet (Re)93.07 24692.13 25395.88 22994.84 32196.24 14999.88 10598.98 3892.49 21289.25 29395.40 32387.09 22497.14 30493.13 24178.16 36394.26 295
DP-MVS94.54 20593.42 22497.91 15299.46 9894.04 22298.93 28697.48 27181.15 38290.04 27199.55 11387.02 22599.95 7388.97 29698.11 16399.73 108
fmvsm_s_conf0.5_n_a97.73 8997.72 7697.77 16098.63 15494.26 21799.96 3598.92 4697.18 3999.75 2999.69 9087.00 22699.97 5799.46 4798.89 13899.08 209
PMMVS96.76 13496.76 11896.76 20498.28 17992.10 27099.91 8797.98 21994.12 14199.53 5899.39 13086.93 22798.73 20696.95 16797.73 17099.45 168
sasdasda97.09 11696.32 13499.39 4098.93 12798.95 2799.72 17297.35 28394.45 12197.88 14999.42 12386.71 22899.52 15498.48 10493.97 24499.72 110
canonicalmvs97.09 11696.32 13499.39 4098.93 12798.95 2799.72 17297.35 28394.45 12197.88 14999.42 12386.71 22899.52 15498.48 10493.97 24499.72 110
MVS96.60 14295.56 16699.72 1396.85 26899.22 2098.31 33398.94 4191.57 23890.90 26399.61 10686.66 23099.96 6597.36 15399.88 7399.99 23
Effi-MVS+96.30 15695.69 16198.16 13497.85 20796.26 14597.41 35797.21 29990.37 27398.65 11798.58 20786.61 23198.70 21097.11 15997.37 18099.52 157
diffmvspermissive97.00 12196.64 12498.09 14097.64 22696.17 15399.81 13997.19 30094.67 11698.95 9899.28 13686.43 23298.76 20398.37 11197.42 17899.33 185
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
nrg03093.51 23592.53 24896.45 21394.36 33097.20 10799.81 13997.16 30591.60 23789.86 27697.46 25086.37 23397.68 27995.88 18280.31 35294.46 279
MGCFI-Net97.00 12196.22 13899.34 4398.86 13898.80 3999.67 18497.30 29094.31 13397.77 15399.41 12786.36 23499.50 15898.38 10993.90 24699.72 110
VNet97.21 11096.57 12899.13 6598.97 12397.82 8199.03 27599.21 2994.31 13399.18 8798.88 17986.26 23599.89 9998.93 7594.32 23899.69 115
AdaColmapbinary97.23 10996.80 11798.51 11599.99 195.60 17599.09 26198.84 5993.32 17296.74 18199.72 8486.04 236100.00 198.01 12899.43 11599.94 78
Effi-MVS+-dtu94.53 20795.30 17392.22 33597.77 21282.54 37999.59 19797.06 31794.92 10595.29 21395.37 32785.81 23797.89 27294.80 20297.07 18596.23 268
CVMVSNet94.68 20294.94 18693.89 30296.80 27186.92 35599.06 26898.98 3894.45 12194.23 22799.02 15785.60 23895.31 37290.91 27195.39 22499.43 171
xiu_mvs_v1_base_debu97.43 9797.06 10398.55 10997.74 21498.14 6699.31 24197.86 23396.43 6699.62 4799.69 9085.56 23999.68 14599.05 6498.31 15497.83 247
xiu_mvs_v1_base97.43 9797.06 10398.55 10997.74 21498.14 6699.31 24197.86 23396.43 6699.62 4799.69 9085.56 23999.68 14599.05 6498.31 15497.83 247
xiu_mvs_v1_base_debi97.43 9797.06 10398.55 10997.74 21498.14 6699.31 24197.86 23396.43 6699.62 4799.69 9085.56 23999.68 14599.05 6498.31 15497.83 247
casdiffmvs_mvgpermissive96.43 14895.94 15297.89 15497.44 23795.47 17899.86 11997.29 29393.35 17096.03 19899.19 14785.39 24298.72 20897.89 13797.04 18799.49 164
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline96.43 14895.98 14697.76 16297.34 24495.17 19499.51 21297.17 30393.92 15496.90 17699.28 13685.37 24398.64 21497.50 15196.86 19399.46 166
PCF-MVS94.20 595.18 18694.10 20498.43 12198.55 15995.99 15897.91 35097.31 28990.35 27489.48 28899.22 14585.19 24499.89 9990.40 28398.47 15099.41 173
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
casdiffmvspermissive96.42 15095.97 14997.77 16097.30 24894.98 19699.84 12797.09 31493.75 16196.58 18599.26 14285.07 24598.78 20197.77 14597.04 18799.54 151
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
D2MVS92.76 25292.59 24793.27 31895.13 31689.54 32699.69 18099.38 2292.26 21987.59 32394.61 35685.05 24697.79 27591.59 25988.01 28992.47 368
fmvsm_s_conf0.1_n97.30 10597.21 9997.60 17297.38 24194.40 21399.90 9398.64 7796.47 6599.51 6299.65 10184.99 24799.93 8899.22 5899.09 13298.46 234
fmvsm_s_conf0.1_n_a97.09 11696.90 11197.63 17095.65 30994.21 21999.83 13498.50 11696.27 7499.65 4199.64 10284.72 24899.93 8899.04 6798.84 14198.74 227
BH-w/o95.71 17295.38 17096.68 20798.49 16592.28 26699.84 12797.50 26992.12 22292.06 25398.79 18984.69 24998.67 21395.29 19099.66 9199.09 207
Fast-Effi-MVS+95.02 19094.19 20297.52 17697.88 20494.55 20799.97 2897.08 31588.85 30394.47 22297.96 23984.59 25098.41 22889.84 29097.10 18499.59 137
PVSNet91.05 1397.13 11396.69 12398.45 11999.52 9295.81 16299.95 5499.65 1294.73 11299.04 9599.21 14684.48 25199.95 7394.92 19798.74 14499.58 143
WR-MVS_H91.30 28190.35 28594.15 28894.17 33492.62 26199.17 25798.94 4188.87 30286.48 34094.46 36184.36 25296.61 33788.19 30578.51 36193.21 356
CHOSEN 1792x268896.81 13096.53 12997.64 16898.91 13493.07 24699.65 18699.80 395.64 8795.39 21198.86 18484.35 25399.90 9496.98 16499.16 12899.95 74
our_test_390.39 30289.48 30793.12 32292.40 36689.57 32599.33 23896.35 36287.84 32185.30 35094.99 34584.14 25496.09 35880.38 36584.56 31593.71 345
MSDG94.37 21393.36 22897.40 18398.88 13793.95 22699.37 23497.38 28085.75 34990.80 26499.17 14984.11 25599.88 10586.35 32798.43 15198.36 238
pmmvs492.10 26791.07 27595.18 24992.82 36194.96 19799.48 21896.83 34187.45 32588.66 30796.56 28483.78 25696.83 32889.29 29384.77 31493.75 340
BH-untuned95.18 18694.83 18896.22 22198.36 17291.22 29299.80 14397.32 28890.91 26091.08 26098.67 19683.51 25798.54 21994.23 21799.61 9998.92 216
LCM-MVSNet-Re92.31 26392.60 24391.43 34497.53 23279.27 39699.02 27791.83 41192.07 22380.31 37694.38 36283.50 25895.48 36897.22 15797.58 17499.54 151
cdsmvs_eth3d_5k23.43 39131.24 3940.00 4080.00 4310.00 4330.00 41998.09 2090.00 4260.00 42799.67 9783.37 2590.00 4270.00 4260.00 4250.00 423
DeepC-MVS94.51 496.92 12796.40 13398.45 11999.16 11195.90 16099.66 18598.06 21296.37 7294.37 22399.49 11883.29 26099.90 9497.63 14999.61 9999.55 147
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
NR-MVSNet91.56 27990.22 28995.60 23594.05 33595.76 16598.25 33698.70 6891.16 25480.78 37596.64 28083.23 26196.57 33891.41 26077.73 36794.46 279
MVStest185.03 35082.76 35991.83 34092.95 35889.16 33198.57 31894.82 39071.68 40668.54 40695.11 33983.17 26295.66 36674.69 38965.32 40390.65 385
3Dnovator+91.53 1196.31 15595.24 17499.52 2896.88 26798.64 5499.72 17298.24 18995.27 9888.42 31498.98 16482.76 26399.94 8197.10 16099.83 7799.96 67
QAPM95.40 18194.17 20399.10 6796.92 26297.71 8599.40 22798.68 7189.31 28988.94 30298.89 17882.48 26499.96 6593.12 24299.83 7799.62 130
PatchMatch-RL96.04 16395.40 16897.95 14699.59 8595.22 19199.52 21099.07 3493.96 15196.49 18798.35 22282.28 26599.82 12390.15 28699.22 12798.81 223
GeoE94.36 21593.48 22296.99 19797.29 24993.54 23799.96 3596.72 34988.35 31493.43 23398.94 17582.05 26698.05 26388.12 30896.48 19999.37 177
3Dnovator91.47 1296.28 15895.34 17199.08 7096.82 27097.47 9899.45 22498.81 6195.52 9289.39 28999.00 16181.97 26799.95 7397.27 15599.83 7799.84 93
v890.54 30089.17 31094.66 26693.43 34693.40 24299.20 25496.94 33385.76 34787.56 32494.51 35781.96 26897.19 30184.94 33978.25 36293.38 352
RRT-MVS96.24 16095.68 16397.94 14997.65 22594.92 19999.27 24997.10 31192.79 19397.43 16197.99 23781.85 26999.37 16898.46 10698.57 14799.53 155
v14890.70 29589.63 30093.92 29992.97 35690.97 29499.75 15896.89 33787.51 32388.27 31595.01 34281.67 27097.04 31487.40 31577.17 37393.75 340
DU-MVS92.46 26091.45 26995.49 23794.05 33595.28 18799.81 13998.74 6592.25 22089.21 29696.64 28081.66 27196.73 33293.20 23777.52 36894.46 279
Baseline_NR-MVSNet90.33 30589.51 30592.81 33092.84 35989.95 32099.77 14993.94 40184.69 36189.04 30095.66 30981.66 27196.52 33990.99 26876.98 37491.97 374
FMVSNet392.69 25591.58 26495.99 22598.29 17797.42 10099.26 25097.62 25289.80 28589.68 28095.32 32981.62 27396.27 35087.01 32385.65 30594.29 294
Fast-Effi-MVS+-dtu93.72 23093.86 21393.29 31797.06 25586.16 35899.80 14396.83 34192.66 20092.58 24697.83 24581.39 27497.67 28089.75 29196.87 19296.05 271
CANet_DTU96.76 13496.15 14098.60 10498.78 14397.53 9299.84 12797.63 24997.25 3799.20 8499.64 10281.36 27599.98 4792.77 24698.89 13898.28 239
WB-MVSnew92.90 24992.77 24093.26 31996.95 26193.63 23499.71 17598.16 20391.49 24094.28 22598.14 23081.33 27696.48 34179.47 36995.46 22189.68 395
V4291.28 28390.12 29494.74 26393.42 34793.46 23999.68 18297.02 32187.36 32689.85 27895.05 34081.31 27797.34 29187.34 31680.07 35493.40 350
test_djsdf92.83 25192.29 25294.47 27891.90 37392.46 26399.55 20697.27 29591.17 25289.96 27296.07 29981.10 27896.89 32394.67 20788.91 27394.05 318
ppachtmachnet_test89.58 32188.35 32493.25 32092.40 36690.44 31099.33 23896.73 34885.49 35285.90 34895.77 30481.09 27996.00 36276.00 38782.49 32993.30 353
v114491.09 28789.83 29694.87 25893.25 34993.69 23399.62 19396.98 32686.83 33689.64 28494.99 34580.94 28097.05 31185.08 33881.16 34093.87 334
v1090.25 30888.82 31794.57 27293.53 34493.43 24099.08 26396.87 33985.00 35687.34 33094.51 35780.93 28197.02 31882.85 35279.23 35793.26 354
EU-MVSNet90.14 31290.34 28689.54 36292.55 36481.06 39098.69 31298.04 21591.41 24886.59 33796.84 27580.83 28293.31 39386.20 32981.91 33494.26 295
v2v48291.30 28190.07 29595.01 25393.13 35093.79 22899.77 14997.02 32188.05 31789.25 29395.37 32780.73 28397.15 30387.28 31780.04 35594.09 315
WR-MVS92.31 26391.25 27195.48 24094.45 32995.29 18699.60 19698.68 7190.10 27888.07 31796.89 27080.68 28496.80 33093.14 24079.67 35694.36 287
HQP2-MVS80.65 285
HQP-MVS94.61 20494.50 19494.92 25795.78 29591.85 27699.87 10897.89 22996.82 5193.37 23498.65 19980.65 28598.39 23297.92 13489.60 26494.53 274
XVG-OURS94.82 19394.74 19195.06 25298.00 19789.19 32899.08 26397.55 26194.10 14294.71 21899.62 10580.51 28799.74 13796.04 17993.06 25696.25 266
v14419290.79 29489.52 30494.59 27093.11 35392.77 25299.56 20496.99 32486.38 34089.82 27994.95 34780.50 28897.10 30883.98 34480.41 35093.90 331
HQP_MVS94.49 20994.36 19794.87 25895.71 30591.74 28099.84 12797.87 23196.38 6993.01 23998.59 20480.47 28998.37 23897.79 14389.55 26794.52 276
plane_prior695.76 29991.72 28380.47 289
v7n89.65 32088.29 32593.72 30592.22 36890.56 30799.07 26797.10 31185.42 35486.73 33494.72 35080.06 29197.13 30581.14 36278.12 36493.49 348
TranMVSNet+NR-MVSNet91.68 27890.61 28194.87 25893.69 34293.98 22599.69 18098.65 7591.03 25888.44 31096.83 27680.05 29296.18 35390.26 28576.89 37694.45 284
FMVSNet588.32 33187.47 33390.88 34796.90 26688.39 34297.28 35995.68 37582.60 37784.67 35592.40 38179.83 29391.16 40376.39 38581.51 33793.09 357
test_fmvsmconf0.01_n96.39 15195.74 15998.32 12791.47 37995.56 17699.84 12797.30 29097.74 1897.89 14899.35 13479.62 29499.85 11199.25 5799.24 12599.55 147
RPSCF91.80 27492.79 23988.83 36798.15 19069.87 40598.11 34496.60 35483.93 36594.33 22499.27 13979.60 29599.46 16691.99 25393.16 25497.18 259
Vis-MVSNetpermissive95.72 17095.15 17897.45 17997.62 22794.28 21699.28 24798.24 18994.27 13896.84 17898.94 17579.39 29698.76 20393.25 23698.49 14999.30 189
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
dmvs_testset83.79 35986.07 34176.94 38992.14 36948.60 42496.75 37190.27 41489.48 28778.65 38398.55 21179.25 29786.65 41266.85 40382.69 32795.57 272
v119290.62 29989.25 30994.72 26593.13 35093.07 24699.50 21497.02 32186.33 34189.56 28795.01 34279.22 29897.09 31082.34 35681.16 34094.01 321
CP-MVSNet91.23 28590.22 28994.26 28693.96 33792.39 26599.09 26198.57 9088.95 29986.42 34196.57 28379.19 29996.37 34590.29 28478.95 35894.02 319
MDA-MVSNet_test_wron85.51 34683.32 35492.10 33690.96 38388.58 33999.20 25496.52 35779.70 38857.12 41492.69 37779.11 30093.86 38877.10 38277.46 37093.86 335
Syy-MVS90.00 31490.63 28088.11 37497.68 22274.66 40199.71 17598.35 16990.79 26492.10 25198.67 19679.10 30193.09 39463.35 40895.95 21096.59 264
YYNet185.50 34783.33 35392.00 33790.89 38488.38 34399.22 25396.55 35679.60 38957.26 41392.72 37679.09 30293.78 38977.25 38177.37 37193.84 336
XVG-OURS-SEG-HR94.79 19694.70 19295.08 25198.05 19589.19 32899.08 26397.54 26393.66 16394.87 21799.58 11078.78 30399.79 12697.31 15493.40 25196.25 266
GA-MVS93.83 22392.84 23696.80 20295.73 30293.57 23599.88 10597.24 29892.57 20792.92 24196.66 27878.73 30497.67 28087.75 31194.06 24399.17 199
dmvs_re93.20 24193.15 23293.34 31596.54 27983.81 37298.71 30998.51 11091.39 24992.37 24998.56 20978.66 30597.83 27493.89 22189.74 26398.38 237
OpenMVScopyleft90.15 1594.77 19893.59 21898.33 12696.07 28797.48 9799.56 20498.57 9090.46 27186.51 33898.95 17378.57 30699.94 8193.86 22299.74 8697.57 256
v192192090.46 30189.12 31194.50 27692.96 35792.46 26399.49 21696.98 32686.10 34389.61 28695.30 33078.55 30797.03 31682.17 35780.89 34894.01 321
MVP-Stereo90.93 28990.45 28492.37 33491.25 38288.76 33398.05 34796.17 36587.27 32884.04 35795.30 33078.46 30897.27 30083.78 34699.70 8991.09 379
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
anonymousdsp91.79 27690.92 27694.41 28390.76 38592.93 25198.93 28697.17 30389.08 29187.46 32795.30 33078.43 30996.92 32192.38 24888.73 27893.39 351
v124090.20 30988.79 31894.44 28093.05 35592.27 26799.38 23296.92 33585.89 34589.36 29094.87 34977.89 31097.03 31680.66 36481.08 34394.01 321
CLD-MVS94.06 22093.90 21194.55 27396.02 28990.69 30299.98 1597.72 24296.62 6291.05 26298.85 18777.21 31198.47 22198.11 12389.51 26994.48 278
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
test_cas_vis1_n_192096.59 14396.23 13797.65 16798.22 18394.23 21899.99 497.25 29797.77 1799.58 5499.08 15377.10 31299.97 5797.64 14899.45 11398.74 227
N_pmnet80.06 36980.78 36777.89 38891.94 37245.28 42698.80 30356.82 42878.10 39280.08 37893.33 37177.03 31395.76 36568.14 40182.81 32692.64 364
WB-MVS76.28 37377.28 37573.29 39381.18 41054.68 41897.87 35194.19 39781.30 38169.43 40490.70 38977.02 31482.06 41635.71 42168.11 39883.13 407
COLMAP_ROBcopyleft90.47 1492.18 26691.49 26894.25 28799.00 12088.04 34698.42 33096.70 35082.30 37888.43 31299.01 15976.97 31599.85 11186.11 33196.50 19794.86 273
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
cascas94.64 20393.61 21597.74 16497.82 20996.26 14599.96 3597.78 24085.76 34794.00 22997.54 24976.95 31699.21 17497.23 15695.43 22397.76 251
BH-RMVSNet95.18 18694.31 20097.80 15598.17 18895.23 19099.76 15497.53 26592.52 21094.27 22699.25 14376.84 31798.80 19990.89 27299.54 10499.35 182
PEN-MVS90.19 31089.06 31393.57 31193.06 35490.90 29899.06 26898.47 11988.11 31685.91 34796.30 29076.67 31895.94 36387.07 32076.91 37593.89 332
CL-MVSNet_self_test84.50 35583.15 35688.53 37186.00 40181.79 38598.82 30097.35 28385.12 35583.62 36290.91 38876.66 31991.40 40269.53 39860.36 41192.40 369
IterMVS90.91 29090.17 29293.12 32296.78 27490.42 31198.89 29097.05 32089.03 29386.49 33995.42 32276.59 32095.02 37487.22 31884.09 31993.93 329
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
SSC-MVS75.42 37476.40 37772.49 39780.68 41253.62 41997.42 35694.06 39980.42 38568.75 40590.14 39176.54 32181.66 41733.25 42266.34 40282.19 408
IterMVS-SCA-FT90.85 29390.16 29392.93 32796.72 27689.96 31998.89 29096.99 32488.95 29986.63 33695.67 30876.48 32295.00 37587.04 32184.04 32293.84 336
SCA94.69 20093.81 21497.33 18997.10 25394.44 20898.86 29698.32 17693.30 17396.17 19795.59 31276.48 32297.95 26991.06 26697.43 17699.59 137
ab-mvs94.69 20093.42 22498.51 11598.07 19496.26 14596.49 37498.68 7190.31 27694.54 21997.00 26776.30 32499.71 14195.98 18093.38 25299.56 146
DTE-MVSNet89.40 32388.24 32692.88 32892.66 36389.95 32099.10 26098.22 19287.29 32785.12 35296.22 29276.27 32595.30 37383.56 34875.74 38093.41 349
ACMM91.95 1092.88 25092.52 24993.98 29895.75 30189.08 33299.77 14997.52 26793.00 18289.95 27397.99 23776.17 32698.46 22493.63 23388.87 27594.39 286
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
DSMNet-mixed88.28 33288.24 32688.42 37289.64 39375.38 40098.06 34689.86 41585.59 35188.20 31692.14 38376.15 32791.95 40178.46 37696.05 20697.92 246
VPA-MVSNet92.70 25491.55 26696.16 22295.09 31796.20 15098.88 29299.00 3691.02 25991.82 25495.29 33376.05 32897.96 26895.62 18781.19 33994.30 293
SDMVSNet94.80 19593.96 20997.33 18998.92 13095.42 18199.59 19798.99 3792.41 21492.55 24797.85 24375.81 32998.93 19497.90 13691.62 25997.64 252
TR-MVS94.54 20593.56 22097.49 17897.96 20094.34 21598.71 30997.51 26890.30 27794.51 22198.69 19575.56 33098.77 20292.82 24595.99 20799.35 182
PS-CasMVS90.63 29889.51 30593.99 29793.83 33991.70 28498.98 27998.52 10788.48 31186.15 34596.53 28575.46 33196.31 34988.83 29778.86 36093.95 327
TransMVSNet (Re)87.25 33885.28 34593.16 32193.56 34391.03 29398.54 32194.05 40083.69 36881.09 37396.16 29475.32 33296.40 34476.69 38468.41 39692.06 372
LPG-MVS_test92.96 24792.71 24193.71 30695.43 31388.67 33699.75 15897.62 25292.81 19090.05 26998.49 21375.24 33398.40 23095.84 18389.12 27194.07 316
LGP-MVS_train93.71 30695.43 31388.67 33697.62 25292.81 19090.05 26998.49 21375.24 33398.40 23095.84 18389.12 27194.07 316
ECVR-MVScopyleft95.66 17595.05 18297.51 17798.66 15093.71 23198.85 29898.45 12294.93 10396.86 17798.96 16875.22 33599.20 17795.34 18898.15 16099.64 124
test111195.57 17794.98 18597.37 18598.56 15693.37 24398.86 29698.45 12294.95 10296.63 18398.95 17375.21 33699.11 18395.02 19398.14 16299.64 124
OPM-MVS93.21 24092.80 23894.44 28093.12 35290.85 30099.77 14997.61 25596.19 7791.56 25698.65 19975.16 33798.47 22193.78 22989.39 27093.99 324
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
tfpnnormal89.29 32587.61 33294.34 28594.35 33194.13 22198.95 28398.94 4183.94 36484.47 35695.51 31774.84 33897.39 28877.05 38380.41 35091.48 378
AllTest92.48 25991.64 26295.00 25499.01 11888.43 34098.94 28496.82 34386.50 33888.71 30498.47 21774.73 33999.88 10585.39 33596.18 20396.71 262
TestCases95.00 25499.01 11888.43 34096.82 34386.50 33888.71 30498.47 21774.73 33999.88 10585.39 33596.18 20396.71 262
Anonymous2023120686.32 34185.42 34489.02 36689.11 39580.53 39499.05 27295.28 38385.43 35382.82 36493.92 36674.40 34193.44 39266.99 40281.83 33593.08 358
XXY-MVS91.82 27090.46 28295.88 22993.91 33895.40 18398.87 29597.69 24588.63 30987.87 31997.08 26274.38 34297.89 27291.66 25884.07 32094.35 290
ACMP92.05 992.74 25392.42 25193.73 30495.91 29388.72 33599.81 13997.53 26594.13 14087.00 33298.23 22874.07 34398.47 22196.22 17788.86 27693.99 324
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
LTVRE_ROB88.28 1890.29 30789.05 31494.02 29495.08 31890.15 31697.19 36197.43 27484.91 35983.99 35997.06 26474.00 34498.28 24784.08 34287.71 29393.62 346
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
pm-mvs189.36 32487.81 33094.01 29593.40 34891.93 27498.62 31796.48 35986.25 34283.86 36096.14 29573.68 34597.04 31486.16 33075.73 38193.04 359
pmmvs590.17 31189.09 31293.40 31492.10 37189.77 32399.74 16195.58 37885.88 34687.24 33195.74 30573.41 34696.48 34188.54 30183.56 32493.95 327
OurMVSNet-221017-089.81 31789.48 30790.83 35091.64 37681.21 38898.17 34295.38 38291.48 24285.65 34997.31 25572.66 34797.29 29888.15 30684.83 31393.97 326
jajsoiax91.92 26991.18 27294.15 28891.35 38090.95 29799.00 27897.42 27692.61 20387.38 32897.08 26272.46 34897.36 28994.53 21088.77 27794.13 313
UGNet95.33 18494.57 19397.62 17198.55 15994.85 20098.67 31499.32 2695.75 8596.80 18096.27 29172.18 34999.96 6594.58 20999.05 13498.04 244
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
mvs_tets91.81 27191.08 27494.00 29691.63 37790.58 30698.67 31497.43 27492.43 21387.37 32997.05 26571.76 35097.32 29394.75 20488.68 27994.11 314
SixPastTwentyTwo88.73 32888.01 32990.88 34791.85 37482.24 38198.22 34095.18 38788.97 29782.26 36696.89 27071.75 35196.67 33584.00 34382.98 32593.72 344
test_fmvs195.35 18395.68 16394.36 28498.99 12184.98 36699.96 3596.65 35297.60 2299.73 3398.96 16871.58 35299.93 8898.31 11499.37 11998.17 240
GBi-Net90.88 29189.82 29794.08 29197.53 23291.97 27198.43 32796.95 32987.05 33089.68 28094.72 35071.34 35396.11 35587.01 32385.65 30594.17 303
test190.88 29189.82 29794.08 29197.53 23291.97 27198.43 32796.95 32987.05 33089.68 28094.72 35071.34 35396.11 35587.01 32385.65 30594.17 303
FMVSNet291.02 28889.56 30295.41 24297.53 23295.74 16698.98 27997.41 27887.05 33088.43 31295.00 34471.34 35396.24 35285.12 33785.21 31094.25 297
PVSNet_088.03 1991.80 27490.27 28896.38 21798.27 18090.46 30999.94 7199.61 1393.99 14986.26 34497.39 25471.13 35699.89 9998.77 8767.05 40098.79 224
sd_testset93.55 23492.83 23795.74 23498.92 13090.89 29998.24 33798.85 5692.41 21492.55 24797.85 24371.07 35798.68 21293.93 22091.62 25997.64 252
Anonymous2023121189.86 31688.44 32394.13 29098.93 12790.68 30398.54 32198.26 18676.28 39486.73 33495.54 31470.60 35897.56 28490.82 27380.27 35394.15 309
ITE_SJBPF92.38 33395.69 30885.14 36495.71 37492.81 19089.33 29298.11 23170.23 35998.42 22785.91 33388.16 28893.59 347
ACMH89.72 1790.64 29789.63 30093.66 31095.64 31088.64 33898.55 31997.45 27289.03 29381.62 37097.61 24769.75 36098.41 22889.37 29287.62 29593.92 330
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MVS-HIRNet86.22 34283.19 35595.31 24696.71 27790.29 31292.12 40197.33 28762.85 40986.82 33370.37 41469.37 36197.49 28675.12 38897.99 16898.15 241
Anonymous20240521193.10 24591.99 25796.40 21599.10 11389.65 32498.88 29297.93 22483.71 36794.00 22998.75 19168.79 36299.88 10595.08 19291.71 25899.68 116
test20.0384.72 35483.99 34786.91 37688.19 39880.62 39398.88 29295.94 36988.36 31378.87 38194.62 35568.75 36389.11 40766.52 40475.82 37991.00 381
VPNet91.81 27190.46 28295.85 23194.74 32395.54 17798.98 27998.59 8792.14 22190.77 26597.44 25168.73 36497.54 28594.89 20077.89 36594.46 279
K. test v388.05 33487.24 33590.47 35491.82 37582.23 38298.96 28297.42 27689.05 29276.93 39195.60 31168.49 36595.42 36985.87 33481.01 34693.75 340
ACMH+89.98 1690.35 30489.54 30392.78 33195.99 29086.12 35998.81 30197.18 30289.38 28883.14 36397.76 24668.42 36698.43 22689.11 29586.05 30393.78 339
MDA-MVSNet-bldmvs84.09 35781.52 36491.81 34191.32 38188.00 34798.67 31495.92 37080.22 38655.60 41593.32 37268.29 36793.60 39173.76 39076.61 37793.82 338
ttmdpeth88.23 33387.06 33691.75 34289.91 39287.35 35198.92 28995.73 37387.92 31984.02 35896.31 28968.23 36896.84 32686.33 32876.12 37891.06 380
MS-PatchMatch90.65 29690.30 28791.71 34394.22 33385.50 36398.24 33797.70 24388.67 30786.42 34196.37 28867.82 36998.03 26483.62 34799.62 9591.60 376
KD-MVS_self_test83.59 36182.06 36188.20 37386.93 39980.70 39297.21 36096.38 36082.87 37482.49 36588.97 39567.63 37092.32 39973.75 39162.30 41091.58 377
LFMVS94.75 19993.56 22098.30 12899.03 11795.70 16998.74 30697.98 21987.81 32298.47 12599.39 13067.43 37199.53 15398.01 12895.20 22999.67 118
MIMVSNet90.30 30688.67 32095.17 25096.45 28091.64 28692.39 40097.15 30685.99 34490.50 26693.19 37566.95 37294.86 37982.01 35893.43 25099.01 214
test_vis1_n_192095.44 18095.31 17295.82 23298.50 16488.74 33499.98 1597.30 29097.84 1699.85 999.19 14766.82 37399.97 5798.82 8399.46 11298.76 225
XVG-ACMP-BASELINE91.22 28690.75 27792.63 33293.73 34185.61 36198.52 32397.44 27392.77 19489.90 27596.85 27366.64 37498.39 23292.29 24988.61 28093.89 332
Anonymous2024052992.10 26790.65 27996.47 21198.82 14090.61 30598.72 30898.67 7475.54 39893.90 23198.58 20766.23 37599.90 9494.70 20690.67 26298.90 219
lessismore_v090.53 35290.58 38680.90 39195.80 37177.01 39095.84 30266.15 37696.95 31983.03 35175.05 38293.74 343
USDC90.00 31488.96 31593.10 32494.81 32288.16 34498.71 30995.54 37993.66 16383.75 36197.20 25865.58 37798.31 24383.96 34587.49 29792.85 362
pmmvs-eth3d84.03 35881.97 36290.20 35784.15 40587.09 35398.10 34594.73 39383.05 37274.10 39987.77 40165.56 37894.01 38581.08 36369.24 39389.49 398
Anonymous2024052185.15 34983.81 35189.16 36588.32 39682.69 37798.80 30395.74 37279.72 38781.53 37190.99 38665.38 37994.16 38472.69 39281.11 34290.63 386
LF4IMVS89.25 32688.85 31690.45 35592.81 36281.19 38998.12 34394.79 39191.44 24486.29 34397.11 26065.30 38098.11 25888.53 30285.25 30992.07 371
new_pmnet84.49 35682.92 35789.21 36490.03 39082.60 37896.89 37095.62 37780.59 38475.77 39689.17 39465.04 38194.79 38072.12 39481.02 34590.23 388
CMPMVSbinary61.59 2184.75 35385.14 34683.57 38290.32 38862.54 41096.98 36797.59 25974.33 40269.95 40396.66 27864.17 38298.32 24287.88 31088.41 28589.84 394
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test_040285.58 34483.94 34990.50 35393.81 34085.04 36598.55 31995.20 38676.01 39579.72 38095.13 33764.15 38396.26 35166.04 40686.88 29990.21 389
TDRefinement84.76 35282.56 36091.38 34574.58 41884.80 36997.36 35894.56 39584.73 36080.21 37796.12 29863.56 38498.39 23287.92 30963.97 40690.95 383
mmtdpeth88.52 32987.75 33190.85 34995.71 30583.47 37598.94 28494.85 38988.78 30497.19 16889.58 39263.29 38598.97 19098.54 10162.86 40890.10 391
UnsupCasMVSNet_eth85.52 34583.99 34790.10 35889.36 39483.51 37496.65 37297.99 21789.14 29075.89 39593.83 36763.25 38693.92 38681.92 35967.90 39992.88 361
tt080591.28 28390.18 29194.60 26996.26 28387.55 34898.39 33198.72 6689.00 29589.22 29598.47 21762.98 38798.96 19290.57 27788.00 29097.28 258
new-patchmatchnet81.19 36479.34 37186.76 37782.86 40880.36 39597.92 34995.27 38482.09 37972.02 40086.87 40362.81 38890.74 40571.10 39563.08 40789.19 401
mvs5depth84.87 35182.90 35890.77 35185.59 40384.84 36891.10 40793.29 40683.14 37185.07 35394.33 36362.17 38997.32 29378.83 37572.59 38790.14 390
TinyColmap87.87 33786.51 33891.94 33895.05 31985.57 36297.65 35494.08 39884.40 36381.82 36996.85 27362.14 39098.33 24180.25 36786.37 30291.91 375
test_fmvs1_n94.25 21894.36 19793.92 29997.68 22283.70 37399.90 9396.57 35597.40 2899.67 3998.88 17961.82 39199.92 9198.23 11799.13 13098.14 243
VDDNet93.12 24491.91 25996.76 20496.67 27892.65 26098.69 31298.21 19382.81 37597.75 15499.28 13661.57 39299.48 16498.09 12594.09 24298.15 241
pmmvs685.69 34383.84 35091.26 34690.00 39184.41 37097.82 35296.15 36675.86 39681.29 37295.39 32561.21 39396.87 32583.52 34973.29 38492.50 367
VDD-MVS93.77 22792.94 23596.27 22098.55 15990.22 31498.77 30597.79 23890.85 26296.82 17999.42 12361.18 39499.77 13198.95 7394.13 24198.82 222
testgi89.01 32788.04 32891.90 33993.49 34584.89 36799.73 16895.66 37693.89 15885.14 35198.17 22959.68 39594.66 38177.73 37988.88 27496.16 270
FMVSNet188.50 33086.64 33794.08 29195.62 31291.97 27198.43 32796.95 32983.00 37386.08 34694.72 35059.09 39696.11 35581.82 36084.07 32094.17 303
DeepMVS_CXcopyleft82.92 38495.98 29258.66 41596.01 36892.72 19578.34 38595.51 31758.29 39798.08 26082.57 35385.29 30892.03 373
UniMVSNet_ETH3D90.06 31388.58 32194.49 27794.67 32588.09 34597.81 35397.57 26083.91 36688.44 31097.41 25257.44 39897.62 28291.41 26088.59 28297.77 250
pmmvs380.27 36877.77 37387.76 37580.32 41382.43 38098.23 33991.97 41072.74 40578.75 38287.97 40057.30 39990.99 40470.31 39662.37 40989.87 393
OpenMVS_ROBcopyleft79.82 2083.77 36081.68 36390.03 35988.30 39782.82 37698.46 32495.22 38573.92 40376.00 39491.29 38555.00 40096.94 32068.40 40088.51 28490.34 387
test_fmvs289.47 32289.70 29988.77 37094.54 32775.74 39899.83 13494.70 39494.71 11391.08 26096.82 27754.46 40197.78 27792.87 24488.27 28692.80 363
tmp_tt65.23 38362.94 38672.13 39844.90 42750.03 42381.05 41489.42 41838.45 41748.51 41999.90 1854.09 40278.70 41991.84 25718.26 42187.64 403
EGC-MVSNET69.38 37563.76 38586.26 37890.32 38881.66 38796.24 38093.85 4020.99 4253.22 42692.33 38252.44 40392.92 39659.53 41284.90 31284.21 406
test_vis1_n93.61 23393.03 23495.35 24395.86 29486.94 35499.87 10896.36 36196.85 4999.54 5798.79 18952.41 40499.83 12198.64 9698.97 13699.29 191
MIMVSNet182.58 36280.51 36888.78 36886.68 40084.20 37196.65 37295.41 38178.75 39078.59 38492.44 37851.88 40589.76 40665.26 40778.95 35892.38 370
EG-PatchMatch MVS85.35 34883.81 35189.99 36090.39 38781.89 38498.21 34196.09 36781.78 38074.73 39793.72 36951.56 40697.12 30779.16 37388.61 28090.96 382
UnsupCasMVSNet_bld79.97 37177.03 37688.78 36885.62 40281.98 38393.66 39697.35 28375.51 39970.79 40283.05 40948.70 40794.91 37878.31 37760.29 41289.46 399
test_vis1_rt86.87 34086.05 34289.34 36396.12 28578.07 39799.87 10883.54 42292.03 22678.21 38689.51 39345.80 40899.91 9296.25 17693.11 25590.03 392
test_method80.79 36679.70 37084.08 38192.83 36067.06 40799.51 21295.42 38054.34 41381.07 37493.53 37044.48 40992.22 40078.90 37477.23 37292.94 360
APD_test181.15 36580.92 36681.86 38592.45 36559.76 41496.04 38493.61 40473.29 40477.06 38996.64 28044.28 41096.16 35472.35 39382.52 32889.67 396
mvsany_test382.12 36381.14 36585.06 38081.87 40970.41 40497.09 36492.14 40991.27 25177.84 38788.73 39639.31 41195.49 36790.75 27571.24 38889.29 400
PM-MVS80.47 36778.88 37285.26 37983.79 40772.22 40295.89 38791.08 41285.71 35076.56 39388.30 39736.64 41293.90 38782.39 35569.57 39289.66 397
ambc83.23 38377.17 41662.61 40987.38 41294.55 39676.72 39286.65 40430.16 41396.36 34684.85 34069.86 39090.73 384
Gipumacopyleft66.95 38265.00 38272.79 39491.52 37867.96 40666.16 41795.15 38847.89 41558.54 41267.99 41729.74 41487.54 41150.20 41677.83 36662.87 417
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
EMVS51.44 38851.22 39052.11 40470.71 42044.97 42794.04 39375.66 42635.34 42142.40 42161.56 42228.93 41565.87 42327.64 42424.73 41945.49 420
test_fmvs379.99 37080.17 36979.45 38784.02 40662.83 40899.05 27293.49 40588.29 31580.06 37986.65 40428.09 41688.00 40888.63 29873.27 38587.54 404
test_f78.40 37277.59 37480.81 38680.82 41162.48 41196.96 36893.08 40783.44 36974.57 39884.57 40827.95 41792.63 39784.15 34172.79 38687.32 405
E-PMN52.30 38652.18 38852.67 40371.51 41945.40 42593.62 39776.60 42536.01 41943.50 42064.13 41927.11 41867.31 42231.06 42326.06 41845.30 421
FPMVS68.72 37768.72 37868.71 39965.95 42244.27 42895.97 38694.74 39251.13 41453.26 41690.50 39025.11 41983.00 41560.80 41080.97 34778.87 412
PMMVS267.15 38164.15 38476.14 39170.56 42162.07 41293.89 39487.52 41958.09 41060.02 40978.32 41122.38 42084.54 41459.56 41147.03 41681.80 409
testf168.38 37866.92 37972.78 39578.80 41450.36 42190.95 40887.35 42055.47 41158.95 41088.14 39820.64 42187.60 40957.28 41364.69 40480.39 410
APD_test268.38 37866.92 37972.78 39578.80 41450.36 42190.95 40887.35 42055.47 41158.95 41088.14 39820.64 42187.60 40957.28 41364.69 40480.39 410
LCM-MVSNet67.77 38064.73 38376.87 39062.95 42456.25 41789.37 41193.74 40344.53 41661.99 40880.74 41020.42 42386.53 41369.37 39959.50 41387.84 402
test12337.68 39039.14 39333.31 40519.94 42924.83 43198.36 3329.75 43015.53 42351.31 41787.14 40219.62 42417.74 42547.10 4173.47 42457.36 418
ANet_high56.10 38452.24 38767.66 40049.27 42656.82 41683.94 41382.02 42370.47 40733.28 42364.54 41817.23 42569.16 42145.59 41823.85 42077.02 413
test_vis3_rt68.82 37666.69 38175.21 39276.24 41760.41 41396.44 37568.71 42775.13 40050.54 41869.52 41616.42 42696.32 34880.27 36666.92 40168.89 414
testmvs40.60 38944.45 39229.05 40619.49 43014.11 43299.68 18218.47 42920.74 42264.59 40798.48 21610.95 42717.09 42656.66 41511.01 42255.94 419
PMVScopyleft49.05 2353.75 38551.34 38960.97 40240.80 42834.68 42974.82 41689.62 41737.55 41828.67 42472.12 4137.09 42881.63 41843.17 41968.21 39766.59 416
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
wuyk23d20.37 39220.84 39518.99 40765.34 42327.73 43050.43 4187.67 4319.50 4248.01 4256.34 4256.13 42926.24 42423.40 42510.69 4232.99 422
MVEpermissive53.74 2251.54 38747.86 39162.60 40159.56 42550.93 42079.41 41577.69 42435.69 42036.27 42261.76 4215.79 43069.63 42037.97 42036.61 41767.24 415
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
mmdepth0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4270.00 4310.00 4270.00 4260.00 4250.00 423
monomultidepth0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4270.00 4310.00 4270.00 4260.00 4250.00 423
test_blank0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.02 4260.00 4310.00 4270.00 4260.00 4250.00 423
uanet_test0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4270.00 4310.00 4270.00 4260.00 4250.00 423
DCPMVS0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4270.00 4310.00 4270.00 4260.00 4250.00 423
sosnet-low-res0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4270.00 4310.00 4270.00 4260.00 4250.00 423
sosnet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4270.00 4310.00 4270.00 4260.00 4250.00 423
uncertanet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4270.00 4310.00 4270.00 4260.00 4250.00 423
Regformer0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4270.00 4310.00 4270.00 4260.00 4250.00 423
ab-mvs-re8.28 39311.04 3960.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 42799.40 1280.00 4310.00 4270.00 4260.00 4250.00 423
uanet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4270.00 4310.00 4270.00 4260.00 4250.00 423
WAC-MVS90.97 29486.10 332
FOURS199.92 3197.66 8999.95 5498.36 16795.58 8999.52 60
MSC_two_6792asdad99.93 299.91 3999.80 298.41 152100.00 199.96 9100.00 1100.00 1
No_MVS99.93 299.91 3999.80 298.41 152100.00 199.96 9100.00 1100.00 1
eth-test20.00 431
eth-test0.00 431
IU-MVS99.93 2499.31 1098.41 15297.71 1999.84 12100.00 1100.00 1100.00 1
save fliter99.82 5898.79 4099.96 3598.40 15697.66 21
test_0728_SECOND99.82 799.94 1399.47 799.95 5498.43 135100.00 199.99 5100.00 1100.00 1
GSMVS99.59 137
test_part299.89 4599.25 1899.49 63
MTGPAbinary98.28 183
MTMP99.87 10896.49 358
gm-plane-assit96.97 26093.76 23091.47 24398.96 16898.79 20094.92 197
test9_res99.71 3699.99 21100.00 1
agg_prior299.48 46100.00 1100.00 1
agg_prior99.93 2498.77 4298.43 13599.63 4499.85 111
test_prior498.05 7099.94 71
test_prior99.43 3599.94 1398.49 6098.65 7599.80 12499.99 23
旧先验299.46 22394.21 13999.85 999.95 7396.96 166
新几何299.40 227
无先验99.49 21698.71 6793.46 167100.00 194.36 21299.99 23
原ACMM299.90 93
testdata299.99 3690.54 279
testdata199.28 24796.35 73
plane_prior795.71 30591.59 288
plane_prior597.87 23198.37 23897.79 14389.55 26794.52 276
plane_prior498.59 204
plane_prior391.64 28696.63 6093.01 239
plane_prior299.84 12796.38 69
plane_prior195.73 302
plane_prior91.74 28099.86 11996.76 5589.59 266
n20.00 432
nn0.00 432
door-mid89.69 416
test1198.44 127
door90.31 413
HQP5-MVS91.85 276
HQP-NCC95.78 29599.87 10896.82 5193.37 234
ACMP_Plane95.78 29599.87 10896.82 5193.37 234
BP-MVS97.92 134
HQP4-MVS93.37 23498.39 23294.53 274
HQP3-MVS97.89 22989.60 264
NP-MVS95.77 29891.79 27898.65 199
ACMMP++_ref87.04 298
ACMMP++88.23 287