This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort by
MSP-MVS82.30 683.47 178.80 5982.99 12252.71 13585.04 13588.63 4566.08 7386.77 392.75 3272.05 191.46 7083.35 2093.53 192.23 37
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DVP-MVS++82.44 382.38 682.62 491.77 457.49 1784.98 13888.88 3458.00 22183.60 693.39 1867.21 296.39 481.64 3191.98 493.98 5
OPU-MVS81.71 1392.05 355.97 4892.48 394.01 567.21 295.10 1589.82 392.55 394.06 3
PC_three_145266.58 6187.27 293.70 1066.82 494.95 1789.74 491.98 493.98 5
DPM-MVS82.39 482.36 782.49 580.12 19859.50 592.24 890.72 1569.37 3383.22 894.47 263.81 593.18 3274.02 8493.25 294.80 1
WBMVS73.93 9673.39 8975.55 14487.82 3955.21 6589.37 3787.29 7067.27 5363.70 17480.30 24960.32 686.47 23361.58 17062.85 25484.97 217
DELS-MVS82.32 582.50 581.79 1286.80 4756.89 2992.77 286.30 9077.83 177.88 3392.13 4160.24 794.78 1978.97 4489.61 893.69 8
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
dcpmvs_279.33 2178.94 2180.49 2589.75 1256.54 3684.83 14583.68 15867.85 4569.36 10790.24 8960.20 892.10 5884.14 1680.40 8292.82 25
baseline275.15 8274.54 7976.98 10981.67 15851.74 15783.84 17591.94 369.97 2758.98 23086.02 17059.73 991.73 6468.37 11970.40 18987.48 169
CSCG80.41 1579.72 1682.49 589.12 2557.67 1589.29 4191.54 559.19 19771.82 8290.05 9759.72 1096.04 1078.37 5088.40 1493.75 7
GG-mvs-BLEND77.77 8686.68 4850.61 17668.67 34788.45 5168.73 11487.45 15159.15 1190.67 9254.83 23387.67 1792.03 45
SED-MVS81.92 881.75 982.44 789.48 1756.89 2992.48 388.94 3257.50 23584.61 494.09 358.81 1296.37 682.28 2687.60 1894.06 3
test_241102_ONE89.48 1756.89 2988.94 3257.53 23384.61 493.29 2258.81 1296.45 1
gg-mvs-nofinetune67.43 22164.53 24676.13 12885.95 5547.79 26564.38 36188.28 5339.34 36666.62 12941.27 40358.69 1489.00 14249.64 26986.62 3191.59 58
balanced_conf0380.28 1679.73 1581.90 1186.47 5159.34 680.45 26089.51 2469.76 2971.05 9486.66 16458.68 1593.24 3184.64 1490.40 693.14 18
UBG78.86 2478.86 2278.86 5787.80 4055.43 5587.67 6491.21 1072.83 972.10 7988.40 12858.53 1689.08 13773.21 9477.98 10792.08 41
testing1179.18 2278.85 2380.16 3388.33 3056.99 2688.31 5292.06 172.82 1070.62 10288.37 12957.69 1792.30 5075.25 7476.24 12891.20 73
MVSMamba_PlusPlus75.28 7773.39 8980.96 2180.85 18358.25 1074.47 30987.61 6750.53 30665.24 14783.41 20357.38 1892.83 3673.92 8687.13 2191.80 54
testing9978.45 2677.78 3480.45 2888.28 3356.81 3287.95 5991.49 671.72 1470.84 9688.09 13757.29 1992.63 4469.24 11375.13 14491.91 49
CostFormer73.89 9872.30 10778.66 6582.36 14156.58 3375.56 29985.30 11366.06 7470.50 10476.88 28957.02 2089.06 13868.27 12168.74 20090.33 93
test_0728_THIRD58.00 22181.91 1493.64 1256.54 2196.44 281.64 3186.86 2692.23 37
DPE-MVScopyleft79.82 1979.66 1780.29 3089.27 2455.08 7288.70 4787.92 5855.55 26581.21 1993.69 1156.51 2294.27 2278.36 5185.70 4091.51 63
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
ETVMVS75.80 7275.44 6476.89 11286.23 5450.38 18585.55 11891.42 771.30 2068.80 11387.94 14356.42 2389.24 13256.54 22274.75 15191.07 77
DeepPCF-MVS69.37 180.65 1381.56 1177.94 8585.46 6649.56 20590.99 2186.66 8270.58 2380.07 2495.30 156.18 2490.97 8782.57 2586.22 3693.28 13
test_241102_TWO88.76 4157.50 23583.60 694.09 356.14 2596.37 682.28 2687.43 2092.55 30
testing9178.30 3277.54 3780.61 2388.16 3557.12 2587.94 6091.07 1471.43 1770.75 9788.04 14155.82 2692.65 4269.61 10975.00 14892.05 44
patch_mono-280.84 1281.59 1078.62 6690.34 953.77 10488.08 5488.36 5276.17 279.40 2791.09 6455.43 2790.09 11085.01 1280.40 8291.99 48
testing22277.70 4077.22 4279.14 4886.95 4554.89 7887.18 7991.96 272.29 1271.17 9388.70 12255.19 2891.24 7665.18 14876.32 12791.29 71
DVP-MVScopyleft81.30 1081.00 1382.20 889.40 2057.45 1992.34 589.99 2057.71 22981.91 1493.64 1255.17 2996.44 281.68 2987.13 2192.72 28
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072689.40 2057.45 1992.32 788.63 4557.71 22983.14 993.96 655.17 29
TSAR-MVS + MP.78.31 3178.26 2678.48 7081.33 17256.31 4281.59 24086.41 8769.61 3181.72 1688.16 13655.09 3188.04 18374.12 8386.31 3491.09 76
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
BP-MVS176.09 6275.55 6177.71 8879.49 20552.27 14684.70 14890.49 1764.44 9569.86 10690.31 8855.05 3291.35 7270.07 10775.58 13789.53 117
baseline172.51 12272.12 11373.69 20185.05 7344.46 30483.51 18486.13 9571.61 1664.64 15687.97 14255.00 3389.48 12559.07 19156.05 31087.13 177
test_one_060189.39 2257.29 2288.09 5557.21 24182.06 1393.39 1854.94 34
MM82.69 283.29 380.89 2284.38 8655.40 5992.16 1089.85 2275.28 482.41 1193.86 854.30 3593.98 2390.29 187.13 2193.30 12
TSAR-MVS + GP.77.82 3877.59 3678.49 6985.25 7150.27 19290.02 2690.57 1656.58 25474.26 5391.60 5954.26 3692.16 5575.87 6679.91 9093.05 20
EPP-MVSNet71.14 14570.07 14974.33 17979.18 21346.52 28083.81 17686.49 8556.32 25857.95 24984.90 18554.23 3789.14 13658.14 20469.65 19587.33 173
MCST-MVS83.01 183.30 282.15 1092.84 257.58 1693.77 191.10 1175.95 377.10 3793.09 2754.15 3895.57 1285.80 1085.87 3893.31 11
alignmvs78.08 3577.98 3078.39 7483.53 10353.22 12289.77 3285.45 10666.11 7176.59 4191.99 4854.07 3989.05 13977.34 6077.00 11692.89 23
GDP-MVS75.27 7874.38 8077.95 8479.04 21652.86 13385.22 12686.19 9362.43 13870.66 10090.40 8653.51 4091.60 6669.25 11272.68 16789.39 120
WTY-MVS77.47 4377.52 3877.30 9788.33 3046.25 28788.46 5090.32 1871.40 1872.32 7791.72 5453.44 4192.37 4966.28 13375.42 13893.28 13
IB-MVS68.87 274.01 9472.03 11779.94 3883.04 11955.50 5390.24 2588.65 4367.14 5561.38 20081.74 23753.21 4294.28 2160.45 18462.41 25790.03 105
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
HPM-MVS++copyleft80.50 1480.71 1479.88 3987.34 4355.20 6789.93 2987.55 6866.04 7679.46 2693.00 3053.10 4391.76 6380.40 3789.56 992.68 29
miper_enhance_ethall69.77 17368.90 16572.38 22878.93 22049.91 19783.29 19378.85 25264.90 9159.37 22379.46 25652.77 4485.16 26663.78 15458.72 27982.08 264
MVSTER73.25 11072.33 10576.01 13285.54 6453.76 10583.52 18087.16 7267.06 5663.88 17281.66 23852.77 4490.44 9864.66 15264.69 23183.84 240
CNVR-MVS81.76 981.90 881.33 1890.04 1057.70 1491.71 1188.87 3670.31 2577.64 3693.87 752.58 4693.91 2684.17 1587.92 1692.39 33
FIs70.00 16870.24 14769.30 28377.93 24038.55 35383.99 17087.72 6466.86 5957.66 25684.17 19052.28 4785.31 26152.72 25368.80 19984.02 231
tpm270.82 15468.44 17077.98 8180.78 18556.11 4474.21 31181.28 20360.24 17768.04 11975.27 30752.26 4888.50 16555.82 23068.03 20489.33 121
thisisatest051573.64 10572.20 10977.97 8281.63 15953.01 12986.69 9188.81 3962.53 13464.06 16785.65 17452.15 4992.50 4658.43 19769.84 19288.39 149
casdiffmvs_mvgpermissive77.75 3977.28 4079.16 4780.42 19454.44 9187.76 6185.46 10571.67 1571.38 8888.35 13151.58 5091.22 7779.02 4379.89 9291.83 53
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
UniMVSNet_NR-MVSNet68.82 19168.29 17370.40 26975.71 27642.59 32984.23 16286.78 7866.31 6758.51 24082.45 22251.57 5184.64 27453.11 24455.96 31183.96 237
PAPM76.76 5476.07 5678.81 5880.20 19659.11 786.86 8886.23 9168.60 3570.18 10588.84 12051.57 5187.16 21265.48 14186.68 3090.15 101
tttt051768.33 20266.29 21274.46 17478.08 23649.06 21780.88 25589.08 3054.40 28054.75 29080.77 24651.31 5390.33 10249.35 27158.01 29183.99 233
mvs_anonymous72.29 12670.74 13276.94 11182.85 12954.72 8278.43 28481.54 19763.77 10961.69 19779.32 25851.11 5485.31 26162.15 16675.79 13390.79 84
HY-MVS67.03 573.90 9773.14 9576.18 12784.70 7947.36 27075.56 29986.36 8966.27 6870.66 10083.91 19351.05 5589.31 13067.10 12772.61 16891.88 51
thisisatest053070.47 16168.56 16776.20 12579.78 20251.52 16383.49 18688.58 4957.62 23258.60 23982.79 21151.03 5691.48 6952.84 24862.36 25985.59 210
sasdasda78.17 3377.86 3279.12 5084.30 8754.22 9487.71 6284.57 13967.70 4977.70 3492.11 4450.90 5789.95 11378.18 5477.54 11193.20 15
miper_ehance_all_eth68.70 19767.58 18772.08 23576.91 25749.48 21182.47 21678.45 26562.68 13258.28 24877.88 27150.90 5785.01 26961.91 16758.72 27981.75 269
canonicalmvs78.17 3377.86 3279.12 5084.30 8754.22 9487.71 6284.57 13967.70 4977.70 3492.11 4450.90 5789.95 11378.18 5477.54 11193.20 15
casdiffmvspermissive77.36 4476.85 4678.88 5680.40 19554.66 8787.06 8285.88 9872.11 1371.57 8588.63 12750.89 6090.35 10176.00 6579.11 9891.63 57
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVS_030482.10 782.64 480.47 2786.63 4954.69 8492.20 986.66 8274.48 582.63 1093.80 950.83 6193.70 2890.11 286.44 3393.01 21
baseline76.86 5276.24 5478.71 6280.47 19354.20 9883.90 17384.88 12971.38 1971.51 8689.15 11550.51 6290.55 9775.71 6778.65 10191.39 66
MVS_Test75.85 6874.93 7378.62 6684.08 9255.20 6783.99 17085.17 12068.07 4173.38 6182.76 21250.44 6389.00 14265.90 13780.61 7891.64 56
FC-MVSNet-test67.49 21967.91 17866.21 31576.06 26933.06 37480.82 25687.18 7164.44 9554.81 28882.87 20950.40 6482.60 29248.05 28166.55 21782.98 256
nrg03072.27 12871.56 12074.42 17675.93 27350.60 17786.97 8483.21 16962.75 13067.15 12584.38 18750.07 6586.66 22771.19 10062.37 25885.99 199
fmvsm_l_conf0.5_n75.95 6576.16 5575.31 15476.01 27248.44 24184.98 13871.08 34463.50 11781.70 1793.52 1550.00 6687.18 21187.80 576.87 11990.32 94
cl2268.85 18967.69 18572.35 22978.07 23749.98 19682.45 21778.48 26462.50 13658.46 24477.95 26949.99 6785.17 26562.55 16158.72 27981.90 267
fmvsm_l_conf0.5_n_a75.88 6776.07 5675.31 15476.08 26848.34 24485.24 12570.62 34763.13 12581.45 1893.62 1449.98 6887.40 20787.76 676.77 12090.20 99
tpmrst71.04 15069.77 15274.86 16983.19 11455.86 5075.64 29878.73 25867.88 4464.99 15373.73 31949.96 6979.56 32565.92 13667.85 20789.14 128
CANet80.90 1181.17 1280.09 3787.62 4154.21 9691.60 1486.47 8673.13 879.89 2593.10 2549.88 7092.98 3384.09 1784.75 5093.08 19
ET-MVSNet_ETH3D75.23 8074.08 8478.67 6484.52 8355.59 5188.92 4489.21 2868.06 4253.13 30590.22 9149.71 7187.62 20172.12 9770.82 18492.82 25
c3_l67.97 20766.66 20571.91 24676.20 26749.31 21482.13 22378.00 27261.99 14357.64 25776.94 28649.41 7284.93 27060.62 17957.01 30181.49 273
Vis-MVSNet (Re-imp)65.52 25265.63 22965.17 32377.49 24630.54 38175.49 30277.73 27659.34 19252.26 31286.69 16349.38 7380.53 31237.07 32875.28 14084.42 225
EPNet78.36 3078.49 2577.97 8285.49 6552.04 14989.36 3984.07 15173.22 777.03 3891.72 5449.32 7490.17 10973.46 9082.77 6091.69 55
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
testing359.97 28960.19 27959.32 35277.60 24330.01 38781.75 23381.79 19353.54 28450.34 32379.94 25148.99 7576.91 34517.19 40250.59 34271.03 375
tpm68.36 20067.48 19270.97 26179.93 20151.34 16776.58 29578.75 25767.73 4763.54 17974.86 30948.33 7672.36 36953.93 24063.71 23989.21 125
APDe-MVScopyleft78.44 2778.20 2779.19 4588.56 2654.55 8989.76 3387.77 6255.91 26078.56 3092.49 3748.20 7792.65 4279.49 3983.04 5990.39 91
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
MG-MVS78.42 2876.99 4582.73 293.17 164.46 189.93 2988.51 5064.83 9273.52 5988.09 13748.07 7892.19 5462.24 16484.53 5291.53 62
DeepC-MVS67.15 476.90 5176.27 5378.80 5980.70 18755.02 7386.39 9486.71 8066.96 5867.91 12089.97 9948.03 7991.41 7175.60 6984.14 5489.96 107
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MGCFI-Net74.07 9374.64 7872.34 23082.90 12643.33 32180.04 26979.96 22765.61 7974.93 4591.85 5148.01 8080.86 30571.41 9977.10 11492.84 24
test_prior289.04 4361.88 14673.55 5891.46 6348.01 8074.73 7785.46 42
myMVS_eth3d63.52 26363.56 25463.40 33281.73 15334.28 36680.97 25281.02 20660.93 16655.06 28582.64 21748.00 8280.81 30623.42 38758.32 28375.10 349
SF-MVS77.64 4177.42 3978.32 7683.75 10052.47 14086.63 9287.80 5958.78 20974.63 4892.38 3847.75 8391.35 7278.18 5486.85 2791.15 75
test250672.91 11472.43 10474.32 18080.12 19844.18 31183.19 19684.77 13364.02 10365.97 13887.43 15247.67 8488.72 15459.08 19079.66 9490.08 103
1112_ss70.05 16669.37 15872.10 23480.77 18642.78 32785.12 13376.75 29359.69 18461.19 20292.12 4247.48 8583.84 28053.04 24668.21 20289.66 112
Effi-MVS+75.24 7973.61 8880.16 3381.92 14857.42 2185.21 12776.71 29660.68 17273.32 6289.34 11047.30 8691.63 6568.28 12079.72 9391.42 65
UniMVSNet (Re)67.71 21366.80 20170.45 26774.44 29142.93 32582.42 21884.90 12863.69 11259.63 21780.99 24347.18 8785.23 26451.17 26156.75 30283.19 251
test1279.24 4486.89 4656.08 4585.16 12172.27 7847.15 8891.10 8285.93 3790.54 89
PVSNet_Blended_VisFu73.40 10872.44 10376.30 12081.32 17354.70 8385.81 10578.82 25463.70 11164.53 16085.38 17847.11 8987.38 20867.75 12377.55 11086.81 186
test_fmvsm_n_192075.56 7475.54 6275.61 14174.60 29049.51 21081.82 23174.08 31866.52 6480.40 2293.46 1746.95 9089.72 12086.69 775.30 13987.61 167
NCCC79.57 2079.23 2080.59 2489.50 1556.99 2691.38 1688.17 5467.71 4873.81 5692.75 3246.88 9193.28 3078.79 4784.07 5591.50 64
9.1478.19 2885.67 6188.32 5188.84 3859.89 18074.58 5092.62 3546.80 9292.66 4181.40 3585.62 41
VNet77.99 3777.92 3178.19 7887.43 4250.12 19390.93 2291.41 867.48 5275.12 4390.15 9546.77 9391.00 8473.52 8978.46 10393.44 9
PVSNet_BlendedMVS73.42 10773.30 9173.76 19885.91 5651.83 15586.18 9984.24 14865.40 8469.09 11180.86 24546.70 9488.13 17975.43 7065.92 22481.33 281
PVSNet_Blended76.53 5676.54 4976.50 11885.91 5651.83 15588.89 4584.24 14867.82 4669.09 11189.33 11246.70 9488.13 17975.43 7081.48 7389.55 115
SMA-MVScopyleft79.10 2378.76 2480.12 3584.42 8455.87 4987.58 6986.76 7961.48 15480.26 2393.10 2546.53 9692.41 4879.97 3888.77 1192.08 41
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
test_fmvsmconf_n74.41 8874.05 8575.49 14874.16 29648.38 24282.66 20772.57 33167.05 5775.11 4492.88 3146.35 9787.81 18883.93 1871.71 17590.28 95
tpm cat166.28 24562.78 25576.77 11781.40 17057.14 2470.03 34077.19 28553.00 28958.76 23870.73 34946.17 9886.73 22543.27 30864.46 23386.44 191
cl____67.43 22165.93 22271.95 24376.33 26248.02 25782.58 20979.12 24961.30 15756.72 27176.92 28746.12 9986.44 23557.98 20656.31 30581.38 280
DIV-MVS_self_test67.43 22165.93 22271.94 24476.33 26248.01 25882.57 21079.11 25061.31 15656.73 27076.92 28746.09 10086.43 23657.98 20656.31 30581.39 279
IS-MVSNet68.80 19367.55 18972.54 22378.50 23143.43 31881.03 25079.35 24559.12 20257.27 26686.71 16246.05 10187.70 19644.32 30475.60 13686.49 190
diffmvspermissive75.11 8374.65 7776.46 11978.52 23053.35 11783.28 19479.94 22870.51 2471.64 8488.72 12146.02 10286.08 24877.52 5875.75 13589.96 107
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EI-MVSNet69.70 17768.70 16672.68 22075.00 28448.90 22579.54 27387.16 7261.05 16263.88 17283.74 19645.87 10390.44 9857.42 21764.68 23278.70 309
IterMVS-LS66.63 24065.36 23770.42 26875.10 28248.90 22581.45 24676.69 29761.05 16255.71 28177.10 28445.86 10483.65 28457.44 21657.88 29578.70 309
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EIA-MVS75.92 6675.18 6978.13 7985.14 7251.60 16087.17 8085.32 11264.69 9368.56 11590.53 8045.79 10591.58 6767.21 12682.18 6691.20 73
MVS76.91 4975.48 6381.23 1984.56 8255.21 6580.23 26691.64 458.65 21165.37 14691.48 6245.72 10695.05 1672.11 9889.52 1093.44 9
PAPM_NR71.80 13669.98 15077.26 10081.54 16553.34 11878.60 28385.25 11753.46 28560.53 20888.66 12345.69 10789.24 13256.49 22379.62 9689.19 126
CS-MVS76.77 5376.70 4876.99 10883.55 10248.75 23088.60 4885.18 11966.38 6672.47 7591.62 5845.53 10890.99 8674.48 7982.51 6291.23 72
DeepC-MVS_fast67.50 378.00 3677.63 3579.13 4988.52 2755.12 6989.95 2885.98 9768.31 3671.33 8992.75 3245.52 10990.37 10071.15 10185.14 4691.91 49
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
fmvsm_s_conf0.5_n74.48 8674.12 8375.56 14376.96 25647.85 26385.32 12369.80 35464.16 10178.74 2893.48 1645.51 11089.29 13186.48 866.62 21589.55 115
fmvsm_s_conf0.5_n_a73.68 10473.15 9375.29 15775.45 27948.05 25683.88 17468.84 35963.43 11978.60 2993.37 2045.32 11188.92 14985.39 1164.04 23588.89 133
Test_1112_low_res67.18 22866.23 21470.02 27778.75 22341.02 34383.43 18773.69 32357.29 23858.45 24582.39 22445.30 11280.88 30450.50 26366.26 22388.16 152
ETV-MVS77.17 4676.74 4778.48 7081.80 15154.55 8986.13 10085.33 11168.20 3873.10 6490.52 8145.23 11390.66 9379.37 4080.95 7490.22 97
SPE-MVS-test77.20 4577.25 4177.05 10384.60 8149.04 22089.42 3685.83 10065.90 7772.85 6891.98 5045.10 11491.27 7475.02 7684.56 5190.84 82
NR-MVSNet67.25 22665.99 22071.04 26073.27 30543.91 31285.32 12384.75 13466.05 7553.65 30382.11 23245.05 11585.97 25247.55 28356.18 30883.24 249
UWE-MVS72.17 12972.15 11172.21 23282.26 14244.29 30886.83 8989.58 2365.58 8065.82 14185.06 18145.02 11684.35 27654.07 23875.18 14187.99 159
train_agg76.91 4976.40 5178.45 7285.68 5955.42 5687.59 6784.00 15257.84 22672.99 6590.98 6744.99 11788.58 16078.19 5285.32 4491.34 70
test_885.72 5855.31 6187.60 6683.88 15557.84 22672.84 6990.99 6644.99 11788.34 171
segment_acmp44.97 119
test_fmvsmconf0.1_n73.69 10373.15 9375.34 15270.71 33448.26 24782.15 22171.83 33666.75 6074.47 5292.59 3644.89 12087.78 19383.59 1971.35 17989.97 106
TEST985.68 5955.42 5687.59 6784.00 15257.72 22872.99 6590.98 6744.87 12188.58 160
eth_miper_zixun_eth66.98 23565.28 23872.06 23675.61 27750.40 18381.00 25176.97 29262.00 14256.99 26876.97 28544.84 12285.58 25658.75 19454.42 32480.21 297
MVSFormer73.53 10672.19 11077.57 9183.02 12055.24 6381.63 23781.44 19950.28 30776.67 3990.91 7244.82 12386.11 24360.83 17680.09 8691.36 68
lupinMVS78.38 2978.11 2979.19 4583.02 12055.24 6391.57 1584.82 13069.12 3476.67 3992.02 4644.82 12390.23 10780.83 3680.09 8692.08 41
WR-MVS67.58 21666.76 20270.04 27675.92 27445.06 30286.23 9885.28 11564.31 9858.50 24281.00 24244.80 12582.00 29749.21 27355.57 31683.06 254
fmvsm_s_conf0.1_n73.80 9973.26 9275.43 14973.28 30447.80 26484.57 15569.43 35663.34 12078.40 3193.29 2244.73 12689.22 13485.99 966.28 22289.26 122
ZD-MVS89.55 1453.46 11084.38 14257.02 24373.97 5591.03 6544.57 12791.17 7975.41 7381.78 71
Fast-Effi-MVS+72.73 11771.15 12977.48 9382.75 13254.76 7986.77 9080.64 21463.05 12665.93 13984.01 19144.42 12889.03 14056.45 22676.36 12688.64 140
fmvsm_s_conf0.1_n_a72.82 11672.05 11575.12 16370.95 33347.97 25982.72 20668.43 36162.52 13578.17 3293.08 2844.21 12988.86 15084.82 1363.54 24188.54 144
PCF-MVS61.03 1070.10 16468.40 17175.22 16277.15 25451.99 15079.30 27882.12 18556.47 25661.88 19686.48 16843.98 13087.24 21055.37 23172.79 16686.43 192
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
CDS-MVSNet70.48 16069.43 15673.64 20277.56 24548.83 22783.51 18477.45 28163.27 12262.33 19085.54 17743.85 13183.29 29057.38 21874.00 15488.79 137
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
EI-MVSNet-Vis-set73.19 11172.60 10074.99 16782.56 13849.80 20182.55 21289.00 3166.17 7065.89 14088.98 11643.83 13292.29 5165.38 14769.01 19882.87 258
APD-MVScopyleft76.15 6175.68 5877.54 9288.52 2753.44 11387.26 7885.03 12553.79 28274.91 4691.68 5643.80 13390.31 10374.36 8081.82 6988.87 134
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MVS_111021_HR76.39 5875.38 6679.42 4285.33 6956.47 3888.15 5384.97 12665.15 9066.06 13789.88 10043.79 13492.16 5575.03 7580.03 8989.64 113
thres100view90066.87 23765.42 23671.24 25583.29 11143.15 32381.67 23687.78 6059.04 20355.92 28082.18 23143.73 13587.80 19028.80 36566.36 21982.78 260
thres600view766.46 24365.12 24070.47 26683.41 10543.80 31482.15 22187.78 6059.37 19156.02 27982.21 23043.73 13586.90 22126.51 37764.94 22880.71 291
v14868.24 20566.35 21073.88 19371.76 32251.47 16484.23 16281.90 19263.69 11258.94 23176.44 29443.72 13787.78 19360.63 17855.86 31382.39 262
SD-MVS76.18 6074.85 7480.18 3285.39 6756.90 2885.75 10982.45 18256.79 24974.48 5191.81 5243.72 13790.75 9174.61 7878.65 10192.91 22
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
XXY-MVS70.18 16269.28 16272.89 21777.64 24242.88 32685.06 13487.50 6962.58 13362.66 18882.34 22943.64 13989.83 11658.42 19963.70 24085.96 201
tfpn200view967.57 21766.13 21671.89 24784.05 9345.07 29983.40 18987.71 6560.79 16957.79 25382.76 21243.53 14087.80 19028.80 36566.36 21982.78 260
thres40067.40 22466.13 21671.19 25784.05 9345.07 29983.40 18987.71 6560.79 16957.79 25382.76 21243.53 14087.80 19028.80 36566.36 21980.71 291
PAPR75.20 8174.13 8278.41 7388.31 3255.10 7184.31 16085.66 10263.76 11067.55 12290.73 7743.48 14289.40 12766.36 13277.03 11590.73 85
kuosan50.20 34750.09 33750.52 37173.09 30729.09 39365.25 35674.89 31248.27 32241.34 36560.85 38243.45 14367.48 37918.59 40025.07 40255.01 396
MP-MVScopyleft74.99 8474.33 8176.95 11082.89 12753.05 12885.63 11483.50 16357.86 22567.25 12490.24 8943.38 14488.85 15376.03 6482.23 6588.96 131
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
EI-MVSNet-UG-set72.37 12371.73 11874.29 18181.60 16149.29 21581.85 22988.64 4465.29 8965.05 15088.29 13443.18 14591.83 6263.74 15567.97 20581.75 269
thres20068.71 19567.27 19673.02 21284.73 7846.76 27785.03 13687.73 6362.34 13959.87 21283.45 20243.15 14688.32 17331.25 35867.91 20683.98 235
PHI-MVS77.49 4277.00 4478.95 5385.33 6950.69 17588.57 4988.59 4858.14 21873.60 5793.31 2143.14 14793.79 2773.81 8788.53 1392.37 34
ab-mvs70.65 15769.11 16375.29 15780.87 18246.23 28873.48 31685.24 11859.99 17966.65 12880.94 24443.13 14888.69 15563.58 15668.07 20390.95 80
CDPH-MVS76.05 6475.19 6878.62 6686.51 5054.98 7587.32 7384.59 13858.62 21270.75 9790.85 7443.10 14990.63 9570.50 10484.51 5390.24 96
reproduce_monomvs69.71 17468.52 16873.29 21086.43 5248.21 24983.91 17286.17 9468.02 4354.91 28777.46 27742.96 15088.86 15068.44 11848.38 34782.80 259
v867.25 22664.99 24274.04 18772.89 31153.31 12082.37 21980.11 22461.54 15254.29 29676.02 30342.89 15188.41 16758.43 19756.36 30380.39 295
EC-MVSNet75.30 7675.20 6775.62 14080.98 17649.00 22187.43 7084.68 13663.49 11870.97 9590.15 9542.86 15291.14 8174.33 8181.90 6886.71 187
h-mvs3373.95 9572.89 9877.15 10280.17 19750.37 18684.68 15083.33 16468.08 3971.97 8088.65 12642.50 15391.15 8078.82 4557.78 29789.91 109
hse-mvs271.44 14370.68 13373.73 20076.34 26147.44 26979.45 27679.47 24068.08 3971.97 8086.01 17242.50 15386.93 22078.82 4553.46 33486.83 185
SteuartSystems-ACMMP77.08 4776.33 5279.34 4380.98 17655.31 6189.76 3386.91 7662.94 12871.65 8391.56 6042.33 15592.56 4577.14 6183.69 5790.15 101
Skip Steuart: Steuart Systems R&D Blog.
HyFIR lowres test69.94 17167.58 18777.04 10477.11 25557.29 2281.49 24579.11 25058.27 21658.86 23580.41 24842.33 15586.96 21861.91 16768.68 20186.87 180
ZNCC-MVS75.82 7175.02 7178.23 7783.88 9853.80 10386.91 8786.05 9659.71 18367.85 12190.55 7942.23 15791.02 8372.66 9685.29 4589.87 110
FMVSNet368.84 19067.40 19373.19 21185.05 7348.53 23685.71 11385.36 10960.90 16857.58 25879.15 26142.16 15886.77 22347.25 28663.40 24284.27 227
VPA-MVSNet71.12 14670.66 13472.49 22578.75 22344.43 30687.64 6590.02 1963.97 10665.02 15181.58 24042.14 15987.42 20663.42 15763.38 24585.63 209
jason77.01 4876.45 5078.69 6379.69 20354.74 8090.56 2483.99 15468.26 3774.10 5490.91 7242.14 15989.99 11279.30 4179.12 9791.36 68
jason: jason.
CLD-MVS75.60 7375.39 6576.24 12280.69 18852.40 14190.69 2386.20 9274.40 665.01 15288.93 11742.05 16190.58 9676.57 6373.96 15585.73 205
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
test_yl75.85 6874.83 7578.91 5488.08 3751.94 15191.30 1789.28 2657.91 22371.19 9189.20 11342.03 16292.77 3869.41 11075.07 14692.01 46
DCV-MVSNet75.85 6874.83 7578.91 5488.08 3751.94 15191.30 1789.28 2657.91 22371.19 9189.20 11342.03 16292.77 3869.41 11075.07 14692.01 46
TAMVS69.51 18168.16 17673.56 20576.30 26448.71 23282.57 21077.17 28662.10 14161.32 20184.23 18941.90 16483.46 28754.80 23573.09 16388.50 146
TransMVSNet (Re)62.82 27160.76 27369.02 28573.98 29841.61 33786.36 9579.30 24856.90 24452.53 30876.44 29441.85 16587.60 20238.83 32140.61 37477.86 322
VPNet72.07 13071.42 12474.04 18778.64 22847.17 27489.91 3187.97 5772.56 1164.66 15585.04 18241.83 16688.33 17261.17 17460.97 26486.62 188
v2v48269.55 18067.64 18675.26 16172.32 31853.83 10284.93 14281.94 18865.37 8660.80 20579.25 25941.62 16788.98 14563.03 15959.51 27282.98 256
API-MVS74.17 9272.07 11480.49 2590.02 1158.55 987.30 7584.27 14557.51 23465.77 14387.77 14641.61 16895.97 1151.71 25682.63 6186.94 178
GeoE69.96 17067.88 18076.22 12381.11 17551.71 15884.15 16476.74 29559.83 18160.91 20384.38 18741.56 16988.10 18151.67 25770.57 18788.84 135
CHOSEN 1792x268876.24 5974.03 8682.88 183.09 11762.84 285.73 11185.39 10869.79 2864.87 15483.49 20141.52 17093.69 2970.55 10381.82 6992.12 40
LFMVS78.52 2577.14 4382.67 389.58 1358.90 891.27 1988.05 5663.22 12374.63 4890.83 7541.38 17194.40 2075.42 7279.90 9194.72 2
MAR-MVS76.76 5475.60 6080.21 3190.87 754.68 8589.14 4289.11 2962.95 12770.54 10392.33 3941.05 17294.95 1757.90 21086.55 3291.00 79
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
dongtai43.51 35744.07 35841.82 38263.75 37521.90 40663.80 36272.05 33539.59 36533.35 39354.54 39341.04 17357.30 39410.75 41117.77 41146.26 405
test_fmvsmvis_n_192071.29 14470.38 14174.00 18971.04 33248.79 22979.19 27964.62 37062.75 13066.73 12691.99 4840.94 17488.35 17083.00 2173.18 16084.85 221
GST-MVS74.87 8573.90 8777.77 8683.30 11053.45 11285.75 10985.29 11459.22 19666.50 13389.85 10140.94 17490.76 9070.94 10283.35 5889.10 129
DU-MVS66.84 23865.74 22770.16 27273.27 30542.59 32981.50 24382.92 17663.53 11658.51 24082.11 23240.75 17684.64 27453.11 24455.96 31183.24 249
Baseline_NR-MVSNet65.49 25364.27 24969.13 28474.37 29441.65 33683.39 19178.85 25259.56 18659.62 21876.88 28940.75 17687.44 20549.99 26555.05 31878.28 318
miper_lstm_enhance63.91 25962.30 25868.75 29175.06 28346.78 27669.02 34481.14 20459.68 18552.76 30772.39 33640.71 17877.99 33656.81 22153.09 33581.48 275
HFP-MVS74.37 8973.13 9778.10 8084.30 8753.68 10685.58 11584.36 14356.82 24765.78 14290.56 7840.70 17990.90 8869.18 11480.88 7589.71 111
RRT-MVS73.29 10971.37 12579.07 5284.63 8054.16 9978.16 28586.64 8461.67 14960.17 21082.35 22840.63 18092.26 5370.19 10677.87 10890.81 83
CL-MVSNet_self_test62.98 26961.14 27068.50 29765.86 36242.96 32484.37 15782.98 17460.98 16453.95 29972.70 33240.43 18183.71 28341.10 31547.93 35078.83 308
ACMMP_NAP76.43 5775.66 5978.73 6181.92 14854.67 8684.06 16885.35 11061.10 16172.99 6591.50 6140.25 18291.00 8476.84 6286.98 2590.51 90
v114468.81 19266.82 20074.80 17072.34 31753.46 11084.68 15081.77 19564.25 9960.28 20977.91 27040.23 18388.95 14660.37 18559.52 27181.97 265
WR-MVS_H58.91 30158.04 29361.54 34469.07 34633.83 37176.91 29281.99 18751.40 30248.17 33274.67 31040.23 18374.15 35731.78 35548.10 34876.64 335
原ACMM176.13 12884.89 7754.59 8885.26 11651.98 29666.70 12787.07 15840.15 18589.70 12151.23 26085.06 4884.10 229
MVP-Stereo70.97 15170.44 13772.59 22276.03 27151.36 16685.02 13786.99 7560.31 17656.53 27578.92 26340.11 18690.00 11160.00 18890.01 776.41 338
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
v1066.61 24164.20 25073.83 19672.59 31453.37 11681.88 22879.91 23061.11 16054.09 29875.60 30540.06 18788.26 17756.47 22456.10 30979.86 301
test_fmvsmconf0.01_n71.97 13270.95 13175.04 16466.21 35947.87 26280.35 26370.08 35165.85 7872.69 7091.68 5639.99 18887.67 19782.03 2869.66 19489.58 114
MP-MVS-pluss75.54 7575.03 7077.04 10481.37 17152.65 13784.34 15984.46 14161.16 15869.14 11091.76 5339.98 18988.99 14478.19 5284.89 4989.48 119
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
TranMVSNet+NR-MVSNet66.94 23665.61 23070.93 26273.45 30143.38 31983.02 20284.25 14665.31 8858.33 24781.90 23639.92 19085.52 25749.43 27054.89 32083.89 239
Patchmatch-test53.33 33548.17 34568.81 28973.31 30242.38 33342.98 40058.23 38032.53 38438.79 37770.77 34739.66 19173.51 36325.18 38052.06 33990.55 87
Test By Simon39.38 192
v14419267.86 20965.76 22674.16 18471.68 32353.09 12684.14 16580.83 21262.85 12959.21 22877.28 28139.30 19388.00 18458.67 19557.88 29581.40 278
BH-w/o70.02 16768.51 16974.56 17282.77 13150.39 18486.60 9378.14 27059.77 18259.65 21685.57 17639.27 19487.30 20949.86 26774.94 14985.99 199
dmvs_testset57.65 31158.21 29255.97 36374.62 2899.82 42463.75 36363.34 37467.23 5448.89 33083.68 20039.12 19576.14 35023.43 38659.80 27081.96 266
CR-MVSNet62.47 27659.04 28872.77 21873.97 29956.57 3460.52 37671.72 33860.04 17857.49 26165.86 36538.94 19680.31 31442.86 31159.93 26881.42 276
Patchmtry56.56 31752.95 32467.42 30372.53 31550.59 17859.05 38071.72 33837.86 37246.92 34365.86 36538.94 19680.06 31836.94 33046.72 36071.60 371
sam_mvs138.86 19888.13 155
UA-Net67.32 22566.23 21470.59 26578.85 22141.23 34273.60 31475.45 30861.54 15266.61 13084.53 18638.73 19986.57 23242.48 31474.24 15383.98 235
cdsmvs_eth3d_5k18.33 38724.44 3790.00 4080.00 4300.00 4320.00 41989.40 250.00 4240.00 42792.02 4638.55 2000.00 4250.00 4260.00 4230.00 423
patchmatchnet-post59.74 38538.41 20179.91 321
CHOSEN 280x42057.53 31356.38 30560.97 34874.01 29748.10 25446.30 39654.31 38648.18 32450.88 32177.43 27938.37 20259.16 39254.83 23363.14 25075.66 342
V4267.66 21465.60 23173.86 19470.69 33653.63 10781.50 24378.61 26163.85 10859.49 22277.49 27637.98 20387.65 19862.33 16258.43 28280.29 296
tpmvs62.45 27759.42 28471.53 25283.93 9554.32 9270.03 34077.61 27851.91 29753.48 30468.29 35937.91 20486.66 22733.36 34858.27 28573.62 360
PatchmatchNetpermissive67.07 23363.63 25377.40 9583.10 11558.03 1172.11 33177.77 27558.85 20759.37 22370.83 34637.84 20584.93 27042.96 31069.83 19389.26 122
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
pcd_1.5k_mvsjas3.15 3944.20 3970.00 4080.00 4300.00 4320.00 4190.00 4300.00 4240.00 4270.00 42637.77 2060.00 4250.00 4260.00 4230.00 423
PS-MVSNAJss68.78 19467.17 19773.62 20473.01 30848.33 24684.95 14184.81 13159.30 19558.91 23479.84 25437.77 20688.86 15062.83 16063.12 25183.67 243
PS-MVSNAJ80.06 1779.52 1881.68 1485.58 6360.97 391.69 1287.02 7470.62 2280.75 2193.22 2437.77 20692.50 4682.75 2386.25 3591.57 60
pm-mvs164.12 25862.56 25668.78 29071.68 32338.87 35182.89 20481.57 19655.54 26653.89 30077.82 27237.73 20986.74 22448.46 27953.49 33280.72 290
RPMNet59.29 29354.25 31774.42 17673.97 29956.57 3460.52 37676.98 28935.72 37857.49 26158.87 38837.73 20985.26 26327.01 37659.93 26881.42 276
SDMVSNet71.89 13370.62 13575.70 13981.70 15551.61 15973.89 31288.72 4266.58 6161.64 19882.38 22537.63 21189.48 12577.44 5965.60 22586.01 197
xiu_mvs_v2_base79.86 1879.31 1981.53 1585.03 7560.73 491.65 1386.86 7770.30 2680.77 2093.07 2937.63 21192.28 5282.73 2485.71 3991.57 60
Patchmatch-RL test58.72 30354.32 31671.92 24563.91 37444.25 30961.73 37255.19 38457.38 23749.31 32854.24 39437.60 21380.89 30362.19 16547.28 35590.63 86
HPM-MVScopyleft72.60 11971.50 12175.89 13482.02 14451.42 16580.70 25883.05 17256.12 25964.03 16889.53 10637.55 21488.37 16870.48 10580.04 8887.88 160
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
test_post16.22 41837.52 21584.72 272
PatchT56.60 31652.97 32367.48 30272.94 31046.16 28957.30 38473.78 32238.77 36854.37 29457.26 39137.52 21578.06 33332.02 35352.79 33678.23 320
v119267.96 20865.74 22774.63 17171.79 32153.43 11584.06 16880.99 21063.19 12459.56 21977.46 27737.50 21788.65 15658.20 20358.93 27881.79 268
HQP2-MVS37.35 218
HQP-MVS72.34 12471.44 12375.03 16579.02 21751.56 16188.00 5583.68 15865.45 8164.48 16185.13 17937.35 21888.62 15766.70 12873.12 16184.91 219
region2R73.75 10172.55 10177.33 9683.90 9752.98 13085.54 11984.09 15056.83 24665.10 14990.45 8237.34 22090.24 10668.89 11680.83 7788.77 138
TESTMET0.1,172.86 11572.33 10574.46 17481.98 14550.77 17385.13 13085.47 10466.09 7267.30 12383.69 19837.27 22183.57 28565.06 15078.97 10089.05 130
mvsmamba69.38 18267.52 19174.95 16882.86 12852.22 14767.36 35276.75 29361.14 15949.43 32682.04 23437.26 22284.14 27773.93 8576.91 11788.50 146
ACMMPR73.76 10072.61 9977.24 10183.92 9652.96 13185.58 11584.29 14456.82 24765.12 14890.45 8237.24 22390.18 10869.18 11480.84 7688.58 142
MonoMVSNet66.80 23964.41 24773.96 19076.21 26648.07 25576.56 29678.26 26864.34 9754.32 29574.02 31637.21 22486.36 23864.85 15153.96 32787.45 171
sss70.49 15970.13 14871.58 25181.59 16239.02 35080.78 25784.71 13559.34 19266.61 13088.09 13737.17 22585.52 25761.82 16971.02 18290.20 99
reproduce-ours71.77 13870.43 13875.78 13681.96 14649.54 20882.54 21381.01 20848.77 31969.21 10890.96 6937.13 22689.40 12766.28 13376.01 12988.39 149
our_new_method71.77 13870.43 13875.78 13681.96 14649.54 20882.54 21381.01 20848.77 31969.21 10890.96 6937.13 22689.40 12766.28 13376.01 12988.39 149
EPNet_dtu66.25 24666.71 20364.87 32578.66 22734.12 36982.80 20575.51 30661.75 14764.47 16486.90 15937.06 22872.46 36843.65 30769.63 19688.02 158
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
mamv442.60 35944.05 35938.26 38759.21 38638.00 35644.14 39939.03 40325.03 39740.61 37168.39 35837.01 22924.28 42146.62 29136.43 38052.50 399
v192192067.45 22065.23 23974.10 18671.51 32652.90 13283.75 17880.44 21862.48 13759.12 22977.13 28236.98 23087.90 18657.53 21558.14 28981.49 273
旧先验181.57 16447.48 26771.83 33688.66 12336.94 23178.34 10588.67 139
test-LLR69.65 17869.01 16471.60 24978.67 22548.17 25085.13 13079.72 23359.18 19963.13 18182.58 21936.91 23280.24 31560.56 18075.17 14286.39 193
test0.0.03 162.54 27362.44 25762.86 33772.28 32029.51 39082.93 20378.78 25559.18 19953.07 30682.41 22336.91 23277.39 34237.45 32458.96 27781.66 271
MDTV_nov1_ep13_2view43.62 31571.13 33654.95 27359.29 22736.76 23446.33 29487.32 174
KD-MVS_2432*160059.04 29956.44 30366.86 30979.07 21445.87 29172.13 32980.42 21955.03 27148.15 33371.01 34436.73 23578.05 33435.21 33930.18 39676.67 332
miper_refine_blended59.04 29956.44 30366.86 30979.07 21445.87 29172.13 32980.42 21955.03 27148.15 33371.01 34436.73 23578.05 33435.21 33930.18 39676.67 332
GBi-Net67.09 23165.47 23371.96 24082.71 13346.36 28283.52 18083.31 16558.55 21357.58 25876.23 29836.72 23786.20 23947.25 28663.40 24283.32 246
test167.09 23165.47 23371.96 24082.71 13346.36 28283.52 18083.31 16558.55 21357.58 25876.23 29836.72 23786.20 23947.25 28663.40 24283.32 246
FMVSNet267.57 21765.79 22572.90 21582.71 13347.97 25985.15 12984.93 12758.55 21356.71 27278.26 26836.72 23786.67 22646.15 29562.94 25384.07 230
AUN-MVS68.20 20666.35 21073.76 19876.37 26047.45 26879.52 27579.52 23860.98 16462.34 18986.02 17036.59 24086.94 21962.32 16353.47 33386.89 179
reproduce_model71.07 14869.67 15475.28 15981.51 16848.82 22881.73 23480.57 21747.81 32568.26 11790.78 7636.49 24188.60 15965.12 14974.76 15088.42 148
BH-untuned68.28 20366.40 20973.91 19281.62 16050.01 19585.56 11777.39 28257.63 23157.47 26383.69 19836.36 24287.08 21444.81 30073.08 16484.65 222
EPMVS68.45 19965.44 23577.47 9484.91 7656.17 4371.89 33381.91 19161.72 14860.85 20472.49 33336.21 24387.06 21547.32 28571.62 17689.17 127
MSLP-MVS++74.21 9172.25 10880.11 3681.45 16956.47 3886.32 9679.65 23658.19 21766.36 13492.29 4036.11 24490.66 9367.39 12482.49 6393.18 17
FA-MVS(test-final)69.00 18866.60 20776.19 12683.48 10447.96 26174.73 30682.07 18657.27 23962.18 19278.47 26736.09 24592.89 3453.76 24271.32 18087.73 164
MTAPA72.73 11771.22 12777.27 9981.54 16553.57 10867.06 35481.31 20159.41 19068.39 11690.96 6936.07 24689.01 14173.80 8882.45 6489.23 124
HQP_MVS70.96 15269.91 15174.12 18577.95 23849.57 20385.76 10782.59 17963.60 11462.15 19383.28 20636.04 24788.30 17465.46 14272.34 17084.49 223
plane_prior678.42 23349.39 21336.04 247
sam_mvs35.99 249
PGM-MVS72.60 11971.20 12876.80 11582.95 12352.82 13483.07 20082.14 18456.51 25563.18 18089.81 10235.68 25089.76 11967.30 12580.19 8587.83 161
XVS72.92 11371.62 11976.81 11383.41 10552.48 13884.88 14383.20 17058.03 21963.91 17089.63 10535.50 25189.78 11765.50 13980.50 8088.16 152
X-MVStestdata65.85 25162.20 25976.81 11383.41 10552.48 13884.88 14383.20 17058.03 21963.91 1704.82 42235.50 25189.78 11765.50 13980.50 8088.16 152
v124066.99 23464.68 24473.93 19171.38 32952.66 13683.39 19179.98 22661.97 14458.44 24677.11 28335.25 25387.81 18856.46 22558.15 28781.33 281
test111171.06 14970.42 14072.97 21479.48 20641.49 33984.82 14682.74 17864.20 10062.98 18387.43 15235.20 25487.92 18558.54 19678.42 10489.49 118
dp64.41 25561.58 26372.90 21582.40 13954.09 10072.53 32376.59 29960.39 17555.68 28270.39 35035.18 25576.90 34739.34 32061.71 26187.73 164
Syy-MVS61.51 28261.35 26762.00 34081.73 15330.09 38580.97 25281.02 20660.93 16655.06 28582.64 21735.09 25680.81 30616.40 40458.32 28375.10 349
ECVR-MVScopyleft71.81 13571.00 13074.26 18280.12 19843.49 31684.69 14982.16 18364.02 10364.64 15687.43 15235.04 25789.21 13561.24 17379.66 9490.08 103
CP-MVS72.59 12171.46 12276.00 13382.93 12552.32 14486.93 8682.48 18155.15 26963.65 17590.44 8535.03 25888.53 16468.69 11777.83 10987.15 176
CP-MVSNet58.54 30757.57 29661.46 34568.50 35033.96 37076.90 29378.60 26251.67 30147.83 33676.60 29334.99 25972.79 36635.45 33647.58 35277.64 326
dmvs_re67.61 21566.00 21972.42 22781.86 15043.45 31764.67 36080.00 22569.56 3260.07 21185.00 18334.71 26087.63 19951.48 25866.68 21386.17 196
MDTV_nov1_ep1361.56 26481.68 15755.12 6972.41 32578.18 26959.19 19758.85 23669.29 35534.69 26186.16 24236.76 33262.96 252
WB-MVSnew69.36 18368.24 17472.72 21979.26 21149.40 21285.72 11288.85 3761.33 15564.59 15982.38 22534.57 26287.53 20446.82 29070.63 18581.22 285
3Dnovator64.70 674.46 8772.48 10280.41 2982.84 13055.40 5983.08 19988.61 4767.61 5159.85 21388.66 12334.57 26293.97 2458.42 19988.70 1291.85 52
Vis-MVSNetpermissive70.61 15869.34 15974.42 17680.95 18148.49 23886.03 10377.51 28058.74 21065.55 14587.78 14534.37 26485.95 25352.53 25480.61 7888.80 136
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test_post170.84 33714.72 42134.33 26583.86 27948.80 275
OPM-MVS70.75 15669.58 15574.26 18275.55 27851.34 16786.05 10283.29 16861.94 14562.95 18485.77 17334.15 26688.44 16665.44 14571.07 18182.99 255
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
DP-MVS Recon71.99 13170.31 14377.01 10690.65 853.44 11389.37 3782.97 17556.33 25763.56 17889.47 10734.02 26792.15 5754.05 23972.41 16985.43 212
PEN-MVS58.35 30857.15 29861.94 34167.55 35734.39 36577.01 29178.35 26751.87 29847.72 33776.73 29133.91 26873.75 36134.03 34647.17 35677.68 324
QAPM71.88 13469.33 16079.52 4082.20 14354.30 9386.30 9788.77 4056.61 25359.72 21587.48 15033.90 26995.36 1347.48 28481.49 7288.90 132
新几何173.30 20983.10 11553.48 10971.43 34245.55 34166.14 13587.17 15633.88 27080.54 31148.50 27880.33 8485.88 204
131471.11 14769.41 15776.22 12379.32 20950.49 18080.23 26685.14 12359.44 18958.93 23288.89 11933.83 27189.60 12461.49 17177.42 11388.57 143
SR-MVS70.92 15369.73 15374.50 17383.38 10950.48 18184.27 16179.35 24548.96 31766.57 13290.45 8233.65 27287.11 21366.42 13074.56 15285.91 202
mPP-MVS71.79 13770.38 14176.04 13182.65 13652.06 14884.45 15681.78 19455.59 26462.05 19589.68 10433.48 27388.28 17665.45 14478.24 10687.77 163
OMC-MVS65.97 25065.06 24168.71 29272.97 30942.58 33178.61 28275.35 30954.72 27559.31 22586.25 16933.30 27477.88 33857.99 20567.05 21185.66 207
BH-RMVSNet70.08 16568.01 17776.27 12184.21 9151.22 17187.29 7679.33 24758.96 20663.63 17686.77 16133.29 27590.30 10544.63 30273.96 15587.30 175
JIA-IIPM52.33 34047.77 34866.03 31671.20 33046.92 27540.00 40576.48 30037.10 37346.73 34437.02 40532.96 27677.88 33835.97 33452.45 33873.29 363
PS-CasMVS58.12 30957.03 30061.37 34668.24 35433.80 37276.73 29478.01 27151.20 30347.54 34076.20 30132.85 27772.76 36735.17 34147.37 35477.55 327
DTE-MVSNet57.03 31455.73 30960.95 34965.94 36132.57 37775.71 29777.09 28851.16 30446.65 34676.34 29632.84 27873.22 36530.94 35944.87 36577.06 329
pmmvs463.34 26661.07 27170.16 27270.14 33850.53 17979.97 27071.41 34355.08 27054.12 29778.58 26532.79 27982.09 29650.33 26457.22 30077.86 322
TR-MVS69.71 17467.85 18375.27 16082.94 12448.48 23987.40 7280.86 21157.15 24264.61 15887.08 15732.67 28089.64 12346.38 29371.55 17887.68 166
VDD-MVS76.08 6374.97 7279.44 4184.27 9053.33 11991.13 2085.88 9865.33 8772.37 7689.34 11032.52 28192.76 4077.90 5775.96 13192.22 39
3Dnovator+62.71 772.29 12670.50 13677.65 9083.40 10851.29 16987.32 7386.40 8859.01 20458.49 24388.32 13332.40 28291.27 7457.04 21982.15 6790.38 92
tfpnnormal61.47 28359.09 28768.62 29476.29 26541.69 33581.14 24985.16 12154.48 27851.32 31673.63 32332.32 28386.89 22221.78 39155.71 31577.29 328
MS-PatchMatch72.34 12471.26 12675.61 14182.38 14055.55 5288.00 5589.95 2165.38 8556.51 27680.74 24732.28 28492.89 3457.95 20888.10 1578.39 316
v7n62.50 27559.27 28672.20 23367.25 35849.83 20077.87 28880.12 22352.50 29348.80 33173.07 32732.10 28587.90 18646.83 28954.92 31978.86 307
IterMVS63.77 26261.67 26270.08 27472.68 31351.24 17080.44 26175.51 30660.51 17451.41 31573.70 32232.08 28678.91 32654.30 23754.35 32580.08 299
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT59.12 29658.81 29060.08 35070.68 33745.07 29980.42 26274.25 31643.54 35650.02 32473.73 31931.97 28756.74 39651.06 26253.60 33178.42 315
SCA63.84 26060.01 28175.32 15378.58 22957.92 1261.61 37377.53 27956.71 25057.75 25570.77 34731.97 28779.91 32148.80 27556.36 30388.13 155
ACMMPcopyleft70.81 15569.29 16175.39 15181.52 16751.92 15383.43 18783.03 17356.67 25258.80 23788.91 11831.92 28988.58 16065.89 13873.39 15985.67 206
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
APD-MVS_3200maxsize69.62 17968.23 17573.80 19781.58 16348.22 24881.91 22779.50 23948.21 32364.24 16689.75 10331.91 29087.55 20363.08 15873.85 15785.64 208
VDDNet74.37 8972.13 11281.09 2079.58 20456.52 3790.02 2686.70 8152.61 29271.23 9087.20 15531.75 29193.96 2574.30 8275.77 13492.79 27
pmmvs562.80 27261.18 26967.66 30169.53 34242.37 33482.65 20875.19 31054.30 28152.03 31378.51 26631.64 29280.67 30848.60 27758.15 28779.95 300
LCM-MVSNet-Re58.82 30256.54 30165.68 31779.31 21029.09 39361.39 37545.79 39360.73 17137.65 38072.47 33431.42 29381.08 30249.66 26870.41 18886.87 180
testdata67.08 30777.59 24445.46 29669.20 35744.47 34971.50 8788.34 13231.21 29470.76 37452.20 25575.88 13285.03 215
SR-MVS-dyc-post68.27 20466.87 19972.48 22680.96 17848.14 25281.54 24176.98 28946.42 33662.75 18689.42 10831.17 29586.09 24760.52 18272.06 17383.19 251
GA-MVS69.04 18666.70 20476.06 13075.11 28152.36 14283.12 19880.23 22263.32 12160.65 20779.22 26030.98 29688.37 16861.25 17266.41 21887.46 170
OpenMVScopyleft61.00 1169.99 16967.55 18977.30 9778.37 23454.07 10184.36 15885.76 10157.22 24056.71 27287.67 14830.79 29792.83 3643.04 30984.06 5685.01 216
Effi-MVS+-dtu66.24 24764.96 24370.08 27475.17 28049.64 20282.01 22474.48 31562.15 14057.83 25176.08 30230.59 29883.79 28165.40 14660.93 26576.81 331
sd_testset67.79 21265.95 22173.32 20781.70 15546.33 28568.99 34580.30 22166.58 6161.64 19882.38 22530.45 29987.63 19955.86 22865.60 22586.01 197
test22279.36 20750.97 17277.99 28767.84 36242.54 36062.84 18586.53 16630.26 30076.91 11785.23 213
MVS_111021_LR69.07 18567.91 17872.54 22377.27 24949.56 20579.77 27173.96 32159.33 19460.73 20687.82 14430.19 30181.53 29869.94 10872.19 17286.53 189
114514_t69.87 17267.88 18075.85 13588.38 2952.35 14386.94 8583.68 15853.70 28355.68 28285.60 17530.07 30291.20 7855.84 22971.02 18283.99 233
CPTT-MVS67.15 22965.84 22471.07 25980.96 17850.32 18981.94 22674.10 31746.18 33957.91 25087.64 14929.57 30381.31 30064.10 15370.18 19181.56 272
CANet_DTU73.71 10273.14 9575.40 15082.61 13750.05 19484.67 15279.36 24469.72 3075.39 4290.03 9829.41 30485.93 25467.99 12279.11 9890.22 97
AdaColmapbinary67.86 20965.48 23275.00 16688.15 3654.99 7486.10 10176.63 29849.30 31457.80 25286.65 16529.39 30588.94 14845.10 29970.21 19081.06 286
RE-MVS-def66.66 20580.96 17848.14 25281.54 24176.98 28946.42 33662.75 18689.42 10829.28 30660.52 18272.06 17383.19 251
CVMVSNet60.85 28660.44 27662.07 33875.00 28432.73 37679.54 27373.49 32636.98 37456.28 27883.74 19629.28 30669.53 37746.48 29263.23 24783.94 238
PMMVS72.98 11272.05 11575.78 13683.57 10148.60 23384.08 16682.85 17761.62 15068.24 11890.33 8728.35 30887.78 19372.71 9576.69 12190.95 80
our_test_359.11 29755.08 31371.18 25871.42 32753.29 12181.96 22574.52 31448.32 32142.08 36069.28 35628.14 30982.15 29434.35 34545.68 36478.11 321
Fast-Effi-MVS+-dtu66.53 24264.10 25173.84 19572.41 31652.30 14584.73 14775.66 30559.51 18756.34 27779.11 26228.11 31085.85 25557.74 21463.29 24683.35 245
Anonymous2023121166.08 24963.67 25273.31 20883.07 11848.75 23086.01 10484.67 13745.27 34356.54 27476.67 29228.06 31188.95 14652.78 25059.95 26782.23 263
Anonymous2024052969.71 17467.28 19577.00 10783.78 9950.36 18788.87 4685.10 12447.22 32964.03 16883.37 20427.93 31292.10 5857.78 21367.44 20988.53 145
HPM-MVS_fast67.86 20966.28 21372.61 22180.67 18948.34 24481.18 24875.95 30450.81 30559.55 22088.05 14027.86 31385.98 25058.83 19373.58 15883.51 244
FMVSNet164.57 25462.11 26071.96 24077.32 24846.36 28283.52 18083.31 16552.43 29454.42 29376.23 29827.80 31486.20 23942.59 31361.34 26383.32 246
CNLPA60.59 28758.44 29167.05 30879.21 21247.26 27279.75 27264.34 37242.46 36151.90 31483.94 19227.79 31575.41 35437.12 32659.49 27378.47 313
TAPA-MVS56.12 1461.82 28160.18 28066.71 31178.48 23237.97 35775.19 30476.41 30146.82 33257.04 26786.52 16727.67 31677.03 34426.50 37867.02 21285.14 214
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
pmmvs659.64 29157.15 29867.09 30666.01 36036.86 36180.50 25978.64 25945.05 34549.05 32973.94 31727.28 31786.10 24543.96 30649.94 34478.31 317
test-mter68.36 20067.29 19471.60 24978.67 22548.17 25085.13 13079.72 23353.38 28663.13 18182.58 21927.23 31880.24 31560.56 18075.17 14286.39 193
D2MVS63.49 26461.39 26669.77 27869.29 34448.93 22478.89 28177.71 27760.64 17349.70 32572.10 34127.08 31983.48 28654.48 23662.65 25576.90 330
XVG-OURS-SEG-HR62.02 27959.54 28369.46 28165.30 36545.88 29065.06 35873.57 32546.45 33557.42 26483.35 20526.95 32078.09 33253.77 24164.03 23684.42 225
test_djsdf63.84 26061.56 26470.70 26468.78 34744.69 30381.63 23781.44 19950.28 30752.27 31176.26 29726.72 32186.11 24360.83 17655.84 31481.29 284
Anonymous2023120659.08 29857.59 29563.55 33068.77 34832.14 37980.26 26579.78 23250.00 31149.39 32772.39 33626.64 32278.36 32933.12 35157.94 29280.14 298
ppachtmachnet_test58.56 30554.34 31571.24 25571.42 32754.74 8081.84 23072.27 33349.02 31645.86 35068.99 35726.27 32383.30 28930.12 36043.23 36975.69 341
test20.0355.22 32554.07 31858.68 35563.14 37825.00 39977.69 28974.78 31352.64 29143.43 35572.39 33626.21 32474.76 35629.31 36347.05 35876.28 339
FE-MVS64.15 25760.43 27775.30 15680.85 18349.86 19968.28 34978.37 26650.26 31059.31 22573.79 31826.19 32591.92 6140.19 31766.67 21484.12 228
FMVSNet558.61 30456.45 30265.10 32477.20 25339.74 34774.77 30577.12 28750.27 30943.28 35767.71 36026.15 32676.90 34736.78 33154.78 32178.65 311
ACMP61.11 966.24 24764.33 24872.00 23974.89 28649.12 21683.18 19779.83 23155.41 26752.29 31082.68 21625.83 32786.10 24560.89 17563.94 23880.78 289
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MIMVSNet63.12 26860.29 27871.61 24875.92 27446.65 27865.15 35781.94 18859.14 20154.65 29169.47 35325.74 32880.63 30941.03 31669.56 19787.55 168
LPG-MVS_test66.44 24464.58 24572.02 23774.42 29248.60 23383.07 20080.64 21454.69 27653.75 30183.83 19425.73 32986.98 21660.33 18664.71 22980.48 293
LGP-MVS_train72.02 23774.42 29248.60 23380.64 21454.69 27653.75 30183.83 19425.73 32986.98 21660.33 18664.71 22980.48 293
test_vis1_n_192068.59 19868.31 17269.44 28269.16 34541.51 33884.63 15368.58 36058.80 20873.26 6388.37 12925.30 33180.60 31079.10 4267.55 20886.23 195
ACMM58.35 1264.35 25662.01 26171.38 25374.21 29548.51 23782.25 22079.66 23547.61 32754.54 29280.11 25025.26 33286.00 24951.26 25963.16 24979.64 302
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
XVG-OURS61.88 28059.34 28569.49 28065.37 36446.27 28664.80 35973.49 32647.04 33157.41 26582.85 21025.15 33378.18 33053.00 24764.98 22784.01 232
PVSNet_057.04 1361.19 28457.24 29773.02 21277.45 24750.31 19079.43 27777.36 28463.96 10747.51 34172.45 33525.03 33483.78 28252.76 25219.22 41084.96 218
WB-MVS37.41 36736.37 36740.54 38554.23 39410.43 42365.29 35543.75 39634.86 38327.81 40254.63 39224.94 33563.21 3826.81 41815.00 41347.98 404
UniMVSNet_ETH3D62.51 27460.49 27568.57 29668.30 35340.88 34573.89 31279.93 22951.81 30054.77 28979.61 25524.80 33681.10 30149.93 26661.35 26283.73 241
DP-MVS59.24 29456.12 30668.63 29388.24 3450.35 18882.51 21564.43 37141.10 36346.70 34578.77 26424.75 33788.57 16322.26 38956.29 30766.96 381
test_cas_vis1_n_192067.10 23066.60 20768.59 29565.17 36743.23 32283.23 19569.84 35355.34 26870.67 9987.71 14724.70 33876.66 34978.57 4964.20 23485.89 203
tt080563.39 26561.31 26869.64 27969.36 34338.87 35178.00 28685.48 10348.82 31855.66 28481.66 23824.38 33986.37 23749.04 27459.36 27583.68 242
cascas69.01 18766.13 21677.66 8979.36 20755.41 5886.99 8383.75 15756.69 25158.92 23381.35 24124.31 34092.10 5853.23 24370.61 18685.46 211
CMPMVSbinary40.41 2155.34 32452.64 32763.46 33160.88 38443.84 31361.58 37471.06 34530.43 39036.33 38274.63 31124.14 34175.44 35348.05 28166.62 21571.12 374
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
UGNet68.71 19567.11 19873.50 20680.55 19247.61 26684.08 16678.51 26359.45 18865.68 14482.73 21523.78 34285.08 26852.80 24976.40 12287.80 162
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
YYNet153.82 33249.96 33865.41 32170.09 34048.95 22272.30 32671.66 34044.25 35231.89 39563.07 37523.73 34373.95 35933.26 34939.40 37673.34 362
MDA-MVSNet_test_wron53.82 33249.95 33965.43 32070.13 33949.05 21872.30 32671.65 34144.23 35331.85 39663.13 37423.68 34474.01 35833.25 35039.35 37773.23 364
PLCcopyleft52.38 1860.89 28558.97 28966.68 31381.77 15245.70 29478.96 28074.04 32043.66 35547.63 33883.19 20823.52 34577.78 34137.47 32360.46 26676.55 337
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
SSC-MVS35.20 36934.30 37137.90 38852.58 3968.65 42661.86 37141.64 40031.81 38825.54 40552.94 39823.39 34659.28 3916.10 41912.86 41445.78 407
ADS-MVSNet255.21 32651.44 33166.51 31480.60 19049.56 20555.03 38865.44 36744.72 34751.00 31861.19 38022.83 34775.41 35428.54 36853.63 32974.57 354
ADS-MVSNet56.17 32051.95 33068.84 28780.60 19053.07 12755.03 38870.02 35244.72 34751.00 31861.19 38022.83 34778.88 32728.54 36853.63 32974.57 354
test_040256.45 31853.03 32266.69 31276.78 25850.31 19081.76 23269.61 35542.79 35943.88 35272.13 33922.82 34986.46 23416.57 40350.94 34163.31 390
UnsupCasMVSNet_eth57.56 31255.15 31164.79 32664.57 37233.12 37373.17 31983.87 15658.98 20541.75 36370.03 35122.54 35079.92 31946.12 29635.31 38381.32 283
xiu_mvs_v1_base_debu71.60 14070.29 14475.55 14477.26 25053.15 12385.34 12079.37 24155.83 26172.54 7190.19 9222.38 35186.66 22773.28 9176.39 12386.85 182
xiu_mvs_v1_base71.60 14070.29 14475.55 14477.26 25053.15 12385.34 12079.37 24155.83 26172.54 7190.19 9222.38 35186.66 22773.28 9176.39 12386.85 182
xiu_mvs_v1_base_debi71.60 14070.29 14475.55 14477.26 25053.15 12385.34 12079.37 24155.83 26172.54 7190.19 9222.38 35186.66 22773.28 9176.39 12386.85 182
LS3D56.40 31953.82 31964.12 32781.12 17445.69 29573.42 31766.14 36635.30 38243.24 35879.88 25222.18 35479.62 32419.10 39864.00 23767.05 380
PVSNet62.49 869.27 18467.81 18473.64 20284.41 8551.85 15484.63 15377.80 27466.42 6559.80 21484.95 18422.14 35580.44 31355.03 23275.11 14588.62 141
MDA-MVSNet-bldmvs51.56 34247.75 34963.00 33471.60 32547.32 27169.70 34372.12 33443.81 35427.65 40363.38 37321.97 35675.96 35127.30 37532.19 39165.70 386
pmmvs-eth3d55.97 32252.78 32665.54 31961.02 38346.44 28175.36 30367.72 36349.61 31343.65 35467.58 36121.63 35777.04 34344.11 30544.33 36673.15 365
anonymousdsp60.46 28857.65 29468.88 28663.63 37645.09 29872.93 32078.63 26046.52 33451.12 31772.80 33121.46 35883.07 29157.79 21253.97 32678.47 313
MVS-HIRNet49.01 34944.71 35361.92 34276.06 26946.61 27963.23 36654.90 38524.77 39833.56 39036.60 40721.28 35975.88 35229.49 36262.54 25663.26 391
Anonymous20240521170.11 16367.88 18076.79 11687.20 4447.24 27389.49 3577.38 28354.88 27466.14 13586.84 16020.93 36091.54 6856.45 22671.62 17691.59 58
UnsupCasMVSNet_bld53.86 33150.53 33563.84 32863.52 37734.75 36471.38 33481.92 19046.53 33338.95 37657.93 38920.55 36180.20 31739.91 31934.09 39076.57 336
EU-MVSNet52.63 33750.72 33458.37 35662.69 38028.13 39672.60 32275.97 30330.94 38940.76 37072.11 34020.16 36270.80 37335.11 34246.11 36276.19 340
N_pmnet41.25 36039.77 36345.66 37868.50 3500.82 43072.51 3240.38 42935.61 37935.26 38661.51 37920.07 36367.74 37823.51 38540.63 37368.42 379
MSDG59.44 29255.14 31272.32 23174.69 28750.71 17474.39 31073.58 32444.44 35043.40 35677.52 27519.45 36490.87 8931.31 35757.49 29975.38 344
K. test v354.04 33049.42 34267.92 30068.55 34942.57 33275.51 30163.07 37552.07 29539.21 37464.59 37119.34 36582.21 29337.11 32725.31 40178.97 306
lessismore_v067.98 29964.76 37141.25 34145.75 39436.03 38465.63 36819.29 36684.11 27835.67 33521.24 40778.59 312
KD-MVS_self_test49.24 34846.85 35156.44 36154.32 39322.87 40257.39 38373.36 33044.36 35137.98 37959.30 38718.97 36771.17 37233.48 34742.44 37075.26 346
OpenMVS_ROBcopyleft53.19 1759.20 29556.00 30768.83 28871.13 33144.30 30783.64 17975.02 31146.42 33646.48 34773.03 32818.69 36888.14 17827.74 37361.80 26074.05 357
mvsany_test143.38 35842.57 36145.82 37750.96 40126.10 39855.80 38627.74 41727.15 39447.41 34274.39 31318.67 36944.95 40844.66 30136.31 38166.40 383
LTVRE_ROB45.45 1952.73 33649.74 34061.69 34369.78 34134.99 36344.52 39767.60 36443.11 35843.79 35374.03 31518.54 37081.45 29928.39 37057.94 29268.62 378
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
SixPastTwentyTwo54.37 32750.10 33667.21 30570.70 33541.46 34074.73 30664.69 36947.56 32839.12 37569.49 35218.49 37184.69 27331.87 35434.20 38975.48 343
new-patchmatchnet48.21 35046.55 35253.18 36757.73 38918.19 41670.24 33871.02 34645.70 34033.70 38960.23 38318.00 37269.86 37627.97 37234.35 38771.49 373
F-COLMAP55.96 32353.65 32162.87 33672.76 31242.77 32874.70 30870.37 34940.03 36441.11 36879.36 25717.77 37373.70 36232.80 35253.96 32772.15 367
jajsoiax63.21 26760.84 27270.32 27068.33 35244.45 30581.23 24781.05 20553.37 28750.96 32077.81 27317.49 37485.49 25959.31 18958.05 29081.02 287
RPSCF45.77 35544.13 35750.68 36957.67 39029.66 38954.92 39045.25 39526.69 39545.92 34975.92 30417.43 37545.70 40727.44 37445.95 36376.67 332
mmtdpeth57.93 31054.78 31467.39 30472.32 31843.38 31972.72 32168.93 35854.45 27956.85 26962.43 37617.02 37683.46 28757.95 20830.31 39575.31 345
PatchMatch-RL56.66 31553.75 32065.37 32277.91 24145.28 29769.78 34260.38 37841.35 36247.57 33973.73 31916.83 37776.91 34536.99 32959.21 27673.92 358
mvs_tets62.96 27060.55 27470.19 27168.22 35544.24 31080.90 25480.74 21352.99 29050.82 32277.56 27416.74 37885.44 26059.04 19257.94 29280.89 288
ACMH+54.58 1558.55 30655.24 31068.50 29774.68 28845.80 29380.27 26470.21 35047.15 33042.77 35975.48 30616.73 37985.98 25035.10 34354.78 32173.72 359
ACMH53.70 1659.78 29055.94 30871.28 25476.59 25948.35 24380.15 26876.11 30249.74 31241.91 36273.45 32616.50 38090.31 10331.42 35657.63 29875.17 347
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MIMVSNet150.35 34647.81 34757.96 35761.53 38227.80 39767.40 35174.06 31943.25 35733.31 39465.38 37016.03 38171.34 37121.80 39047.55 35374.75 351
DSMNet-mixed38.35 36435.36 36947.33 37648.11 40714.91 42037.87 40636.60 40819.18 40334.37 38759.56 38615.53 38253.01 40020.14 39646.89 35974.07 356
EG-PatchMatch MVS62.40 27859.59 28270.81 26373.29 30349.05 21885.81 10584.78 13251.85 29944.19 35173.48 32515.52 38389.85 11540.16 31867.24 21073.54 361
testgi54.25 32952.57 32859.29 35362.76 37921.65 40872.21 32870.47 34853.25 28841.94 36177.33 28014.28 38477.95 33729.18 36451.72 34078.28 318
COLMAP_ROBcopyleft43.60 2050.90 34548.05 34659.47 35167.81 35640.57 34671.25 33562.72 37736.49 37736.19 38373.51 32413.48 38573.92 36020.71 39350.26 34363.92 389
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
OurMVSNet-221017-052.39 33948.73 34363.35 33365.21 36638.42 35468.54 34864.95 36838.19 36939.57 37371.43 34313.23 38679.92 31937.16 32540.32 37571.72 370
MVStest138.35 36434.53 37049.82 37351.43 39930.41 38250.39 39255.25 38317.56 40626.45 40465.85 36711.72 38757.00 39514.79 40517.31 41262.05 392
test_fmvs153.60 33452.54 32956.78 35958.07 38730.26 38368.95 34642.19 39932.46 38563.59 17782.56 22111.55 38860.81 38658.25 20255.27 31779.28 303
tmp_tt9.44 38910.68 3925.73 4052.49 4284.21 42910.48 41818.04 4240.34 42212.59 41420.49 41611.39 3897.03 42413.84 4086.46 4215.95 419
ITE_SJBPF51.84 36858.03 38831.94 38053.57 38936.67 37541.32 36675.23 30811.17 39051.57 40125.81 37948.04 34972.02 369
Anonymous2024052151.65 34148.42 34461.34 34756.43 39239.65 34973.57 31573.47 32936.64 37636.59 38163.98 37210.75 39172.25 37035.35 33749.01 34572.11 368
mvs5depth50.97 34446.98 35062.95 33556.63 39134.23 36862.73 37067.35 36545.03 34648.00 33565.41 36910.40 39279.88 32336.00 33331.27 39474.73 352
AllTest47.32 35244.66 35455.32 36565.08 36837.50 35962.96 36854.25 38735.45 38033.42 39172.82 3299.98 39359.33 38924.13 38343.84 36769.13 376
TestCases55.32 36565.08 36837.50 35954.25 38735.45 38033.42 39172.82 3299.98 39359.33 38924.13 38343.84 36769.13 376
USDC54.36 32851.23 33263.76 32964.29 37337.71 35862.84 36973.48 32856.85 24535.47 38571.94 3429.23 39578.43 32838.43 32248.57 34675.13 348
XVG-ACMP-BASELINE56.03 32152.85 32565.58 31861.91 38140.95 34463.36 36472.43 33245.20 34446.02 34874.09 3149.20 39678.12 33145.13 29858.27 28577.66 325
test_fmvs1_n52.55 33851.19 33356.65 36051.90 39830.14 38467.66 35042.84 39832.27 38662.30 19182.02 2359.12 39760.84 38557.82 21154.75 32378.99 305
test_vis1_n51.19 34349.66 34155.76 36451.26 40029.85 38867.20 35338.86 40432.12 38759.50 22179.86 2538.78 39858.23 39356.95 22052.46 33779.19 304
pmmvs345.53 35641.55 36257.44 35848.97 40539.68 34870.06 33957.66 38128.32 39334.06 38857.29 3908.50 39966.85 38034.86 34434.26 38865.80 385
EGC-MVSNET33.75 37130.42 37543.75 38164.94 37036.21 36260.47 37840.70 4020.02 4230.10 42453.79 3957.39 40060.26 38711.09 41035.23 38534.79 409
test_fmvs245.89 35444.32 35650.62 37045.85 40924.70 40058.87 38237.84 40725.22 39652.46 30974.56 3127.07 40154.69 39749.28 27247.70 35172.48 366
ANet_high34.39 37029.59 37648.78 37430.34 41922.28 40455.53 38763.79 37338.11 37015.47 41136.56 4086.94 40259.98 38813.93 4075.64 42264.08 388
FPMVS35.40 36833.67 37240.57 38446.34 40828.74 39541.05 40257.05 38220.37 40222.27 40753.38 3966.87 40344.94 4098.62 41247.11 35748.01 403
test_vis1_rt40.29 36338.64 36445.25 37948.91 40630.09 38559.44 37927.07 41824.52 39938.48 37851.67 3996.71 40449.44 40244.33 30346.59 36156.23 394
new_pmnet33.56 37231.89 37438.59 38649.01 40420.42 40951.01 39137.92 40620.58 40023.45 40646.79 4016.66 40549.28 40420.00 39731.57 39346.09 406
TinyColmap48.15 35144.49 35559.13 35465.73 36338.04 35563.34 36562.86 37638.78 36729.48 39867.23 3636.46 40673.30 36424.59 38241.90 37266.04 384
ambc62.06 33953.98 39529.38 39135.08 40879.65 23641.37 36459.96 3846.27 40782.15 29435.34 33838.22 37874.65 353
TDRefinement40.91 36138.37 36548.55 37550.45 40233.03 37558.98 38150.97 39028.50 39129.89 39767.39 3626.21 40854.51 39817.67 40135.25 38458.11 393
ttmdpeth40.58 36237.50 36649.85 37249.40 40322.71 40356.65 38546.78 39128.35 39240.29 37269.42 3545.35 40961.86 38420.16 39521.06 40864.96 387
PM-MVS46.92 35343.76 36056.41 36252.18 39732.26 37863.21 36738.18 40537.99 37140.78 36966.20 3645.09 41065.42 38148.19 28041.99 37171.54 372
LF4IMVS33.04 37332.55 37334.52 39140.96 41022.03 40544.45 39835.62 40920.42 40128.12 40162.35 3775.03 41131.88 42021.61 39234.42 38649.63 402
EMVS18.42 38617.66 39020.71 40234.13 41612.64 42246.94 39529.94 41510.46 4165.58 42214.93 4204.23 41238.83 4125.24 4227.51 41910.67 418
E-PMN19.16 38518.40 38921.44 40136.19 41413.63 42147.59 39430.89 41310.73 4145.91 42116.59 4173.66 41339.77 4115.95 4208.14 41710.92 417
test_method24.09 38221.07 38633.16 39427.67 4238.35 42826.63 41435.11 4113.40 42014.35 41236.98 4063.46 41435.31 41519.08 39922.95 40455.81 395
mvsany_test328.00 37525.98 37734.05 39228.97 42015.31 41834.54 40918.17 42316.24 40729.30 39953.37 3972.79 41533.38 41930.01 36120.41 40953.45 398
test_f27.12 37724.85 37833.93 39326.17 42515.25 41930.24 41322.38 42212.53 41228.23 40049.43 4002.59 41634.34 41825.12 38126.99 39952.20 400
test_fmvs337.95 36635.75 36844.55 38035.50 41518.92 41248.32 39334.00 41218.36 40541.31 36761.58 3782.29 41748.06 40642.72 31237.71 37966.66 382
PMMVS226.71 37822.98 38337.87 38936.89 4138.51 42742.51 40129.32 41619.09 40413.01 41337.54 4042.23 41853.11 39914.54 40611.71 41551.99 401
Gipumacopyleft27.47 37624.26 38137.12 39060.55 38529.17 39211.68 41760.00 37914.18 40910.52 41815.12 4192.20 41963.01 3838.39 41335.65 38219.18 415
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
LCM-MVSNet28.07 37423.85 38240.71 38327.46 42418.93 41130.82 41246.19 39212.76 41116.40 40934.70 4101.90 42048.69 40520.25 39424.22 40354.51 397
DeepMVS_CXcopyleft13.10 40321.34 4278.99 42510.02 42710.59 4157.53 42030.55 4131.82 42114.55 4226.83 4177.52 41815.75 416
APD_test126.46 37924.41 38032.62 39637.58 41221.74 40740.50 40430.39 41411.45 41316.33 41043.76 4021.63 42241.62 41011.24 40926.82 40034.51 410
PMVScopyleft19.57 2225.07 38022.43 38532.99 39523.12 42622.98 40140.98 40335.19 41015.99 40811.95 41735.87 4091.47 42349.29 4035.41 42131.90 39226.70 414
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test_vis3_rt24.79 38122.95 38430.31 39728.59 42118.92 41237.43 40717.27 42512.90 41021.28 40829.92 4141.02 42436.35 41328.28 37129.82 39835.65 408
MVEpermissive16.60 2317.34 38813.39 39129.16 39828.43 42219.72 41013.73 41623.63 4217.23 4197.96 41921.41 4150.80 42536.08 4146.97 41610.39 41631.69 411
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
testf121.11 38319.08 38727.18 39930.56 41718.28 41433.43 41024.48 4198.02 41712.02 41533.50 4110.75 42635.09 4167.68 41421.32 40528.17 412
APD_test221.11 38319.08 38727.18 39930.56 41718.28 41433.43 41024.48 4198.02 41712.02 41533.50 4110.75 42635.09 4167.68 41421.32 40528.17 412
wuyk23d9.11 3908.77 39410.15 40440.18 41116.76 41720.28 4151.01 4282.58 4212.66 4230.98 4230.23 42812.49 4234.08 4236.90 4201.19 420
mmdepth0.00 3950.00 3980.00 4080.00 4300.00 4320.00 4190.00 4300.00 4240.00 4270.00 4260.00 4290.00 4250.00 4260.00 4230.00 423
monomultidepth0.00 3950.00 3980.00 4080.00 4300.00 4320.00 4190.00 4300.00 4240.00 4270.00 4260.00 4290.00 4250.00 4260.00 4230.00 423
test_blank0.00 3950.00 3980.00 4080.00 4300.00 4320.00 4190.00 4300.00 4240.00 4270.00 4260.00 4290.00 4250.00 4260.00 4230.00 423
uanet_test0.00 3950.00 3980.00 4080.00 4300.00 4320.00 4190.00 4300.00 4240.00 4270.00 4260.00 4290.00 4250.00 4260.00 4230.00 423
DCPMVS0.00 3950.00 3980.00 4080.00 4300.00 4320.00 4190.00 4300.00 4240.00 4270.00 4260.00 4290.00 4250.00 4260.00 4230.00 423
sosnet-low-res0.00 3950.00 3980.00 4080.00 4300.00 4320.00 4190.00 4300.00 4240.00 4270.00 4260.00 4290.00 4250.00 4260.00 4230.00 423
sosnet0.00 3950.00 3980.00 4080.00 4300.00 4320.00 4190.00 4300.00 4240.00 4270.00 4260.00 4290.00 4250.00 4260.00 4230.00 423
uncertanet0.00 3950.00 3980.00 4080.00 4300.00 4320.00 4190.00 4300.00 4240.00 4270.00 4260.00 4290.00 4250.00 4260.00 4230.00 423
Regformer0.00 3950.00 3980.00 4080.00 4300.00 4320.00 4190.00 4300.00 4240.00 4270.00 4260.00 4290.00 4250.00 4260.00 4230.00 423
testmvs6.14 3928.18 3950.01 4060.01 4290.00 43273.40 3180.00 4300.00 4240.02 4250.15 4240.00 4290.00 4250.02 4240.00 4230.02 421
test1236.01 3938.01 3960.01 4060.00 4300.01 43171.93 3320.00 4300.00 4240.02 4250.11 4250.00 4290.00 4250.02 4240.00 4230.02 421
ab-mvs-re7.68 39110.24 3930.00 4080.00 4300.00 4320.00 4190.00 4300.00 4240.00 42792.12 420.00 4290.00 4250.00 4260.00 4230.00 423
uanet0.00 3950.00 3980.00 4080.00 4300.00 4320.00 4190.00 4300.00 4240.00 4270.00 4260.00 4290.00 4250.00 4260.00 4230.00 423
WAC-MVS34.28 36622.56 388
FOURS183.24 11249.90 19884.98 13878.76 25647.71 32673.42 60
MSC_two_6792asdad81.53 1591.77 456.03 4691.10 1196.22 881.46 3386.80 2892.34 35
No_MVS81.53 1591.77 456.03 4691.10 1196.22 881.46 3386.80 2892.34 35
eth-test20.00 430
eth-test0.00 430
IU-MVS89.48 1757.49 1791.38 966.22 6988.26 182.83 2287.60 1892.44 32
save fliter85.35 6856.34 4189.31 4081.46 19861.55 151
test_0728_SECOND82.20 889.50 1557.73 1392.34 588.88 3496.39 481.68 2987.13 2192.47 31
GSMVS88.13 155
test_part289.33 2355.48 5482.27 12
MTGPAbinary81.31 201
MTMP87.27 7715.34 426
gm-plane-assit83.24 11254.21 9670.91 2188.23 13595.25 1466.37 131
test9_res78.72 4885.44 4391.39 66
agg_prior275.65 6885.11 4791.01 78
agg_prior85.64 6254.92 7683.61 16272.53 7488.10 181
test_prior456.39 4087.15 81
test_prior78.39 7486.35 5354.91 7785.45 10689.70 12190.55 87
旧先验281.73 23445.53 34274.66 4770.48 37558.31 201
新几何281.61 239
无先验85.19 12878.00 27249.08 31585.13 26752.78 25087.45 171
原ACMM283.77 177
testdata277.81 34045.64 297
testdata177.55 29064.14 102
plane_prior777.95 23848.46 240
plane_prior582.59 17988.30 17465.46 14272.34 17084.49 223
plane_prior483.28 206
plane_prior348.95 22264.01 10562.15 193
plane_prior285.76 10763.60 114
plane_prior178.31 235
plane_prior49.57 20387.43 7064.57 9472.84 165
n20.00 430
nn0.00 430
door-mid41.31 401
test1184.25 146
door43.27 397
HQP5-MVS51.56 161
HQP-NCC79.02 21788.00 5565.45 8164.48 161
ACMP_Plane79.02 21788.00 5565.45 8164.48 161
BP-MVS66.70 128
HQP4-MVS64.47 16488.61 15884.91 219
HQP3-MVS83.68 15873.12 161
NP-MVS78.76 22250.43 18285.12 180
ACMMP++_ref63.20 248
ACMMP++59.38 274