This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort by
MSP-MVS82.30 583.47 178.80 4882.99 11152.71 12485.04 12188.63 3366.08 5586.77 392.75 2272.05 191.46 6183.35 893.53 192.23 32
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DVP-MVS++82.44 282.38 482.62 491.77 457.49 1584.98 12488.88 2458.00 18783.60 693.39 1267.21 296.39 481.64 1791.98 493.98 5
OPU-MVS81.71 1292.05 355.97 4392.48 394.01 567.21 295.10 1589.82 192.55 394.06 3
PC_three_145266.58 4687.27 293.70 866.82 494.95 1789.74 291.98 493.98 5
DPM-MVS82.39 382.36 582.49 580.12 17559.50 592.24 890.72 969.37 2383.22 894.47 263.81 593.18 2974.02 6693.25 294.80 1
DELS-MVS82.32 482.50 381.79 1186.80 4256.89 2592.77 286.30 7477.83 177.88 2492.13 3060.24 694.78 1978.97 3089.61 793.69 8
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
dcpmvs_279.33 1878.94 1880.49 2189.75 1256.54 3184.83 13083.68 13967.85 3569.36 8490.24 6960.20 792.10 5084.14 680.40 7892.82 20
baseline275.15 6674.54 6476.98 9781.67 13751.74 14483.84 15791.94 169.97 1958.98 19686.02 14259.73 891.73 5668.37 9270.40 16387.48 139
CSCG80.41 1379.72 1382.49 589.12 2557.67 1389.29 3891.54 359.19 16371.82 6790.05 7759.72 996.04 1078.37 3588.40 1393.75 7
GG-mvs-BLEND77.77 7486.68 4350.61 16268.67 31288.45 3968.73 8887.45 12459.15 1090.67 8354.83 20087.67 1692.03 38
SED-MVS81.92 681.75 782.44 789.48 1756.89 2592.48 388.94 2257.50 20184.61 494.09 358.81 1196.37 682.28 1387.60 1794.06 3
test_241102_ONE89.48 1756.89 2588.94 2257.53 19984.61 493.29 1558.81 1196.45 1
gg-mvs-nofinetune67.43 18664.53 21176.13 11685.95 4747.79 23364.38 32288.28 4139.34 32566.62 10141.27 35758.69 1389.00 12549.64 23586.62 2891.59 49
CostFormer73.89 7872.30 8478.66 5482.36 12856.58 2875.56 26885.30 9566.06 5670.50 8276.88 25257.02 1489.06 12168.27 9468.74 17390.33 80
test_0728_THIRD58.00 18781.91 1293.64 1056.54 1596.44 281.64 1786.86 2392.23 32
DPE-MVScopyleft79.82 1679.66 1480.29 2489.27 2455.08 6588.70 4487.92 4655.55 23181.21 1593.69 956.51 1694.27 2278.36 3685.70 3691.51 54
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
DeepPCF-MVS69.37 180.65 1181.56 977.94 7385.46 5849.56 19090.99 1986.66 6870.58 1580.07 1995.30 156.18 1790.97 7682.57 1286.22 3293.28 12
test_241102_TWO88.76 3057.50 20183.60 694.09 356.14 1896.37 682.28 1387.43 1992.55 25
patch_mono-280.84 1081.59 878.62 5590.34 953.77 9388.08 5088.36 4076.17 279.40 2291.09 4955.43 1990.09 10185.01 480.40 7891.99 41
DVP-MVScopyleft81.30 881.00 1182.20 889.40 2057.45 1792.34 589.99 1357.71 19581.91 1293.64 1055.17 2096.44 281.68 1587.13 2092.72 23
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072689.40 2057.45 1792.32 788.63 3357.71 19583.14 993.96 655.17 20
TSAR-MVS + MP.78.31 2578.26 2178.48 5981.33 15056.31 3781.59 21486.41 7169.61 2281.72 1488.16 11355.09 2288.04 16174.12 6586.31 3091.09 65
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
baseline172.51 9872.12 9073.69 17185.05 6544.46 27483.51 16686.13 7771.61 1064.64 12787.97 11755.00 2389.48 11459.07 16056.05 27587.13 146
test_one_060189.39 2257.29 2088.09 4357.21 20782.06 1193.39 1254.94 24
TSAR-MVS + GP.77.82 3077.59 2978.49 5885.25 6350.27 17790.02 2490.57 1056.58 22074.26 4091.60 4454.26 2592.16 4775.87 4979.91 8693.05 17
EPP-MVSNet71.14 11670.07 11974.33 15179.18 18846.52 24983.81 15886.49 6956.32 22457.95 21584.90 15554.23 2689.14 12058.14 17369.65 16887.33 142
MCST-MVS83.01 183.30 282.15 1092.84 257.58 1493.77 191.10 675.95 377.10 2793.09 1954.15 2795.57 1285.80 385.87 3493.31 11
alignmvs78.08 2777.98 2578.39 6383.53 9253.22 11289.77 3085.45 8866.11 5376.59 3191.99 3654.07 2889.05 12277.34 4377.00 10892.89 19
WTY-MVS77.47 3477.52 3077.30 8588.33 3046.25 25588.46 4790.32 1171.40 1172.32 6391.72 4053.44 2992.37 4366.28 10675.42 12293.28 12
IB-MVS68.87 274.01 7572.03 9379.94 3183.04 10855.50 4990.24 2388.65 3167.14 4261.38 16881.74 20053.21 3094.28 2160.45 15362.41 22390.03 89
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
HPM-MVS++copyleft80.50 1280.71 1279.88 3287.34 3955.20 6089.93 2787.55 5566.04 5879.46 2193.00 2153.10 3191.76 5580.40 2389.56 892.68 24
miper_enhance_ethall69.77 14368.90 13572.38 19578.93 19449.91 18283.29 17678.85 22464.90 7059.37 18979.46 21852.77 3285.16 23563.78 12358.72 24582.08 229
MVSTER73.25 8772.33 8276.01 12085.54 5653.76 9483.52 16287.16 5867.06 4363.88 14381.66 20152.77 3290.44 8964.66 12164.69 20083.84 205
CNVR-MVS81.76 781.90 681.33 1790.04 1057.70 1291.71 988.87 2670.31 1777.64 2693.87 752.58 3493.91 2584.17 587.92 1592.39 28
FIs70.00 13870.24 11769.30 24977.93 21438.55 31883.99 15487.72 5266.86 4557.66 22284.17 16252.28 3585.31 23052.72 22068.80 17284.02 196
tpm270.82 12468.44 13977.98 7080.78 16256.11 3974.21 27981.28 18360.24 14368.04 9275.27 27052.26 3688.50 14455.82 19768.03 17789.33 100
thisisatest051573.64 8272.20 8777.97 7181.63 13853.01 11986.69 8288.81 2862.53 10664.06 13785.65 14652.15 3792.50 4058.43 16669.84 16688.39 123
casdiffmvs_mvgpermissive77.75 3177.28 3279.16 4080.42 17154.44 8287.76 5685.46 8771.67 971.38 7388.35 10851.58 3891.22 6679.02 2979.89 8891.83 45
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
UniMVSNet_NR-MVSNet68.82 15868.29 14270.40 23575.71 24542.59 29484.23 14686.78 6466.31 4958.51 20682.45 19051.57 3984.64 24353.11 21155.96 27683.96 202
PAPM76.76 4576.07 4678.81 4780.20 17359.11 686.86 8086.23 7568.60 2670.18 8388.84 10051.57 3987.16 18365.48 11286.68 2790.15 85
tttt051768.33 16966.29 17874.46 14678.08 21049.06 19880.88 22889.08 2054.40 24454.75 25380.77 21051.31 4190.33 9349.35 23758.01 25683.99 198
mvs_anonymous72.29 10270.74 10676.94 9982.85 11654.72 7478.43 25381.54 17763.77 8561.69 16779.32 22051.11 4285.31 23062.15 13675.79 11890.79 71
HY-MVS67.03 573.90 7773.14 7276.18 11584.70 7147.36 23875.56 26886.36 7366.27 5070.66 8083.91 16551.05 4389.31 11667.10 10072.61 14491.88 43
thisisatest053070.47 13168.56 13776.20 11379.78 17951.52 14983.49 16888.58 3757.62 19858.60 20582.79 18151.03 4491.48 6052.84 21562.36 22585.59 176
miper_ehance_all_eth68.70 16467.58 15572.08 20076.91 22949.48 19382.47 19478.45 23762.68 10358.28 21477.88 23450.90 4585.01 23861.91 13758.72 24581.75 233
canonicalmvs78.17 2677.86 2779.12 4284.30 7754.22 8587.71 5784.57 12167.70 3977.70 2592.11 3350.90 4589.95 10478.18 3977.54 10593.20 14
casdiffmvspermissive77.36 3576.85 3778.88 4680.40 17254.66 7887.06 7485.88 8072.11 871.57 7088.63 10650.89 4790.35 9276.00 4879.11 9491.63 48
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline76.86 4376.24 4578.71 5180.47 17054.20 8883.90 15684.88 11171.38 1271.51 7189.15 9550.51 4890.55 8875.71 5078.65 9791.39 57
MVS_Test75.85 5674.93 5978.62 5584.08 8155.20 6083.99 15485.17 10268.07 3273.38 4882.76 18250.44 4989.00 12565.90 10880.61 7491.64 47
FC-MVSNet-test67.49 18467.91 14666.21 28076.06 23933.06 33680.82 22987.18 5764.44 7454.81 25182.87 17950.40 5082.60 25848.05 24766.55 18982.98 221
nrg03072.27 10471.56 9674.42 14875.93 24250.60 16386.97 7683.21 15062.75 10267.15 9884.38 15750.07 5186.66 19871.19 7862.37 22485.99 166
cl2268.85 15667.69 15372.35 19678.07 21149.98 18182.45 19578.48 23662.50 10758.46 21077.95 23249.99 5285.17 23462.55 13158.72 24581.90 231
tpmrst71.04 12069.77 12274.86 14183.19 10355.86 4675.64 26778.73 23067.88 3464.99 12473.73 28149.96 5379.56 28765.92 10767.85 18089.14 106
CANet80.90 981.17 1080.09 3087.62 3754.21 8691.60 1286.47 7073.13 679.89 2093.10 1749.88 5492.98 3084.09 784.75 4693.08 16
ET-MVSNet_ETH3D75.23 6474.08 6778.67 5384.52 7455.59 4788.92 4189.21 1868.06 3353.13 26790.22 7149.71 5587.62 17572.12 7670.82 15892.82 20
c3_l67.97 17466.66 17271.91 21176.20 23849.31 19582.13 20078.00 24361.99 11357.64 22376.94 24949.41 5684.93 23960.62 14857.01 26681.49 237
Vis-MVSNet (Re-imp)65.52 21665.63 19365.17 28877.49 21930.54 34375.49 27177.73 24759.34 15852.26 27686.69 13649.38 5780.53 27537.07 29375.28 12384.42 190
EPNet78.36 2478.49 2077.97 7185.49 5752.04 13689.36 3684.07 13273.22 577.03 2891.72 4049.32 5890.17 10073.46 7082.77 5691.69 46
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
tpm68.36 16767.48 15970.97 22779.93 17851.34 15376.58 26478.75 22967.73 3763.54 14974.86 27248.33 5972.36 33053.93 20763.71 20689.21 103
APDe-MVS78.44 2178.20 2279.19 3888.56 2654.55 8089.76 3187.77 5055.91 22678.56 2392.49 2648.20 6092.65 3879.49 2583.04 5590.39 78
MG-MVS78.42 2276.99 3682.73 293.17 164.46 189.93 2788.51 3864.83 7173.52 4688.09 11448.07 6192.19 4662.24 13484.53 4891.53 53
DeepC-MVS67.15 476.90 4276.27 4478.80 4880.70 16455.02 6686.39 8586.71 6666.96 4467.91 9389.97 7948.03 6291.41 6275.60 5284.14 5089.96 90
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_prior289.04 4061.88 11673.55 4591.46 4848.01 6374.73 5985.46 38
SF-MVS77.64 3277.42 3178.32 6583.75 8952.47 12986.63 8387.80 4758.78 17574.63 3692.38 2747.75 6491.35 6378.18 3986.85 2491.15 64
test250672.91 9172.43 8174.32 15280.12 17544.18 28083.19 17884.77 11564.02 7965.97 11187.43 12547.67 6588.72 13459.08 15979.66 9090.08 87
iter_conf0573.51 8472.24 8677.33 8387.93 3655.97 4387.90 5570.81 31368.72 2564.04 13884.36 15947.54 6690.87 7871.11 8067.75 18185.13 181
1112_ss70.05 13669.37 12872.10 19980.77 16342.78 29285.12 11976.75 26459.69 15061.19 17092.12 3147.48 6783.84 24753.04 21368.21 17589.66 95
Effi-MVS+75.24 6373.61 7080.16 2781.92 13257.42 1985.21 11376.71 26660.68 13773.32 4989.34 9047.30 6891.63 5768.28 9379.72 8991.42 56
UniMVSNet (Re)67.71 17966.80 16870.45 23374.44 25842.93 29082.42 19684.90 11063.69 8859.63 18380.99 20747.18 6985.23 23351.17 22756.75 26783.19 216
test1279.24 3786.89 4156.08 4085.16 10372.27 6447.15 7091.10 7185.93 3390.54 76
PVSNet_Blended_VisFu73.40 8672.44 8076.30 10881.32 15154.70 7585.81 9678.82 22663.70 8764.53 13085.38 15047.11 7187.38 18067.75 9677.55 10486.81 155
NCCC79.57 1779.23 1780.59 2089.50 1556.99 2391.38 1488.17 4267.71 3873.81 4392.75 2246.88 7293.28 2878.79 3384.07 5191.50 55
9.1478.19 2385.67 5388.32 4888.84 2759.89 14674.58 3892.62 2546.80 7392.66 3781.40 2185.62 37
VNet77.99 2977.92 2678.19 6787.43 3850.12 17890.93 2091.41 467.48 4175.12 3390.15 7546.77 7491.00 7373.52 6978.46 9993.44 9
PVSNet_BlendedMVS73.42 8573.30 7173.76 16885.91 4851.83 14286.18 9084.24 12965.40 6369.09 8680.86 20946.70 7588.13 15775.43 5365.92 19581.33 246
PVSNet_Blended76.53 4776.54 4076.50 10685.91 4851.83 14288.89 4284.24 12967.82 3669.09 8689.33 9246.70 7588.13 15775.43 5381.48 6989.55 97
SMA-MVScopyleft79.10 1978.76 1980.12 2884.42 7555.87 4587.58 6286.76 6561.48 12380.26 1893.10 1746.53 7792.41 4279.97 2488.77 1092.08 36
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
tpm cat166.28 20962.78 21876.77 10581.40 14857.14 2270.03 30677.19 25653.00 25358.76 20470.73 31146.17 7886.73 19643.27 27264.46 20286.44 160
cl____67.43 18665.93 18671.95 20876.33 23448.02 22982.58 18979.12 22161.30 12556.72 23676.92 25046.12 7986.44 20557.98 17556.31 27081.38 245
DIV-MVS_self_test67.43 18665.93 18671.94 20976.33 23448.01 23082.57 19079.11 22261.31 12456.73 23576.92 25046.09 8086.43 20657.98 17556.31 27081.39 244
IS-MVSNet68.80 16067.55 15772.54 19178.50 20543.43 28681.03 22579.35 21759.12 16857.27 23286.71 13546.05 8187.70 17244.32 26875.60 12186.49 159
diffmvspermissive75.11 6774.65 6376.46 10778.52 20453.35 10783.28 17779.94 20070.51 1671.64 6988.72 10146.02 8286.08 21777.52 4275.75 12089.96 90
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EI-MVSNet69.70 14668.70 13672.68 18875.00 25348.90 20679.54 24387.16 5861.05 12963.88 14383.74 16845.87 8390.44 8957.42 18564.68 20178.70 274
IterMVS-LS66.63 20465.36 20170.42 23475.10 25048.90 20681.45 22076.69 26761.05 12955.71 24677.10 24645.86 8483.65 25157.44 18457.88 26078.70 274
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EIA-MVS75.92 5575.18 5578.13 6885.14 6451.60 14687.17 7285.32 9464.69 7268.56 8990.53 6245.79 8591.58 5867.21 9982.18 6291.20 63
MVS76.91 4075.48 5081.23 1884.56 7355.21 5980.23 23791.64 258.65 17765.37 11891.48 4745.72 8695.05 1672.11 7789.52 993.44 9
PAPM_NR71.80 10969.98 12077.26 8881.54 14453.34 10878.60 25285.25 9953.46 24960.53 17688.66 10245.69 8789.24 11756.49 19179.62 9289.19 104
CS-MVS76.77 4476.70 3976.99 9683.55 9148.75 20988.60 4585.18 10166.38 4872.47 6191.62 4345.53 8890.99 7574.48 6182.51 5891.23 62
DeepC-MVS_fast67.50 378.00 2877.63 2879.13 4188.52 2755.12 6289.95 2685.98 7968.31 2771.33 7492.75 2245.52 8990.37 9171.15 7985.14 4291.91 42
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
Test_1112_low_res67.18 19366.23 18070.02 24378.75 19741.02 30883.43 16973.69 29357.29 20458.45 21182.39 19245.30 9080.88 27050.50 22966.26 19488.16 124
ETV-MVS77.17 3776.74 3878.48 5981.80 13454.55 8086.13 9185.33 9368.20 2973.10 5190.52 6345.23 9190.66 8479.37 2680.95 7090.22 82
CS-MVS-test77.20 3677.25 3377.05 9184.60 7249.04 20189.42 3485.83 8265.90 5972.85 5591.98 3745.10 9291.27 6475.02 5884.56 4790.84 70
NR-MVSNet67.25 19165.99 18571.04 22673.27 27143.91 28185.32 11284.75 11666.05 5753.65 26582.11 19645.05 9385.97 22147.55 24956.18 27383.24 214
train_agg76.91 4076.40 4278.45 6185.68 5155.42 5187.59 6084.00 13357.84 19272.99 5290.98 5244.99 9488.58 13978.19 3785.32 4091.34 61
test_885.72 5055.31 5587.60 5983.88 13657.84 19272.84 5690.99 5144.99 9488.34 149
segment_acmp44.97 96
TEST985.68 5155.42 5187.59 6084.00 13357.72 19472.99 5290.98 5244.87 9788.58 139
eth_miper_zixun_eth66.98 19965.28 20272.06 20175.61 24650.40 16981.00 22676.97 26362.00 11256.99 23476.97 24844.84 9885.58 22558.75 16354.42 29080.21 261
MVSFormer73.53 8372.19 8877.57 7883.02 10955.24 5781.63 21181.44 17950.28 27176.67 2990.91 5544.82 9986.11 21260.83 14580.09 8291.36 59
lupinMVS78.38 2378.11 2479.19 3883.02 10955.24 5791.57 1384.82 11269.12 2476.67 2992.02 3444.82 9990.23 9880.83 2280.09 8292.08 36
WR-MVS67.58 18166.76 16970.04 24275.92 24345.06 27286.23 8985.28 9764.31 7558.50 20881.00 20644.80 10182.00 26349.21 23955.57 28183.06 219
ZD-MVS89.55 1453.46 10084.38 12357.02 20973.97 4291.03 5044.57 10291.17 6875.41 5681.78 67
Fast-Effi-MVS+72.73 9371.15 10477.48 8082.75 11954.76 7186.77 8180.64 19063.05 9865.93 11284.01 16344.42 10389.03 12356.45 19476.36 11588.64 117
PCF-MVS61.03 1070.10 13468.40 14075.22 13777.15 22751.99 13779.30 24882.12 16656.47 22261.88 16686.48 14043.98 10487.24 18255.37 19872.79 14386.43 161
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
CDS-MVSNet70.48 13069.43 12673.64 17277.56 21848.83 20883.51 16677.45 25263.27 9562.33 16085.54 14943.85 10583.29 25657.38 18674.00 13288.79 114
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
EI-MVSNet-Vis-set73.19 8872.60 7774.99 14082.56 12549.80 18682.55 19289.00 2166.17 5265.89 11388.98 9643.83 10692.29 4465.38 11969.01 17182.87 223
APD-MVScopyleft76.15 5275.68 4777.54 7988.52 2753.44 10387.26 7185.03 10753.79 24774.91 3491.68 4243.80 10790.31 9474.36 6281.82 6588.87 111
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MVS_111021_HR76.39 4975.38 5279.42 3585.33 6156.47 3388.15 4984.97 10865.15 6966.06 11089.88 8043.79 10892.16 4775.03 5780.03 8589.64 96
thres100view90066.87 20265.42 20071.24 22183.29 10043.15 28881.67 21087.78 4859.04 16955.92 24582.18 19543.73 10987.80 16728.80 32966.36 19182.78 225
thres600view766.46 20765.12 20470.47 23283.41 9443.80 28382.15 19987.78 4859.37 15756.02 24482.21 19443.73 10986.90 19226.51 34164.94 19780.71 255
v14868.24 17266.35 17673.88 16371.76 28651.47 15084.23 14681.90 17363.69 8858.94 19776.44 25743.72 11187.78 17060.63 14755.86 27882.39 227
SD-MVS76.18 5174.85 6080.18 2685.39 5956.90 2485.75 10082.45 16356.79 21574.48 3991.81 3843.72 11190.75 8274.61 6078.65 9792.91 18
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
XXY-MVS70.18 13269.28 13272.89 18677.64 21642.88 29185.06 12087.50 5662.58 10562.66 15882.34 19343.64 11389.83 10658.42 16863.70 20785.96 168
tfpn200view967.57 18266.13 18271.89 21284.05 8245.07 26983.40 17187.71 5360.79 13457.79 21982.76 18243.53 11487.80 16728.80 32966.36 19182.78 225
thres40067.40 18966.13 18271.19 22384.05 8245.07 26983.40 17187.71 5360.79 13457.79 21982.76 18243.53 11487.80 16728.80 32966.36 19180.71 255
PAPR75.20 6574.13 6678.41 6288.31 3155.10 6484.31 14485.66 8463.76 8667.55 9590.73 5943.48 11689.40 11566.36 10577.03 10790.73 72
MP-MVScopyleft74.99 6874.33 6576.95 9882.89 11553.05 11885.63 10483.50 14457.86 19167.25 9790.24 6943.38 11788.85 13376.03 4782.23 6188.96 109
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
EI-MVSNet-UG-set72.37 9971.73 9474.29 15381.60 14049.29 19681.85 20688.64 3265.29 6865.05 12188.29 11143.18 11891.83 5463.74 12467.97 17881.75 233
thres20068.71 16267.27 16373.02 18184.73 7046.76 24685.03 12287.73 5162.34 10959.87 17883.45 17343.15 11988.32 15131.25 32267.91 17983.98 200
PHI-MVS77.49 3377.00 3578.95 4385.33 6150.69 16188.57 4688.59 3658.14 18473.60 4493.31 1443.14 12093.79 2673.81 6788.53 1292.37 29
ab-mvs70.65 12769.11 13375.29 13480.87 16046.23 25673.48 28385.24 10059.99 14566.65 10080.94 20843.13 12188.69 13563.58 12568.07 17690.95 68
CDPH-MVS76.05 5475.19 5478.62 5586.51 4454.98 6887.32 6684.59 12058.62 17870.75 7990.85 5743.10 12290.63 8670.50 8384.51 4990.24 81
v867.25 19164.99 20674.04 15972.89 27653.31 11082.37 19780.11 19861.54 12154.29 25876.02 26642.89 12388.41 14658.43 16656.36 26880.39 259
DROMVSNet75.30 6275.20 5375.62 12580.98 15449.00 20287.43 6384.68 11863.49 9370.97 7890.15 7542.86 12491.14 7074.33 6381.90 6486.71 156
h-mvs3373.95 7672.89 7577.15 9080.17 17450.37 17184.68 13583.33 14568.08 3071.97 6588.65 10542.50 12591.15 6978.82 3157.78 26289.91 92
hse-mvs271.44 11570.68 10773.73 17076.34 23347.44 23779.45 24679.47 21268.08 3071.97 6586.01 14442.50 12586.93 19178.82 3153.46 29986.83 154
SteuartSystems-ACMMP77.08 3876.33 4379.34 3680.98 15455.31 5589.76 3186.91 6262.94 10071.65 6891.56 4542.33 12792.56 3977.14 4483.69 5390.15 85
Skip Steuart: Steuart Systems R&D Blog.
HyFIR lowres test69.94 14167.58 15577.04 9277.11 22857.29 2081.49 21979.11 22258.27 18258.86 20180.41 21242.33 12786.96 18961.91 13768.68 17486.87 149
ZNCC-MVS75.82 5975.02 5778.23 6683.88 8753.80 9286.91 7986.05 7859.71 14967.85 9490.55 6142.23 12991.02 7272.66 7585.29 4189.87 93
FMVSNet368.84 15767.40 16073.19 17985.05 6548.53 21585.71 10385.36 9160.90 13357.58 22479.15 22442.16 13086.77 19447.25 25263.40 20984.27 192
VPA-MVSNet71.12 11770.66 10872.49 19378.75 19744.43 27687.64 5890.02 1263.97 8265.02 12281.58 20342.14 13187.42 17963.42 12663.38 21285.63 175
jason77.01 3976.45 4178.69 5279.69 18054.74 7290.56 2283.99 13568.26 2874.10 4190.91 5542.14 13189.99 10379.30 2779.12 9391.36 59
jason: jason.
CLD-MVS75.60 6075.39 5176.24 11080.69 16552.40 13090.69 2186.20 7674.40 465.01 12388.93 9742.05 13390.58 8776.57 4673.96 13385.73 171
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
test_yl75.85 5674.83 6178.91 4488.08 3451.94 13891.30 1589.28 1657.91 18971.19 7689.20 9342.03 13492.77 3469.41 8675.07 12792.01 39
DCV-MVSNet75.85 5674.83 6178.91 4488.08 3451.94 13891.30 1589.28 1657.91 18971.19 7689.20 9342.03 13492.77 3469.41 8675.07 12792.01 39
TAMVS69.51 15068.16 14473.56 17576.30 23648.71 21182.57 19077.17 25762.10 11161.32 16984.23 16141.90 13683.46 25454.80 20273.09 14088.50 122
TransMVSNet (Re)62.82 23560.76 23669.02 25173.98 26441.61 30286.36 8679.30 22056.90 21052.53 27176.44 25741.85 13787.60 17638.83 28640.61 33777.86 287
VPNet72.07 10571.42 10074.04 15978.64 20247.17 24389.91 2987.97 4572.56 764.66 12685.04 15341.83 13888.33 15061.17 14360.97 23086.62 157
v2v48269.55 14967.64 15475.26 13672.32 28353.83 9184.93 12781.94 16965.37 6560.80 17379.25 22241.62 13988.98 12863.03 12959.51 23882.98 221
API-MVS74.17 7472.07 9180.49 2190.02 1158.55 887.30 6884.27 12657.51 20065.77 11587.77 12041.61 14095.97 1151.71 22382.63 5786.94 147
GeoE69.96 14067.88 14876.22 11181.11 15351.71 14584.15 14876.74 26559.83 14760.91 17184.38 15741.56 14188.10 15951.67 22470.57 16088.84 112
CHOSEN 1792x268876.24 5074.03 6882.88 183.09 10662.84 285.73 10285.39 9069.79 2064.87 12583.49 17241.52 14293.69 2770.55 8281.82 6592.12 35
LFMVS78.52 2077.14 3482.67 389.58 1358.90 791.27 1788.05 4463.22 9674.63 3690.83 5841.38 14394.40 2075.42 5579.90 8794.72 2
MAR-MVS76.76 4575.60 4980.21 2590.87 754.68 7689.14 3989.11 1962.95 9970.54 8192.33 2841.05 14494.95 1757.90 17886.55 2991.00 67
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
GST-MVS74.87 6973.90 6977.77 7483.30 9953.45 10285.75 10085.29 9659.22 16266.50 10589.85 8140.94 14590.76 8170.94 8183.35 5489.10 107
DU-MVS66.84 20365.74 19170.16 23873.27 27142.59 29481.50 21782.92 15763.53 9258.51 20682.11 19640.75 14684.64 24353.11 21155.96 27683.24 214
Baseline_NR-MVSNet65.49 21764.27 21369.13 25074.37 26141.65 30183.39 17378.85 22459.56 15259.62 18476.88 25240.75 14687.44 17849.99 23155.05 28478.28 283
miper_lstm_enhance63.91 22362.30 22168.75 25775.06 25146.78 24569.02 31081.14 18459.68 15152.76 27072.39 29840.71 14877.99 29956.81 19053.09 30081.48 239
HFP-MVS74.37 7173.13 7478.10 6984.30 7753.68 9585.58 10584.36 12456.82 21365.78 11490.56 6040.70 14990.90 7769.18 8880.88 7189.71 94
CL-MVSNet_self_test62.98 23361.14 23268.50 26265.86 32442.96 28984.37 14182.98 15560.98 13153.95 26172.70 29440.43 15083.71 25041.10 28047.93 31378.83 273
ACMMP_NAP76.43 4875.66 4878.73 5081.92 13254.67 7784.06 15285.35 9261.10 12872.99 5291.50 4640.25 15191.00 7376.84 4586.98 2290.51 77
v114468.81 15966.82 16774.80 14272.34 28253.46 10084.68 13581.77 17564.25 7660.28 17777.91 23340.23 15288.95 12960.37 15459.52 23781.97 230
WR-MVS_H58.91 26458.04 25461.54 30669.07 30833.83 33376.91 26181.99 16851.40 26648.17 29374.67 27340.23 15274.15 31831.78 31948.10 31176.64 300
原ACMM176.13 11684.89 6954.59 7985.26 9851.98 26066.70 9987.07 13140.15 15489.70 11051.23 22685.06 4484.10 194
MVP-Stereo70.97 12170.44 11072.59 19076.03 24151.36 15285.02 12386.99 6160.31 14156.53 24078.92 22640.11 15590.00 10260.00 15790.01 676.41 303
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
v1066.61 20564.20 21473.83 16672.59 27953.37 10681.88 20579.91 20261.11 12754.09 26075.60 26840.06 15688.26 15556.47 19256.10 27479.86 265
MP-MVS-pluss75.54 6175.03 5677.04 9281.37 14952.65 12684.34 14384.46 12261.16 12669.14 8591.76 3939.98 15788.99 12778.19 3784.89 4589.48 99
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
TranMVSNet+NR-MVSNet66.94 20065.61 19470.93 22873.45 26843.38 28783.02 18484.25 12765.31 6758.33 21381.90 19939.92 15885.52 22649.43 23654.89 28683.89 204
Patchmatch-test53.33 29748.17 30668.81 25573.31 26942.38 29842.98 35458.23 33932.53 34238.79 33570.77 30939.66 15973.51 32425.18 34452.06 30490.55 74
Test By Simon39.38 160
v14419267.86 17665.76 19074.16 15671.68 28753.09 11684.14 14980.83 18862.85 10159.21 19477.28 24339.30 16188.00 16258.67 16457.88 26081.40 243
BH-w/o70.02 13768.51 13874.56 14482.77 11850.39 17086.60 8478.14 24159.77 14859.65 18285.57 14839.27 16287.30 18149.86 23374.94 12985.99 166
CR-MVSNet62.47 24059.04 25072.77 18773.97 26556.57 2960.52 33371.72 30560.04 14457.49 22765.86 32638.94 16380.31 27742.86 27659.93 23481.42 241
Patchmtry56.56 27952.95 28667.42 26972.53 28050.59 16459.05 33771.72 30537.86 33146.92 30465.86 32638.94 16380.06 28136.94 29546.72 32371.60 333
sam_mvs138.86 16588.13 127
UA-Net67.32 19066.23 18070.59 23178.85 19541.23 30773.60 28175.45 27961.54 12166.61 10284.53 15638.73 16686.57 20342.48 27974.24 13183.98 200
cdsmvs_eth3d_5k18.33 34124.44 3330.00 3620.00 3840.00 3850.00 37389.40 150.00 3780.00 38192.02 3438.55 1670.00 3790.00 3790.00 3770.00 377
patchmatchnet-post59.74 34238.41 16879.91 284
CHOSEN 280x42057.53 27456.38 26760.97 31174.01 26348.10 22846.30 35154.31 34448.18 28550.88 28577.43 24138.37 16959.16 34954.83 20063.14 21775.66 307
V4267.66 18065.60 19573.86 16470.69 29853.63 9681.50 21778.61 23363.85 8459.49 18877.49 23937.98 17087.65 17362.33 13258.43 24980.29 260
tpmvs62.45 24159.42 24671.53 21883.93 8454.32 8370.03 30677.61 24951.91 26153.48 26668.29 31937.91 17186.66 19833.36 31258.27 25073.62 321
PatchmatchNetpermissive67.07 19763.63 21777.40 8283.10 10458.03 972.11 29777.77 24658.85 17359.37 18970.83 30837.84 17284.93 23942.96 27569.83 16789.26 101
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
pcd_1.5k_mvsjas3.15 3484.20 3510.00 3620.00 3840.00 3850.00 3730.00 3840.00 3780.00 3810.00 38037.77 1730.00 3790.00 3790.00 3770.00 377
PS-MVSNAJss68.78 16167.17 16473.62 17473.01 27348.33 22284.95 12684.81 11359.30 16158.91 20079.84 21637.77 17388.86 13262.83 13063.12 21883.67 208
PS-MVSNAJ80.06 1479.52 1581.68 1385.58 5560.97 391.69 1087.02 6070.62 1480.75 1793.22 1637.77 17392.50 4082.75 1086.25 3191.57 51
pm-mvs164.12 22262.56 21968.78 25671.68 28738.87 31682.89 18681.57 17655.54 23253.89 26277.82 23537.73 17686.74 19548.46 24553.49 29780.72 254
RPMNet59.29 25654.25 27974.42 14873.97 26556.57 2960.52 33376.98 26035.72 33757.49 22758.87 34537.73 17685.26 23227.01 34059.93 23481.42 241
xiu_mvs_v2_base79.86 1579.31 1681.53 1485.03 6760.73 491.65 1186.86 6370.30 1880.77 1693.07 2037.63 17892.28 4582.73 1185.71 3591.57 51
Patchmatch-RL test58.72 26654.32 27871.92 21063.91 33544.25 27861.73 32955.19 34257.38 20349.31 29054.24 34937.60 17980.89 26962.19 13547.28 31890.63 73
HPM-MVScopyleft72.60 9571.50 9775.89 12282.02 13051.42 15180.70 23183.05 15356.12 22564.03 13989.53 8637.55 18088.37 14770.48 8480.04 8487.88 131
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
test_post16.22 37237.52 18184.72 241
PatchT56.60 27852.97 28567.48 26872.94 27546.16 25757.30 34173.78 29238.77 32754.37 25757.26 34837.52 18178.06 29632.02 31752.79 30178.23 285
v119267.96 17565.74 19174.63 14371.79 28553.43 10584.06 15280.99 18663.19 9759.56 18577.46 24037.50 18388.65 13658.20 17258.93 24481.79 232
HQP2-MVS37.35 184
HQP-MVS72.34 10071.44 9975.03 13879.02 19151.56 14788.00 5183.68 13965.45 6064.48 13185.13 15137.35 18488.62 13766.70 10173.12 13884.91 185
region2R73.75 8072.55 7877.33 8383.90 8652.98 12085.54 10884.09 13156.83 21265.10 12090.45 6437.34 18690.24 9768.89 9080.83 7388.77 115
TESTMET0.1,172.86 9272.33 8274.46 14681.98 13150.77 15985.13 11685.47 8666.09 5467.30 9683.69 17037.27 18783.57 25265.06 12078.97 9689.05 108
ACMMPR73.76 7972.61 7677.24 8983.92 8552.96 12185.58 10584.29 12556.82 21365.12 11990.45 6437.24 18890.18 9969.18 8880.84 7288.58 119
sss70.49 12970.13 11871.58 21781.59 14139.02 31580.78 23084.71 11759.34 15866.61 10288.09 11437.17 18985.52 22661.82 13971.02 15690.20 84
EPNet_dtu66.25 21066.71 17064.87 29078.66 20134.12 33182.80 18775.51 27761.75 11764.47 13486.90 13237.06 19072.46 32943.65 27169.63 16988.02 130
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
v192192067.45 18565.23 20374.10 15871.51 29052.90 12283.75 16080.44 19362.48 10859.12 19577.13 24436.98 19187.90 16457.53 18358.14 25481.49 237
旧先验181.57 14347.48 23571.83 30488.66 10236.94 19278.34 10188.67 116
test-LLR69.65 14769.01 13471.60 21578.67 19948.17 22485.13 11679.72 20559.18 16563.13 15182.58 18736.91 19380.24 27860.56 14975.17 12486.39 162
test0.0.03 162.54 23762.44 22062.86 30072.28 28429.51 34982.93 18578.78 22759.18 16553.07 26882.41 19136.91 19377.39 30537.45 28958.96 24381.66 235
MDTV_nov1_ep13_2view43.62 28471.13 30254.95 23859.29 19336.76 19546.33 25887.32 143
KD-MVS_2432*160059.04 26256.44 26566.86 27479.07 18945.87 26072.13 29580.42 19455.03 23648.15 29471.01 30636.73 19678.05 29735.21 30330.18 35676.67 297
miper_refine_blended59.04 26256.44 26566.86 27479.07 18945.87 26072.13 29580.42 19455.03 23648.15 29471.01 30636.73 19678.05 29735.21 30330.18 35676.67 297
GBi-Net67.09 19565.47 19771.96 20582.71 12046.36 25183.52 16283.31 14658.55 17957.58 22476.23 26136.72 19886.20 20847.25 25263.40 20983.32 211
test167.09 19565.47 19771.96 20582.71 12046.36 25183.52 16283.31 14658.55 17957.58 22476.23 26136.72 19886.20 20847.25 25263.40 20983.32 211
FMVSNet267.57 18265.79 18972.90 18482.71 12047.97 23185.15 11584.93 10958.55 17956.71 23778.26 23136.72 19886.67 19746.15 25962.94 22084.07 195
AUN-MVS68.20 17366.35 17673.76 16876.37 23247.45 23679.52 24579.52 21060.98 13162.34 15986.02 14236.59 20186.94 19062.32 13353.47 29886.89 148
BH-untuned68.28 17066.40 17573.91 16281.62 13950.01 18085.56 10777.39 25357.63 19757.47 22983.69 17036.36 20287.08 18544.81 26473.08 14184.65 187
EPMVS68.45 16665.44 19977.47 8184.91 6856.17 3871.89 29981.91 17261.72 11860.85 17272.49 29536.21 20387.06 18647.32 25171.62 15189.17 105
MSLP-MVS++74.21 7372.25 8580.11 2981.45 14756.47 3386.32 8779.65 20858.19 18366.36 10692.29 2936.11 20490.66 8467.39 9782.49 5993.18 15
FA-MVS(test-final)69.00 15566.60 17476.19 11483.48 9347.96 23274.73 27582.07 16757.27 20562.18 16278.47 23036.09 20592.89 3153.76 20971.32 15487.73 135
MTAPA72.73 9371.22 10277.27 8781.54 14453.57 9767.06 31881.31 18159.41 15668.39 9090.96 5436.07 20689.01 12473.80 6882.45 6089.23 102
HQP_MVS70.96 12269.91 12174.12 15777.95 21249.57 18885.76 9882.59 16063.60 9062.15 16383.28 17636.04 20788.30 15265.46 11372.34 14684.49 188
plane_prior678.42 20749.39 19436.04 207
sam_mvs35.99 209
PGM-MVS72.60 9571.20 10376.80 10382.95 11252.82 12383.07 18282.14 16556.51 22163.18 15089.81 8235.68 21089.76 10967.30 9880.19 8187.83 132
XVS72.92 9071.62 9576.81 10083.41 9452.48 12784.88 12883.20 15158.03 18563.91 14189.63 8535.50 21189.78 10765.50 11080.50 7688.16 124
X-MVStestdata65.85 21562.20 22276.81 10083.41 9452.48 12784.88 12883.20 15158.03 18563.91 1414.82 37635.50 21189.78 10765.50 11080.50 7688.16 124
v124066.99 19864.68 20973.93 16171.38 29352.66 12583.39 17379.98 19961.97 11458.44 21277.11 24535.25 21387.81 16656.46 19358.15 25281.33 246
test111171.06 11970.42 11172.97 18379.48 18241.49 30484.82 13182.74 15964.20 7762.98 15387.43 12535.20 21487.92 16358.54 16578.42 10089.49 98
dp64.41 21961.58 22672.90 18482.40 12654.09 8972.53 28976.59 26960.39 14055.68 24770.39 31235.18 21576.90 30939.34 28561.71 22787.73 135
iter_conf_final71.46 11469.68 12476.81 10086.03 4653.49 9884.73 13274.37 28660.27 14266.28 10784.36 15935.14 21690.87 7865.41 11770.51 16186.05 165
ECVR-MVScopyleft71.81 10871.00 10574.26 15480.12 17543.49 28584.69 13482.16 16464.02 7964.64 12787.43 12535.04 21789.21 11861.24 14279.66 9090.08 87
CP-MVS72.59 9771.46 9876.00 12182.93 11452.32 13386.93 7882.48 16255.15 23463.65 14590.44 6735.03 21888.53 14368.69 9177.83 10387.15 145
CP-MVSNet58.54 27057.57 25761.46 30768.50 31233.96 33276.90 26278.60 23451.67 26547.83 29676.60 25634.99 21972.79 32735.45 30047.58 31577.64 291
MDTV_nov1_ep1361.56 22781.68 13655.12 6272.41 29178.18 24059.19 16358.85 20269.29 31634.69 22086.16 21136.76 29762.96 219
3Dnovator64.70 674.46 7072.48 7980.41 2382.84 11755.40 5483.08 18188.61 3567.61 4059.85 17988.66 10234.57 22193.97 2358.42 16888.70 1191.85 44
Vis-MVSNetpermissive70.61 12869.34 12974.42 14880.95 15948.49 21786.03 9477.51 25158.74 17665.55 11787.78 11934.37 22285.95 22252.53 22180.61 7488.80 113
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test_post170.84 30314.72 37534.33 22383.86 24648.80 241
OPM-MVS70.75 12669.58 12574.26 15475.55 24751.34 15386.05 9383.29 14961.94 11562.95 15485.77 14534.15 22488.44 14565.44 11671.07 15582.99 220
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
DP-MVS Recon71.99 10670.31 11377.01 9490.65 853.44 10389.37 3582.97 15656.33 22363.56 14889.47 8734.02 22592.15 4954.05 20672.41 14585.43 178
PEN-MVS58.35 27157.15 25961.94 30367.55 31934.39 33077.01 26078.35 23951.87 26247.72 29776.73 25433.91 22673.75 32234.03 31047.17 31977.68 289
QAPM71.88 10769.33 13079.52 3382.20 12954.30 8486.30 8888.77 2956.61 21959.72 18187.48 12333.90 22795.36 1347.48 25081.49 6888.90 110
新几何173.30 17883.10 10453.48 9971.43 30945.55 30166.14 10887.17 12933.88 22880.54 27448.50 24480.33 8085.88 170
131471.11 11869.41 12776.22 11179.32 18550.49 16680.23 23785.14 10559.44 15558.93 19888.89 9933.83 22989.60 11361.49 14077.42 10688.57 120
SR-MVS70.92 12369.73 12374.50 14583.38 9850.48 16784.27 14579.35 21748.96 28166.57 10490.45 6433.65 23087.11 18466.42 10374.56 13085.91 169
mPP-MVS71.79 11070.38 11276.04 11982.65 12352.06 13584.45 14081.78 17455.59 23062.05 16589.68 8433.48 23188.28 15465.45 11578.24 10287.77 134
OMC-MVS65.97 21465.06 20568.71 25872.97 27442.58 29678.61 25175.35 28054.72 24059.31 19186.25 14133.30 23277.88 30157.99 17467.05 18585.66 173
BH-RMVSNet70.08 13568.01 14576.27 10984.21 8051.22 15787.29 6979.33 21958.96 17263.63 14686.77 13433.29 23390.30 9644.63 26673.96 13387.30 144
JIA-IIPM52.33 30247.77 30966.03 28171.20 29446.92 24440.00 35976.48 27037.10 33246.73 30537.02 35932.96 23477.88 30135.97 29852.45 30373.29 324
PS-CasMVS58.12 27257.03 26161.37 30868.24 31633.80 33476.73 26378.01 24251.20 26747.54 30076.20 26432.85 23572.76 32835.17 30547.37 31777.55 292
DTE-MVSNet57.03 27555.73 27160.95 31265.94 32332.57 33975.71 26677.09 25951.16 26846.65 30776.34 25932.84 23673.22 32630.94 32344.87 32877.06 294
pmmvs463.34 23061.07 23370.16 23870.14 30050.53 16579.97 24071.41 31055.08 23554.12 25978.58 22832.79 23782.09 26250.33 23057.22 26577.86 287
TR-MVS69.71 14467.85 15175.27 13582.94 11348.48 21887.40 6580.86 18757.15 20864.61 12987.08 13032.67 23889.64 11246.38 25771.55 15387.68 137
VDD-MVS76.08 5374.97 5879.44 3484.27 7953.33 10991.13 1885.88 8065.33 6672.37 6289.34 9032.52 23992.76 3677.90 4175.96 11692.22 34
3Dnovator+62.71 772.29 10270.50 10977.65 7783.40 9751.29 15587.32 6686.40 7259.01 17058.49 20988.32 11032.40 24091.27 6457.04 18782.15 6390.38 79
tfpnnormal61.47 24659.09 24968.62 26076.29 23741.69 30081.14 22485.16 10354.48 24351.32 28073.63 28532.32 24186.89 19321.78 35255.71 28077.29 293
MS-PatchMatch72.34 10071.26 10175.61 12682.38 12755.55 4888.00 5189.95 1465.38 6456.51 24180.74 21132.28 24292.89 3157.95 17788.10 1478.39 281
v7n62.50 23959.27 24872.20 19867.25 32049.83 18577.87 25680.12 19752.50 25748.80 29273.07 28932.10 24387.90 16446.83 25554.92 28578.86 272
IterMVS63.77 22661.67 22570.08 24072.68 27851.24 15680.44 23375.51 27760.51 13951.41 27973.70 28432.08 24478.91 28954.30 20454.35 29180.08 263
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT59.12 25958.81 25260.08 31370.68 29945.07 26980.42 23474.25 28743.54 31650.02 28773.73 28131.97 24556.74 35151.06 22853.60 29678.42 280
SCA63.84 22460.01 24375.32 13278.58 20357.92 1061.61 33077.53 25056.71 21657.75 22170.77 30931.97 24579.91 28448.80 24156.36 26888.13 127
ACMMPcopyleft70.81 12569.29 13175.39 13181.52 14651.92 14083.43 16983.03 15456.67 21858.80 20388.91 9831.92 24788.58 13965.89 10973.39 13785.67 172
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
APD-MVS_3200maxsize69.62 14868.23 14373.80 16781.58 14248.22 22381.91 20479.50 21148.21 28464.24 13689.75 8331.91 24887.55 17763.08 12873.85 13585.64 174
VDDNet74.37 7172.13 8981.09 1979.58 18156.52 3290.02 2486.70 6752.61 25671.23 7587.20 12831.75 24993.96 2474.30 6475.77 11992.79 22
pmmvs562.80 23661.18 23167.66 26769.53 30442.37 29982.65 18875.19 28154.30 24652.03 27778.51 22931.64 25080.67 27148.60 24358.15 25279.95 264
LCM-MVSNet-Re58.82 26556.54 26365.68 28279.31 18629.09 35261.39 33245.79 35060.73 13637.65 33872.47 29631.42 25181.08 26849.66 23470.41 16286.87 149
testdata67.08 27277.59 21745.46 26569.20 32044.47 30871.50 7288.34 10931.21 25270.76 33552.20 22275.88 11785.03 182
SR-MVS-dyc-post68.27 17166.87 16672.48 19480.96 15648.14 22681.54 21576.98 26046.42 29662.75 15689.42 8831.17 25386.09 21660.52 15172.06 14983.19 216
GA-MVS69.04 15366.70 17176.06 11875.11 24952.36 13183.12 18080.23 19663.32 9460.65 17579.22 22330.98 25488.37 14761.25 14166.41 19087.46 140
OpenMVScopyleft61.00 1169.99 13967.55 15777.30 8578.37 20854.07 9084.36 14285.76 8357.22 20656.71 23787.67 12130.79 25592.83 3343.04 27384.06 5285.01 183
Effi-MVS+-dtu66.24 21164.96 20770.08 24075.17 24849.64 18782.01 20174.48 28562.15 11057.83 21776.08 26530.59 25683.79 24865.40 11860.93 23176.81 296
test22279.36 18350.97 15877.99 25567.84 32342.54 32062.84 15586.53 13830.26 25776.91 10985.23 179
MVS_111021_LR69.07 15267.91 14672.54 19177.27 22249.56 19079.77 24173.96 29159.33 16060.73 17487.82 11830.19 25881.53 26469.94 8572.19 14886.53 158
114514_t69.87 14267.88 14875.85 12388.38 2952.35 13286.94 7783.68 13953.70 24855.68 24785.60 14730.07 25991.20 6755.84 19671.02 15683.99 198
mvsmamba66.93 20164.88 20873.09 18075.06 25147.26 24083.36 17569.21 31962.64 10455.68 24781.43 20429.72 26089.20 11963.35 12763.50 20882.79 224
CPTT-MVS67.15 19465.84 18871.07 22580.96 15650.32 17481.94 20374.10 28846.18 29957.91 21687.64 12229.57 26181.31 26664.10 12270.18 16581.56 236
CANet_DTU73.71 8173.14 7275.40 13082.61 12450.05 17984.67 13779.36 21669.72 2175.39 3290.03 7829.41 26285.93 22367.99 9579.11 9490.22 82
AdaColmapbinary67.86 17665.48 19675.00 13988.15 3354.99 6786.10 9276.63 26849.30 27857.80 21886.65 13729.39 26388.94 13145.10 26370.21 16481.06 250
RE-MVS-def66.66 17280.96 15648.14 22681.54 21576.98 26046.42 29662.75 15689.42 8829.28 26460.52 15172.06 14983.19 216
CVMVSNet60.85 24960.44 23962.07 30175.00 25332.73 33879.54 24373.49 29636.98 33356.28 24383.74 16829.28 26469.53 33846.48 25663.23 21483.94 203
PMMVS72.98 8972.05 9275.78 12483.57 9048.60 21284.08 15082.85 15861.62 11968.24 9190.33 6828.35 26687.78 17072.71 7476.69 11090.95 68
our_test_359.11 26055.08 27671.18 22471.42 29153.29 11181.96 20274.52 28448.32 28342.08 32169.28 31728.14 26782.15 26034.35 30945.68 32778.11 286
Fast-Effi-MVS+-dtu66.53 20664.10 21573.84 16572.41 28152.30 13484.73 13275.66 27659.51 15356.34 24279.11 22528.11 26885.85 22457.74 18263.29 21383.35 210
Anonymous2023121166.08 21363.67 21673.31 17783.07 10748.75 20986.01 9584.67 11945.27 30356.54 23976.67 25528.06 26988.95 12952.78 21759.95 23382.23 228
Anonymous2024052969.71 14467.28 16277.00 9583.78 8850.36 17288.87 4385.10 10647.22 28964.03 13983.37 17427.93 27092.10 5057.78 18167.44 18388.53 121
HPM-MVS_fast67.86 17666.28 17972.61 18980.67 16648.34 22181.18 22375.95 27550.81 26959.55 18688.05 11627.86 27185.98 21958.83 16273.58 13683.51 209
FMVSNet164.57 21862.11 22371.96 20577.32 22146.36 25183.52 16283.31 14652.43 25854.42 25676.23 26127.80 27286.20 20842.59 27861.34 22983.32 211
CNLPA60.59 25058.44 25367.05 27379.21 18747.26 24079.75 24264.34 33142.46 32151.90 27883.94 16427.79 27375.41 31437.12 29159.49 23978.47 278
TAPA-MVS56.12 1461.82 24560.18 24266.71 27678.48 20637.97 32175.19 27376.41 27146.82 29257.04 23386.52 13927.67 27477.03 30726.50 34267.02 18685.14 180
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
pmmvs659.64 25457.15 25967.09 27166.01 32236.86 32580.50 23278.64 23145.05 30549.05 29173.94 27927.28 27586.10 21443.96 27049.94 30878.31 282
test-mter68.36 16767.29 16171.60 21578.67 19948.17 22485.13 11679.72 20553.38 25063.13 15182.58 18727.23 27680.24 27860.56 14975.17 12486.39 162
D2MVS63.49 22861.39 22969.77 24469.29 30648.93 20578.89 25077.71 24860.64 13849.70 28872.10 30327.08 27783.48 25354.48 20362.65 22176.90 295
XVG-OURS-SEG-HR62.02 24359.54 24569.46 24765.30 32745.88 25965.06 32073.57 29546.45 29557.42 23083.35 17526.95 27878.09 29553.77 20864.03 20384.42 190
test_djsdf63.84 22461.56 22770.70 23068.78 30944.69 27381.63 21181.44 17950.28 27152.27 27576.26 26026.72 27986.11 21260.83 14555.84 27981.29 249
Anonymous2023120659.08 26157.59 25663.55 29568.77 31032.14 34180.26 23679.78 20450.00 27549.39 28972.39 29826.64 28078.36 29233.12 31557.94 25780.14 262
ppachtmachnet_test58.56 26854.34 27771.24 22171.42 29154.74 7281.84 20772.27 30249.02 28045.86 31168.99 31826.27 28183.30 25530.12 32443.23 33275.69 306
test20.0355.22 28754.07 28058.68 31763.14 33825.00 35777.69 25774.78 28352.64 25543.43 31672.39 29826.21 28274.76 31629.31 32747.05 32176.28 304
FE-MVS64.15 22160.43 24075.30 13380.85 16149.86 18468.28 31478.37 23850.26 27459.31 19173.79 28026.19 28391.92 5340.19 28266.67 18784.12 193
FMVSNet558.61 26756.45 26465.10 28977.20 22639.74 31274.77 27477.12 25850.27 27343.28 31867.71 32126.15 28476.90 30936.78 29654.78 28778.65 276
ACMP61.11 966.24 21164.33 21272.00 20474.89 25549.12 19783.18 17979.83 20355.41 23352.29 27482.68 18625.83 28586.10 21460.89 14463.94 20580.78 253
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MIMVSNet63.12 23260.29 24171.61 21475.92 24346.65 24765.15 31981.94 16959.14 16754.65 25469.47 31525.74 28680.63 27241.03 28169.56 17087.55 138
LPG-MVS_test66.44 20864.58 21072.02 20274.42 25948.60 21283.07 18280.64 19054.69 24153.75 26383.83 16625.73 28786.98 18760.33 15564.71 19880.48 257
LGP-MVS_train72.02 20274.42 25948.60 21280.64 19054.69 24153.75 26383.83 16625.73 28786.98 18760.33 15564.71 19880.48 257
test_vis1_n_192068.59 16568.31 14169.44 24869.16 30741.51 30384.63 13868.58 32258.80 17473.26 5088.37 10725.30 28980.60 27379.10 2867.55 18286.23 164
ACMM58.35 1264.35 22062.01 22471.38 21974.21 26248.51 21682.25 19879.66 20747.61 28754.54 25580.11 21325.26 29086.00 21851.26 22563.16 21679.64 266
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
XVG-OURS61.88 24459.34 24769.49 24665.37 32646.27 25464.80 32173.49 29647.04 29157.41 23182.85 18025.15 29178.18 29353.00 21464.98 19684.01 197
PVSNet_057.04 1361.19 24757.24 25873.02 18177.45 22050.31 17579.43 24777.36 25563.96 8347.51 30172.45 29725.03 29283.78 24952.76 21919.22 36884.96 184
UniMVSNet_ETH3D62.51 23860.49 23868.57 26168.30 31540.88 31073.89 28079.93 20151.81 26454.77 25279.61 21724.80 29381.10 26749.93 23261.35 22883.73 206
DP-MVS59.24 25756.12 26868.63 25988.24 3250.35 17382.51 19364.43 33041.10 32346.70 30678.77 22724.75 29488.57 14222.26 35056.29 27266.96 342
tt080563.39 22961.31 23069.64 24569.36 30538.87 31678.00 25485.48 8548.82 28255.66 25081.66 20124.38 29586.37 20749.04 24059.36 24183.68 207
cascas69.01 15466.13 18277.66 7679.36 18355.41 5386.99 7583.75 13856.69 21758.92 19981.35 20524.31 29692.10 5053.23 21070.61 15985.46 177
CMPMVSbinary40.41 2155.34 28652.64 28963.46 29660.88 34443.84 28261.58 33171.06 31130.43 34736.33 34074.63 27424.14 29775.44 31348.05 24766.62 18871.12 336
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
UGNet68.71 16267.11 16573.50 17680.55 16947.61 23484.08 15078.51 23559.45 15465.68 11682.73 18523.78 29885.08 23752.80 21676.40 11187.80 133
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
YYNet153.82 29449.96 29965.41 28670.09 30248.95 20372.30 29271.66 30744.25 31131.89 35263.07 33423.73 29973.95 32033.26 31339.40 33973.34 323
MDA-MVSNet_test_wron53.82 29449.95 30065.43 28570.13 30149.05 19972.30 29271.65 30844.23 31231.85 35363.13 33323.68 30074.01 31933.25 31439.35 34073.23 325
PLCcopyleft52.38 1860.89 24858.97 25166.68 27881.77 13545.70 26378.96 24974.04 29043.66 31547.63 29883.19 17823.52 30177.78 30437.47 28860.46 23276.55 302
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
ADS-MVSNet255.21 28851.44 29366.51 27980.60 16749.56 19055.03 34465.44 32744.72 30651.00 28261.19 33822.83 30275.41 31428.54 33253.63 29474.57 315
ADS-MVSNet56.17 28251.95 29268.84 25380.60 16753.07 11755.03 34470.02 31744.72 30651.00 28261.19 33822.83 30278.88 29028.54 33253.63 29474.57 315
test_040256.45 28053.03 28466.69 27776.78 23050.31 17581.76 20869.61 31842.79 31943.88 31372.13 30122.82 30486.46 20416.57 36150.94 30663.31 350
UnsupCasMVSNet_eth57.56 27355.15 27464.79 29164.57 33333.12 33573.17 28683.87 13758.98 17141.75 32470.03 31322.54 30579.92 28246.12 26035.31 34581.32 248
xiu_mvs_v1_base_debu71.60 11170.29 11475.55 12777.26 22353.15 11385.34 10979.37 21355.83 22772.54 5790.19 7222.38 30686.66 19873.28 7176.39 11286.85 151
xiu_mvs_v1_base71.60 11170.29 11475.55 12777.26 22353.15 11385.34 10979.37 21355.83 22772.54 5790.19 7222.38 30686.66 19873.28 7176.39 11286.85 151
xiu_mvs_v1_base_debi71.60 11170.29 11475.55 12777.26 22353.15 11385.34 10979.37 21355.83 22772.54 5790.19 7222.38 30686.66 19873.28 7176.39 11286.85 151
RRT_MVS63.68 22761.01 23471.70 21373.48 26745.98 25881.19 22276.08 27354.33 24552.84 26979.27 22122.21 30987.65 17354.13 20555.54 28281.46 240
LS3D56.40 28153.82 28164.12 29281.12 15245.69 26473.42 28466.14 32635.30 34143.24 31979.88 21422.18 31079.62 28619.10 35864.00 20467.05 341
PVSNet62.49 869.27 15167.81 15273.64 17284.41 7651.85 14184.63 13877.80 24566.42 4759.80 18084.95 15422.14 31180.44 27655.03 19975.11 12688.62 118
MDA-MVSNet-bldmvs51.56 30447.75 31063.00 29871.60 28947.32 23969.70 30972.12 30343.81 31427.65 35963.38 33221.97 31275.96 31127.30 33932.19 35365.70 347
pmmvs-eth3d55.97 28452.78 28865.54 28461.02 34346.44 25075.36 27267.72 32449.61 27743.65 31567.58 32221.63 31377.04 30644.11 26944.33 32973.15 326
anonymousdsp60.46 25157.65 25568.88 25263.63 33645.09 26872.93 28778.63 23246.52 29451.12 28172.80 29321.46 31483.07 25757.79 18053.97 29278.47 278
MVS-HIRNet49.01 30944.71 31361.92 30476.06 23946.61 24863.23 32554.90 34324.77 35333.56 34836.60 36121.28 31575.88 31229.49 32662.54 22263.26 351
Anonymous20240521170.11 13367.88 14876.79 10487.20 4047.24 24289.49 3377.38 25454.88 23966.14 10886.84 13320.93 31691.54 5956.45 19471.62 15191.59 49
UnsupCasMVSNet_bld53.86 29350.53 29763.84 29363.52 33734.75 32971.38 30081.92 17146.53 29338.95 33457.93 34620.55 31780.20 28039.91 28434.09 35276.57 301
EU-MVSNet52.63 29950.72 29658.37 31862.69 34028.13 35472.60 28875.97 27430.94 34640.76 33072.11 30220.16 31870.80 33435.11 30646.11 32576.19 305
N_pmnet41.25 31839.77 32145.66 33668.50 3120.82 38372.51 2900.38 38335.61 33835.26 34461.51 33720.07 31967.74 33923.51 34940.63 33668.42 340
MSDG59.44 25555.14 27572.32 19774.69 25650.71 16074.39 27873.58 29444.44 30943.40 31777.52 23819.45 32090.87 7831.31 32157.49 26475.38 309
K. test v354.04 29249.42 30367.92 26668.55 31142.57 29775.51 27063.07 33352.07 25939.21 33264.59 33019.34 32182.21 25937.11 29225.31 36178.97 271
lessismore_v067.98 26464.76 33241.25 30645.75 35136.03 34265.63 32819.29 32284.11 24535.67 29921.24 36678.59 277
KD-MVS_self_test49.24 30846.85 31156.44 32354.32 35122.87 36057.39 34073.36 30044.36 31037.98 33759.30 34418.97 32371.17 33333.48 31142.44 33375.26 310
OpenMVS_ROBcopyleft53.19 1759.20 25856.00 26968.83 25471.13 29544.30 27783.64 16175.02 28246.42 29646.48 30873.03 29018.69 32488.14 15627.74 33761.80 22674.05 318
mvsany_test143.38 31742.57 31945.82 33550.96 35626.10 35655.80 34227.74 37127.15 35047.41 30274.39 27618.67 32544.95 36344.66 26536.31 34366.40 344
LTVRE_ROB45.45 1952.73 29849.74 30161.69 30569.78 30334.99 32844.52 35267.60 32543.11 31843.79 31474.03 27818.54 32681.45 26528.39 33457.94 25768.62 339
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
SixPastTwentyTwo54.37 28950.10 29867.21 27070.70 29741.46 30574.73 27564.69 32947.56 28839.12 33369.49 31418.49 32784.69 24231.87 31834.20 35175.48 308
new-patchmatchnet48.21 31046.55 31253.18 32857.73 34818.19 37270.24 30471.02 31245.70 30033.70 34760.23 34018.00 32869.86 33727.97 33634.35 34971.49 335
F-COLMAP55.96 28553.65 28362.87 29972.76 27742.77 29374.70 27770.37 31540.03 32441.11 32879.36 21917.77 32973.70 32332.80 31653.96 29372.15 329
jajsoiax63.21 23160.84 23570.32 23668.33 31444.45 27581.23 22181.05 18553.37 25150.96 28477.81 23617.49 33085.49 22859.31 15858.05 25581.02 251
bld_raw_dy_0_6459.75 25357.01 26267.96 26566.73 32145.30 26677.59 25859.97 33850.49 27047.15 30377.03 24717.45 33179.06 28856.92 18959.76 23679.51 267
RPSCF45.77 31544.13 31750.68 33057.67 34929.66 34854.92 34645.25 35226.69 35145.92 31075.92 26717.43 33245.70 36227.44 33845.95 32676.67 297
PatchMatch-RL56.66 27753.75 28265.37 28777.91 21545.28 26769.78 30860.38 33641.35 32247.57 29973.73 28116.83 33376.91 30836.99 29459.21 24273.92 319
mvs_tets62.96 23460.55 23770.19 23768.22 31744.24 27980.90 22780.74 18952.99 25450.82 28677.56 23716.74 33485.44 22959.04 16157.94 25780.89 252
ACMH+54.58 1558.55 26955.24 27268.50 26274.68 25745.80 26280.27 23570.21 31647.15 29042.77 32075.48 26916.73 33585.98 21935.10 30754.78 28773.72 320
ACMH53.70 1659.78 25255.94 27071.28 22076.59 23148.35 22080.15 23976.11 27249.74 27641.91 32373.45 28816.50 33690.31 9431.42 32057.63 26375.17 311
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MIMVSNet150.35 30747.81 30857.96 31961.53 34227.80 35567.40 31674.06 28943.25 31733.31 35165.38 32916.03 33771.34 33221.80 35147.55 31674.75 313
DSMNet-mixed38.35 32135.36 32547.33 33448.11 36114.91 37637.87 36036.60 36219.18 35834.37 34559.56 34315.53 33853.01 35520.14 35646.89 32274.07 317
EG-PatchMatch MVS62.40 24259.59 24470.81 22973.29 27049.05 19985.81 9684.78 11451.85 26344.19 31273.48 28715.52 33989.85 10540.16 28367.24 18473.54 322
MVS_030456.72 27655.17 27361.37 30870.71 29636.80 32675.74 26568.75 32144.11 31352.53 27168.20 32015.05 34074.53 31742.98 27458.44 24872.79 327
testgi54.25 29152.57 29059.29 31562.76 33921.65 36472.21 29470.47 31453.25 25241.94 32277.33 24214.28 34177.95 30029.18 32851.72 30578.28 283
COLMAP_ROBcopyleft43.60 2050.90 30648.05 30759.47 31467.81 31840.57 31171.25 30162.72 33536.49 33636.19 34173.51 28613.48 34273.92 32120.71 35450.26 30763.92 349
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
OurMVSNet-221017-052.39 30148.73 30463.35 29765.21 32838.42 31968.54 31364.95 32838.19 32839.57 33171.43 30513.23 34379.92 28237.16 29040.32 33871.72 332
test_fmvs153.60 29652.54 29156.78 32158.07 34630.26 34468.95 31142.19 35532.46 34363.59 14782.56 18911.55 34460.81 34458.25 17155.27 28379.28 268
tmp_tt9.44 34310.68 3465.73 3592.49 3824.21 38210.48 37218.04 3780.34 37612.59 36820.49 37011.39 3457.03 37813.84 3646.46 3755.95 373
ITE_SJBPF51.84 32958.03 34731.94 34253.57 34736.67 33441.32 32675.23 27111.17 34651.57 35625.81 34348.04 31272.02 331
Anonymous2024052151.65 30348.42 30561.34 31056.43 35039.65 31473.57 28273.47 29936.64 33536.59 33963.98 33110.75 34772.25 33135.35 30149.01 30972.11 330
AllTest47.32 31244.66 31455.32 32665.08 32937.50 32362.96 32754.25 34535.45 33933.42 34972.82 2919.98 34859.33 34724.13 34743.84 33069.13 337
TestCases55.32 32665.08 32937.50 32354.25 34535.45 33933.42 34972.82 2919.98 34859.33 34724.13 34743.84 33069.13 337
USDC54.36 29051.23 29463.76 29464.29 33437.71 32262.84 32873.48 29856.85 21135.47 34371.94 3049.23 35078.43 29138.43 28748.57 31075.13 312
XVG-ACMP-BASELINE56.03 28352.85 28765.58 28361.91 34140.95 30963.36 32372.43 30145.20 30446.02 30974.09 2779.20 35178.12 29445.13 26258.27 25077.66 290
test_fmvs1_n52.55 30051.19 29556.65 32251.90 35430.14 34567.66 31542.84 35432.27 34462.30 16182.02 1989.12 35260.84 34357.82 17954.75 28978.99 270
test_vis1_n51.19 30549.66 30255.76 32551.26 35529.85 34767.20 31738.86 35832.12 34559.50 18779.86 2158.78 35358.23 35056.95 18852.46 30279.19 269
pmmvs345.53 31641.55 32057.44 32048.97 35939.68 31370.06 30557.66 34028.32 34934.06 34657.29 3478.50 35466.85 34034.86 30834.26 35065.80 346
EGC-MVSNET33.75 32530.42 32943.75 33964.94 33136.21 32760.47 33540.70 3570.02 3770.10 37853.79 3507.39 35560.26 34511.09 36635.23 34734.79 363
test_fmvs245.89 31444.32 31650.62 33145.85 36324.70 35858.87 33937.84 36125.22 35252.46 27374.56 2757.07 35654.69 35249.28 23847.70 31472.48 328
ANet_high34.39 32429.59 33048.78 33230.34 37322.28 36155.53 34363.79 33238.11 32915.47 36536.56 3626.94 35759.98 34613.93 3635.64 37664.08 348
FPMVS35.40 32333.67 32640.57 34146.34 36228.74 35341.05 35657.05 34120.37 35722.27 36153.38 3516.87 35844.94 3648.62 36747.11 32048.01 360
test_vis1_rt40.29 32038.64 32245.25 33748.91 36030.09 34659.44 33627.07 37224.52 35438.48 33651.67 3536.71 35949.44 35744.33 26746.59 32456.23 353
new_pmnet33.56 32631.89 32838.59 34249.01 35820.42 36551.01 34737.92 36020.58 35523.45 36046.79 3556.66 36049.28 35920.00 35731.57 35546.09 361
TinyColmap48.15 31144.49 31559.13 31665.73 32538.04 32063.34 32462.86 33438.78 32629.48 35567.23 3246.46 36173.30 32524.59 34641.90 33566.04 345
ambc62.06 30253.98 35229.38 35035.08 36279.65 20841.37 32559.96 3416.27 36282.15 26035.34 30238.22 34174.65 314
TDRefinement40.91 31938.37 32348.55 33350.45 35733.03 33758.98 33850.97 34828.50 34829.89 35467.39 3236.21 36354.51 35317.67 36035.25 34658.11 352
PM-MVS46.92 31343.76 31856.41 32452.18 35332.26 34063.21 32638.18 35937.99 33040.78 32966.20 3255.09 36465.42 34148.19 24641.99 33471.54 334
LF4IMVS33.04 32732.55 32734.52 34540.96 36422.03 36244.45 35335.62 36320.42 35628.12 35862.35 3355.03 36531.88 37521.61 35334.42 34849.63 359
EMVS18.42 34017.66 34420.71 35634.13 37012.64 37846.94 35029.94 36910.46 3705.58 37614.93 3744.23 36638.83 3675.24 3757.51 37310.67 372
E-PMN19.16 33918.40 34321.44 35536.19 36813.63 37747.59 34930.89 36710.73 3685.91 37516.59 3713.66 36739.77 3665.95 3738.14 37110.92 371
test_method24.09 33621.07 34033.16 34827.67 3778.35 38126.63 36835.11 3653.40 37414.35 36636.98 3603.46 36835.31 37019.08 35922.95 36355.81 354
mvsany_test328.00 32925.98 33134.05 34628.97 37415.31 37434.54 36318.17 37716.24 36129.30 35653.37 3522.79 36933.38 37430.01 32520.41 36753.45 356
test_f27.12 33124.85 33233.93 34726.17 37915.25 37530.24 36722.38 37612.53 36628.23 35749.43 3542.59 37034.34 37325.12 34526.99 35952.20 357
test_fmvs337.95 32235.75 32444.55 33835.50 36918.92 36848.32 34834.00 36618.36 36041.31 32761.58 3362.29 37148.06 36142.72 27737.71 34266.66 343
PMMVS226.71 33222.98 33737.87 34336.89 3678.51 38042.51 35529.32 37019.09 35913.01 36737.54 3582.23 37253.11 35414.54 36211.71 36951.99 358
Gipumacopyleft27.47 33024.26 33537.12 34460.55 34529.17 35111.68 37160.00 33714.18 36310.52 37215.12 3732.20 37363.01 3428.39 36835.65 34419.18 369
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
LCM-MVSNet28.07 32823.85 33640.71 34027.46 37818.93 36730.82 36646.19 34912.76 36516.40 36334.70 3641.90 37448.69 36020.25 35524.22 36254.51 355
DeepMVS_CXcopyleft13.10 35721.34 3818.99 37910.02 38110.59 3697.53 37430.55 3671.82 37514.55 3766.83 3727.52 37215.75 370
APD_test126.46 33324.41 33432.62 35037.58 36621.74 36340.50 35830.39 36811.45 36716.33 36443.76 3561.63 37641.62 36511.24 36526.82 36034.51 364
PMVScopyleft19.57 2225.07 33422.43 33932.99 34923.12 38022.98 35940.98 35735.19 36415.99 36211.95 37135.87 3631.47 37749.29 3585.41 37431.90 35426.70 368
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test_vis3_rt24.79 33522.95 33830.31 35128.59 37518.92 36837.43 36117.27 37912.90 36421.28 36229.92 3681.02 37836.35 36828.28 33529.82 35835.65 362
MVEpermissive16.60 2317.34 34213.39 34529.16 35228.43 37619.72 36613.73 37023.63 3757.23 3737.96 37321.41 3690.80 37936.08 3696.97 37110.39 37031.69 365
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
testf121.11 33719.08 34127.18 35330.56 37118.28 37033.43 36424.48 3738.02 37112.02 36933.50 3650.75 38035.09 3717.68 36921.32 36428.17 366
APD_test221.11 33719.08 34127.18 35330.56 37118.28 37033.43 36424.48 3738.02 37112.02 36933.50 3650.75 38035.09 3717.68 36921.32 36428.17 366
wuyk23d9.11 3448.77 34810.15 35840.18 36516.76 37320.28 3691.01 3822.58 3752.66 3770.98 3770.23 38212.49 3774.08 3766.90 3741.19 374
test_blank0.00 3490.00 3520.00 3620.00 3840.00 3850.00 3730.00 3840.00 3780.00 3810.00 3800.00 3830.00 3790.00 3790.00 3770.00 377
uanet_test0.00 3490.00 3520.00 3620.00 3840.00 3850.00 3730.00 3840.00 3780.00 3810.00 3800.00 3830.00 3790.00 3790.00 3770.00 377
DCPMVS0.00 3490.00 3520.00 3620.00 3840.00 3850.00 3730.00 3840.00 3780.00 3810.00 3800.00 3830.00 3790.00 3790.00 3770.00 377
sosnet-low-res0.00 3490.00 3520.00 3620.00 3840.00 3850.00 3730.00 3840.00 3780.00 3810.00 3800.00 3830.00 3790.00 3790.00 3770.00 377
sosnet0.00 3490.00 3520.00 3620.00 3840.00 3850.00 3730.00 3840.00 3780.00 3810.00 3800.00 3830.00 3790.00 3790.00 3770.00 377
uncertanet0.00 3490.00 3520.00 3620.00 3840.00 3850.00 3730.00 3840.00 3780.00 3810.00 3800.00 3830.00 3790.00 3790.00 3770.00 377
Regformer0.00 3490.00 3520.00 3620.00 3840.00 3850.00 3730.00 3840.00 3780.00 3810.00 3800.00 3830.00 3790.00 3790.00 3770.00 377
testmvs6.14 3468.18 3490.01 3600.01 3830.00 38573.40 2850.00 3840.00 3780.02 3790.15 3780.00 3830.00 3790.02 3770.00 3770.02 375
test1236.01 3478.01 3500.01 3600.00 3840.01 38471.93 2980.00 3840.00 3780.02 3790.11 3790.00 3830.00 3790.02 3770.00 3770.02 375
ab-mvs-re7.68 34510.24 3470.00 3620.00 3840.00 3850.00 3730.00 3840.00 3780.00 38192.12 310.00 3830.00 3790.00 3790.00 3770.00 377
uanet0.00 3490.00 3520.00 3620.00 3840.00 3850.00 3730.00 3840.00 3780.00 3810.00 3800.00 3830.00 3790.00 3790.00 3770.00 377
FOURS183.24 10149.90 18384.98 12478.76 22847.71 28673.42 47
MSC_two_6792asdad81.53 1491.77 456.03 4191.10 696.22 881.46 1986.80 2592.34 30
No_MVS81.53 1491.77 456.03 4191.10 696.22 881.46 1986.80 2592.34 30
eth-test20.00 384
eth-test0.00 384
IU-MVS89.48 1757.49 1591.38 566.22 5188.26 182.83 987.60 1792.44 27
save fliter85.35 6056.34 3689.31 3781.46 17861.55 120
test_0728_SECOND82.20 889.50 1557.73 1192.34 588.88 2496.39 481.68 1587.13 2092.47 26
GSMVS88.13 127
test_part289.33 2355.48 5082.27 10
MTGPAbinary81.31 181
MTMP87.27 7015.34 380
gm-plane-assit83.24 10154.21 8670.91 1388.23 11295.25 1466.37 104
test9_res78.72 3485.44 3991.39 57
agg_prior275.65 5185.11 4391.01 66
agg_prior85.64 5454.92 6983.61 14372.53 6088.10 159
test_prior456.39 3587.15 73
test_prior78.39 6386.35 4554.91 7085.45 8889.70 11090.55 74
旧先验281.73 20945.53 30274.66 3570.48 33658.31 170
新几何281.61 213
无先验85.19 11478.00 24349.08 27985.13 23652.78 21787.45 141
原ACMM283.77 159
testdata277.81 30345.64 261
testdata177.55 25964.14 78
plane_prior777.95 21248.46 219
plane_prior582.59 16088.30 15265.46 11372.34 14684.49 188
plane_prior483.28 176
plane_prior348.95 20364.01 8162.15 163
plane_prior285.76 9863.60 90
plane_prior178.31 209
plane_prior49.57 18887.43 6364.57 7372.84 142
n20.00 384
nn0.00 384
door-mid41.31 356
test1184.25 127
door43.27 353
HQP5-MVS51.56 147
HQP-NCC79.02 19188.00 5165.45 6064.48 131
ACMP_Plane79.02 19188.00 5165.45 6064.48 131
BP-MVS66.70 101
HQP4-MVS64.47 13488.61 13884.91 185
HQP3-MVS83.68 13973.12 138
NP-MVS78.76 19650.43 16885.12 152
ACMMP++_ref63.20 215
ACMMP++59.38 240