This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort by
MSP-MVS82.30 683.47 178.80 5782.99 11952.71 13285.04 13588.63 4366.08 7286.77 392.75 3472.05 191.46 6883.35 2193.53 192.23 38
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DVP-MVS++82.44 382.38 582.62 491.77 457.49 1584.98 13888.88 3258.00 21683.60 693.39 2067.21 296.39 481.64 3291.98 493.98 5
OPU-MVS81.71 1492.05 355.97 4892.48 494.01 567.21 295.10 1589.82 292.55 394.06 3
PC_three_145266.58 6087.27 293.70 1166.82 494.95 1789.74 391.98 493.98 5
DPM-MVS82.39 482.36 682.49 580.12 19159.50 592.24 990.72 1469.37 3383.22 994.47 263.81 593.18 3374.02 8593.25 294.80 1
DELS-MVS82.32 582.50 481.79 1386.80 4856.89 2992.77 386.30 8477.83 277.88 3492.13 4360.24 694.78 2078.97 4589.61 893.69 10
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
dcpmvs_279.33 2178.94 2080.49 2589.75 1256.54 3684.83 14583.68 15067.85 4569.36 10490.24 8660.20 792.10 5784.14 1580.40 8192.82 25
baseline275.15 7974.54 7776.98 10681.67 15351.74 15283.84 17391.94 369.97 2858.98 22386.02 16559.73 891.73 6368.37 11470.40 18187.48 161
CSCG80.41 1579.72 1582.49 589.12 2557.67 1389.29 4191.54 559.19 19271.82 8290.05 9459.72 996.04 1078.37 5188.40 1493.75 9
GG-mvs-BLEND77.77 8386.68 4950.61 17168.67 33988.45 4968.73 10987.45 14759.15 1090.67 9054.83 22387.67 1792.03 45
SED-MVS81.92 781.75 982.44 789.48 1756.89 2992.48 488.94 3057.50 23084.61 494.09 358.81 1196.37 682.28 2787.60 1894.06 3
test_241102_ONE89.48 1756.89 2988.94 3057.53 22884.61 493.29 2458.81 1196.45 1
gg-mvs-nofinetune67.43 21264.53 23876.13 12585.95 5347.79 25564.38 35188.28 5139.34 35466.62 12341.27 38858.69 1389.00 13849.64 26086.62 3091.59 57
testing1179.18 2278.85 2180.16 3388.33 3056.99 2688.31 5292.06 172.82 1170.62 10088.37 12557.69 1492.30 5075.25 7576.24 12491.20 72
testing9978.45 2577.78 3380.45 2788.28 3356.81 3287.95 5991.49 671.72 1570.84 9588.09 13357.29 1592.63 4469.24 10975.13 13791.91 49
CostFormer73.89 9472.30 10378.66 6382.36 13756.58 3375.56 29385.30 10566.06 7370.50 10276.88 28257.02 1689.06 13468.27 11668.74 19290.33 91
test_0728_THIRD58.00 21681.91 1493.64 1356.54 1796.44 281.64 3286.86 2592.23 38
DPE-MVScopyleft79.82 1879.66 1680.29 2989.27 2455.08 7188.70 4787.92 5655.55 26081.21 1993.69 1256.51 1894.27 2478.36 5285.70 3991.51 62
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
ETVMVS75.80 7075.44 6276.89 10986.23 5250.38 18085.55 11991.42 771.30 2168.80 10887.94 13956.42 1989.24 12856.54 21274.75 14391.07 76
DeepPCF-MVS69.37 180.65 1381.56 1177.94 8285.46 6449.56 20090.99 2286.66 7870.58 2480.07 2495.30 156.18 2090.97 8482.57 2686.22 3593.28 15
test_241102_TWO88.76 3957.50 23083.60 694.09 356.14 2196.37 682.28 2787.43 2092.55 31
testing9178.30 3177.54 3680.61 2388.16 3557.12 2387.94 6091.07 1371.43 1870.75 9688.04 13755.82 2292.65 4269.61 10675.00 14192.05 44
patch_mono-280.84 1281.59 1078.62 6490.34 953.77 10288.08 5488.36 5076.17 379.40 2891.09 6655.43 2390.09 10885.01 1280.40 8191.99 48
testing22277.70 3977.22 4179.14 4886.95 4654.89 7787.18 7991.96 272.29 1371.17 9388.70 11955.19 2491.24 7365.18 14176.32 12391.29 70
DVP-MVScopyleft81.30 1081.00 1382.20 889.40 2057.45 1792.34 689.99 1857.71 22481.91 1493.64 1355.17 2596.44 281.68 3087.13 2192.72 28
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072689.40 2057.45 1792.32 888.63 4357.71 22483.14 1093.96 855.17 25
TSAR-MVS + MP.78.31 3078.26 2578.48 6881.33 16656.31 4281.59 23686.41 8169.61 3181.72 1688.16 13255.09 2788.04 17774.12 8486.31 3391.09 75
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
baseline172.51 11872.12 11073.69 19285.05 7144.46 29683.51 18286.13 8771.61 1764.64 15087.97 13855.00 2889.48 12359.07 18256.05 30387.13 168
test_one_060189.39 2257.29 2088.09 5357.21 23682.06 1393.39 2054.94 29
MM82.69 283.29 380.89 2284.38 8355.40 5992.16 1089.85 2075.28 582.41 1193.86 1054.30 3093.98 2590.29 187.13 2193.30 14
TSAR-MVS + GP.77.82 3777.59 3578.49 6785.25 6950.27 18790.02 2790.57 1556.58 24974.26 5491.60 6154.26 3192.16 5475.87 6779.91 8993.05 21
EPP-MVSNet71.14 13970.07 14374.33 17179.18 20546.52 27183.81 17486.49 7956.32 25357.95 24284.90 18054.23 3289.14 13358.14 19569.65 18787.33 164
MCST-MVS83.01 183.30 282.15 1092.84 257.58 1493.77 191.10 1075.95 477.10 3893.09 2954.15 3395.57 1285.80 1085.87 3793.31 13
alignmvs78.08 3477.98 2978.39 7283.53 10053.22 12089.77 3385.45 9866.11 7076.59 4291.99 5054.07 3489.05 13577.34 6177.00 11392.89 23
WTY-MVS77.47 4277.52 3777.30 9488.33 3046.25 27888.46 5090.32 1671.40 1972.32 7891.72 5653.44 3592.37 4966.28 12875.42 13193.28 15
IB-MVS68.87 274.01 9172.03 11479.94 3883.04 11655.50 5490.24 2688.65 4167.14 5461.38 19481.74 23053.21 3694.28 2360.45 17562.41 25090.03 103
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
HPM-MVS++copyleft80.50 1480.71 1479.88 3987.34 4455.20 6689.93 3087.55 6566.04 7579.46 2793.00 3253.10 3791.76 6280.40 3889.56 992.68 29
miper_enhance_ethall69.77 16668.90 15872.38 21978.93 21149.91 19283.29 19278.85 24264.90 9059.37 21679.46 24952.77 3885.16 25963.78 14558.72 27282.08 255
MVSTER73.25 10672.33 10176.01 12985.54 6253.76 10383.52 17887.16 6867.06 5563.88 16781.66 23152.77 3890.44 9664.66 14364.69 22483.84 231
CNVR-MVS81.76 881.90 881.33 1990.04 1057.70 1291.71 1188.87 3470.31 2677.64 3793.87 952.58 4093.91 2884.17 1487.92 1692.39 34
MVS_030481.58 982.05 780.20 3182.36 13754.70 8291.13 2088.95 2974.49 780.04 2593.64 1352.40 4193.27 3288.85 486.56 3192.61 30
FIs70.00 16170.24 14169.30 27577.93 23138.55 34483.99 16987.72 6266.86 5857.66 24984.17 18652.28 4285.31 25452.72 24468.80 19184.02 222
tpm270.82 14768.44 16277.98 7980.78 17856.11 4474.21 30481.28 19560.24 17268.04 11375.27 30052.26 4388.50 15955.82 22068.03 19689.33 117
thisisatest051573.64 10172.20 10677.97 8081.63 15453.01 12786.69 9288.81 3762.53 13264.06 16185.65 16952.15 4492.50 4658.43 18869.84 18488.39 143
casdiffmvs_mvgpermissive77.75 3877.28 3979.16 4780.42 18754.44 9087.76 6285.46 9771.67 1671.38 8888.35 12751.58 4591.22 7479.02 4479.89 9191.83 53
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
UniMVSNet_NR-MVSNet68.82 18268.29 16570.40 26175.71 26642.59 32084.23 16186.78 7466.31 6658.51 23382.45 21751.57 4684.64 26753.11 23555.96 30483.96 228
PAPM76.76 5376.07 5578.81 5680.20 18959.11 686.86 8886.23 8568.60 3670.18 10388.84 11751.57 4687.16 20765.48 13486.68 2990.15 99
tttt051768.33 19366.29 20374.46 16678.08 22749.06 21080.88 25289.08 2754.40 27454.75 28280.77 24051.31 4890.33 10049.35 26258.01 28483.99 224
mvs_anonymous72.29 12270.74 12876.94 10882.85 12554.72 8178.43 28081.54 18963.77 10661.69 19179.32 25151.11 4985.31 25462.15 15875.79 12790.79 82
HY-MVS67.03 573.90 9373.14 9176.18 12484.70 7747.36 26075.56 29386.36 8366.27 6770.66 9983.91 18951.05 5089.31 12667.10 12272.61 15991.88 51
thisisatest053070.47 15468.56 16076.20 12279.78 19551.52 15883.49 18488.58 4757.62 22758.60 23282.79 20651.03 5191.48 6752.84 23962.36 25285.59 201
sasdasda78.17 3277.86 3179.12 5084.30 8454.22 9387.71 6384.57 13167.70 4977.70 3592.11 4650.90 5289.95 11178.18 5577.54 10893.20 17
miper_ehance_all_eth68.70 18867.58 17972.08 22676.91 24849.48 20482.47 21378.45 25562.68 12958.28 24177.88 26550.90 5285.01 26261.91 15958.72 27281.75 260
canonicalmvs78.17 3277.86 3179.12 5084.30 8454.22 9387.71 6384.57 13167.70 4977.70 3592.11 4650.90 5289.95 11178.18 5577.54 10893.20 17
casdiffmvspermissive77.36 4376.85 4578.88 5580.40 18854.66 8687.06 8285.88 9072.11 1471.57 8588.63 12450.89 5590.35 9976.00 6679.11 9791.63 56
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline76.86 5176.24 5378.71 6080.47 18654.20 9783.90 17184.88 12171.38 2071.51 8689.15 11250.51 5690.55 9575.71 6878.65 10091.39 65
MVS_Test75.85 6674.93 7178.62 6484.08 8955.20 6683.99 16985.17 11268.07 4273.38 6282.76 20750.44 5789.00 13865.90 13080.61 7791.64 55
FC-MVSNet-test67.49 21067.91 17066.21 30676.06 25933.06 36380.82 25387.18 6764.44 9454.81 28082.87 20450.40 5882.60 28348.05 27266.55 21082.98 247
nrg03072.27 12471.56 11774.42 16875.93 26350.60 17286.97 8483.21 16162.75 12767.15 11984.38 18250.07 5986.66 22271.19 9862.37 25185.99 190
fmvsm_l_conf0.5_n75.95 6376.16 5475.31 14876.01 26248.44 23384.98 13871.08 33163.50 11481.70 1793.52 1750.00 6087.18 20687.80 576.87 11590.32 92
cl2268.85 18067.69 17772.35 22078.07 22849.98 19182.45 21478.48 25462.50 13458.46 23777.95 26349.99 6185.17 25862.55 15358.72 27281.90 258
fmvsm_l_conf0.5_n_a75.88 6576.07 5575.31 14876.08 25848.34 23685.24 12670.62 33563.13 12281.45 1893.62 1649.98 6287.40 20287.76 676.77 11690.20 97
tpmrst71.04 14369.77 14674.86 16183.19 11155.86 5175.64 29278.73 24867.88 4464.99 14773.73 31149.96 6379.56 31565.92 12967.85 19989.14 124
CANet80.90 1181.17 1280.09 3787.62 4254.21 9591.60 1486.47 8073.13 1079.89 2693.10 2749.88 6492.98 3484.09 1684.75 4993.08 20
ET-MVSNet_ETH3D75.23 7774.08 8178.67 6284.52 8055.59 5288.92 4489.21 2568.06 4353.13 29690.22 8849.71 6587.62 19672.12 9570.82 17692.82 25
c3_l67.97 19866.66 19671.91 23776.20 25749.31 20782.13 22078.00 26161.99 14057.64 25076.94 27949.41 6684.93 26360.62 17057.01 29481.49 264
Vis-MVSNet (Re-imp)65.52 24365.63 22065.17 31477.49 23730.54 37075.49 29677.73 26559.34 18752.26 30486.69 15949.38 6780.53 30337.07 31875.28 13384.42 216
EPNet78.36 2978.49 2477.97 8085.49 6352.04 14489.36 3984.07 14373.22 977.03 3991.72 5649.32 6890.17 10773.46 8982.77 5991.69 54
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
testing359.97 28160.19 27159.32 34277.60 23430.01 37581.75 23081.79 18553.54 27950.34 31579.94 24448.99 6976.91 33517.19 38950.59 33571.03 365
tpm68.36 19167.48 18370.97 25379.93 19451.34 16276.58 29078.75 24767.73 4763.54 17374.86 30248.33 7072.36 35953.93 23163.71 23289.21 121
APDe-MVScopyleft78.44 2678.20 2679.19 4588.56 2654.55 8889.76 3487.77 6055.91 25578.56 3192.49 3948.20 7192.65 4279.49 4083.04 5890.39 89
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
MG-MVS78.42 2776.99 4482.73 293.17 164.46 189.93 3088.51 4864.83 9173.52 6088.09 13348.07 7292.19 5362.24 15684.53 5191.53 61
DeepC-MVS67.15 476.90 5076.27 5278.80 5780.70 18055.02 7286.39 9586.71 7666.96 5767.91 11489.97 9648.03 7391.41 6975.60 7084.14 5389.96 105
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MGCFI-Net74.07 9074.64 7672.34 22182.90 12343.33 31280.04 26579.96 21665.61 7874.93 4691.85 5348.01 7480.86 29671.41 9777.10 11192.84 24
test_prior289.04 4361.88 14373.55 5991.46 6548.01 7474.73 7885.46 41
myMVS_eth3d63.52 25563.56 24563.40 32381.73 14834.28 35680.97 24981.02 19860.93 16155.06 27882.64 21248.00 7680.81 29723.42 37658.32 27675.10 340
SF-MVS77.64 4077.42 3878.32 7483.75 9752.47 13786.63 9387.80 5758.78 20474.63 4992.38 4047.75 7791.35 7078.18 5586.85 2691.15 74
test250672.91 11072.43 10074.32 17280.12 19144.18 30383.19 19584.77 12564.02 10065.97 13287.43 14847.67 7888.72 14959.08 18179.66 9390.08 101
iter_conf0573.51 10372.24 10577.33 9287.93 3955.97 4887.90 6170.81 33468.72 3564.04 16284.36 18447.54 7990.87 8671.11 10067.75 20085.13 206
1112_ss70.05 15969.37 15172.10 22580.77 17942.78 31885.12 13376.75 28259.69 17961.19 19692.12 4447.48 8083.84 27253.04 23768.21 19489.66 110
Effi-MVS+75.24 7673.61 8580.16 3381.92 14357.42 1985.21 12776.71 28460.68 16773.32 6389.34 10747.30 8191.63 6468.28 11579.72 9291.42 64
UniMVSNet (Re)67.71 20466.80 19270.45 25974.44 28242.93 31682.42 21584.90 12063.69 10959.63 21080.99 23747.18 8285.23 25751.17 25256.75 29583.19 242
test1279.24 4486.89 4756.08 4585.16 11372.27 7947.15 8391.10 7985.93 3690.54 87
PVSNet_Blended_VisFu73.40 10572.44 9976.30 11781.32 16754.70 8285.81 10678.82 24463.70 10864.53 15485.38 17347.11 8487.38 20367.75 11877.55 10786.81 177
test_fmvsm_n_192075.56 7275.54 6075.61 13674.60 28149.51 20381.82 22874.08 30666.52 6380.40 2293.46 1946.95 8589.72 11886.69 775.30 13287.61 159
NCCC79.57 1979.23 1980.59 2489.50 1556.99 2691.38 1688.17 5267.71 4873.81 5792.75 3446.88 8693.28 3178.79 4884.07 5491.50 63
9.1478.19 2785.67 5988.32 5188.84 3659.89 17574.58 5192.62 3746.80 8792.66 4181.40 3685.62 40
VNet77.99 3677.92 3078.19 7687.43 4350.12 18890.93 2391.41 867.48 5275.12 4490.15 9246.77 8891.00 8173.52 8878.46 10293.44 11
PVSNet_BlendedMVS73.42 10473.30 8673.76 18985.91 5451.83 15086.18 10084.24 14065.40 8369.09 10680.86 23946.70 8988.13 17375.43 7165.92 21781.33 273
PVSNet_Blended76.53 5576.54 4876.50 11585.91 5451.83 15088.89 4584.24 14067.82 4669.09 10689.33 10946.70 8988.13 17375.43 7181.48 7289.55 113
SMA-MVScopyleft79.10 2378.76 2280.12 3584.42 8155.87 5087.58 6986.76 7561.48 15080.26 2393.10 2746.53 9192.41 4879.97 3988.77 1192.08 42
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
test_fmvsmconf_n74.41 8574.05 8275.49 14274.16 28748.38 23482.66 20672.57 31967.05 5675.11 4592.88 3346.35 9287.81 18283.93 1971.71 16790.28 93
tpm cat166.28 23662.78 24676.77 11481.40 16457.14 2270.03 33277.19 27453.00 28458.76 23170.73 34146.17 9386.73 22043.27 29864.46 22686.44 182
cl____67.43 21265.93 21371.95 23476.33 25348.02 24782.58 20879.12 23961.30 15356.72 26376.92 28046.12 9486.44 22957.98 19756.31 29881.38 272
DIV-MVS_self_test67.43 21265.93 21371.94 23576.33 25348.01 24882.57 20979.11 24061.31 15256.73 26276.92 28046.09 9586.43 23057.98 19756.31 29881.39 271
IS-MVSNet68.80 18467.55 18172.54 21478.50 22243.43 31081.03 24779.35 23559.12 19757.27 25986.71 15846.05 9687.70 19044.32 29475.60 13086.49 181
diffmvspermissive75.11 8074.65 7576.46 11678.52 22153.35 11583.28 19379.94 21770.51 2571.64 8488.72 11846.02 9786.08 24177.52 5975.75 12989.96 105
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EI-MVSNet69.70 16968.70 15972.68 21175.00 27548.90 21879.54 26987.16 6861.05 15763.88 16783.74 19245.87 9890.44 9657.42 20764.68 22578.70 301
IterMVS-LS66.63 23165.36 22870.42 26075.10 27248.90 21881.45 24276.69 28561.05 15755.71 27377.10 27745.86 9983.65 27657.44 20657.88 28878.70 301
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EIA-MVS75.92 6475.18 6778.13 7785.14 7051.60 15587.17 8085.32 10464.69 9268.56 11090.53 7945.79 10091.58 6567.21 12182.18 6591.20 72
MVS76.91 4875.48 6181.23 2084.56 7955.21 6580.23 26291.64 458.65 20665.37 14091.48 6445.72 10195.05 1672.11 9689.52 1093.44 11
PAPM_NR71.80 13269.98 14477.26 9781.54 16053.34 11678.60 27985.25 10953.46 28060.53 20288.66 12045.69 10289.24 12856.49 21379.62 9589.19 122
CS-MVS76.77 5276.70 4776.99 10583.55 9948.75 22288.60 4885.18 11166.38 6572.47 7691.62 6045.53 10390.99 8374.48 8082.51 6191.23 71
DeepC-MVS_fast67.50 378.00 3577.63 3479.13 4988.52 2755.12 6889.95 2985.98 8968.31 3771.33 8992.75 3445.52 10490.37 9871.15 9985.14 4591.91 49
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
fmvsm_s_conf0.5_n74.48 8374.12 8075.56 13876.96 24747.85 25385.32 12469.80 34264.16 9878.74 2993.48 1845.51 10589.29 12786.48 866.62 20889.55 113
fmvsm_s_conf0.5_n_a73.68 10073.15 8975.29 15175.45 26948.05 24683.88 17268.84 34763.43 11678.60 3093.37 2245.32 10688.92 14585.39 1164.04 22888.89 129
Test_1112_low_res67.18 21966.23 20570.02 26978.75 21441.02 33483.43 18573.69 31157.29 23358.45 23882.39 21945.30 10780.88 29550.50 25466.26 21688.16 144
ETV-MVS77.17 4576.74 4678.48 6881.80 14654.55 8886.13 10185.33 10368.20 3973.10 6590.52 8045.23 10890.66 9179.37 4180.95 7390.22 95
CS-MVS-test77.20 4477.25 4077.05 10084.60 7849.04 21389.42 3785.83 9265.90 7672.85 6991.98 5245.10 10991.27 7175.02 7784.56 5090.84 81
NR-MVSNet67.25 21765.99 21171.04 25273.27 29743.91 30485.32 12484.75 12666.05 7453.65 29482.11 22645.05 11085.97 24547.55 27456.18 30183.24 240
UWE-MVS72.17 12572.15 10872.21 22382.26 13944.29 30086.83 8989.58 2165.58 7965.82 13585.06 17645.02 11184.35 26954.07 22975.18 13487.99 151
train_agg76.91 4876.40 5078.45 7085.68 5755.42 5687.59 6784.00 14457.84 22172.99 6690.98 6944.99 11288.58 15478.19 5385.32 4391.34 69
test_885.72 5655.31 6187.60 6683.88 14757.84 22172.84 7090.99 6844.99 11288.34 165
segment_acmp44.97 114
test_fmvsmconf0.1_n73.69 9973.15 8975.34 14670.71 32448.26 23982.15 21871.83 32366.75 5974.47 5392.59 3844.89 11587.78 18783.59 2071.35 17189.97 104
TEST985.68 5755.42 5687.59 6784.00 14457.72 22372.99 6690.98 6944.87 11688.58 154
eth_miper_zixun_eth66.98 22665.28 22972.06 22775.61 26750.40 17881.00 24876.97 28162.00 13956.99 26176.97 27844.84 11785.58 24958.75 18554.42 31880.21 289
MVSFormer73.53 10272.19 10777.57 8783.02 11755.24 6381.63 23381.44 19150.28 30176.67 4090.91 7244.82 11886.11 23660.83 16780.09 8591.36 67
lupinMVS78.38 2878.11 2879.19 4583.02 11755.24 6391.57 1584.82 12269.12 3476.67 4092.02 4844.82 11890.23 10580.83 3780.09 8592.08 42
WR-MVS67.58 20766.76 19370.04 26875.92 26445.06 29486.23 9985.28 10764.31 9558.50 23581.00 23644.80 12082.00 28849.21 26455.57 30983.06 245
fmvsm_s_conf0.1_n73.80 9573.26 8775.43 14373.28 29647.80 25484.57 15469.43 34463.34 11778.40 3293.29 2444.73 12189.22 13085.99 966.28 21589.26 118
ZD-MVS89.55 1453.46 10884.38 13457.02 23873.97 5691.03 6744.57 12291.17 7675.41 7481.78 70
Fast-Effi-MVS+72.73 11371.15 12577.48 8982.75 12854.76 7886.77 9080.64 20463.05 12365.93 13384.01 18744.42 12389.03 13656.45 21676.36 12288.64 136
fmvsm_s_conf0.1_n_a72.82 11272.05 11275.12 15670.95 32347.97 24982.72 20568.43 34962.52 13378.17 3393.08 3044.21 12488.86 14684.82 1363.54 23488.54 140
PCF-MVS61.03 1070.10 15768.40 16375.22 15577.15 24551.99 14579.30 27482.12 17756.47 25161.88 19086.48 16343.98 12587.24 20555.37 22172.79 15886.43 183
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
CDS-MVSNet70.48 15369.43 14973.64 19377.56 23648.83 22083.51 18277.45 27063.27 11962.33 18485.54 17243.85 12683.29 28157.38 20874.00 14688.79 133
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
EI-MVSNet-Vis-set73.19 10772.60 9674.99 16082.56 13449.80 19682.55 21189.00 2866.17 6965.89 13488.98 11343.83 12792.29 5165.38 14069.01 19082.87 249
APD-MVScopyleft76.15 6075.68 5777.54 8888.52 2753.44 11187.26 7885.03 11753.79 27774.91 4791.68 5843.80 12890.31 10174.36 8181.82 6888.87 130
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MVS_111021_HR76.39 5775.38 6479.42 4285.33 6756.47 3888.15 5384.97 11865.15 8966.06 13189.88 9743.79 12992.16 5475.03 7680.03 8889.64 111
thres100view90066.87 22965.42 22771.24 24783.29 10843.15 31481.67 23287.78 5859.04 19855.92 27282.18 22543.73 13087.80 18428.80 35466.36 21282.78 251
thres600view766.46 23465.12 23170.47 25883.41 10243.80 30682.15 21887.78 5859.37 18656.02 27182.21 22443.73 13086.90 21626.51 36664.94 22180.71 283
v14868.24 19666.35 20173.88 18471.76 31251.47 15984.23 16181.90 18463.69 10958.94 22476.44 28743.72 13287.78 18760.63 16955.86 30682.39 253
SD-MVS76.18 5974.85 7280.18 3285.39 6556.90 2885.75 11082.45 17456.79 24474.48 5291.81 5443.72 13290.75 8974.61 7978.65 10092.91 22
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
XXY-MVS70.18 15569.28 15572.89 20877.64 23342.88 31785.06 13487.50 6662.58 13162.66 18282.34 22343.64 13489.83 11458.42 19063.70 23385.96 192
tfpn200view967.57 20866.13 20771.89 23884.05 9045.07 29183.40 18787.71 6360.79 16457.79 24682.76 20743.53 13587.80 18428.80 35466.36 21282.78 251
thres40067.40 21566.13 20771.19 24984.05 9045.07 29183.40 18787.71 6360.79 16457.79 24682.76 20743.53 13587.80 18428.80 35466.36 21280.71 283
PAPR75.20 7874.13 7978.41 7188.31 3255.10 7084.31 15985.66 9463.76 10767.55 11690.73 7643.48 13789.40 12566.36 12777.03 11290.73 83
MP-MVScopyleft74.99 8174.33 7876.95 10782.89 12453.05 12685.63 11583.50 15557.86 22067.25 11890.24 8643.38 13888.85 14876.03 6582.23 6488.96 127
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
EI-MVSNet-UG-set72.37 11971.73 11574.29 17381.60 15649.29 20881.85 22688.64 4265.29 8865.05 14388.29 13043.18 13991.83 6163.74 14667.97 19781.75 260
thres20068.71 18667.27 18773.02 20384.73 7646.76 26885.03 13687.73 6162.34 13659.87 20583.45 19843.15 14088.32 16731.25 34767.91 19883.98 226
PHI-MVS77.49 4177.00 4378.95 5285.33 6750.69 17088.57 4988.59 4658.14 21373.60 5893.31 2343.14 14193.79 2973.81 8688.53 1392.37 35
ab-mvs70.65 15069.11 15675.29 15180.87 17646.23 27973.48 30985.24 11059.99 17466.65 12280.94 23843.13 14288.69 15063.58 14768.07 19590.95 79
CDPH-MVS76.05 6275.19 6678.62 6486.51 5054.98 7487.32 7384.59 13058.62 20770.75 9690.85 7443.10 14390.63 9370.50 10384.51 5290.24 94
v867.25 21764.99 23374.04 17972.89 30253.31 11882.37 21680.11 21361.54 14854.29 28776.02 29642.89 14488.41 16158.43 18856.36 29680.39 287
EC-MVSNet75.30 7575.20 6575.62 13580.98 17049.00 21487.43 7084.68 12863.49 11570.97 9490.15 9242.86 14591.14 7874.33 8281.90 6786.71 178
h-mvs3373.95 9272.89 9477.15 9980.17 19050.37 18184.68 14983.33 15668.08 4071.97 8088.65 12342.50 14691.15 7778.82 4657.78 29089.91 107
hse-mvs271.44 13770.68 12973.73 19176.34 25247.44 25979.45 27279.47 23068.08 4071.97 8086.01 16742.50 14686.93 21578.82 4653.46 32786.83 176
SteuartSystems-ACMMP77.08 4676.33 5179.34 4380.98 17055.31 6189.76 3486.91 7262.94 12571.65 8391.56 6242.33 14892.56 4577.14 6283.69 5690.15 99
Skip Steuart: Steuart Systems R&D Blog.
HyFIR lowres test69.94 16467.58 17977.04 10177.11 24657.29 2081.49 24179.11 24058.27 21158.86 22880.41 24242.33 14886.96 21361.91 15968.68 19386.87 171
ZNCC-MVS75.82 6975.02 6978.23 7583.88 9553.80 10186.91 8786.05 8859.71 17867.85 11590.55 7842.23 15091.02 8072.66 9485.29 4489.87 108
FMVSNet368.84 18167.40 18473.19 20185.05 7148.53 22885.71 11485.36 10160.90 16357.58 25179.15 25542.16 15186.77 21847.25 27763.40 23684.27 218
VPA-MVSNet71.12 14070.66 13072.49 21678.75 21444.43 29887.64 6590.02 1763.97 10365.02 14481.58 23342.14 15287.42 20163.42 14863.38 23985.63 200
jason77.01 4776.45 4978.69 6179.69 19654.74 7990.56 2583.99 14668.26 3874.10 5590.91 7242.14 15289.99 11079.30 4279.12 9691.36 67
jason: jason.
CLD-MVS75.60 7175.39 6376.24 11980.69 18152.40 13890.69 2486.20 8674.40 865.01 14588.93 11442.05 15490.58 9476.57 6473.96 14785.73 196
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
test_yl75.85 6674.83 7378.91 5388.08 3751.94 14691.30 1789.28 2357.91 21871.19 9189.20 11042.03 15592.77 3869.41 10775.07 13992.01 46
DCV-MVSNet75.85 6674.83 7378.91 5388.08 3751.94 14691.30 1789.28 2357.91 21871.19 9189.20 11042.03 15592.77 3869.41 10775.07 13992.01 46
TAMVS69.51 17368.16 16873.56 19676.30 25548.71 22482.57 20977.17 27562.10 13861.32 19584.23 18541.90 15783.46 27954.80 22573.09 15588.50 142
TransMVSNet (Re)62.82 26360.76 26569.02 27773.98 28941.61 32886.36 9679.30 23856.90 23952.53 30076.44 28741.85 15887.60 19738.83 31140.61 36677.86 314
VPNet72.07 12671.42 12174.04 17978.64 21947.17 26589.91 3287.97 5572.56 1264.66 14985.04 17741.83 15988.33 16661.17 16560.97 25786.62 179
v2v48269.55 17267.64 17875.26 15472.32 30953.83 10084.93 14281.94 18065.37 8560.80 19979.25 25341.62 16088.98 14163.03 15159.51 26582.98 247
API-MVS74.17 8972.07 11180.49 2590.02 1158.55 887.30 7584.27 13757.51 22965.77 13787.77 14241.61 16195.97 1151.71 24782.63 6086.94 169
GeoE69.96 16367.88 17276.22 12081.11 16951.71 15384.15 16376.74 28359.83 17660.91 19784.38 18241.56 16288.10 17551.67 24870.57 17988.84 131
CHOSEN 1792x268876.24 5874.03 8382.88 183.09 11462.84 285.73 11285.39 10069.79 2964.87 14883.49 19741.52 16393.69 3070.55 10281.82 6892.12 41
LFMVS78.52 2477.14 4282.67 389.58 1358.90 791.27 1988.05 5463.22 12074.63 4990.83 7541.38 16494.40 2275.42 7379.90 9094.72 2
MAR-MVS76.76 5375.60 5980.21 3090.87 754.68 8489.14 4289.11 2662.95 12470.54 10192.33 4141.05 16594.95 1757.90 20086.55 3291.00 78
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
test_fmvsmvis_n_192071.29 13870.38 13574.00 18171.04 32248.79 22179.19 27564.62 35862.75 12766.73 12091.99 5040.94 16688.35 16483.00 2273.18 15284.85 212
GST-MVS74.87 8273.90 8477.77 8383.30 10753.45 11085.75 11085.29 10659.22 19166.50 12789.85 9840.94 16690.76 8870.94 10183.35 5789.10 125
DU-MVS66.84 23065.74 21870.16 26473.27 29742.59 32081.50 23982.92 16863.53 11358.51 23382.11 22640.75 16884.64 26753.11 23555.96 30483.24 240
Baseline_NR-MVSNet65.49 24464.27 24069.13 27674.37 28541.65 32783.39 18978.85 24259.56 18159.62 21176.88 28240.75 16887.44 20049.99 25655.05 31278.28 310
miper_lstm_enhance63.91 25062.30 24968.75 28375.06 27346.78 26769.02 33681.14 19659.68 18052.76 29972.39 32840.71 17077.99 32656.81 21153.09 32881.48 266
HFP-MVS74.37 8673.13 9378.10 7884.30 8453.68 10485.58 11684.36 13556.82 24265.78 13690.56 7740.70 17190.90 8569.18 11080.88 7489.71 109
CL-MVSNet_self_test62.98 26161.14 26168.50 28965.86 35242.96 31584.37 15682.98 16660.98 15953.95 29072.70 32440.43 17283.71 27541.10 30547.93 34278.83 300
ACMMP_NAP76.43 5675.66 5878.73 5981.92 14354.67 8584.06 16785.35 10261.10 15672.99 6691.50 6340.25 17391.00 8176.84 6386.98 2490.51 88
v114468.81 18366.82 19174.80 16272.34 30853.46 10884.68 14981.77 18764.25 9660.28 20377.91 26440.23 17488.95 14260.37 17659.52 26481.97 256
WR-MVS_H58.91 29358.04 28561.54 33469.07 33633.83 36076.91 28781.99 17951.40 29748.17 32374.67 30340.23 17474.15 34731.78 34448.10 34076.64 327
原ACMM176.13 12584.89 7554.59 8785.26 10851.98 29166.70 12187.07 15440.15 17689.70 11951.23 25185.06 4784.10 220
MVP-Stereo70.97 14470.44 13372.59 21376.03 26151.36 16185.02 13786.99 7160.31 17156.53 26778.92 25740.11 17790.00 10960.00 17990.01 676.41 330
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
v1066.61 23264.20 24173.83 18772.59 30553.37 11481.88 22579.91 21961.11 15554.09 28975.60 29840.06 17888.26 17156.47 21456.10 30279.86 293
test_fmvsmconf0.01_n71.97 12870.95 12775.04 15766.21 34947.87 25280.35 25970.08 33965.85 7772.69 7191.68 5839.99 17987.67 19182.03 2969.66 18689.58 112
MP-MVS-pluss75.54 7375.03 6877.04 10181.37 16552.65 13484.34 15884.46 13361.16 15469.14 10591.76 5539.98 18088.99 14078.19 5384.89 4889.48 116
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
TranMVSNet+NR-MVSNet66.94 22765.61 22170.93 25473.45 29343.38 31183.02 20184.25 13865.31 8758.33 24081.90 22939.92 18185.52 25049.43 26154.89 31483.89 230
Patchmatch-test53.33 32648.17 33568.81 28173.31 29442.38 32442.98 38558.23 36832.53 37238.79 36470.77 33939.66 18273.51 35325.18 36952.06 33290.55 85
Test By Simon39.38 183
v14419267.86 20065.76 21774.16 17671.68 31353.09 12484.14 16480.83 20262.85 12659.21 22177.28 27439.30 18488.00 17858.67 18657.88 28881.40 270
BH-w/o70.02 16068.51 16174.56 16482.77 12750.39 17986.60 9478.14 25959.77 17759.65 20985.57 17139.27 18587.30 20449.86 25874.94 14285.99 190
dmvs_testset57.65 30258.21 28455.97 35374.62 2809.82 40963.75 35263.34 36267.23 5348.89 32183.68 19639.12 18676.14 34023.43 37559.80 26381.96 257
CR-MVSNet62.47 26859.04 28072.77 20973.97 29056.57 3460.52 36471.72 32560.04 17357.49 25465.86 35538.94 18780.31 30542.86 30159.93 26181.42 268
Patchmtry56.56 30852.95 31567.42 29572.53 30650.59 17359.05 36871.72 32537.86 36046.92 33365.86 35538.94 18780.06 30936.94 32046.72 35271.60 361
sam_mvs138.86 18988.13 147
UA-Net67.32 21666.23 20570.59 25778.85 21241.23 33373.60 30775.45 29761.54 14866.61 12484.53 18138.73 19086.57 22742.48 30474.24 14583.98 226
cdsmvs_eth3d_5k18.33 37224.44 3640.00 3930.00 4150.00 4170.00 40489.40 220.00 4090.00 41292.02 4838.55 1910.00 4100.00 4110.00 4080.00 408
patchmatchnet-post59.74 37138.41 19279.91 312
CHOSEN 280x42057.53 30456.38 29760.97 33874.01 28848.10 24546.30 38254.31 37348.18 31550.88 31377.43 27238.37 19359.16 38054.83 22363.14 24475.66 334
V4267.66 20565.60 22273.86 18570.69 32653.63 10581.50 23978.61 25163.85 10559.49 21577.49 27037.98 19487.65 19262.33 15458.43 27580.29 288
tpmvs62.45 26959.42 27671.53 24483.93 9254.32 9170.03 33277.61 26751.91 29253.48 29568.29 34937.91 19586.66 22233.36 33758.27 27873.62 350
PatchmatchNetpermissive67.07 22463.63 24477.40 9183.10 11258.03 972.11 32377.77 26458.85 20259.37 21670.83 33837.84 19684.93 26342.96 30069.83 18589.26 118
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
pcd_1.5k_mvsjas3.15 3794.20 3820.00 3930.00 4150.00 4170.00 4040.00 4150.00 4090.00 4120.00 41137.77 1970.00 4100.00 4110.00 4080.00 408
PS-MVSNAJss68.78 18567.17 18873.62 19573.01 29948.33 23884.95 14184.81 12359.30 19058.91 22779.84 24737.77 19788.86 14662.83 15263.12 24583.67 234
PS-MVSNAJ80.06 1679.52 1781.68 1585.58 6160.97 391.69 1287.02 7070.62 2380.75 2193.22 2637.77 19792.50 4682.75 2486.25 3491.57 59
pm-mvs164.12 24962.56 24768.78 28271.68 31338.87 34282.89 20381.57 18855.54 26153.89 29177.82 26637.73 20086.74 21948.46 27053.49 32580.72 282
RPMNet59.29 28554.25 30874.42 16873.97 29056.57 3460.52 36476.98 27835.72 36657.49 25458.87 37437.73 20085.26 25627.01 36559.93 26181.42 268
SDMVSNet71.89 12970.62 13175.70 13481.70 15051.61 15473.89 30588.72 4066.58 6061.64 19282.38 22037.63 20289.48 12377.44 6065.60 21886.01 188
xiu_mvs_v2_base79.86 1779.31 1881.53 1685.03 7360.73 491.65 1386.86 7370.30 2780.77 2093.07 3137.63 20292.28 5282.73 2585.71 3891.57 59
Patchmatch-RL test58.72 29554.32 30771.92 23663.91 36444.25 30161.73 36055.19 37157.38 23249.31 31954.24 37937.60 20480.89 29462.19 15747.28 34790.63 84
HPM-MVScopyleft72.60 11571.50 11875.89 13182.02 14151.42 16080.70 25583.05 16456.12 25464.03 16389.53 10337.55 20588.37 16270.48 10480.04 8787.88 152
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
test_post16.22 40337.52 20684.72 265
PatchT56.60 30752.97 31467.48 29472.94 30146.16 28057.30 37273.78 31038.77 35654.37 28657.26 37737.52 20678.06 32332.02 34252.79 32978.23 312
v119267.96 19965.74 21874.63 16371.79 31153.43 11384.06 16780.99 20063.19 12159.56 21277.46 27137.50 20888.65 15158.20 19458.93 27181.79 259
HQP2-MVS37.35 209
HQP-MVS72.34 12071.44 12075.03 15879.02 20851.56 15688.00 5583.68 15065.45 8064.48 15585.13 17437.35 20988.62 15266.70 12373.12 15384.91 210
region2R73.75 9772.55 9777.33 9283.90 9452.98 12885.54 12084.09 14256.83 24165.10 14290.45 8137.34 21190.24 10468.89 11280.83 7688.77 134
TESTMET0.1,172.86 11172.33 10174.46 16681.98 14250.77 16885.13 13085.47 9666.09 7167.30 11783.69 19437.27 21283.57 27765.06 14278.97 9989.05 126
ACMMPR73.76 9672.61 9577.24 9883.92 9352.96 12985.58 11684.29 13656.82 24265.12 14190.45 8137.24 21390.18 10669.18 11080.84 7588.58 138
sss70.49 15270.13 14271.58 24381.59 15739.02 34180.78 25484.71 12759.34 18766.61 12488.09 13337.17 21485.52 25061.82 16171.02 17490.20 97
EPNet_dtu66.25 23766.71 19464.87 31678.66 21834.12 35882.80 20475.51 29561.75 14464.47 15886.90 15537.06 21572.46 35843.65 29769.63 18888.02 150
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
v192192067.45 21165.23 23074.10 17871.51 31652.90 13083.75 17680.44 20762.48 13559.12 22277.13 27536.98 21687.90 18057.53 20558.14 28281.49 264
旧先验181.57 15947.48 25771.83 32388.66 12036.94 21778.34 10488.67 135
test-LLR69.65 17069.01 15771.60 24178.67 21648.17 24185.13 13079.72 22259.18 19463.13 17582.58 21436.91 21880.24 30660.56 17175.17 13586.39 184
test0.0.03 162.54 26562.44 24862.86 32772.28 31029.51 37882.93 20278.78 24559.18 19453.07 29782.41 21836.91 21877.39 33237.45 31458.96 27081.66 262
MDTV_nov1_ep13_2view43.62 30771.13 32854.95 26859.29 22036.76 22046.33 28487.32 165
KD-MVS_2432*160059.04 29156.44 29566.86 30079.07 20645.87 28372.13 32180.42 20855.03 26648.15 32471.01 33636.73 22178.05 32435.21 32830.18 38576.67 324
miper_refine_blended59.04 29156.44 29566.86 30079.07 20645.87 28372.13 32180.42 20855.03 26648.15 32471.01 33636.73 22178.05 32435.21 32830.18 38576.67 324
GBi-Net67.09 22265.47 22471.96 23182.71 12946.36 27383.52 17883.31 15758.55 20857.58 25176.23 29136.72 22386.20 23247.25 27763.40 23683.32 237
test167.09 22265.47 22471.96 23182.71 12946.36 27383.52 17883.31 15758.55 20857.58 25176.23 29136.72 22386.20 23247.25 27763.40 23683.32 237
FMVSNet267.57 20865.79 21672.90 20682.71 12947.97 24985.15 12984.93 11958.55 20856.71 26478.26 26236.72 22386.67 22146.15 28562.94 24784.07 221
AUN-MVS68.20 19766.35 20173.76 18976.37 25147.45 25879.52 27179.52 22760.98 15962.34 18386.02 16536.59 22686.94 21462.32 15553.47 32686.89 170
BH-untuned68.28 19466.40 20073.91 18381.62 15550.01 19085.56 11877.39 27157.63 22657.47 25683.69 19436.36 22787.08 20944.81 29073.08 15684.65 213
EPMVS68.45 19065.44 22677.47 9084.91 7456.17 4371.89 32581.91 18361.72 14560.85 19872.49 32536.21 22887.06 21047.32 27671.62 16889.17 123
MSLP-MVS++74.21 8872.25 10480.11 3681.45 16356.47 3886.32 9779.65 22558.19 21266.36 12892.29 4236.11 22990.66 9167.39 11982.49 6293.18 19
FA-MVS(test-final)69.00 17966.60 19876.19 12383.48 10147.96 25174.73 30082.07 17857.27 23462.18 18678.47 26136.09 23092.89 3553.76 23371.32 17287.73 156
MTAPA72.73 11371.22 12377.27 9681.54 16053.57 10667.06 34581.31 19359.41 18568.39 11190.96 7136.07 23189.01 13773.80 8782.45 6389.23 120
HQP_MVS70.96 14569.91 14574.12 17777.95 22949.57 19885.76 10882.59 17163.60 11162.15 18783.28 20136.04 23288.30 16865.46 13572.34 16284.49 214
plane_prior678.42 22449.39 20636.04 232
sam_mvs35.99 234
PGM-MVS72.60 11571.20 12476.80 11282.95 12052.82 13183.07 19982.14 17656.51 25063.18 17489.81 9935.68 23589.76 11767.30 12080.19 8487.83 153
XVS72.92 10971.62 11676.81 11083.41 10252.48 13584.88 14383.20 16258.03 21463.91 16589.63 10235.50 23689.78 11565.50 13280.50 7988.16 144
X-MVStestdata65.85 24262.20 25076.81 11083.41 10252.48 13584.88 14383.20 16258.03 21463.91 1654.82 40735.50 23689.78 11565.50 13280.50 7988.16 144
v124066.99 22564.68 23673.93 18271.38 31952.66 13383.39 18979.98 21561.97 14158.44 23977.11 27635.25 23887.81 18256.46 21558.15 28081.33 273
test111171.06 14270.42 13472.97 20579.48 19841.49 33084.82 14682.74 17064.20 9762.98 17787.43 14835.20 23987.92 17958.54 18778.42 10389.49 115
dp64.41 24661.58 25472.90 20682.40 13554.09 9872.53 31576.59 28760.39 17055.68 27470.39 34235.18 24076.90 33739.34 31061.71 25487.73 156
Syy-MVS61.51 27461.35 25862.00 33081.73 14830.09 37380.97 24981.02 19860.93 16155.06 27882.64 21235.09 24180.81 29716.40 39158.32 27675.10 340
ECVR-MVScopyleft71.81 13171.00 12674.26 17480.12 19143.49 30884.69 14882.16 17564.02 10064.64 15087.43 14835.04 24289.21 13161.24 16479.66 9390.08 101
CP-MVS72.59 11771.46 11976.00 13082.93 12252.32 14186.93 8682.48 17355.15 26463.65 16990.44 8435.03 24388.53 15868.69 11377.83 10687.15 167
CP-MVSNet58.54 29957.57 28861.46 33568.50 34033.96 35976.90 28878.60 25251.67 29647.83 32676.60 28634.99 24472.79 35635.45 32547.58 34477.64 318
dmvs_re67.61 20666.00 21072.42 21881.86 14543.45 30964.67 35080.00 21469.56 3260.07 20485.00 17834.71 24587.63 19451.48 24966.68 20686.17 187
MDTV_nov1_ep1361.56 25581.68 15255.12 6872.41 31778.18 25859.19 19258.85 22969.29 34634.69 24686.16 23536.76 32262.96 246
WB-MVSnew69.36 17468.24 16672.72 21079.26 20349.40 20585.72 11388.85 3561.33 15164.59 15382.38 22034.57 24787.53 19946.82 28170.63 17781.22 277
3Dnovator64.70 674.46 8472.48 9880.41 2882.84 12655.40 5983.08 19888.61 4567.61 5159.85 20688.66 12034.57 24793.97 2658.42 19088.70 1291.85 52
Vis-MVSNetpermissive70.61 15169.34 15274.42 16880.95 17548.49 23086.03 10477.51 26958.74 20565.55 13987.78 14134.37 24985.95 24652.53 24580.61 7788.80 132
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test_post170.84 32914.72 40634.33 25083.86 27148.80 266
OPM-MVS70.75 14969.58 14874.26 17475.55 26851.34 16286.05 10383.29 16061.94 14262.95 17885.77 16834.15 25188.44 16065.44 13871.07 17382.99 246
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
DP-MVS Recon71.99 12770.31 13777.01 10390.65 853.44 11189.37 3882.97 16756.33 25263.56 17289.47 10434.02 25292.15 5654.05 23072.41 16185.43 203
PEN-MVS58.35 30057.15 29061.94 33167.55 34734.39 35577.01 28678.35 25751.87 29347.72 32776.73 28433.91 25373.75 35134.03 33547.17 34877.68 316
QAPM71.88 13069.33 15379.52 4082.20 14054.30 9286.30 9888.77 3856.61 24859.72 20887.48 14633.90 25495.36 1347.48 27581.49 7188.90 128
新几何173.30 20083.10 11253.48 10771.43 32945.55 33166.14 12987.17 15233.88 25580.54 30248.50 26980.33 8385.88 195
131471.11 14169.41 15076.22 12079.32 20150.49 17580.23 26285.14 11559.44 18458.93 22588.89 11633.83 25689.60 12261.49 16277.42 11088.57 139
SR-MVS70.92 14669.73 14774.50 16583.38 10650.48 17684.27 16079.35 23548.96 31166.57 12690.45 8133.65 25787.11 20866.42 12574.56 14485.91 193
mPP-MVS71.79 13370.38 13576.04 12882.65 13252.06 14384.45 15581.78 18655.59 25962.05 18989.68 10133.48 25888.28 17065.45 13778.24 10587.77 155
OMC-MVS65.97 24165.06 23268.71 28472.97 30042.58 32278.61 27875.35 29854.72 27059.31 21886.25 16433.30 25977.88 32857.99 19667.05 20485.66 198
BH-RMVSNet70.08 15868.01 16976.27 11884.21 8851.22 16687.29 7679.33 23758.96 20163.63 17086.77 15733.29 26090.30 10344.63 29273.96 14787.30 166
JIA-IIPM52.33 33147.77 33866.03 30771.20 32046.92 26640.00 39076.48 28837.10 36146.73 33437.02 39032.96 26177.88 32835.97 32352.45 33173.29 353
PS-CasMVS58.12 30157.03 29261.37 33668.24 34433.80 36176.73 28978.01 26051.20 29847.54 33076.20 29432.85 26272.76 35735.17 33047.37 34677.55 319
DTE-MVSNet57.03 30555.73 30160.95 33965.94 35132.57 36675.71 29177.09 27751.16 29946.65 33676.34 28932.84 26373.22 35530.94 34844.87 35777.06 321
pmmvs463.34 25861.07 26270.16 26470.14 32850.53 17479.97 26671.41 33055.08 26554.12 28878.58 25932.79 26482.09 28750.33 25557.22 29377.86 314
TR-MVS69.71 16767.85 17575.27 15382.94 12148.48 23187.40 7280.86 20157.15 23764.61 15287.08 15332.67 26589.64 12146.38 28371.55 17087.68 158
VDD-MVS76.08 6174.97 7079.44 4184.27 8753.33 11791.13 2085.88 9065.33 8672.37 7789.34 10732.52 26692.76 4077.90 5875.96 12592.22 40
3Dnovator+62.71 772.29 12270.50 13277.65 8683.40 10551.29 16487.32 7386.40 8259.01 19958.49 23688.32 12932.40 26791.27 7157.04 20982.15 6690.38 90
tfpnnormal61.47 27559.09 27968.62 28676.29 25641.69 32681.14 24685.16 11354.48 27351.32 30873.63 31532.32 26886.89 21721.78 38055.71 30877.29 320
MS-PatchMatch72.34 12071.26 12275.61 13682.38 13655.55 5388.00 5589.95 1965.38 8456.51 26880.74 24132.28 26992.89 3557.95 19988.10 1578.39 308
v7n62.50 26759.27 27872.20 22467.25 34849.83 19577.87 28380.12 21252.50 28848.80 32273.07 31932.10 27087.90 18046.83 28054.92 31378.86 299
IterMVS63.77 25361.67 25370.08 26672.68 30451.24 16580.44 25775.51 29560.51 16951.41 30773.70 31432.08 27178.91 31654.30 22754.35 31980.08 291
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT59.12 28858.81 28260.08 34070.68 32745.07 29180.42 25874.25 30443.54 34550.02 31673.73 31131.97 27256.74 38251.06 25353.60 32478.42 307
SCA63.84 25160.01 27375.32 14778.58 22057.92 1061.61 36177.53 26856.71 24557.75 24870.77 33931.97 27279.91 31248.80 26656.36 29688.13 147
ACMMPcopyleft70.81 14869.29 15475.39 14581.52 16251.92 14883.43 18583.03 16556.67 24758.80 23088.91 11531.92 27488.58 15465.89 13173.39 15185.67 197
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
APD-MVS_3200maxsize69.62 17168.23 16773.80 18881.58 15848.22 24081.91 22479.50 22848.21 31464.24 16089.75 10031.91 27587.55 19863.08 15073.85 14985.64 199
VDDNet74.37 8672.13 10981.09 2179.58 19756.52 3790.02 2786.70 7752.61 28771.23 9087.20 15131.75 27693.96 2774.30 8375.77 12892.79 27
pmmvs562.80 26461.18 26067.66 29369.53 33242.37 32582.65 20775.19 29954.30 27652.03 30578.51 26031.64 27780.67 29948.60 26858.15 28079.95 292
LCM-MVSNet-Re58.82 29456.54 29365.68 30879.31 20229.09 38161.39 36345.79 37960.73 16637.65 36772.47 32631.42 27881.08 29349.66 25970.41 18086.87 171
testdata67.08 29877.59 23545.46 28869.20 34644.47 33871.50 8788.34 12831.21 27970.76 36452.20 24675.88 12685.03 207
SR-MVS-dyc-post68.27 19566.87 19072.48 21780.96 17248.14 24381.54 23776.98 27846.42 32662.75 18089.42 10531.17 28086.09 24060.52 17372.06 16583.19 242
GA-MVS69.04 17766.70 19576.06 12775.11 27152.36 13983.12 19780.23 21163.32 11860.65 20179.22 25430.98 28188.37 16261.25 16366.41 21187.46 162
OpenMVScopyleft61.00 1169.99 16267.55 18177.30 9478.37 22554.07 9984.36 15785.76 9357.22 23556.71 26487.67 14430.79 28292.83 3743.04 29984.06 5585.01 208
Effi-MVS+-dtu66.24 23864.96 23470.08 26675.17 27049.64 19782.01 22174.48 30362.15 13757.83 24476.08 29530.59 28383.79 27365.40 13960.93 25876.81 323
sd_testset67.79 20365.95 21273.32 19881.70 15046.33 27668.99 33780.30 21066.58 6061.64 19282.38 22030.45 28487.63 19455.86 21865.60 21886.01 188
test22279.36 19950.97 16777.99 28267.84 35042.54 34962.84 17986.53 16130.26 28576.91 11485.23 204
MVS_111021_LR69.07 17667.91 17072.54 21477.27 24049.56 20079.77 26773.96 30959.33 18960.73 20087.82 14030.19 28681.53 28969.94 10572.19 16486.53 180
114514_t69.87 16567.88 17275.85 13288.38 2952.35 14086.94 8583.68 15053.70 27855.68 27485.60 17030.07 28791.20 7555.84 21971.02 17483.99 224
mvsmamba66.93 22864.88 23573.09 20275.06 27347.26 26283.36 19169.21 34562.64 13055.68 27481.43 23429.72 28889.20 13263.35 14963.50 23582.79 250
CPTT-MVS67.15 22065.84 21571.07 25180.96 17250.32 18481.94 22374.10 30546.18 32957.91 24387.64 14529.57 28981.31 29164.10 14470.18 18381.56 263
CANet_DTU73.71 9873.14 9175.40 14482.61 13350.05 18984.67 15179.36 23469.72 3075.39 4390.03 9529.41 29085.93 24767.99 11779.11 9790.22 95
AdaColmapbinary67.86 20065.48 22375.00 15988.15 3654.99 7386.10 10276.63 28649.30 30857.80 24586.65 16029.39 29188.94 14445.10 28970.21 18281.06 278
RE-MVS-def66.66 19680.96 17248.14 24381.54 23776.98 27846.42 32662.75 18089.42 10529.28 29260.52 17372.06 16583.19 242
CVMVSNet60.85 27860.44 26862.07 32875.00 27532.73 36579.54 26973.49 31436.98 36256.28 27083.74 19229.28 29269.53 36746.48 28263.23 24183.94 229
PMMVS72.98 10872.05 11275.78 13383.57 9848.60 22584.08 16582.85 16961.62 14668.24 11290.33 8528.35 29487.78 18772.71 9376.69 11790.95 79
our_test_359.11 28955.08 30571.18 25071.42 31753.29 11981.96 22274.52 30248.32 31342.08 35069.28 34728.14 29582.15 28534.35 33445.68 35678.11 313
Fast-Effi-MVS+-dtu66.53 23364.10 24273.84 18672.41 30752.30 14284.73 14775.66 29459.51 18256.34 26979.11 25628.11 29685.85 24857.74 20463.29 24083.35 236
Anonymous2023121166.08 24063.67 24373.31 19983.07 11548.75 22286.01 10584.67 12945.27 33356.54 26676.67 28528.06 29788.95 14252.78 24159.95 26082.23 254
Anonymous2024052969.71 16767.28 18677.00 10483.78 9650.36 18288.87 4685.10 11647.22 31964.03 16383.37 19927.93 29892.10 5757.78 20367.44 20288.53 141
HPM-MVS_fast67.86 20066.28 20472.61 21280.67 18248.34 23681.18 24575.95 29350.81 30059.55 21388.05 13627.86 29985.98 24358.83 18473.58 15083.51 235
FMVSNet164.57 24562.11 25171.96 23177.32 23946.36 27383.52 17883.31 15752.43 28954.42 28576.23 29127.80 30086.20 23242.59 30361.34 25683.32 237
CNLPA60.59 27958.44 28367.05 29979.21 20447.26 26279.75 26864.34 36042.46 35051.90 30683.94 18827.79 30175.41 34437.12 31659.49 26678.47 305
TAPA-MVS56.12 1461.82 27360.18 27266.71 30278.48 22337.97 34775.19 29876.41 28946.82 32257.04 26086.52 16227.67 30277.03 33426.50 36767.02 20585.14 205
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
pmmvs659.64 28357.15 29067.09 29766.01 35036.86 35180.50 25678.64 24945.05 33549.05 32073.94 30927.28 30386.10 23843.96 29649.94 33778.31 309
test-mter68.36 19167.29 18571.60 24178.67 21648.17 24185.13 13079.72 22253.38 28163.13 17582.58 21427.23 30480.24 30660.56 17175.17 13586.39 184
D2MVS63.49 25661.39 25769.77 27069.29 33448.93 21778.89 27777.71 26660.64 16849.70 31772.10 33327.08 30583.48 27854.48 22662.65 24876.90 322
XVG-OURS-SEG-HR62.02 27159.54 27569.46 27365.30 35545.88 28265.06 34873.57 31346.45 32557.42 25783.35 20026.95 30678.09 32253.77 23264.03 22984.42 216
test_djsdf63.84 25161.56 25570.70 25668.78 33744.69 29581.63 23381.44 19150.28 30152.27 30376.26 29026.72 30786.11 23660.83 16755.84 30781.29 276
Anonymous2023120659.08 29057.59 28763.55 32168.77 33832.14 36880.26 26179.78 22150.00 30549.39 31872.39 32826.64 30878.36 31933.12 34057.94 28580.14 290
ppachtmachnet_test58.56 29754.34 30671.24 24771.42 31754.74 7981.84 22772.27 32149.02 31045.86 34068.99 34826.27 30983.30 28030.12 34943.23 36175.69 333
test20.0355.22 31654.07 30958.68 34563.14 36725.00 38677.69 28474.78 30152.64 28643.43 34572.39 32826.21 31074.76 34629.31 35247.05 35076.28 331
FE-MVS64.15 24860.43 26975.30 15080.85 17749.86 19468.28 34178.37 25650.26 30459.31 21873.79 31026.19 31191.92 6040.19 30766.67 20784.12 219
FMVSNet558.61 29656.45 29465.10 31577.20 24439.74 33874.77 29977.12 27650.27 30343.28 34767.71 35026.15 31276.90 33736.78 32154.78 31578.65 303
ACMP61.11 966.24 23864.33 23972.00 23074.89 27749.12 20983.18 19679.83 22055.41 26252.29 30282.68 21125.83 31386.10 23860.89 16663.94 23180.78 281
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MIMVSNet63.12 26060.29 27071.61 24075.92 26446.65 26965.15 34781.94 18059.14 19654.65 28369.47 34525.74 31480.63 30041.03 30669.56 18987.55 160
LPG-MVS_test66.44 23564.58 23772.02 22874.42 28348.60 22583.07 19980.64 20454.69 27153.75 29283.83 19025.73 31586.98 21160.33 17764.71 22280.48 285
LGP-MVS_train72.02 22874.42 28348.60 22580.64 20454.69 27153.75 29283.83 19025.73 31586.98 21160.33 17764.71 22280.48 285
test_vis1_n_192068.59 18968.31 16469.44 27469.16 33541.51 32984.63 15268.58 34858.80 20373.26 6488.37 12525.30 31780.60 30179.10 4367.55 20186.23 186
ACMM58.35 1264.35 24762.01 25271.38 24574.21 28648.51 22982.25 21779.66 22447.61 31754.54 28480.11 24325.26 31886.00 24251.26 25063.16 24379.64 294
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
XVG-OURS61.88 27259.34 27769.49 27265.37 35446.27 27764.80 34973.49 31447.04 32157.41 25882.85 20525.15 31978.18 32053.00 23864.98 22084.01 223
PVSNet_057.04 1361.19 27657.24 28973.02 20377.45 23850.31 18579.43 27377.36 27363.96 10447.51 33172.45 32725.03 32083.78 27452.76 24319.22 39784.96 209
WB-MVS37.41 35236.37 35340.54 37154.23 38110.43 40865.29 34643.75 38234.86 37127.81 38854.63 37824.94 32163.21 3716.81 40315.00 39847.98 390
UniMVSNet_ETH3D62.51 26660.49 26768.57 28868.30 34340.88 33673.89 30579.93 21851.81 29554.77 28179.61 24824.80 32281.10 29249.93 25761.35 25583.73 232
DP-MVS59.24 28656.12 29868.63 28588.24 3450.35 18382.51 21264.43 35941.10 35246.70 33578.77 25824.75 32388.57 15722.26 37856.29 30066.96 371
test_cas_vis1_n_192067.10 22166.60 19868.59 28765.17 35743.23 31383.23 19469.84 34155.34 26370.67 9887.71 14324.70 32476.66 33978.57 5064.20 22785.89 194
tt080563.39 25761.31 25969.64 27169.36 33338.87 34278.00 28185.48 9548.82 31255.66 27781.66 23124.38 32586.37 23149.04 26559.36 26883.68 233
cascas69.01 17866.13 20777.66 8579.36 19955.41 5886.99 8383.75 14956.69 24658.92 22681.35 23524.31 32692.10 5753.23 23470.61 17885.46 202
CMPMVSbinary40.41 2155.34 31552.64 31863.46 32260.88 37343.84 30561.58 36271.06 33230.43 37836.33 36974.63 30424.14 32775.44 34348.05 27266.62 20871.12 364
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
UGNet68.71 18667.11 18973.50 19780.55 18547.61 25684.08 16578.51 25359.45 18365.68 13882.73 21023.78 32885.08 26152.80 24076.40 11887.80 154
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
YYNet153.82 32349.96 32865.41 31270.09 33048.95 21572.30 31871.66 32744.25 34131.89 38163.07 36323.73 32973.95 34933.26 33839.40 36873.34 352
MDA-MVSNet_test_wron53.82 32349.95 32965.43 31170.13 32949.05 21172.30 31871.65 32844.23 34231.85 38263.13 36223.68 33074.01 34833.25 33939.35 36973.23 354
PLCcopyleft52.38 1860.89 27758.97 28166.68 30481.77 14745.70 28678.96 27674.04 30843.66 34447.63 32883.19 20323.52 33177.78 33137.47 31360.46 25976.55 329
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
SSC-MVS35.20 35434.30 35637.90 37352.58 3838.65 41161.86 35941.64 38631.81 37625.54 39052.94 38323.39 33259.28 3796.10 40412.86 39945.78 392
ADS-MVSNet255.21 31751.44 32266.51 30580.60 18349.56 20055.03 37565.44 35544.72 33651.00 31061.19 36722.83 33375.41 34428.54 35753.63 32274.57 344
ADS-MVSNet56.17 31151.95 32168.84 27980.60 18353.07 12555.03 37570.02 34044.72 33651.00 31061.19 36722.83 33378.88 31728.54 35753.63 32274.57 344
test_040256.45 30953.03 31366.69 30376.78 24950.31 18581.76 22969.61 34342.79 34843.88 34272.13 33122.82 33586.46 22816.57 39050.94 33463.31 379
UnsupCasMVSNet_eth57.56 30355.15 30364.79 31764.57 36233.12 36273.17 31283.87 14858.98 20041.75 35370.03 34322.54 33679.92 31046.12 28635.31 37481.32 275
xiu_mvs_v1_base_debu71.60 13470.29 13875.55 13977.26 24153.15 12185.34 12179.37 23155.83 25672.54 7290.19 8922.38 33786.66 22273.28 9076.39 11986.85 173
xiu_mvs_v1_base71.60 13470.29 13875.55 13977.26 24153.15 12185.34 12179.37 23155.83 25672.54 7290.19 8922.38 33786.66 22273.28 9076.39 11986.85 173
xiu_mvs_v1_base_debi71.60 13470.29 13875.55 13977.26 24153.15 12185.34 12179.37 23155.83 25672.54 7290.19 8922.38 33786.66 22273.28 9076.39 11986.85 173
RRT_MVS63.68 25461.01 26371.70 23973.48 29245.98 28181.19 24476.08 29154.33 27552.84 29879.27 25222.21 34087.65 19254.13 22855.54 31081.46 267
bld_raw_dy_0_6475.36 7473.18 8881.89 1187.91 4057.01 2486.77 9067.69 35278.56 165.01 14593.99 722.18 34194.84 1984.07 1772.45 16093.82 7
LS3D56.40 31053.82 31064.12 31881.12 16845.69 28773.42 31066.14 35435.30 37043.24 34879.88 24522.18 34179.62 31419.10 38664.00 23067.05 370
PVSNet62.49 869.27 17567.81 17673.64 19384.41 8251.85 14984.63 15277.80 26366.42 6459.80 20784.95 17922.14 34380.44 30455.03 22275.11 13888.62 137
MDA-MVSNet-bldmvs51.56 33347.75 33963.00 32571.60 31547.32 26169.70 33572.12 32243.81 34327.65 38963.38 36121.97 34475.96 34127.30 36432.19 38265.70 376
pmmvs-eth3d55.97 31352.78 31765.54 31061.02 37246.44 27275.36 29767.72 35149.61 30743.65 34467.58 35121.63 34577.04 33344.11 29544.33 35873.15 355
iter_conf05_1179.47 2078.68 2381.84 1287.91 4057.01 2493.27 279.49 22974.74 683.40 894.00 621.51 34694.70 2184.07 1789.68 793.82 7
anonymousdsp60.46 28057.65 28668.88 27863.63 36545.09 29072.93 31378.63 25046.52 32451.12 30972.80 32321.46 34783.07 28257.79 20253.97 32078.47 305
MVS-HIRNet49.01 33844.71 34261.92 33276.06 25946.61 27063.23 35554.90 37224.77 38433.56 37736.60 39221.28 34875.88 34229.49 35162.54 24963.26 380
Anonymous20240521170.11 15667.88 17276.79 11387.20 4547.24 26489.49 3677.38 27254.88 26966.14 12986.84 15620.93 34991.54 6656.45 21671.62 16891.59 57
UnsupCasMVSNet_bld53.86 32250.53 32663.84 31963.52 36634.75 35471.38 32681.92 18246.53 32338.95 36357.93 37520.55 35080.20 30839.91 30934.09 38176.57 328
EU-MVSNet52.63 32850.72 32558.37 34662.69 36928.13 38372.60 31475.97 29230.94 37740.76 35972.11 33220.16 35170.80 36335.11 33146.11 35476.19 332
N_pmnet41.25 34739.77 35045.66 36568.50 3400.82 41572.51 3160.38 41435.61 36735.26 37361.51 36620.07 35267.74 36823.51 37440.63 36568.42 369
MSDG59.44 28455.14 30472.32 22274.69 27850.71 16974.39 30373.58 31244.44 33943.40 34677.52 26919.45 35390.87 8631.31 34657.49 29275.38 336
K. test v354.04 32149.42 33267.92 29268.55 33942.57 32375.51 29563.07 36352.07 29039.21 36164.59 35919.34 35482.21 28437.11 31725.31 39078.97 298
lessismore_v067.98 29164.76 36141.25 33245.75 38036.03 37165.63 35719.29 35584.11 27035.67 32421.24 39578.59 304
KD-MVS_self_test49.24 33746.85 34056.44 35154.32 38022.87 38957.39 37173.36 31844.36 34037.98 36659.30 37318.97 35671.17 36233.48 33642.44 36275.26 337
OpenMVS_ROBcopyleft53.19 1759.20 28756.00 29968.83 28071.13 32144.30 29983.64 17775.02 30046.42 32646.48 33773.03 32018.69 35788.14 17227.74 36261.80 25374.05 347
mvsany_test143.38 34642.57 34845.82 36450.96 38726.10 38555.80 37327.74 40227.15 38147.41 33274.39 30618.67 35844.95 39444.66 29136.31 37266.40 373
LTVRE_ROB45.45 1952.73 32749.74 33061.69 33369.78 33134.99 35344.52 38367.60 35343.11 34743.79 34374.03 30818.54 35981.45 29028.39 35957.94 28568.62 368
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
SixPastTwentyTwo54.37 31850.10 32767.21 29670.70 32541.46 33174.73 30064.69 35747.56 31839.12 36269.49 34418.49 36084.69 26631.87 34334.20 38075.48 335
new-patchmatchnet48.21 33946.55 34153.18 35757.73 37718.19 40170.24 33071.02 33345.70 33033.70 37660.23 36918.00 36169.86 36627.97 36134.35 37871.49 363
F-COLMAP55.96 31453.65 31262.87 32672.76 30342.77 31974.70 30270.37 33740.03 35341.11 35779.36 25017.77 36273.70 35232.80 34153.96 32172.15 357
jajsoiax63.21 25960.84 26470.32 26268.33 34244.45 29781.23 24381.05 19753.37 28250.96 31277.81 26717.49 36385.49 25259.31 18058.05 28381.02 279
RPSCF45.77 34444.13 34650.68 35957.67 37829.66 37754.92 37745.25 38126.69 38245.92 33975.92 29717.43 36445.70 39327.44 36345.95 35576.67 324
PatchMatch-RL56.66 30653.75 31165.37 31377.91 23245.28 28969.78 33460.38 36641.35 35147.57 32973.73 31116.83 36576.91 33536.99 31959.21 26973.92 348
mvs_tets62.96 26260.55 26670.19 26368.22 34544.24 30280.90 25180.74 20352.99 28550.82 31477.56 26816.74 36685.44 25359.04 18357.94 28580.89 280
ACMH+54.58 1558.55 29855.24 30268.50 28974.68 27945.80 28580.27 26070.21 33847.15 32042.77 34975.48 29916.73 36785.98 24335.10 33254.78 31573.72 349
ACMH53.70 1659.78 28255.94 30071.28 24676.59 25048.35 23580.15 26476.11 29049.74 30641.91 35273.45 31816.50 36890.31 10131.42 34557.63 29175.17 338
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MIMVSNet150.35 33647.81 33757.96 34761.53 37127.80 38467.40 34374.06 30743.25 34633.31 38065.38 35816.03 36971.34 36121.80 37947.55 34574.75 342
DSMNet-mixed38.35 35035.36 35547.33 36348.11 39214.91 40537.87 39136.60 39319.18 38934.37 37459.56 37215.53 37053.01 38620.14 38446.89 35174.07 346
EG-PatchMatch MVS62.40 27059.59 27470.81 25573.29 29549.05 21185.81 10684.78 12451.85 29444.19 34173.48 31715.52 37189.85 11340.16 30867.24 20373.54 351
testgi54.25 32052.57 31959.29 34362.76 36821.65 39372.21 32070.47 33653.25 28341.94 35177.33 27314.28 37277.95 32729.18 35351.72 33378.28 310
COLMAP_ROBcopyleft43.60 2050.90 33548.05 33659.47 34167.81 34640.57 33771.25 32762.72 36536.49 36536.19 37073.51 31613.48 37373.92 35020.71 38250.26 33663.92 378
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
OurMVSNet-221017-052.39 33048.73 33363.35 32465.21 35638.42 34568.54 34064.95 35638.19 35739.57 36071.43 33513.23 37479.92 31037.16 31540.32 36771.72 360
test_fmvs153.60 32552.54 32056.78 34958.07 37530.26 37168.95 33842.19 38532.46 37363.59 17182.56 21611.55 37560.81 37458.25 19355.27 31179.28 295
tmp_tt9.44 37410.68 3775.73 3902.49 4134.21 41410.48 40318.04 4090.34 40712.59 39920.49 40111.39 3767.03 40913.84 3946.46 4065.95 404
ITE_SJBPF51.84 35858.03 37631.94 36953.57 37636.67 36341.32 35575.23 30111.17 37751.57 38725.81 36848.04 34172.02 359
Anonymous2024052151.65 33248.42 33461.34 33756.43 37939.65 34073.57 30873.47 31736.64 36436.59 36863.98 36010.75 37872.25 36035.35 32649.01 33872.11 358
AllTest47.32 34144.66 34355.32 35565.08 35837.50 34962.96 35754.25 37435.45 36833.42 37872.82 3219.98 37959.33 37724.13 37243.84 35969.13 366
TestCases55.32 35565.08 35837.50 34954.25 37435.45 36833.42 37872.82 3219.98 37959.33 37724.13 37243.84 35969.13 366
USDC54.36 31951.23 32363.76 32064.29 36337.71 34862.84 35873.48 31656.85 24035.47 37271.94 3349.23 38178.43 31838.43 31248.57 33975.13 339
XVG-ACMP-BASELINE56.03 31252.85 31665.58 30961.91 37040.95 33563.36 35372.43 32045.20 33446.02 33874.09 3079.20 38278.12 32145.13 28858.27 27877.66 317
test_fmvs1_n52.55 32951.19 32456.65 35051.90 38530.14 37267.66 34242.84 38432.27 37462.30 18582.02 2289.12 38360.84 37357.82 20154.75 31778.99 297
test_vis1_n51.19 33449.66 33155.76 35451.26 38629.85 37667.20 34438.86 38932.12 37559.50 21479.86 2468.78 38458.23 38156.95 21052.46 33079.19 296
pmmvs345.53 34541.55 34957.44 34848.97 39039.68 33970.06 33157.66 36928.32 38034.06 37557.29 3768.50 38566.85 36934.86 33334.26 37965.80 375
EGC-MVSNET33.75 35630.42 36043.75 36864.94 36036.21 35260.47 36640.70 3880.02 4080.10 40953.79 3807.39 38660.26 37511.09 39635.23 37634.79 394
test_fmvs245.89 34344.32 34550.62 36045.85 39424.70 38758.87 37037.84 39225.22 38352.46 30174.56 3057.07 38754.69 38349.28 26347.70 34372.48 356
ANet_high34.39 35529.59 36148.78 36130.34 40422.28 39055.53 37463.79 36138.11 35815.47 39636.56 3936.94 38859.98 37613.93 3935.64 40764.08 377
FPMVS35.40 35333.67 35740.57 37046.34 39328.74 38241.05 38757.05 37020.37 38822.27 39253.38 3816.87 38944.94 3958.62 39747.11 34948.01 389
test_vis1_rt40.29 34938.64 35145.25 36648.91 39130.09 37359.44 36727.07 40324.52 38538.48 36551.67 3846.71 39049.44 38844.33 29346.59 35356.23 382
new_pmnet33.56 35731.89 35938.59 37249.01 38920.42 39451.01 37837.92 39120.58 38623.45 39146.79 3866.66 39149.28 39020.00 38531.57 38446.09 391
TinyColmap48.15 34044.49 34459.13 34465.73 35338.04 34663.34 35462.86 36438.78 35529.48 38467.23 3536.46 39273.30 35424.59 37141.90 36466.04 374
ambc62.06 32953.98 38229.38 37935.08 39379.65 22541.37 35459.96 3706.27 39382.15 28535.34 32738.22 37074.65 343
TDRefinement40.91 34838.37 35248.55 36250.45 38833.03 36458.98 36950.97 37728.50 37929.89 38367.39 3526.21 39454.51 38417.67 38835.25 37558.11 381
PM-MVS46.92 34243.76 34756.41 35252.18 38432.26 36763.21 35638.18 39037.99 35940.78 35866.20 3545.09 39565.42 37048.19 27141.99 36371.54 362
LF4IMVS33.04 35832.55 35834.52 37640.96 39522.03 39144.45 38435.62 39420.42 38728.12 38762.35 3645.03 39631.88 40621.61 38134.42 37749.63 388
EMVS18.42 37117.66 37520.71 38734.13 40112.64 40746.94 38129.94 40010.46 4015.58 40714.93 4054.23 39738.83 3985.24 4077.51 40410.67 403
E-PMN19.16 37018.40 37421.44 38636.19 39913.63 40647.59 38030.89 39810.73 3995.91 40616.59 4023.66 39839.77 3975.95 4058.14 40210.92 402
test_method24.09 36721.07 37133.16 37927.67 4088.35 41326.63 39935.11 3963.40 40514.35 39736.98 3913.46 39935.31 40119.08 38722.95 39255.81 383
mvsany_test328.00 36025.98 36234.05 37728.97 40515.31 40334.54 39418.17 40816.24 39229.30 38553.37 3822.79 40033.38 40530.01 35020.41 39653.45 385
test_f27.12 36224.85 36333.93 37826.17 41015.25 40430.24 39822.38 40712.53 39728.23 38649.43 3852.59 40134.34 40425.12 37026.99 38852.20 386
test_fmvs337.95 35135.75 35444.55 36735.50 40018.92 39748.32 37934.00 39718.36 39141.31 35661.58 3652.29 40248.06 39242.72 30237.71 37166.66 372
PMMVS226.71 36322.98 36837.87 37436.89 3988.51 41242.51 38629.32 40119.09 39013.01 39837.54 3892.23 40353.11 38514.54 39211.71 40051.99 387
Gipumacopyleft27.47 36124.26 36637.12 37560.55 37429.17 38011.68 40260.00 36714.18 39410.52 40315.12 4042.20 40463.01 3728.39 39835.65 37319.18 400
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
LCM-MVSNet28.07 35923.85 36740.71 36927.46 40918.93 39630.82 39746.19 37812.76 39616.40 39434.70 3951.90 40548.69 39120.25 38324.22 39154.51 384
DeepMVS_CXcopyleft13.10 38821.34 4128.99 41010.02 41210.59 4007.53 40530.55 3981.82 40614.55 4076.83 4027.52 40315.75 401
APD_test126.46 36424.41 36532.62 38137.58 39721.74 39240.50 38930.39 39911.45 39816.33 39543.76 3871.63 40741.62 39611.24 39526.82 38934.51 395
PMVScopyleft19.57 2225.07 36522.43 37032.99 38023.12 41122.98 38840.98 38835.19 39515.99 39311.95 40235.87 3941.47 40849.29 3895.41 40631.90 38326.70 399
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test_vis3_rt24.79 36622.95 36930.31 38228.59 40618.92 39737.43 39217.27 41012.90 39521.28 39329.92 3991.02 40936.35 39928.28 36029.82 38735.65 393
MVEpermissive16.60 2317.34 37313.39 37629.16 38328.43 40719.72 39513.73 40123.63 4067.23 4047.96 40421.41 4000.80 41036.08 4006.97 40110.39 40131.69 396
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
testf121.11 36819.08 37227.18 38430.56 40218.28 39933.43 39524.48 4048.02 40212.02 40033.50 3960.75 41135.09 4027.68 39921.32 39328.17 397
APD_test221.11 36819.08 37227.18 38430.56 40218.28 39933.43 39524.48 4048.02 40212.02 40033.50 3960.75 41135.09 4027.68 39921.32 39328.17 397
wuyk23d9.11 3758.77 37910.15 38940.18 39616.76 40220.28 4001.01 4132.58 4062.66 4080.98 4080.23 41312.49 4084.08 4086.90 4051.19 405
test_blank0.00 3800.00 3830.00 3930.00 4150.00 4170.00 4040.00 4150.00 4090.00 4120.00 4110.00 4140.00 4100.00 4110.00 4080.00 408
uanet_test0.00 3800.00 3830.00 3930.00 4150.00 4170.00 4040.00 4150.00 4090.00 4120.00 4110.00 4140.00 4100.00 4110.00 4080.00 408
DCPMVS0.00 3800.00 3830.00 3930.00 4150.00 4170.00 4040.00 4150.00 4090.00 4120.00 4110.00 4140.00 4100.00 4110.00 4080.00 408
sosnet-low-res0.00 3800.00 3830.00 3930.00 4150.00 4170.00 4040.00 4150.00 4090.00 4120.00 4110.00 4140.00 4100.00 4110.00 4080.00 408
sosnet0.00 3800.00 3830.00 3930.00 4150.00 4170.00 4040.00 4150.00 4090.00 4120.00 4110.00 4140.00 4100.00 4110.00 4080.00 408
uncertanet0.00 3800.00 3830.00 3930.00 4150.00 4170.00 4040.00 4150.00 4090.00 4120.00 4110.00 4140.00 4100.00 4110.00 4080.00 408
Regformer0.00 3800.00 3830.00 3930.00 4150.00 4170.00 4040.00 4150.00 4090.00 4120.00 4110.00 4140.00 4100.00 4110.00 4080.00 408
testmvs6.14 3778.18 3800.01 3910.01 4140.00 41773.40 3110.00 4150.00 4090.02 4100.15 4090.00 4140.00 4100.02 4090.00 4080.02 406
test1236.01 3788.01 3810.01 3910.00 4150.01 41671.93 3240.00 4150.00 4090.02 4100.11 4100.00 4140.00 4100.02 4090.00 4080.02 406
ab-mvs-re7.68 37610.24 3780.00 3930.00 4150.00 4170.00 4040.00 4150.00 4090.00 41292.12 440.00 4140.00 4100.00 4110.00 4080.00 408
uanet0.00 3800.00 3830.00 3930.00 4150.00 4170.00 4040.00 4150.00 4090.00 4120.00 4110.00 4140.00 4100.00 4110.00 4080.00 408
WAC-MVS34.28 35622.56 377
FOURS183.24 10949.90 19384.98 13878.76 24647.71 31673.42 61
MSC_two_6792asdad81.53 1691.77 456.03 4691.10 1096.22 881.46 3486.80 2792.34 36
No_MVS81.53 1691.77 456.03 4691.10 1096.22 881.46 3486.80 2792.34 36
eth-test20.00 415
eth-test0.00 415
IU-MVS89.48 1757.49 1591.38 966.22 6888.26 182.83 2387.60 1892.44 33
save fliter85.35 6656.34 4189.31 4081.46 19061.55 147
test_0728_SECOND82.20 889.50 1557.73 1192.34 688.88 3296.39 481.68 3087.13 2192.47 32
GSMVS88.13 147
test_part289.33 2355.48 5582.27 12
MTGPAbinary81.31 193
MTMP87.27 7715.34 411
gm-plane-assit83.24 10954.21 9570.91 2288.23 13195.25 1466.37 126
test9_res78.72 4985.44 4291.39 65
agg_prior275.65 6985.11 4691.01 77
agg_prior85.64 6054.92 7583.61 15472.53 7588.10 175
test_prior456.39 4087.15 81
test_prior78.39 7286.35 5154.91 7685.45 9889.70 11990.55 85
旧先验281.73 23145.53 33274.66 4870.48 36558.31 192
新几何281.61 235
无先验85.19 12878.00 26149.08 30985.13 26052.78 24187.45 163
原ACMM283.77 175
testdata277.81 33045.64 287
testdata177.55 28564.14 99
plane_prior777.95 22948.46 232
plane_prior582.59 17188.30 16865.46 13572.34 16284.49 214
plane_prior483.28 201
plane_prior348.95 21564.01 10262.15 187
plane_prior285.76 10863.60 111
plane_prior178.31 226
plane_prior49.57 19887.43 7064.57 9372.84 157
n20.00 415
nn0.00 415
door-mid41.31 387
test1184.25 138
door43.27 383
HQP5-MVS51.56 156
HQP-NCC79.02 20888.00 5565.45 8064.48 155
ACMP_Plane79.02 20888.00 5565.45 8064.48 155
BP-MVS66.70 123
HQP4-MVS64.47 15888.61 15384.91 210
HQP3-MVS83.68 15073.12 153
NP-MVS78.76 21350.43 17785.12 175
ACMMP++_ref63.20 242
ACMMP++59.38 267