This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort by
MVS_111021_HR96.69 3696.69 3696.72 8698.58 9291.00 12799.14 10699.45 193.86 5595.15 12298.73 9288.48 7799.76 8997.23 7099.56 5299.40 93
thres100view90093.34 14992.15 16296.90 7597.62 11994.84 4199.06 11899.36 287.96 21790.47 20196.78 19783.29 17298.75 16684.11 26590.69 23697.12 221
tfpn200view993.43 14492.27 15996.90 7597.68 11794.84 4199.18 9499.36 288.45 19690.79 19396.90 18983.31 17098.75 16684.11 26590.69 23697.12 221
thres600view793.18 15492.00 16596.75 8297.62 11994.92 3699.07 11599.36 287.96 21790.47 20196.78 19783.29 17298.71 17082.93 27990.47 24096.61 236
thres40093.39 14692.27 15996.73 8497.68 11794.84 4199.18 9499.36 288.45 19690.79 19396.90 18983.31 17098.75 16684.11 26590.69 23696.61 236
thres20093.69 13692.59 15496.97 7297.76 11494.74 4699.35 7899.36 289.23 17291.21 19096.97 18583.42 16998.77 16385.08 24990.96 23497.39 214
MVS_111021_LR95.78 7195.94 5995.28 15798.19 10387.69 21298.80 14399.26 793.39 6895.04 12498.69 9984.09 16099.76 8996.96 7699.06 8098.38 178
sss94.85 10193.94 11797.58 4396.43 17694.09 6498.93 13199.16 889.50 16795.27 11997.85 13681.50 20799.65 10192.79 16594.02 18498.99 130
MM97.76 1197.39 2098.86 598.30 9796.83 799.81 1299.13 997.66 298.29 4198.96 7085.84 13699.90 5099.72 398.80 9699.85 30
MG-MVS97.24 2096.83 3198.47 1599.79 595.71 1999.07 11599.06 1094.45 4196.42 9498.70 9888.81 7399.74 9195.35 11499.86 1299.97 7
test250694.80 10294.21 10396.58 9596.41 17892.18 10298.01 23598.96 1190.82 12493.46 15497.28 16485.92 13398.45 18389.82 19597.19 14099.12 120
PVSNet87.13 1293.69 13692.83 14896.28 11297.99 10990.22 14699.38 7298.93 1291.42 11393.66 15197.68 14771.29 28999.64 10387.94 21997.20 13998.98 131
PGM-MVS95.85 6895.65 7396.45 10299.50 4289.77 16398.22 21598.90 1389.19 17496.74 8798.95 7385.91 13599.92 4193.94 14299.46 5799.66 64
EPNet96.82 3396.68 3797.25 5998.65 9093.10 8299.48 5398.76 1496.54 1397.84 5698.22 12987.49 9499.66 9795.35 11497.78 12699.00 129
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
WTY-MVS95.97 6295.11 8798.54 1397.62 11996.65 999.44 6298.74 1592.25 9495.21 12098.46 12186.56 12199.46 12195.00 12592.69 19899.50 84
HY-MVS88.56 795.29 8794.23 10298.48 1497.72 11596.41 1394.03 35198.74 1592.42 9095.65 11394.76 24686.52 12299.49 11595.29 11792.97 19499.53 79
VNet95.08 9394.26 10197.55 4698.07 10693.88 6698.68 15698.73 1790.33 14197.16 7297.43 16079.19 22999.53 11296.91 7891.85 21599.24 109
test_yl95.27 8894.60 9597.28 5798.53 9392.98 8699.05 11998.70 1886.76 24894.65 13197.74 14487.78 8999.44 12295.57 11092.61 19999.44 90
DCV-MVSNet95.27 8894.60 9597.28 5798.53 9392.98 8699.05 11998.70 1886.76 24894.65 13197.74 14487.78 8999.44 12295.57 11092.61 19999.44 90
PVSNet_083.28 1687.31 27085.16 28593.74 21694.78 25484.59 28998.91 13498.69 2089.81 15678.59 33693.23 27761.95 34799.34 13794.75 12955.72 40397.30 216
ACMMPcopyleft94.67 10994.30 10095.79 13699.25 5788.13 20598.41 19498.67 2190.38 14091.43 18498.72 9482.22 19899.95 3293.83 14695.76 16799.29 105
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
D2MVS87.96 25887.39 25289.70 30991.84 32183.40 30598.31 20998.49 2288.04 21478.23 34090.26 34273.57 26496.79 27484.21 26283.53 28388.90 366
test_fmvsm_n_192097.08 2797.55 1495.67 14197.94 11089.61 16799.93 198.48 2397.08 599.08 1499.13 4788.17 8299.93 3999.11 2399.06 8097.47 212
fmvsm_s_conf0.5_n96.19 5496.49 4095.30 15697.37 13389.16 17299.86 598.47 2495.68 2398.87 2299.15 4282.44 19599.92 4199.14 2197.43 13596.83 232
HyFIR lowres test93.68 13893.29 13794.87 17197.57 12588.04 20798.18 21998.47 2487.57 23091.24 18995.05 24285.49 14197.46 24593.22 15892.82 19599.10 123
fmvsm_s_conf0.5_n_a95.97 6296.19 4895.31 15596.51 17389.01 18099.81 1298.39 2695.46 2899.19 1399.16 3981.44 21099.91 4698.83 2896.97 14497.01 228
UniMVSNet (Re)89.50 23188.32 23993.03 22692.21 31290.96 12898.90 13598.39 2689.13 17683.22 26692.03 29481.69 20496.34 30186.79 23172.53 35691.81 294
CHOSEN 280x42096.80 3496.85 2896.66 9197.85 11394.42 5694.76 34298.36 2892.50 8795.62 11497.52 15597.92 197.38 25098.31 4898.80 9698.20 193
VPA-MVSNet89.10 23487.66 24993.45 21992.56 30691.02 12697.97 23898.32 2986.92 24486.03 24392.01 29668.84 30397.10 26190.92 18175.34 32692.23 281
CHOSEN 1792x268894.35 11893.82 12395.95 13197.40 13188.74 19398.41 19498.27 3092.18 9691.43 18496.40 20978.88 23099.81 7993.59 15097.81 12399.30 104
patch_mono-297.10 2697.97 894.49 18599.21 6183.73 30199.62 3898.25 3195.28 3099.38 698.91 7892.28 3199.94 3599.61 1099.22 7499.78 41
FIs90.70 20789.87 20793.18 22492.29 31091.12 12098.17 22198.25 3189.11 17783.44 26594.82 24582.26 19796.17 31287.76 22082.76 28992.25 279
UGNet91.91 18390.85 19095.10 16297.06 15388.69 19498.01 23598.24 3392.41 9192.39 16993.61 26860.52 35399.68 9588.14 21697.25 13896.92 230
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
FC-MVSNet-test90.22 21789.40 21592.67 23991.78 32289.86 16197.89 24098.22 3488.81 18782.96 27394.66 24781.90 20395.96 32085.89 24382.52 29292.20 284
WR-MVS_H86.53 28385.49 28189.66 31191.04 33483.31 30797.53 26398.20 3584.95 28179.64 32390.90 32178.01 24095.33 34376.29 32872.81 35390.35 342
MVS_030497.81 997.51 1598.74 998.97 7396.57 1199.91 298.17 3697.45 398.76 2698.97 6586.69 11699.96 2899.72 398.92 9099.69 58
MVS93.92 12892.28 15898.83 795.69 21096.82 896.22 31498.17 3684.89 28284.34 25998.61 10679.32 22799.83 7393.88 14499.43 6199.86 29
PAPM96.35 4895.94 5997.58 4394.10 27195.25 2698.93 13198.17 3694.26 4393.94 14598.72 9489.68 6297.88 21496.36 9099.29 6999.62 72
baseline294.04 12493.80 12494.74 17793.07 30290.25 14398.12 22598.16 3989.86 15486.53 24196.95 18695.56 698.05 20591.44 17694.53 17995.93 251
UniMVSNet_NR-MVSNet89.60 22888.55 23592.75 23592.17 31390.07 15298.74 15098.15 4088.37 20183.21 26793.98 25782.86 18195.93 32286.95 22772.47 35792.25 279
CSCG94.87 10094.71 9395.36 15199.54 3686.49 24199.34 7998.15 4082.71 32090.15 20699.25 2689.48 6499.86 6394.97 12698.82 9599.72 53
test_fmvsmconf_n96.78 3596.84 2996.61 9295.99 20090.25 14399.90 398.13 4296.68 1198.42 3698.92 7785.34 14699.88 5499.12 2299.08 7899.70 55
MSLP-MVS++97.50 1797.45 1897.63 4199.65 1693.21 7999.70 2798.13 4294.61 3697.78 5899.46 1089.85 5999.81 7997.97 5499.91 699.88 26
h-mvs3392.47 17091.95 16794.05 20597.13 14885.01 28398.36 20498.08 4493.85 5696.27 9796.73 20083.19 17599.43 12595.81 10268.09 37497.70 205
IB-MVS89.43 692.12 17890.83 19395.98 13095.40 22190.78 13199.81 1298.06 4591.23 11885.63 24893.66 26790.63 4698.78 16291.22 17771.85 36398.36 182
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
fmvsm_l_conf0.5_n97.65 1497.72 1297.41 5097.51 12892.78 9299.85 898.05 4696.78 899.60 199.23 2990.42 5099.92 4199.55 1398.50 10899.55 77
PHI-MVS96.65 4096.46 4297.21 6099.34 5091.77 10699.70 2798.05 4686.48 25698.05 4999.20 3289.33 6599.96 2898.38 4399.62 4699.90 22
fmvsm_l_conf0.5_n_a97.70 1397.80 1197.42 4997.59 12392.91 9099.86 598.04 4896.70 1099.58 299.26 2490.90 4199.94 3599.57 1298.66 10399.40 93
PVSNet_BlendedMVS93.36 14893.20 13993.84 21398.77 8791.61 11099.47 5598.04 4891.44 11194.21 13992.63 28883.50 16699.87 5897.41 6483.37 28590.05 350
PVSNet_Blended95.94 6595.66 7196.75 8298.77 8791.61 11099.88 498.04 4893.64 6394.21 13997.76 14283.50 16699.87 5897.41 6497.75 12798.79 153
EPMVS92.59 16791.59 17595.59 14697.22 14090.03 15691.78 37298.04 4890.42 13991.66 17890.65 33086.49 12497.46 24581.78 29096.31 15799.28 106
CNVR-MVS98.46 198.38 198.72 1099.80 496.19 1599.80 1697.99 5297.05 699.41 499.59 292.89 26100.00 198.99 2599.90 799.96 10
MCST-MVS98.18 297.95 998.86 599.85 396.60 1099.70 2797.98 5397.18 495.96 10199.33 2292.62 27100.00 198.99 2599.93 199.98 6
testing387.75 26288.22 24186.36 34794.66 25877.41 36399.52 5097.95 5486.05 26181.12 30696.69 20286.18 13089.31 39961.65 39290.12 24292.35 278
reproduce_monomvs92.11 18091.82 17092.98 22898.25 9890.55 13898.38 20397.93 5594.81 3380.46 31392.37 29096.46 397.17 25694.06 14073.61 34591.23 318
testing22294.48 11694.00 11195.95 13197.30 13692.27 10098.82 14097.92 5689.20 17394.82 12697.26 16687.13 10497.32 25391.95 17191.56 22198.25 187
131493.44 14391.98 16697.84 3495.24 22594.38 5796.22 31497.92 5690.18 14482.28 28797.71 14677.63 24299.80 8191.94 17298.67 10299.34 101
NCCC98.12 598.11 398.13 2599.76 694.46 5399.81 1297.88 5896.54 1398.84 2499.46 1092.55 2899.98 998.25 5099.93 199.94 18
tfpnnormal83.65 32481.35 33090.56 28591.37 33088.06 20697.29 27197.87 5978.51 35876.20 34690.91 32064.78 33596.47 28961.71 39173.50 34887.13 381
ETVMVS94.50 11593.90 12096.31 11197.48 13092.98 8699.07 11597.86 6088.09 21294.40 13596.90 18988.35 7997.28 25490.72 18792.25 20998.66 166
3Dnovator87.35 1193.17 15691.77 17297.37 5395.41 22093.07 8398.82 14097.85 6191.53 10882.56 28097.58 15371.97 28199.82 7691.01 18099.23 7399.22 112
UWE-MVS93.18 15493.40 13392.50 24196.56 16983.55 30398.09 23197.84 6289.50 16791.72 17696.23 21591.08 3796.70 27686.28 23693.33 19097.26 218
FE-MVS91.38 19290.16 20495.05 16696.46 17587.53 21989.69 38997.84 6282.97 31392.18 17192.00 29884.07 16198.93 15880.71 29795.52 17198.68 162
WR-MVS88.54 25287.22 25792.52 24091.93 32089.50 16898.56 17697.84 6286.99 23981.87 29893.81 26274.25 26195.92 32485.29 24774.43 33692.12 287
DELS-MVS97.12 2596.60 3898.68 1198.03 10896.57 1199.84 997.84 6296.36 1895.20 12198.24 12888.17 8299.83 7396.11 9799.60 5099.64 68
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
EI-MVSNet-Vis-set95.76 7395.63 7596.17 11999.14 6490.33 14198.49 18597.82 6691.92 10094.75 12898.88 8387.06 10799.48 11995.40 11397.17 14298.70 161
无先验98.52 17997.82 6687.20 23799.90 5087.64 22299.85 30
EPNet_dtu92.28 17492.15 16292.70 23797.29 13784.84 28698.64 16297.82 6692.91 8093.02 16097.02 18385.48 14395.70 33372.25 35794.89 17797.55 211
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
SDMVSNet91.09 19889.91 20694.65 18096.80 16290.54 13997.78 24797.81 6988.34 20385.73 24595.26 23966.44 32598.26 19194.25 13986.75 25495.14 254
HFP-MVS96.42 4796.26 4796.90 7599.69 890.96 12899.47 5597.81 6990.54 13596.88 7799.05 5787.57 9299.96 2895.65 10499.72 3299.78 41
EI-MVSNet-UG-set95.43 8295.29 8095.86 13499.07 7089.87 16098.43 19197.80 7191.78 10294.11 14198.77 8886.25 12999.48 11994.95 12796.45 15398.22 191
ACMMPR96.28 5296.14 5796.73 8499.68 990.47 14099.47 5597.80 7190.54 13596.83 8299.03 5986.51 12399.95 3295.65 10499.72 3299.75 49
UBG95.73 7695.41 7796.69 8896.97 15693.23 7899.13 10997.79 7391.28 11694.38 13796.78 19792.37 3098.56 17696.17 9493.84 18698.26 186
MAR-MVS94.43 11794.09 10895.45 14899.10 6887.47 22198.39 20197.79 7388.37 20194.02 14499.17 3878.64 23599.91 4692.48 16798.85 9498.96 133
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
DPM-MVS97.86 897.25 2299.68 198.25 9899.10 199.76 2197.78 7596.61 1298.15 4399.53 793.62 17100.00 191.79 17399.80 2699.94 18
API-MVS94.78 10394.18 10696.59 9499.21 6190.06 15598.80 14397.78 7583.59 30293.85 14799.21 3183.79 16399.97 2192.37 16899.00 8499.74 50
新几何197.40 5198.92 8192.51 9897.77 7785.52 26996.69 8999.06 5688.08 8699.89 5384.88 25399.62 4699.79 38
HPM-MVS++copyleft97.72 1297.59 1398.14 2499.53 4094.76 4599.19 9297.75 7895.66 2498.21 4299.29 2391.10 3699.99 597.68 6099.87 999.68 60
GG-mvs-BLEND96.98 7196.53 17194.81 4487.20 39297.74 7993.91 14696.40 20996.56 296.94 26795.08 12198.95 8999.20 113
gg-mvs-nofinetune90.00 22387.71 24896.89 7996.15 19294.69 4985.15 39997.74 7968.32 39892.97 16160.16 41296.10 496.84 27093.89 14398.87 9399.14 117
旧先验198.97 7392.90 9197.74 7999.15 4291.05 3899.33 6599.60 73
IU-MVS99.63 1895.38 2497.73 8295.54 2699.54 399.69 799.81 2399.99 1
SED-MVS98.18 298.10 498.41 1899.63 1895.24 2799.77 1897.72 8394.17 4499.30 899.54 393.32 2099.98 999.70 599.81 2399.99 1
test_241102_TWO97.72 8394.17 4499.23 1099.54 393.14 2599.98 999.70 599.82 1999.99 1
test_241102_ONE99.63 1895.24 2797.72 8394.16 4699.30 899.49 993.32 2099.98 9
DPE-MVScopyleft98.11 698.00 698.44 1699.50 4295.39 2399.29 8297.72 8394.50 3898.64 3099.54 393.32 2099.97 2199.58 1199.90 799.95 15
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
DeepPCF-MVS93.56 196.55 4597.84 1092.68 23898.71 8978.11 36099.70 2797.71 8798.18 197.36 6599.76 190.37 5299.94 3599.27 1699.54 5499.99 1
test072699.66 1295.20 3299.77 1897.70 8893.95 4999.35 799.54 393.18 23
MSP-MVS97.77 1098.18 296.53 9999.54 3690.14 14899.41 6997.70 8895.46 2898.60 3199.19 3395.71 599.49 11598.15 5299.85 1399.95 15
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MSC_two_6792asdad99.51 299.61 2498.60 297.69 9099.98 999.55 1399.83 1599.96 10
No_MVS99.51 299.61 2498.60 297.69 9099.98 999.55 1399.83 1599.96 10
testing1195.33 8694.98 9196.37 10897.20 14192.31 9999.29 8297.68 9290.59 13194.43 13397.20 17190.79 4598.60 17495.25 11892.38 20398.18 194
DVP-MVS++98.18 298.09 598.44 1699.61 2495.38 2499.55 4497.68 9293.01 7499.23 1099.45 1495.12 899.98 999.25 1899.92 399.97 7
test_0728_SECOND98.77 899.66 1296.37 1499.72 2497.68 9299.98 999.64 899.82 1999.96 10
test1197.68 92
fmvsm_s_conf0.1_n95.56 8095.68 7095.20 15994.35 26389.10 17499.50 5197.67 9694.76 3598.68 2999.03 5981.13 21399.86 6398.63 3297.36 13796.63 235
testing9194.88 9894.44 9896.21 11597.19 14391.90 10599.23 8997.66 9789.91 15393.66 15197.05 18290.21 5598.50 17793.52 15191.53 22698.25 187
testing9994.88 9894.45 9796.17 11997.20 14191.91 10499.20 9197.66 9789.95 15293.68 15097.06 18090.28 5498.50 17793.52 15191.54 22398.12 196
TEST999.57 3393.17 8099.38 7297.66 9789.57 16498.39 3799.18 3690.88 4299.66 97
train_agg97.20 2397.08 2397.57 4599.57 3393.17 8099.38 7297.66 9790.18 14498.39 3799.18 3690.94 3999.66 9798.58 3699.85 1399.88 26
region2R96.30 5196.17 5396.70 8799.70 790.31 14299.46 5997.66 9790.55 13497.07 7399.07 5486.85 11199.97 2195.43 11299.74 2999.81 35
SteuartSystems-ACMMP97.25 1997.34 2197.01 6697.38 13291.46 11399.75 2297.66 9794.14 4898.13 4499.26 2492.16 3299.66 9797.91 5699.64 4299.90 22
Skip Steuart: Steuart Systems R&D Blog.
EPP-MVSNet93.75 13593.67 12694.01 20795.86 20485.70 26998.67 15897.66 9784.46 28791.36 18797.18 17491.16 3497.79 22092.93 16293.75 18798.53 170
SMA-MVScopyleft97.24 2096.99 2498.00 3199.30 5494.20 6199.16 9897.65 10489.55 16699.22 1299.52 890.34 5399.99 598.32 4799.83 1599.82 32
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
test_one_060199.59 2894.89 3797.64 10593.14 7398.93 2199.45 1493.45 18
test_899.55 3593.07 8399.37 7597.64 10590.18 14498.36 3999.19 3390.94 3999.64 103
agg_prior99.54 3692.66 9397.64 10597.98 5399.61 105
DeepC-MVS_fast93.52 297.16 2496.84 2998.13 2599.61 2494.45 5498.85 13797.64 10596.51 1695.88 10499.39 1887.35 10199.99 596.61 8599.69 3899.96 10
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
save fliter99.34 5093.85 6799.65 3697.63 10995.69 22
原ACMM196.18 11799.03 7190.08 15197.63 10988.98 18097.00 7598.97 6588.14 8599.71 9388.23 21599.62 4698.76 158
DU-MVS88.83 24287.51 25092.79 23391.46 32890.07 15298.71 15197.62 11188.87 18683.21 26793.68 26574.63 25295.93 32286.95 22772.47 35792.36 275
ZD-MVS99.67 1093.28 7797.61 11287.78 22297.41 6399.16 3990.15 5699.56 10898.35 4599.70 37
CP-MVS96.22 5396.15 5696.42 10499.67 1089.62 16699.70 2797.61 11290.07 15096.00 10099.16 3987.43 9599.92 4196.03 9999.72 3299.70 55
thisisatest053094.00 12593.52 12995.43 14995.76 20890.02 15798.99 12697.60 11486.58 25191.74 17597.36 16394.78 1198.34 18686.37 23592.48 20297.94 201
tttt051793.30 15093.01 14494.17 19995.57 21386.47 24298.51 18297.60 11485.99 26290.55 19897.19 17394.80 1098.31 18785.06 25091.86 21497.74 203
thisisatest051594.75 10494.19 10496.43 10396.13 19792.64 9699.47 5597.60 11487.55 23193.17 15797.59 15294.71 1298.42 18488.28 21493.20 19198.24 190
testdata95.26 15898.20 10187.28 22897.60 11485.21 27398.48 3599.15 4288.15 8498.72 16990.29 19099.45 5999.78 41
ACMMP_NAP96.59 4196.18 5097.81 3698.82 8593.55 7198.88 13697.59 11890.66 12797.98 5399.14 4586.59 119100.00 196.47 8999.46 5799.89 25
CVMVSNet90.30 21590.91 18988.46 33094.32 26573.58 38097.61 26197.59 11890.16 14788.43 22397.10 17776.83 24692.86 37382.64 28193.54 18998.93 139
XVS96.47 4696.37 4496.77 8099.62 2290.66 13699.43 6697.58 12092.41 9196.86 7898.96 7087.37 9799.87 5895.65 10499.43 6199.78 41
X-MVStestdata90.69 20888.66 23196.77 8099.62 2290.66 13699.43 6697.58 12092.41 9196.86 7829.59 42487.37 9799.87 5895.65 10499.43 6199.78 41
test22298.32 9691.21 11698.08 23297.58 12083.74 29895.87 10599.02 6186.74 11499.64 4299.81 35
test_prior97.01 6699.58 3091.77 10697.57 12399.49 11599.79 38
CP-MVSNet86.54 28285.45 28289.79 30691.02 33582.78 31697.38 26897.56 12485.37 27179.53 32693.03 28171.86 28395.25 34579.92 30273.43 35191.34 313
test1297.83 3599.33 5394.45 5497.55 12597.56 5988.60 7699.50 11499.71 3699.55 77
PAPR96.35 4895.82 6397.94 3399.63 1894.19 6299.42 6897.55 12592.43 8893.82 14999.12 4987.30 10299.91 4694.02 14199.06 8099.74 50
AdaColmapbinary93.82 13393.06 14196.10 12299.88 189.07 17598.33 20697.55 12586.81 24790.39 20398.65 10175.09 25199.98 993.32 15797.53 13299.26 108
TESTMET0.1,193.82 13393.26 13895.49 14795.21 22890.25 14399.15 10397.54 12889.18 17591.79 17494.87 24489.13 6697.63 23586.21 23796.29 15998.60 168
fmvsm_s_conf0.1_n_a95.16 9095.15 8495.18 16092.06 31588.94 18499.29 8297.53 12994.46 3998.98 1898.99 6379.99 21999.85 6798.24 5196.86 14796.73 233
hse-mvs291.67 18691.51 17792.15 24896.22 18782.61 31997.74 25397.53 12993.85 5696.27 9796.15 21783.19 17597.44 24795.81 10266.86 38196.40 245
AUN-MVS90.17 21989.50 21292.19 24696.21 18882.67 31797.76 25297.53 12988.05 21391.67 17796.15 21783.10 17797.47 24488.11 21766.91 38096.43 244
ZNCC-MVS96.09 5695.81 6596.95 7499.42 4791.19 11799.55 4497.53 12989.72 15795.86 10698.94 7686.59 11999.97 2195.13 12099.56 5299.68 60
CANet97.00 2896.49 4098.55 1298.86 8496.10 1699.83 1097.52 13395.90 1997.21 6998.90 7982.66 18899.93 3998.71 2998.80 9699.63 70
APDe-MVScopyleft97.53 1597.47 1697.70 3999.58 3093.63 6999.56 4397.52 13393.59 6498.01 5299.12 4990.80 4499.55 10999.26 1799.79 2799.93 20
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
MDTV_nov1_ep1390.47 20196.14 19488.55 19791.34 37997.51 13589.58 16392.24 17090.50 34086.99 11097.61 23777.64 31892.34 205
QAPM91.41 19089.49 21397.17 6295.66 21293.42 7598.60 17197.51 13580.92 34681.39 30597.41 16172.89 27499.87 5882.33 28498.68 10198.21 192
PAPM_NR95.43 8295.05 8996.57 9799.42 4790.14 14898.58 17597.51 13590.65 12992.44 16798.90 7987.77 9199.90 5090.88 18299.32 6699.68 60
TSAR-MVS + MP.97.44 1897.46 1797.39 5299.12 6593.49 7498.52 17997.50 13894.46 3998.99 1798.64 10291.58 3399.08 15198.49 4099.83 1599.60 73
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
alignmvs95.77 7295.00 9098.06 2997.35 13495.68 2099.71 2697.50 13891.50 10996.16 9998.61 10686.28 12799.00 15496.19 9391.74 21799.51 82
9.1496.87 2799.34 5099.50 5197.49 14089.41 17198.59 3299.43 1689.78 6099.69 9498.69 3099.62 46
GST-MVS95.97 6295.66 7196.90 7599.49 4591.22 11599.45 6197.48 14189.69 15895.89 10398.72 9486.37 12699.95 3294.62 13499.22 7499.52 80
DP-MVS Recon95.85 6895.15 8497.95 3299.87 294.38 5799.60 3997.48 14186.58 25194.42 13499.13 4787.36 10099.98 993.64 14998.33 11499.48 86
FOURS199.50 4288.94 18499.55 4497.47 14391.32 11598.12 46
DVP-MVScopyleft98.07 798.00 698.29 1999.66 1295.20 3299.72 2497.47 14393.95 4999.07 1599.46 1093.18 2399.97 2199.64 899.82 1999.69 58
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
CPTT-MVS94.60 11194.43 9995.09 16399.66 1286.85 23699.44 6297.47 14383.22 30794.34 13898.96 7082.50 18999.55 10994.81 12899.50 5598.88 143
BP-MVS196.59 4196.36 4597.29 5595.05 24394.72 4799.44 6297.45 14692.71 8396.41 9598.50 11294.11 1698.50 17795.61 10997.97 12098.66 166
SF-MVS97.22 2296.92 2598.12 2799.11 6694.88 3899.44 6297.45 14689.60 16298.70 2799.42 1790.42 5099.72 9298.47 4199.65 4099.77 46
MTGPAbinary97.45 146
MTAPA96.09 5695.80 6696.96 7399.29 5591.19 11797.23 27697.45 14692.58 8594.39 13699.24 2886.43 12599.99 596.22 9299.40 6499.71 54
CDPH-MVS96.56 4496.18 5097.70 3999.59 2893.92 6599.13 10997.44 15089.02 17997.90 5599.22 3088.90 7299.49 11594.63 13399.79 2799.68 60
APD-MVScopyleft96.95 2996.72 3597.63 4199.51 4193.58 7099.16 9897.44 15090.08 14998.59 3299.07 5489.06 6799.42 12697.92 5599.66 3999.88 26
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
PVSNet_Blended_VisFu94.67 10994.11 10796.34 11097.14 14791.10 12299.32 8197.43 15292.10 9991.53 18396.38 21283.29 17299.68 9593.42 15696.37 15598.25 187
NR-MVSNet87.74 26586.00 27392.96 23091.46 32890.68 13596.65 29997.42 15388.02 21573.42 36593.68 26577.31 24395.83 32884.26 26171.82 36492.36 275
MP-MVScopyleft96.00 5995.82 6396.54 9899.47 4690.13 15099.36 7697.41 15490.64 13095.49 11698.95 7385.51 14099.98 996.00 10099.59 5199.52 80
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
mPP-MVS95.90 6795.75 6896.38 10799.58 3089.41 17099.26 8797.41 15490.66 12794.82 12698.95 7386.15 13199.98 995.24 11999.64 4299.74 50
OpenMVScopyleft85.28 1490.75 20688.84 22696.48 10093.58 29093.51 7398.80 14397.41 15482.59 32178.62 33497.49 15768.00 31199.82 7684.52 25998.55 10796.11 249
reproduce-ours96.66 3796.80 3296.22 11398.95 7789.03 17898.62 16597.38 15793.42 6696.80 8599.36 1988.92 7099.80 8198.51 3899.26 7199.82 32
our_new_method96.66 3796.80 3296.22 11398.95 7789.03 17898.62 16597.38 15793.42 6696.80 8599.36 1988.92 7099.80 8198.51 3899.26 7199.82 32
tt080586.50 28484.79 29391.63 26191.97 31681.49 32796.49 30397.38 15782.24 32982.44 28295.82 22751.22 38698.25 19284.55 25880.96 29895.13 256
SD-MVS97.51 1697.40 1997.81 3699.01 7293.79 6899.33 8097.38 15793.73 6098.83 2599.02 6190.87 4399.88 5498.69 3099.74 2999.77 46
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
tpmvs89.16 23387.76 24693.35 22197.19 14384.75 28890.58 38797.36 16181.99 33384.56 25589.31 35983.98 16298.17 19674.85 33890.00 24397.12 221
PS-CasMVS85.81 29584.58 29889.49 31690.77 33782.11 32297.20 27897.36 16184.83 28379.12 33192.84 28467.42 31795.16 34778.39 31573.25 35291.21 319
reproduce_model96.57 4396.75 3496.02 12698.93 8088.46 20098.56 17697.34 16393.18 7296.96 7699.35 2188.69 7599.80 8198.53 3799.21 7799.79 38
SR-MVS96.13 5596.16 5596.07 12399.42 4789.04 17698.59 17397.33 16490.44 13896.84 8099.12 4986.75 11399.41 12997.47 6399.44 6099.76 48
WB-MVSnew88.69 24888.34 23889.77 30794.30 26985.99 26298.14 22297.31 16587.15 23887.85 22696.07 22169.91 29395.52 33772.83 35491.47 22787.80 374
PatchmatchNetpermissive92.05 18291.04 18695.06 16496.17 19189.04 17691.26 38097.26 16689.56 16590.64 19790.56 33688.35 7997.11 25979.53 30396.07 16499.03 128
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
FA-MVS(test-final)92.22 17791.08 18595.64 14296.05 19988.98 18191.60 37597.25 16786.99 23991.84 17392.12 29283.03 17899.00 15486.91 22993.91 18598.93 139
test-LLR93.11 15792.68 15094.40 18994.94 24987.27 22999.15 10397.25 16790.21 14291.57 17994.04 25284.89 15197.58 23985.94 24196.13 16098.36 182
test-mter93.27 15292.89 14794.40 18994.94 24987.27 22999.15 10397.25 16788.95 18291.57 17994.04 25288.03 8797.58 23985.94 24196.13 16098.36 182
PEN-MVS85.21 30383.93 30789.07 32389.89 34681.31 33297.09 28197.24 17084.45 28878.66 33392.68 28768.44 30694.87 35275.98 33070.92 36891.04 323
ab-mvs91.05 20189.17 21996.69 8895.96 20191.72 10892.62 36597.23 17185.61 26889.74 21293.89 26168.55 30499.42 12691.09 17887.84 24998.92 141
APD-MVS_3200maxsize95.64 7995.65 7395.62 14499.24 5887.80 21198.42 19297.22 17288.93 18496.64 9298.98 6485.49 14199.36 13396.68 8299.27 7099.70 55
SR-MVS-dyc-post95.75 7495.86 6295.41 15099.22 5987.26 23198.40 19797.21 17389.63 16096.67 9098.97 6586.73 11599.36 13396.62 8399.31 6799.60 73
RE-MVS-def95.70 6999.22 5987.26 23198.40 19797.21 17389.63 16096.67 9098.97 6585.24 14796.62 8399.31 6799.60 73
SCA90.64 21089.25 21894.83 17494.95 24888.83 18896.26 31197.21 17390.06 15190.03 20790.62 33266.61 32296.81 27283.16 27594.36 18198.84 146
RPMNet85.07 30581.88 32494.64 18293.47 29286.24 24984.97 40197.21 17364.85 40590.76 19578.80 40380.95 21599.27 14053.76 40492.17 21198.41 175
VPNet88.30 25486.57 26493.49 21891.95 31891.35 11498.18 21997.20 17788.61 19084.52 25794.89 24362.21 34696.76 27589.34 20372.26 36092.36 275
TranMVSNet+NR-MVSNet87.75 26286.31 26892.07 25090.81 33688.56 19698.33 20697.18 17887.76 22381.87 29893.90 26072.45 27695.43 34083.13 27771.30 36792.23 281
cdsmvs_eth3d_5k22.52 38930.03 3920.00 4080.00 4310.00 4330.00 41997.17 1790.00 4260.00 42798.77 8874.35 2590.00 4270.00 4260.00 4250.00 423
tpm291.77 18491.09 18493.82 21494.83 25385.56 27292.51 36697.16 18084.00 29393.83 14890.66 32987.54 9397.17 25687.73 22191.55 22298.72 159
MP-MVS-pluss95.80 7095.30 7997.29 5598.95 7792.66 9398.59 17397.14 18188.95 18293.12 15899.25 2685.62 13799.94 3596.56 8799.48 5699.28 106
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
PatchMatch-RL91.47 18890.54 19894.26 19598.20 10186.36 24796.94 28697.14 18187.75 22488.98 21895.75 22871.80 28499.40 13080.92 29597.39 13697.02 227
Anonymous2024052987.66 26685.58 27993.92 21097.59 12385.01 28398.13 22397.13 18366.69 40388.47 22296.01 22355.09 37299.51 11387.00 22684.12 27697.23 220
JIA-IIPM85.97 29184.85 29189.33 31893.23 29973.68 37985.05 40097.13 18369.62 39491.56 18168.03 41088.03 8796.96 26577.89 31793.12 19297.34 215
PS-MVSNAJ96.87 3196.40 4398.29 1997.35 13497.29 599.03 12197.11 18595.83 2098.97 1999.14 4582.48 19199.60 10698.60 3399.08 7898.00 199
HPM-MVS_fast94.89 9694.62 9495.70 13999.11 6688.44 20199.14 10697.11 18585.82 26495.69 11298.47 11983.46 16899.32 13893.16 15999.63 4599.35 99
DeepC-MVS91.02 494.56 11493.92 11896.46 10197.16 14690.76 13298.39 20197.11 18593.92 5188.66 22098.33 12478.14 23999.85 6795.02 12398.57 10698.78 155
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
tpmrst92.78 16192.16 16194.65 18096.27 18587.45 22291.83 37197.10 18889.10 17894.68 13090.69 32788.22 8197.73 23089.78 19691.80 21698.77 157
HPM-MVScopyleft95.41 8495.22 8295.99 12999.29 5589.14 17399.17 9797.09 18987.28 23695.40 11798.48 11884.93 15099.38 13195.64 10899.65 4099.47 88
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
tpm cat188.89 23887.27 25593.76 21595.79 20685.32 27790.76 38597.09 18976.14 37185.72 24788.59 36282.92 18098.04 20676.96 32291.43 22897.90 202
dp90.16 22088.83 22794.14 20096.38 18186.42 24391.57 37697.06 19184.76 28488.81 21990.19 34884.29 15897.43 24875.05 33591.35 23298.56 169
xiu_mvs_v2_base96.66 3796.17 5398.11 2897.11 15096.96 699.01 12497.04 19295.51 2798.86 2399.11 5382.19 19999.36 13398.59 3598.14 11898.00 199
3Dnovator+87.72 893.43 14491.84 16998.17 2395.73 20995.08 3598.92 13397.04 19291.42 11381.48 30497.60 15174.60 25499.79 8590.84 18398.97 8699.64 68
sd_testset89.23 23288.05 24592.74 23696.80 16285.33 27695.85 32897.03 19488.34 20385.73 24595.26 23961.12 35197.76 22785.61 24586.75 25495.14 254
CDS-MVSNet93.47 14293.04 14394.76 17594.75 25589.45 16998.82 14097.03 19487.91 21990.97 19196.48 20789.06 6796.36 29589.50 19992.81 19798.49 172
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
test0.0.03 188.96 23688.61 23290.03 30191.09 33384.43 29198.97 12997.02 19690.21 14280.29 31596.31 21484.89 15191.93 38772.98 35285.70 26593.73 261
114514_t94.06 12393.05 14297.06 6499.08 6992.26 10198.97 12997.01 19782.58 32292.57 16598.22 12980.68 21699.30 13989.34 20399.02 8399.63 70
CostFormer92.89 16092.48 15694.12 20194.99 24685.89 26492.89 36197.00 19886.98 24295.00 12590.78 32390.05 5897.51 24392.92 16391.73 21898.96 133
test_fmvsmvis_n_192095.47 8195.40 7895.70 13994.33 26490.22 14699.70 2796.98 19996.80 792.75 16298.89 8182.46 19499.92 4198.36 4498.33 11496.97 229
ET-MVSNet_ETH3D92.56 16891.45 17895.88 13396.39 18094.13 6399.46 5996.97 20092.18 9666.94 39298.29 12794.65 1494.28 36294.34 13783.82 28099.24 109
UA-Net93.30 15092.62 15395.34 15396.27 18588.53 19995.88 32596.97 20090.90 12295.37 11897.07 17982.38 19699.10 15083.91 26994.86 17898.38 178
TAMVS92.62 16592.09 16494.20 19894.10 27187.68 21398.41 19496.97 20087.53 23289.74 21296.04 22284.77 15596.49 28888.97 20992.31 20698.42 174
kuosan84.40 31683.34 31087.60 33695.87 20379.21 34892.39 36796.87 20376.12 37273.79 36293.98 25781.51 20690.63 39164.13 38475.42 32592.95 266
test_fmvsmconf0.1_n95.94 6595.79 6796.40 10692.42 30989.92 15999.79 1796.85 20496.53 1597.22 6898.67 10082.71 18799.84 6998.92 2798.98 8599.43 92
dongtai81.36 33680.61 33483.62 36994.25 27073.32 38195.15 33996.81 20573.56 38269.79 37992.81 28581.00 21486.80 40652.08 40770.06 37090.75 333
Vis-MVSNetpermissive92.64 16491.85 16895.03 16795.12 23688.23 20298.48 18796.81 20591.61 10592.16 17297.22 17071.58 28798.00 20985.85 24497.81 12398.88 143
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
PMMVS93.62 14193.90 12092.79 23396.79 16481.40 32998.85 13796.81 20591.25 11796.82 8398.15 13377.02 24598.13 19893.15 16096.30 15898.83 149
ADS-MVSNet88.99 23587.30 25494.07 20396.21 18887.56 21887.15 39396.78 20883.01 31189.91 20987.27 37378.87 23197.01 26474.20 34392.27 20797.64 206
balanced_conf0396.83 3296.51 3997.81 3697.60 12295.15 3498.40 19796.77 20993.00 7698.69 2896.19 21689.75 6198.76 16598.45 4299.72 3299.51 82
MVSMamba_PlusPlus95.73 7695.15 8497.44 4797.28 13994.35 5998.26 21296.75 21083.09 31097.84 5695.97 22489.59 6398.48 18297.86 5799.73 3199.49 85
WBMVS91.35 19390.49 19993.94 20996.97 15693.40 7699.27 8696.71 21187.40 23483.10 27291.76 30492.38 2996.23 30988.95 21077.89 31192.17 285
Vis-MVSNet (Re-imp)93.26 15393.00 14594.06 20496.14 19486.71 23998.68 15696.70 21288.30 20589.71 21497.64 15085.43 14496.39 29388.06 21896.32 15699.08 125
Anonymous2023121184.72 30882.65 32090.91 27397.71 11684.55 29097.28 27296.67 21366.88 40279.18 33090.87 32258.47 35996.60 27982.61 28274.20 34091.59 303
Syy-MVS84.10 32184.53 29982.83 37295.14 23465.71 39997.68 25796.66 21486.52 25482.63 27796.84 19468.15 30889.89 39545.62 41091.54 22392.87 267
myMVS_eth3d88.68 25089.07 22187.50 33895.14 23479.74 34597.68 25796.66 21486.52 25482.63 27796.84 19485.22 14889.89 39569.43 36691.54 22392.87 267
EIA-MVS95.11 9195.27 8194.64 18296.34 18286.51 24099.59 4096.62 21692.51 8694.08 14298.64 10286.05 13298.24 19395.07 12298.50 10899.18 114
ETV-MVS96.00 5996.00 5896.00 12896.56 16991.05 12599.63 3796.61 21793.26 7197.39 6498.30 12686.62 11898.13 19898.07 5397.57 12998.82 150
LS3D90.19 21888.72 22994.59 18498.97 7386.33 24896.90 28896.60 21874.96 37684.06 26298.74 9175.78 24899.83 7374.93 33697.57 12997.62 209
EI-MVSNet89.87 22589.38 21691.36 26594.32 26585.87 26597.61 26196.59 21985.10 27585.51 24997.10 17781.30 21296.56 28283.85 27183.03 28791.64 296
MVSTER92.71 16292.32 15793.86 21297.29 13792.95 8999.01 12496.59 21990.09 14885.51 24994.00 25694.61 1596.56 28290.77 18683.03 28792.08 289
cascas90.93 20389.33 21795.76 13795.69 21093.03 8598.99 12696.59 21980.49 34886.79 24094.45 24965.23 33498.60 17493.52 15192.18 21095.66 253
TAPA-MVS87.50 990.35 21389.05 22294.25 19698.48 9585.17 28098.42 19296.58 22282.44 32787.24 23398.53 10882.77 18398.84 16059.09 39897.88 12298.72 159
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
OMC-MVS93.90 13093.62 12794.73 17898.63 9187.00 23498.04 23496.56 22392.19 9592.46 16698.73 9279.49 22699.14 14892.16 17094.34 18298.03 198
PLCcopyleft91.07 394.23 12194.01 11094.87 17199.17 6387.49 22099.25 8896.55 22488.43 19991.26 18898.21 13185.92 13399.86 6389.77 19797.57 12997.24 219
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
TSAR-MVS + GP.96.95 2996.91 2697.07 6398.88 8391.62 10999.58 4196.54 22595.09 3296.84 8098.63 10491.16 3499.77 8899.04 2496.42 15499.81 35
cl2289.57 22988.79 22891.91 25297.94 11087.62 21697.98 23796.51 22685.03 27882.37 28691.79 30183.65 16496.50 28685.96 24077.89 31191.61 301
xiu_mvs_v1_base_debu94.73 10593.98 11296.99 6895.19 22995.24 2798.62 16596.50 22792.99 7797.52 6098.83 8572.37 27799.15 14497.03 7296.74 14896.58 238
xiu_mvs_v1_base94.73 10593.98 11296.99 6895.19 22995.24 2798.62 16596.50 22792.99 7797.52 6098.83 8572.37 27799.15 14497.03 7296.74 14896.58 238
xiu_mvs_v1_base_debi94.73 10593.98 11296.99 6895.19 22995.24 2798.62 16596.50 22792.99 7797.52 6098.83 8572.37 27799.15 14497.03 7296.74 14896.58 238
lupinMVS96.32 5095.94 5997.44 4795.05 24394.87 3999.86 596.50 22793.82 5898.04 5098.77 8885.52 13898.09 20196.98 7598.97 8699.37 96
mvs_anonymous92.50 16991.65 17495.06 16496.60 16889.64 16597.06 28296.44 23186.64 25084.14 26093.93 25982.49 19096.17 31291.47 17596.08 16399.35 99
GDP-MVS96.05 5895.63 7597.31 5495.37 22394.65 5099.36 7696.42 23292.14 9897.07 7398.53 10893.33 1998.50 17791.76 17496.66 15198.78 155
VDDNet90.08 22288.54 23694.69 17994.41 26287.68 21398.21 21796.40 23376.21 37093.33 15697.75 14354.93 37498.77 16394.71 13290.96 23497.61 210
mvsmamba94.27 12093.91 11995.35 15296.42 17788.61 19597.77 24996.38 23491.17 11994.05 14395.27 23878.41 23797.96 21097.36 6698.40 11299.48 86
HQP3-MVS96.37 23586.29 257
PatchT85.44 30183.19 31192.22 24493.13 30183.00 30983.80 40796.37 23570.62 38890.55 19879.63 40284.81 15394.87 35258.18 40091.59 22098.79 153
HQP-MVS91.50 18791.23 18292.29 24393.95 27686.39 24599.16 9896.37 23593.92 5187.57 22896.67 20373.34 26697.77 22293.82 14786.29 25792.72 269
UnsupCasMVSNet_eth78.90 34976.67 35485.58 35582.81 39774.94 37491.98 37096.31 23884.64 28565.84 39687.71 36651.33 38592.23 38372.89 35356.50 40289.56 359
HQP_MVS91.26 19490.95 18892.16 24793.84 28386.07 25999.02 12296.30 23993.38 6986.99 23596.52 20572.92 27297.75 22893.46 15486.17 26092.67 271
plane_prior596.30 23997.75 22893.46 15486.17 26092.67 271
jason95.40 8594.86 9297.03 6592.91 30394.23 6099.70 2796.30 23993.56 6596.73 8898.52 11081.46 20997.91 21196.08 9898.47 11198.96 133
jason: jason.
CLD-MVS91.06 20090.71 19592.10 24994.05 27586.10 25699.55 4496.29 24294.16 4684.70 25497.17 17569.62 29897.82 21894.74 13086.08 26292.39 274
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
GA-MVS90.10 22188.69 23094.33 19292.44 30887.97 20999.08 11496.26 24389.65 15986.92 23793.11 28068.09 30996.96 26582.54 28390.15 24198.05 197
DTE-MVSNet84.14 31982.80 31588.14 33188.95 36079.87 34496.81 29196.24 24483.50 30377.60 34392.52 28967.89 31394.24 36372.64 35569.05 37290.32 343
LFMVS92.23 17690.84 19196.42 10498.24 10091.08 12498.24 21496.22 24583.39 30594.74 12998.31 12561.12 35198.85 15994.45 13692.82 19599.32 102
baseline192.61 16691.28 18196.58 9597.05 15494.63 5197.72 25496.20 24689.82 15588.56 22196.85 19386.85 11197.82 21888.42 21280.10 30297.30 216
FMVSNet388.81 24487.08 25893.99 20896.52 17294.59 5298.08 23296.20 24685.85 26382.12 29091.60 30774.05 26295.40 34279.04 30780.24 29991.99 292
sasdasda95.02 9493.96 11598.20 2197.53 12695.92 1798.71 15196.19 24891.78 10295.86 10698.49 11579.53 22499.03 15296.12 9591.42 22999.66 64
canonicalmvs95.02 9493.96 11598.20 2197.53 12695.92 1798.71 15196.19 24891.78 10295.86 10698.49 11579.53 22499.03 15296.12 9591.42 22999.66 64
dmvs_re88.69 24888.06 24490.59 28293.83 28578.68 35495.75 33196.18 25087.99 21684.48 25896.32 21367.52 31596.94 26784.98 25285.49 26696.14 248
MVSFormer94.71 10894.08 10996.61 9295.05 24394.87 3997.77 24996.17 25186.84 24598.04 5098.52 11085.52 13895.99 31889.83 19398.97 8698.96 133
test_djsdf88.26 25687.73 24789.84 30488.05 37082.21 32197.77 24996.17 25186.84 24582.41 28591.95 30072.07 28095.99 31889.83 19384.50 27291.32 314
MS-PatchMatch86.75 27785.92 27489.22 31991.97 31682.47 32096.91 28796.14 25383.74 29877.73 34293.53 27158.19 36097.37 25276.75 32598.35 11387.84 372
CS-MVS95.75 7496.19 4894.40 18997.88 11286.22 25199.66 3596.12 25492.69 8498.07 4898.89 8187.09 10597.59 23896.71 8098.62 10499.39 95
MGCFI-Net94.89 9693.84 12298.06 2997.49 12995.55 2198.64 16296.10 25591.60 10795.75 11098.46 12179.31 22898.98 15695.95 10191.24 23399.65 67
SPE-MVS-test95.98 6196.34 4694.90 17098.06 10787.66 21599.69 3496.10 25593.66 6198.35 4099.05 5786.28 12797.66 23296.96 7698.90 9299.37 96
VDD-MVS91.24 19790.18 20394.45 18897.08 15285.84 26798.40 19796.10 25586.99 23993.36 15598.16 13254.27 37699.20 14196.59 8690.63 23998.31 185
PCF-MVS89.78 591.26 19489.63 21096.16 12195.44 21891.58 11295.29 33796.10 25585.07 27782.75 27497.45 15978.28 23899.78 8780.60 29995.65 17097.12 221
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
test_cas_vis1_n_192093.86 13293.74 12594.22 19795.39 22286.08 25799.73 2396.07 25996.38 1797.19 7197.78 14165.46 33399.86 6396.71 8098.92 9096.73 233
test_vis1_n_192093.08 15893.42 13292.04 25196.31 18379.36 34799.83 1096.06 26096.72 998.53 3498.10 13458.57 35899.91 4697.86 5798.79 9996.85 231
MVS_Test93.67 13992.67 15196.69 8896.72 16692.66 9397.22 27796.03 26187.69 22895.12 12394.03 25481.55 20598.28 19089.17 20796.46 15299.14 117
casdiffmvs_mvgpermissive94.00 12593.33 13596.03 12595.22 22790.90 13099.09 11395.99 26290.58 13291.55 18297.37 16279.91 22098.06 20395.01 12495.22 17499.13 119
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
jajsoiax87.35 26986.51 26689.87 30287.75 37581.74 32597.03 28395.98 26388.47 19380.15 31793.80 26361.47 34896.36 29589.44 20184.47 27391.50 305
PS-MVSNAJss89.54 23089.05 22291.00 27188.77 36184.36 29297.39 26695.97 26488.47 19381.88 29793.80 26382.48 19196.50 28689.34 20383.34 28692.15 286
F-COLMAP92.07 18191.75 17393.02 22798.16 10482.89 31398.79 14795.97 26486.54 25387.92 22597.80 13978.69 23499.65 10185.97 23995.93 16696.53 241
miper_enhance_ethall90.33 21489.70 20992.22 24497.12 14988.93 18698.35 20595.96 26688.60 19183.14 27192.33 29187.38 9696.18 31186.49 23477.89 31191.55 304
TR-MVS90.77 20589.44 21494.76 17596.31 18388.02 20897.92 23995.96 26685.52 26988.22 22497.23 16966.80 32198.09 20184.58 25792.38 20398.17 195
CMPMVSbinary58.40 2180.48 34080.11 33981.59 37885.10 38859.56 40594.14 35095.95 26868.54 39760.71 40193.31 27455.35 37197.87 21583.06 27884.85 27087.33 378
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test_fmvsmconf0.01_n94.14 12293.51 13096.04 12486.79 38189.19 17199.28 8595.94 26995.70 2195.50 11598.49 11573.27 26999.79 8598.28 4998.32 11699.15 116
LPG-MVS_test88.86 23988.47 23790.06 29793.35 29780.95 33898.22 21595.94 26987.73 22683.17 26996.11 21966.28 32697.77 22290.19 19185.19 26791.46 307
LGP-MVS_train90.06 29793.35 29780.95 33895.94 26987.73 22683.17 26996.11 21966.28 32697.77 22290.19 19185.19 26791.46 307
OPM-MVS89.76 22689.15 22091.57 26290.53 33985.58 27198.11 22795.93 27292.88 8186.05 24296.47 20867.06 32097.87 21589.29 20686.08 26291.26 317
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
mamv491.41 19093.57 12884.91 36097.11 15058.11 40795.68 33395.93 27282.09 33289.78 21195.71 22990.09 5798.24 19397.26 6898.50 10898.38 178
XVG-OURS-SEG-HR90.95 20290.66 19791.83 25495.18 23281.14 33695.92 32295.92 27488.40 20090.33 20497.85 13670.66 29299.38 13192.83 16488.83 24694.98 257
XVG-OURS90.83 20490.49 19991.86 25395.23 22681.25 33395.79 33095.92 27488.96 18190.02 20898.03 13571.60 28699.35 13691.06 17987.78 25094.98 257
tpm89.67 22788.95 22491.82 25592.54 30781.43 32892.95 36095.92 27487.81 22190.50 20089.44 35684.99 14995.65 33483.67 27282.71 29098.38 178
EC-MVSNet95.09 9295.17 8394.84 17395.42 21988.17 20399.48 5395.92 27491.47 11097.34 6698.36 12382.77 18397.41 24997.24 6998.58 10598.94 138
ACMM86.95 1388.77 24588.22 24190.43 28893.61 28981.34 33198.50 18395.92 27487.88 22083.85 26395.20 24167.20 31897.89 21386.90 23084.90 26992.06 290
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
baseline93.91 12993.30 13695.72 13895.10 24090.07 15297.48 26495.91 27991.03 12093.54 15397.68 14779.58 22298.02 20794.27 13895.14 17599.08 125
mvs_tets87.09 27286.22 26989.71 30887.87 37181.39 33096.73 29795.90 28088.19 20979.99 31993.61 26859.96 35596.31 30389.40 20284.34 27491.43 309
XXY-MVS87.75 26286.02 27292.95 23190.46 34089.70 16497.71 25695.90 28084.02 29280.95 30794.05 25167.51 31697.10 26185.16 24878.41 30892.04 291
nrg03090.23 21688.87 22594.32 19391.53 32793.54 7298.79 14795.89 28288.12 21184.55 25694.61 24878.80 23396.88 26992.35 16975.21 32792.53 273
CNLPA93.64 14092.74 14996.36 10998.96 7690.01 15899.19 9295.89 28286.22 25989.40 21598.85 8480.66 21799.84 6988.57 21196.92 14699.24 109
KD-MVS_2432*160082.98 32780.52 33690.38 29094.32 26588.98 18192.87 36295.87 28480.46 34973.79 36287.49 37082.76 18593.29 37070.56 36246.53 41488.87 367
miper_refine_blended82.98 32780.52 33690.38 29094.32 26588.98 18192.87 36295.87 28480.46 34973.79 36287.49 37082.76 18593.29 37070.56 36246.53 41488.87 367
FMVSNet286.90 27484.79 29393.24 22395.11 23792.54 9797.67 25995.86 28682.94 31480.55 31191.17 31662.89 34395.29 34477.23 31979.71 30591.90 293
casdiffmvspermissive93.98 12793.43 13195.61 14595.07 24289.86 16198.80 14395.84 28790.98 12192.74 16397.66 14979.71 22198.10 20094.72 13195.37 17398.87 145
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
UniMVSNet_ETH3D85.65 30083.79 30891.21 26690.41 34180.75 34195.36 33595.78 28878.76 35781.83 30194.33 25049.86 39196.66 27784.30 26083.52 28496.22 247
Effi-MVS+93.87 13193.15 14096.02 12695.79 20690.76 13296.70 29895.78 28886.98 24295.71 11197.17 17579.58 22298.01 20894.57 13596.09 16299.31 103
RRT-MVS93.39 14692.64 15295.64 14296.11 19888.75 19297.40 26595.77 29089.46 16992.70 16495.42 23572.98 27198.81 16196.91 7896.97 14499.37 96
EU-MVSNet84.19 31884.42 30283.52 37088.64 36467.37 39896.04 32095.76 29185.29 27278.44 33793.18 27870.67 29191.48 38975.79 33275.98 32291.70 295
BH-w/o92.32 17291.79 17193.91 21196.85 15986.18 25399.11 11295.74 29288.13 21084.81 25397.00 18477.26 24497.91 21189.16 20898.03 11997.64 206
anonymousdsp86.69 27885.75 27789.53 31386.46 38382.94 31096.39 30595.71 29383.97 29479.63 32490.70 32668.85 30295.94 32186.01 23884.02 27789.72 356
Fast-Effi-MVS+91.72 18590.79 19494.49 18595.89 20287.40 22499.54 4995.70 29485.01 28089.28 21795.68 23077.75 24197.57 24283.22 27495.06 17698.51 171
IS-MVSNet93.00 15992.51 15594.49 18596.14 19487.36 22598.31 20995.70 29488.58 19290.17 20597.50 15683.02 17997.22 25587.06 22496.07 16498.90 142
diffmvspermissive94.59 11294.19 10495.81 13595.54 21590.69 13498.70 15495.68 29691.61 10595.96 10197.81 13880.11 21898.06 20396.52 8895.76 16798.67 163
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
v7n84.42 31582.75 31889.43 31788.15 36881.86 32496.75 29595.67 29780.53 34778.38 33889.43 35769.89 29496.35 30073.83 34772.13 36190.07 348
ACMP87.39 1088.71 24788.24 24090.12 29693.91 28181.06 33798.50 18395.67 29789.43 17080.37 31495.55 23165.67 32897.83 21790.55 18884.51 27191.47 306
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
CL-MVSNet_self_test79.89 34478.34 34584.54 36481.56 39975.01 37396.88 28995.62 29981.10 34275.86 35185.81 38268.49 30590.26 39363.21 38756.51 40188.35 369
V4287.00 27385.68 27890.98 27289.91 34486.08 25798.32 20895.61 30083.67 30182.72 27590.67 32874.00 26396.53 28481.94 28974.28 33990.32 343
XVG-ACMP-BASELINE85.86 29384.95 28988.57 32889.90 34577.12 36494.30 34695.60 30187.40 23482.12 29092.99 28353.42 38097.66 23285.02 25183.83 27890.92 326
Anonymous20240521188.84 24087.03 25994.27 19498.14 10584.18 29598.44 19095.58 30276.79 36889.34 21696.88 19253.42 38099.54 11187.53 22387.12 25399.09 124
miper_ehance_all_eth88.94 23788.12 24391.40 26395.32 22486.93 23597.85 24495.55 30384.19 29081.97 29591.50 30984.16 15995.91 32584.69 25577.89 31191.36 312
CANet_DTU94.31 11993.35 13497.20 6197.03 15594.71 4898.62 16595.54 30495.61 2597.21 6998.47 11971.88 28299.84 6988.38 21397.46 13497.04 226
v2v48287.27 27185.76 27691.78 26089.59 35087.58 21798.56 17695.54 30484.53 28682.51 28191.78 30273.11 27096.47 28982.07 28674.14 34291.30 315
BH-untuned91.46 18990.84 19193.33 22296.51 17384.83 28798.84 13995.50 30686.44 25883.50 26496.70 20175.49 25097.77 22286.78 23297.81 12397.40 213
v14886.38 28685.06 28690.37 29289.47 35584.10 29698.52 17995.48 30783.80 29780.93 30890.22 34674.60 25496.31 30380.92 29571.55 36590.69 336
IterMVS-LS88.34 25387.44 25191.04 27094.10 27185.85 26698.10 22895.48 30785.12 27482.03 29491.21 31581.35 21195.63 33583.86 27075.73 32491.63 297
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
dcpmvs_295.67 7896.18 5094.12 20198.82 8584.22 29497.37 26995.45 30990.70 12695.77 10998.63 10490.47 4898.68 17199.20 2099.22 7499.45 89
v114486.83 27685.31 28491.40 26389.75 34887.21 23398.31 20995.45 30983.22 30782.70 27690.78 32373.36 26596.36 29579.49 30474.69 33390.63 338
v119286.32 28784.71 29591.17 26789.53 35386.40 24498.13 22395.44 31182.52 32482.42 28490.62 33271.58 28796.33 30277.23 31974.88 33090.79 330
v14419286.40 28584.89 29090.91 27389.48 35485.59 27098.21 21795.43 31282.45 32682.62 27990.58 33572.79 27596.36 29578.45 31474.04 34390.79 330
Effi-MVS+-dtu89.97 22490.68 19687.81 33495.15 23371.98 38797.87 24395.40 31391.92 10087.57 22891.44 31074.27 26096.84 27089.45 20093.10 19394.60 259
c3_l88.19 25787.23 25691.06 26994.97 24786.17 25497.72 25495.38 31483.43 30481.68 30291.37 31182.81 18295.72 33284.04 26873.70 34491.29 316
eth_miper_zixun_eth87.76 26187.00 26090.06 29794.67 25782.65 31897.02 28595.37 31584.19 29081.86 30091.58 30881.47 20895.90 32683.24 27373.61 34591.61 301
v886.11 28984.45 30091.10 26889.99 34386.85 23697.24 27595.36 31681.99 33379.89 32189.86 35274.53 25696.39 29378.83 31172.32 35990.05 350
v192192086.02 29084.44 30190.77 27989.32 35685.20 27898.10 22895.35 31782.19 33082.25 28890.71 32570.73 29096.30 30676.85 32474.49 33590.80 329
pmmvs487.58 26886.17 27191.80 25689.58 35188.92 18797.25 27495.28 31882.54 32380.49 31293.17 27975.62 24996.05 31782.75 28078.90 30690.42 341
GBi-Net86.67 27984.96 28791.80 25695.11 23788.81 18996.77 29295.25 31982.94 31482.12 29090.25 34362.89 34394.97 34979.04 30780.24 29991.62 298
test186.67 27984.96 28791.80 25695.11 23788.81 18996.77 29295.25 31982.94 31482.12 29090.25 34362.89 34394.97 34979.04 30780.24 29991.62 298
FMVSNet183.94 32281.32 33191.80 25691.94 31988.81 18996.77 29295.25 31977.98 35978.25 33990.25 34350.37 39094.97 34973.27 35077.81 31691.62 298
mvsany_test194.57 11395.09 8892.98 22895.84 20582.07 32398.76 14995.24 32292.87 8296.45 9398.71 9784.81 15399.15 14497.68 6095.49 17297.73 204
cl____87.82 25986.79 26390.89 27594.88 25185.43 27397.81 24595.24 32282.91 31880.71 31091.22 31481.97 20295.84 32781.34 29275.06 32891.40 311
miper_lstm_enhance86.90 27486.20 27089.00 32494.53 26081.19 33496.74 29695.24 32282.33 32880.15 31790.51 33981.99 20094.68 35880.71 29773.58 34791.12 321
UnsupCasMVSNet_bld73.85 36770.14 37184.99 35979.44 40575.73 37088.53 39095.24 32270.12 39261.94 40074.81 40741.41 40393.62 36768.65 37051.13 41085.62 390
v124085.77 29784.11 30490.73 28089.26 35785.15 28197.88 24295.23 32681.89 33682.16 28990.55 33769.60 29996.31 30375.59 33374.87 33190.72 335
DIV-MVS_self_test87.82 25986.81 26290.87 27694.87 25285.39 27597.81 24595.22 32782.92 31780.76 30991.31 31381.99 20095.81 32981.36 29175.04 32991.42 310
v1085.73 29884.01 30690.87 27690.03 34286.73 23897.20 27895.22 32781.25 34179.85 32289.75 35373.30 26896.28 30776.87 32372.64 35589.61 358
test_fmvs192.35 17192.94 14690.57 28397.19 14375.43 37299.55 4494.97 32995.20 3196.82 8397.57 15459.59 35699.84 6997.30 6798.29 11796.46 243
BH-RMVSNet91.25 19689.99 20595.03 16796.75 16588.55 19798.65 16094.95 33087.74 22587.74 22797.80 13968.27 30798.14 19780.53 30097.49 13398.41 175
GeoE90.60 21189.56 21193.72 21795.10 24085.43 27399.41 6994.94 33183.96 29587.21 23496.83 19674.37 25897.05 26380.50 30193.73 18898.67 163
ACMH83.09 1784.60 31082.61 32190.57 28393.18 30082.94 31096.27 30994.92 33281.01 34472.61 37493.61 26856.54 36497.79 22074.31 34181.07 29790.99 324
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test_fmvs1_n91.07 19991.41 17990.06 29794.10 27174.31 37699.18 9494.84 33394.81 3396.37 9697.46 15850.86 38999.82 7697.14 7197.90 12196.04 250
test111192.12 17891.19 18394.94 16996.15 19287.36 22598.12 22594.84 33390.85 12390.97 19197.26 16665.60 33198.37 18589.74 19897.14 14399.07 127
ECVR-MVScopyleft92.29 17391.33 18095.15 16196.41 17887.84 21098.10 22894.84 33390.82 12491.42 18697.28 16465.61 33098.49 18190.33 18997.19 14099.12 120
IterMVS85.81 29584.67 29689.22 31993.51 29183.67 30296.32 30894.80 33685.09 27678.69 33290.17 34966.57 32493.17 37279.48 30577.42 31890.81 328
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
LTVRE_ROB81.71 1984.59 31182.72 31990.18 29492.89 30483.18 30893.15 35894.74 33778.99 35475.14 35692.69 28665.64 32997.63 23569.46 36581.82 29589.74 355
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
pm-mvs184.68 30982.78 31790.40 28989.58 35185.18 27997.31 27094.73 33881.93 33576.05 34892.01 29665.48 33296.11 31578.75 31269.14 37189.91 353
IterMVS-SCA-FT85.73 29884.64 29789.00 32493.46 29482.90 31296.27 30994.70 33985.02 27978.62 33490.35 34166.61 32293.33 36979.38 30677.36 31990.76 332
1112_ss92.71 16291.55 17696.20 11695.56 21491.12 12098.48 18794.69 34088.29 20686.89 23898.50 11287.02 10898.66 17284.75 25489.77 24498.81 151
Test_1112_low_res92.27 17590.97 18796.18 11795.53 21691.10 12298.47 18994.66 34188.28 20786.83 23993.50 27287.00 10998.65 17384.69 25589.74 24598.80 152
Fast-Effi-MVS+-dtu88.84 24088.59 23489.58 31293.44 29578.18 35898.65 16094.62 34288.46 19584.12 26195.37 23768.91 30196.52 28582.06 28791.70 21994.06 260
our_test_384.47 31482.80 31589.50 31489.01 35883.90 29997.03 28394.56 34381.33 34075.36 35590.52 33871.69 28594.54 36068.81 36976.84 32090.07 348
ppachtmachnet_test83.63 32581.57 32889.80 30589.01 35885.09 28297.13 28094.50 34478.84 35576.14 34791.00 31869.78 29594.61 35963.40 38674.36 33789.71 357
test_vis1_n90.40 21290.27 20290.79 27891.55 32676.48 36699.12 11194.44 34594.31 4297.34 6696.95 18643.60 40099.42 12697.57 6297.60 12896.47 242
MonoMVSNet90.69 20889.78 20893.45 21991.78 32284.97 28596.51 30294.44 34590.56 13385.96 24490.97 31978.61 23696.27 30895.35 11483.79 28199.11 122
YYNet179.64 34777.04 35287.43 34087.80 37379.98 34396.23 31394.44 34573.83 38151.83 40787.53 36867.96 31292.07 38666.00 38067.75 37890.23 345
MDA-MVSNet_test_wron79.65 34677.05 35187.45 33987.79 37480.13 34296.25 31294.44 34573.87 38051.80 40887.47 37268.04 31092.12 38566.02 37967.79 37790.09 346
MIMVSNet84.48 31381.83 32592.42 24291.73 32487.36 22585.52 39694.42 34981.40 33981.91 29687.58 36751.92 38392.81 37573.84 34688.15 24897.08 225
MVP-Stereo86.61 28185.83 27588.93 32688.70 36383.85 30096.07 31994.41 35082.15 33175.64 35391.96 29967.65 31496.45 29177.20 32198.72 10086.51 384
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
MSDG88.29 25586.37 26794.04 20696.90 15886.15 25596.52 30194.36 35177.89 36379.22 32996.95 18669.72 29699.59 10773.20 35192.58 20196.37 246
ACMH+83.78 1584.21 31782.56 32389.15 32193.73 28879.16 34996.43 30494.28 35281.09 34374.00 36194.03 25454.58 37597.67 23176.10 32978.81 30790.63 338
Patchmatch-test86.25 28884.06 30592.82 23294.42 26182.88 31482.88 40894.23 35371.58 38579.39 32790.62 33289.00 6996.42 29263.03 38891.37 23199.16 115
CR-MVSNet88.83 24287.38 25393.16 22593.47 29286.24 24984.97 40194.20 35488.92 18590.76 19586.88 37784.43 15694.82 35470.64 36192.17 21198.41 175
Patchmtry83.61 32681.64 32689.50 31493.36 29682.84 31584.10 40494.20 35469.47 39579.57 32586.88 37784.43 15694.78 35568.48 37174.30 33890.88 327
EG-PatchMatch MVS79.92 34277.59 34886.90 34487.06 38077.90 36296.20 31694.06 35674.61 37766.53 39488.76 36140.40 40596.20 31067.02 37683.66 28286.61 382
KD-MVS_self_test77.47 35875.88 35782.24 37381.59 39868.93 39692.83 36494.02 35777.03 36573.14 36883.39 38755.44 37090.42 39267.95 37257.53 40087.38 376
K. test v381.04 33879.77 34184.83 36187.41 37670.23 39395.60 33493.93 35883.70 30067.51 39089.35 35855.76 36693.58 36876.67 32668.03 37590.67 337
RPSCF85.33 30285.55 28084.67 36394.63 25962.28 40293.73 35393.76 35974.38 37985.23 25297.06 18064.09 33798.31 18780.98 29386.08 26293.41 265
MVS-HIRNet79.01 34875.13 36190.66 28193.82 28681.69 32685.16 39893.75 36054.54 40874.17 36059.15 41457.46 36296.58 28163.74 38594.38 18093.72 262
pmmvs585.87 29284.40 30390.30 29388.53 36584.23 29398.60 17193.71 36181.53 33880.29 31592.02 29564.51 33695.52 33782.04 28878.34 30991.15 320
pmmvs679.90 34377.31 35087.67 33584.17 39178.13 35995.86 32793.68 36267.94 39972.67 37389.62 35550.98 38895.75 33074.80 33966.04 38289.14 364
OurMVSNet-221017-084.13 32083.59 30985.77 35487.81 37270.24 39294.89 34193.65 36386.08 26076.53 34593.28 27661.41 34996.14 31480.95 29477.69 31790.93 325
Anonymous2024052178.63 35276.90 35383.82 36782.82 39672.86 38395.72 33293.57 36473.55 38372.17 37584.79 38449.69 39292.51 38065.29 38274.50 33486.09 387
DP-MVS88.75 24686.56 26595.34 15398.92 8187.45 22297.64 26093.52 36570.55 38981.49 30397.25 16874.43 25799.88 5471.14 36094.09 18398.67 163
ITE_SJBPF87.93 33292.26 31176.44 36793.47 36687.67 22979.95 32095.49 23456.50 36597.38 25075.24 33482.33 29389.98 352
USDC84.74 30782.93 31390.16 29591.73 32483.54 30495.00 34093.30 36788.77 18873.19 36793.30 27553.62 37997.65 23475.88 33181.54 29689.30 361
ADS-MVSNet287.62 26786.88 26189.86 30396.21 18879.14 35087.15 39392.99 36883.01 31189.91 20987.27 37378.87 23192.80 37674.20 34392.27 20797.64 206
Anonymous2023120680.76 33979.42 34384.79 36284.78 38972.98 38296.53 30092.97 36979.56 35274.33 35888.83 36061.27 35092.15 38460.59 39475.92 32389.24 363
MDA-MVSNet-bldmvs77.82 35774.75 36387.03 34288.33 36678.52 35696.34 30792.85 37075.57 37348.87 41087.89 36557.32 36392.49 38160.79 39364.80 38690.08 347
test20.0378.51 35377.48 34981.62 37783.07 39571.03 38996.11 31892.83 37181.66 33769.31 38289.68 35457.53 36187.29 40558.65 39968.47 37386.53 383
COLMAP_ROBcopyleft82.69 1884.54 31282.82 31489.70 30996.72 16678.85 35195.89 32392.83 37171.55 38677.54 34495.89 22659.40 35799.14 14867.26 37588.26 24791.11 322
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test_fmvs285.10 30485.45 28284.02 36689.85 34765.63 40098.49 18592.59 37390.45 13785.43 25193.32 27343.94 39896.59 28090.81 18484.19 27589.85 354
SixPastTwentyTwo82.63 32981.58 32785.79 35388.12 36971.01 39095.17 33892.54 37484.33 28972.93 37292.08 29360.41 35495.61 33674.47 34074.15 34190.75 333
FMVSNet582.29 33080.54 33587.52 33793.79 28784.01 29793.73 35392.47 37576.92 36674.27 35986.15 38163.69 34189.24 40069.07 36874.79 33289.29 362
new-patchmatchnet74.80 36672.40 36981.99 37678.36 40772.20 38694.44 34492.36 37677.06 36463.47 39879.98 40151.04 38788.85 40160.53 39554.35 40484.92 397
new_pmnet76.02 36173.71 36582.95 37183.88 39272.85 38491.26 38092.26 37770.44 39062.60 39981.37 39547.64 39592.32 38261.85 39072.10 36283.68 400
AllTest84.97 30683.12 31290.52 28696.82 16078.84 35295.89 32392.17 37877.96 36175.94 34995.50 23255.48 36899.18 14271.15 35887.14 25193.55 263
TestCases90.52 28696.82 16078.84 35292.17 37877.96 36175.94 34995.50 23255.48 36899.18 14271.15 35887.14 25193.55 263
pmmvs-eth3d78.71 35176.16 35686.38 34680.25 40481.19 33494.17 34992.13 38077.97 36066.90 39382.31 39255.76 36692.56 37973.63 34962.31 39185.38 392
MIMVSNet175.92 36273.30 36783.81 36881.29 40075.57 37192.26 36892.05 38173.09 38467.48 39186.18 38040.87 40487.64 40455.78 40270.68 36988.21 370
ambc79.60 38172.76 41456.61 40876.20 41292.01 38268.25 38680.23 40023.34 41394.73 35673.78 34860.81 39487.48 375
LF4IMVS81.94 33381.17 33284.25 36587.23 37968.87 39793.35 35791.93 38383.35 30675.40 35493.00 28249.25 39496.65 27878.88 31078.11 31087.22 380
TransMVSNet (Re)81.97 33279.61 34289.08 32289.70 34984.01 29797.26 27391.85 38478.84 35573.07 37191.62 30667.17 31995.21 34667.50 37459.46 39788.02 371
MVStest176.56 36073.43 36685.96 35286.30 38580.88 34094.26 34791.74 38561.98 40758.53 40389.96 35069.30 30091.47 39059.26 39749.56 41285.52 391
Baseline_NR-MVSNet85.83 29484.82 29288.87 32788.73 36283.34 30698.63 16491.66 38680.41 35182.44 28291.35 31274.63 25295.42 34184.13 26471.39 36687.84 372
mmtdpeth83.69 32382.59 32286.99 34392.82 30576.98 36596.16 31791.63 38782.89 31992.41 16882.90 38854.95 37398.19 19596.27 9153.27 40685.81 388
testgi82.29 33081.00 33386.17 34987.24 37874.84 37597.39 26691.62 38888.63 18975.85 35295.42 23546.07 39791.55 38866.87 37879.94 30392.12 287
TDRefinement78.01 35575.31 35986.10 35070.06 41573.84 37893.59 35691.58 38974.51 37873.08 37091.04 31749.63 39397.12 25874.88 33759.47 39687.33 378
OpenMVS_ROBcopyleft73.86 2077.99 35675.06 36286.77 34583.81 39377.94 36196.38 30691.53 39067.54 40068.38 38587.13 37643.94 39896.08 31655.03 40381.83 29486.29 386
ttmdpeth79.80 34577.91 34785.47 35683.34 39475.75 36995.32 33691.45 39176.84 36774.81 35791.71 30553.98 37894.13 36472.42 35661.29 39286.51 384
test_040278.81 35076.33 35586.26 34891.18 33278.44 35795.88 32591.34 39268.55 39670.51 37889.91 35152.65 38294.99 34847.14 40979.78 30485.34 394
MTMP99.21 9091.09 393
DeepMVS_CXcopyleft76.08 38390.74 33851.65 41690.84 39486.47 25757.89 40487.98 36435.88 40892.60 37765.77 38165.06 38583.97 399
test_fmvs375.09 36475.19 36074.81 38577.45 40854.08 41195.93 32190.64 39582.51 32573.29 36681.19 39622.29 41486.29 40785.50 24667.89 37684.06 398
lessismore_v085.08 35885.59 38769.28 39590.56 39667.68 38990.21 34754.21 37795.46 33973.88 34562.64 38990.50 340
Gipumacopyleft54.77 38252.22 38662.40 39986.50 38259.37 40650.20 41790.35 39736.52 41541.20 41649.49 41718.33 41881.29 41032.10 41665.34 38446.54 417
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
TinyColmap80.42 34177.94 34687.85 33392.09 31478.58 35593.74 35289.94 39874.99 37569.77 38091.78 30246.09 39697.58 23965.17 38377.89 31187.38 376
test_method70.10 37168.66 37474.41 38786.30 38555.84 40994.47 34389.82 39935.18 41666.15 39584.75 38530.54 41077.96 41770.40 36460.33 39589.44 360
FPMVS61.57 37560.32 37865.34 39560.14 42242.44 42391.02 38389.72 40044.15 41142.63 41480.93 39719.02 41680.59 41442.50 41172.76 35473.00 408
test_f71.94 36970.82 37075.30 38472.77 41353.28 41291.62 37489.66 40175.44 37464.47 39778.31 40420.48 41589.56 39878.63 31366.02 38383.05 403
LCM-MVSNet60.07 37856.37 38071.18 38954.81 42448.67 41782.17 40989.48 40237.95 41449.13 40969.12 40813.75 42281.76 40959.28 39651.63 40983.10 402
mvs5depth78.17 35475.56 35885.97 35180.43 40376.44 36785.46 39789.24 40376.39 36978.17 34188.26 36351.73 38495.73 33169.31 36761.09 39385.73 389
pmmvs372.86 36869.76 37382.17 37473.86 41174.19 37794.20 34889.01 40464.23 40667.72 38880.91 39941.48 40288.65 40262.40 38954.02 40583.68 400
LCM-MVSNet-Re88.59 25188.61 23288.51 32995.53 21672.68 38596.85 29088.43 40588.45 19673.14 36890.63 33175.82 24794.38 36192.95 16195.71 16998.48 173
Patchmatch-RL test81.90 33480.13 33887.23 34180.71 40170.12 39484.07 40588.19 40683.16 30970.57 37682.18 39387.18 10392.59 37882.28 28562.78 38898.98 131
mvsany_test375.85 36374.52 36479.83 38073.53 41260.64 40491.73 37387.87 40783.91 29670.55 37782.52 39031.12 40993.66 36686.66 23362.83 38785.19 396
DSMNet-mixed81.60 33581.43 32982.10 37584.36 39060.79 40393.63 35586.74 40879.00 35379.32 32887.15 37563.87 33989.78 39766.89 37791.92 21395.73 252
PM-MVS74.88 36572.85 36880.98 37978.98 40664.75 40190.81 38485.77 40980.95 34568.23 38782.81 38929.08 41192.84 37476.54 32762.46 39085.36 393
door85.30 410
APD_test168.93 37266.98 37574.77 38680.62 40253.15 41387.97 39185.01 41153.76 40959.26 40287.52 36925.19 41289.95 39456.20 40167.33 37981.19 404
door-mid84.90 412
EGC-MVSNET60.70 37755.37 38176.72 38286.35 38471.08 38889.96 38884.44 4130.38 4251.50 42684.09 38637.30 40688.10 40340.85 41473.44 35070.97 410
WB-MVS66.44 37366.29 37666.89 39374.84 40944.93 42093.00 35984.09 41471.15 38755.82 40581.63 39463.79 34080.31 41521.85 41950.47 41175.43 406
SSC-MVS65.42 37465.20 37766.06 39473.96 41043.83 42192.08 36983.54 41569.77 39354.73 40680.92 39863.30 34279.92 41620.48 42048.02 41374.44 407
dmvs_testset77.17 35978.99 34471.71 38887.25 37738.55 42591.44 37781.76 41685.77 26569.49 38195.94 22569.71 29784.37 40852.71 40676.82 32192.21 283
PMMVS258.97 37955.07 38270.69 39162.72 41955.37 41085.97 39580.52 41749.48 41045.94 41168.31 40915.73 42080.78 41349.79 40837.12 41675.91 405
ANet_high50.71 38446.17 38764.33 39644.27 42652.30 41576.13 41378.73 41864.95 40427.37 41955.23 41614.61 42167.74 41936.01 41518.23 41972.95 409
PMVScopyleft41.42 2345.67 38542.50 38855.17 40134.28 42732.37 42766.24 41578.71 41930.72 41722.04 42259.59 4134.59 42677.85 41827.49 41758.84 39855.29 415
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test_vis1_rt81.31 33780.05 34085.11 35791.29 33170.66 39198.98 12877.39 42085.76 26668.80 38382.40 39136.56 40799.44 12292.67 16686.55 25685.24 395
tmp_tt53.66 38352.86 38556.05 40032.75 42841.97 42473.42 41476.12 42121.91 42139.68 41796.39 21142.59 40165.10 42078.00 31614.92 42161.08 413
testf156.38 38053.73 38364.31 39764.84 41745.11 41880.50 41075.94 42238.87 41242.74 41275.07 40511.26 42481.19 41141.11 41253.27 40666.63 411
APD_test256.38 38053.73 38364.31 39764.84 41745.11 41880.50 41075.94 42238.87 41242.74 41275.07 40511.26 42481.19 41141.11 41253.27 40666.63 411
MVEpermissive44.00 2241.70 38637.64 39153.90 40249.46 42543.37 42265.09 41666.66 42426.19 42025.77 42148.53 4183.58 42863.35 42126.15 41827.28 41754.97 416
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN41.02 38740.93 38941.29 40361.97 42033.83 42684.00 40665.17 42527.17 41827.56 41846.72 41917.63 41960.41 42219.32 42118.82 41829.61 418
EMVS39.96 38839.88 39040.18 40459.57 42332.12 42884.79 40364.57 42626.27 41926.14 42044.18 42218.73 41759.29 42317.03 42217.67 42029.12 419
test_vis3_rt61.29 37658.75 37968.92 39267.41 41652.84 41491.18 38259.23 42766.96 40141.96 41558.44 41511.37 42394.72 35774.25 34257.97 39959.20 414
N_pmnet70.19 37069.87 37271.12 39088.24 36730.63 42995.85 32828.70 42870.18 39168.73 38486.55 37964.04 33893.81 36553.12 40573.46 34988.94 365
wuyk23d16.71 39116.73 39516.65 40560.15 42125.22 43041.24 4185.17 4296.56 4225.48 4253.61 4253.64 42722.72 42415.20 4239.52 4221.99 422
testmvs18.81 39023.05 3936.10 4074.48 4292.29 43297.78 2473.00 4303.27 42318.60 42362.71 4111.53 4302.49 42614.26 4241.80 42313.50 421
test12316.58 39219.47 3947.91 4063.59 4305.37 43194.32 3451.39 4312.49 42413.98 42444.60 4212.91 4292.65 42511.35 4250.57 42415.70 420
mmdepth0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
monomultidepth0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
test_blank0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
uanet_test0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
DCPMVS0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
pcd_1.5k_mvsjas6.87 3949.16 3970.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 42682.48 1910.00 4270.00 4260.00 4250.00 423
sosnet-low-res0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
sosnet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
uncertanet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
Regformer0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
n20.00 432
nn0.00 432
ab-mvs-re8.21 39310.94 3960.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 42798.50 1120.00 4310.00 4270.00 4260.00 4250.00 423
uanet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
WAC-MVS79.74 34567.75 373
PC_three_145294.60 3799.41 499.12 4995.50 799.96 2899.84 299.92 399.97 7
eth-test20.00 431
eth-test0.00 431
OPU-MVS99.49 499.64 1798.51 499.77 1899.19 3395.12 899.97 2199.90 199.92 399.99 1
test_0728_THIRD93.01 7499.07 1599.46 1094.66 1399.97 2199.25 1899.82 1999.95 15
GSMVS98.84 146
test_part299.54 3695.42 2298.13 44
sam_mvs188.39 7898.84 146
sam_mvs87.08 106
test_post190.74 38641.37 42385.38 14596.36 29583.16 275
test_post46.00 42087.37 9797.11 259
patchmatchnet-post84.86 38388.73 7496.81 272
gm-plane-assit94.69 25688.14 20488.22 20897.20 17198.29 18990.79 185
test9_res98.60 3399.87 999.90 22
agg_prior297.84 5999.87 999.91 21
test_prior492.00 10399.41 69
test_prior299.57 4291.43 11298.12 4698.97 6590.43 4998.33 4699.81 23
旧先验298.67 15885.75 26798.96 2098.97 15793.84 145
新几何298.26 212
原ACMM298.69 155
testdata299.88 5484.16 263
segment_acmp90.56 47
testdata197.89 24092.43 88
plane_prior793.84 28385.73 268
plane_prior693.92 28086.02 26172.92 272
plane_prior496.52 205
plane_prior385.91 26393.65 6286.99 235
plane_prior299.02 12293.38 69
plane_prior193.90 282
plane_prior86.07 25999.14 10693.81 5986.26 259
HQP5-MVS86.39 245
HQP-NCC93.95 27699.16 9893.92 5187.57 228
ACMP_Plane93.95 27699.16 9893.92 5187.57 228
BP-MVS93.82 147
HQP4-MVS87.57 22897.77 22292.72 269
HQP2-MVS73.34 266
NP-MVS93.94 27986.22 25196.67 203
MDTV_nov1_ep13_2view91.17 11991.38 37887.45 23393.08 15986.67 11787.02 22598.95 137
ACMMP++_ref82.64 291
ACMMP++83.83 278
Test By Simon83.62 165