This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort by
MVS_111021_HR96.69 3596.69 3396.72 8298.58 8891.00 12399.14 10699.45 193.86 5695.15 11698.73 9188.48 6799.76 8697.23 6599.56 5199.40 89
thres100view90093.34 14192.15 15396.90 7197.62 11494.84 4099.06 11799.36 287.96 21190.47 19196.78 19483.29 16298.75 16184.11 25590.69 22697.12 211
tfpn200view993.43 13792.27 15096.90 7197.68 11294.84 4099.18 9399.36 288.45 19090.79 18396.90 18683.31 16098.75 16184.11 25590.69 22697.12 211
thres600view793.18 14692.00 15696.75 7897.62 11494.92 3599.07 11499.36 287.96 21190.47 19196.78 19483.29 16298.71 16582.93 26990.47 23096.61 226
thres40093.39 13992.27 15096.73 8097.68 11294.84 4099.18 9399.36 288.45 19090.79 18396.90 18683.31 16098.75 16184.11 25590.69 22696.61 226
thres20093.69 12892.59 14596.97 6897.76 10994.74 4599.35 7799.36 289.23 16691.21 18096.97 18283.42 15998.77 15985.08 23990.96 22497.39 204
MVS_111021_LR95.78 6595.94 5495.28 14998.19 9887.69 20398.80 14299.26 793.39 6795.04 11898.69 9884.09 15099.76 8696.96 7199.06 7698.38 170
sss94.85 9393.94 10997.58 4296.43 17094.09 6198.93 13099.16 889.50 16195.27 11397.85 13381.50 19699.65 9892.79 15694.02 17598.99 124
MM97.76 1097.39 1998.86 598.30 9396.83 799.81 1299.13 997.66 298.29 4098.96 6885.84 12699.90 5099.72 398.80 9299.85 30
MG-MVS97.24 2096.83 3198.47 1599.79 595.71 1999.07 11499.06 1094.45 4296.42 8998.70 9788.81 6499.74 8895.35 10599.86 1299.97 7
test250694.80 9494.21 9596.58 9096.41 17192.18 9798.01 23098.96 1190.82 11993.46 14697.28 16185.92 12398.45 17689.82 18697.19 13399.12 115
PVSNet87.13 1293.69 12892.83 14096.28 10897.99 10490.22 14299.38 7298.93 1291.42 10993.66 14397.68 14471.29 27699.64 10087.94 20997.20 13298.98 125
PGM-MVS95.85 6295.65 6896.45 9899.50 4289.77 15998.22 20998.90 1389.19 16896.74 8298.95 7185.91 12599.92 4093.94 13299.46 5699.66 60
MVS_030497.53 1497.15 2298.67 1197.30 13296.52 1299.60 3998.88 1497.14 497.21 6798.94 7486.89 10199.91 4599.43 1598.91 8799.59 73
EPNet96.82 3296.68 3497.25 5598.65 8693.10 7799.48 5498.76 1596.54 1397.84 5598.22 12687.49 8499.66 9495.35 10597.78 11999.00 123
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
WTY-MVS95.97 5695.11 7998.54 1397.62 11496.65 999.44 6398.74 1692.25 9195.21 11498.46 11886.56 11199.46 11895.00 11592.69 18899.50 80
HY-MVS88.56 795.29 7994.23 9498.48 1497.72 11096.41 1394.03 33898.74 1692.42 8695.65 10794.76 24086.52 11299.49 11295.29 10792.97 18499.53 76
VNet95.08 8594.26 9397.55 4598.07 10193.88 6398.68 15598.73 1890.33 13597.16 7197.43 15779.19 21799.53 10996.91 7391.85 20599.24 104
test_yl95.27 8094.60 8797.28 5398.53 8992.98 8199.05 11898.70 1986.76 24194.65 12597.74 14187.78 7999.44 11995.57 10192.61 18999.44 86
DCV-MVSNet95.27 8094.60 8797.28 5398.53 8992.98 8199.05 11898.70 1986.76 24194.65 12597.74 14187.78 7999.44 11995.57 10192.61 18999.44 86
PVSNet_083.28 1687.31 26185.16 27693.74 20894.78 24384.59 28098.91 13398.69 2189.81 15078.59 32693.23 27061.95 33399.34 13494.75 11955.72 39097.30 206
ACMMPcopyleft94.67 10194.30 9295.79 13099.25 5788.13 19698.41 19098.67 2290.38 13491.43 17498.72 9382.22 18899.95 3193.83 13695.76 15899.29 100
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
D2MVS87.96 24987.39 24389.70 30191.84 30883.40 29698.31 20498.49 2388.04 20878.23 33090.26 33073.57 25196.79 26384.21 25283.53 27588.90 355
test_fmvsm_n_192097.08 2797.55 1495.67 13597.94 10589.61 16399.93 298.48 2497.08 599.08 1599.13 4688.17 7299.93 3899.11 2399.06 7697.47 202
fmvsm_s_conf0.5_n96.19 4996.49 3695.30 14897.37 12989.16 16899.86 598.47 2595.68 2398.87 2399.15 4182.44 18599.92 4099.14 2197.43 12896.83 222
HyFIR lowres test93.68 13093.29 12894.87 16397.57 11988.04 19898.18 21398.47 2587.57 22491.24 17995.05 23485.49 13197.46 23593.22 14892.82 18599.10 117
fmvsm_s_conf0.5_n_a95.97 5696.19 4395.31 14796.51 16789.01 17499.81 1298.39 2795.46 3099.19 1499.16 3881.44 19999.91 4598.83 2896.97 13797.01 218
UniMVSNet (Re)89.50 22188.32 23093.03 21792.21 29990.96 12498.90 13498.39 2789.13 17083.22 25792.03 28581.69 19496.34 29286.79 22172.53 34691.81 285
CHOSEN 280x42096.80 3396.85 2896.66 8697.85 10894.42 5394.76 33098.36 2992.50 8395.62 10897.52 15297.92 197.38 24098.31 4498.80 9298.20 183
VPA-MVSNet89.10 22487.66 24093.45 21192.56 29391.02 12297.97 23398.32 3086.92 23786.03 23492.01 28768.84 28997.10 25090.92 17175.34 31792.23 271
CHOSEN 1792x268894.35 11093.82 11495.95 12597.40 12788.74 18698.41 19098.27 3192.18 9391.43 17496.40 20578.88 21899.81 7993.59 14097.81 11699.30 99
patch_mono-297.10 2697.97 894.49 17799.21 6183.73 29299.62 3898.25 3295.28 3299.38 698.91 7792.28 2799.94 3499.61 999.22 7199.78 38
FIs90.70 19789.87 19693.18 21592.29 29791.12 11698.17 21598.25 3289.11 17183.44 25694.82 23982.26 18796.17 30187.76 21082.76 28192.25 269
UGNet91.91 17490.85 18095.10 15497.06 14988.69 18798.01 23098.24 3492.41 8792.39 15993.61 26160.52 33999.68 9288.14 20697.25 13196.92 220
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
FC-MVSNet-test90.22 20689.40 20592.67 22991.78 30989.86 15797.89 23598.22 3588.81 18182.96 26394.66 24181.90 19395.96 31085.89 23382.52 28492.20 275
WR-MVS_H86.53 27485.49 27289.66 30391.04 32083.31 29897.53 25798.20 3684.95 27479.64 31390.90 30978.01 22695.33 33276.29 31872.81 34390.35 331
MVS93.92 12092.28 14998.83 795.69 20196.82 896.22 30698.17 3784.89 27584.34 25098.61 10579.32 21599.83 7393.88 13499.43 6099.86 29
PAPM96.35 4395.94 5497.58 4294.10 25995.25 2698.93 13098.17 3794.26 4493.94 13798.72 9389.68 5697.88 20496.36 8499.29 6899.62 68
baseline294.04 11693.80 11594.74 16993.07 29090.25 13998.12 21998.16 3989.86 14886.53 23296.95 18395.56 698.05 19691.44 16694.53 17095.93 241
UniMVSNet_NR-MVSNet89.60 21888.55 22692.75 22592.17 30090.07 14898.74 14998.15 4088.37 19583.21 25893.98 25182.86 17195.93 31286.95 21772.47 34792.25 269
CSCG94.87 9294.71 8595.36 14499.54 3686.49 23299.34 7898.15 4082.71 31190.15 19699.25 2389.48 5799.86 6394.97 11698.82 9199.72 50
test_fmvsmconf_n96.78 3496.84 2996.61 8795.99 19290.25 13999.90 398.13 4296.68 1198.42 3598.92 7685.34 13699.88 5499.12 2299.08 7499.70 52
MSLP-MVS++97.50 1797.45 1797.63 4099.65 1693.21 7499.70 2798.13 4294.61 3797.78 5699.46 1089.85 5499.81 7997.97 5299.91 699.88 26
h-mvs3392.47 16291.95 15894.05 19897.13 14585.01 27598.36 19998.08 4493.85 5796.27 9196.73 19683.19 16599.43 12295.81 9468.09 36397.70 195
IB-MVS89.43 692.12 17090.83 18395.98 12495.40 21290.78 12799.81 1298.06 4591.23 11385.63 23893.66 26090.63 4298.78 15891.22 16771.85 35398.36 173
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
fmvsm_l_conf0.5_n97.65 1397.72 1297.41 4897.51 12292.78 8799.85 898.05 4696.78 899.60 199.23 2690.42 4699.92 4099.55 1298.50 10499.55 74
PHI-MVS96.65 3796.46 3897.21 5699.34 5091.77 10199.70 2798.05 4686.48 24998.05 4899.20 3089.33 5899.96 2898.38 3999.62 4599.90 22
fmvsm_l_conf0.5_n_a97.70 1297.80 1197.42 4797.59 11792.91 8599.86 598.04 4896.70 1099.58 299.26 2190.90 3799.94 3499.57 1198.66 9999.40 89
PVSNet_BlendedMVS93.36 14093.20 13093.84 20598.77 8391.61 10599.47 5698.04 4891.44 10794.21 13292.63 28083.50 15699.87 5897.41 6183.37 27790.05 339
PVSNet_Blended95.94 5995.66 6696.75 7898.77 8391.61 10599.88 498.04 4893.64 6494.21 13297.76 13983.50 15699.87 5897.41 6197.75 12098.79 147
EPMVS92.59 15991.59 16595.59 13997.22 13690.03 15291.78 35898.04 4890.42 13391.66 16890.65 31886.49 11497.46 23581.78 28096.31 14899.28 101
CNVR-MVS98.46 198.38 198.72 999.80 496.19 1599.80 1697.99 5297.05 699.41 499.59 292.89 24100.00 198.99 2599.90 799.96 10
MCST-MVS98.18 297.95 998.86 599.85 396.60 1099.70 2797.98 5397.18 395.96 9599.33 1992.62 25100.00 198.99 2599.93 199.98 6
testing387.75 25388.22 23286.36 33794.66 24777.41 35399.52 5197.95 5486.05 25481.12 29796.69 19886.18 12089.31 38561.65 37990.12 23292.35 268
testing22294.48 10894.00 10395.95 12597.30 13292.27 9598.82 13997.92 5589.20 16794.82 12097.26 16387.13 9497.32 24391.95 16291.56 21198.25 177
131493.44 13691.98 15797.84 3495.24 21594.38 5496.22 30697.92 5590.18 13882.28 27897.71 14377.63 22899.80 8191.94 16398.67 9899.34 96
NCCC98.12 598.11 398.13 2599.76 694.46 5099.81 1297.88 5796.54 1398.84 2599.46 1092.55 2699.98 998.25 4699.93 199.94 18
tfpnnormal83.65 31381.35 31990.56 27691.37 31688.06 19797.29 26497.87 5878.51 34876.20 33590.91 30864.78 32196.47 28061.71 37873.50 33887.13 370
ETVMVS94.50 10793.90 11196.31 10797.48 12692.98 8199.07 11497.86 5988.09 20694.40 12996.90 18688.35 6997.28 24490.72 17792.25 19998.66 159
3Dnovator87.35 1193.17 14891.77 16297.37 5195.41 21193.07 7898.82 13997.85 6091.53 10482.56 27097.58 15071.97 26899.82 7691.01 17099.23 7099.22 107
UWE-MVS93.18 14693.40 12492.50 23196.56 16383.55 29498.09 22597.84 6189.50 16191.72 16696.23 21191.08 3396.70 26586.28 22693.33 18097.26 208
FE-MVS91.38 18290.16 19395.05 15896.46 16987.53 21089.69 37597.84 6182.97 30592.18 16192.00 28984.07 15198.93 15580.71 28795.52 16298.68 155
WR-MVS88.54 24387.22 24892.52 23091.93 30789.50 16498.56 17397.84 6186.99 23281.87 28993.81 25574.25 24895.92 31485.29 23774.43 32792.12 278
DELS-MVS97.12 2596.60 3598.68 1098.03 10396.57 1199.84 997.84 6196.36 1895.20 11598.24 12588.17 7299.83 7396.11 8999.60 4999.64 64
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
EI-MVSNet-Vis-set95.76 6795.63 7096.17 11499.14 6490.33 13798.49 18197.82 6591.92 9694.75 12298.88 8287.06 9799.48 11695.40 10497.17 13598.70 154
无先验98.52 17597.82 6587.20 23099.90 5087.64 21299.85 30
EPNet_dtu92.28 16692.15 15392.70 22797.29 13484.84 27798.64 16197.82 6592.91 7793.02 15297.02 18085.48 13395.70 32272.25 34694.89 16897.55 201
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
SDMVSNet91.09 18889.91 19594.65 17296.80 15690.54 13597.78 24297.81 6888.34 19785.73 23595.26 23166.44 31198.26 18494.25 13086.75 24495.14 244
HFP-MVS96.42 4296.26 4296.90 7199.69 890.96 12499.47 5697.81 6890.54 12996.88 7499.05 5687.57 8299.96 2895.65 9699.72 3199.78 38
EI-MVSNet-UG-set95.43 7495.29 7395.86 12899.07 7089.87 15698.43 18797.80 7091.78 9894.11 13498.77 8786.25 11999.48 11694.95 11796.45 14498.22 181
ACMMPR96.28 4796.14 5296.73 8099.68 990.47 13699.47 5697.80 7090.54 12996.83 7999.03 5886.51 11399.95 3195.65 9699.72 3199.75 46
MAR-MVS94.43 10994.09 10095.45 14199.10 6887.47 21298.39 19797.79 7288.37 19594.02 13699.17 3778.64 22399.91 4592.48 15898.85 9098.96 127
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
DPM-MVS97.86 897.25 2199.68 198.25 9499.10 199.76 2197.78 7396.61 1298.15 4299.53 793.62 16100.00 191.79 16499.80 2699.94 18
API-MVS94.78 9594.18 9896.59 8999.21 6190.06 15198.80 14297.78 7383.59 29593.85 13999.21 2983.79 15399.97 2192.37 15999.00 8099.74 47
新几何197.40 4998.92 7792.51 9397.77 7585.52 26296.69 8499.06 5588.08 7699.89 5384.88 24399.62 4599.79 36
HPM-MVS++copyleft97.72 1197.59 1398.14 2499.53 4094.76 4499.19 9197.75 7695.66 2498.21 4199.29 2091.10 3299.99 597.68 5799.87 999.68 56
GG-mvs-BLEND96.98 6796.53 16594.81 4387.20 37897.74 7793.91 13896.40 20596.56 296.94 25695.08 11198.95 8599.20 108
gg-mvs-nofinetune90.00 21287.71 23996.89 7596.15 18594.69 4785.15 38497.74 7768.32 38492.97 15360.16 39796.10 396.84 25993.89 13398.87 8999.14 112
旧先验198.97 7392.90 8697.74 7799.15 4191.05 3499.33 6499.60 69
IU-MVS99.63 1895.38 2497.73 8095.54 2899.54 399.69 699.81 2399.99 1
SED-MVS98.18 298.10 498.41 1899.63 1895.24 2799.77 1897.72 8194.17 4599.30 999.54 393.32 1899.98 999.70 499.81 2399.99 1
test_241102_TWO97.72 8194.17 4599.23 1199.54 393.14 2399.98 999.70 499.82 1999.99 1
test_241102_ONE99.63 1895.24 2797.72 8194.16 4799.30 999.49 993.32 1899.98 9
DPE-MVScopyleft98.11 698.00 698.44 1699.50 4295.39 2399.29 8297.72 8194.50 3998.64 2999.54 393.32 1899.97 2199.58 1099.90 799.95 15
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
DeepPCF-MVS93.56 196.55 4097.84 1092.68 22898.71 8578.11 35099.70 2797.71 8598.18 197.36 6399.76 190.37 4899.94 3499.27 1699.54 5399.99 1
test072699.66 1295.20 3299.77 1897.70 8693.95 5099.35 799.54 393.18 21
MSP-MVS97.77 998.18 296.53 9499.54 3690.14 14499.41 6997.70 8695.46 3098.60 3099.19 3295.71 499.49 11298.15 4899.85 1399.95 15
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MSC_two_6792asdad99.51 299.61 2498.60 297.69 8899.98 999.55 1299.83 1599.96 10
No_MVS99.51 299.61 2498.60 297.69 8899.98 999.55 1299.83 1599.96 10
testing1195.33 7894.98 8396.37 10497.20 13792.31 9499.29 8297.68 9090.59 12694.43 12797.20 16890.79 4198.60 17095.25 10892.38 19398.18 184
DVP-MVS++98.18 298.09 598.44 1699.61 2495.38 2499.55 4597.68 9093.01 7299.23 1199.45 1495.12 899.98 999.25 1899.92 399.97 7
test_0728_SECOND98.77 899.66 1296.37 1499.72 2497.68 9099.98 999.64 799.82 1999.96 10
test1197.68 90
fmvsm_s_conf0.1_n95.56 7295.68 6595.20 15194.35 25289.10 17099.50 5297.67 9494.76 3698.68 2899.03 5881.13 20299.86 6398.63 3297.36 13096.63 225
testing9194.88 9094.44 9096.21 11097.19 13991.90 10099.23 8897.66 9589.91 14793.66 14397.05 17990.21 5198.50 17393.52 14191.53 21698.25 177
testing9994.88 9094.45 8996.17 11497.20 13791.91 9999.20 9097.66 9589.95 14693.68 14297.06 17790.28 5098.50 17393.52 14191.54 21398.12 186
TEST999.57 3393.17 7599.38 7297.66 9589.57 15898.39 3699.18 3590.88 3899.66 94
train_agg97.20 2397.08 2397.57 4499.57 3393.17 7599.38 7297.66 9590.18 13898.39 3699.18 3590.94 3599.66 9498.58 3699.85 1399.88 26
region2R96.30 4696.17 4896.70 8399.70 790.31 13899.46 6097.66 9590.55 12897.07 7299.07 5386.85 10299.97 2195.43 10399.74 2999.81 33
SteuartSystems-ACMMP97.25 1997.34 2097.01 6297.38 12891.46 10899.75 2297.66 9594.14 4998.13 4399.26 2192.16 2899.66 9497.91 5499.64 4099.90 22
Skip Steuart: Steuart Systems R&D Blog.
EPP-MVSNet93.75 12793.67 11794.01 20095.86 19585.70 26198.67 15797.66 9584.46 28091.36 17797.18 17191.16 3097.79 21092.93 15293.75 17798.53 162
SMA-MVScopyleft97.24 2096.99 2498.00 3199.30 5494.20 5799.16 9797.65 10289.55 16099.22 1399.52 890.34 4999.99 598.32 4399.83 1599.82 32
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
test_one_060199.59 2894.89 3697.64 10393.14 7198.93 2299.45 1493.45 17
test_899.55 3593.07 7899.37 7597.64 10390.18 13898.36 3899.19 3290.94 3599.64 100
agg_prior99.54 3692.66 8897.64 10397.98 5299.61 102
DeepC-MVS_fast93.52 297.16 2496.84 2998.13 2599.61 2494.45 5198.85 13697.64 10396.51 1695.88 9899.39 1887.35 9199.99 596.61 7999.69 3699.96 10
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
save fliter99.34 5093.85 6499.65 3697.63 10795.69 22
原ACMM196.18 11299.03 7190.08 14797.63 10788.98 17497.00 7398.97 6488.14 7599.71 9088.23 20599.62 4598.76 151
DU-MVS88.83 23387.51 24192.79 22391.46 31490.07 14898.71 15097.62 10988.87 18083.21 25893.68 25874.63 23995.93 31286.95 21772.47 34792.36 265
ZD-MVS99.67 1093.28 7397.61 11087.78 21697.41 6199.16 3890.15 5299.56 10598.35 4199.70 35
CP-MVS96.22 4896.15 5196.42 10099.67 1089.62 16299.70 2797.61 11090.07 14496.00 9499.16 3887.43 8599.92 4096.03 9199.72 3199.70 52
thisisatest053094.00 11793.52 11995.43 14295.76 19990.02 15398.99 12597.60 11286.58 24491.74 16597.36 16094.78 1198.34 17986.37 22592.48 19297.94 191
tttt051793.30 14293.01 13694.17 19295.57 20486.47 23398.51 17897.60 11285.99 25590.55 18897.19 17094.80 1098.31 18085.06 24091.86 20497.74 193
thisisatest051594.75 9694.19 9696.43 9996.13 19092.64 9199.47 5697.60 11287.55 22593.17 14997.59 14994.71 1298.42 17788.28 20493.20 18198.24 180
testdata95.26 15098.20 9687.28 21997.60 11285.21 26698.48 3499.15 4188.15 7498.72 16490.29 18199.45 5899.78 38
ACMMP_NAP96.59 3896.18 4597.81 3698.82 8193.55 6898.88 13597.59 11690.66 12297.98 5299.14 4486.59 109100.00 196.47 8399.46 5699.89 25
CVMVSNet90.30 20490.91 17988.46 32294.32 25473.58 36797.61 25597.59 11690.16 14188.43 21297.10 17476.83 23292.86 36182.64 27193.54 17998.93 133
XVS96.47 4196.37 4096.77 7699.62 2290.66 13299.43 6697.58 11892.41 8796.86 7598.96 6887.37 8799.87 5895.65 9699.43 6099.78 38
X-MVStestdata90.69 19888.66 22196.77 7699.62 2290.66 13299.43 6697.58 11892.41 8796.86 7529.59 40987.37 8799.87 5895.65 9699.43 6099.78 38
test22298.32 9291.21 11298.08 22697.58 11883.74 29195.87 9999.02 6086.74 10599.64 4099.81 33
test_prior97.01 6299.58 3091.77 10197.57 12199.49 11299.79 36
CP-MVSNet86.54 27385.45 27389.79 29891.02 32182.78 30797.38 26197.56 12285.37 26479.53 31693.03 27471.86 27095.25 33479.92 29273.43 34191.34 304
test1297.83 3599.33 5394.45 5197.55 12397.56 5788.60 6699.50 11199.71 3499.55 74
PAPR96.35 4395.82 5897.94 3399.63 1894.19 5899.42 6897.55 12392.43 8493.82 14199.12 4887.30 9299.91 4594.02 13199.06 7699.74 47
AdaColmapbinary93.82 12593.06 13396.10 11799.88 189.07 17198.33 20197.55 12386.81 24090.39 19398.65 10075.09 23899.98 993.32 14797.53 12599.26 103
TESTMET0.1,193.82 12593.26 12995.49 14095.21 21890.25 13999.15 10397.54 12689.18 16991.79 16494.87 23789.13 5997.63 22586.21 22796.29 15098.60 160
fmvsm_s_conf0.1_n_a95.16 8295.15 7795.18 15292.06 30288.94 17899.29 8297.53 12794.46 4098.98 1998.99 6279.99 20799.85 6798.24 4796.86 13996.73 223
hse-mvs291.67 17791.51 16792.15 23896.22 18082.61 31097.74 24797.53 12793.85 5796.27 9196.15 21283.19 16597.44 23795.81 9466.86 37096.40 235
AUN-MVS90.17 20889.50 20192.19 23696.21 18182.67 30897.76 24697.53 12788.05 20791.67 16796.15 21283.10 16797.47 23488.11 20766.91 36996.43 234
ZNCC-MVS96.09 5195.81 6096.95 7099.42 4791.19 11399.55 4597.53 12789.72 15195.86 10098.94 7486.59 10999.97 2195.13 11099.56 5199.68 56
CANet97.00 2896.49 3698.55 1298.86 8096.10 1699.83 1097.52 13195.90 1997.21 6798.90 7882.66 17899.93 3898.71 2998.80 9299.63 66
APDe-MVScopyleft97.53 1497.47 1597.70 3899.58 3093.63 6699.56 4497.52 13193.59 6598.01 5199.12 4890.80 4099.55 10699.26 1799.79 2799.93 20
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
MDTV_nov1_ep1390.47 19096.14 18788.55 18991.34 36597.51 13389.58 15792.24 16090.50 32886.99 10097.61 22777.64 30892.34 195
QAPM91.41 18189.49 20297.17 5895.66 20393.42 7298.60 16897.51 13380.92 33681.39 29697.41 15872.89 26199.87 5882.33 27498.68 9798.21 182
PAPM_NR95.43 7495.05 8196.57 9299.42 4790.14 14498.58 17297.51 13390.65 12492.44 15898.90 7887.77 8199.90 5090.88 17299.32 6599.68 56
TSAR-MVS + MP.97.44 1897.46 1697.39 5099.12 6593.49 7198.52 17597.50 13694.46 4098.99 1898.64 10191.58 2999.08 14898.49 3799.83 1599.60 69
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
alignmvs95.77 6695.00 8298.06 2997.35 13095.68 2099.71 2697.50 13691.50 10596.16 9398.61 10586.28 11799.00 15196.19 8691.74 20799.51 79
9.1496.87 2799.34 5099.50 5297.49 13889.41 16498.59 3199.43 1689.78 5599.69 9198.69 3099.62 45
GST-MVS95.97 5695.66 6696.90 7199.49 4591.22 11199.45 6297.48 13989.69 15295.89 9798.72 9386.37 11699.95 3194.62 12599.22 7199.52 77
DP-MVS Recon95.85 6295.15 7797.95 3299.87 294.38 5499.60 3997.48 13986.58 24494.42 12899.13 4687.36 9099.98 993.64 13998.33 10899.48 81
FOURS199.50 4288.94 17899.55 4597.47 14191.32 11198.12 45
DVP-MVScopyleft98.07 798.00 698.29 1999.66 1295.20 3299.72 2497.47 14193.95 5099.07 1699.46 1093.18 2199.97 2199.64 799.82 1999.69 55
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
CPTT-MVS94.60 10394.43 9195.09 15599.66 1286.85 22799.44 6397.47 14183.22 30094.34 13198.96 6882.50 17999.55 10694.81 11899.50 5498.88 137
SF-MVS97.22 2296.92 2598.12 2799.11 6694.88 3799.44 6397.45 14489.60 15698.70 2799.42 1790.42 4699.72 8998.47 3899.65 3899.77 43
MTGPAbinary97.45 144
MTAPA96.09 5195.80 6196.96 6999.29 5591.19 11397.23 26997.45 14492.58 8194.39 13099.24 2586.43 11599.99 596.22 8599.40 6399.71 51
CDPH-MVS96.56 3996.18 4597.70 3899.59 2893.92 6299.13 10997.44 14789.02 17397.90 5499.22 2788.90 6399.49 11294.63 12499.79 2799.68 56
APD-MVScopyleft96.95 2996.72 3297.63 4099.51 4193.58 6799.16 9797.44 14790.08 14398.59 3199.07 5389.06 6099.42 12397.92 5399.66 3799.88 26
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
PVSNet_Blended_VisFu94.67 10194.11 9996.34 10697.14 14491.10 11899.32 8097.43 14992.10 9591.53 17396.38 20883.29 16299.68 9293.42 14696.37 14698.25 177
NR-MVSNet87.74 25686.00 26492.96 22091.46 31490.68 13196.65 29297.42 15088.02 20973.42 35293.68 25877.31 22995.83 31884.26 25171.82 35492.36 265
MP-MVScopyleft96.00 5395.82 5896.54 9399.47 4690.13 14699.36 7697.41 15190.64 12595.49 11098.95 7185.51 13099.98 996.00 9299.59 5099.52 77
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
mPP-MVS95.90 6195.75 6396.38 10399.58 3089.41 16699.26 8697.41 15190.66 12294.82 12098.95 7186.15 12199.98 995.24 10999.64 4099.74 47
OpenMVScopyleft85.28 1490.75 19688.84 21696.48 9593.58 27893.51 7098.80 14297.41 15182.59 31278.62 32497.49 15468.00 29799.82 7684.52 24998.55 10396.11 239
tt080586.50 27584.79 28491.63 25291.97 30381.49 31996.49 29597.38 15482.24 32082.44 27295.82 22151.22 37198.25 18584.55 24880.96 29195.13 246
SD-MVS97.51 1697.40 1897.81 3699.01 7293.79 6599.33 7997.38 15493.73 6198.83 2699.02 6090.87 3999.88 5498.69 3099.74 2999.77 43
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
tpmvs89.16 22387.76 23793.35 21297.19 13984.75 27990.58 37397.36 15681.99 32384.56 24689.31 34683.98 15298.17 18774.85 32890.00 23397.12 211
PS-CasMVS85.81 28684.58 28989.49 30890.77 32382.11 31397.20 27197.36 15684.83 27679.12 32192.84 27767.42 30395.16 33678.39 30573.25 34291.21 309
SR-MVS96.13 5096.16 5096.07 11899.42 4789.04 17298.59 17097.33 15890.44 13296.84 7799.12 4886.75 10499.41 12697.47 6099.44 5999.76 45
WB-MVSnew88.69 23988.34 22989.77 29994.30 25885.99 25498.14 21697.31 15987.15 23187.85 21596.07 21669.91 28095.52 32672.83 34491.47 21787.80 363
PatchmatchNetpermissive92.05 17391.04 17695.06 15696.17 18489.04 17291.26 36697.26 16089.56 15990.64 18790.56 32488.35 6997.11 24879.53 29396.07 15599.03 122
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
FA-MVS(test-final)92.22 16991.08 17595.64 13696.05 19188.98 17591.60 36197.25 16186.99 23291.84 16392.12 28383.03 16899.00 15186.91 21993.91 17698.93 133
test-LLR93.11 14992.68 14294.40 18194.94 23887.27 22099.15 10397.25 16190.21 13691.57 16994.04 24684.89 14197.58 22985.94 23196.13 15198.36 173
test-mter93.27 14492.89 13994.40 18194.94 23887.27 22099.15 10397.25 16188.95 17691.57 16994.04 24688.03 7797.58 22985.94 23196.13 15198.36 173
PEN-MVS85.21 29483.93 29889.07 31589.89 33481.31 32497.09 27497.24 16484.45 28178.66 32392.68 27968.44 29294.87 34175.98 32070.92 35891.04 313
ab-mvs91.05 19189.17 20996.69 8495.96 19391.72 10392.62 35297.23 16585.61 26189.74 20193.89 25468.55 29099.42 12391.09 16887.84 23998.92 135
APD-MVS_3200maxsize95.64 7195.65 6895.62 13799.24 5887.80 20298.42 18897.22 16688.93 17896.64 8798.98 6385.49 13199.36 13096.68 7699.27 6999.70 52
SR-MVS-dyc-post95.75 6895.86 5795.41 14399.22 5987.26 22298.40 19397.21 16789.63 15496.67 8598.97 6486.73 10699.36 13096.62 7799.31 6699.60 69
RE-MVS-def95.70 6499.22 5987.26 22298.40 19397.21 16789.63 15496.67 8598.97 6485.24 13796.62 7799.31 6699.60 69
SCA90.64 19989.25 20894.83 16694.95 23788.83 18296.26 30397.21 16790.06 14590.03 19790.62 32066.61 30896.81 26183.16 26594.36 17298.84 140
RPMNet85.07 29681.88 31394.64 17493.47 28086.24 24184.97 38697.21 16764.85 39190.76 18578.80 38880.95 20399.27 13753.76 39092.17 20198.41 167
VPNet88.30 24586.57 25593.49 21091.95 30591.35 10998.18 21397.20 17188.61 18484.52 24894.89 23662.21 33296.76 26489.34 19472.26 35092.36 265
TranMVSNet+NR-MVSNet87.75 25386.31 25992.07 24090.81 32288.56 18898.33 20197.18 17287.76 21781.87 28993.90 25372.45 26395.43 32983.13 26771.30 35792.23 271
cdsmvs_eth3d_5k22.52 37430.03 3770.00 3930.00 4160.00 4180.00 40497.17 1730.00 4110.00 41298.77 8774.35 2460.00 4120.00 4110.00 4100.00 408
tpm291.77 17591.09 17493.82 20694.83 24285.56 26492.51 35397.16 17484.00 28693.83 14090.66 31787.54 8397.17 24687.73 21191.55 21298.72 152
MP-MVS-pluss95.80 6495.30 7297.29 5298.95 7692.66 8898.59 17097.14 17588.95 17693.12 15099.25 2385.62 12799.94 3496.56 8199.48 5599.28 101
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
PatchMatch-RL91.47 17990.54 18894.26 18898.20 9686.36 23896.94 27997.14 17587.75 21888.98 20795.75 22271.80 27199.40 12780.92 28597.39 12997.02 217
Anonymous2024052987.66 25785.58 27093.92 20297.59 11785.01 27598.13 21797.13 17766.69 38988.47 21196.01 21855.09 36099.51 11087.00 21684.12 26897.23 210
JIA-IIPM85.97 28284.85 28289.33 31093.23 28773.68 36685.05 38597.13 17769.62 38091.56 17168.03 39588.03 7796.96 25477.89 30793.12 18297.34 205
PS-MVSNAJ96.87 3196.40 3998.29 1997.35 13097.29 599.03 12097.11 17995.83 2098.97 2099.14 4482.48 18199.60 10398.60 3399.08 7498.00 189
HPM-MVS_fast94.89 8894.62 8695.70 13399.11 6688.44 19299.14 10697.11 17985.82 25795.69 10698.47 11683.46 15899.32 13593.16 14999.63 4499.35 94
DeepC-MVS91.02 494.56 10693.92 11096.46 9697.16 14290.76 12898.39 19797.11 17993.92 5288.66 20998.33 12178.14 22599.85 6795.02 11398.57 10298.78 149
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
tpmrst92.78 15392.16 15294.65 17296.27 17887.45 21391.83 35797.10 18289.10 17294.68 12490.69 31588.22 7197.73 22089.78 18791.80 20698.77 150
HPM-MVScopyleft95.41 7695.22 7595.99 12399.29 5589.14 16999.17 9697.09 18387.28 22995.40 11198.48 11584.93 14099.38 12895.64 10099.65 3899.47 82
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
tpm cat188.89 22987.27 24693.76 20795.79 19785.32 26990.76 37197.09 18376.14 35985.72 23788.59 34982.92 17098.04 19776.96 31291.43 21897.90 192
dp90.16 20988.83 21794.14 19396.38 17486.42 23491.57 36297.06 18584.76 27788.81 20890.19 33684.29 14897.43 23875.05 32591.35 22298.56 161
xiu_mvs_v2_base96.66 3696.17 4898.11 2897.11 14796.96 699.01 12397.04 18695.51 2998.86 2499.11 5282.19 18999.36 13098.59 3598.14 11298.00 189
3Dnovator+87.72 893.43 13791.84 16098.17 2395.73 20095.08 3498.92 13297.04 18691.42 10981.48 29597.60 14874.60 24199.79 8290.84 17398.97 8299.64 64
sd_testset89.23 22288.05 23692.74 22696.80 15685.33 26895.85 31997.03 18888.34 19785.73 23595.26 23161.12 33797.76 21785.61 23586.75 24495.14 244
CDS-MVSNet93.47 13593.04 13594.76 16794.75 24489.45 16598.82 13997.03 18887.91 21390.97 18196.48 20389.06 6096.36 28689.50 19092.81 18798.49 164
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
test0.0.03 188.96 22688.61 22290.03 29291.09 31984.43 28298.97 12897.02 19090.21 13680.29 30596.31 21084.89 14191.93 37572.98 34285.70 25593.73 251
114514_t94.06 11593.05 13497.06 6099.08 6992.26 9698.97 12897.01 19182.58 31392.57 15698.22 12680.68 20499.30 13689.34 19499.02 7999.63 66
CostFormer92.89 15292.48 14794.12 19494.99 23585.89 25692.89 34897.00 19286.98 23595.00 11990.78 31190.05 5397.51 23392.92 15391.73 20898.96 127
test_fmvsmvis_n_192095.47 7395.40 7195.70 13394.33 25390.22 14299.70 2796.98 19396.80 792.75 15498.89 8082.46 18499.92 4098.36 4098.33 10896.97 219
ET-MVSNet_ETH3D92.56 16091.45 16895.88 12796.39 17394.13 6099.46 6096.97 19492.18 9366.94 37898.29 12494.65 1494.28 35194.34 12883.82 27399.24 104
UA-Net93.30 14292.62 14495.34 14596.27 17888.53 19195.88 31696.97 19490.90 11795.37 11297.07 17682.38 18699.10 14783.91 25994.86 16998.38 170
TAMVS92.62 15792.09 15594.20 19194.10 25987.68 20498.41 19096.97 19487.53 22689.74 20196.04 21784.77 14596.49 27988.97 20092.31 19698.42 166
test_fmvsmconf0.1_n95.94 5995.79 6296.40 10292.42 29689.92 15599.79 1796.85 19796.53 1597.22 6698.67 9982.71 17799.84 6998.92 2798.98 8199.43 88
Vis-MVSNetpermissive92.64 15691.85 15995.03 15995.12 22688.23 19398.48 18396.81 19891.61 10192.16 16297.22 16771.58 27498.00 20085.85 23497.81 11698.88 137
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
PMMVS93.62 13393.90 11192.79 22396.79 15881.40 32198.85 13696.81 19891.25 11296.82 8098.15 13077.02 23198.13 18993.15 15096.30 14998.83 143
ADS-MVSNet88.99 22587.30 24594.07 19696.21 18187.56 20987.15 37996.78 20083.01 30389.91 19987.27 35978.87 21997.01 25374.20 33392.27 19797.64 196
Vis-MVSNet (Re-imp)93.26 14593.00 13794.06 19796.14 18786.71 23098.68 15596.70 20188.30 19989.71 20397.64 14785.43 13496.39 28488.06 20896.32 14799.08 119
Anonymous2023121184.72 29982.65 31090.91 26497.71 11184.55 28197.28 26596.67 20266.88 38879.18 32090.87 31058.47 34596.60 26882.61 27274.20 33191.59 294
Syy-MVS84.10 31184.53 29082.83 35795.14 22465.71 38597.68 25196.66 20386.52 24782.63 26796.84 19168.15 29489.89 38145.62 39591.54 21392.87 256
myMVS_eth3d88.68 24189.07 21187.50 32995.14 22479.74 33697.68 25196.66 20386.52 24782.63 26796.84 19185.22 13889.89 38169.43 35591.54 21392.87 256
EIA-MVS95.11 8395.27 7494.64 17496.34 17586.51 23199.59 4196.62 20592.51 8294.08 13598.64 10186.05 12298.24 18695.07 11298.50 10499.18 109
ETV-MVS96.00 5396.00 5396.00 12296.56 16391.05 12199.63 3796.61 20693.26 7097.39 6298.30 12386.62 10898.13 18998.07 4997.57 12298.82 144
LS3D90.19 20788.72 21994.59 17698.97 7386.33 24096.90 28196.60 20774.96 36384.06 25398.74 9075.78 23599.83 7374.93 32697.57 12297.62 199
EI-MVSNet89.87 21589.38 20691.36 25694.32 25485.87 25797.61 25596.59 20885.10 26885.51 23997.10 17481.30 20196.56 27283.85 26183.03 27991.64 287
MVSTER92.71 15492.32 14893.86 20497.29 13492.95 8499.01 12396.59 20890.09 14285.51 23994.00 25094.61 1596.56 27290.77 17683.03 27992.08 280
cascas90.93 19389.33 20795.76 13195.69 20193.03 8098.99 12596.59 20880.49 33886.79 23094.45 24365.23 32098.60 17093.52 14192.18 20095.66 243
TAPA-MVS87.50 990.35 20289.05 21294.25 18998.48 9185.17 27298.42 18896.58 21182.44 31887.24 22298.53 10782.77 17398.84 15759.09 38497.88 11598.72 152
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
OMC-MVS93.90 12293.62 11894.73 17098.63 8787.00 22598.04 22996.56 21292.19 9292.46 15798.73 9179.49 21499.14 14592.16 16194.34 17398.03 188
PLCcopyleft91.07 394.23 11294.01 10294.87 16399.17 6387.49 21199.25 8796.55 21388.43 19391.26 17898.21 12885.92 12399.86 6389.77 18897.57 12297.24 209
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
TSAR-MVS + GP.96.95 2996.91 2697.07 5998.88 7991.62 10499.58 4296.54 21495.09 3496.84 7798.63 10391.16 3099.77 8599.04 2496.42 14599.81 33
cl2289.57 21988.79 21891.91 24297.94 10587.62 20797.98 23296.51 21585.03 27182.37 27791.79 29283.65 15496.50 27785.96 23077.89 30491.61 292
xiu_mvs_v1_base_debu94.73 9793.98 10496.99 6495.19 21995.24 2798.62 16496.50 21692.99 7497.52 5898.83 8472.37 26499.15 14197.03 6796.74 14096.58 228
xiu_mvs_v1_base94.73 9793.98 10496.99 6495.19 21995.24 2798.62 16496.50 21692.99 7497.52 5898.83 8472.37 26499.15 14197.03 6796.74 14096.58 228
xiu_mvs_v1_base_debi94.73 9793.98 10496.99 6495.19 21995.24 2798.62 16496.50 21692.99 7497.52 5898.83 8472.37 26499.15 14197.03 6796.74 14096.58 228
lupinMVS96.32 4595.94 5497.44 4695.05 23394.87 3899.86 596.50 21693.82 5998.04 4998.77 8785.52 12898.09 19296.98 7098.97 8299.37 92
mvs_anonymous92.50 16191.65 16495.06 15696.60 16289.64 16197.06 27596.44 22086.64 24384.14 25193.93 25282.49 18096.17 30191.47 16596.08 15499.35 94
VDDNet90.08 21188.54 22794.69 17194.41 25187.68 20498.21 21196.40 22176.21 35893.33 14897.75 14054.93 36198.77 15994.71 12290.96 22497.61 200
RRT_MVS88.91 22888.56 22589.93 29390.31 32981.61 31898.08 22696.38 22289.30 16582.41 27594.84 23873.15 25796.04 30790.38 17982.23 28692.15 276
HQP3-MVS96.37 22386.29 247
PatchT85.44 29283.19 30192.22 23493.13 28983.00 30083.80 39296.37 22370.62 37490.55 18879.63 38784.81 14394.87 34158.18 38691.59 21098.79 147
HQP-MVS91.50 17891.23 17292.29 23393.95 26486.39 23699.16 9796.37 22393.92 5287.57 21796.67 19973.34 25397.77 21293.82 13786.29 24792.72 258
UnsupCasMVSNet_eth78.90 33676.67 34185.58 34382.81 38374.94 36191.98 35696.31 22684.64 27865.84 38287.71 35251.33 37092.23 37172.89 34356.50 38989.56 348
HQP_MVS91.26 18490.95 17892.16 23793.84 27186.07 25199.02 12196.30 22793.38 6886.99 22596.52 20172.92 25997.75 21893.46 14486.17 25092.67 260
plane_prior596.30 22797.75 21893.46 14486.17 25092.67 260
jason95.40 7794.86 8497.03 6192.91 29194.23 5699.70 2796.30 22793.56 6696.73 8398.52 10881.46 19897.91 20196.08 9098.47 10698.96 127
jason: jason.
CLD-MVS91.06 19090.71 18592.10 23994.05 26386.10 24899.55 4596.29 23094.16 4784.70 24597.17 17269.62 28597.82 20894.74 12086.08 25292.39 263
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
GA-MVS90.10 21088.69 22094.33 18592.44 29587.97 20099.08 11396.26 23189.65 15386.92 22793.11 27368.09 29596.96 25482.54 27390.15 23198.05 187
DTE-MVSNet84.14 30982.80 30588.14 32388.95 34879.87 33596.81 28496.24 23283.50 29677.60 33292.52 28167.89 29994.24 35272.64 34569.05 36190.32 332
LFMVS92.23 16890.84 18196.42 10098.24 9591.08 12098.24 20896.22 23383.39 29894.74 12398.31 12261.12 33798.85 15694.45 12792.82 18599.32 97
baseline192.61 15891.28 17196.58 9097.05 15094.63 4897.72 24896.20 23489.82 14988.56 21096.85 19086.85 10297.82 20888.42 20280.10 29597.30 206
FMVSNet388.81 23587.08 24993.99 20196.52 16694.59 4998.08 22696.20 23485.85 25682.12 28191.60 29674.05 24995.40 33179.04 29780.24 29291.99 283
sasdasda95.02 8693.96 10798.20 2197.53 12095.92 1798.71 15096.19 23691.78 9895.86 10098.49 11279.53 21299.03 14996.12 8791.42 21999.66 60
canonicalmvs95.02 8693.96 10798.20 2197.53 12095.92 1798.71 15096.19 23691.78 9895.86 10098.49 11279.53 21299.03 14996.12 8791.42 21999.66 60
dmvs_re88.69 23988.06 23590.59 27393.83 27378.68 34495.75 32296.18 23887.99 21084.48 24996.32 20967.52 30196.94 25684.98 24285.49 25696.14 238
MVSFormer94.71 10094.08 10196.61 8795.05 23394.87 3897.77 24496.17 23986.84 23898.04 4998.52 10885.52 12895.99 30889.83 18498.97 8298.96 127
test_djsdf88.26 24787.73 23889.84 29688.05 35882.21 31297.77 24496.17 23986.84 23882.41 27591.95 29172.07 26795.99 30889.83 18484.50 26391.32 305
MS-PatchMatch86.75 26885.92 26589.22 31191.97 30382.47 31196.91 28096.14 24183.74 29177.73 33193.53 26458.19 34697.37 24276.75 31598.35 10787.84 361
CS-MVS95.75 6896.19 4394.40 18197.88 10786.22 24399.66 3596.12 24292.69 8098.07 4798.89 8087.09 9597.59 22896.71 7498.62 10099.39 91
MGCFI-Net94.89 8893.84 11398.06 2997.49 12595.55 2198.64 16196.10 24391.60 10395.75 10498.46 11879.31 21698.98 15395.95 9391.24 22399.65 63
CS-MVS-test95.98 5596.34 4194.90 16298.06 10287.66 20699.69 3496.10 24393.66 6298.35 3999.05 5686.28 11797.66 22296.96 7198.90 8899.37 92
VDD-MVS91.24 18790.18 19294.45 18097.08 14885.84 25998.40 19396.10 24386.99 23293.36 14798.16 12954.27 36399.20 13896.59 8090.63 22998.31 176
PCF-MVS89.78 591.26 18489.63 19996.16 11695.44 20991.58 10795.29 32696.10 24385.07 27082.75 26497.45 15678.28 22499.78 8480.60 28995.65 16197.12 211
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
test_cas_vis1_n_192093.86 12493.74 11694.22 19095.39 21386.08 24999.73 2396.07 24796.38 1797.19 7097.78 13865.46 31999.86 6396.71 7498.92 8696.73 223
test_vis1_n_192093.08 15093.42 12392.04 24196.31 17679.36 33899.83 1096.06 24896.72 998.53 3398.10 13158.57 34499.91 4597.86 5598.79 9596.85 221
MVS_Test93.67 13192.67 14396.69 8496.72 16092.66 8897.22 27096.03 24987.69 22295.12 11794.03 24881.55 19598.28 18389.17 19896.46 14399.14 112
casdiffmvs_mvgpermissive94.00 11793.33 12696.03 12095.22 21790.90 12699.09 11295.99 25090.58 12791.55 17297.37 15979.91 20898.06 19495.01 11495.22 16599.13 114
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
jajsoiax87.35 26086.51 25789.87 29487.75 36381.74 31697.03 27695.98 25188.47 18780.15 30793.80 25661.47 33496.36 28689.44 19284.47 26491.50 296
PS-MVSNAJss89.54 22089.05 21291.00 26288.77 34984.36 28397.39 25995.97 25288.47 18781.88 28893.80 25682.48 18196.50 27789.34 19483.34 27892.15 276
F-COLMAP92.07 17291.75 16393.02 21898.16 9982.89 30498.79 14695.97 25286.54 24687.92 21497.80 13678.69 22299.65 9885.97 22995.93 15796.53 231
miper_enhance_ethall90.33 20389.70 19892.22 23497.12 14688.93 18098.35 20095.96 25488.60 18583.14 26292.33 28287.38 8696.18 30086.49 22477.89 30491.55 295
TR-MVS90.77 19589.44 20394.76 16796.31 17688.02 19997.92 23495.96 25485.52 26288.22 21397.23 16666.80 30798.09 19284.58 24792.38 19398.17 185
CMPMVSbinary58.40 2180.48 32880.11 32781.59 36385.10 37559.56 39194.14 33795.95 25668.54 38360.71 38793.31 26755.35 35997.87 20583.06 26884.85 26187.33 367
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test_fmvsmconf0.01_n94.14 11493.51 12096.04 11986.79 36989.19 16799.28 8595.94 25795.70 2195.50 10998.49 11273.27 25699.79 8298.28 4598.32 11099.15 111
LPG-MVS_test88.86 23088.47 22890.06 28893.35 28580.95 33098.22 20995.94 25787.73 22083.17 26096.11 21466.28 31297.77 21290.19 18285.19 25791.46 298
LGP-MVS_train90.06 28893.35 28580.95 33095.94 25787.73 22083.17 26096.11 21466.28 31297.77 21290.19 18285.19 25791.46 298
OPM-MVS89.76 21689.15 21091.57 25390.53 32685.58 26398.11 22195.93 26092.88 7886.05 23396.47 20467.06 30697.87 20589.29 19786.08 25291.26 308
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
XVG-OURS-SEG-HR90.95 19290.66 18791.83 24495.18 22281.14 32895.92 31395.92 26188.40 19490.33 19497.85 13370.66 27999.38 12892.83 15488.83 23694.98 247
XVG-OURS90.83 19490.49 18991.86 24395.23 21681.25 32595.79 32195.92 26188.96 17590.02 19898.03 13271.60 27399.35 13391.06 16987.78 24094.98 247
tpm89.67 21788.95 21491.82 24592.54 29481.43 32092.95 34795.92 26187.81 21590.50 19089.44 34384.99 13995.65 32383.67 26282.71 28298.38 170
EC-MVSNet95.09 8495.17 7694.84 16595.42 21088.17 19499.48 5495.92 26191.47 10697.34 6498.36 12082.77 17397.41 23997.24 6498.58 10198.94 132
ACMM86.95 1388.77 23688.22 23290.43 27993.61 27781.34 32398.50 17995.92 26187.88 21483.85 25495.20 23367.20 30497.89 20386.90 22084.90 25992.06 281
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
baseline93.91 12193.30 12795.72 13295.10 23090.07 14897.48 25895.91 26691.03 11493.54 14597.68 14479.58 21098.02 19894.27 12995.14 16699.08 119
mvs_tets87.09 26386.22 26089.71 30087.87 35981.39 32296.73 29095.90 26788.19 20379.99 30993.61 26159.96 34196.31 29489.40 19384.34 26591.43 300
XXY-MVS87.75 25386.02 26392.95 22190.46 32789.70 16097.71 25095.90 26784.02 28580.95 29894.05 24567.51 30297.10 25085.16 23878.41 30192.04 282
nrg03090.23 20588.87 21594.32 18691.53 31393.54 6998.79 14695.89 26988.12 20584.55 24794.61 24278.80 22196.88 25892.35 16075.21 31892.53 262
CNLPA93.64 13292.74 14196.36 10598.96 7590.01 15499.19 9195.89 26986.22 25289.40 20498.85 8380.66 20599.84 6988.57 20196.92 13899.24 104
KD-MVS_2432*160082.98 31680.52 32490.38 28194.32 25488.98 17592.87 34995.87 27180.46 33973.79 35087.49 35682.76 17593.29 35870.56 35146.53 39988.87 356
miper_refine_blended82.98 31680.52 32490.38 28194.32 25488.98 17592.87 34995.87 27180.46 33973.79 35087.49 35682.76 17593.29 35870.56 35146.53 39988.87 356
FMVSNet286.90 26584.79 28493.24 21495.11 22792.54 9297.67 25395.86 27382.94 30680.55 30291.17 30562.89 32995.29 33377.23 30979.71 29891.90 284
casdiffmvspermissive93.98 11993.43 12295.61 13895.07 23289.86 15798.80 14295.84 27490.98 11692.74 15597.66 14679.71 20998.10 19194.72 12195.37 16498.87 139
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
UniMVSNet_ETH3D85.65 29183.79 29991.21 25790.41 32880.75 33295.36 32595.78 27578.76 34781.83 29294.33 24449.86 37696.66 26684.30 25083.52 27696.22 237
Effi-MVS+93.87 12393.15 13296.02 12195.79 19790.76 12896.70 29195.78 27586.98 23595.71 10597.17 17279.58 21098.01 19994.57 12696.09 15399.31 98
EU-MVSNet84.19 30884.42 29383.52 35588.64 35267.37 38496.04 31195.76 27785.29 26578.44 32793.18 27170.67 27891.48 37775.79 32275.98 31491.70 286
BH-w/o92.32 16491.79 16193.91 20396.85 15386.18 24599.11 11195.74 27888.13 20484.81 24397.00 18177.26 23097.91 20189.16 19998.03 11397.64 196
anonymousdsp86.69 26985.75 26889.53 30586.46 37182.94 30196.39 29795.71 27983.97 28779.63 31490.70 31468.85 28895.94 31186.01 22884.02 26989.72 345
Fast-Effi-MVS+91.72 17690.79 18494.49 17795.89 19487.40 21599.54 5095.70 28085.01 27389.28 20695.68 22377.75 22797.57 23283.22 26495.06 16798.51 163
IS-MVSNet93.00 15192.51 14694.49 17796.14 18787.36 21698.31 20495.70 28088.58 18690.17 19597.50 15383.02 16997.22 24587.06 21496.07 15598.90 136
diffmvspermissive94.59 10494.19 9695.81 12995.54 20690.69 13098.70 15395.68 28291.61 10195.96 9597.81 13580.11 20698.06 19496.52 8295.76 15898.67 156
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
v7n84.42 30682.75 30889.43 30988.15 35681.86 31596.75 28895.67 28380.53 33778.38 32889.43 34469.89 28196.35 29173.83 33772.13 35190.07 337
ACMP87.39 1088.71 23888.24 23190.12 28793.91 26981.06 32998.50 17995.67 28389.43 16380.37 30495.55 22465.67 31497.83 20790.55 17884.51 26291.47 297
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
CL-MVSNet_self_test79.89 33278.34 33384.54 35081.56 38575.01 36096.88 28295.62 28581.10 33275.86 34085.81 36868.49 29190.26 37963.21 37456.51 38888.35 358
V4287.00 26485.68 26990.98 26389.91 33286.08 24998.32 20395.61 28683.67 29482.72 26590.67 31674.00 25096.53 27481.94 27974.28 33090.32 332
XVG-ACMP-BASELINE85.86 28484.95 28088.57 32089.90 33377.12 35494.30 33495.60 28787.40 22882.12 28192.99 27653.42 36697.66 22285.02 24183.83 27190.92 316
Anonymous20240521188.84 23187.03 25094.27 18798.14 10084.18 28698.44 18695.58 28876.79 35789.34 20596.88 18953.42 36699.54 10887.53 21387.12 24399.09 118
miper_ehance_all_eth88.94 22788.12 23491.40 25495.32 21486.93 22697.85 23995.55 28984.19 28381.97 28691.50 29884.16 14995.91 31584.69 24577.89 30491.36 303
CANet_DTU94.31 11193.35 12597.20 5797.03 15194.71 4698.62 16495.54 29095.61 2797.21 6798.47 11671.88 26999.84 6988.38 20397.46 12797.04 216
v2v48287.27 26285.76 26791.78 25089.59 33887.58 20898.56 17395.54 29084.53 27982.51 27191.78 29373.11 25896.47 28082.07 27674.14 33391.30 306
BH-untuned91.46 18090.84 18193.33 21396.51 16784.83 27898.84 13895.50 29286.44 25183.50 25596.70 19775.49 23797.77 21286.78 22297.81 11697.40 203
v14886.38 27785.06 27790.37 28389.47 34384.10 28798.52 17595.48 29383.80 29080.93 29990.22 33474.60 24196.31 29480.92 28571.55 35590.69 325
IterMVS-LS88.34 24487.44 24291.04 26194.10 25985.85 25898.10 22295.48 29385.12 26782.03 28591.21 30481.35 20095.63 32483.86 26075.73 31691.63 288
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
dcpmvs_295.67 7096.18 4594.12 19498.82 8184.22 28597.37 26295.45 29590.70 12195.77 10398.63 10390.47 4498.68 16699.20 2099.22 7199.45 85
v114486.83 26785.31 27591.40 25489.75 33687.21 22498.31 20495.45 29583.22 30082.70 26690.78 31173.36 25296.36 28679.49 29474.69 32490.63 327
v119286.32 27884.71 28691.17 25889.53 34186.40 23598.13 21795.44 29782.52 31582.42 27490.62 32071.58 27496.33 29377.23 30974.88 32190.79 320
v14419286.40 27684.89 28190.91 26489.48 34285.59 26298.21 21195.43 29882.45 31782.62 26990.58 32372.79 26296.36 28678.45 30474.04 33490.79 320
Effi-MVS+-dtu89.97 21490.68 18687.81 32695.15 22371.98 37397.87 23895.40 29991.92 9687.57 21791.44 29974.27 24796.84 25989.45 19193.10 18394.60 249
c3_l88.19 24887.23 24791.06 26094.97 23686.17 24697.72 24895.38 30083.43 29781.68 29391.37 30082.81 17295.72 32184.04 25873.70 33591.29 307
eth_miper_zixun_eth87.76 25287.00 25190.06 28894.67 24682.65 30997.02 27895.37 30184.19 28381.86 29191.58 29781.47 19795.90 31683.24 26373.61 33691.61 292
v886.11 28084.45 29191.10 25989.99 33186.85 22797.24 26895.36 30281.99 32379.89 31189.86 33974.53 24396.39 28478.83 30172.32 34990.05 339
v192192086.02 28184.44 29290.77 27089.32 34485.20 27098.10 22295.35 30382.19 32182.25 27990.71 31370.73 27796.30 29776.85 31474.49 32690.80 319
pmmvs487.58 25986.17 26291.80 24689.58 33988.92 18197.25 26795.28 30482.54 31480.49 30393.17 27275.62 23696.05 30682.75 27078.90 29990.42 330
GBi-Net86.67 27084.96 27891.80 24695.11 22788.81 18396.77 28595.25 30582.94 30682.12 28190.25 33162.89 32994.97 33879.04 29780.24 29291.62 289
test186.67 27084.96 27891.80 24695.11 22788.81 18396.77 28595.25 30582.94 30682.12 28190.25 33162.89 32994.97 33879.04 29780.24 29291.62 289
FMVSNet183.94 31281.32 32091.80 24691.94 30688.81 18396.77 28595.25 30577.98 34978.25 32990.25 33150.37 37594.97 33873.27 34077.81 30891.62 289
mvsany_test194.57 10595.09 8092.98 21995.84 19682.07 31498.76 14895.24 30892.87 7996.45 8898.71 9684.81 14399.15 14197.68 5795.49 16397.73 194
cl____87.82 25086.79 25490.89 26694.88 24085.43 26597.81 24095.24 30882.91 31080.71 30191.22 30381.97 19295.84 31781.34 28275.06 31991.40 302
miper_lstm_enhance86.90 26586.20 26189.00 31694.53 24981.19 32696.74 28995.24 30882.33 31980.15 30790.51 32781.99 19094.68 34780.71 28773.58 33791.12 311
UnsupCasMVSNet_bld73.85 35270.14 35684.99 34679.44 39075.73 35788.53 37695.24 30870.12 37861.94 38674.81 39241.41 38893.62 35568.65 35851.13 39685.62 376
v124085.77 28884.11 29590.73 27189.26 34585.15 27397.88 23795.23 31281.89 32682.16 28090.55 32569.60 28696.31 29475.59 32374.87 32290.72 324
DIV-MVS_self_test87.82 25086.81 25390.87 26794.87 24185.39 26797.81 24095.22 31382.92 30980.76 30091.31 30281.99 19095.81 31981.36 28175.04 32091.42 301
v1085.73 28984.01 29790.87 26790.03 33086.73 22997.20 27195.22 31381.25 33179.85 31289.75 34073.30 25596.28 29876.87 31372.64 34589.61 347
test_fmvs192.35 16392.94 13890.57 27497.19 13975.43 35999.55 4594.97 31595.20 3396.82 8097.57 15159.59 34299.84 6997.30 6398.29 11196.46 233
BH-RMVSNet91.25 18689.99 19495.03 15996.75 15988.55 18998.65 15994.95 31687.74 21987.74 21697.80 13668.27 29398.14 18880.53 29097.49 12698.41 167
GeoE90.60 20089.56 20093.72 20995.10 23085.43 26599.41 6994.94 31783.96 28887.21 22396.83 19374.37 24597.05 25280.50 29193.73 17898.67 156
ACMH83.09 1784.60 30182.61 31190.57 27493.18 28882.94 30196.27 30194.92 31881.01 33472.61 36193.61 26156.54 35297.79 21074.31 33181.07 29090.99 314
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test_fmvs1_n91.07 18991.41 16990.06 28894.10 25974.31 36399.18 9394.84 31994.81 3596.37 9097.46 15550.86 37499.82 7697.14 6697.90 11496.04 240
test111192.12 17091.19 17394.94 16196.15 18587.36 21698.12 21994.84 31990.85 11890.97 18197.26 16365.60 31798.37 17889.74 18997.14 13699.07 121
ECVR-MVScopyleft92.29 16591.33 17095.15 15396.41 17187.84 20198.10 22294.84 31990.82 11991.42 17697.28 16165.61 31698.49 17590.33 18097.19 13399.12 115
IterMVS85.81 28684.67 28789.22 31193.51 27983.67 29396.32 30094.80 32285.09 26978.69 32290.17 33766.57 31093.17 36079.48 29577.42 31090.81 318
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
LTVRE_ROB81.71 1984.59 30282.72 30990.18 28592.89 29283.18 29993.15 34594.74 32378.99 34475.14 34592.69 27865.64 31597.63 22569.46 35481.82 28889.74 344
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
pm-mvs184.68 30082.78 30790.40 28089.58 33985.18 27197.31 26394.73 32481.93 32576.05 33792.01 28765.48 31896.11 30478.75 30269.14 36089.91 342
IterMVS-SCA-FT85.73 28984.64 28889.00 31693.46 28282.90 30396.27 30194.70 32585.02 27278.62 32490.35 32966.61 30893.33 35779.38 29677.36 31190.76 322
1112_ss92.71 15491.55 16696.20 11195.56 20591.12 11698.48 18394.69 32688.29 20086.89 22898.50 11087.02 9898.66 16784.75 24489.77 23498.81 145
Test_1112_low_res92.27 16790.97 17796.18 11295.53 20791.10 11898.47 18594.66 32788.28 20186.83 22993.50 26587.00 9998.65 16984.69 24589.74 23598.80 146
Fast-Effi-MVS+-dtu88.84 23188.59 22489.58 30493.44 28378.18 34898.65 15994.62 32888.46 18984.12 25295.37 23068.91 28796.52 27582.06 27791.70 20994.06 250
our_test_384.47 30582.80 30589.50 30689.01 34683.90 29097.03 27694.56 32981.33 33075.36 34490.52 32671.69 27294.54 34968.81 35776.84 31290.07 337
ppachtmachnet_test83.63 31481.57 31789.80 29789.01 34685.09 27497.13 27394.50 33078.84 34576.14 33691.00 30769.78 28294.61 34863.40 37374.36 32889.71 346
test_vis1_n90.40 20190.27 19190.79 26991.55 31276.48 35599.12 11094.44 33194.31 4397.34 6496.95 18343.60 38599.42 12397.57 5997.60 12196.47 232
YYNet179.64 33477.04 33987.43 33187.80 36179.98 33496.23 30594.44 33173.83 36851.83 39287.53 35467.96 29892.07 37466.00 36867.75 36790.23 334
MDA-MVSNet_test_wron79.65 33377.05 33887.45 33087.79 36280.13 33396.25 30494.44 33173.87 36751.80 39387.47 35868.04 29692.12 37366.02 36767.79 36690.09 335
MIMVSNet84.48 30481.83 31492.42 23291.73 31087.36 21685.52 38294.42 33481.40 32981.91 28787.58 35351.92 36992.81 36373.84 33688.15 23897.08 215
MVP-Stereo86.61 27285.83 26688.93 31888.70 35183.85 29196.07 31094.41 33582.15 32275.64 34291.96 29067.65 30096.45 28277.20 31198.72 9686.51 373
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
MSDG88.29 24686.37 25894.04 19996.90 15286.15 24796.52 29494.36 33677.89 35379.22 31996.95 18369.72 28399.59 10473.20 34192.58 19196.37 236
iter_conf05_1194.23 11293.49 12196.46 9697.51 12291.32 11099.96 194.31 33795.62 2699.32 899.22 2757.79 34798.59 17298.00 5099.64 4099.46 83
ACMH+83.78 1584.21 30782.56 31289.15 31393.73 27679.16 33996.43 29694.28 33881.09 33374.00 34994.03 24854.58 36297.67 22176.10 31978.81 30090.63 327
Patchmatch-test86.25 27984.06 29692.82 22294.42 25082.88 30582.88 39394.23 33971.58 37179.39 31790.62 32089.00 6296.42 28363.03 37591.37 22199.16 110
CR-MVSNet88.83 23387.38 24493.16 21693.47 28086.24 24184.97 38694.20 34088.92 17990.76 18586.88 36384.43 14694.82 34370.64 35092.17 20198.41 167
Patchmtry83.61 31581.64 31589.50 30693.36 28482.84 30684.10 38994.20 34069.47 38179.57 31586.88 36384.43 14694.78 34468.48 35974.30 32990.88 317
EG-PatchMatch MVS79.92 33077.59 33586.90 33487.06 36877.90 35296.20 30894.06 34274.61 36466.53 38088.76 34840.40 39096.20 29967.02 36483.66 27486.61 371
KD-MVS_self_test77.47 34475.88 34482.24 35881.59 38468.93 38292.83 35194.02 34377.03 35573.14 35583.39 37355.44 35890.42 37867.95 36057.53 38787.38 365
K. test v381.04 32679.77 32984.83 34787.41 36470.23 37995.60 32493.93 34483.70 29367.51 37689.35 34555.76 35493.58 35676.67 31668.03 36490.67 326
RPSCF85.33 29385.55 27184.67 34994.63 24862.28 38893.73 34093.76 34574.38 36685.23 24297.06 17764.09 32398.31 18080.98 28386.08 25293.41 255
MVS-HIRNet79.01 33575.13 34790.66 27293.82 27481.69 31785.16 38393.75 34654.54 39374.17 34859.15 39957.46 34996.58 27163.74 37294.38 17193.72 252
pmmvs585.87 28384.40 29490.30 28488.53 35384.23 28498.60 16893.71 34781.53 32880.29 30592.02 28664.51 32295.52 32682.04 27878.34 30291.15 310
pmmvs679.90 33177.31 33787.67 32784.17 37878.13 34995.86 31893.68 34867.94 38572.67 36089.62 34250.98 37395.75 32074.80 32966.04 37189.14 353
OurMVSNet-221017-084.13 31083.59 30085.77 34287.81 36070.24 37894.89 32993.65 34986.08 25376.53 33493.28 26961.41 33596.14 30380.95 28477.69 30990.93 315
Anonymous2024052178.63 33976.90 34083.82 35382.82 38272.86 36995.72 32393.57 35073.55 36972.17 36284.79 37049.69 37792.51 36865.29 37074.50 32586.09 375
DP-MVS88.75 23786.56 25695.34 14598.92 7787.45 21397.64 25493.52 35170.55 37581.49 29497.25 16574.43 24499.88 5471.14 34994.09 17498.67 156
ITE_SJBPF87.93 32492.26 29876.44 35693.47 35287.67 22379.95 31095.49 22756.50 35397.38 24075.24 32482.33 28589.98 341
USDC84.74 29882.93 30390.16 28691.73 31083.54 29595.00 32893.30 35388.77 18273.19 35493.30 26853.62 36597.65 22475.88 32181.54 28989.30 350
ADS-MVSNet287.62 25886.88 25289.86 29596.21 18179.14 34087.15 37992.99 35483.01 30389.91 19987.27 35978.87 21992.80 36474.20 33392.27 19797.64 196
Anonymous2023120680.76 32779.42 33184.79 34884.78 37672.98 36896.53 29392.97 35579.56 34274.33 34688.83 34761.27 33692.15 37260.59 38175.92 31589.24 352
iter_conf0593.48 13493.18 13194.39 18497.15 14394.17 5999.30 8192.97 35592.38 9086.70 23195.42 22895.67 596.59 26994.67 12384.32 26692.39 263
MDA-MVSNet-bldmvs77.82 34374.75 34987.03 33388.33 35478.52 34696.34 29992.85 35775.57 36048.87 39587.89 35157.32 35092.49 36960.79 38064.80 37590.08 336
test20.0378.51 34077.48 33681.62 36283.07 38171.03 37596.11 30992.83 35881.66 32769.31 36889.68 34157.53 34887.29 39158.65 38568.47 36286.53 372
COLMAP_ROBcopyleft82.69 1884.54 30382.82 30489.70 30196.72 16078.85 34195.89 31492.83 35871.55 37277.54 33395.89 22059.40 34399.14 14567.26 36388.26 23791.11 312
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test_fmvs285.10 29585.45 27384.02 35289.85 33565.63 38698.49 18192.59 36090.45 13185.43 24193.32 26643.94 38396.59 26990.81 17484.19 26789.85 343
SixPastTwentyTwo82.63 31881.58 31685.79 34188.12 35771.01 37695.17 32792.54 36184.33 28272.93 35992.08 28460.41 34095.61 32574.47 33074.15 33290.75 323
FMVSNet582.29 31980.54 32387.52 32893.79 27584.01 28893.73 34092.47 36276.92 35674.27 34786.15 36763.69 32789.24 38669.07 35674.79 32389.29 351
new-patchmatchnet74.80 35172.40 35481.99 36178.36 39272.20 37294.44 33292.36 36377.06 35463.47 38479.98 38651.04 37288.85 38760.53 38254.35 39184.92 382
mvsmamba89.99 21389.42 20491.69 25190.64 32586.34 23998.40 19392.27 36491.01 11584.80 24494.93 23576.12 23396.51 27692.81 15583.84 27092.21 273
new_pmnet76.02 34673.71 35182.95 35683.88 37972.85 37091.26 36692.26 36570.44 37662.60 38581.37 38047.64 38092.32 37061.85 37772.10 35283.68 385
AllTest84.97 29783.12 30290.52 27796.82 15478.84 34295.89 31492.17 36677.96 35175.94 33895.50 22555.48 35699.18 13971.15 34787.14 24193.55 253
TestCases90.52 27796.82 15478.84 34292.17 36677.96 35175.94 33895.50 22555.48 35699.18 13971.15 34787.14 24193.55 253
pmmvs-eth3d78.71 33876.16 34386.38 33680.25 38981.19 32694.17 33692.13 36877.97 35066.90 37982.31 37755.76 35492.56 36773.63 33962.31 38085.38 377
MIMVSNet175.92 34773.30 35283.81 35481.29 38675.57 35892.26 35492.05 36973.09 37067.48 37786.18 36640.87 38987.64 39055.78 38870.68 35988.21 359
ambc79.60 36672.76 39956.61 39376.20 39792.01 37068.25 37280.23 38523.34 39894.73 34573.78 33860.81 38187.48 364
LF4IMVS81.94 32281.17 32184.25 35187.23 36768.87 38393.35 34491.93 37183.35 29975.40 34393.00 27549.25 37996.65 26778.88 30078.11 30387.22 369
TransMVSNet (Re)81.97 32179.61 33089.08 31489.70 33784.01 28897.26 26691.85 37278.84 34573.07 35891.62 29567.17 30595.21 33567.50 36259.46 38488.02 360
Baseline_NR-MVSNet85.83 28584.82 28388.87 31988.73 35083.34 29798.63 16391.66 37380.41 34182.44 27291.35 30174.63 23995.42 33084.13 25471.39 35687.84 361
testgi82.29 31981.00 32286.17 33987.24 36674.84 36297.39 25991.62 37488.63 18375.85 34195.42 22846.07 38291.55 37666.87 36679.94 29692.12 278
TDRefinement78.01 34175.31 34586.10 34070.06 40073.84 36593.59 34391.58 37574.51 36573.08 35791.04 30649.63 37897.12 24774.88 32759.47 38387.33 367
OpenMVS_ROBcopyleft73.86 2077.99 34275.06 34886.77 33583.81 38077.94 35196.38 29891.53 37667.54 38668.38 37187.13 36243.94 38396.08 30555.03 38981.83 28786.29 374
test_040278.81 33776.33 34286.26 33891.18 31878.44 34795.88 31691.34 37768.55 38270.51 36589.91 33852.65 36894.99 33747.14 39479.78 29785.34 379
MTMP99.21 8991.09 378
DeepMVS_CXcopyleft76.08 36890.74 32451.65 40190.84 37986.47 25057.89 38987.98 35035.88 39392.60 36565.77 36965.06 37483.97 384
test_fmvs375.09 34975.19 34674.81 37077.45 39354.08 39695.93 31290.64 38082.51 31673.29 35381.19 38122.29 39986.29 39285.50 23667.89 36584.06 383
lessismore_v085.08 34585.59 37469.28 38190.56 38167.68 37590.21 33554.21 36495.46 32873.88 33562.64 37890.50 329
Gipumacopyleft54.77 36752.22 37162.40 38486.50 37059.37 39250.20 40290.35 38236.52 40041.20 40149.49 40218.33 40381.29 39532.10 40165.34 37346.54 402
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
TinyColmap80.42 32977.94 33487.85 32592.09 30178.58 34593.74 33989.94 38374.99 36269.77 36691.78 29346.09 38197.58 22965.17 37177.89 30487.38 365
test_method70.10 35668.66 35974.41 37286.30 37355.84 39494.47 33189.82 38435.18 40166.15 38184.75 37130.54 39577.96 40270.40 35360.33 38289.44 349
FPMVS61.57 36060.32 36365.34 38060.14 40742.44 40891.02 36989.72 38544.15 39642.63 39980.93 38219.02 40180.59 39942.50 39672.76 34473.00 393
test_f71.94 35470.82 35575.30 36972.77 39853.28 39791.62 36089.66 38675.44 36164.47 38378.31 38920.48 40089.56 38478.63 30366.02 37283.05 388
LCM-MVSNet60.07 36356.37 36571.18 37454.81 40948.67 40282.17 39489.48 38737.95 39949.13 39469.12 39313.75 40781.76 39459.28 38351.63 39583.10 387
pmmvs372.86 35369.76 35882.17 35973.86 39674.19 36494.20 33589.01 38864.23 39267.72 37480.91 38441.48 38788.65 38862.40 37654.02 39283.68 385
bld_raw_dy_0_6491.37 18389.75 19796.23 10997.51 12290.58 13499.16 9788.98 38995.64 2587.18 22499.20 3057.19 35198.66 16798.00 5084.86 26099.46 83
LCM-MVSNet-Re88.59 24288.61 22288.51 32195.53 20772.68 37196.85 28388.43 39088.45 19073.14 35590.63 31975.82 23494.38 35092.95 15195.71 16098.48 165
Patchmatch-RL test81.90 32380.13 32687.23 33280.71 38770.12 38084.07 39088.19 39183.16 30270.57 36382.18 37887.18 9392.59 36682.28 27562.78 37798.98 125
mvsany_test375.85 34874.52 35079.83 36573.53 39760.64 39091.73 35987.87 39283.91 28970.55 36482.52 37531.12 39493.66 35486.66 22362.83 37685.19 381
DSMNet-mixed81.60 32481.43 31882.10 36084.36 37760.79 38993.63 34286.74 39379.00 34379.32 31887.15 36163.87 32589.78 38366.89 36591.92 20395.73 242
PM-MVS74.88 35072.85 35380.98 36478.98 39164.75 38790.81 37085.77 39480.95 33568.23 37382.81 37429.08 39692.84 36276.54 31762.46 37985.36 378
door85.30 395
APD_test168.93 35766.98 36074.77 37180.62 38853.15 39887.97 37785.01 39653.76 39459.26 38887.52 35525.19 39789.95 38056.20 38767.33 36881.19 389
door-mid84.90 397
EGC-MVSNET60.70 36255.37 36676.72 36786.35 37271.08 37489.96 37484.44 3980.38 4101.50 41184.09 37237.30 39188.10 38940.85 39973.44 34070.97 395
WB-MVS66.44 35866.29 36166.89 37874.84 39444.93 40593.00 34684.09 39971.15 37355.82 39081.63 37963.79 32680.31 40021.85 40450.47 39775.43 391
SSC-MVS65.42 35965.20 36266.06 37973.96 39543.83 40692.08 35583.54 40069.77 37954.73 39180.92 38363.30 32879.92 40120.48 40548.02 39874.44 392
dmvs_testset77.17 34578.99 33271.71 37387.25 36538.55 41091.44 36381.76 40185.77 25869.49 36795.94 21969.71 28484.37 39352.71 39276.82 31392.21 273
PMMVS258.97 36455.07 36770.69 37662.72 40455.37 39585.97 38180.52 40249.48 39545.94 39668.31 39415.73 40580.78 39849.79 39337.12 40175.91 390
ANet_high50.71 36946.17 37264.33 38144.27 41152.30 40076.13 39878.73 40364.95 39027.37 40455.23 40114.61 40667.74 40436.01 40018.23 40472.95 394
PMVScopyleft41.42 2345.67 37042.50 37355.17 38634.28 41232.37 41266.24 40078.71 40430.72 40222.04 40759.59 3984.59 41177.85 40327.49 40258.84 38555.29 400
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test_vis1_rt81.31 32580.05 32885.11 34491.29 31770.66 37798.98 12777.39 40585.76 25968.80 36982.40 37636.56 39299.44 11992.67 15786.55 24685.24 380
tmp_tt53.66 36852.86 37056.05 38532.75 41341.97 40973.42 39976.12 40621.91 40639.68 40296.39 20742.59 38665.10 40578.00 30614.92 40661.08 398
testf156.38 36553.73 36864.31 38264.84 40245.11 40380.50 39575.94 40738.87 39742.74 39775.07 39011.26 40981.19 39641.11 39753.27 39366.63 396
APD_test256.38 36553.73 36864.31 38264.84 40245.11 40380.50 39575.94 40738.87 39742.74 39775.07 39011.26 40981.19 39641.11 39753.27 39366.63 396
MVEpermissive44.00 2241.70 37137.64 37653.90 38749.46 41043.37 40765.09 40166.66 40926.19 40525.77 40648.53 4033.58 41363.35 40626.15 40327.28 40254.97 401
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN41.02 37240.93 37441.29 38861.97 40533.83 41184.00 39165.17 41027.17 40327.56 40346.72 40417.63 40460.41 40719.32 40618.82 40329.61 403
EMVS39.96 37339.88 37540.18 38959.57 40832.12 41384.79 38864.57 41126.27 40426.14 40544.18 40718.73 40259.29 40817.03 40717.67 40529.12 404
test_vis3_rt61.29 36158.75 36468.92 37767.41 40152.84 39991.18 36859.23 41266.96 38741.96 40058.44 40011.37 40894.72 34674.25 33257.97 38659.20 399
N_pmnet70.19 35569.87 35771.12 37588.24 35530.63 41495.85 31928.70 41370.18 37768.73 37086.55 36564.04 32493.81 35353.12 39173.46 33988.94 354
wuyk23d16.71 37616.73 38016.65 39060.15 40625.22 41541.24 4035.17 4146.56 4075.48 4103.61 4103.64 41222.72 40915.20 4089.52 4071.99 407
testmvs18.81 37523.05 3786.10 3924.48 4142.29 41797.78 2423.00 4153.27 40818.60 40862.71 3961.53 4152.49 41114.26 4091.80 40813.50 406
test12316.58 37719.47 3797.91 3913.59 4155.37 41694.32 3331.39 4162.49 40913.98 40944.60 4062.91 4142.65 41011.35 4100.57 40915.70 405
test_blank0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
uanet_test0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
DCPMVS0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
pcd_1.5k_mvsjas6.87 3799.16 3820.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 41182.48 1810.00 4120.00 4110.00 4100.00 408
sosnet-low-res0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
sosnet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
uncertanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
Regformer0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
n20.00 417
nn0.00 417
ab-mvs-re8.21 37810.94 3810.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 41298.50 1100.00 4160.00 4120.00 4110.00 4100.00 408
uanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
WAC-MVS79.74 33667.75 361
PC_three_145294.60 3899.41 499.12 4895.50 799.96 2899.84 299.92 399.97 7
eth-test20.00 416
eth-test0.00 416
OPU-MVS99.49 499.64 1798.51 499.77 1899.19 3295.12 899.97 2199.90 199.92 399.99 1
test_0728_THIRD93.01 7299.07 1699.46 1094.66 1399.97 2199.25 1899.82 1999.95 15
GSMVS98.84 140
test_part299.54 3695.42 2298.13 43
sam_mvs188.39 6898.84 140
sam_mvs87.08 96
test_post190.74 37241.37 40885.38 13596.36 28683.16 265
test_post46.00 40587.37 8797.11 248
patchmatchnet-post84.86 36988.73 6596.81 261
gm-plane-assit94.69 24588.14 19588.22 20297.20 16898.29 18290.79 175
test9_res98.60 3399.87 999.90 22
agg_prior297.84 5699.87 999.91 21
test_prior492.00 9899.41 69
test_prior299.57 4391.43 10898.12 4598.97 6490.43 4598.33 4299.81 23
旧先验298.67 15785.75 26098.96 2198.97 15493.84 135
新几何298.26 207
原ACMM298.69 154
testdata299.88 5484.16 253
segment_acmp90.56 43
testdata197.89 23592.43 84
plane_prior793.84 27185.73 260
plane_prior693.92 26886.02 25372.92 259
plane_prior496.52 201
plane_prior385.91 25593.65 6386.99 225
plane_prior299.02 12193.38 68
plane_prior193.90 270
plane_prior86.07 25199.14 10693.81 6086.26 249
HQP5-MVS86.39 236
HQP-NCC93.95 26499.16 9793.92 5287.57 217
ACMP_Plane93.95 26499.16 9793.92 5287.57 217
BP-MVS93.82 137
HQP4-MVS87.57 21797.77 21292.72 258
HQP2-MVS73.34 253
NP-MVS93.94 26786.22 24396.67 199
MDTV_nov1_ep13_2view91.17 11591.38 36487.45 22793.08 15186.67 10787.02 21598.95 131
ACMMP++_ref82.64 283
ACMMP++83.83 271
Test By Simon83.62 155