This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort by
baseline275.15 7074.54 6876.98 9981.67 14351.74 14683.84 16491.94 169.97 2158.98 21386.02 15659.73 891.73 5868.37 10770.40 17187.48 151
MVS76.91 4175.48 5481.23 1884.56 7355.21 6080.23 25391.64 258.65 19665.37 13291.48 6045.72 9495.05 1672.11 9289.52 993.44 9
CSCG80.41 1479.72 1482.49 589.12 2557.67 1389.29 4091.54 359.19 18271.82 7990.05 9059.72 996.04 1078.37 4988.40 1393.75 7
VNet77.99 3077.92 2778.19 6987.43 3850.12 18190.93 2291.41 467.48 4475.12 4290.15 8846.77 8191.00 7573.52 8478.46 10193.44 9
IU-MVS89.48 1757.49 1591.38 566.22 6088.26 182.83 2187.60 1792.44 29
MSC_two_6792asdad81.53 1491.77 456.03 4191.10 696.22 881.46 3286.80 2692.34 32
No_MVS81.53 1491.77 456.03 4191.10 696.22 881.46 3286.80 2692.34 32
MCST-MVS83.01 183.30 282.15 1092.84 257.58 1493.77 191.10 675.95 377.10 3693.09 2754.15 2895.57 1285.80 1085.87 3693.31 11
DPM-MVS82.39 382.36 582.49 580.12 18159.50 592.24 890.72 969.37 2683.22 894.47 263.81 593.18 3174.02 8193.25 294.80 1
TSAR-MVS + GP.77.82 3177.59 3078.49 6085.25 6350.27 18090.02 2690.57 1056.58 23974.26 5191.60 5754.26 2692.16 4975.87 6479.91 8893.05 18
WTY-MVS77.47 3577.52 3177.30 8788.33 3046.25 27088.46 4990.32 1171.40 1372.32 7591.72 5253.44 3092.37 4566.28 12175.42 12693.28 13
VPA-MVSNet71.12 13070.66 11972.49 20878.75 20344.43 29187.64 6090.02 1263.97 9365.02 13681.58 22342.14 14487.42 19363.42 14163.38 22985.63 191
DVP-MVScopyleft81.30 981.00 1282.20 889.40 2057.45 1792.34 589.99 1357.71 21481.91 1393.64 1155.17 2096.44 281.68 2887.13 2092.72 24
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
MS-PatchMatch72.34 11071.26 11175.61 12982.38 12755.55 4888.00 5389.95 1465.38 7456.51 25880.74 23132.28 26192.89 3357.95 19288.10 1478.39 299
MM80.89 2055.40 5492.16 989.85 1575.28 482.41 1093.86 854.30 2593.98 2390.29 187.13 2093.30 12
cdsmvs_eth3d_5k18.33 36224.44 3540.00 3840.00 4050.00 4080.00 39589.40 160.00 4000.00 40392.02 4538.55 1830.00 4010.00 4020.00 3990.00 399
test_yl75.85 5974.83 6578.91 4688.08 3451.94 14091.30 1689.28 1757.91 20871.19 8889.20 10642.03 14792.77 3669.41 10175.07 13292.01 41
DCV-MVSNet75.85 5974.83 6578.91 4688.08 3451.94 14091.30 1689.28 1757.91 20871.19 8889.20 10642.03 14792.77 3669.41 10175.07 13292.01 41
ET-MVSNet_ETH3D75.23 6874.08 7278.67 5584.52 7455.59 4788.92 4389.21 1968.06 3653.13 28690.22 8449.71 5987.62 18972.12 9170.82 16692.82 21
MAR-MVS76.76 4675.60 5280.21 2690.87 754.68 7889.14 4189.11 2062.95 11470.54 9492.33 3941.05 15794.95 1757.90 19386.55 3191.00 69
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
tttt051768.33 18266.29 19274.46 15978.08 21649.06 20280.88 24389.08 2154.40 26454.75 27280.77 23051.31 4390.33 9549.35 25458.01 27583.99 215
EI-MVSNet-Vis-set73.19 9772.60 8674.99 15382.56 12549.80 18982.55 20289.00 2266.17 6165.89 12788.98 10943.83 11992.29 4665.38 13469.01 18082.87 240
MVS_030481.58 882.05 680.20 2782.36 12854.70 7691.13 1988.95 2374.49 580.04 2493.64 1152.40 3693.27 3088.85 486.56 3092.61 26
SED-MVS81.92 681.75 882.44 789.48 1756.89 2592.48 388.94 2457.50 22084.61 494.09 358.81 1196.37 682.28 2587.60 1794.06 3
test_241102_ONE89.48 1756.89 2588.94 2457.53 21884.61 493.29 2258.81 1196.45 1
DVP-MVS++82.44 282.38 482.62 491.77 457.49 1584.98 12888.88 2658.00 20683.60 693.39 1867.21 296.39 481.64 3091.98 493.98 5
test_0728_SECOND82.20 889.50 1557.73 1192.34 588.88 2696.39 481.68 2887.13 2092.47 28
CNVR-MVS81.76 781.90 781.33 1790.04 1057.70 1291.71 1088.87 2870.31 1977.64 3593.87 752.58 3593.91 2684.17 1487.92 1592.39 30
9.1478.19 2485.67 5388.32 5088.84 2959.89 16574.58 4892.62 3546.80 8092.66 3981.40 3485.62 39
thisisatest051573.64 9172.20 9677.97 7381.63 14453.01 12186.69 8488.81 3062.53 12264.06 15185.65 16052.15 3992.50 4258.43 18169.84 17488.39 134
QAPM71.88 11969.33 14379.52 3582.20 13054.30 8686.30 9088.77 3156.61 23859.72 19887.48 13733.90 24695.36 1347.48 26781.49 7088.90 119
test_241102_TWO88.76 3257.50 22083.60 694.09 356.14 1896.37 682.28 2587.43 1992.55 27
SDMVSNet71.89 11870.62 12075.70 12781.70 14051.61 14873.89 29688.72 3366.58 5261.64 18282.38 21137.63 19489.48 11777.44 5765.60 20886.01 179
IB-MVS68.87 274.01 8172.03 10379.94 3383.04 10855.50 4990.24 2588.65 3467.14 4661.38 18481.74 22053.21 3194.28 2160.45 16862.41 24090.03 94
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
EI-MVSNet-UG-set72.37 10971.73 10474.29 16681.60 14649.29 20081.85 21788.64 3565.29 7865.05 13588.29 12443.18 13191.83 5663.74 13967.97 18781.75 251
test072689.40 2057.45 1792.32 788.63 3657.71 21483.14 993.96 655.17 20
MSP-MVS82.30 583.47 178.80 5082.99 11152.71 12685.04 12588.63 3666.08 6486.77 392.75 3272.05 191.46 6383.35 1993.53 192.23 34
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
3Dnovator64.70 674.46 7572.48 8880.41 2482.84 11755.40 5483.08 18988.61 3867.61 4359.85 19688.66 11534.57 24093.97 2458.42 18388.70 1191.85 46
PHI-MVS77.49 3477.00 3678.95 4585.33 6150.69 16488.57 4888.59 3958.14 20373.60 5593.31 2143.14 13393.79 2773.81 8288.53 1292.37 31
thisisatest053070.47 14468.56 15076.20 11579.78 18551.52 15283.49 17588.58 4057.62 21758.60 22282.79 19751.03 4691.48 6252.84 23162.36 24285.59 192
MG-MVS78.42 2376.99 3782.73 293.17 164.46 189.93 2988.51 4164.83 8173.52 5788.09 12748.07 6692.19 4862.24 14984.53 5091.53 55
GG-mvs-BLEND77.77 7686.68 4350.61 16568.67 33088.45 4268.73 10187.45 13859.15 1090.67 8554.83 21687.67 1692.03 40
patch_mono-280.84 1181.59 978.62 5790.34 953.77 9588.08 5288.36 4376.17 279.40 2791.09 6255.43 1990.09 10385.01 1280.40 8091.99 43
gg-mvs-nofinetune67.43 20164.53 22776.13 11885.95 4747.79 24764.38 34288.28 4439.34 34566.62 11541.27 37958.69 1389.00 13149.64 25286.62 2991.59 51
NCCC79.57 1879.23 1880.59 2189.50 1556.99 2391.38 1588.17 4567.71 4173.81 5492.75 3246.88 7993.28 2978.79 4684.07 5391.50 57
test_one_060189.39 2257.29 2088.09 4657.21 22682.06 1293.39 1854.94 24
LFMVS78.52 2177.14 3582.67 389.58 1358.90 791.27 1888.05 4763.22 11074.63 4690.83 7141.38 15694.40 2075.42 7079.90 8994.72 2
VPNet72.07 11571.42 11074.04 17278.64 20847.17 25789.91 3187.97 4872.56 964.66 14085.04 16741.83 15188.33 15961.17 15860.97 24786.62 169
DPE-MVScopyleft79.82 1779.66 1580.29 2589.27 2455.08 6688.70 4687.92 4955.55 25081.21 1893.69 1056.51 1694.27 2278.36 5085.70 3891.51 56
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SF-MVS77.64 3377.42 3278.32 6783.75 8952.47 13186.63 8587.80 5058.78 19474.63 4692.38 3847.75 7091.35 6578.18 5386.85 2591.15 66
thres100view90066.87 21865.42 21671.24 23783.29 10043.15 30581.67 22387.78 5159.04 18855.92 26282.18 21543.73 12287.80 17728.80 34566.36 20282.78 242
thres600view766.46 22365.12 22070.47 24883.41 9443.80 29882.15 20987.78 5159.37 17656.02 26182.21 21443.73 12286.90 20826.51 35764.94 21180.71 273
APDe-MVScopyleft78.44 2278.20 2379.19 4088.56 2654.55 8289.76 3387.77 5355.91 24578.56 3092.49 3748.20 6592.65 4079.49 3883.04 5790.39 80
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
thres20068.71 17567.27 17673.02 19684.73 7046.76 26085.03 12687.73 5462.34 12659.87 19583.45 18943.15 13288.32 16031.25 33867.91 18883.98 217
FIs70.00 15170.24 13069.30 26577.93 22038.55 33583.99 16087.72 5566.86 5057.66 23984.17 17752.28 3785.31 24652.72 23668.80 18184.02 213
tfpn200view967.57 19766.13 19671.89 22884.05 8245.07 28483.40 17887.71 5660.79 15357.79 23682.76 19843.53 12787.80 17728.80 34566.36 20282.78 242
thres40067.40 20466.13 19671.19 23984.05 8245.07 28483.40 17887.71 5660.79 15357.79 23682.76 19843.53 12787.80 17728.80 34566.36 20280.71 273
HPM-MVS++copyleft80.50 1380.71 1379.88 3487.34 3955.20 6189.93 2987.55 5866.04 6779.46 2693.00 3053.10 3291.76 5780.40 3689.56 892.68 25
XXY-MVS70.18 14569.28 14572.89 20177.64 22242.88 30885.06 12487.50 5962.58 12162.66 17282.34 21343.64 12689.83 10858.42 18363.70 22385.96 183
FC-MVSNet-test67.49 19967.91 15966.21 29776.06 24833.06 35480.82 24487.18 6064.44 8454.81 27082.87 19550.40 5282.60 27448.05 26466.55 20082.98 238
EI-MVSNet69.70 15968.70 14972.68 20375.00 26448.90 21079.54 25987.16 6161.05 14663.88 15783.74 18345.87 9190.44 9157.42 20064.68 21578.70 292
MVSTER73.25 9672.33 9176.01 12285.54 5653.76 9683.52 16987.16 6167.06 4763.88 15781.66 22152.77 3390.44 9164.66 13664.69 21483.84 222
PS-MVSNAJ80.06 1579.52 1681.68 1385.58 5560.97 391.69 1187.02 6370.62 1680.75 2093.22 2437.77 18992.50 4282.75 2286.25 3391.57 53
MVP-Stereo70.97 13470.44 12272.59 20576.03 25051.36 15585.02 12786.99 6460.31 16056.53 25778.92 24740.11 16990.00 10460.00 17290.01 676.41 321
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
SteuartSystems-ACMMP77.08 3976.33 4479.34 3880.98 16055.31 5689.76 3386.91 6562.94 11571.65 8091.56 5842.33 14092.56 4177.14 5983.69 5590.15 90
Skip Steuart: Steuart Systems R&D Blog.
xiu_mvs_v2_base79.86 1679.31 1781.53 1485.03 6760.73 491.65 1286.86 6670.30 2080.77 1993.07 2937.63 19492.28 4782.73 2385.71 3791.57 53
UniMVSNet_NR-MVSNet68.82 17168.29 15570.40 25175.71 25542.59 31184.23 15286.78 6766.31 5858.51 22382.45 20851.57 4184.64 25953.11 22755.96 29583.96 219
SMA-MVScopyleft79.10 2078.76 2080.12 3084.42 7555.87 4587.58 6486.76 6861.48 14080.26 2293.10 2546.53 8492.41 4479.97 3788.77 1092.08 38
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DeepC-MVS67.15 476.90 4376.27 4578.80 5080.70 17055.02 6786.39 8786.71 6966.96 4967.91 10689.97 9248.03 6791.41 6475.60 6784.14 5289.96 96
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
VDDNet74.37 7772.13 9881.09 1979.58 18756.52 3290.02 2686.70 7052.61 27771.23 8787.20 14231.75 26893.96 2574.30 7975.77 12392.79 23
DeepPCF-MVS69.37 180.65 1281.56 1077.94 7585.46 5849.56 19390.99 2186.66 7170.58 1780.07 2395.30 156.18 1790.97 7882.57 2486.22 3493.28 13
EPP-MVSNet71.14 12970.07 13274.33 16479.18 19446.52 26383.81 16586.49 7256.32 24357.95 23284.90 17054.23 2789.14 12658.14 18869.65 17787.33 154
CANet80.90 1081.17 1180.09 3287.62 3754.21 8891.60 1386.47 7373.13 879.89 2593.10 2549.88 5892.98 3284.09 1684.75 4893.08 17
TSAR-MVS + MP.78.31 2678.26 2278.48 6181.33 15656.31 3781.59 22786.41 7469.61 2481.72 1588.16 12655.09 2288.04 17074.12 8086.31 3291.09 67
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
3Dnovator+62.71 772.29 11270.50 12177.65 7983.40 9751.29 15887.32 6886.40 7559.01 18958.49 22688.32 12332.40 25991.27 6657.04 20282.15 6590.38 81
HY-MVS67.03 573.90 8373.14 8176.18 11784.70 7147.36 25275.56 28486.36 7666.27 5970.66 9383.91 18051.05 4589.31 12067.10 11572.61 15091.88 45
DELS-MVS82.32 482.50 381.79 1186.80 4256.89 2592.77 286.30 7777.83 177.88 3392.13 4160.24 694.78 1978.97 4389.61 793.69 8
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PAPM76.76 4676.07 4878.81 4980.20 17959.11 686.86 8286.23 7868.60 2970.18 9688.84 11351.57 4187.16 19965.48 12786.68 2890.15 90
CLD-MVS75.60 6375.39 5576.24 11280.69 17152.40 13290.69 2386.20 7974.40 665.01 13788.93 11042.05 14690.58 8976.57 6173.96 13885.73 187
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
baseline172.51 10872.12 9973.69 18585.05 6544.46 28983.51 17386.13 8071.61 1264.64 14187.97 13055.00 2389.48 11759.07 17556.05 29487.13 158
ZNCC-MVS75.82 6275.02 6178.23 6883.88 8753.80 9486.91 8186.05 8159.71 16867.85 10790.55 7442.23 14291.02 7472.66 9085.29 4389.87 99
DeepC-MVS_fast67.50 378.00 2977.63 2979.13 4388.52 2755.12 6389.95 2885.98 8268.31 3071.33 8692.75 3245.52 9790.37 9371.15 9485.14 4491.91 44
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
VDD-MVS76.08 5474.97 6279.44 3684.27 7953.33 11191.13 1985.88 8365.33 7672.37 7489.34 10332.52 25892.76 3877.90 5575.96 12092.22 36
casdiffmvspermissive77.36 3676.85 3878.88 4880.40 17854.66 8087.06 7685.88 8372.11 1071.57 8288.63 11950.89 4990.35 9476.00 6379.11 9691.63 50
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CS-MVS-test77.20 3777.25 3477.05 9384.60 7249.04 20589.42 3685.83 8565.90 6872.85 6691.98 4945.10 10291.27 6675.02 7384.56 4990.84 72
OpenMVScopyleft61.00 1169.99 15267.55 17077.30 8778.37 21454.07 9284.36 14885.76 8657.22 22556.71 25487.67 13530.79 27492.83 3543.04 29084.06 5485.01 199
PAPR75.20 6974.13 7078.41 6488.31 3155.10 6584.31 15085.66 8763.76 9767.55 10890.73 7243.48 12989.40 11966.36 12077.03 10990.73 74
tt080563.39 24661.31 24869.64 26169.36 32238.87 33378.00 27185.48 8848.82 30355.66 26781.66 22124.38 31786.37 22349.04 25759.36 25983.68 224
TESTMET0.1,172.86 10172.33 9174.46 15981.98 13250.77 16285.13 12085.47 8966.09 6367.30 10983.69 18537.27 20483.57 26865.06 13578.97 9889.05 117
casdiffmvs_mvgpermissive77.75 3277.28 3379.16 4280.42 17754.44 8487.76 5885.46 9071.67 1171.38 8588.35 12151.58 4091.22 6879.02 4279.89 9091.83 47
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
alignmvs78.08 2877.98 2678.39 6583.53 9253.22 11489.77 3285.45 9166.11 6276.59 4091.99 4754.07 2989.05 12877.34 5877.00 11092.89 20
test_prior78.39 6586.35 4554.91 7185.45 9189.70 11390.55 76
CHOSEN 1792x268876.24 5174.03 7482.88 183.09 10662.84 285.73 10485.39 9369.79 2264.87 13983.49 18841.52 15593.69 2870.55 9781.82 6792.12 37
FMVSNet368.84 17067.40 17373.19 19485.05 6548.53 22085.71 10585.36 9460.90 15257.58 24179.15 24542.16 14386.77 21047.25 26963.40 22684.27 209
ACMMP_NAP76.43 4975.66 5178.73 5281.92 13354.67 7984.06 15885.35 9561.10 14572.99 6391.50 5940.25 16591.00 7576.84 6086.98 2390.51 79
ETV-MVS77.17 3876.74 3978.48 6181.80 13654.55 8286.13 9385.33 9668.20 3273.10 6290.52 7645.23 10190.66 8679.37 3980.95 7290.22 86
EIA-MVS75.92 5775.18 5978.13 7085.14 6451.60 14987.17 7485.32 9764.69 8268.56 10290.53 7545.79 9391.58 6067.21 11482.18 6491.20 65
CostFormer73.89 8472.30 9378.66 5682.36 12856.58 2875.56 28485.30 9866.06 6570.50 9576.88 27357.02 1489.06 12768.27 10968.74 18290.33 82
GST-MVS74.87 7373.90 7577.77 7683.30 9953.45 10485.75 10285.29 9959.22 18166.50 11989.85 9440.94 15890.76 8370.94 9683.35 5689.10 116
WR-MVS67.58 19666.76 18270.04 25875.92 25345.06 28786.23 9185.28 10064.31 8558.50 22581.00 22644.80 11282.00 27949.21 25655.57 30083.06 236
原ACMM176.13 11884.89 6954.59 8185.26 10151.98 28166.70 11387.07 14540.15 16889.70 11351.23 24385.06 4684.10 211
PAPM_NR71.80 12169.98 13377.26 9081.54 15053.34 11078.60 26985.25 10253.46 27060.53 19288.66 11545.69 9589.24 12256.49 20679.62 9489.19 113
ab-mvs70.65 14069.11 14675.29 14480.87 16646.23 27173.48 30085.24 10359.99 16466.65 11480.94 22843.13 13488.69 14363.58 14068.07 18590.95 70
CS-MVS76.77 4576.70 4076.99 9883.55 9148.75 21488.60 4785.18 10466.38 5772.47 7391.62 5645.53 9690.99 7774.48 7682.51 6091.23 64
MVS_Test75.85 5974.93 6378.62 5784.08 8155.20 6183.99 16085.17 10568.07 3573.38 5982.76 19850.44 5189.00 13165.90 12380.61 7691.64 49
tfpnnormal61.47 26459.09 26868.62 27676.29 24541.69 31781.14 23785.16 10654.48 26351.32 29873.63 30632.32 26086.89 20921.78 37155.71 29977.29 311
test1279.24 3986.89 4156.08 4085.16 10672.27 7647.15 7691.10 7385.93 3590.54 78
131471.11 13169.41 14076.22 11379.32 19150.49 16980.23 25385.14 10859.44 17458.93 21588.89 11233.83 24889.60 11661.49 15577.42 10888.57 130
Anonymous2024052969.71 15767.28 17577.00 9783.78 8850.36 17588.87 4585.10 10947.22 31064.03 15383.37 19027.93 29092.10 5257.78 19667.44 19288.53 132
APD-MVScopyleft76.15 5375.68 5077.54 8188.52 2753.44 10587.26 7385.03 11053.79 26774.91 4491.68 5443.80 12090.31 9674.36 7781.82 6788.87 121
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MVS_111021_HR76.39 5075.38 5679.42 3785.33 6156.47 3388.15 5184.97 11165.15 7966.06 12489.88 9343.79 12192.16 4975.03 7280.03 8789.64 102
FMVSNet267.57 19765.79 20572.90 19982.71 12047.97 24185.15 11984.93 11258.55 19856.71 25478.26 25236.72 21586.67 21346.15 27662.94 23784.07 212
UniMVSNet (Re)67.71 19366.80 18170.45 24974.44 27142.93 30782.42 20684.90 11363.69 9959.63 20080.99 22747.18 7585.23 24951.17 24456.75 28683.19 233
baseline76.86 4476.24 4678.71 5380.47 17654.20 9083.90 16284.88 11471.38 1471.51 8389.15 10850.51 5090.55 9075.71 6578.65 9991.39 59
lupinMVS78.38 2478.11 2579.19 4083.02 10955.24 5891.57 1484.82 11569.12 2776.67 3892.02 4544.82 11090.23 10080.83 3580.09 8492.08 38
PS-MVSNAJss68.78 17467.17 17773.62 18873.01 28848.33 23084.95 13184.81 11659.30 18058.91 21779.84 23737.77 18988.86 13962.83 14563.12 23583.67 225
EG-PatchMatch MVS62.40 25959.59 26370.81 24573.29 28449.05 20385.81 9884.78 11751.85 28444.19 33273.48 30815.52 36289.85 10740.16 29967.24 19373.54 342
test250672.91 10072.43 9074.32 16580.12 18144.18 29583.19 18684.77 11864.02 9065.97 12587.43 13947.67 7188.72 14259.08 17479.66 9290.08 92
NR-MVSNet67.25 20665.99 20071.04 24273.27 28643.91 29685.32 11484.75 11966.05 6653.65 28482.11 21645.05 10385.97 23747.55 26656.18 29283.24 231
sss70.49 14270.13 13171.58 23381.59 14739.02 33280.78 24584.71 12059.34 17766.61 11688.09 12737.17 20685.52 24261.82 15471.02 16490.20 88
EC-MVSNet75.30 6675.20 5775.62 12880.98 16049.00 20687.43 6584.68 12163.49 10570.97 9090.15 8842.86 13791.14 7274.33 7881.90 6686.71 168
Anonymous2023121166.08 22963.67 23273.31 19283.07 10748.75 21486.01 9784.67 12245.27 32456.54 25676.67 27628.06 28988.95 13552.78 23359.95 25082.23 245
CDPH-MVS76.05 5575.19 5878.62 5786.51 4454.98 6987.32 6884.59 12358.62 19770.75 9190.85 7043.10 13590.63 8870.50 9884.51 5190.24 85
canonicalmvs78.17 2777.86 2879.12 4484.30 7754.22 8787.71 5984.57 12467.70 4277.70 3492.11 4450.90 4789.95 10678.18 5377.54 10793.20 15
MP-MVS-pluss75.54 6575.03 6077.04 9481.37 15552.65 12884.34 14984.46 12561.16 14369.14 9891.76 5139.98 17288.99 13378.19 5184.89 4789.48 107
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ZD-MVS89.55 1453.46 10284.38 12657.02 22873.97 5391.03 6344.57 11491.17 7075.41 7181.78 69
HFP-MVS74.37 7773.13 8378.10 7184.30 7753.68 9785.58 10784.36 12756.82 23265.78 12890.56 7340.70 16390.90 7969.18 10380.88 7389.71 100
ACMMPR73.76 8672.61 8577.24 9183.92 8552.96 12385.58 10784.29 12856.82 23265.12 13390.45 7737.24 20590.18 10169.18 10380.84 7488.58 129
API-MVS74.17 8072.07 10080.49 2290.02 1158.55 887.30 7084.27 12957.51 21965.77 12987.77 13341.61 15395.97 1151.71 23982.63 5986.94 159
TranMVSNet+NR-MVSNet66.94 21665.61 21070.93 24473.45 28243.38 30383.02 19284.25 13065.31 7758.33 23081.90 21939.92 17385.52 24249.43 25354.89 30583.89 221
test1184.25 130
PVSNet_BlendedMVS73.42 9473.30 7773.76 18285.91 4851.83 14486.18 9284.24 13265.40 7369.09 9980.86 22946.70 8288.13 16675.43 6865.92 20781.33 264
PVSNet_Blended76.53 4876.54 4176.50 10885.91 4851.83 14488.89 4484.24 13267.82 3969.09 9989.33 10546.70 8288.13 16675.43 6881.48 7189.55 104
region2R73.75 8772.55 8777.33 8583.90 8652.98 12285.54 11084.09 13456.83 23165.10 13490.45 7737.34 20390.24 9968.89 10580.83 7588.77 125
EPNet78.36 2578.49 2177.97 7385.49 5752.04 13889.36 3884.07 13573.22 777.03 3791.72 5249.32 6290.17 10273.46 8582.77 5891.69 48
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TEST985.68 5155.42 5187.59 6284.00 13657.72 21372.99 6390.98 6544.87 10888.58 147
train_agg76.91 4176.40 4378.45 6385.68 5155.42 5187.59 6284.00 13657.84 21172.99 6390.98 6544.99 10488.58 14778.19 5185.32 4291.34 63
jason77.01 4076.45 4278.69 5479.69 18654.74 7390.56 2483.99 13868.26 3174.10 5290.91 6842.14 14489.99 10579.30 4079.12 9591.36 61
jason: jason.
test_885.72 5055.31 5687.60 6183.88 13957.84 21172.84 6790.99 6444.99 10488.34 158
UnsupCasMVSNet_eth57.56 29355.15 29364.79 30864.57 35233.12 35373.17 30383.87 14058.98 19041.75 34470.03 33422.54 32879.92 30046.12 27735.31 36581.32 266
cascas69.01 16766.13 19677.66 7879.36 18955.41 5386.99 7783.75 14156.69 23658.92 21681.35 22524.31 31892.10 5253.23 22670.61 16785.46 193
dcpmvs_279.33 1978.94 1980.49 2289.75 1256.54 3184.83 13583.68 14267.85 3869.36 9790.24 8260.20 792.10 5284.14 1580.40 8092.82 21
HQP3-MVS83.68 14273.12 144
114514_t69.87 15567.88 16175.85 12588.38 2952.35 13486.94 7983.68 14253.70 26855.68 26485.60 16130.07 27991.20 6955.84 21271.02 16483.99 215
HQP-MVS72.34 11071.44 10975.03 15179.02 19751.56 15088.00 5383.68 14265.45 7064.48 14585.13 16537.35 20188.62 14566.70 11673.12 14484.91 201
agg_prior85.64 5454.92 7083.61 14672.53 7288.10 168
MP-MVScopyleft74.99 7274.33 6976.95 10082.89 11553.05 12085.63 10683.50 14757.86 21067.25 11090.24 8243.38 13088.85 14176.03 6282.23 6388.96 118
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
h-mvs3373.95 8272.89 8477.15 9280.17 18050.37 17484.68 14083.33 14868.08 3371.97 7788.65 11842.50 13891.15 7178.82 4457.78 28189.91 98
GBi-Net67.09 21165.47 21371.96 22182.71 12046.36 26583.52 16983.31 14958.55 19857.58 24176.23 28236.72 21586.20 22447.25 26963.40 22683.32 228
test167.09 21165.47 21371.96 22182.71 12046.36 26583.52 16983.31 14958.55 19857.58 24176.23 28236.72 21586.20 22447.25 26963.40 22683.32 228
FMVSNet164.57 23462.11 24071.96 22177.32 22846.36 26583.52 16983.31 14952.43 27954.42 27576.23 28227.80 29286.20 22442.59 29461.34 24683.32 228
OPM-MVS70.75 13969.58 13874.26 16775.55 25751.34 15686.05 9583.29 15261.94 13262.95 16885.77 15934.15 24388.44 15365.44 13171.07 16382.99 237
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
nrg03072.27 11471.56 10674.42 16175.93 25250.60 16686.97 7883.21 15362.75 11767.15 11184.38 17250.07 5386.66 21471.19 9362.37 24185.99 181
XVS72.92 9971.62 10576.81 10283.41 9452.48 12984.88 13383.20 15458.03 20463.91 15589.63 9835.50 22889.78 10965.50 12580.50 7888.16 135
X-MVStestdata65.85 23162.20 23976.81 10283.41 9452.48 12984.88 13383.20 15458.03 20463.91 1554.82 39835.50 22889.78 10965.50 12580.50 7888.16 135
HPM-MVScopyleft72.60 10571.50 10775.89 12482.02 13151.42 15480.70 24683.05 15656.12 24464.03 15389.53 9937.55 19788.37 15570.48 9980.04 8687.88 142
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
ACMMPcopyleft70.81 13869.29 14475.39 13881.52 15251.92 14283.43 17683.03 15756.67 23758.80 22088.91 11131.92 26688.58 14765.89 12473.39 14285.67 188
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CL-MVSNet_self_test62.98 25061.14 25068.50 27965.86 34242.96 30684.37 14782.98 15860.98 14853.95 28072.70 31540.43 16483.71 26641.10 29647.93 33378.83 291
DP-MVS Recon71.99 11670.31 12677.01 9690.65 853.44 10589.37 3782.97 15956.33 24263.56 16289.47 10034.02 24492.15 5154.05 22272.41 15185.43 194
DU-MVS66.84 21965.74 20770.16 25473.27 28642.59 31181.50 23082.92 16063.53 10358.51 22382.11 21640.75 16084.64 25953.11 22755.96 29583.24 231
PMMVS72.98 9872.05 10175.78 12683.57 9048.60 21784.08 15682.85 16161.62 13668.24 10490.33 8128.35 28687.78 18072.71 8976.69 11490.95 70
test111171.06 13270.42 12372.97 19879.48 18841.49 32184.82 13682.74 16264.20 8762.98 16787.43 13935.20 23187.92 17258.54 18078.42 10289.49 106
HQP_MVS70.96 13569.91 13474.12 17077.95 21849.57 19185.76 10082.59 16363.60 10162.15 17783.28 19236.04 22488.30 16165.46 12872.34 15284.49 205
plane_prior582.59 16388.30 16165.46 12872.34 15284.49 205
CP-MVS72.59 10771.46 10876.00 12382.93 11452.32 13586.93 8082.48 16555.15 25463.65 15990.44 8035.03 23688.53 15168.69 10677.83 10587.15 157
SD-MVS76.18 5274.85 6480.18 2885.39 5956.90 2485.75 10282.45 16656.79 23474.48 4991.81 5043.72 12490.75 8474.61 7578.65 9992.91 19
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
ECVR-MVScopyleft71.81 12071.00 11574.26 16780.12 18143.49 30084.69 13982.16 16764.02 9064.64 14187.43 13935.04 23589.21 12461.24 15779.66 9290.08 92
PGM-MVS72.60 10571.20 11376.80 10582.95 11252.82 12583.07 19082.14 16856.51 24063.18 16489.81 9535.68 22789.76 11167.30 11380.19 8387.83 143
PCF-MVS61.03 1070.10 14768.40 15375.22 14877.15 23451.99 13979.30 26482.12 16956.47 24161.88 18086.48 15443.98 11787.24 19755.37 21472.79 14986.43 173
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
FA-MVS(test-final)69.00 16866.60 18776.19 11683.48 9347.96 24374.73 29182.07 17057.27 22462.18 17678.47 25136.09 22292.89 3353.76 22571.32 16287.73 146
WR-MVS_H58.91 28358.04 27461.54 32569.07 32533.83 35176.91 27881.99 17151.40 28748.17 31374.67 29440.23 16674.15 33831.78 33548.10 33176.64 318
v2v48269.55 16267.64 16775.26 14772.32 29853.83 9384.93 13281.94 17265.37 7560.80 18979.25 24341.62 15288.98 13463.03 14459.51 25682.98 238
MIMVSNet63.12 24960.29 25971.61 23075.92 25346.65 26165.15 33881.94 17259.14 18654.65 27369.47 33625.74 30680.63 29041.03 29769.56 17987.55 150
UnsupCasMVSNet_bld53.86 31250.53 31663.84 31063.52 35634.75 34571.38 31781.92 17446.53 31438.95 35457.93 36620.55 34080.20 29839.91 30034.09 37276.57 319
EPMVS68.45 17965.44 21577.47 8384.91 6856.17 3871.89 31681.91 17561.72 13560.85 18872.49 31636.21 22087.06 20247.32 26871.62 15889.17 114
v14868.24 18566.35 19073.88 17771.76 30151.47 15384.23 15281.90 17663.69 9958.94 21476.44 27843.72 12487.78 18060.63 16255.86 29782.39 244
testing359.97 27060.19 26059.32 33377.60 22330.01 36681.75 22181.79 17753.54 26950.34 30579.94 23448.99 6376.91 32617.19 38050.59 32671.03 356
mPP-MVS71.79 12270.38 12476.04 12182.65 12352.06 13784.45 14681.78 17855.59 24962.05 17989.68 9733.48 25088.28 16365.45 13078.24 10487.77 145
v114468.81 17266.82 18074.80 15572.34 29753.46 10284.68 14081.77 17964.25 8660.28 19377.91 25440.23 16688.95 13560.37 16959.52 25581.97 247
pm-mvs164.12 23862.56 23668.78 27271.68 30238.87 33382.89 19481.57 18055.54 25153.89 28177.82 25637.73 19286.74 21148.46 26253.49 31680.72 272
mvs_anonymous72.29 11270.74 11776.94 10182.85 11654.72 7578.43 27081.54 18163.77 9661.69 18179.32 24151.11 4485.31 24662.15 15175.79 12290.79 73
save fliter85.35 6056.34 3689.31 3981.46 18261.55 137
MVSFormer73.53 9272.19 9777.57 8083.02 10955.24 5881.63 22481.44 18350.28 29276.67 3890.91 6844.82 11086.11 22860.83 16080.09 8491.36 61
test_djsdf63.84 24061.56 24470.70 24668.78 32644.69 28881.63 22481.44 18350.28 29252.27 29376.26 28126.72 29986.11 22860.83 16055.84 29881.29 267
MTGPAbinary81.31 185
MTAPA72.73 10371.22 11277.27 8981.54 15053.57 9967.06 33681.31 18559.41 17568.39 10390.96 6736.07 22389.01 13073.80 8382.45 6289.23 111
tpm270.82 13768.44 15277.98 7280.78 16856.11 3974.21 29581.28 18760.24 16268.04 10575.27 29152.26 3888.50 15255.82 21368.03 18689.33 108
miper_lstm_enhance63.91 23962.30 23868.75 27375.06 26246.78 25969.02 32781.14 18859.68 17052.76 28972.39 31940.71 16277.99 31756.81 20553.09 31981.48 257
jajsoiax63.21 24860.84 25370.32 25268.33 33144.45 29081.23 23481.05 18953.37 27250.96 30277.81 25717.49 35385.49 24459.31 17358.05 27481.02 269
Syy-MVS61.51 26361.35 24762.00 32181.73 13830.09 36480.97 24081.02 19060.93 15055.06 26882.64 20335.09 23480.81 28716.40 38258.32 26775.10 331
myMVS_eth3d63.52 24463.56 23463.40 31481.73 13834.28 34780.97 24081.02 19060.93 15055.06 26882.64 20348.00 6980.81 28723.42 36758.32 26775.10 331
v119267.96 18865.74 20774.63 15671.79 30053.43 10784.06 15880.99 19263.19 11159.56 20277.46 26137.50 20088.65 14458.20 18758.93 26281.79 250
TR-MVS69.71 15767.85 16475.27 14682.94 11348.48 22387.40 6780.86 19357.15 22764.61 14387.08 14432.67 25789.64 11546.38 27471.55 16087.68 148
v14419267.86 18965.76 20674.16 16971.68 30253.09 11884.14 15580.83 19462.85 11659.21 21177.28 26439.30 17688.00 17158.67 17957.88 27981.40 261
mvs_tets62.96 25160.55 25570.19 25368.22 33444.24 29480.90 24280.74 19552.99 27550.82 30477.56 25816.74 35785.44 24559.04 17657.94 27680.89 270
Fast-Effi-MVS+72.73 10371.15 11477.48 8282.75 11954.76 7286.77 8380.64 19663.05 11365.93 12684.01 17844.42 11589.03 12956.45 20976.36 11988.64 127
LPG-MVS_test66.44 22464.58 22672.02 21874.42 27248.60 21783.07 19080.64 19654.69 26153.75 28283.83 18125.73 30786.98 20360.33 17064.71 21280.48 275
LGP-MVS_train72.02 21874.42 27248.60 21780.64 19654.69 26153.75 28283.83 18125.73 30786.98 20360.33 17064.71 21280.48 275
v192192067.45 20065.23 21974.10 17171.51 30552.90 12483.75 16780.44 19962.48 12559.12 21277.13 26536.98 20887.90 17357.53 19858.14 27381.49 255
KD-MVS_2432*160059.04 28156.44 28566.86 29179.07 19545.87 27572.13 31280.42 20055.03 25648.15 31471.01 32736.73 21378.05 31535.21 31930.18 37676.67 315
miper_refine_blended59.04 28156.44 28566.86 29179.07 19545.87 27572.13 31280.42 20055.03 25648.15 31471.01 32736.73 21378.05 31535.21 31930.18 37676.67 315
sd_testset67.79 19265.95 20173.32 19181.70 14046.33 26868.99 32880.30 20266.58 5261.64 18282.38 21130.45 27687.63 18755.86 21165.60 20886.01 179
GA-MVS69.04 16666.70 18476.06 12075.11 26052.36 13383.12 18880.23 20363.32 10860.65 19179.22 24430.98 27388.37 15561.25 15666.41 20187.46 152
v7n62.50 25659.27 26772.20 21467.25 33749.83 18877.87 27380.12 20452.50 27848.80 31273.07 31032.10 26287.90 17346.83 27254.92 30478.86 290
v867.25 20664.99 22274.04 17272.89 29153.31 11282.37 20780.11 20561.54 13854.29 27776.02 28742.89 13688.41 15458.43 18156.36 28780.39 277
dmvs_re67.61 19566.00 19972.42 21081.86 13543.45 30164.67 34180.00 20669.56 2560.07 19485.00 16834.71 23887.63 18751.48 24166.68 19686.17 177
v124066.99 21464.68 22573.93 17571.38 30852.66 12783.39 18079.98 20761.97 13158.44 22977.11 26635.25 23087.81 17556.46 20858.15 27181.33 264
diffmvspermissive75.11 7174.65 6776.46 10978.52 21053.35 10983.28 18479.94 20870.51 1871.64 8188.72 11446.02 9086.08 23377.52 5675.75 12489.96 96
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
UniMVSNet_ETH3D62.51 25560.49 25668.57 27868.30 33240.88 32773.89 29679.93 20951.81 28554.77 27179.61 23824.80 31481.10 28349.93 24961.35 24583.73 223
v1066.61 22164.20 23073.83 18072.59 29453.37 10881.88 21679.91 21061.11 14454.09 27975.60 28940.06 17088.26 16456.47 20756.10 29379.86 283
ACMP61.11 966.24 22764.33 22872.00 22074.89 26649.12 20183.18 18779.83 21155.41 25252.29 29282.68 20225.83 30586.10 23060.89 15963.94 22180.78 271
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
Anonymous2023120659.08 28057.59 27663.55 31268.77 32732.14 35980.26 25279.78 21250.00 29649.39 30872.39 31926.64 30078.36 31033.12 33157.94 27680.14 280
test-LLR69.65 16069.01 14771.60 23178.67 20548.17 23385.13 12079.72 21359.18 18463.13 16582.58 20536.91 21080.24 29660.56 16475.17 12986.39 174
test-mter68.36 18067.29 17471.60 23178.67 20548.17 23385.13 12079.72 21353.38 27163.13 16582.58 20527.23 29680.24 29660.56 16475.17 12986.39 174
ACMM58.35 1264.35 23662.01 24171.38 23574.21 27548.51 22182.25 20879.66 21547.61 30854.54 27480.11 23325.26 31086.00 23451.26 24263.16 23379.64 284
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ambc62.06 32053.98 37229.38 37035.08 38479.65 21641.37 34559.96 3616.27 38482.15 27635.34 31838.22 36174.65 334
MSLP-MVS++74.21 7972.25 9480.11 3181.45 15356.47 3386.32 8979.65 21658.19 20266.36 12092.29 4036.11 22190.66 8667.39 11282.49 6193.18 16
AUN-MVS68.20 18666.35 19073.76 18276.37 24047.45 25079.52 26179.52 21860.98 14862.34 17386.02 15636.59 21886.94 20662.32 14853.47 31786.89 160
APD-MVS_3200maxsize69.62 16168.23 15673.80 18181.58 14848.22 23281.91 21579.50 21948.21 30564.24 15089.75 9631.91 26787.55 19163.08 14373.85 14085.64 190
hse-mvs271.44 12770.68 11873.73 18476.34 24147.44 25179.45 26279.47 22068.08 3371.97 7786.01 15842.50 13886.93 20778.82 4453.46 31886.83 166
xiu_mvs_v1_base_debu71.60 12370.29 12775.55 13277.26 23053.15 11585.34 11179.37 22155.83 24672.54 6990.19 8522.38 32986.66 21473.28 8676.39 11686.85 163
xiu_mvs_v1_base71.60 12370.29 12775.55 13277.26 23053.15 11585.34 11179.37 22155.83 24672.54 6990.19 8522.38 32986.66 21473.28 8676.39 11686.85 163
xiu_mvs_v1_base_debi71.60 12370.29 12775.55 13277.26 23053.15 11585.34 11179.37 22155.83 24672.54 6990.19 8522.38 32986.66 21473.28 8676.39 11686.85 163
CANet_DTU73.71 8873.14 8175.40 13782.61 12450.05 18284.67 14279.36 22469.72 2375.39 4190.03 9129.41 28285.93 23967.99 11079.11 9690.22 86
SR-MVS70.92 13669.73 13674.50 15883.38 9850.48 17084.27 15179.35 22548.96 30266.57 11890.45 7733.65 24987.11 20066.42 11874.56 13585.91 184
IS-MVSNet68.80 17367.55 17072.54 20678.50 21143.43 30281.03 23879.35 22559.12 18757.27 24986.71 14946.05 8987.70 18344.32 28575.60 12586.49 171
BH-RMVSNet70.08 14868.01 15876.27 11184.21 8051.22 16087.29 7179.33 22758.96 19163.63 16086.77 14833.29 25290.30 9844.63 28373.96 13887.30 156
TransMVSNet (Re)62.82 25260.76 25469.02 26773.98 27841.61 31986.36 8879.30 22856.90 22952.53 29076.44 27841.85 15087.60 19038.83 30240.61 35777.86 305
cl____67.43 20165.93 20271.95 22476.33 24248.02 23982.58 19979.12 22961.30 14256.72 25376.92 27146.12 8786.44 22157.98 19056.31 28981.38 263
DIV-MVS_self_test67.43 20165.93 20271.94 22576.33 24248.01 24082.57 20079.11 23061.31 14156.73 25276.92 27146.09 8886.43 22257.98 19056.31 28981.39 262
HyFIR lowres test69.94 15467.58 16877.04 9477.11 23557.29 2081.49 23279.11 23058.27 20158.86 21880.41 23242.33 14086.96 20561.91 15268.68 18386.87 161
miper_enhance_ethall69.77 15668.90 14872.38 21178.93 20049.91 18583.29 18378.85 23264.90 8059.37 20679.46 23952.77 3385.16 25163.78 13858.72 26382.08 246
Baseline_NR-MVSNet65.49 23364.27 22969.13 26674.37 27441.65 31883.39 18078.85 23259.56 17159.62 20176.88 27340.75 16087.44 19249.99 24855.05 30378.28 301
PVSNet_Blended_VisFu73.40 9572.44 8976.30 11081.32 15754.70 7685.81 9878.82 23463.70 9864.53 14485.38 16447.11 7787.38 19567.75 11177.55 10686.81 167
test0.0.03 162.54 25462.44 23762.86 31872.28 29929.51 36982.93 19378.78 23559.18 18453.07 28782.41 20936.91 21077.39 32337.45 30558.96 26181.66 253
FOURS183.24 10149.90 18684.98 12878.76 23647.71 30773.42 58
tpm68.36 18067.48 17270.97 24379.93 18451.34 15676.58 28178.75 23767.73 4063.54 16374.86 29348.33 6472.36 35053.93 22363.71 22289.21 112
tpmrst71.04 13369.77 13574.86 15483.19 10355.86 4675.64 28378.73 23867.88 3764.99 13873.73 30249.96 5779.56 30565.92 12267.85 18989.14 115
pmmvs659.64 27357.15 27967.09 28866.01 34036.86 34280.50 24778.64 23945.05 32649.05 31073.94 30027.28 29586.10 23043.96 28749.94 32878.31 300
anonymousdsp60.46 26957.65 27568.88 26863.63 35545.09 28372.93 30478.63 24046.52 31551.12 29972.80 31421.46 33783.07 27357.79 19553.97 31178.47 296
V4267.66 19465.60 21173.86 17870.69 31553.63 9881.50 23078.61 24163.85 9559.49 20577.49 26037.98 18687.65 18562.33 14758.43 26680.29 278
CP-MVSNet58.54 28957.57 27761.46 32668.50 32933.96 35076.90 27978.60 24251.67 28647.83 31676.60 27734.99 23772.79 34735.45 31647.58 33577.64 309
UGNet68.71 17567.11 17873.50 19080.55 17547.61 24884.08 15678.51 24359.45 17365.68 13082.73 20123.78 32085.08 25352.80 23276.40 11587.80 144
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
cl2268.85 16967.69 16672.35 21278.07 21749.98 18482.45 20578.48 24462.50 12458.46 22777.95 25349.99 5585.17 25062.55 14658.72 26381.90 249
miper_ehance_all_eth68.70 17767.58 16872.08 21676.91 23749.48 19782.47 20478.45 24562.68 11958.28 23177.88 25550.90 4785.01 25461.91 15258.72 26381.75 251
FE-MVS64.15 23760.43 25875.30 14380.85 16749.86 18768.28 33278.37 24650.26 29559.31 20873.79 30126.19 30391.92 5540.19 29866.67 19784.12 210
PEN-MVS58.35 29057.15 27961.94 32267.55 33634.39 34677.01 27778.35 24751.87 28347.72 31776.73 27533.91 24573.75 34234.03 32647.17 33977.68 307
MDTV_nov1_ep1361.56 24481.68 14255.12 6372.41 30878.18 24859.19 18258.85 21969.29 33734.69 23986.16 22736.76 31362.96 236
BH-w/o70.02 15068.51 15174.56 15782.77 11850.39 17386.60 8678.14 24959.77 16759.65 19985.57 16239.27 17787.30 19649.86 25074.94 13485.99 181
PS-CasMVS58.12 29157.03 28161.37 32768.24 33333.80 35276.73 28078.01 25051.20 28847.54 32076.20 28532.85 25472.76 34835.17 32147.37 33777.55 310
c3_l67.97 18766.66 18571.91 22776.20 24649.31 19982.13 21178.00 25161.99 13057.64 24076.94 27049.41 6084.93 25560.62 16357.01 28581.49 255
无先验85.19 11878.00 25149.08 30085.13 25252.78 23387.45 153
PVSNet62.49 869.27 16467.81 16573.64 18684.41 7651.85 14384.63 14377.80 25366.42 5659.80 19784.95 16922.14 33480.44 29455.03 21575.11 13188.62 128
PatchmatchNetpermissive67.07 21363.63 23377.40 8483.10 10458.03 972.11 31477.77 25458.85 19259.37 20670.83 32937.84 18884.93 25542.96 29169.83 17589.26 109
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
Vis-MVSNet (Re-imp)65.52 23265.63 20965.17 30577.49 22630.54 36175.49 28777.73 25559.34 17752.26 29486.69 15049.38 6180.53 29337.07 30975.28 12884.42 207
D2MVS63.49 24561.39 24669.77 26069.29 32348.93 20978.89 26777.71 25660.64 15749.70 30772.10 32427.08 29783.48 26954.48 21962.65 23876.90 313
tpmvs62.45 25859.42 26571.53 23483.93 8454.32 8570.03 32377.61 25751.91 28253.48 28568.29 34037.91 18786.66 21433.36 32858.27 26973.62 341
SCA63.84 24060.01 26275.32 14078.58 20957.92 1061.61 35277.53 25856.71 23557.75 23870.77 33031.97 26479.91 30248.80 25856.36 28788.13 138
Vis-MVSNetpermissive70.61 14169.34 14274.42 16180.95 16548.49 22286.03 9677.51 25958.74 19565.55 13187.78 13234.37 24185.95 23852.53 23780.61 7688.80 123
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
CDS-MVSNet70.48 14369.43 13973.64 18677.56 22548.83 21283.51 17377.45 26063.27 10962.33 17485.54 16343.85 11883.29 27257.38 20174.00 13788.79 124
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
BH-untuned68.28 18366.40 18973.91 17681.62 14550.01 18385.56 10977.39 26157.63 21657.47 24683.69 18536.36 21987.08 20144.81 28173.08 14784.65 204
Anonymous20240521170.11 14667.88 16176.79 10687.20 4047.24 25689.49 3577.38 26254.88 25966.14 12286.84 14720.93 33991.54 6156.45 20971.62 15891.59 51
PVSNet_057.04 1361.19 26557.24 27873.02 19677.45 22750.31 17879.43 26377.36 26363.96 9447.51 32172.45 31825.03 31283.78 26552.76 23519.22 38884.96 200
tpm cat166.28 22562.78 23576.77 10781.40 15457.14 2270.03 32377.19 26453.00 27458.76 22170.73 33246.17 8686.73 21243.27 28964.46 21686.44 172
TAMVS69.51 16368.16 15773.56 18976.30 24448.71 21682.57 20077.17 26562.10 12861.32 18584.23 17641.90 14983.46 27054.80 21873.09 14688.50 133
FMVSNet558.61 28656.45 28465.10 30677.20 23339.74 32974.77 29077.12 26650.27 29443.28 33867.71 34126.15 30476.90 32836.78 31254.78 30678.65 294
DTE-MVSNet57.03 29555.73 29160.95 33065.94 34132.57 35775.71 28277.09 26751.16 28946.65 32776.34 28032.84 25573.22 34630.94 33944.87 34877.06 312
SR-MVS-dyc-post68.27 18466.87 17972.48 20980.96 16248.14 23581.54 22876.98 26846.42 31762.75 17089.42 10131.17 27286.09 23260.52 16672.06 15583.19 233
RE-MVS-def66.66 18580.96 16248.14 23581.54 22876.98 26846.42 31762.75 17089.42 10129.28 28460.52 16672.06 15583.19 233
RPMNet59.29 27554.25 29874.42 16173.97 27956.57 2960.52 35576.98 26835.72 35757.49 24458.87 36537.73 19285.26 24827.01 35659.93 25181.42 259
eth_miper_zixun_eth66.98 21565.28 21872.06 21775.61 25650.40 17281.00 23976.97 27162.00 12956.99 25176.97 26944.84 10985.58 24158.75 17854.42 30980.21 279
1112_ss70.05 14969.37 14172.10 21580.77 16942.78 30985.12 12376.75 27259.69 16961.19 18692.12 4247.48 7383.84 26353.04 22968.21 18489.66 101
GeoE69.96 15367.88 16176.22 11381.11 15951.71 14784.15 15476.74 27359.83 16660.91 18784.38 17241.56 15488.10 16851.67 24070.57 16888.84 122
Effi-MVS+75.24 6773.61 7680.16 2981.92 13357.42 1985.21 11776.71 27460.68 15673.32 6089.34 10347.30 7491.63 5968.28 10879.72 9191.42 58
IterMVS-LS66.63 22065.36 21770.42 25075.10 26148.90 21081.45 23376.69 27561.05 14655.71 26377.10 26745.86 9283.65 26757.44 19957.88 27978.70 292
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
AdaColmapbinary67.86 18965.48 21275.00 15288.15 3354.99 6886.10 9476.63 27649.30 29957.80 23586.65 15129.39 28388.94 13745.10 28070.21 17281.06 268
dp64.41 23561.58 24372.90 19982.40 12654.09 9172.53 30676.59 27760.39 15955.68 26470.39 33335.18 23276.90 32839.34 30161.71 24487.73 146
JIA-IIPM52.33 32147.77 32866.03 29871.20 30946.92 25840.00 38176.48 27837.10 35246.73 32537.02 38132.96 25377.88 31935.97 31452.45 32273.29 344
TAPA-MVS56.12 1461.82 26260.18 26166.71 29378.48 21237.97 33875.19 28976.41 27946.82 31357.04 25086.52 15327.67 29477.03 32526.50 35867.02 19585.14 196
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ACMH53.70 1659.78 27155.94 29071.28 23676.59 23948.35 22780.15 25576.11 28049.74 29741.91 34373.45 30916.50 35990.31 9631.42 33657.63 28275.17 329
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
RRT_MVS63.68 24361.01 25271.70 22973.48 28145.98 27381.19 23576.08 28154.33 26552.84 28879.27 24222.21 33287.65 18554.13 22155.54 30181.46 258
EU-MVSNet52.63 31850.72 31558.37 33762.69 35928.13 37472.60 30575.97 28230.94 36840.76 35072.11 32320.16 34170.80 35435.11 32246.11 34576.19 323
HPM-MVS_fast67.86 18966.28 19372.61 20480.67 17248.34 22881.18 23675.95 28350.81 29059.55 20388.05 12927.86 29185.98 23558.83 17773.58 14183.51 226
Fast-Effi-MVS+-dtu66.53 22264.10 23173.84 17972.41 29652.30 13684.73 13775.66 28459.51 17256.34 25979.11 24628.11 28885.85 24057.74 19763.29 23083.35 227
EPNet_dtu66.25 22666.71 18364.87 30778.66 20734.12 34982.80 19575.51 28561.75 13464.47 14886.90 14637.06 20772.46 34943.65 28869.63 17888.02 141
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
IterMVS63.77 24261.67 24270.08 25672.68 29351.24 15980.44 24875.51 28560.51 15851.41 29773.70 30532.08 26378.91 30754.30 22054.35 31080.08 281
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
UA-Net67.32 20566.23 19470.59 24778.85 20141.23 32473.60 29875.45 28761.54 13866.61 11684.53 17138.73 18286.57 21942.48 29574.24 13683.98 217
OMC-MVS65.97 23065.06 22168.71 27472.97 28942.58 31378.61 26875.35 28854.72 26059.31 20886.25 15533.30 25177.88 31957.99 18967.05 19485.66 189
pmmvs562.80 25361.18 24967.66 28469.53 32142.37 31682.65 19875.19 28954.30 26652.03 29578.51 25031.64 26980.67 28948.60 26058.15 27179.95 282
OpenMVS_ROBcopyleft53.19 1759.20 27756.00 28968.83 27071.13 31044.30 29283.64 16875.02 29046.42 31746.48 32873.03 31118.69 34788.14 16527.74 35361.80 24374.05 338
test20.0355.22 30654.07 29958.68 33663.14 35725.00 37777.69 27474.78 29152.64 27643.43 33672.39 31926.21 30274.76 33729.31 34347.05 34176.28 322
our_test_359.11 27955.08 29571.18 24071.42 30653.29 11381.96 21374.52 29248.32 30442.08 34169.28 33828.14 28782.15 27634.35 32545.68 34778.11 304
Effi-MVS+-dtu66.24 22764.96 22370.08 25675.17 25949.64 19082.01 21274.48 29362.15 12757.83 23476.08 28630.59 27583.79 26465.40 13360.93 24876.81 314
iter_conf_final71.46 12669.68 13776.81 10286.03 4653.49 10084.73 13774.37 29460.27 16166.28 12184.36 17435.14 23390.87 8065.41 13270.51 16986.05 178
IterMVS-SCA-FT59.12 27858.81 27160.08 33170.68 31645.07 28480.42 24974.25 29543.54 33650.02 30673.73 30231.97 26456.74 37351.06 24553.60 31578.42 298
CPTT-MVS67.15 20965.84 20471.07 24180.96 16250.32 17781.94 21474.10 29646.18 32057.91 23387.64 13629.57 28181.31 28264.10 13770.18 17381.56 254
test_fmvsm_n_192075.56 6475.54 5375.61 12974.60 27049.51 19681.82 21974.08 29766.52 5580.40 2193.46 1746.95 7889.72 11286.69 775.30 12787.61 149
MIMVSNet150.35 32647.81 32757.96 33861.53 36127.80 37567.40 33474.06 29843.25 33733.31 37165.38 34916.03 36071.34 35221.80 37047.55 33674.75 333
PLCcopyleft52.38 1860.89 26658.97 27066.68 29581.77 13745.70 27878.96 26674.04 29943.66 33547.63 31883.19 19423.52 32377.78 32237.47 30460.46 24976.55 320
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
MVS_111021_LR69.07 16567.91 15972.54 20677.27 22949.56 19379.77 25773.96 30059.33 17960.73 19087.82 13130.19 27881.53 28069.94 10072.19 15486.53 170
PatchT56.60 29752.97 30467.48 28572.94 29046.16 27257.30 36373.78 30138.77 34754.37 27657.26 36837.52 19878.06 31432.02 33352.79 32078.23 303
Test_1112_low_res67.18 20866.23 19470.02 25978.75 20341.02 32583.43 17673.69 30257.29 22358.45 22882.39 21045.30 10080.88 28650.50 24666.26 20688.16 135
MSDG59.44 27455.14 29472.32 21374.69 26750.71 16374.39 29473.58 30344.44 33043.40 33777.52 25919.45 34390.87 8031.31 33757.49 28375.38 327
XVG-OURS-SEG-HR62.02 26059.54 26469.46 26365.30 34545.88 27465.06 33973.57 30446.45 31657.42 24783.35 19126.95 29878.09 31353.77 22464.03 21984.42 207
CVMVSNet60.85 26760.44 25762.07 31975.00 26432.73 35679.54 25973.49 30536.98 35356.28 26083.74 18329.28 28469.53 35846.48 27363.23 23183.94 220
XVG-OURS61.88 26159.34 26669.49 26265.37 34446.27 26964.80 34073.49 30547.04 31257.41 24882.85 19625.15 31178.18 31153.00 23064.98 21084.01 214
USDC54.36 30951.23 31363.76 31164.29 35337.71 33962.84 34973.48 30756.85 23035.47 36371.94 3259.23 37278.43 30938.43 30348.57 33075.13 330
Anonymous2024052151.65 32248.42 32461.34 32856.43 36939.65 33173.57 29973.47 30836.64 35536.59 35963.98 35110.75 36972.25 35135.35 31749.01 32972.11 349
KD-MVS_self_test49.24 32746.85 33056.44 34254.32 37022.87 38057.39 36273.36 30944.36 33137.98 35759.30 36418.97 34671.17 35333.48 32742.44 35375.26 328
test_fmvsmconf_n74.41 7674.05 7375.49 13574.16 27648.38 22682.66 19772.57 31067.05 4875.11 4392.88 3146.35 8587.81 17583.93 1771.71 15790.28 84
XVG-ACMP-BASELINE56.03 30252.85 30665.58 30061.91 36040.95 32663.36 34472.43 31145.20 32546.02 32974.09 2989.20 37378.12 31245.13 27958.27 26977.66 308
ppachtmachnet_test58.56 28754.34 29671.24 23771.42 30654.74 7381.84 21872.27 31249.02 30145.86 33168.99 33926.27 30183.30 27130.12 34043.23 35275.69 324
MDA-MVSNet-bldmvs51.56 32347.75 32963.00 31671.60 30447.32 25369.70 32672.12 31343.81 33427.65 38063.38 35221.97 33575.96 33227.30 35532.19 37365.70 367
test_fmvsmconf0.1_n73.69 8973.15 7975.34 13970.71 31348.26 23182.15 20971.83 31466.75 5174.47 5092.59 3644.89 10787.78 18083.59 1871.35 16189.97 95
旧先验181.57 14947.48 24971.83 31488.66 11536.94 20978.34 10388.67 126
CR-MVSNet62.47 25759.04 26972.77 20273.97 27956.57 2960.52 35571.72 31660.04 16357.49 24465.86 34638.94 17980.31 29542.86 29259.93 25181.42 259
Patchmtry56.56 29852.95 30567.42 28672.53 29550.59 16759.05 35971.72 31637.86 35146.92 32465.86 34638.94 17980.06 29936.94 31146.72 34371.60 352
YYNet153.82 31349.96 31865.41 30370.09 31948.95 20772.30 30971.66 31844.25 33231.89 37263.07 35423.73 32173.95 34033.26 32939.40 35973.34 343
MDA-MVSNet_test_wron53.82 31349.95 31965.43 30270.13 31849.05 20372.30 30971.65 31944.23 33331.85 37363.13 35323.68 32274.01 33933.25 33039.35 36073.23 345
新几何173.30 19383.10 10453.48 10171.43 32045.55 32266.14 12287.17 14333.88 24780.54 29248.50 26180.33 8285.88 186
pmmvs463.34 24761.07 25170.16 25470.14 31750.53 16879.97 25671.41 32155.08 25554.12 27878.58 24932.79 25682.09 27850.33 24757.22 28477.86 305
fmvsm_l_conf0.5_n75.95 5676.16 4775.31 14176.01 25148.44 22584.98 12871.08 32263.50 10481.70 1693.52 1550.00 5487.18 19887.80 576.87 11290.32 83
CMPMVSbinary40.41 2155.34 30552.64 30863.46 31360.88 36343.84 29761.58 35371.06 32330.43 36936.33 36074.63 29524.14 31975.44 33448.05 26466.62 19871.12 355
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
new-patchmatchnet48.21 32946.55 33153.18 34857.73 36718.19 39270.24 32171.02 32445.70 32133.70 36760.23 36018.00 35169.86 35727.97 35234.35 36971.49 354
iter_conf0573.51 9372.24 9577.33 8587.93 3655.97 4387.90 5770.81 32568.72 2864.04 15284.36 17447.54 7290.87 8071.11 9567.75 19085.13 197
fmvsm_l_conf0.5_n_a75.88 5876.07 4875.31 14176.08 24748.34 22885.24 11670.62 32663.13 11281.45 1793.62 1449.98 5687.40 19487.76 676.77 11390.20 88
testgi54.25 31052.57 30959.29 33462.76 35821.65 38472.21 31170.47 32753.25 27341.94 34277.33 26314.28 36377.95 31829.18 34451.72 32478.28 301
F-COLMAP55.96 30453.65 30262.87 31772.76 29242.77 31074.70 29370.37 32840.03 34441.11 34879.36 24017.77 35273.70 34332.80 33253.96 31272.15 348
ACMH+54.58 1558.55 28855.24 29268.50 27974.68 26845.80 27780.27 25170.21 32947.15 31142.77 34075.48 29016.73 35885.98 23535.10 32354.78 30673.72 340
test_fmvsmconf0.01_n71.97 11770.95 11675.04 15066.21 33947.87 24480.35 25070.08 33065.85 6972.69 6891.68 5439.99 17187.67 18482.03 2769.66 17689.58 103
ADS-MVSNet56.17 30151.95 31168.84 26980.60 17353.07 11955.03 36670.02 33144.72 32751.00 30061.19 35822.83 32578.88 30828.54 34853.63 31374.57 335
test_cas_vis1_n_192067.10 21066.60 18768.59 27765.17 34743.23 30483.23 18569.84 33255.34 25370.67 9287.71 13424.70 31676.66 33078.57 4864.20 21785.89 185
fmvsm_s_conf0.5_n74.48 7474.12 7175.56 13176.96 23647.85 24585.32 11469.80 33364.16 8878.74 2893.48 1645.51 9889.29 12186.48 866.62 19889.55 104
test_040256.45 29953.03 30366.69 29476.78 23850.31 17881.76 22069.61 33442.79 33943.88 33372.13 32222.82 32786.46 22016.57 38150.94 32563.31 370
fmvsm_s_conf0.1_n73.80 8573.26 7875.43 13673.28 28547.80 24684.57 14569.43 33563.34 10778.40 3193.29 2244.73 11389.22 12385.99 966.28 20589.26 109
mvsmamba66.93 21764.88 22473.09 19575.06 26247.26 25483.36 18269.21 33662.64 12055.68 26481.43 22429.72 28089.20 12563.35 14263.50 22582.79 241
testdata67.08 28977.59 22445.46 28069.20 33744.47 32971.50 8488.34 12231.21 27170.76 35552.20 23875.88 12185.03 198
fmvsm_s_conf0.5_n_a73.68 9073.15 7975.29 14475.45 25848.05 23883.88 16368.84 33863.43 10678.60 2993.37 2045.32 9988.92 13885.39 1164.04 21888.89 120
test_vis1_n_192068.59 17868.31 15469.44 26469.16 32441.51 32084.63 14368.58 33958.80 19373.26 6188.37 12025.30 30980.60 29179.10 4167.55 19186.23 176
fmvsm_s_conf0.1_n_a72.82 10272.05 10175.12 14970.95 31247.97 24182.72 19668.43 34062.52 12378.17 3293.08 2844.21 11688.86 13984.82 1363.54 22488.54 131
test22279.36 18950.97 16177.99 27267.84 34142.54 34062.84 16986.53 15230.26 27776.91 11185.23 195
pmmvs-eth3d55.97 30352.78 30765.54 30161.02 36246.44 26475.36 28867.72 34249.61 29843.65 33567.58 34221.63 33677.04 32444.11 28644.33 34973.15 346
LTVRE_ROB45.45 1952.73 31749.74 32061.69 32469.78 32034.99 34444.52 37467.60 34343.11 33843.79 33474.03 29918.54 34981.45 28128.39 35057.94 27668.62 359
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
LS3D56.40 30053.82 30064.12 30981.12 15845.69 27973.42 30166.14 34435.30 36143.24 33979.88 23522.18 33379.62 30419.10 37764.00 22067.05 361
ADS-MVSNet255.21 30751.44 31266.51 29680.60 17349.56 19355.03 36665.44 34544.72 32751.00 30061.19 35822.83 32575.41 33528.54 34853.63 31374.57 335
OurMVSNet-221017-052.39 32048.73 32363.35 31565.21 34638.42 33668.54 33164.95 34638.19 34839.57 35171.43 32613.23 36579.92 30037.16 30640.32 35871.72 351
SixPastTwentyTwo54.37 30850.10 31767.21 28770.70 31441.46 32274.73 29164.69 34747.56 30939.12 35369.49 33518.49 35084.69 25831.87 33434.20 37175.48 326
test_fmvsmvis_n_192071.29 12870.38 12474.00 17471.04 31148.79 21379.19 26564.62 34862.75 11766.73 11291.99 4740.94 15888.35 15783.00 2073.18 14384.85 203
DP-MVS59.24 27656.12 28868.63 27588.24 3250.35 17682.51 20364.43 34941.10 34346.70 32678.77 24824.75 31588.57 15022.26 36956.29 29166.96 362
CNLPA60.59 26858.44 27267.05 29079.21 19347.26 25479.75 25864.34 35042.46 34151.90 29683.94 17927.79 29375.41 33537.12 30759.49 25778.47 296
ANet_high34.39 34529.59 35148.78 35230.34 39422.28 38155.53 36563.79 35138.11 34915.47 38736.56 3846.94 37959.98 36713.93 3845.64 39864.08 368
dmvs_testset57.65 29258.21 27355.97 34474.62 2699.82 40063.75 34363.34 35267.23 4548.89 31183.68 18739.12 17876.14 33123.43 36659.80 25381.96 248
K. test v354.04 31149.42 32267.92 28368.55 32842.57 31475.51 28663.07 35352.07 28039.21 35264.59 35019.34 34482.21 27537.11 30825.31 38178.97 289
TinyColmap48.15 33044.49 33459.13 33565.73 34338.04 33763.34 34562.86 35438.78 34629.48 37567.23 3446.46 38373.30 34524.59 36241.90 35566.04 365
COLMAP_ROBcopyleft43.60 2050.90 32548.05 32659.47 33267.81 33540.57 32871.25 31862.72 35536.49 35636.19 36173.51 30713.48 36473.92 34120.71 37350.26 32763.92 369
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
PatchMatch-RL56.66 29653.75 30165.37 30477.91 22145.28 28269.78 32560.38 35641.35 34247.57 31973.73 30216.83 35676.91 32636.99 31059.21 26073.92 339
Gipumacopyleft27.47 35124.26 35637.12 36660.55 36429.17 37111.68 39360.00 35714.18 38510.52 39415.12 3952.20 39563.01 3638.39 38935.65 36419.18 391
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
bld_raw_dy_0_6459.75 27257.01 28267.96 28266.73 33845.30 28177.59 27559.97 35850.49 29147.15 32377.03 26817.45 35479.06 30656.92 20459.76 25479.51 285
Patchmatch-test53.33 31648.17 32568.81 27173.31 28342.38 31542.98 37658.23 35932.53 36338.79 35570.77 33039.66 17473.51 34425.18 36052.06 32390.55 76
pmmvs345.53 33541.55 33957.44 33948.97 38039.68 33070.06 32257.66 36028.32 37134.06 36657.29 3678.50 37666.85 36034.86 32434.26 37065.80 366
FPMVS35.40 34333.67 34740.57 36146.34 38328.74 37341.05 37857.05 36120.37 37922.27 38353.38 3726.87 38044.94 3868.62 38847.11 34048.01 380
Patchmatch-RL test58.72 28554.32 29771.92 22663.91 35444.25 29361.73 35155.19 36257.38 22249.31 30954.24 37037.60 19680.89 28562.19 15047.28 33890.63 75
MVS-HIRNet49.01 32844.71 33261.92 32376.06 24846.61 26263.23 34654.90 36324.77 37533.56 36836.60 38321.28 33875.88 33329.49 34262.54 23963.26 371
CHOSEN 280x42057.53 29456.38 28760.97 32974.01 27748.10 23746.30 37354.31 36448.18 30650.88 30377.43 26238.37 18559.16 37154.83 21663.14 23475.66 325
AllTest47.32 33144.66 33355.32 34665.08 34837.50 34062.96 34854.25 36535.45 35933.42 36972.82 3129.98 37059.33 36824.13 36343.84 35069.13 357
TestCases55.32 34665.08 34837.50 34054.25 36535.45 35933.42 36972.82 3129.98 37059.33 36824.13 36343.84 35069.13 357
ITE_SJBPF51.84 34958.03 36631.94 36053.57 36736.67 35441.32 34675.23 29211.17 36851.57 37825.81 35948.04 33272.02 350
TDRefinement40.91 33838.37 34248.55 35350.45 37833.03 35558.98 36050.97 36828.50 37029.89 37467.39 3436.21 38554.51 37517.67 37935.25 36658.11 372
LCM-MVSNet28.07 34923.85 35740.71 36027.46 39918.93 38730.82 38846.19 36912.76 38716.40 38534.70 3861.90 39648.69 38220.25 37424.22 38254.51 375
LCM-MVSNet-Re58.82 28456.54 28365.68 29979.31 19229.09 37261.39 35445.79 37060.73 15537.65 35872.47 31731.42 27081.08 28449.66 25170.41 17086.87 161
lessismore_v067.98 28164.76 35141.25 32345.75 37136.03 36265.63 34819.29 34584.11 26135.67 31521.24 38678.59 295
RPSCF45.77 33444.13 33650.68 35057.67 36829.66 36854.92 36845.25 37226.69 37345.92 33075.92 28817.43 35545.70 38427.44 35445.95 34676.67 315
WB-MVS37.41 34236.37 34340.54 36254.23 37110.43 39965.29 33743.75 37334.86 36227.81 37954.63 36924.94 31363.21 3626.81 39415.00 38947.98 381
door43.27 374
test_fmvs1_n52.55 31951.19 31456.65 34151.90 37530.14 36367.66 33342.84 37532.27 36562.30 17582.02 2189.12 37460.84 36457.82 19454.75 30878.99 288
test_fmvs153.60 31552.54 31056.78 34058.07 36530.26 36268.95 32942.19 37632.46 36463.59 16182.56 20711.55 36660.81 36558.25 18655.27 30279.28 286
SSC-MVS35.20 34434.30 34637.90 36452.58 3738.65 40261.86 35041.64 37731.81 36725.54 38152.94 37423.39 32459.28 3706.10 39512.86 39045.78 383
door-mid41.31 378
EGC-MVSNET33.75 34630.42 35043.75 35964.94 35036.21 34360.47 35740.70 3790.02 3990.10 40053.79 3717.39 37760.26 36611.09 38735.23 36734.79 385
test_vis1_n51.19 32449.66 32155.76 34551.26 37629.85 36767.20 33538.86 38032.12 36659.50 20479.86 2368.78 37558.23 37256.95 20352.46 32179.19 287
PM-MVS46.92 33243.76 33756.41 34352.18 37432.26 35863.21 34738.18 38137.99 35040.78 34966.20 3455.09 38665.42 36148.19 26341.99 35471.54 353
new_pmnet33.56 34731.89 34938.59 36349.01 37920.42 38551.01 36937.92 38220.58 37723.45 38246.79 3776.66 38249.28 38120.00 37631.57 37546.09 382
test_fmvs245.89 33344.32 33550.62 35145.85 38424.70 37858.87 36137.84 38325.22 37452.46 29174.56 2967.07 37854.69 37449.28 25547.70 33472.48 347
DSMNet-mixed38.35 34035.36 34547.33 35448.11 38214.91 39637.87 38236.60 38419.18 38034.37 36559.56 36315.53 36153.01 37720.14 37546.89 34274.07 337
LF4IMVS33.04 34832.55 34834.52 36740.96 38522.03 38244.45 37535.62 38520.42 37828.12 37862.35 3555.03 38731.88 39721.61 37234.42 36849.63 379
PMVScopyleft19.57 2225.07 35522.43 36032.99 37123.12 40122.98 37940.98 37935.19 38615.99 38411.95 39335.87 3851.47 39949.29 3805.41 39731.90 37426.70 390
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test_method24.09 35721.07 36133.16 37027.67 3988.35 40426.63 39035.11 3873.40 39614.35 38836.98 3823.46 39035.31 39219.08 37822.95 38355.81 374
test_fmvs337.95 34135.75 34444.55 35835.50 39018.92 38848.32 37034.00 38818.36 38241.31 34761.58 3562.29 39348.06 38342.72 29337.71 36266.66 363
E-PMN19.16 36018.40 36421.44 37736.19 38913.63 39747.59 37130.89 38910.73 3905.91 39716.59 3933.66 38939.77 3885.95 3968.14 39310.92 393
APD_test126.46 35424.41 35532.62 37237.58 38721.74 38340.50 38030.39 39011.45 38916.33 38643.76 3781.63 39841.62 38711.24 38626.82 38034.51 386
EMVS18.42 36117.66 36520.71 37834.13 39112.64 39846.94 37229.94 39110.46 3925.58 39814.93 3964.23 38838.83 3895.24 3987.51 39510.67 394
PMMVS226.71 35322.98 35837.87 36536.89 3888.51 40342.51 37729.32 39219.09 38113.01 38937.54 3802.23 39453.11 37614.54 38311.71 39151.99 378
mvsany_test143.38 33642.57 33845.82 35550.96 37726.10 37655.80 36427.74 39327.15 37247.41 32274.39 29718.67 34844.95 38544.66 28236.31 36366.40 364
test_vis1_rt40.29 33938.64 34145.25 35748.91 38130.09 36459.44 35827.07 39424.52 37638.48 35651.67 3756.71 38149.44 37944.33 28446.59 34456.23 373
testf121.11 35819.08 36227.18 37530.56 39218.28 39033.43 38624.48 3958.02 39312.02 39133.50 3870.75 40235.09 3937.68 39021.32 38428.17 388
APD_test221.11 35819.08 36227.18 37530.56 39218.28 39033.43 38624.48 3958.02 39312.02 39133.50 3870.75 40235.09 3937.68 39021.32 38428.17 388
MVEpermissive16.60 2317.34 36313.39 36629.16 37428.43 39719.72 38613.73 39223.63 3977.23 3957.96 39521.41 3910.80 40136.08 3916.97 39210.39 39231.69 387
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_f27.12 35224.85 35333.93 36926.17 40015.25 39530.24 38922.38 39812.53 38828.23 37749.43 3762.59 39234.34 39525.12 36126.99 37952.20 377
mvsany_test328.00 35025.98 35234.05 36828.97 39515.31 39434.54 38518.17 39916.24 38329.30 37653.37 3732.79 39133.38 39630.01 34120.41 38753.45 376
tmp_tt9.44 36410.68 3675.73 3812.49 4034.21 40510.48 39418.04 4000.34 39812.59 39020.49 39211.39 3677.03 40013.84 3856.46 3975.95 395
test_vis3_rt24.79 35622.95 35930.31 37328.59 39618.92 38837.43 38317.27 40112.90 38621.28 38429.92 3901.02 40036.35 39028.28 35129.82 37835.65 384
MTMP87.27 7215.34 402
DeepMVS_CXcopyleft13.10 37921.34 4028.99 40110.02 40310.59 3917.53 39630.55 3891.82 39714.55 3986.83 3937.52 39415.75 392
wuyk23d9.11 3658.77 36910.15 38040.18 38616.76 39320.28 3911.01 4042.58 3972.66 3990.98 3990.23 40412.49 3994.08 3996.90 3961.19 396
N_pmnet41.25 33739.77 34045.66 35668.50 3290.82 40672.51 3070.38 40535.61 35835.26 36461.51 35720.07 34267.74 35923.51 36540.63 35668.42 360
test_blank0.00 3700.00 3730.00 3840.00 4050.00 4080.00 3950.00 4060.00 4000.00 4030.00 4020.00 4050.00 4010.00 4020.00 3990.00 399
uanet_test0.00 3700.00 3730.00 3840.00 4050.00 4080.00 3950.00 4060.00 4000.00 4030.00 4020.00 4050.00 4010.00 4020.00 3990.00 399
DCPMVS0.00 3700.00 3730.00 3840.00 4050.00 4080.00 3950.00 4060.00 4000.00 4030.00 4020.00 4050.00 4010.00 4020.00 3990.00 399
pcd_1.5k_mvsjas3.15 3694.20 3720.00 3840.00 4050.00 4080.00 3950.00 4060.00 4000.00 4030.00 40237.77 1890.00 4010.00 4020.00 3990.00 399
sosnet-low-res0.00 3700.00 3730.00 3840.00 4050.00 4080.00 3950.00 4060.00 4000.00 4030.00 4020.00 4050.00 4010.00 4020.00 3990.00 399
sosnet0.00 3700.00 3730.00 3840.00 4050.00 4080.00 3950.00 4060.00 4000.00 4030.00 4020.00 4050.00 4010.00 4020.00 3990.00 399
uncertanet0.00 3700.00 3730.00 3840.00 4050.00 4080.00 3950.00 4060.00 4000.00 4030.00 4020.00 4050.00 4010.00 4020.00 3990.00 399
Regformer0.00 3700.00 3730.00 3840.00 4050.00 4080.00 3950.00 4060.00 4000.00 4030.00 4020.00 4050.00 4010.00 4020.00 3990.00 399
testmvs6.14 3678.18 3700.01 3820.01 4040.00 40873.40 3020.00 4060.00 4000.02 4010.15 4000.00 4050.00 4010.02 4000.00 3990.02 397
test1236.01 3688.01 3710.01 3820.00 4050.01 40771.93 3150.00 4060.00 4000.02 4010.11 4010.00 4050.00 4010.02 4000.00 3990.02 397
n20.00 406
nn0.00 406
ab-mvs-re7.68 36610.24 3680.00 3840.00 4050.00 4080.00 3950.00 4060.00 4000.00 40392.12 420.00 4050.00 4010.00 4020.00 3990.00 399
uanet0.00 3700.00 3730.00 3840.00 4050.00 4080.00 3950.00 4060.00 4000.00 4030.00 4020.00 4050.00 4010.00 4020.00 3990.00 399
WAC-MVS34.28 34722.56 368
PC_three_145266.58 5287.27 293.70 966.82 494.95 1789.74 391.98 493.98 5
eth-test20.00 405
eth-test0.00 405
OPU-MVS81.71 1292.05 355.97 4392.48 394.01 567.21 295.10 1589.82 292.55 394.06 3
test_0728_THIRD58.00 20681.91 1393.64 1156.54 1596.44 281.64 3086.86 2492.23 34
GSMVS88.13 138
test_part289.33 2355.48 5082.27 11
sam_mvs138.86 18188.13 138
sam_mvs35.99 226
test_post170.84 32014.72 39734.33 24283.86 26248.80 258
test_post16.22 39437.52 19884.72 257
patchmatchnet-post59.74 36238.41 18479.91 302
gm-plane-assit83.24 10154.21 8870.91 1588.23 12595.25 1466.37 119
test9_res78.72 4785.44 4191.39 59
agg_prior275.65 6685.11 4591.01 68
test_prior456.39 3587.15 75
test_prior289.04 4261.88 13373.55 5691.46 6148.01 6874.73 7485.46 40
旧先验281.73 22245.53 32374.66 4570.48 35658.31 185
新几何281.61 226
原ACMM283.77 166
testdata277.81 32145.64 278
segment_acmp44.97 106
testdata177.55 27664.14 89
plane_prior777.95 21848.46 224
plane_prior678.42 21349.39 19836.04 224
plane_prior483.28 192
plane_prior348.95 20764.01 9262.15 177
plane_prior285.76 10063.60 101
plane_prior178.31 215
plane_prior49.57 19187.43 6564.57 8372.84 148
HQP5-MVS51.56 150
HQP-NCC79.02 19788.00 5365.45 7064.48 145
ACMP_Plane79.02 19788.00 5365.45 7064.48 145
BP-MVS66.70 116
HQP4-MVS64.47 14888.61 14684.91 201
HQP2-MVS37.35 201
NP-MVS78.76 20250.43 17185.12 166
MDTV_nov1_ep13_2view43.62 29971.13 31954.95 25859.29 21036.76 21246.33 27587.32 155
ACMMP++_ref63.20 232
ACMMP++59.38 258
Test By Simon39.38 175