This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort by
thres20088.92 14087.65 15292.73 10296.30 9985.62 5197.85 6798.86 184.38 16884.82 17293.99 19575.12 16098.01 15470.86 29786.67 20394.56 222
thres100view90088.30 16186.95 17392.33 11996.10 10684.90 7397.14 12698.85 282.69 21283.41 19093.66 20275.43 15097.93 15669.04 30586.24 21094.17 224
tfpn200view988.48 15487.15 16792.47 11196.21 10285.30 5997.44 10098.85 283.37 19583.99 18293.82 19875.36 15397.93 15669.04 30586.24 21094.17 224
thres600view788.06 16686.70 17792.15 13196.10 10685.17 6597.14 12698.85 282.70 21183.41 19093.66 20275.43 15097.82 16567.13 31485.88 21493.45 240
thres40088.42 15787.15 16792.23 12596.21 10285.30 5997.44 10098.85 283.37 19583.99 18293.82 19875.36 15397.93 15669.04 30586.24 21093.45 240
MVS_111021_HR93.41 4093.39 4393.47 7697.34 8582.83 10997.56 8998.27 689.16 6389.71 11497.14 10479.77 7799.56 6693.65 6997.94 5998.02 83
sss90.87 10689.96 11593.60 6694.15 17183.84 9197.14 12698.13 785.93 12989.68 11596.09 13471.67 20399.30 8387.69 14589.16 17497.66 114
MM95.85 695.74 1096.15 896.34 9689.50 999.18 698.10 895.68 196.64 2197.92 6080.72 6599.80 2599.16 197.96 5799.15 26
MG-MVS94.25 2893.72 3495.85 1199.38 389.35 1197.98 6098.09 989.99 5392.34 7796.97 11281.30 6298.99 10788.54 13598.88 2099.20 24
VNet92.11 7191.22 8394.79 2696.91 9186.98 2897.91 6497.96 1086.38 12093.65 6095.74 14070.16 21998.95 11193.39 7188.87 17998.43 59
MVS_030495.36 1095.20 1795.85 1194.89 14789.22 1298.83 2697.88 1194.68 495.14 3997.99 5480.80 6499.81 2198.60 697.95 5898.50 54
test_yl91.46 8890.53 9894.24 4197.41 8085.18 6198.08 5397.72 1280.94 23789.85 11196.14 13275.61 14298.81 11990.42 11488.56 18598.74 39
DCV-MVSNet91.46 8890.53 9894.24 4197.41 8085.18 6198.08 5397.72 1280.94 23789.85 11196.14 13275.61 14298.81 11990.42 11488.56 18598.74 39
WTY-MVS92.65 5991.68 7595.56 1496.00 10888.90 1398.23 4497.65 1488.57 7089.82 11397.22 10279.29 8099.06 10489.57 12488.73 18198.73 43
EPNet94.06 3294.15 3193.76 5697.27 8784.35 8198.29 4297.64 1594.57 695.36 3496.88 11579.96 7699.12 10091.30 9796.11 10297.82 103
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
HY-MVS84.06 691.63 8490.37 10495.39 1896.12 10588.25 1690.22 32997.58 1688.33 7790.50 10691.96 22779.26 8199.06 10490.29 11689.07 17598.88 35
baseline290.39 11490.21 10890.93 17190.86 26980.99 15095.20 24297.41 1786.03 12780.07 23494.61 18090.58 697.47 18787.29 14989.86 16994.35 223
test250690.96 10390.39 10292.65 10593.54 18882.46 11696.37 18597.35 1886.78 11687.55 14695.25 15577.83 10597.50 18484.07 17294.80 11897.98 90
PVSNet82.34 989.02 13787.79 15092.71 10395.49 12681.50 14197.70 7997.29 1987.76 9085.47 16595.12 16756.90 30698.90 11580.33 20794.02 12897.71 111
testing22291.09 9890.49 10092.87 9595.82 11685.04 6896.51 17597.28 2086.05 12689.13 12495.34 15480.16 7496.62 23385.82 15888.31 18996.96 155
PGM-MVS91.93 7591.80 7392.32 12198.27 5079.74 18695.28 23697.27 2183.83 18690.89 10297.78 7076.12 13599.56 6688.82 13297.93 6197.66 114
IB-MVS85.34 488.67 14887.14 16993.26 7993.12 20484.32 8298.76 2797.27 2187.19 10779.36 24090.45 25183.92 4698.53 13084.41 16969.79 32096.93 157
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
test_fmvsm_n_192094.81 1995.60 1192.45 11295.29 13280.96 15299.29 397.21 2394.50 797.29 1498.44 2982.15 5699.78 2898.56 797.68 6696.61 170
patch_mono-295.14 1396.08 792.33 11998.44 4377.84 24398.43 3797.21 2392.58 2197.68 1197.65 7886.88 2599.83 1698.25 997.60 6899.33 18
MVS90.60 11088.64 13596.50 594.25 16790.53 893.33 29197.21 2377.59 29878.88 24397.31 9471.52 20699.69 4989.60 12398.03 5599.27 22
ETVMVS90.99 10190.26 10593.19 8395.81 11785.64 5096.97 14397.18 2685.43 13788.77 13394.86 17582.00 5896.37 24082.70 19488.60 18297.57 121
CSCG92.02 7291.65 7693.12 8598.53 3680.59 16197.47 9797.18 2677.06 30784.64 17797.98 5783.98 4499.52 6990.72 10697.33 7799.23 23
fmvsm_s_conf0.5_n93.69 3694.13 3292.34 11794.56 15482.01 12199.07 1697.13 2892.09 2596.25 2698.53 2276.47 12799.80 2598.39 894.71 12095.22 207
PHI-MVS93.59 3893.63 3793.48 7498.05 5881.76 13398.64 3297.13 2882.60 21494.09 5698.49 2680.35 6899.85 1094.74 5798.62 3398.83 36
CNVR-MVS96.30 196.54 195.55 1599.31 587.69 2399.06 1797.12 3094.66 596.79 1798.78 986.42 2899.95 397.59 2399.18 799.00 31
h-mvs3389.30 13388.95 13190.36 18895.07 14076.04 27696.96 14597.11 3190.39 4892.22 7995.10 16874.70 16598.86 11693.14 7865.89 35296.16 183
MCST-MVS96.17 396.12 696.32 799.42 289.36 1098.94 2497.10 3295.17 392.11 8198.46 2887.33 2499.97 297.21 2899.31 499.63 7
testing1192.48 6392.04 7093.78 5595.94 11286.00 3997.56 8997.08 3387.52 9689.32 12295.40 15284.60 3598.02 15391.93 9489.04 17697.32 138
VPA-MVSNet85.32 21083.83 21689.77 20890.25 27982.63 11196.36 18697.07 3483.03 20381.21 21989.02 26861.58 26896.31 24385.02 16670.95 30990.36 260
UWE-MVS88.56 15388.91 13387.50 25594.17 17072.19 31595.82 21797.05 3584.96 15284.78 17393.51 20681.33 6094.75 31479.43 21889.17 17395.57 196
DELS-MVS94.98 1494.49 2496.44 696.42 9590.59 799.21 597.02 3694.40 991.46 8997.08 10883.32 4999.69 4992.83 8398.70 3199.04 29
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
GG-mvs-BLEND93.49 7394.94 14486.26 3581.62 37697.00 3788.32 14094.30 18691.23 596.21 24788.49 13797.43 7498.00 88
fmvsm_s_conf0.5_n_a93.34 4193.71 3592.22 12693.38 19681.71 13698.86 2596.98 3891.64 3196.85 1698.55 1975.58 14599.77 2997.88 1993.68 13495.18 208
DPM-MVS96.21 295.53 1398.26 196.26 10195.09 199.15 896.98 3893.39 1696.45 2598.79 890.17 1099.99 189.33 12899.25 699.70 3
gg-mvs-nofinetune85.48 20982.90 23393.24 8094.51 16085.82 4479.22 38096.97 4061.19 37887.33 14953.01 39690.58 696.07 25086.07 15797.23 8097.81 104
NCCC95.63 795.94 894.69 3099.21 685.15 6699.16 796.96 4194.11 1195.59 3398.64 1785.07 3299.91 495.61 4799.10 999.00 31
FIs86.73 18986.10 18288.61 22690.05 28580.21 17396.14 20096.95 4285.56 13678.37 24892.30 22076.73 12495.28 29579.51 21679.27 26490.35 261
PVSNet_077.72 1581.70 27078.95 28789.94 20190.77 27276.72 26695.96 20696.95 4285.01 15070.24 32888.53 27652.32 32798.20 14986.68 15644.08 39394.89 212
HPM-MVS++copyleft95.32 1195.48 1494.85 2598.62 3486.04 3897.81 7196.93 4492.45 2295.69 3298.50 2585.38 3099.85 1094.75 5699.18 798.65 47
MSLP-MVS++94.28 2694.39 2793.97 4998.30 4984.06 8798.64 3296.93 4490.71 4293.08 6898.70 1579.98 7599.21 8894.12 6499.07 1198.63 48
testing9991.91 7691.35 8093.60 6695.98 11085.70 4697.31 11196.92 4686.82 11488.91 12895.25 15584.26 4297.89 16388.80 13387.94 19397.21 146
testing9191.90 7791.31 8293.66 6295.99 10985.68 4897.39 10796.89 4786.75 11888.85 13095.23 15883.93 4597.90 16288.91 13087.89 19497.41 133
UniMVSNet (Re)85.31 21184.23 21188.55 22789.75 28980.55 16396.72 16296.89 4785.42 13878.40 24788.93 26975.38 15295.52 28578.58 22768.02 33789.57 277
FC-MVSNet-test85.96 19985.39 19087.66 24889.38 29878.02 23495.65 22396.87 4985.12 14777.34 25591.94 22976.28 13394.74 31577.09 24278.82 26890.21 264
EI-MVSNet-Vis-set91.84 7991.77 7492.04 13697.60 7181.17 14596.61 16896.87 4988.20 8089.19 12397.55 8678.69 9299.14 9790.29 11690.94 16495.80 190
IU-MVS99.03 1585.34 5696.86 5192.05 2998.74 198.15 1198.97 1799.42 13
MSC_two_6792asdad97.14 399.05 992.19 496.83 5299.81 2198.08 1498.81 2499.43 11
No_MVS97.14 399.05 992.19 496.83 5299.81 2198.08 1498.81 2499.43 11
EI-MVSNet-UG-set91.35 9291.22 8391.73 14797.39 8280.68 15996.47 17796.83 5287.92 8688.30 14197.36 9377.84 10499.13 9989.43 12789.45 17195.37 202
SED-MVS95.88 596.22 494.87 2499.03 1585.03 6999.12 1296.78 5588.72 6797.79 798.91 288.48 1799.82 1898.15 1198.97 1799.74 1
test_241102_TWO96.78 5588.72 6797.70 998.91 287.86 2199.82 1898.15 1199.00 1599.47 9
test_241102_ONE99.03 1585.03 6996.78 5588.72 6797.79 798.90 588.48 1799.82 18
test072699.05 985.18 6199.11 1596.78 5588.75 6597.65 1298.91 287.69 22
MSP-MVS95.62 896.54 192.86 9698.31 4880.10 17797.42 10496.78 5592.20 2497.11 1598.29 3593.46 199.10 10196.01 4099.30 599.38 14
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
无先验96.87 15296.78 5577.39 30099.52 6979.95 21398.43 59
DVP-MVS++96.05 496.41 394.96 2399.05 985.34 5698.13 5096.77 6188.38 7597.70 998.77 1092.06 399.84 1297.47 2499.37 199.70 3
test_0728_SECOND95.14 1999.04 1486.14 3799.06 1796.77 6199.84 1297.90 1798.85 2199.45 10
SMA-MVScopyleft94.70 2194.68 2194.76 2798.02 5985.94 4297.47 9796.77 6185.32 14097.92 398.70 1583.09 5199.84 1295.79 4499.08 1098.49 55
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MVS_111021_LR91.60 8691.64 7791.47 15695.74 12078.79 21296.15 19996.77 6188.49 7288.64 13597.07 10972.33 19699.19 9393.13 8096.48 9796.43 175
3Dnovator82.32 1089.33 13287.64 15394.42 3593.73 18485.70 4697.73 7796.75 6586.73 11976.21 27595.93 13662.17 26199.68 5181.67 20097.81 6297.88 95
DPE-MVScopyleft95.32 1195.55 1294.64 3198.79 2384.87 7497.77 7396.74 6686.11 12396.54 2498.89 688.39 1999.74 3897.67 2299.05 1299.31 20
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
PVSNet_BlendedMVS90.05 12089.96 11590.33 18997.47 7683.86 8998.02 5996.73 6787.98 8489.53 11989.61 26376.42 12999.57 6494.29 6179.59 26187.57 327
PVSNet_Blended93.13 4292.98 4893.57 6897.47 7683.86 8999.32 296.73 6791.02 4089.53 11996.21 13176.42 12999.57 6494.29 6195.81 11097.29 142
ACMMPcopyleft90.39 11489.97 11491.64 15097.58 7378.21 23096.78 15996.72 6984.73 15784.72 17597.23 10171.22 20899.63 5788.37 14092.41 15297.08 152
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
新几何193.12 8597.44 7881.60 14096.71 7074.54 32491.22 9697.57 8279.13 8499.51 7177.40 24198.46 3998.26 71
test_one_060198.91 1884.56 8096.70 7188.06 8296.57 2398.77 1088.04 20
HFP-MVS92.89 4992.86 5192.98 9198.71 2581.12 14697.58 8796.70 7185.20 14591.75 8697.97 5978.47 9399.71 4590.95 10098.41 4298.12 79
ACMMPR92.69 5792.67 5492.75 10098.66 2880.57 16297.58 8796.69 7385.20 14591.57 8897.92 6077.01 11799.67 5390.95 10098.41 4298.00 88
DeepPCF-MVS89.82 194.61 2296.17 589.91 20297.09 9070.21 33598.99 2396.69 7395.57 295.08 4199.23 186.40 2999.87 897.84 2098.66 3299.65 6
thisisatest053089.65 12789.02 12891.53 15493.46 19480.78 15796.52 17396.67 7581.69 23083.79 18794.90 17488.85 1597.68 16977.80 23087.49 19996.14 184
tttt051788.57 15288.19 14389.71 20993.00 20675.99 28095.67 22196.67 7580.78 24181.82 21394.40 18488.97 1497.58 17576.05 25586.31 20795.57 196
thisisatest051590.95 10490.26 10593.01 9094.03 17984.27 8597.91 6496.67 7583.18 19886.87 15595.51 15088.66 1697.85 16480.46 20689.01 17796.92 159
ACMMP_NAP93.46 3993.23 4594.17 4497.16 8884.28 8496.82 15696.65 7886.24 12194.27 5397.99 5477.94 10199.83 1693.39 7198.57 3498.39 61
TEST998.64 3183.71 9297.82 6996.65 7884.29 17395.16 3698.09 4784.39 3799.36 81
train_agg94.28 2694.45 2593.74 5798.64 3183.71 9297.82 6996.65 7884.50 16495.16 3698.09 4784.33 3899.36 8195.91 4398.96 1998.16 75
131488.94 13987.20 16694.17 4493.21 19885.73 4593.33 29196.64 8182.89 20675.98 27896.36 12866.83 23599.39 7783.52 18796.02 10697.39 136
DeepC-MVS_fast89.06 294.48 2494.30 2995.02 2198.86 2185.68 4898.06 5696.64 8193.64 1491.74 8798.54 2080.17 7399.90 592.28 8898.75 2899.49 8
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_898.63 3383.64 9597.81 7196.63 8384.50 16495.10 4098.11 4684.33 3899.23 86
FE-MVS86.06 19884.15 21391.78 14694.33 16679.81 18184.58 36896.61 8476.69 30985.00 16987.38 29170.71 21598.37 14170.39 30091.70 16097.17 149
原ACMM191.22 16497.77 6578.10 23396.61 8481.05 23691.28 9597.42 9177.92 10398.98 10879.85 21598.51 3596.59 171
MAR-MVS90.63 10990.22 10791.86 14298.47 4278.20 23197.18 11996.61 8483.87 18588.18 14298.18 4068.71 22399.75 3683.66 18397.15 8197.63 117
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
ZD-MVS99.09 883.22 10496.60 8782.88 20793.61 6298.06 5282.93 5299.14 9795.51 5098.49 38
SteuartSystems-ACMMP94.13 3194.44 2693.20 8295.41 12881.35 14399.02 2196.59 8889.50 5994.18 5598.36 3283.68 4899.45 7594.77 5598.45 4098.81 37
Skip Steuart: Steuart Systems R&D Blog.
D2MVS82.67 25681.55 25386.04 28387.77 31576.47 26895.21 24196.58 8982.66 21370.26 32785.46 32560.39 27495.80 26776.40 25179.18 26585.83 354
save fliter98.24 5183.34 10198.61 3496.57 9091.32 34
TESTMET0.1,189.83 12489.34 12591.31 15892.54 22180.19 17497.11 12996.57 9086.15 12286.85 15691.83 23179.32 7996.95 21581.30 20192.35 15396.77 165
agg_prior98.59 3583.13 10596.56 9294.19 5499.16 96
旧先验197.39 8279.58 19196.54 9398.08 5084.00 4397.42 7597.62 118
WR-MVS_H81.02 27980.09 27383.79 31888.08 31171.26 33094.46 26196.54 9380.08 26072.81 31086.82 30170.36 21792.65 34564.18 32967.50 34387.46 332
9.1494.26 3098.10 5798.14 4796.52 9584.74 15694.83 4798.80 782.80 5499.37 8095.95 4298.42 41
region2R92.72 5592.70 5392.79 9998.68 2680.53 16697.53 9296.51 9685.22 14391.94 8497.98 5777.26 11299.67 5390.83 10498.37 4598.18 73
EPP-MVSNet89.76 12589.72 12189.87 20393.78 18176.02 27997.22 11396.51 9679.35 27385.11 16795.01 17184.82 3397.10 20987.46 14888.21 19196.50 173
ZNCC-MVS92.75 5192.60 5693.23 8198.24 5181.82 13197.63 8396.50 9885.00 15191.05 9897.74 7178.38 9499.80 2590.48 10998.34 4798.07 81
test1196.50 98
EPNet_dtu87.65 17587.89 14786.93 26994.57 15371.37 32996.72 16296.50 9888.56 7187.12 15395.02 17075.91 13994.01 33066.62 31790.00 16795.42 201
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
testdata90.13 19495.92 11374.17 29896.49 10173.49 33394.82 4897.99 5478.80 9097.93 15683.53 18697.52 7098.29 68
DVP-MVScopyleft95.58 995.91 994.57 3299.05 985.18 6199.06 1796.46 10288.75 6596.69 1898.76 1287.69 2299.76 3197.90 1798.85 2198.77 38
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test22296.15 10478.41 22195.87 21396.46 10271.97 34489.66 11697.45 8776.33 13298.24 5098.30 67
XVS92.69 5792.71 5292.63 10798.52 3780.29 16997.37 10896.44 10487.04 10991.38 9097.83 6877.24 11499.59 6090.46 11098.07 5398.02 83
X-MVStestdata86.26 19584.14 21492.63 10798.52 3780.29 16997.37 10896.44 10487.04 10991.38 9020.73 40777.24 11499.59 6090.46 11098.07 5398.02 83
SF-MVS94.17 2994.05 3394.55 3397.56 7485.95 4097.73 7796.43 10684.02 17895.07 4298.74 1482.93 5299.38 7895.42 5198.51 3598.32 64
TSAR-MVS + MP.94.79 2095.17 1893.64 6397.66 6984.10 8695.85 21596.42 10791.26 3597.49 1396.80 12086.50 2798.49 13295.54 4999.03 1398.33 63
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
APDe-MVScopyleft94.56 2394.75 2093.96 5098.84 2283.40 10098.04 5896.41 10885.79 13195.00 4398.28 3684.32 4199.18 9497.35 2698.77 2799.28 21
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
UniMVSNet_NR-MVSNet85.49 20884.59 20388.21 23789.44 29779.36 19596.71 16496.41 10885.22 14378.11 25090.98 24476.97 11995.14 30279.14 22268.30 33490.12 266
test_prior93.09 8798.68 2681.91 12696.40 11099.06 10498.29 68
CP-MVS92.54 6292.60 5692.34 11798.50 4079.90 18098.40 3996.40 11084.75 15590.48 10798.09 4777.40 11199.21 8891.15 9998.23 5197.92 94
CANet94.89 1694.64 2295.63 1397.55 7588.12 1799.06 1796.39 11294.07 1295.34 3597.80 6976.83 12299.87 897.08 3097.64 6798.89 34
GST-MVS92.43 6592.22 6593.04 8998.17 5481.64 13897.40 10696.38 11384.71 15890.90 10197.40 9277.55 10999.76 3189.75 12297.74 6497.72 109
alignmvs92.97 4792.26 6395.12 2095.54 12587.77 2198.67 3096.38 11388.04 8393.01 6997.45 8779.20 8398.60 12593.25 7788.76 18098.99 33
PAPM92.87 5092.40 5994.30 3792.25 23187.85 2096.40 18496.38 11391.07 3888.72 13496.90 11382.11 5797.37 19390.05 11997.70 6597.67 113
test_fmvsmconf_n93.99 3394.36 2892.86 9692.82 21381.12 14699.26 496.37 11693.47 1595.16 3698.21 3879.00 8599.64 5598.21 1096.73 9397.83 101
test1294.25 4098.34 4685.55 5296.35 11792.36 7680.84 6399.22 8798.31 4897.98 90
MTGPAbinary96.33 118
MTAPA92.45 6492.31 6192.86 9697.90 6180.85 15592.88 30296.33 11887.92 8690.20 11098.18 4076.71 12599.76 3192.57 8798.09 5297.96 93
ET-MVSNet_ETH3D90.01 12189.03 12792.95 9294.38 16486.77 3198.14 4796.31 12089.30 6163.33 35896.72 12490.09 1193.63 33790.70 10782.29 24598.46 57
EPMVS87.47 17885.90 18492.18 12895.41 12882.26 12087.00 35396.28 12185.88 13084.23 17985.57 32275.07 16196.26 24471.14 29592.50 15098.03 82
WB-MVSnew84.08 23183.51 22485.80 28591.34 25876.69 26795.62 22596.27 12281.77 22881.81 21492.81 21458.23 29094.70 31666.66 31687.06 20085.99 351
CDPH-MVS93.12 4392.91 4993.74 5798.65 3083.88 8897.67 8296.26 12383.00 20493.22 6698.24 3781.31 6199.21 8889.12 12998.74 3098.14 77
WR-MVS84.32 22782.96 23188.41 22989.38 29880.32 16896.59 16996.25 12483.97 18076.63 26590.36 25367.53 22894.86 31275.82 25870.09 31890.06 271
fmvsm_s_conf0.1_n92.93 4893.16 4792.24 12490.52 27581.92 12598.42 3896.24 12591.17 3696.02 3098.35 3375.34 15699.74 3897.84 2094.58 12295.05 209
UGNet87.73 17386.55 17891.27 16195.16 13779.11 20396.35 18796.23 12688.14 8187.83 14590.48 25050.65 33399.09 10280.13 21294.03 12795.60 195
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
tfpnnormal78.14 30375.42 31086.31 27988.33 30979.24 19894.41 26396.22 12773.51 33169.81 33085.52 32455.43 31695.75 27047.65 38467.86 33983.95 367
FOURS198.51 3978.01 23598.13 5096.21 12883.04 20294.39 52
MP-MVScopyleft92.61 6092.67 5492.42 11598.13 5679.73 18797.33 11096.20 12985.63 13390.53 10597.66 7478.14 9999.70 4892.12 9098.30 4997.85 99
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PAPR92.74 5292.17 6694.45 3498.89 2084.87 7497.20 11696.20 12987.73 9188.40 13898.12 4578.71 9199.76 3187.99 14296.28 9898.74 39
SD-MVS94.84 1895.02 1994.29 3897.87 6484.61 7897.76 7596.19 13189.59 5896.66 2098.17 4384.33 3899.60 5996.09 3998.50 3798.66 46
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
CHOSEN 280x42091.71 8391.85 7191.29 16094.94 14482.69 11087.89 34696.17 13285.94 12887.27 15094.31 18590.27 995.65 27794.04 6595.86 10895.53 198
fmvsm_l_conf0.5_n94.89 1695.24 1693.86 5294.42 16384.61 7899.13 1196.15 13392.06 2797.92 398.52 2384.52 3699.74 3898.76 595.67 11197.22 144
CHOSEN 1792x268891.07 10090.21 10893.64 6395.18 13683.53 9796.26 19296.13 13488.92 6484.90 17193.10 21272.86 18899.62 5888.86 13195.67 11197.79 105
PAPM_NR91.46 8890.82 9293.37 7798.50 4081.81 13295.03 25296.13 13484.65 16086.10 16197.65 7879.24 8299.75 3683.20 18996.88 8798.56 51
CostFormer89.08 13688.39 14091.15 16693.13 20379.15 20288.61 34096.11 13683.14 19989.58 11886.93 30083.83 4796.87 22188.22 14185.92 21397.42 132
mPP-MVS91.88 7891.82 7292.07 13398.38 4478.63 21597.29 11296.09 13785.12 14788.45 13797.66 7475.53 14699.68 5189.83 12098.02 5697.88 95
APD-MVScopyleft93.61 3793.59 3893.69 6198.76 2483.26 10397.21 11496.09 13782.41 21894.65 4998.21 3881.96 5998.81 11994.65 5898.36 4699.01 30
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MDTV_nov1_ep1383.69 21794.09 17581.01 14986.78 35596.09 13783.81 18784.75 17484.32 33974.44 17196.54 23463.88 33185.07 222
FA-MVS(test-final)87.71 17486.23 18192.17 12994.19 16980.55 16387.16 35296.07 14082.12 22385.98 16288.35 27872.04 20198.49 13280.26 20989.87 16897.48 130
QAPM86.88 18484.51 20593.98 4894.04 17785.89 4397.19 11796.05 14173.62 33075.12 29095.62 14662.02 26499.74 3870.88 29696.06 10496.30 182
MP-MVS-pluss92.58 6192.35 6093.29 7897.30 8682.53 11396.44 18096.04 14284.68 15989.12 12598.37 3177.48 11099.74 3893.31 7698.38 4497.59 120
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
fmvsm_s_conf0.1_n_a92.38 6692.49 5892.06 13488.08 31181.62 13997.97 6296.01 14390.62 4396.58 2298.33 3474.09 17599.71 4597.23 2793.46 13994.86 213
fmvsm_l_conf0.5_n_a94.91 1595.30 1593.72 6094.50 16184.30 8399.14 1096.00 14491.94 3097.91 598.60 1884.78 3499.77 2998.84 496.03 10597.08 152
tpm287.35 17986.26 18090.62 18192.93 21178.67 21488.06 34595.99 14579.33 27487.40 14786.43 31180.28 7096.40 23880.23 21085.73 21796.79 163
SDMVSNet87.02 18185.61 18691.24 16294.14 17283.30 10293.88 27995.98 14684.30 17179.63 23792.01 22358.23 29097.68 16990.28 11882.02 24692.75 243
DeepC-MVS86.58 391.53 8791.06 8992.94 9394.52 15781.89 12795.95 20795.98 14690.76 4183.76 18896.76 12173.24 18699.71 4591.67 9696.96 8497.22 144
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test-LLR88.48 15487.98 14689.98 19892.26 22977.23 25797.11 12995.96 14883.76 18986.30 15991.38 23572.30 19796.78 22780.82 20391.92 15795.94 187
test-mter88.95 13888.60 13689.98 19892.26 22977.23 25797.11 12995.96 14885.32 14086.30 15991.38 23576.37 13196.78 22780.82 20391.92 15795.94 187
DP-MVS Recon91.72 8290.85 9194.34 3699.50 185.00 7198.51 3695.96 14880.57 24688.08 14397.63 8076.84 12099.89 785.67 16094.88 11798.13 78
cdsmvs_eth3d_5k21.43 37428.57 3770.00 3930.00 4160.00 4180.00 40495.93 1510.00 4110.00 41297.66 7463.57 2540.00 4120.00 4110.00 4100.00 408
hse-mvs288.22 16488.21 14288.25 23593.54 18873.41 30195.41 23395.89 15290.39 4892.22 7994.22 18874.70 16596.66 23293.14 7864.37 35794.69 221
AUN-MVS86.25 19685.57 18788.26 23493.57 18773.38 30295.45 23195.88 15383.94 18285.47 16594.21 18973.70 18296.67 23183.54 18564.41 35694.73 220
TAMVS88.48 15487.79 15090.56 18391.09 26379.18 20096.45 17995.88 15383.64 19283.12 19493.33 20775.94 13895.74 27382.40 19588.27 19096.75 167
PVSNet_Blended_VisFu91.24 9490.77 9392.66 10495.09 13882.40 11797.77 7395.87 15588.26 7886.39 15793.94 19676.77 12399.27 8488.80 13394.00 13096.31 181
OpenMVScopyleft79.58 1486.09 19783.62 22193.50 7290.95 26586.71 3397.44 10095.83 15675.35 31672.64 31195.72 14157.42 30399.64 5571.41 29095.85 10994.13 227
CDS-MVSNet89.50 12988.96 13091.14 16791.94 24880.93 15397.09 13395.81 15784.26 17484.72 17594.20 19080.31 6995.64 27883.37 18888.96 17896.85 162
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
PS-MVSNAJ94.17 2993.52 4096.10 995.65 12392.35 298.21 4595.79 15892.42 2396.24 2798.18 4071.04 21199.17 9596.77 3397.39 7696.79 163
testing380.74 28381.17 25979.44 34891.15 26263.48 36697.16 12395.76 15980.83 23971.36 31893.15 21178.22 9787.30 38243.19 38979.67 26087.55 330
SR-MVS92.16 6992.27 6291.83 14598.37 4578.41 22196.67 16795.76 15982.19 22291.97 8298.07 5176.44 12898.64 12393.71 6897.27 7998.45 58
3Dnovator+82.88 889.63 12887.85 14894.99 2294.49 16286.76 3297.84 6895.74 16186.10 12475.47 28796.02 13565.00 24799.51 7182.91 19397.07 8398.72 44
HPM-MVScopyleft91.62 8591.53 7891.89 14197.88 6379.22 19996.99 13895.73 16282.07 22489.50 12197.19 10375.59 14498.93 11490.91 10297.94 5997.54 122
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
ab-mvs87.08 18084.94 20093.48 7493.34 19783.67 9488.82 33795.70 16381.18 23484.55 17890.14 25862.72 25898.94 11385.49 16282.54 24297.85 99
xiu_mvs_v2_base93.92 3493.26 4495.91 1095.07 14092.02 698.19 4695.68 16492.06 2796.01 3198.14 4470.83 21498.96 10996.74 3596.57 9596.76 166
CP-MVSNet81.01 28080.08 27483.79 31887.91 31470.51 33294.29 27195.65 16580.83 23972.54 31388.84 27063.71 25392.32 34868.58 30968.36 33388.55 304
PatchmatchNetpermissive86.83 18685.12 19791.95 13994.12 17482.27 11986.55 35795.64 16684.59 16282.98 19784.99 33477.26 11295.96 25868.61 30891.34 16297.64 116
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
API-MVS90.18 11888.97 12993.80 5498.66 2882.95 10897.50 9695.63 16775.16 31986.31 15897.69 7272.49 19399.90 581.26 20296.07 10398.56 51
AdaColmapbinary88.81 14487.61 15692.39 11699.33 479.95 17896.70 16695.58 16877.51 29983.05 19696.69 12561.90 26799.72 4384.29 17093.47 13897.50 128
SCA85.63 20583.64 22091.60 15392.30 22781.86 12992.88 30295.56 16984.85 15382.52 19885.12 33258.04 29395.39 28873.89 27587.58 19897.54 122
dp84.30 22882.31 24290.28 19094.24 16877.97 23686.57 35695.53 17079.94 26480.75 22385.16 33071.49 20796.39 23963.73 33283.36 23196.48 174
HyFIR lowres test89.36 13188.60 13691.63 15294.91 14680.76 15895.60 22695.53 17082.56 21584.03 18191.24 23978.03 10096.81 22587.07 15288.41 18897.32 138
APD-MVS_3200maxsize91.23 9591.35 8090.89 17497.89 6276.35 27296.30 19095.52 17279.82 26591.03 9997.88 6574.70 16598.54 12992.11 9196.89 8697.77 106
lupinMVS93.87 3593.58 3994.75 2893.00 20688.08 1899.15 895.50 17391.03 3994.90 4497.66 7478.84 8897.56 17694.64 5997.46 7198.62 49
tt080581.20 27879.06 28687.61 24986.50 32672.97 31093.66 28295.48 17474.11 32676.23 27491.99 22541.36 36997.40 19077.44 24074.78 29092.45 246
HPM-MVS_fast90.38 11690.17 11091.03 16997.61 7077.35 25597.15 12595.48 17479.51 27188.79 13196.90 11371.64 20598.81 11987.01 15397.44 7396.94 156
VPNet84.69 22082.92 23290.01 19689.01 30083.45 9996.71 16495.46 17685.71 13279.65 23692.18 22256.66 30996.01 25483.05 19267.84 34090.56 257
114514_t88.79 14687.57 15792.45 11298.21 5381.74 13496.99 13895.45 17775.16 31982.48 19995.69 14368.59 22498.50 13180.33 20795.18 11597.10 151
SR-MVS-dyc-post91.29 9391.45 7990.80 17697.76 6776.03 27796.20 19795.44 17880.56 24790.72 10397.84 6675.76 14198.61 12491.99 9296.79 9097.75 107
RE-MVS-def91.18 8797.76 6776.03 27796.20 19795.44 17880.56 24790.72 10397.84 6673.36 18591.99 9296.79 9097.75 107
JIA-IIPM79.00 29977.20 29884.40 31389.74 29164.06 36375.30 39095.44 17862.15 37281.90 21159.08 39478.92 8695.59 28266.51 32085.78 21693.54 237
RPMNet79.85 28975.92 30891.64 15090.16 28279.75 18479.02 38295.44 17858.43 38882.27 20772.55 38573.03 18798.41 14046.10 38686.25 20896.75 167
DU-MVS84.57 22383.33 22788.28 23388.76 30179.36 19596.43 18295.41 18285.42 13878.11 25090.82 24567.61 22595.14 30279.14 22268.30 33490.33 262
EI-MVSNet85.80 20285.20 19387.59 25191.55 25377.41 25395.13 24695.36 18380.43 25280.33 22994.71 17873.72 18095.97 25576.96 24578.64 27089.39 278
MVSTER89.25 13588.92 13290.24 19195.98 11084.66 7796.79 15895.36 18387.19 10780.33 22990.61 24990.02 1295.97 25585.38 16378.64 27090.09 269
CPTT-MVS89.72 12689.87 11989.29 21398.33 4773.30 30497.70 7995.35 18575.68 31587.40 14797.44 9070.43 21698.25 14689.56 12596.90 8596.33 180
EIA-MVS91.73 8092.05 6990.78 17894.52 15776.40 27198.06 5695.34 18689.19 6288.90 12997.28 9977.56 10897.73 16890.77 10596.86 8998.20 72
tpmvs83.04 25080.77 26389.84 20495.43 12777.96 23785.59 36395.32 18775.31 31876.27 27383.70 34473.89 17797.41 18959.53 34681.93 24894.14 226
PS-CasMVS80.27 28779.18 28383.52 32487.56 31869.88 33794.08 27495.29 18880.27 25772.08 31588.51 27759.22 28492.23 35067.49 31168.15 33688.45 310
TSAR-MVS + GP.94.35 2594.50 2393.89 5197.38 8483.04 10798.10 5295.29 18891.57 3293.81 5897.45 8786.64 2699.43 7696.28 3894.01 12999.20 24
tpmrst88.36 15887.38 16391.31 15894.36 16579.92 17987.32 35095.26 19085.32 14088.34 13986.13 31680.60 6796.70 22983.78 17785.34 22197.30 141
ETV-MVS92.72 5592.87 5092.28 12394.54 15681.89 12797.98 6095.21 19189.77 5793.11 6796.83 11777.23 11697.50 18495.74 4595.38 11497.44 131
NR-MVSNet83.35 24281.52 25588.84 22188.76 30181.31 14494.45 26295.16 19284.65 16067.81 33690.82 24570.36 21794.87 31174.75 26666.89 34990.33 262
test_fmvsmconf0.1_n93.08 4593.22 4692.65 10588.45 30780.81 15699.00 2295.11 19393.21 1794.00 5797.91 6276.84 12099.59 6097.91 1696.55 9697.54 122
jason92.73 5392.23 6494.21 4390.50 27687.30 2798.65 3195.09 19490.61 4492.76 7497.13 10575.28 15797.30 19693.32 7596.75 9298.02 83
jason: jason.
tpm cat183.63 23981.38 25690.39 18793.53 19378.19 23285.56 36495.09 19470.78 35078.51 24683.28 34774.80 16497.03 21066.77 31584.05 22695.95 186
cascas86.50 19084.48 20792.55 11092.64 21985.95 4097.04 13795.07 19675.32 31780.50 22591.02 24254.33 32497.98 15586.79 15587.62 19693.71 235
CVMVSNet84.83 21885.57 18782.63 33191.55 25360.38 37695.13 24695.03 19780.60 24582.10 20994.71 17866.40 23890.19 37074.30 27290.32 16697.31 140
test0.0.03 182.79 25482.48 24083.74 32086.81 32472.22 31396.52 17395.03 19783.76 18973.00 30793.20 20872.30 19788.88 37364.15 33077.52 27990.12 266
PMMVS89.46 13089.92 11788.06 23994.64 15169.57 34196.22 19494.95 19987.27 10391.37 9296.54 12765.88 23997.39 19188.54 13593.89 13197.23 143
CS-MVS92.73 5393.48 4190.48 18596.27 10075.93 28298.55 3594.93 20089.32 6094.54 5197.67 7378.91 8797.02 21193.80 6697.32 7898.49 55
Anonymous2024052983.15 24780.60 26790.80 17695.74 12078.27 22596.81 15794.92 20160.10 38381.89 21292.54 21845.82 35498.82 11879.25 22178.32 27695.31 204
mvs_anonymous88.68 14787.62 15591.86 14294.80 14981.69 13793.53 28794.92 20182.03 22578.87 24490.43 25275.77 14095.34 29185.04 16593.16 14398.55 53
CLD-MVS87.97 16987.48 16089.44 21192.16 23680.54 16598.14 4794.92 20191.41 3379.43 23995.40 15262.34 26097.27 19990.60 10882.90 23790.50 259
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
xiu_mvs_v1_base_debu90.54 11189.54 12293.55 6992.31 22487.58 2496.99 13894.87 20487.23 10493.27 6397.56 8357.43 30098.32 14292.72 8493.46 13994.74 217
xiu_mvs_v1_base90.54 11189.54 12293.55 6992.31 22487.58 2496.99 13894.87 20487.23 10493.27 6397.56 8357.43 30098.32 14292.72 8493.46 13994.74 217
xiu_mvs_v1_base_debi90.54 11189.54 12293.55 6992.31 22487.58 2496.99 13894.87 20487.23 10493.27 6397.56 8357.43 30098.32 14292.72 8493.46 13994.74 217
GA-MVS85.79 20384.04 21591.02 17089.47 29680.27 17196.90 15194.84 20785.57 13480.88 22189.08 26656.56 31096.47 23777.72 23385.35 22096.34 178
TranMVSNet+NR-MVSNet83.24 24681.71 25187.83 24387.71 31678.81 21196.13 20294.82 20884.52 16376.18 27690.78 24764.07 25294.60 31974.60 27066.59 35190.09 269
HQP3-MVS94.80 20983.01 234
HQP-MVS87.91 17187.55 15888.98 21992.08 24078.48 21797.63 8394.80 20990.52 4582.30 20394.56 18165.40 24397.32 19487.67 14683.01 23491.13 251
TAPA-MVS81.61 1285.02 21583.67 21889.06 21696.79 9273.27 30795.92 20994.79 21174.81 32280.47 22696.83 11771.07 21098.19 15049.82 37992.57 14895.71 193
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PEN-MVS79.47 29578.26 29183.08 32786.36 32868.58 34593.85 28094.77 21279.76 26671.37 31788.55 27459.79 27692.46 34664.50 32865.40 35388.19 315
CS-MVS-test92.98 4693.67 3690.90 17396.52 9476.87 26298.68 2994.73 21390.36 5094.84 4697.89 6477.94 10197.15 20794.28 6397.80 6398.70 45
HQP_MVS87.50 17787.09 17088.74 22491.86 24977.96 23797.18 11994.69 21489.89 5581.33 21794.15 19164.77 24997.30 19687.08 15082.82 23890.96 253
plane_prior594.69 21497.30 19687.08 15082.82 23890.96 253
tpm85.55 20784.47 20888.80 22390.19 28175.39 28788.79 33894.69 21484.83 15483.96 18485.21 32878.22 9794.68 31876.32 25378.02 27896.34 178
FMVSNet384.71 21982.71 23790.70 18094.55 15587.71 2295.92 20994.67 21781.73 22975.82 28288.08 28366.99 23394.47 32271.23 29275.38 28789.91 273
UA-Net88.92 14088.48 13990.24 19194.06 17677.18 25993.04 29994.66 21887.39 10091.09 9793.89 19774.92 16298.18 15175.83 25791.43 16195.35 203
LFMVS89.27 13487.64 15394.16 4697.16 8885.52 5397.18 11994.66 21879.17 27989.63 11796.57 12655.35 31798.22 14889.52 12689.54 17098.74 39
MVS_Test90.29 11789.18 12693.62 6595.23 13384.93 7294.41 26394.66 21884.31 16990.37 10991.02 24275.13 15997.82 16583.11 19194.42 12498.12 79
sasdasda92.27 6791.22 8395.41 1695.80 11888.31 1497.09 13394.64 22188.49 7292.99 7097.31 9472.68 19098.57 12793.38 7388.58 18399.36 16
canonicalmvs92.27 6791.22 8395.41 1695.80 11888.31 1497.09 13394.64 22188.49 7292.99 7097.31 9472.68 19098.57 12793.38 7388.58 18399.36 16
VDDNet86.44 19184.51 20592.22 12691.56 25281.83 13097.10 13294.64 22169.50 35687.84 14495.19 16248.01 34397.92 16189.82 12186.92 20196.89 160
baseline188.85 14387.49 15992.93 9495.21 13586.85 3095.47 23094.61 22487.29 10283.11 19594.99 17280.70 6696.89 21982.28 19673.72 29495.05 209
PatchT79.75 29076.85 30288.42 22889.55 29475.49 28677.37 38694.61 22463.07 36982.46 20073.32 38275.52 14793.41 34151.36 37384.43 22496.36 176
MS-PatchMatch83.05 24981.82 25086.72 27489.64 29279.10 20494.88 25594.59 22679.70 26870.67 32489.65 26250.43 33596.82 22470.82 29995.99 10784.25 364
casdiffmvs_mvgpermissive91.13 9790.45 10193.17 8492.99 20983.58 9697.46 9994.56 22787.69 9287.19 15294.98 17374.50 17097.60 17391.88 9592.79 14698.34 62
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline90.76 10790.10 11192.74 10192.90 21282.56 11294.60 26094.56 22787.69 9289.06 12795.67 14473.76 17997.51 18390.43 11392.23 15598.16 75
OMC-MVS88.80 14588.16 14490.72 17995.30 13177.92 24094.81 25794.51 22986.80 11584.97 17096.85 11667.53 22898.60 12585.08 16487.62 19695.63 194
MGCFI-Net91.95 7391.03 9094.72 2995.68 12286.38 3496.93 14894.48 23088.25 7992.78 7397.24 10072.34 19598.46 13593.13 8088.43 18799.32 19
MVSFormer91.36 9190.57 9793.73 5993.00 20688.08 1894.80 25894.48 23080.74 24294.90 4497.13 10578.84 8895.10 30583.77 17897.46 7198.02 83
test_djsdf83.00 25282.45 24184.64 30784.07 35869.78 33894.80 25894.48 23080.74 24275.41 28887.70 28761.32 27195.10 30583.77 17879.76 25789.04 293
casdiffmvspermissive90.95 10490.39 10292.63 10792.82 21382.53 11396.83 15494.47 23387.69 9288.47 13695.56 14974.04 17697.54 18090.90 10392.74 14797.83 101
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PCF-MVS84.09 586.77 18885.00 19992.08 13292.06 24383.07 10692.14 31094.47 23379.63 26976.90 26294.78 17771.15 20999.20 9272.87 28191.05 16393.98 230
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
VDD-MVS88.28 16287.02 17292.06 13495.09 13880.18 17597.55 9194.45 23583.09 20089.10 12695.92 13847.97 34498.49 13293.08 8286.91 20297.52 127
test_cas_vis1_n_192089.90 12390.02 11389.54 21090.14 28474.63 29398.71 2894.43 23693.04 1992.40 7596.35 12953.41 32699.08 10395.59 4896.16 10094.90 211
PLCcopyleft83.97 788.00 16887.38 16389.83 20598.02 5976.46 26997.16 12394.43 23679.26 27881.98 21096.28 13069.36 22199.27 8477.71 23492.25 15493.77 234
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
EC-MVSNet91.73 8092.11 6790.58 18293.54 18877.77 24698.07 5594.40 23887.44 9892.99 7097.11 10774.59 16996.87 22193.75 6797.08 8297.11 150
sd_testset84.62 22183.11 23089.17 21494.14 17277.78 24591.54 32094.38 23984.30 17179.63 23792.01 22352.28 32896.98 21377.67 23582.02 24692.75 243
FMVSNet282.79 25480.44 26989.83 20592.66 21685.43 5595.42 23294.35 24079.06 28274.46 29487.28 29256.38 31294.31 32569.72 30474.68 29189.76 275
test_vis1_n_192089.95 12290.59 9688.03 24192.36 22368.98 34499.12 1294.34 24193.86 1393.64 6197.01 11151.54 33099.59 6096.76 3496.71 9495.53 198
nrg03086.79 18785.43 18990.87 17588.76 30185.34 5697.06 13694.33 24284.31 16980.45 22791.98 22672.36 19496.36 24188.48 13871.13 30790.93 255
RRT_MVS83.88 23483.27 22885.71 28887.53 32072.12 31795.35 23594.33 24283.81 18775.86 28191.28 23860.55 27395.09 30783.93 17476.76 28189.90 274
ACMM80.70 1383.72 23882.85 23586.31 27991.19 26072.12 31795.88 21294.29 24480.44 25077.02 26091.96 22755.24 31897.14 20879.30 22080.38 25589.67 276
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
XXY-MVS83.84 23582.00 24789.35 21287.13 32281.38 14295.72 21994.26 24580.15 25975.92 28090.63 24861.96 26696.52 23578.98 22473.28 29990.14 265
Syy-MVS77.97 30678.05 29277.74 35592.13 23756.85 38293.97 27694.23 24682.43 21673.39 30093.57 20457.95 29687.86 37732.40 39582.34 24388.51 305
myMVS_eth3d81.93 26782.18 24381.18 33992.13 23767.18 35193.97 27694.23 24682.43 21673.39 30093.57 20476.98 11887.86 37750.53 37782.34 24388.51 305
cl2285.11 21484.17 21287.92 24295.06 14278.82 20995.51 22894.22 24879.74 26776.77 26387.92 28575.96 13795.68 27479.93 21472.42 30189.27 285
OPM-MVS85.84 20185.10 19888.06 23988.34 30877.83 24495.72 21994.20 24987.89 8880.45 22794.05 19358.57 28797.26 20083.88 17582.76 24089.09 290
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
Vis-MVSNet (Re-imp)88.88 14288.87 13488.91 22093.89 18074.43 29696.93 14894.19 25084.39 16783.22 19395.67 14478.24 9694.70 31678.88 22594.40 12597.61 119
Anonymous2023121179.72 29177.19 29987.33 25995.59 12477.16 26095.18 24594.18 25159.31 38672.57 31286.20 31547.89 34695.66 27574.53 27169.24 32689.18 287
PS-MVSNAJss84.91 21784.30 21086.74 27085.89 33874.40 29794.95 25394.16 25283.93 18376.45 26890.11 25971.04 21195.77 26883.16 19079.02 26790.06 271
LPG-MVS_test84.20 22983.49 22586.33 27690.88 26673.06 30895.28 23694.13 25382.20 22076.31 27093.20 20854.83 32296.95 21583.72 18080.83 25288.98 296
LGP-MVS_train86.33 27690.88 26673.06 30894.13 25382.20 22076.31 27093.20 20854.83 32296.95 21583.72 18080.83 25288.98 296
V4283.04 25081.53 25487.57 25386.27 33179.09 20595.87 21394.11 25580.35 25477.22 25886.79 30365.32 24596.02 25377.74 23270.14 31487.61 326
XVG-OURS-SEG-HR85.74 20485.16 19687.49 25790.22 28071.45 32891.29 32194.09 25681.37 23283.90 18695.22 15960.30 27597.53 18285.58 16184.42 22593.50 238
XVG-OURS85.18 21284.38 20987.59 25190.42 27871.73 32591.06 32494.07 25782.00 22683.29 19295.08 16956.42 31197.55 17883.70 18283.42 23093.49 239
miper_enhance_ethall85.95 20085.20 19388.19 23894.85 14879.76 18396.00 20494.06 25882.98 20577.74 25388.76 27179.42 7895.46 28780.58 20572.42 30189.36 283
v2v48283.46 24181.86 24988.25 23586.19 33279.65 18996.34 18894.02 25981.56 23177.32 25688.23 28065.62 24096.03 25177.77 23169.72 32289.09 290
jajsoiax82.12 26581.15 26085.03 30184.19 35670.70 33194.22 27293.95 26083.07 20173.48 29989.75 26149.66 33995.37 29082.24 19779.76 25789.02 294
test_fmvsmconf0.01_n91.08 9990.68 9592.29 12282.43 36680.12 17697.94 6393.93 26192.07 2691.97 8297.60 8167.56 22799.53 6897.09 2995.56 11397.21 146
v114482.90 25381.27 25887.78 24586.29 33079.07 20696.14 20093.93 26180.05 26177.38 25486.80 30265.50 24195.93 26075.21 26370.13 31588.33 313
KD-MVS_2432*160077.63 30974.92 31485.77 28690.86 26979.44 19288.08 34393.92 26376.26 31167.05 34082.78 34972.15 19991.92 35361.53 33941.62 39685.94 352
miper_refine_blended77.63 30974.92 31485.77 28690.86 26979.44 19288.08 34393.92 26376.26 31167.05 34082.78 34972.15 19991.92 35361.53 33941.62 39685.94 352
test_fmvsmvis_n_192092.12 7092.10 6892.17 12990.87 26881.04 14898.34 4193.90 26592.71 2087.24 15197.90 6374.83 16399.72 4396.96 3196.20 9995.76 192
UnsupCasMVSNet_eth73.25 33370.57 33881.30 33777.53 38066.33 35687.24 35193.89 26680.38 25357.90 37981.59 35442.91 36490.56 36765.18 32648.51 38787.01 337
v7n79.32 29777.34 29785.28 29784.05 35972.89 31293.38 28993.87 26775.02 32170.68 32384.37 33859.58 27995.62 28067.60 31067.50 34387.32 334
dcpmvs_293.10 4493.46 4292.02 13797.77 6579.73 18794.82 25693.86 26886.91 11191.33 9396.76 12185.20 3198.06 15296.90 3297.60 6898.27 70
Vis-MVSNetpermissive88.67 14887.82 14991.24 16292.68 21578.82 20996.95 14693.85 26987.55 9587.07 15495.13 16663.43 25597.21 20177.58 23796.15 10197.70 112
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
v14882.41 26280.89 26186.99 26886.18 33376.81 26496.27 19193.82 27080.49 24975.28 28986.11 31767.32 23195.75 27075.48 26167.03 34888.42 311
BH-w/o88.24 16387.47 16190.54 18495.03 14378.54 21697.41 10593.82 27084.08 17678.23 24994.51 18369.34 22297.21 20180.21 21194.58 12295.87 189
TR-MVS86.30 19484.93 20190.42 18694.63 15277.58 25096.57 17093.82 27080.30 25582.42 20195.16 16458.74 28697.55 17874.88 26587.82 19596.13 185
v119282.31 26380.55 26887.60 25085.94 33678.47 22095.85 21593.80 27379.33 27476.97 26186.51 30663.33 25695.87 26373.11 28070.13 31588.46 309
ACMP81.66 1184.00 23283.22 22986.33 27691.53 25572.95 31195.91 21193.79 27483.70 19173.79 29792.22 22154.31 32596.89 21983.98 17379.74 25989.16 288
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
v14419282.43 25980.73 26487.54 25485.81 33978.22 22795.98 20593.78 27579.09 28177.11 25986.49 30764.66 25195.91 26174.20 27369.42 32388.49 307
mvs_tets81.74 26980.71 26584.84 30284.22 35570.29 33493.91 27893.78 27582.77 21073.37 30289.46 26447.36 34995.31 29481.99 19879.55 26388.92 300
F-COLMAP84.50 22583.44 22687.67 24795.22 13472.22 31395.95 20793.78 27575.74 31476.30 27295.18 16359.50 28098.45 13772.67 28386.59 20592.35 248
UniMVSNet_ETH3D80.86 28278.75 28887.22 26486.31 32972.02 31991.95 31193.76 27873.51 33175.06 29190.16 25743.04 36395.66 27576.37 25278.55 27393.98 230
Fast-Effi-MVS+87.93 17086.94 17490.92 17294.04 17779.16 20198.26 4393.72 27981.29 23383.94 18592.90 21369.83 22096.68 23076.70 24791.74 15996.93 157
v192192082.02 26680.23 27287.41 25885.62 34077.92 24095.79 21893.69 28078.86 28576.67 26486.44 30962.50 25995.83 26572.69 28269.77 32188.47 308
DTE-MVSNet78.37 30177.06 30082.32 33485.22 34767.17 35493.40 28893.66 28178.71 28770.53 32588.29 27959.06 28592.23 35061.38 34263.28 36287.56 328
v881.88 26880.06 27687.32 26086.63 32579.04 20794.41 26393.65 28278.77 28673.19 30685.57 32266.87 23495.81 26673.84 27767.61 34287.11 335
diffmvspermissive91.17 9690.74 9492.44 11493.11 20582.50 11596.25 19393.62 28387.79 8990.40 10895.93 13673.44 18497.42 18893.62 7092.55 14997.41 133
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ADS-MVSNet81.26 27678.36 28989.96 20093.78 18179.78 18279.48 37893.60 28473.09 33680.14 23179.99 36362.15 26295.24 29759.49 34783.52 22894.85 214
PatchMatch-RL85.00 21683.66 21989.02 21895.86 11474.55 29592.49 30693.60 28479.30 27679.29 24191.47 23358.53 28898.45 13770.22 30192.17 15694.07 229
anonymousdsp80.98 28179.97 27784.01 31581.73 36870.44 33392.49 30693.58 28677.10 30672.98 30886.31 31357.58 29994.90 31079.32 21978.63 27286.69 340
CL-MVSNet_self_test75.81 32174.14 32380.83 34278.33 37867.79 34894.22 27293.52 28777.28 30369.82 32981.54 35561.47 27089.22 37257.59 35553.51 37885.48 356
miper_ehance_all_eth84.57 22383.60 22287.50 25592.64 21978.25 22695.40 23493.47 28879.28 27776.41 26987.64 28876.53 12695.24 29778.58 22772.42 30189.01 295
v124081.70 27079.83 28087.30 26285.50 34177.70 24995.48 22993.44 28978.46 29076.53 26786.44 30960.85 27295.84 26471.59 28970.17 31388.35 312
v1081.43 27479.53 28287.11 26586.38 32778.87 20894.31 26793.43 29077.88 29473.24 30585.26 32665.44 24295.75 27072.14 28667.71 34186.72 339
IterMVS-LS83.93 23382.80 23687.31 26191.46 25677.39 25495.66 22293.43 29080.44 25075.51 28687.26 29473.72 18095.16 30176.99 24370.72 31189.39 278
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
GBi-Net82.42 26080.43 27088.39 23092.66 21681.95 12294.30 26893.38 29279.06 28275.82 28285.66 31856.38 31293.84 33271.23 29275.38 28789.38 280
test182.42 26080.43 27088.39 23092.66 21681.95 12294.30 26893.38 29279.06 28275.82 28285.66 31856.38 31293.84 33271.23 29275.38 28789.38 280
FMVSNet179.50 29476.54 30488.39 23088.47 30681.95 12294.30 26893.38 29273.14 33572.04 31685.66 31843.86 35793.84 33265.48 32472.53 30089.38 280
BH-untuned86.95 18385.94 18389.99 19794.52 15777.46 25296.78 15993.37 29581.80 22776.62 26693.81 20066.64 23697.02 21176.06 25493.88 13295.48 200
Effi-MVS+-dtu84.61 22284.90 20283.72 32191.96 24663.14 36894.95 25393.34 29685.57 13479.79 23587.12 29761.99 26595.61 28183.55 18485.83 21592.41 247
CMPMVSbinary54.94 2175.71 32374.56 31879.17 35079.69 37455.98 38489.59 33193.30 29760.28 38153.85 38589.07 26747.68 34896.33 24276.55 24881.02 25085.22 357
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
cl____83.27 24482.12 24486.74 27092.20 23275.95 28195.11 24893.27 29878.44 29174.82 29287.02 29974.19 17395.19 29974.67 26869.32 32489.09 290
DIV-MVS_self_test83.27 24482.12 24486.74 27092.19 23375.92 28395.11 24893.26 29978.44 29174.81 29387.08 29874.19 17395.19 29974.66 26969.30 32589.11 289
dmvs_re84.10 23082.90 23387.70 24691.41 25773.28 30590.59 32793.19 30085.02 14977.96 25293.68 20157.92 29896.18 24875.50 26080.87 25193.63 236
miper_lstm_enhance81.66 27280.66 26684.67 30691.19 26071.97 32191.94 31293.19 30077.86 29572.27 31485.26 32673.46 18393.42 34073.71 27867.05 34788.61 303
eth_miper_zixun_eth83.12 24882.01 24686.47 27591.85 25174.80 29194.33 26693.18 30279.11 28075.74 28587.25 29572.71 18995.32 29376.78 24667.13 34689.27 285
pmmvs482.54 25880.79 26287.79 24486.11 33480.49 16793.55 28693.18 30277.29 30273.35 30389.40 26565.26 24695.05 30975.32 26273.61 29587.83 321
XVG-ACMP-BASELINE79.38 29677.90 29483.81 31784.98 34967.14 35589.03 33693.18 30280.26 25872.87 30988.15 28238.55 37496.26 24476.05 25578.05 27788.02 318
CANet_DTU90.98 10290.04 11293.83 5394.76 15086.23 3696.32 18993.12 30593.11 1893.71 5996.82 11963.08 25799.48 7384.29 17095.12 11695.77 191
IS-MVSNet88.67 14888.16 14490.20 19393.61 18576.86 26396.77 16193.07 30684.02 17883.62 18995.60 14774.69 16896.24 24678.43 22993.66 13697.49 129
c3_l83.80 23682.65 23887.25 26392.10 23977.74 24895.25 23993.04 30778.58 28876.01 27787.21 29675.25 15895.11 30477.54 23868.89 32888.91 301
UnsupCasMVSNet_bld68.60 35064.50 35480.92 34174.63 38967.80 34783.97 37092.94 30865.12 36754.63 38468.23 39035.97 37992.17 35260.13 34544.83 39182.78 371
MVP-Stereo82.65 25781.67 25285.59 29386.10 33578.29 22493.33 29192.82 30977.75 29669.17 33487.98 28459.28 28395.76 26971.77 28796.88 8782.73 372
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
Effi-MVS+90.70 10889.90 11893.09 8793.61 18583.48 9895.20 24292.79 31083.22 19791.82 8595.70 14271.82 20297.48 18691.25 9893.67 13598.32 64
EU-MVSNet76.92 31676.95 30176.83 35884.10 35754.73 38991.77 31592.71 31172.74 33969.57 33188.69 27258.03 29587.43 38164.91 32770.00 31988.33 313
pm-mvs180.05 28878.02 29386.15 28185.42 34275.81 28495.11 24892.69 31277.13 30470.36 32687.43 29058.44 28995.27 29671.36 29164.25 35887.36 333
1112_ss88.60 15187.47 16192.00 13893.21 19880.97 15196.47 17792.46 31383.64 19280.86 22297.30 9780.24 7197.62 17277.60 23685.49 21897.40 135
test_fmvs187.79 17288.52 13885.62 29292.98 21064.31 36097.88 6692.42 31487.95 8592.24 7895.82 13947.94 34598.44 13995.31 5294.09 12694.09 228
Test_1112_low_res88.03 16786.73 17591.94 14093.15 20180.88 15496.44 18092.41 31583.59 19480.74 22491.16 24080.18 7297.59 17477.48 23985.40 21997.36 137
test_fmvs1_n86.34 19386.72 17685.17 29987.54 31963.64 36596.91 15092.37 31687.49 9791.33 9395.58 14840.81 37298.46 13595.00 5493.49 13793.41 242
BH-RMVSNet86.84 18585.28 19291.49 15595.35 13080.26 17296.95 14692.21 31782.86 20881.77 21595.46 15159.34 28297.64 17169.79 30393.81 13396.57 172
GeoE86.36 19285.20 19389.83 20593.17 20076.13 27497.53 9292.11 31879.58 27080.99 22094.01 19466.60 23796.17 24973.48 27989.30 17297.20 148
LS3D82.22 26479.94 27889.06 21697.43 7974.06 30093.20 29792.05 31961.90 37373.33 30495.21 16059.35 28199.21 8854.54 36692.48 15193.90 232
EG-PatchMatch MVS74.92 32572.02 33283.62 32283.76 36373.28 30593.62 28492.04 32068.57 35858.88 37583.80 34331.87 38795.57 28456.97 35978.67 26982.00 378
IterMVS80.67 28479.16 28485.20 29889.79 28776.08 27592.97 30191.86 32180.28 25671.20 32085.14 33157.93 29791.34 36072.52 28470.74 31088.18 316
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
iter_conf05_1191.95 7391.17 8894.29 3896.33 9785.50 5499.61 191.84 32294.36 1097.89 698.51 2446.72 35098.24 14796.54 3698.75 2899.13 27
MIMVSNet79.18 29875.99 30788.72 22587.37 32180.66 16079.96 37791.82 32377.38 30174.33 29581.87 35341.78 36690.74 36666.36 32283.10 23394.76 216
IterMVS-SCA-FT80.51 28679.10 28584.73 30489.63 29374.66 29292.98 30091.81 32480.05 26171.06 32285.18 32958.04 29391.40 35972.48 28570.70 31288.12 317
our_test_377.90 30775.37 31185.48 29585.39 34376.74 26593.63 28391.67 32573.39 33465.72 34984.65 33758.20 29293.13 34357.82 35367.87 33886.57 342
pmmvs581.34 27579.54 28186.73 27385.02 34876.91 26196.22 19491.65 32677.65 29773.55 29888.61 27355.70 31594.43 32374.12 27473.35 29888.86 302
ACMH75.40 1777.99 30474.96 31287.10 26690.67 27376.41 27093.19 29891.64 32772.47 34263.44 35787.61 28943.34 36097.16 20458.34 35173.94 29387.72 322
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test_vis1_n85.60 20685.70 18585.33 29684.79 35064.98 35896.83 15491.61 32887.36 10191.00 10094.84 17636.14 37897.18 20395.66 4693.03 14493.82 233
Fast-Effi-MVS+-dtu83.33 24382.60 23985.50 29489.55 29469.38 34296.09 20391.38 32982.30 21975.96 27991.41 23456.71 30795.58 28375.13 26484.90 22391.54 249
YYNet173.53 33270.43 33982.85 32984.52 35371.73 32591.69 31791.37 33067.63 35946.79 38881.21 35755.04 32090.43 36855.93 36259.70 36986.38 344
ppachtmachnet_test77.19 31374.22 32186.13 28285.39 34378.22 22793.98 27591.36 33171.74 34667.11 33984.87 33556.67 30893.37 34252.21 37164.59 35586.80 338
Anonymous20240521184.41 22681.93 24891.85 14496.78 9378.41 22197.44 10091.34 33270.29 35284.06 18094.26 18741.09 37098.96 10979.46 21782.65 24198.17 74
MDA-MVSNet_test_wron73.54 33170.43 33982.86 32884.55 35171.85 32291.74 31691.32 33367.63 35946.73 38981.09 35855.11 31990.42 36955.91 36359.76 36886.31 345
CR-MVSNet83.53 24081.36 25790.06 19590.16 28279.75 18479.02 38291.12 33484.24 17582.27 20780.35 36175.45 14893.67 33663.37 33586.25 20896.75 167
Patchmtry77.36 31274.59 31785.67 29089.75 28975.75 28577.85 38591.12 33460.28 38171.23 31980.35 36175.45 14893.56 33857.94 35267.34 34587.68 324
LTVRE_ROB73.68 1877.99 30475.74 30984.74 30390.45 27772.02 31986.41 35891.12 33472.57 34166.63 34487.27 29354.95 32196.98 21356.29 36175.98 28285.21 358
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
OurMVSNet-221017-077.18 31476.06 30680.55 34383.78 36260.00 37890.35 32891.05 33777.01 30866.62 34587.92 28547.73 34794.03 32971.63 28868.44 33287.62 325
CNLPA86.96 18285.37 19191.72 14897.59 7279.34 19797.21 11491.05 33774.22 32578.90 24296.75 12367.21 23298.95 11174.68 26790.77 16596.88 161
Anonymous2024052172.06 34069.91 34178.50 35377.11 38361.67 37391.62 31990.97 33965.52 36662.37 36379.05 36636.32 37790.96 36457.75 35468.52 33182.87 369
KD-MVS_self_test70.97 34469.31 34475.95 36376.24 38855.39 38887.45 34890.94 34070.20 35362.96 36277.48 37044.01 35688.09 37561.25 34353.26 37984.37 363
pmmvs674.65 32771.67 33383.60 32379.13 37669.94 33693.31 29490.88 34161.05 38065.83 34884.15 34143.43 35994.83 31366.62 31760.63 36786.02 350
test111188.11 16587.04 17191.35 15793.15 20178.79 21296.57 17090.78 34286.88 11385.04 16895.20 16157.23 30597.39 19183.88 17594.59 12197.87 97
ECVR-MVScopyleft88.35 15987.25 16591.65 14993.54 18879.40 19496.56 17290.78 34286.78 11685.57 16495.25 15557.25 30497.56 17684.73 16894.80 11897.98 90
Anonymous2023120675.29 32473.64 32580.22 34480.75 36963.38 36793.36 29090.71 34473.09 33667.12 33883.70 34450.33 33690.85 36553.63 36970.10 31786.44 343
USDC78.65 30076.25 30585.85 28487.58 31774.60 29489.58 33290.58 34584.05 17763.13 35988.23 28040.69 37396.86 22366.57 31975.81 28586.09 349
MSDG80.62 28577.77 29589.14 21593.43 19577.24 25691.89 31390.18 34669.86 35568.02 33591.94 22952.21 32998.84 11759.32 34983.12 23291.35 250
ACMH+76.62 1677.47 31174.94 31385.05 30091.07 26471.58 32793.26 29590.01 34771.80 34564.76 35288.55 27441.62 36796.48 23662.35 33871.00 30887.09 336
FMVSNet576.46 31874.16 32283.35 32690.05 28576.17 27389.58 33289.85 34871.39 34865.29 35180.42 36050.61 33487.70 38061.05 34469.24 32686.18 347
ambc76.02 36168.11 39551.43 39064.97 39889.59 34960.49 37174.49 37817.17 39792.46 34661.50 34152.85 38184.17 365
test_fmvs279.59 29279.90 27978.67 35182.86 36555.82 38695.20 24289.55 35081.09 23580.12 23389.80 26034.31 38393.51 33987.82 14378.36 27586.69 340
ITE_SJBPF82.38 33287.00 32365.59 35789.55 35079.99 26369.37 33291.30 23741.60 36895.33 29262.86 33774.63 29286.24 346
pmmvs-eth3d73.59 33070.66 33782.38 33276.40 38673.38 30289.39 33589.43 35272.69 34060.34 37277.79 36946.43 35291.26 36266.42 32157.06 37282.51 373
test20.0372.36 33871.15 33575.98 36277.79 37959.16 38092.40 30889.35 35374.09 32761.50 36784.32 33948.09 34285.54 38750.63 37662.15 36583.24 368
SixPastTwentyTwo76.04 31974.32 32081.22 33884.54 35261.43 37491.16 32289.30 35477.89 29364.04 35486.31 31348.23 34194.29 32663.54 33463.84 36087.93 320
TransMVSNet (Re)76.94 31574.38 31984.62 30885.92 33775.25 28895.28 23689.18 35573.88 32967.22 33786.46 30859.64 27794.10 32859.24 35052.57 38284.50 362
MIMVSNet169.44 34666.65 35077.84 35476.48 38562.84 36987.42 34988.97 35666.96 36457.75 38079.72 36532.77 38685.83 38646.32 38563.42 36184.85 360
K. test v373.62 32971.59 33479.69 34682.98 36459.85 37990.85 32688.83 35777.13 30458.90 37482.11 35143.62 35891.72 35765.83 32354.10 37787.50 331
Baseline_NR-MVSNet81.22 27780.07 27584.68 30585.32 34675.12 28996.48 17688.80 35876.24 31377.28 25786.40 31267.61 22594.39 32475.73 25966.73 35084.54 361
MDA-MVSNet-bldmvs71.45 34267.94 34781.98 33685.33 34568.50 34692.35 30988.76 35970.40 35142.99 39281.96 35246.57 35191.31 36148.75 38354.39 37686.11 348
new-patchmatchnet68.85 34965.93 35177.61 35673.57 39163.94 36490.11 33088.73 36071.62 34755.08 38373.60 38040.84 37187.22 38351.35 37448.49 38881.67 381
Patchmatch-test78.25 30274.72 31688.83 22291.20 25974.10 29973.91 39388.70 36159.89 38466.82 34285.12 33278.38 9494.54 32048.84 38279.58 26297.86 98
iter_conf0590.14 11989.79 12091.17 16595.85 11586.93 2997.68 8188.67 36289.93 5481.73 21692.80 21590.37 896.03 25190.44 11280.65 25490.56 257
OpenMVS_ROBcopyleft68.52 2073.02 33569.57 34283.37 32580.54 37271.82 32393.60 28588.22 36362.37 37161.98 36583.15 34835.31 38295.47 28645.08 38775.88 28482.82 370
mvsany_test187.58 17688.22 14185.67 29089.78 28867.18 35195.25 23987.93 36483.96 18188.79 13197.06 11072.52 19294.53 32192.21 8986.45 20695.30 205
RPSCF77.73 30876.63 30381.06 34088.66 30555.76 38787.77 34787.88 36564.82 36874.14 29692.79 21649.22 34096.81 22567.47 31276.88 28090.62 256
mvsmamba85.17 21384.54 20487.05 26787.94 31375.11 29096.22 19487.79 36686.91 11178.55 24591.77 23264.93 24895.91 26186.94 15479.80 25690.12 266
MVS-HIRNet71.36 34367.00 34884.46 31290.58 27469.74 33979.15 38187.74 36746.09 39361.96 36650.50 39745.14 35595.64 27853.74 36888.11 19288.00 319
DP-MVS81.47 27378.28 29091.04 16898.14 5578.48 21795.09 25186.97 36861.14 37971.12 32192.78 21759.59 27899.38 7853.11 37086.61 20495.27 206
COLMAP_ROBcopyleft73.24 1975.74 32273.00 32983.94 31692.38 22269.08 34391.85 31486.93 36961.48 37665.32 35090.27 25442.27 36596.93 21850.91 37575.63 28685.80 355
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test_fmvs369.56 34569.19 34570.67 36769.01 39347.05 39390.87 32586.81 37071.31 34966.79 34377.15 37116.40 39883.17 39081.84 19962.51 36481.79 380
test_040272.68 33669.54 34382.09 33588.67 30471.81 32492.72 30486.77 37161.52 37562.21 36483.91 34243.22 36193.76 33534.60 39472.23 30480.72 382
testgi74.88 32673.40 32679.32 34980.13 37361.75 37193.21 29686.64 37279.49 27266.56 34691.06 24135.51 38188.67 37456.79 36071.25 30687.56 328
TDRefinement69.20 34865.78 35279.48 34766.04 39862.21 37088.21 34286.12 37362.92 37061.03 37085.61 32133.23 38494.16 32755.82 36453.02 38082.08 377
ADS-MVSNet279.57 29377.53 29685.71 28893.78 18172.13 31679.48 37886.11 37473.09 33680.14 23179.99 36362.15 26290.14 37159.49 34783.52 22894.85 214
LF4IMVS72.36 33870.82 33676.95 35779.18 37556.33 38386.12 36086.11 37469.30 35763.06 36086.66 30433.03 38592.25 34965.33 32568.64 33082.28 376
TinyColmap72.41 33768.99 34682.68 33088.11 31069.59 34088.41 34185.20 37665.55 36557.91 37884.82 33630.80 38995.94 25951.38 37268.70 32982.49 375
pmmvs365.75 35362.18 35676.45 36067.12 39764.54 35988.68 33985.05 37754.77 39257.54 38173.79 37929.40 39086.21 38555.49 36547.77 38978.62 384
bld_raw_dy_0_6488.31 16086.38 17994.07 4796.33 9784.79 7697.19 11784.75 37894.48 882.36 20298.47 2746.18 35398.30 14596.54 3681.13 24999.13 27
new_pmnet66.18 35263.18 35575.18 36576.27 38761.74 37283.79 37184.66 37956.64 39051.57 38671.85 38831.29 38887.93 37649.98 37862.55 36375.86 387
AllTest75.92 32073.06 32884.47 31092.18 23467.29 34991.07 32384.43 38067.63 35963.48 35590.18 25538.20 37597.16 20457.04 35773.37 29688.97 298
TestCases84.47 31092.18 23467.29 34984.43 38067.63 35963.48 35590.18 25538.20 37597.16 20457.04 35773.37 29688.97 298
LCM-MVSNet-Re83.75 23783.54 22384.39 31493.54 18864.14 36292.51 30584.03 38283.90 18466.14 34786.59 30567.36 23092.68 34484.89 16792.87 14596.35 177
Gipumacopyleft45.11 36842.05 37054.30 38480.69 37051.30 39135.80 40283.81 38328.13 39827.94 40234.53 40211.41 40576.70 39821.45 40154.65 37434.90 402
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
LCM-MVSNet52.52 36248.24 36565.35 37247.63 40941.45 40172.55 39483.62 38431.75 39737.66 39557.92 3959.19 40776.76 39749.26 38044.60 39277.84 385
FPMVS55.09 36052.93 36361.57 37855.98 40240.51 40383.11 37483.41 38537.61 39634.95 39771.95 38614.40 39976.95 39629.81 39665.16 35467.25 391
Patchmatch-RL test76.65 31774.01 32484.55 30977.37 38264.23 36178.49 38482.84 38678.48 28964.63 35373.40 38176.05 13691.70 35876.99 24357.84 37197.72 109
DSMNet-mixed73.13 33472.45 33075.19 36477.51 38146.82 39485.09 36682.01 38767.61 36369.27 33381.33 35650.89 33286.28 38454.54 36683.80 22792.46 245
lessismore_v079.98 34580.59 37158.34 38180.87 38858.49 37683.46 34643.10 36293.89 33163.11 33648.68 38687.72 322
test_f64.01 35462.13 35769.65 36863.00 40045.30 39983.66 37280.68 38961.30 37755.70 38272.62 38414.23 40084.64 38869.84 30258.11 37079.00 383
door80.13 390
door-mid79.75 391
PM-MVS69.32 34766.93 34976.49 35973.60 39055.84 38585.91 36179.32 39274.72 32361.09 36978.18 36821.76 39491.10 36370.86 29756.90 37382.51 373
mvsany_test367.19 35165.34 35372.72 36663.08 39948.57 39283.12 37378.09 39372.07 34361.21 36877.11 37222.94 39387.78 37978.59 22651.88 38381.80 379
dmvs_testset72.00 34173.36 32767.91 36983.83 36131.90 40985.30 36577.12 39482.80 20963.05 36192.46 21961.54 26982.55 39242.22 39171.89 30589.29 284
ANet_high46.22 36541.28 37261.04 37939.91 41146.25 39770.59 39576.18 39558.87 38723.09 40348.00 40012.58 40366.54 40328.65 39813.62 40470.35 389
test_method56.77 35754.53 36163.49 37676.49 38440.70 40275.68 38974.24 39619.47 40448.73 38771.89 38719.31 39565.80 40457.46 35647.51 39083.97 366
APD_test156.56 35853.58 36265.50 37167.93 39646.51 39677.24 38872.95 39738.09 39542.75 39375.17 37513.38 40182.78 39140.19 39254.53 37567.23 392
EGC-MVSNET52.46 36347.56 36667.15 37081.98 36760.11 37782.54 37572.44 3980.11 4100.70 41174.59 37725.11 39283.26 38929.04 39761.51 36658.09 395
PMMVS250.90 36446.31 36764.67 37355.53 40346.67 39577.30 38771.02 39940.89 39434.16 39859.32 3939.83 40676.14 39940.09 39328.63 40171.21 388
WB-MVS57.26 35656.22 35960.39 38069.29 39235.91 40786.39 35970.06 40059.84 38546.46 39072.71 38351.18 33178.11 39415.19 40434.89 39967.14 393
SSC-MVS56.01 35954.96 36059.17 38168.42 39434.13 40884.98 36769.23 40158.08 38945.36 39171.67 38950.30 33777.46 39514.28 40532.33 40065.91 394
test_vis1_rt73.96 32872.40 33178.64 35283.91 36061.16 37595.63 22468.18 40276.32 31060.09 37374.77 37629.01 39197.54 18087.74 14475.94 28377.22 386
MTMP97.53 9268.16 403
DeepMVS_CXcopyleft64.06 37578.53 37743.26 40068.11 40469.94 35438.55 39476.14 37418.53 39679.34 39343.72 38841.62 39669.57 390
PMVScopyleft34.80 2339.19 37035.53 37350.18 38529.72 41230.30 41059.60 40066.20 40526.06 40117.91 40549.53 3983.12 41174.09 40018.19 40349.40 38546.14 399
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
testf145.70 36642.41 36855.58 38253.29 40640.02 40468.96 39662.67 40627.45 39929.85 39961.58 3915.98 40973.83 40128.49 39943.46 39452.90 396
APD_test245.70 36642.41 36855.58 38253.29 40640.02 40468.96 39662.67 40627.45 39929.85 39961.58 3915.98 40973.83 40128.49 39943.46 39452.90 396
tmp_tt41.54 36941.93 37140.38 38720.10 41326.84 41161.93 39959.09 40814.81 40628.51 40180.58 35935.53 38048.33 40863.70 33313.11 40545.96 401
MVEpermissive35.65 2233.85 37129.49 37646.92 38641.86 41036.28 40650.45 40156.52 40918.75 40518.28 40437.84 4012.41 41258.41 40518.71 40220.62 40246.06 400
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN32.70 37232.39 37433.65 38853.35 40525.70 41274.07 39253.33 41021.08 40217.17 40633.63 40411.85 40454.84 40612.98 40614.04 40320.42 403
EMVS31.70 37331.45 37532.48 38950.72 40823.95 41374.78 39152.30 41120.36 40316.08 40731.48 40512.80 40253.60 40711.39 40713.10 40619.88 404
test_vis3_rt54.10 36151.04 36463.27 37758.16 40146.08 39884.17 36949.32 41256.48 39136.56 39649.48 3998.03 40891.91 35567.29 31349.87 38451.82 398
N_pmnet61.30 35560.20 35864.60 37484.32 35417.00 41591.67 31810.98 41361.77 37458.45 37778.55 36749.89 33891.83 35642.27 39063.94 35984.97 359
wuyk23d14.10 37513.89 37814.72 39055.23 40422.91 41433.83 4033.56 4144.94 4074.11 4082.28 4102.06 41319.66 40910.23 4088.74 4071.59 407
testmvs9.92 37612.94 3790.84 3920.65 4140.29 41793.78 2810.39 4150.42 4082.85 40915.84 4080.17 4150.30 4112.18 4090.21 4081.91 406
test1239.07 37711.73 3801.11 3910.50 4150.77 41689.44 3340.20 4160.34 4092.15 41010.72 4090.34 4140.32 4101.79 4100.08 4092.23 405
test_blank0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
uanet_test0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
DCPMVS0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
pcd_1.5k_mvsjas5.92 3797.89 3820.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 41171.04 2110.00 4120.00 4110.00 4100.00 408
sosnet-low-res0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
sosnet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
uncertanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
Regformer0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
n20.00 417
nn0.00 417
ab-mvs-re8.11 37810.81 3810.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 41297.30 970.00 4160.00 4120.00 4110.00 4100.00 408
uanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
WAC-MVS67.18 35149.00 381
PC_three_145291.12 3798.33 298.42 3092.51 299.81 2198.96 399.37 199.70 3
eth-test20.00 416
eth-test0.00 416
OPU-MVS97.30 299.19 792.31 399.12 1298.54 2092.06 399.84 1299.11 299.37 199.74 1
test_0728_THIRD88.38 7596.69 1898.76 1289.64 1399.76 3197.47 2498.84 2399.38 14
GSMVS97.54 122
test_part298.90 1985.14 6796.07 29
sam_mvs177.59 10797.54 122
sam_mvs75.35 155
test_post185.88 36230.24 40673.77 17895.07 30873.89 275
test_post33.80 40376.17 13495.97 255
patchmatchnet-post77.09 37377.78 10695.39 288
gm-plane-assit92.27 22879.64 19084.47 16695.15 16597.93 15685.81 159
test9_res96.00 4199.03 1398.31 66
agg_prior294.30 6099.00 1598.57 50
test_prior482.34 11897.75 76
test_prior298.37 4086.08 12594.57 5098.02 5383.14 5095.05 5398.79 26
旧先验296.97 14374.06 32896.10 2897.76 16788.38 139
新几何296.42 183
原ACMM296.84 153
testdata299.48 7376.45 250
segment_acmp82.69 55
testdata195.57 22787.44 98
plane_prior791.86 24977.55 251
plane_prior691.98 24577.92 24064.77 249
plane_prior494.15 191
plane_prior377.75 24790.17 5281.33 217
plane_prior297.18 11989.89 55
plane_prior191.95 247
plane_prior77.96 23797.52 9590.36 5082.96 236
HQP5-MVS78.48 217
HQP-NCC92.08 24097.63 8390.52 4582.30 203
ACMP_Plane92.08 24097.63 8390.52 4582.30 203
BP-MVS87.67 146
HQP4-MVS82.30 20397.32 19491.13 251
HQP2-MVS65.40 243
NP-MVS92.04 24478.22 22794.56 181
MDTV_nov1_ep13_2view81.74 13486.80 35480.65 24485.65 16374.26 17276.52 24996.98 154
ACMMP++_ref78.45 274
ACMMP++79.05 266
Test By Simon71.65 204