This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort by
thres20088.92 13287.65 14392.73 9396.30 9685.62 4597.85 6698.86 184.38 15984.82 16493.99 18675.12 15598.01 14970.86 28986.67 19394.56 212
thres100view90088.30 15186.95 16492.33 11096.10 10384.90 6597.14 12298.85 282.69 20483.41 18193.66 19375.43 14597.93 15169.04 29786.24 20094.17 214
tfpn200view988.48 14587.15 15892.47 10296.21 9985.30 5297.44 9898.85 283.37 18683.99 17393.82 18975.36 14897.93 15169.04 29786.24 20094.17 214
thres600view788.06 15686.70 16892.15 12296.10 10385.17 5897.14 12298.85 282.70 20383.41 18193.66 19375.43 14597.82 15867.13 30685.88 20493.45 230
thres40088.42 14887.15 15892.23 11696.21 9985.30 5297.44 9898.85 283.37 18683.99 17393.82 18975.36 14897.93 15169.04 29786.24 20093.45 230
MVS_111021_HR93.41 3993.39 4293.47 6997.34 8582.83 10197.56 8898.27 689.16 6189.71 11197.14 10079.77 7299.56 6693.65 6797.94 5898.02 79
sss90.87 9789.96 10693.60 6094.15 16183.84 8397.14 12298.13 785.93 12289.68 11296.09 13071.67 19699.30 8387.69 13989.16 17297.66 110
MM96.15 889.50 999.18 598.10 895.68 196.64 2097.92 5880.72 6199.80 2599.16 197.96 5699.15 24
MG-MVS94.25 2793.72 3395.85 1199.38 389.35 1197.98 5998.09 989.99 5192.34 7496.97 10881.30 5898.99 10788.54 12998.88 2099.20 22
VNet92.11 6891.22 7994.79 2596.91 9186.98 2797.91 6397.96 1086.38 11493.65 5995.74 13670.16 21298.95 11193.39 6988.87 17698.43 55
MVS_030495.36 995.20 1695.85 1194.89 13889.22 1298.83 2597.88 1194.68 495.14 3897.99 5280.80 6099.81 2198.60 697.95 5798.50 50
test_yl91.46 8190.53 9194.24 3897.41 8085.18 5498.08 5297.72 1280.94 22889.85 10896.14 12875.61 13798.81 11990.42 10988.56 18098.74 35
DCV-MVSNet91.46 8190.53 9194.24 3897.41 8085.18 5498.08 5297.72 1280.94 22889.85 10896.14 12875.61 13798.81 11990.42 10988.56 18098.74 35
WTY-MVS92.65 5891.68 7395.56 1496.00 10588.90 1398.23 4397.65 1488.57 6989.82 11097.22 9879.29 7599.06 10489.57 11988.73 17898.73 39
EPNet94.06 3194.15 3093.76 5197.27 8784.35 7398.29 4197.64 1594.57 695.36 3396.88 11179.96 7199.12 10091.30 9296.11 10197.82 99
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
HY-MVS84.06 691.63 7790.37 9695.39 1796.12 10288.25 1590.22 32097.58 1688.33 7590.50 10391.96 21779.26 7699.06 10490.29 11189.07 17398.88 31
baseline290.39 10590.21 9990.93 16290.86 25880.99 14295.20 23297.41 1786.03 12080.07 22494.61 17190.58 697.47 18087.29 14389.86 16894.35 213
test250690.96 9490.39 9492.65 9693.54 17882.46 10896.37 17797.35 1886.78 11187.55 13895.25 14977.83 10097.50 17784.07 16594.80 11797.98 86
PVSNet82.34 989.02 12987.79 14192.71 9495.49 11781.50 13397.70 7897.29 1987.76 8785.47 15795.12 15956.90 29898.90 11580.33 20094.02 12797.71 107
PGM-MVS91.93 7091.80 7192.32 11298.27 5079.74 17895.28 22697.27 2083.83 17790.89 9997.78 6876.12 13099.56 6688.82 12797.93 6097.66 110
IB-MVS85.34 488.67 14087.14 16093.26 7293.12 19484.32 7498.76 2697.27 2087.19 10379.36 23090.45 24283.92 4498.53 12984.41 16269.79 31196.93 148
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
test_fmvsm_n_192094.81 1895.60 1092.45 10395.29 12380.96 14499.29 297.21 2294.50 797.29 1398.44 2782.15 5499.78 2898.56 797.68 6596.61 161
patch_mono-295.14 1296.08 792.33 11098.44 4377.84 23598.43 3697.21 2292.58 1997.68 1097.65 7686.88 2699.83 1698.25 997.60 6799.33 17
MVS90.60 10188.64 12696.50 594.25 15890.53 893.33 28297.21 2277.59 28978.88 23397.31 9271.52 19999.69 4989.60 11898.03 5499.27 20
CSCG92.02 6991.65 7493.12 7798.53 3680.59 15397.47 9597.18 2577.06 29884.64 16897.98 5583.98 4399.52 6990.72 10197.33 7699.23 21
fmvsm_s_conf0.5_n93.69 3594.13 3192.34 10894.56 14582.01 11399.07 1597.13 2692.09 2396.25 2598.53 2276.47 12299.80 2598.39 894.71 11995.22 197
PHI-MVS93.59 3793.63 3693.48 6798.05 5881.76 12598.64 3197.13 2682.60 20694.09 5598.49 2580.35 6499.85 1094.74 5598.62 3298.83 32
CNVR-MVS96.30 196.54 195.55 1599.31 587.69 2299.06 1697.12 2894.66 596.79 1698.78 986.42 2999.95 397.59 2399.18 799.00 27
h-mvs3389.30 12588.95 12390.36 18095.07 13176.04 26796.96 13997.11 2990.39 4692.22 7695.10 16074.70 16098.86 11693.14 7565.89 34396.16 174
MCST-MVS96.17 396.12 696.32 799.42 289.36 1098.94 2397.10 3095.17 392.11 7898.46 2687.33 2499.97 297.21 2899.31 499.63 7
VPA-MVSNet85.32 20083.83 20689.77 20090.25 26882.63 10396.36 17897.07 3183.03 19581.21 20989.02 25961.58 26196.31 23485.02 15970.95 30090.36 251
DELS-MVS94.98 1394.49 2396.44 696.42 9590.59 799.21 497.02 3294.40 891.46 8697.08 10483.32 4799.69 4992.83 7998.70 3099.04 25
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
GG-mvs-BLEND93.49 6694.94 13586.26 3381.62 36797.00 3388.32 13294.30 17791.23 596.21 23888.49 13197.43 7398.00 84
fmvsm_s_conf0.5_n_a93.34 4093.71 3492.22 11793.38 18681.71 12898.86 2496.98 3491.64 2996.85 1598.55 1975.58 14099.77 2997.88 1993.68 13395.18 198
DPM-MVS96.21 295.53 1298.26 196.26 9895.09 199.15 796.98 3493.39 1496.45 2498.79 890.17 1099.99 189.33 12399.25 699.70 3
gg-mvs-nofinetune85.48 19982.90 22293.24 7394.51 15185.82 4179.22 37196.97 3661.19 36987.33 14153.01 38790.58 696.07 24186.07 15197.23 7997.81 100
NCCC95.63 695.94 894.69 2899.21 685.15 5999.16 696.96 3794.11 995.59 3298.64 1785.07 3399.91 495.61 4599.10 999.00 27
FIs86.73 17986.10 17288.61 21890.05 27480.21 16596.14 19296.95 3885.56 12978.37 23892.30 21076.73 11995.28 28779.51 20979.27 25490.35 252
PVSNet_077.72 1581.70 26078.95 27789.94 19390.77 26176.72 25895.96 19896.95 3885.01 14270.24 31988.53 26752.32 32098.20 14586.68 15044.08 38494.89 202
HPM-MVS++copyleft95.32 1095.48 1394.85 2498.62 3486.04 3697.81 7096.93 4092.45 2095.69 3198.50 2485.38 3199.85 1094.75 5499.18 798.65 43
MSLP-MVS++94.28 2594.39 2693.97 4598.30 4984.06 7998.64 3196.93 4090.71 4093.08 6798.70 1579.98 7099.21 8894.12 6299.07 1198.63 44
UniMVSNet (Re)85.31 20184.23 20188.55 21989.75 27880.55 15596.72 15596.89 4285.42 13078.40 23788.93 26075.38 14795.52 27778.58 21968.02 32889.57 268
FC-MVSNet-test85.96 18985.39 18087.66 24089.38 28778.02 22695.65 21496.87 4385.12 13977.34 24591.94 21976.28 12894.74 30677.09 23478.82 25890.21 255
EI-MVSNet-Vis-set91.84 7291.77 7292.04 12797.60 7181.17 13796.61 16196.87 4388.20 7789.19 11997.55 8478.69 8799.14 9790.29 11190.94 16395.80 181
IU-MVS99.03 1585.34 4996.86 4592.05 2798.74 198.15 1198.97 1799.42 13
MSC_two_6792asdad97.14 399.05 992.19 496.83 4699.81 2198.08 1498.81 2499.43 11
No_MVS97.14 399.05 992.19 496.83 4699.81 2198.08 1498.81 2499.43 11
EI-MVSNet-UG-set91.35 8591.22 7991.73 13897.39 8280.68 15196.47 16996.83 4687.92 8388.30 13397.36 9177.84 9999.13 9989.43 12289.45 17095.37 192
SED-MVS95.88 596.22 494.87 2399.03 1585.03 6199.12 1196.78 4988.72 6697.79 698.91 288.48 1799.82 1898.15 1198.97 1799.74 1
test_241102_TWO96.78 4988.72 6697.70 898.91 287.86 2199.82 1898.15 1199.00 1599.47 9
test_241102_ONE99.03 1585.03 6196.78 4988.72 6697.79 698.90 588.48 1799.82 18
test072699.05 985.18 5499.11 1496.78 4988.75 6497.65 1198.91 287.69 22
MSP-MVS95.62 796.54 192.86 8798.31 4880.10 16997.42 10296.78 4992.20 2297.11 1498.29 3393.46 199.10 10196.01 3899.30 599.38 14
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
无先验96.87 14596.78 4977.39 29199.52 6979.95 20698.43 55
DVP-MVS++96.05 496.41 394.96 2299.05 985.34 4998.13 4996.77 5588.38 7397.70 898.77 1092.06 399.84 1297.47 2499.37 199.70 3
test_0728_SECOND95.14 1899.04 1486.14 3599.06 1696.77 5599.84 1297.90 1798.85 2199.45 10
SMA-MVScopyleft94.70 2094.68 2094.76 2698.02 5985.94 3997.47 9596.77 5585.32 13297.92 398.70 1583.09 4999.84 1295.79 4299.08 1098.49 51
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MVS_111021_LR91.60 7991.64 7591.47 14795.74 11178.79 20496.15 19196.77 5588.49 7188.64 12797.07 10572.33 18999.19 9393.13 7796.48 9696.43 166
3Dnovator82.32 1089.33 12487.64 14494.42 3393.73 17485.70 4397.73 7696.75 5986.73 11376.21 26695.93 13262.17 25499.68 5181.67 19297.81 6197.88 91
DPE-MVScopyleft95.32 1095.55 1194.64 2998.79 2384.87 6697.77 7296.74 6086.11 11796.54 2398.89 688.39 1999.74 3897.67 2299.05 1299.31 18
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
PVSNet_BlendedMVS90.05 11189.96 10690.33 18197.47 7683.86 8198.02 5896.73 6187.98 8189.53 11689.61 25476.42 12499.57 6494.29 5979.59 25187.57 319
PVSNet_Blended93.13 4192.98 4793.57 6197.47 7683.86 8199.32 196.73 6191.02 3889.53 11696.21 12776.42 12499.57 6494.29 5995.81 10997.29 135
ACMMPcopyleft90.39 10589.97 10591.64 14197.58 7378.21 22296.78 15296.72 6384.73 14884.72 16697.23 9771.22 20199.63 5788.37 13492.41 15197.08 144
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
新几何193.12 7797.44 7881.60 13296.71 6474.54 31591.22 9397.57 8079.13 7999.51 7177.40 23398.46 3898.26 67
test_one_060198.91 1884.56 7196.70 6588.06 7996.57 2298.77 1088.04 20
HFP-MVS92.89 4892.86 5092.98 8398.71 2581.12 13897.58 8696.70 6585.20 13791.75 8397.97 5778.47 8899.71 4590.95 9598.41 4198.12 75
ACMMPR92.69 5692.67 5392.75 9198.66 2880.57 15497.58 8696.69 6785.20 13791.57 8597.92 5877.01 11299.67 5390.95 9598.41 4198.00 84
DeepPCF-MVS89.82 194.61 2196.17 589.91 19497.09 9070.21 32698.99 2296.69 6795.57 295.08 4099.23 186.40 3099.87 897.84 2098.66 3199.65 6
thisisatest053089.65 11889.02 12091.53 14593.46 18480.78 14996.52 16696.67 6981.69 22183.79 17894.90 16688.85 1597.68 16277.80 22287.49 19096.14 175
tttt051788.57 14488.19 13489.71 20193.00 19675.99 27195.67 21296.67 6980.78 23281.82 20494.40 17588.97 1497.58 16876.05 24786.31 19795.57 187
thisisatest051590.95 9590.26 9793.01 8294.03 16984.27 7797.91 6396.67 6983.18 18986.87 14795.51 14688.66 1697.85 15780.46 19989.01 17496.92 150
ACMMP_NAP93.46 3893.23 4494.17 4197.16 8884.28 7696.82 14996.65 7286.24 11594.27 5297.99 5277.94 9699.83 1693.39 6998.57 3398.39 57
TEST998.64 3183.71 8497.82 6896.65 7284.29 16495.16 3598.09 4584.39 3799.36 81
train_agg94.28 2594.45 2493.74 5298.64 3183.71 8497.82 6896.65 7284.50 15595.16 3598.09 4584.33 3899.36 8195.91 4198.96 1998.16 71
131488.94 13187.20 15794.17 4193.21 18885.73 4293.33 28296.64 7582.89 19875.98 26996.36 12466.83 22899.39 7783.52 18096.02 10597.39 130
DeepC-MVS_fast89.06 294.48 2394.30 2895.02 2098.86 2185.68 4498.06 5596.64 7593.64 1291.74 8498.54 2080.17 6999.90 592.28 8498.75 2899.49 8
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_898.63 3383.64 8797.81 7096.63 7784.50 15595.10 3998.11 4484.33 3899.23 86
FE-MVS86.06 18884.15 20391.78 13794.33 15779.81 17384.58 35996.61 7876.69 30085.00 16187.38 28270.71 20898.37 13970.39 29291.70 15997.17 141
原ACMM191.22 15597.77 6578.10 22596.61 7881.05 22791.28 9297.42 8977.92 9898.98 10879.85 20898.51 3496.59 162
MAR-MVS90.63 10090.22 9891.86 13398.47 4278.20 22397.18 11596.61 7883.87 17688.18 13498.18 3868.71 21699.75 3683.66 17697.15 8097.63 113
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
ZD-MVS99.09 883.22 9696.60 8182.88 19993.61 6198.06 5082.93 5099.14 9795.51 4898.49 37
SteuartSystems-ACMMP94.13 3094.44 2593.20 7595.41 11981.35 13599.02 2096.59 8289.50 5794.18 5498.36 3083.68 4699.45 7594.77 5398.45 3998.81 33
Skip Steuart: Steuart Systems R&D Blog.
D2MVS82.67 24581.55 24286.04 27587.77 30476.47 25995.21 23196.58 8382.66 20570.26 31885.46 31660.39 26795.80 25976.40 24379.18 25585.83 345
save fliter98.24 5183.34 9398.61 3396.57 8491.32 32
TESTMET0.1,189.83 11589.34 11691.31 14992.54 21180.19 16697.11 12596.57 8486.15 11686.85 14891.83 22179.32 7496.95 20881.30 19392.35 15296.77 156
agg_prior98.59 3583.13 9796.56 8694.19 5399.16 96
旧先验197.39 8279.58 18396.54 8798.08 4884.00 4297.42 7497.62 114
WR-MVS_H81.02 26980.09 26383.79 30988.08 30071.26 32194.46 25196.54 8780.08 25172.81 30186.82 29270.36 21092.65 33664.18 32067.50 33487.46 324
9.1494.26 2998.10 5798.14 4696.52 8984.74 14794.83 4698.80 782.80 5299.37 8095.95 4098.42 40
region2R92.72 5492.70 5292.79 9098.68 2680.53 15897.53 9096.51 9085.22 13591.94 8197.98 5577.26 10799.67 5390.83 9998.37 4498.18 69
EPP-MVSNet89.76 11689.72 11289.87 19593.78 17176.02 27097.22 10996.51 9079.35 26485.11 15995.01 16384.82 3497.10 20287.46 14288.21 18496.50 164
ZNCC-MVS92.75 5092.60 5593.23 7498.24 5181.82 12397.63 8296.50 9285.00 14391.05 9597.74 6978.38 8999.80 2590.48 10498.34 4698.07 77
test1196.50 92
EPNet_dtu87.65 16587.89 13886.93 26094.57 14471.37 32096.72 15596.50 9288.56 7087.12 14595.02 16275.91 13494.01 32166.62 30890.00 16695.42 191
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
testdata90.13 18695.92 10774.17 29096.49 9573.49 32494.82 4797.99 5278.80 8597.93 15183.53 17997.52 6998.29 64
DVP-MVScopyleft95.58 895.91 994.57 3099.05 985.18 5499.06 1696.46 9688.75 6496.69 1798.76 1287.69 2299.76 3197.90 1798.85 2198.77 34
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test22296.15 10178.41 21395.87 20596.46 9671.97 33589.66 11397.45 8576.33 12798.24 4998.30 63
XVS92.69 5692.71 5192.63 9898.52 3780.29 16197.37 10596.44 9887.04 10591.38 8797.83 6677.24 10999.59 6090.46 10598.07 5298.02 79
X-MVStestdata86.26 18584.14 20492.63 9898.52 3780.29 16197.37 10596.44 9887.04 10591.38 8720.73 39877.24 10999.59 6090.46 10598.07 5298.02 79
SF-MVS94.17 2894.05 3294.55 3197.56 7485.95 3797.73 7696.43 10084.02 16995.07 4198.74 1482.93 5099.38 7895.42 4998.51 3498.32 60
TSAR-MVS + MP.94.79 1995.17 1793.64 5797.66 6984.10 7895.85 20796.42 10191.26 3397.49 1296.80 11686.50 2898.49 13195.54 4799.03 1398.33 59
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
APDe-MVScopyleft94.56 2294.75 1993.96 4698.84 2283.40 9298.04 5796.41 10285.79 12495.00 4298.28 3484.32 4199.18 9497.35 2698.77 2799.28 19
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
UniMVSNet_NR-MVSNet85.49 19884.59 19388.21 22989.44 28679.36 18796.71 15796.41 10285.22 13578.11 24090.98 23476.97 11495.14 29479.14 21468.30 32590.12 257
test_prior93.09 7998.68 2681.91 11896.40 10499.06 10498.29 64
CP-MVS92.54 6192.60 5592.34 10898.50 4079.90 17298.40 3896.40 10484.75 14690.48 10498.09 4577.40 10699.21 8891.15 9498.23 5097.92 90
CANet94.89 1594.64 2195.63 1397.55 7588.12 1699.06 1696.39 10694.07 1095.34 3497.80 6776.83 11799.87 897.08 3097.64 6698.89 30
GST-MVS92.43 6392.22 6493.04 8198.17 5481.64 13097.40 10496.38 10784.71 14990.90 9897.40 9077.55 10499.76 3189.75 11797.74 6397.72 105
alignmvs92.97 4692.26 6295.12 1995.54 11687.77 2098.67 2996.38 10788.04 8093.01 6897.45 8579.20 7898.60 12593.25 7488.76 17798.99 29
PAPM92.87 4992.40 5894.30 3592.25 22187.85 1996.40 17696.38 10791.07 3688.72 12696.90 10982.11 5597.37 18690.05 11497.70 6497.67 109
test_fmvsmconf_n93.99 3294.36 2792.86 8792.82 20381.12 13899.26 396.37 11093.47 1395.16 3598.21 3679.00 8099.64 5598.21 1096.73 9297.83 97
test1294.25 3798.34 4685.55 4696.35 11192.36 7380.84 5999.22 8798.31 4797.98 86
MTGPAbinary96.33 112
MTAPA92.45 6292.31 6092.86 8797.90 6180.85 14792.88 29396.33 11287.92 8390.20 10798.18 3876.71 12099.76 3192.57 8398.09 5197.96 89
ET-MVSNet_ETH3D90.01 11289.03 11992.95 8494.38 15586.77 3098.14 4696.31 11489.30 5963.33 34996.72 12090.09 1193.63 32890.70 10282.29 23598.46 53
EPMVS87.47 16885.90 17492.18 11995.41 11982.26 11287.00 34496.28 11585.88 12384.23 17085.57 31375.07 15696.26 23571.14 28792.50 14998.03 78
CDPH-MVS93.12 4292.91 4893.74 5298.65 3083.88 8097.67 8196.26 11683.00 19693.22 6598.24 3581.31 5799.21 8889.12 12498.74 2998.14 73
WR-MVS84.32 21782.96 22088.41 22189.38 28780.32 16096.59 16296.25 11783.97 17176.63 25590.36 24467.53 22194.86 30475.82 25070.09 30990.06 262
fmvsm_s_conf0.1_n92.93 4793.16 4692.24 11590.52 26481.92 11798.42 3796.24 11891.17 3496.02 2998.35 3175.34 15199.74 3897.84 2094.58 12195.05 199
UGNet87.73 16386.55 16991.27 15295.16 12879.11 19596.35 17996.23 11988.14 7887.83 13790.48 24150.65 32699.09 10280.13 20594.03 12695.60 186
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
tfpnnormal78.14 29375.42 30086.31 27088.33 29879.24 19094.41 25396.22 12073.51 32269.81 32185.52 31555.43 30895.75 26247.65 37567.86 33083.95 358
FOURS198.51 3978.01 22798.13 4996.21 12183.04 19494.39 51
MP-MVScopyleft92.61 5992.67 5392.42 10698.13 5679.73 17997.33 10796.20 12285.63 12690.53 10297.66 7278.14 9499.70 4892.12 8698.30 4897.85 95
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PAPR92.74 5192.17 6594.45 3298.89 2084.87 6697.20 11396.20 12287.73 8888.40 13098.12 4378.71 8699.76 3187.99 13696.28 9798.74 35
SD-MVS94.84 1795.02 1894.29 3697.87 6484.61 6997.76 7496.19 12489.59 5696.66 1998.17 4184.33 3899.60 5996.09 3798.50 3698.66 42
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
CHOSEN 280x42091.71 7691.85 6991.29 15194.94 13582.69 10287.89 33796.17 12585.94 12187.27 14294.31 17690.27 995.65 26994.04 6395.86 10795.53 188
fmvsm_l_conf0.5_n94.89 1595.24 1593.86 4894.42 15484.61 6999.13 1096.15 12692.06 2597.92 398.52 2384.52 3699.74 3898.76 595.67 11097.22 137
CHOSEN 1792x268891.07 9290.21 9993.64 5795.18 12783.53 8996.26 18496.13 12788.92 6384.90 16393.10 20272.86 18399.62 5888.86 12695.67 11097.79 101
PAPM_NR91.46 8190.82 8593.37 7098.50 4081.81 12495.03 24296.13 12784.65 15186.10 15397.65 7679.24 7799.75 3683.20 18296.88 8698.56 47
CostFormer89.08 12888.39 13191.15 15793.13 19379.15 19488.61 33196.11 12983.14 19089.58 11586.93 29183.83 4596.87 21488.22 13585.92 20397.42 127
mPP-MVS91.88 7191.82 7092.07 12498.38 4478.63 20797.29 10896.09 13085.12 13988.45 12997.66 7275.53 14199.68 5189.83 11598.02 5597.88 91
APD-MVScopyleft93.61 3693.59 3793.69 5698.76 2483.26 9597.21 11196.09 13082.41 21094.65 4898.21 3681.96 5698.81 11994.65 5698.36 4599.01 26
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MDTV_nov1_ep1383.69 20794.09 16581.01 14186.78 34696.09 13083.81 17884.75 16584.32 33074.44 16696.54 22663.88 32285.07 212
FA-MVS(test-final)87.71 16486.23 17192.17 12094.19 16080.55 15587.16 34396.07 13382.12 21585.98 15488.35 26972.04 19498.49 13180.26 20289.87 16797.48 125
QAPM86.88 17484.51 19593.98 4494.04 16785.89 4097.19 11496.05 13473.62 32175.12 28195.62 14262.02 25799.74 3870.88 28896.06 10396.30 173
MP-MVS-pluss92.58 6092.35 5993.29 7197.30 8682.53 10596.44 17296.04 13584.68 15089.12 12098.37 2977.48 10599.74 3893.31 7398.38 4397.59 116
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
fmvsm_s_conf0.1_n_a92.38 6492.49 5792.06 12588.08 30081.62 13197.97 6196.01 13690.62 4196.58 2198.33 3274.09 17099.71 4597.23 2793.46 13894.86 203
fmvsm_l_conf0.5_n_a94.91 1495.30 1493.72 5594.50 15284.30 7599.14 996.00 13791.94 2897.91 598.60 1884.78 3599.77 2998.84 496.03 10497.08 144
tpm287.35 16986.26 17090.62 17292.93 20178.67 20688.06 33695.99 13879.33 26587.40 13986.43 30280.28 6696.40 23080.23 20385.73 20796.79 154
SDMVSNet87.02 17185.61 17691.24 15394.14 16283.30 9493.88 27095.98 13984.30 16279.63 22792.01 21358.23 28397.68 16290.28 11382.02 23692.75 233
DeepC-MVS86.58 391.53 8091.06 8392.94 8594.52 14881.89 11995.95 19995.98 13990.76 3983.76 17996.76 11773.24 18199.71 4591.67 9196.96 8397.22 137
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test-LLR88.48 14587.98 13789.98 19092.26 21977.23 24997.11 12595.96 14183.76 18086.30 15191.38 22572.30 19096.78 22080.82 19691.92 15695.94 178
test-mter88.95 13088.60 12789.98 19092.26 21977.23 24997.11 12595.96 14185.32 13286.30 15191.38 22576.37 12696.78 22080.82 19691.92 15695.94 178
DP-MVS Recon91.72 7590.85 8494.34 3499.50 185.00 6398.51 3595.96 14180.57 23788.08 13597.63 7876.84 11599.89 785.67 15394.88 11698.13 74
cdsmvs_eth3d_5k21.43 36428.57 3670.00 3840.00 4060.00 4090.00 39595.93 1440.00 4020.00 40397.66 7263.57 2470.00 4030.00 4020.00 4010.00 399
hse-mvs288.22 15488.21 13388.25 22793.54 17873.41 29395.41 22395.89 14590.39 4692.22 7694.22 17974.70 16096.66 22593.14 7564.37 34894.69 211
AUN-MVS86.25 18685.57 17788.26 22693.57 17773.38 29495.45 22195.88 14683.94 17385.47 15794.21 18073.70 17796.67 22483.54 17864.41 34794.73 210
TAMVS88.48 14587.79 14190.56 17491.09 25279.18 19296.45 17195.88 14683.64 18383.12 18593.33 19775.94 13395.74 26582.40 18788.27 18396.75 158
PVSNet_Blended_VisFu91.24 8790.77 8692.66 9595.09 12982.40 10997.77 7295.87 14888.26 7686.39 14993.94 18776.77 11899.27 8488.80 12894.00 12996.31 172
OpenMVScopyleft79.58 1486.09 18783.62 21193.50 6590.95 25486.71 3297.44 9895.83 14975.35 30772.64 30295.72 13757.42 29599.64 5571.41 28295.85 10894.13 217
CDS-MVSNet89.50 12188.96 12291.14 15891.94 23880.93 14597.09 12995.81 15084.26 16584.72 16694.20 18180.31 6595.64 27083.37 18188.96 17596.85 153
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
PS-MVSNAJ94.17 2893.52 3996.10 995.65 11392.35 298.21 4495.79 15192.42 2196.24 2698.18 3871.04 20499.17 9596.77 3397.39 7596.79 154
testing380.74 27381.17 24879.44 33991.15 25163.48 35797.16 11995.76 15280.83 23071.36 30993.15 20178.22 9287.30 37343.19 38079.67 25087.55 322
SR-MVS92.16 6692.27 6191.83 13698.37 4578.41 21396.67 16095.76 15282.19 21491.97 7998.07 4976.44 12398.64 12393.71 6697.27 7898.45 54
3Dnovator+82.88 889.63 11987.85 13994.99 2194.49 15386.76 3197.84 6795.74 15486.10 11875.47 27896.02 13165.00 24099.51 7182.91 18697.07 8298.72 40
HPM-MVScopyleft91.62 7891.53 7691.89 13297.88 6379.22 19196.99 13395.73 15582.07 21689.50 11897.19 9975.59 13998.93 11490.91 9797.94 5897.54 117
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
ab-mvs87.08 17084.94 19093.48 6793.34 18783.67 8688.82 32895.70 15681.18 22584.55 16990.14 24962.72 25198.94 11385.49 15582.54 23297.85 95
xiu_mvs_v2_base93.92 3393.26 4395.91 1095.07 13192.02 698.19 4595.68 15792.06 2596.01 3098.14 4270.83 20798.96 10996.74 3596.57 9496.76 157
CP-MVSNet81.01 27080.08 26483.79 30987.91 30370.51 32394.29 26295.65 15880.83 23072.54 30488.84 26163.71 24692.32 33968.58 30168.36 32488.55 296
PatchmatchNetpermissive86.83 17685.12 18791.95 13094.12 16482.27 11186.55 34895.64 15984.59 15382.98 18884.99 32577.26 10795.96 25068.61 30091.34 16197.64 112
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
API-MVS90.18 10988.97 12193.80 5098.66 2882.95 10097.50 9495.63 16075.16 31086.31 15097.69 7072.49 18799.90 581.26 19496.07 10298.56 47
AdaColmapbinary88.81 13687.61 14792.39 10799.33 479.95 17096.70 15995.58 16177.51 29083.05 18796.69 12161.90 26099.72 4384.29 16393.47 13797.50 123
SCA85.63 19583.64 21091.60 14492.30 21781.86 12192.88 29395.56 16284.85 14482.52 18985.12 32358.04 28595.39 28073.89 26787.58 18997.54 117
dp84.30 21882.31 23190.28 18294.24 15977.97 22886.57 34795.53 16379.94 25580.75 21385.16 32171.49 20096.39 23163.73 32383.36 22196.48 165
HyFIR lowres test89.36 12388.60 12791.63 14394.91 13780.76 15095.60 21695.53 16382.56 20784.03 17291.24 22978.03 9596.81 21887.07 14688.41 18297.32 132
APD-MVS_3200maxsize91.23 8891.35 7890.89 16597.89 6276.35 26396.30 18295.52 16579.82 25691.03 9697.88 6374.70 16098.54 12892.11 8796.89 8597.77 102
lupinMVS93.87 3493.58 3894.75 2793.00 19688.08 1799.15 795.50 16691.03 3794.90 4397.66 7278.84 8397.56 16994.64 5797.46 7098.62 45
tt080581.20 26879.06 27687.61 24186.50 31572.97 30293.66 27395.48 16774.11 31776.23 26591.99 21541.36 36097.40 18377.44 23274.78 28192.45 236
HPM-MVS_fast90.38 10790.17 10191.03 16097.61 7077.35 24797.15 12195.48 16779.51 26288.79 12496.90 10971.64 19898.81 11987.01 14797.44 7296.94 147
VPNet84.69 21082.92 22190.01 18889.01 28983.45 9196.71 15795.46 16985.71 12579.65 22692.18 21256.66 30196.01 24683.05 18567.84 33190.56 248
114514_t88.79 13887.57 14892.45 10398.21 5381.74 12696.99 13395.45 17075.16 31082.48 19095.69 13968.59 21798.50 13080.33 20095.18 11497.10 143
SR-MVS-dyc-post91.29 8691.45 7790.80 16797.76 6776.03 26896.20 18995.44 17180.56 23890.72 10097.84 6475.76 13698.61 12491.99 8896.79 8997.75 103
RE-MVS-def91.18 8297.76 6776.03 26896.20 18995.44 17180.56 23890.72 10097.84 6473.36 18091.99 8896.79 8997.75 103
JIA-IIPM79.00 28977.20 28884.40 30489.74 28064.06 35475.30 38195.44 17162.15 36381.90 20259.08 38578.92 8195.59 27466.51 31185.78 20693.54 227
RPMNet79.85 27975.92 29891.64 14190.16 27179.75 17679.02 37395.44 17158.43 37982.27 19772.55 37673.03 18298.41 13846.10 37786.25 19896.75 158
DU-MVS84.57 21383.33 21688.28 22588.76 29079.36 18796.43 17495.41 17585.42 13078.11 24090.82 23667.61 21895.14 29479.14 21468.30 32590.33 253
EI-MVSNet85.80 19285.20 18387.59 24391.55 24377.41 24595.13 23695.36 17680.43 24380.33 21994.71 16973.72 17595.97 24776.96 23778.64 26089.39 269
MVSTER89.25 12788.92 12490.24 18395.98 10684.66 6896.79 15195.36 17687.19 10380.33 21990.61 24090.02 1295.97 24785.38 15678.64 26090.09 260
CPTT-MVS89.72 11789.87 11089.29 20598.33 4773.30 29697.70 7895.35 17875.68 30687.40 13997.44 8870.43 20998.25 14389.56 12096.90 8496.33 171
EIA-MVS91.73 7392.05 6890.78 16994.52 14876.40 26298.06 5595.34 17989.19 6088.90 12397.28 9677.56 10397.73 16190.77 10096.86 8898.20 68
tpmvs83.04 23980.77 25289.84 19695.43 11877.96 22985.59 35495.32 18075.31 30976.27 26483.70 33573.89 17297.41 18259.53 33781.93 23894.14 216
PS-CasMVS80.27 27779.18 27383.52 31587.56 30769.88 32894.08 26595.29 18180.27 24872.08 30688.51 26859.22 27792.23 34167.49 30368.15 32788.45 302
TSAR-MVS + GP.94.35 2494.50 2293.89 4797.38 8483.04 9998.10 5195.29 18191.57 3093.81 5797.45 8586.64 2799.43 7696.28 3694.01 12899.20 22
tpmrst88.36 14987.38 15491.31 14994.36 15679.92 17187.32 34195.26 18385.32 13288.34 13186.13 30780.60 6396.70 22283.78 17085.34 21197.30 134
ETV-MVS92.72 5492.87 4992.28 11494.54 14781.89 11997.98 5995.21 18489.77 5593.11 6696.83 11377.23 11197.50 17795.74 4395.38 11397.44 126
NR-MVSNet83.35 23181.52 24488.84 21388.76 29081.31 13694.45 25295.16 18584.65 15167.81 32790.82 23670.36 21094.87 30374.75 25866.89 34090.33 253
test_fmvsmconf0.1_n93.08 4493.22 4592.65 9688.45 29680.81 14899.00 2195.11 18693.21 1594.00 5697.91 6076.84 11599.59 6097.91 1696.55 9597.54 117
jason92.73 5292.23 6394.21 4090.50 26587.30 2698.65 3095.09 18790.61 4292.76 7197.13 10175.28 15297.30 18993.32 7296.75 9198.02 79
jason: jason.
tpm cat183.63 22881.38 24590.39 17893.53 18378.19 22485.56 35595.09 18770.78 34178.51 23683.28 33874.80 15997.03 20366.77 30784.05 21695.95 177
cascas86.50 18084.48 19792.55 10192.64 20985.95 3797.04 13295.07 18975.32 30880.50 21591.02 23254.33 31697.98 15086.79 14987.62 18793.71 225
CVMVSNet84.83 20885.57 17782.63 32291.55 24360.38 36795.13 23695.03 19080.60 23682.10 19994.71 16966.40 23190.19 36174.30 26490.32 16597.31 133
test0.0.03 182.79 24382.48 22983.74 31186.81 31372.22 30596.52 16695.03 19083.76 18073.00 29893.20 19872.30 19088.88 36464.15 32177.52 27090.12 257
PMMVS89.46 12289.92 10888.06 23194.64 14269.57 33296.22 18694.95 19287.27 9991.37 8996.54 12365.88 23297.39 18488.54 12993.89 13097.23 136
CS-MVS92.73 5293.48 4090.48 17696.27 9775.93 27398.55 3494.93 19389.32 5894.54 5097.67 7178.91 8297.02 20493.80 6497.32 7798.49 51
Anonymous2024052983.15 23680.60 25790.80 16795.74 11178.27 21796.81 15094.92 19460.10 37481.89 20392.54 20845.82 34598.82 11879.25 21378.32 26795.31 194
mvs_anonymous88.68 13987.62 14691.86 13394.80 14081.69 12993.53 27894.92 19482.03 21778.87 23490.43 24375.77 13595.34 28385.04 15893.16 14298.55 49
CLD-MVS87.97 15987.48 15189.44 20392.16 22680.54 15798.14 4694.92 19491.41 3179.43 22995.40 14862.34 25397.27 19290.60 10382.90 22790.50 250
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
xiu_mvs_v1_base_debu90.54 10289.54 11393.55 6292.31 21487.58 2396.99 13394.87 19787.23 10093.27 6297.56 8157.43 29298.32 14092.72 8093.46 13894.74 207
xiu_mvs_v1_base90.54 10289.54 11393.55 6292.31 21487.58 2396.99 13394.87 19787.23 10093.27 6297.56 8157.43 29298.32 14092.72 8093.46 13894.74 207
xiu_mvs_v1_base_debi90.54 10289.54 11393.55 6292.31 21487.58 2396.99 13394.87 19787.23 10093.27 6297.56 8157.43 29298.32 14092.72 8093.46 13894.74 207
GA-MVS85.79 19384.04 20591.02 16189.47 28580.27 16396.90 14494.84 20085.57 12780.88 21189.08 25756.56 30296.47 22977.72 22585.35 21096.34 169
TranMVSNet+NR-MVSNet83.24 23581.71 24087.83 23587.71 30578.81 20396.13 19494.82 20184.52 15476.18 26790.78 23864.07 24594.60 30974.60 26266.59 34290.09 260
HQP3-MVS94.80 20283.01 224
HQP-MVS87.91 16187.55 14988.98 21192.08 23078.48 20997.63 8294.80 20290.52 4382.30 19394.56 17265.40 23697.32 18787.67 14083.01 22491.13 241
TAPA-MVS81.61 1285.02 20583.67 20889.06 20896.79 9273.27 29995.92 20194.79 20474.81 31380.47 21696.83 11371.07 20398.19 14649.82 37092.57 14795.71 184
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PEN-MVS79.47 28578.26 28183.08 31886.36 31768.58 33693.85 27194.77 20579.76 25771.37 30888.55 26559.79 26992.46 33764.50 31965.40 34488.19 307
CS-MVS-test92.98 4593.67 3590.90 16496.52 9476.87 25498.68 2894.73 20690.36 4894.84 4597.89 6277.94 9697.15 20094.28 6197.80 6298.70 41
HQP_MVS87.50 16787.09 16188.74 21691.86 23977.96 22997.18 11594.69 20789.89 5381.33 20794.15 18264.77 24297.30 18987.08 14482.82 22890.96 243
plane_prior594.69 20797.30 18987.08 14482.82 22890.96 243
tpm85.55 19784.47 19888.80 21590.19 27075.39 27888.79 32994.69 20784.83 14583.96 17585.21 31978.22 9294.68 30876.32 24578.02 26996.34 169
FMVSNet384.71 20982.71 22690.70 17194.55 14687.71 2195.92 20194.67 21081.73 22075.82 27388.08 27466.99 22694.47 31371.23 28475.38 27889.91 264
UA-Net88.92 13288.48 13090.24 18394.06 16677.18 25193.04 29094.66 21187.39 9691.09 9493.89 18874.92 15798.18 14775.83 24991.43 16095.35 193
LFMVS89.27 12687.64 14494.16 4397.16 8885.52 4797.18 11594.66 21179.17 27089.63 11496.57 12255.35 30998.22 14489.52 12189.54 16998.74 35
MVS_Test90.29 10889.18 11893.62 5995.23 12484.93 6494.41 25394.66 21184.31 16090.37 10691.02 23275.13 15497.82 15883.11 18494.42 12398.12 75
canonicalmvs92.27 6591.22 7995.41 1695.80 11088.31 1497.09 12994.64 21488.49 7192.99 6997.31 9272.68 18598.57 12793.38 7188.58 17999.36 16
VDDNet86.44 18184.51 19592.22 11791.56 24281.83 12297.10 12894.64 21469.50 34787.84 13695.19 15448.01 33697.92 15689.82 11686.92 19196.89 151
baseline188.85 13587.49 15092.93 8695.21 12686.85 2995.47 22094.61 21687.29 9883.11 18694.99 16480.70 6296.89 21282.28 18873.72 28595.05 199
PatchT79.75 28076.85 29288.42 22089.55 28375.49 27777.37 37794.61 21663.07 36082.46 19173.32 37375.52 14293.41 33251.36 36484.43 21496.36 167
MS-PatchMatch83.05 23881.82 23986.72 26589.64 28179.10 19694.88 24594.59 21879.70 25970.67 31589.65 25350.43 32896.82 21770.82 29195.99 10684.25 355
casdiffmvs_mvgpermissive91.13 9090.45 9393.17 7692.99 19983.58 8897.46 9794.56 21987.69 8987.19 14494.98 16574.50 16597.60 16691.88 9092.79 14598.34 58
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline90.76 9890.10 10292.74 9292.90 20282.56 10494.60 25094.56 21987.69 8989.06 12295.67 14073.76 17497.51 17690.43 10892.23 15498.16 71
OMC-MVS88.80 13788.16 13590.72 17095.30 12277.92 23294.81 24794.51 22186.80 11084.97 16296.85 11267.53 22198.60 12585.08 15787.62 18795.63 185
MVSFormer91.36 8490.57 9093.73 5493.00 19688.08 1794.80 24894.48 22280.74 23394.90 4397.13 10178.84 8395.10 29783.77 17197.46 7098.02 79
test_djsdf83.00 24182.45 23084.64 29884.07 34869.78 32994.80 24894.48 22280.74 23375.41 27987.70 27861.32 26495.10 29783.77 17179.76 24789.04 285
casdiffmvspermissive90.95 9590.39 9492.63 9892.82 20382.53 10596.83 14794.47 22487.69 8988.47 12895.56 14574.04 17197.54 17390.90 9892.74 14697.83 97
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PCF-MVS84.09 586.77 17885.00 18992.08 12392.06 23383.07 9892.14 30194.47 22479.63 26076.90 25294.78 16871.15 20299.20 9272.87 27391.05 16293.98 220
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
VDD-MVS88.28 15287.02 16392.06 12595.09 12980.18 16797.55 8994.45 22683.09 19289.10 12195.92 13447.97 33798.49 13193.08 7886.91 19297.52 122
test_cas_vis1_n_192089.90 11490.02 10489.54 20290.14 27374.63 28598.71 2794.43 22793.04 1792.40 7296.35 12553.41 31999.08 10395.59 4696.16 9994.90 201
PLCcopyleft83.97 788.00 15887.38 15489.83 19798.02 5976.46 26097.16 11994.43 22779.26 26981.98 20196.28 12669.36 21499.27 8477.71 22692.25 15393.77 224
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
EC-MVSNet91.73 7392.11 6690.58 17393.54 17877.77 23898.07 5494.40 22987.44 9492.99 6997.11 10374.59 16496.87 21493.75 6597.08 8197.11 142
sd_testset84.62 21183.11 21989.17 20694.14 16277.78 23791.54 31194.38 23084.30 16279.63 22792.01 21352.28 32196.98 20677.67 22782.02 23692.75 233
FMVSNet282.79 24380.44 25989.83 19792.66 20685.43 4895.42 22294.35 23179.06 27374.46 28587.28 28356.38 30494.31 31669.72 29674.68 28289.76 266
test_vis1_n_192089.95 11390.59 8988.03 23392.36 21368.98 33599.12 1194.34 23293.86 1193.64 6097.01 10751.54 32399.59 6096.76 3496.71 9395.53 188
nrg03086.79 17785.43 17990.87 16688.76 29085.34 4997.06 13194.33 23384.31 16080.45 21791.98 21672.36 18896.36 23288.48 13271.13 29890.93 245
RRT_MVS83.88 22383.27 21785.71 27987.53 30972.12 30895.35 22594.33 23383.81 17875.86 27291.28 22860.55 26695.09 29983.93 16776.76 27289.90 265
ACMM80.70 1383.72 22782.85 22486.31 27091.19 24972.12 30895.88 20494.29 23580.44 24177.02 25091.96 21755.24 31097.14 20179.30 21280.38 24589.67 267
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
XXY-MVS83.84 22482.00 23689.35 20487.13 31181.38 13495.72 21094.26 23680.15 25075.92 27190.63 23961.96 25996.52 22778.98 21673.28 29090.14 256
Syy-MVS77.97 29678.05 28277.74 34692.13 22756.85 37393.97 26794.23 23782.43 20873.39 29193.57 19557.95 28887.86 36832.40 38682.34 23388.51 297
myMVS_eth3d81.93 25782.18 23281.18 33092.13 22767.18 34293.97 26794.23 23782.43 20873.39 29193.57 19576.98 11387.86 36850.53 36882.34 23388.51 297
cl2285.11 20484.17 20287.92 23495.06 13378.82 20195.51 21894.22 23979.74 25876.77 25387.92 27675.96 13295.68 26679.93 20772.42 29289.27 276
OPM-MVS85.84 19185.10 18888.06 23188.34 29777.83 23695.72 21094.20 24087.89 8580.45 21794.05 18458.57 28097.26 19383.88 16882.76 23089.09 282
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
Vis-MVSNet (Re-imp)88.88 13488.87 12588.91 21293.89 17074.43 28896.93 14294.19 24184.39 15883.22 18495.67 14078.24 9194.70 30778.88 21794.40 12497.61 115
Anonymous2023121179.72 28177.19 28987.33 25095.59 11577.16 25295.18 23594.18 24259.31 37772.57 30386.20 30647.89 33995.66 26774.53 26369.24 31789.18 278
PS-MVSNAJss84.91 20784.30 20086.74 26185.89 32774.40 28994.95 24394.16 24383.93 17476.45 25990.11 25071.04 20495.77 26083.16 18379.02 25790.06 262
LPG-MVS_test84.20 21983.49 21486.33 26790.88 25573.06 30095.28 22694.13 24482.20 21276.31 26193.20 19854.83 31496.95 20883.72 17380.83 24288.98 288
LGP-MVS_train86.33 26790.88 25573.06 30094.13 24482.20 21276.31 26193.20 19854.83 31496.95 20883.72 17380.83 24288.98 288
V4283.04 23981.53 24387.57 24586.27 32079.09 19795.87 20594.11 24680.35 24577.22 24886.79 29465.32 23896.02 24577.74 22470.14 30587.61 318
XVG-OURS-SEG-HR85.74 19485.16 18687.49 24890.22 26971.45 31991.29 31294.09 24781.37 22383.90 17795.22 15160.30 26897.53 17585.58 15484.42 21593.50 228
XVG-OURS85.18 20284.38 19987.59 24390.42 26771.73 31691.06 31594.07 24882.00 21883.29 18395.08 16156.42 30397.55 17183.70 17583.42 22093.49 229
miper_enhance_ethall85.95 19085.20 18388.19 23094.85 13979.76 17596.00 19694.06 24982.98 19777.74 24388.76 26279.42 7395.46 27980.58 19872.42 29289.36 274
v2v48283.46 23081.86 23888.25 22786.19 32179.65 18196.34 18094.02 25081.56 22277.32 24688.23 27165.62 23396.03 24277.77 22369.72 31389.09 282
jajsoiax82.12 25581.15 24985.03 29284.19 34670.70 32294.22 26393.95 25183.07 19373.48 29089.75 25249.66 33295.37 28282.24 18979.76 24789.02 286
test_fmvsmconf0.01_n91.08 9190.68 8892.29 11382.43 35680.12 16897.94 6293.93 25292.07 2491.97 7997.60 7967.56 22099.53 6897.09 2995.56 11297.21 139
v114482.90 24281.27 24787.78 23786.29 31979.07 19896.14 19293.93 25280.05 25277.38 24486.80 29365.50 23495.93 25275.21 25570.13 30688.33 305
KD-MVS_2432*160077.63 29974.92 30485.77 27790.86 25879.44 18488.08 33493.92 25476.26 30267.05 33182.78 34072.15 19291.92 34461.53 33041.62 38785.94 343
miper_refine_blended77.63 29974.92 30485.77 27790.86 25879.44 18488.08 33493.92 25476.26 30267.05 33182.78 34072.15 19291.92 34461.53 33041.62 38785.94 343
test_fmvsmvis_n_192092.12 6792.10 6792.17 12090.87 25781.04 14098.34 4093.90 25692.71 1887.24 14397.90 6174.83 15899.72 4396.96 3196.20 9895.76 183
UnsupCasMVSNet_eth73.25 32370.57 32881.30 32877.53 37066.33 34787.24 34293.89 25780.38 24457.90 37081.59 34542.91 35590.56 35865.18 31748.51 37887.01 329
v7n79.32 28777.34 28785.28 28884.05 34972.89 30493.38 28093.87 25875.02 31270.68 31484.37 32959.58 27295.62 27267.60 30267.50 33487.32 326
dcpmvs_293.10 4393.46 4192.02 12897.77 6579.73 17994.82 24693.86 25986.91 10791.33 9096.76 11785.20 3298.06 14896.90 3297.60 6798.27 66
Vis-MVSNetpermissive88.67 14087.82 14091.24 15392.68 20578.82 20196.95 14093.85 26087.55 9287.07 14695.13 15863.43 24897.21 19477.58 22996.15 10097.70 108
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
v14882.41 25180.89 25086.99 25986.18 32276.81 25696.27 18393.82 26180.49 24075.28 28086.11 30867.32 22495.75 26275.48 25367.03 33988.42 303
BH-w/o88.24 15387.47 15290.54 17595.03 13478.54 20897.41 10393.82 26184.08 16778.23 23994.51 17469.34 21597.21 19480.21 20494.58 12195.87 180
TR-MVS86.30 18484.93 19190.42 17794.63 14377.58 24296.57 16393.82 26180.30 24682.42 19295.16 15658.74 27997.55 17174.88 25787.82 18696.13 176
v119282.31 25280.55 25887.60 24285.94 32578.47 21295.85 20793.80 26479.33 26576.97 25186.51 29763.33 24995.87 25573.11 27270.13 30688.46 301
ACMP81.66 1184.00 22183.22 21886.33 26791.53 24572.95 30395.91 20393.79 26583.70 18273.79 28892.22 21154.31 31796.89 21283.98 16679.74 24989.16 279
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
v14419282.43 24880.73 25487.54 24685.81 32878.22 21995.98 19793.78 26679.09 27277.11 24986.49 29864.66 24495.91 25374.20 26569.42 31488.49 299
mvs_tets81.74 25980.71 25584.84 29384.22 34570.29 32593.91 26993.78 26682.77 20273.37 29389.46 25547.36 34295.31 28681.99 19079.55 25388.92 292
F-COLMAP84.50 21583.44 21587.67 23995.22 12572.22 30595.95 19993.78 26675.74 30576.30 26395.18 15559.50 27398.45 13572.67 27586.59 19592.35 238
UniMVSNet_ETH3D80.86 27278.75 27887.22 25586.31 31872.02 31091.95 30293.76 26973.51 32275.06 28290.16 24843.04 35495.66 26776.37 24478.55 26493.98 220
Fast-Effi-MVS+87.93 16086.94 16590.92 16394.04 16779.16 19398.26 4293.72 27081.29 22483.94 17692.90 20369.83 21396.68 22376.70 23991.74 15896.93 148
v192192082.02 25680.23 26287.41 24985.62 33077.92 23295.79 20993.69 27178.86 27676.67 25486.44 30062.50 25295.83 25772.69 27469.77 31288.47 300
DTE-MVSNet78.37 29177.06 29082.32 32585.22 33767.17 34593.40 27993.66 27278.71 27870.53 31688.29 27059.06 27892.23 34161.38 33363.28 35387.56 320
v881.88 25880.06 26687.32 25186.63 31479.04 19994.41 25393.65 27378.77 27773.19 29785.57 31366.87 22795.81 25873.84 26967.61 33387.11 327
diffmvspermissive91.17 8990.74 8792.44 10593.11 19582.50 10796.25 18593.62 27487.79 8690.40 10595.93 13273.44 17997.42 18193.62 6892.55 14897.41 128
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ADS-MVSNet81.26 26678.36 27989.96 19293.78 17179.78 17479.48 36993.60 27573.09 32780.14 22179.99 35462.15 25595.24 28959.49 33883.52 21894.85 204
PatchMatch-RL85.00 20683.66 20989.02 21095.86 10874.55 28792.49 29793.60 27579.30 26779.29 23191.47 22358.53 28198.45 13570.22 29392.17 15594.07 219
anonymousdsp80.98 27179.97 26784.01 30681.73 35870.44 32492.49 29793.58 27777.10 29772.98 29986.31 30457.58 29194.90 30279.32 21178.63 26286.69 332
CL-MVSNet_self_test75.81 31174.14 31380.83 33378.33 36867.79 33994.22 26393.52 27877.28 29469.82 32081.54 34661.47 26389.22 36357.59 34653.51 36985.48 347
miper_ehance_all_eth84.57 21383.60 21287.50 24792.64 20978.25 21895.40 22493.47 27979.28 26876.41 26087.64 27976.53 12195.24 28978.58 21972.42 29289.01 287
v124081.70 26079.83 27087.30 25385.50 33177.70 24195.48 21993.44 28078.46 28176.53 25786.44 30060.85 26595.84 25671.59 28170.17 30488.35 304
v1081.43 26479.53 27287.11 25686.38 31678.87 20094.31 25893.43 28177.88 28573.24 29685.26 31765.44 23595.75 26272.14 27867.71 33286.72 331
IterMVS-LS83.93 22282.80 22587.31 25291.46 24677.39 24695.66 21393.43 28180.44 24175.51 27787.26 28573.72 17595.16 29376.99 23570.72 30289.39 269
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
GBi-Net82.42 24980.43 26088.39 22292.66 20681.95 11494.30 25993.38 28379.06 27375.82 27385.66 30956.38 30493.84 32371.23 28475.38 27889.38 271
test182.42 24980.43 26088.39 22292.66 20681.95 11494.30 25993.38 28379.06 27375.82 27385.66 30956.38 30493.84 32371.23 28475.38 27889.38 271
FMVSNet179.50 28476.54 29488.39 22288.47 29581.95 11494.30 25993.38 28373.14 32672.04 30785.66 30943.86 34893.84 32365.48 31572.53 29189.38 271
BH-untuned86.95 17385.94 17389.99 18994.52 14877.46 24496.78 15293.37 28681.80 21976.62 25693.81 19166.64 22997.02 20476.06 24693.88 13195.48 190
Effi-MVS+-dtu84.61 21284.90 19283.72 31291.96 23663.14 35994.95 24393.34 28785.57 12779.79 22587.12 28861.99 25895.61 27383.55 17785.83 20592.41 237
CMPMVSbinary54.94 2175.71 31374.56 30879.17 34179.69 36455.98 37589.59 32293.30 28860.28 37253.85 37689.07 25847.68 34196.33 23376.55 24081.02 23985.22 348
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
cl____83.27 23382.12 23386.74 26192.20 22275.95 27295.11 23893.27 28978.44 28274.82 28387.02 29074.19 16895.19 29174.67 26069.32 31589.09 282
DIV-MVS_self_test83.27 23382.12 23386.74 26192.19 22375.92 27495.11 23893.26 29078.44 28274.81 28487.08 28974.19 16895.19 29174.66 26169.30 31689.11 281
dmvs_re84.10 22082.90 22287.70 23891.41 24773.28 29790.59 31893.19 29185.02 14177.96 24293.68 19257.92 29096.18 23975.50 25280.87 24193.63 226
miper_lstm_enhance81.66 26280.66 25684.67 29791.19 24971.97 31291.94 30393.19 29177.86 28672.27 30585.26 31773.46 17893.42 33173.71 27067.05 33888.61 295
eth_miper_zixun_eth83.12 23782.01 23586.47 26691.85 24174.80 28394.33 25793.18 29379.11 27175.74 27687.25 28672.71 18495.32 28576.78 23867.13 33789.27 276
pmmvs482.54 24780.79 25187.79 23686.11 32380.49 15993.55 27793.18 29377.29 29373.35 29489.40 25665.26 23995.05 30175.32 25473.61 28687.83 313
XVG-ACMP-BASELINE79.38 28677.90 28483.81 30884.98 33967.14 34689.03 32793.18 29380.26 24972.87 30088.15 27338.55 36596.26 23576.05 24778.05 26888.02 310
CANet_DTU90.98 9390.04 10393.83 4994.76 14186.23 3496.32 18193.12 29693.11 1693.71 5896.82 11563.08 25099.48 7384.29 16395.12 11595.77 182
IS-MVSNet88.67 14088.16 13590.20 18593.61 17576.86 25596.77 15493.07 29784.02 16983.62 18095.60 14374.69 16396.24 23778.43 22193.66 13597.49 124
c3_l83.80 22582.65 22787.25 25492.10 22977.74 24095.25 22993.04 29878.58 27976.01 26887.21 28775.25 15395.11 29677.54 23068.89 31988.91 293
UnsupCasMVSNet_bld68.60 34064.50 34480.92 33274.63 37967.80 33883.97 36192.94 29965.12 35854.63 37568.23 38135.97 37092.17 34360.13 33644.83 38282.78 362
MVP-Stereo82.65 24681.67 24185.59 28486.10 32478.29 21693.33 28292.82 30077.75 28769.17 32587.98 27559.28 27695.76 26171.77 27996.88 8682.73 363
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
Effi-MVS+90.70 9989.90 10993.09 7993.61 17583.48 9095.20 23292.79 30183.22 18891.82 8295.70 13871.82 19597.48 17991.25 9393.67 13498.32 60
EU-MVSNet76.92 30676.95 29176.83 34984.10 34754.73 38091.77 30692.71 30272.74 33069.57 32288.69 26358.03 28787.43 37264.91 31870.00 31088.33 305
pm-mvs180.05 27878.02 28386.15 27385.42 33275.81 27595.11 23892.69 30377.13 29570.36 31787.43 28158.44 28295.27 28871.36 28364.25 34987.36 325
1112_ss88.60 14387.47 15292.00 12993.21 18880.97 14396.47 16992.46 30483.64 18380.86 21297.30 9480.24 6797.62 16577.60 22885.49 20897.40 129
test_fmvs187.79 16288.52 12985.62 28392.98 20064.31 35197.88 6592.42 30587.95 8292.24 7595.82 13547.94 33898.44 13795.31 5094.09 12594.09 218
Test_1112_low_res88.03 15786.73 16691.94 13193.15 19180.88 14696.44 17292.41 30683.59 18580.74 21491.16 23080.18 6897.59 16777.48 23185.40 20997.36 131
test_fmvs1_n86.34 18386.72 16785.17 29087.54 30863.64 35696.91 14392.37 30787.49 9391.33 9095.58 14440.81 36398.46 13495.00 5293.49 13693.41 232
BH-RMVSNet86.84 17585.28 18291.49 14695.35 12180.26 16496.95 14092.21 30882.86 20081.77 20595.46 14759.34 27597.64 16469.79 29593.81 13296.57 163
GeoE86.36 18285.20 18389.83 19793.17 19076.13 26597.53 9092.11 30979.58 26180.99 21094.01 18566.60 23096.17 24073.48 27189.30 17197.20 140
LS3D82.22 25379.94 26889.06 20897.43 7974.06 29293.20 28892.05 31061.90 36473.33 29595.21 15259.35 27499.21 8854.54 35792.48 15093.90 222
EG-PatchMatch MVS74.92 31572.02 32283.62 31383.76 35373.28 29793.62 27592.04 31168.57 34958.88 36683.80 33431.87 37895.57 27656.97 35078.67 25982.00 369
IterMVS80.67 27479.16 27485.20 28989.79 27676.08 26692.97 29291.86 31280.28 24771.20 31185.14 32257.93 28991.34 35172.52 27670.74 30188.18 308
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MIMVSNet79.18 28875.99 29788.72 21787.37 31080.66 15279.96 36891.82 31377.38 29274.33 28681.87 34441.78 35790.74 35766.36 31383.10 22394.76 206
IterMVS-SCA-FT80.51 27679.10 27584.73 29589.63 28274.66 28492.98 29191.81 31480.05 25271.06 31385.18 32058.04 28591.40 35072.48 27770.70 30388.12 309
our_test_377.90 29775.37 30185.48 28685.39 33376.74 25793.63 27491.67 31573.39 32565.72 34084.65 32858.20 28493.13 33457.82 34467.87 32986.57 334
pmmvs581.34 26579.54 27186.73 26485.02 33876.91 25396.22 18691.65 31677.65 28873.55 28988.61 26455.70 30794.43 31474.12 26673.35 28988.86 294
ACMH75.40 1777.99 29474.96 30287.10 25790.67 26276.41 26193.19 28991.64 31772.47 33363.44 34887.61 28043.34 35197.16 19758.34 34273.94 28487.72 314
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test_vis1_n85.60 19685.70 17585.33 28784.79 34064.98 34996.83 14791.61 31887.36 9791.00 9794.84 16736.14 36997.18 19695.66 4493.03 14393.82 223
Fast-Effi-MVS+-dtu83.33 23282.60 22885.50 28589.55 28369.38 33396.09 19591.38 31982.30 21175.96 27091.41 22456.71 29995.58 27575.13 25684.90 21391.54 239
YYNet173.53 32270.43 32982.85 32084.52 34371.73 31691.69 30891.37 32067.63 35046.79 37981.21 34855.04 31290.43 35955.93 35359.70 36086.38 336
ppachtmachnet_test77.19 30374.22 31186.13 27485.39 33378.22 21993.98 26691.36 32171.74 33767.11 33084.87 32656.67 30093.37 33352.21 36264.59 34686.80 330
Anonymous20240521184.41 21681.93 23791.85 13596.78 9378.41 21397.44 9891.34 32270.29 34384.06 17194.26 17841.09 36198.96 10979.46 21082.65 23198.17 70
MDA-MVSNet_test_wron73.54 32170.43 32982.86 31984.55 34171.85 31391.74 30791.32 32367.63 35046.73 38081.09 34955.11 31190.42 36055.91 35459.76 35986.31 337
CR-MVSNet83.53 22981.36 24690.06 18790.16 27179.75 17679.02 37391.12 32484.24 16682.27 19780.35 35275.45 14393.67 32763.37 32686.25 19896.75 158
Patchmtry77.36 30274.59 30785.67 28189.75 27875.75 27677.85 37691.12 32460.28 37271.23 31080.35 35275.45 14393.56 32957.94 34367.34 33687.68 316
LTVRE_ROB73.68 1877.99 29475.74 29984.74 29490.45 26672.02 31086.41 34991.12 32472.57 33266.63 33587.27 28454.95 31396.98 20656.29 35275.98 27385.21 349
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
OurMVSNet-221017-077.18 30476.06 29680.55 33483.78 35260.00 36990.35 31991.05 32777.01 29966.62 33687.92 27647.73 34094.03 32071.63 28068.44 32387.62 317
CNLPA86.96 17285.37 18191.72 13997.59 7279.34 18997.21 11191.05 32774.22 31678.90 23296.75 11967.21 22598.95 11174.68 25990.77 16496.88 152
Anonymous2024052172.06 33069.91 33178.50 34477.11 37361.67 36491.62 31090.97 32965.52 35762.37 35479.05 35736.32 36890.96 35557.75 34568.52 32282.87 360
KD-MVS_self_test70.97 33469.31 33475.95 35476.24 37855.39 37987.45 33990.94 33070.20 34462.96 35377.48 36144.01 34788.09 36661.25 33453.26 37084.37 354
pmmvs674.65 31771.67 32383.60 31479.13 36669.94 32793.31 28590.88 33161.05 37165.83 33984.15 33243.43 35094.83 30566.62 30860.63 35886.02 342
test111188.11 15587.04 16291.35 14893.15 19178.79 20496.57 16390.78 33286.88 10985.04 16095.20 15357.23 29797.39 18483.88 16894.59 12097.87 93
ECVR-MVScopyleft88.35 15087.25 15691.65 14093.54 17879.40 18696.56 16590.78 33286.78 11185.57 15695.25 14957.25 29697.56 16984.73 16194.80 11797.98 86
Anonymous2023120675.29 31473.64 31580.22 33580.75 35963.38 35893.36 28190.71 33473.09 32767.12 32983.70 33550.33 32990.85 35653.63 36070.10 30886.44 335
USDC78.65 29076.25 29585.85 27687.58 30674.60 28689.58 32390.58 33584.05 16863.13 35088.23 27140.69 36496.86 21666.57 31075.81 27686.09 341
MSDG80.62 27577.77 28589.14 20793.43 18577.24 24891.89 30490.18 33669.86 34668.02 32691.94 21952.21 32298.84 11759.32 34083.12 22291.35 240
ACMH+76.62 1677.47 30174.94 30385.05 29191.07 25371.58 31893.26 28690.01 33771.80 33664.76 34388.55 26541.62 35896.48 22862.35 32971.00 29987.09 328
FMVSNet576.46 30874.16 31283.35 31790.05 27476.17 26489.58 32389.85 33871.39 33965.29 34280.42 35150.61 32787.70 37161.05 33569.24 31786.18 339
ambc76.02 35268.11 38551.43 38164.97 38989.59 33960.49 36274.49 36917.17 38892.46 33761.50 33252.85 37284.17 356
test_fmvs279.59 28279.90 26978.67 34282.86 35555.82 37795.20 23289.55 34081.09 22680.12 22389.80 25134.31 37493.51 33087.82 13778.36 26686.69 332
ITE_SJBPF82.38 32387.00 31265.59 34889.55 34079.99 25469.37 32391.30 22741.60 35995.33 28462.86 32874.63 28386.24 338
pmmvs-eth3d73.59 32070.66 32782.38 32376.40 37673.38 29489.39 32689.43 34272.69 33160.34 36377.79 36046.43 34491.26 35366.42 31257.06 36382.51 364
test20.0372.36 32871.15 32575.98 35377.79 36959.16 37192.40 29989.35 34374.09 31861.50 35884.32 33048.09 33585.54 37850.63 36762.15 35683.24 359
SixPastTwentyTwo76.04 30974.32 31081.22 32984.54 34261.43 36591.16 31389.30 34477.89 28464.04 34586.31 30448.23 33494.29 31763.54 32563.84 35187.93 312
TransMVSNet (Re)76.94 30574.38 30984.62 29985.92 32675.25 27995.28 22689.18 34573.88 32067.22 32886.46 29959.64 27094.10 31959.24 34152.57 37384.50 353
iter_conf_final89.51 12089.21 11790.39 17895.60 11484.44 7297.22 10989.09 34689.11 6282.07 20092.80 20487.03 2596.03 24289.10 12580.89 24090.70 246
MIMVSNet169.44 33666.65 34077.84 34576.48 37562.84 36087.42 34088.97 34766.96 35557.75 37179.72 35632.77 37785.83 37746.32 37663.42 35284.85 351
K. test v373.62 31971.59 32479.69 33782.98 35459.85 37090.85 31788.83 34877.13 29558.90 36582.11 34243.62 34991.72 34865.83 31454.10 36887.50 323
Baseline_NR-MVSNet81.22 26780.07 26584.68 29685.32 33675.12 28096.48 16888.80 34976.24 30477.28 24786.40 30367.61 21894.39 31575.73 25166.73 34184.54 352
MDA-MVSNet-bldmvs71.45 33267.94 33781.98 32785.33 33568.50 33792.35 30088.76 35070.40 34242.99 38381.96 34346.57 34391.31 35248.75 37454.39 36786.11 340
new-patchmatchnet68.85 33965.93 34177.61 34773.57 38163.94 35590.11 32188.73 35171.62 33855.08 37473.60 37140.84 36287.22 37451.35 36548.49 37981.67 372
Patchmatch-test78.25 29274.72 30688.83 21491.20 24874.10 29173.91 38488.70 35259.89 37566.82 33385.12 32378.38 8994.54 31148.84 37379.58 25297.86 94
iter_conf0590.14 11089.79 11191.17 15695.85 10986.93 2897.68 8088.67 35389.93 5281.73 20692.80 20490.37 896.03 24290.44 10780.65 24490.56 248
OpenMVS_ROBcopyleft68.52 2073.02 32569.57 33283.37 31680.54 36271.82 31493.60 27688.22 35462.37 36261.98 35683.15 33935.31 37395.47 27845.08 37875.88 27582.82 361
mvsany_test187.58 16688.22 13285.67 28189.78 27767.18 34295.25 22987.93 35583.96 17288.79 12497.06 10672.52 18694.53 31292.21 8586.45 19695.30 195
RPSCF77.73 29876.63 29381.06 33188.66 29455.76 37887.77 33887.88 35664.82 35974.14 28792.79 20649.22 33396.81 21867.47 30476.88 27190.62 247
mvsmamba85.17 20384.54 19487.05 25887.94 30275.11 28196.22 18687.79 35786.91 10778.55 23591.77 22264.93 24195.91 25386.94 14879.80 24690.12 257
MVS-HIRNet71.36 33367.00 33884.46 30390.58 26369.74 33079.15 37287.74 35846.09 38461.96 35750.50 38845.14 34695.64 27053.74 35988.11 18588.00 311
DP-MVS81.47 26378.28 28091.04 15998.14 5578.48 20995.09 24186.97 35961.14 37071.12 31292.78 20759.59 27199.38 7853.11 36186.61 19495.27 196
COLMAP_ROBcopyleft73.24 1975.74 31273.00 31983.94 30792.38 21269.08 33491.85 30586.93 36061.48 36765.32 34190.27 24542.27 35696.93 21150.91 36675.63 27785.80 346
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test_fmvs369.56 33569.19 33570.67 35869.01 38347.05 38490.87 31686.81 36171.31 34066.79 33477.15 36216.40 38983.17 38181.84 19162.51 35581.79 371
test_040272.68 32669.54 33382.09 32688.67 29371.81 31592.72 29586.77 36261.52 36662.21 35583.91 33343.22 35293.76 32634.60 38572.23 29580.72 373
testgi74.88 31673.40 31679.32 34080.13 36361.75 36293.21 28786.64 36379.49 26366.56 33791.06 23135.51 37288.67 36556.79 35171.25 29787.56 320
TDRefinement69.20 33865.78 34279.48 33866.04 38862.21 36188.21 33386.12 36462.92 36161.03 36185.61 31233.23 37594.16 31855.82 35553.02 37182.08 368
ADS-MVSNet279.57 28377.53 28685.71 27993.78 17172.13 30779.48 36986.11 36573.09 32780.14 22179.99 35462.15 25590.14 36259.49 33883.52 21894.85 204
LF4IMVS72.36 32870.82 32676.95 34879.18 36556.33 37486.12 35186.11 36569.30 34863.06 35186.66 29533.03 37692.25 34065.33 31668.64 32182.28 367
TinyColmap72.41 32768.99 33682.68 32188.11 29969.59 33188.41 33285.20 36765.55 35657.91 36984.82 32730.80 38095.94 25151.38 36368.70 32082.49 366
pmmvs365.75 34362.18 34676.45 35167.12 38764.54 35088.68 33085.05 36854.77 38357.54 37273.79 37029.40 38186.21 37655.49 35647.77 38078.62 375
new_pmnet66.18 34263.18 34575.18 35676.27 37761.74 36383.79 36284.66 36956.64 38151.57 37771.85 37931.29 37987.93 36749.98 36962.55 35475.86 378
AllTest75.92 31073.06 31884.47 30192.18 22467.29 34091.07 31484.43 37067.63 35063.48 34690.18 24638.20 36697.16 19757.04 34873.37 28788.97 290
TestCases84.47 30192.18 22467.29 34084.43 37067.63 35063.48 34690.18 24638.20 36697.16 19757.04 34873.37 28788.97 290
LCM-MVSNet-Re83.75 22683.54 21384.39 30593.54 17864.14 35392.51 29684.03 37283.90 17566.14 33886.59 29667.36 22392.68 33584.89 16092.87 14496.35 168
Gipumacopyleft45.11 35842.05 36054.30 37580.69 36051.30 38235.80 39383.81 37328.13 38927.94 39334.53 39311.41 39676.70 38921.45 39254.65 36534.90 393
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
LCM-MVSNet52.52 35248.24 35565.35 36347.63 39941.45 39272.55 38583.62 37431.75 38837.66 38657.92 3869.19 39876.76 38849.26 37144.60 38377.84 376
FPMVS55.09 35052.93 35361.57 36955.98 39240.51 39483.11 36583.41 37537.61 38734.95 38871.95 37714.40 39076.95 38729.81 38765.16 34567.25 382
Patchmatch-RL test76.65 30774.01 31484.55 30077.37 37264.23 35278.49 37582.84 37678.48 28064.63 34473.40 37276.05 13191.70 34976.99 23557.84 36297.72 105
bld_raw_dy_0_6482.13 25480.76 25386.24 27285.78 32975.03 28294.40 25682.62 37783.12 19176.46 25890.96 23553.83 31894.55 31081.04 19578.60 26389.14 280
DSMNet-mixed73.13 32472.45 32075.19 35577.51 37146.82 38585.09 35782.01 37867.61 35469.27 32481.33 34750.89 32586.28 37554.54 35783.80 21792.46 235
lessismore_v079.98 33680.59 36158.34 37280.87 37958.49 36783.46 33743.10 35393.89 32263.11 32748.68 37787.72 314
test_f64.01 34462.13 34769.65 35963.00 39045.30 39083.66 36380.68 38061.30 36855.70 37372.62 37514.23 39184.64 37969.84 29458.11 36179.00 374
door80.13 381
door-mid79.75 382
PM-MVS69.32 33766.93 33976.49 35073.60 38055.84 37685.91 35279.32 38374.72 31461.09 36078.18 35921.76 38591.10 35470.86 28956.90 36482.51 364
mvsany_test367.19 34165.34 34372.72 35763.08 38948.57 38383.12 36478.09 38472.07 33461.21 35977.11 36322.94 38487.78 37078.59 21851.88 37481.80 370
dmvs_testset72.00 33173.36 31767.91 36083.83 35131.90 40085.30 35677.12 38582.80 20163.05 35292.46 20961.54 26282.55 38342.22 38271.89 29689.29 275
ANet_high46.22 35541.28 36261.04 37039.91 40146.25 38870.59 38676.18 38658.87 37823.09 39448.00 39112.58 39466.54 39428.65 38913.62 39570.35 380
test_method56.77 34754.53 35163.49 36776.49 37440.70 39375.68 38074.24 38719.47 39548.73 37871.89 37819.31 38665.80 39557.46 34747.51 38183.97 357
APD_test156.56 34853.58 35265.50 36267.93 38646.51 38777.24 37972.95 38838.09 38642.75 38475.17 36613.38 39282.78 38240.19 38354.53 36667.23 383
EGC-MVSNET52.46 35347.56 35667.15 36181.98 35760.11 36882.54 36672.44 3890.11 4010.70 40274.59 36825.11 38383.26 38029.04 38861.51 35758.09 386
PMMVS250.90 35446.31 35764.67 36455.53 39346.67 38677.30 37871.02 39040.89 38534.16 38959.32 3849.83 39776.14 39040.09 38428.63 39271.21 379
WB-MVS57.26 34656.22 34960.39 37169.29 38235.91 39886.39 35070.06 39159.84 37646.46 38172.71 37451.18 32478.11 38515.19 39534.89 39067.14 384
SSC-MVS56.01 34954.96 35059.17 37268.42 38434.13 39984.98 35869.23 39258.08 38045.36 38271.67 38050.30 33077.46 38614.28 39632.33 39165.91 385
test_vis1_rt73.96 31872.40 32178.64 34383.91 35061.16 36695.63 21568.18 39376.32 30160.09 36474.77 36729.01 38297.54 17387.74 13875.94 27477.22 377
MTMP97.53 9068.16 394
DeepMVS_CXcopyleft64.06 36678.53 36743.26 39168.11 39569.94 34538.55 38576.14 36518.53 38779.34 38443.72 37941.62 38769.57 381
PMVScopyleft34.80 2339.19 36035.53 36350.18 37629.72 40230.30 40159.60 39166.20 39626.06 39217.91 39649.53 3893.12 40274.09 39118.19 39449.40 37646.14 390
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
testf145.70 35642.41 35855.58 37353.29 39640.02 39568.96 38762.67 39727.45 39029.85 39061.58 3825.98 40073.83 39228.49 39043.46 38552.90 387
APD_test245.70 35642.41 35855.58 37353.29 39640.02 39568.96 38762.67 39727.45 39029.85 39061.58 3825.98 40073.83 39228.49 39043.46 38552.90 387
tmp_tt41.54 35941.93 36140.38 37820.10 40326.84 40261.93 39059.09 39914.81 39728.51 39280.58 35035.53 37148.33 39963.70 32413.11 39645.96 392
MVEpermissive35.65 2233.85 36129.49 36646.92 37741.86 40036.28 39750.45 39256.52 40018.75 39618.28 39537.84 3922.41 40358.41 39618.71 39320.62 39346.06 391
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN32.70 36232.39 36433.65 37953.35 39525.70 40374.07 38353.33 40121.08 39317.17 39733.63 39511.85 39554.84 39712.98 39714.04 39420.42 394
EMVS31.70 36331.45 36532.48 38050.72 39823.95 40474.78 38252.30 40220.36 39416.08 39831.48 39612.80 39353.60 39811.39 39813.10 39719.88 395
test_vis3_rt54.10 35151.04 35463.27 36858.16 39146.08 38984.17 36049.32 40356.48 38236.56 38749.48 3908.03 39991.91 34667.29 30549.87 37551.82 389
N_pmnet61.30 34560.20 34864.60 36584.32 34417.00 40691.67 30910.98 40461.77 36558.45 36878.55 35849.89 33191.83 34742.27 38163.94 35084.97 350
wuyk23d14.10 36513.89 36814.72 38155.23 39422.91 40533.83 3943.56 4054.94 3984.11 3992.28 4012.06 40419.66 40010.23 3998.74 3981.59 398
testmvs9.92 36612.94 3690.84 3830.65 4040.29 40893.78 2720.39 4060.42 3992.85 40015.84 3990.17 4060.30 4022.18 4000.21 3991.91 397
test1239.07 36711.73 3701.11 3820.50 4050.77 40789.44 3250.20 4070.34 4002.15 40110.72 4000.34 4050.32 4011.79 4010.08 4002.23 396
test_blank0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
uanet_test0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
DCPMVS0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
pcd_1.5k_mvsjas5.92 3697.89 3720.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 40271.04 2040.00 4030.00 4020.00 4010.00 399
sosnet-low-res0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
sosnet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
uncertanet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
Regformer0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
n20.00 408
nn0.00 408
ab-mvs-re8.11 36810.81 3710.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 40397.30 940.00 4070.00 4030.00 4020.00 4010.00 399
uanet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
WAC-MVS67.18 34249.00 372
PC_three_145291.12 3598.33 298.42 2892.51 299.81 2198.96 399.37 199.70 3
eth-test20.00 406
eth-test0.00 406
OPU-MVS97.30 299.19 792.31 399.12 1198.54 2092.06 399.84 1299.11 299.37 199.74 1
test_0728_THIRD88.38 7396.69 1798.76 1289.64 1399.76 3197.47 2498.84 2399.38 14
GSMVS97.54 117
test_part298.90 1985.14 6096.07 28
sam_mvs177.59 10297.54 117
sam_mvs75.35 150
test_post185.88 35330.24 39773.77 17395.07 30073.89 267
test_post33.80 39476.17 12995.97 247
patchmatchnet-post77.09 36477.78 10195.39 280
gm-plane-assit92.27 21879.64 18284.47 15795.15 15797.93 15185.81 152
test9_res96.00 3999.03 1398.31 62
agg_prior294.30 5899.00 1598.57 46
test_prior482.34 11097.75 75
test_prior298.37 3986.08 11994.57 4998.02 5183.14 4895.05 5198.79 26
旧先验296.97 13874.06 31996.10 2797.76 16088.38 133
新几何296.42 175
原ACMM296.84 146
testdata299.48 7376.45 242
segment_acmp82.69 53
testdata195.57 21787.44 94
plane_prior791.86 23977.55 243
plane_prior691.98 23577.92 23264.77 242
plane_prior494.15 182
plane_prior377.75 23990.17 5081.33 207
plane_prior297.18 11589.89 53
plane_prior191.95 237
plane_prior77.96 22997.52 9390.36 4882.96 226
HQP5-MVS78.48 209
HQP-NCC92.08 23097.63 8290.52 4382.30 193
ACMP_Plane92.08 23097.63 8290.52 4382.30 193
BP-MVS87.67 140
HQP4-MVS82.30 19397.32 18791.13 241
HQP2-MVS65.40 236
NP-MVS92.04 23478.22 21994.56 172
MDTV_nov1_ep13_2view81.74 12686.80 34580.65 23585.65 15574.26 16776.52 24196.98 146
ACMMP++_ref78.45 265
ACMMP++79.05 256
Test By Simon71.65 197