This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort by
MVS_111021_HR98.72 2498.62 2299.01 7199.36 9697.18 10199.93 7599.90 196.81 5198.67 10799.77 6193.92 8699.89 9699.27 5399.94 5499.96 64
MVS_111021_LR98.42 4398.38 3398.53 10599.39 9495.79 15099.87 10099.86 296.70 5498.78 9999.79 5592.03 13999.90 9199.17 5799.86 7099.88 85
CHOSEN 1792x268896.81 11396.53 11297.64 15298.91 12893.07 22999.65 17399.80 395.64 8395.39 19198.86 17784.35 23499.90 9196.98 15099.16 12299.95 71
HyFIR lowres test96.66 12396.43 11597.36 17099.05 11193.91 21199.70 16599.80 390.54 25496.26 17598.08 21492.15 13698.23 23396.84 15595.46 20999.93 76
test250697.53 8597.19 9098.58 9898.66 14296.90 11398.81 28199.77 594.93 9997.95 13398.96 16192.51 12699.20 16694.93 17998.15 15099.64 119
MM99.76 1099.33 899.99 499.76 698.39 399.39 7299.80 5190.49 16699.96 6199.89 1699.43 11099.98 48
thres100view90096.74 11895.92 13799.18 5098.90 12998.77 4099.74 15399.71 792.59 19295.84 18398.86 17789.25 18299.50 15493.84 20694.57 21799.27 179
tfpn200view996.79 11495.99 12599.19 4998.94 12098.82 3699.78 13999.71 792.86 17496.02 18098.87 17589.33 18099.50 15493.84 20694.57 21799.27 179
thres600view796.69 12195.87 14099.14 5998.90 12998.78 3999.74 15399.71 792.59 19295.84 18398.86 17789.25 18299.50 15493.44 21894.50 22099.16 186
thres40096.78 11595.99 12599.16 5598.94 12098.82 3699.78 13999.71 792.86 17496.02 18098.87 17589.33 18099.50 15493.84 20694.57 21799.16 186
thres20096.96 10796.21 12099.22 4698.97 11898.84 3599.85 11699.71 793.17 16996.26 17598.88 17289.87 17399.51 15294.26 19894.91 21699.31 174
MVS_030498.87 2098.61 2399.67 1699.18 10299.13 2299.87 10099.65 1298.17 898.75 10499.75 6992.76 11899.94 7799.88 1899.44 10899.94 74
PVSNet91.05 1397.13 10196.69 10798.45 11099.52 8795.81 14999.95 5299.65 1294.73 10799.04 8899.21 13984.48 23199.95 6994.92 18098.74 13699.58 136
PVSNet_088.03 1991.80 25490.27 26796.38 20098.27 16390.46 29199.94 6899.61 1493.99 14286.26 32497.39 23771.13 33599.89 9698.77 8067.05 37898.79 205
WTY-MVS98.10 6097.60 7599.60 2298.92 12499.28 1799.89 9599.52 1595.58 8598.24 12899.39 12393.33 9999.74 13497.98 11995.58 20899.78 100
HY-MVS92.50 797.79 7597.17 9299.63 1798.98 11799.32 997.49 33299.52 1595.69 8298.32 12397.41 23593.32 10099.77 12898.08 11395.75 20599.81 94
EPNet98.49 3698.40 3198.77 8499.62 8096.80 11699.90 8799.51 1797.60 2299.20 8199.36 12693.71 9399.91 8997.99 11798.71 13799.61 127
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PGM-MVS98.34 4798.13 5098.99 7299.92 3197.00 10899.75 15099.50 1893.90 14899.37 7399.76 6393.24 105100.00 197.75 13299.96 4699.98 48
ACMMPcopyleft97.74 7897.44 8098.66 9099.92 3196.13 14299.18 23899.45 1994.84 10496.41 17299.71 8391.40 14699.99 3697.99 11798.03 15799.87 87
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
MG-MVS98.91 1898.65 2099.68 1599.94 1399.07 2499.64 17799.44 2097.33 3199.00 9099.72 8194.03 8499.98 4398.73 83100.00 1100.00 1
EPMVS96.53 12796.01 12498.09 12898.43 15496.12 14496.36 35399.43 2193.53 15897.64 14195.04 31994.41 6798.38 21891.13 24698.11 15399.75 103
CHOSEN 280x42099.01 1399.03 1098.95 7699.38 9598.87 3298.46 30399.42 2297.03 4299.02 8999.09 14599.35 198.21 23499.73 3299.78 7999.77 101
D2MVS92.76 23192.59 22693.27 30195.13 29289.54 30999.69 16699.38 2392.26 20687.59 30394.61 33485.05 22697.79 25491.59 24188.01 26992.47 349
sss97.57 8497.03 9799.18 5098.37 15798.04 6799.73 15899.38 2393.46 16098.76 10299.06 14891.21 14899.89 9696.33 15997.01 17999.62 124
PAPM98.60 2998.42 3099.14 5996.05 26598.96 2699.90 8799.35 2596.68 5598.35 12299.66 9696.45 2998.51 20299.45 4599.89 6699.96 64
UGNet95.33 16694.57 17497.62 15598.55 14794.85 18498.67 29499.32 2695.75 8196.80 16196.27 27372.18 32899.96 6194.58 19299.05 12898.04 224
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
test_yl97.83 6997.37 8399.21 4799.18 10297.98 7099.64 17799.27 2791.43 23197.88 13798.99 15595.84 3899.84 11698.82 7795.32 21399.79 97
DCV-MVSNet97.83 6997.37 8399.21 4799.18 10297.98 7099.64 17799.27 2791.43 23197.88 13798.99 15595.84 3899.84 11698.82 7795.32 21399.79 97
VNet97.21 10096.57 11199.13 6398.97 11897.82 7699.03 25899.21 2994.31 12599.18 8498.88 17286.26 21599.89 9698.93 6994.32 22199.69 110
testing393.92 20194.23 18192.99 30897.54 21090.23 29599.99 499.16 3090.57 25391.33 24098.63 19192.99 11092.52 37482.46 33495.39 21196.22 247
PVSNet_BlendedMVS96.05 14495.82 14196.72 18899.59 8196.99 10999.95 5299.10 3194.06 13898.27 12595.80 28489.00 18799.95 6999.12 5887.53 27793.24 336
PVSNet_Blended97.94 6397.64 7398.83 8199.59 8196.99 109100.00 199.10 3195.38 9098.27 12599.08 14689.00 18799.95 6999.12 5899.25 11899.57 137
UniMVSNet_NR-MVSNet92.95 22892.11 23395.49 21894.61 30295.28 17299.83 12799.08 3391.49 22789.21 27796.86 25587.14 20496.73 31193.20 22077.52 34894.46 258
CSCG97.10 10297.04 9697.27 17499.89 4591.92 25899.90 8799.07 3488.67 28895.26 19499.82 4693.17 10799.98 4398.15 10899.47 10499.90 83
PatchMatch-RL96.04 14595.40 15097.95 13299.59 8195.22 17699.52 19599.07 3493.96 14496.49 16898.35 20982.28 24599.82 12090.15 26899.22 12198.81 204
VPA-MVSNet92.70 23491.55 24696.16 20595.09 29396.20 13898.88 27299.00 3691.02 24491.82 23495.29 31376.05 30797.96 24795.62 17081.19 32094.30 274
SDMVSNet94.80 17593.96 18897.33 17298.92 12495.42 16699.59 18398.99 3792.41 20192.55 22697.85 22475.81 30898.93 17897.90 12391.62 23797.64 231
CVMVSNet94.68 18294.94 16793.89 28496.80 24886.92 33599.06 25198.98 3894.45 11594.23 20699.02 15085.60 21895.31 34990.91 25395.39 21199.43 160
UniMVSNet (Re)93.07 22692.13 23295.88 21094.84 29796.24 13799.88 9798.98 3892.49 19989.25 27495.40 30387.09 20597.14 28493.13 22478.16 34394.26 276
fmvsm_s_conf0.5_n97.80 7397.85 6797.67 15099.06 11094.41 19599.98 1498.97 4097.34 2999.63 4399.69 8787.27 20299.97 5399.62 3799.06 12798.62 213
h-mvs3394.92 17394.36 17796.59 19298.85 13291.29 27498.93 26798.94 4195.90 7698.77 10098.42 20890.89 16099.77 12897.80 12570.76 36798.72 210
tfpnnormal89.29 30487.61 31094.34 26794.35 30694.13 20498.95 26598.94 4183.94 34384.47 33495.51 29874.84 31797.39 26677.05 36180.41 33091.48 359
MVS96.60 12495.56 14899.72 1396.85 24599.22 2098.31 31198.94 4191.57 22590.90 24499.61 10386.66 21099.96 6197.36 13899.88 6899.99 23
WR-MVS_H91.30 26090.35 26494.15 27094.17 30992.62 24499.17 23998.94 4188.87 28486.48 32094.46 33984.36 23296.61 31688.19 28778.51 34193.21 337
FIs94.10 19893.43 20396.11 20694.70 30096.82 11599.58 18598.93 4592.54 19589.34 27297.31 23887.62 19897.10 28894.22 20086.58 28294.40 265
fmvsm_s_conf0.5_n_a97.73 8097.72 7097.77 14498.63 14494.26 20099.96 3498.92 4697.18 3999.75 2999.69 8787.00 20799.97 5399.46 4498.89 13099.08 194
test_fmvsm_n_192098.44 4098.61 2397.92 13499.27 10095.18 178100.00 198.90 4798.05 1299.80 1799.73 7892.64 12199.99 3699.58 3899.51 10298.59 214
EPNet_dtu95.71 15595.39 15196.66 19098.92 12493.41 22499.57 18798.90 4796.19 7397.52 14398.56 19792.65 12097.36 26777.89 35698.33 14499.20 184
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
patch_mono-298.24 5599.12 595.59 21799.67 7786.91 33699.95 5298.89 4997.60 2299.90 399.76 6396.54 2899.98 4399.94 1199.82 7699.88 85
FC-MVSNet-test93.81 20593.15 21295.80 21494.30 30796.20 13899.42 20998.89 4992.33 20589.03 28297.27 24087.39 20196.83 30793.20 22086.48 28394.36 269
baseline296.71 12096.49 11397.37 16895.63 28795.96 14699.74 15398.88 5192.94 17391.61 23598.97 15997.72 798.62 19794.83 18498.08 15697.53 236
API-MVS97.86 6797.66 7298.47 10899.52 8795.41 16799.47 20498.87 5291.68 22398.84 9699.85 3092.34 13299.99 3698.44 9699.96 46100.00 1
fmvsm_l_conf0.5_n98.94 1598.84 1799.25 4499.17 10597.81 7799.98 1498.86 5398.25 499.90 399.76 6394.21 7999.97 5399.87 1999.52 9999.98 48
131496.84 11295.96 13199.48 3496.74 25298.52 5698.31 31198.86 5395.82 7889.91 25698.98 15787.49 19999.96 6197.80 12599.73 8299.96 64
MSLP-MVS++99.13 899.01 1199.49 3299.94 1398.46 5999.98 1498.86 5397.10 4099.80 1799.94 495.92 36100.00 199.51 40100.00 1100.00 1
fmvsm_l_conf0.5_n_a99.00 1498.91 1499.28 4399.21 10197.91 7499.98 1498.85 5698.25 499.92 299.75 6994.72 6199.97 5399.87 1999.64 8799.95 71
sd_testset93.55 21492.83 21895.74 21598.92 12490.89 28298.24 31498.85 5692.41 20192.55 22697.85 22471.07 33698.68 19493.93 20391.62 23797.64 231
AdaColmapbinary97.23 9996.80 10498.51 10699.99 195.60 16099.09 24498.84 5893.32 16496.74 16299.72 8186.04 216100.00 198.01 11599.43 11099.94 74
test_fmvsmconf_n98.43 4298.32 3998.78 8298.12 17596.41 12699.99 498.83 5998.22 699.67 3899.64 9991.11 15399.94 7799.67 3699.62 8999.98 48
IB-MVS92.85 694.99 17293.94 18998.16 12397.72 20095.69 15799.99 498.81 6094.28 12792.70 22396.90 25295.08 5199.17 16996.07 16373.88 36299.60 129
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
3Dnovator91.47 1296.28 14095.34 15399.08 6596.82 24797.47 9399.45 20798.81 6095.52 8889.39 27099.00 15481.97 24799.95 6997.27 14099.83 7299.84 90
PHI-MVS98.41 4498.21 4499.03 6899.86 5397.10 10599.98 1498.80 6290.78 25199.62 4699.78 5995.30 47100.00 199.80 2599.93 6099.99 23
MAR-MVS97.43 8797.19 9098.15 12699.47 9194.79 18899.05 25598.76 6392.65 18898.66 10899.82 4688.52 19299.98 4398.12 10999.63 8899.67 113
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
DU-MVS92.46 24091.45 24995.49 21894.05 31095.28 17299.81 13298.74 6492.25 20789.21 27796.64 26381.66 25096.73 31193.20 22077.52 34894.46 258
tt080591.28 26290.18 27094.60 25196.26 26087.55 32998.39 30998.72 6589.00 27789.22 27698.47 20562.98 36498.96 17690.57 25988.00 27097.28 237
无先验99.49 20198.71 6693.46 160100.00 194.36 19599.99 23
NR-MVSNet91.56 25990.22 26895.60 21694.05 31095.76 15298.25 31398.70 6791.16 24080.78 35296.64 26383.23 24296.57 31791.41 24277.73 34794.46 258
FE-MVS95.70 15795.01 16597.79 14198.21 16794.57 19095.03 36798.69 6888.90 28397.50 14596.19 27592.60 12399.49 15889.99 27097.94 15999.31 174
CNVR-MVS99.40 199.26 199.84 699.98 299.51 699.98 1498.69 6898.20 799.93 199.98 296.82 23100.00 199.75 28100.00 199.99 23
WR-MVS92.31 24391.25 25195.48 22194.45 30495.29 17199.60 18298.68 7090.10 26188.07 29896.89 25380.68 26296.80 30993.14 22379.67 33694.36 269
ab-mvs94.69 18093.42 20498.51 10698.07 17696.26 13396.49 35198.68 7090.31 25994.54 19997.00 25076.30 30399.71 13895.98 16593.38 23199.56 138
QAPM95.40 16494.17 18399.10 6496.92 23997.71 7999.40 21098.68 7089.31 27188.94 28398.89 17182.48 24499.96 6193.12 22599.83 7299.62 124
Anonymous2024052992.10 24790.65 25896.47 19398.82 13390.61 28798.72 28898.67 7375.54 37593.90 21098.58 19566.23 35399.90 9194.70 18990.67 23998.90 200
test_prior99.43 3599.94 1398.49 5898.65 7499.80 12199.99 23
TranMVSNet+NR-MVSNet91.68 25890.61 26094.87 24093.69 31793.98 20999.69 16698.65 7491.03 24388.44 29196.83 25980.05 27096.18 33190.26 26776.89 35694.45 263
fmvsm_s_conf0.1_n97.30 9597.21 8997.60 15697.38 21994.40 19799.90 8798.64 7696.47 6199.51 6199.65 9884.99 22799.93 8599.22 5599.09 12698.46 215
旧先验199.76 6697.52 8798.64 7699.85 3095.63 4199.94 5499.99 23
MCST-MVS99.32 399.14 499.86 599.97 399.59 599.97 2798.64 7698.47 299.13 8599.92 1396.38 30100.00 199.74 30100.00 1100.00 1
PVSNet_Blended_VisFu97.27 9796.81 10398.66 9098.81 13496.67 11899.92 7898.64 7694.51 11496.38 17398.49 20189.05 18699.88 10297.10 14698.34 14399.43 160
新几何199.42 3799.75 6898.27 6198.63 8092.69 18599.55 5499.82 4694.40 68100.00 191.21 24499.94 5499.99 23
NCCC99.37 299.25 299.71 1499.96 899.15 2199.97 2798.62 8198.02 1399.90 399.95 397.33 17100.00 199.54 39100.00 1100.00 1
HFP-MVS98.56 3198.37 3599.14 5999.96 897.43 9499.95 5298.61 8294.77 10599.31 7699.85 3094.22 77100.00 198.70 8499.98 3299.98 48
ACMMPR98.50 3598.32 3999.05 6699.96 897.18 10199.95 5298.60 8394.77 10599.31 7699.84 4193.73 92100.00 198.70 8499.98 3299.98 48
VPNet91.81 25190.46 26195.85 21294.74 29995.54 16298.98 26198.59 8492.14 20890.77 24697.44 23468.73 34397.54 26394.89 18377.89 34594.46 258
test0.0.03 193.86 20293.61 19594.64 24995.02 29692.18 25299.93 7598.58 8594.07 13687.96 29998.50 20093.90 8894.96 35381.33 34193.17 23296.78 239
DELS-MVS98.54 3298.22 4399.50 3099.15 10798.65 51100.00 198.58 8597.70 2098.21 12999.24 13792.58 12499.94 7798.63 9199.94 5499.92 81
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CP-MVSNet91.23 26490.22 26894.26 26893.96 31292.39 24899.09 24498.57 8788.95 28186.42 32196.57 26679.19 27796.37 32390.29 26678.95 33894.02 300
OpenMVScopyleft90.15 1594.77 17893.59 19898.33 11796.07 26497.48 9299.56 18998.57 8790.46 25586.51 31898.95 16678.57 28499.94 7793.86 20599.74 8197.57 235
hse-mvs294.38 19194.08 18595.31 22798.27 16390.02 30199.29 22998.56 8995.90 7698.77 10098.00 21790.89 16098.26 23297.80 12569.20 37397.64 231
AUN-MVS93.28 21992.60 22395.34 22598.29 16090.09 29999.31 22498.56 8991.80 22196.35 17498.00 21789.38 17998.28 22892.46 23069.22 37297.64 231
HPM-MVS++copyleft99.07 1098.88 1699.63 1799.90 4299.02 2599.95 5298.56 8997.56 2599.44 6599.85 3095.38 46100.00 199.31 5199.99 2199.87 87
testdata98.42 11399.47 9195.33 17098.56 8993.78 15199.79 2599.85 3093.64 9599.94 7794.97 17899.94 54100.00 1
EPP-MVSNet96.69 12196.60 10996.96 18097.74 19593.05 23199.37 21798.56 8988.75 28695.83 18599.01 15296.01 3298.56 19996.92 15397.20 17399.25 181
DeepPCF-MVS95.94 297.71 8198.98 1293.92 28199.63 7981.76 36399.96 3498.56 8999.47 199.19 8399.99 194.16 81100.00 199.92 1299.93 60100.00 1
region2R98.54 3298.37 3599.05 6699.96 897.18 10199.96 3498.55 9594.87 10399.45 6499.85 3094.07 83100.00 198.67 86100.00 199.98 48
test22299.55 8597.41 9699.34 22098.55 9591.86 21799.27 8099.83 4393.84 9099.95 4999.99 23
tpmvs94.28 19693.57 19996.40 19898.55 14791.50 27295.70 36698.55 9587.47 30492.15 23094.26 34191.42 14598.95 17788.15 28895.85 20198.76 206
thisisatest053097.10 10296.72 10698.22 12297.60 20896.70 11799.92 7898.54 9891.11 24197.07 15398.97 15997.47 1299.03 17393.73 21496.09 19398.92 197
tttt051796.85 11196.49 11397.92 13497.48 21595.89 14899.85 11698.54 9890.72 25296.63 16498.93 17097.47 1299.02 17493.03 22695.76 20498.85 201
thisisatest051597.41 9297.02 9898.59 9797.71 20297.52 8799.97 2798.54 9891.83 21897.45 14699.04 14997.50 999.10 17294.75 18796.37 19099.16 186
ZD-MVS99.92 3198.57 5498.52 10192.34 20499.31 7699.83 4395.06 5299.80 12199.70 3499.97 42
GG-mvs-BLEND98.54 10398.21 16798.01 6893.87 37298.52 10197.92 13497.92 22399.02 297.94 25098.17 10699.58 9699.67 113
PS-CasMVS90.63 27789.51 28493.99 27993.83 31491.70 26798.98 26198.52 10188.48 29286.15 32596.53 26875.46 31096.31 32788.83 27978.86 34093.95 308
dmvs_re93.20 22193.15 21293.34 29896.54 25683.81 35098.71 28998.51 10491.39 23592.37 22998.56 19778.66 28397.83 25393.89 20489.74 24098.38 217
CANet98.27 5197.82 6899.63 1799.72 7499.10 2399.98 1498.51 10497.00 4398.52 11399.71 8387.80 19599.95 6999.75 2899.38 11299.83 91
gg-mvs-nofinetune93.51 21591.86 24198.47 10897.72 20097.96 7292.62 37698.51 10474.70 37897.33 14869.59 39198.91 397.79 25497.77 13099.56 9799.67 113
EI-MVSNet-Vis-set98.27 5198.11 5298.75 8599.83 5796.59 12299.40 21098.51 10495.29 9398.51 11499.76 6393.60 9699.71 13898.53 9499.52 9999.95 71
原ACMM198.96 7599.73 7296.99 10998.51 10494.06 13899.62 4699.85 3094.97 5899.96 6195.11 17499.95 4999.92 81
fmvsm_s_conf0.1_n_a97.09 10496.90 10097.63 15495.65 28594.21 20299.83 12798.50 10996.27 7099.65 4099.64 9984.72 22899.93 8599.04 6398.84 13398.74 208
EI-MVSNet-UG-set98.14 5897.99 5798.60 9599.80 6196.27 13299.36 21998.50 10995.21 9598.30 12499.75 6993.29 10299.73 13798.37 9999.30 11699.81 94
LS3D95.84 15195.11 16198.02 13199.85 5495.10 18098.74 28698.50 10987.22 30993.66 21199.86 2687.45 20099.95 6990.94 25299.81 7899.02 195
PEN-MVS90.19 28989.06 29293.57 29493.06 33290.90 28199.06 25198.47 11288.11 29785.91 32796.30 27276.67 29795.94 34187.07 30276.91 35593.89 313
DeepC-MVS_fast96.59 198.81 2298.54 2699.62 2099.90 4298.85 3499.24 23398.47 11298.14 1099.08 8699.91 1493.09 108100.00 199.04 6399.99 21100.00 1
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PLCcopyleft95.54 397.93 6497.89 6698.05 13099.82 5894.77 18999.92 7898.46 11493.93 14697.20 15099.27 13295.44 4599.97 5397.41 13799.51 10299.41 162
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
test_fmvsmvis_n_192097.67 8297.59 7797.91 13697.02 23595.34 16999.95 5298.45 11597.87 1597.02 15499.59 10489.64 17599.98 4399.41 4899.34 11598.42 216
test111195.57 16094.98 16697.37 16898.56 14593.37 22698.86 27698.45 11594.95 9896.63 16498.95 16675.21 31599.11 17195.02 17798.14 15299.64 119
ECVR-MVScopyleft95.66 15895.05 16397.51 16098.66 14293.71 21598.85 27898.45 11594.93 9996.86 15898.96 16175.22 31499.20 16695.34 17198.15 15099.64 119
UA-Net96.54 12695.96 13198.27 12098.23 16595.71 15598.00 32598.45 11593.72 15498.41 11899.27 13288.71 19199.66 14691.19 24597.69 16199.44 159
ZNCC-MVS98.31 4898.03 5599.17 5399.88 4997.59 8499.94 6898.44 11994.31 12598.50 11599.82 4693.06 10999.99 3698.30 10399.99 2199.93 76
DPM-MVS98.83 2198.46 2999.97 199.33 9799.92 199.96 3498.44 11997.96 1499.55 5499.94 497.18 21100.00 193.81 20999.94 5499.98 48
DPE-MVScopyleft99.26 699.10 899.74 1199.89 4599.24 1999.87 10098.44 11997.48 2799.64 4299.94 496.68 2699.99 3699.99 5100.00 199.99 23
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
alignmvs97.81 7297.33 8599.25 4498.77 13798.66 4999.99 498.44 11994.40 12198.41 11899.47 11493.65 9499.42 16298.57 9294.26 22299.67 113
test1198.44 119
SteuartSystems-ACMMP99.02 1298.97 1399.18 5098.72 13997.71 7999.98 1498.44 11996.85 4699.80 1799.91 1497.57 899.85 10899.44 4699.99 2199.99 23
Skip Steuart: Steuart Systems R&D Blog.
MDTV_nov1_ep1395.69 14497.90 18494.15 20395.98 36298.44 11993.12 17097.98 13295.74 28695.10 5098.58 19890.02 26996.92 181
DP-MVS Recon98.41 4498.02 5699.56 2599.97 398.70 4699.92 7898.44 11992.06 21298.40 12099.84 4195.68 40100.00 198.19 10599.71 8399.97 58
DVP-MVS++99.26 699.09 999.77 899.91 3999.31 1099.95 5298.43 12796.48 5999.80 1799.93 1197.44 14100.00 199.92 1299.98 32100.00 1
SED-MVS99.28 599.11 799.77 899.93 2499.30 1299.96 3498.43 12797.27 3499.80 1799.94 496.71 24100.00 1100.00 1100.00 1100.00 1
test_241102_TWO98.43 12797.27 3499.80 1799.94 497.18 21100.00 1100.00 1100.00 1100.00 1
test_241102_ONE99.93 2499.30 1298.43 12797.26 3699.80 1799.88 2196.71 24100.00 1
test_0728_SECOND99.82 799.94 1399.47 799.95 5298.43 127100.00 199.99 5100.00 1100.00 1
TEST999.92 3198.92 2899.96 3498.43 12793.90 14899.71 3499.86 2695.88 3799.85 108
train_agg98.88 1998.65 2099.59 2399.92 3198.92 2899.96 3498.43 12794.35 12299.71 3499.86 2695.94 3499.85 10899.69 3599.98 3299.99 23
test_899.92 3198.88 3199.96 3498.43 12794.35 12299.69 3699.85 3095.94 3499.85 108
agg_prior99.93 2498.77 4098.43 12799.63 4399.85 108
PAPM_NR98.12 5997.93 6398.70 8799.94 1396.13 14299.82 13098.43 12794.56 11397.52 14399.70 8594.40 6899.98 4397.00 14999.98 3299.99 23
PAPR98.52 3498.16 4899.58 2499.97 398.77 4099.95 5298.43 12795.35 9198.03 13199.75 6994.03 8499.98 4398.11 11099.83 7299.99 23
test072699.93 2499.29 1599.96 3498.42 13897.28 3299.86 799.94 497.22 19
MSP-MVS99.09 999.12 598.98 7399.93 2497.24 9899.95 5298.42 13897.50 2699.52 5999.88 2197.43 1699.71 13899.50 4199.98 32100.00 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
XVS98.70 2598.55 2599.15 5799.94 1397.50 9099.94 6898.42 13896.22 7199.41 6899.78 5994.34 7399.96 6198.92 7099.95 4999.99 23
X-MVStestdata93.83 20392.06 23599.15 5799.94 1397.50 9099.94 6898.42 13896.22 7199.41 6841.37 40094.34 7399.96 6198.92 7099.95 4999.99 23
MSC_two_6792asdad99.93 299.91 3999.80 298.41 142100.00 199.96 9100.00 1100.00 1
No_MVS99.93 299.91 3999.80 298.41 142100.00 199.96 9100.00 1100.00 1
test_one_060199.94 1399.30 1298.41 14296.63 5699.75 2999.93 1197.49 10
IU-MVS99.93 2499.31 1098.41 14297.71 1999.84 12100.00 1100.00 1100.00 1
save fliter99.82 5898.79 3899.96 3498.40 14697.66 21
test1299.43 3599.74 6998.56 5598.40 14699.65 4094.76 6099.75 13299.98 3299.99 23
PatchmatchNetpermissive95.94 14895.45 14997.39 16797.83 18994.41 19596.05 36098.40 14692.86 17497.09 15295.28 31494.21 7998.07 24189.26 27698.11 15399.70 108
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
GST-MVS98.27 5197.97 5899.17 5399.92 3197.57 8599.93 7598.39 14994.04 14198.80 9899.74 7692.98 111100.00 198.16 10799.76 8099.93 76
APDe-MVScopyleft99.06 1198.91 1499.51 2999.94 1398.76 4399.91 8298.39 14997.20 3899.46 6399.85 3095.53 4499.79 12399.86 21100.00 199.99 23
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
MP-MVScopyleft98.23 5697.97 5899.03 6899.94 1397.17 10499.95 5298.39 14994.70 10998.26 12799.81 5091.84 143100.00 198.85 7699.97 4299.93 76
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
CP-MVS98.45 3998.32 3998.87 7999.96 896.62 12099.97 2798.39 14994.43 11798.90 9499.87 2494.30 75100.00 199.04 6399.99 2199.99 23
SMA-MVScopyleft98.76 2398.48 2899.62 2099.87 5198.87 3299.86 11398.38 15393.19 16899.77 2799.94 495.54 42100.00 199.74 3099.99 21100.00 1
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
TSAR-MVS + MP.98.93 1698.77 1899.41 3899.74 6998.67 4799.77 14298.38 15396.73 5399.88 699.74 7694.89 5999.59 14999.80 2599.98 3299.97 58
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
mPP-MVS98.39 4698.20 4598.97 7499.97 396.92 11299.95 5298.38 15395.04 9798.61 11199.80 5193.39 97100.00 198.64 89100.00 199.98 48
ACMMP_NAP98.49 3698.14 4999.54 2799.66 7898.62 5399.85 11698.37 15694.68 11099.53 5799.83 4392.87 114100.00 198.66 8899.84 7199.99 23
FOURS199.92 3197.66 8399.95 5298.36 15795.58 8599.52 59
APD-MVScopyleft98.62 2898.35 3899.41 3899.90 4298.51 5799.87 10098.36 15794.08 13599.74 3199.73 7894.08 8299.74 13499.42 4799.99 2199.99 23
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
Syy-MVS90.00 29390.63 25988.11 35097.68 20374.66 37899.71 16398.35 15990.79 24992.10 23198.67 18579.10 27993.09 37063.35 38495.95 19896.59 242
myMVS_eth3d94.46 18994.76 17193.55 29597.68 20390.97 27799.71 16398.35 15990.79 24992.10 23198.67 18592.46 12993.09 37087.13 30195.95 19896.59 242
SR-MVS98.46 3898.30 4298.93 7799.88 4997.04 10699.84 12098.35 15994.92 10199.32 7599.80 5193.35 9899.78 12599.30 5299.95 4999.96 64
CPTT-MVS97.64 8397.32 8698.58 9899.97 395.77 15199.96 3498.35 15989.90 26598.36 12199.79 5591.18 15299.99 3698.37 9999.99 2199.99 23
SD-MVS98.92 1798.70 1999.56 2599.70 7698.73 4499.94 6898.34 16396.38 6599.81 1599.76 6394.59 6499.98 4399.84 2299.96 4699.97 58
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
9.1498.38 3399.87 5199.91 8298.33 16493.22 16799.78 2699.89 1994.57 6599.85 10899.84 2299.97 42
CDPH-MVS98.65 2798.36 3799.49 3299.94 1398.73 4499.87 10098.33 16493.97 14399.76 2899.87 2494.99 5799.75 13298.55 93100.00 199.98 48
DVP-MVScopyleft99.30 499.16 399.73 1299.93 2499.29 1599.95 5298.32 16697.28 3299.83 1399.91 1497.22 19100.00 199.99 5100.00 199.89 84
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
SCA94.69 18093.81 19397.33 17297.10 23194.44 19298.86 27698.32 16693.30 16596.17 17895.59 29376.48 30197.95 24891.06 24897.43 16699.59 130
SR-MVS-dyc-post98.31 4898.17 4798.71 8699.79 6296.37 13099.76 14798.31 16894.43 11799.40 7099.75 6993.28 10399.78 12598.90 7399.92 6399.97 58
RE-MVS-def98.13 5099.79 6296.37 13099.76 14798.31 16894.43 11799.40 7099.75 6992.95 11298.90 7399.92 6399.97 58
RPMNet89.76 29787.28 31297.19 17596.29 25892.66 24192.01 37998.31 16870.19 38496.94 15585.87 38387.25 20399.78 12562.69 38595.96 19699.13 190
APD-MVS_3200maxsize98.25 5498.08 5498.78 8299.81 6096.60 12199.82 13098.30 17193.95 14599.37 7399.77 6192.84 11599.76 13198.95 6799.92 6399.97 58
TESTMET0.1,196.74 11896.26 11898.16 12397.36 22196.48 12399.96 3498.29 17291.93 21595.77 18698.07 21595.54 4298.29 22690.55 26098.89 13099.70 108
MTGPAbinary98.28 173
MTAPA98.29 5097.96 6199.30 4299.85 5497.93 7399.39 21498.28 17395.76 8097.18 15199.88 2192.74 119100.00 198.67 8699.88 6899.99 23
114514_t97.41 9296.83 10299.14 5999.51 8997.83 7599.89 9598.27 17588.48 29299.06 8799.66 9690.30 16899.64 14896.32 16099.97 4299.96 64
Anonymous2023121189.86 29588.44 30294.13 27298.93 12290.68 28598.54 30098.26 17676.28 37186.73 31495.54 29570.60 33797.56 26290.82 25580.27 33394.15 289
Vis-MVSNetpermissive95.72 15395.15 16097.45 16297.62 20794.28 19999.28 23098.24 17794.27 12996.84 15998.94 16879.39 27498.76 18693.25 21998.49 14099.30 176
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
3Dnovator+91.53 1196.31 13795.24 15699.52 2896.88 24498.64 5299.72 16198.24 17795.27 9488.42 29598.98 15782.76 24399.94 7797.10 14699.83 7299.96 64
DTE-MVSNet89.40 30288.24 30592.88 31092.66 34089.95 30399.10 24398.22 17987.29 30785.12 33296.22 27476.27 30495.30 35083.56 32975.74 35993.41 330
SF-MVS98.67 2698.40 3199.50 3099.77 6598.67 4799.90 8798.21 18093.53 15899.81 1599.89 1994.70 6399.86 10799.84 2299.93 6099.96 64
VDDNet93.12 22491.91 23996.76 18696.67 25592.65 24398.69 29298.21 18082.81 35297.75 14099.28 12961.57 36899.48 15998.09 11294.09 22498.15 221
test-LLR96.47 12896.04 12397.78 14297.02 23595.44 16499.96 3498.21 18094.07 13695.55 18896.38 26993.90 8898.27 23090.42 26398.83 13499.64 119
test-mter96.39 13395.93 13597.78 14297.02 23595.44 16499.96 3498.21 18091.81 22095.55 18896.38 26995.17 4898.27 23090.42 26398.83 13499.64 119
MP-MVS-pluss98.07 6197.64 7399.38 4199.74 6998.41 6099.74 15398.18 18493.35 16296.45 16999.85 3092.64 12199.97 5398.91 7299.89 6699.77 101
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
FA-MVS(test-final)95.86 14995.09 16298.15 12697.74 19595.62 15996.31 35598.17 18591.42 23396.26 17596.13 27890.56 16499.47 16092.18 23497.07 17599.35 169
PS-MVSNAJ98.44 4098.20 4599.16 5598.80 13598.92 2899.54 19398.17 18597.34 2999.85 999.85 3091.20 14999.89 9699.41 4899.67 8598.69 211
HPM-MVScopyleft97.96 6297.72 7098.68 8899.84 5696.39 12999.90 8798.17 18592.61 19098.62 11099.57 10791.87 14299.67 14598.87 7599.99 2199.99 23
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
tpmrst96.27 14195.98 12797.13 17697.96 18193.15 22896.34 35498.17 18592.07 21098.71 10695.12 31793.91 8798.73 18894.91 18296.62 18499.50 151
ADS-MVSNet94.79 17694.02 18697.11 17897.87 18693.79 21294.24 36898.16 18990.07 26296.43 17094.48 33790.29 16998.19 23587.44 29597.23 17199.36 167
HPM-MVS_fast97.80 7397.50 7898.68 8899.79 6296.42 12599.88 9798.16 18991.75 22298.94 9299.54 11091.82 14499.65 14797.62 13599.99 2199.99 23
Vis-MVSNet (Re-imp)96.32 13695.98 12797.35 17197.93 18394.82 18699.47 20498.15 19191.83 21895.09 19599.11 14491.37 14797.47 26593.47 21797.43 16699.74 104
CNLPA97.76 7797.38 8298.92 7899.53 8696.84 11499.87 10098.14 19293.78 15196.55 16799.69 8792.28 13399.98 4397.13 14499.44 10899.93 76
JIA-IIPM91.76 25790.70 25794.94 23896.11 26387.51 33093.16 37598.13 19375.79 37497.58 14277.68 38892.84 11597.97 24588.47 28596.54 18599.33 172
cl2293.77 20793.25 21195.33 22699.49 9094.43 19399.61 18198.09 19490.38 25689.16 28095.61 29190.56 16497.34 26991.93 23684.45 29894.21 281
cdsmvs_eth3d_5k23.43 36631.24 3690.00 3840.00 4060.00 4090.00 39598.09 1940.00 4020.00 40399.67 9483.37 2400.00 4030.00 4020.00 4010.00 399
xiu_mvs_v2_base98.23 5697.97 5899.02 7098.69 14098.66 4999.52 19598.08 19697.05 4199.86 799.86 2690.65 16299.71 13899.39 5098.63 13898.69 211
tpm cat193.51 21592.52 22896.47 19397.77 19391.47 27396.13 35898.06 19780.98 36092.91 22093.78 34589.66 17498.87 17987.03 30496.39 18999.09 192
DeepC-MVS94.51 496.92 11096.40 11698.45 11099.16 10695.90 14799.66 17198.06 19796.37 6894.37 20399.49 11383.29 24199.90 9197.63 13499.61 9399.55 139
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_fmvsmconf0.1_n97.74 7897.44 8098.64 9295.76 27696.20 13899.94 6898.05 19998.17 898.89 9599.42 11887.65 19799.90 9199.50 4199.60 9599.82 92
EU-MVSNet90.14 29190.34 26589.54 33892.55 34181.06 36798.69 29298.04 20091.41 23486.59 31796.84 25880.83 26093.31 36986.20 31081.91 31594.26 276
TAPA-MVS92.12 894.42 19093.60 19796.90 18299.33 9791.78 26299.78 13998.00 20189.89 26694.52 20099.47 11491.97 14099.18 16869.90 37399.52 9999.73 105
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
baseline195.78 15294.86 16898.54 10398.47 15398.07 6599.06 25197.99 20292.68 18694.13 20798.62 19293.28 10398.69 19393.79 21185.76 28698.84 202
UnsupCasMVSNet_eth85.52 32283.99 32490.10 33489.36 37083.51 35296.65 34997.99 20289.14 27275.89 37293.83 34463.25 36393.92 36281.92 33967.90 37792.88 342
LFMVS94.75 17993.56 20098.30 11999.03 11295.70 15698.74 28697.98 20487.81 30298.47 11699.39 12367.43 34999.53 15098.01 11595.20 21599.67 113
dp95.05 17094.43 17696.91 18197.99 18092.73 23996.29 35697.98 20489.70 26895.93 18294.67 33293.83 9198.45 20786.91 30896.53 18699.54 143
PMMVS96.76 11696.76 10596.76 18698.28 16292.10 25399.91 8297.98 20494.12 13399.53 5799.39 12386.93 20898.73 18896.95 15297.73 16099.45 157
F-COLMAP96.93 10996.95 9996.87 18399.71 7591.74 26399.85 11697.95 20793.11 17195.72 18799.16 14392.35 13199.94 7795.32 17299.35 11498.92 197
OMC-MVS97.28 9697.23 8897.41 16599.76 6693.36 22799.65 17397.95 20796.03 7597.41 14799.70 8589.61 17699.51 15296.73 15698.25 14999.38 164
mvsany_test197.82 7197.90 6597.55 15798.77 13793.04 23299.80 13697.93 20996.95 4599.61 5299.68 9390.92 15799.83 11899.18 5698.29 14899.80 96
Anonymous20240521193.10 22591.99 23796.40 19899.10 10889.65 30798.88 27297.93 20983.71 34694.00 20898.75 18368.79 34199.88 10295.08 17691.71 23699.68 111
tpm295.47 16295.18 15996.35 20196.91 24091.70 26796.96 34597.93 20988.04 29998.44 11795.40 30393.32 10097.97 24594.00 20195.61 20799.38 164
TSAR-MVS + GP.98.60 2998.51 2798.86 8099.73 7296.63 11999.97 2797.92 21298.07 1198.76 10299.55 10895.00 5699.94 7799.91 1597.68 16299.99 23
CDS-MVSNet96.34 13596.07 12297.13 17697.37 22094.96 18299.53 19497.91 21391.55 22695.37 19298.32 21095.05 5397.13 28593.80 21095.75 20599.30 176
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
HQP3-MVS97.89 21489.60 241
HQP-MVS94.61 18494.50 17594.92 23995.78 27291.85 25999.87 10097.89 21496.82 4893.37 21398.65 18880.65 26398.39 21497.92 12189.60 24194.53 252
HQP_MVS94.49 18894.36 17794.87 24095.71 28291.74 26399.84 12097.87 21696.38 6593.01 21798.59 19380.47 26798.37 22097.79 12889.55 24494.52 254
plane_prior597.87 21698.37 22097.79 12889.55 24494.52 254
xiu_mvs_v1_base_debu97.43 8797.06 9398.55 10097.74 19598.14 6299.31 22497.86 21896.43 6299.62 4699.69 8785.56 21999.68 14299.05 6098.31 14597.83 226
xiu_mvs_v1_base97.43 8797.06 9398.55 10097.74 19598.14 6299.31 22497.86 21896.43 6299.62 4699.69 8785.56 21999.68 14299.05 6098.31 14597.83 226
xiu_mvs_v1_base_debi97.43 8797.06 9398.55 10097.74 19598.14 6299.31 22497.86 21896.43 6299.62 4699.69 8785.56 21999.68 14299.05 6098.31 14597.83 226
CostFormer96.10 14295.88 13996.78 18597.03 23492.55 24597.08 34297.83 22190.04 26498.72 10594.89 32695.01 5598.29 22696.54 15895.77 20399.50 151
TAMVS95.85 15095.58 14796.65 19197.07 23293.50 22099.17 23997.82 22291.39 23595.02 19698.01 21692.20 13497.30 27493.75 21395.83 20299.14 189
VDD-MVS93.77 20792.94 21596.27 20398.55 14790.22 29698.77 28597.79 22390.85 24796.82 16099.42 11861.18 37099.77 12898.95 6794.13 22398.82 203
cascas94.64 18393.61 19597.74 14897.82 19096.26 13399.96 3497.78 22485.76 32794.00 20897.54 23176.95 29599.21 16597.23 14295.43 21097.76 230
CLD-MVS94.06 20093.90 19094.55 25596.02 26690.69 28499.98 1497.72 22596.62 5891.05 24398.85 18077.21 29098.47 20398.11 11089.51 24694.48 256
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
MS-PatchMatch90.65 27590.30 26691.71 32294.22 30885.50 34298.24 31497.70 22688.67 28886.42 32196.37 27167.82 34798.03 24383.62 32899.62 8991.60 357
RRT_MVS93.14 22392.92 21693.78 28693.31 32590.04 30099.66 17197.69 22792.53 19688.91 28497.76 22884.36 23296.93 30195.10 17586.99 28094.37 268
XXY-MVS91.82 25090.46 26195.88 21093.91 31395.40 16898.87 27597.69 22788.63 29087.87 30097.08 24574.38 32197.89 25191.66 24084.07 30294.35 272
EI-MVSNet93.73 20993.40 20794.74 24596.80 24892.69 24099.06 25197.67 22988.96 28091.39 23799.02 15088.75 19097.30 27491.07 24787.85 27194.22 279
MVSTER95.53 16195.22 15796.45 19598.56 14597.72 7899.91 8297.67 22992.38 20391.39 23797.14 24297.24 1897.30 27494.80 18587.85 27194.34 273
ETV-MVS97.92 6597.80 6998.25 12198.14 17396.48 12399.98 1497.63 23195.61 8499.29 7999.46 11692.55 12598.82 18199.02 6698.54 13999.46 155
CANet_DTU96.76 11696.15 12198.60 9598.78 13697.53 8699.84 12097.63 23197.25 3799.20 8199.64 9981.36 25499.98 4392.77 22998.89 13098.28 219
LPG-MVS_test92.96 22792.71 22193.71 28995.43 28988.67 31799.75 15097.62 23392.81 17890.05 25198.49 20175.24 31298.40 21295.84 16889.12 24894.07 297
LGP-MVS_train93.71 28995.43 28988.67 31797.62 23392.81 17890.05 25198.49 20175.24 31298.40 21295.84 16889.12 24894.07 297
FMVSNet392.69 23591.58 24495.99 20898.29 16097.42 9599.26 23297.62 23389.80 26789.68 26295.32 30981.62 25296.27 32887.01 30585.65 28794.29 275
ET-MVSNet_ETH3D94.37 19293.28 21097.64 15298.30 15997.99 6999.99 497.61 23694.35 12271.57 37899.45 11796.23 3195.34 34896.91 15485.14 29399.59 130
EIA-MVS97.53 8597.46 7997.76 14698.04 17894.84 18599.98 1497.61 23694.41 12097.90 13599.59 10492.40 13098.87 17998.04 11499.13 12499.59 130
OPM-MVS93.21 22092.80 21994.44 26293.12 32990.85 28399.77 14297.61 23696.19 7391.56 23698.65 18875.16 31698.47 20393.78 21289.39 24793.99 305
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
IS-MVSNet96.29 13995.90 13897.45 16298.13 17494.80 18799.08 24697.61 23692.02 21495.54 19098.96 16190.64 16398.08 23993.73 21497.41 16999.47 154
CMPMVSbinary61.59 2184.75 32885.14 32383.57 35890.32 36562.54 38696.98 34497.59 24074.33 37969.95 38096.66 26164.17 36098.32 22487.88 29288.41 26289.84 371
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
UniMVSNet_ETH3D90.06 29288.58 30094.49 25994.67 30188.09 32697.81 33097.57 24183.91 34588.44 29197.41 23557.44 37497.62 26191.41 24288.59 25997.77 229
lupinMVS97.85 6897.60 7598.62 9397.28 22897.70 8199.99 497.55 24295.50 8999.43 6699.67 9490.92 15798.71 19198.40 9799.62 8999.45 157
XVG-OURS94.82 17494.74 17295.06 23498.00 17989.19 31099.08 24697.55 24294.10 13494.71 19899.62 10280.51 26599.74 13496.04 16493.06 23596.25 244
XVG-OURS-SEG-HR94.79 17694.70 17395.08 23398.05 17789.19 31099.08 24697.54 24493.66 15594.87 19799.58 10678.78 28199.79 12397.31 13993.40 23096.25 244
PatchT90.38 28288.75 29895.25 22995.99 26790.16 29791.22 38397.54 24476.80 37097.26 14986.01 38291.88 14196.07 33766.16 38195.91 20099.51 149
BH-RMVSNet95.18 16794.31 18097.80 13998.17 17195.23 17599.76 14797.53 24692.52 19794.27 20599.25 13676.84 29698.80 18290.89 25499.54 9899.35 169
ACMP92.05 992.74 23292.42 23093.73 28795.91 27088.72 31699.81 13297.53 24694.13 13287.00 31298.23 21174.07 32298.47 20396.22 16288.86 25393.99 305
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ACMM91.95 1092.88 22992.52 22893.98 28095.75 27889.08 31399.77 14297.52 24893.00 17289.95 25597.99 21976.17 30598.46 20693.63 21688.87 25294.39 267
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
TR-MVS94.54 18593.56 20097.49 16197.96 18194.34 19898.71 28997.51 24990.30 26094.51 20198.69 18475.56 30998.77 18592.82 22895.99 19599.35 169
BH-w/o95.71 15595.38 15296.68 18998.49 15292.28 24999.84 12097.50 25092.12 20992.06 23398.79 18184.69 22998.67 19595.29 17399.66 8699.09 192
mvs_anonymous95.65 15995.03 16497.53 15898.19 16995.74 15399.33 22197.49 25190.87 24690.47 24897.10 24488.23 19397.16 28295.92 16697.66 16399.68 111
DP-MVS94.54 18593.42 20497.91 13699.46 9394.04 20698.93 26797.48 25281.15 35990.04 25399.55 10887.02 20699.95 6988.97 27898.11 15399.73 105
ACMH89.72 1790.64 27689.63 27993.66 29395.64 28688.64 31998.55 29897.45 25389.03 27581.62 34797.61 23069.75 33998.41 21089.37 27487.62 27693.92 311
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
XVG-ACMP-BASELINE91.22 26590.75 25692.63 31393.73 31685.61 34098.52 30297.44 25492.77 18189.90 25796.85 25666.64 35298.39 21492.29 23288.61 25793.89 313
mvs_tets91.81 25191.08 25394.00 27891.63 35490.58 28898.67 29497.43 25592.43 20087.37 30997.05 24871.76 32997.32 27394.75 18788.68 25694.11 294
LTVRE_ROB88.28 1890.29 28689.05 29394.02 27695.08 29490.15 29897.19 33897.43 25584.91 33983.99 33697.06 24774.00 32398.28 22884.08 32387.71 27493.62 327
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
jajsoiax91.92 24991.18 25294.15 27091.35 35790.95 28099.00 26097.42 25792.61 19087.38 30897.08 24572.46 32797.36 26794.53 19388.77 25494.13 293
K. test v388.05 31187.24 31390.47 33191.82 35282.23 35998.96 26497.42 25789.05 27476.93 36895.60 29268.49 34495.42 34685.87 31581.01 32693.75 321
FMVSNet291.02 26789.56 28195.41 22397.53 21195.74 15398.98 26197.41 25987.05 31088.43 29395.00 32271.34 33296.24 33085.12 31885.21 29294.25 278
jason97.24 9896.86 10198.38 11695.73 27997.32 9799.97 2797.40 26095.34 9298.60 11299.54 11087.70 19698.56 19997.94 12099.47 10499.25 181
jason: jason.
PS-MVSNAJss93.64 21293.31 20994.61 25092.11 34792.19 25199.12 24197.38 26192.51 19888.45 29096.99 25191.20 14997.29 27794.36 19587.71 27494.36 269
MSDG94.37 19293.36 20897.40 16698.88 13193.95 21099.37 21797.38 26185.75 32990.80 24599.17 14284.11 23699.88 10286.35 30998.43 14298.36 218
CL-MVSNet_self_test84.50 33083.15 33388.53 34786.00 37781.79 36298.82 28097.35 26385.12 33583.62 33990.91 36576.66 29891.40 37869.53 37460.36 38792.40 350
canonicalmvs97.09 10496.32 11799.39 4098.93 12298.95 2799.72 16197.35 26394.45 11597.88 13799.42 11886.71 20999.52 15198.48 9593.97 22699.72 107
UnsupCasMVSNet_bld79.97 34677.03 35188.78 34485.62 37881.98 36093.66 37397.35 26375.51 37670.79 37983.05 38548.70 38394.91 35478.31 35560.29 38889.46 375
MVS-HIRNet86.22 31983.19 33295.31 22796.71 25490.29 29492.12 37897.33 26662.85 38586.82 31370.37 39069.37 34097.49 26475.12 36597.99 15898.15 221
BH-untuned95.18 16794.83 16996.22 20498.36 15891.22 27599.80 13697.32 26790.91 24591.08 24198.67 18583.51 23898.54 20194.23 19999.61 9398.92 197
PCF-MVS94.20 595.18 16794.10 18498.43 11298.55 14795.99 14597.91 32797.31 26890.35 25889.48 26999.22 13885.19 22499.89 9690.40 26598.47 14199.41 162
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
test_fmvsmconf0.01_n96.39 13395.74 14298.32 11891.47 35695.56 16199.84 12097.30 26997.74 1897.89 13699.35 12779.62 27299.85 10899.25 5499.24 11999.55 139
test_vis1_n_192095.44 16395.31 15495.82 21398.50 15188.74 31599.98 1497.30 26997.84 1699.85 999.19 14066.82 35199.97 5398.82 7799.46 10698.76 206
miper_enhance_ethall94.36 19493.98 18795.49 21898.68 14195.24 17499.73 15897.29 27193.28 16689.86 25895.97 28294.37 7297.05 29192.20 23384.45 29894.19 282
casdiffmvs_mvgpermissive96.43 13095.94 13497.89 13897.44 21695.47 16399.86 11397.29 27193.35 16296.03 17999.19 14085.39 22298.72 19097.89 12497.04 17799.49 153
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVSFormer96.94 10896.60 10997.95 13297.28 22897.70 8199.55 19197.27 27391.17 23899.43 6699.54 11090.92 15796.89 30394.67 19099.62 8999.25 181
test_djsdf92.83 23092.29 23194.47 26091.90 35092.46 24699.55 19197.27 27391.17 23889.96 25496.07 28181.10 25696.89 30394.67 19088.91 25094.05 299
test_cas_vis1_n_192096.59 12596.23 11997.65 15198.22 16694.23 20199.99 497.25 27597.77 1799.58 5399.08 14677.10 29199.97 5397.64 13399.45 10798.74 208
GA-MVS93.83 20392.84 21796.80 18495.73 27993.57 21799.88 9797.24 27692.57 19492.92 21996.66 26178.73 28297.67 25987.75 29394.06 22599.17 185
Effi-MVS+96.30 13895.69 14498.16 12397.85 18896.26 13397.41 33497.21 27790.37 25798.65 10998.58 19586.61 21198.70 19297.11 14597.37 17099.52 147
Patchmatch-test92.65 23791.50 24796.10 20796.85 24590.49 29091.50 38197.19 27882.76 35390.23 25095.59 29395.02 5498.00 24477.41 35896.98 18099.82 92
diffmvspermissive97.00 10696.64 10898.09 12897.64 20696.17 14199.81 13297.19 27894.67 11198.95 9199.28 12986.43 21298.76 18698.37 9997.42 16899.33 172
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ACMH+89.98 1690.35 28389.54 28292.78 31295.99 26786.12 33898.81 28197.18 28089.38 27083.14 34097.76 22868.42 34598.43 20889.11 27786.05 28593.78 320
anonymousdsp91.79 25690.92 25594.41 26590.76 36292.93 23498.93 26797.17 28189.08 27387.46 30795.30 31078.43 28796.92 30292.38 23188.73 25593.39 332
baseline96.43 13095.98 12797.76 14697.34 22295.17 17999.51 19797.17 28193.92 14796.90 15799.28 12985.37 22398.64 19697.50 13696.86 18399.46 155
nrg03093.51 21592.53 22796.45 19594.36 30597.20 10099.81 13297.16 28391.60 22489.86 25897.46 23386.37 21397.68 25895.88 16780.31 33294.46 258
CS-MVS-test97.88 6697.94 6297.70 14999.28 9995.20 17799.98 1497.15 28495.53 8799.62 4699.79 5592.08 13898.38 21898.75 8299.28 11799.52 147
MVS_Test96.46 12995.74 14298.61 9498.18 17097.23 9999.31 22497.15 28491.07 24298.84 9697.05 24888.17 19498.97 17594.39 19497.50 16599.61 127
MIMVSNet90.30 28588.67 29995.17 23296.45 25791.64 26992.39 37797.15 28485.99 32490.50 24793.19 35266.95 35094.86 35582.01 33893.43 22999.01 196
KD-MVS_2432*160088.00 31286.10 31693.70 29196.91 24094.04 20697.17 33997.12 28784.93 33781.96 34492.41 35692.48 12794.51 35879.23 34952.68 39092.56 346
miper_refine_blended88.00 31286.10 31693.70 29196.91 24094.04 20697.17 33997.12 28784.93 33781.96 34492.41 35692.48 12794.51 35879.23 34952.68 39092.56 346
CS-MVS97.79 7597.91 6497.43 16499.10 10894.42 19499.99 497.10 28995.07 9699.68 3799.75 6992.95 11298.34 22298.38 9899.14 12399.54 143
v7n89.65 29988.29 30493.72 28892.22 34590.56 28999.07 25097.10 28985.42 33486.73 31494.72 32880.06 26997.13 28581.14 34278.12 34493.49 329
casdiffmvspermissive96.42 13295.97 13097.77 14497.30 22694.98 18199.84 12097.09 29193.75 15396.58 16699.26 13585.07 22598.78 18497.77 13097.04 17799.54 143
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Fast-Effi-MVS+95.02 17194.19 18297.52 15997.88 18594.55 19199.97 2797.08 29288.85 28594.47 20297.96 22284.59 23098.41 21089.84 27297.10 17499.59 130
miper_ehance_all_eth93.16 22292.60 22394.82 24497.57 20993.56 21899.50 19997.07 29388.75 28688.85 28595.52 29790.97 15696.74 31090.77 25684.45 29894.17 283
Effi-MVS+-dtu94.53 18795.30 15592.22 31697.77 19382.54 35699.59 18397.06 29494.92 10195.29 19395.37 30785.81 21797.89 25194.80 18597.07 17596.23 246
EC-MVSNet97.38 9497.24 8797.80 13997.41 21795.64 15899.99 497.06 29494.59 11299.63 4399.32 12889.20 18598.14 23698.76 8199.23 12099.62 124
IterMVS90.91 26990.17 27193.12 30496.78 25190.42 29398.89 27097.05 29689.03 27586.49 31995.42 30276.59 29995.02 35187.22 30084.09 30193.93 310
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
iter_conf_final96.01 14695.93 13596.28 20298.38 15697.03 10799.87 10097.03 29794.05 14092.61 22497.98 22098.01 597.34 26997.02 14888.39 26394.47 257
v119290.62 27889.25 28894.72 24793.13 32793.07 22999.50 19997.02 29886.33 32189.56 26895.01 32079.22 27697.09 29082.34 33681.16 32194.01 302
v2v48291.30 26090.07 27495.01 23593.13 32793.79 21299.77 14297.02 29888.05 29889.25 27495.37 30780.73 26197.15 28387.28 29980.04 33594.09 296
V4291.28 26290.12 27394.74 24593.42 32393.46 22199.68 16897.02 29887.36 30689.85 26095.05 31881.31 25597.34 26987.34 29880.07 33493.40 331
IterMVS-SCA-FT90.85 27290.16 27292.93 30996.72 25389.96 30298.89 27096.99 30188.95 28186.63 31695.67 28976.48 30195.00 35287.04 30384.04 30493.84 317
v14419290.79 27389.52 28394.59 25293.11 33092.77 23599.56 18996.99 30186.38 32089.82 26194.95 32580.50 26697.10 28883.98 32580.41 33093.90 312
v192192090.46 28089.12 29094.50 25892.96 33592.46 24699.49 20196.98 30386.10 32389.61 26795.30 31078.55 28597.03 29682.17 33780.89 32894.01 302
v114491.09 26689.83 27594.87 24093.25 32693.69 21699.62 18096.98 30386.83 31689.64 26694.99 32380.94 25897.05 29185.08 31981.16 32193.87 315
eth_miper_zixun_eth92.41 24191.93 23893.84 28597.28 22890.68 28598.83 27996.97 30588.57 29189.19 27995.73 28889.24 18496.69 31389.97 27181.55 31794.15 289
dcpmvs_297.42 9198.09 5395.42 22299.58 8487.24 33299.23 23496.95 30694.28 12798.93 9399.73 7894.39 7199.16 17099.89 1699.82 7699.86 89
GBi-Net90.88 27089.82 27694.08 27397.53 21191.97 25498.43 30596.95 30687.05 31089.68 26294.72 32871.34 33296.11 33387.01 30585.65 28794.17 283
test190.88 27089.82 27694.08 27397.53 21191.97 25498.43 30596.95 30687.05 31089.68 26294.72 32871.34 33296.11 33387.01 30585.65 28794.17 283
FMVSNet188.50 30886.64 31494.08 27395.62 28891.97 25498.43 30596.95 30683.00 35086.08 32694.72 32859.09 37296.11 33381.82 34084.07 30294.17 283
v890.54 27989.17 28994.66 24893.43 32293.40 22599.20 23696.94 31085.76 32787.56 30494.51 33581.96 24897.19 28184.94 32078.25 34293.38 333
c3_l92.53 23891.87 24094.52 25697.40 21892.99 23399.40 21096.93 31187.86 30088.69 28895.44 30189.95 17296.44 32190.45 26280.69 32994.14 292
v124090.20 28888.79 29794.44 26293.05 33392.27 25099.38 21596.92 31285.89 32589.36 27194.87 32777.89 28997.03 29680.66 34481.08 32494.01 302
tpm93.70 21193.41 20694.58 25395.36 29187.41 33197.01 34396.90 31390.85 24796.72 16394.14 34290.40 16796.84 30690.75 25788.54 26099.51 149
v14890.70 27489.63 27993.92 28192.97 33490.97 27799.75 15096.89 31487.51 30388.27 29695.01 32081.67 24997.04 29387.40 29777.17 35393.75 321
IterMVS-LS92.69 23592.11 23394.43 26496.80 24892.74 23799.45 20796.89 31488.98 27889.65 26595.38 30688.77 18996.34 32590.98 25182.04 31494.22 279
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v1090.25 28788.82 29694.57 25493.53 32093.43 22399.08 24696.87 31685.00 33687.34 31094.51 33580.93 25997.02 29882.85 33279.23 33793.26 335
iter_conf0596.07 14395.95 13396.44 19798.43 15497.52 8799.91 8296.85 31794.16 13192.49 22897.98 22098.20 497.34 26997.26 14188.29 26494.45 263
ADS-MVSNet293.80 20693.88 19193.55 29597.87 18685.94 33994.24 36896.84 31890.07 26296.43 17094.48 33790.29 16995.37 34787.44 29597.23 17199.36 167
Fast-Effi-MVS+-dtu93.72 21093.86 19293.29 30097.06 23386.16 33799.80 13696.83 31992.66 18792.58 22597.83 22681.39 25397.67 25989.75 27396.87 18296.05 249
pmmvs492.10 24791.07 25495.18 23192.82 33894.96 18299.48 20396.83 31987.45 30588.66 28996.56 26783.78 23796.83 30789.29 27584.77 29693.75 321
AllTest92.48 23991.64 24295.00 23699.01 11388.43 32198.94 26696.82 32186.50 31888.71 28698.47 20574.73 31899.88 10285.39 31696.18 19196.71 240
TestCases95.00 23699.01 11388.43 32196.82 32186.50 31888.71 28698.47 20574.73 31899.88 10285.39 31696.18 19196.71 240
miper_lstm_enhance91.81 25191.39 25093.06 30797.34 22289.18 31299.38 21596.79 32386.70 31787.47 30695.22 31590.00 17195.86 34288.26 28681.37 31994.15 289
cl____92.31 24391.58 24494.52 25697.33 22492.77 23599.57 18796.78 32486.97 31487.56 30495.51 29889.43 17896.62 31588.60 28182.44 31194.16 288
DIV-MVS_self_test92.32 24291.60 24394.47 26097.31 22592.74 23799.58 18596.75 32586.99 31387.64 30295.54 29589.55 17796.50 31988.58 28282.44 31194.17 283
ppachtmachnet_test89.58 30088.35 30393.25 30292.40 34390.44 29299.33 22196.73 32685.49 33285.90 32895.77 28581.09 25796.00 34076.00 36482.49 31093.30 334
GeoE94.36 19493.48 20296.99 17997.29 22793.54 21999.96 3496.72 32788.35 29593.43 21298.94 16882.05 24698.05 24288.12 29096.48 18899.37 166
COLMAP_ROBcopyleft90.47 1492.18 24691.49 24894.25 26999.00 11588.04 32798.42 30896.70 32882.30 35588.43 29399.01 15276.97 29499.85 10886.11 31296.50 18794.86 251
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
1112_ss96.01 14695.20 15898.42 11397.80 19196.41 12699.65 17396.66 32992.71 18392.88 22199.40 12192.16 13599.30 16391.92 23793.66 22799.55 139
test_fmvs195.35 16595.68 14694.36 26698.99 11684.98 34599.96 3496.65 33097.60 2299.73 3298.96 16171.58 33199.93 8598.31 10299.37 11398.17 220
Test_1112_low_res95.72 15394.83 16998.42 11397.79 19296.41 12699.65 17396.65 33092.70 18492.86 22296.13 27892.15 13699.30 16391.88 23893.64 22899.55 139
RPSCF91.80 25492.79 22088.83 34398.15 17269.87 38198.11 32196.60 33283.93 34494.33 20499.27 13279.60 27399.46 16191.99 23593.16 23397.18 238
test_fmvs1_n94.25 19794.36 17793.92 28197.68 20383.70 35199.90 8796.57 33397.40 2899.67 3898.88 17261.82 36799.92 8898.23 10499.13 12498.14 223
YYNet185.50 32483.33 33092.00 31890.89 36188.38 32499.22 23596.55 33479.60 36657.26 38992.72 35379.09 28093.78 36577.25 35977.37 35193.84 317
MDA-MVSNet_test_wron85.51 32383.32 33192.10 31790.96 36088.58 32099.20 23696.52 33579.70 36557.12 39092.69 35479.11 27893.86 36477.10 36077.46 35093.86 316
MTMP99.87 10096.49 336
pm-mvs189.36 30387.81 30994.01 27793.40 32491.93 25798.62 29796.48 33786.25 32283.86 33796.14 27773.68 32497.04 29386.16 31175.73 36093.04 340
mvsmamba94.10 19893.72 19495.25 22993.57 31894.13 20499.67 17096.45 33893.63 15791.34 23997.77 22786.29 21497.22 28096.65 15788.10 26894.40 265
KD-MVS_self_test83.59 33682.06 33688.20 34986.93 37580.70 36997.21 33796.38 33982.87 35182.49 34288.97 37167.63 34892.32 37573.75 36762.30 38691.58 358
test_vis1_n93.61 21393.03 21495.35 22495.86 27186.94 33499.87 10096.36 34096.85 4699.54 5698.79 18152.41 38099.83 11898.64 8998.97 12999.29 178
our_test_390.39 28189.48 28693.12 30492.40 34389.57 30899.33 22196.35 34187.84 30185.30 33094.99 32384.14 23596.09 33680.38 34584.56 29793.71 326
CR-MVSNet93.45 21892.62 22295.94 20996.29 25892.66 24192.01 37996.23 34292.62 18996.94 15593.31 35091.04 15496.03 33879.23 34995.96 19699.13 190
Patchmtry89.70 29888.49 30193.33 29996.24 26189.94 30591.37 38296.23 34278.22 36887.69 30193.31 35091.04 15496.03 33880.18 34882.10 31394.02 300
MVP-Stereo90.93 26890.45 26392.37 31591.25 35988.76 31498.05 32496.17 34487.27 30884.04 33595.30 31078.46 28697.27 27983.78 32799.70 8491.09 360
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
pmmvs685.69 32083.84 32791.26 32590.00 36884.41 34897.82 32996.15 34575.86 37381.29 34995.39 30561.21 36996.87 30583.52 33073.29 36392.50 348
EG-PatchMatch MVS85.35 32583.81 32889.99 33690.39 36481.89 36198.21 31896.09 34681.78 35774.73 37493.72 34651.56 38297.12 28779.16 35288.61 25790.96 362
DeepMVS_CXcopyleft82.92 36095.98 26958.66 39196.01 34792.72 18278.34 36295.51 29858.29 37398.08 23982.57 33385.29 29092.03 354
test20.0384.72 32983.99 32486.91 35288.19 37480.62 37098.88 27295.94 34888.36 29478.87 35894.62 33368.75 34289.11 38366.52 38075.82 35891.00 361
MDA-MVSNet-bldmvs84.09 33281.52 33991.81 32191.32 35888.00 32898.67 29495.92 34980.22 36355.60 39193.32 34968.29 34693.60 36773.76 36676.61 35793.82 319
lessismore_v090.53 32990.58 36380.90 36895.80 35077.01 36795.84 28366.15 35496.95 29983.03 33175.05 36193.74 324
Anonymous2024052185.15 32683.81 32889.16 34188.32 37282.69 35498.80 28395.74 35179.72 36481.53 34890.99 36365.38 35794.16 36072.69 36881.11 32390.63 365
ITE_SJBPF92.38 31495.69 28485.14 34395.71 35292.81 17889.33 27398.11 21370.23 33898.42 20985.91 31488.16 26793.59 328
FMVSNet588.32 30987.47 31190.88 32696.90 24388.39 32397.28 33695.68 35382.60 35484.67 33392.40 35879.83 27191.16 37976.39 36381.51 31893.09 338
testgi89.01 30688.04 30791.90 32093.49 32184.89 34699.73 15895.66 35493.89 15085.14 33198.17 21259.68 37194.66 35777.73 35788.88 25196.16 248
new_pmnet84.49 33182.92 33489.21 34090.03 36782.60 35596.89 34795.62 35580.59 36175.77 37389.17 37065.04 35994.79 35672.12 37081.02 32590.23 367
pmmvs590.17 29089.09 29193.40 29792.10 34889.77 30699.74 15395.58 35685.88 32687.24 31195.74 28673.41 32596.48 32088.54 28383.56 30593.95 308
USDC90.00 29388.96 29493.10 30694.81 29888.16 32598.71 28995.54 35793.66 15583.75 33897.20 24165.58 35598.31 22583.96 32687.49 27892.85 343
test_method80.79 34179.70 34584.08 35792.83 33767.06 38399.51 19795.42 35854.34 38981.07 35193.53 34744.48 38592.22 37678.90 35377.23 35292.94 341
bld_raw_dy_0_6492.74 23292.03 23694.87 24093.09 33193.46 22199.12 24195.41 35992.84 17790.44 24997.54 23178.08 28897.04 29393.94 20287.77 27394.11 294
MIMVSNet182.58 33780.51 34388.78 34486.68 37684.20 34996.65 34995.41 35978.75 36778.59 36192.44 35551.88 38189.76 38265.26 38378.95 33892.38 351
OurMVSNet-221017-089.81 29689.48 28690.83 32891.64 35381.21 36598.17 31995.38 36191.48 22885.65 32997.31 23872.66 32697.29 27788.15 28884.83 29593.97 307
Anonymous2023120686.32 31885.42 32189.02 34289.11 37180.53 37199.05 25595.28 36285.43 33382.82 34193.92 34374.40 32093.44 36866.99 37881.83 31693.08 339
new-patchmatchnet81.19 33979.34 34686.76 35382.86 38380.36 37297.92 32695.27 36382.09 35672.02 37786.87 37962.81 36590.74 38171.10 37163.08 38489.19 377
OpenMVS_ROBcopyleft79.82 2083.77 33581.68 33890.03 33588.30 37382.82 35398.46 30395.22 36473.92 38076.00 37191.29 36255.00 37696.94 30068.40 37688.51 26190.34 366
test_040285.58 32183.94 32690.50 33093.81 31585.04 34498.55 29895.20 36576.01 37279.72 35795.13 31664.15 36196.26 32966.04 38286.88 28190.21 368
SixPastTwentyTwo88.73 30788.01 30890.88 32691.85 35182.24 35898.22 31795.18 36688.97 27982.26 34396.89 25371.75 33096.67 31484.00 32482.98 30693.72 325
Gipumacopyleft66.95 35765.00 35772.79 37091.52 35567.96 38266.16 39395.15 36747.89 39158.54 38867.99 39329.74 39087.54 38750.20 39277.83 34662.87 393
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
LF4IMVS89.25 30588.85 29590.45 33292.81 33981.19 36698.12 32094.79 36891.44 23086.29 32397.11 24365.30 35898.11 23888.53 28485.25 29192.07 352
FPMVS68.72 35268.72 35368.71 37565.95 39744.27 40495.97 36394.74 36951.13 39053.26 39290.50 36725.11 39583.00 39160.80 38680.97 32778.87 388
pmmvs-eth3d84.03 33381.97 33790.20 33384.15 38087.09 33398.10 32294.73 37083.05 34974.10 37687.77 37765.56 35694.01 36181.08 34369.24 37189.49 374
test_fmvs289.47 30189.70 27888.77 34694.54 30375.74 37599.83 12794.70 37194.71 10891.08 24196.82 26054.46 37797.78 25692.87 22788.27 26592.80 344
TDRefinement84.76 32782.56 33591.38 32474.58 39384.80 34797.36 33594.56 37284.73 34080.21 35496.12 28063.56 36298.39 21487.92 29163.97 38390.95 363
ambc83.23 35977.17 39162.61 38587.38 38894.55 37376.72 36986.65 38030.16 38996.36 32484.85 32169.86 36890.73 364
WB-MVS76.28 34877.28 35073.29 36981.18 38554.68 39497.87 32894.19 37481.30 35869.43 38190.70 36677.02 29382.06 39235.71 39768.11 37683.13 383
TinyColmap87.87 31486.51 31591.94 31995.05 29585.57 34197.65 33194.08 37584.40 34281.82 34696.85 25662.14 36698.33 22380.25 34786.37 28491.91 356
SSC-MVS75.42 34976.40 35272.49 37380.68 38753.62 39597.42 33394.06 37680.42 36268.75 38290.14 36876.54 30081.66 39333.25 39866.34 38082.19 384
TransMVSNet (Re)87.25 31585.28 32293.16 30393.56 31991.03 27698.54 30094.05 37783.69 34781.09 35096.16 27675.32 31196.40 32276.69 36268.41 37492.06 353
Baseline_NR-MVSNet90.33 28489.51 28492.81 31192.84 33689.95 30399.77 14293.94 37884.69 34189.04 28195.66 29081.66 25096.52 31890.99 25076.98 35491.97 355
EGC-MVSNET69.38 35063.76 36086.26 35490.32 36581.66 36496.24 35793.85 3790.99 4013.22 40292.33 35952.44 37992.92 37259.53 38884.90 29484.21 382
LCM-MVSNet67.77 35564.73 35876.87 36662.95 39956.25 39389.37 38793.74 38044.53 39261.99 38480.74 38620.42 39986.53 38969.37 37559.50 38987.84 378
APD_test181.15 34080.92 34181.86 36192.45 34259.76 39096.04 36193.61 38173.29 38177.06 36696.64 26344.28 38696.16 33272.35 36982.52 30989.67 372
test_fmvs379.99 34580.17 34479.45 36384.02 38162.83 38499.05 25593.49 38288.29 29680.06 35686.65 38028.09 39288.00 38488.63 28073.27 36487.54 380
test_f78.40 34777.59 34980.81 36280.82 38662.48 38796.96 34593.08 38383.44 34874.57 37584.57 38427.95 39392.63 37384.15 32272.79 36587.32 381
Patchmatch-RL test86.90 31685.98 32089.67 33784.45 37975.59 37689.71 38692.43 38486.89 31577.83 36590.94 36494.22 7793.63 36687.75 29369.61 36999.79 97
mvsany_test382.12 33881.14 34085.06 35681.87 38470.41 38097.09 34192.14 38591.27 23777.84 36488.73 37239.31 38795.49 34490.75 25771.24 36689.29 376
pmmvs380.27 34377.77 34887.76 35180.32 38882.43 35798.23 31691.97 38672.74 38278.75 35987.97 37657.30 37590.99 38070.31 37262.37 38589.87 370
LCM-MVSNet-Re92.31 24392.60 22391.43 32397.53 21179.27 37399.02 25991.83 38792.07 21080.31 35394.38 34083.50 23995.48 34597.22 14397.58 16499.54 143
PM-MVS80.47 34278.88 34785.26 35583.79 38272.22 37995.89 36491.08 38885.71 33076.56 37088.30 37336.64 38893.90 36382.39 33569.57 37089.66 373
door90.31 389
dmvs_testset83.79 33486.07 31876.94 36592.14 34648.60 40096.75 34890.27 39089.48 26978.65 36098.55 19979.25 27586.65 38866.85 37982.69 30895.57 250
DSMNet-mixed88.28 31088.24 30588.42 34889.64 36975.38 37798.06 32389.86 39185.59 33188.20 29792.14 36076.15 30691.95 37778.46 35496.05 19497.92 225
door-mid89.69 392
PMVScopyleft49.05 2353.75 36051.34 36460.97 37840.80 40334.68 40574.82 39289.62 39337.55 39428.67 40072.12 3897.09 40481.63 39443.17 39568.21 37566.59 392
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
tmp_tt65.23 35862.94 36172.13 37444.90 40250.03 39981.05 39089.42 39438.45 39348.51 39599.90 1854.09 37878.70 39591.84 23918.26 39787.64 379
PMMVS267.15 35664.15 35976.14 36770.56 39662.07 38893.89 37187.52 39558.09 38660.02 38578.32 38722.38 39684.54 39059.56 38747.03 39281.80 385
testf168.38 35366.92 35472.78 37178.80 38950.36 39790.95 38487.35 39655.47 38758.95 38688.14 37420.64 39787.60 38557.28 38964.69 38180.39 386
APD_test268.38 35366.92 35472.78 37178.80 38950.36 39790.95 38487.35 39655.47 38758.95 38688.14 37420.64 39787.60 38557.28 38964.69 38180.39 386
test_vis1_rt86.87 31786.05 31989.34 33996.12 26278.07 37499.87 10083.54 39892.03 21378.21 36389.51 36945.80 38499.91 8996.25 16193.11 23490.03 369
ANet_high56.10 35952.24 36267.66 37649.27 40156.82 39283.94 38982.02 39970.47 38333.28 39964.54 39417.23 40169.16 39745.59 39423.85 39677.02 389
MVEpermissive53.74 2251.54 36247.86 36662.60 37759.56 40050.93 39679.41 39177.69 40035.69 39636.27 39861.76 3975.79 40669.63 39637.97 39636.61 39367.24 391
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN52.30 36152.18 36352.67 37971.51 39445.40 40193.62 37476.60 40136.01 39543.50 39664.13 39527.11 39467.31 39831.06 39926.06 39445.30 397
EMVS51.44 36351.22 36552.11 38070.71 39544.97 40394.04 37075.66 40235.34 39742.40 39761.56 39828.93 39165.87 39927.64 40024.73 39545.49 396
test_vis3_rt68.82 35166.69 35675.21 36876.24 39260.41 38996.44 35268.71 40375.13 37750.54 39469.52 39216.42 40296.32 32680.27 34666.92 37968.89 390
N_pmnet80.06 34480.78 34277.89 36491.94 34945.28 40298.80 28356.82 40478.10 36980.08 35593.33 34877.03 29295.76 34368.14 37782.81 30792.64 345
testmvs40.60 36444.45 36729.05 38219.49 40514.11 40899.68 16818.47 40520.74 39864.59 38398.48 20410.95 40317.09 40256.66 39111.01 39855.94 395
test12337.68 36539.14 36833.31 38119.94 40424.83 40798.36 3109.75 40615.53 39951.31 39387.14 37819.62 40017.74 40147.10 3933.47 40057.36 394
wuyk23d20.37 36720.84 37018.99 38365.34 39827.73 40650.43 3947.67 4079.50 4008.01 4016.34 4016.13 40526.24 40023.40 40110.69 3992.99 398
test_blank0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.02 4020.00 4070.00 4030.00 4020.00 4010.00 399
uanet_test0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4030.00 4070.00 4030.00 4020.00 4010.00 399
DCPMVS0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4030.00 4070.00 4030.00 4020.00 4010.00 399
pcd_1.5k_mvsjas7.60 36910.13 3720.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 40391.20 1490.00 4030.00 4020.00 4010.00 399
sosnet-low-res0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4030.00 4070.00 4030.00 4020.00 4010.00 399
sosnet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4030.00 4070.00 4030.00 4020.00 4010.00 399
uncertanet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4030.00 4070.00 4030.00 4020.00 4010.00 399
Regformer0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4030.00 4070.00 4030.00 4020.00 4010.00 399
n20.00 408
nn0.00 408
ab-mvs-re8.28 36811.04 3710.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 40399.40 1210.00 4070.00 4030.00 4020.00 4010.00 399
uanet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4030.00 4070.00 4030.00 4020.00 4010.00 399
WAC-MVS90.97 27786.10 313
PC_three_145296.96 4499.80 1799.79 5597.49 10100.00 199.99 599.98 32100.00 1
eth-test20.00 406
eth-test0.00 406
OPU-MVS99.93 299.89 4599.80 299.96 3499.80 5197.44 14100.00 1100.00 199.98 32100.00 1
test_0728_THIRD96.48 5999.83 1399.91 1497.87 6100.00 199.92 12100.00 1100.00 1
GSMVS99.59 130
test_part299.89 4599.25 1899.49 62
sam_mvs194.72 6199.59 130
sam_mvs94.25 76
test_post195.78 36559.23 39993.20 10697.74 25791.06 248
test_post63.35 39694.43 6698.13 237
patchmatchnet-post91.70 36195.12 4997.95 248
gm-plane-assit96.97 23893.76 21491.47 22998.96 16198.79 18394.92 180
test9_res99.71 3399.99 21100.00 1
agg_prior299.48 43100.00 1100.00 1
test_prior498.05 6699.94 68
test_prior299.95 5295.78 7999.73 3299.76 6396.00 3399.78 27100.00 1
旧先验299.46 20694.21 13099.85 999.95 6996.96 151
新几何299.40 210
原ACMM299.90 87
testdata299.99 3690.54 261
segment_acmp96.68 26
testdata199.28 23096.35 69
plane_prior795.71 28291.59 271
plane_prior695.76 27691.72 26680.47 267
plane_prior498.59 193
plane_prior391.64 26996.63 5693.01 217
plane_prior299.84 12096.38 65
plane_prior195.73 279
plane_prior91.74 26399.86 11396.76 5289.59 243
HQP5-MVS91.85 259
HQP-NCC95.78 27299.87 10096.82 4893.37 213
ACMP_Plane95.78 27299.87 10096.82 4893.37 213
BP-MVS97.92 121
HQP4-MVS93.37 21398.39 21494.53 252
HQP2-MVS80.65 263
NP-MVS95.77 27591.79 26198.65 188
MDTV_nov1_ep13_2view96.26 13396.11 35991.89 21698.06 13094.40 6894.30 19799.67 113
ACMMP++_ref87.04 279
ACMMP++88.23 266
Test By Simon92.82 117