This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet95.70 196.40 193.61 398.67 185.39 3795.54 597.36 196.97 199.04 199.05 196.61 195.92 1685.07 5899.27 199.54 1
mamv495.37 294.51 297.96 196.31 1098.41 191.05 4697.23 295.32 299.01 297.26 680.16 13398.99 195.15 199.14 296.47 30
TDRefinement93.52 393.39 493.88 295.94 1590.26 495.70 496.46 390.58 992.86 5096.29 1988.16 3594.17 9786.07 4898.48 1897.22 17
EC-MVSNet88.01 7888.32 7787.09 9589.28 18072.03 16190.31 5996.31 480.88 8485.12 20789.67 23384.47 7595.46 5082.56 8796.26 11193.77 119
FOURS196.08 1287.41 1496.19 295.83 592.95 396.57 3
SF-MVS90.27 3990.80 4688.68 7692.86 8677.09 10891.19 4495.74 681.38 7892.28 6293.80 10686.89 5294.64 7885.52 5497.51 7394.30 93
SPE-MVS-test87.00 9086.43 10488.71 7489.46 17677.46 10289.42 8495.73 777.87 12481.64 28087.25 27582.43 9894.53 8477.65 14596.46 10294.14 100
ACMH+77.89 1190.73 3191.50 2588.44 7893.00 8176.26 11989.65 7595.55 887.72 2693.89 3094.94 5291.62 393.44 12878.35 13398.76 495.61 48
LTVRE_ROB86.10 193.04 493.44 391.82 2293.73 6485.72 3496.79 195.51 988.86 1695.63 1096.99 1084.81 7293.16 13791.10 297.53 7296.58 28
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
AllTest87.97 8087.40 8989.68 5591.59 12483.40 5289.50 8095.44 1079.47 9988.00 14893.03 12982.66 9491.47 18270.81 22096.14 11694.16 98
TestCases89.68 5591.59 12483.40 5295.44 1079.47 9988.00 14893.03 12982.66 9491.47 18270.81 22096.14 11694.16 98
9.1489.29 6291.84 11988.80 9395.32 1275.14 15791.07 8192.89 13687.27 4793.78 11083.69 7397.55 69
COLMAP_ROBcopyleft83.01 391.97 1391.95 1492.04 1193.68 6586.15 2493.37 1095.10 1390.28 1092.11 6395.03 5089.75 2094.93 7079.95 11498.27 2695.04 65
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
APD-MVS_3200maxsize92.05 1292.24 1291.48 2593.02 8085.17 3992.47 2695.05 1487.65 2793.21 4394.39 7790.09 1795.08 6686.67 3897.60 6694.18 97
HPM-MVScopyleft92.13 1192.20 1391.91 1795.58 2684.67 4693.51 894.85 1582.88 6491.77 7093.94 10290.55 1295.73 3588.50 1098.23 3195.33 54
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CS-MVS88.14 7587.67 8489.54 6089.56 17379.18 8290.47 5594.77 1679.37 10384.32 22689.33 23883.87 7994.53 8482.45 8894.89 16994.90 66
LS3D90.60 3490.34 5191.38 2889.03 18584.23 4993.58 694.68 1790.65 890.33 9493.95 10184.50 7495.37 5480.87 10495.50 14594.53 81
MP-MVS-pluss90.81 3091.08 3789.99 5095.97 1479.88 7588.13 10294.51 1875.79 14792.94 4794.96 5188.36 3095.01 6890.70 398.40 2095.09 64
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
reproduce-ours92.86 693.22 591.76 2394.39 4487.71 1192.40 2794.38 1989.82 1395.51 1295.49 3889.64 2195.82 2689.13 698.26 2891.76 206
our_new_method92.86 693.22 591.76 2394.39 4487.71 1192.40 2794.38 1989.82 1395.51 1295.49 3889.64 2195.82 2689.13 698.26 2891.76 206
reproduce_model92.89 593.18 792.01 1394.20 4988.23 992.87 1394.32 2190.25 1195.65 995.74 3087.75 4195.72 3689.60 498.27 2692.08 195
sasdasda85.50 11386.14 10983.58 17787.97 21267.13 21087.55 10994.32 2173.44 17788.47 13587.54 26886.45 5891.06 19675.76 17093.76 20392.54 171
canonicalmvs85.50 11386.14 10983.58 17787.97 21267.13 21087.55 10994.32 2173.44 17788.47 13587.54 26886.45 5891.06 19675.76 17093.76 20392.54 171
LCM-MVSNet-Re83.48 16585.06 13178.75 26585.94 26555.75 33680.05 25994.27 2476.47 13696.09 694.54 6783.31 8889.75 24159.95 31994.89 16990.75 233
LPG-MVS_test91.47 2191.68 2090.82 3794.75 4181.69 6390.00 6294.27 2482.35 6893.67 3794.82 5691.18 495.52 4585.36 5598.73 795.23 59
LGP-MVS_train90.82 3794.75 4181.69 6394.27 2482.35 6893.67 3794.82 5691.18 495.52 4585.36 5598.73 795.23 59
HPM-MVS_fast92.50 892.54 992.37 695.93 1685.81 3392.99 1294.23 2785.21 4092.51 5895.13 4890.65 995.34 5588.06 1298.15 3795.95 40
casdiffmvs_mvgpermissive86.72 9587.51 8684.36 15487.09 23865.22 23084.16 17494.23 2777.89 12291.28 7993.66 11484.35 7692.71 15080.07 11194.87 17295.16 62
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ZNCC-MVS91.26 2491.34 3191.01 3495.73 2183.05 5692.18 3194.22 2980.14 9291.29 7893.97 9687.93 4095.87 2088.65 897.96 4894.12 101
nrg03087.85 8288.49 7585.91 12290.07 16669.73 18387.86 10694.20 3074.04 16692.70 5694.66 6085.88 6691.50 18179.72 11797.32 7796.50 29
DeepC-MVS82.31 489.15 6489.08 6689.37 6293.64 6679.07 8388.54 9894.20 3073.53 17489.71 10794.82 5685.09 6895.77 3484.17 6998.03 4193.26 141
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SR-MVS-dyc-post92.41 992.41 1092.39 594.13 5588.95 692.87 1394.16 3288.75 1893.79 3294.43 7288.83 2695.51 4787.16 3297.60 6692.73 160
RE-MVS-def92.61 894.13 5588.95 692.87 1394.16 3288.75 1893.79 3294.43 7290.64 1087.16 3297.60 6692.73 160
RPMNet78.88 23878.28 24780.68 24179.58 35162.64 25982.58 22094.16 3274.80 15975.72 34192.59 14548.69 35095.56 4273.48 19882.91 36983.85 340
ACMMPcopyleft91.91 1491.87 1992.03 1295.53 2785.91 2893.35 1194.16 3282.52 6792.39 6194.14 8989.15 2595.62 3987.35 2798.24 3094.56 78
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
APDe-MVScopyleft91.22 2591.92 1589.14 6692.97 8278.04 9392.84 1694.14 3683.33 5893.90 2895.73 3188.77 2796.41 387.60 2197.98 4592.98 154
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
3Dnovator+83.92 289.97 4989.66 5790.92 3591.27 13881.66 6691.25 4294.13 3788.89 1588.83 12694.26 8277.55 15695.86 2384.88 6195.87 13295.24 58
test_one_060193.85 6273.27 14094.11 3886.57 3093.47 4194.64 6488.42 28
DVP-MVS++90.07 4291.09 3687.00 9791.55 12972.64 14796.19 294.10 3985.33 3893.49 3994.64 6481.12 12295.88 1887.41 2595.94 12892.48 173
test_0728_SECOND86.79 10294.25 4872.45 15590.54 5294.10 3995.88 1886.42 3997.97 4692.02 198
DPE-MVScopyleft90.53 3691.08 3788.88 6993.38 7178.65 8789.15 8794.05 4184.68 4593.90 2894.11 9188.13 3696.30 584.51 6697.81 5591.70 210
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
ACMP79.16 1090.54 3590.60 4990.35 4594.36 4680.98 6989.16 8694.05 4179.03 10892.87 4993.74 11190.60 1195.21 6182.87 8298.76 494.87 68
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
XVG-ACMP-BASELINE89.98 4789.84 5490.41 4394.91 3784.50 4889.49 8193.98 4379.68 9792.09 6493.89 10483.80 8193.10 14082.67 8698.04 3993.64 125
MGCFI-Net85.04 12585.95 11282.31 21287.52 22663.59 24686.23 13893.96 4473.46 17588.07 14587.83 26386.46 5790.87 20576.17 16593.89 20092.47 175
baseline85.20 12185.93 11383.02 19386.30 25562.37 26584.55 16793.96 4474.48 16387.12 16192.03 16282.30 10391.94 17178.39 13194.21 19094.74 75
casdiffmvspermissive85.21 12085.85 11683.31 18686.17 26062.77 25783.03 20793.93 4674.69 16188.21 14292.68 14482.29 10491.89 17477.87 14493.75 20695.27 57
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
XVG-OURS-SEG-HR89.59 5589.37 6190.28 4694.47 4385.95 2786.84 12393.91 4780.07 9386.75 17293.26 12193.64 290.93 20084.60 6590.75 27193.97 105
test072694.16 5372.56 15190.63 4993.90 4883.61 5593.75 3494.49 6989.76 18
MSP-MVS89.08 6688.16 7891.83 2095.76 1886.14 2592.75 1793.90 4878.43 11689.16 12192.25 15972.03 22896.36 488.21 1190.93 26492.98 154
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
PGM-MVS91.20 2690.95 4391.93 1595.67 2385.85 3190.00 6293.90 4880.32 8991.74 7194.41 7588.17 3495.98 1386.37 4197.99 4393.96 106
SR-MVS92.23 1092.34 1191.91 1794.89 3887.85 1092.51 2493.87 5188.20 2393.24 4294.02 9490.15 1695.67 3886.82 3697.34 7692.19 191
ACMH76.49 1489.34 5991.14 3583.96 16592.50 9470.36 17989.55 7793.84 5281.89 7394.70 1795.44 4090.69 888.31 26483.33 7498.30 2593.20 143
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
SD-MVS88.96 6789.88 5386.22 11591.63 12377.07 10989.82 6993.77 5378.90 10992.88 4892.29 15786.11 6390.22 22286.24 4697.24 7991.36 218
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
GST-MVS90.96 2991.01 4090.82 3795.45 2882.73 5991.75 3893.74 5480.98 8391.38 7593.80 10687.20 4995.80 2887.10 3497.69 6193.93 107
test_241102_TWO93.71 5583.77 5293.49 3994.27 7989.27 2395.84 2486.03 4997.82 5492.04 197
SED-MVS90.46 3791.64 2186.93 9994.18 5072.65 14590.47 5593.69 5683.77 5294.11 2694.27 7990.28 1495.84 2486.03 4997.92 4992.29 185
test_241102_ONE94.18 5072.65 14593.69 5683.62 5494.11 2693.78 10890.28 1495.50 49
ACMMP_NAP90.65 3291.07 3989.42 6195.93 1679.54 8089.95 6693.68 5877.65 12691.97 6794.89 5388.38 2995.45 5189.27 597.87 5393.27 140
HQP_MVS87.75 8487.43 8888.70 7593.45 6876.42 11689.45 8293.61 5979.44 10186.55 17792.95 13474.84 18795.22 5980.78 10695.83 13494.46 82
plane_prior593.61 5995.22 5980.78 10695.83 13494.46 82
XVG-OURS89.18 6388.83 7290.23 4794.28 4786.11 2685.91 14193.60 6180.16 9189.13 12393.44 11883.82 8090.98 19883.86 7295.30 15393.60 128
TAPA-MVS77.73 1285.71 11284.83 13588.37 8088.78 19479.72 7787.15 11793.50 6269.17 23385.80 19589.56 23480.76 12692.13 16673.21 20795.51 14493.25 142
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
SteuartSystems-ACMMP91.16 2791.36 2890.55 4193.91 6080.97 7091.49 4093.48 6382.82 6592.60 5793.97 9688.19 3396.29 687.61 2098.20 3494.39 89
Skip Steuart: Steuart Systems R&D Blog.
ETV-MVS84.31 14183.91 15885.52 13188.58 20070.40 17884.50 17193.37 6478.76 11384.07 23478.72 37680.39 13095.13 6573.82 19392.98 22391.04 224
CP-MVS91.67 1691.58 2391.96 1495.29 3187.62 1393.38 993.36 6583.16 6091.06 8294.00 9588.26 3295.71 3787.28 3098.39 2192.55 170
ACMM79.39 990.65 3290.99 4189.63 5795.03 3483.53 5189.62 7693.35 6679.20 10593.83 3193.60 11690.81 792.96 14485.02 6098.45 1992.41 177
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
EIA-MVS82.19 18781.23 20685.10 13787.95 21469.17 19383.22 20493.33 6770.42 22178.58 31679.77 36877.29 15994.20 9471.51 21688.96 29591.93 202
XVS91.54 1791.36 2892.08 995.64 2486.25 2292.64 1993.33 6785.07 4189.99 10094.03 9386.57 5595.80 2887.35 2797.62 6494.20 94
X-MVStestdata85.04 12582.70 17692.08 995.64 2486.25 2292.64 1993.33 6785.07 4189.99 10016.05 42186.57 5595.80 2887.35 2797.62 6494.20 94
WR-MVS_H89.91 5091.31 3385.71 12896.32 962.39 26489.54 7993.31 7090.21 1295.57 1195.66 3381.42 11995.90 1780.94 10398.80 398.84 5
region2R91.44 2291.30 3491.87 1995.75 1985.90 2992.63 2193.30 7181.91 7290.88 8894.21 8487.75 4195.87 2087.60 2197.71 6093.83 113
HFP-MVS91.30 2391.39 2791.02 3395.43 2984.66 4792.58 2293.29 7281.99 7091.47 7393.96 9988.35 3195.56 4287.74 1697.74 5992.85 157
ACMMPR91.49 1991.35 3091.92 1695.74 2085.88 3092.58 2293.25 7381.99 7091.40 7494.17 8887.51 4595.87 2087.74 1697.76 5793.99 104
SMA-MVScopyleft90.31 3890.48 5089.83 5495.31 3079.52 8190.98 4793.24 7475.37 15592.84 5195.28 4485.58 6796.09 887.92 1497.76 5793.88 110
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
PEN-MVS90.03 4591.88 1884.48 15096.57 558.88 30888.95 8993.19 7591.62 596.01 796.16 2487.02 5095.60 4078.69 12998.72 998.97 3
testf189.30 6089.12 6489.84 5288.67 19585.64 3590.61 5093.17 7686.02 3493.12 4495.30 4284.94 6989.44 24674.12 18696.10 11994.45 84
APD_test289.30 6089.12 6489.84 5288.67 19585.64 3590.61 5093.17 7686.02 3493.12 4495.30 4284.94 6989.44 24674.12 18696.10 11994.45 84
OMC-MVS88.19 7487.52 8590.19 4891.94 11481.68 6587.49 11293.17 7676.02 14188.64 13091.22 18584.24 7893.37 13177.97 14397.03 8495.52 49
dcpmvs_284.23 14685.14 13081.50 22688.61 19961.98 27282.90 21393.11 7968.66 24192.77 5492.39 15178.50 14487.63 27076.99 15692.30 23394.90 66
OurMVSNet-221017-090.01 4689.74 5690.83 3693.16 7880.37 7291.91 3693.11 7981.10 8195.32 1497.24 772.94 21494.85 7285.07 5897.78 5697.26 15
FC-MVSNet-test85.93 10987.05 9482.58 20692.25 10156.44 33085.75 14693.09 8177.33 13091.94 6894.65 6174.78 18993.41 13075.11 17898.58 1497.88 7
APD-MVScopyleft89.54 5689.63 5889.26 6492.57 9181.34 6890.19 6193.08 8280.87 8591.13 8093.19 12286.22 6295.97 1482.23 9297.18 8190.45 244
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
FIs85.35 11886.27 10682.60 20591.86 11657.31 32385.10 15993.05 8375.83 14691.02 8393.97 9673.57 20392.91 14873.97 19098.02 4297.58 12
v7n90.13 4090.96 4287.65 9191.95 11271.06 17389.99 6493.05 8386.53 3194.29 2296.27 2082.69 9394.08 10086.25 4597.63 6397.82 8
PHI-MVS86.38 10085.81 11788.08 8488.44 20477.34 10589.35 8593.05 8373.15 18784.76 21687.70 26578.87 14294.18 9580.67 10896.29 10792.73 160
MP-MVScopyleft91.14 2890.91 4491.83 2096.18 1186.88 1792.20 3093.03 8682.59 6688.52 13494.37 7886.74 5395.41 5386.32 4298.21 3293.19 144
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
GDP-MVS82.17 18880.85 21286.15 12088.65 19768.95 19585.65 14993.02 8768.42 24283.73 24089.54 23545.07 37794.31 8879.66 11993.87 20195.19 61
Anonymous2023121188.40 7189.62 5984.73 14490.46 15765.27 22988.86 9193.02 8787.15 2893.05 4697.10 882.28 10592.02 17076.70 15797.99 4396.88 23
MSLP-MVS++85.00 12886.03 11181.90 21691.84 11971.56 17086.75 12893.02 8775.95 14487.12 16189.39 23677.98 14889.40 24977.46 14894.78 17484.75 325
DP-MVS88.60 7089.01 6787.36 9391.30 13677.50 10187.55 10992.97 9087.95 2589.62 11192.87 13784.56 7393.89 10677.65 14596.62 9590.70 236
ANet_high83.17 17185.68 12175.65 31081.24 33345.26 39679.94 26192.91 9183.83 5191.33 7696.88 1380.25 13285.92 30068.89 24595.89 13195.76 42
UniMVSNet (Re)86.87 9186.98 9686.55 10693.11 7968.48 19983.80 18792.87 9280.37 8789.61 11391.81 17077.72 15394.18 9575.00 17998.53 1696.99 22
test_prior86.32 11090.59 15571.99 16292.85 9394.17 9792.80 158
DTE-MVSNet89.98 4791.91 1784.21 16096.51 757.84 31988.93 9092.84 9491.92 496.16 496.23 2186.95 5195.99 1279.05 12698.57 1598.80 6
UA-Net91.49 1991.53 2491.39 2794.98 3582.95 5893.52 792.79 9588.22 2288.53 13397.64 383.45 8694.55 8386.02 5198.60 1396.67 25
OPM-MVS89.80 5189.97 5289.27 6394.76 4079.86 7686.76 12792.78 9678.78 11192.51 5893.64 11588.13 3693.84 10984.83 6397.55 6994.10 102
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
PS-CasMVS90.06 4391.92 1584.47 15196.56 658.83 31189.04 8892.74 9791.40 696.12 596.06 2687.23 4895.57 4179.42 12398.74 699.00 2
HQP3-MVS92.68 9894.47 183
HQP-MVS84.61 13484.06 15486.27 11291.19 13970.66 17584.77 16092.68 9873.30 18280.55 29490.17 22572.10 22494.61 7977.30 15294.47 18393.56 131
MVSMamba_PlusPlus87.53 8688.86 7183.54 18192.03 11062.26 26891.49 4092.62 10088.07 2488.07 14596.17 2372.24 22395.79 3184.85 6294.16 19392.58 168
mPP-MVS91.69 1591.47 2692.37 696.04 1388.48 892.72 1892.60 10183.09 6191.54 7294.25 8387.67 4495.51 4787.21 3198.11 3893.12 148
CLD-MVS83.18 17082.64 17884.79 14289.05 18467.82 20777.93 29192.52 10268.33 24485.07 20881.54 35282.06 10892.96 14469.35 23797.91 5193.57 130
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
DELS-MVS81.44 20381.25 20482.03 21484.27 29362.87 25576.47 31892.49 10370.97 21781.64 28083.83 32575.03 18492.70 15174.29 18292.22 23990.51 243
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
Effi-MVS+83.90 15684.01 15583.57 17987.22 23265.61 22886.55 13292.40 10478.64 11481.34 28584.18 32383.65 8492.93 14674.22 18387.87 31392.17 192
DP-MVS Recon84.05 15183.22 16586.52 10791.73 12275.27 12583.23 20392.40 10472.04 20582.04 26988.33 25377.91 15093.95 10466.17 26795.12 15990.34 247
DeepPCF-MVS81.24 587.28 8886.21 10890.49 4291.48 13384.90 4283.41 19692.38 10670.25 22589.35 11990.68 20882.85 9294.57 8179.55 12095.95 12792.00 199
balanced_conf0384.80 13085.40 12683.00 19488.95 18861.44 27590.42 5892.37 10771.48 21088.72 12993.13 12570.16 23895.15 6379.26 12594.11 19492.41 177
test_fmvsmvis_n_192085.22 11985.36 12884.81 14185.80 26776.13 12285.15 15892.32 10861.40 30991.33 7690.85 20283.76 8386.16 29684.31 6793.28 21592.15 193
CPTT-MVS89.39 5888.98 6990.63 4095.09 3386.95 1692.09 3292.30 10979.74 9687.50 15792.38 15281.42 11993.28 13383.07 7897.24 7991.67 211
DU-MVS86.80 9486.99 9586.21 11693.24 7667.02 21383.16 20592.21 11081.73 7490.92 8491.97 16377.20 16093.99 10274.16 18498.35 2297.61 10
test_fmvsmconf0.01_n86.68 9686.52 10287.18 9485.94 26578.30 8986.93 12092.20 11165.94 26589.16 12193.16 12483.10 8989.89 23587.81 1594.43 18593.35 135
v1086.54 9887.10 9284.84 14088.16 21063.28 25086.64 13092.20 11175.42 15492.81 5394.50 6874.05 19894.06 10183.88 7196.28 10897.17 18
MCST-MVS84.36 13983.93 15785.63 12991.59 12471.58 16883.52 19392.13 11361.82 30283.96 23689.75 23279.93 13793.46 12778.33 13494.34 18791.87 203
Vis-MVSNetpermissive86.86 9286.58 10187.72 8992.09 10777.43 10487.35 11392.09 11478.87 11084.27 23194.05 9278.35 14693.65 11380.54 11091.58 25292.08 195
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
CP-MVSNet89.27 6290.91 4484.37 15296.34 858.61 31488.66 9792.06 11590.78 795.67 895.17 4781.80 11595.54 4479.00 12798.69 1098.95 4
CDPH-MVS86.17 10685.54 12388.05 8692.25 10175.45 12483.85 18492.01 11665.91 26786.19 18691.75 17383.77 8294.98 6977.43 15096.71 9393.73 120
DeepC-MVS_fast80.27 886.23 10285.65 12287.96 8791.30 13676.92 11087.19 11591.99 11770.56 22084.96 21190.69 20780.01 13595.14 6478.37 13295.78 13891.82 204
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PS-MVSNAJss88.31 7387.90 8189.56 5993.31 7377.96 9687.94 10591.97 11870.73 21994.19 2596.67 1476.94 16694.57 8183.07 7896.28 10896.15 32
MVS_Test82.47 18283.22 16580.22 24782.62 32057.75 32182.54 22391.96 11971.16 21582.89 25692.52 14977.41 15790.50 21680.04 11387.84 31492.40 179
F-COLMAP84.97 12983.42 16289.63 5792.39 9683.40 5288.83 9291.92 12073.19 18680.18 30289.15 24277.04 16493.28 13365.82 27392.28 23692.21 190
APD_test188.40 7187.91 8089.88 5189.50 17586.65 2089.98 6591.91 12184.26 4790.87 8993.92 10382.18 10689.29 25073.75 19494.81 17393.70 121
ZD-MVS92.22 10380.48 7191.85 12271.22 21490.38 9292.98 13186.06 6496.11 781.99 9596.75 92
CSCG86.26 10186.47 10385.60 13090.87 14974.26 13187.98 10491.85 12280.35 8889.54 11788.01 25779.09 14092.13 16675.51 17295.06 16190.41 245
test_fmvsmconf0.1_n86.18 10585.88 11587.08 9685.26 27478.25 9085.82 14591.82 12465.33 27988.55 13292.35 15682.62 9689.80 23786.87 3594.32 18893.18 145
PCF-MVS74.62 1582.15 19080.92 21085.84 12589.43 17772.30 15780.53 25491.82 12457.36 34487.81 15189.92 22977.67 15493.63 11558.69 32495.08 16091.58 214
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MTGPAbinary91.81 126
MTAPA91.52 1891.60 2291.29 3096.59 486.29 2192.02 3391.81 12684.07 4992.00 6694.40 7686.63 5495.28 5888.59 998.31 2492.30 184
PVSNet_Blended_VisFu81.55 20180.49 21684.70 14691.58 12773.24 14184.21 17391.67 12862.86 29280.94 28887.16 27767.27 25192.87 14969.82 23488.94 29687.99 288
UniMVSNet_NR-MVSNet86.84 9387.06 9386.17 11892.86 8667.02 21382.55 22291.56 12983.08 6290.92 8491.82 16978.25 14793.99 10274.16 18498.35 2297.49 13
v124084.30 14284.51 14683.65 17487.65 22361.26 27982.85 21491.54 13067.94 25190.68 9190.65 21171.71 23093.64 11482.84 8394.78 17496.07 35
原ACMM184.60 14792.81 8974.01 13291.50 13162.59 29382.73 26090.67 21076.53 17394.25 9169.24 23895.69 14185.55 316
test1191.46 132
CANet83.79 15882.85 17486.63 10486.17 26072.21 16083.76 18891.43 13377.24 13274.39 35387.45 27175.36 18195.42 5277.03 15592.83 22692.25 189
v119284.57 13584.69 14084.21 16087.75 21962.88 25483.02 20891.43 13369.08 23589.98 10290.89 19972.70 21893.62 11882.41 8994.97 16696.13 33
alignmvs83.94 15583.98 15683.80 16887.80 21867.88 20684.54 16991.42 13573.27 18588.41 13887.96 25872.33 22190.83 20676.02 16894.11 19492.69 164
test_fmvsmconf_n85.88 11085.51 12486.99 9884.77 28278.21 9185.40 15491.39 13665.32 28087.72 15391.81 17082.33 10189.78 23886.68 3794.20 19192.99 153
GeoE85.45 11685.81 11784.37 15290.08 16467.07 21285.86 14491.39 13672.33 20187.59 15590.25 22084.85 7192.37 16078.00 14191.94 24593.66 122
v886.22 10386.83 9984.36 15487.82 21762.35 26686.42 13491.33 13876.78 13592.73 5594.48 7073.41 20793.72 11283.10 7795.41 14697.01 21
TranMVSNet+NR-MVSNet87.86 8188.76 7485.18 13694.02 5864.13 24084.38 17291.29 13984.88 4492.06 6593.84 10586.45 5893.73 11173.22 20298.66 1197.69 9
HPM-MVS++copyleft88.93 6888.45 7690.38 4494.92 3685.85 3189.70 7191.27 14078.20 11886.69 17592.28 15880.36 13195.06 6786.17 4796.49 10090.22 248
CNVR-MVS87.81 8387.68 8388.21 8392.87 8477.30 10785.25 15591.23 14177.31 13187.07 16691.47 17982.94 9194.71 7584.67 6496.27 11092.62 167
v192192084.23 14684.37 15083.79 16987.64 22461.71 27382.91 21291.20 14267.94 25190.06 9790.34 21772.04 22793.59 12082.32 9094.91 16796.07 35
TSAR-MVS + MP.88.14 7587.82 8289.09 6795.72 2276.74 11292.49 2591.19 14367.85 25386.63 17694.84 5579.58 13895.96 1587.62 1994.50 18294.56 78
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
RPSCF88.00 7986.93 9791.22 3190.08 16489.30 589.68 7391.11 14479.26 10489.68 10894.81 5982.44 9787.74 26876.54 15988.74 29996.61 27
NCCC87.36 8786.87 9888.83 7092.32 10078.84 8686.58 13191.09 14578.77 11284.85 21590.89 19980.85 12595.29 5681.14 10195.32 15092.34 182
v14419284.24 14584.41 14883.71 17387.59 22561.57 27482.95 21191.03 14667.82 25489.80 10590.49 21473.28 21193.51 12581.88 9894.89 16996.04 37
MSC_two_6792asdad88.81 7191.55 12977.99 9491.01 14796.05 987.45 2398.17 3592.40 179
No_MVS88.81 7191.55 12977.99 9491.01 14796.05 987.45 2398.17 3592.40 179
DVP-MVScopyleft90.06 4391.32 3286.29 11194.16 5372.56 15190.54 5291.01 14783.61 5593.75 3494.65 6189.76 1895.78 3286.42 3997.97 4690.55 242
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
v114484.54 13784.72 13884.00 16387.67 22262.55 26182.97 21090.93 15070.32 22489.80 10590.99 19373.50 20493.48 12681.69 9994.65 18095.97 38
DPM-MVS80.10 22979.18 23482.88 20190.71 15369.74 18278.87 28090.84 15160.29 32475.64 34385.92 29767.28 25093.11 13971.24 21891.79 24685.77 314
IU-MVS94.18 5072.64 14790.82 15256.98 34889.67 10985.78 5297.92 4993.28 139
PAPM_NR83.23 16983.19 16783.33 18590.90 14865.98 22488.19 10190.78 15378.13 12080.87 29087.92 26173.49 20692.42 15770.07 23188.40 30291.60 213
Anonymous2024052986.20 10487.13 9183.42 18390.19 16264.55 23784.55 16790.71 15485.85 3689.94 10395.24 4682.13 10790.40 21869.19 24196.40 10595.31 55
test1286.57 10590.74 15172.63 14990.69 15582.76 25979.20 13994.80 7395.32 15092.27 187
PLCcopyleft73.85 1682.09 19180.31 21887.45 9290.86 15080.29 7385.88 14290.65 15668.17 24776.32 33386.33 28973.12 21392.61 15461.40 31190.02 28289.44 262
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
mvs_tets89.78 5289.27 6391.30 2993.51 6784.79 4489.89 6890.63 15770.00 22894.55 1996.67 1487.94 3993.59 12084.27 6895.97 12495.52 49
114514_t83.10 17382.54 18184.77 14392.90 8369.10 19486.65 12990.62 15854.66 36081.46 28290.81 20476.98 16594.38 8772.62 21096.18 11490.82 232
PAPR78.84 23978.10 24981.07 23385.17 27660.22 29282.21 23490.57 15962.51 29475.32 34784.61 31874.99 18592.30 16359.48 32288.04 31090.68 237
test_fmvsm_n_192083.60 16282.89 17385.74 12785.22 27577.74 9984.12 17690.48 16059.87 32886.45 18591.12 18975.65 17885.89 30382.28 9190.87 26793.58 129
NR-MVSNet86.00 10786.22 10785.34 13493.24 7664.56 23682.21 23490.46 16180.99 8288.42 13791.97 16377.56 15593.85 10772.46 21298.65 1297.61 10
PVSNet_BlendedMVS78.80 24077.84 25081.65 22484.43 28763.41 24779.49 26990.44 16261.70 30675.43 34487.07 28069.11 24391.44 18460.68 31592.24 23790.11 253
PVSNet_Blended76.49 26875.40 27379.76 25284.43 28763.41 24775.14 33490.44 16257.36 34475.43 34478.30 37869.11 24391.44 18460.68 31587.70 31684.42 330
Gipumacopyleft84.44 13886.33 10578.78 26484.20 29473.57 13589.55 7790.44 16284.24 4884.38 22394.89 5376.35 17780.40 34776.14 16696.80 9182.36 363
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
RRT-MVS82.97 17483.44 16181.57 22585.06 27758.04 31787.20 11490.37 16577.88 12388.59 13193.70 11363.17 27493.05 14276.49 16088.47 30193.62 126
QAPM82.59 17982.59 18082.58 20686.44 24866.69 21789.94 6790.36 16667.97 25084.94 21392.58 14772.71 21792.18 16570.63 22687.73 31588.85 276
mmtdpeth85.13 12385.78 11983.17 19184.65 28474.71 12785.87 14390.35 16777.94 12183.82 23896.96 1277.75 15180.03 35078.44 13096.21 11294.79 74
TEST992.34 9879.70 7883.94 18090.32 16865.41 27884.49 22090.97 19482.03 10993.63 115
train_agg85.98 10885.28 12988.07 8592.34 9879.70 7883.94 18090.32 16865.79 26984.49 22090.97 19481.93 11193.63 11581.21 10096.54 9890.88 230
test_892.09 10778.87 8583.82 18590.31 17065.79 26984.36 22490.96 19681.93 11193.44 128
agg_prior91.58 12777.69 10090.30 17184.32 22693.18 136
ITE_SJBPF90.11 4990.72 15284.97 4190.30 17181.56 7690.02 9991.20 18782.40 9990.81 20773.58 19794.66 17994.56 78
jajsoiax89.41 5788.81 7391.19 3293.38 7184.72 4589.70 7190.29 17369.27 23294.39 2096.38 1886.02 6593.52 12483.96 7095.92 13095.34 53
diffmvspermissive80.40 21980.48 21780.17 24879.02 36060.04 29377.54 29890.28 17466.65 26382.40 26387.33 27473.50 20487.35 27377.98 14289.62 28793.13 146
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
V4283.47 16683.37 16483.75 17183.16 31563.33 24981.31 24490.23 17569.51 23190.91 8690.81 20474.16 19692.29 16480.06 11290.22 27995.62 47
anonymousdsp89.73 5388.88 7092.27 889.82 17186.67 1890.51 5490.20 17669.87 22995.06 1596.14 2584.28 7793.07 14187.68 1896.34 10697.09 19
c3_l81.64 20081.59 19681.79 22280.86 33959.15 30578.61 28490.18 17768.36 24387.20 15987.11 27969.39 24091.62 17978.16 13894.43 18594.60 77
eth_miper_zixun_eth80.84 21080.22 22282.71 20381.41 33160.98 28577.81 29390.14 17867.31 25886.95 16987.24 27664.26 26592.31 16275.23 17691.61 25094.85 72
MVSFormer82.23 18581.57 19884.19 16285.54 27069.26 18991.98 3490.08 17971.54 20876.23 33485.07 31358.69 30294.27 8986.26 4388.77 29789.03 273
test_djsdf89.62 5489.01 6791.45 2692.36 9782.98 5791.98 3490.08 17971.54 20894.28 2496.54 1681.57 11794.27 8986.26 4396.49 10097.09 19
AdaColmapbinary83.66 16083.69 16083.57 17990.05 16772.26 15886.29 13690.00 18178.19 11981.65 27987.16 27783.40 8794.24 9261.69 30894.76 17784.21 335
3Dnovator80.37 784.80 13084.71 13985.06 13886.36 25374.71 12788.77 9490.00 18175.65 14984.96 21193.17 12374.06 19791.19 19178.28 13591.09 25889.29 267
mvs5depth83.82 15784.54 14481.68 22382.23 32168.65 19786.89 12189.90 18380.02 9487.74 15297.86 264.19 26782.02 33576.37 16195.63 14394.35 90
IterMVS-LS84.73 13284.98 13383.96 16587.35 22963.66 24483.25 20189.88 18476.06 13989.62 11192.37 15573.40 20992.52 15578.16 13894.77 17695.69 44
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
test_vis3_rt71.42 31770.67 31873.64 32469.66 41270.46 17766.97 38889.73 18542.68 40988.20 14383.04 33343.77 38260.07 41065.35 27886.66 32990.39 246
save fliter93.75 6377.44 10386.31 13589.72 18670.80 218
v2v48284.09 14984.24 15283.62 17587.13 23461.40 27682.71 21789.71 18772.19 20489.55 11591.41 18070.70 23593.20 13581.02 10293.76 20396.25 31
miper_ehance_all_eth80.34 22180.04 22781.24 23179.82 35058.95 30777.66 29589.66 18865.75 27285.99 19385.11 30968.29 24791.42 18676.03 16792.03 24193.33 136
tt080588.09 7789.79 5582.98 19593.26 7563.94 24391.10 4589.64 18985.07 4190.91 8691.09 19089.16 2491.87 17582.03 9395.87 13293.13 146
Fast-Effi-MVS+81.04 20880.57 21382.46 21087.50 22763.22 25178.37 28789.63 19068.01 24881.87 27282.08 34682.31 10292.65 15367.10 25888.30 30891.51 216
Fast-Effi-MVS+-dtu82.54 18181.41 20185.90 12385.60 26876.53 11583.07 20689.62 19173.02 18979.11 31283.51 32880.74 12790.24 22168.76 24789.29 29090.94 227
PMVScopyleft80.48 690.08 4190.66 4888.34 8196.71 392.97 290.31 5989.57 19288.51 2190.11 9695.12 4990.98 688.92 25477.55 14797.07 8383.13 353
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
OpenMVScopyleft76.72 1381.98 19582.00 18781.93 21584.42 28968.22 20188.50 9989.48 19366.92 26081.80 27691.86 16572.59 21990.16 22471.19 21991.25 25787.40 297
test_040288.65 6989.58 6085.88 12492.55 9272.22 15984.01 17889.44 19488.63 2094.38 2195.77 2986.38 6193.59 12079.84 11595.21 15491.82 204
KD-MVS_self_test81.93 19683.14 16978.30 27484.75 28352.75 35780.37 25689.42 19570.24 22690.26 9593.39 11974.55 19486.77 28468.61 25096.64 9495.38 52
MSDG80.06 23079.99 22980.25 24683.91 29968.04 20577.51 29989.19 19677.65 12681.94 27083.45 33076.37 17686.31 29163.31 29686.59 33086.41 306
ambc82.98 19590.55 15664.86 23388.20 10089.15 19789.40 11893.96 9971.67 23191.38 18878.83 12896.55 9792.71 163
pmmvs686.52 9988.06 7981.90 21692.22 10362.28 26784.66 16589.15 19783.54 5789.85 10497.32 588.08 3886.80 28370.43 22897.30 7896.62 26
miper_enhance_ethall77.83 24976.93 25980.51 24276.15 38158.01 31875.47 33288.82 19958.05 33883.59 24380.69 35664.41 26491.20 19073.16 20892.03 24192.33 183
CNLPA83.55 16483.10 17084.90 13989.34 17983.87 5084.54 16988.77 20079.09 10683.54 24688.66 25074.87 18681.73 33766.84 26192.29 23589.11 269
LF4IMVS82.75 17781.93 18885.19 13582.08 32280.15 7485.53 15088.76 20168.01 24885.58 19987.75 26471.80 22986.85 28274.02 18993.87 20188.58 278
VPA-MVSNet83.47 16684.73 13679.69 25490.29 16057.52 32281.30 24688.69 20276.29 13787.58 15694.44 7180.60 12987.20 27566.60 26496.82 9094.34 91
IS-MVSNet86.66 9786.82 10086.17 11892.05 10966.87 21691.21 4388.64 20386.30 3389.60 11492.59 14569.22 24294.91 7173.89 19197.89 5296.72 24
BH-untuned80.96 20980.99 20880.84 23788.55 20168.23 20080.33 25788.46 20472.79 19386.55 17786.76 28374.72 19191.77 17861.79 30788.99 29482.52 361
Effi-MVS+-dtu85.82 11183.38 16393.14 487.13 23491.15 387.70 10888.42 20574.57 16283.56 24585.65 29978.49 14594.21 9372.04 21492.88 22594.05 103
UniMVSNet_ETH3D89.12 6590.72 4784.31 15897.00 264.33 23989.67 7488.38 20688.84 1794.29 2297.57 490.48 1391.26 18972.57 21197.65 6297.34 14
FA-MVS(test-final)83.13 17283.02 17183.43 18286.16 26266.08 22388.00 10388.36 20775.55 15185.02 20992.75 14265.12 26292.50 15674.94 18091.30 25691.72 208
TinyColmap81.25 20582.34 18477.99 28185.33 27260.68 28982.32 22988.33 20871.26 21386.97 16892.22 16177.10 16386.98 27962.37 30095.17 15686.31 308
CANet_DTU77.81 25177.05 25780.09 24981.37 33259.90 29683.26 20088.29 20969.16 23467.83 38883.72 32660.93 28489.47 24369.22 24089.70 28690.88 230
GBi-Net82.02 19382.07 18581.85 21886.38 25061.05 28286.83 12488.27 21072.43 19686.00 19095.64 3463.78 27090.68 21165.95 26993.34 21293.82 114
test182.02 19382.07 18581.85 21886.38 25061.05 28286.83 12488.27 21072.43 19686.00 19095.64 3463.78 27090.68 21165.95 26993.34 21293.82 114
FMVSNet184.55 13685.45 12581.85 21890.27 16161.05 28286.83 12488.27 21078.57 11589.66 11095.64 3475.43 18090.68 21169.09 24295.33 14993.82 114
SixPastTwentyTwo87.20 8987.45 8786.45 10892.52 9369.19 19287.84 10788.05 21381.66 7594.64 1896.53 1765.94 25894.75 7483.02 8096.83 8995.41 51
USDC76.63 26576.73 26276.34 30483.46 30557.20 32580.02 26088.04 21452.14 37583.65 24291.25 18463.24 27386.65 28654.66 35194.11 19485.17 320
EPP-MVSNet85.47 11585.04 13286.77 10391.52 13269.37 18791.63 3987.98 21581.51 7787.05 16791.83 16866.18 25795.29 5670.75 22396.89 8695.64 46
MAR-MVS80.24 22578.74 24184.73 14486.87 24478.18 9285.75 14687.81 21665.67 27477.84 32178.50 37773.79 20190.53 21561.59 31090.87 26785.49 318
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
API-MVS82.28 18482.61 17981.30 22886.29 25669.79 18188.71 9587.67 21778.42 11782.15 26884.15 32477.98 14891.59 18065.39 27692.75 22782.51 362
pm-mvs183.69 15984.95 13479.91 25090.04 16859.66 29882.43 22687.44 21875.52 15287.85 15095.26 4581.25 12185.65 30768.74 24896.04 12194.42 87
cascas76.29 27174.81 27880.72 24084.47 28662.94 25373.89 34687.34 21955.94 35175.16 34976.53 39363.97 26891.16 19265.00 28090.97 26388.06 286
HyFIR lowres test75.12 28172.66 30282.50 20991.44 13565.19 23172.47 35587.31 22046.79 39280.29 29884.30 32152.70 33492.10 16951.88 37186.73 32890.22 248
TransMVSNet (Re)84.02 15285.74 12078.85 26391.00 14655.20 34282.29 23087.26 22179.65 9888.38 13995.52 3783.00 9086.88 28167.97 25696.60 9694.45 84
xiu_mvs_v1_base_debu80.84 21080.14 22482.93 19888.31 20571.73 16479.53 26687.17 22265.43 27579.59 30482.73 34076.94 16690.14 22773.22 20288.33 30486.90 302
xiu_mvs_v1_base80.84 21080.14 22482.93 19888.31 20571.73 16479.53 26687.17 22265.43 27579.59 30482.73 34076.94 16690.14 22773.22 20288.33 30486.90 302
xiu_mvs_v1_base_debi80.84 21080.14 22482.93 19888.31 20571.73 16479.53 26687.17 22265.43 27579.59 30482.73 34076.94 16690.14 22773.22 20288.33 30486.90 302
cl2278.97 23678.21 24881.24 23177.74 36459.01 30677.46 30287.13 22565.79 26984.32 22685.10 31058.96 30190.88 20475.36 17592.03 24193.84 112
PS-MVSNAJ77.04 25976.53 26378.56 26887.09 23861.40 27675.26 33387.13 22561.25 31374.38 35477.22 38876.94 16690.94 19964.63 28584.83 35583.35 348
MVS_111021_HR84.63 13384.34 15185.49 13390.18 16375.86 12379.23 27587.13 22573.35 17985.56 20089.34 23783.60 8590.50 21676.64 15894.05 19790.09 254
xiu_mvs_v2_base77.19 25776.75 26178.52 26987.01 24061.30 27875.55 33187.12 22861.24 31474.45 35278.79 37577.20 16090.93 20064.62 28684.80 35683.32 349
1112_ss74.82 28673.74 28778.04 28089.57 17260.04 29376.49 31787.09 22954.31 36173.66 35879.80 36660.25 29086.76 28558.37 32684.15 36087.32 298
cl____80.42 21880.23 22081.02 23579.99 34759.25 30277.07 30687.02 23067.37 25686.18 18889.21 24063.08 27690.16 22476.31 16395.80 13693.65 124
DIV-MVS_self_test80.43 21780.23 22081.02 23579.99 34759.25 30277.07 30687.02 23067.38 25586.19 18689.22 23963.09 27590.16 22476.32 16295.80 13693.66 122
EG-PatchMatch MVS84.08 15084.11 15383.98 16492.22 10372.61 15082.20 23687.02 23072.63 19588.86 12491.02 19278.52 14391.11 19473.41 19991.09 25888.21 282
Baseline_NR-MVSNet84.00 15385.90 11478.29 27591.47 13453.44 35382.29 23087.00 23379.06 10789.55 11595.72 3277.20 16086.14 29772.30 21398.51 1795.28 56
MM87.64 8587.15 9089.09 6789.51 17476.39 11888.68 9686.76 23484.54 4683.58 24493.78 10873.36 21096.48 287.98 1396.21 11294.41 88
PAPM71.77 31270.06 32776.92 29586.39 24953.97 34876.62 31486.62 23553.44 36563.97 40584.73 31757.79 31092.34 16139.65 40681.33 38084.45 329
FMVSNet281.31 20481.61 19580.41 24486.38 25058.75 31283.93 18286.58 23672.43 19687.65 15492.98 13163.78 27090.22 22266.86 25993.92 19992.27 187
BH-w/o76.57 26676.07 26878.10 27886.88 24365.92 22577.63 29686.33 23765.69 27380.89 28979.95 36568.97 24590.74 20953.01 36285.25 34477.62 391
EGC-MVSNET74.79 28769.99 32989.19 6594.89 3887.00 1591.89 3786.28 2381.09 4222.23 42495.98 2781.87 11489.48 24279.76 11695.96 12591.10 223
BH-RMVSNet80.53 21580.22 22281.49 22787.19 23366.21 22277.79 29486.23 23974.21 16583.69 24188.50 25173.25 21290.75 20863.18 29787.90 31287.52 295
Test_1112_low_res73.90 29573.08 29676.35 30390.35 15955.95 33173.40 35186.17 24050.70 38573.14 35985.94 29658.31 30485.90 30256.51 33683.22 36687.20 299
fmvsm_l_conf0.5_n82.06 19281.54 19983.60 17683.94 29773.90 13383.35 19886.10 24158.97 33083.80 23990.36 21674.23 19586.94 28082.90 8190.22 27989.94 256
MonoMVSNet76.66 26477.26 25674.86 31679.86 34954.34 34686.26 13786.08 24271.08 21685.59 19888.68 24853.95 32985.93 29963.86 29080.02 38484.32 331
ab-mvs79.67 23380.56 21476.99 29388.48 20256.93 32684.70 16486.06 24368.95 23780.78 29193.08 12675.30 18284.62 31556.78 33490.90 26589.43 263
SDMVSNet81.90 19883.17 16878.10 27888.81 19262.45 26376.08 32486.05 24473.67 17183.41 24793.04 12782.35 10080.65 34470.06 23295.03 16291.21 220
v14882.31 18382.48 18281.81 22185.59 26959.66 29881.47 24386.02 24572.85 19088.05 14790.65 21170.73 23490.91 20275.15 17791.79 24694.87 68
Anonymous2024052180.18 22781.25 20476.95 29483.15 31660.84 28782.46 22585.99 24668.76 23986.78 17093.73 11259.13 29977.44 36173.71 19597.55 6992.56 169
MVS73.21 30172.59 30375.06 31580.97 33660.81 28881.64 24185.92 24746.03 39771.68 36777.54 38368.47 24689.77 23955.70 34285.39 34174.60 397
FMVSNet378.80 24078.55 24379.57 25682.89 31956.89 32881.76 23885.77 24869.04 23686.00 19090.44 21551.75 33990.09 23065.95 26993.34 21291.72 208
MVS_030485.37 11784.58 14287.75 8885.28 27373.36 13686.54 13385.71 24977.56 12981.78 27892.47 15070.29 23696.02 1185.59 5395.96 12593.87 111
UGNet82.78 17681.64 19386.21 11686.20 25976.24 12086.86 12285.68 25077.07 13373.76 35792.82 13869.64 23991.82 17769.04 24493.69 20790.56 241
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
无先验82.81 21585.62 25158.09 33791.41 18767.95 25784.48 328
fmvsm_l_conf0.5_n_a81.46 20280.87 21183.25 18783.73 30273.21 14283.00 20985.59 25258.22 33682.96 25590.09 22772.30 22286.65 28681.97 9689.95 28389.88 257
cdsmvs_eth3d_5k20.81 38927.75 3920.00 4080.00 4310.00 4330.00 41985.44 2530.00 4260.00 42782.82 33881.46 1180.00 4270.00 4260.00 4250.00 423
131473.22 30072.56 30575.20 31380.41 34657.84 31981.64 24185.36 25451.68 37873.10 36076.65 39261.45 28285.19 31063.54 29379.21 38982.59 357
test_yl78.71 24278.51 24479.32 25984.32 29158.84 30978.38 28585.33 25575.99 14282.49 26186.57 28558.01 30590.02 23362.74 29892.73 22889.10 270
DCV-MVSNet78.71 24278.51 24479.32 25984.32 29158.84 30978.38 28585.33 25575.99 14282.49 26186.57 28558.01 30590.02 23362.74 29892.73 22889.10 270
MVP-Stereo75.81 27573.51 29182.71 20389.35 17873.62 13480.06 25885.20 25760.30 32373.96 35587.94 25957.89 30989.45 24552.02 36674.87 40285.06 322
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
EI-MVSNet-Vis-set85.12 12484.53 14586.88 10084.01 29672.76 14483.91 18385.18 25880.44 8688.75 12785.49 30280.08 13491.92 17282.02 9490.85 26995.97 38
EI-MVSNet-UG-set85.04 12584.44 14786.85 10183.87 30072.52 15383.82 18585.15 25980.27 9088.75 12785.45 30479.95 13691.90 17381.92 9790.80 27096.13 33
EI-MVSNet82.61 17882.42 18383.20 18983.25 31263.66 24483.50 19485.07 26076.06 13986.55 17785.10 31073.41 20790.25 21978.15 14090.67 27395.68 45
MVSTER77.09 25875.70 27181.25 22975.27 38961.08 28177.49 30185.07 26060.78 31986.55 17788.68 24843.14 38790.25 21973.69 19690.67 27392.42 176
miper_lstm_enhance76.45 26976.10 26777.51 28876.72 37560.97 28664.69 39385.04 26263.98 28783.20 25188.22 25456.67 31578.79 35773.22 20293.12 21992.78 159
WR-MVS83.56 16384.40 14981.06 23493.43 7054.88 34378.67 28385.02 26381.24 7990.74 9091.56 17772.85 21591.08 19568.00 25598.04 3997.23 16
MG-MVS80.32 22280.94 20978.47 27188.18 20852.62 36082.29 23085.01 26472.01 20679.24 31192.54 14869.36 24193.36 13270.65 22589.19 29389.45 261
h-mvs3384.25 14482.76 17588.72 7391.82 12182.60 6084.00 17984.98 26571.27 21186.70 17390.55 21363.04 27793.92 10578.26 13694.20 19189.63 259
VDD-MVS84.23 14684.58 14283.20 18991.17 14265.16 23283.25 20184.97 26679.79 9587.18 16094.27 7974.77 19090.89 20369.24 23896.54 9893.55 133
test_fmvs375.72 27675.20 27677.27 29175.01 39269.47 18678.93 27784.88 26746.67 39387.08 16587.84 26250.44 34671.62 37877.42 15188.53 30090.72 234
mvsmamba80.30 22378.87 23684.58 14888.12 21167.55 20892.35 2984.88 26763.15 29085.33 20390.91 19850.71 34395.20 6266.36 26587.98 31190.99 225
mvs_anonymous78.13 24778.76 24076.23 30779.24 35750.31 37678.69 28284.82 26961.60 30883.09 25492.82 13873.89 20087.01 27668.33 25486.41 33291.37 217
D2MVS76.84 26175.67 27280.34 24580.48 34562.16 27173.50 34984.80 27057.61 34282.24 26587.54 26851.31 34087.65 26970.40 22993.19 21891.23 219
FE-MVS79.98 23178.86 23783.36 18486.47 24766.45 22089.73 7084.74 27172.80 19284.22 23391.38 18144.95 37893.60 11963.93 28991.50 25390.04 255
MIMVSNet183.63 16184.59 14180.74 23894.06 5762.77 25782.72 21684.53 27277.57 12890.34 9395.92 2876.88 17285.83 30561.88 30697.42 7493.62 126
BP-MVS182.81 17581.67 19286.23 11387.88 21668.53 19886.06 14084.36 27375.65 14985.14 20690.19 22245.84 36694.42 8685.18 5794.72 17895.75 43
VNet79.31 23480.27 21976.44 30287.92 21553.95 34975.58 33084.35 27474.39 16482.23 26690.72 20672.84 21684.39 31960.38 31793.98 19890.97 226
test_fmvs273.57 29772.80 29975.90 30972.74 40568.84 19677.07 30684.32 27545.14 39982.89 25684.22 32248.37 35170.36 38273.40 20087.03 32488.52 279
test_vis1_n_192071.30 31971.58 31370.47 34677.58 36759.99 29574.25 34084.22 27651.06 38174.85 35179.10 37255.10 32668.83 38868.86 24679.20 39082.58 358
test_fmvs1_n70.94 32170.41 32472.53 33573.92 39466.93 21575.99 32584.21 27743.31 40679.40 30779.39 37043.47 38368.55 39069.05 24384.91 35282.10 365
hse-mvs283.47 16681.81 19088.47 7791.03 14582.27 6182.61 21883.69 27871.27 21186.70 17386.05 29563.04 27792.41 15878.26 13693.62 21090.71 235
AUN-MVS81.18 20678.78 23988.39 7990.93 14782.14 6282.51 22483.67 27964.69 28480.29 29885.91 29851.07 34192.38 15976.29 16493.63 20990.65 239
MVS_111021_LR84.28 14383.76 15985.83 12689.23 18283.07 5580.99 25083.56 28072.71 19486.07 18989.07 24381.75 11686.19 29577.11 15493.36 21188.24 281
test_fmvs169.57 33669.05 33671.14 34569.15 41365.77 22773.98 34483.32 28142.83 40877.77 32478.27 37943.39 38668.50 39168.39 25384.38 35979.15 388
CHOSEN 1792x268872.45 30670.56 32078.13 27790.02 16963.08 25268.72 37883.16 28242.99 40775.92 33985.46 30357.22 31385.18 31149.87 37681.67 37686.14 309
patch_mono-278.89 23779.39 23277.41 29084.78 28168.11 20375.60 32883.11 28360.96 31779.36 30889.89 23075.18 18372.97 37373.32 20192.30 23391.15 222
TR-MVS76.77 26375.79 26979.72 25386.10 26365.79 22677.14 30483.02 28465.20 28181.40 28382.10 34466.30 25590.73 21055.57 34385.27 34382.65 356
GA-MVS75.83 27474.61 27979.48 25881.87 32459.25 30273.42 35082.88 28568.68 24079.75 30381.80 34950.62 34489.46 24466.85 26085.64 34089.72 258
tfpnnormal81.79 19982.95 17278.31 27388.93 18955.40 33880.83 25382.85 28676.81 13485.90 19494.14 8974.58 19386.51 28866.82 26295.68 14293.01 152
sd_testset79.95 23281.39 20275.64 31188.81 19258.07 31676.16 32382.81 28773.67 17183.41 24793.04 12780.96 12477.65 36058.62 32595.03 16291.21 220
OpenMVS_ROBcopyleft70.19 1777.77 25277.46 25278.71 26684.39 29061.15 28081.18 24882.52 28862.45 29783.34 24987.37 27266.20 25688.66 26064.69 28485.02 34986.32 307
Anonymous20240521180.51 21681.19 20778.49 27088.48 20257.26 32476.63 31382.49 28981.21 8084.30 22992.24 16067.99 24886.24 29262.22 30195.13 15791.98 201
EU-MVSNet75.12 28174.43 28377.18 29283.11 31759.48 30085.71 14882.43 29039.76 41385.64 19788.76 24644.71 38087.88 26773.86 19285.88 33984.16 336
CMPMVSbinary59.41 2075.12 28173.57 28979.77 25175.84 38467.22 20981.21 24782.18 29150.78 38476.50 33087.66 26655.20 32582.99 33062.17 30490.64 27789.09 272
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
CDS-MVSNet77.32 25675.40 27383.06 19289.00 18672.48 15477.90 29282.17 29260.81 31878.94 31383.49 32959.30 29788.76 25954.64 35292.37 23287.93 290
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
HY-MVS64.64 1873.03 30272.47 30674.71 31883.36 30954.19 34782.14 23781.96 29356.76 35069.57 38086.21 29360.03 29184.83 31449.58 37882.65 37285.11 321
jason77.42 25575.75 27082.43 21187.10 23769.27 18877.99 29081.94 29451.47 37977.84 32185.07 31360.32 28989.00 25270.74 22489.27 29289.03 273
jason: jason.
旧先验191.97 11171.77 16381.78 29591.84 16773.92 19993.65 20883.61 343
VPNet80.25 22481.68 19175.94 30892.46 9547.98 38376.70 31181.67 29673.45 17684.87 21492.82 13874.66 19286.51 28861.66 30996.85 8793.33 136
test_vis1_rt65.64 36164.09 36570.31 34766.09 41870.20 18061.16 40081.60 29738.65 41472.87 36169.66 40752.84 33260.04 41156.16 33877.77 39480.68 382
TSAR-MVS + GP.83.95 15482.69 17787.72 8989.27 18181.45 6783.72 18981.58 29874.73 16085.66 19686.06 29472.56 22092.69 15275.44 17495.21 15489.01 275
reproduce_monomvs74.09 29373.23 29476.65 30176.52 37654.54 34477.50 30081.40 29965.85 26882.86 25886.67 28427.38 41884.53 31670.24 23090.66 27590.89 229
VDDNet84.35 14085.39 12781.25 22995.13 3259.32 30185.42 15381.11 30086.41 3287.41 15896.21 2273.61 20290.61 21466.33 26696.85 8793.81 117
IterMVS-SCA-FT80.64 21479.41 23184.34 15683.93 29869.66 18476.28 32081.09 30172.43 19686.47 18390.19 22260.46 28793.15 13877.45 14986.39 33390.22 248
UnsupCasMVSNet_eth71.63 31572.30 30769.62 35376.47 37852.70 35970.03 37480.97 30259.18 32979.36 30888.21 25560.50 28669.12 38658.33 32877.62 39687.04 300
test_vis1_n70.29 32569.99 32971.20 34475.97 38366.50 21976.69 31280.81 30344.22 40275.43 34477.23 38750.00 34768.59 38966.71 26382.85 37178.52 390
lupinMVS76.37 27074.46 28282.09 21385.54 27069.26 18976.79 30980.77 30450.68 38676.23 33482.82 33858.69 30288.94 25369.85 23388.77 29788.07 284
CL-MVSNet_self_test76.81 26277.38 25475.12 31486.90 24251.34 36873.20 35280.63 30568.30 24581.80 27688.40 25266.92 25380.90 34155.35 34694.90 16893.12 148
新几何182.95 19793.96 5978.56 8880.24 30655.45 35483.93 23791.08 19171.19 23288.33 26365.84 27293.07 22081.95 367
testdata79.54 25792.87 8472.34 15680.14 30759.91 32785.47 20291.75 17367.96 24985.24 30968.57 25292.18 24081.06 380
TAMVS78.08 24876.36 26483.23 18890.62 15472.87 14379.08 27680.01 30861.72 30581.35 28486.92 28263.96 26988.78 25850.61 37293.01 22288.04 287
pmmvs-eth3d78.42 24677.04 25882.57 20887.44 22874.41 13080.86 25279.67 30955.68 35384.69 21790.31 21960.91 28585.42 30862.20 30291.59 25187.88 291
KD-MVS_2432*160066.87 35265.81 35870.04 34867.50 41447.49 38562.56 39779.16 31061.21 31577.98 31980.61 35725.29 42282.48 33253.02 36084.92 35080.16 384
miper_refine_blended66.87 35265.81 35870.04 34867.50 41447.49 38562.56 39779.16 31061.21 31577.98 31980.61 35725.29 42282.48 33253.02 36084.92 35080.16 384
IterMVS76.91 26076.34 26578.64 26780.91 33764.03 24176.30 31979.03 31264.88 28383.11 25289.16 24159.90 29384.46 31768.61 25085.15 34787.42 296
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CVMVSNet72.62 30571.41 31576.28 30583.25 31260.34 29183.50 19479.02 31337.77 41776.33 33285.10 31049.60 34987.41 27270.54 22777.54 39781.08 378
ppachtmachnet_test74.73 28874.00 28676.90 29680.71 34256.89 32871.53 36378.42 31458.24 33579.32 31082.92 33757.91 30884.26 32165.60 27591.36 25589.56 260
FMVSNet572.10 31071.69 31073.32 32581.57 32953.02 35676.77 31078.37 31563.31 28876.37 33191.85 16636.68 40078.98 35447.87 38792.45 23187.95 289
MS-PatchMatch70.93 32270.22 32573.06 32881.85 32562.50 26273.82 34777.90 31652.44 37275.92 33981.27 35355.67 32281.75 33655.37 34577.70 39574.94 396
test22293.31 7376.54 11379.38 27077.79 31752.59 37082.36 26490.84 20366.83 25491.69 24881.25 375
fmvsm_s_conf0.1_n_a82.58 18081.93 18884.50 14987.68 22173.35 13786.14 13977.70 31861.64 30785.02 20991.62 17577.75 15186.24 29282.79 8487.07 32293.91 109
pmmvs474.92 28472.98 29880.73 23984.95 27871.71 16776.23 32177.59 31952.83 36977.73 32586.38 28756.35 31884.97 31257.72 33287.05 32385.51 317
EPNet80.37 22078.41 24686.23 11376.75 37473.28 13987.18 11677.45 32076.24 13868.14 38588.93 24565.41 26193.85 10769.47 23696.12 11891.55 215
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
fmvsm_s_conf0.1_n82.17 18881.59 19683.94 16786.87 24471.57 16985.19 15777.42 32162.27 30184.47 22291.33 18276.43 17485.91 30183.14 7587.14 32094.33 92
fmvsm_s_conf0.5_n_a82.21 18681.51 20084.32 15786.56 24673.35 13785.46 15177.30 32261.81 30384.51 21990.88 20177.36 15886.21 29482.72 8586.97 32793.38 134
test_cas_vis1_n_192069.20 34169.12 33469.43 35573.68 39762.82 25670.38 37277.21 32346.18 39680.46 29778.95 37452.03 33665.53 40365.77 27477.45 39879.95 386
XXY-MVS74.44 29176.19 26669.21 35684.61 28552.43 36171.70 36077.18 32460.73 32080.60 29290.96 19675.44 17969.35 38556.13 33988.33 30485.86 313
fmvsm_s_conf0.5_n81.91 19781.30 20383.75 17186.02 26471.56 17084.73 16377.11 32562.44 29884.00 23590.68 20876.42 17585.89 30383.14 7587.11 32193.81 117
CR-MVSNet74.00 29473.04 29776.85 29879.58 35162.64 25982.58 22076.90 32650.50 38775.72 34192.38 15248.07 35384.07 32368.72 24982.91 36983.85 340
Patchmtry76.56 26777.46 25273.83 32279.37 35646.60 38982.41 22776.90 32673.81 16985.56 20092.38 15248.07 35383.98 32463.36 29595.31 15290.92 228
IB-MVS62.13 1971.64 31468.97 33979.66 25580.80 34162.26 26873.94 34576.90 32663.27 28968.63 38476.79 39033.83 40491.84 17659.28 32387.26 31884.88 323
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
K. test v385.14 12284.73 13686.37 10991.13 14369.63 18585.45 15276.68 32984.06 5092.44 6096.99 1062.03 28094.65 7780.58 10993.24 21694.83 73
ET-MVSNet_ETH3D75.28 27872.77 30082.81 20283.03 31868.11 20377.09 30576.51 33060.67 32177.60 32680.52 36038.04 39691.15 19370.78 22290.68 27289.17 268
N_pmnet70.20 32668.80 34174.38 32080.91 33784.81 4359.12 40576.45 33155.06 35675.31 34882.36 34355.74 32154.82 41547.02 38987.24 31983.52 344
thisisatest053079.07 23577.33 25584.26 15987.13 23464.58 23583.66 19175.95 33268.86 23885.22 20587.36 27338.10 39593.57 12375.47 17394.28 18994.62 76
EPNet_dtu72.87 30471.33 31677.49 28977.72 36560.55 29082.35 22875.79 33366.49 26458.39 41581.06 35553.68 33085.98 29853.55 35792.97 22485.95 311
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
UnsupCasMVSNet_bld69.21 34069.68 33167.82 36679.42 35451.15 37167.82 38375.79 33354.15 36277.47 32785.36 30859.26 29870.64 38148.46 38479.35 38781.66 369
MDA-MVSNet-bldmvs77.47 25476.90 26079.16 26179.03 35964.59 23466.58 38975.67 33573.15 18788.86 12488.99 24466.94 25281.23 34064.71 28388.22 30991.64 212
pmmvs570.73 32370.07 32672.72 33177.03 37252.73 35874.14 34175.65 33650.36 38872.17 36585.37 30755.42 32480.67 34352.86 36387.59 31784.77 324
tttt051781.07 20779.58 23085.52 13188.99 18766.45 22087.03 11975.51 33773.76 17088.32 14190.20 22137.96 39894.16 9979.36 12495.13 15795.93 41
tpmvs70.16 32769.56 33271.96 33974.71 39348.13 38179.63 26475.45 33865.02 28270.26 37681.88 34845.34 37385.68 30658.34 32775.39 40182.08 366
ADS-MVSNet265.87 36063.64 36872.55 33473.16 40056.92 32767.10 38674.81 33949.74 38966.04 39482.97 33446.71 35677.26 36242.29 40069.96 40983.46 345
new-patchmatchnet70.10 32873.37 29360.29 39281.23 33416.95 42759.54 40374.62 34062.93 29180.97 28687.93 26062.83 27971.90 37655.24 34795.01 16592.00 199
Anonymous2023120671.38 31871.88 30969.88 35086.31 25454.37 34570.39 37174.62 34052.57 37176.73 32988.76 24659.94 29272.06 37544.35 39893.23 21783.23 351
CostFormer69.98 33268.68 34273.87 32177.14 37050.72 37479.26 27274.51 34251.94 37770.97 37184.75 31645.16 37687.49 27155.16 34879.23 38883.40 347
door-mid74.45 343
thisisatest051573.00 30370.52 32180.46 24381.45 33059.90 29673.16 35374.31 34457.86 33976.08 33877.78 38137.60 39992.12 16865.00 28091.45 25489.35 264
baseline173.26 29973.54 29072.43 33684.92 27947.79 38479.89 26274.00 34565.93 26678.81 31486.28 29256.36 31781.63 33856.63 33579.04 39187.87 292
test_method30.46 38829.60 39133.06 40217.99 4273.84 43013.62 41873.92 3462.79 42118.29 42353.41 41628.53 41543.25 42122.56 41935.27 41952.11 416
tfpn200view974.86 28574.23 28476.74 29986.24 25752.12 36279.24 27373.87 34773.34 18081.82 27484.60 31946.02 36188.80 25551.98 36790.99 26089.31 265
thres40075.14 27974.23 28477.86 28486.24 25752.12 36279.24 27373.87 34773.34 18081.82 27484.60 31946.02 36188.80 25551.98 36790.99 26092.66 165
LFMVS80.15 22880.56 21478.89 26289.19 18355.93 33285.22 15673.78 34982.96 6384.28 23092.72 14357.38 31190.07 23163.80 29195.75 13990.68 237
thres20072.34 30871.55 31474.70 31983.48 30451.60 36775.02 33573.71 35070.14 22778.56 31780.57 35946.20 35988.20 26546.99 39089.29 29084.32 331
tpm cat166.76 35565.21 36371.42 34277.09 37150.62 37578.01 28973.68 35144.89 40068.64 38379.00 37345.51 37082.42 33449.91 37570.15 40881.23 377
testing9169.94 33368.99 33872.80 33083.81 30145.89 39271.57 36273.64 35268.24 24670.77 37477.82 38034.37 40384.44 31853.64 35687.00 32688.07 284
testgi72.36 30774.61 27965.59 37680.56 34442.82 40468.29 37973.35 35366.87 26181.84 27389.93 22872.08 22666.92 39846.05 39492.54 23087.01 301
thres100view90075.45 27775.05 27776.66 30087.27 23051.88 36581.07 24973.26 35475.68 14883.25 25086.37 28845.54 36888.80 25551.98 36790.99 26089.31 265
thres600view775.97 27375.35 27577.85 28587.01 24051.84 36680.45 25573.26 35475.20 15683.10 25386.31 29145.54 36889.05 25155.03 34992.24 23792.66 165
wuyk23d75.13 28079.30 23362.63 38575.56 38575.18 12680.89 25173.10 35675.06 15894.76 1695.32 4187.73 4352.85 41634.16 41597.11 8259.85 412
WTY-MVS67.91 34768.35 34466.58 37380.82 34048.12 38265.96 39072.60 35753.67 36471.20 36981.68 35158.97 30069.06 38748.57 38381.67 37682.55 359
door72.57 358
PVSNet58.17 2166.41 35765.63 36068.75 36081.96 32349.88 37862.19 39972.51 35951.03 38268.04 38675.34 39850.84 34274.77 37045.82 39582.96 36781.60 370
dmvs_re66.81 35466.98 35066.28 37476.87 37358.68 31371.66 36172.24 36060.29 32469.52 38173.53 40152.38 33564.40 40644.90 39681.44 37975.76 394
MDTV_nov1_ep1368.29 34578.03 36343.87 40174.12 34272.22 36152.17 37367.02 39185.54 30045.36 37280.85 34255.73 34084.42 358
WBMVS68.76 34368.43 34369.75 35283.29 31040.30 40967.36 38572.21 36257.09 34777.05 32885.53 30133.68 40580.51 34548.79 38290.90 26588.45 280
test20.0373.75 29674.59 28171.22 34381.11 33551.12 37270.15 37372.10 36370.42 22180.28 30091.50 17864.21 26674.72 37246.96 39194.58 18187.82 293
Vis-MVSNet (Re-imp)77.82 25077.79 25177.92 28288.82 19151.29 37083.28 19971.97 36474.04 16682.23 26689.78 23157.38 31189.41 24857.22 33395.41 14693.05 150
MIMVSNet71.09 32071.59 31169.57 35487.23 23150.07 37778.91 27871.83 36560.20 32671.26 36891.76 17255.08 32776.09 36541.06 40387.02 32582.54 360
tpm268.45 34566.83 35273.30 32678.93 36148.50 38079.76 26371.76 36647.50 39169.92 37883.60 32742.07 38988.40 26248.44 38579.51 38583.01 354
sss66.92 35167.26 34965.90 37577.23 36951.10 37364.79 39271.72 36752.12 37670.13 37780.18 36357.96 30765.36 40450.21 37381.01 38281.25 375
our_test_371.85 31171.59 31172.62 33380.71 34253.78 35069.72 37571.71 36858.80 33278.03 31880.51 36156.61 31678.84 35662.20 30286.04 33885.23 319
SCA73.32 29872.57 30475.58 31281.62 32855.86 33478.89 27971.37 36961.73 30474.93 35083.42 33160.46 28787.01 27658.11 33082.63 37483.88 337
testing9969.27 33968.15 34672.63 33283.29 31045.45 39471.15 36471.08 37067.34 25770.43 37577.77 38232.24 40884.35 32053.72 35586.33 33488.10 283
test_f64.31 36865.85 35759.67 39366.54 41762.24 27057.76 40970.96 37140.13 41184.36 22482.09 34546.93 35551.67 41761.99 30581.89 37565.12 408
lessismore_v085.95 12191.10 14470.99 17470.91 37291.79 6994.42 7461.76 28192.93 14679.52 12293.03 22193.93 107
tpmrst66.28 35866.69 35465.05 38072.82 40439.33 41078.20 28870.69 37353.16 36867.88 38780.36 36248.18 35274.75 37158.13 32970.79 40781.08 378
PatchMatch-RL74.48 28973.22 29578.27 27687.70 22085.26 3875.92 32670.09 37464.34 28576.09 33781.25 35465.87 25978.07 35953.86 35483.82 36271.48 400
PatchmatchNetpermissive69.71 33568.83 34072.33 33877.66 36653.60 35179.29 27169.99 37557.66 34172.53 36382.93 33646.45 35880.08 34960.91 31472.09 40583.31 350
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
ECVR-MVScopyleft78.44 24578.63 24277.88 28391.85 11748.95 37983.68 19069.91 37672.30 20284.26 23294.20 8551.89 33889.82 23663.58 29296.02 12294.87 68
baseline269.77 33466.89 35178.41 27279.51 35358.09 31576.23 32169.57 37757.50 34364.82 40377.45 38546.02 36188.44 26153.08 35977.83 39388.70 277
testing1167.38 34865.93 35671.73 34183.37 30846.60 38970.95 36769.40 37862.47 29666.14 39276.66 39131.22 40984.10 32249.10 38084.10 36184.49 327
ttmdpeth71.72 31370.67 31874.86 31673.08 40255.88 33377.41 30369.27 37955.86 35278.66 31593.77 11038.01 39775.39 36960.12 31889.87 28493.31 138
test111178.53 24478.85 23877.56 28792.22 10347.49 38582.61 21869.24 38072.43 19685.28 20494.20 8551.91 33790.07 23165.36 27796.45 10395.11 63
Patchmatch-RL test74.48 28973.68 28876.89 29784.83 28066.54 21872.29 35669.16 38157.70 34086.76 17186.33 28945.79 36782.59 33169.63 23590.65 27681.54 371
SSC-MVS77.55 25381.64 19365.29 37990.46 15720.33 42573.56 34868.28 38285.44 3788.18 14494.64 6470.93 23381.33 33971.25 21792.03 24194.20 94
WB-MVS76.06 27280.01 22864.19 38289.96 17020.58 42472.18 35768.19 38383.21 5986.46 18493.49 11770.19 23778.97 35565.96 26890.46 27893.02 151
testing22266.93 35065.30 36271.81 34083.38 30745.83 39372.06 35867.50 38464.12 28669.68 37976.37 39427.34 41983.00 32938.88 40788.38 30386.62 305
FPMVS72.29 30972.00 30873.14 32788.63 19885.00 4074.65 33967.39 38571.94 20777.80 32387.66 26650.48 34575.83 36749.95 37479.51 38558.58 414
MDA-MVSNet_test_wron70.05 33070.44 32268.88 35973.84 39553.47 35258.93 40767.28 38658.43 33387.09 16485.40 30559.80 29567.25 39659.66 32183.54 36485.92 312
YYNet170.06 32970.44 32268.90 35873.76 39653.42 35458.99 40667.20 38758.42 33487.10 16385.39 30659.82 29467.32 39559.79 32083.50 36585.96 310
test-LLR67.21 34966.74 35368.63 36276.45 37955.21 34067.89 38067.14 38862.43 29965.08 40072.39 40243.41 38469.37 38361.00 31284.89 35381.31 373
test-mter65.00 36363.79 36768.63 36276.45 37955.21 34067.89 38067.14 38850.98 38365.08 40072.39 40228.27 41669.37 38361.00 31284.89 35381.31 373
tpm67.95 34668.08 34767.55 36778.74 36243.53 40275.60 32867.10 39054.92 35772.23 36488.10 25642.87 38875.97 36652.21 36580.95 38383.15 352
PM-MVS80.20 22679.00 23583.78 17088.17 20986.66 1981.31 24466.81 39169.64 23088.33 14090.19 22264.58 26383.63 32771.99 21590.03 28181.06 380
WB-MVSnew68.72 34469.01 33767.85 36583.22 31443.98 40074.93 33665.98 39255.09 35573.83 35679.11 37165.63 26071.89 37738.21 41185.04 34887.69 294
MVStest170.05 33069.26 33372.41 33758.62 42455.59 33776.61 31565.58 39353.44 36589.28 12093.32 12022.91 42471.44 38074.08 18889.52 28890.21 252
JIA-IIPM69.41 33766.64 35577.70 28673.19 39971.24 17275.67 32765.56 39470.42 22165.18 39992.97 13333.64 40683.06 32853.52 35869.61 41178.79 389
PatchT70.52 32472.76 30163.79 38479.38 35533.53 41877.63 29665.37 39573.61 17371.77 36692.79 14144.38 38175.65 36864.53 28785.37 34282.18 364
UBG64.34 36763.35 36967.30 36983.50 30340.53 40867.46 38465.02 39654.77 35967.54 39074.47 40032.99 40778.50 35840.82 40483.58 36382.88 355
UWE-MVS66.43 35665.56 36169.05 35784.15 29540.98 40773.06 35464.71 39754.84 35876.18 33679.62 36929.21 41380.50 34638.54 41089.75 28585.66 315
dp60.70 37860.29 38161.92 38872.04 40738.67 41370.83 36864.08 39851.28 38060.75 40877.28 38636.59 40171.58 37947.41 38862.34 41575.52 395
Patchmatch-test65.91 35967.38 34861.48 39075.51 38643.21 40368.84 37763.79 39962.48 29572.80 36283.42 33144.89 37959.52 41248.27 38686.45 33181.70 368
TESTMET0.1,161.29 37460.32 38064.19 38272.06 40651.30 36967.89 38062.09 40045.27 39860.65 40969.01 40827.93 41764.74 40556.31 33781.65 37876.53 392
Syy-MVS69.40 33870.03 32867.49 36881.72 32638.94 41171.00 36561.99 40161.38 31070.81 37272.36 40461.37 28379.30 35264.50 28885.18 34584.22 333
myMVS_eth3d64.66 36563.89 36666.97 37181.72 32637.39 41471.00 36561.99 40161.38 31070.81 37272.36 40420.96 42579.30 35249.59 37785.18 34584.22 333
PVSNet_051.08 2256.10 38254.97 38759.48 39475.12 39053.28 35555.16 41161.89 40344.30 40159.16 41162.48 41454.22 32865.91 40235.40 41347.01 41759.25 413
ADS-MVSNet61.90 37162.19 37561.03 39173.16 40036.42 41667.10 38661.75 40449.74 38966.04 39482.97 33446.71 35663.21 40742.29 40069.96 40983.46 345
PMMVS61.65 37260.38 37965.47 37865.40 42169.26 18963.97 39561.73 40536.80 41860.11 41068.43 40959.42 29666.35 40048.97 38178.57 39260.81 411
ETVMVS64.67 36463.34 37068.64 36183.44 30641.89 40569.56 37661.70 40661.33 31268.74 38275.76 39628.76 41479.35 35134.65 41486.16 33784.67 326
test0.0.03 164.66 36564.36 36465.57 37775.03 39146.89 38864.69 39361.58 40762.43 29971.18 37077.54 38343.41 38468.47 39240.75 40582.65 37281.35 372
dmvs_testset60.59 37962.54 37454.72 39877.26 36827.74 42174.05 34361.00 40860.48 32265.62 39767.03 41155.93 32068.23 39332.07 41869.46 41268.17 405
E-PMN61.59 37361.62 37661.49 38966.81 41655.40 33853.77 41260.34 40966.80 26258.90 41365.50 41240.48 39266.12 40155.72 34186.25 33562.95 410
testing371.53 31670.79 31773.77 32388.89 19041.86 40676.60 31659.12 41072.83 19180.97 28682.08 34619.80 42687.33 27465.12 27991.68 24992.13 194
CHOSEN 280x42059.08 38056.52 38566.76 37276.51 37764.39 23849.62 41459.00 41143.86 40355.66 41868.41 41035.55 40268.21 39443.25 39976.78 40067.69 406
EMVS61.10 37660.81 37861.99 38765.96 41955.86 33453.10 41358.97 41267.06 25956.89 41763.33 41340.98 39067.03 39754.79 35086.18 33663.08 409
pmmvs362.47 36960.02 38269.80 35171.58 40864.00 24270.52 37058.44 41339.77 41266.05 39375.84 39527.10 42172.28 37446.15 39384.77 35773.11 398
MVS-HIRNet61.16 37562.92 37255.87 39679.09 35835.34 41771.83 35957.98 41446.56 39459.05 41291.14 18849.95 34876.43 36438.74 40871.92 40655.84 415
gg-mvs-nofinetune68.96 34269.11 33568.52 36476.12 38245.32 39583.59 19255.88 41586.68 2964.62 40497.01 930.36 41183.97 32544.78 39782.94 36876.26 393
GG-mvs-BLEND67.16 37073.36 39846.54 39184.15 17555.04 41658.64 41461.95 41529.93 41283.87 32638.71 40976.92 39971.07 401
EPMVS62.47 36962.63 37362.01 38670.63 41038.74 41274.76 33752.86 41753.91 36367.71 38980.01 36439.40 39366.60 39955.54 34468.81 41380.68 382
new_pmnet55.69 38357.66 38449.76 39975.47 38730.59 41959.56 40251.45 41843.62 40562.49 40675.48 39740.96 39149.15 41937.39 41272.52 40369.55 403
PMMVS255.64 38459.27 38344.74 40064.30 42212.32 42840.60 41549.79 41953.19 36765.06 40284.81 31553.60 33149.76 41832.68 41789.41 28972.15 399
test250674.12 29273.39 29276.28 30591.85 11744.20 39984.06 17748.20 42072.30 20281.90 27194.20 8527.22 42089.77 23964.81 28296.02 12294.87 68
DSMNet-mixed60.98 37761.61 37759.09 39572.88 40345.05 39774.70 33846.61 42126.20 41965.34 39890.32 21855.46 32363.12 40841.72 40281.30 38169.09 404
mvsany_test365.48 36262.97 37173.03 32969.99 41176.17 12164.83 39143.71 42243.68 40480.25 30187.05 28152.83 33363.09 40951.92 37072.44 40479.84 387
mvsany_test158.48 38156.47 38664.50 38165.90 42068.21 20256.95 41042.11 42338.30 41565.69 39677.19 38956.96 31459.35 41346.16 39258.96 41665.93 407
MVEpermissive40.22 2351.82 38550.47 38855.87 39662.66 42351.91 36431.61 41739.28 42440.65 41050.76 41974.98 39956.24 31944.67 42033.94 41664.11 41471.04 402
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
MTMP90.66 4833.14 425
tmp_tt20.25 39024.50 3937.49 4054.47 4288.70 42934.17 41625.16 4261.00 42332.43 42218.49 42039.37 3949.21 42421.64 42043.75 4184.57 420
DeepMVS_CXcopyleft24.13 40432.95 42629.49 42021.63 42712.07 42037.95 42145.07 41830.84 41019.21 42317.94 42233.06 42023.69 419
dongtai41.90 38642.65 38939.67 40170.86 40921.11 42361.01 40121.42 42857.36 34457.97 41650.06 41716.40 42758.73 41421.03 42127.69 42139.17 417
kuosan30.83 38732.17 39026.83 40353.36 42519.02 42657.90 40820.44 42938.29 41638.01 42037.82 41915.18 42833.45 4227.74 42320.76 42228.03 418
test1236.27 3938.08 3960.84 4061.11 4300.57 43162.90 3960.82 4300.54 4241.07 4262.75 4251.26 4290.30 4251.04 4241.26 4241.66 421
testmvs5.91 3947.65 3970.72 4071.20 4290.37 43259.14 4040.67 4310.49 4251.11 4252.76 4240.94 4300.24 4261.02 4251.47 4231.55 422
mmdepth0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
monomultidepth0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
test_blank0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
uanet_test0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
DCPMVS0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
pcd_1.5k_mvsjas6.41 3928.55 3950.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 42676.94 1660.00 4270.00 4260.00 4250.00 423
sosnet-low-res0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
sosnet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
uncertanet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
Regformer0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
n20.00 432
nn0.00 432
ab-mvs-re6.65 3918.87 3940.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 42779.80 3660.00 4310.00 4270.00 4260.00 4250.00 423
uanet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
WAC-MVS37.39 41452.61 364
PC_three_145258.96 33190.06 9791.33 18280.66 12893.03 14375.78 16995.94 12892.48 173
eth-test20.00 431
eth-test0.00 431
OPU-MVS88.27 8291.89 11577.83 9790.47 5591.22 18581.12 12294.68 7674.48 18195.35 14892.29 185
test_0728_THIRD85.33 3893.75 3494.65 6187.44 4695.78 3287.41 2598.21 3292.98 154
GSMVS83.88 337
test_part293.86 6177.77 9892.84 51
sam_mvs146.11 36083.88 337
sam_mvs45.92 365
test_post178.85 2813.13 42245.19 37580.13 34858.11 330
test_post3.10 42345.43 37177.22 363
patchmatchnet-post81.71 35045.93 36487.01 276
gm-plane-assit75.42 38844.97 39852.17 37372.36 40487.90 26654.10 353
test9_res80.83 10596.45 10390.57 240
agg_prior279.68 11896.16 11590.22 248
test_prior478.97 8484.59 166
test_prior283.37 19775.43 15384.58 21891.57 17681.92 11379.54 12196.97 85
旧先验281.73 23956.88 34986.54 18284.90 31372.81 209
新几何281.72 240
原ACMM282.26 233
testdata286.43 29063.52 294
segment_acmp81.94 110
testdata179.62 26573.95 168
plane_prior793.45 6877.31 106
plane_prior692.61 9076.54 11374.84 187
plane_prior492.95 134
plane_prior376.85 11177.79 12586.55 177
plane_prior289.45 8279.44 101
plane_prior192.83 88
plane_prior76.42 11687.15 11775.94 14595.03 162
HQP5-MVS70.66 175
HQP-NCC91.19 13984.77 16073.30 18280.55 294
ACMP_Plane91.19 13984.77 16073.30 18280.55 294
BP-MVS77.30 152
HQP4-MVS80.56 29394.61 7993.56 131
HQP2-MVS72.10 224
NP-MVS91.95 11274.55 12990.17 225
MDTV_nov1_ep13_2view27.60 42270.76 36946.47 39561.27 40745.20 37449.18 37983.75 342
ACMMP++_ref95.74 140
ACMMP++97.35 75
Test By Simon79.09 140