This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
MCST-MVS83.01 183.30 282.15 1092.84 257.58 1493.77 191.10 1075.95 377.10 3693.09 2754.15 3395.57 1285.80 1085.87 3693.31 11
MM82.69 283.29 380.89 2084.38 8255.40 5792.16 989.85 2075.28 482.41 1093.86 854.30 3093.98 2390.29 187.13 2093.30 12
DVP-MVS++82.44 382.38 582.62 491.77 457.49 1584.98 13588.88 3258.00 21383.60 693.39 1867.21 296.39 481.64 3091.98 493.98 5
DPM-MVS82.39 482.36 682.49 580.12 18859.50 592.24 890.72 1469.37 3183.22 894.47 263.81 593.18 3174.02 8293.25 294.80 1
DELS-MVS82.32 582.50 481.79 1186.80 4656.89 2792.77 286.30 8477.83 177.88 3392.13 4160.24 694.78 1978.97 4389.61 793.69 8
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MSP-MVS82.30 683.47 178.80 5482.99 11752.71 13085.04 13288.63 4366.08 6986.77 392.75 3272.05 191.46 6683.35 1993.53 192.23 34
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SED-MVS81.92 781.75 982.44 789.48 1756.89 2792.48 388.94 3057.50 22784.61 494.09 358.81 1196.37 682.28 2587.60 1794.06 3
CNVR-MVS81.76 881.90 881.33 1790.04 1057.70 1291.71 1088.87 3470.31 2477.64 3593.87 752.58 4093.91 2684.17 1487.92 1592.39 30
MVS_030481.58 982.05 780.20 2982.36 13454.70 8091.13 1988.95 2974.49 580.04 2493.64 1152.40 4193.27 3088.85 486.56 3092.61 26
DVP-MVScopyleft81.30 1081.00 1382.20 889.40 2057.45 1792.34 589.99 1857.71 22181.91 1393.64 1155.17 2596.44 281.68 2887.13 2092.72 24
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
CANet80.90 1181.17 1280.09 3587.62 4054.21 9291.60 1386.47 8073.13 879.89 2593.10 2549.88 6392.98 3284.09 1684.75 4893.08 17
patch_mono-280.84 1281.59 1078.62 6190.34 953.77 9988.08 5388.36 5076.17 279.40 2791.09 6255.43 2390.09 10785.01 1280.40 8091.99 44
DeepPCF-MVS69.37 180.65 1381.56 1177.94 7985.46 6349.56 19890.99 2186.66 7870.58 2280.07 2395.30 156.18 2090.97 8282.57 2486.22 3493.28 13
HPM-MVS++copyleft80.50 1480.71 1479.88 3787.34 4255.20 6489.93 2987.55 6566.04 7279.46 2693.00 3053.10 3791.76 6080.40 3689.56 892.68 25
CSCG80.41 1579.72 1582.49 589.12 2557.67 1389.29 4091.54 559.19 18971.82 7990.05 9059.72 996.04 1078.37 4988.40 1393.75 7
PS-MVSNAJ80.06 1679.52 1781.68 1385.58 6060.97 391.69 1187.02 7070.62 2180.75 2093.22 2437.77 19592.50 4482.75 2286.25 3391.57 55
xiu_mvs_v2_base79.86 1779.31 1881.53 1485.03 7260.73 491.65 1286.86 7370.30 2580.77 1993.07 2937.63 20092.28 5082.73 2385.71 3791.57 55
DPE-MVScopyleft79.82 1879.66 1680.29 2789.27 2455.08 6988.70 4687.92 5655.55 25781.21 1893.69 1056.51 1894.27 2278.36 5085.70 3891.51 58
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
NCCC79.57 1979.23 1980.59 2289.50 1556.99 2491.38 1588.17 5267.71 4673.81 5492.75 3246.88 8493.28 2978.79 4684.07 5391.50 59
dcpmvs_279.33 2078.94 2080.49 2389.75 1256.54 3484.83 14283.68 14967.85 4369.36 10190.24 8260.20 792.10 5584.14 1580.40 8092.82 21
testing1179.18 2178.85 2180.16 3188.33 3056.99 2488.31 5192.06 172.82 970.62 9788.37 12157.69 1492.30 4875.25 7276.24 12191.20 68
SMA-MVScopyleft79.10 2278.76 2280.12 3384.42 8055.87 4887.58 6786.76 7561.48 14680.26 2293.10 2546.53 8992.41 4679.97 3788.77 1092.08 38
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
LFMVS78.52 2377.14 4082.67 389.58 1358.90 791.27 1888.05 5463.22 11674.63 4690.83 7141.38 16294.40 2075.42 7079.90 8994.72 2
testing9978.45 2477.78 3180.45 2588.28 3356.81 3087.95 5891.49 671.72 1370.84 9288.09 12957.29 1592.63 4269.24 10575.13 13491.91 45
APDe-MVScopyleft78.44 2578.20 2579.19 4388.56 2654.55 8689.76 3387.77 6055.91 25278.56 3092.49 3748.20 7092.65 4079.49 3883.04 5790.39 85
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
MG-MVS78.42 2676.99 4282.73 293.17 164.46 189.93 2988.51 4864.83 8773.52 5788.09 12948.07 7192.19 5162.24 15384.53 5091.53 57
lupinMVS78.38 2778.11 2779.19 4383.02 11555.24 6191.57 1484.82 12269.12 3276.67 3892.02 4544.82 11690.23 10480.83 3580.09 8492.08 38
EPNet78.36 2878.49 2377.97 7785.49 6252.04 14289.36 3884.07 14273.22 777.03 3791.72 5249.32 6790.17 10673.46 8682.77 5891.69 50
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TSAR-MVS + MP.78.31 2978.26 2478.48 6581.33 16356.31 4081.59 23486.41 8169.61 2981.72 1588.16 12855.09 2788.04 17574.12 8186.31 3291.09 71
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
testing9178.30 3077.54 3480.61 2188.16 3557.12 2387.94 5991.07 1371.43 1670.75 9388.04 13355.82 2292.65 4069.61 10275.00 13892.05 40
canonicalmvs78.17 3177.86 3079.12 4884.30 8354.22 9187.71 6284.57 13167.70 4777.70 3492.11 4450.90 5289.95 11078.18 5377.54 10793.20 15
alignmvs78.08 3277.98 2878.39 6983.53 9853.22 11889.77 3285.45 9866.11 6776.59 4091.99 4754.07 3489.05 13377.34 5877.00 11092.89 20
DeepC-MVS_fast67.50 378.00 3377.63 3279.13 4788.52 2755.12 6689.95 2885.98 8968.31 3571.33 8692.75 3245.52 10290.37 9771.15 9585.14 4491.91 45
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
VNet77.99 3477.92 2978.19 7387.43 4150.12 18690.93 2291.41 867.48 4975.12 4290.15 8846.77 8691.00 7973.52 8578.46 10193.44 9
TSAR-MVS + GP.77.82 3577.59 3378.49 6485.25 6850.27 18590.02 2690.57 1556.58 24674.26 5191.60 5754.26 3192.16 5275.87 6479.91 8893.05 18
casdiffmvs_mvgpermissive77.75 3677.28 3779.16 4580.42 18454.44 8887.76 6185.46 9771.67 1471.38 8588.35 12351.58 4591.22 7279.02 4279.89 9091.83 49
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
testing22277.70 3777.22 3979.14 4686.95 4454.89 7587.18 7791.96 272.29 1171.17 9088.70 11555.19 2491.24 7165.18 13876.32 12091.29 66
SF-MVS77.64 3877.42 3678.32 7183.75 9552.47 13586.63 9087.80 5758.78 20174.63 4692.38 3847.75 7591.35 6878.18 5386.85 2591.15 70
PHI-MVS77.49 3977.00 4178.95 4985.33 6650.69 16888.57 4888.59 4658.14 21073.60 5593.31 2143.14 13993.79 2773.81 8388.53 1292.37 31
WTY-MVS77.47 4077.52 3577.30 9188.33 3046.25 27688.46 4990.32 1671.40 1772.32 7591.72 5253.44 3592.37 4766.28 12475.42 12893.28 13
casdiffmvspermissive77.36 4176.85 4378.88 5280.40 18554.66 8487.06 8085.88 9072.11 1271.57 8288.63 12050.89 5490.35 9876.00 6379.11 9691.63 52
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CS-MVS-test77.20 4277.25 3877.05 9784.60 7749.04 21189.42 3685.83 9265.90 7372.85 6691.98 4945.10 10791.27 6975.02 7484.56 4990.84 77
ETV-MVS77.17 4376.74 4478.48 6581.80 14354.55 8686.13 9885.33 10368.20 3773.10 6290.52 7645.23 10690.66 9079.37 3980.95 7290.22 91
SteuartSystems-ACMMP77.08 4476.33 4979.34 4180.98 16755.31 5989.76 3386.91 7262.94 12171.65 8091.56 5842.33 14692.56 4377.14 5983.69 5590.15 95
Skip Steuart: Steuart Systems R&D Blog.
jason77.01 4576.45 4778.69 5879.69 19354.74 7790.56 2483.99 14568.26 3674.10 5290.91 6842.14 15089.99 10979.30 4079.12 9591.36 63
jason: jason.
train_agg76.91 4676.40 4878.45 6785.68 5655.42 5487.59 6584.00 14357.84 21872.99 6390.98 6544.99 11088.58 15278.19 5185.32 4291.34 65
MVS76.91 4675.48 5981.23 1884.56 7855.21 6380.23 26091.64 458.65 20365.37 13891.48 6045.72 9995.05 1672.11 9389.52 993.44 9
DeepC-MVS67.15 476.90 4876.27 5078.80 5480.70 17755.02 7086.39 9286.71 7666.96 5467.91 11189.97 9248.03 7291.41 6775.60 6784.14 5289.96 101
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
baseline76.86 4976.24 5178.71 5780.47 18354.20 9483.90 16984.88 12171.38 1871.51 8389.15 10850.51 5590.55 9475.71 6578.65 9991.39 61
CS-MVS76.77 5076.70 4576.99 10283.55 9748.75 22088.60 4785.18 11166.38 6272.47 7391.62 5645.53 10190.99 8174.48 7782.51 6091.23 67
PAPM76.76 5176.07 5378.81 5380.20 18659.11 686.86 8686.23 8568.60 3470.18 10088.84 11351.57 4687.16 20565.48 13086.68 2890.15 95
MAR-MVS76.76 5175.60 5780.21 2890.87 754.68 8289.14 4189.11 2662.95 12070.54 9892.33 3941.05 16394.95 1757.90 19786.55 3191.00 74
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PVSNet_Blended76.53 5376.54 4676.50 11385.91 5351.83 14888.89 4484.24 13967.82 4469.09 10389.33 10546.70 8788.13 17175.43 6881.48 7189.55 109
ACMMP_NAP76.43 5475.66 5678.73 5681.92 14054.67 8384.06 16585.35 10261.10 15272.99 6391.50 5940.25 17191.00 7976.84 6086.98 2390.51 84
MVS_111021_HR76.39 5575.38 6279.42 4085.33 6656.47 3688.15 5284.97 11865.15 8566.06 12989.88 9343.79 12792.16 5275.03 7380.03 8789.64 107
CHOSEN 1792x268876.24 5674.03 8082.88 183.09 11262.84 285.73 10985.39 10069.79 2764.87 14583.49 19441.52 16193.69 2870.55 9881.82 6792.12 37
SD-MVS76.18 5774.85 7080.18 3085.39 6456.90 2685.75 10782.45 17356.79 24174.48 4991.81 5043.72 13090.75 8874.61 7678.65 9992.91 19
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
APD-MVScopyleft76.15 5875.68 5577.54 8588.52 2753.44 10987.26 7685.03 11753.79 27474.91 4491.68 5443.80 12690.31 10074.36 7881.82 6788.87 126
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
VDD-MVS76.08 5974.97 6879.44 3984.27 8553.33 11591.13 1985.88 9065.33 8272.37 7489.34 10332.52 26592.76 3877.90 5575.96 12292.22 36
CDPH-MVS76.05 6075.19 6478.62 6186.51 4854.98 7287.32 7184.59 13058.62 20470.75 9390.85 7043.10 14190.63 9270.50 9984.51 5190.24 90
fmvsm_l_conf0.5_n75.95 6176.16 5275.31 14676.01 25948.44 23184.98 13571.08 32963.50 11081.70 1693.52 1550.00 5987.18 20487.80 576.87 11290.32 88
EIA-MVS75.92 6275.18 6578.13 7485.14 6951.60 15387.17 7885.32 10464.69 8868.56 10790.53 7545.79 9891.58 6367.21 11782.18 6491.20 68
fmvsm_l_conf0.5_n_a75.88 6376.07 5375.31 14676.08 25548.34 23485.24 12370.62 33363.13 11881.45 1793.62 1449.98 6187.40 20087.76 676.77 11390.20 93
test_yl75.85 6474.83 7178.91 5088.08 3751.94 14491.30 1689.28 2357.91 21571.19 8889.20 10642.03 15392.77 3669.41 10375.07 13692.01 42
DCV-MVSNet75.85 6474.83 7178.91 5088.08 3751.94 14491.30 1689.28 2357.91 21571.19 8889.20 10642.03 15392.77 3669.41 10375.07 13692.01 42
MVS_Test75.85 6474.93 6978.62 6184.08 8755.20 6483.99 16785.17 11268.07 4073.38 5982.76 20450.44 5689.00 13665.90 12680.61 7691.64 51
ZNCC-MVS75.82 6775.02 6778.23 7283.88 9353.80 9886.91 8586.05 8859.71 17567.85 11290.55 7442.23 14891.02 7872.66 9185.29 4389.87 104
ETVMVS75.80 6875.44 6076.89 10686.23 5050.38 17885.55 11691.42 771.30 1968.80 10587.94 13556.42 1989.24 12656.54 21074.75 14091.07 72
CLD-MVS75.60 6975.39 6176.24 11780.69 17852.40 13690.69 2386.20 8674.40 665.01 14388.93 11042.05 15290.58 9376.57 6173.96 14485.73 193
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
test_fmvsm_n_192075.56 7075.54 5875.61 13474.60 27849.51 20181.82 22674.08 30466.52 6080.40 2193.46 1746.95 8389.72 11686.69 775.30 12987.61 155
MP-MVS-pluss75.54 7175.03 6677.04 9881.37 16252.65 13284.34 15684.46 13261.16 15069.14 10291.76 5139.98 17888.99 13878.19 5184.89 4789.48 112
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
EC-MVSNet75.30 7275.20 6375.62 13380.98 16749.00 21287.43 6884.68 12863.49 11170.97 9190.15 8842.86 14391.14 7674.33 7981.90 6686.71 174
Effi-MVS+75.24 7373.61 8280.16 3181.92 14057.42 1985.21 12476.71 28160.68 16373.32 6089.34 10347.30 7991.63 6268.28 11179.72 9191.42 60
ET-MVSNet_ETH3D75.23 7474.08 7878.67 5984.52 7955.59 5088.92 4389.21 2568.06 4153.13 29390.22 8449.71 6487.62 19472.12 9270.82 17292.82 21
PAPR75.20 7574.13 7678.41 6888.31 3255.10 6884.31 15785.66 9463.76 10367.55 11390.73 7243.48 13589.40 12366.36 12377.03 10990.73 79
baseline275.15 7674.54 7476.98 10381.67 15051.74 15083.84 17191.94 369.97 2658.98 22086.02 16159.73 891.73 6168.37 11070.40 17887.48 157
diffmvspermissive75.11 7774.65 7376.46 11478.52 21853.35 11383.28 19179.94 21570.51 2371.64 8188.72 11446.02 9586.08 23977.52 5675.75 12689.96 101
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MP-MVScopyleft74.99 7874.33 7576.95 10482.89 12153.05 12485.63 11283.50 15457.86 21767.25 11590.24 8243.38 13688.85 14676.03 6282.23 6388.96 123
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
GST-MVS74.87 7973.90 8177.77 8083.30 10553.45 10885.75 10785.29 10659.22 18866.50 12489.85 9440.94 16490.76 8770.94 9783.35 5689.10 121
fmvsm_s_conf0.5_n74.48 8074.12 7775.56 13676.96 24447.85 25185.32 12169.80 34064.16 9478.74 2893.48 1645.51 10389.29 12586.48 866.62 20589.55 109
3Dnovator64.70 674.46 8172.48 9480.41 2682.84 12355.40 5783.08 19688.61 4567.61 4859.85 20388.66 11634.57 24693.97 2458.42 18788.70 1191.85 48
test_fmvsmconf_n74.41 8274.05 7975.49 14074.16 28448.38 23282.66 20472.57 31767.05 5375.11 4392.88 3146.35 9087.81 18083.93 1771.71 16390.28 89
HFP-MVS74.37 8373.13 8978.10 7584.30 8353.68 10185.58 11384.36 13456.82 23965.78 13490.56 7340.70 16990.90 8369.18 10680.88 7389.71 105
VDDNet74.37 8372.13 10581.09 1979.58 19456.52 3590.02 2686.70 7752.61 28471.23 8787.20 14731.75 27593.96 2574.30 8075.77 12592.79 23
MSLP-MVS++74.21 8572.25 10080.11 3481.45 16056.47 3686.32 9479.65 22358.19 20966.36 12592.29 4036.11 22790.66 9067.39 11582.49 6193.18 16
API-MVS74.17 8672.07 10780.49 2390.02 1158.55 887.30 7384.27 13657.51 22665.77 13587.77 13841.61 15995.97 1151.71 24582.63 5986.94 165
IB-MVS68.87 274.01 8772.03 11079.94 3683.04 11455.50 5290.24 2588.65 4167.14 5161.38 19181.74 22753.21 3694.28 2160.45 17262.41 24790.03 99
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
h-mvs3373.95 8872.89 9077.15 9680.17 18750.37 17984.68 14783.33 15568.08 3871.97 7788.65 11942.50 14491.15 7578.82 4457.78 28889.91 103
HY-MVS67.03 573.90 8973.14 8776.18 12284.70 7647.36 25875.56 29186.36 8366.27 6470.66 9683.91 18651.05 5089.31 12467.10 11872.61 15691.88 47
CostFormer73.89 9072.30 9978.66 6082.36 13456.58 3175.56 29185.30 10566.06 7070.50 9976.88 28057.02 1689.06 13268.27 11268.74 18990.33 87
fmvsm_s_conf0.1_n73.80 9173.26 8475.43 14173.28 29347.80 25284.57 15269.43 34263.34 11378.40 3193.29 2244.73 11989.22 12885.99 966.28 21289.26 114
ACMMPR73.76 9272.61 9177.24 9583.92 9152.96 12785.58 11384.29 13556.82 23965.12 13990.45 7737.24 21190.18 10569.18 10680.84 7488.58 134
region2R73.75 9372.55 9377.33 8983.90 9252.98 12685.54 11784.09 14156.83 23865.10 14090.45 7737.34 20990.24 10368.89 10880.83 7588.77 130
CANet_DTU73.71 9473.14 8775.40 14282.61 13050.05 18784.67 14979.36 23169.72 2875.39 4190.03 9129.41 28985.93 24567.99 11379.11 9690.22 91
test_fmvsmconf0.1_n73.69 9573.15 8575.34 14470.71 32148.26 23782.15 21671.83 32166.75 5674.47 5092.59 3644.89 11387.78 18583.59 1871.35 16789.97 100
fmvsm_s_conf0.5_n_a73.68 9673.15 8575.29 14975.45 26648.05 24483.88 17068.84 34563.43 11278.60 2993.37 2045.32 10488.92 14385.39 1164.04 22588.89 125
thisisatest051573.64 9772.20 10277.97 7781.63 15153.01 12586.69 8988.81 3762.53 12864.06 15885.65 16552.15 4492.50 4458.43 18569.84 18188.39 139
MVSFormer73.53 9872.19 10377.57 8483.02 11555.24 6181.63 23181.44 19050.28 29976.67 3890.91 6844.82 11686.11 23460.83 16480.09 8491.36 63
iter_conf0573.51 9972.24 10177.33 8987.93 3955.97 4687.90 6070.81 33268.72 3364.04 15984.36 18047.54 7790.87 8471.11 9667.75 19785.13 203
PVSNet_BlendedMVS73.42 10073.30 8373.76 18785.91 5351.83 14886.18 9784.24 13965.40 7969.09 10380.86 23646.70 8788.13 17175.43 6865.92 21481.33 270
PVSNet_Blended_VisFu73.40 10172.44 9576.30 11581.32 16454.70 8085.81 10378.82 24163.70 10464.53 15185.38 16947.11 8287.38 20167.75 11477.55 10686.81 173
MVSTER73.25 10272.33 9776.01 12785.54 6153.76 10083.52 17687.16 6867.06 5263.88 16481.66 22852.77 3890.44 9564.66 14064.69 22183.84 228
EI-MVSNet-Vis-set73.19 10372.60 9274.99 15882.56 13149.80 19482.55 20989.00 2866.17 6665.89 13288.98 10943.83 12592.29 4965.38 13769.01 18782.87 246
PMMVS72.98 10472.05 10875.78 13183.57 9648.60 22384.08 16382.85 16861.62 14268.24 10990.33 8128.35 29387.78 18572.71 9076.69 11490.95 75
XVS72.92 10571.62 11276.81 10783.41 10052.48 13384.88 14083.20 16158.03 21163.91 16289.63 9835.50 23489.78 11365.50 12880.50 7888.16 140
test250672.91 10672.43 9674.32 17080.12 18844.18 30283.19 19384.77 12564.02 9665.97 13087.43 14447.67 7688.72 14759.08 17879.66 9290.08 97
TESTMET0.1,172.86 10772.33 9774.46 16481.98 13950.77 16685.13 12785.47 9666.09 6867.30 11483.69 19137.27 21083.57 27565.06 13978.97 9889.05 122
fmvsm_s_conf0.1_n_a72.82 10872.05 10875.12 15470.95 32047.97 24782.72 20368.43 34762.52 12978.17 3293.08 2844.21 12288.86 14484.82 1363.54 23188.54 136
Fast-Effi-MVS+72.73 10971.15 12177.48 8682.75 12554.76 7686.77 8880.64 20363.05 11965.93 13184.01 18444.42 12189.03 13456.45 21476.36 11988.64 132
MTAPA72.73 10971.22 11977.27 9381.54 15753.57 10367.06 34381.31 19259.41 18268.39 10890.96 6736.07 22989.01 13573.80 8482.45 6289.23 116
PGM-MVS72.60 11171.20 12076.80 11082.95 11852.82 12983.07 19782.14 17556.51 24763.18 17189.81 9535.68 23389.76 11567.30 11680.19 8387.83 149
HPM-MVScopyleft72.60 11171.50 11475.89 12982.02 13851.42 15880.70 25383.05 16356.12 25164.03 16089.53 9937.55 20388.37 16070.48 10080.04 8687.88 148
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CP-MVS72.59 11371.46 11576.00 12882.93 12052.32 13986.93 8482.48 17255.15 26163.65 16690.44 8035.03 24288.53 15668.69 10977.83 10587.15 163
baseline172.51 11472.12 10673.69 19085.05 7044.46 29583.51 18086.13 8771.61 1564.64 14787.97 13455.00 2889.48 12159.07 17956.05 30187.13 164
EI-MVSNet-UG-set72.37 11571.73 11174.29 17181.60 15349.29 20681.85 22488.64 4265.29 8465.05 14188.29 12643.18 13791.83 5963.74 14367.97 19481.75 257
MS-PatchMatch72.34 11671.26 11875.61 13482.38 13355.55 5188.00 5489.95 1965.38 8056.51 26580.74 23832.28 26892.89 3357.95 19688.10 1478.39 306
HQP-MVS72.34 11671.44 11675.03 15679.02 20551.56 15488.00 5483.68 14965.45 7664.48 15285.13 17037.35 20788.62 15066.70 11973.12 15084.91 207
mvs_anonymous72.29 11870.74 12476.94 10582.85 12254.72 7978.43 27781.54 18863.77 10261.69 18879.32 24851.11 4985.31 25262.15 15575.79 12490.79 78
3Dnovator+62.71 772.29 11870.50 12877.65 8383.40 10351.29 16287.32 7186.40 8259.01 19658.49 23388.32 12532.40 26691.27 6957.04 20682.15 6590.38 86
nrg03072.27 12071.56 11374.42 16675.93 26050.60 17086.97 8283.21 16062.75 12367.15 11684.38 17850.07 5886.66 22071.19 9462.37 24885.99 187
UWE-MVS72.17 12172.15 10472.21 22082.26 13644.29 29986.83 8789.58 2165.58 7565.82 13385.06 17245.02 10984.35 26754.07 22775.18 13187.99 147
VPNet72.07 12271.42 11774.04 17778.64 21647.17 26389.91 3187.97 5572.56 1064.66 14685.04 17341.83 15788.33 16461.17 16260.97 25486.62 175
DP-MVS Recon71.99 12370.31 13377.01 10090.65 853.44 10989.37 3782.97 16656.33 24963.56 16989.47 10034.02 25192.15 5454.05 22872.41 15785.43 200
test_fmvsmconf0.01_n71.97 12470.95 12375.04 15566.21 34747.87 25080.35 25770.08 33765.85 7472.69 6891.68 5439.99 17787.67 18982.03 2769.66 18389.58 108
SDMVSNet71.89 12570.62 12775.70 13281.70 14751.61 15273.89 30388.72 4066.58 5761.64 18982.38 21737.63 20089.48 12177.44 5765.60 21586.01 185
QAPM71.88 12669.33 15079.52 3882.20 13754.30 9086.30 9588.77 3856.61 24559.72 20587.48 14233.90 25395.36 1347.48 27381.49 7088.90 124
ECVR-MVScopyleft71.81 12771.00 12274.26 17280.12 18843.49 30784.69 14682.16 17464.02 9664.64 14787.43 14435.04 24189.21 12961.24 16179.66 9290.08 97
PAPM_NR71.80 12869.98 14077.26 9481.54 15753.34 11478.60 27685.25 10953.46 27760.53 19988.66 11645.69 10089.24 12656.49 21179.62 9489.19 118
mPP-MVS71.79 12970.38 13176.04 12682.65 12952.06 14184.45 15381.78 18555.59 25662.05 18689.68 9733.48 25788.28 16865.45 13378.24 10487.77 151
xiu_mvs_v1_base_debu71.60 13070.29 13475.55 13777.26 23853.15 11985.34 11879.37 22855.83 25372.54 6990.19 8522.38 33686.66 22073.28 8776.39 11686.85 169
xiu_mvs_v1_base71.60 13070.29 13475.55 13777.26 23853.15 11985.34 11879.37 22855.83 25372.54 6990.19 8522.38 33686.66 22073.28 8776.39 11686.85 169
xiu_mvs_v1_base_debi71.60 13070.29 13475.55 13777.26 23853.15 11985.34 11879.37 22855.83 25372.54 6990.19 8522.38 33686.66 22073.28 8776.39 11686.85 169
iter_conf_final71.46 13369.68 14476.81 10786.03 5153.49 10484.73 14474.37 30160.27 16866.28 12684.36 18035.14 23990.87 8465.41 13570.51 17686.05 184
hse-mvs271.44 13470.68 12573.73 18976.34 24947.44 25779.45 26979.47 22768.08 3871.97 7786.01 16342.50 14486.93 21378.82 4453.46 32586.83 172
test_fmvsmvis_n_192071.29 13570.38 13174.00 17971.04 31948.79 21979.19 27264.62 35562.75 12366.73 11791.99 4740.94 16488.35 16283.00 2073.18 14984.85 209
EPP-MVSNet71.14 13670.07 13974.33 16979.18 20246.52 26983.81 17286.49 7956.32 25057.95 23984.90 17654.23 3289.14 13158.14 19269.65 18487.33 160
VPA-MVSNet71.12 13770.66 12672.49 21478.75 21144.43 29787.64 6390.02 1763.97 9965.02 14281.58 23042.14 15087.42 19963.42 14563.38 23685.63 197
131471.11 13869.41 14776.22 11879.32 19850.49 17380.23 26085.14 11559.44 18158.93 22288.89 11233.83 25589.60 12061.49 15977.42 10888.57 135
test111171.06 13970.42 13072.97 20379.48 19541.49 32884.82 14382.74 16964.20 9362.98 17487.43 14435.20 23787.92 17758.54 18478.42 10289.49 111
tpmrst71.04 14069.77 14274.86 15983.19 10955.86 4975.64 29078.73 24567.88 4264.99 14473.73 30949.96 6279.56 31265.92 12567.85 19689.14 120
MVP-Stereo70.97 14170.44 12972.59 21176.03 25851.36 15985.02 13486.99 7160.31 16756.53 26478.92 25440.11 17590.00 10860.00 17690.01 676.41 328
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
HQP_MVS70.96 14269.91 14174.12 17577.95 22649.57 19685.76 10582.59 17063.60 10762.15 18483.28 19836.04 23088.30 16665.46 13172.34 15884.49 211
SR-MVS70.92 14369.73 14374.50 16383.38 10450.48 17484.27 15879.35 23248.96 30966.57 12390.45 7733.65 25687.11 20666.42 12174.56 14185.91 190
tpm270.82 14468.44 15977.98 7680.78 17556.11 4274.21 30281.28 19460.24 16968.04 11075.27 29852.26 4388.50 15755.82 21868.03 19389.33 113
ACMMPcopyleft70.81 14569.29 15175.39 14381.52 15951.92 14683.43 18383.03 16456.67 24458.80 22788.91 11131.92 27388.58 15265.89 12773.39 14885.67 194
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
OPM-MVS70.75 14669.58 14574.26 17275.55 26551.34 16086.05 10083.29 15961.94 13862.95 17585.77 16434.15 25088.44 15865.44 13471.07 16982.99 243
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ab-mvs70.65 14769.11 15375.29 14980.87 17346.23 27773.48 30785.24 11059.99 17166.65 11980.94 23543.13 14088.69 14863.58 14468.07 19290.95 75
Vis-MVSNetpermissive70.61 14869.34 14974.42 16680.95 17248.49 22886.03 10177.51 26658.74 20265.55 13787.78 13734.37 24885.95 24452.53 24380.61 7688.80 128
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
sss70.49 14970.13 13871.58 24081.59 15439.02 33980.78 25284.71 12759.34 18466.61 12188.09 12937.17 21285.52 24861.82 15871.02 17090.20 93
CDS-MVSNet70.48 15069.43 14673.64 19177.56 23348.83 21883.51 18077.45 26763.27 11562.33 18185.54 16843.85 12483.29 27957.38 20574.00 14388.79 129
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
thisisatest053070.47 15168.56 15776.20 12079.78 19251.52 15683.49 18288.58 4757.62 22458.60 22982.79 20351.03 5191.48 6552.84 23762.36 24985.59 198
XXY-MVS70.18 15269.28 15272.89 20677.64 23042.88 31585.06 13187.50 6662.58 12762.66 17982.34 22043.64 13289.83 11258.42 18763.70 23085.96 189
Anonymous20240521170.11 15367.88 16976.79 11187.20 4347.24 26289.49 3577.38 26954.88 26666.14 12786.84 15220.93 34691.54 6456.45 21471.62 16491.59 53
PCF-MVS61.03 1070.10 15468.40 16075.22 15377.15 24251.99 14379.30 27182.12 17656.47 24861.88 18786.48 15943.98 12387.24 20355.37 21972.79 15586.43 179
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
BH-RMVSNet70.08 15568.01 16676.27 11684.21 8651.22 16487.29 7479.33 23458.96 19863.63 16786.77 15333.29 25990.30 10244.63 29073.96 14487.30 162
1112_ss70.05 15669.37 14872.10 22280.77 17642.78 31685.12 13076.75 27959.69 17661.19 19392.12 4247.48 7883.84 27053.04 23568.21 19189.66 106
BH-w/o70.02 15768.51 15874.56 16282.77 12450.39 17786.60 9178.14 25659.77 17459.65 20685.57 16739.27 18387.30 20249.86 25674.94 13985.99 187
FIs70.00 15870.24 13769.30 27277.93 22838.55 34283.99 16787.72 6266.86 5557.66 24684.17 18352.28 4285.31 25252.72 24268.80 18884.02 219
OpenMVScopyleft61.00 1169.99 15967.55 17877.30 9178.37 22254.07 9684.36 15585.76 9357.22 23256.71 26187.67 14030.79 28192.83 3543.04 29784.06 5485.01 205
GeoE69.96 16067.88 16976.22 11881.11 16651.71 15184.15 16176.74 28059.83 17360.91 19484.38 17841.56 16088.10 17351.67 24670.57 17588.84 127
HyFIR lowres test69.94 16167.58 17677.04 9877.11 24357.29 2081.49 23979.11 23758.27 20858.86 22580.41 23942.33 14686.96 21161.91 15668.68 19086.87 167
114514_t69.87 16267.88 16975.85 13088.38 2952.35 13886.94 8383.68 14953.70 27555.68 27185.60 16630.07 28691.20 7355.84 21771.02 17083.99 221
miper_enhance_ethall69.77 16368.90 15572.38 21778.93 20849.91 19083.29 19078.85 23964.90 8659.37 21379.46 24652.77 3885.16 25763.78 14258.72 27082.08 252
Anonymous2024052969.71 16467.28 18377.00 10183.78 9450.36 18088.87 4585.10 11647.22 31764.03 16083.37 19627.93 29792.10 5557.78 20067.44 19988.53 137
TR-MVS69.71 16467.85 17275.27 15182.94 11948.48 22987.40 7080.86 20057.15 23464.61 14987.08 14932.67 26489.64 11946.38 28171.55 16687.68 154
EI-MVSNet69.70 16668.70 15672.68 20975.00 27248.90 21679.54 26687.16 6861.05 15363.88 16483.74 18945.87 9690.44 9557.42 20464.68 22278.70 299
test-LLR69.65 16769.01 15471.60 23878.67 21348.17 23985.13 12779.72 22059.18 19163.13 17282.58 21136.91 21680.24 30360.56 16875.17 13286.39 180
APD-MVS_3200maxsize69.62 16868.23 16473.80 18681.58 15548.22 23881.91 22279.50 22648.21 31264.24 15789.75 9631.91 27487.55 19663.08 14773.85 14685.64 196
v2v48269.55 16967.64 17575.26 15272.32 30653.83 9784.93 13981.94 17965.37 8160.80 19679.25 25041.62 15888.98 13963.03 14859.51 26382.98 244
TAMVS69.51 17068.16 16573.56 19476.30 25248.71 22282.57 20777.17 27262.10 13461.32 19284.23 18241.90 15583.46 27754.80 22373.09 15288.50 138
WB-MVSnew69.36 17168.24 16372.72 20879.26 20049.40 20385.72 11088.85 3561.33 14764.59 15082.38 21734.57 24687.53 19746.82 27970.63 17381.22 274
PVSNet62.49 869.27 17267.81 17373.64 19184.41 8151.85 14784.63 15077.80 26066.42 6159.80 20484.95 17522.14 34180.44 30155.03 22075.11 13588.62 133
MVS_111021_LR69.07 17367.91 16772.54 21277.27 23749.56 19879.77 26473.96 30759.33 18660.73 19787.82 13630.19 28581.53 28769.94 10172.19 16086.53 176
GA-MVS69.04 17466.70 19276.06 12575.11 26852.36 13783.12 19580.23 21063.32 11460.65 19879.22 25130.98 28088.37 16061.25 16066.41 20887.46 158
cascas69.01 17566.13 20477.66 8279.36 19655.41 5686.99 8183.75 14856.69 24358.92 22381.35 23224.31 32592.10 5553.23 23270.61 17485.46 199
FA-MVS(test-final)69.00 17666.60 19576.19 12183.48 9947.96 24974.73 29882.07 17757.27 23162.18 18378.47 25836.09 22892.89 3353.76 23171.32 16887.73 152
cl2268.85 17767.69 17472.35 21878.07 22549.98 18982.45 21278.48 25162.50 13058.46 23477.95 26049.99 6085.17 25662.55 15058.72 27081.90 255
FMVSNet368.84 17867.40 18173.19 19985.05 7048.53 22685.71 11185.36 10160.90 15957.58 24879.15 25242.16 14986.77 21647.25 27563.40 23384.27 215
UniMVSNet_NR-MVSNet68.82 17968.29 16270.40 25875.71 26342.59 31884.23 15986.78 7466.31 6358.51 23082.45 21451.57 4684.64 26553.11 23355.96 30283.96 225
v114468.81 18066.82 18874.80 16072.34 30553.46 10684.68 14781.77 18664.25 9260.28 20077.91 26140.23 17288.95 14060.37 17359.52 26281.97 253
IS-MVSNet68.80 18167.55 17872.54 21278.50 21943.43 30981.03 24579.35 23259.12 19457.27 25686.71 15446.05 9487.70 18844.32 29275.60 12786.49 177
PS-MVSNAJss68.78 18267.17 18573.62 19373.01 29648.33 23684.95 13884.81 12359.30 18758.91 22479.84 24437.77 19588.86 14462.83 14963.12 24283.67 231
thres20068.71 18367.27 18473.02 20184.73 7546.76 26685.03 13387.73 6162.34 13259.87 20283.45 19543.15 13888.32 16531.25 34567.91 19583.98 223
UGNet68.71 18367.11 18673.50 19580.55 18247.61 25484.08 16378.51 25059.45 18065.68 13682.73 20723.78 32785.08 25952.80 23876.40 11587.80 150
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
miper_ehance_all_eth68.70 18567.58 17672.08 22376.91 24549.48 20282.47 21178.45 25262.68 12558.28 23877.88 26250.90 5285.01 26061.91 15658.72 27081.75 257
test_vis1_n_192068.59 18668.31 16169.44 27169.16 33241.51 32784.63 15068.58 34658.80 20073.26 6188.37 12125.30 31680.60 29879.10 4167.55 19886.23 182
EPMVS68.45 18765.44 22377.47 8784.91 7356.17 4171.89 32381.91 18261.72 14160.85 19572.49 32336.21 22687.06 20847.32 27471.62 16489.17 119
test-mter68.36 18867.29 18271.60 23878.67 21348.17 23985.13 12779.72 22053.38 27863.13 17282.58 21127.23 30380.24 30360.56 16875.17 13286.39 180
tpm68.36 18867.48 18070.97 25079.93 19151.34 16076.58 28878.75 24467.73 4563.54 17074.86 30048.33 6972.36 35753.93 22963.71 22989.21 117
tttt051768.33 19066.29 20074.46 16478.08 22449.06 20880.88 25089.08 2754.40 27154.75 27980.77 23751.31 4890.33 9949.35 26058.01 28283.99 221
BH-untuned68.28 19166.40 19773.91 18181.62 15250.01 18885.56 11577.39 26857.63 22357.47 25383.69 19136.36 22587.08 20744.81 28873.08 15384.65 210
SR-MVS-dyc-post68.27 19266.87 18772.48 21580.96 16948.14 24181.54 23576.98 27546.42 32462.75 17789.42 10131.17 27986.09 23860.52 17072.06 16183.19 239
v14868.24 19366.35 19873.88 18271.76 30951.47 15784.23 15981.90 18363.69 10558.94 22176.44 28543.72 13087.78 18560.63 16655.86 30482.39 250
AUN-MVS68.20 19466.35 19873.76 18776.37 24847.45 25679.52 26879.52 22560.98 15562.34 18086.02 16136.59 22486.94 21262.32 15253.47 32486.89 166
c3_l67.97 19566.66 19371.91 23476.20 25449.31 20582.13 21878.00 25861.99 13657.64 24776.94 27749.41 6584.93 26160.62 16757.01 29281.49 261
v119267.96 19665.74 21574.63 16171.79 30853.43 11184.06 16580.99 19963.19 11759.56 20977.46 26837.50 20688.65 14958.20 19158.93 26981.79 256
v14419267.86 19765.76 21474.16 17471.68 31053.09 12284.14 16280.83 20162.85 12259.21 21877.28 27139.30 18288.00 17658.67 18357.88 28681.40 267
HPM-MVS_fast67.86 19766.28 20172.61 21080.67 17948.34 23481.18 24375.95 29050.81 29759.55 21088.05 13227.86 29885.98 24158.83 18173.58 14783.51 232
AdaColmapbinary67.86 19765.48 22075.00 15788.15 3654.99 7186.10 9976.63 28349.30 30657.80 24286.65 15629.39 29088.94 14245.10 28770.21 17981.06 275
sd_testset67.79 20065.95 20973.32 19681.70 14746.33 27468.99 33580.30 20966.58 5761.64 18982.38 21730.45 28387.63 19255.86 21665.60 21586.01 185
UniMVSNet (Re)67.71 20166.80 18970.45 25674.44 27942.93 31482.42 21384.90 12063.69 10559.63 20780.99 23447.18 8085.23 25551.17 25056.75 29383.19 239
V4267.66 20265.60 21973.86 18370.69 32353.63 10281.50 23778.61 24863.85 10159.49 21277.49 26737.98 19287.65 19062.33 15158.43 27380.29 285
dmvs_re67.61 20366.00 20772.42 21681.86 14243.45 30864.67 34880.00 21369.56 3060.07 20185.00 17434.71 24487.63 19251.48 24766.68 20386.17 183
WR-MVS67.58 20466.76 19070.04 26575.92 26145.06 29386.23 9685.28 10764.31 9158.50 23281.00 23344.80 11882.00 28649.21 26255.57 30783.06 242
tfpn200view967.57 20566.13 20471.89 23584.05 8845.07 29083.40 18587.71 6360.79 16057.79 24382.76 20443.53 13387.80 18228.80 35266.36 20982.78 248
FMVSNet267.57 20565.79 21372.90 20482.71 12647.97 24785.15 12684.93 11958.55 20556.71 26178.26 25936.72 22186.67 21946.15 28362.94 24484.07 218
FC-MVSNet-test67.49 20767.91 16766.21 30476.06 25633.06 36180.82 25187.18 6764.44 9054.81 27782.87 20150.40 5782.60 28148.05 27066.55 20782.98 244
v192192067.45 20865.23 22774.10 17671.51 31352.90 12883.75 17480.44 20662.48 13159.12 21977.13 27236.98 21487.90 17857.53 20258.14 28081.49 261
cl____67.43 20965.93 21071.95 23176.33 25048.02 24582.58 20679.12 23661.30 14956.72 26076.92 27846.12 9286.44 22757.98 19456.31 29681.38 269
DIV-MVS_self_test67.43 20965.93 21071.94 23276.33 25048.01 24682.57 20779.11 23761.31 14856.73 25976.92 27846.09 9386.43 22857.98 19456.31 29681.39 268
gg-mvs-nofinetune67.43 20964.53 23576.13 12385.95 5247.79 25364.38 34988.28 5139.34 35266.62 12041.27 38658.69 1389.00 13649.64 25886.62 2991.59 53
thres40067.40 21266.13 20471.19 24684.05 8845.07 29083.40 18587.71 6360.79 16057.79 24382.76 20443.53 13387.80 18228.80 35266.36 20980.71 280
UA-Net67.32 21366.23 20270.59 25478.85 20941.23 33173.60 30575.45 29461.54 14466.61 12184.53 17738.73 18886.57 22542.48 30274.24 14283.98 223
v867.25 21464.99 23074.04 17772.89 29953.31 11682.37 21480.11 21261.54 14454.29 28476.02 29442.89 14288.41 15958.43 18556.36 29480.39 284
NR-MVSNet67.25 21465.99 20871.04 24973.27 29443.91 30385.32 12184.75 12666.05 7153.65 29182.11 22345.05 10885.97 24347.55 27256.18 29983.24 237
Test_1112_low_res67.18 21666.23 20270.02 26678.75 21141.02 33283.43 18373.69 30957.29 23058.45 23582.39 21645.30 10580.88 29350.50 25266.26 21388.16 140
CPTT-MVS67.15 21765.84 21271.07 24880.96 16950.32 18281.94 22174.10 30346.18 32757.91 24087.64 14129.57 28881.31 28964.10 14170.18 18081.56 260
test_cas_vis1_n_192067.10 21866.60 19568.59 28465.17 35543.23 31183.23 19269.84 33955.34 26070.67 9587.71 13924.70 32376.66 33778.57 4864.20 22485.89 191
GBi-Net67.09 21965.47 22171.96 22882.71 12646.36 27183.52 17683.31 15658.55 20557.58 24876.23 28936.72 22186.20 23047.25 27563.40 23383.32 234
test167.09 21965.47 22171.96 22882.71 12646.36 27183.52 17683.31 15658.55 20557.58 24876.23 28936.72 22186.20 23047.25 27563.40 23383.32 234
PatchmatchNetpermissive67.07 22163.63 24177.40 8883.10 11058.03 972.11 32177.77 26158.85 19959.37 21370.83 33637.84 19484.93 26142.96 29869.83 18289.26 114
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
v124066.99 22264.68 23373.93 18071.38 31652.66 13183.39 18779.98 21461.97 13758.44 23677.11 27335.25 23687.81 18056.46 21358.15 27881.33 270
eth_miper_zixun_eth66.98 22365.28 22672.06 22475.61 26450.40 17681.00 24676.97 27862.00 13556.99 25876.97 27644.84 11585.58 24758.75 18254.42 31680.21 286
TranMVSNet+NR-MVSNet66.94 22465.61 21870.93 25173.45 29043.38 31083.02 19984.25 13765.31 8358.33 23781.90 22639.92 17985.52 24849.43 25954.89 31283.89 227
mvsmamba66.93 22564.88 23273.09 20075.06 27047.26 26083.36 18969.21 34362.64 12655.68 27181.43 23129.72 28789.20 13063.35 14663.50 23282.79 247
thres100view90066.87 22665.42 22471.24 24483.29 10643.15 31281.67 23087.78 5859.04 19555.92 26982.18 22243.73 12887.80 18228.80 35266.36 20982.78 248
DU-MVS66.84 22765.74 21570.16 26173.27 29442.59 31881.50 23782.92 16763.53 10958.51 23082.11 22340.75 16684.64 26553.11 23355.96 30283.24 237
IterMVS-LS66.63 22865.36 22570.42 25775.10 26948.90 21681.45 24076.69 28261.05 15355.71 27077.10 27445.86 9783.65 27457.44 20357.88 28678.70 299
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v1066.61 22964.20 23873.83 18572.59 30253.37 11281.88 22379.91 21761.11 15154.09 28675.60 29640.06 17688.26 16956.47 21256.10 30079.86 290
Fast-Effi-MVS+-dtu66.53 23064.10 23973.84 18472.41 30452.30 14084.73 14475.66 29159.51 17956.34 26679.11 25328.11 29585.85 24657.74 20163.29 23783.35 233
thres600view766.46 23165.12 22870.47 25583.41 10043.80 30582.15 21687.78 5859.37 18356.02 26882.21 22143.73 12886.90 21426.51 36464.94 21880.71 280
LPG-MVS_test66.44 23264.58 23472.02 22574.42 28048.60 22383.07 19780.64 20354.69 26853.75 28983.83 18725.73 31486.98 20960.33 17464.71 21980.48 282
tpm cat166.28 23362.78 24376.77 11281.40 16157.14 2270.03 33077.19 27153.00 28158.76 22870.73 33946.17 9186.73 21843.27 29664.46 22386.44 178
EPNet_dtu66.25 23466.71 19164.87 31478.66 21534.12 35682.80 20275.51 29261.75 14064.47 15586.90 15137.06 21372.46 35643.65 29569.63 18588.02 146
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Effi-MVS+-dtu66.24 23564.96 23170.08 26375.17 26749.64 19582.01 21974.48 30062.15 13357.83 24176.08 29330.59 28283.79 27165.40 13660.93 25576.81 321
ACMP61.11 966.24 23564.33 23672.00 22774.89 27449.12 20783.18 19479.83 21855.41 25952.29 29982.68 20825.83 31286.10 23660.89 16363.94 22880.78 278
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
Anonymous2023121166.08 23763.67 24073.31 19783.07 11348.75 22086.01 10284.67 12945.27 33156.54 26376.67 28328.06 29688.95 14052.78 23959.95 25782.23 251
OMC-MVS65.97 23865.06 22968.71 28172.97 29742.58 32078.61 27575.35 29554.72 26759.31 21586.25 16033.30 25877.88 32657.99 19367.05 20185.66 195
X-MVStestdata65.85 23962.20 24776.81 10783.41 10052.48 13384.88 14083.20 16158.03 21163.91 1624.82 40535.50 23489.78 11365.50 12880.50 7888.16 140
Vis-MVSNet (Re-imp)65.52 24065.63 21765.17 31277.49 23430.54 36875.49 29477.73 26259.34 18452.26 30186.69 15549.38 6680.53 30037.07 31675.28 13084.42 213
Baseline_NR-MVSNet65.49 24164.27 23769.13 27374.37 28241.65 32583.39 18778.85 23959.56 17859.62 20876.88 28040.75 16687.44 19849.99 25455.05 31078.28 308
FMVSNet164.57 24262.11 24871.96 22877.32 23646.36 27183.52 17683.31 15652.43 28654.42 28276.23 28927.80 29986.20 23042.59 30161.34 25383.32 234
dp64.41 24361.58 25172.90 20482.40 13254.09 9572.53 31376.59 28460.39 16655.68 27170.39 34035.18 23876.90 33539.34 30861.71 25187.73 152
ACMM58.35 1264.35 24462.01 24971.38 24274.21 28348.51 22782.25 21579.66 22247.61 31554.54 28180.11 24025.26 31786.00 24051.26 24863.16 24079.64 291
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
FE-MVS64.15 24560.43 26675.30 14880.85 17449.86 19268.28 33978.37 25350.26 30259.31 21573.79 30826.19 31091.92 5840.19 30566.67 20484.12 216
pm-mvs164.12 24662.56 24468.78 27971.68 31038.87 34082.89 20181.57 18755.54 25853.89 28877.82 26337.73 19886.74 21748.46 26853.49 32380.72 279
miper_lstm_enhance63.91 24762.30 24668.75 28075.06 27046.78 26569.02 33481.14 19559.68 17752.76 29672.39 32640.71 16877.99 32456.81 20953.09 32681.48 263
SCA63.84 24860.01 27075.32 14578.58 21757.92 1061.61 35977.53 26556.71 24257.75 24570.77 33731.97 27179.91 30948.80 26456.36 29488.13 143
test_djsdf63.84 24861.56 25270.70 25368.78 33444.69 29481.63 23181.44 19050.28 29952.27 30076.26 28826.72 30686.11 23460.83 16455.84 30581.29 273
IterMVS63.77 25061.67 25070.08 26372.68 30151.24 16380.44 25575.51 29260.51 16551.41 30473.70 31232.08 27078.91 31454.30 22554.35 31780.08 288
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
RRT_MVS63.68 25161.01 26071.70 23673.48 28945.98 27981.19 24276.08 28854.33 27252.84 29579.27 24922.21 33987.65 19054.13 22655.54 30881.46 264
myMVS_eth3d63.52 25263.56 24263.40 32181.73 14534.28 35480.97 24781.02 19760.93 15755.06 27582.64 20948.00 7480.81 29423.42 37458.32 27475.10 338
D2MVS63.49 25361.39 25469.77 26769.29 33148.93 21578.89 27477.71 26360.64 16449.70 31472.10 33127.08 30483.48 27654.48 22462.65 24576.90 320
tt080563.39 25461.31 25669.64 26869.36 33038.87 34078.00 27885.48 9548.82 31055.66 27481.66 22824.38 32486.37 22949.04 26359.36 26683.68 230
pmmvs463.34 25561.07 25970.16 26170.14 32550.53 17279.97 26371.41 32855.08 26254.12 28578.58 25632.79 26382.09 28550.33 25357.22 29177.86 312
jajsoiax63.21 25660.84 26170.32 25968.33 33944.45 29681.23 24181.05 19653.37 27950.96 30977.81 26417.49 36085.49 25059.31 17758.05 28181.02 276
MIMVSNet63.12 25760.29 26771.61 23775.92 26146.65 26765.15 34581.94 17959.14 19354.65 28069.47 34325.74 31380.63 29741.03 30469.56 18687.55 156
CL-MVSNet_self_test62.98 25861.14 25868.50 28665.86 35042.96 31384.37 15482.98 16560.98 15553.95 28772.70 32240.43 17083.71 27341.10 30347.93 34078.83 298
mvs_tets62.96 25960.55 26370.19 26068.22 34244.24 30180.90 24980.74 20252.99 28250.82 31177.56 26516.74 36485.44 25159.04 18057.94 28380.89 277
TransMVSNet (Re)62.82 26060.76 26269.02 27473.98 28641.61 32686.36 9379.30 23556.90 23652.53 29776.44 28541.85 15687.60 19538.83 30940.61 36477.86 312
pmmvs562.80 26161.18 25767.66 29169.53 32942.37 32382.65 20575.19 29654.30 27352.03 30278.51 25731.64 27680.67 29648.60 26658.15 27879.95 289
test0.0.03 162.54 26262.44 24562.86 32572.28 30729.51 37682.93 20078.78 24259.18 19153.07 29482.41 21536.91 21677.39 33037.45 31258.96 26881.66 259
UniMVSNet_ETH3D62.51 26360.49 26468.57 28568.30 34040.88 33473.89 30379.93 21651.81 29254.77 27879.61 24524.80 32181.10 29049.93 25561.35 25283.73 229
v7n62.50 26459.27 27572.20 22167.25 34549.83 19377.87 28080.12 21152.50 28548.80 31973.07 31732.10 26987.90 17846.83 27854.92 31178.86 297
CR-MVSNet62.47 26559.04 27772.77 20773.97 28756.57 3260.52 36271.72 32360.04 17057.49 25165.86 35338.94 18580.31 30242.86 29959.93 25881.42 265
tpmvs62.45 26659.42 27371.53 24183.93 9054.32 8970.03 33077.61 26451.91 28953.48 29268.29 34737.91 19386.66 22033.36 33558.27 27673.62 348
EG-PatchMatch MVS62.40 26759.59 27170.81 25273.29 29249.05 20985.81 10384.78 12451.85 29144.19 33973.48 31515.52 36989.85 11140.16 30667.24 20073.54 349
XVG-OURS-SEG-HR62.02 26859.54 27269.46 27065.30 35345.88 28065.06 34673.57 31146.45 32357.42 25483.35 19726.95 30578.09 32053.77 23064.03 22684.42 213
XVG-OURS61.88 26959.34 27469.49 26965.37 35246.27 27564.80 34773.49 31247.04 31957.41 25582.85 20225.15 31878.18 31853.00 23664.98 21784.01 220
TAPA-MVS56.12 1461.82 27060.18 26966.71 30078.48 22037.97 34575.19 29676.41 28646.82 32057.04 25786.52 15827.67 30177.03 33226.50 36567.02 20285.14 202
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
Syy-MVS61.51 27161.35 25562.00 32881.73 14530.09 37180.97 24781.02 19760.93 15755.06 27582.64 20935.09 24080.81 29416.40 38958.32 27475.10 338
tfpnnormal61.47 27259.09 27668.62 28376.29 25341.69 32481.14 24485.16 11354.48 27051.32 30573.63 31332.32 26786.89 21521.78 37855.71 30677.29 318
PVSNet_057.04 1361.19 27357.24 28673.02 20177.45 23550.31 18379.43 27077.36 27063.96 10047.51 32872.45 32525.03 31983.78 27252.76 24119.22 39584.96 206
PLCcopyleft52.38 1860.89 27458.97 27866.68 30281.77 14445.70 28478.96 27374.04 30643.66 34247.63 32583.19 20023.52 33077.78 32937.47 31160.46 25676.55 327
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
CVMVSNet60.85 27560.44 26562.07 32675.00 27232.73 36379.54 26673.49 31236.98 36056.28 26783.74 18929.28 29169.53 36546.48 28063.23 23883.94 226
CNLPA60.59 27658.44 28067.05 29779.21 20147.26 26079.75 26564.34 35742.46 34851.90 30383.94 18527.79 30075.41 34237.12 31459.49 26478.47 303
anonymousdsp60.46 27757.65 28368.88 27563.63 36345.09 28972.93 31178.63 24746.52 32251.12 30672.80 32121.46 34483.07 28057.79 19953.97 31878.47 303
testing359.97 27860.19 26859.32 34077.60 23130.01 37381.75 22881.79 18453.54 27650.34 31279.94 24148.99 6876.91 33317.19 38750.59 33371.03 363
ACMH53.70 1659.78 27955.94 29871.28 24376.59 24748.35 23380.15 26276.11 28749.74 30441.91 35073.45 31616.50 36690.31 10031.42 34357.63 28975.17 336
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
bld_raw_dy_0_6459.75 28057.01 29067.96 28966.73 34645.30 28777.59 28259.97 36550.49 29847.15 33077.03 27517.45 36179.06 31356.92 20859.76 26179.51 292
pmmvs659.64 28157.15 28767.09 29566.01 34836.86 34980.50 25478.64 24645.05 33349.05 31773.94 30727.28 30286.10 23643.96 29449.94 33578.31 307
MSDG59.44 28255.14 30272.32 21974.69 27550.71 16774.39 30173.58 31044.44 33743.40 34477.52 26619.45 35090.87 8431.31 34457.49 29075.38 334
RPMNet59.29 28354.25 30674.42 16673.97 28756.57 3260.52 36276.98 27535.72 36457.49 25158.87 37237.73 19885.26 25427.01 36359.93 25881.42 265
DP-MVS59.24 28456.12 29668.63 28288.24 3450.35 18182.51 21064.43 35641.10 35046.70 33378.77 25524.75 32288.57 15522.26 37656.29 29866.96 369
OpenMVS_ROBcopyleft53.19 1759.20 28556.00 29768.83 27771.13 31844.30 29883.64 17575.02 29746.42 32446.48 33573.03 31818.69 35488.14 17027.74 36061.80 25074.05 345
IterMVS-SCA-FT59.12 28658.81 27960.08 33870.68 32445.07 29080.42 25674.25 30243.54 34350.02 31373.73 30931.97 27156.74 38051.06 25153.60 32278.42 305
our_test_359.11 28755.08 30371.18 24771.42 31453.29 11781.96 22074.52 29948.32 31142.08 34869.28 34528.14 29482.15 28334.35 33245.68 35478.11 311
Anonymous2023120659.08 28857.59 28463.55 31968.77 33532.14 36680.26 25979.78 21950.00 30349.39 31572.39 32626.64 30778.36 31733.12 33857.94 28380.14 287
KD-MVS_2432*160059.04 28956.44 29366.86 29879.07 20345.87 28172.13 31980.42 20755.03 26348.15 32171.01 33436.73 21978.05 32235.21 32630.18 38376.67 322
miper_refine_blended59.04 28956.44 29366.86 29879.07 20345.87 28172.13 31980.42 20755.03 26348.15 32171.01 33436.73 21978.05 32235.21 32630.18 38376.67 322
WR-MVS_H58.91 29158.04 28261.54 33269.07 33333.83 35876.91 28581.99 17851.40 29448.17 32074.67 30140.23 17274.15 34531.78 34248.10 33876.64 325
LCM-MVSNet-Re58.82 29256.54 29165.68 30679.31 19929.09 37961.39 36145.79 37760.73 16237.65 36572.47 32431.42 27781.08 29149.66 25770.41 17786.87 167
Patchmatch-RL test58.72 29354.32 30571.92 23363.91 36244.25 30061.73 35855.19 36957.38 22949.31 31654.24 37737.60 20280.89 29262.19 15447.28 34590.63 80
FMVSNet558.61 29456.45 29265.10 31377.20 24139.74 33674.77 29777.12 27350.27 30143.28 34567.71 34826.15 31176.90 33536.78 31954.78 31378.65 301
ppachtmachnet_test58.56 29554.34 30471.24 24471.42 31454.74 7781.84 22572.27 31949.02 30845.86 33868.99 34626.27 30883.30 27830.12 34743.23 35975.69 331
ACMH+54.58 1558.55 29655.24 30068.50 28674.68 27645.80 28380.27 25870.21 33647.15 31842.77 34775.48 29716.73 36585.98 24135.10 33054.78 31373.72 347
CP-MVSNet58.54 29757.57 28561.46 33368.50 33733.96 35776.90 28678.60 24951.67 29347.83 32376.60 28434.99 24372.79 35435.45 32347.58 34277.64 316
PEN-MVS58.35 29857.15 28761.94 32967.55 34434.39 35377.01 28478.35 25451.87 29047.72 32476.73 28233.91 25273.75 34934.03 33347.17 34677.68 314
PS-CasMVS58.12 29957.03 28961.37 33468.24 34133.80 35976.73 28778.01 25751.20 29547.54 32776.20 29232.85 26172.76 35535.17 32847.37 34477.55 317
dmvs_testset57.65 30058.21 28155.97 35174.62 2779.82 40763.75 35063.34 35967.23 5048.89 31883.68 19339.12 18476.14 33823.43 37359.80 26081.96 254
UnsupCasMVSNet_eth57.56 30155.15 30164.79 31564.57 36033.12 36073.17 31083.87 14758.98 19741.75 35170.03 34122.54 33579.92 30746.12 28435.31 37281.32 272
CHOSEN 280x42057.53 30256.38 29560.97 33674.01 28548.10 24346.30 38054.31 37148.18 31350.88 31077.43 26938.37 19159.16 37854.83 22163.14 24175.66 332
DTE-MVSNet57.03 30355.73 29960.95 33765.94 34932.57 36475.71 28977.09 27451.16 29646.65 33476.34 28732.84 26273.22 35330.94 34644.87 35577.06 319
PatchMatch-RL56.66 30453.75 30965.37 31177.91 22945.28 28869.78 33260.38 36341.35 34947.57 32673.73 30916.83 36376.91 33336.99 31759.21 26773.92 346
PatchT56.60 30552.97 31267.48 29272.94 29846.16 27857.30 37073.78 30838.77 35454.37 28357.26 37537.52 20478.06 32132.02 34052.79 32778.23 310
Patchmtry56.56 30652.95 31367.42 29372.53 30350.59 17159.05 36671.72 32337.86 35846.92 33165.86 35338.94 18580.06 30636.94 31846.72 35071.60 359
test_040256.45 30753.03 31166.69 30176.78 24650.31 18381.76 22769.61 34142.79 34643.88 34072.13 32922.82 33486.46 22616.57 38850.94 33263.31 377
LS3D56.40 30853.82 30864.12 31681.12 16545.69 28573.42 30866.14 35135.30 36843.24 34679.88 24222.18 34079.62 31119.10 38464.00 22767.05 368
ADS-MVSNet56.17 30951.95 31968.84 27680.60 18053.07 12355.03 37370.02 33844.72 33451.00 30761.19 36522.83 33278.88 31528.54 35553.63 32074.57 342
XVG-ACMP-BASELINE56.03 31052.85 31465.58 30761.91 36840.95 33363.36 35172.43 31845.20 33246.02 33674.09 3059.20 38078.12 31945.13 28658.27 27677.66 315
pmmvs-eth3d55.97 31152.78 31565.54 30861.02 37046.44 27075.36 29567.72 34949.61 30543.65 34267.58 34921.63 34377.04 33144.11 29344.33 35673.15 353
F-COLMAP55.96 31253.65 31062.87 32472.76 30042.77 31774.70 30070.37 33540.03 35141.11 35579.36 24717.77 35973.70 35032.80 33953.96 31972.15 355
CMPMVSbinary40.41 2155.34 31352.64 31663.46 32060.88 37143.84 30461.58 36071.06 33030.43 37636.33 36774.63 30224.14 32675.44 34148.05 27066.62 20571.12 362
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test20.0355.22 31454.07 30758.68 34363.14 36525.00 38477.69 28174.78 29852.64 28343.43 34372.39 32626.21 30974.76 34429.31 35047.05 34876.28 329
ADS-MVSNet255.21 31551.44 32066.51 30380.60 18049.56 19855.03 37365.44 35244.72 33451.00 30761.19 36522.83 33275.41 34228.54 35553.63 32074.57 342
SixPastTwentyTwo54.37 31650.10 32567.21 29470.70 32241.46 32974.73 29864.69 35447.56 31639.12 36069.49 34218.49 35784.69 26431.87 34134.20 37875.48 333
USDC54.36 31751.23 32163.76 31864.29 36137.71 34662.84 35673.48 31456.85 23735.47 37071.94 3329.23 37978.43 31638.43 31048.57 33775.13 337
testgi54.25 31852.57 31759.29 34162.76 36621.65 39172.21 31870.47 33453.25 28041.94 34977.33 27014.28 37077.95 32529.18 35151.72 33178.28 308
K. test v354.04 31949.42 33067.92 29068.55 33642.57 32175.51 29363.07 36052.07 28739.21 35964.59 35719.34 35182.21 28237.11 31525.31 38878.97 296
UnsupCasMVSNet_bld53.86 32050.53 32463.84 31763.52 36434.75 35271.38 32481.92 18146.53 32138.95 36157.93 37320.55 34780.20 30539.91 30734.09 37976.57 326
YYNet153.82 32149.96 32665.41 31070.09 32748.95 21372.30 31671.66 32544.25 33931.89 37963.07 36123.73 32873.95 34733.26 33639.40 36673.34 350
MDA-MVSNet_test_wron53.82 32149.95 32765.43 30970.13 32649.05 20972.30 31671.65 32644.23 34031.85 38063.13 36023.68 32974.01 34633.25 33739.35 36773.23 352
test_fmvs153.60 32352.54 31856.78 34758.07 37330.26 36968.95 33642.19 38332.46 37163.59 16882.56 21311.55 37360.81 37258.25 19055.27 30979.28 293
Patchmatch-test53.33 32448.17 33368.81 27873.31 29142.38 32242.98 38358.23 36632.53 37038.79 36270.77 33739.66 18073.51 35125.18 36752.06 33090.55 81
LTVRE_ROB45.45 1952.73 32549.74 32861.69 33169.78 32834.99 35144.52 38167.60 35043.11 34543.79 34174.03 30618.54 35681.45 28828.39 35757.94 28368.62 366
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
EU-MVSNet52.63 32650.72 32358.37 34462.69 36728.13 38172.60 31275.97 28930.94 37540.76 35772.11 33020.16 34870.80 36135.11 32946.11 35276.19 330
test_fmvs1_n52.55 32751.19 32256.65 34851.90 38330.14 37067.66 34042.84 38232.27 37262.30 18282.02 2259.12 38160.84 37157.82 19854.75 31578.99 295
OurMVSNet-221017-052.39 32848.73 33163.35 32265.21 35438.42 34368.54 33864.95 35338.19 35539.57 35871.43 33313.23 37279.92 30737.16 31340.32 36571.72 358
JIA-IIPM52.33 32947.77 33666.03 30571.20 31746.92 26440.00 38876.48 28537.10 35946.73 33237.02 38832.96 26077.88 32635.97 32152.45 32973.29 351
Anonymous2024052151.65 33048.42 33261.34 33556.43 37739.65 33873.57 30673.47 31536.64 36236.59 36663.98 35810.75 37672.25 35835.35 32449.01 33672.11 356
MDA-MVSNet-bldmvs51.56 33147.75 33763.00 32371.60 31247.32 25969.70 33372.12 32043.81 34127.65 38763.38 35921.97 34275.96 33927.30 36232.19 38065.70 374
test_vis1_n51.19 33249.66 32955.76 35251.26 38429.85 37467.20 34238.86 38732.12 37359.50 21179.86 2438.78 38258.23 37956.95 20752.46 32879.19 294
COLMAP_ROBcopyleft43.60 2050.90 33348.05 33459.47 33967.81 34340.57 33571.25 32562.72 36236.49 36336.19 36873.51 31413.48 37173.92 34820.71 38050.26 33463.92 376
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
MIMVSNet150.35 33447.81 33557.96 34561.53 36927.80 38267.40 34174.06 30543.25 34433.31 37865.38 35616.03 36771.34 35921.80 37747.55 34374.75 340
KD-MVS_self_test49.24 33546.85 33856.44 34954.32 37822.87 38757.39 36973.36 31644.36 33837.98 36459.30 37118.97 35371.17 36033.48 33442.44 36075.26 335
MVS-HIRNet49.01 33644.71 34061.92 33076.06 25646.61 26863.23 35354.90 37024.77 38233.56 37536.60 39021.28 34575.88 34029.49 34962.54 24663.26 378
new-patchmatchnet48.21 33746.55 33953.18 35557.73 37518.19 39970.24 32871.02 33145.70 32833.70 37460.23 36718.00 35869.86 36427.97 35934.35 37671.49 361
TinyColmap48.15 33844.49 34259.13 34265.73 35138.04 34463.34 35262.86 36138.78 35329.48 38267.23 3516.46 39073.30 35224.59 36941.90 36266.04 372
AllTest47.32 33944.66 34155.32 35365.08 35637.50 34762.96 35554.25 37235.45 36633.42 37672.82 3199.98 37759.33 37524.13 37043.84 35769.13 364
PM-MVS46.92 34043.76 34556.41 35052.18 38232.26 36563.21 35438.18 38837.99 35740.78 35666.20 3525.09 39365.42 36848.19 26941.99 36171.54 360
test_fmvs245.89 34144.32 34350.62 35845.85 39224.70 38558.87 36837.84 39025.22 38152.46 29874.56 3037.07 38554.69 38149.28 26147.70 34172.48 354
RPSCF45.77 34244.13 34450.68 35757.67 37629.66 37554.92 37545.25 37926.69 38045.92 33775.92 29517.43 36245.70 39127.44 36145.95 35376.67 322
pmmvs345.53 34341.55 34757.44 34648.97 38839.68 33770.06 32957.66 36728.32 37834.06 37357.29 3748.50 38366.85 36734.86 33134.26 37765.80 373
mvsany_test143.38 34442.57 34645.82 36250.96 38526.10 38355.80 37127.74 40027.15 37947.41 32974.39 30418.67 35544.95 39244.66 28936.31 37066.40 371
N_pmnet41.25 34539.77 34845.66 36368.50 3370.82 41372.51 3140.38 41235.61 36535.26 37161.51 36420.07 34967.74 36623.51 37240.63 36368.42 367
TDRefinement40.91 34638.37 35048.55 36050.45 38633.03 36258.98 36750.97 37528.50 37729.89 38167.39 3506.21 39254.51 38217.67 38635.25 37358.11 379
test_vis1_rt40.29 34738.64 34945.25 36448.91 38930.09 37159.44 36527.07 40124.52 38338.48 36351.67 3826.71 38849.44 38644.33 29146.59 35156.23 380
DSMNet-mixed38.35 34835.36 35347.33 36148.11 39014.91 40337.87 38936.60 39119.18 38734.37 37259.56 37015.53 36853.01 38420.14 38246.89 34974.07 344
test_fmvs337.95 34935.75 35244.55 36535.50 39818.92 39548.32 37734.00 39518.36 38941.31 35461.58 3632.29 40048.06 39042.72 30037.71 36966.66 370
WB-MVS37.41 35036.37 35140.54 36954.23 37910.43 40665.29 34443.75 38034.86 36927.81 38654.63 37624.94 32063.21 3696.81 40115.00 39647.98 388
FPMVS35.40 35133.67 35540.57 36846.34 39128.74 38041.05 38557.05 36820.37 38622.27 39053.38 3796.87 38744.94 3938.62 39547.11 34748.01 387
SSC-MVS35.20 35234.30 35437.90 37152.58 3818.65 40961.86 35741.64 38431.81 37425.54 38852.94 38123.39 33159.28 3776.10 40212.86 39745.78 390
ANet_high34.39 35329.59 35948.78 35930.34 40222.28 38855.53 37263.79 35838.11 35615.47 39436.56 3916.94 38659.98 37413.93 3915.64 40564.08 375
EGC-MVSNET33.75 35430.42 35843.75 36664.94 35836.21 35060.47 36440.70 3860.02 4060.10 40753.79 3787.39 38460.26 37311.09 39435.23 37434.79 392
new_pmnet33.56 35531.89 35738.59 37049.01 38720.42 39251.01 37637.92 38920.58 38423.45 38946.79 3846.66 38949.28 38820.00 38331.57 38246.09 389
LF4IMVS33.04 35632.55 35634.52 37440.96 39322.03 38944.45 38235.62 39220.42 38528.12 38562.35 3625.03 39431.88 40421.61 37934.42 37549.63 386
LCM-MVSNet28.07 35723.85 36540.71 36727.46 40718.93 39430.82 39546.19 37612.76 39416.40 39234.70 3931.90 40348.69 38920.25 38124.22 38954.51 382
mvsany_test328.00 35825.98 36034.05 37528.97 40315.31 40134.54 39218.17 40616.24 39029.30 38353.37 3802.79 39833.38 40330.01 34820.41 39453.45 383
Gipumacopyleft27.47 35924.26 36437.12 37360.55 37229.17 37811.68 40060.00 36414.18 39210.52 40115.12 4022.20 40263.01 3708.39 39635.65 37119.18 398
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_f27.12 36024.85 36133.93 37626.17 40815.25 40230.24 39622.38 40512.53 39528.23 38449.43 3832.59 39934.34 40225.12 36826.99 38652.20 384
PMMVS226.71 36122.98 36637.87 37236.89 3968.51 41042.51 38429.32 39919.09 38813.01 39637.54 3872.23 40153.11 38314.54 39011.71 39851.99 385
APD_test126.46 36224.41 36332.62 37937.58 39521.74 39040.50 38730.39 39711.45 39616.33 39343.76 3851.63 40541.62 39411.24 39326.82 38734.51 393
PMVScopyleft19.57 2225.07 36322.43 36832.99 37823.12 40922.98 38640.98 38635.19 39315.99 39111.95 40035.87 3921.47 40649.29 3875.41 40431.90 38126.70 397
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test_vis3_rt24.79 36422.95 36730.31 38028.59 40418.92 39537.43 39017.27 40812.90 39321.28 39129.92 3971.02 40736.35 39728.28 35829.82 38535.65 391
test_method24.09 36521.07 36933.16 37727.67 4068.35 41126.63 39735.11 3943.40 40314.35 39536.98 3893.46 39735.31 39919.08 38522.95 39055.81 381
testf121.11 36619.08 37027.18 38230.56 40018.28 39733.43 39324.48 4028.02 40012.02 39833.50 3940.75 40935.09 4007.68 39721.32 39128.17 395
APD_test221.11 36619.08 37027.18 38230.56 40018.28 39733.43 39324.48 4028.02 40012.02 39833.50 3940.75 40935.09 4007.68 39721.32 39128.17 395
E-PMN19.16 36818.40 37221.44 38436.19 39713.63 40447.59 37830.89 39610.73 3975.91 40416.59 4003.66 39639.77 3955.95 4038.14 40010.92 400
EMVS18.42 36917.66 37320.71 38534.13 39912.64 40546.94 37929.94 39810.46 3995.58 40514.93 4034.23 39538.83 3965.24 4057.51 40210.67 401
cdsmvs_eth3d_5k18.33 37024.44 3620.00 3910.00 4130.00 4150.00 40289.40 220.00 4070.00 41092.02 4538.55 1890.00 4080.00 4090.00 4060.00 406
MVEpermissive16.60 2317.34 37113.39 37429.16 38128.43 40519.72 39313.73 39923.63 4047.23 4027.96 40221.41 3980.80 40836.08 3986.97 39910.39 39931.69 394
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
tmp_tt9.44 37210.68 3755.73 3882.49 4114.21 41210.48 40118.04 4070.34 40512.59 39720.49 39911.39 3747.03 40713.84 3926.46 4045.95 402
wuyk23d9.11 3738.77 37710.15 38740.18 39416.76 40020.28 3981.01 4112.58 4042.66 4060.98 4060.23 41112.49 4064.08 4066.90 4031.19 403
ab-mvs-re7.68 37410.24 3760.00 3910.00 4130.00 4150.00 4020.00 4130.00 4070.00 41092.12 420.00 4120.00 4080.00 4090.00 4060.00 406
testmvs6.14 3758.18 3780.01 3890.01 4120.00 41573.40 3090.00 4130.00 4070.02 4080.15 4070.00 4120.00 4080.02 4070.00 4060.02 404
test1236.01 3768.01 3790.01 3890.00 4130.01 41471.93 3220.00 4130.00 4070.02 4080.11 4080.00 4120.00 4080.02 4070.00 4060.02 404
pcd_1.5k_mvsjas3.15 3774.20 3800.00 3910.00 4130.00 4150.00 4020.00 4130.00 4070.00 4100.00 40937.77 1950.00 4080.00 4090.00 4060.00 406
test_blank0.00 3780.00 3810.00 3910.00 4130.00 4150.00 4020.00 4130.00 4070.00 4100.00 4090.00 4120.00 4080.00 4090.00 4060.00 406
uanet_test0.00 3780.00 3810.00 3910.00 4130.00 4150.00 4020.00 4130.00 4070.00 4100.00 4090.00 4120.00 4080.00 4090.00 4060.00 406
DCPMVS0.00 3780.00 3810.00 3910.00 4130.00 4150.00 4020.00 4130.00 4070.00 4100.00 4090.00 4120.00 4080.00 4090.00 4060.00 406
sosnet-low-res0.00 3780.00 3810.00 3910.00 4130.00 4150.00 4020.00 4130.00 4070.00 4100.00 4090.00 4120.00 4080.00 4090.00 4060.00 406
sosnet0.00 3780.00 3810.00 3910.00 4130.00 4150.00 4020.00 4130.00 4070.00 4100.00 4090.00 4120.00 4080.00 4090.00 4060.00 406
uncertanet0.00 3780.00 3810.00 3910.00 4130.00 4150.00 4020.00 4130.00 4070.00 4100.00 4090.00 4120.00 4080.00 4090.00 4060.00 406
Regformer0.00 3780.00 3810.00 3910.00 4130.00 4150.00 4020.00 4130.00 4070.00 4100.00 4090.00 4120.00 4080.00 4090.00 4060.00 406
uanet0.00 3780.00 3810.00 3910.00 4130.00 4150.00 4020.00 4130.00 4070.00 4100.00 4090.00 4120.00 4080.00 4090.00 4060.00 406
WAC-MVS34.28 35422.56 375
FOURS183.24 10749.90 19184.98 13578.76 24347.71 31473.42 58
MSC_two_6792asdad81.53 1491.77 456.03 4491.10 1096.22 881.46 3286.80 2692.34 32
PC_three_145266.58 5787.27 293.70 966.82 494.95 1789.74 391.98 493.98 5
No_MVS81.53 1491.77 456.03 4491.10 1096.22 881.46 3286.80 2692.34 32
test_one_060189.39 2257.29 2088.09 5357.21 23382.06 1293.39 1854.94 29
eth-test20.00 413
eth-test0.00 413
ZD-MVS89.55 1453.46 10684.38 13357.02 23573.97 5391.03 6344.57 12091.17 7475.41 7181.78 69
RE-MVS-def66.66 19380.96 16948.14 24181.54 23576.98 27546.42 32462.75 17789.42 10129.28 29160.52 17072.06 16183.19 239
IU-MVS89.48 1757.49 1591.38 966.22 6588.26 182.83 2187.60 1792.44 29
OPU-MVS81.71 1292.05 355.97 4692.48 394.01 567.21 295.10 1589.82 292.55 394.06 3
test_241102_TWO88.76 3957.50 22783.60 694.09 356.14 2196.37 682.28 2587.43 1992.55 27
test_241102_ONE89.48 1756.89 2788.94 3057.53 22584.61 493.29 2258.81 1196.45 1
9.1478.19 2685.67 5888.32 5088.84 3659.89 17274.58 4892.62 3546.80 8592.66 3981.40 3485.62 39
save fliter85.35 6556.34 3989.31 3981.46 18961.55 143
test_0728_THIRD58.00 21381.91 1393.64 1156.54 1796.44 281.64 3086.86 2492.23 34
test_0728_SECOND82.20 889.50 1557.73 1192.34 588.88 3296.39 481.68 2887.13 2092.47 28
test072689.40 2057.45 1792.32 788.63 4357.71 22183.14 993.96 655.17 25
GSMVS88.13 143
test_part289.33 2355.48 5382.27 11
sam_mvs138.86 18788.13 143
sam_mvs35.99 232
ambc62.06 32753.98 38029.38 37735.08 39179.65 22341.37 35259.96 3686.27 39182.15 28335.34 32538.22 36874.65 341
MTGPAbinary81.31 192
test_post170.84 32714.72 40434.33 24983.86 26948.80 264
test_post16.22 40137.52 20484.72 263
patchmatchnet-post59.74 36938.41 19079.91 309
GG-mvs-BLEND77.77 8086.68 4750.61 16968.67 33788.45 4968.73 10687.45 14359.15 1090.67 8954.83 22187.67 1692.03 41
MTMP87.27 7515.34 409
gm-plane-assit83.24 10754.21 9270.91 2088.23 12795.25 1466.37 122
test9_res78.72 4785.44 4191.39 61
TEST985.68 5655.42 5487.59 6584.00 14357.72 22072.99 6390.98 6544.87 11488.58 152
test_885.72 5555.31 5987.60 6483.88 14657.84 21872.84 6790.99 6444.99 11088.34 163
agg_prior275.65 6685.11 4591.01 73
agg_prior85.64 5954.92 7383.61 15372.53 7288.10 173
TestCases55.32 35365.08 35637.50 34754.25 37235.45 36633.42 37672.82 3199.98 37759.33 37524.13 37043.84 35769.13 364
test_prior456.39 3887.15 79
test_prior289.04 4261.88 13973.55 5691.46 6148.01 7374.73 7585.46 40
test_prior78.39 6986.35 4954.91 7485.45 9889.70 11790.55 81
旧先验281.73 22945.53 33074.66 4570.48 36358.31 189
新几何281.61 233
新几何173.30 19883.10 11053.48 10571.43 32745.55 32966.14 12787.17 14833.88 25480.54 29948.50 26780.33 8285.88 192
旧先验181.57 15647.48 25571.83 32188.66 11636.94 21578.34 10388.67 131
无先验85.19 12578.00 25849.08 30785.13 25852.78 23987.45 159
原ACMM283.77 173
原ACMM176.13 12384.89 7454.59 8585.26 10851.98 28866.70 11887.07 15040.15 17489.70 11751.23 24985.06 4684.10 217
test22279.36 19650.97 16577.99 27967.84 34842.54 34762.84 17686.53 15730.26 28476.91 11185.23 201
testdata277.81 32845.64 285
segment_acmp44.97 112
testdata67.08 29677.59 23245.46 28669.20 34444.47 33671.50 8488.34 12431.21 27870.76 36252.20 24475.88 12385.03 204
testdata177.55 28364.14 95
test1279.24 4286.89 4556.08 4385.16 11372.27 7647.15 8191.10 7785.93 3590.54 83
plane_prior777.95 22648.46 230
plane_prior678.42 22149.39 20436.04 230
plane_prior582.59 17088.30 16665.46 13172.34 15884.49 211
plane_prior483.28 198
plane_prior348.95 21364.01 9862.15 184
plane_prior285.76 10563.60 107
plane_prior178.31 223
plane_prior49.57 19687.43 6864.57 8972.84 154
n20.00 413
nn0.00 413
door-mid41.31 385
lessismore_v067.98 28864.76 35941.25 33045.75 37836.03 36965.63 35519.29 35284.11 26835.67 32221.24 39378.59 302
LGP-MVS_train72.02 22574.42 28048.60 22380.64 20354.69 26853.75 28983.83 18725.73 31486.98 20960.33 17464.71 21980.48 282
test1184.25 137
door43.27 381
HQP5-MVS51.56 154
HQP-NCC79.02 20588.00 5465.45 7664.48 152
ACMP_Plane79.02 20588.00 5465.45 7664.48 152
BP-MVS66.70 119
HQP4-MVS64.47 15588.61 15184.91 207
HQP3-MVS83.68 14973.12 150
HQP2-MVS37.35 207
NP-MVS78.76 21050.43 17585.12 171
MDTV_nov1_ep13_2view43.62 30671.13 32654.95 26559.29 21736.76 21846.33 28287.32 161
MDTV_nov1_ep1361.56 25281.68 14955.12 6672.41 31578.18 25559.19 18958.85 22669.29 34434.69 24586.16 23336.76 32062.96 243
ACMMP++_ref63.20 239
ACMMP++59.38 265
Test By Simon39.38 181
ITE_SJBPF51.84 35658.03 37431.94 36753.57 37436.67 36141.32 35375.23 29911.17 37551.57 38525.81 36648.04 33972.02 357
DeepMVS_CXcopyleft13.10 38621.34 4108.99 40810.02 41010.59 3987.53 40330.55 3961.82 40414.55 4056.83 4007.52 40115.75 399