This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
MCST-MVS83.01 183.30 282.15 1092.84 257.58 1693.77 191.10 1075.95 377.10 3893.09 2754.15 3695.57 1285.80 1085.87 3893.31 11
MM82.69 283.29 380.89 2184.38 8255.40 5892.16 989.85 2075.28 482.41 1093.86 854.30 3393.98 2490.29 187.13 2193.30 12
DVP-MVS++82.44 382.38 582.62 491.77 457.49 1784.98 13688.88 3258.00 21483.60 693.39 1867.21 296.39 481.64 3091.98 493.98 5
DPM-MVS82.39 482.36 682.49 580.12 19159.50 592.24 890.72 1469.37 3183.22 894.47 263.81 593.18 3374.02 8493.25 294.80 1
DELS-MVS82.32 582.50 481.79 1186.80 4656.89 2992.77 286.30 8577.83 177.88 3492.13 4160.24 694.78 1978.97 4489.61 793.69 8
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MSP-MVS82.30 683.47 178.80 5782.99 11852.71 13285.04 13388.63 4366.08 7086.77 392.75 3272.05 191.46 7083.35 1993.53 192.23 36
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SED-MVS81.92 781.75 982.44 789.48 1756.89 2992.48 388.94 3057.50 22884.61 494.09 358.81 1196.37 682.28 2587.60 1894.06 3
CNVR-MVS81.76 881.90 881.33 1890.04 1057.70 1491.71 1088.87 3470.31 2477.64 3793.87 752.58 4493.91 2784.17 1487.92 1692.39 32
MVS_030481.58 982.05 780.20 3082.36 13654.70 8291.13 1988.95 2974.49 580.04 2493.64 1152.40 4593.27 3288.85 486.56 3292.61 28
DVP-MVScopyleft81.30 1081.00 1382.20 889.40 2057.45 1992.34 589.99 1857.71 22281.91 1393.64 1155.17 2696.44 281.68 2887.13 2192.72 26
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
CANet80.90 1181.17 1280.09 3687.62 4054.21 9591.60 1386.47 8173.13 879.89 2693.10 2549.88 6892.98 3484.09 1684.75 5093.08 18
patch_mono-280.84 1281.59 1078.62 6490.34 953.77 10288.08 5488.36 5076.17 279.40 2891.09 6455.43 2490.09 10985.01 1280.40 8491.99 46
DeepPCF-MVS69.37 180.65 1381.56 1177.94 8285.46 6349.56 20190.99 2186.66 7970.58 2280.07 2395.30 156.18 2190.97 8682.57 2486.22 3693.28 13
MVSMamba_pp80.57 1480.23 1581.61 1488.58 2658.30 989.94 2987.64 6568.99 3379.95 2586.50 16154.36 3294.71 2079.53 3886.58 3191.80 52
HPM-MVS++copyleft80.50 1580.71 1479.88 3887.34 4255.20 6689.93 3087.55 6666.04 7379.46 2793.00 3053.10 4191.76 6480.40 3689.56 892.68 27
CSCG80.41 1679.72 1682.49 589.12 2557.67 1589.29 4191.54 559.19 19071.82 8290.05 9259.72 996.04 1078.37 5088.40 1393.75 7
PS-MVSNAJ80.06 1779.52 1881.68 1385.58 5960.97 391.69 1187.02 7170.62 2180.75 2093.22 2437.77 20292.50 4782.75 2286.25 3591.57 58
xiu_mvs_v2_base79.86 1879.31 1981.53 1585.03 7260.73 491.65 1286.86 7470.30 2580.77 1993.07 2937.63 20792.28 5382.73 2385.71 3991.57 58
DPE-MVScopyleft79.82 1979.66 1780.29 2889.27 2455.08 7188.70 4787.92 5655.55 25881.21 1893.69 1056.51 1994.27 2378.36 5185.70 4091.51 61
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
NCCC79.57 2079.23 2080.59 2389.50 1556.99 2691.38 1588.17 5267.71 4673.81 5792.75 3246.88 8993.28 3178.79 4784.07 5591.50 62
dcpmvs_279.33 2178.94 2180.49 2489.75 1256.54 3684.83 14383.68 15267.85 4369.36 10490.24 8460.20 792.10 5884.14 1580.40 8492.82 23
testing1179.18 2278.85 2280.16 3288.33 3156.99 2688.31 5292.06 172.82 970.62 10088.37 12357.69 1492.30 5175.25 7476.24 12791.20 71
SMA-MVScopyleft79.10 2378.76 2380.12 3484.42 8055.87 4987.58 6886.76 7661.48 14880.26 2293.10 2546.53 9492.41 4979.97 3788.77 1092.08 40
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
LFMVS78.52 2477.14 4282.67 389.58 1358.90 791.27 1888.05 5463.22 11874.63 4990.83 7341.38 16894.40 2175.42 7279.90 9394.72 2
testing9978.45 2577.78 3380.45 2688.28 3456.81 3287.95 5991.49 671.72 1370.84 9588.09 13157.29 1692.63 4569.24 10875.13 14091.91 47
APDe-MVScopyleft78.44 2678.20 2679.19 4588.56 2754.55 8889.76 3487.77 6055.91 25378.56 3192.49 3748.20 7592.65 4379.49 3983.04 5990.39 88
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
MG-MVS78.42 2776.99 4482.73 293.17 164.46 189.93 3088.51 4864.83 8973.52 6088.09 13148.07 7692.19 5462.24 15584.53 5291.53 60
lupinMVS78.38 2878.11 2879.19 4583.02 11655.24 6391.57 1484.82 12369.12 3276.67 4092.02 4644.82 12190.23 10680.83 3580.09 8892.08 40
EPNet78.36 2978.49 2477.97 8085.49 6252.04 14489.36 3984.07 14473.22 777.03 3991.72 5449.32 7290.17 10873.46 8982.77 6191.69 53
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TSAR-MVS + MP.78.31 3078.26 2578.48 6881.33 16556.31 4281.59 23486.41 8269.61 2981.72 1588.16 13055.09 2888.04 17874.12 8386.31 3491.09 74
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
testing9178.30 3177.54 3680.61 2288.16 3657.12 2587.94 6091.07 1371.43 1670.75 9688.04 13555.82 2392.65 4369.61 10575.00 14492.05 42
sasdasda78.17 3277.86 3179.12 5084.30 8354.22 9387.71 6284.57 13267.70 4777.70 3592.11 4450.90 5689.95 11278.18 5477.54 11193.20 15
canonicalmvs78.17 3277.86 3179.12 5084.30 8354.22 9387.71 6284.57 13267.70 4777.70 3592.11 4450.90 5689.95 11278.18 5477.54 11193.20 15
alignmvs78.08 3477.98 2978.39 7283.53 9953.22 12089.77 3385.45 9966.11 6876.59 4291.99 4854.07 3789.05 13677.34 6077.00 11692.89 21
DeepC-MVS_fast67.50 378.00 3577.63 3479.13 4988.52 2855.12 6889.95 2885.98 9068.31 3571.33 8992.75 3245.52 10790.37 9971.15 9985.14 4691.91 47
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
VNet77.99 3677.92 3078.19 7687.43 4150.12 18890.93 2291.41 867.48 5075.12 4490.15 9046.77 9191.00 8373.52 8878.46 10593.44 9
TSAR-MVS + GP.77.82 3777.59 3578.49 6785.25 6850.27 18790.02 2690.57 1556.58 24774.26 5491.60 5954.26 3492.16 5575.87 6679.91 9293.05 19
casdiffmvs_mvgpermissive77.75 3877.28 3979.16 4780.42 18754.44 9087.76 6185.46 9871.67 1471.38 8888.35 12551.58 4991.22 7679.02 4379.89 9491.83 51
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
testing22277.70 3977.22 4179.14 4886.95 4454.89 7787.18 7891.96 272.29 1171.17 9388.70 11755.19 2591.24 7565.18 14076.32 12691.29 69
SF-MVS77.64 4077.42 3878.32 7483.75 9652.47 13786.63 9187.80 5758.78 20274.63 4992.38 3847.75 8191.35 7278.18 5486.85 2691.15 73
PHI-MVS77.49 4177.00 4378.95 5285.33 6650.69 17088.57 4988.59 4658.14 21173.60 5893.31 2143.14 14593.79 2873.81 8688.53 1292.37 33
WTY-MVS77.47 4277.52 3777.30 9388.33 3146.25 27988.46 5090.32 1671.40 1772.32 7891.72 5453.44 3992.37 5066.28 12775.42 13493.28 13
casdiffmvspermissive77.36 4376.85 4578.88 5580.40 18854.66 8687.06 8185.88 9172.11 1271.57 8588.63 12250.89 5990.35 10076.00 6579.11 10091.63 55
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CS-MVS-test77.20 4477.25 4077.05 10084.60 7749.04 21489.42 3785.83 9365.90 7472.85 6991.98 5045.10 11291.27 7375.02 7684.56 5190.84 80
ETV-MVS77.17 4576.74 4678.48 6881.80 14554.55 8886.13 9985.33 10468.20 3773.10 6590.52 7845.23 11190.66 9279.37 4080.95 7690.22 94
SteuartSystems-ACMMP77.08 4676.33 5179.34 4380.98 16955.31 6189.76 3486.91 7362.94 12371.65 8391.56 6042.33 15292.56 4677.14 6183.69 5790.15 98
Skip Steuart: Steuart Systems R&D Blog.
jason77.01 4776.45 4978.69 6179.69 19654.74 7990.56 2483.99 14768.26 3674.10 5590.91 7042.14 15689.99 11179.30 4179.12 9991.36 66
jason: jason.
train_agg76.91 4876.40 5078.45 7085.68 5555.42 5587.59 6684.00 14557.84 21972.99 6690.98 6744.99 11588.58 15578.19 5285.32 4491.34 68
MVS76.91 4875.48 6181.23 1984.56 7855.21 6580.23 25991.64 458.65 20465.37 14091.48 6245.72 10495.05 1672.11 9689.52 993.44 9
DeepC-MVS67.15 476.90 5076.27 5278.80 5780.70 18055.02 7286.39 9386.71 7766.96 5567.91 11489.97 9448.03 7791.41 7175.60 6984.14 5489.96 104
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
baseline76.86 5176.24 5378.71 6080.47 18654.20 9783.90 16984.88 12271.38 1871.51 8689.15 11050.51 6090.55 9675.71 6778.65 10391.39 64
CS-MVS76.77 5276.70 4776.99 10583.55 9848.75 22388.60 4885.18 11266.38 6372.47 7691.62 5845.53 10690.99 8574.48 7982.51 6391.23 70
PAPM76.76 5376.07 5578.81 5680.20 18959.11 686.86 8786.23 8668.60 3470.18 10388.84 11551.57 5087.16 20765.48 13386.68 2990.15 98
MAR-MVS76.76 5375.60 5980.21 2990.87 754.68 8489.14 4289.11 2662.95 12270.54 10192.33 3941.05 16994.95 1757.90 20086.55 3391.00 77
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PVSNet_Blended76.53 5576.54 4876.50 11585.91 5251.83 15088.89 4584.24 14167.82 4469.09 10689.33 10746.70 9288.13 17475.43 7081.48 7589.55 112
ACMMP_NAP76.43 5675.66 5878.73 5981.92 14254.67 8584.06 16585.35 10361.10 15472.99 6691.50 6140.25 17891.00 8376.84 6286.98 2490.51 87
MVS_111021_HR76.39 5775.38 6479.42 4285.33 6656.47 3888.15 5384.97 11965.15 8766.06 13189.88 9543.79 13292.16 5575.03 7580.03 9189.64 110
CHOSEN 1792x268876.24 5874.03 8382.88 183.09 11362.84 285.73 11085.39 10169.79 2764.87 14883.49 19641.52 16793.69 2970.55 10181.82 7192.12 39
SD-MVS76.18 5974.85 7280.18 3185.39 6456.90 2885.75 10882.45 17756.79 24274.48 5291.81 5243.72 13590.75 9074.61 7878.65 10392.91 20
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
APD-MVScopyleft76.15 6075.68 5777.54 8888.52 2853.44 11187.26 7785.03 11853.79 27474.91 4791.68 5643.80 13190.31 10274.36 8081.82 7188.87 129
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
VDD-MVS76.08 6174.97 7079.44 4184.27 8653.33 11791.13 1985.88 9165.33 8472.37 7789.34 10532.52 27292.76 4177.90 5775.96 12892.22 38
CDPH-MVS76.05 6275.19 6678.62 6486.51 4854.98 7487.32 7284.59 13158.62 20570.75 9690.85 7243.10 14790.63 9470.50 10284.51 5390.24 93
fmvsm_l_conf0.5_n75.95 6376.16 5475.31 14876.01 26248.44 23484.98 13671.08 33563.50 11281.70 1693.52 1550.00 6487.18 20687.80 576.87 11890.32 91
EIA-MVS75.92 6475.18 6778.13 7785.14 6951.60 15587.17 7985.32 10564.69 9068.56 11090.53 7745.79 10391.58 6767.21 12082.18 6791.20 71
fmvsm_l_conf0.5_n_a75.88 6576.07 5575.31 14876.08 25848.34 23785.24 12470.62 33863.13 12081.45 1793.62 1449.98 6687.40 20287.76 676.77 11990.20 96
test_yl75.85 6674.83 7378.91 5388.08 3851.94 14691.30 1689.28 2357.91 21671.19 9189.20 10842.03 15992.77 3969.41 10675.07 14292.01 44
DCV-MVSNet75.85 6674.83 7378.91 5388.08 3851.94 14691.30 1689.28 2357.91 21671.19 9189.20 10842.03 15992.77 3969.41 10675.07 14292.01 44
MVS_Test75.85 6674.93 7178.62 6484.08 8855.20 6683.99 16785.17 11368.07 4073.38 6282.76 20750.44 6189.00 13965.90 12980.61 8091.64 54
ZNCC-MVS75.82 6975.02 6978.23 7583.88 9453.80 10186.91 8686.05 8959.71 17667.85 11590.55 7642.23 15491.02 8272.66 9485.29 4589.87 107
ETVMVS75.80 7075.44 6276.89 10986.23 5050.38 18085.55 11791.42 771.30 1968.80 10887.94 13756.42 2089.24 12956.54 21274.75 14691.07 75
CLD-MVS75.60 7175.39 6376.24 11980.69 18152.40 13890.69 2386.20 8774.40 665.01 14688.93 11242.05 15890.58 9576.57 6373.96 15085.73 197
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
test_fmvsm_n_192075.56 7275.54 6075.61 13674.60 28149.51 20481.82 22674.08 30966.52 6180.40 2193.46 1746.95 8889.72 11986.69 775.30 13587.61 160
MP-MVS-pluss75.54 7375.03 6877.04 10181.37 16452.65 13484.34 15684.46 13461.16 15269.14 10591.76 5339.98 18588.99 14178.19 5284.89 4989.48 115
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
EC-MVSNet75.30 7475.20 6575.62 13580.98 16949.00 21587.43 6984.68 12963.49 11370.97 9490.15 9042.86 14991.14 8074.33 8181.90 7086.71 179
Effi-MVS+75.24 7573.61 8580.16 3281.92 14257.42 2185.21 12576.71 28760.68 16573.32 6389.34 10547.30 8491.63 6668.28 11479.72 9591.42 63
ET-MVSNet_ETH3D75.23 7674.08 8178.67 6284.52 7955.59 5188.92 4489.21 2568.06 4153.13 29690.22 8649.71 6987.62 19672.12 9570.82 17892.82 23
PAPR75.20 7774.13 7978.41 7188.31 3355.10 7084.31 15785.66 9563.76 10567.55 11690.73 7443.48 14089.40 12666.36 12677.03 11590.73 82
baseline275.15 7874.54 7776.98 10681.67 15251.74 15283.84 17191.94 369.97 2658.98 22386.02 16459.73 891.73 6568.37 11370.40 18387.48 162
diffmvspermissive75.11 7974.65 7576.46 11678.52 22153.35 11583.28 19179.94 22170.51 2371.64 8488.72 11646.02 10086.08 24177.52 5875.75 13289.96 104
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MP-MVScopyleft74.99 8074.33 7876.95 10782.89 12353.05 12685.63 11383.50 15757.86 21867.25 11890.24 8443.38 14288.85 14976.03 6482.23 6688.96 126
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
GST-MVS74.87 8173.90 8477.77 8383.30 10653.45 11085.75 10885.29 10759.22 18966.50 12789.85 9640.94 17190.76 8970.94 10083.35 5889.10 124
iter_conf0574.57 8272.83 9479.80 3980.85 17658.10 1074.55 30082.97 16950.53 29863.52 17383.41 19857.38 1592.83 3773.92 8588.34 1488.48 143
fmvsm_s_conf0.5_n74.48 8374.12 8075.56 13876.96 24747.85 25485.32 12269.80 34564.16 9678.74 2993.48 1645.51 10889.29 12886.48 866.62 20989.55 112
3Dnovator64.70 674.46 8472.48 9880.41 2782.84 12555.40 5883.08 19688.61 4567.61 4959.85 20688.66 11834.57 25393.97 2558.42 19088.70 1191.85 50
test_fmvsmconf_n74.41 8574.05 8275.49 14274.16 28848.38 23582.66 20472.57 32267.05 5475.11 4592.88 3146.35 9587.81 18383.93 1771.71 16990.28 92
HFP-MVS74.37 8673.13 9278.10 7884.30 8353.68 10485.58 11484.36 13656.82 24065.78 13690.56 7540.70 17690.90 8769.18 10980.88 7789.71 108
VDDNet74.37 8672.13 10881.09 2079.58 19756.52 3790.02 2686.70 7852.61 28471.23 9087.20 14931.75 28293.96 2674.30 8275.77 13192.79 25
MSLP-MVS++74.21 8872.25 10480.11 3581.45 16256.47 3886.32 9579.65 22958.19 21066.36 12892.29 4036.11 23590.66 9267.39 11882.49 6493.18 17
API-MVS74.17 8972.07 11080.49 2490.02 1158.55 887.30 7484.27 13857.51 22765.77 13787.77 14041.61 16595.97 1151.71 24782.63 6286.94 170
MGCFI-Net74.07 9074.64 7672.34 22282.90 12243.33 31280.04 26279.96 22065.61 7674.93 4691.85 5148.01 7880.86 29671.41 9777.10 11492.84 22
IB-MVS68.87 274.01 9172.03 11379.94 3783.04 11555.50 5390.24 2588.65 4167.14 5261.38 19481.74 23053.21 4094.28 2260.45 17462.41 25190.03 102
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
h-mvs3373.95 9272.89 9377.15 9980.17 19050.37 18184.68 14783.33 15868.08 3871.97 8088.65 12142.50 15091.15 7978.82 4557.78 29189.91 106
HY-MVS67.03 573.90 9373.14 9076.18 12484.70 7647.36 26175.56 29086.36 8466.27 6570.66 9983.91 18851.05 5489.31 12767.10 12172.61 16291.88 49
CostFormer73.89 9472.30 10378.66 6382.36 13656.58 3375.56 29085.30 10666.06 7170.50 10276.88 28257.02 1789.06 13568.27 11568.74 19490.33 90
fmvsm_s_conf0.1_n73.80 9573.26 8775.43 14373.28 29647.80 25584.57 15269.43 34763.34 11578.40 3293.29 2244.73 12489.22 13185.99 966.28 21689.26 117
ACMMPR73.76 9672.61 9577.24 9783.92 9252.96 12985.58 11484.29 13756.82 24065.12 14290.45 7937.24 21890.18 10769.18 10980.84 7888.58 138
region2R73.75 9772.55 9777.33 9283.90 9352.98 12885.54 11884.09 14356.83 23965.10 14390.45 7937.34 21690.24 10568.89 11180.83 7988.77 133
CANet_DTU73.71 9873.14 9075.40 14482.61 13250.05 18984.67 14979.36 23769.72 2875.39 4390.03 9329.41 29685.93 24767.99 11679.11 10090.22 94
test_fmvsmconf0.1_n73.69 9973.15 8875.34 14670.71 32548.26 24082.15 21671.83 32766.75 5774.47 5392.59 3644.89 11887.78 18883.59 1871.35 17389.97 103
fmvsm_s_conf0.5_n_a73.68 10073.15 8875.29 15175.45 26948.05 24783.88 17068.84 35063.43 11478.60 3093.37 2045.32 10988.92 14685.39 1164.04 22988.89 128
thisisatest051573.64 10172.20 10577.97 8081.63 15353.01 12786.69 9088.81 3762.53 13064.06 16185.65 16852.15 4892.50 4758.43 18869.84 18688.39 144
MVSFormer73.53 10272.19 10677.57 8783.02 11655.24 6381.63 23181.44 19450.28 29976.67 4090.91 7044.82 12186.11 23660.83 16680.09 8891.36 66
PVSNet_BlendedMVS73.42 10373.30 8673.76 19085.91 5251.83 15086.18 9884.24 14165.40 8169.09 10680.86 23946.70 9288.13 17475.43 7065.92 21881.33 272
PVSNet_Blended_VisFu73.40 10472.44 9976.30 11781.32 16654.70 8285.81 10478.82 24763.70 10664.53 15485.38 17347.11 8787.38 20367.75 11777.55 11086.81 178
MVSTER73.25 10572.33 10176.01 12985.54 6153.76 10383.52 17687.16 6967.06 5363.88 16681.66 23152.77 4290.44 9764.66 14264.69 22583.84 231
EI-MVSNet-Vis-set73.19 10672.60 9674.99 16082.56 13349.80 19682.55 20989.00 2866.17 6765.89 13488.98 11143.83 13092.29 5265.38 13969.01 19282.87 249
PMMVS72.98 10772.05 11175.78 13383.57 9748.60 22684.08 16382.85 17261.62 14468.24 11290.33 8328.35 30087.78 18872.71 9376.69 12090.95 78
XVS72.92 10871.62 11576.81 11083.41 10152.48 13584.88 14183.20 16458.03 21263.91 16489.63 10035.50 24289.78 11665.50 13180.50 8288.16 145
test250672.91 10972.43 10074.32 17380.12 19144.18 30383.19 19384.77 12664.02 9865.97 13287.43 14647.67 8288.72 15059.08 18179.66 9690.08 100
TESTMET0.1,172.86 11072.33 10174.46 16781.98 14150.77 16885.13 12885.47 9766.09 6967.30 11783.69 19337.27 21783.57 27765.06 14178.97 10289.05 125
fmvsm_s_conf0.1_n_a72.82 11172.05 11175.12 15670.95 32447.97 25082.72 20368.43 35262.52 13178.17 3393.08 2844.21 12788.86 14784.82 1363.54 23588.54 140
Fast-Effi-MVS+72.73 11271.15 12477.48 8982.75 12754.76 7886.77 8980.64 20863.05 12165.93 13384.01 18644.42 12689.03 13756.45 21676.36 12588.64 135
MTAPA72.73 11271.22 12277.27 9581.54 15953.57 10667.06 34481.31 19659.41 18368.39 11190.96 6936.07 23789.01 13873.80 8782.45 6589.23 119
PGM-MVS72.60 11471.20 12376.80 11282.95 11952.82 13183.07 19782.14 17956.51 24863.18 17489.81 9735.68 24189.76 11867.30 11980.19 8787.83 154
HPM-MVScopyleft72.60 11471.50 11775.89 13182.02 14051.42 16080.70 25283.05 16656.12 25264.03 16289.53 10137.55 21088.37 16370.48 10380.04 9087.88 153
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CP-MVS72.59 11671.46 11876.00 13082.93 12152.32 14186.93 8582.48 17655.15 26263.65 16890.44 8235.03 24988.53 15968.69 11277.83 10987.15 168
baseline172.51 11772.12 10973.69 19385.05 7044.46 29683.51 18086.13 8871.61 1564.64 15087.97 13655.00 3089.48 12459.07 18256.05 30487.13 169
EI-MVSNet-UG-set72.37 11871.73 11474.29 17481.60 15549.29 20981.85 22488.64 4265.29 8665.05 14488.29 12843.18 14391.83 6363.74 14567.97 19981.75 260
MS-PatchMatch72.34 11971.26 12175.61 13682.38 13555.55 5288.00 5589.95 1965.38 8256.51 26880.74 24132.28 27592.89 3557.95 19988.10 1578.39 307
HQP-MVS72.34 11971.44 11975.03 15879.02 20851.56 15688.00 5583.68 15265.45 7864.48 15585.13 17437.35 21488.62 15366.70 12273.12 15684.91 210
mvs_anonymous72.29 12170.74 12776.94 10882.85 12454.72 8178.43 27781.54 19263.77 10461.69 19179.32 25251.11 5385.31 25462.15 15775.79 13090.79 81
3Dnovator+62.71 772.29 12170.50 13177.65 8683.40 10451.29 16487.32 7286.40 8359.01 19758.49 23688.32 12732.40 27391.27 7357.04 20982.15 6990.38 89
nrg03072.27 12371.56 11674.42 16975.93 26350.60 17286.97 8383.21 16362.75 12567.15 11984.38 18250.07 6386.66 22271.19 9862.37 25285.99 191
UWE-MVS72.17 12472.15 10772.21 22482.26 13844.29 30086.83 8889.58 2165.58 7765.82 13585.06 17645.02 11484.35 26954.07 22975.18 13787.99 152
iter_conf05_1172.16 12570.47 13277.23 9885.57 6049.68 19774.47 30180.89 20449.28 30765.24 14185.42 17255.08 2993.40 3055.42 22182.84 6088.60 137
VPNet72.07 12671.42 12074.04 18078.64 21947.17 26689.91 3287.97 5572.56 1064.66 14985.04 17741.83 16388.33 16761.17 16460.97 25886.62 180
DP-MVS Recon71.99 12770.31 13777.01 10390.65 853.44 11189.37 3882.97 16956.33 25063.56 17189.47 10234.02 25892.15 5754.05 23072.41 16385.43 204
test_fmvsmconf0.01_n71.97 12870.95 12675.04 15766.21 35047.87 25380.35 25670.08 34265.85 7572.69 7191.68 5639.99 18487.67 19282.03 2769.66 18889.58 111
SDMVSNet71.89 12970.62 13075.70 13481.70 14951.61 15473.89 30488.72 4066.58 5861.64 19282.38 22037.63 20789.48 12477.44 5965.60 21986.01 189
QAPM71.88 13069.33 15379.52 4082.20 13954.30 9286.30 9688.77 3856.61 24659.72 20887.48 14433.90 26095.36 1347.48 27581.49 7488.90 127
ECVR-MVScopyleft71.81 13171.00 12574.26 17580.12 19143.49 30884.69 14682.16 17864.02 9864.64 15087.43 14635.04 24889.21 13261.24 16379.66 9690.08 100
PAPM_NR71.80 13269.98 14477.26 9681.54 15953.34 11678.60 27685.25 11053.46 27760.53 20288.66 11845.69 10589.24 12956.49 21379.62 9889.19 121
mPP-MVS71.79 13370.38 13576.04 12882.65 13152.06 14384.45 15381.78 18955.59 25762.05 18989.68 9933.48 26488.28 17165.45 13678.24 10887.77 156
xiu_mvs_v1_base_debu71.60 13470.29 13875.55 13977.26 24153.15 12185.34 11979.37 23455.83 25472.54 7290.19 8722.38 34386.66 22273.28 9076.39 12286.85 174
xiu_mvs_v1_base71.60 13470.29 13875.55 13977.26 24153.15 12185.34 11979.37 23455.83 25472.54 7290.19 8722.38 34386.66 22273.28 9076.39 12286.85 174
xiu_mvs_v1_base_debi71.60 13470.29 13875.55 13977.26 24153.15 12185.34 11979.37 23455.83 25472.54 7290.19 8722.38 34386.66 22273.28 9076.39 12286.85 174
hse-mvs271.44 13770.68 12873.73 19276.34 25247.44 26079.45 26979.47 23368.08 3871.97 8086.01 16642.50 15086.93 21578.82 4553.46 32786.83 177
test_fmvsmvis_n_192071.29 13870.38 13574.00 18271.04 32348.79 22279.19 27264.62 36062.75 12566.73 12091.99 4840.94 17188.35 16583.00 2073.18 15584.85 212
EPP-MVSNet71.14 13970.07 14374.33 17279.18 20546.52 27283.81 17286.49 8056.32 25157.95 24284.90 18054.23 3589.14 13458.14 19569.65 18987.33 165
VPA-MVSNet71.12 14070.66 12972.49 21778.75 21444.43 29887.64 6490.02 1763.97 10165.02 14581.58 23342.14 15687.42 20163.42 14763.38 24085.63 201
131471.11 14169.41 15076.22 12079.32 20150.49 17580.23 25985.14 11659.44 18258.93 22588.89 11433.83 26289.60 12361.49 16177.42 11388.57 139
test111171.06 14270.42 13472.97 20679.48 19841.49 33084.82 14482.74 17364.20 9562.98 17787.43 14635.20 24587.92 18058.54 18778.42 10689.49 114
tpmrst71.04 14369.77 14674.86 16283.19 11055.86 5075.64 28978.73 25167.88 4264.99 14773.73 31149.96 6779.56 31565.92 12867.85 20189.14 123
MVP-Stereo70.97 14470.44 13372.59 21476.03 26151.36 16185.02 13586.99 7260.31 16956.53 26778.92 25740.11 18290.00 11060.00 17990.01 676.41 330
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
HQP_MVS70.96 14569.91 14574.12 17877.95 22949.57 19985.76 10682.59 17463.60 10962.15 18783.28 20136.04 23888.30 16965.46 13472.34 16484.49 214
SR-MVS70.92 14669.73 14774.50 16683.38 10550.48 17684.27 15879.35 23848.96 31066.57 12690.45 7933.65 26387.11 20866.42 12474.56 14785.91 194
tpm270.82 14768.44 16277.98 7980.78 17856.11 4474.21 30381.28 19860.24 17068.04 11375.27 30052.26 4788.50 16055.82 22068.03 19889.33 116
ACMMPcopyleft70.81 14869.29 15475.39 14581.52 16151.92 14883.43 18383.03 16756.67 24558.80 23088.91 11331.92 28088.58 15565.89 13073.39 15485.67 198
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
OPM-MVS70.75 14969.58 14874.26 17575.55 26851.34 16286.05 10183.29 16261.94 14062.95 17885.77 16734.15 25788.44 16165.44 13771.07 17582.99 246
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ab-mvs70.65 15069.11 15675.29 15180.87 17546.23 28073.48 30885.24 11159.99 17266.65 12280.94 23843.13 14688.69 15163.58 14668.07 19790.95 78
Vis-MVSNetpermissive70.61 15169.34 15274.42 16980.95 17448.49 23186.03 10277.51 27258.74 20365.55 13987.78 13934.37 25585.95 24652.53 24580.61 8088.80 131
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
sss70.49 15270.13 14271.58 24381.59 15639.02 34180.78 25184.71 12859.34 18566.61 12488.09 13137.17 21985.52 25061.82 16071.02 17690.20 96
CDS-MVSNet70.48 15369.43 14973.64 19477.56 23648.83 22183.51 18077.45 27363.27 11762.33 18485.54 17143.85 12983.29 28157.38 20874.00 14988.79 132
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
thisisatest053070.47 15468.56 16076.20 12279.78 19551.52 15883.49 18288.58 4757.62 22558.60 23282.79 20651.03 5591.48 6952.84 23962.36 25385.59 202
XXY-MVS70.18 15569.28 15572.89 20977.64 23342.88 31785.06 13287.50 6762.58 12962.66 18282.34 22343.64 13789.83 11558.42 19063.70 23485.96 193
Anonymous20240521170.11 15667.88 17276.79 11387.20 4347.24 26589.49 3677.38 27554.88 26766.14 12986.84 15420.93 35291.54 6856.45 21671.62 17091.59 56
PCF-MVS61.03 1070.10 15768.40 16375.22 15577.15 24551.99 14579.30 27182.12 18056.47 24961.88 19086.48 16243.98 12887.24 20555.37 22272.79 16186.43 184
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
BH-RMVSNet70.08 15868.01 16976.27 11884.21 8751.22 16687.29 7579.33 24058.96 19963.63 16986.77 15533.29 26690.30 10444.63 29373.96 15087.30 167
1112_ss70.05 15969.37 15172.10 22680.77 17942.78 31885.12 13176.75 28559.69 17761.19 19692.12 4247.48 8383.84 27253.04 23768.21 19689.66 109
BH-w/o70.02 16068.51 16174.56 16582.77 12650.39 17986.60 9278.14 26259.77 17559.65 20985.57 17039.27 19087.30 20449.86 25874.94 14585.99 191
FIs70.00 16170.24 14169.30 27577.93 23138.55 34483.99 16787.72 6266.86 5657.66 24984.17 18552.28 4685.31 25452.72 24468.80 19384.02 222
OpenMVScopyleft61.00 1169.99 16267.55 18177.30 9378.37 22554.07 9984.36 15585.76 9457.22 23356.71 26487.67 14230.79 28892.83 3743.04 30084.06 5685.01 208
GeoE69.96 16367.88 17276.22 12081.11 16851.71 15384.15 16176.74 28659.83 17460.91 19784.38 18241.56 16688.10 17651.67 24870.57 18188.84 130
HyFIR lowres test69.94 16467.58 17977.04 10177.11 24657.29 2281.49 23979.11 24358.27 20958.86 22880.41 24242.33 15286.96 21361.91 15868.68 19586.87 172
114514_t69.87 16567.88 17275.85 13288.38 3052.35 14086.94 8483.68 15253.70 27555.68 27485.60 16930.07 29391.20 7755.84 21971.02 17683.99 224
miper_enhance_ethall69.77 16668.90 15872.38 22078.93 21149.91 19283.29 19078.85 24564.90 8859.37 21679.46 25052.77 4285.16 25963.78 14458.72 27382.08 255
Anonymous2024052969.71 16767.28 18677.00 10483.78 9550.36 18288.87 4685.10 11747.22 31964.03 16283.37 19927.93 30492.10 5857.78 20367.44 20388.53 141
TR-MVS69.71 16767.85 17575.27 15382.94 12048.48 23287.40 7180.86 20557.15 23564.61 15287.08 15132.67 27189.64 12246.38 28471.55 17287.68 159
EI-MVSNet69.70 16968.70 15972.68 21275.00 27548.90 21979.54 26687.16 6961.05 15563.88 16683.74 19145.87 10190.44 9757.42 20764.68 22678.70 300
test-LLR69.65 17069.01 15771.60 24178.67 21648.17 24285.13 12879.72 22659.18 19263.13 17582.58 21436.91 22480.24 30660.56 17075.17 13886.39 185
APD-MVS_3200maxsize69.62 17168.23 16773.80 18981.58 15748.22 24181.91 22279.50 23248.21 31464.24 16089.75 9831.91 28187.55 19863.08 14973.85 15285.64 200
v2v48269.55 17267.64 17875.26 15472.32 31053.83 10084.93 14081.94 18365.37 8360.80 19979.25 25341.62 16488.98 14263.03 15059.51 26682.98 247
TAMVS69.51 17368.16 16873.56 19776.30 25548.71 22582.57 20777.17 27862.10 13661.32 19584.23 18441.90 16183.46 27954.80 22673.09 15888.50 142
WB-MVSnew69.36 17468.24 16672.72 21179.26 20349.40 20685.72 11188.85 3561.33 14964.59 15382.38 22034.57 25387.53 19946.82 28170.63 17981.22 276
PVSNet62.49 869.27 17567.81 17673.64 19484.41 8151.85 14984.63 15077.80 26666.42 6259.80 20784.95 17922.14 34780.44 30455.03 22375.11 14188.62 136
MVS_111021_LR69.07 17667.91 17072.54 21577.27 24049.56 20179.77 26473.96 31259.33 18760.73 20087.82 13830.19 29281.53 28969.94 10472.19 16686.53 181
GA-MVS69.04 17766.70 19576.06 12775.11 27152.36 13983.12 19580.23 21563.32 11660.65 20179.22 25430.98 28788.37 16361.25 16266.41 21287.46 163
cascas69.01 17866.13 20777.66 8579.36 19955.41 5786.99 8283.75 15056.69 24458.92 22681.35 23524.31 33292.10 5853.23 23470.61 18085.46 203
FA-MVS(test-final)69.00 17966.60 19876.19 12383.48 10047.96 25274.73 29782.07 18157.27 23262.18 18678.47 26136.09 23692.89 3553.76 23371.32 17487.73 157
cl2268.85 18067.69 17772.35 22178.07 22849.98 19182.45 21278.48 25762.50 13258.46 23777.95 26349.99 6585.17 25862.55 15258.72 27381.90 258
FMVSNet368.84 18167.40 18473.19 20285.05 7048.53 22985.71 11285.36 10260.90 16157.58 25179.15 25542.16 15586.77 21847.25 27763.40 23784.27 218
UniMVSNet_NR-MVSNet68.82 18268.29 16570.40 26175.71 26642.59 32084.23 15986.78 7566.31 6458.51 23382.45 21751.57 5084.64 26753.11 23555.96 30583.96 228
v114468.81 18366.82 19174.80 16372.34 30953.46 10884.68 14781.77 19064.25 9460.28 20377.91 26440.23 17988.95 14360.37 17559.52 26581.97 256
IS-MVSNet68.80 18467.55 18172.54 21578.50 22243.43 31081.03 24479.35 23859.12 19557.27 25986.71 15646.05 9987.70 19144.32 29575.60 13386.49 182
PS-MVSNAJss68.78 18567.17 18873.62 19673.01 30048.33 23984.95 13984.81 12459.30 18858.91 22779.84 24737.77 20288.86 14762.83 15163.12 24683.67 234
thres20068.71 18667.27 18773.02 20484.73 7546.76 26985.03 13487.73 6162.34 13459.87 20583.45 19743.15 14488.32 16831.25 34867.91 20083.98 226
UGNet68.71 18667.11 18973.50 19880.55 18547.61 25784.08 16378.51 25659.45 18165.68 13882.73 21023.78 33485.08 26152.80 24076.40 12187.80 155
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
miper_ehance_all_eth68.70 18867.58 17972.08 22776.91 24849.48 20582.47 21178.45 25862.68 12758.28 24177.88 26550.90 5685.01 26261.91 15858.72 27381.75 260
test_vis1_n_192068.59 18968.31 16469.44 27469.16 33641.51 32984.63 15068.58 35158.80 20173.26 6488.37 12325.30 32380.60 30179.10 4267.55 20286.23 187
EPMVS68.45 19065.44 22677.47 9084.91 7356.17 4371.89 32481.91 18661.72 14360.85 19872.49 32536.21 23487.06 21047.32 27671.62 17089.17 122
test-mter68.36 19167.29 18571.60 24178.67 21648.17 24285.13 12879.72 22653.38 27863.13 17582.58 21427.23 31080.24 30660.56 17075.17 13886.39 185
tpm68.36 19167.48 18370.97 25379.93 19451.34 16276.58 28778.75 25067.73 4563.54 17274.86 30248.33 7472.36 35953.93 23163.71 23389.21 120
tttt051768.33 19366.29 20374.46 16778.08 22749.06 21180.88 24989.08 2754.40 27254.75 28280.77 24051.31 5290.33 10149.35 26258.01 28583.99 224
BH-untuned68.28 19466.40 20073.91 18481.62 15450.01 19085.56 11677.39 27457.63 22457.47 25683.69 19336.36 23387.08 20944.81 29173.08 15984.65 213
SR-MVS-dyc-post68.27 19566.87 19072.48 21880.96 17148.14 24481.54 23576.98 28146.42 32662.75 18089.42 10331.17 28686.09 24060.52 17272.06 16783.19 242
v14868.24 19666.35 20173.88 18571.76 31351.47 15984.23 15981.90 18763.69 10758.94 22476.44 28743.72 13587.78 18860.63 16855.86 30782.39 253
AUN-MVS68.20 19766.35 20173.76 19076.37 25147.45 25979.52 26879.52 23160.98 15762.34 18386.02 16436.59 23286.94 21462.32 15453.47 32686.89 171
c3_l67.97 19866.66 19671.91 23876.20 25749.31 20882.13 21878.00 26461.99 13857.64 25076.94 27949.41 7084.93 26360.62 16957.01 29581.49 264
v119267.96 19965.74 21874.63 16471.79 31253.43 11384.06 16580.99 20363.19 11959.56 21277.46 27137.50 21388.65 15258.20 19458.93 27281.79 259
v14419267.86 20065.76 21774.16 17771.68 31453.09 12484.14 16280.83 20662.85 12459.21 22177.28 27439.30 18988.00 17958.67 18657.88 28981.40 269
HPM-MVS_fast67.86 20066.28 20472.61 21380.67 18248.34 23781.18 24275.95 29550.81 29759.55 21388.05 13427.86 30585.98 24358.83 18473.58 15383.51 235
AdaColmapbinary67.86 20065.48 22375.00 15988.15 3754.99 7386.10 10076.63 28949.30 30657.80 24586.65 15829.39 29788.94 14545.10 29070.21 18481.06 277
sd_testset67.79 20365.95 21273.32 19981.70 14946.33 27768.99 33680.30 21466.58 5861.64 19282.38 22030.45 29087.63 19455.86 21865.60 21986.01 189
bld_raw_dy_0_6467.71 20465.31 22974.91 16174.46 28255.35 6062.16 36083.72 15139.92 35452.13 30479.59 24953.58 3892.03 6160.05 17882.18 6777.37 319
UniMVSNet (Re)67.71 20466.80 19270.45 25974.44 28342.93 31682.42 21384.90 12163.69 10759.63 21080.99 23747.18 8585.23 25751.17 25256.75 29683.19 242
V4267.66 20665.60 22273.86 18670.69 32753.63 10581.50 23778.61 25463.85 10359.49 21577.49 27037.98 19987.65 19362.33 15358.43 27680.29 287
dmvs_re67.61 20766.00 21072.42 21981.86 14443.45 30964.67 35080.00 21869.56 3060.07 20485.00 17834.71 25187.63 19451.48 24966.68 20786.17 188
WR-MVS67.58 20866.76 19370.04 26875.92 26445.06 29486.23 9785.28 10864.31 9358.50 23581.00 23644.80 12382.00 28849.21 26455.57 31083.06 245
tfpn200view967.57 20966.13 20771.89 23984.05 8945.07 29183.40 18587.71 6360.79 16257.79 24682.76 20743.53 13887.80 18528.80 35566.36 21382.78 251
FMVSNet267.57 20965.79 21672.90 20782.71 12847.97 25085.15 12784.93 12058.55 20656.71 26478.26 26236.72 22986.67 22146.15 28662.94 24884.07 221
FC-MVSNet-test67.49 21167.91 17066.21 30676.06 25933.06 36480.82 25087.18 6864.44 9254.81 28082.87 20450.40 6282.60 28348.05 27266.55 21182.98 247
v192192067.45 21265.23 23174.10 17971.51 31752.90 13083.75 17480.44 21162.48 13359.12 22277.13 27536.98 22287.90 18157.53 20558.14 28381.49 264
cl____67.43 21365.93 21371.95 23576.33 25348.02 24882.58 20679.12 24261.30 15156.72 26376.92 28046.12 9786.44 22957.98 19756.31 29981.38 271
DIV-MVS_self_test67.43 21365.93 21371.94 23676.33 25348.01 24982.57 20779.11 24361.31 15056.73 26276.92 28046.09 9886.43 23057.98 19756.31 29981.39 270
gg-mvs-nofinetune67.43 21364.53 23976.13 12585.95 5147.79 25664.38 35188.28 5139.34 35666.62 12341.27 39158.69 1389.00 13949.64 26086.62 3091.59 56
thres40067.40 21666.13 20771.19 24984.05 8945.07 29183.40 18587.71 6360.79 16257.79 24682.76 20743.53 13887.80 18528.80 35566.36 21380.71 282
UA-Net67.32 21766.23 20570.59 25778.85 21241.23 33373.60 30675.45 29961.54 14666.61 12484.53 18138.73 19586.57 22742.48 30574.24 14883.98 226
v867.25 21864.99 23474.04 18072.89 30353.31 11882.37 21480.11 21761.54 14654.29 28776.02 29642.89 14888.41 16258.43 18856.36 29780.39 286
NR-MVSNet67.25 21865.99 21171.04 25273.27 29743.91 30485.32 12284.75 12766.05 7253.65 29482.11 22645.05 11385.97 24547.55 27456.18 30283.24 240
Test_1112_low_res67.18 22066.23 20570.02 26978.75 21441.02 33483.43 18373.69 31457.29 23158.45 23882.39 21945.30 11080.88 29550.50 25466.26 21788.16 145
CPTT-MVS67.15 22165.84 21571.07 25180.96 17150.32 18481.94 22174.10 30846.18 32957.91 24387.64 14329.57 29581.31 29164.10 14370.18 18581.56 263
test_cas_vis1_n_192067.10 22266.60 19868.59 28765.17 35843.23 31383.23 19269.84 34455.34 26170.67 9887.71 14124.70 33076.66 33978.57 4964.20 22885.89 195
GBi-Net67.09 22365.47 22471.96 23282.71 12846.36 27483.52 17683.31 15958.55 20657.58 25176.23 29136.72 22986.20 23247.25 27763.40 23783.32 237
test167.09 22365.47 22471.96 23282.71 12846.36 27483.52 17683.31 15958.55 20657.58 25176.23 29136.72 22986.20 23247.25 27763.40 23783.32 237
PatchmatchNetpermissive67.07 22563.63 24577.40 9183.10 11158.03 1172.11 32277.77 26758.85 20059.37 21670.83 33837.84 20184.93 26342.96 30169.83 18789.26 117
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
v124066.99 22664.68 23773.93 18371.38 32052.66 13383.39 18779.98 21961.97 13958.44 23977.11 27635.25 24487.81 18356.46 21558.15 28181.33 272
eth_miper_zixun_eth66.98 22765.28 23072.06 22875.61 26750.40 17881.00 24576.97 28462.00 13756.99 26176.97 27844.84 12085.58 24958.75 18554.42 31880.21 288
TranMVSNet+NR-MVSNet66.94 22865.61 22170.93 25473.45 29343.38 31183.02 19984.25 13965.31 8558.33 24081.90 22939.92 18685.52 25049.43 26154.89 31483.89 230
mvsmamba66.93 22964.88 23673.09 20375.06 27347.26 26383.36 18969.21 34862.64 12855.68 27481.43 23429.72 29489.20 13363.35 14863.50 23682.79 250
thres100view90066.87 23065.42 22771.24 24783.29 10743.15 31481.67 23087.78 5859.04 19655.92 27282.18 22543.73 13387.80 18528.80 35566.36 21382.78 251
DU-MVS66.84 23165.74 21870.16 26473.27 29742.59 32081.50 23782.92 17163.53 11158.51 23382.11 22640.75 17384.64 26753.11 23555.96 30583.24 240
IterMVS-LS66.63 23265.36 22870.42 26075.10 27248.90 21981.45 24076.69 28861.05 15555.71 27377.10 27745.86 10283.65 27657.44 20657.88 28978.70 300
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v1066.61 23364.20 24273.83 18872.59 30653.37 11481.88 22379.91 22361.11 15354.09 28975.60 29840.06 18388.26 17256.47 21456.10 30379.86 292
Fast-Effi-MVS+-dtu66.53 23464.10 24373.84 18772.41 30852.30 14284.73 14575.66 29659.51 18056.34 26979.11 25628.11 30285.85 24857.74 20463.29 24183.35 236
thres600view766.46 23565.12 23270.47 25883.41 10143.80 30682.15 21687.78 5859.37 18456.02 27182.21 22443.73 13386.90 21626.51 36764.94 22280.71 282
LPG-MVS_test66.44 23664.58 23872.02 22974.42 28448.60 22683.07 19780.64 20854.69 26953.75 29283.83 18925.73 32186.98 21160.33 17664.71 22380.48 284
tpm cat166.28 23762.78 24776.77 11481.40 16357.14 2470.03 33177.19 27753.00 28158.76 23170.73 34146.17 9686.73 22043.27 29964.46 22786.44 183
EPNet_dtu66.25 23866.71 19464.87 31678.66 21834.12 35982.80 20275.51 29761.75 14264.47 15886.90 15337.06 22072.46 35843.65 29869.63 19088.02 151
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Effi-MVS+-dtu66.24 23964.96 23570.08 26675.17 27049.64 19882.01 21974.48 30662.15 13557.83 24476.08 29530.59 28983.79 27365.40 13860.93 25976.81 323
ACMP61.11 966.24 23964.33 24072.00 23174.89 27749.12 21083.18 19479.83 22455.41 26052.29 30182.68 21125.83 31986.10 23860.89 16563.94 23280.78 280
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
Anonymous2023121166.08 24163.67 24473.31 20083.07 11448.75 22386.01 10384.67 13045.27 33356.54 26676.67 28528.06 30388.95 14352.78 24159.95 26182.23 254
OMC-MVS65.97 24265.06 23368.71 28472.97 30142.58 32278.61 27575.35 30054.72 26859.31 21886.25 16333.30 26577.88 32857.99 19667.05 20585.66 199
X-MVStestdata65.85 24362.20 25176.81 11083.41 10152.48 13584.88 14183.20 16458.03 21263.91 1644.82 41035.50 24289.78 11665.50 13180.50 8288.16 145
Vis-MVSNet (Re-imp)65.52 24465.63 22065.17 31477.49 23730.54 37175.49 29377.73 26859.34 18552.26 30386.69 15749.38 7180.53 30337.07 31975.28 13684.42 216
Baseline_NR-MVSNet65.49 24564.27 24169.13 27674.37 28641.65 32783.39 18778.85 24559.56 17959.62 21176.88 28240.75 17387.44 20049.99 25655.05 31278.28 309
FMVSNet164.57 24662.11 25271.96 23277.32 23946.36 27483.52 17683.31 15952.43 28654.42 28576.23 29127.80 30686.20 23242.59 30461.34 25783.32 237
dp64.41 24761.58 25572.90 20782.40 13454.09 9872.53 31476.59 29060.39 16855.68 27470.39 34235.18 24676.90 33739.34 31161.71 25587.73 157
ACMM58.35 1264.35 24862.01 25371.38 24574.21 28748.51 23082.25 21579.66 22847.61 31754.54 28480.11 24325.26 32486.00 24251.26 25063.16 24479.64 293
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
FE-MVS64.15 24960.43 26975.30 15080.85 17649.86 19468.28 34078.37 25950.26 30259.31 21873.79 31026.19 31791.92 6240.19 30866.67 20884.12 219
pm-mvs164.12 25062.56 24868.78 28271.68 31438.87 34282.89 20181.57 19155.54 25953.89 29177.82 26637.73 20586.74 21948.46 27053.49 32580.72 281
miper_lstm_enhance63.91 25162.30 25068.75 28375.06 27346.78 26869.02 33581.14 19959.68 17852.76 29872.39 32840.71 17577.99 32656.81 21153.09 32881.48 266
SCA63.84 25260.01 27375.32 14778.58 22057.92 1261.61 36377.53 27156.71 24357.75 24870.77 33931.97 27879.91 31248.80 26656.36 29788.13 148
test_djsdf63.84 25261.56 25670.70 25668.78 33844.69 29581.63 23181.44 19450.28 29952.27 30276.26 29026.72 31386.11 23660.83 16655.84 30881.29 275
IterMVS63.77 25461.67 25470.08 26672.68 30551.24 16580.44 25475.51 29760.51 16751.41 30773.70 31432.08 27778.91 31654.30 22854.35 31980.08 290
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
myMVS_eth3d63.52 25563.56 24663.40 32381.73 14734.28 35780.97 24681.02 20160.93 15955.06 27882.64 21248.00 8080.81 29723.42 37758.32 27775.10 340
D2MVS63.49 25661.39 25869.77 27069.29 33548.93 21878.89 27477.71 26960.64 16649.70 31772.10 33327.08 31183.48 27854.48 22762.65 24976.90 322
tt080563.39 25761.31 26069.64 27169.36 33438.87 34278.00 27885.48 9648.82 31155.66 27781.66 23124.38 33186.37 23149.04 26559.36 26983.68 233
pmmvs463.34 25861.07 26370.16 26470.14 32950.53 17479.97 26371.41 33455.08 26354.12 28878.58 25932.79 27082.09 28750.33 25557.22 29477.86 313
jajsoiax63.21 25960.84 26470.32 26268.33 34344.45 29781.23 24181.05 20053.37 27950.96 31277.81 26717.49 36685.49 25259.31 18058.05 28481.02 278
MIMVSNet63.12 26060.29 27071.61 24075.92 26446.65 27065.15 34781.94 18359.14 19454.65 28369.47 34525.74 32080.63 30041.03 30769.56 19187.55 161
CL-MVSNet_self_test62.98 26161.14 26268.50 28965.86 35342.96 31584.37 15482.98 16860.98 15753.95 29072.70 32440.43 17783.71 27541.10 30647.93 34278.83 299
mvs_tets62.96 26260.55 26670.19 26368.22 34644.24 30280.90 24880.74 20752.99 28250.82 31477.56 26816.74 36985.44 25359.04 18357.94 28680.89 279
TransMVSNet (Re)62.82 26360.76 26569.02 27773.98 29041.61 32886.36 9479.30 24156.90 23752.53 29976.44 28741.85 16287.60 19738.83 31240.61 36677.86 313
pmmvs562.80 26461.18 26167.66 29369.53 33342.37 32582.65 20575.19 30154.30 27352.03 30578.51 26031.64 28380.67 29948.60 26858.15 28179.95 291
test0.0.03 162.54 26562.44 24962.86 32772.28 31129.51 37982.93 20078.78 24859.18 19253.07 29782.41 21836.91 22477.39 33237.45 31558.96 27181.66 262
UniMVSNet_ETH3D62.51 26660.49 26768.57 28868.30 34440.88 33673.89 30479.93 22251.81 29254.77 28179.61 24824.80 32881.10 29249.93 25761.35 25683.73 232
v7n62.50 26759.27 27872.20 22567.25 34949.83 19577.87 28080.12 21652.50 28548.80 32273.07 31932.10 27687.90 18146.83 28054.92 31378.86 298
CR-MVSNet62.47 26859.04 28072.77 21073.97 29156.57 3460.52 36671.72 32960.04 17157.49 25465.86 35638.94 19280.31 30542.86 30259.93 26281.42 267
tpmvs62.45 26959.42 27671.53 24483.93 9154.32 9170.03 33177.61 27051.91 28953.48 29568.29 35037.91 20086.66 22233.36 33858.27 27973.62 350
EG-PatchMatch MVS62.40 27059.59 27470.81 25573.29 29549.05 21285.81 10484.78 12551.85 29144.19 34173.48 31715.52 37489.85 11440.16 30967.24 20473.54 351
XVG-OURS-SEG-HR62.02 27159.54 27569.46 27365.30 35645.88 28265.06 34873.57 31646.45 32557.42 25783.35 20026.95 31278.09 32253.77 23264.03 23084.42 216
XVG-OURS61.88 27259.34 27769.49 27265.37 35546.27 27864.80 34973.49 31747.04 32157.41 25882.85 20525.15 32578.18 32053.00 23864.98 22184.01 223
TAPA-MVS56.12 1461.82 27360.18 27266.71 30278.48 22337.97 34875.19 29576.41 29246.82 32257.04 26086.52 16027.67 30877.03 33426.50 36867.02 20685.14 206
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
Syy-MVS61.51 27461.35 25962.00 33081.73 14730.09 37480.97 24681.02 20160.93 15955.06 27882.64 21235.09 24780.81 29716.40 39358.32 27775.10 340
tfpnnormal61.47 27559.09 27968.62 28676.29 25641.69 32681.14 24385.16 11454.48 27151.32 30873.63 31532.32 27486.89 21721.78 38155.71 30977.29 320
PVSNet_057.04 1361.19 27657.24 28973.02 20477.45 23850.31 18579.43 27077.36 27663.96 10247.51 33172.45 32725.03 32683.78 27452.76 24319.22 39984.96 209
PLCcopyleft52.38 1860.89 27758.97 28166.68 30481.77 14645.70 28678.96 27374.04 31143.66 34447.63 32883.19 20323.52 33777.78 33137.47 31460.46 26076.55 329
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
CVMVSNet60.85 27860.44 26862.07 32875.00 27532.73 36679.54 26673.49 31736.98 36456.28 27083.74 19129.28 29869.53 36746.48 28363.23 24283.94 229
CNLPA60.59 27958.44 28367.05 29979.21 20447.26 26379.75 26564.34 36242.46 35051.90 30683.94 18727.79 30775.41 34437.12 31759.49 26778.47 304
anonymousdsp60.46 28057.65 28668.88 27863.63 36745.09 29072.93 31278.63 25346.52 32451.12 30972.80 32321.46 35083.07 28257.79 20253.97 32078.47 304
testing359.97 28160.19 27159.32 34277.60 23430.01 37681.75 22881.79 18853.54 27650.34 31579.94 24448.99 7376.91 33517.19 39150.59 33571.03 365
ACMH53.70 1659.78 28255.94 30071.28 24676.59 25048.35 23680.15 26176.11 29349.74 30441.91 35273.45 31816.50 37190.31 10231.42 34657.63 29275.17 338
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
pmmvs659.64 28357.15 29067.09 29766.01 35136.86 35280.50 25378.64 25245.05 33549.05 32073.94 30927.28 30986.10 23843.96 29749.94 33778.31 308
MSDG59.44 28455.14 30472.32 22374.69 27850.71 16974.39 30273.58 31544.44 33943.40 34677.52 26919.45 35690.87 8831.31 34757.49 29375.38 336
RPMNet59.29 28554.25 30874.42 16973.97 29156.57 3460.52 36676.98 28135.72 36857.49 25458.87 37637.73 20585.26 25627.01 36659.93 26281.42 267
DP-MVS59.24 28656.12 29868.63 28588.24 3550.35 18382.51 21064.43 36141.10 35246.70 33578.77 25824.75 32988.57 15822.26 37956.29 30166.96 371
OpenMVS_ROBcopyleft53.19 1759.20 28756.00 29968.83 28071.13 32244.30 29983.64 17575.02 30246.42 32646.48 33773.03 32018.69 36088.14 17327.74 36361.80 25474.05 347
IterMVS-SCA-FT59.12 28858.81 28260.08 34070.68 32845.07 29180.42 25574.25 30743.54 34550.02 31673.73 31131.97 27856.74 38451.06 25353.60 32478.42 306
our_test_359.11 28955.08 30571.18 25071.42 31853.29 11981.96 22074.52 30548.32 31242.08 35069.28 34728.14 30182.15 28534.35 33545.68 35678.11 312
Anonymous2023120659.08 29057.59 28763.55 32168.77 33932.14 36980.26 25879.78 22550.00 30349.39 31872.39 32826.64 31478.36 31933.12 34157.94 28680.14 289
KD-MVS_2432*160059.04 29156.44 29566.86 30079.07 20645.87 28372.13 32080.42 21255.03 26448.15 32471.01 33636.73 22778.05 32435.21 32930.18 38676.67 324
miper_refine_blended59.04 29156.44 29566.86 30079.07 20645.87 28372.13 32080.42 21255.03 26448.15 32471.01 33636.73 22778.05 32435.21 32930.18 38676.67 324
WR-MVS_H58.91 29358.04 28561.54 33469.07 33733.83 36176.91 28481.99 18251.40 29448.17 32374.67 30340.23 17974.15 34731.78 34548.10 34076.64 327
LCM-MVSNet-Re58.82 29456.54 29365.68 30879.31 20229.09 38261.39 36545.79 38160.73 16437.65 36972.47 32631.42 28481.08 29349.66 25970.41 18286.87 172
Patchmatch-RL test58.72 29554.32 30771.92 23763.91 36544.25 30161.73 36255.19 37357.38 23049.31 31954.24 38237.60 20980.89 29462.19 15647.28 34790.63 83
FMVSNet558.61 29656.45 29465.10 31577.20 24439.74 33874.77 29677.12 27950.27 30143.28 34767.71 35126.15 31876.90 33736.78 32254.78 31578.65 302
ppachtmachnet_test58.56 29754.34 30671.24 24771.42 31854.74 7981.84 22572.27 32449.02 30945.86 34068.99 34826.27 31583.30 28030.12 35043.23 36175.69 333
ACMH+54.58 1558.55 29855.24 30268.50 28974.68 27945.80 28580.27 25770.21 34147.15 32042.77 34975.48 29916.73 37085.98 24335.10 33354.78 31573.72 349
CP-MVSNet58.54 29957.57 28861.46 33568.50 34133.96 36076.90 28578.60 25551.67 29347.83 32676.60 28634.99 25072.79 35635.45 32647.58 34477.64 317
PEN-MVS58.35 30057.15 29061.94 33167.55 34834.39 35677.01 28378.35 26051.87 29047.72 32776.73 28433.91 25973.75 35134.03 33647.17 34877.68 315
PS-CasMVS58.12 30157.03 29261.37 33668.24 34533.80 36276.73 28678.01 26351.20 29547.54 33076.20 29432.85 26872.76 35735.17 33147.37 34677.55 318
dmvs_testset57.65 30258.21 28455.97 35374.62 2809.82 41263.75 35363.34 36467.23 5148.89 32183.68 19539.12 19176.14 34023.43 37659.80 26481.96 257
UnsupCasMVSNet_eth57.56 30355.15 30364.79 31764.57 36333.12 36373.17 31183.87 14958.98 19841.75 35370.03 34322.54 34279.92 31046.12 28735.31 37581.32 274
CHOSEN 280x42057.53 30456.38 29760.97 33874.01 28948.10 24646.30 38454.31 37548.18 31550.88 31377.43 27238.37 19859.16 38154.83 22463.14 24575.66 334
DTE-MVSNet57.03 30555.73 30160.95 33965.94 35232.57 36775.71 28877.09 28051.16 29646.65 33676.34 28932.84 26973.22 35530.94 34944.87 35777.06 321
PatchMatch-RL56.66 30653.75 31165.37 31377.91 23245.28 28969.78 33360.38 36841.35 35147.57 32973.73 31116.83 36876.91 33536.99 32059.21 27073.92 348
PatchT56.60 30752.97 31467.48 29472.94 30246.16 28157.30 37473.78 31338.77 35854.37 28657.26 37937.52 21178.06 32332.02 34352.79 32978.23 311
Patchmtry56.56 30852.95 31567.42 29572.53 30750.59 17359.05 37071.72 32937.86 36246.92 33365.86 35638.94 19280.06 30936.94 32146.72 35271.60 361
test_040256.45 30953.03 31366.69 30376.78 24950.31 18581.76 22769.61 34642.79 34843.88 34272.13 33122.82 34186.46 22816.57 39250.94 33463.31 379
LS3D56.40 31053.82 31064.12 31881.12 16745.69 28773.42 30966.14 35635.30 37243.24 34879.88 24522.18 34679.62 31419.10 38764.00 23167.05 370
ADS-MVSNet56.17 31151.95 32168.84 27980.60 18353.07 12555.03 37770.02 34344.72 33651.00 31061.19 36822.83 33978.88 31728.54 35853.63 32274.57 344
XVG-ACMP-BASELINE56.03 31252.85 31665.58 30961.91 37240.95 33563.36 35472.43 32345.20 33446.02 33874.09 3079.20 38578.12 32145.13 28958.27 27977.66 316
pmmvs-eth3d55.97 31352.78 31765.54 31061.02 37446.44 27375.36 29467.72 35449.61 30543.65 34467.58 35221.63 34977.04 33344.11 29644.33 35873.15 355
F-COLMAP55.96 31453.65 31262.87 32672.76 30442.77 31974.70 29970.37 34040.03 35341.11 35879.36 25117.77 36573.70 35232.80 34253.96 32172.15 357
CMPMVSbinary40.41 2155.34 31552.64 31863.46 32260.88 37543.84 30561.58 36471.06 33630.43 38036.33 37174.63 30424.14 33375.44 34348.05 27266.62 20971.12 364
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test20.0355.22 31654.07 30958.68 34563.14 36925.00 38877.69 28174.78 30452.64 28343.43 34572.39 32826.21 31674.76 34629.31 35347.05 35076.28 331
ADS-MVSNet255.21 31751.44 32266.51 30580.60 18349.56 20155.03 37765.44 35744.72 33651.00 31061.19 36822.83 33975.41 34428.54 35853.63 32274.57 344
SixPastTwentyTwo54.37 31850.10 32767.21 29670.70 32641.46 33174.73 29764.69 35947.56 31839.12 36469.49 34418.49 36384.69 26631.87 34434.20 38175.48 335
USDC54.36 31951.23 32363.76 32064.29 36437.71 34962.84 35973.48 31956.85 23835.47 37471.94 3349.23 38478.43 31838.43 31348.57 33975.13 339
testgi54.25 32052.57 31959.29 34362.76 37021.65 39672.21 31970.47 33953.25 28041.94 35177.33 27314.28 37577.95 32729.18 35451.72 33378.28 309
K. test v354.04 32149.42 33367.92 29268.55 34042.57 32375.51 29263.07 36552.07 28739.21 36364.59 36019.34 35782.21 28437.11 31825.31 39178.97 297
UnsupCasMVSNet_bld53.86 32250.53 32663.84 31963.52 36834.75 35571.38 32581.92 18546.53 32338.95 36557.93 37720.55 35380.20 30839.91 31034.09 38276.57 328
YYNet153.82 32349.96 32965.41 31270.09 33148.95 21672.30 31771.66 33144.25 34131.89 38463.07 36423.73 33573.95 34933.26 33939.40 36873.34 352
MDA-MVSNet_test_wron53.82 32349.95 33065.43 31170.13 33049.05 21272.30 31771.65 33244.23 34231.85 38563.13 36323.68 33674.01 34833.25 34039.35 36973.23 354
test_fmvs153.60 32552.54 32056.78 34958.07 37830.26 37268.95 33742.19 38732.46 37563.59 17082.56 21611.55 37860.81 37558.25 19355.27 31179.28 294
Patchmatch-test53.33 32648.17 33668.81 28173.31 29442.38 32442.98 38858.23 37032.53 37438.79 36670.77 33939.66 18773.51 35325.18 37052.06 33290.55 84
LTVRE_ROB45.45 1952.73 32749.74 33161.69 33369.78 33234.99 35444.52 38567.60 35543.11 34743.79 34374.03 30818.54 36281.45 29028.39 36057.94 28668.62 368
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
EU-MVSNet52.63 32850.72 32558.37 34662.69 37128.13 38572.60 31375.97 29430.94 37940.76 36072.11 33220.16 35470.80 36335.11 33246.11 35476.19 332
test_fmvs1_n52.55 32951.19 32456.65 35051.90 38830.14 37367.66 34142.84 38632.27 37662.30 18582.02 2289.12 38660.84 37457.82 20154.75 31778.99 296
OurMVSNet-221017-052.39 33048.73 33463.35 32465.21 35738.42 34568.54 33964.95 35838.19 35939.57 36271.43 33513.23 37779.92 31037.16 31640.32 36771.72 360
JIA-IIPM52.33 33147.77 33966.03 30771.20 32146.92 26740.00 39376.48 29137.10 36346.73 33437.02 39332.96 26777.88 32835.97 32452.45 33173.29 353
Anonymous2024052151.65 33248.42 33561.34 33756.43 38239.65 34073.57 30773.47 32036.64 36636.59 37063.98 36110.75 38172.25 36035.35 32749.01 33872.11 358
MDA-MVSNet-bldmvs51.56 33347.75 34063.00 32571.60 31647.32 26269.70 33472.12 32543.81 34327.65 39263.38 36221.97 34875.96 34127.30 36532.19 38365.70 376
test_vis1_n51.19 33449.66 33255.76 35451.26 38929.85 37767.20 34338.86 39232.12 37759.50 21479.86 2468.78 38758.23 38256.95 21052.46 33079.19 295
COLMAP_ROBcopyleft43.60 2050.90 33548.05 33759.47 34167.81 34740.57 33771.25 32662.72 36736.49 36736.19 37273.51 31613.48 37673.92 35020.71 38350.26 33663.92 378
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
MIMVSNet150.35 33647.81 33857.96 34761.53 37327.80 38667.40 34274.06 31043.25 34633.31 38365.38 35916.03 37271.34 36121.80 38047.55 34574.75 342
kuosan50.20 33750.09 32850.52 36173.09 29929.09 38265.25 34674.89 30348.27 31341.34 35560.85 37043.45 14167.48 36918.59 38925.07 39255.01 384
KD-MVS_self_test49.24 33846.85 34156.44 35154.32 38322.87 39157.39 37373.36 32144.36 34037.98 36859.30 37518.97 35971.17 36233.48 33742.44 36275.26 337
MVS-HIRNet49.01 33944.71 34361.92 33276.06 25946.61 27163.23 35654.90 37424.77 38733.56 37936.60 39521.28 35175.88 34229.49 35262.54 25063.26 380
new-patchmatchnet48.21 34046.55 34253.18 35757.73 38018.19 40470.24 32971.02 33745.70 33033.70 37860.23 37118.00 36469.86 36627.97 36234.35 37971.49 363
TinyColmap48.15 34144.49 34559.13 34465.73 35438.04 34663.34 35562.86 36638.78 35729.48 38767.23 3546.46 39573.30 35424.59 37241.90 36466.04 374
AllTest47.32 34244.66 34455.32 35565.08 35937.50 35062.96 35854.25 37635.45 37033.42 38072.82 3219.98 38259.33 37824.13 37343.84 35969.13 366
PM-MVS46.92 34343.76 35056.41 35252.18 38732.26 36863.21 35738.18 39337.99 36140.78 35966.20 3555.09 39865.42 37148.19 27141.99 36371.54 362
test_fmvs245.89 34444.32 34650.62 36045.85 39724.70 38958.87 37237.84 39525.22 38552.46 30074.56 3057.07 39054.69 38549.28 26347.70 34372.48 356
RPSCF45.77 34544.13 34750.68 35957.67 38129.66 37854.92 37945.25 38326.69 38445.92 33975.92 29717.43 36745.70 39527.44 36445.95 35576.67 324
pmmvs345.53 34641.55 35257.44 34848.97 39339.68 33970.06 33057.66 37128.32 38234.06 37757.29 3788.50 38866.85 37034.86 33434.26 38065.80 375
dongtai43.51 34744.07 34841.82 37063.75 36621.90 39463.80 35272.05 32639.59 35533.35 38254.54 38141.04 17057.30 38310.75 39917.77 40046.26 393
mvsany_test143.38 34842.57 35145.82 36550.96 39026.10 38755.80 37527.74 40527.15 38347.41 33274.39 30618.67 36144.95 39644.66 29236.31 37366.40 373
mamv442.60 34944.05 34938.26 37559.21 37738.00 34744.14 38739.03 39125.03 38640.61 36168.39 34937.01 22124.28 40946.62 28236.43 37252.50 387
N_pmnet41.25 35039.77 35345.66 36668.50 3410.82 41872.51 3150.38 41735.61 36935.26 37561.51 36720.07 35567.74 36823.51 37540.63 36568.42 369
TDRefinement40.91 35138.37 35548.55 36350.45 39133.03 36558.98 37150.97 37928.50 38129.89 38667.39 3536.21 39754.51 38617.67 39035.25 37658.11 381
test_vis1_rt40.29 35238.64 35445.25 36748.91 39430.09 37459.44 36927.07 40624.52 38838.48 36751.67 3876.71 39349.44 39044.33 29446.59 35356.23 382
DSMNet-mixed38.35 35335.36 35847.33 36448.11 39514.91 40837.87 39436.60 39619.18 39234.37 37659.56 37415.53 37353.01 38820.14 38546.89 35174.07 346
test_fmvs337.95 35435.75 35744.55 36835.50 40318.92 40048.32 38134.00 40018.36 39441.31 35761.58 3662.29 40548.06 39442.72 30337.71 37166.66 372
WB-MVS37.41 35536.37 35640.54 37354.23 38410.43 41165.29 34543.75 38434.86 37327.81 39154.63 38024.94 32763.21 3726.81 40615.00 40147.98 392
FPMVS35.40 35633.67 36040.57 37246.34 39628.74 38441.05 39057.05 37220.37 39122.27 39553.38 3846.87 39244.94 3978.62 40047.11 34948.01 391
SSC-MVS35.20 35734.30 35937.90 37652.58 3868.65 41461.86 36141.64 38831.81 37825.54 39352.94 38623.39 33859.28 3806.10 40712.86 40245.78 395
ANet_high34.39 35829.59 36448.78 36230.34 40722.28 39255.53 37663.79 36338.11 36015.47 39936.56 3966.94 39159.98 37713.93 3955.64 41064.08 377
EGC-MVSNET33.75 35930.42 36343.75 36964.94 36136.21 35360.47 36840.70 3900.02 4110.10 41253.79 3837.39 38960.26 37611.09 39835.23 37734.79 397
new_pmnet33.56 36031.89 36238.59 37449.01 39220.42 39751.01 38037.92 39420.58 38923.45 39446.79 3896.66 39449.28 39220.00 38631.57 38546.09 394
LF4IMVS33.04 36132.55 36134.52 37940.96 39822.03 39344.45 38635.62 39720.42 39028.12 39062.35 3655.03 39931.88 40821.61 38234.42 37849.63 390
LCM-MVSNet28.07 36223.85 37040.71 37127.46 41218.93 39930.82 40046.19 38012.76 39916.40 39734.70 3981.90 40848.69 39320.25 38424.22 39354.51 385
mvsany_test328.00 36325.98 36534.05 38028.97 40815.31 40634.54 39718.17 41116.24 39529.30 38853.37 3852.79 40333.38 40730.01 35120.41 39853.45 386
Gipumacopyleft27.47 36424.26 36937.12 37860.55 37629.17 38111.68 40560.00 36914.18 39710.52 40615.12 4072.20 40763.01 3738.39 40135.65 37419.18 403
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_f27.12 36524.85 36633.93 38126.17 41315.25 40730.24 40122.38 41012.53 40028.23 38949.43 3882.59 40434.34 40625.12 37126.99 38952.20 388
PMMVS226.71 36622.98 37137.87 37736.89 4018.51 41542.51 38929.32 40419.09 39313.01 40137.54 3922.23 40653.11 38714.54 39411.71 40351.99 389
APD_test126.46 36724.41 36832.62 38437.58 40021.74 39540.50 39230.39 40211.45 40116.33 39843.76 3901.63 41041.62 39811.24 39726.82 39034.51 398
PMVScopyleft19.57 2225.07 36822.43 37332.99 38323.12 41422.98 39040.98 39135.19 39815.99 39611.95 40535.87 3971.47 41149.29 3915.41 40931.90 38426.70 402
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test_vis3_rt24.79 36922.95 37230.31 38528.59 40918.92 40037.43 39517.27 41312.90 39821.28 39629.92 4021.02 41236.35 40128.28 36129.82 38835.65 396
test_method24.09 37021.07 37433.16 38227.67 4118.35 41626.63 40235.11 3993.40 40814.35 40036.98 3943.46 40235.31 40319.08 38822.95 39455.81 383
testf121.11 37119.08 37527.18 38730.56 40518.28 40233.43 39824.48 4078.02 40512.02 40333.50 3990.75 41435.09 4047.68 40221.32 39528.17 400
APD_test221.11 37119.08 37527.18 38730.56 40518.28 40233.43 39824.48 4078.02 40512.02 40333.50 3990.75 41435.09 4047.68 40221.32 39528.17 400
E-PMN19.16 37318.40 37721.44 38936.19 40213.63 40947.59 38230.89 40110.73 4025.91 40916.59 4053.66 40139.77 3995.95 4088.14 40510.92 405
EMVS18.42 37417.66 37820.71 39034.13 40412.64 41046.94 38329.94 40310.46 4045.58 41014.93 4084.23 40038.83 4005.24 4107.51 40710.67 406
cdsmvs_eth3d_5k18.33 37524.44 3670.00 3960.00 4180.00 4200.00 40789.40 220.00 4120.00 41592.02 4638.55 1960.00 4130.00 4140.00 4110.00 411
MVEpermissive16.60 2317.34 37613.39 37929.16 38628.43 41019.72 39813.73 40423.63 4097.23 4077.96 40721.41 4030.80 41336.08 4026.97 40410.39 40431.69 399
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
tmp_tt9.44 37710.68 3805.73 3932.49 4164.21 41710.48 40618.04 4120.34 41012.59 40220.49 40411.39 3797.03 41213.84 3966.46 4095.95 407
wuyk23d9.11 3788.77 38210.15 39240.18 39916.76 40520.28 4031.01 4162.58 4092.66 4110.98 4110.23 41612.49 4114.08 4116.90 4081.19 408
ab-mvs-re7.68 37910.24 3810.00 3960.00 4180.00 4200.00 4070.00 4180.00 4120.00 41592.12 420.00 4170.00 4130.00 4140.00 4110.00 411
testmvs6.14 3808.18 3830.01 3940.01 4170.00 42073.40 3100.00 4180.00 4120.02 4130.15 4120.00 4170.00 4130.02 4120.00 4110.02 409
test1236.01 3818.01 3840.01 3940.00 4180.01 41971.93 3230.00 4180.00 4120.02 4130.11 4130.00 4170.00 4130.02 4120.00 4110.02 409
pcd_1.5k_mvsjas3.15 3824.20 3850.00 3960.00 4180.00 4200.00 4070.00 4180.00 4120.00 4150.00 41437.77 2020.00 4130.00 4140.00 4110.00 411
test_blank0.00 3830.00 3860.00 3960.00 4180.00 4200.00 4070.00 4180.00 4120.00 4150.00 4140.00 4170.00 4130.00 4140.00 4110.00 411
uanet_test0.00 3830.00 3860.00 3960.00 4180.00 4200.00 4070.00 4180.00 4120.00 4150.00 4140.00 4170.00 4130.00 4140.00 4110.00 411
DCPMVS0.00 3830.00 3860.00 3960.00 4180.00 4200.00 4070.00 4180.00 4120.00 4150.00 4140.00 4170.00 4130.00 4140.00 4110.00 411
sosnet-low-res0.00 3830.00 3860.00 3960.00 4180.00 4200.00 4070.00 4180.00 4120.00 4150.00 4140.00 4170.00 4130.00 4140.00 4110.00 411
sosnet0.00 3830.00 3860.00 3960.00 4180.00 4200.00 4070.00 4180.00 4120.00 4150.00 4140.00 4170.00 4130.00 4140.00 4110.00 411
uncertanet0.00 3830.00 3860.00 3960.00 4180.00 4200.00 4070.00 4180.00 4120.00 4150.00 4140.00 4170.00 4130.00 4140.00 4110.00 411
Regformer0.00 3830.00 3860.00 3960.00 4180.00 4200.00 4070.00 4180.00 4120.00 4150.00 4140.00 4170.00 4130.00 4140.00 4110.00 411
uanet0.00 3830.00 3860.00 3960.00 4180.00 4200.00 4070.00 4180.00 4120.00 4150.00 4140.00 4170.00 4130.00 4140.00 4110.00 411
WAC-MVS34.28 35722.56 378
FOURS183.24 10849.90 19384.98 13678.76 24947.71 31673.42 61
MSC_two_6792asdad81.53 1591.77 456.03 4691.10 1096.22 881.46 3286.80 2792.34 34
PC_three_145266.58 5887.27 293.70 966.82 494.95 1789.74 391.98 493.98 5
No_MVS81.53 1591.77 456.03 4691.10 1096.22 881.46 3286.80 2792.34 34
test_one_060189.39 2257.29 2288.09 5357.21 23482.06 1293.39 1854.94 31
eth-test20.00 418
eth-test0.00 418
ZD-MVS89.55 1453.46 10884.38 13557.02 23673.97 5691.03 6544.57 12591.17 7875.41 7381.78 73
RE-MVS-def66.66 19680.96 17148.14 24481.54 23576.98 28146.42 32662.75 18089.42 10329.28 29860.52 17272.06 16783.19 242
IU-MVS89.48 1757.49 1791.38 966.22 6688.26 182.83 2187.60 1892.44 31
OPU-MVS81.71 1292.05 355.97 4892.48 394.01 567.21 295.10 1589.82 292.55 394.06 3
test_241102_TWO88.76 3957.50 22883.60 694.09 356.14 2296.37 682.28 2587.43 2092.55 29
test_241102_ONE89.48 1756.89 2988.94 3057.53 22684.61 493.29 2258.81 1196.45 1
9.1478.19 2785.67 5788.32 5188.84 3659.89 17374.58 5192.62 3546.80 9092.66 4281.40 3485.62 41
save fliter85.35 6556.34 4189.31 4081.46 19361.55 145
test_0728_THIRD58.00 21481.91 1393.64 1156.54 1896.44 281.64 3086.86 2592.23 36
test_0728_SECOND82.20 889.50 1557.73 1392.34 588.88 3296.39 481.68 2887.13 2192.47 30
test072689.40 2057.45 1992.32 788.63 4357.71 22283.14 993.96 655.17 26
GSMVS88.13 148
test_part289.33 2355.48 5482.27 11
sam_mvs138.86 19488.13 148
sam_mvs35.99 240
ambc62.06 32953.98 38529.38 38035.08 39679.65 22941.37 35459.96 3726.27 39682.15 28535.34 32838.22 37074.65 343
MTGPAbinary81.31 196
test_post170.84 32814.72 40934.33 25683.86 27148.80 266
test_post16.22 40637.52 21184.72 265
patchmatchnet-post59.74 37338.41 19779.91 312
GG-mvs-BLEND77.77 8386.68 4750.61 17168.67 33888.45 4968.73 10987.45 14559.15 1090.67 9154.83 22487.67 1792.03 43
MTMP87.27 7615.34 414
gm-plane-assit83.24 10854.21 9570.91 2088.23 12995.25 1466.37 125
test9_res78.72 4885.44 4391.39 64
TEST985.68 5555.42 5587.59 6684.00 14557.72 22172.99 6690.98 6744.87 11988.58 155
test_885.72 5455.31 6187.60 6583.88 14857.84 21972.84 7090.99 6644.99 11588.34 166
agg_prior275.65 6885.11 4791.01 76
agg_prior85.64 5854.92 7583.61 15672.53 7588.10 176
TestCases55.32 35565.08 35937.50 35054.25 37635.45 37033.42 38072.82 3219.98 38259.33 37824.13 37343.84 35969.13 366
test_prior456.39 4087.15 80
test_prior289.04 4361.88 14173.55 5991.46 6348.01 7874.73 7785.46 42
test_prior78.39 7286.35 4954.91 7685.45 9989.70 12090.55 84
旧先验281.73 22945.53 33274.66 4870.48 36558.31 192
新几何281.61 233
新几何173.30 20183.10 11153.48 10771.43 33345.55 33166.14 12987.17 15033.88 26180.54 30248.50 26980.33 8685.88 196
旧先验181.57 15847.48 25871.83 32788.66 11836.94 22378.34 10788.67 134
无先验85.19 12678.00 26449.08 30885.13 26052.78 24187.45 164
原ACMM283.77 173
原ACMM176.13 12584.89 7454.59 8785.26 10951.98 28866.70 12187.07 15240.15 18189.70 12051.23 25185.06 4884.10 220
test22279.36 19950.97 16777.99 27967.84 35342.54 34962.84 17986.53 15930.26 29176.91 11785.23 205
testdata277.81 33045.64 288
segment_acmp44.97 117
testdata67.08 29877.59 23545.46 28869.20 34944.47 33871.50 8788.34 12631.21 28570.76 36452.20 24675.88 12985.03 207
testdata177.55 28264.14 97
test1279.24 4486.89 4556.08 4585.16 11472.27 7947.15 8691.10 8185.93 3790.54 86
plane_prior777.95 22948.46 233
plane_prior678.42 22449.39 20736.04 238
plane_prior582.59 17488.30 16965.46 13472.34 16484.49 214
plane_prior483.28 201
plane_prior348.95 21664.01 10062.15 187
plane_prior285.76 10663.60 109
plane_prior178.31 226
plane_prior49.57 19987.43 6964.57 9172.84 160
n20.00 418
nn0.00 418
door-mid41.31 389
lessismore_v067.98 29164.76 36241.25 33245.75 38236.03 37365.63 35819.29 35884.11 27035.67 32521.24 39778.59 303
LGP-MVS_train72.02 22974.42 28448.60 22680.64 20854.69 26953.75 29283.83 18925.73 32186.98 21160.33 17664.71 22380.48 284
test1184.25 139
door43.27 385
HQP5-MVS51.56 156
HQP-NCC79.02 20888.00 5565.45 7864.48 155
ACMP_Plane79.02 20888.00 5565.45 7864.48 155
BP-MVS66.70 122
HQP4-MVS64.47 15888.61 15484.91 210
HQP3-MVS83.68 15273.12 156
HQP2-MVS37.35 214
NP-MVS78.76 21350.43 17785.12 175
MDTV_nov1_ep13_2view43.62 30771.13 32754.95 26659.29 22036.76 22646.33 28587.32 166
MDTV_nov1_ep1361.56 25681.68 15155.12 6872.41 31678.18 26159.19 19058.85 22969.29 34634.69 25286.16 23536.76 32362.96 247
ACMMP++_ref63.20 243
ACMMP++59.38 268
Test By Simon39.38 188
ITE_SJBPF51.84 35858.03 37931.94 37053.57 37836.67 36541.32 35675.23 30111.17 38051.57 38925.81 36948.04 34172.02 359
DeepMVS_CXcopyleft13.10 39121.34 4158.99 41310.02 41510.59 4037.53 40830.55 4011.82 40914.55 4106.83 4057.52 40615.75 404