| MCST-MVS | | | 83.01 1 | 83.30 2 | 82.15 10 | 92.84 2 | 57.58 14 | 93.77 1 | 91.10 10 | 75.95 3 | 77.10 36 | 93.09 27 | 54.15 33 | 95.57 12 | 85.80 10 | 85.87 36 | 93.31 11 |
|
| MM | | | 82.69 2 | 83.29 3 | 80.89 20 | 84.38 82 | 55.40 57 | 92.16 9 | 89.85 20 | 75.28 4 | 82.41 10 | 93.86 8 | 54.30 30 | 93.98 23 | 90.29 1 | 87.13 20 | 93.30 12 |
|
| DVP-MVS++ | | | 82.44 3 | 82.38 5 | 82.62 4 | 91.77 4 | 57.49 15 | 84.98 135 | 88.88 32 | 58.00 213 | 83.60 6 | 93.39 18 | 67.21 2 | 96.39 4 | 81.64 30 | 91.98 4 | 93.98 5 |
|
| DPM-MVS | | | 82.39 4 | 82.36 6 | 82.49 5 | 80.12 188 | 59.50 5 | 92.24 8 | 90.72 14 | 69.37 31 | 83.22 8 | 94.47 2 | 63.81 5 | 93.18 31 | 74.02 82 | 93.25 2 | 94.80 1 |
|
| DELS-MVS | | | 82.32 5 | 82.50 4 | 81.79 11 | 86.80 46 | 56.89 27 | 92.77 2 | 86.30 84 | 77.83 1 | 77.88 33 | 92.13 41 | 60.24 6 | 94.78 19 | 78.97 43 | 89.61 7 | 93.69 8 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| MSP-MVS | | | 82.30 6 | 83.47 1 | 78.80 54 | 82.99 117 | 52.71 130 | 85.04 132 | 88.63 43 | 66.08 69 | 86.77 3 | 92.75 32 | 72.05 1 | 91.46 66 | 83.35 19 | 93.53 1 | 92.23 34 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| SED-MVS | | | 81.92 7 | 81.75 9 | 82.44 7 | 89.48 17 | 56.89 27 | 92.48 3 | 88.94 30 | 57.50 227 | 84.61 4 | 94.09 3 | 58.81 11 | 96.37 6 | 82.28 25 | 87.60 17 | 94.06 3 |
|
| CNVR-MVS | | | 81.76 8 | 81.90 8 | 81.33 17 | 90.04 10 | 57.70 12 | 91.71 10 | 88.87 34 | 70.31 24 | 77.64 35 | 93.87 7 | 52.58 40 | 93.91 26 | 84.17 14 | 87.92 15 | 92.39 30 |
|
| MVS_0304 | | | 81.58 9 | 82.05 7 | 80.20 29 | 82.36 134 | 54.70 80 | 91.13 19 | 88.95 29 | 74.49 5 | 80.04 24 | 93.64 11 | 52.40 41 | 93.27 30 | 88.85 4 | 86.56 30 | 92.61 26 |
|
| DVP-MVS |  | | 81.30 10 | 81.00 13 | 82.20 8 | 89.40 20 | 57.45 17 | 92.34 5 | 89.99 18 | 57.71 221 | 81.91 13 | 93.64 11 | 55.17 25 | 96.44 2 | 81.68 28 | 87.13 20 | 92.72 24 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| CANet | | | 80.90 11 | 81.17 12 | 80.09 35 | 87.62 40 | 54.21 92 | 91.60 13 | 86.47 80 | 73.13 8 | 79.89 25 | 93.10 25 | 49.88 63 | 92.98 32 | 84.09 16 | 84.75 48 | 93.08 17 |
|
| patch_mono-2 | | | 80.84 12 | 81.59 10 | 78.62 61 | 90.34 9 | 53.77 99 | 88.08 53 | 88.36 50 | 76.17 2 | 79.40 27 | 91.09 62 | 55.43 23 | 90.09 107 | 85.01 12 | 80.40 80 | 91.99 44 |
|
| DeepPCF-MVS | | 69.37 1 | 80.65 13 | 81.56 11 | 77.94 79 | 85.46 63 | 49.56 198 | 90.99 21 | 86.66 78 | 70.58 22 | 80.07 23 | 95.30 1 | 56.18 20 | 90.97 82 | 82.57 24 | 86.22 34 | 93.28 13 |
|
| HPM-MVS++ |  | | 80.50 14 | 80.71 14 | 79.88 37 | 87.34 42 | 55.20 64 | 89.93 29 | 87.55 65 | 66.04 72 | 79.46 26 | 93.00 30 | 53.10 37 | 91.76 60 | 80.40 36 | 89.56 8 | 92.68 25 |
|
| CSCG | | | 80.41 15 | 79.72 15 | 82.49 5 | 89.12 25 | 57.67 13 | 89.29 40 | 91.54 5 | 59.19 189 | 71.82 79 | 90.05 90 | 59.72 9 | 96.04 10 | 78.37 49 | 88.40 13 | 93.75 7 |
|
| PS-MVSNAJ | | | 80.06 16 | 79.52 17 | 81.68 13 | 85.58 60 | 60.97 3 | 91.69 11 | 87.02 70 | 70.62 21 | 80.75 20 | 93.22 24 | 37.77 195 | 92.50 44 | 82.75 22 | 86.25 33 | 91.57 55 |
|
| xiu_mvs_v2_base | | | 79.86 17 | 79.31 18 | 81.53 14 | 85.03 72 | 60.73 4 | 91.65 12 | 86.86 73 | 70.30 25 | 80.77 19 | 93.07 29 | 37.63 200 | 92.28 50 | 82.73 23 | 85.71 37 | 91.57 55 |
|
| DPE-MVS |  | | 79.82 18 | 79.66 16 | 80.29 27 | 89.27 24 | 55.08 69 | 88.70 46 | 87.92 56 | 55.55 257 | 81.21 18 | 93.69 10 | 56.51 18 | 94.27 22 | 78.36 50 | 85.70 38 | 91.51 58 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| NCCC | | | 79.57 19 | 79.23 19 | 80.59 22 | 89.50 15 | 56.99 24 | 91.38 15 | 88.17 52 | 67.71 46 | 73.81 54 | 92.75 32 | 46.88 84 | 93.28 29 | 78.79 46 | 84.07 53 | 91.50 59 |
|
| dcpmvs_2 | | | 79.33 20 | 78.94 20 | 80.49 23 | 89.75 12 | 56.54 34 | 84.83 142 | 83.68 149 | 67.85 43 | 69.36 101 | 90.24 82 | 60.20 7 | 92.10 55 | 84.14 15 | 80.40 80 | 92.82 21 |
|
| testing11 | | | 79.18 21 | 78.85 21 | 80.16 31 | 88.33 30 | 56.99 24 | 88.31 51 | 92.06 1 | 72.82 9 | 70.62 97 | 88.37 121 | 57.69 14 | 92.30 48 | 75.25 72 | 76.24 121 | 91.20 68 |
|
| SMA-MVS |  | | 79.10 22 | 78.76 22 | 80.12 33 | 84.42 80 | 55.87 48 | 87.58 67 | 86.76 75 | 61.48 146 | 80.26 22 | 93.10 25 | 46.53 89 | 92.41 46 | 79.97 37 | 88.77 10 | 92.08 38 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| LFMVS | | | 78.52 23 | 77.14 40 | 82.67 3 | 89.58 13 | 58.90 7 | 91.27 18 | 88.05 54 | 63.22 116 | 74.63 46 | 90.83 71 | 41.38 162 | 94.40 20 | 75.42 70 | 79.90 89 | 94.72 2 |
|
| testing99 | | | 78.45 24 | 77.78 31 | 80.45 25 | 88.28 33 | 56.81 30 | 87.95 58 | 91.49 6 | 71.72 13 | 70.84 92 | 88.09 129 | 57.29 15 | 92.63 42 | 69.24 105 | 75.13 134 | 91.91 45 |
|
| APDe-MVS |  | | 78.44 25 | 78.20 25 | 79.19 43 | 88.56 26 | 54.55 86 | 89.76 33 | 87.77 60 | 55.91 252 | 78.56 30 | 92.49 37 | 48.20 70 | 92.65 40 | 79.49 38 | 83.04 57 | 90.39 85 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| MG-MVS | | | 78.42 26 | 76.99 42 | 82.73 2 | 93.17 1 | 64.46 1 | 89.93 29 | 88.51 48 | 64.83 87 | 73.52 57 | 88.09 129 | 48.07 71 | 92.19 51 | 62.24 153 | 84.53 50 | 91.53 57 |
|
| lupinMVS | | | 78.38 27 | 78.11 27 | 79.19 43 | 83.02 115 | 55.24 61 | 91.57 14 | 84.82 122 | 69.12 32 | 76.67 38 | 92.02 45 | 44.82 116 | 90.23 104 | 80.83 35 | 80.09 84 | 92.08 38 |
|
| EPNet | | | 78.36 28 | 78.49 23 | 77.97 77 | 85.49 62 | 52.04 142 | 89.36 38 | 84.07 142 | 73.22 7 | 77.03 37 | 91.72 52 | 49.32 67 | 90.17 106 | 73.46 86 | 82.77 58 | 91.69 50 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| TSAR-MVS + MP. | | | 78.31 29 | 78.26 24 | 78.48 65 | 81.33 163 | 56.31 40 | 81.59 234 | 86.41 81 | 69.61 29 | 81.72 15 | 88.16 128 | 55.09 27 | 88.04 175 | 74.12 81 | 86.31 32 | 91.09 71 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| testing91 | | | 78.30 30 | 77.54 34 | 80.61 21 | 88.16 35 | 57.12 23 | 87.94 59 | 91.07 13 | 71.43 16 | 70.75 93 | 88.04 133 | 55.82 22 | 92.65 40 | 69.61 102 | 75.00 138 | 92.05 40 |
|
| canonicalmvs | | | 78.17 31 | 77.86 30 | 79.12 48 | 84.30 83 | 54.22 91 | 87.71 62 | 84.57 131 | 67.70 47 | 77.70 34 | 92.11 44 | 50.90 52 | 89.95 110 | 78.18 53 | 77.54 107 | 93.20 15 |
|
| alignmvs | | | 78.08 32 | 77.98 28 | 78.39 69 | 83.53 98 | 53.22 118 | 89.77 32 | 85.45 98 | 66.11 67 | 76.59 40 | 91.99 47 | 54.07 34 | 89.05 133 | 77.34 58 | 77.00 110 | 92.89 20 |
|
| DeepC-MVS_fast | | 67.50 3 | 78.00 33 | 77.63 32 | 79.13 47 | 88.52 27 | 55.12 66 | 89.95 28 | 85.98 89 | 68.31 35 | 71.33 86 | 92.75 32 | 45.52 102 | 90.37 97 | 71.15 95 | 85.14 44 | 91.91 45 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| VNet | | | 77.99 34 | 77.92 29 | 78.19 73 | 87.43 41 | 50.12 186 | 90.93 22 | 91.41 8 | 67.48 49 | 75.12 42 | 90.15 88 | 46.77 86 | 91.00 79 | 73.52 85 | 78.46 101 | 93.44 9 |
|
| TSAR-MVS + GP. | | | 77.82 35 | 77.59 33 | 78.49 64 | 85.25 68 | 50.27 185 | 90.02 26 | 90.57 15 | 56.58 246 | 74.26 51 | 91.60 57 | 54.26 31 | 92.16 52 | 75.87 64 | 79.91 88 | 93.05 18 |
|
| casdiffmvs_mvg |  | | 77.75 36 | 77.28 37 | 79.16 45 | 80.42 184 | 54.44 88 | 87.76 61 | 85.46 97 | 71.67 14 | 71.38 85 | 88.35 123 | 51.58 45 | 91.22 72 | 79.02 42 | 79.89 90 | 91.83 49 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| testing222 | | | 77.70 37 | 77.22 39 | 79.14 46 | 86.95 44 | 54.89 75 | 87.18 77 | 91.96 2 | 72.29 11 | 71.17 90 | 88.70 115 | 55.19 24 | 91.24 71 | 65.18 138 | 76.32 120 | 91.29 66 |
|
| SF-MVS | | | 77.64 38 | 77.42 36 | 78.32 71 | 83.75 95 | 52.47 135 | 86.63 90 | 87.80 57 | 58.78 201 | 74.63 46 | 92.38 38 | 47.75 75 | 91.35 68 | 78.18 53 | 86.85 25 | 91.15 70 |
|
| PHI-MVS | | | 77.49 39 | 77.00 41 | 78.95 49 | 85.33 66 | 50.69 168 | 88.57 48 | 88.59 46 | 58.14 210 | 73.60 55 | 93.31 21 | 43.14 139 | 93.79 27 | 73.81 83 | 88.53 12 | 92.37 31 |
|
| WTY-MVS | | | 77.47 40 | 77.52 35 | 77.30 91 | 88.33 30 | 46.25 276 | 88.46 49 | 90.32 16 | 71.40 17 | 72.32 75 | 91.72 52 | 53.44 35 | 92.37 47 | 66.28 124 | 75.42 128 | 93.28 13 |
|
| casdiffmvs |  | | 77.36 41 | 76.85 43 | 78.88 52 | 80.40 185 | 54.66 84 | 87.06 80 | 85.88 90 | 72.11 12 | 71.57 82 | 88.63 120 | 50.89 54 | 90.35 98 | 76.00 63 | 79.11 96 | 91.63 52 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| CS-MVS-test | | | 77.20 42 | 77.25 38 | 77.05 97 | 84.60 77 | 49.04 211 | 89.42 36 | 85.83 92 | 65.90 73 | 72.85 66 | 91.98 49 | 45.10 107 | 91.27 69 | 75.02 74 | 84.56 49 | 90.84 77 |
|
| ETV-MVS | | | 77.17 43 | 76.74 44 | 78.48 65 | 81.80 143 | 54.55 86 | 86.13 98 | 85.33 103 | 68.20 37 | 73.10 62 | 90.52 76 | 45.23 106 | 90.66 90 | 79.37 39 | 80.95 72 | 90.22 91 |
|
| SteuartSystems-ACMMP | | | 77.08 44 | 76.33 49 | 79.34 41 | 80.98 167 | 55.31 59 | 89.76 33 | 86.91 72 | 62.94 121 | 71.65 80 | 91.56 58 | 42.33 146 | 92.56 43 | 77.14 59 | 83.69 55 | 90.15 95 |
| Skip Steuart: Steuart Systems R&D Blog. |
| jason | | | 77.01 45 | 76.45 47 | 78.69 58 | 79.69 193 | 54.74 77 | 90.56 24 | 83.99 145 | 68.26 36 | 74.10 52 | 90.91 68 | 42.14 150 | 89.99 109 | 79.30 40 | 79.12 95 | 91.36 63 |
| jason: jason. |
| train_agg | | | 76.91 46 | 76.40 48 | 78.45 67 | 85.68 56 | 55.42 54 | 87.59 65 | 84.00 143 | 57.84 218 | 72.99 63 | 90.98 65 | 44.99 110 | 88.58 152 | 78.19 51 | 85.32 42 | 91.34 65 |
|
| MVS | | | 76.91 46 | 75.48 59 | 81.23 18 | 84.56 78 | 55.21 63 | 80.23 260 | 91.64 4 | 58.65 203 | 65.37 138 | 91.48 60 | 45.72 99 | 95.05 16 | 72.11 93 | 89.52 9 | 93.44 9 |
|
| DeepC-MVS | | 67.15 4 | 76.90 48 | 76.27 50 | 78.80 54 | 80.70 177 | 55.02 70 | 86.39 92 | 86.71 76 | 66.96 54 | 67.91 111 | 89.97 92 | 48.03 72 | 91.41 67 | 75.60 67 | 84.14 52 | 89.96 101 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| baseline | | | 76.86 49 | 76.24 51 | 78.71 57 | 80.47 183 | 54.20 94 | 83.90 169 | 84.88 121 | 71.38 18 | 71.51 83 | 89.15 108 | 50.51 55 | 90.55 94 | 75.71 65 | 78.65 99 | 91.39 61 |
|
| CS-MVS | | | 76.77 50 | 76.70 45 | 76.99 102 | 83.55 97 | 48.75 220 | 88.60 47 | 85.18 111 | 66.38 62 | 72.47 73 | 91.62 56 | 45.53 101 | 90.99 81 | 74.48 77 | 82.51 60 | 91.23 67 |
|
| PAPM | | | 76.76 51 | 76.07 53 | 78.81 53 | 80.20 186 | 59.11 6 | 86.86 86 | 86.23 85 | 68.60 34 | 70.18 100 | 88.84 113 | 51.57 46 | 87.16 205 | 65.48 130 | 86.68 28 | 90.15 95 |
|
| MAR-MVS | | | 76.76 51 | 75.60 57 | 80.21 28 | 90.87 7 | 54.68 82 | 89.14 41 | 89.11 26 | 62.95 120 | 70.54 98 | 92.33 39 | 41.05 163 | 94.95 17 | 57.90 197 | 86.55 31 | 91.00 74 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| PVSNet_Blended | | | 76.53 53 | 76.54 46 | 76.50 113 | 85.91 53 | 51.83 148 | 88.89 44 | 84.24 139 | 67.82 44 | 69.09 103 | 89.33 105 | 46.70 87 | 88.13 171 | 75.43 68 | 81.48 71 | 89.55 109 |
|
| ACMMP_NAP | | | 76.43 54 | 75.66 56 | 78.73 56 | 81.92 140 | 54.67 83 | 84.06 165 | 85.35 102 | 61.10 152 | 72.99 63 | 91.50 59 | 40.25 171 | 91.00 79 | 76.84 60 | 86.98 23 | 90.51 84 |
|
| MVS_111021_HR | | | 76.39 55 | 75.38 62 | 79.42 40 | 85.33 66 | 56.47 36 | 88.15 52 | 84.97 118 | 65.15 85 | 66.06 129 | 89.88 93 | 43.79 127 | 92.16 52 | 75.03 73 | 80.03 87 | 89.64 107 |
|
| CHOSEN 1792x2688 | | | 76.24 56 | 74.03 80 | 82.88 1 | 83.09 112 | 62.84 2 | 85.73 109 | 85.39 100 | 69.79 27 | 64.87 145 | 83.49 194 | 41.52 161 | 93.69 28 | 70.55 98 | 81.82 67 | 92.12 37 |
|
| SD-MVS | | | 76.18 57 | 74.85 70 | 80.18 30 | 85.39 64 | 56.90 26 | 85.75 107 | 82.45 173 | 56.79 241 | 74.48 49 | 91.81 50 | 43.72 130 | 90.75 88 | 74.61 76 | 78.65 99 | 92.91 19 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| APD-MVS |  | | 76.15 58 | 75.68 55 | 77.54 85 | 88.52 27 | 53.44 109 | 87.26 76 | 85.03 117 | 53.79 274 | 74.91 44 | 91.68 54 | 43.80 126 | 90.31 100 | 74.36 78 | 81.82 67 | 88.87 126 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| VDD-MVS | | | 76.08 59 | 74.97 68 | 79.44 39 | 84.27 85 | 53.33 115 | 91.13 19 | 85.88 90 | 65.33 82 | 72.37 74 | 89.34 103 | 32.52 265 | 92.76 38 | 77.90 55 | 75.96 122 | 92.22 36 |
|
| CDPH-MVS | | | 76.05 60 | 75.19 64 | 78.62 61 | 86.51 48 | 54.98 72 | 87.32 71 | 84.59 130 | 58.62 204 | 70.75 93 | 90.85 70 | 43.10 141 | 90.63 92 | 70.50 99 | 84.51 51 | 90.24 90 |
|
| fmvsm_l_conf0.5_n | | | 75.95 61 | 76.16 52 | 75.31 146 | 76.01 259 | 48.44 231 | 84.98 135 | 71.08 329 | 63.50 110 | 81.70 16 | 93.52 15 | 50.00 59 | 87.18 204 | 87.80 5 | 76.87 112 | 90.32 88 |
|
| EIA-MVS | | | 75.92 62 | 75.18 65 | 78.13 74 | 85.14 69 | 51.60 153 | 87.17 78 | 85.32 104 | 64.69 88 | 68.56 107 | 90.53 75 | 45.79 98 | 91.58 63 | 67.21 117 | 82.18 64 | 91.20 68 |
|
| fmvsm_l_conf0.5_n_a | | | 75.88 63 | 76.07 53 | 75.31 146 | 76.08 255 | 48.34 234 | 85.24 123 | 70.62 333 | 63.13 118 | 81.45 17 | 93.62 14 | 49.98 61 | 87.40 200 | 87.76 6 | 76.77 113 | 90.20 93 |
|
| test_yl | | | 75.85 64 | 74.83 71 | 78.91 50 | 88.08 37 | 51.94 144 | 91.30 16 | 89.28 23 | 57.91 215 | 71.19 88 | 89.20 106 | 42.03 153 | 92.77 36 | 69.41 103 | 75.07 136 | 92.01 42 |
|
| DCV-MVSNet | | | 75.85 64 | 74.83 71 | 78.91 50 | 88.08 37 | 51.94 144 | 91.30 16 | 89.28 23 | 57.91 215 | 71.19 88 | 89.20 106 | 42.03 153 | 92.77 36 | 69.41 103 | 75.07 136 | 92.01 42 |
|
| MVS_Test | | | 75.85 64 | 74.93 69 | 78.62 61 | 84.08 87 | 55.20 64 | 83.99 167 | 85.17 112 | 68.07 40 | 73.38 59 | 82.76 204 | 50.44 56 | 89.00 136 | 65.90 126 | 80.61 76 | 91.64 51 |
|
| ZNCC-MVS | | | 75.82 67 | 75.02 67 | 78.23 72 | 83.88 93 | 53.80 98 | 86.91 85 | 86.05 88 | 59.71 175 | 67.85 112 | 90.55 74 | 42.23 148 | 91.02 78 | 72.66 91 | 85.29 43 | 89.87 104 |
|
| ETVMVS | | | 75.80 68 | 75.44 60 | 76.89 106 | 86.23 50 | 50.38 178 | 85.55 116 | 91.42 7 | 71.30 19 | 68.80 105 | 87.94 135 | 56.42 19 | 89.24 126 | 56.54 210 | 74.75 140 | 91.07 72 |
|
| CLD-MVS | | | 75.60 69 | 75.39 61 | 76.24 117 | 80.69 178 | 52.40 136 | 90.69 23 | 86.20 86 | 74.40 6 | 65.01 143 | 88.93 110 | 42.05 152 | 90.58 93 | 76.57 61 | 73.96 144 | 85.73 193 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| test_fmvsm_n_1920 | | | 75.56 70 | 75.54 58 | 75.61 134 | 74.60 278 | 49.51 201 | 81.82 226 | 74.08 304 | 66.52 60 | 80.40 21 | 93.46 17 | 46.95 83 | 89.72 116 | 86.69 7 | 75.30 129 | 87.61 155 |
|
| MP-MVS-pluss | | | 75.54 71 | 75.03 66 | 77.04 98 | 81.37 162 | 52.65 132 | 84.34 156 | 84.46 132 | 61.16 150 | 69.14 102 | 91.76 51 | 39.98 178 | 88.99 138 | 78.19 51 | 84.89 47 | 89.48 112 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| EC-MVSNet | | | 75.30 72 | 75.20 63 | 75.62 133 | 80.98 167 | 49.00 212 | 87.43 68 | 84.68 128 | 63.49 111 | 70.97 91 | 90.15 88 | 42.86 143 | 91.14 76 | 74.33 79 | 81.90 66 | 86.71 174 |
|
| Effi-MVS+ | | | 75.24 73 | 73.61 82 | 80.16 31 | 81.92 140 | 57.42 19 | 85.21 124 | 76.71 281 | 60.68 163 | 73.32 60 | 89.34 103 | 47.30 79 | 91.63 62 | 68.28 111 | 79.72 91 | 91.42 60 |
|
| ET-MVSNet_ETH3D | | | 75.23 74 | 74.08 78 | 78.67 59 | 84.52 79 | 55.59 50 | 88.92 43 | 89.21 25 | 68.06 41 | 53.13 293 | 90.22 84 | 49.71 64 | 87.62 194 | 72.12 92 | 70.82 172 | 92.82 21 |
|
| PAPR | | | 75.20 75 | 74.13 76 | 78.41 68 | 88.31 32 | 55.10 68 | 84.31 157 | 85.66 94 | 63.76 103 | 67.55 113 | 90.73 72 | 43.48 135 | 89.40 123 | 66.36 123 | 77.03 109 | 90.73 79 |
|
| baseline2 | | | 75.15 76 | 74.54 74 | 76.98 103 | 81.67 150 | 51.74 150 | 83.84 171 | 91.94 3 | 69.97 26 | 58.98 220 | 86.02 161 | 59.73 8 | 91.73 61 | 68.37 110 | 70.40 178 | 87.48 157 |
|
| diffmvs |  | | 75.11 77 | 74.65 73 | 76.46 114 | 78.52 218 | 53.35 113 | 83.28 191 | 79.94 215 | 70.51 23 | 71.64 81 | 88.72 114 | 46.02 95 | 86.08 239 | 77.52 56 | 75.75 126 | 89.96 101 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| MP-MVS |  | | 74.99 78 | 74.33 75 | 76.95 104 | 82.89 121 | 53.05 124 | 85.63 112 | 83.50 154 | 57.86 217 | 67.25 115 | 90.24 82 | 43.38 136 | 88.85 146 | 76.03 62 | 82.23 63 | 88.96 123 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| GST-MVS | | | 74.87 79 | 73.90 81 | 77.77 80 | 83.30 105 | 53.45 108 | 85.75 107 | 85.29 106 | 59.22 188 | 66.50 124 | 89.85 94 | 40.94 164 | 90.76 87 | 70.94 97 | 83.35 56 | 89.10 121 |
|
| fmvsm_s_conf0.5_n | | | 74.48 80 | 74.12 77 | 75.56 136 | 76.96 244 | 47.85 251 | 85.32 121 | 69.80 340 | 64.16 94 | 78.74 28 | 93.48 16 | 45.51 103 | 89.29 125 | 86.48 8 | 66.62 205 | 89.55 109 |
|
| 3Dnovator | | 64.70 6 | 74.46 81 | 72.48 94 | 80.41 26 | 82.84 123 | 55.40 57 | 83.08 196 | 88.61 45 | 67.61 48 | 59.85 203 | 88.66 116 | 34.57 246 | 93.97 24 | 58.42 187 | 88.70 11 | 91.85 48 |
|
| test_fmvsmconf_n | | | 74.41 82 | 74.05 79 | 75.49 140 | 74.16 284 | 48.38 232 | 82.66 204 | 72.57 317 | 67.05 53 | 75.11 43 | 92.88 31 | 46.35 90 | 87.81 180 | 83.93 17 | 71.71 163 | 90.28 89 |
|
| HFP-MVS | | | 74.37 83 | 73.13 89 | 78.10 75 | 84.30 83 | 53.68 101 | 85.58 113 | 84.36 134 | 56.82 239 | 65.78 134 | 90.56 73 | 40.70 169 | 90.90 83 | 69.18 106 | 80.88 73 | 89.71 105 |
|
| VDDNet | | | 74.37 83 | 72.13 105 | 81.09 19 | 79.58 194 | 56.52 35 | 90.02 26 | 86.70 77 | 52.61 284 | 71.23 87 | 87.20 147 | 31.75 275 | 93.96 25 | 74.30 80 | 75.77 125 | 92.79 23 |
|
| MSLP-MVS++ | | | 74.21 85 | 72.25 100 | 80.11 34 | 81.45 160 | 56.47 36 | 86.32 94 | 79.65 223 | 58.19 209 | 66.36 125 | 92.29 40 | 36.11 227 | 90.66 90 | 67.39 115 | 82.49 61 | 93.18 16 |
|
| API-MVS | | | 74.17 86 | 72.07 107 | 80.49 23 | 90.02 11 | 58.55 8 | 87.30 73 | 84.27 136 | 57.51 226 | 65.77 135 | 87.77 138 | 41.61 159 | 95.97 11 | 51.71 245 | 82.63 59 | 86.94 165 |
|
| IB-MVS | | 68.87 2 | 74.01 87 | 72.03 110 | 79.94 36 | 83.04 114 | 55.50 52 | 90.24 25 | 88.65 41 | 67.14 51 | 61.38 191 | 81.74 227 | 53.21 36 | 94.28 21 | 60.45 172 | 62.41 247 | 90.03 99 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| h-mvs33 | | | 73.95 88 | 72.89 90 | 77.15 96 | 80.17 187 | 50.37 179 | 84.68 147 | 83.33 155 | 68.08 38 | 71.97 77 | 88.65 119 | 42.50 144 | 91.15 75 | 78.82 44 | 57.78 288 | 89.91 103 |
|
| HY-MVS | | 67.03 5 | 73.90 89 | 73.14 87 | 76.18 122 | 84.70 76 | 47.36 258 | 75.56 291 | 86.36 83 | 66.27 64 | 70.66 96 | 83.91 186 | 51.05 50 | 89.31 124 | 67.10 118 | 72.61 156 | 91.88 47 |
|
| CostFormer | | | 73.89 90 | 72.30 99 | 78.66 60 | 82.36 134 | 56.58 31 | 75.56 291 | 85.30 105 | 66.06 70 | 70.50 99 | 76.88 280 | 57.02 16 | 89.06 132 | 68.27 112 | 68.74 189 | 90.33 87 |
|
| fmvsm_s_conf0.1_n | | | 73.80 91 | 73.26 84 | 75.43 141 | 73.28 293 | 47.80 252 | 84.57 152 | 69.43 342 | 63.34 113 | 78.40 31 | 93.29 22 | 44.73 119 | 89.22 128 | 85.99 9 | 66.28 212 | 89.26 114 |
|
| ACMMPR | | | 73.76 92 | 72.61 91 | 77.24 95 | 83.92 91 | 52.96 127 | 85.58 113 | 84.29 135 | 56.82 239 | 65.12 139 | 90.45 77 | 37.24 211 | 90.18 105 | 69.18 106 | 80.84 74 | 88.58 134 |
|
| region2R | | | 73.75 93 | 72.55 93 | 77.33 89 | 83.90 92 | 52.98 126 | 85.54 117 | 84.09 141 | 56.83 238 | 65.10 140 | 90.45 77 | 37.34 209 | 90.24 103 | 68.89 108 | 80.83 75 | 88.77 130 |
|
| CANet_DTU | | | 73.71 94 | 73.14 87 | 75.40 142 | 82.61 130 | 50.05 187 | 84.67 149 | 79.36 231 | 69.72 28 | 75.39 41 | 90.03 91 | 29.41 289 | 85.93 245 | 67.99 113 | 79.11 96 | 90.22 91 |
|
| test_fmvsmconf0.1_n | | | 73.69 95 | 73.15 85 | 75.34 144 | 70.71 321 | 48.26 237 | 82.15 216 | 71.83 321 | 66.75 56 | 74.47 50 | 92.59 36 | 44.89 113 | 87.78 185 | 83.59 18 | 71.35 167 | 89.97 100 |
|
| fmvsm_s_conf0.5_n_a | | | 73.68 96 | 73.15 85 | 75.29 149 | 75.45 266 | 48.05 244 | 83.88 170 | 68.84 345 | 63.43 112 | 78.60 29 | 93.37 20 | 45.32 104 | 88.92 143 | 85.39 11 | 64.04 225 | 88.89 125 |
|
| thisisatest0515 | | | 73.64 97 | 72.20 102 | 77.97 77 | 81.63 151 | 53.01 125 | 86.69 89 | 88.81 37 | 62.53 128 | 64.06 158 | 85.65 165 | 52.15 44 | 92.50 44 | 58.43 185 | 69.84 181 | 88.39 139 |
|
| MVSFormer | | | 73.53 98 | 72.19 103 | 77.57 84 | 83.02 115 | 55.24 61 | 81.63 231 | 81.44 190 | 50.28 299 | 76.67 38 | 90.91 68 | 44.82 116 | 86.11 234 | 60.83 164 | 80.09 84 | 91.36 63 |
|
| iter_conf05 | | | 73.51 99 | 72.24 101 | 77.33 89 | 87.93 39 | 55.97 46 | 87.90 60 | 70.81 332 | 68.72 33 | 64.04 159 | 84.36 180 | 47.54 77 | 90.87 84 | 71.11 96 | 67.75 197 | 85.13 203 |
|
| PVSNet_BlendedMVS | | | 73.42 100 | 73.30 83 | 73.76 187 | 85.91 53 | 51.83 148 | 86.18 97 | 84.24 139 | 65.40 79 | 69.09 103 | 80.86 236 | 46.70 87 | 88.13 171 | 75.43 68 | 65.92 214 | 81.33 270 |
|
| PVSNet_Blended_VisFu | | | 73.40 101 | 72.44 95 | 76.30 115 | 81.32 164 | 54.70 80 | 85.81 103 | 78.82 241 | 63.70 104 | 64.53 151 | 85.38 169 | 47.11 82 | 87.38 201 | 67.75 114 | 77.55 106 | 86.81 173 |
|
| MVSTER | | | 73.25 102 | 72.33 97 | 76.01 127 | 85.54 61 | 53.76 100 | 83.52 176 | 87.16 68 | 67.06 52 | 63.88 164 | 81.66 228 | 52.77 38 | 90.44 95 | 64.66 140 | 64.69 221 | 83.84 228 |
|
| EI-MVSNet-Vis-set | | | 73.19 103 | 72.60 92 | 74.99 158 | 82.56 131 | 49.80 194 | 82.55 209 | 89.00 28 | 66.17 66 | 65.89 132 | 88.98 109 | 43.83 125 | 92.29 49 | 65.38 137 | 69.01 187 | 82.87 246 |
|
| PMMVS | | | 72.98 104 | 72.05 108 | 75.78 131 | 83.57 96 | 48.60 223 | 84.08 163 | 82.85 168 | 61.62 142 | 68.24 109 | 90.33 81 | 28.35 293 | 87.78 185 | 72.71 90 | 76.69 114 | 90.95 75 |
|
| XVS | | | 72.92 105 | 71.62 112 | 76.81 107 | 83.41 100 | 52.48 133 | 84.88 140 | 83.20 161 | 58.03 211 | 63.91 162 | 89.63 98 | 35.50 234 | 89.78 113 | 65.50 128 | 80.50 78 | 88.16 140 |
|
| test2506 | | | 72.91 106 | 72.43 96 | 74.32 170 | 80.12 188 | 44.18 302 | 83.19 193 | 84.77 125 | 64.02 96 | 65.97 130 | 87.43 144 | 47.67 76 | 88.72 147 | 59.08 178 | 79.66 92 | 90.08 97 |
|
| TESTMET0.1,1 | | | 72.86 107 | 72.33 97 | 74.46 164 | 81.98 139 | 50.77 166 | 85.13 127 | 85.47 96 | 66.09 68 | 67.30 114 | 83.69 191 | 37.27 210 | 83.57 275 | 65.06 139 | 78.97 98 | 89.05 122 |
|
| fmvsm_s_conf0.1_n_a | | | 72.82 108 | 72.05 108 | 75.12 154 | 70.95 320 | 47.97 247 | 82.72 203 | 68.43 347 | 62.52 129 | 78.17 32 | 93.08 28 | 44.21 122 | 88.86 144 | 84.82 13 | 63.54 231 | 88.54 136 |
|
| Fast-Effi-MVS+ | | | 72.73 109 | 71.15 121 | 77.48 86 | 82.75 125 | 54.76 76 | 86.77 88 | 80.64 203 | 63.05 119 | 65.93 131 | 84.01 184 | 44.42 121 | 89.03 134 | 56.45 214 | 76.36 119 | 88.64 132 |
|
| MTAPA | | | 72.73 109 | 71.22 119 | 77.27 93 | 81.54 157 | 53.57 103 | 67.06 343 | 81.31 192 | 59.41 182 | 68.39 108 | 90.96 67 | 36.07 229 | 89.01 135 | 73.80 84 | 82.45 62 | 89.23 116 |
|
| PGM-MVS | | | 72.60 111 | 71.20 120 | 76.80 110 | 82.95 118 | 52.82 129 | 83.07 197 | 82.14 175 | 56.51 247 | 63.18 171 | 89.81 95 | 35.68 233 | 89.76 115 | 67.30 116 | 80.19 83 | 87.83 149 |
|
| HPM-MVS |  | | 72.60 111 | 71.50 114 | 75.89 129 | 82.02 138 | 51.42 158 | 80.70 253 | 83.05 163 | 56.12 251 | 64.03 160 | 89.53 99 | 37.55 203 | 88.37 160 | 70.48 100 | 80.04 86 | 87.88 148 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| CP-MVS | | | 72.59 113 | 71.46 115 | 76.00 128 | 82.93 120 | 52.32 139 | 86.93 84 | 82.48 172 | 55.15 261 | 63.65 166 | 90.44 80 | 35.03 242 | 88.53 156 | 68.69 109 | 77.83 105 | 87.15 163 |
|
| baseline1 | | | 72.51 114 | 72.12 106 | 73.69 190 | 85.05 70 | 44.46 295 | 83.51 180 | 86.13 87 | 71.61 15 | 64.64 147 | 87.97 134 | 55.00 28 | 89.48 121 | 59.07 179 | 56.05 301 | 87.13 164 |
|
| EI-MVSNet-UG-set | | | 72.37 115 | 71.73 111 | 74.29 171 | 81.60 153 | 49.29 206 | 81.85 224 | 88.64 42 | 65.29 84 | 65.05 141 | 88.29 126 | 43.18 137 | 91.83 59 | 63.74 143 | 67.97 194 | 81.75 257 |
|
| MS-PatchMatch | | | 72.34 116 | 71.26 118 | 75.61 134 | 82.38 133 | 55.55 51 | 88.00 54 | 89.95 19 | 65.38 80 | 56.51 265 | 80.74 238 | 32.28 268 | 92.89 33 | 57.95 196 | 88.10 14 | 78.39 306 |
|
| HQP-MVS | | | 72.34 116 | 71.44 116 | 75.03 156 | 79.02 205 | 51.56 154 | 88.00 54 | 83.68 149 | 65.45 76 | 64.48 152 | 85.13 170 | 37.35 207 | 88.62 150 | 66.70 119 | 73.12 150 | 84.91 207 |
|
| mvs_anonymous | | | 72.29 118 | 70.74 124 | 76.94 105 | 82.85 122 | 54.72 79 | 78.43 277 | 81.54 188 | 63.77 102 | 61.69 188 | 79.32 248 | 51.11 49 | 85.31 252 | 62.15 155 | 75.79 124 | 90.79 78 |
|
| 3Dnovator+ | | 62.71 7 | 72.29 118 | 70.50 128 | 77.65 83 | 83.40 103 | 51.29 162 | 87.32 71 | 86.40 82 | 59.01 196 | 58.49 233 | 88.32 125 | 32.40 266 | 91.27 69 | 57.04 206 | 82.15 65 | 90.38 86 |
|
| nrg030 | | | 72.27 120 | 71.56 113 | 74.42 166 | 75.93 260 | 50.60 170 | 86.97 82 | 83.21 160 | 62.75 123 | 67.15 116 | 84.38 178 | 50.07 58 | 86.66 220 | 71.19 94 | 62.37 248 | 85.99 187 |
|
| UWE-MVS | | | 72.17 121 | 72.15 104 | 72.21 220 | 82.26 136 | 44.29 299 | 86.83 87 | 89.58 21 | 65.58 75 | 65.82 133 | 85.06 172 | 45.02 109 | 84.35 267 | 54.07 227 | 75.18 131 | 87.99 147 |
|
| VPNet | | | 72.07 122 | 71.42 117 | 74.04 177 | 78.64 216 | 47.17 263 | 89.91 31 | 87.97 55 | 72.56 10 | 64.66 146 | 85.04 173 | 41.83 157 | 88.33 164 | 61.17 162 | 60.97 254 | 86.62 175 |
|
| DP-MVS Recon | | | 71.99 123 | 70.31 133 | 77.01 100 | 90.65 8 | 53.44 109 | 89.37 37 | 82.97 166 | 56.33 249 | 63.56 169 | 89.47 100 | 34.02 251 | 92.15 54 | 54.05 228 | 72.41 157 | 85.43 200 |
|
| test_fmvsmconf0.01_n | | | 71.97 124 | 70.95 123 | 75.04 155 | 66.21 347 | 47.87 250 | 80.35 257 | 70.08 337 | 65.85 74 | 72.69 68 | 91.68 54 | 39.99 177 | 87.67 189 | 82.03 27 | 69.66 183 | 89.58 108 |
|
| SDMVSNet | | | 71.89 125 | 70.62 127 | 75.70 132 | 81.70 147 | 51.61 152 | 73.89 303 | 88.72 40 | 66.58 57 | 61.64 189 | 82.38 217 | 37.63 200 | 89.48 121 | 77.44 57 | 65.60 215 | 86.01 185 |
|
| QAPM | | | 71.88 126 | 69.33 150 | 79.52 38 | 82.20 137 | 54.30 90 | 86.30 95 | 88.77 38 | 56.61 245 | 59.72 205 | 87.48 142 | 33.90 253 | 95.36 13 | 47.48 273 | 81.49 70 | 88.90 124 |
|
| ECVR-MVS |  | | 71.81 127 | 71.00 122 | 74.26 172 | 80.12 188 | 43.49 307 | 84.69 146 | 82.16 174 | 64.02 96 | 64.64 147 | 87.43 144 | 35.04 241 | 89.21 129 | 61.24 161 | 79.66 92 | 90.08 97 |
|
| PAPM_NR | | | 71.80 128 | 69.98 140 | 77.26 94 | 81.54 157 | 53.34 114 | 78.60 276 | 85.25 109 | 53.46 277 | 60.53 199 | 88.66 116 | 45.69 100 | 89.24 126 | 56.49 211 | 79.62 94 | 89.19 118 |
|
| mPP-MVS | | | 71.79 129 | 70.38 131 | 76.04 126 | 82.65 129 | 52.06 141 | 84.45 153 | 81.78 185 | 55.59 256 | 62.05 186 | 89.68 97 | 33.48 257 | 88.28 168 | 65.45 133 | 78.24 104 | 87.77 151 |
|
| xiu_mvs_v1_base_debu | | | 71.60 130 | 70.29 134 | 75.55 137 | 77.26 238 | 53.15 119 | 85.34 118 | 79.37 228 | 55.83 253 | 72.54 69 | 90.19 85 | 22.38 336 | 86.66 220 | 73.28 87 | 76.39 116 | 86.85 169 |
|
| xiu_mvs_v1_base | | | 71.60 130 | 70.29 134 | 75.55 137 | 77.26 238 | 53.15 119 | 85.34 118 | 79.37 228 | 55.83 253 | 72.54 69 | 90.19 85 | 22.38 336 | 86.66 220 | 73.28 87 | 76.39 116 | 86.85 169 |
|
| xiu_mvs_v1_base_debi | | | 71.60 130 | 70.29 134 | 75.55 137 | 77.26 238 | 53.15 119 | 85.34 118 | 79.37 228 | 55.83 253 | 72.54 69 | 90.19 85 | 22.38 336 | 86.66 220 | 73.28 87 | 76.39 116 | 86.85 169 |
|
| iter_conf_final | | | 71.46 133 | 69.68 144 | 76.81 107 | 86.03 51 | 53.49 104 | 84.73 144 | 74.37 301 | 60.27 168 | 66.28 126 | 84.36 180 | 35.14 239 | 90.87 84 | 65.41 135 | 70.51 176 | 86.05 184 |
|
| hse-mvs2 | | | 71.44 134 | 70.68 125 | 73.73 189 | 76.34 249 | 47.44 257 | 79.45 269 | 79.47 227 | 68.08 38 | 71.97 77 | 86.01 163 | 42.50 144 | 86.93 213 | 78.82 44 | 53.46 325 | 86.83 172 |
|
| test_fmvsmvis_n_1920 | | | 71.29 135 | 70.38 131 | 74.00 179 | 71.04 319 | 48.79 219 | 79.19 272 | 64.62 355 | 62.75 123 | 66.73 117 | 91.99 47 | 40.94 164 | 88.35 162 | 83.00 20 | 73.18 149 | 84.85 209 |
|
| EPP-MVSNet | | | 71.14 136 | 70.07 139 | 74.33 169 | 79.18 202 | 46.52 269 | 83.81 172 | 86.49 79 | 56.32 250 | 57.95 239 | 84.90 176 | 54.23 32 | 89.14 131 | 58.14 192 | 69.65 184 | 87.33 160 |
|
| VPA-MVSNet | | | 71.12 137 | 70.66 126 | 72.49 214 | 78.75 211 | 44.43 297 | 87.64 63 | 90.02 17 | 63.97 99 | 65.02 142 | 81.58 230 | 42.14 150 | 87.42 199 | 63.42 145 | 63.38 236 | 85.63 197 |
|
| 1314 | | | 71.11 138 | 69.41 147 | 76.22 118 | 79.32 198 | 50.49 173 | 80.23 260 | 85.14 115 | 59.44 181 | 58.93 222 | 88.89 112 | 33.83 255 | 89.60 120 | 61.49 159 | 77.42 108 | 88.57 135 |
|
| test1111 | | | 71.06 139 | 70.42 130 | 72.97 203 | 79.48 195 | 41.49 328 | 84.82 143 | 82.74 169 | 64.20 93 | 62.98 174 | 87.43 144 | 35.20 237 | 87.92 177 | 58.54 184 | 78.42 102 | 89.49 111 |
|
| tpmrst | | | 71.04 140 | 69.77 142 | 74.86 159 | 83.19 109 | 55.86 49 | 75.64 290 | 78.73 245 | 67.88 42 | 64.99 144 | 73.73 309 | 49.96 62 | 79.56 312 | 65.92 125 | 67.85 196 | 89.14 120 |
|
| MVP-Stereo | | | 70.97 141 | 70.44 129 | 72.59 211 | 76.03 258 | 51.36 159 | 85.02 134 | 86.99 71 | 60.31 167 | 56.53 264 | 78.92 254 | 40.11 175 | 90.00 108 | 60.00 176 | 90.01 6 | 76.41 328 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| HQP_MVS | | | 70.96 142 | 69.91 141 | 74.12 175 | 77.95 226 | 49.57 196 | 85.76 105 | 82.59 170 | 63.60 107 | 62.15 184 | 83.28 198 | 36.04 230 | 88.30 166 | 65.46 131 | 72.34 158 | 84.49 211 |
|
| SR-MVS | | | 70.92 143 | 69.73 143 | 74.50 163 | 83.38 104 | 50.48 174 | 84.27 158 | 79.35 232 | 48.96 309 | 66.57 123 | 90.45 77 | 33.65 256 | 87.11 206 | 66.42 121 | 74.56 141 | 85.91 190 |
|
| tpm2 | | | 70.82 144 | 68.44 159 | 77.98 76 | 80.78 175 | 56.11 42 | 74.21 302 | 81.28 194 | 60.24 169 | 68.04 110 | 75.27 298 | 52.26 43 | 88.50 157 | 55.82 218 | 68.03 193 | 89.33 113 |
|
| ACMMP |  | | 70.81 145 | 69.29 151 | 75.39 143 | 81.52 159 | 51.92 146 | 83.43 183 | 83.03 164 | 56.67 244 | 58.80 227 | 88.91 111 | 31.92 273 | 88.58 152 | 65.89 127 | 73.39 148 | 85.67 194 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| OPM-MVS | | | 70.75 146 | 69.58 145 | 74.26 172 | 75.55 265 | 51.34 160 | 86.05 100 | 83.29 159 | 61.94 138 | 62.95 175 | 85.77 164 | 34.15 250 | 88.44 158 | 65.44 134 | 71.07 169 | 82.99 243 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| ab-mvs | | | 70.65 147 | 69.11 153 | 75.29 149 | 80.87 173 | 46.23 277 | 73.48 307 | 85.24 110 | 59.99 171 | 66.65 119 | 80.94 235 | 43.13 140 | 88.69 148 | 63.58 144 | 68.07 192 | 90.95 75 |
|
| Vis-MVSNet |  | | 70.61 148 | 69.34 149 | 74.42 166 | 80.95 172 | 48.49 228 | 86.03 101 | 77.51 266 | 58.74 202 | 65.55 137 | 87.78 137 | 34.37 248 | 85.95 244 | 52.53 243 | 80.61 76 | 88.80 128 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| sss | | | 70.49 149 | 70.13 138 | 71.58 240 | 81.59 154 | 39.02 339 | 80.78 252 | 84.71 127 | 59.34 184 | 66.61 121 | 88.09 129 | 37.17 212 | 85.52 248 | 61.82 158 | 71.02 170 | 90.20 93 |
|
| CDS-MVSNet | | | 70.48 150 | 69.43 146 | 73.64 191 | 77.56 233 | 48.83 218 | 83.51 180 | 77.45 267 | 63.27 115 | 62.33 181 | 85.54 168 | 43.85 124 | 83.29 279 | 57.38 205 | 74.00 143 | 88.79 129 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| thisisatest0530 | | | 70.47 151 | 68.56 157 | 76.20 120 | 79.78 192 | 51.52 156 | 83.49 182 | 88.58 47 | 57.62 224 | 58.60 229 | 82.79 203 | 51.03 51 | 91.48 65 | 52.84 237 | 62.36 249 | 85.59 198 |
|
| XXY-MVS | | | 70.18 152 | 69.28 152 | 72.89 206 | 77.64 230 | 42.88 315 | 85.06 131 | 87.50 66 | 62.58 127 | 62.66 179 | 82.34 220 | 43.64 132 | 89.83 112 | 58.42 187 | 63.70 230 | 85.96 189 |
|
| Anonymous202405211 | | | 70.11 153 | 67.88 169 | 76.79 111 | 87.20 43 | 47.24 262 | 89.49 35 | 77.38 269 | 54.88 266 | 66.14 127 | 86.84 152 | 20.93 346 | 91.54 64 | 56.45 214 | 71.62 164 | 91.59 53 |
|
| PCF-MVS | | 61.03 10 | 70.10 154 | 68.40 160 | 75.22 153 | 77.15 242 | 51.99 143 | 79.30 271 | 82.12 176 | 56.47 248 | 61.88 187 | 86.48 159 | 43.98 123 | 87.24 203 | 55.37 219 | 72.79 155 | 86.43 179 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| BH-RMVSNet | | | 70.08 155 | 68.01 166 | 76.27 116 | 84.21 86 | 51.22 164 | 87.29 74 | 79.33 234 | 58.96 198 | 63.63 167 | 86.77 153 | 33.29 259 | 90.30 102 | 44.63 290 | 73.96 144 | 87.30 162 |
|
| 1112_ss | | | 70.05 156 | 69.37 148 | 72.10 222 | 80.77 176 | 42.78 316 | 85.12 130 | 76.75 279 | 59.69 176 | 61.19 193 | 92.12 42 | 47.48 78 | 83.84 270 | 53.04 235 | 68.21 191 | 89.66 106 |
|
| BH-w/o | | | 70.02 157 | 68.51 158 | 74.56 162 | 82.77 124 | 50.39 177 | 86.60 91 | 78.14 256 | 59.77 174 | 59.65 206 | 85.57 167 | 39.27 183 | 87.30 202 | 49.86 256 | 74.94 139 | 85.99 187 |
|
| FIs | | | 70.00 158 | 70.24 137 | 69.30 272 | 77.93 228 | 38.55 342 | 83.99 167 | 87.72 62 | 66.86 55 | 57.66 246 | 84.17 183 | 52.28 42 | 85.31 252 | 52.72 242 | 68.80 188 | 84.02 219 |
|
| OpenMVS |  | 61.00 11 | 69.99 159 | 67.55 178 | 77.30 91 | 78.37 222 | 54.07 96 | 84.36 155 | 85.76 93 | 57.22 232 | 56.71 261 | 87.67 140 | 30.79 281 | 92.83 35 | 43.04 297 | 84.06 54 | 85.01 205 |
|
| GeoE | | | 69.96 160 | 67.88 169 | 76.22 118 | 81.11 166 | 51.71 151 | 84.15 161 | 76.74 280 | 59.83 173 | 60.91 194 | 84.38 178 | 41.56 160 | 88.10 173 | 51.67 246 | 70.57 175 | 88.84 127 |
|
| HyFIR lowres test | | | 69.94 161 | 67.58 176 | 77.04 98 | 77.11 243 | 57.29 20 | 81.49 239 | 79.11 237 | 58.27 208 | 58.86 225 | 80.41 239 | 42.33 146 | 86.96 211 | 61.91 156 | 68.68 190 | 86.87 167 |
|
| 114514_t | | | 69.87 162 | 67.88 169 | 75.85 130 | 88.38 29 | 52.35 138 | 86.94 83 | 83.68 149 | 53.70 275 | 55.68 271 | 85.60 166 | 30.07 286 | 91.20 73 | 55.84 217 | 71.02 170 | 83.99 221 |
|
| miper_enhance_ethall | | | 69.77 163 | 68.90 155 | 72.38 217 | 78.93 208 | 49.91 190 | 83.29 190 | 78.85 239 | 64.90 86 | 59.37 213 | 79.46 246 | 52.77 38 | 85.16 257 | 63.78 142 | 58.72 270 | 82.08 252 |
|
| Anonymous20240529 | | | 69.71 164 | 67.28 183 | 77.00 101 | 83.78 94 | 50.36 180 | 88.87 45 | 85.10 116 | 47.22 317 | 64.03 160 | 83.37 196 | 27.93 297 | 92.10 55 | 57.78 200 | 67.44 199 | 88.53 137 |
|
| TR-MVS | | | 69.71 164 | 67.85 172 | 75.27 151 | 82.94 119 | 48.48 229 | 87.40 70 | 80.86 200 | 57.15 234 | 64.61 149 | 87.08 149 | 32.67 264 | 89.64 119 | 46.38 281 | 71.55 166 | 87.68 154 |
|
| EI-MVSNet | | | 69.70 166 | 68.70 156 | 72.68 209 | 75.00 272 | 48.90 216 | 79.54 266 | 87.16 68 | 61.05 153 | 63.88 164 | 83.74 189 | 45.87 96 | 90.44 95 | 57.42 204 | 64.68 222 | 78.70 299 |
|
| test-LLR | | | 69.65 167 | 69.01 154 | 71.60 238 | 78.67 213 | 48.17 239 | 85.13 127 | 79.72 220 | 59.18 191 | 63.13 172 | 82.58 211 | 36.91 216 | 80.24 303 | 60.56 168 | 75.17 132 | 86.39 180 |
|
| APD-MVS_3200maxsize | | | 69.62 168 | 68.23 164 | 73.80 186 | 81.58 155 | 48.22 238 | 81.91 222 | 79.50 226 | 48.21 312 | 64.24 157 | 89.75 96 | 31.91 274 | 87.55 196 | 63.08 147 | 73.85 146 | 85.64 196 |
|
| v2v482 | | | 69.55 169 | 67.64 175 | 75.26 152 | 72.32 306 | 53.83 97 | 84.93 139 | 81.94 179 | 65.37 81 | 60.80 196 | 79.25 250 | 41.62 158 | 88.98 139 | 63.03 148 | 59.51 263 | 82.98 244 |
|
| TAMVS | | | 69.51 170 | 68.16 165 | 73.56 194 | 76.30 252 | 48.71 222 | 82.57 207 | 77.17 272 | 62.10 134 | 61.32 192 | 84.23 182 | 41.90 155 | 83.46 277 | 54.80 223 | 73.09 152 | 88.50 138 |
|
| WB-MVSnew | | | 69.36 171 | 68.24 163 | 72.72 208 | 79.26 200 | 49.40 203 | 85.72 110 | 88.85 35 | 61.33 147 | 64.59 150 | 82.38 217 | 34.57 246 | 87.53 197 | 46.82 279 | 70.63 173 | 81.22 274 |
|
| PVSNet | | 62.49 8 | 69.27 172 | 67.81 173 | 73.64 191 | 84.41 81 | 51.85 147 | 84.63 150 | 77.80 260 | 66.42 61 | 59.80 204 | 84.95 175 | 22.14 341 | 80.44 301 | 55.03 220 | 75.11 135 | 88.62 133 |
|
| MVS_111021_LR | | | 69.07 173 | 67.91 167 | 72.54 212 | 77.27 237 | 49.56 198 | 79.77 264 | 73.96 307 | 59.33 186 | 60.73 197 | 87.82 136 | 30.19 285 | 81.53 287 | 69.94 101 | 72.19 160 | 86.53 176 |
|
| GA-MVS | | | 69.04 174 | 66.70 192 | 76.06 125 | 75.11 268 | 52.36 137 | 83.12 195 | 80.23 210 | 63.32 114 | 60.65 198 | 79.22 251 | 30.98 280 | 88.37 160 | 61.25 160 | 66.41 208 | 87.46 158 |
|
| cascas | | | 69.01 175 | 66.13 204 | 77.66 82 | 79.36 196 | 55.41 56 | 86.99 81 | 83.75 148 | 56.69 243 | 58.92 223 | 81.35 232 | 24.31 325 | 92.10 55 | 53.23 232 | 70.61 174 | 85.46 199 |
|
| FA-MVS(test-final) | | | 69.00 176 | 66.60 195 | 76.19 121 | 83.48 99 | 47.96 249 | 74.73 298 | 82.07 177 | 57.27 231 | 62.18 183 | 78.47 258 | 36.09 228 | 92.89 33 | 53.76 231 | 71.32 168 | 87.73 152 |
|
| cl22 | | | 68.85 177 | 67.69 174 | 72.35 218 | 78.07 225 | 49.98 189 | 82.45 212 | 78.48 251 | 62.50 130 | 58.46 234 | 77.95 260 | 49.99 60 | 85.17 256 | 62.55 150 | 58.72 270 | 81.90 255 |
|
| FMVSNet3 | | | 68.84 178 | 67.40 181 | 73.19 199 | 85.05 70 | 48.53 226 | 85.71 111 | 85.36 101 | 60.90 159 | 57.58 248 | 79.15 252 | 42.16 149 | 86.77 216 | 47.25 275 | 63.40 233 | 84.27 215 |
|
| UniMVSNet_NR-MVSNet | | | 68.82 179 | 68.29 162 | 70.40 258 | 75.71 263 | 42.59 318 | 84.23 159 | 86.78 74 | 66.31 63 | 58.51 230 | 82.45 214 | 51.57 46 | 84.64 265 | 53.11 233 | 55.96 302 | 83.96 225 |
|
| v1144 | | | 68.81 180 | 66.82 188 | 74.80 160 | 72.34 305 | 53.46 106 | 84.68 147 | 81.77 186 | 64.25 92 | 60.28 200 | 77.91 261 | 40.23 172 | 88.95 140 | 60.37 173 | 59.52 262 | 81.97 253 |
|
| IS-MVSNet | | | 68.80 181 | 67.55 178 | 72.54 212 | 78.50 219 | 43.43 309 | 81.03 245 | 79.35 232 | 59.12 194 | 57.27 256 | 86.71 154 | 46.05 94 | 87.70 188 | 44.32 292 | 75.60 127 | 86.49 177 |
|
| PS-MVSNAJss | | | 68.78 182 | 67.17 185 | 73.62 193 | 73.01 296 | 48.33 236 | 84.95 138 | 84.81 123 | 59.30 187 | 58.91 224 | 79.84 244 | 37.77 195 | 88.86 144 | 62.83 149 | 63.12 242 | 83.67 231 |
|
| thres200 | | | 68.71 183 | 67.27 184 | 73.02 201 | 84.73 75 | 46.76 266 | 85.03 133 | 87.73 61 | 62.34 132 | 59.87 202 | 83.45 195 | 43.15 138 | 88.32 165 | 31.25 345 | 67.91 195 | 83.98 223 |
|
| UGNet | | | 68.71 183 | 67.11 186 | 73.50 195 | 80.55 182 | 47.61 254 | 84.08 163 | 78.51 250 | 59.45 180 | 65.68 136 | 82.73 207 | 23.78 327 | 85.08 259 | 52.80 238 | 76.40 115 | 87.80 150 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| miper_ehance_all_eth | | | 68.70 185 | 67.58 176 | 72.08 223 | 76.91 245 | 49.48 202 | 82.47 211 | 78.45 252 | 62.68 125 | 58.28 238 | 77.88 262 | 50.90 52 | 85.01 260 | 61.91 156 | 58.72 270 | 81.75 257 |
|
| test_vis1_n_1920 | | | 68.59 186 | 68.31 161 | 69.44 271 | 69.16 332 | 41.51 327 | 84.63 150 | 68.58 346 | 58.80 200 | 73.26 61 | 88.37 121 | 25.30 316 | 80.60 298 | 79.10 41 | 67.55 198 | 86.23 182 |
|
| EPMVS | | | 68.45 187 | 65.44 223 | 77.47 87 | 84.91 73 | 56.17 41 | 71.89 323 | 81.91 182 | 61.72 141 | 60.85 195 | 72.49 323 | 36.21 226 | 87.06 208 | 47.32 274 | 71.62 164 | 89.17 119 |
|
| test-mter | | | 68.36 188 | 67.29 182 | 71.60 238 | 78.67 213 | 48.17 239 | 85.13 127 | 79.72 220 | 53.38 278 | 63.13 172 | 82.58 211 | 27.23 303 | 80.24 303 | 60.56 168 | 75.17 132 | 86.39 180 |
|
| tpm | | | 68.36 188 | 67.48 180 | 70.97 250 | 79.93 191 | 51.34 160 | 76.58 288 | 78.75 244 | 67.73 45 | 63.54 170 | 74.86 300 | 48.33 69 | 72.36 357 | 53.93 229 | 63.71 229 | 89.21 117 |
|
| tttt0517 | | | 68.33 190 | 66.29 200 | 74.46 164 | 78.08 224 | 49.06 208 | 80.88 250 | 89.08 27 | 54.40 271 | 54.75 279 | 80.77 237 | 51.31 48 | 90.33 99 | 49.35 260 | 58.01 282 | 83.99 221 |
|
| BH-untuned | | | 68.28 191 | 66.40 197 | 73.91 181 | 81.62 152 | 50.01 188 | 85.56 115 | 77.39 268 | 57.63 223 | 57.47 253 | 83.69 191 | 36.36 225 | 87.08 207 | 44.81 288 | 73.08 153 | 84.65 210 |
|
| SR-MVS-dyc-post | | | 68.27 192 | 66.87 187 | 72.48 215 | 80.96 169 | 48.14 241 | 81.54 235 | 76.98 275 | 46.42 324 | 62.75 177 | 89.42 101 | 31.17 279 | 86.09 238 | 60.52 170 | 72.06 161 | 83.19 239 |
|
| v148 | | | 68.24 193 | 66.35 198 | 73.88 182 | 71.76 309 | 51.47 157 | 84.23 159 | 81.90 183 | 63.69 105 | 58.94 221 | 76.44 285 | 43.72 130 | 87.78 185 | 60.63 166 | 55.86 304 | 82.39 250 |
|
| AUN-MVS | | | 68.20 194 | 66.35 198 | 73.76 187 | 76.37 248 | 47.45 256 | 79.52 268 | 79.52 225 | 60.98 155 | 62.34 180 | 86.02 161 | 36.59 224 | 86.94 212 | 62.32 152 | 53.47 324 | 86.89 166 |
|
| c3_l | | | 67.97 195 | 66.66 193 | 71.91 234 | 76.20 254 | 49.31 205 | 82.13 218 | 78.00 258 | 61.99 136 | 57.64 247 | 76.94 277 | 49.41 65 | 84.93 261 | 60.62 167 | 57.01 292 | 81.49 261 |
|
| v1192 | | | 67.96 196 | 65.74 215 | 74.63 161 | 71.79 308 | 53.43 111 | 84.06 165 | 80.99 199 | 63.19 117 | 59.56 209 | 77.46 268 | 37.50 206 | 88.65 149 | 58.20 191 | 58.93 269 | 81.79 256 |
|
| v144192 | | | 67.86 197 | 65.76 214 | 74.16 174 | 71.68 310 | 53.09 122 | 84.14 162 | 80.83 201 | 62.85 122 | 59.21 218 | 77.28 271 | 39.30 182 | 88.00 176 | 58.67 183 | 57.88 286 | 81.40 267 |
|
| HPM-MVS_fast | | | 67.86 197 | 66.28 201 | 72.61 210 | 80.67 179 | 48.34 234 | 81.18 243 | 75.95 290 | 50.81 297 | 59.55 210 | 88.05 132 | 27.86 298 | 85.98 241 | 58.83 181 | 73.58 147 | 83.51 232 |
|
| AdaColmap |  | | 67.86 197 | 65.48 220 | 75.00 157 | 88.15 36 | 54.99 71 | 86.10 99 | 76.63 283 | 49.30 306 | 57.80 242 | 86.65 156 | 29.39 290 | 88.94 142 | 45.10 287 | 70.21 179 | 81.06 275 |
|
| sd_testset | | | 67.79 200 | 65.95 209 | 73.32 196 | 81.70 147 | 46.33 274 | 68.99 335 | 80.30 209 | 66.58 57 | 61.64 189 | 82.38 217 | 30.45 283 | 87.63 192 | 55.86 216 | 65.60 215 | 86.01 185 |
|
| UniMVSNet (Re) | | | 67.71 201 | 66.80 189 | 70.45 256 | 74.44 279 | 42.93 314 | 82.42 213 | 84.90 120 | 63.69 105 | 59.63 207 | 80.99 234 | 47.18 80 | 85.23 255 | 51.17 250 | 56.75 293 | 83.19 239 |
|
| V42 | | | 67.66 202 | 65.60 219 | 73.86 183 | 70.69 323 | 53.63 102 | 81.50 237 | 78.61 248 | 63.85 101 | 59.49 212 | 77.49 267 | 37.98 192 | 87.65 190 | 62.33 151 | 58.43 273 | 80.29 285 |
|
| dmvs_re | | | 67.61 203 | 66.00 207 | 72.42 216 | 81.86 142 | 43.45 308 | 64.67 348 | 80.00 213 | 69.56 30 | 60.07 201 | 85.00 174 | 34.71 244 | 87.63 192 | 51.48 247 | 66.68 203 | 86.17 183 |
|
| WR-MVS | | | 67.58 204 | 66.76 190 | 70.04 265 | 75.92 261 | 45.06 293 | 86.23 96 | 85.28 107 | 64.31 91 | 58.50 232 | 81.00 233 | 44.80 118 | 82.00 286 | 49.21 262 | 55.57 307 | 83.06 242 |
|
| tfpn200view9 | | | 67.57 205 | 66.13 204 | 71.89 235 | 84.05 88 | 45.07 290 | 83.40 185 | 87.71 63 | 60.79 160 | 57.79 243 | 82.76 204 | 43.53 133 | 87.80 182 | 28.80 352 | 66.36 209 | 82.78 248 |
|
| FMVSNet2 | | | 67.57 205 | 65.79 213 | 72.90 204 | 82.71 126 | 47.97 247 | 85.15 126 | 84.93 119 | 58.55 205 | 56.71 261 | 78.26 259 | 36.72 221 | 86.67 219 | 46.15 283 | 62.94 244 | 84.07 218 |
|
| FC-MVSNet-test | | | 67.49 207 | 67.91 167 | 66.21 304 | 76.06 256 | 33.06 361 | 80.82 251 | 87.18 67 | 64.44 90 | 54.81 277 | 82.87 201 | 50.40 57 | 82.60 281 | 48.05 270 | 66.55 207 | 82.98 244 |
|
| v1921920 | | | 67.45 208 | 65.23 227 | 74.10 176 | 71.51 313 | 52.90 128 | 83.75 174 | 80.44 206 | 62.48 131 | 59.12 219 | 77.13 272 | 36.98 214 | 87.90 178 | 57.53 202 | 58.14 280 | 81.49 261 |
|
| cl____ | | | 67.43 209 | 65.93 210 | 71.95 231 | 76.33 250 | 48.02 245 | 82.58 206 | 79.12 236 | 61.30 149 | 56.72 260 | 76.92 278 | 46.12 92 | 86.44 227 | 57.98 194 | 56.31 296 | 81.38 269 |
|
| DIV-MVS_self_test | | | 67.43 209 | 65.93 210 | 71.94 232 | 76.33 250 | 48.01 246 | 82.57 207 | 79.11 237 | 61.31 148 | 56.73 259 | 76.92 278 | 46.09 93 | 86.43 228 | 57.98 194 | 56.31 296 | 81.39 268 |
|
| gg-mvs-nofinetune | | | 67.43 209 | 64.53 235 | 76.13 123 | 85.95 52 | 47.79 253 | 64.38 349 | 88.28 51 | 39.34 352 | 66.62 120 | 41.27 386 | 58.69 13 | 89.00 136 | 49.64 258 | 86.62 29 | 91.59 53 |
|
| thres400 | | | 67.40 212 | 66.13 204 | 71.19 246 | 84.05 88 | 45.07 290 | 83.40 185 | 87.71 63 | 60.79 160 | 57.79 243 | 82.76 204 | 43.53 133 | 87.80 182 | 28.80 352 | 66.36 209 | 80.71 280 |
|
| UA-Net | | | 67.32 213 | 66.23 202 | 70.59 254 | 78.85 209 | 41.23 331 | 73.60 305 | 75.45 294 | 61.54 144 | 66.61 121 | 84.53 177 | 38.73 188 | 86.57 225 | 42.48 302 | 74.24 142 | 83.98 223 |
|
| v8 | | | 67.25 214 | 64.99 230 | 74.04 177 | 72.89 299 | 53.31 116 | 82.37 214 | 80.11 212 | 61.54 144 | 54.29 284 | 76.02 294 | 42.89 142 | 88.41 159 | 58.43 185 | 56.36 294 | 80.39 284 |
|
| NR-MVSNet | | | 67.25 214 | 65.99 208 | 71.04 249 | 73.27 294 | 43.91 303 | 85.32 121 | 84.75 126 | 66.05 71 | 53.65 291 | 82.11 223 | 45.05 108 | 85.97 243 | 47.55 272 | 56.18 299 | 83.24 237 |
|
| Test_1112_low_res | | | 67.18 216 | 66.23 202 | 70.02 266 | 78.75 211 | 41.02 332 | 83.43 183 | 73.69 309 | 57.29 230 | 58.45 235 | 82.39 216 | 45.30 105 | 80.88 293 | 50.50 252 | 66.26 213 | 88.16 140 |
|
| CPTT-MVS | | | 67.15 217 | 65.84 212 | 71.07 248 | 80.96 169 | 50.32 182 | 81.94 221 | 74.10 303 | 46.18 327 | 57.91 240 | 87.64 141 | 29.57 288 | 81.31 289 | 64.10 141 | 70.18 180 | 81.56 260 |
|
| test_cas_vis1_n_1920 | | | 67.10 218 | 66.60 195 | 68.59 284 | 65.17 355 | 43.23 311 | 83.23 192 | 69.84 339 | 55.34 260 | 70.67 95 | 87.71 139 | 24.70 323 | 76.66 337 | 78.57 48 | 64.20 224 | 85.89 191 |
|
| GBi-Net | | | 67.09 219 | 65.47 221 | 71.96 228 | 82.71 126 | 46.36 271 | 83.52 176 | 83.31 156 | 58.55 205 | 57.58 248 | 76.23 289 | 36.72 221 | 86.20 230 | 47.25 275 | 63.40 233 | 83.32 234 |
|
| test1 | | | 67.09 219 | 65.47 221 | 71.96 228 | 82.71 126 | 46.36 271 | 83.52 176 | 83.31 156 | 58.55 205 | 57.58 248 | 76.23 289 | 36.72 221 | 86.20 230 | 47.25 275 | 63.40 233 | 83.32 234 |
|
| PatchmatchNet |  | | 67.07 221 | 63.63 241 | 77.40 88 | 83.10 110 | 58.03 9 | 72.11 321 | 77.77 261 | 58.85 199 | 59.37 213 | 70.83 336 | 37.84 194 | 84.93 261 | 42.96 298 | 69.83 182 | 89.26 114 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| v1240 | | | 66.99 222 | 64.68 233 | 73.93 180 | 71.38 316 | 52.66 131 | 83.39 187 | 79.98 214 | 61.97 137 | 58.44 236 | 77.11 273 | 35.25 236 | 87.81 180 | 56.46 213 | 58.15 278 | 81.33 270 |
|
| eth_miper_zixun_eth | | | 66.98 223 | 65.28 226 | 72.06 224 | 75.61 264 | 50.40 176 | 81.00 246 | 76.97 278 | 62.00 135 | 56.99 258 | 76.97 276 | 44.84 115 | 85.58 247 | 58.75 182 | 54.42 316 | 80.21 286 |
|
| TranMVSNet+NR-MVSNet | | | 66.94 224 | 65.61 218 | 70.93 251 | 73.45 290 | 43.38 310 | 83.02 199 | 84.25 137 | 65.31 83 | 58.33 237 | 81.90 226 | 39.92 179 | 85.52 248 | 49.43 259 | 54.89 312 | 83.89 227 |
|
| mvsmamba | | | 66.93 225 | 64.88 232 | 73.09 200 | 75.06 270 | 47.26 260 | 83.36 189 | 69.21 343 | 62.64 126 | 55.68 271 | 81.43 231 | 29.72 287 | 89.20 130 | 63.35 146 | 63.50 232 | 82.79 247 |
|
| thres100view900 | | | 66.87 226 | 65.42 224 | 71.24 244 | 83.29 106 | 43.15 312 | 81.67 230 | 87.78 58 | 59.04 195 | 55.92 269 | 82.18 222 | 43.73 128 | 87.80 182 | 28.80 352 | 66.36 209 | 82.78 248 |
|
| DU-MVS | | | 66.84 227 | 65.74 215 | 70.16 261 | 73.27 294 | 42.59 318 | 81.50 237 | 82.92 167 | 63.53 109 | 58.51 230 | 82.11 223 | 40.75 166 | 84.64 265 | 53.11 233 | 55.96 302 | 83.24 237 |
|
| IterMVS-LS | | | 66.63 228 | 65.36 225 | 70.42 257 | 75.10 269 | 48.90 216 | 81.45 240 | 76.69 282 | 61.05 153 | 55.71 270 | 77.10 274 | 45.86 97 | 83.65 274 | 57.44 203 | 57.88 286 | 78.70 299 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| v10 | | | 66.61 229 | 64.20 238 | 73.83 185 | 72.59 302 | 53.37 112 | 81.88 223 | 79.91 217 | 61.11 151 | 54.09 286 | 75.60 296 | 40.06 176 | 88.26 169 | 56.47 212 | 56.10 300 | 79.86 290 |
|
| Fast-Effi-MVS+-dtu | | | 66.53 230 | 64.10 239 | 73.84 184 | 72.41 304 | 52.30 140 | 84.73 144 | 75.66 291 | 59.51 179 | 56.34 266 | 79.11 253 | 28.11 295 | 85.85 246 | 57.74 201 | 63.29 237 | 83.35 233 |
|
| thres600view7 | | | 66.46 231 | 65.12 228 | 70.47 255 | 83.41 100 | 43.80 305 | 82.15 216 | 87.78 58 | 59.37 183 | 56.02 268 | 82.21 221 | 43.73 128 | 86.90 214 | 26.51 364 | 64.94 218 | 80.71 280 |
|
| LPG-MVS_test | | | 66.44 232 | 64.58 234 | 72.02 225 | 74.42 280 | 48.60 223 | 83.07 197 | 80.64 203 | 54.69 268 | 53.75 289 | 83.83 187 | 25.73 314 | 86.98 209 | 60.33 174 | 64.71 219 | 80.48 282 |
|
| tpm cat1 | | | 66.28 233 | 62.78 243 | 76.77 112 | 81.40 161 | 57.14 22 | 70.03 330 | 77.19 271 | 53.00 281 | 58.76 228 | 70.73 339 | 46.17 91 | 86.73 218 | 43.27 296 | 64.46 223 | 86.44 178 |
|
| EPNet_dtu | | | 66.25 234 | 66.71 191 | 64.87 314 | 78.66 215 | 34.12 356 | 82.80 202 | 75.51 292 | 61.75 140 | 64.47 155 | 86.90 151 | 37.06 213 | 72.46 356 | 43.65 295 | 69.63 185 | 88.02 146 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| Effi-MVS+-dtu | | | 66.24 235 | 64.96 231 | 70.08 263 | 75.17 267 | 49.64 195 | 82.01 219 | 74.48 300 | 62.15 133 | 57.83 241 | 76.08 293 | 30.59 282 | 83.79 271 | 65.40 136 | 60.93 255 | 76.81 321 |
|
| ACMP | | 61.11 9 | 66.24 235 | 64.33 236 | 72.00 227 | 74.89 274 | 49.12 207 | 83.18 194 | 79.83 218 | 55.41 259 | 52.29 299 | 82.68 208 | 25.83 312 | 86.10 236 | 60.89 163 | 63.94 228 | 80.78 278 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| Anonymous20231211 | | | 66.08 237 | 63.67 240 | 73.31 197 | 83.07 113 | 48.75 220 | 86.01 102 | 84.67 129 | 45.27 331 | 56.54 263 | 76.67 283 | 28.06 296 | 88.95 140 | 52.78 239 | 59.95 257 | 82.23 251 |
|
| OMC-MVS | | | 65.97 238 | 65.06 229 | 68.71 281 | 72.97 297 | 42.58 320 | 78.61 275 | 75.35 295 | 54.72 267 | 59.31 215 | 86.25 160 | 33.30 258 | 77.88 326 | 57.99 193 | 67.05 201 | 85.66 195 |
|
| X-MVStestdata | | | 65.85 239 | 62.20 247 | 76.81 107 | 83.41 100 | 52.48 133 | 84.88 140 | 83.20 161 | 58.03 211 | 63.91 162 | 4.82 405 | 35.50 234 | 89.78 113 | 65.50 128 | 80.50 78 | 88.16 140 |
|
| Vis-MVSNet (Re-imp) | | | 65.52 240 | 65.63 217 | 65.17 312 | 77.49 234 | 30.54 368 | 75.49 294 | 77.73 262 | 59.34 184 | 52.26 301 | 86.69 155 | 49.38 66 | 80.53 300 | 37.07 316 | 75.28 130 | 84.42 213 |
|
| Baseline_NR-MVSNet | | | 65.49 241 | 64.27 237 | 69.13 273 | 74.37 282 | 41.65 325 | 83.39 187 | 78.85 239 | 59.56 178 | 59.62 208 | 76.88 280 | 40.75 166 | 87.44 198 | 49.99 254 | 55.05 310 | 78.28 308 |
|
| FMVSNet1 | | | 64.57 242 | 62.11 248 | 71.96 228 | 77.32 236 | 46.36 271 | 83.52 176 | 83.31 156 | 52.43 286 | 54.42 282 | 76.23 289 | 27.80 299 | 86.20 230 | 42.59 301 | 61.34 253 | 83.32 234 |
|
| dp | | | 64.41 243 | 61.58 251 | 72.90 204 | 82.40 132 | 54.09 95 | 72.53 313 | 76.59 284 | 60.39 166 | 55.68 271 | 70.39 340 | 35.18 238 | 76.90 335 | 39.34 308 | 61.71 251 | 87.73 152 |
|
| ACMM | | 58.35 12 | 64.35 244 | 62.01 249 | 71.38 242 | 74.21 283 | 48.51 227 | 82.25 215 | 79.66 222 | 47.61 315 | 54.54 281 | 80.11 240 | 25.26 317 | 86.00 240 | 51.26 248 | 63.16 240 | 79.64 291 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| FE-MVS | | | 64.15 245 | 60.43 266 | 75.30 148 | 80.85 174 | 49.86 192 | 68.28 339 | 78.37 253 | 50.26 302 | 59.31 215 | 73.79 308 | 26.19 310 | 91.92 58 | 40.19 305 | 66.67 204 | 84.12 216 |
|
| pm-mvs1 | | | 64.12 246 | 62.56 244 | 68.78 279 | 71.68 310 | 38.87 340 | 82.89 201 | 81.57 187 | 55.54 258 | 53.89 288 | 77.82 263 | 37.73 198 | 86.74 217 | 48.46 268 | 53.49 323 | 80.72 279 |
|
| miper_lstm_enhance | | | 63.91 247 | 62.30 246 | 68.75 280 | 75.06 270 | 46.78 265 | 69.02 334 | 81.14 195 | 59.68 177 | 52.76 296 | 72.39 326 | 40.71 168 | 77.99 324 | 56.81 209 | 53.09 326 | 81.48 263 |
|
| SCA | | | 63.84 248 | 60.01 270 | 75.32 145 | 78.58 217 | 57.92 10 | 61.61 359 | 77.53 265 | 56.71 242 | 57.75 245 | 70.77 337 | 31.97 271 | 79.91 309 | 48.80 264 | 56.36 294 | 88.13 143 |
|
| test_djsdf | | | 63.84 248 | 61.56 252 | 70.70 253 | 68.78 334 | 44.69 294 | 81.63 231 | 81.44 190 | 50.28 299 | 52.27 300 | 76.26 288 | 26.72 306 | 86.11 234 | 60.83 164 | 55.84 305 | 81.29 273 |
|
| IterMVS | | | 63.77 250 | 61.67 250 | 70.08 263 | 72.68 301 | 51.24 163 | 80.44 255 | 75.51 292 | 60.51 165 | 51.41 304 | 73.70 312 | 32.08 270 | 78.91 314 | 54.30 225 | 54.35 317 | 80.08 288 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| RRT_MVS | | | 63.68 251 | 61.01 260 | 71.70 236 | 73.48 289 | 45.98 279 | 81.19 242 | 76.08 288 | 54.33 272 | 52.84 295 | 79.27 249 | 22.21 339 | 87.65 190 | 54.13 226 | 55.54 308 | 81.46 264 |
|
| myMVS_eth3d | | | 63.52 252 | 63.56 242 | 63.40 321 | 81.73 145 | 34.28 354 | 80.97 247 | 81.02 197 | 60.93 157 | 55.06 275 | 82.64 209 | 48.00 74 | 80.81 294 | 23.42 374 | 58.32 274 | 75.10 338 |
|
| D2MVS | | | 63.49 253 | 61.39 254 | 69.77 267 | 69.29 331 | 48.93 215 | 78.89 274 | 77.71 263 | 60.64 164 | 49.70 314 | 72.10 331 | 27.08 304 | 83.48 276 | 54.48 224 | 62.65 245 | 76.90 320 |
|
| tt0805 | | | 63.39 254 | 61.31 256 | 69.64 268 | 69.36 330 | 38.87 340 | 78.00 278 | 85.48 95 | 48.82 310 | 55.66 274 | 81.66 228 | 24.38 324 | 86.37 229 | 49.04 263 | 59.36 266 | 83.68 230 |
|
| pmmvs4 | | | 63.34 255 | 61.07 259 | 70.16 261 | 70.14 325 | 50.53 172 | 79.97 263 | 71.41 328 | 55.08 262 | 54.12 285 | 78.58 256 | 32.79 263 | 82.09 285 | 50.33 253 | 57.22 291 | 77.86 312 |
|
| jajsoiax | | | 63.21 256 | 60.84 261 | 70.32 259 | 68.33 339 | 44.45 296 | 81.23 241 | 81.05 196 | 53.37 279 | 50.96 309 | 77.81 264 | 17.49 360 | 85.49 250 | 59.31 177 | 58.05 281 | 81.02 276 |
|
| MIMVSNet | | | 63.12 257 | 60.29 267 | 71.61 237 | 75.92 261 | 46.65 267 | 65.15 345 | 81.94 179 | 59.14 193 | 54.65 280 | 69.47 343 | 25.74 313 | 80.63 297 | 41.03 304 | 69.56 186 | 87.55 156 |
|
| CL-MVSNet_self_test | | | 62.98 258 | 61.14 258 | 68.50 286 | 65.86 350 | 42.96 313 | 84.37 154 | 82.98 165 | 60.98 155 | 53.95 287 | 72.70 322 | 40.43 170 | 83.71 273 | 41.10 303 | 47.93 340 | 78.83 298 |
|
| mvs_tets | | | 62.96 259 | 60.55 263 | 70.19 260 | 68.22 342 | 44.24 301 | 80.90 249 | 80.74 202 | 52.99 282 | 50.82 311 | 77.56 265 | 16.74 364 | 85.44 251 | 59.04 180 | 57.94 283 | 80.89 277 |
|
| TransMVSNet (Re) | | | 62.82 260 | 60.76 262 | 69.02 274 | 73.98 286 | 41.61 326 | 86.36 93 | 79.30 235 | 56.90 236 | 52.53 297 | 76.44 285 | 41.85 156 | 87.60 195 | 38.83 309 | 40.61 364 | 77.86 312 |
|
| pmmvs5 | | | 62.80 261 | 61.18 257 | 67.66 291 | 69.53 329 | 42.37 323 | 82.65 205 | 75.19 296 | 54.30 273 | 52.03 302 | 78.51 257 | 31.64 276 | 80.67 296 | 48.60 266 | 58.15 278 | 79.95 289 |
|
| test0.0.03 1 | | | 62.54 262 | 62.44 245 | 62.86 325 | 72.28 307 | 29.51 376 | 82.93 200 | 78.78 242 | 59.18 191 | 53.07 294 | 82.41 215 | 36.91 216 | 77.39 330 | 37.45 312 | 58.96 268 | 81.66 259 |
|
| UniMVSNet_ETH3D | | | 62.51 263 | 60.49 264 | 68.57 285 | 68.30 340 | 40.88 334 | 73.89 303 | 79.93 216 | 51.81 292 | 54.77 278 | 79.61 245 | 24.80 321 | 81.10 290 | 49.93 255 | 61.35 252 | 83.73 229 |
|
| v7n | | | 62.50 264 | 59.27 275 | 72.20 221 | 67.25 345 | 49.83 193 | 77.87 280 | 80.12 211 | 52.50 285 | 48.80 319 | 73.07 317 | 32.10 269 | 87.90 178 | 46.83 278 | 54.92 311 | 78.86 297 |
|
| CR-MVSNet | | | 62.47 265 | 59.04 277 | 72.77 207 | 73.97 287 | 56.57 32 | 60.52 362 | 71.72 323 | 60.04 170 | 57.49 251 | 65.86 353 | 38.94 185 | 80.31 302 | 42.86 299 | 59.93 258 | 81.42 265 |
|
| tpmvs | | | 62.45 266 | 59.42 273 | 71.53 241 | 83.93 90 | 54.32 89 | 70.03 330 | 77.61 264 | 51.91 289 | 53.48 292 | 68.29 347 | 37.91 193 | 86.66 220 | 33.36 335 | 58.27 276 | 73.62 348 |
|
| EG-PatchMatch MVS | | | 62.40 267 | 59.59 271 | 70.81 252 | 73.29 292 | 49.05 209 | 85.81 103 | 84.78 124 | 51.85 291 | 44.19 339 | 73.48 315 | 15.52 369 | 89.85 111 | 40.16 306 | 67.24 200 | 73.54 349 |
|
| XVG-OURS-SEG-HR | | | 62.02 268 | 59.54 272 | 69.46 270 | 65.30 353 | 45.88 280 | 65.06 346 | 73.57 311 | 46.45 323 | 57.42 254 | 83.35 197 | 26.95 305 | 78.09 320 | 53.77 230 | 64.03 226 | 84.42 213 |
|
| XVG-OURS | | | 61.88 269 | 59.34 274 | 69.49 269 | 65.37 352 | 46.27 275 | 64.80 347 | 73.49 312 | 47.04 319 | 57.41 255 | 82.85 202 | 25.15 318 | 78.18 318 | 53.00 236 | 64.98 217 | 84.01 220 |
|
| TAPA-MVS | | 56.12 14 | 61.82 270 | 60.18 269 | 66.71 300 | 78.48 220 | 37.97 345 | 75.19 296 | 76.41 286 | 46.82 320 | 57.04 257 | 86.52 158 | 27.67 301 | 77.03 332 | 26.50 365 | 67.02 202 | 85.14 202 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| Syy-MVS | | | 61.51 271 | 61.35 255 | 62.00 328 | 81.73 145 | 30.09 371 | 80.97 247 | 81.02 197 | 60.93 157 | 55.06 275 | 82.64 209 | 35.09 240 | 80.81 294 | 16.40 389 | 58.32 274 | 75.10 338 |
|
| tfpnnormal | | | 61.47 272 | 59.09 276 | 68.62 283 | 76.29 253 | 41.69 324 | 81.14 244 | 85.16 113 | 54.48 270 | 51.32 305 | 73.63 313 | 32.32 267 | 86.89 215 | 21.78 378 | 55.71 306 | 77.29 318 |
|
| PVSNet_0 | | 57.04 13 | 61.19 273 | 57.24 286 | 73.02 201 | 77.45 235 | 50.31 183 | 79.43 270 | 77.36 270 | 63.96 100 | 47.51 328 | 72.45 325 | 25.03 319 | 83.78 272 | 52.76 241 | 19.22 395 | 84.96 206 |
|
| PLC |  | 52.38 18 | 60.89 274 | 58.97 278 | 66.68 302 | 81.77 144 | 45.70 284 | 78.96 273 | 74.04 306 | 43.66 342 | 47.63 325 | 83.19 200 | 23.52 330 | 77.78 329 | 37.47 311 | 60.46 256 | 76.55 327 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| CVMVSNet | | | 60.85 275 | 60.44 265 | 62.07 326 | 75.00 272 | 32.73 363 | 79.54 266 | 73.49 312 | 36.98 360 | 56.28 267 | 83.74 189 | 29.28 291 | 69.53 365 | 46.48 280 | 63.23 238 | 83.94 226 |
|
| CNLPA | | | 60.59 276 | 58.44 280 | 67.05 297 | 79.21 201 | 47.26 260 | 79.75 265 | 64.34 357 | 42.46 348 | 51.90 303 | 83.94 185 | 27.79 300 | 75.41 342 | 37.12 314 | 59.49 264 | 78.47 303 |
|
| anonymousdsp | | | 60.46 277 | 57.65 283 | 68.88 275 | 63.63 363 | 45.09 289 | 72.93 311 | 78.63 247 | 46.52 322 | 51.12 306 | 72.80 321 | 21.46 344 | 83.07 280 | 57.79 199 | 53.97 318 | 78.47 303 |
|
| testing3 | | | 59.97 278 | 60.19 268 | 59.32 340 | 77.60 231 | 30.01 373 | 81.75 228 | 81.79 184 | 53.54 276 | 50.34 312 | 79.94 241 | 48.99 68 | 76.91 333 | 17.19 387 | 50.59 333 | 71.03 363 |
|
| ACMH | | 53.70 16 | 59.78 279 | 55.94 298 | 71.28 243 | 76.59 247 | 48.35 233 | 80.15 262 | 76.11 287 | 49.74 304 | 41.91 350 | 73.45 316 | 16.50 366 | 90.31 100 | 31.42 343 | 57.63 289 | 75.17 336 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| bld_raw_dy_0_64 | | | 59.75 280 | 57.01 290 | 67.96 289 | 66.73 346 | 45.30 287 | 77.59 282 | 59.97 365 | 50.49 298 | 47.15 330 | 77.03 275 | 17.45 361 | 79.06 313 | 56.92 208 | 59.76 261 | 79.51 292 |
|
| pmmvs6 | | | 59.64 281 | 57.15 287 | 67.09 295 | 66.01 348 | 36.86 349 | 80.50 254 | 78.64 246 | 45.05 333 | 49.05 317 | 73.94 307 | 27.28 302 | 86.10 236 | 43.96 294 | 49.94 335 | 78.31 307 |
|
| MSDG | | | 59.44 282 | 55.14 302 | 72.32 219 | 74.69 275 | 50.71 167 | 74.39 301 | 73.58 310 | 44.44 337 | 43.40 344 | 77.52 266 | 19.45 350 | 90.87 84 | 31.31 344 | 57.49 290 | 75.38 334 |
|
| RPMNet | | | 59.29 283 | 54.25 306 | 74.42 166 | 73.97 287 | 56.57 32 | 60.52 362 | 76.98 275 | 35.72 364 | 57.49 251 | 58.87 372 | 37.73 198 | 85.26 254 | 27.01 363 | 59.93 258 | 81.42 265 |
|
| DP-MVS | | | 59.24 284 | 56.12 296 | 68.63 282 | 88.24 34 | 50.35 181 | 82.51 210 | 64.43 356 | 41.10 350 | 46.70 333 | 78.77 255 | 24.75 322 | 88.57 155 | 22.26 376 | 56.29 298 | 66.96 369 |
|
| OpenMVS_ROB |  | 53.19 17 | 59.20 285 | 56.00 297 | 68.83 277 | 71.13 318 | 44.30 298 | 83.64 175 | 75.02 297 | 46.42 324 | 46.48 335 | 73.03 318 | 18.69 354 | 88.14 170 | 27.74 360 | 61.80 250 | 74.05 345 |
|
| IterMVS-SCA-FT | | | 59.12 286 | 58.81 279 | 60.08 338 | 70.68 324 | 45.07 290 | 80.42 256 | 74.25 302 | 43.54 343 | 50.02 313 | 73.73 309 | 31.97 271 | 56.74 380 | 51.06 251 | 53.60 322 | 78.42 305 |
|
| our_test_3 | | | 59.11 287 | 55.08 303 | 71.18 247 | 71.42 314 | 53.29 117 | 81.96 220 | 74.52 299 | 48.32 311 | 42.08 348 | 69.28 345 | 28.14 294 | 82.15 283 | 34.35 332 | 45.68 354 | 78.11 311 |
|
| Anonymous20231206 | | | 59.08 288 | 57.59 284 | 63.55 319 | 68.77 335 | 32.14 366 | 80.26 259 | 79.78 219 | 50.00 303 | 49.39 315 | 72.39 326 | 26.64 307 | 78.36 317 | 33.12 338 | 57.94 283 | 80.14 287 |
|
| KD-MVS_2432*1600 | | | 59.04 289 | 56.44 293 | 66.86 298 | 79.07 203 | 45.87 281 | 72.13 319 | 80.42 207 | 55.03 263 | 48.15 321 | 71.01 334 | 36.73 219 | 78.05 322 | 35.21 326 | 30.18 383 | 76.67 322 |
|
| miper_refine_blended | | | 59.04 289 | 56.44 293 | 66.86 298 | 79.07 203 | 45.87 281 | 72.13 319 | 80.42 207 | 55.03 263 | 48.15 321 | 71.01 334 | 36.73 219 | 78.05 322 | 35.21 326 | 30.18 383 | 76.67 322 |
|
| WR-MVS_H | | | 58.91 291 | 58.04 282 | 61.54 332 | 69.07 333 | 33.83 358 | 76.91 285 | 81.99 178 | 51.40 294 | 48.17 320 | 74.67 301 | 40.23 172 | 74.15 345 | 31.78 342 | 48.10 338 | 76.64 325 |
|
| LCM-MVSNet-Re | | | 58.82 292 | 56.54 291 | 65.68 306 | 79.31 199 | 29.09 379 | 61.39 361 | 45.79 377 | 60.73 162 | 37.65 365 | 72.47 324 | 31.42 277 | 81.08 291 | 49.66 257 | 70.41 177 | 86.87 167 |
|
| Patchmatch-RL test | | | 58.72 293 | 54.32 305 | 71.92 233 | 63.91 362 | 44.25 300 | 61.73 358 | 55.19 369 | 57.38 229 | 49.31 316 | 54.24 377 | 37.60 202 | 80.89 292 | 62.19 154 | 47.28 345 | 90.63 80 |
|
| FMVSNet5 | | | 58.61 294 | 56.45 292 | 65.10 313 | 77.20 241 | 39.74 336 | 74.77 297 | 77.12 273 | 50.27 301 | 43.28 345 | 67.71 348 | 26.15 311 | 76.90 335 | 36.78 319 | 54.78 313 | 78.65 301 |
|
| ppachtmachnet_test | | | 58.56 295 | 54.34 304 | 71.24 244 | 71.42 314 | 54.74 77 | 81.84 225 | 72.27 319 | 49.02 308 | 45.86 338 | 68.99 346 | 26.27 308 | 83.30 278 | 30.12 347 | 43.23 359 | 75.69 331 |
|
| ACMH+ | | 54.58 15 | 58.55 296 | 55.24 300 | 68.50 286 | 74.68 276 | 45.80 283 | 80.27 258 | 70.21 336 | 47.15 318 | 42.77 347 | 75.48 297 | 16.73 365 | 85.98 241 | 35.10 330 | 54.78 313 | 73.72 347 |
|
| CP-MVSNet | | | 58.54 297 | 57.57 285 | 61.46 333 | 68.50 337 | 33.96 357 | 76.90 286 | 78.60 249 | 51.67 293 | 47.83 323 | 76.60 284 | 34.99 243 | 72.79 354 | 35.45 323 | 47.58 342 | 77.64 316 |
|
| PEN-MVS | | | 58.35 298 | 57.15 287 | 61.94 329 | 67.55 344 | 34.39 353 | 77.01 284 | 78.35 254 | 51.87 290 | 47.72 324 | 76.73 282 | 33.91 252 | 73.75 349 | 34.03 333 | 47.17 346 | 77.68 314 |
|
| PS-CasMVS | | | 58.12 299 | 57.03 289 | 61.37 334 | 68.24 341 | 33.80 359 | 76.73 287 | 78.01 257 | 51.20 295 | 47.54 327 | 76.20 292 | 32.85 261 | 72.76 355 | 35.17 328 | 47.37 344 | 77.55 317 |
|
| dmvs_testset | | | 57.65 300 | 58.21 281 | 55.97 351 | 74.62 277 | 9.82 407 | 63.75 350 | 63.34 359 | 67.23 50 | 48.89 318 | 83.68 193 | 39.12 184 | 76.14 338 | 23.43 373 | 59.80 260 | 81.96 254 |
|
| UnsupCasMVSNet_eth | | | 57.56 301 | 55.15 301 | 64.79 315 | 64.57 360 | 33.12 360 | 73.17 310 | 83.87 147 | 58.98 197 | 41.75 351 | 70.03 341 | 22.54 335 | 79.92 307 | 46.12 284 | 35.31 372 | 81.32 272 |
|
| CHOSEN 280x420 | | | 57.53 302 | 56.38 295 | 60.97 336 | 74.01 285 | 48.10 243 | 46.30 380 | 54.31 371 | 48.18 313 | 50.88 310 | 77.43 269 | 38.37 191 | 59.16 378 | 54.83 221 | 63.14 241 | 75.66 332 |
|
| DTE-MVSNet | | | 57.03 303 | 55.73 299 | 60.95 337 | 65.94 349 | 32.57 364 | 75.71 289 | 77.09 274 | 51.16 296 | 46.65 334 | 76.34 287 | 32.84 262 | 73.22 353 | 30.94 346 | 44.87 355 | 77.06 319 |
|
| PatchMatch-RL | | | 56.66 304 | 53.75 309 | 65.37 311 | 77.91 229 | 45.28 288 | 69.78 332 | 60.38 363 | 41.35 349 | 47.57 326 | 73.73 309 | 16.83 363 | 76.91 333 | 36.99 317 | 59.21 267 | 73.92 346 |
|
| PatchT | | | 56.60 305 | 52.97 312 | 67.48 292 | 72.94 298 | 46.16 278 | 57.30 370 | 73.78 308 | 38.77 354 | 54.37 283 | 57.26 375 | 37.52 204 | 78.06 321 | 32.02 340 | 52.79 327 | 78.23 310 |
|
| Patchmtry | | | 56.56 306 | 52.95 313 | 67.42 293 | 72.53 303 | 50.59 171 | 59.05 366 | 71.72 323 | 37.86 358 | 46.92 331 | 65.86 353 | 38.94 185 | 80.06 306 | 36.94 318 | 46.72 350 | 71.60 359 |
|
| test_0402 | | | 56.45 307 | 53.03 311 | 66.69 301 | 76.78 246 | 50.31 183 | 81.76 227 | 69.61 341 | 42.79 346 | 43.88 340 | 72.13 329 | 22.82 334 | 86.46 226 | 16.57 388 | 50.94 332 | 63.31 377 |
|
| LS3D | | | 56.40 308 | 53.82 308 | 64.12 316 | 81.12 165 | 45.69 285 | 73.42 308 | 66.14 351 | 35.30 368 | 43.24 346 | 79.88 242 | 22.18 340 | 79.62 311 | 19.10 384 | 64.00 227 | 67.05 368 |
|
| ADS-MVSNet | | | 56.17 309 | 51.95 319 | 68.84 276 | 80.60 180 | 53.07 123 | 55.03 373 | 70.02 338 | 44.72 334 | 51.00 307 | 61.19 365 | 22.83 332 | 78.88 315 | 28.54 355 | 53.63 320 | 74.57 342 |
|
| XVG-ACMP-BASELINE | | | 56.03 310 | 52.85 314 | 65.58 307 | 61.91 368 | 40.95 333 | 63.36 351 | 72.43 318 | 45.20 332 | 46.02 336 | 74.09 305 | 9.20 380 | 78.12 319 | 45.13 286 | 58.27 276 | 77.66 315 |
|
| pmmvs-eth3d | | | 55.97 311 | 52.78 315 | 65.54 308 | 61.02 370 | 46.44 270 | 75.36 295 | 67.72 349 | 49.61 305 | 43.65 342 | 67.58 349 | 21.63 343 | 77.04 331 | 44.11 293 | 44.33 356 | 73.15 353 |
|
| F-COLMAP | | | 55.96 312 | 53.65 310 | 62.87 324 | 72.76 300 | 42.77 317 | 74.70 300 | 70.37 335 | 40.03 351 | 41.11 355 | 79.36 247 | 17.77 359 | 73.70 350 | 32.80 339 | 53.96 319 | 72.15 355 |
|
| CMPMVS |  | 40.41 21 | 55.34 313 | 52.64 316 | 63.46 320 | 60.88 371 | 43.84 304 | 61.58 360 | 71.06 330 | 30.43 376 | 36.33 367 | 74.63 302 | 24.14 326 | 75.44 341 | 48.05 270 | 66.62 205 | 71.12 362 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| test20.03 | | | 55.22 314 | 54.07 307 | 58.68 343 | 63.14 365 | 25.00 384 | 77.69 281 | 74.78 298 | 52.64 283 | 43.43 343 | 72.39 326 | 26.21 309 | 74.76 344 | 29.31 350 | 47.05 348 | 76.28 329 |
|
| ADS-MVSNet2 | | | 55.21 315 | 51.44 320 | 66.51 303 | 80.60 180 | 49.56 198 | 55.03 373 | 65.44 352 | 44.72 334 | 51.00 307 | 61.19 365 | 22.83 332 | 75.41 342 | 28.54 355 | 53.63 320 | 74.57 342 |
|
| SixPastTwentyTwo | | | 54.37 316 | 50.10 325 | 67.21 294 | 70.70 322 | 41.46 329 | 74.73 298 | 64.69 354 | 47.56 316 | 39.12 360 | 69.49 342 | 18.49 357 | 84.69 264 | 31.87 341 | 34.20 378 | 75.48 333 |
|
| USDC | | | 54.36 317 | 51.23 321 | 63.76 318 | 64.29 361 | 37.71 346 | 62.84 356 | 73.48 314 | 56.85 237 | 35.47 370 | 71.94 332 | 9.23 379 | 78.43 316 | 38.43 310 | 48.57 337 | 75.13 337 |
|
| testgi | | | 54.25 318 | 52.57 317 | 59.29 341 | 62.76 366 | 21.65 391 | 72.21 318 | 70.47 334 | 53.25 280 | 41.94 349 | 77.33 270 | 14.28 370 | 77.95 325 | 29.18 351 | 51.72 331 | 78.28 308 |
|
| K. test v3 | | | 54.04 319 | 49.42 330 | 67.92 290 | 68.55 336 | 42.57 321 | 75.51 293 | 63.07 360 | 52.07 287 | 39.21 359 | 64.59 357 | 19.34 351 | 82.21 282 | 37.11 315 | 25.31 388 | 78.97 296 |
|
| UnsupCasMVSNet_bld | | | 53.86 320 | 50.53 324 | 63.84 317 | 63.52 364 | 34.75 352 | 71.38 324 | 81.92 181 | 46.53 321 | 38.95 361 | 57.93 373 | 20.55 347 | 80.20 305 | 39.91 307 | 34.09 379 | 76.57 326 |
|
| YYNet1 | | | 53.82 321 | 49.96 326 | 65.41 310 | 70.09 327 | 48.95 213 | 72.30 316 | 71.66 325 | 44.25 339 | 31.89 379 | 63.07 361 | 23.73 328 | 73.95 347 | 33.26 336 | 39.40 366 | 73.34 350 |
|
| MDA-MVSNet_test_wron | | | 53.82 321 | 49.95 327 | 65.43 309 | 70.13 326 | 49.05 209 | 72.30 316 | 71.65 326 | 44.23 340 | 31.85 380 | 63.13 360 | 23.68 329 | 74.01 346 | 33.25 337 | 39.35 367 | 73.23 352 |
|
| test_fmvs1 | | | 53.60 323 | 52.54 318 | 56.78 347 | 58.07 373 | 30.26 369 | 68.95 336 | 42.19 383 | 32.46 371 | 63.59 168 | 82.56 213 | 11.55 373 | 60.81 372 | 58.25 190 | 55.27 309 | 79.28 293 |
|
| Patchmatch-test | | | 53.33 324 | 48.17 333 | 68.81 278 | 73.31 291 | 42.38 322 | 42.98 383 | 58.23 366 | 32.53 370 | 38.79 362 | 70.77 337 | 39.66 180 | 73.51 351 | 25.18 367 | 52.06 330 | 90.55 81 |
|
| LTVRE_ROB | | 45.45 19 | 52.73 325 | 49.74 328 | 61.69 331 | 69.78 328 | 34.99 351 | 44.52 381 | 67.60 350 | 43.11 345 | 43.79 341 | 74.03 306 | 18.54 356 | 81.45 288 | 28.39 357 | 57.94 283 | 68.62 366 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| EU-MVSNet | | | 52.63 326 | 50.72 323 | 58.37 344 | 62.69 367 | 28.13 381 | 72.60 312 | 75.97 289 | 30.94 375 | 40.76 357 | 72.11 330 | 20.16 348 | 70.80 361 | 35.11 329 | 46.11 352 | 76.19 330 |
|
| test_fmvs1_n | | | 52.55 327 | 51.19 322 | 56.65 348 | 51.90 383 | 30.14 370 | 67.66 340 | 42.84 382 | 32.27 372 | 62.30 182 | 82.02 225 | 9.12 381 | 60.84 371 | 57.82 198 | 54.75 315 | 78.99 295 |
|
| OurMVSNet-221017-0 | | | 52.39 328 | 48.73 331 | 63.35 322 | 65.21 354 | 38.42 343 | 68.54 338 | 64.95 353 | 38.19 355 | 39.57 358 | 71.43 333 | 13.23 372 | 79.92 307 | 37.16 313 | 40.32 365 | 71.72 358 |
|
| JIA-IIPM | | | 52.33 329 | 47.77 336 | 66.03 305 | 71.20 317 | 46.92 264 | 40.00 388 | 76.48 285 | 37.10 359 | 46.73 332 | 37.02 388 | 32.96 260 | 77.88 326 | 35.97 321 | 52.45 329 | 73.29 351 |
|
| Anonymous20240521 | | | 51.65 330 | 48.42 332 | 61.34 335 | 56.43 377 | 39.65 338 | 73.57 306 | 73.47 315 | 36.64 362 | 36.59 366 | 63.98 358 | 10.75 376 | 72.25 358 | 35.35 324 | 49.01 336 | 72.11 356 |
|
| MDA-MVSNet-bldmvs | | | 51.56 331 | 47.75 337 | 63.00 323 | 71.60 312 | 47.32 259 | 69.70 333 | 72.12 320 | 43.81 341 | 27.65 387 | 63.38 359 | 21.97 342 | 75.96 339 | 27.30 362 | 32.19 380 | 65.70 374 |
|
| test_vis1_n | | | 51.19 332 | 49.66 329 | 55.76 352 | 51.26 384 | 29.85 374 | 67.20 342 | 38.86 387 | 32.12 373 | 59.50 211 | 79.86 243 | 8.78 382 | 58.23 379 | 56.95 207 | 52.46 328 | 79.19 294 |
|
| COLMAP_ROB |  | 43.60 20 | 50.90 333 | 48.05 334 | 59.47 339 | 67.81 343 | 40.57 335 | 71.25 325 | 62.72 362 | 36.49 363 | 36.19 368 | 73.51 314 | 13.48 371 | 73.92 348 | 20.71 380 | 50.26 334 | 63.92 376 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| MIMVSNet1 | | | 50.35 334 | 47.81 335 | 57.96 345 | 61.53 369 | 27.80 382 | 67.40 341 | 74.06 305 | 43.25 344 | 33.31 378 | 65.38 356 | 16.03 367 | 71.34 359 | 21.80 377 | 47.55 343 | 74.75 340 |
|
| KD-MVS_self_test | | | 49.24 335 | 46.85 338 | 56.44 349 | 54.32 378 | 22.87 387 | 57.39 369 | 73.36 316 | 44.36 338 | 37.98 364 | 59.30 371 | 18.97 353 | 71.17 360 | 33.48 334 | 42.44 360 | 75.26 335 |
|
| MVS-HIRNet | | | 49.01 336 | 44.71 340 | 61.92 330 | 76.06 256 | 46.61 268 | 63.23 353 | 54.90 370 | 24.77 382 | 33.56 375 | 36.60 390 | 21.28 345 | 75.88 340 | 29.49 349 | 62.54 246 | 63.26 378 |
|
| new-patchmatchnet | | | 48.21 337 | 46.55 339 | 53.18 355 | 57.73 375 | 18.19 399 | 70.24 328 | 71.02 331 | 45.70 328 | 33.70 374 | 60.23 367 | 18.00 358 | 69.86 364 | 27.97 359 | 34.35 376 | 71.49 361 |
|
| TinyColmap | | | 48.15 338 | 44.49 342 | 59.13 342 | 65.73 351 | 38.04 344 | 63.34 352 | 62.86 361 | 38.78 353 | 29.48 382 | 67.23 351 | 6.46 390 | 73.30 352 | 24.59 369 | 41.90 362 | 66.04 372 |
|
| AllTest | | | 47.32 339 | 44.66 341 | 55.32 353 | 65.08 356 | 37.50 347 | 62.96 355 | 54.25 372 | 35.45 366 | 33.42 376 | 72.82 319 | 9.98 377 | 59.33 375 | 24.13 370 | 43.84 357 | 69.13 364 |
|
| PM-MVS | | | 46.92 340 | 43.76 345 | 56.41 350 | 52.18 382 | 32.26 365 | 63.21 354 | 38.18 388 | 37.99 357 | 40.78 356 | 66.20 352 | 5.09 393 | 65.42 368 | 48.19 269 | 41.99 361 | 71.54 360 |
|
| test_fmvs2 | | | 45.89 341 | 44.32 343 | 50.62 358 | 45.85 392 | 24.70 385 | 58.87 368 | 37.84 390 | 25.22 381 | 52.46 298 | 74.56 303 | 7.07 385 | 54.69 381 | 49.28 261 | 47.70 341 | 72.48 354 |
|
| RPSCF | | | 45.77 342 | 44.13 344 | 50.68 357 | 57.67 376 | 29.66 375 | 54.92 375 | 45.25 379 | 26.69 380 | 45.92 337 | 75.92 295 | 17.43 362 | 45.70 391 | 27.44 361 | 45.95 353 | 76.67 322 |
|
| pmmvs3 | | | 45.53 343 | 41.55 347 | 57.44 346 | 48.97 388 | 39.68 337 | 70.06 329 | 57.66 367 | 28.32 378 | 34.06 373 | 57.29 374 | 8.50 383 | 66.85 367 | 34.86 331 | 34.26 377 | 65.80 373 |
|
| mvsany_test1 | | | 43.38 344 | 42.57 346 | 45.82 362 | 50.96 385 | 26.10 383 | 55.80 371 | 27.74 400 | 27.15 379 | 47.41 329 | 74.39 304 | 18.67 355 | 44.95 392 | 44.66 289 | 36.31 370 | 66.40 371 |
|
| N_pmnet | | | 41.25 345 | 39.77 348 | 45.66 363 | 68.50 337 | 0.82 413 | 72.51 314 | 0.38 412 | 35.61 365 | 35.26 371 | 61.51 364 | 20.07 349 | 67.74 366 | 23.51 372 | 40.63 363 | 68.42 367 |
|
| TDRefinement | | | 40.91 346 | 38.37 350 | 48.55 360 | 50.45 386 | 33.03 362 | 58.98 367 | 50.97 375 | 28.50 377 | 29.89 381 | 67.39 350 | 6.21 392 | 54.51 382 | 17.67 386 | 35.25 373 | 58.11 379 |
|
| test_vis1_rt | | | 40.29 347 | 38.64 349 | 45.25 364 | 48.91 389 | 30.09 371 | 59.44 365 | 27.07 401 | 24.52 383 | 38.48 363 | 51.67 382 | 6.71 388 | 49.44 386 | 44.33 291 | 46.59 351 | 56.23 380 |
|
| DSMNet-mixed | | | 38.35 348 | 35.36 353 | 47.33 361 | 48.11 390 | 14.91 403 | 37.87 389 | 36.60 391 | 19.18 387 | 34.37 372 | 59.56 370 | 15.53 368 | 53.01 384 | 20.14 382 | 46.89 349 | 74.07 344 |
|
| test_fmvs3 | | | 37.95 349 | 35.75 352 | 44.55 365 | 35.50 398 | 18.92 395 | 48.32 377 | 34.00 395 | 18.36 389 | 41.31 354 | 61.58 363 | 2.29 400 | 48.06 390 | 42.72 300 | 37.71 369 | 66.66 370 |
|
| WB-MVS | | | 37.41 350 | 36.37 351 | 40.54 369 | 54.23 379 | 10.43 406 | 65.29 344 | 43.75 380 | 34.86 369 | 27.81 386 | 54.63 376 | 24.94 320 | 63.21 369 | 6.81 401 | 15.00 396 | 47.98 388 |
|
| FPMVS | | | 35.40 351 | 33.67 355 | 40.57 368 | 46.34 391 | 28.74 380 | 41.05 385 | 57.05 368 | 20.37 386 | 22.27 390 | 53.38 379 | 6.87 387 | 44.94 393 | 8.62 395 | 47.11 347 | 48.01 387 |
|
| SSC-MVS | | | 35.20 352 | 34.30 354 | 37.90 371 | 52.58 381 | 8.65 409 | 61.86 357 | 41.64 384 | 31.81 374 | 25.54 388 | 52.94 381 | 23.39 331 | 59.28 377 | 6.10 402 | 12.86 397 | 45.78 390 |
|
| ANet_high | | | 34.39 353 | 29.59 359 | 48.78 359 | 30.34 402 | 22.28 388 | 55.53 372 | 63.79 358 | 38.11 356 | 15.47 394 | 36.56 391 | 6.94 386 | 59.98 374 | 13.93 391 | 5.64 405 | 64.08 375 |
|
| EGC-MVSNET | | | 33.75 354 | 30.42 358 | 43.75 366 | 64.94 358 | 36.21 350 | 60.47 364 | 40.70 386 | 0.02 406 | 0.10 407 | 53.79 378 | 7.39 384 | 60.26 373 | 11.09 394 | 35.23 374 | 34.79 392 |
|
| new_pmnet | | | 33.56 355 | 31.89 357 | 38.59 370 | 49.01 387 | 20.42 392 | 51.01 376 | 37.92 389 | 20.58 384 | 23.45 389 | 46.79 384 | 6.66 389 | 49.28 388 | 20.00 383 | 31.57 382 | 46.09 389 |
|
| LF4IMVS | | | 33.04 356 | 32.55 356 | 34.52 374 | 40.96 393 | 22.03 389 | 44.45 382 | 35.62 392 | 20.42 385 | 28.12 385 | 62.35 362 | 5.03 394 | 31.88 404 | 21.61 379 | 34.42 375 | 49.63 386 |
|
| LCM-MVSNet | | | 28.07 357 | 23.85 365 | 40.71 367 | 27.46 407 | 18.93 394 | 30.82 395 | 46.19 376 | 12.76 394 | 16.40 392 | 34.70 393 | 1.90 403 | 48.69 389 | 20.25 381 | 24.22 389 | 54.51 382 |
|
| mvsany_test3 | | | 28.00 358 | 25.98 360 | 34.05 375 | 28.97 403 | 15.31 401 | 34.54 392 | 18.17 406 | 16.24 390 | 29.30 383 | 53.37 380 | 2.79 398 | 33.38 403 | 30.01 348 | 20.41 394 | 53.45 383 |
|
| Gipuma |  | | 27.47 359 | 24.26 364 | 37.12 373 | 60.55 372 | 29.17 378 | 11.68 400 | 60.00 364 | 14.18 392 | 10.52 401 | 15.12 402 | 2.20 402 | 63.01 370 | 8.39 396 | 35.65 371 | 19.18 398 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| test_f | | | 27.12 360 | 24.85 361 | 33.93 376 | 26.17 408 | 15.25 402 | 30.24 396 | 22.38 405 | 12.53 395 | 28.23 384 | 49.43 383 | 2.59 399 | 34.34 402 | 25.12 368 | 26.99 386 | 52.20 384 |
|
| PMMVS2 | | | 26.71 361 | 22.98 366 | 37.87 372 | 36.89 396 | 8.51 410 | 42.51 384 | 29.32 399 | 19.09 388 | 13.01 396 | 37.54 387 | 2.23 401 | 53.11 383 | 14.54 390 | 11.71 398 | 51.99 385 |
|
| APD_test1 | | | 26.46 362 | 24.41 363 | 32.62 379 | 37.58 395 | 21.74 390 | 40.50 387 | 30.39 397 | 11.45 396 | 16.33 393 | 43.76 385 | 1.63 405 | 41.62 394 | 11.24 393 | 26.82 387 | 34.51 393 |
|
| PMVS |  | 19.57 22 | 25.07 363 | 22.43 368 | 32.99 378 | 23.12 409 | 22.98 386 | 40.98 386 | 35.19 393 | 15.99 391 | 11.95 400 | 35.87 392 | 1.47 406 | 49.29 387 | 5.41 404 | 31.90 381 | 26.70 397 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| test_vis3_rt | | | 24.79 364 | 22.95 367 | 30.31 380 | 28.59 404 | 18.92 395 | 37.43 390 | 17.27 408 | 12.90 393 | 21.28 391 | 29.92 397 | 1.02 407 | 36.35 397 | 28.28 358 | 29.82 385 | 35.65 391 |
|
| test_method | | | 24.09 365 | 21.07 369 | 33.16 377 | 27.67 406 | 8.35 411 | 26.63 397 | 35.11 394 | 3.40 403 | 14.35 395 | 36.98 389 | 3.46 397 | 35.31 399 | 19.08 385 | 22.95 390 | 55.81 381 |
|
| testf1 | | | 21.11 366 | 19.08 370 | 27.18 382 | 30.56 400 | 18.28 397 | 33.43 393 | 24.48 402 | 8.02 400 | 12.02 398 | 33.50 394 | 0.75 409 | 35.09 400 | 7.68 397 | 21.32 391 | 28.17 395 |
|
| APD_test2 | | | 21.11 366 | 19.08 370 | 27.18 382 | 30.56 400 | 18.28 397 | 33.43 393 | 24.48 402 | 8.02 400 | 12.02 398 | 33.50 394 | 0.75 409 | 35.09 400 | 7.68 397 | 21.32 391 | 28.17 395 |
|
| E-PMN | | | 19.16 368 | 18.40 372 | 21.44 384 | 36.19 397 | 13.63 404 | 47.59 378 | 30.89 396 | 10.73 397 | 5.91 404 | 16.59 400 | 3.66 396 | 39.77 395 | 5.95 403 | 8.14 400 | 10.92 400 |
|
| EMVS | | | 18.42 369 | 17.66 373 | 20.71 385 | 34.13 399 | 12.64 405 | 46.94 379 | 29.94 398 | 10.46 399 | 5.58 405 | 14.93 403 | 4.23 395 | 38.83 396 | 5.24 405 | 7.51 402 | 10.67 401 |
|
| cdsmvs_eth3d_5k | | | 18.33 370 | 24.44 362 | 0.00 391 | 0.00 413 | 0.00 415 | 0.00 402 | 89.40 22 | 0.00 407 | 0.00 410 | 92.02 45 | 38.55 189 | 0.00 408 | 0.00 409 | 0.00 406 | 0.00 406 |
|
| MVE |  | 16.60 23 | 17.34 371 | 13.39 374 | 29.16 381 | 28.43 405 | 19.72 393 | 13.73 399 | 23.63 404 | 7.23 402 | 7.96 402 | 21.41 398 | 0.80 408 | 36.08 398 | 6.97 399 | 10.39 399 | 31.69 394 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| tmp_tt | | | 9.44 372 | 10.68 375 | 5.73 388 | 2.49 411 | 4.21 412 | 10.48 401 | 18.04 407 | 0.34 405 | 12.59 397 | 20.49 399 | 11.39 374 | 7.03 407 | 13.84 392 | 6.46 404 | 5.95 402 |
|
| wuyk23d | | | 9.11 373 | 8.77 377 | 10.15 387 | 40.18 394 | 16.76 400 | 20.28 398 | 1.01 411 | 2.58 404 | 2.66 406 | 0.98 406 | 0.23 411 | 12.49 406 | 4.08 406 | 6.90 403 | 1.19 403 |
|
| ab-mvs-re | | | 7.68 374 | 10.24 376 | 0.00 391 | 0.00 413 | 0.00 415 | 0.00 402 | 0.00 413 | 0.00 407 | 0.00 410 | 92.12 42 | 0.00 412 | 0.00 408 | 0.00 409 | 0.00 406 | 0.00 406 |
|
| testmvs | | | 6.14 375 | 8.18 378 | 0.01 389 | 0.01 412 | 0.00 415 | 73.40 309 | 0.00 413 | 0.00 407 | 0.02 408 | 0.15 407 | 0.00 412 | 0.00 408 | 0.02 407 | 0.00 406 | 0.02 404 |
|
| test123 | | | 6.01 376 | 8.01 379 | 0.01 389 | 0.00 413 | 0.01 414 | 71.93 322 | 0.00 413 | 0.00 407 | 0.02 408 | 0.11 408 | 0.00 412 | 0.00 408 | 0.02 407 | 0.00 406 | 0.02 404 |
|
| pcd_1.5k_mvsjas | | | 3.15 377 | 4.20 380 | 0.00 391 | 0.00 413 | 0.00 415 | 0.00 402 | 0.00 413 | 0.00 407 | 0.00 410 | 0.00 409 | 37.77 195 | 0.00 408 | 0.00 409 | 0.00 406 | 0.00 406 |
|
| test_blank | | | 0.00 378 | 0.00 381 | 0.00 391 | 0.00 413 | 0.00 415 | 0.00 402 | 0.00 413 | 0.00 407 | 0.00 410 | 0.00 409 | 0.00 412 | 0.00 408 | 0.00 409 | 0.00 406 | 0.00 406 |
|
| uanet_test | | | 0.00 378 | 0.00 381 | 0.00 391 | 0.00 413 | 0.00 415 | 0.00 402 | 0.00 413 | 0.00 407 | 0.00 410 | 0.00 409 | 0.00 412 | 0.00 408 | 0.00 409 | 0.00 406 | 0.00 406 |
|
| DCPMVS | | | 0.00 378 | 0.00 381 | 0.00 391 | 0.00 413 | 0.00 415 | 0.00 402 | 0.00 413 | 0.00 407 | 0.00 410 | 0.00 409 | 0.00 412 | 0.00 408 | 0.00 409 | 0.00 406 | 0.00 406 |
|
| sosnet-low-res | | | 0.00 378 | 0.00 381 | 0.00 391 | 0.00 413 | 0.00 415 | 0.00 402 | 0.00 413 | 0.00 407 | 0.00 410 | 0.00 409 | 0.00 412 | 0.00 408 | 0.00 409 | 0.00 406 | 0.00 406 |
|
| sosnet | | | 0.00 378 | 0.00 381 | 0.00 391 | 0.00 413 | 0.00 415 | 0.00 402 | 0.00 413 | 0.00 407 | 0.00 410 | 0.00 409 | 0.00 412 | 0.00 408 | 0.00 409 | 0.00 406 | 0.00 406 |
|
| uncertanet | | | 0.00 378 | 0.00 381 | 0.00 391 | 0.00 413 | 0.00 415 | 0.00 402 | 0.00 413 | 0.00 407 | 0.00 410 | 0.00 409 | 0.00 412 | 0.00 408 | 0.00 409 | 0.00 406 | 0.00 406 |
|
| Regformer | | | 0.00 378 | 0.00 381 | 0.00 391 | 0.00 413 | 0.00 415 | 0.00 402 | 0.00 413 | 0.00 407 | 0.00 410 | 0.00 409 | 0.00 412 | 0.00 408 | 0.00 409 | 0.00 406 | 0.00 406 |
|
| uanet | | | 0.00 378 | 0.00 381 | 0.00 391 | 0.00 413 | 0.00 415 | 0.00 402 | 0.00 413 | 0.00 407 | 0.00 410 | 0.00 409 | 0.00 412 | 0.00 408 | 0.00 409 | 0.00 406 | 0.00 406 |
|
| WAC-MVS | | | | | | | 34.28 354 | | | | | | | | 22.56 375 | | |
|
| FOURS1 | | | | | | 83.24 107 | 49.90 191 | 84.98 135 | 78.76 243 | 47.71 314 | 73.42 58 | | | | | | |
|
| MSC_two_6792asdad | | | | | 81.53 14 | 91.77 4 | 56.03 44 | | 91.10 10 | | | | | 96.22 8 | 81.46 32 | 86.80 26 | 92.34 32 |
|
| PC_three_1452 | | | | | | | | | | 66.58 57 | 87.27 2 | 93.70 9 | 66.82 4 | 94.95 17 | 89.74 3 | 91.98 4 | 93.98 5 |
|
| No_MVS | | | | | 81.53 14 | 91.77 4 | 56.03 44 | | 91.10 10 | | | | | 96.22 8 | 81.46 32 | 86.80 26 | 92.34 32 |
|
| test_one_0601 | | | | | | 89.39 22 | 57.29 20 | | 88.09 53 | 57.21 233 | 82.06 12 | 93.39 18 | 54.94 29 | | | | |
|
| eth-test2 | | | | | | 0.00 413 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 413 | | | | | | | | | | | |
|
| ZD-MVS | | | | | | 89.55 14 | 53.46 106 | | 84.38 133 | 57.02 235 | 73.97 53 | 91.03 63 | 44.57 120 | 91.17 74 | 75.41 71 | 81.78 69 | |
|
| RE-MVS-def | | | | 66.66 193 | | 80.96 169 | 48.14 241 | 81.54 235 | 76.98 275 | 46.42 324 | 62.75 177 | 89.42 101 | 29.28 291 | | 60.52 170 | 72.06 161 | 83.19 239 |
|
| IU-MVS | | | | | | 89.48 17 | 57.49 15 | | 91.38 9 | 66.22 65 | 88.26 1 | | | | 82.83 21 | 87.60 17 | 92.44 29 |
|
| OPU-MVS | | | | | 81.71 12 | 92.05 3 | 55.97 46 | 92.48 3 | | | | 94.01 5 | 67.21 2 | 95.10 15 | 89.82 2 | 92.55 3 | 94.06 3 |
|
| test_241102_TWO | | | | | | | | | 88.76 39 | 57.50 227 | 83.60 6 | 94.09 3 | 56.14 21 | 96.37 6 | 82.28 25 | 87.43 19 | 92.55 27 |
|
| test_241102_ONE | | | | | | 89.48 17 | 56.89 27 | | 88.94 30 | 57.53 225 | 84.61 4 | 93.29 22 | 58.81 11 | 96.45 1 | | | |
|
| 9.14 | | | | 78.19 26 | | 85.67 58 | | 88.32 50 | 88.84 36 | 59.89 172 | 74.58 48 | 92.62 35 | 46.80 85 | 92.66 39 | 81.40 34 | 85.62 39 | |
|
| save fliter | | | | | | 85.35 65 | 56.34 39 | 89.31 39 | 81.46 189 | 61.55 143 | | | | | | | |
|
| test_0728_THIRD | | | | | | | | | | 58.00 213 | 81.91 13 | 93.64 11 | 56.54 17 | 96.44 2 | 81.64 30 | 86.86 24 | 92.23 34 |
|
| test_0728_SECOND | | | | | 82.20 8 | 89.50 15 | 57.73 11 | 92.34 5 | 88.88 32 | | | | | 96.39 4 | 81.68 28 | 87.13 20 | 92.47 28 |
|
| test0726 | | | | | | 89.40 20 | 57.45 17 | 92.32 7 | 88.63 43 | 57.71 221 | 83.14 9 | 93.96 6 | 55.17 25 | | | | |
|
| GSMVS | | | | | | | | | | | | | | | | | 88.13 143 |
|
| test_part2 | | | | | | 89.33 23 | 55.48 53 | | | | 82.27 11 | | | | | | |
|
| sam_mvs1 | | | | | | | | | | | | | 38.86 187 | | | | 88.13 143 |
|
| sam_mvs | | | | | | | | | | | | | 35.99 232 | | | | |
|
| ambc | | | | | 62.06 327 | 53.98 380 | 29.38 377 | 35.08 391 | 79.65 223 | | 41.37 352 | 59.96 368 | 6.27 391 | 82.15 283 | 35.34 325 | 38.22 368 | 74.65 341 |
|
| MTGPA |  | | | | | | | | 81.31 192 | | | | | | | | |
|
| test_post1 | | | | | | | | 70.84 327 | | | | 14.72 404 | 34.33 249 | 83.86 269 | 48.80 264 | | |
|
| test_post | | | | | | | | | | | | 16.22 401 | 37.52 204 | 84.72 263 | | | |
|
| patchmatchnet-post | | | | | | | | | | | | 59.74 369 | 38.41 190 | 79.91 309 | | | |
|
| GG-mvs-BLEND | | | | | 77.77 80 | 86.68 47 | 50.61 169 | 68.67 337 | 88.45 49 | | 68.73 106 | 87.45 143 | 59.15 10 | 90.67 89 | 54.83 221 | 87.67 16 | 92.03 41 |
|
| MTMP | | | | | | | | 87.27 75 | 15.34 409 | | | | | | | | |
|
| gm-plane-assit | | | | | | 83.24 107 | 54.21 92 | | | 70.91 20 | | 88.23 127 | | 95.25 14 | 66.37 122 | | |
|
| test9_res | | | | | | | | | | | | | | | 78.72 47 | 85.44 41 | 91.39 61 |
|
| TEST9 | | | | | | 85.68 56 | 55.42 54 | 87.59 65 | 84.00 143 | 57.72 220 | 72.99 63 | 90.98 65 | 44.87 114 | 88.58 152 | | | |
|
| test_8 | | | | | | 85.72 55 | 55.31 59 | 87.60 64 | 83.88 146 | 57.84 218 | 72.84 67 | 90.99 64 | 44.99 110 | 88.34 163 | | | |
|
| agg_prior2 | | | | | | | | | | | | | | | 75.65 66 | 85.11 45 | 91.01 73 |
|
| agg_prior | | | | | | 85.64 59 | 54.92 73 | | 83.61 153 | | 72.53 72 | | | 88.10 173 | | | |
|
| TestCases | | | | | 55.32 353 | 65.08 356 | 37.50 347 | | 54.25 372 | 35.45 366 | 33.42 376 | 72.82 319 | 9.98 377 | 59.33 375 | 24.13 370 | 43.84 357 | 69.13 364 |
|
| test_prior4 | | | | | | | 56.39 38 | 87.15 79 | | | | | | | | | |
|
| test_prior2 | | | | | | | | 89.04 42 | | 61.88 139 | 73.55 56 | 91.46 61 | 48.01 73 | | 74.73 75 | 85.46 40 | |
|
| test_prior | | | | | 78.39 69 | 86.35 49 | 54.91 74 | | 85.45 98 | | | | | 89.70 117 | | | 90.55 81 |
|
| 旧先验2 | | | | | | | | 81.73 229 | | 45.53 330 | 74.66 45 | | | 70.48 363 | 58.31 189 | | |
|
| æ–°å‡ ä½•2 | | | | | | | | 81.61 233 | | | | | | | | | |
|
| æ–°å‡ ä½•1 | | | | | 73.30 198 | 83.10 110 | 53.48 105 | | 71.43 327 | 45.55 329 | 66.14 127 | 87.17 148 | 33.88 254 | 80.54 299 | 48.50 267 | 80.33 82 | 85.88 192 |
|
| 旧先验1 | | | | | | 81.57 156 | 47.48 255 | | 71.83 321 | | | 88.66 116 | 36.94 215 | | | 78.34 103 | 88.67 131 |
|
| æ— å…ˆéªŒ | | | | | | | | 85.19 125 | 78.00 258 | 49.08 307 | | | | 85.13 258 | 52.78 239 | | 87.45 159 |
|
| 原ACMM2 | | | | | | | | 83.77 173 | | | | | | | | | |
|
| 原ACMM1 | | | | | 76.13 123 | 84.89 74 | 54.59 85 | | 85.26 108 | 51.98 288 | 66.70 118 | 87.07 150 | 40.15 174 | 89.70 117 | 51.23 249 | 85.06 46 | 84.10 217 |
|
| test222 | | | | | | 79.36 196 | 50.97 165 | 77.99 279 | 67.84 348 | 42.54 347 | 62.84 176 | 86.53 157 | 30.26 284 | | | 76.91 111 | 85.23 201 |
|
| testdata2 | | | | | | | | | | | | | | 77.81 328 | 45.64 285 | | |
|
| segment_acmp | | | | | | | | | | | | | 44.97 112 | | | | |
|
| testdata | | | | | 67.08 296 | 77.59 232 | 45.46 286 | | 69.20 344 | 44.47 336 | 71.50 84 | 88.34 124 | 31.21 278 | 70.76 362 | 52.20 244 | 75.88 123 | 85.03 204 |
|
| testdata1 | | | | | | | | 77.55 283 | | 64.14 95 | | | | | | | |
|
| test12 | | | | | 79.24 42 | 86.89 45 | 56.08 43 | | 85.16 113 | | 72.27 76 | | 47.15 81 | 91.10 77 | | 85.93 35 | 90.54 83 |
|
| plane_prior7 | | | | | | 77.95 226 | 48.46 230 | | | | | | | | | | |
|
| plane_prior6 | | | | | | 78.42 221 | 49.39 204 | | | | | | 36.04 230 | | | | |
|
| plane_prior5 | | | | | | | | | 82.59 170 | | | | | 88.30 166 | 65.46 131 | 72.34 158 | 84.49 211 |
|
| plane_prior4 | | | | | | | | | | | | 83.28 198 | | | | | |
|
| plane_prior3 | | | | | | | 48.95 213 | | | 64.01 98 | 62.15 184 | | | | | | |
|
| plane_prior2 | | | | | | | | 85.76 105 | | 63.60 107 | | | | | | | |
|
| plane_prior1 | | | | | | 78.31 223 | | | | | | | | | | | |
|
| plane_prior | | | | | | | 49.57 196 | 87.43 68 | | 64.57 89 | | | | | | 72.84 154 | |
|
| n2 | | | | | | | | | 0.00 413 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 413 | | | | | | | | |
|
| door-mid | | | | | | | | | 41.31 385 | | | | | | | | |
|
| lessismore_v0 | | | | | 67.98 288 | 64.76 359 | 41.25 330 | | 45.75 378 | | 36.03 369 | 65.63 355 | 19.29 352 | 84.11 268 | 35.67 322 | 21.24 393 | 78.59 302 |
|
| LGP-MVS_train | | | | | 72.02 225 | 74.42 280 | 48.60 223 | | 80.64 203 | 54.69 268 | 53.75 289 | 83.83 187 | 25.73 314 | 86.98 209 | 60.33 174 | 64.71 219 | 80.48 282 |
|
| test11 | | | | | | | | | 84.25 137 | | | | | | | | |
|
| door | | | | | | | | | 43.27 381 | | | | | | | | |
|
| HQP5-MVS | | | | | | | 51.56 154 | | | | | | | | | | |
|
| HQP-NCC | | | | | | 79.02 205 | | 88.00 54 | | 65.45 76 | 64.48 152 | | | | | | |
|
| ACMP_Plane | | | | | | 79.02 205 | | 88.00 54 | | 65.45 76 | 64.48 152 | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 66.70 119 | | |
|
| HQP4-MVS | | | | | | | | | | | 64.47 155 | | | 88.61 151 | | | 84.91 207 |
|
| HQP3-MVS | | | | | | | | | 83.68 149 | | | | | | | 73.12 150 | |
|
| HQP2-MVS | | | | | | | | | | | | | 37.35 207 | | | | |
|
| NP-MVS | | | | | | 78.76 210 | 50.43 175 | | | | | 85.12 171 | | | | | |
|
| MDTV_nov1_ep13_2view | | | | | | | 43.62 306 | 71.13 326 | | 54.95 265 | 59.29 217 | | 36.76 218 | | 46.33 282 | | 87.32 161 |
|
| MDTV_nov1_ep13 | | | | 61.56 252 | | 81.68 149 | 55.12 66 | 72.41 315 | 78.18 255 | 59.19 189 | 58.85 226 | 69.29 344 | 34.69 245 | 86.16 233 | 36.76 320 | 62.96 243 | |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 63.20 239 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 59.38 265 | |
|
| Test By Simon | | | | | | | | | | | | | 39.38 181 | | | | |
|
| ITE_SJBPF | | | | | 51.84 356 | 58.03 374 | 31.94 367 | | 53.57 374 | 36.67 361 | 41.32 353 | 75.23 299 | 11.17 375 | 51.57 385 | 25.81 366 | 48.04 339 | 72.02 357 |
|
| DeepMVS_CX |  | | | | 13.10 386 | 21.34 410 | 8.99 408 | | 10.02 410 | 10.59 398 | 7.53 403 | 30.55 396 | 1.82 404 | 14.55 405 | 6.83 400 | 7.52 401 | 15.75 399 |
|