MCST-MVS | | | 83.01 1 | 83.30 2 | 82.15 10 | 92.84 2 | 57.58 14 | 93.77 1 | 91.10 6 | 75.95 3 | 77.10 29 | 93.09 21 | 54.15 27 | 95.57 12 | 85.80 5 | 85.87 35 | 93.31 11 |
|
DVP-MVS++ | | | 82.44 2 | 82.38 4 | 82.62 4 | 91.77 4 | 57.49 15 | 84.98 125 | 88.88 25 | 58.00 194 | 83.60 6 | 93.39 14 | 67.21 2 | 96.39 4 | 81.64 20 | 91.98 4 | 93.98 5 |
|
DPM-MVS | | | 82.39 3 | 82.36 5 | 82.49 5 | 80.12 179 | 59.50 5 | 92.24 8 | 90.72 9 | 69.37 25 | 83.22 8 | 94.47 2 | 63.81 5 | 93.18 30 | 74.02 71 | 93.25 2 | 94.80 1 |
|
DELS-MVS | | | 82.32 4 | 82.50 3 | 81.79 11 | 86.80 42 | 56.89 25 | 92.77 2 | 86.30 76 | 77.83 1 | 77.88 26 | 92.13 32 | 60.24 6 | 94.78 19 | 78.97 33 | 89.61 7 | 93.69 8 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
MSP-MVS | | | 82.30 5 | 83.47 1 | 78.80 49 | 82.99 111 | 52.71 125 | 85.04 122 | 88.63 35 | 66.08 61 | 86.77 3 | 92.75 24 | 72.05 1 | 91.46 62 | 83.35 10 | 93.53 1 | 92.23 33 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
SED-MVS | | | 81.92 6 | 81.75 8 | 82.44 7 | 89.48 17 | 56.89 25 | 92.48 3 | 88.94 23 | 57.50 208 | 84.61 4 | 94.09 3 | 58.81 11 | 96.37 6 | 82.28 16 | 87.60 17 | 94.06 3 |
|
CNVR-MVS | | | 81.76 7 | 81.90 7 | 81.33 17 | 90.04 10 | 57.70 12 | 91.71 9 | 88.87 27 | 70.31 18 | 77.64 28 | 93.87 7 | 52.58 34 | 93.91 25 | 84.17 7 | 87.92 15 | 92.39 29 |
|
MVS_0304 | | | 81.58 8 | 82.05 6 | 80.20 26 | 82.36 128 | 54.70 75 | 91.13 18 | 88.95 22 | 74.49 4 | 80.04 21 | 93.64 10 | 52.40 35 | 93.27 29 | 88.85 3 | 86.56 29 | 92.61 25 |
|
DVP-MVS |  | | 81.30 9 | 81.00 12 | 82.20 8 | 89.40 20 | 57.45 17 | 92.34 5 | 89.99 13 | 57.71 202 | 81.91 12 | 93.64 10 | 55.17 20 | 96.44 2 | 81.68 18 | 87.13 20 | 92.72 23 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
CANet | | | 80.90 10 | 81.17 11 | 80.09 31 | 87.62 37 | 54.21 87 | 91.60 12 | 86.47 72 | 73.13 7 | 79.89 22 | 93.10 19 | 49.88 55 | 92.98 31 | 84.09 9 | 84.75 47 | 93.08 16 |
|
patch_mono-2 | | | 80.84 11 | 81.59 9 | 78.62 56 | 90.34 9 | 53.77 94 | 88.08 51 | 88.36 42 | 76.17 2 | 79.40 24 | 91.09 52 | 55.43 19 | 90.09 102 | 85.01 6 | 80.40 79 | 91.99 42 |
|
DeepPCF-MVS | | 69.37 1 | 80.65 12 | 81.56 10 | 77.94 74 | 85.46 58 | 49.56 192 | 90.99 20 | 86.66 70 | 70.58 16 | 80.07 20 | 95.30 1 | 56.18 17 | 90.97 77 | 82.57 15 | 86.22 33 | 93.28 12 |
|
HPM-MVS++ |  | | 80.50 13 | 80.71 13 | 79.88 33 | 87.34 39 | 55.20 60 | 89.93 28 | 87.55 57 | 66.04 64 | 79.46 23 | 93.00 23 | 53.10 31 | 91.76 56 | 80.40 26 | 89.56 8 | 92.68 24 |
|
CSCG | | | 80.41 14 | 79.72 14 | 82.49 5 | 89.12 25 | 57.67 13 | 89.29 39 | 91.54 3 | 59.19 170 | 71.82 69 | 90.05 80 | 59.72 9 | 96.04 10 | 78.37 39 | 88.40 13 | 93.75 7 |
|
PS-MVSNAJ | | | 80.06 15 | 79.52 16 | 81.68 13 | 85.58 55 | 60.97 3 | 91.69 10 | 87.02 62 | 70.62 15 | 80.75 17 | 93.22 18 | 37.77 177 | 92.50 41 | 82.75 13 | 86.25 32 | 91.57 52 |
|
xiu_mvs_v2_base | | | 79.86 16 | 79.31 17 | 81.53 14 | 85.03 67 | 60.73 4 | 91.65 11 | 86.86 65 | 70.30 19 | 80.77 16 | 93.07 22 | 37.63 182 | 92.28 46 | 82.73 14 | 85.71 36 | 91.57 52 |
|
DPE-MVS |  | | 79.82 17 | 79.66 15 | 80.29 24 | 89.27 24 | 55.08 65 | 88.70 45 | 87.92 48 | 55.55 238 | 81.21 15 | 93.69 9 | 56.51 16 | 94.27 22 | 78.36 40 | 85.70 37 | 91.51 55 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
NCCC | | | 79.57 18 | 79.23 18 | 80.59 20 | 89.50 15 | 56.99 23 | 91.38 14 | 88.17 44 | 67.71 40 | 73.81 45 | 92.75 24 | 46.88 74 | 93.28 28 | 78.79 36 | 84.07 52 | 91.50 56 |
|
dcpmvs_2 | | | 79.33 19 | 78.94 19 | 80.49 21 | 89.75 12 | 56.54 31 | 84.83 131 | 83.68 141 | 67.85 37 | 69.36 87 | 90.24 72 | 60.20 7 | 92.10 51 | 84.14 8 | 80.40 79 | 92.82 20 |
|
SMA-MVS |  | | 79.10 20 | 78.76 20 | 80.12 29 | 84.42 75 | 55.87 45 | 87.58 63 | 86.76 67 | 61.48 130 | 80.26 19 | 93.10 19 | 46.53 79 | 92.41 43 | 79.97 27 | 88.77 10 | 92.08 37 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
LFMVS | | | 78.52 21 | 77.14 35 | 82.67 3 | 89.58 13 | 58.90 7 | 91.27 17 | 88.05 46 | 63.22 102 | 74.63 38 | 90.83 61 | 41.38 145 | 94.40 20 | 75.42 60 | 79.90 88 | 94.72 2 |
|
APDe-MVS | | | 78.44 22 | 78.20 23 | 79.19 39 | 88.56 26 | 54.55 81 | 89.76 32 | 87.77 52 | 55.91 233 | 78.56 25 | 92.49 28 | 48.20 61 | 92.65 39 | 79.49 28 | 83.04 56 | 90.39 79 |
|
MG-MVS | | | 78.42 23 | 76.99 37 | 82.73 2 | 93.17 1 | 64.46 1 | 89.93 28 | 88.51 40 | 64.83 77 | 73.52 48 | 88.09 117 | 48.07 62 | 92.19 47 | 62.24 139 | 84.53 49 | 91.53 54 |
|
lupinMVS | | | 78.38 24 | 78.11 25 | 79.19 39 | 83.02 109 | 55.24 57 | 91.57 13 | 84.82 114 | 69.12 26 | 76.67 31 | 92.02 36 | 44.82 101 | 90.23 99 | 80.83 25 | 80.09 83 | 92.08 37 |
|
EPNet | | | 78.36 25 | 78.49 21 | 77.97 72 | 85.49 57 | 52.04 137 | 89.36 37 | 84.07 134 | 73.22 6 | 77.03 30 | 91.72 43 | 49.32 59 | 90.17 101 | 73.46 75 | 82.77 57 | 91.69 47 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
TSAR-MVS + MP. | | | 78.31 26 | 78.26 22 | 78.48 60 | 81.33 154 | 56.31 37 | 81.59 217 | 86.41 73 | 69.61 23 | 81.72 14 | 88.16 116 | 55.09 22 | 88.04 165 | 74.12 70 | 86.31 31 | 91.09 66 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
canonicalmvs | | | 78.17 27 | 77.86 28 | 79.12 43 | 84.30 77 | 54.22 86 | 87.71 58 | 84.57 123 | 67.70 41 | 77.70 27 | 92.11 35 | 50.90 46 | 89.95 105 | 78.18 43 | 77.54 106 | 93.20 14 |
|
alignmvs | | | 78.08 28 | 77.98 26 | 78.39 64 | 83.53 92 | 53.22 113 | 89.77 31 | 85.45 90 | 66.11 59 | 76.59 33 | 91.99 38 | 54.07 28 | 89.05 125 | 77.34 48 | 77.00 109 | 92.89 19 |
|
DeepC-MVS_fast | | 67.50 3 | 78.00 29 | 77.63 29 | 79.13 42 | 88.52 27 | 55.12 62 | 89.95 27 | 85.98 81 | 68.31 29 | 71.33 76 | 92.75 24 | 45.52 91 | 90.37 92 | 71.15 84 | 85.14 43 | 91.91 43 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
VNet | | | 77.99 30 | 77.92 27 | 78.19 68 | 87.43 38 | 50.12 180 | 90.93 21 | 91.41 4 | 67.48 43 | 75.12 35 | 90.15 78 | 46.77 76 | 91.00 74 | 73.52 74 | 78.46 100 | 93.44 9 |
|
TSAR-MVS + GP. | | | 77.82 31 | 77.59 30 | 78.49 59 | 85.25 63 | 50.27 179 | 90.02 25 | 90.57 10 | 56.58 227 | 74.26 42 | 91.60 47 | 54.26 25 | 92.16 48 | 75.87 54 | 79.91 87 | 93.05 17 |
|
casdiffmvs_mvg |  | | 77.75 32 | 77.28 33 | 79.16 41 | 80.42 175 | 54.44 83 | 87.76 57 | 85.46 89 | 71.67 10 | 71.38 75 | 88.35 111 | 51.58 39 | 91.22 67 | 79.02 32 | 79.89 89 | 91.83 46 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
SF-MVS | | | 77.64 33 | 77.42 32 | 78.32 66 | 83.75 89 | 52.47 130 | 86.63 84 | 87.80 49 | 58.78 182 | 74.63 38 | 92.38 29 | 47.75 65 | 91.35 64 | 78.18 43 | 86.85 24 | 91.15 65 |
|
PHI-MVS | | | 77.49 34 | 77.00 36 | 78.95 44 | 85.33 61 | 50.69 163 | 88.57 47 | 88.59 38 | 58.14 191 | 73.60 46 | 93.31 16 | 43.14 122 | 93.79 26 | 73.81 72 | 88.53 12 | 92.37 30 |
|
WTY-MVS | | | 77.47 35 | 77.52 31 | 77.30 86 | 88.33 30 | 46.25 260 | 88.46 48 | 90.32 11 | 71.40 12 | 72.32 65 | 91.72 43 | 53.44 29 | 92.37 44 | 66.28 111 | 75.42 123 | 93.28 12 |
|
casdiffmvs |  | | 77.36 36 | 76.85 38 | 78.88 47 | 80.40 176 | 54.66 79 | 87.06 75 | 85.88 82 | 72.11 9 | 71.57 72 | 88.63 109 | 50.89 48 | 90.35 93 | 76.00 53 | 79.11 95 | 91.63 49 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
CS-MVS-test | | | 77.20 37 | 77.25 34 | 77.05 92 | 84.60 72 | 49.04 204 | 89.42 35 | 85.83 84 | 65.90 65 | 72.85 57 | 91.98 40 | 45.10 94 | 91.27 65 | 75.02 63 | 84.56 48 | 90.84 71 |
|
ETV-MVS | | | 77.17 38 | 76.74 39 | 78.48 60 | 81.80 136 | 54.55 81 | 86.13 92 | 85.33 95 | 68.20 31 | 73.10 53 | 90.52 66 | 45.23 93 | 90.66 85 | 79.37 29 | 80.95 71 | 90.22 83 |
|
SteuartSystems-ACMMP | | | 77.08 39 | 76.33 44 | 79.34 37 | 80.98 158 | 55.31 55 | 89.76 32 | 86.91 64 | 62.94 106 | 71.65 70 | 91.56 48 | 42.33 129 | 92.56 40 | 77.14 49 | 83.69 54 | 90.15 86 |
Skip Steuart: Steuart Systems R&D Blog. |
jason | | | 77.01 40 | 76.45 42 | 78.69 53 | 79.69 184 | 54.74 72 | 90.56 23 | 83.99 137 | 68.26 30 | 74.10 43 | 90.91 58 | 42.14 133 | 89.99 104 | 79.30 30 | 79.12 94 | 91.36 60 |
jason: jason. |
train_agg | | | 76.91 41 | 76.40 43 | 78.45 62 | 85.68 51 | 55.42 51 | 87.59 61 | 84.00 135 | 57.84 199 | 72.99 54 | 90.98 55 | 44.99 96 | 88.58 142 | 78.19 41 | 85.32 41 | 91.34 62 |
|
MVS | | | 76.91 41 | 75.48 52 | 81.23 18 | 84.56 73 | 55.21 59 | 80.23 240 | 91.64 2 | 58.65 184 | 65.37 122 | 91.48 50 | 45.72 88 | 95.05 16 | 72.11 82 | 89.52 9 | 93.44 9 |
|
DeepC-MVS | | 67.15 4 | 76.90 43 | 76.27 45 | 78.80 49 | 80.70 168 | 55.02 66 | 86.39 86 | 86.71 68 | 66.96 47 | 67.91 96 | 89.97 82 | 48.03 63 | 91.41 63 | 75.60 57 | 84.14 51 | 89.96 91 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
baseline | | | 76.86 44 | 76.24 46 | 78.71 52 | 80.47 174 | 54.20 89 | 83.90 157 | 84.88 113 | 71.38 13 | 71.51 73 | 89.15 98 | 50.51 49 | 90.55 89 | 75.71 55 | 78.65 98 | 91.39 58 |
|
CS-MVS | | | 76.77 45 | 76.70 40 | 76.99 97 | 83.55 91 | 48.75 213 | 88.60 46 | 85.18 103 | 66.38 54 | 72.47 63 | 91.62 46 | 45.53 90 | 90.99 76 | 74.48 66 | 82.51 59 | 91.23 63 |
|
PAPM | | | 76.76 46 | 76.07 47 | 78.81 48 | 80.20 177 | 59.11 6 | 86.86 81 | 86.23 77 | 68.60 28 | 70.18 86 | 88.84 103 | 51.57 40 | 87.16 189 | 65.48 117 | 86.68 27 | 90.15 86 |
|
MAR-MVS | | | 76.76 46 | 75.60 50 | 80.21 25 | 90.87 7 | 54.68 77 | 89.14 40 | 89.11 19 | 62.95 105 | 70.54 84 | 92.33 30 | 41.05 146 | 94.95 17 | 57.90 183 | 86.55 30 | 91.00 68 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
PVSNet_Blended | | | 76.53 48 | 76.54 41 | 76.50 107 | 85.91 48 | 51.83 143 | 88.89 43 | 84.24 131 | 67.82 38 | 69.09 89 | 89.33 95 | 46.70 77 | 88.13 161 | 75.43 58 | 81.48 70 | 89.55 98 |
|
ACMMP_NAP | | | 76.43 49 | 75.66 49 | 78.73 51 | 81.92 133 | 54.67 78 | 84.06 153 | 85.35 94 | 61.10 135 | 72.99 54 | 91.50 49 | 40.25 154 | 91.00 74 | 76.84 50 | 86.98 22 | 90.51 78 |
|
MVS_111021_HR | | | 76.39 50 | 75.38 54 | 79.42 36 | 85.33 61 | 56.47 33 | 88.15 50 | 84.97 110 | 65.15 75 | 66.06 114 | 89.88 83 | 43.79 110 | 92.16 48 | 75.03 62 | 80.03 86 | 89.64 97 |
|
CHOSEN 1792x2688 | | | 76.24 51 | 74.03 70 | 82.88 1 | 83.09 106 | 62.84 2 | 85.73 103 | 85.39 92 | 69.79 21 | 64.87 129 | 83.49 178 | 41.52 144 | 93.69 27 | 70.55 87 | 81.82 66 | 92.12 36 |
|
SD-MVS | | | 76.18 52 | 74.85 62 | 80.18 27 | 85.39 59 | 56.90 24 | 85.75 101 | 82.45 165 | 56.79 222 | 74.48 41 | 91.81 41 | 43.72 113 | 90.75 83 | 74.61 65 | 78.65 98 | 92.91 18 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
APD-MVS |  | | 76.15 53 | 75.68 48 | 77.54 80 | 88.52 27 | 53.44 104 | 87.26 72 | 85.03 109 | 53.79 255 | 74.91 36 | 91.68 45 | 43.80 109 | 90.31 95 | 74.36 67 | 81.82 66 | 88.87 112 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
VDD-MVS | | | 76.08 54 | 74.97 60 | 79.44 35 | 84.27 79 | 53.33 110 | 91.13 18 | 85.88 82 | 65.33 72 | 72.37 64 | 89.34 93 | 32.52 245 | 92.76 37 | 77.90 45 | 75.96 117 | 92.22 35 |
|
CDPH-MVS | | | 76.05 55 | 75.19 56 | 78.62 56 | 86.51 44 | 54.98 68 | 87.32 67 | 84.59 122 | 58.62 185 | 70.75 81 | 90.85 60 | 43.10 124 | 90.63 87 | 70.50 88 | 84.51 50 | 90.24 82 |
|
EIA-MVS | | | 75.92 56 | 75.18 57 | 78.13 69 | 85.14 64 | 51.60 148 | 87.17 73 | 85.32 96 | 64.69 78 | 68.56 92 | 90.53 65 | 45.79 87 | 91.58 59 | 67.21 104 | 82.18 63 | 91.20 64 |
|
test_yl | | | 75.85 57 | 74.83 63 | 78.91 45 | 88.08 34 | 51.94 139 | 91.30 15 | 89.28 16 | 57.91 196 | 71.19 78 | 89.20 96 | 42.03 136 | 92.77 35 | 69.41 91 | 75.07 129 | 92.01 40 |
|
DCV-MVSNet | | | 75.85 57 | 74.83 63 | 78.91 45 | 88.08 34 | 51.94 139 | 91.30 15 | 89.28 16 | 57.91 196 | 71.19 78 | 89.20 96 | 42.03 136 | 92.77 35 | 69.41 91 | 75.07 129 | 92.01 40 |
|
MVS_Test | | | 75.85 57 | 74.93 61 | 78.62 56 | 84.08 81 | 55.20 60 | 83.99 155 | 85.17 104 | 68.07 34 | 73.38 50 | 82.76 188 | 50.44 50 | 89.00 128 | 65.90 113 | 80.61 75 | 91.64 48 |
|
ZNCC-MVS | | | 75.82 60 | 75.02 59 | 78.23 67 | 83.88 87 | 53.80 93 | 86.91 80 | 86.05 80 | 59.71 156 | 67.85 97 | 90.55 64 | 42.23 131 | 91.02 73 | 72.66 80 | 85.29 42 | 89.87 94 |
|
CLD-MVS | | | 75.60 61 | 75.39 53 | 76.24 111 | 80.69 169 | 52.40 131 | 90.69 22 | 86.20 78 | 74.40 5 | 65.01 127 | 88.93 100 | 42.05 135 | 90.58 88 | 76.57 51 | 73.96 135 | 85.73 177 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
test_fmvsm_n_1920 | | | 75.56 62 | 75.54 51 | 75.61 128 | 74.60 263 | 49.51 195 | 81.82 210 | 74.08 293 | 66.52 52 | 80.40 18 | 93.46 13 | 46.95 73 | 89.72 111 | 86.69 4 | 75.30 124 | 87.61 139 |
|
MP-MVS-pluss | | | 75.54 63 | 75.03 58 | 77.04 93 | 81.37 153 | 52.65 127 | 84.34 144 | 84.46 124 | 61.16 133 | 69.14 88 | 91.76 42 | 39.98 160 | 88.99 130 | 78.19 41 | 84.89 46 | 89.48 100 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
EC-MVSNet | | | 75.30 64 | 75.20 55 | 75.62 127 | 80.98 158 | 49.00 205 | 87.43 64 | 84.68 120 | 63.49 99 | 70.97 80 | 90.15 78 | 42.86 126 | 91.14 71 | 74.33 68 | 81.90 65 | 86.71 158 |
|
Effi-MVS+ | | | 75.24 65 | 73.61 72 | 80.16 28 | 81.92 133 | 57.42 19 | 85.21 114 | 76.71 270 | 60.68 144 | 73.32 51 | 89.34 93 | 47.30 69 | 91.63 58 | 68.28 98 | 79.72 90 | 91.42 57 |
|
ET-MVSNet_ETH3D | | | 75.23 66 | 74.08 69 | 78.67 54 | 84.52 74 | 55.59 47 | 88.92 42 | 89.21 18 | 68.06 35 | 53.13 274 | 90.22 74 | 49.71 56 | 87.62 181 | 72.12 81 | 70.82 161 | 92.82 20 |
|
PAPR | | | 75.20 67 | 74.13 68 | 78.41 63 | 88.31 31 | 55.10 64 | 84.31 145 | 85.66 86 | 63.76 92 | 67.55 98 | 90.73 62 | 43.48 118 | 89.40 118 | 66.36 110 | 77.03 108 | 90.73 73 |
|
baseline2 | | | 75.15 68 | 74.54 66 | 76.98 98 | 81.67 141 | 51.74 145 | 83.84 158 | 91.94 1 | 69.97 20 | 58.98 203 | 86.02 146 | 59.73 8 | 91.73 57 | 68.37 97 | 70.40 166 | 87.48 141 |
|
diffmvs |  | | 75.11 69 | 74.65 65 | 76.46 108 | 78.52 208 | 53.35 108 | 83.28 178 | 79.94 204 | 70.51 17 | 71.64 71 | 88.72 104 | 46.02 84 | 86.08 223 | 77.52 46 | 75.75 121 | 89.96 91 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
MP-MVS |  | | 74.99 70 | 74.33 67 | 76.95 99 | 82.89 115 | 53.05 119 | 85.63 105 | 83.50 146 | 57.86 198 | 67.25 100 | 90.24 72 | 43.38 119 | 88.85 136 | 76.03 52 | 82.23 62 | 88.96 110 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
GST-MVS | | | 74.87 71 | 73.90 71 | 77.77 75 | 83.30 99 | 53.45 103 | 85.75 101 | 85.29 98 | 59.22 169 | 66.50 109 | 89.85 84 | 40.94 147 | 90.76 82 | 70.94 86 | 83.35 55 | 89.10 108 |
|
3Dnovator | | 64.70 6 | 74.46 72 | 72.48 81 | 80.41 23 | 82.84 117 | 55.40 54 | 83.08 183 | 88.61 37 | 67.61 42 | 59.85 186 | 88.66 105 | 34.57 227 | 93.97 23 | 58.42 173 | 88.70 11 | 91.85 45 |
|
HFP-MVS | | | 74.37 73 | 73.13 76 | 78.10 70 | 84.30 77 | 53.68 96 | 85.58 106 | 84.36 126 | 56.82 220 | 65.78 118 | 90.56 63 | 40.70 152 | 90.90 78 | 69.18 93 | 80.88 72 | 89.71 95 |
|
VDDNet | | | 74.37 73 | 72.13 91 | 81.09 19 | 79.58 185 | 56.52 32 | 90.02 25 | 86.70 69 | 52.61 264 | 71.23 77 | 87.20 132 | 31.75 255 | 93.96 24 | 74.30 69 | 75.77 120 | 92.79 22 |
|
MSLP-MVS++ | | | 74.21 75 | 72.25 87 | 80.11 30 | 81.45 151 | 56.47 33 | 86.32 88 | 79.65 212 | 58.19 190 | 66.36 110 | 92.29 31 | 36.11 209 | 90.66 85 | 67.39 102 | 82.49 60 | 93.18 15 |
|
API-MVS | | | 74.17 76 | 72.07 93 | 80.49 21 | 90.02 11 | 58.55 8 | 87.30 69 | 84.27 128 | 57.51 207 | 65.77 119 | 87.77 123 | 41.61 142 | 95.97 11 | 51.71 229 | 82.63 58 | 86.94 149 |
|
IB-MVS | | 68.87 2 | 74.01 77 | 72.03 95 | 79.94 32 | 83.04 108 | 55.50 49 | 90.24 24 | 88.65 33 | 67.14 45 | 61.38 174 | 81.74 208 | 53.21 30 | 94.28 21 | 60.45 158 | 62.41 230 | 90.03 90 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
h-mvs33 | | | 73.95 78 | 72.89 77 | 77.15 91 | 80.17 178 | 50.37 173 | 84.68 136 | 83.33 147 | 68.08 32 | 71.97 67 | 88.65 108 | 42.50 127 | 91.15 70 | 78.82 34 | 57.78 269 | 89.91 93 |
|
HY-MVS | | 67.03 5 | 73.90 79 | 73.14 74 | 76.18 116 | 84.70 71 | 47.36 242 | 75.56 271 | 86.36 75 | 66.27 56 | 70.66 83 | 83.91 170 | 51.05 44 | 89.31 119 | 67.10 105 | 72.61 147 | 91.88 44 |
|
CostFormer | | | 73.89 80 | 72.30 86 | 78.66 55 | 82.36 128 | 56.58 28 | 75.56 271 | 85.30 97 | 66.06 62 | 70.50 85 | 76.88 260 | 57.02 14 | 89.06 124 | 68.27 99 | 68.74 176 | 90.33 81 |
|
ACMMPR | | | 73.76 81 | 72.61 78 | 77.24 90 | 83.92 85 | 52.96 122 | 85.58 106 | 84.29 127 | 56.82 220 | 65.12 123 | 90.45 67 | 37.24 193 | 90.18 100 | 69.18 93 | 80.84 73 | 88.58 120 |
|
region2R | | | 73.75 82 | 72.55 80 | 77.33 84 | 83.90 86 | 52.98 121 | 85.54 109 | 84.09 133 | 56.83 219 | 65.10 124 | 90.45 67 | 37.34 191 | 90.24 98 | 68.89 95 | 80.83 74 | 88.77 116 |
|
CANet_DTU | | | 73.71 83 | 73.14 74 | 75.40 133 | 82.61 124 | 50.05 181 | 84.67 138 | 79.36 220 | 69.72 22 | 75.39 34 | 90.03 81 | 29.41 269 | 85.93 229 | 67.99 100 | 79.11 95 | 90.22 83 |
|
thisisatest0515 | | | 73.64 84 | 72.20 89 | 77.97 72 | 81.63 142 | 53.01 120 | 86.69 83 | 88.81 29 | 62.53 113 | 64.06 141 | 85.65 150 | 52.15 38 | 92.50 41 | 58.43 171 | 69.84 169 | 88.39 124 |
|
MVSFormer | | | 73.53 85 | 72.19 90 | 77.57 79 | 83.02 109 | 55.24 57 | 81.63 214 | 81.44 181 | 50.28 279 | 76.67 31 | 90.91 58 | 44.82 101 | 86.11 218 | 60.83 150 | 80.09 83 | 91.36 60 |
|
iter_conf05 | | | 73.51 86 | 72.24 88 | 77.33 84 | 87.93 36 | 55.97 43 | 87.90 56 | 70.81 318 | 68.72 27 | 64.04 142 | 84.36 164 | 47.54 67 | 90.87 79 | 71.11 85 | 67.75 184 | 85.13 187 |
|
PVSNet_BlendedMVS | | | 73.42 87 | 73.30 73 | 73.76 172 | 85.91 48 | 51.83 143 | 86.18 91 | 84.24 131 | 65.40 69 | 69.09 89 | 80.86 217 | 46.70 77 | 88.13 161 | 75.43 58 | 65.92 199 | 81.33 254 |
|
PVSNet_Blended_VisFu | | | 73.40 88 | 72.44 82 | 76.30 109 | 81.32 155 | 54.70 75 | 85.81 97 | 78.82 230 | 63.70 93 | 64.53 134 | 85.38 154 | 47.11 72 | 87.38 186 | 67.75 101 | 77.55 105 | 86.81 157 |
|
MVSTER | | | 73.25 89 | 72.33 84 | 76.01 121 | 85.54 56 | 53.76 95 | 83.52 163 | 87.16 60 | 67.06 46 | 63.88 147 | 81.66 209 | 52.77 32 | 90.44 90 | 64.66 126 | 64.69 206 | 83.84 212 |
|
EI-MVSNet-Vis-set | | | 73.19 90 | 72.60 79 | 74.99 143 | 82.56 125 | 49.80 188 | 82.55 194 | 89.00 21 | 66.17 58 | 65.89 117 | 88.98 99 | 43.83 108 | 92.29 45 | 65.38 124 | 69.01 174 | 82.87 230 |
|
PMMVS | | | 72.98 91 | 72.05 94 | 75.78 125 | 83.57 90 | 48.60 216 | 84.08 151 | 82.85 160 | 61.62 126 | 68.24 94 | 90.33 71 | 28.35 273 | 87.78 174 | 72.71 79 | 76.69 111 | 90.95 69 |
|
XVS | | | 72.92 92 | 71.62 97 | 76.81 101 | 83.41 94 | 52.48 128 | 84.88 129 | 83.20 153 | 58.03 192 | 63.91 145 | 89.63 88 | 35.50 216 | 89.78 108 | 65.50 115 | 80.50 77 | 88.16 125 |
|
test2506 | | | 72.91 93 | 72.43 83 | 74.32 155 | 80.12 179 | 44.18 285 | 83.19 180 | 84.77 117 | 64.02 85 | 65.97 115 | 87.43 129 | 47.67 66 | 88.72 137 | 59.08 164 | 79.66 91 | 90.08 88 |
|
TESTMET0.1,1 | | | 72.86 94 | 72.33 84 | 74.46 149 | 81.98 132 | 50.77 161 | 85.13 117 | 85.47 88 | 66.09 60 | 67.30 99 | 83.69 175 | 37.27 192 | 83.57 258 | 65.06 125 | 78.97 97 | 89.05 109 |
|
Fast-Effi-MVS+ | | | 72.73 95 | 71.15 106 | 77.48 81 | 82.75 119 | 54.76 71 | 86.77 82 | 80.64 192 | 63.05 104 | 65.93 116 | 84.01 168 | 44.42 105 | 89.03 126 | 56.45 199 | 76.36 116 | 88.64 118 |
|
MTAPA | | | 72.73 95 | 71.22 104 | 77.27 88 | 81.54 148 | 53.57 98 | 67.06 323 | 81.31 183 | 59.41 163 | 68.39 93 | 90.96 57 | 36.07 211 | 89.01 127 | 73.80 73 | 82.45 61 | 89.23 103 |
|
PGM-MVS | | | 72.60 97 | 71.20 105 | 76.80 104 | 82.95 112 | 52.82 124 | 83.07 184 | 82.14 167 | 56.51 228 | 63.18 154 | 89.81 85 | 35.68 215 | 89.76 110 | 67.30 103 | 80.19 82 | 87.83 133 |
|
HPM-MVS |  | | 72.60 97 | 71.50 99 | 75.89 123 | 82.02 131 | 51.42 153 | 80.70 234 | 83.05 155 | 56.12 232 | 64.03 143 | 89.53 89 | 37.55 185 | 88.37 150 | 70.48 89 | 80.04 85 | 87.88 132 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
CP-MVS | | | 72.59 99 | 71.46 100 | 76.00 122 | 82.93 114 | 52.32 134 | 86.93 79 | 82.48 164 | 55.15 242 | 63.65 149 | 90.44 70 | 35.03 223 | 88.53 146 | 68.69 96 | 77.83 104 | 87.15 147 |
|
baseline1 | | | 72.51 100 | 72.12 92 | 73.69 175 | 85.05 65 | 44.46 279 | 83.51 167 | 86.13 79 | 71.61 11 | 64.64 131 | 87.97 120 | 55.00 23 | 89.48 116 | 59.07 165 | 56.05 282 | 87.13 148 |
|
EI-MVSNet-UG-set | | | 72.37 101 | 71.73 96 | 74.29 156 | 81.60 144 | 49.29 199 | 81.85 208 | 88.64 34 | 65.29 74 | 65.05 125 | 88.29 114 | 43.18 120 | 91.83 55 | 63.74 129 | 67.97 181 | 81.75 241 |
|
MS-PatchMatch | | | 72.34 102 | 71.26 103 | 75.61 128 | 82.38 127 | 55.55 48 | 88.00 52 | 89.95 14 | 65.38 70 | 56.51 248 | 80.74 219 | 32.28 248 | 92.89 32 | 57.95 182 | 88.10 14 | 78.39 289 |
|
HQP-MVS | | | 72.34 102 | 71.44 101 | 75.03 141 | 79.02 195 | 51.56 149 | 88.00 52 | 83.68 141 | 65.45 66 | 64.48 135 | 85.13 155 | 37.35 189 | 88.62 140 | 66.70 106 | 73.12 141 | 84.91 191 |
|
mvs_anonymous | | | 72.29 104 | 70.74 108 | 76.94 100 | 82.85 116 | 54.72 74 | 78.43 257 | 81.54 179 | 63.77 91 | 61.69 171 | 79.32 228 | 51.11 43 | 85.31 236 | 62.15 141 | 75.79 119 | 90.79 72 |
|
3Dnovator+ | | 62.71 7 | 72.29 104 | 70.50 112 | 77.65 78 | 83.40 97 | 51.29 157 | 87.32 67 | 86.40 74 | 59.01 177 | 58.49 216 | 88.32 113 | 32.40 246 | 91.27 65 | 57.04 192 | 82.15 64 | 90.38 80 |
|
nrg030 | | | 72.27 106 | 71.56 98 | 74.42 151 | 75.93 246 | 50.60 165 | 86.97 77 | 83.21 152 | 62.75 108 | 67.15 101 | 84.38 162 | 50.07 52 | 86.66 204 | 71.19 83 | 62.37 231 | 85.99 171 |
|
VPNet | | | 72.07 107 | 71.42 102 | 74.04 162 | 78.64 206 | 47.17 247 | 89.91 30 | 87.97 47 | 72.56 8 | 64.66 130 | 85.04 157 | 41.83 140 | 88.33 154 | 61.17 148 | 60.97 237 | 86.62 159 |
|
DP-MVS Recon | | | 71.99 108 | 70.31 117 | 77.01 95 | 90.65 8 | 53.44 104 | 89.37 36 | 82.97 158 | 56.33 230 | 63.56 152 | 89.47 90 | 34.02 231 | 92.15 50 | 54.05 212 | 72.41 148 | 85.43 184 |
|
SDMVSNet | | | 71.89 109 | 70.62 111 | 75.70 126 | 81.70 138 | 51.61 147 | 73.89 283 | 88.72 32 | 66.58 49 | 61.64 172 | 82.38 199 | 37.63 182 | 89.48 116 | 77.44 47 | 65.60 200 | 86.01 169 |
|
QAPM | | | 71.88 110 | 69.33 134 | 79.52 34 | 82.20 130 | 54.30 85 | 86.30 89 | 88.77 30 | 56.61 226 | 59.72 188 | 87.48 127 | 33.90 233 | 95.36 13 | 47.48 257 | 81.49 69 | 88.90 111 |
|
ECVR-MVS |  | | 71.81 111 | 71.00 107 | 74.26 157 | 80.12 179 | 43.49 290 | 84.69 135 | 82.16 166 | 64.02 85 | 64.64 131 | 87.43 129 | 35.04 222 | 89.21 121 | 61.24 147 | 79.66 91 | 90.08 88 |
|
PAPM_NR | | | 71.80 112 | 69.98 124 | 77.26 89 | 81.54 148 | 53.34 109 | 78.60 256 | 85.25 101 | 53.46 257 | 60.53 182 | 88.66 105 | 45.69 89 | 89.24 120 | 56.49 196 | 79.62 93 | 89.19 105 |
|
mPP-MVS | | | 71.79 113 | 70.38 115 | 76.04 120 | 82.65 123 | 52.06 136 | 84.45 141 | 81.78 176 | 55.59 237 | 62.05 169 | 89.68 87 | 33.48 237 | 88.28 158 | 65.45 120 | 78.24 103 | 87.77 135 |
|
xiu_mvs_v1_base_debu | | | 71.60 114 | 70.29 118 | 75.55 130 | 77.26 227 | 53.15 114 | 85.34 110 | 79.37 217 | 55.83 234 | 72.54 59 | 90.19 75 | 22.38 314 | 86.66 204 | 73.28 76 | 76.39 113 | 86.85 153 |
|
xiu_mvs_v1_base | | | 71.60 114 | 70.29 118 | 75.55 130 | 77.26 227 | 53.15 114 | 85.34 110 | 79.37 217 | 55.83 234 | 72.54 59 | 90.19 75 | 22.38 314 | 86.66 204 | 73.28 76 | 76.39 113 | 86.85 153 |
|
xiu_mvs_v1_base_debi | | | 71.60 114 | 70.29 118 | 75.55 130 | 77.26 227 | 53.15 114 | 85.34 110 | 79.37 217 | 55.83 234 | 72.54 59 | 90.19 75 | 22.38 314 | 86.66 204 | 73.28 76 | 76.39 113 | 86.85 153 |
|
iter_conf_final | | | 71.46 117 | 69.68 128 | 76.81 101 | 86.03 46 | 53.49 99 | 84.73 133 | 74.37 290 | 60.27 149 | 66.28 111 | 84.36 164 | 35.14 221 | 90.87 79 | 65.41 122 | 70.51 164 | 86.05 168 |
|
hse-mvs2 | | | 71.44 118 | 70.68 109 | 73.73 174 | 76.34 237 | 47.44 241 | 79.45 249 | 79.47 216 | 68.08 32 | 71.97 67 | 86.01 148 | 42.50 127 | 86.93 197 | 78.82 34 | 53.46 306 | 86.83 156 |
|
test_fmvsmvis_n_1920 | | | 71.29 119 | 70.38 115 | 74.00 164 | 71.04 302 | 48.79 212 | 79.19 252 | 64.62 335 | 62.75 108 | 66.73 102 | 91.99 38 | 40.94 147 | 88.35 152 | 83.00 11 | 73.18 140 | 84.85 193 |
|
EPP-MVSNet | | | 71.14 120 | 70.07 123 | 74.33 154 | 79.18 192 | 46.52 253 | 83.81 159 | 86.49 71 | 56.32 231 | 57.95 222 | 84.90 160 | 54.23 26 | 89.14 123 | 58.14 178 | 69.65 171 | 87.33 144 |
|
VPA-MVSNet | | | 71.12 121 | 70.66 110 | 72.49 198 | 78.75 201 | 44.43 281 | 87.64 59 | 90.02 12 | 63.97 88 | 65.02 126 | 81.58 211 | 42.14 133 | 87.42 185 | 63.42 131 | 63.38 219 | 85.63 181 |
|
1314 | | | 71.11 122 | 69.41 131 | 76.22 112 | 79.32 189 | 50.49 168 | 80.23 240 | 85.14 107 | 59.44 162 | 58.93 205 | 88.89 102 | 33.83 235 | 89.60 115 | 61.49 145 | 77.42 107 | 88.57 121 |
|
test1111 | | | 71.06 123 | 70.42 114 | 72.97 188 | 79.48 186 | 41.49 311 | 84.82 132 | 82.74 161 | 64.20 83 | 62.98 157 | 87.43 129 | 35.20 219 | 87.92 167 | 58.54 170 | 78.42 101 | 89.49 99 |
|
tpmrst | | | 71.04 124 | 69.77 126 | 74.86 144 | 83.19 103 | 55.86 46 | 75.64 270 | 78.73 234 | 67.88 36 | 64.99 128 | 73.73 289 | 49.96 54 | 79.56 293 | 65.92 112 | 67.85 183 | 89.14 107 |
|
MVP-Stereo | | | 70.97 125 | 70.44 113 | 72.59 195 | 76.03 245 | 51.36 154 | 85.02 124 | 86.99 63 | 60.31 148 | 56.53 247 | 78.92 234 | 40.11 158 | 90.00 103 | 60.00 162 | 90.01 6 | 76.41 311 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
HQP_MVS | | | 70.96 126 | 69.91 125 | 74.12 160 | 77.95 216 | 49.57 190 | 85.76 99 | 82.59 162 | 63.60 96 | 62.15 167 | 83.28 182 | 36.04 212 | 88.30 156 | 65.46 118 | 72.34 149 | 84.49 195 |
|
SR-MVS | | | 70.92 127 | 69.73 127 | 74.50 148 | 83.38 98 | 50.48 169 | 84.27 146 | 79.35 221 | 48.96 289 | 66.57 108 | 90.45 67 | 33.65 236 | 87.11 190 | 66.42 108 | 74.56 132 | 85.91 174 |
|
tpm2 | | | 70.82 128 | 68.44 143 | 77.98 71 | 80.78 166 | 56.11 39 | 74.21 282 | 81.28 185 | 60.24 150 | 68.04 95 | 75.27 278 | 52.26 37 | 88.50 147 | 55.82 203 | 68.03 180 | 89.33 101 |
|
ACMMP |  | | 70.81 129 | 69.29 135 | 75.39 134 | 81.52 150 | 51.92 141 | 83.43 170 | 83.03 156 | 56.67 225 | 58.80 210 | 88.91 101 | 31.92 253 | 88.58 142 | 65.89 114 | 73.39 139 | 85.67 178 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
OPM-MVS | | | 70.75 130 | 69.58 129 | 74.26 157 | 75.55 251 | 51.34 155 | 86.05 94 | 83.29 151 | 61.94 122 | 62.95 158 | 85.77 149 | 34.15 230 | 88.44 148 | 65.44 121 | 71.07 158 | 82.99 227 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
ab-mvs | | | 70.65 131 | 69.11 137 | 75.29 137 | 80.87 164 | 46.23 261 | 73.48 287 | 85.24 102 | 59.99 152 | 66.65 104 | 80.94 216 | 43.13 123 | 88.69 138 | 63.58 130 | 68.07 179 | 90.95 69 |
|
Vis-MVSNet |  | | 70.61 132 | 69.34 133 | 74.42 151 | 80.95 163 | 48.49 221 | 86.03 95 | 77.51 255 | 58.74 183 | 65.55 121 | 87.78 122 | 34.37 228 | 85.95 228 | 52.53 227 | 80.61 75 | 88.80 114 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
sss | | | 70.49 133 | 70.13 122 | 71.58 223 | 81.59 145 | 39.02 322 | 80.78 233 | 84.71 119 | 59.34 165 | 66.61 106 | 88.09 117 | 37.17 194 | 85.52 232 | 61.82 144 | 71.02 159 | 90.20 85 |
|
CDS-MVSNet | | | 70.48 134 | 69.43 130 | 73.64 176 | 77.56 222 | 48.83 211 | 83.51 167 | 77.45 256 | 63.27 101 | 62.33 164 | 85.54 153 | 43.85 107 | 83.29 262 | 57.38 191 | 74.00 134 | 88.79 115 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
thisisatest0530 | | | 70.47 135 | 68.56 141 | 76.20 114 | 79.78 183 | 51.52 151 | 83.49 169 | 88.58 39 | 57.62 205 | 58.60 212 | 82.79 187 | 51.03 45 | 91.48 61 | 52.84 221 | 62.36 232 | 85.59 182 |
|
XXY-MVS | | | 70.18 136 | 69.28 136 | 72.89 191 | 77.64 220 | 42.88 298 | 85.06 121 | 87.50 58 | 62.58 112 | 62.66 162 | 82.34 201 | 43.64 115 | 89.83 107 | 58.42 173 | 63.70 214 | 85.96 173 |
|
Anonymous202405211 | | | 70.11 137 | 67.88 152 | 76.79 105 | 87.20 40 | 47.24 246 | 89.49 34 | 77.38 258 | 54.88 247 | 66.14 112 | 86.84 137 | 20.93 324 | 91.54 60 | 56.45 199 | 71.62 154 | 91.59 50 |
|
PCF-MVS | | 61.03 10 | 70.10 138 | 68.40 144 | 75.22 140 | 77.15 231 | 51.99 138 | 79.30 251 | 82.12 168 | 56.47 229 | 61.88 170 | 86.48 144 | 43.98 106 | 87.24 188 | 55.37 204 | 72.79 146 | 86.43 163 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
BH-RMVSNet | | | 70.08 139 | 68.01 149 | 76.27 110 | 84.21 80 | 51.22 159 | 87.29 70 | 79.33 223 | 58.96 179 | 63.63 150 | 86.77 138 | 33.29 239 | 90.30 97 | 44.63 273 | 73.96 135 | 87.30 146 |
|
1112_ss | | | 70.05 140 | 69.37 132 | 72.10 205 | 80.77 167 | 42.78 299 | 85.12 120 | 76.75 268 | 59.69 157 | 61.19 176 | 92.12 33 | 47.48 68 | 83.84 253 | 53.04 219 | 68.21 178 | 89.66 96 |
|
BH-w/o | | | 70.02 141 | 68.51 142 | 74.56 147 | 82.77 118 | 50.39 172 | 86.60 85 | 78.14 245 | 59.77 155 | 59.65 189 | 85.57 152 | 39.27 165 | 87.30 187 | 49.86 240 | 74.94 131 | 85.99 171 |
|
FIs | | | 70.00 142 | 70.24 121 | 69.30 255 | 77.93 218 | 38.55 325 | 83.99 155 | 87.72 54 | 66.86 48 | 57.66 229 | 84.17 167 | 52.28 36 | 85.31 236 | 52.72 226 | 68.80 175 | 84.02 203 |
|
OpenMVS |  | 61.00 11 | 69.99 143 | 67.55 161 | 77.30 86 | 78.37 212 | 54.07 91 | 84.36 143 | 85.76 85 | 57.22 213 | 56.71 244 | 87.67 125 | 30.79 261 | 92.83 34 | 43.04 280 | 84.06 53 | 85.01 189 |
|
GeoE | | | 69.96 144 | 67.88 152 | 76.22 112 | 81.11 157 | 51.71 146 | 84.15 149 | 76.74 269 | 59.83 154 | 60.91 177 | 84.38 162 | 41.56 143 | 88.10 163 | 51.67 230 | 70.57 163 | 88.84 113 |
|
HyFIR lowres test | | | 69.94 145 | 67.58 159 | 77.04 93 | 77.11 232 | 57.29 20 | 81.49 222 | 79.11 226 | 58.27 189 | 58.86 208 | 80.41 220 | 42.33 129 | 86.96 195 | 61.91 142 | 68.68 177 | 86.87 151 |
|
114514_t | | | 69.87 146 | 67.88 152 | 75.85 124 | 88.38 29 | 52.35 133 | 86.94 78 | 83.68 141 | 53.70 256 | 55.68 254 | 85.60 151 | 30.07 266 | 91.20 68 | 55.84 202 | 71.02 159 | 83.99 205 |
|
miper_enhance_ethall | | | 69.77 147 | 68.90 139 | 72.38 201 | 78.93 198 | 49.91 184 | 83.29 177 | 78.85 228 | 64.90 76 | 59.37 196 | 79.46 226 | 52.77 32 | 85.16 241 | 63.78 128 | 58.72 253 | 82.08 236 |
|
Anonymous20240529 | | | 69.71 148 | 67.28 166 | 77.00 96 | 83.78 88 | 50.36 174 | 88.87 44 | 85.10 108 | 47.22 297 | 64.03 143 | 83.37 180 | 27.93 277 | 92.10 51 | 57.78 186 | 67.44 186 | 88.53 122 |
|
TR-MVS | | | 69.71 148 | 67.85 155 | 75.27 138 | 82.94 113 | 48.48 222 | 87.40 66 | 80.86 189 | 57.15 215 | 64.61 133 | 87.08 134 | 32.67 244 | 89.64 114 | 46.38 264 | 71.55 156 | 87.68 138 |
|
EI-MVSNet | | | 69.70 150 | 68.70 140 | 72.68 193 | 75.00 257 | 48.90 209 | 79.54 246 | 87.16 60 | 61.05 136 | 63.88 147 | 83.74 173 | 45.87 85 | 90.44 90 | 57.42 190 | 64.68 207 | 78.70 282 |
|
test-LLR | | | 69.65 151 | 69.01 138 | 71.60 221 | 78.67 203 | 48.17 228 | 85.13 117 | 79.72 209 | 59.18 172 | 63.13 155 | 82.58 193 | 36.91 198 | 80.24 284 | 60.56 154 | 75.17 126 | 86.39 164 |
|
APD-MVS_3200maxsize | | | 69.62 152 | 68.23 147 | 73.80 171 | 81.58 146 | 48.22 227 | 81.91 206 | 79.50 215 | 48.21 292 | 64.24 140 | 89.75 86 | 31.91 254 | 87.55 183 | 63.08 133 | 73.85 137 | 85.64 180 |
|
v2v482 | | | 69.55 153 | 67.64 158 | 75.26 139 | 72.32 289 | 53.83 92 | 84.93 128 | 81.94 171 | 65.37 71 | 60.80 179 | 79.25 230 | 41.62 141 | 88.98 131 | 63.03 134 | 59.51 246 | 82.98 228 |
|
TAMVS | | | 69.51 154 | 68.16 148 | 73.56 179 | 76.30 240 | 48.71 215 | 82.57 192 | 77.17 261 | 62.10 118 | 61.32 175 | 84.23 166 | 41.90 138 | 83.46 260 | 54.80 208 | 73.09 143 | 88.50 123 |
|
PVSNet | | 62.49 8 | 69.27 155 | 67.81 156 | 73.64 176 | 84.41 76 | 51.85 142 | 84.63 139 | 77.80 249 | 66.42 53 | 59.80 187 | 84.95 159 | 22.14 319 | 80.44 282 | 55.03 205 | 75.11 128 | 88.62 119 |
|
MVS_111021_LR | | | 69.07 156 | 67.91 150 | 72.54 196 | 77.27 226 | 49.56 192 | 79.77 244 | 73.96 296 | 59.33 167 | 60.73 180 | 87.82 121 | 30.19 265 | 81.53 270 | 69.94 90 | 72.19 151 | 86.53 160 |
|
GA-MVS | | | 69.04 157 | 66.70 175 | 76.06 119 | 75.11 253 | 52.36 132 | 83.12 182 | 80.23 199 | 63.32 100 | 60.65 181 | 79.22 231 | 30.98 260 | 88.37 150 | 61.25 146 | 66.41 194 | 87.46 142 |
|
cascas | | | 69.01 158 | 66.13 187 | 77.66 77 | 79.36 187 | 55.41 53 | 86.99 76 | 83.75 140 | 56.69 224 | 58.92 206 | 81.35 213 | 24.31 304 | 92.10 51 | 53.23 216 | 70.61 162 | 85.46 183 |
|
FA-MVS(test-final) | | | 69.00 159 | 66.60 178 | 76.19 115 | 83.48 93 | 47.96 236 | 74.73 278 | 82.07 169 | 57.27 212 | 62.18 166 | 78.47 238 | 36.09 210 | 92.89 32 | 53.76 215 | 71.32 157 | 87.73 136 |
|
cl22 | | | 68.85 160 | 67.69 157 | 72.35 202 | 78.07 215 | 49.98 183 | 82.45 197 | 78.48 240 | 62.50 114 | 58.46 217 | 77.95 240 | 49.99 53 | 85.17 240 | 62.55 136 | 58.72 253 | 81.90 239 |
|
FMVSNet3 | | | 68.84 161 | 67.40 164 | 73.19 184 | 85.05 65 | 48.53 219 | 85.71 104 | 85.36 93 | 60.90 140 | 57.58 231 | 79.15 232 | 42.16 132 | 86.77 200 | 47.25 259 | 63.40 216 | 84.27 199 |
|
UniMVSNet_NR-MVSNet | | | 68.82 162 | 68.29 146 | 70.40 241 | 75.71 249 | 42.59 301 | 84.23 147 | 86.78 66 | 66.31 55 | 58.51 213 | 82.45 196 | 51.57 40 | 84.64 249 | 53.11 217 | 55.96 283 | 83.96 209 |
|
v1144 | | | 68.81 163 | 66.82 171 | 74.80 145 | 72.34 288 | 53.46 101 | 84.68 136 | 81.77 177 | 64.25 82 | 60.28 183 | 77.91 241 | 40.23 155 | 88.95 132 | 60.37 159 | 59.52 245 | 81.97 237 |
|
IS-MVSNet | | | 68.80 164 | 67.55 161 | 72.54 196 | 78.50 209 | 43.43 292 | 81.03 228 | 79.35 221 | 59.12 175 | 57.27 239 | 86.71 139 | 46.05 83 | 87.70 176 | 44.32 275 | 75.60 122 | 86.49 161 |
|
PS-MVSNAJss | | | 68.78 165 | 67.17 168 | 73.62 178 | 73.01 279 | 48.33 226 | 84.95 127 | 84.81 115 | 59.30 168 | 58.91 207 | 79.84 224 | 37.77 177 | 88.86 135 | 62.83 135 | 63.12 225 | 83.67 215 |
|
thres200 | | | 68.71 166 | 67.27 167 | 73.02 186 | 84.73 70 | 46.76 250 | 85.03 123 | 87.73 53 | 62.34 116 | 59.87 185 | 83.45 179 | 43.15 121 | 88.32 155 | 31.25 328 | 67.91 182 | 83.98 207 |
|
UGNet | | | 68.71 166 | 67.11 169 | 73.50 180 | 80.55 173 | 47.61 238 | 84.08 151 | 78.51 239 | 59.45 161 | 65.68 120 | 82.73 191 | 23.78 306 | 85.08 243 | 52.80 222 | 76.40 112 | 87.80 134 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
miper_ehance_all_eth | | | 68.70 168 | 67.58 159 | 72.08 206 | 76.91 233 | 49.48 196 | 82.47 196 | 78.45 241 | 62.68 110 | 58.28 221 | 77.88 242 | 50.90 46 | 85.01 244 | 61.91 142 | 58.72 253 | 81.75 241 |
|
test_vis1_n_1920 | | | 68.59 169 | 68.31 145 | 69.44 254 | 69.16 313 | 41.51 310 | 84.63 139 | 68.58 327 | 58.80 181 | 73.26 52 | 88.37 110 | 25.30 296 | 80.60 279 | 79.10 31 | 67.55 185 | 86.23 166 |
|
EPMVS | | | 68.45 170 | 65.44 206 | 77.47 82 | 84.91 68 | 56.17 38 | 71.89 303 | 81.91 174 | 61.72 125 | 60.85 178 | 72.49 303 | 36.21 208 | 87.06 192 | 47.32 258 | 71.62 154 | 89.17 106 |
|
test-mter | | | 68.36 171 | 67.29 165 | 71.60 221 | 78.67 203 | 48.17 228 | 85.13 117 | 79.72 209 | 53.38 258 | 63.13 155 | 82.58 193 | 27.23 283 | 80.24 284 | 60.56 154 | 75.17 126 | 86.39 164 |
|
tpm | | | 68.36 171 | 67.48 163 | 70.97 233 | 79.93 182 | 51.34 155 | 76.58 268 | 78.75 233 | 67.73 39 | 63.54 153 | 74.86 280 | 48.33 60 | 72.36 337 | 53.93 213 | 63.71 213 | 89.21 104 |
|
tttt0517 | | | 68.33 173 | 66.29 183 | 74.46 149 | 78.08 214 | 49.06 201 | 80.88 231 | 89.08 20 | 54.40 252 | 54.75 260 | 80.77 218 | 51.31 42 | 90.33 94 | 49.35 244 | 58.01 263 | 83.99 205 |
|
BH-untuned | | | 68.28 174 | 66.40 180 | 73.91 166 | 81.62 143 | 50.01 182 | 85.56 108 | 77.39 257 | 57.63 204 | 57.47 236 | 83.69 175 | 36.36 207 | 87.08 191 | 44.81 271 | 73.08 144 | 84.65 194 |
|
SR-MVS-dyc-post | | | 68.27 175 | 66.87 170 | 72.48 199 | 80.96 160 | 48.14 230 | 81.54 218 | 76.98 264 | 46.42 304 | 62.75 160 | 89.42 91 | 31.17 259 | 86.09 222 | 60.52 156 | 72.06 152 | 83.19 223 |
|
v148 | | | 68.24 176 | 66.35 181 | 73.88 167 | 71.76 292 | 51.47 152 | 84.23 147 | 81.90 175 | 63.69 94 | 58.94 204 | 76.44 265 | 43.72 113 | 87.78 174 | 60.63 152 | 55.86 285 | 82.39 234 |
|
AUN-MVS | | | 68.20 177 | 66.35 181 | 73.76 172 | 76.37 236 | 47.45 240 | 79.52 248 | 79.52 214 | 60.98 138 | 62.34 163 | 86.02 146 | 36.59 206 | 86.94 196 | 62.32 138 | 53.47 305 | 86.89 150 |
|
c3_l | | | 67.97 178 | 66.66 176 | 71.91 217 | 76.20 242 | 49.31 198 | 82.13 202 | 78.00 247 | 61.99 120 | 57.64 230 | 76.94 257 | 49.41 57 | 84.93 245 | 60.62 153 | 57.01 273 | 81.49 245 |
|
v1192 | | | 67.96 179 | 65.74 198 | 74.63 146 | 71.79 291 | 53.43 106 | 84.06 153 | 80.99 188 | 63.19 103 | 59.56 192 | 77.46 248 | 37.50 188 | 88.65 139 | 58.20 177 | 58.93 252 | 81.79 240 |
|
v144192 | | | 67.86 180 | 65.76 197 | 74.16 159 | 71.68 293 | 53.09 117 | 84.14 150 | 80.83 190 | 62.85 107 | 59.21 201 | 77.28 251 | 39.30 164 | 88.00 166 | 58.67 169 | 57.88 267 | 81.40 251 |
|
HPM-MVS_fast | | | 67.86 180 | 66.28 184 | 72.61 194 | 80.67 170 | 48.34 225 | 81.18 226 | 75.95 279 | 50.81 277 | 59.55 193 | 88.05 119 | 27.86 278 | 85.98 225 | 58.83 167 | 73.58 138 | 83.51 216 |
|
AdaColmap |  | | 67.86 180 | 65.48 203 | 75.00 142 | 88.15 33 | 54.99 67 | 86.10 93 | 76.63 272 | 49.30 286 | 57.80 225 | 86.65 141 | 29.39 270 | 88.94 134 | 45.10 270 | 70.21 167 | 81.06 258 |
|
sd_testset | | | 67.79 183 | 65.95 192 | 73.32 181 | 81.70 138 | 46.33 258 | 68.99 315 | 80.30 198 | 66.58 49 | 61.64 172 | 82.38 199 | 30.45 263 | 87.63 179 | 55.86 201 | 65.60 200 | 86.01 169 |
|
UniMVSNet (Re) | | | 67.71 184 | 66.80 172 | 70.45 239 | 74.44 264 | 42.93 297 | 82.42 198 | 84.90 112 | 63.69 94 | 59.63 190 | 80.99 215 | 47.18 70 | 85.23 239 | 51.17 234 | 56.75 274 | 83.19 223 |
|
V42 | | | 67.66 185 | 65.60 202 | 73.86 168 | 70.69 304 | 53.63 97 | 81.50 220 | 78.61 237 | 63.85 90 | 59.49 195 | 77.49 247 | 37.98 174 | 87.65 177 | 62.33 137 | 58.43 256 | 80.29 268 |
|
dmvs_re | | | 67.61 186 | 66.00 190 | 72.42 200 | 81.86 135 | 43.45 291 | 64.67 327 | 80.00 202 | 69.56 24 | 60.07 184 | 85.00 158 | 34.71 225 | 87.63 179 | 51.48 231 | 66.68 190 | 86.17 167 |
|
WR-MVS | | | 67.58 187 | 66.76 173 | 70.04 248 | 75.92 247 | 45.06 277 | 86.23 90 | 85.28 99 | 64.31 81 | 58.50 215 | 81.00 214 | 44.80 103 | 82.00 269 | 49.21 246 | 55.57 288 | 83.06 226 |
|
tfpn200view9 | | | 67.57 188 | 66.13 187 | 71.89 218 | 84.05 82 | 45.07 274 | 83.40 172 | 87.71 55 | 60.79 141 | 57.79 226 | 82.76 188 | 43.53 116 | 87.80 171 | 28.80 335 | 66.36 195 | 82.78 232 |
|
FMVSNet2 | | | 67.57 188 | 65.79 196 | 72.90 189 | 82.71 120 | 47.97 235 | 85.15 116 | 84.93 111 | 58.55 186 | 56.71 244 | 78.26 239 | 36.72 203 | 86.67 203 | 46.15 266 | 62.94 227 | 84.07 202 |
|
FC-MVSNet-test | | | 67.49 190 | 67.91 150 | 66.21 287 | 76.06 243 | 33.06 342 | 80.82 232 | 87.18 59 | 64.44 80 | 54.81 258 | 82.87 185 | 50.40 51 | 82.60 264 | 48.05 254 | 66.55 193 | 82.98 228 |
|
v1921920 | | | 67.45 191 | 65.23 210 | 74.10 161 | 71.51 296 | 52.90 123 | 83.75 161 | 80.44 195 | 62.48 115 | 59.12 202 | 77.13 252 | 36.98 196 | 87.90 168 | 57.53 188 | 58.14 261 | 81.49 245 |
|
cl____ | | | 67.43 192 | 65.93 193 | 71.95 214 | 76.33 238 | 48.02 233 | 82.58 191 | 79.12 225 | 61.30 132 | 56.72 243 | 76.92 258 | 46.12 81 | 86.44 211 | 57.98 180 | 56.31 277 | 81.38 253 |
|
DIV-MVS_self_test | | | 67.43 192 | 65.93 193 | 71.94 215 | 76.33 238 | 48.01 234 | 82.57 192 | 79.11 226 | 61.31 131 | 56.73 242 | 76.92 258 | 46.09 82 | 86.43 212 | 57.98 180 | 56.31 277 | 81.39 252 |
|
gg-mvs-nofinetune | | | 67.43 192 | 64.53 218 | 76.13 117 | 85.95 47 | 47.79 237 | 64.38 328 | 88.28 43 | 39.34 332 | 66.62 105 | 41.27 364 | 58.69 13 | 89.00 128 | 49.64 242 | 86.62 28 | 91.59 50 |
|
thres400 | | | 67.40 195 | 66.13 187 | 71.19 229 | 84.05 82 | 45.07 274 | 83.40 172 | 87.71 55 | 60.79 141 | 57.79 226 | 82.76 188 | 43.53 116 | 87.80 171 | 28.80 335 | 66.36 195 | 80.71 263 |
|
UA-Net | | | 67.32 196 | 66.23 185 | 70.59 237 | 78.85 199 | 41.23 314 | 73.60 285 | 75.45 283 | 61.54 128 | 66.61 106 | 84.53 161 | 38.73 170 | 86.57 209 | 42.48 285 | 74.24 133 | 83.98 207 |
|
v8 | | | 67.25 197 | 64.99 213 | 74.04 162 | 72.89 282 | 53.31 111 | 82.37 199 | 80.11 201 | 61.54 128 | 54.29 265 | 76.02 274 | 42.89 125 | 88.41 149 | 58.43 171 | 56.36 275 | 80.39 267 |
|
NR-MVSNet | | | 67.25 197 | 65.99 191 | 71.04 232 | 73.27 277 | 43.91 286 | 85.32 113 | 84.75 118 | 66.05 63 | 53.65 272 | 82.11 204 | 45.05 95 | 85.97 227 | 47.55 256 | 56.18 280 | 83.24 221 |
|
Test_1112_low_res | | | 67.18 199 | 66.23 185 | 70.02 249 | 78.75 201 | 41.02 315 | 83.43 170 | 73.69 298 | 57.29 211 | 58.45 218 | 82.39 198 | 45.30 92 | 80.88 276 | 50.50 236 | 66.26 198 | 88.16 125 |
|
CPTT-MVS | | | 67.15 200 | 65.84 195 | 71.07 231 | 80.96 160 | 50.32 176 | 81.94 205 | 74.10 292 | 46.18 307 | 57.91 223 | 87.64 126 | 29.57 268 | 81.31 272 | 64.10 127 | 70.18 168 | 81.56 244 |
|
test_cas_vis1_n_1920 | | | 67.10 201 | 66.60 178 | 68.59 267 | 65.17 335 | 43.23 294 | 83.23 179 | 69.84 323 | 55.34 241 | 70.67 82 | 87.71 124 | 24.70 302 | 76.66 317 | 78.57 38 | 64.20 209 | 85.89 175 |
|
GBi-Net | | | 67.09 202 | 65.47 204 | 71.96 211 | 82.71 120 | 46.36 255 | 83.52 163 | 83.31 148 | 58.55 186 | 57.58 231 | 76.23 269 | 36.72 203 | 86.20 214 | 47.25 259 | 63.40 216 | 83.32 218 |
|
test1 | | | 67.09 202 | 65.47 204 | 71.96 211 | 82.71 120 | 46.36 255 | 83.52 163 | 83.31 148 | 58.55 186 | 57.58 231 | 76.23 269 | 36.72 203 | 86.20 214 | 47.25 259 | 63.40 216 | 83.32 218 |
|
PatchmatchNet |  | | 67.07 204 | 63.63 224 | 77.40 83 | 83.10 104 | 58.03 9 | 72.11 301 | 77.77 250 | 58.85 180 | 59.37 196 | 70.83 316 | 37.84 176 | 84.93 245 | 42.96 281 | 69.83 170 | 89.26 102 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
v1240 | | | 66.99 205 | 64.68 216 | 73.93 165 | 71.38 299 | 52.66 126 | 83.39 174 | 79.98 203 | 61.97 121 | 58.44 219 | 77.11 253 | 35.25 218 | 87.81 170 | 56.46 198 | 58.15 259 | 81.33 254 |
|
eth_miper_zixun_eth | | | 66.98 206 | 65.28 209 | 72.06 207 | 75.61 250 | 50.40 171 | 81.00 229 | 76.97 267 | 62.00 119 | 56.99 241 | 76.97 256 | 44.84 100 | 85.58 231 | 58.75 168 | 54.42 297 | 80.21 269 |
|
TranMVSNet+NR-MVSNet | | | 66.94 207 | 65.61 201 | 70.93 234 | 73.45 274 | 43.38 293 | 83.02 186 | 84.25 129 | 65.31 73 | 58.33 220 | 81.90 207 | 39.92 161 | 85.52 232 | 49.43 243 | 54.89 293 | 83.89 211 |
|
mvsmamba | | | 66.93 208 | 64.88 215 | 73.09 185 | 75.06 255 | 47.26 244 | 83.36 176 | 69.21 325 | 62.64 111 | 55.68 254 | 81.43 212 | 29.72 267 | 89.20 122 | 63.35 132 | 63.50 215 | 82.79 231 |
|
thres100view900 | | | 66.87 209 | 65.42 207 | 71.24 227 | 83.29 100 | 43.15 295 | 81.67 213 | 87.78 50 | 59.04 176 | 55.92 252 | 82.18 203 | 43.73 111 | 87.80 171 | 28.80 335 | 66.36 195 | 82.78 232 |
|
DU-MVS | | | 66.84 210 | 65.74 198 | 70.16 244 | 73.27 277 | 42.59 301 | 81.50 220 | 82.92 159 | 63.53 98 | 58.51 213 | 82.11 204 | 40.75 149 | 84.64 249 | 53.11 217 | 55.96 283 | 83.24 221 |
|
IterMVS-LS | | | 66.63 211 | 65.36 208 | 70.42 240 | 75.10 254 | 48.90 209 | 81.45 223 | 76.69 271 | 61.05 136 | 55.71 253 | 77.10 254 | 45.86 86 | 83.65 257 | 57.44 189 | 57.88 267 | 78.70 282 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
v10 | | | 66.61 212 | 64.20 221 | 73.83 170 | 72.59 285 | 53.37 107 | 81.88 207 | 79.91 206 | 61.11 134 | 54.09 267 | 75.60 276 | 40.06 159 | 88.26 159 | 56.47 197 | 56.10 281 | 79.86 273 |
|
Fast-Effi-MVS+-dtu | | | 66.53 213 | 64.10 222 | 73.84 169 | 72.41 287 | 52.30 135 | 84.73 133 | 75.66 280 | 59.51 160 | 56.34 249 | 79.11 233 | 28.11 275 | 85.85 230 | 57.74 187 | 63.29 220 | 83.35 217 |
|
thres600view7 | | | 66.46 214 | 65.12 211 | 70.47 238 | 83.41 94 | 43.80 288 | 82.15 201 | 87.78 50 | 59.37 164 | 56.02 251 | 82.21 202 | 43.73 111 | 86.90 198 | 26.51 347 | 64.94 203 | 80.71 263 |
|
LPG-MVS_test | | | 66.44 215 | 64.58 217 | 72.02 208 | 74.42 265 | 48.60 216 | 83.07 184 | 80.64 192 | 54.69 249 | 53.75 270 | 83.83 171 | 25.73 294 | 86.98 193 | 60.33 160 | 64.71 204 | 80.48 265 |
|
tpm cat1 | | | 66.28 216 | 62.78 225 | 76.77 106 | 81.40 152 | 57.14 22 | 70.03 310 | 77.19 260 | 53.00 261 | 58.76 211 | 70.73 319 | 46.17 80 | 86.73 202 | 43.27 279 | 64.46 208 | 86.44 162 |
|
EPNet_dtu | | | 66.25 217 | 66.71 174 | 64.87 297 | 78.66 205 | 34.12 337 | 82.80 189 | 75.51 281 | 61.75 124 | 64.47 138 | 86.90 136 | 37.06 195 | 72.46 336 | 43.65 278 | 69.63 172 | 88.02 131 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
Effi-MVS+-dtu | | | 66.24 218 | 64.96 214 | 70.08 246 | 75.17 252 | 49.64 189 | 82.01 203 | 74.48 289 | 62.15 117 | 57.83 224 | 76.08 273 | 30.59 262 | 83.79 254 | 65.40 123 | 60.93 238 | 76.81 304 |
|
ACMP | | 61.11 9 | 66.24 218 | 64.33 219 | 72.00 210 | 74.89 259 | 49.12 200 | 83.18 181 | 79.83 207 | 55.41 240 | 52.29 280 | 82.68 192 | 25.83 292 | 86.10 220 | 60.89 149 | 63.94 212 | 80.78 261 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
Anonymous20231211 | | | 66.08 220 | 63.67 223 | 73.31 182 | 83.07 107 | 48.75 213 | 86.01 96 | 84.67 121 | 45.27 311 | 56.54 246 | 76.67 263 | 28.06 276 | 88.95 132 | 52.78 223 | 59.95 240 | 82.23 235 |
|
OMC-MVS | | | 65.97 221 | 65.06 212 | 68.71 264 | 72.97 280 | 42.58 303 | 78.61 255 | 75.35 284 | 54.72 248 | 59.31 198 | 86.25 145 | 33.30 238 | 77.88 307 | 57.99 179 | 67.05 188 | 85.66 179 |
|
X-MVStestdata | | | 65.85 222 | 62.20 229 | 76.81 101 | 83.41 94 | 52.48 128 | 84.88 129 | 83.20 153 | 58.03 192 | 63.91 145 | 4.82 383 | 35.50 216 | 89.78 108 | 65.50 115 | 80.50 77 | 88.16 125 |
|
Vis-MVSNet (Re-imp) | | | 65.52 223 | 65.63 200 | 65.17 295 | 77.49 223 | 30.54 349 | 75.49 274 | 77.73 251 | 59.34 165 | 52.26 282 | 86.69 140 | 49.38 58 | 80.53 281 | 37.07 299 | 75.28 125 | 84.42 197 |
|
Baseline_NR-MVSNet | | | 65.49 224 | 64.27 220 | 69.13 256 | 74.37 267 | 41.65 308 | 83.39 174 | 78.85 228 | 59.56 159 | 59.62 191 | 76.88 260 | 40.75 149 | 87.44 184 | 49.99 238 | 55.05 291 | 78.28 291 |
|
FMVSNet1 | | | 64.57 225 | 62.11 230 | 71.96 211 | 77.32 225 | 46.36 255 | 83.52 163 | 83.31 148 | 52.43 266 | 54.42 263 | 76.23 269 | 27.80 279 | 86.20 214 | 42.59 284 | 61.34 236 | 83.32 218 |
|
dp | | | 64.41 226 | 61.58 233 | 72.90 189 | 82.40 126 | 54.09 90 | 72.53 293 | 76.59 273 | 60.39 147 | 55.68 254 | 70.39 320 | 35.18 220 | 76.90 315 | 39.34 291 | 61.71 234 | 87.73 136 |
|
ACMM | | 58.35 12 | 64.35 227 | 62.01 231 | 71.38 225 | 74.21 268 | 48.51 220 | 82.25 200 | 79.66 211 | 47.61 295 | 54.54 262 | 80.11 221 | 25.26 297 | 86.00 224 | 51.26 232 | 63.16 223 | 79.64 274 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
FE-MVS | | | 64.15 228 | 60.43 247 | 75.30 136 | 80.85 165 | 49.86 186 | 68.28 319 | 78.37 242 | 50.26 282 | 59.31 198 | 73.79 288 | 26.19 290 | 91.92 54 | 40.19 288 | 66.67 191 | 84.12 200 |
|
pm-mvs1 | | | 64.12 229 | 62.56 226 | 68.78 262 | 71.68 293 | 38.87 323 | 82.89 188 | 81.57 178 | 55.54 239 | 53.89 269 | 77.82 243 | 37.73 180 | 86.74 201 | 48.46 252 | 53.49 304 | 80.72 262 |
|
miper_lstm_enhance | | | 63.91 230 | 62.30 228 | 68.75 263 | 75.06 255 | 46.78 249 | 69.02 314 | 81.14 186 | 59.68 158 | 52.76 277 | 72.39 306 | 40.71 151 | 77.99 305 | 56.81 195 | 53.09 307 | 81.48 247 |
|
SCA | | | 63.84 231 | 60.01 250 | 75.32 135 | 78.58 207 | 57.92 10 | 61.61 337 | 77.53 254 | 56.71 223 | 57.75 228 | 70.77 317 | 31.97 251 | 79.91 290 | 48.80 248 | 56.36 275 | 88.13 128 |
|
test_djsdf | | | 63.84 231 | 61.56 234 | 70.70 236 | 68.78 315 | 44.69 278 | 81.63 214 | 81.44 181 | 50.28 279 | 52.27 281 | 76.26 268 | 26.72 286 | 86.11 218 | 60.83 150 | 55.84 286 | 81.29 257 |
|
IterMVS | | | 63.77 233 | 61.67 232 | 70.08 246 | 72.68 284 | 51.24 158 | 80.44 236 | 75.51 281 | 60.51 146 | 51.41 285 | 73.70 292 | 32.08 250 | 78.91 295 | 54.30 210 | 54.35 298 | 80.08 271 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
RRT_MVS | | | 63.68 234 | 61.01 241 | 71.70 219 | 73.48 273 | 45.98 263 | 81.19 225 | 76.08 277 | 54.33 253 | 52.84 276 | 79.27 229 | 22.21 317 | 87.65 177 | 54.13 211 | 55.54 289 | 81.46 248 |
|
D2MVS | | | 63.49 235 | 61.39 236 | 69.77 250 | 69.29 312 | 48.93 208 | 78.89 254 | 77.71 252 | 60.64 145 | 49.70 294 | 72.10 311 | 27.08 284 | 83.48 259 | 54.48 209 | 62.65 228 | 76.90 303 |
|
tt0805 | | | 63.39 236 | 61.31 237 | 69.64 251 | 69.36 311 | 38.87 323 | 78.00 258 | 85.48 87 | 48.82 290 | 55.66 257 | 81.66 209 | 24.38 303 | 86.37 213 | 49.04 247 | 59.36 249 | 83.68 214 |
|
pmmvs4 | | | 63.34 237 | 61.07 240 | 70.16 244 | 70.14 306 | 50.53 167 | 79.97 243 | 71.41 315 | 55.08 243 | 54.12 266 | 78.58 236 | 32.79 243 | 82.09 268 | 50.33 237 | 57.22 272 | 77.86 295 |
|
jajsoiax | | | 63.21 238 | 60.84 242 | 70.32 242 | 68.33 320 | 44.45 280 | 81.23 224 | 81.05 187 | 53.37 259 | 50.96 290 | 77.81 244 | 17.49 338 | 85.49 234 | 59.31 163 | 58.05 262 | 81.02 259 |
|
MIMVSNet | | | 63.12 239 | 60.29 248 | 71.61 220 | 75.92 247 | 46.65 251 | 65.15 324 | 81.94 171 | 59.14 174 | 54.65 261 | 69.47 323 | 25.74 293 | 80.63 278 | 41.03 287 | 69.56 173 | 87.55 140 |
|
CL-MVSNet_self_test | | | 62.98 240 | 61.14 239 | 68.50 269 | 65.86 330 | 42.96 296 | 84.37 142 | 82.98 157 | 60.98 138 | 53.95 268 | 72.70 302 | 40.43 153 | 83.71 256 | 41.10 286 | 47.93 320 | 78.83 281 |
|
mvs_tets | | | 62.96 241 | 60.55 244 | 70.19 243 | 68.22 323 | 44.24 284 | 80.90 230 | 80.74 191 | 52.99 262 | 50.82 292 | 77.56 245 | 16.74 342 | 85.44 235 | 59.04 166 | 57.94 264 | 80.89 260 |
|
TransMVSNet (Re) | | | 62.82 242 | 60.76 243 | 69.02 257 | 73.98 270 | 41.61 309 | 86.36 87 | 79.30 224 | 56.90 217 | 52.53 278 | 76.44 265 | 41.85 139 | 87.60 182 | 38.83 292 | 40.61 344 | 77.86 295 |
|
pmmvs5 | | | 62.80 243 | 61.18 238 | 67.66 274 | 69.53 310 | 42.37 306 | 82.65 190 | 75.19 285 | 54.30 254 | 52.03 283 | 78.51 237 | 31.64 256 | 80.67 277 | 48.60 250 | 58.15 259 | 79.95 272 |
|
test0.0.03 1 | | | 62.54 244 | 62.44 227 | 62.86 307 | 72.28 290 | 29.51 355 | 82.93 187 | 78.78 231 | 59.18 172 | 53.07 275 | 82.41 197 | 36.91 198 | 77.39 311 | 37.45 295 | 58.96 251 | 81.66 243 |
|
UniMVSNet_ETH3D | | | 62.51 245 | 60.49 245 | 68.57 268 | 68.30 321 | 40.88 317 | 73.89 283 | 79.93 205 | 51.81 272 | 54.77 259 | 79.61 225 | 24.80 300 | 81.10 273 | 49.93 239 | 61.35 235 | 83.73 213 |
|
v7n | | | 62.50 246 | 59.27 255 | 72.20 204 | 67.25 326 | 49.83 187 | 77.87 260 | 80.12 200 | 52.50 265 | 48.80 299 | 73.07 297 | 32.10 249 | 87.90 168 | 46.83 262 | 54.92 292 | 78.86 280 |
|
CR-MVSNet | | | 62.47 247 | 59.04 257 | 72.77 192 | 73.97 271 | 56.57 29 | 60.52 340 | 71.72 310 | 60.04 151 | 57.49 234 | 65.86 333 | 38.94 167 | 80.31 283 | 42.86 282 | 59.93 241 | 81.42 249 |
|
tpmvs | | | 62.45 248 | 59.42 253 | 71.53 224 | 83.93 84 | 54.32 84 | 70.03 310 | 77.61 253 | 51.91 269 | 53.48 273 | 68.29 327 | 37.91 175 | 86.66 204 | 33.36 318 | 58.27 257 | 73.62 329 |
|
EG-PatchMatch MVS | | | 62.40 249 | 59.59 251 | 70.81 235 | 73.29 276 | 49.05 202 | 85.81 97 | 84.78 116 | 51.85 271 | 44.19 319 | 73.48 295 | 15.52 347 | 89.85 106 | 40.16 289 | 67.24 187 | 73.54 330 |
|
XVG-OURS-SEG-HR | | | 62.02 250 | 59.54 252 | 69.46 253 | 65.30 333 | 45.88 264 | 65.06 325 | 73.57 300 | 46.45 303 | 57.42 237 | 83.35 181 | 26.95 285 | 78.09 301 | 53.77 214 | 64.03 210 | 84.42 197 |
|
XVG-OURS | | | 61.88 251 | 59.34 254 | 69.49 252 | 65.37 332 | 46.27 259 | 64.80 326 | 73.49 301 | 47.04 299 | 57.41 238 | 82.85 186 | 25.15 298 | 78.18 299 | 53.00 220 | 64.98 202 | 84.01 204 |
|
TAPA-MVS | | 56.12 14 | 61.82 252 | 60.18 249 | 66.71 283 | 78.48 210 | 37.97 328 | 75.19 276 | 76.41 275 | 46.82 300 | 57.04 240 | 86.52 143 | 27.67 281 | 77.03 313 | 26.50 348 | 67.02 189 | 85.14 186 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
tfpnnormal | | | 61.47 253 | 59.09 256 | 68.62 266 | 76.29 241 | 41.69 307 | 81.14 227 | 85.16 105 | 54.48 251 | 51.32 286 | 73.63 293 | 32.32 247 | 86.89 199 | 21.78 359 | 55.71 287 | 77.29 301 |
|
PVSNet_0 | | 57.04 13 | 61.19 254 | 57.24 266 | 73.02 186 | 77.45 224 | 50.31 177 | 79.43 250 | 77.36 259 | 63.96 89 | 47.51 308 | 72.45 305 | 25.03 299 | 83.78 255 | 52.76 225 | 19.22 375 | 84.96 190 |
|
PLC |  | 52.38 18 | 60.89 255 | 58.97 258 | 66.68 285 | 81.77 137 | 45.70 268 | 78.96 253 | 74.04 295 | 43.66 322 | 47.63 305 | 83.19 184 | 23.52 309 | 77.78 310 | 37.47 294 | 60.46 239 | 76.55 310 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
CVMVSNet | | | 60.85 256 | 60.44 246 | 62.07 308 | 75.00 257 | 32.73 344 | 79.54 246 | 73.49 301 | 36.98 340 | 56.28 250 | 83.74 173 | 29.28 271 | 69.53 345 | 46.48 263 | 63.23 221 | 83.94 210 |
|
CNLPA | | | 60.59 257 | 58.44 260 | 67.05 280 | 79.21 191 | 47.26 244 | 79.75 245 | 64.34 337 | 42.46 328 | 51.90 284 | 83.94 169 | 27.79 280 | 75.41 322 | 37.12 297 | 59.49 247 | 78.47 286 |
|
anonymousdsp | | | 60.46 258 | 57.65 263 | 68.88 258 | 63.63 343 | 45.09 273 | 72.93 291 | 78.63 236 | 46.52 302 | 51.12 287 | 72.80 301 | 21.46 322 | 83.07 263 | 57.79 185 | 53.97 299 | 78.47 286 |
|
ACMH | | 53.70 16 | 59.78 259 | 55.94 278 | 71.28 226 | 76.59 235 | 48.35 224 | 80.15 242 | 76.11 276 | 49.74 284 | 41.91 330 | 73.45 296 | 16.50 344 | 90.31 95 | 31.42 326 | 57.63 270 | 75.17 319 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
bld_raw_dy_0_64 | | | 59.75 260 | 57.01 270 | 67.96 272 | 66.73 327 | 45.30 271 | 77.59 262 | 59.97 345 | 50.49 278 | 47.15 310 | 77.03 255 | 17.45 339 | 79.06 294 | 56.92 194 | 59.76 244 | 79.51 275 |
|
pmmvs6 | | | 59.64 261 | 57.15 267 | 67.09 278 | 66.01 328 | 36.86 332 | 80.50 235 | 78.64 235 | 45.05 313 | 49.05 297 | 73.94 287 | 27.28 282 | 86.10 220 | 43.96 277 | 49.94 315 | 78.31 290 |
|
MSDG | | | 59.44 262 | 55.14 282 | 72.32 203 | 74.69 260 | 50.71 162 | 74.39 281 | 73.58 299 | 44.44 317 | 43.40 324 | 77.52 246 | 19.45 328 | 90.87 79 | 31.31 327 | 57.49 271 | 75.38 317 |
|
RPMNet | | | 59.29 263 | 54.25 286 | 74.42 151 | 73.97 271 | 56.57 29 | 60.52 340 | 76.98 264 | 35.72 344 | 57.49 234 | 58.87 352 | 37.73 180 | 85.26 238 | 27.01 346 | 59.93 241 | 81.42 249 |
|
DP-MVS | | | 59.24 264 | 56.12 276 | 68.63 265 | 88.24 32 | 50.35 175 | 82.51 195 | 64.43 336 | 41.10 330 | 46.70 313 | 78.77 235 | 24.75 301 | 88.57 145 | 22.26 357 | 56.29 279 | 66.96 349 |
|
OpenMVS_ROB |  | 53.19 17 | 59.20 265 | 56.00 277 | 68.83 260 | 71.13 301 | 44.30 282 | 83.64 162 | 75.02 286 | 46.42 304 | 46.48 315 | 73.03 298 | 18.69 332 | 88.14 160 | 27.74 343 | 61.80 233 | 74.05 326 |
|
IterMVS-SCA-FT | | | 59.12 266 | 58.81 259 | 60.08 319 | 70.68 305 | 45.07 274 | 80.42 237 | 74.25 291 | 43.54 323 | 50.02 293 | 73.73 289 | 31.97 251 | 56.74 358 | 51.06 235 | 53.60 303 | 78.42 288 |
|
our_test_3 | | | 59.11 267 | 55.08 283 | 71.18 230 | 71.42 297 | 53.29 112 | 81.96 204 | 74.52 288 | 48.32 291 | 42.08 328 | 69.28 325 | 28.14 274 | 82.15 266 | 34.35 315 | 45.68 334 | 78.11 294 |
|
Anonymous20231206 | | | 59.08 268 | 57.59 264 | 63.55 302 | 68.77 316 | 32.14 347 | 80.26 239 | 79.78 208 | 50.00 283 | 49.39 295 | 72.39 306 | 26.64 287 | 78.36 298 | 33.12 321 | 57.94 264 | 80.14 270 |
|
KD-MVS_2432*1600 | | | 59.04 269 | 56.44 273 | 66.86 281 | 79.07 193 | 45.87 265 | 72.13 299 | 80.42 196 | 55.03 244 | 48.15 301 | 71.01 314 | 36.73 201 | 78.05 303 | 35.21 309 | 30.18 363 | 76.67 305 |
|
miper_refine_blended | | | 59.04 269 | 56.44 273 | 66.86 281 | 79.07 193 | 45.87 265 | 72.13 299 | 80.42 196 | 55.03 244 | 48.15 301 | 71.01 314 | 36.73 201 | 78.05 303 | 35.21 309 | 30.18 363 | 76.67 305 |
|
WR-MVS_H | | | 58.91 271 | 58.04 262 | 61.54 313 | 69.07 314 | 33.83 339 | 76.91 265 | 81.99 170 | 51.40 274 | 48.17 300 | 74.67 281 | 40.23 155 | 74.15 325 | 31.78 325 | 48.10 318 | 76.64 308 |
|
LCM-MVSNet-Re | | | 58.82 272 | 56.54 271 | 65.68 289 | 79.31 190 | 29.09 358 | 61.39 339 | 45.79 357 | 60.73 143 | 37.65 345 | 72.47 304 | 31.42 257 | 81.08 274 | 49.66 241 | 70.41 165 | 86.87 151 |
|
Patchmatch-RL test | | | 58.72 273 | 54.32 285 | 71.92 216 | 63.91 342 | 44.25 283 | 61.73 336 | 55.19 349 | 57.38 210 | 49.31 296 | 54.24 356 | 37.60 184 | 80.89 275 | 62.19 140 | 47.28 325 | 90.63 74 |
|
FMVSNet5 | | | 58.61 274 | 56.45 272 | 65.10 296 | 77.20 230 | 39.74 319 | 74.77 277 | 77.12 262 | 50.27 281 | 43.28 325 | 67.71 328 | 26.15 291 | 76.90 315 | 36.78 302 | 54.78 294 | 78.65 284 |
|
ppachtmachnet_test | | | 58.56 275 | 54.34 284 | 71.24 227 | 71.42 297 | 54.74 72 | 81.84 209 | 72.27 307 | 49.02 288 | 45.86 318 | 68.99 326 | 26.27 288 | 83.30 261 | 30.12 330 | 43.23 339 | 75.69 314 |
|
ACMH+ | | 54.58 15 | 58.55 276 | 55.24 280 | 68.50 269 | 74.68 261 | 45.80 267 | 80.27 238 | 70.21 321 | 47.15 298 | 42.77 327 | 75.48 277 | 16.73 343 | 85.98 225 | 35.10 313 | 54.78 294 | 73.72 328 |
|
CP-MVSNet | | | 58.54 277 | 57.57 265 | 61.46 314 | 68.50 318 | 33.96 338 | 76.90 266 | 78.60 238 | 51.67 273 | 47.83 303 | 76.60 264 | 34.99 224 | 72.79 334 | 35.45 306 | 47.58 322 | 77.64 299 |
|
PEN-MVS | | | 58.35 278 | 57.15 267 | 61.94 310 | 67.55 325 | 34.39 336 | 77.01 264 | 78.35 243 | 51.87 270 | 47.72 304 | 76.73 262 | 33.91 232 | 73.75 329 | 34.03 316 | 47.17 326 | 77.68 297 |
|
PS-CasMVS | | | 58.12 279 | 57.03 269 | 61.37 315 | 68.24 322 | 33.80 340 | 76.73 267 | 78.01 246 | 51.20 275 | 47.54 307 | 76.20 272 | 32.85 241 | 72.76 335 | 35.17 311 | 47.37 324 | 77.55 300 |
|
dmvs_testset | | | 57.65 280 | 58.21 261 | 55.97 331 | 74.62 262 | 9.82 385 | 63.75 329 | 63.34 339 | 67.23 44 | 48.89 298 | 83.68 177 | 39.12 166 | 76.14 318 | 23.43 356 | 59.80 243 | 81.96 238 |
|
UnsupCasMVSNet_eth | | | 57.56 281 | 55.15 281 | 64.79 298 | 64.57 340 | 33.12 341 | 73.17 290 | 83.87 139 | 58.98 178 | 41.75 331 | 70.03 321 | 22.54 313 | 79.92 288 | 46.12 267 | 35.31 352 | 81.32 256 |
|
CHOSEN 280x420 | | | 57.53 282 | 56.38 275 | 60.97 317 | 74.01 269 | 48.10 232 | 46.30 358 | 54.31 351 | 48.18 293 | 50.88 291 | 77.43 249 | 38.37 173 | 59.16 356 | 54.83 206 | 63.14 224 | 75.66 315 |
|
DTE-MVSNet | | | 57.03 283 | 55.73 279 | 60.95 318 | 65.94 329 | 32.57 345 | 75.71 269 | 77.09 263 | 51.16 276 | 46.65 314 | 76.34 267 | 32.84 242 | 73.22 333 | 30.94 329 | 44.87 335 | 77.06 302 |
|
PatchMatch-RL | | | 56.66 284 | 53.75 289 | 65.37 294 | 77.91 219 | 45.28 272 | 69.78 312 | 60.38 343 | 41.35 329 | 47.57 306 | 73.73 289 | 16.83 341 | 76.91 314 | 36.99 300 | 59.21 250 | 73.92 327 |
|
PatchT | | | 56.60 285 | 52.97 292 | 67.48 275 | 72.94 281 | 46.16 262 | 57.30 348 | 73.78 297 | 38.77 334 | 54.37 264 | 57.26 355 | 37.52 186 | 78.06 302 | 32.02 323 | 52.79 308 | 78.23 293 |
|
Patchmtry | | | 56.56 286 | 52.95 293 | 67.42 276 | 72.53 286 | 50.59 166 | 59.05 344 | 71.72 310 | 37.86 338 | 46.92 311 | 65.86 333 | 38.94 167 | 80.06 287 | 36.94 301 | 46.72 330 | 71.60 340 |
|
test_0402 | | | 56.45 287 | 53.03 291 | 66.69 284 | 76.78 234 | 50.31 177 | 81.76 211 | 69.61 324 | 42.79 326 | 43.88 320 | 72.13 309 | 22.82 312 | 86.46 210 | 16.57 368 | 50.94 313 | 63.31 357 |
|
LS3D | | | 56.40 288 | 53.82 288 | 64.12 299 | 81.12 156 | 45.69 269 | 73.42 288 | 66.14 331 | 35.30 348 | 43.24 326 | 79.88 222 | 22.18 318 | 79.62 292 | 19.10 365 | 64.00 211 | 67.05 348 |
|
ADS-MVSNet | | | 56.17 289 | 51.95 299 | 68.84 259 | 80.60 171 | 53.07 118 | 55.03 351 | 70.02 322 | 44.72 314 | 51.00 288 | 61.19 345 | 22.83 310 | 78.88 296 | 28.54 338 | 53.63 301 | 74.57 323 |
|
XVG-ACMP-BASELINE | | | 56.03 290 | 52.85 294 | 65.58 290 | 61.91 348 | 40.95 316 | 63.36 330 | 72.43 306 | 45.20 312 | 46.02 316 | 74.09 285 | 9.20 358 | 78.12 300 | 45.13 269 | 58.27 257 | 77.66 298 |
|
pmmvs-eth3d | | | 55.97 291 | 52.78 295 | 65.54 291 | 61.02 350 | 46.44 254 | 75.36 275 | 67.72 329 | 49.61 285 | 43.65 322 | 67.58 329 | 21.63 321 | 77.04 312 | 44.11 276 | 44.33 336 | 73.15 334 |
|
F-COLMAP | | | 55.96 292 | 53.65 290 | 62.87 306 | 72.76 283 | 42.77 300 | 74.70 280 | 70.37 320 | 40.03 331 | 41.11 335 | 79.36 227 | 17.77 337 | 73.70 330 | 32.80 322 | 53.96 300 | 72.15 336 |
|
CMPMVS |  | 40.41 21 | 55.34 293 | 52.64 296 | 63.46 303 | 60.88 351 | 43.84 287 | 61.58 338 | 71.06 316 | 30.43 354 | 36.33 347 | 74.63 282 | 24.14 305 | 75.44 321 | 48.05 254 | 66.62 192 | 71.12 343 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
test20.03 | | | 55.22 294 | 54.07 287 | 58.68 323 | 63.14 345 | 25.00 363 | 77.69 261 | 74.78 287 | 52.64 263 | 43.43 323 | 72.39 306 | 26.21 289 | 74.76 324 | 29.31 333 | 47.05 328 | 76.28 312 |
|
ADS-MVSNet2 | | | 55.21 295 | 51.44 300 | 66.51 286 | 80.60 171 | 49.56 192 | 55.03 351 | 65.44 332 | 44.72 314 | 51.00 288 | 61.19 345 | 22.83 310 | 75.41 322 | 28.54 338 | 53.63 301 | 74.57 323 |
|
SixPastTwentyTwo | | | 54.37 296 | 50.10 305 | 67.21 277 | 70.70 303 | 41.46 312 | 74.73 278 | 64.69 334 | 47.56 296 | 39.12 340 | 69.49 322 | 18.49 335 | 84.69 248 | 31.87 324 | 34.20 358 | 75.48 316 |
|
USDC | | | 54.36 297 | 51.23 301 | 63.76 301 | 64.29 341 | 37.71 329 | 62.84 335 | 73.48 303 | 56.85 218 | 35.47 350 | 71.94 312 | 9.23 357 | 78.43 297 | 38.43 293 | 48.57 317 | 75.13 320 |
|
testgi | | | 54.25 298 | 52.57 297 | 59.29 321 | 62.76 346 | 21.65 370 | 72.21 298 | 70.47 319 | 53.25 260 | 41.94 329 | 77.33 250 | 14.28 348 | 77.95 306 | 29.18 334 | 51.72 312 | 78.28 291 |
|
K. test v3 | | | 54.04 299 | 49.42 310 | 67.92 273 | 68.55 317 | 42.57 304 | 75.51 273 | 63.07 340 | 52.07 267 | 39.21 339 | 64.59 337 | 19.34 329 | 82.21 265 | 37.11 298 | 25.31 368 | 78.97 279 |
|
UnsupCasMVSNet_bld | | | 53.86 300 | 50.53 304 | 63.84 300 | 63.52 344 | 34.75 335 | 71.38 304 | 81.92 173 | 46.53 301 | 38.95 341 | 57.93 353 | 20.55 325 | 80.20 286 | 39.91 290 | 34.09 359 | 76.57 309 |
|
YYNet1 | | | 53.82 301 | 49.96 306 | 65.41 293 | 70.09 308 | 48.95 206 | 72.30 296 | 71.66 312 | 44.25 319 | 31.89 359 | 63.07 341 | 23.73 307 | 73.95 327 | 33.26 319 | 39.40 346 | 73.34 331 |
|
MDA-MVSNet_test_wron | | | 53.82 301 | 49.95 307 | 65.43 292 | 70.13 307 | 49.05 202 | 72.30 296 | 71.65 313 | 44.23 320 | 31.85 360 | 63.13 340 | 23.68 308 | 74.01 326 | 33.25 320 | 39.35 347 | 73.23 333 |
|
test_fmvs1 | | | 53.60 303 | 52.54 298 | 56.78 327 | 58.07 353 | 30.26 350 | 68.95 316 | 42.19 362 | 32.46 350 | 63.59 151 | 82.56 195 | 11.55 351 | 60.81 351 | 58.25 176 | 55.27 290 | 79.28 276 |
|
Patchmatch-test | | | 53.33 304 | 48.17 313 | 68.81 261 | 73.31 275 | 42.38 305 | 42.98 361 | 58.23 346 | 32.53 349 | 38.79 342 | 70.77 317 | 39.66 162 | 73.51 331 | 25.18 350 | 52.06 311 | 90.55 75 |
|
LTVRE_ROB | | 45.45 19 | 52.73 305 | 49.74 308 | 61.69 312 | 69.78 309 | 34.99 334 | 44.52 359 | 67.60 330 | 43.11 325 | 43.79 321 | 74.03 286 | 18.54 334 | 81.45 271 | 28.39 340 | 57.94 264 | 68.62 346 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
EU-MVSNet | | | 52.63 306 | 50.72 303 | 58.37 324 | 62.69 347 | 28.13 360 | 72.60 292 | 75.97 278 | 30.94 353 | 40.76 337 | 72.11 310 | 20.16 326 | 70.80 341 | 35.11 312 | 46.11 332 | 76.19 313 |
|
test_fmvs1_n | | | 52.55 307 | 51.19 302 | 56.65 328 | 51.90 361 | 30.14 351 | 67.66 320 | 42.84 361 | 32.27 351 | 62.30 165 | 82.02 206 | 9.12 359 | 60.84 350 | 57.82 184 | 54.75 296 | 78.99 278 |
|
OurMVSNet-221017-0 | | | 52.39 308 | 48.73 311 | 63.35 304 | 65.21 334 | 38.42 326 | 68.54 318 | 64.95 333 | 38.19 335 | 39.57 338 | 71.43 313 | 13.23 350 | 79.92 288 | 37.16 296 | 40.32 345 | 71.72 339 |
|
JIA-IIPM | | | 52.33 309 | 47.77 316 | 66.03 288 | 71.20 300 | 46.92 248 | 40.00 366 | 76.48 274 | 37.10 339 | 46.73 312 | 37.02 366 | 32.96 240 | 77.88 307 | 35.97 304 | 52.45 310 | 73.29 332 |
|
Anonymous20240521 | | | 51.65 310 | 48.42 312 | 61.34 316 | 56.43 357 | 39.65 321 | 73.57 286 | 73.47 304 | 36.64 342 | 36.59 346 | 63.98 338 | 10.75 354 | 72.25 338 | 35.35 307 | 49.01 316 | 72.11 337 |
|
MDA-MVSNet-bldmvs | | | 51.56 311 | 47.75 317 | 63.00 305 | 71.60 295 | 47.32 243 | 69.70 313 | 72.12 308 | 43.81 321 | 27.65 366 | 63.38 339 | 21.97 320 | 75.96 319 | 27.30 345 | 32.19 360 | 65.70 354 |
|
test_vis1_n | | | 51.19 312 | 49.66 309 | 55.76 332 | 51.26 362 | 29.85 353 | 67.20 322 | 38.86 365 | 32.12 352 | 59.50 194 | 79.86 223 | 8.78 360 | 58.23 357 | 56.95 193 | 52.46 309 | 79.19 277 |
|
COLMAP_ROB |  | 43.60 20 | 50.90 313 | 48.05 314 | 59.47 320 | 67.81 324 | 40.57 318 | 71.25 305 | 62.72 342 | 36.49 343 | 36.19 348 | 73.51 294 | 13.48 349 | 73.92 328 | 20.71 361 | 50.26 314 | 63.92 356 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
MIMVSNet1 | | | 50.35 314 | 47.81 315 | 57.96 325 | 61.53 349 | 27.80 361 | 67.40 321 | 74.06 294 | 43.25 324 | 33.31 358 | 65.38 336 | 16.03 345 | 71.34 339 | 21.80 358 | 47.55 323 | 74.75 321 |
|
KD-MVS_self_test | | | 49.24 315 | 46.85 318 | 56.44 329 | 54.32 358 | 22.87 366 | 57.39 347 | 73.36 305 | 44.36 318 | 37.98 344 | 59.30 351 | 18.97 331 | 71.17 340 | 33.48 317 | 42.44 340 | 75.26 318 |
|
MVS-HIRNet | | | 49.01 316 | 44.71 320 | 61.92 311 | 76.06 243 | 46.61 252 | 63.23 332 | 54.90 350 | 24.77 360 | 33.56 355 | 36.60 368 | 21.28 323 | 75.88 320 | 29.49 332 | 62.54 229 | 63.26 358 |
|
new-patchmatchnet | | | 48.21 317 | 46.55 319 | 53.18 335 | 57.73 355 | 18.19 378 | 70.24 308 | 71.02 317 | 45.70 308 | 33.70 354 | 60.23 347 | 18.00 336 | 69.86 344 | 27.97 342 | 34.35 356 | 71.49 342 |
|
TinyColmap | | | 48.15 318 | 44.49 322 | 59.13 322 | 65.73 331 | 38.04 327 | 63.34 331 | 62.86 341 | 38.78 333 | 29.48 362 | 67.23 331 | 6.46 368 | 73.30 332 | 24.59 352 | 41.90 342 | 66.04 352 |
|
AllTest | | | 47.32 319 | 44.66 321 | 55.32 333 | 65.08 336 | 37.50 330 | 62.96 334 | 54.25 352 | 35.45 346 | 33.42 356 | 72.82 299 | 9.98 355 | 59.33 354 | 24.13 353 | 43.84 337 | 69.13 344 |
|
PM-MVS | | | 46.92 320 | 43.76 325 | 56.41 330 | 52.18 360 | 32.26 346 | 63.21 333 | 38.18 366 | 37.99 337 | 40.78 336 | 66.20 332 | 5.09 371 | 65.42 348 | 48.19 253 | 41.99 341 | 71.54 341 |
|
test_fmvs2 | | | 45.89 321 | 44.32 323 | 50.62 338 | 45.85 370 | 24.70 364 | 58.87 346 | 37.84 368 | 25.22 359 | 52.46 279 | 74.56 283 | 7.07 363 | 54.69 359 | 49.28 245 | 47.70 321 | 72.48 335 |
|
RPSCF | | | 45.77 322 | 44.13 324 | 50.68 337 | 57.67 356 | 29.66 354 | 54.92 353 | 45.25 359 | 26.69 358 | 45.92 317 | 75.92 275 | 17.43 340 | 45.70 369 | 27.44 344 | 45.95 333 | 76.67 305 |
|
pmmvs3 | | | 45.53 323 | 41.55 327 | 57.44 326 | 48.97 366 | 39.68 320 | 70.06 309 | 57.66 347 | 28.32 356 | 34.06 353 | 57.29 354 | 8.50 361 | 66.85 347 | 34.86 314 | 34.26 357 | 65.80 353 |
|
mvsany_test1 | | | 43.38 324 | 42.57 326 | 45.82 342 | 50.96 363 | 26.10 362 | 55.80 349 | 27.74 378 | 27.15 357 | 47.41 309 | 74.39 284 | 18.67 333 | 44.95 370 | 44.66 272 | 36.31 350 | 66.40 351 |
|
N_pmnet | | | 41.25 325 | 39.77 328 | 45.66 343 | 68.50 318 | 0.82 390 | 72.51 294 | 0.38 390 | 35.61 345 | 35.26 351 | 61.51 344 | 20.07 327 | 67.74 346 | 23.51 355 | 40.63 343 | 68.42 347 |
|
TDRefinement | | | 40.91 326 | 38.37 330 | 48.55 340 | 50.45 364 | 33.03 343 | 58.98 345 | 50.97 355 | 28.50 355 | 29.89 361 | 67.39 330 | 6.21 370 | 54.51 360 | 17.67 367 | 35.25 353 | 58.11 359 |
|
test_vis1_rt | | | 40.29 327 | 38.64 329 | 45.25 344 | 48.91 367 | 30.09 352 | 59.44 343 | 27.07 379 | 24.52 361 | 38.48 343 | 51.67 360 | 6.71 366 | 49.44 364 | 44.33 274 | 46.59 331 | 56.23 360 |
|
DSMNet-mixed | | | 38.35 328 | 35.36 332 | 47.33 341 | 48.11 368 | 14.91 382 | 37.87 367 | 36.60 369 | 19.18 365 | 34.37 352 | 59.56 350 | 15.53 346 | 53.01 362 | 20.14 363 | 46.89 329 | 74.07 325 |
|
test_fmvs3 | | | 37.95 329 | 35.75 331 | 44.55 345 | 35.50 376 | 18.92 374 | 48.32 355 | 34.00 373 | 18.36 367 | 41.31 334 | 61.58 343 | 2.29 378 | 48.06 368 | 42.72 283 | 37.71 349 | 66.66 350 |
|
FPMVS | | | 35.40 330 | 33.67 333 | 40.57 348 | 46.34 369 | 28.74 359 | 41.05 363 | 57.05 348 | 20.37 364 | 22.27 368 | 53.38 358 | 6.87 365 | 44.94 371 | 8.62 374 | 47.11 327 | 48.01 367 |
|
ANet_high | | | 34.39 331 | 29.59 337 | 48.78 339 | 30.34 380 | 22.28 367 | 55.53 350 | 63.79 338 | 38.11 336 | 15.47 372 | 36.56 369 | 6.94 364 | 59.98 353 | 13.93 370 | 5.64 383 | 64.08 355 |
|
EGC-MVSNET | | | 33.75 332 | 30.42 336 | 43.75 346 | 64.94 338 | 36.21 333 | 60.47 342 | 40.70 364 | 0.02 384 | 0.10 385 | 53.79 357 | 7.39 362 | 60.26 352 | 11.09 373 | 35.23 354 | 34.79 370 |
|
new_pmnet | | | 33.56 333 | 31.89 335 | 38.59 349 | 49.01 365 | 20.42 371 | 51.01 354 | 37.92 367 | 20.58 362 | 23.45 367 | 46.79 362 | 6.66 367 | 49.28 366 | 20.00 364 | 31.57 362 | 46.09 368 |
|
LF4IMVS | | | 33.04 334 | 32.55 334 | 34.52 352 | 40.96 371 | 22.03 368 | 44.45 360 | 35.62 370 | 20.42 363 | 28.12 365 | 62.35 342 | 5.03 372 | 31.88 382 | 21.61 360 | 34.42 355 | 49.63 366 |
|
LCM-MVSNet | | | 28.07 335 | 23.85 343 | 40.71 347 | 27.46 385 | 18.93 373 | 30.82 373 | 46.19 356 | 12.76 372 | 16.40 370 | 34.70 371 | 1.90 381 | 48.69 367 | 20.25 362 | 24.22 369 | 54.51 362 |
|
mvsany_test3 | | | 28.00 336 | 25.98 338 | 34.05 353 | 28.97 381 | 15.31 380 | 34.54 370 | 18.17 384 | 16.24 368 | 29.30 363 | 53.37 359 | 2.79 376 | 33.38 381 | 30.01 331 | 20.41 374 | 53.45 363 |
|
Gipuma |  | | 27.47 337 | 24.26 342 | 37.12 351 | 60.55 352 | 29.17 357 | 11.68 378 | 60.00 344 | 14.18 370 | 10.52 379 | 15.12 380 | 2.20 380 | 63.01 349 | 8.39 375 | 35.65 351 | 19.18 376 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
test_f | | | 27.12 338 | 24.85 339 | 33.93 354 | 26.17 386 | 15.25 381 | 30.24 374 | 22.38 383 | 12.53 373 | 28.23 364 | 49.43 361 | 2.59 377 | 34.34 380 | 25.12 351 | 26.99 366 | 52.20 364 |
|
PMMVS2 | | | 26.71 339 | 22.98 344 | 37.87 350 | 36.89 374 | 8.51 387 | 42.51 362 | 29.32 377 | 19.09 366 | 13.01 374 | 37.54 365 | 2.23 379 | 53.11 361 | 14.54 369 | 11.71 376 | 51.99 365 |
|
APD_test1 | | | 26.46 340 | 24.41 341 | 32.62 357 | 37.58 373 | 21.74 369 | 40.50 365 | 30.39 375 | 11.45 374 | 16.33 371 | 43.76 363 | 1.63 383 | 41.62 372 | 11.24 372 | 26.82 367 | 34.51 371 |
|
PMVS |  | 19.57 22 | 25.07 341 | 22.43 346 | 32.99 356 | 23.12 387 | 22.98 365 | 40.98 364 | 35.19 371 | 15.99 369 | 11.95 378 | 35.87 370 | 1.47 384 | 49.29 365 | 5.41 381 | 31.90 361 | 26.70 375 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
test_vis3_rt | | | 24.79 342 | 22.95 345 | 30.31 358 | 28.59 382 | 18.92 374 | 37.43 368 | 17.27 386 | 12.90 371 | 21.28 369 | 29.92 375 | 1.02 385 | 36.35 375 | 28.28 341 | 29.82 365 | 35.65 369 |
|
test_method | | | 24.09 343 | 21.07 347 | 33.16 355 | 27.67 384 | 8.35 388 | 26.63 375 | 35.11 372 | 3.40 381 | 14.35 373 | 36.98 367 | 3.46 375 | 35.31 377 | 19.08 366 | 22.95 370 | 55.81 361 |
|
testf1 | | | 21.11 344 | 19.08 348 | 27.18 360 | 30.56 378 | 18.28 376 | 33.43 371 | 24.48 380 | 8.02 378 | 12.02 376 | 33.50 372 | 0.75 387 | 35.09 378 | 7.68 376 | 21.32 371 | 28.17 373 |
|
APD_test2 | | | 21.11 344 | 19.08 348 | 27.18 360 | 30.56 378 | 18.28 376 | 33.43 371 | 24.48 380 | 8.02 378 | 12.02 376 | 33.50 372 | 0.75 387 | 35.09 378 | 7.68 376 | 21.32 371 | 28.17 373 |
|
E-PMN | | | 19.16 346 | 18.40 350 | 21.44 362 | 36.19 375 | 13.63 383 | 47.59 356 | 30.89 374 | 10.73 375 | 5.91 382 | 16.59 378 | 3.66 374 | 39.77 373 | 5.95 380 | 8.14 378 | 10.92 378 |
|
EMVS | | | 18.42 347 | 17.66 351 | 20.71 363 | 34.13 377 | 12.64 384 | 46.94 357 | 29.94 376 | 10.46 377 | 5.58 383 | 14.93 381 | 4.23 373 | 38.83 374 | 5.24 382 | 7.51 380 | 10.67 379 |
|
cdsmvs_eth3d_5k | | | 18.33 348 | 24.44 340 | 0.00 369 | 0.00 391 | 0.00 392 | 0.00 380 | 89.40 15 | 0.00 385 | 0.00 388 | 92.02 36 | 38.55 171 | 0.00 386 | 0.00 386 | 0.00 384 | 0.00 384 |
|
MVE |  | 16.60 23 | 17.34 349 | 13.39 352 | 29.16 359 | 28.43 383 | 19.72 372 | 13.73 377 | 23.63 382 | 7.23 380 | 7.96 380 | 21.41 376 | 0.80 386 | 36.08 376 | 6.97 378 | 10.39 377 | 31.69 372 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
tmp_tt | | | 9.44 350 | 10.68 353 | 5.73 366 | 2.49 389 | 4.21 389 | 10.48 379 | 18.04 385 | 0.34 383 | 12.59 375 | 20.49 377 | 11.39 352 | 7.03 385 | 13.84 371 | 6.46 382 | 5.95 380 |
|
wuyk23d | | | 9.11 351 | 8.77 355 | 10.15 365 | 40.18 372 | 16.76 379 | 20.28 376 | 1.01 389 | 2.58 382 | 2.66 384 | 0.98 384 | 0.23 389 | 12.49 384 | 4.08 383 | 6.90 381 | 1.19 381 |
|
ab-mvs-re | | | 7.68 352 | 10.24 354 | 0.00 369 | 0.00 391 | 0.00 392 | 0.00 380 | 0.00 391 | 0.00 385 | 0.00 388 | 92.12 33 | 0.00 390 | 0.00 386 | 0.00 386 | 0.00 384 | 0.00 384 |
|
testmvs | | | 6.14 353 | 8.18 356 | 0.01 367 | 0.01 390 | 0.00 392 | 73.40 289 | 0.00 391 | 0.00 385 | 0.02 386 | 0.15 385 | 0.00 390 | 0.00 386 | 0.02 384 | 0.00 384 | 0.02 382 |
|
test123 | | | 6.01 354 | 8.01 357 | 0.01 367 | 0.00 391 | 0.01 391 | 71.93 302 | 0.00 391 | 0.00 385 | 0.02 386 | 0.11 386 | 0.00 390 | 0.00 386 | 0.02 384 | 0.00 384 | 0.02 382 |
|
pcd_1.5k_mvsjas | | | 3.15 355 | 4.20 358 | 0.00 369 | 0.00 391 | 0.00 392 | 0.00 380 | 0.00 391 | 0.00 385 | 0.00 388 | 0.00 387 | 37.77 177 | 0.00 386 | 0.00 386 | 0.00 384 | 0.00 384 |
|
test_blank | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 391 | 0.00 392 | 0.00 380 | 0.00 391 | 0.00 385 | 0.00 388 | 0.00 387 | 0.00 390 | 0.00 386 | 0.00 386 | 0.00 384 | 0.00 384 |
|
uanet_test | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 391 | 0.00 392 | 0.00 380 | 0.00 391 | 0.00 385 | 0.00 388 | 0.00 387 | 0.00 390 | 0.00 386 | 0.00 386 | 0.00 384 | 0.00 384 |
|
DCPMVS | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 391 | 0.00 392 | 0.00 380 | 0.00 391 | 0.00 385 | 0.00 388 | 0.00 387 | 0.00 390 | 0.00 386 | 0.00 386 | 0.00 384 | 0.00 384 |
|
sosnet-low-res | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 391 | 0.00 392 | 0.00 380 | 0.00 391 | 0.00 385 | 0.00 388 | 0.00 387 | 0.00 390 | 0.00 386 | 0.00 386 | 0.00 384 | 0.00 384 |
|
sosnet | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 391 | 0.00 392 | 0.00 380 | 0.00 391 | 0.00 385 | 0.00 388 | 0.00 387 | 0.00 390 | 0.00 386 | 0.00 386 | 0.00 384 | 0.00 384 |
|
uncertanet | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 391 | 0.00 392 | 0.00 380 | 0.00 391 | 0.00 385 | 0.00 388 | 0.00 387 | 0.00 390 | 0.00 386 | 0.00 386 | 0.00 384 | 0.00 384 |
|
Regformer | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 391 | 0.00 392 | 0.00 380 | 0.00 391 | 0.00 385 | 0.00 388 | 0.00 387 | 0.00 390 | 0.00 386 | 0.00 386 | 0.00 384 | 0.00 384 |
|
uanet | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 391 | 0.00 392 | 0.00 380 | 0.00 391 | 0.00 385 | 0.00 388 | 0.00 387 | 0.00 390 | 0.00 386 | 0.00 386 | 0.00 384 | 0.00 384 |
|
FOURS1 | | | | | | 83.24 101 | 49.90 185 | 84.98 125 | 78.76 232 | 47.71 294 | 73.42 49 | | | | | | |
|
MSC_two_6792asdad | | | | | 81.53 14 | 91.77 4 | 56.03 41 | | 91.10 6 | | | | | 96.22 8 | 81.46 22 | 86.80 25 | 92.34 31 |
|
PC_three_1452 | | | | | | | | | | 66.58 49 | 87.27 2 | 93.70 8 | 66.82 4 | 94.95 17 | 89.74 2 | 91.98 4 | 93.98 5 |
|
No_MVS | | | | | 81.53 14 | 91.77 4 | 56.03 41 | | 91.10 6 | | | | | 96.22 8 | 81.46 22 | 86.80 25 | 92.34 31 |
|
test_one_0601 | | | | | | 89.39 22 | 57.29 20 | | 88.09 45 | 57.21 214 | 82.06 11 | 93.39 14 | 54.94 24 | | | | |
|
eth-test2 | | | | | | 0.00 391 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 391 | | | | | | | | | | | |
|
ZD-MVS | | | | | | 89.55 14 | 53.46 101 | | 84.38 125 | 57.02 216 | 73.97 44 | 91.03 53 | 44.57 104 | 91.17 69 | 75.41 61 | 81.78 68 | |
|
RE-MVS-def | | | | 66.66 176 | | 80.96 160 | 48.14 230 | 81.54 218 | 76.98 264 | 46.42 304 | 62.75 160 | 89.42 91 | 29.28 271 | | 60.52 156 | 72.06 152 | 83.19 223 |
|
IU-MVS | | | | | | 89.48 17 | 57.49 15 | | 91.38 5 | 66.22 57 | 88.26 1 | | | | 82.83 12 | 87.60 17 | 92.44 28 |
|
OPU-MVS | | | | | 81.71 12 | 92.05 3 | 55.97 43 | 92.48 3 | | | | 94.01 5 | 67.21 2 | 95.10 15 | 89.82 1 | 92.55 3 | 94.06 3 |
|
test_241102_TWO | | | | | | | | | 88.76 31 | 57.50 208 | 83.60 6 | 94.09 3 | 56.14 18 | 96.37 6 | 82.28 16 | 87.43 19 | 92.55 26 |
|
test_241102_ONE | | | | | | 89.48 17 | 56.89 25 | | 88.94 23 | 57.53 206 | 84.61 4 | 93.29 17 | 58.81 11 | 96.45 1 | | | |
|
9.14 | | | | 78.19 24 | | 85.67 53 | | 88.32 49 | 88.84 28 | 59.89 153 | 74.58 40 | 92.62 27 | 46.80 75 | 92.66 38 | 81.40 24 | 85.62 38 | |
|
save fliter | | | | | | 85.35 60 | 56.34 36 | 89.31 38 | 81.46 180 | 61.55 127 | | | | | | | |
|
test_0728_THIRD | | | | | | | | | | 58.00 194 | 81.91 12 | 93.64 10 | 56.54 15 | 96.44 2 | 81.64 20 | 86.86 23 | 92.23 33 |
|
test_0728_SECOND | | | | | 82.20 8 | 89.50 15 | 57.73 11 | 92.34 5 | 88.88 25 | | | | | 96.39 4 | 81.68 18 | 87.13 20 | 92.47 27 |
|
test0726 | | | | | | 89.40 20 | 57.45 17 | 92.32 7 | 88.63 35 | 57.71 202 | 83.14 9 | 93.96 6 | 55.17 20 | | | | |
|
GSMVS | | | | | | | | | | | | | | | | | 88.13 128 |
|
test_part2 | | | | | | 89.33 23 | 55.48 50 | | | | 82.27 10 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 38.86 169 | | | | 88.13 128 |
|
sam_mvs | | | | | | | | | | | | | 35.99 214 | | | | |
|
ambc | | | | | 62.06 309 | 53.98 359 | 29.38 356 | 35.08 369 | 79.65 212 | | 41.37 332 | 59.96 348 | 6.27 369 | 82.15 266 | 35.34 308 | 38.22 348 | 74.65 322 |
|
MTGPA |  | | | | | | | | 81.31 183 | | | | | | | | |
|
test_post1 | | | | | | | | 70.84 307 | | | | 14.72 382 | 34.33 229 | 83.86 252 | 48.80 248 | | |
|
test_post | | | | | | | | | | | | 16.22 379 | 37.52 186 | 84.72 247 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 59.74 349 | 38.41 172 | 79.91 290 | | | |
|
GG-mvs-BLEND | | | | | 77.77 75 | 86.68 43 | 50.61 164 | 68.67 317 | 88.45 41 | | 68.73 91 | 87.45 128 | 59.15 10 | 90.67 84 | 54.83 206 | 87.67 16 | 92.03 39 |
|
MTMP | | | | | | | | 87.27 71 | 15.34 387 | | | | | | | | |
|
gm-plane-assit | | | | | | 83.24 101 | 54.21 87 | | | 70.91 14 | | 88.23 115 | | 95.25 14 | 66.37 109 | | |
|
test9_res | | | | | | | | | | | | | | | 78.72 37 | 85.44 40 | 91.39 58 |
|
TEST9 | | | | | | 85.68 51 | 55.42 51 | 87.59 61 | 84.00 135 | 57.72 201 | 72.99 54 | 90.98 55 | 44.87 99 | 88.58 142 | | | |
|
test_8 | | | | | | 85.72 50 | 55.31 55 | 87.60 60 | 83.88 138 | 57.84 199 | 72.84 58 | 90.99 54 | 44.99 96 | 88.34 153 | | | |
|
agg_prior2 | | | | | | | | | | | | | | | 75.65 56 | 85.11 44 | 91.01 67 |
|
agg_prior | | | | | | 85.64 54 | 54.92 69 | | 83.61 145 | | 72.53 62 | | | 88.10 163 | | | |
|
TestCases | | | | | 55.32 333 | 65.08 336 | 37.50 330 | | 54.25 352 | 35.45 346 | 33.42 356 | 72.82 299 | 9.98 355 | 59.33 354 | 24.13 353 | 43.84 337 | 69.13 344 |
|
test_prior4 | | | | | | | 56.39 35 | 87.15 74 | | | | | | | | | |
|
test_prior2 | | | | | | | | 89.04 41 | | 61.88 123 | 73.55 47 | 91.46 51 | 48.01 64 | | 74.73 64 | 85.46 39 | |
|
test_prior | | | | | 78.39 64 | 86.35 45 | 54.91 70 | | 85.45 90 | | | | | 89.70 112 | | | 90.55 75 |
|
旧先验2 | | | | | | | | 81.73 212 | | 45.53 310 | 74.66 37 | | | 70.48 343 | 58.31 175 | | |
|
æ–°å‡ ä½•2 | | | | | | | | 81.61 216 | | | | | | | | | |
|
æ–°å‡ ä½•1 | | | | | 73.30 183 | 83.10 104 | 53.48 100 | | 71.43 314 | 45.55 309 | 66.14 112 | 87.17 133 | 33.88 234 | 80.54 280 | 48.50 251 | 80.33 81 | 85.88 176 |
|
旧先验1 | | | | | | 81.57 147 | 47.48 239 | | 71.83 309 | | | 88.66 105 | 36.94 197 | | | 78.34 102 | 88.67 117 |
|
æ— å…ˆéªŒ | | | | | | | | 85.19 115 | 78.00 247 | 49.08 287 | | | | 85.13 242 | 52.78 223 | | 87.45 143 |
|
原ACMM2 | | | | | | | | 83.77 160 | | | | | | | | | |
|
原ACMM1 | | | | | 76.13 117 | 84.89 69 | 54.59 80 | | 85.26 100 | 51.98 268 | 66.70 103 | 87.07 135 | 40.15 157 | 89.70 112 | 51.23 233 | 85.06 45 | 84.10 201 |
|
test222 | | | | | | 79.36 187 | 50.97 160 | 77.99 259 | 67.84 328 | 42.54 327 | 62.84 159 | 86.53 142 | 30.26 264 | | | 76.91 110 | 85.23 185 |
|
testdata2 | | | | | | | | | | | | | | 77.81 309 | 45.64 268 | | |
|
segment_acmp | | | | | | | | | | | | | 44.97 98 | | | | |
|
testdata | | | | | 67.08 279 | 77.59 221 | 45.46 270 | | 69.20 326 | 44.47 316 | 71.50 74 | 88.34 112 | 31.21 258 | 70.76 342 | 52.20 228 | 75.88 118 | 85.03 188 |
|
testdata1 | | | | | | | | 77.55 263 | | 64.14 84 | | | | | | | |
|
test12 | | | | | 79.24 38 | 86.89 41 | 56.08 40 | | 85.16 105 | | 72.27 66 | | 47.15 71 | 91.10 72 | | 85.93 34 | 90.54 77 |
|
plane_prior7 | | | | | | 77.95 216 | 48.46 223 | | | | | | | | | | |
|
plane_prior6 | | | | | | 78.42 211 | 49.39 197 | | | | | | 36.04 212 | | | | |
|
plane_prior5 | | | | | | | | | 82.59 162 | | | | | 88.30 156 | 65.46 118 | 72.34 149 | 84.49 195 |
|
plane_prior4 | | | | | | | | | | | | 83.28 182 | | | | | |
|
plane_prior3 | | | | | | | 48.95 206 | | | 64.01 87 | 62.15 167 | | | | | | |
|
plane_prior2 | | | | | | | | 85.76 99 | | 63.60 96 | | | | | | | |
|
plane_prior1 | | | | | | 78.31 213 | | | | | | | | | | | |
|
plane_prior | | | | | | | 49.57 190 | 87.43 64 | | 64.57 79 | | | | | | 72.84 145 | |
|
n2 | | | | | | | | | 0.00 391 | | | | | | | | |
|
nn | | | | | | | | | 0.00 391 | | | | | | | | |
|
door-mid | | | | | | | | | 41.31 363 | | | | | | | | |
|
lessismore_v0 | | | | | 67.98 271 | 64.76 339 | 41.25 313 | | 45.75 358 | | 36.03 349 | 65.63 335 | 19.29 330 | 84.11 251 | 35.67 305 | 21.24 373 | 78.59 285 |
|
LGP-MVS_train | | | | | 72.02 208 | 74.42 265 | 48.60 216 | | 80.64 192 | 54.69 249 | 53.75 270 | 83.83 171 | 25.73 294 | 86.98 193 | 60.33 160 | 64.71 204 | 80.48 265 |
|
test11 | | | | | | | | | 84.25 129 | | | | | | | | |
|
door | | | | | | | | | 43.27 360 | | | | | | | | |
|
HQP5-MVS | | | | | | | 51.56 149 | | | | | | | | | | |
|
HQP-NCC | | | | | | 79.02 195 | | 88.00 52 | | 65.45 66 | 64.48 135 | | | | | | |
|
ACMP_Plane | | | | | | 79.02 195 | | 88.00 52 | | 65.45 66 | 64.48 135 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 66.70 106 | | |
|
HQP4-MVS | | | | | | | | | | | 64.47 138 | | | 88.61 141 | | | 84.91 191 |
|
HQP3-MVS | | | | | | | | | 83.68 141 | | | | | | | 73.12 141 | |
|
HQP2-MVS | | | | | | | | | | | | | 37.35 189 | | | | |
|
NP-MVS | | | | | | 78.76 200 | 50.43 170 | | | | | 85.12 156 | | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 43.62 289 | 71.13 306 | | 54.95 246 | 59.29 200 | | 36.76 200 | | 46.33 265 | | 87.32 145 |
|
MDTV_nov1_ep13 | | | | 61.56 234 | | 81.68 140 | 55.12 62 | 72.41 295 | 78.18 244 | 59.19 170 | 58.85 209 | 69.29 324 | 34.69 226 | 86.16 217 | 36.76 303 | 62.96 226 | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 63.20 222 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 59.38 248 | |
|
Test By Simon | | | | | | | | | | | | | 39.38 163 | | | | |
|
ITE_SJBPF | | | | | 51.84 336 | 58.03 354 | 31.94 348 | | 53.57 354 | 36.67 341 | 41.32 333 | 75.23 279 | 11.17 353 | 51.57 363 | 25.81 349 | 48.04 319 | 72.02 338 |
|
DeepMVS_CX |  | | | | 13.10 364 | 21.34 388 | 8.99 386 | | 10.02 388 | 10.59 376 | 7.53 381 | 30.55 374 | 1.82 382 | 14.55 383 | 6.83 379 | 7.52 379 | 15.75 377 |
|