This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
CNVR-MVS98.46 198.38 198.72 999.80 496.19 1599.80 1597.99 5297.05 699.41 499.59 292.89 23100.00 198.99 2599.90 799.96 10
DVP-MVS++98.18 298.09 598.44 1699.61 2495.38 2499.55 4497.68 9093.01 7199.23 1099.45 1495.12 799.98 999.25 1899.92 399.97 7
SED-MVS98.18 298.10 498.41 1899.63 1895.24 2799.77 1797.72 8194.17 4499.30 899.54 393.32 1799.98 999.70 499.81 2399.99 1
MCST-MVS98.18 297.95 998.86 599.85 396.60 1099.70 2697.98 5397.18 395.96 9699.33 1992.62 24100.00 198.99 2599.93 199.98 6
NCCC98.12 598.11 398.13 2599.76 694.46 5099.81 1197.88 5796.54 1398.84 2499.46 1092.55 2599.98 998.25 4699.93 199.94 18
DPE-MVScopyleft98.11 698.00 698.44 1699.50 4295.39 2399.29 8197.72 8194.50 3898.64 2999.54 393.32 1799.97 2199.58 1099.90 799.95 15
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
DVP-MVScopyleft98.07 798.00 698.29 1999.66 1295.20 3299.72 2397.47 14193.95 4999.07 1599.46 1093.18 2099.97 2199.64 799.82 1999.69 55
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
DPM-MVS97.86 897.25 2199.68 198.25 9499.10 199.76 2097.78 7396.61 1298.15 4299.53 793.62 15100.00 191.79 16699.80 2699.94 18
MSP-MVS97.77 998.18 296.53 9699.54 3690.14 14499.41 6897.70 8695.46 2898.60 3099.19 3095.71 499.49 11298.15 4899.85 1399.95 15
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MM97.76 1097.39 1998.86 598.30 9396.83 799.81 1199.13 997.66 298.29 4098.96 6685.84 12799.90 5099.72 398.80 9499.85 30
HPM-MVS++copyleft97.72 1197.59 1398.14 2499.53 4094.76 4499.19 9097.75 7695.66 2498.21 4199.29 2091.10 3199.99 597.68 5799.87 999.68 56
fmvsm_l_conf0.5_n_a97.70 1297.80 1197.42 4797.59 11792.91 8699.86 498.04 4896.70 1099.58 299.26 2190.90 3699.94 3499.57 1198.66 10199.40 88
fmvsm_l_conf0.5_n97.65 1397.72 1297.41 4897.51 12292.78 8899.85 798.05 4696.78 899.60 199.23 2690.42 4599.92 4099.55 1298.50 10699.55 74
MVS_030497.53 1497.15 2298.67 1197.30 13196.52 1299.60 3898.88 1497.14 497.21 6898.94 7286.89 10299.91 4599.43 1598.91 8999.59 73
APDe-MVScopyleft97.53 1497.47 1597.70 3899.58 3093.63 6799.56 4397.52 13193.59 6498.01 5199.12 4690.80 3999.55 10699.26 1799.79 2799.93 20
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
SD-MVS97.51 1697.40 1897.81 3699.01 7293.79 6699.33 7997.38 15493.73 6098.83 2699.02 5890.87 3899.88 5498.69 3099.74 2999.77 43
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MSLP-MVS++97.50 1797.45 1797.63 4099.65 1693.21 7599.70 2698.13 4294.61 3697.78 5799.46 1089.85 5499.81 7997.97 5199.91 699.88 26
TSAR-MVS + MP.97.44 1897.46 1697.39 5099.12 6593.49 7298.52 17397.50 13694.46 3998.99 1798.64 9991.58 2899.08 14898.49 3799.83 1599.60 69
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SteuartSystems-ACMMP97.25 1997.34 2097.01 6397.38 12791.46 11099.75 2197.66 9594.14 4898.13 4399.26 2192.16 2799.66 9497.91 5399.64 4299.90 22
Skip Steuart: Steuart Systems R&D Blog.
SMA-MVScopyleft97.24 2096.99 2498.00 3199.30 5494.20 5799.16 9697.65 10289.55 15999.22 1299.52 890.34 4899.99 598.32 4399.83 1599.82 32
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MG-MVS97.24 2096.83 3198.47 1599.79 595.71 1999.07 11299.06 1094.45 4196.42 9098.70 9588.81 6599.74 8895.35 10799.86 1299.97 7
SF-MVS97.22 2296.92 2598.12 2799.11 6694.88 3799.44 6297.45 14489.60 15598.70 2799.42 1790.42 4599.72 8998.47 3899.65 4099.77 43
train_agg97.20 2397.08 2397.57 4499.57 3393.17 7699.38 7297.66 9590.18 13798.39 3699.18 3390.94 3499.66 9498.58 3699.85 1399.88 26
DeepC-MVS_fast93.52 297.16 2496.84 2998.13 2599.61 2494.45 5198.85 13497.64 10396.51 1695.88 9999.39 1887.35 9299.99 596.61 8099.69 3799.96 10
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DELS-MVS97.12 2596.60 3598.68 1098.03 10396.57 1199.84 897.84 6196.36 1895.20 11698.24 12388.17 7399.83 7396.11 9199.60 5099.64 64
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
patch_mono-297.10 2697.97 894.49 17999.21 6183.73 29399.62 3798.25 3295.28 3099.38 698.91 7592.28 2699.94 3499.61 999.22 7399.78 38
test_fmvsm_n_192097.08 2797.55 1495.67 13697.94 10589.61 16399.93 198.48 2497.08 599.08 1499.13 4488.17 7399.93 3899.11 2399.06 7897.47 204
CANet97.00 2896.49 3698.55 1298.86 8096.10 1699.83 997.52 13195.90 1997.21 6898.90 7682.66 18299.93 3898.71 2998.80 9499.63 66
TSAR-MVS + GP.96.95 2996.91 2697.07 6098.88 7991.62 10699.58 4196.54 21895.09 3396.84 7898.63 10191.16 2999.77 8599.04 2496.42 14999.81 33
APD-MVScopyleft96.95 2996.72 3297.63 4099.51 4193.58 6899.16 9697.44 14790.08 14298.59 3199.07 5189.06 6199.42 12397.92 5299.66 3899.88 26
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
PS-MVSNAJ96.87 3196.40 3998.29 1997.35 12997.29 599.03 11897.11 17995.83 2098.97 1999.14 4282.48 18599.60 10398.60 3399.08 7698.00 190
EPNet96.82 3296.68 3497.25 5698.65 8693.10 7899.48 5398.76 1596.54 1397.84 5598.22 12487.49 8599.66 9495.35 10797.78 12399.00 123
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CHOSEN 280x42096.80 3396.85 2896.66 8897.85 10894.42 5394.76 33198.36 2992.50 8295.62 10997.52 15097.92 197.38 24398.31 4498.80 9498.20 184
test_fmvsmconf_n96.78 3496.84 2996.61 8995.99 19390.25 13999.90 298.13 4296.68 1198.42 3598.92 7485.34 14099.88 5499.12 2299.08 7699.70 52
MVS_111021_HR96.69 3596.69 3396.72 8498.58 8891.00 12499.14 10499.45 193.86 5595.15 11798.73 8988.48 6899.76 8697.23 6699.56 5299.40 88
xiu_mvs_v2_base96.66 3696.17 4998.11 2897.11 14796.96 699.01 12197.04 18695.51 2798.86 2399.11 5082.19 19399.36 13098.59 3598.14 11598.00 190
PHI-MVS96.65 3796.46 3897.21 5799.34 5091.77 10399.70 2698.05 4686.48 24798.05 4899.20 2989.33 5999.96 2898.38 3999.62 4699.90 22
MVSMamba_pp96.61 3896.35 4197.39 5097.51 12294.11 6099.41 6896.76 20395.13 3298.84 2496.34 20785.41 13898.58 17198.04 5099.70 3599.49 81
ACMMP_NAP96.59 3996.18 4697.81 3698.82 8193.55 6998.88 13397.59 11690.66 12197.98 5299.14 4286.59 110100.00 196.47 8499.46 5799.89 25
CDPH-MVS96.56 4096.18 4697.70 3899.59 2893.92 6399.13 10797.44 14789.02 17197.90 5499.22 2788.90 6499.49 11294.63 12599.79 2799.68 56
DeepPCF-MVS93.56 196.55 4197.84 1092.68 22998.71 8578.11 35199.70 2697.71 8598.18 197.36 6499.76 190.37 4799.94 3499.27 1699.54 5499.99 1
XVS96.47 4296.37 4096.77 7899.62 2290.66 13399.43 6597.58 11892.41 8696.86 7698.96 6687.37 8899.87 5895.65 9899.43 6199.78 38
HFP-MVS96.42 4396.26 4396.90 7299.69 890.96 12599.47 5597.81 6890.54 12896.88 7599.05 5487.57 8399.96 2895.65 9899.72 3199.78 38
PAPR96.35 4495.82 5997.94 3399.63 1894.19 5899.42 6797.55 12392.43 8393.82 14299.12 4687.30 9399.91 4594.02 13399.06 7899.74 47
PAPM96.35 4495.94 5597.58 4294.10 26395.25 2698.93 12898.17 3794.26 4393.94 13898.72 9189.68 5697.88 20796.36 8599.29 7099.62 68
lupinMVS96.32 4695.94 5597.44 4695.05 23694.87 3899.86 496.50 22093.82 5898.04 4998.77 8585.52 13198.09 19596.98 7198.97 8499.37 92
region2R96.30 4796.17 4996.70 8599.70 790.31 13899.46 5997.66 9590.55 12797.07 7399.07 5186.85 10399.97 2195.43 10599.74 2999.81 33
ACMMPR96.28 4896.14 5396.73 8299.68 990.47 13699.47 5597.80 7090.54 12896.83 8099.03 5686.51 11499.95 3195.65 9899.72 3199.75 46
CP-MVS96.22 4996.15 5296.42 10199.67 1089.62 16299.70 2697.61 11090.07 14396.00 9599.16 3687.43 8699.92 4096.03 9399.72 3199.70 52
fmvsm_s_conf0.5_n96.19 5096.49 3695.30 14997.37 12889.16 16899.86 498.47 2595.68 2398.87 2299.15 3982.44 18999.92 4099.14 2197.43 13296.83 224
SR-MVS96.13 5196.16 5196.07 11899.42 4789.04 17398.59 16897.33 15890.44 13196.84 7899.12 4686.75 10599.41 12697.47 6099.44 6099.76 45
ZNCC-MVS96.09 5295.81 6196.95 7199.42 4791.19 11499.55 4497.53 12789.72 15095.86 10198.94 7286.59 11099.97 2195.13 11299.56 5299.68 56
MTAPA96.09 5295.80 6296.96 7099.29 5591.19 11497.23 26797.45 14492.58 8094.39 13199.24 2586.43 11699.99 596.22 8699.40 6499.71 51
ETV-MVS96.00 5496.00 5496.00 12296.56 16491.05 12299.63 3696.61 20993.26 6997.39 6398.30 12186.62 10998.13 19298.07 4997.57 12698.82 144
MP-MVScopyleft96.00 5495.82 5996.54 9599.47 4690.13 14699.36 7697.41 15190.64 12495.49 11198.95 6985.51 13399.98 996.00 9499.59 5199.52 77
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
CS-MVS-test95.98 5696.34 4294.90 16498.06 10287.66 20799.69 3396.10 24693.66 6198.35 3999.05 5486.28 11897.66 22596.96 7298.90 9099.37 92
fmvsm_s_conf0.5_n_a95.97 5796.19 4495.31 14896.51 16889.01 17599.81 1198.39 2795.46 2899.19 1399.16 3681.44 20499.91 4598.83 2896.97 14197.01 220
GST-MVS95.97 5795.66 6796.90 7299.49 4591.22 11299.45 6197.48 13989.69 15195.89 9898.72 9186.37 11799.95 3194.62 12699.22 7399.52 77
WTY-MVS95.97 5795.11 8198.54 1397.62 11496.65 999.44 6298.74 1692.25 8995.21 11598.46 11686.56 11299.46 11895.00 11792.69 19299.50 80
test_fmvsmconf0.1_n95.94 6095.79 6396.40 10392.42 30089.92 15599.79 1696.85 19896.53 1597.22 6798.67 9782.71 18199.84 6998.92 2798.98 8399.43 87
PVSNet_Blended95.94 6095.66 6796.75 8098.77 8391.61 10799.88 398.04 4893.64 6394.21 13397.76 13783.50 16099.87 5897.41 6197.75 12498.79 147
mPP-MVS95.90 6295.75 6496.38 10499.58 3089.41 16699.26 8597.41 15190.66 12194.82 12198.95 6986.15 12299.98 995.24 11199.64 4299.74 47
PGM-MVS95.85 6395.65 6996.45 9999.50 4289.77 15998.22 20898.90 1389.19 16696.74 8398.95 6985.91 12699.92 4093.94 13499.46 5799.66 60
DP-MVS Recon95.85 6395.15 7997.95 3299.87 294.38 5499.60 3897.48 13986.58 24294.42 12999.13 4487.36 9199.98 993.64 14198.33 11199.48 82
MP-MVS-pluss95.80 6595.30 7497.29 5398.95 7692.66 8998.59 16897.14 17588.95 17493.12 15199.25 2385.62 12899.94 3496.56 8299.48 5699.28 101
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MVS_111021_LR95.78 6695.94 5595.28 15098.19 9887.69 20498.80 14099.26 793.39 6695.04 11998.69 9684.09 15499.76 8696.96 7299.06 7898.38 170
alignmvs95.77 6795.00 8498.06 2997.35 12995.68 2099.71 2597.50 13691.50 10396.16 9498.61 10386.28 11899.00 15196.19 8791.74 21199.51 79
EI-MVSNet-Vis-set95.76 6895.63 7196.17 11499.14 6490.33 13798.49 17997.82 6591.92 9494.75 12398.88 8087.06 9899.48 11695.40 10697.17 13998.70 154
SR-MVS-dyc-post95.75 6995.86 5895.41 14499.22 5987.26 22398.40 19197.21 16789.63 15396.67 8698.97 6286.73 10799.36 13096.62 7899.31 6899.60 69
CS-MVS95.75 6996.19 4494.40 18397.88 10786.22 24499.66 3496.12 24592.69 7998.07 4798.89 7887.09 9697.59 23196.71 7598.62 10299.39 91
dcpmvs_295.67 7196.18 4694.12 19598.82 8184.22 28697.37 26095.45 30190.70 12095.77 10498.63 10190.47 4398.68 16699.20 2099.22 7399.45 84
APD-MVS_3200maxsize95.64 7295.65 6995.62 13899.24 5887.80 20398.42 18697.22 16688.93 17696.64 8898.98 6185.49 13499.36 13096.68 7799.27 7199.70 52
fmvsm_s_conf0.1_n95.56 7395.68 6695.20 15294.35 25589.10 17199.50 5197.67 9494.76 3598.68 2899.03 5681.13 20799.86 6398.63 3297.36 13496.63 227
iter_conf05_1195.50 7495.43 7295.70 13397.26 13689.15 16998.26 20596.60 21091.37 10997.84 5596.18 21185.57 13098.56 17296.12 8899.66 3899.40 88
test_fmvsmvis_n_192095.47 7595.40 7395.70 13394.33 25690.22 14299.70 2696.98 19396.80 792.75 15598.89 7882.46 18899.92 4098.36 4098.33 11196.97 221
EI-MVSNet-UG-set95.43 7695.29 7595.86 12899.07 7089.87 15698.43 18597.80 7091.78 9694.11 13598.77 8586.25 12099.48 11694.95 11996.45 14898.22 182
PAPM_NR95.43 7695.05 8396.57 9499.42 4790.14 14498.58 17097.51 13390.65 12392.44 15998.90 7687.77 8299.90 5090.88 17499.32 6799.68 56
HPM-MVScopyleft95.41 7895.22 7795.99 12399.29 5589.14 17099.17 9597.09 18387.28 22795.40 11298.48 11384.93 14499.38 12895.64 10299.65 4099.47 83
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
jason95.40 7994.86 8697.03 6292.91 29594.23 5699.70 2696.30 23093.56 6596.73 8498.52 10681.46 20397.91 20496.08 9298.47 10998.96 127
jason: jason.
testing1195.33 8094.98 8596.37 10597.20 13892.31 9699.29 8197.68 9090.59 12594.43 12897.20 16690.79 4098.60 16995.25 11092.38 19798.18 185
HY-MVS88.56 795.29 8194.23 9698.48 1497.72 11096.41 1394.03 33998.74 1692.42 8595.65 10894.76 24086.52 11399.49 11295.29 10992.97 18899.53 76
test_yl95.27 8294.60 8997.28 5498.53 8992.98 8299.05 11698.70 1986.76 23994.65 12697.74 13987.78 8099.44 11995.57 10392.61 19399.44 85
DCV-MVSNet95.27 8294.60 8997.28 5498.53 8992.98 8299.05 11698.70 1986.76 23994.65 12697.74 13987.78 8099.44 11995.57 10392.61 19399.44 85
fmvsm_s_conf0.1_n_a95.16 8495.15 7995.18 15392.06 30688.94 17999.29 8197.53 12794.46 3998.98 1898.99 6079.99 21399.85 6798.24 4796.86 14396.73 225
EIA-MVS95.11 8595.27 7694.64 17696.34 17686.51 23299.59 4096.62 20892.51 8194.08 13698.64 9986.05 12398.24 18795.07 11498.50 10699.18 109
EC-MVSNet95.09 8695.17 7894.84 16795.42 21388.17 19599.48 5395.92 26691.47 10497.34 6598.36 11882.77 17797.41 24297.24 6598.58 10398.94 132
VNet95.08 8794.26 9597.55 4598.07 10193.88 6498.68 15398.73 1890.33 13497.16 7297.43 15579.19 22399.53 10996.91 7491.85 20999.24 104
sasdasda95.02 8893.96 10998.20 2197.53 12095.92 1798.71 14896.19 23991.78 9695.86 10198.49 11079.53 21899.03 14996.12 8891.42 22399.66 60
canonicalmvs95.02 8893.96 10998.20 2197.53 12095.92 1798.71 14896.19 23991.78 9695.86 10198.49 11079.53 21899.03 14996.12 8891.42 22399.66 60
MGCFI-Net94.89 9093.84 11698.06 2997.49 12495.55 2198.64 15996.10 24691.60 10195.75 10598.46 11679.31 22298.98 15395.95 9591.24 22799.65 63
HPM-MVS_fast94.89 9094.62 8895.70 13399.11 6688.44 19399.14 10497.11 17985.82 25595.69 10798.47 11483.46 16299.32 13593.16 15199.63 4599.35 94
testing9194.88 9294.44 9296.21 11097.19 14091.90 10299.23 8797.66 9589.91 14693.66 14497.05 17790.21 5098.50 17393.52 14391.53 22098.25 178
testing9994.88 9294.45 9196.17 11497.20 13891.91 10199.20 8997.66 9589.95 14593.68 14397.06 17590.28 4998.50 17393.52 14391.54 21798.12 187
CSCG94.87 9494.71 8795.36 14599.54 3686.49 23399.34 7898.15 4082.71 31090.15 19799.25 2389.48 5899.86 6394.97 11898.82 9399.72 50
sss94.85 9593.94 11197.58 4296.43 17194.09 6198.93 12899.16 889.50 16095.27 11497.85 13181.50 20199.65 9892.79 15894.02 17998.99 124
test250694.80 9694.21 9796.58 9296.41 17292.18 9998.01 22898.96 1190.82 11893.46 14797.28 15985.92 12498.45 17789.82 18797.19 13799.12 115
API-MVS94.78 9794.18 10096.59 9199.21 6190.06 15198.80 14097.78 7383.59 29393.85 14099.21 2883.79 15799.97 2192.37 16199.00 8299.74 47
thisisatest051594.75 9894.19 9896.43 10096.13 19192.64 9299.47 5597.60 11287.55 22393.17 15097.59 14794.71 1198.42 17888.28 20593.20 18598.24 181
xiu_mvs_v1_base_debu94.73 9993.98 10696.99 6595.19 22295.24 2798.62 16296.50 22092.99 7397.52 5998.83 8272.37 26999.15 14197.03 6896.74 14496.58 230
xiu_mvs_v1_base94.73 9993.98 10696.99 6595.19 22295.24 2798.62 16296.50 22092.99 7397.52 5998.83 8272.37 26999.15 14197.03 6896.74 14496.58 230
xiu_mvs_v1_base_debi94.73 9993.98 10696.99 6595.19 22295.24 2798.62 16296.50 22092.99 7397.52 5998.83 8272.37 26999.15 14197.03 6896.74 14496.58 230
MVSFormer94.71 10294.08 10396.61 8995.05 23694.87 3897.77 24296.17 24286.84 23698.04 4998.52 10685.52 13195.99 30989.83 18598.97 8498.96 127
PVSNet_Blended_VisFu94.67 10394.11 10196.34 10797.14 14491.10 11999.32 8097.43 14992.10 9391.53 17496.38 20683.29 16699.68 9293.42 14896.37 15098.25 178
ACMMPcopyleft94.67 10394.30 9495.79 13099.25 5788.13 19798.41 18898.67 2290.38 13391.43 17598.72 9182.22 19299.95 3193.83 13895.76 16299.29 100
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
iter_conf0594.60 10593.87 11596.79 7797.28 13594.04 6295.67 32395.94 26083.09 30190.06 19895.97 21989.59 5798.48 17697.86 5499.34 6597.86 194
CPTT-MVS94.60 10594.43 9395.09 15699.66 1286.85 22899.44 6297.47 14183.22 29894.34 13298.96 6682.50 18399.55 10694.81 12099.50 5598.88 137
diffmvspermissive94.59 10794.19 9895.81 12995.54 20990.69 13198.70 15195.68 28891.61 9995.96 9697.81 13380.11 21298.06 19796.52 8395.76 16298.67 156
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
mvsany_test194.57 10895.09 8292.98 22095.84 19982.07 31598.76 14695.24 31492.87 7896.45 8998.71 9484.81 14799.15 14197.68 5795.49 16797.73 196
DeepC-MVS91.02 494.56 10993.92 11296.46 9897.16 14390.76 12998.39 19597.11 17993.92 5188.66 21298.33 11978.14 23199.85 6795.02 11598.57 10498.78 149
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ETVMVS94.50 11093.90 11396.31 10897.48 12592.98 8299.07 11297.86 5988.09 20494.40 13096.90 18488.35 7097.28 24790.72 17992.25 20398.66 159
testing22294.48 11194.00 10595.95 12597.30 13192.27 9798.82 13797.92 5589.20 16594.82 12197.26 16187.13 9597.32 24691.95 16491.56 21598.25 178
MAR-MVS94.43 11294.09 10295.45 14299.10 6887.47 21398.39 19597.79 7288.37 19394.02 13799.17 3578.64 22999.91 4592.48 16098.85 9298.96 127
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
CHOSEN 1792x268894.35 11393.82 11795.95 12597.40 12688.74 18798.41 18898.27 3192.18 9191.43 17596.40 20378.88 22499.81 7993.59 14297.81 12099.30 99
CANet_DTU94.31 11493.35 12897.20 5897.03 15294.71 4698.62 16295.54 29695.61 2597.21 6898.47 11471.88 27499.84 6988.38 20497.46 13197.04 218
PLCcopyleft91.07 394.23 11594.01 10494.87 16599.17 6387.49 21299.25 8696.55 21788.43 19191.26 17998.21 12685.92 12499.86 6389.77 18997.57 12697.24 211
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
test_fmvsmconf0.01_n94.14 11693.51 12496.04 11986.79 37289.19 16799.28 8495.94 26095.70 2195.50 11098.49 11073.27 26299.79 8298.28 4598.32 11399.15 111
114514_t94.06 11793.05 13697.06 6199.08 6992.26 9898.97 12697.01 19182.58 31292.57 15798.22 12480.68 21099.30 13689.34 19599.02 8199.63 66
baseline294.04 11893.80 11894.74 17193.07 29490.25 13998.12 21898.16 3989.86 14786.53 23396.95 18195.56 598.05 19991.44 16894.53 17495.93 243
thisisatest053094.00 11993.52 12395.43 14395.76 20290.02 15398.99 12397.60 11286.58 24291.74 16697.36 15894.78 1098.34 18086.37 22692.48 19697.94 192
casdiffmvs_mvgpermissive94.00 11993.33 12996.03 12095.22 22090.90 12799.09 11095.99 25390.58 12691.55 17397.37 15779.91 21498.06 19795.01 11695.22 16999.13 114
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
casdiffmvspermissive93.98 12193.43 12595.61 13995.07 23589.86 15798.80 14095.84 27990.98 11592.74 15697.66 14479.71 21598.10 19494.72 12395.37 16898.87 139
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVS93.92 12292.28 15198.83 795.69 20496.82 896.22 30498.17 3784.89 27384.34 25198.61 10379.32 22199.83 7393.88 13699.43 6199.86 29
baseline93.91 12393.30 13095.72 13295.10 23390.07 14897.48 25695.91 27191.03 11393.54 14697.68 14279.58 21698.02 20194.27 13195.14 17099.08 119
OMC-MVS93.90 12493.62 12194.73 17298.63 8787.00 22698.04 22796.56 21692.19 9092.46 15898.73 8979.49 22099.14 14592.16 16394.34 17798.03 189
Effi-MVS+93.87 12593.15 13496.02 12195.79 20090.76 12996.70 28995.78 28086.98 23395.71 10697.17 17079.58 21698.01 20294.57 12796.09 15799.31 98
test_cas_vis1_n_192093.86 12693.74 11994.22 19195.39 21686.08 25099.73 2296.07 25096.38 1797.19 7197.78 13665.46 32499.86 6396.71 7598.92 8896.73 225
TESTMET0.1,193.82 12793.26 13295.49 14195.21 22190.25 13999.15 10197.54 12689.18 16791.79 16594.87 23889.13 6097.63 22886.21 22896.29 15498.60 160
AdaColmapbinary93.82 12793.06 13596.10 11799.88 189.07 17298.33 19997.55 12386.81 23890.39 19498.65 9875.09 24499.98 993.32 14997.53 12999.26 103
EPP-MVSNet93.75 12993.67 12094.01 20195.86 19885.70 26298.67 15597.66 9584.46 27891.36 17897.18 16991.16 2997.79 21392.93 15493.75 18198.53 162
thres20093.69 13092.59 14796.97 6997.76 10994.74 4599.35 7799.36 289.23 16491.21 18196.97 18083.42 16398.77 15985.08 24090.96 22897.39 206
PVSNet87.13 1293.69 13092.83 14296.28 10997.99 10490.22 14299.38 7298.93 1291.42 10793.66 14497.68 14271.29 28199.64 10087.94 21097.20 13698.98 125
HyFIR lowres test93.68 13293.29 13194.87 16597.57 11988.04 19998.18 21298.47 2587.57 22291.24 18095.05 23585.49 13497.46 23893.22 15092.82 18999.10 117
MVS_Test93.67 13392.67 14596.69 8696.72 16192.66 8997.22 26896.03 25287.69 22095.12 11894.03 24981.55 19998.28 18489.17 19996.46 14799.14 112
CNLPA93.64 13492.74 14396.36 10698.96 7590.01 15499.19 9095.89 27486.22 25089.40 20798.85 8180.66 21199.84 6988.57 20296.92 14299.24 104
PMMVS93.62 13593.90 11392.79 22496.79 15981.40 32198.85 13496.81 19991.25 11196.82 8198.15 12877.02 23798.13 19293.15 15296.30 15398.83 143
CDS-MVSNet93.47 13693.04 13794.76 16994.75 24789.45 16598.82 13797.03 18887.91 21190.97 18296.48 20189.06 6196.36 28889.50 19192.81 19198.49 164
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
131493.44 13791.98 15997.84 3495.24 21894.38 5496.22 30497.92 5590.18 13782.28 27997.71 14177.63 23499.80 8191.94 16598.67 10099.34 96
tfpn200view993.43 13892.27 15296.90 7297.68 11294.84 4099.18 9299.36 288.45 18890.79 18496.90 18483.31 16498.75 16184.11 25690.69 23097.12 213
3Dnovator+87.72 893.43 13891.84 16298.17 2395.73 20395.08 3498.92 13097.04 18691.42 10781.48 29697.60 14674.60 24799.79 8290.84 17598.97 8499.64 64
thres40093.39 14092.27 15296.73 8297.68 11294.84 4099.18 9299.36 288.45 18890.79 18496.90 18483.31 16498.75 16184.11 25690.69 23096.61 228
PVSNet_BlendedMVS93.36 14193.20 13393.84 20698.77 8391.61 10799.47 5598.04 4891.44 10594.21 13392.63 28383.50 16099.87 5897.41 6183.37 27990.05 342
thres100view90093.34 14292.15 15596.90 7297.62 11494.84 4099.06 11599.36 287.96 20990.47 19296.78 19283.29 16698.75 16184.11 25690.69 23097.12 213
tttt051793.30 14393.01 13894.17 19395.57 20786.47 23498.51 17697.60 11285.99 25390.55 18997.19 16894.80 998.31 18185.06 24191.86 20897.74 195
UA-Net93.30 14392.62 14695.34 14696.27 17988.53 19295.88 31496.97 19490.90 11695.37 11397.07 17482.38 19099.10 14783.91 26094.86 17398.38 170
test-mter93.27 14592.89 14194.40 18394.94 24187.27 22199.15 10197.25 16188.95 17491.57 17094.04 24788.03 7897.58 23285.94 23296.13 15598.36 174
Vis-MVSNet (Re-imp)93.26 14693.00 13994.06 19896.14 18886.71 23198.68 15396.70 20488.30 19789.71 20697.64 14585.43 13796.39 28688.06 20996.32 15199.08 119
UWE-MVS93.18 14793.40 12792.50 23296.56 16483.55 29598.09 22497.84 6189.50 16091.72 16796.23 21091.08 3296.70 26886.28 22793.33 18497.26 210
thres600view793.18 14792.00 15896.75 8097.62 11494.92 3599.07 11299.36 287.96 20990.47 19296.78 19283.29 16698.71 16582.93 27090.47 23496.61 228
3Dnovator87.35 1193.17 14991.77 16497.37 5295.41 21493.07 7998.82 13797.85 6091.53 10282.56 27297.58 14871.97 27399.82 7691.01 17299.23 7299.22 107
test-LLR93.11 15092.68 14494.40 18394.94 24187.27 22199.15 10197.25 16190.21 13591.57 17094.04 24784.89 14597.58 23285.94 23296.13 15598.36 174
test_vis1_n_192093.08 15193.42 12692.04 24296.31 17779.36 33899.83 996.06 25196.72 998.53 3398.10 12958.57 34999.91 4597.86 5498.79 9796.85 223
IS-MVSNet93.00 15292.51 14894.49 17996.14 18887.36 21798.31 20295.70 28688.58 18490.17 19697.50 15183.02 17397.22 24887.06 21596.07 15998.90 136
CostFormer92.89 15392.48 14994.12 19594.99 23885.89 25792.89 34997.00 19286.98 23395.00 12090.78 31490.05 5397.51 23692.92 15591.73 21298.96 127
tpmrst92.78 15492.16 15494.65 17496.27 17987.45 21491.83 35997.10 18289.10 17094.68 12590.69 31888.22 7297.73 22389.78 18891.80 21098.77 150
MVSTER92.71 15592.32 15093.86 20597.29 13392.95 8599.01 12196.59 21290.09 14185.51 24094.00 25194.61 1496.56 27490.77 17883.03 28192.08 282
1112_ss92.71 15591.55 16896.20 11195.56 20891.12 11798.48 18194.69 33288.29 19886.89 23098.50 10887.02 9998.66 16784.75 24589.77 23898.81 145
Vis-MVSNetpermissive92.64 15791.85 16195.03 16095.12 22988.23 19498.48 18196.81 19991.61 9992.16 16397.22 16571.58 27998.00 20385.85 23597.81 12098.88 137
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
TAMVS92.62 15892.09 15794.20 19294.10 26387.68 20598.41 18896.97 19487.53 22489.74 20496.04 21784.77 14996.49 28188.97 20192.31 20098.42 166
baseline192.61 15991.28 17396.58 9297.05 15194.63 4897.72 24696.20 23789.82 14888.56 21396.85 18886.85 10397.82 21188.42 20380.10 29697.30 208
EPMVS92.59 16091.59 16795.59 14097.22 13790.03 15291.78 36098.04 4890.42 13291.66 16990.65 32186.49 11597.46 23881.78 28196.31 15299.28 101
ET-MVSNet_ETH3D92.56 16191.45 17095.88 12796.39 17494.13 5999.46 5996.97 19492.18 9166.94 38198.29 12294.65 1394.28 35294.34 13083.82 27599.24 104
mvs_anonymous92.50 16291.65 16695.06 15796.60 16389.64 16197.06 27396.44 22486.64 24184.14 25393.93 25482.49 18496.17 30391.47 16796.08 15899.35 94
h-mvs3392.47 16391.95 16094.05 19997.13 14585.01 27698.36 19798.08 4493.85 5696.27 9296.73 19483.19 16999.43 12295.81 9668.09 36697.70 197
test_fmvs192.35 16492.94 14090.57 27597.19 14075.43 36099.55 4494.97 32195.20 3196.82 8197.57 14959.59 34799.84 6997.30 6398.29 11496.46 235
BH-w/o92.32 16591.79 16393.91 20496.85 15486.18 24699.11 10995.74 28388.13 20284.81 24497.00 17977.26 23697.91 20489.16 20098.03 11797.64 198
ECVR-MVScopyleft92.29 16691.33 17295.15 15496.41 17287.84 20298.10 22194.84 32590.82 11891.42 17797.28 15965.61 32198.49 17590.33 18197.19 13799.12 115
EPNet_dtu92.28 16792.15 15592.70 22897.29 13384.84 27898.64 15997.82 6592.91 7693.02 15397.02 17885.48 13695.70 32372.25 34794.89 17297.55 203
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Test_1112_low_res92.27 16890.97 17996.18 11295.53 21091.10 11998.47 18394.66 33388.28 19986.83 23193.50 26787.00 10098.65 16884.69 24689.74 23998.80 146
LFMVS92.23 16990.84 18396.42 10198.24 9591.08 12198.24 20796.22 23683.39 29694.74 12498.31 12061.12 34298.85 15694.45 12892.82 18999.32 97
FA-MVS(test-final)92.22 17091.08 17795.64 13796.05 19288.98 17691.60 36397.25 16186.99 23091.84 16492.12 28683.03 17299.00 15186.91 22093.91 18098.93 133
test111192.12 17191.19 17594.94 16296.15 18687.36 21798.12 21894.84 32590.85 11790.97 18297.26 16165.60 32298.37 17989.74 19097.14 14099.07 121
IB-MVS89.43 692.12 17190.83 18595.98 12495.40 21590.78 12899.81 1198.06 4591.23 11285.63 23993.66 26290.63 4198.78 15891.22 16971.85 35598.36 174
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
F-COLMAP92.07 17391.75 16593.02 21998.16 9982.89 30598.79 14495.97 25586.54 24487.92 21797.80 13478.69 22899.65 9885.97 23095.93 16196.53 233
PatchmatchNetpermissive92.05 17491.04 17895.06 15796.17 18589.04 17391.26 36997.26 16089.56 15890.64 18890.56 32788.35 7097.11 25179.53 29496.07 15999.03 122
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
UGNet91.91 17590.85 18295.10 15597.06 15088.69 18898.01 22898.24 3492.41 8692.39 16093.61 26360.52 34499.68 9288.14 20797.25 13596.92 222
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
tpm291.77 17691.09 17693.82 20794.83 24585.56 26592.51 35497.16 17484.00 28493.83 14190.66 32087.54 8497.17 24987.73 21291.55 21698.72 152
Fast-Effi-MVS+91.72 17790.79 18694.49 17995.89 19687.40 21699.54 4995.70 28685.01 27189.28 20995.68 22577.75 23397.57 23583.22 26595.06 17198.51 163
hse-mvs291.67 17891.51 16992.15 23996.22 18182.61 31197.74 24597.53 12793.85 5696.27 9296.15 21283.19 16997.44 24095.81 9666.86 37396.40 237
HQP-MVS91.50 17991.23 17492.29 23493.95 26886.39 23799.16 9696.37 22693.92 5187.57 22096.67 19773.34 25997.77 21593.82 13986.29 25192.72 262
PatchMatch-RL91.47 18090.54 19094.26 18998.20 9686.36 23996.94 27797.14 17587.75 21688.98 21095.75 22371.80 27699.40 12780.92 28697.39 13397.02 219
BH-untuned91.46 18190.84 18393.33 21496.51 16884.83 27998.84 13695.50 29886.44 24983.50 25796.70 19575.49 24397.77 21586.78 22397.81 12097.40 205
mamv491.41 18293.57 12284.91 34897.11 14758.11 39595.68 32295.93 26482.09 32289.78 20395.71 22490.09 5298.24 18797.26 6498.50 10698.38 170
QAPM91.41 18289.49 20497.17 5995.66 20693.42 7398.60 16697.51 13380.92 33681.39 29797.41 15672.89 26699.87 5882.33 27598.68 9998.21 183
FE-MVS91.38 18490.16 19595.05 15996.46 17087.53 21189.69 37897.84 6182.97 30492.18 16292.00 29284.07 15598.93 15580.71 28895.52 16698.68 155
HQP_MVS91.26 18590.95 18092.16 23893.84 27586.07 25299.02 11996.30 23093.38 6786.99 22796.52 19972.92 26497.75 22193.46 14686.17 25492.67 264
PCF-MVS89.78 591.26 18589.63 20196.16 11695.44 21291.58 10995.29 32696.10 24685.07 26882.75 26697.45 15478.28 23099.78 8480.60 29095.65 16597.12 213
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
bld_raw_dy_0_6491.25 18790.03 19694.92 16395.99 19392.32 9591.40 36695.74 28370.34 37984.15 25294.47 24385.61 12998.17 18994.42 12998.14 11594.26 252
BH-RMVSNet91.25 18789.99 19795.03 16096.75 16088.55 19098.65 15794.95 32287.74 21787.74 21997.80 13468.27 29898.14 19180.53 29197.49 13098.41 167
VDD-MVS91.24 18990.18 19494.45 18297.08 14985.84 26098.40 19196.10 24686.99 23093.36 14898.16 12754.27 36699.20 13896.59 8190.63 23398.31 177
SDMVSNet91.09 19089.91 19894.65 17496.80 15790.54 13597.78 24097.81 6888.34 19585.73 23695.26 23266.44 31698.26 18594.25 13286.75 24895.14 246
test_fmvs1_n91.07 19191.41 17190.06 28994.10 26374.31 36499.18 9294.84 32594.81 3496.37 9197.46 15350.86 37799.82 7697.14 6797.90 11896.04 242
CLD-MVS91.06 19290.71 18792.10 24094.05 26786.10 24999.55 4496.29 23394.16 4684.70 24697.17 17069.62 29097.82 21194.74 12286.08 25692.39 267
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
ab-mvs91.05 19389.17 21196.69 8695.96 19591.72 10592.62 35397.23 16585.61 25989.74 20493.89 25668.55 29599.42 12391.09 17087.84 24398.92 135
XVG-OURS-SEG-HR90.95 19490.66 18991.83 24595.18 22581.14 32895.92 31195.92 26688.40 19290.33 19597.85 13170.66 28499.38 12892.83 15688.83 24094.98 249
cascas90.93 19589.33 20995.76 13195.69 20493.03 8198.99 12396.59 21280.49 33886.79 23294.45 24465.23 32598.60 16993.52 14392.18 20495.66 245
XVG-OURS90.83 19690.49 19191.86 24495.23 21981.25 32595.79 31995.92 26688.96 17390.02 20098.03 13071.60 27899.35 13391.06 17187.78 24494.98 249
TR-MVS90.77 19789.44 20594.76 16996.31 17788.02 20097.92 23295.96 25785.52 26088.22 21697.23 16466.80 31298.09 19584.58 24892.38 19798.17 186
OpenMVScopyleft85.28 1490.75 19888.84 21896.48 9793.58 28293.51 7198.80 14097.41 15182.59 31178.62 32597.49 15268.00 30299.82 7684.52 25098.55 10596.11 241
FIs90.70 19989.87 19993.18 21692.29 30191.12 11798.17 21498.25 3289.11 16983.44 25894.82 23982.26 19196.17 30387.76 21182.76 28392.25 272
X-MVStestdata90.69 20088.66 22396.77 7899.62 2290.66 13399.43 6597.58 11892.41 8696.86 7629.59 41287.37 8899.87 5895.65 9899.43 6199.78 38
SCA90.64 20189.25 21094.83 16894.95 24088.83 18396.26 30197.21 16790.06 14490.03 19990.62 32366.61 31396.81 26483.16 26694.36 17698.84 140
GeoE90.60 20289.56 20293.72 21095.10 23385.43 26699.41 6894.94 32383.96 28687.21 22696.83 19174.37 25197.05 25580.50 29293.73 18298.67 156
test_vis1_n90.40 20390.27 19390.79 27091.55 31676.48 35699.12 10894.44 33794.31 4297.34 6596.95 18143.60 38899.42 12397.57 5997.60 12596.47 234
TAPA-MVS87.50 990.35 20489.05 21494.25 19098.48 9185.17 27398.42 18696.58 21582.44 31787.24 22598.53 10582.77 17798.84 15759.09 38697.88 11998.72 152
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
miper_enhance_ethall90.33 20589.70 20092.22 23597.12 14688.93 18198.35 19895.96 25788.60 18383.14 26492.33 28587.38 8796.18 30286.49 22577.89 30591.55 297
CVMVSNet90.30 20690.91 18188.46 32294.32 25773.58 36897.61 25397.59 11690.16 14088.43 21597.10 17276.83 23892.86 36282.64 27293.54 18398.93 133
nrg03090.23 20788.87 21794.32 18791.53 31793.54 7098.79 14495.89 27488.12 20384.55 24894.61 24278.80 22796.88 26192.35 16275.21 32092.53 266
FC-MVSNet-test90.22 20889.40 20792.67 23091.78 31389.86 15797.89 23398.22 3588.81 17982.96 26594.66 24181.90 19795.96 31185.89 23482.52 28692.20 278
LS3D90.19 20988.72 22194.59 17898.97 7386.33 24196.90 27996.60 21074.96 36484.06 25598.74 8875.78 24199.83 7374.93 32797.57 12697.62 201
AUN-MVS90.17 21089.50 20392.19 23796.21 18282.67 30997.76 24497.53 12788.05 20591.67 16896.15 21283.10 17197.47 23788.11 20866.91 37296.43 236
dp90.16 21188.83 21994.14 19496.38 17586.42 23591.57 36497.06 18584.76 27588.81 21190.19 33984.29 15297.43 24175.05 32691.35 22698.56 161
GA-MVS90.10 21288.69 22294.33 18692.44 29987.97 20199.08 11196.26 23489.65 15286.92 22993.11 27568.09 30096.96 25782.54 27490.15 23598.05 188
VDDNet90.08 21388.54 22894.69 17394.41 25487.68 20598.21 21096.40 22576.21 35893.33 14997.75 13854.93 36498.77 15994.71 12490.96 22897.61 202
gg-mvs-nofinetune90.00 21487.71 24096.89 7696.15 18694.69 4785.15 38797.74 7768.32 38792.97 15460.16 40096.10 396.84 26293.89 13598.87 9199.14 112
mvsmamba89.99 21589.42 20691.69 25290.64 32986.34 24098.40 19192.27 36891.01 11484.80 24594.93 23676.12 23996.51 27892.81 15783.84 27292.21 276
Effi-MVS+-dtu89.97 21690.68 18887.81 32695.15 22671.98 37597.87 23695.40 30591.92 9487.57 22091.44 30274.27 25396.84 26289.45 19293.10 18794.60 251
EI-MVSNet89.87 21789.38 20891.36 25794.32 25785.87 25897.61 25396.59 21285.10 26685.51 24097.10 17281.30 20696.56 27483.85 26283.03 28191.64 289
OPM-MVS89.76 21889.15 21291.57 25490.53 33085.58 26498.11 22095.93 26492.88 7786.05 23496.47 20267.06 31197.87 20889.29 19886.08 25691.26 310
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
tpm89.67 21988.95 21691.82 24692.54 29881.43 32092.95 34895.92 26687.81 21390.50 19189.44 34684.99 14395.65 32483.67 26382.71 28498.38 170
UniMVSNet_NR-MVSNet89.60 22088.55 22792.75 22692.17 30490.07 14898.74 14798.15 4088.37 19383.21 26093.98 25282.86 17595.93 31386.95 21872.47 34992.25 272
cl2289.57 22188.79 22091.91 24397.94 10587.62 20897.98 23096.51 21985.03 26982.37 27891.79 29583.65 15896.50 27985.96 23177.89 30591.61 294
PS-MVSNAJss89.54 22289.05 21491.00 26388.77 35284.36 28497.39 25795.97 25588.47 18581.88 28993.80 25882.48 18596.50 27989.34 19583.34 28092.15 279
UniMVSNet (Re)89.50 22388.32 23193.03 21892.21 30390.96 12598.90 13298.39 2789.13 16883.22 25992.03 28881.69 19896.34 29486.79 22272.53 34891.81 287
sd_testset89.23 22488.05 23792.74 22796.80 15785.33 26995.85 31797.03 18888.34 19585.73 23695.26 23261.12 34297.76 22085.61 23686.75 24895.14 246
tpmvs89.16 22587.76 23893.35 21397.19 14084.75 28090.58 37697.36 15681.99 32384.56 24789.31 34983.98 15698.17 18974.85 32990.00 23797.12 213
VPA-MVSNet89.10 22687.66 24193.45 21292.56 29791.02 12397.97 23198.32 3086.92 23586.03 23592.01 29068.84 29497.10 25390.92 17375.34 31992.23 274
ADS-MVSNet88.99 22787.30 24694.07 19796.21 18287.56 21087.15 38296.78 20283.01 30289.91 20187.27 36278.87 22597.01 25674.20 33492.27 20197.64 198
test0.0.03 188.96 22888.61 22490.03 29391.09 32384.43 28398.97 12697.02 19090.21 13580.29 30696.31 20984.89 14591.93 37672.98 34385.70 25993.73 254
miper_ehance_all_eth88.94 22988.12 23591.40 25595.32 21786.93 22797.85 23795.55 29584.19 28181.97 28791.50 30184.16 15395.91 31684.69 24677.89 30591.36 305
tpm cat188.89 23087.27 24793.76 20895.79 20085.32 27090.76 37497.09 18376.14 35985.72 23888.59 35282.92 17498.04 20076.96 31391.43 22297.90 193
LPG-MVS_test88.86 23188.47 22990.06 28993.35 28980.95 33098.22 20895.94 26087.73 21883.17 26296.11 21466.28 31797.77 21590.19 18385.19 26191.46 300
Anonymous20240521188.84 23287.03 25194.27 18898.14 10084.18 28798.44 18495.58 29476.79 35789.34 20896.88 18753.42 36999.54 10887.53 21487.12 24799.09 118
Fast-Effi-MVS+-dtu88.84 23288.59 22689.58 30493.44 28778.18 34998.65 15794.62 33488.46 18784.12 25495.37 23168.91 29296.52 27782.06 27891.70 21394.06 253
DU-MVS88.83 23487.51 24292.79 22491.46 31890.07 14898.71 14897.62 10988.87 17883.21 26093.68 26074.63 24595.93 31386.95 21872.47 34992.36 268
CR-MVSNet88.83 23487.38 24593.16 21793.47 28486.24 24284.97 38994.20 34588.92 17790.76 18686.88 36684.43 15094.82 34470.64 35192.17 20598.41 167
FMVSNet388.81 23687.08 25093.99 20296.52 16794.59 4998.08 22596.20 23785.85 25482.12 28291.60 29974.05 25595.40 33279.04 29880.24 29391.99 285
ACMM86.95 1388.77 23788.22 23390.43 28093.61 28181.34 32398.50 17795.92 26687.88 21283.85 25695.20 23467.20 30997.89 20686.90 22184.90 26392.06 283
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
DP-MVS88.75 23886.56 25795.34 14698.92 7787.45 21497.64 25293.52 35670.55 37781.49 29597.25 16374.43 25099.88 5471.14 35094.09 17898.67 156
ACMP87.39 1088.71 23988.24 23290.12 28893.91 27381.06 32998.50 17795.67 28989.43 16280.37 30595.55 22665.67 31997.83 21090.55 18084.51 26591.47 299
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
WB-MVSnew88.69 24088.34 23089.77 29994.30 26185.99 25598.14 21597.31 15987.15 22987.85 21896.07 21669.91 28595.52 32772.83 34591.47 22187.80 366
dmvs_re88.69 24088.06 23690.59 27493.83 27778.68 34595.75 32096.18 24187.99 20884.48 25096.32 20867.52 30696.94 25984.98 24385.49 26096.14 240
myMVS_eth3d88.68 24289.07 21387.50 33095.14 22779.74 33697.68 24996.66 20686.52 24582.63 26996.84 18985.22 14289.89 38369.43 35691.54 21792.87 260
LCM-MVSNet-Re88.59 24388.61 22488.51 32195.53 21072.68 37396.85 28188.43 39388.45 18873.14 35790.63 32275.82 24094.38 35192.95 15395.71 16498.48 165
WR-MVS88.54 24487.22 24992.52 23191.93 31189.50 16498.56 17197.84 6186.99 23081.87 29093.81 25774.25 25495.92 31585.29 23874.43 32992.12 280
IterMVS-LS88.34 24587.44 24391.04 26294.10 26385.85 25998.10 22195.48 29985.12 26582.03 28691.21 30781.35 20595.63 32583.86 26175.73 31791.63 290
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
VPNet88.30 24686.57 25693.49 21191.95 30991.35 11198.18 21297.20 17188.61 18284.52 24994.89 23762.21 33796.76 26789.34 19572.26 35292.36 268
MSDG88.29 24786.37 25994.04 20096.90 15386.15 24896.52 29294.36 34277.89 35379.22 32096.95 18169.72 28899.59 10473.20 34292.58 19596.37 238
test_djsdf88.26 24887.73 23989.84 29688.05 36182.21 31397.77 24296.17 24286.84 23682.41 27791.95 29472.07 27295.99 30989.83 18584.50 26691.32 307
c3_l88.19 24987.23 24891.06 26194.97 23986.17 24797.72 24695.38 30683.43 29581.68 29491.37 30382.81 17695.72 32284.04 25973.70 33791.29 309
D2MVS87.96 25087.39 24489.70 30191.84 31283.40 29798.31 20298.49 2388.04 20678.23 33190.26 33373.57 25796.79 26684.21 25383.53 27788.90 358
cl____87.82 25186.79 25590.89 26794.88 24385.43 26697.81 23895.24 31482.91 30980.71 30291.22 30681.97 19695.84 31881.34 28375.06 32191.40 304
DIV-MVS_self_test87.82 25186.81 25490.87 26894.87 24485.39 26897.81 23895.22 31982.92 30880.76 30191.31 30581.99 19495.81 32081.36 28275.04 32291.42 303
eth_miper_zixun_eth87.76 25387.00 25290.06 28994.67 24982.65 31097.02 27695.37 30784.19 28181.86 29291.58 30081.47 20295.90 31783.24 26473.61 33891.61 294
testing387.75 25488.22 23386.36 33894.66 25077.41 35499.52 5097.95 5486.05 25281.12 29896.69 19686.18 12189.31 38761.65 38190.12 23692.35 271
TranMVSNet+NR-MVSNet87.75 25486.31 26092.07 24190.81 32688.56 18998.33 19997.18 17287.76 21581.87 29093.90 25572.45 26895.43 33083.13 26871.30 35992.23 274
XXY-MVS87.75 25486.02 26492.95 22290.46 33189.70 16097.71 24895.90 27284.02 28380.95 29994.05 24667.51 30797.10 25385.16 23978.41 30292.04 284
NR-MVSNet87.74 25786.00 26592.96 22191.46 31890.68 13296.65 29097.42 15088.02 20773.42 35493.68 26077.31 23595.83 31984.26 25271.82 35692.36 268
Anonymous2024052987.66 25885.58 27193.92 20397.59 11785.01 27698.13 21697.13 17766.69 39288.47 21496.01 21855.09 36399.51 11087.00 21784.12 27097.23 212
ADS-MVSNet287.62 25986.88 25389.86 29596.21 18279.14 34187.15 38292.99 35983.01 30289.91 20187.27 36278.87 22592.80 36574.20 33492.27 20197.64 198
pmmvs487.58 26086.17 26391.80 24789.58 34288.92 18297.25 26595.28 31082.54 31380.49 30493.17 27475.62 24296.05 30882.75 27178.90 30090.42 333
jajsoiax87.35 26186.51 25889.87 29487.75 36681.74 31797.03 27495.98 25488.47 18580.15 30893.80 25861.47 33996.36 28889.44 19384.47 26791.50 298
PVSNet_083.28 1687.31 26285.16 27793.74 20994.78 24684.59 28198.91 13198.69 2189.81 14978.59 32793.23 27261.95 33899.34 13494.75 12155.72 39397.30 208
v2v48287.27 26385.76 26891.78 25189.59 34187.58 20998.56 17195.54 29684.53 27782.51 27391.78 29673.11 26396.47 28282.07 27774.14 33591.30 308
mvs_tets87.09 26486.22 26189.71 30087.87 36281.39 32296.73 28895.90 27288.19 20179.99 31093.61 26359.96 34696.31 29689.40 19484.34 26891.43 302
V4287.00 26585.68 27090.98 26489.91 33586.08 25098.32 20195.61 29283.67 29282.72 26790.67 31974.00 25696.53 27681.94 28074.28 33290.32 335
miper_lstm_enhance86.90 26686.20 26289.00 31694.53 25281.19 32696.74 28795.24 31482.33 31880.15 30890.51 33081.99 19494.68 34880.71 28873.58 33991.12 313
FMVSNet286.90 26684.79 28593.24 21595.11 23092.54 9397.67 25195.86 27882.94 30580.55 30391.17 30862.89 33495.29 33477.23 31079.71 29991.90 286
v114486.83 26885.31 27691.40 25589.75 33987.21 22598.31 20295.45 30183.22 29882.70 26890.78 31473.36 25896.36 28879.49 29574.69 32690.63 330
MS-PatchMatch86.75 26985.92 26689.22 31191.97 30782.47 31296.91 27896.14 24483.74 28977.73 33293.53 26658.19 35197.37 24576.75 31698.35 11087.84 364
anonymousdsp86.69 27085.75 26989.53 30586.46 37482.94 30296.39 29595.71 28583.97 28579.63 31590.70 31768.85 29395.94 31286.01 22984.02 27189.72 348
GBi-Net86.67 27184.96 27991.80 24795.11 23088.81 18496.77 28395.25 31182.94 30582.12 28290.25 33462.89 33494.97 33979.04 29880.24 29391.62 291
test186.67 27184.96 27991.80 24795.11 23088.81 18496.77 28395.25 31182.94 30582.12 28290.25 33462.89 33494.97 33979.04 29880.24 29391.62 291
MVP-Stereo86.61 27385.83 26788.93 31888.70 35483.85 29296.07 30894.41 34182.15 32175.64 34391.96 29367.65 30596.45 28477.20 31298.72 9886.51 376
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
CP-MVSNet86.54 27485.45 27489.79 29891.02 32582.78 30897.38 25997.56 12285.37 26279.53 31793.03 27671.86 27595.25 33579.92 29373.43 34391.34 306
WR-MVS_H86.53 27585.49 27389.66 30391.04 32483.31 29997.53 25598.20 3684.95 27279.64 31490.90 31278.01 23295.33 33376.29 31972.81 34590.35 334
tt080586.50 27684.79 28591.63 25391.97 30781.49 31996.49 29397.38 15482.24 31982.44 27495.82 22251.22 37498.25 18684.55 24980.96 29295.13 248
v14419286.40 27784.89 28290.91 26589.48 34585.59 26398.21 21095.43 30482.45 31682.62 27190.58 32672.79 26796.36 28878.45 30574.04 33690.79 322
v14886.38 27885.06 27890.37 28489.47 34684.10 28898.52 17395.48 29983.80 28880.93 30090.22 33774.60 24796.31 29680.92 28671.55 35790.69 328
v119286.32 27984.71 28791.17 25989.53 34486.40 23698.13 21695.44 30382.52 31482.42 27690.62 32371.58 27996.33 29577.23 31074.88 32390.79 322
Patchmatch-test86.25 28084.06 29792.82 22394.42 25382.88 30682.88 39694.23 34471.58 37379.39 31890.62 32389.00 6396.42 28563.03 37791.37 22599.16 110
v886.11 28184.45 29291.10 26089.99 33486.85 22897.24 26695.36 30881.99 32379.89 31289.86 34274.53 24996.39 28678.83 30272.32 35190.05 342
v192192086.02 28284.44 29390.77 27189.32 34785.20 27198.10 22195.35 30982.19 32082.25 28090.71 31670.73 28296.30 29976.85 31574.49 32890.80 321
JIA-IIPM85.97 28384.85 28389.33 31093.23 29173.68 36785.05 38897.13 17769.62 38391.56 17268.03 39888.03 7896.96 25777.89 30893.12 18697.34 207
pmmvs585.87 28484.40 29590.30 28588.53 35684.23 28598.60 16693.71 35281.53 32880.29 30692.02 28964.51 32795.52 32782.04 27978.34 30391.15 312
XVG-ACMP-BASELINE85.86 28584.95 28188.57 32089.90 33677.12 35594.30 33595.60 29387.40 22682.12 28292.99 27853.42 36997.66 22585.02 24283.83 27390.92 318
Baseline_NR-MVSNet85.83 28684.82 28488.87 31988.73 35383.34 29898.63 16191.66 37780.41 34182.44 27491.35 30474.63 24595.42 33184.13 25571.39 35887.84 364
PS-CasMVS85.81 28784.58 29089.49 30890.77 32782.11 31497.20 26997.36 15684.83 27479.12 32292.84 27967.42 30895.16 33778.39 30673.25 34491.21 311
IterMVS85.81 28784.67 28889.22 31193.51 28383.67 29496.32 29894.80 32885.09 26778.69 32390.17 34066.57 31593.17 36179.48 29677.42 31190.81 320
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v124085.77 28984.11 29690.73 27289.26 34885.15 27497.88 23595.23 31881.89 32682.16 28190.55 32869.60 29196.31 29675.59 32474.87 32490.72 327
IterMVS-SCA-FT85.73 29084.64 28989.00 31693.46 28682.90 30496.27 29994.70 33185.02 27078.62 32590.35 33266.61 31393.33 35879.38 29777.36 31290.76 324
v1085.73 29084.01 29890.87 26890.03 33386.73 23097.20 26995.22 31981.25 33179.85 31389.75 34373.30 26196.28 30076.87 31472.64 34789.61 350
UniMVSNet_ETH3D85.65 29283.79 30091.21 25890.41 33280.75 33295.36 32595.78 28078.76 34781.83 29394.33 24549.86 37996.66 26984.30 25183.52 27896.22 239
PatchT85.44 29383.19 30392.22 23593.13 29383.00 30183.80 39596.37 22670.62 37690.55 18979.63 39084.81 14794.87 34258.18 38891.59 21498.79 147
RPSCF85.33 29485.55 27284.67 35194.63 25162.28 39093.73 34193.76 35074.38 36785.23 24397.06 17564.09 32898.31 18180.98 28486.08 25693.41 258
PEN-MVS85.21 29583.93 29989.07 31589.89 33781.31 32497.09 27297.24 16484.45 27978.66 32492.68 28268.44 29794.87 34275.98 32170.92 36091.04 315
test_fmvs285.10 29685.45 27484.02 35489.85 33865.63 38898.49 17992.59 36490.45 13085.43 24293.32 26843.94 38696.59 27290.81 17684.19 26989.85 346
RPMNet85.07 29781.88 31594.64 17693.47 28486.24 24284.97 38997.21 16764.85 39490.76 18678.80 39180.95 20999.27 13753.76 39292.17 20598.41 167
AllTest84.97 29883.12 30490.52 27896.82 15578.84 34395.89 31292.17 37077.96 35175.94 33995.50 22755.48 35999.18 13971.15 34887.14 24593.55 256
USDC84.74 29982.93 30590.16 28791.73 31483.54 29695.00 32993.30 35888.77 18073.19 35693.30 27053.62 36897.65 22775.88 32281.54 29089.30 353
Anonymous2023121184.72 30082.65 31290.91 26597.71 11184.55 28297.28 26396.67 20566.88 39179.18 32190.87 31358.47 35096.60 27182.61 27374.20 33391.59 296
pm-mvs184.68 30182.78 30990.40 28189.58 34285.18 27297.31 26194.73 33081.93 32576.05 33892.01 29065.48 32396.11 30678.75 30369.14 36389.91 345
ACMH83.09 1784.60 30282.61 31390.57 27593.18 29282.94 30296.27 29994.92 32481.01 33472.61 36393.61 26356.54 35597.79 21374.31 33281.07 29190.99 316
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LTVRE_ROB81.71 1984.59 30382.72 31190.18 28692.89 29683.18 30093.15 34694.74 32978.99 34475.14 34692.69 28165.64 32097.63 22869.46 35581.82 28989.74 347
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
COLMAP_ROBcopyleft82.69 1884.54 30482.82 30689.70 30196.72 16178.85 34295.89 31292.83 36271.55 37477.54 33495.89 22159.40 34899.14 14567.26 36488.26 24191.11 314
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
MIMVSNet84.48 30581.83 31692.42 23391.73 31487.36 21785.52 38594.42 34081.40 32981.91 28887.58 35651.92 37292.81 36473.84 33788.15 24297.08 217
our_test_384.47 30682.80 30789.50 30689.01 34983.90 29197.03 27494.56 33581.33 33075.36 34590.52 32971.69 27794.54 35068.81 35876.84 31390.07 340
v7n84.42 30782.75 31089.43 30988.15 35981.86 31696.75 28695.67 28980.53 33778.38 32989.43 34769.89 28696.35 29373.83 33872.13 35390.07 340
kuosan84.40 30883.34 30287.60 32895.87 19779.21 33992.39 35596.87 19776.12 36073.79 35193.98 25281.51 20090.63 37964.13 37375.42 31892.95 259
ACMH+83.78 1584.21 30982.56 31489.15 31393.73 28079.16 34096.43 29494.28 34381.09 33374.00 35094.03 24954.58 36597.67 22476.10 32078.81 30190.63 330
EU-MVSNet84.19 31084.42 29483.52 35888.64 35567.37 38696.04 30995.76 28285.29 26378.44 32893.18 27370.67 28391.48 37875.79 32375.98 31591.70 288
DTE-MVSNet84.14 31182.80 30788.14 32388.95 35179.87 33596.81 28296.24 23583.50 29477.60 33392.52 28467.89 30494.24 35372.64 34669.05 36490.32 335
OurMVSNet-221017-084.13 31283.59 30185.77 34387.81 36370.24 38094.89 33093.65 35486.08 25176.53 33593.28 27161.41 34096.14 30580.95 28577.69 31090.93 317
Syy-MVS84.10 31384.53 29182.83 36095.14 22765.71 38797.68 24996.66 20686.52 24582.63 26996.84 18968.15 29989.89 38345.62 39891.54 21792.87 260
FMVSNet183.94 31481.32 32291.80 24791.94 31088.81 18496.77 28395.25 31177.98 34978.25 33090.25 33450.37 37894.97 33973.27 34177.81 30991.62 291
tfpnnormal83.65 31581.35 32190.56 27791.37 32088.06 19897.29 26297.87 5878.51 34876.20 33690.91 31164.78 32696.47 28261.71 38073.50 34087.13 373
ppachtmachnet_test83.63 31681.57 31989.80 29789.01 34985.09 27597.13 27194.50 33678.84 34576.14 33791.00 31069.78 28794.61 34963.40 37574.36 33089.71 349
Patchmtry83.61 31781.64 31789.50 30693.36 28882.84 30784.10 39294.20 34569.47 38479.57 31686.88 36684.43 15094.78 34568.48 36074.30 33190.88 319
KD-MVS_2432*160082.98 31880.52 32790.38 28294.32 25788.98 17692.87 35095.87 27680.46 33973.79 35187.49 35982.76 17993.29 35970.56 35246.53 40288.87 359
miper_refine_blended82.98 31880.52 32790.38 28294.32 25788.98 17692.87 35095.87 27680.46 33973.79 35187.49 35982.76 17993.29 35970.56 35246.53 40288.87 359
SixPastTwentyTwo82.63 32081.58 31885.79 34288.12 36071.01 37895.17 32792.54 36584.33 28072.93 36192.08 28760.41 34595.61 32674.47 33174.15 33490.75 325
testgi82.29 32181.00 32486.17 34087.24 36974.84 36397.39 25791.62 37888.63 18175.85 34295.42 23046.07 38591.55 37766.87 36779.94 29792.12 280
FMVSNet582.29 32180.54 32687.52 32993.79 27984.01 28993.73 34192.47 36676.92 35674.27 34886.15 37063.69 33289.24 38869.07 35774.79 32589.29 354
TransMVSNet (Re)81.97 32379.61 33389.08 31489.70 34084.01 28997.26 26491.85 37678.84 34573.07 36091.62 29867.17 31095.21 33667.50 36359.46 38788.02 363
LF4IMVS81.94 32481.17 32384.25 35387.23 37068.87 38593.35 34591.93 37583.35 29775.40 34493.00 27749.25 38296.65 27078.88 30178.11 30487.22 372
Patchmatch-RL test81.90 32580.13 32987.23 33380.71 39070.12 38284.07 39388.19 39483.16 30070.57 36582.18 38187.18 9492.59 36782.28 27662.78 38098.98 125
DSMNet-mixed81.60 32681.43 32082.10 36384.36 38060.79 39193.63 34386.74 39679.00 34379.32 31987.15 36463.87 33089.78 38566.89 36691.92 20795.73 244
dongtai81.36 32780.61 32583.62 35794.25 26273.32 36995.15 32896.81 19973.56 37069.79 36892.81 28081.00 20886.80 39452.08 39570.06 36290.75 325
test_vis1_rt81.31 32880.05 33185.11 34591.29 32170.66 37998.98 12577.39 40885.76 25768.80 37282.40 37936.56 39599.44 11992.67 15986.55 25085.24 383
K. test v381.04 32979.77 33284.83 34987.41 36770.23 38195.60 32493.93 34983.70 29167.51 37989.35 34855.76 35793.58 35776.67 31768.03 36790.67 329
Anonymous2023120680.76 33079.42 33484.79 35084.78 37972.98 37096.53 29192.97 36079.56 34274.33 34788.83 35061.27 34192.15 37360.59 38375.92 31689.24 355
CMPMVSbinary58.40 2180.48 33180.11 33081.59 36685.10 37859.56 39394.14 33895.95 25968.54 38660.71 39093.31 26955.35 36297.87 20883.06 26984.85 26487.33 370
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
TinyColmap80.42 33277.94 33787.85 32592.09 30578.58 34693.74 34089.94 38774.99 36369.77 36991.78 29646.09 38497.58 23265.17 37277.89 30587.38 368
EG-PatchMatch MVS79.92 33377.59 33886.90 33587.06 37177.90 35396.20 30694.06 34774.61 36566.53 38388.76 35140.40 39396.20 30167.02 36583.66 27686.61 374
pmmvs679.90 33477.31 34087.67 32784.17 38178.13 35095.86 31693.68 35367.94 38872.67 36289.62 34550.98 37695.75 32174.80 33066.04 37489.14 356
CL-MVSNet_self_test79.89 33578.34 33684.54 35281.56 38875.01 36196.88 28095.62 29181.10 33275.86 34185.81 37168.49 29690.26 38163.21 37656.51 39188.35 361
MDA-MVSNet_test_wron79.65 33677.05 34187.45 33187.79 36580.13 33396.25 30294.44 33773.87 36851.80 39687.47 36168.04 30192.12 37466.02 36867.79 36990.09 338
YYNet179.64 33777.04 34287.43 33287.80 36479.98 33496.23 30394.44 33773.83 36951.83 39587.53 35767.96 30392.07 37566.00 36967.75 37090.23 337
MVS-HIRNet79.01 33875.13 35090.66 27393.82 27881.69 31885.16 38693.75 35154.54 39674.17 34959.15 40257.46 35396.58 27363.74 37494.38 17593.72 255
UnsupCasMVSNet_eth78.90 33976.67 34485.58 34482.81 38674.94 36291.98 35896.31 22984.64 27665.84 38587.71 35551.33 37392.23 37272.89 34456.50 39289.56 351
test_040278.81 34076.33 34586.26 33991.18 32278.44 34895.88 31491.34 38168.55 38570.51 36789.91 34152.65 37194.99 33847.14 39779.78 29885.34 382
pmmvs-eth3d78.71 34176.16 34686.38 33780.25 39281.19 32694.17 33792.13 37277.97 35066.90 38282.31 38055.76 35792.56 36873.63 34062.31 38385.38 380
Anonymous2024052178.63 34276.90 34383.82 35582.82 38572.86 37195.72 32193.57 35573.55 37172.17 36484.79 37349.69 38092.51 36965.29 37174.50 32786.09 378
test20.0378.51 34377.48 33981.62 36583.07 38471.03 37796.11 30792.83 36281.66 32769.31 37189.68 34457.53 35287.29 39358.65 38768.47 36586.53 375
TDRefinement78.01 34475.31 34886.10 34170.06 40373.84 36693.59 34491.58 37974.51 36673.08 35991.04 30949.63 38197.12 25074.88 32859.47 38687.33 370
OpenMVS_ROBcopyleft73.86 2077.99 34575.06 35186.77 33683.81 38377.94 35296.38 29691.53 38067.54 38968.38 37487.13 36543.94 38696.08 30755.03 39181.83 28886.29 377
MDA-MVSNet-bldmvs77.82 34674.75 35287.03 33488.33 35778.52 34796.34 29792.85 36175.57 36148.87 39887.89 35457.32 35492.49 37060.79 38264.80 37890.08 339
KD-MVS_self_test77.47 34775.88 34782.24 36181.59 38768.93 38492.83 35294.02 34877.03 35573.14 35783.39 37655.44 36190.42 38067.95 36157.53 39087.38 368
dmvs_testset77.17 34878.99 33571.71 37687.25 36838.55 41391.44 36581.76 40485.77 25669.49 37095.94 22069.71 28984.37 39652.71 39476.82 31492.21 276
new_pmnet76.02 34973.71 35482.95 35983.88 38272.85 37291.26 36992.26 36970.44 37862.60 38881.37 38347.64 38392.32 37161.85 37972.10 35483.68 388
MIMVSNet175.92 35073.30 35583.81 35681.29 38975.57 35992.26 35692.05 37373.09 37267.48 38086.18 36940.87 39287.64 39255.78 39070.68 36188.21 362
mvsany_test375.85 35174.52 35379.83 36873.53 40060.64 39291.73 36187.87 39583.91 28770.55 36682.52 37831.12 39793.66 35586.66 22462.83 37985.19 384
test_fmvs375.09 35275.19 34974.81 37377.45 39654.08 39995.93 31090.64 38482.51 31573.29 35581.19 38422.29 40286.29 39585.50 23767.89 36884.06 386
PM-MVS74.88 35372.85 35680.98 36778.98 39464.75 38990.81 37385.77 39780.95 33568.23 37682.81 37729.08 39992.84 36376.54 31862.46 38285.36 381
new-patchmatchnet74.80 35472.40 35781.99 36478.36 39572.20 37494.44 33392.36 36777.06 35463.47 38779.98 38951.04 37588.85 38960.53 38454.35 39484.92 385
UnsupCasMVSNet_bld73.85 35570.14 35984.99 34779.44 39375.73 35888.53 37995.24 31470.12 38161.94 38974.81 39541.41 39193.62 35668.65 35951.13 39985.62 379
pmmvs372.86 35669.76 36182.17 36273.86 39974.19 36594.20 33689.01 39264.23 39567.72 37780.91 38741.48 39088.65 39062.40 37854.02 39583.68 388
test_f71.94 35770.82 35875.30 37272.77 40153.28 40091.62 36289.66 39075.44 36264.47 38678.31 39220.48 40389.56 38678.63 30466.02 37583.05 391
N_pmnet70.19 35869.87 36071.12 37888.24 35830.63 41795.85 31728.70 41670.18 38068.73 37386.55 36864.04 32993.81 35453.12 39373.46 34188.94 357
test_method70.10 35968.66 36274.41 37586.30 37655.84 39794.47 33289.82 38835.18 40466.15 38484.75 37430.54 39877.96 40570.40 35460.33 38589.44 352
APD_test168.93 36066.98 36374.77 37480.62 39153.15 40187.97 38085.01 39953.76 39759.26 39187.52 35825.19 40089.95 38256.20 38967.33 37181.19 392
WB-MVS66.44 36166.29 36466.89 38174.84 39744.93 40893.00 34784.09 40271.15 37555.82 39381.63 38263.79 33180.31 40321.85 40750.47 40075.43 394
SSC-MVS65.42 36265.20 36566.06 38273.96 39843.83 40992.08 35783.54 40369.77 38254.73 39480.92 38663.30 33379.92 40420.48 40848.02 40174.44 395
FPMVS61.57 36360.32 36665.34 38360.14 41042.44 41191.02 37289.72 38944.15 39942.63 40280.93 38519.02 40480.59 40242.50 39972.76 34673.00 396
test_vis3_rt61.29 36458.75 36768.92 38067.41 40452.84 40291.18 37159.23 41566.96 39041.96 40358.44 40311.37 41194.72 34774.25 33357.97 38959.20 402
EGC-MVSNET60.70 36555.37 36976.72 37086.35 37571.08 37689.96 37784.44 4010.38 4131.50 41484.09 37537.30 39488.10 39140.85 40273.44 34270.97 398
LCM-MVSNet60.07 36656.37 36871.18 37754.81 41248.67 40582.17 39789.48 39137.95 40249.13 39769.12 39613.75 41081.76 39759.28 38551.63 39883.10 390
PMMVS258.97 36755.07 37070.69 37962.72 40755.37 39885.97 38480.52 40549.48 39845.94 39968.31 39715.73 40880.78 40149.79 39637.12 40475.91 393
testf156.38 36853.73 37164.31 38564.84 40545.11 40680.50 39875.94 41038.87 40042.74 40075.07 39311.26 41281.19 39941.11 40053.27 39666.63 399
APD_test256.38 36853.73 37164.31 38564.84 40545.11 40680.50 39875.94 41038.87 40042.74 40075.07 39311.26 41281.19 39941.11 40053.27 39666.63 399
Gipumacopyleft54.77 37052.22 37462.40 38786.50 37359.37 39450.20 40590.35 38636.52 40341.20 40449.49 40518.33 40681.29 39832.10 40465.34 37646.54 405
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
tmp_tt53.66 37152.86 37356.05 38832.75 41641.97 41273.42 40276.12 40921.91 40939.68 40596.39 20542.59 38965.10 40878.00 30714.92 40961.08 401
ANet_high50.71 37246.17 37564.33 38444.27 41452.30 40376.13 40178.73 40664.95 39327.37 40755.23 40414.61 40967.74 40736.01 40318.23 40772.95 397
PMVScopyleft41.42 2345.67 37342.50 37655.17 38934.28 41532.37 41566.24 40378.71 40730.72 40522.04 41059.59 4014.59 41477.85 40627.49 40558.84 38855.29 403
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive44.00 2241.70 37437.64 37953.90 39049.46 41343.37 41065.09 40466.66 41226.19 40825.77 40948.53 4063.58 41663.35 40926.15 40627.28 40554.97 404
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN41.02 37540.93 37741.29 39161.97 40833.83 41484.00 39465.17 41327.17 40627.56 40646.72 40717.63 40760.41 41019.32 40918.82 40629.61 406
EMVS39.96 37639.88 37840.18 39259.57 41132.12 41684.79 39164.57 41426.27 40726.14 40844.18 41018.73 40559.29 41117.03 41017.67 40829.12 407
cdsmvs_eth3d_5k22.52 37730.03 3800.00 3960.00 4190.00 4210.00 40797.17 1730.00 4140.00 41598.77 8574.35 2520.00 4150.00 4140.00 4130.00 411
testmvs18.81 37823.05 3816.10 3954.48 4172.29 42097.78 2403.00 4183.27 41118.60 41162.71 3991.53 4182.49 41414.26 4121.80 41113.50 409
wuyk23d16.71 37916.73 38316.65 39360.15 40925.22 41841.24 4065.17 4176.56 4105.48 4133.61 4133.64 41522.72 41215.20 4119.52 4101.99 410
test12316.58 38019.47 3827.91 3943.59 4185.37 41994.32 3341.39 4192.49 41213.98 41244.60 4092.91 4172.65 41311.35 4130.57 41215.70 408
ab-mvs-re8.21 38110.94 3840.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 41598.50 1080.00 4190.00 4150.00 4140.00 4130.00 411
pcd_1.5k_mvsjas6.87 3829.16 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 41482.48 1850.00 4150.00 4140.00 4130.00 411
test_blank0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uanet_test0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
DCPMVS0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
sosnet-low-res0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
sosnet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uncertanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
Regformer0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
WAC-MVS79.74 33667.75 362
FOURS199.50 4288.94 17999.55 4497.47 14191.32 11098.12 45
MSC_two_6792asdad99.51 299.61 2498.60 297.69 8899.98 999.55 1299.83 1599.96 10
PC_three_145294.60 3799.41 499.12 4695.50 699.96 2899.84 299.92 399.97 7
No_MVS99.51 299.61 2498.60 297.69 8899.98 999.55 1299.83 1599.96 10
test_one_060199.59 2894.89 3697.64 10393.14 7098.93 2199.45 1493.45 16
eth-test20.00 419
eth-test0.00 419
ZD-MVS99.67 1093.28 7497.61 11087.78 21497.41 6299.16 3690.15 5199.56 10598.35 4199.70 35
RE-MVS-def95.70 6599.22 5987.26 22398.40 19197.21 16789.63 15396.67 8698.97 6285.24 14196.62 7899.31 6899.60 69
IU-MVS99.63 1895.38 2497.73 8095.54 2699.54 399.69 699.81 2399.99 1
OPU-MVS99.49 499.64 1798.51 499.77 1799.19 3095.12 799.97 2199.90 199.92 399.99 1
test_241102_TWO97.72 8194.17 4499.23 1099.54 393.14 2299.98 999.70 499.82 1999.99 1
test_241102_ONE99.63 1895.24 2797.72 8194.16 4699.30 899.49 993.32 1799.98 9
9.1496.87 2799.34 5099.50 5197.49 13889.41 16398.59 3199.43 1689.78 5599.69 9198.69 3099.62 46
save fliter99.34 5093.85 6599.65 3597.63 10795.69 22
test_0728_THIRD93.01 7199.07 1599.46 1094.66 1299.97 2199.25 1899.82 1999.95 15
test_0728_SECOND98.77 899.66 1296.37 1499.72 2397.68 9099.98 999.64 799.82 1999.96 10
test072699.66 1295.20 3299.77 1797.70 8693.95 4999.35 799.54 393.18 20
GSMVS98.84 140
test_part299.54 3695.42 2298.13 43
sam_mvs188.39 6998.84 140
sam_mvs87.08 97
ambc79.60 36972.76 40256.61 39676.20 40092.01 37468.25 37580.23 38823.34 40194.73 34673.78 33960.81 38487.48 367
MTGPAbinary97.45 144
test_post190.74 37541.37 41185.38 13996.36 28883.16 266
test_post46.00 40887.37 8897.11 251
patchmatchnet-post84.86 37288.73 6696.81 264
GG-mvs-BLEND96.98 6896.53 16694.81 4387.20 38197.74 7793.91 13996.40 20396.56 296.94 25995.08 11398.95 8799.20 108
MTMP99.21 8891.09 382
gm-plane-assit94.69 24888.14 19688.22 20097.20 16698.29 18390.79 177
test9_res98.60 3399.87 999.90 22
TEST999.57 3393.17 7699.38 7297.66 9589.57 15798.39 3699.18 3390.88 3799.66 94
test_899.55 3593.07 7999.37 7597.64 10390.18 13798.36 3899.19 3090.94 3499.64 100
agg_prior297.84 5699.87 999.91 21
agg_prior99.54 3692.66 8997.64 10397.98 5299.61 102
TestCases90.52 27896.82 15578.84 34392.17 37077.96 35175.94 33995.50 22755.48 35999.18 13971.15 34887.14 24593.55 256
test_prior492.00 10099.41 68
test_prior299.57 4291.43 10698.12 4598.97 6290.43 4498.33 4299.81 23
test_prior97.01 6399.58 3091.77 10397.57 12199.49 11299.79 36
旧先验298.67 15585.75 25898.96 2098.97 15493.84 137
新几何298.26 205
新几何197.40 4998.92 7792.51 9497.77 7585.52 26096.69 8599.06 5388.08 7799.89 5384.88 24499.62 4699.79 36
旧先验198.97 7392.90 8797.74 7799.15 3991.05 3399.33 6699.60 69
无先验98.52 17397.82 6587.20 22899.90 5087.64 21399.85 30
原ACMM298.69 152
原ACMM196.18 11299.03 7190.08 14797.63 10788.98 17297.00 7498.97 6288.14 7699.71 9088.23 20699.62 4698.76 151
test22298.32 9291.21 11398.08 22597.58 11883.74 28995.87 10099.02 5886.74 10699.64 4299.81 33
testdata299.88 5484.16 254
segment_acmp90.56 42
testdata95.26 15198.20 9687.28 22097.60 11285.21 26498.48 3499.15 3988.15 7598.72 16490.29 18299.45 5999.78 38
testdata197.89 23392.43 83
test1297.83 3599.33 5394.45 5197.55 12397.56 5888.60 6799.50 11199.71 3499.55 74
plane_prior793.84 27585.73 261
plane_prior693.92 27286.02 25472.92 264
plane_prior596.30 23097.75 22193.46 14686.17 25492.67 264
plane_prior496.52 199
plane_prior385.91 25693.65 6286.99 227
plane_prior299.02 11993.38 67
plane_prior193.90 274
plane_prior86.07 25299.14 10493.81 5986.26 253
n20.00 420
nn0.00 420
door-mid84.90 400
lessismore_v085.08 34685.59 37769.28 38390.56 38567.68 37890.21 33854.21 36795.46 32973.88 33662.64 38190.50 332
LGP-MVS_train90.06 28993.35 28980.95 33095.94 26087.73 21883.17 26296.11 21466.28 31797.77 21590.19 18385.19 26191.46 300
test1197.68 90
door85.30 398
HQP5-MVS86.39 237
HQP-NCC93.95 26899.16 9693.92 5187.57 220
ACMP_Plane93.95 26899.16 9693.92 5187.57 220
BP-MVS93.82 139
HQP4-MVS87.57 22097.77 21592.72 262
HQP3-MVS96.37 22686.29 251
HQP2-MVS73.34 259
NP-MVS93.94 27186.22 24496.67 197
MDTV_nov1_ep13_2view91.17 11691.38 36787.45 22593.08 15286.67 10887.02 21698.95 131
MDTV_nov1_ep1390.47 19296.14 18888.55 19091.34 36897.51 13389.58 15692.24 16190.50 33186.99 10197.61 23077.64 30992.34 199
ACMMP++_ref82.64 285
ACMMP++83.83 273
Test By Simon83.62 159
ITE_SJBPF87.93 32492.26 30276.44 35793.47 35787.67 22179.95 31195.49 22956.50 35697.38 24375.24 32582.33 28789.98 344
DeepMVS_CXcopyleft76.08 37190.74 32851.65 40490.84 38386.47 24857.89 39287.98 35335.88 39692.60 36665.77 37065.06 37783.97 387