This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
CNVR-MVS98.46 198.38 198.72 899.80 496.19 1499.80 797.99 4497.05 399.41 299.59 292.89 24100.00 198.99 1799.90 799.96 10
DVP-MVS++98.18 298.09 598.44 1599.61 2795.38 2199.55 3497.68 8493.01 5199.23 799.45 1695.12 799.98 1099.25 1499.92 399.97 7
SED-MVS98.18 298.10 498.41 1799.63 2195.24 2499.77 997.72 7594.17 2599.30 599.54 393.32 1899.98 1099.70 399.81 2399.99 1
MCST-MVS98.18 297.95 898.86 599.85 396.60 999.70 1797.98 4597.18 295.96 9099.33 2392.62 25100.00 198.99 1799.93 199.98 6
NCCC98.12 598.11 398.13 2399.76 694.46 5099.81 597.88 5096.54 598.84 1799.46 1192.55 2699.98 1098.25 3899.93 199.94 18
DPE-MVScopyleft98.11 698.00 698.44 1599.50 4795.39 2099.29 7197.72 7594.50 2198.64 2399.54 393.32 1899.97 2399.58 899.90 799.95 15
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
DVP-MVScopyleft98.07 798.00 698.29 1899.66 1595.20 2999.72 1497.47 13393.95 3099.07 1099.46 1193.18 2199.97 2399.64 699.82 1999.69 64
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
DPM-MVS97.86 897.25 1899.68 198.25 10799.10 199.76 1297.78 6496.61 498.15 3499.53 793.62 16100.00 191.79 14599.80 2799.94 18
MSP-MVS97.77 998.18 296.53 10199.54 4090.14 14499.41 5897.70 8095.46 1798.60 2499.19 3495.71 499.49 10898.15 4099.85 1399.95 15
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
HPM-MVS++copyleft97.72 1097.59 1098.14 2299.53 4594.76 4399.19 7597.75 6795.66 1398.21 3399.29 2491.10 3199.99 597.68 4699.87 999.68 65
ETH3 D test640097.67 1197.33 1798.69 999.69 996.43 1199.63 2597.73 7391.05 9898.66 2299.53 790.59 4199.71 7799.32 1199.80 2799.91 22
APDe-MVS97.53 1297.47 1197.70 3999.58 3393.63 6699.56 3397.52 12293.59 4498.01 4399.12 4890.80 3899.55 9899.26 1399.79 2999.93 21
xxxxxxxxxxxxxcwj97.51 1397.42 1497.78 3799.34 5893.85 6399.65 2395.45 28095.69 1198.70 2099.42 1990.42 4599.72 7598.47 2999.65 4499.77 48
SD-MVS97.51 1397.40 1597.81 3599.01 8493.79 6599.33 6997.38 14793.73 4198.83 1899.02 6090.87 3699.88 4898.69 2199.74 3299.77 48
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MSLP-MVS++97.50 1597.45 1397.63 4199.65 1993.21 7599.70 1798.13 3794.61 1997.78 5099.46 1189.85 5399.81 6697.97 4299.91 699.88 28
TSAR-MVS + MP.97.44 1697.46 1297.39 5299.12 7793.49 7198.52 15897.50 12894.46 2298.99 1298.64 9891.58 2899.08 14398.49 2899.83 1599.60 77
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
ETH3D-3000-0.197.29 1797.01 2398.12 2599.18 7494.97 3399.47 4497.52 12289.85 13198.79 1999.46 1190.41 4799.69 7998.78 1999.67 4299.70 61
SteuartSystems-ACMMP97.25 1897.34 1697.01 6597.38 13291.46 10999.75 1397.66 8794.14 2998.13 3599.26 2692.16 2799.66 8497.91 4499.64 4799.90 24
Skip Steuart: Steuart Systems R&D Blog.
SMA-MVScopyleft97.24 1996.99 2498.00 3099.30 6594.20 5799.16 8097.65 9289.55 14499.22 999.52 990.34 4999.99 598.32 3699.83 1599.82 34
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MG-MVS97.24 1996.83 3098.47 1499.79 595.71 1799.07 9699.06 994.45 2396.42 8398.70 9588.81 6699.74 7495.35 9499.86 1299.97 7
testtj97.23 2197.05 2197.75 3899.75 793.34 7399.16 8097.74 6991.28 9598.40 2999.29 2489.95 5299.98 1098.20 3999.70 3999.94 18
SF-MVS97.22 2296.92 2598.12 2599.11 7894.88 3699.44 5297.45 13689.60 14098.70 2099.42 1990.42 4599.72 7598.47 2999.65 4499.77 48
train_agg97.20 2397.08 2097.57 4599.57 3793.17 7699.38 6197.66 8790.18 12298.39 3099.18 3790.94 3399.66 8498.58 2699.85 1399.88 28
DeepC-MVS_fast93.52 297.16 2496.84 2998.13 2399.61 2794.45 5198.85 11997.64 9396.51 795.88 9399.39 2187.35 9699.99 596.61 6599.69 4199.96 10
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
agg_prior197.12 2597.03 2297.38 5399.54 4092.66 8899.35 6697.64 9390.38 11697.98 4499.17 3990.84 3799.61 9398.57 2799.78 3199.87 31
DELS-MVS97.12 2596.60 3698.68 1098.03 11596.57 1099.84 397.84 5496.36 895.20 10798.24 12188.17 7699.83 6196.11 7799.60 5699.64 71
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
test_prior397.07 2797.09 1997.01 6599.58 3391.77 10099.57 3197.57 11291.43 9098.12 3798.97 6690.43 4399.49 10898.33 3499.81 2399.79 38
CANet97.00 2896.49 3898.55 1198.86 9396.10 1599.83 497.52 12295.90 997.21 6098.90 7982.66 17599.93 3998.71 2098.80 9899.63 73
Regformer-196.97 2996.80 3197.47 4799.46 5293.11 7898.89 11697.94 4692.89 5796.90 6599.02 6089.78 5499.53 10197.06 5499.26 8099.75 52
TSAR-MVS + GP.96.95 3096.91 2697.07 6298.88 9191.62 10599.58 3096.54 20495.09 1896.84 7298.63 10091.16 2999.77 7199.04 1696.42 14099.81 35
APD-MVScopyleft96.95 3096.72 3397.63 4199.51 4693.58 6799.16 8097.44 14090.08 12798.59 2599.07 5489.06 6299.42 11997.92 4399.66 4399.88 28
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ETH3D cwj APD-0.1696.94 3296.58 3798.01 2998.62 10094.73 4599.13 9297.38 14788.44 17798.53 2799.39 2189.66 5899.69 7998.43 3199.61 5599.61 76
Regformer-296.94 3296.78 3297.42 4999.46 5292.97 8598.89 11697.93 4792.86 5996.88 6699.02 6089.74 5699.53 10197.03 5599.26 8099.75 52
PS-MVSNAJ96.87 3496.40 4098.29 1897.35 13397.29 599.03 10197.11 17295.83 1098.97 1399.14 4582.48 17899.60 9598.60 2399.08 8498.00 185
EPNet96.82 3596.68 3597.25 5898.65 9893.10 7999.48 4298.76 1396.54 597.84 4998.22 12287.49 8999.66 8495.35 9497.78 11999.00 125
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CHOSEN 280x42096.80 3696.85 2896.66 9497.85 11894.42 5394.76 30798.36 2492.50 6395.62 10197.52 14597.92 197.38 22398.31 3798.80 9898.20 181
MVS_111021_HR96.69 3796.69 3496.72 9098.58 10291.00 12699.14 8999.45 193.86 3695.15 10898.73 9088.48 7199.76 7297.23 5399.56 5999.40 93
xiu_mvs_v2_base96.66 3896.17 4898.11 2797.11 14396.96 699.01 10497.04 17995.51 1698.86 1699.11 5382.19 18499.36 12598.59 2598.14 11398.00 185
PHI-MVS96.65 3996.46 3997.21 5999.34 5891.77 10099.70 1798.05 4086.48 22698.05 4099.20 3389.33 6099.96 3098.38 3299.62 5199.90 24
ACMMP_NAP96.59 4096.18 4697.81 3598.82 9493.55 6898.88 11897.59 10790.66 10797.98 4499.14 4586.59 112100.00 196.47 6999.46 6499.89 27
CDPH-MVS96.56 4196.18 4697.70 3999.59 3193.92 6199.13 9297.44 14089.02 15697.90 4899.22 3188.90 6599.49 10894.63 11099.79 2999.68 65
DeepPCF-MVS93.56 196.55 4297.84 992.68 21798.71 9778.11 33199.70 1797.71 7998.18 197.36 5899.76 190.37 4899.94 3799.27 1299.54 6199.99 1
Regformer-396.50 4396.36 4296.91 7699.34 5891.72 10398.71 13197.90 4992.48 6496.00 8798.95 7388.60 6899.52 10496.44 7098.83 9599.49 87
#test#96.48 4496.34 4396.90 7799.69 990.96 12799.53 3997.81 5990.94 10296.88 6699.05 5787.57 8699.96 3095.87 8199.72 3499.78 42
XVS96.47 4596.37 4196.77 8499.62 2590.66 13599.43 5597.58 10992.41 6996.86 6998.96 7187.37 9299.87 5195.65 8599.43 6899.78 42
Regformer-496.45 4696.33 4496.81 8399.34 5891.44 11098.71 13197.88 5092.43 6595.97 8998.95 7388.42 7299.51 10596.40 7198.83 9599.49 87
HFP-MVS96.42 4796.26 4596.90 7799.69 990.96 12799.47 4497.81 5990.54 11296.88 6699.05 5787.57 8699.96 3095.65 8599.72 3499.78 42
PAPR96.35 4895.82 6097.94 3299.63 2194.19 5899.42 5797.55 11592.43 6593.82 13199.12 4887.30 9799.91 4294.02 11799.06 8599.74 55
PAPM96.35 4895.94 5697.58 4394.10 24495.25 2398.93 11198.17 3294.26 2493.94 12798.72 9289.68 5797.88 18896.36 7299.29 7899.62 75
lupinMVS96.32 5095.94 5697.44 4895.05 22294.87 3799.86 296.50 20693.82 3998.04 4198.77 8685.52 13098.09 17596.98 5998.97 8999.37 94
region2R96.30 5196.17 4896.70 9199.70 890.31 14099.46 4997.66 8790.55 11197.07 6399.07 5486.85 10499.97 2395.43 9299.74 3299.81 35
ACMMPR96.28 5296.14 5296.73 8899.68 1290.47 13899.47 4497.80 6190.54 11296.83 7499.03 5986.51 11699.95 3495.65 8599.72 3499.75 52
CP-MVS96.22 5396.15 5196.42 10699.67 1389.62 16299.70 1797.61 10190.07 12896.00 8799.16 4187.43 9099.92 4096.03 7999.72 3499.70 61
zzz-MVS96.21 5495.96 5596.96 7399.29 6691.19 11598.69 13697.45 13692.58 6094.39 11999.24 2986.43 11899.99 596.22 7399.40 7299.71 59
SR-MVS96.13 5596.16 5096.07 11899.42 5489.04 16998.59 15397.33 15290.44 11496.84 7299.12 4886.75 10699.41 12197.47 4899.44 6799.76 51
ZNCC-MVS96.09 5695.81 6296.95 7599.42 5491.19 11599.55 3497.53 11989.72 13595.86 9598.94 7886.59 11299.97 2395.13 9899.56 5999.68 65
MTAPA96.09 5695.80 6496.96 7399.29 6691.19 11597.23 24797.45 13692.58 6094.39 11999.24 2986.43 11899.99 596.22 7399.40 7299.71 59
ETV-MVS96.00 5896.00 5496.00 12096.56 15991.05 12499.63 2596.61 19593.26 4997.39 5798.30 11886.62 11198.13 17298.07 4197.57 12198.82 145
MP-MVScopyleft96.00 5895.82 6096.54 10099.47 5190.13 14699.36 6597.41 14490.64 11095.49 10298.95 7385.51 13299.98 1096.00 8099.59 5899.52 83
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
GST-MVS95.97 6095.66 6796.90 7799.49 5091.22 11399.45 5197.48 13189.69 13695.89 9298.72 9286.37 12099.95 3494.62 11199.22 8399.52 83
WTY-MVS95.97 6095.11 7998.54 1297.62 12496.65 899.44 5298.74 1492.25 7295.21 10698.46 11386.56 11499.46 11595.00 10292.69 18099.50 86
PVSNet_Blended95.94 6295.66 6796.75 8698.77 9591.61 10699.88 198.04 4193.64 4394.21 12297.76 13383.50 15599.87 5197.41 4997.75 12098.79 148
test117295.92 6396.07 5395.46 13799.42 5487.24 21798.51 16197.24 15690.29 11996.56 8299.12 4886.73 10899.36 12597.33 5199.42 7199.78 42
mPP-MVS95.90 6495.75 6596.38 10899.58 3389.41 16699.26 7297.41 14490.66 10794.82 11298.95 7386.15 12399.98 1095.24 9799.64 4799.74 55
CS-MVS95.86 6595.81 6295.98 12295.62 19591.26 11299.80 796.12 23192.15 7697.93 4798.45 11485.88 12897.55 21497.56 4798.80 9899.14 114
PGM-MVS95.85 6695.65 6996.45 10499.50 4789.77 15898.22 19198.90 1289.19 15096.74 7698.95 7385.91 12799.92 4093.94 11899.46 6499.66 69
DP-MVS Recon95.85 6695.15 7897.95 3199.87 294.38 5499.60 2897.48 13186.58 22394.42 11899.13 4787.36 9599.98 1093.64 12598.33 11199.48 89
MP-MVS-pluss95.80 6895.30 7297.29 5598.95 8892.66 8898.59 15397.14 16888.95 15993.12 13899.25 2785.62 12999.94 3796.56 6799.48 6399.28 103
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MVS_111021_LR95.78 6995.94 5695.28 14498.19 11187.69 19898.80 12499.26 793.39 4695.04 11098.69 9684.09 15099.76 7296.96 6099.06 8598.38 170
alignmvs95.77 7095.00 8198.06 2897.35 13395.68 1899.71 1697.50 12891.50 8796.16 8698.61 10186.28 12199.00 14596.19 7591.74 19799.51 85
EI-MVSNet-Vis-set95.76 7195.63 7196.17 11599.14 7690.33 13998.49 16597.82 5691.92 7894.75 11398.88 8187.06 10099.48 11395.40 9397.17 13298.70 155
SR-MVS-dyc-post95.75 7295.86 5995.41 14099.22 7187.26 21598.40 17697.21 16089.63 13896.67 7998.97 6686.73 10899.36 12596.62 6399.31 7699.60 77
APD-MVS_3200maxsize95.64 7395.65 6995.62 13299.24 7087.80 19798.42 17197.22 15988.93 16196.64 8198.98 6585.49 13399.36 12596.68 6299.27 7999.70 61
EI-MVSNet-UG-set95.43 7495.29 7395.86 12699.07 8289.87 15598.43 17097.80 6191.78 8194.11 12498.77 8686.25 12299.48 11394.95 10496.45 13998.22 179
PAPM_NR95.43 7495.05 8096.57 9999.42 5490.14 14498.58 15597.51 12590.65 10992.44 14698.90 7987.77 8499.90 4490.88 15499.32 7599.68 65
HPM-MVScopyleft95.41 7695.22 7695.99 12199.29 6689.14 16799.17 7997.09 17687.28 21095.40 10398.48 11084.93 14199.38 12395.64 8999.65 4499.47 90
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
jason95.40 7794.86 8297.03 6492.91 27594.23 5699.70 1796.30 21793.56 4596.73 7798.52 10581.46 19397.91 18596.08 7898.47 10998.96 129
jason: jason.
HY-MVS88.56 795.29 7894.23 9298.48 1397.72 12096.41 1294.03 31598.74 1492.42 6895.65 10094.76 21586.52 11599.49 10895.29 9692.97 17699.53 82
test_yl95.27 7994.60 8597.28 5698.53 10392.98 8399.05 9998.70 1786.76 22094.65 11697.74 13587.78 8299.44 11695.57 9092.61 18199.44 91
DCV-MVSNet95.27 7994.60 8597.28 5698.53 10392.98 8399.05 9998.70 1786.76 22094.65 11697.74 13587.78 8299.44 11695.57 9092.61 18199.44 91
CS-MVS-test95.20 8195.27 7494.98 15495.67 19388.17 18899.62 2795.84 25791.52 8697.42 5598.30 11885.07 13997.51 21595.81 8298.20 11299.26 105
112195.19 8294.45 8897.42 4998.88 9192.58 9396.22 28497.75 6785.50 23896.86 6999.01 6488.59 7099.90 4487.64 19499.60 5699.79 38
EIA-MVS95.11 8395.27 7494.64 16696.34 16886.51 22699.59 2996.62 19492.51 6294.08 12598.64 9886.05 12498.24 16995.07 10098.50 10899.18 112
DROMVSNet95.09 8495.17 7794.84 15895.42 20288.17 18899.48 4295.92 24491.47 8897.34 5998.36 11582.77 17197.41 22297.24 5298.58 10598.94 134
VNet95.08 8594.26 9197.55 4698.07 11493.88 6298.68 13898.73 1690.33 11897.16 6297.43 14979.19 20799.53 10196.91 6191.85 19599.24 107
canonicalmvs95.02 8693.96 10498.20 2097.53 13095.92 1698.71 13196.19 22791.78 8195.86 9598.49 10979.53 20499.03 14496.12 7691.42 20399.66 69
HPM-MVS_fast94.89 8794.62 8495.70 13199.11 7888.44 18699.14 8997.11 17285.82 23395.69 9998.47 11183.46 15799.32 13193.16 13399.63 5099.35 95
CSCG94.87 8894.71 8395.36 14199.54 4086.49 22799.34 6898.15 3582.71 28490.15 18199.25 2789.48 5999.86 5694.97 10398.82 9799.72 58
sss94.85 8993.94 10697.58 4396.43 16394.09 6098.93 11199.16 889.50 14595.27 10597.85 12881.50 19199.65 8892.79 13994.02 16898.99 126
test250694.80 9094.21 9396.58 9796.41 16492.18 9898.01 21198.96 1090.82 10593.46 13497.28 15285.92 12598.45 16189.82 16697.19 13099.12 117
API-MVS94.78 9194.18 9696.59 9699.21 7390.06 15198.80 12497.78 6483.59 26993.85 12999.21 3283.79 15299.97 2392.37 14199.00 8899.74 55
thisisatest051594.75 9294.19 9496.43 10596.13 18392.64 9299.47 4497.60 10387.55 20693.17 13797.59 14394.71 1198.42 16288.28 18693.20 17398.24 178
xiu_mvs_v1_base_debu94.73 9393.98 10196.99 6895.19 20995.24 2498.62 14796.50 20692.99 5397.52 5298.83 8372.37 25499.15 13797.03 5596.74 13596.58 215
xiu_mvs_v1_base94.73 9393.98 10196.99 6895.19 20995.24 2498.62 14796.50 20692.99 5397.52 5298.83 8372.37 25499.15 13797.03 5596.74 13596.58 215
xiu_mvs_v1_base_debi94.73 9393.98 10196.99 6895.19 20995.24 2498.62 14796.50 20692.99 5397.52 5298.83 8372.37 25499.15 13797.03 5596.74 13596.58 215
MVSFormer94.71 9694.08 9996.61 9595.05 22294.87 3797.77 22496.17 22886.84 21798.04 4198.52 10585.52 13095.99 28689.83 16498.97 8998.96 129
PVSNet_Blended_VisFu94.67 9794.11 9796.34 11097.14 14091.10 12199.32 7097.43 14292.10 7791.53 15796.38 19283.29 16199.68 8293.42 13096.37 14198.25 177
ACMMPcopyleft94.67 9794.30 9095.79 12899.25 6988.13 19198.41 17398.67 2090.38 11691.43 15898.72 9282.22 18399.95 3493.83 12295.76 15499.29 101
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
abl_694.63 9994.48 8795.09 14898.61 10186.96 22098.06 20996.97 18589.31 14895.86 9598.56 10379.82 20099.64 9094.53 11398.65 10498.66 159
CPTT-MVS94.60 10094.43 8995.09 14899.66 1586.85 22299.44 5297.47 13383.22 27494.34 12198.96 7182.50 17699.55 9894.81 10599.50 6298.88 138
diffmvs94.59 10194.19 9495.81 12795.54 19890.69 13398.70 13595.68 26691.61 8395.96 9097.81 13080.11 19998.06 17996.52 6895.76 15498.67 156
DeepC-MVS91.02 494.56 10293.92 10796.46 10397.16 13990.76 13198.39 17997.11 17293.92 3288.66 19498.33 11678.14 21599.85 5895.02 10198.57 10698.78 150
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MAR-MVS94.43 10394.09 9895.45 13899.10 8087.47 20598.39 17997.79 6388.37 18094.02 12699.17 3978.64 21399.91 4292.48 14098.85 9498.96 129
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
DWT-MVSNet_test94.36 10493.95 10595.62 13296.99 14889.47 16496.62 27197.38 14790.96 10193.07 14097.27 15493.73 1598.09 17585.86 21493.65 17199.29 101
CHOSEN 1792x268894.35 10593.82 10995.95 12497.40 13188.74 18098.41 17398.27 2692.18 7491.43 15896.40 18978.88 20899.81 6693.59 12697.81 11699.30 100
CANet_DTU94.31 10693.35 11597.20 6097.03 14794.71 4698.62 14795.54 27595.61 1497.21 6098.47 11171.88 25999.84 5988.38 18597.46 12697.04 209
PLCcopyleft91.07 394.23 10794.01 10094.87 15699.17 7587.49 20499.25 7396.55 20288.43 17891.26 16298.21 12485.92 12599.86 5689.77 16897.57 12197.24 202
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
114514_t94.06 10893.05 12297.06 6399.08 8192.26 9798.97 10897.01 18382.58 28692.57 14498.22 12280.68 19799.30 13289.34 17599.02 8799.63 73
baseline294.04 10993.80 11094.74 16293.07 27390.25 14198.12 20098.16 3489.86 13086.53 21596.95 17295.56 598.05 18091.44 14794.53 16395.93 224
thisisatest053094.00 11093.52 11395.43 13995.76 18990.02 15398.99 10697.60 10386.58 22391.74 15197.36 15194.78 1098.34 16486.37 20692.48 18497.94 187
casdiffmvs93.98 11193.43 11495.61 13495.07 22189.86 15698.80 12495.84 25790.98 10092.74 14397.66 14079.71 20198.10 17494.72 10895.37 15898.87 140
MVS93.92 11292.28 13698.83 695.69 19196.82 796.22 28498.17 3284.89 25084.34 22998.61 10179.32 20699.83 6193.88 12099.43 6899.86 32
baseline93.91 11393.30 11695.72 13095.10 21990.07 14897.48 23695.91 24991.03 9993.54 13397.68 13879.58 20298.02 18294.27 11695.14 15999.08 121
OMC-MVS93.90 11493.62 11294.73 16398.63 9987.00 21998.04 21096.56 20192.19 7392.46 14598.73 9079.49 20599.14 14092.16 14394.34 16698.03 184
Effi-MVS+93.87 11593.15 12096.02 11995.79 18790.76 13196.70 26995.78 25986.98 21495.71 9897.17 16379.58 20298.01 18394.57 11296.09 14899.31 99
TESTMET0.1,193.82 11693.26 11895.49 13695.21 20890.25 14199.15 8697.54 11889.18 15191.79 15094.87 21389.13 6197.63 20786.21 20796.29 14598.60 160
AdaColmapbinary93.82 11693.06 12196.10 11799.88 189.07 16898.33 18397.55 11586.81 21990.39 17898.65 9775.09 22799.98 1093.32 13197.53 12499.26 105
EPP-MVSNet93.75 11893.67 11194.01 18895.86 18685.70 25298.67 14097.66 8784.46 25591.36 16197.18 16291.16 2997.79 19492.93 13693.75 16998.53 162
thres20093.69 11992.59 13296.97 7297.76 11994.74 4499.35 6699.36 289.23 14991.21 16496.97 17183.42 15898.77 15085.08 21890.96 20697.39 198
PVSNet87.13 1293.69 11992.83 12796.28 11197.99 11690.22 14399.38 6198.93 1191.42 9293.66 13297.68 13871.29 26699.64 9087.94 19197.20 12998.98 127
HyFIR lowres test93.68 12193.29 11794.87 15697.57 12888.04 19398.18 19598.47 2287.57 20591.24 16395.05 21185.49 13397.46 21893.22 13292.82 17799.10 119
MVS_Test93.67 12292.67 13096.69 9296.72 15592.66 8897.22 24896.03 23487.69 20395.12 10994.03 22381.55 19098.28 16889.17 17996.46 13899.14 114
CNLPA93.64 12392.74 12896.36 10998.96 8790.01 15499.19 7595.89 25286.22 22989.40 18998.85 8280.66 19899.84 5988.57 18396.92 13499.24 107
PMMVS93.62 12493.90 10892.79 21296.79 15381.40 30598.85 11996.81 18991.25 9696.82 7598.15 12677.02 22198.13 17293.15 13496.30 14498.83 144
CDS-MVSNet93.47 12593.04 12394.76 16094.75 23389.45 16598.82 12297.03 18187.91 19490.97 16696.48 18789.06 6296.36 26589.50 17092.81 17998.49 164
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
131493.44 12691.98 14597.84 3395.24 20694.38 5496.22 28497.92 4890.18 12282.28 25497.71 13777.63 21899.80 6891.94 14498.67 10399.34 97
tfpn200view993.43 12792.27 13796.90 7797.68 12294.84 3999.18 7799.36 288.45 17490.79 16896.90 17483.31 15998.75 15284.11 23390.69 20897.12 204
3Dnovator+87.72 893.43 12791.84 14898.17 2195.73 19095.08 3298.92 11397.04 17991.42 9281.48 27297.60 14274.60 23199.79 6990.84 15598.97 8999.64 71
thres40093.39 12992.27 13796.73 8897.68 12294.84 3999.18 7799.36 288.45 17490.79 16896.90 17483.31 15998.75 15284.11 23390.69 20896.61 213
PVSNet_BlendedMVS93.36 13093.20 11993.84 19398.77 9591.61 10699.47 4498.04 4191.44 8994.21 12292.63 25783.50 15599.87 5197.41 4983.37 25190.05 317
thres100view90093.34 13192.15 14196.90 7797.62 12494.84 3999.06 9899.36 287.96 19290.47 17696.78 17983.29 16198.75 15284.11 23390.69 20897.12 204
tttt051793.30 13293.01 12494.17 18195.57 19686.47 22898.51 16197.60 10385.99 23190.55 17397.19 16194.80 998.31 16585.06 21991.86 19497.74 189
UA-Net93.30 13292.62 13195.34 14296.27 17088.53 18595.88 29496.97 18590.90 10395.37 10497.07 16782.38 18199.10 14283.91 23794.86 16298.38 170
test-mter93.27 13492.89 12694.40 17394.94 22787.27 21399.15 8697.25 15488.95 15991.57 15494.04 22188.03 8097.58 21085.94 21196.13 14698.36 173
Vis-MVSNet (Re-imp)93.26 13593.00 12594.06 18596.14 18086.71 22598.68 13896.70 19288.30 18289.71 18897.64 14185.43 13696.39 26388.06 19096.32 14299.08 121
thres600view793.18 13692.00 14496.75 8697.62 12494.92 3499.07 9699.36 287.96 19290.47 17696.78 17983.29 16198.71 15682.93 24790.47 21296.61 213
3Dnovator87.35 1193.17 13791.77 15097.37 5495.41 20393.07 8098.82 12297.85 5391.53 8582.56 24897.58 14471.97 25899.82 6491.01 15299.23 8299.22 110
test-LLR93.11 13892.68 12994.40 17394.94 22787.27 21399.15 8697.25 15490.21 12091.57 15494.04 22184.89 14297.58 21085.94 21196.13 14698.36 173
IS-MVSNet93.00 13992.51 13394.49 17096.14 18087.36 20998.31 18695.70 26488.58 16990.17 18097.50 14683.02 16797.22 22687.06 19796.07 15098.90 137
CostFormer92.89 14092.48 13494.12 18394.99 22485.89 24792.89 32497.00 18486.98 21495.00 11190.78 28690.05 5197.51 21592.92 13791.73 19898.96 129
tpmrst92.78 14192.16 14094.65 16596.27 17087.45 20691.83 33297.10 17589.10 15494.68 11590.69 29088.22 7597.73 20389.78 16791.80 19698.77 151
MVSTER92.71 14292.32 13593.86 19297.29 13592.95 8699.01 10496.59 19790.09 12685.51 22094.00 22594.61 1496.56 25190.77 15783.03 25392.08 254
1112_ss92.71 14291.55 15496.20 11295.56 19791.12 11998.48 16694.69 30988.29 18386.89 21198.50 10787.02 10198.66 15784.75 22389.77 21598.81 146
Vis-MVSNetpermissive92.64 14491.85 14795.03 15295.12 21588.23 18798.48 16696.81 18991.61 8392.16 14997.22 15971.58 26498.00 18485.85 21597.81 11698.88 138
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
TAMVS92.62 14592.09 14394.20 18094.10 24487.68 19998.41 17396.97 18587.53 20789.74 18696.04 19884.77 14596.49 25788.97 18292.31 18798.42 166
baseline192.61 14691.28 15896.58 9797.05 14694.63 4897.72 22896.20 22589.82 13288.56 19596.85 17786.85 10497.82 19288.42 18480.10 26897.30 200
EPMVS92.59 14791.59 15395.59 13597.22 13790.03 15291.78 33398.04 4190.42 11591.66 15390.65 29386.49 11797.46 21881.78 25896.31 14399.28 103
ET-MVSNet_ETH3D92.56 14891.45 15695.88 12596.39 16694.13 5999.46 4996.97 18592.18 7466.94 35198.29 12094.65 1394.28 32994.34 11583.82 24799.24 107
mvs_anonymous92.50 14991.65 15295.06 15096.60 15889.64 16197.06 25396.44 21086.64 22284.14 23093.93 22782.49 17796.17 28091.47 14696.08 14999.35 95
h-mvs3392.47 15091.95 14694.05 18697.13 14185.01 26598.36 18198.08 3893.85 3796.27 8496.73 18183.19 16499.43 11895.81 8268.09 33897.70 190
BH-w/o92.32 15191.79 14993.91 19196.85 15086.18 23899.11 9495.74 26288.13 18784.81 22497.00 17077.26 22097.91 18589.16 18098.03 11497.64 191
ECVR-MVScopyleft92.29 15291.33 15795.15 14696.41 16487.84 19698.10 20494.84 30390.82 10591.42 16097.28 15265.61 30198.49 16090.33 16097.19 13099.12 117
EPNet_dtu92.28 15392.15 14192.70 21697.29 13584.84 26798.64 14497.82 5692.91 5693.02 14197.02 16985.48 13595.70 30172.25 32194.89 16197.55 196
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Test_1112_low_res92.27 15490.97 16496.18 11395.53 19991.10 12198.47 16894.66 31088.28 18486.83 21393.50 24187.00 10298.65 15884.69 22489.74 21698.80 147
LFMVS92.23 15590.84 16896.42 10698.24 10891.08 12398.24 19096.22 22483.39 27294.74 11498.31 11761.12 31998.85 14794.45 11492.82 17799.32 98
test111192.12 15691.19 16094.94 15596.15 17887.36 20998.12 20094.84 30390.85 10490.97 16697.26 15565.60 30298.37 16389.74 16997.14 13399.07 123
IB-MVS89.43 692.12 15690.83 17095.98 12295.40 20490.78 13099.81 598.06 3991.23 9785.63 21993.66 23590.63 4098.78 14991.22 14971.85 32898.36 173
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
F-COLMAP92.07 15891.75 15193.02 20798.16 11282.89 29198.79 12895.97 23686.54 22587.92 19997.80 13178.69 21299.65 8885.97 20995.93 15296.53 218
PatchmatchNetpermissive92.05 15991.04 16395.06 15096.17 17789.04 16991.26 33797.26 15389.56 14390.64 17290.56 29988.35 7497.11 22979.53 27096.07 15099.03 124
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
RRT_MVS91.95 16091.09 16194.53 16996.71 15795.12 3198.64 14496.23 22389.04 15585.24 22295.06 21087.71 8596.43 26189.10 18182.06 26092.05 256
UGNet91.91 16190.85 16795.10 14797.06 14588.69 18198.01 21198.24 2892.41 6992.39 14793.61 23660.52 32099.68 8288.14 18897.25 12896.92 211
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
tpm291.77 16291.09 16193.82 19494.83 23185.56 25592.51 32997.16 16784.00 26193.83 13090.66 29287.54 8897.17 22787.73 19391.55 20198.72 153
Fast-Effi-MVS+91.72 16390.79 17194.49 17095.89 18587.40 20899.54 3895.70 26485.01 24889.28 19195.68 20277.75 21797.57 21383.22 24295.06 16098.51 163
hse-mvs291.67 16491.51 15592.15 22696.22 17282.61 29797.74 22797.53 11993.85 3796.27 8496.15 19483.19 16497.44 22095.81 8266.86 34396.40 220
mvs-test191.57 16592.20 13989.70 28095.15 21374.34 34199.51 4095.40 28491.92 7891.02 16597.25 15674.27 23898.08 17889.45 17195.83 15396.67 212
HQP-MVS91.50 16691.23 15992.29 22193.95 24886.39 23199.16 8096.37 21393.92 3287.57 20196.67 18373.34 24597.77 19693.82 12386.29 22692.72 236
PatchMatch-RL91.47 16790.54 17594.26 17898.20 10986.36 23396.94 25797.14 16887.75 19988.98 19295.75 20171.80 26199.40 12280.92 26397.39 12797.02 210
BH-untuned91.46 16890.84 16893.33 20296.51 16284.83 26898.84 12195.50 27786.44 22883.50 23596.70 18275.49 22697.77 19686.78 20497.81 11697.40 197
QAPM91.41 16989.49 18697.17 6195.66 19493.42 7298.60 15197.51 12580.92 30881.39 27397.41 15072.89 25199.87 5182.33 25298.68 10298.21 180
HQP_MVS91.26 17090.95 16592.16 22593.84 25586.07 24399.02 10296.30 21793.38 4786.99 20896.52 18572.92 24997.75 20193.46 12886.17 22992.67 238
PCF-MVS89.78 591.26 17089.63 18396.16 11695.44 20191.58 10895.29 30396.10 23285.07 24582.75 24497.45 14878.28 21499.78 7080.60 26695.65 15797.12 204
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
BH-RMVSNet91.25 17289.99 18095.03 15296.75 15488.55 18398.65 14294.95 30087.74 20087.74 20097.80 13168.27 28198.14 17180.53 26797.49 12598.41 167
VDD-MVS91.24 17390.18 17994.45 17297.08 14485.84 25098.40 17696.10 23286.99 21293.36 13598.16 12554.27 34099.20 13496.59 6690.63 21198.31 176
CLD-MVS91.06 17490.71 17292.10 22794.05 24786.10 24199.55 3496.29 22094.16 2784.70 22597.17 16369.62 27397.82 19294.74 10786.08 23192.39 241
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
ab-mvs91.05 17589.17 19296.69 9295.96 18491.72 10392.62 32897.23 15885.61 23589.74 18693.89 22968.55 27899.42 11991.09 15087.84 22098.92 136
RRT_test8_iter0591.04 17690.40 17892.95 20996.20 17689.75 15998.97 10896.38 21288.52 17082.00 26293.51 24090.69 3996.73 24590.43 15976.91 28692.38 242
XVG-OURS-SEG-HR90.95 17790.66 17491.83 23195.18 21281.14 31295.92 29195.92 24488.40 17990.33 17997.85 12870.66 26999.38 12392.83 13888.83 21794.98 227
cascas90.93 17889.33 19095.76 12995.69 19193.03 8298.99 10696.59 19780.49 31086.79 21494.45 21865.23 30498.60 15993.52 12792.18 19095.66 226
XVG-OURS90.83 17990.49 17691.86 23095.23 20781.25 30995.79 29995.92 24488.96 15890.02 18398.03 12771.60 26399.35 12991.06 15187.78 22194.98 227
TR-MVS90.77 18089.44 18794.76 16096.31 16988.02 19497.92 21595.96 23885.52 23688.22 19897.23 15866.80 29398.09 17584.58 22692.38 18598.17 182
OpenMVScopyleft85.28 1490.75 18188.84 19896.48 10293.58 26193.51 7098.80 12497.41 14482.59 28578.62 30197.49 14768.00 28499.82 6484.52 22798.55 10796.11 223
FIs90.70 18289.87 18193.18 20492.29 28091.12 11998.17 19798.25 2789.11 15383.44 23694.82 21482.26 18296.17 28087.76 19282.76 25592.25 246
X-MVStestdata90.69 18388.66 20396.77 8499.62 2590.66 13599.43 5597.58 10992.41 6996.86 6929.59 37587.37 9299.87 5195.65 8599.43 6899.78 42
SCA90.64 18489.25 19194.83 15994.95 22688.83 17696.26 28197.21 16090.06 12990.03 18290.62 29566.61 29496.81 24183.16 24394.36 16598.84 141
GeoE90.60 18589.56 18493.72 19795.10 21985.43 25699.41 5894.94 30183.96 26387.21 20796.83 17874.37 23697.05 23380.50 26893.73 17098.67 156
TAPA-MVS87.50 990.35 18689.05 19494.25 17998.48 10585.17 26298.42 17196.58 20082.44 29087.24 20698.53 10482.77 17198.84 14859.09 35697.88 11598.72 153
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
miper_enhance_ethall90.33 18789.70 18292.22 22297.12 14288.93 17498.35 18295.96 23888.60 16883.14 24292.33 25987.38 9196.18 27986.49 20577.89 27891.55 272
CVMVSNet90.30 18890.91 16688.46 30394.32 24073.58 34597.61 23397.59 10790.16 12588.43 19797.10 16576.83 22292.86 33882.64 24993.54 17298.93 135
nrg03090.23 18988.87 19794.32 17691.53 29393.54 6998.79 12895.89 25288.12 18884.55 22794.61 21778.80 21196.88 23892.35 14275.21 29292.53 240
FC-MVSNet-test90.22 19089.40 18892.67 21891.78 29089.86 15697.89 21698.22 2988.81 16482.96 24394.66 21681.90 18895.96 28885.89 21382.52 25892.20 250
LS3D90.19 19188.72 20194.59 16898.97 8586.33 23496.90 25996.60 19674.96 33584.06 23298.74 8975.78 22499.83 6174.93 30397.57 12197.62 194
AUN-MVS90.17 19289.50 18592.19 22496.21 17382.67 29597.76 22697.53 11988.05 18991.67 15296.15 19483.10 16697.47 21788.11 18966.91 34296.43 219
dp90.16 19388.83 19994.14 18296.38 16786.42 22991.57 33497.06 17884.76 25288.81 19390.19 31184.29 14897.43 22175.05 30291.35 20598.56 161
GA-MVS90.10 19488.69 20294.33 17592.44 27987.97 19599.08 9596.26 22189.65 13786.92 21093.11 25068.09 28296.96 23582.54 25190.15 21398.05 183
VDDNet90.08 19588.54 20894.69 16494.41 23987.68 19998.21 19396.40 21176.21 33193.33 13697.75 13454.93 33898.77 15094.71 10990.96 20697.61 195
gg-mvs-nofinetune90.00 19687.71 21796.89 8296.15 17894.69 4785.15 35297.74 6968.32 35492.97 14260.16 36496.10 396.84 23993.89 11998.87 9399.14 114
Effi-MVS+-dtu89.97 19790.68 17387.81 30795.15 21371.98 35197.87 21995.40 28491.92 7887.57 20191.44 27474.27 23896.84 23989.45 17193.10 17594.60 229
EI-MVSNet89.87 19889.38 18991.36 24194.32 24085.87 24897.61 23396.59 19785.10 24385.51 22097.10 16581.30 19596.56 25183.85 23983.03 25391.64 264
OPM-MVS89.76 19989.15 19391.57 23890.53 30485.58 25498.11 20395.93 24392.88 5886.05 21696.47 18867.06 29297.87 18989.29 17886.08 23191.26 285
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
tpm89.67 20088.95 19691.82 23292.54 27881.43 30492.95 32395.92 24487.81 19690.50 17589.44 31884.99 14095.65 30283.67 24082.71 25698.38 170
UniMVSNet_NR-MVSNet89.60 20188.55 20792.75 21592.17 28390.07 14898.74 13098.15 3588.37 18083.21 23893.98 22682.86 16995.93 29086.95 20072.47 32292.25 246
cl2289.57 20288.79 20091.91 22997.94 11787.62 20197.98 21396.51 20585.03 24682.37 25391.79 26783.65 15396.50 25585.96 21077.89 27891.61 269
PS-MVSNAJss89.54 20389.05 19491.00 24788.77 32584.36 27397.39 23795.97 23688.47 17181.88 26593.80 23182.48 17896.50 25589.34 17583.34 25292.15 251
UniMVSNet (Re)89.50 20488.32 21093.03 20692.21 28290.96 12798.90 11598.39 2389.13 15283.22 23792.03 26181.69 18996.34 27186.79 20372.53 32191.81 261
tpmvs89.16 20587.76 21593.35 20197.19 13884.75 26990.58 34397.36 15081.99 29584.56 22689.31 32183.98 15198.17 17074.85 30590.00 21497.12 204
VPA-MVSNet89.10 20687.66 21893.45 20092.56 27791.02 12597.97 21498.32 2586.92 21686.03 21792.01 26368.84 27797.10 23190.92 15375.34 29192.23 248
bset_n11_16_dypcd89.07 20787.85 21492.76 21486.16 34890.66 13597.30 24195.62 26989.78 13483.94 23393.15 24974.85 22895.89 29591.34 14878.48 27491.74 262
ADS-MVSNet88.99 20887.30 22394.07 18496.21 17387.56 20387.15 34796.78 19183.01 27789.91 18487.27 33378.87 20997.01 23474.20 30992.27 18897.64 191
test0.0.03 188.96 20988.61 20490.03 27391.09 29884.43 27298.97 10897.02 18290.21 12080.29 28296.31 19384.89 14291.93 35272.98 31885.70 23493.73 231
miper_ehance_all_eth88.94 21088.12 21391.40 23995.32 20586.93 22197.85 22095.55 27484.19 25881.97 26391.50 27384.16 14995.91 29384.69 22477.89 27891.36 280
tpm cat188.89 21187.27 22493.76 19595.79 18785.32 25990.76 34197.09 17676.14 33285.72 21888.59 32482.92 16898.04 18176.96 28891.43 20297.90 188
LPG-MVS_test88.86 21288.47 20990.06 27093.35 26880.95 31498.22 19195.94 24187.73 20183.17 24096.11 19666.28 29797.77 19690.19 16285.19 23591.46 275
Anonymous20240521188.84 21387.03 22894.27 17798.14 11384.18 27598.44 16995.58 27376.79 33089.34 19096.88 17653.42 34399.54 10087.53 19687.12 22499.09 120
Fast-Effi-MVS+-dtu88.84 21388.59 20689.58 28493.44 26678.18 32998.65 14294.62 31188.46 17384.12 23195.37 20868.91 27596.52 25482.06 25591.70 19994.06 230
DU-MVS88.83 21587.51 21992.79 21291.46 29490.07 14898.71 13197.62 10088.87 16383.21 23893.68 23374.63 22995.93 29086.95 20072.47 32292.36 243
CR-MVSNet88.83 21587.38 22293.16 20593.47 26386.24 23584.97 35494.20 32188.92 16290.76 17086.88 33784.43 14694.82 32170.64 32592.17 19198.41 167
FMVSNet388.81 21787.08 22793.99 18996.52 16194.59 4998.08 20796.20 22585.85 23282.12 25791.60 27174.05 24195.40 30979.04 27480.24 26591.99 258
ACMM86.95 1388.77 21888.22 21290.43 26193.61 26081.34 30798.50 16395.92 24487.88 19583.85 23495.20 20967.20 29097.89 18786.90 20284.90 23792.06 255
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
DP-MVS88.75 21986.56 23595.34 14298.92 8987.45 20697.64 23293.52 33270.55 34681.49 27197.25 15674.43 23599.88 4871.14 32494.09 16798.67 156
ACMP87.39 1088.71 22088.24 21190.12 26993.91 25381.06 31398.50 16395.67 26789.43 14680.37 28095.55 20365.67 29997.83 19190.55 15884.51 23991.47 274
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
LCM-MVSNet-Re88.59 22188.61 20488.51 30295.53 19972.68 34996.85 26188.43 36588.45 17473.14 33190.63 29475.82 22394.38 32892.95 13595.71 15698.48 165
WR-MVS88.54 22287.22 22692.52 21991.93 28889.50 16398.56 15697.84 5486.99 21281.87 26693.81 23074.25 24095.92 29285.29 21674.43 30192.12 252
test_part188.43 22386.68 23393.67 19897.56 12992.40 9698.12 20096.55 20282.26 29280.31 28193.16 24874.59 23396.62 24885.00 22172.61 32091.99 258
IterMVS-LS88.34 22487.44 22091.04 24694.10 24485.85 24998.10 20495.48 27885.12 24282.03 26191.21 27981.35 19495.63 30383.86 23875.73 29091.63 265
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
VPNet88.30 22586.57 23493.49 19991.95 28691.35 11198.18 19597.20 16488.61 16784.52 22894.89 21262.21 31496.76 24489.34 17572.26 32592.36 243
MSDG88.29 22686.37 23794.04 18796.90 14986.15 24096.52 27394.36 31877.89 32679.22 29696.95 17269.72 27299.59 9673.20 31792.58 18396.37 221
test_djsdf88.26 22787.73 21689.84 27688.05 33482.21 29997.77 22496.17 22886.84 21782.41 25291.95 26672.07 25795.99 28689.83 16484.50 24091.32 282
c3_l88.19 22887.23 22591.06 24594.97 22586.17 23997.72 22895.38 28683.43 27181.68 27091.37 27582.81 17095.72 30084.04 23673.70 30991.29 284
D2MVS87.96 22987.39 22189.70 28091.84 28983.40 28398.31 18698.49 2188.04 19078.23 30790.26 30573.57 24396.79 24384.21 23083.53 24988.90 332
cl____87.82 23086.79 23290.89 25194.88 22985.43 25697.81 22195.24 29482.91 28380.71 27791.22 27881.97 18795.84 29681.34 26075.06 29391.40 279
DIV-MVS_self_test87.82 23086.81 23190.87 25294.87 23085.39 25897.81 22195.22 29882.92 28280.76 27691.31 27781.99 18595.81 29881.36 25975.04 29491.42 278
eth_miper_zixun_eth87.76 23287.00 22990.06 27094.67 23582.65 29697.02 25695.37 28784.19 25881.86 26891.58 27281.47 19295.90 29483.24 24173.61 31091.61 269
TranMVSNet+NR-MVSNet87.75 23386.31 23892.07 22890.81 30188.56 18298.33 18397.18 16587.76 19881.87 26693.90 22872.45 25395.43 30783.13 24571.30 33292.23 248
XXY-MVS87.75 23386.02 24292.95 20990.46 30589.70 16097.71 23095.90 25084.02 26080.95 27494.05 22067.51 28897.10 23185.16 21778.41 27592.04 257
NR-MVSNet87.74 23586.00 24392.96 20891.46 29490.68 13496.65 27097.42 14388.02 19173.42 32993.68 23377.31 21995.83 29784.26 22971.82 32992.36 243
Anonymous2024052987.66 23685.58 24993.92 19097.59 12785.01 26598.13 19897.13 17066.69 35888.47 19696.01 19955.09 33799.51 10587.00 19984.12 24397.23 203
ADS-MVSNet287.62 23786.88 23089.86 27596.21 17379.14 32287.15 34792.99 33583.01 27789.91 18487.27 33378.87 20992.80 34174.20 30992.27 18897.64 191
pmmvs487.58 23886.17 24191.80 23389.58 31588.92 17597.25 24595.28 29082.54 28780.49 27993.17 24775.62 22596.05 28582.75 24878.90 27290.42 308
jajsoiax87.35 23986.51 23689.87 27487.75 33981.74 30297.03 25495.98 23588.47 17180.15 28493.80 23161.47 31696.36 26589.44 17384.47 24191.50 273
PVSNet_083.28 1687.31 24085.16 25493.74 19694.78 23284.59 27098.91 11498.69 1989.81 13378.59 30393.23 24561.95 31599.34 13094.75 10655.72 36097.30 200
v2v48287.27 24185.76 24691.78 23789.59 31487.58 20298.56 15695.54 27584.53 25482.51 24991.78 26873.11 24896.47 25882.07 25474.14 30791.30 283
mvs_tets87.09 24286.22 23989.71 27987.87 33581.39 30696.73 26895.90 25088.19 18679.99 28693.61 23659.96 32296.31 27389.40 17484.34 24291.43 277
V4287.00 24385.68 24890.98 24889.91 30986.08 24298.32 18595.61 27183.67 26882.72 24590.67 29174.00 24296.53 25381.94 25774.28 30490.32 310
miper_lstm_enhance86.90 24486.20 24089.00 29694.53 23781.19 31096.74 26795.24 29482.33 29180.15 28490.51 30281.99 18594.68 32580.71 26573.58 31191.12 288
FMVSNet286.90 24484.79 26293.24 20395.11 21692.54 9497.67 23195.86 25682.94 27980.55 27891.17 28062.89 31195.29 31177.23 28579.71 27191.90 260
v114486.83 24685.31 25391.40 23989.75 31287.21 21898.31 18695.45 28083.22 27482.70 24690.78 28673.36 24496.36 26579.49 27174.69 29890.63 305
MS-PatchMatch86.75 24785.92 24489.22 29191.97 28582.47 29896.91 25896.14 23083.74 26577.73 30893.53 23958.19 32597.37 22576.75 29198.35 11087.84 338
anonymousdsp86.69 24885.75 24789.53 28586.46 34582.94 28896.39 27595.71 26383.97 26279.63 29190.70 28968.85 27695.94 28986.01 20884.02 24489.72 322
GBi-Net86.67 24984.96 25691.80 23395.11 21688.81 17796.77 26395.25 29182.94 27982.12 25790.25 30662.89 31194.97 31679.04 27480.24 26591.62 266
test186.67 24984.96 25691.80 23395.11 21688.81 17796.77 26395.25 29182.94 27982.12 25790.25 30662.89 31194.97 31679.04 27480.24 26591.62 266
MVP-Stereo86.61 25185.83 24588.93 29888.70 32783.85 28096.07 28994.41 31782.15 29475.64 31991.96 26567.65 28796.45 26077.20 28798.72 10186.51 349
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
CP-MVSNet86.54 25285.45 25289.79 27891.02 30082.78 29497.38 23997.56 11485.37 23979.53 29393.03 25171.86 26095.25 31279.92 26973.43 31591.34 281
WR-MVS_H86.53 25385.49 25189.66 28391.04 29983.31 28597.53 23598.20 3184.95 24979.64 29090.90 28478.01 21695.33 31076.29 29572.81 31790.35 309
v14419286.40 25484.89 25990.91 24989.48 31885.59 25398.21 19395.43 28382.45 28982.62 24790.58 29872.79 25296.36 26578.45 28074.04 30890.79 297
v14886.38 25585.06 25590.37 26589.47 31984.10 27698.52 15895.48 27883.80 26480.93 27590.22 30974.60 23196.31 27380.92 26371.55 33090.69 303
v119286.32 25684.71 26391.17 24389.53 31786.40 23098.13 19895.44 28282.52 28882.42 25190.62 29571.58 26496.33 27277.23 28574.88 29590.79 297
Patchmatch-test86.25 25784.06 27292.82 21194.42 23882.88 29282.88 36194.23 32071.58 34379.39 29490.62 29589.00 6496.42 26263.03 34891.37 20499.16 113
v886.11 25884.45 26791.10 24489.99 30886.85 22297.24 24695.36 28881.99 29579.89 28889.86 31474.53 23496.39 26378.83 27872.32 32490.05 317
v192192086.02 25984.44 26890.77 25489.32 32085.20 26098.10 20495.35 28982.19 29382.25 25590.71 28870.73 26796.30 27676.85 29074.49 30090.80 296
JIA-IIPM85.97 26084.85 26089.33 29093.23 27073.68 34485.05 35397.13 17069.62 35091.56 15668.03 36288.03 8096.96 23577.89 28393.12 17497.34 199
pmmvs585.87 26184.40 27090.30 26688.53 32984.23 27498.60 15193.71 32881.53 30080.29 28292.02 26264.51 30695.52 30582.04 25678.34 27691.15 287
XVG-ACMP-BASELINE85.86 26284.95 25888.57 30089.90 31077.12 33494.30 31195.60 27287.40 20982.12 25792.99 25353.42 34397.66 20585.02 22083.83 24590.92 293
Baseline_NR-MVSNet85.83 26384.82 26188.87 29988.73 32683.34 28498.63 14691.66 35180.41 31382.44 25091.35 27674.63 22995.42 30884.13 23271.39 33187.84 338
PS-CasMVS85.81 26484.58 26689.49 28890.77 30282.11 30097.20 24997.36 15084.83 25179.12 29892.84 25467.42 28995.16 31478.39 28173.25 31691.21 286
IterMVS85.81 26484.67 26489.22 29193.51 26283.67 28196.32 27894.80 30585.09 24478.69 29990.17 31266.57 29693.17 33779.48 27277.42 28490.81 295
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v124085.77 26684.11 27190.73 25589.26 32185.15 26397.88 21895.23 29781.89 29882.16 25690.55 30069.60 27496.31 27375.59 30074.87 29690.72 302
IterMVS-SCA-FT85.73 26784.64 26589.00 29693.46 26582.90 29096.27 27994.70 30885.02 24778.62 30190.35 30466.61 29493.33 33479.38 27377.36 28590.76 299
v1085.73 26784.01 27390.87 25290.03 30786.73 22497.20 24995.22 29881.25 30379.85 28989.75 31573.30 24796.28 27776.87 28972.64 31989.61 324
UniMVSNet_ETH3D85.65 26983.79 27591.21 24290.41 30680.75 31695.36 30295.78 25978.76 32081.83 26994.33 21949.86 35196.66 24684.30 22883.52 25096.22 222
PatchT85.44 27083.19 27792.22 22293.13 27283.00 28783.80 36096.37 21370.62 34590.55 17379.63 35784.81 14494.87 31958.18 35891.59 20098.79 148
RPSCF85.33 27185.55 25084.67 32794.63 23662.28 36393.73 31793.76 32674.38 33885.23 22397.06 16864.09 30798.31 16580.98 26186.08 23193.41 235
PEN-MVS85.21 27283.93 27489.07 29589.89 31181.31 30897.09 25297.24 15684.45 25678.66 30092.68 25668.44 28094.87 31975.98 29770.92 33391.04 290
RPMNet85.07 27381.88 29094.64 16693.47 26386.24 23584.97 35497.21 16064.85 36090.76 17078.80 35880.95 19699.27 13353.76 36192.17 19198.41 167
AllTest84.97 27483.12 27890.52 25996.82 15178.84 32495.89 29292.17 34477.96 32475.94 31595.50 20455.48 33399.18 13571.15 32287.14 22293.55 233
USDC84.74 27582.93 27990.16 26891.73 29183.54 28295.00 30593.30 33488.77 16573.19 33093.30 24353.62 34297.65 20675.88 29881.54 26389.30 327
Anonymous2023121184.72 27682.65 28790.91 24997.71 12184.55 27197.28 24396.67 19366.88 35779.18 29790.87 28558.47 32496.60 24982.61 25074.20 30591.59 271
pm-mvs184.68 27782.78 28390.40 26289.58 31585.18 26197.31 24094.73 30781.93 29776.05 31492.01 26365.48 30396.11 28378.75 27969.14 33589.91 320
ACMH83.09 1784.60 27882.61 28890.57 25793.18 27182.94 28896.27 27994.92 30281.01 30672.61 33793.61 23656.54 32997.79 19474.31 30881.07 26490.99 291
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LTVRE_ROB81.71 1984.59 27982.72 28590.18 26792.89 27683.18 28693.15 32294.74 30678.99 31775.14 32292.69 25565.64 30097.63 20769.46 32981.82 26289.74 321
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
COLMAP_ROBcopyleft82.69 1884.54 28082.82 28089.70 28096.72 15578.85 32395.89 29292.83 33871.55 34477.54 31095.89 20059.40 32399.14 14067.26 33688.26 21891.11 289
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
MIMVSNet84.48 28181.83 29192.42 22091.73 29187.36 20985.52 35094.42 31681.40 30181.91 26487.58 32851.92 34692.81 34073.84 31288.15 21997.08 208
our_test_384.47 28282.80 28189.50 28689.01 32283.90 27997.03 25494.56 31281.33 30275.36 32190.52 30171.69 26294.54 32768.81 33176.84 28790.07 315
v7n84.42 28382.75 28489.43 28988.15 33281.86 30196.75 26695.67 26780.53 30978.38 30589.43 31969.89 27096.35 27073.83 31372.13 32690.07 315
ACMH+83.78 1584.21 28482.56 28989.15 29393.73 25979.16 32196.43 27494.28 31981.09 30574.00 32694.03 22354.58 33997.67 20476.10 29678.81 27390.63 305
EU-MVSNet84.19 28584.42 26983.52 33288.64 32867.37 36196.04 29095.76 26185.29 24078.44 30493.18 24670.67 26891.48 35475.79 29975.98 28891.70 263
DTE-MVSNet84.14 28682.80 28188.14 30488.95 32479.87 32096.81 26296.24 22283.50 27077.60 30992.52 25867.89 28694.24 33072.64 32069.05 33690.32 310
MVS_030484.13 28782.66 28688.52 30193.07 27380.15 31795.81 29898.21 3079.27 31586.85 21286.40 34041.33 36294.69 32476.36 29486.69 22590.73 301
OurMVSNet-221017-084.13 28783.59 27685.77 32187.81 33670.24 35594.89 30693.65 33086.08 23076.53 31193.28 24461.41 31796.14 28280.95 26277.69 28390.93 292
FMVSNet183.94 28981.32 29791.80 23391.94 28788.81 17796.77 26395.25 29177.98 32278.25 30690.25 30650.37 35094.97 31673.27 31677.81 28291.62 266
tfpnnormal83.65 29081.35 29690.56 25891.37 29688.06 19297.29 24297.87 5278.51 32176.20 31290.91 28364.78 30596.47 25861.71 35173.50 31287.13 346
ppachtmachnet_test83.63 29181.57 29489.80 27789.01 32285.09 26497.13 25194.50 31378.84 31876.14 31391.00 28269.78 27194.61 32663.40 34674.36 30289.71 323
Patchmtry83.61 29281.64 29289.50 28693.36 26782.84 29384.10 35794.20 32169.47 35179.57 29286.88 33784.43 14694.78 32268.48 33374.30 30390.88 294
KD-MVS_2432*160082.98 29380.52 30190.38 26394.32 24088.98 17192.87 32595.87 25480.46 31173.79 32787.49 33082.76 17393.29 33570.56 32646.53 36588.87 333
miper_refine_blended82.98 29380.52 30190.38 26394.32 24088.98 17192.87 32595.87 25480.46 31173.79 32787.49 33082.76 17393.29 33570.56 32646.53 36588.87 333
SixPastTwentyTwo82.63 29581.58 29385.79 32088.12 33371.01 35495.17 30492.54 34084.33 25772.93 33592.08 26060.41 32195.61 30474.47 30774.15 30690.75 300
testgi82.29 29681.00 29986.17 31887.24 34174.84 34097.39 23791.62 35288.63 16675.85 31895.42 20746.07 35791.55 35366.87 33979.94 26992.12 252
FMVSNet582.29 29680.54 30087.52 30993.79 25884.01 27793.73 31792.47 34176.92 32974.27 32486.15 34263.69 31089.24 35869.07 33074.79 29789.29 328
TransMVSNet (Re)81.97 29879.61 30689.08 29489.70 31384.01 27797.26 24491.85 35078.84 31873.07 33491.62 27067.17 29195.21 31367.50 33559.46 35588.02 337
LF4IMVS81.94 29981.17 29884.25 32987.23 34268.87 36093.35 32191.93 34983.35 27375.40 32093.00 25249.25 35496.65 24778.88 27778.11 27787.22 345
Patchmatch-RL test81.90 30080.13 30387.23 31280.71 36270.12 35784.07 35888.19 36683.16 27670.57 33982.18 35187.18 9892.59 34382.28 25362.78 34898.98 127
DSMNet-mixed81.60 30181.43 29582.10 33684.36 35260.79 36493.63 31986.74 36779.00 31679.32 29587.15 33563.87 30989.78 35766.89 33891.92 19395.73 225
K. test v381.04 30279.77 30584.83 32587.41 34070.23 35695.60 30193.93 32583.70 26767.51 34989.35 32055.76 33193.58 33376.67 29268.03 33990.67 304
Anonymous2023120680.76 30379.42 30784.79 32684.78 35172.98 34696.53 27292.97 33679.56 31474.33 32388.83 32261.27 31892.15 34960.59 35375.92 28989.24 329
CMPMVSbinary58.40 2180.48 30480.11 30481.59 33985.10 35059.56 36594.14 31495.95 24068.54 35360.71 35993.31 24255.35 33697.87 18983.06 24684.85 23887.33 343
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
TinyColmap80.42 30577.94 30987.85 30692.09 28478.58 32693.74 31689.94 36074.99 33469.77 34191.78 26846.09 35697.58 21065.17 34477.89 27887.38 341
EG-PatchMatch MVS79.92 30677.59 31086.90 31487.06 34377.90 33396.20 28794.06 32374.61 33666.53 35388.76 32340.40 36496.20 27867.02 33783.66 24886.61 347
pmmvs679.90 30777.31 31287.67 30884.17 35378.13 33095.86 29693.68 32967.94 35572.67 33689.62 31750.98 34995.75 29974.80 30666.04 34489.14 330
CL-MVSNet_self_test79.89 30878.34 30884.54 32881.56 36075.01 33896.88 26095.62 26981.10 30475.86 31785.81 34368.49 27990.26 35663.21 34756.51 35888.35 335
MDA-MVSNet_test_wron79.65 30977.05 31387.45 31087.79 33880.13 31896.25 28294.44 31473.87 33951.80 36287.47 33268.04 28392.12 35066.02 34067.79 34090.09 313
YYNet179.64 31077.04 31487.43 31187.80 33779.98 31996.23 28394.44 31473.83 34051.83 36187.53 32967.96 28592.07 35166.00 34167.75 34190.23 312
MVS-HIRNet79.01 31175.13 32190.66 25693.82 25781.69 30385.16 35193.75 32754.54 36274.17 32559.15 36657.46 32796.58 25063.74 34594.38 16493.72 232
UnsupCasMVSNet_eth78.90 31276.67 31685.58 32282.81 35874.94 33991.98 33196.31 21684.64 25365.84 35587.71 32751.33 34792.23 34872.89 31956.50 35989.56 325
test_040278.81 31376.33 31786.26 31791.18 29778.44 32895.88 29491.34 35568.55 35270.51 34089.91 31352.65 34594.99 31547.14 36479.78 27085.34 355
pmmvs-eth3d78.71 31476.16 31886.38 31680.25 36381.19 31094.17 31392.13 34677.97 32366.90 35282.31 35055.76 33192.56 34473.63 31562.31 35185.38 353
Anonymous2024052178.63 31576.90 31583.82 33082.82 35772.86 34795.72 30093.57 33173.55 34172.17 33884.79 34549.69 35292.51 34565.29 34374.50 29986.09 351
test20.0378.51 31677.48 31181.62 33883.07 35671.03 35396.11 28892.83 33881.66 29969.31 34289.68 31657.53 32687.29 36358.65 35768.47 33786.53 348
TDRefinement78.01 31775.31 32086.10 31970.06 36973.84 34393.59 32091.58 35374.51 33773.08 33391.04 28149.63 35397.12 22874.88 30459.47 35487.33 343
OpenMVS_ROBcopyleft73.86 2077.99 31875.06 32286.77 31583.81 35577.94 33296.38 27691.53 35467.54 35668.38 34487.13 33643.94 35896.08 28455.03 36081.83 26186.29 350
MDA-MVSNet-bldmvs77.82 31974.75 32387.03 31388.33 33078.52 32796.34 27792.85 33775.57 33348.87 36487.89 32657.32 32892.49 34660.79 35264.80 34790.08 314
KD-MVS_self_test77.47 32075.88 31982.24 33481.59 35968.93 35992.83 32794.02 32477.03 32873.14 33183.39 34855.44 33590.42 35567.95 33457.53 35787.38 341
new_pmnet76.02 32173.71 32482.95 33383.88 35472.85 34891.26 33792.26 34370.44 34762.60 35781.37 35247.64 35592.32 34761.85 35072.10 32783.68 358
MIMVSNet175.92 32273.30 32583.81 33181.29 36175.57 33792.26 33092.05 34773.09 34267.48 35086.18 34140.87 36387.64 36255.78 35970.68 33488.21 336
PM-MVS74.88 32372.85 32680.98 34078.98 36564.75 36290.81 34085.77 36880.95 30768.23 34682.81 34929.08 36892.84 33976.54 29362.46 35085.36 354
new-patchmatchnet74.80 32472.40 32781.99 33778.36 36672.20 35094.44 30992.36 34277.06 32763.47 35679.98 35651.04 34888.85 35960.53 35454.35 36184.92 356
UnsupCasMVSNet_bld73.85 32570.14 32884.99 32479.44 36475.73 33688.53 34595.24 29470.12 34961.94 35874.81 35941.41 36193.62 33268.65 33251.13 36485.62 352
pmmvs372.86 32669.76 33082.17 33573.86 36774.19 34294.20 31289.01 36464.23 36167.72 34780.91 35441.48 36088.65 36062.40 34954.02 36283.68 358
N_pmnet70.19 32769.87 32971.12 34688.24 33130.63 37995.85 29728.70 37970.18 34868.73 34386.55 33964.04 30893.81 33153.12 36273.46 31388.94 331
test_method70.10 32868.66 33174.41 34486.30 34755.84 36894.47 30889.82 36135.18 36766.15 35484.75 34630.54 36777.96 36870.40 32860.33 35389.44 326
FPMVS61.57 32960.32 33265.34 34860.14 37342.44 37491.02 33989.72 36244.15 36442.63 36680.93 35319.02 37080.59 36742.50 36572.76 31873.00 362
EGC-MVSNET60.70 33055.37 33476.72 34286.35 34671.08 35289.96 34484.44 3710.38 3761.50 37784.09 34737.30 36588.10 36140.85 36673.44 31470.97 364
LCM-MVSNet60.07 33156.37 33371.18 34554.81 37548.67 37282.17 36289.48 36337.95 36549.13 36369.12 36013.75 37681.76 36459.28 35551.63 36383.10 360
PMMVS258.97 33255.07 33570.69 34762.72 37055.37 36985.97 34980.52 37249.48 36345.94 36568.31 36115.73 37480.78 36649.79 36337.12 36775.91 361
Gipumacopyleft54.77 33352.22 33762.40 35086.50 34459.37 36650.20 36890.35 35936.52 36641.20 36749.49 36818.33 37281.29 36532.10 36865.34 34546.54 368
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
tmp_tt53.66 33452.86 33656.05 35132.75 37941.97 37573.42 36576.12 37521.91 37239.68 36896.39 19142.59 35965.10 37178.00 28214.92 37261.08 365
ANet_high50.71 33546.17 33864.33 34944.27 37752.30 37076.13 36478.73 37364.95 35927.37 37055.23 36714.61 37567.74 37036.01 36718.23 37072.95 363
PMVScopyleft41.42 2345.67 33642.50 33955.17 35234.28 37832.37 37766.24 36678.71 37430.72 36822.04 37359.59 3654.59 37777.85 36927.49 36958.84 35655.29 366
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive44.00 2241.70 33737.64 34253.90 35349.46 37643.37 37365.09 36766.66 37626.19 37125.77 37248.53 3693.58 37963.35 37226.15 37027.28 36854.97 367
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN41.02 33840.93 34041.29 35461.97 37133.83 37684.00 35965.17 37727.17 36927.56 36946.72 37017.63 37360.41 37319.32 37118.82 36929.61 369
EMVS39.96 33939.88 34140.18 35559.57 37432.12 37884.79 35664.57 37826.27 37026.14 37144.18 37318.73 37159.29 37417.03 37217.67 37129.12 370
cdsmvs_eth3d_5k22.52 34030.03 3430.00 3590.00 3820.00 3830.00 37097.17 1660.00 3770.00 37898.77 8674.35 2370.00 3780.00 3760.00 3760.00 374
testmvs18.81 34123.05 3446.10 3584.48 3802.29 38297.78 2233.00 3813.27 37418.60 37462.71 3631.53 3812.49 37714.26 3741.80 37413.50 372
wuyk23d16.71 34216.73 34616.65 35660.15 37225.22 38041.24 3695.17 3806.56 3735.48 3763.61 3763.64 37822.72 37515.20 3739.52 3731.99 373
test12316.58 34319.47 3457.91 3573.59 3815.37 38194.32 3101.39 3822.49 37513.98 37544.60 3722.91 3802.65 37611.35 3750.57 37515.70 371
ab-mvs-re8.21 34410.94 3470.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 37898.50 1070.00 3820.00 3780.00 3760.00 3760.00 374
pcd_1.5k_mvsjas6.87 3459.16 3480.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 37782.48 1780.00 3780.00 3760.00 3760.00 374
test_blank0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
uanet_test0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
sosnet-low-res0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
sosnet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
uncertanet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
Regformer0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
uanet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
FOURS199.50 4788.94 17399.55 3497.47 13391.32 9498.12 37
MSC_two_6792asdad99.51 299.61 2798.60 297.69 8299.98 1099.55 999.83 1599.96 10
PC_three_145294.60 2099.41 299.12 4895.50 699.96 3099.84 299.92 399.97 7
No_MVS99.51 299.61 2798.60 297.69 8299.98 1099.55 999.83 1599.96 10
test_one_060199.59 3194.89 3597.64 9393.14 5098.93 1599.45 1693.45 17
eth-test20.00 382
eth-test0.00 382
ZD-MVS99.67 1393.28 7497.61 10187.78 19797.41 5699.16 4190.15 5099.56 9798.35 3399.70 39
RE-MVS-def95.70 6699.22 7187.26 21598.40 17697.21 16089.63 13896.67 7998.97 6685.24 13896.62 6399.31 7699.60 77
IU-MVS99.63 2195.38 2197.73 7395.54 1599.54 199.69 599.81 2399.99 1
OPU-MVS99.49 499.64 2098.51 499.77 999.19 3495.12 799.97 2399.90 199.92 399.99 1
test_241102_TWO97.72 7594.17 2599.23 799.54 393.14 2399.98 1099.70 399.82 1999.99 1
test_241102_ONE99.63 2195.24 2497.72 7594.16 2799.30 599.49 1093.32 1899.98 10
9.1496.87 2799.34 5899.50 4197.49 13089.41 14798.59 2599.43 1889.78 5499.69 7998.69 2199.62 51
save fliter99.34 5893.85 6399.65 2397.63 9895.69 11
test_0728_THIRD93.01 5199.07 1099.46 1194.66 1299.97 2399.25 1499.82 1999.95 15
test_0728_SECOND98.77 799.66 1596.37 1399.72 1497.68 8499.98 1099.64 699.82 1999.96 10
test072699.66 1595.20 2999.77 997.70 8093.95 3099.35 499.54 393.18 21
GSMVS98.84 141
test_part299.54 4095.42 1998.13 35
sam_mvs188.39 7398.84 141
sam_mvs87.08 99
ambc79.60 34172.76 36856.61 36776.20 36392.01 34868.25 34580.23 35523.34 36994.73 32373.78 31460.81 35287.48 340
MTGPAbinary97.45 136
test_post190.74 34241.37 37485.38 13796.36 26583.16 243
test_post46.00 37187.37 9297.11 229
patchmatchnet-post84.86 34488.73 6796.81 241
GG-mvs-BLEND96.98 7196.53 16094.81 4287.20 34697.74 6993.91 12896.40 18996.56 296.94 23795.08 9998.95 9299.20 111
MTMP99.21 7491.09 356
gm-plane-assit94.69 23488.14 19088.22 18597.20 16098.29 16790.79 156
test9_res98.60 2399.87 999.90 24
TEST999.57 3793.17 7699.38 6197.66 8789.57 14298.39 3099.18 3790.88 3599.66 84
test_899.55 3993.07 8099.37 6497.64 9390.18 12298.36 3299.19 3490.94 3399.64 90
agg_prior297.84 4599.87 999.91 22
agg_prior99.54 4092.66 8897.64 9397.98 4499.61 93
TestCases90.52 25996.82 15178.84 32492.17 34477.96 32475.94 31595.50 20455.48 33399.18 13571.15 32287.14 22293.55 233
test_prior492.00 9999.41 58
test_prior299.57 3191.43 9098.12 3798.97 6690.43 4398.33 3499.81 23
test_prior97.01 6599.58 3391.77 10097.57 11299.49 10899.79 38
旧先验298.67 14085.75 23498.96 1498.97 14693.84 121
新几何298.26 189
新几何197.40 5198.92 8992.51 9597.77 6685.52 23696.69 7899.06 5688.08 7999.89 4784.88 22299.62 5199.79 38
旧先验198.97 8592.90 8797.74 6999.15 4391.05 3299.33 7499.60 77
无先验98.52 15897.82 5687.20 21199.90 4487.64 19499.85 33
原ACMM298.69 136
原ACMM196.18 11399.03 8390.08 14797.63 9888.98 15797.00 6498.97 6688.14 7899.71 7788.23 18799.62 5198.76 152
test22298.32 10691.21 11498.08 20797.58 10983.74 26595.87 9499.02 6086.74 10799.64 4799.81 35
testdata299.88 4884.16 231
segment_acmp90.56 42
testdata95.26 14598.20 10987.28 21297.60 10385.21 24198.48 2899.15 4388.15 7798.72 15590.29 16199.45 6699.78 42
testdata197.89 21692.43 65
test1297.83 3499.33 6494.45 5197.55 11597.56 5188.60 6899.50 10799.71 3899.55 81
plane_prior793.84 25585.73 251
plane_prior693.92 25286.02 24572.92 249
plane_prior596.30 21797.75 20193.46 12886.17 22992.67 238
plane_prior496.52 185
plane_prior385.91 24693.65 4286.99 208
plane_prior299.02 10293.38 47
plane_prior193.90 254
plane_prior86.07 24399.14 8993.81 4086.26 228
n20.00 383
nn0.00 383
door-mid84.90 370
lessismore_v085.08 32385.59 34969.28 35890.56 35867.68 34890.21 31054.21 34195.46 30673.88 31162.64 34990.50 307
LGP-MVS_train90.06 27093.35 26880.95 31495.94 24187.73 20183.17 24096.11 19666.28 29797.77 19690.19 16285.19 23591.46 275
test1197.68 84
door85.30 369
HQP5-MVS86.39 231
HQP-NCC93.95 24899.16 8093.92 3287.57 201
ACMP_Plane93.95 24899.16 8093.92 3287.57 201
BP-MVS93.82 123
HQP4-MVS87.57 20197.77 19692.72 236
HQP3-MVS96.37 21386.29 226
HQP2-MVS73.34 245
NP-MVS93.94 25186.22 23796.67 183
MDTV_nov1_ep13_2view91.17 11891.38 33587.45 20893.08 13986.67 11087.02 19898.95 133
MDTV_nov1_ep1390.47 17796.14 18088.55 18391.34 33697.51 12589.58 14192.24 14890.50 30386.99 10397.61 20977.64 28492.34 186
ACMMP++_ref82.64 257
ACMMP++83.83 245
Test By Simon83.62 154
ITE_SJBPF87.93 30592.26 28176.44 33593.47 33387.67 20479.95 28795.49 20656.50 33097.38 22375.24 30182.33 25989.98 319
DeepMVS_CXcopyleft76.08 34390.74 30351.65 37190.84 35786.47 22757.89 36087.98 32535.88 36692.60 34265.77 34265.06 34683.97 357