This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
CNVR-MVS98.46 198.38 198.72 999.80 496.19 1599.80 1597.99 5297.05 699.41 499.59 292.89 25100.00 198.99 2599.90 799.96 10
DVP-MVS++98.18 298.09 598.44 1699.61 2495.38 2299.55 4497.68 9093.01 7099.23 1099.45 1495.12 899.98 999.25 1899.92 399.97 7
SED-MVS98.18 298.10 498.41 1899.63 1895.24 2599.77 1797.72 8194.17 4399.30 899.54 393.32 1999.98 999.70 499.81 2399.99 1
MCST-MVS98.18 297.95 998.86 599.85 396.60 1099.70 2697.98 5397.18 395.96 9499.33 1992.62 26100.00 198.99 2599.93 199.98 6
NCCC98.12 598.11 398.13 2499.76 694.46 4899.81 1197.88 5796.54 1398.84 2499.46 1092.55 2799.98 998.25 4699.93 199.94 18
DPE-MVScopyleft98.11 698.00 698.44 1699.50 4295.39 2199.29 8197.72 8194.50 3798.64 2899.54 393.32 1999.97 2199.58 1099.90 799.95 15
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
DVP-MVScopyleft98.07 798.00 698.29 1999.66 1295.20 3099.72 2397.47 14193.95 4899.07 1599.46 1093.18 2299.97 2199.64 799.82 1999.69 55
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
DPM-MVS97.86 897.25 2199.68 198.25 9499.10 199.76 2097.78 7396.61 1298.15 4199.53 793.62 17100.00 191.79 16199.80 2699.94 18
MSP-MVS97.77 998.18 296.53 9299.54 3690.14 14199.41 6897.70 8695.46 2898.60 2999.19 3095.71 499.49 11298.15 4899.85 1399.95 15
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MM97.76 1097.39 1998.86 598.30 9396.83 799.81 1199.13 997.66 298.29 3998.96 6685.84 12799.90 5099.72 398.80 9199.85 30
HPM-MVS++copyleft97.72 1197.59 1398.14 2399.53 4094.76 4299.19 9097.75 7695.66 2498.21 4099.29 2091.10 3399.99 597.68 5599.87 999.68 56
fmvsm_l_conf0.5_n_a97.70 1297.80 1197.42 4597.59 11792.91 8399.86 498.04 4896.70 1099.58 299.26 2190.90 3899.94 3499.57 1198.66 9899.40 85
fmvsm_l_conf0.5_n97.65 1397.72 1297.41 4697.51 12192.78 8599.85 798.05 4696.78 899.60 199.23 2690.42 4799.92 4099.55 1298.50 10399.55 72
MVS_030497.53 1497.15 2298.67 1197.30 12896.52 1299.60 3898.88 1497.14 497.21 6698.94 7286.89 10299.91 4599.43 1598.91 8699.59 71
APDe-MVScopyleft97.53 1497.47 1597.70 3699.58 3093.63 6499.56 4397.52 13193.59 6398.01 5099.12 4690.80 4199.55 10699.26 1799.79 2799.93 20
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
SD-MVS97.51 1697.40 1897.81 3499.01 7293.79 6399.33 7897.38 15493.73 5998.83 2599.02 5890.87 4099.88 5498.69 3099.74 2999.77 43
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MSLP-MVS++97.50 1797.45 1797.63 3899.65 1693.21 7299.70 2698.13 4294.61 3597.78 5599.46 1089.85 5599.81 7997.97 5099.91 699.88 26
TSAR-MVS + MP.97.44 1897.46 1697.39 4899.12 6593.49 6998.52 17297.50 13694.46 3898.99 1798.64 9991.58 3099.08 14898.49 3799.83 1599.60 67
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SteuartSystems-ACMMP97.25 1997.34 2097.01 6097.38 12491.46 10799.75 2197.66 9594.14 4798.13 4299.26 2192.16 2999.66 9497.91 5299.64 4099.90 22
Skip Steuart: Steuart Systems R&D Blog.
SMA-MVScopyleft97.24 2096.99 2498.00 2999.30 5494.20 5599.16 9697.65 10289.55 15799.22 1299.52 890.34 5099.99 598.32 4399.83 1599.82 32
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MG-MVS97.24 2096.83 3198.47 1599.79 595.71 1899.07 11299.06 1094.45 4096.42 8898.70 9588.81 6599.74 8895.35 10199.86 1299.97 7
SF-MVS97.22 2296.92 2598.12 2699.11 6694.88 3599.44 6297.45 14489.60 15398.70 2699.42 1790.42 4799.72 8998.47 3899.65 3899.77 43
train_agg97.20 2397.08 2397.57 4299.57 3393.17 7399.38 7197.66 9590.18 13598.39 3599.18 3390.94 3699.66 9498.58 3699.85 1399.88 26
DeepC-MVS_fast93.52 297.16 2496.84 2998.13 2499.61 2494.45 4998.85 13597.64 10396.51 1695.88 9799.39 1887.35 9299.99 596.61 7799.69 3699.96 10
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DELS-MVS97.12 2596.60 3598.68 1098.03 10396.57 1199.84 897.84 6196.36 1895.20 11298.24 12188.17 7399.83 7396.11 8699.60 4899.64 62
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
patch_mono-297.10 2697.97 894.49 17399.21 6183.73 29099.62 3798.25 3295.28 3099.38 698.91 7592.28 2899.94 3499.61 999.22 7099.78 38
test_fmvsm_n_192097.08 2797.55 1495.67 13197.94 10589.61 16099.93 198.48 2497.08 599.08 1499.13 4488.17 7399.93 3899.11 2399.06 7597.47 198
CANet97.00 2896.49 3698.55 1298.86 8096.10 1699.83 997.52 13195.90 1997.21 6698.90 7682.66 17999.93 3898.71 2998.80 9199.63 64
TSAR-MVS + GP.96.95 2996.91 2697.07 5798.88 7991.62 10399.58 4196.54 21495.09 3296.84 7698.63 10191.16 3199.77 8599.04 2496.42 14499.81 33
APD-MVScopyleft96.95 2996.72 3297.63 3899.51 4193.58 6599.16 9697.44 14790.08 14098.59 3099.07 5189.06 6199.42 12397.92 5199.66 3799.88 26
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
PS-MVSNAJ96.87 3196.40 3998.29 1997.35 12697.29 599.03 11997.11 17995.83 2098.97 1999.14 4282.48 18299.60 10398.60 3399.08 7398.00 185
EPNet96.82 3296.68 3497.25 5398.65 8693.10 7599.48 5398.76 1596.54 1397.84 5498.22 12287.49 8599.66 9495.35 10197.78 11899.00 119
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CHOSEN 280x42096.80 3396.85 2896.66 8497.85 10894.42 5194.76 32898.36 2992.50 8195.62 10597.52 14897.92 197.38 23698.31 4498.80 9198.20 179
test_fmvsmconf_n96.78 3496.84 2996.61 8595.99 18990.25 13699.90 298.13 4296.68 1198.42 3498.92 7485.34 13799.88 5499.12 2299.08 7399.70 52
MVS_111021_HR96.69 3596.69 3396.72 8098.58 8891.00 12199.14 10499.45 193.86 5495.15 11398.73 8988.48 6899.76 8697.23 6399.56 5099.40 85
xiu_mvs_v2_base96.66 3696.17 4898.11 2797.11 14396.96 699.01 12297.04 18695.51 2798.86 2399.11 5082.19 19099.36 13098.59 3598.14 11198.00 185
PHI-MVS96.65 3796.46 3897.21 5499.34 5091.77 10099.70 2698.05 4686.48 24798.05 4799.20 2989.33 5999.96 2898.38 3999.62 4499.90 22
ACMMP_NAP96.59 3896.18 4597.81 3498.82 8193.55 6698.88 13497.59 11690.66 11997.98 5199.14 4286.59 110100.00 196.47 8199.46 5599.89 25
CDPH-MVS96.56 3996.18 4597.70 3699.59 2893.92 6099.13 10797.44 14789.02 17197.90 5399.22 2788.90 6499.49 11294.63 12099.79 2799.68 56
DeepPCF-MVS93.56 196.55 4097.84 1092.68 22598.71 8578.11 34899.70 2697.71 8598.18 197.36 6299.76 190.37 4999.94 3499.27 1699.54 5299.99 1
XVS96.47 4196.37 4096.77 7499.62 2290.66 13099.43 6597.58 11892.41 8596.86 7498.96 6687.37 8899.87 5895.65 9299.43 5999.78 38
HFP-MVS96.42 4296.26 4296.90 6999.69 890.96 12299.47 5597.81 6890.54 12696.88 7399.05 5487.57 8399.96 2895.65 9299.72 3199.78 38
PAPR96.35 4395.82 5897.94 3199.63 1894.19 5699.42 6797.55 12392.43 8293.82 13899.12 4687.30 9399.91 4594.02 12799.06 7599.74 47
PAPM96.35 4395.94 5497.58 4094.10 25695.25 2498.93 12998.17 3794.26 4293.94 13498.72 9189.68 5797.88 20096.36 8299.29 6799.62 66
lupinMVS96.32 4595.94 5497.44 4495.05 23094.87 3699.86 496.50 21693.82 5798.04 4898.77 8585.52 12998.09 18896.98 6898.97 8199.37 88
region2R96.30 4696.17 4896.70 8199.70 790.31 13599.46 5997.66 9590.55 12597.07 7199.07 5186.85 10399.97 2195.43 9999.74 2999.81 33
ACMMPR96.28 4796.14 5296.73 7899.68 990.47 13399.47 5597.80 7090.54 12696.83 7899.03 5686.51 11499.95 3195.65 9299.72 3199.75 46
CP-MVS96.22 4896.15 5196.42 9799.67 1089.62 15999.70 2697.61 11090.07 14196.00 9399.16 3687.43 8699.92 4096.03 8899.72 3199.70 52
fmvsm_s_conf0.5_n96.19 4996.49 3695.30 14497.37 12589.16 16599.86 498.47 2595.68 2398.87 2299.15 3982.44 18699.92 4099.14 2197.43 12796.83 218
SR-MVS96.13 5096.16 5096.07 11499.42 4789.04 16998.59 16797.33 15890.44 12996.84 7699.12 4686.75 10599.41 12697.47 5899.44 5899.76 45
ZNCC-MVS96.09 5195.81 6096.95 6899.42 4791.19 11199.55 4497.53 12789.72 14895.86 9998.94 7286.59 11099.97 2195.13 10699.56 5099.68 56
MTAPA96.09 5195.80 6196.96 6799.29 5591.19 11197.23 26797.45 14492.58 7994.39 12799.24 2586.43 11699.99 596.22 8399.40 6299.71 51
ETV-MVS96.00 5396.00 5396.00 11896.56 16091.05 11999.63 3696.61 20693.26 6897.39 6198.30 11986.62 10998.13 18598.07 4997.57 12198.82 140
MP-MVScopyleft96.00 5395.82 5896.54 9199.47 4690.13 14399.36 7597.41 15190.64 12295.49 10798.95 6985.51 13199.98 996.00 8999.59 4999.52 75
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
CS-MVS-test95.98 5596.34 4194.90 15898.06 10287.66 20399.69 3396.10 24293.66 6098.35 3899.05 5486.28 11897.66 21896.96 6998.90 8799.37 88
fmvsm_s_conf0.5_n_a95.97 5696.19 4395.31 14396.51 16489.01 17199.81 1198.39 2795.46 2899.19 1399.16 3681.44 20099.91 4598.83 2896.97 13697.01 214
GST-MVS95.97 5695.66 6696.90 6999.49 4591.22 10999.45 6197.48 13989.69 14995.89 9698.72 9186.37 11799.95 3194.62 12199.22 7099.52 75
WTY-MVS95.97 5695.11 7998.54 1397.62 11496.65 999.44 6298.74 1692.25 8995.21 11198.46 11586.56 11299.46 11895.00 11192.69 18799.50 78
test_fmvsmconf0.1_n95.94 5995.79 6296.40 9992.42 29389.92 15299.79 1696.85 19796.53 1597.22 6598.67 9782.71 17899.84 6998.92 2798.98 8099.43 84
PVSNet_Blended95.94 5995.66 6696.75 7698.77 8391.61 10499.88 398.04 4893.64 6294.21 12997.76 13583.50 15799.87 5897.41 5997.75 11998.79 143
mPP-MVS95.90 6195.75 6396.38 10099.58 3089.41 16399.26 8597.41 15190.66 11994.82 11798.95 6986.15 12299.98 995.24 10599.64 4099.74 47
PGM-MVS95.85 6295.65 6896.45 9599.50 4289.77 15698.22 20698.90 1389.19 16696.74 8198.95 6985.91 12699.92 4093.94 12999.46 5599.66 60
DP-MVS Recon95.85 6295.15 7797.95 3099.87 294.38 5299.60 3897.48 13986.58 24294.42 12599.13 4487.36 9199.98 993.64 13698.33 10799.48 79
MP-MVS-pluss95.80 6495.30 7297.29 5098.95 7692.66 8698.59 16797.14 17588.95 17493.12 14799.25 2385.62 12899.94 3496.56 7999.48 5499.28 97
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MVS_111021_LR95.78 6595.94 5495.28 14598.19 9887.69 20098.80 14199.26 793.39 6595.04 11598.69 9684.09 15199.76 8696.96 6999.06 7598.38 166
alignmvs95.77 6695.00 8298.06 2897.35 12695.68 1999.71 2597.50 13691.50 10296.16 9298.61 10386.28 11899.00 15096.19 8491.74 20699.51 77
EI-MVSNet-Vis-set95.76 6795.63 7096.17 11099.14 6490.33 13498.49 17897.82 6591.92 9594.75 11998.88 8087.06 9899.48 11695.40 10097.17 13498.70 150
SR-MVS-dyc-post95.75 6895.86 5795.41 13999.22 5987.26 21998.40 19097.21 16789.63 15196.67 8498.97 6286.73 10799.36 13096.62 7599.31 6599.60 67
CS-MVS95.75 6896.19 4394.40 17797.88 10786.22 24099.66 3496.12 24192.69 7898.07 4698.89 7887.09 9697.59 22496.71 7298.62 9999.39 87
dcpmvs_295.67 7096.18 4594.12 19098.82 8184.22 28397.37 25995.45 29390.70 11895.77 10198.63 10190.47 4598.68 16499.20 2099.22 7099.45 81
APD-MVS_3200maxsize95.64 7195.65 6895.62 13399.24 5887.80 19998.42 18597.22 16688.93 17696.64 8698.98 6185.49 13299.36 13096.68 7499.27 6899.70 52
fmvsm_s_conf0.1_n95.56 7295.68 6595.20 14794.35 24989.10 16799.50 5197.67 9494.76 3498.68 2799.03 5681.13 20399.86 6398.63 3297.36 12996.63 221
test_fmvsmvis_n_192095.47 7395.40 7195.70 12994.33 25090.22 13999.70 2696.98 19396.80 792.75 15198.89 7882.46 18599.92 4098.36 4098.33 10796.97 215
EI-MVSNet-UG-set95.43 7495.29 7395.86 12499.07 7089.87 15398.43 18497.80 7091.78 9794.11 13198.77 8586.25 12099.48 11694.95 11396.45 14398.22 177
PAPM_NR95.43 7495.05 8196.57 9099.42 4790.14 14198.58 16997.51 13390.65 12192.44 15598.90 7687.77 8299.90 5090.88 16999.32 6499.68 56
HPM-MVScopyleft95.41 7695.22 7595.99 11999.29 5589.14 16699.17 9597.09 18387.28 22795.40 10898.48 11284.93 14199.38 12895.64 9699.65 3899.47 80
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
jason95.40 7794.86 8497.03 5992.91 28894.23 5499.70 2696.30 22793.56 6496.73 8298.52 10681.46 19997.91 19796.08 8798.47 10598.96 123
jason: jason.
testing1195.33 7894.98 8396.37 10197.20 13392.31 9299.29 8197.68 9090.59 12394.43 12497.20 16490.79 4298.60 16795.25 10492.38 19298.18 180
HY-MVS88.56 795.29 7994.23 9498.48 1497.72 11096.41 1394.03 33698.74 1692.42 8495.65 10494.76 23786.52 11399.49 11295.29 10392.97 18399.53 74
test_yl95.27 8094.60 8797.28 5198.53 8992.98 7999.05 11698.70 1986.76 23994.65 12297.74 13787.78 8099.44 11995.57 9792.61 18899.44 82
DCV-MVSNet95.27 8094.60 8797.28 5198.53 8992.98 7999.05 11698.70 1986.76 23994.65 12297.74 13787.78 8099.44 11995.57 9792.61 18899.44 82
fmvsm_s_conf0.1_n_a95.16 8295.15 7795.18 14892.06 29988.94 17599.29 8197.53 12794.46 3898.98 1898.99 6079.99 20899.85 6798.24 4796.86 13896.73 219
EIA-MVS95.11 8395.27 7494.64 17096.34 17286.51 22899.59 4096.62 20592.51 8094.08 13298.64 9986.05 12398.24 18295.07 10898.50 10399.18 105
EC-MVSNet95.09 8495.17 7694.84 16195.42 20788.17 19199.48 5395.92 25991.47 10397.34 6398.36 11682.77 17497.41 23597.24 6298.58 10098.94 128
VNet95.08 8594.26 9397.55 4398.07 10193.88 6198.68 15398.73 1890.33 13297.16 7097.43 15379.19 21699.53 10996.91 7191.85 20499.24 100
canonicalmvs95.02 8693.96 10798.20 2197.53 12095.92 1798.71 14996.19 23691.78 9795.86 9998.49 11079.53 21399.03 14996.12 8591.42 21899.66 60
HPM-MVS_fast94.89 8794.62 8695.70 12999.11 6688.44 18999.14 10497.11 17985.82 25595.69 10398.47 11383.46 15999.32 13593.16 14699.63 4399.35 90
testing9194.88 8894.44 9096.21 10697.19 13591.90 9999.23 8797.66 9589.91 14493.66 14097.05 17590.21 5298.50 16993.52 13891.53 21598.25 173
testing9994.88 8894.45 8996.17 11097.20 13391.91 9899.20 8997.66 9589.95 14393.68 13997.06 17390.28 5198.50 16993.52 13891.54 21298.12 182
CSCG94.87 9094.71 8595.36 14099.54 3686.49 22999.34 7798.15 4082.71 30990.15 19399.25 2389.48 5899.86 6394.97 11298.82 9099.72 50
sss94.85 9193.94 10897.58 4096.43 16794.09 5998.93 12999.16 889.50 15895.27 11097.85 12981.50 19799.65 9892.79 15394.02 17498.99 120
test250694.80 9294.21 9596.58 8896.41 16892.18 9698.01 22798.96 1190.82 11693.46 14397.28 15785.92 12498.45 17289.82 18397.19 13299.12 111
API-MVS94.78 9394.18 9896.59 8799.21 6190.06 14898.80 14197.78 7383.59 29393.85 13699.21 2883.79 15499.97 2192.37 15699.00 7999.74 47
thisisatest051594.75 9494.19 9696.43 9696.13 18792.64 8999.47 5597.60 11287.55 22393.17 14697.59 14594.71 1398.42 17388.28 20193.20 18098.24 176
xiu_mvs_v1_base_debu94.73 9593.98 10496.99 6295.19 21695.24 2598.62 16196.50 21692.99 7297.52 5798.83 8272.37 26399.15 14197.03 6596.74 13996.58 224
xiu_mvs_v1_base94.73 9593.98 10496.99 6295.19 21695.24 2598.62 16196.50 21692.99 7297.52 5798.83 8272.37 26399.15 14197.03 6596.74 13996.58 224
xiu_mvs_v1_base_debi94.73 9593.98 10496.99 6295.19 21695.24 2598.62 16196.50 21692.99 7297.52 5798.83 8272.37 26399.15 14197.03 6596.74 13996.58 224
MVSFormer94.71 9894.08 10196.61 8595.05 23094.87 3697.77 24196.17 23886.84 23698.04 4898.52 10685.52 12995.99 30689.83 18198.97 8198.96 123
PVSNet_Blended_VisFu94.67 9994.11 9996.34 10397.14 14091.10 11699.32 7997.43 14992.10 9491.53 17096.38 20483.29 16399.68 9293.42 14396.37 14598.25 173
ACMMPcopyleft94.67 9994.30 9295.79 12699.25 5788.13 19398.41 18798.67 2290.38 13191.43 17198.72 9182.22 18999.95 3193.83 13395.76 15799.29 96
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CPTT-MVS94.60 10194.43 9195.09 15199.66 1286.85 22499.44 6297.47 14183.22 29894.34 12898.96 6682.50 18099.55 10694.81 11499.50 5398.88 133
diffmvspermissive94.59 10294.19 9695.81 12595.54 20390.69 12898.70 15195.68 28091.61 9995.96 9497.81 13180.11 20798.06 19096.52 8095.76 15798.67 152
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
mvsany_test194.57 10395.09 8092.98 21695.84 19382.07 31298.76 14795.24 30692.87 7796.45 8798.71 9484.81 14499.15 14197.68 5595.49 16297.73 190
DeepC-MVS91.02 494.56 10493.92 10996.46 9497.16 13890.76 12698.39 19497.11 17993.92 5088.66 20698.33 11778.14 22499.85 6795.02 10998.57 10198.78 145
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ETVMVS94.50 10593.90 11096.31 10497.48 12292.98 7999.07 11297.86 5988.09 20494.40 12696.90 18288.35 7097.28 24090.72 17492.25 19898.66 155
testing22294.48 10694.00 10395.95 12197.30 12892.27 9398.82 13897.92 5589.20 16594.82 11797.26 15987.13 9597.32 23991.95 15991.56 21098.25 173
MAR-MVS94.43 10794.09 10095.45 13799.10 6887.47 20998.39 19497.79 7288.37 19394.02 13399.17 3578.64 22299.91 4592.48 15598.85 8998.96 123
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
CHOSEN 1792x268894.35 10893.82 11295.95 12197.40 12388.74 18398.41 18798.27 3192.18 9191.43 17196.40 20178.88 21799.81 7993.59 13797.81 11599.30 95
CANet_DTU94.31 10993.35 12297.20 5597.03 14794.71 4498.62 16195.54 28895.61 2597.21 6698.47 11371.88 26899.84 6988.38 20097.46 12697.04 212
PLCcopyleft91.07 394.23 11094.01 10294.87 15999.17 6387.49 20899.25 8696.55 21388.43 19191.26 17598.21 12485.92 12499.86 6389.77 18597.57 12197.24 205
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
test_fmvsmconf0.01_n94.14 11193.51 11896.04 11586.79 36789.19 16499.28 8495.94 25595.70 2195.50 10698.49 11073.27 25599.79 8298.28 4598.32 10999.15 107
114514_t94.06 11293.05 13197.06 5899.08 6992.26 9498.97 12797.01 19182.58 31192.57 15398.22 12280.68 20599.30 13689.34 19199.02 7899.63 64
baseline294.04 11393.80 11394.74 16593.07 28790.25 13698.12 21698.16 3989.86 14586.53 22996.95 17995.56 698.05 19291.44 16394.53 16995.93 237
thisisatest053094.00 11493.52 11795.43 13895.76 19690.02 15098.99 12497.60 11286.58 24291.74 16297.36 15694.78 1298.34 17586.37 22392.48 19197.94 187
casdiffmvs_mvgpermissive94.00 11493.33 12396.03 11695.22 21490.90 12499.09 11095.99 24890.58 12491.55 16997.37 15579.91 20998.06 19095.01 11095.22 16499.13 110
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
casdiffmvspermissive93.98 11693.43 11995.61 13495.07 22989.86 15498.80 14195.84 27290.98 11392.74 15297.66 14279.71 21098.10 18794.72 11795.37 16398.87 135
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVS93.92 11792.28 14798.83 795.69 19896.82 896.22 30498.17 3784.89 27384.34 24798.61 10379.32 21599.83 7393.88 13199.43 5999.86 29
baseline93.91 11893.30 12495.72 12895.10 22790.07 14597.48 25595.91 26491.03 11193.54 14297.68 14079.58 21198.02 19494.27 12595.14 16599.08 115
OMC-MVS93.90 11993.62 11694.73 16698.63 8787.00 22298.04 22696.56 21292.19 9092.46 15498.73 8979.49 21499.14 14592.16 15894.34 17298.03 184
Effi-MVS+93.87 12093.15 12996.02 11795.79 19490.76 12696.70 28995.78 27386.98 23395.71 10297.17 16879.58 21198.01 19594.57 12296.09 15299.31 94
test_cas_vis1_n_192093.86 12193.74 11494.22 18695.39 21086.08 24699.73 2296.07 24596.38 1797.19 6997.78 13465.46 31999.86 6396.71 7298.92 8596.73 219
TESTMET0.1,193.82 12293.26 12695.49 13695.21 21590.25 13699.15 10197.54 12689.18 16791.79 16194.87 23489.13 6097.63 22186.21 22596.29 14998.60 156
AdaColmapbinary93.82 12293.06 13096.10 11399.88 189.07 16898.33 19897.55 12386.81 23890.39 19098.65 9875.09 23799.98 993.32 14497.53 12499.26 99
EPP-MVSNet93.75 12493.67 11594.01 19695.86 19285.70 25898.67 15597.66 9584.46 27891.36 17497.18 16791.16 3197.79 20692.93 14993.75 17698.53 158
thres20093.69 12592.59 14396.97 6697.76 10994.74 4399.35 7699.36 289.23 16491.21 17796.97 17883.42 16098.77 15785.08 23790.96 22197.39 200
PVSNet87.13 1293.69 12592.83 13896.28 10597.99 10490.22 13999.38 7198.93 1291.42 10693.66 14097.68 14071.29 27599.64 10087.94 20797.20 13198.98 121
HyFIR lowres test93.68 12793.29 12594.87 15997.57 11988.04 19598.18 21098.47 2587.57 22291.24 17695.05 23185.49 13297.46 23193.22 14592.82 18499.10 113
MVS_Test93.67 12892.67 14196.69 8296.72 15792.66 8697.22 26896.03 24787.69 22095.12 11494.03 24681.55 19698.28 17989.17 19596.46 14299.14 108
CNLPA93.64 12992.74 13996.36 10298.96 7590.01 15199.19 9095.89 26786.22 25089.40 20198.85 8180.66 20699.84 6988.57 19896.92 13799.24 100
PMMVS93.62 13093.90 11092.79 22096.79 15581.40 31998.85 13596.81 19891.25 10996.82 7998.15 12677.02 23098.13 18593.15 14796.30 14898.83 139
iter_conf0593.48 13193.18 12894.39 18097.15 13994.17 5799.30 8092.97 35392.38 8886.70 22895.42 22495.67 596.59 26594.67 11984.32 26392.39 260
CDS-MVSNet93.47 13293.04 13294.76 16394.75 24189.45 16298.82 13897.03 18887.91 21190.97 17896.48 19989.06 6196.36 28389.50 18792.81 18698.49 160
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
131493.44 13391.98 15597.84 3295.24 21294.38 5296.22 30497.92 5590.18 13582.28 27697.71 13977.63 22799.80 8191.94 16098.67 9799.34 92
tfpn200view993.43 13492.27 14896.90 6997.68 11294.84 3899.18 9299.36 288.45 18890.79 18096.90 18283.31 16198.75 15984.11 25390.69 22397.12 207
3Dnovator+87.72 893.43 13491.84 15898.17 2295.73 19795.08 3298.92 13197.04 18691.42 10681.48 29397.60 14474.60 24099.79 8290.84 17098.97 8199.64 62
thres40093.39 13692.27 14896.73 7897.68 11294.84 3899.18 9299.36 288.45 18890.79 18096.90 18283.31 16198.75 15984.11 25390.69 22396.61 222
PVSNet_BlendedMVS93.36 13793.20 12793.84 20198.77 8391.61 10499.47 5598.04 4891.44 10494.21 12992.63 27883.50 15799.87 5897.41 5983.37 27490.05 337
thres100view90093.34 13892.15 15196.90 6997.62 11494.84 3899.06 11599.36 287.96 20990.47 18896.78 19083.29 16398.75 15984.11 25390.69 22397.12 207
tttt051793.30 13993.01 13494.17 18895.57 20186.47 23098.51 17597.60 11285.99 25390.55 18597.19 16694.80 1198.31 17685.06 23891.86 20397.74 189
UA-Net93.30 13992.62 14295.34 14196.27 17588.53 18895.88 31496.97 19490.90 11495.37 10997.07 17282.38 18799.10 14783.91 25794.86 16898.38 166
test-mter93.27 14192.89 13794.40 17794.94 23587.27 21799.15 10197.25 16188.95 17491.57 16694.04 24488.03 7897.58 22585.94 22996.13 15098.36 169
Vis-MVSNet (Re-imp)93.26 14293.00 13594.06 19396.14 18486.71 22798.68 15396.70 20188.30 19789.71 20097.64 14385.43 13596.39 28188.06 20596.32 14699.08 115
iter_conf_final93.22 14393.04 13293.76 20397.03 14792.22 9599.05 11693.31 35092.11 9386.93 22395.42 22495.01 1096.59 26593.98 12884.48 26092.46 259
UWE-MVS93.18 14493.40 12192.50 22896.56 16083.55 29298.09 22297.84 6189.50 15891.72 16396.23 20791.08 3496.70 26186.28 22493.33 17997.26 204
thres600view793.18 14492.00 15496.75 7697.62 11494.92 3399.07 11299.36 287.96 20990.47 18896.78 19083.29 16398.71 16382.93 26790.47 22796.61 222
3Dnovator87.35 1193.17 14691.77 16097.37 4995.41 20893.07 7698.82 13897.85 6091.53 10182.56 26897.58 14671.97 26799.82 7691.01 16799.23 6999.22 103
test-LLR93.11 14792.68 14094.40 17794.94 23587.27 21799.15 10197.25 16190.21 13391.57 16694.04 24484.89 14297.58 22585.94 22996.13 15098.36 169
test_vis1_n_192093.08 14893.42 12092.04 23896.31 17379.36 33699.83 996.06 24696.72 998.53 3298.10 12758.57 34499.91 4597.86 5398.79 9496.85 217
IS-MVSNet93.00 14992.51 14494.49 17396.14 18487.36 21398.31 20195.70 27888.58 18490.17 19297.50 14983.02 17097.22 24187.06 21296.07 15498.90 132
CostFormer92.89 15092.48 14594.12 19094.99 23285.89 25392.89 34697.00 19286.98 23395.00 11690.78 30990.05 5497.51 22992.92 15091.73 20798.96 123
tpmrst92.78 15192.16 15094.65 16896.27 17587.45 21091.83 35597.10 18289.10 17094.68 12190.69 31388.22 7297.73 21689.78 18491.80 20598.77 146
MVSTER92.71 15292.32 14693.86 20097.29 13092.95 8299.01 12296.59 20890.09 13985.51 23694.00 24894.61 1696.56 26990.77 17383.03 27792.08 277
1112_ss92.71 15291.55 16496.20 10795.56 20291.12 11498.48 18094.69 32488.29 19886.89 22598.50 10887.02 9998.66 16584.75 24289.77 23198.81 141
Vis-MVSNetpermissive92.64 15491.85 15795.03 15595.12 22388.23 19098.48 18096.81 19891.61 9992.16 15997.22 16371.58 27398.00 19685.85 23297.81 11598.88 133
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
TAMVS92.62 15592.09 15394.20 18794.10 25687.68 20198.41 18796.97 19487.53 22489.74 19896.04 21384.77 14696.49 27688.97 19792.31 19598.42 162
baseline192.61 15691.28 16996.58 8897.05 14694.63 4697.72 24596.20 23489.82 14688.56 20796.85 18686.85 10397.82 20488.42 19980.10 29397.30 202
EPMVS92.59 15791.59 16395.59 13597.22 13290.03 14991.78 35698.04 4890.42 13091.66 16590.65 31686.49 11597.46 23181.78 27896.31 14799.28 97
ET-MVSNet_ETH3D92.56 15891.45 16695.88 12396.39 17094.13 5899.46 5996.97 19492.18 9166.94 37698.29 12094.65 1594.28 34994.34 12483.82 27099.24 100
mvs_anonymous92.50 15991.65 16295.06 15296.60 15989.64 15897.06 27396.44 22086.64 24184.14 24893.93 25082.49 18196.17 29991.47 16296.08 15399.35 90
h-mvs3392.47 16091.95 15694.05 19497.13 14185.01 27398.36 19698.08 4493.85 5596.27 9096.73 19283.19 16699.43 12295.81 9068.09 36197.70 191
test_fmvs192.35 16192.94 13690.57 27297.19 13575.43 35799.55 4494.97 31395.20 3196.82 7997.57 14759.59 34299.84 6997.30 6198.29 11096.46 229
BH-w/o92.32 16291.79 15993.91 19996.85 15086.18 24299.11 10995.74 27688.13 20284.81 24097.00 17777.26 22997.91 19789.16 19698.03 11297.64 192
ECVR-MVScopyleft92.29 16391.33 16895.15 14996.41 16887.84 19898.10 21994.84 31790.82 11691.42 17397.28 15765.61 31698.49 17190.33 17797.19 13299.12 111
EPNet_dtu92.28 16492.15 15192.70 22497.29 13084.84 27598.64 15997.82 6592.91 7593.02 14997.02 17685.48 13495.70 32072.25 34494.89 16797.55 197
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Test_1112_low_res92.27 16590.97 17596.18 10895.53 20491.10 11698.47 18294.66 32588.28 19986.83 22693.50 26387.00 10098.65 16684.69 24389.74 23298.80 142
LFMVS92.23 16690.84 17996.42 9798.24 9591.08 11898.24 20596.22 23383.39 29694.74 12098.31 11861.12 33798.85 15494.45 12392.82 18499.32 93
FA-MVS(test-final)92.22 16791.08 17395.64 13296.05 18888.98 17291.60 35997.25 16186.99 23091.84 16092.12 28183.03 16999.00 15086.91 21793.91 17598.93 129
test111192.12 16891.19 17194.94 15796.15 18287.36 21398.12 21694.84 31790.85 11590.97 17897.26 15965.60 31798.37 17489.74 18697.14 13599.07 117
IB-MVS89.43 692.12 16890.83 18195.98 12095.40 20990.78 12599.81 1198.06 4591.23 11085.63 23593.66 25890.63 4398.78 15691.22 16471.85 35198.36 169
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
F-COLMAP92.07 17091.75 16193.02 21598.16 9982.89 30298.79 14595.97 25086.54 24487.92 21197.80 13278.69 22199.65 9885.97 22795.93 15696.53 227
PatchmatchNetpermissive92.05 17191.04 17495.06 15296.17 18189.04 16991.26 36497.26 16089.56 15690.64 18490.56 32288.35 7097.11 24479.53 29196.07 15499.03 118
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
UGNet91.91 17290.85 17895.10 15097.06 14588.69 18498.01 22798.24 3492.41 8592.39 15693.61 25960.52 33999.68 9288.14 20397.25 13096.92 216
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
tpm291.77 17391.09 17293.82 20294.83 23985.56 26292.51 35197.16 17484.00 28493.83 13790.66 31587.54 8497.17 24287.73 20991.55 21198.72 148
Fast-Effi-MVS+91.72 17490.79 18294.49 17395.89 19187.40 21299.54 4995.70 27885.01 27189.28 20395.68 21977.75 22697.57 22883.22 26295.06 16698.51 159
hse-mvs291.67 17591.51 16592.15 23596.22 17782.61 30897.74 24497.53 12793.85 5596.27 9096.15 20883.19 16697.44 23395.81 9066.86 36896.40 231
HQP-MVS91.50 17691.23 17092.29 23093.95 26186.39 23399.16 9696.37 22393.92 5087.57 21496.67 19573.34 25297.77 20893.82 13486.29 24492.72 254
PatchMatch-RL91.47 17790.54 18694.26 18498.20 9686.36 23596.94 27797.14 17587.75 21688.98 20495.75 21871.80 27099.40 12780.92 28397.39 12897.02 213
BH-untuned91.46 17890.84 17993.33 21096.51 16484.83 27698.84 13795.50 29086.44 24983.50 25296.70 19375.49 23697.77 20886.78 22097.81 11597.40 199
QAPM91.41 17989.49 19997.17 5695.66 20093.42 7098.60 16597.51 13380.92 33481.39 29497.41 15472.89 26099.87 5882.33 27298.68 9698.21 178
FE-MVS91.38 18090.16 19195.05 15496.46 16687.53 20789.69 37397.84 6182.97 30392.18 15892.00 28784.07 15298.93 15380.71 28595.52 16198.68 151
HQP_MVS91.26 18190.95 17692.16 23493.84 26886.07 24899.02 12096.30 22793.38 6686.99 22196.52 19772.92 25897.75 21493.46 14186.17 24792.67 256
PCF-MVS89.78 591.26 18189.63 19696.16 11295.44 20691.58 10695.29 32496.10 24285.07 26882.75 26297.45 15278.28 22399.78 8480.60 28795.65 16097.12 207
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
BH-RMVSNet91.25 18389.99 19295.03 15596.75 15688.55 18698.65 15794.95 31487.74 21787.74 21397.80 13268.27 29298.14 18480.53 28897.49 12598.41 163
VDD-MVS91.24 18490.18 19094.45 17697.08 14485.84 25698.40 19096.10 24286.99 23093.36 14498.16 12554.27 36199.20 13896.59 7890.63 22698.31 172
SDMVSNet91.09 18589.91 19394.65 16896.80 15390.54 13297.78 23997.81 6888.34 19585.73 23295.26 22866.44 31098.26 18094.25 12686.75 24195.14 240
test_fmvs1_n91.07 18691.41 16790.06 28694.10 25674.31 36199.18 9294.84 31794.81 3396.37 8997.46 15150.86 37299.82 7697.14 6497.90 11396.04 236
CLD-MVS91.06 18790.71 18392.10 23694.05 26086.10 24599.55 4496.29 23094.16 4584.70 24297.17 16869.62 28497.82 20494.74 11686.08 24992.39 260
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
ab-mvs91.05 18889.17 20696.69 8295.96 19091.72 10292.62 35097.23 16585.61 25989.74 19893.89 25268.55 28999.42 12391.09 16587.84 23698.92 131
XVG-OURS-SEG-HR90.95 18990.66 18591.83 24195.18 21981.14 32695.92 31195.92 25988.40 19290.33 19197.85 12970.66 27899.38 12892.83 15188.83 23394.98 243
cascas90.93 19089.33 20495.76 12795.69 19893.03 7898.99 12496.59 20880.49 33686.79 22794.45 24165.23 32098.60 16793.52 13892.18 19995.66 239
XVG-OURS90.83 19190.49 18791.86 24095.23 21381.25 32395.79 31995.92 25988.96 17390.02 19598.03 12871.60 27299.35 13391.06 16687.78 23794.98 243
TR-MVS90.77 19289.44 20094.76 16396.31 17388.02 19697.92 23195.96 25285.52 26088.22 21097.23 16266.80 30698.09 18884.58 24592.38 19298.17 181
OpenMVScopyleft85.28 1490.75 19388.84 21396.48 9393.58 27593.51 6898.80 14197.41 15182.59 31078.62 32297.49 15068.00 29699.82 7684.52 24798.55 10296.11 235
FIs90.70 19489.87 19493.18 21292.29 29491.12 11498.17 21298.25 3289.11 16983.44 25394.82 23682.26 18896.17 29987.76 20882.76 27992.25 266
X-MVStestdata90.69 19588.66 21896.77 7499.62 2290.66 13099.43 6597.58 11892.41 8596.86 7429.59 40787.37 8899.87 5895.65 9299.43 5999.78 38
SCA90.64 19689.25 20594.83 16294.95 23488.83 17996.26 30197.21 16790.06 14290.03 19490.62 31866.61 30796.81 25783.16 26394.36 17198.84 136
GeoE90.60 19789.56 19793.72 20695.10 22785.43 26399.41 6894.94 31583.96 28687.21 22096.83 18974.37 24497.05 24880.50 28993.73 17798.67 152
test_vis1_n90.40 19890.27 18990.79 26791.55 30976.48 35399.12 10894.44 32994.31 4197.34 6396.95 17943.60 38399.42 12397.57 5797.60 12096.47 228
TAPA-MVS87.50 990.35 19989.05 20994.25 18598.48 9185.17 27098.42 18596.58 21182.44 31687.24 21998.53 10582.77 17498.84 15559.09 38297.88 11498.72 148
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
miper_enhance_ethall90.33 20089.70 19592.22 23197.12 14288.93 17798.35 19795.96 25288.60 18383.14 26092.33 28087.38 8796.18 29786.49 22277.89 30291.55 293
CVMVSNet90.30 20190.91 17788.46 32094.32 25173.58 36597.61 25297.59 11690.16 13888.43 20997.10 17076.83 23192.86 35982.64 26993.54 17898.93 129
nrg03090.23 20288.87 21294.32 18291.53 31093.54 6798.79 14595.89 26788.12 20384.55 24494.61 23978.80 22096.88 25492.35 15775.21 31692.53 258
FC-MVSNet-test90.22 20389.40 20292.67 22691.78 30689.86 15497.89 23298.22 3588.81 17982.96 26194.66 23881.90 19495.96 30885.89 23182.52 28292.20 272
LS3D90.19 20488.72 21694.59 17298.97 7386.33 23796.90 27996.60 20774.96 36184.06 25098.74 8875.78 23499.83 7374.93 32497.57 12197.62 195
AUN-MVS90.17 20589.50 19892.19 23396.21 17882.67 30697.76 24397.53 12788.05 20591.67 16496.15 20883.10 16897.47 23088.11 20466.91 36796.43 230
dp90.16 20688.83 21494.14 18996.38 17186.42 23191.57 36097.06 18584.76 27588.81 20590.19 33484.29 14997.43 23475.05 32391.35 22098.56 157
GA-MVS90.10 20788.69 21794.33 18192.44 29287.97 19799.08 11196.26 23189.65 15086.92 22493.11 27168.09 29496.96 25082.54 27190.15 22898.05 183
VDDNet90.08 20888.54 22494.69 16794.41 24887.68 20198.21 20896.40 22176.21 35693.33 14597.75 13654.93 35998.77 15794.71 11890.96 22197.61 196
gg-mvs-nofinetune90.00 20987.71 23696.89 7396.15 18294.69 4585.15 38297.74 7768.32 38292.97 15060.16 39596.10 396.84 25593.89 13098.87 8899.14 108
mvsmamba89.99 21089.42 20191.69 24890.64 32286.34 23698.40 19092.27 36291.01 11284.80 24194.93 23276.12 23296.51 27392.81 15283.84 26792.21 270
Effi-MVS+-dtu89.97 21190.68 18487.81 32495.15 22071.98 37197.87 23595.40 29791.92 9587.57 21491.44 29774.27 24696.84 25589.45 18893.10 18294.60 245
EI-MVSNet89.87 21289.38 20391.36 25394.32 25185.87 25497.61 25296.59 20885.10 26685.51 23697.10 17081.30 20296.56 26983.85 25983.03 27791.64 285
OPM-MVS89.76 21389.15 20791.57 25090.53 32385.58 26198.11 21895.93 25892.88 7686.05 23096.47 20067.06 30597.87 20189.29 19486.08 24991.26 306
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
tpm89.67 21488.95 21191.82 24292.54 29181.43 31892.95 34595.92 25987.81 21390.50 18789.44 34184.99 14095.65 32183.67 26082.71 28098.38 166
UniMVSNet_NR-MVSNet89.60 21588.55 22392.75 22292.17 29790.07 14598.74 14898.15 4088.37 19383.21 25693.98 24982.86 17295.93 31086.95 21572.47 34592.25 266
cl2289.57 21688.79 21591.91 23997.94 10587.62 20497.98 22996.51 21585.03 26982.37 27591.79 29083.65 15596.50 27485.96 22877.89 30291.61 290
PS-MVSNAJss89.54 21789.05 20991.00 26088.77 34784.36 28197.39 25695.97 25088.47 18581.88 28693.80 25482.48 18296.50 27489.34 19183.34 27692.15 273
UniMVSNet (Re)89.50 21888.32 22793.03 21492.21 29690.96 12298.90 13398.39 2789.13 16883.22 25592.03 28381.69 19596.34 28986.79 21972.53 34491.81 282
sd_testset89.23 21988.05 23392.74 22396.80 15385.33 26695.85 31797.03 18888.34 19585.73 23295.26 22861.12 33797.76 21385.61 23386.75 24195.14 240
tpmvs89.16 22087.76 23493.35 20997.19 13584.75 27790.58 37197.36 15681.99 32184.56 24389.31 34483.98 15398.17 18374.85 32690.00 23097.12 207
VPA-MVSNet89.10 22187.66 23793.45 20892.56 29091.02 12097.97 23098.32 3086.92 23586.03 23192.01 28568.84 28897.10 24690.92 16875.34 31592.23 268
ADS-MVSNet88.99 22287.30 24294.07 19296.21 17887.56 20687.15 37796.78 20083.01 30189.91 19687.27 35778.87 21897.01 24974.20 33192.27 19697.64 192
test0.0.03 188.96 22388.61 21990.03 29091.09 31684.43 28098.97 12797.02 19090.21 13380.29 30396.31 20684.89 14291.93 37372.98 34085.70 25293.73 247
miper_ehance_all_eth88.94 22488.12 23191.40 25195.32 21186.93 22397.85 23695.55 28784.19 28181.97 28491.50 29684.16 15095.91 31384.69 24377.89 30291.36 301
RRT_MVS88.91 22588.56 22289.93 29190.31 32681.61 31698.08 22396.38 22289.30 16282.41 27394.84 23573.15 25696.04 30590.38 17682.23 28492.15 273
tpm cat188.89 22687.27 24393.76 20395.79 19485.32 26790.76 36997.09 18376.14 35785.72 23488.59 34782.92 17198.04 19376.96 31091.43 21797.90 188
LPG-MVS_test88.86 22788.47 22590.06 28693.35 28280.95 32898.22 20695.94 25587.73 21883.17 25896.11 21066.28 31197.77 20890.19 17985.19 25491.46 296
Anonymous20240521188.84 22887.03 24794.27 18398.14 10084.18 28498.44 18395.58 28676.79 35589.34 20296.88 18553.42 36499.54 10887.53 21187.12 24099.09 114
Fast-Effi-MVS+-dtu88.84 22888.59 22189.58 30293.44 28078.18 34698.65 15794.62 32688.46 18784.12 24995.37 22768.91 28696.52 27282.06 27591.70 20894.06 246
DU-MVS88.83 23087.51 23892.79 22091.46 31190.07 14598.71 14997.62 10988.87 17883.21 25693.68 25674.63 23895.93 31086.95 21572.47 34592.36 262
CR-MVSNet88.83 23087.38 24193.16 21393.47 27786.24 23884.97 38494.20 33788.92 17790.76 18286.88 36184.43 14794.82 34170.64 34892.17 20098.41 163
FMVSNet388.81 23287.08 24693.99 19796.52 16394.59 4798.08 22396.20 23485.85 25482.12 27991.60 29474.05 24895.40 32979.04 29580.24 29091.99 280
ACMM86.95 1388.77 23388.22 22990.43 27793.61 27481.34 32198.50 17695.92 25987.88 21283.85 25195.20 23067.20 30397.89 19986.90 21884.90 25692.06 278
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
DP-MVS88.75 23486.56 25495.34 14198.92 7787.45 21097.64 25193.52 34870.55 37381.49 29297.25 16174.43 24399.88 5471.14 34794.09 17398.67 152
ACMP87.39 1088.71 23588.24 22890.12 28593.91 26681.06 32798.50 17695.67 28189.43 16080.37 30295.55 22065.67 31497.83 20390.55 17584.51 25891.47 295
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
WB-MVSnew88.69 23688.34 22689.77 29794.30 25585.99 25198.14 21397.31 15987.15 22987.85 21296.07 21269.91 27995.52 32472.83 34291.47 21687.80 361
dmvs_re88.69 23688.06 23290.59 27193.83 27078.68 34295.75 32096.18 23787.99 20884.48 24696.32 20567.52 30096.94 25284.98 24085.49 25396.14 234
myMVS_eth3d88.68 23889.07 20887.50 32795.14 22179.74 33497.68 24896.66 20386.52 24582.63 26596.84 18785.22 13989.89 37969.43 35391.54 21292.87 252
LCM-MVSNet-Re88.59 23988.61 21988.51 31995.53 20472.68 36996.85 28188.43 38888.45 18873.14 35390.63 31775.82 23394.38 34892.95 14895.71 15998.48 161
WR-MVS88.54 24087.22 24592.52 22791.93 30489.50 16198.56 17097.84 6186.99 23081.87 28793.81 25374.25 24795.92 31285.29 23574.43 32592.12 275
IterMVS-LS88.34 24187.44 23991.04 25994.10 25685.85 25598.10 21995.48 29185.12 26582.03 28391.21 30281.35 20195.63 32283.86 25875.73 31491.63 286
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
VPNet88.30 24286.57 25393.49 20791.95 30291.35 10898.18 21097.20 17188.61 18284.52 24594.89 23362.21 33296.76 26089.34 19172.26 34892.36 262
MSDG88.29 24386.37 25694.04 19596.90 14986.15 24496.52 29294.36 33477.89 35179.22 31796.95 17969.72 28299.59 10473.20 33992.58 19096.37 232
test_djsdf88.26 24487.73 23589.84 29488.05 35682.21 31097.77 24196.17 23886.84 23682.41 27391.95 28972.07 26695.99 30689.83 18184.50 25991.32 303
c3_l88.19 24587.23 24491.06 25894.97 23386.17 24397.72 24595.38 29883.43 29581.68 29191.37 29882.81 17395.72 31984.04 25673.70 33391.29 305
D2MVS87.96 24687.39 24089.70 29991.84 30583.40 29498.31 20198.49 2388.04 20678.23 32890.26 32873.57 25096.79 25984.21 25083.53 27288.90 353
bld_raw_dy_0_6487.82 24786.71 25291.15 25689.54 33885.61 25997.37 25989.16 38689.26 16383.42 25494.50 24065.79 31396.18 29788.00 20683.37 27491.67 284
cl____87.82 24786.79 25190.89 26494.88 23785.43 26397.81 23795.24 30682.91 30880.71 29991.22 30181.97 19395.84 31581.34 28075.06 31791.40 300
DIV-MVS_self_test87.82 24786.81 25090.87 26594.87 23885.39 26597.81 23795.22 31182.92 30780.76 29891.31 30081.99 19195.81 31781.36 27975.04 31891.42 299
eth_miper_zixun_eth87.76 25087.00 24890.06 28694.67 24382.65 30797.02 27695.37 29984.19 28181.86 28991.58 29581.47 19895.90 31483.24 26173.61 33491.61 290
testing387.75 25188.22 22986.36 33594.66 24477.41 35199.52 5097.95 5486.05 25281.12 29596.69 19486.18 12189.31 38361.65 37790.12 22992.35 265
TranMVSNet+NR-MVSNet87.75 25186.31 25792.07 23790.81 31988.56 18598.33 19897.18 17287.76 21581.87 28793.90 25172.45 26295.43 32783.13 26571.30 35592.23 268
XXY-MVS87.75 25186.02 26192.95 21890.46 32489.70 15797.71 24795.90 26584.02 28380.95 29694.05 24367.51 30197.10 24685.16 23678.41 29992.04 279
NR-MVSNet87.74 25486.00 26292.96 21791.46 31190.68 12996.65 29097.42 15088.02 20773.42 35093.68 25677.31 22895.83 31684.26 24971.82 35292.36 262
Anonymous2024052987.66 25585.58 26893.92 19897.59 11785.01 27398.13 21497.13 17766.69 38788.47 20896.01 21455.09 35899.51 11087.00 21484.12 26597.23 206
ADS-MVSNet287.62 25686.88 24989.86 29396.21 17879.14 33887.15 37792.99 35283.01 30189.91 19687.27 35778.87 21892.80 36274.20 33192.27 19697.64 192
pmmvs487.58 25786.17 26091.80 24389.58 33688.92 17897.25 26595.28 30282.54 31280.49 30193.17 27075.62 23596.05 30482.75 26878.90 29790.42 328
jajsoiax87.35 25886.51 25589.87 29287.75 36181.74 31497.03 27495.98 24988.47 18580.15 30593.80 25461.47 33496.36 28389.44 18984.47 26191.50 294
PVSNet_083.28 1687.31 25985.16 27493.74 20594.78 24084.59 27898.91 13298.69 2189.81 14778.59 32493.23 26861.95 33399.34 13494.75 11555.72 38897.30 202
v2v48287.27 26085.76 26591.78 24789.59 33587.58 20598.56 17095.54 28884.53 27782.51 26991.78 29173.11 25796.47 27782.07 27474.14 33191.30 304
mvs_tets87.09 26186.22 25889.71 29887.87 35781.39 32096.73 28895.90 26588.19 20179.99 30793.61 25959.96 34196.31 29189.40 19084.34 26291.43 298
V4287.00 26285.68 26790.98 26189.91 32986.08 24698.32 20095.61 28483.67 29282.72 26390.67 31474.00 24996.53 27181.94 27774.28 32890.32 330
miper_lstm_enhance86.90 26386.20 25989.00 31494.53 24681.19 32496.74 28795.24 30682.33 31780.15 30590.51 32581.99 19194.68 34580.71 28573.58 33591.12 309
FMVSNet286.90 26384.79 28293.24 21195.11 22492.54 9097.67 25095.86 27182.94 30480.55 30091.17 30362.89 32995.29 33177.23 30779.71 29691.90 281
v114486.83 26585.31 27391.40 25189.75 33387.21 22198.31 20195.45 29383.22 29882.70 26490.78 30973.36 25196.36 28379.49 29274.69 32290.63 325
MS-PatchMatch86.75 26685.92 26389.22 30991.97 30082.47 30996.91 27896.14 24083.74 28977.73 32993.53 26258.19 34697.37 23876.75 31398.35 10687.84 359
anonymousdsp86.69 26785.75 26689.53 30386.46 36982.94 29996.39 29595.71 27783.97 28579.63 31290.70 31268.85 28795.94 30986.01 22684.02 26689.72 343
GBi-Net86.67 26884.96 27691.80 24395.11 22488.81 18096.77 28395.25 30382.94 30482.12 27990.25 32962.89 32994.97 33679.04 29580.24 29091.62 287
test186.67 26884.96 27691.80 24395.11 22488.81 18096.77 28395.25 30382.94 30482.12 27990.25 32962.89 32994.97 33679.04 29580.24 29091.62 287
MVP-Stereo86.61 27085.83 26488.93 31688.70 34983.85 28996.07 30894.41 33382.15 32075.64 34091.96 28867.65 29996.45 27977.20 30998.72 9586.51 371
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
CP-MVSNet86.54 27185.45 27189.79 29691.02 31882.78 30597.38 25897.56 12285.37 26279.53 31493.03 27271.86 26995.25 33279.92 29073.43 33991.34 302
WR-MVS_H86.53 27285.49 27089.66 30191.04 31783.31 29697.53 25498.20 3684.95 27279.64 31190.90 30778.01 22595.33 33076.29 31672.81 34190.35 329
tt080586.50 27384.79 28291.63 24991.97 30081.49 31796.49 29397.38 15482.24 31882.44 27095.82 21751.22 36998.25 18184.55 24680.96 28995.13 242
v14419286.40 27484.89 27990.91 26289.48 34085.59 26098.21 20895.43 29682.45 31582.62 26790.58 32172.79 26196.36 28378.45 30274.04 33290.79 318
v14886.38 27585.06 27590.37 28189.47 34184.10 28598.52 17295.48 29183.80 28880.93 29790.22 33274.60 24096.31 29180.92 28371.55 35390.69 323
v119286.32 27684.71 28491.17 25589.53 33986.40 23298.13 21495.44 29582.52 31382.42 27290.62 31871.58 27396.33 29077.23 30774.88 31990.79 318
Patchmatch-test86.25 27784.06 29492.82 21994.42 24782.88 30382.88 39194.23 33671.58 36979.39 31590.62 31889.00 6396.42 28063.03 37391.37 21999.16 106
v886.11 27884.45 28991.10 25789.99 32886.85 22497.24 26695.36 30081.99 32179.89 30989.86 33774.53 24296.39 28178.83 29972.32 34790.05 337
v192192086.02 27984.44 29090.77 26889.32 34285.20 26898.10 21995.35 30182.19 31982.25 27790.71 31170.73 27696.30 29476.85 31274.49 32490.80 317
JIA-IIPM85.97 28084.85 28089.33 30893.23 28473.68 36485.05 38397.13 17769.62 37891.56 16868.03 39388.03 7896.96 25077.89 30593.12 18197.34 201
pmmvs585.87 28184.40 29290.30 28288.53 35184.23 28298.60 16593.71 34481.53 32680.29 30392.02 28464.51 32295.52 32482.04 27678.34 30091.15 308
XVG-ACMP-BASELINE85.86 28284.95 27888.57 31889.90 33077.12 35294.30 33295.60 28587.40 22682.12 27992.99 27453.42 36497.66 21885.02 23983.83 26890.92 314
Baseline_NR-MVSNet85.83 28384.82 28188.87 31788.73 34883.34 29598.63 16091.66 37180.41 33982.44 27091.35 29974.63 23895.42 32884.13 25271.39 35487.84 359
PS-CasMVS85.81 28484.58 28789.49 30690.77 32082.11 31197.20 26997.36 15684.83 27479.12 31992.84 27567.42 30295.16 33478.39 30373.25 34091.21 307
IterMVS85.81 28484.67 28589.22 30993.51 27683.67 29196.32 29894.80 32085.09 26778.69 32090.17 33566.57 30993.17 35879.48 29377.42 30890.81 316
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v124085.77 28684.11 29390.73 26989.26 34385.15 27197.88 23495.23 31081.89 32482.16 27890.55 32369.60 28596.31 29175.59 32174.87 32090.72 322
IterMVS-SCA-FT85.73 28784.64 28689.00 31493.46 27982.90 30196.27 29994.70 32385.02 27078.62 32290.35 32766.61 30793.33 35579.38 29477.36 30990.76 320
v1085.73 28784.01 29590.87 26590.03 32786.73 22697.20 26995.22 31181.25 32979.85 31089.75 33873.30 25496.28 29576.87 31172.64 34389.61 345
UniMVSNet_ETH3D85.65 28983.79 29791.21 25490.41 32580.75 33095.36 32395.78 27378.76 34581.83 29094.33 24249.86 37496.66 26284.30 24883.52 27396.22 233
PatchT85.44 29083.19 29992.22 23193.13 28683.00 29883.80 39096.37 22370.62 37290.55 18579.63 38584.81 14494.87 33958.18 38491.59 20998.79 143
RPSCF85.33 29185.55 26984.67 34794.63 24562.28 38693.73 33893.76 34274.38 36485.23 23997.06 17364.09 32398.31 17680.98 28186.08 24993.41 251
PEN-MVS85.21 29283.93 29689.07 31389.89 33181.31 32297.09 27297.24 16484.45 27978.66 32192.68 27768.44 29194.87 33975.98 31870.92 35691.04 311
test_fmvs285.10 29385.45 27184.02 35089.85 33265.63 38498.49 17892.59 35890.45 12885.43 23893.32 26443.94 38196.59 26590.81 17184.19 26489.85 341
RPMNet85.07 29481.88 31194.64 17093.47 27786.24 23884.97 38497.21 16764.85 38990.76 18278.80 38680.95 20499.27 13753.76 38892.17 20098.41 163
AllTest84.97 29583.12 30090.52 27596.82 15178.84 34095.89 31292.17 36477.96 34975.94 33695.50 22155.48 35499.18 13971.15 34587.14 23893.55 249
USDC84.74 29682.93 30190.16 28491.73 30783.54 29395.00 32693.30 35188.77 18073.19 35293.30 26653.62 36397.65 22075.88 31981.54 28789.30 348
Anonymous2023121184.72 29782.65 30890.91 26297.71 11184.55 27997.28 26396.67 20266.88 38679.18 31890.87 30858.47 34596.60 26482.61 27074.20 32991.59 292
pm-mvs184.68 29882.78 30590.40 27889.58 33685.18 26997.31 26194.73 32281.93 32376.05 33592.01 28565.48 31896.11 30278.75 30069.14 35889.91 340
ACMH83.09 1784.60 29982.61 30990.57 27293.18 28582.94 29996.27 29994.92 31681.01 33272.61 35993.61 25956.54 35097.79 20674.31 32981.07 28890.99 312
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LTVRE_ROB81.71 1984.59 30082.72 30790.18 28392.89 28983.18 29793.15 34394.74 32178.99 34275.14 34392.69 27665.64 31597.63 22169.46 35281.82 28689.74 342
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
COLMAP_ROBcopyleft82.69 1884.54 30182.82 30289.70 29996.72 15778.85 33995.89 31292.83 35671.55 37077.54 33195.89 21659.40 34399.14 14567.26 36188.26 23491.11 310
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
MIMVSNet84.48 30281.83 31292.42 22991.73 30787.36 21385.52 38094.42 33281.40 32781.91 28587.58 35151.92 36792.81 36173.84 33488.15 23597.08 211
our_test_384.47 30382.80 30389.50 30489.01 34483.90 28897.03 27494.56 32781.33 32875.36 34290.52 32471.69 27194.54 34768.81 35576.84 31090.07 335
v7n84.42 30482.75 30689.43 30788.15 35481.86 31396.75 28695.67 28180.53 33578.38 32689.43 34269.89 28096.35 28873.83 33572.13 34990.07 335
ACMH+83.78 1584.21 30582.56 31089.15 31193.73 27379.16 33796.43 29494.28 33581.09 33174.00 34794.03 24654.58 36097.67 21776.10 31778.81 29890.63 325
EU-MVSNet84.19 30684.42 29183.52 35388.64 35067.37 38296.04 30995.76 27585.29 26378.44 32593.18 26970.67 27791.48 37575.79 32075.98 31291.70 283
DTE-MVSNet84.14 30782.80 30388.14 32188.95 34679.87 33396.81 28296.24 23283.50 29477.60 33092.52 27967.89 29894.24 35072.64 34369.05 35990.32 330
OurMVSNet-221017-084.13 30883.59 29885.77 34087.81 35870.24 37694.89 32793.65 34686.08 25176.53 33293.28 26761.41 33596.14 30180.95 28277.69 30790.93 313
Syy-MVS84.10 30984.53 28882.83 35595.14 22165.71 38397.68 24896.66 20386.52 24582.63 26596.84 18768.15 29389.89 37945.62 39391.54 21292.87 252
FMVSNet183.94 31081.32 31891.80 24391.94 30388.81 18096.77 28395.25 30377.98 34778.25 32790.25 32950.37 37394.97 33673.27 33877.81 30691.62 287
tfpnnormal83.65 31181.35 31790.56 27491.37 31388.06 19497.29 26297.87 5878.51 34676.20 33390.91 30664.78 32196.47 27761.71 37673.50 33687.13 368
ppachtmachnet_test83.63 31281.57 31589.80 29589.01 34485.09 27297.13 27194.50 32878.84 34376.14 33491.00 30569.78 28194.61 34663.40 37174.36 32689.71 344
Patchmtry83.61 31381.64 31389.50 30493.36 28182.84 30484.10 38794.20 33769.47 37979.57 31386.88 36184.43 14794.78 34268.48 35774.30 32790.88 315
KD-MVS_2432*160082.98 31480.52 32290.38 27994.32 25188.98 17292.87 34795.87 26980.46 33773.79 34887.49 35482.76 17693.29 35670.56 34946.53 39788.87 354
miper_refine_blended82.98 31480.52 32290.38 27994.32 25188.98 17292.87 34795.87 26980.46 33773.79 34887.49 35482.76 17693.29 35670.56 34946.53 39788.87 354
SixPastTwentyTwo82.63 31681.58 31485.79 33988.12 35571.01 37495.17 32592.54 35984.33 28072.93 35792.08 28260.41 34095.61 32374.47 32874.15 33090.75 321
testgi82.29 31781.00 32086.17 33787.24 36474.84 36097.39 25691.62 37288.63 18175.85 33995.42 22446.07 38091.55 37466.87 36479.94 29492.12 275
FMVSNet582.29 31780.54 32187.52 32693.79 27284.01 28693.73 33892.47 36076.92 35474.27 34586.15 36563.69 32789.24 38469.07 35474.79 32189.29 349
TransMVSNet (Re)81.97 31979.61 32889.08 31289.70 33484.01 28697.26 26491.85 37078.84 34373.07 35691.62 29367.17 30495.21 33367.50 36059.46 38288.02 358
LF4IMVS81.94 32081.17 31984.25 34987.23 36568.87 38193.35 34291.93 36983.35 29775.40 34193.00 27349.25 37796.65 26378.88 29878.11 30187.22 367
Patchmatch-RL test81.90 32180.13 32487.23 33080.71 38570.12 37884.07 38888.19 38983.16 30070.57 36182.18 37687.18 9492.59 36482.28 27362.78 37598.98 121
DSMNet-mixed81.60 32281.43 31682.10 35884.36 37560.79 38793.63 34086.74 39179.00 34179.32 31687.15 35963.87 32589.78 38166.89 36391.92 20295.73 238
test_vis1_rt81.31 32380.05 32685.11 34291.29 31470.66 37598.98 12677.39 40385.76 25768.80 36782.40 37436.56 39099.44 11992.67 15486.55 24385.24 378
K. test v381.04 32479.77 32784.83 34587.41 36270.23 37795.60 32293.93 34183.70 29167.51 37489.35 34355.76 35293.58 35476.67 31468.03 36290.67 324
Anonymous2023120680.76 32579.42 32984.79 34684.78 37472.98 36696.53 29192.97 35379.56 34074.33 34488.83 34561.27 33692.15 37060.59 37975.92 31389.24 350
CMPMVSbinary58.40 2180.48 32680.11 32581.59 36185.10 37359.56 38994.14 33595.95 25468.54 38160.71 38593.31 26555.35 35797.87 20183.06 26684.85 25787.33 365
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
TinyColmap80.42 32777.94 33287.85 32392.09 29878.58 34393.74 33789.94 38174.99 36069.77 36491.78 29146.09 37997.58 22565.17 36977.89 30287.38 363
EG-PatchMatch MVS79.92 32877.59 33386.90 33287.06 36677.90 35096.20 30694.06 33974.61 36266.53 37888.76 34640.40 38896.20 29667.02 36283.66 27186.61 369
pmmvs679.90 32977.31 33587.67 32584.17 37678.13 34795.86 31693.68 34567.94 38372.67 35889.62 34050.98 37195.75 31874.80 32766.04 36989.14 351
CL-MVSNet_self_test79.89 33078.34 33184.54 34881.56 38375.01 35896.88 28095.62 28381.10 33075.86 33885.81 36668.49 29090.26 37763.21 37256.51 38688.35 356
MDA-MVSNet_test_wron79.65 33177.05 33687.45 32887.79 36080.13 33196.25 30294.44 32973.87 36551.80 39187.47 35668.04 29592.12 37166.02 36567.79 36490.09 333
YYNet179.64 33277.04 33787.43 32987.80 35979.98 33296.23 30394.44 32973.83 36651.83 39087.53 35267.96 29792.07 37266.00 36667.75 36590.23 332
MVS-HIRNet79.01 33375.13 34590.66 27093.82 27181.69 31585.16 38193.75 34354.54 39174.17 34659.15 39757.46 34896.58 26863.74 37094.38 17093.72 248
UnsupCasMVSNet_eth78.90 33476.67 33985.58 34182.81 38174.94 35991.98 35496.31 22684.64 27665.84 38087.71 35051.33 36892.23 36972.89 34156.50 38789.56 346
test_040278.81 33576.33 34086.26 33691.18 31578.44 34595.88 31491.34 37568.55 38070.51 36389.91 33652.65 36694.99 33547.14 39279.78 29585.34 377
pmmvs-eth3d78.71 33676.16 34186.38 33480.25 38781.19 32494.17 33492.13 36677.97 34866.90 37782.31 37555.76 35292.56 36573.63 33762.31 37885.38 375
Anonymous2024052178.63 33776.90 33883.82 35182.82 38072.86 36795.72 32193.57 34773.55 36772.17 36084.79 36849.69 37592.51 36665.29 36874.50 32386.09 373
test20.0378.51 33877.48 33481.62 36083.07 37971.03 37396.11 30792.83 35681.66 32569.31 36689.68 33957.53 34787.29 38958.65 38368.47 36086.53 370
TDRefinement78.01 33975.31 34386.10 33870.06 39873.84 36393.59 34191.58 37374.51 36373.08 35591.04 30449.63 37697.12 24374.88 32559.47 38187.33 365
OpenMVS_ROBcopyleft73.86 2077.99 34075.06 34686.77 33383.81 37877.94 34996.38 29691.53 37467.54 38468.38 36987.13 36043.94 38196.08 30355.03 38781.83 28586.29 372
MDA-MVSNet-bldmvs77.82 34174.75 34787.03 33188.33 35278.52 34496.34 29792.85 35575.57 35848.87 39387.89 34957.32 34992.49 36760.79 37864.80 37390.08 334
KD-MVS_self_test77.47 34275.88 34282.24 35681.59 38268.93 38092.83 34994.02 34077.03 35373.14 35383.39 37155.44 35690.42 37667.95 35857.53 38587.38 363
dmvs_testset77.17 34378.99 33071.71 37187.25 36338.55 40891.44 36181.76 39985.77 25669.49 36595.94 21569.71 28384.37 39152.71 39076.82 31192.21 270
new_pmnet76.02 34473.71 34982.95 35483.88 37772.85 36891.26 36492.26 36370.44 37462.60 38381.37 37847.64 37892.32 36861.85 37572.10 35083.68 383
MIMVSNet175.92 34573.30 35083.81 35281.29 38475.57 35692.26 35292.05 36773.09 36867.48 37586.18 36440.87 38787.64 38855.78 38670.68 35788.21 357
mvsany_test375.85 34674.52 34879.83 36373.53 39560.64 38891.73 35787.87 39083.91 28770.55 36282.52 37331.12 39293.66 35286.66 22162.83 37485.19 379
test_fmvs375.09 34775.19 34474.81 36877.45 39154.08 39495.93 31090.64 37882.51 31473.29 35181.19 37922.29 39786.29 39085.50 23467.89 36384.06 381
PM-MVS74.88 34872.85 35180.98 36278.98 38964.75 38590.81 36885.77 39280.95 33368.23 37182.81 37229.08 39492.84 36076.54 31562.46 37785.36 376
new-patchmatchnet74.80 34972.40 35281.99 35978.36 39072.20 37094.44 33092.36 36177.06 35263.47 38279.98 38451.04 37088.85 38560.53 38054.35 38984.92 380
UnsupCasMVSNet_bld73.85 35070.14 35484.99 34479.44 38875.73 35588.53 37495.24 30670.12 37661.94 38474.81 39041.41 38693.62 35368.65 35651.13 39485.62 374
pmmvs372.86 35169.76 35682.17 35773.86 39474.19 36294.20 33389.01 38764.23 39067.72 37280.91 38241.48 38588.65 38662.40 37454.02 39083.68 383
test_f71.94 35270.82 35375.30 36772.77 39653.28 39591.62 35889.66 38475.44 35964.47 38178.31 38720.48 39889.56 38278.63 30166.02 37083.05 386
N_pmnet70.19 35369.87 35571.12 37388.24 35330.63 41295.85 31728.70 41170.18 37568.73 36886.55 36364.04 32493.81 35153.12 38973.46 33788.94 352
test_method70.10 35468.66 35774.41 37086.30 37155.84 39294.47 32989.82 38235.18 39966.15 37984.75 36930.54 39377.96 40070.40 35160.33 38089.44 347
APD_test168.93 35566.98 35874.77 36980.62 38653.15 39687.97 37585.01 39453.76 39259.26 38687.52 35325.19 39589.95 37856.20 38567.33 36681.19 387
WB-MVS66.44 35666.29 35966.89 37674.84 39244.93 40393.00 34484.09 39771.15 37155.82 38881.63 37763.79 32680.31 39821.85 40250.47 39575.43 389
SSC-MVS65.42 35765.20 36066.06 37773.96 39343.83 40492.08 35383.54 39869.77 37754.73 38980.92 38163.30 32879.92 39920.48 40348.02 39674.44 390
FPMVS61.57 35860.32 36165.34 37860.14 40542.44 40691.02 36789.72 38344.15 39442.63 39780.93 38019.02 39980.59 39742.50 39472.76 34273.00 391
test_vis3_rt61.29 35958.75 36268.92 37567.41 39952.84 39791.18 36659.23 41066.96 38541.96 39858.44 39811.37 40694.72 34474.25 33057.97 38459.20 397
EGC-MVSNET60.70 36055.37 36476.72 36586.35 37071.08 37289.96 37284.44 3960.38 4081.50 40984.09 37037.30 38988.10 38740.85 39773.44 33870.97 393
LCM-MVSNet60.07 36156.37 36371.18 37254.81 40748.67 40082.17 39289.48 38537.95 39749.13 39269.12 39113.75 40581.76 39259.28 38151.63 39383.10 385
PMMVS258.97 36255.07 36570.69 37462.72 40255.37 39385.97 37980.52 40049.48 39345.94 39468.31 39215.73 40380.78 39649.79 39137.12 39975.91 388
testf156.38 36353.73 36664.31 38064.84 40045.11 40180.50 39375.94 40538.87 39542.74 39575.07 38811.26 40781.19 39441.11 39553.27 39166.63 394
APD_test256.38 36353.73 36664.31 38064.84 40045.11 40180.50 39375.94 40538.87 39542.74 39575.07 38811.26 40781.19 39441.11 39553.27 39166.63 394
Gipumacopyleft54.77 36552.22 36962.40 38286.50 36859.37 39050.20 40090.35 38036.52 39841.20 39949.49 40018.33 40181.29 39332.10 39965.34 37146.54 400
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
tmp_tt53.66 36652.86 36856.05 38332.75 41141.97 40773.42 39776.12 40421.91 40439.68 40096.39 20342.59 38465.10 40378.00 30414.92 40461.08 396
ANet_high50.71 36746.17 37064.33 37944.27 40952.30 39876.13 39678.73 40164.95 38827.37 40255.23 39914.61 40467.74 40236.01 39818.23 40272.95 392
PMVScopyleft41.42 2345.67 36842.50 37155.17 38434.28 41032.37 41066.24 39878.71 40230.72 40022.04 40559.59 3964.59 40977.85 40127.49 40058.84 38355.29 398
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive44.00 2241.70 36937.64 37453.90 38549.46 40843.37 40565.09 39966.66 40726.19 40325.77 40448.53 4013.58 41163.35 40426.15 40127.28 40054.97 399
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN41.02 37040.93 37241.29 38661.97 40333.83 40984.00 38965.17 40827.17 40127.56 40146.72 40217.63 40260.41 40519.32 40418.82 40129.61 401
EMVS39.96 37139.88 37340.18 38759.57 40632.12 41184.79 38664.57 40926.27 40226.14 40344.18 40518.73 40059.29 40617.03 40517.67 40329.12 402
cdsmvs_eth3d_5k22.52 37230.03 3750.00 3910.00 4140.00 4160.00 40297.17 1730.00 4090.00 41098.77 8574.35 2450.00 4100.00 4090.00 4080.00 406
testmvs18.81 37323.05 3766.10 3904.48 4122.29 41597.78 2393.00 4133.27 40618.60 40662.71 3941.53 4132.49 40914.26 4071.80 40613.50 404
wuyk23d16.71 37416.73 37816.65 38860.15 40425.22 41341.24 4015.17 4126.56 4055.48 4083.61 4083.64 41022.72 40715.20 4069.52 4051.99 405
test12316.58 37519.47 3777.91 3893.59 4135.37 41494.32 3311.39 4142.49 40713.98 40744.60 4042.91 4122.65 40811.35 4080.57 40715.70 403
ab-mvs-re8.21 37610.94 3790.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 41098.50 1080.00 4140.00 4100.00 4090.00 4080.00 406
pcd_1.5k_mvsjas6.87 3779.16 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 40982.48 1820.00 4100.00 4090.00 4080.00 406
test_blank0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uanet_test0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
DCPMVS0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
sosnet-low-res0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
sosnet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uncertanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
Regformer0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
WAC-MVS79.74 33467.75 359
FOURS199.50 4288.94 17599.55 4497.47 14191.32 10898.12 44
MSC_two_6792asdad99.51 299.61 2498.60 297.69 8899.98 999.55 1299.83 1599.96 10
PC_three_145294.60 3699.41 499.12 4695.50 799.96 2899.84 299.92 399.97 7
No_MVS99.51 299.61 2498.60 297.69 8899.98 999.55 1299.83 1599.96 10
test_one_060199.59 2894.89 3497.64 10393.14 6998.93 2199.45 1493.45 18
eth-test20.00 414
eth-test0.00 414
ZD-MVS99.67 1093.28 7197.61 11087.78 21497.41 6099.16 3690.15 5399.56 10598.35 4199.70 35
RE-MVS-def95.70 6499.22 5987.26 21998.40 19097.21 16789.63 15196.67 8498.97 6285.24 13896.62 7599.31 6599.60 67
IU-MVS99.63 1895.38 2297.73 8095.54 2699.54 399.69 699.81 2399.99 1
OPU-MVS99.49 499.64 1798.51 499.77 1799.19 3095.12 899.97 2199.90 199.92 399.99 1
test_241102_TWO97.72 8194.17 4399.23 1099.54 393.14 2499.98 999.70 499.82 1999.99 1
test_241102_ONE99.63 1895.24 2597.72 8194.16 4599.30 899.49 993.32 1999.98 9
9.1496.87 2799.34 5099.50 5197.49 13889.41 16198.59 3099.43 1689.78 5699.69 9198.69 3099.62 44
save fliter99.34 5093.85 6299.65 3597.63 10795.69 22
test_0728_THIRD93.01 7099.07 1599.46 1094.66 1499.97 2199.25 1899.82 1999.95 15
test_0728_SECOND98.77 899.66 1296.37 1499.72 2397.68 9099.98 999.64 799.82 1999.96 10
test072699.66 1295.20 3099.77 1797.70 8693.95 4899.35 799.54 393.18 22
GSMVS98.84 136
test_part299.54 3695.42 2098.13 42
sam_mvs188.39 6998.84 136
sam_mvs87.08 97
ambc79.60 36472.76 39756.61 39176.20 39592.01 36868.25 37080.23 38323.34 39694.73 34373.78 33660.81 37987.48 362
MTGPAbinary97.45 144
test_post190.74 37041.37 40685.38 13696.36 28383.16 263
test_post46.00 40387.37 8897.11 244
patchmatchnet-post84.86 36788.73 6696.81 257
GG-mvs-BLEND96.98 6596.53 16294.81 4187.20 37697.74 7793.91 13596.40 20196.56 296.94 25295.08 10798.95 8499.20 104
MTMP99.21 8891.09 376
gm-plane-assit94.69 24288.14 19288.22 20097.20 16498.29 17890.79 172
test9_res98.60 3399.87 999.90 22
TEST999.57 3393.17 7399.38 7197.66 9589.57 15598.39 3599.18 3390.88 3999.66 94
test_899.55 3593.07 7699.37 7497.64 10390.18 13598.36 3799.19 3090.94 3699.64 100
agg_prior297.84 5499.87 999.91 21
agg_prior99.54 3692.66 8697.64 10397.98 5199.61 102
TestCases90.52 27596.82 15178.84 34092.17 36477.96 34975.94 33695.50 22155.48 35499.18 13971.15 34587.14 23893.55 249
test_prior492.00 9799.41 68
test_prior299.57 4291.43 10598.12 4498.97 6290.43 4698.33 4299.81 23
test_prior97.01 6099.58 3091.77 10097.57 12199.49 11299.79 36
旧先验298.67 15585.75 25898.96 2098.97 15293.84 132
新几何298.26 204
新几何197.40 4798.92 7792.51 9197.77 7585.52 26096.69 8399.06 5388.08 7799.89 5384.88 24199.62 4499.79 36
旧先验198.97 7392.90 8497.74 7799.15 3991.05 3599.33 6399.60 67
无先验98.52 17297.82 6587.20 22899.90 5087.64 21099.85 30
原ACMM298.69 152
原ACMM196.18 10899.03 7190.08 14497.63 10788.98 17297.00 7298.97 6288.14 7699.71 9088.23 20299.62 4498.76 147
test22298.32 9291.21 11098.08 22397.58 11883.74 28995.87 9899.02 5886.74 10699.64 4099.81 33
testdata299.88 5484.16 251
segment_acmp90.56 44
testdata95.26 14698.20 9687.28 21697.60 11285.21 26498.48 3399.15 3988.15 7598.72 16290.29 17899.45 5799.78 38
testdata197.89 23292.43 82
test1297.83 3399.33 5394.45 4997.55 12397.56 5688.60 6799.50 11199.71 3499.55 72
plane_prior793.84 26885.73 257
plane_prior693.92 26586.02 25072.92 258
plane_prior596.30 22797.75 21493.46 14186.17 24792.67 256
plane_prior496.52 197
plane_prior385.91 25293.65 6186.99 221
plane_prior299.02 12093.38 66
plane_prior193.90 267
plane_prior86.07 24899.14 10493.81 5886.26 246
n20.00 415
nn0.00 415
door-mid84.90 395
lessismore_v085.08 34385.59 37269.28 37990.56 37967.68 37390.21 33354.21 36295.46 32673.88 33362.64 37690.50 327
LGP-MVS_train90.06 28693.35 28280.95 32895.94 25587.73 21883.17 25896.11 21066.28 31197.77 20890.19 17985.19 25491.46 296
test1197.68 90
door85.30 393
HQP5-MVS86.39 233
HQP-NCC93.95 26199.16 9693.92 5087.57 214
ACMP_Plane93.95 26199.16 9693.92 5087.57 214
BP-MVS93.82 134
HQP4-MVS87.57 21497.77 20892.72 254
HQP3-MVS96.37 22386.29 244
HQP2-MVS73.34 252
NP-MVS93.94 26486.22 24096.67 195
MDTV_nov1_ep13_2view91.17 11391.38 36287.45 22593.08 14886.67 10887.02 21398.95 127
MDTV_nov1_ep1390.47 18896.14 18488.55 18691.34 36397.51 13389.58 15492.24 15790.50 32686.99 10197.61 22377.64 30692.34 194
ACMMP++_ref82.64 281
ACMMP++83.83 268
Test By Simon83.62 156
ITE_SJBPF87.93 32292.26 29576.44 35493.47 34987.67 22179.95 30895.49 22356.50 35197.38 23675.24 32282.33 28389.98 339
DeepMVS_CXcopyleft76.08 36690.74 32151.65 39990.84 37786.47 24857.89 38787.98 34835.88 39192.60 36365.77 36765.06 37283.97 382