This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
CNVR-MVS98.46 198.38 198.72 899.80 496.19 1499.80 997.99 4697.05 599.41 299.59 292.89 25100.00 198.99 2099.90 799.96 10
DVP-MVS++98.18 298.09 598.44 1599.61 2495.38 2199.55 3797.68 8093.01 6099.23 899.45 1495.12 899.98 999.25 1599.92 399.97 7
SED-MVS98.18 298.10 498.41 1799.63 1895.24 2499.77 1097.72 7194.17 3399.30 699.54 393.32 1999.98 999.70 399.81 2399.99 1
MCST-MVS98.18 297.95 998.86 599.85 396.60 999.70 1997.98 4797.18 295.96 8599.33 1992.62 26100.00 198.99 2099.93 199.98 6
NCCC98.12 598.11 398.13 2399.76 694.46 4799.81 797.88 4996.54 998.84 1999.46 1092.55 2799.98 998.25 3799.93 199.94 18
DPE-MVScopyleft98.11 698.00 698.44 1599.50 4295.39 2099.29 7297.72 7194.50 2898.64 2299.54 393.32 1999.97 2199.58 999.90 799.95 15
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
DVP-MVScopyleft98.07 798.00 698.29 1899.66 1295.20 2999.72 1697.47 12693.95 3899.07 1299.46 1093.18 2299.97 2199.64 699.82 1999.69 53
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
DPM-MVS97.86 897.25 1899.68 198.25 9399.10 199.76 1397.78 6396.61 898.15 3399.53 793.62 17100.00 191.79 14799.80 2699.94 18
MSP-MVS97.77 998.18 296.53 8899.54 3690.14 13299.41 5997.70 7695.46 2198.60 2399.19 2895.71 499.49 10298.15 3899.85 1399.95 15
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
HPM-MVS++copyleft97.72 1097.59 1198.14 2299.53 4094.76 4199.19 7697.75 6695.66 1798.21 3299.29 2091.10 3399.99 597.68 4599.87 999.68 54
MVS_030497.53 1197.15 1998.67 1097.30 12396.52 1199.60 3198.88 1397.14 397.21 5798.94 6586.89 9499.91 4299.43 1298.91 8499.59 69
APDe-MVS97.53 1197.47 1397.70 3599.58 3093.63 6399.56 3697.52 11693.59 5398.01 4299.12 4290.80 3999.55 9699.26 1499.79 2799.93 20
SD-MVS97.51 1397.40 1697.81 3399.01 7293.79 6299.33 6997.38 13993.73 4998.83 2099.02 5390.87 3899.88 4998.69 2399.74 2999.77 42
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MSLP-MVS++97.50 1497.45 1597.63 3799.65 1693.21 7199.70 1998.13 3994.61 2697.78 4799.46 1089.85 4999.81 7097.97 4099.91 699.88 26
TSAR-MVS + MP.97.44 1597.46 1497.39 4599.12 6593.49 6898.52 15697.50 12194.46 2998.99 1498.64 9091.58 3099.08 13898.49 2999.83 1599.60 65
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SteuartSystems-ACMMP97.25 1697.34 1797.01 5797.38 12091.46 9999.75 1497.66 8394.14 3798.13 3499.26 2192.16 2999.66 8497.91 4299.64 4099.90 22
Skip Steuart: Steuart Systems R&D Blog.
SMA-MVScopyleft97.24 1796.99 2198.00 2899.30 5494.20 5499.16 8297.65 8889.55 14499.22 1099.52 890.34 4699.99 598.32 3599.83 1599.82 31
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MG-MVS97.24 1796.83 2798.47 1499.79 595.71 1799.07 9899.06 994.45 3096.42 7998.70 8788.81 5999.74 7895.35 9199.86 1299.97 7
SF-MVS97.22 1996.92 2298.12 2599.11 6694.88 3499.44 5397.45 12989.60 14098.70 2199.42 1790.42 4499.72 7998.47 3099.65 3899.77 42
train_agg97.20 2097.08 2097.57 4199.57 3393.17 7299.38 6297.66 8390.18 12498.39 2899.18 3190.94 3599.66 8498.58 2899.85 1399.88 26
DeepC-MVS_fast93.52 297.16 2196.84 2698.13 2399.61 2494.45 4898.85 12097.64 8996.51 1195.88 8899.39 1887.35 8599.99 596.61 6799.69 3699.96 10
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DELS-MVS97.12 2296.60 3198.68 998.03 10296.57 1099.84 497.84 5296.36 1395.20 10298.24 11188.17 6699.83 6496.11 7699.60 4899.64 60
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
patch_mono-297.10 2397.97 894.49 15899.21 6183.73 27499.62 3098.25 2995.28 2299.38 498.91 6792.28 2899.94 3499.61 899.22 7099.78 37
test_fmvsm_n_192097.08 2497.55 1295.67 12097.94 10489.61 15099.93 198.48 2397.08 499.08 1199.13 4088.17 6699.93 3799.11 1899.06 7497.47 187
CANet97.00 2596.49 3298.55 1198.86 8096.10 1599.83 597.52 11695.90 1497.21 5798.90 6882.66 16699.93 3798.71 2298.80 8999.63 62
TSAR-MVS + GP.96.95 2696.91 2397.07 5498.88 7991.62 9599.58 3496.54 19595.09 2496.84 6798.63 9291.16 3199.77 7599.04 1996.42 13499.81 32
APD-MVScopyleft96.95 2696.72 2897.63 3799.51 4193.58 6499.16 8297.44 13290.08 12998.59 2499.07 4789.06 5599.42 11397.92 4199.66 3799.88 26
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
PS-MVSNAJ96.87 2896.40 3498.29 1897.35 12197.29 599.03 10497.11 16395.83 1598.97 1599.14 3882.48 16999.60 9398.60 2599.08 7398.00 174
EPNet96.82 2996.68 3097.25 5098.65 8693.10 7499.48 4498.76 1496.54 997.84 4698.22 11287.49 7899.66 8495.35 9197.78 11299.00 113
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CHOSEN 280x42096.80 3096.85 2596.66 8197.85 10794.42 5094.76 30898.36 2692.50 7195.62 9697.52 13897.92 197.38 22398.31 3698.80 8998.20 170
MVS_111021_HR96.69 3196.69 2996.72 7798.58 8891.00 11399.14 9099.45 193.86 4495.15 10398.73 8188.48 6299.76 7697.23 5399.56 5099.40 81
xiu_mvs_v2_base96.66 3296.17 4298.11 2697.11 13496.96 699.01 10797.04 17095.51 2098.86 1899.11 4682.19 17699.36 12098.59 2798.14 10598.00 174
PHI-MVS96.65 3396.46 3397.21 5199.34 5091.77 9299.70 1998.05 4286.48 22898.05 3999.20 2789.33 5399.96 2898.38 3199.62 4499.90 22
ACMMP_NAP96.59 3496.18 3997.81 3398.82 8193.55 6598.88 11997.59 10290.66 10997.98 4399.14 3886.59 102100.00 196.47 7199.46 5599.89 25
CDPH-MVS96.56 3596.18 3997.70 3599.59 2893.92 5999.13 9397.44 13289.02 15697.90 4599.22 2588.90 5899.49 10294.63 10999.79 2799.68 54
DeepPCF-MVS93.56 196.55 3697.84 1092.68 21098.71 8578.11 32999.70 1997.71 7598.18 197.36 5499.76 190.37 4599.94 3499.27 1399.54 5299.99 1
XVS96.47 3796.37 3596.77 7199.62 2290.66 12299.43 5697.58 10492.41 7596.86 6598.96 6087.37 8199.87 5295.65 8299.43 5999.78 37
HFP-MVS96.42 3896.26 3796.90 6699.69 890.96 11499.47 4697.81 5890.54 11596.88 6499.05 5087.57 7699.96 2895.65 8299.72 3199.78 37
PAPR96.35 3995.82 5297.94 3099.63 1894.19 5599.42 5897.55 10992.43 7293.82 12599.12 4287.30 8699.91 4294.02 11699.06 7499.74 46
PAPM96.35 3995.94 4897.58 3994.10 23995.25 2398.93 11498.17 3494.26 3293.94 12198.72 8389.68 5197.88 18796.36 7299.29 6799.62 64
lupinMVS96.32 4195.94 4897.44 4395.05 21694.87 3599.86 396.50 19793.82 4798.04 4098.77 7785.52 11998.09 17596.98 5898.97 7999.37 83
region2R96.30 4296.17 4296.70 7899.70 790.31 12799.46 5097.66 8390.55 11497.07 6299.07 4786.85 9599.97 2195.43 8999.74 2999.81 32
ACMMPR96.28 4396.14 4696.73 7599.68 990.47 12599.47 4697.80 6090.54 11596.83 6999.03 5286.51 10699.95 3195.65 8299.72 3199.75 45
CP-MVS96.22 4496.15 4596.42 9399.67 1089.62 14999.70 1997.61 9690.07 13096.00 8499.16 3487.43 7999.92 3996.03 7899.72 3199.70 51
SR-MVS96.13 4596.16 4496.07 10599.42 4789.04 15698.59 15197.33 14390.44 11896.84 6799.12 4286.75 9799.41 11697.47 4899.44 5899.76 44
ZNCC-MVS96.09 4695.81 5496.95 6599.42 4791.19 10399.55 3797.53 11389.72 13595.86 9098.94 6586.59 10299.97 2195.13 9599.56 5099.68 54
MTAPA96.09 4695.80 5596.96 6499.29 5591.19 10397.23 24797.45 12992.58 6994.39 11499.24 2486.43 10899.99 596.22 7399.40 6299.71 50
ETV-MVS96.00 4896.00 4796.00 10896.56 15191.05 11199.63 2996.61 18793.26 5897.39 5398.30 10986.62 10198.13 17298.07 3997.57 11598.82 134
MP-MVScopyleft96.00 4895.82 5296.54 8799.47 4690.13 13499.36 6697.41 13690.64 11295.49 9798.95 6285.51 12199.98 996.00 7999.59 4999.52 72
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
CS-MVS-test95.98 5096.34 3694.90 14398.06 10187.66 18899.69 2696.10 22393.66 5098.35 3199.05 5086.28 11097.66 20596.96 5998.90 8599.37 83
GST-MVS95.97 5195.66 5896.90 6699.49 4591.22 10199.45 5297.48 12489.69 13695.89 8798.72 8386.37 10999.95 3194.62 11099.22 7099.52 72
WTY-MVS95.97 5195.11 7098.54 1297.62 11396.65 899.44 5398.74 1592.25 7995.21 10198.46 10586.56 10499.46 10895.00 10092.69 17699.50 75
PVSNet_Blended95.94 5395.66 5896.75 7398.77 8391.61 9699.88 298.04 4393.64 5294.21 11697.76 12583.50 14599.87 5297.41 4997.75 11398.79 137
mPP-MVS95.90 5495.75 5696.38 9599.58 3089.41 15399.26 7397.41 13690.66 10994.82 10798.95 6286.15 11399.98 995.24 9499.64 4099.74 46
PGM-MVS95.85 5595.65 6096.45 9199.50 4289.77 14698.22 19098.90 1289.19 15196.74 7298.95 6285.91 11799.92 3993.94 11899.46 5599.66 58
DP-MVS Recon95.85 5595.15 6997.95 2999.87 294.38 5199.60 3197.48 12486.58 22594.42 11399.13 4087.36 8499.98 993.64 12598.33 10299.48 76
MP-MVS-pluss95.80 5795.30 6497.29 4798.95 7692.66 8298.59 15197.14 15988.95 15993.12 13299.25 2285.62 11899.94 3496.56 6999.48 5499.28 92
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MVS_111021_LR95.78 5895.94 4895.28 13298.19 9787.69 18598.80 12599.26 793.39 5595.04 10598.69 8884.09 13999.76 7696.96 5999.06 7498.38 159
alignmvs95.77 5995.00 7398.06 2797.35 12195.68 1899.71 1897.50 12191.50 9296.16 8398.61 9486.28 11099.00 14096.19 7491.74 19399.51 74
EI-MVSNet-Vis-set95.76 6095.63 6296.17 10299.14 6490.33 12698.49 16297.82 5591.92 8594.75 10898.88 7287.06 9099.48 10695.40 9097.17 12698.70 144
SR-MVS-dyc-post95.75 6195.86 5195.41 12899.22 5987.26 20498.40 17497.21 15189.63 13896.67 7598.97 5686.73 9999.36 12096.62 6599.31 6599.60 65
CS-MVS95.75 6196.19 3894.40 16297.88 10686.22 22599.66 2796.12 22292.69 6898.07 3898.89 7087.09 8897.59 21196.71 6298.62 9599.39 82
dcpmvs_295.67 6396.18 3994.12 17598.82 8184.22 26797.37 23995.45 27390.70 10895.77 9298.63 9290.47 4298.68 15499.20 1799.22 7099.45 78
APD-MVS_3200maxsize95.64 6495.65 6095.62 12299.24 5887.80 18498.42 16997.22 15088.93 16196.64 7798.98 5585.49 12299.36 12096.68 6499.27 6899.70 51
test_fmvsmvis_n_192095.47 6595.40 6395.70 11894.33 23490.22 13099.70 1996.98 17796.80 692.75 13698.89 7082.46 17299.92 3998.36 3298.33 10296.97 202
EI-MVSNet-UG-set95.43 6695.29 6595.86 11399.07 7089.87 14398.43 16897.80 6091.78 8794.11 11898.77 7786.25 11299.48 10694.95 10296.45 13398.22 168
PAPM_NR95.43 6695.05 7296.57 8699.42 4790.14 13298.58 15397.51 11890.65 11192.44 14098.90 6887.77 7599.90 4690.88 15599.32 6499.68 54
HPM-MVScopyleft95.41 6895.22 6795.99 10999.29 5589.14 15499.17 8197.09 16787.28 21195.40 9898.48 10284.93 12999.38 11895.64 8699.65 3899.47 77
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
jason95.40 6994.86 7497.03 5692.91 27194.23 5399.70 1996.30 20893.56 5496.73 7398.52 9781.46 18597.91 18496.08 7798.47 10098.96 117
jason: jason.
HY-MVS88.56 795.29 7094.23 8298.48 1397.72 10996.41 1294.03 31698.74 1592.42 7495.65 9594.76 21786.52 10599.49 10295.29 9392.97 17299.53 71
test_yl95.27 7194.60 7797.28 4898.53 8992.98 7899.05 10198.70 1886.76 22294.65 11197.74 12787.78 7399.44 10995.57 8792.61 17799.44 79
DCV-MVSNet95.27 7194.60 7797.28 4898.53 8992.98 7899.05 10198.70 1886.76 22294.65 11197.74 12787.78 7399.44 10995.57 8792.61 17799.44 79
EIA-MVS95.11 7395.27 6694.64 15596.34 16186.51 21399.59 3396.62 18692.51 7094.08 11998.64 9086.05 11498.24 16995.07 9798.50 9999.18 100
EC-MVSNet95.09 7495.17 6894.84 14695.42 19588.17 17699.48 4495.92 23991.47 9397.34 5598.36 10682.77 16297.41 22297.24 5298.58 9698.94 122
VNet95.08 7594.26 8197.55 4298.07 10093.88 6098.68 13798.73 1790.33 12197.16 6197.43 14379.19 19999.53 9996.91 6191.85 19199.24 95
canonicalmvs95.02 7693.96 9498.20 2097.53 11895.92 1698.71 13396.19 21791.78 8795.86 9098.49 10179.53 19699.03 13996.12 7591.42 19999.66 58
HPM-MVS_fast94.89 7794.62 7695.70 11899.11 6688.44 17499.14 9097.11 16385.82 23595.69 9498.47 10383.46 14799.32 12593.16 13399.63 4399.35 85
CSCG94.87 7894.71 7595.36 12999.54 3686.49 21499.34 6898.15 3782.71 28990.15 17799.25 2289.48 5299.86 5794.97 10198.82 8899.72 49
sss94.85 7993.94 9597.58 3996.43 15694.09 5898.93 11499.16 889.50 14595.27 10097.85 11981.50 18399.65 8892.79 14094.02 16498.99 114
test250694.80 8094.21 8396.58 8496.41 15792.18 9098.01 20998.96 1090.82 10693.46 12897.28 14785.92 11598.45 15989.82 16897.19 12499.12 105
API-MVS94.78 8194.18 8696.59 8399.21 6190.06 13998.80 12597.78 6383.59 27393.85 12399.21 2683.79 14299.97 2192.37 14399.00 7899.74 46
thisisatest051594.75 8294.19 8496.43 9296.13 17692.64 8599.47 4697.60 9887.55 20793.17 13197.59 13594.71 1398.42 16088.28 18693.20 16998.24 167
xiu_mvs_v1_base_debu94.73 8393.98 9196.99 5995.19 20495.24 2498.62 14596.50 19792.99 6297.52 4998.83 7472.37 24599.15 13197.03 5596.74 12996.58 208
xiu_mvs_v1_base94.73 8393.98 9196.99 5995.19 20495.24 2498.62 14596.50 19792.99 6297.52 4998.83 7472.37 24599.15 13197.03 5596.74 12996.58 208
xiu_mvs_v1_base_debi94.73 8393.98 9196.99 5995.19 20495.24 2498.62 14596.50 19792.99 6297.52 4998.83 7472.37 24599.15 13197.03 5596.74 12996.58 208
MVSFormer94.71 8694.08 8996.61 8295.05 21694.87 3597.77 22396.17 21986.84 21998.04 4098.52 9785.52 11995.99 29089.83 16698.97 7998.96 117
PVSNet_Blended_VisFu94.67 8794.11 8796.34 9797.14 13191.10 10899.32 7097.43 13492.10 8491.53 15496.38 18683.29 15199.68 8293.42 13096.37 13598.25 166
ACMMPcopyleft94.67 8794.30 8095.79 11599.25 5788.13 17898.41 17198.67 2190.38 12091.43 15598.72 8382.22 17599.95 3193.83 12295.76 14799.29 91
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CPTT-MVS94.60 8994.43 7995.09 13699.66 1286.85 20999.44 5397.47 12683.22 27894.34 11598.96 6082.50 16799.55 9694.81 10399.50 5398.88 127
diffmvspermissive94.59 9094.19 8495.81 11495.54 19190.69 12098.70 13595.68 26091.61 8995.96 8597.81 12180.11 19198.06 17796.52 7095.76 14798.67 146
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
mvsany_test194.57 9195.09 7192.98 20195.84 18182.07 29598.76 13195.24 28692.87 6796.45 7898.71 8684.81 13299.15 13197.68 4595.49 15297.73 179
DeepC-MVS91.02 494.56 9293.92 9696.46 9097.16 12990.76 11898.39 17897.11 16393.92 4088.66 19098.33 10778.14 20799.85 6095.02 9898.57 9798.78 139
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MAR-MVS94.43 9394.09 8895.45 12699.10 6887.47 19498.39 17897.79 6288.37 17894.02 12099.17 3378.64 20599.91 4292.48 14298.85 8798.96 117
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
CHOSEN 1792x268894.35 9493.82 9895.95 11197.40 11988.74 16898.41 17198.27 2892.18 8191.43 15596.40 18378.88 20099.81 7093.59 12697.81 10999.30 90
CANet_DTU94.31 9593.35 10697.20 5297.03 13894.71 4398.62 14595.54 26895.61 1897.21 5798.47 10371.88 25099.84 6188.38 18597.46 12097.04 200
PLCcopyleft91.07 394.23 9694.01 9094.87 14499.17 6387.49 19399.25 7496.55 19488.43 17691.26 15998.21 11485.92 11599.86 5789.77 17097.57 11597.24 193
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
114514_t94.06 9793.05 11597.06 5599.08 6992.26 8898.97 11297.01 17582.58 29192.57 13898.22 11280.68 18999.30 12689.34 17699.02 7799.63 62
baseline294.04 9893.80 9994.74 15093.07 27090.25 12898.12 19998.16 3689.86 13286.53 21296.95 16595.56 698.05 17991.44 14994.53 15995.93 221
thisisatest053094.00 9993.52 10395.43 12795.76 18490.02 14198.99 10997.60 9886.58 22591.74 14797.36 14694.78 1298.34 16286.37 20892.48 18097.94 176
casdiffmvs_mvgpermissive94.00 9993.33 10796.03 10695.22 20290.90 11699.09 9695.99 22990.58 11391.55 15397.37 14579.91 19298.06 17795.01 9995.22 15499.13 104
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
casdiffmvspermissive93.98 10193.43 10495.61 12395.07 21589.86 14498.80 12595.84 25290.98 10392.74 13797.66 13279.71 19398.10 17494.72 10695.37 15398.87 129
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVS93.92 10292.28 13198.83 695.69 18696.82 796.22 28498.17 3484.89 25384.34 23098.61 9479.32 19899.83 6493.88 12099.43 5999.86 29
baseline93.91 10393.30 10895.72 11795.10 21390.07 13697.48 23595.91 24491.03 10193.54 12797.68 13079.58 19498.02 18194.27 11495.14 15599.08 109
OMC-MVS93.90 10493.62 10294.73 15198.63 8787.00 20798.04 20896.56 19392.19 8092.46 13998.73 8179.49 19799.14 13592.16 14594.34 16298.03 173
Effi-MVS+93.87 10593.15 11396.02 10795.79 18290.76 11896.70 26995.78 25386.98 21695.71 9397.17 15679.58 19498.01 18294.57 11196.09 14299.31 89
test_cas_vis1_n_192093.86 10693.74 10094.22 17195.39 19886.08 23199.73 1596.07 22696.38 1297.19 6097.78 12465.46 29999.86 5796.71 6298.92 8396.73 205
TESTMET0.1,193.82 10793.26 11095.49 12595.21 20390.25 12899.15 8797.54 11289.18 15291.79 14694.87 21489.13 5497.63 20886.21 20996.29 13998.60 149
AdaColmapbinary93.82 10793.06 11496.10 10499.88 189.07 15598.33 18297.55 10986.81 22190.39 17498.65 8975.09 22099.98 993.32 13197.53 11899.26 94
EPP-MVSNet93.75 10993.67 10194.01 18195.86 18085.70 24298.67 13997.66 8384.46 25891.36 15897.18 15591.16 3197.79 19392.93 13693.75 16698.53 151
thres20093.69 11092.59 12796.97 6397.76 10894.74 4299.35 6799.36 289.23 15091.21 16196.97 16483.42 14898.77 14785.08 22190.96 20297.39 189
PVSNet87.13 1293.69 11092.83 12296.28 9897.99 10390.22 13099.38 6298.93 1191.42 9693.66 12697.68 13071.29 25799.64 9087.94 19297.20 12398.98 115
HyFIR lowres test93.68 11293.29 10994.87 14497.57 11788.04 18098.18 19498.47 2487.57 20691.24 16095.05 21185.49 12297.46 21893.22 13292.82 17399.10 107
MVS_Test93.67 11392.67 12596.69 7996.72 14892.66 8297.22 24896.03 22887.69 20495.12 10494.03 22681.55 18298.28 16689.17 18096.46 13299.14 102
CNLPA93.64 11492.74 12396.36 9698.96 7590.01 14299.19 7695.89 24786.22 23189.40 18598.85 7380.66 19099.84 6188.57 18396.92 12899.24 95
PMMVS93.62 11593.90 9792.79 20596.79 14681.40 30298.85 12096.81 18191.25 9996.82 7098.15 11677.02 21398.13 17293.15 13496.30 13898.83 133
iter_conf0593.48 11693.18 11294.39 16597.15 13094.17 5699.30 7192.97 33392.38 7886.70 21195.42 20495.67 596.59 24994.67 10884.32 24392.39 242
CDS-MVSNet93.47 11793.04 11694.76 14894.75 22789.45 15298.82 12397.03 17287.91 19590.97 16296.48 18189.06 5596.36 26789.50 17292.81 17598.49 153
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
131493.44 11891.98 13997.84 3195.24 20094.38 5196.22 28497.92 4890.18 12482.28 25797.71 12977.63 21099.80 7291.94 14698.67 9499.34 87
tfpn200view993.43 11992.27 13296.90 6697.68 11194.84 3799.18 7899.36 288.45 17390.79 16496.90 16883.31 14998.75 14984.11 23790.69 20497.12 195
3Dnovator+87.72 893.43 11991.84 14298.17 2195.73 18595.08 3198.92 11697.04 17091.42 9681.48 27497.60 13474.60 22399.79 7390.84 15698.97 7999.64 60
thres40093.39 12192.27 13296.73 7597.68 11194.84 3799.18 7899.36 288.45 17390.79 16496.90 16883.31 14998.75 14984.11 23790.69 20496.61 206
PVSNet_BlendedMVS93.36 12293.20 11193.84 18698.77 8391.61 9699.47 4698.04 4391.44 9494.21 11692.63 25883.50 14599.87 5297.41 4983.37 25490.05 318
thres100view90093.34 12392.15 13596.90 6697.62 11394.84 3799.06 10099.36 287.96 19390.47 17296.78 17383.29 15198.75 14984.11 23790.69 20497.12 195
tttt051793.30 12493.01 11894.17 17395.57 18986.47 21598.51 15997.60 9885.99 23390.55 16997.19 15494.80 1198.31 16385.06 22291.86 19097.74 178
UA-Net93.30 12492.62 12695.34 13096.27 16488.53 17395.88 29496.97 17890.90 10495.37 9997.07 16082.38 17399.10 13783.91 24194.86 15898.38 159
test-mter93.27 12692.89 12194.40 16294.94 22187.27 20299.15 8797.25 14588.95 15991.57 15094.04 22488.03 7197.58 21285.94 21396.13 14098.36 162
Vis-MVSNet (Re-imp)93.26 12793.00 11994.06 17896.14 17386.71 21298.68 13796.70 18488.30 18289.71 18497.64 13385.43 12596.39 26588.06 19096.32 13699.08 109
iter_conf_final93.22 12893.04 11693.76 18897.03 13892.22 8999.05 10193.31 33092.11 8386.93 20695.42 20495.01 1096.59 24993.98 11784.48 24092.46 241
thres600view793.18 12992.00 13896.75 7397.62 11394.92 3299.07 9899.36 287.96 19390.47 17296.78 17383.29 15198.71 15382.93 25190.47 20896.61 206
3Dnovator87.35 1193.17 13091.77 14497.37 4695.41 19693.07 7598.82 12397.85 5191.53 9182.56 24997.58 13671.97 24999.82 6791.01 15399.23 6999.22 98
test-LLR93.11 13192.68 12494.40 16294.94 22187.27 20299.15 8797.25 14590.21 12291.57 15094.04 22484.89 13097.58 21285.94 21396.13 14098.36 162
test_vis1_n_192093.08 13293.42 10592.04 22296.31 16279.36 31799.83 596.06 22796.72 798.53 2698.10 11758.57 32299.91 4297.86 4398.79 9196.85 204
IS-MVSNet93.00 13392.51 12894.49 15896.14 17387.36 19898.31 18595.70 25888.58 16990.17 17697.50 13983.02 15897.22 22687.06 19796.07 14498.90 126
CostFormer92.89 13492.48 12994.12 17594.99 21885.89 23792.89 32597.00 17686.98 21695.00 10690.78 28990.05 4897.51 21692.92 13791.73 19498.96 117
tpmrst92.78 13592.16 13494.65 15396.27 16487.45 19591.83 33397.10 16689.10 15594.68 11090.69 29388.22 6597.73 20389.78 16991.80 19298.77 140
MVSTER92.71 13692.32 13093.86 18597.29 12492.95 8099.01 10796.59 18990.09 12885.51 21994.00 22894.61 1696.56 25390.77 15983.03 25792.08 258
1112_ss92.71 13691.55 14896.20 9995.56 19091.12 10698.48 16494.69 30488.29 18386.89 20898.50 9987.02 9198.66 15584.75 22689.77 21198.81 135
Vis-MVSNetpermissive92.64 13891.85 14195.03 14095.12 20988.23 17598.48 16496.81 18191.61 8992.16 14497.22 15271.58 25598.00 18385.85 21697.81 10998.88 127
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
TAMVS92.62 13992.09 13794.20 17294.10 23987.68 18698.41 17196.97 17887.53 20889.74 18296.04 19384.77 13496.49 26088.97 18292.31 18398.42 155
baseline192.61 14091.28 15396.58 8497.05 13794.63 4597.72 22796.20 21589.82 13388.56 19196.85 17186.85 9597.82 19188.42 18480.10 27397.30 191
EPMVS92.59 14191.59 14795.59 12497.22 12690.03 14091.78 33498.04 4390.42 11991.66 14990.65 29686.49 10797.46 21881.78 26296.31 13799.28 92
ET-MVSNet_ETH3D92.56 14291.45 15095.88 11296.39 15994.13 5799.46 5096.97 17892.18 8166.94 35698.29 11094.65 1594.28 33294.34 11383.82 25099.24 95
mvs_anonymous92.50 14391.65 14695.06 13796.60 15089.64 14897.06 25396.44 20186.64 22484.14 23193.93 23082.49 16896.17 28391.47 14896.08 14399.35 85
h-mvs3392.47 14491.95 14094.05 17997.13 13285.01 25798.36 18098.08 4093.85 4596.27 8196.73 17583.19 15499.43 11295.81 8068.09 34197.70 180
test_fmvs192.35 14592.94 12090.57 25697.19 12775.43 33799.55 3794.97 29395.20 2396.82 7097.57 13759.59 32099.84 6197.30 5198.29 10496.46 213
BH-w/o92.32 14691.79 14393.91 18496.85 14186.18 22799.11 9595.74 25688.13 18784.81 22397.00 16377.26 21297.91 18489.16 18198.03 10697.64 181
ECVR-MVScopyleft92.29 14791.33 15295.15 13496.41 15787.84 18398.10 20294.84 29790.82 10691.42 15797.28 14765.61 29698.49 15890.33 16297.19 12499.12 105
EPNet_dtu92.28 14892.15 13592.70 20997.29 12484.84 25998.64 14397.82 5592.91 6593.02 13497.02 16285.48 12495.70 30472.25 32794.89 15797.55 186
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Test_1112_low_res92.27 14990.97 15996.18 10095.53 19291.10 10898.47 16694.66 30588.28 18486.83 20993.50 24387.00 9298.65 15684.69 22789.74 21298.80 136
LFMVS92.23 15090.84 16396.42 9398.24 9491.08 11098.24 18996.22 21483.39 27694.74 10998.31 10861.12 31598.85 14494.45 11292.82 17399.32 88
FA-MVS(test-final)92.22 15191.08 15795.64 12196.05 17788.98 15891.60 33797.25 14586.99 21391.84 14592.12 26183.03 15799.00 14086.91 20293.91 16598.93 123
test111192.12 15291.19 15594.94 14296.15 17187.36 19898.12 19994.84 29790.85 10590.97 16297.26 14965.60 29798.37 16189.74 17197.14 12799.07 111
IB-MVS89.43 692.12 15290.83 16595.98 11095.40 19790.78 11799.81 798.06 4191.23 10085.63 21893.66 23890.63 4098.78 14691.22 15071.85 33198.36 162
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
F-COLMAP92.07 15491.75 14593.02 20098.16 9882.89 28598.79 12995.97 23186.54 22787.92 19597.80 12278.69 20499.65 8885.97 21195.93 14696.53 211
PatchmatchNetpermissive92.05 15591.04 15895.06 13796.17 17089.04 15691.26 34297.26 14489.56 14390.64 16890.56 30288.35 6497.11 22979.53 27596.07 14499.03 112
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
UGNet91.91 15690.85 16295.10 13597.06 13688.69 16998.01 20998.24 3192.41 7592.39 14193.61 23960.52 31799.68 8288.14 18897.25 12296.92 203
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
tpm291.77 15791.09 15693.82 18794.83 22585.56 24692.51 33097.16 15884.00 26493.83 12490.66 29587.54 7797.17 22787.73 19491.55 19798.72 142
Fast-Effi-MVS+91.72 15890.79 16694.49 15895.89 17987.40 19799.54 4295.70 25885.01 25189.28 18795.68 19977.75 20997.57 21583.22 24695.06 15698.51 152
hse-mvs291.67 15991.51 14992.15 21996.22 16682.61 29197.74 22697.53 11393.85 4596.27 8196.15 18983.19 15497.44 22095.81 8066.86 34896.40 215
HQP-MVS91.50 16091.23 15492.29 21493.95 24486.39 21899.16 8296.37 20493.92 4087.57 19796.67 17773.34 23597.77 19593.82 12386.29 22492.72 236
PatchMatch-RL91.47 16190.54 17094.26 16998.20 9586.36 22096.94 25797.14 15987.75 20088.98 18895.75 19871.80 25299.40 11780.92 26797.39 12197.02 201
BH-untuned91.46 16290.84 16393.33 19596.51 15484.83 26098.84 12295.50 27086.44 23083.50 23596.70 17675.49 21997.77 19586.78 20597.81 10997.40 188
QAPM91.41 16389.49 18397.17 5395.66 18893.42 6998.60 14997.51 11880.92 31481.39 27597.41 14472.89 24299.87 5282.33 25698.68 9398.21 169
FE-MVS91.38 16490.16 17595.05 13996.46 15587.53 19289.69 35197.84 5282.97 28392.18 14392.00 26784.07 14098.93 14380.71 26995.52 15198.68 145
HQP_MVS91.26 16590.95 16092.16 21893.84 25186.07 23399.02 10596.30 20893.38 5686.99 20496.52 17972.92 24097.75 20193.46 12886.17 22792.67 238
PCF-MVS89.78 591.26 16589.63 18096.16 10395.44 19491.58 9895.29 30496.10 22385.07 24882.75 24597.45 14278.28 20699.78 7480.60 27195.65 15097.12 195
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
BH-RMVSNet91.25 16789.99 17695.03 14096.75 14788.55 17198.65 14194.95 29487.74 20187.74 19697.80 12268.27 27398.14 17180.53 27297.49 11998.41 156
VDD-MVS91.24 16890.18 17494.45 16197.08 13585.84 24098.40 17496.10 22386.99 21393.36 12998.16 11554.27 33999.20 12896.59 6890.63 20798.31 165
SDMVSNet91.09 16989.91 17794.65 15396.80 14490.54 12497.78 22197.81 5888.34 18085.73 21595.26 20866.44 29098.26 16794.25 11586.75 22195.14 224
test_fmvs1_n91.07 17091.41 15190.06 27094.10 23974.31 34199.18 7894.84 29794.81 2596.37 8097.46 14150.86 35099.82 6797.14 5497.90 10796.04 220
CLD-MVS91.06 17190.71 16792.10 22094.05 24386.10 23099.55 3796.29 21194.16 3584.70 22597.17 15669.62 26597.82 19194.74 10586.08 22992.39 242
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
ab-mvs91.05 17289.17 19096.69 7995.96 17891.72 9492.62 32997.23 14985.61 23989.74 18293.89 23268.55 27099.42 11391.09 15187.84 21698.92 125
XVG-OURS-SEG-HR90.95 17390.66 16991.83 22595.18 20781.14 30995.92 29195.92 23988.40 17790.33 17597.85 11970.66 26099.38 11892.83 13888.83 21394.98 227
cascas90.93 17489.33 18895.76 11695.69 18693.03 7798.99 10996.59 18980.49 31686.79 21094.45 22165.23 30098.60 15793.52 12792.18 18695.66 223
XVG-OURS90.83 17590.49 17191.86 22495.23 20181.25 30695.79 29995.92 23988.96 15890.02 17998.03 11871.60 25499.35 12391.06 15287.78 21794.98 227
TR-MVS90.77 17689.44 18494.76 14896.31 16288.02 18197.92 21395.96 23385.52 24088.22 19497.23 15166.80 28698.09 17584.58 22992.38 18198.17 171
OpenMVScopyleft85.28 1490.75 17788.84 19696.48 8993.58 25893.51 6798.80 12597.41 13682.59 29078.62 30297.49 14068.00 27699.82 6784.52 23198.55 9896.11 219
FIs90.70 17889.87 17893.18 19792.29 27691.12 10698.17 19698.25 2989.11 15483.44 23694.82 21682.26 17496.17 28387.76 19382.76 25992.25 247
X-MVStestdata90.69 17988.66 20196.77 7199.62 2290.66 12299.43 5697.58 10492.41 7596.86 6529.59 38587.37 8199.87 5295.65 8299.43 5999.78 37
SCA90.64 18089.25 18994.83 14794.95 22088.83 16496.26 28197.21 15190.06 13190.03 17890.62 29866.61 28796.81 24283.16 24794.36 16198.84 130
GeoE90.60 18189.56 18193.72 19195.10 21385.43 24799.41 5994.94 29583.96 26687.21 20396.83 17274.37 22797.05 23380.50 27393.73 16798.67 146
test_vis1_n90.40 18290.27 17390.79 25191.55 29076.48 33399.12 9494.44 30994.31 3197.34 5596.95 16543.60 36199.42 11397.57 4797.60 11496.47 212
TAPA-MVS87.50 990.35 18389.05 19294.25 17098.48 9185.17 25498.42 16996.58 19282.44 29687.24 20298.53 9682.77 16298.84 14559.09 36297.88 10898.72 142
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
miper_enhance_ethall90.33 18489.70 17992.22 21597.12 13388.93 16298.35 18195.96 23388.60 16883.14 24392.33 26087.38 8096.18 28186.49 20777.89 28291.55 274
CVMVSNet90.30 18590.91 16188.46 30394.32 23573.58 34597.61 23297.59 10290.16 12788.43 19397.10 15876.83 21492.86 34282.64 25393.54 16898.93 123
nrg03090.23 18688.87 19594.32 16791.53 29193.54 6698.79 12995.89 24788.12 18884.55 22794.61 21978.80 20396.88 23992.35 14475.21 29692.53 240
FC-MVSNet-test90.22 18789.40 18692.67 21191.78 28789.86 14497.89 21498.22 3288.81 16482.96 24494.66 21881.90 18095.96 29285.89 21582.52 26292.20 253
LS3D90.19 18888.72 19994.59 15798.97 7386.33 22296.90 25996.60 18874.96 34184.06 23398.74 8075.78 21799.83 6474.93 30897.57 11597.62 184
AUN-MVS90.17 18989.50 18292.19 21796.21 16782.67 28997.76 22597.53 11388.05 18991.67 14896.15 18983.10 15697.47 21788.11 18966.91 34796.43 214
dp90.16 19088.83 19794.14 17496.38 16086.42 21691.57 33897.06 16984.76 25588.81 18990.19 31484.29 13797.43 22175.05 30791.35 20198.56 150
GA-MVS90.10 19188.69 20094.33 16692.44 27587.97 18299.08 9796.26 21289.65 13786.92 20793.11 25168.09 27496.96 23582.54 25590.15 20998.05 172
VDDNet90.08 19288.54 20794.69 15294.41 23387.68 18698.21 19296.40 20276.21 33693.33 13097.75 12654.93 33798.77 14794.71 10790.96 20297.61 185
gg-mvs-nofinetune90.00 19387.71 21796.89 7096.15 17194.69 4485.15 36097.74 6768.32 36092.97 13560.16 37396.10 396.84 24093.89 11998.87 8699.14 102
mvsmamba89.99 19489.42 18591.69 23290.64 30386.34 22198.40 17492.27 34291.01 10284.80 22494.93 21276.12 21596.51 25792.81 13983.84 24792.21 251
Effi-MVS+-dtu89.97 19590.68 16887.81 30795.15 20871.98 35197.87 21795.40 27791.92 8587.57 19791.44 27774.27 22996.84 24089.45 17393.10 17194.60 229
EI-MVSNet89.87 19689.38 18791.36 23794.32 23585.87 23897.61 23296.59 18985.10 24685.51 21997.10 15881.30 18796.56 25383.85 24383.03 25791.64 266
OPM-MVS89.76 19789.15 19191.57 23490.53 30485.58 24598.11 20195.93 23892.88 6686.05 21396.47 18267.06 28597.87 18889.29 17986.08 22991.26 287
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
tpm89.67 19888.95 19491.82 22692.54 27481.43 30192.95 32495.92 23987.81 19790.50 17189.44 32184.99 12895.65 30583.67 24482.71 26098.38 159
UniMVSNet_NR-MVSNet89.60 19988.55 20692.75 20792.17 27990.07 13698.74 13298.15 3788.37 17883.21 23993.98 22982.86 16095.93 29486.95 20072.47 32592.25 247
cl2289.57 20088.79 19891.91 22397.94 10487.62 18997.98 21196.51 19685.03 24982.37 25691.79 27083.65 14396.50 25885.96 21277.89 28291.61 271
PS-MVSNAJss89.54 20189.05 19291.00 24488.77 32884.36 26597.39 23695.97 23188.47 17081.88 26793.80 23482.48 16996.50 25889.34 17683.34 25692.15 254
UniMVSNet (Re)89.50 20288.32 20993.03 19992.21 27890.96 11498.90 11898.39 2589.13 15383.22 23892.03 26381.69 18196.34 27386.79 20472.53 32491.81 263
sd_testset89.23 20388.05 21492.74 20896.80 14485.33 25095.85 29797.03 17288.34 18085.73 21595.26 20861.12 31597.76 20085.61 21786.75 22195.14 224
tpmvs89.16 20487.76 21593.35 19497.19 12784.75 26190.58 34997.36 14181.99 30184.56 22689.31 32483.98 14198.17 17074.85 31090.00 21097.12 195
VPA-MVSNet89.10 20587.66 21893.45 19392.56 27391.02 11297.97 21298.32 2786.92 21886.03 21492.01 26568.84 26997.10 23190.92 15475.34 29592.23 249
ADS-MVSNet88.99 20687.30 22394.07 17796.21 16787.56 19187.15 35596.78 18383.01 28189.91 18087.27 33778.87 20197.01 23474.20 31592.27 18497.64 181
test0.0.03 188.96 20788.61 20290.03 27491.09 29784.43 26498.97 11297.02 17490.21 12280.29 28396.31 18884.89 13091.93 35672.98 32485.70 23293.73 231
miper_ehance_all_eth88.94 20888.12 21291.40 23595.32 19986.93 20897.85 21895.55 26784.19 26181.97 26591.50 27684.16 13895.91 29784.69 22777.89 28291.36 282
RRT_MVS88.91 20988.56 20589.93 27590.31 30781.61 29998.08 20596.38 20389.30 14882.41 25494.84 21573.15 23896.04 28990.38 16182.23 26492.15 254
tpm cat188.89 21087.27 22493.76 18895.79 18285.32 25190.76 34797.09 16776.14 33785.72 21788.59 32782.92 15998.04 18076.96 29491.43 19897.90 177
LPG-MVS_test88.86 21188.47 20890.06 27093.35 26580.95 31198.22 19095.94 23687.73 20283.17 24196.11 19166.28 29197.77 19590.19 16485.19 23491.46 277
Anonymous20240521188.84 21287.03 22894.27 16898.14 9984.18 26898.44 16795.58 26676.79 33589.34 18696.88 17053.42 34299.54 9887.53 19687.12 22099.09 108
Fast-Effi-MVS+-dtu88.84 21288.59 20489.58 28593.44 26378.18 32798.65 14194.62 30688.46 17284.12 23295.37 20768.91 26796.52 25682.06 25991.70 19594.06 230
DU-MVS88.83 21487.51 21992.79 20591.46 29290.07 13698.71 13397.62 9588.87 16383.21 23993.68 23674.63 22195.93 29486.95 20072.47 32592.36 244
CR-MVSNet88.83 21487.38 22293.16 19893.47 26086.24 22384.97 36294.20 31788.92 16290.76 16686.88 34184.43 13594.82 32470.64 33192.17 18798.41 156
FMVSNet388.81 21687.08 22793.99 18296.52 15394.59 4698.08 20596.20 21585.85 23482.12 26091.60 27474.05 23195.40 31279.04 27980.24 27091.99 261
ACMM86.95 1388.77 21788.22 21190.43 26193.61 25781.34 30498.50 16095.92 23987.88 19683.85 23495.20 21067.20 28397.89 18686.90 20384.90 23692.06 259
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
DP-MVS88.75 21886.56 23595.34 13098.92 7787.45 19597.64 23193.52 32870.55 35281.49 27397.25 15074.43 22699.88 4971.14 33094.09 16398.67 146
ACMP87.39 1088.71 21988.24 21090.12 26993.91 24981.06 31098.50 16095.67 26189.43 14680.37 28295.55 20065.67 29497.83 19090.55 16084.51 23891.47 276
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
dmvs_re88.69 22088.06 21390.59 25593.83 25378.68 32395.75 30096.18 21887.99 19284.48 22996.32 18767.52 28096.94 23784.98 22485.49 23396.14 218
LCM-MVSNet-Re88.59 22188.61 20288.51 30295.53 19272.68 34996.85 26188.43 36888.45 17373.14 33390.63 29775.82 21694.38 33192.95 13595.71 14998.48 154
WR-MVS88.54 22287.22 22692.52 21291.93 28589.50 15198.56 15497.84 5286.99 21381.87 26893.81 23374.25 23095.92 29685.29 21974.43 30592.12 256
IterMVS-LS88.34 22387.44 22091.04 24394.10 23985.85 23998.10 20295.48 27185.12 24582.03 26491.21 28281.35 18695.63 30683.86 24275.73 29491.63 267
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
VPNet88.30 22486.57 23493.49 19291.95 28391.35 10098.18 19497.20 15588.61 16784.52 22894.89 21362.21 31096.76 24589.34 17672.26 32892.36 244
MSDG88.29 22586.37 23794.04 18096.90 14086.15 22996.52 27294.36 31477.89 33179.22 29796.95 16569.72 26399.59 9473.20 32392.58 17996.37 216
test_djsdf88.26 22687.73 21689.84 27888.05 33782.21 29397.77 22396.17 21986.84 21982.41 25491.95 26972.07 24895.99 29089.83 16684.50 23991.32 284
c3_l88.19 22787.23 22591.06 24294.97 21986.17 22897.72 22795.38 27883.43 27581.68 27291.37 27882.81 16195.72 30384.04 24073.70 31391.29 286
D2MVS87.96 22887.39 22189.70 28291.84 28683.40 27798.31 18598.49 2288.04 19078.23 30890.26 30873.57 23396.79 24484.21 23483.53 25288.90 334
bld_raw_dy_0_6487.82 22986.71 23391.15 24089.54 31985.61 24397.37 23989.16 36689.26 14983.42 23794.50 22065.79 29396.18 28188.00 19183.37 25491.67 265
cl____87.82 22986.79 23290.89 24894.88 22385.43 24797.81 21995.24 28682.91 28880.71 27991.22 28181.97 17995.84 29981.34 26475.06 29791.40 281
DIV-MVS_self_test87.82 22986.81 23190.87 24994.87 22485.39 24997.81 21995.22 29182.92 28780.76 27891.31 28081.99 17795.81 30181.36 26375.04 29891.42 280
eth_miper_zixun_eth87.76 23287.00 22990.06 27094.67 22982.65 29097.02 25695.37 27984.19 26181.86 27091.58 27581.47 18495.90 29883.24 24573.61 31491.61 271
TranMVSNet+NR-MVSNet87.75 23386.31 23892.07 22190.81 30088.56 17098.33 18297.18 15687.76 19981.87 26893.90 23172.45 24495.43 31083.13 24971.30 33592.23 249
XXY-MVS87.75 23386.02 24292.95 20390.46 30589.70 14797.71 22995.90 24584.02 26380.95 27694.05 22367.51 28197.10 23185.16 22078.41 27992.04 260
NR-MVSNet87.74 23586.00 24392.96 20291.46 29290.68 12196.65 27097.42 13588.02 19173.42 33093.68 23677.31 21195.83 30084.26 23371.82 33292.36 244
Anonymous2024052987.66 23685.58 24993.92 18397.59 11685.01 25798.13 19797.13 16166.69 36588.47 19296.01 19455.09 33699.51 10087.00 19984.12 24597.23 194
ADS-MVSNet287.62 23786.88 23089.86 27796.21 16779.14 31987.15 35592.99 33283.01 28189.91 18087.27 33778.87 20192.80 34574.20 31592.27 18497.64 181
pmmvs487.58 23886.17 24191.80 22789.58 31788.92 16397.25 24595.28 28282.54 29280.49 28193.17 25075.62 21896.05 28882.75 25278.90 27790.42 309
jajsoiax87.35 23986.51 23689.87 27687.75 34281.74 29797.03 25495.98 23088.47 17080.15 28593.80 23461.47 31296.36 26789.44 17484.47 24191.50 275
PVSNet_083.28 1687.31 24085.16 25593.74 19094.78 22684.59 26298.91 11798.69 2089.81 13478.59 30493.23 24861.95 31199.34 12494.75 10455.72 36897.30 191
v2v48287.27 24185.76 24691.78 23189.59 31687.58 19098.56 15495.54 26884.53 25782.51 25091.78 27173.11 23996.47 26182.07 25874.14 31191.30 285
mvs_tets87.09 24286.22 23989.71 28187.87 33881.39 30396.73 26895.90 24588.19 18679.99 28793.61 23959.96 31996.31 27589.40 17584.34 24291.43 279
V4287.00 24385.68 24890.98 24589.91 31086.08 23198.32 18495.61 26483.67 27282.72 24690.67 29474.00 23296.53 25581.94 26174.28 30890.32 311
miper_lstm_enhance86.90 24486.20 24089.00 29794.53 23181.19 30796.74 26795.24 28682.33 29780.15 28590.51 30581.99 17794.68 32880.71 26973.58 31591.12 290
FMVSNet286.90 24484.79 26393.24 19695.11 21092.54 8697.67 23095.86 25182.94 28480.55 28091.17 28362.89 30795.29 31477.23 29179.71 27691.90 262
v114486.83 24685.31 25491.40 23589.75 31487.21 20698.31 18595.45 27383.22 27882.70 24790.78 28973.36 23496.36 26779.49 27674.69 30290.63 306
MS-PatchMatch86.75 24785.92 24489.22 29291.97 28182.47 29296.91 25896.14 22183.74 26977.73 30993.53 24258.19 32497.37 22576.75 29798.35 10187.84 340
anonymousdsp86.69 24885.75 24789.53 28686.46 34982.94 28296.39 27595.71 25783.97 26579.63 29290.70 29268.85 26895.94 29386.01 21084.02 24689.72 324
GBi-Net86.67 24984.96 25791.80 22795.11 21088.81 16596.77 26395.25 28382.94 28482.12 26090.25 30962.89 30794.97 31979.04 27980.24 27091.62 268
test186.67 24984.96 25791.80 22795.11 21088.81 16596.77 26395.25 28382.94 28482.12 26090.25 30962.89 30794.97 31979.04 27980.24 27091.62 268
MVP-Stereo86.61 25185.83 24588.93 29988.70 33083.85 27396.07 28894.41 31382.15 30075.64 32091.96 26867.65 27996.45 26377.20 29398.72 9286.51 351
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
CP-MVSNet86.54 25285.45 25289.79 28091.02 29982.78 28897.38 23897.56 10885.37 24279.53 29493.03 25271.86 25195.25 31579.92 27473.43 31991.34 283
WR-MVS_H86.53 25385.49 25189.66 28491.04 29883.31 27997.53 23498.20 3384.95 25279.64 29190.90 28778.01 20895.33 31376.29 30072.81 32190.35 310
tt080586.50 25484.79 26391.63 23391.97 28181.49 30096.49 27397.38 13982.24 29882.44 25195.82 19751.22 34798.25 16884.55 23080.96 26995.13 226
v14419286.40 25584.89 26090.91 24689.48 32185.59 24498.21 19295.43 27682.45 29582.62 24890.58 30172.79 24396.36 26778.45 28674.04 31290.79 299
v14886.38 25685.06 25690.37 26589.47 32284.10 26998.52 15695.48 27183.80 26880.93 27790.22 31274.60 22396.31 27580.92 26771.55 33390.69 304
v119286.32 25784.71 26591.17 23989.53 32086.40 21798.13 19795.44 27582.52 29382.42 25390.62 29871.58 25596.33 27477.23 29174.88 29990.79 299
Patchmatch-test86.25 25884.06 27492.82 20494.42 23282.88 28682.88 36994.23 31671.58 34979.39 29590.62 29889.00 5796.42 26463.03 35491.37 20099.16 101
v886.11 25984.45 26991.10 24189.99 30986.85 20997.24 24695.36 28081.99 30179.89 28989.86 31774.53 22596.39 26578.83 28372.32 32790.05 318
v192192086.02 26084.44 27090.77 25289.32 32385.20 25298.10 20295.35 28182.19 29982.25 25890.71 29170.73 25896.30 27876.85 29674.49 30490.80 298
JIA-IIPM85.97 26184.85 26189.33 29193.23 26773.68 34485.05 36197.13 16169.62 35691.56 15268.03 37188.03 7196.96 23577.89 28993.12 17097.34 190
pmmvs585.87 26284.40 27290.30 26688.53 33284.23 26698.60 14993.71 32481.53 30680.29 28392.02 26464.51 30295.52 30882.04 26078.34 28091.15 289
XVG-ACMP-BASELINE85.86 26384.95 25988.57 30189.90 31177.12 33294.30 31295.60 26587.40 21082.12 26092.99 25453.42 34297.66 20585.02 22383.83 24890.92 295
Baseline_NR-MVSNet85.83 26484.82 26288.87 30088.73 32983.34 27898.63 14491.66 35180.41 31982.44 25191.35 27974.63 22195.42 31184.13 23671.39 33487.84 340
PS-CasMVS85.81 26584.58 26889.49 28990.77 30182.11 29497.20 24997.36 14184.83 25479.12 29992.84 25567.42 28295.16 31778.39 28773.25 32091.21 288
IterMVS85.81 26584.67 26689.22 29293.51 25983.67 27596.32 27894.80 30085.09 24778.69 30090.17 31566.57 28993.17 34179.48 27777.42 28890.81 297
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v124085.77 26784.11 27390.73 25389.26 32485.15 25597.88 21695.23 29081.89 30482.16 25990.55 30369.60 26696.31 27575.59 30574.87 30090.72 303
IterMVS-SCA-FT85.73 26884.64 26789.00 29793.46 26282.90 28496.27 27994.70 30385.02 25078.62 30290.35 30766.61 28793.33 33879.38 27877.36 28990.76 301
v1085.73 26884.01 27590.87 24990.03 30886.73 21197.20 24995.22 29181.25 30979.85 29089.75 31873.30 23796.28 27976.87 29572.64 32389.61 326
UniMVSNet_ETH3D85.65 27083.79 27791.21 23890.41 30680.75 31395.36 30395.78 25378.76 32581.83 27194.33 22249.86 35296.66 24684.30 23283.52 25396.22 217
PatchT85.44 27183.19 27992.22 21593.13 26983.00 28183.80 36896.37 20470.62 35190.55 16979.63 36384.81 13294.87 32258.18 36491.59 19698.79 137
RPSCF85.33 27285.55 25084.67 32894.63 23062.28 36593.73 31893.76 32274.38 34485.23 22297.06 16164.09 30398.31 16380.98 26586.08 22993.41 235
PEN-MVS85.21 27383.93 27689.07 29689.89 31281.31 30597.09 25297.24 14884.45 25978.66 30192.68 25768.44 27294.87 32275.98 30270.92 33691.04 292
test_fmvs285.10 27485.45 25284.02 33189.85 31365.63 36398.49 16292.59 33890.45 11785.43 22193.32 24443.94 35996.59 24990.81 15784.19 24489.85 322
RPMNet85.07 27581.88 29194.64 15593.47 26086.24 22384.97 36297.21 15164.85 36790.76 16678.80 36480.95 18899.27 12753.76 36892.17 18798.41 156
AllTest84.97 27683.12 28090.52 25996.82 14278.84 32195.89 29292.17 34477.96 32975.94 31695.50 20155.48 33299.18 12971.15 32887.14 21893.55 233
USDC84.74 27782.93 28190.16 26891.73 28883.54 27695.00 30693.30 33188.77 16573.19 33293.30 24653.62 34197.65 20775.88 30381.54 26789.30 329
Anonymous2023121184.72 27882.65 28890.91 24697.71 11084.55 26397.28 24396.67 18566.88 36479.18 29890.87 28858.47 32396.60 24882.61 25474.20 30991.59 273
pm-mvs184.68 27982.78 28590.40 26289.58 31785.18 25397.31 24194.73 30281.93 30376.05 31592.01 26565.48 29896.11 28678.75 28469.14 33889.91 321
ACMH83.09 1784.60 28082.61 28990.57 25693.18 26882.94 28296.27 27994.92 29681.01 31272.61 33993.61 23956.54 32897.79 19374.31 31381.07 26890.99 293
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LTVRE_ROB81.71 1984.59 28182.72 28790.18 26792.89 27283.18 28093.15 32394.74 30178.99 32275.14 32392.69 25665.64 29597.63 20869.46 33581.82 26689.74 323
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
COLMAP_ROBcopyleft82.69 1884.54 28282.82 28289.70 28296.72 14878.85 32095.89 29292.83 33671.55 35077.54 31195.89 19659.40 32199.14 13567.26 34288.26 21491.11 291
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
MIMVSNet84.48 28381.83 29292.42 21391.73 28887.36 19885.52 35894.42 31281.40 30781.91 26687.58 33151.92 34592.81 34473.84 31888.15 21597.08 199
our_test_384.47 28482.80 28389.50 28789.01 32583.90 27297.03 25494.56 30781.33 30875.36 32290.52 30471.69 25394.54 33068.81 33776.84 29090.07 316
v7n84.42 28582.75 28689.43 29088.15 33581.86 29696.75 26695.67 26180.53 31578.38 30689.43 32269.89 26196.35 27273.83 31972.13 32990.07 316
ACMH+83.78 1584.21 28682.56 29089.15 29493.73 25679.16 31896.43 27494.28 31581.09 31174.00 32794.03 22654.58 33897.67 20476.10 30178.81 27890.63 306
EU-MVSNet84.19 28784.42 27183.52 33488.64 33167.37 36296.04 28995.76 25585.29 24378.44 30593.18 24970.67 25991.48 35875.79 30475.98 29291.70 264
DTE-MVSNet84.14 28882.80 28388.14 30488.95 32779.87 31696.81 26296.24 21383.50 27477.60 31092.52 25967.89 27894.24 33372.64 32669.05 33990.32 311
OurMVSNet-221017-084.13 28983.59 27885.77 32187.81 33970.24 35694.89 30793.65 32686.08 23276.53 31293.28 24761.41 31396.14 28580.95 26677.69 28790.93 294
FMVSNet183.94 29081.32 29891.80 22791.94 28488.81 16596.77 26395.25 28377.98 32778.25 30790.25 30950.37 35194.97 31973.27 32277.81 28691.62 268
tfpnnormal83.65 29181.35 29790.56 25891.37 29488.06 17997.29 24297.87 5078.51 32676.20 31390.91 28664.78 30196.47 26161.71 35773.50 31687.13 348
ppachtmachnet_test83.63 29281.57 29589.80 27989.01 32585.09 25697.13 25194.50 30878.84 32376.14 31491.00 28569.78 26294.61 32963.40 35274.36 30689.71 325
Patchmtry83.61 29381.64 29389.50 28793.36 26482.84 28784.10 36594.20 31769.47 35779.57 29386.88 34184.43 13594.78 32568.48 33974.30 30790.88 296
KD-MVS_2432*160082.98 29480.52 30290.38 26394.32 23588.98 15892.87 32695.87 24980.46 31773.79 32887.49 33482.76 16493.29 33970.56 33246.53 37588.87 335
miper_refine_blended82.98 29480.52 30290.38 26394.32 23588.98 15892.87 32695.87 24980.46 31773.79 32887.49 33482.76 16493.29 33970.56 33246.53 37588.87 335
SixPastTwentyTwo82.63 29681.58 29485.79 32088.12 33671.01 35495.17 30592.54 33984.33 26072.93 33792.08 26260.41 31895.61 30774.47 31274.15 31090.75 302
testgi82.29 29781.00 30086.17 31887.24 34574.84 34097.39 23691.62 35288.63 16675.85 31995.42 20446.07 35891.55 35766.87 34579.94 27492.12 256
FMVSNet582.29 29780.54 30187.52 30993.79 25584.01 27093.73 31892.47 34076.92 33474.27 32586.15 34563.69 30689.24 36469.07 33674.79 30189.29 330
TransMVSNet (Re)81.97 29979.61 30889.08 29589.70 31584.01 27097.26 24491.85 35078.84 32373.07 33691.62 27367.17 28495.21 31667.50 34159.46 36288.02 339
LF4IMVS81.94 30081.17 29984.25 33087.23 34668.87 36193.35 32291.93 34983.35 27775.40 32193.00 25349.25 35596.65 24778.88 28278.11 28187.22 347
Patchmatch-RL test81.90 30180.13 30487.23 31280.71 36570.12 35884.07 36688.19 36983.16 28070.57 34182.18 35687.18 8792.59 34782.28 25762.78 35598.98 115
DSMNet-mixed81.60 30281.43 29682.10 33884.36 35560.79 36693.63 32086.74 37179.00 32179.32 29687.15 33963.87 30589.78 36266.89 34491.92 18995.73 222
test_vis1_rt81.31 30380.05 30685.11 32391.29 29570.66 35598.98 11177.39 38185.76 23768.80 34782.40 35436.56 36899.44 10992.67 14186.55 22385.24 358
K. test v381.04 30479.77 30784.83 32687.41 34370.23 35795.60 30293.93 32183.70 27167.51 35489.35 32355.76 33093.58 33776.67 29868.03 34290.67 305
Anonymous2023120680.76 30579.42 30984.79 32784.78 35472.98 34696.53 27192.97 33379.56 32074.33 32488.83 32561.27 31492.15 35360.59 35975.92 29389.24 331
CMPMVSbinary58.40 2180.48 30680.11 30581.59 34185.10 35359.56 36894.14 31595.95 23568.54 35960.71 36593.31 24555.35 33597.87 18883.06 25084.85 23787.33 345
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
TinyColmap80.42 30777.94 31287.85 30692.09 28078.58 32493.74 31789.94 36174.99 34069.77 34491.78 27146.09 35797.58 21265.17 35077.89 28287.38 343
EG-PatchMatch MVS79.92 30877.59 31386.90 31487.06 34777.90 33196.20 28694.06 31974.61 34266.53 35888.76 32640.40 36696.20 28067.02 34383.66 25186.61 349
pmmvs679.90 30977.31 31587.67 30884.17 35678.13 32895.86 29693.68 32567.94 36172.67 33889.62 32050.98 34995.75 30274.80 31166.04 34989.14 332
CL-MVSNet_self_test79.89 31078.34 31184.54 32981.56 36375.01 33896.88 26095.62 26381.10 31075.86 31885.81 34668.49 27190.26 36063.21 35356.51 36688.35 337
MDA-MVSNet_test_wron79.65 31177.05 31687.45 31087.79 34180.13 31496.25 28294.44 30973.87 34551.80 36987.47 33668.04 27592.12 35466.02 34667.79 34490.09 314
YYNet179.64 31277.04 31787.43 31187.80 34079.98 31596.23 28394.44 30973.83 34651.83 36887.53 33267.96 27792.07 35566.00 34767.75 34590.23 313
MVS-HIRNet79.01 31375.13 32590.66 25493.82 25481.69 29885.16 35993.75 32354.54 36974.17 32659.15 37557.46 32696.58 25263.74 35194.38 16093.72 232
UnsupCasMVSNet_eth78.90 31476.67 31985.58 32282.81 36174.94 33991.98 33296.31 20784.64 25665.84 36087.71 33051.33 34692.23 35272.89 32556.50 36789.56 327
test_040278.81 31576.33 32086.26 31791.18 29678.44 32695.88 29491.34 35568.55 35870.51 34389.91 31652.65 34494.99 31847.14 37279.78 27585.34 357
pmmvs-eth3d78.71 31676.16 32186.38 31680.25 36781.19 30794.17 31492.13 34677.97 32866.90 35782.31 35555.76 33092.56 34873.63 32162.31 35885.38 355
Anonymous2024052178.63 31776.90 31883.82 33282.82 36072.86 34795.72 30193.57 32773.55 34772.17 34084.79 34849.69 35392.51 34965.29 34974.50 30386.09 353
test20.0378.51 31877.48 31481.62 34083.07 35971.03 35396.11 28792.83 33681.66 30569.31 34689.68 31957.53 32587.29 36958.65 36368.47 34086.53 350
TDRefinement78.01 31975.31 32386.10 31970.06 37673.84 34393.59 32191.58 35374.51 34373.08 33591.04 28449.63 35497.12 22874.88 30959.47 36187.33 345
OpenMVS_ROBcopyleft73.86 2077.99 32075.06 32686.77 31583.81 35877.94 33096.38 27691.53 35467.54 36268.38 34987.13 34043.94 35996.08 28755.03 36781.83 26586.29 352
MDA-MVSNet-bldmvs77.82 32174.75 32787.03 31388.33 33378.52 32596.34 27792.85 33575.57 33848.87 37187.89 32957.32 32792.49 35060.79 35864.80 35390.08 315
KD-MVS_self_test77.47 32275.88 32282.24 33681.59 36268.93 36092.83 32894.02 32077.03 33373.14 33383.39 35155.44 33490.42 35967.95 34057.53 36587.38 343
dmvs_testset77.17 32378.99 31071.71 35187.25 34438.55 38591.44 33981.76 37785.77 23669.49 34595.94 19569.71 26484.37 37152.71 37076.82 29192.21 251
new_pmnet76.02 32473.71 32982.95 33583.88 35772.85 34891.26 34292.26 34370.44 35362.60 36381.37 35747.64 35692.32 35161.85 35672.10 33083.68 363
MIMVSNet175.92 32573.30 33083.81 33381.29 36475.57 33692.26 33192.05 34773.09 34867.48 35586.18 34440.87 36587.64 36855.78 36670.68 33788.21 338
mvsany_test375.85 32674.52 32879.83 34373.53 37360.64 36791.73 33587.87 37083.91 26770.55 34282.52 35331.12 37093.66 33586.66 20662.83 35485.19 359
test_fmvs375.09 32775.19 32474.81 34877.45 37154.08 37395.93 29090.64 35882.51 29473.29 33181.19 35822.29 37586.29 37085.50 21867.89 34384.06 361
PM-MVS74.88 32872.85 33180.98 34278.98 36964.75 36490.81 34685.77 37280.95 31368.23 35182.81 35229.08 37292.84 34376.54 29962.46 35785.36 356
new-patchmatchnet74.80 32972.40 33281.99 33978.36 37072.20 35094.44 31092.36 34177.06 33263.47 36279.98 36251.04 34888.85 36560.53 36054.35 36984.92 360
UnsupCasMVSNet_bld73.85 33070.14 33484.99 32579.44 36875.73 33588.53 35295.24 28670.12 35561.94 36474.81 36841.41 36493.62 33668.65 33851.13 37485.62 354
pmmvs372.86 33169.76 33682.17 33773.86 37274.19 34294.20 31389.01 36764.23 36867.72 35280.91 36041.48 36388.65 36662.40 35554.02 37083.68 363
test_f71.94 33270.82 33375.30 34772.77 37453.28 37491.62 33689.66 36475.44 33964.47 36178.31 36520.48 37689.56 36378.63 28566.02 35083.05 366
N_pmnet70.19 33369.87 33571.12 35388.24 33430.63 38995.85 29728.70 38970.18 35468.73 34886.55 34364.04 30493.81 33453.12 36973.46 31788.94 333
test_method70.10 33468.66 33774.41 35086.30 35155.84 37194.47 30989.82 36235.18 37766.15 35984.75 34930.54 37177.96 37870.40 33460.33 36089.44 328
APD_test168.93 33566.98 33874.77 34980.62 36653.15 37587.97 35385.01 37453.76 37059.26 36687.52 33325.19 37389.95 36156.20 36567.33 34681.19 367
FPMVS61.57 33660.32 33965.34 35660.14 38342.44 38391.02 34589.72 36344.15 37242.63 37580.93 35919.02 37780.59 37742.50 37372.76 32273.00 369
test_vis3_rt61.29 33758.75 34068.92 35567.41 37752.84 37691.18 34459.23 38866.96 36341.96 37658.44 37611.37 38494.72 32774.25 31457.97 36459.20 375
EGC-MVSNET60.70 33855.37 34276.72 34586.35 35071.08 35289.96 35084.44 3760.38 3861.50 38784.09 35037.30 36788.10 36740.85 37673.44 31870.97 371
LCM-MVSNet60.07 33956.37 34171.18 35254.81 38548.67 37982.17 37089.48 36537.95 37549.13 37069.12 36913.75 38381.76 37259.28 36151.63 37383.10 365
PMMVS258.97 34055.07 34370.69 35462.72 38055.37 37285.97 35780.52 37849.48 37145.94 37268.31 37015.73 38180.78 37649.79 37137.12 37775.91 368
testf156.38 34153.73 34464.31 35864.84 37845.11 38080.50 37175.94 38338.87 37342.74 37375.07 36611.26 38581.19 37441.11 37453.27 37166.63 372
APD_test256.38 34153.73 34464.31 35864.84 37845.11 38080.50 37175.94 38338.87 37342.74 37375.07 36611.26 38581.19 37441.11 37453.27 37166.63 372
Gipumacopyleft54.77 34352.22 34762.40 36086.50 34859.37 36950.20 37890.35 36036.52 37641.20 37749.49 37818.33 37981.29 37332.10 37865.34 35146.54 378
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
tmp_tt53.66 34452.86 34656.05 36132.75 38941.97 38473.42 37576.12 38221.91 38239.68 37896.39 18542.59 36265.10 38178.00 28814.92 38261.08 374
ANet_high50.71 34546.17 34864.33 35744.27 38752.30 37776.13 37478.73 37964.95 36627.37 38055.23 37714.61 38267.74 38036.01 37718.23 38072.95 370
PMVScopyleft41.42 2345.67 34642.50 34955.17 36234.28 38832.37 38766.24 37678.71 38030.72 37822.04 38359.59 3744.59 38777.85 37927.49 37958.84 36355.29 376
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive44.00 2241.70 34737.64 35253.90 36349.46 38643.37 38265.09 37766.66 38526.19 38125.77 38248.53 3793.58 38963.35 38226.15 38027.28 37854.97 377
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN41.02 34840.93 35041.29 36461.97 38133.83 38684.00 36765.17 38627.17 37927.56 37946.72 38017.63 38060.41 38319.32 38118.82 37929.61 379
EMVS39.96 34939.88 35140.18 36559.57 38432.12 38884.79 36464.57 38726.27 38026.14 38144.18 38318.73 37859.29 38417.03 38217.67 38129.12 380
cdsmvs_eth3d_5k22.52 35030.03 3530.00 3690.00 3920.00 3930.00 38097.17 1570.00 3870.00 38898.77 7774.35 2280.00 3880.00 3860.00 3860.00 384
testmvs18.81 35123.05 3546.10 3684.48 3902.29 39297.78 2213.00 3913.27 38418.60 38462.71 3721.53 3912.49 38714.26 3841.80 38413.50 382
wuyk23d16.71 35216.73 35616.65 36660.15 38225.22 39041.24 3795.17 3906.56 3835.48 3863.61 3863.64 38822.72 38515.20 3839.52 3831.99 383
test12316.58 35319.47 3557.91 3673.59 3915.37 39194.32 3111.39 3922.49 38513.98 38544.60 3822.91 3902.65 38611.35 3850.57 38515.70 381
ab-mvs-re8.21 35410.94 3570.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 38898.50 990.00 3920.00 3880.00 3860.00 3860.00 384
pcd_1.5k_mvsjas6.87 3559.16 3580.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 38782.48 1690.00 3880.00 3860.00 3860.00 384
test_blank0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
uanet_test0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
DCPMVS0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
sosnet-low-res0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
sosnet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
uncertanet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
Regformer0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
uanet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
FOURS199.50 4288.94 16199.55 3797.47 12691.32 9898.12 36
MSC_two_6792asdad99.51 299.61 2498.60 297.69 7899.98 999.55 1099.83 1599.96 10
PC_three_145294.60 2799.41 299.12 4295.50 799.96 2899.84 299.92 399.97 7
No_MVS99.51 299.61 2498.60 297.69 7899.98 999.55 1099.83 1599.96 10
test_one_060199.59 2894.89 3397.64 8993.14 5998.93 1799.45 1493.45 18
eth-test20.00 392
eth-test0.00 392
ZD-MVS99.67 1093.28 7097.61 9687.78 19897.41 5299.16 3490.15 4799.56 9598.35 3399.70 35
RE-MVS-def95.70 5799.22 5987.26 20498.40 17497.21 15189.63 13896.67 7598.97 5685.24 12796.62 6599.31 6599.60 65
IU-MVS99.63 1895.38 2197.73 7095.54 1999.54 199.69 599.81 2399.99 1
OPU-MVS99.49 499.64 1798.51 499.77 1099.19 2895.12 899.97 2199.90 199.92 399.99 1
test_241102_TWO97.72 7194.17 3399.23 899.54 393.14 2499.98 999.70 399.82 1999.99 1
test_241102_ONE99.63 1895.24 2497.72 7194.16 3599.30 699.49 993.32 1999.98 9
9.1496.87 2499.34 5099.50 4397.49 12389.41 14798.59 2499.43 1689.78 5099.69 8198.69 2399.62 44
save fliter99.34 5093.85 6199.65 2897.63 9395.69 16
test_0728_THIRD93.01 6099.07 1299.46 1094.66 1499.97 2199.25 1599.82 1999.95 15
test_0728_SECOND98.77 799.66 1296.37 1399.72 1697.68 8099.98 999.64 699.82 1999.96 10
test072699.66 1295.20 2999.77 1097.70 7693.95 3899.35 599.54 393.18 22
GSMVS98.84 130
test_part299.54 3695.42 1998.13 34
sam_mvs188.39 6398.84 130
sam_mvs87.08 89
ambc79.60 34472.76 37556.61 37076.20 37392.01 34868.25 35080.23 36123.34 37494.73 32673.78 32060.81 35987.48 342
MTGPAbinary97.45 129
test_post190.74 34841.37 38485.38 12696.36 26783.16 247
test_post46.00 38187.37 8197.11 229
patchmatchnet-post84.86 34788.73 6096.81 242
GG-mvs-BLEND96.98 6296.53 15294.81 4087.20 35497.74 6793.91 12296.40 18396.56 296.94 23795.08 9698.95 8299.20 99
MTMP99.21 7591.09 356
gm-plane-assit94.69 22888.14 17788.22 18597.20 15398.29 16590.79 158
test9_res98.60 2599.87 999.90 22
TEST999.57 3393.17 7299.38 6297.66 8389.57 14298.39 2899.18 3190.88 3799.66 84
test_899.55 3593.07 7599.37 6597.64 8990.18 12498.36 3099.19 2890.94 3599.64 90
agg_prior297.84 4499.87 999.91 21
agg_prior99.54 3692.66 8297.64 8997.98 4399.61 92
TestCases90.52 25996.82 14278.84 32192.17 34477.96 32975.94 31695.50 20155.48 33299.18 12971.15 32887.14 21893.55 233
test_prior492.00 9199.41 59
test_prior299.57 3591.43 9598.12 3698.97 5690.43 4398.33 3499.81 23
test_prior97.01 5799.58 3091.77 9297.57 10799.49 10299.79 35
旧先验298.67 13985.75 23898.96 1698.97 14293.84 121
新几何298.26 188
新几何197.40 4498.92 7792.51 8797.77 6585.52 24096.69 7499.06 4988.08 7099.89 4884.88 22599.62 4499.79 35
旧先验198.97 7392.90 8197.74 6799.15 3691.05 3499.33 6399.60 65
无先验98.52 15697.82 5587.20 21299.90 4687.64 19599.85 30
原ACMM298.69 136
原ACMM196.18 10099.03 7190.08 13597.63 9388.98 15797.00 6398.97 5688.14 6999.71 8088.23 18799.62 4498.76 141
test22298.32 9291.21 10298.08 20597.58 10483.74 26995.87 8999.02 5386.74 9899.64 4099.81 32
testdata299.88 4984.16 235
segment_acmp90.56 41
testdata95.26 13398.20 9587.28 20197.60 9885.21 24498.48 2799.15 3688.15 6898.72 15290.29 16399.45 5799.78 37
testdata197.89 21492.43 72
test1297.83 3299.33 5394.45 4897.55 10997.56 4888.60 6199.50 10199.71 3499.55 70
plane_prior793.84 25185.73 241
plane_prior693.92 24886.02 23572.92 240
plane_prior596.30 20897.75 20193.46 12886.17 22792.67 238
plane_prior496.52 179
plane_prior385.91 23693.65 5186.99 204
plane_prior299.02 10593.38 56
plane_prior193.90 250
plane_prior86.07 23399.14 9093.81 4886.26 226
n20.00 393
nn0.00 393
door-mid84.90 375
lessismore_v085.08 32485.59 35269.28 35990.56 35967.68 35390.21 31354.21 34095.46 30973.88 31762.64 35690.50 308
LGP-MVS_train90.06 27093.35 26580.95 31195.94 23687.73 20283.17 24196.11 19166.28 29197.77 19590.19 16485.19 23491.46 277
test1197.68 80
door85.30 373
HQP5-MVS86.39 218
HQP-NCC93.95 24499.16 8293.92 4087.57 197
ACMP_Plane93.95 24499.16 8293.92 4087.57 197
BP-MVS93.82 123
HQP4-MVS87.57 19797.77 19592.72 236
HQP3-MVS96.37 20486.29 224
HQP2-MVS73.34 235
NP-MVS93.94 24786.22 22596.67 177
MDTV_nov1_ep13_2view91.17 10591.38 34087.45 20993.08 13386.67 10087.02 19898.95 121
MDTV_nov1_ep1390.47 17296.14 17388.55 17191.34 34197.51 11889.58 14192.24 14290.50 30686.99 9397.61 21077.64 29092.34 182
ACMMP++_ref82.64 261
ACMMP++83.83 248
Test By Simon83.62 144
ITE_SJBPF87.93 30592.26 27776.44 33493.47 32987.67 20579.95 28895.49 20356.50 32997.38 22375.24 30682.33 26389.98 320
DeepMVS_CXcopyleft76.08 34690.74 30251.65 37890.84 35786.47 22957.89 36787.98 32835.88 36992.60 34665.77 34865.06 35283.97 362