This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
MSLP-MVS++99.89 199.85 299.99 12100.00 199.96 24100.00 199.95 1899.11 7100.00 1100.00 199.60 17100.00 1100.00 1100.00 1100.00 1
NCCC99.86 299.82 3100.00 1100.00 199.99 5100.00 199.71 6099.07 9100.00 1100.00 199.59 20100.00 1100.00 1100.00 1100.00 1
CHOSEN 280x42099.85 399.87 199.80 9399.99 4999.97 2199.97 21899.98 1698.96 29100.00 1100.00 199.96 599.42 237100.00 1100.00 1100.00 1
MCST-MVS99.85 399.80 4100.00 1100.00 199.99 5100.00 199.73 5599.19 5100.00 1100.00 199.31 63100.00 1100.00 1100.00 1100.00 1
CNVR-MVS99.85 399.80 4100.00 1100.00 199.99 5100.00 199.77 4799.07 9100.00 1100.00 199.39 56100.00 1100.00 1100.00 1100.00 1
APDe-MVS99.84 699.78 799.99 12100.00 199.98 17100.00 199.44 11199.06 11100.00 1100.00 199.56 2399.99 93100.00 1100.00 1100.00 1
SED-MVS99.83 799.77 9100.00 1100.00 199.99 5100.00 199.42 12799.03 19100.00 1100.00 199.50 37100.00 1100.00 1100.00 1100.00 1
DVP-MVScopyleft99.83 799.78 7100.00 1100.00 199.99 5100.00 199.42 12799.04 14100.00 1100.00 199.53 29100.00 1100.00 1100.00 1100.00 1
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
TSAR-MVS + MP.99.82 999.77 999.99 12100.00 199.96 24100.00 199.43 11799.05 13100.00 1100.00 199.45 4599.99 93100.00 1100.00 1100.00 1
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
HPM-MVS++copyleft99.82 999.76 1299.99 1299.99 4999.98 17100.00 199.83 3898.88 3999.96 110100.00 199.21 76100.00 1100.00 1100.00 199.99 103
DVP-MVS++99.81 1199.75 14100.00 1100.00 199.99 5100.00 199.42 12798.79 54100.00 1100.00 199.54 26100.00 1100.00 1100.00 1100.00 1
MSP-MVS99.81 1199.77 999.94 63100.00 199.86 77100.00 199.42 12798.87 42100.00 1100.00 199.65 1599.96 128100.00 1100.00 1100.00 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SD-MVS99.81 1199.75 1499.99 1299.99 4999.96 24100.00 199.42 12799.01 25100.00 1100.00 199.33 58100.00 1100.00 1100.00 1100.00 1
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DPE-MVScopyleft99.79 1499.73 1799.99 1299.99 4999.98 17100.00 199.42 12798.91 37100.00 1100.00 199.22 75100.00 1100.00 1100.00 1100.00 1
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
XVS99.79 1499.73 1799.98 23100.00 199.94 40100.00 199.75 5198.67 61100.00 1100.00 199.16 80100.00 1100.00 1100.00 1100.00 1
SteuartSystems-ACMMP99.78 1699.71 2099.98 2399.76 14399.95 32100.00 199.42 12798.69 59100.00 1100.00 199.52 3299.99 93100.00 1100.00 1100.00 1
Skip Steuart: Steuart Systems R&D Blog.
PAPM99.78 1699.76 1299.85 8199.01 26399.95 32100.00 199.75 5199.37 399.99 96100.00 199.76 1199.60 197100.00 1100.00 1100.00 1
DP-MVS Recon99.76 1899.69 2299.98 23100.00 199.95 32100.00 199.52 6897.99 10299.99 96100.00 199.72 12100.00 199.96 80100.00 1100.00 1
PAPR99.76 1899.68 2599.99 12100.00 199.96 24100.00 199.47 7598.16 88100.00 1100.00 199.51 33100.00 1100.00 1100.00 1100.00 1
DeepC-MVS_fast98.92 199.75 2099.67 2799.99 1299.99 4999.96 2499.73 27799.52 6899.06 11100.00 1100.00 198.80 114100.00 199.95 85100.00 1100.00 1
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MG-MVS99.75 2099.68 2599.97 31100.00 199.91 5199.98 21299.47 7599.09 8100.00 1100.00 198.59 123100.00 199.95 85100.00 1100.00 1
HFP-MVS99.74 2299.67 2799.96 42100.00 199.89 65100.00 199.76 4897.95 110100.00 1100.00 199.31 63100.00 199.99 58100.00 1100.00 1
ACMMPR99.74 2299.67 2799.96 42100.00 199.89 65100.00 199.76 4897.95 110100.00 1100.00 199.29 69100.00 199.99 58100.00 1100.00 1
PAPM_NR99.74 2299.66 3099.99 12100.00 199.96 24100.00 199.47 7597.87 115100.00 1100.00 199.60 17100.00 1100.00 1100.00 1100.00 1
CDPH-MVS99.73 2599.64 3399.99 12100.00 199.97 21100.00 199.42 12798.02 100100.00 1100.00 199.32 6199.99 93100.00 1100.00 1100.00 1
region2R99.72 2699.64 3399.97 31100.00 199.90 58100.00 199.74 5497.86 116100.00 1100.00 199.19 78100.00 199.99 58100.00 1100.00 1
API-MVS99.72 2699.70 2199.79 9599.97 8899.37 13299.96 22399.94 2198.48 69100.00 1100.00 198.92 103100.00 1100.00 1100.00 1100.00 1
CNLPA99.72 2699.65 3199.91 6799.97 8899.72 94100.00 199.47 7598.43 7299.88 148100.00 199.14 83100.00 199.97 78100.00 1100.00 1
ZNCC-MVS99.71 2999.62 4199.97 3199.99 4999.90 58100.00 199.79 4497.97 10699.97 105100.00 198.97 94100.00 199.94 87100.00 1100.00 1
train_agg99.71 2999.63 3799.97 31100.00 199.95 32100.00 199.42 12797.70 127100.00 1100.00 199.51 3399.97 117100.00 1100.00 1100.00 1
MVS_111021_HR99.71 2999.63 3799.93 6599.95 9599.83 83100.00 1100.00 198.89 38100.00 1100.00 197.85 14399.95 138100.00 1100.00 1100.00 1
EI-MVSNet-Vis-set99.70 3299.64 3399.87 77100.00 199.64 10499.98 21299.44 11198.35 8099.99 96100.00 199.04 8999.96 12899.98 69100.00 1100.00 1
MVS_111021_LR99.70 3299.65 3199.88 7699.96 9399.70 99100.00 199.97 1798.96 29100.00 1100.00 197.93 14099.95 13899.99 58100.00 1100.00 1
PLCcopyleft98.56 299.70 3299.74 1699.58 129100.00 198.79 178100.00 199.54 6798.58 6699.96 110100.00 199.59 20100.00 1100.00 1100.00 199.94 124
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
SMA-MVScopyleft99.69 3599.59 4499.98 2399.99 4999.93 43100.00 199.43 11797.50 153100.00 1100.00 199.43 50100.00 1100.00 1100.00 1100.00 1
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MVS_030499.69 3599.63 3799.86 8099.96 9399.63 106100.00 199.92 3399.03 1999.97 105100.00 197.87 14199.96 128100.00 199.96 110100.00 1
EI-MVSNet-UG-set99.69 3599.63 3799.87 7799.99 4999.64 10499.95 22999.44 11198.35 80100.00 1100.00 198.98 9399.97 11799.98 69100.00 1100.00 1
PGM-MVS99.69 3599.61 4299.95 5199.99 4999.85 80100.00 199.58 6597.69 129100.00 1100.00 199.44 46100.00 199.79 109100.00 1100.00 1
mPP-MVS99.69 3599.60 4399.97 31100.00 199.91 51100.00 199.42 12797.91 112100.00 1100.00 199.04 89100.00 1100.00 1100.00 1100.00 1
SR-MVS99.68 4099.58 4699.98 23100.00 199.95 32100.00 199.64 6397.59 143100.00 1100.00 198.99 9299.99 93100.00 1100.00 1100.00 1
MTAPA99.68 4099.59 4499.97 3199.99 4999.91 51100.00 199.42 12798.32 8299.94 135100.00 198.65 120100.00 199.96 80100.00 1100.00 1
APD-MVScopyleft99.68 4099.58 4699.97 3199.99 4999.96 24100.00 199.42 12797.53 149100.00 1100.00 199.27 7299.97 117100.00 1100.00 1100.00 1
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ACMMP_NAP99.67 4399.57 4999.97 3199.98 8499.92 48100.00 199.42 12797.83 117100.00 1100.00 198.89 106100.00 199.98 69100.00 1100.00 1
CP-MVS99.67 4399.58 4699.95 51100.00 199.84 82100.00 199.42 12797.77 122100.00 1100.00 199.07 85100.00 1100.00 1100.00 1100.00 1
SF-MVS99.66 4599.57 4999.95 5199.99 4999.85 80100.00 199.42 12797.67 130100.00 1100.00 199.05 8799.99 93100.00 1100.00 1100.00 1
APD-MVS_3200maxsize99.65 4699.55 5599.97 3199.99 4999.91 51100.00 199.48 7497.54 147100.00 1100.00 198.97 9499.99 9399.98 69100.00 1100.00 1
ACMMPcopyleft99.65 4699.57 4999.89 7299.99 4999.66 10299.75 27199.73 5598.16 8899.75 169100.00 198.90 105100.00 199.96 8099.88 120100.00 1
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
GST-MVS99.64 4899.53 5799.95 51100.00 199.86 77100.00 199.79 4497.72 12599.95 133100.00 198.39 129100.00 199.96 8099.99 97100.00 1
PS-MVSNAJ99.64 4899.57 4999.85 8199.78 14099.81 8499.95 22999.42 12798.38 74100.00 1100.00 198.75 116100.00 199.88 9599.99 9799.74 208
F-COLMAP99.64 4899.64 3399.67 11499.99 4999.07 159100.00 199.44 11198.30 8399.90 143100.00 199.18 7999.99 9399.91 91100.00 199.94 124
SR-MVS-dyc-post99.63 5199.52 5999.97 3199.99 4999.91 51100.00 199.42 12797.62 136100.00 1100.00 198.65 12099.99 9399.99 58100.00 1100.00 1
DPM-MVS99.63 5199.51 60100.00 199.90 107100.00 1100.00 199.43 11799.00 26100.00 1100.00 199.58 22100.00 197.64 250100.00 1100.00 1
EPNet99.62 5399.69 2299.42 14699.99 4998.37 202100.00 199.89 3698.83 48100.00 1100.00 198.97 94100.00 199.90 9299.61 14499.89 151
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DELS-MVS99.62 5399.56 5499.82 8699.92 10399.45 123100.00 199.78 4698.92 3699.73 170100.00 197.70 149100.00 199.93 88100.00 1100.00 1
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MP-MVS-pluss99.61 5599.50 6199.97 3199.98 8499.92 48100.00 199.42 12797.53 14999.77 166100.00 198.77 115100.00 199.99 58100.00 199.99 103
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MP-MVScopyleft99.61 5599.49 6399.98 2399.99 4999.94 40100.00 199.42 12797.82 11899.99 96100.00 198.20 132100.00 199.99 58100.00 1100.00 1
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
TSAR-MVS + GP.99.61 5599.69 2299.35 15599.99 4998.06 226100.00 199.36 20099.83 2100.00 1100.00 198.95 9899.99 93100.00 199.11 152100.00 1
HPM-MVS_fast99.60 5899.49 6399.91 6799.99 4999.78 87100.00 199.42 12797.09 182100.00 1100.00 198.95 9899.96 12899.98 69100.00 1100.00 1
HPM-MVScopyleft99.59 5999.50 6199.89 72100.00 199.70 99100.00 199.42 12797.46 157100.00 1100.00 198.60 12299.96 12899.99 58100.00 1100.00 1
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
mvsany_test199.57 6099.48 6699.85 8199.86 11499.54 110100.00 199.36 20098.94 34100.00 1100.00 197.97 138100.00 199.88 9599.28 149100.00 1
test_fmvsm_n_192099.55 6199.49 6399.73 10799.85 11599.19 150100.00 199.41 17398.87 42100.00 1100.00 197.34 166100.00 199.98 6999.90 118100.00 1
WTY-MVS99.54 6299.40 6899.95 5199.81 12499.93 43100.00 1100.00 197.98 10499.84 151100.00 198.94 10099.98 11299.86 9998.21 18999.94 124
test_yl99.51 6399.37 7399.95 5199.82 11899.90 58100.00 199.47 7597.48 155100.00 1100.00 199.80 6100.00 199.98 6997.75 21399.94 124
DCV-MVSNet99.51 6399.37 7399.95 5199.82 11899.90 58100.00 199.47 7597.48 155100.00 1100.00 199.80 6100.00 199.98 6997.75 21399.94 124
xiu_mvs_v2_base99.51 6399.41 6799.82 8699.70 14999.73 9399.92 23799.40 17798.15 90100.00 1100.00 198.50 126100.00 199.85 10199.13 15199.74 208
HY-MVS96.53 999.50 6699.35 7899.96 4299.81 12499.93 4399.64 289100.00 197.97 10699.84 15199.85 22298.94 10099.99 9399.86 9998.23 18899.95 119
PHI-MVS99.50 6699.39 6999.82 86100.00 199.45 123100.00 199.94 2196.38 233100.00 1100.00 198.18 133100.00 1100.00 1100.00 1100.00 1
CPTT-MVS99.49 6899.38 7099.85 81100.00 199.54 110100.00 199.42 12797.58 14499.98 101100.00 197.43 164100.00 199.99 58100.00 1100.00 1
MAR-MVS99.49 6899.36 7699.89 7299.97 8899.66 10299.74 27299.95 1897.89 113100.00 1100.00 196.71 186100.00 1100.00 1100.00 1100.00 1
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
test250699.48 7099.38 7099.75 10399.89 10999.51 11499.45 310100.00 198.38 7499.83 153100.00 198.86 10799.81 17699.25 17698.78 16099.94 124
PVSNet_Blended99.48 7099.36 7699.83 8599.98 8499.60 107100.00 1100.00 197.79 120100.00 1100.00 196.57 18899.99 93100.00 199.88 12099.90 147
test_fmvsmvis_n_192099.46 7299.37 7399.73 10798.88 27999.18 152100.00 199.26 24998.85 4499.79 163100.00 197.70 149100.00 199.98 6999.86 124100.00 1
sss99.45 7399.34 8099.80 9399.76 14399.50 115100.00 199.91 3597.72 12599.98 10199.94 20898.45 127100.00 199.53 15998.75 16399.89 151
AdaColmapbinary99.44 7499.26 8599.95 51100.00 199.86 7799.70 28299.99 1398.53 6799.90 143100.00 195.34 206100.00 199.92 89100.00 1100.00 1
thisisatest051599.42 7599.31 8199.74 10499.59 18299.55 109100.00 199.46 9096.65 21699.92 139100.00 199.44 4699.85 16799.09 18899.63 14399.81 187
CANet99.40 7699.24 8899.89 7299.99 4999.76 89100.00 199.73 5598.40 7399.78 165100.00 195.28 20799.96 128100.00 199.99 9799.96 113
114514_t99.39 7799.25 8699.81 8999.97 8899.48 122100.00 199.42 12795.53 261100.00 1100.00 198.37 13099.95 13899.97 78100.00 1100.00 1
alignmvs99.38 7899.21 9299.91 6799.73 14699.92 48100.00 199.51 7297.61 140100.00 1100.00 199.06 8699.93 15299.83 10497.12 22199.90 147
131499.38 7899.19 9699.96 4298.88 27999.89 6599.24 33199.93 2998.88 3998.79 234100.00 197.02 172100.00 1100.00 1100.00 1100.00 1
thisisatest053099.37 8099.27 8299.69 11299.59 18299.41 127100.00 199.46 9096.46 22799.90 143100.00 199.44 4699.85 16798.97 19199.58 14599.80 198
xiu_mvs_v1_base_debu99.35 8199.21 9299.79 9599.67 15899.71 9599.78 26299.36 20098.13 92100.00 1100.00 197.00 176100.00 199.83 10499.07 15399.66 217
xiu_mvs_v1_base99.35 8199.21 9299.79 9599.67 15899.71 9599.78 26299.36 20098.13 92100.00 1100.00 197.00 176100.00 199.83 10499.07 15399.66 217
xiu_mvs_v1_base_debi99.35 8199.21 9299.79 9599.67 15899.71 9599.78 26299.36 20098.13 92100.00 1100.00 197.00 176100.00 199.83 10499.07 15399.66 217
ETV-MVS99.34 8499.24 8899.64 11899.58 18799.33 134100.00 199.25 25097.57 14599.96 110100.00 197.44 16399.79 17899.70 12799.65 14199.81 187
tttt051799.34 8499.23 9199.67 11499.57 19099.38 129100.00 199.46 9096.33 23699.89 146100.00 199.44 4699.84 16998.93 19399.46 14899.78 203
CS-MVS99.33 8699.27 8299.50 13699.99 4999.00 169100.00 199.13 29797.26 17399.96 110100.00 197.79 14699.64 19699.64 14399.67 13999.87 170
PVSNet_Blended_VisFu99.33 8699.18 9899.78 9999.82 11899.49 118100.00 199.95 1897.36 16399.63 175100.00 196.45 19299.95 13899.79 10999.65 14199.89 151
HyFIR lowres test99.32 8899.24 8899.58 12999.95 9599.26 141100.00 199.99 1396.72 20899.29 19699.91 21299.49 3999.47 22999.74 11898.08 196100.00 1
CS-MVS-test99.31 8999.27 8299.43 14499.99 4998.77 179100.00 199.19 27497.24 17499.96 110100.00 197.56 15699.70 19399.68 13599.81 13099.82 182
LS3D99.31 8999.13 10099.87 7799.99 4999.71 9599.55 30099.46 9097.32 16899.82 161100.00 196.85 18399.97 11799.14 184100.00 199.92 136
PVSNet94.91 1899.30 9199.25 8699.44 142100.00 198.32 208100.00 199.86 3798.04 99100.00 1100.00 196.10 195100.00 199.55 15499.73 134100.00 1
lupinMVS99.29 9299.16 9999.69 11299.45 22299.49 118100.00 199.15 28897.45 15899.97 105100.00 196.76 18499.76 18599.67 138100.00 199.81 187
CSCG99.28 9399.35 7899.05 17999.99 4997.15 267100.00 199.47 7597.44 15999.42 185100.00 197.83 145100.00 199.99 58100.00 1100.00 1
thres20099.27 9499.04 10399.96 4299.81 12499.90 58100.00 199.94 2197.31 17099.83 15399.96 19797.04 169100.00 199.62 14797.88 20499.98 105
OMC-MVS99.27 9499.38 7098.96 18799.95 9597.06 271100.00 199.40 17798.83 4899.88 148100.00 197.01 17399.86 16299.47 16299.84 12799.97 110
EIA-MVS99.26 9699.19 9699.45 14199.63 17198.75 180100.00 199.27 24496.93 19199.95 133100.00 197.47 16099.79 17899.74 11899.72 13599.82 182
tfpn200view999.26 9699.03 10499.96 4299.81 12499.89 65100.00 199.94 2197.23 17599.83 15399.96 19797.04 169100.00 199.59 14997.85 20699.98 105
thres40099.26 9699.03 10499.95 5199.81 12499.89 65100.00 199.94 2197.23 17599.83 15399.96 19797.04 169100.00 199.59 14997.85 20699.97 110
thres100view90099.25 9999.01 10699.95 5199.81 12499.87 74100.00 199.94 2197.13 18099.83 15399.96 19797.01 173100.00 199.59 14997.85 20699.98 105
EPMVS99.25 9999.13 10099.60 12399.60 18099.20 14999.60 295100.00 196.93 19199.92 13999.36 29499.05 8799.71 19298.77 20298.94 15799.90 147
thres600view799.24 10199.00 10799.95 5199.81 12499.87 74100.00 199.94 2197.13 18099.83 15399.96 19797.01 173100.00 199.54 15797.77 21299.97 110
MVS99.22 10298.96 11199.98 2399.00 26799.95 3299.24 33199.94 2198.14 9198.88 224100.00 195.63 204100.00 199.85 101100.00 1100.00 1
EC-MVSNet99.19 10399.09 10299.48 13999.42 22599.07 159100.00 199.21 27096.95 19099.96 110100.00 196.88 18299.48 22799.64 14399.79 13399.88 162
FE-MVS99.16 10498.99 10999.66 11699.65 16399.18 15299.58 29799.43 11795.24 27199.91 14199.59 27499.37 5799.97 11798.31 22699.81 13099.83 177
PMMVS99.12 10598.97 11099.58 12999.57 19098.98 171100.00 199.30 22697.14 17999.96 110100.00 196.53 19199.82 17399.70 12798.49 16999.94 124
jason99.11 10698.96 11199.59 12599.17 24899.31 137100.00 199.13 29797.38 16299.83 153100.00 195.54 20599.72 19199.57 15399.97 10899.74 208
jason: jason.
EPP-MVSNet99.10 10799.00 10799.40 14999.51 20998.68 18699.92 23799.43 11795.47 26799.65 174100.00 199.51 3399.76 18599.53 15998.00 19799.75 207
TESTMET0.1,199.08 10898.96 11199.44 14299.63 17199.38 129100.00 199.45 9895.53 26199.48 181100.00 199.71 1399.02 25696.84 27599.99 9799.91 138
IS-MVSNet99.08 10898.91 11999.59 12599.65 16399.38 12999.78 26299.24 25596.70 21099.51 179100.00 198.44 12899.52 22298.47 22098.39 17799.88 162
UA-Net99.06 11098.83 12599.74 10499.52 20499.40 12899.08 35599.45 9897.64 13499.83 153100.00 195.80 19999.94 15098.35 22499.80 13299.88 162
3Dnovator95.63 1499.06 11098.76 13399.96 4298.86 28399.90 5899.98 21299.93 2998.95 3298.49 254100.00 192.91 239100.00 199.71 124100.00 1100.00 1
patch_mono-299.04 11299.79 696.81 30499.92 10390.47 350100.00 199.41 17398.95 32100.00 1100.00 199.78 8100.00 1100.00 1100.00 199.95 119
VNet99.04 11298.75 13599.90 7099.81 12499.75 9099.50 30699.47 7598.36 78100.00 199.99 17294.66 217100.00 199.90 9297.09 22299.96 113
canonicalmvs99.03 11498.73 13799.94 6399.75 14599.95 32100.00 199.30 22697.64 134100.00 1100.00 195.22 20999.97 11799.76 11696.90 22799.91 138
test-LLR99.03 11498.91 11999.40 14999.40 23299.28 139100.00 199.45 9896.70 21099.42 18599.12 30399.31 6399.01 25796.82 27699.99 9799.91 138
PatchmatchNetpermissive99.03 11498.96 11199.26 16999.49 21498.33 20699.38 31899.45 9896.64 21799.96 11099.58 27699.49 3999.50 22597.63 25199.00 15699.93 134
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
3Dnovator+95.58 1599.03 11498.71 14099.96 4298.99 27099.89 65100.00 199.51 7298.96 2998.32 262100.00 192.78 240100.00 199.87 98100.00 1100.00 1
CANet_DTU99.02 11898.90 12299.41 14799.88 11198.71 184100.00 199.29 23098.84 46100.00 1100.00 194.02 224100.00 198.08 23599.96 11099.52 223
PatchMatch-RL99.02 11898.78 13099.74 10499.99 4999.29 138100.00 1100.00 198.38 7499.89 14699.81 23193.14 23799.99 9397.85 24599.98 10599.95 119
FA-MVS(test-final)99.00 12098.75 13599.73 10799.63 17199.43 12699.83 25299.43 11795.84 25299.52 17899.37 29397.84 14499.96 12897.63 25199.68 13799.79 200
CHOSEN 1792x268899.00 12098.91 11999.25 17099.90 10797.79 244100.00 199.99 1398.79 5498.28 265100.00 193.63 22899.95 13899.66 14199.95 113100.00 1
DeepC-MVS97.84 599.00 12098.80 12999.60 12399.93 10099.03 164100.00 199.40 17798.61 6599.33 194100.00 192.23 24799.95 13899.74 11899.96 11099.83 177
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
baseline298.99 12398.93 11799.18 17499.26 24599.15 156100.00 199.46 9096.71 20996.79 318100.00 199.42 5299.25 24898.75 20499.94 11499.15 229
QAPM98.99 12398.66 14299.96 4299.01 26399.87 7499.88 24699.93 2997.99 10298.68 239100.00 193.17 235100.00 199.32 171100.00 1100.00 1
Vis-MVSNet (Re-imp)98.99 12398.89 12399.29 16499.64 16998.89 17599.98 21299.31 22396.74 20599.48 181100.00 198.11 13599.10 25298.39 22298.34 18199.89 151
tpmrst98.98 12698.93 11799.14 17699.61 17897.74 24599.52 30499.36 20096.05 24399.98 10199.64 26299.04 8999.86 16298.94 19298.19 19199.82 182
test-mter98.96 12798.82 12699.40 14999.40 23299.28 139100.00 199.45 9895.44 27099.42 18599.12 30399.70 1499.01 25796.82 27699.99 9799.91 138
diffmvspermissive98.96 12798.73 13799.63 11999.54 19499.16 155100.00 199.18 28197.33 16799.96 110100.00 194.60 21899.91 15599.66 14198.33 18499.82 182
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CDS-MVSNet98.96 12798.95 11599.01 18399.48 21698.36 20499.93 23699.37 19496.79 20199.31 19599.83 22599.77 1098.91 26698.07 23697.98 19899.77 204
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MVSFormer98.94 13098.82 12699.28 16799.45 22299.49 118100.00 199.13 29795.46 26899.97 105100.00 196.76 18498.59 29898.63 212100.00 199.74 208
MVS_Test98.93 13198.65 14399.77 10199.62 17699.50 11599.99 19099.19 27495.52 26399.96 11099.86 21896.54 19099.98 11298.65 20998.48 17099.82 182
baseline198.91 13298.61 14799.81 8999.71 14799.77 8899.78 26299.44 11197.51 15298.81 23299.99 17298.25 13199.76 18598.60 21595.41 24099.89 151
1112_ss98.91 13298.71 14099.51 13499.69 15098.75 18099.99 19099.15 28896.82 19998.84 229100.00 197.45 16199.89 15798.66 20797.75 21399.89 151
MSDG98.90 13498.63 14599.70 11199.92 10399.25 143100.00 199.37 19495.71 25599.40 191100.00 196.58 18799.95 13896.80 27899.94 11499.91 138
dcpmvs_298.87 13599.53 5796.90 29899.87 11390.88 34999.94 23499.07 31798.20 86100.00 1100.00 198.69 11999.86 162100.00 1100.00 199.95 119
DP-MVS98.86 13698.54 15399.81 8999.97 8899.45 12399.52 30499.40 17794.35 29598.36 258100.00 196.13 19499.97 11799.12 187100.00 1100.00 1
CostFormer98.84 13798.77 13199.04 18199.41 22797.58 25099.67 28799.35 20994.66 28499.96 11099.36 29499.28 7199.74 18899.41 16597.81 21099.81 187
Test_1112_low_res98.83 13898.60 14999.51 13499.69 15098.75 18099.99 19099.14 29396.81 20098.84 22999.06 30797.45 16199.89 15798.66 20797.75 21399.89 151
BH-w/o98.82 13998.81 12898.88 19299.62 17696.71 279100.00 199.28 23697.09 18298.81 232100.00 194.91 21499.96 12899.54 157100.00 199.96 113
mvs_anonymous98.80 14098.60 14999.38 15399.57 19099.24 145100.00 199.21 27095.87 24798.92 22099.82 22896.39 19399.03 25599.13 18698.50 16899.88 162
TAMVS98.76 14198.73 13798.86 19399.44 22497.69 24699.57 29899.34 21496.57 22199.12 20699.81 23198.83 11199.16 25097.97 24297.91 20299.73 212
OpenMVScopyleft95.20 1798.76 14198.41 15999.78 9998.89 27899.81 8499.99 19099.76 4898.02 10098.02 278100.00 191.44 253100.00 199.63 14699.97 10899.55 221
iter_conf0598.73 14398.77 13198.60 20499.65 16399.22 148100.00 199.22 26196.68 21498.98 21899.97 18499.99 398.84 27499.29 17495.11 25997.75 253
iter_conf_final98.72 14498.76 13398.59 20699.64 16999.17 154100.00 199.22 26196.63 21999.02 21599.97 18499.98 498.84 27499.22 18195.18 25397.76 242
dp98.72 14498.61 14799.03 18299.53 19797.39 25699.45 31099.39 19095.62 25899.94 13599.52 28498.83 11199.82 17396.77 28198.42 17499.89 151
PVSNet_BlendedMVS98.71 14698.62 14698.98 18699.98 8499.60 107100.00 1100.00 197.23 175100.00 199.03 31296.57 18899.99 93100.00 194.75 26797.35 337
ADS-MVSNet98.70 14798.51 15599.28 16799.51 20998.39 19999.24 33199.44 11195.52 26399.96 11099.70 24697.57 15499.58 20397.11 26798.54 16699.88 162
baseline98.69 14898.45 15899.41 14799.52 20498.67 187100.00 199.17 28697.03 18799.13 205100.00 193.17 23599.74 18899.70 12798.34 18199.81 187
PCF-MVS98.23 398.69 14898.37 16499.62 12099.78 14099.02 16599.23 33699.06 32596.43 22898.08 274100.00 194.72 21699.95 13898.16 23399.91 11799.90 147
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
casdiffmvspermissive98.65 15098.38 16299.46 14099.52 20498.74 183100.00 199.15 28896.91 19499.05 213100.00 192.75 24199.83 17099.70 12798.38 17899.81 187
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
casdiffmvs_mvgpermissive98.64 15198.39 16199.40 14999.50 21298.60 190100.00 199.22 26196.85 19799.10 207100.00 192.75 24199.78 18299.71 12498.35 18099.81 187
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
tpm298.64 15198.58 15198.81 19699.42 22597.12 26899.69 28499.37 19493.63 31199.94 13599.67 25498.96 9799.47 22998.62 21497.95 20099.83 177
BH-untuned98.64 15198.65 14398.60 20499.59 18296.17 285100.00 199.28 23696.67 21598.41 257100.00 194.52 21999.83 17099.41 165100.00 199.81 187
test_cas_vis1_n_192098.63 15498.25 16899.77 10199.69 15099.32 135100.00 199.31 22398.84 4699.96 110100.00 187.42 30499.99 9399.14 18499.86 124100.00 1
tpmvs98.59 15598.38 16299.23 17199.69 15097.90 23699.31 32699.47 7594.52 28999.68 17399.28 29897.64 15299.89 15797.71 24898.17 19399.89 151
Effi-MVS+98.58 15698.24 17099.61 12199.60 18099.26 14197.85 37199.10 30796.22 23999.97 10599.89 21493.75 22699.77 18399.43 16398.34 18199.81 187
MVSTER98.58 15698.52 15498.77 19899.65 16399.68 101100.00 199.29 23095.63 25798.65 24099.80 23499.78 898.88 27298.59 21695.31 24497.73 282
CVMVSNet98.56 15898.47 15798.82 19499.11 25197.67 24799.74 27299.47 7597.57 14599.06 212100.00 195.72 20198.97 26298.21 23297.33 22099.83 177
AllTest98.55 15998.40 16098.99 18499.93 10097.35 258100.00 199.40 17797.08 18499.09 20899.98 17693.37 23099.95 13896.94 27199.84 12799.68 215
DeepPCF-MVS98.03 498.54 16099.72 1994.98 32599.99 4984.94 363100.00 199.42 12799.98 1100.00 1100.00 198.11 135100.00 1100.00 1100.00 1100.00 1
EPNet_dtu98.53 16198.23 17299.43 14499.92 10399.01 16799.96 22399.47 7598.80 5299.96 11099.96 19798.56 12499.30 24587.78 35699.68 137100.00 1
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Vis-MVSNetpermissive98.52 16298.25 16899.34 15699.68 15498.55 19299.68 28699.41 17397.34 16699.94 135100.00 190.38 27099.70 19399.03 19098.84 15899.76 206
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
Effi-MVS+-dtu98.51 16398.86 12497.47 27499.77 14294.21 322100.00 198.94 34097.61 14099.91 14198.75 33095.89 19799.51 22499.36 16799.48 14798.68 235
SDMVSNet98.49 16498.08 17999.73 10799.82 11899.53 11299.99 19099.45 9897.62 13699.38 19299.86 21890.06 27399.88 16199.92 8996.61 23099.79 200
BH-RMVSNet98.46 16598.08 17999.59 12599.61 17899.19 150100.00 199.28 23697.06 18698.95 219100.00 188.99 28699.82 17398.83 200100.00 199.77 204
ECVR-MVScopyleft98.43 16698.14 17599.32 16199.89 10998.21 21599.46 308100.00 198.38 7499.47 184100.00 187.91 29799.80 17799.35 16898.78 16099.94 124
cascas98.43 16698.07 18199.50 13699.65 16399.02 165100.00 199.22 26194.21 29899.72 17199.98 17692.03 25099.93 15299.68 13598.12 19499.54 222
test111198.42 16898.12 17699.29 16499.88 11198.15 21899.46 308100.00 198.36 7899.42 185100.00 187.91 29799.79 17899.31 17298.78 16099.94 124
ab-mvs98.42 16898.02 18699.61 12199.71 14799.00 16999.10 35299.64 6396.70 21099.04 21499.81 23190.64 26499.98 11299.64 14397.93 20199.84 174
UGNet98.41 17098.11 17799.31 16399.54 19498.55 19299.18 339100.00 198.64 6499.79 16399.04 31087.61 302100.00 199.30 17399.89 11999.40 226
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Fast-Effi-MVS+98.40 17198.02 18699.55 13399.63 17199.06 161100.00 199.15 28895.07 27399.42 18599.95 20493.26 23399.73 19097.44 25798.24 18799.87 170
Fast-Effi-MVS+-dtu98.38 17298.56 15297.82 26499.58 18794.44 319100.00 199.16 28796.75 20399.51 17999.63 26695.03 21299.60 19797.71 24899.67 13999.42 225
test_fmvs198.37 17398.04 18499.34 15699.84 11698.07 224100.00 199.00 33598.85 44100.00 1100.00 185.11 32499.96 12899.69 13499.88 120100.00 1
miper_enhance_ethall98.33 17498.27 16798.51 20999.66 16299.04 163100.00 199.22 26197.53 14998.51 25299.38 29299.49 3998.75 28498.02 23892.61 28897.76 242
SCA98.30 17597.98 18899.23 17199.41 22798.25 21299.99 19099.45 9896.91 19499.76 16899.58 27689.65 27899.54 21698.31 22698.79 15999.91 138
XVG-OURS98.30 17598.36 16598.13 23999.58 18795.91 288100.00 199.36 20098.69 5999.23 198100.00 191.20 25699.92 15499.34 16997.82 20998.56 238
COLMAP_ROBcopyleft97.10 798.29 17798.17 17498.65 20299.94 9897.39 25699.30 32799.40 17795.64 25697.75 291100.00 192.69 24499.95 13898.89 19599.92 11698.62 237
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
ADS-MVSNet298.28 17898.51 15597.62 27099.51 20995.03 29999.24 33199.41 17395.52 26399.96 11099.70 24697.57 15497.94 34197.11 26798.54 16699.88 162
XVG-OURS-SEG-HR98.27 17998.31 16698.14 23699.59 18295.92 287100.00 199.36 20098.48 6999.21 199100.00 189.27 28399.94 15099.76 11699.17 15098.56 238
tpm98.24 18098.22 17398.32 22199.13 25095.79 29099.53 30399.12 30395.20 27299.96 11099.36 29497.58 15399.28 24797.41 25996.67 22899.88 162
cl2298.23 18198.11 17798.58 20899.82 11899.01 167100.00 199.28 23696.92 19398.33 26199.21 30098.09 13798.97 26298.72 20592.61 28897.76 242
TR-MVS98.14 18297.74 19699.33 15999.59 18298.28 21099.27 32899.21 27096.42 22999.15 20499.94 20888.87 28999.79 17898.88 19698.29 18599.93 134
mvsmamba98.13 18398.06 18298.32 22198.22 31098.50 195100.00 199.22 26196.41 23098.91 22299.96 19795.69 20298.73 28699.19 18394.95 26697.73 282
test0.0.03 198.12 18498.03 18598.39 21599.11 25198.07 224100.00 199.93 2996.70 21096.91 31499.95 20499.31 6398.19 32191.93 33198.44 17298.91 233
GeoE98.06 18597.65 20199.29 16499.47 21998.41 196100.00 199.19 27494.85 27898.88 224100.00 191.21 25599.59 19997.02 26998.19 19199.88 162
tpm cat198.05 18697.76 19498.92 18999.50 21297.10 27099.77 26799.30 22690.20 34899.72 17198.71 33197.71 14899.86 16296.75 28298.20 19099.81 187
PS-MVSNAJss98.03 18798.06 18297.94 25897.63 33197.33 26199.89 24499.23 25996.27 23898.03 27699.59 27498.75 11698.78 27998.52 21894.61 27197.70 298
CR-MVSNet98.02 18897.71 19998.93 18899.31 23998.86 17699.13 34999.00 33596.53 22499.96 11098.98 31696.94 17998.10 33191.18 33698.40 17599.84 174
EI-MVSNet97.98 18997.93 18998.16 23499.11 25197.84 24199.74 27299.29 23094.39 29498.65 240100.00 197.21 16798.88 27297.62 25395.31 24497.75 253
FIs97.95 19097.73 19898.62 20398.53 29599.24 145100.00 199.43 11796.74 20597.87 28699.82 22895.27 20898.89 26998.78 20193.07 28397.74 276
Anonymous20240521197.87 19197.53 20498.90 19099.81 12496.70 28099.35 32199.46 9092.98 32698.83 23199.99 17290.63 265100.00 199.70 12797.03 223100.00 1
FC-MVSNet-test97.84 19297.63 20298.45 21298.30 30599.05 162100.00 199.43 11796.63 21997.61 29799.82 22895.19 21098.57 30198.64 21093.05 28497.73 282
Patchmatch-test97.83 19397.42 20799.06 17799.08 25497.66 24898.66 36599.21 27093.65 31098.25 26999.58 27699.47 4399.57 20490.25 34598.59 16599.95 119
sd_testset97.81 19497.48 20598.79 19799.82 11896.80 27799.32 32399.45 9897.62 13699.38 19299.86 21885.56 32299.77 18399.72 12196.61 23099.79 200
miper_ehance_all_eth97.81 19497.66 20098.23 22799.49 21498.37 20299.99 19099.11 30594.78 27998.25 26999.21 30098.18 13398.57 30197.35 26392.61 28897.76 242
test_vis1_n_192097.77 19697.24 21999.34 15699.79 13798.04 228100.00 199.25 25098.88 39100.00 1100.00 177.52 355100.00 199.88 9599.85 126100.00 1
RRT_MVS97.77 19697.76 19497.78 26697.89 32397.06 271100.00 199.29 23095.74 25498.00 28199.97 18495.94 19698.55 30498.87 19794.18 27497.72 289
HQP-MVS97.73 19897.85 19197.39 27699.07 25594.82 303100.00 199.40 17799.04 1499.17 20099.97 18488.61 29299.57 20499.79 10995.58 23497.77 240
GA-MVS97.72 19997.27 21799.06 17799.24 24697.93 235100.00 199.24 25595.80 25398.99 21799.64 26289.77 27699.36 24095.12 30397.62 21899.89 151
bld_raw_dy_0_6497.71 20097.56 20398.15 23597.83 32698.16 21699.95 22999.12 30395.95 24698.73 23799.97 18493.19 23498.63 29298.64 21094.69 26997.66 309
HQP_MVS97.71 20097.82 19397.37 27799.00 26794.80 306100.00 199.40 17799.00 2699.08 21099.97 18488.58 29499.55 21399.79 10995.57 23897.76 242
nrg03097.64 20297.27 21798.75 19998.34 30099.53 112100.00 199.22 26196.21 24098.27 26799.95 20494.40 22098.98 26099.23 17989.78 32497.75 253
TAPA-MVS96.40 1097.64 20297.37 21198.45 21299.94 9895.70 291100.00 199.40 17797.65 13299.53 177100.00 199.31 6399.66 19580.48 370100.00 1100.00 1
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CLD-MVS97.64 20297.74 19697.36 27899.01 26394.76 311100.00 199.34 21499.30 499.00 21699.97 18487.49 30399.57 20499.96 8095.58 23497.75 253
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
D2MVS97.63 20597.83 19297.05 28998.83 28694.60 315100.00 199.82 3996.89 19698.28 26599.03 31294.05 22299.47 22998.58 21794.97 26497.09 343
c3_l97.58 20697.42 20798.06 24699.48 21698.16 21699.96 22399.10 30794.54 28898.13 27399.20 30297.87 14198.25 32097.28 26491.20 31297.75 253
IterMVS-LS97.56 20797.44 20697.92 26199.38 23697.90 23699.89 24499.10 30794.41 29398.32 26299.54 28397.21 16798.11 32897.50 25591.62 30497.75 253
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
test_djsdf97.55 20897.38 21098.07 24297.50 33997.99 230100.00 199.13 29795.46 26898.47 25599.85 22292.01 25198.59 29898.63 21295.36 24297.62 320
dmvs_re97.54 20997.88 19096.54 30999.55 19390.35 35199.86 24899.46 9097.00 18899.41 190100.00 190.78 26399.30 24599.60 14895.24 24999.96 113
cl____97.54 20997.32 21398.18 23199.47 21998.14 220100.00 199.10 30794.16 30197.60 29899.63 26697.52 15798.65 29196.47 28391.97 30097.76 242
IB-MVS96.24 1297.54 20996.95 22399.33 15999.67 15898.10 223100.00 199.47 7597.42 16199.26 19799.69 24998.83 11199.89 15799.43 16378.77 366100.00 1
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
DIV-MVS_self_test97.52 21297.35 21298.05 25099.46 22198.11 221100.00 199.10 30794.21 29897.62 29699.63 26697.65 15198.29 31796.47 28391.98 29997.76 242
eth_miper_zixun_eth97.47 21397.28 21598.06 24699.41 22797.94 23499.62 29399.08 31394.46 29298.19 27299.56 28096.91 18198.50 30796.78 27991.49 30797.74 276
test_fmvs1_n97.43 21496.86 22699.15 17599.68 15497.48 25399.99 19098.98 33898.82 50100.00 1100.00 174.85 36099.96 12899.67 13899.70 136100.00 1
LFMVS97.42 21596.62 23599.81 8999.80 13499.50 11599.16 34599.56 6694.48 291100.00 1100.00 179.35 350100.00 199.89 9497.37 21999.94 124
miper_lstm_enhance97.40 21697.28 21597.75 26799.48 21697.52 251100.00 199.07 31794.08 30298.01 27999.61 27297.38 16597.98 33996.44 28691.47 30997.76 242
RPSCF97.37 21798.24 17094.76 32899.80 13484.57 36499.99 19099.05 32794.95 27699.82 161100.00 194.03 223100.00 198.15 23498.38 17899.70 213
ACMM97.17 697.37 21797.40 20997.29 28299.01 26394.64 314100.00 199.25 25098.07 9898.44 25699.98 17687.38 30599.55 21399.25 17695.19 25297.69 302
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LPG-MVS_test97.31 21997.32 21397.28 28398.85 28494.60 315100.00 199.37 19497.35 16498.85 22799.98 17686.66 31199.56 20899.55 15495.26 24697.70 298
FMVSNet397.30 22096.95 22398.37 21799.65 16399.25 14399.71 28099.28 23694.23 29698.53 24998.91 32393.30 23298.11 32895.31 29993.60 27797.73 282
UniMVSNet (Re)97.29 22196.85 22798.59 20698.49 29699.13 157100.00 199.42 12796.52 22598.24 27198.90 32494.93 21398.89 26997.54 25487.61 34097.75 253
OPM-MVS97.21 22297.18 22197.32 28198.08 31694.66 312100.00 199.28 23698.65 6398.92 22099.98 17686.03 31899.56 20898.28 23095.41 24097.72 289
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ACMP97.00 897.19 22397.16 22297.27 28598.97 27294.58 318100.00 199.32 21897.97 10697.45 30299.98 17685.79 32099.56 20899.70 12795.24 24997.67 308
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
pmmvs497.17 22496.80 22898.27 22497.68 33098.64 189100.00 199.18 28194.22 29798.55 24799.71 24393.67 22798.47 31095.66 29392.57 29197.71 297
anonymousdsp97.16 22596.88 22598.00 25497.08 34998.06 22699.81 25699.15 28894.58 28697.84 28799.62 27090.49 26798.60 29697.98 23995.32 24397.33 338
UniMVSNet_NR-MVSNet97.16 22596.80 22898.22 22898.38 29998.41 196100.00 199.45 9896.14 24297.76 28899.64 26295.05 21198.50 30797.98 23986.84 34497.75 253
XXY-MVS97.14 22796.63 23498.67 20198.65 28998.92 17499.54 30299.29 23095.57 26097.63 29499.83 22587.79 30199.35 24298.39 22292.95 28597.75 253
WR-MVS97.09 22896.64 23398.46 21198.43 29799.09 15899.97 21899.33 21695.62 25897.76 28899.67 25491.17 25798.56 30398.49 21989.28 32997.74 276
JIA-IIPM97.09 22896.34 24899.36 15498.88 27998.59 19199.81 25699.43 11784.81 36499.96 11090.34 37498.55 12599.52 22297.00 27098.28 18699.98 105
jajsoiax97.07 23096.79 23097.89 26297.28 34797.12 26899.95 22999.19 27496.55 22297.31 30599.69 24987.35 30798.91 26698.70 20695.12 25897.66 309
MIMVSNet97.06 23196.73 23198.05 25099.38 23696.64 28298.47 36799.35 20993.41 31699.48 18198.53 33889.66 27797.70 34794.16 31498.11 19599.80 198
X-MVStestdata97.04 23296.06 25999.98 23100.00 199.94 40100.00 199.75 5198.67 61100.00 166.97 38599.16 80100.00 1100.00 1100.00 1100.00 1
h-mvs3397.03 23396.53 23798.51 20999.79 13795.90 28999.45 31099.45 9898.21 84100.00 199.78 23797.49 15899.99 9399.72 12174.92 36899.65 220
VPA-MVSNet97.03 23396.43 24398.82 19498.64 29099.32 13599.38 31899.47 7596.73 20798.91 22298.94 32187.00 30999.40 23899.23 17989.59 32597.76 242
mvs_tets97.00 23596.69 23297.94 25897.41 34697.27 26399.60 29599.18 28196.51 22697.35 30499.69 24986.53 31398.91 26698.84 19895.09 26097.65 314
gg-mvs-nofinetune96.95 23696.10 25799.50 13699.41 22799.36 13399.07 35799.52 6883.69 36699.96 11083.60 382100.00 199.20 24999.68 13599.99 9799.96 113
Anonymous2024052996.93 23796.22 25399.05 17999.79 13797.30 26299.16 34599.47 7588.51 35498.69 238100.00 183.50 335100.00 199.83 10497.02 22499.83 177
DU-MVS96.93 23796.49 24098.22 22898.31 30398.41 196100.00 199.37 19496.41 23097.76 28899.65 25892.14 24898.50 30797.98 23986.84 34497.75 253
Patchmtry96.81 23996.37 24698.14 23699.31 23998.55 19298.91 36099.00 33590.45 34597.92 28398.98 31696.94 17998.12 32694.27 31191.53 30697.75 253
hse-mvs296.79 24096.38 24598.04 25299.68 15495.54 29399.81 25699.42 12798.21 84100.00 199.80 23497.49 15899.46 23399.72 12173.27 37199.12 230
ACMH96.25 1196.77 24196.62 23597.21 28698.96 27394.43 32099.64 28999.33 21697.43 16096.55 32399.97 18483.52 33499.54 21699.07 18995.13 25797.66 309
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
IterMVS96.76 24296.46 24297.63 26899.41 22796.89 27499.99 19099.13 29794.74 28297.59 29999.66 25689.63 28098.28 31895.71 29192.31 29497.72 289
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CP-MVSNet96.73 24396.25 25198.18 23198.21 31198.67 18799.77 26799.32 21895.06 27497.20 30899.65 25890.10 27198.19 32198.06 23788.90 33297.66 309
WR-MVS_H96.73 24396.32 25097.95 25798.26 30797.88 23899.72 27999.43 11795.06 27496.99 31198.68 33393.02 23898.53 30597.43 25888.33 33697.43 333
IterMVS-SCA-FT96.72 24596.42 24497.62 27099.40 23296.83 27699.99 19099.14 29394.65 28597.55 30099.72 24189.65 27898.31 31695.62 29592.05 29797.73 282
v2v48296.70 24696.18 25498.27 22498.04 31798.39 199100.00 199.13 29794.19 30098.58 24599.08 30690.48 26898.67 28995.69 29290.44 32097.75 253
test_vis1_n96.69 24795.81 26999.32 16199.14 24997.98 23199.97 21898.98 33898.45 71100.00 1100.00 166.44 37199.99 9399.78 11599.57 146100.00 1
V4296.65 24896.16 25698.11 24198.17 31498.23 21399.99 19099.09 31293.97 30398.74 23699.05 30991.09 25898.82 27795.46 29789.90 32297.27 339
EU-MVSNet96.63 24996.53 23796.94 29697.59 33596.87 27599.76 26999.47 7596.35 23496.85 31699.78 23792.57 24596.27 36195.33 29891.08 31397.68 304
NR-MVSNet96.63 24996.04 26098.38 21698.31 30398.98 17199.22 33899.35 20995.87 24794.43 34699.65 25892.73 24398.40 31396.78 27988.05 33797.75 253
XVG-ACMP-BASELINE96.60 25196.52 23996.84 30298.41 29893.29 33199.99 19099.32 21897.76 12498.51 25299.29 29781.95 34199.54 21698.40 22195.03 26197.68 304
VDD-MVS96.58 25295.99 26298.34 21999.52 20495.33 29499.18 33999.38 19296.64 21799.77 166100.00 172.51 365100.00 1100.00 196.94 22699.70 213
tt080596.52 25396.23 25297.40 27599.30 24293.55 32799.32 32399.45 9896.75 20397.88 28599.99 17279.99 34899.59 19997.39 26195.98 23399.06 232
LCM-MVSNet-Re96.52 25397.21 22094.44 32999.27 24385.80 36199.85 25096.61 37795.98 24492.75 35398.48 34093.97 22597.55 34899.58 15298.43 17399.98 105
our_test_396.51 25596.35 24796.98 29497.61 33395.05 29899.98 21299.01 33494.68 28396.77 32099.06 30795.87 19898.14 32491.81 33292.37 29397.75 253
MVP-Stereo96.51 25596.48 24196.60 30895.65 36094.25 32198.84 36298.16 35495.85 25195.23 33799.04 31092.54 24699.13 25192.98 32499.98 10596.43 355
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
v114496.51 25595.97 26498.13 23997.98 32098.04 22899.99 19099.08 31393.51 31598.62 24398.98 31690.98 26298.62 29393.79 31890.79 31697.74 276
ACMH+96.20 1396.49 25896.33 24997.00 29299.06 25993.80 32599.81 25699.31 22397.32 16895.89 33499.97 18482.62 33999.54 21698.34 22594.63 27097.65 314
TranMVSNet+NR-MVSNet96.45 25996.01 26197.79 26598.00 31997.62 249100.00 199.35 20995.98 24497.31 30599.64 26290.09 27298.00 33896.89 27486.80 34797.75 253
ET-MVSNet_ETH3D96.41 26095.48 28999.20 17399.81 12499.75 90100.00 199.02 33297.30 17278.33 374100.00 197.73 14797.94 34199.70 12787.41 34199.92 136
VPNet96.41 26095.76 27498.33 22098.61 29198.30 20999.48 30799.45 9896.98 18998.87 22699.88 21581.57 34298.93 26499.22 18187.82 33997.76 242
PVSNet_093.57 1996.41 26095.74 27598.41 21499.84 11695.22 296100.00 1100.00 198.08 9797.55 30099.78 23784.40 327100.00 1100.00 181.99 359100.00 1
v14419296.40 26395.81 26998.17 23397.89 32398.11 22199.99 19099.06 32593.39 31798.75 23599.09 30590.43 26998.66 29093.10 32390.55 31997.75 253
VDDNet96.39 26495.55 28498.90 19099.27 24397.45 25499.15 34799.92 3391.28 33999.98 101100.00 173.55 361100.00 199.85 10196.98 22599.24 227
tfpnnormal96.36 26595.69 28098.37 21798.55 29398.71 18499.69 28499.45 9893.16 32496.69 32299.71 24388.44 29698.99 25994.17 31291.38 31097.41 334
v896.35 26695.73 27698.21 23098.11 31598.23 21399.94 23499.07 31792.66 33298.29 26499.00 31591.46 25298.77 28294.17 31288.83 33497.62 320
PS-CasMVS96.34 26795.78 27398.03 25398.18 31398.27 21199.71 28099.32 21894.75 28096.82 31799.65 25886.98 31098.15 32397.74 24788.85 33397.66 309
LTVRE_ROB95.29 1696.32 26896.10 25796.99 29398.55 29393.88 32499.45 31099.28 23694.50 29096.46 32499.52 28484.86 32599.48 22797.26 26595.03 26197.59 324
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
Anonymous2023121196.29 26995.70 27798.07 24299.80 13497.49 25299.15 34799.40 17789.11 35197.75 29199.45 28988.93 28898.98 26098.26 23189.47 32797.73 282
v14896.29 26995.84 26897.63 26897.74 32896.53 283100.00 199.07 31793.52 31498.01 27999.42 29191.22 25498.60 29696.37 28787.22 34397.75 253
AUN-MVS96.26 27195.67 28198.06 24699.68 15495.60 29299.82 25599.42 12796.78 20299.88 14899.80 23494.84 21599.47 22997.48 25673.29 37099.12 230
FMVSNet296.22 27295.60 28398.06 24699.53 19798.33 20699.45 31099.27 24493.71 30698.03 27698.84 32684.23 32998.10 33193.97 31693.40 28097.73 282
LF4IMVS96.19 27396.18 25496.23 31598.26 30792.09 341100.00 197.89 36497.82 11897.94 28299.87 21682.71 33899.38 23997.41 25993.71 27697.20 340
v119296.18 27495.49 28798.26 22698.01 31898.15 21899.99 19099.08 31393.36 31898.54 24898.97 31989.47 28198.89 26991.15 33790.82 31597.75 253
testgi96.18 27495.93 26596.93 29798.98 27194.20 323100.00 199.07 31797.16 17896.06 33199.86 21884.08 33297.79 34490.38 34497.80 21198.81 234
ppachtmachnet_test96.17 27695.89 26697.02 29197.61 33395.24 29599.99 19099.24 25593.31 32096.71 32199.62 27094.34 22198.07 33389.87 34692.30 29597.75 253
v192192096.16 27795.50 28598.14 23697.88 32597.96 23299.99 19099.07 31793.33 31998.60 24499.24 29989.37 28298.71 28791.28 33590.74 31797.75 253
Baseline_NR-MVSNet96.16 27795.70 27797.56 27398.28 30696.79 278100.00 197.86 36591.93 33697.63 29499.47 28892.14 24898.35 31597.13 26686.83 34697.54 327
v1096.14 27995.50 28598.07 24298.19 31297.96 23299.83 25299.07 31792.10 33598.07 27598.94 32191.07 25998.61 29492.41 33089.82 32397.63 318
OurMVSNet-221017-096.14 27995.98 26396.62 30797.49 34193.44 32999.92 23798.16 35495.86 24997.65 29399.95 20485.71 32198.78 27994.93 30594.18 27497.64 317
GBi-Net96.07 28195.80 27196.89 29999.53 19794.87 30099.18 33999.27 24493.71 30698.53 24998.81 32784.23 32998.07 33395.31 29993.60 27797.72 289
test196.07 28195.80 27196.89 29999.53 19794.87 30099.18 33999.27 24493.71 30698.53 24998.81 32784.23 32998.07 33395.31 29993.60 27797.72 289
v7n96.06 28395.42 29397.99 25697.58 33697.35 25899.86 24899.11 30592.81 33197.91 28499.49 28690.99 26198.92 26592.51 32788.49 33597.70 298
PEN-MVS96.01 28495.48 28997.58 27297.74 32897.26 26499.90 24199.29 23094.55 28796.79 31899.55 28187.38 30597.84 34396.92 27387.24 34297.65 314
v124095.96 28595.25 29498.07 24297.91 32297.87 24099.96 22399.07 31793.24 32298.64 24298.96 32088.98 28798.61 29489.58 35090.92 31497.75 253
pmmvs595.94 28695.61 28296.95 29597.42 34494.66 312100.00 198.08 35893.60 31297.05 31099.43 29087.02 30898.46 31195.76 29092.12 29697.72 289
PatchT95.90 28794.95 30198.75 19999.03 26198.39 19999.08 35599.32 21885.52 36299.96 11094.99 36697.94 13998.05 33780.20 37198.47 17199.81 187
USDC95.90 28795.70 27796.50 31098.60 29292.56 339100.00 198.30 35297.77 12296.92 31299.94 20881.25 34599.45 23493.54 32094.96 26597.49 330
pm-mvs195.76 28995.01 29998.00 25498.23 30997.45 25499.24 33199.04 33093.13 32595.93 33399.72 24186.28 31498.84 27495.62 29587.92 33897.72 289
SixPastTwentyTwo95.71 29095.49 28796.38 31297.42 34493.01 33299.84 25198.23 35394.75 28095.98 33299.97 18485.35 32398.43 31294.71 30693.17 28297.69 302
MS-PatchMatch95.66 29195.87 26795.05 32297.80 32789.25 35498.88 36199.30 22696.35 23496.86 31599.01 31481.35 34499.43 23593.30 32299.98 10596.46 354
DTE-MVSNet95.52 29294.99 30097.08 28897.49 34196.45 284100.00 199.25 25093.82 30596.17 32999.57 27987.81 30097.18 34994.57 30786.26 34997.62 320
TinyColmap95.50 29395.12 29896.64 30698.69 28893.00 33399.40 31697.75 36796.40 23296.14 33099.87 21679.47 34999.50 22593.62 31994.72 26897.40 335
K. test v395.46 29495.14 29796.40 31197.53 33893.40 33099.99 19099.23 25995.49 26692.70 35499.73 24084.26 32898.12 32693.94 31793.38 28197.68 304
FMVSNet595.32 29595.43 29294.99 32499.39 23592.99 33499.25 33099.24 25590.45 34597.44 30398.45 34195.78 20094.39 37087.02 35791.88 30197.59 324
UniMVSNet_ETH3D95.28 29694.41 30297.89 26298.91 27695.14 29799.13 34999.35 20992.11 33497.17 30999.66 25670.28 36899.36 24097.88 24495.18 25399.16 228
RPMNet95.26 29793.82 30599.56 13299.31 23998.86 17699.13 34999.42 12779.82 37199.96 11095.13 36495.69 20299.98 11277.54 37598.40 17599.84 174
DSMNet-mixed95.18 29895.21 29695.08 32196.03 35590.21 35299.65 28893.64 38392.91 32798.34 26097.40 35590.05 27495.51 36791.02 33897.86 20599.51 224
test_fmvs295.17 29995.23 29595.01 32398.95 27588.99 35699.99 19097.77 36697.79 12098.58 24599.70 24673.36 36299.34 24395.88 28995.03 26196.70 351
TransMVSNet (Re)94.78 30093.72 30697.93 26098.34 30097.88 23899.23 33697.98 36291.60 33794.55 34399.71 24387.89 29998.36 31489.30 35284.92 35097.56 326
FMVSNet194.45 30193.63 30896.89 29998.87 28294.87 30099.18 33999.27 24490.95 34397.31 30598.81 32772.89 36498.07 33392.61 32592.81 28697.72 289
test_040294.35 30293.70 30796.32 31397.92 32193.60 32699.61 29498.85 34788.19 35794.68 34299.48 28780.01 34798.58 30089.39 35195.15 25696.77 349
UnsupCasMVSNet_eth94.25 30393.89 30495.34 32097.63 33192.13 34099.73 27799.36 20094.88 27792.78 35198.63 33582.72 33796.53 35794.57 30784.73 35197.36 336
KD-MVS_2432*160094.15 30493.08 31397.35 27999.53 19797.83 24299.63 29199.19 27492.88 32896.29 32697.68 35298.84 10996.70 35389.73 34763.92 37597.53 328
miper_refine_blended94.15 30493.08 31397.35 27999.53 19797.83 24299.63 29199.19 27492.88 32896.29 32697.68 35298.84 10996.70 35389.73 34763.92 37597.53 328
MVS-HIRNet94.12 30692.73 31998.29 22399.33 23895.95 28699.38 31899.19 27474.54 37498.26 26886.34 37886.07 31699.06 25491.60 33499.87 12399.85 173
new_pmnet94.11 30793.47 31096.04 31796.60 35292.82 33599.97 21898.91 34390.21 34795.26 33698.05 35085.89 31998.14 32484.28 36292.01 29897.16 341
pmmvs693.64 30892.87 31695.94 31897.47 34391.41 34698.92 35999.02 33287.84 35895.01 33999.61 27277.24 35698.77 28294.33 31086.41 34897.63 318
Patchmatch-RL test93.49 30993.63 30893.05 34091.78 37183.41 36598.21 36996.95 37491.58 33891.05 35697.64 35499.40 5595.83 36594.11 31581.95 36099.91 138
Anonymous2023120693.45 31093.17 31294.30 33295.00 36589.69 35399.98 21298.43 35193.30 32194.50 34598.59 33690.52 26695.73 36677.46 37690.73 31897.48 332
Anonymous2024052193.29 31192.76 31894.90 32795.64 36191.27 34799.97 21898.82 34887.04 35994.71 34198.19 34783.86 33396.80 35284.04 36392.56 29296.64 352
dmvs_testset93.27 31295.48 28986.65 35298.74 28768.42 37899.92 23798.91 34396.19 24193.28 350100.00 191.06 26091.67 37789.64 34991.54 30599.86 172
test20.0393.11 31392.85 31793.88 33795.19 36491.83 342100.00 198.87 34693.68 30992.76 35298.88 32589.20 28492.71 37577.88 37489.19 33097.09 343
test_vis1_rt93.10 31492.93 31593.58 33899.63 17185.07 36299.99 19093.71 38297.49 15490.96 35797.10 35660.40 37399.95 13899.24 17897.90 20395.72 361
APD_test193.07 31594.14 30389.85 34699.18 24772.49 37399.76 26998.90 34592.86 33096.35 32599.94 20875.56 35899.91 15586.73 35897.98 19897.15 342
EG-PatchMatch MVS92.94 31692.49 32094.29 33395.87 35787.07 36099.07 35798.11 35793.19 32388.98 36398.66 33470.89 36699.08 25392.43 32995.21 25196.72 350
MDA-MVSNet_test_wron92.61 31791.09 32597.19 28796.71 35197.26 264100.00 199.14 29388.61 35367.90 38098.32 34689.03 28596.57 35690.47 34389.59 32597.74 276
YYNet192.44 31890.92 32697.03 29096.20 35397.06 27199.99 19099.14 29388.21 35667.93 37998.43 34388.63 29196.28 36090.64 33989.08 33197.74 276
MIMVSNet191.96 31991.20 32294.23 33494.94 36691.69 34499.34 32299.22 26188.23 35594.18 34798.45 34175.52 35993.41 37479.37 37291.49 30797.60 323
TDRefinement91.93 32090.48 32896.27 31481.60 38292.65 33899.10 35297.61 37093.96 30493.77 34899.85 22280.03 34699.53 22197.82 24670.59 37296.63 353
OpenMVS_ROBcopyleft88.34 2091.89 32191.12 32394.19 33595.55 36287.63 35999.26 32998.03 35986.61 36190.65 36196.82 35870.14 36998.78 27986.54 35996.50 23296.15 356
N_pmnet91.88 32293.37 31187.40 35197.24 34866.33 38199.90 24191.05 38589.77 35095.65 33598.58 33790.05 27498.11 32885.39 36092.72 28797.75 253
pmmvs-eth3d91.73 32390.67 32794.92 32691.63 37392.71 33799.90 24198.54 35091.19 34088.08 36595.50 36279.31 35196.13 36290.55 34281.32 36295.91 360
MDA-MVSNet-bldmvs91.65 32489.94 33196.79 30596.72 35096.70 28099.42 31598.94 34088.89 35266.97 38298.37 34481.43 34395.91 36489.24 35389.46 32897.75 253
KD-MVS_self_test91.16 32590.09 33094.35 33194.44 36791.27 34799.74 27299.08 31390.82 34494.53 34494.91 36786.11 31594.78 36982.67 36568.52 37396.99 345
CL-MVSNet_self_test91.07 32690.35 32993.24 33993.27 36889.16 35599.55 30099.25 25092.34 33395.23 33797.05 35788.86 29093.59 37380.67 36966.95 37496.96 346
test_method91.04 32791.10 32490.85 34398.34 30077.63 369100.00 198.93 34276.69 37296.25 32898.52 33970.44 36797.98 33989.02 35591.74 30296.92 347
CMPMVSbinary66.12 2290.65 32892.04 32186.46 35396.18 35466.87 38098.03 37099.38 19283.38 36785.49 36999.55 28177.59 35498.80 27894.44 30994.31 27393.72 369
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
pmmvs390.62 32989.36 33394.40 33090.53 37691.49 345100.00 196.73 37584.21 36593.65 34996.65 35982.56 34094.83 36882.28 36677.62 36796.89 348
new-patchmatchnet90.30 33089.46 33292.84 34190.77 37588.55 35899.83 25298.80 34990.07 34987.86 36695.00 36578.77 35294.30 37184.86 36179.15 36495.68 363
UnsupCasMVSNet_bld89.50 33188.00 33593.99 33695.30 36388.86 35798.52 36699.28 23685.50 36387.80 36794.11 36861.63 37296.96 35190.63 34079.26 36396.15 356
mvsany_test389.36 33288.96 33490.56 34491.95 37078.97 36899.74 27296.59 37896.84 19889.25 36296.07 36052.59 37597.11 35095.17 30282.44 35895.58 364
PM-MVS88.39 33387.41 33691.31 34291.73 37282.02 36799.79 26196.62 37691.06 34290.71 36095.73 36148.60 37795.96 36390.56 34181.91 36195.97 359
test_fmvs387.19 33487.02 33787.71 35092.69 36976.64 37099.96 22397.27 37193.55 31390.82 35994.03 36938.00 38392.19 37693.49 32183.35 35794.32 366
test_f86.87 33586.06 33889.28 34791.45 37476.37 37199.87 24797.11 37291.10 34188.46 36493.05 37138.31 38296.66 35591.77 33383.46 35694.82 365
Gipumacopyleft84.73 33683.50 34188.40 34997.50 33982.21 36688.87 37699.05 32765.81 37685.71 36890.49 37353.70 37496.31 35978.64 37391.74 30286.67 375
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
testf184.40 33784.79 33983.23 35795.71 35858.71 38798.79 36397.75 36781.58 36884.94 37098.07 34845.33 37997.73 34577.09 37783.85 35393.24 370
APD_test284.40 33784.79 33983.23 35795.71 35858.71 38798.79 36397.75 36781.58 36884.94 37098.07 34845.33 37997.73 34577.09 37783.85 35393.24 370
testmvs80.17 33981.95 34274.80 36258.54 38959.58 386100.00 187.14 38876.09 37399.61 176100.00 167.06 37074.19 38598.84 19850.30 37990.64 374
test_vis3_rt79.61 34078.19 34583.86 35688.68 37769.56 37799.81 25682.19 39086.78 36068.57 37884.51 38125.06 38798.26 31989.18 35478.94 36583.75 378
EGC-MVSNET79.46 34174.04 34995.72 31996.00 35692.73 33699.09 35499.04 3305.08 38616.72 38698.71 33173.03 36398.74 28582.05 36796.64 22995.69 362
test12379.44 34279.23 34480.05 36080.03 38371.72 374100.00 177.93 39162.52 37794.81 34099.69 24978.21 35374.53 38492.57 32627.33 38493.90 367
PMMVS279.15 34377.28 34684.76 35582.34 38172.66 37299.70 28295.11 38171.68 37584.78 37290.87 37232.05 38589.99 37875.53 37963.45 37791.64 372
LCM-MVSNet79.01 34476.93 34785.27 35478.28 38468.01 37996.57 37398.03 35955.10 38082.03 37393.27 37031.99 38693.95 37282.72 36474.37 36993.84 368
FPMVS77.92 34579.45 34373.34 36476.87 38546.81 39098.24 36899.05 32759.89 37973.55 37598.34 34536.81 38486.55 37980.96 36891.35 31186.65 376
tmp_tt75.80 34674.26 34880.43 35952.91 39153.67 38987.42 37897.98 36261.80 37867.04 381100.00 176.43 35796.40 35896.47 28328.26 38391.23 373
E-PMN70.72 34770.06 35072.69 36583.92 38065.48 38399.95 22992.72 38449.88 38272.30 37686.26 37947.17 37877.43 38253.83 38344.49 38075.17 382
EMVS69.88 34869.09 35172.24 36684.70 37965.82 38299.96 22387.08 38949.82 38371.51 37784.74 38049.30 37675.32 38350.97 38443.71 38175.59 381
MVEpermissive68.59 2167.22 34964.68 35374.84 36174.67 38762.32 38595.84 37490.87 38650.98 38158.72 38381.05 38312.20 39178.95 38161.06 38256.75 37883.24 379
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
ANet_high66.05 35063.44 35473.88 36361.14 38863.45 38495.68 37587.18 38779.93 37047.35 38480.68 38422.35 38872.33 38661.24 38135.42 38285.88 377
PMVScopyleft60.66 2365.98 35165.05 35268.75 36755.06 39038.40 39188.19 37796.98 37348.30 38444.82 38588.52 37612.22 39086.49 38067.58 38083.79 35581.35 380
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
wuyk23d28.28 35229.73 35623.92 36875.89 38632.61 39266.50 37912.88 39216.09 38514.59 38716.59 38612.35 38932.36 38739.36 38513.36 3856.79 383
cdsmvs_eth3d_5k24.41 35332.55 3550.00 3690.00 3920.00 3930.00 38099.39 1900.00 3870.00 388100.00 193.55 2290.00 3880.00 3860.00 3860.00 384
ab-mvs-re8.33 35411.11 3570.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 388100.00 10.00 3920.00 3880.00 3860.00 3860.00 384
pcd_1.5k_mvsjas8.24 35510.99 3580.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.14 38898.75 1160.00 3880.00 3860.00 3860.00 384
test_blank0.07 3560.09 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.79 3870.00 3920.00 3880.00 3860.00 3860.00 384
uanet_test0.01 3570.02 3600.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.14 3880.00 3920.00 3880.00 3860.00 3860.00 384
DCPMVS0.01 3570.02 3600.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.14 3880.00 3920.00 3880.00 3860.00 3860.00 384
sosnet-low-res0.01 3570.02 3600.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.14 3880.00 3920.00 3880.00 3860.00 3860.00 384
sosnet0.01 3570.02 3600.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.14 3880.00 3920.00 3880.00 3860.00 3860.00 384
uncertanet0.01 3570.02 3600.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.14 3880.00 3920.00 3880.00 3860.00 3860.00 384
Regformer0.01 3570.02 3600.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.14 3880.00 3920.00 3880.00 3860.00 3860.00 384
uanet0.01 3570.02 3600.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.14 3880.00 3920.00 3880.00 3860.00 3860.00 384
FOURS1100.00 199.97 21100.00 199.42 12798.52 68100.00 1
MSC_two_6792asdad100.00 1100.00 1100.00 199.42 127100.00 1100.00 1100.00 1100.00 1
PC_three_145298.80 52100.00 1100.00 199.54 26100.00 1100.00 1100.00 1100.00 1
No_MVS100.00 1100.00 1100.00 199.42 127100.00 1100.00 1100.00 1100.00 1
test_one_0601100.00 199.99 599.42 12798.72 58100.00 1100.00 199.60 17
eth-test20.00 392
eth-test0.00 392
ZD-MVS100.00 199.98 1799.80 4297.31 170100.00 1100.00 199.32 6199.99 93100.00 1100.00 1
RE-MVS-def99.55 5599.99 4999.91 51100.00 199.42 12797.62 136100.00 1100.00 198.94 10099.99 58100.00 1100.00 1
IU-MVS100.00 199.99 599.42 12799.12 6100.00 1100.00 1100.00 1100.00 1
OPU-MVS100.00 1100.00 1100.00 1100.00 1100.00 199.54 26100.00 1100.00 1100.00 1100.00 1
test_241102_TWO99.42 12799.03 19100.00 1100.00 199.56 23100.00 1100.00 1100.00 1100.00 1
test_241102_ONE100.00 199.99 599.42 12799.03 19100.00 1100.00 199.50 37100.00 1
9.1499.57 4999.99 49100.00 199.42 12797.54 147100.00 1100.00 199.15 8299.99 93100.00 1100.00 1
save fliter99.99 4999.93 43100.00 199.42 12798.93 35
test_0728_THIRD98.79 54100.00 1100.00 199.61 16100.00 1100.00 1100.00 1100.00 1
test_0728_SECOND100.00 199.99 4999.99 5100.00 199.42 127100.00 1100.00 1100.00 1100.00 1
test0726100.00 199.99 5100.00 199.42 12799.04 14100.00 1100.00 199.53 29
GSMVS99.91 138
test_part2100.00 199.99 5100.00 1
sam_mvs199.29 6999.91 138
sam_mvs99.33 58
ambc88.45 34886.84 37870.76 37697.79 37298.02 36190.91 35895.14 36338.69 38198.51 30694.97 30484.23 35296.09 358
MTGPAbinary99.42 127
test_post199.32 32388.24 37799.33 5899.59 19998.31 226
test_post89.05 37599.49 3999.59 199
patchmatchnet-post97.79 35199.41 5499.54 216
GG-mvs-BLEND99.59 12599.54 19499.49 11899.17 34499.52 6899.96 11099.68 253100.00 199.33 24499.71 12499.99 9799.96 113
MTMP100.00 199.18 281
gm-plane-assit99.52 20497.26 26495.86 249100.00 199.43 23598.76 203
test9_res100.00 1100.00 1100.00 1
TEST9100.00 199.95 32100.00 199.42 12797.65 132100.00 1100.00 199.53 2999.97 117
test_8100.00 199.91 51100.00 199.42 12797.70 127100.00 1100.00 199.51 3399.98 112
agg_prior2100.00 1100.00 1100.00 1
agg_prior100.00 199.88 7299.42 127100.00 199.97 117
TestCases98.99 18499.93 10097.35 25899.40 17797.08 18499.09 20899.98 17693.37 23099.95 13896.94 27199.84 12799.68 215
test_prior499.93 43100.00 1
test_prior2100.00 198.82 50100.00 1100.00 199.47 43100.00 1100.00 1
test_prior99.90 70100.00 199.75 9099.73 5599.97 117100.00 1
旧先验2100.00 198.11 96100.00 1100.00 199.67 138
新几何2100.00 1
新几何199.99 12100.00 199.96 2499.81 4197.89 113100.00 1100.00 199.20 77100.00 197.91 243100.00 1100.00 1
旧先验199.99 4999.88 7299.82 39100.00 199.27 72100.00 1100.00 1
无先验100.00 199.80 4297.98 104100.00 199.33 170100.00 1
原ACMM2100.00 1
原ACMM199.93 65100.00 199.80 8699.66 6298.18 87100.00 1100.00 199.43 50100.00 199.50 161100.00 1100.00 1
test22299.99 4999.90 58100.00 199.69 6197.66 131100.00 1100.00 199.30 68100.00 1100.00 1
testdata2100.00 197.36 262
segment_acmp99.55 25
testdata99.66 11699.99 4998.97 17399.73 5597.96 109100.00 1100.00 199.42 52100.00 199.28 175100.00 1100.00 1
testdata1100.00 198.77 57
test1299.95 5199.99 4999.89 6599.42 127100.00 199.24 7499.97 117100.00 1100.00 1
plane_prior799.00 26794.78 310
plane_prior699.06 25994.80 30688.58 294
plane_prior599.40 17799.55 21399.79 10995.57 23897.76 242
plane_prior499.97 184
plane_prior394.79 30999.03 1999.08 210
plane_prior2100.00 199.00 26
plane_prior199.02 262
plane_prior94.80 306100.00 199.03 1995.58 234
n20.00 393
nn0.00 393
door-mid96.32 379
lessismore_v096.05 31697.55 33791.80 34399.22 26191.87 35599.91 21283.50 33598.68 28892.48 32890.42 32197.68 304
LGP-MVS_train97.28 28398.85 28494.60 31599.37 19497.35 16498.85 22799.98 17686.66 31199.56 20899.55 15495.26 24697.70 298
test1199.42 127
door96.13 380
HQP5-MVS94.82 303
HQP-NCC99.07 255100.00 199.04 1499.17 200
ACMP_Plane99.07 255100.00 199.04 1499.17 200
BP-MVS99.79 109
HQP4-MVS99.17 20099.57 20497.77 240
HQP3-MVS99.40 17795.58 234
HQP2-MVS88.61 292
NP-MVS99.07 25594.81 30599.97 184
MDTV_nov1_ep13_2view99.24 14599.56 29996.31 23799.96 11098.86 10798.92 19499.89 151
MDTV_nov1_ep1398.94 11699.53 19798.36 20499.39 31799.46 9096.54 22399.99 9699.63 26698.92 10399.86 16298.30 22998.71 164
ACMMP++_ref94.58 272
ACMMP++95.17 255
Test By Simon99.10 84
ITE_SJBPF96.84 30298.96 27393.49 32898.12 35698.12 9598.35 25999.97 18484.45 32699.56 20895.63 29495.25 24897.49 330
DeepMVS_CXcopyleft89.98 34598.90 27771.46 37599.18 28197.61 14096.92 31299.83 22586.07 31699.83 17096.02 28897.65 21798.65 236