This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
MSLP-MVS++99.89 199.85 299.99 12100.00 199.96 24100.00 199.95 1999.11 7100.00 1100.00 199.60 16100.00 1100.00 1100.00 1100.00 1
NCCC99.86 299.82 3100.00 1100.00 199.99 5100.00 199.71 6199.07 10100.00 1100.00 199.59 19100.00 1100.00 1100.00 1100.00 1
CHOSEN 280x42099.85 399.87 199.80 10499.99 4999.97 2199.97 24399.98 1698.96 32100.00 1100.00 199.96 399.42 262100.00 1100.00 1100.00 1
MCST-MVS99.85 399.80 4100.00 1100.00 199.99 5100.00 199.73 5699.19 5100.00 1100.00 199.31 63100.00 1100.00 1100.00 1100.00 1
CNVR-MVS99.85 399.80 4100.00 1100.00 199.99 5100.00 199.77 4899.07 10100.00 1100.00 199.39 56100.00 1100.00 1100.00 1100.00 1
APDe-MVScopyleft99.84 699.78 799.99 12100.00 199.98 17100.00 199.44 11699.06 12100.00 1100.00 199.56 2299.99 94100.00 1100.00 1100.00 1
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
SED-MVS99.83 799.77 9100.00 1100.00 199.99 5100.00 199.42 14099.03 20100.00 1100.00 199.50 36100.00 1100.00 1100.00 1100.00 1
DVP-MVScopyleft99.83 799.78 7100.00 1100.00 199.99 5100.00 199.42 14099.04 15100.00 1100.00 199.53 28100.00 1100.00 1100.00 1100.00 1
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
TSAR-MVS + MP.99.82 999.77 999.99 12100.00 199.96 24100.00 199.43 12499.05 14100.00 1100.00 199.45 4499.99 94100.00 1100.00 1100.00 1
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
HPM-MVS++copyleft99.82 999.76 1299.99 1299.99 4999.98 17100.00 199.83 3998.88 4499.96 121100.00 199.21 76100.00 1100.00 1100.00 199.99 107
DVP-MVS++99.81 1199.75 14100.00 1100.00 199.99 5100.00 199.42 14098.79 60100.00 1100.00 199.54 25100.00 1100.00 1100.00 1100.00 1
MSP-MVS99.81 1199.77 999.94 63100.00 199.86 79100.00 199.42 14098.87 47100.00 1100.00 199.65 1499.96 138100.00 1100.00 1100.00 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SD-MVS99.81 1199.75 1499.99 1299.99 4999.96 24100.00 199.42 14099.01 26100.00 1100.00 199.33 58100.00 1100.00 1100.00 1100.00 1
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DPE-MVScopyleft99.79 1499.73 1799.99 1299.99 4999.98 17100.00 199.42 14098.91 41100.00 1100.00 199.22 75100.00 1100.00 1100.00 1100.00 1
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
XVS99.79 1499.73 1799.98 23100.00 199.94 41100.00 199.75 5298.67 67100.00 1100.00 199.16 80100.00 1100.00 1100.00 1100.00 1
SteuartSystems-ACMMP99.78 1699.71 2099.98 2399.76 14899.95 32100.00 199.42 14098.69 65100.00 1100.00 199.52 3199.99 94100.00 1100.00 1100.00 1
Skip Steuart: Steuart Systems R&D Blog.
PAPM99.78 1699.76 1299.85 8799.01 28899.95 32100.00 199.75 5299.37 399.99 105100.00 199.76 1099.60 221100.00 1100.00 1100.00 1
DP-MVS Recon99.76 1899.69 2299.98 23100.00 199.95 32100.00 199.52 7297.99 11099.99 105100.00 199.72 11100.00 199.96 85100.00 1100.00 1
PAPR99.76 1899.68 2599.99 12100.00 199.96 24100.00 199.47 7998.16 96100.00 1100.00 199.51 32100.00 1100.00 1100.00 1100.00 1
DeepC-MVS_fast98.92 199.75 2099.67 2799.99 1299.99 4999.96 2499.73 30199.52 7299.06 12100.00 1100.00 198.80 118100.00 199.95 91100.00 1100.00 1
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MG-MVS99.75 2099.68 2599.97 31100.00 199.91 5399.98 23799.47 7999.09 9100.00 1100.00 198.59 128100.00 199.95 91100.00 1100.00 1
HFP-MVS99.74 2299.67 2799.96 42100.00 199.89 67100.00 199.76 4997.95 118100.00 1100.00 199.31 63100.00 199.99 61100.00 1100.00 1
ACMMPR99.74 2299.67 2799.96 42100.00 199.89 67100.00 199.76 4997.95 118100.00 1100.00 199.29 69100.00 199.99 61100.00 1100.00 1
PAPM_NR99.74 2299.66 3099.99 12100.00 199.96 24100.00 199.47 7997.87 123100.00 1100.00 199.60 16100.00 1100.00 1100.00 1100.00 1
CDPH-MVS99.73 2599.64 3399.99 12100.00 199.97 21100.00 199.42 14098.02 108100.00 1100.00 199.32 6199.99 94100.00 1100.00 1100.00 1
region2R99.72 2699.64 3399.97 31100.00 199.90 60100.00 199.74 5597.86 124100.00 1100.00 199.19 78100.00 199.99 61100.00 1100.00 1
API-MVS99.72 2699.70 2199.79 10699.97 8999.37 14799.96 24899.94 2298.48 75100.00 1100.00 198.92 107100.00 1100.00 1100.00 1100.00 1
CNLPA99.72 2699.65 3199.91 7099.97 8999.72 97100.00 199.47 7998.43 7899.88 165100.00 199.14 83100.00 199.97 83100.00 1100.00 1
ZNCC-MVS99.71 2999.62 4199.97 3199.99 4999.90 60100.00 199.79 4597.97 11499.97 116100.00 198.97 98100.00 199.94 93100.00 1100.00 1
train_agg99.71 2999.63 3799.97 31100.00 199.95 32100.00 199.42 14097.70 136100.00 1100.00 199.51 3299.97 125100.00 1100.00 1100.00 1
MVS_111021_HR99.71 2999.63 3799.93 6799.95 9699.83 85100.00 1100.00 198.89 43100.00 1100.00 197.85 15199.95 151100.00 1100.00 1100.00 1
EI-MVSNet-Vis-set99.70 3299.64 3399.87 80100.00 199.64 10799.98 23799.44 11698.35 8699.99 105100.00 199.04 9399.96 13899.98 73100.00 1100.00 1
MVS_111021_LR99.70 3299.65 3199.88 7999.96 9499.70 102100.00 199.97 1798.96 32100.00 1100.00 197.93 14699.95 15199.99 61100.00 1100.00 1
PLCcopyleft98.56 299.70 3299.74 1699.58 146100.00 198.79 195100.00 199.54 7198.58 7299.96 121100.00 199.59 19100.00 1100.00 1100.00 199.94 133
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
SMA-MVScopyleft99.69 3599.59 4499.98 2399.99 4999.93 45100.00 199.43 12497.50 165100.00 1100.00 199.43 49100.00 1100.00 1100.00 1100.00 1
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MVS_030499.69 3599.63 3799.86 8399.96 9499.63 109100.00 199.92 3499.03 2099.97 116100.00 197.87 14999.96 138100.00 199.96 118100.00 1
EI-MVSNet-UG-set99.69 3599.63 3799.87 8099.99 4999.64 10799.95 25499.44 11698.35 86100.00 1100.00 198.98 9799.97 12599.98 73100.00 1100.00 1
PGM-MVS99.69 3599.61 4299.95 5199.99 4999.85 82100.00 199.58 6797.69 138100.00 1100.00 199.44 45100.00 199.79 119100.00 1100.00 1
mPP-MVS99.69 3599.60 4399.97 31100.00 199.91 53100.00 199.42 14097.91 120100.00 1100.00 199.04 93100.00 1100.00 1100.00 1100.00 1
SR-MVS99.68 4099.58 4699.98 23100.00 199.95 32100.00 199.64 6497.59 154100.00 1100.00 198.99 9699.99 94100.00 1100.00 1100.00 1
MTAPA99.68 4099.59 4499.97 3199.99 4999.91 53100.00 199.42 14098.32 8899.94 149100.00 198.65 124100.00 199.96 85100.00 1100.00 1
APD-MVScopyleft99.68 4099.58 4699.97 3199.99 4999.96 24100.00 199.42 14097.53 160100.00 1100.00 199.27 7299.97 125100.00 1100.00 1100.00 1
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ACMMP_NAP99.67 4399.57 4999.97 3199.98 8599.92 50100.00 199.42 14097.83 125100.00 1100.00 198.89 110100.00 199.98 73100.00 1100.00 1
CP-MVS99.67 4399.58 4699.95 51100.00 199.84 84100.00 199.42 14097.77 130100.00 1100.00 199.07 87100.00 1100.00 1100.00 1100.00 1
SF-MVS99.66 4599.57 4999.95 5199.99 4999.85 82100.00 199.42 14097.67 139100.00 1100.00 199.05 9099.99 94100.00 1100.00 1100.00 1
APD-MVS_3200maxsize99.65 4699.55 5699.97 3199.99 4999.91 53100.00 199.48 7897.54 158100.00 1100.00 198.97 9899.99 9499.98 73100.00 1100.00 1
ACMMPcopyleft99.65 4699.57 4999.89 7599.99 4999.66 10599.75 29599.73 5698.16 9699.75 190100.00 198.90 109100.00 199.96 8599.88 133100.00 1
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
GST-MVS99.64 4899.53 5999.95 51100.00 199.86 79100.00 199.79 4597.72 13499.95 147100.00 198.39 135100.00 199.96 8599.99 102100.00 1
PS-MVSNAJ99.64 4899.57 4999.85 8799.78 14599.81 8799.95 25499.42 14098.38 80100.00 1100.00 198.75 120100.00 199.88 10399.99 10299.74 235
F-COLMAP99.64 4899.64 3399.67 13099.99 4999.07 174100.00 199.44 11698.30 8999.90 160100.00 199.18 7999.99 9499.91 98100.00 199.94 133
fmvsm_l_conf0.5_n_a99.63 5199.55 5699.86 8399.83 12099.58 115100.00 199.36 21498.98 30100.00 1100.00 197.85 15199.99 94100.00 199.94 123100.00 1
fmvsm_l_conf0.5_n99.63 5199.56 5499.86 8399.81 12799.59 113100.00 199.36 21498.98 30100.00 1100.00 197.92 14799.99 94100.00 199.95 121100.00 1
MM99.63 5199.52 6199.94 6399.99 4999.82 86100.00 199.97 1799.11 7100.00 1100.00 196.65 203100.00 1100.00 199.97 115100.00 1
SR-MVS-dyc-post99.63 5199.52 6199.97 3199.99 4999.91 53100.00 199.42 14097.62 146100.00 1100.00 198.65 12499.99 9499.99 61100.00 1100.00 1
DPM-MVS99.63 5199.51 63100.00 199.90 108100.00 1100.00 199.43 12499.00 27100.00 1100.00 199.58 21100.00 197.64 270100.00 1100.00 1
EPNet99.62 5699.69 2299.42 16699.99 4998.37 222100.00 199.89 3798.83 53100.00 1100.00 198.97 98100.00 199.90 9999.61 15999.89 165
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DELS-MVS99.62 5699.56 5499.82 9399.92 10499.45 137100.00 199.78 4798.92 3999.73 192100.00 197.70 160100.00 199.93 95100.00 1100.00 1
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MP-MVS-pluss99.61 5899.50 6499.97 3199.98 8599.92 50100.00 199.42 14097.53 16099.77 187100.00 198.77 119100.00 199.99 61100.00 199.99 107
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MP-MVScopyleft99.61 5899.49 6699.98 2399.99 4999.94 41100.00 199.42 14097.82 12699.99 105100.00 198.20 138100.00 199.99 61100.00 1100.00 1
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
TSAR-MVS + GP.99.61 5899.69 2299.35 17799.99 4998.06 246100.00 199.36 21499.83 2100.00 1100.00 198.95 10299.99 94100.00 199.11 167100.00 1
HPM-MVS_fast99.60 6199.49 6699.91 7099.99 4999.78 90100.00 199.42 14097.09 195100.00 1100.00 198.95 10299.96 13899.98 73100.00 1100.00 1
HPM-MVScopyleft99.59 6299.50 6499.89 75100.00 199.70 102100.00 199.42 14097.46 169100.00 1100.00 198.60 12799.96 13899.99 61100.00 1100.00 1
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
mvsany_test199.57 6399.48 6999.85 8799.86 11599.54 120100.00 199.36 21498.94 37100.00 1100.00 197.97 144100.00 199.88 10399.28 164100.00 1
test_fmvsmconf_n99.56 6499.46 7099.86 8399.68 16199.58 115100.00 199.31 24098.92 3999.88 165100.00 197.35 17999.99 9499.98 7399.99 102100.00 1
test_fmvsm_n_192099.55 6599.49 6699.73 12099.85 11699.19 166100.00 199.41 18698.87 47100.00 1100.00 197.34 180100.00 199.98 7399.90 130100.00 1
WTY-MVS99.54 6699.40 7299.95 5199.81 12799.93 45100.00 1100.00 197.98 11299.84 169100.00 198.94 10499.98 11899.86 10798.21 20899.94 133
test_yl99.51 6799.37 7799.95 5199.82 12199.90 60100.00 199.47 7997.48 167100.00 1100.00 199.80 4100.00 199.98 7397.75 23699.94 133
DCV-MVSNet99.51 6799.37 7799.95 5199.82 12199.90 60100.00 199.47 7997.48 167100.00 1100.00 199.80 4100.00 199.98 7397.75 23699.94 133
xiu_mvs_v2_base99.51 6799.41 7199.82 9399.70 15699.73 9699.92 26199.40 19098.15 98100.00 1100.00 198.50 132100.00 199.85 10999.13 16699.74 235
HY-MVS96.53 999.50 7099.35 8299.96 4299.81 12799.93 4599.64 313100.00 197.97 11499.84 16999.85 24798.94 10499.99 9499.86 10798.23 20799.95 128
PHI-MVS99.50 7099.39 7399.82 93100.00 199.45 137100.00 199.94 2296.38 253100.00 1100.00 198.18 139100.00 1100.00 1100.00 1100.00 1
CPTT-MVS99.49 7299.38 7499.85 87100.00 199.54 120100.00 199.42 14097.58 15599.98 111100.00 197.43 177100.00 199.99 61100.00 1100.00 1
MAR-MVS99.49 7299.36 8099.89 7599.97 8999.66 10599.74 29699.95 1997.89 121100.00 1100.00 196.71 202100.00 1100.00 1100.00 1100.00 1
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
test250699.48 7499.38 7499.75 11699.89 11099.51 12699.45 334100.00 198.38 8099.83 172100.00 198.86 11199.81 19899.25 19598.78 17599.94 133
PVSNet_Blended99.48 7499.36 8099.83 9199.98 8599.60 111100.00 1100.00 197.79 128100.00 1100.00 196.57 20599.99 94100.00 199.88 13399.90 159
test_fmvsmvis_n_192099.46 7699.37 7799.73 12098.88 30599.18 168100.00 199.26 27398.85 4999.79 184100.00 197.70 160100.00 199.98 7399.86 137100.00 1
sss99.45 7799.34 8499.80 10499.76 14899.50 128100.00 199.91 3697.72 13499.98 11199.94 22798.45 133100.00 199.53 17998.75 17899.89 165
AdaColmapbinary99.44 7899.26 9099.95 51100.00 199.86 7999.70 30699.99 1398.53 7399.90 160100.00 195.34 222100.00 199.92 96100.00 1100.00 1
thisisatest051599.42 7999.31 8599.74 11799.59 20099.55 118100.00 199.46 9496.65 23499.92 155100.00 199.44 4599.85 18999.09 20799.63 15899.81 210
MVSMamba_pp99.41 8099.28 8699.79 10699.66 17599.59 113100.00 199.30 24497.75 13399.96 12199.98 18997.13 18499.89 17499.75 131100.00 199.90 159
CANet99.40 8199.24 9399.89 7599.99 4999.76 92100.00 199.73 5698.40 7999.78 186100.00 195.28 22399.96 138100.00 199.99 10299.96 122
114514_t99.39 8299.25 9199.81 9999.97 8999.48 135100.00 199.42 14095.53 283100.00 1100.00 198.37 13699.95 15199.97 83100.00 1100.00 1
alignmvs99.38 8399.21 9799.91 7099.73 15399.92 50100.00 199.51 7697.61 150100.00 1100.00 199.06 8899.93 16799.83 11397.12 24899.90 159
131499.38 8399.19 10199.96 4298.88 30599.89 6799.24 35599.93 3098.88 4498.79 258100.00 197.02 188100.00 1100.00 1100.00 1100.00 1
thisisatest053099.37 8599.27 8799.69 12699.59 20099.41 142100.00 199.46 9496.46 24599.90 160100.00 199.44 4599.85 18998.97 21099.58 16099.80 224
xiu_mvs_v1_base_debu99.35 8699.21 9799.79 10699.67 16899.71 9899.78 28699.36 21498.13 100100.00 1100.00 197.00 192100.00 199.83 11399.07 16899.66 244
xiu_mvs_v1_base99.35 8699.21 9799.79 10699.67 16899.71 9899.78 28699.36 21498.13 100100.00 1100.00 197.00 192100.00 199.83 11399.07 16899.66 244
xiu_mvs_v1_base_debi99.35 8699.21 9799.79 10699.67 16899.71 9899.78 28699.36 21498.13 100100.00 1100.00 197.00 192100.00 199.83 11399.07 16899.66 244
ETV-MVS99.34 8999.24 9399.64 13599.58 20599.33 149100.00 199.25 27697.57 15699.96 121100.00 197.44 17699.79 20199.70 14499.65 15699.81 210
tttt051799.34 8999.23 9699.67 13099.57 20999.38 144100.00 199.46 9496.33 25799.89 163100.00 199.44 4599.84 19198.93 21299.46 16399.78 230
CS-MVS99.33 9199.27 8799.50 15499.99 4999.00 185100.00 199.13 32297.26 18699.96 121100.00 197.79 15599.64 21999.64 16199.67 15499.87 188
PVSNet_Blended_VisFu99.33 9199.18 10499.78 11199.82 12199.49 131100.00 199.95 1997.36 17699.63 198100.00 196.45 20999.95 15199.79 11999.65 15699.89 165
fmvsm_s_conf0.5_n_a99.32 9399.15 10699.81 9999.80 13899.47 136100.00 199.35 22598.22 91100.00 1100.00 195.21 22799.99 9499.96 8599.86 13799.98 109
iter_conf0599.32 9399.15 10699.82 9399.68 16199.61 11099.16 36999.27 26596.66 23399.96 12199.97 19997.89 14899.92 16999.76 127100.00 199.94 133
HyFIR lowres test99.32 9399.24 9399.58 14699.95 9699.26 157100.00 199.99 1396.72 22699.29 22199.91 23499.49 3899.47 25499.74 13298.08 215100.00 1
CS-MVS-test99.31 9699.27 8799.43 16499.99 4998.77 196100.00 199.19 29997.24 18799.96 121100.00 197.56 16899.70 21699.68 15299.81 14599.82 201
LS3D99.31 9699.13 10999.87 8099.99 4999.71 9899.55 32499.46 9497.32 18199.82 180100.00 196.85 19999.97 12599.14 202100.00 199.92 146
PVSNet94.91 1899.30 9899.25 9199.44 162100.00 198.32 228100.00 199.86 3898.04 107100.00 1100.00 196.10 212100.00 199.55 17499.73 149100.00 1
iter_conf05_1199.29 9999.15 10699.69 12699.65 17899.28 15499.99 21299.26 27396.49 24499.96 12199.97 19997.34 18099.89 17499.71 140100.00 199.89 165
lupinMVS99.29 9999.16 10599.69 12699.45 24599.49 131100.00 199.15 31397.45 17099.97 116100.00 196.76 20099.76 20899.67 155100.00 199.81 210
CSCG99.28 10199.35 8299.05 20199.99 4997.15 290100.00 199.47 7997.44 17199.42 209100.00 197.83 154100.00 199.99 61100.00 1100.00 1
thres20099.27 10299.04 11799.96 4299.81 12799.90 60100.00 199.94 2297.31 18399.83 17299.96 21497.04 185100.00 199.62 16597.88 22599.98 109
OMC-MVS99.27 10299.38 7498.96 20999.95 9697.06 294100.00 199.40 19098.83 5399.88 165100.00 197.01 18999.86 18399.47 18299.84 14299.97 116
testing1199.26 10499.19 10199.46 15899.64 18498.61 207100.00 199.43 12496.94 20499.92 15599.94 22799.43 4999.97 12599.67 15597.79 23499.82 201
EIA-MVS99.26 10499.19 10199.45 16099.63 18698.75 197100.00 199.27 26596.93 20599.95 147100.00 197.47 17399.79 20199.74 13299.72 15099.82 201
tfpn200view999.26 10499.03 11899.96 4299.81 12799.89 67100.00 199.94 2297.23 18899.83 17299.96 21497.04 185100.00 199.59 16997.85 22799.98 109
thres40099.26 10499.03 11899.95 5199.81 12799.89 67100.00 199.94 2297.23 18899.83 17299.96 21497.04 185100.00 199.59 16997.85 22799.97 116
test_fmvsmconf0.1_n99.25 10899.05 11699.82 9398.92 30199.55 118100.00 199.23 28598.91 4199.75 19099.97 19994.79 23599.94 16399.94 9399.99 10299.97 116
thres100view90099.25 10899.01 12099.95 5199.81 12799.87 76100.00 199.94 2297.13 19399.83 17299.96 21497.01 189100.00 199.59 16997.85 22799.98 109
EPMVS99.25 10899.13 10999.60 14099.60 19699.20 16599.60 319100.00 196.93 20599.92 15599.36 31999.05 9099.71 21598.77 22198.94 17299.90 159
thres600view799.24 11199.00 12299.95 5199.81 12799.87 76100.00 199.94 2297.13 19399.83 17299.96 21497.01 189100.00 199.54 17797.77 23599.97 116
MVS99.22 11298.96 12799.98 2399.00 29299.95 3299.24 35599.94 2298.14 9998.88 248100.00 195.63 220100.00 199.85 109100.00 1100.00 1
fmvsm_s_conf0.5_n99.21 11399.01 12099.83 9199.84 11799.53 122100.00 199.38 20598.29 90100.00 1100.00 193.62 24999.99 9499.99 6199.93 12699.98 109
EC-MVSNet99.19 11499.09 11499.48 15799.42 24999.07 174100.00 199.21 29596.95 20399.96 121100.00 196.88 19899.48 25299.64 16199.79 14899.88 179
testing9199.18 11599.10 11299.41 16799.60 19698.43 214100.00 199.43 12496.76 21999.82 18099.92 23299.05 9099.98 11899.62 16597.67 24099.81 210
testing9999.18 11599.10 11299.41 16799.60 19698.43 214100.00 199.43 12496.76 21999.84 16999.92 23299.06 8899.98 11899.62 16597.67 24099.81 210
UWE-MVS99.18 11599.06 11599.51 15199.67 16898.80 194100.00 199.43 12496.80 21699.93 15499.86 24299.79 699.94 16397.78 26698.33 20099.80 224
ETVMVS99.16 11898.98 12599.69 12699.67 16899.56 117100.00 199.45 10296.36 25499.98 11199.95 22298.65 12499.64 21999.11 20697.63 24399.88 179
FE-MVS99.16 11898.99 12499.66 13399.65 17899.18 16899.58 32199.43 12495.24 29399.91 15899.59 29999.37 5799.97 12598.31 24499.81 14599.83 196
testing22299.14 12098.94 13299.73 12099.67 16899.51 126100.00 199.43 12496.90 21099.99 10599.90 23698.55 13099.86 18398.85 21697.18 24799.81 210
PMMVS99.12 12198.97 12699.58 14699.57 20998.98 187100.00 199.30 24497.14 19299.96 121100.00 196.53 20899.82 19599.70 14498.49 18499.94 133
jason99.11 12298.96 12799.59 14299.17 27299.31 152100.00 199.13 32297.38 17599.83 172100.00 195.54 22199.72 21499.57 17399.97 11599.74 235
jason: jason.
EPP-MVSNet99.10 12399.00 12299.40 17199.51 22898.68 20399.92 26199.43 12495.47 28999.65 197100.00 199.51 3299.76 20899.53 17998.00 21699.75 234
TESTMET0.1,199.08 12498.96 12799.44 16299.63 18699.38 144100.00 199.45 10295.53 28399.48 205100.00 199.71 1299.02 28196.84 29599.99 10299.91 148
IS-MVSNet99.08 12498.91 13699.59 14299.65 17899.38 14499.78 28699.24 28196.70 22899.51 203100.00 198.44 13499.52 24698.47 23898.39 19299.88 179
UA-Net99.06 12698.83 14299.74 11799.52 22399.40 14399.08 38199.45 10297.64 14399.83 172100.00 195.80 21599.94 16398.35 24299.80 14799.88 179
3Dnovator95.63 1499.06 12698.76 14999.96 4298.86 30999.90 6099.98 23799.93 3098.95 3598.49 277100.00 192.91 260100.00 199.71 140100.00 1100.00 1
patch_mono-299.04 12899.79 696.81 32799.92 10490.47 375100.00 199.41 18698.95 35100.00 1100.00 199.78 7100.00 1100.00 1100.00 199.95 128
VNet99.04 12898.75 15099.90 7399.81 12799.75 9399.50 33099.47 7998.36 84100.00 199.99 18494.66 237100.00 199.90 9997.09 24999.96 122
sasdasda99.03 13098.73 15299.94 6399.75 15099.95 32100.00 199.30 24497.64 143100.00 1100.00 195.22 22599.97 12599.76 12796.90 25499.91 148
canonicalmvs99.03 13098.73 15299.94 6399.75 15099.95 32100.00 199.30 24497.64 143100.00 1100.00 195.22 22599.97 12599.76 12796.90 25499.91 148
test-LLR99.03 13098.91 13699.40 17199.40 25699.28 154100.00 199.45 10296.70 22899.42 20999.12 32899.31 6399.01 28296.82 29699.99 10299.91 148
PatchmatchNetpermissive99.03 13098.96 12799.26 19199.49 23698.33 22699.38 34299.45 10296.64 23599.96 12199.58 30199.49 3899.50 25097.63 27199.00 17199.93 144
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
3Dnovator+95.58 1599.03 13098.71 15699.96 4298.99 29599.89 67100.00 199.51 7698.96 3298.32 285100.00 192.78 262100.00 199.87 106100.00 1100.00 1
CANet_DTU99.02 13598.90 13999.41 16799.88 11298.71 201100.00 199.29 25098.84 51100.00 1100.00 194.02 244100.00 198.08 25399.96 11899.52 250
PatchMatch-RL99.02 13598.78 14799.74 11799.99 4999.29 153100.00 1100.00 198.38 8099.89 16399.81 25693.14 25899.99 9497.85 26499.98 11299.95 128
MGCFI-Net99.01 13798.70 15899.93 6799.74 15299.94 41100.00 199.29 25097.60 153100.00 1100.00 195.10 22999.96 13899.74 13296.85 25699.91 148
FA-MVS(test-final)99.00 13898.75 15099.73 12099.63 18699.43 14099.83 27699.43 12495.84 27599.52 20299.37 31897.84 15399.96 13897.63 27199.68 15299.79 227
CHOSEN 1792x268899.00 13898.91 13699.25 19299.90 10897.79 266100.00 199.99 1398.79 6098.28 288100.00 193.63 24899.95 15199.66 15999.95 121100.00 1
DeepC-MVS97.84 599.00 13898.80 14699.60 14099.93 10199.03 180100.00 199.40 19098.61 7199.33 219100.00 192.23 27199.95 15199.74 13299.96 11899.83 196
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
baseline298.99 14198.93 13499.18 19699.26 26999.15 171100.00 199.46 9496.71 22796.79 343100.00 199.42 5299.25 27398.75 22399.94 12399.15 257
QAPM98.99 14198.66 15999.96 4299.01 28899.87 7699.88 27099.93 3097.99 11098.68 262100.00 193.17 256100.00 199.32 191100.00 1100.00 1
Vis-MVSNet (Re-imp)98.99 14198.89 14099.29 18699.64 18498.89 19199.98 23799.31 24096.74 22399.48 205100.00 198.11 14199.10 27798.39 24098.34 19799.89 165
tpmrst98.98 14498.93 13499.14 19899.61 19497.74 26799.52 32899.36 21496.05 26799.98 11199.64 28799.04 9399.86 18398.94 21198.19 21099.82 201
test-mter98.96 14598.82 14399.40 17199.40 25699.28 154100.00 199.45 10295.44 29299.42 20999.12 32899.70 1399.01 28296.82 29699.99 10299.91 148
diffmvspermissive98.96 14598.73 15299.63 13699.54 21399.16 170100.00 199.18 30697.33 18099.96 121100.00 194.60 23899.91 17199.66 15998.33 20099.82 201
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CDS-MVSNet98.96 14598.95 13199.01 20599.48 23898.36 22499.93 26099.37 20896.79 21799.31 22099.83 25099.77 998.91 29198.07 25597.98 21799.77 231
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
mamv498.95 14899.11 11198.46 23499.68 16195.67 31699.14 37499.27 26596.43 24699.94 14999.97 19997.79 15599.88 18099.77 126100.00 199.84 192
MVSFormer98.94 14998.82 14399.28 18999.45 24599.49 131100.00 199.13 32295.46 29099.97 116100.00 196.76 20098.59 32098.63 230100.00 199.74 235
MVS_Test98.93 15098.65 16099.77 11499.62 19299.50 12899.99 21299.19 29995.52 28599.96 12199.86 24296.54 20799.98 11898.65 22898.48 18599.82 201
baseline198.91 15198.61 16499.81 9999.71 15499.77 9199.78 28699.44 11697.51 16498.81 25699.99 18498.25 13799.76 20898.60 23395.41 26999.89 165
1112_ss98.91 15198.71 15699.51 15199.69 15798.75 19799.99 21299.15 31396.82 21498.84 253100.00 197.45 17499.89 17498.66 22697.75 23699.89 165
MSDG98.90 15398.63 16299.70 12599.92 10499.25 159100.00 199.37 20895.71 27799.40 215100.00 196.58 20499.95 15196.80 29899.94 12399.91 148
dcpmvs_298.87 15499.53 5996.90 32199.87 11490.88 37499.94 25899.07 34198.20 94100.00 1100.00 198.69 12399.86 183100.00 1100.00 199.95 128
DP-MVS98.86 15598.54 17199.81 9999.97 8999.45 13799.52 32899.40 19094.35 31798.36 281100.00 196.13 21199.97 12599.12 205100.00 1100.00 1
CostFormer98.84 15698.77 14899.04 20399.41 25197.58 27299.67 31199.35 22594.66 30699.96 12199.36 31999.28 7199.74 21199.41 18597.81 23199.81 210
Test_1112_low_res98.83 15798.60 16699.51 15199.69 15798.75 19799.99 21299.14 31896.81 21598.84 25399.06 33297.45 17499.89 17498.66 22697.75 23699.89 165
BH-w/o98.82 15898.81 14598.88 21499.62 19296.71 301100.00 199.28 25697.09 19598.81 256100.00 194.91 23399.96 13899.54 177100.00 199.96 122
mvs_anonymous98.80 15998.60 16699.38 17599.57 20999.24 161100.00 199.21 29595.87 27098.92 24499.82 25396.39 21099.03 28099.13 20498.50 18399.88 179
fmvsm_s_conf0.1_n98.77 16098.42 17999.82 9399.47 24199.52 125100.00 199.27 26597.53 160100.00 1100.00 189.73 30399.96 13899.84 11299.93 12699.97 116
bld_raw_dy_0_6498.77 16098.55 17099.45 16099.63 18699.05 17798.97 38599.28 25692.38 35799.25 22399.97 19997.72 15899.87 18299.73 136100.00 199.45 252
TAMVS98.76 16298.73 15298.86 21599.44 24797.69 26899.57 32299.34 23196.57 23899.12 23299.81 25698.83 11599.16 27597.97 26197.91 22399.73 239
OpenMVScopyleft95.20 1798.76 16298.41 18099.78 11198.89 30499.81 8799.99 21299.76 4998.02 10898.02 303100.00 191.44 277100.00 199.63 16499.97 11599.55 248
dp98.72 16498.61 16499.03 20499.53 21697.39 27899.45 33499.39 20395.62 28099.94 14999.52 30998.83 11599.82 19596.77 30198.42 18999.89 165
fmvsm_s_conf0.1_n_a98.71 16598.36 18799.78 11199.09 27899.42 141100.00 199.26 27397.42 173100.00 1100.00 189.78 30199.96 13899.82 11899.85 14099.97 116
PVSNet_BlendedMVS98.71 16598.62 16398.98 20899.98 8599.60 111100.00 1100.00 197.23 188100.00 199.03 33796.57 20599.99 94100.00 194.75 29497.35 361
ADS-MVSNet98.70 16798.51 17499.28 18999.51 22898.39 21999.24 35599.44 11695.52 28599.96 12199.70 27197.57 16699.58 22797.11 28798.54 18199.88 179
baseline98.69 16898.45 17899.41 16799.52 22398.67 204100.00 199.17 31197.03 20099.13 231100.00 193.17 25699.74 21199.70 14498.34 19799.81 210
PCF-MVS98.23 398.69 16898.37 18599.62 13799.78 14599.02 18199.23 36099.06 34996.43 24698.08 297100.00 194.72 23699.95 15198.16 25199.91 12999.90 159
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
casdiffmvspermissive98.65 17098.38 18399.46 15899.52 22398.74 200100.00 199.15 31396.91 20899.05 239100.00 192.75 26399.83 19299.70 14498.38 19499.81 210
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
casdiffmvs_mvgpermissive98.64 17198.39 18299.40 17199.50 23298.60 208100.00 199.22 28896.85 21299.10 233100.00 192.75 26399.78 20599.71 14098.35 19699.81 210
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
tpm298.64 17198.58 16898.81 21899.42 24997.12 29199.69 30899.37 20893.63 33499.94 14999.67 27998.96 10199.47 25498.62 23297.95 22199.83 196
BH-untuned98.64 17198.65 16098.60 22899.59 20096.17 307100.00 199.28 25696.67 23298.41 280100.00 194.52 23999.83 19299.41 185100.00 199.81 210
test_cas_vis1_n_192098.63 17498.25 19199.77 11499.69 15799.32 150100.00 199.31 24098.84 5199.96 121100.00 187.42 33199.99 9499.14 20299.86 137100.00 1
test_fmvsmconf0.01_n98.60 17598.24 19499.67 13096.90 37499.21 16499.99 21299.04 35498.80 5799.57 20099.96 21490.12 29599.91 17199.89 10199.89 13199.90 159
tpmvs98.59 17698.38 18399.23 19399.69 15797.90 25899.31 35099.47 7994.52 31199.68 19699.28 32397.64 16399.89 17497.71 26898.17 21299.89 165
Effi-MVS+98.58 17798.24 19499.61 13899.60 19699.26 15797.85 39899.10 33196.22 26299.97 11699.89 23793.75 24699.77 20699.43 18398.34 19799.81 210
MVSTER98.58 17798.52 17398.77 22099.65 17899.68 104100.00 199.29 25095.63 27998.65 26399.80 25999.78 798.88 29798.59 23495.31 27397.73 308
CVMVSNet98.56 17998.47 17798.82 21699.11 27597.67 26999.74 29699.47 7997.57 15699.06 238100.00 195.72 21798.97 28798.21 25097.33 24699.83 196
kuosan98.55 18098.53 17298.62 22699.66 17596.16 308100.00 199.44 11693.93 32799.81 18399.98 18997.58 16499.81 19898.08 25398.28 20399.89 165
AllTest98.55 18098.40 18198.99 20699.93 10197.35 281100.00 199.40 19097.08 19799.09 23499.98 18993.37 25299.95 15196.94 29199.84 14299.68 242
DeepPCF-MVS98.03 498.54 18299.72 1994.98 35099.99 4984.94 389100.00 199.42 14099.98 1100.00 1100.00 198.11 141100.00 1100.00 1100.00 1100.00 1
EPNet_dtu98.53 18398.23 19799.43 16499.92 10499.01 18399.96 24899.47 7998.80 5799.96 12199.96 21498.56 12999.30 27087.78 38199.68 152100.00 1
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
myMVS_eth3d98.52 18498.51 17498.53 23199.50 23297.98 251100.00 199.57 6896.23 26098.07 298100.00 199.09 8697.81 36696.17 30997.96 21999.82 201
Vis-MVSNetpermissive98.52 18498.25 19199.34 17899.68 16198.55 21099.68 31099.41 18697.34 17999.94 149100.00 190.38 29499.70 21699.03 20998.84 17399.76 233
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
Effi-MVS+-dtu98.51 18698.86 14197.47 29799.77 14794.21 347100.00 198.94 36597.61 15099.91 15898.75 35595.89 21399.51 24899.36 18799.48 16298.68 263
SDMVSNet98.49 18798.08 20499.73 12099.82 12199.53 12299.99 21299.45 10297.62 14699.38 21699.86 24290.06 29899.88 18099.92 9696.61 25999.79 227
BH-RMVSNet98.46 18898.08 20499.59 14299.61 19499.19 166100.00 199.28 25697.06 19998.95 243100.00 188.99 31399.82 19598.83 219100.00 199.77 231
testing398.44 18998.37 18598.65 22499.51 22898.32 228100.00 199.62 6696.43 24697.93 30799.99 18499.11 8497.81 36694.88 32997.80 23299.82 201
ECVR-MVScopyleft98.43 19098.14 20099.32 18399.89 11098.21 23699.46 332100.00 198.38 8099.47 208100.00 187.91 32499.80 20099.35 18898.78 17599.94 133
cascas98.43 19098.07 20699.50 15499.65 17899.02 181100.00 199.22 28894.21 32099.72 19399.98 18992.03 27499.93 16799.68 15298.12 21399.54 249
test111198.42 19298.12 20199.29 18699.88 11298.15 23899.46 332100.00 198.36 8499.42 209100.00 187.91 32499.79 20199.31 19298.78 17599.94 133
ab-mvs98.42 19298.02 21199.61 13899.71 15499.00 18599.10 37899.64 6496.70 22899.04 24099.81 25690.64 28899.98 11899.64 16197.93 22299.84 192
UGNet98.41 19498.11 20299.31 18599.54 21398.55 21099.18 363100.00 198.64 7099.79 18499.04 33587.61 329100.00 199.30 19399.89 13199.40 254
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Fast-Effi-MVS+98.40 19598.02 21199.55 15099.63 18699.06 176100.00 199.15 31395.07 29599.42 20999.95 22293.26 25599.73 21397.44 27798.24 20699.87 188
Fast-Effi-MVS+-dtu98.38 19698.56 16997.82 28899.58 20594.44 344100.00 199.16 31296.75 22199.51 20399.63 29195.03 23199.60 22197.71 26899.67 15499.42 253
test_fmvs198.37 19798.04 20999.34 17899.84 11798.07 244100.00 199.00 36098.85 49100.00 1100.00 185.11 35199.96 13899.69 15199.88 133100.00 1
miper_enhance_ethall98.33 19898.27 19098.51 23299.66 17599.04 179100.00 199.22 28897.53 16098.51 27599.38 31799.49 3898.75 30798.02 25792.61 31397.76 270
SCA98.30 19997.98 21399.23 19399.41 25198.25 23399.99 21299.45 10296.91 20899.76 18999.58 30189.65 30599.54 24098.31 24498.79 17499.91 148
XVG-OURS98.30 19998.36 18798.13 26399.58 20595.91 311100.00 199.36 21498.69 6599.23 224100.00 191.20 28099.92 16999.34 18997.82 23098.56 266
dongtai98.29 20198.25 19198.42 23899.58 20595.86 313100.00 199.44 11693.46 33999.69 19599.97 19997.53 16999.51 24896.28 30898.27 20599.89 165
COLMAP_ROBcopyleft97.10 798.29 20198.17 19998.65 22499.94 9997.39 27899.30 35199.40 19095.64 27897.75 316100.00 192.69 26799.95 15198.89 21499.92 12898.62 265
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
ADS-MVSNet298.28 20398.51 17497.62 29399.51 22895.03 32499.24 35599.41 18695.52 28599.96 12199.70 27197.57 16697.94 36397.11 28798.54 18199.88 179
XVG-OURS-SEG-HR98.27 20498.31 18998.14 26099.59 20095.92 310100.00 199.36 21498.48 7599.21 225100.00 189.27 31099.94 16399.76 12799.17 16598.56 266
tpm98.24 20598.22 19898.32 24699.13 27495.79 31499.53 32799.12 32895.20 29499.96 12199.36 31997.58 16499.28 27297.41 27996.67 25799.88 179
cl2298.23 20698.11 20298.58 23099.82 12199.01 183100.00 199.28 25696.92 20798.33 28499.21 32598.09 14398.97 28798.72 22492.61 31397.76 270
TR-MVS98.14 20797.74 22099.33 18199.59 20098.28 23199.27 35299.21 29596.42 24999.15 23099.94 22788.87 31699.79 20198.88 21598.29 20299.93 144
mvsmamba98.13 20898.06 20798.32 24698.22 33698.50 213100.00 199.22 28896.41 25098.91 24699.96 21495.69 21898.73 30999.19 20194.95 29397.73 308
test0.0.03 198.12 20998.03 21098.39 24099.11 27598.07 244100.00 199.93 3096.70 22896.91 33999.95 22299.31 6398.19 34391.93 35598.44 18798.91 261
GeoE98.06 21097.65 22599.29 18699.47 24198.41 216100.00 199.19 29994.85 30098.88 248100.00 191.21 27999.59 22397.02 28998.19 21099.88 179
tpm cat198.05 21197.76 21998.92 21199.50 23297.10 29399.77 29199.30 24490.20 37599.72 19398.71 35697.71 15999.86 18396.75 30298.20 20999.81 210
PS-MVSNAJss98.03 21298.06 20797.94 28297.63 35597.33 28499.89 26899.23 28596.27 25998.03 30199.59 29998.75 12098.78 30298.52 23694.61 29797.70 323
CR-MVSNet98.02 21397.71 22398.93 21099.31 26398.86 19299.13 37599.00 36096.53 24199.96 12198.98 34196.94 19598.10 35391.18 36098.40 19099.84 192
EI-MVSNet97.98 21497.93 21498.16 25999.11 27597.84 26399.74 29699.29 25094.39 31698.65 263100.00 197.21 18298.88 29797.62 27395.31 27397.75 280
FIs97.95 21597.73 22298.62 22698.53 32199.24 161100.00 199.43 12496.74 22397.87 31199.82 25395.27 22498.89 29498.78 22093.07 30897.74 302
Anonymous20240521197.87 21697.53 22798.90 21299.81 12796.70 30299.35 34599.46 9492.98 35098.83 25599.99 18490.63 289100.00 199.70 14497.03 250100.00 1
FC-MVSNet-test97.84 21797.63 22698.45 23698.30 33199.05 177100.00 199.43 12496.63 23797.61 32299.82 25395.19 22898.57 32398.64 22993.05 30997.73 308
Patchmatch-test97.83 21897.42 23099.06 19999.08 27997.66 27098.66 39299.21 29593.65 33398.25 29299.58 30199.47 4299.57 22890.25 36998.59 18099.95 128
sd_testset97.81 21997.48 22898.79 21999.82 12196.80 29999.32 34799.45 10297.62 14699.38 21699.86 24285.56 34999.77 20699.72 13796.61 25999.79 227
miper_ehance_all_eth97.81 21997.66 22498.23 25299.49 23698.37 22299.99 21299.11 32994.78 30198.25 29299.21 32598.18 13998.57 32397.35 28392.61 31397.76 270
test_vis1_n_192097.77 22197.24 24299.34 17899.79 14298.04 248100.00 199.25 27698.88 44100.00 1100.00 177.52 382100.00 199.88 10399.85 140100.00 1
HQP-MVS97.73 22297.85 21697.39 29999.07 28094.82 328100.00 199.40 19099.04 1599.17 22699.97 19988.61 31999.57 22899.79 11995.58 26397.77 268
GA-MVS97.72 22397.27 24099.06 19999.24 27097.93 257100.00 199.24 28195.80 27698.99 24299.64 28789.77 30299.36 26595.12 32697.62 24499.89 165
HQP_MVS97.71 22497.82 21897.37 30099.00 29294.80 331100.00 199.40 19099.00 2799.08 23699.97 19988.58 32199.55 23799.79 11995.57 26797.76 270
nrg03097.64 22597.27 24098.75 22198.34 32699.53 122100.00 199.22 28896.21 26398.27 29099.95 22294.40 24098.98 28599.23 19889.78 34997.75 280
TAPA-MVS96.40 1097.64 22597.37 23498.45 23699.94 9995.70 315100.00 199.40 19097.65 14199.53 201100.00 199.31 6399.66 21880.48 396100.00 1100.00 1
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CLD-MVS97.64 22597.74 22097.36 30199.01 28894.76 336100.00 199.34 23199.30 499.00 24199.97 19987.49 33099.57 22899.96 8595.58 26397.75 280
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
D2MVS97.63 22897.83 21797.05 31298.83 31294.60 340100.00 199.82 4096.89 21198.28 28899.03 33794.05 24299.47 25498.58 23594.97 29197.09 367
c3_l97.58 22997.42 23098.06 27099.48 23898.16 23799.96 24899.10 33194.54 31098.13 29699.20 32797.87 14998.25 34297.28 28491.20 33797.75 280
IterMVS-LS97.56 23097.44 22997.92 28599.38 26097.90 25899.89 26899.10 33194.41 31598.32 28599.54 30897.21 18298.11 35097.50 27591.62 32997.75 280
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
test_djsdf97.55 23197.38 23398.07 26697.50 36397.99 250100.00 199.13 32295.46 29098.47 27899.85 24792.01 27598.59 32098.63 23095.36 27197.62 344
dmvs_re97.54 23297.88 21596.54 33299.55 21290.35 37699.86 27299.46 9497.00 20199.41 214100.00 190.78 28799.30 27099.60 16895.24 27899.96 122
cl____97.54 23297.32 23698.18 25699.47 24198.14 240100.00 199.10 33194.16 32397.60 32399.63 29197.52 17098.65 31496.47 30391.97 32597.76 270
IB-MVS96.24 1297.54 23296.95 24799.33 18199.67 16898.10 243100.00 199.47 7997.42 17399.26 22299.69 27498.83 11599.89 17499.43 18378.77 393100.00 1
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
DIV-MVS_self_test97.52 23597.35 23598.05 27499.46 24498.11 241100.00 199.10 33194.21 32097.62 32199.63 29197.65 16298.29 33996.47 30391.98 32497.76 270
eth_miper_zixun_eth97.47 23697.28 23898.06 27099.41 25197.94 25699.62 31799.08 33794.46 31498.19 29599.56 30596.91 19798.50 32896.78 29991.49 33297.74 302
test_fmvs1_n97.43 23796.86 25099.15 19799.68 16197.48 27599.99 21298.98 36398.82 55100.00 1100.00 174.85 38799.96 13899.67 15599.70 151100.00 1
LFMVS97.42 23896.62 25999.81 9999.80 13899.50 12899.16 36999.56 7094.48 313100.00 1100.00 179.35 377100.00 199.89 10197.37 24599.94 133
miper_lstm_enhance97.40 23997.28 23897.75 29099.48 23897.52 273100.00 199.07 34194.08 32498.01 30499.61 29797.38 17897.98 36196.44 30691.47 33497.76 270
RPSCF97.37 24098.24 19494.76 35399.80 13884.57 39099.99 21299.05 35194.95 29899.82 180100.00 194.03 243100.00 198.15 25298.38 19499.70 240
ACMM97.17 697.37 24097.40 23297.29 30599.01 28894.64 339100.00 199.25 27698.07 10698.44 27999.98 18987.38 33299.55 23799.25 19595.19 28197.69 327
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LPG-MVS_test97.31 24297.32 23697.28 30698.85 31094.60 340100.00 199.37 20897.35 17798.85 25199.98 18986.66 33899.56 23299.55 17495.26 27597.70 323
FMVSNet397.30 24396.95 24798.37 24299.65 17899.25 15999.71 30499.28 25694.23 31898.53 27298.91 34893.30 25498.11 35095.31 32293.60 30297.73 308
UniMVSNet (Re)97.29 24496.85 25198.59 22998.49 32299.13 172100.00 199.42 14096.52 24298.24 29498.90 34994.93 23298.89 29497.54 27487.61 36797.75 280
OPM-MVS97.21 24597.18 24597.32 30498.08 34294.66 337100.00 199.28 25698.65 6998.92 24499.98 18986.03 34599.56 23298.28 24895.41 26997.72 315
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ACMP97.00 897.19 24697.16 24697.27 30898.97 29794.58 343100.00 199.32 23597.97 11497.45 32799.98 18985.79 34799.56 23299.70 14495.24 27897.67 333
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
pmmvs497.17 24796.80 25298.27 24997.68 35498.64 206100.00 199.18 30694.22 31998.55 27099.71 26893.67 24798.47 33195.66 31692.57 31697.71 322
anonymousdsp97.16 24896.88 24998.00 27897.08 37398.06 24699.81 28099.15 31394.58 30897.84 31299.62 29590.49 29198.60 31897.98 25895.32 27297.33 362
UniMVSNet_NR-MVSNet97.16 24896.80 25298.22 25398.38 32598.41 216100.00 199.45 10296.14 26597.76 31399.64 28795.05 23098.50 32897.98 25886.84 37197.75 280
XXY-MVS97.14 25096.63 25898.67 22398.65 31598.92 19099.54 32699.29 25095.57 28297.63 31999.83 25087.79 32899.35 26798.39 24092.95 31097.75 280
WR-MVS97.09 25196.64 25798.46 23498.43 32399.09 17399.97 24399.33 23395.62 28097.76 31399.67 27991.17 28198.56 32598.49 23789.28 35597.74 302
JIA-IIPM97.09 25196.34 27399.36 17698.88 30598.59 20999.81 28099.43 12484.81 39199.96 12190.34 40198.55 13099.52 24697.00 29098.28 20399.98 109
jajsoiax97.07 25396.79 25497.89 28697.28 37197.12 29199.95 25499.19 29996.55 23997.31 33099.69 27487.35 33498.91 29198.70 22595.12 28697.66 334
MIMVSNet97.06 25496.73 25598.05 27499.38 26096.64 30498.47 39499.35 22593.41 34099.48 20598.53 36389.66 30497.70 37294.16 33898.11 21499.80 224
X-MVStestdata97.04 25596.06 28499.98 23100.00 199.94 41100.00 199.75 5298.67 67100.00 166.97 41299.16 80100.00 1100.00 1100.00 1100.00 1
h-mvs3397.03 25696.53 26298.51 23299.79 14295.90 31299.45 33499.45 10298.21 92100.00 199.78 26297.49 17199.99 9499.72 13774.92 39599.65 247
VPA-MVSNet97.03 25696.43 26898.82 21698.64 31699.32 15099.38 34299.47 7996.73 22598.91 24698.94 34687.00 33699.40 26399.23 19889.59 35097.76 270
WB-MVSnew97.02 25897.24 24296.37 33699.44 24797.36 280100.00 199.43 12496.12 26699.35 21899.89 23793.60 25098.42 33488.91 38098.39 19293.33 395
mvs_tets97.00 25996.69 25697.94 28297.41 37097.27 28699.60 31999.18 30696.51 24397.35 32999.69 27486.53 34098.91 29198.84 21795.09 28797.65 338
gg-mvs-nofinetune96.95 26096.10 28299.50 15499.41 25199.36 14899.07 38399.52 7283.69 39399.96 12183.60 409100.00 199.20 27499.68 15299.99 10299.96 122
Anonymous2024052996.93 26196.22 27899.05 20199.79 14297.30 28599.16 36999.47 7988.51 38198.69 261100.00 183.50 362100.00 199.83 11397.02 25199.83 196
DU-MVS96.93 26196.49 26598.22 25398.31 32998.41 216100.00 199.37 20896.41 25097.76 31399.65 28392.14 27298.50 32897.98 25886.84 37197.75 280
Patchmtry96.81 26396.37 27198.14 26099.31 26398.55 21098.91 38799.00 36090.45 37197.92 30898.98 34196.94 19598.12 34894.27 33591.53 33197.75 280
hse-mvs296.79 26496.38 27098.04 27699.68 16195.54 31899.81 28099.42 14098.21 92100.00 199.80 25997.49 17199.46 25899.72 13773.27 39899.12 258
ACMH96.25 1196.77 26596.62 25997.21 30998.96 29894.43 34599.64 31399.33 23397.43 17296.55 34899.97 19983.52 36199.54 24099.07 20895.13 28597.66 334
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
IterMVS96.76 26696.46 26797.63 29199.41 25196.89 29699.99 21299.13 32294.74 30497.59 32499.66 28189.63 30798.28 34095.71 31492.31 31997.72 315
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CP-MVSNet96.73 26796.25 27698.18 25698.21 33798.67 20499.77 29199.32 23595.06 29697.20 33399.65 28390.10 29698.19 34398.06 25688.90 35897.66 334
WR-MVS_H96.73 26796.32 27597.95 28198.26 33397.88 26099.72 30399.43 12495.06 29696.99 33698.68 35893.02 25998.53 32697.43 27888.33 36397.43 357
IterMVS-SCA-FT96.72 26996.42 26997.62 29399.40 25696.83 29899.99 21299.14 31894.65 30797.55 32599.72 26689.65 30598.31 33895.62 31892.05 32297.73 308
v2v48296.70 27096.18 27998.27 24998.04 34398.39 219100.00 199.13 32294.19 32298.58 26899.08 33190.48 29298.67 31295.69 31590.44 34597.75 280
test_vis1_n96.69 27195.81 29499.32 18399.14 27397.98 25199.97 24398.98 36398.45 77100.00 1100.00 166.44 39899.99 9499.78 12599.57 161100.00 1
V4296.65 27296.16 28198.11 26598.17 34098.23 23499.99 21299.09 33693.97 32598.74 26099.05 33491.09 28298.82 30095.46 32089.90 34797.27 363
EU-MVSNet96.63 27396.53 26296.94 31997.59 35996.87 29799.76 29399.47 7996.35 25596.85 34199.78 26292.57 26896.27 38695.33 32191.08 33897.68 329
NR-MVSNet96.63 27396.04 28598.38 24198.31 32998.98 18799.22 36299.35 22595.87 27094.43 37199.65 28392.73 26598.40 33596.78 29988.05 36497.75 280
XVG-ACMP-BASELINE96.60 27596.52 26496.84 32598.41 32493.29 35699.99 21299.32 23597.76 13298.51 27599.29 32281.95 36899.54 24098.40 23995.03 28897.68 329
VDD-MVS96.58 27695.99 28798.34 24499.52 22395.33 31999.18 36399.38 20596.64 23599.77 187100.00 172.51 392100.00 1100.00 196.94 25399.70 240
tt080596.52 27796.23 27797.40 29899.30 26693.55 35299.32 34799.45 10296.75 22197.88 31099.99 18479.99 37599.59 22397.39 28195.98 26299.06 260
LCM-MVSNet-Re96.52 27797.21 24494.44 35499.27 26785.80 38799.85 27496.61 40495.98 26892.75 37898.48 36593.97 24597.55 37399.58 17298.43 18899.98 109
our_test_396.51 27996.35 27296.98 31797.61 35795.05 32399.98 23799.01 35994.68 30596.77 34599.06 33295.87 21498.14 34691.81 35692.37 31897.75 280
MVP-Stereo96.51 27996.48 26696.60 33195.65 38594.25 34698.84 38998.16 38195.85 27495.23 36299.04 33592.54 26999.13 27692.98 34899.98 11296.43 379
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
v114496.51 27995.97 28998.13 26397.98 34698.04 24899.99 21299.08 33793.51 33898.62 26698.98 34190.98 28698.62 31593.79 34290.79 34197.74 302
ACMH+96.20 1396.49 28296.33 27497.00 31599.06 28493.80 35099.81 28099.31 24097.32 18195.89 35999.97 19982.62 36699.54 24098.34 24394.63 29697.65 338
TranMVSNet+NR-MVSNet96.45 28396.01 28697.79 28998.00 34597.62 271100.00 199.35 22595.98 26897.31 33099.64 28790.09 29798.00 36096.89 29486.80 37497.75 280
ET-MVSNet_ETH3D96.41 28495.48 31499.20 19599.81 12799.75 93100.00 199.02 35797.30 18578.33 401100.00 197.73 15797.94 36399.70 14487.41 36899.92 146
VPNet96.41 28495.76 29998.33 24598.61 31798.30 23099.48 33199.45 10296.98 20298.87 25099.88 23981.57 36998.93 28999.22 20087.82 36697.76 270
PVSNet_093.57 1996.41 28495.74 30098.41 23999.84 11795.22 321100.00 1100.00 198.08 10597.55 32599.78 26284.40 354100.00 1100.00 181.99 386100.00 1
v14419296.40 28795.81 29498.17 25897.89 34998.11 24199.99 21299.06 34993.39 34198.75 25999.09 33090.43 29398.66 31393.10 34790.55 34497.75 280
VDDNet96.39 28895.55 30998.90 21299.27 26797.45 27699.15 37299.92 3491.28 36499.98 111100.00 173.55 388100.00 199.85 10996.98 25299.24 255
tfpnnormal96.36 28995.69 30598.37 24298.55 31998.71 20199.69 30899.45 10293.16 34896.69 34799.71 26888.44 32398.99 28494.17 33691.38 33597.41 358
v896.35 29095.73 30198.21 25598.11 34198.23 23499.94 25899.07 34192.66 35698.29 28799.00 34091.46 27698.77 30594.17 33688.83 36097.62 344
PS-CasMVS96.34 29195.78 29898.03 27798.18 33998.27 23299.71 30499.32 23594.75 30296.82 34299.65 28386.98 33798.15 34597.74 26788.85 35997.66 334
LTVRE_ROB95.29 1696.32 29296.10 28296.99 31698.55 31993.88 34999.45 33499.28 25694.50 31296.46 34999.52 30984.86 35299.48 25297.26 28595.03 28897.59 348
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
Anonymous2023121196.29 29395.70 30298.07 26699.80 13897.49 27499.15 37299.40 19089.11 37897.75 31699.45 31488.93 31598.98 28598.26 24989.47 35297.73 308
v14896.29 29395.84 29397.63 29197.74 35296.53 305100.00 199.07 34193.52 33798.01 30499.42 31691.22 27898.60 31896.37 30787.22 37097.75 280
AUN-MVS96.26 29595.67 30698.06 27099.68 16195.60 31799.82 27999.42 14096.78 21899.88 16599.80 25994.84 23499.47 25497.48 27673.29 39799.12 258
FMVSNet296.22 29695.60 30898.06 27099.53 21698.33 22699.45 33499.27 26593.71 32998.03 30198.84 35184.23 35698.10 35393.97 34093.40 30597.73 308
LF4IMVS96.19 29796.18 27996.23 33998.26 33392.09 366100.00 197.89 39197.82 12697.94 30699.87 24082.71 36599.38 26497.41 27993.71 30197.20 364
v119296.18 29895.49 31298.26 25198.01 34498.15 23899.99 21299.08 33793.36 34298.54 27198.97 34489.47 30898.89 29491.15 36190.82 34097.75 280
testgi96.18 29895.93 29096.93 32098.98 29694.20 348100.00 199.07 34197.16 19196.06 35699.86 24284.08 35997.79 36990.38 36897.80 23298.81 262
Syy-MVS96.17 30096.57 26195.00 34899.50 23287.37 385100.00 199.57 6896.23 26098.07 298100.00 192.41 27097.81 36685.34 38697.96 21999.82 201
ppachtmachnet_test96.17 30095.89 29197.02 31497.61 35795.24 32099.99 21299.24 28193.31 34496.71 34699.62 29594.34 24198.07 35589.87 37092.30 32097.75 280
v192192096.16 30295.50 31098.14 26097.88 35097.96 25499.99 21299.07 34193.33 34398.60 26799.24 32489.37 30998.71 31091.28 35990.74 34297.75 280
Baseline_NR-MVSNet96.16 30295.70 30297.56 29698.28 33296.79 300100.00 197.86 39291.93 36197.63 31999.47 31392.14 27298.35 33797.13 28686.83 37397.54 351
v1096.14 30495.50 31098.07 26698.19 33897.96 25499.83 27699.07 34192.10 36098.07 29898.94 34691.07 28398.61 31692.41 35489.82 34897.63 342
OurMVSNet-221017-096.14 30495.98 28896.62 33097.49 36593.44 35499.92 26198.16 38195.86 27297.65 31899.95 22285.71 34898.78 30294.93 32894.18 30097.64 341
GBi-Net96.07 30695.80 29696.89 32299.53 21694.87 32599.18 36399.27 26593.71 32998.53 27298.81 35284.23 35698.07 35595.31 32293.60 30297.72 315
test196.07 30695.80 29696.89 32299.53 21694.87 32599.18 36399.27 26593.71 32998.53 27298.81 35284.23 35698.07 35595.31 32293.60 30297.72 315
v7n96.06 30895.42 31897.99 28097.58 36097.35 28199.86 27299.11 32992.81 35597.91 30999.49 31190.99 28598.92 29092.51 35188.49 36297.70 323
PEN-MVS96.01 30995.48 31497.58 29597.74 35297.26 28799.90 26599.29 25094.55 30996.79 34399.55 30687.38 33297.84 36596.92 29387.24 36997.65 338
v124095.96 31095.25 31998.07 26697.91 34897.87 26299.96 24899.07 34193.24 34698.64 26598.96 34588.98 31498.61 31689.58 37490.92 33997.75 280
pmmvs595.94 31195.61 30796.95 31897.42 36894.66 337100.00 198.08 38593.60 33597.05 33599.43 31587.02 33598.46 33295.76 31292.12 32197.72 315
PatchT95.90 31294.95 32698.75 22199.03 28698.39 21999.08 38199.32 23585.52 38999.96 12194.99 39397.94 14598.05 35980.20 39798.47 18699.81 210
USDC95.90 31295.70 30296.50 33398.60 31892.56 364100.00 198.30 37997.77 13096.92 33799.94 22781.25 37299.45 25993.54 34494.96 29297.49 354
pm-mvs195.76 31495.01 32498.00 27898.23 33597.45 27699.24 35599.04 35493.13 34995.93 35899.72 26686.28 34198.84 29995.62 31887.92 36597.72 315
SixPastTwentyTwo95.71 31595.49 31296.38 33597.42 36893.01 35799.84 27598.23 38094.75 30295.98 35799.97 19985.35 35098.43 33394.71 33093.17 30797.69 327
MS-PatchMatch95.66 31695.87 29295.05 34697.80 35189.25 37998.88 38899.30 24496.35 25596.86 34099.01 33981.35 37199.43 26093.30 34699.98 11296.46 378
DTE-MVSNet95.52 31794.99 32597.08 31197.49 36596.45 306100.00 199.25 27693.82 32896.17 35499.57 30487.81 32797.18 37494.57 33186.26 37697.62 344
TinyColmap95.50 31895.12 32396.64 32998.69 31493.00 35899.40 34097.75 39496.40 25296.14 35599.87 24079.47 37699.50 25093.62 34394.72 29597.40 359
K. test v395.46 31995.14 32296.40 33497.53 36293.40 35599.99 21299.23 28595.49 28892.70 37999.73 26584.26 35598.12 34893.94 34193.38 30697.68 329
FMVSNet595.32 32095.43 31794.99 34999.39 25992.99 35999.25 35499.24 28190.45 37197.44 32898.45 36695.78 21694.39 39587.02 38291.88 32697.59 348
UniMVSNet_ETH3D95.28 32194.41 32797.89 28698.91 30295.14 32299.13 37599.35 22592.11 35997.17 33499.66 28170.28 39599.36 26597.88 26395.18 28299.16 256
RPMNet95.26 32293.82 33099.56 14999.31 26398.86 19299.13 37599.42 14079.82 39899.96 12195.13 39195.69 21899.98 11877.54 40198.40 19099.84 192
DSMNet-mixed95.18 32395.21 32195.08 34596.03 38090.21 37799.65 31293.64 41092.91 35198.34 28397.40 38290.05 29995.51 39291.02 36297.86 22699.51 251
test_fmvs295.17 32495.23 32095.01 34798.95 30088.99 38199.99 21297.77 39397.79 12898.58 26899.70 27173.36 38999.34 26895.88 31195.03 28896.70 375
TransMVSNet (Re)94.78 32593.72 33197.93 28498.34 32697.88 26099.23 36097.98 38991.60 36294.55 36899.71 26887.89 32698.36 33689.30 37684.92 37797.56 350
FMVSNet194.45 32693.63 33396.89 32298.87 30894.87 32599.18 36399.27 26590.95 36897.31 33098.81 35272.89 39198.07 35592.61 34992.81 31197.72 315
test_040294.35 32793.70 33296.32 33797.92 34793.60 35199.61 31898.85 37288.19 38494.68 36799.48 31280.01 37498.58 32289.39 37595.15 28496.77 373
UnsupCasMVSNet_eth94.25 32893.89 32995.34 34497.63 35592.13 36599.73 30199.36 21494.88 29992.78 37698.63 36082.72 36496.53 38294.57 33184.73 37897.36 360
KD-MVS_2432*160094.15 32993.08 33897.35 30299.53 21697.83 26499.63 31599.19 29992.88 35296.29 35197.68 37998.84 11396.70 37889.73 37163.92 40297.53 352
miper_refine_blended94.15 32993.08 33897.35 30299.53 21697.83 26499.63 31599.19 29992.88 35296.29 35197.68 37998.84 11396.70 37889.73 37163.92 40297.53 352
MVS-HIRNet94.12 33192.73 34498.29 24899.33 26295.95 30999.38 34299.19 29974.54 40198.26 29186.34 40586.07 34399.06 27991.60 35899.87 13699.85 191
new_pmnet94.11 33293.47 33596.04 34196.60 37792.82 36099.97 24398.91 36890.21 37495.26 36198.05 37785.89 34698.14 34684.28 38892.01 32397.16 365
pmmvs693.64 33392.87 34195.94 34297.47 36791.41 37198.92 38699.02 35787.84 38595.01 36499.61 29777.24 38398.77 30594.33 33486.41 37597.63 342
Patchmatch-RL test93.49 33493.63 33393.05 36591.78 39683.41 39198.21 39696.95 40191.58 36391.05 38197.64 38199.40 5595.83 39094.11 33981.95 38799.91 148
Anonymous2023120693.45 33593.17 33794.30 35795.00 39089.69 37899.98 23798.43 37893.30 34594.50 37098.59 36190.52 29095.73 39177.46 40290.73 34397.48 356
Anonymous2024052193.29 33692.76 34394.90 35295.64 38691.27 37299.97 24398.82 37387.04 38694.71 36698.19 37283.86 36096.80 37784.04 38992.56 31796.64 376
dmvs_testset93.27 33795.48 31486.65 37798.74 31368.42 40699.92 26198.91 36896.19 26493.28 375100.00 191.06 28491.67 40289.64 37391.54 33099.86 190
test20.0393.11 33892.85 34293.88 36295.19 38991.83 367100.00 198.87 37193.68 33292.76 37798.88 35089.20 31192.71 40077.88 40089.19 35697.09 367
test_vis1_rt93.10 33992.93 34093.58 36399.63 18685.07 38899.99 21293.71 40997.49 16690.96 38297.10 38360.40 40099.95 15199.24 19797.90 22495.72 385
APD_test193.07 34094.14 32889.85 37199.18 27172.49 39999.76 29398.90 37092.86 35496.35 35099.94 22775.56 38599.91 17186.73 38397.98 21797.15 366
EG-PatchMatch MVS92.94 34192.49 34594.29 35895.87 38287.07 38699.07 38398.11 38493.19 34788.98 38898.66 35970.89 39399.08 27892.43 35395.21 28096.72 374
MDA-MVSNet_test_wron92.61 34291.09 35097.19 31096.71 37697.26 287100.00 199.14 31888.61 38067.90 40798.32 37189.03 31296.57 38190.47 36789.59 35097.74 302
YYNet192.44 34390.92 35197.03 31396.20 37897.06 29499.99 21299.14 31888.21 38367.93 40698.43 36888.63 31896.28 38590.64 36389.08 35797.74 302
MIMVSNet191.96 34491.20 34794.23 35994.94 39191.69 36999.34 34699.22 28888.23 38294.18 37298.45 36675.52 38693.41 39979.37 39891.49 33297.60 347
TDRefinement91.93 34590.48 35396.27 33881.60 40992.65 36399.10 37897.61 39793.96 32693.77 37399.85 24780.03 37399.53 24597.82 26570.59 39996.63 377
OpenMVS_ROBcopyleft88.34 2091.89 34691.12 34894.19 36095.55 38787.63 38499.26 35398.03 38686.61 38890.65 38696.82 38570.14 39698.78 30286.54 38496.50 26196.15 380
N_pmnet91.88 34793.37 33687.40 37697.24 37266.33 40999.90 26591.05 41289.77 37795.65 36098.58 36290.05 29998.11 35085.39 38592.72 31297.75 280
pmmvs-eth3d91.73 34890.67 35294.92 35191.63 39892.71 36299.90 26598.54 37791.19 36588.08 39095.50 38979.31 37896.13 38790.55 36681.32 38995.91 384
MDA-MVSNet-bldmvs91.65 34989.94 35796.79 32896.72 37596.70 30299.42 33998.94 36588.89 37966.97 40998.37 36981.43 37095.91 38989.24 37789.46 35397.75 280
KD-MVS_self_test91.16 35090.09 35594.35 35694.44 39291.27 37299.74 29699.08 33790.82 36994.53 36994.91 39486.11 34294.78 39482.67 39168.52 40096.99 369
CL-MVSNet_self_test91.07 35190.35 35493.24 36493.27 39389.16 38099.55 32499.25 27692.34 35895.23 36297.05 38488.86 31793.59 39880.67 39566.95 40196.96 370
test_method91.04 35291.10 34990.85 36898.34 32677.63 395100.00 198.93 36776.69 39996.25 35398.52 36470.44 39497.98 36189.02 37991.74 32796.92 371
CMPMVSbinary66.12 2290.65 35392.04 34686.46 37896.18 37966.87 40898.03 39799.38 20583.38 39485.49 39699.55 30677.59 38198.80 30194.44 33394.31 29993.72 393
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
pmmvs390.62 35489.36 36094.40 35590.53 40391.49 370100.00 196.73 40284.21 39293.65 37496.65 38682.56 36794.83 39382.28 39277.62 39496.89 372
new-patchmatchnet90.30 35589.46 35992.84 36690.77 40188.55 38399.83 27698.80 37490.07 37687.86 39195.00 39278.77 37994.30 39684.86 38779.15 39195.68 387
UnsupCasMVSNet_bld89.50 35688.00 36293.99 36195.30 38888.86 38298.52 39399.28 25685.50 39087.80 39294.11 39561.63 39996.96 37690.63 36479.26 39096.15 380
mvsany_test389.36 35788.96 36190.56 36991.95 39578.97 39499.74 29696.59 40596.84 21389.25 38796.07 38752.59 40297.11 37595.17 32582.44 38595.58 388
PM-MVS88.39 35887.41 36391.31 36791.73 39782.02 39399.79 28596.62 40391.06 36790.71 38595.73 38848.60 40495.96 38890.56 36581.91 38895.97 383
WB-MVS88.24 35990.09 35582.68 38491.56 39969.51 404100.00 198.73 37590.72 37087.29 39398.12 37392.87 26185.01 40662.19 40789.34 35493.54 394
SSC-MVS87.61 36089.47 35882.04 38590.63 40268.77 40599.99 21298.66 37690.34 37386.70 39498.08 37492.72 26684.12 40759.41 41088.71 36193.22 398
test_fmvs387.19 36187.02 36487.71 37592.69 39476.64 39699.96 24897.27 39893.55 33690.82 38494.03 39638.00 41092.19 40193.49 34583.35 38494.32 390
test_f86.87 36286.06 36589.28 37291.45 40076.37 39799.87 27197.11 39991.10 36688.46 38993.05 39838.31 40996.66 38091.77 35783.46 38394.82 389
Gipumacopyleft84.73 36383.50 36888.40 37497.50 36382.21 39288.87 40399.05 35165.81 40385.71 39590.49 40053.70 40196.31 38478.64 39991.74 32786.67 402
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
testf184.40 36484.79 36683.23 38295.71 38358.71 41598.79 39097.75 39481.58 39584.94 39798.07 37545.33 40697.73 37077.09 40383.85 38093.24 396
APD_test284.40 36484.79 36683.23 38295.71 38358.71 41598.79 39097.75 39481.58 39584.94 39798.07 37545.33 40697.73 37077.09 40383.85 38093.24 396
testmvs80.17 36681.95 36974.80 38958.54 41659.58 414100.00 187.14 41576.09 40099.61 199100.00 167.06 39774.19 41298.84 21750.30 40690.64 401
test_vis3_rt79.61 36778.19 37283.86 38188.68 40469.56 40399.81 28082.19 41786.78 38768.57 40584.51 40825.06 41498.26 34189.18 37878.94 39283.75 405
EGC-MVSNET79.46 36874.04 37695.72 34396.00 38192.73 36199.09 38099.04 3545.08 41316.72 41398.71 35673.03 39098.74 30882.05 39396.64 25895.69 386
test12379.44 36979.23 37180.05 38780.03 41071.72 400100.00 177.93 41862.52 40494.81 36599.69 27478.21 38074.53 41192.57 35027.33 41193.90 391
PMMVS279.15 37077.28 37384.76 38082.34 40872.66 39899.70 30695.11 40871.68 40284.78 39990.87 39932.05 41289.99 40375.53 40563.45 40491.64 399
LCM-MVSNet79.01 37176.93 37485.27 37978.28 41168.01 40796.57 40098.03 38655.10 40782.03 40093.27 39731.99 41393.95 39782.72 39074.37 39693.84 392
FPMVS77.92 37279.45 37073.34 39176.87 41246.81 41898.24 39599.05 35159.89 40673.55 40298.34 37036.81 41186.55 40480.96 39491.35 33686.65 403
tmp_tt75.80 37374.26 37580.43 38652.91 41853.67 41787.42 40597.98 38961.80 40567.04 408100.00 176.43 38496.40 38396.47 30328.26 41091.23 400
E-PMN70.72 37470.06 37772.69 39283.92 40765.48 41199.95 25492.72 41149.88 40972.30 40386.26 40647.17 40577.43 40953.83 41144.49 40775.17 409
EMVS69.88 37569.09 37872.24 39384.70 40665.82 41099.96 24887.08 41649.82 41071.51 40484.74 40749.30 40375.32 41050.97 41243.71 40875.59 408
MVEpermissive68.59 2167.22 37664.68 38074.84 38874.67 41462.32 41395.84 40190.87 41350.98 40858.72 41081.05 41012.20 41878.95 40861.06 40956.75 40583.24 406
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
ANet_high66.05 37763.44 38173.88 39061.14 41563.45 41295.68 40287.18 41479.93 39747.35 41180.68 41122.35 41572.33 41361.24 40835.42 40985.88 404
PMVScopyleft60.66 2365.98 37865.05 37968.75 39455.06 41738.40 41988.19 40496.98 40048.30 41144.82 41288.52 40312.22 41786.49 40567.58 40683.79 38281.35 407
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
wuyk23d28.28 37929.73 38323.92 39575.89 41332.61 42066.50 40612.88 41916.09 41214.59 41416.59 41312.35 41632.36 41439.36 41313.36 4126.79 410
cdsmvs_eth3d_5k24.41 38032.55 3820.00 3960.00 4190.00 4210.00 40799.39 2030.00 4140.00 415100.00 193.55 2510.00 4150.00 4140.00 4130.00 411
ab-mvs-re8.33 38111.11 3840.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 415100.00 10.00 4190.00 4150.00 4140.00 4130.00 411
pcd_1.5k_mvsjas8.24 38210.99 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.14 41598.75 1200.00 4150.00 4140.00 4130.00 411
test_blank0.07 3830.09 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.79 4140.00 4190.00 4150.00 4140.00 4130.00 411
uanet_test0.01 3840.02 3870.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.14 4150.00 4190.00 4150.00 4140.00 4130.00 411
DCPMVS0.01 3840.02 3870.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.14 4150.00 4190.00 4150.00 4140.00 4130.00 411
sosnet-low-res0.01 3840.02 3870.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.14 4150.00 4190.00 4150.00 4140.00 4130.00 411
sosnet0.01 3840.02 3870.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.14 4150.00 4190.00 4150.00 4140.00 4130.00 411
uncertanet0.01 3840.02 3870.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.14 4150.00 4190.00 4150.00 4140.00 4130.00 411
Regformer0.01 3840.02 3870.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.14 4150.00 4190.00 4150.00 4140.00 4130.00 411
uanet0.01 3840.02 3870.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.14 4150.00 4190.00 4150.00 4140.00 4130.00 411
WAC-MVS97.98 25195.74 313
FOURS1100.00 199.97 21100.00 199.42 14098.52 74100.00 1
MSC_two_6792asdad100.00 1100.00 1100.00 199.42 140100.00 1100.00 1100.00 1100.00 1
PC_three_145298.80 57100.00 1100.00 199.54 25100.00 1100.00 1100.00 1100.00 1
No_MVS100.00 1100.00 1100.00 199.42 140100.00 1100.00 1100.00 1100.00 1
test_one_0601100.00 199.99 599.42 14098.72 64100.00 1100.00 199.60 16
eth-test20.00 419
eth-test0.00 419
ZD-MVS100.00 199.98 1799.80 4397.31 183100.00 1100.00 199.32 6199.99 94100.00 1100.00 1
RE-MVS-def99.55 5699.99 4999.91 53100.00 199.42 14097.62 146100.00 1100.00 198.94 10499.99 61100.00 1100.00 1
IU-MVS100.00 199.99 599.42 14099.12 6100.00 1100.00 1100.00 1100.00 1
OPU-MVS100.00 1100.00 1100.00 1100.00 1100.00 199.54 25100.00 1100.00 1100.00 1100.00 1
test_241102_TWO99.42 14099.03 20100.00 1100.00 199.56 22100.00 1100.00 1100.00 1100.00 1
test_241102_ONE100.00 199.99 599.42 14099.03 20100.00 1100.00 199.50 36100.00 1
9.1499.57 4999.99 49100.00 199.42 14097.54 158100.00 1100.00 199.15 8299.99 94100.00 1100.00 1
save fliter99.99 4999.93 45100.00 199.42 14098.93 38
test_0728_THIRD98.79 60100.00 1100.00 199.61 15100.00 1100.00 1100.00 1100.00 1
test_0728_SECOND100.00 199.99 4999.99 5100.00 199.42 140100.00 1100.00 1100.00 1100.00 1
test0726100.00 199.99 5100.00 199.42 14099.04 15100.00 1100.00 199.53 28
GSMVS99.91 148
test_part2100.00 199.99 5100.00 1
sam_mvs199.29 6999.91 148
sam_mvs99.33 58
ambc88.45 37386.84 40570.76 40297.79 39998.02 38890.91 38395.14 39038.69 40898.51 32794.97 32784.23 37996.09 382
MTGPAbinary99.42 140
test_post199.32 34788.24 40499.33 5899.59 22398.31 244
test_post89.05 40299.49 3899.59 223
patchmatchnet-post97.79 37899.41 5499.54 240
GG-mvs-BLEND99.59 14299.54 21399.49 13199.17 36899.52 7299.96 12199.68 278100.00 199.33 26999.71 14099.99 10299.96 122
MTMP100.00 199.18 306
gm-plane-assit99.52 22397.26 28795.86 272100.00 199.43 26098.76 222
test9_res100.00 1100.00 1100.00 1
TEST9100.00 199.95 32100.00 199.42 14097.65 141100.00 1100.00 199.53 2899.97 125
test_8100.00 199.91 53100.00 199.42 14097.70 136100.00 1100.00 199.51 3299.98 118
agg_prior2100.00 1100.00 1100.00 1
agg_prior100.00 199.88 7499.42 140100.00 199.97 125
TestCases98.99 20699.93 10197.35 28199.40 19097.08 19799.09 23499.98 18993.37 25299.95 15196.94 29199.84 14299.68 242
test_prior499.93 45100.00 1
test_prior2100.00 198.82 55100.00 1100.00 199.47 42100.00 1100.00 1
test_prior99.90 73100.00 199.75 9399.73 5699.97 125100.00 1
旧先验2100.00 198.11 104100.00 1100.00 199.67 155
新几何2100.00 1
新几何199.99 12100.00 199.96 2499.81 4297.89 121100.00 1100.00 199.20 77100.00 197.91 262100.00 1100.00 1
旧先验199.99 4999.88 7499.82 40100.00 199.27 72100.00 1100.00 1
无先验100.00 199.80 4397.98 112100.00 199.33 190100.00 1
原ACMM2100.00 1
原ACMM199.93 67100.00 199.80 8999.66 6398.18 95100.00 1100.00 199.43 49100.00 199.50 181100.00 1100.00 1
test22299.99 4999.90 60100.00 199.69 6297.66 140100.00 1100.00 199.30 68100.00 1100.00 1
testdata2100.00 197.36 282
segment_acmp99.55 24
testdata99.66 13399.99 4998.97 18999.73 5697.96 117100.00 1100.00 199.42 52100.00 199.28 194100.00 1100.00 1
testdata1100.00 198.77 63
test1299.95 5199.99 4999.89 6799.42 140100.00 199.24 7499.97 125100.00 1100.00 1
plane_prior799.00 29294.78 335
plane_prior699.06 28494.80 33188.58 321
plane_prior599.40 19099.55 23799.79 11995.57 26797.76 270
plane_prior499.97 199
plane_prior394.79 33499.03 2099.08 236
plane_prior2100.00 199.00 27
plane_prior199.02 287
plane_prior94.80 331100.00 199.03 2095.58 263
n20.00 420
nn0.00 420
door-mid96.32 406
lessismore_v096.05 34097.55 36191.80 36899.22 28891.87 38099.91 23483.50 36298.68 31192.48 35290.42 34697.68 329
LGP-MVS_train97.28 30698.85 31094.60 34099.37 20897.35 17798.85 25199.98 18986.66 33899.56 23299.55 17495.26 27597.70 323
test1199.42 140
door96.13 407
HQP5-MVS94.82 328
HQP-NCC99.07 280100.00 199.04 1599.17 226
ACMP_Plane99.07 280100.00 199.04 1599.17 226
BP-MVS99.79 119
HQP4-MVS99.17 22699.57 22897.77 268
HQP3-MVS99.40 19095.58 263
HQP2-MVS88.61 319
NP-MVS99.07 28094.81 33099.97 199
MDTV_nov1_ep13_2view99.24 16199.56 32396.31 25899.96 12198.86 11198.92 21399.89 165
MDTV_nov1_ep1398.94 13299.53 21698.36 22499.39 34199.46 9496.54 24099.99 10599.63 29198.92 10799.86 18398.30 24798.71 179
ACMMP++_ref94.58 298
ACMMP++95.17 283
Test By Simon99.10 85
ITE_SJBPF96.84 32598.96 29893.49 35398.12 38398.12 10398.35 28299.97 19984.45 35399.56 23295.63 31795.25 27797.49 354
DeepMVS_CXcopyleft89.98 37098.90 30371.46 40199.18 30697.61 15096.92 33799.83 25086.07 34399.83 19296.02 31097.65 24298.65 264