MSLP-MVS++ | | | 99.89 1 | 99.85 2 | 99.99 12 | 100.00 1 | 99.96 24 | 100.00 1 | 99.95 18 | 99.11 7 | 100.00 1 | 100.00 1 | 99.60 17 | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
|
NCCC | | | 99.86 2 | 99.82 3 | 100.00 1 | 100.00 1 | 99.99 5 | 100.00 1 | 99.71 60 | 99.07 9 | 100.00 1 | 100.00 1 | 99.59 20 | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
|
CHOSEN 280x420 | | | 99.85 3 | 99.87 1 | 99.80 93 | 99.99 49 | 99.97 21 | 99.97 218 | 99.98 16 | 98.96 29 | 100.00 1 | 100.00 1 | 99.96 5 | 99.42 237 | 100.00 1 | 100.00 1 | 100.00 1 |
|
MCST-MVS | | | 99.85 3 | 99.80 4 | 100.00 1 | 100.00 1 | 99.99 5 | 100.00 1 | 99.73 55 | 99.19 5 | 100.00 1 | 100.00 1 | 99.31 63 | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
|
CNVR-MVS | | | 99.85 3 | 99.80 4 | 100.00 1 | 100.00 1 | 99.99 5 | 100.00 1 | 99.77 47 | 99.07 9 | 100.00 1 | 100.00 1 | 99.39 56 | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
|
APDe-MVS | | | 99.84 6 | 99.78 7 | 99.99 12 | 100.00 1 | 99.98 17 | 100.00 1 | 99.44 111 | 99.06 11 | 100.00 1 | 100.00 1 | 99.56 23 | 99.99 93 | 100.00 1 | 100.00 1 | 100.00 1 |
|
SED-MVS | | | 99.83 7 | 99.77 9 | 100.00 1 | 100.00 1 | 99.99 5 | 100.00 1 | 99.42 127 | 99.03 19 | 100.00 1 | 100.00 1 | 99.50 37 | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
|
DVP-MVS |  | | 99.83 7 | 99.78 7 | 100.00 1 | 100.00 1 | 99.99 5 | 100.00 1 | 99.42 127 | 99.04 14 | 100.00 1 | 100.00 1 | 99.53 29 | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
TSAR-MVS + MP. | | | 99.82 9 | 99.77 9 | 99.99 12 | 100.00 1 | 99.96 24 | 100.00 1 | 99.43 117 | 99.05 13 | 100.00 1 | 100.00 1 | 99.45 45 | 99.99 93 | 100.00 1 | 100.00 1 | 100.00 1 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
HPM-MVS++ |  | | 99.82 9 | 99.76 12 | 99.99 12 | 99.99 49 | 99.98 17 | 100.00 1 | 99.83 38 | 98.88 39 | 99.96 110 | 100.00 1 | 99.21 76 | 100.00 1 | 100.00 1 | 100.00 1 | 99.99 103 |
|
DVP-MVS++ | | | 99.81 11 | 99.75 14 | 100.00 1 | 100.00 1 | 99.99 5 | 100.00 1 | 99.42 127 | 98.79 54 | 100.00 1 | 100.00 1 | 99.54 26 | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
|
MSP-MVS | | | 99.81 11 | 99.77 9 | 99.94 63 | 100.00 1 | 99.86 77 | 100.00 1 | 99.42 127 | 98.87 42 | 100.00 1 | 100.00 1 | 99.65 15 | 99.96 128 | 100.00 1 | 100.00 1 | 100.00 1 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
SD-MVS | | | 99.81 11 | 99.75 14 | 99.99 12 | 99.99 49 | 99.96 24 | 100.00 1 | 99.42 127 | 99.01 25 | 100.00 1 | 100.00 1 | 99.33 58 | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
DPE-MVS |  | | 99.79 14 | 99.73 17 | 99.99 12 | 99.99 49 | 99.98 17 | 100.00 1 | 99.42 127 | 98.91 37 | 100.00 1 | 100.00 1 | 99.22 75 | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
XVS | | | 99.79 14 | 99.73 17 | 99.98 23 | 100.00 1 | 99.94 40 | 100.00 1 | 99.75 51 | 98.67 61 | 100.00 1 | 100.00 1 | 99.16 80 | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
|
SteuartSystems-ACMMP | | | 99.78 16 | 99.71 20 | 99.98 23 | 99.76 143 | 99.95 32 | 100.00 1 | 99.42 127 | 98.69 59 | 100.00 1 | 100.00 1 | 99.52 32 | 99.99 93 | 100.00 1 | 100.00 1 | 100.00 1 |
Skip Steuart: Steuart Systems R&D Blog. |
PAPM | | | 99.78 16 | 99.76 12 | 99.85 81 | 99.01 263 | 99.95 32 | 100.00 1 | 99.75 51 | 99.37 3 | 99.99 96 | 100.00 1 | 99.76 11 | 99.60 197 | 100.00 1 | 100.00 1 | 100.00 1 |
|
DP-MVS Recon | | | 99.76 18 | 99.69 22 | 99.98 23 | 100.00 1 | 99.95 32 | 100.00 1 | 99.52 68 | 97.99 102 | 99.99 96 | 100.00 1 | 99.72 12 | 100.00 1 | 99.96 80 | 100.00 1 | 100.00 1 |
|
PAPR | | | 99.76 18 | 99.68 25 | 99.99 12 | 100.00 1 | 99.96 24 | 100.00 1 | 99.47 75 | 98.16 88 | 100.00 1 | 100.00 1 | 99.51 33 | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
|
DeepC-MVS_fast | | 98.92 1 | 99.75 20 | 99.67 27 | 99.99 12 | 99.99 49 | 99.96 24 | 99.73 277 | 99.52 68 | 99.06 11 | 100.00 1 | 100.00 1 | 98.80 114 | 100.00 1 | 99.95 85 | 100.00 1 | 100.00 1 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
MG-MVS | | | 99.75 20 | 99.68 25 | 99.97 31 | 100.00 1 | 99.91 51 | 99.98 212 | 99.47 75 | 99.09 8 | 100.00 1 | 100.00 1 | 98.59 123 | 100.00 1 | 99.95 85 | 100.00 1 | 100.00 1 |
|
HFP-MVS | | | 99.74 22 | 99.67 27 | 99.96 42 | 100.00 1 | 99.89 65 | 100.00 1 | 99.76 48 | 97.95 110 | 100.00 1 | 100.00 1 | 99.31 63 | 100.00 1 | 99.99 58 | 100.00 1 | 100.00 1 |
|
ACMMPR | | | 99.74 22 | 99.67 27 | 99.96 42 | 100.00 1 | 99.89 65 | 100.00 1 | 99.76 48 | 97.95 110 | 100.00 1 | 100.00 1 | 99.29 69 | 100.00 1 | 99.99 58 | 100.00 1 | 100.00 1 |
|
PAPM_NR | | | 99.74 22 | 99.66 30 | 99.99 12 | 100.00 1 | 99.96 24 | 100.00 1 | 99.47 75 | 97.87 115 | 100.00 1 | 100.00 1 | 99.60 17 | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
|
CDPH-MVS | | | 99.73 25 | 99.64 33 | 99.99 12 | 100.00 1 | 99.97 21 | 100.00 1 | 99.42 127 | 98.02 100 | 100.00 1 | 100.00 1 | 99.32 61 | 99.99 93 | 100.00 1 | 100.00 1 | 100.00 1 |
|
region2R | | | 99.72 26 | 99.64 33 | 99.97 31 | 100.00 1 | 99.90 58 | 100.00 1 | 99.74 54 | 97.86 116 | 100.00 1 | 100.00 1 | 99.19 78 | 100.00 1 | 99.99 58 | 100.00 1 | 100.00 1 |
|
API-MVS | | | 99.72 26 | 99.70 21 | 99.79 95 | 99.97 88 | 99.37 132 | 99.96 223 | 99.94 21 | 98.48 69 | 100.00 1 | 100.00 1 | 98.92 103 | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
|
CNLPA | | | 99.72 26 | 99.65 31 | 99.91 67 | 99.97 88 | 99.72 94 | 100.00 1 | 99.47 75 | 98.43 72 | 99.88 148 | 100.00 1 | 99.14 83 | 100.00 1 | 99.97 78 | 100.00 1 | 100.00 1 |
|
ZNCC-MVS | | | 99.71 29 | 99.62 41 | 99.97 31 | 99.99 49 | 99.90 58 | 100.00 1 | 99.79 44 | 97.97 106 | 99.97 105 | 100.00 1 | 98.97 94 | 100.00 1 | 99.94 87 | 100.00 1 | 100.00 1 |
|
train_agg | | | 99.71 29 | 99.63 37 | 99.97 31 | 100.00 1 | 99.95 32 | 100.00 1 | 99.42 127 | 97.70 127 | 100.00 1 | 100.00 1 | 99.51 33 | 99.97 117 | 100.00 1 | 100.00 1 | 100.00 1 |
|
MVS_111021_HR | | | 99.71 29 | 99.63 37 | 99.93 65 | 99.95 95 | 99.83 83 | 100.00 1 | 100.00 1 | 98.89 38 | 100.00 1 | 100.00 1 | 97.85 143 | 99.95 138 | 100.00 1 | 100.00 1 | 100.00 1 |
|
EI-MVSNet-Vis-set | | | 99.70 32 | 99.64 33 | 99.87 77 | 100.00 1 | 99.64 104 | 99.98 212 | 99.44 111 | 98.35 80 | 99.99 96 | 100.00 1 | 99.04 89 | 99.96 128 | 99.98 69 | 100.00 1 | 100.00 1 |
|
MVS_111021_LR | | | 99.70 32 | 99.65 31 | 99.88 76 | 99.96 93 | 99.70 99 | 100.00 1 | 99.97 17 | 98.96 29 | 100.00 1 | 100.00 1 | 97.93 140 | 99.95 138 | 99.99 58 | 100.00 1 | 100.00 1 |
|
PLC |  | 98.56 2 | 99.70 32 | 99.74 16 | 99.58 129 | 100.00 1 | 98.79 178 | 100.00 1 | 99.54 67 | 98.58 66 | 99.96 110 | 100.00 1 | 99.59 20 | 100.00 1 | 100.00 1 | 100.00 1 | 99.94 124 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
SMA-MVS |  | | 99.69 35 | 99.59 44 | 99.98 23 | 99.99 49 | 99.93 43 | 100.00 1 | 99.43 117 | 97.50 153 | 100.00 1 | 100.00 1 | 99.43 50 | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
MVS_0304 | | | 99.69 35 | 99.63 37 | 99.86 80 | 99.96 93 | 99.63 106 | 100.00 1 | 99.92 33 | 99.03 19 | 99.97 105 | 100.00 1 | 97.87 141 | 99.96 128 | 100.00 1 | 99.96 110 | 100.00 1 |
|
EI-MVSNet-UG-set | | | 99.69 35 | 99.63 37 | 99.87 77 | 99.99 49 | 99.64 104 | 99.95 229 | 99.44 111 | 98.35 80 | 100.00 1 | 100.00 1 | 98.98 93 | 99.97 117 | 99.98 69 | 100.00 1 | 100.00 1 |
|
PGM-MVS | | | 99.69 35 | 99.61 42 | 99.95 51 | 99.99 49 | 99.85 80 | 100.00 1 | 99.58 65 | 97.69 129 | 100.00 1 | 100.00 1 | 99.44 46 | 100.00 1 | 99.79 109 | 100.00 1 | 100.00 1 |
|
mPP-MVS | | | 99.69 35 | 99.60 43 | 99.97 31 | 100.00 1 | 99.91 51 | 100.00 1 | 99.42 127 | 97.91 112 | 100.00 1 | 100.00 1 | 99.04 89 | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
|
SR-MVS | | | 99.68 40 | 99.58 46 | 99.98 23 | 100.00 1 | 99.95 32 | 100.00 1 | 99.64 63 | 97.59 143 | 100.00 1 | 100.00 1 | 98.99 92 | 99.99 93 | 100.00 1 | 100.00 1 | 100.00 1 |
|
MTAPA | | | 99.68 40 | 99.59 44 | 99.97 31 | 99.99 49 | 99.91 51 | 100.00 1 | 99.42 127 | 98.32 82 | 99.94 135 | 100.00 1 | 98.65 120 | 100.00 1 | 99.96 80 | 100.00 1 | 100.00 1 |
|
APD-MVS |  | | 99.68 40 | 99.58 46 | 99.97 31 | 99.99 49 | 99.96 24 | 100.00 1 | 99.42 127 | 97.53 149 | 100.00 1 | 100.00 1 | 99.27 72 | 99.97 117 | 100.00 1 | 100.00 1 | 100.00 1 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
ACMMP_NAP | | | 99.67 43 | 99.57 49 | 99.97 31 | 99.98 84 | 99.92 48 | 100.00 1 | 99.42 127 | 97.83 117 | 100.00 1 | 100.00 1 | 98.89 106 | 100.00 1 | 99.98 69 | 100.00 1 | 100.00 1 |
|
CP-MVS | | | 99.67 43 | 99.58 46 | 99.95 51 | 100.00 1 | 99.84 82 | 100.00 1 | 99.42 127 | 97.77 122 | 100.00 1 | 100.00 1 | 99.07 85 | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
|
SF-MVS | | | 99.66 45 | 99.57 49 | 99.95 51 | 99.99 49 | 99.85 80 | 100.00 1 | 99.42 127 | 97.67 130 | 100.00 1 | 100.00 1 | 99.05 87 | 99.99 93 | 100.00 1 | 100.00 1 | 100.00 1 |
|
APD-MVS_3200maxsize | | | 99.65 46 | 99.55 55 | 99.97 31 | 99.99 49 | 99.91 51 | 100.00 1 | 99.48 74 | 97.54 147 | 100.00 1 | 100.00 1 | 98.97 94 | 99.99 93 | 99.98 69 | 100.00 1 | 100.00 1 |
|
ACMMP |  | | 99.65 46 | 99.57 49 | 99.89 72 | 99.99 49 | 99.66 102 | 99.75 271 | 99.73 55 | 98.16 88 | 99.75 169 | 100.00 1 | 98.90 105 | 100.00 1 | 99.96 80 | 99.88 120 | 100.00 1 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
GST-MVS | | | 99.64 48 | 99.53 57 | 99.95 51 | 100.00 1 | 99.86 77 | 100.00 1 | 99.79 44 | 97.72 125 | 99.95 133 | 100.00 1 | 98.39 129 | 100.00 1 | 99.96 80 | 99.99 97 | 100.00 1 |
|
PS-MVSNAJ | | | 99.64 48 | 99.57 49 | 99.85 81 | 99.78 140 | 99.81 84 | 99.95 229 | 99.42 127 | 98.38 74 | 100.00 1 | 100.00 1 | 98.75 116 | 100.00 1 | 99.88 95 | 99.99 97 | 99.74 208 |
|
F-COLMAP | | | 99.64 48 | 99.64 33 | 99.67 114 | 99.99 49 | 99.07 159 | 100.00 1 | 99.44 111 | 98.30 83 | 99.90 143 | 100.00 1 | 99.18 79 | 99.99 93 | 99.91 91 | 100.00 1 | 99.94 124 |
|
SR-MVS-dyc-post | | | 99.63 51 | 99.52 59 | 99.97 31 | 99.99 49 | 99.91 51 | 100.00 1 | 99.42 127 | 97.62 136 | 100.00 1 | 100.00 1 | 98.65 120 | 99.99 93 | 99.99 58 | 100.00 1 | 100.00 1 |
|
DPM-MVS | | | 99.63 51 | 99.51 60 | 100.00 1 | 99.90 107 | 100.00 1 | 100.00 1 | 99.43 117 | 99.00 26 | 100.00 1 | 100.00 1 | 99.58 22 | 100.00 1 | 97.64 250 | 100.00 1 | 100.00 1 |
|
EPNet | | | 99.62 53 | 99.69 22 | 99.42 146 | 99.99 49 | 98.37 202 | 100.00 1 | 99.89 36 | 98.83 48 | 100.00 1 | 100.00 1 | 98.97 94 | 100.00 1 | 99.90 92 | 99.61 144 | 99.89 151 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
DELS-MVS | | | 99.62 53 | 99.56 54 | 99.82 86 | 99.92 103 | 99.45 123 | 100.00 1 | 99.78 46 | 98.92 36 | 99.73 170 | 100.00 1 | 97.70 149 | 100.00 1 | 99.93 88 | 100.00 1 | 100.00 1 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
MP-MVS-pluss | | | 99.61 55 | 99.50 61 | 99.97 31 | 99.98 84 | 99.92 48 | 100.00 1 | 99.42 127 | 97.53 149 | 99.77 166 | 100.00 1 | 98.77 115 | 100.00 1 | 99.99 58 | 100.00 1 | 99.99 103 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
MP-MVS |  | | 99.61 55 | 99.49 63 | 99.98 23 | 99.99 49 | 99.94 40 | 100.00 1 | 99.42 127 | 97.82 118 | 99.99 96 | 100.00 1 | 98.20 132 | 100.00 1 | 99.99 58 | 100.00 1 | 100.00 1 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
TSAR-MVS + GP. | | | 99.61 55 | 99.69 22 | 99.35 155 | 99.99 49 | 98.06 226 | 100.00 1 | 99.36 200 | 99.83 2 | 100.00 1 | 100.00 1 | 98.95 98 | 99.99 93 | 100.00 1 | 99.11 152 | 100.00 1 |
|
HPM-MVS_fast | | | 99.60 58 | 99.49 63 | 99.91 67 | 99.99 49 | 99.78 87 | 100.00 1 | 99.42 127 | 97.09 182 | 100.00 1 | 100.00 1 | 98.95 98 | 99.96 128 | 99.98 69 | 100.00 1 | 100.00 1 |
|
HPM-MVS |  | | 99.59 59 | 99.50 61 | 99.89 72 | 100.00 1 | 99.70 99 | 100.00 1 | 99.42 127 | 97.46 157 | 100.00 1 | 100.00 1 | 98.60 122 | 99.96 128 | 99.99 58 | 100.00 1 | 100.00 1 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
mvsany_test1 | | | 99.57 60 | 99.48 66 | 99.85 81 | 99.86 114 | 99.54 110 | 100.00 1 | 99.36 200 | 98.94 34 | 100.00 1 | 100.00 1 | 97.97 138 | 100.00 1 | 99.88 95 | 99.28 149 | 100.00 1 |
|
test_fmvsm_n_1920 | | | 99.55 61 | 99.49 63 | 99.73 107 | 99.85 115 | 99.19 150 | 100.00 1 | 99.41 173 | 98.87 42 | 100.00 1 | 100.00 1 | 97.34 166 | 100.00 1 | 99.98 69 | 99.90 118 | 100.00 1 |
|
WTY-MVS | | | 99.54 62 | 99.40 68 | 99.95 51 | 99.81 124 | 99.93 43 | 100.00 1 | 100.00 1 | 97.98 104 | 99.84 151 | 100.00 1 | 98.94 100 | 99.98 112 | 99.86 99 | 98.21 189 | 99.94 124 |
|
test_yl | | | 99.51 63 | 99.37 73 | 99.95 51 | 99.82 118 | 99.90 58 | 100.00 1 | 99.47 75 | 97.48 155 | 100.00 1 | 100.00 1 | 99.80 6 | 100.00 1 | 99.98 69 | 97.75 213 | 99.94 124 |
|
DCV-MVSNet | | | 99.51 63 | 99.37 73 | 99.95 51 | 99.82 118 | 99.90 58 | 100.00 1 | 99.47 75 | 97.48 155 | 100.00 1 | 100.00 1 | 99.80 6 | 100.00 1 | 99.98 69 | 97.75 213 | 99.94 124 |
|
xiu_mvs_v2_base | | | 99.51 63 | 99.41 67 | 99.82 86 | 99.70 149 | 99.73 93 | 99.92 237 | 99.40 177 | 98.15 90 | 100.00 1 | 100.00 1 | 98.50 126 | 100.00 1 | 99.85 101 | 99.13 151 | 99.74 208 |
|
HY-MVS | | 96.53 9 | 99.50 66 | 99.35 78 | 99.96 42 | 99.81 124 | 99.93 43 | 99.64 289 | 100.00 1 | 97.97 106 | 99.84 151 | 99.85 222 | 98.94 100 | 99.99 93 | 99.86 99 | 98.23 188 | 99.95 119 |
|
PHI-MVS | | | 99.50 66 | 99.39 69 | 99.82 86 | 100.00 1 | 99.45 123 | 100.00 1 | 99.94 21 | 96.38 233 | 100.00 1 | 100.00 1 | 98.18 133 | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
|
CPTT-MVS | | | 99.49 68 | 99.38 70 | 99.85 81 | 100.00 1 | 99.54 110 | 100.00 1 | 99.42 127 | 97.58 144 | 99.98 101 | 100.00 1 | 97.43 164 | 100.00 1 | 99.99 58 | 100.00 1 | 100.00 1 |
|
MAR-MVS | | | 99.49 68 | 99.36 76 | 99.89 72 | 99.97 88 | 99.66 102 | 99.74 272 | 99.95 18 | 97.89 113 | 100.00 1 | 100.00 1 | 96.71 186 | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
test2506 | | | 99.48 70 | 99.38 70 | 99.75 103 | 99.89 109 | 99.51 114 | 99.45 310 | 100.00 1 | 98.38 74 | 99.83 153 | 100.00 1 | 98.86 107 | 99.81 176 | 99.25 176 | 98.78 160 | 99.94 124 |
|
PVSNet_Blended | | | 99.48 70 | 99.36 76 | 99.83 85 | 99.98 84 | 99.60 107 | 100.00 1 | 100.00 1 | 97.79 120 | 100.00 1 | 100.00 1 | 96.57 188 | 99.99 93 | 100.00 1 | 99.88 120 | 99.90 147 |
|
test_fmvsmvis_n_1920 | | | 99.46 72 | 99.37 73 | 99.73 107 | 98.88 279 | 99.18 152 | 100.00 1 | 99.26 249 | 98.85 44 | 99.79 163 | 100.00 1 | 97.70 149 | 100.00 1 | 99.98 69 | 99.86 124 | 100.00 1 |
|
sss | | | 99.45 73 | 99.34 80 | 99.80 93 | 99.76 143 | 99.50 115 | 100.00 1 | 99.91 35 | 97.72 125 | 99.98 101 | 99.94 208 | 98.45 127 | 100.00 1 | 99.53 159 | 98.75 163 | 99.89 151 |
|
AdaColmap |  | | 99.44 74 | 99.26 85 | 99.95 51 | 100.00 1 | 99.86 77 | 99.70 282 | 99.99 13 | 98.53 67 | 99.90 143 | 100.00 1 | 95.34 206 | 100.00 1 | 99.92 89 | 100.00 1 | 100.00 1 |
|
thisisatest0515 | | | 99.42 75 | 99.31 81 | 99.74 104 | 99.59 182 | 99.55 109 | 100.00 1 | 99.46 90 | 96.65 216 | 99.92 139 | 100.00 1 | 99.44 46 | 99.85 167 | 99.09 188 | 99.63 143 | 99.81 187 |
|
CANet | | | 99.40 76 | 99.24 88 | 99.89 72 | 99.99 49 | 99.76 89 | 100.00 1 | 99.73 55 | 98.40 73 | 99.78 165 | 100.00 1 | 95.28 207 | 99.96 128 | 100.00 1 | 99.99 97 | 99.96 113 |
|
114514_t | | | 99.39 77 | 99.25 86 | 99.81 89 | 99.97 88 | 99.48 122 | 100.00 1 | 99.42 127 | 95.53 261 | 100.00 1 | 100.00 1 | 98.37 130 | 99.95 138 | 99.97 78 | 100.00 1 | 100.00 1 |
|
alignmvs | | | 99.38 78 | 99.21 92 | 99.91 67 | 99.73 146 | 99.92 48 | 100.00 1 | 99.51 72 | 97.61 140 | 100.00 1 | 100.00 1 | 99.06 86 | 99.93 152 | 99.83 104 | 97.12 221 | 99.90 147 |
|
1314 | | | 99.38 78 | 99.19 96 | 99.96 42 | 98.88 279 | 99.89 65 | 99.24 331 | 99.93 29 | 98.88 39 | 98.79 234 | 100.00 1 | 97.02 172 | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
|
thisisatest0530 | | | 99.37 80 | 99.27 82 | 99.69 112 | 99.59 182 | 99.41 127 | 100.00 1 | 99.46 90 | 96.46 227 | 99.90 143 | 100.00 1 | 99.44 46 | 99.85 167 | 98.97 191 | 99.58 145 | 99.80 198 |
|
xiu_mvs_v1_base_debu | | | 99.35 81 | 99.21 92 | 99.79 95 | 99.67 158 | 99.71 95 | 99.78 262 | 99.36 200 | 98.13 92 | 100.00 1 | 100.00 1 | 97.00 176 | 100.00 1 | 99.83 104 | 99.07 153 | 99.66 217 |
|
xiu_mvs_v1_base | | | 99.35 81 | 99.21 92 | 99.79 95 | 99.67 158 | 99.71 95 | 99.78 262 | 99.36 200 | 98.13 92 | 100.00 1 | 100.00 1 | 97.00 176 | 100.00 1 | 99.83 104 | 99.07 153 | 99.66 217 |
|
xiu_mvs_v1_base_debi | | | 99.35 81 | 99.21 92 | 99.79 95 | 99.67 158 | 99.71 95 | 99.78 262 | 99.36 200 | 98.13 92 | 100.00 1 | 100.00 1 | 97.00 176 | 100.00 1 | 99.83 104 | 99.07 153 | 99.66 217 |
|
ETV-MVS | | | 99.34 84 | 99.24 88 | 99.64 118 | 99.58 187 | 99.33 134 | 100.00 1 | 99.25 250 | 97.57 145 | 99.96 110 | 100.00 1 | 97.44 163 | 99.79 178 | 99.70 127 | 99.65 141 | 99.81 187 |
|
tttt0517 | | | 99.34 84 | 99.23 91 | 99.67 114 | 99.57 190 | 99.38 129 | 100.00 1 | 99.46 90 | 96.33 236 | 99.89 146 | 100.00 1 | 99.44 46 | 99.84 169 | 98.93 193 | 99.46 148 | 99.78 203 |
|
CS-MVS | | | 99.33 86 | 99.27 82 | 99.50 136 | 99.99 49 | 99.00 169 | 100.00 1 | 99.13 297 | 97.26 173 | 99.96 110 | 100.00 1 | 97.79 146 | 99.64 196 | 99.64 143 | 99.67 139 | 99.87 170 |
|
PVSNet_Blended_VisFu | | | 99.33 86 | 99.18 98 | 99.78 99 | 99.82 118 | 99.49 118 | 100.00 1 | 99.95 18 | 97.36 163 | 99.63 175 | 100.00 1 | 96.45 192 | 99.95 138 | 99.79 109 | 99.65 141 | 99.89 151 |
|
HyFIR lowres test | | | 99.32 88 | 99.24 88 | 99.58 129 | 99.95 95 | 99.26 141 | 100.00 1 | 99.99 13 | 96.72 208 | 99.29 196 | 99.91 212 | 99.49 39 | 99.47 229 | 99.74 118 | 98.08 196 | 100.00 1 |
|
CS-MVS-test | | | 99.31 89 | 99.27 82 | 99.43 144 | 99.99 49 | 98.77 179 | 100.00 1 | 99.19 274 | 97.24 174 | 99.96 110 | 100.00 1 | 97.56 156 | 99.70 193 | 99.68 135 | 99.81 130 | 99.82 182 |
|
LS3D | | | 99.31 89 | 99.13 100 | 99.87 77 | 99.99 49 | 99.71 95 | 99.55 300 | 99.46 90 | 97.32 168 | 99.82 161 | 100.00 1 | 96.85 183 | 99.97 117 | 99.14 184 | 100.00 1 | 99.92 136 |
|
PVSNet | | 94.91 18 | 99.30 91 | 99.25 86 | 99.44 142 | 100.00 1 | 98.32 208 | 100.00 1 | 99.86 37 | 98.04 99 | 100.00 1 | 100.00 1 | 96.10 195 | 100.00 1 | 99.55 154 | 99.73 134 | 100.00 1 |
|
lupinMVS | | | 99.29 92 | 99.16 99 | 99.69 112 | 99.45 222 | 99.49 118 | 100.00 1 | 99.15 288 | 97.45 158 | 99.97 105 | 100.00 1 | 96.76 184 | 99.76 185 | 99.67 138 | 100.00 1 | 99.81 187 |
|
CSCG | | | 99.28 93 | 99.35 78 | 99.05 179 | 99.99 49 | 97.15 267 | 100.00 1 | 99.47 75 | 97.44 159 | 99.42 185 | 100.00 1 | 97.83 145 | 100.00 1 | 99.99 58 | 100.00 1 | 100.00 1 |
|
thres200 | | | 99.27 94 | 99.04 103 | 99.96 42 | 99.81 124 | 99.90 58 | 100.00 1 | 99.94 21 | 97.31 170 | 99.83 153 | 99.96 197 | 97.04 169 | 100.00 1 | 99.62 147 | 97.88 204 | 99.98 105 |
|
OMC-MVS | | | 99.27 94 | 99.38 70 | 98.96 187 | 99.95 95 | 97.06 271 | 100.00 1 | 99.40 177 | 98.83 48 | 99.88 148 | 100.00 1 | 97.01 173 | 99.86 162 | 99.47 162 | 99.84 127 | 99.97 110 |
|
EIA-MVS | | | 99.26 96 | 99.19 96 | 99.45 141 | 99.63 171 | 98.75 180 | 100.00 1 | 99.27 244 | 96.93 191 | 99.95 133 | 100.00 1 | 97.47 160 | 99.79 178 | 99.74 118 | 99.72 135 | 99.82 182 |
|
tfpn200view9 | | | 99.26 96 | 99.03 104 | 99.96 42 | 99.81 124 | 99.89 65 | 100.00 1 | 99.94 21 | 97.23 175 | 99.83 153 | 99.96 197 | 97.04 169 | 100.00 1 | 99.59 149 | 97.85 206 | 99.98 105 |
|
thres400 | | | 99.26 96 | 99.03 104 | 99.95 51 | 99.81 124 | 99.89 65 | 100.00 1 | 99.94 21 | 97.23 175 | 99.83 153 | 99.96 197 | 97.04 169 | 100.00 1 | 99.59 149 | 97.85 206 | 99.97 110 |
|
thres100view900 | | | 99.25 99 | 99.01 106 | 99.95 51 | 99.81 124 | 99.87 74 | 100.00 1 | 99.94 21 | 97.13 180 | 99.83 153 | 99.96 197 | 97.01 173 | 100.00 1 | 99.59 149 | 97.85 206 | 99.98 105 |
|
EPMVS | | | 99.25 99 | 99.13 100 | 99.60 123 | 99.60 180 | 99.20 149 | 99.60 295 | 100.00 1 | 96.93 191 | 99.92 139 | 99.36 294 | 99.05 87 | 99.71 192 | 98.77 202 | 98.94 157 | 99.90 147 |
|
thres600view7 | | | 99.24 101 | 99.00 107 | 99.95 51 | 99.81 124 | 99.87 74 | 100.00 1 | 99.94 21 | 97.13 180 | 99.83 153 | 99.96 197 | 97.01 173 | 100.00 1 | 99.54 157 | 97.77 212 | 99.97 110 |
|
MVS | | | 99.22 102 | 98.96 111 | 99.98 23 | 99.00 267 | 99.95 32 | 99.24 331 | 99.94 21 | 98.14 91 | 98.88 224 | 100.00 1 | 95.63 204 | 100.00 1 | 99.85 101 | 100.00 1 | 100.00 1 |
|
EC-MVSNet | | | 99.19 103 | 99.09 102 | 99.48 139 | 99.42 225 | 99.07 159 | 100.00 1 | 99.21 270 | 96.95 190 | 99.96 110 | 100.00 1 | 96.88 182 | 99.48 227 | 99.64 143 | 99.79 133 | 99.88 162 |
|
FE-MVS | | | 99.16 104 | 98.99 109 | 99.66 116 | 99.65 163 | 99.18 152 | 99.58 297 | 99.43 117 | 95.24 271 | 99.91 141 | 99.59 274 | 99.37 57 | 99.97 117 | 98.31 226 | 99.81 130 | 99.83 177 |
|
PMMVS | | | 99.12 105 | 98.97 110 | 99.58 129 | 99.57 190 | 98.98 171 | 100.00 1 | 99.30 226 | 97.14 179 | 99.96 110 | 100.00 1 | 96.53 191 | 99.82 173 | 99.70 127 | 98.49 169 | 99.94 124 |
|
jason | | | 99.11 106 | 98.96 111 | 99.59 125 | 99.17 248 | 99.31 137 | 100.00 1 | 99.13 297 | 97.38 162 | 99.83 153 | 100.00 1 | 95.54 205 | 99.72 191 | 99.57 153 | 99.97 108 | 99.74 208 |
jason: jason. |
EPP-MVSNet | | | 99.10 107 | 99.00 107 | 99.40 149 | 99.51 209 | 98.68 186 | 99.92 237 | 99.43 117 | 95.47 267 | 99.65 174 | 100.00 1 | 99.51 33 | 99.76 185 | 99.53 159 | 98.00 197 | 99.75 207 |
|
TESTMET0.1,1 | | | 99.08 108 | 98.96 111 | 99.44 142 | 99.63 171 | 99.38 129 | 100.00 1 | 99.45 98 | 95.53 261 | 99.48 181 | 100.00 1 | 99.71 13 | 99.02 256 | 96.84 275 | 99.99 97 | 99.91 138 |
|
IS-MVSNet | | | 99.08 108 | 98.91 119 | 99.59 125 | 99.65 163 | 99.38 129 | 99.78 262 | 99.24 255 | 96.70 210 | 99.51 179 | 100.00 1 | 98.44 128 | 99.52 222 | 98.47 220 | 98.39 177 | 99.88 162 |
|
UA-Net | | | 99.06 110 | 98.83 125 | 99.74 104 | 99.52 204 | 99.40 128 | 99.08 355 | 99.45 98 | 97.64 134 | 99.83 153 | 100.00 1 | 95.80 199 | 99.94 150 | 98.35 224 | 99.80 132 | 99.88 162 |
|
3Dnovator | | 95.63 14 | 99.06 110 | 98.76 133 | 99.96 42 | 98.86 283 | 99.90 58 | 99.98 212 | 99.93 29 | 98.95 32 | 98.49 254 | 100.00 1 | 92.91 239 | 100.00 1 | 99.71 124 | 100.00 1 | 100.00 1 |
|
patch_mono-2 | | | 99.04 112 | 99.79 6 | 96.81 304 | 99.92 103 | 90.47 350 | 100.00 1 | 99.41 173 | 98.95 32 | 100.00 1 | 100.00 1 | 99.78 8 | 100.00 1 | 100.00 1 | 100.00 1 | 99.95 119 |
|
VNet | | | 99.04 112 | 98.75 135 | 99.90 70 | 99.81 124 | 99.75 90 | 99.50 306 | 99.47 75 | 98.36 78 | 100.00 1 | 99.99 172 | 94.66 217 | 100.00 1 | 99.90 92 | 97.09 222 | 99.96 113 |
|
canonicalmvs | | | 99.03 114 | 98.73 137 | 99.94 63 | 99.75 145 | 99.95 32 | 100.00 1 | 99.30 226 | 97.64 134 | 100.00 1 | 100.00 1 | 95.22 209 | 99.97 117 | 99.76 116 | 96.90 227 | 99.91 138 |
|
test-LLR | | | 99.03 114 | 98.91 119 | 99.40 149 | 99.40 232 | 99.28 139 | 100.00 1 | 99.45 98 | 96.70 210 | 99.42 185 | 99.12 303 | 99.31 63 | 99.01 257 | 96.82 276 | 99.99 97 | 99.91 138 |
|
PatchmatchNet |  | | 99.03 114 | 98.96 111 | 99.26 169 | 99.49 214 | 98.33 206 | 99.38 318 | 99.45 98 | 96.64 217 | 99.96 110 | 99.58 276 | 99.49 39 | 99.50 225 | 97.63 251 | 99.00 156 | 99.93 134 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
3Dnovator+ | | 95.58 15 | 99.03 114 | 98.71 140 | 99.96 42 | 98.99 270 | 99.89 65 | 100.00 1 | 99.51 72 | 98.96 29 | 98.32 262 | 100.00 1 | 92.78 240 | 100.00 1 | 99.87 98 | 100.00 1 | 100.00 1 |
|
CANet_DTU | | | 99.02 118 | 98.90 122 | 99.41 147 | 99.88 111 | 98.71 184 | 100.00 1 | 99.29 230 | 98.84 46 | 100.00 1 | 100.00 1 | 94.02 224 | 100.00 1 | 98.08 235 | 99.96 110 | 99.52 223 |
|
PatchMatch-RL | | | 99.02 118 | 98.78 130 | 99.74 104 | 99.99 49 | 99.29 138 | 100.00 1 | 100.00 1 | 98.38 74 | 99.89 146 | 99.81 231 | 93.14 237 | 99.99 93 | 97.85 245 | 99.98 105 | 99.95 119 |
|
FA-MVS(test-final) | | | 99.00 120 | 98.75 135 | 99.73 107 | 99.63 171 | 99.43 126 | 99.83 252 | 99.43 117 | 95.84 252 | 99.52 178 | 99.37 293 | 97.84 144 | 99.96 128 | 97.63 251 | 99.68 137 | 99.79 200 |
|
CHOSEN 1792x2688 | | | 99.00 120 | 98.91 119 | 99.25 170 | 99.90 107 | 97.79 244 | 100.00 1 | 99.99 13 | 98.79 54 | 98.28 265 | 100.00 1 | 93.63 228 | 99.95 138 | 99.66 141 | 99.95 113 | 100.00 1 |
|
DeepC-MVS | | 97.84 5 | 99.00 120 | 98.80 129 | 99.60 123 | 99.93 100 | 99.03 164 | 100.00 1 | 99.40 177 | 98.61 65 | 99.33 194 | 100.00 1 | 92.23 247 | 99.95 138 | 99.74 118 | 99.96 110 | 99.83 177 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
baseline2 | | | 98.99 123 | 98.93 117 | 99.18 174 | 99.26 245 | 99.15 156 | 100.00 1 | 99.46 90 | 96.71 209 | 96.79 318 | 100.00 1 | 99.42 52 | 99.25 248 | 98.75 204 | 99.94 114 | 99.15 229 |
|
QAPM | | | 98.99 123 | 98.66 142 | 99.96 42 | 99.01 263 | 99.87 74 | 99.88 246 | 99.93 29 | 97.99 102 | 98.68 239 | 100.00 1 | 93.17 235 | 100.00 1 | 99.32 171 | 100.00 1 | 100.00 1 |
|
Vis-MVSNet (Re-imp) | | | 98.99 123 | 98.89 123 | 99.29 164 | 99.64 169 | 98.89 175 | 99.98 212 | 99.31 223 | 96.74 205 | 99.48 181 | 100.00 1 | 98.11 135 | 99.10 252 | 98.39 222 | 98.34 181 | 99.89 151 |
|
tpmrst | | | 98.98 126 | 98.93 117 | 99.14 176 | 99.61 178 | 97.74 245 | 99.52 304 | 99.36 200 | 96.05 243 | 99.98 101 | 99.64 262 | 99.04 89 | 99.86 162 | 98.94 192 | 98.19 191 | 99.82 182 |
|
test-mter | | | 98.96 127 | 98.82 126 | 99.40 149 | 99.40 232 | 99.28 139 | 100.00 1 | 99.45 98 | 95.44 270 | 99.42 185 | 99.12 303 | 99.70 14 | 99.01 257 | 96.82 276 | 99.99 97 | 99.91 138 |
|
diffmvs |  | | 98.96 127 | 98.73 137 | 99.63 119 | 99.54 194 | 99.16 155 | 100.00 1 | 99.18 281 | 97.33 167 | 99.96 110 | 100.00 1 | 94.60 218 | 99.91 155 | 99.66 141 | 98.33 184 | 99.82 182 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
CDS-MVSNet | | | 98.96 127 | 98.95 115 | 99.01 183 | 99.48 216 | 98.36 204 | 99.93 236 | 99.37 194 | 96.79 201 | 99.31 195 | 99.83 225 | 99.77 10 | 98.91 266 | 98.07 236 | 97.98 198 | 99.77 204 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
MVSFormer | | | 98.94 130 | 98.82 126 | 99.28 167 | 99.45 222 | 99.49 118 | 100.00 1 | 99.13 297 | 95.46 268 | 99.97 105 | 100.00 1 | 96.76 184 | 98.59 298 | 98.63 212 | 100.00 1 | 99.74 208 |
|
MVS_Test | | | 98.93 131 | 98.65 143 | 99.77 101 | 99.62 176 | 99.50 115 | 99.99 190 | 99.19 274 | 95.52 263 | 99.96 110 | 99.86 218 | 96.54 190 | 99.98 112 | 98.65 209 | 98.48 170 | 99.82 182 |
|
baseline1 | | | 98.91 132 | 98.61 147 | 99.81 89 | 99.71 147 | 99.77 88 | 99.78 262 | 99.44 111 | 97.51 152 | 98.81 232 | 99.99 172 | 98.25 131 | 99.76 185 | 98.60 215 | 95.41 240 | 99.89 151 |
|
1112_ss | | | 98.91 132 | 98.71 140 | 99.51 134 | 99.69 150 | 98.75 180 | 99.99 190 | 99.15 288 | 96.82 199 | 98.84 229 | 100.00 1 | 97.45 161 | 99.89 157 | 98.66 207 | 97.75 213 | 99.89 151 |
|
MSDG | | | 98.90 134 | 98.63 145 | 99.70 111 | 99.92 103 | 99.25 143 | 100.00 1 | 99.37 194 | 95.71 255 | 99.40 191 | 100.00 1 | 96.58 187 | 99.95 138 | 96.80 278 | 99.94 114 | 99.91 138 |
|
dcpmvs_2 | | | 98.87 135 | 99.53 57 | 96.90 298 | 99.87 113 | 90.88 349 | 99.94 234 | 99.07 317 | 98.20 86 | 100.00 1 | 100.00 1 | 98.69 119 | 99.86 162 | 100.00 1 | 100.00 1 | 99.95 119 |
|
DP-MVS | | | 98.86 136 | 98.54 153 | 99.81 89 | 99.97 88 | 99.45 123 | 99.52 304 | 99.40 177 | 94.35 295 | 98.36 258 | 100.00 1 | 96.13 194 | 99.97 117 | 99.12 187 | 100.00 1 | 100.00 1 |
|
CostFormer | | | 98.84 137 | 98.77 131 | 99.04 181 | 99.41 227 | 97.58 250 | 99.67 287 | 99.35 209 | 94.66 284 | 99.96 110 | 99.36 294 | 99.28 71 | 99.74 188 | 99.41 165 | 97.81 210 | 99.81 187 |
|
Test_1112_low_res | | | 98.83 138 | 98.60 149 | 99.51 134 | 99.69 150 | 98.75 180 | 99.99 190 | 99.14 293 | 96.81 200 | 98.84 229 | 99.06 307 | 97.45 161 | 99.89 157 | 98.66 207 | 97.75 213 | 99.89 151 |
|
BH-w/o | | | 98.82 139 | 98.81 128 | 98.88 192 | 99.62 176 | 96.71 279 | 100.00 1 | 99.28 236 | 97.09 182 | 98.81 232 | 100.00 1 | 94.91 214 | 99.96 128 | 99.54 157 | 100.00 1 | 99.96 113 |
|
mvs_anonymous | | | 98.80 140 | 98.60 149 | 99.38 153 | 99.57 190 | 99.24 145 | 100.00 1 | 99.21 270 | 95.87 247 | 98.92 220 | 99.82 228 | 96.39 193 | 99.03 255 | 99.13 186 | 98.50 168 | 99.88 162 |
|
TAMVS | | | 98.76 141 | 98.73 137 | 98.86 193 | 99.44 224 | 97.69 246 | 99.57 298 | 99.34 214 | 96.57 221 | 99.12 206 | 99.81 231 | 98.83 111 | 99.16 250 | 97.97 242 | 97.91 202 | 99.73 212 |
|
OpenMVS |  | 95.20 17 | 98.76 141 | 98.41 159 | 99.78 99 | 98.89 278 | 99.81 84 | 99.99 190 | 99.76 48 | 98.02 100 | 98.02 278 | 100.00 1 | 91.44 253 | 100.00 1 | 99.63 146 | 99.97 108 | 99.55 221 |
|
iter_conf05 | | | 98.73 143 | 98.77 131 | 98.60 204 | 99.65 163 | 99.22 148 | 100.00 1 | 99.22 261 | 96.68 214 | 98.98 218 | 99.97 184 | 99.99 3 | 98.84 274 | 99.29 174 | 95.11 259 | 97.75 253 |
|
iter_conf_final | | | 98.72 144 | 98.76 133 | 98.59 206 | 99.64 169 | 99.17 154 | 100.00 1 | 99.22 261 | 96.63 219 | 99.02 215 | 99.97 184 | 99.98 4 | 98.84 274 | 99.22 181 | 95.18 253 | 97.76 242 |
|
dp | | | 98.72 144 | 98.61 147 | 99.03 182 | 99.53 197 | 97.39 256 | 99.45 310 | 99.39 190 | 95.62 258 | 99.94 135 | 99.52 284 | 98.83 111 | 99.82 173 | 96.77 281 | 98.42 174 | 99.89 151 |
|
PVSNet_BlendedMVS | | | 98.71 146 | 98.62 146 | 98.98 186 | 99.98 84 | 99.60 107 | 100.00 1 | 100.00 1 | 97.23 175 | 100.00 1 | 99.03 312 | 96.57 188 | 99.99 93 | 100.00 1 | 94.75 267 | 97.35 337 |
|
ADS-MVSNet | | | 98.70 147 | 98.51 155 | 99.28 167 | 99.51 209 | 98.39 199 | 99.24 331 | 99.44 111 | 95.52 263 | 99.96 110 | 99.70 246 | 97.57 154 | 99.58 203 | 97.11 267 | 98.54 166 | 99.88 162 |
|
baseline | | | 98.69 148 | 98.45 158 | 99.41 147 | 99.52 204 | 98.67 187 | 100.00 1 | 99.17 286 | 97.03 187 | 99.13 205 | 100.00 1 | 93.17 235 | 99.74 188 | 99.70 127 | 98.34 181 | 99.81 187 |
|
PCF-MVS | | 98.23 3 | 98.69 148 | 98.37 164 | 99.62 120 | 99.78 140 | 99.02 165 | 99.23 336 | 99.06 325 | 96.43 228 | 98.08 274 | 100.00 1 | 94.72 216 | 99.95 138 | 98.16 233 | 99.91 117 | 99.90 147 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
casdiffmvs |  | | 98.65 150 | 98.38 162 | 99.46 140 | 99.52 204 | 98.74 183 | 100.00 1 | 99.15 288 | 96.91 194 | 99.05 213 | 100.00 1 | 92.75 241 | 99.83 170 | 99.70 127 | 98.38 178 | 99.81 187 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
casdiffmvs_mvg |  | | 98.64 151 | 98.39 161 | 99.40 149 | 99.50 212 | 98.60 190 | 100.00 1 | 99.22 261 | 96.85 197 | 99.10 207 | 100.00 1 | 92.75 241 | 99.78 182 | 99.71 124 | 98.35 180 | 99.81 187 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
tpm2 | | | 98.64 151 | 98.58 151 | 98.81 196 | 99.42 225 | 97.12 268 | 99.69 284 | 99.37 194 | 93.63 311 | 99.94 135 | 99.67 254 | 98.96 97 | 99.47 229 | 98.62 214 | 97.95 200 | 99.83 177 |
|
BH-untuned | | | 98.64 151 | 98.65 143 | 98.60 204 | 99.59 182 | 96.17 285 | 100.00 1 | 99.28 236 | 96.67 215 | 98.41 257 | 100.00 1 | 94.52 219 | 99.83 170 | 99.41 165 | 100.00 1 | 99.81 187 |
|
test_cas_vis1_n_1920 | | | 98.63 154 | 98.25 168 | 99.77 101 | 99.69 150 | 99.32 135 | 100.00 1 | 99.31 223 | 98.84 46 | 99.96 110 | 100.00 1 | 87.42 304 | 99.99 93 | 99.14 184 | 99.86 124 | 100.00 1 |
|
tpmvs | | | 98.59 155 | 98.38 162 | 99.23 171 | 99.69 150 | 97.90 236 | 99.31 326 | 99.47 75 | 94.52 289 | 99.68 173 | 99.28 298 | 97.64 152 | 99.89 157 | 97.71 248 | 98.17 193 | 99.89 151 |
|
Effi-MVS+ | | | 98.58 156 | 98.24 170 | 99.61 121 | 99.60 180 | 99.26 141 | 97.85 371 | 99.10 307 | 96.22 239 | 99.97 105 | 99.89 214 | 93.75 226 | 99.77 183 | 99.43 163 | 98.34 181 | 99.81 187 |
|
MVSTER | | | 98.58 156 | 98.52 154 | 98.77 198 | 99.65 163 | 99.68 101 | 100.00 1 | 99.29 230 | 95.63 257 | 98.65 240 | 99.80 234 | 99.78 8 | 98.88 272 | 98.59 216 | 95.31 244 | 97.73 282 |
|
CVMVSNet | | | 98.56 158 | 98.47 157 | 98.82 194 | 99.11 251 | 97.67 247 | 99.74 272 | 99.47 75 | 97.57 145 | 99.06 212 | 100.00 1 | 95.72 201 | 98.97 262 | 98.21 232 | 97.33 220 | 99.83 177 |
|
AllTest | | | 98.55 159 | 98.40 160 | 98.99 184 | 99.93 100 | 97.35 258 | 100.00 1 | 99.40 177 | 97.08 184 | 99.09 208 | 99.98 176 | 93.37 230 | 99.95 138 | 96.94 271 | 99.84 127 | 99.68 215 |
|
DeepPCF-MVS | | 98.03 4 | 98.54 160 | 99.72 19 | 94.98 325 | 99.99 49 | 84.94 363 | 100.00 1 | 99.42 127 | 99.98 1 | 100.00 1 | 100.00 1 | 98.11 135 | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
|
EPNet_dtu | | | 98.53 161 | 98.23 172 | 99.43 144 | 99.92 103 | 99.01 167 | 99.96 223 | 99.47 75 | 98.80 52 | 99.96 110 | 99.96 197 | 98.56 124 | 99.30 245 | 87.78 356 | 99.68 137 | 100.00 1 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
Vis-MVSNet |  | | 98.52 162 | 98.25 168 | 99.34 156 | 99.68 154 | 98.55 192 | 99.68 286 | 99.41 173 | 97.34 166 | 99.94 135 | 100.00 1 | 90.38 270 | 99.70 193 | 99.03 190 | 98.84 158 | 99.76 206 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
Effi-MVS+-dtu | | | 98.51 163 | 98.86 124 | 97.47 274 | 99.77 142 | 94.21 322 | 100.00 1 | 98.94 340 | 97.61 140 | 99.91 141 | 98.75 330 | 95.89 197 | 99.51 224 | 99.36 167 | 99.48 147 | 98.68 235 |
|
SDMVSNet | | | 98.49 164 | 98.08 179 | 99.73 107 | 99.82 118 | 99.53 112 | 99.99 190 | 99.45 98 | 97.62 136 | 99.38 192 | 99.86 218 | 90.06 273 | 99.88 161 | 99.92 89 | 96.61 230 | 99.79 200 |
|
BH-RMVSNet | | | 98.46 165 | 98.08 179 | 99.59 125 | 99.61 178 | 99.19 150 | 100.00 1 | 99.28 236 | 97.06 186 | 98.95 219 | 100.00 1 | 88.99 286 | 99.82 173 | 98.83 200 | 100.00 1 | 99.77 204 |
|
ECVR-MVS |  | | 98.43 166 | 98.14 175 | 99.32 161 | 99.89 109 | 98.21 215 | 99.46 308 | 100.00 1 | 98.38 74 | 99.47 184 | 100.00 1 | 87.91 297 | 99.80 177 | 99.35 168 | 98.78 160 | 99.94 124 |
|
cascas | | | 98.43 166 | 98.07 181 | 99.50 136 | 99.65 163 | 99.02 165 | 100.00 1 | 99.22 261 | 94.21 298 | 99.72 171 | 99.98 176 | 92.03 250 | 99.93 152 | 99.68 135 | 98.12 194 | 99.54 222 |
|
test1111 | | | 98.42 168 | 98.12 176 | 99.29 164 | 99.88 111 | 98.15 218 | 99.46 308 | 100.00 1 | 98.36 78 | 99.42 185 | 100.00 1 | 87.91 297 | 99.79 178 | 99.31 172 | 98.78 160 | 99.94 124 |
|
ab-mvs | | | 98.42 168 | 98.02 186 | 99.61 121 | 99.71 147 | 99.00 169 | 99.10 352 | 99.64 63 | 96.70 210 | 99.04 214 | 99.81 231 | 90.64 264 | 99.98 112 | 99.64 143 | 97.93 201 | 99.84 174 |
|
UGNet | | | 98.41 170 | 98.11 177 | 99.31 163 | 99.54 194 | 98.55 192 | 99.18 339 | 100.00 1 | 98.64 64 | 99.79 163 | 99.04 310 | 87.61 302 | 100.00 1 | 99.30 173 | 99.89 119 | 99.40 226 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
Fast-Effi-MVS+ | | | 98.40 171 | 98.02 186 | 99.55 133 | 99.63 171 | 99.06 161 | 100.00 1 | 99.15 288 | 95.07 273 | 99.42 185 | 99.95 204 | 93.26 233 | 99.73 190 | 97.44 257 | 98.24 187 | 99.87 170 |
|
Fast-Effi-MVS+-dtu | | | 98.38 172 | 98.56 152 | 97.82 264 | 99.58 187 | 94.44 319 | 100.00 1 | 99.16 287 | 96.75 203 | 99.51 179 | 99.63 266 | 95.03 212 | 99.60 197 | 97.71 248 | 99.67 139 | 99.42 225 |
|
test_fmvs1 | | | 98.37 173 | 98.04 184 | 99.34 156 | 99.84 116 | 98.07 224 | 100.00 1 | 99.00 335 | 98.85 44 | 100.00 1 | 100.00 1 | 85.11 324 | 99.96 128 | 99.69 134 | 99.88 120 | 100.00 1 |
|
miper_enhance_ethall | | | 98.33 174 | 98.27 167 | 98.51 209 | 99.66 162 | 99.04 163 | 100.00 1 | 99.22 261 | 97.53 149 | 98.51 252 | 99.38 292 | 99.49 39 | 98.75 284 | 98.02 238 | 92.61 288 | 97.76 242 |
|
SCA | | | 98.30 175 | 97.98 188 | 99.23 171 | 99.41 227 | 98.25 212 | 99.99 190 | 99.45 98 | 96.91 194 | 99.76 168 | 99.58 276 | 89.65 278 | 99.54 216 | 98.31 226 | 98.79 159 | 99.91 138 |
|
XVG-OURS | | | 98.30 175 | 98.36 165 | 98.13 239 | 99.58 187 | 95.91 288 | 100.00 1 | 99.36 200 | 98.69 59 | 99.23 198 | 100.00 1 | 91.20 256 | 99.92 154 | 99.34 169 | 97.82 209 | 98.56 238 |
|
COLMAP_ROB |  | 97.10 7 | 98.29 177 | 98.17 174 | 98.65 202 | 99.94 98 | 97.39 256 | 99.30 327 | 99.40 177 | 95.64 256 | 97.75 291 | 100.00 1 | 92.69 244 | 99.95 138 | 98.89 195 | 99.92 116 | 98.62 237 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
ADS-MVSNet2 | | | 98.28 178 | 98.51 155 | 97.62 270 | 99.51 209 | 95.03 299 | 99.24 331 | 99.41 173 | 95.52 263 | 99.96 110 | 99.70 246 | 97.57 154 | 97.94 341 | 97.11 267 | 98.54 166 | 99.88 162 |
|
XVG-OURS-SEG-HR | | | 98.27 179 | 98.31 166 | 98.14 236 | 99.59 182 | 95.92 287 | 100.00 1 | 99.36 200 | 98.48 69 | 99.21 199 | 100.00 1 | 89.27 283 | 99.94 150 | 99.76 116 | 99.17 150 | 98.56 238 |
|
tpm | | | 98.24 180 | 98.22 173 | 98.32 221 | 99.13 250 | 95.79 290 | 99.53 303 | 99.12 303 | 95.20 272 | 99.96 110 | 99.36 294 | 97.58 153 | 99.28 247 | 97.41 259 | 96.67 228 | 99.88 162 |
|
cl22 | | | 98.23 181 | 98.11 177 | 98.58 208 | 99.82 118 | 99.01 167 | 100.00 1 | 99.28 236 | 96.92 193 | 98.33 261 | 99.21 300 | 98.09 137 | 98.97 262 | 98.72 205 | 92.61 288 | 97.76 242 |
|
TR-MVS | | | 98.14 182 | 97.74 196 | 99.33 159 | 99.59 182 | 98.28 210 | 99.27 328 | 99.21 270 | 96.42 229 | 99.15 204 | 99.94 208 | 88.87 289 | 99.79 178 | 98.88 196 | 98.29 185 | 99.93 134 |
|
mvsmamba | | | 98.13 183 | 98.06 182 | 98.32 221 | 98.22 310 | 98.50 195 | 100.00 1 | 99.22 261 | 96.41 230 | 98.91 222 | 99.96 197 | 95.69 202 | 98.73 286 | 99.19 183 | 94.95 266 | 97.73 282 |
|
test0.0.03 1 | | | 98.12 184 | 98.03 185 | 98.39 215 | 99.11 251 | 98.07 224 | 100.00 1 | 99.93 29 | 96.70 210 | 96.91 314 | 99.95 204 | 99.31 63 | 98.19 321 | 91.93 331 | 98.44 172 | 98.91 233 |
|
GeoE | | | 98.06 185 | 97.65 201 | 99.29 164 | 99.47 219 | 98.41 196 | 100.00 1 | 99.19 274 | 94.85 278 | 98.88 224 | 100.00 1 | 91.21 255 | 99.59 199 | 97.02 269 | 98.19 191 | 99.88 162 |
|
tpm cat1 | | | 98.05 186 | 97.76 194 | 98.92 189 | 99.50 212 | 97.10 270 | 99.77 267 | 99.30 226 | 90.20 348 | 99.72 171 | 98.71 331 | 97.71 148 | 99.86 162 | 96.75 282 | 98.20 190 | 99.81 187 |
|
PS-MVSNAJss | | | 98.03 187 | 98.06 182 | 97.94 258 | 97.63 331 | 97.33 261 | 99.89 244 | 99.23 259 | 96.27 238 | 98.03 276 | 99.59 274 | 98.75 116 | 98.78 279 | 98.52 218 | 94.61 271 | 97.70 298 |
|
CR-MVSNet | | | 98.02 188 | 97.71 199 | 98.93 188 | 99.31 239 | 98.86 176 | 99.13 349 | 99.00 335 | 96.53 224 | 99.96 110 | 98.98 316 | 96.94 179 | 98.10 331 | 91.18 336 | 98.40 175 | 99.84 174 |
|
EI-MVSNet | | | 97.98 189 | 97.93 189 | 98.16 234 | 99.11 251 | 97.84 241 | 99.74 272 | 99.29 230 | 94.39 294 | 98.65 240 | 100.00 1 | 97.21 167 | 98.88 272 | 97.62 253 | 95.31 244 | 97.75 253 |
|
FIs | | | 97.95 190 | 97.73 198 | 98.62 203 | 98.53 295 | 99.24 145 | 100.00 1 | 99.43 117 | 96.74 205 | 97.87 286 | 99.82 228 | 95.27 208 | 98.89 269 | 98.78 201 | 93.07 283 | 97.74 276 |
|
Anonymous202405211 | | | 97.87 191 | 97.53 204 | 98.90 190 | 99.81 124 | 96.70 280 | 99.35 321 | 99.46 90 | 92.98 326 | 98.83 231 | 99.99 172 | 90.63 265 | 100.00 1 | 99.70 127 | 97.03 223 | 100.00 1 |
|
FC-MVSNet-test | | | 97.84 192 | 97.63 202 | 98.45 212 | 98.30 305 | 99.05 162 | 100.00 1 | 99.43 117 | 96.63 219 | 97.61 297 | 99.82 228 | 95.19 210 | 98.57 301 | 98.64 210 | 93.05 284 | 97.73 282 |
|
Patchmatch-test | | | 97.83 193 | 97.42 207 | 99.06 177 | 99.08 254 | 97.66 248 | 98.66 365 | 99.21 270 | 93.65 310 | 98.25 269 | 99.58 276 | 99.47 43 | 99.57 204 | 90.25 345 | 98.59 165 | 99.95 119 |
|
sd_testset | | | 97.81 194 | 97.48 205 | 98.79 197 | 99.82 118 | 96.80 277 | 99.32 323 | 99.45 98 | 97.62 136 | 99.38 192 | 99.86 218 | 85.56 322 | 99.77 183 | 99.72 121 | 96.61 230 | 99.79 200 |
|
miper_ehance_all_eth | | | 97.81 194 | 97.66 200 | 98.23 227 | 99.49 214 | 98.37 202 | 99.99 190 | 99.11 305 | 94.78 279 | 98.25 269 | 99.21 300 | 98.18 133 | 98.57 301 | 97.35 263 | 92.61 288 | 97.76 242 |
|
test_vis1_n_1920 | | | 97.77 196 | 97.24 219 | 99.34 156 | 99.79 137 | 98.04 228 | 100.00 1 | 99.25 250 | 98.88 39 | 100.00 1 | 100.00 1 | 77.52 355 | 100.00 1 | 99.88 95 | 99.85 126 | 100.00 1 |
|
RRT_MVS | | | 97.77 196 | 97.76 194 | 97.78 266 | 97.89 323 | 97.06 271 | 100.00 1 | 99.29 230 | 95.74 254 | 98.00 281 | 99.97 184 | 95.94 196 | 98.55 304 | 98.87 197 | 94.18 274 | 97.72 289 |
|
HQP-MVS | | | 97.73 198 | 97.85 191 | 97.39 276 | 99.07 255 | 94.82 303 | 100.00 1 | 99.40 177 | 99.04 14 | 99.17 200 | 99.97 184 | 88.61 292 | 99.57 204 | 99.79 109 | 95.58 234 | 97.77 240 |
|
GA-MVS | | | 97.72 199 | 97.27 217 | 99.06 177 | 99.24 246 | 97.93 235 | 100.00 1 | 99.24 255 | 95.80 253 | 98.99 217 | 99.64 262 | 89.77 276 | 99.36 240 | 95.12 303 | 97.62 218 | 99.89 151 |
|
bld_raw_dy_0_64 | | | 97.71 200 | 97.56 203 | 98.15 235 | 97.83 326 | 98.16 216 | 99.95 229 | 99.12 303 | 95.95 246 | 98.73 237 | 99.97 184 | 93.19 234 | 98.63 292 | 98.64 210 | 94.69 269 | 97.66 309 |
|
HQP_MVS | | | 97.71 200 | 97.82 193 | 97.37 277 | 99.00 267 | 94.80 306 | 100.00 1 | 99.40 177 | 99.00 26 | 99.08 210 | 99.97 184 | 88.58 294 | 99.55 213 | 99.79 109 | 95.57 238 | 97.76 242 |
|
nrg030 | | | 97.64 202 | 97.27 217 | 98.75 199 | 98.34 300 | 99.53 112 | 100.00 1 | 99.22 261 | 96.21 240 | 98.27 267 | 99.95 204 | 94.40 220 | 98.98 260 | 99.23 179 | 89.78 324 | 97.75 253 |
|
TAPA-MVS | | 96.40 10 | 97.64 202 | 97.37 211 | 98.45 212 | 99.94 98 | 95.70 291 | 100.00 1 | 99.40 177 | 97.65 132 | 99.53 177 | 100.00 1 | 99.31 63 | 99.66 195 | 80.48 370 | 100.00 1 | 100.00 1 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
CLD-MVS | | | 97.64 202 | 97.74 196 | 97.36 278 | 99.01 263 | 94.76 311 | 100.00 1 | 99.34 214 | 99.30 4 | 99.00 216 | 99.97 184 | 87.49 303 | 99.57 204 | 99.96 80 | 95.58 234 | 97.75 253 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
D2MVS | | | 97.63 205 | 97.83 192 | 97.05 289 | 98.83 286 | 94.60 315 | 100.00 1 | 99.82 39 | 96.89 196 | 98.28 265 | 99.03 312 | 94.05 222 | 99.47 229 | 98.58 217 | 94.97 264 | 97.09 343 |
|
c3_l | | | 97.58 206 | 97.42 207 | 98.06 246 | 99.48 216 | 98.16 216 | 99.96 223 | 99.10 307 | 94.54 288 | 98.13 273 | 99.20 302 | 97.87 141 | 98.25 320 | 97.28 264 | 91.20 312 | 97.75 253 |
|
IterMVS-LS | | | 97.56 207 | 97.44 206 | 97.92 261 | 99.38 236 | 97.90 236 | 99.89 244 | 99.10 307 | 94.41 293 | 98.32 262 | 99.54 283 | 97.21 167 | 98.11 328 | 97.50 255 | 91.62 304 | 97.75 253 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
test_djsdf | | | 97.55 208 | 97.38 210 | 98.07 242 | 97.50 339 | 97.99 230 | 100.00 1 | 99.13 297 | 95.46 268 | 98.47 255 | 99.85 222 | 92.01 251 | 98.59 298 | 98.63 212 | 95.36 242 | 97.62 320 |
|
dmvs_re | | | 97.54 209 | 97.88 190 | 96.54 309 | 99.55 193 | 90.35 351 | 99.86 248 | 99.46 90 | 97.00 188 | 99.41 190 | 100.00 1 | 90.78 263 | 99.30 245 | 99.60 148 | 95.24 249 | 99.96 113 |
|
cl____ | | | 97.54 209 | 97.32 213 | 98.18 231 | 99.47 219 | 98.14 220 | 100.00 1 | 99.10 307 | 94.16 301 | 97.60 298 | 99.63 266 | 97.52 157 | 98.65 291 | 96.47 283 | 91.97 300 | 97.76 242 |
|
IB-MVS | | 96.24 12 | 97.54 209 | 96.95 223 | 99.33 159 | 99.67 158 | 98.10 223 | 100.00 1 | 99.47 75 | 97.42 161 | 99.26 197 | 99.69 249 | 98.83 111 | 99.89 157 | 99.43 163 | 78.77 366 | 100.00 1 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
DIV-MVS_self_test | | | 97.52 212 | 97.35 212 | 98.05 250 | 99.46 221 | 98.11 221 | 100.00 1 | 99.10 307 | 94.21 298 | 97.62 296 | 99.63 266 | 97.65 151 | 98.29 317 | 96.47 283 | 91.98 299 | 97.76 242 |
|
eth_miper_zixun_eth | | | 97.47 213 | 97.28 215 | 98.06 246 | 99.41 227 | 97.94 234 | 99.62 293 | 99.08 313 | 94.46 292 | 98.19 272 | 99.56 280 | 96.91 181 | 98.50 307 | 96.78 279 | 91.49 307 | 97.74 276 |
|
test_fmvs1_n | | | 97.43 214 | 96.86 226 | 99.15 175 | 99.68 154 | 97.48 253 | 99.99 190 | 98.98 338 | 98.82 50 | 100.00 1 | 100.00 1 | 74.85 360 | 99.96 128 | 99.67 138 | 99.70 136 | 100.00 1 |
|
LFMVS | | | 97.42 215 | 96.62 235 | 99.81 89 | 99.80 134 | 99.50 115 | 99.16 345 | 99.56 66 | 94.48 291 | 100.00 1 | 100.00 1 | 79.35 350 | 100.00 1 | 99.89 94 | 97.37 219 | 99.94 124 |
|
miper_lstm_enhance | | | 97.40 216 | 97.28 215 | 97.75 267 | 99.48 216 | 97.52 251 | 100.00 1 | 99.07 317 | 94.08 302 | 98.01 279 | 99.61 272 | 97.38 165 | 97.98 339 | 96.44 286 | 91.47 309 | 97.76 242 |
|
RPSCF | | | 97.37 217 | 98.24 170 | 94.76 328 | 99.80 134 | 84.57 364 | 99.99 190 | 99.05 327 | 94.95 276 | 99.82 161 | 100.00 1 | 94.03 223 | 100.00 1 | 98.15 234 | 98.38 178 | 99.70 213 |
|
ACMM | | 97.17 6 | 97.37 217 | 97.40 209 | 97.29 282 | 99.01 263 | 94.64 314 | 100.00 1 | 99.25 250 | 98.07 98 | 98.44 256 | 99.98 176 | 87.38 305 | 99.55 213 | 99.25 176 | 95.19 252 | 97.69 302 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
LPG-MVS_test | | | 97.31 219 | 97.32 213 | 97.28 283 | 98.85 284 | 94.60 315 | 100.00 1 | 99.37 194 | 97.35 164 | 98.85 227 | 99.98 176 | 86.66 311 | 99.56 208 | 99.55 154 | 95.26 246 | 97.70 298 |
|
FMVSNet3 | | | 97.30 220 | 96.95 223 | 98.37 217 | 99.65 163 | 99.25 143 | 99.71 280 | 99.28 236 | 94.23 296 | 98.53 249 | 98.91 323 | 93.30 232 | 98.11 328 | 95.31 299 | 93.60 277 | 97.73 282 |
|
UniMVSNet (Re) | | | 97.29 221 | 96.85 227 | 98.59 206 | 98.49 296 | 99.13 157 | 100.00 1 | 99.42 127 | 96.52 225 | 98.24 271 | 98.90 324 | 94.93 213 | 98.89 269 | 97.54 254 | 87.61 340 | 97.75 253 |
|
OPM-MVS | | | 97.21 222 | 97.18 221 | 97.32 281 | 98.08 316 | 94.66 312 | 100.00 1 | 99.28 236 | 98.65 63 | 98.92 220 | 99.98 176 | 86.03 318 | 99.56 208 | 98.28 230 | 95.41 240 | 97.72 289 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
ACMP | | 97.00 8 | 97.19 223 | 97.16 222 | 97.27 285 | 98.97 272 | 94.58 318 | 100.00 1 | 99.32 218 | 97.97 106 | 97.45 302 | 99.98 176 | 85.79 320 | 99.56 208 | 99.70 127 | 95.24 249 | 97.67 308 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
pmmvs4 | | | 97.17 224 | 96.80 228 | 98.27 224 | 97.68 330 | 98.64 189 | 100.00 1 | 99.18 281 | 94.22 297 | 98.55 247 | 99.71 243 | 93.67 227 | 98.47 310 | 95.66 293 | 92.57 291 | 97.71 297 |
|
anonymousdsp | | | 97.16 225 | 96.88 225 | 98.00 254 | 97.08 349 | 98.06 226 | 99.81 256 | 99.15 288 | 94.58 286 | 97.84 287 | 99.62 270 | 90.49 267 | 98.60 296 | 97.98 239 | 95.32 243 | 97.33 338 |
|
UniMVSNet_NR-MVSNet | | | 97.16 225 | 96.80 228 | 98.22 228 | 98.38 299 | 98.41 196 | 100.00 1 | 99.45 98 | 96.14 242 | 97.76 288 | 99.64 262 | 95.05 211 | 98.50 307 | 97.98 239 | 86.84 344 | 97.75 253 |
|
XXY-MVS | | | 97.14 227 | 96.63 234 | 98.67 201 | 98.65 289 | 98.92 174 | 99.54 302 | 99.29 230 | 95.57 260 | 97.63 294 | 99.83 225 | 87.79 301 | 99.35 242 | 98.39 222 | 92.95 285 | 97.75 253 |
|
WR-MVS | | | 97.09 228 | 96.64 233 | 98.46 211 | 98.43 297 | 99.09 158 | 99.97 218 | 99.33 216 | 95.62 258 | 97.76 288 | 99.67 254 | 91.17 257 | 98.56 303 | 98.49 219 | 89.28 329 | 97.74 276 |
|
JIA-IIPM | | | 97.09 228 | 96.34 248 | 99.36 154 | 98.88 279 | 98.59 191 | 99.81 256 | 99.43 117 | 84.81 364 | 99.96 110 | 90.34 374 | 98.55 125 | 99.52 222 | 97.00 270 | 98.28 186 | 99.98 105 |
|
jajsoiax | | | 97.07 230 | 96.79 230 | 97.89 262 | 97.28 347 | 97.12 268 | 99.95 229 | 99.19 274 | 96.55 222 | 97.31 305 | 99.69 249 | 87.35 307 | 98.91 266 | 98.70 206 | 95.12 258 | 97.66 309 |
|
MIMVSNet | | | 97.06 231 | 96.73 231 | 98.05 250 | 99.38 236 | 96.64 282 | 98.47 367 | 99.35 209 | 93.41 316 | 99.48 181 | 98.53 338 | 89.66 277 | 97.70 347 | 94.16 314 | 98.11 195 | 99.80 198 |
|
X-MVStestdata | | | 97.04 232 | 96.06 259 | 99.98 23 | 100.00 1 | 99.94 40 | 100.00 1 | 99.75 51 | 98.67 61 | 100.00 1 | 66.97 385 | 99.16 80 | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
|
h-mvs33 | | | 97.03 233 | 96.53 237 | 98.51 209 | 99.79 137 | 95.90 289 | 99.45 310 | 99.45 98 | 98.21 84 | 100.00 1 | 99.78 237 | 97.49 158 | 99.99 93 | 99.72 121 | 74.92 368 | 99.65 220 |
|
VPA-MVSNet | | | 97.03 233 | 96.43 243 | 98.82 194 | 98.64 290 | 99.32 135 | 99.38 318 | 99.47 75 | 96.73 207 | 98.91 222 | 98.94 321 | 87.00 309 | 99.40 238 | 99.23 179 | 89.59 325 | 97.76 242 |
|
mvs_tets | | | 97.00 235 | 96.69 232 | 97.94 258 | 97.41 346 | 97.27 263 | 99.60 295 | 99.18 281 | 96.51 226 | 97.35 304 | 99.69 249 | 86.53 313 | 98.91 266 | 98.84 198 | 95.09 260 | 97.65 314 |
|
gg-mvs-nofinetune | | | 96.95 236 | 96.10 257 | 99.50 136 | 99.41 227 | 99.36 133 | 99.07 357 | 99.52 68 | 83.69 366 | 99.96 110 | 83.60 382 | 100.00 1 | 99.20 249 | 99.68 135 | 99.99 97 | 99.96 113 |
|
Anonymous20240529 | | | 96.93 237 | 96.22 253 | 99.05 179 | 99.79 137 | 97.30 262 | 99.16 345 | 99.47 75 | 88.51 354 | 98.69 238 | 100.00 1 | 83.50 335 | 100.00 1 | 99.83 104 | 97.02 224 | 99.83 177 |
|
DU-MVS | | | 96.93 237 | 96.49 240 | 98.22 228 | 98.31 303 | 98.41 196 | 100.00 1 | 99.37 194 | 96.41 230 | 97.76 288 | 99.65 258 | 92.14 248 | 98.50 307 | 97.98 239 | 86.84 344 | 97.75 253 |
|
Patchmtry | | | 96.81 239 | 96.37 246 | 98.14 236 | 99.31 239 | 98.55 192 | 98.91 360 | 99.00 335 | 90.45 345 | 97.92 283 | 98.98 316 | 96.94 179 | 98.12 326 | 94.27 311 | 91.53 306 | 97.75 253 |
|
hse-mvs2 | | | 96.79 240 | 96.38 245 | 98.04 252 | 99.68 154 | 95.54 293 | 99.81 256 | 99.42 127 | 98.21 84 | 100.00 1 | 99.80 234 | 97.49 158 | 99.46 233 | 99.72 121 | 73.27 371 | 99.12 230 |
|
ACMH | | 96.25 11 | 96.77 241 | 96.62 235 | 97.21 286 | 98.96 273 | 94.43 320 | 99.64 289 | 99.33 216 | 97.43 160 | 96.55 323 | 99.97 184 | 83.52 334 | 99.54 216 | 99.07 189 | 95.13 257 | 97.66 309 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
IterMVS | | | 96.76 242 | 96.46 242 | 97.63 268 | 99.41 227 | 96.89 274 | 99.99 190 | 99.13 297 | 94.74 282 | 97.59 299 | 99.66 256 | 89.63 280 | 98.28 318 | 95.71 291 | 92.31 294 | 97.72 289 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
CP-MVSNet | | | 96.73 243 | 96.25 251 | 98.18 231 | 98.21 311 | 98.67 187 | 99.77 267 | 99.32 218 | 95.06 274 | 97.20 308 | 99.65 258 | 90.10 271 | 98.19 321 | 98.06 237 | 88.90 332 | 97.66 309 |
|
WR-MVS_H | | | 96.73 243 | 96.32 250 | 97.95 257 | 98.26 307 | 97.88 238 | 99.72 279 | 99.43 117 | 95.06 274 | 96.99 311 | 98.68 333 | 93.02 238 | 98.53 305 | 97.43 258 | 88.33 336 | 97.43 333 |
|
IterMVS-SCA-FT | | | 96.72 245 | 96.42 244 | 97.62 270 | 99.40 232 | 96.83 276 | 99.99 190 | 99.14 293 | 94.65 285 | 97.55 300 | 99.72 241 | 89.65 278 | 98.31 316 | 95.62 295 | 92.05 297 | 97.73 282 |
|
v2v482 | | | 96.70 246 | 96.18 254 | 98.27 224 | 98.04 317 | 98.39 199 | 100.00 1 | 99.13 297 | 94.19 300 | 98.58 245 | 99.08 306 | 90.48 268 | 98.67 289 | 95.69 292 | 90.44 320 | 97.75 253 |
|
test_vis1_n | | | 96.69 247 | 95.81 269 | 99.32 161 | 99.14 249 | 97.98 231 | 99.97 218 | 98.98 338 | 98.45 71 | 100.00 1 | 100.00 1 | 66.44 371 | 99.99 93 | 99.78 115 | 99.57 146 | 100.00 1 |
|
V42 | | | 96.65 248 | 96.16 256 | 98.11 241 | 98.17 314 | 98.23 213 | 99.99 190 | 99.09 312 | 93.97 303 | 98.74 236 | 99.05 309 | 91.09 258 | 98.82 277 | 95.46 297 | 89.90 322 | 97.27 339 |
|
EU-MVSNet | | | 96.63 249 | 96.53 237 | 96.94 296 | 97.59 335 | 96.87 275 | 99.76 269 | 99.47 75 | 96.35 234 | 96.85 316 | 99.78 237 | 92.57 245 | 96.27 361 | 95.33 298 | 91.08 313 | 97.68 304 |
|
NR-MVSNet | | | 96.63 249 | 96.04 260 | 98.38 216 | 98.31 303 | 98.98 171 | 99.22 338 | 99.35 209 | 95.87 247 | 94.43 346 | 99.65 258 | 92.73 243 | 98.40 313 | 96.78 279 | 88.05 337 | 97.75 253 |
|
XVG-ACMP-BASELINE | | | 96.60 251 | 96.52 239 | 96.84 302 | 98.41 298 | 93.29 331 | 99.99 190 | 99.32 218 | 97.76 124 | 98.51 252 | 99.29 297 | 81.95 341 | 99.54 216 | 98.40 221 | 95.03 261 | 97.68 304 |
|
VDD-MVS | | | 96.58 252 | 95.99 262 | 98.34 219 | 99.52 204 | 95.33 294 | 99.18 339 | 99.38 192 | 96.64 217 | 99.77 166 | 100.00 1 | 72.51 365 | 100.00 1 | 100.00 1 | 96.94 226 | 99.70 213 |
|
tt0805 | | | 96.52 253 | 96.23 252 | 97.40 275 | 99.30 242 | 93.55 327 | 99.32 323 | 99.45 98 | 96.75 203 | 97.88 285 | 99.99 172 | 79.99 348 | 99.59 199 | 97.39 261 | 95.98 233 | 99.06 232 |
|
LCM-MVSNet-Re | | | 96.52 253 | 97.21 220 | 94.44 329 | 99.27 243 | 85.80 361 | 99.85 250 | 96.61 377 | 95.98 244 | 92.75 353 | 98.48 340 | 93.97 225 | 97.55 348 | 99.58 152 | 98.43 173 | 99.98 105 |
|
our_test_3 | | | 96.51 255 | 96.35 247 | 96.98 294 | 97.61 333 | 95.05 298 | 99.98 212 | 99.01 334 | 94.68 283 | 96.77 320 | 99.06 307 | 95.87 198 | 98.14 324 | 91.81 332 | 92.37 293 | 97.75 253 |
|
MVP-Stereo | | | 96.51 255 | 96.48 241 | 96.60 308 | 95.65 360 | 94.25 321 | 98.84 362 | 98.16 354 | 95.85 251 | 95.23 337 | 99.04 310 | 92.54 246 | 99.13 251 | 92.98 324 | 99.98 105 | 96.43 355 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
v1144 | | | 96.51 255 | 95.97 264 | 98.13 239 | 97.98 320 | 98.04 228 | 99.99 190 | 99.08 313 | 93.51 315 | 98.62 243 | 98.98 316 | 90.98 262 | 98.62 293 | 93.79 318 | 90.79 316 | 97.74 276 |
|
ACMH+ | | 96.20 13 | 96.49 258 | 96.33 249 | 97.00 292 | 99.06 259 | 93.80 325 | 99.81 256 | 99.31 223 | 97.32 168 | 95.89 334 | 99.97 184 | 82.62 339 | 99.54 216 | 98.34 225 | 94.63 270 | 97.65 314 |
|
TranMVSNet+NR-MVSNet | | | 96.45 259 | 96.01 261 | 97.79 265 | 98.00 319 | 97.62 249 | 100.00 1 | 99.35 209 | 95.98 244 | 97.31 305 | 99.64 262 | 90.09 272 | 98.00 338 | 96.89 274 | 86.80 347 | 97.75 253 |
|
ET-MVSNet_ETH3D | | | 96.41 260 | 95.48 289 | 99.20 173 | 99.81 124 | 99.75 90 | 100.00 1 | 99.02 332 | 97.30 172 | 78.33 374 | 100.00 1 | 97.73 147 | 97.94 341 | 99.70 127 | 87.41 341 | 99.92 136 |
|
VPNet | | | 96.41 260 | 95.76 274 | 98.33 220 | 98.61 291 | 98.30 209 | 99.48 307 | 99.45 98 | 96.98 189 | 98.87 226 | 99.88 215 | 81.57 342 | 98.93 264 | 99.22 181 | 87.82 339 | 97.76 242 |
|
PVSNet_0 | | 93.57 19 | 96.41 260 | 95.74 275 | 98.41 214 | 99.84 116 | 95.22 296 | 100.00 1 | 100.00 1 | 98.08 97 | 97.55 300 | 99.78 237 | 84.40 327 | 100.00 1 | 100.00 1 | 81.99 359 | 100.00 1 |
|
v144192 | | | 96.40 263 | 95.81 269 | 98.17 233 | 97.89 323 | 98.11 221 | 99.99 190 | 99.06 325 | 93.39 317 | 98.75 235 | 99.09 305 | 90.43 269 | 98.66 290 | 93.10 323 | 90.55 319 | 97.75 253 |
|
VDDNet | | | 96.39 264 | 95.55 284 | 98.90 190 | 99.27 243 | 97.45 254 | 99.15 347 | 99.92 33 | 91.28 339 | 99.98 101 | 100.00 1 | 73.55 361 | 100.00 1 | 99.85 101 | 96.98 225 | 99.24 227 |
|
tfpnnormal | | | 96.36 265 | 95.69 280 | 98.37 217 | 98.55 293 | 98.71 184 | 99.69 284 | 99.45 98 | 93.16 324 | 96.69 322 | 99.71 243 | 88.44 296 | 98.99 259 | 94.17 312 | 91.38 310 | 97.41 334 |
|
v8 | | | 96.35 266 | 95.73 276 | 98.21 230 | 98.11 315 | 98.23 213 | 99.94 234 | 99.07 317 | 92.66 332 | 98.29 264 | 99.00 315 | 91.46 252 | 98.77 282 | 94.17 312 | 88.83 334 | 97.62 320 |
|
PS-CasMVS | | | 96.34 267 | 95.78 273 | 98.03 253 | 98.18 313 | 98.27 211 | 99.71 280 | 99.32 218 | 94.75 280 | 96.82 317 | 99.65 258 | 86.98 310 | 98.15 323 | 97.74 247 | 88.85 333 | 97.66 309 |
|
LTVRE_ROB | | 95.29 16 | 96.32 268 | 96.10 257 | 96.99 293 | 98.55 293 | 93.88 324 | 99.45 310 | 99.28 236 | 94.50 290 | 96.46 324 | 99.52 284 | 84.86 325 | 99.48 227 | 97.26 265 | 95.03 261 | 97.59 324 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
Anonymous20231211 | | | 96.29 269 | 95.70 277 | 98.07 242 | 99.80 134 | 97.49 252 | 99.15 347 | 99.40 177 | 89.11 351 | 97.75 291 | 99.45 289 | 88.93 288 | 98.98 260 | 98.26 231 | 89.47 327 | 97.73 282 |
|
v148 | | | 96.29 269 | 95.84 268 | 97.63 268 | 97.74 328 | 96.53 283 | 100.00 1 | 99.07 317 | 93.52 314 | 98.01 279 | 99.42 291 | 91.22 254 | 98.60 296 | 96.37 287 | 87.22 343 | 97.75 253 |
|
AUN-MVS | | | 96.26 271 | 95.67 281 | 98.06 246 | 99.68 154 | 95.60 292 | 99.82 255 | 99.42 127 | 96.78 202 | 99.88 148 | 99.80 234 | 94.84 215 | 99.47 229 | 97.48 256 | 73.29 370 | 99.12 230 |
|
FMVSNet2 | | | 96.22 272 | 95.60 283 | 98.06 246 | 99.53 197 | 98.33 206 | 99.45 310 | 99.27 244 | 93.71 306 | 98.03 276 | 98.84 326 | 84.23 329 | 98.10 331 | 93.97 316 | 93.40 280 | 97.73 282 |
|
LF4IMVS | | | 96.19 273 | 96.18 254 | 96.23 315 | 98.26 307 | 92.09 341 | 100.00 1 | 97.89 364 | 97.82 118 | 97.94 282 | 99.87 216 | 82.71 338 | 99.38 239 | 97.41 259 | 93.71 276 | 97.20 340 |
|
v1192 | | | 96.18 274 | 95.49 287 | 98.26 226 | 98.01 318 | 98.15 218 | 99.99 190 | 99.08 313 | 93.36 318 | 98.54 248 | 98.97 319 | 89.47 281 | 98.89 269 | 91.15 337 | 90.82 315 | 97.75 253 |
|
testgi | | | 96.18 274 | 95.93 265 | 96.93 297 | 98.98 271 | 94.20 323 | 100.00 1 | 99.07 317 | 97.16 178 | 96.06 331 | 99.86 218 | 84.08 332 | 97.79 344 | 90.38 344 | 97.80 211 | 98.81 234 |
|
ppachtmachnet_test | | | 96.17 276 | 95.89 266 | 97.02 291 | 97.61 333 | 95.24 295 | 99.99 190 | 99.24 255 | 93.31 320 | 96.71 321 | 99.62 270 | 94.34 221 | 98.07 333 | 89.87 346 | 92.30 295 | 97.75 253 |
|
v1921920 | | | 96.16 277 | 95.50 285 | 98.14 236 | 97.88 325 | 97.96 232 | 99.99 190 | 99.07 317 | 93.33 319 | 98.60 244 | 99.24 299 | 89.37 282 | 98.71 287 | 91.28 335 | 90.74 317 | 97.75 253 |
|
Baseline_NR-MVSNet | | | 96.16 277 | 95.70 277 | 97.56 273 | 98.28 306 | 96.79 278 | 100.00 1 | 97.86 365 | 91.93 336 | 97.63 294 | 99.47 288 | 92.14 248 | 98.35 315 | 97.13 266 | 86.83 346 | 97.54 327 |
|
v10 | | | 96.14 279 | 95.50 285 | 98.07 242 | 98.19 312 | 97.96 232 | 99.83 252 | 99.07 317 | 92.10 335 | 98.07 275 | 98.94 321 | 91.07 259 | 98.61 294 | 92.41 330 | 89.82 323 | 97.63 318 |
|
OurMVSNet-221017-0 | | | 96.14 279 | 95.98 263 | 96.62 307 | 97.49 341 | 93.44 329 | 99.92 237 | 98.16 354 | 95.86 249 | 97.65 293 | 99.95 204 | 85.71 321 | 98.78 279 | 94.93 305 | 94.18 274 | 97.64 317 |
|
GBi-Net | | | 96.07 281 | 95.80 271 | 96.89 299 | 99.53 197 | 94.87 300 | 99.18 339 | 99.27 244 | 93.71 306 | 98.53 249 | 98.81 327 | 84.23 329 | 98.07 333 | 95.31 299 | 93.60 277 | 97.72 289 |
|
test1 | | | 96.07 281 | 95.80 271 | 96.89 299 | 99.53 197 | 94.87 300 | 99.18 339 | 99.27 244 | 93.71 306 | 98.53 249 | 98.81 327 | 84.23 329 | 98.07 333 | 95.31 299 | 93.60 277 | 97.72 289 |
|
v7n | | | 96.06 283 | 95.42 293 | 97.99 256 | 97.58 336 | 97.35 258 | 99.86 248 | 99.11 305 | 92.81 331 | 97.91 284 | 99.49 286 | 90.99 261 | 98.92 265 | 92.51 327 | 88.49 335 | 97.70 298 |
|
PEN-MVS | | | 96.01 284 | 95.48 289 | 97.58 272 | 97.74 328 | 97.26 264 | 99.90 241 | 99.29 230 | 94.55 287 | 96.79 318 | 99.55 281 | 87.38 305 | 97.84 343 | 96.92 273 | 87.24 342 | 97.65 314 |
|
v1240 | | | 95.96 285 | 95.25 294 | 98.07 242 | 97.91 322 | 97.87 240 | 99.96 223 | 99.07 317 | 93.24 322 | 98.64 242 | 98.96 320 | 88.98 287 | 98.61 294 | 89.58 350 | 90.92 314 | 97.75 253 |
|
pmmvs5 | | | 95.94 286 | 95.61 282 | 96.95 295 | 97.42 344 | 94.66 312 | 100.00 1 | 98.08 358 | 93.60 312 | 97.05 310 | 99.43 290 | 87.02 308 | 98.46 311 | 95.76 290 | 92.12 296 | 97.72 289 |
|
PatchT | | | 95.90 287 | 94.95 301 | 98.75 199 | 99.03 261 | 98.39 199 | 99.08 355 | 99.32 218 | 85.52 362 | 99.96 110 | 94.99 366 | 97.94 139 | 98.05 337 | 80.20 371 | 98.47 171 | 99.81 187 |
|
USDC | | | 95.90 287 | 95.70 277 | 96.50 310 | 98.60 292 | 92.56 339 | 100.00 1 | 98.30 352 | 97.77 122 | 96.92 312 | 99.94 208 | 81.25 345 | 99.45 234 | 93.54 320 | 94.96 265 | 97.49 330 |
|
pm-mvs1 | | | 95.76 289 | 95.01 299 | 98.00 254 | 98.23 309 | 97.45 254 | 99.24 331 | 99.04 330 | 93.13 325 | 95.93 333 | 99.72 241 | 86.28 314 | 98.84 274 | 95.62 295 | 87.92 338 | 97.72 289 |
|
SixPastTwentyTwo | | | 95.71 290 | 95.49 287 | 96.38 312 | 97.42 344 | 93.01 332 | 99.84 251 | 98.23 353 | 94.75 280 | 95.98 332 | 99.97 184 | 85.35 323 | 98.43 312 | 94.71 306 | 93.17 282 | 97.69 302 |
|
MS-PatchMatch | | | 95.66 291 | 95.87 267 | 95.05 322 | 97.80 327 | 89.25 354 | 98.88 361 | 99.30 226 | 96.35 234 | 96.86 315 | 99.01 314 | 81.35 344 | 99.43 235 | 93.30 322 | 99.98 105 | 96.46 354 |
|
DTE-MVSNet | | | 95.52 292 | 94.99 300 | 97.08 288 | 97.49 341 | 96.45 284 | 100.00 1 | 99.25 250 | 93.82 305 | 96.17 329 | 99.57 279 | 87.81 300 | 97.18 349 | 94.57 307 | 86.26 349 | 97.62 320 |
|
TinyColmap | | | 95.50 293 | 95.12 298 | 96.64 306 | 98.69 288 | 93.00 333 | 99.40 316 | 97.75 367 | 96.40 232 | 96.14 330 | 99.87 216 | 79.47 349 | 99.50 225 | 93.62 319 | 94.72 268 | 97.40 335 |
|
K. test v3 | | | 95.46 294 | 95.14 297 | 96.40 311 | 97.53 338 | 93.40 330 | 99.99 190 | 99.23 259 | 95.49 266 | 92.70 354 | 99.73 240 | 84.26 328 | 98.12 326 | 93.94 317 | 93.38 281 | 97.68 304 |
|
FMVSNet5 | | | 95.32 295 | 95.43 292 | 94.99 324 | 99.39 235 | 92.99 334 | 99.25 330 | 99.24 255 | 90.45 345 | 97.44 303 | 98.45 341 | 95.78 200 | 94.39 370 | 87.02 357 | 91.88 301 | 97.59 324 |
|
UniMVSNet_ETH3D | | | 95.28 296 | 94.41 302 | 97.89 262 | 98.91 276 | 95.14 297 | 99.13 349 | 99.35 209 | 92.11 334 | 97.17 309 | 99.66 256 | 70.28 368 | 99.36 240 | 97.88 244 | 95.18 253 | 99.16 228 |
|
RPMNet | | | 95.26 297 | 93.82 305 | 99.56 132 | 99.31 239 | 98.86 176 | 99.13 349 | 99.42 127 | 79.82 371 | 99.96 110 | 95.13 364 | 95.69 202 | 99.98 112 | 77.54 375 | 98.40 175 | 99.84 174 |
|
DSMNet-mixed | | | 95.18 298 | 95.21 296 | 95.08 321 | 96.03 355 | 90.21 352 | 99.65 288 | 93.64 383 | 92.91 327 | 98.34 260 | 97.40 355 | 90.05 274 | 95.51 367 | 91.02 338 | 97.86 205 | 99.51 224 |
|
test_fmvs2 | | | 95.17 299 | 95.23 295 | 95.01 323 | 98.95 275 | 88.99 356 | 99.99 190 | 97.77 366 | 97.79 120 | 98.58 245 | 99.70 246 | 73.36 362 | 99.34 243 | 95.88 289 | 95.03 261 | 96.70 351 |
|
TransMVSNet (Re) | | | 94.78 300 | 93.72 306 | 97.93 260 | 98.34 300 | 97.88 238 | 99.23 336 | 97.98 362 | 91.60 337 | 94.55 343 | 99.71 243 | 87.89 299 | 98.36 314 | 89.30 352 | 84.92 350 | 97.56 326 |
|
FMVSNet1 | | | 94.45 301 | 93.63 308 | 96.89 299 | 98.87 282 | 94.87 300 | 99.18 339 | 99.27 244 | 90.95 343 | 97.31 305 | 98.81 327 | 72.89 364 | 98.07 333 | 92.61 325 | 92.81 286 | 97.72 289 |
|
test_0402 | | | 94.35 302 | 93.70 307 | 96.32 313 | 97.92 321 | 93.60 326 | 99.61 294 | 98.85 347 | 88.19 357 | 94.68 342 | 99.48 287 | 80.01 347 | 98.58 300 | 89.39 351 | 95.15 256 | 96.77 349 |
|
UnsupCasMVSNet_eth | | | 94.25 303 | 93.89 304 | 95.34 320 | 97.63 331 | 92.13 340 | 99.73 277 | 99.36 200 | 94.88 277 | 92.78 351 | 98.63 335 | 82.72 337 | 96.53 357 | 94.57 307 | 84.73 351 | 97.36 336 |
|
KD-MVS_2432*1600 | | | 94.15 304 | 93.08 313 | 97.35 279 | 99.53 197 | 97.83 242 | 99.63 291 | 99.19 274 | 92.88 328 | 96.29 326 | 97.68 352 | 98.84 109 | 96.70 353 | 89.73 347 | 63.92 375 | 97.53 328 |
|
miper_refine_blended | | | 94.15 304 | 93.08 313 | 97.35 279 | 99.53 197 | 97.83 242 | 99.63 291 | 99.19 274 | 92.88 328 | 96.29 326 | 97.68 352 | 98.84 109 | 96.70 353 | 89.73 347 | 63.92 375 | 97.53 328 |
|
MVS-HIRNet | | | 94.12 306 | 92.73 319 | 98.29 223 | 99.33 238 | 95.95 286 | 99.38 318 | 99.19 274 | 74.54 374 | 98.26 268 | 86.34 378 | 86.07 316 | 99.06 254 | 91.60 334 | 99.87 123 | 99.85 173 |
|
new_pmnet | | | 94.11 307 | 93.47 310 | 96.04 317 | 96.60 352 | 92.82 335 | 99.97 218 | 98.91 343 | 90.21 347 | 95.26 336 | 98.05 350 | 85.89 319 | 98.14 324 | 84.28 362 | 92.01 298 | 97.16 341 |
|
pmmvs6 | | | 93.64 308 | 92.87 316 | 95.94 318 | 97.47 343 | 91.41 346 | 98.92 359 | 99.02 332 | 87.84 358 | 95.01 339 | 99.61 272 | 77.24 356 | 98.77 282 | 94.33 310 | 86.41 348 | 97.63 318 |
|
Patchmatch-RL test | | | 93.49 309 | 93.63 308 | 93.05 340 | 91.78 371 | 83.41 365 | 98.21 369 | 96.95 374 | 91.58 338 | 91.05 356 | 97.64 354 | 99.40 55 | 95.83 365 | 94.11 315 | 81.95 360 | 99.91 138 |
|
Anonymous20231206 | | | 93.45 310 | 93.17 312 | 94.30 332 | 95.00 365 | 89.69 353 | 99.98 212 | 98.43 351 | 93.30 321 | 94.50 345 | 98.59 336 | 90.52 266 | 95.73 366 | 77.46 376 | 90.73 318 | 97.48 332 |
|
Anonymous20240521 | | | 93.29 311 | 92.76 318 | 94.90 327 | 95.64 361 | 91.27 347 | 99.97 218 | 98.82 348 | 87.04 359 | 94.71 341 | 98.19 347 | 83.86 333 | 96.80 352 | 84.04 363 | 92.56 292 | 96.64 352 |
|
dmvs_testset | | | 93.27 312 | 95.48 289 | 86.65 352 | 98.74 287 | 68.42 378 | 99.92 237 | 98.91 343 | 96.19 241 | 93.28 350 | 100.00 1 | 91.06 260 | 91.67 377 | 89.64 349 | 91.54 305 | 99.86 172 |
|
test20.03 | | | 93.11 313 | 92.85 317 | 93.88 337 | 95.19 364 | 91.83 342 | 100.00 1 | 98.87 346 | 93.68 309 | 92.76 352 | 98.88 325 | 89.20 284 | 92.71 375 | 77.88 374 | 89.19 330 | 97.09 343 |
|
test_vis1_rt | | | 93.10 314 | 92.93 315 | 93.58 338 | 99.63 171 | 85.07 362 | 99.99 190 | 93.71 382 | 97.49 154 | 90.96 357 | 97.10 356 | 60.40 373 | 99.95 138 | 99.24 178 | 97.90 203 | 95.72 361 |
|
APD_test1 | | | 93.07 315 | 94.14 303 | 89.85 346 | 99.18 247 | 72.49 373 | 99.76 269 | 98.90 345 | 92.86 330 | 96.35 325 | 99.94 208 | 75.56 358 | 99.91 155 | 86.73 358 | 97.98 198 | 97.15 342 |
|
EG-PatchMatch MVS | | | 92.94 316 | 92.49 320 | 94.29 333 | 95.87 357 | 87.07 360 | 99.07 357 | 98.11 357 | 93.19 323 | 88.98 363 | 98.66 334 | 70.89 366 | 99.08 253 | 92.43 329 | 95.21 251 | 96.72 350 |
|
MDA-MVSNet_test_wron | | | 92.61 317 | 91.09 325 | 97.19 287 | 96.71 351 | 97.26 264 | 100.00 1 | 99.14 293 | 88.61 353 | 67.90 380 | 98.32 346 | 89.03 285 | 96.57 356 | 90.47 343 | 89.59 325 | 97.74 276 |
|
YYNet1 | | | 92.44 318 | 90.92 326 | 97.03 290 | 96.20 353 | 97.06 271 | 99.99 190 | 99.14 293 | 88.21 356 | 67.93 379 | 98.43 343 | 88.63 291 | 96.28 360 | 90.64 339 | 89.08 331 | 97.74 276 |
|
MIMVSNet1 | | | 91.96 319 | 91.20 322 | 94.23 334 | 94.94 366 | 91.69 344 | 99.34 322 | 99.22 261 | 88.23 355 | 94.18 347 | 98.45 341 | 75.52 359 | 93.41 374 | 79.37 372 | 91.49 307 | 97.60 323 |
|
TDRefinement | | | 91.93 320 | 90.48 328 | 96.27 314 | 81.60 382 | 92.65 338 | 99.10 352 | 97.61 370 | 93.96 304 | 93.77 348 | 99.85 222 | 80.03 346 | 99.53 221 | 97.82 246 | 70.59 372 | 96.63 353 |
|
OpenMVS_ROB |  | 88.34 20 | 91.89 321 | 91.12 323 | 94.19 335 | 95.55 362 | 87.63 359 | 99.26 329 | 98.03 359 | 86.61 361 | 90.65 361 | 96.82 358 | 70.14 369 | 98.78 279 | 86.54 359 | 96.50 232 | 96.15 356 |
|
N_pmnet | | | 91.88 322 | 93.37 311 | 87.40 351 | 97.24 348 | 66.33 381 | 99.90 241 | 91.05 385 | 89.77 350 | 95.65 335 | 98.58 337 | 90.05 274 | 98.11 328 | 85.39 360 | 92.72 287 | 97.75 253 |
|
pmmvs-eth3d | | | 91.73 323 | 90.67 327 | 94.92 326 | 91.63 373 | 92.71 337 | 99.90 241 | 98.54 350 | 91.19 340 | 88.08 365 | 95.50 362 | 79.31 351 | 96.13 362 | 90.55 342 | 81.32 362 | 95.91 360 |
|
MDA-MVSNet-bldmvs | | | 91.65 324 | 89.94 331 | 96.79 305 | 96.72 350 | 96.70 280 | 99.42 315 | 98.94 340 | 88.89 352 | 66.97 382 | 98.37 344 | 81.43 343 | 95.91 364 | 89.24 353 | 89.46 328 | 97.75 253 |
|
KD-MVS_self_test | | | 91.16 325 | 90.09 330 | 94.35 331 | 94.44 367 | 91.27 347 | 99.74 272 | 99.08 313 | 90.82 344 | 94.53 344 | 94.91 367 | 86.11 315 | 94.78 369 | 82.67 365 | 68.52 373 | 96.99 345 |
|
CL-MVSNet_self_test | | | 91.07 326 | 90.35 329 | 93.24 339 | 93.27 368 | 89.16 355 | 99.55 300 | 99.25 250 | 92.34 333 | 95.23 337 | 97.05 357 | 88.86 290 | 93.59 373 | 80.67 369 | 66.95 374 | 96.96 346 |
|
test_method | | | 91.04 327 | 91.10 324 | 90.85 343 | 98.34 300 | 77.63 369 | 100.00 1 | 98.93 342 | 76.69 372 | 96.25 328 | 98.52 339 | 70.44 367 | 97.98 339 | 89.02 355 | 91.74 302 | 96.92 347 |
|
CMPMVS |  | 66.12 22 | 90.65 328 | 92.04 321 | 86.46 353 | 96.18 354 | 66.87 380 | 98.03 370 | 99.38 192 | 83.38 367 | 85.49 369 | 99.55 281 | 77.59 354 | 98.80 278 | 94.44 309 | 94.31 273 | 93.72 369 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
pmmvs3 | | | 90.62 329 | 89.36 333 | 94.40 330 | 90.53 376 | 91.49 345 | 100.00 1 | 96.73 375 | 84.21 365 | 93.65 349 | 96.65 359 | 82.56 340 | 94.83 368 | 82.28 366 | 77.62 367 | 96.89 348 |
|
new-patchmatchnet | | | 90.30 330 | 89.46 332 | 92.84 341 | 90.77 375 | 88.55 358 | 99.83 252 | 98.80 349 | 90.07 349 | 87.86 366 | 95.00 365 | 78.77 352 | 94.30 371 | 84.86 361 | 79.15 364 | 95.68 363 |
|
UnsupCasMVSNet_bld | | | 89.50 331 | 88.00 335 | 93.99 336 | 95.30 363 | 88.86 357 | 98.52 366 | 99.28 236 | 85.50 363 | 87.80 367 | 94.11 368 | 61.63 372 | 96.96 351 | 90.63 340 | 79.26 363 | 96.15 356 |
|
mvsany_test3 | | | 89.36 332 | 88.96 334 | 90.56 344 | 91.95 370 | 78.97 368 | 99.74 272 | 96.59 378 | 96.84 198 | 89.25 362 | 96.07 360 | 52.59 375 | 97.11 350 | 95.17 302 | 82.44 358 | 95.58 364 |
|
PM-MVS | | | 88.39 333 | 87.41 336 | 91.31 342 | 91.73 372 | 82.02 367 | 99.79 261 | 96.62 376 | 91.06 342 | 90.71 360 | 95.73 361 | 48.60 377 | 95.96 363 | 90.56 341 | 81.91 361 | 95.97 359 |
|
test_fmvs3 | | | 87.19 334 | 87.02 337 | 87.71 350 | 92.69 369 | 76.64 370 | 99.96 223 | 97.27 371 | 93.55 313 | 90.82 359 | 94.03 369 | 38.00 383 | 92.19 376 | 93.49 321 | 83.35 357 | 94.32 366 |
|
test_f | | | 86.87 335 | 86.06 338 | 89.28 347 | 91.45 374 | 76.37 371 | 99.87 247 | 97.11 372 | 91.10 341 | 88.46 364 | 93.05 371 | 38.31 382 | 96.66 355 | 91.77 333 | 83.46 356 | 94.82 365 |
|
Gipuma |  | | 84.73 336 | 83.50 341 | 88.40 349 | 97.50 339 | 82.21 366 | 88.87 376 | 99.05 327 | 65.81 376 | 85.71 368 | 90.49 373 | 53.70 374 | 96.31 359 | 78.64 373 | 91.74 302 | 86.67 375 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
testf1 | | | 84.40 337 | 84.79 339 | 83.23 357 | 95.71 358 | 58.71 387 | 98.79 363 | 97.75 367 | 81.58 368 | 84.94 370 | 98.07 348 | 45.33 379 | 97.73 345 | 77.09 377 | 83.85 353 | 93.24 370 |
|
APD_test2 | | | 84.40 337 | 84.79 339 | 83.23 357 | 95.71 358 | 58.71 387 | 98.79 363 | 97.75 367 | 81.58 368 | 84.94 370 | 98.07 348 | 45.33 379 | 97.73 345 | 77.09 377 | 83.85 353 | 93.24 370 |
|
testmvs | | | 80.17 339 | 81.95 342 | 74.80 362 | 58.54 389 | 59.58 386 | 100.00 1 | 87.14 388 | 76.09 373 | 99.61 176 | 100.00 1 | 67.06 370 | 74.19 385 | 98.84 198 | 50.30 379 | 90.64 374 |
|
test_vis3_rt | | | 79.61 340 | 78.19 345 | 83.86 356 | 88.68 377 | 69.56 377 | 99.81 256 | 82.19 390 | 86.78 360 | 68.57 378 | 84.51 381 | 25.06 387 | 98.26 319 | 89.18 354 | 78.94 365 | 83.75 378 |
|
EGC-MVSNET | | | 79.46 341 | 74.04 349 | 95.72 319 | 96.00 356 | 92.73 336 | 99.09 354 | 99.04 330 | 5.08 386 | 16.72 386 | 98.71 331 | 73.03 363 | 98.74 285 | 82.05 367 | 96.64 229 | 95.69 362 |
|
test123 | | | 79.44 342 | 79.23 344 | 80.05 360 | 80.03 383 | 71.72 374 | 100.00 1 | 77.93 391 | 62.52 377 | 94.81 340 | 99.69 249 | 78.21 353 | 74.53 384 | 92.57 326 | 27.33 384 | 93.90 367 |
|
PMMVS2 | | | 79.15 343 | 77.28 346 | 84.76 355 | 82.34 381 | 72.66 372 | 99.70 282 | 95.11 381 | 71.68 375 | 84.78 372 | 90.87 372 | 32.05 385 | 89.99 378 | 75.53 379 | 63.45 377 | 91.64 372 |
|
LCM-MVSNet | | | 79.01 344 | 76.93 347 | 85.27 354 | 78.28 384 | 68.01 379 | 96.57 373 | 98.03 359 | 55.10 380 | 82.03 373 | 93.27 370 | 31.99 386 | 93.95 372 | 82.72 364 | 74.37 369 | 93.84 368 |
|
FPMVS | | | 77.92 345 | 79.45 343 | 73.34 364 | 76.87 385 | 46.81 390 | 98.24 368 | 99.05 327 | 59.89 379 | 73.55 375 | 98.34 345 | 36.81 384 | 86.55 379 | 80.96 368 | 91.35 311 | 86.65 376 |
|
tmp_tt | | | 75.80 346 | 74.26 348 | 80.43 359 | 52.91 391 | 53.67 389 | 87.42 378 | 97.98 362 | 61.80 378 | 67.04 381 | 100.00 1 | 76.43 357 | 96.40 358 | 96.47 283 | 28.26 383 | 91.23 373 |
|
E-PMN | | | 70.72 347 | 70.06 350 | 72.69 365 | 83.92 380 | 65.48 383 | 99.95 229 | 92.72 384 | 49.88 382 | 72.30 376 | 86.26 379 | 47.17 378 | 77.43 382 | 53.83 383 | 44.49 380 | 75.17 382 |
|
EMVS | | | 69.88 348 | 69.09 351 | 72.24 366 | 84.70 379 | 65.82 382 | 99.96 223 | 87.08 389 | 49.82 383 | 71.51 377 | 84.74 380 | 49.30 376 | 75.32 383 | 50.97 384 | 43.71 381 | 75.59 381 |
|
MVE |  | 68.59 21 | 67.22 349 | 64.68 353 | 74.84 361 | 74.67 387 | 62.32 385 | 95.84 374 | 90.87 386 | 50.98 381 | 58.72 383 | 81.05 383 | 12.20 391 | 78.95 381 | 61.06 382 | 56.75 378 | 83.24 379 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
ANet_high | | | 66.05 350 | 63.44 354 | 73.88 363 | 61.14 388 | 63.45 384 | 95.68 375 | 87.18 387 | 79.93 370 | 47.35 384 | 80.68 384 | 22.35 388 | 72.33 386 | 61.24 381 | 35.42 382 | 85.88 377 |
|
PMVS |  | 60.66 23 | 65.98 351 | 65.05 352 | 68.75 367 | 55.06 390 | 38.40 391 | 88.19 377 | 96.98 373 | 48.30 384 | 44.82 385 | 88.52 376 | 12.22 390 | 86.49 380 | 67.58 380 | 83.79 355 | 81.35 380 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
wuyk23d | | | 28.28 352 | 29.73 356 | 23.92 368 | 75.89 386 | 32.61 392 | 66.50 379 | 12.88 392 | 16.09 385 | 14.59 387 | 16.59 386 | 12.35 389 | 32.36 387 | 39.36 385 | 13.36 385 | 6.79 383 |
|
cdsmvs_eth3d_5k | | | 24.41 353 | 32.55 355 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 99.39 190 | 0.00 387 | 0.00 388 | 100.00 1 | 93.55 229 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
ab-mvs-re | | | 8.33 354 | 11.11 357 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 100.00 1 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
pcd_1.5k_mvsjas | | | 8.24 355 | 10.99 358 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.14 388 | 98.75 116 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
test_blank | | | 0.07 356 | 0.09 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.79 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
uanet_test | | | 0.01 357 | 0.02 360 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.14 388 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
DCPMVS | | | 0.01 357 | 0.02 360 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.14 388 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
sosnet-low-res | | | 0.01 357 | 0.02 360 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.14 388 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
sosnet | | | 0.01 357 | 0.02 360 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.14 388 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
uncertanet | | | 0.01 357 | 0.02 360 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.14 388 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
Regformer | | | 0.01 357 | 0.02 360 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.14 388 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
uanet | | | 0.01 357 | 0.02 360 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.14 388 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
FOURS1 | | | | | | 100.00 1 | 99.97 21 | 100.00 1 | 99.42 127 | 98.52 68 | 100.00 1 | | | | | | |
|
MSC_two_6792asdad | | | | | 100.00 1 | 100.00 1 | 100.00 1 | | 99.42 127 | | | | | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
|
PC_three_1452 | | | | | | | | | | 98.80 52 | 100.00 1 | 100.00 1 | 99.54 26 | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
|
No_MVS | | | | | 100.00 1 | 100.00 1 | 100.00 1 | | 99.42 127 | | | | | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
|
test_one_0601 | | | | | | 100.00 1 | 99.99 5 | | 99.42 127 | 98.72 58 | 100.00 1 | 100.00 1 | 99.60 17 | | | | |
|
eth-test2 | | | | | | 0.00 392 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 392 | | | | | | | | | | | |
|
ZD-MVS | | | | | | 100.00 1 | 99.98 17 | | 99.80 42 | 97.31 170 | 100.00 1 | 100.00 1 | 99.32 61 | 99.99 93 | 100.00 1 | 100.00 1 | |
|
RE-MVS-def | | | | 99.55 55 | | 99.99 49 | 99.91 51 | 100.00 1 | 99.42 127 | 97.62 136 | 100.00 1 | 100.00 1 | 98.94 100 | | 99.99 58 | 100.00 1 | 100.00 1 |
|
IU-MVS | | | | | | 100.00 1 | 99.99 5 | | 99.42 127 | 99.12 6 | 100.00 1 | | | | 100.00 1 | 100.00 1 | 100.00 1 |
|
OPU-MVS | | | | | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 | | | | 100.00 1 | 99.54 26 | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
|
test_241102_TWO | | | | | | | | | 99.42 127 | 99.03 19 | 100.00 1 | 100.00 1 | 99.56 23 | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
|
test_241102_ONE | | | | | | 100.00 1 | 99.99 5 | | 99.42 127 | 99.03 19 | 100.00 1 | 100.00 1 | 99.50 37 | 100.00 1 | | | |
|
9.14 | | | | 99.57 49 | | 99.99 49 | | 100.00 1 | 99.42 127 | 97.54 147 | 100.00 1 | 100.00 1 | 99.15 82 | 99.99 93 | 100.00 1 | 100.00 1 | |
|
save fliter | | | | | | 99.99 49 | 99.93 43 | 100.00 1 | 99.42 127 | 98.93 35 | | | | | | | |
|
test_0728_THIRD | | | | | | | | | | 98.79 54 | 100.00 1 | 100.00 1 | 99.61 16 | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
|
test_0728_SECOND | | | | | 100.00 1 | 99.99 49 | 99.99 5 | 100.00 1 | 99.42 127 | | | | | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
|
test0726 | | | | | | 100.00 1 | 99.99 5 | 100.00 1 | 99.42 127 | 99.04 14 | 100.00 1 | 100.00 1 | 99.53 29 | | | | |
|
GSMVS | | | | | | | | | | | | | | | | | 99.91 138 |
|
test_part2 | | | | | | 100.00 1 | 99.99 5 | | | | 100.00 1 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 99.29 69 | | | | 99.91 138 |
|
sam_mvs | | | | | | | | | | | | | 99.33 58 | | | | |
|
ambc | | | | | 88.45 348 | 86.84 378 | 70.76 376 | 97.79 372 | 98.02 361 | | 90.91 358 | 95.14 363 | 38.69 381 | 98.51 306 | 94.97 304 | 84.23 352 | 96.09 358 |
|
MTGPA |  | | | | | | | | 99.42 127 | | | | | | | | |
|
test_post1 | | | | | | | | 99.32 323 | | | | 88.24 377 | 99.33 58 | 99.59 199 | 98.31 226 | | |
|
test_post | | | | | | | | | | | | 89.05 375 | 99.49 39 | 99.59 199 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 97.79 351 | 99.41 54 | 99.54 216 | | | |
|
GG-mvs-BLEND | | | | | 99.59 125 | 99.54 194 | 99.49 118 | 99.17 344 | 99.52 68 | | 99.96 110 | 99.68 253 | 100.00 1 | 99.33 244 | 99.71 124 | 99.99 97 | 99.96 113 |
|
MTMP | | | | | | | | 100.00 1 | 99.18 281 | | | | | | | | |
|
gm-plane-assit | | | | | | 99.52 204 | 97.26 264 | | | 95.86 249 | | 100.00 1 | | 99.43 235 | 98.76 203 | | |
|
test9_res | | | | | | | | | | | | | | | 100.00 1 | 100.00 1 | 100.00 1 |
|
TEST9 | | | | | | 100.00 1 | 99.95 32 | 100.00 1 | 99.42 127 | 97.65 132 | 100.00 1 | 100.00 1 | 99.53 29 | 99.97 117 | | | |
|
test_8 | | | | | | 100.00 1 | 99.91 51 | 100.00 1 | 99.42 127 | 97.70 127 | 100.00 1 | 100.00 1 | 99.51 33 | 99.98 112 | | | |
|
agg_prior2 | | | | | | | | | | | | | | | 100.00 1 | 100.00 1 | 100.00 1 |
|
agg_prior | | | | | | 100.00 1 | 99.88 72 | | 99.42 127 | | 100.00 1 | | | 99.97 117 | | | |
|
TestCases | | | | | 98.99 184 | 99.93 100 | 97.35 258 | | 99.40 177 | 97.08 184 | 99.09 208 | 99.98 176 | 93.37 230 | 99.95 138 | 96.94 271 | 99.84 127 | 99.68 215 |
|
test_prior4 | | | | | | | 99.93 43 | 100.00 1 | | | | | | | | | |
|
test_prior2 | | | | | | | | 100.00 1 | | 98.82 50 | 100.00 1 | 100.00 1 | 99.47 43 | | 100.00 1 | 100.00 1 | |
|
test_prior | | | | | 99.90 70 | 100.00 1 | 99.75 90 | | 99.73 55 | | | | | 99.97 117 | | | 100.00 1 |
|
旧先验2 | | | | | | | | 100.00 1 | | 98.11 96 | 100.00 1 | | | 100.00 1 | 99.67 138 | | |
|
æ–°å‡ ä½•2 | | | | | | | | 100.00 1 | | | | | | | | | |
|
æ–°å‡ ä½•1 | | | | | 99.99 12 | 100.00 1 | 99.96 24 | | 99.81 41 | 97.89 113 | 100.00 1 | 100.00 1 | 99.20 77 | 100.00 1 | 97.91 243 | 100.00 1 | 100.00 1 |
|
旧先验1 | | | | | | 99.99 49 | 99.88 72 | | 99.82 39 | | | 100.00 1 | 99.27 72 | | | 100.00 1 | 100.00 1 |
|
æ— å…ˆéªŒ | | | | | | | | 100.00 1 | 99.80 42 | 97.98 104 | | | | 100.00 1 | 99.33 170 | | 100.00 1 |
|
原ACMM2 | | | | | | | | 100.00 1 | | | | | | | | | |
|
原ACMM1 | | | | | 99.93 65 | 100.00 1 | 99.80 86 | | 99.66 62 | 98.18 87 | 100.00 1 | 100.00 1 | 99.43 50 | 100.00 1 | 99.50 161 | 100.00 1 | 100.00 1 |
|
test222 | | | | | | 99.99 49 | 99.90 58 | 100.00 1 | 99.69 61 | 97.66 131 | 100.00 1 | 100.00 1 | 99.30 68 | | | 100.00 1 | 100.00 1 |
|
testdata2 | | | | | | | | | | | | | | 100.00 1 | 97.36 262 | | |
|
segment_acmp | | | | | | | | | | | | | 99.55 25 | | | | |
|
testdata | | | | | 99.66 116 | 99.99 49 | 98.97 173 | | 99.73 55 | 97.96 109 | 100.00 1 | 100.00 1 | 99.42 52 | 100.00 1 | 99.28 175 | 100.00 1 | 100.00 1 |
|
testdata1 | | | | | | | | 100.00 1 | | 98.77 57 | | | | | | | |
|
test12 | | | | | 99.95 51 | 99.99 49 | 99.89 65 | | 99.42 127 | | 100.00 1 | | 99.24 74 | 99.97 117 | | 100.00 1 | 100.00 1 |
|
plane_prior7 | | | | | | 99.00 267 | 94.78 310 | | | | | | | | | | |
|
plane_prior6 | | | | | | 99.06 259 | 94.80 306 | | | | | | 88.58 294 | | | | |
|
plane_prior5 | | | | | | | | | 99.40 177 | | | | | 99.55 213 | 99.79 109 | 95.57 238 | 97.76 242 |
|
plane_prior4 | | | | | | | | | | | | 99.97 184 | | | | | |
|
plane_prior3 | | | | | | | 94.79 309 | | | 99.03 19 | 99.08 210 | | | | | | |
|
plane_prior2 | | | | | | | | 100.00 1 | | 99.00 26 | | | | | | | |
|
plane_prior1 | | | | | | 99.02 262 | | | | | | | | | | | |
|
plane_prior | | | | | | | 94.80 306 | 100.00 1 | | 99.03 19 | | | | | | 95.58 234 | |
|
n2 | | | | | | | | | 0.00 393 | | | | | | | | |
|
nn | | | | | | | | | 0.00 393 | | | | | | | | |
|
door-mid | | | | | | | | | 96.32 379 | | | | | | | | |
|
lessismore_v0 | | | | | 96.05 316 | 97.55 337 | 91.80 343 | | 99.22 261 | | 91.87 355 | 99.91 212 | 83.50 335 | 98.68 288 | 92.48 328 | 90.42 321 | 97.68 304 |
|
LGP-MVS_train | | | | | 97.28 283 | 98.85 284 | 94.60 315 | | 99.37 194 | 97.35 164 | 98.85 227 | 99.98 176 | 86.66 311 | 99.56 208 | 99.55 154 | 95.26 246 | 97.70 298 |
|
test11 | | | | | | | | | 99.42 127 | | | | | | | | |
|
door | | | | | | | | | 96.13 380 | | | | | | | | |
|
HQP5-MVS | | | | | | | 94.82 303 | | | | | | | | | | |
|
HQP-NCC | | | | | | 99.07 255 | | 100.00 1 | | 99.04 14 | 99.17 200 | | | | | | |
|
ACMP_Plane | | | | | | 99.07 255 | | 100.00 1 | | 99.04 14 | 99.17 200 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 99.79 109 | | |
|
HQP4-MVS | | | | | | | | | | | 99.17 200 | | | 99.57 204 | | | 97.77 240 |
|
HQP3-MVS | | | | | | | | | 99.40 177 | | | | | | | 95.58 234 | |
|
HQP2-MVS | | | | | | | | | | | | | 88.61 292 | | | | |
|
NP-MVS | | | | | | 99.07 255 | 94.81 305 | | | | | 99.97 184 | | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 99.24 145 | 99.56 299 | | 96.31 237 | 99.96 110 | | 98.86 107 | | 98.92 194 | | 99.89 151 |
|
MDTV_nov1_ep13 | | | | 98.94 116 | | 99.53 197 | 98.36 204 | 99.39 317 | 99.46 90 | 96.54 223 | 99.99 96 | 99.63 266 | 98.92 103 | 99.86 162 | 98.30 229 | 98.71 164 | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 94.58 272 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 95.17 255 | |
|
Test By Simon | | | | | | | | | | | | | 99.10 84 | | | | |
|
ITE_SJBPF | | | | | 96.84 302 | 98.96 273 | 93.49 328 | | 98.12 356 | 98.12 95 | 98.35 259 | 99.97 184 | 84.45 326 | 99.56 208 | 95.63 294 | 95.25 248 | 97.49 330 |
|
DeepMVS_CX |  | | | | 89.98 345 | 98.90 277 | 71.46 375 | | 99.18 281 | 97.61 140 | 96.92 312 | 99.83 225 | 86.07 316 | 99.83 170 | 96.02 288 | 97.65 217 | 98.65 236 |
|