CNVR-MVS | | | 99.40 1 | 99.26 1 | 99.84 6 | 99.98 2 | 99.51 6 | 99.98 11 | 98.69 61 | 98.20 3 | 99.93 1 | 99.98 2 | 96.82 23 | 100.00 1 | 99.75 25 | 100.00 1 | 99.99 23 |
|
NCCC | | | 99.37 2 | 99.25 2 | 99.71 13 | 99.96 8 | 99.15 20 | 99.97 21 | 98.62 73 | 98.02 8 | 99.90 2 | 99.95 3 | 97.33 17 | 100.00 1 | 99.54 34 | 100.00 1 | 100.00 1 |
|
MCST-MVS | | | 99.32 3 | 99.14 4 | 99.86 5 | 99.97 3 | 99.59 5 | 99.97 21 | 98.64 69 | 98.47 2 | 99.13 77 | 99.92 13 | 96.38 30 | 100.00 1 | 99.74 27 | 100.00 1 | 100.00 1 |
|
DVP-MVS |  | | 99.30 4 | 99.16 3 | 99.73 11 | 99.93 24 | 99.29 14 | 99.95 45 | 98.32 155 | 97.28 25 | 99.83 11 | 99.91 14 | 97.22 19 | 100.00 1 | 99.99 5 | 100.00 1 | 99.89 80 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
SED-MVS | | | 99.28 5 | 99.11 7 | 99.77 8 | 99.93 24 | 99.30 11 | 99.96 28 | 98.43 118 | 97.27 27 | 99.80 15 | 99.94 4 | 96.71 24 | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
|
DVP-MVS++ | | | 99.26 6 | 99.09 9 | 99.77 8 | 99.91 39 | 99.31 9 | 99.95 45 | 98.43 118 | 96.48 51 | 99.80 15 | 99.93 11 | 97.44 14 | 100.00 1 | 99.92 12 | 99.98 32 | 100.00 1 |
|
DPE-MVS |  | | 99.26 6 | 99.10 8 | 99.74 10 | 99.89 45 | 99.24 18 | 99.87 91 | 98.44 110 | 97.48 21 | 99.64 37 | 99.94 4 | 96.68 26 | 99.99 36 | 99.99 5 | 100.00 1 | 99.99 23 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
MSLP-MVS++ | | | 99.13 8 | 99.01 11 | 99.49 31 | 99.94 13 | 98.46 58 | 99.98 11 | 98.86 49 | 97.10 32 | 99.80 15 | 99.94 4 | 95.92 36 | 100.00 1 | 99.51 35 | 100.00 1 | 100.00 1 |
|
MSP-MVS | | | 99.09 9 | 99.12 5 | 98.98 70 | 99.93 24 | 97.24 95 | 99.95 45 | 98.42 129 | 97.50 20 | 99.52 53 | 99.88 21 | 97.43 16 | 99.71 128 | 99.50 36 | 99.98 32 | 100.00 1 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
HPM-MVS++ |  | | 99.07 10 | 98.88 15 | 99.63 16 | 99.90 42 | 99.02 24 | 99.95 45 | 98.56 81 | 97.56 19 | 99.44 58 | 99.85 30 | 95.38 46 | 100.00 1 | 99.31 44 | 99.99 21 | 99.87 83 |
|
APDe-MVS | | | 99.06 11 | 98.91 14 | 99.51 28 | 99.94 13 | 98.76 42 | 99.91 74 | 98.39 140 | 97.20 31 | 99.46 56 | 99.85 30 | 95.53 44 | 99.79 113 | 99.86 18 | 100.00 1 | 99.99 23 |
|
SteuartSystems-ACMMP | | | 99.02 12 | 98.97 13 | 99.18 47 | 98.72 136 | 97.71 76 | 99.98 11 | 98.44 110 | 96.85 38 | 99.80 15 | 99.91 14 | 97.57 8 | 99.85 99 | 99.44 39 | 99.99 21 | 99.99 23 |
Skip Steuart: Steuart Systems R&D Blog. |
CHOSEN 280x420 | | | 99.01 13 | 99.03 10 | 98.95 73 | 99.38 95 | 98.87 31 | 98.46 290 | 99.42 21 | 97.03 34 | 99.02 81 | 99.09 135 | 99.35 1 | 98.21 224 | 99.73 29 | 99.78 79 | 99.77 96 |
|
TSAR-MVS + MP. | | | 98.93 14 | 98.77 16 | 99.41 37 | 99.74 69 | 98.67 46 | 99.77 131 | 98.38 144 | 96.73 45 | 99.88 4 | 99.74 73 | 94.89 59 | 99.59 139 | 99.80 22 | 99.98 32 | 99.97 55 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
SD-MVS | | | 98.92 15 | 98.70 17 | 99.56 24 | 99.70 76 | 98.73 43 | 99.94 61 | 98.34 152 | 96.38 56 | 99.81 13 | 99.76 62 | 94.59 63 | 99.98 43 | 99.84 19 | 99.96 46 | 99.97 55 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
MG-MVS | | | 98.91 16 | 98.65 18 | 99.68 14 | 99.94 13 | 99.07 23 | 99.64 164 | 99.44 19 | 97.33 24 | 99.00 82 | 99.72 78 | 94.03 82 | 99.98 43 | 98.73 73 | 100.00 1 | 100.00 1 |
|
train_agg | | | 98.88 17 | 98.65 18 | 99.59 22 | 99.92 31 | 98.92 27 | 99.96 28 | 98.43 118 | 94.35 112 | 99.71 31 | 99.86 26 | 95.94 34 | 99.85 99 | 99.69 32 | 99.98 32 | 99.99 23 |
|
MVS_0304 | | | 98.87 18 | 98.61 21 | 99.67 15 | 99.18 101 | 99.13 21 | 99.87 91 | 99.65 11 | 98.17 4 | 98.75 95 | 99.75 67 | 92.76 115 | 99.94 72 | 99.88 17 | 99.44 104 | 99.94 70 |
|
DPM-MVS | | | 98.83 19 | 98.46 27 | 99.97 1 | 99.33 97 | 99.92 1 | 99.96 28 | 98.44 110 | 97.96 9 | 99.55 48 | 99.94 4 | 97.18 21 | 100.00 1 | 93.81 199 | 99.94 54 | 99.98 48 |
|
DeepC-MVS_fast | | 96.59 1 | 98.81 20 | 98.54 24 | 99.62 19 | 99.90 42 | 98.85 33 | 99.24 220 | 98.47 103 | 98.14 5 | 99.08 78 | 99.91 14 | 93.09 106 | 100.00 1 | 99.04 54 | 99.99 21 | 100.00 1 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
SMA-MVS |  | | 98.76 21 | 98.48 26 | 99.62 19 | 99.87 51 | 98.87 31 | 99.86 104 | 98.38 144 | 93.19 158 | 99.77 25 | 99.94 4 | 95.54 42 | 100.00 1 | 99.74 27 | 99.99 21 | 100.00 1 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
MVS_111021_HR | | | 98.72 22 | 98.62 20 | 99.01 68 | 99.36 96 | 97.18 98 | 99.93 67 | 99.90 1 | 96.81 43 | 98.67 98 | 99.77 60 | 93.92 84 | 99.89 87 | 99.27 46 | 99.94 54 | 99.96 61 |
|
XVS | | | 98.70 23 | 98.55 23 | 99.15 54 | 99.94 13 | 97.50 87 | 99.94 61 | 98.42 129 | 96.22 61 | 99.41 61 | 99.78 58 | 94.34 72 | 99.96 57 | 98.92 60 | 99.95 49 | 99.99 23 |
|
SF-MVS | | | 98.67 24 | 98.40 29 | 99.50 29 | 99.77 65 | 98.67 46 | 99.90 79 | 98.21 169 | 93.53 148 | 99.81 13 | 99.89 19 | 94.70 62 | 99.86 98 | 99.84 19 | 99.93 60 | 99.96 61 |
|
CDPH-MVS | | | 98.65 25 | 98.36 35 | 99.49 31 | 99.94 13 | 98.73 43 | 99.87 91 | 98.33 153 | 93.97 133 | 99.76 26 | 99.87 24 | 94.99 57 | 99.75 122 | 98.55 83 | 100.00 1 | 99.98 48 |
|
APD-MVS |  | | 98.62 26 | 98.35 36 | 99.41 37 | 99.90 42 | 98.51 56 | 99.87 91 | 98.36 148 | 94.08 125 | 99.74 28 | 99.73 75 | 94.08 80 | 99.74 124 | 99.42 40 | 99.99 21 | 99.99 23 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
TSAR-MVS + GP. | | | 98.60 27 | 98.51 25 | 98.86 77 | 99.73 72 | 96.63 116 | 99.97 21 | 97.92 200 | 98.07 6 | 98.76 93 | 99.55 100 | 95.00 56 | 99.94 72 | 99.91 15 | 97.68 152 | 99.99 23 |
|
PAPM | | | 98.60 27 | 98.42 28 | 99.14 56 | 96.05 256 | 98.96 25 | 99.90 79 | 99.35 24 | 96.68 47 | 98.35 113 | 99.66 91 | 96.45 29 | 98.51 192 | 99.45 38 | 99.89 66 | 99.96 61 |
|
HFP-MVS | | | 98.56 29 | 98.37 33 | 99.14 56 | 99.96 8 | 97.43 91 | 99.95 45 | 98.61 74 | 94.77 95 | 99.31 68 | 99.85 30 | 94.22 76 | 100.00 1 | 98.70 74 | 99.98 32 | 99.98 48 |
|
region2R | | | 98.54 30 | 98.37 33 | 99.05 63 | 99.96 8 | 97.18 98 | 99.96 28 | 98.55 87 | 94.87 93 | 99.45 57 | 99.85 30 | 94.07 81 | 100.00 1 | 98.67 76 | 100.00 1 | 99.98 48 |
|
DELS-MVS | | | 98.54 30 | 98.22 40 | 99.50 29 | 99.15 105 | 98.65 50 | 100.00 1 | 98.58 77 | 97.70 14 | 98.21 120 | 99.24 127 | 92.58 121 | 99.94 72 | 98.63 81 | 99.94 54 | 99.92 77 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
PAPR | | | 98.52 32 | 98.16 45 | 99.58 23 | 99.97 3 | 98.77 39 | 99.95 45 | 98.43 118 | 95.35 81 | 98.03 122 | 99.75 67 | 94.03 82 | 99.98 43 | 98.11 100 | 99.83 72 | 99.99 23 |
|
ACMMPR | | | 98.50 33 | 98.32 37 | 99.05 63 | 99.96 8 | 97.18 98 | 99.95 45 | 98.60 75 | 94.77 95 | 99.31 68 | 99.84 41 | 93.73 90 | 100.00 1 | 98.70 74 | 99.98 32 | 99.98 48 |
|
ACMMP_NAP | | | 98.49 34 | 98.14 46 | 99.54 26 | 99.66 78 | 98.62 52 | 99.85 107 | 98.37 147 | 94.68 100 | 99.53 51 | 99.83 43 | 92.87 111 | 100.00 1 | 98.66 78 | 99.84 71 | 99.99 23 |
|
EPNet | | | 98.49 34 | 98.40 29 | 98.77 80 | 99.62 80 | 96.80 113 | 99.90 79 | 99.51 16 | 97.60 16 | 99.20 73 | 99.36 117 | 93.71 91 | 99.91 81 | 97.99 107 | 98.71 127 | 99.61 122 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
SR-MVS | | | 98.46 36 | 98.30 39 | 98.93 74 | 99.88 49 | 97.04 103 | 99.84 111 | 98.35 150 | 94.92 91 | 99.32 67 | 99.80 51 | 93.35 96 | 99.78 115 | 99.30 45 | 99.95 49 | 99.96 61 |
|
CP-MVS | | | 98.45 37 | 98.32 37 | 98.87 76 | 99.96 8 | 96.62 117 | 99.97 21 | 98.39 140 | 94.43 107 | 98.90 86 | 99.87 24 | 94.30 74 | 100.00 1 | 99.04 54 | 99.99 21 | 99.99 23 |
|
test_fmvsm_n_1920 | | | 98.44 38 | 98.61 21 | 97.92 128 | 99.27 100 | 95.18 172 | 100.00 1 | 98.90 43 | 98.05 7 | 99.80 15 | 99.73 75 | 92.64 118 | 99.99 36 | 99.58 33 | 99.51 98 | 98.59 205 |
|
PS-MVSNAJ | | | 98.44 38 | 98.20 42 | 99.16 52 | 98.80 132 | 98.92 27 | 99.54 180 | 98.17 174 | 97.34 23 | 99.85 7 | 99.85 30 | 91.20 145 | 99.89 87 | 99.41 41 | 99.67 85 | 98.69 203 |
|
MVS_111021_LR | | | 98.42 40 | 98.38 31 | 98.53 100 | 99.39 94 | 95.79 145 | 99.87 91 | 99.86 2 | 96.70 46 | 98.78 90 | 99.79 54 | 92.03 135 | 99.90 83 | 99.17 48 | 99.86 70 | 99.88 81 |
|
DP-MVS Recon | | | 98.41 41 | 98.02 53 | 99.56 24 | 99.97 3 | 98.70 45 | 99.92 70 | 98.44 110 | 92.06 202 | 98.40 111 | 99.84 41 | 95.68 40 | 100.00 1 | 98.19 95 | 99.71 83 | 99.97 55 |
|
PHI-MVS | | | 98.41 41 | 98.21 41 | 99.03 65 | 99.86 53 | 97.10 102 | 99.98 11 | 98.80 55 | 90.78 239 | 99.62 40 | 99.78 58 | 95.30 47 | 100.00 1 | 99.80 22 | 99.93 60 | 99.99 23 |
|
mPP-MVS | | | 98.39 43 | 98.20 42 | 98.97 71 | 99.97 3 | 96.92 109 | 99.95 45 | 98.38 144 | 95.04 87 | 98.61 102 | 99.80 51 | 93.39 95 | 100.00 1 | 98.64 79 | 100.00 1 | 99.98 48 |
|
PGM-MVS | | | 98.34 44 | 98.13 47 | 98.99 69 | 99.92 31 | 97.00 105 | 99.75 139 | 99.50 17 | 93.90 138 | 99.37 65 | 99.76 62 | 93.24 103 | 100.00 1 | 97.75 122 | 99.96 46 | 99.98 48 |
|
SR-MVS-dyc-post | | | 98.31 45 | 98.17 44 | 98.71 82 | 99.79 62 | 96.37 126 | 99.76 136 | 98.31 157 | 94.43 107 | 99.40 63 | 99.75 67 | 93.28 101 | 99.78 115 | 98.90 63 | 99.92 63 | 99.97 55 |
|
ZNCC-MVS | | | 98.31 45 | 98.03 52 | 99.17 50 | 99.88 49 | 97.59 81 | 99.94 61 | 98.44 110 | 94.31 115 | 98.50 106 | 99.82 46 | 93.06 107 | 99.99 36 | 98.30 93 | 99.99 21 | 99.93 72 |
|
MTAPA | | | 98.29 47 | 97.96 58 | 99.30 41 | 99.85 54 | 97.93 72 | 99.39 201 | 98.28 162 | 95.76 70 | 97.18 141 | 99.88 21 | 92.74 116 | 100.00 1 | 98.67 76 | 99.88 68 | 99.99 23 |
|
GST-MVS | | | 98.27 48 | 97.97 55 | 99.17 50 | 99.92 31 | 97.57 82 | 99.93 67 | 98.39 140 | 94.04 131 | 98.80 89 | 99.74 73 | 92.98 108 | 100.00 1 | 98.16 97 | 99.76 80 | 99.93 72 |
|
CANet | | | 98.27 48 | 97.82 64 | 99.63 16 | 99.72 74 | 99.10 22 | 99.98 11 | 98.51 96 | 97.00 35 | 98.52 104 | 99.71 80 | 87.80 189 | 99.95 64 | 99.75 25 | 99.38 107 | 99.83 87 |
|
EI-MVSNet-Vis-set | | | 98.27 48 | 98.11 49 | 98.75 81 | 99.83 57 | 96.59 119 | 99.40 197 | 98.51 96 | 95.29 83 | 98.51 105 | 99.76 62 | 93.60 94 | 99.71 128 | 98.53 84 | 99.52 96 | 99.95 68 |
|
APD-MVS_3200maxsize | | | 98.25 51 | 98.08 51 | 98.78 79 | 99.81 60 | 96.60 118 | 99.82 119 | 98.30 160 | 93.95 135 | 99.37 65 | 99.77 60 | 92.84 112 | 99.76 121 | 98.95 57 | 99.92 63 | 99.97 55 |
|
patch_mono-2 | | | 98.24 52 | 99.12 5 | 95.59 207 | 99.67 77 | 86.91 323 | 99.95 45 | 98.89 45 | 97.60 16 | 99.90 2 | 99.76 62 | 96.54 28 | 99.98 43 | 99.94 11 | 99.82 76 | 99.88 81 |
|
xiu_mvs_v2_base | | | 98.23 53 | 97.97 55 | 99.02 67 | 98.69 137 | 98.66 48 | 99.52 182 | 98.08 185 | 97.05 33 | 99.86 5 | 99.86 26 | 90.65 157 | 99.71 128 | 99.39 43 | 98.63 128 | 98.69 203 |
|
MP-MVS |  | | 98.23 53 | 97.97 55 | 99.03 65 | 99.94 13 | 97.17 101 | 99.95 45 | 98.39 140 | 94.70 99 | 98.26 118 | 99.81 50 | 91.84 139 | 100.00 1 | 98.85 66 | 99.97 42 | 99.93 72 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
EI-MVSNet-UG-set | | | 98.14 55 | 97.99 54 | 98.60 90 | 99.80 61 | 96.27 128 | 99.36 206 | 98.50 101 | 95.21 85 | 98.30 115 | 99.75 67 | 93.29 100 | 99.73 127 | 98.37 89 | 99.30 111 | 99.81 89 |
|
PAPM_NR | | | 98.12 56 | 97.93 60 | 98.70 83 | 99.94 13 | 96.13 137 | 99.82 119 | 98.43 118 | 94.56 103 | 97.52 133 | 99.70 82 | 94.40 67 | 99.98 43 | 97.00 139 | 99.98 32 | 99.99 23 |
|
WTY-MVS | | | 98.10 57 | 97.60 70 | 99.60 21 | 98.92 121 | 99.28 16 | 99.89 86 | 99.52 14 | 95.58 75 | 98.24 119 | 99.39 114 | 93.33 97 | 99.74 124 | 97.98 109 | 95.58 196 | 99.78 95 |
|
MP-MVS-pluss | | | 98.07 58 | 97.64 68 | 99.38 40 | 99.74 69 | 98.41 59 | 99.74 142 | 98.18 173 | 93.35 152 | 96.45 159 | 99.85 30 | 92.64 118 | 99.97 53 | 98.91 62 | 99.89 66 | 99.77 96 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
HPM-MVS |  | | 97.96 59 | 97.72 66 | 98.68 84 | 99.84 56 | 96.39 125 | 99.90 79 | 98.17 174 | 92.61 180 | 98.62 101 | 99.57 99 | 91.87 138 | 99.67 135 | 98.87 65 | 99.99 21 | 99.99 23 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
PVSNet_Blended | | | 97.94 60 | 97.64 68 | 98.83 78 | 99.59 81 | 96.99 106 | 100.00 1 | 99.10 29 | 95.38 80 | 98.27 116 | 99.08 136 | 89.00 181 | 99.95 64 | 99.12 49 | 99.25 113 | 99.57 132 |
|
PLC |  | 95.54 3 | 97.93 61 | 97.89 63 | 98.05 124 | 99.82 58 | 94.77 183 | 99.92 70 | 98.46 105 | 93.93 136 | 97.20 140 | 99.27 122 | 95.44 45 | 99.97 53 | 97.41 127 | 99.51 98 | 99.41 156 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
ETV-MVS | | | 97.92 62 | 97.80 65 | 98.25 115 | 98.14 169 | 96.48 120 | 99.98 11 | 97.63 219 | 95.61 74 | 99.29 71 | 99.46 108 | 92.55 122 | 98.82 171 | 99.02 56 | 98.54 129 | 99.46 149 |
|
CS-MVS-test | | | 97.88 63 | 97.94 59 | 97.70 142 | 99.28 99 | 95.20 171 | 99.98 11 | 97.15 271 | 95.53 77 | 99.62 40 | 99.79 54 | 92.08 134 | 98.38 208 | 98.75 72 | 99.28 112 | 99.52 141 |
|
API-MVS | | | 97.86 64 | 97.66 67 | 98.47 103 | 99.52 87 | 95.41 161 | 99.47 191 | 98.87 48 | 91.68 213 | 98.84 87 | 99.85 30 | 92.34 128 | 99.99 36 | 98.44 86 | 99.96 46 | 100.00 1 |
|
lupinMVS | | | 97.85 65 | 97.60 70 | 98.62 88 | 97.28 219 | 97.70 78 | 99.99 4 | 97.55 230 | 95.50 79 | 99.43 59 | 99.67 89 | 90.92 152 | 98.71 181 | 98.40 87 | 99.62 88 | 99.45 151 |
|
test_yl | | | 97.83 66 | 97.37 77 | 99.21 44 | 99.18 101 | 97.98 69 | 99.64 164 | 99.27 26 | 91.43 221 | 97.88 127 | 98.99 145 | 95.84 38 | 99.84 106 | 98.82 67 | 95.32 200 | 99.79 92 |
|
DCV-MVSNet | | | 97.83 66 | 97.37 77 | 99.21 44 | 99.18 101 | 97.98 69 | 99.64 164 | 99.27 26 | 91.43 221 | 97.88 127 | 98.99 145 | 95.84 38 | 99.84 106 | 98.82 67 | 95.32 200 | 99.79 92 |
|
mvsany_test1 | | | 97.82 68 | 97.90 62 | 97.55 147 | 98.77 134 | 93.04 222 | 99.80 125 | 97.93 197 | 96.95 37 | 99.61 46 | 99.68 88 | 90.92 152 | 99.83 108 | 99.18 47 | 98.29 138 | 99.80 91 |
|
alignmvs | | | 97.81 69 | 97.33 79 | 99.25 42 | 98.77 134 | 98.66 48 | 99.99 4 | 98.44 110 | 94.40 111 | 98.41 109 | 99.47 106 | 93.65 92 | 99.42 152 | 98.57 82 | 94.26 209 | 99.67 108 |
|
HPM-MVS_fast | | | 97.80 70 | 97.50 73 | 98.68 84 | 99.79 62 | 96.42 122 | 99.88 88 | 98.16 178 | 91.75 212 | 98.94 84 | 99.54 102 | 91.82 140 | 99.65 137 | 97.62 125 | 99.99 21 | 99.99 23 |
|
CS-MVS | | | 97.79 71 | 97.91 61 | 97.43 154 | 99.10 106 | 94.42 188 | 99.99 4 | 97.10 276 | 95.07 86 | 99.68 34 | 99.75 67 | 92.95 109 | 98.34 212 | 98.38 88 | 99.14 117 | 99.54 137 |
|
HY-MVS | | 92.50 7 | 97.79 71 | 97.17 85 | 99.63 16 | 98.98 114 | 99.32 8 | 97.49 318 | 99.52 14 | 95.69 72 | 98.32 114 | 97.41 222 | 93.32 98 | 99.77 118 | 98.08 103 | 95.75 193 | 99.81 89 |
|
CNLPA | | | 97.76 73 | 97.38 76 | 98.92 75 | 99.53 86 | 96.84 111 | 99.87 91 | 98.14 181 | 93.78 141 | 96.55 157 | 99.69 84 | 92.28 129 | 99.98 43 | 97.13 134 | 99.44 104 | 99.93 72 |
|
ACMMP |  | | 97.74 74 | 97.44 75 | 98.66 86 | 99.92 31 | 96.13 137 | 99.18 225 | 99.45 18 | 94.84 94 | 96.41 162 | 99.71 80 | 91.40 142 | 99.99 36 | 97.99 107 | 98.03 147 | 99.87 83 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
DeepPCF-MVS | | 95.94 2 | 97.71 75 | 98.98 12 | 93.92 271 | 99.63 79 | 81.76 350 | 99.96 28 | 98.56 81 | 99.47 1 | 99.19 75 | 99.99 1 | 94.16 79 | 100.00 1 | 99.92 12 | 99.93 60 | 100.00 1 |
|
test_fmvsmvis_n_1920 | | | 97.67 76 | 97.59 72 | 97.91 130 | 97.02 226 | 95.34 163 | 99.95 45 | 98.45 106 | 97.87 10 | 97.02 144 | 99.59 96 | 89.64 169 | 99.98 43 | 99.41 41 | 99.34 110 | 98.42 206 |
|
CPTT-MVS | | | 97.64 77 | 97.32 80 | 98.58 93 | 99.97 3 | 95.77 146 | 99.96 28 | 98.35 150 | 89.90 252 | 98.36 112 | 99.79 54 | 91.18 148 | 99.99 36 | 98.37 89 | 99.99 21 | 99.99 23 |
|
sss | | | 97.57 78 | 97.03 90 | 99.18 47 | 98.37 153 | 98.04 66 | 99.73 147 | 99.38 22 | 93.46 150 | 98.76 93 | 99.06 138 | 91.21 144 | 99.89 87 | 96.33 149 | 97.01 169 | 99.62 119 |
|
test2506 | | | 97.53 79 | 97.19 83 | 98.58 93 | 98.66 139 | 96.90 110 | 98.81 268 | 99.77 5 | 94.93 89 | 97.95 124 | 98.96 151 | 92.51 123 | 99.20 156 | 94.93 169 | 98.15 140 | 99.64 114 |
|
EIA-MVS | | | 97.53 79 | 97.46 74 | 97.76 139 | 98.04 173 | 94.84 179 | 99.98 11 | 97.61 224 | 94.41 110 | 97.90 126 | 99.59 96 | 92.40 126 | 98.87 169 | 98.04 104 | 99.13 118 | 99.59 125 |
|
xiu_mvs_v1_base_debu | | | 97.43 81 | 97.06 86 | 98.55 95 | 97.74 190 | 98.14 61 | 99.31 211 | 97.86 206 | 96.43 53 | 99.62 40 | 99.69 84 | 85.56 210 | 99.68 132 | 99.05 51 | 98.31 135 | 97.83 216 |
|
xiu_mvs_v1_base | | | 97.43 81 | 97.06 86 | 98.55 95 | 97.74 190 | 98.14 61 | 99.31 211 | 97.86 206 | 96.43 53 | 99.62 40 | 99.69 84 | 85.56 210 | 99.68 132 | 99.05 51 | 98.31 135 | 97.83 216 |
|
xiu_mvs_v1_base_debi | | | 97.43 81 | 97.06 86 | 98.55 95 | 97.74 190 | 98.14 61 | 99.31 211 | 97.86 206 | 96.43 53 | 99.62 40 | 99.69 84 | 85.56 210 | 99.68 132 | 99.05 51 | 98.31 135 | 97.83 216 |
|
MAR-MVS | | | 97.43 81 | 97.19 83 | 98.15 120 | 99.47 91 | 94.79 182 | 99.05 242 | 98.76 56 | 92.65 178 | 98.66 99 | 99.82 46 | 88.52 186 | 99.98 43 | 98.12 99 | 99.63 87 | 99.67 108 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
dcpmvs_2 | | | 97.42 85 | 98.09 50 | 95.42 212 | 99.58 84 | 87.24 319 | 99.23 221 | 96.95 293 | 94.28 117 | 98.93 85 | 99.73 75 | 94.39 70 | 99.16 160 | 99.89 16 | 99.82 76 | 99.86 85 |
|
thisisatest0515 | | | 97.41 86 | 97.02 91 | 98.59 92 | 97.71 197 | 97.52 84 | 99.97 21 | 98.54 90 | 91.83 208 | 97.45 136 | 99.04 139 | 97.50 9 | 99.10 162 | 94.75 177 | 96.37 180 | 99.16 180 |
|
114514_t | | | 97.41 86 | 96.83 94 | 99.14 56 | 99.51 89 | 97.83 73 | 99.89 86 | 98.27 164 | 88.48 279 | 99.06 79 | 99.66 91 | 90.30 162 | 99.64 138 | 96.32 150 | 99.97 42 | 99.96 61 |
|
EC-MVSNet | | | 97.38 88 | 97.24 81 | 97.80 133 | 97.41 209 | 95.64 153 | 99.99 4 | 97.06 281 | 94.59 102 | 99.63 38 | 99.32 118 | 89.20 179 | 98.14 226 | 98.76 71 | 99.23 114 | 99.62 119 |
|
OMC-MVS | | | 97.28 89 | 97.23 82 | 97.41 155 | 99.76 66 | 93.36 217 | 99.65 160 | 97.95 195 | 96.03 65 | 97.41 137 | 99.70 82 | 89.61 170 | 99.51 142 | 96.73 146 | 98.25 139 | 99.38 158 |
|
PVSNet_Blended_VisFu | | | 97.27 90 | 96.81 95 | 98.66 86 | 98.81 131 | 96.67 115 | 99.92 70 | 98.64 69 | 94.51 104 | 96.38 163 | 98.49 188 | 89.05 180 | 99.88 93 | 97.10 136 | 98.34 133 | 99.43 154 |
|
jason | | | 97.24 91 | 96.86 93 | 98.38 111 | 95.73 269 | 97.32 94 | 99.97 21 | 97.40 248 | 95.34 82 | 98.60 103 | 99.54 102 | 87.70 190 | 98.56 189 | 97.94 110 | 99.47 100 | 99.25 175 |
jason: jason. |
AdaColmap |  | | 97.23 92 | 96.80 96 | 98.51 101 | 99.99 1 | 95.60 155 | 99.09 231 | 98.84 52 | 93.32 154 | 96.74 152 | 99.72 78 | 86.04 207 | 100.00 1 | 98.01 105 | 99.43 106 | 99.94 70 |
|
VNet | | | 97.21 93 | 96.57 103 | 99.13 60 | 98.97 115 | 97.82 74 | 99.03 245 | 99.21 28 | 94.31 115 | 99.18 76 | 98.88 162 | 86.26 206 | 99.89 87 | 98.93 59 | 94.32 208 | 99.69 105 |
|
PVSNet | | 91.05 13 | 97.13 94 | 96.69 99 | 98.45 105 | 99.52 87 | 95.81 144 | 99.95 45 | 99.65 11 | 94.73 97 | 99.04 80 | 99.21 129 | 84.48 220 | 99.95 64 | 94.92 170 | 98.74 126 | 99.58 131 |
|
thisisatest0530 | | | 97.10 95 | 96.72 98 | 98.22 116 | 97.60 201 | 96.70 114 | 99.92 70 | 98.54 90 | 91.11 231 | 97.07 143 | 98.97 149 | 97.47 12 | 99.03 163 | 93.73 204 | 96.09 183 | 98.92 190 |
|
CSCG | | | 97.10 95 | 97.04 89 | 97.27 164 | 99.89 45 | 91.92 248 | 99.90 79 | 99.07 32 | 88.67 275 | 95.26 184 | 99.82 46 | 93.17 105 | 99.98 43 | 98.15 98 | 99.47 100 | 99.90 79 |
|
canonicalmvs | | | 97.09 97 | 96.32 109 | 99.39 39 | 98.93 119 | 98.95 26 | 99.72 150 | 97.35 251 | 94.45 105 | 97.88 127 | 99.42 110 | 86.71 200 | 99.52 141 | 98.48 85 | 93.97 213 | 99.72 102 |
|
diffmvs |  | | 97.00 98 | 96.64 100 | 98.09 122 | 97.64 199 | 96.17 136 | 99.81 121 | 97.19 265 | 94.67 101 | 98.95 83 | 99.28 119 | 86.43 203 | 98.76 176 | 98.37 89 | 97.42 158 | 99.33 166 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
thres200 | | | 96.96 99 | 96.21 112 | 99.22 43 | 98.97 115 | 98.84 34 | 99.85 107 | 99.71 6 | 93.17 159 | 96.26 165 | 98.88 162 | 89.87 167 | 99.51 142 | 94.26 188 | 94.91 203 | 99.31 168 |
|
MVSFormer | | | 96.94 100 | 96.60 101 | 97.95 126 | 97.28 219 | 97.70 78 | 99.55 178 | 97.27 260 | 91.17 228 | 99.43 59 | 99.54 102 | 90.92 152 | 96.89 293 | 94.67 180 | 99.62 88 | 99.25 175 |
|
F-COLMAP | | | 96.93 101 | 96.95 92 | 96.87 173 | 99.71 75 | 91.74 253 | 99.85 107 | 97.95 195 | 93.11 161 | 95.72 177 | 99.16 133 | 92.35 127 | 99.94 72 | 95.32 162 | 99.35 109 | 98.92 190 |
|
DeepC-MVS | | 94.51 4 | 96.92 102 | 96.40 108 | 98.45 105 | 99.16 104 | 95.90 142 | 99.66 158 | 98.06 186 | 96.37 59 | 94.37 193 | 99.49 105 | 83.29 230 | 99.90 83 | 97.63 124 | 99.61 91 | 99.55 134 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
tttt0517 | | | 96.85 103 | 96.49 105 | 97.92 128 | 97.48 207 | 95.89 143 | 99.85 107 | 98.54 90 | 90.72 240 | 96.63 154 | 98.93 160 | 97.47 12 | 99.02 164 | 93.03 216 | 95.76 192 | 98.85 194 |
|
1314 | | | 96.84 104 | 95.96 123 | 99.48 33 | 96.74 243 | 98.52 55 | 98.31 298 | 98.86 49 | 95.82 68 | 89.91 243 | 98.98 147 | 87.49 192 | 99.96 57 | 97.80 115 | 99.73 82 | 99.96 61 |
|
CHOSEN 1792x2688 | | | 96.81 105 | 96.53 104 | 97.64 144 | 98.91 125 | 93.07 219 | 99.65 160 | 99.80 3 | 95.64 73 | 95.39 181 | 98.86 167 | 84.35 223 | 99.90 83 | 96.98 140 | 99.16 116 | 99.95 68 |
|
tfpn200view9 | | | 96.79 106 | 95.99 117 | 99.19 46 | 98.94 117 | 98.82 35 | 99.78 128 | 99.71 6 | 92.86 164 | 96.02 170 | 98.87 165 | 89.33 174 | 99.50 144 | 93.84 196 | 94.57 204 | 99.27 173 |
|
thres400 | | | 96.78 107 | 95.99 117 | 99.16 52 | 98.94 117 | 98.82 35 | 99.78 128 | 99.71 6 | 92.86 164 | 96.02 170 | 98.87 165 | 89.33 174 | 99.50 144 | 93.84 196 | 94.57 204 | 99.16 180 |
|
CANet_DTU | | | 96.76 108 | 96.15 113 | 98.60 90 | 98.78 133 | 97.53 83 | 99.84 111 | 97.63 219 | 97.25 30 | 99.20 73 | 99.64 93 | 81.36 243 | 99.98 43 | 92.77 219 | 98.89 122 | 98.28 209 |
|
PMMVS | | | 96.76 108 | 96.76 97 | 96.76 176 | 98.28 158 | 92.10 243 | 99.91 74 | 97.98 192 | 94.12 123 | 99.53 51 | 99.39 114 | 86.93 199 | 98.73 178 | 96.95 142 | 97.73 150 | 99.45 151 |
|
thres100view900 | | | 96.74 110 | 95.92 129 | 99.18 47 | 98.90 126 | 98.77 39 | 99.74 142 | 99.71 6 | 92.59 182 | 95.84 173 | 98.86 167 | 89.25 176 | 99.50 144 | 93.84 196 | 94.57 204 | 99.27 173 |
|
TESTMET0.1,1 | | | 96.74 110 | 96.26 110 | 98.16 117 | 97.36 212 | 96.48 120 | 99.96 28 | 98.29 161 | 91.93 205 | 95.77 176 | 98.07 202 | 95.54 42 | 98.29 216 | 90.55 250 | 98.89 122 | 99.70 103 |
|
baseline2 | | | 96.71 112 | 96.49 105 | 97.37 158 | 95.63 276 | 95.96 141 | 99.74 142 | 98.88 47 | 92.94 163 | 91.61 223 | 98.97 149 | 97.72 7 | 98.62 187 | 94.83 174 | 98.08 146 | 97.53 226 |
|
thres600view7 | | | 96.69 113 | 95.87 132 | 99.14 56 | 98.90 126 | 98.78 38 | 99.74 142 | 99.71 6 | 92.59 182 | 95.84 173 | 98.86 167 | 89.25 176 | 99.50 144 | 93.44 208 | 94.50 207 | 99.16 180 |
|
EPP-MVSNet | | | 96.69 113 | 96.60 101 | 96.96 170 | 97.74 190 | 93.05 221 | 99.37 204 | 98.56 81 | 88.75 273 | 95.83 175 | 99.01 142 | 96.01 32 | 98.56 189 | 96.92 143 | 97.20 163 | 99.25 175 |
|
HyFIR lowres test | | | 96.66 115 | 96.43 107 | 97.36 160 | 99.05 108 | 93.91 201 | 99.70 152 | 99.80 3 | 90.54 241 | 96.26 165 | 98.08 201 | 92.15 132 | 98.23 223 | 96.84 145 | 95.46 197 | 99.93 72 |
|
MVS | | | 96.60 116 | 95.56 139 | 99.72 12 | 96.85 236 | 99.22 19 | 98.31 298 | 98.94 38 | 91.57 215 | 90.90 231 | 99.61 95 | 86.66 201 | 99.96 57 | 97.36 128 | 99.88 68 | 99.99 23 |
|
test_cas_vis1_n_1920 | | | 96.59 117 | 96.23 111 | 97.65 143 | 98.22 162 | 94.23 192 | 99.99 4 | 97.25 262 | 97.77 12 | 99.58 47 | 99.08 136 | 77.10 278 | 99.97 53 | 97.64 123 | 99.45 103 | 98.74 201 |
|
UA-Net | | | 96.54 118 | 95.96 123 | 98.27 114 | 98.23 161 | 95.71 150 | 98.00 312 | 98.45 106 | 93.72 144 | 98.41 109 | 99.27 122 | 88.71 185 | 99.66 136 | 91.19 235 | 97.69 151 | 99.44 153 |
|
EPMVS | | | 96.53 119 | 96.01 116 | 98.09 122 | 98.43 150 | 96.12 139 | 96.36 338 | 99.43 20 | 93.53 148 | 97.64 131 | 95.04 306 | 94.41 66 | 98.38 208 | 91.13 236 | 98.11 143 | 99.75 98 |
|
test-LLR | | | 96.47 120 | 96.04 115 | 97.78 136 | 97.02 226 | 95.44 158 | 99.96 28 | 98.21 169 | 94.07 126 | 95.55 178 | 96.38 256 | 93.90 86 | 98.27 220 | 90.42 253 | 98.83 124 | 99.64 114 |
|
MVS_Test | | | 96.46 121 | 95.74 134 | 98.61 89 | 98.18 166 | 97.23 96 | 99.31 211 | 97.15 271 | 91.07 232 | 98.84 87 | 97.05 235 | 88.17 188 | 98.97 165 | 94.39 184 | 97.50 155 | 99.61 122 |
|
casdiffmvs_mvg |  | | 96.43 122 | 95.94 126 | 97.89 132 | 97.44 208 | 95.47 157 | 99.86 104 | 97.29 258 | 93.35 152 | 96.03 169 | 99.19 130 | 85.39 213 | 98.72 180 | 97.89 114 | 97.04 167 | 99.49 147 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
baseline | | | 96.43 122 | 95.98 119 | 97.76 139 | 97.34 213 | 95.17 173 | 99.51 184 | 97.17 268 | 93.92 137 | 96.90 147 | 99.28 119 | 85.37 214 | 98.64 186 | 97.50 126 | 96.86 173 | 99.46 149 |
|
casdiffmvs |  | | 96.42 124 | 95.97 122 | 97.77 138 | 97.30 217 | 94.98 175 | 99.84 111 | 97.09 278 | 93.75 143 | 96.58 156 | 99.26 125 | 85.07 216 | 98.78 174 | 97.77 120 | 97.04 167 | 99.54 137 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
test-mter | | | 96.39 125 | 95.93 127 | 97.78 136 | 97.02 226 | 95.44 158 | 99.96 28 | 98.21 169 | 91.81 210 | 95.55 178 | 96.38 256 | 95.17 48 | 98.27 220 | 90.42 253 | 98.83 124 | 99.64 114 |
|
CDS-MVSNet | | | 96.34 126 | 96.07 114 | 97.13 166 | 97.37 211 | 94.96 176 | 99.53 181 | 97.91 201 | 91.55 216 | 95.37 182 | 98.32 197 | 95.05 53 | 97.13 275 | 93.80 200 | 95.75 193 | 99.30 170 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
Vis-MVSNet (Re-imp) | | | 96.32 127 | 95.98 119 | 97.35 161 | 97.93 178 | 94.82 180 | 99.47 191 | 98.15 180 | 91.83 208 | 95.09 185 | 99.11 134 | 91.37 143 | 97.47 255 | 93.47 207 | 97.43 156 | 99.74 99 |
|
3Dnovator+ | | 91.53 11 | 96.31 128 | 95.24 147 | 99.52 27 | 96.88 235 | 98.64 51 | 99.72 150 | 98.24 166 | 95.27 84 | 88.42 282 | 98.98 147 | 82.76 232 | 99.94 72 | 97.10 136 | 99.83 72 | 99.96 61 |
|
Effi-MVS+ | | | 96.30 129 | 95.69 135 | 98.16 117 | 97.85 183 | 96.26 129 | 97.41 319 | 97.21 264 | 90.37 244 | 98.65 100 | 98.58 182 | 86.61 202 | 98.70 182 | 97.11 135 | 97.37 160 | 99.52 141 |
|
IS-MVSNet | | | 96.29 130 | 95.90 130 | 97.45 152 | 98.13 170 | 94.80 181 | 99.08 233 | 97.61 224 | 92.02 204 | 95.54 180 | 98.96 151 | 90.64 158 | 98.08 229 | 93.73 204 | 97.41 159 | 99.47 148 |
|
3Dnovator | | 91.47 12 | 96.28 131 | 95.34 144 | 99.08 62 | 96.82 238 | 97.47 90 | 99.45 194 | 98.81 53 | 95.52 78 | 89.39 257 | 99.00 144 | 81.97 236 | 99.95 64 | 97.27 130 | 99.83 72 | 99.84 86 |
|
tpmrst | | | 96.27 132 | 95.98 119 | 97.13 166 | 97.96 176 | 93.15 218 | 96.34 339 | 98.17 174 | 92.07 200 | 98.71 97 | 95.12 304 | 93.91 85 | 98.73 178 | 94.91 172 | 96.62 174 | 99.50 145 |
|
CostFormer | | | 96.10 133 | 95.88 131 | 96.78 175 | 97.03 225 | 92.55 235 | 97.08 327 | 97.83 209 | 90.04 251 | 98.72 96 | 94.89 313 | 95.01 55 | 98.29 216 | 96.54 148 | 95.77 191 | 99.50 145 |
|
iter_conf05 | | | 96.07 134 | 95.95 125 | 96.44 187 | 98.43 150 | 97.52 84 | 99.91 74 | 96.85 304 | 94.16 121 | 92.49 218 | 97.98 207 | 98.20 4 | 97.34 259 | 97.26 131 | 88.29 251 | 94.45 250 |
|
PVSNet_BlendedMVS | | | 96.05 135 | 95.82 133 | 96.72 178 | 99.59 81 | 96.99 106 | 99.95 45 | 99.10 29 | 94.06 128 | 98.27 116 | 95.80 271 | 89.00 181 | 99.95 64 | 99.12 49 | 87.53 264 | 93.24 323 |
|
PatchMatch-RL | | | 96.04 136 | 95.40 141 | 97.95 126 | 99.59 81 | 95.22 170 | 99.52 182 | 99.07 32 | 93.96 134 | 96.49 158 | 98.35 196 | 82.28 234 | 99.82 110 | 90.15 258 | 99.22 115 | 98.81 197 |
|
iter_conf_final | | | 96.01 137 | 95.93 127 | 96.28 192 | 98.38 152 | 97.03 104 | 99.87 91 | 97.03 284 | 94.05 130 | 92.61 214 | 97.98 207 | 98.01 5 | 97.34 259 | 97.02 138 | 88.39 250 | 94.47 244 |
|
1112_ss | | | 96.01 137 | 95.20 149 | 98.42 108 | 97.80 186 | 96.41 123 | 99.65 160 | 96.66 316 | 92.71 173 | 92.88 211 | 99.40 112 | 92.16 131 | 99.30 153 | 91.92 227 | 93.66 214 | 99.55 134 |
|
PatchmatchNet |  | | 95.94 139 | 95.45 140 | 97.39 157 | 97.83 184 | 94.41 189 | 96.05 345 | 98.40 137 | 92.86 164 | 97.09 142 | 95.28 301 | 94.21 78 | 98.07 231 | 89.26 266 | 98.11 143 | 99.70 103 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
FA-MVS(test-final) | | | 95.86 140 | 95.09 153 | 98.15 120 | 97.74 190 | 95.62 154 | 96.31 340 | 98.17 174 | 91.42 223 | 96.26 165 | 96.13 265 | 90.56 159 | 99.47 150 | 92.18 224 | 97.07 165 | 99.35 163 |
|
TAMVS | | | 95.85 141 | 95.58 138 | 96.65 181 | 97.07 223 | 93.50 210 | 99.17 226 | 97.82 210 | 91.39 225 | 95.02 186 | 98.01 203 | 92.20 130 | 97.30 264 | 93.75 203 | 95.83 190 | 99.14 183 |
|
LS3D | | | 95.84 142 | 95.11 152 | 98.02 125 | 99.85 54 | 95.10 174 | 98.74 273 | 98.50 101 | 87.22 296 | 93.66 201 | 99.86 26 | 87.45 193 | 99.95 64 | 90.94 242 | 99.81 78 | 99.02 188 |
|
baseline1 | | | 95.78 143 | 94.86 159 | 98.54 98 | 98.47 149 | 98.07 64 | 99.06 238 | 97.99 190 | 92.68 176 | 94.13 197 | 98.62 179 | 93.28 101 | 98.69 183 | 93.79 201 | 85.76 273 | 98.84 195 |
|
Test_1112_low_res | | | 95.72 144 | 94.83 160 | 98.42 108 | 97.79 187 | 96.41 123 | 99.65 160 | 96.65 317 | 92.70 174 | 92.86 212 | 96.13 265 | 92.15 132 | 99.30 153 | 91.88 228 | 93.64 215 | 99.55 134 |
|
Vis-MVSNet |  | | 95.72 144 | 95.15 151 | 97.45 152 | 97.62 200 | 94.28 191 | 99.28 217 | 98.24 166 | 94.27 119 | 96.84 149 | 98.94 158 | 79.39 262 | 98.76 176 | 93.25 209 | 98.49 130 | 99.30 170 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
EPNet_dtu | | | 95.71 146 | 95.39 142 | 96.66 180 | 98.92 121 | 93.41 214 | 99.57 174 | 98.90 43 | 96.19 63 | 97.52 133 | 98.56 184 | 92.65 117 | 97.36 257 | 77.89 343 | 98.33 134 | 99.20 178 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
BH-w/o | | | 95.71 146 | 95.38 143 | 96.68 179 | 98.49 148 | 92.28 239 | 99.84 111 | 97.50 238 | 92.12 199 | 92.06 221 | 98.79 171 | 84.69 218 | 98.67 185 | 95.29 163 | 99.66 86 | 99.09 186 |
|
FE-MVS | | | 95.70 148 | 95.01 156 | 97.79 135 | 98.21 163 | 94.57 184 | 95.03 352 | 98.69 61 | 88.90 270 | 97.50 135 | 96.19 262 | 92.60 120 | 99.49 148 | 89.99 260 | 97.94 149 | 99.31 168 |
|
ECVR-MVS |  | | 95.66 149 | 95.05 154 | 97.51 150 | 98.66 139 | 93.71 205 | 98.85 265 | 98.45 106 | 94.93 89 | 96.86 148 | 98.96 151 | 75.22 299 | 99.20 156 | 95.34 161 | 98.15 140 | 99.64 114 |
|
mvs_anonymous | | | 95.65 150 | 95.03 155 | 97.53 148 | 98.19 165 | 95.74 148 | 99.33 208 | 97.49 239 | 90.87 236 | 90.47 235 | 97.10 231 | 88.23 187 | 97.16 272 | 95.92 156 | 97.66 153 | 99.68 106 |
|
test1111 | | | 95.57 151 | 94.98 157 | 97.37 158 | 98.56 141 | 93.37 216 | 98.86 263 | 98.45 106 | 94.95 88 | 96.63 154 | 98.95 156 | 75.21 300 | 99.11 161 | 95.02 167 | 98.14 142 | 99.64 114 |
|
MVSTER | | | 95.53 152 | 95.22 148 | 96.45 185 | 98.56 141 | 97.72 75 | 99.91 74 | 97.67 217 | 92.38 193 | 91.39 225 | 97.14 229 | 97.24 18 | 97.30 264 | 94.80 175 | 87.85 258 | 94.34 260 |
|
tpm2 | | | 95.47 153 | 95.18 150 | 96.35 191 | 96.91 231 | 91.70 257 | 96.96 330 | 97.93 197 | 88.04 286 | 98.44 108 | 95.40 290 | 93.32 98 | 97.97 235 | 94.00 191 | 95.61 195 | 99.38 158 |
|
test_vis1_n_1920 | | | 95.44 154 | 95.31 145 | 95.82 203 | 98.50 147 | 88.74 302 | 99.98 11 | 97.30 257 | 97.84 11 | 99.85 7 | 99.19 130 | 66.82 336 | 99.97 53 | 98.82 67 | 99.46 102 | 98.76 199 |
|
QAPM | | | 95.40 155 | 94.17 172 | 99.10 61 | 96.92 230 | 97.71 76 | 99.40 197 | 98.68 63 | 89.31 258 | 88.94 270 | 98.89 161 | 82.48 233 | 99.96 57 | 93.12 215 | 99.83 72 | 99.62 119 |
|
test_fmvs1 | | | 95.35 156 | 95.68 137 | 94.36 256 | 98.99 113 | 84.98 332 | 99.96 28 | 96.65 317 | 97.60 16 | 99.73 29 | 98.96 151 | 71.58 316 | 99.93 79 | 98.31 92 | 99.37 108 | 98.17 210 |
|
UGNet | | | 95.33 157 | 94.57 164 | 97.62 146 | 98.55 143 | 94.85 178 | 98.67 281 | 99.32 25 | 95.75 71 | 96.80 151 | 96.27 260 | 72.18 313 | 99.96 57 | 94.58 182 | 99.05 120 | 98.04 214 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
BH-untuned | | | 95.18 158 | 94.83 160 | 96.22 194 | 98.36 154 | 91.22 265 | 99.80 125 | 97.32 255 | 90.91 235 | 91.08 228 | 98.67 175 | 83.51 227 | 98.54 191 | 94.23 189 | 99.61 91 | 98.92 190 |
|
BH-RMVSNet | | | 95.18 158 | 94.31 170 | 97.80 133 | 98.17 167 | 95.23 169 | 99.76 136 | 97.53 234 | 92.52 187 | 94.27 195 | 99.25 126 | 76.84 282 | 98.80 172 | 90.89 244 | 99.54 95 | 99.35 163 |
|
PCF-MVS | | 94.20 5 | 95.18 158 | 94.10 173 | 98.43 107 | 98.55 143 | 95.99 140 | 97.91 314 | 97.31 256 | 90.35 245 | 89.48 256 | 99.22 128 | 85.19 215 | 99.89 87 | 90.40 255 | 98.47 131 | 99.41 156 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
dp | | | 95.05 161 | 94.43 166 | 96.91 171 | 97.99 175 | 92.73 229 | 96.29 341 | 97.98 192 | 89.70 255 | 95.93 172 | 94.67 319 | 93.83 89 | 98.45 197 | 86.91 297 | 96.53 176 | 99.54 137 |
|
Fast-Effi-MVS+ | | | 95.02 162 | 94.19 171 | 97.52 149 | 97.88 180 | 94.55 185 | 99.97 21 | 97.08 279 | 88.85 272 | 94.47 192 | 97.96 209 | 84.59 219 | 98.41 200 | 89.84 262 | 97.10 164 | 99.59 125 |
|
IB-MVS | | 92.85 6 | 94.99 163 | 93.94 178 | 98.16 117 | 97.72 195 | 95.69 152 | 99.99 4 | 98.81 53 | 94.28 117 | 92.70 213 | 96.90 239 | 95.08 51 | 99.17 159 | 96.07 153 | 73.88 349 | 99.60 124 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
h-mvs33 | | | 94.92 164 | 94.36 167 | 96.59 182 | 98.85 129 | 91.29 264 | 98.93 254 | 98.94 38 | 95.90 66 | 98.77 91 | 98.42 195 | 90.89 155 | 99.77 118 | 97.80 115 | 70.76 354 | 98.72 202 |
|
XVG-OURS | | | 94.82 165 | 94.74 162 | 95.06 224 | 98.00 174 | 89.19 297 | 99.08 233 | 97.55 230 | 94.10 124 | 94.71 188 | 99.62 94 | 80.51 254 | 99.74 124 | 96.04 154 | 93.06 222 | 96.25 232 |
|
SDMVSNet | | | 94.80 166 | 93.96 177 | 97.33 162 | 98.92 121 | 95.42 160 | 99.59 170 | 98.99 35 | 92.41 191 | 92.55 216 | 97.85 211 | 75.81 293 | 98.93 168 | 97.90 113 | 91.62 224 | 97.64 221 |
|
ADS-MVSNet | | | 94.79 167 | 94.02 175 | 97.11 168 | 97.87 181 | 93.79 202 | 94.24 353 | 98.16 178 | 90.07 249 | 96.43 160 | 94.48 324 | 90.29 163 | 98.19 225 | 87.44 285 | 97.23 161 | 99.36 161 |
|
XVG-OURS-SEG-HR | | | 94.79 167 | 94.70 163 | 95.08 223 | 98.05 172 | 89.19 297 | 99.08 233 | 97.54 232 | 93.66 145 | 94.87 187 | 99.58 98 | 78.78 268 | 99.79 113 | 97.31 129 | 93.40 217 | 96.25 232 |
|
OpenMVS |  | 90.15 15 | 94.77 169 | 93.59 187 | 98.33 112 | 96.07 255 | 97.48 89 | 99.56 176 | 98.57 79 | 90.46 242 | 86.51 305 | 98.95 156 | 78.57 271 | 99.94 72 | 93.86 195 | 99.74 81 | 97.57 225 |
|
LFMVS | | | 94.75 170 | 93.56 189 | 98.30 113 | 99.03 109 | 95.70 151 | 98.74 273 | 97.98 192 | 87.81 289 | 98.47 107 | 99.39 114 | 67.43 334 | 99.53 140 | 98.01 105 | 95.20 202 | 99.67 108 |
|
SCA | | | 94.69 171 | 93.81 182 | 97.33 162 | 97.10 222 | 94.44 186 | 98.86 263 | 98.32 155 | 93.30 155 | 96.17 168 | 95.59 280 | 76.48 286 | 97.95 238 | 91.06 238 | 97.43 156 | 99.59 125 |
|
ab-mvs | | | 94.69 171 | 93.42 193 | 98.51 101 | 98.07 171 | 96.26 129 | 96.49 336 | 98.68 63 | 90.31 246 | 94.54 189 | 97.00 237 | 76.30 288 | 99.71 128 | 95.98 155 | 93.38 218 | 99.56 133 |
|
CVMVSNet | | | 94.68 173 | 94.94 158 | 93.89 274 | 96.80 239 | 86.92 322 | 99.06 238 | 98.98 36 | 94.45 105 | 94.23 196 | 99.02 140 | 85.60 209 | 95.31 339 | 90.91 243 | 95.39 199 | 99.43 154 |
|
cascas | | | 94.64 174 | 93.61 184 | 97.74 141 | 97.82 185 | 96.26 129 | 99.96 28 | 97.78 212 | 85.76 314 | 94.00 198 | 97.54 218 | 76.95 281 | 99.21 155 | 97.23 132 | 95.43 198 | 97.76 220 |
|
HQP-MVS | | | 94.61 175 | 94.50 165 | 94.92 229 | 95.78 263 | 91.85 249 | 99.87 91 | 97.89 202 | 96.82 40 | 93.37 203 | 98.65 176 | 80.65 252 | 98.39 204 | 97.92 111 | 89.60 228 | 94.53 239 |
|
TR-MVS | | | 94.54 176 | 93.56 189 | 97.49 151 | 97.96 176 | 94.34 190 | 98.71 276 | 97.51 237 | 90.30 247 | 94.51 191 | 98.69 174 | 75.56 294 | 98.77 175 | 92.82 218 | 95.99 185 | 99.35 163 |
|
DP-MVS | | | 94.54 176 | 93.42 193 | 97.91 130 | 99.46 93 | 94.04 196 | 98.93 254 | 97.48 240 | 81.15 345 | 90.04 240 | 99.55 100 | 87.02 198 | 99.95 64 | 88.97 268 | 98.11 143 | 99.73 100 |
|
Effi-MVS+-dtu | | | 94.53 178 | 95.30 146 | 92.22 304 | 97.77 188 | 82.54 343 | 99.59 170 | 97.06 281 | 94.92 91 | 95.29 183 | 95.37 294 | 85.81 208 | 97.89 241 | 94.80 175 | 97.07 165 | 96.23 234 |
|
HQP_MVS | | | 94.49 179 | 94.36 167 | 94.87 230 | 95.71 272 | 91.74 253 | 99.84 111 | 97.87 204 | 96.38 56 | 93.01 207 | 98.59 180 | 80.47 256 | 98.37 210 | 97.79 118 | 89.55 231 | 94.52 241 |
|
TAPA-MVS | | 92.12 8 | 94.42 180 | 93.60 186 | 96.90 172 | 99.33 97 | 91.78 252 | 99.78 128 | 98.00 189 | 89.89 253 | 94.52 190 | 99.47 106 | 91.97 136 | 99.18 158 | 69.90 360 | 99.52 96 | 99.73 100 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
hse-mvs2 | | | 94.38 181 | 94.08 174 | 95.31 217 | 98.27 159 | 90.02 288 | 99.29 216 | 98.56 81 | 95.90 66 | 98.77 91 | 98.00 204 | 90.89 155 | 98.26 222 | 97.80 115 | 69.20 360 | 97.64 221 |
|
ET-MVSNet_ETH3D | | | 94.37 182 | 93.28 199 | 97.64 144 | 98.30 155 | 97.99 68 | 99.99 4 | 97.61 224 | 94.35 112 | 71.57 365 | 99.45 109 | 96.23 31 | 95.34 338 | 96.91 144 | 85.14 280 | 99.59 125 |
|
MSDG | | | 94.37 182 | 93.36 197 | 97.40 156 | 98.88 128 | 93.95 200 | 99.37 204 | 97.38 249 | 85.75 316 | 90.80 232 | 99.17 132 | 84.11 225 | 99.88 93 | 86.35 298 | 98.43 132 | 98.36 208 |
|
GeoE | | | 94.36 184 | 93.48 191 | 96.99 169 | 97.29 218 | 93.54 209 | 99.96 28 | 96.72 314 | 88.35 282 | 93.43 202 | 98.94 158 | 82.05 235 | 98.05 232 | 88.12 280 | 96.48 178 | 99.37 160 |
|
miper_enhance_ethall | | | 94.36 184 | 93.98 176 | 95.49 208 | 98.68 138 | 95.24 168 | 99.73 147 | 97.29 258 | 93.28 156 | 89.86 245 | 95.97 269 | 94.37 71 | 97.05 281 | 92.20 223 | 84.45 285 | 94.19 269 |
|
tpmvs | | | 94.28 186 | 93.57 188 | 96.40 188 | 98.55 143 | 91.50 262 | 95.70 351 | 98.55 87 | 87.47 291 | 92.15 220 | 94.26 328 | 91.42 141 | 98.95 167 | 88.15 278 | 95.85 189 | 98.76 199 |
|
test_fmvs1_n | | | 94.25 187 | 94.36 167 | 93.92 271 | 97.68 198 | 83.70 338 | 99.90 79 | 96.57 320 | 97.40 22 | 99.67 35 | 98.88 162 | 61.82 352 | 99.92 80 | 98.23 94 | 99.13 118 | 98.14 213 |
|
FIs | | | 94.10 188 | 93.43 192 | 96.11 196 | 94.70 289 | 96.82 112 | 99.58 172 | 98.93 42 | 92.54 185 | 89.34 259 | 97.31 225 | 87.62 191 | 97.10 278 | 94.22 190 | 86.58 269 | 94.40 252 |
|
mvsmamba | | | 94.10 188 | 93.72 183 | 95.25 219 | 93.57 307 | 94.13 194 | 99.67 157 | 96.45 325 | 93.63 147 | 91.34 227 | 97.77 214 | 86.29 205 | 97.22 270 | 96.65 147 | 88.10 255 | 94.40 252 |
|
CLD-MVS | | | 94.06 190 | 93.90 179 | 94.55 245 | 96.02 257 | 90.69 272 | 99.98 11 | 97.72 213 | 96.62 50 | 91.05 230 | 98.85 170 | 77.21 277 | 98.47 193 | 98.11 100 | 89.51 233 | 94.48 243 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
test0.0.03 1 | | | 93.86 191 | 93.61 184 | 94.64 239 | 95.02 285 | 92.18 242 | 99.93 67 | 98.58 77 | 94.07 126 | 87.96 286 | 98.50 187 | 93.90 86 | 94.96 343 | 81.33 328 | 93.17 219 | 96.78 229 |
|
X-MVStestdata | | | 93.83 192 | 92.06 224 | 99.15 54 | 99.94 13 | 97.50 87 | 99.94 61 | 98.42 129 | 96.22 61 | 99.41 61 | 41.37 385 | 94.34 72 | 99.96 57 | 98.92 60 | 99.95 49 | 99.99 23 |
|
GA-MVS | | | 93.83 192 | 92.84 206 | 96.80 174 | 95.73 269 | 93.57 207 | 99.88 88 | 97.24 263 | 92.57 184 | 92.92 209 | 96.66 248 | 78.73 269 | 97.67 249 | 87.75 283 | 94.06 212 | 99.17 179 |
|
FC-MVSNet-test | | | 93.81 194 | 93.15 201 | 95.80 204 | 94.30 296 | 96.20 134 | 99.42 196 | 98.89 45 | 92.33 195 | 89.03 269 | 97.27 227 | 87.39 194 | 96.83 297 | 93.20 210 | 86.48 270 | 94.36 256 |
|
ADS-MVSNet2 | | | 93.80 195 | 93.88 180 | 93.55 285 | 97.87 181 | 85.94 326 | 94.24 353 | 96.84 305 | 90.07 249 | 96.43 160 | 94.48 324 | 90.29 163 | 95.37 337 | 87.44 285 | 97.23 161 | 99.36 161 |
|
cl22 | | | 93.77 196 | 93.25 200 | 95.33 216 | 99.49 90 | 94.43 187 | 99.61 168 | 98.09 183 | 90.38 243 | 89.16 267 | 95.61 278 | 90.56 159 | 97.34 259 | 91.93 226 | 84.45 285 | 94.21 268 |
|
VDD-MVS | | | 93.77 196 | 92.94 204 | 96.27 193 | 98.55 143 | 90.22 283 | 98.77 272 | 97.79 211 | 90.85 237 | 96.82 150 | 99.42 110 | 61.18 355 | 99.77 118 | 98.95 57 | 94.13 210 | 98.82 196 |
|
EI-MVSNet | | | 93.73 198 | 93.40 196 | 94.74 235 | 96.80 239 | 92.69 230 | 99.06 238 | 97.67 217 | 88.96 267 | 91.39 225 | 99.02 140 | 88.75 184 | 97.30 264 | 91.07 237 | 87.85 258 | 94.22 266 |
|
Fast-Effi-MVS+-dtu | | | 93.72 199 | 93.86 181 | 93.29 289 | 97.06 224 | 86.16 324 | 99.80 125 | 96.83 306 | 92.66 177 | 92.58 215 | 97.83 213 | 81.39 242 | 97.67 249 | 89.75 263 | 96.87 172 | 96.05 236 |
|
tpm | | | 93.70 200 | 93.41 195 | 94.58 243 | 95.36 280 | 87.41 318 | 97.01 328 | 96.90 300 | 90.85 237 | 96.72 153 | 94.14 329 | 90.40 161 | 96.84 296 | 90.75 247 | 88.54 247 | 99.51 143 |
|
PS-MVSNAJss | | | 93.64 201 | 93.31 198 | 94.61 240 | 92.11 336 | 92.19 241 | 99.12 228 | 97.38 249 | 92.51 188 | 88.45 277 | 96.99 238 | 91.20 145 | 97.29 267 | 94.36 185 | 87.71 261 | 94.36 256 |
|
test_vis1_n | | | 93.61 202 | 93.03 203 | 95.35 214 | 95.86 262 | 86.94 321 | 99.87 91 | 96.36 327 | 96.85 38 | 99.54 50 | 98.79 171 | 52.41 365 | 99.83 108 | 98.64 79 | 98.97 121 | 99.29 172 |
|
sd_testset | | | 93.55 203 | 92.83 207 | 95.74 205 | 98.92 121 | 90.89 270 | 98.24 301 | 98.85 51 | 92.41 191 | 92.55 216 | 97.85 211 | 71.07 321 | 98.68 184 | 93.93 193 | 91.62 224 | 97.64 221 |
|
gg-mvs-nofinetune | | | 93.51 204 | 91.86 230 | 98.47 103 | 97.72 195 | 97.96 71 | 92.62 361 | 98.51 96 | 74.70 363 | 97.33 138 | 69.59 376 | 98.91 3 | 97.79 244 | 97.77 120 | 99.56 94 | 99.67 108 |
|
nrg030 | | | 93.51 204 | 92.53 216 | 96.45 185 | 94.36 294 | 97.20 97 | 99.81 121 | 97.16 270 | 91.60 214 | 89.86 245 | 97.46 220 | 86.37 204 | 97.68 248 | 95.88 157 | 80.31 319 | 94.46 245 |
|
tpm cat1 | | | 93.51 204 | 92.52 217 | 96.47 183 | 97.77 188 | 91.47 263 | 96.13 343 | 98.06 186 | 80.98 346 | 92.91 210 | 93.78 332 | 89.66 168 | 98.87 169 | 87.03 293 | 96.39 179 | 99.09 186 |
|
CR-MVSNet | | | 93.45 207 | 92.62 211 | 95.94 199 | 96.29 249 | 92.66 231 | 92.01 364 | 96.23 329 | 92.62 179 | 96.94 145 | 93.31 337 | 91.04 149 | 96.03 328 | 79.23 336 | 95.96 186 | 99.13 184 |
|
AUN-MVS | | | 93.28 208 | 92.60 212 | 95.34 215 | 98.29 156 | 90.09 286 | 99.31 211 | 98.56 81 | 91.80 211 | 96.35 164 | 98.00 204 | 89.38 173 | 98.28 218 | 92.46 220 | 69.22 359 | 97.64 221 |
|
OPM-MVS | | | 93.21 209 | 92.80 208 | 94.44 252 | 93.12 318 | 90.85 271 | 99.77 131 | 97.61 224 | 96.19 63 | 91.56 224 | 98.65 176 | 75.16 301 | 98.47 193 | 93.78 202 | 89.39 234 | 93.99 292 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
dmvs_re | | | 93.20 210 | 93.15 201 | 93.34 287 | 96.54 247 | 83.81 337 | 98.71 276 | 98.51 96 | 91.39 225 | 92.37 219 | 98.56 184 | 78.66 270 | 97.83 243 | 93.89 194 | 89.74 227 | 98.38 207 |
|
miper_ehance_all_eth | | | 93.16 211 | 92.60 212 | 94.82 234 | 97.57 202 | 93.56 208 | 99.50 186 | 97.07 280 | 88.75 273 | 88.85 272 | 95.52 284 | 90.97 151 | 96.74 300 | 90.77 246 | 84.45 285 | 94.17 270 |
|
RRT_MVS | | | 93.14 212 | 92.92 205 | 93.78 276 | 93.31 314 | 90.04 287 | 99.66 158 | 97.69 215 | 92.53 186 | 88.91 271 | 97.76 215 | 84.36 221 | 96.93 291 | 95.10 165 | 86.99 267 | 94.37 255 |
|
VDDNet | | | 93.12 213 | 91.91 228 | 96.76 176 | 96.67 246 | 92.65 233 | 98.69 279 | 98.21 169 | 82.81 339 | 97.75 130 | 99.28 119 | 61.57 353 | 99.48 149 | 98.09 102 | 94.09 211 | 98.15 211 |
|
Anonymous202405211 | | | 93.10 214 | 91.99 226 | 96.40 188 | 99.10 106 | 89.65 294 | 98.88 259 | 97.93 197 | 83.71 333 | 94.00 198 | 98.75 173 | 68.79 326 | 99.88 93 | 95.08 166 | 91.71 223 | 99.68 106 |
|
UniMVSNet (Re) | | | 93.07 215 | 92.13 221 | 95.88 200 | 94.84 286 | 96.24 133 | 99.88 88 | 98.98 36 | 92.49 189 | 89.25 261 | 95.40 290 | 87.09 197 | 97.14 274 | 93.13 214 | 78.16 330 | 94.26 263 |
|
LPG-MVS_test | | | 92.96 216 | 92.71 210 | 93.71 279 | 95.43 278 | 88.67 304 | 99.75 139 | 97.62 221 | 92.81 168 | 90.05 238 | 98.49 188 | 75.24 297 | 98.40 202 | 95.84 158 | 89.12 235 | 94.07 284 |
|
UniMVSNet_NR-MVSNet | | | 92.95 217 | 92.11 222 | 95.49 208 | 94.61 291 | 95.28 166 | 99.83 117 | 99.08 31 | 91.49 217 | 89.21 264 | 96.86 242 | 87.14 196 | 96.73 301 | 93.20 210 | 77.52 335 | 94.46 245 |
|
ACMM | | 91.95 10 | 92.88 218 | 92.52 217 | 93.98 270 | 95.75 268 | 89.08 300 | 99.77 131 | 97.52 236 | 93.00 162 | 89.95 242 | 97.99 206 | 76.17 290 | 98.46 196 | 93.63 206 | 88.87 239 | 94.39 254 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
test_djsdf | | | 92.83 219 | 92.29 220 | 94.47 250 | 91.90 339 | 92.46 236 | 99.55 178 | 97.27 260 | 91.17 228 | 89.96 241 | 96.07 268 | 81.10 245 | 96.89 293 | 94.67 180 | 88.91 237 | 94.05 286 |
|
D2MVS | | | 92.76 220 | 92.59 215 | 93.27 290 | 95.13 281 | 89.54 296 | 99.69 153 | 99.38 22 | 92.26 196 | 87.59 290 | 94.61 321 | 85.05 217 | 97.79 244 | 91.59 231 | 88.01 256 | 92.47 336 |
|
bld_raw_dy_0_64 | | | 92.74 221 | 92.03 225 | 94.87 230 | 93.09 320 | 93.46 211 | 99.12 228 | 95.41 346 | 92.84 167 | 90.44 236 | 97.54 218 | 78.08 275 | 97.04 283 | 93.94 192 | 87.77 260 | 94.11 281 |
|
ACMP | | 92.05 9 | 92.74 221 | 92.42 219 | 93.73 277 | 95.91 261 | 88.72 303 | 99.81 121 | 97.53 234 | 94.13 122 | 87.00 299 | 98.23 198 | 74.07 307 | 98.47 193 | 96.22 152 | 88.86 240 | 93.99 292 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
VPA-MVSNet | | | 92.70 223 | 91.55 235 | 96.16 195 | 95.09 282 | 96.20 134 | 98.88 259 | 99.00 34 | 91.02 234 | 91.82 222 | 95.29 300 | 76.05 292 | 97.96 237 | 95.62 160 | 81.19 307 | 94.30 261 |
|
FMVSNet3 | | | 92.69 224 | 91.58 233 | 95.99 198 | 98.29 156 | 97.42 92 | 99.26 219 | 97.62 221 | 89.80 254 | 89.68 249 | 95.32 296 | 81.62 241 | 96.27 318 | 87.01 294 | 85.65 274 | 94.29 262 |
|
IterMVS-LS | | | 92.69 224 | 92.11 222 | 94.43 254 | 96.80 239 | 92.74 227 | 99.45 194 | 96.89 301 | 88.98 265 | 89.65 252 | 95.38 293 | 88.77 183 | 96.34 315 | 90.98 241 | 82.04 301 | 94.22 266 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
Patchmatch-test | | | 92.65 226 | 91.50 236 | 96.10 197 | 96.85 236 | 90.49 278 | 91.50 366 | 97.19 265 | 82.76 340 | 90.23 237 | 95.59 280 | 95.02 54 | 98.00 234 | 77.41 345 | 96.98 170 | 99.82 88 |
|
c3_l | | | 92.53 227 | 91.87 229 | 94.52 246 | 97.40 210 | 92.99 223 | 99.40 197 | 96.93 298 | 87.86 287 | 88.69 275 | 95.44 288 | 89.95 166 | 96.44 311 | 90.45 252 | 80.69 316 | 94.14 279 |
|
AllTest | | | 92.48 228 | 91.64 231 | 95.00 226 | 99.01 110 | 88.43 308 | 98.94 253 | 96.82 308 | 86.50 305 | 88.71 273 | 98.47 192 | 74.73 303 | 99.88 93 | 85.39 304 | 96.18 181 | 96.71 230 |
|
DU-MVS | | | 92.46 229 | 91.45 238 | 95.49 208 | 94.05 299 | 95.28 166 | 99.81 121 | 98.74 57 | 92.25 197 | 89.21 264 | 96.64 250 | 81.66 239 | 96.73 301 | 93.20 210 | 77.52 335 | 94.46 245 |
|
eth_miper_zixun_eth | | | 92.41 230 | 91.93 227 | 93.84 275 | 97.28 219 | 90.68 273 | 98.83 266 | 96.97 292 | 88.57 278 | 89.19 266 | 95.73 275 | 89.24 178 | 96.69 303 | 89.97 261 | 81.55 304 | 94.15 276 |
|
DIV-MVS_self_test | | | 92.32 231 | 91.60 232 | 94.47 250 | 97.31 216 | 92.74 227 | 99.58 172 | 96.75 312 | 86.99 300 | 87.64 289 | 95.54 282 | 89.55 171 | 96.50 309 | 88.58 272 | 82.44 298 | 94.17 270 |
|
cl____ | | | 92.31 232 | 91.58 233 | 94.52 246 | 97.33 215 | 92.77 225 | 99.57 174 | 96.78 311 | 86.97 301 | 87.56 291 | 95.51 285 | 89.43 172 | 96.62 305 | 88.60 271 | 82.44 298 | 94.16 275 |
|
LCM-MVSNet-Re | | | 92.31 232 | 92.60 212 | 91.43 311 | 97.53 203 | 79.27 360 | 99.02 246 | 91.83 372 | 92.07 200 | 80.31 340 | 94.38 327 | 83.50 228 | 95.48 335 | 97.22 133 | 97.58 154 | 99.54 137 |
|
WR-MVS | | | 92.31 232 | 91.25 240 | 95.48 211 | 94.45 293 | 95.29 165 | 99.60 169 | 98.68 63 | 90.10 248 | 88.07 285 | 96.89 240 | 80.68 251 | 96.80 299 | 93.14 213 | 79.67 323 | 94.36 256 |
|
COLMAP_ROB |  | 90.47 14 | 92.18 235 | 91.49 237 | 94.25 259 | 99.00 112 | 88.04 314 | 98.42 295 | 96.70 315 | 82.30 342 | 88.43 280 | 99.01 142 | 76.97 280 | 99.85 99 | 86.11 301 | 96.50 177 | 94.86 238 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
Anonymous20240529 | | | 92.10 236 | 90.65 247 | 96.47 183 | 98.82 130 | 90.61 275 | 98.72 275 | 98.67 66 | 75.54 360 | 93.90 200 | 98.58 182 | 66.23 338 | 99.90 83 | 94.70 179 | 90.67 226 | 98.90 193 |
|
pmmvs4 | | | 92.10 236 | 91.07 243 | 95.18 221 | 92.82 327 | 94.96 176 | 99.48 190 | 96.83 306 | 87.45 292 | 88.66 276 | 96.56 254 | 83.78 226 | 96.83 297 | 89.29 265 | 84.77 283 | 93.75 308 |
|
jajsoiax | | | 91.92 238 | 91.18 241 | 94.15 260 | 91.35 345 | 90.95 268 | 99.00 247 | 97.42 245 | 92.61 180 | 87.38 295 | 97.08 232 | 72.46 312 | 97.36 257 | 94.53 183 | 88.77 241 | 94.13 280 |
|
XXY-MVS | | | 91.82 239 | 90.46 249 | 95.88 200 | 93.91 302 | 95.40 162 | 98.87 262 | 97.69 215 | 88.63 277 | 87.87 287 | 97.08 232 | 74.38 306 | 97.89 241 | 91.66 230 | 84.07 289 | 94.35 259 |
|
miper_lstm_enhance | | | 91.81 240 | 91.39 239 | 93.06 296 | 97.34 213 | 89.18 299 | 99.38 202 | 96.79 310 | 86.70 304 | 87.47 293 | 95.22 302 | 90.00 165 | 95.86 332 | 88.26 276 | 81.37 306 | 94.15 276 |
|
mvs_tets | | | 91.81 240 | 91.08 242 | 94.00 268 | 91.63 343 | 90.58 276 | 98.67 281 | 97.43 243 | 92.43 190 | 87.37 296 | 97.05 235 | 71.76 314 | 97.32 263 | 94.75 177 | 88.68 243 | 94.11 281 |
|
VPNet | | | 91.81 240 | 90.46 249 | 95.85 202 | 94.74 288 | 95.54 156 | 98.98 248 | 98.59 76 | 92.14 198 | 90.77 233 | 97.44 221 | 68.73 328 | 97.54 253 | 94.89 173 | 77.89 332 | 94.46 245 |
|
RPSCF | | | 91.80 243 | 92.79 209 | 88.83 331 | 98.15 168 | 69.87 367 | 98.11 308 | 96.60 319 | 83.93 331 | 94.33 194 | 99.27 122 | 79.60 261 | 99.46 151 | 91.99 225 | 93.16 220 | 97.18 228 |
|
PVSNet_0 | | 88.03 19 | 91.80 243 | 90.27 255 | 96.38 190 | 98.27 159 | 90.46 279 | 99.94 61 | 99.61 13 | 93.99 132 | 86.26 311 | 97.39 224 | 71.13 320 | 99.89 87 | 98.77 70 | 67.05 364 | 98.79 198 |
|
anonymousdsp | | | 91.79 245 | 90.92 244 | 94.41 255 | 90.76 350 | 92.93 224 | 98.93 254 | 97.17 268 | 89.08 260 | 87.46 294 | 95.30 297 | 78.43 274 | 96.92 292 | 92.38 221 | 88.73 242 | 93.39 319 |
|
JIA-IIPM | | | 91.76 246 | 90.70 246 | 94.94 228 | 96.11 254 | 87.51 317 | 93.16 360 | 98.13 182 | 75.79 359 | 97.58 132 | 77.68 373 | 92.84 112 | 97.97 235 | 88.47 275 | 96.54 175 | 99.33 166 |
|
TranMVSNet+NR-MVSNet | | | 91.68 247 | 90.61 248 | 94.87 230 | 93.69 306 | 93.98 199 | 99.69 153 | 98.65 67 | 91.03 233 | 88.44 278 | 96.83 246 | 80.05 259 | 96.18 321 | 90.26 257 | 76.89 343 | 94.45 250 |
|
NR-MVSNet | | | 91.56 248 | 90.22 256 | 95.60 206 | 94.05 299 | 95.76 147 | 98.25 300 | 98.70 60 | 91.16 230 | 80.78 339 | 96.64 250 | 83.23 231 | 96.57 307 | 91.41 232 | 77.73 334 | 94.46 245 |
|
v2v482 | | | 91.30 249 | 90.07 262 | 95.01 225 | 93.13 316 | 93.79 202 | 99.77 131 | 97.02 285 | 88.05 285 | 89.25 261 | 95.37 294 | 80.73 250 | 97.15 273 | 87.28 289 | 80.04 322 | 94.09 283 |
|
WR-MVS_H | | | 91.30 249 | 90.35 252 | 94.15 260 | 94.17 298 | 92.62 234 | 99.17 226 | 98.94 38 | 88.87 271 | 86.48 307 | 94.46 326 | 84.36 221 | 96.61 306 | 88.19 277 | 78.51 328 | 93.21 324 |
|
tt0805 | | | 91.28 251 | 90.18 258 | 94.60 241 | 96.26 251 | 87.55 316 | 98.39 296 | 98.72 58 | 89.00 264 | 89.22 263 | 98.47 192 | 62.98 349 | 98.96 166 | 90.57 249 | 88.00 257 | 97.28 227 |
|
V42 | | | 91.28 251 | 90.12 261 | 94.74 235 | 93.42 312 | 93.46 211 | 99.68 155 | 97.02 285 | 87.36 293 | 89.85 247 | 95.05 305 | 81.31 244 | 97.34 259 | 87.34 288 | 80.07 321 | 93.40 318 |
|
CP-MVSNet | | | 91.23 253 | 90.22 256 | 94.26 258 | 93.96 301 | 92.39 238 | 99.09 231 | 98.57 79 | 88.95 268 | 86.42 308 | 96.57 253 | 79.19 265 | 96.37 313 | 90.29 256 | 78.95 325 | 94.02 287 |
|
XVG-ACMP-BASELINE | | | 91.22 254 | 90.75 245 | 92.63 301 | 93.73 305 | 85.61 327 | 98.52 289 | 97.44 242 | 92.77 171 | 89.90 244 | 96.85 243 | 66.64 337 | 98.39 204 | 92.29 222 | 88.61 244 | 93.89 300 |
|
v1144 | | | 91.09 255 | 89.83 263 | 94.87 230 | 93.25 315 | 93.69 206 | 99.62 167 | 96.98 290 | 86.83 303 | 89.64 253 | 94.99 310 | 80.94 247 | 97.05 281 | 85.08 307 | 81.16 308 | 93.87 302 |
|
FMVSNet2 | | | 91.02 256 | 89.56 269 | 95.41 213 | 97.53 203 | 95.74 148 | 98.98 248 | 97.41 247 | 87.05 297 | 88.43 280 | 95.00 309 | 71.34 317 | 96.24 320 | 85.12 306 | 85.21 279 | 94.25 265 |
|
MVP-Stereo | | | 90.93 257 | 90.45 251 | 92.37 303 | 91.25 347 | 88.76 301 | 98.05 311 | 96.17 331 | 87.27 295 | 84.04 322 | 95.30 297 | 78.46 273 | 97.27 269 | 83.78 315 | 99.70 84 | 91.09 347 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
IterMVS | | | 90.91 258 | 90.17 259 | 93.12 293 | 96.78 242 | 90.42 281 | 98.89 257 | 97.05 283 | 89.03 262 | 86.49 306 | 95.42 289 | 76.59 285 | 95.02 341 | 87.22 290 | 84.09 288 | 93.93 297 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
GBi-Net | | | 90.88 259 | 89.82 264 | 94.08 263 | 97.53 203 | 91.97 244 | 98.43 292 | 96.95 293 | 87.05 297 | 89.68 249 | 94.72 315 | 71.34 317 | 96.11 323 | 87.01 294 | 85.65 274 | 94.17 270 |
|
test1 | | | 90.88 259 | 89.82 264 | 94.08 263 | 97.53 203 | 91.97 244 | 98.43 292 | 96.95 293 | 87.05 297 | 89.68 249 | 94.72 315 | 71.34 317 | 96.11 323 | 87.01 294 | 85.65 274 | 94.17 270 |
|
IterMVS-SCA-FT | | | 90.85 261 | 90.16 260 | 92.93 297 | 96.72 244 | 89.96 289 | 98.89 257 | 96.99 288 | 88.95 268 | 86.63 303 | 95.67 276 | 76.48 286 | 95.00 342 | 87.04 292 | 84.04 291 | 93.84 304 |
|
v144192 | | | 90.79 262 | 89.52 271 | 94.59 242 | 93.11 319 | 92.77 225 | 99.56 176 | 96.99 288 | 86.38 307 | 89.82 248 | 94.95 312 | 80.50 255 | 97.10 278 | 83.98 313 | 80.41 317 | 93.90 299 |
|
v148 | | | 90.70 263 | 89.63 267 | 93.92 271 | 92.97 323 | 90.97 267 | 99.75 139 | 96.89 301 | 87.51 290 | 88.27 283 | 95.01 307 | 81.67 238 | 97.04 283 | 87.40 287 | 77.17 340 | 93.75 308 |
|
MS-PatchMatch | | | 90.65 264 | 90.30 254 | 91.71 310 | 94.22 297 | 85.50 329 | 98.24 301 | 97.70 214 | 88.67 275 | 86.42 308 | 96.37 258 | 67.82 332 | 98.03 233 | 83.62 316 | 99.62 88 | 91.60 344 |
|
ACMH | | 89.72 17 | 90.64 265 | 89.63 267 | 93.66 283 | 95.64 275 | 88.64 306 | 98.55 285 | 97.45 241 | 89.03 262 | 81.62 334 | 97.61 217 | 69.75 324 | 98.41 200 | 89.37 264 | 87.62 263 | 93.92 298 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
PS-CasMVS | | | 90.63 266 | 89.51 272 | 93.99 269 | 93.83 303 | 91.70 257 | 98.98 248 | 98.52 93 | 88.48 279 | 86.15 312 | 96.53 255 | 75.46 295 | 96.31 317 | 88.83 269 | 78.86 327 | 93.95 295 |
|
v1192 | | | 90.62 267 | 89.25 276 | 94.72 237 | 93.13 316 | 93.07 219 | 99.50 186 | 97.02 285 | 86.33 308 | 89.56 255 | 95.01 307 | 79.22 264 | 97.09 280 | 82.34 323 | 81.16 308 | 94.01 289 |
|
v8 | | | 90.54 268 | 89.17 277 | 94.66 238 | 93.43 311 | 93.40 215 | 99.20 223 | 96.94 297 | 85.76 314 | 87.56 291 | 94.51 322 | 81.96 237 | 97.19 271 | 84.94 308 | 78.25 329 | 93.38 320 |
|
v1921920 | | | 90.46 269 | 89.12 278 | 94.50 248 | 92.96 324 | 92.46 236 | 99.49 188 | 96.98 290 | 86.10 310 | 89.61 254 | 95.30 297 | 78.55 272 | 97.03 286 | 82.17 324 | 80.89 315 | 94.01 289 |
|
our_test_3 | | | 90.39 270 | 89.48 274 | 93.12 293 | 92.40 332 | 89.57 295 | 99.33 208 | 96.35 328 | 87.84 288 | 85.30 317 | 94.99 310 | 84.14 224 | 96.09 326 | 80.38 332 | 84.56 284 | 93.71 313 |
|
PatchT | | | 90.38 271 | 88.75 286 | 95.25 219 | 95.99 258 | 90.16 284 | 91.22 368 | 97.54 232 | 76.80 355 | 97.26 139 | 86.01 367 | 91.88 137 | 96.07 327 | 66.16 368 | 95.91 188 | 99.51 143 |
|
ACMH+ | | 89.98 16 | 90.35 272 | 89.54 270 | 92.78 300 | 95.99 258 | 86.12 325 | 98.81 268 | 97.18 267 | 89.38 257 | 83.14 327 | 97.76 215 | 68.42 330 | 98.43 198 | 89.11 267 | 86.05 272 | 93.78 307 |
|
Baseline_NR-MVSNet | | | 90.33 273 | 89.51 272 | 92.81 299 | 92.84 325 | 89.95 290 | 99.77 131 | 93.94 363 | 84.69 328 | 89.04 268 | 95.66 277 | 81.66 239 | 96.52 308 | 90.99 240 | 76.98 341 | 91.97 342 |
|
MIMVSNet | | | 90.30 274 | 88.67 287 | 95.17 222 | 96.45 248 | 91.64 259 | 92.39 362 | 97.15 271 | 85.99 311 | 90.50 234 | 93.19 339 | 66.95 335 | 94.86 345 | 82.01 325 | 93.43 216 | 99.01 189 |
|
LTVRE_ROB | | 88.28 18 | 90.29 275 | 89.05 281 | 94.02 266 | 95.08 283 | 90.15 285 | 97.19 323 | 97.43 243 | 84.91 326 | 83.99 323 | 97.06 234 | 74.00 308 | 98.28 218 | 84.08 311 | 87.71 261 | 93.62 314 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
v10 | | | 90.25 276 | 88.82 284 | 94.57 244 | 93.53 309 | 93.43 213 | 99.08 233 | 96.87 303 | 85.00 323 | 87.34 297 | 94.51 322 | 80.93 248 | 97.02 288 | 82.85 320 | 79.23 324 | 93.26 322 |
|
v1240 | | | 90.20 277 | 88.79 285 | 94.44 252 | 93.05 322 | 92.27 240 | 99.38 202 | 96.92 299 | 85.89 312 | 89.36 258 | 94.87 314 | 77.89 276 | 97.03 286 | 80.66 331 | 81.08 311 | 94.01 289 |
|
PEN-MVS | | | 90.19 278 | 89.06 280 | 93.57 284 | 93.06 321 | 90.90 269 | 99.06 238 | 98.47 103 | 88.11 284 | 85.91 314 | 96.30 259 | 76.67 283 | 95.94 331 | 87.07 291 | 76.91 342 | 93.89 300 |
|
pmmvs5 | | | 90.17 279 | 89.09 279 | 93.40 286 | 92.10 337 | 89.77 293 | 99.74 142 | 95.58 343 | 85.88 313 | 87.24 298 | 95.74 273 | 73.41 310 | 96.48 310 | 88.54 273 | 83.56 292 | 93.95 295 |
|
EU-MVSNet | | | 90.14 280 | 90.34 253 | 89.54 326 | 92.55 330 | 81.06 354 | 98.69 279 | 98.04 188 | 91.41 224 | 86.59 304 | 96.84 245 | 80.83 249 | 93.31 359 | 86.20 299 | 81.91 302 | 94.26 263 |
|
UniMVSNet_ETH3D | | | 90.06 281 | 88.58 288 | 94.49 249 | 94.67 290 | 88.09 313 | 97.81 316 | 97.57 229 | 83.91 332 | 88.44 278 | 97.41 222 | 57.44 359 | 97.62 251 | 91.41 232 | 88.59 246 | 97.77 219 |
|
USDC | | | 90.00 282 | 88.96 282 | 93.10 295 | 94.81 287 | 88.16 312 | 98.71 276 | 95.54 344 | 93.66 145 | 83.75 325 | 97.20 228 | 65.58 340 | 98.31 215 | 83.96 314 | 87.49 265 | 92.85 330 |
|
Anonymous20231211 | | | 89.86 283 | 88.44 290 | 94.13 262 | 98.93 119 | 90.68 273 | 98.54 287 | 98.26 165 | 76.28 356 | 86.73 301 | 95.54 282 | 70.60 322 | 97.56 252 | 90.82 245 | 80.27 320 | 94.15 276 |
|
OurMVSNet-221017-0 | | | 89.81 284 | 89.48 274 | 90.83 316 | 91.64 342 | 81.21 352 | 98.17 306 | 95.38 348 | 91.48 218 | 85.65 316 | 97.31 225 | 72.66 311 | 97.29 267 | 88.15 278 | 84.83 282 | 93.97 294 |
|
RPMNet | | | 89.76 285 | 87.28 300 | 97.19 165 | 96.29 249 | 92.66 231 | 92.01 364 | 98.31 157 | 70.19 369 | 96.94 145 | 85.87 368 | 87.25 195 | 99.78 115 | 62.69 371 | 95.96 186 | 99.13 184 |
|
Patchmtry | | | 89.70 286 | 88.49 289 | 93.33 288 | 96.24 252 | 89.94 292 | 91.37 367 | 96.23 329 | 78.22 353 | 87.69 288 | 93.31 337 | 91.04 149 | 96.03 328 | 80.18 335 | 82.10 300 | 94.02 287 |
|
v7n | | | 89.65 287 | 88.29 292 | 93.72 278 | 92.22 334 | 90.56 277 | 99.07 237 | 97.10 276 | 85.42 321 | 86.73 301 | 94.72 315 | 80.06 258 | 97.13 275 | 81.14 329 | 78.12 331 | 93.49 316 |
|
ppachtmachnet_test | | | 89.58 288 | 88.35 291 | 93.25 291 | 92.40 332 | 90.44 280 | 99.33 208 | 96.73 313 | 85.49 319 | 85.90 315 | 95.77 272 | 81.09 246 | 96.00 330 | 76.00 351 | 82.49 297 | 93.30 321 |
|
test_fmvs2 | | | 89.47 289 | 89.70 266 | 88.77 334 | 94.54 292 | 75.74 362 | 99.83 117 | 94.70 358 | 94.71 98 | 91.08 228 | 96.82 247 | 54.46 362 | 97.78 246 | 92.87 217 | 88.27 252 | 92.80 331 |
|
DTE-MVSNet | | | 89.40 290 | 88.24 293 | 92.88 298 | 92.66 329 | 89.95 290 | 99.10 230 | 98.22 168 | 87.29 294 | 85.12 319 | 96.22 261 | 76.27 289 | 95.30 340 | 83.56 317 | 75.74 346 | 93.41 317 |
|
pm-mvs1 | | | 89.36 291 | 87.81 297 | 94.01 267 | 93.40 313 | 91.93 247 | 98.62 284 | 96.48 324 | 86.25 309 | 83.86 324 | 96.14 264 | 73.68 309 | 97.04 283 | 86.16 300 | 75.73 347 | 93.04 327 |
|
tfpnnormal | | | 89.29 292 | 87.61 298 | 94.34 257 | 94.35 295 | 94.13 194 | 98.95 252 | 98.94 38 | 83.94 330 | 84.47 321 | 95.51 285 | 74.84 302 | 97.39 256 | 77.05 348 | 80.41 317 | 91.48 346 |
|
LF4IMVS | | | 89.25 293 | 88.85 283 | 90.45 320 | 92.81 328 | 81.19 353 | 98.12 307 | 94.79 355 | 91.44 220 | 86.29 310 | 97.11 230 | 65.30 343 | 98.11 228 | 88.53 274 | 85.25 278 | 92.07 339 |
|
testgi | | | 89.01 294 | 88.04 295 | 91.90 308 | 93.49 310 | 84.89 333 | 99.73 147 | 95.66 341 | 93.89 140 | 85.14 318 | 98.17 199 | 59.68 356 | 94.66 347 | 77.73 344 | 88.88 238 | 96.16 235 |
|
SixPastTwentyTwo | | | 88.73 295 | 88.01 296 | 90.88 314 | 91.85 340 | 82.24 345 | 98.22 304 | 95.18 353 | 88.97 266 | 82.26 330 | 96.89 240 | 71.75 315 | 96.67 304 | 84.00 312 | 82.98 293 | 93.72 312 |
|
FMVSNet1 | | | 88.50 296 | 86.64 302 | 94.08 263 | 95.62 277 | 91.97 244 | 98.43 292 | 96.95 293 | 83.00 337 | 86.08 313 | 94.72 315 | 59.09 357 | 96.11 323 | 81.82 327 | 84.07 289 | 94.17 270 |
|
FMVSNet5 | | | 88.32 297 | 87.47 299 | 90.88 314 | 96.90 234 | 88.39 310 | 97.28 321 | 95.68 340 | 82.60 341 | 84.67 320 | 92.40 345 | 79.83 260 | 91.16 366 | 76.39 350 | 81.51 305 | 93.09 325 |
|
DSMNet-mixed | | | 88.28 298 | 88.24 293 | 88.42 336 | 89.64 357 | 75.38 364 | 98.06 310 | 89.86 376 | 85.59 318 | 88.20 284 | 92.14 347 | 76.15 291 | 91.95 364 | 78.46 341 | 96.05 184 | 97.92 215 |
|
K. test v3 | | | 88.05 299 | 87.24 301 | 90.47 319 | 91.82 341 | 82.23 346 | 98.96 251 | 97.42 245 | 89.05 261 | 76.93 355 | 95.60 279 | 68.49 329 | 95.42 336 | 85.87 303 | 81.01 313 | 93.75 308 |
|
KD-MVS_2432*1600 | | | 88.00 300 | 86.10 304 | 93.70 281 | 96.91 231 | 94.04 196 | 97.17 324 | 97.12 274 | 84.93 324 | 81.96 331 | 92.41 343 | 92.48 124 | 94.51 348 | 79.23 336 | 52.68 375 | 92.56 333 |
|
miper_refine_blended | | | 88.00 300 | 86.10 304 | 93.70 281 | 96.91 231 | 94.04 196 | 97.17 324 | 97.12 274 | 84.93 324 | 81.96 331 | 92.41 343 | 92.48 124 | 94.51 348 | 79.23 336 | 52.68 375 | 92.56 333 |
|
TinyColmap | | | 87.87 302 | 86.51 303 | 91.94 307 | 95.05 284 | 85.57 328 | 97.65 317 | 94.08 361 | 84.40 329 | 81.82 333 | 96.85 243 | 62.14 351 | 98.33 213 | 80.25 334 | 86.37 271 | 91.91 343 |
|
TransMVSNet (Re) | | | 87.25 303 | 85.28 310 | 93.16 292 | 93.56 308 | 91.03 266 | 98.54 287 | 94.05 362 | 83.69 334 | 81.09 337 | 96.16 263 | 75.32 296 | 96.40 312 | 76.69 349 | 68.41 361 | 92.06 340 |
|
Patchmatch-RL test | | | 86.90 304 | 85.98 308 | 89.67 325 | 84.45 367 | 75.59 363 | 89.71 371 | 92.43 369 | 86.89 302 | 77.83 352 | 90.94 351 | 94.22 76 | 93.63 356 | 87.75 283 | 69.61 356 | 99.79 92 |
|
test_vis1_rt | | | 86.87 305 | 86.05 307 | 89.34 327 | 96.12 253 | 78.07 361 | 99.87 91 | 83.54 383 | 92.03 203 | 78.21 350 | 89.51 354 | 45.80 369 | 99.91 81 | 96.25 151 | 93.11 221 | 90.03 356 |
|
Anonymous20231206 | | | 86.32 306 | 85.42 309 | 89.02 330 | 89.11 359 | 80.53 358 | 99.05 242 | 95.28 349 | 85.43 320 | 82.82 328 | 93.92 330 | 74.40 305 | 93.44 358 | 66.99 365 | 81.83 303 | 93.08 326 |
|
MVS-HIRNet | | | 86.22 307 | 83.19 320 | 95.31 217 | 96.71 245 | 90.29 282 | 92.12 363 | 97.33 254 | 62.85 370 | 86.82 300 | 70.37 375 | 69.37 325 | 97.49 254 | 75.12 352 | 97.99 148 | 98.15 211 |
|
pmmvs6 | | | 85.69 308 | 83.84 315 | 91.26 313 | 90.00 356 | 84.41 335 | 97.82 315 | 96.15 332 | 75.86 358 | 81.29 336 | 95.39 292 | 61.21 354 | 96.87 295 | 83.52 318 | 73.29 350 | 92.50 335 |
|
test_0402 | | | 85.58 309 | 83.94 314 | 90.50 318 | 93.81 304 | 85.04 331 | 98.55 285 | 95.20 352 | 76.01 357 | 79.72 344 | 95.13 303 | 64.15 346 | 96.26 319 | 66.04 369 | 86.88 268 | 90.21 355 |
|
UnsupCasMVSNet_eth | | | 85.52 310 | 83.99 312 | 90.10 322 | 89.36 358 | 83.51 339 | 96.65 334 | 97.99 190 | 89.14 259 | 75.89 359 | 93.83 331 | 63.25 348 | 93.92 352 | 81.92 326 | 67.90 363 | 92.88 329 |
|
MDA-MVSNet_test_wron | | | 85.51 311 | 83.32 319 | 92.10 305 | 90.96 348 | 88.58 307 | 99.20 223 | 96.52 322 | 79.70 350 | 57.12 375 | 92.69 341 | 79.11 266 | 93.86 354 | 77.10 347 | 77.46 337 | 93.86 303 |
|
YYNet1 | | | 85.50 312 | 83.33 318 | 92.00 306 | 90.89 349 | 88.38 311 | 99.22 222 | 96.55 321 | 79.60 351 | 57.26 374 | 92.72 340 | 79.09 267 | 93.78 355 | 77.25 346 | 77.37 338 | 93.84 304 |
|
EG-PatchMatch MVS | | | 85.35 313 | 83.81 316 | 89.99 324 | 90.39 352 | 81.89 348 | 98.21 305 | 96.09 333 | 81.78 344 | 74.73 361 | 93.72 333 | 51.56 367 | 97.12 277 | 79.16 339 | 88.61 244 | 90.96 349 |
|
Anonymous20240521 | | | 85.15 314 | 83.81 316 | 89.16 329 | 88.32 360 | 82.69 341 | 98.80 270 | 95.74 338 | 79.72 349 | 81.53 335 | 90.99 350 | 65.38 342 | 94.16 350 | 72.69 355 | 81.11 310 | 90.63 352 |
|
TDRefinement | | | 84.76 315 | 82.56 323 | 91.38 312 | 74.58 379 | 84.80 334 | 97.36 320 | 94.56 359 | 84.73 327 | 80.21 341 | 96.12 267 | 63.56 347 | 98.39 204 | 87.92 281 | 63.97 368 | 90.95 350 |
|
CMPMVS |  | 61.59 21 | 84.75 316 | 85.14 311 | 83.57 345 | 90.32 353 | 62.54 372 | 96.98 329 | 97.59 228 | 74.33 364 | 69.95 367 | 96.66 248 | 64.17 345 | 98.32 214 | 87.88 282 | 88.41 249 | 89.84 358 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
test20.03 | | | 84.72 317 | 83.99 312 | 86.91 339 | 88.19 362 | 80.62 357 | 98.88 259 | 95.94 335 | 88.36 281 | 78.87 345 | 94.62 320 | 68.75 327 | 89.11 370 | 66.52 367 | 75.82 345 | 91.00 348 |
|
CL-MVSNet_self_test | | | 84.50 318 | 83.15 321 | 88.53 335 | 86.00 365 | 81.79 349 | 98.82 267 | 97.35 251 | 85.12 322 | 83.62 326 | 90.91 352 | 76.66 284 | 91.40 365 | 69.53 361 | 60.36 372 | 92.40 337 |
|
new_pmnet | | | 84.49 319 | 82.92 322 | 89.21 328 | 90.03 355 | 82.60 342 | 96.89 332 | 95.62 342 | 80.59 347 | 75.77 360 | 89.17 355 | 65.04 344 | 94.79 346 | 72.12 357 | 81.02 312 | 90.23 354 |
|
MDA-MVSNet-bldmvs | | | 84.09 320 | 81.52 327 | 91.81 309 | 91.32 346 | 88.00 315 | 98.67 281 | 95.92 336 | 80.22 348 | 55.60 376 | 93.32 336 | 68.29 331 | 93.60 357 | 73.76 353 | 76.61 344 | 93.82 306 |
|
pmmvs-eth3d | | | 84.03 321 | 81.97 325 | 90.20 321 | 84.15 368 | 87.09 320 | 98.10 309 | 94.73 357 | 83.05 336 | 74.10 363 | 87.77 362 | 65.56 341 | 94.01 351 | 81.08 330 | 69.24 358 | 89.49 361 |
|
dmvs_testset | | | 83.79 322 | 86.07 306 | 76.94 352 | 92.14 335 | 48.60 384 | 96.75 333 | 90.27 375 | 89.48 256 | 78.65 347 | 98.55 186 | 79.25 263 | 86.65 375 | 66.85 366 | 82.69 295 | 95.57 237 |
|
OpenMVS_ROB |  | 79.82 20 | 83.77 323 | 81.68 326 | 90.03 323 | 88.30 361 | 82.82 340 | 98.46 290 | 95.22 351 | 73.92 365 | 76.00 358 | 91.29 349 | 55.00 361 | 96.94 290 | 68.40 363 | 88.51 248 | 90.34 353 |
|
KD-MVS_self_test | | | 83.59 324 | 82.06 324 | 88.20 337 | 86.93 363 | 80.70 356 | 97.21 322 | 96.38 326 | 82.87 338 | 82.49 329 | 88.97 356 | 67.63 333 | 92.32 362 | 73.75 354 | 62.30 371 | 91.58 345 |
|
MIMVSNet1 | | | 82.58 325 | 80.51 331 | 88.78 332 | 86.68 364 | 84.20 336 | 96.65 334 | 95.41 346 | 78.75 352 | 78.59 348 | 92.44 342 | 51.88 366 | 89.76 369 | 65.26 370 | 78.95 325 | 92.38 338 |
|
mvsany_test3 | | | 82.12 326 | 81.14 328 | 85.06 343 | 81.87 372 | 70.41 366 | 97.09 326 | 92.14 370 | 91.27 227 | 77.84 351 | 88.73 357 | 39.31 372 | 95.49 334 | 90.75 247 | 71.24 353 | 89.29 363 |
|
new-patchmatchnet | | | 81.19 327 | 79.34 334 | 86.76 340 | 82.86 371 | 80.36 359 | 97.92 313 | 95.27 350 | 82.09 343 | 72.02 364 | 86.87 364 | 62.81 350 | 90.74 368 | 71.10 358 | 63.08 369 | 89.19 364 |
|
APD_test1 | | | 81.15 328 | 80.92 329 | 81.86 348 | 92.45 331 | 59.76 376 | 96.04 346 | 93.61 366 | 73.29 366 | 77.06 353 | 96.64 250 | 44.28 371 | 96.16 322 | 72.35 356 | 82.52 296 | 89.67 359 |
|
test_method | | | 80.79 329 | 79.70 333 | 84.08 344 | 92.83 326 | 67.06 369 | 99.51 184 | 95.42 345 | 54.34 374 | 81.07 338 | 93.53 334 | 44.48 370 | 92.22 363 | 78.90 340 | 77.23 339 | 92.94 328 |
|
PM-MVS | | | 80.47 330 | 78.88 335 | 85.26 342 | 83.79 370 | 72.22 365 | 95.89 349 | 91.08 373 | 85.71 317 | 76.56 357 | 88.30 358 | 36.64 373 | 93.90 353 | 82.39 322 | 69.57 357 | 89.66 360 |
|
pmmvs3 | | | 80.27 331 | 77.77 336 | 87.76 338 | 80.32 374 | 82.43 344 | 98.23 303 | 91.97 371 | 72.74 367 | 78.75 346 | 87.97 361 | 57.30 360 | 90.99 367 | 70.31 359 | 62.37 370 | 89.87 357 |
|
N_pmnet | | | 80.06 332 | 80.78 330 | 77.89 351 | 91.94 338 | 45.28 386 | 98.80 270 | 56.82 389 | 78.10 354 | 80.08 342 | 93.33 335 | 77.03 279 | 95.76 333 | 68.14 364 | 82.81 294 | 92.64 332 |
|
test_fmvs3 | | | 79.99 333 | 80.17 332 | 79.45 350 | 84.02 369 | 62.83 370 | 99.05 242 | 93.49 367 | 88.29 283 | 80.06 343 | 86.65 365 | 28.09 377 | 88.00 371 | 88.63 270 | 73.27 351 | 87.54 367 |
|
UnsupCasMVSNet_bld | | | 79.97 334 | 77.03 338 | 88.78 332 | 85.62 366 | 81.98 347 | 93.66 358 | 97.35 251 | 75.51 361 | 70.79 366 | 83.05 370 | 48.70 368 | 94.91 344 | 78.31 342 | 60.29 373 | 89.46 362 |
|
test_f | | | 78.40 335 | 77.59 337 | 80.81 349 | 80.82 373 | 62.48 373 | 96.96 330 | 93.08 368 | 83.44 335 | 74.57 362 | 84.57 369 | 27.95 378 | 92.63 361 | 84.15 310 | 72.79 352 | 87.32 368 |
|
EGC-MVSNET | | | 69.38 336 | 63.76 346 | 86.26 341 | 90.32 353 | 81.66 351 | 96.24 342 | 93.85 364 | 0.99 386 | 3.22 387 | 92.33 346 | 52.44 364 | 92.92 360 | 59.53 374 | 84.90 281 | 84.21 369 |
|
test_vis3_rt | | | 68.82 337 | 66.69 342 | 75.21 355 | 76.24 378 | 60.41 375 | 96.44 337 | 68.71 388 | 75.13 362 | 50.54 379 | 69.52 377 | 16.42 387 | 96.32 316 | 80.27 333 | 66.92 365 | 68.89 375 |
|
FPMVS | | | 68.72 338 | 68.72 339 | 68.71 360 | 65.95 383 | 44.27 388 | 95.97 348 | 94.74 356 | 51.13 375 | 53.26 377 | 90.50 353 | 25.11 380 | 83.00 378 | 60.80 372 | 80.97 314 | 78.87 373 |
|
testf1 | | | 68.38 339 | 66.92 340 | 72.78 357 | 78.80 375 | 50.36 381 | 90.95 369 | 87.35 381 | 55.47 372 | 58.95 371 | 88.14 359 | 20.64 382 | 87.60 372 | 57.28 375 | 64.69 366 | 80.39 371 |
|
APD_test2 | | | 68.38 339 | 66.92 340 | 72.78 357 | 78.80 375 | 50.36 381 | 90.95 369 | 87.35 381 | 55.47 372 | 58.95 371 | 88.14 359 | 20.64 382 | 87.60 372 | 57.28 375 | 64.69 366 | 80.39 371 |
|
LCM-MVSNet | | | 67.77 341 | 64.73 344 | 76.87 353 | 62.95 385 | 56.25 379 | 89.37 372 | 93.74 365 | 44.53 377 | 61.99 369 | 80.74 371 | 20.42 384 | 86.53 376 | 69.37 362 | 59.50 374 | 87.84 365 |
|
PMMVS2 | | | 67.15 342 | 64.15 345 | 76.14 354 | 70.56 382 | 62.07 374 | 93.89 356 | 87.52 380 | 58.09 371 | 60.02 370 | 78.32 372 | 22.38 381 | 84.54 377 | 59.56 373 | 47.03 377 | 81.80 370 |
|
Gipuma |  | | 66.95 343 | 65.00 343 | 72.79 356 | 91.52 344 | 67.96 368 | 66.16 378 | 95.15 354 | 47.89 376 | 58.54 373 | 67.99 378 | 29.74 375 | 87.54 374 | 50.20 378 | 77.83 333 | 62.87 378 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
tmp_tt | | | 65.23 344 | 62.94 347 | 72.13 359 | 44.90 388 | 50.03 383 | 81.05 375 | 89.42 379 | 38.45 378 | 48.51 380 | 99.90 18 | 54.09 363 | 78.70 380 | 91.84 229 | 18.26 382 | 87.64 366 |
|
ANet_high | | | 56.10 345 | 52.24 348 | 67.66 361 | 49.27 387 | 56.82 378 | 83.94 374 | 82.02 384 | 70.47 368 | 33.28 384 | 64.54 379 | 17.23 386 | 69.16 382 | 45.59 380 | 23.85 381 | 77.02 374 |
|
PMVS |  | 49.05 23 | 53.75 346 | 51.34 350 | 60.97 363 | 40.80 389 | 34.68 389 | 74.82 377 | 89.62 378 | 37.55 379 | 28.67 385 | 72.12 374 | 7.09 389 | 81.63 379 | 43.17 381 | 68.21 362 | 66.59 377 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
E-PMN | | | 52.30 347 | 52.18 349 | 52.67 364 | 71.51 380 | 45.40 385 | 93.62 359 | 76.60 386 | 36.01 380 | 43.50 381 | 64.13 380 | 27.11 379 | 67.31 383 | 31.06 383 | 26.06 379 | 45.30 382 |
|
MVE |  | 53.74 22 | 51.54 348 | 47.86 352 | 62.60 362 | 59.56 386 | 50.93 380 | 79.41 376 | 77.69 385 | 35.69 381 | 36.27 383 | 61.76 382 | 5.79 391 | 69.63 381 | 37.97 382 | 36.61 378 | 67.24 376 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
EMVS | | | 51.44 349 | 51.22 351 | 52.11 365 | 70.71 381 | 44.97 387 | 94.04 355 | 75.66 387 | 35.34 382 | 42.40 382 | 61.56 383 | 28.93 376 | 65.87 384 | 27.64 384 | 24.73 380 | 45.49 381 |
|
testmvs | | | 40.60 350 | 44.45 353 | 29.05 367 | 19.49 391 | 14.11 392 | 99.68 155 | 18.47 390 | 20.74 383 | 64.59 368 | 98.48 191 | 10.95 388 | 17.09 387 | 56.66 377 | 11.01 383 | 55.94 380 |
|
test123 | | | 37.68 351 | 39.14 354 | 33.31 366 | 19.94 390 | 24.83 391 | 98.36 297 | 9.75 391 | 15.53 384 | 51.31 378 | 87.14 363 | 19.62 385 | 17.74 386 | 47.10 379 | 3.47 385 | 57.36 379 |
|
cdsmvs_eth3d_5k | | | 23.43 352 | 31.24 355 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 98.09 183 | 0.00 387 | 0.00 388 | 99.67 89 | 83.37 229 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
wuyk23d | | | 20.37 353 | 20.84 356 | 18.99 368 | 65.34 384 | 27.73 390 | 50.43 379 | 7.67 392 | 9.50 385 | 8.01 386 | 6.34 386 | 6.13 390 | 26.24 385 | 23.40 385 | 10.69 384 | 2.99 383 |
|
ab-mvs-re | | | 8.28 354 | 11.04 357 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 99.40 112 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
pcd_1.5k_mvsjas | | | 7.60 355 | 10.13 358 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 388 | 91.20 145 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
test_blank | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.02 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
uanet_test | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 388 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
DCPMVS | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 388 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
sosnet-low-res | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 388 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
sosnet | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 388 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
uncertanet | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 388 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
Regformer | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 388 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
uanet | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 388 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
FOURS1 | | | | | | 99.92 31 | 97.66 80 | 99.95 45 | 98.36 148 | 95.58 75 | 99.52 53 | | | | | | |
|
MSC_two_6792asdad | | | | | 99.93 2 | 99.91 39 | 99.80 2 | | 98.41 133 | | | | | 100.00 1 | 99.96 9 | 100.00 1 | 100.00 1 |
|
PC_three_1452 | | | | | | | | | | 96.96 36 | 99.80 15 | 99.79 54 | 97.49 10 | 100.00 1 | 99.99 5 | 99.98 32 | 100.00 1 |
|
No_MVS | | | | | 99.93 2 | 99.91 39 | 99.80 2 | | 98.41 133 | | | | | 100.00 1 | 99.96 9 | 100.00 1 | 100.00 1 |
|
test_one_0601 | | | | | | 99.94 13 | 99.30 11 | | 98.41 133 | 96.63 48 | 99.75 27 | 99.93 11 | 97.49 10 | | | | |
|
eth-test2 | | | | | | 0.00 392 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 392 | | | | | | | | | | | |
|
ZD-MVS | | | | | | 99.92 31 | 98.57 53 | | 98.52 93 | 92.34 194 | 99.31 68 | 99.83 43 | 95.06 52 | 99.80 111 | 99.70 31 | 99.97 42 | |
|
RE-MVS-def | | | | 98.13 47 | | 99.79 62 | 96.37 126 | 99.76 136 | 98.31 157 | 94.43 107 | 99.40 63 | 99.75 67 | 92.95 109 | | 98.90 63 | 99.92 63 | 99.97 55 |
|
IU-MVS | | | | | | 99.93 24 | 99.31 9 | | 98.41 133 | 97.71 13 | 99.84 10 | | | | 100.00 1 | 100.00 1 | 100.00 1 |
|
OPU-MVS | | | | | 99.93 2 | 99.89 45 | 99.80 2 | 99.96 28 | | | | 99.80 51 | 97.44 14 | 100.00 1 | 100.00 1 | 99.98 32 | 100.00 1 |
|
test_241102_TWO | | | | | | | | | 98.43 118 | 97.27 27 | 99.80 15 | 99.94 4 | 97.18 21 | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
|
test_241102_ONE | | | | | | 99.93 24 | 99.30 11 | | 98.43 118 | 97.26 29 | 99.80 15 | 99.88 21 | 96.71 24 | 100.00 1 | | | |
|
9.14 | | | | 98.38 31 | | 99.87 51 | | 99.91 74 | 98.33 153 | 93.22 157 | 99.78 24 | 99.89 19 | 94.57 64 | 99.85 99 | 99.84 19 | 99.97 42 | |
|
save fliter | | | | | | 99.82 58 | 98.79 37 | 99.96 28 | 98.40 137 | 97.66 15 | | | | | | | |
|
test_0728_THIRD | | | | | | | | | | 96.48 51 | 99.83 11 | 99.91 14 | 97.87 6 | 100.00 1 | 99.92 12 | 100.00 1 | 100.00 1 |
|
test_0728_SECOND | | | | | 99.82 7 | 99.94 13 | 99.47 7 | 99.95 45 | 98.43 118 | | | | | 100.00 1 | 99.99 5 | 100.00 1 | 100.00 1 |
|
test0726 | | | | | | 99.93 24 | 99.29 14 | 99.96 28 | 98.42 129 | 97.28 25 | 99.86 5 | 99.94 4 | 97.22 19 | | | | |
|
GSMVS | | | | | | | | | | | | | | | | | 99.59 125 |
|
test_part2 | | | | | | 99.89 45 | 99.25 17 | | | | 99.49 55 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 94.72 61 | | | | 99.59 125 |
|
sam_mvs | | | | | | | | | | | | | 94.25 75 | | | | |
|
ambc | | | | | 83.23 346 | 77.17 377 | 62.61 371 | 87.38 373 | 94.55 360 | | 76.72 356 | 86.65 365 | 30.16 374 | 96.36 314 | 84.85 309 | 69.86 355 | 90.73 351 |
|
MTGPA |  | | | | | | | | 98.28 162 | | | | | | | | |
|
test_post1 | | | | | | | | 95.78 350 | | | | 59.23 384 | 93.20 104 | 97.74 247 | 91.06 238 | | |
|
test_post | | | | | | | | | | | | 63.35 381 | 94.43 65 | 98.13 227 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 91.70 348 | 95.12 49 | 97.95 238 | | | |
|
GG-mvs-BLEND | | | | | 98.54 98 | 98.21 163 | 98.01 67 | 93.87 357 | 98.52 93 | | 97.92 125 | 97.92 210 | 99.02 2 | 97.94 240 | 98.17 96 | 99.58 93 | 99.67 108 |
|
MTMP | | | | | | | | 99.87 91 | 96.49 323 | | | | | | | | |
|
gm-plane-assit | | | | | | 96.97 229 | 93.76 204 | | | 91.47 219 | | 98.96 151 | | 98.79 173 | 94.92 170 | | |
|
test9_res | | | | | | | | | | | | | | | 99.71 30 | 99.99 21 | 100.00 1 |
|
TEST9 | | | | | | 99.92 31 | 98.92 27 | 99.96 28 | 98.43 118 | 93.90 138 | 99.71 31 | 99.86 26 | 95.88 37 | 99.85 99 | | | |
|
test_8 | | | | | | 99.92 31 | 98.88 30 | 99.96 28 | 98.43 118 | 94.35 112 | 99.69 33 | 99.85 30 | 95.94 34 | 99.85 99 | | | |
|
agg_prior2 | | | | | | | | | | | | | | | 99.48 37 | 100.00 1 | 100.00 1 |
|
agg_prior | | | | | | 99.93 24 | 98.77 39 | | 98.43 118 | | 99.63 38 | | | 99.85 99 | | | |
|
TestCases | | | | | 95.00 226 | 99.01 110 | 88.43 308 | | 96.82 308 | 86.50 305 | 88.71 273 | 98.47 192 | 74.73 303 | 99.88 93 | 85.39 304 | 96.18 181 | 96.71 230 |
|
test_prior4 | | | | | | | 98.05 65 | 99.94 61 | | | | | | | | | |
|
test_prior2 | | | | | | | | 99.95 45 | | 95.78 69 | 99.73 29 | 99.76 62 | 96.00 33 | | 99.78 24 | 100.00 1 | |
|
test_prior | | | | | 99.43 34 | 99.94 13 | 98.49 57 | | 98.65 67 | | | | | 99.80 111 | | | 99.99 23 |
|
旧先验2 | | | | | | | | 99.46 193 | | 94.21 120 | 99.85 7 | | | 99.95 64 | 96.96 141 | | |
|
æ–°å‡ ä½•2 | | | | | | | | 99.40 197 | | | | | | | | | |
|
æ–°å‡ ä½•1 | | | | | 99.42 36 | 99.75 68 | 98.27 60 | | 98.63 72 | 92.69 175 | 99.55 48 | 99.82 46 | 94.40 67 | 100.00 1 | 91.21 234 | 99.94 54 | 99.99 23 |
|
旧先验1 | | | | | | 99.76 66 | 97.52 84 | | 98.64 69 | | | 99.85 30 | 95.63 41 | | | 99.94 54 | 99.99 23 |
|
æ— å…ˆéªŒ | | | | | | | | 99.49 188 | 98.71 59 | 93.46 150 | | | | 100.00 1 | 94.36 185 | | 99.99 23 |
|
原ACMM2 | | | | | | | | 99.90 79 | | | | | | | | | |
|
原ACMM1 | | | | | 98.96 72 | 99.73 72 | 96.99 106 | | 98.51 96 | 94.06 128 | 99.62 40 | 99.85 30 | 94.97 58 | 99.96 57 | 95.11 164 | 99.95 49 | 99.92 77 |
|
test222 | | | | | | 99.55 85 | 97.41 93 | 99.34 207 | 98.55 87 | 91.86 207 | 99.27 72 | 99.83 43 | 93.84 88 | | | 99.95 49 | 99.99 23 |
|
testdata2 | | | | | | | | | | | | | | 99.99 36 | 90.54 251 | | |
|
segment_acmp | | | | | | | | | | | | | 96.68 26 | | | | |
|
testdata | | | | | 98.42 108 | 99.47 91 | 95.33 164 | | 98.56 81 | 93.78 141 | 99.79 23 | 99.85 30 | 93.64 93 | 99.94 72 | 94.97 168 | 99.94 54 | 100.00 1 |
|
testdata1 | | | | | | | | 99.28 217 | | 96.35 60 | | | | | | | |
|
test12 | | | | | 99.43 34 | 99.74 69 | 98.56 54 | | 98.40 137 | | 99.65 36 | | 94.76 60 | 99.75 122 | | 99.98 32 | 99.99 23 |
|
plane_prior7 | | | | | | 95.71 272 | 91.59 261 | | | | | | | | | | |
|
plane_prior6 | | | | | | 95.76 267 | 91.72 256 | | | | | | 80.47 256 | | | | |
|
plane_prior5 | | | | | | | | | 97.87 204 | | | | | 98.37 210 | 97.79 118 | 89.55 231 | 94.52 241 |
|
plane_prior4 | | | | | | | | | | | | 98.59 180 | | | | | |
|
plane_prior3 | | | | | | | 91.64 259 | | | 96.63 48 | 93.01 207 | | | | | | |
|
plane_prior2 | | | | | | | | 99.84 111 | | 96.38 56 | | | | | | | |
|
plane_prior1 | | | | | | 95.73 269 | | | | | | | | | | | |
|
plane_prior | | | | | | | 91.74 253 | 99.86 104 | | 96.76 44 | | | | | | 89.59 230 | |
|
n2 | | | | | | | | | 0.00 393 | | | | | | | | |
|
nn | | | | | | | | | 0.00 393 | | | | | | | | |
|
door-mid | | | | | | | | | 89.69 377 | | | | | | | | |
|
lessismore_v0 | | | | | 90.53 317 | 90.58 351 | 80.90 355 | | 95.80 337 | | 77.01 354 | 95.84 270 | 66.15 339 | 96.95 289 | 83.03 319 | 75.05 348 | 93.74 311 |
|
LGP-MVS_train | | | | | 93.71 279 | 95.43 278 | 88.67 304 | | 97.62 221 | 92.81 168 | 90.05 238 | 98.49 188 | 75.24 297 | 98.40 202 | 95.84 158 | 89.12 235 | 94.07 284 |
|
test11 | | | | | | | | | 98.44 110 | | | | | | | | |
|
door | | | | | | | | | 90.31 374 | | | | | | | | |
|
HQP5-MVS | | | | | | | 91.85 249 | | | | | | | | | | |
|
HQP-NCC | | | | | | 95.78 263 | | 99.87 91 | | 96.82 40 | 93.37 203 | | | | | | |
|
ACMP_Plane | | | | | | 95.78 263 | | 99.87 91 | | 96.82 40 | 93.37 203 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 97.92 111 | | |
|
HQP4-MVS | | | | | | | | | | | 93.37 203 | | | 98.39 204 | | | 94.53 239 |
|
HQP3-MVS | | | | | | | | | 97.89 202 | | | | | | | 89.60 228 | |
|
HQP2-MVS | | | | | | | | | | | | | 80.65 252 | | | | |
|
NP-MVS | | | | | | 95.77 266 | 91.79 251 | | | | | 98.65 176 | | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 96.26 129 | 96.11 344 | | 91.89 206 | 98.06 121 | | 94.40 67 | | 94.30 187 | | 99.67 108 |
|
MDTV_nov1_ep13 | | | | 95.69 135 | | 97.90 179 | 94.15 193 | 95.98 347 | 98.44 110 | 93.12 160 | 97.98 123 | 95.74 273 | 95.10 50 | 98.58 188 | 90.02 259 | 96.92 171 | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 87.04 266 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 88.23 253 | |
|
Test By Simon | | | | | | | | | | | | | 92.82 114 | | | | |
|
ITE_SJBPF | | | | | 92.38 302 | 95.69 274 | 85.14 330 | | 95.71 339 | 92.81 168 | 89.33 260 | 98.11 200 | 70.23 323 | 98.42 199 | 85.91 302 | 88.16 254 | 93.59 315 |
|
DeepMVS_CX |  | | | | 82.92 347 | 95.98 260 | 58.66 377 | | 96.01 334 | 92.72 172 | 78.34 349 | 95.51 285 | 58.29 358 | 98.08 229 | 82.57 321 | 85.29 277 | 92.03 341 |
|