This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
CNVR-MVS99.40 199.26 199.84 499.98 299.51 499.98 898.69 5598.20 399.93 199.98 296.82 19100.00 199.75 22100.00 199.99 20
NCCC99.37 299.25 299.71 1099.96 899.15 1699.97 1698.62 6798.02 699.90 299.95 397.33 13100.00 199.54 33100.00 1100.00 1
MCST-MVS99.32 399.14 499.86 399.97 399.59 399.97 1698.64 6398.47 299.13 7699.92 1196.38 26100.00 199.74 24100.00 1100.00 1
DVP-MVS99.30 499.16 399.73 899.93 2699.29 1099.95 4198.32 15197.28 1899.83 1099.91 1397.22 15100.00 199.99 5100.00 199.89 90
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
SED-MVS99.28 599.11 699.77 699.93 2699.30 899.96 2398.43 11697.27 2099.80 1699.94 496.71 20100.00 1100.00 1100.00 1100.00 1
DPE-MVScopyleft99.26 699.10 799.74 799.89 4599.24 1499.87 8898.44 10897.48 1599.64 3599.94 496.68 2299.99 3699.99 5100.00 199.99 20
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MSLP-MVS++99.13 799.01 999.49 3199.94 1498.46 5999.98 898.86 4597.10 2599.80 1699.94 495.92 33100.00 199.51 34100.00 1100.00 1
MSP-MVS99.09 899.12 598.98 8099.93 2697.24 10499.95 4198.42 12797.50 1499.52 4899.88 2297.43 1299.71 12999.50 3599.98 33100.00 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
HPM-MVS++copyleft99.07 998.88 1399.63 1299.90 4299.02 1999.95 4198.56 7797.56 1399.44 5299.85 3395.38 45100.00 199.31 4399.99 2099.87 93
APDe-MVS99.06 1098.91 1299.51 2899.94 1498.76 4099.91 7098.39 13597.20 2499.46 5099.85 3395.53 4299.79 10999.86 12100.00 199.99 20
SteuartSystems-ACMMP99.02 1198.97 1199.18 5498.72 13897.71 8399.98 898.44 10896.85 2999.80 1699.91 1397.57 699.85 9499.44 3899.99 2099.99 20
Skip Steuart: Steuart Systems R&D Blog.
CHOSEN 280x42099.01 1299.03 898.95 8399.38 10498.87 2798.46 28299.42 2097.03 2799.02 8099.09 13899.35 198.21 21699.73 2799.78 8899.77 104
test_prior398.99 1398.84 1499.43 3599.94 1498.49 5799.95 4198.65 6095.78 6099.73 2699.76 7296.00 2999.80 10699.78 20100.00 199.99 20
xxxxxxxxxxxxxcwj98.98 1498.79 1599.54 2399.82 6598.79 3399.96 2397.52 23497.66 1099.81 1299.89 1994.70 6599.86 9099.84 1399.93 6399.96 70
TSAR-MVS + MP.98.93 1598.77 1699.41 3999.74 7798.67 4499.77 12798.38 13996.73 3599.88 399.74 8194.89 6299.59 14099.80 1899.98 3399.97 63
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SD-MVS98.92 1698.70 1799.56 2199.70 8598.73 4199.94 5698.34 14896.38 4499.81 1299.76 7294.59 6799.98 4299.84 1399.96 4899.97 63
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MG-MVS98.91 1798.65 2099.68 1199.94 1499.07 1899.64 16199.44 1897.33 1799.00 8399.72 8494.03 9099.98 4298.73 74100.00 1100.00 1
testtj98.89 1898.69 1899.52 2699.94 1498.56 5399.90 7498.55 8395.14 7899.72 2999.84 4695.46 43100.00 199.65 3299.99 2099.99 20
train_agg98.88 1998.65 2099.59 1899.92 3598.92 2399.96 2398.43 11694.35 10599.71 3099.86 2995.94 3199.85 9499.69 3199.98 3399.99 20
agg_prior198.88 1998.66 1999.54 2399.93 2698.77 3699.96 2398.43 11694.63 9499.63 3699.85 3395.79 3799.85 9499.72 2899.99 2099.99 20
DPM-MVS98.83 2198.46 3099.97 199.33 10699.92 199.96 2398.44 10897.96 799.55 4399.94 497.18 17100.00 193.81 18999.94 5799.98 51
ETH3 D test640098.81 2298.54 2699.59 1899.93 2698.93 2299.93 6298.46 10594.56 9599.84 899.92 1194.32 8099.86 9099.96 899.98 33100.00 1
DeepC-MVS_fast96.59 198.81 2298.54 2699.62 1599.90 4298.85 2999.24 21798.47 10398.14 499.08 7799.91 1393.09 116100.00 199.04 5499.99 20100.00 1
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
Regformer-198.79 2498.60 2399.36 4599.85 5598.34 6299.87 8898.52 9096.05 5399.41 5599.79 6294.93 6099.76 11899.07 4999.90 7299.99 20
Regformer-298.78 2598.59 2499.36 4599.85 5598.32 6399.87 8898.52 9096.04 5499.41 5599.79 6294.92 6199.76 11899.05 5099.90 7299.98 51
SMA-MVScopyleft98.76 2698.48 2999.62 1599.87 5298.87 2799.86 9998.38 13993.19 14999.77 2399.94 495.54 40100.00 199.74 2499.99 20100.00 1
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MVS_111021_HR98.72 2798.62 2299.01 7899.36 10597.18 10799.93 6299.90 196.81 3398.67 9799.77 6893.92 9299.89 7999.27 4599.94 5799.96 70
XVS98.70 2898.55 2599.15 6199.94 1497.50 9499.94 5698.42 12796.22 4999.41 5599.78 6694.34 7699.96 5398.92 6099.95 5199.99 20
ETH3D-3000-0.198.68 2998.42 3199.47 3499.83 6398.57 5199.90 7498.37 14293.81 13199.81 1299.90 1794.34 7699.86 9099.84 1399.98 3399.97 63
SF-MVS98.67 3098.40 3599.50 2999.77 7398.67 4499.90 7498.21 16893.53 14099.81 1299.89 1994.70 6599.86 9099.84 1399.93 6399.96 70
CDPH-MVS98.65 3198.36 4299.49 3199.94 1498.73 4199.87 8898.33 14993.97 12399.76 2499.87 2694.99 5899.75 12198.55 84100.00 199.98 51
APD-MVScopyleft98.62 3298.35 4399.41 3999.90 4298.51 5699.87 8898.36 14494.08 11699.74 2599.73 8394.08 8899.74 12599.42 3999.99 2099.99 20
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
TSAR-MVS + GP.98.60 3398.51 2898.86 8799.73 8196.63 12399.97 1697.92 19998.07 598.76 9399.55 10595.00 5799.94 6899.91 1197.68 14899.99 20
PAPM98.60 3398.42 3199.14 6396.05 24898.96 2099.90 7499.35 2396.68 3798.35 11299.66 9796.45 2598.51 18599.45 3799.89 7499.96 70
#test#98.59 3598.41 3399.14 6399.96 897.43 9999.95 4198.61 6995.00 8099.31 6499.85 3394.22 83100.00 198.78 7299.98 3399.98 51
Regformer-398.58 3698.41 3399.10 6999.84 6097.57 8899.66 15498.52 9095.79 5999.01 8199.77 6894.40 7199.75 12198.82 6799.83 8199.98 51
HFP-MVS98.56 3798.37 4099.14 6399.96 897.43 9999.95 4198.61 6994.77 8699.31 6499.85 3394.22 83100.00 198.70 7599.98 3399.98 51
Regformer-498.56 3798.39 3799.08 7199.84 6097.52 9199.66 15498.52 9095.76 6299.01 8199.77 6894.33 7999.75 12198.80 7099.83 8199.98 51
region2R98.54 3998.37 4099.05 7399.96 897.18 10799.96 2398.55 8394.87 8499.45 5199.85 3394.07 89100.00 198.67 77100.00 199.98 51
DELS-MVS98.54 3998.22 4899.50 2999.15 11198.65 48100.00 198.58 7397.70 998.21 11999.24 13292.58 12899.94 6898.63 8299.94 5799.92 87
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PAPR98.52 4198.16 5399.58 2099.97 398.77 3699.95 4198.43 11695.35 7398.03 12299.75 7794.03 9099.98 4298.11 9899.83 8199.99 20
ACMMPR98.50 4298.32 4499.05 7399.96 897.18 10799.95 4198.60 7194.77 8699.31 6499.84 4693.73 98100.00 198.70 7599.98 3399.98 51
ACMMP_NAP98.49 4398.14 5499.54 2399.66 8798.62 5099.85 10298.37 14294.68 9199.53 4599.83 4992.87 120100.00 198.66 8099.84 8099.99 20
EPNet98.49 4398.40 3598.77 9099.62 8996.80 12099.90 7499.51 1597.60 1299.20 7199.36 12293.71 9999.91 7497.99 10598.71 12799.61 127
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
SR-MVS98.46 4598.30 4698.93 8499.88 4997.04 11299.84 10698.35 14694.92 8199.32 6399.80 5893.35 10599.78 11199.30 4499.95 5199.96 70
CP-MVS98.45 4698.32 4498.87 8699.96 896.62 12499.97 1698.39 13594.43 10098.90 8699.87 2694.30 81100.00 199.04 5499.99 2099.99 20
PS-MVSNAJ98.44 4798.20 5099.16 5998.80 13598.92 2399.54 17698.17 17497.34 1699.85 699.85 3391.20 15099.89 7999.41 4099.67 9598.69 201
MVS_111021_LR98.42 4898.38 3898.53 11199.39 10395.79 15699.87 8899.86 296.70 3698.78 9099.79 6292.03 14099.90 7599.17 4699.86 7999.88 92
DP-MVS Recon98.41 4998.02 6199.56 2199.97 398.70 4399.92 6698.44 10892.06 19398.40 11099.84 4695.68 38100.00 198.19 9399.71 9399.97 63
PHI-MVS98.41 4998.21 4999.03 7599.86 5497.10 11199.98 898.80 5090.78 22799.62 3899.78 6695.30 46100.00 199.80 1899.93 6399.99 20
ETH3D cwj APD-0.1698.40 5198.07 5999.40 4199.59 9098.41 6099.86 9998.24 16492.18 18899.73 2699.87 2693.47 10399.85 9499.74 2499.95 5199.93 81
mPP-MVS98.39 5298.20 5098.97 8199.97 396.92 11799.95 4198.38 13995.04 7998.61 10199.80 5893.39 104100.00 198.64 81100.00 199.98 51
test117298.38 5398.25 4798.77 9099.88 4996.56 12799.80 12098.36 14494.68 9199.20 7199.80 5893.28 11099.78 11199.34 4299.92 6799.98 51
PGM-MVS98.34 5498.13 5598.99 7999.92 3597.00 11399.75 13599.50 1693.90 12899.37 6199.76 7293.24 113100.00 197.75 11899.96 4899.98 51
zzz-MVS98.33 5598.00 6299.30 4799.85 5597.93 7899.80 12098.28 15895.76 6297.18 13999.88 2292.74 124100.00 198.67 7799.88 7699.99 20
SR-MVS-dyc-post98.31 5698.17 5298.71 9399.79 7096.37 13499.76 13298.31 15394.43 10099.40 5999.75 7793.28 11099.78 11198.90 6399.92 6799.97 63
ZNCC-MVS98.31 5698.03 6099.17 5799.88 4997.59 8799.94 5698.44 10894.31 10898.50 10599.82 5393.06 11799.99 3698.30 9299.99 2099.93 81
MTAPA98.29 5897.96 6799.30 4799.85 5597.93 7899.39 19898.28 15895.76 6297.18 13999.88 2292.74 124100.00 198.67 7799.88 7699.99 20
GST-MVS98.27 5997.97 6499.17 5799.92 3597.57 8899.93 6298.39 13594.04 12198.80 8999.74 8192.98 118100.00 198.16 9599.76 8999.93 81
CANet98.27 5997.82 7099.63 1299.72 8399.10 1799.98 898.51 9797.00 2898.52 10399.71 8687.80 19299.95 6099.75 2299.38 11399.83 96
EI-MVSNet-Vis-set98.27 5998.11 5798.75 9299.83 6396.59 12699.40 19498.51 9795.29 7598.51 10499.76 7293.60 10299.71 12998.53 8599.52 10699.95 78
APD-MVS_3200maxsize98.25 6298.08 5898.78 8999.81 6896.60 12599.82 11398.30 15693.95 12599.37 6199.77 6892.84 12199.76 11898.95 5799.92 6799.97 63
xiu_mvs_v2_base98.23 6397.97 6499.02 7798.69 13998.66 4699.52 17898.08 18597.05 2699.86 499.86 2990.65 16199.71 12999.39 4198.63 12898.69 201
MP-MVScopyleft98.23 6397.97 6499.03 7599.94 1497.17 11099.95 4198.39 13594.70 9098.26 11799.81 5791.84 144100.00 198.85 6699.97 4499.93 81
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
EI-MVSNet-UG-set98.14 6597.99 6398.60 10299.80 6996.27 13699.36 20398.50 10195.21 7798.30 11499.75 7793.29 10999.73 12898.37 8999.30 11599.81 98
PAPM_NR98.12 6697.93 6898.70 9499.94 1496.13 14599.82 11398.43 11694.56 9597.52 13299.70 8894.40 7199.98 4297.00 13399.98 3399.99 20
WTY-MVS98.10 6797.60 7699.60 1798.92 12599.28 1299.89 8299.52 1395.58 6998.24 11899.39 11993.33 10699.74 12597.98 10795.58 19199.78 103
MP-MVS-pluss98.07 6897.64 7499.38 4499.74 7798.41 6099.74 13898.18 17393.35 14496.45 15699.85 3392.64 12799.97 5198.91 6299.89 7499.77 104
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
112198.03 6997.57 7899.40 4199.74 7798.21 6698.31 28998.62 6792.78 16199.53 4599.83 4995.08 50100.00 194.36 17699.92 6799.99 20
HPM-MVScopyleft97.96 7097.72 7298.68 9599.84 6096.39 13399.90 7498.17 17492.61 17198.62 10099.57 10491.87 14399.67 13698.87 6599.99 2099.99 20
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
PVSNet_Blended97.94 7197.64 7498.83 8899.59 9096.99 114100.00 199.10 2895.38 7298.27 11599.08 13989.00 18399.95 6099.12 4799.25 11699.57 137
PLCcopyleft95.54 397.93 7297.89 6998.05 13499.82 6594.77 18899.92 6698.46 10593.93 12697.20 13899.27 12795.44 4499.97 5197.41 12399.51 10899.41 159
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
ETV-MVS97.92 7397.80 7198.25 12698.14 16596.48 12899.98 897.63 21795.61 6899.29 6899.46 11392.55 12998.82 16599.02 5698.54 12999.46 152
API-MVS97.86 7497.66 7398.47 11499.52 9695.41 16899.47 18798.87 4491.68 20398.84 8799.85 3392.34 13499.99 3698.44 8799.96 48100.00 1
lupinMVS97.85 7597.60 7698.62 10097.28 21497.70 8599.99 497.55 22895.50 7199.43 5399.67 9590.92 15798.71 17598.40 8899.62 9899.45 154
test_yl97.83 7697.37 8399.21 5199.18 10897.98 7599.64 16199.27 2591.43 21297.88 12698.99 14795.84 3599.84 10398.82 6795.32 19599.79 100
DCV-MVSNet97.83 7697.37 8399.21 5199.18 10897.98 7599.64 16199.27 2591.43 21297.88 12698.99 14795.84 3599.84 10398.82 6795.32 19599.79 100
alignmvs97.81 7897.33 8799.25 4998.77 13798.66 4699.99 498.44 10894.40 10498.41 10899.47 11193.65 10099.42 15198.57 8394.26 20499.67 117
HPM-MVS_fast97.80 7997.50 7998.68 9599.79 7096.42 13099.88 8598.16 17791.75 20298.94 8599.54 10791.82 14599.65 13897.62 12099.99 2099.99 20
HY-MVS92.50 797.79 8097.17 9299.63 1298.98 11899.32 697.49 31099.52 1395.69 6698.32 11397.41 21193.32 10799.77 11598.08 10195.75 18899.81 98
CNLPA97.76 8197.38 8298.92 8599.53 9596.84 11899.87 8898.14 18093.78 13396.55 15499.69 9192.28 13599.98 4297.13 12999.44 11199.93 81
ACMMPcopyleft97.74 8297.44 8198.66 9799.92 3596.13 14599.18 22199.45 1794.84 8596.41 15999.71 8691.40 14799.99 3697.99 10598.03 14499.87 93
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DeepPCF-MVS95.94 297.71 8398.98 1093.92 26599.63 8881.76 34099.96 2398.56 7799.47 199.19 7499.99 194.16 87100.00 199.92 999.93 63100.00 1
abl_697.67 8497.34 8698.66 9799.68 8696.11 14899.68 15198.14 18093.80 13299.27 6999.70 8888.65 18899.98 4297.46 12299.72 9299.89 90
CPTT-MVS97.64 8597.32 8898.58 10599.97 395.77 15799.96 2398.35 14689.90 24098.36 11199.79 6291.18 15399.99 3698.37 8999.99 2099.99 20
sss97.57 8697.03 9799.18 5498.37 14998.04 7299.73 14399.38 2193.46 14298.76 9399.06 14091.21 14999.89 7996.33 14297.01 16499.62 125
EIA-MVS97.53 8797.46 8097.76 14598.04 16994.84 18499.98 897.61 22294.41 10397.90 12599.59 10292.40 13298.87 16398.04 10299.13 12099.59 130
CS-MVS97.52 8897.36 8598.00 13697.47 20496.11 148100.00 197.08 27694.74 8899.65 3399.33 12389.89 17098.22 21598.79 7199.25 11699.68 114
xiu_mvs_v1_base_debu97.43 8997.06 9398.55 10697.74 18898.14 6799.31 20897.86 20596.43 4199.62 3899.69 9185.56 21399.68 13399.05 5098.31 13597.83 210
xiu_mvs_v1_base97.43 8997.06 9398.55 10697.74 18898.14 6799.31 20897.86 20596.43 4199.62 3899.69 9185.56 21399.68 13399.05 5098.31 13597.83 210
xiu_mvs_v1_base_debi97.43 8997.06 9398.55 10697.74 18898.14 6799.31 20897.86 20596.43 4199.62 3899.69 9185.56 21399.68 13399.05 5098.31 13597.83 210
MAR-MVS97.43 8997.19 9098.15 13199.47 10094.79 18799.05 23798.76 5192.65 16998.66 9899.82 5388.52 18999.98 4298.12 9799.63 9799.67 117
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
thisisatest051597.41 9397.02 9898.59 10497.71 19497.52 9199.97 1698.54 8791.83 19897.45 13499.04 14197.50 899.10 15794.75 16696.37 17599.16 180
114514_t97.41 9396.83 10199.14 6399.51 9897.83 8099.89 8298.27 16188.48 26499.06 7899.66 9790.30 16599.64 13996.32 14399.97 4499.96 70
DWT-MVSNet_test97.31 9597.19 9097.66 14898.24 15894.67 18998.86 25898.20 17293.60 13998.09 12098.89 15997.51 798.78 16894.04 18397.28 15799.55 139
OMC-MVS97.28 9697.23 8997.41 15799.76 7493.36 21699.65 15797.95 19596.03 5597.41 13599.70 8889.61 17399.51 14396.73 14098.25 13899.38 161
PVSNet_Blended_VisFu97.27 9796.81 10298.66 9798.81 13496.67 12299.92 6698.64 6394.51 9796.38 16098.49 18489.05 18299.88 8597.10 13198.34 13399.43 157
jason97.24 9896.86 10098.38 12295.73 26097.32 10399.97 1697.40 24995.34 7498.60 10299.54 10787.70 19398.56 18297.94 10899.47 10999.25 175
jason: jason.
AdaColmapbinary97.23 9996.80 10398.51 11299.99 195.60 16499.09 22698.84 4793.32 14596.74 14999.72 8486.04 209100.00 198.01 10399.43 11299.94 80
VNet97.21 10096.57 11099.13 6898.97 11997.82 8199.03 23999.21 2794.31 10899.18 7598.88 16186.26 20899.89 7998.93 5994.32 20399.69 113
PVSNet91.05 1397.13 10196.69 10698.45 11699.52 9695.81 15599.95 4199.65 1094.73 8999.04 7999.21 13484.48 22399.95 6094.92 15898.74 12699.58 136
thisisatest053097.10 10296.72 10598.22 12797.60 19796.70 12199.92 6698.54 8791.11 21997.07 14298.97 15197.47 999.03 15893.73 19496.09 17898.92 190
CSCG97.10 10297.04 9697.27 16499.89 4591.92 24699.90 7499.07 3188.67 26095.26 17999.82 5393.17 11599.98 4298.15 9699.47 10999.90 89
canonicalmvs97.09 10496.32 11699.39 4398.93 12398.95 2199.72 14697.35 25294.45 9897.88 12699.42 11586.71 20399.52 14298.48 8693.97 20899.72 110
diffmvs97.00 10596.64 10798.09 13297.64 19596.17 14499.81 11597.19 26494.67 9398.95 8499.28 12486.43 20698.76 17198.37 8997.42 15499.33 168
thres20096.96 10696.21 11899.22 5098.97 11998.84 3099.85 10299.71 593.17 15096.26 16298.88 16189.87 17199.51 14394.26 18094.91 19899.31 170
MVSFormer96.94 10796.60 10897.95 13797.28 21497.70 8599.55 17497.27 26091.17 21699.43 5399.54 10790.92 15796.89 28094.67 17099.62 9899.25 175
F-COLMAP96.93 10896.95 9996.87 17399.71 8491.74 25199.85 10297.95 19593.11 15295.72 17299.16 13692.35 13399.94 6895.32 15399.35 11498.92 190
DeepC-MVS94.51 496.92 10996.40 11598.45 11699.16 11095.90 15399.66 15498.06 18696.37 4794.37 18899.49 11083.29 23299.90 7597.63 11999.61 10199.55 139
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
tttt051796.85 11096.49 11297.92 13997.48 20395.89 15499.85 10298.54 8790.72 22896.63 15198.93 15897.47 999.02 15993.03 20795.76 18798.85 194
131496.84 11195.96 13099.48 3396.74 23898.52 5598.31 28998.86 4595.82 5889.91 23398.98 14987.49 19599.96 5397.80 11199.73 9199.96 70
CHOSEN 1792x268896.81 11296.53 11197.64 14998.91 12793.07 21899.65 15799.80 395.64 6795.39 17698.86 16584.35 22599.90 7596.98 13499.16 11999.95 78
tfpn200view996.79 11395.99 12399.19 5398.94 12198.82 3199.78 12499.71 592.86 15596.02 16598.87 16389.33 17799.50 14593.84 18694.57 19999.27 173
thres40096.78 11495.99 12399.16 5998.94 12198.82 3199.78 12499.71 592.86 15596.02 16598.87 16389.33 17799.50 14593.84 18694.57 19999.16 180
CANet_DTU96.76 11596.15 11998.60 10298.78 13697.53 9099.84 10697.63 21797.25 2399.20 7199.64 9981.36 24699.98 4292.77 20998.89 12298.28 204
PMMVS96.76 11596.76 10496.76 17698.28 15492.10 24199.91 7097.98 19294.12 11499.53 4599.39 11986.93 20298.73 17396.95 13697.73 14699.45 154
thres100view90096.74 11795.92 13399.18 5498.90 12898.77 3699.74 13899.71 592.59 17395.84 16898.86 16589.25 17999.50 14593.84 18694.57 19999.27 173
TESTMET0.1,196.74 11796.26 11798.16 12897.36 20796.48 12899.96 2398.29 15791.93 19595.77 17198.07 19795.54 4098.29 20790.55 23898.89 12299.70 111
baseline296.71 11996.49 11297.37 16095.63 26795.96 15299.74 13898.88 4392.94 15491.61 21498.97 15197.72 598.62 18094.83 16298.08 14397.53 218
thres600view796.69 12095.87 13699.14 6398.90 12898.78 3599.74 13899.71 592.59 17395.84 16898.86 16589.25 17999.50 14593.44 19994.50 20299.16 180
EPP-MVSNet96.69 12096.60 10896.96 17097.74 18893.05 22099.37 20198.56 7788.75 25895.83 17099.01 14496.01 2898.56 18296.92 13797.20 16099.25 175
HyFIR lowres test96.66 12296.43 11497.36 16199.05 11393.91 20399.70 14899.80 390.54 22996.26 16298.08 19692.15 13898.23 21496.84 13995.46 19299.93 81
MVS96.60 12395.56 14299.72 996.85 23199.22 1598.31 28998.94 3691.57 20690.90 22199.61 10186.66 20499.96 5397.36 12499.88 7699.99 20
UA-Net96.54 12495.96 13098.27 12598.23 15995.71 16198.00 30398.45 10793.72 13698.41 10899.27 12788.71 18799.66 13791.19 22497.69 14799.44 156
EPMVS96.53 12596.01 12298.09 13298.43 14896.12 14796.36 32699.43 1993.53 14097.64 13095.04 29494.41 7098.38 20191.13 22598.11 13999.75 106
test-LLR96.47 12696.04 12197.78 14297.02 22295.44 16699.96 2398.21 16894.07 11795.55 17396.38 24593.90 9498.27 21190.42 24198.83 12499.64 123
MVS_Test96.46 12795.74 13898.61 10198.18 16297.23 10599.31 20897.15 27091.07 22098.84 8797.05 22488.17 19198.97 16194.39 17597.50 15199.61 127
baseline96.43 12895.98 12597.76 14597.34 20895.17 17799.51 18097.17 26793.92 12796.90 14599.28 12485.37 21698.64 17997.50 12196.86 16899.46 152
casdiffmvs96.42 12995.97 12897.77 14497.30 21294.98 18099.84 10697.09 27593.75 13596.58 15299.26 13085.07 21998.78 16897.77 11697.04 16399.54 143
test-mter96.39 13095.93 13297.78 14297.02 22295.44 16699.96 2398.21 16891.81 20095.55 17396.38 24595.17 4798.27 21190.42 24198.83 12499.64 123
CDS-MVSNet96.34 13196.07 12097.13 16697.37 20694.96 18199.53 17797.91 20091.55 20795.37 17798.32 19295.05 5397.13 26493.80 19095.75 18899.30 171
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Vis-MVSNet (Re-imp)96.32 13295.98 12597.35 16297.93 17494.82 18599.47 18798.15 17991.83 19895.09 18099.11 13791.37 14897.47 24593.47 19897.43 15299.74 107
3Dnovator+91.53 1196.31 13395.24 14999.52 2696.88 23098.64 4999.72 14698.24 16495.27 7688.42 27098.98 14982.76 23499.94 6897.10 13199.83 8199.96 70
Effi-MVS+96.30 13495.69 13998.16 12897.85 18096.26 13797.41 31197.21 26390.37 23298.65 9998.58 18086.61 20598.70 17697.11 13097.37 15699.52 146
IS-MVSNet96.29 13595.90 13497.45 15598.13 16694.80 18699.08 22897.61 22292.02 19495.54 17598.96 15390.64 16298.08 22093.73 19497.41 15599.47 151
3Dnovator91.47 1296.28 13695.34 14799.08 7196.82 23397.47 9799.45 19098.81 4895.52 7089.39 24799.00 14681.97 23899.95 6097.27 12699.83 8199.84 95
tpmrst96.27 13795.98 12597.13 16697.96 17293.15 21796.34 32798.17 17492.07 19198.71 9695.12 29293.91 9398.73 17394.91 16096.62 16999.50 149
CostFormer96.10 13895.88 13596.78 17597.03 22192.55 23397.08 31897.83 20890.04 23998.72 9594.89 30195.01 5698.29 20796.54 14195.77 18699.50 149
PVSNet_BlendedMVS96.05 13995.82 13796.72 17899.59 9096.99 11499.95 4199.10 2894.06 11998.27 11595.80 25989.00 18399.95 6099.12 4787.53 25093.24 313
PatchMatch-RL96.04 14095.40 14497.95 13799.59 9095.22 17699.52 17899.07 3193.96 12496.49 15598.35 19182.28 23699.82 10590.15 24699.22 11898.81 197
1112_ss96.01 14195.20 15198.42 11997.80 18396.41 13199.65 15796.66 31192.71 16492.88 20799.40 11792.16 13799.30 15291.92 21693.66 20999.55 139
PatchmatchNetpermissive95.94 14295.45 14397.39 15997.83 18194.41 19396.05 33198.40 13292.86 15597.09 14195.28 28994.21 8698.07 22289.26 25398.11 13999.70 111
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
TAMVS95.85 14395.58 14196.65 18197.07 21893.50 21199.17 22297.82 20991.39 21595.02 18198.01 19892.20 13697.30 25393.75 19395.83 18599.14 183
LS3D95.84 14495.11 15498.02 13599.85 5595.10 17898.74 26698.50 10187.22 28093.66 19799.86 2987.45 19699.95 6090.94 23299.81 8799.02 188
baseline195.78 14594.86 15798.54 10998.47 14798.07 7099.06 23397.99 19092.68 16794.13 19298.62 17793.28 11098.69 17793.79 19185.76 25998.84 195
Test_1112_low_res95.72 14694.83 15898.42 11997.79 18496.41 13199.65 15796.65 31292.70 16592.86 20896.13 25492.15 13899.30 15291.88 21793.64 21099.55 139
Vis-MVSNetpermissive95.72 14695.15 15397.45 15597.62 19694.28 19599.28 21498.24 16494.27 11196.84 14698.94 15679.39 26598.76 17193.25 20098.49 13099.30 171
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
EPNet_dtu95.71 14895.39 14596.66 18098.92 12593.41 21499.57 17098.90 4196.19 5197.52 13298.56 18292.65 12697.36 24877.89 32898.33 13499.20 178
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
BH-w/o95.71 14895.38 14696.68 17998.49 14692.28 23799.84 10697.50 23792.12 19092.06 21298.79 16984.69 22198.67 17895.29 15499.66 9699.09 186
mvs_anonymous95.65 15095.03 15597.53 15298.19 16195.74 15999.33 20597.49 23890.87 22490.47 22697.10 22088.23 19097.16 26195.92 14897.66 14999.68 114
mvs-test195.53 15195.97 12894.20 25397.77 18585.44 32299.95 4197.06 27994.92 8196.58 15298.72 17185.81 21098.98 16094.80 16398.11 13998.18 205
MVSTER95.53 15195.22 15096.45 18698.56 14197.72 8299.91 7097.67 21592.38 18391.39 21697.14 21897.24 1497.30 25394.80 16387.85 24594.34 248
tpm295.47 15395.18 15296.35 19296.91 22691.70 25596.96 32197.93 19788.04 27098.44 10795.40 27893.32 10797.97 22694.00 18495.61 19099.38 161
QAPM95.40 15494.17 17099.10 6996.92 22597.71 8399.40 19498.68 5689.31 24588.94 25998.89 15982.48 23599.96 5393.12 20699.83 8199.62 125
UGNet95.33 15594.57 16397.62 15198.55 14294.85 18398.67 27399.32 2495.75 6596.80 14896.27 25072.18 30999.96 5394.58 17299.05 12198.04 208
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
RRT_MVS95.23 15694.77 16096.61 18298.28 15498.32 6399.81 11597.41 24792.59 17391.28 21897.76 20595.02 5497.23 25993.65 19687.14 25294.28 251
BH-untuned95.18 15794.83 15896.22 19498.36 15091.22 26399.80 12097.32 25690.91 22391.08 21998.67 17383.51 22998.54 18494.23 18199.61 10198.92 190
BH-RMVSNet95.18 15794.31 16897.80 14198.17 16395.23 17599.76 13297.53 23292.52 17894.27 19099.25 13176.84 28198.80 16690.89 23499.54 10599.35 166
PCF-MVS94.20 595.18 15794.10 17298.43 11898.55 14295.99 15197.91 30597.31 25790.35 23389.48 24699.22 13385.19 21899.89 7990.40 24398.47 13199.41 159
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
dp95.05 16094.43 16596.91 17197.99 17192.73 22796.29 32897.98 19289.70 24395.93 16794.67 30793.83 9798.45 19086.91 28396.53 17199.54 143
Fast-Effi-MVS+95.02 16194.19 16997.52 15397.88 17694.55 19099.97 1697.08 27688.85 25794.47 18797.96 20284.59 22298.41 19389.84 24997.10 16199.59 130
IB-MVS92.85 694.99 16293.94 17698.16 12897.72 19295.69 16399.99 498.81 4894.28 11092.70 20996.90 22895.08 5099.17 15696.07 14573.88 33599.60 129
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
hse-mvs394.92 16394.36 16696.59 18398.85 13291.29 26298.93 24998.94 3695.90 5698.77 9198.42 19090.89 15999.77 11597.80 11170.76 33798.72 200
XVG-OURS94.82 16494.74 16195.06 22098.00 17089.19 29399.08 22897.55 22894.10 11594.71 18399.62 10080.51 25799.74 12596.04 14693.06 21696.25 223
ADS-MVSNet94.79 16594.02 17497.11 16897.87 17893.79 20494.24 33798.16 17790.07 23796.43 15794.48 31290.29 16698.19 21787.44 27197.23 15899.36 164
XVG-OURS-SEG-HR94.79 16594.70 16295.08 21998.05 16889.19 29399.08 22897.54 23093.66 13794.87 18299.58 10378.78 27099.79 10997.31 12593.40 21296.25 223
OpenMVScopyleft90.15 1594.77 16793.59 18498.33 12396.07 24797.48 9699.56 17298.57 7590.46 23086.51 29498.95 15578.57 27299.94 6893.86 18599.74 9097.57 217
LFMVS94.75 16893.56 18698.30 12499.03 11495.70 16298.74 26697.98 19287.81 27398.47 10699.39 11967.43 32899.53 14198.01 10395.20 19799.67 117
SCA94.69 16993.81 18097.33 16397.10 21794.44 19198.86 25898.32 15193.30 14696.17 16495.59 26876.48 28597.95 22991.06 22797.43 15299.59 130
ab-mvs94.69 16993.42 19098.51 11298.07 16796.26 13796.49 32598.68 5690.31 23494.54 18497.00 22676.30 28799.71 12995.98 14793.38 21399.56 138
CVMVSNet94.68 17194.94 15693.89 26796.80 23486.92 31499.06 23398.98 3494.45 9894.23 19199.02 14285.60 21295.31 32590.91 23395.39 19499.43 157
cascas94.64 17293.61 18197.74 14797.82 18296.26 13799.96 2397.78 21185.76 29994.00 19397.54 20876.95 28099.21 15497.23 12795.43 19397.76 214
HQP-MVS94.61 17394.50 16494.92 22595.78 25491.85 24799.87 8897.89 20196.82 3093.37 19998.65 17480.65 25598.39 19797.92 10989.60 22094.53 229
RRT_test8_iter0594.58 17494.11 17195.98 19997.88 17696.11 14899.89 8297.45 24091.66 20488.28 27196.71 23696.53 2497.40 24694.73 16883.85 27894.45 239
TR-MVS94.54 17593.56 18697.49 15497.96 17294.34 19498.71 26997.51 23690.30 23594.51 18698.69 17275.56 29298.77 17092.82 20895.99 18099.35 166
DP-MVS94.54 17593.42 19097.91 14099.46 10294.04 19898.93 24997.48 23981.15 33090.04 23099.55 10587.02 20199.95 6088.97 25598.11 13999.73 108
Effi-MVS+-dtu94.53 17795.30 14892.22 29597.77 18582.54 33399.59 16797.06 27994.92 8195.29 17895.37 28285.81 21097.89 23294.80 16397.07 16296.23 225
HQP_MVS94.49 17894.36 16694.87 22695.71 26391.74 25199.84 10697.87 20396.38 4493.01 20398.59 17880.47 25998.37 20297.79 11489.55 22394.52 231
TAPA-MVS92.12 894.42 17993.60 18396.90 17299.33 10691.78 25099.78 12498.00 18989.89 24194.52 18599.47 11191.97 14199.18 15569.90 34499.52 10699.73 108
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
hse-mvs294.38 18094.08 17395.31 21398.27 15690.02 28499.29 21398.56 7795.90 5698.77 9198.00 19990.89 15998.26 21397.80 11169.20 34397.64 215
ET-MVSNet_ETH3D94.37 18193.28 19697.64 14998.30 15197.99 7499.99 497.61 22294.35 10571.57 34999.45 11496.23 2795.34 32496.91 13885.14 26699.59 130
MSDG94.37 18193.36 19497.40 15898.88 13093.95 20299.37 20197.38 25085.75 30190.80 22299.17 13584.11 22799.88 8586.35 28498.43 13298.36 203
GeoE94.36 18393.48 18896.99 16997.29 21393.54 21099.96 2396.72 30988.35 26793.43 19898.94 15682.05 23798.05 22388.12 26696.48 17399.37 163
miper_enhance_ethall94.36 18393.98 17595.49 20698.68 14095.24 17499.73 14397.29 25893.28 14789.86 23595.97 25794.37 7597.05 27092.20 21384.45 27094.19 258
tpmvs94.28 18593.57 18596.40 18998.55 14291.50 26095.70 33698.55 8387.47 27592.15 21194.26 31691.42 14698.95 16288.15 26495.85 18498.76 199
FIs94.10 18693.43 18996.11 19694.70 28096.82 11999.58 16898.93 4092.54 17789.34 24997.31 21487.62 19497.10 26794.22 18286.58 25594.40 241
CLD-MVS94.06 18793.90 17794.55 23996.02 24990.69 26999.98 897.72 21296.62 3991.05 22098.85 16877.21 27798.47 18698.11 9889.51 22594.48 233
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
test0.0.03 193.86 18893.61 18194.64 23495.02 27692.18 24099.93 6298.58 7394.07 11787.96 27598.50 18393.90 9494.96 32981.33 31493.17 21496.78 220
X-MVStestdata93.83 18992.06 21899.15 6199.94 1497.50 9499.94 5698.42 12796.22 4999.41 5541.37 36694.34 7699.96 5398.92 6099.95 5199.99 20
GA-MVS93.83 18992.84 20096.80 17495.73 26093.57 20899.88 8597.24 26292.57 17692.92 20596.66 23878.73 27197.67 23887.75 26994.06 20799.17 179
FC-MVSNet-test93.81 19193.15 19895.80 20494.30 28696.20 14299.42 19398.89 4292.33 18589.03 25897.27 21687.39 19796.83 28493.20 20186.48 25694.36 244
ADS-MVSNet293.80 19293.88 17893.55 27797.87 17885.94 31894.24 33796.84 30090.07 23796.43 15794.48 31290.29 16695.37 32387.44 27197.23 15899.36 164
cl-mvsnet293.77 19393.25 19795.33 21299.49 9994.43 19299.61 16598.09 18390.38 23189.16 25695.61 26690.56 16397.34 25091.93 21584.45 27094.21 257
VDD-MVS93.77 19392.94 19996.27 19398.55 14290.22 28098.77 26597.79 21090.85 22596.82 14799.42 11561.18 34699.77 11598.95 5794.13 20598.82 196
EI-MVSNet93.73 19593.40 19394.74 23096.80 23492.69 22899.06 23397.67 21588.96 25391.39 21699.02 14288.75 18697.30 25391.07 22687.85 24594.22 255
Fast-Effi-MVS+-dtu93.72 19693.86 17993.29 28097.06 21986.16 31699.80 12096.83 30192.66 16892.58 21097.83 20481.39 24597.67 23889.75 25096.87 16796.05 227
tpm93.70 19793.41 19294.58 23795.36 27187.41 31297.01 31996.90 29690.85 22596.72 15094.14 31790.40 16496.84 28390.75 23788.54 23999.51 147
PS-MVSNAJss93.64 19893.31 19594.61 23592.11 32192.19 23999.12 22497.38 25092.51 17988.45 26596.99 22791.20 15097.29 25694.36 17687.71 24794.36 244
gg-mvs-nofinetune93.51 19991.86 22398.47 11497.72 19297.96 7792.62 34598.51 9774.70 34797.33 13669.59 35898.91 397.79 23497.77 11699.56 10499.67 117
nrg03093.51 19992.53 20996.45 18694.36 28497.20 10699.81 11597.16 26991.60 20589.86 23597.46 20986.37 20797.68 23795.88 14980.31 30494.46 234
tpm cat193.51 19992.52 21096.47 18497.77 18591.47 26196.13 32998.06 18680.98 33192.91 20693.78 32089.66 17298.87 16387.03 27996.39 17499.09 186
CR-MVSNet93.45 20292.62 20495.94 20096.29 24392.66 22992.01 34896.23 32092.62 17096.94 14393.31 32591.04 15496.03 31579.23 32195.96 18199.13 184
AUN-MVS93.28 20392.60 20595.34 21198.29 15290.09 28399.31 20898.56 7791.80 20196.35 16198.00 19989.38 17698.28 20992.46 21069.22 34297.64 215
OPM-MVS93.21 20492.80 20194.44 24693.12 30690.85 26899.77 12797.61 22296.19 5191.56 21598.65 17475.16 29798.47 18693.78 19289.39 22693.99 281
miper_ehance_all_eth93.16 20592.60 20594.82 22997.57 19893.56 20999.50 18297.07 27888.75 25888.85 26095.52 27290.97 15696.74 28790.77 23684.45 27094.17 259
VDDNet93.12 20691.91 22196.76 17696.67 24192.65 23198.69 27198.21 16882.81 32497.75 12999.28 12461.57 34499.48 14998.09 10094.09 20698.15 206
Anonymous20240521193.10 20791.99 21996.40 18999.10 11289.65 29098.88 25497.93 19783.71 31994.00 19398.75 17068.79 32099.88 8595.08 15691.71 21899.68 114
UniMVSNet (Re)93.07 20892.13 21595.88 20194.84 27796.24 14199.88 8598.98 3492.49 18189.25 25195.40 27887.09 20097.14 26393.13 20578.16 31694.26 252
bset_n11_16_dypcd93.05 20992.30 21395.31 21390.23 33995.05 17999.44 19297.28 25992.51 17990.65 22496.68 23785.30 21796.71 29094.49 17484.14 27394.16 264
LPG-MVS_test92.96 21092.71 20393.71 27195.43 26988.67 29999.75 13597.62 21992.81 15890.05 22898.49 18475.24 29598.40 19595.84 15089.12 22794.07 273
UniMVSNet_NR-MVSNet92.95 21192.11 21695.49 20694.61 28295.28 17299.83 11299.08 3091.49 20889.21 25396.86 23187.14 19996.73 28893.20 20177.52 32194.46 234
ACMM91.95 1092.88 21292.52 21093.98 26495.75 25989.08 29699.77 12797.52 23493.00 15389.95 23297.99 20176.17 28998.46 18993.63 19788.87 23194.39 242
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test_djsdf92.83 21392.29 21494.47 24491.90 32492.46 23499.55 17497.27 26091.17 21689.96 23196.07 25681.10 24896.89 28094.67 17088.91 22994.05 275
D2MVS92.76 21492.59 20893.27 28195.13 27289.54 29299.69 14999.38 2192.26 18687.59 27994.61 30985.05 22097.79 23491.59 22088.01 24492.47 325
ACMP92.05 992.74 21592.42 21293.73 26995.91 25388.72 29899.81 11597.53 23294.13 11387.00 28898.23 19374.07 30398.47 18696.22 14488.86 23293.99 281
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
VPA-MVSNet92.70 21691.55 22896.16 19595.09 27396.20 14298.88 25499.00 3391.02 22291.82 21395.29 28876.05 29197.96 22895.62 15281.19 29294.30 249
FMVSNet392.69 21791.58 22695.99 19898.29 15297.42 10199.26 21697.62 21989.80 24289.68 23995.32 28481.62 24496.27 30687.01 28085.65 26094.29 250
IterMVS-LS92.69 21792.11 21694.43 24896.80 23492.74 22599.45 19096.89 29788.98 25189.65 24295.38 28188.77 18596.34 30390.98 23182.04 28694.22 255
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Patchmatch-test92.65 21991.50 22996.10 19796.85 23190.49 27591.50 35097.19 26482.76 32590.23 22795.59 26895.02 5498.00 22577.41 33096.98 16599.82 97
cl_fuxian92.53 22091.87 22294.52 24097.40 20592.99 22199.40 19496.93 29487.86 27188.69 26395.44 27689.95 16996.44 29990.45 24080.69 30194.14 269
AllTest92.48 22191.64 22495.00 22299.01 11588.43 30398.94 24896.82 30386.50 28988.71 26198.47 18874.73 29999.88 8585.39 29096.18 17696.71 221
DU-MVS92.46 22291.45 23195.49 20694.05 28995.28 17299.81 11598.74 5292.25 18789.21 25396.64 24081.66 24296.73 28893.20 20177.52 32194.46 234
eth_miper_zixun_eth92.41 22391.93 22093.84 26897.28 21490.68 27098.83 26096.97 28988.57 26389.19 25595.73 26389.24 18196.69 29189.97 24881.55 28994.15 266
cl-mvsnet192.32 22491.60 22594.47 24497.31 21192.74 22599.58 16896.75 30786.99 28487.64 27895.54 27089.55 17496.50 29788.58 25882.44 28394.17 259
cl-mvsnet____92.31 22591.58 22694.52 24097.33 21092.77 22399.57 17096.78 30686.97 28587.56 28095.51 27389.43 17596.62 29388.60 25782.44 28394.16 264
LCM-MVSNet-Re92.31 22592.60 20591.43 30397.53 19979.27 34999.02 24091.83 35692.07 19180.31 33094.38 31583.50 23095.48 32197.22 12897.58 15099.54 143
WR-MVS92.31 22591.25 23395.48 20994.45 28395.29 17199.60 16698.68 5690.10 23688.07 27496.89 22980.68 25496.80 28693.14 20479.67 30894.36 244
COLMAP_ROBcopyleft90.47 1492.18 22891.49 23094.25 25299.00 11788.04 30998.42 28796.70 31082.30 32788.43 26899.01 14476.97 27999.85 9486.11 28796.50 17294.86 228
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test_part192.15 22990.72 23996.44 18898.87 13197.46 9898.99 24298.26 16285.89 29686.34 29996.34 24881.71 24097.48 24491.06 22778.99 31094.37 243
Anonymous2024052992.10 23090.65 24196.47 18498.82 13390.61 27298.72 26898.67 5975.54 34593.90 19598.58 18066.23 33199.90 7594.70 16990.67 21998.90 193
pmmvs492.10 23091.07 23695.18 21792.82 31494.96 18199.48 18696.83 30187.45 27688.66 26496.56 24383.78 22896.83 28489.29 25284.77 26893.75 298
jajsoiax91.92 23291.18 23494.15 25491.35 33090.95 26699.00 24197.42 24592.61 17187.38 28497.08 22172.46 30897.36 24894.53 17388.77 23394.13 270
XXY-MVS91.82 23390.46 24395.88 20193.91 29295.40 16998.87 25797.69 21488.63 26287.87 27697.08 22174.38 30297.89 23291.66 21984.07 27594.35 247
miper_lstm_enhance91.81 23491.39 23293.06 28797.34 20889.18 29599.38 19996.79 30586.70 28887.47 28295.22 29090.00 16895.86 31988.26 26281.37 29194.15 266
mvs_tets91.81 23491.08 23594.00 26291.63 32890.58 27398.67 27397.43 24392.43 18287.37 28597.05 22471.76 31097.32 25294.75 16688.68 23594.11 271
VPNet91.81 23490.46 24395.85 20394.74 27995.54 16598.98 24398.59 7292.14 18990.77 22397.44 21068.73 32297.54 24294.89 16177.89 31894.46 234
RPSCF91.80 23792.79 20288.83 32298.15 16469.87 35398.11 29996.60 31383.93 31794.33 18999.27 12779.60 26499.46 15091.99 21493.16 21597.18 219
PVSNet_088.03 1991.80 23790.27 24996.38 19198.27 15690.46 27699.94 5699.61 1193.99 12286.26 30197.39 21371.13 31599.89 7998.77 7367.05 34798.79 198
anonymousdsp91.79 23990.92 23794.41 24990.76 33592.93 22298.93 24997.17 26789.08 24787.46 28395.30 28578.43 27596.92 27992.38 21188.73 23493.39 309
JIA-IIPM91.76 24090.70 24094.94 22496.11 24687.51 31193.16 34498.13 18275.79 34497.58 13177.68 35592.84 12197.97 22688.47 26196.54 17099.33 168
TranMVSNet+NR-MVSNet91.68 24190.61 24294.87 22693.69 29693.98 20199.69 14998.65 6091.03 22188.44 26696.83 23580.05 26296.18 30990.26 24576.89 32994.45 239
NR-MVSNet91.56 24290.22 25095.60 20594.05 28995.76 15898.25 29298.70 5491.16 21880.78 32996.64 24083.23 23396.57 29591.41 22177.73 32094.46 234
v2v48291.30 24390.07 25595.01 22193.13 30493.79 20499.77 12797.02 28288.05 26989.25 25195.37 28280.73 25397.15 26287.28 27580.04 30794.09 272
WR-MVS_H91.30 24390.35 24694.15 25494.17 28892.62 23299.17 22298.94 3688.87 25686.48 29694.46 31484.36 22496.61 29488.19 26378.51 31493.21 314
V4291.28 24590.12 25494.74 23093.42 30193.46 21299.68 15197.02 28287.36 27789.85 23795.05 29381.31 24797.34 25087.34 27480.07 30693.40 308
CP-MVSNet91.23 24690.22 25094.26 25193.96 29192.39 23699.09 22698.57 7588.95 25486.42 29796.57 24279.19 26796.37 30190.29 24478.95 31194.02 276
XVG-ACMP-BASELINE91.22 24790.75 23892.63 29293.73 29585.61 31998.52 28197.44 24292.77 16289.90 23496.85 23266.64 33098.39 19792.29 21288.61 23693.89 289
v114491.09 24889.83 25694.87 22693.25 30393.69 20799.62 16496.98 28786.83 28789.64 24394.99 29880.94 25097.05 27085.08 29381.16 29393.87 291
FMVSNet291.02 24989.56 26195.41 21097.53 19995.74 15998.98 24397.41 24787.05 28188.43 26895.00 29771.34 31296.24 30885.12 29285.21 26594.25 254
MVP-Stereo90.93 25090.45 24592.37 29491.25 33288.76 29798.05 30296.17 32287.27 27984.04 31295.30 28578.46 27497.27 25883.78 30199.70 9491.09 336
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
IterMVS90.91 25190.17 25293.12 28496.78 23790.42 27898.89 25297.05 28189.03 24986.49 29595.42 27776.59 28495.02 32787.22 27684.09 27493.93 286
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
GBi-Net90.88 25289.82 25794.08 25797.53 19991.97 24298.43 28496.95 29087.05 28189.68 23994.72 30371.34 31296.11 31087.01 28085.65 26094.17 259
test190.88 25289.82 25794.08 25797.53 19991.97 24298.43 28496.95 29087.05 28189.68 23994.72 30371.34 31296.11 31087.01 28085.65 26094.17 259
IterMVS-SCA-FT90.85 25490.16 25392.93 28896.72 23989.96 28598.89 25296.99 28588.95 25486.63 29295.67 26476.48 28595.00 32887.04 27884.04 27793.84 293
v14419290.79 25589.52 26394.59 23693.11 30792.77 22399.56 17296.99 28586.38 29189.82 23894.95 30080.50 25897.10 26783.98 29980.41 30293.90 288
v14890.70 25689.63 25993.92 26592.97 31090.97 26599.75 13596.89 29787.51 27488.27 27295.01 29581.67 24197.04 27287.40 27377.17 32693.75 298
MS-PatchMatch90.65 25790.30 24891.71 30294.22 28785.50 32198.24 29397.70 21388.67 26086.42 29796.37 24767.82 32698.03 22483.62 30299.62 9891.60 333
ACMH89.72 1790.64 25889.63 25993.66 27595.64 26688.64 30198.55 27797.45 24089.03 24981.62 32497.61 20769.75 31898.41 19389.37 25187.62 24993.92 287
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PS-CasMVS90.63 25989.51 26493.99 26393.83 29391.70 25598.98 24398.52 9088.48 26486.15 30296.53 24475.46 29396.31 30488.83 25678.86 31393.95 284
v119290.62 26089.25 26894.72 23293.13 30493.07 21899.50 18297.02 28286.33 29289.56 24595.01 29579.22 26697.09 26982.34 30981.16 29394.01 278
v890.54 26189.17 26994.66 23393.43 30093.40 21599.20 21996.94 29385.76 29987.56 28094.51 31081.96 23997.19 26084.94 29478.25 31593.38 310
v192192090.46 26289.12 27094.50 24292.96 31192.46 23499.49 18496.98 28786.10 29489.61 24495.30 28578.55 27397.03 27482.17 31080.89 30094.01 278
our_test_390.39 26389.48 26693.12 28492.40 31889.57 29199.33 20596.35 31987.84 27285.30 30794.99 29884.14 22696.09 31380.38 31884.56 26993.71 303
PatchT90.38 26488.75 27895.25 21695.99 25090.16 28191.22 35297.54 23076.80 34097.26 13786.01 35091.88 14296.07 31466.16 35195.91 18399.51 147
ACMH+89.98 1690.35 26589.54 26292.78 29195.99 25086.12 31798.81 26297.18 26689.38 24483.14 31797.76 20568.42 32498.43 19189.11 25486.05 25893.78 297
Baseline_NR-MVSNet90.33 26689.51 26492.81 29092.84 31289.95 28699.77 12793.94 35284.69 31489.04 25795.66 26581.66 24296.52 29690.99 23076.98 32791.97 331
MIMVSNet90.30 26788.67 27995.17 21896.45 24291.64 25792.39 34697.15 27085.99 29590.50 22593.19 32766.95 32994.86 33182.01 31193.43 21199.01 189
LTVRE_ROB88.28 1890.29 26889.05 27394.02 26095.08 27490.15 28297.19 31597.43 24384.91 31283.99 31397.06 22374.00 30498.28 20984.08 29787.71 24793.62 304
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
v1090.25 26988.82 27694.57 23893.53 29893.43 21399.08 22896.87 29985.00 30987.34 28694.51 31080.93 25197.02 27682.85 30679.23 30993.26 312
v124090.20 27088.79 27794.44 24693.05 30992.27 23899.38 19996.92 29585.89 29689.36 24894.87 30277.89 27697.03 27480.66 31781.08 29694.01 278
PEN-MVS90.19 27189.06 27293.57 27693.06 30890.90 26799.06 23398.47 10388.11 26885.91 30496.30 24976.67 28295.94 31887.07 27776.91 32893.89 289
pmmvs590.17 27289.09 27193.40 27892.10 32289.77 28999.74 13895.58 33485.88 29887.24 28795.74 26173.41 30696.48 29888.54 25983.56 27993.95 284
EU-MVSNet90.14 27390.34 24789.54 31892.55 31781.06 34398.69 27198.04 18891.41 21486.59 29396.84 23480.83 25293.31 34586.20 28581.91 28794.26 252
UniMVSNet_ETH3D90.06 27488.58 28094.49 24394.67 28188.09 30897.81 30797.57 22783.91 31888.44 26697.41 21157.44 35097.62 24091.41 22188.59 23897.77 213
USDC90.00 27588.96 27493.10 28694.81 27888.16 30798.71 26995.54 33593.66 13783.75 31597.20 21765.58 33398.31 20683.96 30087.49 25192.85 320
Anonymous2023121189.86 27688.44 28294.13 25698.93 12390.68 27098.54 27998.26 16276.28 34186.73 29095.54 27070.60 31697.56 24190.82 23580.27 30594.15 266
OurMVSNet-221017-089.81 27789.48 26690.83 30891.64 32781.21 34198.17 29795.38 33891.48 20985.65 30697.31 21472.66 30797.29 25688.15 26484.83 26793.97 283
RPMNet89.76 27887.28 29397.19 16596.29 24392.66 22992.01 34898.31 15370.19 35296.94 14385.87 35187.25 19899.78 11162.69 35495.96 18199.13 184
Patchmtry89.70 27988.49 28193.33 27996.24 24589.94 28891.37 35196.23 32078.22 33887.69 27793.31 32591.04 15496.03 31580.18 32082.10 28594.02 276
v7n89.65 28088.29 28593.72 27092.22 32090.56 27499.07 23297.10 27485.42 30786.73 29094.72 30380.06 26197.13 26481.14 31578.12 31793.49 306
ppachtmachnet_test89.58 28188.35 28393.25 28292.40 31890.44 27799.33 20596.73 30885.49 30585.90 30595.77 26081.09 24996.00 31776.00 33682.49 28293.30 311
DTE-MVSNet89.40 28288.24 28692.88 28992.66 31689.95 28699.10 22598.22 16787.29 27885.12 30996.22 25176.27 28895.30 32683.56 30375.74 33293.41 307
pm-mvs189.36 28387.81 29094.01 26193.40 30291.93 24598.62 27696.48 31786.25 29383.86 31496.14 25373.68 30597.04 27286.16 28675.73 33393.04 317
tfpnnormal89.29 28487.61 29194.34 25094.35 28594.13 19798.95 24798.94 3683.94 31684.47 31195.51 27374.84 29897.39 24777.05 33380.41 30291.48 335
MVS_030489.28 28588.31 28492.21 29697.05 22086.53 31597.76 30899.57 1285.58 30493.86 19692.71 32951.04 35696.30 30584.49 29692.72 21793.79 296
LF4IMVS89.25 28688.85 27590.45 31292.81 31581.19 34298.12 29894.79 34591.44 21186.29 30097.11 21965.30 33698.11 21988.53 26085.25 26492.07 328
testgi89.01 28788.04 28891.90 30093.49 29984.89 32599.73 14395.66 33293.89 13085.14 30898.17 19459.68 34794.66 33377.73 32988.88 23096.16 226
SixPastTwentyTwo88.73 28888.01 28990.88 30691.85 32582.24 33598.22 29595.18 34388.97 25282.26 32096.89 22971.75 31196.67 29284.00 29882.98 28093.72 302
FMVSNet188.50 28986.64 29594.08 25795.62 26891.97 24298.43 28496.95 29083.00 32286.08 30394.72 30359.09 34896.11 31081.82 31384.07 27594.17 259
FMVSNet588.32 29087.47 29290.88 30696.90 22988.39 30597.28 31395.68 33182.60 32684.67 31092.40 33479.83 26391.16 35076.39 33581.51 29093.09 315
DSMNet-mixed88.28 29188.24 28688.42 32689.64 34275.38 35198.06 30189.86 35985.59 30388.20 27392.14 33576.15 29091.95 34878.46 32696.05 17997.92 209
K. test v388.05 29287.24 29490.47 31191.82 32682.23 33698.96 24697.42 24589.05 24876.93 34095.60 26768.49 32395.42 32285.87 28981.01 29893.75 298
KD-MVS_2432*160088.00 29386.10 29793.70 27396.91 22694.04 19897.17 31697.12 27284.93 31081.96 32192.41 33292.48 13094.51 33479.23 32152.68 35592.56 322
miper_refine_blended88.00 29386.10 29793.70 27396.91 22694.04 19897.17 31697.12 27284.93 31081.96 32192.41 33292.48 13094.51 33479.23 32152.68 35592.56 322
TinyColmap87.87 29586.51 29691.94 29995.05 27585.57 32097.65 30994.08 35084.40 31581.82 32396.85 23262.14 34398.33 20480.25 31986.37 25791.91 332
TransMVSNet (Re)87.25 29685.28 30193.16 28393.56 29791.03 26498.54 27994.05 35183.69 32081.09 32796.16 25275.32 29496.40 30076.69 33468.41 34492.06 329
Patchmatch-RL test86.90 29785.98 29989.67 31784.45 35275.59 35089.71 35392.43 35486.89 28677.83 33890.94 33994.22 8393.63 34287.75 26969.61 33999.79 100
Anonymous2023120686.32 29885.42 30089.02 32189.11 34480.53 34799.05 23795.28 33985.43 30682.82 31893.92 31874.40 30193.44 34466.99 34981.83 28893.08 316
MVS-HIRNet86.22 29983.19 31195.31 21396.71 24090.29 27992.12 34797.33 25562.85 35386.82 28970.37 35769.37 31997.49 24375.12 33797.99 14598.15 206
pmmvs685.69 30083.84 30691.26 30590.00 34184.41 32797.82 30696.15 32375.86 34381.29 32695.39 28061.21 34596.87 28283.52 30473.29 33692.50 324
test_040285.58 30183.94 30590.50 31093.81 29485.04 32498.55 27795.20 34276.01 34279.72 33395.13 29164.15 33996.26 30766.04 35286.88 25490.21 344
UnsupCasMVSNet_eth85.52 30283.99 30390.10 31489.36 34383.51 32996.65 32397.99 19089.14 24675.89 34493.83 31963.25 34193.92 33881.92 31267.90 34692.88 319
MDA-MVSNet_test_wron85.51 30383.32 31092.10 29790.96 33388.58 30299.20 21996.52 31579.70 33557.12 35792.69 33079.11 26893.86 34077.10 33277.46 32393.86 292
YYNet185.50 30483.33 30992.00 29890.89 33488.38 30699.22 21896.55 31479.60 33657.26 35692.72 32879.09 26993.78 34177.25 33177.37 32493.84 293
EG-PatchMatch MVS85.35 30583.81 30789.99 31690.39 33781.89 33898.21 29696.09 32481.78 32974.73 34693.72 32151.56 35597.12 26679.16 32488.61 23690.96 338
Anonymous2024052185.15 30683.81 30789.16 32088.32 34582.69 33198.80 26395.74 32979.72 33481.53 32590.99 33865.38 33594.16 33672.69 34081.11 29590.63 341
TDRefinement84.76 30782.56 31491.38 30474.58 35884.80 32697.36 31294.56 34884.73 31380.21 33196.12 25563.56 34098.39 19787.92 26763.97 34890.95 339
CMPMVSbinary61.59 2184.75 30885.14 30283.57 33390.32 33862.54 35796.98 32097.59 22674.33 34869.95 35196.66 23864.17 33898.32 20587.88 26888.41 24189.84 346
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test20.0384.72 30983.99 30386.91 32988.19 34780.62 34698.88 25495.94 32688.36 26678.87 33494.62 30868.75 32189.11 35466.52 35075.82 33191.00 337
CL-MVSNet_2432*160084.50 31083.15 31288.53 32586.00 35081.79 33998.82 26197.35 25285.12 30883.62 31690.91 34076.66 28391.40 34969.53 34560.36 35292.40 326
new_pmnet84.49 31182.92 31389.21 31990.03 34082.60 33296.89 32295.62 33380.59 33275.77 34589.17 34265.04 33794.79 33272.12 34181.02 29790.23 343
MDA-MVSNet-bldmvs84.09 31281.52 31891.81 30191.32 33188.00 31098.67 27395.92 32780.22 33355.60 35893.32 32468.29 32593.60 34373.76 33876.61 33093.82 295
pmmvs-eth3d84.03 31381.97 31690.20 31384.15 35387.09 31398.10 30094.73 34783.05 32174.10 34787.77 34665.56 33494.01 33781.08 31669.24 34189.49 348
OpenMVS_ROBcopyleft79.82 2083.77 31481.68 31790.03 31588.30 34682.82 33098.46 28295.22 34173.92 34976.00 34391.29 33755.00 35296.94 27868.40 34788.51 24090.34 342
DIV-MVS_2432*160083.59 31582.06 31588.20 32786.93 34880.70 34597.21 31496.38 31882.87 32382.49 31988.97 34367.63 32792.32 34673.75 33962.30 35191.58 334
MIMVSNet182.58 31680.51 32088.78 32386.68 34984.20 32896.65 32395.41 33778.75 33778.59 33692.44 33151.88 35489.76 35365.26 35378.95 31192.38 327
new-patchmatchnet81.19 31779.34 32286.76 33082.86 35580.36 34897.92 30495.27 34082.09 32872.02 34886.87 34862.81 34290.74 35271.10 34263.08 34989.19 350
test_method80.79 31879.70 32184.08 33292.83 31367.06 35599.51 18095.42 33654.34 35581.07 32893.53 32244.48 35892.22 34778.90 32577.23 32592.94 318
PM-MVS80.47 31978.88 32385.26 33183.79 35472.22 35295.89 33491.08 35785.71 30276.56 34288.30 34436.64 35993.90 33982.39 30869.57 34089.66 347
pmmvs380.27 32077.77 32487.76 32880.32 35682.43 33498.23 29491.97 35572.74 35078.75 33587.97 34557.30 35190.99 35170.31 34362.37 35089.87 345
N_pmnet80.06 32180.78 31977.89 33691.94 32345.28 36598.80 26356.82 36878.10 33980.08 33293.33 32377.03 27895.76 32068.14 34882.81 28192.64 321
UnsupCasMVSNet_bld79.97 32277.03 32588.78 32385.62 35181.98 33793.66 34297.35 25275.51 34670.79 35083.05 35248.70 35794.91 33078.31 32760.29 35389.46 349
FPMVS68.72 32368.72 32668.71 34165.95 36244.27 36795.97 33394.74 34651.13 35653.26 35990.50 34125.11 36483.00 35860.80 35580.97 29978.87 354
LCM-MVSNet67.77 32464.73 32876.87 33762.95 36456.25 36189.37 35493.74 35344.53 35861.99 35380.74 35320.42 36686.53 35669.37 34659.50 35487.84 351
PMMVS267.15 32564.15 32976.14 33870.56 36162.07 35893.89 34087.52 36358.09 35460.02 35478.32 35422.38 36584.54 35759.56 35647.03 35781.80 353
Gipumacopyleft66.95 32665.00 32772.79 33991.52 32967.96 35466.16 36095.15 34447.89 35758.54 35567.99 35929.74 36187.54 35550.20 35877.83 31962.87 358
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
tmp_tt65.23 32762.94 33072.13 34044.90 36750.03 36381.05 35789.42 36238.45 35948.51 36199.90 1754.09 35378.70 36091.84 21818.26 36287.64 352
ANet_high56.10 32852.24 33167.66 34249.27 36656.82 36083.94 35682.02 36470.47 35133.28 36564.54 36017.23 36869.16 36245.59 36023.85 36177.02 355
PMVScopyleft49.05 2353.75 32951.34 33360.97 34440.80 36834.68 36874.82 35989.62 36137.55 36028.67 36672.12 3567.09 37081.63 35943.17 36168.21 34566.59 357
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
E-PMN52.30 33052.18 33252.67 34571.51 35945.40 36493.62 34376.60 36636.01 36143.50 36264.13 36127.11 36367.31 36331.06 36326.06 35945.30 362
MVEpermissive53.74 2251.54 33147.86 33562.60 34359.56 36550.93 36279.41 35877.69 36535.69 36236.27 36461.76 3635.79 37269.63 36137.97 36236.61 35867.24 356
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
EMVS51.44 33251.22 33452.11 34670.71 36044.97 36694.04 33975.66 36735.34 36342.40 36361.56 36428.93 36265.87 36427.64 36424.73 36045.49 361
testmvs40.60 33344.45 33629.05 34819.49 37014.11 37199.68 15118.47 36920.74 36464.59 35298.48 18710.95 36917.09 36756.66 35711.01 36355.94 360
test12337.68 33439.14 33733.31 34719.94 36924.83 37098.36 2889.75 37015.53 36551.31 36087.14 34719.62 36717.74 36647.10 3593.47 36557.36 359
cdsmvs_eth3d_5k23.43 33531.24 3380.00 3500.00 3710.00 3720.00 36298.09 1830.00 3670.00 36899.67 9583.37 2310.00 3680.00 3660.00 3660.00 364
wuyk23d20.37 33620.84 33918.99 34965.34 36327.73 36950.43 3617.67 3719.50 3668.01 3676.34 3676.13 37126.24 36523.40 36510.69 3642.99 363
ab-mvs-re8.28 33711.04 3400.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 36899.40 1170.00 3730.00 3680.00 3660.00 3660.00 364
pcd_1.5k_mvsjas7.60 33810.13 3410.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 36891.20 1500.00 3680.00 3660.00 3660.00 364
uanet_test0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
sosnet-low-res0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
sosnet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
uncertanet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
Regformer0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
uanet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
ZD-MVS99.92 3598.57 5198.52 9092.34 18499.31 6499.83 4995.06 5299.80 10699.70 3099.97 44
RE-MVS-def98.13 5599.79 7096.37 13499.76 13298.31 15394.43 10099.40 5999.75 7792.95 11998.90 6399.92 6799.97 63
IU-MVS99.93 2699.31 798.41 13197.71 899.84 8100.00 1100.00 1100.00 1
OPU-MVS99.93 299.89 4599.80 299.96 2399.80 5897.44 11100.00 1100.00 199.98 33100.00 1
test_241102_TWO98.43 11697.27 2099.80 1699.94 497.18 17100.00 1100.00 1100.00 1100.00 1
test_241102_ONE99.93 2699.30 898.43 11697.26 2299.80 1699.88 2296.71 20100.00 1
9.1498.38 3899.87 5299.91 7098.33 14993.22 14899.78 2299.89 1994.57 6899.85 9499.84 1399.97 44
save fliter99.82 6598.79 3399.96 2398.40 13297.66 10
test_0728_THIRD96.48 4099.83 1099.91 1397.87 4100.00 199.92 9100.00 1100.00 1
test_0728_SECOND99.82 599.94 1499.47 599.95 4198.43 116100.00 199.99 5100.00 1100.00 1
test072699.93 2699.29 1099.96 2398.42 12797.28 1899.86 499.94 497.22 15
GSMVS99.59 130
test_part299.89 4599.25 1399.49 49
sam_mvs194.72 6499.59 130
sam_mvs94.25 82
ambc83.23 33477.17 35762.61 35687.38 35594.55 34976.72 34186.65 34930.16 36096.36 30284.85 29569.86 33890.73 340
MTGPAbinary98.28 158
test_post195.78 33559.23 36593.20 11497.74 23691.06 227
test_post63.35 36294.43 6998.13 218
patchmatchnet-post91.70 33695.12 4897.95 229
GG-mvs-BLEND98.54 10998.21 16098.01 7393.87 34198.52 9097.92 12497.92 20399.02 297.94 23198.17 9499.58 10399.67 117
MTMP99.87 8896.49 316
gm-plane-assit96.97 22493.76 20691.47 21098.96 15398.79 16794.92 158
test9_res99.71 2999.99 20100.00 1
TEST999.92 3598.92 2399.96 2398.43 11693.90 12899.71 3099.86 2995.88 3499.85 94
test_899.92 3598.88 2699.96 2398.43 11694.35 10599.69 3299.85 3395.94 3199.85 94
agg_prior299.48 36100.00 1100.00 1
agg_prior99.93 2698.77 3698.43 11699.63 3699.85 94
TestCases95.00 22299.01 11588.43 30396.82 30386.50 28988.71 26198.47 18874.73 29999.88 8585.39 29096.18 17696.71 221
test_prior498.05 7199.94 56
test_prior299.95 4195.78 6099.73 2699.76 7296.00 2999.78 20100.00 1
test_prior99.43 3599.94 1498.49 5798.65 6099.80 10699.99 20
旧先验299.46 18994.21 11299.85 699.95 6096.96 135
新几何299.40 194
新几何199.42 3899.75 7698.27 6598.63 6692.69 16699.55 4399.82 5394.40 71100.00 191.21 22399.94 5799.99 20
旧先验199.76 7497.52 9198.64 6399.85 3395.63 3999.94 5799.99 20
无先验99.49 18498.71 5393.46 142100.00 194.36 17699.99 20
原ACMM299.90 74
原ACMM198.96 8299.73 8196.99 11498.51 9794.06 11999.62 3899.85 3394.97 5999.96 5395.11 15599.95 5199.92 87
test22299.55 9497.41 10299.34 20498.55 8391.86 19799.27 6999.83 4993.84 9699.95 5199.99 20
testdata299.99 3690.54 239
segment_acmp96.68 22
testdata98.42 11999.47 10095.33 17098.56 7793.78 13399.79 2199.85 3393.64 10199.94 6894.97 15799.94 57100.00 1
testdata199.28 21496.35 48
test1299.43 3599.74 7798.56 5398.40 13299.65 3394.76 6399.75 12199.98 3399.99 20
plane_prior795.71 26391.59 259
plane_prior695.76 25891.72 25480.47 259
plane_prior597.87 20398.37 20297.79 11489.55 22394.52 231
plane_prior498.59 178
plane_prior391.64 25796.63 3893.01 203
plane_prior299.84 10696.38 44
plane_prior195.73 260
plane_prior91.74 25199.86 9996.76 3489.59 222
n20.00 372
nn0.00 372
door-mid89.69 360
lessismore_v090.53 30990.58 33680.90 34495.80 32877.01 33995.84 25866.15 33296.95 27783.03 30575.05 33493.74 301
LGP-MVS_train93.71 27195.43 26988.67 29997.62 21992.81 15890.05 22898.49 18475.24 29598.40 19595.84 15089.12 22794.07 273
test1198.44 108
door90.31 358
HQP5-MVS91.85 247
HQP-NCC95.78 25499.87 8896.82 3093.37 199
ACMP_Plane95.78 25499.87 8896.82 3093.37 199
BP-MVS97.92 109
HQP4-MVS93.37 19998.39 19794.53 229
HQP3-MVS97.89 20189.60 220
HQP2-MVS80.65 255
NP-MVS95.77 25791.79 24998.65 174
MDTV_nov1_ep13_2view96.26 13796.11 33091.89 19698.06 12194.40 7194.30 17999.67 117
MDTV_nov1_ep1395.69 13997.90 17594.15 19695.98 33298.44 10893.12 15197.98 12395.74 26195.10 4998.58 18190.02 24796.92 166
ACMMP++_ref87.04 253
ACMMP++88.23 242
Test By Simon92.82 123
ITE_SJBPF92.38 29395.69 26585.14 32395.71 33092.81 15889.33 25098.11 19570.23 31798.42 19285.91 28888.16 24393.59 305
DeepMVS_CXcopyleft82.92 33595.98 25258.66 35996.01 32592.72 16378.34 33795.51 27358.29 34998.08 22082.57 30785.29 26392.03 330