This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
CNVR-MVS99.40 199.26 199.84 699.98 299.51 699.98 1498.69 6898.20 799.93 199.98 296.82 21100.00 199.75 28100.00 199.99 23
NCCC99.37 299.25 299.71 1499.96 899.15 2199.97 2798.62 8198.02 1399.90 399.95 397.33 15100.00 199.54 39100.00 1100.00 1
MCST-MVS99.32 399.14 499.86 599.97 399.59 599.97 2798.64 7698.47 299.13 8799.92 1396.38 29100.00 199.74 30100.00 1100.00 1
DVP-MVScopyleft99.30 499.16 399.73 1299.93 2499.29 1599.95 5298.32 17497.28 3299.83 1399.91 1497.22 17100.00 199.99 5100.00 199.89 84
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
SED-MVS99.28 599.11 799.77 899.93 2499.30 1299.96 3498.43 13397.27 3499.80 1799.94 496.71 22100.00 1100.00 1100.00 1100.00 1
DVP-MVS++99.26 699.09 999.77 899.91 3999.31 1099.95 5298.43 13396.48 5999.80 1799.93 1197.44 12100.00 199.92 1299.98 32100.00 1
DPE-MVScopyleft99.26 699.10 899.74 1199.89 4599.24 1999.87 10498.44 12597.48 2799.64 4399.94 496.68 2499.99 3699.99 5100.00 199.99 23
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MSLP-MVS++99.13 899.01 1199.49 3299.94 1398.46 6199.98 1498.86 5397.10 4099.80 1799.94 495.92 35100.00 199.51 40100.00 1100.00 1
MSP-MVS99.09 999.12 598.98 7599.93 2497.24 10199.95 5298.42 14597.50 2699.52 6099.88 2197.43 1499.71 13899.50 4199.98 32100.00 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
HPM-MVS++copyleft99.07 1098.88 1699.63 1799.90 4299.02 2599.95 5298.56 9297.56 2599.44 6699.85 3095.38 46100.00 199.31 5199.99 2199.87 87
APDe-MVScopyleft99.06 1198.91 1499.51 2999.94 1398.76 4599.91 8498.39 15797.20 3899.46 6499.85 3095.53 4399.79 12399.86 21100.00 199.99 23
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
SteuartSystems-ACMMP99.02 1298.97 1399.18 5298.72 14297.71 8299.98 1498.44 12596.85 4699.80 1799.91 1497.57 699.85 10899.44 4699.99 2199.99 23
Skip Steuart: Steuart Systems R&D Blog.
CHOSEN 280x42099.01 1399.03 1098.95 7899.38 9698.87 3398.46 31199.42 2297.03 4299.02 9199.09 14799.35 198.21 24699.73 3299.78 8299.77 101
fmvsm_l_conf0.5_n_a99.00 1498.91 1499.28 4599.21 10297.91 7799.98 1498.85 5698.25 499.92 299.75 6994.72 6499.97 5399.87 1999.64 9099.95 71
fmvsm_l_conf0.5_n98.94 1598.84 1799.25 4699.17 10697.81 8099.98 1498.86 5398.25 499.90 399.76 6394.21 8399.97 5399.87 1999.52 10499.98 48
TSAR-MVS + MP.98.93 1698.77 1899.41 3899.74 6998.67 4999.77 14698.38 16196.73 5399.88 699.74 7694.89 5999.59 14999.80 2599.98 3299.97 58
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SD-MVS98.92 1798.70 1999.56 2599.70 7698.73 4699.94 6898.34 17196.38 6599.81 1599.76 6394.59 6799.98 4399.84 2299.96 4699.97 58
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MG-MVS98.91 1898.65 2099.68 1599.94 1399.07 2499.64 18499.44 2097.33 3199.00 9299.72 8194.03 8899.98 4398.73 86100.00 1100.00 1
train_agg98.88 1998.65 2099.59 2399.92 3198.92 2999.96 3498.43 13394.35 12499.71 3499.86 2695.94 3399.85 10899.69 3599.98 3299.99 23
MVS_030498.87 2098.61 2399.67 1699.18 10399.13 2299.87 10499.65 1298.17 898.75 10799.75 6992.76 12499.94 7799.88 1899.44 11399.94 74
MM98.83 2198.53 2799.76 1099.59 8199.33 899.99 499.76 698.39 399.39 7399.80 5190.49 17599.96 6199.89 1699.43 11599.98 48
DPM-MVS98.83 2198.46 3099.97 199.33 9899.92 199.96 3498.44 12597.96 1499.55 5599.94 497.18 19100.00 193.81 21799.94 5499.98 48
DeepC-MVS_fast96.59 198.81 2398.54 2699.62 2099.90 4298.85 3599.24 24298.47 11798.14 1099.08 8899.91 1493.09 114100.00 199.04 6399.99 21100.00 1
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SMA-MVScopyleft98.76 2498.48 2999.62 2099.87 5198.87 3399.86 11698.38 16193.19 17199.77 2799.94 495.54 41100.00 199.74 3099.99 21100.00 1
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MVS_111021_HR98.72 2598.62 2299.01 7399.36 9797.18 10499.93 7599.90 196.81 5198.67 11099.77 6193.92 9099.89 9699.27 5399.94 5499.96 64
XVS98.70 2698.55 2599.15 5999.94 1397.50 9399.94 6898.42 14596.22 7299.41 6999.78 5994.34 7699.96 6198.92 7399.95 4999.99 23
SF-MVS98.67 2798.40 3299.50 3099.77 6598.67 4999.90 9098.21 18893.53 16099.81 1599.89 1994.70 6699.86 10799.84 2299.93 6099.96 64
CDPH-MVS98.65 2898.36 3899.49 3299.94 1398.73 4699.87 10498.33 17293.97 14499.76 2899.87 2494.99 5799.75 13298.55 98100.00 199.98 48
APD-MVScopyleft98.62 2998.35 3999.41 3899.90 4298.51 5999.87 10498.36 16594.08 13799.74 3199.73 7894.08 8699.74 13499.42 4799.99 2199.99 23
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
TSAR-MVS + GP.98.60 3098.51 2898.86 8399.73 7296.63 12399.97 2797.92 22198.07 1198.76 10599.55 10895.00 5699.94 7799.91 1597.68 16799.99 23
PAPM98.60 3098.42 3199.14 6196.05 28098.96 2699.90 9099.35 2596.68 5598.35 12599.66 9696.45 2898.51 21399.45 4599.89 6699.96 64
HFP-MVS98.56 3298.37 3699.14 6199.96 897.43 9799.95 5298.61 8294.77 10699.31 7799.85 3094.22 81100.00 198.70 8799.98 3299.98 48
region2R98.54 3398.37 3699.05 6899.96 897.18 10499.96 3498.55 9894.87 10499.45 6599.85 3094.07 87100.00 198.67 89100.00 199.98 48
DELS-MVS98.54 3398.22 4499.50 3099.15 10898.65 53100.00 198.58 8797.70 2098.21 13299.24 13992.58 13099.94 7798.63 9499.94 5499.92 81
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PAPR98.52 3598.16 4999.58 2499.97 398.77 4299.95 5298.43 13395.35 9298.03 13699.75 6994.03 8899.98 4398.11 11799.83 7499.99 23
ACMMPR98.50 3698.32 4099.05 6899.96 897.18 10499.95 5298.60 8494.77 10699.31 7799.84 4193.73 97100.00 198.70 8799.98 3299.98 48
ACMMP_NAP98.49 3798.14 5099.54 2799.66 7898.62 5599.85 11998.37 16494.68 11199.53 5899.83 4392.87 120100.00 198.66 9199.84 7399.99 23
EPNet98.49 3798.40 3298.77 8799.62 8096.80 12099.90 9099.51 1797.60 2299.20 8399.36 12893.71 9899.91 8997.99 12498.71 14299.61 129
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
SR-MVS98.46 3998.30 4398.93 7999.88 4997.04 11099.84 12498.35 16794.92 10299.32 7699.80 5193.35 10499.78 12599.30 5299.95 4999.96 64
CP-MVS98.45 4098.32 4098.87 8299.96 896.62 12499.97 2798.39 15794.43 11998.90 9699.87 2494.30 78100.00 199.04 6399.99 2199.99 23
test_fmvsm_n_192098.44 4198.61 2397.92 14499.27 10195.18 186100.00 198.90 4798.05 1299.80 1799.73 7892.64 12799.99 3699.58 3899.51 10798.59 225
PS-MVSNAJ98.44 4198.20 4699.16 5798.80 13898.92 2999.54 20198.17 19397.34 2999.85 999.85 3091.20 15599.89 9699.41 4899.67 8898.69 222
test_fmvsmconf_n98.43 4398.32 4098.78 8598.12 18996.41 13199.99 498.83 5998.22 699.67 3999.64 9991.11 15999.94 7799.67 3699.62 9399.98 48
MVS_111021_LR98.42 4498.38 3498.53 10999.39 9595.79 15699.87 10499.86 296.70 5498.78 10299.79 5592.03 14599.90 9199.17 5799.86 7299.88 85
DP-MVS Recon98.41 4598.02 5799.56 2599.97 398.70 4899.92 7898.44 12592.06 21798.40 12399.84 4195.68 39100.00 198.19 11299.71 8699.97 58
PHI-MVS98.41 4598.21 4599.03 7099.86 5397.10 10999.98 1498.80 6290.78 25899.62 4799.78 5995.30 47100.00 199.80 2599.93 6099.99 23
mPP-MVS98.39 4798.20 4698.97 7699.97 396.92 11599.95 5298.38 16195.04 9898.61 11499.80 5193.39 102100.00 198.64 92100.00 199.98 48
PGM-MVS98.34 4898.13 5198.99 7499.92 3197.00 11199.75 15499.50 1893.90 14999.37 7499.76 6393.24 111100.00 197.75 14099.96 4699.98 48
SR-MVS-dyc-post98.31 4998.17 4898.71 9099.79 6296.37 13599.76 15198.31 17694.43 11999.40 7199.75 6993.28 10999.78 12598.90 7699.92 6399.97 58
ZNCC-MVS98.31 4998.03 5699.17 5599.88 4997.59 8799.94 6898.44 12594.31 12798.50 11899.82 4693.06 11599.99 3698.30 11099.99 2199.93 76
MTAPA98.29 5197.96 6299.30 4499.85 5497.93 7699.39 22398.28 18195.76 8197.18 16099.88 2192.74 125100.00 198.67 8999.88 6899.99 23
GST-MVS98.27 5297.97 5999.17 5599.92 3197.57 8999.93 7598.39 15794.04 14298.80 10199.74 7692.98 117100.00 198.16 11499.76 8399.93 76
CANet98.27 5297.82 6999.63 1799.72 7499.10 2399.98 1498.51 10897.00 4398.52 11699.71 8387.80 20699.95 6999.75 2899.38 11799.83 91
EI-MVSNet-Vis-set98.27 5298.11 5398.75 8899.83 5796.59 12699.40 21998.51 10895.29 9498.51 11799.76 6393.60 10199.71 13898.53 9999.52 10499.95 71
APD-MVS_3200maxsize98.25 5598.08 5598.78 8599.81 6096.60 12599.82 13498.30 17993.95 14699.37 7499.77 6192.84 12199.76 13198.95 7099.92 6399.97 58
patch_mono-298.24 5699.12 595.59 22799.67 7786.91 34699.95 5298.89 4997.60 2299.90 399.76 6396.54 2799.98 4399.94 1199.82 7899.88 85
xiu_mvs_v2_base98.23 5797.97 5999.02 7298.69 14398.66 5199.52 20398.08 20597.05 4199.86 799.86 2690.65 16899.71 13899.39 5098.63 14398.69 222
MP-MVScopyleft98.23 5797.97 5999.03 7099.94 1397.17 10799.95 5298.39 15794.70 11098.26 13099.81 5091.84 149100.00 198.85 7999.97 4299.93 76
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
EI-MVSNet-UG-set98.14 5997.99 5898.60 9999.80 6196.27 13799.36 22898.50 11495.21 9698.30 12799.75 6993.29 10899.73 13798.37 10699.30 12199.81 94
PAPM_NR98.12 6097.93 6498.70 9199.94 1396.13 14799.82 13498.43 13394.56 11497.52 15099.70 8594.40 7199.98 4397.00 15599.98 3299.99 23
WTY-MVS98.10 6197.60 7799.60 2298.92 12699.28 1799.89 9899.52 1595.58 8698.24 13199.39 12593.33 10599.74 13497.98 12695.58 21499.78 100
MP-MVS-pluss98.07 6297.64 7599.38 4299.74 6998.41 6299.74 15798.18 19293.35 16596.45 17999.85 3092.64 12799.97 5398.91 7599.89 6699.77 101
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MVSMamba_pp98.05 6397.76 7198.92 8098.56 15198.06 6899.92 7897.75 23496.28 7099.71 3498.43 21590.37 17799.11 17798.99 6999.88 6899.58 138
HPM-MVScopyleft97.96 6497.72 7298.68 9299.84 5696.39 13499.90 9098.17 19392.61 19598.62 11399.57 10791.87 14899.67 14598.87 7899.99 2199.99 23
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
PVSNet_Blended97.94 6597.64 7598.83 8499.59 8196.99 112100.00 199.10 3195.38 9198.27 12899.08 14889.00 19899.95 6999.12 5899.25 12399.57 140
PLCcopyleft95.54 397.93 6697.89 6798.05 13799.82 5894.77 19899.92 7898.46 11993.93 14797.20 15999.27 13495.44 4599.97 5397.41 14599.51 10799.41 167
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
ETV-MVS97.92 6797.80 7098.25 12598.14 18796.48 12899.98 1497.63 24295.61 8599.29 8099.46 11692.55 13198.82 19299.02 6798.54 14499.46 160
CS-MVS-test97.88 6897.94 6397.70 15999.28 10095.20 18599.98 1497.15 29995.53 8899.62 4799.79 5592.08 14498.38 22998.75 8599.28 12299.52 152
API-MVS97.86 6997.66 7498.47 11299.52 8895.41 17599.47 21298.87 5291.68 22898.84 9899.85 3092.34 13899.99 3698.44 10299.96 46100.00 1
lupinMVS97.85 7097.60 7798.62 9797.28 24297.70 8499.99 497.55 25395.50 9099.43 6799.67 9490.92 16398.71 20298.40 10399.62 9399.45 162
test_yl97.83 7197.37 8599.21 4999.18 10397.98 7399.64 18499.27 2791.43 23797.88 14298.99 15795.84 3799.84 11698.82 8095.32 22099.79 97
DCV-MVSNet97.83 7197.37 8599.21 4999.18 10397.98 7399.64 18499.27 2791.43 23797.88 14298.99 15795.84 3799.84 11698.82 8095.32 22099.79 97
mvsany_test197.82 7397.90 6697.55 16798.77 14093.04 24299.80 14097.93 21896.95 4599.61 5399.68 9390.92 16399.83 11899.18 5698.29 15399.80 96
alignmvs97.81 7497.33 8899.25 4698.77 14098.66 5199.99 498.44 12594.40 12398.41 12199.47 11493.65 9999.42 16498.57 9794.26 23499.67 115
fmvsm_s_conf0.5_n97.80 7597.85 6897.67 16099.06 11194.41 20499.98 1498.97 4097.34 2999.63 4499.69 8787.27 21399.97 5399.62 3799.06 13298.62 224
HPM-MVS_fast97.80 7597.50 8098.68 9299.79 6296.42 13099.88 10198.16 19791.75 22798.94 9499.54 11091.82 15099.65 14797.62 14399.99 2199.99 23
CS-MVS97.79 7797.91 6597.43 17599.10 10994.42 20399.99 497.10 30495.07 9799.68 3899.75 6992.95 11898.34 23398.38 10499.14 12899.54 146
HY-MVS92.50 797.79 7797.17 9699.63 1798.98 11899.32 997.49 34399.52 1595.69 8398.32 12697.41 24793.32 10699.77 12898.08 12095.75 21199.81 94
CNLPA97.76 7997.38 8498.92 8099.53 8796.84 11799.87 10498.14 20193.78 15296.55 17799.69 8792.28 13999.98 4397.13 15199.44 11399.93 76
test_fmvsmconf0.1_n97.74 8097.44 8298.64 9695.76 29196.20 14399.94 6898.05 20898.17 898.89 9799.42 11887.65 20899.90 9199.50 4199.60 9999.82 92
ACMMPcopyleft97.74 8097.44 8298.66 9499.92 3196.13 14799.18 24799.45 1994.84 10596.41 18299.71 8391.40 15299.99 3697.99 12498.03 16299.87 87
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
fmvsm_s_conf0.5_n_a97.73 8297.72 7297.77 15498.63 14994.26 20999.96 3498.92 4697.18 3999.75 2999.69 8787.00 21899.97 5399.46 4498.89 13599.08 201
DeepPCF-MVS95.94 297.71 8398.98 1293.92 29199.63 7981.76 37499.96 3498.56 9299.47 199.19 8599.99 194.16 85100.00 199.92 1299.93 60100.00 1
test_fmvsmvis_n_192097.67 8497.59 7997.91 14697.02 24995.34 17799.95 5298.45 12097.87 1597.02 16499.59 10489.64 18699.98 4399.41 4899.34 12098.42 228
CPTT-MVS97.64 8597.32 8998.58 10299.97 395.77 15799.96 3498.35 16789.90 27498.36 12499.79 5591.18 15899.99 3698.37 10699.99 2199.99 23
sss97.57 8697.03 10199.18 5298.37 16698.04 7099.73 16299.38 2393.46 16298.76 10599.06 15091.21 15499.89 9696.33 16797.01 18499.62 126
test250697.53 8797.19 9498.58 10298.66 14696.90 11698.81 28999.77 594.93 10097.95 13898.96 16392.51 13299.20 17294.93 18898.15 15599.64 121
EIA-MVS97.53 8797.46 8197.76 15698.04 19294.84 19499.98 1497.61 24794.41 12297.90 14099.59 10492.40 13698.87 18998.04 12199.13 12999.59 132
iter_conf05_1197.49 8997.34 8797.93 14398.51 15995.15 18899.58 19297.64 24093.76 15499.26 8298.38 21790.51 17499.10 18098.58 9699.88 6899.54 146
testing1197.48 9097.27 9098.10 13398.36 16796.02 15099.92 7898.45 12093.45 16498.15 13498.70 18995.48 4499.22 16897.85 13295.05 22499.07 202
xiu_mvs_v1_base_debu97.43 9197.06 9798.55 10497.74 20998.14 6499.31 23397.86 22796.43 6299.62 4799.69 8785.56 23299.68 14299.05 6098.31 15097.83 239
xiu_mvs_v1_base97.43 9197.06 9798.55 10497.74 20998.14 6499.31 23397.86 22796.43 6299.62 4799.69 8785.56 23299.68 14299.05 6098.31 15097.83 239
xiu_mvs_v1_base_debi97.43 9197.06 9798.55 10497.74 20998.14 6499.31 23397.86 22796.43 6299.62 4799.69 8785.56 23299.68 14299.05 6098.31 15097.83 239
MAR-MVS97.43 9197.19 9498.15 13199.47 9294.79 19799.05 26398.76 6392.65 19398.66 11199.82 4688.52 20399.98 4398.12 11699.63 9299.67 115
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
dcpmvs_297.42 9598.09 5495.42 23299.58 8587.24 34299.23 24396.95 32094.28 13098.93 9599.73 7894.39 7499.16 17699.89 1699.82 7899.86 89
thisisatest051597.41 9697.02 10298.59 10197.71 21697.52 9199.97 2798.54 10191.83 22397.45 15399.04 15197.50 799.10 18094.75 19696.37 19699.16 193
114514_t97.41 9696.83 11099.14 6199.51 9097.83 7899.89 9898.27 18388.48 30199.06 8999.66 9690.30 17999.64 14896.32 16899.97 4299.96 64
EC-MVSNet97.38 9897.24 9197.80 14997.41 23195.64 16699.99 497.06 30994.59 11399.63 4499.32 13089.20 19698.14 24998.76 8499.23 12599.62 126
iter_conf0597.35 9996.89 10898.73 8998.60 15097.59 8798.26 32397.46 26490.34 26695.94 19298.32 22094.29 7999.23 16799.03 6699.82 7899.36 172
fmvsm_s_conf0.1_n97.30 10097.21 9397.60 16697.38 23394.40 20699.90 9098.64 7696.47 6199.51 6299.65 9884.99 24099.93 8599.22 5599.09 13198.46 226
OMC-MVS97.28 10197.23 9297.41 17699.76 6693.36 23799.65 18097.95 21696.03 7697.41 15499.70 8589.61 18799.51 15396.73 16498.25 15499.38 169
PVSNet_Blended_VisFu97.27 10296.81 11198.66 9498.81 13796.67 12299.92 7898.64 7694.51 11596.38 18398.49 20889.05 19799.88 10297.10 15398.34 14899.43 165
jason97.24 10396.86 10998.38 12095.73 29497.32 10099.97 2797.40 27395.34 9398.60 11599.54 11087.70 20798.56 21097.94 12799.47 10999.25 188
jason: jason.
AdaColmapbinary97.23 10496.80 11298.51 11099.99 195.60 16899.09 25298.84 5893.32 16796.74 17299.72 8186.04 229100.00 198.01 12299.43 11599.94 74
VNet97.21 10596.57 12299.13 6598.97 11997.82 7999.03 26699.21 2994.31 12799.18 8698.88 17486.26 22899.89 9698.93 7294.32 23299.69 112
testing9997.17 10696.91 10497.95 14098.35 16995.70 16299.91 8498.43 13392.94 17797.36 15598.72 18794.83 6099.21 16997.00 15594.64 22698.95 207
testing9197.16 10796.90 10597.97 13998.35 16995.67 16599.91 8498.42 14592.91 17997.33 15698.72 18794.81 6199.21 16996.98 15794.63 22799.03 204
PVSNet91.05 1397.13 10896.69 11798.45 11499.52 8895.81 15599.95 5299.65 1294.73 10899.04 9099.21 14184.48 24499.95 6994.92 18998.74 14199.58 138
thisisatest053097.10 10996.72 11598.22 12697.60 22296.70 12199.92 7898.54 10191.11 24797.07 16398.97 16197.47 1099.03 18293.73 22296.09 19998.92 208
CSCG97.10 10997.04 10097.27 18599.89 4591.92 26899.90 9099.07 3488.67 29795.26 20699.82 4693.17 11399.98 4398.15 11599.47 10999.90 83
sasdasda97.09 11196.32 12899.39 4098.93 12398.95 2799.72 16597.35 27694.45 11697.88 14299.42 11886.71 22099.52 15198.48 10093.97 23899.72 107
fmvsm_s_conf0.1_n_a97.09 11196.90 10597.63 16495.65 30094.21 21199.83 13198.50 11496.27 7199.65 4199.64 9984.72 24199.93 8599.04 6398.84 13898.74 219
canonicalmvs97.09 11196.32 12899.39 4098.93 12398.95 2799.72 16597.35 27694.45 11697.88 14299.42 11886.71 22099.52 15198.48 10093.97 23899.72 107
testing22297.08 11496.75 11498.06 13698.56 15196.82 11899.85 11998.61 8292.53 20198.84 9898.84 18393.36 10398.30 23795.84 17694.30 23399.05 203
ETVMVS97.03 11596.64 11898.20 12798.67 14597.12 10899.89 9898.57 8991.10 24898.17 13398.59 19993.86 9498.19 24795.64 17995.24 22299.28 185
MGCFI-Net97.00 11696.22 13299.34 4398.86 13498.80 3999.67 17797.30 28394.31 12797.77 14699.41 12286.36 22699.50 15598.38 10493.90 24099.72 107
diffmvspermissive97.00 11696.64 11898.09 13497.64 22096.17 14699.81 13697.19 29394.67 11298.95 9399.28 13186.43 22498.76 19798.37 10697.42 17399.33 178
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
thres20096.96 11896.21 13399.22 4898.97 11998.84 3699.85 11999.71 793.17 17296.26 18598.88 17489.87 18499.51 15394.26 20794.91 22599.31 180
MVSFormer96.94 11996.60 12097.95 14097.28 24297.70 8499.55 19997.27 28891.17 24499.43 6799.54 11090.92 16396.89 31394.67 19999.62 9399.25 188
F-COLMAP96.93 12096.95 10396.87 19599.71 7591.74 27399.85 11997.95 21693.11 17495.72 19999.16 14592.35 13799.94 7795.32 18299.35 11998.92 208
DeepC-MVS94.51 496.92 12196.40 12798.45 11499.16 10795.90 15399.66 17998.06 20696.37 6894.37 21599.49 11383.29 25399.90 9197.63 14299.61 9799.55 142
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
tttt051796.85 12296.49 12497.92 14497.48 22995.89 15499.85 11998.54 10190.72 25996.63 17498.93 17297.47 1099.02 18393.03 23495.76 21098.85 212
131496.84 12395.96 14499.48 3496.74 26798.52 5898.31 32098.86 5395.82 7989.91 26798.98 15987.49 21099.96 6197.80 13399.73 8599.96 64
CHOSEN 1792x268896.81 12496.53 12397.64 16298.91 13093.07 23999.65 18099.80 395.64 8495.39 20398.86 17984.35 24699.90 9196.98 15799.16 12799.95 71
UWE-MVS96.79 12596.72 11597.00 19098.51 15993.70 22599.71 16898.60 8492.96 17697.09 16198.34 21996.67 2698.85 19192.11 24396.50 19298.44 227
tfpn200view996.79 12595.99 13899.19 5198.94 12198.82 3799.78 14399.71 792.86 18096.02 19098.87 17789.33 19199.50 15593.84 21494.57 22899.27 186
thres40096.78 12795.99 13899.16 5798.94 12198.82 3799.78 14399.71 792.86 18096.02 19098.87 17789.33 19199.50 15593.84 21494.57 22899.16 193
CANet_DTU96.76 12896.15 13498.60 9998.78 13997.53 9099.84 12497.63 24297.25 3799.20 8399.64 9981.36 26699.98 4392.77 23798.89 13598.28 231
PMMVS96.76 12896.76 11396.76 19898.28 17492.10 26399.91 8497.98 21394.12 13599.53 5899.39 12586.93 21998.73 19996.95 16097.73 16599.45 162
thres100view90096.74 13095.92 14899.18 5298.90 13198.77 4299.74 15799.71 792.59 19795.84 19598.86 17989.25 19399.50 15593.84 21494.57 22899.27 186
TESTMET0.1,196.74 13096.26 13098.16 12897.36 23596.48 12899.96 3498.29 18091.93 22095.77 19898.07 22895.54 4198.29 23890.55 26998.89 13599.70 110
baseline296.71 13296.49 12497.37 17995.63 30295.96 15299.74 15798.88 5192.94 17791.61 24798.97 16197.72 598.62 20894.83 19398.08 16197.53 249
thres600view796.69 13395.87 15199.14 6198.90 13198.78 4199.74 15799.71 792.59 19795.84 19598.86 17989.25 19399.50 15593.44 22694.50 23199.16 193
EPP-MVSNet96.69 13396.60 12096.96 19297.74 20993.05 24199.37 22698.56 9288.75 29595.83 19799.01 15496.01 3198.56 21096.92 16197.20 17899.25 188
HyFIR lowres test96.66 13596.43 12697.36 18199.05 11293.91 22099.70 17299.80 390.54 26196.26 18598.08 22792.15 14298.23 24596.84 16395.46 21599.93 76
MVS96.60 13695.56 15999.72 1396.85 26099.22 2098.31 32098.94 4191.57 23090.90 25699.61 10386.66 22299.96 6197.36 14699.88 6899.99 23
test_cas_vis1_n_192096.59 13796.23 13197.65 16198.22 17894.23 21099.99 497.25 29097.77 1799.58 5499.08 14877.10 30399.97 5397.64 14199.45 11298.74 219
UA-Net96.54 13895.96 14498.27 12498.23 17795.71 16198.00 33698.45 12093.72 15698.41 12199.27 13488.71 20299.66 14691.19 25497.69 16699.44 164
EPMVS96.53 13996.01 13798.09 13498.43 16496.12 14996.36 36599.43 2193.53 16097.64 14895.04 33194.41 7098.38 22991.13 25598.11 15899.75 103
test-LLR96.47 14096.04 13697.78 15297.02 24995.44 17299.96 3498.21 18894.07 13895.55 20096.38 28193.90 9298.27 24290.42 27298.83 13999.64 121
MVS_Test96.46 14195.74 15398.61 9898.18 18297.23 10299.31 23397.15 29991.07 24998.84 9897.05 26088.17 20598.97 18594.39 20397.50 17099.61 129
casdiffmvs_mvgpermissive96.43 14295.94 14697.89 14897.44 23095.47 17199.86 11697.29 28693.35 16596.03 18999.19 14285.39 23598.72 20197.89 13197.04 18299.49 158
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline96.43 14295.98 14097.76 15697.34 23695.17 18799.51 20597.17 29693.92 14896.90 16799.28 13185.37 23698.64 20797.50 14496.86 18899.46 160
casdiffmvspermissive96.42 14495.97 14397.77 15497.30 24094.98 19099.84 12497.09 30693.75 15596.58 17699.26 13785.07 23898.78 19597.77 13897.04 18299.54 146
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_fmvsmconf0.01_n96.39 14595.74 15398.32 12291.47 36995.56 16999.84 12497.30 28397.74 1897.89 14199.35 12979.62 28599.85 10899.25 5499.24 12499.55 142
test-mter96.39 14595.93 14797.78 15297.02 24995.44 17299.96 3498.21 18891.81 22595.55 20096.38 28195.17 4898.27 24290.42 27298.83 13999.64 121
CDS-MVSNet96.34 14796.07 13597.13 18797.37 23494.96 19199.53 20297.91 22291.55 23195.37 20498.32 22095.05 5397.13 29693.80 21895.75 21199.30 182
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Vis-MVSNet (Re-imp)96.32 14895.98 14097.35 18297.93 19794.82 19599.47 21298.15 20091.83 22395.09 20799.11 14691.37 15397.47 27893.47 22597.43 17199.74 104
3Dnovator+91.53 1196.31 14995.24 16799.52 2896.88 25998.64 5499.72 16598.24 18595.27 9588.42 30698.98 15982.76 25599.94 7797.10 15399.83 7499.96 64
Effi-MVS+96.30 15095.69 15598.16 12897.85 20296.26 13897.41 34597.21 29290.37 26498.65 11298.58 20286.61 22398.70 20397.11 15297.37 17599.52 152
IS-MVSNet96.29 15195.90 14997.45 17298.13 18894.80 19699.08 25497.61 24792.02 21995.54 20298.96 16390.64 16998.08 25293.73 22297.41 17499.47 159
3Dnovator91.47 1296.28 15295.34 16499.08 6796.82 26297.47 9699.45 21698.81 6095.52 8989.39 28199.00 15681.97 25999.95 6997.27 14899.83 7499.84 90
tpmrst96.27 15395.98 14097.13 18797.96 19593.15 23896.34 36698.17 19392.07 21598.71 10995.12 32993.91 9198.73 19994.91 19196.62 18999.50 156
CostFormer96.10 15495.88 15096.78 19797.03 24892.55 25597.08 35397.83 23090.04 27298.72 10894.89 33895.01 5598.29 23896.54 16695.77 20999.50 156
PVSNet_BlendedMVS96.05 15595.82 15296.72 20099.59 8196.99 11299.95 5299.10 3194.06 14098.27 12895.80 29689.00 19899.95 6999.12 5887.53 29093.24 347
PatchMatch-RL96.04 15695.40 16197.95 14099.59 8195.22 18499.52 20399.07 3493.96 14596.49 17898.35 21882.28 25799.82 12090.15 27799.22 12698.81 215
1112_ss96.01 15795.20 16998.42 11797.80 20596.41 13199.65 18096.66 34292.71 18892.88 23499.40 12392.16 14199.30 16591.92 24693.66 24199.55 142
PatchmatchNetpermissive95.94 15895.45 16097.39 17897.83 20394.41 20496.05 37298.40 15492.86 18097.09 16195.28 32694.21 8398.07 25489.26 28598.11 15899.70 110
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
FA-MVS(test-final)95.86 15995.09 17398.15 13197.74 20995.62 16796.31 36798.17 19391.42 23996.26 18596.13 29090.56 17299.47 16292.18 24297.07 18099.35 175
TAMVS95.85 16095.58 15896.65 20397.07 24693.50 23199.17 24897.82 23191.39 24195.02 20898.01 23092.20 14097.30 28593.75 22195.83 20899.14 196
LS3D95.84 16195.11 17298.02 13899.85 5495.10 18998.74 29498.50 11487.22 31893.66 22499.86 2687.45 21199.95 6990.94 26199.81 8199.02 205
baseline195.78 16294.86 17998.54 10798.47 16398.07 6799.06 25997.99 21192.68 19194.13 22098.62 19893.28 10998.69 20493.79 21985.76 29898.84 213
Test_1112_low_res95.72 16394.83 18098.42 11797.79 20696.41 13199.65 18096.65 34392.70 18992.86 23596.13 29092.15 14299.30 16591.88 24793.64 24299.55 142
Vis-MVSNetpermissive95.72 16395.15 17197.45 17297.62 22194.28 20899.28 23998.24 18594.27 13296.84 16998.94 17079.39 28798.76 19793.25 22798.49 14599.30 182
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
EPNet_dtu95.71 16595.39 16296.66 20298.92 12693.41 23499.57 19598.90 4796.19 7497.52 15098.56 20492.65 12697.36 28077.89 36798.33 14999.20 191
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
BH-w/o95.71 16595.38 16396.68 20198.49 16292.28 25999.84 12497.50 26192.12 21492.06 24498.79 18484.69 24298.67 20695.29 18399.66 8999.09 199
FE-MVS95.70 16795.01 17697.79 15198.21 17994.57 19995.03 37998.69 6888.90 29297.50 15296.19 28792.60 12999.49 16089.99 27997.94 16499.31 180
ECVR-MVScopyleft95.66 16895.05 17497.51 17098.66 14693.71 22498.85 28698.45 12094.93 10096.86 16898.96 16375.22 32699.20 17295.34 18198.15 15599.64 121
mvs_anonymous95.65 16995.03 17597.53 16898.19 18195.74 15999.33 23097.49 26290.87 25390.47 26097.10 25688.23 20497.16 29395.92 17497.66 16899.68 113
test111195.57 17094.98 17797.37 17998.56 15193.37 23698.86 28498.45 12094.95 9996.63 17498.95 16875.21 32799.11 17795.02 18698.14 15799.64 121
MVSTER95.53 17195.22 16896.45 20798.56 15197.72 8199.91 8497.67 23892.38 20891.39 24997.14 25497.24 1697.30 28594.80 19487.85 28594.34 285
tpm295.47 17295.18 17096.35 21296.91 25591.70 27796.96 35697.93 21888.04 30898.44 12095.40 31593.32 10697.97 25894.00 21095.61 21399.38 169
test_vis1_n_192095.44 17395.31 16595.82 22398.50 16188.74 32599.98 1497.30 28397.84 1699.85 999.19 14266.82 36399.97 5398.82 8099.46 11198.76 217
QAPM95.40 17494.17 19599.10 6696.92 25497.71 8299.40 21998.68 7089.31 28088.94 29498.89 17382.48 25699.96 6193.12 23399.83 7499.62 126
test_fmvs195.35 17595.68 15794.36 27698.99 11784.98 35699.96 3496.65 34397.60 2299.73 3298.96 16371.58 34399.93 8598.31 10999.37 11898.17 232
UGNet95.33 17694.57 18597.62 16598.55 15594.85 19398.67 30299.32 2695.75 8296.80 17196.27 28572.18 34099.96 6194.58 20199.05 13398.04 236
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
bld_raw_dy_0_6495.27 17794.55 18697.45 17298.17 18396.49 12796.67 36097.42 26979.97 37591.83 24598.04 22990.64 16999.01 18498.60 9599.57 10196.85 253
mamv495.24 17896.90 10590.25 34498.65 14872.11 39198.28 32297.64 24089.99 27395.93 19398.25 22294.74 6399.11 17799.01 6899.64 9099.53 151
BH-untuned95.18 17994.83 18096.22 21498.36 16791.22 28599.80 14097.32 28190.91 25291.08 25398.67 19183.51 25098.54 21294.23 20899.61 9798.92 208
BH-RMVSNet95.18 17994.31 19297.80 14998.17 18395.23 18399.76 15197.53 25792.52 20294.27 21899.25 13876.84 30898.80 19390.89 26399.54 10399.35 175
PCF-MVS94.20 595.18 17994.10 19698.43 11698.55 15595.99 15197.91 33897.31 28290.35 26589.48 28099.22 14085.19 23799.89 9690.40 27498.47 14699.41 167
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
dp95.05 18294.43 18896.91 19397.99 19492.73 24996.29 36897.98 21389.70 27795.93 19394.67 34493.83 9698.45 21886.91 31796.53 19199.54 146
Fast-Effi-MVS+95.02 18394.19 19497.52 16997.88 19994.55 20099.97 2797.08 30788.85 29494.47 21497.96 23484.59 24398.41 22189.84 28197.10 17999.59 132
IB-MVS92.85 694.99 18493.94 20198.16 12897.72 21495.69 16499.99 498.81 6094.28 13092.70 23696.90 26495.08 5199.17 17596.07 17173.88 37499.60 131
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
h-mvs3394.92 18594.36 18996.59 20498.85 13591.29 28498.93 27598.94 4195.90 7798.77 10398.42 21690.89 16699.77 12897.80 13370.76 37998.72 221
XVG-OURS94.82 18694.74 18395.06 24498.00 19389.19 32099.08 25497.55 25394.10 13694.71 21099.62 10280.51 27899.74 13496.04 17293.06 25096.25 259
SDMVSNet94.80 18793.96 20097.33 18398.92 12695.42 17499.59 19098.99 3792.41 20692.55 23897.85 23775.81 32098.93 18897.90 13091.62 25397.64 244
ADS-MVSNet94.79 18894.02 19897.11 18997.87 20093.79 22194.24 38098.16 19790.07 27096.43 18094.48 34990.29 18098.19 24787.44 30497.23 17699.36 172
XVG-OURS-SEG-HR94.79 18894.70 18495.08 24398.05 19189.19 32099.08 25497.54 25593.66 15794.87 20999.58 10678.78 29499.79 12397.31 14793.40 24596.25 259
OpenMVScopyleft90.15 1594.77 19093.59 21098.33 12196.07 27997.48 9599.56 19798.57 8990.46 26286.51 32998.95 16878.57 29799.94 7793.86 21399.74 8497.57 248
LFMVS94.75 19193.56 21298.30 12399.03 11395.70 16298.74 29497.98 21387.81 31198.47 11999.39 12567.43 36199.53 15098.01 12295.20 22399.67 115
SCA94.69 19293.81 20597.33 18397.10 24594.44 20198.86 28498.32 17493.30 16896.17 18895.59 30576.48 31397.95 26191.06 25797.43 17199.59 132
ab-mvs94.69 19293.42 21698.51 11098.07 19096.26 13896.49 36398.68 7090.31 26794.54 21197.00 26276.30 31599.71 13895.98 17393.38 24699.56 141
CVMVSNet94.68 19494.94 17893.89 29496.80 26386.92 34599.06 25998.98 3894.45 11694.23 21999.02 15285.60 23195.31 36090.91 26295.39 21899.43 165
cascas94.64 19593.61 20797.74 15897.82 20496.26 13899.96 3497.78 23385.76 33694.00 22197.54 24476.95 30799.21 16997.23 14995.43 21797.76 243
HQP-MVS94.61 19694.50 18794.92 24995.78 28791.85 26999.87 10497.89 22396.82 4893.37 22698.65 19480.65 27698.39 22597.92 12889.60 25794.53 267
TR-MVS94.54 19793.56 21297.49 17197.96 19594.34 20798.71 29797.51 26090.30 26894.51 21398.69 19075.56 32198.77 19692.82 23695.99 20199.35 175
DP-MVS94.54 19793.42 21697.91 14699.46 9494.04 21598.93 27597.48 26381.15 37090.04 26499.55 10887.02 21799.95 6988.97 28798.11 15899.73 105
Effi-MVS+-dtu94.53 19995.30 16692.22 32797.77 20782.54 36799.59 19097.06 30994.92 10295.29 20595.37 31985.81 23097.89 26494.80 19497.07 18096.23 261
HQP_MVS94.49 20094.36 18994.87 25095.71 29791.74 27399.84 12497.87 22596.38 6593.01 23098.59 19980.47 28098.37 23197.79 13689.55 26094.52 269
myMVS_eth3d94.46 20194.76 18293.55 30497.68 21790.97 28799.71 16898.35 16790.79 25692.10 24298.67 19192.46 13593.09 38287.13 31095.95 20496.59 257
TAPA-MVS92.12 894.42 20293.60 20996.90 19499.33 9891.78 27299.78 14398.00 21089.89 27594.52 21299.47 11491.97 14699.18 17469.90 38599.52 10499.73 105
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
hse-mvs294.38 20394.08 19795.31 23798.27 17590.02 31099.29 23898.56 9295.90 7798.77 10398.00 23190.89 16698.26 24497.80 13369.20 38597.64 244
ET-MVSNet_ETH3D94.37 20493.28 22297.64 16298.30 17197.99 7299.99 497.61 24794.35 12471.57 39099.45 11796.23 3095.34 35996.91 16285.14 30599.59 132
MSDG94.37 20493.36 22097.40 17798.88 13393.95 21999.37 22697.38 27485.75 33890.80 25799.17 14484.11 24899.88 10286.35 31898.43 14798.36 230
GeoE94.36 20693.48 21496.99 19197.29 24193.54 23099.96 3496.72 34088.35 30493.43 22598.94 17082.05 25898.05 25588.12 29996.48 19499.37 171
miper_enhance_ethall94.36 20693.98 19995.49 22898.68 14495.24 18299.73 16297.29 28693.28 16989.86 26995.97 29494.37 7597.05 30292.20 24184.45 31094.19 294
tpmvs94.28 20893.57 21196.40 20998.55 15591.50 28295.70 37898.55 9887.47 31392.15 24194.26 35391.42 15198.95 18788.15 29795.85 20798.76 217
test_fmvs1_n94.25 20994.36 18993.92 29197.68 21783.70 36299.90 9096.57 34697.40 2899.67 3998.88 17461.82 37999.92 8898.23 11199.13 12998.14 235
FIs94.10 21093.43 21596.11 21694.70 31596.82 11899.58 19298.93 4592.54 20089.34 28397.31 25087.62 20997.10 29994.22 20986.58 29494.40 278
mvsmamba94.10 21093.72 20695.25 23993.57 33394.13 21399.67 17796.45 35193.63 15991.34 25197.77 24086.29 22797.22 29196.65 16588.10 28294.40 278
CLD-MVS94.06 21293.90 20294.55 26596.02 28190.69 29499.98 1497.72 23596.62 5891.05 25598.85 18277.21 30298.47 21498.11 11789.51 26294.48 271
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
testing393.92 21394.23 19392.99 31897.54 22490.23 30599.99 499.16 3090.57 26091.33 25298.63 19792.99 11692.52 38682.46 34495.39 21896.22 262
test0.0.03 193.86 21493.61 20794.64 25995.02 31192.18 26299.93 7598.58 8794.07 13887.96 31098.50 20793.90 9294.96 36481.33 35193.17 24796.78 254
X-MVStestdata93.83 21592.06 24899.15 5999.94 1397.50 9399.94 6898.42 14596.22 7299.41 6941.37 41294.34 7699.96 6198.92 7399.95 4999.99 23
GA-MVS93.83 21592.84 22896.80 19695.73 29493.57 22899.88 10197.24 29192.57 19992.92 23296.66 27378.73 29597.67 27287.75 30294.06 23799.17 192
FC-MVSNet-test93.81 21793.15 22495.80 22494.30 32296.20 14399.42 21898.89 4992.33 21089.03 29397.27 25287.39 21296.83 31793.20 22886.48 29594.36 281
ADS-MVSNet293.80 21893.88 20393.55 30497.87 20085.94 35094.24 38096.84 33190.07 27096.43 18094.48 34990.29 18095.37 35887.44 30497.23 17699.36 172
cl2293.77 21993.25 22395.33 23699.49 9194.43 20299.61 18898.09 20390.38 26389.16 29195.61 30390.56 17297.34 28291.93 24584.45 31094.21 293
VDD-MVS93.77 21992.94 22796.27 21398.55 15590.22 30698.77 29397.79 23290.85 25496.82 17099.42 11861.18 38299.77 12898.95 7094.13 23598.82 214
EI-MVSNet93.73 22193.40 21994.74 25596.80 26392.69 25099.06 25997.67 23888.96 28991.39 24999.02 15288.75 20197.30 28591.07 25687.85 28594.22 291
Fast-Effi-MVS+-dtu93.72 22293.86 20493.29 30997.06 24786.16 34899.80 14096.83 33292.66 19292.58 23797.83 23981.39 26597.67 27289.75 28296.87 18796.05 264
tpm93.70 22393.41 21894.58 26395.36 30687.41 34197.01 35496.90 32790.85 25496.72 17394.14 35490.40 17696.84 31690.75 26688.54 27699.51 154
PS-MVSNAJss93.64 22493.31 22194.61 26092.11 36092.19 26199.12 25097.38 27492.51 20388.45 30196.99 26391.20 15597.29 28894.36 20487.71 28794.36 281
test_vis1_n93.61 22593.03 22695.35 23495.86 28686.94 34499.87 10496.36 35396.85 4699.54 5798.79 18452.41 39299.83 11898.64 9298.97 13499.29 184
sd_testset93.55 22692.83 22995.74 22598.92 12690.89 29298.24 32598.85 5692.41 20692.55 23897.85 23771.07 34898.68 20593.93 21191.62 25397.64 244
gg-mvs-nofinetune93.51 22791.86 25398.47 11297.72 21497.96 7592.62 38898.51 10874.70 39097.33 15669.59 40398.91 397.79 26797.77 13899.56 10299.67 115
nrg03093.51 22792.53 24096.45 20794.36 32097.20 10399.81 13697.16 29891.60 22989.86 26997.46 24586.37 22597.68 27195.88 17580.31 34494.46 272
tpm cat193.51 22792.52 24196.47 20597.77 20791.47 28396.13 37098.06 20680.98 37192.91 23393.78 35789.66 18598.87 18987.03 31396.39 19599.09 199
CR-MVSNet93.45 23092.62 23495.94 21996.29 27392.66 25192.01 39196.23 35592.62 19496.94 16593.31 36291.04 16096.03 34979.23 36095.96 20299.13 197
AUN-MVS93.28 23192.60 23595.34 23598.29 17290.09 30999.31 23398.56 9291.80 22696.35 18498.00 23189.38 19098.28 24092.46 23869.22 38497.64 244
OPM-MVS93.21 23292.80 23094.44 27293.12 34390.85 29399.77 14697.61 24796.19 7491.56 24898.65 19475.16 32898.47 21493.78 22089.39 26393.99 316
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
dmvs_re93.20 23393.15 22493.34 30796.54 27183.81 36198.71 29798.51 10891.39 24192.37 24098.56 20478.66 29697.83 26693.89 21289.74 25698.38 229
kuosan93.17 23492.60 23594.86 25398.40 16589.54 31898.44 31398.53 10484.46 35188.49 30097.92 23590.57 17197.05 30283.10 34093.49 24397.99 237
miper_ehance_all_eth93.16 23592.60 23594.82 25497.57 22393.56 22999.50 20797.07 30888.75 29588.85 29595.52 30990.97 16296.74 32090.77 26584.45 31094.17 295
VDDNet93.12 23691.91 25196.76 19896.67 27092.65 25398.69 30098.21 18882.81 36397.75 14799.28 13161.57 38099.48 16198.09 11994.09 23698.15 233
Anonymous20240521193.10 23791.99 24996.40 20999.10 10989.65 31698.88 28097.93 21883.71 35694.00 22198.75 18668.79 35399.88 10295.08 18591.71 25299.68 113
UniMVSNet (Re)93.07 23892.13 24595.88 22094.84 31296.24 14299.88 10198.98 3892.49 20489.25 28595.40 31587.09 21697.14 29593.13 23278.16 35594.26 288
LPG-MVS_test92.96 23992.71 23393.71 29895.43 30488.67 32799.75 15497.62 24492.81 18390.05 26298.49 20875.24 32498.40 22395.84 17689.12 26494.07 308
UniMVSNet_NR-MVSNet92.95 24092.11 24695.49 22894.61 31795.28 18099.83 13199.08 3391.49 23289.21 28896.86 26787.14 21596.73 32193.20 22877.52 36094.46 272
WB-MVSnew92.90 24192.77 23293.26 31196.95 25393.63 22799.71 16898.16 19791.49 23294.28 21798.14 22581.33 26796.48 33079.47 35995.46 21589.68 383
ACMM91.95 1092.88 24292.52 24193.98 29095.75 29389.08 32399.77 14697.52 25993.00 17589.95 26697.99 23376.17 31798.46 21793.63 22488.87 26894.39 280
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test_djsdf92.83 24392.29 24494.47 27091.90 36392.46 25699.55 19997.27 28891.17 24489.96 26596.07 29381.10 26996.89 31394.67 19988.91 26694.05 310
D2MVS92.76 24492.59 23993.27 31095.13 30789.54 31899.69 17399.38 2392.26 21187.59 31494.61 34685.05 23997.79 26791.59 25088.01 28392.47 360
ACMP92.05 992.74 24592.42 24393.73 29695.91 28588.72 32699.81 13697.53 25794.13 13487.00 32398.23 22374.07 33498.47 21496.22 17088.86 26993.99 316
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
VPA-MVSNet92.70 24691.55 25896.16 21595.09 30896.20 14398.88 28099.00 3691.02 25191.82 24695.29 32576.05 31997.96 26095.62 18081.19 33294.30 286
FMVSNet392.69 24791.58 25695.99 21898.29 17297.42 9899.26 24197.62 24489.80 27689.68 27395.32 32181.62 26496.27 33987.01 31485.65 29994.29 287
IterMVS-LS92.69 24792.11 24694.43 27496.80 26392.74 24799.45 21696.89 32888.98 28789.65 27695.38 31888.77 20096.34 33690.98 26082.04 32694.22 291
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Patchmatch-test92.65 24991.50 25996.10 21796.85 26090.49 30091.50 39397.19 29382.76 36490.23 26195.59 30595.02 5498.00 25777.41 36996.98 18599.82 92
c3_l92.53 25091.87 25294.52 26697.40 23292.99 24399.40 21996.93 32587.86 30988.69 29895.44 31389.95 18396.44 33290.45 27180.69 34194.14 304
AllTest92.48 25191.64 25495.00 24699.01 11488.43 33198.94 27496.82 33486.50 32788.71 29698.47 21274.73 33099.88 10285.39 32596.18 19796.71 255
DU-MVS92.46 25291.45 26195.49 22894.05 32595.28 18099.81 13698.74 6492.25 21289.21 28896.64 27581.66 26296.73 32193.20 22877.52 36094.46 272
eth_miper_zixun_eth92.41 25391.93 25093.84 29597.28 24290.68 29598.83 28796.97 31988.57 30089.19 29095.73 30089.24 19596.69 32389.97 28081.55 32994.15 301
DIV-MVS_self_test92.32 25491.60 25594.47 27097.31 23992.74 24799.58 19296.75 33886.99 32287.64 31395.54 30789.55 18896.50 32988.58 29182.44 32394.17 295
cl____92.31 25591.58 25694.52 26697.33 23892.77 24599.57 19596.78 33786.97 32387.56 31595.51 31089.43 18996.62 32588.60 29082.44 32394.16 300
LCM-MVSNet-Re92.31 25592.60 23591.43 33497.53 22579.27 38499.02 26791.83 39992.07 21580.31 36594.38 35283.50 25195.48 35697.22 15097.58 16999.54 146
WR-MVS92.31 25591.25 26395.48 23194.45 31995.29 17999.60 18998.68 7090.10 26988.07 30996.89 26580.68 27596.80 31993.14 23179.67 34894.36 281
COLMAP_ROBcopyleft90.47 1492.18 25891.49 26094.25 27999.00 11688.04 33798.42 31796.70 34182.30 36688.43 30499.01 15476.97 30699.85 10886.11 32196.50 19294.86 266
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
Anonymous2024052992.10 25990.65 27196.47 20598.82 13690.61 29798.72 29698.67 7375.54 38793.90 22398.58 20266.23 36599.90 9194.70 19890.67 25598.90 211
pmmvs492.10 25991.07 26795.18 24192.82 35194.96 19199.48 21196.83 33287.45 31488.66 29996.56 27983.78 24996.83 31789.29 28484.77 30893.75 332
jajsoiax91.92 26191.18 26494.15 28091.35 37090.95 29099.00 26897.42 26992.61 19587.38 31997.08 25772.46 33997.36 28094.53 20288.77 27094.13 305
XXY-MVS91.82 26290.46 27495.88 22093.91 32895.40 17698.87 28397.69 23788.63 29987.87 31197.08 25774.38 33397.89 26491.66 24984.07 31494.35 284
miper_lstm_enhance91.81 26391.39 26293.06 31797.34 23689.18 32299.38 22496.79 33686.70 32687.47 31795.22 32790.00 18295.86 35388.26 29581.37 33194.15 301
mvs_tets91.81 26391.08 26694.00 28891.63 36790.58 29898.67 30297.43 26792.43 20587.37 32097.05 26071.76 34197.32 28494.75 19688.68 27294.11 306
VPNet91.81 26390.46 27495.85 22294.74 31495.54 17098.98 26998.59 8692.14 21390.77 25897.44 24668.73 35597.54 27694.89 19277.89 35794.46 272
RPSCF91.80 26692.79 23188.83 35598.15 18669.87 39398.11 33296.60 34583.93 35494.33 21699.27 13479.60 28699.46 16391.99 24493.16 24897.18 251
PVSNet_088.03 1991.80 26690.27 28096.38 21198.27 17590.46 30199.94 6899.61 1493.99 14386.26 33597.39 24971.13 34799.89 9698.77 8367.05 39098.79 216
anonymousdsp91.79 26890.92 26894.41 27590.76 37592.93 24498.93 27597.17 29689.08 28287.46 31895.30 32278.43 30096.92 31292.38 23988.73 27193.39 343
JIA-IIPM91.76 26990.70 27094.94 24896.11 27887.51 34093.16 38798.13 20275.79 38697.58 14977.68 40092.84 12197.97 25888.47 29496.54 19099.33 178
TranMVSNet+NR-MVSNet91.68 27090.61 27394.87 25093.69 33293.98 21899.69 17398.65 7491.03 25088.44 30296.83 27180.05 28396.18 34290.26 27676.89 36894.45 277
NR-MVSNet91.56 27190.22 28195.60 22694.05 32595.76 15898.25 32498.70 6791.16 24680.78 36496.64 27583.23 25496.57 32791.41 25177.73 35994.46 272
dongtai91.55 27291.13 26592.82 32198.16 18586.35 34799.47 21298.51 10883.24 35985.07 34497.56 24390.33 17894.94 36576.09 37591.73 25197.18 251
v2v48291.30 27390.07 28795.01 24593.13 34193.79 22199.77 14697.02 31288.05 30789.25 28595.37 31980.73 27497.15 29487.28 30880.04 34794.09 307
WR-MVS_H91.30 27390.35 27794.15 28094.17 32492.62 25499.17 24898.94 4188.87 29386.48 33194.46 35184.36 24596.61 32688.19 29678.51 35393.21 348
tt080591.28 27590.18 28394.60 26196.26 27587.55 33998.39 31898.72 6589.00 28689.22 28798.47 21262.98 37698.96 18690.57 26888.00 28497.28 250
V4291.28 27590.12 28694.74 25593.42 33893.46 23299.68 17597.02 31287.36 31589.85 27195.05 33081.31 26897.34 28287.34 30780.07 34693.40 342
CP-MVSNet91.23 27790.22 28194.26 27893.96 32792.39 25899.09 25298.57 8988.95 29086.42 33296.57 27879.19 29096.37 33490.29 27578.95 35094.02 311
XVG-ACMP-BASELINE91.22 27890.75 26992.63 32493.73 33185.61 35198.52 31097.44 26692.77 18689.90 26896.85 26866.64 36498.39 22592.29 24088.61 27393.89 324
v114491.09 27989.83 28894.87 25093.25 34093.69 22699.62 18796.98 31786.83 32589.64 27794.99 33580.94 27197.05 30285.08 32881.16 33393.87 326
FMVSNet291.02 28089.56 29495.41 23397.53 22595.74 15998.98 26997.41 27287.05 31988.43 30495.00 33471.34 34496.24 34185.12 32785.21 30494.25 290
MVP-Stereo90.93 28190.45 27692.37 32691.25 37288.76 32498.05 33596.17 35787.27 31784.04 34795.30 32278.46 29997.27 29083.78 33699.70 8791.09 371
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
IterMVS90.91 28290.17 28493.12 31496.78 26690.42 30398.89 27897.05 31189.03 28486.49 33095.42 31476.59 31195.02 36287.22 30984.09 31393.93 321
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
GBi-Net90.88 28389.82 28994.08 28397.53 22591.97 26498.43 31496.95 32087.05 31989.68 27394.72 34071.34 34496.11 34487.01 31485.65 29994.17 295
test190.88 28389.82 28994.08 28397.53 22591.97 26498.43 31496.95 32087.05 31989.68 27394.72 34071.34 34496.11 34487.01 31485.65 29994.17 295
IterMVS-SCA-FT90.85 28590.16 28592.93 31996.72 26889.96 31198.89 27896.99 31588.95 29086.63 32795.67 30176.48 31395.00 36387.04 31284.04 31693.84 328
v14419290.79 28689.52 29694.59 26293.11 34492.77 24599.56 19796.99 31586.38 32989.82 27294.95 33780.50 27997.10 29983.98 33480.41 34293.90 323
v14890.70 28789.63 29293.92 29192.97 34790.97 28799.75 15496.89 32887.51 31288.27 30795.01 33281.67 26197.04 30587.40 30677.17 36593.75 332
MS-PatchMatch90.65 28890.30 27991.71 33394.22 32385.50 35398.24 32597.70 23688.67 29786.42 33296.37 28367.82 35998.03 25683.62 33799.62 9391.60 368
ACMH89.72 1790.64 28989.63 29293.66 30295.64 30188.64 32998.55 30697.45 26589.03 28481.62 35997.61 24269.75 35198.41 22189.37 28387.62 28993.92 322
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PS-CasMVS90.63 29089.51 29793.99 28993.83 32991.70 27798.98 26998.52 10588.48 30186.15 33696.53 28075.46 32296.31 33888.83 28878.86 35293.95 319
v119290.62 29189.25 30194.72 25793.13 34193.07 23999.50 20797.02 31286.33 33089.56 27995.01 33279.22 28997.09 30182.34 34681.16 33394.01 313
v890.54 29289.17 30294.66 25893.43 33793.40 23599.20 24596.94 32485.76 33687.56 31594.51 34781.96 26097.19 29284.94 32978.25 35493.38 344
v192192090.46 29389.12 30394.50 26892.96 34892.46 25699.49 20996.98 31786.10 33289.61 27895.30 32278.55 29897.03 30782.17 34780.89 34094.01 313
our_test_390.39 29489.48 29993.12 31492.40 35689.57 31799.33 23096.35 35487.84 31085.30 34194.99 33584.14 24796.09 34780.38 35584.56 30993.71 337
PatchT90.38 29588.75 31195.25 23995.99 28290.16 30791.22 39597.54 25576.80 38297.26 15886.01 39491.88 14796.07 34866.16 39395.91 20699.51 154
ACMH+89.98 1690.35 29689.54 29592.78 32395.99 28286.12 34998.81 28997.18 29589.38 27983.14 35297.76 24168.42 35798.43 21989.11 28686.05 29793.78 331
Baseline_NR-MVSNet90.33 29789.51 29792.81 32292.84 34989.95 31299.77 14693.94 39084.69 35089.04 29295.66 30281.66 26296.52 32890.99 25976.98 36691.97 366
MIMVSNet90.30 29888.67 31295.17 24296.45 27291.64 27992.39 38997.15 29985.99 33390.50 25993.19 36466.95 36294.86 36782.01 34893.43 24499.01 206
LTVRE_ROB88.28 1890.29 29989.05 30694.02 28695.08 30990.15 30897.19 34997.43 26784.91 34883.99 34897.06 25974.00 33598.28 24084.08 33287.71 28793.62 338
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
v1090.25 30088.82 30994.57 26493.53 33593.43 23399.08 25496.87 33085.00 34587.34 32194.51 34780.93 27297.02 30982.85 34279.23 34993.26 346
v124090.20 30188.79 31094.44 27293.05 34692.27 26099.38 22496.92 32685.89 33489.36 28294.87 33977.89 30197.03 30780.66 35481.08 33694.01 313
PEN-MVS90.19 30289.06 30593.57 30393.06 34590.90 29199.06 25998.47 11788.11 30685.91 33896.30 28476.67 30995.94 35287.07 31176.91 36793.89 324
pmmvs590.17 30389.09 30493.40 30692.10 36189.77 31599.74 15795.58 36985.88 33587.24 32295.74 29873.41 33796.48 33088.54 29283.56 31793.95 319
EU-MVSNet90.14 30490.34 27889.54 35092.55 35481.06 37898.69 30098.04 20991.41 24086.59 32896.84 27080.83 27393.31 38186.20 31981.91 32794.26 288
UniMVSNet_ETH3D90.06 30588.58 31394.49 26994.67 31688.09 33697.81 34197.57 25283.91 35588.44 30297.41 24757.44 38697.62 27491.41 25188.59 27597.77 242
Syy-MVS90.00 30690.63 27288.11 36297.68 21774.66 38999.71 16898.35 16790.79 25692.10 24298.67 19179.10 29293.09 38263.35 39695.95 20496.59 257
USDC90.00 30688.96 30793.10 31694.81 31388.16 33598.71 29795.54 37093.66 15783.75 35097.20 25365.58 36798.31 23683.96 33587.49 29192.85 354
Anonymous2023121189.86 30888.44 31594.13 28298.93 12390.68 29598.54 30898.26 18476.28 38386.73 32595.54 30770.60 34997.56 27590.82 26480.27 34594.15 301
OurMVSNet-221017-089.81 30989.48 29990.83 33991.64 36681.21 37698.17 33095.38 37391.48 23485.65 34097.31 25072.66 33897.29 28888.15 29784.83 30793.97 318
RPMNet89.76 31087.28 32597.19 18696.29 27392.66 25192.01 39198.31 17670.19 39696.94 16585.87 39587.25 21499.78 12562.69 39795.96 20299.13 197
Patchmtry89.70 31188.49 31493.33 30896.24 27689.94 31491.37 39496.23 35578.22 38087.69 31293.31 36291.04 16096.03 34980.18 35882.10 32594.02 311
v7n89.65 31288.29 31793.72 29792.22 35890.56 29999.07 25897.10 30485.42 34386.73 32594.72 34080.06 28297.13 29681.14 35278.12 35693.49 340
ppachtmachnet_test89.58 31388.35 31693.25 31292.40 35690.44 30299.33 23096.73 33985.49 34185.90 33995.77 29781.09 27096.00 35176.00 37682.49 32293.30 345
test_fmvs289.47 31489.70 29188.77 35894.54 31875.74 38699.83 13194.70 38394.71 10991.08 25396.82 27254.46 38997.78 26992.87 23588.27 27992.80 355
DTE-MVSNet89.40 31588.24 31892.88 32092.66 35389.95 31299.10 25198.22 18787.29 31685.12 34396.22 28676.27 31695.30 36183.56 33875.74 37193.41 341
pm-mvs189.36 31687.81 32294.01 28793.40 33991.93 26798.62 30596.48 35086.25 33183.86 34996.14 28973.68 33697.04 30586.16 32075.73 37293.04 351
tfpnnormal89.29 31787.61 32394.34 27794.35 32194.13 21398.95 27398.94 4183.94 35384.47 34695.51 31074.84 32997.39 27977.05 37280.41 34291.48 370
LF4IMVS89.25 31888.85 30890.45 34392.81 35281.19 37798.12 33194.79 38091.44 23686.29 33497.11 25565.30 37098.11 25188.53 29385.25 30392.07 363
testgi89.01 31988.04 32091.90 33193.49 33684.89 35799.73 16295.66 36793.89 15185.14 34298.17 22459.68 38394.66 36977.73 36888.88 26796.16 263
SixPastTwentyTwo88.73 32088.01 32190.88 33791.85 36482.24 36998.22 32895.18 37888.97 28882.26 35596.89 26571.75 34296.67 32484.00 33382.98 31893.72 336
FMVSNet188.50 32186.64 32794.08 28395.62 30391.97 26498.43 31496.95 32083.00 36186.08 33794.72 34059.09 38496.11 34481.82 35084.07 31494.17 295
FMVSNet588.32 32287.47 32490.88 33796.90 25888.39 33397.28 34795.68 36682.60 36584.67 34592.40 37079.83 28491.16 39176.39 37481.51 33093.09 349
DSMNet-mixed88.28 32388.24 31888.42 36089.64 38275.38 38898.06 33489.86 40385.59 34088.20 30892.14 37276.15 31891.95 38978.46 36596.05 20097.92 238
K. test v388.05 32487.24 32690.47 34291.82 36582.23 37098.96 27297.42 26989.05 28376.93 38095.60 30468.49 35695.42 35785.87 32481.01 33893.75 332
KD-MVS_2432*160088.00 32586.10 32993.70 30096.91 25594.04 21597.17 35097.12 30284.93 34681.96 35692.41 36892.48 13394.51 37079.23 36052.68 40292.56 357
miper_refine_blended88.00 32586.10 32993.70 30096.91 25594.04 21597.17 35097.12 30284.93 34681.96 35692.41 36892.48 13394.51 37079.23 36052.68 40292.56 357
TinyColmap87.87 32786.51 32891.94 33095.05 31085.57 35297.65 34294.08 38784.40 35281.82 35896.85 26862.14 37898.33 23480.25 35786.37 29691.91 367
TransMVSNet (Re)87.25 32885.28 33593.16 31393.56 33491.03 28698.54 30894.05 38983.69 35781.09 36296.16 28875.32 32396.40 33376.69 37368.41 38692.06 364
Patchmatch-RL test86.90 32985.98 33389.67 34984.45 39275.59 38789.71 39892.43 39686.89 32477.83 37790.94 37694.22 8193.63 37887.75 30269.61 38199.79 97
test_vis1_rt86.87 33086.05 33289.34 35196.12 27778.07 38599.87 10483.54 41092.03 21878.21 37589.51 38145.80 39699.91 8996.25 16993.11 24990.03 380
Anonymous2023120686.32 33185.42 33489.02 35489.11 38480.53 38299.05 26395.28 37485.43 34282.82 35393.92 35574.40 33293.44 38066.99 39081.83 32893.08 350
MVS-HIRNet86.22 33283.19 34595.31 23796.71 26990.29 30492.12 39097.33 28062.85 39786.82 32470.37 40269.37 35297.49 27775.12 37797.99 16398.15 233
pmmvs685.69 33383.84 34091.26 33690.00 38184.41 35997.82 34096.15 35875.86 38581.29 36195.39 31761.21 38196.87 31583.52 33973.29 37592.50 359
test_040285.58 33483.94 33990.50 34193.81 33085.04 35598.55 30695.20 37776.01 38479.72 36995.13 32864.15 37396.26 34066.04 39486.88 29390.21 379
UnsupCasMVSNet_eth85.52 33583.99 33790.10 34689.36 38383.51 36396.65 36197.99 21189.14 28175.89 38493.83 35663.25 37593.92 37481.92 34967.90 38992.88 353
MDA-MVSNet_test_wron85.51 33683.32 34492.10 32890.96 37388.58 33099.20 24596.52 34879.70 37757.12 40292.69 36679.11 29193.86 37677.10 37177.46 36293.86 327
YYNet185.50 33783.33 34392.00 32990.89 37488.38 33499.22 24496.55 34779.60 37857.26 40192.72 36579.09 29393.78 37777.25 37077.37 36393.84 328
EG-PatchMatch MVS85.35 33883.81 34189.99 34890.39 37781.89 37298.21 32996.09 35981.78 36874.73 38693.72 35851.56 39497.12 29879.16 36388.61 27390.96 373
Anonymous2024052185.15 33983.81 34189.16 35388.32 38582.69 36598.80 29195.74 36479.72 37681.53 36090.99 37565.38 36994.16 37272.69 38081.11 33590.63 376
TDRefinement84.76 34082.56 34891.38 33574.58 40684.80 35897.36 34694.56 38484.73 34980.21 36696.12 29263.56 37498.39 22587.92 30063.97 39590.95 374
CMPMVSbinary61.59 2184.75 34185.14 33683.57 37090.32 37862.54 39896.98 35597.59 25174.33 39169.95 39296.66 27364.17 37298.32 23587.88 30188.41 27889.84 382
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test20.0384.72 34283.99 33786.91 36488.19 38780.62 38198.88 28095.94 36188.36 30378.87 37094.62 34568.75 35489.11 39566.52 39275.82 37091.00 372
CL-MVSNet_self_test84.50 34383.15 34688.53 35986.00 39081.79 37398.82 28897.35 27685.12 34483.62 35190.91 37776.66 31091.40 39069.53 38660.36 39992.40 361
new_pmnet84.49 34482.92 34789.21 35290.03 38082.60 36696.89 35895.62 36880.59 37275.77 38589.17 38265.04 37194.79 36872.12 38281.02 33790.23 378
MDA-MVSNet-bldmvs84.09 34581.52 35291.81 33291.32 37188.00 33898.67 30295.92 36280.22 37455.60 40393.32 36168.29 35893.60 37973.76 37876.61 36993.82 330
pmmvs-eth3d84.03 34681.97 35090.20 34584.15 39387.09 34398.10 33394.73 38283.05 36074.10 38887.77 38965.56 36894.01 37381.08 35369.24 38389.49 386
dmvs_testset83.79 34786.07 33176.94 37792.14 35948.60 41296.75 35990.27 40289.48 27878.65 37298.55 20679.25 28886.65 40066.85 39182.69 32095.57 265
OpenMVS_ROBcopyleft79.82 2083.77 34881.68 35190.03 34788.30 38682.82 36498.46 31195.22 37673.92 39276.00 38391.29 37455.00 38896.94 31168.40 38888.51 27790.34 377
KD-MVS_self_test83.59 34982.06 34988.20 36186.93 38880.70 38097.21 34896.38 35282.87 36282.49 35488.97 38367.63 36092.32 38773.75 37962.30 39891.58 369
MIMVSNet182.58 35080.51 35688.78 35686.68 38984.20 36096.65 36195.41 37278.75 37978.59 37392.44 36751.88 39389.76 39465.26 39578.95 35092.38 362
mvsany_test382.12 35181.14 35385.06 36881.87 39770.41 39297.09 35292.14 39791.27 24377.84 37688.73 38439.31 39995.49 35590.75 26671.24 37889.29 388
new-patchmatchnet81.19 35279.34 35986.76 36582.86 39680.36 38397.92 33795.27 37582.09 36772.02 38986.87 39162.81 37790.74 39371.10 38363.08 39689.19 389
APD_test181.15 35380.92 35481.86 37392.45 35559.76 40296.04 37393.61 39373.29 39377.06 37896.64 27544.28 39896.16 34372.35 38182.52 32189.67 384
test_method80.79 35479.70 35884.08 36992.83 35067.06 39599.51 20595.42 37154.34 40181.07 36393.53 35944.48 39792.22 38878.90 36477.23 36492.94 352
PM-MVS80.47 35578.88 36085.26 36783.79 39572.22 39095.89 37691.08 40085.71 33976.56 38288.30 38536.64 40093.90 37582.39 34569.57 38289.66 385
pmmvs380.27 35677.77 36187.76 36380.32 40182.43 36898.23 32791.97 39872.74 39478.75 37187.97 38857.30 38790.99 39270.31 38462.37 39789.87 381
N_pmnet80.06 35780.78 35577.89 37691.94 36245.28 41498.80 29156.82 41678.10 38180.08 36793.33 36077.03 30495.76 35468.14 38982.81 31992.64 356
test_fmvs379.99 35880.17 35779.45 37584.02 39462.83 39699.05 26393.49 39488.29 30580.06 36886.65 39228.09 40488.00 39688.63 28973.27 37687.54 392
UnsupCasMVSNet_bld79.97 35977.03 36488.78 35685.62 39181.98 37193.66 38597.35 27675.51 38870.79 39183.05 39748.70 39594.91 36678.31 36660.29 40089.46 387
test_f78.40 36077.59 36280.81 37480.82 39962.48 39996.96 35693.08 39583.44 35874.57 38784.57 39627.95 40592.63 38584.15 33172.79 37787.32 393
WB-MVS76.28 36177.28 36373.29 38181.18 39854.68 40697.87 33994.19 38681.30 36969.43 39390.70 37877.02 30582.06 40435.71 40968.11 38883.13 395
SSC-MVS75.42 36276.40 36572.49 38580.68 40053.62 40797.42 34494.06 38880.42 37368.75 39490.14 38076.54 31281.66 40533.25 41066.34 39282.19 396
EGC-MVSNET69.38 36363.76 37386.26 36690.32 37881.66 37596.24 36993.85 3910.99 4133.22 41492.33 37152.44 39192.92 38459.53 40084.90 30684.21 394
test_vis3_rt68.82 36466.69 36975.21 38076.24 40560.41 40196.44 36468.71 41575.13 38950.54 40669.52 40416.42 41496.32 33780.27 35666.92 39168.89 402
FPMVS68.72 36568.72 36668.71 38765.95 41044.27 41695.97 37594.74 38151.13 40253.26 40490.50 37925.11 40783.00 40360.80 39880.97 33978.87 400
testf168.38 36666.92 36772.78 38378.80 40250.36 40990.95 39687.35 40855.47 39958.95 39888.14 38620.64 40987.60 39757.28 40164.69 39380.39 398
APD_test268.38 36666.92 36772.78 38378.80 40250.36 40990.95 39687.35 40855.47 39958.95 39888.14 38620.64 40987.60 39757.28 40164.69 39380.39 398
LCM-MVSNet67.77 36864.73 37176.87 37862.95 41256.25 40589.37 39993.74 39244.53 40461.99 39680.74 39820.42 41186.53 40169.37 38759.50 40187.84 390
PMMVS267.15 36964.15 37276.14 37970.56 40962.07 40093.89 38387.52 40758.09 39860.02 39778.32 39922.38 40884.54 40259.56 39947.03 40481.80 397
Gipumacopyleft66.95 37065.00 37072.79 38291.52 36867.96 39466.16 40595.15 37947.89 40358.54 40067.99 40529.74 40287.54 39950.20 40477.83 35862.87 405
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
tmp_tt65.23 37162.94 37472.13 38644.90 41550.03 41181.05 40289.42 40638.45 40548.51 40799.90 1854.09 39078.70 40791.84 24818.26 40987.64 391
ANet_high56.10 37252.24 37567.66 38849.27 41456.82 40483.94 40182.02 41170.47 39533.28 41164.54 40617.23 41369.16 40945.59 40623.85 40877.02 401
PMVScopyleft49.05 2353.75 37351.34 37760.97 39040.80 41634.68 41774.82 40489.62 40537.55 40628.67 41272.12 4017.09 41681.63 40643.17 40768.21 38766.59 404
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
E-PMN52.30 37452.18 37652.67 39171.51 40745.40 41393.62 38676.60 41336.01 40743.50 40864.13 40727.11 40667.31 41031.06 41126.06 40645.30 409
MVEpermissive53.74 2251.54 37547.86 37962.60 38959.56 41350.93 40879.41 40377.69 41235.69 40836.27 41061.76 4095.79 41869.63 40837.97 40836.61 40567.24 403
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
EMVS51.44 37651.22 37852.11 39270.71 40844.97 41594.04 38275.66 41435.34 40942.40 40961.56 41028.93 40365.87 41127.64 41224.73 40745.49 408
testmvs40.60 37744.45 38029.05 39419.49 41814.11 42099.68 17518.47 41720.74 41064.59 39598.48 21110.95 41517.09 41456.66 40311.01 41055.94 407
test12337.68 37839.14 38133.31 39319.94 41724.83 41998.36 3199.75 41815.53 41151.31 40587.14 39019.62 41217.74 41347.10 4053.47 41257.36 406
cdsmvs_eth3d_5k23.43 37931.24 3820.00 3960.00 4190.00 4210.00 40798.09 2030.00 4140.00 41599.67 9483.37 2520.00 4150.00 4140.00 4130.00 411
wuyk23d20.37 38020.84 38318.99 39565.34 41127.73 41850.43 4067.67 4199.50 4128.01 4136.34 4136.13 41726.24 41223.40 41310.69 4112.99 410
ab-mvs-re8.28 38111.04 3840.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 41599.40 1230.00 4190.00 4150.00 4140.00 4130.00 411
pcd_1.5k_mvsjas7.60 38210.13 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 41591.20 1550.00 4150.00 4140.00 4130.00 411
test_blank0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.02 4140.00 4190.00 4150.00 4140.00 4130.00 411
uanet_test0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4150.00 4190.00 4150.00 4140.00 4130.00 411
DCPMVS0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4150.00 4190.00 4150.00 4140.00 4130.00 411
sosnet-low-res0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4150.00 4190.00 4150.00 4140.00 4130.00 411
sosnet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4150.00 4190.00 4150.00 4140.00 4130.00 411
uncertanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4150.00 4190.00 4150.00 4140.00 4130.00 411
Regformer0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4150.00 4190.00 4150.00 4140.00 4130.00 411
uanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4150.00 4190.00 4150.00 4140.00 4130.00 411
WAC-MVS90.97 28786.10 322
FOURS199.92 3197.66 8699.95 5298.36 16595.58 8699.52 60
MSC_two_6792asdad99.93 299.91 3999.80 298.41 150100.00 199.96 9100.00 1100.00 1
PC_three_145296.96 4499.80 1799.79 5597.49 8100.00 199.99 599.98 32100.00 1
No_MVS99.93 299.91 3999.80 298.41 150100.00 199.96 9100.00 1100.00 1
test_one_060199.94 1399.30 1298.41 15096.63 5699.75 2999.93 1197.49 8
eth-test20.00 419
eth-test0.00 419
ZD-MVS99.92 3198.57 5698.52 10592.34 20999.31 7799.83 4395.06 5299.80 12199.70 3499.97 42
RE-MVS-def98.13 5199.79 6296.37 13599.76 15198.31 17694.43 11999.40 7199.75 6992.95 11898.90 7699.92 6399.97 58
IU-MVS99.93 2499.31 1098.41 15097.71 1999.84 12100.00 1100.00 1100.00 1
OPU-MVS99.93 299.89 4599.80 299.96 3499.80 5197.44 12100.00 1100.00 199.98 32100.00 1
test_241102_TWO98.43 13397.27 3499.80 1799.94 497.18 19100.00 1100.00 1100.00 1100.00 1
test_241102_ONE99.93 2499.30 1298.43 13397.26 3699.80 1799.88 2196.71 22100.00 1
9.1498.38 3499.87 5199.91 8498.33 17293.22 17099.78 2699.89 1994.57 6899.85 10899.84 2299.97 42
save fliter99.82 5898.79 4099.96 3498.40 15497.66 21
test_0728_THIRD96.48 5999.83 1399.91 1497.87 4100.00 199.92 12100.00 1100.00 1
test_0728_SECOND99.82 799.94 1399.47 799.95 5298.43 133100.00 199.99 5100.00 1100.00 1
test072699.93 2499.29 1599.96 3498.42 14597.28 3299.86 799.94 497.22 17
GSMVS99.59 132
test_part299.89 4599.25 1899.49 63
sam_mvs194.72 6499.59 132
sam_mvs94.25 80
ambc83.23 37177.17 40462.61 39787.38 40094.55 38576.72 38186.65 39230.16 40196.36 33584.85 33069.86 38090.73 375
MTGPAbinary98.28 181
test_post195.78 37759.23 41193.20 11297.74 27091.06 257
test_post63.35 40894.43 6998.13 250
patchmatchnet-post91.70 37395.12 4997.95 261
GG-mvs-BLEND98.54 10798.21 17998.01 7193.87 38498.52 10597.92 13997.92 23599.02 297.94 26398.17 11399.58 10099.67 115
MTMP99.87 10496.49 349
gm-plane-assit96.97 25293.76 22391.47 23598.96 16398.79 19494.92 189
test9_res99.71 3399.99 21100.00 1
TEST999.92 3198.92 2999.96 3498.43 13393.90 14999.71 3499.86 2695.88 3699.85 108
test_899.92 3198.88 3299.96 3498.43 13394.35 12499.69 3799.85 3095.94 3399.85 108
agg_prior299.48 43100.00 1100.00 1
agg_prior99.93 2498.77 4298.43 13399.63 4499.85 108
TestCases95.00 24699.01 11488.43 33196.82 33486.50 32788.71 29698.47 21274.73 33099.88 10285.39 32596.18 19796.71 255
test_prior498.05 6999.94 68
test_prior299.95 5295.78 8099.73 3299.76 6396.00 3299.78 27100.00 1
test_prior99.43 3599.94 1398.49 6098.65 7499.80 12199.99 23
旧先验299.46 21594.21 13399.85 999.95 6996.96 159
新几何299.40 219
新几何199.42 3799.75 6898.27 6398.63 8092.69 19099.55 5599.82 4694.40 71100.00 191.21 25399.94 5499.99 23
旧先验199.76 6697.52 9198.64 7699.85 3095.63 4099.94 5499.99 23
无先验99.49 20998.71 6693.46 162100.00 194.36 20499.99 23
原ACMM299.90 90
原ACMM198.96 7799.73 7296.99 11298.51 10894.06 14099.62 4799.85 3094.97 5899.96 6195.11 18499.95 4999.92 81
test22299.55 8697.41 9999.34 22998.55 9891.86 22299.27 8199.83 4393.84 9599.95 4999.99 23
testdata299.99 3690.54 270
segment_acmp96.68 24
testdata98.42 11799.47 9295.33 17898.56 9293.78 15299.79 2599.85 3093.64 10099.94 7794.97 18799.94 54100.00 1
testdata199.28 23996.35 69
test1299.43 3599.74 6998.56 5798.40 15499.65 4194.76 6299.75 13299.98 3299.99 23
plane_prior795.71 29791.59 281
plane_prior695.76 29191.72 27680.47 280
plane_prior597.87 22598.37 23197.79 13689.55 26094.52 269
plane_prior498.59 199
plane_prior391.64 27996.63 5693.01 230
plane_prior299.84 12496.38 65
plane_prior195.73 294
plane_prior91.74 27399.86 11696.76 5289.59 259
n20.00 420
nn0.00 420
door-mid89.69 404
lessismore_v090.53 34090.58 37680.90 37995.80 36377.01 37995.84 29566.15 36696.95 31083.03 34175.05 37393.74 335
LGP-MVS_train93.71 29895.43 30488.67 32797.62 24492.81 18390.05 26298.49 20875.24 32498.40 22395.84 17689.12 26494.07 308
test1198.44 125
door90.31 401
HQP5-MVS91.85 269
HQP-NCC95.78 28799.87 10496.82 4893.37 226
ACMP_Plane95.78 28799.87 10496.82 4893.37 226
BP-MVS97.92 128
HQP4-MVS93.37 22698.39 22594.53 267
HQP3-MVS97.89 22389.60 257
HQP2-MVS80.65 276
NP-MVS95.77 29091.79 27198.65 194
MDTV_nov1_ep13_2view96.26 13896.11 37191.89 22198.06 13594.40 7194.30 20699.67 115
MDTV_nov1_ep1395.69 15597.90 19894.15 21295.98 37498.44 12593.12 17397.98 13795.74 29895.10 5098.58 20990.02 27896.92 186
ACMMP++_ref87.04 292
ACMMP++88.23 280
Test By Simon92.82 123
ITE_SJBPF92.38 32595.69 29985.14 35495.71 36592.81 18389.33 28498.11 22670.23 35098.42 22085.91 32388.16 28193.59 339
DeepMVS_CXcopyleft82.92 37295.98 28458.66 40396.01 36092.72 18778.34 37495.51 31058.29 38598.08 25282.57 34385.29 30292.03 365