This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
CNVR-MVS99.40 199.26 199.84 699.98 299.51 699.98 1498.69 6898.20 799.93 199.98 296.82 23100.00 199.75 28100.00 199.99 23
NCCC99.37 299.25 299.71 1499.96 899.15 2199.97 2798.62 8198.02 1399.90 399.95 397.33 17100.00 199.54 39100.00 1100.00 1
MCST-MVS99.32 399.14 499.86 599.97 399.59 599.97 2798.64 7698.47 299.13 8599.92 1396.38 31100.00 199.74 30100.00 1100.00 1
DVP-MVScopyleft99.30 499.16 399.73 1299.93 2499.29 1599.95 5298.32 17297.28 3299.83 1399.91 1497.22 19100.00 199.99 5100.00 199.89 84
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
SED-MVS99.28 599.11 799.77 899.93 2499.30 1299.96 3498.43 13197.27 3499.80 1799.94 496.71 24100.00 1100.00 1100.00 1100.00 1
DVP-MVS++99.26 699.09 999.77 899.91 3999.31 1099.95 5298.43 13196.48 5999.80 1799.93 1197.44 14100.00 199.92 1299.98 32100.00 1
DPE-MVScopyleft99.26 699.10 899.74 1199.89 4599.24 1999.87 10498.44 12397.48 2799.64 4299.94 496.68 2699.99 3699.99 5100.00 199.99 23
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MSLP-MVS++99.13 899.01 1199.49 3299.94 1398.46 5999.98 1498.86 5397.10 4099.80 1799.94 495.92 37100.00 199.51 40100.00 1100.00 1
MSP-MVS99.09 999.12 598.98 7399.93 2497.24 9899.95 5298.42 14397.50 2699.52 5999.88 2197.43 1699.71 13899.50 4199.98 32100.00 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
HPM-MVS++copyleft99.07 1098.88 1699.63 1799.90 4299.02 2599.95 5298.56 9297.56 2599.44 6599.85 3095.38 48100.00 199.31 5199.99 2199.87 87
APDe-MVScopyleft99.06 1198.91 1499.51 2999.94 1398.76 4399.91 8398.39 15597.20 3899.46 6399.85 3095.53 4599.79 12399.86 21100.00 199.99 23
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
SteuartSystems-ACMMP99.02 1298.97 1399.18 5098.72 14097.71 7999.98 1498.44 12396.85 4699.80 1799.91 1497.57 899.85 10899.44 4699.99 2199.99 23
Skip Steuart: Steuart Systems R&D Blog.
CHOSEN 280x42099.01 1399.03 1098.95 7699.38 9698.87 3298.46 31099.42 2297.03 4299.02 8999.09 14599.35 198.21 23999.73 3299.78 7999.77 101
fmvsm_l_conf0.5_n_a99.00 1498.91 1499.28 4399.21 10297.91 7499.98 1498.85 5698.25 499.92 299.75 6994.72 6599.97 5399.87 1999.64 8799.95 71
fmvsm_l_conf0.5_n98.94 1598.84 1799.25 4499.17 10697.81 7799.98 1498.86 5398.25 499.90 399.76 6394.21 8399.97 5399.87 1999.52 9999.98 48
TSAR-MVS + MP.98.93 1698.77 1899.41 3899.74 6998.67 4799.77 14798.38 15996.73 5399.88 699.74 7694.89 6199.59 14999.80 2599.98 3299.97 58
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SD-MVS98.92 1798.70 1999.56 2599.70 7698.73 4499.94 6898.34 16996.38 6599.81 1599.76 6394.59 6899.98 4399.84 2299.96 4699.97 58
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MG-MVS98.91 1898.65 2099.68 1599.94 1399.07 2499.64 18499.44 2097.33 3199.00 9099.72 8194.03 8899.98 4398.73 83100.00 1100.00 1
train_agg98.88 1998.65 2099.59 2399.92 3198.92 2899.96 3498.43 13194.35 12299.71 3499.86 2695.94 3599.85 10899.69 3599.98 3299.99 23
MVS_030498.87 2098.61 2399.67 1699.18 10399.13 2299.87 10499.65 1298.17 898.75 10599.75 6992.76 12499.94 7799.88 1899.44 10899.94 74
MM98.83 2198.53 2799.76 1099.59 8199.33 899.99 499.76 698.39 399.39 7299.80 5190.49 17299.96 6199.89 1699.43 11099.98 48
DPM-MVS98.83 2198.46 3099.97 199.33 9899.92 199.96 3498.44 12397.96 1499.55 5499.94 497.18 21100.00 193.81 21499.94 5499.98 48
DeepC-MVS_fast96.59 198.81 2398.54 2699.62 2099.90 4298.85 3499.24 24098.47 11598.14 1099.08 8699.91 1493.09 114100.00 199.04 6399.99 21100.00 1
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SMA-MVScopyleft98.76 2498.48 2999.62 2099.87 5198.87 3299.86 11798.38 15993.19 16999.77 2799.94 495.54 43100.00 199.74 3099.99 21100.00 1
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MVS_111021_HR98.72 2598.62 2299.01 7199.36 9797.18 10199.93 7599.90 196.81 5198.67 10899.77 6193.92 9099.89 9699.27 5399.94 5499.96 64
XVS98.70 2698.55 2599.15 5799.94 1397.50 9099.94 6898.42 14396.22 7199.41 6899.78 5994.34 7799.96 6198.92 7099.95 4999.99 23
SF-MVS98.67 2798.40 3299.50 3099.77 6598.67 4799.90 9098.21 18693.53 15899.81 1599.89 1994.70 6799.86 10799.84 2299.93 6099.96 64
CDPH-MVS98.65 2898.36 3899.49 3299.94 1398.73 4499.87 10498.33 17093.97 14399.76 2899.87 2494.99 5999.75 13298.55 93100.00 199.98 48
APD-MVScopyleft98.62 2998.35 3999.41 3899.90 4298.51 5799.87 10498.36 16394.08 13599.74 3199.73 7894.08 8699.74 13499.42 4799.99 2199.99 23
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
TSAR-MVS + GP.98.60 3098.51 2898.86 8099.73 7296.63 12199.97 2797.92 21998.07 1198.76 10399.55 10895.00 5899.94 7799.91 1597.68 16299.99 23
PAPM98.60 3098.42 3199.14 5996.05 27398.96 2699.90 9099.35 2596.68 5598.35 12399.66 9696.45 3098.51 20699.45 4599.89 6699.96 64
HFP-MVS98.56 3298.37 3699.14 5999.96 897.43 9499.95 5298.61 8294.77 10599.31 7699.85 3094.22 81100.00 198.70 8499.98 3299.98 48
region2R98.54 3398.37 3699.05 6699.96 897.18 10199.96 3498.55 9894.87 10399.45 6499.85 3094.07 87100.00 198.67 86100.00 199.98 48
DELS-MVS98.54 3398.22 4499.50 3099.15 10898.65 51100.00 198.58 8797.70 2098.21 13099.24 13792.58 13099.94 7798.63 9199.94 5499.92 81
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PAPR98.52 3598.16 4999.58 2499.97 398.77 4099.95 5298.43 13195.35 9198.03 13499.75 6994.03 8899.98 4398.11 11099.83 7299.99 23
ACMMPR98.50 3698.32 4099.05 6699.96 897.18 10199.95 5298.60 8494.77 10599.31 7699.84 4193.73 97100.00 198.70 8499.98 3299.98 48
ACMMP_NAP98.49 3798.14 5099.54 2799.66 7898.62 5399.85 12098.37 16294.68 11099.53 5799.83 4392.87 120100.00 198.66 8899.84 7199.99 23
EPNet98.49 3798.40 3298.77 8499.62 8096.80 11899.90 9099.51 1797.60 2299.20 8199.36 12693.71 9899.91 8997.99 11798.71 13799.61 127
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
SR-MVS98.46 3998.30 4398.93 7799.88 4997.04 10799.84 12598.35 16594.92 10199.32 7599.80 5193.35 10499.78 12599.30 5299.95 4999.96 64
CP-MVS98.45 4098.32 4098.87 7999.96 896.62 12299.97 2798.39 15594.43 11798.90 9499.87 2494.30 79100.00 199.04 6399.99 2199.99 23
test_fmvsm_n_192098.44 4198.61 2397.92 13999.27 10195.18 183100.00 198.90 4798.05 1299.80 1799.73 7892.64 12799.99 3699.58 3899.51 10298.59 219
PS-MVSNAJ98.44 4198.20 4699.16 5598.80 13698.92 2899.54 20098.17 19197.34 2999.85 999.85 3091.20 15599.89 9699.41 4899.67 8598.69 216
test_fmvsmconf_n98.43 4398.32 4098.78 8298.12 18296.41 12899.99 498.83 5998.22 699.67 3899.64 9991.11 15999.94 7799.67 3699.62 8999.98 48
MVS_111021_LR98.42 4498.38 3498.53 10599.39 9595.79 15399.87 10499.86 296.70 5498.78 10099.79 5592.03 14599.90 9199.17 5799.86 7099.88 85
DP-MVS Recon98.41 4598.02 5799.56 2599.97 398.70 4699.92 7898.44 12392.06 21798.40 12199.84 4195.68 41100.00 198.19 10599.71 8399.97 58
PHI-MVS98.41 4598.21 4599.03 6899.86 5397.10 10699.98 1498.80 6290.78 25899.62 4699.78 5995.30 49100.00 199.80 2599.93 6099.99 23
mPP-MVS98.39 4798.20 4698.97 7499.97 396.92 11399.95 5298.38 15995.04 9798.61 11299.80 5193.39 102100.00 198.64 89100.00 199.98 48
PGM-MVS98.34 4898.13 5198.99 7299.92 3197.00 10999.75 15599.50 1893.90 14899.37 7399.76 6393.24 111100.00 197.75 13399.96 4699.98 48
SR-MVS-dyc-post98.31 4998.17 4898.71 8699.79 6296.37 13299.76 15298.31 17494.43 11799.40 7099.75 6993.28 10999.78 12598.90 7399.92 6399.97 58
ZNCC-MVS98.31 4998.03 5699.17 5399.88 4997.59 8499.94 6898.44 12394.31 12598.50 11699.82 4693.06 11599.99 3698.30 10399.99 2199.93 76
MTAPA98.29 5197.96 6299.30 4299.85 5497.93 7399.39 22198.28 17995.76 8097.18 15699.88 2192.74 125100.00 198.67 8699.88 6899.99 23
GST-MVS98.27 5297.97 5999.17 5399.92 3197.57 8599.93 7598.39 15594.04 14198.80 9999.74 7692.98 117100.00 198.16 10799.76 8099.93 76
CANet98.27 5297.82 6999.63 1799.72 7499.10 2399.98 1498.51 10797.00 4398.52 11499.71 8387.80 20199.95 6999.75 2899.38 11299.83 91
EI-MVSNet-Vis-set98.27 5298.11 5398.75 8599.83 5796.59 12499.40 21798.51 10795.29 9398.51 11599.76 6393.60 10199.71 13898.53 9499.52 9999.95 71
APD-MVS_3200maxsize98.25 5598.08 5598.78 8299.81 6096.60 12399.82 13598.30 17793.95 14599.37 7399.77 6192.84 12199.76 13198.95 6799.92 6399.97 58
patch_mono-298.24 5699.12 595.59 22399.67 7786.91 34399.95 5298.89 4997.60 2299.90 399.76 6396.54 2999.98 4399.94 1199.82 7699.88 85
xiu_mvs_v2_base98.23 5797.97 5999.02 7098.69 14198.66 4999.52 20298.08 20397.05 4199.86 799.86 2690.65 16899.71 13899.39 5098.63 13898.69 216
MP-MVScopyleft98.23 5797.97 5999.03 6899.94 1397.17 10499.95 5298.39 15594.70 10998.26 12899.81 5091.84 149100.00 198.85 7699.97 4299.93 76
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
EI-MVSNet-UG-set98.14 5997.99 5898.60 9599.80 6196.27 13499.36 22698.50 11295.21 9598.30 12599.75 6993.29 10899.73 13798.37 9999.30 11699.81 94
PAPM_NR98.12 6097.93 6498.70 8799.94 1396.13 14499.82 13598.43 13194.56 11397.52 14699.70 8594.40 7299.98 4397.00 15099.98 3299.99 23
WTY-MVS98.10 6197.60 7699.60 2298.92 12599.28 1799.89 9899.52 1595.58 8598.24 12999.39 12393.33 10599.74 13497.98 11995.58 20999.78 100
MP-MVS-pluss98.07 6297.64 7499.38 4199.74 6998.41 6099.74 15898.18 19093.35 16396.45 17599.85 3092.64 12799.97 5398.91 7299.89 6699.77 101
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
HPM-MVScopyleft97.96 6397.72 7198.68 8899.84 5696.39 13199.90 9098.17 19192.61 19498.62 11199.57 10791.87 14899.67 14598.87 7599.99 2199.99 23
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
PVSNet_Blended97.94 6497.64 7498.83 8199.59 8196.99 110100.00 199.10 3195.38 9098.27 12699.08 14689.00 19399.95 6999.12 5899.25 11899.57 137
PLCcopyleft95.54 397.93 6597.89 6798.05 13399.82 5894.77 19499.92 7898.46 11793.93 14697.20 15599.27 13295.44 4799.97 5397.41 13899.51 10299.41 162
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
ETV-MVS97.92 6697.80 7098.25 12198.14 18096.48 12599.98 1497.63 23895.61 8499.29 7999.46 11692.55 13198.82 18599.02 6698.54 13999.46 155
CS-MVS-test97.88 6797.94 6397.70 15499.28 10095.20 18299.98 1497.15 29195.53 8799.62 4699.79 5592.08 14498.38 22298.75 8299.28 11799.52 147
API-MVS97.86 6897.66 7398.47 10899.52 8895.41 17299.47 21198.87 5291.68 22898.84 9699.85 3092.34 13899.99 3698.44 9699.96 46100.00 1
lupinMVS97.85 6997.60 7698.62 9397.28 23597.70 8199.99 497.55 24995.50 8999.43 6699.67 9490.92 16398.71 19598.40 9799.62 8999.45 157
test_yl97.83 7097.37 8499.21 4799.18 10397.98 7099.64 18499.27 2791.43 23797.88 14098.99 15595.84 3999.84 11698.82 7795.32 21599.79 97
DCV-MVSNet97.83 7097.37 8499.21 4799.18 10397.98 7099.64 18499.27 2791.43 23797.88 14098.99 15595.84 3999.84 11698.82 7795.32 21599.79 97
mvsany_test197.82 7297.90 6697.55 16298.77 13893.04 23999.80 14197.93 21696.95 4599.61 5299.68 9390.92 16399.83 11899.18 5698.29 14899.80 96
alignmvs97.81 7397.33 8699.25 4498.77 13898.66 4999.99 498.44 12394.40 12198.41 11999.47 11493.65 9999.42 16298.57 9294.26 22999.67 113
fmvsm_s_conf0.5_n97.80 7497.85 6897.67 15599.06 11194.41 20099.98 1498.97 4097.34 2999.63 4399.69 8787.27 20899.97 5399.62 3799.06 12798.62 218
HPM-MVS_fast97.80 7497.50 7998.68 8899.79 6296.42 12799.88 10198.16 19591.75 22798.94 9299.54 11091.82 15099.65 14797.62 13699.99 2199.99 23
CS-MVS97.79 7697.91 6597.43 16999.10 10994.42 19999.99 497.10 29695.07 9699.68 3799.75 6992.95 11898.34 22698.38 9899.14 12399.54 143
HY-MVS92.50 797.79 7697.17 9499.63 1798.98 11899.32 997.49 33999.52 1595.69 8298.32 12497.41 24293.32 10699.77 12898.08 11395.75 20699.81 94
CNLPA97.76 7897.38 8398.92 7899.53 8796.84 11599.87 10498.14 19993.78 15196.55 17399.69 8792.28 13999.98 4397.13 14599.44 10899.93 76
test_fmvsmconf0.1_n97.74 7997.44 8198.64 9295.76 28496.20 14099.94 6898.05 20698.17 898.89 9599.42 11887.65 20399.90 9199.50 4199.60 9599.82 92
ACMMPcopyleft97.74 7997.44 8198.66 9099.92 3196.13 14499.18 24599.45 1994.84 10496.41 17899.71 8391.40 15299.99 3697.99 11798.03 15799.87 87
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
fmvsm_s_conf0.5_n_a97.73 8197.72 7197.77 14998.63 14694.26 20599.96 3498.92 4697.18 3999.75 2999.69 8787.00 21399.97 5399.46 4498.89 13099.08 195
DeepPCF-MVS95.94 297.71 8298.98 1293.92 28799.63 7981.76 37099.96 3498.56 9299.47 199.19 8399.99 194.16 85100.00 199.92 1299.93 60100.00 1
test_fmvsmvis_n_192097.67 8397.59 7897.91 14197.02 24295.34 17499.95 5298.45 11897.87 1597.02 16099.59 10489.64 18199.98 4399.41 4899.34 11598.42 222
CPTT-MVS97.64 8497.32 8798.58 9899.97 395.77 15499.96 3498.35 16589.90 27298.36 12299.79 5591.18 15899.99 3698.37 9999.99 2199.99 23
sss97.57 8597.03 9999.18 5098.37 16198.04 6799.73 16399.38 2393.46 16098.76 10399.06 14891.21 15499.89 9696.33 16297.01 17999.62 124
test250697.53 8697.19 9298.58 9898.66 14496.90 11498.81 28899.77 594.93 9997.95 13698.96 16192.51 13299.20 16994.93 18498.15 15099.64 119
EIA-MVS97.53 8697.46 8097.76 15198.04 18594.84 19099.98 1497.61 24394.41 12097.90 13899.59 10492.40 13698.87 18298.04 11499.13 12499.59 130
testing1197.48 8897.27 8898.10 12998.36 16296.02 14799.92 7898.45 11893.45 16298.15 13298.70 18795.48 4699.22 16597.85 12595.05 21999.07 196
xiu_mvs_v1_base_debu97.43 8997.06 9598.55 10097.74 20298.14 6299.31 23197.86 22596.43 6299.62 4699.69 8785.56 22599.68 14299.05 6098.31 14597.83 232
xiu_mvs_v1_base97.43 8997.06 9598.55 10097.74 20298.14 6299.31 23197.86 22596.43 6299.62 4699.69 8785.56 22599.68 14299.05 6098.31 14597.83 232
xiu_mvs_v1_base_debi97.43 8997.06 9598.55 10097.74 20298.14 6299.31 23197.86 22596.43 6299.62 4699.69 8785.56 22599.68 14299.05 6098.31 14597.83 232
MAR-MVS97.43 8997.19 9298.15 12799.47 9294.79 19399.05 26298.76 6392.65 19298.66 10999.82 4688.52 19899.98 4398.12 10999.63 8899.67 113
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
dcpmvs_297.42 9398.09 5495.42 22899.58 8587.24 33999.23 24196.95 31394.28 12798.93 9399.73 7894.39 7599.16 17399.89 1699.82 7699.86 89
thisisatest051597.41 9497.02 10098.59 9797.71 20997.52 8799.97 2798.54 10191.83 22397.45 14999.04 14997.50 999.10 17594.75 19296.37 19199.16 187
114514_t97.41 9496.83 10699.14 5999.51 9097.83 7599.89 9898.27 18188.48 29999.06 8799.66 9690.30 17499.64 14896.32 16399.97 4299.96 64
EC-MVSNet97.38 9697.24 8997.80 14497.41 22495.64 16399.99 497.06 30194.59 11299.63 4399.32 12889.20 19198.14 24298.76 8199.23 12099.62 124
fmvsm_s_conf0.1_n97.30 9797.21 9197.60 16197.38 22694.40 20299.90 9098.64 7696.47 6199.51 6199.65 9884.99 23399.93 8599.22 5599.09 12698.46 220
OMC-MVS97.28 9897.23 9097.41 17099.76 6693.36 23499.65 18097.95 21496.03 7597.41 15099.70 8589.61 18299.51 15296.73 15998.25 14999.38 164
PVSNet_Blended_VisFu97.27 9996.81 10798.66 9098.81 13596.67 12099.92 7898.64 7694.51 11496.38 17998.49 20689.05 19299.88 10297.10 14798.34 14399.43 160
jason97.24 10096.86 10598.38 11695.73 28797.32 9799.97 2797.40 26795.34 9298.60 11399.54 11087.70 20298.56 20397.94 12099.47 10499.25 182
jason: jason.
AdaColmapbinary97.23 10196.80 10898.51 10699.99 195.60 16599.09 25198.84 5893.32 16596.74 16899.72 8186.04 222100.00 198.01 11599.43 11099.94 74
VNet97.21 10296.57 11899.13 6398.97 11997.82 7699.03 26599.21 2994.31 12599.18 8498.88 17286.26 22199.89 9698.93 6994.32 22799.69 110
testing9997.17 10396.91 10297.95 13698.35 16495.70 15999.91 8398.43 13192.94 17597.36 15198.72 18594.83 6299.21 16697.00 15094.64 22198.95 201
testing9197.16 10496.90 10397.97 13598.35 16495.67 16299.91 8398.42 14392.91 17797.33 15298.72 18594.81 6399.21 16696.98 15294.63 22299.03 198
PVSNet91.05 1397.13 10596.69 11398.45 11099.52 8895.81 15299.95 5299.65 1294.73 10799.04 8899.21 13984.48 23799.95 6994.92 18598.74 13699.58 136
thisisatest053097.10 10696.72 11198.22 12297.60 21596.70 11999.92 7898.54 10191.11 24797.07 15998.97 15997.47 1299.03 17693.73 21996.09 19498.92 202
CSCG97.10 10697.04 9897.27 17999.89 4591.92 26599.90 9099.07 3488.67 29595.26 20099.82 4693.17 11399.98 4398.15 10899.47 10499.90 83
fmvsm_s_conf0.1_n_a97.09 10896.90 10397.63 15995.65 29394.21 20799.83 13298.50 11296.27 7099.65 4099.64 9984.72 23499.93 8599.04 6398.84 13398.74 213
canonicalmvs97.09 10896.32 12499.39 4098.93 12398.95 2799.72 16697.35 27094.45 11597.88 14099.42 11886.71 21599.52 15198.48 9593.97 23399.72 107
testing22297.08 11096.75 11098.06 13298.56 14796.82 11699.85 12098.61 8292.53 20098.84 9698.84 18193.36 10398.30 23095.84 17194.30 22899.05 197
ETVMVS97.03 11196.64 11498.20 12398.67 14397.12 10599.89 9898.57 8991.10 24898.17 13198.59 19793.86 9498.19 24095.64 17495.24 21799.28 179
diffmvspermissive97.00 11296.64 11498.09 13097.64 21396.17 14399.81 13797.19 28594.67 11198.95 9199.28 12986.43 21898.76 19098.37 9997.42 16899.33 172
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
thres20096.96 11396.21 12799.22 4698.97 11998.84 3599.85 12099.71 793.17 17096.26 18198.88 17289.87 17999.51 15294.26 20394.91 22099.31 174
MVSFormer96.94 11496.60 11697.95 13697.28 23597.70 8199.55 19897.27 28091.17 24499.43 6699.54 11090.92 16396.89 30994.67 19599.62 8999.25 182
F-COLMAP96.93 11596.95 10196.87 18999.71 7591.74 27099.85 12097.95 21493.11 17295.72 19399.16 14392.35 13799.94 7795.32 17799.35 11498.92 202
DeepC-MVS94.51 496.92 11696.40 12398.45 11099.16 10795.90 15099.66 17898.06 20496.37 6894.37 20999.49 11383.29 24799.90 9197.63 13599.61 9399.55 139
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
tttt051796.85 11796.49 12097.92 13997.48 22295.89 15199.85 12098.54 10190.72 25996.63 17098.93 17097.47 1299.02 17793.03 23195.76 20598.85 206
131496.84 11895.96 13899.48 3496.74 26098.52 5698.31 31898.86 5395.82 7889.91 26398.98 15787.49 20599.96 6197.80 12699.73 8299.96 64
CHOSEN 1792x268896.81 11996.53 11997.64 15798.91 12993.07 23699.65 18099.80 395.64 8395.39 19798.86 17784.35 24099.90 9196.98 15299.16 12299.95 71
UWE-MVS96.79 12096.72 11197.00 18498.51 15493.70 22199.71 16898.60 8492.96 17497.09 15798.34 21596.67 2898.85 18492.11 24096.50 18798.44 221
tfpn200view996.79 12095.99 13299.19 4998.94 12198.82 3699.78 14499.71 792.86 17896.02 18698.87 17589.33 18699.50 15493.84 21194.57 22399.27 180
thres40096.78 12295.99 13299.16 5598.94 12198.82 3699.78 14499.71 792.86 17896.02 18698.87 17589.33 18699.50 15493.84 21194.57 22399.16 187
CANet_DTU96.76 12396.15 12898.60 9598.78 13797.53 8699.84 12597.63 23897.25 3799.20 8199.64 9981.36 26099.98 4392.77 23498.89 13098.28 225
PMMVS96.76 12396.76 10996.76 19298.28 16992.10 26099.91 8397.98 21194.12 13399.53 5799.39 12386.93 21498.73 19296.95 15597.73 16099.45 157
thres100view90096.74 12595.92 14499.18 5098.90 13098.77 4099.74 15899.71 792.59 19695.84 18998.86 17789.25 18899.50 15493.84 21194.57 22399.27 180
TESTMET0.1,196.74 12596.26 12598.16 12497.36 22896.48 12599.96 3498.29 17891.93 22095.77 19298.07 22295.54 4398.29 23190.55 26698.89 13099.70 108
baseline296.71 12796.49 12097.37 17395.63 29595.96 14999.74 15898.88 5192.94 17591.61 24298.97 15997.72 798.62 20194.83 18998.08 15697.53 242
thres600view796.69 12895.87 14799.14 5998.90 13098.78 3999.74 15899.71 792.59 19695.84 18998.86 17789.25 18899.50 15493.44 22394.50 22699.16 187
EPP-MVSNet96.69 12896.60 11696.96 18697.74 20293.05 23899.37 22498.56 9288.75 29395.83 19199.01 15296.01 3398.56 20396.92 15697.20 17399.25 182
HyFIR lowres test96.66 13096.43 12297.36 17599.05 11293.91 21699.70 17299.80 390.54 26196.26 18198.08 22192.15 14298.23 23896.84 15895.46 21099.93 76
MVS96.60 13195.56 15599.72 1396.85 25399.22 2098.31 31898.94 4191.57 23090.90 25199.61 10386.66 21699.96 6197.36 13999.88 6899.99 23
test_cas_vis1_n_192096.59 13296.23 12697.65 15698.22 17394.23 20699.99 497.25 28297.77 1799.58 5399.08 14677.10 29899.97 5397.64 13499.45 10798.74 213
UA-Net96.54 13395.96 13898.27 12098.23 17295.71 15898.00 33298.45 11893.72 15498.41 11999.27 13288.71 19799.66 14691.19 25197.69 16199.44 159
EPMVS96.53 13496.01 13198.09 13098.43 15896.12 14696.36 36099.43 2193.53 15897.64 14495.04 32694.41 7198.38 22291.13 25298.11 15399.75 103
test-LLR96.47 13596.04 13097.78 14797.02 24295.44 16999.96 3498.21 18694.07 13695.55 19496.38 27693.90 9298.27 23590.42 26998.83 13499.64 119
MVS_Test96.46 13695.74 14998.61 9498.18 17797.23 9999.31 23197.15 29191.07 24998.84 9697.05 25588.17 20098.97 17894.39 19997.50 16599.61 127
casdiffmvs_mvgpermissive96.43 13795.94 14197.89 14397.44 22395.47 16899.86 11797.29 27893.35 16396.03 18599.19 14085.39 22898.72 19497.89 12497.04 17799.49 153
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline96.43 13795.98 13497.76 15197.34 22995.17 18499.51 20497.17 28893.92 14796.90 16399.28 12985.37 22998.64 20097.50 13796.86 18399.46 155
casdiffmvspermissive96.42 13995.97 13797.77 14997.30 23394.98 18699.84 12597.09 29893.75 15396.58 17299.26 13585.07 23198.78 18897.77 13197.04 17799.54 143
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_fmvsmconf0.01_n96.39 14095.74 14998.32 11891.47 36495.56 16699.84 12597.30 27697.74 1897.89 13999.35 12779.62 27999.85 10899.25 5499.24 11999.55 139
test-mter96.39 14095.93 14297.78 14797.02 24295.44 16999.96 3498.21 18691.81 22595.55 19496.38 27695.17 5098.27 23590.42 26998.83 13499.64 119
CDS-MVSNet96.34 14296.07 12997.13 18197.37 22794.96 18799.53 20197.91 22091.55 23195.37 19898.32 21695.05 5597.13 29193.80 21595.75 20699.30 176
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Vis-MVSNet (Re-imp)96.32 14395.98 13497.35 17697.93 19094.82 19199.47 21198.15 19891.83 22395.09 20199.11 14491.37 15397.47 27193.47 22297.43 16699.74 104
3Dnovator+91.53 1196.31 14495.24 16399.52 2896.88 25298.64 5299.72 16698.24 18395.27 9488.42 30298.98 15782.76 24999.94 7797.10 14799.83 7299.96 64
Effi-MVS+96.30 14595.69 15198.16 12497.85 19596.26 13597.41 34197.21 28490.37 26498.65 11098.58 20086.61 21798.70 19697.11 14697.37 17099.52 147
IS-MVSNet96.29 14695.90 14597.45 16798.13 18194.80 19299.08 25397.61 24392.02 21995.54 19698.96 16190.64 16998.08 24593.73 21997.41 16999.47 154
3Dnovator91.47 1296.28 14795.34 16099.08 6596.82 25597.47 9399.45 21498.81 6095.52 8889.39 27799.00 15481.97 25399.95 6997.27 14199.83 7299.84 90
tpmrst96.27 14895.98 13497.13 18197.96 18893.15 23596.34 36198.17 19192.07 21598.71 10795.12 32493.91 9198.73 19294.91 18796.62 18499.50 151
CostFormer96.10 14995.88 14696.78 19197.03 24192.55 25297.08 34997.83 22890.04 27198.72 10694.89 33395.01 5798.29 23196.54 16195.77 20499.50 151
iter_conf0596.07 15095.95 14096.44 20398.43 15897.52 8799.91 8396.85 32494.16 13192.49 23597.98 22798.20 497.34 27597.26 14288.29 27194.45 269
PVSNet_BlendedMVS96.05 15195.82 14896.72 19499.59 8196.99 11099.95 5299.10 3194.06 13898.27 12695.80 29189.00 19399.95 6999.12 5887.53 28493.24 342
PatchMatch-RL96.04 15295.40 15797.95 13699.59 8195.22 18199.52 20299.07 3493.96 14496.49 17498.35 21482.28 25199.82 12090.15 27499.22 12198.81 209
iter_conf_final96.01 15395.93 14296.28 20898.38 16097.03 10899.87 10497.03 30494.05 14092.61 23197.98 22798.01 597.34 27597.02 14988.39 27094.47 263
1112_ss96.01 15395.20 16598.42 11397.80 19896.41 12899.65 18096.66 33692.71 18792.88 22899.40 12192.16 14199.30 16391.92 24393.66 23499.55 139
PatchmatchNetpermissive95.94 15595.45 15697.39 17297.83 19694.41 20096.05 36798.40 15292.86 17897.09 15795.28 32194.21 8398.07 24789.26 28298.11 15399.70 108
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
FA-MVS(test-final)95.86 15695.09 16998.15 12797.74 20295.62 16496.31 36298.17 19191.42 23996.26 18196.13 28590.56 17099.47 16092.18 23997.07 17599.35 169
TAMVS95.85 15795.58 15496.65 19797.07 23993.50 22799.17 24697.82 22991.39 24195.02 20298.01 22392.20 14097.30 28093.75 21895.83 20399.14 190
LS3D95.84 15895.11 16898.02 13499.85 5495.10 18598.74 29398.50 11287.22 31693.66 21899.86 2687.45 20699.95 6990.94 25899.81 7899.02 199
baseline195.78 15994.86 17598.54 10398.47 15798.07 6599.06 25897.99 20992.68 19094.13 21498.62 19693.28 10998.69 19793.79 21685.76 29398.84 207
Test_1112_low_res95.72 16094.83 17698.42 11397.79 19996.41 12899.65 18096.65 33792.70 18892.86 22996.13 28592.15 14299.30 16391.88 24493.64 23599.55 139
Vis-MVSNetpermissive95.72 16095.15 16797.45 16797.62 21494.28 20499.28 23798.24 18394.27 12996.84 16598.94 16879.39 28198.76 19093.25 22498.49 14099.30 176
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
EPNet_dtu95.71 16295.39 15896.66 19698.92 12593.41 23199.57 19498.90 4796.19 7397.52 14698.56 20292.65 12697.36 27377.89 36398.33 14499.20 185
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
BH-w/o95.71 16295.38 15996.68 19598.49 15692.28 25699.84 12597.50 25792.12 21492.06 24098.79 18284.69 23598.67 19995.29 17899.66 8699.09 193
FE-MVS95.70 16495.01 17297.79 14698.21 17494.57 19595.03 37498.69 6888.90 29097.50 14896.19 28292.60 12999.49 15889.99 27697.94 15999.31 174
ECVR-MVScopyleft95.66 16595.05 17097.51 16598.66 14493.71 22098.85 28598.45 11894.93 9996.86 16498.96 16175.22 32199.20 16995.34 17698.15 15099.64 119
mvs_anonymous95.65 16695.03 17197.53 16398.19 17695.74 15699.33 22897.49 25890.87 25390.47 25597.10 25188.23 19997.16 28895.92 16997.66 16399.68 111
test111195.57 16794.98 17397.37 17398.56 14793.37 23398.86 28398.45 11894.95 9896.63 17098.95 16675.21 32299.11 17495.02 18298.14 15299.64 119
MVSTER95.53 16895.22 16496.45 20198.56 14797.72 7899.91 8397.67 23692.38 20891.39 24497.14 24997.24 1897.30 28094.80 19087.85 27894.34 279
tpm295.47 16995.18 16696.35 20796.91 24891.70 27496.96 35297.93 21688.04 30698.44 11895.40 31093.32 10697.97 25194.00 20695.61 20899.38 164
test_vis1_n_192095.44 17095.31 16195.82 21998.50 15588.74 32299.98 1497.30 27697.84 1699.85 999.19 14066.82 35899.97 5398.82 7799.46 10698.76 211
QAPM95.40 17194.17 19099.10 6496.92 24797.71 7999.40 21798.68 7089.31 27888.94 29098.89 17182.48 25099.96 6193.12 23099.83 7299.62 124
test_fmvs195.35 17295.68 15394.36 27298.99 11784.98 35299.96 3496.65 33797.60 2299.73 3298.96 16171.58 33899.93 8598.31 10299.37 11398.17 226
UGNet95.33 17394.57 18197.62 16098.55 15094.85 18998.67 30199.32 2695.75 8196.80 16796.27 28072.18 33599.96 6194.58 19799.05 12898.04 230
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
BH-untuned95.18 17494.83 17696.22 21098.36 16291.22 28299.80 14197.32 27490.91 25291.08 24898.67 18983.51 24498.54 20594.23 20499.61 9398.92 202
BH-RMVSNet95.18 17494.31 18797.80 14498.17 17895.23 18099.76 15297.53 25392.52 20294.27 21299.25 13676.84 30398.80 18690.89 26099.54 9899.35 169
PCF-MVS94.20 595.18 17494.10 19198.43 11298.55 15095.99 14897.91 33497.31 27590.35 26589.48 27699.22 13885.19 23099.89 9690.40 27198.47 14199.41 162
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
dp95.05 17794.43 18396.91 18797.99 18792.73 24696.29 36397.98 21189.70 27595.93 18894.67 33993.83 9698.45 21186.91 31496.53 18699.54 143
Fast-Effi-MVS+95.02 17894.19 18997.52 16497.88 19294.55 19699.97 2797.08 29988.85 29294.47 20897.96 22984.59 23698.41 21489.84 27897.10 17499.59 130
IB-MVS92.85 694.99 17993.94 19698.16 12497.72 20795.69 16199.99 498.81 6094.28 12792.70 23096.90 25995.08 5399.17 17296.07 16673.88 36999.60 129
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
h-mvs3394.92 18094.36 18496.59 19898.85 13391.29 28198.93 27498.94 4195.90 7698.77 10198.42 21390.89 16699.77 12897.80 12670.76 37498.72 215
XVG-OURS94.82 18194.74 17995.06 24098.00 18689.19 31799.08 25397.55 24994.10 13494.71 20499.62 10280.51 27299.74 13496.04 16793.06 24296.25 250
SDMVSNet94.80 18293.96 19597.33 17798.92 12595.42 17199.59 19098.99 3792.41 20692.55 23397.85 23175.81 31598.93 18197.90 12391.62 24497.64 237
ADS-MVSNet94.79 18394.02 19397.11 18397.87 19393.79 21794.24 37598.16 19590.07 26996.43 17694.48 34490.29 17598.19 24087.44 30197.23 17199.36 167
XVG-OURS-SEG-HR94.79 18394.70 18095.08 23998.05 18489.19 31799.08 25397.54 25193.66 15594.87 20399.58 10678.78 28899.79 12397.31 14093.40 23796.25 250
OpenMVScopyleft90.15 1594.77 18593.59 20598.33 11796.07 27297.48 9299.56 19698.57 8990.46 26286.51 32598.95 16678.57 29199.94 7793.86 21099.74 8197.57 241
LFMVS94.75 18693.56 20798.30 11999.03 11395.70 15998.74 29397.98 21187.81 30998.47 11799.39 12367.43 35699.53 15098.01 11595.20 21899.67 113
SCA94.69 18793.81 20097.33 17797.10 23894.44 19798.86 28398.32 17293.30 16696.17 18495.59 30076.48 30897.95 25491.06 25497.43 16699.59 130
ab-mvs94.69 18793.42 21198.51 10698.07 18396.26 13596.49 35898.68 7090.31 26694.54 20597.00 25776.30 31099.71 13895.98 16893.38 23899.56 138
CVMVSNet94.68 18994.94 17493.89 29096.80 25686.92 34299.06 25898.98 3894.45 11594.23 21399.02 15085.60 22495.31 35690.91 25995.39 21399.43 160
cascas94.64 19093.61 20297.74 15397.82 19796.26 13599.96 3497.78 23185.76 33494.00 21597.54 23876.95 30299.21 16697.23 14395.43 21297.76 236
HQP-MVS94.61 19194.50 18294.92 24595.78 28091.85 26699.87 10497.89 22196.82 4893.37 22098.65 19280.65 27098.39 21897.92 12189.60 24894.53 258
TR-MVS94.54 19293.56 20797.49 16697.96 18894.34 20398.71 29697.51 25690.30 26794.51 20798.69 18875.56 31698.77 18992.82 23395.99 19699.35 169
DP-MVS94.54 19293.42 21197.91 14199.46 9494.04 21198.93 27497.48 25981.15 36690.04 26099.55 10887.02 21299.95 6988.97 28498.11 15399.73 105
Effi-MVS+-dtu94.53 19495.30 16292.22 32397.77 20082.54 36399.59 19097.06 30194.92 10195.29 19995.37 31485.81 22397.89 25794.80 19097.07 17596.23 252
HQP_MVS94.49 19594.36 18494.87 24695.71 29091.74 27099.84 12597.87 22396.38 6593.01 22498.59 19780.47 27498.37 22497.79 12989.55 25194.52 260
myMVS_eth3d94.46 19694.76 17893.55 30197.68 21090.97 28499.71 16898.35 16590.79 25692.10 23898.67 18992.46 13593.09 37787.13 30795.95 19996.59 248
TAPA-MVS92.12 894.42 19793.60 20496.90 18899.33 9891.78 26999.78 14498.00 20889.89 27394.52 20699.47 11491.97 14699.18 17169.90 38099.52 9999.73 105
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
hse-mvs294.38 19894.08 19295.31 23398.27 17090.02 30899.29 23698.56 9295.90 7698.77 10198.00 22490.89 16698.26 23797.80 12669.20 38097.64 237
ET-MVSNet_ETH3D94.37 19993.28 21797.64 15798.30 16697.99 6999.99 497.61 24394.35 12271.57 38599.45 11796.23 3295.34 35596.91 15785.14 30099.59 130
MSDG94.37 19993.36 21597.40 17198.88 13293.95 21599.37 22497.38 26885.75 33690.80 25299.17 14284.11 24299.88 10286.35 31598.43 14298.36 224
GeoE94.36 20193.48 20996.99 18597.29 23493.54 22699.96 3496.72 33488.35 30293.43 21998.94 16882.05 25298.05 24888.12 29696.48 18999.37 166
miper_enhance_ethall94.36 20193.98 19495.49 22498.68 14295.24 17999.73 16397.29 27893.28 16789.86 26595.97 28994.37 7697.05 29792.20 23884.45 30594.19 288
tpmvs94.28 20393.57 20696.40 20498.55 15091.50 27995.70 37398.55 9887.47 31192.15 23794.26 34891.42 15198.95 18088.15 29495.85 20298.76 211
test_fmvs1_n94.25 20494.36 18493.92 28797.68 21083.70 35899.90 9096.57 34097.40 2899.67 3898.88 17261.82 37499.92 8898.23 10499.13 12498.14 229
FIs94.10 20593.43 21096.11 21294.70 30896.82 11699.58 19298.93 4592.54 19989.34 27997.31 24587.62 20497.10 29494.22 20586.58 28994.40 271
mvsmamba94.10 20593.72 20195.25 23593.57 32694.13 20999.67 17796.45 34593.63 15791.34 24697.77 23486.29 22097.22 28696.65 16088.10 27594.40 271
CLD-MVS94.06 20793.90 19794.55 26196.02 27490.69 29199.98 1497.72 23296.62 5891.05 25098.85 18077.21 29798.47 20798.11 11089.51 25394.48 262
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
testing393.92 20894.23 18892.99 31597.54 21790.23 30299.99 499.16 3090.57 26091.33 24798.63 19592.99 11692.52 38182.46 34095.39 21396.22 253
test0.0.03 193.86 20993.61 20294.64 25595.02 30492.18 25999.93 7598.58 8794.07 13687.96 30698.50 20593.90 9294.96 36081.33 34793.17 23996.78 245
X-MVStestdata93.83 21092.06 24399.15 5799.94 1397.50 9099.94 6898.42 14396.22 7199.41 6841.37 40794.34 7799.96 6198.92 7099.95 4999.99 23
GA-MVS93.83 21092.84 22496.80 19095.73 28793.57 22499.88 10197.24 28392.57 19892.92 22696.66 26878.73 28997.67 26587.75 29994.06 23299.17 186
FC-MVSNet-test93.81 21293.15 21995.80 22094.30 31596.20 14099.42 21698.89 4992.33 21089.03 28997.27 24787.39 20796.83 31393.20 22586.48 29094.36 275
ADS-MVSNet293.80 21393.88 19893.55 30197.87 19385.94 34694.24 37596.84 32590.07 26996.43 17694.48 34490.29 17595.37 35487.44 30197.23 17199.36 167
cl2293.77 21493.25 21895.33 23299.49 9194.43 19899.61 18898.09 20190.38 26389.16 28795.61 29890.56 17097.34 27591.93 24284.45 30594.21 287
VDD-MVS93.77 21492.94 22296.27 20998.55 15090.22 30398.77 29297.79 23090.85 25496.82 16699.42 11861.18 37799.77 12898.95 6794.13 23098.82 208
EI-MVSNet93.73 21693.40 21494.74 25196.80 25692.69 24799.06 25897.67 23688.96 28791.39 24499.02 15088.75 19697.30 28091.07 25387.85 27894.22 285
Fast-Effi-MVS+-dtu93.72 21793.86 19993.29 30697.06 24086.16 34499.80 14196.83 32692.66 19192.58 23297.83 23381.39 25997.67 26589.75 27996.87 18296.05 255
tpm93.70 21893.41 21394.58 25995.36 29987.41 33897.01 35096.90 32090.85 25496.72 16994.14 34990.40 17396.84 31290.75 26388.54 26799.51 149
PS-MVSNAJss93.64 21993.31 21694.61 25692.11 35592.19 25899.12 24897.38 26892.51 20388.45 29796.99 25891.20 15597.29 28394.36 20087.71 28194.36 275
test_vis1_n93.61 22093.03 22195.35 23095.86 27986.94 34199.87 10496.36 34796.85 4699.54 5698.79 18252.41 38799.83 11898.64 8998.97 12999.29 178
sd_testset93.55 22192.83 22595.74 22198.92 12590.89 28998.24 32198.85 5692.41 20692.55 23397.85 23171.07 34398.68 19893.93 20891.62 24497.64 237
gg-mvs-nofinetune93.51 22291.86 24998.47 10897.72 20797.96 7292.62 38398.51 10774.70 38597.33 15269.59 39898.91 397.79 26097.77 13199.56 9799.67 113
nrg03093.51 22292.53 23596.45 20194.36 31397.20 10099.81 13797.16 29091.60 22989.86 26597.46 24086.37 21997.68 26495.88 17080.31 33994.46 264
tpm cat193.51 22292.52 23696.47 19997.77 20091.47 28096.13 36598.06 20480.98 36792.91 22793.78 35289.66 18098.87 18287.03 31096.39 19099.09 193
CR-MVSNet93.45 22592.62 23095.94 21596.29 26692.66 24892.01 38696.23 34992.62 19396.94 16193.31 35791.04 16096.03 34579.23 35695.96 19799.13 191
AUN-MVS93.28 22692.60 23195.34 23198.29 16790.09 30699.31 23198.56 9291.80 22696.35 18098.00 22489.38 18598.28 23392.46 23569.22 37997.64 237
OPM-MVS93.21 22792.80 22694.44 26893.12 33790.85 29099.77 14797.61 24396.19 7391.56 24398.65 19275.16 32398.47 20793.78 21789.39 25493.99 311
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
dmvs_re93.20 22893.15 21993.34 30496.54 26483.81 35798.71 29698.51 10791.39 24192.37 23698.56 20278.66 29097.83 25993.89 20989.74 24798.38 223
miper_ehance_all_eth93.16 22992.60 23194.82 25097.57 21693.56 22599.50 20697.07 30088.75 29388.85 29295.52 30490.97 16296.74 31690.77 26284.45 30594.17 289
RRT_MVS93.14 23092.92 22393.78 29293.31 33390.04 30799.66 17897.69 23492.53 20088.91 29197.76 23584.36 23896.93 30795.10 18086.99 28794.37 274
VDDNet93.12 23191.91 24796.76 19296.67 26392.65 25098.69 29998.21 18682.81 35997.75 14399.28 12961.57 37599.48 15998.09 11294.09 23198.15 227
Anonymous20240521193.10 23291.99 24596.40 20499.10 10989.65 31498.88 27997.93 21683.71 35394.00 21598.75 18468.79 34899.88 10295.08 18191.71 24399.68 111
UniMVSNet (Re)93.07 23392.13 24095.88 21694.84 30596.24 13999.88 10198.98 3892.49 20489.25 28195.40 31087.09 21197.14 29093.13 22978.16 35094.26 282
LPG-MVS_test92.96 23492.71 22993.71 29595.43 29788.67 32499.75 15597.62 24092.81 18290.05 25898.49 20675.24 31998.40 21695.84 17189.12 25594.07 303
UniMVSNet_NR-MVSNet92.95 23592.11 24195.49 22494.61 31095.28 17799.83 13299.08 3391.49 23289.21 28496.86 26287.14 21096.73 31793.20 22577.52 35594.46 264
WB-MVSnew92.90 23692.77 22893.26 30896.95 24693.63 22399.71 16898.16 19591.49 23294.28 21198.14 21981.33 26196.48 32679.47 35595.46 21089.68 378
ACMM91.95 1092.88 23792.52 23693.98 28695.75 28689.08 32099.77 14797.52 25593.00 17389.95 26297.99 22676.17 31298.46 21093.63 22188.87 25994.39 273
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test_djsdf92.83 23892.29 23994.47 26691.90 35892.46 25399.55 19897.27 28091.17 24489.96 26196.07 28881.10 26396.89 30994.67 19588.91 25794.05 305
D2MVS92.76 23992.59 23493.27 30795.13 30089.54 31699.69 17399.38 2392.26 21187.59 31094.61 34185.05 23297.79 26091.59 24788.01 27692.47 355
bld_raw_dy_0_6492.74 24092.03 24494.87 24693.09 33993.46 22899.12 24895.41 36692.84 18190.44 25697.54 23878.08 29597.04 29993.94 20787.77 28094.11 300
ACMP92.05 992.74 24092.42 23893.73 29395.91 27888.72 32399.81 13797.53 25394.13 13287.00 31998.23 21774.07 32998.47 20796.22 16588.86 26093.99 311
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
VPA-MVSNet92.70 24291.55 25496.16 21195.09 30196.20 14098.88 27999.00 3691.02 25191.82 24195.29 32076.05 31497.96 25395.62 17581.19 32794.30 280
FMVSNet392.69 24391.58 25295.99 21498.29 16797.42 9599.26 23997.62 24089.80 27489.68 26995.32 31681.62 25896.27 33587.01 31185.65 29494.29 281
IterMVS-LS92.69 24392.11 24194.43 27096.80 25692.74 24499.45 21496.89 32188.98 28589.65 27295.38 31388.77 19596.34 33290.98 25782.04 32194.22 285
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Patchmatch-test92.65 24591.50 25596.10 21396.85 25390.49 29791.50 38897.19 28582.76 36090.23 25795.59 30095.02 5698.00 25077.41 36596.98 18099.82 92
c3_l92.53 24691.87 24894.52 26297.40 22592.99 24099.40 21796.93 31887.86 30788.69 29595.44 30889.95 17896.44 32890.45 26880.69 33694.14 298
AllTest92.48 24791.64 25095.00 24299.01 11488.43 32898.94 27396.82 32886.50 32588.71 29398.47 21074.73 32599.88 10285.39 32296.18 19296.71 246
DU-MVS92.46 24891.45 25795.49 22494.05 31895.28 17799.81 13798.74 6492.25 21289.21 28496.64 27081.66 25696.73 31793.20 22577.52 35594.46 264
eth_miper_zixun_eth92.41 24991.93 24693.84 29197.28 23590.68 29298.83 28696.97 31288.57 29889.19 28695.73 29589.24 19096.69 31989.97 27781.55 32494.15 295
DIV-MVS_self_test92.32 25091.60 25194.47 26697.31 23292.74 24499.58 19296.75 33286.99 32087.64 30995.54 30289.55 18396.50 32588.58 28882.44 31894.17 289
cl____92.31 25191.58 25294.52 26297.33 23192.77 24299.57 19496.78 33186.97 32187.56 31195.51 30589.43 18496.62 32188.60 28782.44 31894.16 294
LCM-MVSNet-Re92.31 25192.60 23191.43 33097.53 21879.27 38099.02 26691.83 39492.07 21580.31 36094.38 34783.50 24595.48 35297.22 14497.58 16499.54 143
WR-MVS92.31 25191.25 25995.48 22794.45 31295.29 17699.60 18998.68 7090.10 26888.07 30596.89 26080.68 26996.80 31593.14 22879.67 34394.36 275
COLMAP_ROBcopyleft90.47 1492.18 25491.49 25694.25 27599.00 11688.04 33498.42 31596.70 33582.30 36288.43 30099.01 15276.97 30199.85 10886.11 31896.50 18794.86 257
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
Anonymous2024052992.10 25590.65 26696.47 19998.82 13490.61 29498.72 29598.67 7375.54 38293.90 21798.58 20066.23 36099.90 9194.70 19490.67 24698.90 205
pmmvs492.10 25591.07 26295.18 23792.82 34694.96 18799.48 21096.83 32687.45 31288.66 29696.56 27483.78 24396.83 31389.29 28184.77 30393.75 327
jajsoiax91.92 25791.18 26094.15 27691.35 36590.95 28799.00 26797.42 26492.61 19487.38 31597.08 25272.46 33497.36 27394.53 19888.77 26194.13 299
XXY-MVS91.82 25890.46 26995.88 21693.91 32195.40 17398.87 28297.69 23488.63 29787.87 30797.08 25274.38 32897.89 25791.66 24684.07 30994.35 278
miper_lstm_enhance91.81 25991.39 25893.06 31497.34 22989.18 31999.38 22296.79 33086.70 32487.47 31395.22 32290.00 17795.86 34988.26 29281.37 32694.15 295
mvs_tets91.81 25991.08 26194.00 28491.63 36290.58 29598.67 30197.43 26292.43 20587.37 31697.05 25571.76 33697.32 27994.75 19288.68 26394.11 300
VPNet91.81 25990.46 26995.85 21894.74 30795.54 16798.98 26898.59 8692.14 21390.77 25397.44 24168.73 35097.54 26994.89 18877.89 35294.46 264
RPSCF91.80 26292.79 22788.83 35098.15 17969.87 38898.11 32896.60 33983.93 35194.33 21099.27 13279.60 28099.46 16191.99 24193.16 24097.18 244
PVSNet_088.03 1991.80 26290.27 27596.38 20698.27 17090.46 29899.94 6899.61 1493.99 14286.26 33197.39 24471.13 34299.89 9698.77 8067.05 38598.79 210
anonymousdsp91.79 26490.92 26394.41 27190.76 37092.93 24198.93 27497.17 28889.08 28087.46 31495.30 31778.43 29496.92 30892.38 23688.73 26293.39 338
JIA-IIPM91.76 26590.70 26594.94 24496.11 27187.51 33793.16 38298.13 20075.79 38197.58 14577.68 39592.84 12197.97 25188.47 29196.54 18599.33 172
TranMVSNet+NR-MVSNet91.68 26690.61 26894.87 24693.69 32593.98 21499.69 17398.65 7491.03 25088.44 29896.83 26680.05 27796.18 33890.26 27376.89 36394.45 269
NR-MVSNet91.56 26790.22 27695.60 22294.05 31895.76 15598.25 32098.70 6791.16 24680.78 35996.64 27083.23 24896.57 32391.41 24877.73 35494.46 264
v2v48291.30 26890.07 28295.01 24193.13 33593.79 21799.77 14797.02 30588.05 30589.25 28195.37 31480.73 26897.15 28987.28 30580.04 34294.09 302
WR-MVS_H91.30 26890.35 27294.15 27694.17 31792.62 25199.17 24698.94 4188.87 29186.48 32794.46 34684.36 23896.61 32288.19 29378.51 34893.21 343
tt080591.28 27090.18 27894.60 25796.26 26887.55 33698.39 31698.72 6589.00 28489.22 28398.47 21062.98 37198.96 17990.57 26588.00 27797.28 243
V4291.28 27090.12 28194.74 25193.42 33193.46 22899.68 17597.02 30587.36 31389.85 26795.05 32581.31 26297.34 27587.34 30480.07 34193.40 337
CP-MVSNet91.23 27290.22 27694.26 27493.96 32092.39 25599.09 25198.57 8988.95 28886.42 32896.57 27379.19 28496.37 33090.29 27278.95 34594.02 306
XVG-ACMP-BASELINE91.22 27390.75 26492.63 32093.73 32485.61 34798.52 30997.44 26192.77 18589.90 26496.85 26366.64 35998.39 21892.29 23788.61 26493.89 319
v114491.09 27489.83 28394.87 24693.25 33493.69 22299.62 18796.98 31086.83 32389.64 27394.99 33080.94 26597.05 29785.08 32581.16 32893.87 321
FMVSNet291.02 27589.56 28995.41 22997.53 21895.74 15698.98 26897.41 26687.05 31788.43 30095.00 32971.34 33996.24 33785.12 32485.21 29994.25 284
MVP-Stereo90.93 27690.45 27192.37 32291.25 36788.76 32198.05 33196.17 35187.27 31584.04 34295.30 31778.46 29397.27 28583.78 33399.70 8491.09 366
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
IterMVS90.91 27790.17 27993.12 31196.78 25990.42 30098.89 27797.05 30389.03 28286.49 32695.42 30976.59 30695.02 35887.22 30684.09 30893.93 316
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
GBi-Net90.88 27889.82 28494.08 27997.53 21891.97 26198.43 31296.95 31387.05 31789.68 26994.72 33571.34 33996.11 34087.01 31185.65 29494.17 289
test190.88 27889.82 28494.08 27997.53 21891.97 26198.43 31296.95 31387.05 31789.68 26994.72 33571.34 33996.11 34087.01 31185.65 29494.17 289
IterMVS-SCA-FT90.85 28090.16 28092.93 31696.72 26189.96 30998.89 27796.99 30888.95 28886.63 32395.67 29676.48 30895.00 35987.04 30984.04 31193.84 323
v14419290.79 28189.52 29194.59 25893.11 33892.77 24299.56 19696.99 30886.38 32789.82 26894.95 33280.50 27397.10 29483.98 33180.41 33793.90 318
v14890.70 28289.63 28793.92 28792.97 34290.97 28499.75 15596.89 32187.51 31088.27 30395.01 32781.67 25597.04 29987.40 30377.17 36093.75 327
MS-PatchMatch90.65 28390.30 27491.71 32994.22 31685.50 34998.24 32197.70 23388.67 29586.42 32896.37 27867.82 35498.03 24983.62 33499.62 8991.60 363
ACMH89.72 1790.64 28489.63 28793.66 29995.64 29488.64 32698.55 30597.45 26089.03 28281.62 35497.61 23769.75 34698.41 21489.37 28087.62 28393.92 317
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PS-CasMVS90.63 28589.51 29293.99 28593.83 32291.70 27498.98 26898.52 10488.48 29986.15 33296.53 27575.46 31796.31 33488.83 28578.86 34793.95 314
v119290.62 28689.25 29694.72 25393.13 33593.07 23699.50 20697.02 30586.33 32889.56 27595.01 32779.22 28397.09 29682.34 34281.16 32894.01 308
v890.54 28789.17 29794.66 25493.43 33093.40 23299.20 24396.94 31785.76 33487.56 31194.51 34281.96 25497.19 28784.94 32678.25 34993.38 339
v192192090.46 28889.12 29894.50 26492.96 34392.46 25399.49 20896.98 31086.10 33089.61 27495.30 31778.55 29297.03 30282.17 34380.89 33594.01 308
our_test_390.39 28989.48 29493.12 31192.40 35189.57 31599.33 22896.35 34887.84 30885.30 33794.99 33084.14 24196.09 34380.38 35184.56 30493.71 332
PatchT90.38 29088.75 30695.25 23595.99 27590.16 30491.22 39097.54 25176.80 37797.26 15486.01 38991.88 14796.07 34466.16 38895.91 20199.51 149
ACMH+89.98 1690.35 29189.54 29092.78 31995.99 27586.12 34598.81 28897.18 28789.38 27783.14 34797.76 23568.42 35298.43 21289.11 28386.05 29293.78 326
Baseline_NR-MVSNet90.33 29289.51 29292.81 31892.84 34489.95 31099.77 14793.94 38584.69 34889.04 28895.66 29781.66 25696.52 32490.99 25676.98 36191.97 361
MIMVSNet90.30 29388.67 30795.17 23896.45 26591.64 27692.39 38497.15 29185.99 33190.50 25493.19 35966.95 35794.86 36282.01 34493.43 23699.01 200
LTVRE_ROB88.28 1890.29 29489.05 30194.02 28295.08 30290.15 30597.19 34597.43 26284.91 34683.99 34397.06 25474.00 33098.28 23384.08 32987.71 28193.62 333
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
v1090.25 29588.82 30494.57 26093.53 32893.43 23099.08 25396.87 32385.00 34387.34 31794.51 34280.93 26697.02 30482.85 33879.23 34493.26 341
v124090.20 29688.79 30594.44 26893.05 34192.27 25799.38 22296.92 31985.89 33289.36 27894.87 33477.89 29697.03 30280.66 35081.08 33194.01 308
PEN-MVS90.19 29789.06 30093.57 30093.06 34090.90 28899.06 25898.47 11588.11 30485.91 33496.30 27976.67 30495.94 34887.07 30876.91 36293.89 319
pmmvs590.17 29889.09 29993.40 30392.10 35689.77 31399.74 15895.58 36385.88 33387.24 31895.74 29373.41 33296.48 32688.54 28983.56 31293.95 314
EU-MVSNet90.14 29990.34 27389.54 34592.55 34981.06 37498.69 29998.04 20791.41 24086.59 32496.84 26580.83 26793.31 37686.20 31681.91 32294.26 282
UniMVSNet_ETH3D90.06 30088.58 30894.49 26594.67 30988.09 33397.81 33797.57 24883.91 35288.44 29897.41 24257.44 38197.62 26791.41 24888.59 26697.77 235
Syy-MVS90.00 30190.63 26788.11 35797.68 21074.66 38599.71 16898.35 16590.79 25692.10 23898.67 18979.10 28693.09 37763.35 39195.95 19996.59 248
USDC90.00 30188.96 30293.10 31394.81 30688.16 33298.71 29695.54 36493.66 15583.75 34597.20 24865.58 36298.31 22983.96 33287.49 28592.85 349
Anonymous2023121189.86 30388.44 31094.13 27898.93 12390.68 29298.54 30798.26 18276.28 37886.73 32195.54 30270.60 34497.56 26890.82 26180.27 34094.15 295
OurMVSNet-221017-089.81 30489.48 29490.83 33591.64 36181.21 37298.17 32695.38 36891.48 23485.65 33697.31 24572.66 33397.29 28388.15 29484.83 30293.97 313
RPMNet89.76 30587.28 32097.19 18096.29 26692.66 24892.01 38698.31 17470.19 39196.94 16185.87 39087.25 20999.78 12562.69 39295.96 19799.13 191
Patchmtry89.70 30688.49 30993.33 30596.24 26989.94 31291.37 38996.23 34978.22 37587.69 30893.31 35791.04 16096.03 34580.18 35482.10 32094.02 306
v7n89.65 30788.29 31293.72 29492.22 35390.56 29699.07 25797.10 29685.42 34186.73 32194.72 33580.06 27697.13 29181.14 34878.12 35193.49 335
ppachtmachnet_test89.58 30888.35 31193.25 30992.40 35190.44 29999.33 22896.73 33385.49 33985.90 33595.77 29281.09 26496.00 34776.00 37182.49 31793.30 340
test_fmvs289.47 30989.70 28688.77 35394.54 31175.74 38299.83 13294.70 37894.71 10891.08 24896.82 26754.46 38497.78 26292.87 23288.27 27292.80 350
DTE-MVSNet89.40 31088.24 31392.88 31792.66 34889.95 31099.10 25098.22 18587.29 31485.12 33996.22 28176.27 31195.30 35783.56 33575.74 36693.41 336
pm-mvs189.36 31187.81 31794.01 28393.40 33291.93 26498.62 30496.48 34486.25 32983.86 34496.14 28473.68 33197.04 29986.16 31775.73 36793.04 346
tfpnnormal89.29 31287.61 31894.34 27394.35 31494.13 20998.95 27298.94 4183.94 35084.47 34195.51 30574.84 32497.39 27277.05 36880.41 33791.48 365
LF4IMVS89.25 31388.85 30390.45 33992.81 34781.19 37398.12 32794.79 37591.44 23686.29 33097.11 25065.30 36598.11 24488.53 29085.25 29892.07 358
testgi89.01 31488.04 31591.90 32793.49 32984.89 35399.73 16395.66 36193.89 15085.14 33898.17 21859.68 37894.66 36477.73 36488.88 25896.16 254
SixPastTwentyTwo88.73 31588.01 31690.88 33391.85 35982.24 36598.22 32495.18 37388.97 28682.26 35096.89 26071.75 33796.67 32084.00 33082.98 31393.72 331
FMVSNet188.50 31686.64 32294.08 27995.62 29691.97 26198.43 31296.95 31383.00 35786.08 33394.72 33559.09 37996.11 34081.82 34684.07 30994.17 289
FMVSNet588.32 31787.47 31990.88 33396.90 25188.39 33097.28 34395.68 36082.60 36184.67 34092.40 36579.83 27891.16 38676.39 37081.51 32593.09 344
DSMNet-mixed88.28 31888.24 31388.42 35589.64 37775.38 38498.06 33089.86 39885.59 33888.20 30492.14 36776.15 31391.95 38478.46 36196.05 19597.92 231
K. test v388.05 31987.24 32190.47 33891.82 36082.23 36698.96 27197.42 26489.05 28176.93 37595.60 29968.49 35195.42 35385.87 32181.01 33393.75 327
KD-MVS_2432*160088.00 32086.10 32493.70 29796.91 24894.04 21197.17 34697.12 29484.93 34481.96 35192.41 36392.48 13394.51 36579.23 35652.68 39792.56 352
miper_refine_blended88.00 32086.10 32493.70 29796.91 24894.04 21197.17 34697.12 29484.93 34481.96 35192.41 36392.48 13394.51 36579.23 35652.68 39792.56 352
TinyColmap87.87 32286.51 32391.94 32695.05 30385.57 34897.65 33894.08 38284.40 34981.82 35396.85 26362.14 37398.33 22780.25 35386.37 29191.91 362
TransMVSNet (Re)87.25 32385.28 33093.16 31093.56 32791.03 28398.54 30794.05 38483.69 35481.09 35796.16 28375.32 31896.40 32976.69 36968.41 38192.06 359
Patchmatch-RL test86.90 32485.98 32889.67 34484.45 38775.59 38389.71 39392.43 39186.89 32277.83 37290.94 37194.22 8193.63 37387.75 29969.61 37699.79 97
test_vis1_rt86.87 32586.05 32789.34 34696.12 27078.07 38199.87 10483.54 40592.03 21878.21 37089.51 37645.80 39199.91 8996.25 16493.11 24190.03 375
Anonymous2023120686.32 32685.42 32989.02 34989.11 37980.53 37899.05 26295.28 36985.43 34082.82 34893.92 35074.40 32793.44 37566.99 38581.83 32393.08 345
MVS-HIRNet86.22 32783.19 34095.31 23396.71 26290.29 30192.12 38597.33 27362.85 39286.82 32070.37 39769.37 34797.49 27075.12 37297.99 15898.15 227
pmmvs685.69 32883.84 33591.26 33290.00 37684.41 35597.82 33696.15 35275.86 38081.29 35695.39 31261.21 37696.87 31183.52 33673.29 37092.50 354
test_040285.58 32983.94 33490.50 33793.81 32385.04 35198.55 30595.20 37276.01 37979.72 36495.13 32364.15 36896.26 33666.04 38986.88 28890.21 374
UnsupCasMVSNet_eth85.52 33083.99 33290.10 34189.36 37883.51 35996.65 35697.99 20989.14 27975.89 37993.83 35163.25 37093.92 36981.92 34567.90 38492.88 348
MDA-MVSNet_test_wron85.51 33183.32 33992.10 32490.96 36888.58 32799.20 24396.52 34279.70 37257.12 39792.69 36179.11 28593.86 37177.10 36777.46 35793.86 322
YYNet185.50 33283.33 33892.00 32590.89 36988.38 33199.22 24296.55 34179.60 37357.26 39692.72 36079.09 28793.78 37277.25 36677.37 35893.84 323
EG-PatchMatch MVS85.35 33383.81 33689.99 34390.39 37281.89 36898.21 32596.09 35381.78 36474.73 38193.72 35351.56 38997.12 29379.16 35988.61 26490.96 368
Anonymous2024052185.15 33483.81 33689.16 34888.32 38082.69 36198.80 29095.74 35879.72 37181.53 35590.99 37065.38 36494.16 36772.69 37581.11 33090.63 371
TDRefinement84.76 33582.56 34391.38 33174.58 40184.80 35497.36 34294.56 37984.73 34780.21 36196.12 28763.56 36998.39 21887.92 29763.97 39090.95 369
CMPMVSbinary61.59 2184.75 33685.14 33183.57 36590.32 37362.54 39396.98 35197.59 24774.33 38669.95 38796.66 26864.17 36798.32 22887.88 29888.41 26989.84 377
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test20.0384.72 33783.99 33286.91 35988.19 38280.62 37798.88 27995.94 35588.36 30178.87 36594.62 34068.75 34989.11 39066.52 38775.82 36591.00 367
CL-MVSNet_self_test84.50 33883.15 34188.53 35486.00 38581.79 36998.82 28797.35 27085.12 34283.62 34690.91 37276.66 30591.40 38569.53 38160.36 39492.40 356
new_pmnet84.49 33982.92 34289.21 34790.03 37582.60 36296.89 35495.62 36280.59 36875.77 38089.17 37765.04 36694.79 36372.12 37781.02 33290.23 373
MDA-MVSNet-bldmvs84.09 34081.52 34791.81 32891.32 36688.00 33598.67 30195.92 35680.22 37055.60 39893.32 35668.29 35393.60 37473.76 37376.61 36493.82 325
pmmvs-eth3d84.03 34181.97 34590.20 34084.15 38887.09 34098.10 32994.73 37783.05 35674.10 38387.77 38465.56 36394.01 36881.08 34969.24 37889.49 381
dmvs_testset83.79 34286.07 32676.94 37292.14 35448.60 40796.75 35590.27 39789.48 27678.65 36798.55 20479.25 28286.65 39566.85 38682.69 31595.57 256
OpenMVS_ROBcopyleft79.82 2083.77 34381.68 34690.03 34288.30 38182.82 36098.46 31095.22 37173.92 38776.00 37891.29 36955.00 38396.94 30668.40 38388.51 26890.34 372
KD-MVS_self_test83.59 34482.06 34488.20 35686.93 38380.70 37697.21 34496.38 34682.87 35882.49 34988.97 37867.63 35592.32 38273.75 37462.30 39391.58 364
MIMVSNet182.58 34580.51 35188.78 35186.68 38484.20 35696.65 35695.41 36678.75 37478.59 36892.44 36251.88 38889.76 38965.26 39078.95 34592.38 357
mvsany_test382.12 34681.14 34885.06 36381.87 39270.41 38797.09 34892.14 39291.27 24377.84 37188.73 37939.31 39495.49 35190.75 26371.24 37389.29 383
new-patchmatchnet81.19 34779.34 35486.76 36082.86 39180.36 37997.92 33395.27 37082.09 36372.02 38486.87 38662.81 37290.74 38871.10 37863.08 39189.19 384
APD_test181.15 34880.92 34981.86 36892.45 35059.76 39796.04 36893.61 38873.29 38877.06 37396.64 27044.28 39396.16 33972.35 37682.52 31689.67 379
test_method80.79 34979.70 35384.08 36492.83 34567.06 39099.51 20495.42 36554.34 39681.07 35893.53 35444.48 39292.22 38378.90 36077.23 35992.94 347
PM-MVS80.47 35078.88 35585.26 36283.79 39072.22 38695.89 37191.08 39585.71 33776.56 37788.30 38036.64 39593.90 37082.39 34169.57 37789.66 380
pmmvs380.27 35177.77 35687.76 35880.32 39682.43 36498.23 32391.97 39372.74 38978.75 36687.97 38357.30 38290.99 38770.31 37962.37 39289.87 376
N_pmnet80.06 35280.78 35077.89 37191.94 35745.28 40998.80 29056.82 41178.10 37680.08 36293.33 35577.03 29995.76 35068.14 38482.81 31492.64 351
test_fmvs379.99 35380.17 35279.45 37084.02 38962.83 39199.05 26293.49 38988.29 30380.06 36386.65 38728.09 39988.00 39188.63 28673.27 37187.54 387
UnsupCasMVSNet_bld79.97 35477.03 35988.78 35185.62 38681.98 36793.66 38097.35 27075.51 38370.79 38683.05 39248.70 39094.91 36178.31 36260.29 39589.46 382
test_f78.40 35577.59 35780.81 36980.82 39462.48 39496.96 35293.08 39083.44 35574.57 38284.57 39127.95 40092.63 38084.15 32872.79 37287.32 388
WB-MVS76.28 35677.28 35873.29 37681.18 39354.68 40197.87 33594.19 38181.30 36569.43 38890.70 37377.02 30082.06 39935.71 40468.11 38383.13 390
SSC-MVS75.42 35776.40 36072.49 38080.68 39553.62 40297.42 34094.06 38380.42 36968.75 38990.14 37576.54 30781.66 40033.25 40566.34 38782.19 391
EGC-MVSNET69.38 35863.76 36886.26 36190.32 37381.66 37196.24 36493.85 3860.99 4083.22 40992.33 36652.44 38692.92 37959.53 39584.90 30184.21 389
test_vis3_rt68.82 35966.69 36475.21 37576.24 40060.41 39696.44 35968.71 41075.13 38450.54 40169.52 39916.42 40996.32 33380.27 35266.92 38668.89 397
FPMVS68.72 36068.72 36168.71 38265.95 40544.27 41195.97 37094.74 37651.13 39753.26 39990.50 37425.11 40283.00 39860.80 39380.97 33478.87 395
testf168.38 36166.92 36272.78 37878.80 39750.36 40490.95 39187.35 40355.47 39458.95 39388.14 38120.64 40487.60 39257.28 39664.69 38880.39 393
APD_test268.38 36166.92 36272.78 37878.80 39750.36 40490.95 39187.35 40355.47 39458.95 39388.14 38120.64 40487.60 39257.28 39664.69 38880.39 393
LCM-MVSNet67.77 36364.73 36676.87 37362.95 40756.25 40089.37 39493.74 38744.53 39961.99 39180.74 39320.42 40686.53 39669.37 38259.50 39687.84 385
PMMVS267.15 36464.15 36776.14 37470.56 40462.07 39593.89 37887.52 40258.09 39360.02 39278.32 39422.38 40384.54 39759.56 39447.03 39981.80 392
Gipumacopyleft66.95 36565.00 36572.79 37791.52 36367.96 38966.16 40095.15 37447.89 39858.54 39567.99 40029.74 39787.54 39450.20 39977.83 35362.87 400
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
tmp_tt65.23 36662.94 36972.13 38144.90 41050.03 40681.05 39789.42 40138.45 40048.51 40299.90 1854.09 38578.70 40291.84 24518.26 40487.64 386
ANet_high56.10 36752.24 37067.66 38349.27 40956.82 39983.94 39682.02 40670.47 39033.28 40664.54 40117.23 40869.16 40445.59 40123.85 40377.02 396
PMVScopyleft49.05 2353.75 36851.34 37260.97 38540.80 41134.68 41274.82 39989.62 40037.55 40128.67 40772.12 3967.09 41181.63 40143.17 40268.21 38266.59 399
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
E-PMN52.30 36952.18 37152.67 38671.51 40245.40 40893.62 38176.60 40836.01 40243.50 40364.13 40227.11 40167.31 40531.06 40626.06 40145.30 404
MVEpermissive53.74 2251.54 37047.86 37462.60 38459.56 40850.93 40379.41 39877.69 40735.69 40336.27 40561.76 4045.79 41369.63 40337.97 40336.61 40067.24 398
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
EMVS51.44 37151.22 37352.11 38770.71 40344.97 41094.04 37775.66 40935.34 40442.40 40461.56 40528.93 39865.87 40627.64 40724.73 40245.49 403
testmvs40.60 37244.45 37529.05 38919.49 41314.11 41599.68 17518.47 41220.74 40564.59 39098.48 20910.95 41017.09 40956.66 39811.01 40555.94 402
test12337.68 37339.14 37633.31 38819.94 41224.83 41498.36 3179.75 41315.53 40651.31 40087.14 38519.62 40717.74 40847.10 4003.47 40757.36 401
cdsmvs_eth3d_5k23.43 37431.24 3770.00 3910.00 4140.00 4160.00 40298.09 2010.00 4090.00 41099.67 9483.37 2460.00 4100.00 4090.00 4080.00 406
wuyk23d20.37 37520.84 37818.99 39065.34 40627.73 41350.43 4017.67 4149.50 4078.01 4086.34 4086.13 41226.24 40723.40 40810.69 4062.99 405
ab-mvs-re8.28 37611.04 3790.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 41099.40 1210.00 4140.00 4100.00 4090.00 4080.00 406
pcd_1.5k_mvsjas7.60 37710.13 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 41091.20 1550.00 4100.00 4090.00 4080.00 406
test_blank0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.02 4090.00 4140.00 4100.00 4090.00 4080.00 406
uanet_test0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4100.00 4140.00 4100.00 4090.00 4080.00 406
DCPMVS0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4100.00 4140.00 4100.00 4090.00 4080.00 406
sosnet-low-res0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4100.00 4140.00 4100.00 4090.00 4080.00 406
sosnet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4100.00 4140.00 4100.00 4090.00 4080.00 406
uncertanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4100.00 4140.00 4100.00 4090.00 4080.00 406
Regformer0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4100.00 4140.00 4100.00 4090.00 4080.00 406
uanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4100.00 4140.00 4100.00 4090.00 4080.00 406
WAC-MVS90.97 28486.10 319
FOURS199.92 3197.66 8399.95 5298.36 16395.58 8599.52 59
MSC_two_6792asdad99.93 299.91 3999.80 298.41 148100.00 199.96 9100.00 1100.00 1
PC_three_145296.96 4499.80 1799.79 5597.49 10100.00 199.99 599.98 32100.00 1
No_MVS99.93 299.91 3999.80 298.41 148100.00 199.96 9100.00 1100.00 1
test_one_060199.94 1399.30 1298.41 14896.63 5699.75 2999.93 1197.49 10
eth-test20.00 414
eth-test0.00 414
ZD-MVS99.92 3198.57 5498.52 10492.34 20999.31 7699.83 4395.06 5499.80 12199.70 3499.97 42
RE-MVS-def98.13 5199.79 6296.37 13299.76 15298.31 17494.43 11799.40 7099.75 6992.95 11898.90 7399.92 6399.97 58
IU-MVS99.93 2499.31 1098.41 14897.71 1999.84 12100.00 1100.00 1100.00 1
OPU-MVS99.93 299.89 4599.80 299.96 3499.80 5197.44 14100.00 1100.00 199.98 32100.00 1
test_241102_TWO98.43 13197.27 3499.80 1799.94 497.18 21100.00 1100.00 1100.00 1100.00 1
test_241102_ONE99.93 2499.30 1298.43 13197.26 3699.80 1799.88 2196.71 24100.00 1
9.1498.38 3499.87 5199.91 8398.33 17093.22 16899.78 2699.89 1994.57 6999.85 10899.84 2299.97 42
save fliter99.82 5898.79 3899.96 3498.40 15297.66 21
test_0728_THIRD96.48 5999.83 1399.91 1497.87 6100.00 199.92 12100.00 1100.00 1
test_0728_SECOND99.82 799.94 1399.47 799.95 5298.43 131100.00 199.99 5100.00 1100.00 1
test072699.93 2499.29 1599.96 3498.42 14397.28 3299.86 799.94 497.22 19
GSMVS99.59 130
test_part299.89 4599.25 1899.49 62
sam_mvs194.72 6599.59 130
sam_mvs94.25 80
ambc83.23 36677.17 39962.61 39287.38 39594.55 38076.72 37686.65 38730.16 39696.36 33184.85 32769.86 37590.73 370
MTGPAbinary98.28 179
test_post195.78 37259.23 40693.20 11297.74 26391.06 254
test_post63.35 40394.43 7098.13 243
patchmatchnet-post91.70 36895.12 5197.95 254
GG-mvs-BLEND98.54 10398.21 17498.01 6893.87 37998.52 10497.92 13797.92 23099.02 297.94 25698.17 10699.58 9699.67 113
MTMP99.87 10496.49 343
gm-plane-assit96.97 24593.76 21991.47 23598.96 16198.79 18794.92 185
test9_res99.71 3399.99 21100.00 1
TEST999.92 3198.92 2899.96 3498.43 13193.90 14899.71 3499.86 2695.88 3899.85 108
test_899.92 3198.88 3199.96 3498.43 13194.35 12299.69 3699.85 3095.94 3599.85 108
agg_prior299.48 43100.00 1100.00 1
agg_prior99.93 2498.77 4098.43 13199.63 4399.85 108
TestCases95.00 24299.01 11488.43 32896.82 32886.50 32588.71 29398.47 21074.73 32599.88 10285.39 32296.18 19296.71 246
test_prior498.05 6699.94 68
test_prior299.95 5295.78 7999.73 3299.76 6396.00 3499.78 27100.00 1
test_prior99.43 3599.94 1398.49 5898.65 7499.80 12199.99 23
旧先验299.46 21394.21 13099.85 999.95 6996.96 154
新几何299.40 217
新几何199.42 3799.75 6898.27 6198.63 8092.69 18999.55 5499.82 4694.40 72100.00 191.21 25099.94 5499.99 23
旧先验199.76 6697.52 8798.64 7699.85 3095.63 4299.94 5499.99 23
无先验99.49 20898.71 6693.46 160100.00 194.36 20099.99 23
原ACMM299.90 90
原ACMM198.96 7599.73 7296.99 11098.51 10794.06 13899.62 4699.85 3094.97 6099.96 6195.11 17999.95 4999.92 81
test22299.55 8697.41 9699.34 22798.55 9891.86 22299.27 8099.83 4393.84 9599.95 4999.99 23
testdata299.99 3690.54 267
segment_acmp96.68 26
testdata98.42 11399.47 9295.33 17598.56 9293.78 15199.79 2599.85 3093.64 10099.94 7794.97 18399.94 54100.00 1
testdata199.28 23796.35 69
test1299.43 3599.74 6998.56 5598.40 15299.65 4094.76 6499.75 13299.98 3299.99 23
plane_prior795.71 29091.59 278
plane_prior695.76 28491.72 27380.47 274
plane_prior597.87 22398.37 22497.79 12989.55 25194.52 260
plane_prior498.59 197
plane_prior391.64 27696.63 5693.01 224
plane_prior299.84 12596.38 65
plane_prior195.73 287
plane_prior91.74 27099.86 11796.76 5289.59 250
n20.00 415
nn0.00 415
door-mid89.69 399
lessismore_v090.53 33690.58 37180.90 37595.80 35777.01 37495.84 29066.15 36196.95 30583.03 33775.05 36893.74 330
LGP-MVS_train93.71 29595.43 29788.67 32497.62 24092.81 18290.05 25898.49 20675.24 31998.40 21695.84 17189.12 25594.07 303
test1198.44 123
door90.31 396
HQP5-MVS91.85 266
HQP-NCC95.78 28099.87 10496.82 4893.37 220
ACMP_Plane95.78 28099.87 10496.82 4893.37 220
BP-MVS97.92 121
HQP4-MVS93.37 22098.39 21894.53 258
HQP3-MVS97.89 22189.60 248
HQP2-MVS80.65 270
NP-MVS95.77 28391.79 26898.65 192
MDTV_nov1_ep13_2view96.26 13596.11 36691.89 22198.06 13394.40 7294.30 20299.67 113
MDTV_nov1_ep1395.69 15197.90 19194.15 20895.98 36998.44 12393.12 17197.98 13595.74 29395.10 5298.58 20290.02 27596.92 181
ACMMP++_ref87.04 286
ACMMP++88.23 273
Test By Simon92.82 123
ITE_SJBPF92.38 32195.69 29285.14 35095.71 35992.81 18289.33 28098.11 22070.23 34598.42 21385.91 32088.16 27493.59 334
DeepMVS_CXcopyleft82.92 36795.98 27758.66 39896.01 35492.72 18678.34 36995.51 30558.29 38098.08 24582.57 33985.29 29792.03 360