This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
CNVR-MVS96.30 196.54 195.55 1599.31 587.69 2299.06 1697.12 3094.66 596.79 1698.78 986.42 2999.95 397.59 2399.18 799.00 27
DPM-MVS96.21 295.53 1398.26 196.26 9995.09 199.15 796.98 3893.39 1496.45 2498.79 890.17 1099.99 189.33 12499.25 699.70 3
MCST-MVS96.17 396.12 696.32 799.42 289.36 1098.94 2397.10 3295.17 392.11 7898.46 2687.33 2499.97 297.21 2899.31 499.63 7
DVP-MVS++96.05 496.41 394.96 2299.05 985.34 5398.13 4996.77 6188.38 7397.70 898.77 1092.06 399.84 1297.47 2499.37 199.70 3
SED-MVS95.88 596.22 494.87 2399.03 1585.03 6699.12 1196.78 5588.72 6697.79 698.91 288.48 1799.82 1898.15 1198.97 1799.74 1
MM95.85 695.74 1096.15 896.34 9689.50 999.18 598.10 895.68 196.64 2097.92 5880.72 6699.80 2599.16 197.96 5699.15 24
NCCC95.63 795.94 894.69 2899.21 685.15 6399.16 696.96 4194.11 995.59 3298.64 1785.07 3399.91 495.61 4599.10 999.00 27
MSP-MVS95.62 896.54 192.86 9298.31 4880.10 17497.42 10396.78 5592.20 2297.11 1498.29 3393.46 199.10 10196.01 3899.30 599.38 14
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DVP-MVScopyleft95.58 995.91 994.57 3099.05 985.18 5899.06 1696.46 10288.75 6496.69 1798.76 1287.69 2299.76 3197.90 1798.85 2198.77 34
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
MVS_030495.36 1095.20 1795.85 1194.89 14489.22 1298.83 2597.88 1194.68 495.14 3897.99 5280.80 6599.81 2198.60 697.95 5798.50 50
DPE-MVScopyleft95.32 1195.55 1294.64 2998.79 2384.87 7197.77 7296.74 6686.11 12096.54 2398.89 688.39 1999.74 3897.67 2299.05 1299.31 18
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
HPM-MVS++copyleft95.32 1195.48 1494.85 2498.62 3486.04 3697.81 7096.93 4492.45 2095.69 3198.50 2485.38 3199.85 1094.75 5499.18 798.65 43
patch_mono-295.14 1396.08 792.33 11598.44 4377.84 24098.43 3697.21 2392.58 1997.68 1097.65 7686.88 2699.83 1698.25 997.60 6799.33 17
DELS-MVS94.98 1494.49 2496.44 696.42 9590.59 799.21 497.02 3694.40 891.46 8697.08 10483.32 5099.69 4992.83 7998.70 3099.04 25
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
fmvsm_l_conf0.5_n_a94.91 1595.30 1593.72 5694.50 15884.30 8099.14 996.00 14491.94 2897.91 598.60 1884.78 3599.77 2998.84 496.03 10497.08 148
fmvsm_l_conf0.5_n94.89 1695.24 1693.86 4894.42 16084.61 7499.13 1096.15 13392.06 2597.92 398.52 2384.52 3799.74 3898.76 595.67 11097.22 140
CANet94.89 1694.64 2295.63 1397.55 7588.12 1699.06 1696.39 11294.07 1095.34 3497.80 6776.83 12399.87 897.08 3097.64 6698.89 30
SD-MVS94.84 1895.02 1994.29 3697.87 6484.61 7497.76 7496.19 13189.59 5696.66 1998.17 4184.33 3999.60 5996.09 3798.50 3698.66 42
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
test_fmvsm_n_192094.81 1995.60 1192.45 10895.29 12980.96 14999.29 297.21 2394.50 797.29 1398.44 2782.15 5799.78 2898.56 797.68 6596.61 166
TSAR-MVS + MP.94.79 2095.17 1893.64 5997.66 6984.10 8395.85 21296.42 10791.26 3397.49 1296.80 11686.50 2898.49 13195.54 4799.03 1398.33 59
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SMA-MVScopyleft94.70 2194.68 2194.76 2698.02 5985.94 4097.47 9696.77 6185.32 13797.92 398.70 1583.09 5299.84 1295.79 4299.08 1098.49 51
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DeepPCF-MVS89.82 194.61 2296.17 589.91 19997.09 9070.21 33398.99 2296.69 7395.57 295.08 4099.23 186.40 3099.87 897.84 2098.66 3199.65 6
APDe-MVScopyleft94.56 2394.75 2093.96 4698.84 2283.40 9798.04 5796.41 10885.79 12895.00 4298.28 3484.32 4299.18 9497.35 2698.77 2799.28 19
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
DeepC-MVS_fast89.06 294.48 2494.30 2995.02 2098.86 2185.68 4698.06 5596.64 8193.64 1291.74 8498.54 2080.17 7499.90 592.28 8498.75 2899.49 8
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
TSAR-MVS + GP.94.35 2594.50 2393.89 4797.38 8483.04 10498.10 5195.29 18891.57 3093.81 5797.45 8586.64 2799.43 7696.28 3694.01 12899.20 22
train_agg94.28 2694.45 2593.74 5398.64 3183.71 8997.82 6896.65 7884.50 16195.16 3598.09 4584.33 3999.36 8195.91 4198.96 1998.16 71
MSLP-MVS++94.28 2694.39 2793.97 4598.30 4984.06 8498.64 3196.93 4490.71 4093.08 6798.70 1579.98 7699.21 8894.12 6299.07 1198.63 44
MG-MVS94.25 2893.72 3495.85 1199.38 389.35 1197.98 5998.09 989.99 5192.34 7496.97 10881.30 6398.99 10788.54 13298.88 2099.20 22
SF-MVS94.17 2994.05 3394.55 3197.56 7485.95 3897.73 7696.43 10684.02 17595.07 4198.74 1482.93 5399.38 7895.42 4998.51 3498.32 60
PS-MVSNAJ94.17 2993.52 4096.10 995.65 11992.35 298.21 4495.79 15892.42 2196.24 2698.18 3871.04 21099.17 9596.77 3397.39 7596.79 159
SteuartSystems-ACMMP94.13 3194.44 2693.20 7895.41 12581.35 14099.02 2096.59 8889.50 5794.18 5498.36 3083.68 4999.45 7594.77 5398.45 3998.81 33
Skip Steuart: Steuart Systems R&D Blog.
EPNet94.06 3294.15 3193.76 5297.27 8784.35 7898.29 4197.64 1594.57 695.36 3396.88 11179.96 7799.12 10091.30 9396.11 10197.82 99
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_fmvsmconf_n93.99 3394.36 2892.86 9292.82 21081.12 14399.26 396.37 11693.47 1395.16 3598.21 3679.00 8699.64 5598.21 1096.73 9297.83 97
xiu_mvs_v2_base93.92 3493.26 4495.91 1095.07 13792.02 698.19 4595.68 16492.06 2596.01 3098.14 4270.83 21398.96 10996.74 3596.57 9496.76 162
lupinMVS93.87 3593.58 3994.75 2793.00 20388.08 1799.15 795.50 17391.03 3794.90 4397.66 7278.84 8997.56 17294.64 5797.46 7098.62 45
fmvsm_s_conf0.5_n93.69 3694.13 3292.34 11394.56 15182.01 11899.07 1597.13 2892.09 2396.25 2598.53 2276.47 12899.80 2598.39 894.71 11995.22 203
APD-MVScopyleft93.61 3793.59 3893.69 5798.76 2483.26 10097.21 11496.09 13782.41 21694.65 4898.21 3681.96 6098.81 11994.65 5698.36 4599.01 26
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
PHI-MVS93.59 3893.63 3793.48 7098.05 5881.76 13098.64 3197.13 2882.60 21294.09 5598.49 2580.35 6999.85 1094.74 5598.62 3298.83 32
ACMMP_NAP93.46 3993.23 4594.17 4197.16 8884.28 8196.82 15396.65 7886.24 11894.27 5297.99 5277.94 10299.83 1693.39 6998.57 3398.39 57
MVS_111021_HR93.41 4093.39 4393.47 7297.34 8582.83 10697.56 8898.27 689.16 6189.71 11197.14 10079.77 7899.56 6693.65 6797.94 5898.02 79
fmvsm_s_conf0.5_n_a93.34 4193.71 3592.22 12293.38 19381.71 13398.86 2496.98 3891.64 2996.85 1598.55 1975.58 14699.77 2997.88 1993.68 13395.18 204
PVSNet_Blended93.13 4292.98 4893.57 6497.47 7683.86 8699.32 196.73 6791.02 3889.53 11696.21 12776.42 13099.57 6494.29 5995.81 10997.29 138
CDPH-MVS93.12 4392.91 4993.74 5398.65 3083.88 8597.67 8196.26 12383.00 20293.22 6598.24 3581.31 6299.21 8889.12 12598.74 2998.14 73
dcpmvs_293.10 4493.46 4292.02 13397.77 6579.73 18494.82 25393.86 26686.91 10891.33 9096.76 11785.20 3298.06 14896.90 3297.60 6798.27 66
test_fmvsmconf0.1_n93.08 4593.22 4692.65 10188.45 30480.81 15399.00 2195.11 19393.21 1594.00 5697.91 6076.84 12199.59 6097.91 1696.55 9597.54 118
CS-MVS-test92.98 4693.67 3690.90 16996.52 9476.87 25998.68 2894.73 21390.36 4894.84 4597.89 6277.94 10297.15 20394.28 6197.80 6298.70 41
alignmvs92.97 4792.26 6395.12 1995.54 12287.77 2098.67 2996.38 11388.04 8093.01 6897.45 8579.20 8498.60 12593.25 7488.76 17998.99 29
fmvsm_s_conf0.1_n92.93 4893.16 4792.24 12090.52 27281.92 12298.42 3796.24 12591.17 3496.02 2998.35 3175.34 15799.74 3897.84 2094.58 12195.05 205
HFP-MVS92.89 4992.86 5192.98 8798.71 2581.12 14397.58 8696.70 7185.20 14291.75 8397.97 5778.47 9499.71 4590.95 9698.41 4198.12 75
PAPM92.87 5092.40 5994.30 3592.25 22887.85 1996.40 18196.38 11391.07 3688.72 13196.90 10982.11 5897.37 18990.05 11597.70 6497.67 109
ZNCC-MVS92.75 5192.60 5693.23 7798.24 5181.82 12897.63 8296.50 9885.00 14891.05 9597.74 6978.38 9599.80 2590.48 10598.34 4698.07 77
PAPR92.74 5292.17 6694.45 3298.89 2084.87 7197.20 11696.20 12987.73 8888.40 13598.12 4378.71 9299.76 3187.99 13996.28 9798.74 35
CS-MVS92.73 5393.48 4190.48 18196.27 9875.93 27998.55 3494.93 20089.32 5894.54 5097.67 7178.91 8897.02 20793.80 6497.32 7798.49 51
jason92.73 5392.23 6494.21 4090.50 27387.30 2698.65 3095.09 19490.61 4292.76 7197.13 10175.28 15897.30 19293.32 7296.75 9198.02 79
jason: jason.
ETV-MVS92.72 5592.87 5092.28 11994.54 15381.89 12497.98 5995.21 19189.77 5593.11 6696.83 11377.23 11797.50 18095.74 4395.38 11397.44 127
region2R92.72 5592.70 5392.79 9598.68 2680.53 16397.53 9196.51 9685.22 14091.94 8197.98 5577.26 11399.67 5390.83 10098.37 4498.18 69
XVS92.69 5792.71 5292.63 10398.52 3780.29 16697.37 10796.44 10487.04 10691.38 8797.83 6677.24 11599.59 6090.46 10698.07 5298.02 79
ACMMPR92.69 5792.67 5492.75 9698.66 2880.57 15997.58 8696.69 7385.20 14291.57 8597.92 5877.01 11899.67 5390.95 9698.41 4198.00 84
WTY-MVS92.65 5991.68 7595.56 1496.00 10688.90 1398.23 4397.65 1488.57 6989.82 11097.22 9879.29 8199.06 10489.57 12088.73 18098.73 39
MP-MVScopyleft92.61 6092.67 5492.42 11198.13 5679.73 18497.33 10996.20 12985.63 13090.53 10297.66 7278.14 10099.70 4892.12 8698.30 4897.85 95
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MP-MVS-pluss92.58 6192.35 6093.29 7497.30 8682.53 11096.44 17796.04 14284.68 15689.12 12298.37 2977.48 11199.74 3893.31 7398.38 4397.59 116
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
CP-MVS92.54 6292.60 5692.34 11398.50 4079.90 17798.40 3896.40 11084.75 15290.48 10498.09 4577.40 11299.21 8891.15 9598.23 5097.92 90
testing1192.48 6392.04 7093.78 5195.94 11086.00 3797.56 8897.08 3387.52 9389.32 11995.40 14884.60 3698.02 14991.93 9089.04 17597.32 134
MTAPA92.45 6492.31 6192.86 9297.90 6180.85 15292.88 30096.33 11887.92 8390.20 10798.18 3876.71 12699.76 3192.57 8398.09 5197.96 89
GST-MVS92.43 6592.22 6593.04 8598.17 5481.64 13597.40 10596.38 11384.71 15590.90 9897.40 9077.55 11099.76 3189.75 11897.74 6397.72 105
fmvsm_s_conf0.1_n_a92.38 6692.49 5892.06 13088.08 30881.62 13697.97 6196.01 14390.62 4196.58 2198.33 3274.09 17699.71 4597.23 2793.46 13894.86 209
canonicalmvs92.27 6791.22 8395.41 1695.80 11688.31 1497.09 13294.64 22188.49 7192.99 6997.31 9272.68 19198.57 12793.38 7188.58 18299.36 16
SR-MVS92.16 6892.27 6291.83 14198.37 4578.41 21896.67 16495.76 15982.19 22091.97 7998.07 4976.44 12998.64 12393.71 6697.27 7898.45 54
test_fmvsmvis_n_192092.12 6992.10 6892.17 12590.87 26581.04 14598.34 4093.90 26392.71 1887.24 14897.90 6174.83 16499.72 4396.96 3196.20 9895.76 188
VNet92.11 7091.22 8394.79 2596.91 9186.98 2797.91 6397.96 1086.38 11793.65 5995.74 13670.16 21898.95 11193.39 6988.87 17898.43 55
CSCG92.02 7191.65 7693.12 8198.53 3680.59 15897.47 9697.18 2677.06 30584.64 17497.98 5583.98 4599.52 6990.72 10297.33 7699.23 21
PGM-MVS91.93 7291.80 7392.32 11798.27 5079.74 18395.28 23397.27 2183.83 18390.89 9997.78 6876.12 13699.56 6688.82 12997.93 6097.66 110
testing9991.91 7391.35 8093.60 6295.98 10885.70 4497.31 11096.92 4686.82 11188.91 12595.25 15184.26 4397.89 15988.80 13087.94 19097.21 142
testing9191.90 7491.31 8293.66 5895.99 10785.68 4697.39 10696.89 4786.75 11588.85 12795.23 15483.93 4697.90 15888.91 12787.89 19197.41 129
mPP-MVS91.88 7591.82 7292.07 12998.38 4478.63 21297.29 11196.09 13785.12 14488.45 13497.66 7275.53 14799.68 5189.83 11698.02 5597.88 91
EI-MVSNet-Vis-set91.84 7691.77 7492.04 13297.60 7181.17 14296.61 16596.87 4988.20 7789.19 12097.55 8478.69 9399.14 9790.29 11290.94 16395.80 186
EIA-MVS91.73 7792.05 6990.78 17494.52 15476.40 26898.06 5595.34 18689.19 6088.90 12697.28 9677.56 10997.73 16490.77 10196.86 8898.20 68
EC-MVSNet91.73 7792.11 6790.58 17893.54 18577.77 24398.07 5494.40 23687.44 9592.99 6997.11 10374.59 17096.87 21793.75 6597.08 8197.11 146
DP-MVS Recon91.72 7990.85 8894.34 3499.50 185.00 6898.51 3595.96 14880.57 24488.08 14097.63 7876.84 12199.89 785.67 15794.88 11698.13 74
CHOSEN 280x42091.71 8091.85 7191.29 15694.94 14182.69 10787.89 34496.17 13285.94 12587.27 14794.31 18190.27 995.65 27494.04 6395.86 10795.53 194
HY-MVS84.06 691.63 8190.37 10195.39 1796.12 10388.25 1590.22 32797.58 1688.33 7590.50 10391.96 22479.26 8299.06 10490.29 11289.07 17498.88 31
HPM-MVScopyleft91.62 8291.53 7891.89 13797.88 6379.22 19696.99 13695.73 16282.07 22289.50 11897.19 9975.59 14598.93 11490.91 9897.94 5897.54 118
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
MVS_111021_LR91.60 8391.64 7791.47 15295.74 11778.79 20996.15 19696.77 6188.49 7188.64 13297.07 10572.33 19599.19 9393.13 7796.48 9696.43 171
DeepC-MVS86.58 391.53 8491.06 8792.94 8994.52 15481.89 12495.95 20495.98 14690.76 3983.76 18596.76 11773.24 18799.71 4591.67 9296.96 8397.22 140
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_yl91.46 8590.53 9594.24 3897.41 8085.18 5898.08 5297.72 1280.94 23589.85 10896.14 12875.61 14398.81 11990.42 11088.56 18398.74 35
DCV-MVSNet91.46 8590.53 9594.24 3897.41 8085.18 5898.08 5297.72 1280.94 23589.85 10896.14 12875.61 14398.81 11990.42 11088.56 18398.74 35
PAPM_NR91.46 8590.82 8993.37 7398.50 4081.81 12995.03 24996.13 13484.65 15786.10 15897.65 7679.24 8399.75 3683.20 18696.88 8698.56 47
MVSFormer91.36 8890.57 9493.73 5593.00 20388.08 1794.80 25594.48 22980.74 24094.90 4397.13 10178.84 8995.10 30283.77 17597.46 7098.02 79
EI-MVSNet-UG-set91.35 8991.22 8391.73 14397.39 8280.68 15696.47 17496.83 5287.92 8388.30 13897.36 9177.84 10599.13 9989.43 12389.45 17095.37 198
SR-MVS-dyc-post91.29 9091.45 7990.80 17297.76 6776.03 27496.20 19495.44 17880.56 24590.72 10097.84 6475.76 14298.61 12491.99 8896.79 8997.75 103
PVSNet_Blended_VisFu91.24 9190.77 9092.66 10095.09 13582.40 11497.77 7295.87 15588.26 7686.39 15493.94 19276.77 12499.27 8488.80 13094.00 12996.31 177
APD-MVS_3200maxsize91.23 9291.35 8090.89 17097.89 6276.35 26996.30 18795.52 17279.82 26391.03 9697.88 6374.70 16698.54 12892.11 8796.89 8597.77 102
diffmvspermissive91.17 9390.74 9192.44 11093.11 20282.50 11296.25 19093.62 28187.79 8690.40 10595.93 13273.44 18597.42 18493.62 6892.55 14897.41 129
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
casdiffmvs_mvgpermissive91.13 9490.45 9893.17 8092.99 20683.58 9397.46 9894.56 22687.69 8987.19 14994.98 16974.50 17197.60 16991.88 9192.79 14598.34 58
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
testing22291.09 9590.49 9792.87 9195.82 11485.04 6596.51 17297.28 2086.05 12389.13 12195.34 15080.16 7596.62 22985.82 15588.31 18696.96 151
test_fmvsmconf0.01_n91.08 9690.68 9292.29 11882.43 36480.12 17397.94 6293.93 25992.07 2491.97 7997.60 7967.56 22699.53 6897.09 2995.56 11297.21 142
CHOSEN 1792x268891.07 9790.21 10593.64 5995.18 13383.53 9496.26 18996.13 13488.92 6384.90 16893.10 20872.86 18999.62 5888.86 12895.67 11097.79 101
ETVMVS90.99 9890.26 10293.19 7995.81 11585.64 4896.97 14197.18 2685.43 13488.77 13094.86 17182.00 5996.37 23682.70 19188.60 18197.57 117
CANet_DTU90.98 9990.04 10993.83 4994.76 14786.23 3496.32 18693.12 30393.11 1693.71 5896.82 11563.08 25699.48 7384.29 16795.12 11595.77 187
test250690.96 10090.39 9992.65 10193.54 18582.46 11396.37 18297.35 1886.78 11387.55 14395.25 15177.83 10697.50 18084.07 16994.80 11797.98 86
thisisatest051590.95 10190.26 10293.01 8694.03 17684.27 8297.91 6396.67 7583.18 19586.87 15295.51 14688.66 1697.85 16080.46 20489.01 17696.92 155
casdiffmvspermissive90.95 10190.39 9992.63 10392.82 21082.53 11096.83 15194.47 23187.69 8988.47 13395.56 14574.04 17797.54 17690.90 9992.74 14697.83 97
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
sss90.87 10389.96 11293.60 6294.15 16883.84 8897.14 12598.13 785.93 12689.68 11296.09 13071.67 20299.30 8387.69 14289.16 17397.66 110
baseline90.76 10490.10 10892.74 9792.90 20982.56 10994.60 25794.56 22687.69 8989.06 12495.67 14073.76 18097.51 17990.43 10992.23 15498.16 71
Effi-MVS+90.70 10589.90 11593.09 8393.61 18283.48 9595.20 23992.79 30883.22 19491.82 8295.70 13871.82 20197.48 18291.25 9493.67 13498.32 60
MAR-MVS90.63 10690.22 10491.86 13898.47 4278.20 22897.18 11896.61 8483.87 18288.18 13998.18 3868.71 22299.75 3683.66 18097.15 8097.63 113
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MVS90.60 10788.64 13396.50 594.25 16490.53 893.33 28997.21 2377.59 29678.88 24097.31 9271.52 20599.69 4989.60 11998.03 5499.27 20
xiu_mvs_v1_base_debu90.54 10889.54 11993.55 6592.31 22187.58 2396.99 13694.87 20487.23 10193.27 6297.56 8157.43 29998.32 14092.72 8093.46 13894.74 213
xiu_mvs_v1_base90.54 10889.54 11993.55 6592.31 22187.58 2396.99 13694.87 20487.23 10193.27 6297.56 8157.43 29998.32 14092.72 8093.46 13894.74 213
xiu_mvs_v1_base_debi90.54 10889.54 11993.55 6592.31 22187.58 2396.99 13694.87 20487.23 10193.27 6297.56 8157.43 29998.32 14092.72 8093.46 13894.74 213
baseline290.39 11190.21 10590.93 16790.86 26680.99 14795.20 23997.41 1786.03 12480.07 23194.61 17690.58 697.47 18387.29 14689.86 16894.35 219
ACMMPcopyleft90.39 11189.97 11191.64 14697.58 7378.21 22796.78 15696.72 6984.73 15484.72 17297.23 9771.22 20799.63 5788.37 13792.41 15197.08 148
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
HPM-MVS_fast90.38 11390.17 10791.03 16597.61 7077.35 25297.15 12495.48 17479.51 26988.79 12896.90 10971.64 20498.81 11987.01 15097.44 7296.94 152
MVS_Test90.29 11489.18 12493.62 6195.23 13084.93 6994.41 26094.66 21884.31 16690.37 10691.02 23975.13 16097.82 16183.11 18894.42 12398.12 75
API-MVS90.18 11588.97 12793.80 5098.66 2882.95 10597.50 9595.63 16775.16 31786.31 15597.69 7072.49 19399.90 581.26 19996.07 10298.56 47
iter_conf0590.14 11689.79 11791.17 16195.85 11386.93 2897.68 8088.67 36089.93 5281.73 21392.80 21190.37 896.03 24790.44 10880.65 25190.56 254
PVSNet_BlendedMVS90.05 11789.96 11290.33 18697.47 7683.86 8698.02 5896.73 6787.98 8189.53 11689.61 26176.42 13099.57 6494.29 5979.59 25887.57 325
ET-MVSNet_ETH3D90.01 11889.03 12592.95 8894.38 16186.77 3098.14 4696.31 12089.30 5963.33 35696.72 12090.09 1193.63 33590.70 10382.29 24298.46 53
test_vis1_n_192089.95 11990.59 9388.03 23892.36 22068.98 34299.12 1194.34 23993.86 1193.64 6097.01 10751.54 33099.59 6096.76 3496.71 9395.53 194
test_cas_vis1_n_192089.90 12090.02 11089.54 20790.14 28174.63 29198.71 2794.43 23493.04 1792.40 7296.35 12553.41 32699.08 10395.59 4696.16 9994.90 207
TESTMET0.1,189.83 12189.34 12291.31 15492.54 21880.19 17197.11 12896.57 9086.15 11986.85 15391.83 22879.32 8096.95 21181.30 19892.35 15296.77 161
EPP-MVSNet89.76 12289.72 11889.87 20093.78 17876.02 27697.22 11296.51 9679.35 27185.11 16495.01 16784.82 3497.10 20587.46 14588.21 18896.50 169
CPTT-MVS89.72 12389.87 11689.29 21098.33 4773.30 30297.70 7895.35 18575.68 31387.40 14497.44 8870.43 21598.25 14389.56 12196.90 8496.33 176
thisisatest053089.65 12489.02 12691.53 15093.46 19180.78 15496.52 17096.67 7581.69 22883.79 18494.90 17088.85 1597.68 16577.80 22887.49 19696.14 180
3Dnovator+82.88 889.63 12587.85 14694.99 2194.49 15986.76 3197.84 6795.74 16186.10 12175.47 28596.02 13165.00 24699.51 7182.91 19097.07 8298.72 40
iter_conf_final89.51 12689.21 12390.39 18395.60 12084.44 7797.22 11289.09 35389.11 6282.07 20692.80 21187.03 2596.03 24789.10 12680.89 24790.70 252
CDS-MVSNet89.50 12788.96 12891.14 16391.94 24580.93 15097.09 13295.81 15784.26 17184.72 17294.20 18680.31 7095.64 27583.37 18588.96 17796.85 158
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
PMMVS89.46 12889.92 11488.06 23694.64 14869.57 33996.22 19194.95 19987.27 10091.37 8996.54 12365.88 23897.39 18788.54 13293.89 13097.23 139
HyFIR lowres test89.36 12988.60 13491.63 14894.91 14380.76 15595.60 22395.53 17082.56 21384.03 17891.24 23678.03 10196.81 22187.07 14988.41 18597.32 134
3Dnovator82.32 1089.33 13087.64 15194.42 3393.73 18185.70 4497.73 7696.75 6586.73 11676.21 27395.93 13262.17 26099.68 5181.67 19797.81 6197.88 91
h-mvs3389.30 13188.95 12990.36 18595.07 13776.04 27396.96 14397.11 3190.39 4692.22 7695.10 16474.70 16698.86 11693.14 7565.89 35096.16 179
LFMVS89.27 13287.64 15194.16 4397.16 8885.52 5197.18 11894.66 21879.17 27789.63 11496.57 12255.35 31698.22 14489.52 12289.54 16998.74 35
MVSTER89.25 13388.92 13090.24 18895.98 10884.66 7396.79 15595.36 18387.19 10480.33 22690.61 24790.02 1295.97 25285.38 16078.64 26790.09 266
CostFormer89.08 13488.39 13891.15 16293.13 20079.15 19988.61 33896.11 13683.14 19689.58 11586.93 29883.83 4896.87 21788.22 13885.92 21097.42 128
PVSNet82.34 989.02 13587.79 14892.71 9995.49 12381.50 13897.70 7897.29 1987.76 8785.47 16295.12 16356.90 30598.90 11580.33 20594.02 12797.71 107
test-mter88.95 13688.60 13489.98 19592.26 22677.23 25497.11 12895.96 14885.32 13786.30 15691.38 23276.37 13296.78 22380.82 20191.92 15695.94 183
131488.94 13787.20 16494.17 4193.21 19585.73 4393.33 28996.64 8182.89 20475.98 27696.36 12466.83 23499.39 7783.52 18496.02 10597.39 132
UA-Net88.92 13888.48 13790.24 18894.06 17377.18 25693.04 29794.66 21887.39 9791.09 9493.89 19374.92 16398.18 14775.83 25591.43 16095.35 199
thres20088.92 13887.65 15092.73 9896.30 9785.62 4997.85 6698.86 184.38 16584.82 16993.99 19175.12 16198.01 15070.86 29586.67 20094.56 218
Vis-MVSNet (Re-imp)88.88 14088.87 13288.91 21793.89 17774.43 29496.93 14694.19 24884.39 16483.22 19095.67 14078.24 9794.70 31378.88 22394.40 12497.61 115
baseline188.85 14187.49 15792.93 9095.21 13286.85 2995.47 22794.61 22387.29 9983.11 19294.99 16880.70 6796.89 21582.28 19373.72 29295.05 205
AdaColmapbinary88.81 14287.61 15492.39 11299.33 479.95 17596.70 16395.58 16877.51 29783.05 19396.69 12161.90 26699.72 4384.29 16793.47 13797.50 124
OMC-MVS88.80 14388.16 14290.72 17595.30 12877.92 23794.81 25494.51 22886.80 11284.97 16796.85 11267.53 22798.60 12585.08 16187.62 19395.63 190
114514_t88.79 14487.57 15592.45 10898.21 5381.74 13196.99 13695.45 17775.16 31782.48 19695.69 13968.59 22398.50 13080.33 20595.18 11497.10 147
mvs_anonymous88.68 14587.62 15391.86 13894.80 14681.69 13493.53 28594.92 20182.03 22378.87 24190.43 25075.77 14195.34 28885.04 16293.16 14298.55 49
Vis-MVSNetpermissive88.67 14687.82 14791.24 15892.68 21278.82 20696.95 14493.85 26787.55 9287.07 15195.13 16263.43 25497.21 19777.58 23596.15 10097.70 108
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
IS-MVSNet88.67 14688.16 14290.20 19093.61 18276.86 26096.77 15893.07 30484.02 17583.62 18695.60 14374.69 16996.24 24278.43 22793.66 13597.49 125
IB-MVS85.34 488.67 14687.14 16793.26 7593.12 20184.32 7998.76 2697.27 2187.19 10479.36 23790.45 24983.92 4798.53 12984.41 16669.79 31896.93 153
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
1112_ss88.60 14987.47 15992.00 13493.21 19580.97 14896.47 17492.46 31183.64 18980.86 21997.30 9480.24 7297.62 16877.60 23485.49 21597.40 131
tttt051788.57 15088.19 14189.71 20693.00 20375.99 27795.67 21896.67 7580.78 23981.82 21094.40 18088.97 1497.58 17176.05 25386.31 20495.57 192
UWE-MVS88.56 15188.91 13187.50 25294.17 16772.19 31395.82 21497.05 3584.96 14984.78 17093.51 20281.33 6194.75 31179.43 21689.17 17295.57 192
tfpn200view988.48 15287.15 16592.47 10796.21 10085.30 5697.44 9998.85 283.37 19283.99 17993.82 19475.36 15497.93 15269.04 30386.24 20794.17 220
test-LLR88.48 15287.98 14489.98 19592.26 22677.23 25497.11 12895.96 14883.76 18686.30 15691.38 23272.30 19696.78 22380.82 20191.92 15695.94 183
TAMVS88.48 15287.79 14890.56 17991.09 26079.18 19796.45 17695.88 15383.64 18983.12 19193.33 20375.94 13995.74 27082.40 19288.27 18796.75 163
thres40088.42 15587.15 16592.23 12196.21 10085.30 5697.44 9998.85 283.37 19283.99 17993.82 19475.36 15497.93 15269.04 30386.24 20793.45 236
tpmrst88.36 15687.38 16191.31 15494.36 16279.92 17687.32 34895.26 19085.32 13788.34 13686.13 31480.60 6896.70 22583.78 17485.34 21897.30 137
ECVR-MVScopyleft88.35 15787.25 16391.65 14593.54 18579.40 19196.56 16990.78 33986.78 11385.57 16195.25 15157.25 30397.56 17284.73 16594.80 11797.98 86
thres100view90088.30 15886.95 17192.33 11596.10 10484.90 7097.14 12598.85 282.69 21083.41 18793.66 19875.43 15197.93 15269.04 30386.24 20794.17 220
VDD-MVS88.28 15987.02 17092.06 13095.09 13580.18 17297.55 9094.45 23383.09 19889.10 12395.92 13447.97 34498.49 13193.08 7886.91 19997.52 123
BH-w/o88.24 16087.47 15990.54 18095.03 14078.54 21397.41 10493.82 26884.08 17378.23 24694.51 17969.34 22197.21 19780.21 20994.58 12195.87 185
hse-mvs288.22 16188.21 14088.25 23293.54 18573.41 29995.41 23095.89 15290.39 4692.22 7694.22 18474.70 16696.66 22893.14 7564.37 35594.69 217
test111188.11 16287.04 16991.35 15393.15 19878.79 20996.57 16790.78 33986.88 11085.04 16595.20 15757.23 30497.39 18783.88 17294.59 12097.87 93
thres600view788.06 16386.70 17592.15 12796.10 10485.17 6297.14 12598.85 282.70 20983.41 18793.66 19875.43 15197.82 16167.13 31285.88 21193.45 236
Test_1112_low_res88.03 16486.73 17391.94 13693.15 19880.88 15196.44 17792.41 31383.59 19180.74 22191.16 23780.18 7397.59 17077.48 23785.40 21697.36 133
PLCcopyleft83.97 788.00 16587.38 16189.83 20298.02 5976.46 26697.16 12294.43 23479.26 27681.98 20796.28 12669.36 22099.27 8477.71 23292.25 15393.77 230
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
CLD-MVS87.97 16687.48 15889.44 20892.16 23380.54 16298.14 4694.92 20191.41 3179.43 23695.40 14862.34 25997.27 19590.60 10482.90 23490.50 256
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
Fast-Effi-MVS+87.93 16786.94 17290.92 16894.04 17479.16 19898.26 4293.72 27781.29 23183.94 18292.90 20969.83 21996.68 22676.70 24591.74 15896.93 153
HQP-MVS87.91 16887.55 15688.98 21692.08 23778.48 21497.63 8294.80 20990.52 4382.30 19994.56 17765.40 24297.32 19087.67 14383.01 23191.13 247
test_fmvs187.79 16988.52 13685.62 29092.98 20764.31 35897.88 6592.42 31287.95 8292.24 7595.82 13547.94 34598.44 13795.31 5094.09 12594.09 224
UGNet87.73 17086.55 17691.27 15795.16 13479.11 20096.35 18496.23 12688.14 7887.83 14290.48 24850.65 33399.09 10280.13 21094.03 12695.60 191
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
FA-MVS(test-final)87.71 17186.23 17892.17 12594.19 16680.55 16087.16 35096.07 14082.12 22185.98 15988.35 27672.04 20098.49 13180.26 20789.87 16797.48 126
EPNet_dtu87.65 17287.89 14586.93 26694.57 15071.37 32796.72 15996.50 9888.56 7087.12 15095.02 16675.91 14094.01 32866.62 31590.00 16695.42 197
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
mvsany_test187.58 17388.22 13985.67 28889.78 28567.18 34995.25 23687.93 36283.96 17888.79 12897.06 10672.52 19294.53 31992.21 8586.45 20395.30 201
HQP_MVS87.50 17487.09 16888.74 22191.86 24677.96 23497.18 11894.69 21489.89 5381.33 21494.15 18764.77 24897.30 19287.08 14782.82 23590.96 249
EPMVS87.47 17585.90 18192.18 12495.41 12582.26 11787.00 35196.28 12185.88 12784.23 17685.57 32075.07 16296.26 24071.14 29392.50 14998.03 78
tpm287.35 17686.26 17790.62 17792.93 20878.67 21188.06 34395.99 14579.33 27287.40 14486.43 30980.28 7196.40 23480.23 20885.73 21496.79 159
ab-mvs87.08 17784.94 19793.48 7093.34 19483.67 9188.82 33595.70 16381.18 23284.55 17590.14 25662.72 25798.94 11385.49 15982.54 23997.85 95
SDMVSNet87.02 17885.61 18391.24 15894.14 16983.30 9993.88 27795.98 14684.30 16879.63 23492.01 22058.23 28997.68 16590.28 11482.02 24392.75 239
CNLPA86.96 17985.37 18891.72 14497.59 7279.34 19497.21 11491.05 33474.22 32378.90 23996.75 11967.21 23198.95 11174.68 26590.77 16496.88 157
BH-untuned86.95 18085.94 18089.99 19494.52 15477.46 24996.78 15693.37 29381.80 22576.62 26393.81 19666.64 23597.02 20776.06 25293.88 13195.48 196
QAPM86.88 18184.51 20293.98 4494.04 17485.89 4197.19 11796.05 14173.62 32875.12 28895.62 14262.02 26399.74 3870.88 29496.06 10396.30 178
BH-RMVSNet86.84 18285.28 18991.49 15195.35 12780.26 16996.95 14492.21 31582.86 20681.77 21295.46 14759.34 28197.64 16769.79 30193.81 13296.57 168
PatchmatchNetpermissive86.83 18385.12 19491.95 13594.12 17182.27 11686.55 35595.64 16684.59 15982.98 19484.99 33277.26 11395.96 25568.61 30691.34 16197.64 112
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
nrg03086.79 18485.43 18690.87 17188.76 29885.34 5397.06 13494.33 24084.31 16680.45 22491.98 22372.36 19496.36 23788.48 13571.13 30590.93 251
PCF-MVS84.09 586.77 18585.00 19692.08 12892.06 24083.07 10392.14 30894.47 23179.63 26776.90 25994.78 17371.15 20899.20 9272.87 27991.05 16293.98 226
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
FIs86.73 18686.10 17988.61 22390.05 28280.21 17096.14 19796.95 4285.56 13378.37 24592.30 21776.73 12595.28 29279.51 21479.27 26190.35 258
cascas86.50 18784.48 20492.55 10692.64 21685.95 3897.04 13595.07 19675.32 31580.50 22291.02 23954.33 32397.98 15186.79 15287.62 19393.71 231
VDDNet86.44 18884.51 20292.22 12291.56 24981.83 12797.10 13194.64 22169.50 35487.84 14195.19 15848.01 34397.92 15789.82 11786.92 19896.89 156
GeoE86.36 18985.20 19089.83 20293.17 19776.13 27197.53 9192.11 31679.58 26880.99 21794.01 19066.60 23696.17 24573.48 27789.30 17197.20 144
test_fmvs1_n86.34 19086.72 17485.17 29787.54 31663.64 36396.91 14792.37 31487.49 9491.33 9095.58 14440.81 37098.46 13495.00 5293.49 13693.41 238
TR-MVS86.30 19184.93 19890.42 18294.63 14977.58 24796.57 16793.82 26880.30 25382.42 19895.16 16058.74 28597.55 17474.88 26387.82 19296.13 181
X-MVStestdata86.26 19284.14 21192.63 10398.52 3780.29 16697.37 10796.44 10487.04 10691.38 8720.73 40577.24 11599.59 6090.46 10698.07 5298.02 79
AUN-MVS86.25 19385.57 18488.26 23193.57 18473.38 30095.45 22895.88 15383.94 17985.47 16294.21 18573.70 18396.67 22783.54 18264.41 35494.73 216
OpenMVScopyleft79.58 1486.09 19483.62 21893.50 6890.95 26286.71 3297.44 9995.83 15675.35 31472.64 30995.72 13757.42 30299.64 5571.41 28895.85 10894.13 223
FE-MVS86.06 19584.15 21091.78 14294.33 16379.81 17884.58 36696.61 8476.69 30785.00 16687.38 28970.71 21498.37 13970.39 29891.70 15997.17 145
FC-MVSNet-test85.96 19685.39 18787.66 24589.38 29578.02 23195.65 22096.87 4985.12 14477.34 25291.94 22676.28 13494.74 31277.09 24078.82 26590.21 261
miper_enhance_ethall85.95 19785.20 19088.19 23594.85 14579.76 18096.00 20194.06 25682.98 20377.74 25088.76 26979.42 7995.46 28480.58 20372.42 29989.36 280
OPM-MVS85.84 19885.10 19588.06 23688.34 30577.83 24195.72 21694.20 24787.89 8580.45 22494.05 18958.57 28697.26 19683.88 17282.76 23789.09 288
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
EI-MVSNet85.80 19985.20 19087.59 24891.55 25077.41 25095.13 24395.36 18380.43 25080.33 22694.71 17473.72 18195.97 25276.96 24378.64 26789.39 275
GA-MVS85.79 20084.04 21291.02 16689.47 29380.27 16896.90 14894.84 20785.57 13180.88 21889.08 26456.56 30996.47 23377.72 23185.35 21796.34 174
XVG-OURS-SEG-HR85.74 20185.16 19387.49 25490.22 27771.45 32691.29 31994.09 25481.37 23083.90 18395.22 15560.30 27497.53 17885.58 15884.42 22293.50 234
SCA85.63 20283.64 21791.60 14992.30 22481.86 12692.88 30095.56 16984.85 15082.52 19585.12 33058.04 29295.39 28573.89 27387.58 19597.54 118
test_vis1_n85.60 20385.70 18285.33 29484.79 34864.98 35696.83 15191.61 32587.36 9891.00 9794.84 17236.14 37697.18 19995.66 4493.03 14393.82 229
tpm85.55 20484.47 20588.80 22090.19 27875.39 28488.79 33694.69 21484.83 15183.96 18185.21 32678.22 9894.68 31576.32 25178.02 27696.34 174
UniMVSNet_NR-MVSNet85.49 20584.59 20088.21 23489.44 29479.36 19296.71 16196.41 10885.22 14078.11 24790.98 24176.97 12095.14 29979.14 22068.30 33290.12 263
gg-mvs-nofinetune85.48 20682.90 23093.24 7694.51 15785.82 4279.22 37896.97 4061.19 37687.33 14653.01 39490.58 696.07 24686.07 15497.23 7997.81 100
VPA-MVSNet85.32 20783.83 21389.77 20590.25 27682.63 10896.36 18397.07 3483.03 20181.21 21689.02 26661.58 26796.31 23985.02 16370.95 30790.36 257
UniMVSNet (Re)85.31 20884.23 20888.55 22489.75 28680.55 16096.72 15996.89 4785.42 13578.40 24488.93 26775.38 15395.52 28278.58 22568.02 33589.57 274
XVG-OURS85.18 20984.38 20687.59 24890.42 27571.73 32391.06 32294.07 25582.00 22483.29 18995.08 16556.42 31097.55 17483.70 17983.42 22793.49 235
mvsmamba85.17 21084.54 20187.05 26487.94 31075.11 28796.22 19187.79 36486.91 10878.55 24291.77 22964.93 24795.91 25886.94 15179.80 25390.12 263
cl2285.11 21184.17 20987.92 23995.06 13978.82 20695.51 22594.22 24679.74 26576.77 26087.92 28375.96 13895.68 27179.93 21272.42 29989.27 282
TAPA-MVS81.61 1285.02 21283.67 21589.06 21396.79 9273.27 30595.92 20694.79 21174.81 32080.47 22396.83 11371.07 20998.19 14649.82 37792.57 14795.71 189
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PatchMatch-RL85.00 21383.66 21689.02 21595.86 11274.55 29392.49 30493.60 28279.30 27479.29 23891.47 23058.53 28798.45 13570.22 29992.17 15594.07 225
PS-MVSNAJss84.91 21484.30 20786.74 26785.89 33574.40 29594.95 25094.16 25083.93 18076.45 26690.11 25771.04 21095.77 26583.16 18779.02 26490.06 268
CVMVSNet84.83 21585.57 18482.63 32991.55 25060.38 37495.13 24395.03 19780.60 24382.10 20594.71 17466.40 23790.19 36874.30 27090.32 16597.31 136
FMVSNet384.71 21682.71 23490.70 17694.55 15287.71 2195.92 20694.67 21781.73 22775.82 28088.08 28166.99 23294.47 32071.23 29075.38 28589.91 270
VPNet84.69 21782.92 22990.01 19389.01 29783.45 9696.71 16195.46 17685.71 12979.65 23392.18 21956.66 30896.01 25183.05 18967.84 33890.56 254
sd_testset84.62 21883.11 22789.17 21194.14 16977.78 24291.54 31894.38 23784.30 16879.63 23492.01 22052.28 32896.98 20977.67 23382.02 24392.75 239
Effi-MVS+-dtu84.61 21984.90 19983.72 31991.96 24363.14 36694.95 25093.34 29485.57 13179.79 23287.12 29561.99 26495.61 27883.55 18185.83 21292.41 243
miper_ehance_all_eth84.57 22083.60 21987.50 25292.64 21678.25 22395.40 23193.47 28679.28 27576.41 26787.64 28676.53 12795.24 29478.58 22572.42 29989.01 293
DU-MVS84.57 22083.33 22488.28 23088.76 29879.36 19296.43 17995.41 18285.42 13578.11 24790.82 24367.61 22495.14 29979.14 22068.30 33290.33 259
F-COLMAP84.50 22283.44 22387.67 24495.22 13172.22 31195.95 20493.78 27375.74 31276.30 27095.18 15959.50 27998.45 13572.67 28186.59 20292.35 244
Anonymous20240521184.41 22381.93 24591.85 14096.78 9378.41 21897.44 9991.34 32970.29 35084.06 17794.26 18341.09 36898.96 10979.46 21582.65 23898.17 70
WR-MVS84.32 22482.96 22888.41 22689.38 29580.32 16596.59 16696.25 12483.97 17776.63 26290.36 25167.53 22794.86 30975.82 25670.09 31690.06 268
dp84.30 22582.31 23990.28 18794.24 16577.97 23386.57 35495.53 17079.94 26280.75 22085.16 32871.49 20696.39 23563.73 33083.36 22896.48 170
LPG-MVS_test84.20 22683.49 22286.33 27390.88 26373.06 30695.28 23394.13 25182.20 21876.31 26893.20 20454.83 32196.95 21183.72 17780.83 24988.98 294
dmvs_re84.10 22782.90 23087.70 24391.41 25473.28 30390.59 32593.19 29885.02 14677.96 24993.68 19757.92 29796.18 24475.50 25880.87 24893.63 232
WB-MVSnew84.08 22883.51 22185.80 28391.34 25576.69 26495.62 22296.27 12281.77 22681.81 21192.81 21058.23 28994.70 31366.66 31487.06 19785.99 349
ACMP81.66 1184.00 22983.22 22686.33 27391.53 25272.95 30995.91 20893.79 27283.70 18873.79 29592.22 21854.31 32496.89 21583.98 17079.74 25689.16 285
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
IterMVS-LS83.93 23082.80 23387.31 25891.46 25377.39 25195.66 21993.43 28880.44 24875.51 28487.26 29273.72 18195.16 29876.99 24170.72 30989.39 275
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
RRT_MVS83.88 23183.27 22585.71 28687.53 31772.12 31595.35 23294.33 24083.81 18475.86 27991.28 23560.55 27295.09 30483.93 17176.76 27989.90 271
XXY-MVS83.84 23282.00 24489.35 20987.13 31981.38 13995.72 21694.26 24380.15 25775.92 27890.63 24661.96 26596.52 23178.98 22273.28 29790.14 262
c3_l83.80 23382.65 23587.25 26092.10 23677.74 24595.25 23693.04 30578.58 28676.01 27587.21 29475.25 15995.11 30177.54 23668.89 32688.91 299
LCM-MVSNet-Re83.75 23483.54 22084.39 31293.54 18564.14 36092.51 30384.03 37983.90 18166.14 34586.59 30367.36 22992.68 34284.89 16492.87 14496.35 173
ACMM80.70 1383.72 23582.85 23286.31 27691.19 25772.12 31595.88 20994.29 24280.44 24877.02 25791.96 22455.24 31797.14 20479.30 21880.38 25289.67 273
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
tpm cat183.63 23681.38 25390.39 18393.53 19078.19 22985.56 36295.09 19470.78 34878.51 24383.28 34574.80 16597.03 20666.77 31384.05 22395.95 182
CR-MVSNet83.53 23781.36 25490.06 19290.16 27979.75 18179.02 38091.12 33184.24 17282.27 20380.35 35975.45 14993.67 33463.37 33386.25 20596.75 163
v2v48283.46 23881.86 24688.25 23286.19 32979.65 18696.34 18594.02 25781.56 22977.32 25388.23 27865.62 23996.03 24777.77 22969.72 32089.09 288
NR-MVSNet83.35 23981.52 25288.84 21888.76 29881.31 14194.45 25995.16 19284.65 15767.81 33490.82 24370.36 21694.87 30874.75 26466.89 34790.33 259
Fast-Effi-MVS+-dtu83.33 24082.60 23685.50 29289.55 29169.38 34096.09 20091.38 32682.30 21775.96 27791.41 23156.71 30695.58 28075.13 26284.90 22091.54 245
cl____83.27 24182.12 24186.74 26792.20 22975.95 27895.11 24593.27 29678.44 28974.82 29087.02 29774.19 17495.19 29674.67 26669.32 32289.09 288
DIV-MVS_self_test83.27 24182.12 24186.74 26792.19 23075.92 28095.11 24593.26 29778.44 28974.81 29187.08 29674.19 17495.19 29674.66 26769.30 32389.11 287
TranMVSNet+NR-MVSNet83.24 24381.71 24887.83 24087.71 31378.81 20896.13 19994.82 20884.52 16076.18 27490.78 24564.07 25194.60 31674.60 26866.59 34990.09 266
Anonymous2024052983.15 24480.60 26590.80 17295.74 11778.27 22296.81 15494.92 20160.10 38181.89 20992.54 21545.82 35298.82 11879.25 21978.32 27495.31 200
eth_miper_zixun_eth83.12 24582.01 24386.47 27291.85 24874.80 28994.33 26493.18 30079.11 27875.74 28387.25 29372.71 19095.32 29076.78 24467.13 34489.27 282
MS-PatchMatch83.05 24681.82 24786.72 27189.64 28979.10 20194.88 25294.59 22579.70 26670.67 32289.65 26050.43 33596.82 22070.82 29795.99 10684.25 362
V4283.04 24781.53 25187.57 25086.27 32879.09 20295.87 21094.11 25380.35 25277.22 25586.79 30165.32 24496.02 25077.74 23070.14 31287.61 324
tpmvs83.04 24780.77 26089.84 20195.43 12477.96 23485.59 36195.32 18775.31 31676.27 27183.70 34273.89 17897.41 18559.53 34481.93 24594.14 222
test_djsdf83.00 24982.45 23884.64 30584.07 35669.78 33694.80 25594.48 22980.74 24075.41 28687.70 28561.32 27095.10 30283.77 17579.76 25489.04 291
v114482.90 25081.27 25587.78 24286.29 32779.07 20396.14 19793.93 25980.05 25977.38 25186.80 30065.50 24095.93 25775.21 26170.13 31388.33 311
test0.0.03 182.79 25182.48 23783.74 31886.81 32172.22 31196.52 17095.03 19783.76 18673.00 30593.20 20472.30 19688.88 37164.15 32877.52 27790.12 263
FMVSNet282.79 25180.44 26789.83 20292.66 21385.43 5295.42 22994.35 23879.06 28074.46 29287.28 29056.38 31194.31 32369.72 30274.68 28989.76 272
D2MVS82.67 25381.55 25086.04 28187.77 31276.47 26595.21 23896.58 8982.66 21170.26 32585.46 32360.39 27395.80 26476.40 24979.18 26285.83 352
MVP-Stereo82.65 25481.67 24985.59 29186.10 33278.29 22193.33 28992.82 30777.75 29469.17 33287.98 28259.28 28295.76 26671.77 28596.88 8682.73 370
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
pmmvs482.54 25580.79 25987.79 24186.11 33180.49 16493.55 28493.18 30077.29 30073.35 30189.40 26365.26 24595.05 30675.32 26073.61 29387.83 319
v14419282.43 25680.73 26287.54 25185.81 33678.22 22495.98 20293.78 27379.09 27977.11 25686.49 30564.66 25095.91 25874.20 27169.42 32188.49 305
GBi-Net82.42 25780.43 26888.39 22792.66 21381.95 11994.30 26693.38 29079.06 28075.82 28085.66 31656.38 31193.84 33071.23 29075.38 28589.38 277
test182.42 25780.43 26888.39 22792.66 21381.95 11994.30 26693.38 29079.06 28075.82 28085.66 31656.38 31193.84 33071.23 29075.38 28589.38 277
v14882.41 25980.89 25886.99 26586.18 33076.81 26196.27 18893.82 26880.49 24775.28 28786.11 31567.32 23095.75 26775.48 25967.03 34688.42 309
v119282.31 26080.55 26687.60 24785.94 33378.47 21795.85 21293.80 27179.33 27276.97 25886.51 30463.33 25595.87 26073.11 27870.13 31388.46 307
LS3D82.22 26179.94 27689.06 21397.43 7974.06 29893.20 29592.05 31761.90 37173.33 30295.21 15659.35 28099.21 8854.54 36492.48 15093.90 228
bld_raw_dy_0_6482.13 26280.76 26186.24 27885.78 33775.03 28894.40 26382.62 38483.12 19776.46 26590.96 24253.83 32594.55 31781.04 20078.60 27089.14 286
jajsoiax82.12 26381.15 25785.03 29984.19 35470.70 32994.22 27093.95 25883.07 19973.48 29789.75 25949.66 33995.37 28782.24 19479.76 25489.02 292
v192192082.02 26480.23 27087.41 25585.62 33877.92 23795.79 21593.69 27878.86 28376.67 26186.44 30762.50 25895.83 26272.69 28069.77 31988.47 306
myMVS_eth3d81.93 26582.18 24081.18 33792.13 23467.18 34993.97 27494.23 24482.43 21473.39 29893.57 20076.98 11987.86 37550.53 37582.34 24088.51 303
v881.88 26680.06 27487.32 25786.63 32279.04 20494.41 26093.65 28078.77 28473.19 30485.57 32066.87 23395.81 26373.84 27567.61 34087.11 333
mvs_tets81.74 26780.71 26384.84 30084.22 35370.29 33293.91 27693.78 27382.77 20873.37 30089.46 26247.36 34995.31 29181.99 19579.55 26088.92 298
v124081.70 26879.83 27887.30 25985.50 33977.70 24695.48 22693.44 28778.46 28876.53 26486.44 30760.85 27195.84 26171.59 28770.17 31188.35 310
PVSNet_077.72 1581.70 26878.95 28589.94 19890.77 26976.72 26395.96 20396.95 4285.01 14770.24 32688.53 27452.32 32798.20 14586.68 15344.08 39194.89 208
miper_lstm_enhance81.66 27080.66 26484.67 30491.19 25771.97 31991.94 31093.19 29877.86 29372.27 31285.26 32473.46 18493.42 33873.71 27667.05 34588.61 301
DP-MVS81.47 27178.28 28891.04 16498.14 5578.48 21495.09 24886.97 36661.14 37771.12 31992.78 21459.59 27799.38 7853.11 36886.61 20195.27 202
v1081.43 27279.53 28087.11 26286.38 32478.87 20594.31 26593.43 28877.88 29273.24 30385.26 32465.44 24195.75 26772.14 28467.71 33986.72 337
pmmvs581.34 27379.54 27986.73 27085.02 34676.91 25896.22 19191.65 32377.65 29573.55 29688.61 27155.70 31494.43 32174.12 27273.35 29688.86 300
ADS-MVSNet81.26 27478.36 28789.96 19793.78 17879.78 17979.48 37693.60 28273.09 33480.14 22879.99 36162.15 26195.24 29459.49 34583.52 22594.85 210
Baseline_NR-MVSNet81.22 27580.07 27384.68 30385.32 34475.12 28696.48 17388.80 35676.24 31177.28 25486.40 31067.61 22494.39 32275.73 25766.73 34884.54 359
tt080581.20 27679.06 28487.61 24686.50 32372.97 30893.66 28095.48 17474.11 32476.23 27291.99 22241.36 36797.40 18677.44 23874.78 28892.45 242
WR-MVS_H81.02 27780.09 27183.79 31688.08 30871.26 32894.46 25896.54 9380.08 25872.81 30886.82 29970.36 21692.65 34364.18 32767.50 34187.46 330
CP-MVSNet81.01 27880.08 27283.79 31687.91 31170.51 33094.29 26995.65 16580.83 23772.54 31188.84 26863.71 25292.32 34668.58 30768.36 33188.55 302
anonymousdsp80.98 27979.97 27584.01 31381.73 36670.44 33192.49 30493.58 28477.10 30472.98 30686.31 31157.58 29894.90 30779.32 21778.63 26986.69 338
UniMVSNet_ETH3D80.86 28078.75 28687.22 26186.31 32672.02 31791.95 30993.76 27673.51 32975.06 28990.16 25543.04 36195.66 27276.37 25078.55 27193.98 226
testing380.74 28181.17 25679.44 34691.15 25963.48 36497.16 12295.76 15980.83 23771.36 31693.15 20778.22 9887.30 38043.19 38779.67 25787.55 328
IterMVS80.67 28279.16 28285.20 29689.79 28476.08 27292.97 29991.86 31980.28 25471.20 31885.14 32957.93 29691.34 35872.52 28270.74 30888.18 314
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MSDG80.62 28377.77 29389.14 21293.43 19277.24 25391.89 31190.18 34369.86 35368.02 33391.94 22652.21 32998.84 11759.32 34783.12 22991.35 246
IterMVS-SCA-FT80.51 28479.10 28384.73 30289.63 29074.66 29092.98 29891.81 32180.05 25971.06 32085.18 32758.04 29291.40 35772.48 28370.70 31088.12 315
PS-CasMVS80.27 28579.18 28183.52 32287.56 31569.88 33594.08 27295.29 18880.27 25572.08 31388.51 27559.22 28392.23 34867.49 30968.15 33488.45 308
pm-mvs180.05 28678.02 29186.15 27985.42 34075.81 28195.11 24592.69 31077.13 30270.36 32487.43 28858.44 28895.27 29371.36 28964.25 35687.36 331
RPMNet79.85 28775.92 30691.64 14690.16 27979.75 18179.02 38095.44 17858.43 38682.27 20372.55 38373.03 18898.41 13846.10 38486.25 20596.75 163
PatchT79.75 28876.85 30088.42 22589.55 29175.49 28377.37 38494.61 22363.07 36782.46 19773.32 38075.52 14893.41 33951.36 37184.43 22196.36 172
Anonymous2023121179.72 28977.19 29787.33 25695.59 12177.16 25795.18 24294.18 24959.31 38472.57 31086.20 31347.89 34695.66 27274.53 26969.24 32489.18 284
test_fmvs279.59 29079.90 27778.67 34982.86 36355.82 38495.20 23989.55 34781.09 23380.12 23089.80 25834.31 38193.51 33787.82 14078.36 27386.69 338
ADS-MVSNet279.57 29177.53 29485.71 28693.78 17872.13 31479.48 37686.11 37273.09 33480.14 22879.99 36162.15 26190.14 36959.49 34583.52 22594.85 210
FMVSNet179.50 29276.54 30288.39 22788.47 30381.95 11994.30 26693.38 29073.14 33372.04 31485.66 31643.86 35593.84 33065.48 32272.53 29889.38 277
PEN-MVS79.47 29378.26 28983.08 32586.36 32568.58 34393.85 27894.77 21279.76 26471.37 31588.55 27259.79 27592.46 34464.50 32665.40 35188.19 313
XVG-ACMP-BASELINE79.38 29477.90 29283.81 31584.98 34767.14 35389.03 33493.18 30080.26 25672.87 30788.15 28038.55 37296.26 24076.05 25378.05 27588.02 316
v7n79.32 29577.34 29585.28 29584.05 35772.89 31093.38 28793.87 26575.02 31970.68 32184.37 33659.58 27895.62 27767.60 30867.50 34187.32 332
MIMVSNet79.18 29675.99 30588.72 22287.37 31880.66 15779.96 37591.82 32077.38 29974.33 29381.87 35141.78 36490.74 36466.36 32083.10 23094.76 212
JIA-IIPM79.00 29777.20 29684.40 31189.74 28864.06 36175.30 38895.44 17862.15 37081.90 20859.08 39278.92 8795.59 27966.51 31885.78 21393.54 233
USDC78.65 29876.25 30385.85 28287.58 31474.60 29289.58 33090.58 34284.05 17463.13 35788.23 27840.69 37196.86 21966.57 31775.81 28386.09 347
DTE-MVSNet78.37 29977.06 29882.32 33285.22 34567.17 35293.40 28693.66 27978.71 28570.53 32388.29 27759.06 28492.23 34861.38 34063.28 36087.56 326
Patchmatch-test78.25 30074.72 31488.83 21991.20 25674.10 29773.91 39188.70 35959.89 38266.82 34085.12 33078.38 9594.54 31848.84 38079.58 25997.86 94
tfpnnormal78.14 30175.42 30886.31 27688.33 30679.24 19594.41 26096.22 12773.51 32969.81 32885.52 32255.43 31595.75 26747.65 38267.86 33783.95 365
ACMH75.40 1777.99 30274.96 31087.10 26390.67 27076.41 26793.19 29691.64 32472.47 34063.44 35587.61 28743.34 35897.16 20058.34 34973.94 29187.72 320
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LTVRE_ROB73.68 1877.99 30275.74 30784.74 30190.45 27472.02 31786.41 35691.12 33172.57 33966.63 34287.27 29154.95 32096.98 20956.29 35975.98 28085.21 356
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
Syy-MVS77.97 30478.05 29077.74 35392.13 23456.85 38093.97 27494.23 24482.43 21473.39 29893.57 20057.95 29587.86 37532.40 39382.34 24088.51 303
our_test_377.90 30575.37 30985.48 29385.39 34176.74 26293.63 28191.67 32273.39 33265.72 34784.65 33558.20 29193.13 34157.82 35167.87 33686.57 340
RPSCF77.73 30676.63 30181.06 33888.66 30255.76 38587.77 34587.88 36364.82 36674.14 29492.79 21349.22 34096.81 22167.47 31076.88 27890.62 253
KD-MVS_2432*160077.63 30774.92 31285.77 28490.86 26679.44 18988.08 34193.92 26176.26 30967.05 33882.78 34772.15 19891.92 35161.53 33741.62 39485.94 350
miper_refine_blended77.63 30774.92 31285.77 28490.86 26679.44 18988.08 34193.92 26176.26 30967.05 33882.78 34772.15 19891.92 35161.53 33741.62 39485.94 350
ACMH+76.62 1677.47 30974.94 31185.05 29891.07 26171.58 32593.26 29390.01 34471.80 34364.76 35088.55 27241.62 36596.48 23262.35 33671.00 30687.09 334
Patchmtry77.36 31074.59 31585.67 28889.75 28675.75 28277.85 38391.12 33160.28 37971.23 31780.35 35975.45 14993.56 33657.94 35067.34 34387.68 322
ppachtmachnet_test77.19 31174.22 31986.13 28085.39 34178.22 22493.98 27391.36 32871.74 34467.11 33784.87 33356.67 30793.37 34052.21 36964.59 35386.80 336
OurMVSNet-221017-077.18 31276.06 30480.55 34183.78 36060.00 37690.35 32691.05 33477.01 30666.62 34387.92 28347.73 34794.03 32771.63 28668.44 33087.62 323
TransMVSNet (Re)76.94 31374.38 31784.62 30685.92 33475.25 28595.28 23389.18 35273.88 32767.22 33586.46 30659.64 27694.10 32659.24 34852.57 38084.50 360
EU-MVSNet76.92 31476.95 29976.83 35684.10 35554.73 38791.77 31392.71 30972.74 33769.57 32988.69 27058.03 29487.43 37964.91 32570.00 31788.33 311
Patchmatch-RL test76.65 31574.01 32284.55 30777.37 38064.23 35978.49 38282.84 38378.48 28764.63 35173.40 37976.05 13791.70 35676.99 24157.84 36997.72 105
FMVSNet576.46 31674.16 32083.35 32490.05 28276.17 27089.58 33089.85 34571.39 34665.29 34980.42 35850.61 33487.70 37861.05 34269.24 32486.18 345
SixPastTwentyTwo76.04 31774.32 31881.22 33684.54 35061.43 37291.16 32089.30 35177.89 29164.04 35286.31 31148.23 34194.29 32463.54 33263.84 35887.93 318
AllTest75.92 31873.06 32684.47 30892.18 23167.29 34791.07 32184.43 37767.63 35763.48 35390.18 25338.20 37397.16 20057.04 35573.37 29488.97 296
CL-MVSNet_self_test75.81 31974.14 32180.83 34078.33 37667.79 34694.22 27093.52 28577.28 30169.82 32781.54 35361.47 26989.22 37057.59 35353.51 37685.48 354
COLMAP_ROBcopyleft73.24 1975.74 32073.00 32783.94 31492.38 21969.08 34191.85 31286.93 36761.48 37465.32 34890.27 25242.27 36396.93 21450.91 37375.63 28485.80 353
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
CMPMVSbinary54.94 2175.71 32174.56 31679.17 34879.69 37255.98 38289.59 32993.30 29560.28 37953.85 38389.07 26547.68 34896.33 23876.55 24681.02 24685.22 355
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
Anonymous2023120675.29 32273.64 32380.22 34280.75 36763.38 36593.36 28890.71 34173.09 33467.12 33683.70 34250.33 33690.85 36353.63 36770.10 31586.44 341
EG-PatchMatch MVS74.92 32372.02 33083.62 32083.76 36173.28 30393.62 28292.04 31868.57 35658.88 37383.80 34131.87 38595.57 28156.97 35778.67 26682.00 376
testgi74.88 32473.40 32479.32 34780.13 37161.75 36993.21 29486.64 37079.49 27066.56 34491.06 23835.51 37988.67 37256.79 35871.25 30487.56 326
pmmvs674.65 32571.67 33183.60 32179.13 37469.94 33493.31 29290.88 33861.05 37865.83 34684.15 33943.43 35794.83 31066.62 31560.63 36586.02 348
test_vis1_rt73.96 32672.40 32978.64 35083.91 35861.16 37395.63 22168.18 40076.32 30860.09 37174.77 37429.01 38997.54 17687.74 14175.94 28177.22 384
K. test v373.62 32771.59 33279.69 34482.98 36259.85 37790.85 32488.83 35577.13 30258.90 37282.11 34943.62 35691.72 35565.83 32154.10 37587.50 329
pmmvs-eth3d73.59 32870.66 33582.38 33076.40 38473.38 30089.39 33389.43 34972.69 33860.34 37077.79 36746.43 35191.26 36066.42 31957.06 37082.51 371
MDA-MVSNet_test_wron73.54 32970.43 33782.86 32684.55 34971.85 32091.74 31491.32 33067.63 35746.73 38781.09 35655.11 31890.42 36755.91 36159.76 36686.31 343
YYNet173.53 33070.43 33782.85 32784.52 35171.73 32391.69 31591.37 32767.63 35746.79 38681.21 35555.04 31990.43 36655.93 36059.70 36786.38 342
UnsupCasMVSNet_eth73.25 33170.57 33681.30 33577.53 37866.33 35487.24 34993.89 26480.38 25157.90 37781.59 35242.91 36290.56 36565.18 32448.51 38587.01 335
DSMNet-mixed73.13 33272.45 32875.19 36277.51 37946.82 39285.09 36482.01 38567.61 36169.27 33181.33 35450.89 33286.28 38254.54 36483.80 22492.46 241
OpenMVS_ROBcopyleft68.52 2073.02 33369.57 34083.37 32380.54 37071.82 32193.60 28388.22 36162.37 36961.98 36383.15 34635.31 38095.47 28345.08 38575.88 28282.82 368
test_040272.68 33469.54 34182.09 33388.67 30171.81 32292.72 30286.77 36961.52 37362.21 36283.91 34043.22 35993.76 33334.60 39272.23 30280.72 380
TinyColmap72.41 33568.99 34482.68 32888.11 30769.59 33888.41 33985.20 37465.55 36357.91 37684.82 33430.80 38795.94 25651.38 37068.70 32782.49 373
test20.0372.36 33671.15 33375.98 36077.79 37759.16 37892.40 30689.35 35074.09 32561.50 36584.32 33748.09 34285.54 38550.63 37462.15 36383.24 366
LF4IMVS72.36 33670.82 33476.95 35579.18 37356.33 38186.12 35886.11 37269.30 35563.06 35886.66 30233.03 38392.25 34765.33 32368.64 32882.28 374
Anonymous2024052172.06 33869.91 33978.50 35177.11 38161.67 37191.62 31790.97 33665.52 36462.37 36179.05 36436.32 37590.96 36257.75 35268.52 32982.87 367
dmvs_testset72.00 33973.36 32567.91 36783.83 35931.90 40785.30 36377.12 39282.80 20763.05 35992.46 21661.54 26882.55 39042.22 38971.89 30389.29 281
MDA-MVSNet-bldmvs71.45 34067.94 34581.98 33485.33 34368.50 34492.35 30788.76 35770.40 34942.99 39081.96 35046.57 35091.31 35948.75 38154.39 37486.11 346
MVS-HIRNet71.36 34167.00 34684.46 31090.58 27169.74 33779.15 37987.74 36546.09 39161.96 36450.50 39545.14 35395.64 27553.74 36688.11 18988.00 317
KD-MVS_self_test70.97 34269.31 34275.95 36176.24 38655.39 38687.45 34690.94 33770.20 35162.96 36077.48 36844.01 35488.09 37361.25 34153.26 37784.37 361
test_fmvs369.56 34369.19 34370.67 36569.01 39147.05 39190.87 32386.81 36871.31 34766.79 34177.15 36916.40 39683.17 38881.84 19662.51 36281.79 378
MIMVSNet169.44 34466.65 34877.84 35276.48 38362.84 36787.42 34788.97 35466.96 36257.75 37879.72 36332.77 38485.83 38446.32 38363.42 35984.85 358
PM-MVS69.32 34566.93 34776.49 35773.60 38855.84 38385.91 35979.32 39074.72 32161.09 36778.18 36621.76 39291.10 36170.86 29556.90 37182.51 371
TDRefinement69.20 34665.78 35079.48 34566.04 39662.21 36888.21 34086.12 37162.92 36861.03 36885.61 31933.23 38294.16 32555.82 36253.02 37882.08 375
new-patchmatchnet68.85 34765.93 34977.61 35473.57 38963.94 36290.11 32888.73 35871.62 34555.08 38173.60 37840.84 36987.22 38151.35 37248.49 38681.67 379
UnsupCasMVSNet_bld68.60 34864.50 35280.92 33974.63 38767.80 34583.97 36892.94 30665.12 36554.63 38268.23 38835.97 37792.17 35060.13 34344.83 38982.78 369
mvsany_test367.19 34965.34 35172.72 36463.08 39748.57 39083.12 37178.09 39172.07 34161.21 36677.11 37022.94 39187.78 37778.59 22451.88 38181.80 377
new_pmnet66.18 35063.18 35375.18 36376.27 38561.74 37083.79 36984.66 37656.64 38851.57 38471.85 38631.29 38687.93 37449.98 37662.55 36175.86 385
pmmvs365.75 35162.18 35476.45 35867.12 39564.54 35788.68 33785.05 37554.77 39057.54 37973.79 37729.40 38886.21 38355.49 36347.77 38778.62 382
test_f64.01 35262.13 35569.65 36663.00 39845.30 39783.66 37080.68 38761.30 37555.70 38072.62 38214.23 39884.64 38669.84 30058.11 36879.00 381
N_pmnet61.30 35360.20 35664.60 37284.32 35217.00 41391.67 31610.98 41161.77 37258.45 37578.55 36549.89 33891.83 35442.27 38863.94 35784.97 357
WB-MVS57.26 35456.22 35760.39 37869.29 39035.91 40586.39 35770.06 39859.84 38346.46 38872.71 38151.18 33178.11 39215.19 40234.89 39767.14 391
test_method56.77 35554.53 35963.49 37476.49 38240.70 40075.68 38774.24 39419.47 40248.73 38571.89 38519.31 39365.80 40257.46 35447.51 38883.97 364
APD_test156.56 35653.58 36065.50 36967.93 39446.51 39477.24 38672.95 39538.09 39342.75 39175.17 37313.38 39982.78 38940.19 39054.53 37367.23 390
SSC-MVS56.01 35754.96 35859.17 37968.42 39234.13 40684.98 36569.23 39958.08 38745.36 38971.67 38750.30 33777.46 39314.28 40332.33 39865.91 392
FPMVS55.09 35852.93 36161.57 37655.98 40040.51 40183.11 37283.41 38237.61 39434.95 39571.95 38414.40 39776.95 39429.81 39465.16 35267.25 389
test_vis3_rt54.10 35951.04 36263.27 37558.16 39946.08 39684.17 36749.32 41056.48 38936.56 39449.48 3978.03 40691.91 35367.29 31149.87 38251.82 396
LCM-MVSNet52.52 36048.24 36365.35 37047.63 40741.45 39972.55 39283.62 38131.75 39537.66 39357.92 3939.19 40576.76 39549.26 37844.60 39077.84 383
EGC-MVSNET52.46 36147.56 36467.15 36881.98 36560.11 37582.54 37372.44 3960.11 4080.70 40974.59 37525.11 39083.26 38729.04 39561.51 36458.09 393
PMMVS250.90 36246.31 36564.67 37155.53 40146.67 39377.30 38571.02 39740.89 39234.16 39659.32 3919.83 40476.14 39740.09 39128.63 39971.21 386
ANet_high46.22 36341.28 37061.04 37739.91 40946.25 39570.59 39376.18 39358.87 38523.09 40148.00 39812.58 40166.54 40128.65 39613.62 40270.35 387
testf145.70 36442.41 36655.58 38053.29 40440.02 40268.96 39462.67 40427.45 39729.85 39761.58 3895.98 40773.83 39928.49 39743.46 39252.90 394
APD_test245.70 36442.41 36655.58 38053.29 40440.02 40268.96 39462.67 40427.45 39729.85 39761.58 3895.98 40773.83 39928.49 39743.46 39252.90 394
Gipumacopyleft45.11 36642.05 36854.30 38280.69 36851.30 38935.80 40083.81 38028.13 39627.94 40034.53 40011.41 40376.70 39621.45 39954.65 37234.90 400
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
tmp_tt41.54 36741.93 36940.38 38520.10 41126.84 40961.93 39759.09 40614.81 40428.51 39980.58 35735.53 37848.33 40663.70 33113.11 40345.96 399
PMVScopyleft34.80 2339.19 36835.53 37150.18 38329.72 41030.30 40859.60 39866.20 40326.06 39917.91 40349.53 3963.12 40974.09 39818.19 40149.40 38346.14 397
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive35.65 2233.85 36929.49 37446.92 38441.86 40836.28 40450.45 39956.52 40718.75 40318.28 40237.84 3992.41 41058.41 40318.71 40020.62 40046.06 398
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN32.70 37032.39 37233.65 38653.35 40325.70 41074.07 39053.33 40821.08 40017.17 40433.63 40211.85 40254.84 40412.98 40414.04 40120.42 401
EMVS31.70 37131.45 37332.48 38750.72 40623.95 41174.78 38952.30 40920.36 40116.08 40531.48 40312.80 40053.60 40511.39 40513.10 40419.88 402
cdsmvs_eth3d_5k21.43 37228.57 3750.00 3910.00 4140.00 4160.00 40295.93 1510.00 4090.00 41097.66 7263.57 2530.00 4100.00 4090.00 4080.00 406
wuyk23d14.10 37313.89 37614.72 38855.23 40222.91 41233.83 4013.56 4124.94 4054.11 4062.28 4082.06 41119.66 40710.23 4068.74 4051.59 405
testmvs9.92 37412.94 3770.84 3900.65 4120.29 41593.78 2790.39 4130.42 4062.85 40715.84 4060.17 4130.30 4092.18 4070.21 4061.91 404
test1239.07 37511.73 3781.11 3890.50 4130.77 41489.44 3320.20 4140.34 4072.15 40810.72 4070.34 4120.32 4081.79 4080.08 4072.23 403
ab-mvs-re8.11 37610.81 3790.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 41097.30 940.00 4140.00 4100.00 4090.00 4080.00 406
pcd_1.5k_mvsjas5.92 3777.89 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 40971.04 2100.00 4100.00 4090.00 4080.00 406
test_blank0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uanet_test0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
DCPMVS0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
sosnet-low-res0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
sosnet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uncertanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
Regformer0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
WAC-MVS67.18 34949.00 379
FOURS198.51 3978.01 23298.13 4996.21 12883.04 20094.39 51
MSC_two_6792asdad97.14 399.05 992.19 496.83 5299.81 2198.08 1498.81 2499.43 11
PC_three_145291.12 3598.33 298.42 2892.51 299.81 2198.96 399.37 199.70 3
No_MVS97.14 399.05 992.19 496.83 5299.81 2198.08 1498.81 2499.43 11
test_one_060198.91 1884.56 7696.70 7188.06 7996.57 2298.77 1088.04 20
eth-test20.00 414
eth-test0.00 414
ZD-MVS99.09 883.22 10196.60 8782.88 20593.61 6198.06 5082.93 5399.14 9795.51 4898.49 37
RE-MVS-def91.18 8697.76 6776.03 27496.20 19495.44 17880.56 24590.72 10097.84 6473.36 18691.99 8896.79 8997.75 103
IU-MVS99.03 1585.34 5396.86 5192.05 2798.74 198.15 1198.97 1799.42 13
OPU-MVS97.30 299.19 792.31 399.12 1198.54 2092.06 399.84 1299.11 299.37 199.74 1
test_241102_TWO96.78 5588.72 6697.70 898.91 287.86 2199.82 1898.15 1199.00 1599.47 9
test_241102_ONE99.03 1585.03 6696.78 5588.72 6697.79 698.90 588.48 1799.82 18
9.1494.26 3098.10 5798.14 4696.52 9584.74 15394.83 4698.80 782.80 5599.37 8095.95 4098.42 40
save fliter98.24 5183.34 9898.61 3396.57 9091.32 32
test_0728_THIRD88.38 7396.69 1798.76 1289.64 1399.76 3197.47 2498.84 2399.38 14
test_0728_SECOND95.14 1899.04 1486.14 3599.06 1696.77 6199.84 1297.90 1798.85 2199.45 10
test072699.05 985.18 5899.11 1496.78 5588.75 6497.65 1198.91 287.69 22
GSMVS97.54 118
test_part298.90 1985.14 6496.07 28
sam_mvs177.59 10897.54 118
sam_mvs75.35 156
ambc76.02 35968.11 39351.43 38864.97 39689.59 34660.49 36974.49 37617.17 39592.46 34461.50 33952.85 37984.17 363
MTGPAbinary96.33 118
test_post185.88 36030.24 40473.77 17995.07 30573.89 273
test_post33.80 40176.17 13595.97 252
patchmatchnet-post77.09 37177.78 10795.39 285
GG-mvs-BLEND93.49 6994.94 14186.26 3381.62 37497.00 3788.32 13794.30 18291.23 596.21 24388.49 13497.43 7398.00 84
MTMP97.53 9168.16 401
gm-plane-assit92.27 22579.64 18784.47 16395.15 16197.93 15285.81 156
test9_res96.00 3999.03 1398.31 62
TEST998.64 3183.71 8997.82 6896.65 7884.29 17095.16 3598.09 4584.39 3899.36 81
test_898.63 3383.64 9297.81 7096.63 8384.50 16195.10 3998.11 4484.33 3999.23 86
agg_prior294.30 5899.00 1598.57 46
agg_prior98.59 3583.13 10296.56 9294.19 5399.16 96
TestCases84.47 30892.18 23167.29 34784.43 37767.63 35763.48 35390.18 25338.20 37397.16 20057.04 35573.37 29488.97 296
test_prior482.34 11597.75 75
test_prior298.37 3986.08 12294.57 4998.02 5183.14 5195.05 5198.79 26
test_prior93.09 8398.68 2681.91 12396.40 11099.06 10498.29 64
旧先验296.97 14174.06 32696.10 2797.76 16388.38 136
新几何296.42 180
新几何193.12 8197.44 7881.60 13796.71 7074.54 32291.22 9397.57 8079.13 8599.51 7177.40 23998.46 3898.26 67
旧先验197.39 8279.58 18896.54 9398.08 4884.00 4497.42 7497.62 114
无先验96.87 14996.78 5577.39 29899.52 6979.95 21198.43 55
原ACMM296.84 150
原ACMM191.22 16097.77 6578.10 23096.61 8481.05 23491.28 9297.42 8977.92 10498.98 10879.85 21398.51 3496.59 167
test22296.15 10278.41 21895.87 21096.46 10271.97 34289.66 11397.45 8576.33 13398.24 4998.30 63
testdata299.48 7376.45 248
segment_acmp82.69 56
testdata90.13 19195.92 11174.17 29696.49 10173.49 33194.82 4797.99 5278.80 9197.93 15283.53 18397.52 6998.29 64
testdata195.57 22487.44 95
test1294.25 3798.34 4685.55 5096.35 11792.36 7380.84 6499.22 8798.31 4797.98 86
plane_prior791.86 24677.55 248
plane_prior691.98 24277.92 23764.77 248
plane_prior594.69 21497.30 19287.08 14782.82 23590.96 249
plane_prior494.15 187
plane_prior377.75 24490.17 5081.33 214
plane_prior297.18 11889.89 53
plane_prior191.95 244
plane_prior77.96 23497.52 9490.36 4882.96 233
n20.00 415
nn0.00 415
door-mid79.75 389
lessismore_v079.98 34380.59 36958.34 37980.87 38658.49 37483.46 34443.10 36093.89 32963.11 33448.68 38487.72 320
LGP-MVS_train86.33 27390.88 26373.06 30694.13 25182.20 21876.31 26893.20 20454.83 32196.95 21183.72 17780.83 24988.98 294
test1196.50 98
door80.13 388
HQP5-MVS78.48 214
HQP-NCC92.08 23797.63 8290.52 4382.30 199
ACMP_Plane92.08 23797.63 8290.52 4382.30 199
BP-MVS87.67 143
HQP4-MVS82.30 19997.32 19091.13 247
HQP3-MVS94.80 20983.01 231
HQP2-MVS65.40 242
NP-MVS92.04 24178.22 22494.56 177
MDTV_nov1_ep13_2view81.74 13186.80 35280.65 24285.65 16074.26 17376.52 24796.98 150
MDTV_nov1_ep1383.69 21494.09 17281.01 14686.78 35396.09 13783.81 18484.75 17184.32 33774.44 17296.54 23063.88 32985.07 219
ACMMP++_ref78.45 272
ACMMP++79.05 263
Test By Simon71.65 203
ITE_SJBPF82.38 33087.00 32065.59 35589.55 34779.99 26169.37 33091.30 23441.60 36695.33 28962.86 33574.63 29086.24 344
DeepMVS_CXcopyleft64.06 37378.53 37543.26 39868.11 40269.94 35238.55 39276.14 37218.53 39479.34 39143.72 38641.62 39469.57 388