This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort by
DPM-MVS96.21 295.53 1398.26 196.26 10595.09 199.15 896.98 3893.39 1496.45 2598.79 890.17 999.99 189.33 13899.25 699.70 3
MCST-MVS96.17 396.12 696.32 799.42 289.36 1098.94 2497.10 3195.17 392.11 8698.46 2687.33 2599.97 297.21 2999.31 499.63 7
CNVR-MVS96.30 196.54 195.55 1599.31 587.69 2499.06 1797.12 2994.66 596.79 1798.78 986.42 3099.95 397.59 2399.18 799.00 31
NCCC95.63 795.94 894.69 3299.21 685.15 7099.16 796.96 4194.11 995.59 3498.64 1785.07 3699.91 495.61 4699.10 999.00 31
API-MVS90.18 12688.97 13693.80 5498.66 2882.95 11197.50 9795.63 17375.16 32786.31 16697.69 7372.49 20399.90 581.26 21296.07 10898.56 54
DeepC-MVS_fast89.06 294.48 2594.30 2995.02 2298.86 2185.68 5098.06 5596.64 8293.64 1291.74 9398.54 2080.17 7999.90 592.28 9398.75 2999.49 8
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DP-MVS Recon91.72 8990.85 9894.34 3899.50 185.00 7598.51 3595.96 15180.57 25388.08 15097.63 8176.84 13099.89 785.67 17094.88 12398.13 83
CANet94.89 1694.64 2295.63 1397.55 7688.12 1899.06 1796.39 11494.07 1095.34 3697.80 7076.83 13299.87 897.08 3197.64 6898.89 36
DeepPCF-MVS89.82 194.61 2296.17 589.91 21197.09 9470.21 34498.99 2396.69 7495.57 295.08 4199.23 186.40 3199.87 897.84 2098.66 3299.65 6
MVS_030495.58 995.44 1596.01 1097.63 7089.26 1299.27 396.59 8994.71 497.08 1597.99 5578.69 10199.86 1099.15 297.85 6298.91 35
HPM-MVS++copyleft95.32 1195.48 1494.85 2698.62 3486.04 3997.81 7096.93 4492.45 2095.69 3398.50 2485.38 3499.85 1194.75 5999.18 798.65 50
PHI-MVS93.59 3993.63 3893.48 7798.05 5881.76 13698.64 3197.13 2782.60 22194.09 5698.49 2580.35 7499.85 1194.74 6098.62 3398.83 38
DVP-MVS++96.05 496.41 394.96 2499.05 985.34 6098.13 4996.77 6288.38 7597.70 898.77 1092.06 399.84 1397.47 2499.37 199.70 3
OPU-MVS97.30 299.19 792.31 399.12 1298.54 2092.06 399.84 1399.11 399.37 199.74 1
test_0728_SECOND95.14 2099.04 1486.14 3899.06 1796.77 6299.84 1397.90 1798.85 2199.45 10
SMA-MVScopyleft94.70 2194.68 2194.76 2998.02 5985.94 4397.47 9896.77 6285.32 14497.92 398.70 1583.09 5799.84 1395.79 4399.08 1098.49 57
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
patch_mono-295.14 1396.08 792.33 12398.44 4377.84 24998.43 3697.21 2292.58 1997.68 1097.65 7986.88 2799.83 1798.25 997.60 6999.33 18
ACMMP_NAP93.46 4193.23 4794.17 4597.16 9284.28 8796.82 15796.65 7986.24 12494.27 5397.99 5577.94 11199.83 1793.39 7598.57 3498.39 63
SED-MVS95.88 596.22 494.87 2599.03 1585.03 7399.12 1296.78 5688.72 6797.79 698.91 288.48 1799.82 1998.15 1198.97 1799.74 1
test_241102_TWO96.78 5688.72 6797.70 898.91 287.86 2299.82 1998.15 1199.00 1599.47 9
test_241102_ONE99.03 1585.03 7396.78 5688.72 6797.79 698.90 588.48 1799.82 19
MSC_two_6792asdad97.14 399.05 992.19 496.83 5399.81 2298.08 1498.81 2499.43 11
PC_three_145291.12 3698.33 298.42 3092.51 299.81 2298.96 499.37 199.70 3
No_MVS97.14 399.05 992.19 496.83 5399.81 2298.08 1498.81 2499.43 11
fmvsm_s_conf0.5_n93.69 3794.13 3392.34 12194.56 16082.01 12499.07 1697.13 2792.09 2396.25 2698.53 2276.47 13799.80 2598.39 894.71 12695.22 217
MM95.85 695.74 1096.15 896.34 10289.50 999.18 698.10 895.68 196.64 2197.92 6180.72 7099.80 2599.16 197.96 5899.15 27
ZNCC-MVS92.75 5492.60 6193.23 8498.24 5181.82 13497.63 8296.50 10085.00 15591.05 10497.74 7278.38 10499.80 2590.48 11998.34 4898.07 86
test_fmvsm_n_192094.81 1995.60 1192.45 11695.29 13880.96 15699.29 297.21 2294.50 797.29 1398.44 2782.15 6299.78 2898.56 797.68 6796.61 179
fmvsm_l_conf0.5_n_a94.91 1595.30 1693.72 6194.50 16784.30 8699.14 1096.00 14791.94 2897.91 598.60 1884.78 3899.77 2998.84 596.03 11097.08 161
fmvsm_s_conf0.5_n_a93.34 4393.71 3692.22 13093.38 20381.71 13998.86 2596.98 3891.64 2996.85 1698.55 1975.58 15599.77 2997.88 1993.68 14295.18 218
DVP-MVScopyleft95.58 995.91 994.57 3499.05 985.18 6599.06 1796.46 10488.75 6596.69 1898.76 1287.69 2399.76 3197.90 1798.85 2198.77 40
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD88.38 7596.69 1898.76 1289.64 1299.76 3197.47 2498.84 2399.38 14
GST-MVS92.43 7292.22 7293.04 9298.17 5481.64 14197.40 10796.38 11584.71 16290.90 10797.40 9377.55 11999.76 3189.75 13297.74 6597.72 114
MTAPA92.45 7192.31 6892.86 9997.90 6180.85 16092.88 31096.33 12087.92 8890.20 11698.18 4176.71 13599.76 3192.57 9298.09 5397.96 98
PAPR92.74 5592.17 7394.45 3698.89 2084.87 7897.20 11896.20 13287.73 9488.40 14598.12 4678.71 10099.76 3187.99 15296.28 10398.74 42
PAPM_NR91.46 9590.82 9993.37 8098.50 4081.81 13595.03 25796.13 13784.65 16486.10 16997.65 7979.24 9199.75 3683.20 19896.88 9298.56 54
MAR-MVS90.63 11690.22 11491.86 14798.47 4278.20 23797.18 12096.61 8583.87 19188.18 14998.18 4168.71 23599.75 3683.66 19297.15 8497.63 123
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
fmvsm_l_conf0.5_n94.89 1695.24 1793.86 5294.42 17084.61 8199.13 1196.15 13692.06 2597.92 398.52 2384.52 4099.74 3898.76 695.67 11797.22 153
fmvsm_s_conf0.1_n92.93 5093.16 4992.24 12890.52 28581.92 12898.42 3796.24 12891.17 3596.02 3098.35 3475.34 16699.74 3897.84 2094.58 12895.05 219
DPE-MVScopyleft95.32 1195.55 1294.64 3398.79 2384.87 7897.77 7396.74 6786.11 12696.54 2498.89 688.39 1999.74 3897.67 2299.05 1299.31 20
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MP-MVS-pluss92.58 6792.35 6693.29 8197.30 9082.53 11696.44 18196.04 14584.68 16389.12 13298.37 3277.48 12099.74 3893.31 8098.38 4597.59 126
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
QAPM86.88 19384.51 21493.98 4894.04 18485.89 4497.19 11996.05 14473.62 33975.12 29995.62 14962.02 27899.74 3870.88 30696.06 10996.30 191
test_fmvsmvis_n_192092.12 7892.10 7592.17 13390.87 27881.04 15298.34 4093.90 27692.71 1887.24 15897.90 6474.83 17399.72 4396.96 3296.20 10495.76 202
AdaColmapbinary88.81 15287.61 16492.39 12099.33 479.95 18496.70 16795.58 17477.51 30683.05 20696.69 12861.90 28199.72 4384.29 18093.47 14697.50 134
fmvsm_s_conf0.1_n_a92.38 7392.49 6492.06 13888.08 32481.62 14297.97 6196.01 14690.62 4396.58 2298.33 3574.09 18599.71 4597.23 2893.46 14794.86 223
HFP-MVS92.89 5192.86 5692.98 9498.71 2581.12 14997.58 8896.70 7285.20 14991.75 9297.97 6078.47 10399.71 4590.95 10898.41 4398.12 84
DeepC-MVS86.58 391.53 9491.06 9692.94 9694.52 16381.89 13095.95 21195.98 14990.76 4183.76 19896.76 12473.24 19699.71 4591.67 10396.96 8997.22 153
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MP-MVScopyleft92.61 6692.67 5992.42 11998.13 5679.73 19397.33 11196.20 13285.63 13790.53 11197.66 7578.14 10999.70 4892.12 9698.30 5097.85 104
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MVS90.60 11788.64 14396.50 594.25 17490.53 893.33 29897.21 2277.59 30578.88 25297.31 9571.52 21799.69 4989.60 13398.03 5699.27 22
DELS-MVS94.98 1494.49 2496.44 696.42 10190.59 799.21 597.02 3694.40 891.46 9597.08 11083.32 5499.69 4992.83 8898.70 3199.04 29
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
mPP-MVS91.88 8591.82 7992.07 13798.38 4478.63 22197.29 11396.09 14085.12 15188.45 14497.66 7575.53 15699.68 5189.83 13098.02 5797.88 100
3Dnovator82.32 1089.33 14087.64 16194.42 3793.73 19185.70 4897.73 7796.75 6686.73 12276.21 28595.93 13962.17 27599.68 5181.67 21097.81 6397.88 100
region2R92.72 5892.70 5892.79 10298.68 2680.53 17197.53 9396.51 9885.22 14791.94 9097.98 5877.26 12299.67 5390.83 11398.37 4698.18 77
ACMMPR92.69 6292.67 5992.75 10398.66 2880.57 16797.58 8896.69 7485.20 14991.57 9497.92 6177.01 12799.67 5390.95 10898.41 4398.00 93
test_fmvsmconf_n93.99 3494.36 2892.86 9992.82 22181.12 14999.26 496.37 11893.47 1395.16 3798.21 3979.00 9499.64 5598.21 1096.73 9897.83 106
OpenMVScopyleft79.58 1486.09 20683.62 23193.50 7590.95 27586.71 3497.44 10195.83 16275.35 32472.64 32195.72 14457.42 31699.64 5571.41 30095.85 11594.13 237
ACMMPcopyleft90.39 12289.97 12291.64 15797.58 7478.21 23696.78 16096.72 7084.73 16184.72 18597.23 10271.22 21999.63 5788.37 15092.41 16097.08 161
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CHOSEN 1792x268891.07 10790.21 11593.64 6695.18 14283.53 10096.26 19496.13 13788.92 6484.90 18193.10 21772.86 19899.62 5888.86 14195.67 11797.79 110
SD-MVS94.84 1895.02 1994.29 4097.87 6484.61 8197.76 7596.19 13489.59 5796.66 2098.17 4484.33 4299.60 5996.09 3898.50 3898.66 49
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
test_fmvsmconf0.1_n93.08 4793.22 4892.65 10988.45 31980.81 16199.00 2295.11 20293.21 1594.00 5797.91 6376.84 13099.59 6097.91 1696.55 10197.54 128
test_vis1_n_192089.95 12990.59 10388.03 25192.36 23368.98 35399.12 1294.34 25393.86 1193.64 6297.01 11451.54 34499.59 6096.76 3596.71 9995.53 208
XVS92.69 6292.71 5792.63 11198.52 3780.29 17497.37 10996.44 10687.04 11391.38 9697.83 6977.24 12499.59 6090.46 12198.07 5498.02 88
X-MVStestdata86.26 20484.14 22492.63 11198.52 3780.29 17497.37 10996.44 10687.04 11391.38 9620.73 42277.24 12499.59 6090.46 12198.07 5498.02 88
PVSNet_BlendedMVS90.05 12789.96 12390.33 19797.47 7783.86 9298.02 5896.73 6887.98 8689.53 12589.61 26976.42 13999.57 6494.29 6579.59 26887.57 336
PVSNet_Blended93.13 4492.98 5293.57 7197.47 7783.86 9299.32 196.73 6891.02 4089.53 12596.21 13476.42 13999.57 6494.29 6595.81 11697.29 151
PGM-MVS91.93 8291.80 8092.32 12598.27 5079.74 19295.28 24197.27 2083.83 19290.89 10897.78 7176.12 14599.56 6688.82 14297.93 6197.66 120
MVS_111021_HR93.41 4293.39 4593.47 7997.34 8982.83 11297.56 9098.27 689.16 6389.71 12097.14 10579.77 8599.56 6693.65 7397.94 5998.02 88
test_fmvsmconf0.01_n91.08 10690.68 10292.29 12682.43 37880.12 18297.94 6293.93 27292.07 2491.97 8897.60 8267.56 24099.53 6897.09 3095.56 11997.21 155
无先验96.87 15396.78 5677.39 30799.52 6979.95 22398.43 61
CSCG92.02 8091.65 8393.12 8898.53 3680.59 16697.47 9897.18 2577.06 31484.64 18797.98 5883.98 4899.52 6990.72 11597.33 7899.23 24
新几何193.12 8897.44 8181.60 14396.71 7174.54 33391.22 10297.57 8379.13 9399.51 7177.40 25198.46 4098.26 73
3Dnovator+82.88 889.63 13687.85 15694.99 2394.49 16886.76 3397.84 6795.74 16786.10 12775.47 29696.02 13865.00 26199.51 7182.91 20297.07 8698.72 47
CANet_DTU90.98 10990.04 12093.83 5394.76 15686.23 3796.32 19193.12 31893.11 1693.71 6096.82 12263.08 27199.48 7384.29 18095.12 12295.77 201
testdata299.48 7376.45 260
SteuartSystems-ACMMP94.13 3294.44 2693.20 8595.41 13381.35 14699.02 2196.59 8989.50 5994.18 5598.36 3383.68 5299.45 7594.77 5898.45 4198.81 39
Skip Steuart: Steuart Systems R&D Blog.
TSAR-MVS + GP.94.35 2694.50 2393.89 5197.38 8883.04 11098.10 5195.29 19791.57 3093.81 5997.45 8886.64 2899.43 7696.28 3794.01 13599.20 25
131488.94 14787.20 17594.17 4593.21 20685.73 4793.33 29896.64 8282.89 21375.98 28896.36 13166.83 24899.39 7783.52 19696.02 11197.39 144
SF-MVS94.17 3094.05 3494.55 3597.56 7585.95 4197.73 7796.43 10884.02 18495.07 4298.74 1482.93 5899.38 7895.42 5098.51 3698.32 66
DP-MVS81.47 28278.28 29991.04 17598.14 5578.48 22395.09 25686.97 38161.14 39371.12 33292.78 22259.59 29199.38 7853.11 38286.61 21495.27 216
9.1494.26 3198.10 5798.14 4696.52 9784.74 16094.83 4798.80 782.80 6099.37 8095.95 4198.42 42
TEST998.64 3183.71 9597.82 6896.65 7984.29 17795.16 3798.09 4884.39 4199.36 81
train_agg94.28 2794.45 2593.74 5898.64 3183.71 9597.82 6896.65 7984.50 16895.16 3798.09 4884.33 4299.36 8195.91 4298.96 1998.16 79
sss90.87 11389.96 12393.60 6994.15 17883.84 9497.14 12798.13 785.93 13389.68 12196.09 13771.67 21499.30 8387.69 15689.16 18497.66 120
PVSNet_Blended_VisFu91.24 10190.77 10092.66 10895.09 14482.40 12097.77 7395.87 16188.26 7986.39 16593.94 20076.77 13399.27 8488.80 14394.00 13696.31 190
PLCcopyleft83.97 788.00 17587.38 17289.83 21498.02 5976.46 27997.16 12494.43 24879.26 28581.98 21996.28 13369.36 23399.27 8477.71 24492.25 16293.77 244
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
reproduce-ours92.70 6093.02 5091.75 15297.45 7977.77 25396.16 20095.94 15484.12 18092.45 7798.43 2880.06 8199.24 8695.35 5197.18 8298.24 74
our_new_method92.70 6093.02 5091.75 15297.45 7977.77 25396.16 20095.94 15484.12 18092.45 7798.43 2880.06 8199.24 8695.35 5197.18 8298.24 74
test_898.63 3383.64 9897.81 7096.63 8484.50 16895.10 4098.11 4784.33 4299.23 88
test1294.25 4198.34 4685.55 5696.35 11992.36 8180.84 6999.22 8998.31 4997.98 95
reproduce_model92.53 6992.87 5491.50 16297.41 8377.14 27096.02 20795.91 15783.65 19892.45 7798.39 3179.75 8699.21 9095.27 5496.98 8898.14 81
MSLP-MVS++94.28 2794.39 2793.97 4998.30 4984.06 9098.64 3196.93 4490.71 4293.08 7098.70 1579.98 8399.21 9094.12 6899.07 1198.63 51
CDPH-MVS93.12 4592.91 5393.74 5898.65 3083.88 9197.67 8196.26 12683.00 21193.22 6798.24 3881.31 6799.21 9089.12 13998.74 3098.14 81
CP-MVS92.54 6892.60 6192.34 12198.50 4079.90 18698.40 3896.40 11284.75 15990.48 11398.09 4877.40 12199.21 9091.15 10798.23 5297.92 99
LS3D82.22 27379.94 28789.06 22597.43 8274.06 30993.20 30492.05 33361.90 38773.33 31495.21 16359.35 29499.21 9054.54 37892.48 15993.90 242
PCF-MVS84.09 586.77 19785.00 20992.08 13692.06 25383.07 10992.14 31994.47 24379.63 27676.90 27294.78 18171.15 22099.20 9572.87 29191.05 17193.98 240
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MVS_111021_LR91.60 9391.64 8491.47 16495.74 12378.79 21896.15 20296.77 6288.49 7288.64 14297.07 11172.33 20699.19 9693.13 8596.48 10296.43 184
APDe-MVScopyleft94.56 2494.75 2093.96 5098.84 2283.40 10398.04 5796.41 11085.79 13595.00 4398.28 3784.32 4599.18 9797.35 2698.77 2899.28 21
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
PS-MVSNAJ94.17 3093.52 4196.10 995.65 12692.35 298.21 4495.79 16492.42 2196.24 2798.18 4171.04 22299.17 9896.77 3497.39 7796.79 172
agg_prior98.59 3583.13 10896.56 9494.19 5499.16 99
ZD-MVS99.09 883.22 10796.60 8882.88 21493.61 6398.06 5382.93 5899.14 10095.51 4998.49 39
EI-MVSNet-Vis-set91.84 8691.77 8192.04 14097.60 7281.17 14896.61 16996.87 4988.20 8289.19 13097.55 8778.69 10199.14 10090.29 12690.94 17295.80 200
EI-MVSNet-UG-set91.35 9991.22 9191.73 15497.39 8680.68 16496.47 17896.83 5387.92 8888.30 14897.36 9477.84 11499.13 10289.43 13789.45 18195.37 212
EPNet94.06 3394.15 3293.76 5697.27 9184.35 8498.29 4197.64 1494.57 695.36 3596.88 11879.96 8499.12 10391.30 10596.11 10797.82 108
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MSP-MVS95.62 896.54 192.86 9998.31 4880.10 18397.42 10596.78 5692.20 2297.11 1498.29 3693.46 199.10 10496.01 3999.30 599.38 14
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
UGNet87.73 18186.55 18991.27 16995.16 14379.11 20996.35 18896.23 12988.14 8387.83 15290.48 25650.65 34799.09 10580.13 22294.03 13395.60 205
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
test_cas_vis1_n_192089.90 13090.02 12189.54 21990.14 29474.63 30298.71 2794.43 24893.04 1792.40 8096.35 13253.41 34099.08 10695.59 4796.16 10594.90 221
test_prior93.09 9098.68 2681.91 12996.40 11299.06 10798.29 70
WTY-MVS92.65 6591.68 8295.56 1496.00 11288.90 1398.23 4397.65 1388.57 7089.82 11997.22 10379.29 8999.06 10789.57 13488.73 19198.73 46
HY-MVS84.06 691.63 9190.37 11195.39 1996.12 10988.25 1790.22 33897.58 1588.33 7890.50 11291.96 23579.26 9099.06 10790.29 12689.07 18598.88 37
MG-MVS94.25 2993.72 3595.85 1299.38 389.35 1197.98 5998.09 989.99 5392.34 8296.97 11581.30 6898.99 11088.54 14598.88 2099.20 25
原ACMM191.22 17297.77 6578.10 23996.61 8581.05 24391.28 10197.42 9277.92 11398.98 11179.85 22598.51 3696.59 180
Anonymous20240521184.41 23681.93 25791.85 14996.78 9778.41 22797.44 10191.34 34670.29 36184.06 19094.26 19141.09 38398.96 11279.46 22782.65 25198.17 78
xiu_mvs_v2_base93.92 3593.26 4695.91 1195.07 14692.02 698.19 4595.68 17092.06 2596.01 3198.14 4570.83 22698.96 11296.74 3696.57 10096.76 175
VNet92.11 7991.22 9194.79 2896.91 9586.98 3097.91 6397.96 1086.38 12393.65 6195.74 14370.16 23198.95 11493.39 7588.87 18998.43 61
CNLPA86.96 19185.37 20191.72 15597.59 7379.34 20397.21 11691.05 35174.22 33478.90 25196.75 12667.21 24598.95 11474.68 27790.77 17396.88 170
ab-mvs87.08 18984.94 21093.48 7793.34 20483.67 9788.82 34795.70 16981.18 24184.55 18890.14 26462.72 27298.94 11685.49 17282.54 25297.85 104
HPM-MVScopyleft91.62 9291.53 8691.89 14597.88 6379.22 20596.99 13995.73 16882.07 23189.50 12797.19 10475.59 15498.93 11790.91 11097.94 5997.54 128
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
PVSNet82.34 989.02 14587.79 15892.71 10695.49 13181.50 14497.70 7997.29 1887.76 9385.47 17595.12 17056.90 31998.90 11880.33 21794.02 13497.71 116
h-mvs3389.30 14188.95 13890.36 19695.07 14676.04 28696.96 14697.11 3090.39 4892.22 8495.10 17174.70 17598.86 11993.14 8365.89 36196.16 192
MSDG80.62 29477.77 30489.14 22493.43 20277.24 26591.89 32290.18 36069.86 36568.02 34691.94 23752.21 34398.84 12059.32 36083.12 24291.35 260
Anonymous2024052983.15 25680.60 27690.80 18395.74 12378.27 23196.81 15894.92 21160.10 39781.89 22192.54 22345.82 36798.82 12179.25 23178.32 28395.31 214
test_yl91.46 9590.53 10594.24 4297.41 8385.18 6598.08 5297.72 1180.94 24489.85 11796.14 13575.61 15298.81 12290.42 12488.56 19598.74 42
DCV-MVSNet91.46 9590.53 10594.24 4297.41 8385.18 6598.08 5297.72 1180.94 24489.85 11796.14 13575.61 15298.81 12290.42 12488.56 19598.74 42
HPM-MVS_fast90.38 12490.17 11791.03 17697.61 7177.35 26497.15 12695.48 18279.51 27888.79 13896.90 11671.64 21698.81 12287.01 16497.44 7496.94 165
APD-MVScopyleft93.61 3893.59 3993.69 6498.76 2483.26 10697.21 11696.09 14082.41 22594.65 4998.21 3981.96 6598.81 12294.65 6198.36 4799.01 30
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
SR-MVS92.16 7792.27 6991.83 15098.37 4578.41 22796.67 16895.76 16582.19 22991.97 8898.07 5276.44 13898.64 12693.71 7297.27 8098.45 60
SR-MVS-dyc-post91.29 10091.45 8790.80 18397.76 6776.03 28796.20 19895.44 18680.56 25490.72 10997.84 6775.76 15198.61 12791.99 9996.79 9597.75 112
alignmvs92.97 4992.26 7095.12 2195.54 13087.77 2298.67 2996.38 11588.04 8593.01 7197.45 8879.20 9298.60 12893.25 8188.76 19098.99 33
OMC-MVS88.80 15388.16 15290.72 18695.30 13777.92 24694.81 26294.51 23986.80 11884.97 18096.85 11967.53 24198.60 12885.08 17487.62 20695.63 204
sasdasda92.27 7591.22 9195.41 1795.80 12188.31 1597.09 13494.64 23188.49 7292.99 7297.31 9572.68 20098.57 13093.38 7788.58 19399.36 16
canonicalmvs92.27 7591.22 9195.41 1795.80 12188.31 1597.09 13494.64 23188.49 7292.99 7297.31 9572.68 20098.57 13093.38 7788.58 19399.36 16
APD-MVS_3200maxsize91.23 10291.35 8890.89 18197.89 6276.35 28296.30 19295.52 17979.82 27291.03 10597.88 6674.70 17598.54 13292.11 9796.89 9197.77 111
IB-MVS85.34 488.67 15687.14 17893.26 8293.12 21284.32 8598.76 2697.27 2087.19 11179.36 24890.45 25783.92 5098.53 13384.41 17969.79 32896.93 166
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
114514_t88.79 15487.57 16692.45 11698.21 5381.74 13796.99 13995.45 18575.16 32782.48 20995.69 14668.59 23698.50 13480.33 21795.18 12197.10 160
FA-MVS(test-final)87.71 18386.23 19192.17 13394.19 17680.55 16887.16 36496.07 14382.12 23085.98 17088.35 28672.04 21198.49 13580.26 21989.87 17897.48 136
TSAR-MVS + MP.94.79 2095.17 1893.64 6697.66 6984.10 8995.85 21996.42 10991.26 3497.49 1296.80 12386.50 2998.49 13595.54 4899.03 1398.33 65
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
VDD-MVS88.28 16987.02 18192.06 13895.09 14480.18 18197.55 9294.45 24583.09 20789.10 13395.92 14147.97 35898.49 13593.08 8786.91 21297.52 133
MGCFI-Net91.95 8191.03 9794.72 3195.68 12586.38 3596.93 14994.48 24088.25 8092.78 7597.24 10172.34 20598.46 13893.13 8588.43 19799.32 19
test_fmvs1_n86.34 20286.72 18785.17 30787.54 33163.64 37796.91 15192.37 33087.49 10091.33 9995.58 15140.81 38698.46 13895.00 5693.49 14593.41 252
PatchMatch-RL85.00 22683.66 22989.02 22795.86 11874.55 30492.49 31493.60 29579.30 28379.29 24991.47 24058.53 30198.45 14070.22 31192.17 16494.07 239
F-COLMAP84.50 23583.44 23687.67 25795.22 14072.22 32295.95 21193.78 28675.74 32276.30 28295.18 16659.50 29398.45 14072.67 29386.59 21592.35 258
test_fmvs187.79 18088.52 14685.62 30092.98 21864.31 37297.88 6592.42 32887.95 8792.24 8395.82 14247.94 35998.44 14295.31 5394.09 13294.09 238
RPMNet79.85 29875.92 31891.64 15790.16 29279.75 19079.02 39795.44 18658.43 40282.27 21672.55 40073.03 19798.41 14346.10 39886.25 21896.75 176
FE-MVS86.06 20784.15 22391.78 15194.33 17379.81 18784.58 38296.61 8576.69 31785.00 17987.38 29970.71 22798.37 14470.39 31091.70 16897.17 158
balanced_conf0394.60 2394.30 2995.48 1696.45 10088.82 1496.33 19095.58 17491.12 3695.84 3293.87 20283.47 5398.37 14497.26 2798.81 2499.24 23
xiu_mvs_v1_base_debu90.54 11889.54 12993.55 7292.31 23487.58 2696.99 13994.87 21487.23 10893.27 6497.56 8457.43 31398.32 14692.72 8993.46 14794.74 227
xiu_mvs_v1_base90.54 11889.54 12993.55 7292.31 23487.58 2696.99 13994.87 21487.23 10893.27 6497.56 8457.43 31398.32 14692.72 8993.46 14794.74 227
xiu_mvs_v1_base_debi90.54 11889.54 12993.55 7292.31 23487.58 2696.99 13994.87 21487.23 10893.27 6497.56 8457.43 31398.32 14692.72 8993.46 14794.74 227
CPTT-MVS89.72 13389.87 12789.29 22298.33 4773.30 31397.70 7995.35 19475.68 32387.40 15497.44 9170.43 22898.25 14989.56 13596.90 9096.33 189
LFMVS89.27 14287.64 16194.16 4797.16 9285.52 5797.18 12094.66 22879.17 28689.63 12396.57 12955.35 33098.22 15089.52 13689.54 18098.74 42
PVSNet_077.72 1581.70 27978.95 29689.94 21090.77 28276.72 27695.96 21096.95 4285.01 15470.24 33988.53 28252.32 34198.20 15186.68 16644.08 40794.89 222
TAPA-MVS81.61 1285.02 22583.67 22889.06 22596.79 9673.27 31695.92 21394.79 22174.81 33080.47 23496.83 12071.07 22198.19 15249.82 39192.57 15695.71 203
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
UA-Net88.92 14888.48 14790.24 19994.06 18377.18 26893.04 30694.66 22887.39 10391.09 10393.89 20174.92 17298.18 15375.83 26791.43 16995.35 213
RRT-MVS89.67 13488.67 14292.67 10794.44 16981.08 15194.34 27194.45 24586.05 12985.79 17192.39 22563.39 26998.16 15493.22 8293.95 13898.76 41
UBG92.68 6492.35 6693.70 6395.61 12785.65 5397.25 11497.06 3487.92 8889.28 12995.03 17386.06 3398.07 15592.24 9490.69 17597.37 145
dcpmvs_293.10 4693.46 4492.02 14197.77 6579.73 19394.82 26193.86 27986.91 11591.33 9996.76 12485.20 3598.06 15696.90 3397.60 6998.27 72
BP-MVS193.55 4093.50 4293.71 6292.64 22885.39 5997.78 7296.84 5289.52 5892.00 8797.06 11288.21 2098.03 15791.45 10496.00 11297.70 117
testing1192.48 7092.04 7793.78 5595.94 11686.00 4097.56 9097.08 3287.52 9989.32 12895.40 15584.60 3998.02 15891.93 10189.04 18697.32 147
GDP-MVS92.85 5392.55 6393.75 5792.82 22185.76 4697.63 8295.05 20688.34 7793.15 6897.10 10986.92 2698.01 15987.95 15394.00 13697.47 137
thres20088.92 14887.65 16092.73 10596.30 10385.62 5597.85 6698.86 184.38 17284.82 18293.99 19975.12 17098.01 15970.86 30786.67 21394.56 232
cascas86.50 19984.48 21692.55 11492.64 22885.95 4197.04 13895.07 20575.32 32580.50 23391.02 24854.33 33797.98 16186.79 16587.62 20693.71 245
thres100view90088.30 16886.95 18292.33 12396.10 11084.90 7797.14 12798.85 282.69 21983.41 20093.66 20775.43 16097.93 16269.04 31586.24 22094.17 234
tfpn200view988.48 16287.15 17692.47 11596.21 10685.30 6397.44 10198.85 283.37 20283.99 19293.82 20375.36 16397.93 16269.04 31586.24 22094.17 234
gm-plane-assit92.27 23879.64 19684.47 17095.15 16897.93 16285.81 169
testdata90.13 20295.92 11774.17 30796.49 10373.49 34294.82 4897.99 5578.80 9997.93 16283.53 19597.52 7198.29 70
thres40088.42 16587.15 17692.23 12996.21 10685.30 6397.44 10198.85 283.37 20283.99 19293.82 20375.36 16397.93 16269.04 31586.24 22093.45 250
VDDNet86.44 20084.51 21492.22 13091.56 26281.83 13397.10 13394.64 23169.50 36687.84 15195.19 16548.01 35797.92 16789.82 13186.92 21196.89 169
testing9191.90 8491.31 9093.66 6595.99 11385.68 5097.39 10896.89 4786.75 12188.85 13795.23 16183.93 4997.90 16888.91 14087.89 20497.41 141
testing9991.91 8391.35 8893.60 6995.98 11485.70 4897.31 11296.92 4686.82 11788.91 13595.25 15884.26 4697.89 16988.80 14387.94 20397.21 155
thisisatest051590.95 11190.26 11293.01 9394.03 18684.27 8897.91 6396.67 7683.18 20586.87 16395.51 15388.66 1597.85 17080.46 21689.01 18796.92 168
thres600view788.06 17386.70 18892.15 13596.10 11085.17 6997.14 12798.85 282.70 21883.41 20093.66 20775.43 16097.82 17167.13 32485.88 22493.45 250
MVS_Test90.29 12589.18 13393.62 6895.23 13984.93 7694.41 26894.66 22884.31 17390.37 11591.02 24875.13 16997.82 17183.11 20094.42 13098.12 84
旧先验296.97 14474.06 33796.10 2897.76 17388.38 149
EIA-MVS91.73 8792.05 7690.78 18594.52 16376.40 28198.06 5595.34 19589.19 6288.90 13697.28 10077.56 11897.73 17490.77 11496.86 9498.20 76
MVSMamba_PlusPlus92.37 7491.55 8594.83 2795.37 13587.69 2495.60 23195.42 19074.65 33293.95 5892.81 21983.11 5697.70 17594.49 6398.53 3599.11 28
SDMVSNet87.02 19085.61 19691.24 17094.14 17983.30 10593.88 28695.98 14984.30 17579.63 24592.01 23158.23 30397.68 17690.28 12882.02 25692.75 253
thisisatest053089.65 13589.02 13591.53 16193.46 20180.78 16296.52 17496.67 7681.69 23783.79 19794.90 17888.85 1497.68 17677.80 24087.49 20996.14 193
BH-RMVSNet86.84 19485.28 20291.49 16395.35 13680.26 17796.95 14792.21 33182.86 21581.77 22495.46 15459.34 29597.64 17869.79 31393.81 14196.57 181
1112_ss88.60 15987.47 17092.00 14293.21 20680.97 15596.47 17892.46 32783.64 19980.86 23097.30 9880.24 7797.62 17977.60 24685.49 22897.40 143
casdiffmvs_mvgpermissive91.13 10490.45 10893.17 8792.99 21783.58 9997.46 10094.56 23787.69 9587.19 15994.98 17774.50 18097.60 18091.88 10292.79 15498.34 64
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Test_1112_low_res88.03 17486.73 18691.94 14493.15 20980.88 15996.44 18192.41 32983.59 20180.74 23291.16 24680.18 7897.59 18177.48 24985.40 22997.36 146
tttt051788.57 16088.19 15189.71 21893.00 21475.99 29095.67 22696.67 7680.78 24881.82 22294.40 18888.97 1397.58 18276.05 26586.31 21795.57 206
ECVR-MVScopyleft88.35 16787.25 17491.65 15693.54 19579.40 20096.56 17390.78 35686.78 11985.57 17395.25 15857.25 31797.56 18384.73 17894.80 12497.98 95
lupinMVS93.87 3693.58 4094.75 3093.00 21488.08 1999.15 895.50 18191.03 3994.90 4497.66 7578.84 9797.56 18394.64 6297.46 7298.62 52
XVG-OURS85.18 22384.38 21887.59 26190.42 28871.73 33391.06 33394.07 26882.00 23383.29 20295.08 17256.42 32497.55 18583.70 19183.42 24093.49 249
TR-MVS86.30 20384.93 21190.42 19494.63 15877.58 25996.57 17193.82 28180.30 26282.42 21195.16 16758.74 29997.55 18574.88 27587.82 20596.13 194
test_vis1_rt73.96 33872.40 34178.64 36483.91 37261.16 38895.63 22968.18 41776.32 31860.09 38574.77 39129.01 40697.54 18787.74 15575.94 29077.22 400
casdiffmvspermissive90.95 11190.39 10992.63 11192.82 22182.53 11696.83 15594.47 24387.69 9588.47 14395.56 15274.04 18697.54 18790.90 11192.74 15597.83 106
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
XVG-OURS-SEG-HR85.74 21385.16 20687.49 26790.22 29071.45 33691.29 33094.09 26781.37 23983.90 19695.22 16260.30 28897.53 18985.58 17184.42 23593.50 248
baseline90.76 11490.10 11892.74 10492.90 22082.56 11594.60 26594.56 23787.69 9589.06 13495.67 14773.76 18997.51 19090.43 12392.23 16398.16 79
test250690.96 11090.39 10992.65 10993.54 19582.46 11996.37 18697.35 1786.78 11987.55 15395.25 15877.83 11597.50 19184.07 18294.80 12497.98 95
ETV-MVS92.72 5892.87 5492.28 12794.54 16281.89 13097.98 5995.21 20089.77 5693.11 6996.83 12077.23 12697.50 19195.74 4495.38 12097.44 139
Effi-MVS+90.70 11589.90 12693.09 9093.61 19283.48 10195.20 24792.79 32483.22 20491.82 9195.70 14571.82 21397.48 19391.25 10693.67 14398.32 66
baseline290.39 12290.21 11590.93 17890.86 27980.99 15495.20 24797.41 1686.03 13180.07 24294.61 18490.58 697.47 19487.29 16089.86 17994.35 233
diffmvspermissive91.17 10390.74 10192.44 11893.11 21382.50 11896.25 19593.62 29487.79 9290.40 11495.93 13973.44 19497.42 19593.62 7492.55 15797.41 141
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
tpmvs83.04 25980.77 27289.84 21395.43 13277.96 24385.59 37595.32 19675.31 32676.27 28383.70 35573.89 18797.41 19659.53 35781.93 25894.14 236
tt080581.20 28779.06 29587.61 25986.50 33872.97 31993.66 28995.48 18274.11 33576.23 28491.99 23341.36 38297.40 19777.44 25074.78 29792.45 256
test111188.11 17287.04 18091.35 16593.15 20978.79 21896.57 17190.78 35686.88 11685.04 17895.20 16457.23 31897.39 19883.88 18494.59 12797.87 102
PMMVS89.46 13889.92 12588.06 24994.64 15769.57 35096.22 19694.95 20987.27 10791.37 9896.54 13065.88 25397.39 19888.54 14593.89 13997.23 152
PAPM92.87 5292.40 6594.30 3992.25 24187.85 2196.40 18596.38 11591.07 3888.72 14196.90 11682.11 6397.37 20090.05 12997.70 6697.67 119
HQP4-MVS82.30 21297.32 20191.13 261
HQP-MVS87.91 17887.55 16788.98 22892.08 25078.48 22397.63 8294.80 21990.52 4582.30 21294.56 18565.40 25797.32 20187.67 15783.01 24491.13 261
HQP_MVS87.50 18687.09 17988.74 23391.86 25977.96 24397.18 12094.69 22489.89 5481.33 22594.15 19564.77 26297.30 20387.08 16182.82 24890.96 263
plane_prior594.69 22497.30 20387.08 16182.82 24890.96 263
jason92.73 5692.23 7194.21 4490.50 28687.30 2998.65 3095.09 20390.61 4492.76 7697.13 10675.28 16797.30 20393.32 7996.75 9798.02 88
jason: jason.
CLD-MVS87.97 17687.48 16989.44 22092.16 24680.54 17098.14 4694.92 21191.41 3279.43 24795.40 15562.34 27497.27 20690.60 11882.90 24790.50 268
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
OPM-MVS85.84 21085.10 20888.06 24988.34 32177.83 25095.72 22494.20 26087.89 9180.45 23594.05 19758.57 30097.26 20783.88 18482.76 25089.09 298
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
BH-w/o88.24 17087.47 17090.54 19295.03 14978.54 22297.41 10693.82 28184.08 18278.23 25894.51 18769.34 23497.21 20880.21 22194.58 12895.87 199
Vis-MVSNetpermissive88.67 15687.82 15791.24 17092.68 22478.82 21596.95 14793.85 28087.55 9887.07 16195.13 16963.43 26897.21 20877.58 24796.15 10697.70 117
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test_vis1_n85.60 21685.70 19585.33 30484.79 36264.98 37096.83 15591.61 34187.36 10491.00 10694.84 18036.14 39397.18 21095.66 4593.03 15293.82 243
AllTest75.92 33073.06 33884.47 31892.18 24467.29 35891.07 33284.43 39467.63 37163.48 36790.18 26138.20 38997.16 21157.04 36873.37 30388.97 306
TestCases84.47 31892.18 24467.29 35884.43 39467.63 37163.48 36790.18 26138.20 38997.16 21157.04 36873.37 30388.97 306
ACMH75.40 1777.99 31474.96 32287.10 27690.67 28376.41 28093.19 30591.64 34072.47 35163.44 36987.61 29743.34 37397.16 21158.34 36273.94 30087.72 331
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
SPE-MVS-test92.98 4893.67 3790.90 18096.52 9976.87 27298.68 2894.73 22390.36 5094.84 4697.89 6577.94 11197.15 21494.28 6797.80 6498.70 48
ACMM80.70 1383.72 24782.85 24486.31 28891.19 27072.12 32695.88 21694.29 25580.44 25777.02 27091.96 23555.24 33197.14 21579.30 23080.38 26389.67 284
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
EPP-MVSNet89.76 13289.72 12889.87 21293.78 18876.02 28997.22 11596.51 9879.35 28085.11 17795.01 17584.82 3797.10 21687.46 15988.21 20196.50 182
tpm cat183.63 24881.38 26590.39 19593.53 20078.19 23885.56 37695.09 20370.78 35978.51 25483.28 35974.80 17497.03 21766.77 32584.05 23695.95 196
mmtdpeth78.04 31376.76 31281.86 34589.60 30566.12 36792.34 31887.18 38076.83 31685.55 17476.49 38846.77 36497.02 21890.85 11245.24 40482.43 385
CS-MVS92.73 5693.48 4390.48 19396.27 10475.93 29298.55 3494.93 21089.32 6094.54 5197.67 7478.91 9697.02 21893.80 7097.32 7998.49 57
BH-untuned86.95 19285.94 19389.99 20694.52 16377.46 26196.78 16093.37 30781.80 23476.62 27693.81 20566.64 24997.02 21876.06 26493.88 14095.48 210
sd_testset84.62 23183.11 23989.17 22394.14 17977.78 25291.54 32994.38 25184.30 17579.63 24592.01 23152.28 34296.98 22177.67 24582.02 25692.75 253
LTVRE_ROB73.68 1877.99 31475.74 31984.74 31190.45 28772.02 32786.41 37091.12 34872.57 35066.63 35587.27 30154.95 33496.98 22156.29 37275.98 28985.21 367
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
TESTMET0.1,189.83 13189.34 13291.31 16692.54 23180.19 18097.11 13096.57 9286.15 12586.85 16491.83 23979.32 8896.95 22381.30 21192.35 16196.77 174
LPG-MVS_test84.20 23983.49 23586.33 28590.88 27673.06 31795.28 24194.13 26482.20 22776.31 28093.20 21354.83 33596.95 22383.72 18980.83 26188.98 304
LGP-MVS_train86.33 28590.88 27673.06 31794.13 26482.20 22776.31 28093.20 21354.83 33596.95 22383.72 18980.83 26188.98 304
COLMAP_ROBcopyleft73.24 1975.74 33273.00 33983.94 32492.38 23269.08 35291.85 32386.93 38261.48 39065.32 36290.27 26042.27 37896.93 22650.91 38775.63 29385.80 364
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
baseline188.85 15187.49 16892.93 9795.21 14186.85 3195.47 23694.61 23487.29 10583.11 20594.99 17680.70 7196.89 22782.28 20673.72 30195.05 219
ACMP81.66 1184.00 24283.22 23886.33 28591.53 26572.95 32095.91 21593.79 28583.70 19773.79 30692.22 22854.31 33896.89 22783.98 18379.74 26689.16 296
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
CostFormer89.08 14488.39 14891.15 17393.13 21179.15 20888.61 35096.11 13983.14 20689.58 12486.93 30883.83 5196.87 22988.22 15185.92 22397.42 140
EC-MVSNet91.73 8792.11 7490.58 18993.54 19577.77 25398.07 5494.40 25087.44 10192.99 7297.11 10874.59 17996.87 22993.75 7197.08 8597.11 159
USDC78.65 30976.25 31585.85 29387.58 32974.60 30389.58 34290.58 35984.05 18363.13 37188.23 28840.69 38796.86 23166.57 32975.81 29286.09 358
MS-PatchMatch83.05 25881.82 25986.72 28389.64 30379.10 21094.88 26094.59 23679.70 27570.67 33589.65 26850.43 34996.82 23270.82 30995.99 11384.25 373
HyFIR lowres test89.36 13988.60 14491.63 15994.91 15280.76 16395.60 23195.53 17782.56 22284.03 19191.24 24578.03 11096.81 23387.07 16388.41 19897.32 147
RPSCF77.73 31876.63 31381.06 35088.66 31755.76 40187.77 35987.88 37864.82 38074.14 30592.79 22149.22 35496.81 23367.47 32276.88 28790.62 266
test-LLR88.48 16287.98 15489.98 20792.26 23977.23 26697.11 13095.96 15183.76 19586.30 16791.38 24272.30 20796.78 23580.82 21391.92 16595.94 197
test-mter88.95 14688.60 14489.98 20792.26 23977.23 26697.11 13095.96 15185.32 14486.30 16791.38 24276.37 14196.78 23580.82 21391.92 16595.94 197
tpmrst88.36 16687.38 17291.31 16694.36 17279.92 18587.32 36295.26 19985.32 14488.34 14686.13 32580.60 7396.70 23783.78 18685.34 23197.30 150
Fast-Effi-MVS+87.93 17786.94 18390.92 17994.04 18479.16 20798.26 4293.72 29081.29 24083.94 19592.90 21869.83 23296.68 23876.70 25791.74 16796.93 166
AUN-MVS86.25 20585.57 19788.26 24493.57 19473.38 31195.45 23795.88 15983.94 18885.47 17594.21 19373.70 19296.67 23983.54 19464.41 36594.73 230
hse-mvs288.22 17188.21 15088.25 24593.54 19573.41 31095.41 23995.89 15890.39 4892.22 8494.22 19274.70 17596.66 24093.14 8364.37 36694.69 231
testing22291.09 10590.49 10792.87 9895.82 11985.04 7296.51 17697.28 1986.05 12989.13 13195.34 15780.16 8096.62 24185.82 16888.31 19996.96 164
MDTV_nov1_ep1383.69 22794.09 18281.01 15386.78 36796.09 14083.81 19384.75 18484.32 34974.44 18196.54 24263.88 34185.07 232
XXY-MVS83.84 24482.00 25689.35 22187.13 33381.38 14595.72 22494.26 25680.15 26675.92 29090.63 25461.96 28096.52 24378.98 23473.28 30690.14 275
ACMH+76.62 1677.47 32174.94 32385.05 30891.07 27471.58 33593.26 30290.01 36171.80 35464.76 36488.55 28041.62 38096.48 24462.35 34871.00 31687.09 345
GA-MVS85.79 21284.04 22591.02 17789.47 30880.27 17696.90 15294.84 21785.57 13880.88 22989.08 27256.56 32396.47 24577.72 24385.35 23096.34 187
tpm287.35 18886.26 19090.62 18892.93 21978.67 22088.06 35795.99 14879.33 28187.40 15486.43 31980.28 7696.40 24680.23 22085.73 22796.79 172
dp84.30 23882.31 25190.28 19894.24 17577.97 24286.57 36895.53 17779.94 27180.75 23185.16 34071.49 21896.39 24763.73 34283.36 24196.48 183
ETVMVS90.99 10890.26 11293.19 8695.81 12085.64 5496.97 14497.18 2585.43 14188.77 14094.86 17982.00 6496.37 24882.70 20388.60 19297.57 127
nrg03086.79 19685.43 19990.87 18288.76 31385.34 6097.06 13794.33 25484.31 17380.45 23591.98 23472.36 20496.36 24988.48 14871.13 31590.93 265
CMPMVSbinary54.94 2175.71 33374.56 32879.17 36179.69 38655.98 39889.59 34193.30 30960.28 39553.85 39989.07 27347.68 36296.33 25076.55 25881.02 25985.22 366
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
VPA-MVSNet85.32 22183.83 22689.77 21790.25 28982.63 11496.36 18797.07 3383.03 21081.21 22789.02 27461.58 28296.31 25185.02 17670.95 31790.36 269
XVG-ACMP-BASELINE79.38 30577.90 30383.81 32584.98 36167.14 36489.03 34693.18 31480.26 26572.87 31988.15 29038.55 38896.26 25276.05 26578.05 28488.02 327
EPMVS87.47 18785.90 19492.18 13295.41 13382.26 12387.00 36596.28 12485.88 13484.23 18985.57 33275.07 17196.26 25271.14 30592.50 15898.03 87
reproduce_monomvs87.80 17987.60 16588.40 23996.56 9880.26 17795.80 22296.32 12291.56 3173.60 30788.36 28588.53 1696.25 25490.47 12067.23 35488.67 311
IS-MVSNet88.67 15688.16 15290.20 20193.61 19276.86 27396.77 16293.07 31984.02 18483.62 19995.60 15074.69 17896.24 25578.43 23993.66 14497.49 135
GG-mvs-BLEND93.49 7694.94 15086.26 3681.62 39097.00 3788.32 14794.30 19091.23 596.21 25688.49 14797.43 7598.00 93
dmvs_re84.10 24082.90 24287.70 25691.41 26773.28 31490.59 33693.19 31285.02 15377.96 26293.68 20657.92 31196.18 25775.50 27080.87 26093.63 246
GeoE86.36 20185.20 20389.83 21493.17 20876.13 28497.53 9392.11 33279.58 27780.99 22894.01 19866.60 25096.17 25873.48 28989.30 18297.20 157
gg-mvs-nofinetune85.48 22082.90 24293.24 8394.51 16685.82 4579.22 39596.97 4061.19 39287.33 15653.01 41190.58 696.07 25986.07 16797.23 8197.81 109
v2v48283.46 25081.86 25888.25 24586.19 34479.65 19596.34 18994.02 27081.56 23877.32 26688.23 28865.62 25496.03 26077.77 24169.72 33089.09 298
V4283.04 25981.53 26387.57 26386.27 34379.09 21195.87 21794.11 26680.35 26177.22 26886.79 31165.32 25996.02 26177.74 24270.14 32287.61 335
VPNet84.69 23082.92 24190.01 20589.01 31283.45 10296.71 16595.46 18485.71 13679.65 24492.18 23056.66 32296.01 26283.05 20167.84 34890.56 267
test_post33.80 41876.17 14495.97 263
EI-MVSNet85.80 21185.20 20387.59 26191.55 26377.41 26295.13 25195.36 19280.43 25980.33 23794.71 18273.72 19095.97 26376.96 25578.64 27789.39 286
MVSTER89.25 14388.92 13990.24 19995.98 11484.66 8096.79 15995.36 19287.19 11180.33 23790.61 25590.02 1195.97 26385.38 17378.64 27790.09 278
PatchmatchNetpermissive86.83 19585.12 20791.95 14394.12 18182.27 12286.55 36995.64 17284.59 16682.98 20784.99 34477.26 12295.96 26668.61 31891.34 17097.64 122
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
TinyColmap72.41 34868.99 35782.68 33888.11 32369.59 34988.41 35185.20 39065.55 37757.91 39184.82 34630.80 40495.94 26751.38 38468.70 33782.49 384
v114482.90 26281.27 26787.78 25586.29 34279.07 21296.14 20393.93 27280.05 26877.38 26486.80 31065.50 25595.93 26875.21 27370.13 32388.33 322
v14419282.43 26880.73 27387.54 26485.81 35178.22 23395.98 20993.78 28679.09 28877.11 26986.49 31564.66 26495.91 26974.20 28369.42 33188.49 316
v119282.31 27280.55 27787.60 26085.94 34878.47 22695.85 21993.80 28479.33 28176.97 27186.51 31463.33 27095.87 27073.11 29070.13 32388.46 318
v124081.70 27979.83 28987.30 27285.50 35377.70 25895.48 23593.44 30078.46 29776.53 27786.44 31760.85 28695.84 27171.59 29970.17 32188.35 321
v192192082.02 27580.23 28187.41 26885.62 35277.92 24695.79 22393.69 29178.86 29276.67 27486.44 31762.50 27395.83 27272.69 29269.77 32988.47 317
v881.88 27780.06 28587.32 27086.63 33779.04 21394.41 26893.65 29378.77 29373.19 31685.57 33266.87 24795.81 27373.84 28767.61 35087.11 344
D2MVS82.67 26581.55 26286.04 29287.77 32776.47 27895.21 24696.58 9182.66 22070.26 33885.46 33560.39 28795.80 27476.40 26179.18 27285.83 363
mvsmamba90.53 12190.08 11991.88 14694.81 15480.93 15793.94 28494.45 24588.24 8187.02 16292.35 22668.04 23795.80 27494.86 5797.03 8798.92 34
WBMVS87.73 18186.79 18490.56 19095.61 12785.68 5097.63 8295.52 17983.77 19478.30 25788.44 28486.14 3295.78 27682.54 20473.15 30790.21 273
PS-MVSNAJss84.91 22784.30 21986.74 27985.89 35074.40 30694.95 25894.16 26383.93 18976.45 27890.11 26571.04 22295.77 27783.16 19979.02 27490.06 280
MVP-Stereo82.65 26681.67 26185.59 30186.10 34778.29 23093.33 29892.82 32377.75 30369.17 34587.98 29259.28 29695.76 27871.77 29796.88 9282.73 381
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
tfpnnormal78.14 31275.42 32086.31 28888.33 32279.24 20494.41 26896.22 13073.51 34069.81 34185.52 33455.43 32995.75 27947.65 39667.86 34783.95 376
v14882.41 27180.89 27086.99 27786.18 34576.81 27496.27 19393.82 28180.49 25675.28 29886.11 32667.32 24495.75 27975.48 27167.03 35788.42 320
v1081.43 28379.53 29187.11 27586.38 33978.87 21494.31 27393.43 30277.88 30173.24 31585.26 33665.44 25695.75 27972.14 29667.71 34986.72 348
TAMVS88.48 16287.79 15890.56 19091.09 27379.18 20696.45 18095.88 15983.64 19983.12 20493.33 21275.94 14895.74 28282.40 20588.27 20096.75 176
cl2285.11 22484.17 22287.92 25295.06 14878.82 21595.51 23494.22 25979.74 27476.77 27387.92 29375.96 14795.68 28379.93 22472.42 30989.27 293
UniMVSNet_ETH3D80.86 29178.75 29787.22 27486.31 34172.02 32791.95 32093.76 28973.51 34075.06 30090.16 26343.04 37695.66 28476.37 26278.55 28093.98 240
Anonymous2023121179.72 30077.19 30887.33 26995.59 12977.16 26995.18 25094.18 26259.31 40072.57 32286.20 32447.89 36095.66 28474.53 28169.24 33489.18 295
CHOSEN 280x42091.71 9091.85 7891.29 16894.94 15082.69 11387.89 35896.17 13585.94 13287.27 15794.31 18990.27 895.65 28694.04 6995.86 11495.53 208
CDS-MVSNet89.50 13788.96 13791.14 17491.94 25880.93 15797.09 13495.81 16384.26 17884.72 18594.20 19480.31 7595.64 28783.37 19788.96 18896.85 171
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MVS-HIRNet71.36 35567.00 36184.46 32090.58 28469.74 34879.15 39687.74 37946.09 40861.96 37850.50 41245.14 36895.64 28753.74 38088.11 20288.00 328
v7n79.32 30677.34 30685.28 30584.05 37172.89 32193.38 29693.87 27875.02 32970.68 33484.37 34859.58 29295.62 28967.60 32067.50 35187.32 343
Effi-MVS+-dtu84.61 23284.90 21283.72 32991.96 25663.14 38094.95 25893.34 30885.57 13879.79 24387.12 30561.99 27995.61 29083.55 19385.83 22592.41 257
JIA-IIPM79.00 30877.20 30784.40 32189.74 30164.06 37575.30 40595.44 18662.15 38681.90 22059.08 40978.92 9595.59 29166.51 33085.78 22693.54 247
Fast-Effi-MVS+-dtu83.33 25282.60 24885.50 30289.55 30669.38 35196.09 20691.38 34382.30 22675.96 28991.41 24156.71 32095.58 29275.13 27484.90 23391.54 259
EG-PatchMatch MVS74.92 33572.02 34383.62 33083.76 37573.28 31493.62 29192.04 33468.57 36958.88 38883.80 35431.87 40295.57 29356.97 37078.67 27682.00 389
UniMVSNet (Re)85.31 22284.23 22088.55 23689.75 29980.55 16896.72 16396.89 4785.42 14278.40 25588.93 27575.38 16295.52 29478.58 23768.02 34589.57 285
OpenMVS_ROBcopyleft68.52 2073.02 34669.57 35383.37 33380.54 38471.82 33193.60 29288.22 37662.37 38561.98 37783.15 36035.31 39795.47 29545.08 40075.88 29182.82 379
miper_enhance_ethall85.95 20985.20 20388.19 24894.85 15379.76 18996.00 20894.06 26982.98 21277.74 26388.76 27779.42 8795.46 29680.58 21572.42 30989.36 291
patchmatchnet-post77.09 38777.78 11695.39 297
SCA85.63 21583.64 23091.60 16092.30 23781.86 13292.88 31095.56 17684.85 15782.52 20885.12 34258.04 30695.39 29773.89 28587.58 20897.54 128
jajsoiax82.12 27481.15 26985.03 30984.19 36870.70 34094.22 27893.95 27183.07 20873.48 30989.75 26749.66 35395.37 29982.24 20779.76 26489.02 302
mvs_anonymous88.68 15587.62 16391.86 14794.80 15581.69 14093.53 29494.92 21182.03 23278.87 25390.43 25875.77 15095.34 30085.04 17593.16 15198.55 56
ITE_SJBPF82.38 34087.00 33465.59 36889.55 36479.99 27069.37 34391.30 24441.60 38195.33 30162.86 34774.63 29986.24 355
eth_miper_zixun_eth83.12 25782.01 25586.47 28491.85 26174.80 30094.33 27293.18 31479.11 28775.74 29487.25 30372.71 19995.32 30276.78 25667.13 35589.27 293
mvs_tets81.74 27880.71 27484.84 31084.22 36770.29 34393.91 28593.78 28682.77 21773.37 31289.46 27047.36 36395.31 30381.99 20879.55 27088.92 308
FIs86.73 19886.10 19288.61 23590.05 29580.21 17996.14 20396.95 4285.56 14078.37 25692.30 22776.73 13495.28 30479.51 22679.27 27190.35 270
pm-mvs180.05 29778.02 30286.15 29085.42 35475.81 29495.11 25392.69 32677.13 31170.36 33787.43 29858.44 30295.27 30571.36 30164.25 36787.36 342
miper_ehance_all_eth84.57 23383.60 23287.50 26592.64 22878.25 23295.40 24093.47 29979.28 28476.41 27987.64 29676.53 13695.24 30678.58 23772.42 30989.01 303
ADS-MVSNet81.26 28578.36 29889.96 20993.78 18879.78 18879.48 39393.60 29573.09 34580.14 23979.99 37762.15 27695.24 30659.49 35883.52 23894.85 224
cl____83.27 25382.12 25386.74 27992.20 24275.95 29195.11 25393.27 31078.44 29874.82 30187.02 30774.19 18395.19 30874.67 27869.32 33289.09 298
DIV-MVS_self_test83.27 25382.12 25386.74 27992.19 24375.92 29395.11 25393.26 31178.44 29874.81 30287.08 30674.19 18395.19 30874.66 27969.30 33389.11 297
IterMVS-LS83.93 24382.80 24587.31 27191.46 26677.39 26395.66 22793.43 30280.44 25775.51 29587.26 30273.72 19095.16 31076.99 25370.72 31989.39 286
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
UniMVSNet_NR-MVSNet85.49 21984.59 21388.21 24789.44 30979.36 20196.71 16596.41 11085.22 14778.11 25990.98 25076.97 12995.14 31179.14 23268.30 34290.12 276
DU-MVS84.57 23383.33 23788.28 24388.76 31379.36 20196.43 18395.41 19185.42 14278.11 25990.82 25167.61 23895.14 31179.14 23268.30 34290.33 271
c3_l83.80 24582.65 24787.25 27392.10 24977.74 25795.25 24493.04 32078.58 29576.01 28787.21 30475.25 16895.11 31377.54 24868.89 33688.91 309
MVSFormer91.36 9890.57 10493.73 6093.00 21488.08 1994.80 26394.48 24080.74 24994.90 4497.13 10678.84 9795.10 31483.77 18797.46 7298.02 88
test_djsdf83.00 26182.45 25084.64 31584.07 37069.78 34794.80 26394.48 24080.74 24975.41 29787.70 29561.32 28595.10 31483.77 18779.76 26489.04 301
test_post185.88 37430.24 42173.77 18895.07 31673.89 285
pmmvs482.54 26780.79 27187.79 25486.11 34680.49 17293.55 29393.18 31477.29 30973.35 31389.40 27165.26 26095.05 31775.32 27273.61 30287.83 330
anonymousdsp80.98 29079.97 28684.01 32381.73 38070.44 34292.49 31493.58 29777.10 31372.98 31886.31 32157.58 31294.90 31879.32 22978.63 27986.69 349
NR-MVSNet83.35 25181.52 26488.84 23088.76 31381.31 14794.45 26795.16 20184.65 16467.81 34790.82 25170.36 22994.87 31974.75 27666.89 35890.33 271
WR-MVS84.32 23782.96 24088.41 23889.38 31080.32 17396.59 17096.25 12783.97 18676.63 27590.36 25967.53 24194.86 32075.82 26870.09 32690.06 280
pmmvs674.65 33771.67 34483.60 33179.13 38869.94 34593.31 30190.88 35561.05 39465.83 35984.15 35143.43 37294.83 32166.62 32760.63 37686.02 359
MonoMVSNet85.68 21484.22 22190.03 20488.43 32077.83 25092.95 30991.46 34287.28 10678.11 25985.96 32766.31 25294.81 32290.71 11676.81 28897.46 138
UWE-MVS88.56 16188.91 14087.50 26594.17 17772.19 32495.82 22197.05 3584.96 15684.78 18393.51 21181.33 6694.75 32379.43 22889.17 18395.57 206
FC-MVSNet-test85.96 20885.39 20087.66 25889.38 31078.02 24095.65 22896.87 4985.12 15177.34 26591.94 23776.28 14394.74 32477.09 25278.82 27590.21 273
WB-MVSnew84.08 24183.51 23485.80 29491.34 26876.69 27795.62 23096.27 12581.77 23581.81 22392.81 21958.23 30394.70 32566.66 32687.06 21085.99 360
Vis-MVSNet (Re-imp)88.88 15088.87 14188.91 22993.89 18774.43 30596.93 14994.19 26184.39 17183.22 20395.67 14778.24 10694.70 32578.88 23594.40 13197.61 125
tpm85.55 21784.47 21788.80 23290.19 29175.39 29788.79 34894.69 22484.83 15883.96 19485.21 33878.22 10794.68 32776.32 26378.02 28596.34 187
TranMVSNet+NR-MVSNet83.24 25581.71 26087.83 25387.71 32878.81 21796.13 20594.82 21884.52 16776.18 28690.78 25364.07 26594.60 32874.60 28066.59 36090.09 278
Patchmatch-test78.25 31174.72 32688.83 23191.20 26974.10 30873.91 40888.70 37559.89 39866.82 35385.12 34278.38 10494.54 32948.84 39479.58 26997.86 103
mvsany_test187.58 18588.22 14985.67 29889.78 29867.18 36095.25 24487.93 37783.96 18788.79 13897.06 11272.52 20294.53 33092.21 9586.45 21695.30 215
FMVSNet384.71 22982.71 24690.70 18794.55 16187.71 2395.92 21394.67 22781.73 23675.82 29188.08 29166.99 24694.47 33171.23 30275.38 29489.91 282
pmmvs581.34 28479.54 29086.73 28285.02 36076.91 27196.22 19691.65 33977.65 30473.55 30888.61 27955.70 32894.43 33274.12 28473.35 30588.86 310
Baseline_NR-MVSNet81.22 28680.07 28484.68 31385.32 35875.12 29996.48 17788.80 37276.24 32177.28 26786.40 32067.61 23894.39 33375.73 26966.73 35984.54 370
FMVSNet282.79 26380.44 27889.83 21492.66 22585.43 5895.42 23894.35 25279.06 28974.46 30387.28 30056.38 32594.31 33469.72 31474.68 29889.76 283
SixPastTwentyTwo76.04 32974.32 33081.22 34884.54 36461.43 38791.16 33189.30 36877.89 30064.04 36686.31 32148.23 35594.29 33563.54 34463.84 36987.93 329
mamv485.50 21886.76 18581.72 34693.23 20554.93 40389.95 34092.94 32169.96 36379.00 25092.20 22980.69 7294.22 33692.06 9890.77 17396.01 195
TDRefinement69.20 36265.78 36679.48 35866.04 41362.21 38388.21 35286.12 38762.92 38361.03 38285.61 33133.23 39994.16 33755.82 37553.02 39082.08 388
TransMVSNet (Re)76.94 32574.38 32984.62 31685.92 34975.25 29895.28 24189.18 36973.88 33867.22 34886.46 31659.64 29094.10 33859.24 36152.57 39284.50 371
OurMVSNet-221017-077.18 32476.06 31680.55 35383.78 37460.00 39190.35 33791.05 35177.01 31566.62 35687.92 29347.73 36194.03 33971.63 29868.44 34087.62 334
EPNet_dtu87.65 18487.89 15586.93 27894.57 15971.37 33896.72 16396.50 10088.56 7187.12 16095.02 17475.91 14994.01 34066.62 32790.00 17795.42 211
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
mvs5depth71.40 35468.36 35980.54 35475.31 40365.56 36979.94 39285.14 39169.11 36871.75 32781.59 36641.02 38493.94 34160.90 35550.46 39482.10 387
lessismore_v079.98 35680.59 38358.34 39580.87 40358.49 38983.46 35743.10 37593.89 34263.11 34648.68 39787.72 331
GBi-Net82.42 26980.43 27988.39 24092.66 22581.95 12594.30 27493.38 30479.06 28975.82 29185.66 32856.38 32593.84 34371.23 30275.38 29489.38 288
test182.42 26980.43 27988.39 24092.66 22581.95 12594.30 27493.38 30479.06 28975.82 29185.66 32856.38 32593.84 34371.23 30275.38 29489.38 288
FMVSNet179.50 30376.54 31488.39 24088.47 31881.95 12594.30 27493.38 30473.14 34472.04 32685.66 32843.86 37093.84 34365.48 33472.53 30889.38 288
test_040272.68 34769.54 35482.09 34388.67 31671.81 33292.72 31286.77 38561.52 38962.21 37683.91 35343.22 37493.76 34634.60 40872.23 31280.72 395
CR-MVSNet83.53 24981.36 26690.06 20390.16 29279.75 19079.02 39791.12 34884.24 17982.27 21680.35 37475.45 15893.67 34763.37 34586.25 21896.75 176
ET-MVSNet_ETH3D90.01 12889.03 13492.95 9594.38 17186.77 3298.14 4696.31 12389.30 6163.33 37096.72 12790.09 1093.63 34890.70 11782.29 25598.46 59
Patchmtry77.36 32274.59 32785.67 29889.75 29975.75 29577.85 40091.12 34860.28 39571.23 33080.35 37475.45 15893.56 34957.94 36367.34 35387.68 333
test_fmvs279.59 30179.90 28878.67 36382.86 37755.82 40095.20 24789.55 36481.09 24280.12 24189.80 26634.31 39893.51 35087.82 15478.36 28286.69 349
miper_lstm_enhance81.66 28180.66 27584.67 31491.19 27071.97 32991.94 32193.19 31277.86 30272.27 32485.26 33673.46 19393.42 35173.71 28867.05 35688.61 312
PatchT79.75 29976.85 31188.42 23789.55 30675.49 29677.37 40194.61 23463.07 38282.46 21073.32 39775.52 15793.41 35251.36 38584.43 23496.36 185
ppachtmachnet_test77.19 32374.22 33186.13 29185.39 35578.22 23393.98 28191.36 34571.74 35567.11 35084.87 34556.67 32193.37 35352.21 38364.59 36486.80 347
our_test_377.90 31775.37 32185.48 30385.39 35576.74 27593.63 29091.67 33873.39 34365.72 36084.65 34758.20 30593.13 35457.82 36467.87 34686.57 351
LCM-MVSNet-Re83.75 24683.54 23384.39 32293.54 19564.14 37492.51 31384.03 39783.90 19066.14 35886.59 31367.36 24392.68 35584.89 17792.87 15396.35 186
WR-MVS_H81.02 28880.09 28283.79 32688.08 32471.26 33994.46 26696.54 9580.08 26772.81 32086.82 30970.36 22992.65 35664.18 33967.50 35187.46 341
ambc76.02 37568.11 41051.43 40564.97 41389.59 36360.49 38374.49 39317.17 41292.46 35761.50 35152.85 39184.17 374
PEN-MVS79.47 30478.26 30083.08 33586.36 34068.58 35493.85 28794.77 22279.76 27371.37 32888.55 28059.79 28992.46 35764.50 33865.40 36288.19 324
CP-MVSNet81.01 28980.08 28383.79 32687.91 32670.51 34194.29 27795.65 17180.83 24672.54 32388.84 27663.71 26692.32 35968.58 31968.36 34188.55 313
LF4IMVS72.36 34970.82 34776.95 37179.18 38756.33 39786.12 37286.11 38869.30 36763.06 37286.66 31233.03 40092.25 36065.33 33568.64 33882.28 386
PS-CasMVS80.27 29679.18 29283.52 33287.56 33069.88 34694.08 28095.29 19780.27 26472.08 32588.51 28359.22 29792.23 36167.49 32168.15 34488.45 319
DTE-MVSNet78.37 31077.06 30982.32 34285.22 35967.17 36393.40 29593.66 29278.71 29470.53 33688.29 28759.06 29892.23 36161.38 35263.28 37187.56 337
UnsupCasMVSNet_bld68.60 36464.50 36880.92 35174.63 40467.80 35683.97 38492.94 32165.12 37954.63 39868.23 40535.97 39492.17 36360.13 35644.83 40582.78 380
KD-MVS_2432*160077.63 31974.92 32485.77 29590.86 27979.44 19888.08 35593.92 27476.26 31967.05 35182.78 36172.15 20991.92 36461.53 34941.62 41085.94 361
miper_refine_blended77.63 31974.92 32485.77 29590.86 27979.44 19888.08 35593.92 27476.26 31967.05 35182.78 36172.15 20991.92 36461.53 34941.62 41085.94 361
test_vis3_rt54.10 37651.04 37963.27 39258.16 41646.08 41384.17 38349.32 42756.48 40536.56 41149.48 4148.03 42391.91 36667.29 32349.87 39551.82 413
N_pmnet61.30 37060.20 37364.60 38984.32 36617.00 43091.67 32710.98 42861.77 38858.45 39078.55 38149.89 35291.83 36742.27 40463.94 36884.97 368
K. test v373.62 33971.59 34579.69 35782.98 37659.85 39290.85 33588.83 37177.13 31158.90 38782.11 36343.62 37191.72 36865.83 33354.10 38787.50 340
Patchmatch-RL test76.65 32774.01 33484.55 31777.37 39564.23 37378.49 39982.84 40178.48 29664.63 36573.40 39676.05 14691.70 36976.99 25357.84 38097.72 114
IterMVS-SCA-FT80.51 29579.10 29484.73 31289.63 30474.66 30192.98 30791.81 33780.05 26871.06 33385.18 33958.04 30691.40 37072.48 29570.70 32088.12 326
IterMVS80.67 29379.16 29385.20 30689.79 29776.08 28592.97 30891.86 33580.28 26371.20 33185.14 34157.93 31091.34 37172.52 29470.74 31888.18 325
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MDA-MVSNet-bldmvs71.45 35367.94 36081.98 34485.33 35768.50 35592.35 31788.76 37370.40 36042.99 40781.96 36446.57 36591.31 37248.75 39554.39 38686.11 357
pmmvs-eth3d73.59 34070.66 34882.38 34076.40 39973.38 31189.39 34589.43 36672.69 34960.34 38477.79 38346.43 36691.26 37366.42 33157.06 38182.51 382
PM-MVS69.32 36166.93 36276.49 37373.60 40555.84 39985.91 37379.32 40774.72 33161.09 38178.18 38221.76 40991.10 37470.86 30756.90 38282.51 382
Anonymous2024052172.06 35169.91 35278.50 36577.11 39661.67 38691.62 32890.97 35365.52 37862.37 37579.05 38036.32 39290.96 37557.75 36568.52 33982.87 378
Anonymous2023120675.29 33473.64 33580.22 35580.75 38163.38 37993.36 29790.71 35873.09 34567.12 34983.70 35550.33 35090.85 37653.63 38170.10 32586.44 352
MIMVSNet79.18 30775.99 31788.72 23487.37 33280.66 16579.96 39191.82 33677.38 30874.33 30481.87 36541.78 37990.74 37766.36 33283.10 24394.76 226
UnsupCasMVSNet_eth73.25 34470.57 34981.30 34777.53 39366.33 36687.24 36393.89 27780.38 26057.90 39281.59 36642.91 37790.56 37865.18 33648.51 39887.01 346
YYNet173.53 34370.43 35082.85 33784.52 36571.73 33391.69 32691.37 34467.63 37146.79 40381.21 37055.04 33390.43 37955.93 37359.70 37886.38 353
MDA-MVSNet_test_wron73.54 34270.43 35082.86 33684.55 36371.85 33091.74 32591.32 34767.63 37146.73 40481.09 37155.11 33290.42 38055.91 37459.76 37786.31 354
CVMVSNet84.83 22885.57 19782.63 33991.55 26360.38 38995.13 25195.03 20780.60 25282.10 21894.71 18266.40 25190.19 38174.30 28290.32 17697.31 149
ADS-MVSNet279.57 30277.53 30585.71 29793.78 18872.13 32579.48 39386.11 38873.09 34580.14 23979.99 37762.15 27690.14 38259.49 35883.52 23894.85 224
CL-MVSNet_self_test75.81 33174.14 33380.83 35278.33 39167.79 35794.22 27893.52 29877.28 31069.82 34081.54 36861.47 28489.22 38357.59 36653.51 38885.48 365
test0.0.03 182.79 26382.48 24983.74 32886.81 33672.22 32296.52 17495.03 20783.76 19573.00 31793.20 21372.30 20788.88 38464.15 34077.52 28690.12 276
testgi74.88 33673.40 33679.32 36080.13 38561.75 38493.21 30386.64 38679.49 27966.56 35791.06 24735.51 39688.67 38556.79 37171.25 31487.56 337
ttmdpeth69.58 35766.92 36377.54 36975.95 40262.40 38288.09 35484.32 39662.87 38465.70 36186.25 32336.53 39188.53 38655.65 37646.96 40381.70 392
KD-MVS_self_test70.97 35669.31 35575.95 37776.24 40155.39 40287.45 36090.94 35470.20 36262.96 37477.48 38444.01 36988.09 38761.25 35353.26 38984.37 372
new_pmnet66.18 36763.18 36975.18 37976.27 40061.74 38583.79 38584.66 39356.64 40451.57 40071.85 40331.29 40387.93 38849.98 39062.55 37275.86 401
Syy-MVS77.97 31678.05 30177.74 36792.13 24756.85 39693.97 28294.23 25782.43 22373.39 31093.57 20957.95 30987.86 38932.40 41082.34 25388.51 314
myMVS_eth3d81.93 27682.18 25281.18 34992.13 24767.18 36093.97 28294.23 25782.43 22373.39 31093.57 20976.98 12887.86 38950.53 38982.34 25388.51 314
mvsany_test367.19 36565.34 36772.72 38063.08 41448.57 40783.12 38778.09 40872.07 35261.21 38077.11 38622.94 40887.78 39178.59 23651.88 39381.80 390
FMVSNet576.46 32874.16 33283.35 33490.05 29576.17 28389.58 34289.85 36271.39 35765.29 36380.42 37350.61 34887.70 39261.05 35469.24 33486.18 356
EU-MVSNet76.92 32676.95 31076.83 37284.10 36954.73 40491.77 32492.71 32572.74 34869.57 34288.69 27858.03 30887.43 39364.91 33770.00 32788.33 322
testing380.74 29281.17 26879.44 35991.15 27263.48 37897.16 12495.76 16580.83 24671.36 32993.15 21678.22 10787.30 39443.19 40279.67 26787.55 339
new-patchmatchnet68.85 36365.93 36577.61 36873.57 40663.94 37690.11 33988.73 37471.62 35655.08 39773.60 39540.84 38587.22 39551.35 38648.49 39981.67 393
DSMNet-mixed73.13 34572.45 34075.19 37877.51 39446.82 40985.09 38082.01 40267.61 37569.27 34481.33 36950.89 34686.28 39654.54 37883.80 23792.46 255
pmmvs365.75 36862.18 37176.45 37467.12 41264.54 37188.68 34985.05 39254.77 40657.54 39473.79 39429.40 40586.21 39755.49 37747.77 40178.62 398
MIMVSNet169.44 36066.65 36477.84 36676.48 39862.84 38187.42 36188.97 37066.96 37657.75 39379.72 37932.77 40185.83 39846.32 39763.42 37084.85 369
test20.0372.36 34971.15 34675.98 37677.79 39259.16 39392.40 31689.35 36774.09 33661.50 37984.32 34948.09 35685.54 39950.63 38862.15 37483.24 377
test_f64.01 36962.13 37269.65 38363.00 41545.30 41483.66 38680.68 40461.30 39155.70 39672.62 39914.23 41584.64 40069.84 31258.11 37979.00 397
kuosan73.55 34172.39 34277.01 37089.68 30266.72 36585.24 37993.44 30067.76 37060.04 38683.40 35871.90 21284.25 40145.34 39954.75 38380.06 396
MVStest166.93 36663.01 37078.69 36278.56 38971.43 33785.51 37786.81 38349.79 40748.57 40284.15 35153.46 33983.31 40243.14 40337.15 41381.34 394
EGC-MVSNET52.46 37847.56 38167.15 38581.98 37960.11 39082.54 38972.44 4130.11 4250.70 42674.59 39225.11 40783.26 40329.04 41261.51 37558.09 410
test_fmvs369.56 35869.19 35670.67 38269.01 40847.05 40890.87 33486.81 38371.31 35866.79 35477.15 38516.40 41383.17 40481.84 20962.51 37381.79 391
APD_test156.56 37353.58 37765.50 38667.93 41146.51 41177.24 40372.95 41238.09 41042.75 40875.17 39013.38 41682.78 40540.19 40654.53 38567.23 407
dmvs_testset72.00 35273.36 33767.91 38483.83 37331.90 42485.30 37877.12 40982.80 21663.05 37392.46 22461.54 28382.55 40642.22 40571.89 31389.29 292
DeepMVS_CXcopyleft64.06 39078.53 39043.26 41568.11 41969.94 36438.55 40976.14 38918.53 41179.34 40743.72 40141.62 41069.57 405
dongtai69.47 35968.98 35870.93 38186.87 33558.45 39488.19 35393.18 31463.98 38156.04 39580.17 37670.97 22579.24 40833.46 40947.94 40075.09 402
WB-MVS57.26 37156.22 37460.39 39569.29 40735.91 42286.39 37170.06 41559.84 39946.46 40572.71 39851.18 34578.11 40915.19 41934.89 41467.14 408
SSC-MVS56.01 37454.96 37559.17 39668.42 40934.13 42384.98 38169.23 41658.08 40345.36 40671.67 40450.30 35177.46 41014.28 42032.33 41565.91 409
FPMVS55.09 37552.93 37861.57 39355.98 41740.51 41883.11 38883.41 40037.61 41134.95 41271.95 40114.40 41476.95 41129.81 41165.16 36367.25 406
LCM-MVSNet52.52 37748.24 38065.35 38747.63 42441.45 41672.55 40983.62 39931.75 41237.66 41057.92 4109.19 42276.76 41249.26 39244.60 40677.84 399
Gipumacopyleft45.11 38342.05 38554.30 39980.69 38251.30 40635.80 41783.81 39828.13 41327.94 41734.53 41711.41 42076.70 41321.45 41654.65 38434.90 417
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMMVS250.90 37946.31 38264.67 38855.53 41846.67 41077.30 40271.02 41440.89 40934.16 41359.32 4089.83 42176.14 41440.09 40728.63 41671.21 403
PMVScopyleft34.80 2339.19 38535.53 38850.18 40029.72 42730.30 42559.60 41566.20 42026.06 41617.91 42049.53 4133.12 42674.09 41518.19 41849.40 39646.14 414
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
testf145.70 38142.41 38355.58 39753.29 42140.02 41968.96 41162.67 42127.45 41429.85 41461.58 4065.98 42473.83 41628.49 41443.46 40852.90 411
APD_test245.70 38142.41 38355.58 39753.29 42140.02 41968.96 41162.67 42127.45 41429.85 41461.58 4065.98 42473.83 41628.49 41443.46 40852.90 411
ANet_high46.22 38041.28 38761.04 39439.91 42646.25 41270.59 41076.18 41058.87 40123.09 41848.00 41512.58 41866.54 41828.65 41313.62 41970.35 404
test_method56.77 37254.53 37663.49 39176.49 39740.70 41775.68 40474.24 41119.47 41948.73 40171.89 40219.31 41065.80 41957.46 36747.51 40283.97 375
MVEpermissive35.65 2233.85 38629.49 39146.92 40141.86 42536.28 42150.45 41656.52 42418.75 42018.28 41937.84 4162.41 42758.41 42018.71 41720.62 41746.06 415
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN32.70 38732.39 38933.65 40353.35 42025.70 42774.07 40753.33 42521.08 41717.17 42133.63 41911.85 41954.84 42112.98 42114.04 41820.42 418
EMVS31.70 38831.45 39032.48 40450.72 42323.95 42874.78 40652.30 42620.36 41816.08 42231.48 42012.80 41753.60 42211.39 42213.10 42119.88 419
tmp_tt41.54 38441.93 38640.38 40220.10 42826.84 42661.93 41459.09 42314.81 42128.51 41680.58 37235.53 39548.33 42363.70 34313.11 42045.96 416
wuyk23d14.10 39013.89 39314.72 40555.23 41922.91 42933.83 4183.56 4294.94 4224.11 4232.28 4252.06 42819.66 42410.23 4238.74 4221.59 422
test1239.07 39211.73 3951.11 4060.50 4300.77 43189.44 3440.20 4310.34 4242.15 42510.72 4240.34 4290.32 4251.79 4250.08 4242.23 420
testmvs9.92 39112.94 3940.84 4070.65 4290.29 43293.78 2880.39 4300.42 4232.85 42415.84 4230.17 4300.30 4262.18 4240.21 4231.91 421
mmdepth0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
monomultidepth0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
test_blank0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
uanet_test0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
DCPMVS0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
cdsmvs_eth3d_5k21.43 38928.57 3920.00 4080.00 4310.00 4330.00 41995.93 1560.00 4260.00 42797.66 7563.57 2670.00 4270.00 4260.00 4250.00 423
pcd_1.5k_mvsjas5.92 3947.89 3970.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 42671.04 2220.00 4270.00 4260.00 4250.00 423
sosnet-low-res0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
sosnet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
uncertanet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
Regformer0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
ab-mvs-re8.11 39310.81 3960.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 42797.30 980.00 4310.00 4270.00 4260.00 4250.00 423
uanet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
WAC-MVS67.18 36049.00 393
FOURS198.51 3978.01 24198.13 4996.21 13183.04 20994.39 52
test_one_060198.91 1884.56 8396.70 7288.06 8496.57 2398.77 1088.04 21
eth-test20.00 431
eth-test0.00 431
RE-MVS-def91.18 9597.76 6776.03 28796.20 19895.44 18680.56 25490.72 10997.84 6773.36 19591.99 9996.79 9597.75 112
IU-MVS99.03 1585.34 6096.86 5192.05 2798.74 198.15 1198.97 1799.42 13
save fliter98.24 5183.34 10498.61 3396.57 9291.32 33
test072699.05 985.18 6599.11 1596.78 5688.75 6597.65 1198.91 287.69 23
GSMVS97.54 128
test_part298.90 1985.14 7196.07 29
sam_mvs177.59 11797.54 128
sam_mvs75.35 165
MTGPAbinary96.33 120
MTMP97.53 9368.16 418
test9_res96.00 4099.03 1398.31 68
agg_prior294.30 6499.00 1598.57 53
test_prior482.34 12197.75 76
test_prior298.37 3986.08 12894.57 5098.02 5483.14 5595.05 5598.79 27
新几何296.42 184
旧先验197.39 8679.58 19796.54 9598.08 5184.00 4797.42 7697.62 124
原ACMM296.84 154
test22296.15 10878.41 22795.87 21796.46 10471.97 35389.66 12297.45 8876.33 14298.24 5198.30 69
segment_acmp82.69 61
testdata195.57 23387.44 101
plane_prior791.86 25977.55 260
plane_prior691.98 25577.92 24664.77 262
plane_prior494.15 195
plane_prior377.75 25690.17 5281.33 225
plane_prior297.18 12089.89 54
plane_prior191.95 257
plane_prior77.96 24397.52 9690.36 5082.96 246
n20.00 432
nn0.00 432
door-mid79.75 406
test1196.50 100
door80.13 405
HQP5-MVS78.48 223
HQP-NCC92.08 25097.63 8290.52 4582.30 212
ACMP_Plane92.08 25097.63 8290.52 4582.30 212
BP-MVS87.67 157
HQP3-MVS94.80 21983.01 244
HQP2-MVS65.40 257
NP-MVS92.04 25478.22 23394.56 185
MDTV_nov1_ep13_2view81.74 13786.80 36680.65 25185.65 17274.26 18276.52 25996.98 163
ACMMP++_ref78.45 281
ACMMP++79.05 273
Test By Simon71.65 215