This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort by
DPM-MVS96.21 295.53 1398.26 196.26 10195.09 199.15 896.98 3893.39 1696.45 2598.79 890.17 1099.99 189.33 12899.25 699.70 3
MCST-MVS96.17 396.12 696.32 799.42 289.36 1098.94 2497.10 3295.17 392.11 8198.46 2887.33 2499.97 297.21 2899.31 499.63 7
CNVR-MVS96.30 196.54 195.55 1599.31 587.69 2399.06 1797.12 3094.66 596.79 1798.78 986.42 2899.95 397.59 2399.18 799.00 31
NCCC95.63 795.94 894.69 3099.21 685.15 6699.16 796.96 4194.11 1195.59 3398.64 1785.07 3299.91 495.61 4799.10 999.00 31
API-MVS90.18 11888.97 12993.80 5498.66 2882.95 10897.50 9695.63 16775.16 31986.31 15897.69 7272.49 19399.90 581.26 20296.07 10398.56 51
DeepC-MVS_fast89.06 294.48 2494.30 2995.02 2198.86 2185.68 4898.06 5696.64 8193.64 1491.74 8798.54 2080.17 7399.90 592.28 8898.75 2899.49 8
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DP-MVS Recon91.72 8290.85 9194.34 3699.50 185.00 7198.51 3695.96 14880.57 24688.08 14397.63 8076.84 12099.89 785.67 16094.88 11798.13 78
CANet94.89 1694.64 2295.63 1397.55 7588.12 1799.06 1796.39 11294.07 1295.34 3597.80 6976.83 12299.87 897.08 3097.64 6798.89 34
DeepPCF-MVS89.82 194.61 2296.17 589.91 20297.09 9070.21 33598.99 2396.69 7395.57 295.08 4199.23 186.40 2999.87 897.84 2098.66 3299.65 6
HPM-MVS++copyleft95.32 1195.48 1494.85 2598.62 3486.04 3897.81 7196.93 4492.45 2295.69 3298.50 2585.38 3099.85 1094.75 5699.18 798.65 47
PHI-MVS93.59 3893.63 3793.48 7498.05 5881.76 13398.64 3297.13 2882.60 21494.09 5698.49 2680.35 6899.85 1094.74 5798.62 3398.83 36
DVP-MVS++96.05 496.41 394.96 2399.05 985.34 5698.13 5096.77 6188.38 7597.70 998.77 1092.06 399.84 1297.47 2499.37 199.70 3
OPU-MVS97.30 299.19 792.31 399.12 1298.54 2092.06 399.84 1299.11 299.37 199.74 1
test_0728_SECOND95.14 1999.04 1486.14 3799.06 1796.77 6199.84 1297.90 1798.85 2199.45 10
SMA-MVScopyleft94.70 2194.68 2194.76 2798.02 5985.94 4297.47 9796.77 6185.32 14097.92 398.70 1583.09 5199.84 1295.79 4499.08 1098.49 55
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
patch_mono-295.14 1396.08 792.33 11998.44 4377.84 24398.43 3797.21 2392.58 2197.68 1197.65 7886.88 2599.83 1698.25 997.60 6899.33 18
ACMMP_NAP93.46 3993.23 4594.17 4497.16 8884.28 8496.82 15696.65 7886.24 12194.27 5397.99 5477.94 10199.83 1693.39 7198.57 3498.39 61
SED-MVS95.88 596.22 494.87 2499.03 1585.03 6999.12 1296.78 5588.72 6797.79 798.91 288.48 1799.82 1898.15 1198.97 1799.74 1
test_241102_TWO96.78 5588.72 6797.70 998.91 287.86 2199.82 1898.15 1199.00 1599.47 9
test_241102_ONE99.03 1585.03 6996.78 5588.72 6797.79 798.90 588.48 1799.82 18
MSC_two_6792asdad97.14 399.05 992.19 496.83 5299.81 2198.08 1498.81 2499.43 11
PC_three_145291.12 3798.33 298.42 3092.51 299.81 2198.96 399.37 199.70 3
No_MVS97.14 399.05 992.19 496.83 5299.81 2198.08 1498.81 2499.43 11
MVS_030495.36 1095.20 1795.85 1194.89 14789.22 1298.83 2697.88 1194.68 495.14 3997.99 5480.80 6499.81 2198.60 697.95 5898.50 54
fmvsm_s_conf0.5_n93.69 3694.13 3292.34 11794.56 15482.01 12199.07 1697.13 2892.09 2596.25 2698.53 2276.47 12799.80 2598.39 894.71 12095.22 207
MM95.85 695.74 1096.15 896.34 9689.50 999.18 698.10 895.68 196.64 2197.92 6080.72 6599.80 2599.16 197.96 5799.15 26
ZNCC-MVS92.75 5192.60 5693.23 8198.24 5181.82 13197.63 8396.50 9885.00 15191.05 9897.74 7178.38 9499.80 2590.48 10998.34 4798.07 81
test_fmvsm_n_192094.81 1995.60 1192.45 11295.29 13280.96 15299.29 397.21 2394.50 797.29 1498.44 2982.15 5699.78 2898.56 797.68 6696.61 170
fmvsm_l_conf0.5_n_a94.91 1595.30 1593.72 6094.50 16184.30 8399.14 1096.00 14491.94 3097.91 598.60 1884.78 3499.77 2998.84 496.03 10597.08 152
fmvsm_s_conf0.5_n_a93.34 4193.71 3592.22 12693.38 19681.71 13698.86 2596.98 3891.64 3196.85 1698.55 1975.58 14599.77 2997.88 1993.68 13495.18 208
DVP-MVScopyleft95.58 995.91 994.57 3299.05 985.18 6199.06 1796.46 10288.75 6596.69 1898.76 1287.69 2299.76 3197.90 1798.85 2198.77 38
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD88.38 7596.69 1898.76 1289.64 1399.76 3197.47 2498.84 2399.38 14
GST-MVS92.43 6592.22 6593.04 8998.17 5481.64 13897.40 10696.38 11384.71 15890.90 10197.40 9277.55 10999.76 3189.75 12297.74 6497.72 109
MTAPA92.45 6492.31 6192.86 9697.90 6180.85 15592.88 30296.33 11887.92 8690.20 11098.18 4076.71 12599.76 3192.57 8798.09 5297.96 93
PAPR92.74 5292.17 6694.45 3498.89 2084.87 7497.20 11696.20 12987.73 9188.40 13898.12 4578.71 9199.76 3187.99 14296.28 9898.74 39
PAPM_NR91.46 8890.82 9293.37 7798.50 4081.81 13295.03 25296.13 13484.65 16086.10 16197.65 7879.24 8299.75 3683.20 18996.88 8798.56 51
MAR-MVS90.63 10990.22 10791.86 14298.47 4278.20 23197.18 11996.61 8483.87 18588.18 14298.18 4068.71 22399.75 3683.66 18397.15 8197.63 117
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
fmvsm_l_conf0.5_n94.89 1695.24 1693.86 5294.42 16384.61 7899.13 1196.15 13392.06 2797.92 398.52 2384.52 3699.74 3898.76 595.67 11197.22 144
fmvsm_s_conf0.1_n92.93 4893.16 4792.24 12490.52 27581.92 12598.42 3896.24 12591.17 3696.02 3098.35 3375.34 15699.74 3897.84 2094.58 12295.05 209
DPE-MVScopyleft95.32 1195.55 1294.64 3198.79 2384.87 7497.77 7396.74 6686.11 12396.54 2498.89 688.39 1999.74 3897.67 2299.05 1299.31 20
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MP-MVS-pluss92.58 6192.35 6093.29 7897.30 8682.53 11396.44 18096.04 14284.68 15989.12 12598.37 3177.48 11099.74 3893.31 7698.38 4497.59 120
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
QAPM86.88 18484.51 20593.98 4894.04 17785.89 4397.19 11796.05 14173.62 33075.12 29095.62 14662.02 26499.74 3870.88 29696.06 10496.30 182
test_fmvsmvis_n_192092.12 7092.10 6892.17 12990.87 26881.04 14898.34 4193.90 26592.71 2087.24 15197.90 6374.83 16399.72 4396.96 3196.20 9995.76 192
AdaColmapbinary88.81 14487.61 15692.39 11699.33 479.95 17896.70 16695.58 16877.51 29983.05 19696.69 12561.90 26799.72 4384.29 17093.47 13897.50 128
fmvsm_s_conf0.1_n_a92.38 6692.49 5892.06 13488.08 31181.62 13997.97 6296.01 14390.62 4396.58 2298.33 3474.09 17599.71 4597.23 2793.46 13994.86 213
HFP-MVS92.89 4992.86 5192.98 9198.71 2581.12 14697.58 8796.70 7185.20 14591.75 8697.97 5978.47 9399.71 4590.95 10098.41 4298.12 79
DeepC-MVS86.58 391.53 8791.06 8992.94 9394.52 15781.89 12795.95 20795.98 14690.76 4183.76 18896.76 12173.24 18699.71 4591.67 9696.96 8497.22 144
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MP-MVScopyleft92.61 6092.67 5492.42 11598.13 5679.73 18797.33 11096.20 12985.63 13390.53 10597.66 7478.14 9999.70 4892.12 9098.30 4997.85 99
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MVS90.60 11088.64 13596.50 594.25 16790.53 893.33 29197.21 2377.59 29878.88 24397.31 9471.52 20699.69 4989.60 12398.03 5599.27 22
DELS-MVS94.98 1494.49 2496.44 696.42 9590.59 799.21 597.02 3694.40 991.46 8997.08 10883.32 4999.69 4992.83 8398.70 3199.04 29
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
mPP-MVS91.88 7891.82 7292.07 13398.38 4478.63 21597.29 11296.09 13785.12 14788.45 13797.66 7475.53 14699.68 5189.83 12098.02 5697.88 95
3Dnovator82.32 1089.33 13287.64 15394.42 3593.73 18485.70 4697.73 7796.75 6586.73 11976.21 27595.93 13662.17 26199.68 5181.67 20097.81 6297.88 95
region2R92.72 5592.70 5392.79 9998.68 2680.53 16697.53 9296.51 9685.22 14391.94 8497.98 5777.26 11299.67 5390.83 10498.37 4598.18 73
ACMMPR92.69 5792.67 5492.75 10098.66 2880.57 16297.58 8796.69 7385.20 14591.57 8897.92 6077.01 11799.67 5390.95 10098.41 4298.00 88
test_fmvsmconf_n93.99 3394.36 2892.86 9692.82 21381.12 14699.26 496.37 11693.47 1595.16 3698.21 3879.00 8599.64 5598.21 1096.73 9397.83 101
OpenMVScopyleft79.58 1486.09 19783.62 22193.50 7290.95 26586.71 3397.44 10095.83 15675.35 31672.64 31195.72 14157.42 30399.64 5571.41 29095.85 10994.13 227
ACMMPcopyleft90.39 11489.97 11491.64 15097.58 7378.21 23096.78 15996.72 6984.73 15784.72 17597.23 10171.22 20899.63 5788.37 14092.41 15297.08 152
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CHOSEN 1792x268891.07 10090.21 10893.64 6395.18 13683.53 9796.26 19296.13 13488.92 6484.90 17193.10 21272.86 18899.62 5888.86 13195.67 11197.79 105
SD-MVS94.84 1895.02 1994.29 3897.87 6484.61 7897.76 7596.19 13189.59 5896.66 2098.17 4384.33 3899.60 5996.09 3998.50 3798.66 46
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
test_fmvsmconf0.1_n93.08 4593.22 4692.65 10588.45 30780.81 15699.00 2295.11 19393.21 1794.00 5797.91 6276.84 12099.59 6097.91 1696.55 9697.54 122
test_vis1_n_192089.95 12290.59 9688.03 24192.36 22368.98 34499.12 1294.34 24193.86 1393.64 6197.01 11151.54 33099.59 6096.76 3496.71 9495.53 198
XVS92.69 5792.71 5292.63 10798.52 3780.29 16997.37 10896.44 10487.04 10991.38 9097.83 6877.24 11499.59 6090.46 11098.07 5398.02 83
X-MVStestdata86.26 19584.14 21492.63 10798.52 3780.29 16997.37 10896.44 10487.04 10991.38 9020.73 40777.24 11499.59 6090.46 11098.07 5398.02 83
PVSNet_BlendedMVS90.05 12089.96 11590.33 18997.47 7683.86 8998.02 5996.73 6787.98 8489.53 11989.61 26376.42 12999.57 6494.29 6179.59 26187.57 327
PVSNet_Blended93.13 4292.98 4893.57 6897.47 7683.86 8999.32 296.73 6791.02 4089.53 11996.21 13176.42 12999.57 6494.29 6195.81 11097.29 142
PGM-MVS91.93 7591.80 7392.32 12198.27 5079.74 18695.28 23697.27 2183.83 18690.89 10297.78 7076.12 13599.56 6688.82 13297.93 6197.66 114
MVS_111021_HR93.41 4093.39 4393.47 7697.34 8582.83 10997.56 8998.27 689.16 6389.71 11497.14 10479.77 7799.56 6693.65 6997.94 5998.02 83
test_fmvsmconf0.01_n91.08 9990.68 9592.29 12282.43 36680.12 17697.94 6393.93 26192.07 2691.97 8297.60 8167.56 22799.53 6897.09 2995.56 11397.21 146
无先验96.87 15296.78 5577.39 30099.52 6979.95 21398.43 59
CSCG92.02 7291.65 7693.12 8598.53 3680.59 16197.47 9797.18 2677.06 30784.64 17797.98 5783.98 4499.52 6990.72 10697.33 7799.23 23
新几何193.12 8597.44 7881.60 14096.71 7074.54 32491.22 9697.57 8279.13 8499.51 7177.40 24198.46 3998.26 71
3Dnovator+82.88 889.63 12887.85 14894.99 2294.49 16286.76 3297.84 6895.74 16186.10 12475.47 28796.02 13565.00 24799.51 7182.91 19397.07 8398.72 44
CANet_DTU90.98 10290.04 11293.83 5394.76 15086.23 3696.32 18993.12 30593.11 1893.71 5996.82 11963.08 25799.48 7384.29 17095.12 11695.77 191
testdata299.48 7376.45 250
SteuartSystems-ACMMP94.13 3194.44 2693.20 8295.41 12881.35 14399.02 2196.59 8889.50 5994.18 5598.36 3283.68 4899.45 7594.77 5598.45 4098.81 37
Skip Steuart: Steuart Systems R&D Blog.
TSAR-MVS + GP.94.35 2594.50 2393.89 5197.38 8483.04 10798.10 5295.29 18891.57 3293.81 5897.45 8786.64 2699.43 7696.28 3894.01 12999.20 24
131488.94 13987.20 16694.17 4493.21 19885.73 4593.33 29196.64 8182.89 20675.98 27896.36 12866.83 23599.39 7783.52 18796.02 10697.39 136
SF-MVS94.17 2994.05 3394.55 3397.56 7485.95 4097.73 7796.43 10684.02 17895.07 4298.74 1482.93 5299.38 7895.42 5198.51 3598.32 64
DP-MVS81.47 27378.28 29091.04 16898.14 5578.48 21795.09 25186.97 36861.14 37971.12 32192.78 21759.59 27899.38 7853.11 37086.61 20495.27 206
9.1494.26 3098.10 5798.14 4796.52 9584.74 15694.83 4798.80 782.80 5499.37 8095.95 4298.42 41
TEST998.64 3183.71 9297.82 6996.65 7884.29 17395.16 3698.09 4784.39 3799.36 81
train_agg94.28 2694.45 2593.74 5798.64 3183.71 9297.82 6996.65 7884.50 16495.16 3698.09 4784.33 3899.36 8195.91 4398.96 1998.16 75
sss90.87 10689.96 11593.60 6694.15 17183.84 9197.14 12698.13 785.93 12989.68 11596.09 13471.67 20399.30 8387.69 14589.16 17497.66 114
PVSNet_Blended_VisFu91.24 9490.77 9392.66 10495.09 13882.40 11797.77 7395.87 15588.26 7886.39 15793.94 19676.77 12399.27 8488.80 13394.00 13096.31 181
PLCcopyleft83.97 788.00 16887.38 16389.83 20598.02 5976.46 26997.16 12394.43 23679.26 27881.98 21096.28 13069.36 22199.27 8477.71 23492.25 15493.77 234
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
test_898.63 3383.64 9597.81 7196.63 8384.50 16495.10 4098.11 4684.33 3899.23 86
test1294.25 4098.34 4685.55 5296.35 11792.36 7680.84 6399.22 8798.31 4897.98 90
MSLP-MVS++94.28 2694.39 2793.97 4998.30 4984.06 8798.64 3296.93 4490.71 4293.08 6898.70 1579.98 7599.21 8894.12 6499.07 1198.63 48
CDPH-MVS93.12 4392.91 4993.74 5798.65 3083.88 8897.67 8296.26 12383.00 20493.22 6698.24 3781.31 6199.21 8889.12 12998.74 3098.14 77
CP-MVS92.54 6292.60 5692.34 11798.50 4079.90 18098.40 3996.40 11084.75 15590.48 10798.09 4777.40 11199.21 8891.15 9998.23 5197.92 94
LS3D82.22 26479.94 27889.06 21697.43 7974.06 30093.20 29792.05 31961.90 37373.33 30495.21 16059.35 28199.21 8854.54 36692.48 15193.90 232
PCF-MVS84.09 586.77 18885.00 19992.08 13292.06 24383.07 10692.14 31094.47 23379.63 26976.90 26294.78 17771.15 20999.20 9272.87 28191.05 16393.98 230
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MVS_111021_LR91.60 8691.64 7791.47 15695.74 12078.79 21296.15 19996.77 6188.49 7288.64 13597.07 10972.33 19699.19 9393.13 8096.48 9796.43 175
APDe-MVScopyleft94.56 2394.75 2093.96 5098.84 2283.40 10098.04 5896.41 10885.79 13195.00 4398.28 3684.32 4199.18 9497.35 2698.77 2799.28 21
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
PS-MVSNAJ94.17 2993.52 4096.10 995.65 12392.35 298.21 4595.79 15892.42 2396.24 2798.18 4071.04 21199.17 9596.77 3397.39 7696.79 163
agg_prior98.59 3583.13 10596.56 9294.19 5499.16 96
ZD-MVS99.09 883.22 10496.60 8782.88 20793.61 6298.06 5282.93 5299.14 9795.51 5098.49 38
EI-MVSNet-Vis-set91.84 7991.77 7492.04 13697.60 7181.17 14596.61 16896.87 4988.20 8089.19 12397.55 8678.69 9299.14 9790.29 11690.94 16495.80 190
EI-MVSNet-UG-set91.35 9291.22 8391.73 14797.39 8280.68 15996.47 17796.83 5287.92 8688.30 14197.36 9377.84 10499.13 9989.43 12789.45 17195.37 202
EPNet94.06 3294.15 3193.76 5697.27 8784.35 8198.29 4297.64 1594.57 695.36 3496.88 11579.96 7699.12 10091.30 9796.11 10297.82 103
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MSP-MVS95.62 896.54 192.86 9698.31 4880.10 17797.42 10496.78 5592.20 2497.11 1598.29 3593.46 199.10 10196.01 4099.30 599.38 14
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
UGNet87.73 17386.55 17891.27 16195.16 13779.11 20396.35 18796.23 12688.14 8187.83 14590.48 25050.65 33399.09 10280.13 21294.03 12795.60 195
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
test_cas_vis1_n_192089.90 12390.02 11389.54 21090.14 28474.63 29398.71 2894.43 23693.04 1992.40 7596.35 12953.41 32699.08 10395.59 4896.16 10094.90 211
test_prior93.09 8798.68 2681.91 12696.40 11099.06 10498.29 68
WTY-MVS92.65 5991.68 7595.56 1496.00 10888.90 1398.23 4497.65 1488.57 7089.82 11397.22 10279.29 8099.06 10489.57 12488.73 18198.73 43
HY-MVS84.06 691.63 8490.37 10495.39 1896.12 10588.25 1690.22 32997.58 1688.33 7790.50 10691.96 22779.26 8199.06 10490.29 11689.07 17598.88 35
MG-MVS94.25 2893.72 3495.85 1199.38 389.35 1197.98 6098.09 989.99 5392.34 7796.97 11281.30 6298.99 10788.54 13598.88 2099.20 24
原ACMM191.22 16497.77 6578.10 23396.61 8481.05 23691.28 9597.42 9177.92 10398.98 10879.85 21598.51 3596.59 171
Anonymous20240521184.41 22681.93 24891.85 14496.78 9378.41 22197.44 10091.34 33270.29 35284.06 18094.26 18741.09 37098.96 10979.46 21782.65 24198.17 74
xiu_mvs_v2_base93.92 3493.26 4495.91 1095.07 14092.02 698.19 4695.68 16492.06 2796.01 3198.14 4470.83 21498.96 10996.74 3596.57 9596.76 166
VNet92.11 7191.22 8394.79 2696.91 9186.98 2897.91 6497.96 1086.38 12093.65 6095.74 14070.16 21998.95 11193.39 7188.87 17998.43 59
CNLPA86.96 18285.37 19191.72 14897.59 7279.34 19797.21 11491.05 33774.22 32578.90 24296.75 12367.21 23298.95 11174.68 26790.77 16596.88 161
ab-mvs87.08 18084.94 20093.48 7493.34 19783.67 9488.82 33795.70 16381.18 23484.55 17890.14 25862.72 25898.94 11385.49 16282.54 24297.85 99
HPM-MVScopyleft91.62 8591.53 7891.89 14197.88 6379.22 19996.99 13895.73 16282.07 22489.50 12197.19 10375.59 14498.93 11490.91 10297.94 5997.54 122
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
PVSNet82.34 989.02 13787.79 15092.71 10395.49 12681.50 14197.70 7997.29 1987.76 9085.47 16595.12 16756.90 30698.90 11580.33 20794.02 12897.71 111
h-mvs3389.30 13388.95 13190.36 18895.07 14076.04 27696.96 14597.11 3190.39 4892.22 7995.10 16874.70 16598.86 11693.14 7865.89 35296.16 183
MSDG80.62 28577.77 29589.14 21593.43 19577.24 25691.89 31390.18 34669.86 35568.02 33591.94 22952.21 32998.84 11759.32 34983.12 23291.35 250
Anonymous2024052983.15 24780.60 26790.80 17695.74 12078.27 22596.81 15794.92 20160.10 38381.89 21292.54 21845.82 35498.82 11879.25 22178.32 27695.31 204
test_yl91.46 8890.53 9894.24 4197.41 8085.18 6198.08 5397.72 1280.94 23789.85 11196.14 13275.61 14298.81 11990.42 11488.56 18598.74 39
DCV-MVSNet91.46 8890.53 9894.24 4197.41 8085.18 6198.08 5397.72 1280.94 23789.85 11196.14 13275.61 14298.81 11990.42 11488.56 18598.74 39
HPM-MVS_fast90.38 11690.17 11091.03 16997.61 7077.35 25597.15 12595.48 17479.51 27188.79 13196.90 11371.64 20598.81 11987.01 15397.44 7396.94 156
APD-MVScopyleft93.61 3793.59 3893.69 6198.76 2483.26 10397.21 11496.09 13782.41 21894.65 4998.21 3881.96 5998.81 11994.65 5898.36 4699.01 30
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
SR-MVS92.16 6992.27 6291.83 14598.37 4578.41 22196.67 16795.76 15982.19 22291.97 8298.07 5176.44 12898.64 12393.71 6897.27 7998.45 58
SR-MVS-dyc-post91.29 9391.45 7990.80 17697.76 6776.03 27796.20 19795.44 17880.56 24790.72 10397.84 6675.76 14198.61 12491.99 9296.79 9097.75 107
alignmvs92.97 4792.26 6395.12 2095.54 12587.77 2198.67 3096.38 11388.04 8393.01 6997.45 8779.20 8398.60 12593.25 7788.76 18098.99 33
OMC-MVS88.80 14588.16 14490.72 17995.30 13177.92 24094.81 25794.51 22986.80 11584.97 17096.85 11667.53 22898.60 12585.08 16487.62 19695.63 194
sasdasda92.27 6791.22 8395.41 1695.80 11888.31 1497.09 13394.64 22188.49 7292.99 7097.31 9472.68 19098.57 12793.38 7388.58 18399.36 16
canonicalmvs92.27 6791.22 8395.41 1695.80 11888.31 1497.09 13394.64 22188.49 7292.99 7097.31 9472.68 19098.57 12793.38 7388.58 18399.36 16
APD-MVS_3200maxsize91.23 9591.35 8090.89 17497.89 6276.35 27296.30 19095.52 17279.82 26591.03 9997.88 6574.70 16598.54 12992.11 9196.89 8697.77 106
IB-MVS85.34 488.67 14887.14 16993.26 7993.12 20484.32 8298.76 2797.27 2187.19 10779.36 24090.45 25183.92 4698.53 13084.41 16969.79 32096.93 157
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
114514_t88.79 14687.57 15792.45 11298.21 5381.74 13496.99 13895.45 17775.16 31982.48 19995.69 14368.59 22498.50 13180.33 20795.18 11597.10 151
FA-MVS(test-final)87.71 17486.23 18192.17 12994.19 16980.55 16387.16 35296.07 14082.12 22385.98 16288.35 27872.04 20198.49 13280.26 20989.87 16897.48 130
TSAR-MVS + MP.94.79 2095.17 1893.64 6397.66 6984.10 8695.85 21596.42 10791.26 3597.49 1396.80 12086.50 2798.49 13295.54 4999.03 1398.33 63
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
VDD-MVS88.28 16287.02 17292.06 13495.09 13880.18 17597.55 9194.45 23583.09 20089.10 12695.92 13847.97 34498.49 13293.08 8286.91 20297.52 127
MGCFI-Net91.95 7391.03 9094.72 2995.68 12286.38 3496.93 14894.48 23088.25 7992.78 7397.24 10072.34 19598.46 13593.13 8088.43 18799.32 19
test_fmvs1_n86.34 19386.72 17685.17 29987.54 31963.64 36596.91 15092.37 31687.49 9791.33 9395.58 14840.81 37298.46 13595.00 5493.49 13793.41 242
PatchMatch-RL85.00 21683.66 21989.02 21895.86 11474.55 29592.49 30693.60 28479.30 27679.29 24191.47 23358.53 28898.45 13770.22 30192.17 15694.07 229
F-COLMAP84.50 22583.44 22687.67 24795.22 13472.22 31395.95 20793.78 27575.74 31476.30 27295.18 16359.50 28098.45 13772.67 28386.59 20592.35 248
test_fmvs187.79 17288.52 13885.62 29292.98 21064.31 36097.88 6692.42 31487.95 8592.24 7895.82 13947.94 34598.44 13995.31 5294.09 12694.09 228
RPMNet79.85 28975.92 30891.64 15090.16 28279.75 18479.02 38295.44 17858.43 38882.27 20772.55 38573.03 18798.41 14046.10 38686.25 20896.75 167
FE-MVS86.06 19884.15 21391.78 14694.33 16679.81 18184.58 36896.61 8476.69 30985.00 16987.38 29170.71 21598.37 14170.39 30091.70 16097.17 149
xiu_mvs_v1_base_debu90.54 11189.54 12293.55 6992.31 22487.58 2496.99 13894.87 20487.23 10493.27 6397.56 8357.43 30098.32 14292.72 8493.46 13994.74 217
xiu_mvs_v1_base90.54 11189.54 12293.55 6992.31 22487.58 2496.99 13894.87 20487.23 10493.27 6397.56 8357.43 30098.32 14292.72 8493.46 13994.74 217
xiu_mvs_v1_base_debi90.54 11189.54 12293.55 6992.31 22487.58 2496.99 13894.87 20487.23 10493.27 6397.56 8357.43 30098.32 14292.72 8493.46 13994.74 217
bld_raw_dy_0_6488.31 16086.38 17994.07 4796.33 9784.79 7697.19 11784.75 37894.48 882.36 20298.47 2746.18 35398.30 14596.54 3681.13 24999.13 27
CPTT-MVS89.72 12689.87 11989.29 21398.33 4773.30 30497.70 7995.35 18575.68 31587.40 14797.44 9070.43 21698.25 14689.56 12596.90 8596.33 180
iter_conf05_1191.95 7391.17 8894.29 3896.33 9785.50 5499.61 191.84 32294.36 1097.89 698.51 2446.72 35098.24 14796.54 3698.75 2899.13 27
LFMVS89.27 13487.64 15394.16 4697.16 8885.52 5397.18 11994.66 21879.17 27989.63 11796.57 12655.35 31798.22 14889.52 12689.54 17098.74 39
PVSNet_077.72 1581.70 27078.95 28789.94 20190.77 27276.72 26695.96 20696.95 4285.01 15070.24 32888.53 27652.32 32798.20 14986.68 15644.08 39394.89 212
TAPA-MVS81.61 1285.02 21583.67 21889.06 21696.79 9273.27 30795.92 20994.79 21174.81 32280.47 22696.83 11771.07 21098.19 15049.82 37992.57 14895.71 193
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
UA-Net88.92 14088.48 13990.24 19194.06 17677.18 25993.04 29994.66 21887.39 10091.09 9793.89 19774.92 16298.18 15175.83 25791.43 16195.35 203
dcpmvs_293.10 4493.46 4292.02 13797.77 6579.73 18794.82 25693.86 26886.91 11191.33 9396.76 12185.20 3198.06 15296.90 3297.60 6898.27 70
testing1192.48 6392.04 7093.78 5595.94 11286.00 3997.56 8997.08 3387.52 9689.32 12295.40 15284.60 3598.02 15391.93 9489.04 17697.32 138
thres20088.92 14087.65 15292.73 10296.30 9985.62 5197.85 6798.86 184.38 16884.82 17293.99 19575.12 16098.01 15470.86 29786.67 20394.56 222
cascas86.50 19084.48 20792.55 11092.64 21985.95 4097.04 13795.07 19675.32 31780.50 22591.02 24254.33 32497.98 15586.79 15587.62 19693.71 235
thres100view90088.30 16186.95 17392.33 11996.10 10684.90 7397.14 12698.85 282.69 21283.41 19093.66 20275.43 15097.93 15669.04 30586.24 21094.17 224
tfpn200view988.48 15487.15 16792.47 11196.21 10285.30 5997.44 10098.85 283.37 19583.99 18293.82 19875.36 15397.93 15669.04 30586.24 21094.17 224
gm-plane-assit92.27 22879.64 19084.47 16695.15 16597.93 15685.81 159
testdata90.13 19495.92 11374.17 29896.49 10173.49 33394.82 4897.99 5478.80 9097.93 15683.53 18697.52 7098.29 68
thres40088.42 15787.15 16792.23 12596.21 10285.30 5997.44 10098.85 283.37 19583.99 18293.82 19875.36 15397.93 15669.04 30586.24 21093.45 240
VDDNet86.44 19184.51 20592.22 12691.56 25281.83 13097.10 13294.64 22169.50 35687.84 14495.19 16248.01 34397.92 16189.82 12186.92 20196.89 160
testing9191.90 7791.31 8293.66 6295.99 10985.68 4897.39 10796.89 4786.75 11888.85 13095.23 15883.93 4597.90 16288.91 13087.89 19497.41 133
testing9991.91 7691.35 8093.60 6695.98 11085.70 4697.31 11196.92 4686.82 11488.91 12895.25 15584.26 4297.89 16388.80 13387.94 19397.21 146
thisisatest051590.95 10490.26 10593.01 9094.03 17984.27 8597.91 6496.67 7583.18 19886.87 15595.51 15088.66 1697.85 16480.46 20689.01 17796.92 159
thres600view788.06 16686.70 17792.15 13196.10 10685.17 6597.14 12698.85 282.70 21183.41 19093.66 20275.43 15097.82 16567.13 31485.88 21493.45 240
MVS_Test90.29 11789.18 12693.62 6595.23 13384.93 7294.41 26394.66 21884.31 16990.37 10991.02 24275.13 15997.82 16583.11 19194.42 12498.12 79
旧先验296.97 14374.06 32896.10 2897.76 16788.38 139
EIA-MVS91.73 8092.05 6990.78 17894.52 15776.40 27198.06 5695.34 18689.19 6288.90 12997.28 9977.56 10897.73 16890.77 10596.86 8998.20 72
SDMVSNet87.02 18185.61 18691.24 16294.14 17283.30 10293.88 27995.98 14684.30 17179.63 23792.01 22358.23 29097.68 16990.28 11882.02 24692.75 243
thisisatest053089.65 12789.02 12891.53 15493.46 19480.78 15796.52 17396.67 7581.69 23083.79 18794.90 17488.85 1597.68 16977.80 23087.49 19996.14 184
BH-RMVSNet86.84 18585.28 19291.49 15595.35 13080.26 17296.95 14692.21 31782.86 20881.77 21595.46 15159.34 28297.64 17169.79 30393.81 13396.57 172
1112_ss88.60 15187.47 16192.00 13893.21 19880.97 15196.47 17792.46 31383.64 19280.86 22297.30 9780.24 7197.62 17277.60 23685.49 21897.40 135
casdiffmvs_mvgpermissive91.13 9790.45 10193.17 8492.99 20983.58 9697.46 9994.56 22787.69 9287.19 15294.98 17374.50 17097.60 17391.88 9592.79 14698.34 62
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Test_1112_low_res88.03 16786.73 17591.94 14093.15 20180.88 15496.44 18092.41 31583.59 19480.74 22491.16 24080.18 7297.59 17477.48 23985.40 21997.36 137
tttt051788.57 15288.19 14389.71 20993.00 20675.99 28095.67 22196.67 7580.78 24181.82 21394.40 18488.97 1497.58 17576.05 25586.31 20795.57 196
ECVR-MVScopyleft88.35 15987.25 16591.65 14993.54 18879.40 19496.56 17290.78 34286.78 11685.57 16495.25 15557.25 30497.56 17684.73 16894.80 11897.98 90
lupinMVS93.87 3593.58 3994.75 2893.00 20688.08 1899.15 895.50 17391.03 3994.90 4497.66 7478.84 8897.56 17694.64 5997.46 7198.62 49
XVG-OURS85.18 21284.38 20987.59 25190.42 27871.73 32591.06 32494.07 25782.00 22683.29 19295.08 16956.42 31197.55 17883.70 18283.42 23093.49 239
TR-MVS86.30 19484.93 20190.42 18694.63 15277.58 25096.57 17093.82 27080.30 25582.42 20195.16 16458.74 28697.55 17874.88 26587.82 19596.13 185
test_vis1_rt73.96 32872.40 33178.64 35283.91 36061.16 37595.63 22468.18 40276.32 31060.09 37374.77 37629.01 39197.54 18087.74 14475.94 28377.22 386
casdiffmvspermissive90.95 10490.39 10292.63 10792.82 21382.53 11396.83 15494.47 23387.69 9288.47 13695.56 14974.04 17697.54 18090.90 10392.74 14797.83 101
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
XVG-OURS-SEG-HR85.74 20485.16 19687.49 25790.22 28071.45 32891.29 32194.09 25681.37 23283.90 18695.22 15960.30 27597.53 18285.58 16184.42 22593.50 238
baseline90.76 10790.10 11192.74 10192.90 21282.56 11294.60 26094.56 22787.69 9289.06 12795.67 14473.76 17997.51 18390.43 11392.23 15598.16 75
test250690.96 10390.39 10292.65 10593.54 18882.46 11696.37 18597.35 1886.78 11687.55 14695.25 15577.83 10597.50 18484.07 17294.80 11897.98 90
ETV-MVS92.72 5592.87 5092.28 12394.54 15681.89 12797.98 6095.21 19189.77 5793.11 6796.83 11777.23 11697.50 18495.74 4595.38 11497.44 131
Effi-MVS+90.70 10889.90 11893.09 8793.61 18583.48 9895.20 24292.79 31083.22 19791.82 8595.70 14271.82 20297.48 18691.25 9893.67 13598.32 64
baseline290.39 11490.21 10890.93 17190.86 26980.99 15095.20 24297.41 1786.03 12780.07 23494.61 18090.58 697.47 18787.29 14989.86 16994.35 223
diffmvspermissive91.17 9690.74 9492.44 11493.11 20582.50 11596.25 19393.62 28387.79 8990.40 10895.93 13673.44 18497.42 18893.62 7092.55 14997.41 133
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
tpmvs83.04 25080.77 26389.84 20495.43 12777.96 23785.59 36395.32 18775.31 31876.27 27383.70 34473.89 17797.41 18959.53 34681.93 24894.14 226
tt080581.20 27879.06 28687.61 24986.50 32672.97 31093.66 28295.48 17474.11 32676.23 27491.99 22541.36 36997.40 19077.44 24074.78 29092.45 246
test111188.11 16587.04 17191.35 15793.15 20178.79 21296.57 17090.78 34286.88 11385.04 16895.20 16157.23 30597.39 19183.88 17594.59 12197.87 97
PMMVS89.46 13089.92 11788.06 23994.64 15169.57 34196.22 19494.95 19987.27 10391.37 9296.54 12765.88 23997.39 19188.54 13593.89 13197.23 143
PAPM92.87 5092.40 5994.30 3792.25 23187.85 2096.40 18496.38 11391.07 3888.72 13496.90 11382.11 5797.37 19390.05 11997.70 6597.67 113
HQP4-MVS82.30 20397.32 19491.13 251
HQP-MVS87.91 17187.55 15888.98 21992.08 24078.48 21797.63 8394.80 20990.52 4582.30 20394.56 18165.40 24397.32 19487.67 14683.01 23491.13 251
HQP_MVS87.50 17787.09 17088.74 22491.86 24977.96 23797.18 11994.69 21489.89 5581.33 21794.15 19164.77 24997.30 19687.08 15082.82 23890.96 253
plane_prior594.69 21497.30 19687.08 15082.82 23890.96 253
jason92.73 5392.23 6494.21 4390.50 27687.30 2798.65 3195.09 19490.61 4492.76 7497.13 10575.28 15797.30 19693.32 7596.75 9298.02 83
jason: jason.
CLD-MVS87.97 16987.48 16089.44 21192.16 23680.54 16598.14 4794.92 20191.41 3379.43 23995.40 15262.34 26097.27 19990.60 10882.90 23790.50 259
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
OPM-MVS85.84 20185.10 19888.06 23988.34 30877.83 24495.72 21994.20 24987.89 8880.45 22794.05 19358.57 28797.26 20083.88 17582.76 24089.09 290
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
BH-w/o88.24 16387.47 16190.54 18495.03 14378.54 21697.41 10593.82 27084.08 17678.23 24994.51 18369.34 22297.21 20180.21 21194.58 12295.87 189
Vis-MVSNetpermissive88.67 14887.82 14991.24 16292.68 21578.82 20996.95 14693.85 26987.55 9587.07 15495.13 16663.43 25597.21 20177.58 23796.15 10197.70 112
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test_vis1_n85.60 20685.70 18585.33 29684.79 35064.98 35896.83 15491.61 32887.36 10191.00 10094.84 17636.14 37897.18 20395.66 4693.03 14493.82 233
AllTest75.92 32073.06 32884.47 31092.18 23467.29 34991.07 32384.43 38067.63 35963.48 35590.18 25538.20 37597.16 20457.04 35773.37 29688.97 298
TestCases84.47 31092.18 23467.29 34984.43 38067.63 35963.48 35590.18 25538.20 37597.16 20457.04 35773.37 29688.97 298
ACMH75.40 1777.99 30474.96 31287.10 26690.67 27376.41 27093.19 29891.64 32772.47 34263.44 35787.61 28943.34 36097.16 20458.34 35173.94 29387.72 322
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CS-MVS-test92.98 4693.67 3690.90 17396.52 9476.87 26298.68 2994.73 21390.36 5094.84 4697.89 6477.94 10197.15 20794.28 6397.80 6398.70 45
ACMM80.70 1383.72 23882.85 23586.31 27991.19 26072.12 31795.88 21294.29 24480.44 25077.02 26091.96 22755.24 31897.14 20879.30 22080.38 25589.67 276
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
EPP-MVSNet89.76 12589.72 12189.87 20393.78 18176.02 27997.22 11396.51 9679.35 27385.11 16795.01 17184.82 3397.10 20987.46 14888.21 19196.50 173
tpm cat183.63 23981.38 25690.39 18793.53 19378.19 23285.56 36495.09 19470.78 35078.51 24683.28 34774.80 16497.03 21066.77 31584.05 22695.95 186
CS-MVS92.73 5393.48 4190.48 18596.27 10075.93 28298.55 3594.93 20089.32 6094.54 5197.67 7378.91 8797.02 21193.80 6697.32 7898.49 55
BH-untuned86.95 18385.94 18389.99 19794.52 15777.46 25296.78 15993.37 29581.80 22776.62 26693.81 20066.64 23697.02 21176.06 25493.88 13295.48 200
sd_testset84.62 22183.11 23089.17 21494.14 17277.78 24591.54 32094.38 23984.30 17179.63 23792.01 22352.28 32896.98 21377.67 23582.02 24692.75 243
LTVRE_ROB73.68 1877.99 30475.74 30984.74 30390.45 27772.02 31986.41 35891.12 33472.57 34166.63 34487.27 29354.95 32196.98 21356.29 36175.98 28285.21 358
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
TESTMET0.1,189.83 12489.34 12591.31 15892.54 22180.19 17497.11 12996.57 9086.15 12286.85 15691.83 23179.32 7996.95 21581.30 20192.35 15396.77 165
LPG-MVS_test84.20 22983.49 22586.33 27690.88 26673.06 30895.28 23694.13 25382.20 22076.31 27093.20 20854.83 32296.95 21583.72 18080.83 25288.98 296
LGP-MVS_train86.33 27690.88 26673.06 30894.13 25382.20 22076.31 27093.20 20854.83 32296.95 21583.72 18080.83 25288.98 296
COLMAP_ROBcopyleft73.24 1975.74 32273.00 32983.94 31692.38 22269.08 34391.85 31486.93 36961.48 37665.32 35090.27 25442.27 36596.93 21850.91 37575.63 28685.80 355
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
baseline188.85 14387.49 15992.93 9495.21 13586.85 3095.47 23094.61 22487.29 10283.11 19594.99 17280.70 6696.89 21982.28 19673.72 29495.05 209
ACMP81.66 1184.00 23283.22 22986.33 27691.53 25572.95 31195.91 21193.79 27483.70 19173.79 29792.22 22154.31 32596.89 21983.98 17379.74 25989.16 288
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
CostFormer89.08 13688.39 14091.15 16693.13 20379.15 20288.61 34096.11 13683.14 19989.58 11886.93 30083.83 4796.87 22188.22 14185.92 21397.42 132
EC-MVSNet91.73 8092.11 6790.58 18293.54 18877.77 24698.07 5594.40 23887.44 9892.99 7097.11 10774.59 16996.87 22193.75 6797.08 8297.11 150
USDC78.65 30076.25 30585.85 28487.58 31774.60 29489.58 33290.58 34584.05 17763.13 35988.23 28040.69 37396.86 22366.57 31975.81 28586.09 349
MS-PatchMatch83.05 24981.82 25086.72 27489.64 29279.10 20494.88 25594.59 22679.70 26870.67 32489.65 26250.43 33596.82 22470.82 29995.99 10784.25 364
HyFIR lowres test89.36 13188.60 13691.63 15294.91 14680.76 15895.60 22695.53 17082.56 21584.03 18191.24 23978.03 10096.81 22587.07 15288.41 18897.32 138
RPSCF77.73 30876.63 30381.06 34088.66 30555.76 38787.77 34787.88 36564.82 36874.14 29692.79 21649.22 34096.81 22567.47 31276.88 28090.62 256
test-LLR88.48 15487.98 14689.98 19892.26 22977.23 25797.11 12995.96 14883.76 18986.30 15991.38 23572.30 19796.78 22780.82 20391.92 15795.94 187
test-mter88.95 13888.60 13689.98 19892.26 22977.23 25797.11 12995.96 14885.32 14086.30 15991.38 23576.37 13196.78 22780.82 20391.92 15795.94 187
tpmrst88.36 15887.38 16391.31 15894.36 16579.92 17987.32 35095.26 19085.32 14088.34 13986.13 31680.60 6796.70 22983.78 17785.34 22197.30 141
Fast-Effi-MVS+87.93 17086.94 17490.92 17294.04 17779.16 20198.26 4393.72 27981.29 23383.94 18592.90 21369.83 22096.68 23076.70 24791.74 15996.93 157
AUN-MVS86.25 19685.57 18788.26 23493.57 18773.38 30295.45 23195.88 15383.94 18285.47 16594.21 18973.70 18296.67 23183.54 18564.41 35694.73 220
hse-mvs288.22 16488.21 14288.25 23593.54 18873.41 30195.41 23395.89 15290.39 4892.22 7994.22 18874.70 16596.66 23293.14 7864.37 35794.69 221
testing22291.09 9890.49 10092.87 9595.82 11685.04 6896.51 17597.28 2086.05 12689.13 12495.34 15480.16 7496.62 23385.82 15888.31 18996.96 155
MDTV_nov1_ep1383.69 21794.09 17581.01 14986.78 35596.09 13783.81 18784.75 17484.32 33974.44 17196.54 23463.88 33185.07 222
XXY-MVS83.84 23582.00 24789.35 21287.13 32281.38 14295.72 21994.26 24580.15 25975.92 28090.63 24861.96 26696.52 23578.98 22473.28 29990.14 265
ACMH+76.62 1677.47 31174.94 31385.05 30091.07 26471.58 32793.26 29590.01 34771.80 34564.76 35288.55 27441.62 36796.48 23662.35 33871.00 30887.09 336
GA-MVS85.79 20384.04 21591.02 17089.47 29680.27 17196.90 15194.84 20785.57 13480.88 22189.08 26656.56 31096.47 23777.72 23385.35 22096.34 178
tpm287.35 17986.26 18090.62 18192.93 21178.67 21488.06 34595.99 14579.33 27487.40 14786.43 31180.28 7096.40 23880.23 21085.73 21796.79 163
dp84.30 22882.31 24290.28 19094.24 16877.97 23686.57 35695.53 17079.94 26480.75 22385.16 33071.49 20796.39 23963.73 33283.36 23196.48 174
ETVMVS90.99 10190.26 10593.19 8395.81 11785.64 5096.97 14397.18 2685.43 13788.77 13394.86 17582.00 5896.37 24082.70 19488.60 18297.57 121
nrg03086.79 18785.43 18990.87 17588.76 30185.34 5697.06 13694.33 24284.31 16980.45 22791.98 22672.36 19496.36 24188.48 13871.13 30790.93 255
CMPMVSbinary54.94 2175.71 32374.56 31879.17 35079.69 37455.98 38489.59 33193.30 29760.28 38153.85 38589.07 26747.68 34896.33 24276.55 24881.02 25085.22 357
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
VPA-MVSNet85.32 21083.83 21689.77 20890.25 27982.63 11196.36 18697.07 3483.03 20381.21 21989.02 26861.58 26896.31 24385.02 16670.95 30990.36 260
XVG-ACMP-BASELINE79.38 29677.90 29483.81 31784.98 34967.14 35589.03 33693.18 30280.26 25872.87 30988.15 28238.55 37496.26 24476.05 25578.05 27788.02 318
EPMVS87.47 17885.90 18492.18 12895.41 12882.26 12087.00 35396.28 12185.88 13084.23 17985.57 32275.07 16196.26 24471.14 29592.50 15098.03 82
IS-MVSNet88.67 14888.16 14490.20 19393.61 18576.86 26396.77 16193.07 30684.02 17883.62 18995.60 14774.69 16896.24 24678.43 22993.66 13697.49 129
GG-mvs-BLEND93.49 7394.94 14486.26 3581.62 37697.00 3788.32 14094.30 18691.23 596.21 24788.49 13797.43 7498.00 88
dmvs_re84.10 23082.90 23387.70 24691.41 25773.28 30590.59 32793.19 30085.02 14977.96 25293.68 20157.92 29896.18 24875.50 26080.87 25193.63 236
GeoE86.36 19285.20 19389.83 20593.17 20076.13 27497.53 9292.11 31879.58 27080.99 22094.01 19466.60 23796.17 24973.48 27989.30 17297.20 148
gg-mvs-nofinetune85.48 20982.90 23393.24 8094.51 16085.82 4479.22 38096.97 4061.19 37887.33 14953.01 39690.58 696.07 25086.07 15797.23 8097.81 104
iter_conf0590.14 11989.79 12091.17 16595.85 11586.93 2997.68 8188.67 36289.93 5481.73 21692.80 21590.37 896.03 25190.44 11280.65 25490.56 257
v2v48283.46 24181.86 24988.25 23586.19 33279.65 18996.34 18894.02 25981.56 23177.32 25688.23 28065.62 24096.03 25177.77 23169.72 32289.09 290
V4283.04 25081.53 25487.57 25386.27 33179.09 20595.87 21394.11 25580.35 25477.22 25886.79 30365.32 24596.02 25377.74 23270.14 31487.61 326
VPNet84.69 22082.92 23290.01 19689.01 30083.45 9996.71 16495.46 17685.71 13279.65 23692.18 22256.66 30996.01 25483.05 19267.84 34090.56 257
test_post33.80 40376.17 13495.97 255
EI-MVSNet85.80 20285.20 19387.59 25191.55 25377.41 25395.13 24695.36 18380.43 25280.33 22994.71 17873.72 18095.97 25576.96 24578.64 27089.39 278
MVSTER89.25 13588.92 13290.24 19195.98 11084.66 7796.79 15895.36 18387.19 10780.33 22990.61 24990.02 1295.97 25585.38 16378.64 27090.09 269
PatchmatchNetpermissive86.83 18685.12 19791.95 13994.12 17482.27 11986.55 35795.64 16684.59 16282.98 19784.99 33477.26 11295.96 25868.61 30891.34 16297.64 116
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
TinyColmap72.41 33768.99 34682.68 33088.11 31069.59 34088.41 34185.20 37665.55 36557.91 37884.82 33630.80 38995.94 25951.38 37268.70 32982.49 375
v114482.90 25381.27 25887.78 24586.29 33079.07 20696.14 20093.93 26180.05 26177.38 25486.80 30265.50 24195.93 26075.21 26370.13 31588.33 313
v14419282.43 25980.73 26487.54 25485.81 33978.22 22795.98 20593.78 27579.09 28177.11 25986.49 30764.66 25195.91 26174.20 27369.42 32388.49 307
mvsmamba85.17 21384.54 20487.05 26787.94 31375.11 29096.22 19487.79 36686.91 11178.55 24591.77 23264.93 24895.91 26186.94 15479.80 25690.12 266
v119282.31 26380.55 26887.60 25085.94 33678.47 22095.85 21593.80 27379.33 27476.97 26186.51 30663.33 25695.87 26373.11 28070.13 31588.46 309
v124081.70 27079.83 28087.30 26285.50 34177.70 24995.48 22993.44 28978.46 29076.53 26786.44 30960.85 27295.84 26471.59 28970.17 31388.35 312
v192192082.02 26680.23 27287.41 25885.62 34077.92 24095.79 21893.69 28078.86 28576.67 26486.44 30962.50 25995.83 26572.69 28269.77 32188.47 308
v881.88 26880.06 27687.32 26086.63 32579.04 20794.41 26393.65 28278.77 28673.19 30685.57 32266.87 23495.81 26673.84 27767.61 34287.11 335
D2MVS82.67 25681.55 25386.04 28387.77 31576.47 26895.21 24196.58 8982.66 21370.26 32785.46 32560.39 27495.80 26776.40 25179.18 26585.83 354
PS-MVSNAJss84.91 21784.30 21086.74 27085.89 33874.40 29794.95 25394.16 25283.93 18376.45 26890.11 25971.04 21195.77 26883.16 19079.02 26790.06 271
MVP-Stereo82.65 25781.67 25285.59 29386.10 33578.29 22493.33 29192.82 30977.75 29669.17 33487.98 28459.28 28395.76 26971.77 28796.88 8782.73 372
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
tfpnnormal78.14 30375.42 31086.31 27988.33 30979.24 19894.41 26396.22 12773.51 33169.81 33085.52 32455.43 31695.75 27047.65 38467.86 33983.95 367
v14882.41 26280.89 26186.99 26886.18 33376.81 26496.27 19193.82 27080.49 24975.28 28986.11 31767.32 23195.75 27075.48 26167.03 34888.42 311
v1081.43 27479.53 28287.11 26586.38 32778.87 20894.31 26793.43 29077.88 29473.24 30585.26 32665.44 24295.75 27072.14 28667.71 34186.72 339
TAMVS88.48 15487.79 15090.56 18391.09 26379.18 20096.45 17995.88 15383.64 19283.12 19493.33 20775.94 13895.74 27382.40 19588.27 19096.75 167
cl2285.11 21484.17 21287.92 24295.06 14278.82 20995.51 22894.22 24879.74 26776.77 26387.92 28575.96 13795.68 27479.93 21472.42 30189.27 285
UniMVSNet_ETH3D80.86 28278.75 28887.22 26486.31 32972.02 31991.95 31193.76 27873.51 33175.06 29190.16 25743.04 36395.66 27576.37 25278.55 27393.98 230
Anonymous2023121179.72 29177.19 29987.33 25995.59 12477.16 26095.18 24594.18 25159.31 38672.57 31286.20 31547.89 34695.66 27574.53 27169.24 32689.18 287
CHOSEN 280x42091.71 8391.85 7191.29 16094.94 14482.69 11087.89 34696.17 13285.94 12887.27 15094.31 18590.27 995.65 27794.04 6595.86 10895.53 198
CDS-MVSNet89.50 12988.96 13091.14 16791.94 24880.93 15397.09 13395.81 15784.26 17484.72 17594.20 19080.31 6995.64 27883.37 18888.96 17896.85 162
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MVS-HIRNet71.36 34367.00 34884.46 31290.58 27469.74 33979.15 38187.74 36746.09 39361.96 36650.50 39745.14 35595.64 27853.74 36888.11 19288.00 319
v7n79.32 29777.34 29785.28 29784.05 35972.89 31293.38 28993.87 26775.02 32170.68 32384.37 33859.58 27995.62 28067.60 31067.50 34387.32 334
Effi-MVS+-dtu84.61 22284.90 20283.72 32191.96 24663.14 36894.95 25393.34 29685.57 13479.79 23587.12 29761.99 26595.61 28183.55 18485.83 21592.41 247
JIA-IIPM79.00 29977.20 29884.40 31389.74 29164.06 36375.30 39095.44 17862.15 37281.90 21159.08 39478.92 8695.59 28266.51 32085.78 21693.54 237
Fast-Effi-MVS+-dtu83.33 24382.60 23985.50 29489.55 29469.38 34296.09 20391.38 32982.30 21975.96 27991.41 23456.71 30795.58 28375.13 26484.90 22391.54 249
EG-PatchMatch MVS74.92 32572.02 33283.62 32283.76 36373.28 30593.62 28492.04 32068.57 35858.88 37583.80 34331.87 38795.57 28456.97 35978.67 26982.00 378
UniMVSNet (Re)85.31 21184.23 21188.55 22789.75 28980.55 16396.72 16296.89 4785.42 13878.40 24788.93 26975.38 15295.52 28578.58 22768.02 33789.57 277
OpenMVS_ROBcopyleft68.52 2073.02 33569.57 34283.37 32580.54 37271.82 32393.60 28588.22 36362.37 37161.98 36583.15 34835.31 38295.47 28645.08 38775.88 28482.82 370
miper_enhance_ethall85.95 20085.20 19388.19 23894.85 14879.76 18396.00 20494.06 25882.98 20577.74 25388.76 27179.42 7895.46 28780.58 20572.42 30189.36 283
patchmatchnet-post77.09 37377.78 10695.39 288
SCA85.63 20583.64 22091.60 15392.30 22781.86 12992.88 30295.56 16984.85 15382.52 19885.12 33258.04 29395.39 28873.89 27587.58 19897.54 122
jajsoiax82.12 26581.15 26085.03 30184.19 35670.70 33194.22 27293.95 26083.07 20173.48 29989.75 26149.66 33995.37 29082.24 19779.76 25789.02 294
mvs_anonymous88.68 14787.62 15591.86 14294.80 14981.69 13793.53 28794.92 20182.03 22578.87 24490.43 25275.77 14095.34 29185.04 16593.16 14398.55 53
ITE_SJBPF82.38 33287.00 32365.59 35789.55 35079.99 26369.37 33291.30 23741.60 36895.33 29262.86 33774.63 29286.24 346
eth_miper_zixun_eth83.12 24882.01 24686.47 27591.85 25174.80 29194.33 26693.18 30279.11 28075.74 28587.25 29572.71 18995.32 29376.78 24667.13 34689.27 285
mvs_tets81.74 26980.71 26584.84 30284.22 35570.29 33493.91 27893.78 27582.77 21073.37 30289.46 26447.36 34995.31 29481.99 19879.55 26388.92 300
FIs86.73 18986.10 18288.61 22690.05 28580.21 17396.14 20096.95 4285.56 13678.37 24892.30 22076.73 12495.28 29579.51 21679.27 26490.35 261
pm-mvs180.05 28878.02 29386.15 28185.42 34275.81 28495.11 24892.69 31277.13 30470.36 32687.43 29058.44 28995.27 29671.36 29164.25 35887.36 333
miper_ehance_all_eth84.57 22383.60 22287.50 25592.64 21978.25 22695.40 23493.47 28879.28 27776.41 26987.64 28876.53 12695.24 29778.58 22772.42 30189.01 295
ADS-MVSNet81.26 27678.36 28989.96 20093.78 18179.78 18279.48 37893.60 28473.09 33680.14 23179.99 36362.15 26295.24 29759.49 34783.52 22894.85 214
cl____83.27 24482.12 24486.74 27092.20 23275.95 28195.11 24893.27 29878.44 29174.82 29287.02 29974.19 17395.19 29974.67 26869.32 32489.09 290
DIV-MVS_self_test83.27 24482.12 24486.74 27092.19 23375.92 28395.11 24893.26 29978.44 29174.81 29387.08 29874.19 17395.19 29974.66 26969.30 32589.11 289
IterMVS-LS83.93 23382.80 23687.31 26191.46 25677.39 25495.66 22293.43 29080.44 25075.51 28687.26 29473.72 18095.16 30176.99 24370.72 31189.39 278
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
UniMVSNet_NR-MVSNet85.49 20884.59 20388.21 23789.44 29779.36 19596.71 16496.41 10885.22 14378.11 25090.98 24476.97 11995.14 30279.14 22268.30 33490.12 266
DU-MVS84.57 22383.33 22788.28 23388.76 30179.36 19596.43 18295.41 18285.42 13878.11 25090.82 24567.61 22595.14 30279.14 22268.30 33490.33 262
c3_l83.80 23682.65 23887.25 26392.10 23977.74 24895.25 23993.04 30778.58 28876.01 27787.21 29675.25 15895.11 30477.54 23868.89 32888.91 301
MVSFormer91.36 9190.57 9793.73 5993.00 20688.08 1894.80 25894.48 23080.74 24294.90 4497.13 10578.84 8895.10 30583.77 17897.46 7198.02 83
test_djsdf83.00 25282.45 24184.64 30784.07 35869.78 33894.80 25894.48 23080.74 24275.41 28887.70 28761.32 27195.10 30583.77 17879.76 25789.04 293
RRT_MVS83.88 23483.27 22885.71 28887.53 32072.12 31795.35 23594.33 24283.81 18775.86 28191.28 23860.55 27395.09 30783.93 17476.76 28189.90 274
test_post185.88 36230.24 40673.77 17895.07 30873.89 275
pmmvs482.54 25880.79 26287.79 24486.11 33480.49 16793.55 28693.18 30277.29 30273.35 30389.40 26565.26 24695.05 30975.32 26273.61 29587.83 321
anonymousdsp80.98 28179.97 27784.01 31581.73 36870.44 33392.49 30693.58 28677.10 30672.98 30886.31 31357.58 29994.90 31079.32 21978.63 27286.69 340
NR-MVSNet83.35 24281.52 25588.84 22188.76 30181.31 14494.45 26295.16 19284.65 16067.81 33690.82 24570.36 21794.87 31174.75 26666.89 34990.33 262
WR-MVS84.32 22782.96 23188.41 22989.38 29880.32 16896.59 16996.25 12483.97 18076.63 26590.36 25367.53 22894.86 31275.82 25870.09 31890.06 271
pmmvs674.65 32771.67 33383.60 32379.13 37669.94 33693.31 29490.88 34161.05 38065.83 34884.15 34143.43 35994.83 31366.62 31760.63 36786.02 350
UWE-MVS88.56 15388.91 13387.50 25594.17 17072.19 31595.82 21797.05 3584.96 15284.78 17393.51 20681.33 6094.75 31479.43 21889.17 17395.57 196
FC-MVSNet-test85.96 19985.39 19087.66 24889.38 29878.02 23495.65 22396.87 4985.12 14777.34 25591.94 22976.28 13394.74 31577.09 24278.82 26890.21 264
WB-MVSnew84.08 23183.51 22485.80 28591.34 25876.69 26795.62 22596.27 12281.77 22881.81 21492.81 21458.23 29094.70 31666.66 31687.06 20085.99 351
Vis-MVSNet (Re-imp)88.88 14288.87 13488.91 22093.89 18074.43 29696.93 14894.19 25084.39 16783.22 19395.67 14478.24 9694.70 31678.88 22594.40 12597.61 119
tpm85.55 20784.47 20888.80 22390.19 28175.39 28788.79 33894.69 21484.83 15483.96 18485.21 32878.22 9794.68 31876.32 25378.02 27896.34 178
TranMVSNet+NR-MVSNet83.24 24681.71 25187.83 24387.71 31678.81 21196.13 20294.82 20884.52 16376.18 27690.78 24764.07 25294.60 31974.60 27066.59 35190.09 269
Patchmatch-test78.25 30274.72 31688.83 22291.20 25974.10 29973.91 39388.70 36159.89 38466.82 34285.12 33278.38 9494.54 32048.84 38279.58 26297.86 98
mvsany_test187.58 17688.22 14185.67 29089.78 28867.18 35195.25 23987.93 36483.96 18188.79 13197.06 11072.52 19294.53 32192.21 8986.45 20695.30 205
FMVSNet384.71 21982.71 23790.70 18094.55 15587.71 2295.92 20994.67 21781.73 22975.82 28288.08 28366.99 23394.47 32271.23 29275.38 28789.91 273
pmmvs581.34 27579.54 28186.73 27385.02 34876.91 26196.22 19491.65 32677.65 29773.55 29888.61 27355.70 31594.43 32374.12 27473.35 29888.86 302
Baseline_NR-MVSNet81.22 27780.07 27584.68 30585.32 34675.12 28996.48 17688.80 35876.24 31377.28 25786.40 31267.61 22594.39 32475.73 25966.73 35084.54 361
FMVSNet282.79 25480.44 26989.83 20592.66 21685.43 5595.42 23294.35 24079.06 28274.46 29487.28 29256.38 31294.31 32569.72 30474.68 29189.76 275
SixPastTwentyTwo76.04 31974.32 32081.22 33884.54 35261.43 37491.16 32289.30 35477.89 29364.04 35486.31 31348.23 34194.29 32663.54 33463.84 36087.93 320
TDRefinement69.20 34865.78 35279.48 34766.04 39862.21 37088.21 34286.12 37362.92 37061.03 37085.61 32133.23 38494.16 32755.82 36453.02 38082.08 377
TransMVSNet (Re)76.94 31574.38 31984.62 30885.92 33775.25 28895.28 23689.18 35573.88 32967.22 33786.46 30859.64 27794.10 32859.24 35052.57 38284.50 362
OurMVSNet-221017-077.18 31476.06 30680.55 34383.78 36260.00 37890.35 32891.05 33777.01 30866.62 34587.92 28547.73 34794.03 32971.63 28868.44 33287.62 325
EPNet_dtu87.65 17587.89 14786.93 26994.57 15371.37 32996.72 16296.50 9888.56 7187.12 15395.02 17075.91 13994.01 33066.62 31790.00 16795.42 201
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
lessismore_v079.98 34580.59 37158.34 38180.87 38858.49 37683.46 34643.10 36293.89 33163.11 33648.68 38687.72 322
GBi-Net82.42 26080.43 27088.39 23092.66 21681.95 12294.30 26893.38 29279.06 28275.82 28285.66 31856.38 31293.84 33271.23 29275.38 28789.38 280
test182.42 26080.43 27088.39 23092.66 21681.95 12294.30 26893.38 29279.06 28275.82 28285.66 31856.38 31293.84 33271.23 29275.38 28789.38 280
FMVSNet179.50 29476.54 30488.39 23088.47 30681.95 12294.30 26893.38 29273.14 33572.04 31685.66 31843.86 35793.84 33265.48 32472.53 30089.38 280
test_040272.68 33669.54 34382.09 33588.67 30471.81 32492.72 30486.77 37161.52 37562.21 36483.91 34243.22 36193.76 33534.60 39472.23 30480.72 382
CR-MVSNet83.53 24081.36 25790.06 19590.16 28279.75 18479.02 38291.12 33484.24 17582.27 20780.35 36175.45 14893.67 33663.37 33586.25 20896.75 167
ET-MVSNet_ETH3D90.01 12189.03 12792.95 9294.38 16486.77 3198.14 4796.31 12089.30 6163.33 35896.72 12490.09 1193.63 33790.70 10782.29 24598.46 57
Patchmtry77.36 31274.59 31785.67 29089.75 28975.75 28577.85 38591.12 33460.28 38171.23 31980.35 36175.45 14893.56 33857.94 35267.34 34587.68 324
test_fmvs279.59 29279.90 27978.67 35182.86 36555.82 38695.20 24289.55 35081.09 23580.12 23389.80 26034.31 38393.51 33987.82 14378.36 27586.69 340
miper_lstm_enhance81.66 27280.66 26684.67 30691.19 26071.97 32191.94 31293.19 30077.86 29572.27 31485.26 32673.46 18393.42 34073.71 27867.05 34788.61 303
PatchT79.75 29076.85 30288.42 22889.55 29475.49 28677.37 38694.61 22463.07 36982.46 20073.32 38275.52 14793.41 34151.36 37384.43 22496.36 176
ppachtmachnet_test77.19 31374.22 32186.13 28285.39 34378.22 22793.98 27591.36 33171.74 34667.11 33984.87 33556.67 30893.37 34252.21 37164.59 35586.80 338
our_test_377.90 30775.37 31185.48 29585.39 34376.74 26593.63 28391.67 32573.39 33465.72 34984.65 33758.20 29293.13 34357.82 35367.87 33886.57 342
LCM-MVSNet-Re83.75 23783.54 22384.39 31493.54 18864.14 36292.51 30584.03 38283.90 18466.14 34786.59 30567.36 23092.68 34484.89 16792.87 14596.35 177
WR-MVS_H81.02 27980.09 27383.79 31888.08 31171.26 33094.46 26196.54 9380.08 26072.81 31086.82 30170.36 21792.65 34564.18 32967.50 34387.46 332
ambc76.02 36168.11 39551.43 39064.97 39889.59 34960.49 37174.49 37817.17 39792.46 34661.50 34152.85 38184.17 365
PEN-MVS79.47 29578.26 29183.08 32786.36 32868.58 34593.85 28094.77 21279.76 26671.37 31788.55 27459.79 27692.46 34664.50 32865.40 35388.19 315
CP-MVSNet81.01 28080.08 27483.79 31887.91 31470.51 33294.29 27195.65 16580.83 23972.54 31388.84 27063.71 25392.32 34868.58 30968.36 33388.55 304
LF4IMVS72.36 33870.82 33676.95 35779.18 37556.33 38386.12 36086.11 37469.30 35763.06 36086.66 30433.03 38592.25 34965.33 32568.64 33082.28 376
PS-CasMVS80.27 28779.18 28383.52 32487.56 31869.88 33794.08 27495.29 18880.27 25772.08 31588.51 27759.22 28492.23 35067.49 31168.15 33688.45 310
DTE-MVSNet78.37 30177.06 30082.32 33485.22 34767.17 35493.40 28893.66 28178.71 28770.53 32588.29 27959.06 28592.23 35061.38 34263.28 36287.56 328
UnsupCasMVSNet_bld68.60 35064.50 35480.92 34174.63 38967.80 34783.97 37092.94 30865.12 36754.63 38468.23 39035.97 37992.17 35260.13 34544.83 39182.78 371
KD-MVS_2432*160077.63 30974.92 31485.77 28690.86 26979.44 19288.08 34393.92 26376.26 31167.05 34082.78 34972.15 19991.92 35361.53 33941.62 39685.94 352
miper_refine_blended77.63 30974.92 31485.77 28690.86 26979.44 19288.08 34393.92 26376.26 31167.05 34082.78 34972.15 19991.92 35361.53 33941.62 39685.94 352
test_vis3_rt54.10 36151.04 36463.27 37758.16 40146.08 39884.17 36949.32 41256.48 39136.56 39649.48 3998.03 40891.91 35567.29 31349.87 38451.82 398
N_pmnet61.30 35560.20 35864.60 37484.32 35417.00 41591.67 31810.98 41361.77 37458.45 37778.55 36749.89 33891.83 35642.27 39063.94 35984.97 359
K. test v373.62 32971.59 33479.69 34682.98 36459.85 37990.85 32688.83 35777.13 30458.90 37482.11 35143.62 35891.72 35765.83 32354.10 37787.50 331
Patchmatch-RL test76.65 31774.01 32484.55 30977.37 38264.23 36178.49 38482.84 38678.48 28964.63 35373.40 38176.05 13691.70 35876.99 24357.84 37197.72 109
IterMVS-SCA-FT80.51 28679.10 28584.73 30489.63 29374.66 29292.98 30091.81 32480.05 26171.06 32285.18 32958.04 29391.40 35972.48 28570.70 31288.12 317
IterMVS80.67 28479.16 28485.20 29889.79 28776.08 27592.97 30191.86 32180.28 25671.20 32085.14 33157.93 29791.34 36072.52 28470.74 31088.18 316
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MDA-MVSNet-bldmvs71.45 34267.94 34781.98 33685.33 34568.50 34692.35 30988.76 35970.40 35142.99 39281.96 35246.57 35191.31 36148.75 38354.39 37686.11 348
pmmvs-eth3d73.59 33070.66 33782.38 33276.40 38673.38 30289.39 33589.43 35272.69 34060.34 37277.79 36946.43 35291.26 36266.42 32157.06 37282.51 373
PM-MVS69.32 34766.93 34976.49 35973.60 39055.84 38585.91 36179.32 39274.72 32361.09 36978.18 36821.76 39491.10 36370.86 29756.90 37382.51 373
Anonymous2024052172.06 34069.91 34178.50 35377.11 38361.67 37391.62 31990.97 33965.52 36662.37 36379.05 36636.32 37790.96 36457.75 35468.52 33182.87 369
Anonymous2023120675.29 32473.64 32580.22 34480.75 36963.38 36793.36 29090.71 34473.09 33667.12 33883.70 34450.33 33690.85 36553.63 36970.10 31786.44 343
MIMVSNet79.18 29875.99 30788.72 22587.37 32180.66 16079.96 37791.82 32377.38 30174.33 29581.87 35341.78 36690.74 36666.36 32283.10 23394.76 216
UnsupCasMVSNet_eth73.25 33370.57 33881.30 33777.53 38066.33 35687.24 35193.89 26680.38 25357.90 37981.59 35442.91 36490.56 36765.18 32648.51 38787.01 337
YYNet173.53 33270.43 33982.85 32984.52 35371.73 32591.69 31791.37 33067.63 35946.79 38881.21 35755.04 32090.43 36855.93 36259.70 36986.38 344
MDA-MVSNet_test_wron73.54 33170.43 33982.86 32884.55 35171.85 32291.74 31691.32 33367.63 35946.73 38981.09 35855.11 31990.42 36955.91 36359.76 36886.31 345
CVMVSNet84.83 21885.57 18782.63 33191.55 25360.38 37695.13 24695.03 19780.60 24582.10 20994.71 17866.40 23890.19 37074.30 27290.32 16697.31 140
ADS-MVSNet279.57 29377.53 29685.71 28893.78 18172.13 31679.48 37886.11 37473.09 33680.14 23179.99 36362.15 26290.14 37159.49 34783.52 22894.85 214
CL-MVSNet_self_test75.81 32174.14 32380.83 34278.33 37867.79 34894.22 27293.52 28777.28 30369.82 32981.54 35561.47 27089.22 37257.59 35553.51 37885.48 356
test0.0.03 182.79 25482.48 24083.74 32086.81 32472.22 31396.52 17395.03 19783.76 18973.00 30793.20 20872.30 19788.88 37364.15 33077.52 27990.12 266
testgi74.88 32673.40 32679.32 34980.13 37361.75 37193.21 29686.64 37279.49 27266.56 34691.06 24135.51 38188.67 37456.79 36071.25 30687.56 328
KD-MVS_self_test70.97 34469.31 34475.95 36376.24 38855.39 38887.45 34890.94 34070.20 35362.96 36277.48 37044.01 35688.09 37561.25 34353.26 37984.37 363
new_pmnet66.18 35263.18 35575.18 36576.27 38761.74 37283.79 37184.66 37956.64 39051.57 38671.85 38831.29 38887.93 37649.98 37862.55 36375.86 387
Syy-MVS77.97 30678.05 29277.74 35592.13 23756.85 38293.97 27694.23 24682.43 21673.39 30093.57 20457.95 29687.86 37732.40 39582.34 24388.51 305
myMVS_eth3d81.93 26782.18 24381.18 33992.13 23767.18 35193.97 27694.23 24682.43 21673.39 30093.57 20476.98 11887.86 37750.53 37782.34 24388.51 305
mvsany_test367.19 35165.34 35372.72 36663.08 39948.57 39283.12 37378.09 39372.07 34361.21 36877.11 37222.94 39387.78 37978.59 22651.88 38381.80 379
FMVSNet576.46 31874.16 32283.35 32690.05 28576.17 27389.58 33289.85 34871.39 34865.29 35180.42 36050.61 33487.70 38061.05 34469.24 32686.18 347
EU-MVSNet76.92 31676.95 30176.83 35884.10 35754.73 38991.77 31592.71 31172.74 33969.57 33188.69 27258.03 29587.43 38164.91 32770.00 31988.33 313
testing380.74 28381.17 25979.44 34891.15 26263.48 36697.16 12395.76 15980.83 23971.36 31893.15 21178.22 9787.30 38243.19 38979.67 26087.55 330
new-patchmatchnet68.85 34965.93 35177.61 35673.57 39163.94 36490.11 33088.73 36071.62 34755.08 38373.60 38040.84 37187.22 38351.35 37448.49 38881.67 381
DSMNet-mixed73.13 33472.45 33075.19 36477.51 38146.82 39485.09 36682.01 38767.61 36369.27 33381.33 35650.89 33286.28 38454.54 36683.80 22792.46 245
pmmvs365.75 35362.18 35676.45 36067.12 39764.54 35988.68 33985.05 37754.77 39257.54 38173.79 37929.40 39086.21 38555.49 36547.77 38978.62 384
MIMVSNet169.44 34666.65 35077.84 35476.48 38562.84 36987.42 34988.97 35666.96 36457.75 38079.72 36532.77 38685.83 38646.32 38563.42 36184.85 360
test20.0372.36 33871.15 33575.98 36277.79 37959.16 38092.40 30889.35 35374.09 32761.50 36784.32 33948.09 34285.54 38750.63 37662.15 36583.24 368
test_f64.01 35462.13 35769.65 36863.00 40045.30 39983.66 37280.68 38961.30 37755.70 38272.62 38414.23 40084.64 38869.84 30258.11 37079.00 383
EGC-MVSNET52.46 36347.56 36667.15 37081.98 36760.11 37782.54 37572.44 3980.11 4100.70 41174.59 37725.11 39283.26 38929.04 39761.51 36658.09 395
test_fmvs369.56 34569.19 34570.67 36769.01 39347.05 39390.87 32586.81 37071.31 34966.79 34377.15 37116.40 39883.17 39081.84 19962.51 36481.79 380
APD_test156.56 35853.58 36265.50 37167.93 39646.51 39677.24 38872.95 39738.09 39542.75 39375.17 37513.38 40182.78 39140.19 39254.53 37567.23 392
dmvs_testset72.00 34173.36 32767.91 36983.83 36131.90 40985.30 36577.12 39482.80 20963.05 36192.46 21961.54 26982.55 39242.22 39171.89 30589.29 284
DeepMVS_CXcopyleft64.06 37578.53 37743.26 40068.11 40469.94 35438.55 39476.14 37418.53 39679.34 39343.72 38841.62 39669.57 390
WB-MVS57.26 35656.22 35960.39 38069.29 39235.91 40786.39 35970.06 40059.84 38546.46 39072.71 38351.18 33178.11 39415.19 40434.89 39967.14 393
SSC-MVS56.01 35954.96 36059.17 38168.42 39434.13 40884.98 36769.23 40158.08 38945.36 39171.67 38950.30 33777.46 39514.28 40532.33 40065.91 394
FPMVS55.09 36052.93 36361.57 37855.98 40240.51 40383.11 37483.41 38537.61 39634.95 39771.95 38614.40 39976.95 39629.81 39665.16 35467.25 391
LCM-MVSNet52.52 36248.24 36565.35 37247.63 40941.45 40172.55 39483.62 38431.75 39737.66 39557.92 3959.19 40776.76 39749.26 38044.60 39277.84 385
Gipumacopyleft45.11 36842.05 37054.30 38480.69 37051.30 39135.80 40283.81 38328.13 39827.94 40234.53 40211.41 40576.70 39821.45 40154.65 37434.90 402
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMMVS250.90 36446.31 36764.67 37355.53 40346.67 39577.30 38771.02 39940.89 39434.16 39859.32 3939.83 40676.14 39940.09 39328.63 40171.21 388
PMVScopyleft34.80 2339.19 37035.53 37350.18 38529.72 41230.30 41059.60 40066.20 40526.06 40117.91 40549.53 3983.12 41174.09 40018.19 40349.40 38546.14 399
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
testf145.70 36642.41 36855.58 38253.29 40640.02 40468.96 39662.67 40627.45 39929.85 39961.58 3915.98 40973.83 40128.49 39943.46 39452.90 396
APD_test245.70 36642.41 36855.58 38253.29 40640.02 40468.96 39662.67 40627.45 39929.85 39961.58 3915.98 40973.83 40128.49 39943.46 39452.90 396
ANet_high46.22 36541.28 37261.04 37939.91 41146.25 39770.59 39576.18 39558.87 38723.09 40348.00 40012.58 40366.54 40328.65 39813.62 40470.35 389
test_method56.77 35754.53 36163.49 37676.49 38440.70 40275.68 38974.24 39619.47 40448.73 38771.89 38719.31 39565.80 40457.46 35647.51 39083.97 366
MVEpermissive35.65 2233.85 37129.49 37646.92 38641.86 41036.28 40650.45 40156.52 40918.75 40518.28 40437.84 4012.41 41258.41 40518.71 40220.62 40246.06 400
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN32.70 37232.39 37433.65 38853.35 40525.70 41274.07 39253.33 41021.08 40217.17 40633.63 40411.85 40454.84 40612.98 40614.04 40320.42 403
EMVS31.70 37331.45 37532.48 38950.72 40823.95 41374.78 39152.30 41120.36 40316.08 40731.48 40512.80 40253.60 40711.39 40713.10 40619.88 404
tmp_tt41.54 36941.93 37140.38 38720.10 41326.84 41161.93 39959.09 40814.81 40628.51 40180.58 35935.53 38048.33 40863.70 33313.11 40545.96 401
wuyk23d14.10 37513.89 37814.72 39055.23 40422.91 41433.83 4033.56 4144.94 4074.11 4082.28 4102.06 41319.66 40910.23 4088.74 4071.59 407
test1239.07 37711.73 3801.11 3910.50 4150.77 41689.44 3340.20 4160.34 4092.15 41010.72 4090.34 4140.32 4101.79 4100.08 4092.23 405
testmvs9.92 37612.94 3790.84 3920.65 4140.29 41793.78 2810.39 4150.42 4082.85 40915.84 4080.17 4150.30 4112.18 4090.21 4081.91 406
test_blank0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
uanet_test0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
DCPMVS0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
cdsmvs_eth3d_5k21.43 37428.57 3770.00 3930.00 4160.00 4180.00 40495.93 1510.00 4110.00 41297.66 7463.57 2540.00 4120.00 4110.00 4100.00 408
pcd_1.5k_mvsjas5.92 3797.89 3820.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 41171.04 2110.00 4120.00 4110.00 4100.00 408
sosnet-low-res0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
sosnet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
uncertanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
Regformer0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
ab-mvs-re8.11 37810.81 3810.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 41297.30 970.00 4160.00 4120.00 4110.00 4100.00 408
uanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
WAC-MVS67.18 35149.00 381
FOURS198.51 3978.01 23598.13 5096.21 12883.04 20294.39 52
test_one_060198.91 1884.56 8096.70 7188.06 8296.57 2398.77 1088.04 20
eth-test20.00 416
eth-test0.00 416
RE-MVS-def91.18 8797.76 6776.03 27796.20 19795.44 17880.56 24790.72 10397.84 6673.36 18591.99 9296.79 9097.75 107
IU-MVS99.03 1585.34 5696.86 5192.05 2998.74 198.15 1198.97 1799.42 13
save fliter98.24 5183.34 10198.61 3496.57 9091.32 34
test072699.05 985.18 6199.11 1596.78 5588.75 6597.65 1298.91 287.69 22
GSMVS97.54 122
test_part298.90 1985.14 6796.07 29
sam_mvs177.59 10797.54 122
sam_mvs75.35 155
MTGPAbinary96.33 118
MTMP97.53 9268.16 403
test9_res96.00 4199.03 1398.31 66
agg_prior294.30 6099.00 1598.57 50
test_prior482.34 11897.75 76
test_prior298.37 4086.08 12594.57 5098.02 5383.14 5095.05 5398.79 26
新几何296.42 183
旧先验197.39 8279.58 19196.54 9398.08 5084.00 4397.42 7597.62 118
原ACMM296.84 153
test22296.15 10478.41 22195.87 21396.46 10271.97 34489.66 11697.45 8776.33 13298.24 5098.30 67
segment_acmp82.69 55
testdata195.57 22787.44 98
plane_prior791.86 24977.55 251
plane_prior691.98 24577.92 24064.77 249
plane_prior494.15 191
plane_prior377.75 24790.17 5281.33 217
plane_prior297.18 11989.89 55
plane_prior191.95 247
plane_prior77.96 23797.52 9590.36 5082.96 236
n20.00 417
nn0.00 417
door-mid79.75 391
test1196.50 98
door80.13 390
HQP5-MVS78.48 217
HQP-NCC92.08 24097.63 8390.52 4582.30 203
ACMP_Plane92.08 24097.63 8390.52 4582.30 203
BP-MVS87.67 146
HQP3-MVS94.80 20983.01 234
HQP2-MVS65.40 243
NP-MVS92.04 24478.22 22794.56 181
MDTV_nov1_ep13_2view81.74 13486.80 35480.65 24485.65 16374.26 17276.52 24996.98 154
ACMMP++_ref78.45 274
ACMMP++79.05 266
Test By Simon71.65 204