This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort by
DPM-MVS96.21 295.53 1198.26 196.26 9895.09 199.15 496.98 3093.39 1096.45 1898.79 890.17 1099.99 189.33 10899.25 699.70 3
MCST-MVS96.17 396.12 696.32 799.42 289.36 998.94 1697.10 2695.17 292.11 6698.46 2287.33 2499.97 297.21 1799.31 499.63 7
CNVR-MVS96.30 196.54 195.55 1399.31 587.69 2099.06 1097.12 2494.66 396.79 1298.78 986.42 2999.95 397.59 1399.18 799.00 26
NCCC95.63 695.94 894.69 2699.21 685.15 5799.16 396.96 3294.11 695.59 2498.64 1785.07 3399.91 495.61 3299.10 999.00 26
API-MVS90.18 9788.97 10893.80 4798.66 2882.95 9597.50 8095.63 14875.16 28986.31 13697.69 5872.49 17399.90 581.26 17996.07 9598.56 46
DeepC-MVS_fast89.06 294.48 1994.30 2395.02 1898.86 2185.68 4298.06 4396.64 7093.64 991.74 7198.54 1880.17 6499.90 592.28 7098.75 2899.49 8
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DP-MVS Recon91.72 6490.85 7394.34 3299.50 185.00 6198.51 2595.96 13080.57 21688.08 12297.63 6676.84 10799.89 785.67 13894.88 10698.13 72
CANet94.89 1394.64 1795.63 1197.55 7588.12 1499.06 1096.39 10194.07 795.34 2697.80 5576.83 10899.87 897.08 1897.64 6398.89 29
DeepPCF-MVS89.82 194.61 1796.17 589.91 18097.09 9070.21 30998.99 1596.69 6295.57 195.08 3099.23 186.40 3099.87 897.84 1198.66 3199.65 6
HPM-MVS++copyleft95.32 995.48 1294.85 2298.62 3486.04 3497.81 5696.93 3592.45 1395.69 2398.50 2085.38 3199.85 1094.75 4099.18 798.65 42
PHI-MVS93.59 3193.63 2993.48 6398.05 5881.76 11898.64 2197.13 2382.60 18894.09 4598.49 2180.35 5999.85 1094.74 4198.62 3298.83 31
DVP-MVS++96.05 496.41 394.96 2099.05 985.34 4798.13 3796.77 5088.38 5997.70 698.77 1092.06 399.84 1297.47 1499.37 199.70 3
OPU-MVS97.30 299.19 792.31 399.12 698.54 1892.06 399.84 1299.11 199.37 199.74 1
test_0728_SECOND95.14 1699.04 1486.14 3399.06 1096.77 5099.84 1297.90 998.85 2199.45 10
SMA-MVScopyleft94.70 1694.68 1694.76 2498.02 5985.94 3797.47 8196.77 5085.32 11897.92 398.70 1583.09 4799.84 1295.79 2999.08 1098.49 49
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
patch_mono-295.14 1196.08 792.33 10298.44 4377.84 22198.43 2697.21 2092.58 1297.68 897.65 6486.88 2699.83 1698.25 397.60 6499.33 17
ACMMP_NAP93.46 3293.23 3794.17 3997.16 8884.28 7296.82 13496.65 6786.24 10194.27 4297.99 4477.94 8999.83 1693.39 5598.57 3398.39 55
SED-MVS95.88 596.22 494.87 2199.03 1585.03 5999.12 696.78 4488.72 5297.79 498.91 288.48 1799.82 1898.15 498.97 1799.74 1
test_241102_TWO96.78 4488.72 5297.70 698.91 287.86 2199.82 1898.15 499.00 1599.47 9
test_241102_ONE99.03 1585.03 5996.78 4488.72 5297.79 498.90 588.48 1799.82 18
MSC_two_6792asdad97.14 399.05 992.19 496.83 4199.81 2198.08 798.81 2499.43 11
PC_three_145291.12 2298.33 298.42 2392.51 299.81 2198.96 299.37 199.70 3
No_MVS97.14 399.05 992.19 496.83 4199.81 2198.08 798.81 2499.43 11
ZNCC-MVS92.75 4192.60 4693.23 7098.24 5181.82 11697.63 6896.50 8785.00 12891.05 8297.74 5778.38 8399.80 2490.48 9098.34 4698.07 75
DVP-MVScopyleft95.58 895.91 994.57 2899.05 985.18 5299.06 1096.46 9188.75 5096.69 1398.76 1287.69 2299.76 2597.90 998.85 2198.77 33
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD88.38 5996.69 1398.76 1289.64 1399.76 2597.47 1498.84 2399.38 14
GST-MVS92.43 5492.22 5493.04 7798.17 5481.64 12297.40 9096.38 10284.71 13490.90 8597.40 7777.55 9799.76 2589.75 10297.74 6197.72 102
MTAPA92.45 5392.31 5092.86 8397.90 6180.85 13592.88 27696.33 10687.92 6990.20 9498.18 3076.71 11199.76 2592.57 6998.09 5197.96 87
PAPR92.74 4292.17 5594.45 3098.89 2084.87 6497.20 9996.20 11587.73 7488.40 11798.12 3578.71 8099.76 2587.99 12196.28 9298.74 34
PAPM_NR91.46 7090.82 7493.37 6698.50 4081.81 11795.03 22796.13 11984.65 13686.10 13997.65 6479.24 7299.75 3083.20 16796.88 8398.56 46
MAR-MVS90.63 8890.22 8691.86 12098.47 4278.20 20997.18 10196.61 7383.87 15988.18 12198.18 3068.71 20299.75 3083.66 16197.15 7797.63 110
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
DPE-MVScopyleft95.32 995.55 1094.64 2798.79 2384.87 6497.77 5896.74 5586.11 10396.54 1798.89 688.39 1999.74 3297.67 1299.05 1299.31 18
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MP-MVS-pluss92.58 5192.35 4993.29 6797.30 8682.53 10096.44 15796.04 12784.68 13589.12 10798.37 2477.48 9899.74 3293.31 5998.38 4397.59 113
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
QAPM86.88 16084.51 18193.98 4294.04 16085.89 3897.19 10096.05 12673.62 30075.12 26595.62 12862.02 24299.74 3270.88 27196.06 9696.30 165
AdaColmapbinary88.81 12387.61 13492.39 10099.33 479.95 15696.70 14495.58 14977.51 26983.05 17396.69 10861.90 24599.72 3584.29 14893.47 12497.50 119
HFP-MVS92.89 3992.86 4192.98 7998.71 2581.12 12997.58 7296.70 6085.20 12391.75 7097.97 4878.47 8299.71 3690.95 8198.41 4198.12 73
DeepC-MVS86.58 391.53 6991.06 7292.94 8194.52 14581.89 11295.95 18495.98 12990.76 2683.76 16596.76 10473.24 16799.71 3691.67 7796.96 8097.22 133
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MP-MVScopyleft92.61 5092.67 4492.42 9998.13 5679.73 16597.33 9396.20 11585.63 11290.53 8997.66 6078.14 8799.70 3892.12 7298.30 4897.85 93
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MVS90.60 8988.64 11396.50 594.25 15390.53 893.33 26497.21 2077.59 26878.88 21797.31 7971.52 18599.69 3989.60 10398.03 5499.27 20
DELS-MVS94.98 1294.49 1996.44 696.42 9590.59 799.21 297.02 2894.40 591.46 7397.08 9183.32 4599.69 3992.83 6598.70 3099.04 24
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
mPP-MVS91.88 6091.82 5992.07 11298.38 4478.63 19397.29 9496.09 12285.12 12588.45 11697.66 6075.53 13099.68 4189.83 10098.02 5597.88 89
3Dnovator82.32 1089.33 11187.64 13194.42 3193.73 16785.70 4197.73 6296.75 5486.73 9976.21 25095.93 11862.17 23999.68 4181.67 17797.81 5997.88 89
region2R92.72 4592.70 4392.79 8598.68 2680.53 14597.53 7696.51 8585.22 12191.94 6897.98 4677.26 10099.67 4390.83 8598.37 4498.18 67
ACMMPR92.69 4792.67 4492.75 8698.66 2880.57 14197.58 7296.69 6285.20 12391.57 7297.92 4977.01 10599.67 4390.95 8198.41 4198.00 82
OpenMVScopyleft79.58 1486.09 17383.62 19793.50 6190.95 24186.71 3097.44 8495.83 13875.35 28672.64 28495.72 12357.42 27699.64 4571.41 26595.85 10094.13 203
ACMMPcopyleft90.39 9389.97 9291.64 12897.58 7378.21 20896.78 13796.72 5884.73 13384.72 15297.23 8471.22 18799.63 4688.37 11992.41 13797.08 138
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CHOSEN 1792x268891.07 8090.21 8793.64 5395.18 12683.53 8596.26 16996.13 11988.92 4984.90 14993.10 18472.86 16999.62 4788.86 11195.67 10297.79 98
SD-MVS94.84 1495.02 1494.29 3497.87 6484.61 6797.76 6096.19 11789.59 4296.66 1598.17 3384.33 3699.60 4896.09 2498.50 3698.66 41
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
test_vis1_n_192089.95 10190.59 7788.03 21792.36 20468.98 31999.12 694.34 21893.86 893.64 4997.01 9451.54 30299.59 4996.76 2196.71 8995.53 179
XVS92.69 4792.71 4292.63 9298.52 3780.29 14897.37 9196.44 9387.04 9191.38 7497.83 5477.24 10299.59 4990.46 9198.07 5298.02 77
X-MVStestdata86.26 17184.14 19092.63 9298.52 3780.29 14897.37 9196.44 9387.04 9191.38 7420.73 37677.24 10299.59 4990.46 9198.07 5298.02 77
PVSNet_BlendedMVS90.05 9989.96 9390.33 16797.47 7683.86 7798.02 4696.73 5687.98 6789.53 10389.61 23376.42 11499.57 5294.29 4579.59 23287.57 300
PVSNet_Blended93.13 3492.98 3893.57 5797.47 7683.86 7799.32 196.73 5691.02 2589.53 10396.21 11376.42 11499.57 5294.29 4595.81 10197.29 131
PGM-MVS91.93 5991.80 6092.32 10498.27 5079.74 16495.28 21197.27 1883.83 16090.89 8697.78 5676.12 12099.56 5488.82 11297.93 5897.66 107
MVS_111021_HR93.41 3393.39 3593.47 6597.34 8582.83 9697.56 7498.27 689.16 4789.71 9897.14 8779.77 6799.56 5493.65 5397.94 5698.02 77
无先验96.87 13096.78 4477.39 27099.52 5679.95 19198.43 53
CSCG92.02 5891.65 6393.12 7398.53 3680.59 14097.47 8197.18 2277.06 27784.64 15497.98 4683.98 4199.52 5690.72 8797.33 7399.23 21
新几何193.12 7397.44 7881.60 12396.71 5974.54 29491.22 8097.57 6779.13 7499.51 5877.40 21798.46 3898.26 65
3Dnovator+82.88 889.63 10687.85 12694.99 1994.49 14986.76 2997.84 5395.74 14286.10 10475.47 26296.02 11765.00 22599.51 5882.91 17197.07 7998.72 39
CANet_DTU90.98 8190.04 9193.83 4694.76 13986.23 3296.32 16693.12 27793.11 1193.71 4796.82 10263.08 23599.48 6084.29 14895.12 10595.77 174
testdata299.48 6076.45 226
SteuartSystems-ACMMP94.13 2694.44 2193.20 7195.41 11981.35 12699.02 1496.59 7789.50 4394.18 4498.36 2583.68 4499.45 6294.77 3998.45 3998.81 32
Skip Steuart: Steuart Systems R&D Blog.
TSAR-MVS + GP.94.35 2094.50 1893.89 4597.38 8483.04 9498.10 3995.29 16991.57 1893.81 4697.45 7286.64 2799.43 6396.28 2394.01 11699.20 22
131488.94 11887.20 14494.17 3993.21 18085.73 4093.33 26496.64 7082.89 18175.98 25396.36 11166.83 21399.39 6483.52 16596.02 9797.39 126
SF-MVS94.17 2494.05 2694.55 2997.56 7485.95 3597.73 6296.43 9584.02 15295.07 3198.74 1482.93 4899.38 6595.42 3598.51 3498.32 58
DP-MVS81.47 24678.28 26291.04 14598.14 5578.48 19595.09 22686.97 34061.14 35071.12 29392.78 18959.59 25599.38 6553.11 34586.61 18095.27 187
9.1494.26 2498.10 5798.14 3496.52 8484.74 13294.83 3698.80 782.80 5099.37 6795.95 2798.42 40
TEST998.64 3183.71 8097.82 5496.65 6784.29 14795.16 2798.09 3784.39 3599.36 68
train_agg94.28 2194.45 2093.74 4998.64 3183.71 8097.82 5496.65 6784.50 14095.16 2798.09 3784.33 3699.36 6895.91 2898.96 1998.16 69
sss90.87 8589.96 9393.60 5694.15 15683.84 7997.14 10798.13 785.93 10889.68 9996.09 11671.67 18299.30 7087.69 12489.16 15897.66 107
PVSNet_Blended_VisFu91.24 7690.77 7592.66 9095.09 12882.40 10497.77 5895.87 13788.26 6286.39 13593.94 17376.77 10999.27 7188.80 11394.00 11796.31 164
PLCcopyleft83.97 788.00 14587.38 14189.83 18398.02 5976.46 24597.16 10594.43 21579.26 24881.98 18796.28 11269.36 20099.27 7177.71 21192.25 13993.77 210
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
test_898.63 3383.64 8397.81 5696.63 7284.50 14095.10 2998.11 3684.33 3699.23 73
test1294.25 3598.34 4685.55 4496.35 10592.36 6180.84 5699.22 7498.31 4797.98 84
MSLP-MVS++94.28 2194.39 2293.97 4398.30 4984.06 7598.64 2196.93 3590.71 2793.08 5698.70 1579.98 6599.21 7594.12 4899.07 1198.63 43
CDPH-MVS93.12 3592.91 3993.74 4998.65 3083.88 7697.67 6796.26 11083.00 17993.22 5498.24 2881.31 5499.21 7589.12 10998.74 2998.14 71
CP-MVS92.54 5292.60 4692.34 10198.50 4079.90 15898.40 2796.40 9984.75 13190.48 9198.09 3777.40 9999.21 7591.15 8098.23 5097.92 88
LS3D82.22 23779.94 25089.06 19297.43 7974.06 27693.20 27092.05 29161.90 34473.33 27795.21 13859.35 25899.21 7554.54 34192.48 13693.90 208
PCF-MVS84.09 586.77 16485.00 17592.08 11192.06 22283.07 9392.14 28494.47 21279.63 23976.90 23694.78 15471.15 18899.20 7972.87 25691.05 14893.98 206
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MVS_111021_LR91.60 6891.64 6491.47 13495.74 11178.79 19096.15 17696.77 5088.49 5788.64 11497.07 9272.33 17599.19 8093.13 6396.48 9196.43 158
APDe-MVS94.56 1894.75 1593.96 4498.84 2283.40 8898.04 4596.41 9785.79 11095.00 3298.28 2784.32 3999.18 8197.35 1698.77 2799.28 19
PS-MVSNAJ94.17 2493.52 3296.10 895.65 11392.35 298.21 3295.79 14092.42 1496.24 1998.18 3071.04 19099.17 8296.77 2097.39 7296.79 147
agg_prior98.59 3583.13 9296.56 8194.19 4399.16 83
ZD-MVS99.09 883.22 9196.60 7682.88 18293.61 5098.06 4282.93 4899.14 8495.51 3498.49 37
EI-MVSNet-Vis-set91.84 6191.77 6192.04 11497.60 7181.17 12896.61 14696.87 3888.20 6389.19 10697.55 7178.69 8199.14 8490.29 9790.94 14995.80 173
EI-MVSNet-UG-set91.35 7491.22 6891.73 12597.39 8280.68 13896.47 15496.83 4187.92 6988.30 12097.36 7877.84 9299.13 8689.43 10789.45 15695.37 183
EPNet94.06 2794.15 2593.76 4897.27 8784.35 7098.29 2997.64 1394.57 495.36 2596.88 9879.96 6699.12 8791.30 7896.11 9497.82 96
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MSP-MVS95.62 796.54 192.86 8398.31 4880.10 15597.42 8896.78 4492.20 1597.11 1198.29 2693.46 199.10 8896.01 2599.30 599.38 14
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
UGNet87.73 15086.55 15691.27 13995.16 12779.11 18196.35 16496.23 11288.14 6487.83 12490.48 22050.65 30499.09 8980.13 19094.03 11495.60 177
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
test_prior93.09 7598.68 2681.91 11196.40 9999.06 9098.29 62
WTY-MVS92.65 4991.68 6295.56 1296.00 10588.90 1198.23 3197.65 1288.57 5589.82 9797.22 8579.29 7099.06 9089.57 10488.73 16498.73 38
HY-MVS84.06 691.63 6690.37 8495.39 1596.12 10288.25 1390.22 30197.58 1488.33 6190.50 9091.96 19679.26 7199.06 9090.29 9789.07 15998.88 30
MG-MVS94.25 2393.72 2795.85 1099.38 389.35 1097.98 4798.09 889.99 3792.34 6296.97 9581.30 5598.99 9388.54 11498.88 2099.20 22
原ACMM191.22 14197.77 6578.10 21196.61 7381.05 20791.28 7997.42 7677.92 9198.98 9479.85 19398.51 3496.59 154
Anonymous20240521184.41 20181.93 22091.85 12296.78 9378.41 19997.44 8491.34 30370.29 32384.06 15794.26 16441.09 33898.96 9579.46 19582.65 21798.17 68
xiu_mvs_v2_base93.92 2893.26 3695.91 995.07 13092.02 698.19 3395.68 14592.06 1696.01 2298.14 3470.83 19398.96 9596.74 2296.57 9096.76 150
VNet92.11 5791.22 6894.79 2396.91 9186.98 2597.91 4997.96 986.38 10093.65 4895.74 12270.16 19898.95 9793.39 5588.87 16298.43 53
CNLPA86.96 15885.37 16791.72 12697.59 7279.34 17597.21 9791.05 30874.22 29578.90 21696.75 10667.21 21098.95 9774.68 24290.77 15096.88 145
ab-mvs87.08 15784.94 17693.48 6393.34 17983.67 8288.82 30995.70 14481.18 20584.55 15590.14 22862.72 23698.94 9985.49 14082.54 21897.85 93
HPM-MVScopyleft91.62 6791.53 6591.89 11997.88 6379.22 17796.99 11895.73 14382.07 19689.50 10597.19 8675.59 12998.93 10090.91 8397.94 5697.54 114
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
PVSNet82.34 989.02 11687.79 12892.71 8995.49 11781.50 12497.70 6497.29 1787.76 7385.47 14395.12 14556.90 27998.90 10180.33 18594.02 11597.71 104
h-mvs3389.30 11288.95 11090.36 16695.07 13076.04 25296.96 12497.11 2590.39 3292.22 6495.10 14674.70 14798.86 10293.14 6165.89 32396.16 166
MSDG80.62 25777.77 26689.14 19193.43 17877.24 23391.89 28790.18 31769.86 32668.02 30791.94 19852.21 30198.84 10359.32 32483.12 20891.35 223
Anonymous2024052983.15 22080.60 23990.80 15395.74 11178.27 20396.81 13594.92 18260.10 35481.89 18992.54 19045.82 32298.82 10479.25 19878.32 24895.31 185
test_yl91.46 7090.53 7994.24 3697.41 8085.18 5298.08 4097.72 1080.94 20889.85 9596.14 11475.61 12798.81 10590.42 9588.56 16698.74 34
DCV-MVSNet91.46 7090.53 7994.24 3697.41 8085.18 5298.08 4097.72 1080.94 20889.85 9596.14 11475.61 12798.81 10590.42 9588.56 16698.74 34
HPM-MVS_fast90.38 9590.17 8991.03 14697.61 7077.35 23297.15 10695.48 15579.51 24188.79 11196.90 9671.64 18498.81 10587.01 13297.44 6996.94 140
APD-MVScopyleft93.61 3093.59 3093.69 5298.76 2483.26 9097.21 9796.09 12282.41 19094.65 3898.21 2981.96 5398.81 10594.65 4298.36 4599.01 25
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
SR-MVS92.16 5692.27 5191.83 12398.37 4578.41 19996.67 14595.76 14182.19 19491.97 6798.07 4176.44 11398.64 10993.71 5297.27 7598.45 52
SR-MVS-dyc-post91.29 7591.45 6690.80 15397.76 6776.03 25396.20 17495.44 15980.56 21790.72 8797.84 5275.76 12698.61 11091.99 7496.79 8697.75 100
alignmvs92.97 3892.26 5295.12 1795.54 11687.77 1898.67 1996.38 10288.04 6693.01 5797.45 7279.20 7398.60 11193.25 6088.76 16398.99 28
OMC-MVS88.80 12488.16 12290.72 15695.30 12277.92 21894.81 23294.51 20986.80 9684.97 14896.85 9967.53 20698.60 11185.08 14287.62 17395.63 176
canonicalmvs92.27 5591.22 6895.41 1495.80 11088.31 1297.09 11494.64 20288.49 5792.99 5897.31 7972.68 17198.57 11393.38 5788.58 16599.36 16
APD-MVS_3200maxsize91.23 7791.35 6790.89 15197.89 6276.35 24896.30 16795.52 15379.82 23591.03 8397.88 5174.70 14798.54 11492.11 7396.89 8297.77 99
IB-MVS85.34 488.67 12787.14 14793.26 6893.12 18684.32 7198.76 1797.27 1887.19 8979.36 21490.45 22183.92 4298.53 11584.41 14769.79 29196.93 141
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
114514_t88.79 12587.57 13592.45 9798.21 5381.74 11996.99 11895.45 15875.16 28982.48 17695.69 12568.59 20398.50 11680.33 18595.18 10497.10 137
FA-MVS(test-final)87.71 15186.23 15892.17 10994.19 15580.55 14287.16 32496.07 12582.12 19585.98 14088.35 24872.04 18098.49 11780.26 18789.87 15397.48 121
TSAR-MVS + MP.94.79 1595.17 1393.64 5397.66 6984.10 7495.85 19296.42 9691.26 2197.49 1096.80 10386.50 2898.49 11795.54 3399.03 1398.33 57
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
VDD-MVS88.28 13987.02 15092.06 11395.09 12880.18 15497.55 7594.45 21483.09 17589.10 10895.92 12047.97 31498.49 11793.08 6486.91 17897.52 118
test_fmvs1_n86.34 16986.72 15485.17 27387.54 29163.64 33896.91 12892.37 28887.49 7991.33 7795.58 13040.81 34098.46 12095.00 3893.49 12393.41 217
PatchMatch-RL85.00 19283.66 19589.02 19495.86 10874.55 27192.49 28093.60 25779.30 24679.29 21591.47 20258.53 26598.45 12170.22 27692.17 14194.07 205
F-COLMAP84.50 20083.44 20187.67 22295.22 12472.22 28895.95 18493.78 24875.74 28476.30 24795.18 14159.50 25798.45 12172.67 25886.59 18192.35 221
test_fmvs187.79 14988.52 11685.62 26692.98 19264.31 33397.88 5192.42 28687.95 6892.24 6395.82 12147.94 31598.44 12395.31 3694.09 11394.09 204
RPMNet79.85 26175.92 28091.64 12890.16 25679.75 16279.02 35195.44 15958.43 35882.27 18372.55 35573.03 16898.41 12446.10 35986.25 18496.75 151
FE-MVS86.06 17484.15 18991.78 12494.33 15279.81 15984.58 33796.61 7376.69 27985.00 14787.38 26170.71 19498.37 12570.39 27591.70 14597.17 135
xiu_mvs_v1_base_debu90.54 9089.54 10093.55 5892.31 20587.58 2196.99 11894.87 18587.23 8693.27 5197.56 6857.43 27398.32 12692.72 6693.46 12594.74 193
xiu_mvs_v1_base90.54 9089.54 10093.55 5892.31 20587.58 2196.99 11894.87 18587.23 8693.27 5197.56 6857.43 27398.32 12692.72 6693.46 12594.74 193
xiu_mvs_v1_base_debi90.54 9089.54 10093.55 5892.31 20587.58 2196.99 11894.87 18587.23 8693.27 5197.56 6857.43 27398.32 12692.72 6693.46 12594.74 193
CPTT-MVS89.72 10489.87 9789.29 19098.33 4773.30 28097.70 6495.35 16675.68 28587.40 12697.44 7570.43 19598.25 12989.56 10596.90 8196.33 163
LFMVS89.27 11387.64 13194.16 4197.16 8885.52 4597.18 10194.66 19979.17 24989.63 10196.57 10955.35 29098.22 13089.52 10689.54 15598.74 34
PVSNet_077.72 1581.70 24378.95 25989.94 17990.77 24776.72 24395.96 18396.95 3385.01 12770.24 30088.53 24652.32 30098.20 13186.68 13544.08 36494.89 189
TAPA-MVS81.61 1285.02 19183.67 19489.06 19296.79 9273.27 28295.92 18694.79 19274.81 29280.47 20296.83 10071.07 18998.19 13249.82 35392.57 13395.71 175
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
UA-Net88.92 11988.48 11790.24 16994.06 15977.18 23693.04 27294.66 19987.39 8291.09 8193.89 17474.92 14598.18 13375.83 23391.43 14695.35 184
dcpmvs_293.10 3693.46 3492.02 11597.77 6579.73 16594.82 23193.86 24186.91 9391.33 7796.76 10485.20 3298.06 13496.90 1997.60 6498.27 64
thres20088.92 11987.65 13092.73 8896.30 9685.62 4397.85 5298.86 184.38 14484.82 15093.99 17275.12 14398.01 13570.86 27286.67 17994.56 198
cascas86.50 16684.48 18392.55 9592.64 20085.95 3597.04 11795.07 17775.32 28780.50 20191.02 21154.33 29797.98 13686.79 13487.62 17393.71 211
thres100view90088.30 13886.95 15192.33 10296.10 10384.90 6397.14 10798.85 282.69 18683.41 16793.66 17875.43 13497.93 13769.04 28086.24 18694.17 200
tfpn200view988.48 13287.15 14592.47 9696.21 9985.30 5097.44 8498.85 283.37 16983.99 15993.82 17575.36 13797.93 13769.04 28086.24 18694.17 200
gm-plane-assit92.27 20979.64 16884.47 14295.15 14397.93 13785.81 137
testdata90.13 17295.92 10774.17 27496.49 9073.49 30394.82 3797.99 4478.80 7997.93 13783.53 16497.52 6698.29 62
thres40088.42 13587.15 14592.23 10696.21 9985.30 5097.44 8498.85 283.37 16983.99 15993.82 17575.36 13797.93 13769.04 28086.24 18693.45 215
VDDNet86.44 16784.51 18192.22 10791.56 23181.83 11597.10 11394.64 20269.50 32787.84 12395.19 14048.01 31397.92 14289.82 10186.92 17796.89 144
thisisatest051590.95 8390.26 8593.01 7894.03 16284.27 7397.91 4996.67 6483.18 17286.87 13395.51 13288.66 1697.85 14380.46 18489.01 16096.92 143
thres600view788.06 14386.70 15592.15 11096.10 10385.17 5697.14 10798.85 282.70 18583.41 16793.66 17875.43 13497.82 14467.13 29085.88 19093.45 215
MVS_Test90.29 9689.18 10593.62 5595.23 12384.93 6294.41 23894.66 19984.31 14590.37 9391.02 21175.13 14297.82 14483.11 16994.42 11198.12 73
旧先验296.97 12374.06 29896.10 2097.76 14688.38 118
EIA-MVS91.73 6292.05 5790.78 15594.52 14576.40 24798.06 4395.34 16789.19 4688.90 11097.28 8377.56 9697.73 14790.77 8696.86 8598.20 66
thisisatest053089.65 10589.02 10791.53 13293.46 17780.78 13696.52 15196.67 6481.69 20183.79 16494.90 15288.85 1597.68 14877.80 20787.49 17696.14 167
BH-RMVSNet86.84 16185.28 16891.49 13395.35 12180.26 15196.95 12592.21 28982.86 18381.77 19195.46 13359.34 25997.64 14969.79 27893.81 12096.57 155
1112_ss88.60 13087.47 13992.00 11693.21 18080.97 13296.47 15492.46 28583.64 16680.86 19897.30 8180.24 6297.62 15077.60 21285.49 19497.40 125
casdiffmvs_mvgpermissive91.13 7990.45 8193.17 7292.99 19183.58 8497.46 8394.56 20787.69 7587.19 13094.98 15174.50 15297.60 15191.88 7692.79 13198.34 56
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Test_1112_low_res88.03 14486.73 15391.94 11893.15 18380.88 13496.44 15792.41 28783.59 16880.74 20091.16 20980.18 6397.59 15277.48 21585.40 19597.36 127
tttt051788.57 13188.19 12189.71 18793.00 18875.99 25695.67 19796.67 6480.78 21181.82 19094.40 16188.97 1497.58 15376.05 23186.31 18395.57 178
ECVR-MVScopyleft88.35 13787.25 14391.65 12793.54 17179.40 17296.56 15090.78 31386.78 9785.57 14295.25 13557.25 27797.56 15484.73 14694.80 10797.98 84
lupinMVS93.87 2993.58 3194.75 2593.00 18888.08 1599.15 495.50 15491.03 2494.90 3397.66 6078.84 7797.56 15494.64 4397.46 6798.62 44
XVG-OURS85.18 18884.38 18587.59 22690.42 25271.73 29991.06 29794.07 23282.00 19883.29 16995.08 14756.42 28497.55 15683.70 16083.42 20693.49 214
TR-MVS86.30 17084.93 17790.42 16394.63 14177.58 22796.57 14893.82 24380.30 22582.42 17895.16 14258.74 26397.55 15674.88 24087.82 17296.13 168
test_vis1_rt73.96 30072.40 30278.64 32583.91 33361.16 34795.63 20068.18 37176.32 28060.09 34474.77 34729.01 36097.54 15887.74 12375.94 25577.22 357
casdiffmvspermissive90.95 8390.39 8292.63 9292.82 19582.53 10096.83 13294.47 21287.69 7588.47 11595.56 13174.04 15797.54 15890.90 8492.74 13297.83 95
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
XVG-OURS-SEG-HR85.74 18085.16 17287.49 23190.22 25471.45 30291.29 29494.09 23181.37 20383.90 16395.22 13760.30 25297.53 16085.58 13984.42 20193.50 213
baseline90.76 8690.10 9092.74 8792.90 19482.56 9994.60 23594.56 20787.69 7589.06 10995.67 12673.76 16097.51 16190.43 9492.23 14098.16 69
test250690.96 8290.39 8292.65 9193.54 17182.46 10396.37 16297.35 1686.78 9787.55 12595.25 13577.83 9397.50 16284.07 15094.80 10797.98 84
ETV-MVS92.72 4592.87 4092.28 10594.54 14481.89 11297.98 4795.21 17289.77 4193.11 5596.83 10077.23 10497.50 16295.74 3095.38 10397.44 122
Effi-MVS+90.70 8789.90 9693.09 7593.61 16883.48 8695.20 21792.79 28283.22 17191.82 6995.70 12471.82 18197.48 16491.25 7993.67 12198.32 58
baseline290.39 9390.21 8790.93 14890.86 24480.99 13195.20 21797.41 1586.03 10680.07 21094.61 15790.58 697.47 16587.29 12889.86 15494.35 199
diffmvspermissive91.17 7890.74 7692.44 9893.11 18782.50 10296.25 17093.62 25687.79 7290.40 9295.93 11873.44 16597.42 16693.62 5492.55 13497.41 124
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
tpmvs83.04 22380.77 23489.84 18295.43 11877.96 21585.59 33495.32 16875.31 28876.27 24883.70 31473.89 15897.41 16759.53 32181.93 22094.14 202
tt080581.20 25179.06 25887.61 22486.50 29872.97 28593.66 25595.48 15574.11 29676.23 24991.99 19441.36 33797.40 16877.44 21674.78 26292.45 219
test111188.11 14287.04 14991.35 13593.15 18378.79 19096.57 14890.78 31386.88 9585.04 14695.20 13957.23 27897.39 16983.88 15394.59 10997.87 91
PMMVS89.46 10989.92 9588.06 21594.64 14069.57 31696.22 17194.95 18087.27 8591.37 7696.54 11065.88 21797.39 16988.54 11493.89 11897.23 132
PAPM92.87 4092.40 4894.30 3392.25 21287.85 1796.40 16196.38 10291.07 2388.72 11396.90 9682.11 5297.37 17190.05 9997.70 6297.67 106
HQP4-MVS82.30 17997.32 17291.13 224
HQP-MVS87.91 14887.55 13688.98 19592.08 21978.48 19597.63 6894.80 19090.52 2982.30 17994.56 15865.40 22197.32 17287.67 12583.01 21091.13 224
HQP_MVS87.50 15487.09 14888.74 20091.86 22877.96 21597.18 10194.69 19589.89 3981.33 19394.15 16864.77 22797.30 17487.08 12982.82 21490.96 226
plane_prior594.69 19597.30 17487.08 12982.82 21490.96 226
jason92.73 4392.23 5394.21 3890.50 25087.30 2498.65 2095.09 17590.61 2892.76 6097.13 8875.28 14097.30 17493.32 5896.75 8898.02 77
jason: jason.
CLD-MVS87.97 14687.48 13889.44 18892.16 21780.54 14498.14 3494.92 18291.41 1979.43 21395.40 13462.34 23897.27 17790.60 8982.90 21390.50 233
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
OPM-MVS85.84 17785.10 17488.06 21588.34 28077.83 22295.72 19594.20 22487.89 7180.45 20394.05 17058.57 26497.26 17883.88 15382.76 21689.09 264
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
BH-w/o88.24 14087.47 13990.54 16195.03 13378.54 19497.41 8993.82 24384.08 15078.23 22494.51 16069.34 20197.21 17980.21 18994.58 11095.87 172
Vis-MVSNetpermissive88.67 12787.82 12791.24 14092.68 19678.82 18796.95 12593.85 24287.55 7887.07 13295.13 14463.43 23397.21 17977.58 21396.15 9397.70 105
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test_vis1_n85.60 18285.70 16285.33 27084.79 32364.98 33196.83 13291.61 29987.36 8391.00 8494.84 15336.14 34697.18 18195.66 3193.03 12993.82 209
AllTest75.92 29273.06 29984.47 28492.18 21567.29 32491.07 29684.43 35167.63 33063.48 32790.18 22538.20 34397.16 18257.04 33273.37 26888.97 272
TestCases84.47 28492.18 21567.29 32484.43 35167.63 33063.48 32790.18 22538.20 34397.16 18257.04 33273.37 26888.97 272
ACMH75.40 1777.99 27774.96 28487.10 24090.67 24876.41 24693.19 27191.64 29872.47 31263.44 32987.61 25943.34 32897.16 18258.34 32673.94 26587.72 294
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CS-MVS-test92.98 3793.67 2890.90 15096.52 9476.87 23998.68 1894.73 19490.36 3494.84 3597.89 5077.94 8997.15 18594.28 4797.80 6098.70 40
ACMM80.70 1383.72 21182.85 20886.31 25391.19 23772.12 29195.88 18994.29 22180.44 22077.02 23491.96 19655.24 29197.14 18679.30 19780.38 22689.67 250
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
EPP-MVSNet89.76 10389.72 9989.87 18193.78 16476.02 25597.22 9596.51 8579.35 24385.11 14595.01 14984.82 3497.10 18787.46 12788.21 17096.50 156
tpm cat183.63 21281.38 22890.39 16493.53 17678.19 21085.56 33595.09 17570.78 32178.51 22183.28 31774.80 14697.03 18866.77 29184.05 20295.95 169
CS-MVS92.73 4393.48 3390.48 16296.27 9775.93 25898.55 2494.93 18189.32 4494.54 4097.67 5978.91 7697.02 18993.80 5097.32 7498.49 49
BH-untuned86.95 15985.94 16089.99 17594.52 14577.46 22996.78 13793.37 26881.80 19976.62 24093.81 17766.64 21497.02 18976.06 23093.88 11995.48 181
LTVRE_ROB73.68 1877.99 27775.74 28184.74 27790.45 25172.02 29386.41 33091.12 30572.57 31166.63 31687.27 26354.95 29496.98 19156.29 33675.98 25485.21 329
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
TESTMET0.1,189.83 10289.34 10391.31 13692.54 20280.19 15397.11 11096.57 7986.15 10286.85 13491.83 20079.32 6996.95 19281.30 17892.35 13896.77 149
LPG-MVS_test84.20 20483.49 20086.33 25090.88 24273.06 28395.28 21194.13 22882.20 19276.31 24593.20 18154.83 29596.95 19283.72 15880.83 22388.98 270
LGP-MVS_train86.33 25090.88 24273.06 28394.13 22882.20 19276.31 24593.20 18154.83 29596.95 19283.72 15880.83 22388.98 270
COLMAP_ROBcopyleft73.24 1975.74 29473.00 30083.94 29092.38 20369.08 31891.85 28886.93 34161.48 34765.32 32290.27 22442.27 33396.93 19550.91 35075.63 25885.80 326
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
baseline188.85 12287.49 13792.93 8295.21 12586.85 2795.47 20594.61 20487.29 8483.11 17294.99 15080.70 5796.89 19682.28 17373.72 26695.05 188
ACMP81.66 1184.00 20583.22 20486.33 25091.53 23472.95 28695.91 18893.79 24783.70 16573.79 27292.22 19254.31 29896.89 19683.98 15179.74 23189.16 261
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
CostFormer89.08 11588.39 11891.15 14393.13 18579.15 18088.61 31296.11 12183.14 17389.58 10286.93 27083.83 4396.87 19888.22 12085.92 18997.42 123
DROMVSNet91.73 6292.11 5690.58 15993.54 17177.77 22398.07 4294.40 21687.44 8092.99 5897.11 9074.59 15196.87 19893.75 5197.08 7897.11 136
USDC78.65 27276.25 27785.85 25987.58 28974.60 27089.58 30490.58 31684.05 15163.13 33188.23 25040.69 34196.86 20066.57 29475.81 25786.09 321
MS-PatchMatch83.05 22281.82 22286.72 24889.64 26579.10 18294.88 23094.59 20679.70 23870.67 29689.65 23250.43 30696.82 20170.82 27495.99 9884.25 335
HyFIR lowres test89.36 11088.60 11491.63 13094.91 13680.76 13795.60 20195.53 15182.56 18984.03 15891.24 20878.03 8896.81 20287.07 13188.41 16897.32 128
RPSCF77.73 28076.63 27581.06 31488.66 27855.76 35887.77 31987.88 33764.82 33974.14 27192.79 18849.22 31096.81 20267.47 28876.88 25290.62 230
test-LLR88.48 13287.98 12489.98 17692.26 21077.23 23497.11 11095.96 13083.76 16386.30 13791.38 20472.30 17696.78 20480.82 18191.92 14295.94 170
test-mter88.95 11788.60 11489.98 17692.26 21077.23 23497.11 11095.96 13085.32 11886.30 13791.38 20476.37 11696.78 20480.82 18191.92 14295.94 170
tpmrst88.36 13687.38 14191.31 13694.36 15179.92 15787.32 32295.26 17185.32 11888.34 11886.13 28680.60 5896.70 20683.78 15585.34 19797.30 130
Fast-Effi-MVS+87.93 14786.94 15290.92 14994.04 16079.16 17998.26 3093.72 25281.29 20483.94 16292.90 18569.83 19996.68 20776.70 22391.74 14496.93 141
AUN-MVS86.25 17285.57 16388.26 21093.57 17073.38 27895.45 20695.88 13583.94 15685.47 14394.21 16673.70 16396.67 20883.54 16364.41 32794.73 196
hse-mvs288.22 14188.21 12088.25 21193.54 17173.41 27795.41 20895.89 13490.39 3292.22 6494.22 16574.70 14796.66 20993.14 6164.37 32894.69 197
MDTV_nov1_ep1383.69 19394.09 15881.01 13086.78 32796.09 12283.81 16184.75 15184.32 30974.44 15396.54 21063.88 30685.07 198
XXY-MVS83.84 20882.00 21989.35 18987.13 29481.38 12595.72 19594.26 22280.15 22975.92 25590.63 21861.96 24496.52 21178.98 20173.28 27190.14 239
ACMH+76.62 1677.47 28374.94 28585.05 27491.07 24071.58 30193.26 26890.01 31871.80 31664.76 32488.55 24441.62 33596.48 21262.35 31371.00 27987.09 308
GA-MVS85.79 17984.04 19191.02 14789.47 26980.27 15096.90 12994.84 18885.57 11380.88 19789.08 23656.56 28396.47 21377.72 21085.35 19696.34 161
tpm287.35 15686.26 15790.62 15892.93 19378.67 19288.06 31795.99 12879.33 24487.40 12686.43 28180.28 6196.40 21480.23 18885.73 19396.79 147
dp84.30 20382.31 21590.28 16894.24 15477.97 21486.57 32895.53 15179.94 23480.75 19985.16 30071.49 18696.39 21563.73 30783.36 20796.48 157
nrg03086.79 16385.43 16590.87 15288.76 27485.34 4797.06 11694.33 21984.31 14580.45 20391.98 19572.36 17496.36 21688.48 11771.13 27890.93 228
CMPMVSbinary54.94 2175.71 29574.56 29079.17 32379.69 34555.98 35589.59 30393.30 27060.28 35253.85 35689.07 23747.68 31896.33 21776.55 22481.02 22185.22 328
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
VPA-MVSNet85.32 18683.83 19289.77 18690.25 25382.63 9896.36 16397.07 2783.03 17881.21 19589.02 23861.58 24696.31 21885.02 14470.95 28090.36 234
XVG-ACMP-BASELINE79.38 26877.90 26583.81 29184.98 32267.14 32889.03 30893.18 27480.26 22872.87 28288.15 25238.55 34296.26 21976.05 23178.05 24988.02 290
EPMVS87.47 15585.90 16192.18 10895.41 11982.26 10787.00 32596.28 10985.88 10984.23 15685.57 29275.07 14496.26 21971.14 27092.50 13598.03 76
IS-MVSNet88.67 12788.16 12290.20 17193.61 16876.86 24096.77 13993.07 27884.02 15283.62 16695.60 12974.69 15096.24 22178.43 20693.66 12297.49 120
GG-mvs-BLEND93.49 6294.94 13486.26 3181.62 34597.00 2988.32 11994.30 16391.23 596.21 22288.49 11697.43 7098.00 82
GeoE86.36 16885.20 16989.83 18393.17 18276.13 25097.53 7692.11 29079.58 24080.99 19694.01 17166.60 21596.17 22373.48 25489.30 15797.20 134
gg-mvs-nofinetune85.48 18582.90 20793.24 6994.51 14885.82 3979.22 34996.97 3161.19 34987.33 12853.01 36590.58 696.07 22486.07 13697.23 7697.81 97
iter_conf_final89.51 10789.21 10490.39 16495.60 11484.44 6997.22 9589.09 32789.11 4882.07 18692.80 18687.03 2596.03 22589.10 11080.89 22290.70 229
iter_conf0590.14 9889.79 9891.17 14295.85 10986.93 2697.68 6688.67 33489.93 3881.73 19292.80 18690.37 896.03 22590.44 9380.65 22590.56 231
v2v48283.46 21481.86 22188.25 21186.19 30479.65 16796.34 16594.02 23481.56 20277.32 23088.23 25065.62 21896.03 22577.77 20869.72 29389.09 264
V4283.04 22381.53 22687.57 22886.27 30379.09 18395.87 19094.11 23080.35 22477.22 23286.79 27365.32 22396.02 22877.74 20970.14 28587.61 299
VPNet84.69 19682.92 20690.01 17489.01 27383.45 8796.71 14295.46 15785.71 11179.65 21292.18 19356.66 28296.01 22983.05 17067.84 31190.56 231
test_post33.80 37276.17 11995.97 230
EI-MVSNet85.80 17885.20 16987.59 22691.55 23277.41 23095.13 22195.36 16480.43 22280.33 20594.71 15573.72 16195.97 23076.96 22178.64 24189.39 252
MVSTER89.25 11488.92 11190.24 16995.98 10684.66 6696.79 13695.36 16487.19 8980.33 20590.61 21990.02 1295.97 23085.38 14178.64 24190.09 243
PatchmatchNetpermissive86.83 16285.12 17391.95 11794.12 15782.27 10686.55 32995.64 14784.59 13882.98 17484.99 30477.26 10095.96 23368.61 28491.34 14797.64 109
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
TinyColmap72.41 30968.99 31782.68 30588.11 28369.59 31588.41 31385.20 34865.55 33657.91 34984.82 30630.80 35895.94 23451.38 34768.70 30082.49 346
v114482.90 22681.27 23087.78 22186.29 30279.07 18496.14 17793.93 23680.05 23177.38 22886.80 27265.50 21995.93 23575.21 23870.13 28688.33 285
v14419282.43 23280.73 23687.54 22985.81 31178.22 20595.98 18293.78 24879.09 25177.11 23386.49 27764.66 22995.91 23674.20 24869.42 29488.49 279
mvsmamba85.17 18984.54 18087.05 24187.94 28575.11 26696.22 17187.79 33886.91 9378.55 22091.77 20164.93 22695.91 23686.94 13379.80 22890.12 240
v119282.31 23680.55 24087.60 22585.94 30878.47 19895.85 19293.80 24679.33 24476.97 23586.51 27663.33 23495.87 23873.11 25570.13 28688.46 281
v124081.70 24379.83 25287.30 23685.50 31477.70 22695.48 20493.44 26278.46 26076.53 24186.44 27960.85 24995.84 23971.59 26470.17 28488.35 284
v192192082.02 24080.23 24487.41 23285.62 31377.92 21895.79 19493.69 25378.86 25576.67 23886.44 27962.50 23795.83 24072.69 25769.77 29288.47 280
v881.88 24180.06 24887.32 23486.63 29779.04 18594.41 23893.65 25578.77 25673.19 27985.57 29266.87 21295.81 24173.84 25267.61 31387.11 307
D2MVS82.67 22981.55 22586.04 25887.77 28776.47 24495.21 21696.58 7882.66 18770.26 29985.46 29560.39 25195.80 24276.40 22779.18 23685.83 325
PS-MVSNAJss84.91 19384.30 18686.74 24485.89 31074.40 27394.95 22894.16 22783.93 15776.45 24390.11 22971.04 19095.77 24383.16 16879.02 23890.06 245
MVP-Stereo82.65 23081.67 22485.59 26786.10 30778.29 20293.33 26492.82 28177.75 26669.17 30687.98 25459.28 26095.76 24471.77 26296.88 8382.73 343
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
tfpnnormal78.14 27675.42 28286.31 25388.33 28179.24 17694.41 23896.22 11373.51 30169.81 30285.52 29455.43 28995.75 24547.65 35767.86 31083.95 338
v14882.41 23580.89 23286.99 24286.18 30576.81 24196.27 16893.82 24380.49 21975.28 26486.11 28767.32 20995.75 24575.48 23667.03 31988.42 283
v1081.43 24779.53 25487.11 23986.38 29978.87 18694.31 24393.43 26377.88 26473.24 27885.26 29665.44 22095.75 24572.14 26167.71 31286.72 311
TAMVS88.48 13287.79 12890.56 16091.09 23979.18 17896.45 15695.88 13583.64 16683.12 17193.33 18075.94 12395.74 24882.40 17288.27 16996.75 151
cl2285.11 19084.17 18887.92 21895.06 13278.82 18795.51 20394.22 22379.74 23776.77 23787.92 25575.96 12295.68 24979.93 19272.42 27389.27 258
UniMVSNet_ETH3D80.86 25578.75 26087.22 23886.31 30172.02 29391.95 28593.76 25173.51 30175.06 26690.16 22743.04 33195.66 25076.37 22878.55 24593.98 206
Anonymous2023121179.72 26377.19 27087.33 23395.59 11577.16 23795.18 22094.18 22659.31 35672.57 28586.20 28547.89 31695.66 25074.53 24669.24 29789.18 260
CHOSEN 280x42091.71 6591.85 5891.29 13894.94 13482.69 9787.89 31896.17 11885.94 10787.27 12994.31 16290.27 995.65 25294.04 4995.86 9995.53 179
CDS-MVSNet89.50 10888.96 10991.14 14491.94 22780.93 13397.09 11495.81 13984.26 14884.72 15294.20 16780.31 6095.64 25383.37 16688.96 16196.85 146
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MVS-HIRNet71.36 31467.00 31984.46 28690.58 24969.74 31479.15 35087.74 33946.09 36261.96 33750.50 36645.14 32395.64 25353.74 34388.11 17188.00 291
v7n79.32 26977.34 26885.28 27184.05 33272.89 28793.38 26293.87 24075.02 29170.68 29584.37 30859.58 25695.62 25567.60 28667.50 31487.32 306
Effi-MVS+-dtu84.61 19784.90 17883.72 29591.96 22563.14 34094.95 22893.34 26985.57 11379.79 21187.12 26761.99 24395.61 25683.55 16285.83 19192.41 220
JIA-IIPM79.00 27177.20 26984.40 28789.74 26464.06 33675.30 35995.44 15962.15 34381.90 18859.08 36378.92 7595.59 25766.51 29585.78 19293.54 212
Fast-Effi-MVS+-dtu83.33 21682.60 21285.50 26889.55 26769.38 31796.09 18091.38 30082.30 19175.96 25491.41 20356.71 28095.58 25875.13 23984.90 19991.54 222
EG-PatchMatch MVS74.92 29772.02 30383.62 29683.76 33573.28 28193.62 25792.04 29268.57 32958.88 34683.80 31331.87 35695.57 25956.97 33478.67 24082.00 349
UniMVSNet (Re)85.31 18784.23 18788.55 20389.75 26280.55 14296.72 14096.89 3785.42 11678.40 22288.93 23975.38 13695.52 26078.58 20468.02 30889.57 251
OpenMVS_ROBcopyleft68.52 2073.02 30769.57 31383.37 30080.54 34371.82 29793.60 25888.22 33562.37 34261.98 33683.15 31835.31 35095.47 26145.08 36075.88 25682.82 341
miper_enhance_ethall85.95 17685.20 16988.19 21494.85 13779.76 16196.00 18194.06 23382.98 18077.74 22788.76 24179.42 6895.46 26280.58 18372.42 27389.36 257
patchmatchnet-post77.09 34477.78 9495.39 263
SCA85.63 18183.64 19691.60 13192.30 20881.86 11492.88 27695.56 15084.85 12982.52 17585.12 30258.04 26895.39 26373.89 25087.58 17597.54 114
jajsoiax82.12 23981.15 23185.03 27584.19 32970.70 30594.22 24893.95 23583.07 17673.48 27489.75 23149.66 30995.37 26582.24 17479.76 22989.02 268
mvs_anonymous88.68 12687.62 13391.86 12094.80 13881.69 12193.53 26094.92 18282.03 19778.87 21890.43 22275.77 12595.34 26685.04 14393.16 12898.55 48
ITE_SJBPF82.38 30787.00 29565.59 33089.55 32179.99 23369.37 30491.30 20641.60 33695.33 26762.86 31274.63 26486.24 318
eth_miper_zixun_eth83.12 22182.01 21886.47 24991.85 23074.80 26894.33 24293.18 27479.11 25075.74 26087.25 26572.71 17095.32 26876.78 22267.13 31789.27 258
mvs_tets81.74 24280.71 23784.84 27684.22 32870.29 30893.91 25293.78 24882.77 18473.37 27589.46 23447.36 31995.31 26981.99 17579.55 23488.92 274
FIs86.73 16586.10 15988.61 20290.05 25880.21 15296.14 17796.95 3385.56 11578.37 22392.30 19176.73 11095.28 27079.51 19479.27 23590.35 235
pm-mvs180.05 26078.02 26486.15 25685.42 31575.81 26095.11 22392.69 28477.13 27470.36 29887.43 26058.44 26695.27 27171.36 26664.25 32987.36 305
miper_ehance_all_eth84.57 19883.60 19887.50 23092.64 20078.25 20495.40 20993.47 26179.28 24776.41 24487.64 25876.53 11295.24 27278.58 20472.42 27389.01 269
ADS-MVSNet81.26 24978.36 26189.96 17893.78 16479.78 16079.48 34793.60 25773.09 30680.14 20779.99 33462.15 24095.24 27259.49 32283.52 20494.85 190
cl____83.27 21782.12 21686.74 24492.20 21375.95 25795.11 22393.27 27178.44 26174.82 26787.02 26974.19 15595.19 27474.67 24369.32 29589.09 264
DIV-MVS_self_test83.27 21782.12 21686.74 24492.19 21475.92 25995.11 22393.26 27278.44 26174.81 26887.08 26874.19 15595.19 27474.66 24469.30 29689.11 263
IterMVS-LS83.93 20682.80 20987.31 23591.46 23577.39 23195.66 19893.43 26380.44 22075.51 26187.26 26473.72 16195.16 27676.99 21970.72 28289.39 252
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
UniMVSNet_NR-MVSNet85.49 18484.59 17988.21 21389.44 27079.36 17396.71 14296.41 9785.22 12178.11 22590.98 21376.97 10695.14 27779.14 19968.30 30590.12 240
DU-MVS84.57 19883.33 20288.28 20988.76 27479.36 17396.43 15995.41 16385.42 11678.11 22590.82 21567.61 20495.14 27779.14 19968.30 30590.33 236
c3_l83.80 20982.65 21187.25 23792.10 21877.74 22595.25 21493.04 27978.58 25876.01 25287.21 26675.25 14195.11 27977.54 21468.89 29988.91 275
MVSFormer91.36 7390.57 7893.73 5193.00 18888.08 1594.80 23394.48 21080.74 21294.90 3397.13 8878.84 7795.10 28083.77 15697.46 6798.02 77
test_djsdf83.00 22582.45 21484.64 28184.07 33169.78 31394.80 23394.48 21080.74 21275.41 26387.70 25761.32 24895.10 28083.77 15679.76 22989.04 267
RRT_MVS83.88 20783.27 20385.71 26287.53 29272.12 29195.35 21094.33 21983.81 16175.86 25691.28 20760.55 25095.09 28283.93 15276.76 25389.90 248
test_post185.88 33330.24 37573.77 15995.07 28373.89 250
pmmvs482.54 23180.79 23387.79 22086.11 30680.49 14693.55 25993.18 27477.29 27273.35 27689.40 23565.26 22495.05 28475.32 23773.61 26787.83 293
anonymousdsp80.98 25479.97 24984.01 28981.73 33970.44 30792.49 28093.58 25977.10 27672.98 28186.31 28357.58 27294.90 28579.32 19678.63 24386.69 312
NR-MVSNet83.35 21581.52 22788.84 19788.76 27481.31 12794.45 23795.16 17384.65 13667.81 30890.82 21570.36 19694.87 28674.75 24166.89 32090.33 236
WR-MVS84.32 20282.96 20588.41 20589.38 27180.32 14796.59 14796.25 11183.97 15476.63 23990.36 22367.53 20694.86 28775.82 23470.09 28990.06 245
pmmvs674.65 29971.67 30483.60 29779.13 34769.94 31093.31 26790.88 31261.05 35165.83 32084.15 31143.43 32794.83 28866.62 29260.63 33886.02 322
FC-MVSNet-test85.96 17585.39 16687.66 22389.38 27178.02 21295.65 19996.87 3885.12 12577.34 22991.94 19876.28 11894.74 28977.09 21878.82 23990.21 238
Vis-MVSNet (Re-imp)88.88 12188.87 11288.91 19693.89 16374.43 27296.93 12794.19 22584.39 14383.22 17095.67 12678.24 8594.70 29078.88 20294.40 11297.61 112
tpm85.55 18384.47 18488.80 19990.19 25575.39 26388.79 31094.69 19584.83 13083.96 16185.21 29878.22 8694.68 29176.32 22978.02 25096.34 161
TranMVSNet+NR-MVSNet83.24 21981.71 22387.83 21987.71 28878.81 18996.13 17994.82 18984.52 13976.18 25190.78 21764.07 23094.60 29274.60 24566.59 32290.09 243
bld_raw_dy_0_6482.13 23880.76 23586.24 25585.78 31275.03 26794.40 24182.62 35883.12 17476.46 24290.96 21453.83 29994.55 29381.04 18078.60 24489.14 262
Patchmatch-test78.25 27574.72 28888.83 19891.20 23674.10 27573.91 36288.70 33359.89 35566.82 31485.12 30278.38 8394.54 29448.84 35579.58 23397.86 92
mvsany_test187.58 15388.22 11985.67 26489.78 26167.18 32695.25 21487.93 33683.96 15588.79 11197.06 9372.52 17294.53 29592.21 7186.45 18295.30 186
FMVSNet384.71 19582.71 21090.70 15794.55 14387.71 1995.92 18694.67 19881.73 20075.82 25788.08 25366.99 21194.47 29671.23 26775.38 25989.91 247
pmmvs581.34 24879.54 25386.73 24785.02 32176.91 23896.22 17191.65 29777.65 26773.55 27388.61 24355.70 28894.43 29774.12 24973.35 27088.86 276
Baseline_NR-MVSNet81.22 25080.07 24784.68 27985.32 31975.12 26596.48 15388.80 33076.24 28377.28 23186.40 28267.61 20494.39 29875.73 23566.73 32184.54 332
FMVSNet282.79 22780.44 24189.83 18392.66 19785.43 4695.42 20794.35 21779.06 25274.46 26987.28 26256.38 28594.31 29969.72 27974.68 26389.76 249
SixPastTwentyTwo76.04 29174.32 29281.22 31384.54 32561.43 34691.16 29589.30 32577.89 26364.04 32686.31 28348.23 31194.29 30063.54 30963.84 33187.93 292
TDRefinement69.20 31965.78 32379.48 32166.04 36762.21 34288.21 31486.12 34562.92 34161.03 34185.61 29133.23 35394.16 30155.82 33953.02 35182.08 348
TransMVSNet (Re)76.94 28774.38 29184.62 28285.92 30975.25 26495.28 21189.18 32673.88 29967.22 30986.46 27859.64 25494.10 30259.24 32552.57 35384.50 333
OurMVSNet-221017-077.18 28676.06 27880.55 31783.78 33460.00 35090.35 30091.05 30877.01 27866.62 31787.92 25547.73 31794.03 30371.63 26368.44 30387.62 298
EPNet_dtu87.65 15287.89 12586.93 24394.57 14271.37 30396.72 14096.50 8788.56 5687.12 13195.02 14875.91 12494.01 30466.62 29290.00 15295.42 182
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
lessismore_v079.98 31980.59 34258.34 35380.87 36058.49 34783.46 31643.10 33093.89 30563.11 31148.68 35787.72 294
GBi-Net82.42 23380.43 24288.39 20692.66 19781.95 10894.30 24493.38 26579.06 25275.82 25785.66 28856.38 28593.84 30671.23 26775.38 25989.38 254
test182.42 23380.43 24288.39 20692.66 19781.95 10894.30 24493.38 26579.06 25275.82 25785.66 28856.38 28593.84 30671.23 26775.38 25989.38 254
FMVSNet179.50 26676.54 27688.39 20688.47 27981.95 10894.30 24493.38 26573.14 30572.04 28985.66 28843.86 32593.84 30665.48 29972.53 27289.38 254
test_040272.68 30869.54 31482.09 31088.67 27771.81 29892.72 27886.77 34361.52 34662.21 33583.91 31243.22 32993.76 30934.60 36572.23 27680.72 353
CR-MVSNet83.53 21381.36 22990.06 17390.16 25679.75 16279.02 35191.12 30584.24 14982.27 18380.35 33175.45 13293.67 31063.37 31086.25 18496.75 151
ET-MVSNet_ETH3D90.01 10089.03 10692.95 8094.38 15086.77 2898.14 3496.31 10889.30 4563.33 33096.72 10790.09 1193.63 31190.70 8882.29 21998.46 51
Patchmtry77.36 28474.59 28985.67 26489.75 26275.75 26177.85 35491.12 30560.28 35271.23 29180.35 33175.45 13293.56 31257.94 32767.34 31687.68 296
test_fmvs279.59 26479.90 25178.67 32482.86 33755.82 35795.20 21789.55 32181.09 20680.12 20989.80 23034.31 35193.51 31387.82 12278.36 24786.69 312
miper_lstm_enhance81.66 24580.66 23884.67 28091.19 23771.97 29591.94 28693.19 27377.86 26572.27 28785.26 29673.46 16493.42 31473.71 25367.05 31888.61 277
PatchT79.75 26276.85 27388.42 20489.55 26775.49 26277.37 35594.61 20463.07 34082.46 17773.32 35375.52 13193.41 31551.36 34884.43 20096.36 159
ppachtmachnet_test77.19 28574.22 29386.13 25785.39 31678.22 20593.98 25191.36 30271.74 31767.11 31184.87 30556.67 28193.37 31652.21 34664.59 32686.80 310
MVS_030478.43 27376.70 27483.60 29788.22 28269.81 31292.91 27595.10 17472.32 31378.71 21980.29 33333.78 35293.37 31668.77 28380.23 22787.63 297
our_test_377.90 27975.37 28385.48 26985.39 31676.74 24293.63 25691.67 29673.39 30465.72 32184.65 30758.20 26793.13 31857.82 32867.87 30986.57 314
LCM-MVSNet-Re83.75 21083.54 19984.39 28893.54 17164.14 33592.51 27984.03 35383.90 15866.14 31986.59 27567.36 20892.68 31984.89 14592.87 13096.35 160
WR-MVS_H81.02 25280.09 24583.79 29288.08 28471.26 30494.46 23696.54 8280.08 23072.81 28386.82 27170.36 19692.65 32064.18 30467.50 31487.46 304
ambc76.02 33368.11 36451.43 36164.97 36789.59 32060.49 34274.49 34917.17 36692.46 32161.50 31652.85 35284.17 336
PEN-MVS79.47 26778.26 26383.08 30286.36 30068.58 32093.85 25394.77 19379.76 23671.37 29088.55 24459.79 25392.46 32164.50 30365.40 32488.19 287
CP-MVSNet81.01 25380.08 24683.79 29287.91 28670.51 30694.29 24795.65 14680.83 21072.54 28688.84 24063.71 23192.32 32368.58 28568.36 30488.55 278
LF4IMVS72.36 31070.82 30776.95 32979.18 34656.33 35486.12 33186.11 34669.30 32863.06 33286.66 27433.03 35492.25 32465.33 30068.64 30182.28 347
PS-CasMVS80.27 25979.18 25583.52 29987.56 29069.88 31194.08 25095.29 16980.27 22772.08 28888.51 24759.22 26192.23 32567.49 28768.15 30788.45 282
DTE-MVSNet78.37 27477.06 27182.32 30985.22 32067.17 32793.40 26193.66 25478.71 25770.53 29788.29 24959.06 26292.23 32561.38 31763.28 33387.56 301
UnsupCasMVSNet_bld68.60 32164.50 32580.92 31574.63 36067.80 32283.97 33992.94 28065.12 33854.63 35568.23 35935.97 34792.17 32760.13 32044.83 36282.78 342
KD-MVS_2432*160077.63 28174.92 28685.77 26090.86 24479.44 17088.08 31593.92 23776.26 28167.05 31282.78 31972.15 17891.92 32861.53 31441.62 36785.94 323
miper_refine_blended77.63 28174.92 28685.77 26090.86 24479.44 17088.08 31593.92 23776.26 28167.05 31282.78 31972.15 17891.92 32861.53 31441.62 36785.94 323
test_vis3_rt54.10 33051.04 33363.27 34858.16 37046.08 36984.17 33849.32 38156.48 36036.56 36549.48 3688.03 37791.91 33067.29 28949.87 35551.82 367
N_pmnet61.30 32660.20 32964.60 34584.32 32717.00 38391.67 29210.98 38261.77 34558.45 34878.55 33849.89 30891.83 33142.27 36263.94 33084.97 330
K. test v373.62 30171.59 30579.69 32082.98 33659.85 35190.85 29988.83 32977.13 27458.90 34582.11 32143.62 32691.72 33265.83 29854.10 34887.50 303
Patchmatch-RL test76.65 28974.01 29684.55 28377.37 35364.23 33478.49 35382.84 35778.48 25964.63 32573.40 35276.05 12191.70 33376.99 21957.84 34297.72 102
IterMVS-SCA-FT80.51 25879.10 25784.73 27889.63 26674.66 26992.98 27391.81 29580.05 23171.06 29485.18 29958.04 26891.40 33472.48 26070.70 28388.12 289
IterMVS80.67 25679.16 25685.20 27289.79 26076.08 25192.97 27491.86 29380.28 22671.20 29285.14 30157.93 27191.34 33572.52 25970.74 28188.18 288
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MDA-MVSNet-bldmvs71.45 31367.94 31881.98 31185.33 31868.50 32192.35 28388.76 33170.40 32242.99 36181.96 32246.57 32091.31 33648.75 35654.39 34786.11 320
pmmvs-eth3d73.59 30270.66 30882.38 30776.40 35773.38 27889.39 30789.43 32372.69 31060.34 34377.79 34046.43 32191.26 33766.42 29657.06 34382.51 344
PM-MVS69.32 31866.93 32076.49 33173.60 36155.84 35685.91 33279.32 36474.72 29361.09 34078.18 33921.76 36391.10 33870.86 27256.90 34482.51 344
Anonymous2024052172.06 31269.91 31278.50 32677.11 35461.67 34591.62 29390.97 31065.52 33762.37 33479.05 33736.32 34590.96 33957.75 32968.52 30282.87 340
Anonymous2023120675.29 29673.64 29780.22 31880.75 34063.38 33993.36 26390.71 31573.09 30667.12 31083.70 31450.33 30790.85 34053.63 34470.10 28886.44 315
MIMVSNet79.18 27075.99 27988.72 20187.37 29380.66 13979.96 34691.82 29477.38 27174.33 27081.87 32341.78 33490.74 34166.36 29783.10 20994.76 192
UnsupCasMVSNet_eth73.25 30570.57 30981.30 31277.53 35166.33 32987.24 32393.89 23980.38 22357.90 35081.59 32442.91 33290.56 34265.18 30148.51 35887.01 309
YYNet173.53 30470.43 31082.85 30484.52 32671.73 29991.69 29191.37 30167.63 33046.79 35981.21 32755.04 29390.43 34355.93 33759.70 34086.38 316
MDA-MVSNet_test_wron73.54 30370.43 31082.86 30384.55 32471.85 29691.74 29091.32 30467.63 33046.73 36081.09 32855.11 29290.42 34455.91 33859.76 33986.31 317
CVMVSNet84.83 19485.57 16382.63 30691.55 23260.38 34895.13 22195.03 17880.60 21582.10 18594.71 15566.40 21690.19 34574.30 24790.32 15197.31 129
ADS-MVSNet279.57 26577.53 26785.71 26293.78 16472.13 29079.48 34786.11 34673.09 30680.14 20779.99 33462.15 24090.14 34659.49 32283.52 20494.85 190
CL-MVSNet_self_test75.81 29374.14 29580.83 31678.33 34967.79 32394.22 24893.52 26077.28 27369.82 30181.54 32561.47 24789.22 34757.59 33053.51 34985.48 327
test0.0.03 182.79 22782.48 21383.74 29486.81 29672.22 28896.52 15195.03 17883.76 16373.00 28093.20 18172.30 17688.88 34864.15 30577.52 25190.12 240
testgi74.88 29873.40 29879.32 32280.13 34461.75 34393.21 26986.64 34479.49 24266.56 31891.06 21035.51 34988.67 34956.79 33571.25 27787.56 301
KD-MVS_self_test70.97 31569.31 31575.95 33576.24 35955.39 35987.45 32090.94 31170.20 32462.96 33377.48 34144.01 32488.09 35061.25 31853.26 35084.37 334
new_pmnet66.18 32363.18 32675.18 33776.27 35861.74 34483.79 34084.66 35056.64 35951.57 35771.85 35831.29 35787.93 35149.98 35262.55 33475.86 358
mvsany_test367.19 32265.34 32472.72 33863.08 36848.57 36383.12 34278.09 36572.07 31461.21 33977.11 34322.94 36287.78 35278.59 20351.88 35481.80 350
FMVSNet576.46 29074.16 29483.35 30190.05 25876.17 24989.58 30489.85 31971.39 31965.29 32380.42 33050.61 30587.70 35361.05 31969.24 29786.18 319
EU-MVSNet76.92 28876.95 27276.83 33084.10 33054.73 36091.77 28992.71 28372.74 30969.57 30388.69 24258.03 27087.43 35464.91 30270.00 29088.33 285
new-patchmatchnet68.85 32065.93 32277.61 32873.57 36263.94 33790.11 30288.73 33271.62 31855.08 35473.60 35140.84 33987.22 35551.35 34948.49 35981.67 352
DSMNet-mixed73.13 30672.45 30175.19 33677.51 35246.82 36585.09 33682.01 35967.61 33469.27 30581.33 32650.89 30386.28 35654.54 34183.80 20392.46 218
pmmvs365.75 32462.18 32776.45 33267.12 36664.54 33288.68 31185.05 34954.77 36157.54 35273.79 35029.40 35986.21 35755.49 34047.77 36078.62 355
MIMVSNet169.44 31766.65 32177.84 32776.48 35662.84 34187.42 32188.97 32866.96 33557.75 35179.72 33632.77 35585.83 35846.32 35863.42 33284.85 331
test20.0372.36 31071.15 30675.98 33477.79 35059.16 35292.40 28289.35 32474.09 29761.50 33884.32 30948.09 31285.54 35950.63 35162.15 33683.24 339
test_f64.01 32562.13 32869.65 34063.00 36945.30 37083.66 34180.68 36161.30 34855.70 35372.62 35414.23 36984.64 36069.84 27758.11 34179.00 354
EGC-MVSNET52.46 33247.56 33567.15 34181.98 33860.11 34982.54 34472.44 3690.11 3790.70 38074.59 34825.11 36183.26 36129.04 36761.51 33758.09 364
test_fmvs369.56 31669.19 31670.67 33969.01 36347.05 36490.87 29886.81 34271.31 32066.79 31577.15 34216.40 36783.17 36281.84 17662.51 33581.79 351
APD_test156.56 32853.58 33165.50 34267.93 36546.51 36777.24 35772.95 36838.09 36442.75 36275.17 34613.38 37082.78 36340.19 36354.53 34667.23 363
DeepMVS_CXcopyleft64.06 34678.53 34843.26 37168.11 37369.94 32538.55 36376.14 34518.53 36579.34 36443.72 36141.62 36769.57 361
FPMVS55.09 32952.93 33261.57 34955.98 37140.51 37483.11 34383.41 35637.61 36534.95 36671.95 35614.40 36876.95 36529.81 36665.16 32567.25 362
LCM-MVSNet52.52 33148.24 33465.35 34347.63 37841.45 37272.55 36383.62 35531.75 36637.66 36457.92 3649.19 37676.76 36649.26 35444.60 36377.84 356
Gipumacopyleft45.11 33742.05 33954.30 35380.69 34151.30 36235.80 37183.81 35428.13 36727.94 37134.53 37111.41 37476.70 36721.45 37154.65 34534.90 371
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMMVS250.90 33346.31 33664.67 34455.53 37246.67 36677.30 35671.02 37040.89 36334.16 36759.32 3629.83 37576.14 36840.09 36428.63 37071.21 359
PMVScopyleft34.80 2339.19 33935.53 34250.18 35429.72 38130.30 37859.60 36966.20 37426.06 37017.91 37449.53 3673.12 38074.09 36918.19 37349.40 35646.14 368
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
testf145.70 33542.41 33755.58 35153.29 37540.02 37568.96 36562.67 37527.45 36829.85 36861.58 3605.98 37873.83 37028.49 36943.46 36552.90 365
APD_test245.70 33542.41 33755.58 35153.29 37540.02 37568.96 36562.67 37527.45 36829.85 36861.58 3605.98 37873.83 37028.49 36943.46 36552.90 365
ANet_high46.22 33441.28 34161.04 35039.91 38046.25 36870.59 36476.18 36658.87 35723.09 37248.00 36912.58 37266.54 37228.65 36813.62 37370.35 360
test_method56.77 32754.53 33063.49 34776.49 35540.70 37375.68 35874.24 36719.47 37348.73 35871.89 35719.31 36465.80 37357.46 33147.51 36183.97 337
MVEpermissive35.65 2233.85 34029.49 34546.92 35541.86 37936.28 37750.45 37056.52 37818.75 37418.28 37337.84 3702.41 38158.41 37418.71 37220.62 37146.06 369
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN32.70 34132.39 34333.65 35753.35 37425.70 38074.07 36153.33 37921.08 37117.17 37533.63 37311.85 37354.84 37512.98 37414.04 37220.42 372
EMVS31.70 34231.45 34432.48 35850.72 37723.95 38174.78 36052.30 38020.36 37216.08 37631.48 37412.80 37153.60 37611.39 37513.10 37519.88 373
tmp_tt41.54 33841.93 34040.38 35620.10 38226.84 37961.93 36859.09 37714.81 37528.51 37080.58 32935.53 34848.33 37763.70 30813.11 37445.96 370
wuyk23d14.10 34413.89 34714.72 35955.23 37322.91 38233.83 3723.56 3834.94 3764.11 3772.28 3792.06 38219.66 37810.23 3768.74 3761.59 376
test1239.07 34611.73 3491.11 3600.50 3840.77 38489.44 3060.20 3850.34 3782.15 37910.72 3780.34 3830.32 3791.79 3780.08 3782.23 374
testmvs9.92 34512.94 3480.84 3610.65 3830.29 38593.78 2540.39 3840.42 3772.85 37815.84 3770.17 3840.30 3802.18 3770.21 3771.91 375
test_blank0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
uanet_test0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
DCPMVS0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
cdsmvs_eth3d_5k21.43 34328.57 3460.00 3620.00 3850.00 3860.00 37395.93 1330.00 3800.00 38197.66 6063.57 2320.00 3810.00 3790.00 3790.00 377
pcd_1.5k_mvsjas5.92 3487.89 3510.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 38071.04 1900.00 3810.00 3790.00 3790.00 377
sosnet-low-res0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
sosnet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
uncertanet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
Regformer0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
ab-mvs-re8.11 34710.81 3500.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 38197.30 810.00 3850.00 3810.00 3790.00 3790.00 377
uanet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
FOURS198.51 3978.01 21398.13 3796.21 11483.04 17794.39 41
test_one_060198.91 1884.56 6896.70 6088.06 6596.57 1698.77 1088.04 20
eth-test20.00 385
eth-test0.00 385
RE-MVS-def91.18 7197.76 6776.03 25396.20 17495.44 15980.56 21790.72 8797.84 5273.36 16691.99 7496.79 8697.75 100
IU-MVS99.03 1585.34 4796.86 4092.05 1798.74 198.15 498.97 1799.42 13
save fliter98.24 5183.34 8998.61 2396.57 7991.32 20
test072699.05 985.18 5299.11 996.78 4488.75 5097.65 998.91 287.69 22
GSMVS97.54 114
test_part298.90 1985.14 5896.07 21
sam_mvs177.59 9597.54 114
sam_mvs75.35 139
MTGPAbinary96.33 106
MTMP97.53 7668.16 372
test9_res96.00 2699.03 1398.31 60
agg_prior294.30 4499.00 1598.57 45
test_prior482.34 10597.75 61
test_prior298.37 2886.08 10594.57 3998.02 4383.14 4695.05 3798.79 26
新几何296.42 160
旧先验197.39 8279.58 16996.54 8298.08 4084.00 4097.42 7197.62 111
原ACMM296.84 131
test22296.15 10178.41 19995.87 19096.46 9171.97 31589.66 10097.45 7276.33 11798.24 4998.30 61
segment_acmp82.69 51
testdata195.57 20287.44 80
plane_prior791.86 22877.55 228
plane_prior691.98 22477.92 21864.77 227
plane_prior494.15 168
plane_prior377.75 22490.17 3681.33 193
plane_prior297.18 10189.89 39
plane_prior191.95 226
plane_prior77.96 21597.52 7990.36 3482.96 212
n20.00 386
nn0.00 386
door-mid79.75 363
test1196.50 87
door80.13 362
HQP5-MVS78.48 195
HQP-NCC92.08 21997.63 6890.52 2982.30 179
ACMP_Plane92.08 21997.63 6890.52 2982.30 179
BP-MVS87.67 125
HQP3-MVS94.80 19083.01 210
HQP2-MVS65.40 221
NP-MVS92.04 22378.22 20594.56 158
MDTV_nov1_ep13_2view81.74 11986.80 32680.65 21485.65 14174.26 15476.52 22596.98 139
ACMMP++_ref78.45 246
ACMMP++79.05 237
Test By Simon71.65 183