This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort by
DVP-MVS++99.26 699.09 999.77 899.91 3999.31 999.95 4398.43 11396.48 4799.80 1599.93 1197.44 14100.00 199.92 1299.98 32100.00 1
MSC_two_6792asdad99.93 299.91 3999.80 298.41 128100.00 199.96 9100.00 1100.00 1
PC_three_145296.96 3299.80 1599.79 5497.49 10100.00 199.99 599.98 32100.00 1
No_MVS99.93 299.91 3999.80 298.41 128100.00 199.96 9100.00 1100.00 1
SED-MVS99.28 599.11 799.77 899.93 2499.30 1199.96 2698.43 11397.27 2399.80 1599.94 496.71 24100.00 1100.00 1100.00 1100.00 1
OPU-MVS99.93 299.89 4599.80 299.96 2699.80 5197.44 14100.00 1100.00 199.98 32100.00 1
test_241102_TWO98.43 11397.27 2399.80 1599.94 497.18 21100.00 1100.00 1100.00 1100.00 1
test_241102_ONE99.93 2499.30 1198.43 11397.26 2599.80 1599.88 2196.71 24100.00 1
DVP-MVScopyleft99.30 499.16 399.73 1199.93 2499.29 1499.95 4398.32 15097.28 2199.83 1199.91 1497.22 19100.00 199.99 5100.00 199.89 79
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD96.48 4799.83 1199.91 1497.87 6100.00 199.92 12100.00 1100.00 1
test_0728_SECOND99.82 799.94 1399.47 799.95 4398.43 113100.00 199.99 5100.00 1100.00 1
DPM-MVS98.83 1898.46 2599.97 199.33 9799.92 199.96 2698.44 10597.96 799.55 4699.94 497.18 21100.00 193.81 19299.94 5499.98 48
GST-MVS98.27 4697.97 5399.17 4999.92 3197.57 8199.93 6498.39 13594.04 12798.80 8799.74 7292.98 108100.00 198.16 9499.76 8099.93 71
SMA-MVScopyleft98.76 2098.48 2499.62 1899.87 5198.87 3099.86 10098.38 13993.19 15499.77 2499.94 495.54 42100.00 199.74 2699.99 21100.00 1
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
ACMMP_NAP98.49 3398.14 4499.54 2599.66 7898.62 5199.85 10398.37 14294.68 9699.53 4999.83 4392.87 111100.00 198.66 7599.84 7199.99 23
MTAPA98.29 4597.96 5699.30 4099.85 5497.93 7199.39 19698.28 15795.76 6697.18 13899.88 2192.74 115100.00 198.67 7399.88 6899.99 23
HFP-MVS98.56 2898.37 3199.14 5599.96 897.43 9099.95 4398.61 7194.77 9199.31 6699.85 3094.22 76100.00 198.70 7199.98 3299.98 48
region2R98.54 2998.37 3199.05 6299.96 897.18 9799.96 2698.55 8494.87 8999.45 5599.85 3094.07 81100.00 198.67 73100.00 199.98 48
HPM-MVS++copyleft99.07 1098.88 1599.63 1599.90 4299.02 2399.95 4398.56 7897.56 1599.44 5699.85 3095.38 46100.00 199.31 4199.99 2199.87 82
新几何199.42 3599.75 6898.27 5998.63 6992.69 17199.55 4699.82 4694.40 67100.00 191.21 22799.94 5499.99 23
无先验99.49 18398.71 5693.46 146100.00 194.36 18099.99 23
MSLP-MVS++99.13 899.01 1199.49 3099.94 1398.46 5799.98 998.86 4797.10 2899.80 1599.94 495.92 36100.00 199.51 33100.00 1100.00 1
ACMMPR98.50 3298.32 3599.05 6299.96 897.18 9799.95 4398.60 7294.77 9199.31 6699.84 4193.73 90100.00 198.70 7199.98 3299.98 48
MP-MVScopyleft98.23 5197.97 5399.03 6499.94 1397.17 10099.95 4398.39 13594.70 9598.26 11599.81 5091.84 137100.00 198.85 6399.97 4299.93 71
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PGM-MVS98.34 4298.13 4598.99 6899.92 3197.00 10499.75 13599.50 1793.90 13499.37 6399.76 6293.24 103100.00 197.75 11899.96 4699.98 48
MCST-MVS99.32 399.14 499.86 599.97 399.59 599.97 1998.64 6698.47 299.13 7599.92 1396.38 30100.00 199.74 26100.00 1100.00 1
mPP-MVS98.39 4198.20 4098.97 7099.97 396.92 10899.95 4398.38 13995.04 8398.61 9999.80 5193.39 95100.00 198.64 76100.00 199.98 48
CNVR-MVS99.40 199.26 199.84 699.98 299.51 699.98 998.69 5898.20 399.93 199.98 296.82 23100.00 199.75 24100.00 199.99 23
NCCC99.37 299.25 299.71 1399.96 899.15 2099.97 1998.62 7098.02 699.90 299.95 397.33 17100.00 199.54 32100.00 1100.00 1
CP-MVS98.45 3698.32 3598.87 7599.96 896.62 11699.97 1998.39 13594.43 10398.90 8499.87 2494.30 74100.00 199.04 5199.99 2199.99 23
DP-MVS Recon98.41 3998.02 5199.56 2399.97 398.70 4499.92 6798.44 10592.06 19698.40 10899.84 4195.68 40100.00 198.19 9299.71 8399.97 55
PHI-MVS98.41 3998.21 3999.03 6499.86 5397.10 10199.98 998.80 5290.78 23299.62 3999.78 5895.30 47100.00 199.80 2199.93 6099.99 23
DeepPCF-MVS95.94 297.71 7398.98 1293.92 26599.63 7981.76 34499.96 2698.56 7899.47 199.19 7399.99 194.16 79100.00 199.92 1299.93 60100.00 1
DeepC-MVS_fast96.59 198.81 1998.54 2299.62 1899.90 4298.85 3299.24 21598.47 9998.14 499.08 7699.91 1493.09 106100.00 199.04 5199.99 21100.00 1
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
AdaColmapbinary97.23 8996.80 9398.51 10099.99 195.60 15499.09 22698.84 4993.32 15096.74 14899.72 7686.04 204100.00 198.01 10299.43 10399.94 70
ZNCC-MVS98.31 4398.03 5099.17 4999.88 4997.59 8099.94 5898.44 10594.31 11198.50 10399.82 4693.06 10799.99 3698.30 9099.99 2199.93 71
DPE-MVScopyleft99.26 699.10 899.74 1099.89 4599.24 1899.87 8898.44 10597.48 1799.64 3699.94 496.68 2699.99 3699.99 5100.00 199.99 23
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
testdata299.99 3690.54 244
CPTT-MVS97.64 7497.32 7798.58 9299.97 395.77 14599.96 2698.35 14589.90 24598.36 10999.79 5491.18 14699.99 3698.37 8699.99 2199.99 23
API-MVS97.86 6297.66 6598.47 10299.52 8795.41 15999.47 18698.87 4691.68 20798.84 8599.85 3092.34 12699.99 3698.44 8399.96 46100.00 1
ACMMPcopyleft97.74 7297.44 7298.66 8599.92 3196.13 13699.18 22099.45 1894.84 9096.41 15899.71 7891.40 14099.99 3697.99 10498.03 14399.87 82
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
patch_mono-298.24 5099.12 595.59 20199.67 7786.91 31799.95 4398.89 4397.60 1299.90 299.76 6296.54 2899.98 4299.94 1199.82 7699.88 80
CANet_DTU96.76 10596.15 10998.60 8998.78 12997.53 8299.84 10797.63 21497.25 2699.20 7199.64 9181.36 24099.98 4292.77 21298.89 11898.28 204
SD-MVS98.92 1598.70 1799.56 2399.70 7698.73 4299.94 5898.34 14796.38 5299.81 1399.76 6294.59 6399.98 4299.84 1899.96 4699.97 55
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PAPM_NR98.12 5497.93 5898.70 8299.94 1396.13 13699.82 11598.43 11394.56 9997.52 13099.70 8094.40 6799.98 4297.00 13499.98 3299.99 23
PAPR98.52 3198.16 4399.58 2299.97 398.77 3899.95 4398.43 11395.35 7798.03 11999.75 6794.03 8299.98 4298.11 9799.83 7299.99 23
CSCG97.10 9297.04 8697.27 15999.89 4591.92 24399.90 7699.07 3288.67 26795.26 18099.82 4693.17 10599.98 4298.15 9599.47 9999.90 78
CNLPA97.76 7197.38 7398.92 7499.53 8696.84 11099.87 8898.14 17693.78 13796.55 15399.69 8292.28 12799.98 4297.13 12999.44 10299.93 71
MG-MVS98.91 1698.65 1899.68 1499.94 1399.07 2299.64 16099.44 1997.33 2099.00 8099.72 7694.03 8299.98 4298.73 70100.00 1100.00 1
MAR-MVS97.43 7897.19 8098.15 11999.47 9194.79 17899.05 23798.76 5392.65 17498.66 9699.82 4688.52 18399.98 4298.12 9699.63 8799.67 107
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
test_vis1_n_192095.44 15095.31 14195.82 19898.50 14388.74 29699.98 997.30 25297.84 899.85 799.19 12766.82 32899.97 5198.82 6499.46 10198.76 198
MP-MVS-pluss98.07 5697.64 6699.38 3999.74 6998.41 5899.74 13898.18 16893.35 14896.45 15599.85 3092.64 11799.97 5198.91 5999.89 6699.77 95
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
PLCcopyleft95.54 397.93 5997.89 6198.05 12399.82 5894.77 17999.92 6798.46 10193.93 13297.20 13799.27 11995.44 4599.97 5197.41 12299.51 9899.41 155
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
XVS98.70 2298.55 2199.15 5399.94 1397.50 8699.94 5898.42 12496.22 5799.41 5999.78 5894.34 7299.96 5498.92 5799.95 4999.99 23
X-MVStestdata93.83 18792.06 21799.15 5399.94 1397.50 8699.94 5898.42 12496.22 5799.41 5941.37 37894.34 7299.96 5498.92 5799.95 4999.99 23
原ACMM198.96 7199.73 7296.99 10598.51 9394.06 12499.62 3999.85 3094.97 5899.96 5495.11 15999.95 4999.92 76
131496.84 10195.96 11999.48 3296.74 23898.52 5498.31 29298.86 4795.82 6489.91 23798.98 14387.49 18999.96 5497.80 11199.73 8299.96 61
MVS96.60 11395.56 13599.72 1296.85 23199.22 1998.31 29298.94 3791.57 20990.90 22599.61 9386.66 19899.96 5497.36 12399.88 6899.99 23
UGNet95.33 15394.57 16097.62 14298.55 13994.85 17498.67 27599.32 2595.75 6796.80 14796.27 25272.18 30699.96 5494.58 17799.05 11698.04 209
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
QAPM95.40 15194.17 16899.10 6096.92 22597.71 7599.40 19298.68 6089.31 25088.94 26498.89 15782.48 23099.96 5493.12 20899.83 7299.62 118
CANet98.27 4697.82 6299.63 1599.72 7499.10 2199.98 998.51 9397.00 3198.52 10199.71 7887.80 18699.95 6199.75 2499.38 10499.83 86
旧先验299.46 18894.21 11699.85 799.95 6196.96 136
PVSNet_BlendedMVS96.05 13195.82 12996.72 17399.59 8196.99 10599.95 4399.10 2994.06 12498.27 11395.80 26389.00 17899.95 6199.12 4687.53 25893.24 316
PVSNet_Blended97.94 5897.64 6698.83 7799.59 8196.99 105100.00 199.10 2995.38 7698.27 11399.08 13389.00 17899.95 6199.12 4699.25 10999.57 131
DP-MVS94.54 17193.42 18897.91 12899.46 9394.04 19198.93 24997.48 23581.15 33890.04 23499.55 9787.02 19599.95 6188.97 26198.11 13999.73 99
PVSNet91.05 1397.13 9196.69 9698.45 10499.52 8795.81 14399.95 4399.65 1194.73 9399.04 7899.21 12684.48 21799.95 6194.92 16598.74 12299.58 130
3Dnovator91.47 1296.28 12795.34 14099.08 6196.82 23397.47 8999.45 18998.81 5095.52 7489.39 25199.00 14081.97 23399.95 6197.27 12599.83 7299.84 85
LS3D95.84 13895.11 14898.02 12499.85 5495.10 17098.74 26898.50 9787.22 28893.66 19899.86 2687.45 19099.95 6190.94 23599.81 7899.02 187
testdata98.42 10799.47 9195.33 16198.56 7893.78 13799.79 2299.85 3093.64 9399.94 6994.97 16399.94 54100.00 1
TSAR-MVS + GP.98.60 2698.51 2398.86 7699.73 7296.63 11599.97 1997.92 19598.07 598.76 9199.55 9795.00 5699.94 6999.91 1597.68 14899.99 23
DELS-MVS98.54 2998.22 3899.50 2899.15 10398.65 49100.00 198.58 7497.70 1098.21 11799.24 12492.58 11999.94 6998.63 7899.94 5499.92 76
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
F-COLMAP96.93 9896.95 8996.87 16899.71 7591.74 24899.85 10397.95 19093.11 15795.72 17399.16 13092.35 12599.94 6995.32 15799.35 10698.92 189
3Dnovator+91.53 1196.31 12495.24 14399.52 2696.88 23098.64 5099.72 14698.24 16195.27 8088.42 27698.98 14382.76 22999.94 6997.10 13199.83 7299.96 61
OpenMVScopyleft90.15 1594.77 16493.59 18298.33 11196.07 24997.48 8899.56 17198.57 7690.46 23586.51 29998.95 15278.57 26699.94 6993.86 18899.74 8197.57 218
test_fmvs195.35 15295.68 13394.36 25098.99 11184.98 32799.96 2696.65 31197.60 1299.73 2898.96 14771.58 30999.93 7598.31 8999.37 10598.17 205
test_fmvs1_n94.25 18294.36 16393.92 26597.68 19383.70 33299.90 7696.57 31497.40 1899.67 3498.88 15861.82 34499.92 7698.23 9199.13 11498.14 208
test_vis1_rt86.87 29986.05 30089.34 32196.12 24778.07 35599.87 8883.54 37692.03 19778.21 34389.51 34745.80 36299.91 7796.25 14693.11 21790.03 349
EPNet98.49 3398.40 2798.77 7999.62 8096.80 11299.90 7699.51 1697.60 1299.20 7199.36 11493.71 9199.91 7797.99 10498.71 12399.61 121
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Anonymous2024052992.10 22990.65 24096.47 17898.82 12690.61 26998.72 27098.67 6375.54 35393.90 19698.58 17866.23 33099.90 7994.70 17490.67 22198.90 192
CHOSEN 1792x268896.81 10296.53 10197.64 14098.91 12193.07 21499.65 15699.80 395.64 6995.39 17798.86 16384.35 22099.90 7996.98 13599.16 11299.95 68
MVS_111021_LR98.42 3898.38 2998.53 9999.39 9495.79 14499.87 8899.86 296.70 4298.78 8899.79 5492.03 13399.90 7999.17 4599.86 7099.88 80
DeepC-MVS94.51 496.92 9996.40 10598.45 10499.16 10295.90 14199.66 15498.06 18196.37 5594.37 18999.49 10283.29 22799.90 7997.63 11999.61 9199.55 133
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PS-MVSNAJ98.44 3798.20 4099.16 5198.80 12898.92 2699.54 17598.17 16997.34 1999.85 799.85 3091.20 14399.89 8399.41 3999.67 8598.69 201
VNet97.21 9096.57 10099.13 5998.97 11397.82 7399.03 24099.21 2894.31 11199.18 7498.88 15886.26 20399.89 8398.93 5694.32 20499.69 104
sss97.57 7597.03 8799.18 4698.37 14998.04 6599.73 14399.38 2293.46 14698.76 9199.06 13491.21 14299.89 8396.33 14497.01 16599.62 118
MVS_111021_HR98.72 2198.62 2099.01 6799.36 9697.18 9799.93 6499.90 196.81 3998.67 9599.77 6093.92 8499.89 8399.27 4399.94 5499.96 61
PVSNet_088.03 1991.80 23690.27 24896.38 18598.27 15590.46 27399.94 5899.61 1293.99 12886.26 30597.39 21671.13 31399.89 8398.77 6767.05 35798.79 197
PCF-MVS94.20 595.18 15494.10 16998.43 10698.55 13995.99 13997.91 30797.31 25190.35 23889.48 25099.22 12585.19 21299.89 8390.40 24898.47 12799.41 155
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
Anonymous20240521193.10 20791.99 21996.40 18399.10 10489.65 28898.88 25497.93 19283.71 32694.00 19498.75 16968.79 31899.88 8995.08 16191.71 22099.68 105
AllTest92.48 22191.64 22495.00 22099.01 10888.43 30298.94 24896.82 30286.50 29788.71 26798.47 18674.73 29699.88 8985.39 29796.18 17796.71 223
TestCases95.00 22099.01 10888.43 30296.82 30286.50 29788.71 26798.47 18674.73 29699.88 8985.39 29796.18 17796.71 223
PVSNet_Blended_VisFu97.27 8796.81 9298.66 8598.81 12796.67 11499.92 6798.64 6694.51 10096.38 15998.49 18289.05 17799.88 8997.10 13198.34 12999.43 153
MSDG94.37 17793.36 19297.40 15298.88 12493.95 19599.37 19997.38 24485.75 30890.80 22699.17 12984.11 22299.88 8986.35 29198.43 12898.36 203
SF-MVS98.67 2398.40 2799.50 2899.77 6598.67 4599.90 7698.21 16493.53 14499.81 1399.89 1994.70 6299.86 9499.84 1899.93 6099.96 61
9.1498.38 2999.87 5199.91 7198.33 14893.22 15399.78 2399.89 1994.57 6499.85 9599.84 1899.97 42
TEST999.92 3198.92 2699.96 2698.43 11393.90 13499.71 3099.86 2695.88 3799.85 95
train_agg98.88 1798.65 1899.59 2199.92 3198.92 2699.96 2698.43 11394.35 10899.71 3099.86 2695.94 3499.85 9599.69 3199.98 3299.99 23
test_899.92 3198.88 2999.96 2698.43 11394.35 10899.69 3299.85 3095.94 3499.85 95
agg_prior99.93 2498.77 3898.43 11399.63 3799.85 95
SteuartSystems-ACMMP99.02 1298.97 1399.18 4698.72 13297.71 7599.98 998.44 10596.85 3499.80 1599.91 1497.57 899.85 9599.44 3799.99 2199.99 23
Skip Steuart: Steuart Systems R&D Blog.
COLMAP_ROBcopyleft90.47 1492.18 22891.49 23094.25 25399.00 11088.04 30898.42 28996.70 30982.30 33588.43 27499.01 13876.97 27499.85 9586.11 29496.50 17394.86 230
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test_yl97.83 6497.37 7499.21 4399.18 10097.98 6899.64 16099.27 2691.43 21597.88 12498.99 14195.84 3899.84 10298.82 6495.32 19699.79 91
DCV-MVSNet97.83 6497.37 7499.21 4399.18 10097.98 6899.64 16099.27 2691.43 21597.88 12498.99 14195.84 3899.84 10298.82 6495.32 19699.79 91
test_vis1_n93.61 19793.03 19795.35 20895.86 25686.94 31599.87 8896.36 32196.85 3499.54 4898.79 16752.41 35799.83 10498.64 7698.97 11799.29 171
mvsany_test197.82 6697.90 6097.55 14398.77 13093.04 21799.80 12197.93 19296.95 3399.61 4599.68 8690.92 15099.83 10499.18 4498.29 13499.80 90
PatchMatch-RL96.04 13295.40 13797.95 12599.59 8195.22 16799.52 17799.07 3293.96 13096.49 15498.35 19082.28 23199.82 10690.15 25199.22 11198.81 196
ZD-MVS99.92 3198.57 5298.52 9092.34 18899.31 6699.83 4395.06 5299.80 10799.70 3099.97 42
test_prior99.43 3399.94 1398.49 5698.65 6499.80 10799.99 23
APDe-MVS99.06 1198.91 1499.51 2799.94 1398.76 4199.91 7198.39 13597.20 2799.46 5499.85 3095.53 4499.79 10999.86 17100.00 199.99 23
XVG-OURS-SEG-HR94.79 16294.70 15995.08 21798.05 16789.19 29199.08 22897.54 22793.66 14194.87 18399.58 9578.78 26499.79 10997.31 12493.40 21396.25 225
SR-MVS-dyc-post98.31 4398.17 4298.71 8199.79 6296.37 12599.76 13298.31 15294.43 10399.40 6199.75 6793.28 10199.78 11198.90 6099.92 6399.97 55
SR-MVS98.46 3598.30 3798.93 7399.88 4997.04 10299.84 10798.35 14594.92 8799.32 6599.80 5193.35 9699.78 11199.30 4299.95 4999.96 61
RPMNet89.76 27887.28 29497.19 16096.29 24392.66 22692.01 35798.31 15270.19 36296.94 14185.87 36187.25 19299.78 11162.69 36495.96 18299.13 183
h-mvs3394.92 16094.36 16396.59 17798.85 12591.29 25998.93 24998.94 3795.90 6298.77 8998.42 18990.89 15399.77 11497.80 11170.76 34798.72 200
VDD-MVS93.77 19192.94 19896.27 18898.55 13990.22 27798.77 26797.79 20690.85 23096.82 14699.42 10761.18 34799.77 11498.95 5494.13 20698.82 195
HY-MVS92.50 797.79 6997.17 8299.63 1598.98 11299.32 897.49 31299.52 1495.69 6898.32 11197.41 21493.32 9899.77 11498.08 10095.75 18999.81 88
APD-MVS_3200maxsize98.25 4998.08 4998.78 7899.81 6096.60 11799.82 11598.30 15593.95 13199.37 6399.77 6092.84 11299.76 11798.95 5499.92 6399.97 55
CDPH-MVS98.65 2498.36 3399.49 3099.94 1398.73 4299.87 8898.33 14893.97 12999.76 2599.87 2494.99 5799.75 11898.55 80100.00 199.98 48
test1299.43 3399.74 6998.56 5398.40 13299.65 3594.76 6099.75 11899.98 3299.99 23
XVG-OURS94.82 16194.74 15895.06 21898.00 16989.19 29199.08 22897.55 22594.10 12094.71 18499.62 9280.51 25199.74 12096.04 14993.06 21896.25 225
APD-MVScopyleft98.62 2598.35 3499.41 3699.90 4298.51 5599.87 8898.36 14394.08 12199.74 2799.73 7494.08 8099.74 12099.42 3899.99 2199.99 23
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
WTY-MVS98.10 5597.60 6899.60 2098.92 11999.28 1699.89 8399.52 1495.58 7198.24 11699.39 11193.33 9799.74 12097.98 10695.58 19299.78 94
EI-MVSNet-UG-set98.14 5397.99 5298.60 8999.80 6196.27 12799.36 20198.50 9795.21 8198.30 11299.75 6793.29 10099.73 12398.37 8699.30 10799.81 88
MSP-MVS99.09 999.12 598.98 6999.93 2497.24 9499.95 4398.42 12497.50 1699.52 5199.88 2197.43 1699.71 12499.50 3499.98 32100.00 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
xiu_mvs_v2_base98.23 5197.97 5399.02 6698.69 13398.66 4799.52 17798.08 18097.05 2999.86 599.86 2690.65 15599.71 12499.39 4098.63 12498.69 201
EI-MVSNet-Vis-set98.27 4698.11 4798.75 8099.83 5796.59 11899.40 19298.51 9395.29 7998.51 10299.76 6293.60 9499.71 12498.53 8199.52 9699.95 68
ab-mvs94.69 16693.42 18898.51 10098.07 16696.26 12896.49 32998.68 6090.31 23994.54 18597.00 22976.30 28299.71 12495.98 15093.38 21499.56 132
xiu_mvs_v1_base_debu97.43 7897.06 8398.55 9497.74 18598.14 6099.31 20697.86 20196.43 4999.62 3999.69 8285.56 20799.68 12899.05 4898.31 13197.83 211
xiu_mvs_v1_base97.43 7897.06 8398.55 9497.74 18598.14 6099.31 20697.86 20196.43 4999.62 3999.69 8285.56 20799.68 12899.05 4898.31 13197.83 211
xiu_mvs_v1_base_debi97.43 7897.06 8398.55 9497.74 18598.14 6099.31 20697.86 20196.43 4999.62 3999.69 8285.56 20799.68 12899.05 4898.31 13197.83 211
HPM-MVScopyleft97.96 5797.72 6498.68 8399.84 5696.39 12499.90 7698.17 16992.61 17698.62 9899.57 9691.87 13699.67 13198.87 6299.99 2199.99 23
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
UA-Net96.54 11495.96 11998.27 11398.23 15795.71 14998.00 30598.45 10293.72 14098.41 10699.27 11988.71 18299.66 13291.19 22897.69 14799.44 152
HPM-MVS_fast97.80 6897.50 7098.68 8399.79 6296.42 12199.88 8598.16 17391.75 20698.94 8299.54 9991.82 13899.65 13397.62 12099.99 2199.99 23
114514_t97.41 8396.83 9199.14 5599.51 8997.83 7299.89 8398.27 15988.48 27199.06 7799.66 8990.30 16099.64 13496.32 14599.97 4299.96 61
TSAR-MVS + MP.98.93 1498.77 1699.41 3699.74 6998.67 4599.77 12798.38 13996.73 4199.88 499.74 7294.89 5999.59 13599.80 2199.98 3299.97 55
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
LFMVS94.75 16593.56 18498.30 11299.03 10795.70 15098.74 26897.98 18787.81 28198.47 10499.39 11167.43 32699.53 13698.01 10295.20 19899.67 107
canonicalmvs97.09 9496.32 10699.39 3898.93 11798.95 2599.72 14697.35 24694.45 10197.88 12499.42 10786.71 19799.52 13798.48 8293.97 20999.72 101
thres20096.96 9696.21 10899.22 4298.97 11398.84 3399.85 10399.71 693.17 15596.26 16198.88 15889.87 16599.51 13894.26 18394.91 19999.31 167
OMC-MVS97.28 8697.23 7997.41 15199.76 6693.36 21299.65 15697.95 19096.03 6197.41 13499.70 8089.61 16799.51 13896.73 14198.25 13599.38 157
thres100view90096.74 10795.92 12599.18 4698.90 12298.77 3899.74 13899.71 692.59 17895.84 16998.86 16389.25 17399.50 14093.84 18994.57 20099.27 172
tfpn200view996.79 10395.99 11399.19 4598.94 11598.82 3499.78 12499.71 692.86 16096.02 16698.87 16189.33 17199.50 14093.84 18994.57 20099.27 172
thres600view796.69 11095.87 12899.14 5598.90 12298.78 3799.74 13899.71 692.59 17895.84 16998.86 16389.25 17399.50 14093.44 20194.50 20399.16 179
thres40096.78 10495.99 11399.16 5198.94 11598.82 3499.78 12499.71 692.86 16096.02 16698.87 16189.33 17199.50 14093.84 18994.57 20099.16 179
FE-MVS95.70 14495.01 15297.79 13298.21 15894.57 18095.03 34598.69 5888.90 26297.50 13296.19 25492.60 11899.49 14489.99 25397.94 14599.31 167
VDDNet93.12 20691.91 22196.76 17196.67 24192.65 22898.69 27398.21 16482.81 33297.75 12799.28 11661.57 34599.48 14598.09 9994.09 20798.15 206
FA-MVS(test-final)95.86 13695.09 14998.15 11997.74 18595.62 15396.31 33398.17 16991.42 21796.26 16196.13 25790.56 15799.47 14692.18 21797.07 16199.35 162
RPSCF91.80 23692.79 20288.83 32598.15 16369.87 36198.11 30196.60 31383.93 32494.33 19099.27 11979.60 25899.46 14791.99 21893.16 21697.18 221
alignmvs97.81 6797.33 7699.25 4198.77 13098.66 4799.99 398.44 10594.40 10798.41 10699.47 10393.65 9299.42 14898.57 7994.26 20599.67 107
Test_1112_low_res95.72 14094.83 15698.42 10797.79 18296.41 12299.65 15696.65 31192.70 17092.86 20996.13 25792.15 13099.30 14991.88 22193.64 21199.55 133
1112_ss96.01 13395.20 14598.42 10797.80 18196.41 12299.65 15696.66 31092.71 16992.88 20899.40 10992.16 12999.30 14991.92 22093.66 21099.55 133
cascas94.64 16993.61 17997.74 13897.82 18096.26 12899.96 2697.78 20785.76 30694.00 19497.54 21076.95 27599.21 15197.23 12795.43 19497.76 215
test250697.53 7697.19 8098.58 9298.66 13596.90 10998.81 26399.77 594.93 8597.95 12198.96 14792.51 12199.20 15294.93 16498.15 13699.64 113
ECVR-MVScopyleft95.66 14595.05 15097.51 14698.66 13593.71 20098.85 26098.45 10294.93 8596.86 14498.96 14775.22 29299.20 15295.34 15698.15 13699.64 113
TAPA-MVS92.12 894.42 17593.60 18196.90 16799.33 9791.78 24799.78 12498.00 18489.89 24694.52 18699.47 10391.97 13499.18 15469.90 35499.52 9699.73 99
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
IB-MVS92.85 694.99 15993.94 17398.16 11697.72 19095.69 15199.99 398.81 5094.28 11392.70 21096.90 23195.08 5199.17 15596.07 14873.88 34299.60 123
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
dcpmvs_297.42 8298.09 4895.42 20699.58 8487.24 31399.23 21696.95 28794.28 11398.93 8399.73 7494.39 7099.16 15699.89 1699.82 7699.86 84
test111195.57 14794.98 15397.37 15498.56 13793.37 21198.86 25898.45 10294.95 8496.63 15098.95 15275.21 29399.11 15795.02 16298.14 13899.64 113
thisisatest051597.41 8397.02 8898.59 9197.71 19297.52 8399.97 1998.54 8791.83 20297.45 13399.04 13597.50 999.10 15894.75 17296.37 17699.16 179
thisisatest053097.10 9296.72 9598.22 11597.60 19696.70 11399.92 6798.54 8791.11 22497.07 14098.97 14597.47 1299.03 15993.73 19796.09 17998.92 189
tttt051796.85 10096.49 10297.92 12797.48 20295.89 14299.85 10398.54 8790.72 23396.63 15098.93 15697.47 1299.02 16093.03 20995.76 18898.85 193
MVS_Test96.46 11795.74 13098.61 8898.18 16197.23 9599.31 20697.15 26591.07 22598.84 8597.05 22788.17 18598.97 16194.39 17997.50 15199.61 121
tt080591.28 24490.18 25194.60 23596.26 24587.55 31098.39 29098.72 5589.00 25689.22 25798.47 18662.98 34198.96 16290.57 24288.00 25197.28 220
tpmvs94.28 18193.57 18396.40 18398.55 13991.50 25795.70 34498.55 8487.47 28392.15 21494.26 32091.42 13998.95 16388.15 27195.85 18598.76 198
EIA-MVS97.53 7697.46 7197.76 13698.04 16894.84 17599.98 997.61 21994.41 10697.90 12399.59 9492.40 12498.87 16498.04 10199.13 11499.59 124
tpm cat193.51 19892.52 21096.47 17897.77 18391.47 25896.13 33698.06 18180.98 33992.91 20793.78 32489.66 16698.87 16487.03 28696.39 17599.09 185
ETV-MVS97.92 6097.80 6398.25 11498.14 16496.48 11999.98 997.63 21495.61 7099.29 6999.46 10592.55 12098.82 16699.02 5398.54 12599.46 148
BH-RMVSNet95.18 15494.31 16697.80 13098.17 16295.23 16699.76 13297.53 22992.52 18394.27 19199.25 12376.84 27698.80 16790.89 23799.54 9599.35 162
gm-plane-assit96.97 22493.76 19991.47 21398.96 14798.79 16894.92 165
casdiffmvspermissive96.42 12095.97 11897.77 13597.30 21294.98 17199.84 10797.09 27293.75 13996.58 15299.26 12285.07 21398.78 16997.77 11697.04 16399.54 136
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
TR-MVS94.54 17193.56 18497.49 14797.96 17194.34 18698.71 27197.51 23290.30 24094.51 18798.69 17075.56 28798.77 17092.82 21195.99 18199.35 162
diffmvspermissive97.00 9596.64 9798.09 12197.64 19496.17 13599.81 11797.19 25994.67 9798.95 8199.28 11686.43 20098.76 17198.37 8697.42 15499.33 165
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Vis-MVSNetpermissive95.72 14095.15 14797.45 14897.62 19594.28 18799.28 21298.24 16194.27 11596.84 14598.94 15479.39 25998.76 17193.25 20298.49 12699.30 169
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
tpmrst96.27 12895.98 11597.13 16197.96 17193.15 21396.34 33298.17 16992.07 19498.71 9495.12 29693.91 8598.73 17394.91 16796.62 17099.50 144
PMMVS96.76 10596.76 9496.76 17198.28 15492.10 23899.91 7197.98 18794.12 11999.53 4999.39 11186.93 19698.73 17396.95 13797.73 14699.45 150
casdiffmvs_mvgpermissive96.43 11895.94 12297.89 12997.44 20395.47 15699.86 10097.29 25393.35 14896.03 16599.19 12785.39 21098.72 17597.89 11097.04 16399.49 146
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
lupinMVS97.85 6397.60 6898.62 8797.28 21497.70 7799.99 397.55 22595.50 7599.43 5799.67 8790.92 15098.71 17698.40 8499.62 8899.45 150
Effi-MVS+96.30 12595.69 13198.16 11697.85 17896.26 12897.41 31397.21 25890.37 23798.65 9798.58 17886.61 19998.70 17797.11 13097.37 15699.52 140
baseline195.78 13994.86 15598.54 9798.47 14598.07 6399.06 23397.99 18592.68 17294.13 19398.62 17593.28 10198.69 17893.79 19485.76 26798.84 194
BH-w/o95.71 14295.38 13996.68 17498.49 14492.28 23499.84 10797.50 23392.12 19392.06 21598.79 16784.69 21598.67 17995.29 15899.66 8699.09 185
baseline96.43 11895.98 11597.76 13697.34 20895.17 16999.51 17997.17 26293.92 13396.90 14399.28 11685.37 21198.64 18097.50 12196.86 16999.46 148
baseline296.71 10996.49 10297.37 15495.63 27095.96 14099.74 13898.88 4592.94 15991.61 21798.97 14597.72 798.62 18194.83 16998.08 14297.53 219
MDTV_nov1_ep1395.69 13197.90 17494.15 18895.98 34098.44 10593.12 15697.98 12095.74 26595.10 5098.58 18290.02 25296.92 167
jason97.24 8896.86 9098.38 11095.73 26397.32 9399.97 1997.40 24395.34 7898.60 10099.54 9987.70 18798.56 18397.94 10799.47 9999.25 174
jason: jason.
EPP-MVSNet96.69 11096.60 9896.96 16597.74 18593.05 21699.37 19998.56 7888.75 26595.83 17199.01 13896.01 3298.56 18396.92 13897.20 15999.25 174
BH-untuned95.18 15494.83 15696.22 18998.36 15091.22 26099.80 12197.32 25090.91 22891.08 22298.67 17183.51 22498.54 18594.23 18499.61 9198.92 189
PAPM98.60 2698.42 2699.14 5596.05 25098.96 2499.90 7699.35 2496.68 4398.35 11099.66 8996.45 2998.51 18699.45 3699.89 6699.96 61
OPM-MVS93.21 20392.80 20194.44 24693.12 31290.85 26599.77 12797.61 21996.19 5991.56 21898.65 17275.16 29498.47 18793.78 19589.39 22893.99 284
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ACMP92.05 992.74 21492.42 21293.73 27195.91 25588.72 29799.81 11797.53 22994.13 11887.00 29398.23 19274.07 30098.47 18796.22 14788.86 23493.99 284
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
CLD-MVS94.06 18593.90 17494.55 23996.02 25190.69 26699.98 997.72 20896.62 4691.05 22498.85 16677.21 27298.47 18798.11 9789.51 22794.48 235
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
ACMM91.95 1092.88 21192.52 21093.98 26495.75 26289.08 29499.77 12797.52 23193.00 15889.95 23697.99 20076.17 28498.46 19093.63 19988.87 23394.39 246
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
dp95.05 15794.43 16296.91 16697.99 17092.73 22496.29 33497.98 18789.70 24895.93 16894.67 31193.83 8998.45 19186.91 29096.53 17299.54 136
ACMH+89.98 1690.35 26589.54 26392.78 29395.99 25286.12 32098.81 26397.18 26189.38 24983.14 32197.76 20768.42 32298.43 19289.11 26086.05 26693.78 300
ITE_SJBPF92.38 29595.69 26885.14 32595.71 33392.81 16489.33 25498.11 19470.23 31598.42 19385.91 29588.16 24893.59 308
Fast-Effi-MVS+95.02 15894.19 16797.52 14597.88 17594.55 18199.97 1997.08 27388.85 26494.47 18897.96 20384.59 21698.41 19489.84 25597.10 16099.59 124
ACMH89.72 1790.64 25889.63 26093.66 27795.64 26988.64 30098.55 27997.45 23689.03 25481.62 32897.61 20969.75 31698.41 19489.37 25787.62 25793.92 290
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LPG-MVS_test92.96 20992.71 20393.71 27395.43 27288.67 29899.75 13597.62 21692.81 16490.05 23298.49 18275.24 29098.40 19695.84 15389.12 22994.07 276
LGP-MVS_train93.71 27395.43 27288.67 29897.62 21692.81 16490.05 23298.49 18275.24 29098.40 19695.84 15389.12 22994.07 276
XVG-ACMP-BASELINE91.22 24790.75 23892.63 29493.73 29985.61 32298.52 28397.44 23792.77 16789.90 23896.85 23566.64 32998.39 19892.29 21588.61 23893.89 292
HQP4-MVS93.37 20098.39 19894.53 231
HQP-MVS94.61 17094.50 16194.92 22395.78 25791.85 24499.87 8897.89 19796.82 3693.37 20098.65 17280.65 24998.39 19897.92 10889.60 22294.53 231
TDRefinement84.76 30982.56 31691.38 30674.58 37284.80 32997.36 31494.56 35384.73 32080.21 33596.12 25963.56 33998.39 19887.92 27463.97 36190.95 343
CS-MVS-test97.88 6197.94 5797.70 13999.28 9995.20 16899.98 997.15 26595.53 7399.62 3999.79 5492.08 13298.38 20298.75 6999.28 10899.52 140
EPMVS96.53 11596.01 11298.09 12198.43 14696.12 13896.36 33199.43 2093.53 14497.64 12895.04 29894.41 6698.38 20291.13 22998.11 13999.75 97
HQP_MVS94.49 17494.36 16394.87 22495.71 26691.74 24899.84 10797.87 19996.38 5293.01 20498.59 17680.47 25398.37 20497.79 11489.55 22594.52 233
plane_prior597.87 19998.37 20497.79 11489.55 22594.52 233
CS-MVS97.79 6997.91 5997.43 15099.10 10494.42 18499.99 397.10 27095.07 8299.68 3399.75 6792.95 10998.34 20698.38 8599.14 11399.54 136
TinyColmap87.87 29686.51 29791.94 30195.05 27885.57 32397.65 31194.08 35584.40 32281.82 32796.85 23562.14 34398.33 20780.25 32886.37 26591.91 336
CMPMVSbinary61.59 2184.75 31085.14 30483.57 33990.32 34662.54 36696.98 32397.59 22374.33 35769.95 36096.66 24064.17 33798.32 20887.88 27588.41 24389.84 351
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
USDC90.00 27588.96 27593.10 28894.81 28188.16 30698.71 27195.54 33893.66 14183.75 31997.20 22065.58 33298.31 20983.96 30887.49 25992.85 323
TESTMET0.1,196.74 10796.26 10798.16 11697.36 20796.48 11999.96 2698.29 15691.93 19995.77 17298.07 19695.54 4298.29 21090.55 24398.89 11899.70 102
CostFormer96.10 12995.88 12796.78 17097.03 22192.55 23097.08 32197.83 20490.04 24498.72 9394.89 30595.01 5598.29 21096.54 14395.77 18799.50 144
AUN-MVS93.28 20292.60 20595.34 20998.29 15290.09 28099.31 20698.56 7891.80 20596.35 16098.00 19889.38 17098.28 21292.46 21369.22 35297.64 216
LTVRE_ROB88.28 1890.29 26889.05 27494.02 26095.08 27790.15 27997.19 31797.43 23884.91 31983.99 31797.06 22674.00 30198.28 21284.08 30587.71 25593.62 307
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
test-LLR96.47 11696.04 11197.78 13397.02 22295.44 15799.96 2698.21 16494.07 12295.55 17496.38 24893.90 8698.27 21490.42 24698.83 12099.64 113
test-mter96.39 12195.93 12397.78 13397.02 22295.44 15799.96 2698.21 16491.81 20495.55 17496.38 24895.17 4898.27 21490.42 24698.83 12099.64 113
hse-mvs294.38 17694.08 17095.31 21198.27 15590.02 28299.29 21198.56 7895.90 6298.77 8998.00 19890.89 15398.26 21697.80 11169.20 35397.64 216
HyFIR lowres test96.66 11296.43 10497.36 15699.05 10693.91 19699.70 14899.80 390.54 23496.26 16198.08 19592.15 13098.23 21796.84 14095.46 19399.93 71
CHOSEN 280x42099.01 1399.03 1098.95 7299.38 9598.87 3098.46 28499.42 2197.03 3099.02 7999.09 13299.35 198.21 21899.73 2899.78 7999.77 95
ADS-MVSNet94.79 16294.02 17197.11 16397.87 17693.79 19794.24 34698.16 17390.07 24296.43 15694.48 31690.29 16198.19 21987.44 27897.23 15799.36 160
DROMVSNet97.38 8597.24 7897.80 13097.41 20495.64 15299.99 397.06 27594.59 9899.63 3799.32 11589.20 17698.14 22098.76 6899.23 11099.62 118
test_post63.35 37494.43 6598.13 221
LF4IMVS89.25 28788.85 27690.45 31492.81 32281.19 34798.12 30094.79 34991.44 21486.29 30497.11 22265.30 33598.11 22288.53 26785.25 27292.07 332
IS-MVSNet96.29 12695.90 12697.45 14898.13 16594.80 17799.08 22897.61 21992.02 19895.54 17698.96 14790.64 15698.08 22393.73 19797.41 15599.47 147
DeepMVS_CXcopyleft82.92 34195.98 25458.66 37196.01 32892.72 16878.34 34295.51 27758.29 35098.08 22382.57 31585.29 27192.03 334
PatchmatchNetpermissive95.94 13595.45 13697.39 15397.83 17994.41 18596.05 33898.40 13292.86 16097.09 13995.28 29394.21 7898.07 22589.26 25998.11 13999.70 102
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
GeoE94.36 17993.48 18696.99 16497.29 21393.54 20499.96 2696.72 30888.35 27493.43 19998.94 15482.05 23298.05 22688.12 27396.48 17499.37 159
MS-PatchMatch90.65 25790.30 24791.71 30494.22 29185.50 32498.24 29597.70 20988.67 26786.42 30296.37 25067.82 32498.03 22783.62 31099.62 8891.60 337
Patchmatch-test92.65 21991.50 22996.10 19296.85 23190.49 27291.50 35997.19 25982.76 33390.23 23195.59 27295.02 5498.00 22877.41 33996.98 16699.82 87
tpm295.47 14995.18 14696.35 18696.91 22691.70 25296.96 32497.93 19288.04 27898.44 10595.40 28293.32 9897.97 22994.00 18695.61 19199.38 157
JIA-IIPM91.76 23990.70 23994.94 22296.11 24887.51 31193.16 35398.13 17775.79 35297.58 12977.68 36692.84 11297.97 22988.47 26896.54 17199.33 165
VPA-MVSNet92.70 21691.55 22896.16 19095.09 27696.20 13398.88 25499.00 3491.02 22791.82 21695.29 29276.05 28697.96 23195.62 15581.19 30094.30 253
patchmatchnet-post91.70 34195.12 4997.95 232
SCA94.69 16693.81 17797.33 15897.10 21794.44 18298.86 25898.32 15093.30 15196.17 16495.59 27276.48 28097.95 23291.06 23197.43 15299.59 124
GG-mvs-BLEND98.54 9798.21 15898.01 6693.87 35098.52 9097.92 12297.92 20499.02 297.94 23498.17 9399.58 9399.67 107
Effi-MVS+-dtu94.53 17395.30 14292.22 29797.77 18382.54 33799.59 16697.06 27594.92 8795.29 17995.37 28685.81 20597.89 23594.80 17097.07 16196.23 227
XXY-MVS91.82 23290.46 24295.88 19593.91 29695.40 16098.87 25797.69 21088.63 26987.87 28197.08 22474.38 29997.89 23591.66 22384.07 28394.35 251
D2MVS92.76 21392.59 20893.27 28395.13 27589.54 29099.69 14999.38 2292.26 19087.59 28494.61 31385.05 21497.79 23791.59 22488.01 25092.47 329
gg-mvs-nofinetune93.51 19891.86 22398.47 10297.72 19097.96 7092.62 35498.51 9374.70 35697.33 13569.59 36998.91 397.79 23797.77 11699.56 9499.67 107
test_fmvs289.47 28289.70 25988.77 32894.54 28675.74 35699.83 11394.70 35294.71 9491.08 22296.82 23954.46 35497.78 23992.87 21088.27 24692.80 324
test_post195.78 34359.23 37793.20 10497.74 24091.06 231
nrg03093.51 19892.53 20996.45 18094.36 28897.20 9699.81 11797.16 26491.60 20889.86 23997.46 21286.37 20197.68 24195.88 15280.31 31294.46 237
Fast-Effi-MVS+-dtu93.72 19493.86 17693.29 28297.06 21986.16 31999.80 12196.83 30092.66 17392.58 21297.83 20581.39 23997.67 24289.75 25696.87 16896.05 229
GA-MVS93.83 18792.84 20096.80 16995.73 26393.57 20299.88 8597.24 25792.57 18092.92 20696.66 24078.73 26597.67 24287.75 27694.06 20899.17 178
UniMVSNet_ETH3D90.06 27488.58 28194.49 24394.67 28488.09 30797.81 30997.57 22483.91 32588.44 27297.41 21457.44 35197.62 24491.41 22588.59 24097.77 214
Anonymous2023121189.86 27688.44 28394.13 25698.93 11790.68 26798.54 28198.26 16076.28 34986.73 29595.54 27470.60 31497.56 24590.82 23880.27 31394.15 268
VPNet91.81 23390.46 24295.85 19794.74 28295.54 15598.98 24398.59 7392.14 19290.77 22797.44 21368.73 32097.54 24694.89 16877.89 32594.46 237
MVS-HIRNet86.22 30183.19 31395.31 21196.71 24090.29 27692.12 35697.33 24962.85 36386.82 29470.37 36869.37 31797.49 24775.12 34697.99 14498.15 206
Vis-MVSNet (Re-imp)96.32 12395.98 11597.35 15797.93 17394.82 17699.47 18698.15 17591.83 20295.09 18199.11 13191.37 14197.47 24893.47 20097.43 15299.74 98
tfpnnormal89.29 28587.61 29294.34 25194.35 28994.13 18998.95 24798.94 3783.94 32384.47 31595.51 27774.84 29597.39 24977.05 34280.41 31091.48 339
jajsoiax91.92 23191.18 23494.15 25491.35 33890.95 26399.00 24297.42 24092.61 17687.38 28997.08 22472.46 30597.36 25094.53 17888.77 23594.13 272
EPNet_dtu95.71 14295.39 13896.66 17598.92 11993.41 20999.57 16998.90 4296.19 5997.52 13098.56 18092.65 11697.36 25077.89 33798.33 13099.20 177
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
iter_conf_final96.01 13395.93 12396.28 18798.38 14897.03 10399.87 8897.03 27894.05 12692.61 21197.98 20198.01 597.34 25297.02 13388.39 24494.47 236
cl2293.77 19193.25 19595.33 21099.49 9094.43 18399.61 16498.09 17890.38 23689.16 26195.61 27090.56 15797.34 25291.93 21984.45 27994.21 260
iter_conf0596.07 13095.95 12196.44 18298.43 14697.52 8399.91 7196.85 29894.16 11792.49 21397.98 20198.20 497.34 25297.26 12688.29 24594.45 242
V4291.28 24490.12 25494.74 22993.42 30693.46 20699.68 15197.02 27987.36 28589.85 24195.05 29781.31 24197.34 25287.34 28180.07 31493.40 311
mvs_tets91.81 23391.08 23594.00 26291.63 33690.58 27098.67 27597.43 23892.43 18687.37 29097.05 22771.76 30797.32 25694.75 17288.68 23794.11 273
EI-MVSNet93.73 19393.40 19194.74 22996.80 23492.69 22599.06 23397.67 21288.96 25991.39 21999.02 13688.75 18197.30 25791.07 23087.85 25294.22 258
MVSTER95.53 14895.22 14496.45 18098.56 13797.72 7499.91 7197.67 21292.38 18791.39 21997.14 22197.24 1897.30 25794.80 17087.85 25294.34 252
TAMVS95.85 13795.58 13496.65 17697.07 21893.50 20599.17 22197.82 20591.39 21995.02 18298.01 19792.20 12897.30 25793.75 19695.83 18699.14 182
PS-MVSNAJss93.64 19693.31 19394.61 23492.11 32992.19 23699.12 22397.38 24492.51 18488.45 27196.99 23091.20 14397.29 26094.36 18087.71 25594.36 248
OurMVSNet-221017-089.81 27789.48 26790.83 31091.64 33581.21 34698.17 29995.38 34291.48 21285.65 31097.31 21772.66 30497.29 26088.15 27184.83 27693.97 286
MVP-Stereo90.93 25090.45 24492.37 29691.25 34088.76 29598.05 30496.17 32587.27 28784.04 31695.30 28978.46 26897.27 26283.78 30999.70 8491.09 340
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
mvsmamba94.10 18393.72 17895.25 21393.57 30194.13 18999.67 15396.45 31993.63 14391.34 22197.77 20686.29 20297.22 26396.65 14288.10 24994.40 244
v890.54 26189.17 27094.66 23293.43 30593.40 21099.20 21896.94 29185.76 30687.56 28594.51 31481.96 23497.19 26484.94 30178.25 32293.38 313
mvs_anonymous95.65 14695.03 15197.53 14498.19 16095.74 14799.33 20397.49 23490.87 22990.47 22997.10 22388.23 18497.16 26595.92 15197.66 14999.68 105
v2v48291.30 24290.07 25595.01 21993.13 31093.79 19799.77 12797.02 27988.05 27789.25 25595.37 28680.73 24797.15 26687.28 28280.04 31594.09 275
UniMVSNet (Re)93.07 20892.13 21495.88 19594.84 28096.24 13299.88 8598.98 3592.49 18589.25 25595.40 28287.09 19497.14 26793.13 20778.16 32394.26 255
v7n89.65 28088.29 28693.72 27292.22 32890.56 27199.07 23297.10 27085.42 31486.73 29594.72 30780.06 25597.13 26881.14 32378.12 32493.49 309
CDS-MVSNet96.34 12296.07 11097.13 16197.37 20694.96 17299.53 17697.91 19691.55 21095.37 17898.32 19195.05 5397.13 26893.80 19395.75 18999.30 169
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
EG-PatchMatch MVS85.35 30783.81 30989.99 31890.39 34581.89 34298.21 29896.09 32781.78 33774.73 35493.72 32551.56 35997.12 27079.16 33388.61 23890.96 342
v14419290.79 25589.52 26494.59 23693.11 31392.77 22099.56 17196.99 28286.38 29989.82 24294.95 30480.50 25297.10 27183.98 30780.41 31093.90 291
FIs94.10 18393.43 18796.11 19194.70 28396.82 11199.58 16798.93 4192.54 18189.34 25397.31 21787.62 18897.10 27194.22 18586.58 26394.40 244
v119290.62 26089.25 26994.72 23193.13 31093.07 21499.50 18197.02 27986.33 30089.56 24995.01 29979.22 26097.09 27382.34 31781.16 30194.01 281
miper_enhance_ethall94.36 17993.98 17295.49 20298.68 13495.24 16599.73 14397.29 25393.28 15289.86 23995.97 26194.37 7197.05 27492.20 21684.45 27994.19 261
v114491.09 24889.83 25694.87 22493.25 30993.69 20199.62 16396.98 28486.83 29589.64 24794.99 30280.94 24497.05 27485.08 30081.16 30193.87 294
bld_raw_dy_0_6492.74 21492.03 21894.87 22493.09 31493.46 20699.12 22395.41 34092.84 16390.44 23097.54 21078.08 27097.04 27693.94 18787.77 25494.11 273
v14890.70 25689.63 26093.92 26592.97 31790.97 26299.75 13596.89 29587.51 28288.27 27795.01 29981.67 23597.04 27687.40 28077.17 33393.75 301
pm-mvs189.36 28487.81 29194.01 26193.40 30791.93 24298.62 27896.48 31886.25 30183.86 31896.14 25673.68 30297.04 27686.16 29375.73 34093.04 320
v192192090.46 26289.12 27194.50 24292.96 31892.46 23199.49 18396.98 28486.10 30289.61 24895.30 28978.55 26797.03 27982.17 31880.89 30894.01 281
v124090.20 27088.79 27894.44 24693.05 31692.27 23599.38 19796.92 29385.89 30489.36 25294.87 30677.89 27197.03 27980.66 32581.08 30494.01 281
v1090.25 26988.82 27794.57 23893.53 30393.43 20899.08 22896.87 29785.00 31687.34 29194.51 31480.93 24597.02 28182.85 31479.23 31793.26 315
lessismore_v090.53 31190.58 34480.90 34995.80 33177.01 34795.84 26266.15 33196.95 28283.03 31375.05 34193.74 304
OpenMVS_ROBcopyleft79.82 2083.77 31681.68 31990.03 31788.30 35482.82 33498.46 28495.22 34573.92 35876.00 35191.29 34255.00 35396.94 28368.40 35788.51 24290.34 346
RRT_MVS93.14 20592.92 19993.78 27093.31 30890.04 28199.66 15497.69 21092.53 18288.91 26597.76 20784.36 21896.93 28495.10 16086.99 26194.37 247
anonymousdsp91.79 23890.92 23794.41 24990.76 34392.93 21998.93 24997.17 26289.08 25287.46 28895.30 28978.43 26996.92 28592.38 21488.73 23693.39 312
MVSFormer96.94 9796.60 9897.95 12597.28 21497.70 7799.55 17397.27 25591.17 22199.43 5799.54 9990.92 15096.89 28694.67 17599.62 8899.25 174
test_djsdf92.83 21292.29 21394.47 24491.90 33292.46 23199.55 17397.27 25591.17 22189.96 23596.07 26081.10 24296.89 28694.67 17588.91 23194.05 278
pmmvs685.69 30283.84 30891.26 30790.00 34984.41 33097.82 30896.15 32675.86 35181.29 33095.39 28461.21 34696.87 28883.52 31273.29 34392.50 328
tpm93.70 19593.41 19094.58 23795.36 27487.41 31297.01 32296.90 29490.85 23096.72 14994.14 32190.40 15996.84 28990.75 24088.54 24199.51 142
FC-MVSNet-test93.81 18993.15 19695.80 19994.30 29096.20 13399.42 19198.89 4392.33 18989.03 26397.27 21987.39 19196.83 29093.20 20386.48 26494.36 248
pmmvs492.10 22991.07 23695.18 21592.82 32194.96 17299.48 18596.83 30087.45 28488.66 27096.56 24683.78 22396.83 29089.29 25884.77 27793.75 301
WR-MVS92.31 22591.25 23395.48 20594.45 28795.29 16299.60 16598.68 6090.10 24188.07 27996.89 23280.68 24896.80 29293.14 20679.67 31694.36 248
miper_ehance_all_eth93.16 20492.60 20594.82 22897.57 19793.56 20399.50 18197.07 27488.75 26588.85 26695.52 27690.97 14996.74 29390.77 23984.45 27994.17 262
UniMVSNet_NR-MVSNet92.95 21092.11 21595.49 20294.61 28595.28 16399.83 11399.08 3191.49 21189.21 25896.86 23487.14 19396.73 29493.20 20377.52 32894.46 237
DU-MVS92.46 22291.45 23195.49 20294.05 29395.28 16399.81 11798.74 5492.25 19189.21 25896.64 24281.66 23696.73 29493.20 20377.52 32894.46 237
eth_miper_zixun_eth92.41 22391.93 22093.84 26997.28 21490.68 26798.83 26196.97 28688.57 27089.19 26095.73 26789.24 17596.69 29689.97 25481.55 29794.15 268
SixPastTwentyTwo88.73 28988.01 29090.88 30891.85 33382.24 33998.22 29795.18 34788.97 25882.26 32496.89 23271.75 30896.67 29784.00 30682.98 28793.72 305
cl____92.31 22591.58 22694.52 24097.33 21092.77 22099.57 16996.78 30586.97 29387.56 28595.51 27789.43 16996.62 29888.60 26482.44 29194.16 267
WR-MVS_H91.30 24290.35 24594.15 25494.17 29292.62 22999.17 22198.94 3788.87 26386.48 30194.46 31884.36 21896.61 29988.19 27078.51 32193.21 317
NR-MVSNet91.56 24190.22 24995.60 20094.05 29395.76 14698.25 29498.70 5791.16 22380.78 33396.64 24283.23 22896.57 30091.41 22577.73 32794.46 237
Baseline_NR-MVSNet90.33 26689.51 26592.81 29292.84 31989.95 28499.77 12793.94 35784.69 32189.04 26295.66 26981.66 23696.52 30190.99 23376.98 33491.97 335
DIV-MVS_self_test92.32 22491.60 22594.47 24497.31 21192.74 22299.58 16796.75 30686.99 29287.64 28395.54 27489.55 16896.50 30288.58 26582.44 29194.17 262
pmmvs590.17 27289.09 27293.40 28092.10 33089.77 28799.74 13895.58 33785.88 30587.24 29295.74 26573.41 30396.48 30388.54 26683.56 28693.95 287
c3_l92.53 22091.87 22294.52 24097.40 20592.99 21899.40 19296.93 29287.86 27988.69 26995.44 28089.95 16496.44 30490.45 24580.69 30994.14 271
TransMVSNet (Re)87.25 29785.28 30393.16 28593.56 30291.03 26198.54 28194.05 35683.69 32781.09 33196.16 25575.32 28996.40 30576.69 34368.41 35492.06 333
CP-MVSNet91.23 24690.22 24994.26 25293.96 29592.39 23399.09 22698.57 7688.95 26086.42 30296.57 24579.19 26196.37 30690.29 24978.95 31894.02 279
ambc83.23 34077.17 37062.61 36587.38 36694.55 35476.72 34986.65 35830.16 36796.36 30784.85 30269.86 34890.73 344
IterMVS-LS92.69 21792.11 21594.43 24896.80 23492.74 22299.45 18996.89 29588.98 25789.65 24695.38 28588.77 18096.34 30890.98 23482.04 29494.22 258
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
test_vis3_rt68.82 33066.69 33575.21 34876.24 37160.41 36996.44 33068.71 38175.13 35550.54 37269.52 37016.42 38096.32 30980.27 32766.92 35868.89 368
PS-CasMVS90.63 25989.51 26593.99 26393.83 29791.70 25298.98 24398.52 9088.48 27186.15 30696.53 24775.46 28896.31 31088.83 26278.86 32093.95 287
MVS_030489.28 28688.31 28592.21 29897.05 22086.53 31897.76 31099.57 1385.58 31193.86 19792.71 33351.04 36096.30 31184.49 30392.72 21993.79 299
FMVSNet392.69 21791.58 22695.99 19398.29 15297.42 9199.26 21497.62 21689.80 24789.68 24395.32 28881.62 23896.27 31287.01 28785.65 26894.29 254
test_040285.58 30383.94 30790.50 31293.81 29885.04 32698.55 27995.20 34676.01 35079.72 33895.13 29564.15 33896.26 31366.04 36286.88 26290.21 348
FMVSNet291.02 24989.56 26295.41 20797.53 19895.74 14798.98 24397.41 24287.05 28988.43 27495.00 30171.34 31096.24 31485.12 29985.21 27394.25 257
TranMVSNet+NR-MVSNet91.68 24090.61 24194.87 22493.69 30093.98 19499.69 14998.65 6491.03 22688.44 27296.83 23880.05 25696.18 31590.26 25076.89 33694.45 242
APD_test181.15 32180.92 32281.86 34292.45 32559.76 37096.04 33993.61 36073.29 35977.06 34696.64 24244.28 36496.16 31672.35 35082.52 28989.67 352
GBi-Net90.88 25289.82 25794.08 25797.53 19891.97 23998.43 28696.95 28787.05 28989.68 24394.72 30771.34 31096.11 31787.01 28785.65 26894.17 262
test190.88 25289.82 25794.08 25797.53 19891.97 23998.43 28696.95 28787.05 28989.68 24394.72 30771.34 31096.11 31787.01 28785.65 26894.17 262
FMVSNet188.50 29086.64 29694.08 25795.62 27191.97 23998.43 28696.95 28783.00 33086.08 30794.72 30759.09 34996.11 31781.82 32184.07 28394.17 262
our_test_390.39 26389.48 26793.12 28692.40 32689.57 28999.33 20396.35 32287.84 28085.30 31194.99 30284.14 22196.09 32080.38 32684.56 27893.71 306
PatchT90.38 26488.75 27995.25 21395.99 25290.16 27891.22 36197.54 22776.80 34897.26 13686.01 36091.88 13596.07 32166.16 36195.91 18499.51 142
CR-MVSNet93.45 20192.62 20495.94 19496.29 24392.66 22692.01 35796.23 32392.62 17596.94 14193.31 32991.04 14796.03 32279.23 33095.96 18299.13 183
Patchmtry89.70 27988.49 28293.33 28196.24 24689.94 28691.37 36096.23 32378.22 34687.69 28293.31 32991.04 14796.03 32280.18 32982.10 29394.02 279
ppachtmachnet_test89.58 28188.35 28493.25 28492.40 32690.44 27499.33 20396.73 30785.49 31285.90 30995.77 26481.09 24396.00 32476.00 34582.49 29093.30 314
PEN-MVS90.19 27189.06 27393.57 27893.06 31590.90 26499.06 23398.47 9988.11 27685.91 30896.30 25176.67 27795.94 32587.07 28476.91 33593.89 292
miper_lstm_enhance91.81 23391.39 23293.06 28997.34 20889.18 29399.38 19796.79 30486.70 29687.47 28795.22 29490.00 16395.86 32688.26 26981.37 29994.15 268
N_pmnet80.06 32580.78 32377.89 34591.94 33145.28 37998.80 26556.82 38278.10 34780.08 33693.33 32777.03 27395.76 32768.14 35882.81 28892.64 325
mvsany_test382.12 31981.14 32185.06 33781.87 36570.41 36097.09 32092.14 36491.27 22077.84 34488.73 35039.31 36595.49 32890.75 24071.24 34689.29 356
LCM-MVSNet-Re92.31 22592.60 20591.43 30597.53 19879.27 35499.02 24191.83 36692.07 19480.31 33494.38 31983.50 22595.48 32997.22 12897.58 15099.54 136
K. test v388.05 29387.24 29590.47 31391.82 33482.23 34098.96 24697.42 24089.05 25376.93 34895.60 27168.49 32195.42 33085.87 29681.01 30693.75 301
ADS-MVSNet293.80 19093.88 17593.55 27997.87 17685.94 32194.24 34696.84 29990.07 24296.43 15694.48 31690.29 16195.37 33187.44 27897.23 15799.36 160
ET-MVSNet_ETH3D94.37 17793.28 19497.64 14098.30 15197.99 6799.99 397.61 21994.35 10871.57 35899.45 10696.23 3195.34 33296.91 13985.14 27499.59 124
CVMVSNet94.68 16894.94 15493.89 26896.80 23486.92 31699.06 23398.98 3594.45 10194.23 19299.02 13685.60 20695.31 33390.91 23695.39 19599.43 153
DTE-MVSNet89.40 28388.24 28792.88 29192.66 32389.95 28499.10 22598.22 16387.29 28685.12 31396.22 25376.27 28395.30 33483.56 31175.74 33993.41 310
IterMVS90.91 25190.17 25293.12 28696.78 23790.42 27598.89 25297.05 27789.03 25486.49 30095.42 28176.59 27995.02 33587.22 28384.09 28293.93 289
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT90.85 25490.16 25392.93 29096.72 23989.96 28398.89 25296.99 28288.95 26086.63 29795.67 26876.48 28095.00 33687.04 28584.04 28593.84 296
test0.0.03 193.86 18693.61 17994.64 23395.02 27992.18 23799.93 6498.58 7494.07 12287.96 28098.50 18193.90 8694.96 33781.33 32293.17 21596.78 222
UnsupCasMVSNet_bld79.97 32777.03 33188.78 32685.62 35981.98 34193.66 35197.35 24675.51 35470.79 35983.05 36348.70 36194.91 33878.31 33660.29 36689.46 355
MIMVSNet90.30 26788.67 28095.17 21696.45 24291.64 25492.39 35597.15 26585.99 30390.50 22893.19 33166.95 32794.86 33982.01 31993.43 21299.01 188
new_pmnet84.49 31382.92 31589.21 32290.03 34882.60 33696.89 32695.62 33680.59 34075.77 35389.17 34865.04 33694.79 34072.12 35181.02 30590.23 347
testgi89.01 28888.04 28991.90 30293.49 30484.89 32899.73 14395.66 33593.89 13685.14 31298.17 19359.68 34894.66 34177.73 33888.88 23296.16 228
KD-MVS_2432*160088.00 29486.10 29893.70 27596.91 22694.04 19197.17 31897.12 26884.93 31781.96 32592.41 33692.48 12294.51 34279.23 33052.68 36892.56 326
miper_refine_blended88.00 29486.10 29893.70 27596.91 22694.04 19197.17 31897.12 26884.93 31781.96 32592.41 33692.48 12294.51 34279.23 33052.68 36892.56 326
Anonymous2024052185.15 30883.81 30989.16 32388.32 35382.69 33598.80 26595.74 33279.72 34281.53 32990.99 34365.38 33494.16 34472.69 34981.11 30390.63 345
pmmvs-eth3d84.03 31581.97 31890.20 31584.15 36187.09 31498.10 30294.73 35183.05 32974.10 35687.77 35565.56 33394.01 34581.08 32469.24 35189.49 354
UnsupCasMVSNet_eth85.52 30483.99 30590.10 31689.36 35183.51 33396.65 32797.99 18589.14 25175.89 35293.83 32363.25 34093.92 34681.92 32067.90 35692.88 322
PM-MVS80.47 32378.88 32885.26 33683.79 36372.22 35995.89 34291.08 36785.71 30976.56 35088.30 35136.64 36693.90 34782.39 31669.57 35089.66 353
MDA-MVSNet_test_wron85.51 30583.32 31292.10 29990.96 34188.58 30199.20 21896.52 31679.70 34357.12 36892.69 33479.11 26293.86 34877.10 34177.46 33093.86 295
YYNet185.50 30683.33 31192.00 30090.89 34288.38 30599.22 21796.55 31579.60 34457.26 36792.72 33279.09 26393.78 34977.25 34077.37 33193.84 296
Patchmatch-RL test86.90 29885.98 30189.67 31984.45 36075.59 35789.71 36492.43 36386.89 29477.83 34590.94 34494.22 7693.63 35087.75 27669.61 34999.79 91
MDA-MVSNet-bldmvs84.09 31481.52 32091.81 30391.32 33988.00 30998.67 27595.92 33080.22 34155.60 36993.32 32868.29 32393.60 35173.76 34776.61 33793.82 298
Anonymous2023120686.32 30085.42 30289.02 32489.11 35280.53 35299.05 23795.28 34385.43 31382.82 32293.92 32274.40 29893.44 35266.99 35981.83 29693.08 319
EU-MVSNet90.14 27390.34 24689.54 32092.55 32481.06 34898.69 27398.04 18391.41 21886.59 29896.84 23780.83 24693.31 35386.20 29281.91 29594.26 255
EGC-MVSNET69.38 32963.76 33986.26 33590.32 34681.66 34596.24 33593.85 3580.99 3793.22 38092.33 33952.44 35692.92 35459.53 36784.90 27584.21 362
test_f78.40 32877.59 33080.81 34380.82 36662.48 36796.96 32493.08 36283.44 32874.57 35584.57 36227.95 37192.63 35584.15 30472.79 34587.32 361
KD-MVS_self_test83.59 31782.06 31788.20 33186.93 35680.70 35097.21 31696.38 32082.87 33182.49 32388.97 34967.63 32592.32 35673.75 34862.30 36491.58 338
test_method80.79 32279.70 32684.08 33892.83 32067.06 36399.51 17995.42 33954.34 36781.07 33293.53 32644.48 36392.22 35778.90 33477.23 33292.94 321
DSMNet-mixed88.28 29288.24 28788.42 33089.64 35075.38 35898.06 30389.86 36985.59 31088.20 27892.14 34076.15 28591.95 35878.46 33596.05 18097.92 210
CL-MVSNet_self_test84.50 31283.15 31488.53 32986.00 35881.79 34398.82 26297.35 24685.12 31583.62 32090.91 34576.66 27891.40 35969.53 35560.36 36592.40 330
FMVSNet588.32 29187.47 29390.88 30896.90 22988.39 30497.28 31595.68 33482.60 33484.67 31492.40 33879.83 25791.16 36076.39 34481.51 29893.09 318
pmmvs380.27 32477.77 32987.76 33280.32 36782.43 33898.23 29691.97 36572.74 36078.75 34087.97 35457.30 35290.99 36170.31 35362.37 36389.87 350
new-patchmatchnet81.19 32079.34 32786.76 33482.86 36480.36 35397.92 30695.27 34482.09 33672.02 35786.87 35762.81 34290.74 36271.10 35263.08 36289.19 357
MIMVSNet182.58 31880.51 32488.78 32686.68 35784.20 33196.65 32795.41 34078.75 34578.59 34192.44 33551.88 35889.76 36365.26 36378.95 31892.38 331
test20.0384.72 31183.99 30586.91 33388.19 35580.62 35198.88 25495.94 32988.36 27378.87 33994.62 31268.75 31989.11 36466.52 36075.82 33891.00 341
test_fmvs379.99 32680.17 32579.45 34484.02 36262.83 36499.05 23793.49 36188.29 27580.06 33786.65 35828.09 37088.00 36588.63 26373.27 34487.54 360
testf168.38 33266.92 33372.78 35078.80 36850.36 37590.95 36287.35 37455.47 36558.95 36488.14 35220.64 37587.60 36657.28 36864.69 35980.39 364
APD_test268.38 33266.92 33372.78 35078.80 36850.36 37590.95 36287.35 37455.47 36558.95 36488.14 35220.64 37587.60 36657.28 36864.69 35980.39 364
Gipumacopyleft66.95 33665.00 33672.79 34991.52 33767.96 36266.16 37195.15 34847.89 36958.54 36667.99 37129.74 36887.54 36850.20 37177.83 32662.87 371
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
LCM-MVSNet67.77 33464.73 33776.87 34662.95 37856.25 37389.37 36593.74 35944.53 37061.99 36280.74 36420.42 37786.53 36969.37 35659.50 36787.84 358
PMMVS267.15 33564.15 33876.14 34770.56 37562.07 36893.89 34987.52 37358.09 36460.02 36378.32 36522.38 37484.54 37059.56 36647.03 37081.80 363
FPMVS68.72 33168.72 33268.71 35365.95 37644.27 38195.97 34194.74 35051.13 36853.26 37090.50 34625.11 37383.00 37160.80 36580.97 30778.87 366
PMVScopyleft49.05 2353.75 33951.34 34360.97 35640.80 38234.68 38274.82 37089.62 37137.55 37228.67 37872.12 3677.09 38281.63 37243.17 37468.21 35566.59 370
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
tmp_tt65.23 33762.94 34072.13 35244.90 38150.03 37781.05 36889.42 37238.45 37148.51 37399.90 1854.09 35578.70 37391.84 22218.26 37587.64 359
MVEpermissive53.74 2251.54 34147.86 34562.60 35559.56 37950.93 37479.41 36977.69 37835.69 37436.27 37661.76 3755.79 38469.63 37437.97 37536.61 37167.24 369
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
ANet_high56.10 33852.24 34167.66 35449.27 38056.82 37283.94 36782.02 37770.47 36133.28 37764.54 37217.23 37969.16 37545.59 37323.85 37477.02 367
E-PMN52.30 34052.18 34252.67 35771.51 37345.40 37893.62 35276.60 37936.01 37343.50 37464.13 37327.11 37267.31 37631.06 37626.06 37245.30 375
EMVS51.44 34251.22 34452.11 35870.71 37444.97 38094.04 34875.66 38035.34 37542.40 37561.56 37628.93 36965.87 37727.64 37724.73 37345.49 374
wuyk23d20.37 34620.84 34918.99 36165.34 37727.73 38350.43 3727.67 3859.50 3788.01 3796.34 3796.13 38326.24 37823.40 37810.69 3772.99 376
test12337.68 34439.14 34733.31 35919.94 38324.83 38498.36 2919.75 38415.53 37751.31 37187.14 35619.62 37817.74 37947.10 3723.47 37857.36 372
testmvs40.60 34344.45 34629.05 36019.49 38414.11 38599.68 15118.47 38320.74 37664.59 36198.48 18510.95 38117.09 38056.66 37011.01 37655.94 373
test_blank0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.02 3800.00 3850.00 3810.00 3790.00 3790.00 377
uanet_test0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3810.00 3850.00 3810.00 3790.00 3790.00 377
DCPMVS0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3810.00 3850.00 3810.00 3790.00 3790.00 377
cdsmvs_eth3d_5k23.43 34531.24 3480.00 3620.00 3850.00 3860.00 37398.09 1780.00 3800.00 38199.67 8783.37 2260.00 3810.00 3790.00 3790.00 377
pcd_1.5k_mvsjas7.60 34810.13 3510.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 38191.20 1430.00 3810.00 3790.00 3790.00 377
sosnet-low-res0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3810.00 3850.00 3810.00 3790.00 3790.00 377
sosnet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3810.00 3850.00 3810.00 3790.00 3790.00 377
uncertanet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3810.00 3850.00 3810.00 3790.00 3790.00 377
Regformer0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3810.00 3850.00 3810.00 3790.00 3790.00 377
ab-mvs-re8.28 34711.04 3500.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 38199.40 1090.00 3850.00 3810.00 3790.00 3790.00 377
uanet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3810.00 3850.00 3810.00 3790.00 3790.00 377
FOURS199.92 3197.66 7999.95 4398.36 14395.58 7199.52 51
test_one_060199.94 1399.30 1198.41 12896.63 4499.75 2699.93 1197.49 10
eth-test20.00 385
eth-test0.00 385
RE-MVS-def98.13 4599.79 6296.37 12599.76 13298.31 15294.43 10399.40 6199.75 6792.95 10998.90 6099.92 6399.97 55
IU-MVS99.93 2499.31 998.41 12897.71 999.84 10100.00 1100.00 1100.00 1
save fliter99.82 5898.79 3699.96 2698.40 13297.66 11
test072699.93 2499.29 1499.96 2698.42 12497.28 2199.86 599.94 497.22 19
GSMVS99.59 124
test_part299.89 4599.25 1799.49 53
sam_mvs194.72 6199.59 124
sam_mvs94.25 75
MTGPAbinary98.28 157
MTMP99.87 8896.49 317
test9_res99.71 2999.99 21100.00 1
agg_prior299.48 35100.00 1100.00 1
test_prior498.05 6499.94 58
test_prior299.95 4395.78 6599.73 2899.76 6296.00 3399.78 23100.00 1
新几何299.40 192
旧先验199.76 6697.52 8398.64 6699.85 3095.63 4199.94 5499.99 23
原ACMM299.90 76
test22299.55 8597.41 9299.34 20298.55 8491.86 20199.27 7099.83 4393.84 8899.95 4999.99 23
segment_acmp96.68 26
testdata199.28 21296.35 56
plane_prior795.71 26691.59 256
plane_prior695.76 26191.72 25180.47 253
plane_prior498.59 176
plane_prior391.64 25496.63 4493.01 204
plane_prior299.84 10796.38 52
plane_prior195.73 263
plane_prior91.74 24899.86 10096.76 4089.59 224
n20.00 386
nn0.00 386
door-mid89.69 370
test1198.44 105
door90.31 368
HQP5-MVS91.85 244
HQP-NCC95.78 25799.87 8896.82 3693.37 200
ACMP_Plane95.78 25799.87 8896.82 3693.37 200
BP-MVS97.92 108
HQP3-MVS97.89 19789.60 222
HQP2-MVS80.65 249
NP-MVS95.77 26091.79 24698.65 172
MDTV_nov1_ep13_2view96.26 12896.11 33791.89 20098.06 11894.40 6794.30 18299.67 107
ACMMP++_ref87.04 260
ACMMP++88.23 247
Test By Simon92.82 114