This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort by
mamv495.37 294.51 297.96 196.31 1098.41 191.05 4697.23 295.32 299.01 297.26 680.16 13398.99 195.15 199.14 296.47 30
MM87.64 8587.15 9089.09 6789.51 17476.39 11888.68 9686.76 23484.54 4683.58 24493.78 10873.36 21096.48 287.98 1396.21 11294.41 88
APDe-MVScopyleft91.22 2591.92 1589.14 6692.97 8278.04 9392.84 1694.14 3683.33 5893.90 2895.73 3188.77 2796.41 387.60 2197.98 4592.98 154
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
MSP-MVS89.08 6688.16 7891.83 2095.76 1886.14 2592.75 1793.90 4878.43 11689.16 12192.25 15972.03 22896.36 488.21 1190.93 26492.98 154
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DPE-MVScopyleft90.53 3691.08 3788.88 6993.38 7178.65 8789.15 8794.05 4184.68 4593.90 2894.11 9188.13 3696.30 584.51 6697.81 5591.70 210
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SteuartSystems-ACMMP91.16 2791.36 2890.55 4193.91 6080.97 7091.49 4093.48 6382.82 6592.60 5793.97 9688.19 3396.29 687.61 2098.20 3494.39 89
Skip Steuart: Steuart Systems R&D Blog.
ZD-MVS92.22 10380.48 7191.85 12271.22 21490.38 9292.98 13186.06 6496.11 781.99 9596.75 92
SMA-MVScopyleft90.31 3890.48 5089.83 5495.31 3079.52 8190.98 4793.24 7475.37 15592.84 5195.28 4485.58 6796.09 887.92 1497.76 5793.88 110
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MSC_two_6792asdad88.81 7191.55 12977.99 9491.01 14796.05 987.45 2398.17 3592.40 179
No_MVS88.81 7191.55 12977.99 9491.01 14796.05 987.45 2398.17 3592.40 179
MVS_030485.37 11784.58 14287.75 8885.28 27373.36 13686.54 13385.71 24977.56 12981.78 27892.47 15070.29 23696.02 1185.59 5395.96 12593.87 111
DTE-MVSNet89.98 4791.91 1784.21 16096.51 757.84 31988.93 9092.84 9491.92 496.16 496.23 2186.95 5195.99 1279.05 12698.57 1598.80 6
PGM-MVS91.20 2690.95 4391.93 1595.67 2385.85 3190.00 6293.90 4880.32 8991.74 7194.41 7588.17 3495.98 1386.37 4197.99 4393.96 106
APD-MVScopyleft89.54 5689.63 5889.26 6492.57 9181.34 6890.19 6193.08 8280.87 8591.13 8093.19 12286.22 6295.97 1482.23 9297.18 8190.45 244
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
TSAR-MVS + MP.88.14 7587.82 8289.09 6795.72 2276.74 11292.49 2591.19 14367.85 25386.63 17694.84 5579.58 13895.96 1587.62 1994.50 18294.56 78
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
LCM-MVSNet95.70 196.40 193.61 398.67 185.39 3795.54 597.36 196.97 199.04 199.05 196.61 195.92 1685.07 5899.27 199.54 1
WR-MVS_H89.91 5091.31 3385.71 12896.32 962.39 26489.54 7993.31 7090.21 1295.57 1195.66 3381.42 11995.90 1780.94 10398.80 398.84 5
DVP-MVS++90.07 4291.09 3687.00 9791.55 12972.64 14796.19 294.10 3985.33 3893.49 3994.64 6481.12 12295.88 1887.41 2595.94 12892.48 173
test_0728_SECOND86.79 10294.25 4872.45 15590.54 5294.10 3995.88 1886.42 3997.97 4692.02 198
ZNCC-MVS91.26 2491.34 3191.01 3495.73 2183.05 5692.18 3194.22 2980.14 9291.29 7893.97 9687.93 4095.87 2088.65 897.96 4894.12 101
region2R91.44 2291.30 3491.87 1995.75 1985.90 2992.63 2193.30 7181.91 7290.88 8894.21 8487.75 4195.87 2087.60 2197.71 6093.83 113
ACMMPR91.49 1991.35 3091.92 1695.74 2085.88 3092.58 2293.25 7381.99 7091.40 7494.17 8887.51 4595.87 2087.74 1697.76 5793.99 104
3Dnovator+83.92 289.97 4989.66 5790.92 3591.27 13881.66 6691.25 4294.13 3788.89 1588.83 12694.26 8277.55 15695.86 2384.88 6195.87 13295.24 58
SED-MVS90.46 3791.64 2186.93 9994.18 5072.65 14590.47 5593.69 5683.77 5294.11 2694.27 7990.28 1495.84 2486.03 4997.92 4992.29 185
test_241102_TWO93.71 5583.77 5293.49 3994.27 7989.27 2395.84 2486.03 4997.82 5492.04 197
reproduce-ours92.86 693.22 591.76 2394.39 4487.71 1192.40 2794.38 1989.82 1395.51 1295.49 3889.64 2195.82 2689.13 698.26 2891.76 206
our_new_method92.86 693.22 591.76 2394.39 4487.71 1192.40 2794.38 1989.82 1395.51 1295.49 3889.64 2195.82 2689.13 698.26 2891.76 206
GST-MVS90.96 2991.01 4090.82 3795.45 2882.73 5991.75 3893.74 5480.98 8391.38 7593.80 10687.20 4995.80 2887.10 3497.69 6193.93 107
XVS91.54 1791.36 2892.08 995.64 2486.25 2292.64 1993.33 6785.07 4189.99 10094.03 9386.57 5595.80 2887.35 2797.62 6494.20 94
X-MVStestdata85.04 12582.70 17692.08 995.64 2486.25 2292.64 1993.33 6785.07 4189.99 10016.05 42186.57 5595.80 2887.35 2797.62 6494.20 94
MVSMamba_PlusPlus87.53 8688.86 7183.54 18192.03 11062.26 26891.49 4092.62 10088.07 2488.07 14596.17 2372.24 22395.79 3184.85 6294.16 19392.58 168
DVP-MVScopyleft90.06 4391.32 3286.29 11194.16 5372.56 15190.54 5291.01 14783.61 5593.75 3494.65 6189.76 1895.78 3286.42 3997.97 4690.55 242
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD85.33 3893.75 3494.65 6187.44 4695.78 3287.41 2598.21 3292.98 154
DeepC-MVS82.31 489.15 6489.08 6689.37 6293.64 6679.07 8388.54 9894.20 3073.53 17489.71 10794.82 5685.09 6895.77 3484.17 6998.03 4193.26 141
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
HPM-MVScopyleft92.13 1192.20 1391.91 1795.58 2684.67 4693.51 894.85 1582.88 6491.77 7093.94 10290.55 1295.73 3588.50 1098.23 3195.33 54
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
reproduce_model92.89 593.18 792.01 1394.20 4988.23 992.87 1394.32 2190.25 1195.65 995.74 3087.75 4195.72 3689.60 498.27 2692.08 195
CP-MVS91.67 1691.58 2391.96 1495.29 3187.62 1393.38 993.36 6583.16 6091.06 8294.00 9588.26 3295.71 3787.28 3098.39 2192.55 170
SR-MVS92.23 1092.34 1191.91 1794.89 3887.85 1092.51 2493.87 5188.20 2393.24 4294.02 9490.15 1695.67 3886.82 3697.34 7692.19 191
ACMMPcopyleft91.91 1491.87 1992.03 1295.53 2785.91 2893.35 1194.16 3282.52 6792.39 6194.14 8989.15 2595.62 3987.35 2798.24 3094.56 78
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
PEN-MVS90.03 4591.88 1884.48 15096.57 558.88 30888.95 8993.19 7591.62 596.01 796.16 2487.02 5095.60 4078.69 12998.72 998.97 3
PS-CasMVS90.06 4391.92 1584.47 15196.56 658.83 31189.04 8892.74 9791.40 696.12 596.06 2687.23 4895.57 4179.42 12398.74 699.00 2
HFP-MVS91.30 2391.39 2791.02 3395.43 2984.66 4792.58 2293.29 7281.99 7091.47 7393.96 9988.35 3195.56 4287.74 1697.74 5992.85 157
RPMNet78.88 23878.28 24780.68 24179.58 35162.64 25982.58 22094.16 3274.80 15975.72 34192.59 14548.69 35095.56 4273.48 19882.91 36983.85 340
CP-MVSNet89.27 6290.91 4484.37 15296.34 858.61 31488.66 9792.06 11590.78 795.67 895.17 4781.80 11595.54 4479.00 12798.69 1098.95 4
LPG-MVS_test91.47 2191.68 2090.82 3794.75 4181.69 6390.00 6294.27 2482.35 6893.67 3794.82 5691.18 495.52 4585.36 5598.73 795.23 59
LGP-MVS_train90.82 3794.75 4181.69 6394.27 2482.35 6893.67 3794.82 5691.18 495.52 4585.36 5598.73 795.23 59
SR-MVS-dyc-post92.41 992.41 1092.39 594.13 5588.95 692.87 1394.16 3288.75 1893.79 3294.43 7288.83 2695.51 4787.16 3297.60 6692.73 160
mPP-MVS91.69 1591.47 2692.37 696.04 1388.48 892.72 1892.60 10183.09 6191.54 7294.25 8387.67 4495.51 4787.21 3198.11 3893.12 148
test_241102_ONE94.18 5072.65 14593.69 5683.62 5494.11 2693.78 10890.28 1495.50 49
EC-MVSNet88.01 7888.32 7787.09 9589.28 18072.03 16190.31 5996.31 480.88 8485.12 20789.67 23384.47 7595.46 5082.56 8796.26 11193.77 119
ACMMP_NAP90.65 3291.07 3989.42 6195.93 1679.54 8089.95 6693.68 5877.65 12691.97 6794.89 5388.38 2995.45 5189.27 597.87 5393.27 140
CANet83.79 15882.85 17486.63 10486.17 26072.21 16083.76 18891.43 13377.24 13274.39 35387.45 27175.36 18195.42 5277.03 15592.83 22692.25 189
MP-MVScopyleft91.14 2890.91 4491.83 2096.18 1186.88 1792.20 3093.03 8682.59 6688.52 13494.37 7886.74 5395.41 5386.32 4298.21 3293.19 144
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
LS3D90.60 3490.34 5191.38 2889.03 18584.23 4993.58 694.68 1790.65 890.33 9493.95 10184.50 7495.37 5480.87 10495.50 14594.53 81
HPM-MVS_fast92.50 892.54 992.37 695.93 1685.81 3392.99 1294.23 2785.21 4092.51 5895.13 4890.65 995.34 5588.06 1298.15 3795.95 40
NCCC87.36 8786.87 9888.83 7092.32 10078.84 8686.58 13191.09 14578.77 11284.85 21590.89 19980.85 12595.29 5681.14 10195.32 15092.34 182
EPP-MVSNet85.47 11585.04 13286.77 10391.52 13269.37 18791.63 3987.98 21581.51 7787.05 16791.83 16866.18 25795.29 5670.75 22396.89 8695.64 46
MTAPA91.52 1891.60 2291.29 3096.59 486.29 2192.02 3391.81 12684.07 4992.00 6694.40 7686.63 5495.28 5888.59 998.31 2492.30 184
HQP_MVS87.75 8487.43 8888.70 7593.45 6876.42 11689.45 8293.61 5979.44 10186.55 17792.95 13474.84 18795.22 5980.78 10695.83 13494.46 82
plane_prior593.61 5995.22 5980.78 10695.83 13494.46 82
ACMP79.16 1090.54 3590.60 4990.35 4594.36 4680.98 6989.16 8694.05 4179.03 10892.87 4993.74 11190.60 1195.21 6182.87 8298.76 494.87 68
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
mvsmamba80.30 22378.87 23684.58 14888.12 21167.55 20892.35 2984.88 26763.15 29085.33 20390.91 19850.71 34395.20 6266.36 26587.98 31190.99 225
balanced_conf0384.80 13085.40 12683.00 19488.95 18861.44 27590.42 5892.37 10771.48 21088.72 12993.13 12570.16 23895.15 6379.26 12594.11 19492.41 177
DeepC-MVS_fast80.27 886.23 10285.65 12287.96 8791.30 13676.92 11087.19 11591.99 11770.56 22084.96 21190.69 20780.01 13595.14 6478.37 13295.78 13891.82 204
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ETV-MVS84.31 14183.91 15885.52 13188.58 20070.40 17884.50 17193.37 6478.76 11384.07 23478.72 37680.39 13095.13 6573.82 19392.98 22391.04 224
APD-MVS_3200maxsize92.05 1292.24 1291.48 2593.02 8085.17 3992.47 2695.05 1487.65 2793.21 4394.39 7790.09 1795.08 6686.67 3897.60 6694.18 97
HPM-MVS++copyleft88.93 6888.45 7690.38 4494.92 3685.85 3189.70 7191.27 14078.20 11886.69 17592.28 15880.36 13195.06 6786.17 4796.49 10090.22 248
MP-MVS-pluss90.81 3091.08 3789.99 5095.97 1479.88 7588.13 10294.51 1875.79 14792.94 4794.96 5188.36 3095.01 6890.70 398.40 2095.09 64
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
CDPH-MVS86.17 10685.54 12388.05 8692.25 10175.45 12483.85 18492.01 11665.91 26786.19 18691.75 17383.77 8294.98 6977.43 15096.71 9393.73 120
COLMAP_ROBcopyleft83.01 391.97 1391.95 1492.04 1193.68 6586.15 2493.37 1095.10 1390.28 1092.11 6395.03 5089.75 2094.93 7079.95 11498.27 2695.04 65
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
IS-MVSNet86.66 9786.82 10086.17 11892.05 10966.87 21691.21 4388.64 20386.30 3389.60 11492.59 14569.22 24294.91 7173.89 19197.89 5296.72 24
OurMVSNet-221017-090.01 4689.74 5690.83 3693.16 7880.37 7291.91 3693.11 7981.10 8195.32 1497.24 772.94 21494.85 7285.07 5897.78 5697.26 15
test1286.57 10590.74 15172.63 14990.69 15582.76 25979.20 13994.80 7395.32 15092.27 187
SixPastTwentyTwo87.20 8987.45 8786.45 10892.52 9369.19 19287.84 10788.05 21381.66 7594.64 1896.53 1765.94 25894.75 7483.02 8096.83 8995.41 51
CNVR-MVS87.81 8387.68 8388.21 8392.87 8477.30 10785.25 15591.23 14177.31 13187.07 16691.47 17982.94 9194.71 7584.67 6496.27 11092.62 167
OPU-MVS88.27 8291.89 11577.83 9790.47 5591.22 18581.12 12294.68 7674.48 18195.35 14892.29 185
K. test v385.14 12284.73 13686.37 10991.13 14369.63 18585.45 15276.68 32984.06 5092.44 6096.99 1062.03 28094.65 7780.58 10993.24 21694.83 73
SF-MVS90.27 3990.80 4688.68 7692.86 8677.09 10891.19 4495.74 681.38 7892.28 6293.80 10686.89 5294.64 7885.52 5497.51 7394.30 93
HQP4-MVS80.56 29394.61 7993.56 131
HQP-MVS84.61 13484.06 15486.27 11291.19 13970.66 17584.77 16092.68 9873.30 18280.55 29490.17 22572.10 22494.61 7977.30 15294.47 18393.56 131
PS-MVSNAJss88.31 7387.90 8189.56 5993.31 7377.96 9687.94 10591.97 11870.73 21994.19 2596.67 1476.94 16694.57 8183.07 7896.28 10896.15 32
DeepPCF-MVS81.24 587.28 8886.21 10890.49 4291.48 13384.90 4283.41 19692.38 10670.25 22589.35 11990.68 20882.85 9294.57 8179.55 12095.95 12792.00 199
UA-Net91.49 1991.53 2491.39 2794.98 3582.95 5893.52 792.79 9588.22 2288.53 13397.64 383.45 8694.55 8386.02 5198.60 1396.67 25
CS-MVS88.14 7587.67 8489.54 6089.56 17379.18 8290.47 5594.77 1679.37 10384.32 22689.33 23883.87 7994.53 8482.45 8894.89 16994.90 66
SPE-MVS-test87.00 9086.43 10488.71 7489.46 17677.46 10289.42 8495.73 777.87 12481.64 28087.25 27582.43 9894.53 8477.65 14596.46 10294.14 100
BP-MVS182.81 17581.67 19286.23 11387.88 21668.53 19886.06 14084.36 27375.65 14985.14 20690.19 22245.84 36694.42 8685.18 5794.72 17895.75 43
114514_t83.10 17382.54 18184.77 14392.90 8369.10 19486.65 12990.62 15854.66 36081.46 28290.81 20476.98 16594.38 8772.62 21096.18 11490.82 232
GDP-MVS82.17 18880.85 21286.15 12088.65 19768.95 19585.65 14993.02 8768.42 24283.73 24089.54 23545.07 37794.31 8879.66 11993.87 20195.19 61
MVSFormer82.23 18581.57 19884.19 16285.54 27069.26 18991.98 3490.08 17971.54 20876.23 33485.07 31358.69 30294.27 8986.26 4388.77 29789.03 273
test_djsdf89.62 5489.01 6791.45 2692.36 9782.98 5791.98 3490.08 17971.54 20894.28 2496.54 1681.57 11794.27 8986.26 4396.49 10097.09 19
原ACMM184.60 14792.81 8974.01 13291.50 13162.59 29382.73 26090.67 21076.53 17394.25 9169.24 23895.69 14185.55 316
AdaColmapbinary83.66 16083.69 16083.57 17990.05 16772.26 15886.29 13690.00 18178.19 11981.65 27987.16 27783.40 8794.24 9261.69 30894.76 17784.21 335
Effi-MVS+-dtu85.82 11183.38 16393.14 487.13 23491.15 387.70 10888.42 20574.57 16283.56 24585.65 29978.49 14594.21 9372.04 21492.88 22594.05 103
EIA-MVS82.19 18781.23 20685.10 13787.95 21469.17 19383.22 20493.33 6770.42 22178.58 31679.77 36877.29 15994.20 9471.51 21688.96 29591.93 202
UniMVSNet (Re)86.87 9186.98 9686.55 10693.11 7968.48 19983.80 18792.87 9280.37 8789.61 11391.81 17077.72 15394.18 9575.00 17998.53 1696.99 22
PHI-MVS86.38 10085.81 11788.08 8488.44 20477.34 10589.35 8593.05 8373.15 18784.76 21687.70 26578.87 14294.18 9580.67 10896.29 10792.73 160
test_prior86.32 11090.59 15571.99 16292.85 9394.17 9792.80 158
TDRefinement93.52 393.39 493.88 295.94 1590.26 495.70 496.46 390.58 992.86 5096.29 1988.16 3594.17 9786.07 4898.48 1897.22 17
tttt051781.07 20779.58 23085.52 13188.99 18766.45 22087.03 11975.51 33773.76 17088.32 14190.20 22137.96 39894.16 9979.36 12495.13 15795.93 41
v7n90.13 4090.96 4287.65 9191.95 11271.06 17389.99 6493.05 8386.53 3194.29 2296.27 2082.69 9394.08 10086.25 4597.63 6397.82 8
v1086.54 9887.10 9284.84 14088.16 21063.28 25086.64 13092.20 11175.42 15492.81 5394.50 6874.05 19894.06 10183.88 7196.28 10897.17 18
UniMVSNet_NR-MVSNet86.84 9387.06 9386.17 11892.86 8667.02 21382.55 22291.56 12983.08 6290.92 8491.82 16978.25 14793.99 10274.16 18498.35 2297.49 13
DU-MVS86.80 9486.99 9586.21 11693.24 7667.02 21383.16 20592.21 11081.73 7490.92 8491.97 16377.20 16093.99 10274.16 18498.35 2297.61 10
DP-MVS Recon84.05 15183.22 16586.52 10791.73 12275.27 12583.23 20392.40 10472.04 20582.04 26988.33 25377.91 15093.95 10466.17 26795.12 15990.34 247
h-mvs3384.25 14482.76 17588.72 7391.82 12182.60 6084.00 17984.98 26571.27 21186.70 17390.55 21363.04 27793.92 10578.26 13694.20 19189.63 259
DP-MVS88.60 7089.01 6787.36 9391.30 13677.50 10187.55 10992.97 9087.95 2589.62 11192.87 13784.56 7393.89 10677.65 14596.62 9590.70 236
NR-MVSNet86.00 10786.22 10785.34 13493.24 7664.56 23682.21 23490.46 16180.99 8288.42 13791.97 16377.56 15593.85 10772.46 21298.65 1297.61 10
EPNet80.37 22078.41 24686.23 11376.75 37473.28 13987.18 11677.45 32076.24 13868.14 38588.93 24565.41 26193.85 10769.47 23696.12 11891.55 215
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
OPM-MVS89.80 5189.97 5289.27 6394.76 4079.86 7686.76 12792.78 9678.78 11192.51 5893.64 11588.13 3693.84 10984.83 6397.55 6994.10 102
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
9.1489.29 6291.84 11988.80 9395.32 1275.14 15791.07 8192.89 13687.27 4793.78 11083.69 7397.55 69
TranMVSNet+NR-MVSNet87.86 8188.76 7485.18 13694.02 5864.13 24084.38 17291.29 13984.88 4492.06 6593.84 10586.45 5893.73 11173.22 20298.66 1197.69 9
v886.22 10386.83 9984.36 15487.82 21762.35 26686.42 13491.33 13876.78 13592.73 5594.48 7073.41 20793.72 11283.10 7795.41 14697.01 21
Vis-MVSNetpermissive86.86 9286.58 10187.72 8992.09 10777.43 10487.35 11392.09 11478.87 11084.27 23194.05 9278.35 14693.65 11380.54 11091.58 25292.08 195
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
v124084.30 14284.51 14683.65 17487.65 22361.26 27982.85 21491.54 13067.94 25190.68 9190.65 21171.71 23093.64 11482.84 8394.78 17496.07 35
TEST992.34 9879.70 7883.94 18090.32 16865.41 27884.49 22090.97 19482.03 10993.63 115
train_agg85.98 10885.28 12988.07 8592.34 9879.70 7883.94 18090.32 16865.79 26984.49 22090.97 19481.93 11193.63 11581.21 10096.54 9890.88 230
PCF-MVS74.62 1582.15 19080.92 21085.84 12589.43 17772.30 15780.53 25491.82 12457.36 34487.81 15189.92 22977.67 15493.63 11558.69 32495.08 16091.58 214
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
v119284.57 13584.69 14084.21 16087.75 21962.88 25483.02 20891.43 13369.08 23589.98 10290.89 19972.70 21893.62 11882.41 8994.97 16696.13 33
FE-MVS79.98 23178.86 23783.36 18486.47 24766.45 22089.73 7084.74 27172.80 19284.22 23391.38 18144.95 37893.60 11963.93 28991.50 25390.04 255
v192192084.23 14684.37 15083.79 16987.64 22461.71 27382.91 21291.20 14267.94 25190.06 9790.34 21772.04 22793.59 12082.32 9094.91 16796.07 35
mvs_tets89.78 5289.27 6391.30 2993.51 6784.79 4489.89 6890.63 15770.00 22894.55 1996.67 1487.94 3993.59 12084.27 6895.97 12495.52 49
test_040288.65 6989.58 6085.88 12492.55 9272.22 15984.01 17889.44 19488.63 2094.38 2195.77 2986.38 6193.59 12079.84 11595.21 15491.82 204
thisisatest053079.07 23577.33 25584.26 15987.13 23464.58 23583.66 19175.95 33268.86 23885.22 20587.36 27338.10 39593.57 12375.47 17394.28 18994.62 76
jajsoiax89.41 5788.81 7391.19 3293.38 7184.72 4589.70 7190.29 17369.27 23294.39 2096.38 1886.02 6593.52 12483.96 7095.92 13095.34 53
v14419284.24 14584.41 14883.71 17387.59 22561.57 27482.95 21191.03 14667.82 25489.80 10590.49 21473.28 21193.51 12581.88 9894.89 16996.04 37
v114484.54 13784.72 13884.00 16387.67 22262.55 26182.97 21090.93 15070.32 22489.80 10590.99 19373.50 20493.48 12681.69 9994.65 18095.97 38
MCST-MVS84.36 13983.93 15785.63 12991.59 12471.58 16883.52 19392.13 11361.82 30283.96 23689.75 23279.93 13793.46 12778.33 13494.34 18791.87 203
test_892.09 10778.87 8583.82 18590.31 17065.79 26984.36 22490.96 19681.93 11193.44 128
ACMH+77.89 1190.73 3191.50 2588.44 7893.00 8176.26 11989.65 7595.55 887.72 2693.89 3094.94 5291.62 393.44 12878.35 13398.76 495.61 48
FC-MVSNet-test85.93 10987.05 9482.58 20692.25 10156.44 33085.75 14693.09 8177.33 13091.94 6894.65 6174.78 18993.41 13075.11 17898.58 1497.88 7
OMC-MVS88.19 7487.52 8590.19 4891.94 11481.68 6587.49 11293.17 7676.02 14188.64 13091.22 18584.24 7893.37 13177.97 14397.03 8495.52 49
MG-MVS80.32 22280.94 20978.47 27188.18 20852.62 36082.29 23085.01 26472.01 20679.24 31192.54 14869.36 24193.36 13270.65 22589.19 29389.45 261
CPTT-MVS89.39 5888.98 6990.63 4095.09 3386.95 1692.09 3292.30 10979.74 9687.50 15792.38 15281.42 11993.28 13383.07 7897.24 7991.67 211
F-COLMAP84.97 12983.42 16289.63 5792.39 9683.40 5288.83 9291.92 12073.19 18680.18 30289.15 24277.04 16493.28 13365.82 27392.28 23692.21 190
v2v48284.09 14984.24 15283.62 17587.13 23461.40 27682.71 21789.71 18772.19 20489.55 11591.41 18070.70 23593.20 13581.02 10293.76 20396.25 31
agg_prior91.58 12777.69 10090.30 17184.32 22693.18 136
LTVRE_ROB86.10 193.04 493.44 391.82 2293.73 6485.72 3496.79 195.51 988.86 1695.63 1096.99 1084.81 7293.16 13791.10 297.53 7296.58 28
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
IterMVS-SCA-FT80.64 21479.41 23184.34 15683.93 29869.66 18476.28 32081.09 30172.43 19686.47 18390.19 22260.46 28793.15 13877.45 14986.39 33390.22 248
DPM-MVS80.10 22979.18 23482.88 20190.71 15369.74 18278.87 28090.84 15160.29 32475.64 34385.92 29767.28 25093.11 13971.24 21891.79 24685.77 314
XVG-ACMP-BASELINE89.98 4789.84 5490.41 4394.91 3784.50 4889.49 8193.98 4379.68 9792.09 6493.89 10483.80 8193.10 14082.67 8698.04 3993.64 125
anonymousdsp89.73 5388.88 7092.27 889.82 17186.67 1890.51 5490.20 17669.87 22995.06 1596.14 2584.28 7793.07 14187.68 1896.34 10697.09 19
RRT-MVS82.97 17483.44 16181.57 22585.06 27758.04 31787.20 11490.37 16577.88 12388.59 13193.70 11363.17 27493.05 14276.49 16088.47 30193.62 126
PC_three_145258.96 33190.06 9791.33 18280.66 12893.03 14375.78 16995.94 12892.48 173
ACMM79.39 990.65 3290.99 4189.63 5795.03 3483.53 5189.62 7693.35 6679.20 10593.83 3193.60 11690.81 792.96 14485.02 6098.45 1992.41 177
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CLD-MVS83.18 17082.64 17884.79 14289.05 18467.82 20777.93 29192.52 10268.33 24485.07 20881.54 35282.06 10892.96 14469.35 23797.91 5193.57 130
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
Effi-MVS+83.90 15684.01 15583.57 17987.22 23265.61 22886.55 13292.40 10478.64 11481.34 28584.18 32383.65 8492.93 14674.22 18387.87 31392.17 192
lessismore_v085.95 12191.10 14470.99 17470.91 37291.79 6994.42 7461.76 28192.93 14679.52 12293.03 22193.93 107
FIs85.35 11886.27 10682.60 20591.86 11657.31 32385.10 15993.05 8375.83 14691.02 8393.97 9673.57 20392.91 14873.97 19098.02 4297.58 12
PVSNet_Blended_VisFu81.55 20180.49 21684.70 14691.58 12773.24 14184.21 17391.67 12862.86 29280.94 28887.16 27767.27 25192.87 14969.82 23488.94 29687.99 288
casdiffmvs_mvgpermissive86.72 9587.51 8684.36 15487.09 23865.22 23084.16 17494.23 2777.89 12291.28 7993.66 11484.35 7692.71 15080.07 11194.87 17295.16 62
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DELS-MVS81.44 20381.25 20482.03 21484.27 29362.87 25576.47 31892.49 10370.97 21781.64 28083.83 32575.03 18492.70 15174.29 18292.22 23990.51 243
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
TSAR-MVS + GP.83.95 15482.69 17787.72 8989.27 18181.45 6783.72 18981.58 29874.73 16085.66 19686.06 29472.56 22092.69 15275.44 17495.21 15489.01 275
Fast-Effi-MVS+81.04 20880.57 21382.46 21087.50 22763.22 25178.37 28789.63 19068.01 24881.87 27282.08 34682.31 10292.65 15367.10 25888.30 30891.51 216
PLCcopyleft73.85 1682.09 19180.31 21887.45 9290.86 15080.29 7385.88 14290.65 15668.17 24776.32 33386.33 28973.12 21392.61 15461.40 31190.02 28289.44 262
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
IterMVS-LS84.73 13284.98 13383.96 16587.35 22963.66 24483.25 20189.88 18476.06 13989.62 11192.37 15573.40 20992.52 15578.16 13894.77 17695.69 44
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
FA-MVS(test-final)83.13 17283.02 17183.43 18286.16 26266.08 22388.00 10388.36 20775.55 15185.02 20992.75 14265.12 26292.50 15674.94 18091.30 25691.72 208
PAPM_NR83.23 16983.19 16783.33 18590.90 14865.98 22488.19 10190.78 15378.13 12080.87 29087.92 26173.49 20692.42 15770.07 23188.40 30291.60 213
hse-mvs283.47 16681.81 19088.47 7791.03 14582.27 6182.61 21883.69 27871.27 21186.70 17386.05 29563.04 27792.41 15878.26 13693.62 21090.71 235
AUN-MVS81.18 20678.78 23988.39 7990.93 14782.14 6282.51 22483.67 27964.69 28480.29 29885.91 29851.07 34192.38 15976.29 16493.63 20990.65 239
GeoE85.45 11685.81 11784.37 15290.08 16467.07 21285.86 14491.39 13672.33 20187.59 15590.25 22084.85 7192.37 16078.00 14191.94 24593.66 122
PAPM71.77 31270.06 32776.92 29586.39 24953.97 34876.62 31486.62 23553.44 36563.97 40584.73 31757.79 31092.34 16139.65 40681.33 38084.45 329
eth_miper_zixun_eth80.84 21080.22 22282.71 20381.41 33160.98 28577.81 29390.14 17867.31 25886.95 16987.24 27664.26 26592.31 16275.23 17691.61 25094.85 72
PAPR78.84 23978.10 24981.07 23385.17 27660.22 29282.21 23490.57 15962.51 29475.32 34784.61 31874.99 18592.30 16359.48 32288.04 31090.68 237
V4283.47 16683.37 16483.75 17183.16 31563.33 24981.31 24490.23 17569.51 23190.91 8690.81 20474.16 19692.29 16480.06 11290.22 27995.62 47
QAPM82.59 17982.59 18082.58 20686.44 24866.69 21789.94 6790.36 16667.97 25084.94 21392.58 14772.71 21792.18 16570.63 22687.73 31588.85 276
CSCG86.26 10186.47 10385.60 13090.87 14974.26 13187.98 10491.85 12280.35 8889.54 11788.01 25779.09 14092.13 16675.51 17295.06 16190.41 245
TAPA-MVS77.73 1285.71 11284.83 13588.37 8088.78 19479.72 7787.15 11793.50 6269.17 23385.80 19589.56 23480.76 12692.13 16673.21 20795.51 14493.25 142
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
thisisatest051573.00 30370.52 32180.46 24381.45 33059.90 29673.16 35374.31 34457.86 33976.08 33877.78 38137.60 39992.12 16865.00 28091.45 25489.35 264
HyFIR lowres test75.12 28172.66 30282.50 20991.44 13565.19 23172.47 35587.31 22046.79 39280.29 29884.30 32152.70 33492.10 16951.88 37186.73 32890.22 248
Anonymous2023121188.40 7189.62 5984.73 14490.46 15765.27 22988.86 9193.02 8787.15 2893.05 4697.10 882.28 10592.02 17076.70 15797.99 4396.88 23
baseline85.20 12185.93 11383.02 19386.30 25562.37 26584.55 16793.96 4474.48 16387.12 16192.03 16282.30 10391.94 17178.39 13194.21 19094.74 75
EI-MVSNet-Vis-set85.12 12484.53 14586.88 10084.01 29672.76 14483.91 18385.18 25880.44 8688.75 12785.49 30280.08 13491.92 17282.02 9490.85 26995.97 38
EI-MVSNet-UG-set85.04 12584.44 14786.85 10183.87 30072.52 15383.82 18585.15 25980.27 9088.75 12785.45 30479.95 13691.90 17381.92 9790.80 27096.13 33
casdiffmvspermissive85.21 12085.85 11683.31 18686.17 26062.77 25783.03 20793.93 4674.69 16188.21 14292.68 14482.29 10491.89 17477.87 14493.75 20695.27 57
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
tt080588.09 7789.79 5582.98 19593.26 7563.94 24391.10 4589.64 18985.07 4190.91 8691.09 19089.16 2491.87 17582.03 9395.87 13293.13 146
IB-MVS62.13 1971.64 31468.97 33979.66 25580.80 34162.26 26873.94 34576.90 32663.27 28968.63 38476.79 39033.83 40491.84 17659.28 32387.26 31884.88 323
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
UGNet82.78 17681.64 19386.21 11686.20 25976.24 12086.86 12285.68 25077.07 13373.76 35792.82 13869.64 23991.82 17769.04 24493.69 20790.56 241
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
BH-untuned80.96 20980.99 20880.84 23788.55 20168.23 20080.33 25788.46 20472.79 19386.55 17786.76 28374.72 19191.77 17861.79 30788.99 29482.52 361
c3_l81.64 20081.59 19681.79 22280.86 33959.15 30578.61 28490.18 17768.36 24387.20 15987.11 27969.39 24091.62 17978.16 13894.43 18594.60 77
API-MVS82.28 18482.61 17981.30 22886.29 25669.79 18188.71 9587.67 21778.42 11782.15 26884.15 32477.98 14891.59 18065.39 27692.75 22782.51 362
nrg03087.85 8288.49 7585.91 12290.07 16669.73 18387.86 10694.20 3074.04 16692.70 5694.66 6085.88 6691.50 18179.72 11797.32 7796.50 29
AllTest87.97 8087.40 8989.68 5591.59 12483.40 5289.50 8095.44 1079.47 9988.00 14893.03 12982.66 9491.47 18270.81 22096.14 11694.16 98
TestCases89.68 5591.59 12483.40 5295.44 1079.47 9988.00 14893.03 12982.66 9491.47 18270.81 22096.14 11694.16 98
PVSNet_BlendedMVS78.80 24077.84 25081.65 22484.43 28763.41 24779.49 26990.44 16261.70 30675.43 34487.07 28069.11 24391.44 18460.68 31592.24 23790.11 253
PVSNet_Blended76.49 26875.40 27379.76 25284.43 28763.41 24775.14 33490.44 16257.36 34475.43 34478.30 37869.11 24391.44 18460.68 31587.70 31684.42 330
miper_ehance_all_eth80.34 22180.04 22781.24 23179.82 35058.95 30777.66 29589.66 18865.75 27285.99 19385.11 30968.29 24791.42 18676.03 16792.03 24193.33 136
无先验82.81 21585.62 25158.09 33791.41 18767.95 25784.48 328
ambc82.98 19590.55 15664.86 23388.20 10089.15 19789.40 11893.96 9971.67 23191.38 18878.83 12896.55 9792.71 163
UniMVSNet_ETH3D89.12 6590.72 4784.31 15897.00 264.33 23989.67 7488.38 20688.84 1794.29 2297.57 490.48 1391.26 18972.57 21197.65 6297.34 14
miper_enhance_ethall77.83 24976.93 25980.51 24276.15 38158.01 31875.47 33288.82 19958.05 33883.59 24380.69 35664.41 26491.20 19073.16 20892.03 24192.33 183
3Dnovator80.37 784.80 13084.71 13985.06 13886.36 25374.71 12788.77 9490.00 18175.65 14984.96 21193.17 12374.06 19791.19 19178.28 13591.09 25889.29 267
cascas76.29 27174.81 27880.72 24084.47 28662.94 25373.89 34687.34 21955.94 35175.16 34976.53 39363.97 26891.16 19265.00 28090.97 26388.06 286
ET-MVSNet_ETH3D75.28 27872.77 30082.81 20283.03 31868.11 20377.09 30576.51 33060.67 32177.60 32680.52 36038.04 39691.15 19370.78 22290.68 27289.17 268
EG-PatchMatch MVS84.08 15084.11 15383.98 16492.22 10372.61 15082.20 23687.02 23072.63 19588.86 12491.02 19278.52 14391.11 19473.41 19991.09 25888.21 282
WR-MVS83.56 16384.40 14981.06 23493.43 7054.88 34378.67 28385.02 26381.24 7990.74 9091.56 17772.85 21591.08 19568.00 25598.04 3997.23 16
sasdasda85.50 11386.14 10983.58 17787.97 21267.13 21087.55 10994.32 2173.44 17788.47 13587.54 26886.45 5891.06 19675.76 17093.76 20392.54 171
canonicalmvs85.50 11386.14 10983.58 17787.97 21267.13 21087.55 10994.32 2173.44 17788.47 13587.54 26886.45 5891.06 19675.76 17093.76 20392.54 171
XVG-OURS89.18 6388.83 7290.23 4794.28 4786.11 2685.91 14193.60 6180.16 9189.13 12393.44 11883.82 8090.98 19883.86 7295.30 15393.60 128
PS-MVSNAJ77.04 25976.53 26378.56 26887.09 23861.40 27675.26 33387.13 22561.25 31374.38 35477.22 38876.94 16690.94 19964.63 28584.83 35583.35 348
xiu_mvs_v2_base77.19 25776.75 26178.52 26987.01 24061.30 27875.55 33187.12 22861.24 31474.45 35278.79 37577.20 16090.93 20064.62 28684.80 35683.32 349
XVG-OURS-SEG-HR89.59 5589.37 6190.28 4694.47 4385.95 2786.84 12393.91 4780.07 9386.75 17293.26 12193.64 290.93 20084.60 6590.75 27193.97 105
v14882.31 18382.48 18281.81 22185.59 26959.66 29881.47 24386.02 24572.85 19088.05 14790.65 21170.73 23490.91 20275.15 17791.79 24694.87 68
VDD-MVS84.23 14684.58 14283.20 18991.17 14265.16 23283.25 20184.97 26679.79 9587.18 16094.27 7974.77 19090.89 20369.24 23896.54 9893.55 133
cl2278.97 23678.21 24881.24 23177.74 36459.01 30677.46 30287.13 22565.79 26984.32 22685.10 31058.96 30190.88 20475.36 17592.03 24193.84 112
MGCFI-Net85.04 12585.95 11282.31 21287.52 22663.59 24686.23 13893.96 4473.46 17588.07 14587.83 26386.46 5790.87 20576.17 16593.89 20092.47 175
alignmvs83.94 15583.98 15683.80 16887.80 21867.88 20684.54 16991.42 13573.27 18588.41 13887.96 25872.33 22190.83 20676.02 16894.11 19492.69 164
ITE_SJBPF90.11 4990.72 15284.97 4190.30 17181.56 7690.02 9991.20 18782.40 9990.81 20773.58 19794.66 17994.56 78
BH-RMVSNet80.53 21580.22 22281.49 22787.19 23366.21 22277.79 29486.23 23974.21 16583.69 24188.50 25173.25 21290.75 20863.18 29787.90 31287.52 295
BH-w/o76.57 26676.07 26878.10 27886.88 24365.92 22577.63 29686.33 23765.69 27380.89 28979.95 36568.97 24590.74 20953.01 36285.25 34477.62 391
TR-MVS76.77 26375.79 26979.72 25386.10 26365.79 22677.14 30483.02 28465.20 28181.40 28382.10 34466.30 25590.73 21055.57 34385.27 34382.65 356
GBi-Net82.02 19382.07 18581.85 21886.38 25061.05 28286.83 12488.27 21072.43 19686.00 19095.64 3463.78 27090.68 21165.95 26993.34 21293.82 114
test182.02 19382.07 18581.85 21886.38 25061.05 28286.83 12488.27 21072.43 19686.00 19095.64 3463.78 27090.68 21165.95 26993.34 21293.82 114
FMVSNet184.55 13685.45 12581.85 21890.27 16161.05 28286.83 12488.27 21078.57 11589.66 11095.64 3475.43 18090.68 21169.09 24295.33 14993.82 114
VDDNet84.35 14085.39 12781.25 22995.13 3259.32 30185.42 15381.11 30086.41 3287.41 15896.21 2273.61 20290.61 21466.33 26696.85 8793.81 117
MAR-MVS80.24 22578.74 24184.73 14486.87 24478.18 9285.75 14687.81 21665.67 27477.84 32178.50 37773.79 20190.53 21561.59 31090.87 26785.49 318
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MVS_Test82.47 18283.22 16580.22 24782.62 32057.75 32182.54 22391.96 11971.16 21582.89 25692.52 14977.41 15790.50 21680.04 11387.84 31492.40 179
MVS_111021_HR84.63 13384.34 15185.49 13390.18 16375.86 12379.23 27587.13 22573.35 17985.56 20089.34 23783.60 8590.50 21676.64 15894.05 19790.09 254
Anonymous2024052986.20 10487.13 9183.42 18390.19 16264.55 23784.55 16790.71 15485.85 3689.94 10395.24 4682.13 10790.40 21869.19 24196.40 10595.31 55
EI-MVSNet82.61 17882.42 18383.20 18983.25 31263.66 24483.50 19485.07 26076.06 13986.55 17785.10 31073.41 20790.25 21978.15 14090.67 27395.68 45
MVSTER77.09 25875.70 27181.25 22975.27 38961.08 28177.49 30185.07 26060.78 31986.55 17788.68 24843.14 38790.25 21973.69 19690.67 27392.42 176
Fast-Effi-MVS+-dtu82.54 18181.41 20185.90 12385.60 26876.53 11583.07 20689.62 19173.02 18979.11 31283.51 32880.74 12790.24 22168.76 24789.29 29090.94 227
SD-MVS88.96 6789.88 5386.22 11591.63 12377.07 10989.82 6993.77 5378.90 10992.88 4892.29 15786.11 6390.22 22286.24 4697.24 7991.36 218
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
FMVSNet281.31 20481.61 19580.41 24486.38 25058.75 31283.93 18286.58 23672.43 19687.65 15492.98 13163.78 27090.22 22266.86 25993.92 19992.27 187
cl____80.42 21880.23 22081.02 23579.99 34759.25 30277.07 30687.02 23067.37 25686.18 18889.21 24063.08 27690.16 22476.31 16395.80 13693.65 124
DIV-MVS_self_test80.43 21780.23 22081.02 23579.99 34759.25 30277.07 30687.02 23067.38 25586.19 18689.22 23963.09 27590.16 22476.32 16295.80 13693.66 122
OpenMVScopyleft76.72 1381.98 19582.00 18781.93 21584.42 28968.22 20188.50 9989.48 19366.92 26081.80 27691.86 16572.59 21990.16 22471.19 21991.25 25787.40 297
xiu_mvs_v1_base_debu80.84 21080.14 22482.93 19888.31 20571.73 16479.53 26687.17 22265.43 27579.59 30482.73 34076.94 16690.14 22773.22 20288.33 30486.90 302
xiu_mvs_v1_base80.84 21080.14 22482.93 19888.31 20571.73 16479.53 26687.17 22265.43 27579.59 30482.73 34076.94 16690.14 22773.22 20288.33 30486.90 302
xiu_mvs_v1_base_debi80.84 21080.14 22482.93 19888.31 20571.73 16479.53 26687.17 22265.43 27579.59 30482.73 34076.94 16690.14 22773.22 20288.33 30486.90 302
FMVSNet378.80 24078.55 24379.57 25682.89 31956.89 32881.76 23885.77 24869.04 23686.00 19090.44 21551.75 33990.09 23065.95 26993.34 21291.72 208
test111178.53 24478.85 23877.56 28792.22 10347.49 38582.61 21869.24 38072.43 19685.28 20494.20 8551.91 33790.07 23165.36 27796.45 10395.11 63
LFMVS80.15 22880.56 21478.89 26289.19 18355.93 33285.22 15673.78 34982.96 6384.28 23092.72 14357.38 31190.07 23163.80 29195.75 13990.68 237
test_yl78.71 24278.51 24479.32 25984.32 29158.84 30978.38 28585.33 25575.99 14282.49 26186.57 28558.01 30590.02 23362.74 29892.73 22889.10 270
DCV-MVSNet78.71 24278.51 24479.32 25984.32 29158.84 30978.38 28585.33 25575.99 14282.49 26186.57 28558.01 30590.02 23362.74 29892.73 22889.10 270
test_fmvsmconf0.01_n86.68 9686.52 10287.18 9485.94 26578.30 8986.93 12092.20 11165.94 26589.16 12193.16 12483.10 8989.89 23587.81 1594.43 18593.35 135
ECVR-MVScopyleft78.44 24578.63 24277.88 28391.85 11748.95 37983.68 19069.91 37672.30 20284.26 23294.20 8551.89 33889.82 23663.58 29296.02 12294.87 68
test_fmvsmconf0.1_n86.18 10585.88 11587.08 9685.26 27478.25 9085.82 14591.82 12465.33 27988.55 13292.35 15682.62 9689.80 23786.87 3594.32 18893.18 145
test_fmvsmconf_n85.88 11085.51 12486.99 9884.77 28278.21 9185.40 15491.39 13665.32 28087.72 15391.81 17082.33 10189.78 23886.68 3794.20 19192.99 153
test250674.12 29273.39 29276.28 30591.85 11744.20 39984.06 17748.20 42072.30 20281.90 27194.20 8527.22 42089.77 23964.81 28296.02 12294.87 68
MVS73.21 30172.59 30375.06 31580.97 33660.81 28881.64 24185.92 24746.03 39771.68 36777.54 38368.47 24689.77 23955.70 34285.39 34174.60 397
LCM-MVSNet-Re83.48 16585.06 13178.75 26585.94 26555.75 33680.05 25994.27 2476.47 13696.09 694.54 6783.31 8889.75 24159.95 31994.89 16990.75 233
EGC-MVSNET74.79 28769.99 32989.19 6594.89 3887.00 1591.89 3786.28 2381.09 4222.23 42495.98 2781.87 11489.48 24279.76 11695.96 12591.10 223
CANet_DTU77.81 25177.05 25780.09 24981.37 33259.90 29683.26 20088.29 20969.16 23467.83 38883.72 32660.93 28489.47 24369.22 24089.70 28690.88 230
GA-MVS75.83 27474.61 27979.48 25881.87 32459.25 30273.42 35082.88 28568.68 24079.75 30381.80 34950.62 34489.46 24466.85 26085.64 34089.72 258
MVP-Stereo75.81 27573.51 29182.71 20389.35 17873.62 13480.06 25885.20 25760.30 32373.96 35587.94 25957.89 30989.45 24552.02 36674.87 40285.06 322
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
testf189.30 6089.12 6489.84 5288.67 19585.64 3590.61 5093.17 7686.02 3493.12 4495.30 4284.94 6989.44 24674.12 18696.10 11994.45 84
APD_test289.30 6089.12 6489.84 5288.67 19585.64 3590.61 5093.17 7686.02 3493.12 4495.30 4284.94 6989.44 24674.12 18696.10 11994.45 84
Vis-MVSNet (Re-imp)77.82 25077.79 25177.92 28288.82 19151.29 37083.28 19971.97 36474.04 16682.23 26689.78 23157.38 31189.41 24857.22 33395.41 14693.05 150
MSLP-MVS++85.00 12886.03 11181.90 21691.84 11971.56 17086.75 12893.02 8775.95 14487.12 16189.39 23677.98 14889.40 24977.46 14894.78 17484.75 325
APD_test188.40 7187.91 8089.88 5189.50 17586.65 2089.98 6591.91 12184.26 4790.87 8993.92 10382.18 10689.29 25073.75 19494.81 17393.70 121
thres600view775.97 27375.35 27577.85 28587.01 24051.84 36680.45 25573.26 35475.20 15683.10 25386.31 29145.54 36889.05 25155.03 34992.24 23792.66 165
jason77.42 25575.75 27082.43 21187.10 23769.27 18877.99 29081.94 29451.47 37977.84 32185.07 31360.32 28989.00 25270.74 22489.27 29289.03 273
jason: jason.
lupinMVS76.37 27074.46 28282.09 21385.54 27069.26 18976.79 30980.77 30450.68 38676.23 33482.82 33858.69 30288.94 25369.85 23388.77 29788.07 284
PMVScopyleft80.48 690.08 4190.66 4888.34 8196.71 392.97 290.31 5989.57 19288.51 2190.11 9695.12 4990.98 688.92 25477.55 14797.07 8383.13 353
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
thres100view90075.45 27775.05 27776.66 30087.27 23051.88 36581.07 24973.26 35475.68 14883.25 25086.37 28845.54 36888.80 25551.98 36790.99 26089.31 265
tfpn200view974.86 28574.23 28476.74 29986.24 25752.12 36279.24 27373.87 34773.34 18081.82 27484.60 31946.02 36188.80 25551.98 36790.99 26089.31 265
thres40075.14 27974.23 28477.86 28486.24 25752.12 36279.24 27373.87 34773.34 18081.82 27484.60 31946.02 36188.80 25551.98 36790.99 26092.66 165
TAMVS78.08 24876.36 26483.23 18890.62 15472.87 14379.08 27680.01 30861.72 30581.35 28486.92 28263.96 26988.78 25850.61 37293.01 22288.04 287
CDS-MVSNet77.32 25675.40 27383.06 19289.00 18672.48 15477.90 29282.17 29260.81 31878.94 31383.49 32959.30 29788.76 25954.64 35292.37 23287.93 290
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
OpenMVS_ROBcopyleft70.19 1777.77 25277.46 25278.71 26684.39 29061.15 28081.18 24882.52 28862.45 29783.34 24987.37 27266.20 25688.66 26064.69 28485.02 34986.32 307
baseline269.77 33466.89 35178.41 27279.51 35358.09 31576.23 32169.57 37757.50 34364.82 40377.45 38546.02 36188.44 26153.08 35977.83 39388.70 277
tpm268.45 34566.83 35273.30 32678.93 36148.50 38079.76 26371.76 36647.50 39169.92 37883.60 32742.07 38988.40 26248.44 38579.51 38583.01 354
新几何182.95 19793.96 5978.56 8880.24 30655.45 35483.93 23791.08 19171.19 23288.33 26365.84 27293.07 22081.95 367
ACMH76.49 1489.34 5991.14 3583.96 16592.50 9470.36 17989.55 7793.84 5281.89 7394.70 1795.44 4090.69 888.31 26483.33 7498.30 2593.20 143
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
thres20072.34 30871.55 31474.70 31983.48 30451.60 36775.02 33573.71 35070.14 22778.56 31780.57 35946.20 35988.20 26546.99 39089.29 29084.32 331
gm-plane-assit75.42 38844.97 39852.17 37372.36 40487.90 26654.10 353
EU-MVSNet75.12 28174.43 28377.18 29283.11 31759.48 30085.71 14882.43 29039.76 41385.64 19788.76 24644.71 38087.88 26773.86 19285.88 33984.16 336
RPSCF88.00 7986.93 9791.22 3190.08 16489.30 589.68 7391.11 14479.26 10489.68 10894.81 5982.44 9787.74 26876.54 15988.74 29996.61 27
D2MVS76.84 26175.67 27280.34 24580.48 34562.16 27173.50 34984.80 27057.61 34282.24 26587.54 26851.31 34087.65 26970.40 22993.19 21891.23 219
dcpmvs_284.23 14685.14 13081.50 22688.61 19961.98 27282.90 21393.11 7968.66 24192.77 5492.39 15178.50 14487.63 27076.99 15692.30 23394.90 66
CostFormer69.98 33268.68 34273.87 32177.14 37050.72 37479.26 27274.51 34251.94 37770.97 37184.75 31645.16 37687.49 27155.16 34879.23 38883.40 347
CVMVSNet72.62 30571.41 31576.28 30583.25 31260.34 29183.50 19479.02 31337.77 41776.33 33285.10 31049.60 34987.41 27270.54 22777.54 39781.08 378
diffmvspermissive80.40 21980.48 21780.17 24879.02 36060.04 29377.54 29890.28 17466.65 26382.40 26387.33 27473.50 20487.35 27377.98 14289.62 28793.13 146
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
testing371.53 31670.79 31773.77 32388.89 19041.86 40676.60 31659.12 41072.83 19180.97 28682.08 34619.80 42687.33 27465.12 27991.68 24992.13 194
VPA-MVSNet83.47 16684.73 13679.69 25490.29 16057.52 32281.30 24688.69 20276.29 13787.58 15694.44 7180.60 12987.20 27566.60 26496.82 9094.34 91
patchmatchnet-post81.71 35045.93 36487.01 276
SCA73.32 29872.57 30475.58 31281.62 32855.86 33478.89 27971.37 36961.73 30474.93 35083.42 33160.46 28787.01 27658.11 33082.63 37483.88 337
mvs_anonymous78.13 24778.76 24076.23 30779.24 35750.31 37678.69 28284.82 26961.60 30883.09 25492.82 13873.89 20087.01 27668.33 25486.41 33291.37 217
TinyColmap81.25 20582.34 18477.99 28185.33 27260.68 28982.32 22988.33 20871.26 21386.97 16892.22 16177.10 16386.98 27962.37 30095.17 15686.31 308
fmvsm_l_conf0.5_n82.06 19281.54 19983.60 17683.94 29773.90 13383.35 19886.10 24158.97 33083.80 23990.36 21674.23 19586.94 28082.90 8190.22 27989.94 256
TransMVSNet (Re)84.02 15285.74 12078.85 26391.00 14655.20 34282.29 23087.26 22179.65 9888.38 13995.52 3783.00 9086.88 28167.97 25696.60 9694.45 84
LF4IMVS82.75 17781.93 18885.19 13582.08 32280.15 7485.53 15088.76 20168.01 24885.58 19987.75 26471.80 22986.85 28274.02 18993.87 20188.58 278
pmmvs686.52 9988.06 7981.90 21692.22 10362.28 26784.66 16589.15 19783.54 5789.85 10497.32 588.08 3886.80 28370.43 22897.30 7896.62 26
KD-MVS_self_test81.93 19683.14 16978.30 27484.75 28352.75 35780.37 25689.42 19570.24 22690.26 9593.39 11974.55 19486.77 28468.61 25096.64 9495.38 52
1112_ss74.82 28673.74 28778.04 28089.57 17260.04 29376.49 31787.09 22954.31 36173.66 35879.80 36660.25 29086.76 28558.37 32684.15 36087.32 298
fmvsm_l_conf0.5_n_a81.46 20280.87 21183.25 18783.73 30273.21 14283.00 20985.59 25258.22 33682.96 25590.09 22772.30 22286.65 28681.97 9689.95 28389.88 257
USDC76.63 26576.73 26276.34 30483.46 30557.20 32580.02 26088.04 21452.14 37583.65 24291.25 18463.24 27386.65 28654.66 35194.11 19485.17 320
tfpnnormal81.79 19982.95 17278.31 27388.93 18955.40 33880.83 25382.85 28676.81 13485.90 19494.14 8974.58 19386.51 28866.82 26295.68 14293.01 152
VPNet80.25 22481.68 19175.94 30892.46 9547.98 38376.70 31181.67 29673.45 17684.87 21492.82 13874.66 19286.51 28861.66 30996.85 8793.33 136
testdata286.43 29063.52 294
MSDG80.06 23079.99 22980.25 24683.91 29968.04 20577.51 29989.19 19677.65 12681.94 27083.45 33076.37 17686.31 29163.31 29686.59 33086.41 306
fmvsm_s_conf0.1_n_a82.58 18081.93 18884.50 14987.68 22173.35 13786.14 13977.70 31861.64 30785.02 20991.62 17577.75 15186.24 29282.79 8487.07 32293.91 109
Anonymous20240521180.51 21681.19 20778.49 27088.48 20257.26 32476.63 31382.49 28981.21 8084.30 22992.24 16067.99 24886.24 29262.22 30195.13 15791.98 201
fmvsm_s_conf0.5_n_a82.21 18681.51 20084.32 15786.56 24673.35 13785.46 15177.30 32261.81 30384.51 21990.88 20177.36 15886.21 29482.72 8586.97 32793.38 134
MVS_111021_LR84.28 14383.76 15985.83 12689.23 18283.07 5580.99 25083.56 28072.71 19486.07 18989.07 24381.75 11686.19 29577.11 15493.36 21188.24 281
test_fmvsmvis_n_192085.22 11985.36 12884.81 14185.80 26776.13 12285.15 15892.32 10861.40 30991.33 7690.85 20283.76 8386.16 29684.31 6793.28 21592.15 193
Baseline_NR-MVSNet84.00 15385.90 11478.29 27591.47 13453.44 35382.29 23087.00 23379.06 10789.55 11595.72 3277.20 16086.14 29772.30 21398.51 1795.28 56
EPNet_dtu72.87 30471.33 31677.49 28977.72 36560.55 29082.35 22875.79 33366.49 26458.39 41581.06 35553.68 33085.98 29853.55 35792.97 22485.95 311
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MonoMVSNet76.66 26477.26 25674.86 31679.86 34954.34 34686.26 13786.08 24271.08 21685.59 19888.68 24853.95 32985.93 29963.86 29080.02 38484.32 331
ANet_high83.17 17185.68 12175.65 31081.24 33345.26 39679.94 26192.91 9183.83 5191.33 7696.88 1380.25 13285.92 30068.89 24595.89 13195.76 42
fmvsm_s_conf0.1_n82.17 18881.59 19683.94 16786.87 24471.57 16985.19 15777.42 32162.27 30184.47 22291.33 18276.43 17485.91 30183.14 7587.14 32094.33 92
Test_1112_low_res73.90 29573.08 29676.35 30390.35 15955.95 33173.40 35186.17 24050.70 38573.14 35985.94 29658.31 30485.90 30256.51 33683.22 36687.20 299
fmvsm_s_conf0.5_n81.91 19781.30 20383.75 17186.02 26471.56 17084.73 16377.11 32562.44 29884.00 23590.68 20876.42 17585.89 30383.14 7587.11 32193.81 117
test_fmvsm_n_192083.60 16282.89 17385.74 12785.22 27577.74 9984.12 17690.48 16059.87 32886.45 18591.12 18975.65 17885.89 30382.28 9190.87 26793.58 129
MIMVSNet183.63 16184.59 14180.74 23894.06 5762.77 25782.72 21684.53 27277.57 12890.34 9395.92 2876.88 17285.83 30561.88 30697.42 7493.62 126
tpmvs70.16 32769.56 33271.96 33974.71 39348.13 38179.63 26475.45 33865.02 28270.26 37681.88 34845.34 37385.68 30658.34 32775.39 40182.08 366
pm-mvs183.69 15984.95 13479.91 25090.04 16859.66 29882.43 22687.44 21875.52 15287.85 15095.26 4581.25 12185.65 30768.74 24896.04 12194.42 87
pmmvs-eth3d78.42 24677.04 25882.57 20887.44 22874.41 13080.86 25279.67 30955.68 35384.69 21790.31 21960.91 28585.42 30862.20 30291.59 25187.88 291
testdata79.54 25792.87 8472.34 15680.14 30759.91 32785.47 20291.75 17367.96 24985.24 30968.57 25292.18 24081.06 380
131473.22 30072.56 30575.20 31380.41 34657.84 31981.64 24185.36 25451.68 37873.10 36076.65 39261.45 28285.19 31063.54 29379.21 38982.59 357
CHOSEN 1792x268872.45 30670.56 32078.13 27790.02 16963.08 25268.72 37883.16 28242.99 40775.92 33985.46 30357.22 31385.18 31149.87 37681.67 37686.14 309
pmmvs474.92 28472.98 29880.73 23984.95 27871.71 16776.23 32177.59 31952.83 36977.73 32586.38 28756.35 31884.97 31257.72 33287.05 32385.51 317
旧先验281.73 23956.88 34986.54 18284.90 31372.81 209
HY-MVS64.64 1873.03 30272.47 30674.71 31883.36 30954.19 34782.14 23781.96 29356.76 35069.57 38086.21 29360.03 29184.83 31449.58 37882.65 37285.11 321
ab-mvs79.67 23380.56 21476.99 29388.48 20256.93 32684.70 16486.06 24368.95 23780.78 29193.08 12675.30 18284.62 31556.78 33490.90 26589.43 263
reproduce_monomvs74.09 29373.23 29476.65 30176.52 37654.54 34477.50 30081.40 29965.85 26882.86 25886.67 28427.38 41884.53 31670.24 23090.66 27590.89 229
IterMVS76.91 26076.34 26578.64 26780.91 33764.03 24176.30 31979.03 31264.88 28383.11 25289.16 24159.90 29384.46 31768.61 25085.15 34787.42 296
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
testing9169.94 33368.99 33872.80 33083.81 30145.89 39271.57 36273.64 35268.24 24670.77 37477.82 38034.37 40384.44 31853.64 35687.00 32688.07 284
VNet79.31 23480.27 21976.44 30287.92 21553.95 34975.58 33084.35 27474.39 16482.23 26690.72 20672.84 21684.39 31960.38 31793.98 19890.97 226
testing9969.27 33968.15 34672.63 33283.29 31045.45 39471.15 36471.08 37067.34 25770.43 37577.77 38232.24 40884.35 32053.72 35586.33 33488.10 283
ppachtmachnet_test74.73 28874.00 28676.90 29680.71 34256.89 32871.53 36378.42 31458.24 33579.32 31082.92 33757.91 30884.26 32165.60 27591.36 25589.56 260
testing1167.38 34865.93 35671.73 34183.37 30846.60 38970.95 36769.40 37862.47 29666.14 39276.66 39131.22 40984.10 32249.10 38084.10 36184.49 327
CR-MVSNet74.00 29473.04 29776.85 29879.58 35162.64 25982.58 22076.90 32650.50 38775.72 34192.38 15248.07 35384.07 32368.72 24982.91 36983.85 340
Patchmtry76.56 26777.46 25273.83 32279.37 35646.60 38982.41 22776.90 32673.81 16985.56 20092.38 15248.07 35383.98 32463.36 29595.31 15290.92 228
gg-mvs-nofinetune68.96 34269.11 33568.52 36476.12 38245.32 39583.59 19255.88 41586.68 2964.62 40497.01 930.36 41183.97 32544.78 39782.94 36876.26 393
GG-mvs-BLEND67.16 37073.36 39846.54 39184.15 17555.04 41658.64 41461.95 41529.93 41283.87 32638.71 40976.92 39971.07 401
PM-MVS80.20 22679.00 23583.78 17088.17 20986.66 1981.31 24466.81 39169.64 23088.33 14090.19 22264.58 26383.63 32771.99 21590.03 28181.06 380
JIA-IIPM69.41 33766.64 35577.70 28673.19 39971.24 17275.67 32765.56 39470.42 22165.18 39992.97 13333.64 40683.06 32853.52 35869.61 41178.79 389
testing22266.93 35065.30 36271.81 34083.38 30745.83 39372.06 35867.50 38464.12 28669.68 37976.37 39427.34 41983.00 32938.88 40788.38 30386.62 305
CMPMVSbinary59.41 2075.12 28173.57 28979.77 25175.84 38467.22 20981.21 24782.18 29150.78 38476.50 33087.66 26655.20 32582.99 33062.17 30490.64 27789.09 272
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
Patchmatch-RL test74.48 28973.68 28876.89 29784.83 28066.54 21872.29 35669.16 38157.70 34086.76 17186.33 28945.79 36782.59 33169.63 23590.65 27681.54 371
KD-MVS_2432*160066.87 35265.81 35870.04 34867.50 41447.49 38562.56 39779.16 31061.21 31577.98 31980.61 35725.29 42282.48 33253.02 36084.92 35080.16 384
miper_refine_blended66.87 35265.81 35870.04 34867.50 41447.49 38562.56 39779.16 31061.21 31577.98 31980.61 35725.29 42282.48 33253.02 36084.92 35080.16 384
tpm cat166.76 35565.21 36371.42 34277.09 37150.62 37578.01 28973.68 35144.89 40068.64 38379.00 37345.51 37082.42 33449.91 37570.15 40881.23 377
mvs5depth83.82 15784.54 14481.68 22382.23 32168.65 19786.89 12189.90 18380.02 9487.74 15297.86 264.19 26782.02 33576.37 16195.63 14394.35 90
MS-PatchMatch70.93 32270.22 32573.06 32881.85 32562.50 26273.82 34777.90 31652.44 37275.92 33981.27 35355.67 32281.75 33655.37 34577.70 39574.94 396
CNLPA83.55 16483.10 17084.90 13989.34 17983.87 5084.54 16988.77 20079.09 10683.54 24688.66 25074.87 18681.73 33766.84 26192.29 23589.11 269
baseline173.26 29973.54 29072.43 33684.92 27947.79 38479.89 26274.00 34565.93 26678.81 31486.28 29256.36 31781.63 33856.63 33579.04 39187.87 292
SSC-MVS77.55 25381.64 19365.29 37990.46 15720.33 42573.56 34868.28 38285.44 3788.18 14494.64 6470.93 23381.33 33971.25 21792.03 24194.20 94
MDA-MVSNet-bldmvs77.47 25476.90 26079.16 26179.03 35964.59 23466.58 38975.67 33573.15 18788.86 12488.99 24466.94 25281.23 34064.71 28388.22 30991.64 212
CL-MVSNet_self_test76.81 26277.38 25475.12 31486.90 24251.34 36873.20 35280.63 30568.30 24581.80 27688.40 25266.92 25380.90 34155.35 34694.90 16893.12 148
MDTV_nov1_ep1368.29 34578.03 36343.87 40174.12 34272.22 36152.17 37367.02 39185.54 30045.36 37280.85 34255.73 34084.42 358
pmmvs570.73 32370.07 32672.72 33177.03 37252.73 35874.14 34175.65 33650.36 38872.17 36585.37 30755.42 32480.67 34352.86 36387.59 31784.77 324
SDMVSNet81.90 19883.17 16878.10 27888.81 19262.45 26376.08 32486.05 24473.67 17183.41 24793.04 12782.35 10080.65 34470.06 23295.03 16291.21 220
WBMVS68.76 34368.43 34369.75 35283.29 31040.30 40967.36 38572.21 36257.09 34777.05 32885.53 30133.68 40580.51 34548.79 38290.90 26588.45 280
UWE-MVS66.43 35665.56 36169.05 35784.15 29540.98 40773.06 35464.71 39754.84 35876.18 33679.62 36929.21 41380.50 34638.54 41089.75 28585.66 315
Gipumacopyleft84.44 13886.33 10578.78 26484.20 29473.57 13589.55 7790.44 16284.24 4884.38 22394.89 5376.35 17780.40 34776.14 16696.80 9182.36 363
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_post178.85 2813.13 42245.19 37580.13 34858.11 330
PatchmatchNetpermissive69.71 33568.83 34072.33 33877.66 36653.60 35179.29 27169.99 37557.66 34172.53 36382.93 33646.45 35880.08 34960.91 31472.09 40583.31 350
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
mmtdpeth85.13 12385.78 11983.17 19184.65 28474.71 12785.87 14390.35 16777.94 12183.82 23896.96 1277.75 15180.03 35078.44 13096.21 11294.79 74
ETVMVS64.67 36463.34 37068.64 36183.44 30641.89 40569.56 37661.70 40661.33 31268.74 38275.76 39628.76 41479.35 35134.65 41486.16 33784.67 326
Syy-MVS69.40 33870.03 32867.49 36881.72 32638.94 41171.00 36561.99 40161.38 31070.81 37272.36 40461.37 28379.30 35264.50 28885.18 34584.22 333
myMVS_eth3d64.66 36563.89 36666.97 37181.72 32637.39 41471.00 36561.99 40161.38 31070.81 37272.36 40420.96 42579.30 35249.59 37785.18 34584.22 333
FMVSNet572.10 31071.69 31073.32 32581.57 32953.02 35676.77 31078.37 31563.31 28876.37 33191.85 16636.68 40078.98 35447.87 38792.45 23187.95 289
WB-MVS76.06 27280.01 22864.19 38289.96 17020.58 42472.18 35768.19 38383.21 5986.46 18493.49 11770.19 23778.97 35565.96 26890.46 27893.02 151
our_test_371.85 31171.59 31172.62 33380.71 34253.78 35069.72 37571.71 36858.80 33278.03 31880.51 36156.61 31678.84 35662.20 30286.04 33885.23 319
miper_lstm_enhance76.45 26976.10 26777.51 28876.72 37560.97 28664.69 39385.04 26263.98 28783.20 25188.22 25456.67 31578.79 35773.22 20293.12 21992.78 159
UBG64.34 36763.35 36967.30 36983.50 30340.53 40867.46 38465.02 39654.77 35967.54 39074.47 40032.99 40778.50 35840.82 40483.58 36382.88 355
PatchMatch-RL74.48 28973.22 29578.27 27687.70 22085.26 3875.92 32670.09 37464.34 28576.09 33781.25 35465.87 25978.07 35953.86 35483.82 36271.48 400
sd_testset79.95 23281.39 20275.64 31188.81 19258.07 31676.16 32382.81 28773.67 17183.41 24793.04 12780.96 12477.65 36058.62 32595.03 16291.21 220
Anonymous2024052180.18 22781.25 20476.95 29483.15 31660.84 28782.46 22585.99 24668.76 23986.78 17093.73 11259.13 29977.44 36173.71 19597.55 6992.56 169
ADS-MVSNet265.87 36063.64 36872.55 33473.16 40056.92 32767.10 38674.81 33949.74 38966.04 39482.97 33446.71 35677.26 36242.29 40069.96 40983.46 345
test_post3.10 42345.43 37177.22 363
MVS-HIRNet61.16 37562.92 37255.87 39679.09 35835.34 41771.83 35957.98 41446.56 39459.05 41291.14 18849.95 34876.43 36438.74 40871.92 40655.84 415
MIMVSNet71.09 32071.59 31169.57 35487.23 23150.07 37778.91 27871.83 36560.20 32671.26 36891.76 17255.08 32776.09 36541.06 40387.02 32582.54 360
tpm67.95 34668.08 34767.55 36778.74 36243.53 40275.60 32867.10 39054.92 35772.23 36488.10 25642.87 38875.97 36652.21 36580.95 38383.15 352
FPMVS72.29 30972.00 30873.14 32788.63 19885.00 4074.65 33967.39 38571.94 20777.80 32387.66 26650.48 34575.83 36749.95 37479.51 38558.58 414
PatchT70.52 32472.76 30163.79 38479.38 35533.53 41877.63 29665.37 39573.61 17371.77 36692.79 14144.38 38175.65 36864.53 28785.37 34282.18 364
ttmdpeth71.72 31370.67 31874.86 31673.08 40255.88 33377.41 30369.27 37955.86 35278.66 31593.77 11038.01 39775.39 36960.12 31889.87 28493.31 138
PVSNet58.17 2166.41 35765.63 36068.75 36081.96 32349.88 37862.19 39972.51 35951.03 38268.04 38675.34 39850.84 34274.77 37045.82 39582.96 36781.60 370
tpmrst66.28 35866.69 35465.05 38072.82 40439.33 41078.20 28870.69 37353.16 36867.88 38780.36 36248.18 35274.75 37158.13 32970.79 40781.08 378
test20.0373.75 29674.59 28171.22 34381.11 33551.12 37270.15 37372.10 36370.42 22180.28 30091.50 17864.21 26674.72 37246.96 39194.58 18187.82 293
patch_mono-278.89 23779.39 23277.41 29084.78 28168.11 20375.60 32883.11 28360.96 31779.36 30889.89 23075.18 18372.97 37373.32 20192.30 23391.15 222
pmmvs362.47 36960.02 38269.80 35171.58 40864.00 24270.52 37058.44 41339.77 41266.05 39375.84 39527.10 42172.28 37446.15 39384.77 35773.11 398
Anonymous2023120671.38 31871.88 30969.88 35086.31 25454.37 34570.39 37174.62 34052.57 37176.73 32988.76 24659.94 29272.06 37544.35 39893.23 21783.23 351
new-patchmatchnet70.10 32873.37 29360.29 39281.23 33416.95 42759.54 40374.62 34062.93 29180.97 28687.93 26062.83 27971.90 37655.24 34795.01 16592.00 199
WB-MVSnew68.72 34469.01 33767.85 36583.22 31443.98 40074.93 33665.98 39255.09 35573.83 35679.11 37165.63 26071.89 37738.21 41185.04 34887.69 294
test_fmvs375.72 27675.20 27677.27 29175.01 39269.47 18678.93 27784.88 26746.67 39387.08 16587.84 26250.44 34671.62 37877.42 15188.53 30090.72 234
dp60.70 37860.29 38161.92 38872.04 40738.67 41370.83 36864.08 39851.28 38060.75 40877.28 38636.59 40171.58 37947.41 38862.34 41575.52 395
MVStest170.05 33069.26 33372.41 33758.62 42455.59 33776.61 31565.58 39353.44 36589.28 12093.32 12022.91 42471.44 38074.08 18889.52 28890.21 252
UnsupCasMVSNet_bld69.21 34069.68 33167.82 36679.42 35451.15 37167.82 38375.79 33354.15 36277.47 32785.36 30859.26 29870.64 38148.46 38479.35 38781.66 369
test_fmvs273.57 29772.80 29975.90 30972.74 40568.84 19677.07 30684.32 27545.14 39982.89 25684.22 32248.37 35170.36 38273.40 20087.03 32488.52 279
test-LLR67.21 34966.74 35368.63 36276.45 37955.21 34067.89 38067.14 38862.43 29965.08 40072.39 40243.41 38469.37 38361.00 31284.89 35381.31 373
test-mter65.00 36363.79 36768.63 36276.45 37955.21 34067.89 38067.14 38850.98 38365.08 40072.39 40228.27 41669.37 38361.00 31284.89 35381.31 373
XXY-MVS74.44 29176.19 26669.21 35684.61 28552.43 36171.70 36077.18 32460.73 32080.60 29290.96 19675.44 17969.35 38556.13 33988.33 30485.86 313
UnsupCasMVSNet_eth71.63 31572.30 30769.62 35376.47 37852.70 35970.03 37480.97 30259.18 32979.36 30888.21 25560.50 28669.12 38658.33 32877.62 39687.04 300
WTY-MVS67.91 34768.35 34466.58 37380.82 34048.12 38265.96 39072.60 35753.67 36471.20 36981.68 35158.97 30069.06 38748.57 38381.67 37682.55 359
test_vis1_n_192071.30 31971.58 31370.47 34677.58 36759.99 29574.25 34084.22 27651.06 38174.85 35179.10 37255.10 32668.83 38868.86 24679.20 39082.58 358
test_vis1_n70.29 32569.99 32971.20 34475.97 38366.50 21976.69 31280.81 30344.22 40275.43 34477.23 38750.00 34768.59 38966.71 26382.85 37178.52 390
test_fmvs1_n70.94 32170.41 32472.53 33573.92 39466.93 21575.99 32584.21 27743.31 40679.40 30779.39 37043.47 38368.55 39069.05 24384.91 35282.10 365
test_fmvs169.57 33669.05 33671.14 34569.15 41365.77 22773.98 34483.32 28142.83 40877.77 32478.27 37943.39 38668.50 39168.39 25384.38 35979.15 388
test0.0.03 164.66 36564.36 36465.57 37775.03 39146.89 38864.69 39361.58 40762.43 29971.18 37077.54 38343.41 38468.47 39240.75 40582.65 37281.35 372
dmvs_testset60.59 37962.54 37454.72 39877.26 36827.74 42174.05 34361.00 40860.48 32265.62 39767.03 41155.93 32068.23 39332.07 41869.46 41268.17 405
CHOSEN 280x42059.08 38056.52 38566.76 37276.51 37764.39 23849.62 41459.00 41143.86 40355.66 41868.41 41035.55 40268.21 39443.25 39976.78 40067.69 406
YYNet170.06 32970.44 32268.90 35873.76 39653.42 35458.99 40667.20 38758.42 33487.10 16385.39 30659.82 29467.32 39559.79 32083.50 36585.96 310
MDA-MVSNet_test_wron70.05 33070.44 32268.88 35973.84 39553.47 35258.93 40767.28 38658.43 33387.09 16485.40 30559.80 29567.25 39659.66 32183.54 36485.92 312
EMVS61.10 37660.81 37861.99 38765.96 41955.86 33453.10 41358.97 41267.06 25956.89 41763.33 41340.98 39067.03 39754.79 35086.18 33663.08 409
testgi72.36 30774.61 27965.59 37680.56 34442.82 40468.29 37973.35 35366.87 26181.84 27389.93 22872.08 22666.92 39846.05 39492.54 23087.01 301
EPMVS62.47 36962.63 37362.01 38670.63 41038.74 41274.76 33752.86 41753.91 36367.71 38980.01 36439.40 39366.60 39955.54 34468.81 41380.68 382
PMMVS61.65 37260.38 37965.47 37865.40 42169.26 18963.97 39561.73 40536.80 41860.11 41068.43 40959.42 29666.35 40048.97 38178.57 39260.81 411
E-PMN61.59 37361.62 37661.49 38966.81 41655.40 33853.77 41260.34 40966.80 26258.90 41365.50 41240.48 39266.12 40155.72 34186.25 33562.95 410
PVSNet_051.08 2256.10 38254.97 38759.48 39475.12 39053.28 35555.16 41161.89 40344.30 40159.16 41162.48 41454.22 32865.91 40235.40 41347.01 41759.25 413
test_cas_vis1_n_192069.20 34169.12 33469.43 35573.68 39762.82 25670.38 37277.21 32346.18 39680.46 29778.95 37452.03 33665.53 40365.77 27477.45 39879.95 386
sss66.92 35167.26 34965.90 37577.23 36951.10 37364.79 39271.72 36752.12 37670.13 37780.18 36357.96 30765.36 40450.21 37381.01 38281.25 375
TESTMET0.1,161.29 37460.32 38064.19 38272.06 40651.30 36967.89 38062.09 40045.27 39860.65 40969.01 40827.93 41764.74 40556.31 33781.65 37876.53 392
dmvs_re66.81 35466.98 35066.28 37476.87 37358.68 31371.66 36172.24 36060.29 32469.52 38173.53 40152.38 33564.40 40644.90 39681.44 37975.76 394
ADS-MVSNet61.90 37162.19 37561.03 39173.16 40036.42 41667.10 38661.75 40449.74 38966.04 39482.97 33446.71 35663.21 40742.29 40069.96 40983.46 345
DSMNet-mixed60.98 37761.61 37759.09 39572.88 40345.05 39774.70 33846.61 42126.20 41965.34 39890.32 21855.46 32363.12 40841.72 40281.30 38169.09 404
mvsany_test365.48 36262.97 37173.03 32969.99 41176.17 12164.83 39143.71 42243.68 40480.25 30187.05 28152.83 33363.09 40951.92 37072.44 40479.84 387
test_vis3_rt71.42 31770.67 31873.64 32469.66 41270.46 17766.97 38889.73 18542.68 40988.20 14383.04 33343.77 38260.07 41065.35 27886.66 32990.39 246
test_vis1_rt65.64 36164.09 36570.31 34766.09 41870.20 18061.16 40081.60 29738.65 41472.87 36169.66 40752.84 33260.04 41156.16 33877.77 39480.68 382
Patchmatch-test65.91 35967.38 34861.48 39075.51 38643.21 40368.84 37763.79 39962.48 29572.80 36283.42 33144.89 37959.52 41248.27 38686.45 33181.70 368
mvsany_test158.48 38156.47 38664.50 38165.90 42068.21 20256.95 41042.11 42338.30 41565.69 39677.19 38956.96 31459.35 41346.16 39258.96 41665.93 407
dongtai41.90 38642.65 38939.67 40170.86 40921.11 42361.01 40121.42 42857.36 34457.97 41650.06 41716.40 42758.73 41421.03 42127.69 42139.17 417
N_pmnet70.20 32668.80 34174.38 32080.91 33784.81 4359.12 40576.45 33155.06 35675.31 34882.36 34355.74 32154.82 41547.02 38987.24 31983.52 344
wuyk23d75.13 28079.30 23362.63 38575.56 38575.18 12680.89 25173.10 35675.06 15894.76 1695.32 4187.73 4352.85 41634.16 41597.11 8259.85 412
test_f64.31 36865.85 35759.67 39366.54 41762.24 27057.76 40970.96 37140.13 41184.36 22482.09 34546.93 35551.67 41761.99 30581.89 37565.12 408
PMMVS255.64 38459.27 38344.74 40064.30 42212.32 42840.60 41549.79 41953.19 36765.06 40284.81 31553.60 33149.76 41832.68 41789.41 28972.15 399
new_pmnet55.69 38357.66 38449.76 39975.47 38730.59 41959.56 40251.45 41843.62 40562.49 40675.48 39740.96 39149.15 41937.39 41272.52 40369.55 403
MVEpermissive40.22 2351.82 38550.47 38855.87 39662.66 42351.91 36431.61 41739.28 42440.65 41050.76 41974.98 39956.24 31944.67 42033.94 41664.11 41471.04 402
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method30.46 38829.60 39133.06 40217.99 4273.84 43013.62 41873.92 3462.79 42118.29 42353.41 41628.53 41543.25 42122.56 41935.27 41952.11 416
kuosan30.83 38732.17 39026.83 40353.36 42519.02 42657.90 40820.44 42938.29 41638.01 42037.82 41915.18 42833.45 4227.74 42320.76 42228.03 418
DeepMVS_CXcopyleft24.13 40432.95 42629.49 42021.63 42712.07 42037.95 42145.07 41830.84 41019.21 42317.94 42233.06 42023.69 419
tmp_tt20.25 39024.50 3937.49 4054.47 4288.70 42934.17 41625.16 4261.00 42332.43 42218.49 42039.37 3949.21 42421.64 42043.75 4184.57 420
test1236.27 3938.08 3960.84 4061.11 4300.57 43162.90 3960.82 4300.54 4241.07 4262.75 4251.26 4290.30 4251.04 4241.26 4241.66 421
testmvs5.91 3947.65 3970.72 4071.20 4290.37 43259.14 4040.67 4310.49 4251.11 4252.76 4240.94 4300.24 4261.02 4251.47 4231.55 422
mmdepth0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
monomultidepth0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
test_blank0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
uanet_test0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
DCPMVS0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
cdsmvs_eth3d_5k20.81 38927.75 3920.00 4080.00 4310.00 4330.00 41985.44 2530.00 4260.00 42782.82 33881.46 1180.00 4270.00 4260.00 4250.00 423
pcd_1.5k_mvsjas6.41 3928.55 3950.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 42676.94 1660.00 4270.00 4260.00 4250.00 423
sosnet-low-res0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
sosnet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
uncertanet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
Regformer0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
ab-mvs-re6.65 3918.87 3940.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 42779.80 3660.00 4310.00 4270.00 4260.00 4250.00 423
uanet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
WAC-MVS37.39 41452.61 364
FOURS196.08 1287.41 1496.19 295.83 592.95 396.57 3
test_one_060193.85 6273.27 14094.11 3886.57 3093.47 4194.64 6488.42 28
eth-test20.00 431
eth-test0.00 431
RE-MVS-def92.61 894.13 5588.95 692.87 1394.16 3288.75 1893.79 3294.43 7290.64 1087.16 3297.60 6692.73 160
IU-MVS94.18 5072.64 14790.82 15256.98 34889.67 10985.78 5297.92 4993.28 139
save fliter93.75 6377.44 10386.31 13589.72 18670.80 218
test072694.16 5372.56 15190.63 4993.90 4883.61 5593.75 3494.49 6989.76 18
GSMVS83.88 337
test_part293.86 6177.77 9892.84 51
sam_mvs146.11 36083.88 337
sam_mvs45.92 365
MTGPAbinary91.81 126
MTMP90.66 4833.14 425
test9_res80.83 10596.45 10390.57 240
agg_prior279.68 11896.16 11590.22 248
test_prior478.97 8484.59 166
test_prior283.37 19775.43 15384.58 21891.57 17681.92 11379.54 12196.97 85
新几何281.72 240
旧先验191.97 11171.77 16381.78 29591.84 16773.92 19993.65 20883.61 343
原ACMM282.26 233
test22293.31 7376.54 11379.38 27077.79 31752.59 37082.36 26490.84 20366.83 25491.69 24881.25 375
segment_acmp81.94 110
testdata179.62 26573.95 168
plane_prior793.45 6877.31 106
plane_prior692.61 9076.54 11374.84 187
plane_prior492.95 134
plane_prior376.85 11177.79 12586.55 177
plane_prior289.45 8279.44 101
plane_prior192.83 88
plane_prior76.42 11687.15 11775.94 14595.03 162
n20.00 432
nn0.00 432
door-mid74.45 343
test1191.46 132
door72.57 358
HQP5-MVS70.66 175
HQP-NCC91.19 13984.77 16073.30 18280.55 294
ACMP_Plane91.19 13984.77 16073.30 18280.55 294
BP-MVS77.30 152
HQP3-MVS92.68 9894.47 183
HQP2-MVS72.10 224
NP-MVS91.95 11274.55 12990.17 225
MDTV_nov1_ep13_2view27.60 42270.76 36946.47 39561.27 40745.20 37449.18 37983.75 342
ACMMP++_ref95.74 140
ACMMP++97.35 75
Test By Simon79.09 140