This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort by
MM89.09 6576.39 11588.68 9186.76 22584.54 4183.58 23293.78 10573.36 20396.48 187.98 996.21 11294.41 86
APDe-MVScopyleft91.22 2191.92 1189.14 6492.97 8078.04 8992.84 1594.14 3183.33 5393.90 2495.73 2788.77 2596.41 287.60 1897.98 4292.98 152
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
MSP-MVS89.08 6288.16 7391.83 1895.76 1786.14 2192.75 1693.90 4278.43 11189.16 11992.25 15172.03 22096.36 388.21 790.93 25792.98 152
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DPE-MVScopyleft90.53 3291.08 3388.88 6793.38 6978.65 8389.15 8294.05 3684.68 4093.90 2494.11 8888.13 3496.30 484.51 6397.81 5291.70 201
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SteuartSystems-ACMMP91.16 2391.36 2490.55 3793.91 5680.97 6691.49 3793.48 5782.82 6092.60 5493.97 9388.19 3196.29 587.61 1798.20 3194.39 87
Skip Steuart: Steuart Systems R&D Blog.
ZD-MVS92.22 10280.48 6791.85 11471.22 20490.38 9192.98 12486.06 5996.11 681.99 9296.75 91
SMA-MVScopyleft90.31 3490.48 4689.83 5095.31 2979.52 7790.98 4393.24 6875.37 14792.84 4895.28 3885.58 6296.09 787.92 1097.76 5593.88 110
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MSC_two_6792asdad88.81 6991.55 12777.99 9091.01 13996.05 887.45 2098.17 3292.40 173
No_MVS88.81 6991.55 12777.99 9091.01 13996.05 887.45 2098.17 3292.40 173
DTE-MVSNet89.98 4391.91 1384.21 15796.51 757.84 31088.93 8592.84 8791.92 396.16 396.23 1886.95 4895.99 1079.05 12298.57 1498.80 6
PGM-MVS91.20 2290.95 3991.93 1395.67 2285.85 2790.00 5793.90 4280.32 8591.74 6994.41 7188.17 3295.98 1186.37 3897.99 4093.96 106
APD-MVScopyleft89.54 5289.63 5489.26 6292.57 8981.34 6490.19 5693.08 7680.87 8191.13 7993.19 11686.22 5795.97 1282.23 8997.18 7990.45 233
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
TSAR-MVS + MP.88.14 7287.82 7889.09 6595.72 2176.74 10892.49 2491.19 13567.85 24286.63 16894.84 5179.58 13295.96 1387.62 1694.50 17994.56 76
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
LCM-MVSNet95.70 196.40 193.61 298.67 185.39 3395.54 597.36 196.97 199.04 199.05 196.61 195.92 1485.07 5599.27 199.54 1
RRT_MVS88.30 7087.83 7789.70 5293.62 6475.70 12192.36 2689.06 18877.34 12293.63 3595.83 2565.40 25395.90 1585.01 5898.23 2797.49 13
WR-MVS_H89.91 4691.31 2985.71 12596.32 962.39 25789.54 7493.31 6490.21 1095.57 995.66 2981.42 11495.90 1580.94 10098.80 298.84 5
DVP-MVS++90.07 3891.09 3287.00 9591.55 12772.64 14596.19 294.10 3485.33 3393.49 3694.64 6081.12 11795.88 1787.41 2295.94 12692.48 169
test_0728_SECOND86.79 10094.25 4572.45 15390.54 4894.10 3495.88 1786.42 3697.97 4392.02 191
ZNCC-MVS91.26 2091.34 2791.01 3095.73 2083.05 5292.18 2894.22 2480.14 8891.29 7693.97 9387.93 3895.87 1988.65 497.96 4594.12 99
region2R91.44 1891.30 3091.87 1795.75 1885.90 2592.63 2093.30 6581.91 6790.88 8794.21 8087.75 3995.87 1987.60 1897.71 5893.83 112
ACMMPR91.49 1591.35 2691.92 1495.74 1985.88 2692.58 2193.25 6781.99 6591.40 7294.17 8487.51 4295.87 1987.74 1397.76 5593.99 103
3Dnovator+83.92 289.97 4589.66 5390.92 3191.27 13681.66 6291.25 3894.13 3288.89 1188.83 12494.26 7877.55 14995.86 2284.88 5995.87 13095.24 58
SED-MVS90.46 3391.64 1786.93 9794.18 4672.65 14390.47 5193.69 5083.77 4794.11 2294.27 7590.28 1495.84 2386.03 4697.92 4692.29 179
test_241102_TWO93.71 4983.77 4793.49 3694.27 7589.27 2195.84 2386.03 4697.82 5192.04 190
GST-MVS90.96 2591.01 3690.82 3395.45 2782.73 5591.75 3593.74 4880.98 7991.38 7393.80 10387.20 4695.80 2587.10 3197.69 5993.93 107
XVS91.54 1391.36 2492.08 895.64 2386.25 1892.64 1893.33 6185.07 3689.99 9994.03 9086.57 5295.80 2587.35 2497.62 6294.20 92
X-MVStestdata85.04 11982.70 16792.08 895.64 2386.25 1892.64 1893.33 6185.07 3689.99 9916.05 39786.57 5295.80 2587.35 2497.62 6294.20 92
DVP-MVScopyleft90.06 3991.32 2886.29 10994.16 4972.56 14990.54 4891.01 13983.61 5093.75 3094.65 5789.76 1895.78 2886.42 3697.97 4390.55 231
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD85.33 3393.75 3094.65 5787.44 4395.78 2887.41 2298.21 2992.98 152
DeepC-MVS82.31 489.15 6089.08 6289.37 6093.64 6379.07 7988.54 9494.20 2573.53 16689.71 10694.82 5285.09 6395.77 3084.17 6698.03 3893.26 139
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
HPM-MVScopyleft92.13 792.20 991.91 1595.58 2584.67 4293.51 894.85 1482.88 5991.77 6893.94 9990.55 1295.73 3188.50 698.23 2795.33 54
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
MVS_030486.35 9785.92 10887.66 8889.21 18073.16 14088.40 9683.63 26881.27 7480.87 27794.12 8771.49 22495.71 3287.79 1296.50 9994.11 100
CP-MVS91.67 1291.58 1991.96 1295.29 3087.62 993.38 993.36 5983.16 5591.06 8194.00 9288.26 3095.71 3287.28 2798.39 2092.55 167
SR-MVS92.23 692.34 791.91 1594.89 3787.85 892.51 2393.87 4588.20 1993.24 3994.02 9190.15 1695.67 3486.82 3397.34 7492.19 185
ACMMPcopyleft91.91 1091.87 1592.03 1195.53 2685.91 2493.35 1194.16 2782.52 6292.39 5894.14 8589.15 2395.62 3587.35 2498.24 2694.56 76
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
PEN-MVS90.03 4191.88 1484.48 14796.57 558.88 30088.95 8493.19 6991.62 496.01 696.16 2087.02 4795.60 3678.69 12598.72 898.97 3
mvsmamba87.87 7887.23 8689.78 5192.31 9976.51 11291.09 4291.87 11372.61 18692.16 6095.23 4166.01 24995.59 3786.02 4897.78 5397.24 17
PS-CasMVS90.06 3991.92 1184.47 14896.56 658.83 30389.04 8392.74 9091.40 596.12 496.06 2287.23 4595.57 3879.42 12098.74 599.00 2
HFP-MVS91.30 1991.39 2391.02 2995.43 2884.66 4392.58 2193.29 6681.99 6591.47 7193.96 9688.35 2995.56 3987.74 1397.74 5792.85 155
RPMNet78.88 22778.28 23680.68 23279.58 33162.64 25282.58 21094.16 2774.80 15175.72 32692.59 13848.69 33995.56 3973.48 18982.91 34883.85 319
CP-MVSNet89.27 5890.91 4084.37 14996.34 858.61 30688.66 9292.06 10690.78 695.67 795.17 4381.80 11095.54 4179.00 12398.69 998.95 4
LPG-MVS_test91.47 1791.68 1690.82 3394.75 4081.69 5990.00 5794.27 1982.35 6393.67 3394.82 5291.18 495.52 4285.36 5298.73 695.23 59
LGP-MVS_train90.82 3394.75 4081.69 5994.27 1982.35 6393.67 3394.82 5291.18 495.52 4285.36 5298.73 695.23 59
SR-MVS-dyc-post92.41 592.41 692.39 494.13 5188.95 592.87 1394.16 2788.75 1493.79 2894.43 6888.83 2495.51 4487.16 2997.60 6492.73 158
mPP-MVS91.69 1191.47 2292.37 596.04 1288.48 792.72 1792.60 9383.09 5691.54 7094.25 7987.67 4195.51 4487.21 2898.11 3593.12 146
test_241102_ONE94.18 4672.65 14393.69 5083.62 4994.11 2293.78 10590.28 1495.50 46
EC-MVSNet88.01 7588.32 7287.09 9389.28 17772.03 15990.31 5496.31 380.88 8085.12 19689.67 22384.47 7095.46 4782.56 8496.26 11193.77 118
ACMMP_NAP90.65 2891.07 3589.42 5995.93 1579.54 7689.95 6193.68 5277.65 11991.97 6594.89 4988.38 2795.45 4889.27 397.87 5093.27 138
CANet83.79 15082.85 16586.63 10286.17 25372.21 15883.76 17891.43 12577.24 12574.39 33887.45 25975.36 17495.42 4977.03 15092.83 21992.25 183
MP-MVScopyleft91.14 2490.91 4091.83 1896.18 1086.88 1392.20 2793.03 8082.59 6188.52 13094.37 7486.74 5095.41 5086.32 3998.21 2993.19 142
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
LS3D90.60 3090.34 4791.38 2489.03 18384.23 4593.58 694.68 1690.65 790.33 9393.95 9884.50 6995.37 5180.87 10195.50 14394.53 79
HPM-MVS_fast92.50 492.54 592.37 595.93 1585.81 2992.99 1294.23 2285.21 3592.51 5595.13 4490.65 995.34 5288.06 898.15 3495.95 41
NCCC87.36 8386.87 9488.83 6892.32 9878.84 8286.58 12691.09 13778.77 10784.85 20490.89 19080.85 12095.29 5381.14 9895.32 14892.34 176
EPP-MVSNet85.47 11185.04 12586.77 10191.52 13069.37 18591.63 3687.98 20681.51 7287.05 15991.83 16066.18 24895.29 5370.75 21496.89 8595.64 46
MTAPA91.52 1491.60 1891.29 2696.59 486.29 1792.02 3091.81 11884.07 4492.00 6494.40 7286.63 5195.28 5588.59 598.31 2392.30 178
HQP_MVS87.75 8287.43 8488.70 7393.45 6676.42 11389.45 7793.61 5379.44 9686.55 16992.95 12774.84 18095.22 5680.78 10395.83 13294.46 80
plane_prior593.61 5395.22 5680.78 10395.83 13294.46 80
ACMP79.16 1090.54 3190.60 4590.35 4194.36 4380.98 6589.16 8194.05 3679.03 10392.87 4693.74 10790.60 1195.21 5882.87 7998.76 394.87 67
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
DeepC-MVS_fast80.27 886.23 9985.65 11687.96 8591.30 13476.92 10687.19 11091.99 10870.56 20984.96 20090.69 19880.01 12995.14 5978.37 12795.78 13791.82 197
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ETV-MVS84.31 13483.91 15085.52 12888.58 19670.40 17684.50 16093.37 5878.76 10884.07 22478.72 36080.39 12595.13 6073.82 18492.98 21691.04 215
APD-MVS_3200maxsize92.05 892.24 891.48 2193.02 7885.17 3592.47 2595.05 1387.65 2293.21 4094.39 7390.09 1795.08 6186.67 3597.60 6494.18 95
HPM-MVS++copyleft88.93 6488.45 7190.38 4094.92 3585.85 2789.70 6691.27 13278.20 11386.69 16792.28 15080.36 12695.06 6286.17 4496.49 10090.22 237
MP-MVS-pluss90.81 2691.08 3389.99 4695.97 1379.88 7188.13 9994.51 1775.79 14092.94 4494.96 4788.36 2895.01 6390.70 298.40 1995.09 63
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
CDPH-MVS86.17 10385.54 11788.05 8492.25 10075.45 12283.85 17492.01 10765.91 25586.19 17891.75 16583.77 7794.98 6477.43 14596.71 9293.73 119
COLMAP_ROBcopyleft83.01 391.97 991.95 1092.04 1093.68 6286.15 2093.37 1095.10 1290.28 992.11 6195.03 4689.75 2094.93 6579.95 11198.27 2595.04 64
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
IS-MVSNet86.66 9386.82 9686.17 11592.05 10866.87 20991.21 3988.64 19386.30 2889.60 11392.59 13869.22 23394.91 6673.89 18297.89 4996.72 26
OurMVSNet-221017-090.01 4289.74 5290.83 3293.16 7680.37 6891.91 3393.11 7381.10 7795.32 1097.24 572.94 20794.85 6785.07 5597.78 5397.26 16
test1286.57 10390.74 14972.63 14790.69 14782.76 24679.20 13394.80 6895.32 14892.27 181
SixPastTwentyTwo87.20 8587.45 8386.45 10692.52 9169.19 19087.84 10488.05 20481.66 7094.64 1496.53 1465.94 25094.75 6983.02 7796.83 8895.41 51
CNVR-MVS87.81 8187.68 7988.21 8192.87 8277.30 10385.25 14491.23 13377.31 12487.07 15891.47 17182.94 8694.71 7084.67 6196.27 11092.62 165
OPU-MVS88.27 8091.89 11377.83 9390.47 5191.22 17781.12 11794.68 7174.48 17395.35 14692.29 179
K. test v385.14 11784.73 12986.37 10791.13 14169.63 18385.45 14176.68 31884.06 4592.44 5796.99 862.03 27094.65 7280.58 10693.24 20994.83 72
SF-MVS90.27 3590.80 4288.68 7492.86 8477.09 10491.19 4095.74 581.38 7392.28 5993.80 10386.89 4994.64 7385.52 5197.51 7194.30 91
HQP4-MVS80.56 28194.61 7493.56 129
HQP-MVS84.61 12784.06 14686.27 11091.19 13770.66 17384.77 14992.68 9173.30 17280.55 28290.17 21572.10 21694.61 7477.30 14794.47 18093.56 129
PS-MVSNAJss88.31 6987.90 7689.56 5793.31 7177.96 9287.94 10291.97 10970.73 20894.19 2196.67 1176.94 15994.57 7683.07 7596.28 10896.15 33
DeepPCF-MVS81.24 587.28 8486.21 10490.49 3891.48 13184.90 3883.41 18692.38 9870.25 21589.35 11890.68 19982.85 8794.57 7679.55 11795.95 12592.00 192
UA-Net91.49 1591.53 2091.39 2394.98 3482.95 5493.52 792.79 8888.22 1888.53 12997.64 283.45 8194.55 7886.02 4898.60 1296.67 27
CS-MVS88.14 7287.67 8089.54 5889.56 17179.18 7890.47 5194.77 1579.37 9884.32 21589.33 22983.87 7494.53 7982.45 8594.89 16794.90 65
CS-MVS-test87.00 8686.43 10088.71 7289.46 17377.46 9889.42 7995.73 677.87 11781.64 26787.25 26382.43 9394.53 7977.65 14096.46 10294.14 98
iter_conf_final80.36 21078.88 22584.79 13986.29 24866.36 21586.95 11586.25 23068.16 23682.09 25689.48 22536.59 38794.51 8179.83 11394.30 18693.50 132
iter_conf0578.81 22977.35 24483.21 18482.98 30060.75 28084.09 16688.34 19863.12 27684.25 22289.48 22531.41 39294.51 8176.64 15395.83 13294.38 88
114514_t83.10 16582.54 17284.77 14192.90 8169.10 19286.65 12490.62 15054.66 33881.46 26990.81 19576.98 15894.38 8372.62 20196.18 11390.82 221
MVSFormer82.23 17581.57 18884.19 15985.54 26369.26 18791.98 3190.08 16971.54 19976.23 32085.07 29958.69 29294.27 8486.26 4088.77 28589.03 261
test_djsdf89.62 5089.01 6391.45 2292.36 9582.98 5391.98 3190.08 16971.54 19994.28 2096.54 1381.57 11294.27 8486.26 4096.49 10097.09 21
原ACMM184.60 14592.81 8774.01 13091.50 12362.59 27982.73 24790.67 20176.53 16694.25 8669.24 22895.69 14085.55 298
AdaColmapbinary83.66 15283.69 15283.57 17590.05 16572.26 15686.29 13090.00 17178.19 11481.65 26687.16 26583.40 8294.24 8761.69 29694.76 17584.21 314
Effi-MVS+-dtu85.82 10883.38 15493.14 387.13 22691.15 287.70 10588.42 19574.57 15483.56 23385.65 28678.49 13994.21 8872.04 20592.88 21894.05 102
EIA-MVS82.19 17781.23 19685.10 13487.95 20869.17 19183.22 19493.33 6170.42 21178.58 30379.77 35477.29 15294.20 8971.51 20788.96 28391.93 195
UniMVSNet (Re)86.87 8786.98 9286.55 10493.11 7768.48 19483.80 17792.87 8580.37 8389.61 11291.81 16277.72 14694.18 9075.00 17198.53 1596.99 24
PHI-MVS86.38 9685.81 11288.08 8288.44 20077.34 10189.35 8093.05 7773.15 17784.76 20587.70 25478.87 13694.18 9080.67 10596.29 10792.73 158
test_prior86.32 10890.59 15371.99 16092.85 8694.17 9292.80 156
TDRefinement93.52 293.39 393.88 195.94 1490.26 395.70 496.46 290.58 892.86 4796.29 1688.16 3394.17 9286.07 4598.48 1797.22 19
tttt051781.07 19679.58 21985.52 12888.99 18566.45 21387.03 11475.51 32673.76 16288.32 13690.20 21237.96 38494.16 9479.36 12195.13 15595.93 42
v7n90.13 3690.96 3887.65 8991.95 11071.06 17189.99 5993.05 7786.53 2694.29 1896.27 1782.69 8894.08 9586.25 4297.63 6197.82 8
v1086.54 9487.10 8884.84 13788.16 20663.28 24386.64 12592.20 10275.42 14692.81 5094.50 6474.05 19194.06 9683.88 6896.28 10897.17 20
UniMVSNet_NR-MVSNet86.84 8987.06 8986.17 11592.86 8467.02 20682.55 21291.56 12183.08 5790.92 8391.82 16178.25 14193.99 9774.16 17698.35 2197.49 13
DU-MVS86.80 9086.99 9186.21 11393.24 7467.02 20683.16 19592.21 10181.73 6990.92 8391.97 15577.20 15393.99 9774.16 17698.35 2197.61 10
DP-MVS Recon84.05 14483.22 15686.52 10591.73 12075.27 12383.23 19392.40 9672.04 19682.04 25788.33 24377.91 14493.95 9966.17 25695.12 15790.34 236
h-mvs3384.25 13782.76 16688.72 7191.82 11982.60 5684.00 16984.98 25571.27 20186.70 16590.55 20463.04 26793.92 10078.26 13194.20 18989.63 247
DP-MVS88.60 6689.01 6387.36 9191.30 13477.50 9787.55 10692.97 8387.95 2089.62 11092.87 13084.56 6893.89 10177.65 14096.62 9490.70 225
NR-MVSNet86.00 10486.22 10385.34 13193.24 7464.56 23082.21 22490.46 15380.99 7888.42 13291.97 15577.56 14893.85 10272.46 20398.65 1197.61 10
EPNet80.37 20978.41 23586.23 11176.75 35473.28 13687.18 11177.45 30976.24 13168.14 36588.93 23665.41 25293.85 10269.47 22696.12 11791.55 206
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
OPM-MVS89.80 4789.97 4889.27 6194.76 3979.86 7286.76 12292.78 8978.78 10692.51 5593.64 11088.13 3493.84 10484.83 6097.55 6794.10 101
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
9.1489.29 5891.84 11788.80 8895.32 1175.14 14991.07 8092.89 12987.27 4493.78 10583.69 7097.55 67
TranMVSNet+NR-MVSNet87.86 7988.76 6985.18 13394.02 5464.13 23484.38 16191.29 13184.88 3992.06 6393.84 10286.45 5493.73 10673.22 19398.66 1097.69 9
v886.22 10086.83 9584.36 15187.82 21062.35 25986.42 12891.33 13076.78 12892.73 5294.48 6673.41 20093.72 10783.10 7495.41 14497.01 23
Vis-MVSNetpermissive86.86 8886.58 9787.72 8692.09 10677.43 10087.35 10992.09 10578.87 10584.27 22094.05 8978.35 14093.65 10880.54 10791.58 24592.08 189
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
v124084.30 13584.51 13783.65 17187.65 21661.26 27082.85 20491.54 12267.94 24090.68 9090.65 20271.71 22293.64 10982.84 8094.78 17296.07 36
TEST992.34 9679.70 7483.94 17090.32 15865.41 26584.49 20990.97 18682.03 10493.63 110
train_agg85.98 10585.28 12288.07 8392.34 9679.70 7483.94 17090.32 15865.79 25684.49 20990.97 18681.93 10693.63 11081.21 9796.54 9790.88 219
PCF-MVS74.62 1582.15 17980.92 20085.84 12289.43 17472.30 15580.53 24491.82 11657.36 32887.81 14489.92 21977.67 14793.63 11058.69 31195.08 15891.58 205
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
v119284.57 12884.69 13384.21 15787.75 21262.88 24783.02 19891.43 12569.08 22589.98 10190.89 19072.70 21193.62 11382.41 8694.97 16496.13 34
FE-MVS79.98 22078.86 22683.36 17986.47 23966.45 21389.73 6584.74 26072.80 18284.22 22391.38 17344.95 36593.60 11463.93 27891.50 24690.04 243
v192192084.23 13984.37 14283.79 16687.64 21761.71 26582.91 20291.20 13467.94 24090.06 9690.34 20872.04 21993.59 11582.32 8794.91 16596.07 36
mvs_tets89.78 4889.27 5991.30 2593.51 6584.79 4089.89 6390.63 14970.00 21894.55 1596.67 1187.94 3793.59 11584.27 6595.97 12395.52 49
test_040288.65 6589.58 5685.88 12192.55 9072.22 15784.01 16889.44 18388.63 1694.38 1795.77 2686.38 5693.59 11579.84 11295.21 15291.82 197
thisisatest053079.07 22477.33 24584.26 15687.13 22664.58 22983.66 18175.95 32168.86 22885.22 19587.36 26138.10 38293.57 11875.47 16594.28 18794.62 74
jajsoiax89.41 5388.81 6891.19 2893.38 6984.72 4189.70 6690.29 16369.27 22294.39 1696.38 1586.02 6093.52 11983.96 6795.92 12895.34 53
v14419284.24 13884.41 14083.71 17087.59 21861.57 26682.95 20191.03 13867.82 24389.80 10490.49 20573.28 20493.51 12081.88 9594.89 16796.04 38
v114484.54 13084.72 13184.00 16087.67 21562.55 25482.97 20090.93 14270.32 21489.80 10490.99 18573.50 19793.48 12181.69 9694.65 17795.97 39
MCST-MVS84.36 13283.93 14985.63 12691.59 12271.58 16683.52 18392.13 10461.82 28783.96 22689.75 22279.93 13193.46 12278.33 12994.34 18491.87 196
test_892.09 10678.87 8183.82 17590.31 16065.79 25684.36 21390.96 18881.93 10693.44 123
ACMH+77.89 1190.73 2791.50 2188.44 7693.00 7976.26 11689.65 7095.55 787.72 2193.89 2694.94 4891.62 393.44 12378.35 12898.76 395.61 48
FC-MVSNet-test85.93 10687.05 9082.58 20092.25 10056.44 32185.75 13693.09 7577.33 12391.94 6694.65 5774.78 18293.41 12575.11 17098.58 1397.88 7
OMC-MVS88.19 7187.52 8190.19 4491.94 11281.68 6187.49 10893.17 7076.02 13488.64 12791.22 17784.24 7393.37 12677.97 13897.03 8395.52 49
MG-MVS80.32 21280.94 19978.47 26288.18 20452.62 34782.29 22085.01 25472.01 19779.24 29992.54 14169.36 23293.36 12770.65 21689.19 28189.45 249
CPTT-MVS89.39 5488.98 6590.63 3695.09 3286.95 1292.09 2992.30 10079.74 9187.50 14992.38 14481.42 11493.28 12883.07 7597.24 7791.67 202
F-COLMAP84.97 12283.42 15389.63 5592.39 9483.40 4888.83 8791.92 11173.19 17680.18 29089.15 23377.04 15793.28 12865.82 26292.28 22992.21 184
v2v48284.09 14284.24 14483.62 17287.13 22661.40 26782.71 20789.71 17672.19 19589.55 11491.41 17270.70 22893.20 13081.02 9993.76 19796.25 32
agg_prior91.58 12577.69 9690.30 16184.32 21593.18 131
LTVRE_ROB86.10 193.04 393.44 291.82 2093.73 6085.72 3096.79 195.51 888.86 1295.63 896.99 884.81 6793.16 13291.10 197.53 7096.58 30
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
IterMVS-SCA-FT80.64 20379.41 22084.34 15383.93 28769.66 18276.28 30781.09 29072.43 18786.47 17590.19 21360.46 27793.15 13377.45 14486.39 31790.22 237
DPM-MVS80.10 21879.18 22382.88 19590.71 15169.74 18078.87 27090.84 14360.29 30875.64 32885.92 28467.28 24193.11 13471.24 20991.79 23985.77 297
XVG-ACMP-BASELINE89.98 4389.84 5090.41 3994.91 3684.50 4489.49 7693.98 3879.68 9292.09 6293.89 10183.80 7693.10 13582.67 8398.04 3693.64 124
anonymousdsp89.73 4988.88 6692.27 789.82 16986.67 1490.51 5090.20 16669.87 21995.06 1196.14 2184.28 7293.07 13687.68 1596.34 10697.09 21
PC_three_145258.96 31590.06 9691.33 17480.66 12393.03 13775.78 16295.94 12692.48 169
ACMM79.39 990.65 2890.99 3789.63 5595.03 3383.53 4789.62 7193.35 6079.20 10093.83 2793.60 11190.81 792.96 13885.02 5798.45 1892.41 172
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CLD-MVS83.18 16282.64 16984.79 13989.05 18267.82 20277.93 28192.52 9468.33 23385.07 19781.54 33882.06 10392.96 13869.35 22797.91 4893.57 128
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
Effi-MVS+83.90 14984.01 14783.57 17587.22 22465.61 22286.55 12792.40 9678.64 10981.34 27284.18 30983.65 7992.93 14074.22 17587.87 29892.17 186
lessismore_v085.95 11891.10 14270.99 17270.91 35891.79 6794.42 7061.76 27192.93 14079.52 11993.03 21493.93 107
FIs85.35 11386.27 10282.60 19991.86 11457.31 31485.10 14893.05 7775.83 13991.02 8293.97 9373.57 19692.91 14273.97 18198.02 3997.58 12
PVSNet_Blended_VisFu81.55 19080.49 20584.70 14491.58 12573.24 13884.21 16291.67 12062.86 27880.94 27587.16 26567.27 24292.87 14369.82 22488.94 28487.99 273
casdiffmvs_mvgpermissive86.72 9187.51 8284.36 15187.09 23065.22 22484.16 16394.23 2277.89 11691.28 7793.66 10984.35 7192.71 14480.07 10894.87 17095.16 61
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DELS-MVS81.44 19281.25 19482.03 20784.27 28362.87 24876.47 30592.49 9570.97 20681.64 26783.83 31175.03 17792.70 14574.29 17492.22 23290.51 232
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
TSAR-MVS + GP.83.95 14782.69 16887.72 8689.27 17881.45 6383.72 17981.58 28874.73 15285.66 18886.06 28172.56 21392.69 14675.44 16695.21 15289.01 263
Fast-Effi-MVS+81.04 19780.57 20282.46 20487.50 21963.22 24478.37 27789.63 17968.01 23781.87 26082.08 33282.31 9792.65 14767.10 24888.30 29491.51 207
PLCcopyleft73.85 1682.09 18080.31 20787.45 9090.86 14880.29 6985.88 13390.65 14868.17 23576.32 31986.33 27673.12 20692.61 14861.40 29990.02 27389.44 250
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
IterMVS-LS84.73 12584.98 12683.96 16287.35 22163.66 23883.25 19189.88 17376.06 13289.62 11092.37 14773.40 20292.52 14978.16 13394.77 17495.69 44
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
FA-MVS(test-final)83.13 16483.02 16283.43 17786.16 25566.08 21788.00 10088.36 19775.55 14385.02 19892.75 13565.12 25492.50 15074.94 17291.30 24991.72 199
PAPM_NR83.23 16183.19 15883.33 18090.90 14665.98 21888.19 9890.78 14578.13 11580.87 27787.92 25173.49 19992.42 15170.07 22188.40 28991.60 204
hse-mvs283.47 15881.81 18188.47 7591.03 14382.27 5782.61 20883.69 26671.27 20186.70 16586.05 28263.04 26792.41 15278.26 13193.62 20390.71 224
AUN-MVS81.18 19578.78 22888.39 7790.93 14582.14 5882.51 21483.67 26764.69 27180.29 28685.91 28551.07 33192.38 15376.29 15893.63 20290.65 228
GeoE85.45 11285.81 11284.37 14990.08 16267.07 20585.86 13491.39 12872.33 19287.59 14790.25 21184.85 6692.37 15478.00 13691.94 23893.66 121
PAPM71.77 30070.06 31476.92 28686.39 24153.97 33576.62 30286.62 22653.44 34363.97 38384.73 30357.79 30092.34 15539.65 38881.33 35984.45 309
eth_miper_zixun_eth80.84 19980.22 21182.71 19781.41 31260.98 27677.81 28390.14 16867.31 24686.95 16187.24 26464.26 25792.31 15675.23 16891.61 24394.85 71
PAPR78.84 22878.10 23881.07 22485.17 26860.22 28482.21 22490.57 15162.51 28075.32 33284.61 30474.99 17892.30 15759.48 30988.04 29690.68 226
V4283.47 15883.37 15583.75 16883.16 29663.33 24281.31 23490.23 16569.51 22190.91 8590.81 19574.16 18992.29 15880.06 10990.22 27095.62 47
QAPM82.59 16982.59 17182.58 20086.44 24066.69 21089.94 6290.36 15767.97 23984.94 20292.58 14072.71 21092.18 15970.63 21787.73 30088.85 264
CSCG86.26 9886.47 9985.60 12790.87 14774.26 12987.98 10191.85 11480.35 8489.54 11688.01 24779.09 13492.13 16075.51 16495.06 15990.41 234
TAPA-MVS77.73 1285.71 10984.83 12888.37 7888.78 19179.72 7387.15 11293.50 5669.17 22385.80 18789.56 22480.76 12192.13 16073.21 19895.51 14293.25 140
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
thisisatest051573.00 29170.52 30880.46 23481.45 31159.90 28873.16 33974.31 33357.86 32376.08 32377.78 36437.60 38592.12 16265.00 26991.45 24789.35 252
HyFIR lowres test75.12 27072.66 29082.50 20391.44 13365.19 22572.47 34087.31 21146.79 36980.29 28684.30 30752.70 32492.10 16351.88 35686.73 31290.22 237
Anonymous2023121188.40 6789.62 5584.73 14290.46 15565.27 22388.86 8693.02 8187.15 2393.05 4397.10 682.28 10092.02 16476.70 15297.99 4096.88 25
baseline85.20 11685.93 10783.02 18886.30 24762.37 25884.55 15693.96 3974.48 15587.12 15392.03 15482.30 9891.94 16578.39 12694.21 18894.74 73
EI-MVSNet-Vis-set85.12 11884.53 13686.88 9884.01 28572.76 14283.91 17385.18 24880.44 8288.75 12585.49 28880.08 12891.92 16682.02 9190.85 26195.97 39
EI-MVSNet-UG-set85.04 11984.44 13886.85 9983.87 28972.52 15183.82 17585.15 24980.27 8688.75 12585.45 29079.95 13091.90 16781.92 9490.80 26296.13 34
casdiffmvspermissive85.21 11585.85 11183.31 18186.17 25362.77 25083.03 19793.93 4074.69 15388.21 13792.68 13782.29 9991.89 16877.87 13993.75 19995.27 57
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
tt080588.09 7489.79 5182.98 18993.26 7363.94 23791.10 4189.64 17885.07 3690.91 8591.09 18289.16 2291.87 16982.03 9095.87 13093.13 144
IB-MVS62.13 1971.64 30168.97 32379.66 24680.80 32262.26 26173.94 33176.90 31563.27 27568.63 36476.79 37233.83 39091.84 17059.28 31087.26 30384.88 305
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
UGNet82.78 16681.64 18386.21 11386.20 25276.24 11786.86 11785.68 24077.07 12673.76 34192.82 13169.64 23091.82 17169.04 23493.69 20090.56 230
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
BH-untuned80.96 19880.99 19880.84 22888.55 19768.23 19580.33 24788.46 19472.79 18386.55 16986.76 27174.72 18491.77 17261.79 29588.99 28282.52 339
c3_l81.64 18981.59 18681.79 21580.86 32059.15 29778.61 27490.18 16768.36 23287.20 15187.11 26769.39 23191.62 17378.16 13394.43 18294.60 75
API-MVS82.28 17482.61 17081.30 21986.29 24869.79 17988.71 9087.67 20878.42 11282.15 25584.15 31077.98 14291.59 17465.39 26592.75 22082.51 340
nrg03087.85 8088.49 7085.91 11990.07 16469.73 18187.86 10394.20 2574.04 15892.70 5394.66 5685.88 6191.50 17579.72 11597.32 7596.50 31
AllTest87.97 7787.40 8589.68 5391.59 12283.40 4889.50 7595.44 979.47 9488.00 14193.03 12282.66 8991.47 17670.81 21196.14 11594.16 96
TestCases89.68 5391.59 12283.40 4895.44 979.47 9488.00 14193.03 12282.66 8991.47 17670.81 21196.14 11594.16 96
PVSNet_BlendedMVS78.80 23077.84 23981.65 21684.43 27763.41 24079.49 25990.44 15461.70 29175.43 32987.07 26869.11 23491.44 17860.68 30392.24 23090.11 241
PVSNet_Blended76.49 25775.40 26279.76 24384.43 27763.41 24075.14 32190.44 15457.36 32875.43 32978.30 36269.11 23491.44 17860.68 30387.70 30184.42 310
miper_ehance_all_eth80.34 21180.04 21681.24 22279.82 33058.95 29977.66 28589.66 17765.75 25985.99 18585.11 29568.29 23891.42 18076.03 16092.03 23493.33 135
无先验82.81 20585.62 24158.09 32191.41 18167.95 24784.48 308
ambc82.98 18990.55 15464.86 22788.20 9789.15 18689.40 11793.96 9671.67 22391.38 18278.83 12496.55 9692.71 161
UniMVSNet_ETH3D89.12 6190.72 4384.31 15597.00 264.33 23389.67 6988.38 19688.84 1394.29 1897.57 390.48 1391.26 18372.57 20297.65 6097.34 15
miper_enhance_ethall77.83 23976.93 24880.51 23376.15 36058.01 30975.47 31988.82 18958.05 32283.59 23180.69 34264.41 25691.20 18473.16 19992.03 23492.33 177
3Dnovator80.37 784.80 12484.71 13285.06 13586.36 24574.71 12688.77 8990.00 17175.65 14284.96 20093.17 11774.06 19091.19 18578.28 13091.09 25189.29 255
cascas76.29 26074.81 26780.72 23184.47 27662.94 24673.89 33287.34 21055.94 33375.16 33476.53 37463.97 25991.16 18665.00 26990.97 25688.06 271
ET-MVSNet_ETH3D75.28 26772.77 28882.81 19683.03 29968.11 19877.09 29376.51 31960.67 30577.60 31380.52 34638.04 38391.15 18770.78 21390.68 26489.17 256
EG-PatchMatch MVS84.08 14384.11 14583.98 16192.22 10272.61 14882.20 22687.02 22172.63 18588.86 12291.02 18478.52 13791.11 18873.41 19091.09 25188.21 269
WR-MVS83.56 15584.40 14181.06 22593.43 6854.88 33278.67 27385.02 25381.24 7590.74 8991.56 16972.85 20891.08 18968.00 24598.04 3697.23 18
canonicalmvs85.50 11086.14 10583.58 17487.97 20767.13 20487.55 10694.32 1873.44 16888.47 13187.54 25786.45 5491.06 19075.76 16393.76 19792.54 168
XVG-OURS89.18 5988.83 6790.23 4394.28 4486.11 2285.91 13293.60 5580.16 8789.13 12193.44 11383.82 7590.98 19183.86 6995.30 15193.60 126
PS-MVSNAJ77.04 24976.53 25278.56 25987.09 23061.40 26775.26 32087.13 21661.25 29774.38 33977.22 37076.94 15990.94 19264.63 27484.83 33683.35 327
xiu_mvs_v2_base77.19 24776.75 25078.52 26087.01 23261.30 26975.55 31887.12 21961.24 29874.45 33778.79 35977.20 15390.93 19364.62 27584.80 33783.32 328
XVG-OURS-SEG-HR89.59 5189.37 5790.28 4294.47 4285.95 2386.84 11893.91 4180.07 8986.75 16493.26 11593.64 290.93 19384.60 6290.75 26393.97 105
v14882.31 17382.48 17381.81 21485.59 26259.66 29081.47 23386.02 23672.85 18088.05 14090.65 20270.73 22790.91 19575.15 16991.79 23994.87 67
VDD-MVS84.23 13984.58 13583.20 18591.17 14065.16 22683.25 19184.97 25679.79 9087.18 15294.27 7574.77 18390.89 19669.24 22896.54 9793.55 131
cl2278.97 22578.21 23781.24 22277.74 34459.01 29877.46 29187.13 21665.79 25684.32 21585.10 29658.96 29190.88 19775.36 16792.03 23493.84 111
alignmvs83.94 14883.98 14883.80 16587.80 21167.88 20184.54 15891.42 12773.27 17588.41 13387.96 24872.33 21490.83 19876.02 16194.11 19192.69 162
ITE_SJBPF90.11 4590.72 15084.97 3790.30 16181.56 7190.02 9891.20 17982.40 9490.81 19973.58 18894.66 17694.56 76
BH-RMVSNet80.53 20480.22 21181.49 21887.19 22566.21 21677.79 28486.23 23174.21 15783.69 22988.50 24173.25 20590.75 20063.18 28587.90 29787.52 279
BH-w/o76.57 25576.07 25778.10 26986.88 23565.92 21977.63 28686.33 22865.69 26080.89 27679.95 35168.97 23690.74 20153.01 34785.25 32677.62 369
TR-MVS76.77 25375.79 25879.72 24486.10 25665.79 22077.14 29283.02 27365.20 26881.40 27082.10 33066.30 24690.73 20255.57 33085.27 32582.65 334
GBi-Net82.02 18282.07 17681.85 21186.38 24261.05 27386.83 11988.27 20172.43 18786.00 18295.64 3063.78 26190.68 20365.95 25893.34 20593.82 113
test182.02 18282.07 17681.85 21186.38 24261.05 27386.83 11988.27 20172.43 18786.00 18295.64 3063.78 26190.68 20365.95 25893.34 20593.82 113
FMVSNet184.55 12985.45 11981.85 21190.27 15961.05 27386.83 11988.27 20178.57 11089.66 10995.64 3075.43 17390.68 20369.09 23295.33 14793.82 113
VDDNet84.35 13385.39 12081.25 22095.13 3159.32 29385.42 14281.11 28986.41 2787.41 15096.21 1973.61 19590.61 20666.33 25596.85 8693.81 116
MAR-MVS80.24 21478.74 23084.73 14286.87 23678.18 8885.75 13687.81 20765.67 26177.84 30878.50 36173.79 19490.53 20761.59 29890.87 25985.49 300
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MVS_Test82.47 17283.22 15680.22 23882.62 30257.75 31282.54 21391.96 11071.16 20582.89 24492.52 14277.41 15090.50 20880.04 11087.84 29992.40 173
MVS_111021_HR84.63 12684.34 14385.49 13090.18 16175.86 12079.23 26587.13 21673.35 16985.56 19189.34 22883.60 8090.50 20876.64 15394.05 19390.09 242
Anonymous2024052986.20 10187.13 8783.42 17890.19 16064.55 23184.55 15690.71 14685.85 3189.94 10295.24 4082.13 10290.40 21069.19 23196.40 10595.31 55
EI-MVSNet82.61 16882.42 17483.20 18583.25 29463.66 23883.50 18485.07 25076.06 13286.55 16985.10 29673.41 20090.25 21178.15 13590.67 26595.68 45
MVSTER77.09 24875.70 26081.25 22075.27 36861.08 27277.49 29085.07 25060.78 30386.55 16988.68 23943.14 37490.25 21173.69 18790.67 26592.42 171
Fast-Effi-MVS+-dtu82.54 17181.41 19185.90 12085.60 26176.53 11183.07 19689.62 18073.02 17979.11 30083.51 31480.74 12290.24 21368.76 23789.29 27890.94 217
SD-MVS88.96 6389.88 4986.22 11291.63 12177.07 10589.82 6493.77 4778.90 10492.88 4592.29 14986.11 5890.22 21486.24 4397.24 7791.36 209
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
FMVSNet281.31 19381.61 18580.41 23586.38 24258.75 30483.93 17286.58 22772.43 18787.65 14692.98 12463.78 26190.22 21466.86 24993.92 19592.27 181
cl____80.42 20780.23 20981.02 22679.99 32859.25 29477.07 29487.02 22167.37 24586.18 18089.21 23163.08 26690.16 21676.31 15795.80 13593.65 123
DIV-MVS_self_test80.43 20680.23 20981.02 22679.99 32859.25 29477.07 29487.02 22167.38 24486.19 17889.22 23063.09 26590.16 21676.32 15695.80 13593.66 121
OpenMVScopyleft76.72 1381.98 18482.00 17881.93 20884.42 27968.22 19688.50 9589.48 18266.92 24881.80 26491.86 15772.59 21290.16 21671.19 21091.25 25087.40 281
xiu_mvs_v1_base_debu80.84 19980.14 21382.93 19288.31 20171.73 16279.53 25687.17 21365.43 26279.59 29282.73 32676.94 15990.14 21973.22 19388.33 29086.90 286
xiu_mvs_v1_base80.84 19980.14 21382.93 19288.31 20171.73 16279.53 25687.17 21365.43 26279.59 29282.73 32676.94 15990.14 21973.22 19388.33 29086.90 286
xiu_mvs_v1_base_debi80.84 19980.14 21382.93 19288.31 20171.73 16279.53 25687.17 21365.43 26279.59 29282.73 32676.94 15990.14 21973.22 19388.33 29086.90 286
FMVSNet378.80 23078.55 23279.57 24782.89 30156.89 31981.76 22885.77 23969.04 22686.00 18290.44 20651.75 32990.09 22265.95 25893.34 20591.72 199
test111178.53 23478.85 22777.56 27892.22 10247.49 37282.61 20869.24 36472.43 18785.28 19494.20 8151.91 32790.07 22365.36 26696.45 10395.11 62
LFMVS80.15 21780.56 20378.89 25389.19 18155.93 32385.22 14573.78 33882.96 5884.28 21992.72 13657.38 30190.07 22363.80 27995.75 13890.68 226
test_yl78.71 23278.51 23379.32 25084.32 28158.84 30178.38 27585.33 24575.99 13582.49 24886.57 27258.01 29590.02 22562.74 28692.73 22189.10 258
DCV-MVSNet78.71 23278.51 23379.32 25084.32 28158.84 30178.38 27585.33 24575.99 13582.49 24886.57 27258.01 29590.02 22562.74 28692.73 22189.10 258
test_fmvsmconf0.01_n86.68 9286.52 9887.18 9285.94 25878.30 8586.93 11692.20 10265.94 25389.16 11993.16 11883.10 8489.89 22787.81 1194.43 18293.35 134
ECVR-MVScopyleft78.44 23578.63 23177.88 27491.85 11548.95 36683.68 18069.91 36272.30 19384.26 22194.20 8151.89 32889.82 22863.58 28096.02 12194.87 67
test_fmvsmconf0.1_n86.18 10285.88 11087.08 9485.26 26678.25 8685.82 13591.82 11665.33 26688.55 12892.35 14882.62 9189.80 22986.87 3294.32 18593.18 143
test_fmvsmconf_n85.88 10785.51 11886.99 9684.77 27378.21 8785.40 14391.39 12865.32 26787.72 14591.81 16282.33 9689.78 23086.68 3494.20 18992.99 151
test250674.12 28173.39 28176.28 29591.85 11544.20 38284.06 16748.20 39872.30 19381.90 25994.20 8127.22 39989.77 23164.81 27196.02 12194.87 67
MVS73.21 28972.59 29175.06 30580.97 31760.81 27981.64 23185.92 23846.03 37471.68 35177.54 36568.47 23789.77 23155.70 32985.39 32374.60 375
LCM-MVSNet-Re83.48 15785.06 12478.75 25685.94 25855.75 32680.05 24994.27 1976.47 12996.09 594.54 6383.31 8389.75 23359.95 30694.89 16790.75 222
EGC-MVSNET74.79 27669.99 31689.19 6394.89 3787.00 1191.89 3486.28 2291.09 3982.23 40095.98 2381.87 10989.48 23479.76 11495.96 12491.10 214
CANet_DTU77.81 24177.05 24680.09 24081.37 31359.90 28883.26 19088.29 20069.16 22467.83 36883.72 31260.93 27489.47 23569.22 23089.70 27590.88 219
GA-MVS75.83 26374.61 26879.48 24981.87 30559.25 29473.42 33682.88 27468.68 23079.75 29181.80 33550.62 33389.46 23666.85 25085.64 32289.72 246
MVP-Stereo75.81 26473.51 28082.71 19789.35 17573.62 13280.06 24885.20 24760.30 30773.96 34087.94 24957.89 29989.45 23752.02 35174.87 38085.06 304
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
testf189.30 5689.12 6089.84 4888.67 19285.64 3190.61 4693.17 7086.02 2993.12 4195.30 3684.94 6489.44 23874.12 17896.10 11894.45 82
APD_test289.30 5689.12 6089.84 4888.67 19285.64 3190.61 4693.17 7086.02 2993.12 4195.30 3684.94 6489.44 23874.12 17896.10 11894.45 82
Vis-MVSNet (Re-imp)77.82 24077.79 24077.92 27388.82 18851.29 35783.28 18971.97 35174.04 15882.23 25389.78 22157.38 30189.41 24057.22 32095.41 14493.05 148
MSLP-MVS++85.00 12186.03 10681.90 20991.84 11771.56 16886.75 12393.02 8175.95 13787.12 15389.39 22777.98 14289.40 24177.46 14394.78 17284.75 307
APD_test188.40 6787.91 7589.88 4789.50 17286.65 1689.98 6091.91 11284.26 4290.87 8893.92 10082.18 10189.29 24273.75 18594.81 17193.70 120
bld_raw_dy_0_6484.85 12384.44 13886.07 11793.73 6074.93 12588.57 9381.90 28470.44 21091.28 7795.18 4256.62 30689.28 24385.15 5497.09 8193.99 103
thres600view775.97 26275.35 26477.85 27687.01 23251.84 35380.45 24573.26 34275.20 14883.10 24186.31 27845.54 35689.05 24455.03 33692.24 23092.66 163
jason77.42 24575.75 25982.43 20587.10 22969.27 18677.99 28081.94 28351.47 35677.84 30885.07 29960.32 27989.00 24570.74 21589.27 28089.03 261
jason: jason.
lupinMVS76.37 25974.46 27182.09 20685.54 26369.26 18776.79 29780.77 29350.68 36376.23 32082.82 32458.69 29288.94 24669.85 22388.77 28588.07 270
PMVScopyleft80.48 690.08 3790.66 4488.34 7996.71 392.97 190.31 5489.57 18188.51 1790.11 9595.12 4590.98 688.92 24777.55 14297.07 8283.13 332
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
thres100view90075.45 26675.05 26676.66 29187.27 22251.88 35281.07 23973.26 34275.68 14183.25 23886.37 27545.54 35688.80 24851.98 35290.99 25389.31 253
tfpn200view974.86 27474.23 27376.74 29086.24 25052.12 34979.24 26373.87 33673.34 17081.82 26284.60 30546.02 35088.80 24851.98 35290.99 25389.31 253
thres40075.14 26874.23 27377.86 27586.24 25052.12 34979.24 26373.87 33673.34 17081.82 26284.60 30546.02 35088.80 24851.98 35290.99 25392.66 163
TAMVS78.08 23876.36 25383.23 18390.62 15272.87 14179.08 26680.01 29761.72 29081.35 27186.92 27063.96 26088.78 25150.61 35793.01 21588.04 272
CDS-MVSNet77.32 24675.40 26283.06 18789.00 18472.48 15277.90 28282.17 28160.81 30278.94 30183.49 31559.30 28788.76 25254.64 33992.37 22587.93 275
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
OpenMVS_ROBcopyleft70.19 1777.77 24277.46 24178.71 25784.39 28061.15 27181.18 23882.52 27762.45 28283.34 23787.37 26066.20 24788.66 25364.69 27385.02 33086.32 290
baseline269.77 31966.89 33378.41 26379.51 33358.09 30776.23 30869.57 36357.50 32764.82 38177.45 36746.02 35088.44 25453.08 34477.83 37188.70 265
tpm268.45 32766.83 33473.30 31478.93 34148.50 36779.76 25371.76 35347.50 36869.92 36083.60 31342.07 37688.40 25548.44 36879.51 36383.01 333
新几何182.95 19193.96 5578.56 8480.24 29555.45 33583.93 22791.08 18371.19 22588.33 25665.84 26193.07 21381.95 345
ACMH76.49 1489.34 5591.14 3183.96 16292.50 9270.36 17789.55 7293.84 4681.89 6894.70 1395.44 3490.69 888.31 25783.33 7198.30 2493.20 141
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
thres20072.34 29671.55 30274.70 30783.48 29151.60 35475.02 32273.71 33970.14 21778.56 30480.57 34546.20 34888.20 25846.99 37389.29 27884.32 311
gm-plane-assit75.42 36744.97 38152.17 35072.36 38287.90 25954.10 340
EU-MVSNet75.12 27074.43 27277.18 28383.11 29859.48 29285.71 13882.43 27939.76 39085.64 18988.76 23744.71 36787.88 26073.86 18385.88 32184.16 315
RPSCF88.00 7686.93 9391.22 2790.08 16289.30 489.68 6891.11 13679.26 9989.68 10794.81 5582.44 9287.74 26176.54 15588.74 28796.61 29
D2MVS76.84 25175.67 26180.34 23680.48 32662.16 26373.50 33584.80 25957.61 32682.24 25287.54 25751.31 33087.65 26270.40 22093.19 21191.23 210
dcpmvs_284.23 13985.14 12381.50 21788.61 19561.98 26482.90 20393.11 7368.66 23192.77 5192.39 14378.50 13887.63 26376.99 15192.30 22694.90 65
CostFormer69.98 31868.68 32673.87 30977.14 35050.72 36179.26 26274.51 33151.94 35470.97 35584.75 30245.16 36487.49 26455.16 33579.23 36683.40 326
CVMVSNet72.62 29371.41 30376.28 29583.25 29460.34 28383.50 18479.02 30237.77 39376.33 31885.10 29649.60 33887.41 26570.54 21877.54 37581.08 356
diffmvspermissive80.40 20880.48 20680.17 23979.02 34060.04 28577.54 28890.28 16466.65 25182.40 25087.33 26273.50 19787.35 26677.98 13789.62 27693.13 144
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
testing371.53 30370.79 30573.77 31188.89 18741.86 38776.60 30359.12 38872.83 18180.97 27382.08 33219.80 40487.33 26765.12 26891.68 24292.13 188
VPA-MVSNet83.47 15884.73 12979.69 24590.29 15857.52 31381.30 23688.69 19276.29 13087.58 14894.44 6780.60 12487.20 26866.60 25496.82 8994.34 89
patchmatchnet-post81.71 33645.93 35387.01 269
SCA73.32 28672.57 29275.58 30281.62 30955.86 32478.89 26971.37 35661.73 28974.93 33583.42 31760.46 27787.01 26958.11 31782.63 35383.88 316
mvs_anonymous78.13 23778.76 22976.23 29779.24 33750.31 36378.69 27284.82 25861.60 29383.09 24292.82 13173.89 19387.01 26968.33 24486.41 31691.37 208
TinyColmap81.25 19482.34 17577.99 27285.33 26560.68 28182.32 21988.33 19971.26 20386.97 16092.22 15377.10 15686.98 27262.37 28895.17 15486.31 291
fmvsm_l_conf0.5_n82.06 18181.54 18983.60 17383.94 28673.90 13183.35 18886.10 23358.97 31483.80 22890.36 20774.23 18886.94 27382.90 7890.22 27089.94 244
TransMVSNet (Re)84.02 14585.74 11478.85 25491.00 14455.20 33182.29 22087.26 21279.65 9388.38 13495.52 3383.00 8586.88 27467.97 24696.60 9594.45 82
LF4IMVS82.75 16781.93 17985.19 13282.08 30380.15 7085.53 13988.76 19168.01 23785.58 19087.75 25371.80 22186.85 27574.02 18093.87 19688.58 266
pmmvs686.52 9588.06 7481.90 20992.22 10262.28 26084.66 15489.15 18683.54 5289.85 10397.32 488.08 3686.80 27670.43 21997.30 7696.62 28
KD-MVS_self_test81.93 18583.14 16078.30 26584.75 27452.75 34480.37 24689.42 18470.24 21690.26 9493.39 11474.55 18786.77 27768.61 24096.64 9395.38 52
1112_ss74.82 27573.74 27678.04 27189.57 17060.04 28576.49 30487.09 22054.31 33973.66 34279.80 35260.25 28086.76 27858.37 31384.15 34187.32 282
fmvsm_l_conf0.5_n_a81.46 19180.87 20183.25 18283.73 29073.21 13983.00 19985.59 24258.22 32082.96 24390.09 21772.30 21586.65 27981.97 9389.95 27489.88 245
USDC76.63 25476.73 25176.34 29483.46 29257.20 31680.02 25088.04 20552.14 35283.65 23091.25 17663.24 26486.65 27954.66 33894.11 19185.17 302
tfpnnormal81.79 18882.95 16378.31 26488.93 18655.40 32780.83 24382.85 27576.81 12785.90 18694.14 8574.58 18686.51 28166.82 25295.68 14193.01 150
VPNet80.25 21381.68 18275.94 29892.46 9347.98 37076.70 29981.67 28673.45 16784.87 20392.82 13174.66 18586.51 28161.66 29796.85 8693.33 135
testdata286.43 28363.52 282
MSDG80.06 21979.99 21880.25 23783.91 28868.04 20077.51 28989.19 18577.65 11981.94 25883.45 31676.37 16986.31 28463.31 28486.59 31486.41 289
fmvsm_s_conf0.1_n_a82.58 17081.93 17984.50 14687.68 21473.35 13486.14 13177.70 30761.64 29285.02 19891.62 16777.75 14586.24 28582.79 8187.07 30793.91 109
Anonymous20240521180.51 20581.19 19778.49 26188.48 19857.26 31576.63 30182.49 27881.21 7684.30 21892.24 15267.99 23986.24 28562.22 28995.13 15591.98 194
fmvsm_s_conf0.5_n_a82.21 17681.51 19084.32 15486.56 23873.35 13485.46 14077.30 31161.81 28884.51 20890.88 19277.36 15186.21 28782.72 8286.97 31193.38 133
MVS_111021_LR84.28 13683.76 15185.83 12389.23 17983.07 5180.99 24083.56 26972.71 18486.07 18189.07 23481.75 11186.19 28877.11 14993.36 20488.24 268
test_fmvsmvis_n_192085.22 11485.36 12184.81 13885.80 26076.13 11985.15 14792.32 9961.40 29491.33 7490.85 19383.76 7886.16 28984.31 6493.28 20892.15 187
Baseline_NR-MVSNet84.00 14685.90 10978.29 26691.47 13253.44 34082.29 22087.00 22479.06 10289.55 11495.72 2877.20 15386.14 29072.30 20498.51 1695.28 56
EPNet_dtu72.87 29271.33 30477.49 28077.72 34560.55 28282.35 21875.79 32266.49 25258.39 39381.06 34153.68 32085.98 29153.55 34292.97 21785.95 294
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
ANet_high83.17 16385.68 11575.65 30081.24 31445.26 37979.94 25192.91 8483.83 4691.33 7496.88 1080.25 12785.92 29268.89 23595.89 12995.76 43
fmvsm_s_conf0.1_n82.17 17881.59 18683.94 16486.87 23671.57 16785.19 14677.42 31062.27 28684.47 21191.33 17476.43 16785.91 29383.14 7287.14 30594.33 90
Test_1112_low_res73.90 28373.08 28476.35 29390.35 15755.95 32273.40 33786.17 23250.70 36273.14 34385.94 28358.31 29485.90 29456.51 32383.22 34587.20 283
fmvsm_s_conf0.5_n81.91 18681.30 19383.75 16886.02 25771.56 16884.73 15277.11 31462.44 28384.00 22590.68 19976.42 16885.89 29583.14 7287.11 30693.81 116
test_fmvsm_n_192083.60 15482.89 16485.74 12485.22 26777.74 9584.12 16590.48 15259.87 31286.45 17791.12 18175.65 17185.89 29582.28 8890.87 25993.58 127
MIMVSNet183.63 15384.59 13480.74 22994.06 5362.77 25082.72 20684.53 26177.57 12190.34 9295.92 2476.88 16585.83 29761.88 29497.42 7293.62 125
tpmvs70.16 31469.56 31971.96 32474.71 37248.13 36879.63 25475.45 32765.02 26970.26 35881.88 33445.34 36185.68 29858.34 31475.39 37982.08 344
pm-mvs183.69 15184.95 12779.91 24190.04 16659.66 29082.43 21687.44 20975.52 14487.85 14395.26 3981.25 11685.65 29968.74 23896.04 12094.42 85
pmmvs-eth3d78.42 23677.04 24782.57 20287.44 22074.41 12880.86 24279.67 29855.68 33484.69 20690.31 21060.91 27585.42 30062.20 29091.59 24487.88 276
testdata79.54 24892.87 8272.34 15480.14 29659.91 31185.47 19391.75 16567.96 24085.24 30168.57 24292.18 23381.06 358
131473.22 28872.56 29375.20 30380.41 32757.84 31081.64 23185.36 24451.68 35573.10 34476.65 37361.45 27285.19 30263.54 28179.21 36782.59 335
CHOSEN 1792x268872.45 29470.56 30778.13 26890.02 16763.08 24568.72 35883.16 27142.99 38475.92 32485.46 28957.22 30385.18 30349.87 36181.67 35586.14 292
pmmvs474.92 27372.98 28680.73 23084.95 26971.71 16576.23 30877.59 30852.83 34677.73 31286.38 27456.35 30984.97 30457.72 31987.05 30885.51 299
旧先验281.73 22956.88 33186.54 17484.90 30572.81 200
HY-MVS64.64 1873.03 29072.47 29474.71 30683.36 29354.19 33482.14 22781.96 28256.76 33269.57 36186.21 28060.03 28184.83 30649.58 36382.65 35185.11 303
ab-mvs79.67 22280.56 20376.99 28488.48 19856.93 31784.70 15386.06 23468.95 22780.78 27993.08 11975.30 17584.62 30756.78 32190.90 25889.43 251
IterMVS76.91 25076.34 25478.64 25880.91 31864.03 23576.30 30679.03 30164.88 27083.11 24089.16 23259.90 28384.46 30868.61 24085.15 32987.42 280
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
VNet79.31 22380.27 20876.44 29287.92 20953.95 33675.58 31784.35 26274.39 15682.23 25390.72 19772.84 20984.39 30960.38 30593.98 19490.97 216
ppachtmachnet_test74.73 27774.00 27576.90 28780.71 32356.89 31971.53 34678.42 30358.24 31979.32 29882.92 32357.91 29884.26 31065.60 26491.36 24889.56 248
CR-MVSNet74.00 28273.04 28576.85 28979.58 33162.64 25282.58 21076.90 31550.50 36475.72 32692.38 14448.07 34284.07 31168.72 23982.91 34883.85 319
Patchmtry76.56 25677.46 24173.83 31079.37 33646.60 37682.41 21776.90 31573.81 16185.56 19192.38 14448.07 34283.98 31263.36 28395.31 15090.92 218
gg-mvs-nofinetune68.96 32669.11 32168.52 34476.12 36145.32 37883.59 18255.88 39386.68 2464.62 38297.01 730.36 39483.97 31344.78 38082.94 34776.26 371
GG-mvs-BLEND67.16 34873.36 37746.54 37784.15 16455.04 39458.64 39261.95 39329.93 39583.87 31438.71 39076.92 37771.07 379
PM-MVS80.20 21579.00 22483.78 16788.17 20586.66 1581.31 23466.81 37469.64 22088.33 13590.19 21364.58 25583.63 31571.99 20690.03 27281.06 358
JIA-IIPM69.41 32266.64 33777.70 27773.19 37871.24 17075.67 31465.56 37570.42 21165.18 37792.97 12633.64 39183.06 31653.52 34369.61 38978.79 367
CMPMVSbinary59.41 2075.12 27073.57 27879.77 24275.84 36367.22 20381.21 23782.18 28050.78 36176.50 31687.66 25555.20 31682.99 31762.17 29290.64 26889.09 260
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
Patchmatch-RL test74.48 27873.68 27776.89 28884.83 27166.54 21172.29 34169.16 36557.70 32486.76 16386.33 27645.79 35582.59 31869.63 22590.65 26781.54 349
KD-MVS_2432*160066.87 33265.81 33970.04 33167.50 39147.49 37262.56 37579.16 29961.21 29977.98 30680.61 34325.29 40182.48 31953.02 34584.92 33180.16 362
miper_refine_blended66.87 33265.81 33970.04 33167.50 39147.49 37262.56 37579.16 29961.21 29977.98 30680.61 34325.29 40182.48 31953.02 34584.92 33180.16 362
tpm cat166.76 33565.21 34271.42 32577.09 35150.62 36278.01 27973.68 34044.89 37768.64 36379.00 35745.51 35882.42 32149.91 36070.15 38681.23 355
MS-PatchMatch70.93 30970.22 31273.06 31681.85 30662.50 25573.82 33377.90 30552.44 34975.92 32481.27 33955.67 31381.75 32255.37 33277.70 37374.94 374
CNLPA83.55 15683.10 16184.90 13689.34 17683.87 4684.54 15888.77 19079.09 10183.54 23488.66 24074.87 17981.73 32366.84 25192.29 22889.11 257
baseline173.26 28773.54 27972.43 32284.92 27047.79 37179.89 25274.00 33465.93 25478.81 30286.28 27956.36 30881.63 32456.63 32279.04 36987.87 277
SSC-MVS77.55 24381.64 18365.29 35790.46 15520.33 40273.56 33468.28 36685.44 3288.18 13994.64 6070.93 22681.33 32571.25 20892.03 23494.20 92
MDA-MVSNet-bldmvs77.47 24476.90 24979.16 25279.03 33964.59 22866.58 36775.67 32473.15 17788.86 12288.99 23566.94 24381.23 32664.71 27288.22 29591.64 203
CL-MVSNet_self_test76.81 25277.38 24375.12 30486.90 23451.34 35573.20 33880.63 29468.30 23481.80 26488.40 24266.92 24480.90 32755.35 33394.90 16693.12 146
MDTV_nov1_ep1368.29 32878.03 34343.87 38374.12 32872.22 34952.17 35067.02 37085.54 28745.36 36080.85 32855.73 32784.42 339
pmmvs570.73 31070.07 31372.72 31877.03 35252.73 34574.14 32775.65 32550.36 36572.17 34985.37 29355.42 31580.67 32952.86 34887.59 30284.77 306
SDMVSNet81.90 18783.17 15978.10 26988.81 18962.45 25676.08 31186.05 23573.67 16383.41 23593.04 12082.35 9580.65 33070.06 22295.03 16091.21 211
Gipumacopyleft84.44 13186.33 10178.78 25584.20 28473.57 13389.55 7290.44 15484.24 4384.38 21294.89 4976.35 17080.40 33176.14 15996.80 9082.36 341
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_post178.85 2713.13 39845.19 36380.13 33258.11 317
PatchmatchNetpermissive69.71 32068.83 32472.33 32377.66 34653.60 33879.29 26169.99 36157.66 32572.53 34782.93 32246.45 34780.08 33360.91 30272.09 38383.31 329
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
Syy-MVS69.40 32370.03 31567.49 34781.72 30738.94 38971.00 34761.99 38061.38 29570.81 35672.36 38261.37 27379.30 33464.50 27785.18 32784.22 312
myMVS_eth3d64.66 34363.89 34566.97 34981.72 30737.39 39271.00 34761.99 38061.38 29570.81 35672.36 38220.96 40379.30 33449.59 36285.18 32784.22 312
FMVSNet572.10 29871.69 29873.32 31381.57 31053.02 34376.77 29878.37 30463.31 27476.37 31791.85 15836.68 38678.98 33647.87 37092.45 22487.95 274
WB-MVS76.06 26180.01 21764.19 36089.96 16820.58 40172.18 34268.19 36783.21 5486.46 17693.49 11270.19 22978.97 33765.96 25790.46 26993.02 149
our_test_371.85 29971.59 29972.62 31980.71 32353.78 33769.72 35671.71 35558.80 31678.03 30580.51 34756.61 30778.84 33862.20 29086.04 32085.23 301
miper_lstm_enhance76.45 25876.10 25677.51 27976.72 35560.97 27764.69 37185.04 25263.98 27383.20 23988.22 24456.67 30578.79 33973.22 19393.12 21292.78 157
PatchMatch-RL74.48 27873.22 28378.27 26787.70 21385.26 3475.92 31370.09 36064.34 27276.09 32281.25 34065.87 25178.07 34053.86 34183.82 34271.48 378
sd_testset79.95 22181.39 19275.64 30188.81 18958.07 30876.16 31082.81 27673.67 16383.41 23593.04 12080.96 11977.65 34158.62 31295.03 16091.21 211
Anonymous2024052180.18 21681.25 19476.95 28583.15 29760.84 27882.46 21585.99 23768.76 22986.78 16293.73 10859.13 28977.44 34273.71 18697.55 6792.56 166
ADS-MVSNet265.87 33963.64 34772.55 32073.16 37956.92 31867.10 36474.81 32849.74 36666.04 37282.97 32046.71 34577.26 34342.29 38369.96 38783.46 324
test_post3.10 39945.43 35977.22 344
MVS-HIRNet61.16 35262.92 34955.87 37479.09 33835.34 39571.83 34357.98 39246.56 37159.05 39091.14 18049.95 33776.43 34538.74 38971.92 38455.84 393
MIMVSNet71.09 30771.59 29969.57 33687.23 22350.07 36478.91 26871.83 35260.20 31071.26 35291.76 16455.08 31876.09 34641.06 38687.02 31082.54 338
tpm67.95 32868.08 32967.55 34678.74 34243.53 38475.60 31567.10 37354.92 33772.23 34888.10 24642.87 37575.97 34752.21 35080.95 36283.15 331
FPMVS72.29 29772.00 29673.14 31588.63 19485.00 3674.65 32567.39 36871.94 19877.80 31087.66 25550.48 33475.83 34849.95 35979.51 36358.58 392
PatchT70.52 31172.76 28963.79 36279.38 33533.53 39677.63 28665.37 37673.61 16571.77 35092.79 13444.38 36875.65 34964.53 27685.37 32482.18 342
PVSNet58.17 2166.41 33665.63 34168.75 34181.96 30449.88 36562.19 37772.51 34751.03 35968.04 36675.34 37750.84 33274.77 35045.82 37882.96 34681.60 348
tpmrst66.28 33766.69 33665.05 35872.82 38239.33 38878.20 27870.69 35953.16 34567.88 36780.36 34848.18 34174.75 35158.13 31670.79 38581.08 356
test20.0373.75 28474.59 27071.22 32681.11 31651.12 35970.15 35472.10 35070.42 21180.28 28891.50 17064.21 25874.72 35246.96 37494.58 17887.82 278
patch_mono-278.89 22679.39 22177.41 28184.78 27268.11 19875.60 31583.11 27260.96 30179.36 29689.89 22075.18 17672.97 35373.32 19292.30 22691.15 213
pmmvs362.47 34660.02 35969.80 33471.58 38664.00 23670.52 35158.44 39139.77 38966.05 37175.84 37527.10 40072.28 35446.15 37684.77 33873.11 376
Anonymous2023120671.38 30571.88 29769.88 33386.31 24654.37 33370.39 35274.62 32952.57 34876.73 31588.76 23759.94 28272.06 35544.35 38193.23 21083.23 330
new-patchmatchnet70.10 31573.37 28260.29 37081.23 31516.95 40359.54 38074.62 32962.93 27780.97 27387.93 25062.83 26971.90 35655.24 33495.01 16392.00 192
test_fmvs375.72 26575.20 26577.27 28275.01 37169.47 18478.93 26784.88 25746.67 37087.08 15787.84 25250.44 33571.62 35777.42 14688.53 28890.72 223
dp60.70 35560.29 35861.92 36672.04 38538.67 39170.83 34964.08 37751.28 35760.75 38677.28 36836.59 38771.58 35847.41 37162.34 39375.52 373
UnsupCasMVSNet_bld69.21 32469.68 31867.82 34579.42 33451.15 35867.82 36375.79 32254.15 34077.47 31485.36 29459.26 28870.64 35948.46 36779.35 36581.66 347
test_fmvs273.57 28572.80 28775.90 29972.74 38368.84 19377.07 29484.32 26345.14 37682.89 24484.22 30848.37 34070.36 36073.40 19187.03 30988.52 267
test-LLR67.21 33066.74 33568.63 34276.45 35855.21 32967.89 36067.14 37162.43 28465.08 37872.39 38043.41 37169.37 36161.00 30084.89 33481.31 351
test-mter65.00 34263.79 34668.63 34276.45 35855.21 32967.89 36067.14 37150.98 36065.08 37872.39 38028.27 39769.37 36161.00 30084.89 33481.31 351
XXY-MVS74.44 28076.19 25569.21 33884.61 27552.43 34871.70 34477.18 31360.73 30480.60 28090.96 18875.44 17269.35 36356.13 32688.33 29085.86 296
UnsupCasMVSNet_eth71.63 30272.30 29569.62 33576.47 35752.70 34670.03 35580.97 29159.18 31379.36 29688.21 24560.50 27669.12 36458.33 31577.62 37487.04 284
WTY-MVS67.91 32968.35 32766.58 35180.82 32148.12 36965.96 36872.60 34553.67 34271.20 35381.68 33758.97 29069.06 36548.57 36681.67 35582.55 337
test_vis1_n_192071.30 30671.58 30170.47 32977.58 34759.99 28774.25 32684.22 26451.06 35874.85 33679.10 35655.10 31768.83 36668.86 23679.20 36882.58 336
test_vis1_n70.29 31269.99 31671.20 32775.97 36266.50 21276.69 30080.81 29244.22 37975.43 32977.23 36950.00 33668.59 36766.71 25382.85 35078.52 368
test_fmvs1_n70.94 30870.41 31172.53 32173.92 37366.93 20875.99 31284.21 26543.31 38379.40 29579.39 35543.47 37068.55 36869.05 23384.91 33382.10 343
test_fmvs169.57 32169.05 32271.14 32869.15 39065.77 22173.98 33083.32 27042.83 38577.77 31178.27 36343.39 37368.50 36968.39 24384.38 34079.15 366
test0.0.03 164.66 34364.36 34365.57 35575.03 37046.89 37564.69 37161.58 38562.43 28471.18 35477.54 36543.41 37168.47 37040.75 38782.65 35181.35 350
dmvs_testset60.59 35662.54 35154.72 37677.26 34827.74 39974.05 32961.00 38660.48 30665.62 37567.03 38955.93 31168.23 37132.07 39669.46 39068.17 383
CHOSEN 280x42059.08 35756.52 36266.76 35076.51 35664.39 23249.62 39059.00 38943.86 38055.66 39568.41 38835.55 38968.21 37243.25 38276.78 37867.69 384
YYNet170.06 31670.44 30968.90 33973.76 37553.42 34158.99 38367.20 37058.42 31887.10 15585.39 29259.82 28467.32 37359.79 30783.50 34485.96 293
MDA-MVSNet_test_wron70.05 31770.44 30968.88 34073.84 37453.47 33958.93 38467.28 36958.43 31787.09 15685.40 29159.80 28567.25 37459.66 30883.54 34385.92 295
EMVS61.10 35360.81 35561.99 36565.96 39655.86 32453.10 38958.97 39067.06 24756.89 39463.33 39140.98 37767.03 37554.79 33786.18 31963.08 387
testgi72.36 29574.61 26865.59 35480.56 32542.82 38668.29 35973.35 34166.87 24981.84 26189.93 21872.08 21866.92 37646.05 37792.54 22387.01 285
EPMVS62.47 34662.63 35062.01 36470.63 38738.74 39074.76 32352.86 39553.91 34167.71 36980.01 35039.40 38066.60 37755.54 33168.81 39180.68 360
PMMVS61.65 34960.38 35665.47 35665.40 39869.26 18763.97 37361.73 38436.80 39460.11 38868.43 38759.42 28666.35 37848.97 36578.57 37060.81 389
E-PMN61.59 35061.62 35361.49 36766.81 39355.40 32753.77 38860.34 38766.80 25058.90 39165.50 39040.48 37966.12 37955.72 32886.25 31862.95 388
PVSNet_051.08 2256.10 35954.97 36459.48 37275.12 36953.28 34255.16 38761.89 38244.30 37859.16 38962.48 39254.22 31965.91 38035.40 39247.01 39559.25 391
test_cas_vis1_n_192069.20 32569.12 32069.43 33773.68 37662.82 24970.38 35377.21 31246.18 37380.46 28578.95 35852.03 32665.53 38165.77 26377.45 37679.95 364
sss66.92 33167.26 33165.90 35377.23 34951.10 36064.79 37071.72 35452.12 35370.13 35980.18 34957.96 29765.36 38250.21 35881.01 36181.25 353
TESTMET0.1,161.29 35160.32 35764.19 36072.06 38451.30 35667.89 36062.09 37945.27 37560.65 38769.01 38627.93 39864.74 38356.31 32481.65 35776.53 370
dmvs_re66.81 33466.98 33266.28 35276.87 35358.68 30571.66 34572.24 34860.29 30869.52 36273.53 37952.38 32564.40 38444.90 37981.44 35875.76 372
ADS-MVSNet61.90 34862.19 35261.03 36973.16 37936.42 39467.10 36461.75 38349.74 36666.04 37282.97 32046.71 34563.21 38542.29 38369.96 38783.46 324
DSMNet-mixed60.98 35461.61 35459.09 37372.88 38145.05 38074.70 32446.61 39926.20 39565.34 37690.32 20955.46 31463.12 38641.72 38581.30 36069.09 382
mvsany_test365.48 34162.97 34873.03 31769.99 38876.17 11864.83 36943.71 40043.68 38180.25 28987.05 26952.83 32363.09 38751.92 35572.44 38279.84 365
test_vis3_rt71.42 30470.67 30673.64 31269.66 38970.46 17566.97 36689.73 17442.68 38688.20 13883.04 31943.77 36960.07 38865.35 26786.66 31390.39 235
test_vis1_rt65.64 34064.09 34470.31 33066.09 39570.20 17861.16 37881.60 28738.65 39172.87 34569.66 38552.84 32260.04 38956.16 32577.77 37280.68 360
Patchmatch-test65.91 33867.38 33061.48 36875.51 36543.21 38568.84 35763.79 37862.48 28172.80 34683.42 31744.89 36659.52 39048.27 36986.45 31581.70 346
mvsany_test158.48 35856.47 36364.50 35965.90 39768.21 19756.95 38642.11 40138.30 39265.69 37477.19 37156.96 30459.35 39146.16 37558.96 39465.93 385
N_pmnet70.20 31368.80 32574.38 30880.91 31884.81 3959.12 38276.45 32055.06 33675.31 33382.36 32955.74 31254.82 39247.02 37287.24 30483.52 323
wuyk23d75.13 26979.30 22262.63 36375.56 36475.18 12480.89 24173.10 34475.06 15094.76 1295.32 3587.73 4052.85 39334.16 39397.11 8059.85 390
test_f64.31 34565.85 33859.67 37166.54 39462.24 26257.76 38570.96 35740.13 38884.36 21382.09 33146.93 34451.67 39461.99 29381.89 35465.12 386
PMMVS255.64 36159.27 36044.74 37864.30 39912.32 40440.60 39149.79 39753.19 34465.06 38084.81 30153.60 32149.76 39532.68 39589.41 27772.15 377
new_pmnet55.69 36057.66 36149.76 37775.47 36630.59 39759.56 37951.45 39643.62 38262.49 38475.48 37640.96 37849.15 39637.39 39172.52 38169.55 381
MVEpermissive40.22 2351.82 36250.47 36555.87 37462.66 40051.91 35131.61 39339.28 40240.65 38750.76 39674.98 37856.24 31044.67 39733.94 39464.11 39271.04 380
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method30.46 36329.60 36633.06 37917.99 4023.84 40613.62 39473.92 3352.79 39718.29 39953.41 39428.53 39643.25 39822.56 39735.27 39752.11 394
DeepMVS_CXcopyleft24.13 38032.95 40129.49 39821.63 40512.07 39637.95 39745.07 39530.84 39319.21 39917.94 39933.06 39823.69 395
tmp_tt20.25 36524.50 3687.49 3814.47 4038.70 40534.17 39225.16 4041.00 39932.43 39818.49 39639.37 3819.21 40021.64 39843.75 3964.57 396
test1236.27 3688.08 3710.84 3821.11 4050.57 40762.90 3740.82 4060.54 4001.07 4022.75 4011.26 4050.30 4011.04 4001.26 4001.66 397
testmvs5.91 3697.65 3720.72 3831.20 4040.37 40859.14 3810.67 4070.49 4011.11 4012.76 4000.94 4060.24 4021.02 4011.47 3991.55 398
test_blank0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
uanet_test0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
DCPMVS0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
cdsmvs_eth3d_5k20.81 36427.75 3670.00 3840.00 4060.00 4090.00 39585.44 2430.00 4020.00 40382.82 32481.46 1130.00 4030.00 4020.00 4010.00 399
pcd_1.5k_mvsjas6.41 3678.55 3700.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 40276.94 1590.00 4030.00 4020.00 4010.00 399
sosnet-low-res0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
sosnet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
uncertanet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
Regformer0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
ab-mvs-re6.65 3668.87 3690.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 40379.80 3520.00 4070.00 4030.00 4020.00 4010.00 399
uanet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
WAC-MVS37.39 39252.61 349
FOURS196.08 1187.41 1096.19 295.83 492.95 296.57 2
test_one_060193.85 5873.27 13794.11 3386.57 2593.47 3894.64 6088.42 26
eth-test20.00 406
eth-test0.00 406
RE-MVS-def92.61 494.13 5188.95 592.87 1394.16 2788.75 1493.79 2894.43 6890.64 1087.16 2997.60 6492.73 158
IU-MVS94.18 4672.64 14590.82 14456.98 33089.67 10885.78 5097.92 4693.28 137
save fliter93.75 5977.44 9986.31 12989.72 17570.80 207
test072694.16 4972.56 14990.63 4593.90 4283.61 5093.75 3094.49 6589.76 18
GSMVS83.88 316
test_part293.86 5777.77 9492.84 48
sam_mvs146.11 34983.88 316
sam_mvs45.92 354
MTGPAbinary91.81 118
MTMP90.66 4433.14 403
test9_res80.83 10296.45 10390.57 229
agg_prior279.68 11696.16 11490.22 237
test_prior478.97 8084.59 155
test_prior283.37 18775.43 14584.58 20791.57 16881.92 10879.54 11896.97 84
新几何281.72 230
旧先验191.97 10971.77 16181.78 28591.84 15973.92 19293.65 20183.61 322
原ACMM282.26 223
test22293.31 7176.54 10979.38 26077.79 30652.59 34782.36 25190.84 19466.83 24591.69 24181.25 353
segment_acmp81.94 105
testdata179.62 25573.95 160
plane_prior793.45 6677.31 102
plane_prior692.61 8876.54 10974.84 180
plane_prior492.95 127
plane_prior376.85 10777.79 11886.55 169
plane_prior289.45 7779.44 96
plane_prior192.83 86
plane_prior76.42 11387.15 11275.94 13895.03 160
n20.00 408
nn0.00 408
door-mid74.45 332
test1191.46 124
door72.57 346
HQP5-MVS70.66 173
HQP-NCC91.19 13784.77 14973.30 17280.55 282
ACMP_Plane91.19 13784.77 14973.30 17280.55 282
BP-MVS77.30 147
HQP3-MVS92.68 9194.47 180
HQP2-MVS72.10 216
NP-MVS91.95 11074.55 12790.17 215
MDTV_nov1_ep13_2view27.60 40070.76 35046.47 37261.27 38545.20 36249.18 36483.75 321
ACMMP++_ref95.74 139
ACMMP++97.35 73
Test By Simon79.09 134